PowerPC Architecture

First Edition

PowerPC Architecture

First Edition

First Edition (May 1993)

Notice

This manual contains preliminary specifications. As such they are subject to change without notice. Interna-
tional Business Machines Corporation provides this manual “AS 1S” without warranty of any kind, either
expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose.

IBM does not warrant the contents of this publication or the accompanying source code examples, whether indi-
vidually or as one or more groups, will meet your requirements or that the publication or the accompanying
source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the publication.

Requests for copies of this publication and for technical information about IBM products should be made to your
IBM Authorized Dealer or you IBM Marketing Representative.

IBM is a registered trademark of the International Business Machines Corporation.
PowerPC is a registered trademark of the International Business Machines Corporation.

© Copyright International Business Machines Corporation, 1993. All rights reserved.

First Edition (May 1993)

iv PowerPC Architecture First Edition

About This Book

This book describes the PowerPC Architecture in three parts. Part 1, “PowerPC User Instruction Set Architecture”
on page 1, describes the base instruction set and related facilities available to the application programmer.
Part 2, “PowerPC Virtual Environment Architecture” on page 117, describes the storage model and related
instructions and facilities available to the application programmer, and the Time Base as seen by the application
programmer. Part 3, “PowerPC Operating Environment Architecture” on page 141, describes the system (privi-
leged) instructions and related facilities. Each PowerPC Implementation Features document defines the imple-
mentation dependent aspects of a particular implementation. The complete description of the PowerPC
Architecture as instantiated in a given implementation includes also the material in the PowerPC implementation
Features document for that implementation.

About This Book v

vi PowerPC Architecture First Edition

Table of Contents

Part 1. PowerPC User Instruction Set

Architecture 1
Chapter 1. introduction 3
11 Overview 3
1.2 Computation Modes 3
1.3 Instruction Mnemonics and
Operands 3
1.4 Compatibility with the Power
Architecture L. 3
1.5 Document Conventions 4
1.6 Processor Overview 6
1.7 Instruction Formats 8
1.8 Classes of Instructions 12
1.9 Forms of Defined Instructions 13
110 Exceptions 14
1.11 Storage Addressing 14
Chapter 2. Branch Processor 17
2.1 Branch Processor Overview .17
2.2 Instruction Fetching 17
2.3 Branch Processor Registers .17
2.4 Branch Processor Instructions .19
Chapter 3. Fixed-Point Processor .. 27
3.1 Fixed-Point Processor Overview .. 27
3.2 Fixed-Point Processor Registers . . 27
3.3 Fixed-Point Processor Instructions 29
Chapter 4. Floating-Point Processor 83
4.1 Floating-Point Processor Overview 83
4.2 Floating-Point Processor Registers 83
4.3 Floating-Point Data 86
4.4 Floating-Point Exceptions 90
4.5 Floating-Point Execution Models . . 95
4.8 Floating-Point Processor
Instructions 93
Part 2. PowerPC Virtual
Environment Architecture 117
Chapter 5. Storage Model 119

5.1 Definitions and Notation 119
5.2 Introduction 120
5.3 Single-copy Atomicity 120
5.4 Memory Coherence 120

5.5 Storage Control Attributes 121

56 CacheModels 122
5.7 Shared Storage 125
5.8 Virtual Storage 128
Chapter 6. Effect of Operand
Placement on Performance 129
6.1 Instruction Restart 130
6.2 Atomicity and Order 130
Chapter 7. Storage Control
Instructions 131
7.1 Parameters Useful to Application
Programs 131

7.2 Cache Management Instructions 132
7.3 Enforce In-order Execution of I/O

Instruction_...... 135
Chapter 8. TimeBase 137
8.1 Time Base Instructions 137
8.2 Reading the Time Base on 64-bit
implementations 138
8.3 Reading the Time Base on 32-bit
Implementations 138
8.4 Computing Time of Day from the
TimeBase 138
Part 3. PowerPC Operating
Environment Architecture 141
Chapter 9. Introduction 143
9.1 Overview 143
9.2 Compatibility with the Power
Architecture 143
9.3 Document Conventions 143

9.4 General Systems Overview 144

9.5 Instruction Formats 144
96 Exceptions 144
9.7 Synchronization 144

Table of Contents vii

Chapter 10. Branch Processor
10.1 Branch Processor Overview
10.2 Branch Processor Registers
10.3 Branch Processor Instructions

Chapter 11. Fixed-Point Processor
11.1 Fixed-Point Processor Overview

11.2 PowerPC Special Purpose
Registers
11.3 Fixed-Point Processor Registers
11.4 Fixed-Point Processor Privileged
Instructions

Chapter 12. Storage Control
12.1 Storage Addressing
12.2 Storage Model
12.3 Address Translation-Overview
12.4 Segmented Address Translation,

64-bit Implementations
12.5 Segmented Address Translation,

32-bit Implementations
12.6 Direct-Store Segments
12.7 Block Address Transiation
12.8 Storage Access Modes
12.9 Reference and Change Recording
12.10 Storage Protection
12.11 Storage Control Instructions
12.12 Table Update Synchronization

Requirements

Chapter 13. Interrupts
13.1 Overview
13.2 Interrupt Synchronization
13.3 Interrupt Classes
13.4 Interrupt Processing
13.5 Interrupt Definitions
13.6 Partially Executed Instructions
13.7 Exception Ordering
13.8 Interrupt Priorities

Chapter 14. Timer Facilities
' 14.1 Overview
14.2 Time Base
14.3 Decrementer

Appendix A. Optional Instructions
A.1 Floating-Point Processor
Instructions

Appendix B. Suggested

Floating-Point Models
B.1 Floating-Point Round to
Single-Precision Model

147
147
147
150

151

151

151
151

152

155
155
159

160

168
173
174
176
178
178
181

186

191
191
191
191
192
193
199
200

B.2 Floating-Point Convert to Integer
Model
B.3 Floating-Point Convert from
Integer Model

Appendix C. Assembler Extended

Mnemonics
C.1 Branch mnemonics
C.2 Condition Register logical

mnemonics
C.3 Subtract mnemonics
C.4 Compare mnemonics
C.5 Trap mnemonics
C.6 Rotate and Shift mnemonics
C.7 Move To/From Special Purpose

Register mnemonics
C.8 Miscellaneous mnemonics

Appendix D. Little-Endian Byte

Ordering
D.1 Byte Ordering
D.2 Structure Mapping Examples
D.3 PowerPC Byte Ordering
D.4 PowerPC Data Storage
Addressing in Little-Endian Mode

D.5 PowerPC Instruction Storage
Addressing in Little-Endian Mode

D.6 PowerPC Cache Management and
Lookaside Buffer Management
Instructions in Little-Endian Mode

D.7 PowerPC I/0O in Little Endian Mode

D.8 Origin of Endian

Appendix E. Programming
Examples
E.1 Synchronization

E.2 Multiple-Precision Shifts
E.3 Floating-Point Conversions
E.4 Floating-Point Selection

Appendix F. Cross-Reference for
Changed Power Mnemonics

Appendix G. Incompatibilities with

the Power Architecture

G.1 New Instructions, Formerly

Privileged Instructions

G.2 Newly Privileged Instructions

G.3 Reserved Bits in Instructions
G.4 Reserved Bits in Registers
G.5 Alignment Check

G.6 Condition Register

233
233
233
234

236

237

239
239
240

24
241
245
248
251

253

viii

PowerPC Architecture First Edition

G.7 Inappropriate use of LK and Rc
bits
G.8 BO Field
G.9 Branch Conditional to Count
Register
G.10 System Call
G.11 Fixed-Point Exception Register
{XER)
G.12 Update Forms of Storage Access
G.13 Multiple Register Loads
G.14 Alignment for Load/Store
Multiple
G.15 Move Assist Instructions
G.16 Synchronization
G.17 Move To/From SPR
G.18 Effects of Exceptions on FPSCR
Bits FR and FI
G.19 Floating-Point Store Instructions
G.20 Move From FPSCR
G.21 Zeroing Bytes in the Data Cache
G.22 Floating-Point Load/Store to
Direct-Store Segment
G.23 Segment Register Instructions
G.24 TLB Entry Invalidation
G.25 Floating-Point Interrupts
G.26 Timing Facilities
G.27 Deleted Instructions
G.28 Discontinued Opcodes

Appendix H. New Instructions
H.1 New Instructions for All

Implementations

H.2 New Instructions for 64-Bit

Implementations Only

H.3 New instructions for 32-Bit

Implementations Only

Appendix I. Hlegal Instructions ... 263
Appendix J. Reserved Instructions 265

Appendix K. Optional Facilities and
Instructions

Appendix L. Synchronization

Requirements for Special Registers 269
L.1 Affected Registers 269
L.2 Context Synchronizing Operations 269
L.3 Software Synchronization

Requirements 270
L.4 Additional Software Requirements 270

Appendix M.
Implementation-Specific SPRs ... 273

Appendix N. Interpretation of the
DSISR as set by an Alignment

interrupt 275
Appendix O. PowerPC Instruction

Set Sorted by Opcode 277
Appendix P. PowerPC Instruction

Set Sorted by Mnemonic 283
Index 289
Last Page - End of Document 291

Table of Contents ix

X PowerPC Architecture First Edition

Figures

NGk oN=

10.
11.
12.

13.
14.
15.
16.

17.

18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.

34.
35.

36.

37.
38.
39.

40.
41,
42.
43.

PowerPC User Register Set
Logical Processing Model

I Instruction Format
B Instruction Format
SC Instruction Format
D Instruction Format
DS Instruction Format (64-bit
implementations only)
X Instruction Format
XL Instruction Format
XFX Instruction Format
XFL Instruction Format
XS Instruction Format (64-bit
implementations only)
XO iInstruction Format
A Instruction Format
M Instruction Format
MD Instruction Format (64-bit
implementations only)
MDS Instruction Format (64-bit
implementations only)
Condition Register
Link Register
Count Register
General Purpose Registers
Fixed-Point Exception Register
Floating-Point Registers
Floating-Point Status and Control Register
Floating-Point Result Flags
Floating-Point Single Format
Floating-Point Double Format
|EEE Floating-Point Fields
Approximation to Real Numbers
Selection of Z1 and Z2
IEEE 64-bit Execution Model
Interpretation of G, R, and X bits
Location of the Guard, Round and Sticky
Bits
Multiply-Add Execution Model
Performance Effects of Storage Operand
Placement, Big-Endian mode
Performance Effects of Storage Operand
Placement, Little-Endian mode
TimeBase
TBR encodingsformftb
Logical View of the PowerPC Processor
Architecture
Save/Restore Register 0
Save/Restore Register 1
Machine State Register
Processor Version Register

45.
46.
47.

49,

51.

52.
53.

55.
56.
57.

59.
60.

61.
62.
63.

65.
66.
67.
68.
69.
70.
71.
73.
74.
75.
76.
77.
78.
79.

80.
81.

Data Address Register 151
Data Storage Interrupt Status Register . 151

Software-use SPRs 151
SPR encodings formtspr 153
SPR encodings for mfspr 154
PowerPC Address Translation 159
Address Translation Overview (64-bit
implementations) 160
Translation of 64-bit Effective Address to

Virtual Address 161
Address Space Register 161
Segment Table Entry format 162
Translation of 80-bit Virtual Address to

64-bit Real Address 164

Page Table Entry, 64-bit implementations 165

SDR1, 64-bit implementations 165
Address Translation Overview (32-bit
implementations) 168
Translation of 32-bit Effective Address to

Virtual Address 169
Segment Register format 169
Translation of 52-bit Virtual Address to
32-bitReal Address 170

Page Table Entry, 32-bit implementations 171

SDR1, 32-bit implementations 171
BAT Registers, 64-bit implementations . 175
" BAT Registers, 32-bit implementations . 175
Formation of Real Address via BAT, 64-bit
implementations 176
Formation of Real Address via BAT, 32-bit
implementations. 176
Protection Key Processing 180
MSR Setting Due to interrupt 193

Offset of Interrupt Vector by Interrupt Type 193
Time Base 203
Decrementer 204
C structure ’s’, showing values of elements 234

Big-Endian mapping of structure ‘s’ 234
Little-Endian mapping of structure ‘s’ 234
PowerPC Little-Endian, structure ’s’ in

storage subsystem 235
PowerPC Little-Endian, structure ’s” as

seen by processor 236
Little-Endian mapping of word ‘w’ stored at
address5, 237
PowerPC Little-Endian, word 'w” stored at
address 5, in storage subsystem 237
Assembly language program ‘p* 238

Big-Endian mapping of program ’p* . .. 238
Littie-Endian mapping of program "p’ 238

Figures Xxi

82. PowerPC Little-Endian, program ’p’ in
storage subsystem

83.

External Access Register

xii PowerPC Architecture First Edition

Part 1. PowerPC User Instruction Set Architecture

This part describes the base instruction set and
related facilities available to the application pro-

grammer.

Chapter 1. Introduction 3 2.2 Instruction Fetching 17
11 Overviewo oo i, 3 2.3 Branch Processor Registers 17
1.2 Computation Modes 3 2.4 Branch Processor Instructions . .. 19
1.3 Instruction Mnemonics and
operands 3 Chapter 3. Fixed-Point Processor .. 27
1.4 Compatibility with the Power 3.1 Fixed-Point Processor Overview . . 27
Architecture 3 3.2 Fixed-Point Processor Registers . . 27
1.5 Document Conventions 4 3.3 Fixed-Point Processor Instructions 29
1.6 Processor Overview 6 ’
1.7 Instruction Formats 8 Chapter 4. Floating-Point Processor 83
1.8 Classes of Instructions 12 4.1 Floating-Point Processor Overview 83
1.9 Forms of Defined Instructions . .. 13 4.2 Floating-Point Processor Registers 83
110 Exceptions 14 4.3 Floating-PointData 86
1.11 Storage Addressing 14 4.4 Floating-Point Exceptions 80

4.5 Floating-Point Execution Models . . 95

Chapter 2. Branch Processor 17 4.6 Floating-Point Processor

2.1 Branch Processor Overview 17 Instructions g9

Part 1. PowerPC User Instruction Set Architecture 1

2 PowerPC Architecture First Edition

Chapter 1. Introduction

1.1 Overview

This chapter describes computation modes, compat-
ibility with the Power Architecture, document con-
ventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Computation Modes

The PowerPC Architecture allows for the following
types of implementation:

= 64-bit implementations, in which all registers
except some Special Purpose Registers are 64
bits long, and effective addresses are 64 bits
long. All 64-bit implementations have two modes
of operation: 64-bit mode and 32-bit mode. The
mode controls how the effective address is inter-
preted, how status bits are set, and how the
Count Register is tested by Branch Conditional
instructions. All instructions provided for 64-bit
implementations are available in both modes.

= 32-bit implementations, in which all registers
except Floating-Point Registers are 32 bits long,
and effective addresses are 32 bits long.

Instructions defined in this document are provided in
both 64-bit implementations and 32-bit implementa-
tions unless otherwise stated. Instructions that are
provided only for 64-bit implementations are illegal in
32-bit implementations, and vice versa.

1.2.1 64-bit Implementations

In both 64-bit mode and 32-bit mode of a 64-bit imple-
mentation, instructions that set a 64-bit register affect
all 64 bits, and the value placed into the register is
independent of mode. In both modes, effective
address computations use all 64 bits of the relevant
registers (General Purpose Registers, Link Register,
Count Register, etc.), and produce a 64-bit result.
However, in 32-bit mode, the high-order 32 bits of the
computed effective address are ignored when

accessing data, and are set to 0 when fetching
instructions.

1.2.2 32-bit Implementations

For a 32-bit implementation, all references to 64-bit
mode in this document should be disregarded. The
semantics of instructions are as shown in this docu-
ment for 32-bit mode in a 64-bit implementation,
except that in a 32-bit implementation all registers
except Floating-Point Registers are 32 bits long. Bit
numbers for registers are shown in braces ({ }) when
they differ from the corresponding numbers for a
64-bit implementation, as described in Section 1.5.1,
“Definitions and Notation” on page 4.

1.3 Instruction Mnemonics and
Operands

The description of each instruction includes the mne-
monic and a formatted list of operands. Some exam-
ples are the following.

stw RS,D(RA)
addis RT,RA,SI

" PowerPC-compliant assemblers will support the mne-

monics and operand lists exactly as shown. They will
also provide certain extended mnemonics, as
described in Appendix C, “Assembler Extended
Mnemonics” on page 223.

1.4 Compatibility with the Power
Architecture

The PowerPC Architecture provides binary compat-
ibility for Power application programs, except as
described in Appendix G, “Incompatibilities with the
Power Architecture” on page 257.

Chapter 1. Introduction 3

Many of the PowerPC instructions are identical to
Power instructions. For some of these the PowerPC
instruction name and/or mnemonic differs from that in
Power. To assist readers familiar with the Power
Architecture, Power mnemonics are shown with the
individual instruction descriptions when they differ
from: the PowerPC mnemonics. Also, Appendix F,
“Cross-Reference for Changed Power Mnemonics” on
page 255, provides a cross-reference from Power
mnemonics to PowerPC mnemonics for the
instructions in this document.

1.5 Document Conventions

1.5.1 Definitions and Notation

The following definitions and notation are used

throughout the PowerPC Architecture documents.
= A program is a sequence of related instructions.

s Quadwords are 128 bits, doublewords are 64 bits,
words are 32 bits, halfwords are 16 bits, and
bytes are 8 bits.

= All numbers are decimal unless specified in some
special way.

— Obnnnn means a number expressed in binary
format.

— Oxnnhn means a number expressed in
hexadecimal format.

Underscores may be used between digits.

= RT, RA, R1, ... refer to General Purpose Regis-
ters.

= FRT, FRA, FR1, .. refer to Floating-Point Regis-
ters.

= (x) means the contents of register x, where x is
the name of an instruction field. For example,
(RA) means the contents of register RA, and
(FRA) means the contents of register FRA, where
RA and FRA are instruction fields. Names such
as LR and CTR denote registers, not fields, so
parentheses are not used with them. Also, when
register x is assigned to, parentheses are
omitted.

= (RA[0) means the contents of register RA if the
RA field has the value 1-31, or the value 0 if the
RA field is 0.

= Bits in registers, instructions, and fields are spec-
ified as follows.

— Bits are numbered left to right, starting with
bit 0.

— Ranges of bits are specified by two numbers
separated by a colon (:). The range p:q con-
sists of bits p through q.

— For registers that are 64 bits long in 64-bit
implementations and 32 bits long in 32-bit

implementations, bit numbers and ranges are
specified with the values for 32-bit imptemen-
tations enclosed in braces ({ }). {} means a
bit that does not exist in 32-bit implementa-
tions. {:} means a range that does not exist
in 32-bit implementations.

X, means bit p of register/field X.
Xp(ry means bit p of register/field X in a 64-bit

implementafion, and bit r of register/field X in a
32-bit implementation.

Xp:q means bits p through q of register/field X.
Xp:q(r:sy Means bits p through q of register/field X
in a 64-bit implementation, and bits r through s of
register/field X in a 32-bit implementation.

X; o ... means bits p, q, ... of register/field X. .

Xpq .. {rs.) Mmeans bits p, q, ... of register/field X
in a 64-bit implementation, and bits r, s, ... of
register/field X in a 32-bit implementation.

—(RA) means the one’s complement of the con-
tents of register RA.

Field i refers to bits 4xi to 4xi+ 3 of a register.

A period (.) as the last character of an instruction
mnemonic means that the instruction records
status information in certain fields of certain
Special Purpose Registers as a side effect of exe-
cution, as described in Chapter 2 through
Chapter 4.

The symbol || is used to describe the concat-
enation of two values. For example, 010 || 111 is
the same as 010111,

x" means x raised to the n!" power.

"x means the replication of x, n times (i.e., x con-
catenated to itself n—1 times). ™0 and "1 are
special cases:

— "0 means a field of n bits with each bit equal
to 0. Thus 50 is equivalent to 0bG0C0O.

— ™ means a field of n bits with each bit equal
to 1. Thus %1 is equivalent to Ob11111.

Positive means greater than zero.
Negative means less than zero.

A system library program is a component of the
system software that can be called by an applica-
tion program using a Branch instruction.

A system service program is a component of the
system software that can be called by an applica-
tion program using a System Call instruction.

The system trap handler is a component of the
system software that receives control when the
conditions specified in a Trap instruction are sat-
isfied. :

The system error handler is a component of the
system software that receives control when an
error occurs. The system error handler includes
a component for each of the various kinds of

4 PowerPC Architecture First Edition

error. These error-specific components are
referred to as the system alignment error
handler, the system data storage error handier,
etc.

= Each bit and field in instructions, and in status

and control registers (XER and FPSCR) and

Special Purpose Registers, is either defined or
reserved. '

s /[, I, 1], ... denotes a reserved field in an instruc-
tion.

= Latency refers to the interval from the time an
instruction begins execution until it produces a
result that is available for use by a subsequent
instruction. :

= Unavailable refers to a resource that cannot be
used by the program. Data or instruction storage
is unavailable if an instruction is denied access to
it. Floating-point instructions are unavailable if
use of them is denied. See Part 3, “PowerPC
Operating Environment Architecture” on
page 141.

1.5.2 Reserved Fields

All reserved fields in instructions should be zero. If
they are not, the instruction form is invalid: see
Section 1.9.2, “Invalid Instruction Forms” on page 13.

The handling of reserved bits in status and control
registers (XER and FPSCR) and in Special Purpose
Registers (and Segment Registers: see Part 3,
“PowerPC Operating Environment Architecture” on
page 141) is implementation dependent. For each
such reserved bit, an implementation shall_either:

= ignore the source value for the bit on write, and
return zero for it on read; or

= set the bit from the source value on write, and
return the value last set for it on read.

—— Programming Note

It is the responsibility of software to preserve bits
that are now reserved in status and control regis-
ters and in Special Purpose Registers (and
Segment Registers: see Part 3, “PowerPC Oper-
ating Environment Architecture” on page 141), as
they may be assigned a meaning in some future
version of the architecture or in Book IV,
PowerPC Implementation Features for some
implementation. In order to accomplish this pres-
ervation in implementation independent fashion,
software should do the following.

= Initialize each such register supplying zeros
for all reserved bits.

= Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the
register.

When a currently reserved bit is subsequently
assigned a meaning, every effort will be made to
have the value to which the system initializes the
bit correspond to the “old behavior.”

1.5.3 Description of Instruction
Operation

A formal description is given of the operation of each
instruction. In addition, the operation of most
instructions is described by a semiformal language at
the register transfer level (RTL). This RTL uses the
notation given below, in addition to the definitions and
notation described in Section 1.5.1, “Definitions and
Notation” on page 4. RTL notation not summarized
here should be self-explanatory.

The RTL descriptions do not imply any particular
implementation.

The RTL descriptions do not cover the following:

= “Standard” setting of the Condition Register,
Fixed-Point Exception Register, and Floating-Point
Status and Control Register. “Non-standard”
setting of these registers (e.g., the setting of Con-
dition Register Field 0 by the stwecx. instruction)
is shown.

= |nvalid instruction forms.

Notation Meaning

- Assignment

—ica Assignment of an instruction effec-
tive address. In 32-bit mode of a
64-bit implementation the high-order
32 bits of the 64-bit target are set to
0.

- NOT logical operator

X Mulitiplication

= Division (yielding quotient)

Chapter 1. Introduction 5

+

*

A
Vv
v

@ VA
m- VA

CEIL(x)
DOUBLE(x)

EXTS(x)
GPR(x)"
MASK(x, y)

MEM(x, y)

ROTLea(x, ¥)

ROTL32(X, y)

SINGLE(x)

SPREG(x)
TRAP
characterization

undefined

CIA

NIA

Two’s-complement addition

Two’s-complement subtraction, unary

minus

Equals and Not Equals relations

Signed comparison relations
Unsigned comparison relations
Unordered comparison relation

AND, OR logical operators
Exclusive-OR, Equivalence

operators ((a=b) = (a@® —b))

Least integer > x

Result of converting x from floating-

point single format to floating-point

double format, using the model

shown on page 99

Resuit of extending x on the left with

sign bits

General Purpose Register x

Mask having 1’s in positions x

through y (wrapping if x > y) and 0’s

elsewhere

Contents of y bytes of memory

starting at address x. In 32-bit mode

of a 64-bit implementation the high-

order 32 bits of the 64-bit value x are

ignored.

Result of rotating the 64-bit value x

left y positions

Result of rotating the 64-bit value x|jx

left y positions, where x is 32 bits

long

Result of converting x from floating-

paint double format to floating-point

single format, using the model shown

on page 102

Special Purpose Register x

Invoke the system trap handler
Reference to the setting of status

bits, in a standard way that is

explained in the text

An undefined value. The value may

vary from one implementation to

logical

another, and from one execution to -

another on the same implementa-
tion.

Current Instruction Address, which is
the 64{32}-bit address of the instruc-
tion being described by a sequence
of RTL. Used by relative branches
to set the Next Instruction Address
(NIA), and by Branch instructions
with LK=1 to set the Link Register.
In 32-bit mode of 64-bit implementa-
tions, the high-order 32 bits of CIA
are always set to 0. Does not corre-
spond to any architected register.
Next Instruction Address, which is
the 64{32}-bit address of the next
instruction to be executed. For a
successful branch, the next instruc-
tion address is the branch target
address: in RTL, this indicated by

if ... then

do

leave

... else ...

assigning a value to NIA. For other
instructions that cause non-
sequential instruction fetching (see
Part 3, “PowerPC Operating Environ-
ment Architecture” on page 141),
the RTL is similar. For instructions
that do not branch, and do not other-
wise cause instruction fetching to be
non-sequential, the next instruction
address is CIA+4. In 32-bit mode of
64-bit implementations, the high-
order 32 bits of NIA are always set
to 0. Does not correspond to any
architected register.

Conditional execution, indenting
shows range, else is optional

Do loop, indenting shows range. “To”
and/or “by” clauses specify incre-
menting an iteration variable, and
"while” and/or "until” clauses give
termination conditions, in the usual
manner.

Leave innermost do loop, or do loop
described in leave statement -

The precedence rules for RTL operators are summa-

rized in Table 1.

Operators higher in the table are

applied before those lower in the table. Operators at
the same level in the table associate from left to

right, from right to left, or not at all, as shown.

(For

example, — associates from left to right, so a—b—c =
(a—b)—c.) Parentheses are used to override the eval-
uation order implied by the table, or to increase
clarity: parenthesized expressions are evaluated
before serving as operands.

Table 1. Operator Precedence

Operators

Associativity

subscript, function evaluation

left to right

pre-superscript (replication),
post-superscript (exponentiation}

right to left

unary —, — right to left
X, = left to right
+, - left to right
Il left to right
= #<5,>2,4, 5,2 feft to right
& @, = left to right
| left to right
(range) none
- none

1.6 Processor Overview

6 PowerPC Architecture First Edition

64-bit implementations 32-bit implementations
r CR J Condition Register (page 17) r CR J
0 31 [31
| LR | Link Register (page 18) [LR |
0 63 0 31
l CTR] Count Register (page 18) [CTR j
) 63) 31
GPR 00 GPR 00
GPR 01 GPR 01
' General Purpose Registers (page 27)
GPR 31 GPR 31
0 63 [31
[XER | Fixed-Point Exception Register (page 27) | XER |
0 31 o 31
FPR 00 FPR 00
FPR 01 FPR 01
Floating-point
Registers (page 83)
FPR 31 ' FPR 31
o 63 [63
{ FPSCR Floating-Point Status and [FPSCR |
0 31 Control Register (page 84) o 3

Figure 1. PowerPC User Register Set

The processor implements the instruction set, the
storage model, and other facilities defined in this doc-
ument. Instructions which the processor can execute
fall into the following classes.

= branch instructions,
= fixed-point instructions, and
= floating-point instructions.

Branch instructions are described in Section 2.4,
“Branch Processor Instructions” on page 18. Fixed-
point instructions are described in Section 3.3, “Fixed-
Point Processor Instructions” on page 29.
Floating-point instructions are described in Section
4.8, “Floating-Point Processor Instructions” on
page 99.

Fixed-point instructions operate on byte, halfword,
word, and, in 64-bit implementations, doubleword
operands. Floating-point instructions operate on

single-precision and double-precision floating-point
operands. The PowerPC Architecture uses
instructions that are four bytes long and word-aligned.
It provides for byte, halfword, word, and, in 64-bit
implementations, doubleword operand fetches and
stores between storage and a set of 32 General
Purpose Registers (GPRs). It also provides for word
and doubleword operand fetches and stores between
storage and a set of 32 Floating-Point Registers
(FPRs).

There are no computational instructions that modify
storage. To use a storage operand in a computation
and then modify the same or another storage
location, the content of storage must be loaded into a
register, modified, and then stored back to the target
location. Figure 2 on page 8 is a logical represen-
tation of instruction processing. Figure 1 shows the
registers of the PowerPC User Instruction Set Archi-
tecture.

Chapter 1. Introduction 7

Branch
——— | Processing

Fixed-Point and
Floating-Point

Instructions
Fixed-Pt Float-Pt
Processing Processing

Data to/from
Storage

|

Storage

Instructions
from Storage

Figure 2. Logical Processing Model
1.7 Instruction Formats

All instructions are four bytes long and word-aligned.
Thus, whenever instruction addresses are presented
to the processor (as in Branch instructions) the two
low order bits are ignored. Similarly, whenever the
processor develops an instruction address its two low
order bits are zero.

Bits 0:5 always specify the opcocde (OPCD, below).
Many instructions also have an extended opcode (XO,
below). The remaining bits of the instruction contain
one or more fields as shown below for the different
instruction formats.

The format diagrams given below show horizontally
all valid combinations of instruction fields. The dia-
grams include instruction fields that are used only by
instructions defined in Part 2, “PowerPC Virtual Envi-
ronment Architecture” on page 117, or in Part 3,
“PowerPC Operating Environment Architecture” on
page 141. See those Books for the definitions of such
fields.

In some cases an instruction field is reserved, or
must contain a particular value. If a reserved field
does not have all bits set to 0, or if a field that must
contain a particular value does not contain that value,
the instruction form is invalid and the results are as
described in Section 1.9.2, “Invalid Instruction Forms”
on page 13.

Split Field Notation

In some cases an instruction field occupies more than
one contiguous sequence of bits, or occupies one con-
tiguous sequence of bits which are used in permuted
order. Such a field is called a “split field.” In the
format diagrams given below and in the individual
instruction layouts, the name of a split field is shown
in small letters, once for each of the contiguous
sequences. In the RTL description of an instruction
having a split field, and in certain other places where
individual bits of a split field are identified, the name
of the field in small letters represents the.concat-
enation of the sequences from left to right. In all
other places, the name of the field is capitalized, and
represents the concatenation of the sequences in
some order, which need not be left to right, as
described for each affected instruction.

1.71 I-Form

[) 30 3t
| orcp | u

Figure 3. | Instruction Format
1.7.2 B-Form

0 6 11 16 30 31

| orco | BO | 81 | BD {aaliy|

Figure 4. B Instruction Format

1.7.3 SC-Form

6 11 16 30 31
mo || " xof /|

0
| orcp |

Figure §. SC Instruction Format

8 PowerPC Architecture First Edition

1.7.4 D-Form 1.7.6 X-Form

0 3 1 16 31 0 6 1 16 21 31
OPCD RT RA D OPCD RT RA RB X0 /
OPCD RT RA St OPCD RT RA |" NB X0 /
orcdD | RS | RA D orco | RT [| sk | w X0 /
OPCD RS RA Ul OPCD RT 1 RB X0 /
OPCD |BF /|4 RA Si OPCD RT n 1 X0 /
OPCD | BF |/l RA Ul OoPCD RS RA RB X0 Rc
OPCD TO RA Si OPCD RS RA RB X0 1
OPCD FRT RA D OPCD RS RA RB X0 /
OPCD FRS RA D OPCD RS RA NB X0 /

Figure 6. D Instruction Format OFCD RS RA SH X0 Re

OPCD RS RA " X0 Rc

1.7.5 DS-Form OPCD RS |/] SR 1 X0 /

OPCD RS 1 RB X0 /

o . " 16 30 31 OPCD RS n I X0 /
opcd 1 RT | RA DS) orcp |BF |/l RA | Re X0 /
orcd | rs | Ra " DS X0 OPCD | BF [//| FRA | FRB X0 /
_ . . orcp | [/|eralw| m | xo /

Figure 7. DS Instruction Format (64-bit implementa-

tions only) orco |BF|u| m | v || xo Rc
OPCD | BF | // " 1 X0 /
oPCD TO RA RB X0 /
OPCD FRT RA RB X0 /
OPCD FRT i FRB X0 Rc
OPCD FRT n i X0 Rc
OPCD FRS RA RB X0 /
OPCD BT " 1 XO Rc
OPCD m RA RB X0 /
OPCD m 1 RB X0 /
OPCD 1 1 1 X0 /

Figure 8. X Instruction Format

1.7.7 XL-Form

0 6 11 16 21 31
orcdD | BT | BA | BB X0 /
orcD | BO | BI I, X0 LK
opcp | BF [//{BFal| 1 X0 /
orco | 11 " X0 /

Figure 9. XL Instruction Format

Chapter 1. Introduction 9

1.7.8 XFX-Form

0 6 11 21 31
OPCD RT spr X0 /
OPCD RT tbr X0 /
OPCD RT |/ FXM / X0 /
OPCD RS spr X0 /

Figure 10. XFX Instruction Format
1.7.9 XFL-Form

/] 67 15 16 21 31
| orco |4 Fm |/ RB| X0 |Re]

Figure 11. XFL Instruction Format

1.7.10 XS-Form
[} 1 16 21 30 31
RS | RA [sh] X0 [sh[Rci

Figure 12. XS Instruction Format (64-bit implementa-
tions only)

o]
| opcp |

1.711 XO-Form

0 6 11 16 21 22 31
OPCD RT RA RB |OE|] XO Rc

OPCD RT RA RB / X0 Re
OPCD RT RA /1l |OE X0 Re

Figure 13. XO Instruction Format

1.712 A-Form

0 6 11 18 21 26 31
OPCD FRT | FRA | FRB FRC | XO |[Rc

“OPCD FRT FRA FRB " XO |Rc
OPCD FRT FRA " FRC | XO |Rc
OPCD FRT I FRB 1" X0 |Rc

Figure 14. A Instruction Format

1.713 M-Form

0 6 11. 16 21 2% 31
OPCD RS RA | RB MB | ME |Rc

OPCD RS RA SH MB ME |Rc

Figure 15. M Instruction Format

1.714 MD-Form

0 6 1 16 21 27 30 31
OPCD | RS | RA | sh mb |XOlshRa
OPCD | RS | RA | sh me [XOlshRq

Figure 16. MD Instruction Format (64-bit implementa-
tions only)

1.7.15 MDS-Form

0 & 11 16 21 27 31
- OPCD RS RA RB mb X0 |Rc
OPCD RS RA RB me XO |Rc

Figure 17. MDS Instruction Format (64-bit implemen-
tations only)

1.7.46 Instruction Fields

AA (30)
Absolute Address bit

0 The immediate field represents an address
relative to the current instruction address.
For |-form branches the effective address of
the branch target is the sum of the LI field
sign-extended to 64 bits and the address of
the branch instruction. For B-form branches
the effective address of the branch target is
the sum of the BD field sign-extended to 64
bits and the address of the branch instruc-
tion.

1 The immediate field represents an absolute
address. For I|-form branches the effective
address of the branch target is the LI field
sign-extended to 64 bits. For B-form
branches the effective address of the branch
target is the BD field sign-extended to 64
bits.

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.

BB (16:20)
Field used to specify a bit in the CR to be used as
a source.

10 PowerPC Architecture First Edition

BD (16:29)
Immediate field specifying a 14-bit signed two’s
complement branch displacement which is con-
catenated on the right with 0b00 and sign-
extended to 64 bits.

BF (6:8)
Field used to specify one of the CR fields or one
of the FPSCR fields as a target.

BFA (11:13)
Field used to specify one of the CR fields or one
of the FPSCR fields as a source.

Bl (11:15)
Field used to specify a bit in the CR to be used as
the condition of a Branch Conditional instruction.

BO (6:10)
Field used to specify options for the Branch Con-
ditional instructions. The encoding is described in
Section 2.4, “Branch Processor Instructions” on
page 19.

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR as the target of the result of an instruc-
tion.

D (16:31)
Immediate field specifying a 16-bit signed two’s
complement integer which is sign-extended to 64
bits.

DS (16:29)
Immediate field specifying a 14-bit signed two’s
complement integer which is concatenated on the
right with Ob00 and sign-extended to 64 bits. This
field is defined in 64-bit implementations only.

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mifsf instruction.

FRA (11:15)
Field used to specify an FPR as a source of an
operation.

FRB (16:20)
Field used to specify an FPR as a source of an
operation.

FRC (21:25)
Field used to specify an FPR as a source of an
operation.

FRS (6:10)
Field used to specify an FPR as a source of an
operation.

FRT (6:10)
Field used to specify an FPR as the target of an
operation.

FXM (12:19)
Field mask used to identify the CR fields that are
to be updated by the mtcrf instruction.

L (10)
Field used to specify whether a Fixed-Point
Compare instruction is to compare 64-bit
numbers or 32-bit numbers. This field is defined
in 64-bit implementations only.

L1 (6:29)
Immediate field specifying a 24-bit signed two’s
complement integer which is concatenated on the
right with 0b00 and sign-extended to 64 bits.

LK (31)
LINK bit.

0 Do not set the Link Register.

1 Set the Link Register. If the instruction is a
Branch instruction, the address of the
instruction following the Branch instruction is
placed into the Link Register.

MB (21:25) and ME (26:30)
Fields used in M-form instructions to specify a
64-bit mask consisting of 1-bits from bit MB+32
through bit ME+32 inclusive, and O-bits else-
where, as described in Section 3.3.13, “Fixed-
Point Rotate and Shift Instructions” on page 689.

MB (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.13, “Fixed-Point Rotate
and Shift Instructions” on page 69. This field is
defined in 64-bit implementations only.

ME (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.13, “Fixed-Point Rotate
and Shift Instructions” on page 69. This field is
defined in 64-bit implementations only.

NB (16:20)
Field used to specify the number of bytes to
move in an immediate string load or store.

OPCD (0:5)
Primary opcode field.

OE (21)
Used for extended arithmetic to enable setting
OV and SO in the XER.

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.

RB (16:20)
Field used to specify a GPR to be used as a
source.

Rc (31)
RECORD bit

0 Do not set the Condition Register.

1 Set the Condition Register to reflect the
result of the operation.

For fixed-point instructions, CR bits 0:3 are

Chapter 1. Introduction 11

set to reflect the result as a signed quantity.
The result as an unsigned quantity or a bit
string can be deduced from the EQ bit.

For floating-point instructions, CR bits 4:7
are set to reflect Floating-Point Exception,
Floating-Point Enabled Exception, Floating-
Point Invalid Operation Exception, and
Floating-Point Overflow Exception.

RS (6:10)
Field used to specify a GPR to be used as a
source.

RT (6:10)
Field used to specify a GPR to be used as a
target.

SH (16:20, or 16:20 and 30)
Field used to specify a shift amount. Location
16:20 and 30 pertains to 64-bit implementations
only.

Sl (16:31)
Immediate field used to specify a 16-bit signed
integer.

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mifspr instructions. The
encoding is described in Section 3.3.14, “Move
To/From System Register Instructions” on
page 79.

SR (12:19)

See Part 3, “PowerPC Operating Environment
Architecture” on page 141.

TBR (11:20)
See Part 2, “PowerPC Virtual Environment
Architecture” on page 117.

TO (6:10)

Field used to specify the conditions on which to
trap. The encoding is described in Section 3.3.11,
“Fixed-Point Trap Instructions” on page 61.

U (16:19)
Immediate field used as the data to be placed
into a field in the FPSCR.

Ul (16:31)
Immediate field used to specify a 16-bit unsigned
integer.

XO (21:29, 21:30, 22:30, 26:30, 27:29, 27:30, 30, or
30:31)
Extended opcode field. Locations 21:29, 27:29,
27:30, and 30:31 pertain to 64-bit implementations
only.

1.8 Classes of Instructions

An instruction falls into exactly one of the following
three classes:

Defined
lllegal
Reserved

The class is determined by examining the opcede, and
the extended opcode if any. If the opcode, or combi-
nation of opcode and extended opcode, is not that of
a defined instruction nor of a reserved instruction, the
instruction is illegal.

Some instructions are defined only for 64-bit imple-
mentations and a few are defined only for 32-bit
implementations (see 1.8.2, “lilegal Instruction Class”
on page 13). With the exception of these, a given
instruction is in the same class for all implementa-
tions of the PowerPC Architecture. In future versions
of this architecture, instructions that are now illegal
may become defined (by being added to the architec-
ture) or reserved (by being assigned to one of the
special purposes described in Appendix J, “Reserved
Instructions” on page 265). Similarly, instructions
that are now reserved may become defined.

The results of attempting to execute a given instruc-
tion are said to be boundedly undefined if they could
have been achieved by executing an arbitrary
sequence of defined instructions, in valid form (see
below), starting in the state the machine was in
before attempting to execute the given instruction.
Boundedly undefined results for a given instruction
may vary between implementations, and between
execution attempts in the same implementation, and
are not further defined in this document.

1.8.1 Defined Instruction Class

This class of instructions contains all the instructions
defined in the PowerPC User Instruction Set Architec-
ture, PowerPC Virtual Environment Architecture, and
PowerPC Operating Environment Architecture.

Defined instructions are guaranteed to be supported
in all implementations, except as stated in the instruc-
tion descriptions. (The exceptions are instructions
that are supported only in 64-bit implementations or
only in 32-bit implementations.)

A defined instruction can have preferred and/or
invalid forms, as described in Section 1.9.1, “Pre-
ferred Instruction Forms” on page 13, and Section
1.9.2, “Invalid Instruction Forms” on page 13.

12 PowerPC Architecture First Edition

1.8.2 lllegal Instruction Class

This class of instructions contains the set of
instructions described in Appendix I, “lliegal
Instructions” on page 263. For 64-bit implementa-
tions this class includes all instructions that are
defined only for 32-bit implementations. For 32-bit
implementations it includes all instructions that are
defined only for 64-bit implementations.

Excluding instructions that are defined for one type of
implementation but not the other, illegal instructions
are available for future extensions of the PowerPC
Architecture: that is, some future version of the
PowerPC Architecture may define any of these
instructions to perform new functions.

Any attempt to execute an illegal instruction will
cause the system illegal instruction error handler to
be invoked and will have no other effect.

An instruction consisting entirely of binary 0’s is guar-
anteed always to be an illegal instruction. This
increases the probability that an attempt to execute
data or uninitialized storage will result in the invoca-
tion of the system illegal instruction error handler.

1.8.3 Reserved Instruction Class

This class of instructions contains the set of
instructions described in Appendix J, “Reserved
Instructions” on page 265.

Reserved instructions are allocated to specific pur-
poses that are outside the scope of the PowerPC
Architecture.

Any attempt to execute a reserved instruction will
either cause the system illegal instruction error
handler to be invoked or will yield boundedly unde-
fined results.

1.9 Forms of Defined
Instructions

1.9.1 Preferred Instruction Forms

Some of the defined instructions have preferred
forms. For such an instruction, the preferred form will
execute in an efficient manner, but any other form
may take significantly longer to execute than the pre-
ferred form.

Instructions having preferred forms are:

the Load/Store Multiple instructions
= the Load/Store String instructions

= the Or Immediate instruction (preferred form of
no-op)

1.9.2 Invalid Instruction Forms

Some of the defined instructions have invalid forms.
An instruction form is invalid if one or more fields of
the instruction, excluding the opcode field(s), are
coded incorrectly.

Any attempt to execute an invalid form of an instruc-
tion will either cause the system illegal instruction
error handler to be invoked or will yield boundedly
undefined results. Exceptions to this rule are stated
in the instruction descriptions.

Some kinds of invalid form can be deduced from the
instruction layout. These are listed below.

= Field shown as ’/’(s) but coded as non-zero.

= Field shown as containing a particular value but
coded as some other value.

These invalid forms are not discussed further.

Instructions having invalid forms that cannot be so
deduced are listed below. For these, the invalid
forms are identified in the instruction descriptions.

the Branch Conditional instructions

the Load/Store with Update instructions

the Load Multiple instructions

the Load String instructions

the Fixed-Point Compare instructions (invalid

form exists only in 32-bit implementations)

= Move Tol/From Special Purpose Register (mtspr,
mfspr) :

= the Load/Store

instructions

Floating-Point with Update

Assembler Note

To the extent possible, the Assembler should
report uses of invalid instruction forms as errors.

1.9.3 Optional Instructions

Some of the defined instructions are optional. The
optional instructions are defined in Appendix A,
“Optional Instructions” on page 207, and also in the
section entitled “Lookaside Buffer Management
Instructions (Optional)” and the appendix entitled
“Optional Facilities and Instructions” of Part 3,
“PowerPC Operating Environment Architecture” on
page 141.

Any attempt to execute an optional instruction that is
not provided by the implementation will cause the
system illegal instruction error handler to be invoked.

Chapter 1. Introduction 13

Exceptions to this rule are stated in the instruction
descriptions.

1.10 Exceptions

There are two kinds of exception, those caused
directly by the execution of an instruction and those
caused by an asynchronous event. In either case, the
exception may cause one of several components of
the system software to be invoked.

The exceptions that can be caused directly by the
execution of an instruction include the following.

= an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
“privileged” instruction (see Part 3, “PowerPC
Operating Environment Architecture” on
page 141) (system illegal instruction error
handler or system privileged instruction error
handler)

= the execution of a defined instruction using an
invalid form (system illegal instruction error
handler or system privileged instruction error
handler)

= the execution of an optional instruction that is not
provided by the implementation (system illegal
instruction error handler)

= an attempt to access a storage location that is
unavailable (system error handler)

= an attempt to access storage with an effective
address alignment that is invalid for the instruc-
tion (system alignment error handler)

= the execution of a System Call instruction
(system service program)

= the execution of a Trap instruction that traps
{system trap handler)

= the execution of a floating-point instruction when
floating-point instructions are unavailable (system
floating-point unavailable error handler)

= the execution of a floating-point instruction that
causes a floating-point exception that is enabled
(system floating-point enabled exception error
handier)

= the execution of a floating-point instruction that
requires system software assistance (system
floating-point assist error handler; the conditions
under which such software assistance is required
are implementation-dependent)

The exceptions that can be caused by an asynchro-
nous event are described in Part 3, “PowerPC Oper-
ating Environment Architecture” on page 141.

The invocation of the system error handler is precise,
except that if one of the imprecise modes for invoking
the system floating-point enabled exception error
handler is in effect (see page 92) then the invocation
of the system floating-point enabled exception error
handler may be imprecise. When the system error
handler is invoked imprecisely, the excepting instruc-
tion does not appear to complete before the next
instruction starts (because one of the effects of the
excepting instruction, namely the invocation of the
system error handler, has not yet occurred).

Additional information about exception handling can
be found in Part 3, “PowerPC Operating Environment
Architecture” on page 141.

1.11 Storage Addressi»ng

A program references storage using the effective
address computed by the processor when it executes
a Storage Access or Branch instruction (or certain
other instructions described in Part 2, “PowerPC
Virtual Environment Architecture” on page 117, and
Part 3, “PowerPC Operating Environment
Architecture” on page 141), or when it fetches the
next sequential instruction.

1.11.1 Storage Operands

Bytes in storage are numbered consecutively starting
with 0. Each number is the address of the corre-
sponding byte.

Storage operands may be bytes, halfwords, words, or
doublewords, or, for the Load/Store Muitiple and
Move Assist instructions, a sequence of bytes or
words. The address of a storage operand is the
address of its first byte (i.e., of its lowest-numbered
byte). Byte ordering is Big-Endian by default, but
PowerPC can be operated in a mode in which byte
ordering is Little-Endian. See Appendix D, “Little-
Endian Byte Ordering” on page 233.

Operand length is implicit for each instruction.

The operand of a single-register Storage Access
instruction has a “natural” alignment boundary equal
to the operand length. In other words, the “natural”
address of an operand is an integral multiple of the
operand iength. A storage operand is said to be
“aligned” if it is aligned at its natural boundary: other-
wise it is said to be “unaligned.”

Storage operands for single-register Storage Access
instructions have the following characteristics.
(Although not permitted as storage operands,
quadwords are shown because quadword alignment is
desirable for certain storage operands.)

14 PowerPC Architecture First Edition

Operand Length Addrg ¢ if aligned
Byte 8 bits XXXX

Halfword 2 bytes xxx0

Word 4 bytes xx00

Doubleword 8 bytes x000

Quadword 16 bytes 0000

Note: An “x” in an address bit position indicates
that the bit can be 0 or 1 independent of the state of
other bits in the address.

The concept of alignment is also applied more gener-
ally, to any datum in storage. For example; a 12-byte
datum in storage is said to be word-aligned if its
address is an integral multiple of 4.

Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. For single-register Storage
Access instructions the best performance is obtained
when storage operands are aligned. Additional
effects of data placement on performance are
described in Part 2, “PowerPC Virtual Environment
Architecture” on page 117.

Instructions are always four bytes long and word-
aligned.

1.11.2 Effective Address Calculation

The 64- or 32-bit address computed by the processor
when executing a Storage Access or Branch instruc-
tion (or certain other instructions described in Part 2,
“PowerPC Virtual Environment Architecture” on
page 117, and Part 3, “PowerPC Operating Environ-
ment Architecture” on page 141), or when fetching
the next sequential instruction, is called the “effective
address,” and specifies a byte in storage. For a
Storage Access instruction, if the sum of the effective
address and the operand length exceeds the
maximum effective address, the storage operand is
considered to wrap around from the maximum effec-
tive address to effective address 0, as described
below.

Effective address computations, for both data and
instruction accesses, use 64{32}-bit unsigned binary
arithmetic regardless of mode. A.carry from bit 0 is
ignored. In a 64-bit implementation, the 64-bit current
instruction address and next instruction address are
not affected by a change from 32-bit mode to 64-bit
mode, but they are affected by a change from 64-bit
mode to 32-bit mode (the high-order 32 bits are set to
0).

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arith-
metic wraps around from the maximum address,
2%4_1, to address 0.

In 32-bit mode, the low-order 32 bits of the 64-bit
result comprise the effective address for the purpose
of addressing storage. The high-order 32 bits of the
64-bit effective address are ignored for the purpose of
accessing data, but are included whenever a 64-bit
effective address is placed into a GPR by Load with
Update and Store with Update instructions. The high-
order 32 bits of the 64-bit effective address are set to
0 for the purpose of fetching instructions, and when-
ever a 64-bit effective address is placed into the Link
Register by Branch instructions having LK=1. The
high-order 32 bits of the 64-bit effective address are
set to 0 in Special Purpose Registers when the
system error handler is invoked. As used to address
storage, the effective address arithmetic appears to
wrap around from the maximum address, 232—1, to
address 0.

A zero in the RA field indicates the absence of the
corresponding address component. For the absent
component, a value of zero is used for the address.
This is shown in the instruction descriptions as (RA}0).

In both 64-bit and 32-bit modes, the calculated Effec-
tive Address may be modified in its three low-order
bits before accessing storage if the PowerPC system
is operating in Little-Endian mode. See Appendix D,
“Little-Endian Byte Ordering” on page 233.

Effective addresses are computed as follows. In the
descriptions below, it should be understood that “the
contents of a GPR” refers to the entire 64-bit con-
tents, independent of mode, but that in 32-bit mode,
only bits 32:63 of the 64-bit result of the computation
are used to address storage.

= With X-form instructions, in computing the effec-
tive address of a data element, the contents of
the GPR designated by RB is added to the con-
tents of the GPR designated by RA or to zero if
RA=0.

= With D-form instructions, the 16-bit D field is sign-
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero
if RA=0.

= With DS-form instructions, the 14-bit DS field is
concatenated on the right with 0b00 and sign-
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero
if RA=0.

= With I-form Branch instructions, the 24-bit LI field
is concatenated on the right with 0b00 and sign-
extended to form a 64-bit address component. |If
AA =0, this address component is added to the
address of the branch instruction to form the
effective address of the next instruction. If

Chapter 1. Introduction 15

AA=1, this address component is the effective
address of the next instruction.

With B-form Branch instructions, the 14-bit BD
field is concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added
to the address of the branch instruction to form
the effective address of the next instruction. If

AA=1, this address component is the effective
address of the next instruction.

With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concat-
enated on the right with 0b00 to form the effec-
tive address of the next instruction.

= With sequential instruction fetching, the value 4 is

added to the address of the current instruction to
form the effective address of the next instruction.

16 PowerPC Architecture First Edition

Chapfer 2. Branch Processor

2.1 Branch Processor Overview

This chapter describes the registers and instructions
that make up the Branch Processor facilities. Section
2.3, “Branch Processor Registers” on page 17
describes the registers associated with the Branch
Processor. Section 2.4, “Branch Processor
Instructions” on page 19 describes the instructions
associated with the Branch Processor.

2.2 Instruction Fetching

In general, instructions appear to execute sequen-
tially, in the order in which they appear in storage.
The exceptions to this rule are listed below.

= Branch instructions for which the branch is taken
cause execution to continue at the target address
generated by the Branch instruction.

= Trap and System Call instructions cause the
appropriate system handler to be invoked.

= Exceptions can cause the system error handler to
be invoked, as described in Section 1.10,
“Exceptions” on page 14.

= The Return From Interrupt instruction, described
in “Return From Interrupt XL-form” on page 150,
causes execution to continue at the address con-
tained in a Special Purpose Register.

In general, each instruction appears to complete
before the next instruction starts. The only excep-
tions to this rule arise when the system error handler
is invoked imprecisely, as described in Section 1.10,
“Exceptions” on page 14, or when certain special reg-
isters are altered, as described in the appendix enti-
tled “Synchronization Requirements for Special
Registers” in Appendix L, “Synchronization Require-
ments for Special Registers” on page 275. None of
these special registers can be altered by an applica-
tion program.

——— Programming Note

CAUTION

Implementations are allowed to prefetch any
number of instructions before the instructions are
actually executed. If a program modifies the
instructions it intends to execute, it should call a
system library program to ensure that the modifi-
cations have been made visible to the instruction
fetching mechanism prior to attempting to execute
the modified instructions.

2.3 Branch Processor Registers

2.3.1 Condition Register

The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides
a mechanism for testing (and branching).

CR
0 31

Figure 18. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CRO), ..., CR Field
7 (CR7), which are set in one of the following ways:

= Specified fields of the CR can be set by a move
to the CR from a GPR (mtcrf).

= A specified field of the CR can be set by a move
to the CR from another CR field (mcrf), from the
XER (mecrxr), or from the FPSCR (mcrfs).

= CR Field 0 can be set as the implicit result of a
fixed-point operation.

= CR Field 1 can be set as the implicit result of a
floating-point operation.

= A specified CR field can be set as the result of
either a fixed-point or a floating-point Compare
instruction.

Instructions are provided to perform logical oper-
ations on individual CR bits, and to test individual CR
bits.

Chapter 2. Branch Processor 17

When Rc=1 in most fixed-point instructions, the first
three bits of CR Field 0 (bits 0:2 of the Condition Reg-
ister) are set by an algebraic comparison of the resuit
(the low-order 32 bits of the result in 32-bit mode) to
zero, and the fourth bit of CR Field 0 {bit 3 of the Con-
dition Register) is copied from the SO field of the
XER. addic., andi., and andis. set these four bits
implicitly. These bits are interpreted as follows. As
used below, “result” refers to the entire 64-bit value
placed into the target register in 64-bit mode, and to
bits 32:63 of the 64-bit value placed into the target
register in 32-bit mode. If any portion of the result is
undefined, then the value placed into the first three
bits of CR Field 0 is undefined.

Bit Description
0 Negative (LT)
The result is negative.

1 Positive (GT)
The result is positive.

2 Zero(EQ)
The result is zero.

3 Summary Overflow (SO}
This is a copy of the final state of XERgq at the
completion of the instruction.

—— Programming Note

CR Field 0 may not reflect the “true” (infinitely
precise) result if overflow occurs: see Section
3.3.9, “Fixed-Point Arithmetic Instructions” on
page 50.

When Rc=1 in all floating-point instructions, CR Field
1 (bits 4:7 of the Condition Register) is set to the
Floating-Point exception status, copied from bits 0:3 of
the Floating-Point Status and Control Register. These
bits are interpreted as follows.

Bit Description

4 Floating-Point Exception (FX)
This is a copy of the final state of FPSCRgy at the
completion of the instruction.

5 Floating-Point Enabled Exception (FEX)
This is a copy of the final state of FPSCRgx at
the completion of the instruction.

6 Floating-Point invalid Operation Exception (VX)
This is a copy of the final state of FPSCRx at the
completion of the instruction.

7 Floating-Point Overflow Exception (OX)
This is a copy of the final state of FPSCRyx at
the completion of the instruction.

When a specified CR field is set by a Compare
instruction, the bits of the specified field are inter-
preted as follows.

Bit Description

0 Less Than, Floating-Point Less Than (LT, FL)
For fixed-point Compare instructions, (RA) < Sl,
Ul, or (RB) (algebraic comparison) or (RA) < SI,
Ul, or (RB) ({logical comparison). For floating-
point Compare instructions, (FRA) < (FRB).

1 - Greater Than, Floating-Point Greater Than (GT,
FG) S :
For fixed-point Compare instructions, (RA) > Sl,
Ul, or (RB) (algebraic comparison) or (RA) 5 SI,
UL, or (RB) f{logical comparison). For floating-
point Compare instructions, (FRA) > (FRB).

2 Egqual, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions, (RA) = Si,
Ul, or (RB). For floating-point Compare
instructions, (FRA) = (FRB).

3 Summary Overflow, Floating-Point Unordered
(SO, FU)
For fixed-point Compare instructions, this is a
copy of the final state of XERgq at the completion
of the instruction. For floating-point Compare
instructions, one or both of (FRA) and (FRB) is a
NaN.

2.3.2 Link Register

The Link Register (LR) is a 64-bit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it
hoids the return address after Branch and Link
instructions. '

LR
o 63

Figure 19. Link Register

2.3.3 Count Register

The Count Register (CTR) is a 64-bit register. It can
be used to hold a loop count that can be decremented
during execution of Branch instructions that contain
an appropriately coded BO field. If the value in the
Count Register is 0 before being decremented, it is
—1 afterward. The Count Register can also be used
to provide the branch target address for the Branch
Conditional to Count Register instruction.

[. CTR
0 63

Figure 20. Count Register

18 PowerPC Architecture First Edition

2.4 Branch Processor Instructions
2.41 Branch Instructions

The sequence of instruction execution can be changed
by the Branch instructions. Because all instructions
are on word boundaries, bits 62 and 63 of the gener-
ated branch target address are ignored by the
processor in performing the branch.

The Branch instructions compute the effective
address (EA) of the target in one of the following four
ways, as described in Section 1.11.2, “Effective
Address Calculation” on page 15.

1. Adding a displacement to the address of the
branch instruction (Branch or Branch Conditional
with AA=0).

2. Specifying an absolute address (Branch or
Branch Conditional with AA=1).

3. Using the address contained in the Link Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Reg-
ister (Branch Conditional to Count Register).

In all four cases, in 32-bit mode of 64-bit implementa-
tions, the final step in the address computation is
setting the high-order 32 bits of the target address to
0.

For the first two methods, the target addresses can
be computed sufficiently ahead of the branch instruc-
tion that instructions can be prefetched along the
target path. For the third and fourth methods, pre-
fetching instructions along the target path is also pos-
sible provided the Link Register or the Count Register
is loaded sufficiently ahead of the branch instruction.

Branching can be conditional or unconditional, and
the return address can optionally be provided. If the
return address is to be provided (LK=1), the effective
address of the instruction following the branch
instruction is placed into the Link Register after the
branch target address has been computed: this is
done whether or not the branch is taken.

In Branch Conditional instructions, the BO field speci-
fies the conditions under which the branch is taken.
The first four bits of the BO field specify how the
branch is affected by or affects the Condition Register
and the Count Register. The fifth bit, shown below as
having the value “y,” may be used by some imple-
mentations as described below.

The encoding for the BO field is as follows. Here
M =32 in 32-bit mode and M =0 in 64-bit mode. If the
BO field specifies that the CTR is to be decremented,
the entire 64-bit CTR is decremented regardless of
the mode.

BO Description

0000y Decrement the CTR, then branch if the decre-
mented CTRy.¢#0 and the condition is
FALSE.

0001y Decrement the CTR, then branch if the decre-
mented CTRy4=0 and the condition is
FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decre-
mented CTR.¢:#0 and the condition is
TRUE.

0101y Decrement the CTR, then branch if the decre-
mented CTRy.e=0 and the condition is
TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decre-
mented CTRy,.g370.

1z01y Decrement the CTR, then branch if the decre-
mented CTRy.g3=0.

1z1zz Branch always.

Above, “z” denotes a bit that must be zero: if it is not
zero the instruction form is invalid.

The “y” bit provides a hint about whether a condi-
tional branch is likely to be taken, and may be used
by some implementations to improve performance.

The “branch always” encoding of the BO field does
not have a “y” bit.

For Branch Conditional instructions that have a “y”
bit, using y=0 indicates that the following behavior is
likely.

= |f the instruction is bc[/][a] with a negative value
in the displacement field, the branch is taken.

= |n all other cases (bc[/][a] with a non-negative
value in the displacement field, bclr[f], or
bectr[1]), the branch falls through (is not taken).

Using y=1 reverses the preceding indications.

The displacement field is used as described above
even if the target is an absolute address.

Chapter 2. Branch Processor 19

—— Programming Note

The default value for the “y” bit should be 0: the
value 1 should be used only if software has deter-
mined that the prediction corresponding to y=1 is
more likely to be correct than the prediction cor-
responding to y=0.

Extended mnemonics fdr branches

Many extended mnemonics are provided so that
Branch Conditional instructions can be coded with the
condition as part. of the instruction mnemonic rather
than as a numeric operand. Some of these are shown
as examples with the Branch instructions. See
Appendix C, “Assembler Extended Mnemonics” on
page 223 for additional extended mnemonics.

Programming Note

In some implementations the processor may keep
a stack of the Link Register values most recently
set by Branch and Link instructions, with the pos-
sible exception of the form shown below for
obtaining the address of the next instruction. To
benefit from this stack, the followmg programmlng ‘

[conventions should be used.

Let A, B, and Glue be programs.

= Obtaining the address of the next instruction:
Use the following form of Branch and Link.

bel 20,31,%+4

= Loop counts:

Keep them in the Count Register, and use
one of the Branch Conditional instructions to
decrement the count and to control branching
(e.g., branching back to the start of a loop if
the decremented counter value is non-zero).

= Computed goto’s, case statements, etc.:

Use the Count Register to hold the address to
branch to, and use the bcctr instruction
(LK=0) to branch to the selected address.

= Direct subroutine linkage:

Here A calls B and B returns to A. The two
branches should be as foliows.

— A calls B: use a Branch instruction that
sets the Link Register (LK=1).

— B returns to A: use the bclr instruction
(LK=0) (the return address is in, or can
be restored to, the Link Register).

= Indirect subroutine linkage:

Here A calls Glue, Glue calls B, and B returns
to A rather than to Glue. (Such a calling
sequence is common in linkage code used
when the subroutine that the programmer
wants to call, here B, is in a different module
from the caller: the Binder inserts “glue”
code to mediate the branch.) The three
branches should be as follows.

— A calls Glue: use a Branch instruction
that sets the Link Register (LK=1).

— Glue calls B: place the address of B in
the Count Register, and use the bcctr
instruction (LK=0).

— B returns to A: use the bclr instruction
(LK=0) (the return address is in, or can
be restored to, the Link Register).

20 PowerPC Architecture First Edition

Branch I-form

Branch Conditional B-form

b target_addr (AA=0 LK=0) be BO,Bl.target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0) bca BO,Bl,target_addr (AA=1 LK=0)
bl target_addr (AA=0LK=1) bel BO,Bl,target_addr (AA=0 LK=1)
bla target_addr (AA=1LK=1) bcla BO,Bl,target_addr (AA=1LK=1)
18 Li AAILK) - 16 BO | Bl " BD r\A LK|
0 6 301 31 0 6 11 16 30 31

if AA then NIA €., EXTS(LI || 0b0OO)
else NIA ;e CIA + EXTS(LI || 0b0O)
if LK then LR &, CIA + 4

target_addr specifies the branch target address.

If AA=0 then the branch target address is the sum of
LI || Ob00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch
target address set to 0 in 32-bit mode of 64-bit imple-
mentations.)

If AA=1 then the branch target address is the value
LI || Ob00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode of
64-bit implementations.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR {if LK=1)

if (64-bit implementation) & (64-bit mode)
then M « ©
else M « 32
if -B0, then CTR « CTR - 1
ctr_ok « B0, | ((CTRy.e3 # 6) @ BO3)
cond_ok « B0y | (CRg = BO,)
if ctr_ok & cond_ok then
if AA then NIA «;., EXTS(BD || 6b00)
else NIA ¢ CIA + EXTS(BD || 0b0G)
if LK then LR &, CIA + 4

The Bl field specifies the bit in the Condition Register
to be used as the condition of the branch. The BO
field is used as described above. target_addr speci-
fies the branch target address.

If AA=0 then the branch target address is the sum of
BD || Ob00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch
target address set to 0 in 32-bit mode of 64-bit imple-
mentations.

If AA=1 then the branch target address is the value
BD || 0b00 sign-extended, with the high-order 32 bits
of the branch target address set to 0 in 32-bit mode of
64-bit implementations.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional:

Extended: Equivalent to:

bit target bec 12,0,target
bne cr2,target bc 4,10,target
bdnz target bc 16,0,target

Chapter 2. Branch Processor 21

Branch Conditional to Link Register

Branch Conditional to Count Register

XL-form XL-form
belr BO,BI (LK=0) beetr BO,BI (LK=0)
belrl BO,BI (LK=1) bectri B80O,BI (LK=1)}
{Power mnemonics: ber, berl] [Power mnemonics: bee, beel]

19 BO Bl 1 16 LK 19 BO BI n 528 LK
0 6 11 16 21 31 0 6 11 16 21 31

if (64-bit implementation) & (64-bit mode)
then M « @
else M « 32

if -B0, then CTR « CTR - 1

ctr_ok « BO, | ((CTRye3 # 6) @ BOg)

cond_ok « B0, | (CRg = BO,)

if ctr_ok & cond_ok then NIA ¢, LRygq |l 80O

if LK then LR ¢, CIA + 4

The Bl field specifies the bit in the Condition Register
to be used as the condition of the branch. The BO
field is used as described above, and the branch
target address is LRy || 0b0O, with the high-order 32
bits of the branch target address set to 0 in 32-bit
mode of 64-bit implementations.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered:’ ‘
CTR (if BO,=0)
LR (if LK=1}

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional To Link Register:

Extended: Equivalent to:
bitlr bclr 12,0
bnelr cr2 belr 4,10
bdnzir bclr 16,0

cond_ok « BO, | (CRg, = BO,)
if cond_ok then NIA &, CTRy.g Il 0000
if LK then LR ;. CIA + 4

The Bl field specifies the bit in the Condition Register
to be used as the condition of the branch. The BO
field is used as described above, and the branch
target address is CTRy.¢¢ || Ob0O, with the high-order
32 bits of the branch target address set to 0 in 32-bit
mode of 64-bit implementations.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

If the “decrement and test CTR” option is specified
(BO,=0), the instruction form is invalid.

Special Registers Altered:
LR (if LK=1)
Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional To Count Register:

Extended: Equivalent to:
bitctr bcetr 12,0
bnectr cr2 beetr 4,10

22 PowerPC Architecture First Edition

2.4.2 System Call Instruction

This instruction provides These instructions provide
the means by which a program can call upon the
system to perform a service.

System Call SC-form

SC

[Power mnemonic: svca]

17 " " " 11/
0 6 11 16 30] 31

This instruction calls the system to perform a service.
A complete description of this instruction can be
found in “System Call SC-form” on page 150.

When control is returned to the program that exe-
cuted the System Call, the content of the registers will
depend on the register conventions used by the
program providing the system service.

This instruction is context synchronizing, see “System
Call SC-form” on page 150.

Special Registers Altered:
Dependent on the system service

—— Compatibility Note

For a discussion of Power compatibility with
respect to instruction bits 16:29, please refer to
Appendix G, “Incompatibilities with the Power
Architecture” on page 257. For compatibility with
future versions of this architecture, these bits
should be coded as zero.

Chapter 2. Branch Processor 23

2.4.3 Condition Register Logical Instructions

Extended mnemonics for Condition
Register logical operations

A set of extended mnemonics is provided that allow
additional Condition Register logical operations,

beyond those provided by the basic Condition Reg-
ister Logical instructions, to be coded easily. Some of
these are shown as examples with the CR. Logical
instructions. See Appendix C, “Assembler Extended
Mnemonics” on page 223 for additional extended
mnemonics. ' '

Condition Register AND XL-form

crand BT,BA,BB

Condition Register OR XL-form

cror BT,BA,BB

19 BT BA BB 257 /
0 8 11 16 21 31

19 BT BA BB 449 /
0 8 1 16 21 31

CRBT € CRBA & CRBB

The bit in the Condition Register specified by BA is
ANDed with the bit in the Condition Register specified
by BB and the result is placed into the bit in the Con-
dition Register specified by BT.

Special Registers Altered:
CR

Condition Register XOR XL-form

crxor BT,BA,BB

CRgr ¢ CRga | CRgg

The bit in the Condition Register specified by BA is
ORed with the bit in the Condition Register specified
by BB and the result is placed into the bit in the Con-
dition Register specified by BT.

Special Registers Altered:
CR
Extended Mnemonics:
Example of extended mnemonics for Condition Reg-
ister OR:
Extended:
crmove Bx,By cror

Equivalent to:
Bx,By,By

Condition Register NAND XL-form

crnand BT,BA,BB

19 BT BA BB 193 /
0 6 11 16 21 31

19 BT BA BB 225 /
0 6 11 16 21 31

CRBT € CRBA @ CRBB

The bit in the Condition Register specified by BA is
XORed with the bit in the Condition Register specified
by BB and the result is placed into the bit in the Con-
dition Register specified by BT.

Special Registers Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg-
ister XOR:

Extended: Equivalent to:
crcir Bx crxor Bx,Bx,Bx

CRBT Al -‘(CRBA & CRBB)

The bit in the Condition Register specified by BA is
ANDed with the bit in the Condition Register specified
by BB and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Registers Altered:
CR

24 PowerPC Architecture First Edition

Condition Register NOR XL-form

crnor BT,BA,BB

Condition Register Equivalent XL-form

creqv BT,BA,BB

19 BT BA BB 33 /
0 8 11 16 21 31

19 BT BA BB 289 /
0 6 11 16 21 31

CRgr « ~(CRga | CRgg)

The bit in the Condition Register specified by BA is
ORed with the bit in the Condition Register specified
by BB and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Registers Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg-
ister NOR:

Extended:
crnot Bx,By crnor Bx,By,By

Equivalent to:

Condition Register AND With
Complement XL-form

crandc BT,BA,BB

(Rgr ¢ CRgp = CRgg

The bit in the Condition Register specified by BA is
XORed with the bit in the Condition Register specified
by BB and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Registers Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg-
ister Equivalent:

Extended:
crset Bx

Equivalent to:
creqv Bx,Bx,Bx

Condition Register OR With Complement
XL-form

crorc BT,BA,BB

19 BT BA BB 129 /
0 6 11 18 21 31

19 BT BA BB a7 /
o] 11 16 21 31

CRBT €« CRBA & “CRBB

The bit in the Condition Register specified by BA is
ANDed with the complement of the bit in the Condi-
tion Register specified by BB and the result is placed
into the bit in the Condition Register specified by BT.

Special Registers Altered:
CR

CRgr ¢ CRga | ~CRgg

The bit in the Condition Register specified by BA is
ORed with the complement of the bit in the Condition
Register specified by BB and the result is placed into
the bit in the Condition Register specified by BT.

Special Registers Altered:
CR

Chapter 2. Branch Processor 25

2.4.4 Condition Register Field
Instruction

Move Condition Register Field XL-form

merf BF,BFA ;
19 BF //|BFA |/} I 0 /
0 6 9 |11 14| 16 21 31

CRaxgraxBF +3 ¢ CRyxpFA4xBFA+3

The contents of Condition Register field BFA are
copied into Condition Register field BF.

Special Registers Altered:
CR

26 PowerPC Architecture First Edition

Chapter 3. Fixed-Point Processor

3.1 Fixed-Point Processor
Overview

This chapter describes the registers and instructions
that make up the Fixed-Point Processor facility.
Section 3.2, “Fixed-Point' Processor Registers” on
page 27 describes the registers associated with the
Fixed-Point Processor. Section 3.3, “Fixed-Point
Processor Instructions” on page 29 describes the
instructions associated with the Fixed-Point Processor.

3.2 Fixed-Point Processor
Registers

3.2.1 General Purpose Registers

All manipulation of information is done in registers
internal to the Fixed-Point Processor. The principal
storage internal to the Fixed-Point Processor is a set
of 32 general purpose registers (GPRs). See
Figure 21.

GPR 00
GPR 01

GPR 30

GPR 31
0 63

Figure 21. General Purpose Registers

Each GPR is a 64-bit register.

3.2.2 Fixed-Point Exception Register

The Fixed-Point Exception Register (XER) is a 32-bit
register.

o[XER i

31

Figure 22. Fixed-Point Exception Register

The bit definitions for the Fixed-Point Exception Reg-
ister are as shown below. Here M =0 in 64-bit mode
and M =32 in 32-bit mode.

The bits are set based on the operation of an instruc-
tion considered as a whole, not on intermediate
results (e.g., the Subtract From Carrying instruction,
the result of which is specified as the sum of three
values, sets bits in the Fixed-Point Exception Register
based on the entire operation, not on an intermediate
sum). :

Bit(s) Description

0 Summary Overflow (SO)
The Summary Overflow bit is set to one
whenever an instruction (except mtspr) sets
the Overflow bit to indicate overflow. Once
set, the SO bit remains set until it is cieared
by an mtispr instruction (specifying the XER)
or an merxr instruction. It is not altered by
Compare instructions, nor by other
instructions (except mtspr to the XER, and
merxr) that cannot overflow. Executing an
mtspr instruction to the XER, supplying the
values zero for SO and one for QV, causes
SO to be set to zero and OV to be set to one.

1 Overflow (OV)

The Overflow bit is set to indicate that an
overflow has occurred during execution of an
instruction. XO-form Add and Subtract
instructions having OE=1 set it to one if the
carry out of bit M is not equal to the carry
out of bit M+ 1, and set it to zero otherwise.
The OV bit is not altered by Compare
instructions, nor by other instructions (except
mtspr to the XER, and mecrxr) that cannot
overflow.

Chapter 3. Fixed-Point Processor 27

Carry (CA)

In general, the Carry bit is set to indicate that
a carry out of bit M has occurred during exe-
cution of an instruction. Add Carrying, Sub-
tract From Carrying, Add Extended, and
Subtract From Extended instructions set it to
one if there is a carry out of bit M, and set it
to zero otherwise. However, Shift Right Alge-
braic instructions set the CA bit to indicate
whether any "1’ bits have been shifted out of
a negative quantity. The CA bit is not altered
by Compare instructions, nor by other
instructions (except Shift Right Algebraic,
mtspr to the XER, and merxr) that cannot
carry.

3:24
25:31

—— Compatibility Note

For a discussion of Power
respect to XER bits 16:23, please refer to
Appendix G, “Incompatibilities with the Power
Architecture” on page 257. For compatibility with
future versions of this architecture, these bits
should be set to zero.

Reserved

This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

compatibility with

28 PowerPC Architecture First Edition

3.3 Fixed-Point Processor. Instructions

This section describes the instructions executed by the Fixed-Point processor.

3.3.1 Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.11.2, “Effective Address
Calculation” on page 15.

The order of bytes accessed by halfword, word, and
doubleword loads and stores is Big-Endian, unless
Little-Endian storage ordering is selected as
described in Appendix D, “Little-Endian Byte
Ordering” on page 235.

— Programming Note

The “la” extended mnemonic permits computing
an Effective Address as a Load or Store instruc-
tion would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in “Load Address” on page 234.

3.3.1.1 Storage Access Exceptions

Storage accesses will cause the system error handler
to be invoked if the program is not allowed to modify
the target storage (Store only), or if the program
attempts to access storage that is unavailable.

3.3.2 Fixed-Point Load Instructions

The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into register RT.

Byte order of PowerPC is Big-Endian by default; see
Appendix D, ‘“Little-Endian Byte Ordering” on
page 235 for PowerPC systems operated with Little-
Endian byte ordering.

Many of the Load instructions have an “update” form,
in which register RA is updated with the effective
address. For these forms, if RA#0 and RA#RT, the
effective address is placed into register RA and the
storage element (byte, halfword, word, or doubleword)
addressed by EA is loaded into RT.

—— Programming Note

In some implementations, the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions.
Moreover, Load with Update instructions may take
longer to execute in some implementations than
the corresponding pair of a non-update Load
instruction and an Add instruction.

Chapter 3. Fixed-Point Processor 29

Load Byte and Zero D-form

Ibz RT,D(RA)

Load Byte and Zero Indexed X-form

Ibzx RT,RA,RB

34 RT RA D
0 6 11 16 31

31 RT RA RB 87 /
0 6 11 16 21 31

if RA = 0 then b « 0

else b « (RA)

EA ¢ b + EXTS(D)

RT « 58 || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0)}+D.
The byte in storage addressed by EA is loaded into
RTs6.63. RTg.55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update
D-form

Ibzu RT,D(RA)

if RA=0 then b « 8
else b « (RA)
EA ¢ b + (RB)

RT « S8g || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The byte in storage addressed by EA is
loaded into RTsg.g3. RTy.55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update
Indexed X-form '

Ibzux RT,RA,RB

35 RT RA D
o 6 11 16 31

31 RT RA RB 119 /
4] [3 1 16 21 31

EA « (RA) + EXTS(D)
RT « 569 || MEM(EA, 1)
RA « EA

Let the effective address (EA) be the sum (RA)+D.
The byte in storage addressed by EA is loaded into
RT56!63' RTO:SS are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
RT « 569 || MEM(EA, 1)
RA « EA

Let the effective address (EA} be the sum (RA)+ (RB).
The byte in storage addressed by EA is loaded into
RTse.63- RTg.55 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

30 PowerPC Architecture First Edition

Load Halfword and Zero D-form

lhz RT,D(RA)

40 RT RA D
0 6 11 16 31

if RA =0 thenb « 8
else b « (RA)
EA « b + EXTS(D)

RT « 48g | MEM(EA, 2)

Let the effective address (EA) be the sum (RA|0)+D.
The halfword in storage addressed by EA is loaded
into RTyg.63. RTg47 are set to 0.

Special Registers Altered:.
None

Load Halfword and Zero with Update
D-form

lhzu RT,D(RA)

Load Halfword and Zero Indexed
X-form

lhzx RT,RA,RB

31 RT RA RB 279 /
0 8 11 16 21 31

if RA =0 thenb « 0
else b « (RA)
EA ¢ b + (RB)

RT « 989 || MEM(EA, 2)

Let the effective address (EA) be the sum
(RA|0)+(RB). The halfword in storage addressed by
EA is loaded into RT,g43. RTg47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update
Indexed X-form

thzux RT,RA,RB

41 RT RA D
0 8 11 16 31

K3 RT RA RB 3N /
0 8 1 16 21 31

EA « (RA) + EXTS(D)
RT « %89 || MEM(EA, 2)
RA « EA

Let the effective address (EA} be the sum (RA)+D.
- The halfword in storage addressed by EA is loaded
into RTyg.43. RTg47 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
RT « 48y || MEM(EA, 2)
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded
into RT,g.63. RTg47 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 31

Load Halfword Algebraic D-form

lha RT,D(RA)

42 RT RA D
0 & 11 16 31

if RA = 0 then b « 0
else b « (RA)
EA « b + EXTS(D)

RT « EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum (RA|0)+D.
The halfword in storage addressed by EA is loaded
into RTyg63. RTg4; are filled with a copy of bit 0 of
the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update
D-form

lhau RT,D(RA)

Load Halfword Algebraic Indexed
X-form

thax RT,RA,RB

31 RT RA RB 343 /
0 ‘e 1 16 21 3

if RA = @ then b « 0
else b « (RA)
EA ¢« b + (RB)

RT « EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum
(RA|C)+ (RB). The halfword in storage addressed by
EA is loaded into RT,g4;. RTg47 are filled with a copy
of bit 0 of the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update
Indexed X-form

Thaux RT,RA,RB

43 RT RA D
0 8 11 16 31

3 RT RA RB 375 /
0 6 11 18 21 31

EA « (RA) + EXTS(D)
RT « EXTS(MEM(EA, 2))
RA « EA

Let the effective address (EA) be the sum (RA)+D.
The halfword in storage addressed by EA is loaded
into RT,g63. RTg4; are filled with a copy of bit 0 of
the loaded halfword.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
RT « EXTS(MEM(EA, 2))
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded
into RTg63. RTg.4; are filled with a copy of bit 0 of
the loaded halfword.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

32 PowerPC Architecture First Edition

Load Word and Zero D-form

lwz RT,D(RA)

[Power mnemonic: I]

Load Word and Zero Indexed X-form

lwzx RT,RA,RB

[Power mnemonic: Ix]

32 RT RA | D

31 RT RA RB 23 /

if RA = 0 then b « 8
else b « (RA)
EA « b + EXTS(D)

RT « 329 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+D.
The word in storage addressed by EA is loaded into
RT30.63. RTg.3 are set to 0.

Special Registers Altered:
None

Load Word and Zero with Update
D-form

lwzu RT,D(RA)

[Power mnemonic: Iu]

if RA=0 thenb « 0
else b « (RA)
EA « b + (RB)

RT « 329 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RAJ0)+ (RB). The word in storage addressed by EA
is loaded into RT354;5. RTg.3; are set to 0.

Special Registers Altered:
None

Load Word and Zero with Update
Indexed X-form

Iwzux RT,RA,RB

[Power mnemonic: ux]

33 RT RA D

31 RT RA RB 55 /
0 6 11 16 21 31

EA « (RA) + EXTS(D)
RT « 329 || MEM(EA, 4)
RA « EA

Let the effective address (EA) be the sum (RA)+D.
The word in storage addressed by EA is loaded into
RT3,.63- RTp.3¢ are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
RT « 329 || MEM(EA, 4)
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT35.62. RTg.3q are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 33

Load Word Algebraic DS-form

Iwa RT,DS(RA)

Load Word Algebraic Indexed X-form

lwax RT,RA,RB

58 | RT RA DS 2
0 6 11 16 30 31

31 RT RA RB 341 /
0 6 11 16 |21 31

if RA =0 thenb « 0
else b « (RA)
EA « b + EXTS(DS|lobo0o)
RT « EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0)+ (DSJIOb00). The word in storage addressed by
EA is loaded into RT3y.53. RTy.3; are filled with a copy
of bit 0 of the loaded word.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

if RA =0 then b « 0
else b « (RA)
EA « b + (RB)

RT « EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RAJ0)+(RB). The word in storage addressed by EA
is loaded into RT35.63. RTg.3¢ are filled with a copy of
bit 0 of the ioaded word.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handier to be
invoked.

Special Registers Altered:
None

Load Word Algebraic with Update
Indexed X-form

Iwaux RT,RA.RB

A RT RA RB 373 /
0 6 11 16 21 31

EA « (RA) + (RB)
RT « EXTS(MEM(EA, 4))
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT3563. RTg3 are filled with a copy of bit 0 of the
loaded word.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.
This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be

invoked.

Special Registers Altered:
None

34 PowerPC Architecture First Edition

Load Doubleword DS-form

Id RT,DS(RA)

Load Doubleword Indexed X-form

ldx RT,RA,RB

58 RT RA DS 0
0 6 1 16 30 31

31 RT RA RB 21 /
0 6 11 18 21 31

if RA =0 thenb « 0
else b « (RA)
EA « b + EXTS(DS||oboo)
RT « MEM(EA, 8)

Let the effective address (EA) be the sum
(RA]0) + (DS]|I0b00). The doubleword in storage
addressed by EA is loaded into RT.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Load Doubleword with Update DS-form

Idu RT,DS(RA)

58 RT RA | DS 1
0 8 11 16 30 31

EA « (RA) + EXTS(DS||obeo)
RT « MEM(EA, 8)
RA « EA

Let the effective address (EA) be the sum
(RA) + (DS|{0b00). The doubleword in storage
addressed by EA is loaded into RT.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.
This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be

invoked.

Special Registers Altered:
None

if RA = @ then b « 0
else b « (RA)
EA e b + (RB)

RT « MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The doubleword in storage addressed
by EA is loaded into RT.

This instruction is defined only for 64-bit implementa-
tions. 'Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Load Doubleword with Update Indexed
X-form

Idux RT,RA,RB

31 RT RA RB 53 /
0 6 11 16 21 31

EA « (RA) + (RB)
RT « MEM(EA, 8)
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
The doubleword in storage addressed by EA is loaded
into RT.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.
This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be

invoked.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 35

3.3.3 Fixed-Point Store Instructions

The contents of register RS is stored into the byte,
halfword, word, or doubleword in storage addressed
by EA.

Byte order of PowerPC is Big-Endian by default; see
Appendix D, “Little-Endian Byte Ordering” on
page 235 for PowerPC systems operated with Little-
Endian byte ordering. '

Many of the Store instructions have an “update” form,
in which register RA is updated with the effective
address. For these forms, the following rules apply.

= |f RA#0, the effective address is placed into reg-
ister RA. -

= |f RS=RA, the contents of register RS is copied
to the target storage element and then EA is
placed into RA (RS).

Store Byte D-form

stb RS,D(RA)

Store Byte Indexed X-form

stbx RS,RA,RB

38 RS RA D
0 3 11 16 31

31 RS RA RB 215 /
0 6 11 16 21 31

if RA =0 then b « 0
else b « (RA)
EA ¢« b + EXTS(D)
MEM(EA, 1) « (RS)sg.63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)ss.63 is stored into the byte in storage addressed
by EA.

Special Registers Altered:
None

Store Byte with Update D-form

stbu RS,D(RA)

if RA = 0 then b « ©
else b « (RA)
EA « b + (RB)

MEM(EA, 1) €« (RS)56263

Let the effective address (EA) be the sum
(RAJ0)+(RB). (RS)sgqz is stored into the byte in
storage addressed by EA.

Special Registers Altered:
None

Store Byte with Update Indexed X-form

stbux RS,RA,RB

39 RS RA D
0 6 11 16 31

31 RS RA RB 247 /
0 6 11 16 21 31

EA « (RA) + EXTS(D)
MEM(EA, 1) ¢ (RS)sge3
RA « EA

Let the effective address (EA) be the sum (RA)+D.
(RS)se.63 is stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
MEM(EA, 1) « (RS)se:63
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)ss.63 is stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

36 PowerPC Architecture First Edition

Store Halfword D-form

sth RS,D(RA)

Store Halfword Indexed X-form

sthx RS,RA,RB

44 RS RA D
0 6 11 16 ' 31

3N RS RA RB 407 /
0 6 11 16 21 31

if RA =0 then b « 68
else b « (RA)
EA « b + EXTS(D)
MEM(EA, 2) € (RS)48:63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)4ge3 is stored into the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Halfword with Update D-form

sthu RS,D(RA)

45 RS RA D
0 8 11 16 3

EA « (RA) + EXTS(D)
MEM(EA, 2) « {(RS)g.e3
RA « EA

Let the effective address (EA) be the sum (RA)+D.
{RS)45.63 is stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

if RA =0 thenb « 8

else b « (RA)

EA « b + (RB)

MEM(EA, 2) « (RS)4g63

Let the effective address (EA) be the sum
{RA|0)+ (RB).’ (RS)48.43 is stored into the halfword in
storage addressed by EA.

Special Registers Altered:
None

Store Halfword with Update Indexed
X-form

sthux RS,RA,RB

31 RS RA RB 439 /
0 8 1 16 21 31

EA « (RA) + (RB)
MEM(EA, 2) ¢ (RS)4g.63
RA « EA ’

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)sg.63 is stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor . 37

Store Word D-form

stw RS,D(RA)

[Power mnemonic: st]

Store Word Indexed X-form

stwx RS,RA,RB
[Power mnemonic: stx]

36 RS RA ' - D

31 RS RA RB 151 /
0 8 11 |18 21 31

if RA=0 thenb ¢ 0
else b « (RA)
EA « b + EXTS(D)
MEM(EA, 4) ¢ (RS)3p.e3

Let the effective address (EA) be the sum (RA|0)+ D.
{RS)35.43 is stored into the word in storage addressed
by EA.

Special Registers Altered:
None

Store Word with Update D-form

stwu RS,D(RA)

[Power mnemonic: stu]

ifRA=0thenb « 0
else b « (RA)
EA « b + (RB)

MEM(EA, 4) €« (RS)3263

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)3543 is stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Word with Update Indexed X-form

stwux RS,RA,RB

[Power mnemonic: stux]

37 RS RA D
0 8 11 16 31

31 RS RA RB 183 /
0 6 11 16 21 31

EA « (RA) + EXTS(D)
MEM(EA, 4) « (RS)spes
RA « EA

Let the effective address (EA) be the sum (RA)+D.
(RS)35.43 is stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
MEM(EA, 4) ¢ (RS)zpe3
RA « EA

Let the effective address (EA) be the sum {RA)+ (RB).
(RS)30.43 is stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

38 PowerPC Architecture First Edition

Store Doubleword DS-form

std RS,DS(RA)

Store Doubleword Indexed X-form

stdx RS,RA,RB

62 RS RA DS 0
0 6 11 16 30 31

31 RS RA RB 149 /
0 6 11 16 21 31

if RA = 0 then b « 8
else b « (RA)
EA « b + EXTS(DS|jobeo)
MEM(EA, 8) « (RS)

Let the effective address (EA) be the sum
(RA|0) + (DS|i0b00). {RS) is stored into the
doubleword in storage addressed by EA.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Store Doubleword with Update DS-form

stdu RS,DS(RA)

62 RS RA Ds 1
o 6 11 16 30 31

EA « (RA) + EXTS(DS|lobeo)
MEM(EA, 8) « (RS)
RA « EA

Let the effective address (EA) be the sum
(RA)+ (DS]I0b00). (RS) is stored into the doubleword
in storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be

invoked.

Special Registers Altered:
None

if RA = 0 then b « 8
else b « (RA)
EA « b + (RB)

MEM(EA, 8) « (RS)

Let the effective address (EA) be the sum
(RAJ0)+ (RB). (RS) is stored into the doubleword in
storage addressed by EA.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Store Doubleword with Update Indexed
X-form

stdux RS,RA,RB

31 RS RA RB 181 /
0 6 11 16 21 31

EA « (RA) + (RB)
MEM(EA, 8) « (RS)
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS) is stored into the doubleword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be

invoked.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 39

3.3.4 Fixed-Point Load and Store with Byte Reversal Instructions

When used in a PowerPC system operating with Big-
Endian byte order (the default), these instructions
have the effect of loading and storing data in Little-
Endian order. Likewise, when used in a PowerPC

system operating with Little-Endian byte order, these

instructions have the effect of loading and storing
data in Big-Endian order. See Appendix D, “Little-

Endian Byte Ordering” on page 235 for a discussion
of byte order.

—— Programming Note

In some implementations, the Load Byte-Reverse
instructions may have greater latency than other
Load instructions.

Load Halfword Byte-Reverse Indexed
X-form

Ihbrx RT,RA,RB

31 RT RA RB 790 /
0 8 11 16 21 31

if RA= 0 thenb « 0

else b « (RA)

EA « b + (RB)

RT « 98@ |} MEM(EA+1, 1) || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0)+ (RB). Bits 0:7 of the halfword in storage
addressed by EA are loaded into RT3 Bits 8:15 of
the halfword in storage addressed by EA are loaded
into RT,g.55. RTg.47 are set to 0.

Special Registers Altered:
None

Load Word Byte-Reverse Indexed
X-form

lwbrx RT,RA,RB

[Power mnemonic: brx]

3 RT RA RB 534 /
0 3 11 16 21 31

if RA = 0 then'b « 0

else b « (RA)

EA « b + (RB)

RT « 329 || MEM(EA+3, 1) || MEM(EA+2, 1)
I MEM(EA+1, 1) || MEM(EA, 1)

Let the effective address (EA) be the sum
{RA}0)+ (RB). Bits 0:7 of the word in storage
addressed by EA are loaded into RTgg.63. Bits 8:15 of
the word in storage addressed by EA are loaded into
RT,s.55. Bits 16:23 of the word in storage addressed
by EA are loaded into RT,44,. Bits 24:31 of the word
in storage addressed by EA are loaded into RTj3,.59.
RTg.3 are set to 0.

Special Registers Altered:
None

40 PowerPC Architecture First Edition

Store Halfword Byte-Reverse Indexed
X-form

sthbrx RS,RA,RB

3 RS RA RB 918 /
0 8 1 16 21 31

if RA = 0 thenb « 0

else b « (RA)

EA « b + (RB)

MEM(EA, 2) & (RS)56163 " (RS)48:55

Let the effective address (EA} be the sum
(RA]O)+(RB). (RS)sg.43 are stored into bits 0:7 of the
halfword in storage addressed by EA. (RS),gss5 are
stored into bits 8:15 of the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Word Byte-Reverse Indexed
X-form

RS,RA,RB
[Power mnemonic: stbrx]

stwbrx

31 RS RA RB 662 /
0 8 11 16 21 31

if RA =08 thenb « 0

else b « (RA)

EA « b + (RB)

MEM(EA, 4) « (RS)sg.e3 It (RS)ag:ss Il (RS)ag.a7 Il (RS)32:39

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)sq.43 are stored into bits 0:7 of the
word in storage addressed by EA. (RS),q.55 are stored
into bits 8:15 of the word in storage addressed by EA.
(RS)40.47 are stored into bits 16:23 of the word in
storage addressed by EA. (RS)3539 are stored into
bits 24:31 of the word in storage addressed by EA.

Speciai Registers Altered:
None

Chapter 3. Fixed-Point Processor 41

3.3.5 Fixed-Point Load and Store Multiple Instructions

The Load/Store Multiple instructions have preferred
forms: see Section 1.9.1, “Preferred Instruction
Forms” on page 13. In the preferred forms, storage
alignment satisfies the following rule.

s The combination of the EA and RT (RS) is such
that the low-order byte of GPR 31 is loaded
(stored) from (into) the last byte of an aligned
quadword in storage.

On PowerPC systems operating with Little-Endian byte
order, execution of a Load Multiple or Store Multiple
instruction causes the system alignment error handler

to be invoked. See Appendix D, “Little-Endian Byte
Ordering” on page 235.

—— Compatibility Note

For a discussion of Power compatibility with
respect to the alignment of the EA for the Load
Muitiple Word and Store Multiple Word
instructions, please refer to Appendix G, “Incom-
patibilities with the Power Architecture” on
page 257. For compatibility with future versions
of this architecture, these EAs should be word-
aligned.

Load Muitiple Word D-form

Imw RT,D(RA)

[Power mnemonic: Im]

Store Multiple Word D-form

stmw RS,D(RA)

[Power mnemonic: stm]

46 RT RA D

47 RS RA D
0 8 11 16 31

if RA=0 thenb ¢« 0

else b « (RA)
EA « b + EXTS(D)
r « RT

do while r =< 31
GPR(r) « 320 |} MEM(EA, 4)
rer+1
EA « EA + 4

Let n = (32—RT). Let the effective address (EA) be
the sum (RA|0)+D.

n consecutive words starting at EA are loaded into
the low-order 32 bits of GPRs RT through 31. The
high-order 32 bits of these GPRs are set to zero.

EA must be a multiple of 4. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

If RA is in the range of registers to be loaded or
RT=RA =0, the instruction form is invalid.

Special Registers Altered:
None

if RA = 0 then b « 0

else b « (RA)
EA « b + EXTS(D)
r « RS

do while r = 31
MEM(EA, 4) €« GPR(Y‘)32:63
rer+1
EA « EA + 4

Let n = (32—RS). Let the effective address (EA) be
the sum (RA[0)+ D.

n consecutive words starting at EA are stored from
the low-order 32 bits of GPRs RS through 31.

EA must be a multiple of 4. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

Special Registers Altered:
None

42 PowerPC Architecture First Edition

3.3.6 Fixed-Point Move Assist Instructions

The Move Assist instructions allow movement of data
from storage to registers or from registers to storage
without concern for alignment. These instructions can
be used for a short move between arbitrary storage
locations or to initiate a long move between unaligned
storage fields.

Load/Store String Indexed instructions of zero length
have no effect, except that Load String Indexed
instructions of zero length may set register RT to an
undefined value.

The Load/Store String instructions have preferred
forms: see Section 1.9.1, “Preferred Instruction

Forms” on page 13. in the preferred forms, register
usage satisfies the following rules.

s RS=5
s RT=5
= last register loaded/stored < 12

On PowerPC systems operating with Little-Endian byte
order, execution of a Load/Store String instruction
causes the system alignment error handler to be
invoked. See Appendix D, “Little-Endian Byte
Ordering” on page 235.

Chapter 3. Fixed-Point Processor 43

Load String Word Immediate X-form

Iswi RT,RA,NB

[Power mnemonic: Isi]

Load String Word Indexed X-form

_ Iswx RT,RA,RB

[Power mnemonic: Isx]

31 RT RA NB 597 / 31 RT RA RB 533 /
0 6 1 |18 21 31 0 e 11 16 21 131
if RA = 0 then EA « 0 if RA = 0 then b « 0
else EA ¢ (RA) else b « (RA)
if NB = 0 then n « 32 EA « b + (RB)
else n « NB n « XERys.34
re«RT -1 reRT -1
ie 32 i€ 32

do while n >0

if i = 32 then
rer + 1 (mod 32)
GPR(r) « 6

GPR(r)i:i+7 « MEM(EA, 1)

iei+8

if i = 64 then i « 32

EA ¢« EA +1

nen-1

Let the effective address (EA) be (RA]0). Letn = NB
if NB#0, n = 32 if NB=0: n is the number of bytes to
load. Let nr = CElL{n=4): nr is the number of regis-
ters to receive data.

n consecutive bytes starting at EA are loaded into
GPRs RT through RT+nr—1. Data is loaded into the
low-order four bytes of each GPR; the high-order four
bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If the low-order four bytes of register
RT+nr—1 are only partially filled, the unfilled low-
order byte(s) of that register are set to 0.

If RA is in the range of registers to be loaded or
RT=RA =0, the instruction form is invalid.

Special Registers Altered:
None

RT ¢ undefined
do while n > 8
if 1 = 32 then
rer+1 (mod 32)
GPR(r) « ©
GPR(r)i:i+7 € MEM(EA, 1)
iei+8
if 1 = 64 then i ¢« 32
EA ¢ EA +1
nen-1

Let the effective address (EA) be the sum
(RAJO)+(RB). Let n = XERys53¢: n is the number of
bytes to load. Let nr = CEIL(n+4): nr is the number
of registers to receive data.

If n>0, n consecutive bytes starting at EA are loaded
into GPRs RT through RT+nr—1. Data is loaded into
the low-order four bytes of each GPR; the high-order
four bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If the low-order four bytes of register
RT+nr—1 are only partially filled, the unfilied low-
order byte(s) of that register are set to 0.

If n=0, the content of register RT is undefined.

If RA or RB is in the range of registers to be loaded
or RT=RA=0, the instruction form is invalid.

Special Registers Altered:
None

44 PowerPC Architecture First Edition

Store String Word Immediate X-form

stswi RS,RANB

[Power mnemonic: stsi]

Store String Word Indexed X-form

stswx RS,RA,RB

[Power mnemonic: stsx]

31 RS RA NB 725 / 31 RS RA RB 661 /
0 6 11 16 21 31 0 6 1 116 21 31
if RA = 0 then EA « 0 if RA=0thenb ¢« 0
else EA « (RA) else b « (RA)
if NB = 0 then n ¢ 32 EA « b + (RB)
else n « N8 n ¢ XERys5.94
re«RS-1 reRS -1
ie 32 i€ 32

do whilen > 0
if 1 =32 thenr er +1 (mod 32)
MEM(EA, 1) A GPR(P)‘|+7
iei+8
if 1 = 64 then i ¢« 32
EA « EA + 1
nen-1

Let the effective address (EA) be (RA|0). Letn = NB
if NB#0, n = 32 if NB=0: n is the number of bytes to
store. Let nr = CEIL(n<+4): nr is the number of regis-
ters to supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr—1. Data is stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR O if
required.

Special Registers Altered:
None

do while n> 0
ifi=32thenrer +1 (mod 32)
MEM(EA, 1) ¢ GPR(r),i+7
iei+8
if i = 64 then i « 32
EA « EA + 1
nen-1

Let the effective address (EA) be the sum
(RA|0)+ (RB). Let n = XERjg534: n is the number of
bytes to store. Let nr = CEIL(n+4): nr is the number
of registers to supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr—1. Data is stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 45

3.3.7 Storage Synchronization Instructions

The Storage Synchronization instructions can be used
to control the order in which storage operations are
completed with respect to asynchronous events, and
the order in which storage operations are seen by
other processors and by other mechanisms that
access storage. Additional information about these
instructions, and about related aspects of storage
management, can be found in Part 2, “PowerPC
Virtual Environment Architecture” on page 117, and
Part 3, “PowerPC Operating Environment
Architecture” on page 141.

—— Programming Note

Because the Storage Synchronization instructions
have implementation dependencies (e.g., the
granularity at which reservations are managed),
they must be used with care. The operating
system should provide system library programs
that use these instructions to implement the high-
level synchronization functions (Test and Set,
Compare and Swap, etc.) needed by application
programs. Application programs should use these
library programs, rather than use the Storage
Synchronization instructions directly.

Load Word And Reserve Indexed
X-form

lwarx RT,RA,RB

Load Doubleword And Reserve Indexed
X-form

Idarx RT,RA,RB

31 RT RA RB 20 /
0 8 11 16 |21 31

0 8 11 16 21 31

31 RT RA RB 84 /

if RA = 0 then b « 0

else b « (RA)
EA « b + (RB)
RESERVE ¢ 1

RESERVE_ADDR « func(EA)
RT « 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA[O0)+(RB). The word in storage addressed by EA
is loaded into RT3,.43. RTg.3; are set to 0.

This instruction creates a reservation for use by a
Store Word Conditional instruction. An address com-
puted from the EA is associated with the reservation,
and replaces any address previously associated with
the reservation: the manner in which the address to
be associated with the reservation is computed from
the EA is described in Part 2, “PowerPC Virtual Envi-
ronment Architecture” on page 117.

EA must be a multiple of 4. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

Special Registers Altered:
None

if RA =0 thenb ¢« 0

else b « (RA)
EA « b + (RB)
RESERVE « 1

RESERVE_ADDR « func(EA)
RT « MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The doubleword in storage addressed
by EA is loaded into RT.

This instruction creates a reservation for use by a
Store Doubleword Conditional instruction. An
address computed from the EA is associated with the
reservation, and replaces any address previously
associated with the reservation: the manner in which
the address to be associated with the reservation is
computed from the EA is described in Part 2,
“PowerPC Virtual Environment Architecture” on
page 117.

EA must be a multiple of 8. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handier to be
invoked.

Special Registers Altered:
None

46 PowerPC Architecture First Edition

Store Word Conditional Indexed X-form

stwex. RS,RA,RB

31 RS RA RB 150 1
0 6 11 16 21 31

if RA = 0 thenb « 8
else b ¢ (RA)
EA « b + (RB)
if RESERVE then
MEM(EA, 4) €« (RS)32:63
RESERVE « 0
CRO « 0bOE || 6b1 || XERgo
else
CRG « 0b0OO || 80 || XERgo

Let the effective address (EA) be the sum
(RA|0) + (RB).

If a reservation exists, (RS)3,.¢3 is stored into the
word in storage addressed by EA and the reservation
is cleared.

If a reservation does not exist, the instruction com-
pletes without altering storage.

CR Field 0 is set to reflect whether the store opera-
tion was performed (i.e., whether a reservation
existed when the stwex. instruction commenced exe-
cution), as follows.

CRO, 1 g7 £q s0 = 0b0O0 || store_performed || XERgo
EA must be a multiple of 4. If it is not, the system

alignment error handler may be invoked or the resuits
may be boundedly undefined.

Special Registers Altered:
CRO

Store Doubleword Conditional Indexed
X-farm

stdex. RS,RA,RB

31 RS RA RB 214 1
0 ‘16 11 16 21 - 31

if RA=0thenb ¢ @0
else b « (RA)
EA « b + (RB)
if RESERVE then
MEM(EA, 8) ¢ (RS)
RESERVE « 0
CR8 « 0bE0 || 8b1 || XERgo
else
CR8 « 0b0O || 6b8 J| XERgo

Let the effective address (EA) be the sum
(RA|0)+(RB).

If a reservation exists, (RS) is stored into the
doubleword in storage addressed by EA and the res-
ervation is cleared.

If a reservation does not exist, the instruction com-
pletes without altering storage.

CR Field Q is set to reflect whether the store opera-
tion was performed (i.e, whether a reservation
existed when the stdcx. instruction commenced exe-
cution), as follows.

CROLT GTEQSO = 0b00 “ store_performed “ XERSO

EA must be a multiple of 8. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO

—— Programming Note

The granularity with which reservations are
managed is implementation-dependent. Therefore
the storage to be accessed by the Load And
Reserve and Store Conditional instructions should
be allocated by a system library program. Addi-
tional information can be found in Part 2,
“PowerPC Virtual Environment Architecture” on
page 117.

Chapter 3. Fixed-Point Processor 47

—— Programming Note

When correctly used, the Load And Reserve and
Store Conditional instructions can provide an
atomic update function for a single aligned word
(Load Word And Reserve and Store Word Condi-
tional) or doubleword (Load Doubleword And
Reserve and Store Doubleword Conditional) of
storage. '

One of the requirements for correct use is that
Load Word And Reserve be paired with Store
Word Conditional, and Load Doubleword And
Reserve with Store Doubleword Conditional, with
the same effective address used for both
instructions of the pair. Examples of correct uses
of these instructions, to emulate primitives such
as “Fetch and Add,” “Test and Set,” and
“Compare and Swap,” can be found in Appendix
E.1, “Synchronization” on page 243.

At most one reservation exists on any given
processor: there are not separate reservations for
words and for doublewords.

The conditionality of the Store Conditional
instruction’s store is based only on whether a res-
ervation exists, not on a match between the
address associated with the reservation and the
address computed from the EA of the Store Con-
ditional instruction.

A reservation is cleared if any of the following
events occurs.

= The processor holding the reservation exe-
cutes another Load And Reserve instruction;
this clears the first reservation and estab-
lishes a new one.

= The processor holding the reservation exe-

address.

= Another processor executes any Store
instruction to the address associated with the
reservation.

= Any mechanism, other than the processor
holding the reservation, stores to the address
associated with the reservation.

t See Part 2, “PowerPC Virtual Environment
Architecture” on page 117, for additional informa-
tion.

cutes a Store Conditional instruction to any |

Synchronize X-form

sync

[Power mnemonic: dcs]

31 /) n 598 /
0 6 11 16 21 31

The sync instruction provides an ordering function for
the effects of all instructions executed by a given
processor. Executing a sync instruction ensures that
all instructions previously initiated by the given
processor appear to have completed before the sync
instruction completes, and that no subsequent
instructions are initiated by the given processor until
after the sync instruction completes. When the sync
instruction completes, all storage accesses initiated
by the given processor prior to the sync will have
been performed with respect to all other mechanisms
that access storage. (See Part 2, “PowerPC Virtual
Environment Architecture” on page 117, for a more
complete description. See also the section entitled
“Table Update Synchronization Requirements” in
Part 3, “PowerPC Operating Environment
Architecture” on page 141, for an exception involving
TLB invalidates.)

This instruction is execution synchronizing (see
Part 3, “PowerPC Operating Environment
Architecture” on page 141).

Special Registers Altered:
None

—— Programming Note

The sync instruction can be used to ensure that
the results of all stores into a data structure, per-
formed in a “critical section” of a program, are
seen by other processors before the data struc-
ture is seen as unlocked.

The functions performed by the sync instruction
will normally take a significant amount of time to
complete, so indiscriminate use of this instruction
may adversely affect performance. In addition,
the time required to execute sync may vary from
one execution to another.

The Enforce In-order Execution of [/0 (eieio)
instruction, described in Part 2, “PowerPC Virtual
Environment Architecture” on page 117, may be
more appropriate than sync for cases in which the
only requirement is to control the order in which
storage references are seen by I/O devices.

48 PowerPC Architecture First Edition

3.3.8 Other Fixed-Point lnstructions

The remainder of the fixed-point instructions use the
content of the General Purpose Registers (GPRs) as
source operands, and place results into GPRs, into the
fixed-point Exception Register (XER), and into Condi-
tion Register fields. In addition, the Trap instructions
compare the contents of one GPR with a second GPR
or immediate data and, if the conditions are met,
invoke the system trap handler.

These instructions treat the source operands as
signed integers unless the instruction is explicitly
identified as performing an unsigned operation.

The X-form and XO-form instructions with Rc=1, and
the D-form instructions addic., andi., and andis., set
the first three bits of CR Field 0 to characterize the

result placed into the target register. In 64-bit mode,
these bits are set as if the 64-bit result were com-
pared algebraically to zero. In 32-bit mode, these bits
are set as if the low-order 32 bits of the result were
compared algebraically to zero.

Unless otherwise noted and when appropriate, when
CR Field 0 and the XER are set they reflect the value
placed in the target register.

Programming Note

Instructions with the OE bit set or which set CA
may execute slowly or may prevent the execution
of subsequent instructions until the operation is
completed.

Chapter 3. Fixed-Point Processor 49

3.3.9 Fixed-Point Arithmetic Instructions

The XO-form Arithmetic instructions with Rc=1, and
the D-form Arithmetic instruction addic., set the first
three bits of CR Field 0 as described in Section 3.3.8,
“Other Fixed-Point Instructions” on page 49.

addic, addic., subfic, addc, subfc, adde, subfe, addme,

subfme, addze, and subfze always set CA, to reflect
the carry out of bit 0 in 64-bit mode and out of bit 32
in 32-bit mode. With the exception of mulld and
muliw, the XO-form Arithmetic instructions set SO and
OV when OE=1, to refiect overflow of the 64-bit result
in 64-bit mode and overflow of the low-order 32-bit
result in 32-bit mode. mulld and muliw set SO and OV
when OE=1, to reflect overflow of the 64-bit result for
mulid and overflow of the low-order 32-bit result for
mullw. '

—— Programming Note

Notice that CR Field 0 may not reflect the “true”
(infinitely precise) result if overflow occurs.

Extended mnemonics for addition and
subtraction

Several extended mnemonics are. provided that use
the Add Immediate and Add Immediate Shifted
instructions to load an immediate value or an address
into a target register. Some of these are shown as
examples with the two instructions.

The PowerPC Architecture supplies Subtract From
instructions, which subtract the second operand from
the third. A set of extended mnemonics is provided
that use the more “normal” order, in which the third
operand is subtracted from the second, with the third
operand being either an immediate field or a register.
Some of these are shown as examples with the appro-
priate Add and Subtract From instructions.

See Appendix C, “Assembler Extended Mnemonics”
on page 223 for additional extended mnemonics.

Add Immediate D-form

Add Immediate Shifted D-form

addi RT,RA,SI
[Power mnemonic: cal]
14 RT RA Si
0 6 11 16 31

addis RT,RA,SI
[Power mnemonic: cau]
15 “RT RA Si
0 6 11 16 31

if RA = 0 then RT « EXTS(SI)
else RT « (RA) + EXTS(SI)

The sum (RA|0) + Sl is placed into register RT.

Special Registers Altered:
None

Extended Mnemonics:
Examples of extended mnemonics for Add Immediate:

Extended: " Equivalent to:

li Rx,value addi Rx,0,value

la Rx,disp(Ry) addi Rx,Ry.disp
subi Rx,Ry,value addi Rx,Ry,—value

—— Programming Note

addi, addis, add, and subf are the preferred
instructions for addition and subtraction, because
they set few status bits.

Notice that addi and addis use the value 0, not the

contents of GPR 0, if RA=0.

if RA = 0 then RT « EXTS(SI || '%0)
else RT « (RA) + EXTS(SI || '%0)

The sum (RA}0) + (SI || 0x0000) is placed into register
RT.

Special Registers Altered:
None

Extended Mnemonics:
Examples of extended mnemonics for. Add Immediate
Shifted:

Extended:

lis Rx,value
subis Rx,Ry,value

Equivalent to:

addis Rx,0,value
addis Rx,Ry,—value

50 PowerPC Architecture First Edition

Add XO-form

add RT,RA,RB (OE=0 Rc=0)
add. RT,RA,RB (OE=0 Rc=1)
addo RT,RA,RB (OE=1 Rc=0)
addo. ~ RT,RARB (OE=1 Rc=1)

[Power mnemonics: cax, cax., caxo, caxo.]

3 RT RA RB JOE 266 Rc|
0 6 1 16 21|22 31

RT « (RA) + (RB)
The sum (RA) + (RB) is placed into register RT.
Special Registers Altered:

CRO (if Rc=1)
SO oV (if OE=1)

Add Immediate Carrying D-form

addic RT,RA,SI
[Power mnemonic: ai]

12 RT RA Si

RT « (RA) + EXTS(SI)
The sum (RA) + Sl is placed into register RT.
Special Registers Altered:
CA
Extended Mnemonics:
Example of extended mnemonics for Add /mmediate

Carrying:

Extended:
subic Rx,Ry,value

Equivalent to:
addic Rx,Ry,—value

Subtract From XO-form

subf RT,RA,RB (OE=0 Rc=0)
subf. RT,RA,RB (OE=0 Rc=1)
subfo RT,RA,RB (OE=1 Rc=0)
subfo. RT,RA,RB (OE=1 Rc=1)

31 RT | RA | RB |0E| 40 |Re
0 6 11 16 21 122 31

RT « ~(RA) + (RB) + 1
The sum —(RA) + (RB) +1 is placed into register
RT.

Special Registers Altered:
CRO (if Rc=1)
SO OV (if OE=1)
Extended Mnemonics:

Example of extended mnemonics for Subtract From:

Extended: Equivalent to:
sub Rx,Ry,Rz subf Rx,RzRy

Add Immediate Carrying and Record
D-form

addic. RT,RA,S!
[Power mnemonic: ai.]

13 RT RA Sl

RT « (RA) + EXTS(SI)
The sum (RA) + Sl is placed into register RT.

Special Registers Altered:
CRO CA

Extended Mnemonics:

Example of extended mnemonics for Add /mmediate
Carrying and Record:

Extended:
subic. Rx,Ry,value

Equivalent to:
addic. Rx,Ry,—value

Chapter 3. Fixed-Point Processor 51

Subtract From Immediate Carrying
D-form

subfic RT,RA,SI
[Power mnemonic: sfi]

08 RT |1 RA SI

RT & =(RA) + EXTS(SI) + 1
The sum —(RA) + S| + 1 is placed into register RT.

Special Registers Altered:

CA
Add Carrying XO-form Subtract From Carrying XO-form
addc RT,RA,RB (OE=0 Rc=0) subfc RT,RA,RB (OE=0 Rc=0)
addc. RT,RA,RB (OE=0 Rc=1) subfc. RT,RA,RB (OE=0 Rc=1)
addco RT,RA,RB {(OE=1 Rc=0) subfco RT,RA,RB (OE=1 Rc=0)
addco. RT,RA,RB (OE=1 Rc=1) subfco. RT,RA,RB (OE=1 Rc=1)
[Power mnemonics: a, a., ao, a0.] [Power mnemonics: sf, sf., sfo, sfo.]

31 RT RA RB |OE 10 Rc 31 RT RA RB |OE 8 Rc
0 6 11 16 21 {22 31 0 6 11 16 21 |22 31
RT « (RA) + (RB) RT « ~(RA) + (RB) +1
The sum (RA) + (RB) is placed into register RT. The sum —(RA) + (RB) + 1 is placed into register
RT.

Special Registers Altered:

CA Special Registers Altered:

CRO (if Rc=1) CA

SO oV (if OE=1) CRO (if Re=1)

SO oV (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From

Carrying:
Extended: Equivalent to:
subc Rx,Ry,Rz subfc Rx,Rz,Ry

52 PowerPC Architecture First Edition

Add Extended XO-form

Subtract From Extended XO-form

adde RT,RA,RB (OE=0 Rc=0) subfe RT,RA,RB {(OE=0 Rc=0)
adde. RT,RA,RB {(CE=0 Rc=1) subfe. RT,RA,RB (OE=0 Rc=1)
addeo RT,RA,RB (OE=1 Rc=0) subfeo RT,RA,RB (OE=1 Rc=0)
addeo. RT,RARB (OE=1 Rc=1) subfeo. ~ RT,RARB (OE=1 Rc=1)
[Power mnemonics: ae, ae., aeo, aeo.] [Power mnemonics: sfe, sfe., sfeo, sfeo.]

31 RT RA RB |OE 138 Re N RT | RA RB |OE 136 Rc
0 6 1 16 21 |22 31 0 6 11 16 21 |22 31

RT « (RA) + (RB) + CA

The sum (RA) + (RB) + CA is placed into register
RT.

Special Registers Altered:

CA
CRO (if Re=1)
SO oV (if OE=1)

Add To Minus One Extended XO-form

addme RT,RA (OE=0 Rc=0)
addme. RT,RA (OE=0 Rc=1)
addmeo RT,RA (OE=1 Rc=0)
addmeo. RT,RA (OE=1 Rc=1)

[Power mnemonics: ame, ame., ameo, ameo.]

31 RT RA /11 |OE 234 Rc
0 6 11 16 21 {22 31

RT « (RA) + CA - 1
The sum (RA) + CA + %1 is placed into register RT.

Special Registers Altered:

CA
CRO (if Re=1)
SO OV (if OE=1)

RT « =(RA) + (RB) + CA

The sum —(RA) + (RB) + CA is placed into register
RT.

Special Registers Altered:

CA
CRO (if Re=1)
SO oV (if OE=1)

Subtract From Minus One Extended
XO-form

subfme RT,RA (OE=0 Rc=0)
subfme. RT.RA (OE=0 Rc=1)
subfmeo RT,RA (OE=1 Rc=0)
subfmeo. RT,RA (OE=1 Rc=1)

[Power mnemonics: sfme, sfme., sfmeo, sfmeo.]

31 RT RA /I |OE 232 Rc
0 6 11 16 21 |22 31

RT « ~(RA) + CA - 1

The sum —(RA) + CA + 1 is placed into register
RT.

Special Registers Altered:

CA
CRO (if Re=1)
SO oV (if OE=1)

Chapter 3. Fixed-Point Processor 53

Add To Zero Extended XO-form

Subtract From Zero Extended XO-form

addze RT,RA (OE=0 Rc=0) subfze RT.RA (OE=0 Rc=0)
addze. RT,RA (OE=0 Rc=1) subfze. RT,RA (OE=0 Rc=1)
addzeo RT,RA (OE=1 Rc=0) subfzeo RT,RA (OE=1 Rc=0)
addzeo. RT,RA (OE=1 Rc=1) subfzeo. RT.RA (OE=1 Rc=1)
[Power mnemonics: aze, aze., azeo, azeo.] [Power mnemonics: sfze, sfze., sfzeo, sfzeo.]

31 RT RA /11 |OE 202 Rc 3 RT RA /Hl |OE 200 Rc
0 6 1 16 21 |22 31 0 6 1 16 21 |22 31

RT « (RA) + CA
The sum (RA) + CA is placed into register RT.

Special Registers Altered:

CA
CRO (if Re=1)
SO OV (if OE=1)

RT « =(RA) + CA
The sum —(RA) + CA is placed into register RT.

Special Registers Altered:

CA
CRO (if Re=1)
SO ov (if OE=1)

—— Programming Note

The setting of CA by the Add and Subtract
instructions, including the Extended versions
thereof, is mode-dependent. If a sequence of
these instructions is used to perform extended-
precision addition or subtraction, the same mode
should be used throughout the sequence.

Negate XO-form

neg RT,RA (OE=0 Rc=0)
neg. RT,RA (OE=0 Rc=1)
nego RT,RA (OE=1 Rc=0)
nego. RT,RA {(OE=1 Rc=1)

31 RT RA /1 |OE 104 Rc
0 6 11 16 21 |22 31

RT « ~(RA) +1
The sum —(RA) + 1 is placed into register RT.

If executing in 64-bit mode and register RA contains
the most negative 64-bit number (0x8000_0000_0000_
0000), the result is the most negative number and, if
OE=1, OV is set to 1. Similarly, if executing in 32-bit
mode and (RA)3,. 63 contains the most negative 32-bit
number (0x8000_0000), the low-order 32 bits of the
result contain the most negative 32-bit number and, if
OE=1, OVis set to 1.

Special Registers Altered:

CRO
SO ov

(if Re=1)
(if OE=1)

54 PowerPC Architecture First Edition

Multiply Low Immediate D-form

mutli RT,RA,SI
[Power mnemonic: muli]
07 - RT RA Si
9 6 11 16 31

prodg.4o7 ¢ (RA) x EXTS(SI)

RT « pr0d64_127

The 64-bit first operand is (RA). The 64-bit second
operand is the sign-extended value of the Si field.

The low-order 64 bits of the 128-bit product of the
operands are placed into register RT.

Both the operands and the product are interpreted as
signed integers.

Special Registers Altered:
None

Multiply Low Doubleword XO-form

mulid RT,RARB (OE=0 Rc=0)
mulld. RT,RA,RB (OE=0 Rc=1)
mulido RT,RA,RB (OE=1 Rc=0)
mulido. RT,RA,RB (OE=1Rc=1)

3N RT RA RB |OE 233 Re
] [11 16 21 22 31

prodg. 107 ¢ (RA) x (RB)
RT « prodgg. 127

The 64-bit operands are (RA) and (RB). The low-order
64 bits of the 128-bit product of the operands are
placed into register RT.

If OE=1 then OV is set to 1 if the product cannot be
represented in 64 bits.

Both the operands and the product are interpreted as
signed integers.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Re=1)
SO oV (if OE=1)

—— Programming Note

The XO-form Muiltiply instructions may execute
faster on some implementations if RB contains
the operand having the smaller absolute value.

Multiply Low Word XO-form

mullw RT,RA,RB (OE=0 Rc=0)
mullw. RT,RA.RB (OE=0 Rc=1)
mullwo RT,RARB (OE=1 Rc=0)
mullwo. RT,RA,RB (OE=1 Rc=1)

[Power mnemonics: muls, muls., mulso, mulso.]

31 RT RA RB |OE 235 Rc
0 6 11 16 21 |22 31

RT « (RA)3z63 * (RB)azes
The 32-bit operands are the low-order 32 bits of RA

and of RB. The 64-bit product of the operands is
placed into register RT.

If OE=1 then OV is set to 1 if the product cannot be
represented in 32 bits.

Both the operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Re=1)
SO oV (if OE=1)

—— Programming Note

For mulli and mullw, the low-order 32 bits of the
product are the correct 32-bit product for 32-bit
mode.

For mulli and mulid, the low-order 64 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 64-bit inte-
gers. For mulli and muliw, the low-order 32 bits
of the product are independent of whether the
operands are regarded as signed or unsigned
32-bit integers.

Chapter 3. Fixed-Point Processor 55

Multiply High Doubleword XO-form

Multiply High Word XO-form

mulhd RT,RA,RB (Rc=0) mulhw RT,RA,RB {Rc=0)
mulhd. RT,RA,RB (Rc=1) mulhw. RT,RA,RB (Rc=1)

31 RT RA RB / 73 Rc 31 RT RA RB / 75 Rc!
0 6 1 16 - 21122 : 31 0 6 11 16 21 |22 : 31

prodg.1o7 ¢ (RA) x (RB)
RT « prodg.g3

The 64-bit operands are (RA) and (RB). The high-
order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both the operands and the product are interpreted as
signed integers.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Re=1)

Multiply High Doubleword Unsigned
XO-form

mulhdu RT,RA,RB (Rc=0)
mulhdu. RT,RA,RB (Re=1)

31 RT RA RB / 9 Rc
0 6 11 16 21 |22 31

prodg.y07 ¢ (RA) x (RB)
RT « prodo.es

The 64-bit operands are (RA) and (RB). The high-
order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both the operands and the product are interpreted as
unsigned integers.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Re=1)

prodogs ¢ (RA)zz63 * (RB)32e3

RT3263 ¢ Prodo:z

RTg.31 ¢ undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit
product of the operands are placed into RTg,ga
(RT)o:3¢ are undefined.

Both the operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Rc=1)

Multiply High Word Unsigned XO-form

mulhwu RT,RA.RB (Rc=0)

mulhwu. RT,RA,RB (Re=1)
31 RT RA RB / 1" Rc

o 6 11 16 21 |22 | 31

prodg.e3 ¢ (RA)zze3 X (RB)azes

RT32:63 ¢ Prodo:zs

RTg.31 ¢ undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit
product of the operands are placed into RT3s.43.
(RT)q.31 are undefined.

Both the operands and the product are interpreted as ‘
unsigned integers. |

Special Registers Altered:
CRO (if Rc=1)

56 PowerPC Architecture First Edition

Divide Doubleword XO-form

Divide Word XO-form

divd RT,RARB (OE=0 Rc=0) divw RT,RA,RB (OE=0 Rc=0)
divd. RT,RA,RB (OE=0 Rc=1) divw. RT,RA,RB (OE=0 Rc=1)
divdo RT,RA,RB (OE=1 Rc=0) divwo RT,RA,RB (OE=1 Rc=0)
divdo. RT,RA,RB (OE=1 Rc=1) divwo. RT,RA,RB (OE=1Rc=1)

31 RT | RA | RB [0oE| 489 |[Rrc 31, | RT { RA | RB |OE| 491 |Rc
0 [11 16 21 {22 31 0 6 1 16 21 {22 31

dividendy gz ¢ (RA)
divisorggs ¢ (RB)
RT « dividend + divisor

The 64-bit dividend is {(RA). The 64-bit divisor is (RB).
The 64-bit quotient of the dividend and divisor is
placed into RT. The remainder is not supplied as a
result.

Both the dividend and the divisor are interpreted as
sighed integers. The quotient is the unique signed
integer that satisfies

dividend = (quotient x divisor) +r

where 0 < r < |divisor| if the dividend is nonnegative,
and — |divisor| < r < 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000_0000_0606 + -1
<anything> = 8

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of
CR Field 0. In these cases, if OE=1 then OV is set to
1.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc=1)
SO oV (if OE=1)

—— Programming Note

The 64-bit signed remainder of dividing (RA) by
(RB) can be computed as follows, except in the
case that (RA) = —2% and (RB) = —1.

divd RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient*divisor
subf RT,RT,RA # RT = remainder

dividendg.gz ¢ EXTS((RA)30.63)
diViSOY‘0:63 €« EXTS((RB)szeg)
RT39.63 ¢ dividend = divisor
RTg.31 ¢ undefined

The 64-bit dividend is the sign-extended value of
(RA)gp.63. The 64-bit divisor is the sign-extended
value of (RB)sy.63. The 64-bit quotient is formed. The
low-order 32 bits of the 64-bit quotient are placed into
RT30.63- (RT)g.3y are undefined. The remainder is not
supplied as a result.

Both the dividend and the divisor are interpreted as
signed integers. The quotient is the unique signed
integer that satisfies

dividend = (quotient x divisor) + r

where 0 < r < {divisor] if the dividend is nonnegative,
and — |divisor] < r <0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000 + -1
<anything> + 0

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of
CR Field 0. In these cases, if OE=1 then OV is set to
1.

Special Registers Altered:
CRO (if Rc=1)
SO OV (if OE=1)

[——-, Programming Note

The 32-bit signed remainder of dividing (RA)35.62
by (RB);,.63 can be computed as follows, except in
the case that (RA) = —23! and (RB) = —1.

divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient*divisor
subf RT,RT,RA # RT = remainder

Chapter 3. Fixed-Point Processor 57

Divide Doubleword Unsigned XO-form

Divide Word Unsigned XO-form

divdu RT,RA,RB (OE=0 Rc=0) divwu RT,RA,RB (OE=0 Rc=0)
divdu. RT,RA,RB (OE=0 Rc=1) divwu. RT,RA,RB (OE=0 Rc=1)
divduo RT.RA,RB " (OE=1 Rc=0) divwuo RT,RA,RB (OE=1 Rc=0)
divduo. RT,RA,RB (OE=1 Rc=1) divwuo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB |OE 457 . |Rc 31 RT RA RB |[OE| 459. [Rc
0 5 11 16 21 |22 31 o 6 11 16 21 22 31

dividendy.gz ¢ (RA)
divisorges « (RB)
RT « dividend + divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient of the dividend and divisor is
placed into RT. The remainder is not supplied as a
result.

Both the dividend and the divisor are interpreted as
unsigned integers. The quotient is the unique
unsigned integer that satisfies

dividend = (quotient x divisor) + r
where 0 < r < divisor.

If an attempt is made to perform the division
<anything> + 0

then the contents of register RT are undefined as are
(if Rce=1) the contents of the LT, GT, and EQ bits of
CR Field 0. In this case, if OE=1 then OV is set to 1.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Re=1)
SO OV (if OE=1)

r— Programming Note

The 64-bit unsigned remainder of dividing (RA) by
(RB) can be computed as follows.

divdu RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient*divisor
subf RT,RT,RA # RT = remainder

dividendg.gs « 320 || (RA)3.63
divisorges « 320 || (RB)3pe3
RT3p63 ¢ dividend + divisor
RTg.3; ¢ undefined

The 64-bit dividend is the zero-extended value of
(RA)32.63- The 64-bit divisor is the zero-extended
value of (RB)ss.53. The 64-bit quotient is formed. The
low-order 32 bits of the 64-bit quotient are placed into
RT35.63. (RT)g.3; are undefined. The remainder is not
supplied as a result.

Both the dividend and the divisor are interpreted as
unsigned integers. The quotient is the unique
unsigned integer that satisfies

dividend = (quotient x divisor) + r

where 0 < r < divisor.

If an attempt is made to perform the division
<anything> + 0

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of
CR Field 0. In this case, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (if Rc=1)
SO oV (if OE=1)

—— Programming Note

The 32-bit wunsigned remainder of dividing
(RA)35.63 by (RB)3,.63 can be computed as follows.

divwu RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient*divisor
subf RT,RT,RA # RT = remainder

58 PowerPC Architecture First Edition

3.3.10 Fixed-Point Compare Instructions

The Fixed-Point Compare instructions algebraically or
logically compare the contents of register RA with (1)
the sign-extended value of the Sl field, (2) the Ul field,
or (3) the contents of register RB. Algebraic compar-
ison compares two signed integers. Logical compar-
ison compares two unsigned integers.

For 64-bit implementations, the L field controls
whether the operands are treated as 64- or 32-bit
quantities, as follows:

L Operand length
0 32-bit operands
1 64-bit operands

When the operands are treated as 32-bit sighed quan-
tities, bit 32 of the register (RA or RB) is the sign bit.

For 32-bit implementations, the L field must be zero.

The Compare instructions set one bit in the leftmost
three bits of the designated CR field to one, and the

other two to zero. XERgq is copied into bit 3 of the
designated CR field.

The CR field is set as follows.

Bit Name Description

0 LT (RA) < SI, U, or (RB)

1 GT (RA) > SI, U, or (RB)

2 EQ (RA) = S|, Ul, or (RB)

3 SO Summary Overflow from the XER

Extended mnemonics for compares

A set of extended mnemonics is provided so that
compares can be coded with the operand length as
part of the instruction mnemonic rather than as a
numeric operand. Some of these are shown as exam-
ples with the Compare instructions. The extended
mnemonics for doubleword comparisons are available
only in 64-bit implementations. See Appendix C,
“Assembler Extended Mnemonics” on page 223 for
additional extended mnemonics.

Compare Immediate D-form

Compare X-form

cmpi BF,LLRA,SI cmp BF,L.RA,RB
11 BF /LI RA Si 31 BF /LI RA RB 0 /
0 3 ohd 11 16 31 0 3 olid 11 16 21 31

else a « (RA)

if a < EXTS(SI) then ¢ « 8b166
else if a > EXTS(SI) then ¢ « 0b018
else c « 8boel

CRyxpraxgr+3 © C Il XERgo

The contents of register RA ((RA)z;.43 Sign-extended
to 64 bits if L=0) is compared with the sign-extended
value of the Sl field, treating the operands as signed
integers. The result of the comparison is placed into
CR field BF.

In 32-bit implementations, if L=1 the instruction form
is invalid.

Special Registers Altered:
CR field BF
Extended Mnemonics:

Examples of extended mnemonics for Compare Imme-
diate:

Extended: ‘ Equivalent to:
cmpdi Rx,value cmpi 0,1,Rx,value
cmpwi cr3,Rx,value cmpi 3,0,Rx,value

if L = 0 then a ¢« EXTS((RA)3263)
b« EXTS((RB)3263)
else a « (RA)

b « (RB)
if a <b then ¢ « 0b1608
else if a > b then ¢ « 0b010
else Cc ¢ 0bo01

CRexpr:axgr+3 ¢ € Il XERso

The contents of register RA {(RA)3,.65 if L=0) is com-
pared with the contents of register RB ((RB)3jy¢3 if
L=0), treating the operands as signed integers. The
result of the comparison is placed into CR field BF.

In 32-bit implementations, if L=1 the instruction form
is invalid.

Special Registers Altered:
CR field BF

Extended Mnemonics:
Examples of extended mnemonics for Compare:

Extended: Equivalent to:
cmpd Rx,Ry cmp 0,1,Rx,Ry
cmpw cr3,Rx,Ry cmp 3,0,Rx,Ry

Chapter 3. Fixed-Point Processor 59

Compare Logical Immediate D-form

Compare Logical X-form

cmpli " BF,L,RA,UI cmpl BF,LLRA,RB
10 BF |/ RA Ul 31 BF VLI RA RB 32 /
0 6 ol1d 11 16 31 0 - 6 oiq 1 16 21 31

if L = 0 then a « 320 || (RA)j0.63
else a « (RA)

if a € (%80 || UI) then ¢ « ©b160
else if a 3 (%80 || UI) then c « 0bO10O

else ¢ « 0boel

CRaxpraxgr+3 ¢ € Il XERso '

The contents of register RA ((RA)zp.63 zero-extended
to 64 bits if L=0) is compared with %80 || U, treating
the operands as unsigned integers. The resuilt of the
comparison is placed into CR field BF.

In 32-bit implementations, if L=1 the instruction form
is invalid.

Special Registers Altered:
CR field BF
Extended Mnemonics:

Examples of extended mnemonics for Compare
Logical Immediate:

Extended: Equivalent to:
cmpldi Rx,value cmpli 0,1,Rx,value
cmplwi cr3,Rx,value cmpli 3,0,Rx,value

if L =0 then a « 328 || (RA)3p63

b « 329 || (RB)3pe3

else a « (RA)

b « (RB)
if a < b then c « 06b160
else if a > b then ¢ « 0b010
else c « 0b0O1
CRexgraxpr+3 ¢ € ll XERgo
The contents of register RA ((RA)qy.63 if L=0) is com-
pared with the contents of register RB ((RB)3s¢3 if
L=0), treating the operands as unsigned integers.

The result of the comparison is placed into CR field
BF.

In 32-bit implementations, if L=1 the instruction form
is invalid.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare
Logical:

Extended:

Equivalent to:
cmpld Rx,Ry cmpl 0,1,Rx,Ry
cmplw cr3,Rx,Ry cmpl 3,0,Rx,Ry

60 PowerPC Architecture First Edition

3.3.11 Fixed-Point Trap Instructions

The Trap instructions are provided to test for a speci-

fied set of conditions. If any of the conditions tested
by a Trap instruction are met, the system trap handier
is invoked. If the tested conditions are not met,
instruction execution continues normally.

The contents of register RA is compared with either
the sign-extended value of the Sl field or the contents
of register RB, depending on the Trap instruction. For
tdi and td, the entire contents of RA (and RB) partic-
ipate in the comparison; for twi and tw, only the con-
tents of the low-order 32 bits of RA {and RB)
participate in the comparison.

This comparison results in five conditions which are
ANDed with TO. If the result is not 0 the system trap
handler is invoked. These conditions are:

ANDed with Condition
Less Than

1 Greater Than

2 Equal

3 Logically Less Than

4 Logically Greater Than

Extended mnemonics for traps

A set of extended mnemonics is provided so that
traps can be coded with the condition as part of the
instruction mnemonic rather than as a numeric
operand. Some of these are shown as examples with
the Trap instructions. See Appendix C, “Assembler
Extended Mnemonics” on page 223 for additional
extended mnemonics.

Trap Doubleword Immediate D-form

tdi TO,RA,SI

02 TO RA Si
0 6 11 16 31
a « (RA)

if (a < EXTS(SI)) & TO, then TRAP
if (a > EXTS(SI)) & TO, then TRAP
if (a = EXTS(SI)) & TO, then TRAP
if (a € EXTS(SI)) & T0; then TRAP
if (a 3 EXTS(SI)) & TO, then TRAP

Vi

The contents of register RA is compared with the
sign-extended value of the Sl field. [f any bit in the
TO field is set to 1 and its corresponding condition is
met by the resuit of the comparison, then the system
trap handler is invoked.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None
Extended Mnemonics:

Examples of extended
Doubleword Immediate:

mnemonics for Trap

Extended: Equivalent to:
tditi Rx,value tdi 16,Rx,value
24 Rx,value

tdnei Rx,value tdi

Trap Word Immediate D-form

twi TO,RA,SI

[Power mnemonic: ti]

03 TO RA Sl
0 6 11 16 31

if (a < EXTS(SI)) & TO, then TRAP
if (a > EXTS(SI)) & TO, then TRAP
if (a = EXTS(SI)) & TO, then TRAP
if (a £ EXTS(SI)) & T0; then TRAP
if (a $ EXTS(SI)) & TO, then TRAP

The contents of RA3,.5; is compared with the sign-
extended value of the Sl field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, then the system trap
handler is invoked.

A

Ve A= 1tV

Special Registers Altered:
None
Extended Mnemonics:

Examples of extended mnemonics for Trap Word
Immediate:

Extended: Equivalent to:
twgti Rx,value twi 8,Rx,value
twllei Rx,value twi 6,Rx,value

Chapter 3. Fixed-Point Processor 61

Trap Doubleword X-form

td TO,RA,RB

31 TO RA RB 68 /
0 6 1 16 21 31
a ¢« (RA)
b « (RB)

if (a < b) & T0, then TRAP
if (a > b) & T0, then TRAP
if (a = b) & T0, then TRAP
if (a < b) & TO; then TRAP
if (a > b) & T0, then TRAP

Ve Ac it

The contents of register RA is compared with the con-
tents of register RB. If any bit in the TO field is set to
1 and its corresponding condition is met by the result
of the comparison, then the system trap handler is
invoked.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation "#i'l cause
the system illegal instruction error hands to be
invoked.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap
Doubleword:)

Extended: Equivalent to:

tdge Rx,Ry td 12,Rx,Ry

tdini Rx,Ry td 5,Rx,Ry

Trap Word X-form

tw TO,RA,RB

[Power mnemonic: t]

31 TO RA RB 4 /
0 6 11 16 21 31

& ¢ EXTS((RA)30.63)

b « EXTS((RB)32.63)

if (a < b) & TO, then TRAP
if (a > b) & T0, then TRAP
if (a = b) & T0, then TRAP
if (a £ b) & T0; then TRAP
if (a 3 b) & 70, then TRAP

The contents of RA3,.43 is compared with the contents
of RB3y.63. If any bit in the TO field is set to 1 and its
corresponding condition is met by the result of the
comparison, then the system trap handler is invoked.

v

"

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word:

Extended: Equivalent to:
tweq Rx,Ry tw 4,Rx,Ry
twige Rx,Ry tw 5,Rx,Ry
trap tw 31,0,0

62 PowerPC Architecture First Edition

3.3.12 Fixed-Point Logical Instructions

The Logical instructions perform bit-paraliel oper-
ations on 64-bit operands.

The X-form Logical instructions with Rc=1, and the
D-form Logical instructions andi. and andis., set the
first three bits of CR Field 0 as described in Section
3.3.8, “Other Fixed-Point Instructions” on page 49.
The Logical instructions do not change the SO, OV,
and CA bits in the XER.

Extended mnemonics for logical
operations

An extended mnemonic is provided that generates the
preferred form of “no-op” (an instruction that does
nothing). This is shown as an example with the OR
Immediate instruction.

Extended mnemonics are provided that use the OR
and NOR instructions to copy the contents of one reg-
ister to another, with and without complementing.
These are shown as examples with the two
instructions. :

See Appendix C, “Assembler Extended Mnemonics”
on page 223 for additional extended mnemonics.

AND Immediate D-form

andi. RA,RS,Ul
[Power mnemonic: andil.]

AND Immediate Shifted D-form

RA,RS,Ul

[Power mnemonic: andiu.]

andis.

28 RS RA - Ul
0 6 11 16 31

29 | RS | RA ul
0 [11 16 31

RA « (RS) & (“%0 || UI) 7
The contents of register RS is ANDed with 480 || Ul and
the result is placed into register RA.

Special Registers Altered:
CRO

RA « (RS) & (320 |] uI |{ *%0)
The contents of register RS is ANDed with 320 || Ul ||
180 and the result is placed into register RA.

Special Registers Altered:
CRO

Chapter 3. Fixed-Point Processor 63

OR Immediate D-form

ori RA,RS,UI
[Power mnemonic: oril]

OR Immediate Shifted D-form

oris RA,RS,UI

[Power mnemonic: oriu]

24 " RS RA ul
0 |8’ 11 16 31

25 RS RA Ul

RA « (RS) | (%8 |} uI)

The contents of register RS is ORed with *80 || Ul and
the result is placed into register RA.

The preferred “no-op” (an instruction that does
nothing) is:

ori 0,0,0

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for OR Immediate:

Extended: Equivalent to:
nop ori 0,0,0

XOR Immediate D-form

xori RA,RS,UI

[Power mnemonic: xoril]

0 6 1 16 31

RA « (RS) | (320 || U1 || 'é0)

The contents of register RS is ORed with 320 || U1 || 160
and the result is placed into register RA.

Special Registers Altered:
None

XOR Immediate Shifted D-form

Xoris RA,RS,Ul

[Power mnemonic: xoriu]

26 RS RA ul
0 6 11 16 31

27 RS RA ul
0 6 11 16 31

RA « (RS) @ (%0 || uI)

The contents of register RS is XORed with 480 || Ul
and the result is placed into register RA.

Special Registers Altered:
None

RA « (RS) @ (320 | U1 || "ég)
The contents of register RS is XORed with 320 || UI ||
180 and the resuit is placed into register RA.

Special Registers Altered:
None

64 PowerPC Architecture First Edition

AND X-form OR X-form

and RA,RS,RB (Rc=0) or RA,RS,RB (Rc=0)

and. RA,RS,RB (Rc=1) or. RA,RS,RB (Rc=1)
31 RS RA RB 28 Rc 31 RS RA RB 444 Re

0 6 1 16 21 - 31 0 6 11 16 21 31

RA « (RS) & (RB)

The contents of register RS is ANDed with the con-
tents of register RB and the result is placed into reg-
ister RA.

Special Registers Altered:

RA « (RS) | (RB)

The contents of register RS is ORed with the contents
of register RB and the result is placed into register
RA.

Special Registers Altered:

CRO (if Re=1) CRO (if Re=1)
Extended Mnemonics:
Example of extended mnemonics for OR:
Extended: Equivalent to:
mr Rx,Ry or Rx,Ry,Ry
XOR X-form NAND X-form
xor RA,RS,RB (Rc=0) nand RA,RS,RB (Rc=0)
xor. RA,RS,RB (Rc=1) nand. RA,RS,RB (Rc=1)
31 RS RA RB 316 Re 31 RS RA RB 476 Rc
0 6 1" 16 21 31 [6 11 16 21 31

RA « (RS) @ (RB)

The contents of register RS is XORed with the con-
tents of register RB and the result is placed into reg-
ister RA. '

Special Registers Altered:
CRO (if Re=1)

RA « =((RS) & (RB))

The contents of register RS is ANDed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CRO (if Re=1)

—— Programming Note

nand or nor with RA=RB can be used to obtain
the one’s complement.

Chapter 3. Fixed-Point Processor 65

NOR X-form Equivalent X-form

nor RA,RS,RB (Rc=0) eqv RA,RS,RB (Rc=0)

nor. RA,RS,RB (Rc=1) eqv. RA,RS,RB (Rc=1)
31 RS RA RB 124 Rc 31 RS RA RB - 284 Re

0 6 11 16 21 31 0 [11 16 21 31

RA « =((RS) | (RB)) RA « (RS) = (RB)

The contents of register RS is ORed with the contents
of register RB and the complemented resuit is placed
into register RA.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for NOR:

Extended:
not Rx,Ry nor

Equivalent to:
Rx,Ry,Ry

AND with Complement X-form

The contents of register RS is XORed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CRO (if Rc=1)

OR with Complement X-form

andc RA,RS,RB {Rc=0) orc RA,RS,RB (Rc=0)

andc. RA,RS,RB (Rc=1) orc. RA,RS,RB (Rc=1)
31 RS RA RB 60 Rc 31 RS RA RB 412 Rc

0 6 1 16 21 31 0 6 11 16 21 31

RA « (RS) & -(RB)

The contents of register RS is ANDed with the com-
plement of the contents of register RB and the result
is placed into register RA. ’

Special Registers Altered:
CRO (if Re=1)

RA « (RS) | ~(RB)

The contents of register RS is ORed with the comple-
ment of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
CRO (if Rc=1)

66 PowerPC Architecture First Edition

Extend Sign Byte X-form

extsb RA,RS (Rc=0)

extsb. RA,RS (Rc=1)
31 RS RA i 954 Rc

0 6 11 16 21 31

s « (RS)s

RAsg.e3 ¢ _(RS)sg.63

RAg.s5 « %s

(RS)s6.63 are placed into RAg.63. Bit 56 of register RS
is placed into RAg.ss.

Special Registers Altered:
CRO (if Rc=1)

Extend Sign Word X-form

extsw RA,RS (Rc=0)

extsw. RA,RS (Re=1)
31 RS RA " 986 Rc

0 6 11 16 21 31

S « (RS)32

RAzp.63 ¢ (RS)ane3

RAg.31 € *“s

(RS)30.63 are placed into RA3,.¢5. Bit 32 of register RS
is placed into RAg.q;.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO {(if Rc=1)

Extend Sign Halfword X-form

extsh RA,RS (Rc=0)
extsh. RA,RS (Rc=1)
[Power mnemonics: exts, exts.]

31 RS RA I 922 Rc _
0 6 1 16 21 31

s « (RS)4s

RAsg:e3 ¢ (RS)ag:e3

RAga7 « ™s

(RS)4g.63 are placed into RA,g.¢3. Bit 48 of register RS
is placed into RA.47.

Special Registers Altered:
CRO (if Rc=1)

Chapter 3. Fixed-Point Processor 67

Count Leading Zeros Doubleword
X-form

Count Leading Zeros Word X-form

cntizw RA,RS (Rc=0)
cntizd RA,RS (Rc=0) cntlzw. RA,RS (Rc=1)
cntlzd. RA,RS (Re=1) [Power mnemonics: cntlz, cntlz.]
31 RS ‘RA i 58 Rc 31 RS RA " 26 Rc
0 6 1 16 21) 31 "o [1 16 21 31
neo

do while n < 64
if (RS), = 1 then leave
nen+1

RA ¢ n

A count of the number of consecutive zero bits
starting at bit 0 of register RS is placed into RA. This
number ranges from 0 to 64, inclusive.

If Rc=1, CR Field 0 is set to reflect the resuit.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc=1)

n « 32

do while n < 64
if (RS), = 1 then leave
nen+ 1

RA en - 32

A count of the number of consecutive zero bits
starting at bit 32 of of register RS is placed into RA.
This number ranges from 0 to 32, inclusive.

If Rc=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CRO (if Rc=1)

— Pregramming Note

For both Count Leading Zeros instructions, if
Rc=1 then LT is set to zero in CR Field 0.

68 PowerPC Architecture First Edition

3.3.13 Fixed-Point Rotate and Shift Instructions

The Fixed-Point Processor performs rotation oper-

ations on data from a GPR and returns the result, or a

portion of the result, to a GPR.

The rotation operations rotate a 64-bit quantity left by
a specified number of bit positions. Bits that exit from
position 0 enter at position 63.

Two types of rotation operation are supported‘.

For the first type, denoted rotatey, or ROTLg, the
value rotated is the given 64-bit value. The rotateg,
operation is used to rotate a given 64-bit quantity.

For the second type, denoted rotate,;, or ROTL,,, the
value rotated consists of two copies of bits 32:63 of
the given 64-bit value, one copy in bits 0:31 and the
other in bits 32:63. The rotate;, operation is used to
rotate a given 32-bit quantity.

The Rotate and Shift instructions employ a mask gen-
erator. The mask is 64 bits long, and consists of
1-bits from a start bit, mstart, through and including a
stop bit, mstop, and 0-bits elsewhere. The values of
mstart and mstop range from zero to 63. If mstart >
mstop, the 1-bits wrap around from position 63 to
position 0. Thus the mask is formed as follows:

if mstart < mstop then
mas[(mstart:mstop = ones
masKay other bits = 2€1'0S
else
masKmstart:e3 = Ones
masKy mstop = ONES
masKay other bits = 2€T0S

There is no way to specify an all-zero mask.
For instructions that use the rotates, operation, the

mask start and stop positions are always in the low-
order 32 bits of the register.

The use of the mask is described in following
sections.

The Rotate and Shift instructions with Rc=1 set the
first three bits of CR field 0 as described in Section
3.3.8, “Other Fixed-Point Instructions” on page 49.
Rotate and Shift instructions do not change the OV
and SO bits. Rotate and Shift instructions, except
algebraic right shifts, do not change the CA bit.

Extended mnemonics for rotates and
shifts

The Rotate and Shift instructions, while powerful, can
be complicated to code {they have up to five oper-
ands). A set of extended mnemonics is provided that
allow simpler coding of often-used functions such as
clearing the leftmost or rightmost bits of a register,
left justifying or right justifying an arbitrary field, and
simple rotates and shifts. Some of these are shown
as examples with the Rotate instructions. See
Appendix C, “Assembler Extended Mnemonics” on
page 223 for additional extended mnemonics.

3.3.13.1 Fixed-Point Rotate Instructions

These instructions rotate the contents of a register.
The result of the rotation is

» Inserted into the target register under control of a
mask (if a mask bit is 1 the associated bit of the
rotated data is placed into the target register,
and if the mask bit is 0 the associated bit in the
target register remains unchanged); or

= ANDed with a mask before being placed into the
target register.

The Rotate Left instructions allow right-rotation of the
contents of a register to be performed (in concept) by
a left-rotation of 64—N, where N is the number of bits
by which to rotate right. They allow right-rotation of
the contents of the low-order 32 bits of a register to
be performed (in concept) by a left-rotation of 32—N,
where N is the number of bits by which to rotate right.

Chapter 3. Fixed-Point Processor 69

Rotate Left Doubleword Immediate then
Clear Left MD-form

Rotate Left Doubleword Immediate then
Clear Right MD-form

ridicl RA,RS,SH,MB (Rc=0) ridicr RA,RS,SH,ME (Rc=0)

ridicl. RA,RS,SH,MB (Re=1) ridicr. RA,RS,SH,ME (Rc=1)
30 RS RA sh mb 6 BhR 30 . RS | RA sh me 1 BhR

0 6 L 16 21 27]30]31 0 6 11 16 21 27 {30131

n € Sh5 II Sh0:4 n € Sh5 " ShOZd

r « ROTLg4((RS), n) r ¢ ROTLgg((RS), n) -

b « mb5 " mb0:4 € € meg " meg-4

m « MASK(b, 63)
RAerg&m

The contents of register RS are rotatedg, left SH bits.
A mask is generated having 1-bits from bit MB
through bit 63 and 0-bits elsewhere. The rotated data
is ANDed with the generated mask and the result is
placed into register RA.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Re=1)
Extended Mnemonics:

Examples of extended mnemonics for Rotate Left
Doubleword Immediate then Clear Left:

Extended: Equivalent to:

extrdi Rx,Ry,n,b ridici Rx,Ry,b+n,64—n
srdi Rx,Ry,n ridici Rx,Ry,64-—n,n
clridi Rx,Ry,n ridicl Rx,Ry,0,n

m ¢« MASK(0, e)
RAer&m

The contents of register RS are rotatedg, left SH bits.
A mask is generated having 1-bits from bit 0 through
bit ME and 0-bits elsewhere. The rotated data is
ANDed with the generated mask and the result is
placed into register RA.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc=1)

‘Extended Mnemonics:

Examples of extended mnemonics for Rotate Left
Doubleword Immediate then Clear Right.

Extended: Equivalent to:

extldi Rx,Ry,n,b ridicr Rx,Ry,b,n—1
sldi Rx,Ry,n ridicr Rx,Ry,n,63—n
cirrdi Rx,Ry,n ridicr Rx,Ry,0,63—n

—— Programming Note

ridicl can be used to extract an n-bit field, that
starts at bit position b in register RS, right-
justified into register RA (clearing the remaining
64—n bits of RA), by setting SH=b+n and
MB=64—n. It can be used to rotate the contents
of a register left (right) by n bits, by setting SH=n
(64—-n) and MB=0. it can be used to shift the
contents of a register right by n bits, by setting
SH=64—n and MB=n. It can be used to clear
the high-order n bits of a register, by setting
SH=0 and MB=n. ‘

Extended mnemonics are provided for all of these
uses: see Appendix C, “Assembler Extended
Mnemonics” on page 223.

Programming Note

ridicr can be used to extract an n-bit field, that
starts at bit position b in register RS, left-justified
into register RA (clearing the remaining 64—n bits
of RA), by setting SH=b and ME=n-—1. It can be
used to rotate the contents of a register left
(right) by n bits, by setting SH=n (64—n) and
ME=63. It can be used to shift the contents of a
register left by n bits, by setting SH=n and
ME=63—n. It can be used to clear the low-order
n bits of a register, by setting SH=0 and
ME=63—n.

Extended mnemonics are provided for all of these
uses (some devolve to ridicl). see Appendix C,
“Assembler Extended Mnemonics” on page 223.

70 PowerPC Architecture First Edition

Rotate Left Doubleword Immediate then
Clear MD-form

ridic RA,RS,SH,MB (Rc=0)

ridic. RA,RS,SH,MB (Rc=1)
30 RS RA sh mb |2 bhRq

0 [11 16 21 27 {30{31

n e Sh5 Il 5h°:4

r ¢ ROTLg4((RS), n)
b « mbs || mbo4

m « MASK(b, -n)
RA¢#r&m

The contents of register RS are rotatedg, left SH bits.
A mask is generated having 1-bits from bit MB
through bit 63—SH, and 0-bits elsewhere. The rotated
data is ANDed with the generated mask and the result
is placed into register RA.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left
Doubleword Immediate then Clear:

Extended: Equivalent to:

cirisldi Rx,Ry,b,n ridic Rx,Ry,n,b—n

—— Programming Note

ridic can be used to clear the high-order b bits of
the contents of a register and then shift the result
left by n bits by setting SH=n and MB=b—n. It
can be used to clear the high-order n bits of a
register, by setting SH=0 and MB=n.

Extended mnemonics are provided for both of
these uses (the second devolves to ridicl): see
Appendix C, “Assembler Extended Mnemonics”
on page 223.

Rotate Left Word Immediate then AND
with Mask M-form

riwinm RA,RS,SH,MB,ME (Rc=0)
riwinm. RA,RS,SH,MB,ME (Rc=1)
[Power mnemonics: rlinm, rlinm.]

21 RS RA SH MB ME |Rc
0 6 11 16 21 26 31

n « SH .

r € ROTL32((RS)32163’ n)
m ¢ MASK(MB+32, ME+32)
RA€r&m

The contents of register RS are rotated,, left SH bits.
A mask is generated having 1-bits from bit MB
through bit ME and O-bits elsewhere. The rotated

‘data is ANDed with the generated mask and the result

is placed into register RA.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left
Word Immediate then AND with Mask:

Extended:

extlwi Rx,Ry,nb
srwi Rx,Ry,n
clrrwi Rx,Ry,n

Equivalent to:

rlwinm Rx,Ry,b,0,n—1
rlwinm Rx,Ry,32—n,n,31
riwinm Rx,Ry,0,0,31—n

Chapter 3. Fixed-Point Processor 71

—— Programming Note Rotate Left Doubleword then Clear Left

Let RSL represent the low-order 32 bits of reg- MDS-form
ister RS, with the bits numbered from 0 through ')
31. ridcl RA,RS,RB,MB {(Rc=0)

ridcl. RA,RS,RB,MB (Rc=1)
riwinm can be used to extract an n-bit field, that
starts at bit position b in RSL, right-justified into
the low-order 32 bits of register RA (clearing the 30 RS RA RB mb 8. [Re
remaining 32—n bits of the low-order 32 bits of ° J L 16 2 7 13
RA), by setting SH=b+n, MB=32—n, and
ME=31. It can be used to extract an n-bit field, n ¢ (RB)sg.
that starts at bit position b in RSL, left-justified re ROTLSS'(G?RS) n)
. . . . 64 s
into the low-order 32 bits of register RA (clearing b ¢ mbg || Mbog
the remaining 32—n bits of the low-order 32 bits m « MASK(b, 63)
of RA), by setting SH=b, MB = 0, and ME=n—1. RAer&m
It can be used to rotate the contents of the low- .
order 32 bits of a register left (right) by n bits, by The content§ of reglster RS are rotatedg, I(_eft the
setting SH=n (32—n), MB=0, and ME=31. It can number of bits specified by (RB)sgg3- A mask is gen-
be used to shift the contents of the low-order 32 erated having 1-bits from bit MB through bit 63 and
bits of a register right by n bits, by setting 0-bits elsewhere. The rotated data is ANDed with the
SH=32—n, MB=n, and ME=31. It can be used to generated mask and the result is placed into register
clear the high-order b bits of the low-order 32 bits RA.
of the contents of a register and then shift the L. o .
result left by n bits by setting SH=n, MB=b—n This instruction is defined only for 64-bit implementa-
and ME=31—n. It can be used to clear the low- tions. Using it on a 32-bit implementation will cause
order n bits of the low-order 32 bits of a register, Fhe system illegal instruction error handler to be
by setting SH=0, MB=0, and ME=31—n. invoked.
For all the uses given above, the high-order 32 Special Registers Altered: .
bits of register RA are cleared. CRO (if Re=1)
Extended mnemonics are provided for all of these Extended Mnemonics:
uses: see Appendix C, “Assembler Extended Example of extended mnemonics for Rotate Left
Mnemonics” on page 223. Doubleword then Clear Left:

Extended: Equivalent to:
rotld Rx,Ry,Rz ridcl Rx,Ry,Rz,0

—— Programming Note

ridci can be used to extract an n-bit field, that
starts at variable bit position b in register RS,
right-justified into register RA (clearing the
remaining 64—n bits of RA), by setting
RBsggz=b+n and MB=64—n. It can be used to
rotate the contents of a register left {right) by var-
iable n bits by setting RBggg=n (64—n) and
MB=0.

Extended mnemonics are provided for some of
these uses: see Appendix C, “Assembler
Extended Mnemonics” on page 223.

72 PowerPC Architecture First Edition

Rotate Left Doubleword then Clear Right Rotate Left Word then AND with Mask

MDS-form M-form
rider RA,RS,RB,ME (Rc=0) riwnm RA,RS,RB,MB,ME (Rc=0)
ridcr. RA,RS,RB,ME (Rc=1) rlwnm. RA,RS,RB,MB,ME (Rc=1)
[Power mnemonics: rinm, rinm.J
30 " RS RA RB " me 9 |Rc ‘
0 6 1 16 21 27 |3 23 RS RA RB MB ME |Rc

0 . [11 16 21 26 31

n « (RB)sgga

e « meg || meg, I« ROTLg,((RS)gp3 M)
: 32 32:63>

m e MASK(Q, e) m « MASK(MB+32, ME+32)

RA € r &n RAera&m

The contents of register RS are rotatedg, left the The contents of register RS are rotateds, left the

number of bits specified by (RB)sge3. A mask is gen- number of bits specified by (RB)sg.g3.- A mask is gen-
erated having 1-bits from bit 0 through bit ME and o 510 having 1-bits from bit MB through bit ME and
0-bits elsewhere. The rotated data is ANDed with the 0-bits elsewhere. The rotated data is ANDed with the

generated mask and the result is placed into register generated mask and the result is placed into register

RA. RA.
This instrgctiqn is deﬁned. oply for 64-bi? implgmenta- Special Registers Altered:
tions. Using it on a 32-bit implementation will cause CRO (if Re=1)
the system illegal instruction error handler to be
invoked. Extended Mnemonics:
Special Registers Altered: Example of extended mnemonics for Rotate Left Word
CRO (if Re=1) then AND with Mask:
—— Programming Note Extended: Equivalent to:
rotlw Rx,Ry,Rz riwnm Rx,Ry,Rz,0,31
rider can be used to extract an n-bit field, that
starts at yariable bit position b in register RS, I<::-ft- —— Programming Note
justified into register RA (clearing the remaining
64—n bits of RA), by setting RBgg.e3=b and Let RSL represent the low-order 32 bits of reg-
ME=n—1. It can be used to rotate the contents of ister RS, with the bits numbered from 0 through

a register left (right) by variable n bits by setting

Extended mnemonics are provided for some of
these uses (some devolve to ridcl) see
Appendix C, “Assembler Extended Mnemonics”
on page 223.

31.

riwnm can be used to extract an n-bit field, that
starts at variable bit position b in RSL, right-
justified into the low-order 32 bits of register RA
{clearing the remaining 32—n bits of the low-order
32 bits of RA), by setting RBgogz=b+n,
MB=32-n, and ME=31. It can be used to extract
an n-bit field, that starts at variable bit position b
in RSL, left-justified into the low-order 32 bits of
register RA (clearing the remaining 32—n bits of
the low-order 32 bits of RA), by setting RBsg.43=0,
MB = 0, and ME=n—1. It can be used to rotate
the contents of the low-order 32 bits of a register
left (right) by variable n bits, by setting RBsg.q3=n
(32—n), MB=0, and ME=31.

For all the uses given above, the high-order 32
bits of register RA are cleared.

Extended mnemonics are provided for some of
these wuses: see Appendix C, “Assembler
Extended Mnemonics” on page 223.

Chapter 3. Fixed-Point Processor 73

Rotate Left Doubleword Immediate then
Mask Insert MD-form

ridimi RA,RS,SH,MB (Rc=0)
ridimi. RA,RS,SH,MB (Re=1)

30 RS RA sh- mb |3 BhRR
[} [} 11 16 21 27 30|31

n ¢ shg |l shy,
r ¢ ROTL64((RS), n)
b « mbg | mby.,
m ¢ MASK(b, -n)
RA « r&m | (RA)&-m

The contents of register RS are rotatedg, left SH bits.
A mask is generated having 1-bits from bit MB
through bit 63—SH, and 0-bits elsewhere. The rotated
data is inserted into register RA under control of the
generated mask.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc=1)
Extended Mnemonics:

Example of extended mnemonics for Rotate Left
Doubleword Immediate then Mask Insert:

Extended: Equivalent to:

insrdi Rx,Ry,n,b ridimi Rx,Ry,64—(b+n)b

— Programming Note

ridimi can be used to insert an n-bit field, that is
right-justified in register RS, into register RA
starting at bit position b, by setting
SH=64—(b+n) and MB=b.

An extended mnemonic is provided for this use:
see Appendix C, “Assembler Extended
Mnemonics” on page 223.

Rotate Left Word Immediate then Mask
Insert M-form ‘

riwimi RA,RS,SH,MB,ME (Rc=0)
riwimi. RA,RS,SH,MB,ME (Rc=1)
[Power mnemonics: rlimi, rlimi.]

20 RS RA SH MB ME |Rc
0 6 11 16 21 26 31

n « SH

r e ROTng((RS)gz:eg}, n)
m « MASK(MB+32, ME+32)
RA « r&m | (RA)&-m

The contents of register RS are rotated,, left SH bits.
A mask is generated having 1-bits from bit MB
through bit ME and 0-bits elsewhere. The rotated
data is inserted into register RA under control of the
generated mask. ' :

Special Registers Altered:
CRO (if Re=1)
Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
Immediate then Mask Insert:

Extended:
inslwi Rx,Ry,nb

Equivalent to:
riwimi Rx,Ry,32—b,b,b + n—1

— Programming Note

Let RAL represent the low-order 32 bits of reg-
ister RA, with the bits numbered from 0 through
31.

riwimi can be used to insert an n-bit field, that is
left-justified in the low-order 32 bits of register
RS, into RAL starting at bit position b, by setting
SH=32-b, MB=b, and ME=(b+n)—1. It can be
used to insert an n-bit field, that is right-justified
in the low-order 32 bits of register RS, into RAL
starting at bit position b, by setting
SH=32~(b+n), MB=b, and ME=(b+ n)—1.

Extended mnemonics are provided for Both of
these uses: see Appendix C, “Assembler
Extended Mnemonics” on page 223.

74 PowerPC Architecture First Edition

3.3.13.2 Fixed-Point Shift Instructions

The instructions in this section perform left and right
shifts.

Extended mnemonics for shifts

Immediate-form logical (unsigned) shift operations are
obtained by specifying appropriate masks and shift
values for certain Rotate instructions. A set of
extended mnemonics is provided to make coding of
such shifts simpler and easier to understand. and
simple rotates and shifts. Some of these are shown
as examples with the Rotate instructions. See
Appendix C, “Assembler Extended Mnemonics” on
page 223 for additional extended mnemonics.

— Programming Note

Any Shift Right Algebraic instruction, followed by
addze, can be used to divide quickly by 2N. The
setting of the CA bit by the Shift Right Algebraic
instructions is independent of mode.

—— Programming Note

Multiple-precision shifts can be programmed as
shown in Appendix E.2, “Multiple-Precision Shifts”
on page 247.

Shift Left Doubleword X-form

sid RA,RS,RB (Rc=0)
sid. RA,RS,RB (Re=1)

31 RS RA RB 27 Rc
0 6 11 16 21 ' 31

n « (RB)sgg3
r ¢ ROTLga((RS), n)
if (RB)57 = 0 then

m ¢ MASK(®, 63-n)
else m « 8¢
RA«ré&m

The contents of register RS are shifted left the
number of bits specified by (RB)s;.53. Bits shifted out
of position 0 are lost. Zeros are supplied to the
vacated positions on the right. The result is placed
into register RA. Shift amounts from 64 to 127 give a
zero result.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Re=1)

Shift Left Word X-form

slw RA,RS,RB (Re=0)
slw. RA,RS;RB (Rc=1)
[Power mnemonics: si, sl.]

31 RS RA RB 24 Re
0 [1" 16 21 31

n ¢ (RB)sggs
r e ROTL32((RS)32:63, n)
if (RB)58 = 0 then

m « MASK(32, 63-n)
elseme 84g
RAeré&nm

The contents of the low-order 32 bits of register RS
are shifted left the number of bits specified by
(RB)sgg3- Bits shifted out of position 32 are lost.
Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into RAzy.¢3. RAg.3;
are set to zero. Shift amounts from 32 to 63 give a
Zero resuit.

Special Registers Altered:
CRO (if Rc=1)

Chapter 3. Fixed-Point Processor 75

Shift Right Doubleword X-form

srd RA,RS,RB (Rc=0)
srd. RA,RS,RB (Rc=1)

31 RS | RA | RB 539 Rc
0 6 11 16 21 31

n ¢ (RB)sg.g3
r « ROTLga((RS), 64-n)
.if (RB)s7 = © then

m « MASK(n, 63)
else m « &9
RAerg&m

The contents of register RS are shifted right the
number of bits specified by (RB)s7.53. Bits shifted out
of position 63 are lost. Zeros are supplied to the
vacated positions on the left. The result is placed into
register RA. Shift amounts from 64 to 127 give a zero
result.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Re=1)

Shift Right Word X-form

srw RA,RS,RB (Rc=0)
Srw. RA,RS,RB (Rc=1)
[Power mnemonics: sr, sr.]

31 RS RA - RB 536 Rc
0 6 1 16 21 31

n ¢ (RB)sges
T € ROTL32((RS)32:63! 64‘“)
if (RB)sg = 8 then

m « MASK(n+32, 63)
else m « 84g
RAeré&m

The contents of the low-order 32 bits of register RS
are shifted right the number of bits specified by
(RB)sg.g3- Bits shifted out of position 63 are lost.
Zeros are supplied to the vacated positions on the
left. The 32-bit result is placed into RAgzyg3. RAg3g
are set to zero. Shift amounts from 32 to 63 give a
zero result.

Special Registers Altered:
CRO (if Rc=1)

76 PowerPC Architecture First Edition

Shift Right Algebraic Doubleword
Immediate XS-form

sradi RA,RS,SH (Rc=0)
sradi. RA,RS,SH (Rc=1)

31 - RS RA sh 413 h|Rg
0 6 1 16 21 30} 31

n « shg || shog4

r ¢ ROTLgg((RS), 64-n)
m « MASK(n, 63)

s « (RS)g

RA « ram | (®%s)&-m
CA « s & ((r&-m)7#0)

The contents of register RS are shifted right SH bits.
Bits shifted out of position 63 are lost. Bit 0 of RS is
replicated to fill the vacated positions on the left. The
result is placed into register RA. CA is set to 1 if (RS)
is negative and any 1-bits are shifted out of position
63; otherwise CA is set to 0. A shift amount of zero
causes RA to be set equal to (RS), and CA to be set
to 0.

This instruction is defined only for 64-bit impiementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CA
CRO (if Rc=1)

Shift Right Algebraic Word Immediate
X-form

srawi RA,RS,SH (Rc=0)
srawi. RA,RS,SH (Rc=1)
[Power mnemonics: srai, srai.]

31 RS RA SH | 824 Rc
0 6 11 16 21 31

n e SH

r e ROTL32((RS)32:63, 64‘“)
m « MASK(n+32, 63)

S € (RS)3

RA r&mﬁ (54s)8&-m
CAes & ((r&"m)az:sgfe)

The contents of the low-order 32 bits of register RS
are shifted right SH bits. Bits shifted out of position
63 are lost. Bit 32 of RS is replicated to fill the
vacated positions on the left. The 32-bit result is
placed into RAzy¢3. Bit 32 of RS is replicated to fill
RAg3y. CA is set to 1 if the low-order 32 bits of (RS)
contain a negative number and any 1-bits are shifted
out of position 63; otherwise CA is set to 0. A shift
amount of zero causes RA to receive EXTS((RS)35.43),
and CA to be set to 0.

Special Registers Altered:
CA
CRO (if Rc=1)

Chapter 3. Fixed-Point Processor 77

Shift Right Algebraic Doubleword
X-form

Shift Right Algebraic Word X-form

sraw RA,RS,RB (Rc=0)
srad RA,RS,RB (Rc=0) sraw. RA,RS,RB (Re=1)
srad. RA,RS,RB {Rc=1) [Power mnemoanics: sra, sra.]
31 RS RA RB 794 Rc 31 RS RA | RB 792 Rc
0 6 11 16 21 31 0 5 1 16 21 31
n « (RB)sges n « (RB)sg.e3

r « ROTLgq((RS), 64-n)
if (RB)57 = 0 then

m « MASK(n, 63)
else m « %
S € (Rs)o
RA ¢ r&m | (84s)&-m
CA « s & ((r&m)#0)

The contents of register RS are shifted right the
number of bits specified by (RB)s7.45. Bits shifted out
of position 63 are lost. Bit 0 of RS is replicated to fill
the vacated positions on the left. The result is placed
into register RA. CA is set to 1 if (RS) is negative and
any 1-bits are shifted out of position 63; otherwise CA
is set to 0. A shift amount of zero causes RA to be
set equal to (RS), and CA to be set to 0. Shift
amounts from 64 to 127 give a result of 64 sign bits in
RA, and cause CA to receive the sign bit of (RS).

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handier to be
invoked.

Special Registers Altered:
CA
CRO (if Rc=1)

r e ROTL32((RS)32:63, 64‘“)
if (RB)sg = 8 then

m « MASK(n+32, 63)
else m « %g

CA « s & ((r&-m)s.e376)

The contents of the low-order 32 bits of register RS
are shifted right the number of bits specified by
(RB)sg.e3. Bits shifted out of position 63 are lost. Bit
32 of RS is replicated to fill the vacated positions on
the left. The 32-bit result is placed into RAz,.¢3. Bit
32 of RS is replicated to fill RAy3,. CA is set to 1 if
the low-order 32 bits of (RS) contain a negative
number and any 1-bits are shifted out of position 63;
otherwise CA is set to 0. A shift amount of zero
causes RA to receive EXTS((RS)3;543), and CA to be
set to 0. Shift amounts from 32 to 63 give a result of
64 sign bits, and cause CA to receive the sign bit of

(RS)32.63-

Special Registers Altered:
CA
CRO (if Re=1)

78 PowerPC Architecture First Edition

3.3.14 Move To/From System Register Instructions

Extended mnemonics

A set of extended mnemonics is provided for the
mtspr and mfspr instructions so that they can be

coded with the SPR name as part of the mnemonic
rather than as a numeric operand. Some of these are
shown as examples with the two instructions. See
Appendix C, “Assembler Extended Mnemonics” on
page 221 for additional extended mnemonics.

Move To Special Purpose Register
XFX-form

mtspr SPR,RS

31 RS spr 467 /
21 v 31

n ¢ sprg |l sprogq

if length(SPREG(n)) = 64 then
SPREG(n) « (RS)

else
SPREG(n) « (RS)3z63(0:31)

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. The contents of
register RS are placed into the designated Special
Purpose Register. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RS are
placed into the SPR.

SPR” | Register
decimal sprs.o Sprog name
1 00000 00001 XER
8 00000 01000 LR
9 . 00000 01001 CTR
" Note that the order of the two 5-bit
halves of the SPR number is reversed.

Additional values of the SPR field are defined in
Part 3, “PowerPC Operating Environment
Architecture” on page 141, and others may be
defined in Book IV, PowerPC Implementation Features
for the implementation. If the SPR field contains any
value other than one of these implementation-specific
values or one of the values shown above or in Book
I, the instruction form is invalid. However, the only
effect of executing an invalid instruction form in which
spro=1 is to invoke either the system privileged
instruction error handler or the system illegal instruc-
tion error handler.

Special Registers Altered:
See above

Extended Mnemonics:

Examples of extended mnemonics for Move To
Special Purpose Register:

Extended: Equivalent to:
mtxer Rx mtspr 1,Rx
mtir Rx mtspr 8,Rx
mtctr Rx mtspr 9,Rx

—— Compiler and Assembler Note

For the mitspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two
§-bit halves that are reversed in the instruction,
with the high-order 5 bits appearing in bits 16:20
of the instruction and the low-order 5 bits in bits
11:15. This maintains compatibility with Power
SPR encodings, in which these two instructions
had only a 5-bit SPR field occupying bits 11:15.

—— Compatibility Note

For a discussion of Power compatibility with
respect to SPR numbers not shown in the instruc-
tion descriptions for mtspr and mfspr, please refer
to Appendix G, “incompatibilities with the Power
Architecture” on page 255. For compatibility with
future versions of this architecture, only SPR
numbers discussed in these instruction
descriptions should be used.

Chapter 3. Fixed-Point Processor 79

Move From Special Purpose Register
XFX-form

Move To Condition Register Fields
XFX-form

mfspr RT,SPR mtcrf FXM,RS
31 RT spr 339 / 31 RS |/ FEXM |/ - 144 /
0 3 11 21 31 1o & 11]12 20{ 21 31

n ¢ sprsg Il sprog

if length(SPREG(n)) = 64 then
RT « SPREG(n)

else
RT « 329 | SPREG(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. The contents of
the designated Special Purpose Register are placed
into register RT. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RT receive
the contents of the Special Purpose Register and the
high-order 32 bits of RT are set to zero. .

SPR" Register
decimal sprg.g sprog name
1 00000 00001 XER
8 00000 01000 LR
9 00000 01001 CTR

“ Note that the order of the two 5-bit
halves of the SPR number is reversed.

Additional values of the SPR field are defined in
Part 3, “PowerPC Operating Environment
Architecture” on page 141, and others may be
defined in Book |V, PowerPC Implementation Features
for the implementation. If the SPR field contains any
value other than one of these implementation-specific
values or one of the values shown above or in Book
lll, the instruction form is invalid. However, the only
effect of executing an invalid instruction form in which
spro=1 is to invoke either the system privileged
instruction error handler or the system illegal instruc-
tion error handier.

Special Registers Altered:
None
Extended Mnemonics:

Examples of extended mnemonics for Move From
Special Purpose Register:

Extended: Equivalent to:
mfxer Rx mfspr Rx,1
mflr Rx mfspr Rx,8
mfctr Rx mfspr Rx,9

—— Compiler/Assembler/Compatibility Notes

See the Notes that appear with mtspr.

mask « 4(FXMg) Il 4(FXM;) Il ... 4(FXM;)
CR ¢ ((RS)3pe3 & mask) | (CR & -mask)

The contents of bits 32:63 of register RS are placed
into the Condition Register under control of the field
mask specified by FXM. The field mask identifies the
4-bit fields affected. Let i be an integer in the range
0-7. If FXM(i) = 1 then CR field i (CR bits 4xi through
4xi+3) is set to the contents of the corresponding
field of the low-order 32 bits of RS.

Special Registers Altered:
CR fields selected by mask

— Programming Note

Updating a proper subset of the eight fields of the
Condition Register may have substantially poorer
performance on some implementations than
updating all of the fields.

Move to Condition Register from XER
X-form

merxr BF

31 BF (/1)] mn 512 /

CRyxpr.axgr+3 © XERg3
XERy5 ¢ 6b0G00

The contents of XER,.; are copied into the Condition
Register field designated by BF. XER,; is set to zero.

Special Registers Altered:
CR XER g5

80 PowerPC Architecture First Edition

Move From Condition Register X-form

mfcr RT

31 RT m I 19 /
0 6 1 16 21 31
RT « 329 || CR

The contents of the Condition Register are placed into

RT35.63- RTp.31 are set to 0.

Special Registers Altered:

None

Chapter 3. Fixed-Point Processor 81

82 PowerPC Architecture First Edition

Chapter 4. Floating-Point Processor

4.1 Floating-Point Processor
Overview

The Floating-Point Processor provides high perform-
ance execution of floating-point operations.
Instructions are provided to perform arithmetic, con-
version, comparison, and other operations in floating-
point registers, and to move floating-point data
between storage and these registers. Instructions in
the first group are called “arithmetic instructions,”
and instructions in the second group are called
“storage access instructions.” Instructions are also
provided that manipulate the Floating-Point Status
and Control Register.

This architecture provides for the processor to imple-
ment a floating-point system as defined in ANSI/IEEE
Standard 754-1985, “IEEE Standard for Binary
Floating-Point Arithmetic” (hereafter referred to as
“the IEEE standard”), but has a dependency on sup-
porting software to be in “conformance” with that
standard. All floating-point operations conform to that
standard, except if software sets the Floating-Point
Non-IEEE Mode (NI) bit in the Floating-Point Status
and Control Register to 1 (see page 86), in which case
floating-point operations do not necessarily conform
to that standard.

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by
this number is the product of the significand and the
number 28XPorent Encodings are provided in the data
format to represent finite numeric values, +infinity,
and values which are “Not a Number” (NaN). Oper-
ations involving infinities produce resuits obeying tra-
ditional mathematical conventions. NaNs have no
mathematical interpretation. Their encoding permits
a variable diagnostic information field. They may be
used to indicate such things as uninitialized variables
and can be produced by certain invalid operations.

There is one class of exceptional events which occur
during instruction execution which are unique to the
Floating-Point Processor:

» Floating-Point Exception

Floating-point exceptions are signalled with bits set in
the Floating-Point Status and Control Register

“(FPSCR). They can cause the system floating-point

enabled exception error handler to be invoked, pre-
cisely or imprecisely, if the proper control bits are set.

Floating-Point Exceptions

The following floating-point exceptions are detected:
by the processor:

» |nvalid Operation Exception {(VX)
SNaN (VXSNAN)
Infinity—Infinity (VXiSl)
Infinity-=Infinity (VXIDI)
Zero-+Zero (VXZDZ)
InfinityxZero (VXIMZ)
Invalid Compare (VXVC)
Software Request (VXSOFT)
Invalid Square Root (VXSQRT)
Invalid Integer Convert (VXCVI)

= Zero Divide Exception (ZX)

s Overflow Exception (OX)

= Underflow Exception (UX)

= |nexact Exception (XX)

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in
the FPSCR. In addition, each floating-point exception
has a corresponding enable bit in the FPSCR. See
Section 4.2.2, “Floating-Point Status and Control
Register” on page 84, for a description of these
exception and enable bits, and Section 4.4, “Floating-
Point Exceptions” on page 90, for a detailed dis-
cussion of floating-point exceptions, including the
effects of the enable bits.

4.2 Floating-Point Processor
Registers

Chapter 4. Floating-Point Processor 83

4.2.1 Floating-Point Registers

Implementations of this architecture provide 32
floating-point registers (FPR). The floating-point
instruction formats provide a 5-bit field for specifying
the FPRs to be used in the execution of the instruc-
tion. The FPRs are numbered 0-31.

Each FPR contains 64 bits which support the floating-
point double format. Every instruction that interprets
the contents of an FPR as a floating-point value uses
the floating-point double format for this interpretation.

Every floating-point arithmetic instruction operates on
data located in FPRs and, with the exception of the
Compare instructions, places the result value into an
FPR. Status information is placed into the Floating-
Point Status and Control Register and in some cases
into the Condition Register.

Load and store double instructions are provided that
transfer 64 bits of data between storage and the FPRs
in the Floating-Point Processor with no conversion.
Load single instructions are provided to transfer and
convert floating-point values in floating-point single
format from storage to the same value in floating-
point double format in the FPRs. Store single
instructions are provided to transfer and convert
floating-point values in floating-point double format
from the FPRs to the same value in floating-point
single format in storage.

Single- and double-precision arithmetic instructions
accept values from the FPRs in double format. For
single-precision arithmetic instructions, all input
values must be representable in single format: if they
are not, the result placed into the target FPR, and the
setting of status bits in the FPSCR and in the Condi-
tion Register (if Rc=1), are undefined.

The arithmetic instructions produce intermediate
results which may be regarded as being infinitely
precise. After normalization or denormalization, if the
infinitely precise intermediate result is not represent-
able in the destination format (either 32-bit or 64-bit)
then it is rounded. The final result is then placed into
the FPR in the double format.

FPR 00
FPR 01

FPR 30

FPR 31
0 63

Figure 23. Floating-Point Registers

4.2.2 Floating-Point Status and
Control Register

The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point excep-
tions and records status resulting from the floating-
point operations. Bits 0:23 are status bits. Bits 24:31
are control bits.

The exception bits in the FPSCR (bits 0:12, 21:23) are
sticky, with the exception of Floating-Point Enabled
Exception Summary (FEX) and Floating-Point Invalid
Operation Exception Summary (VX). That is, once set
the sticky bits remain set until they are cleared by an
mcrfs, mtfsfi, mtfsf, or mifsb0 instruction.

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

FPSCR
0 31

Figure 24. Floating-Point Status and Control Register

The format of the FPSCR is:
Bit(s) Description

0 Floating-Point Exception Summary (FX)

Every floating-point instruction shall implicitly
set FPSCRgy if that instruction causes any of
the floating-point exception bits in the FPSCR to
transition from 0 to 1. merfs shall implicitly
reset FPSCRyy if the FPSCR field containing
FPSCRgx is copied. mtfsf, mifsfi, mtfsb0, and
mtfsb1 shall be able to set or clear FPSCRpy
explicitly.

1 . Floating-Point Enabled Exception Summary
(FEX)
This bit signals the occurrence of any of the
enabled. exception conditions. It is the OR of all
the floating-point exceptions masked with their
respective enables. mecrfs shall implicitly reset
FPSCReex if the result of the logical operation
described above becomes zero. mtfsf, mtfsfi,
mtfsb0, and mtfsb1 cannot set or clear
FPSCRgex explicitly.

2 Floating-Point
Summary (VX)
This bit signals the occurrence of any invalid
operation exception. It is the OR of all the
Invalid Operation exceptions. merfs shall
implicitly reset FPSCRyy if the result of the
logical operation described above becomes
zero. mtfsf, mifsfi, mtfsb0, and mtfsb1 cannot
set or clear FPSCRyx explicitly.

3 Floating-Point Overflow Exception (OX)
See Section 4.4.3, “Overflow Exception” on
page 94.

Invalid Operation Exception

84 PowerPC Architecture First Edition

10

11

12

13

14

Floating-Point Underflow Exception (UX)
See Section 4.44, “Underflow Exception” on
page 94.

Floating-Point Zero Divide Exception (ZX)
See Section 4.4.2, “Zero Divide Exception” on
page 94.

Floating-Point Inexact Exception (XX) »
See Section 4.4.5, “Inexact Exception” on
page 95. ' '

FPSCRyy is a sticky version of FPSCRg, (see
below). Thus the following rules completely
describe how FPSCRyy is set by a given instruc-
tion.

= |f the instruction affects FPSCR¢,, the new
value of FPSCRyy is obtained by ORing the
old value of FPSCRyy with the new value of
FPSCRg,.

= If the instruction does not affect FPSCRg,
the value of FPSCRyy is unchanged.

Floating-Point Invalid Operation
(SNaN) (VXSNAN)

See Section 4.4.1, “Invalid Operation Exception”
on page 93.

Exception

Floating-Paint
(c0o—o0) (VXISI)
See Section 4.4.1, “Invalid Operation Exception”
on page 93.

invalid Operation Exception

Floating-Point
(c0+00) (VXIDI)
See Section 4.4.1, “Invalid Operation Exception”
on page 93.

Invalid Operation Exception

Floating-Point
(0=0) (VXZD2Z)
See Section 4.4.1, “Invalid Operation Exception”
on page 93.

Invalid Operation Exception

Floating-Point
(c0%0) (VXIMZ)
See Section 4.4.1, “Invalid Operation Exception”
on page 93.

Invalid Operation Exception

Floating-Point Invalid Operation
(Invalid Compare) (VXVC)

See Section 4.4.1, “Invalid Operation Exception”
on page 93.

Fioating-Point Fraction Rounded (FR)

The last floating-point instruction that poten-
tially rounded the intermediate result incre-
mented the fraction (see Section 4.3.6,
“Rounding” on page 80). This bit is not sticky.

Exception

Floating-Point Fraction Inexact (Fl)

The last floating-point instruction that poten-
tially rounded the intermediate result produced
an inexact fraction or a disabled Overflow
Exception (see Section 4.3.6, “Rounding” on
page 90). This bit is not sticky.

See the definition of FPSCRyy, above, regarding
the relationship between FPSCRg; and FPSCRyx.

15:18 Floating-Point Result Flags (FPRF)

15

This field is set as described below. For
floating-point instructions other than the
Compare instructions, the field is set based on
the result placed into the target register, except
that if any portion of the result is undefined
then the value placed into the FPRF is unde-
fined.

Floating-Point Result Class Descripter (C)
Floating-point instructions other than the
Compare instructions may set this bit with the
FPCC bits, to indicate the class of the result as
shown in Figure 25 on page 86.

16:19 Floating-Point Condition Code (FPCC)

16

17

18
19

20 .

21

22

23

24

Floating-point Compare instructions set one of
the FPCC bits to one and the other three FPCC
bits to zero. Other floating-point instructions
may set the FPCC bits with the C bit, to indicate
the class of the result as shown in Figure 25 on
page 86. Note that in this case the high-order
three bits of the FPCC retain their relational sig-
nificance indicating that the .value is less than,
greater than, or equal to zero.

Floating-Point Less Than or Negative (FL or <)
Floating-Point Greater Than or Positive (FG or
>)

Floating-Point Equal or Zero (FE or =)
Floating-Point Unordered or NaN (FU or ?)
Reserved

Floating-Point Invalid Operation
(Software Request) (VXSOFT)
This bit can be altered only by mecrfs, mtfsfi,
mtfsf, mtfsb0, or mtfshl. See Section 4.4.1,
“Invalid Operation Exception” on page 93.

Exception

Floating-Point Invalid Operation
(Invalid Square Root) (VXSQRT)
See Section 4.4.1, “invalid Operation Exception”
on page 93.

Exception

—— Programming Note

If the implementation does not support the
Floating Square Root instruction or the
Floating Reciprocal Square Root Estimate
instruction, software can simulate the
instruction and set this bit to reflect the
exception.

Floating-Point Invalid Operation Exception
(Invalid Integer Convert) (VXCVI)

See Section 4.4.1, “Invalid Operation Exception”
on page 93.

Floating-Point
Enable (VE)
See Section 4.4.1, “Invalid Operation Exception”
on page 93.

invalid Operation Exception

Chapter 4. Floating-Point Processor 85

25 Floating-Point Overflow Exception Enable (OE)
See Section 4.4.3, “Overflow Exception” on
page 94.

26 Floating-Point Underflow Exception Enable (UE)
See Section 444, “Underflow Exception” on

page 94. 7

27 Floating-Point Zero Divide Exception Enable
(ZE)
See Section 4.4.2, “Zero Divide Exception” on
page 94.

28 Floating-Point inexact Exception Enable (XE)
See Section 4.4.5, “Inexact Exception” on
page 95.

29 Fioating-Point Non-IEEE Mode (NI)

If this bit is set to 1, the remaining FPSCR bits
may have meanings other than those given in
this document, and the results of floating-point
instructions need not conform to the I|EEE
standard. If the IEEE-conforming result of a
floating-point arithmetic instruction would be a
denormalized number, the result of that instruc-
tion is 0 (with the same sign as the denormal-
ized number) if FPSCRy=1 and other
requirements specified in Book 1V, PowerPC
Implementation Features, for the implementa-
tion are met. The other effects of setting this
bit to 1 are described in Book IV, and may differ
between implementations.

30:31 Floating-Point Rounding Contro! (RN)
See Section 4.3.6, “Rounding” on page 90.

00 - Round to Nearest

01 Round toward Zero

10 Round toward +Infinity
11 Round toward —Infinity

Result

Flags Result Value Class
C<>=27

10001 Quiet NaN
01001 — Infinity

01000 — Normalized Number
11000 — Denormalized Number
10010 — Zero

00010 + Zero

10100 + Denormalized Number
00100 + Normalized Number
00101 + Infinity

Figure 25. Floating-Point Result Flags

4.3 Floating-Point Data

4.3.1 Data Format

This architecture defines the representation of a
floating-point value in two different binary fixed length
formats. The format may be a 32-bit single format for
a single-precision value or a 64-bit double format for
a double-precision value. The single format may be
used for data in storage. The double format format
may be used for data in storage and for data in
floating-point registers.

The length of the exponent and the fraction fields
differ between these two formats. The structure of
the single and double formats is shown below:

[s[EXP FRACTION _
01 9 31

Figure 26. Floating-Point Single Format

|s| exp | FRACTION
c1 12 - 83

Figure 27. Floating-Point Double Format

Values in floating-point format are composed of three
fields:

) sign bit
EXP exponent + bias
FRACTION fraction

If only a portion of a floating-point data item in
storage is accessed, such as with a load or store
instruction for a byte or halfword (or word in the case
of floating-point double format), the value affected will
depend on whether the PowerPC system is operating
with Big-Endian byte order (the default), or Little-
Endian byte order. See Appendix D, “Little-Endian
Byte Ordering” on page 235.

Representation of numerical values in the floating-
point formats consist of a sign bit S, a biased expo-
nent EXP, and the fraction portion FRACTION of the
significand. The significand consists of a leading
implied bit concatenated on the right with the FRAC-
TION. This leading implied bit is a one for normalized
numbers and a zero for denormalized numbers and is
located in the unit bit position (i.e. the first bit to the
left of the binary point). Values representable within
the two floating-point formats can be specified by the
parameters listed in Figure 28 on page 87.

86 PowerPC Architecture First Edition

Format
Single Double
Exponent Bias +127 +1023
Maximum Exponent +127 +1023
Minimum Exponent —126 —-1022
Widths (bits)
Format 32 64
Sign 1 1
Exponent 8 11
Fraction 23 52
Significand 24 53

Figure 28. IEEE Floating-Point Fields

The architecture requires that the FPRs of the
Floating-Point Processor support the arithmetic
instructions on values in the floating-point double
format only.

43.2 Value. Representation

This architecture defines numerical and non-numerical
values representable within each of the two supported
formats. The numerical values are approximations to
the real numbers and include the normalized
numbers, denormalized numbers, and zero values.
The non-numerical vaiues representable are the infin-
ities, and the Not a Numbers (NaNs). The infinities
are adjoined to the real numbers, but are not
numbers themselves, and the standard rules of arith-
metic do not hold when they appear in an operation.
They are related to the reals by order alone. It is
possible however to define restricted operations
among numbers and infinities as defined below. The
relative location on the real number line for each of
the defined entities is shown in Figure 29.

-mrl -NOR |-nml-e|+e|+n£u| +NOR |+mr
7 T 1] >

Figure 29. Approximation to Real Numbers

The NaNs are not related to the numbers or infinities
by order or value but are encodings used to convey
diagnostic information such as the representation of
uninitialized variables.

The following is a description of the different floating-
point values defined in the architecture:

Binary floating-point numbers

Machine representable values used as approxi-
mations to real numbers. Three categories of
numbers are supported: normalized numbers, denor-
malized numbers, and zero values.

Normalized numbers (+NOR)
These are values which have a biased exponent value
in the range:

1 to 254 in single format
1 to 2046 in double format

They are values in which the implied unit bit is one.
Normalized numbers are interpreted as follows:

NOR = (—1)s x 2E x (1.fraction)

where (s) is the sign, (E) is the unbiased exponent and
(1.fraction) is the significand which is composed of a
leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a nor-
malized floating-point number are approximately
equal to:

Single Format:
1.2x10-%8 < M < 3.4x10%8

Double Format:
2.2x107308 < M < 1.8x10308

Zero values (10)

These are values which have a biased exponent value
of zero and a fraction value of zero. Zeros can have
a positive or negative sign. The sign of zero is
ignored by comparison operations (i.e., comparison
regards +0 as equal to —0).

Denormalized numbers (+DEN)

These are values which have a biased exponent value
of zero and a non-zero fraction value. They are non-
zero numbers smaller in magnitude than the repre-
sentable normalized numbers. They are values in
which the implied unit bit is zero. Denormalized
numbers are interpreted as follows:

DEN = (—1) x 2BMin x (0.fraction)

where Emin is the minimum representable exponent
value (—126 for single-precision, —1022 for double-
precision).

Infinities (+o0)
These are values which have the maximum biased
exponent value:

255 in the single format
2047 in the double format

and a zero fraction value. They are used to approxi-
mate values greater in magnitude than the maximum
normalized value.

Infinity arithmetic is defined as the limiting case of
real arithmetic, with restricted operations defined
among numbers and infinities. Infinities and the reals
can be related by ordering in the affine sense:

—o0 < every finite number < +c0

Chapter 4. Floating-Point Processor 87

Arithmetic on infinities is always exact and does not
signal any exception, except when an exception
occurs due to the invalid operations as described in
Section 4.4.1, “Invalid Operation Exception” on
page 93.

Not a Numbers (NaNs)

These are values which have the maximum biased
exponent value and a non-zero fraction value. The
sign bit is ignored (i.e. NaNs are neither positive nor
negative). If the high-order bit of the fraction field is
a zero then the NaN is a Signalling NaN, otherwise it
is a Quiet NaN.

Signalling NaNs are used to signal exceptions when
they appear as arithmetic operands.

Quiet NaNs are used to represent the results of
certain invalid operations, such as invalid arithmetic
operations on infinities or on NaNs, when Invalid
Operation Exception is disabled (FPSCRg=0). Quiet
NaNs propagate through ali operations except ordered
comparison, Floating Round to Single-Precision, and
conversion to integer. Quiet NaNs do not signal
exceptions, except for ordered comparison and con-
version to integer operations. Specific encodings, in
QNaNs, can thus be preserved through a sequence of
operations, and used to convey diagnostic information
to help identify results from invalid operations.

When a ONaN is the result of an operation because
one of the operands is a NaN or because a QNaN was
generated due to a disabled Invalid Operation Excep-
tion, then the following rule is applied to determine
the NaN with the high-order fraction bit set to one that
is to be stored as the resuit.

if (FRA) is a NaN
then FRT « (FRA)
else if (FRB) is a NaN
then if instruction is frsp
then FRT « (FRB)y.4 Il 2°0
else FRT « (FRB)
else if (FRC) is a NaN
then FRT « (FRC)
else if generated QNaN
then FRT « generated QNaN

If the operand specified by FRA is a NaN, then that
NaN is stored as the result. Otherwise, if the operand
specified by FRB is a NaN (if the instruction specifies
an FRB operand), then that NaN is stored as the
result, with the low-order 29 bits of the result set to 0
if the instruction is frsp. Otherwise, if the operand
specified by FRC is a NaN (if the instruction specifies
an FRC operand), then that NaN is stored as the
result. Otherwise, if a QNaN was generated due to a
disabled Invalid Operation Exception, then that QNaN
is stored as the resuit. If a QNaN is to be generated
as a result, then the QNaN generated has a sign bit of
zero, an exponent field of all ones, and a high-order
fraction bit of one with all other fraction bits zero.
Any instruction that generates a QNaN as the result of

a disabled Invalid Operation must generate this QNaN
(i.e., 0x7FF8_0000_0000_0000).

A double-precision NaN is considered to be represent-
able in single format if and only if the low-order 29
bits of the double-precision NaN’s fraction are zero.

4.3.3 Sign of Result

The following rules govern the sign of the resuit of an
arithmetic operation, when the operation does not
yield an exception. They apply even when the oper-
ands or results are zeros or infinities.

= The sign of the result of an addition operation is
the sign of the operand having the larger abso-
lute value. If both operands have the same sign,
the sign of the result of an addition operation is
the same as the sign of the operands. The sign
of the result of the subtraction operation x—y is
the same as the sign of the result of the addition
operation x + (—y).

When the sum of two operands with opposite
sign, or the difference of two operands with the
same sign, is exactly zero, the sign of the result
is positive in all rounding modes except Round
toward —Infinity, in which mode the sign is nega-
tive.

= The sign of the result of a multiplication or divi-
sion gperation is the Exclusive OR of the signs of
the operands.

= The sign of the result of a Square Root or Recip-
rocal Square Root Estimate operation is always
positive, except that the square root of —0 is -0
and the reciprocal square root of —0 is —lInfinity.

= The sign of the result of a Round to Single-
Precision or Convert to/from Integer operation is
the sign of the operand being converted.

For the Multiply-Add instructions, the rules given
above are applied first to the multiplication operation
and then to the addition or subtraction operation (one
of the inputs to the addition or subtraction operation
is the result of the multiplication operation}.

4.3.4 Normalization and
Denormalization

When an arithmetic operation produces an interme-
diate result, consisting of a sign bit, an exponent, and
a non-zero significand with a zero leading bit, it is not
a normalized number and must be normalized before
it is stored.

A number is normalized by shifting its significand left
while decrementing its exponent by one for each bit
shifted, until the leading significand bit becomes one.
The guard bit and the round bit (see Section 4.5.1,
“Execution Model for IEEE Operations” on page 96)

88 PowerPC Architecture First Edition

participate in the shift with zeros shifted into the
round bit. The exponent is regarded as if its range
were unlimited. If the resulting exponent value is less
than the minimum value that can be represented in
the format specified for the result, the intermediate
result is said to be “Tiny” and the stored result is
determined by the rules described in Section 4.4.4,
“Underflow Exception” on page 94. The sign of the
number does not change.

When an arithmetic operation produces a non-zero
intermediate result with an exponent value less than
the minimum value that can be represented in the
format specified for the result, the stored result is
determined by the rules described in Section 4.44,
“Underflow Exception” on page 94. This process may
require denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by one for each
bit shifted, until the exponent is equal to the format’s
minimum value. If any significant bits are lost in this
shifting process then “Loss of Accuracy” has occurred
(See Section 4.44, “Underflow Exception” on
page 94) and Underflow Exception is signalled. The
sign of the number does not change.

4.3.5 Data Handling and Precision

Instructions are defined to move floating-point data
between the FPRs and storage. For double format
data the data is not altered during the move. For
single format data, a format conversion from single to
double is performed when loading from storage into
an FPR and a format conversion from double to single
is performed when storing from an FPR to storage.
No floating-point exceptions are raised during these
operations.

Al arithmetic operations are performed using
floating-point double format.

Floating-point single-precision is obtained with the
implementation of four types of instruction.

1. Load Floating-Point Single

This form of instruction accesses a single-
precision operand in single format in storage,
converts it to double-precision, and loads it into
an FPR. No exceptions are detected on the load
operation.

2. Round to Floating-Point Single-Precision

The Floating Round to Single-Precision instruction
rounds a double-precision operand to single-
precision if the operand is not already in single-
precision range, checking the exponent for

single-precision range and handling any excep-
tions according to respective enable bits, and
places that operand into an FPR as a double-
precision operand. For results produced by
single-precision arithmetic instructions and by
single-precision loads, this operation does not
alter the value.

3. Single-Precision Arithmetic Instructions

This form of instruction takes operands from the
FPRs in double format, performs the operation as
if it produced an intermediate result correct to
infinite precision and with unbounded range, and
then coerces this intermediate result to fit in
single format. Status bits, in the FPSCR and in
the Condition Register, are set to reflect the
single-precision result. The result is then con-
verted to double format and placed into an FPR.
The result lies in the range supported by the
single format.

All input values must be representable in single
format: if they are not, the result placed into the
target FPR, and the setting of status bits in the
FPSCR and in the Condition Register (if Rc=1),
are undefined. :

4. Store Floating-Point Single

This form of instruction converts a double-
precision operand to single format and stores
that operand into storage. No exceptions are
detected on the store operation (the value being
stored is effectively assumed to be the resuit of
an instruction of one of the preceding three

types).

When the result of a Load Floating-Point Single,
Floating Round to Single-Precision, or single-precision
arithmetic instruction is stored in an FPR, the low-
order 29 FRACTION bits are zero.

—— Programming Note

The Floating Round to Single-Precision instruction
is provided to allow value conversion from
double-precision to single-precision with appro-
priate exception checking and rounding. This
instruction should be used to convert double-
precision floating-point values (produced by
double-precision load and arithmetic instructions)
to single-precision values prior to storing them
into single format storage elements or using them
as operands for single-precision arithmetic
instructions. Values produced by single-precision
load and arithmetic instructions can be stored
directly, or used directly as operands for single-
precision arithmetic instructions, without pre-
ceding the store, or the arithmetic instruction, by
a Floating Round to Single-Precision instruction.

Chapter 4. Floating-Point Processor 89

—— Programming Note

A single-precision value can be used in double-
precision arithmetic operations. The reverse is
not necessarily true (it is true only if the double-
precision value is representable in single format).

Some implementations may execute single-
precision arithmetic instructions faster than
double-precision arithmetic instructions. There-
fore, if double-precision accuracy is not required,
single-precision data and instructions should be
used.

4.3.6 Rounding

With the exception of the two optional Estimate
instructions, Floating Reciprocal Estimate Single and
Floating Reciprocal Square Root Estimate, all arith-
metic instructions defined by this architecture
produce an intermediate result that can be regarded
as being infinitely precise. This result must then be
written with a precision of finite length into an FPR.
After normalization or denormalization, if the infinitely
precise intermediate result is not representable in the
precision required by the instruction then it is
rounded before being placed into the target FPR.

The instructions that potentially round their result are
the Arithmetic, Multiply-Add, and Rounding and Con-
version instructions. For a given instance of one of
these instructions, whether rounding occurs depends
on the values of the inputs. Each of these instructions
sets FPSCR bits FR and Fl, according to whether
rounding occurred (Fl) and whether the fraction was
incremented (FR). If rounding occurred, Fl is set to
one, and FR may be set to either zero or one. If
rounding did not occur, both FR and Fl are set to
zero.

The two Estimate instructions set FR and Fl to unde-
fined values. The remaining Floating-Point
instructions do not alter FR and Fl.

Four modes of rounding are provided which are user-
selectable through the Floating-Point Rounding
Control field in the FPSCR. See Section 4.2.2,
“Floating-Point Status and Control Register” on
page 84. These are encoded as follows:

RN Rounding Mode

00 Round to Nearest

01 Round toward Zero

10 Round toward +Infinity
1 Round toward —Infinity

Let Z be the infinitely precise intermediate arithmetic
result or the operand of a convert operation. If Z can
be represented exactly in the target format, then no
rounding occurs, and the result in all rounding modes
is equivalent to truncation of Z. If Z cannot be
represented exactly in the target format, let Z1 and

Z2 be the next larger and next smaller numbers
representable in the target format that bound Z, then
Z1 or Z2 can be used to approximate the result in the
target format.

Figure 30 shows the relation of Z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes. “LSB” means “least significant bit.”

By Incrementing LSB of Z
Infinitely Precise Value

By Truncating after LSB
Yy { ' } Yy
« !

< f 1

22| 21 6 22l 21
z z
Negative values <—-+—> Positive values

v

Figure 30. Selection of Z1 and 22

Round to Nearest
Choose the best approximation of Z1 cr Z2. In
case of a tie, choose the one which is even (least
significant bit 0).

Round toward Zero
Choose the smaller in magnitude (Z1 or Z2).

Round toward +Infinity
Choose Z1.

Round toward —Infinity
Choose Z2.

See Section 4.5.1, “Execution Model for [EEE
Operations” on page 96 for a detailed explanation of
rounding.

If Z is to be rounded up and Z1 does not exist (i.e,, if
there is no number larger than Z that is representable
in the target format), then an Overflow Exception
occurs if Z is positive and an Underflow Exception
occurs if Z is negative. Similarly, if Z is to be
rounded down and Z2 does not exist, then an Over-
flow Exception occurs if Z is negative and an Under-
flow Exception occurs if Z is positive. The results in
these cases are defined in Section 4.4, “Floating-Point
Exceptions” on page 90.

4.4 Floating-Point Exceptions

This architecture defines the following floating-point
exceptions:

= |nvalid Operation Exception
SNaN
Infinity—Infinity
Infinity-+Infinity
Zero+Zero
InfinityxZero
Invalid Compare
Software Request
Invalid Square Root
Invalid Integer Convert

90 PowerPC Architecture First Edition

Zero Divide Exception
Overflow Exception
Underflow Exception
Inexact Exception

These exceptions may occur during execution of
floating-point arithmetic instructions. In -addition, an
Invalid Operation Exception occurs when a Status and
Control Register instruction sets FPSCRyygopr to 1
(Software Request). An Invalid Square Root opera-

tion can occur only if .at least one of the Floating .

Square Root instructions defined in Appendix A,
“Optional Instructions” on page 209, is implemented.

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in
the FPSCR. In addition, each floating-point exception
has a corresponding enable bit in the FPSCR. The
exception bit indicates occurrence of the corre-
sponding exception. If an exception occurs, the corre-
sponding enable bit governs the result produced by
the instruction and, in conjunction with the FEO and
FE1 bits (see page 92), whether and how the system
floating-point enabled exception error handler is
invoked. (In general, the enabling specified by the
enable bit is of invoking the system error handler, not
of permitting the exception to occur. The occurence
of an exception depends only on the instruction and
its inputs, not on the setting of any control bits. The
only deviation from this general rule is that the occur-
rence of an Underflow Exception may depend on the
setting of the enable bit.)

The Floating-Point Exception Summary bit (FX) in the
FPSCR is set when any of the exception bits transi-
tions from a zero to a one or when explicitly set by
software. The Floating-Point Enabled Exception
Summary bit (FEX) in the FPSCR is set when any of
the exceptions is set and the exception is enabied
(enable bit is one).

A single instruction, other than mtfsfi or mtfsf, may
set more than one exception in the following cases:

= Inexact Exception may be set with Overflow
Exception.

= Inexact Exception may be set with Underflow
Exception.

= Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (cox0) for
Multiply-Add instructions.

= |Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid
Compare) for Compare Ordered instructions.

= |nvalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Integer
Convert) for Convert to Integer instructions.

When an exception occurs the instruction execution
may be suppressed or a result may be delivered,
depending on the exception.

Instruction execution is suppressed for the following
kinds of exception, so that there is no possibility that
one of the operands is lost.

= Enabled Invalid Operation
= Enabled Zero Divide

For the remaining kinds of exception, a result is gen-
erated and written to the destination specified by the
instruction causing the exception. The result may be
a different value for the enabled and disabled condi-
tions for some of these exceptions. The kinds of
exception that deliver a result are the following.

Disabled Invalid Operation
Disabled Zero Divide
Disabled Overflow
Disabled Underflow
Disabled Inexact

Enabled Overflow

Enabled Underflow
Enabled inexact

Subsequent sections define each of the floating-point
exceptions and specify the action that is taken when
they are detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap han-
dlers.” In this architecture, an FPSCR exception
enable bit of 1 causes generation of the result value
specified in the IEEE standard for the “trap enabled”
case: the expectation is that the exception will be
detected by software, which will revise the result. An
FPSCR exception enable bit of 0 causes generation of
the “default result” value specified for the “trap disa-
bled” (or “no trap occurs” or “trap is not imple-
mented”) case: the expectation is that the exception
will not be detected by software, which will simply use
the default result. The result to be delivered in each
case for each exception is described in the sections
below. :

The IEEE default behavior when an exception occurs
is to generate a default value and not to notify soft-
ware. In this architecture, if the |EEE default behavior
when an exception occurs is desired for all excep-
tions, all FPSCR exception enable bits should be set
to 0 and Ignore Exceptions Mode (see below) should
be used. In this case the system floating-point
enabled exception error handler is not invoked, even
if floating-point exceptions occur: software can inspect
the FPSCR exception bits if necessary, to determine
whether exceptions have occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the corre-
sponding FPSCR exception enable bit must be set to 1
and a mode other than Ignore Exceptions Mode must
be used. In this case the system floating-point
enabled exception error handler is invoked if an
enabled floating-point exception occurs.

Chapter 4. Floating-Point Processor 91

Whether and how the system floating-point enabled
exception error handler is invoked if an enabled
floating-point exception occurs is controlled by the
FEO and FE1 bits. The location of these bits and the
requirements for altering them are described in
Part 3, “PowerPC Operating Environment
Architecture” on page 141. (The system floating-
point _enabled exception error handier is never
invoked because of a disabled floating-point excep-
tion.) The effects of the four possible settings of
these bits are as follows.

FEO FE1 Description

0 0 |Ignore Exceptions Mode
Floating-point exceptions do not cause the
system floating-point enabled exception
error handler to be invoked.

0 1 Imprecise Nonrecoverable Mode

The system floating-point enabled exception
error handler is invoked at some point at or
beyond the instruction that caused the
enabled exception. It may not be possible to
identify the excepting instruction nor the
data that caused the exception. Results
produced by the excepting instruction may
have been used by or may have affected
subsequent instructions that are executed
before the error handler is invoked.

1 0 Imprecise Recoverable Mode

The system floating-point enabled exception
error handler is invoked at some point at or
beyond the instruction that caused the
enabled exception. Sufficient information is
provided to the error handler that it can
identify the excepting instruction and the
operands, and correct the result. No results
produced by the excepting instruction have
been used by or have affected subsequent
instructions that are executed before the
error handler is invoked.

1 1 Precise Mode
The system floating-point enabled exception
error handler is invoked precisely at the
instruction that caused the enabled excep-
tion.

In all cases the question of whether or not a floating-
point result is stored, and what value is stored, is
governed by the FPSCR exception enable bits, as
described in subsequent sections, and is not affected
by the value of the FEO and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions
before the instruction at which the system floating-
point enabled exception error handier is invoked have
completed, and no instruction after the instruction at
which the system floating-point enabled exception
error handler is invoked has been executed. (Recall
that, for the two Imprecise modes, the instruction at

which the system floating-point enabled exception
error handler.is invoked need not be the instruction
that caused the exception.) The instruction at which
the system floating-point enabled exception error
handier is invoked has not been executed, unless it is
the excepting instruction, in which case it has been
executed unless the kind of exception is-among those

listed above as suppressed.

—— Programming Note

In any of the three non-Precise modes, a Floating-
Point Status and Control Register instruction can
be used to force any exceptions, due to
instructions initiated before the Floating-Point
Status and Contro/ Register instruction, to be
recorded in the FPSCR. (This forcing is super-
fluous for Precise Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be
used to force any invocations of the system
floating-point enabled exception error handler,
due to instructions initiated before the Floating-
Point Status and Control Register instruction, to
occur. (This forcing has no effect in Ignore Excep-
tions Mode, and is superfluous for Precise Mode.)

A sync instruction, or any other execution syn-
chronizing instruction or event (e.g., isync: see
Part 2, “PowerPC Virtual Environment
Architecture” on page 117), also has the effects
described above. However, in order to obtain the
best performance across the widest range of
implementations, a Ffoating-Point Status and
Control Register instruction should be used to
obtain these effects.

In order to obtain the best performance across the
widest range of implementations, the programmer
should obey the following guidelines.

= |f the |IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used, with all FPSCR exception enable bits set to
0.

= If the IEEE default results are not acceptable to

"~ the application, Imprecise Non-Recoverable Mode

should be used, or Imprecise Recoverable Mode

if recoverability is needed, with FPSCR exception

enable bits set to 1 for those exceptions for which

the system floating-point enabled exception error
handler is to be invoked.

= [gnore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to 1.

= Precise Mode may degrade performance in some
implementations, perhaps substantially, and
therefore should be used only for debugging and
other specialized applications.

92 PowerPC Architecture First Edition

4.4.1 Invalid Operation Exception

4.41.1 Definition

An Invalid Operation Exception occurs whenever an
operand is invalid for the specified operation. The
invalid operations are: '

= Any operation, except Load, Store, Move, Select,
and mtfsf, on a signalling NaN (SNaN)

= For add or subtract operations, magnitude sub-

traction of infinities (co—o0)

Division of infinity by infinity (co<-00)

Division of zero by zero (0-0)

Multiplication of infinity by zero (cox0)

Ordered comparison involving a NaN (lnvalid

Compare)

= Square root or reciprocal square root of a nega-
tive (and non-zero) number (Invalid Square Root)

= |Integer convert involving a large number, an
infinity, or a NaN (Invalid Integer Convert)

In addition, an Invalid Operation Exception occurs if
software explicitly requests this by executing a mtfsfi,
mtfsf, or mtfsb1 instruction that sets FPSCRyygoer to
1 (Software Request). An Invalid Square Root opera-
tion can occur only if at least one of the Floating
Square Root instructions defined in Appendix A,
“Optional Instructions” on page 209, is implemented.

—— Programming Note

The purpose of FPSCRyxgort is to allow software
to cause an Invalid Operation Exception for a con-
dition that is not necessarily associated with the
execution of a floating-point instruction. For
example, it might be set by a program that com-
putes a square root, if the source operand is neg-
ative.

4.41.2 Action

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled
(FPSCRyg=1) and Invalid Operation occurs or soft-
ware explicitly requests the exception then the fol-
lowing actions are taken:

1. One or two Invalid Operation Exceptions is set

FPSCRyxsnaN (if SNaN)
FPSCRyx s (if co—00)
FPSCRyxp (if c0-+c0)
FPSCRyxzpz (if 0=0)
FPSCRyximz {if 0o x0)
FPSCRyxvc (if invalid comp)
FPSCRyxsorT (if software req)
FPSCRyxsarT (if invalid sqrt)

FPSCRyxcvi (if invalid int cvrt)
2. If the operation is an arithmetic, Floating Round
to Single-Precision, or convert to integer opera-
tion,
the target FPR is unchanged
FPSCRg [are set to zero
FPSCRgpge is unchanged
3. If the operation is a compare,
" FPSCRgR g ¢ are unchanged
FPSCRepc(is set to reflect unordered
4. If software explicitly requests the exception,
FPSCRFR FI FPRE are as set by the mtfsfi,
mtfsf, or mtfsb1 instruction’

When Invalid Operation Exception is disabled
(FPSCRyg=0) and Invalid Operation occurs or soft-
ware explicitly requests the exception then the fol-
lowing actions are taken:

1. One or two Invalid Operation Exceptions is set

FPSCRyxsnaN (if SNaN)
FPSCRyxs) (if c0o—o0)
FPSCRyxp) (if co-+00)
FPSCRyxzpz (if 0+0)
FPSCRyximz (if c0x0)
FPSCRyxvc (if invalid comp)
FPSCRyxsoFT (if software req)
FPSCRVXSQRT (|f invalid Sqrt)
FPSCRyxcwt (if invalid int cvrt)

2. If the operation is an arithmetic or Floating
Round to Single-Precision operation
the target FPR is set to a Quiet NaN
FPSCRgR | are set to zero
FPSCRgpgrr is set to indicate the class of the
result (Quiet NaN)
3. If the operation is a convert to 32-bit integer
operation,
the target FPR is set as foliows:
FRTy.3; « undefined
FRT3,.63 are set to the most positive
32-bit integer if the operand in FRB is a
positive number or + o0, and to the most
negative 32-bit integer if the operand in
FRB is a negative number, —oo, or NaN
FPSCRgR , are set to zero
FPSCRFPRF is undefined
4. If the operation is a convert to 64-bit integer
operation,
the target FPR is set as follows:
FRT is set to the most positive 64-bit
integer if the operand in FRB is a posi-
tive number or + o, and to the most
negative 64-bit integer if the operand in
FRB is a negative number, —oo, or NaN
FPSCReR are set to zero
FPSCRgpgr is undefined
5. If the operation is a compare,
FPSCRgR) ¢ are unchanged
FPSCRgpcc is set to reflect unordered
6. If software explicitly requests the exception,
FPSCRFR £l FPRE are as set by the mtfsﬁ,
mitfsf, or mtfsb1 instruction

Chapter 4. Floating-Point Processor 93

4.4.2 Zero Divide Exception

4.4.21 Definition

A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
non-zero dividend value. [t also occurs when a Recip-
rocal Estimate instruction (fres or frsqrte) is executed
with an operand value of zero. '

4.4.2.2 Action

The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (FPSCRg=1)
and Zero Divide occurs then the following actions are
taken: '

1. Zero Divide Exception is set
FPSCRx « 1 ,

2. The target FPR is unchanged

3. FPSCRgg g are set to zero

4. FPSCRgpge is unchanged

When Zero Divide Exception is disabled (FPSCRzg=0)
and Zero Divide occurs then the following actions are
taken:

1. Zero Divide Exception is set
FPSCRx « 1

2. The target FPR is set to a Zinfinity, where the
sign is determined by the XOR of the signs of the
operands

3. FPSCRgR g are set to zero

4. FPSCRepgr is set to indicate the class and sign of
the result (+Infinity)

4.4.3 Overflow Exception

4.4.3.1 Definition

Overflow occurs when the magnitude of what would
have been the rounded result if the exponent range
were unbounded exceeds that of the largest finite
number of the specified result precision.

4.4.3.2 Action

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (FPSCRoe=1)
and exponent overflow occurs then the following
actions are taken:

1. Overflow Exception is set
FPSCROX b ad 1 .
2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate resuit is
adjusted by subtracting 1536

3. For single-precision arithmetic instructions and
the Floating Round to Single-Precision instruc-
tion, the exponent of the normalized intermediate
result is adjusted by subtracting 192

4. The adjusted rounded result is placed into the
target FPR

5. FPSCRgpge is set to indicate the class and sign. of
the result (XNormal Number)

When Overflow Exception is disabled (FPSCRyg=0)
and overflow occurs then the following actions are
taken:

1. Overflow Exception is set
FPSCRgox « 1
2. Inexact Exception is set
FPSCRyx « 1
3. The result is determined by the rounding mode
(FPSCRgy) and the sign of the intermediate result
as follows:
A. Round to Nearest
Store + Infinity, where the sign is the sign of
the intermediate result '
B. Round toward Zero
Store the format’s largest finite number with
the sign of the intermediate result
C. Round toward +Infinity
For negative overflow, store the format's
most negative finite number; for positive
overflow, store +Infinity
D. Round toward —Infinity
For negative overflow, store —Infinity; for
positive overflow, store the format’s largest
finite number
The result is placed into the target FPR
FPSCRgR is undefined
FPSCRg, is set to one
FPSCRgpge is set to indicate the class and sign of
the result (*Infinity or £Normal Number})

NoO ok

4.4.4 Underflow Exception

4.4.4.1 Definition

Underflow Exception is defined separately for the
enabled and disabled states:

s Enabled:
Underflow occurs when the intermediate result is
I‘Tiny."

= Disabled:
Underflow occurs when the intermediate result is
“Tiny” and there is “Loss of Accuracy.”

A “Tiny” result is detected before rounding, when a
non-zero result value computed as though the expo-
nent range were unbounded would be less in magni-
tude than the smallest normalized number.

If the intermediate result is “Tiny” and the Underflow
Exception Enable is off (FPSCRyg=0) then the inter-
mediate result is denormalized (Section 4.3.4, “Nor-
malization and Denormalization” on page 88) and

94 PowerPC Architecture First Edition

rounded (Section 4.3.6, “Rounding” on page 90)
before being placed into the target FPR.

“Loss of Accuracy” is detected when the delivered
result value differs from what would have been com-
puted were both the exponent range and precision
unbounded. ‘

4.4.4.2 Action

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (FPSCRyg=1)
and exponent underflow occurs then the following
actions are taken:

1. Underflow Exception is set
FPSCRyy « 1

2. For double-precision arithmetic and conversion
instructions, the exponent of the normalized inter-
mediate result is adjusted by adding 1536

3. For single-precision arithmetic instructions and
the Floating Round to Single-Precision instruc-
tion, the exponent of the normalized intermediate
result is adjusted by adding 192

4. The adjusted rounded result is placed into the
target FPR

5. FPSCRepge is set to indicate the class and sign of
the resuit (+Normalized Number)

—— Programming Note

The FR and Fl bits are provided to allow the
system floating-point enabled exception error
handler, when invoked because of an Underflow
Exception, to simulate a “trap disabled” environ-
ment. That is, the FR and Fi bits allow the system
floating-point enabled exception error handler to
unround the result, thus aliowing the result to be
denormalized.

When Underflow Exception is disabled (FPSCRy=0)
and underflow occurs then the following actions are
taken:

1. Underflow Exception is set
FPSCRyy « 1
2. The rounded result is placed into the target FPR
3. FPSCRgpgpr is set to indicate the class and sign of
the result (+Denormalized Number or +Zero)

4.4.5 Inexact Exception

4.4.51 Definition

Inexact Exception occurs when one of two conditions
occur during rounding:

1. The rounded result differs from the intermediate
result assuming the intermediate result exponent
range and precision to be unbounded.

2. The rounded result overflows and Overflow
Exception is disabled.

4.4.5.2 Action

The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When Inexact Exception occurs then the following
actions are taken: ‘

1. Inexact Exception is set
FPSCRyx « 1
2. The rounded or overflowed result is placed into
the target FPR 4
3. FPSCRpge is set to indicate the class and sign of
the result

—— Programming Note

In some implementations, enabling Inexact Excep-
tions may degrade performance more than ena-
bling other types of floating-point exception.

4.5 Floating-Point Execution
Models

All implementations of this architecture must provide
the equivalent of the following execution models to
insure that identical results are obtained.

Special rules are provided in the definition of the
arithmetic instructions for the infinities, denormalized
numbers and NaNs.

Although the double format specifies an 11-bit expo-
nent, exponent arithmetic makes use of two additional
bit positions to avoid potential transient overflow con-
ditions. One extra bit is required when denormalized
double-precision numbers are prenormalized. The
second bit is required to permit the computation of
the adjusted exponent value in the following cases
when the corresponding exception enable bits is one:

= Underflow during multiplication using a denormal-
ized factor.

= Overflow during division using a denormalized
divisor.

Chapter 4. Floating-Point Processor 95

The |EEE standard includes 32-bit and 64-bit arith-
metic. The standard requires that single-precision
arithmetic be provided for single-precision operands.
The standard permits double-precision arithmetic
instructions to have either (or both) single-precision
or double-precision operands, but states that single-
precision arithmetic instructions should not accept
double-precision operands. The PowerPC Architecture

follows these guidelines: double-precision arithmetic

instructions can have operands of either or both pre-
cisions, while single-precision arithmetic instructions
require all operands to be single-precision. .Double-
precision arithmetic instructions produce double-
precision values, while single-precision arithmetic
instructions produce single-precision values. '

For arithmetic instructions, conversions from double-
precision to single-precision must be done explicitly
by software, while conversions from single-precision
to double-precision are done implicitly.

4.5.1 Execution Model for IEEE
Operations ‘

The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this
section) are logically adjacent to the 23-bit FRACTION
field.

IEEE-conforming significand arithmetic is considered
to be performed with a floating-point accumulator
having the following format:

Is|c| co_r FRACTION ERR

52

Figure 31. IEEE 64-bit Execution Model
The S bit is the sign bit.

The C bit is the carry bit that captures the carry out of
the significand.

The L bit is the leading unit bit of the significand
which receives the implicit bit from the operands.

The FRACTION is a 52-bit field which accepts the frac-
tion of the operands.

The Guard (G), Round (R), and Sticky (X) bits are
extensions to the low order bits of the accumulator.
The G and R bits are required for post normalization
of the result. The G, R, and X bits are required during
rounding to determine if the intermediate result is
equally near the two nearest representable values.
The X bit serves as an extension to the G and R bits
by representing the logical OR of all bits which may
appear to the low-order side of the R bit, either due to
shifting the accumulator right or other generation of

low-order result bits. The G and R bits participate in
the left shifts with zeros being shifted into the R bit.
Figure 32 shows the significance of the G, R, and X
bits with respect to the intermediate result (IR), the
next lower in magnitude representable number (NL),
and the next higher in magnitude representable
number (NH).

o
b]
x

Interpretation

IR is exact

IR closer to NL

IR midway between NL & NH

IR closer to NH

- ke - QOO o
N Y =] (] - - O o
2= O=R | O] =20O=|O

Figure 32. Interpretation of G, R, and X bits

The significand of the intermediate result is made up
of the L bit, the FRACTION, and the G,R and X bits.

The infinitely precise intermediate result of an opera-
tion is the resuit normalized in bits L, FRACTION, G,
R, and X of the floating-point accumulator.

Before the results are stored into an FPR, the
significand is rounded if necessary, using the
rounding mode specified by FPSCRgy. If rounding
results in a carry into C, the significand is shifted right
one position and the exponent incremented by one.
This yields an inexact result and possibly also expo-
nent overflow. Fraction bits to the left of the bit posi-
tion used for rounding are stored into the FPR and
low-order bit positions, if any, are set to zero.

Four rounding modes are provided which are user-
selectable through FPSCRgy as decribed in Section
4.3.6, “Rounding” on page 90. For rounding, the con-
ceptual Guard, Round, and Sticky bits are defined in
terms of accumulator bits. Figure 33 shows the posi-
tions of the Guard, Round, and Sticky bits for double-
precision and single-precision floating-point numbers.

Format Guard Round Sticky

Double G bit R bit X bit
Single 24 25 26:52 G,R,X

Figure 33. Location of the Guard, Round and Sticky
Bits

Rounding can be treated as though the significand
were shifted right, if required, until the least signif-
icant bit to be retained is in the low-order bit position
of the FRACTION. If any of the Guard, Round, or
Sticky bits is non-zero, then the resuit is inexact.

96 PowerPC Architecture First Edition

Z1 and Z2, as defined on page 90, can be used to
approximate the result in the target format when one
of the following rules is used.

s Round to Nearest

Guard bit = 0
The result is truncated. (Result exact (GRX =
000) or closest to next lower value in magni-
tude (GRX = 001, 010, or 011))

Guard bit = 1
Depends on Round and Sticky bits:

Case a
If the Round or Sticky bit is one (inclu-
sive), the result is incremented. (Result
closest to next higher value in magitude
(GRX = 101, 110, or 111))

Case b

If the Round and Sticky bits are zero
(result midway between closest repre-
sentable values) then if the low-order bit
of the result is one the result is incre-
mented. Otherwise (the low-order bit of
the result is zero) the result is truncated
(this is the case of a tie rounded to
even).

If during the Round to Nearest process, trun-
cation of the unrounded number would
produce the maximum magnitude for the
specified precision, then the following action
is taken:

Guard bit = 1
Store infinity with the sign of the
unrounded result.

Guard bit = 0
Store the truncated (maximum magni-
tude) value.

= Round toward Zero
Choose the smaller in magnitude of Z1 or Z2.
See “Rounding” on page 90 for the definitions of
Z1 and Z2. If Guard, Round, or Sticky bit is non-
zero, the result is inexact.

= Round toward +infinity
Choose Z1. See “Rounding” on page 90 for the
definition of Z1.

= Round toward —Infinity
Choose Z2. See “Rounding” on page 90 for the
definition of Z2.

Where the result is to have fewer than 53 bits of pre-
cision because the instruction is a Floating Round to
Single-Precision or single-precision arithmetic instruc-
tion, the intermediate result either is normalized or is
placed in correct denormalized form before the result
is potentially rounded.

4.5.2 Execution Model for
Multiply-Add Type Instructions

The PowerPC Architecture makes use of a special
form of instruction which performs up to three oper-
ations in one instruction {a multiply, an add and a
negate). With this added capability is the special
feature of being able to produce a more exact inter-
mediate result as an input to the rounder. 32-bit
arithmetic is similar except that the FRACTION field is
smaller.

The multiply-add operations produce intermediate
results conforming to the following model:

ISICIEL

Figure 34. Multiply-Add Execution Model

FRACTION x|

The first part of the operation is a multiply. The mul-
tiply has two 53-bit significands as inputs, which are
assumed to be prenormalized, and produces a result
conforming to the above model. If there is a carry
out of the significand (into the C bit), then the
significand is shifted right one position, shifting the L
bit (leading unit bit) into the most significant bit of the
fraction and shifting the C bit {carry out) into the L bit.
All 106 bits (L bit, the fraction} of the product take
part in the add operation. If the exponents of the two
inputs to the adder are not equal, the significand of
the operand with the smaller exponent is aligned
(shifted) to the right by an amount which is added to
that exponent to make it equal to the other input’'s
exponent. Zeros are shifted into the left of the
significand as it is aligned and bits shifted out of bit
105 of the significand are ORed into the X’ bit. The
add operation also produces a result conforming to
the above model with the X’ bit taking part in the add
operation.

The result of the add is then normalized, with all bits
of the add result, except the X’ bit, participating in the
shift. The normalized resuit provides an intermediate
result as input to the rounder which conforms to the
model described in Section 4.5.1, “Execution Model
for IEEE Operations” on page 96, where:

= The Guard bit is bit 53 of the intermediate result.

= The Round bit is bit 54 of the intermediate resuit.

= The Sticky bit is the OR of all remaining bits to
the right of bit 55, inclusive.

The rules of rounding the intermediate result are the
same as the described in Section 4.5.1, “Execution
Model for IEEE Operations” on page 96.

If the instruction is Floating Negative Multiply-Add or
Floating Negative Multiply-Subtract the final result is
negated.

Chapter 4. Floating-Point Processor 97

Status bits are set to reflect the result of the entire
operation: e.g., no status is recorded for the result of
the muitiplication part of the operation.

98 PowerPC Architecture First Edition

4.6 Floating-Point Processor Instructions

4.6.1 Floating-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.11.2, “Effective Address
Calculation” on page 15.

The order of bytes accessed by floating-point loads
and stores is Big-Endian, uniess Little-Endian storage
ordering is selected as described in Appendix D,
“Little-Endian Byte Ordering” on page 235.

— Programming Note

The “la” extended mnemonic permits computing
an Effective Address as a Load or Store instruc-
tion would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in “Load Address” on page 234.

4.6.1.1 Storage Access Exceptions

Storage accesses will cause the system error handler
to be invoked if the program is not allowed to modify
the target storage (Store only), or if the program
attempts to access storage that is unavailable.

4.6.2 Floating-Point Load Instructions

There are two basic forms of load instruction, single-
precision and double-precision. Because the FPRs
support only floating-point double format, single-
precision Load Floating-Point instructions convert
single-precision data to double format prior to loading
the operands into the target FPR. The conversion and
loading steps are as follows:

Let WORDgy3; be the floating-point single-precision
operand accessed from storage.

Normalized Operand

if WORD,.¢ > 0 and WORD,.g < 255 then
FRTo:«' haad WORDOA
FRT, « ~WORD,
FRT5.63 +~ WORD 3 Il 20

Denormalized Operand
if WORD,.g = 0 and WORDyg.3; # 0 then
sign « WORD,
exp « —126
fracy.g, + 0bO || WORDg 5, || 2°0
normalize the operand
Do while fracy = 0
frac « frac,.5, Il ObO
exp « exp — 1
End
FRT, « sign
FRT;.q1 « exp + 1023
FRT 13,63 « fracy.sy

Zero [Infinity] NaN
if WORD,.g = 255 or WORD, .3, = 0 then
FRT0:1 - WORDO_1
FRT, « WORD,
FRT, « WORD,
FRTs5.43 « WORD,.5, || 220

For double-precision Load Floating-Point instructions,
no conversion is required as the data from storage is
copied directly into the FPR.

Many of the Load Floating-Point instructions have an
“update” form, in which register RA is updated with
the effective address. For these forms, if RA#0, the
effective address is placed into register RA and the
storage element (word or doubleword) addressed by
EA is loaded into FRT.

Note: Recall that RA, RB, and RT denote General
Purpose Registers, while FRA, FRB, FRC and FRT
denote Floating-Point Registers.

Byte order of PowerPC is Big-Endian by default; see
Appendix D, “Little-Endian Byte Ordering” on
page 235 for PowerPC systems operated with Little-
Endian byte ordering.

Chapter 4. Floating-Point Processor 99

Load Floating-Point Single D-form

Ifs FRT,D{RA)

48 FRT RA D
0 6 11 16 31

if RA =0 thenb « 0
else b « (RA)
EA « b + EXTS(D)

FRT « DOUBLE(MEM(EA, 4))

Let the effective address (EA) be the sum (RA|0)+D.

The word in storage addressed by EA is interpreted
as a floating-point single-precision operand. This
word is converted to floating-point double format (see

page 99) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update
D-form

Ifsu FRT,D(RA)

Load Floating-Point Single Indexed
X-form

Ifsx FRT,RA,RB

31 FRT RA RB 5§35 /
0 8 11 18 21 31

if RA =0 thenb « 0
else b « (RA)
EA « b + (RB)

FRT « DOUBLE(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA0)+ (RB).

The word in .storage addressed by EA is interpreted
as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 99) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update
Indexed X-form

Ifsux FRT,RA,RB

49 FRT RA D
0 6 1 16 31

31 FRT RA RB 567 /
0 6 11 16 21 31

EA « (RA) + EXTS(D)
FRT « DOUBLE(MEM(EA, 4))
RA « EA

Let the effective address (EA) be the sum (RA)+D.

The word in storage addressed by EA is interpreted .

as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 99) and placed into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
FRT « DOUBLE(MEM(EA, 4))
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).

The word in storage addressed by EA is interpreted

as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 99) and placed into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

100 PowerPC Architecture First Edition

Load Floating-Point Double D-form

Ifd FRT,D(RA)

50 FRT RA D
0 6 11 18 31

if RA=0thenbeod
else b « (RA)
EA « b + EXTS(D)

FRT « MEM(EA, 8)

Let the effective address (EA)-be the sum (RA|0)+ D.

The doubleword in storage addressed by EA is placed
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update
D-form

ifdu FRT,D(RA)

Load Floating-Point Double Indexed
X-form

Ifdx FRT,RA,RB

31 FRT RA RB 599 /
0 3 11 16 21 31

if RA=0thenb « 8
else b « (RA)
EA « b + (RB)

FRT « MEM(EA, 8)

Let the effective address (EA) be the sum
(RA}0)+(RB).

The doubleword in storage addressed by EA is placed
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update
Indexed X-form

Ifdux FRT,RA,RB

51 FRT RA D
0 6 11 16 3

31 FRT RA RB 631 /
0 6 11 16 21 31

EA « (RA) + EXTS(D)

FRT « MEM(EA, 8)

RA « EA

Let the effective address (EA) be the sum (RA)+D.

The doubleword in storage addressed by EA is placed
into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)

FRT « MEM(EA, 8)

RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).

The doubleword in storage addressed by EA is placed
into register FRT. '

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Processor 101

4.6.3 Floating-Point Store Instructions

There are three basic forms of store instruction,
single-precision, double-precision, and integer. The
integer form is provided by the optional Store
Floating-Point as Integer Word instruction, described
on page 210. Because the FPRs support only floating-
point double format for floating-point data, single-
precision Store Floating-Point instructions convert
double-precision data to single format prior to storing
the operands into storage. The conversion steps are
as follows:

Let WORD,.3, be the word in storage written to.
!
No Denormalization Required (includes Zero | Infinity
I NaN)
if FRS,.;; > 896 or FRS;.43 = 0 then
WORD,,; «+ FRS,;
WORDy.31 « FRS5:3,

Denormalization Required
if 874 < FRS,.,; < 896 then
sign « FRS,
exp « FRS;.,, — 1023
frac « Ob1 " FRS12:63
Denormalize operand
‘Do while exp < —126
frac « 0bO || fracy.¢o
exp «exp + 1
End
WORD,, « sign
WORD;.g « 0x00
WORDg.3; «+ fracy.ps .
else WORD « undefined

Notice that if the value to be stored by a single-
precision Store Floating-Point instruction is larger in
magnitude than the maximum number representable
in single format, the first case above (No Denormal-
ization Required) applies. The result stored in WORD
is then a well-defined value, but is not numerically
equal to the value in the source register (i.e., the
result of a single-precision Load Floating-Point from
WORD will not compare equal to the contents of the
original source register).

For double-precision Store Floating-Point instructions
and for the Store Floating-Point as Integer Word
instruction, no conversion is required as the data
from the FPR is copied directly into storage.

Many of the Store Floating-Point instructions have an
“update” form, in which register RA is updated with
the effective address. For these forms, if RA#0, the
effective address is placed into register RA.

Note: Recéll that RA, RB, and RT denote General
Purpose Registers, while FRA, FRB, FRC and FRT
denote Floating-Point Registers.

Byte order of PowerPC is Big-Endian by default; see
Appendix D, “Littie-Endian Byte Ordering” on
page 235 for PowerPC systems operated with Little-
Endian byte ordering. '

102 PowerPC Architecture First Edition

Store Floating-Point Single D-form

stfs FRS,D(RA)

52 FRS RA D
0 6 11 16 31

if RA =0 then b « 9
else b « (RA)
EA « b + EXTS(D)

MEM(EA, 4) « SINGLE(FRS)

Let the effective address (EA) be the sum (RA|0)+D.
The contents of register FRS is converted to single
format (see page 102) and stored into the word in

storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update
D-form

stfsu FRS,D(RA)

Store Floating-Point Single Indexed
X-form

stfsx FRS,RA,RB

31 FRS RA RB 663 /
11 16 21 31

0 6

if RA =0 then b « 0
else b « (RA)
EA « b + (RB)

MEM(EA, 4) « SINGLE(FRS)

Let the effective address (EA) be the sum
(RA]0)+ (RB).

The contents of register FRS is converted to single
format (see page 102) and stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update
Indexed X-form

stfsux FRS,RA,RB

53 FRS RA D
0 6 11 16 31

31 FRS RA RB 695 /
0 8 11 16 21 31

EA « (RA) + EXTS(D)

MEM(EA, 4) « SINGLE(FRS)

RA « EA

Let the effective address (EA) be the sum (RA)+D.
The contents of register FRS is converted to single
format (see page 102) and stored into the word in
storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)

MEM(EA, 4) « SINGLE(FRS)

RA « EA

Let the effective address {(EA) be the sum (RA)+ (RB).
The contents of register FRS is converted to single
format (see page 102) and stored into the word in
storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Processor 103

Store Floating-Point Double D-form

stfd FRS,D(RA)

54 FRS RA D
0 8 11 16 : 3

if RA =0 thenb « 0
else b « (RA)
EA « b + EXTS(D)
MEM(EA, 8) « (FRS)

Let the effective address (EA) be the sum (RA|0}+D.

The contents of register FRS is stored into the
doubleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update
D-form

stfdu FRS,D(RA)

Store Floating-Point Double Indexed
X-form

stfdx FRS,RA,RB

31 FRS RA RB 727 /
0 6 11 16 21 31

if RA =0 thenb ¢« 8
else b « (RA)
EA ¢« b + (RB)

MEM(EA, 8) « (FRS)

Let the effective address (EA) be the sum
(RA|0) + (RB).

The contents of register FRS is stored into the
doubleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update
Indexed X-form

stfdux FRS,RA,RB

55 FRS RA D
0 8 11 16 31

31 FRS RA RB 759 /
0 8 11 16 21 31

EA « (RA) + EXTS(D)

MEM(EA, 8) « (FRS)

RA « EA

Let the effective address (EA) be the sum (RA)+ D.

The contents of register FRS is stored into the
doubleword in storage addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)

MEM(EA, 8) « (FRS)

RA « EA

Let the effective address (EA) be the sum {(RA)+ (RB).

The contents of register FRS is stored into the
doubleword in storage addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

104 PowerPC Architecture First Edition

4.6.4 Floating-Point Move Instructions

These instructions copy data from one floating-point
register to another with data modifications as

described for each instruction. These instructions do
not modify the FPSCR.

Floating Move Register X-form

Floating Negate X-form

fror FRT,FRB (Rc=0) fneg FRT,FRB (Rc=0)
fmr. FRT,FRB (Re=1) fneg. FRT,FRB (Rc=1)

63 FRT | 4/ | FRB 72 Rc 63 FRT | /1 | FRB 40 Rc
0 [} 1 16 21 3 0 6 11 16 21 31

The contents of register FRB is placed into register
FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Absolute Value X-form

fabs FRT,FRB {(Rc=0)

fabs. FRT,FRB (Rc=1)
63 FRT 1 FRB 264 Re

0 6 11 16 21 31

The contents of register FRB with bit 0 set to zero is
placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)

The contents of register FRB with bit 0 inverted is
placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)

Floating Negative Absolute Value
X-form

fnabs FRT,FRB (Rc=0)
fnabs. FRT,FRB (Rc=1)

63 FRT 1! FRB 136 Rc
0 6 1 16 21 31

The contents of register FRB with bit 0 set to one is
placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)

Chapter 4. Floating-Point Processor 105

4.6.5 Floating-Point Arithmetic Instructions

Floating Add [Single] A-form

Floating Subtract [Single] A-form

fadd FRT,FRA,FRB (Rc=0) fsub FRT,FRA,FRB {Rc=0)
fadd. FRT,FRA,FRB (Re=1) fsub. FRT,FRA,FRB (Rc=1)
[Power mnemonics: fa, fa.] [Power mnemonics: fs, fs.]

63 FRT FRA FRB 1 21 |Rc 63 FRT FRA FRB mn 20 |Rc
0 8 1 16 21 26 31 0 6 ik 16 21 26 31
fadds FRT,FRA,FRB {Rc=0) fsubs FRT,FRA,FRB (Rc= O)
fadds. FRT,FRA,FRB (Rc=1) fsubs. FRT,FRA,FRB {Rc=1)

59 FRT FRA FRB " 21 |Rc 59 FRT FRA FRB 1 20 |Rc
0 8 11 16 21 26 31 0 6 11 16 21 26 31

The floating-point operand in register FRA is added to
the floating-point operand in register FRB. If the most
significant bit of the resultant significand is not a one
the result is normalized. The result is rounded to the
target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point addition is based on exponent compar-
ison and addition of the two significands. The expo-
nents of the two operands are compared, and the
significand accompanying the smaller exponent is
shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal.
The two significands are then added algebraically to
form an intermediate sum. All 53 bits in the
significand as well as all three guard bits (G, R, and
X) enter into the computation.

If a carry occurs, the sum’s significand is shifted right
one bit position and the exponent is increased by one.

FPSCRgpge is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR Fi
FX OX UX XX
VXSNAN VXIS|
CR1 (if Rc=1)

The floating-point operand in register FRB is sub-
tracted from the floating-point operand in register
FRA. [f the most significant bit of the resultant
significand is not a one the result is normalized. The
result is rounded to the target precision under control
of the Floating-Point Rounding Control field RN of the
FPSCR and placed into register FRT.

The execution of the Floating Subtract instruction is
identical to that of Floating Add, except that the con-
tents of FRB participates in the operation with its sign
bit (bit 0) inverted.

FPSCReprr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRye=1.

Special Registers Altered:
FPRF FR Fl
FX OX UX XX
VXSNAN VXIS!
CR1 (if Re=1)

106 PowerPC Architecture First Edition

Floating Multiply [Single] A-form

fmul FRT,FRA,FRC (Rc=0)
fmul. FRT,FRA,FRC (Rc=1)

[Power mnemonics: fm, fm.]

Floating Divide [Single] A-form

fdiv FRT,FRA,FRB {Rc=0)
fdiv. FRT,FRA,FRB (Rc=1)

[Power mnemonics: fd, fd.]

63 FRT FRA n FRC 25 |Rec

63 FRT -} FRA FRB 1 18 |Rc

0o 6 1 16 21 26 31 0 6 11 16 21 26 31
fmuls FRT,FRA,FRC (Rc=0) fdivs FRT,FRA,FRB (Rc=0)
fmuls. FRT,FRA,FRC (Rc=1) fdivs. FRT,FRA,FRB (Rc=1)

59 FRT FRA " FRC 25 |Rc 59 FRT FRA FRB 11 18 |Rc
0 6 11 16 21 26 31 0 6 1 16 21 26 31

The floating-point operand in register FRA is multi-
plied by the floating-point operand in register FRC.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Contro! field RN of the FPSCR
and placed into register FRT.

Floating-point multiplication is based on exponent
addition and multiplication of the significands.

FPSCRrpge is set to the class and sign of the result,
except for Invalid Operation Exceptions when

Special Registers Aitered:
FPRF FR Fi
FX OX UX XX
VXSNAN VXIMZ
CR1 (if Re=1)

The floating-point operand in register FRA is divided
by the floating-point operand in register FRB. The
remainder is not supplied as a resulit.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

Floating-point division is based on exponent sub-
traction and division of the significands.

FPSCRgpge is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1 and Zero Divide Exceptions when
FPSCRZE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX ZX XX
VXSNAN VXIDlI vXZDZ
CR1 (if Rc=1)

Chapter 4. Floating-Point Processor 107

4.6.6 Floating-Point Multiply-Add Instructions

These instructions combine a multiply and add opera-
tion without an intermediate rounding operation. The
fraction part of the intermediate product is 106 bits

wide, and all 106 bits take part in the add/subtract
portion of the instruction.

Floating Multiply-Add [Single] A-form

fmadd FRT,FRA,FRC,FRB
fmadd. FRT,FRA,FRC,FRB

[Power mnemonics: fma, fma.]

{Rc=0)
(Rc=1)

63 FRT FRA FRB FRC 29 |Rc

0 6 1 16 21 26 31
fmadds FRT,FRA,FRC,FRB (Rc=0)
fmadds. FRT,FRA,FRC,FRB (Rc=1)
59 FRT FRA FRB FRC 29 |Rc
0 6 11 16 21 26 31

The operation
FRT « [(FRA)x{FRC)] + (FRB)
is performed.

The floating-point operand in register FRA is multi-
plied by the floating-point operand in register FRC.
The floating-point operand in register FRB is added to
this intermediate result.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

FPSCRepgre is set to the class and sign of the result,
except for Invalid Operation Exceptions when

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISt VXIMZ
CR1 (if Rc=1)

Fioating Multiply-Subtract [Single]
A-form '

FRT,FRA,FRC,FRB
‘FRT,FRA,FRC,FRB

[Power mnemonics: fms, fms.]

fmsub
fmsub.

(Rc=0)
{Rc=1)

63 FRT FRA FRB FRC | 28 {Rc

0 6 11 16 21 26 3
frmsubs FRT,FRA,FRC,FRB (Rc=0)
fmsubs. FRT,FRA,FRC,FRB (Rc=1)
59 FRT | FRA | FRB FRC | 28 [Rc
0 8 11 16 21 26 31

The operation
FRT « [(FRA)x(FRC)] — (FRB)
is performed.

The floating-point operand in register FRA is multi-
plied by the floating-point operand in register FRC.
The floating-point operand in register FRB is sub-
tracted from this intermediate result.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

FPSCRepgr is set to the class and sign of the resuit,

except for Invalid Operation Exceptions when
FPSCRyg=1.
Special Registers Altered:

FPRF FR FI

FX OX UX XX

VXSNAN VXISt VXIMZ

CR1 (if Re=1)

108 PowerPC Architecture First Edition

Floating Negative Multiply-Add [Single]
A-form

Floating Negative Multiply-Subtract
[Single] A-form

fnmadd FRT,FRA,FRC,FRB (Rc=0) fnmsub FRT,FRA,FRC,FRB {Rc=0)
famadd. FRT,FRA,FRC,FRB (Rc=1) fnmsub. FRT,FRA,FRC,FRB (Rc=1)
[Power mnemonics: fnma, fnma.] [Power mnemonics: fams, fnms.])

63 FRT FRA FRB FRC 31 |Rc 63 FRT FRA FRB FRC 30 [Rc
0 6 11 16 21 26 31 0 6 11 16 21 26 31
fnmadds FRT,FRA,FRC,FRB (Rc=0) fnmsubs FRT,FRA,FRC,FRB {Rc=0)
fnmadds. FRT,FRA,FRC,FRB (Rc=1) fnmsubs. FRT,FRA,FRC,FRB {Rc=1)

59 FRT FRA FRB FRC 31 |Rc
0 3 1 16 21 26 31

59 FRT FRA FRB FRC 30 |Rc
0 6 11 16 21 26 31

The operation
FRT « — ([(FRA)x(FRC)] + (FRB))
is performed.

The floating-point operand in register FRA is multi-
plied by the floating-point operand in register FRC.
The floating-point operand in register FRB is added to
this intermediate result.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the
FPSCR, then negated and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Add instruc-
tion and then negating the result, with the following
exceptions:

= QNaNs propagate with no effect on their “sign”
bit.

= QNaNs that are generated as the result of a disa-
bled Invalid Operation Exception have a “sign” bit
of zero.

= SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain
the “sign” bit of the SNaN.

FPSCRepgrr is set to the class and sign of the result,

except for Invalid Operation Exceptions when
FPSCRyg=1.
Special Registers Altered:

FPRF FR FI

FX OX UX XX

VXSNAN VXISI VXIMZ

CR1 (if Rc=1)

The operation
FRT « — ([(FRA)x(FRC)] — (FRB))
is performed.

The floating-point operand in register FRA is mutti-
plied by the floating-point operand in register FRC.
The floating-point operand in register FRB is sub-
tracted from this intermediate resuit.

If the most significant bit of the resultant significand is
not a one the result is normalized. The resuit is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the
FPSCR, then negated and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Subtract
instruction and then negating the result, with the fol-
lowing exceptions:

= QNaNs propagate with no effect on their “sign”
bit.

= QNaNs that are generated as the result of a disa-
bled Invalid Operation Exception have a “sign” bit
of zero.

= SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain
the “sign” bit of the SNaN.

FPSCRepge is set to the class and sign of the result,

except for Invalid Operation Exceptions when
FPSCRyg=1.
Special Registers Altered:

FPRF FR FI

FX OX UX XX

VXSNAN VXIS! VXIMZ

CR1 (if Rc=1)

Chapter 4. Floating-Point Processor 109

4.6.7 Floating-Point Rounding and Conversion Instructions

—— Programming Note

Examples of uses of these instructions to perform
various conversions can be found in Appendix E.3,

“Floating-Point Conversions” on page 250.

Floating Round to Single-Precision
X-form

Floating Convert To Inieger Doubleword
X-form

frsp FRT,FRB {Rc=0) fctid FRT,FRB (Rc=0)

frsp. FRT,FRB (Re=1) fetid. FRT,FRB {Rc=1)
63 FRT 7 FRB 12 Re 63 FRT m FRB 814 Rc|

0 6 11 16 21 31 0 6 11 16 21 31

If it is already in single-precision range, the floating-
point operand in register FRB is placed into register
FRT. Otherwise the floating-point operand in register
FRB is rounded to single-precision using the rounding
mode specified by FPSCRgy and placed into register
FRT.

The rounding is described fully in Appendix B.1,
“Floating-Point Round to Single-Precision Model” on
page 213.

FPSCRepgr is set to the class and sign of the result,

except for Invalid Operation Exceptions when
FPSCRyg=1. ‘
Special Registers Altered:

FPRF FR FI

FX OX UX XX

VXSNAN

CR1 (if Rc=1)

The floating-point operand in register FRB is con-
verted to a 64-bit signed fixed-point integer, using the
rounding mode specified by FPSCRgy, and placed into
register FRT.

If the operand in FRB is greater than 2% — 1, then
FRT is set to Ox7FFF_FFFF_FFFF_FFFF. If the
operand in FRB is less than — 2% then FRT is set to
0x8000_0000_0000_0000.

The conversion is described fully in Appendix B.2,
“Floating-Point Convert to Integer Model” on
page 218.

Except for enabled Invalid Operation Exceptions,
FPSCRepgr is undefined. FPSCRgg is set if the result
is incremented when rounded. FPSCRg, is set if the
result is inexact.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVi
CR1 (if Rc=1)

110 PowerPC Architecture First Edition

Floating Convert To Integer Doubleword
with round toward Zero X-form _

Floating Convert To Integer Word
X-form

fctidz FRT,FRB (Rc=0) fctiw FRT,FRB (Rc=0)
fctidz. FRT,FRB (Rc=1) fctiw. FRT,FRB (Rc=1)

63 FRT " FRB 815 Rc 63 FRT 1" FRB 14 Re
0 6 11 16 21 31 0 6 11 16 21 31

The floating-point operand in register FRB is con-
verted to a 64-bit signed fixed-point integer, using the
rounding mode Round toward Zero, and placed into
register FRT.

If the operand in FRB is greater than 2% —1, then
FRT is set to Ox7FFF_FFFF_FFFF_FFFF. If the
operand in FRB is less than — 283, then FRT is set to
0x8000_0000_0000_0000.

The conversion is described fully in Appendix B.2,

“Floating-Point Convert to Integer Model” on
page 218.

Except for enabled Invalid Operation Exceptions,
FPSCRgpgr is undefined. FPSCRgy is set if the result
is incremented when rounded. FPSCR is set if the
result is inexact.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
FPRF {undefined) FR Fl
FX XX
VXSNAN VXCVI
CR1 (if Re=1)

The floating-point operand in register FRB is con-
verted to a 32-bit signed fixed-point integer, using the
rounding mode specified by FPSCRgy, and placed in
bits 32:63 of register FRT. Bits 0:31 of register FRT
are undefined.

If the operand in FRB is greater than 23" — 1, then bits
32:63 of FRT are set to Ox7FFF_FFFF. If the operand
in FRB is less than — 23!, then bits 32:63 of FRT are
set to 0x8000_0000.

The conversion is described fully in Appendix B.2,
“Floating-Point Convert to Integer Model” on
page 218.

Except for enabled Invalid Operation Exceptions,
FPSCRgpgre is undefined. FPSCRgg is set if the result
is incremented when rounded. FPSCRg, is set if the
result is inexact. '

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Re=1)

Chapter 4. Floating-Point Processor 111

Floating Convert To Integer Word with
round toward Zero X-form

Floating Convert From Integer
Doubleword X-form

fctiwz FRT,FRB (Rc=0) fefid FRT,FRB {Rc=0)

fctiwz. FRT,FRB (Rc=1) fefid. FRT,FRB (Rc=1)
63 FRT /- FRB 15 Rc 63 FRT " FRB 846 Re

0 6 1 16 21 31 0 6 1" 16 21 31

The floating-point operand in register FRB is con-
verted to a 32-bit signed fixed-point integer, using the
rounding mode Round toward Zero, and placed in bits
32:63 of register FRT. Bits 0:31 of register FRT are
undefined.

If the operand in FRB is greater than 23! — 1, then bits
32:63 of FRT are set to Ox7FFF_FFFF. If the operand
in FRB is less than — 2%, then bits 32:63 of FRT are
set to 0x8000_0000.

The conversion is described fully in Appendix B.2,
“Floating-Point Convert to Integer Model” on
page 218.

Except for enabled Invalid Operation Exceptions,
FPSCRgpgre is undefined. FPSCRgy is set if the result
is incremented when rounded. FPSCRg, is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

The 64-bit signed fixed-point operand in register FRB
is converted to an infinitely precise floating-point
integer. If the result of the conversion is already in
double-precision range it is placed into register FRT.
Otherwise the result of the conversion is rounded to
double-precision using the rounding mode specified
by FPSCRgy and placed into register FRT.

The conversion is described fully in Appendix B.3,
“Floating-Point Convert from Integer Model” on
page 221.

FPSCRrpre is set to the class and sign of the result.
FPSCRgr is set if the result is incremented when
rounded. FPSCR is set if the result is inexact.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Rc=1)

112 PowerPC Architecture First Edition

4.6.8 Floating-Point Compare Instructions

The floating-point Compare instructions compare the
contents of two floating-point registers. Comparison
ignores the sign of zero (i.e., regards +0 as equal to
—0). The comparison can be ordered or unordered.

The comparison sets one bit in the designated CR
field to one, and the other three to zero. The FPCC is
set in the same way.

The CR field and the FPCC are interpreted as follows:

Bit Name Description

0 FL (FRA) < (FRB)

1 FG (FRA) > (FRB)

2 FE (FRA) = (FRB)

3 FU (FRA) ? (FRB) (unordered)

Floating Compare Unordered X-form

Floating Compare Ordered X-form

fcmpu BF,FRA,FRB fcmpo BF,FRA,FRB
63 BF | //| FRA FRB 0 / 63 BF }//| FRA FRB 32 /
0 6 9 |11 16 21 31 0 6 9 |11 16 21 31

if (FRA) is a NaN or

(FRB) is a NaN then ¢ « 0b0801
else if (FRA) < (FRB) then ¢ « 8b1000
else if (FRA) > (FRB) then ¢ ¢« 0b0100
else c « 6b0O10

FPCC « ¢
CRaxgr.axgr+3 ¢ €

if (FRA) is an SNaN or
(FRB) is an SNaN then
VXSNAN « 1

The floating-point operand in register FRA is com-
pared to the floating-point operand in register FRB.
The result of the compare is placed into CR field BF
and the FPCC.

If either of the operands is a NaN, either quiet or sig-
nalling, then CR field BF and the FPCC are set to
reflect unordered. If either of the operands is a Sig-
nalling NaN, then VXSNAN is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN

if (FRA) is a NaN or

(FRB) is a NaN then ¢ « 0b6GO1
else if (FRA) < (FRB) then ¢ « 0b1006O
else if (FRA) > (FRB) then ¢ « 0b0106
else ¢ « 0bo010

FPCC ¢« ¢
CRaxgraxBF+3 € C

if (FRA) is an SNaN or
(FRB) is an SNaN then
VXSNAN « 1
if VE = 0 then VXVC « 1
else if (FRA) is a QNaN or
(FRB) is a QNaN then VXVC « 1

The floating-point operand in register FRA is com-
pared to the floating-point operand in register FRB.
The result of the compare is placed into CR field BF
and the FPCC.

If either of the operands is a NaN, either quiet or sig-
nalling, then CR field BF and the FPCC are set to
reflect unordered. If either of the operands is a Sig-
nalling NaN, then VXSNAN is set and, if Invalid Opera-
tion is disabled (VE=0), VXVC is set. If neither
operand is a Signalling NaN but at least one operand
is a Quiet NaN, then VXVC is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN VXVC

Chapter 4. Floating-Point Processor 113

4.6.9 Floating-Point Status and Control Register Instructions

Every Floating-Point Status and Control Register
instruction appears to synchronize the effects of all
floating-point instructions executed by a given
processor. Executing a Floating-Point Status and
Control Register instruction ensures that all floating-
point instructions previously initiated by the given
processor appear to have completed before the
Floating-Point Status and Control Register instruction
is initiated, and that no subsequent floating-point
instructions appear to be initiated by the given
processor until the Floating-Point Status and Control
Register instruction has completed. In particular:

= all exceptions that will be caused by the previ-
ously initiated instructions are recorded in the

FPSCR before the Floating-Point Status and
Control Register instruction is initiated;

= all invocations of the system floating-point
enabled exception. error handler that will be
caused by the previously initiated instructions
have occurred before the Floating-Point Status
and Control/ Register instruction is initiated; and

= no subsequent floating-point instruction that
depends on or alters the settings of any FPSCR
bits appears to be initiated until the Floating-
Point Status and Control/ Register instruction has
completed.

(Floating-point Storage Access instructions are not
affected.)

Move From FPSCR X-form

mffs FRT {Re=0)
mffs. FRT (Rc=1)

63 FRT " I 583 Rc
0 6 11 16 21 31

The contents of the FPSCR is placed into bits 32:63 of
register FRT. Bits 0:31 of register FRT are undefined.

Special Registers Altered:
CR1 (if Rc=1)

Move to Condition Register from FPSCR
X-form

mcrfs BF,BFA
63 BF |/ |BFA /) 1] 64 /
0 6 CRER 14{ 16 21 31

The contents of FPSCR field BFA are copied to CR
field BF. All exception bits copied are reset to zero in
the FPSCR.

Special Registers Altered:

CR field BF

FX OX (if BEA=0)
UX ZX XX VXSNAN (if BFA=1)
VXISI VXIDI VXZDZ VXIMZ (if BFA=2)
VXVC (if BFA=3)
VXSOFT VXSQRT VXCV! (if BFA=5)

114 PowerPC Architecture First Edition

Move To FPSCR Field Immediate
X-form

mtfsfi BF,U (Rc=0)
mitfsfi. BF,U (Rc=1)

63 BF |/ u |/ 134 Rc
[6 9 |11 16 20| 21 31

The value of the U field is placed into FPSCR field BF.

Special Registers Altered:
FPSCR field BF
CR1 (if Re=1)

—— Programming Note

When FPSCR,.; is specified, bits 0 (FX) and 3 {(OX)
are set to the values of Uy and U; (i.e., even if
this instruction causes OX to change from 0 to 1,
FX is set from U, and not by the usual rule that
FX is set to 1 when an exception bit changes from
0 to 1). Bits 1t and 2 (FEX and VX) are set
according to the usual rule, given on page 84, and
not from U,.,.

Move To FPSCR Fields XFL-form

mitfsf FLM,FRB (Rc=0)
mtfsf. FLM,FRB (Rc=1)

63 |/ FM [/ ErB 711 Rc
0 6|7 1J 16 21 31

The contents of bits 32:63 of register FRB are placed
into the FPSCR under control of the field mask speci-
fied by FLM. The field mask identifies the 4-bit fields
affected. Let i be an integer in the range 0-7. |If
FLM;=1 then FPSCR field i (FPSCR bits 4xi through
4xi+3) is set to the contents of the corresponding
field of the low-order 32 bits of register FRB.

Special Registers Altered:
FPSCR fields selected by mask
CR1 {(if Rc=1)

—— Programming Note

Updating fewer than all eight fields of the FPSCR
may have substantially poorer performance on
some implementations than updating all the fields.

—— Programming Note

When FPSCR,, 5 is specified, bits 0 (FX) and 3 (OX)
are set to the values of (FRB);, and (FRB)gs (i.e.,
even if this instruction causes OX to change from
0 to 1, FX is set from (FRB);, and not by the usual
rule that FX is set to 1 when an exception bit
changes from 0 to 1). Bits 1 and 2 (FEX and VX)
are set according to the usual rule, given on page
84, and not from (FRB)33.34.

Chapter 4. Floating-Point Processor 115

Move To FPSCR Bit 0 X-form

Move To FPSCR Bit 1 X-form

mtfsb0 BT {Rc=0) mtfsb1 BT (Rc=0)
mtfsbO0. BT {Rc=1) mtfsb1. BT (Rc=1)
63 BT 1l i 70 Rc 63 BT " 1 38 Rc

0 6 1 16 21 31 0 6 11 16 21 31
Bit BT of the FPSCR is set to zero. Bit BT of the FPSCR is set to one.
Special Registers Altered: Special Registers Altered:

FPSCR bit BT FPSCR bit BT

CR1 (if Rc=1) CR1 (if Rec=1)

—— Programming Note

Bits 1 and 2 (FEX and VX) cannot be explicitly
reset.

Programming Note

Bits 1 and 2 (FEX and VX) cannot be explicitly set.

116 PowerPC Architecture First Edition

Part 2. PowerPC Virtual Environment Architecture

This part defines the additional instructions and facili-
ties, beyond those of the PowerPC User Instruction
Set Architecture. It covers the storage model and

related instructions and facilities available to the
application programmer, and the Time Base as seen
by the application programmer.

Chapter 5. Storage Model
5.1 Definitions and Notation 119

5.2 Introduction 120
5.3 Single-copy Atomicity 120
5.4 Memory Coherence 120
5.5 Storage Control Attributes 121
56 CacheModels 122
5.7 Shared Storage 125
5.8 Virtual Storage 128
Chapter 6. Effect of Operand
Placement on Performance 129
6.1 Instruction Restart 130
6.2 Atomicity and Order 130

Chapter 7. Storage Control

Instructions 131
7.1 Parameters Useful to Application
Programs 131

7.2 Cache Management instructions 132
7.3 Enforce In-order Execution of I/O

Instruction 135
Chapter 8. Time Base 137
8.1 Time Base Instructions 137

8.2 Reading the Time Base on 64-bit
Implementations 138

8.3 Reading the Time Base on 32-bit
Implementations 138

8.4 Computing Time of Day from the
TimeBase 138

Part 2. PowerPC Virtual Environment Architecture 117

118 PowerPC Architecture First Edition

Chapter 5. Storage Model

5.1 Definitions and Notation

The following definitions, in addition to those specified
in Book |, are used in this document.

main storage

The common storage that a processor or other
mechanism accesses when it has no cache or has
no copy of the storage being accessed in its
cache.

sequential execution

A -model for the execution of a sequence of
instructions (program) in which one instruction is
executed and completed before the next instruc-
tion is begun. Instructions are executed in the
order in which they appear in the program,
except following the execution of a branch
instruction, which causes sequential execution to
continue at the focation specified by the branch
instruction.

program order

The execution of instructions in the strict order in
which they occur in the program. See sequential
execution above.

processor

A hardware component that executes the
PowerPC instructions specified in a program.
storage location

One or more sequential bytes of storage begin-
ning at the address computed by a Storage
Access instruction. The number of bytes com-
prising the location depends on the type of
Storage Access instruction being executed.

load

An instruction that copies one or more bytes from
a storage location to one or more registers (GPRs
or FPRs).

store

An instruction that copies one or more bytes from
one or more registers (GPRs or FPRs) to a
storage location.

system

A combination of processors, storage, and associ-
ated mechanisms that is capable of executing

programs. Sometimes the reference to system
includes services provided by the operating
system.

uniprocessor

A system that contains one PowerPC processor.
multiprocessor

A system that contains two or more PowerPC
processors. :

shared storage multiprocessor

A multiprocessor that contains some common
storage, which all the PowerPC processors in the
system can access.

performed

A load is performed with respect to all other
processors (and mechanisms) when the value to
be returned by the load can no longer be
changed by a subsequent store by any processor
(or other mechanism).

A store is performed with respect to all other
processors (and mechanisms) when any load
from the same location used by the store returns
the value stored (or a value stored subsequently).
storage page

The aligned unit of storage that is managed by
the virtual storage system and that can be
assigned storage control attributes.

block

The aligned unit of storage operated on by each
Cache Management instruction. The size of a
block can vary by instruction and by implementa-
tion. The maximum block size is one page.
aligned storage access

A load or store is aligned if the address of the
target storage location is a multiple of the size of
the transfer effected by the instruction.

atomic access ’

A storage access executed by a processor during
which no other processor or mechanism can
access any byte of the target location between
the time the processor performing the access
accesses any byte of the location and the time
that it completes the access to all bytes of that
location.

Chapter 5. Storage Model 119

5.2 Introduction

The PowerPC User Instruction Set Architecture
defines storage as a linear array of bytes indexed
from 0 to a maximum of 28 — 1{2% — 1}. Each byte is
identified by its index, called its address. Each byte
contains a value. This information is sufficient to
allow the programming of applications which require
no special features of any particular system environ-
ment. The PowerPC Virtual Environment Architecture,
described herein, expands this simple storage model
to include caches, virtual storage, and shared
storage multiprocessors. The PowerPC Virtual Envi-
ronment Architecture in conjunction with services
based on the PowerPC Operating Environment Archi-
tecture and provided by the operating system permit
explicit control of this expanded storage model. A
simple model for sequential execution allows at most
one storage access to be performed at a time, and
requires that all storage accesses appear to be per-
formed in program order. In contrast to this simple
model, the PowerPC architecture specifies a relaxed
model of memory consistency. In a multiprocessor
system that allows multiple copies of a location,
aggressive implementations of the architecture can
permit intervals of time during which different copies
of a location have different values. This chapter
describes features of the PowerPC architecture that
enable programmers to write correct programs for
this memory model.

5.3 Single-copy Atomicity

An access is single-copy atomic, or simply atomic, if it
is always performed in its entirety with no visible
fragmentation. Atomic accesses are thus serialized:
each happens in its entirety in some order, even
when that order is not specified in the program nor
enforced between processors.

In PowerPC the following single-register accesses are
always atomic:

= byte accesses (all bytes are aligned on byte
boundaries)

= halfword accesses aligned on halfword bounda-
ries

= word accesses aligned on word boundaries

= doubleword accesses aligned on doubleword
boundaries (64-bit implementations only)

No other accesses are guaranteed to be atomic. In
particular, multiple-register loads and stores are not
atomic, nor are floating-point doubleword accesses on
a 32-bit implementation.

The results for several combinations of loads and
stores to the same or overlapping locations are
described below.

1. When two processors execute atomic stores to
locations that do not overlap and no other stores
are performed to those locations, the content of
those locations is the same as if the two stores
were performed by a single processor.

2. When two processors execute atomic stores to
the same storage location, and no other store is
performed to that location, the content of that
location is the result stored by one of the
processors.

3. When two processors execute stores that have
the same target location and that are not guaran-
teed to be atomic, and no other store is per-
formed to that location, the result is some
combination of the bytes stored by both
processors.

4. When two processors execute stores to over-
lapped locations, and no other store is performed
to those locations, the result is some combination
of the bytes stored by the processors to the over-
lapping bytes. The portions of the locations that
do not overlap contain the bytes stored by the
processor storing to the location.

5. When a processor executes an atomic store to a
location, a second processor executes an atomic
load from that location, and no other store is per-
formed to that location, the value returned by the
load is the content of the location prior to the
store or the content of the location subsequent to
the store.

6. When a load and a store with the same target
location can be executed simultaneously, and no
other store is performed to the location, the value
returned by the load some combination of the
content of the location before the store and after
the store.

5.4 Memory Coherence

Coherence refers to the ordering of writes to a single
location. Atomic stores to a given location are
coherent if they are serialized in some order, and no
processor is able to observe any subset of those
stores as occurring in a conflicting order. This serial-
ization order is an abstract sequence of values; the
physical memory location need not assume each of
the values written to it. For example, if a processor
has a store-in cache, it may update a location several
times before the value is written to the physical
memory. The result of a store operation is not avail-
able to every processor at the same instant, and it
may be that a processor observes only some of the
values that are written to a location. However, when
a location is accessed atomically and coherently by
all processors, then, for any processor, the sequence
of values it loads from the location during any interval
of time forms a subsequence of the sequence of
values that the location logically held during that
interval. That is, a processor can never load a
“newer” value first and then, later, load an “older”
value.

120 PowerPC Architecture First Edition

As noted in Section 5.5, “Storage Control Attributes”
on page 121, the coherence of storage pages may be
managed by hardware or software depending on the
setting of the Memory Coherence attribute.

Memory coherence is managed in blocks called
coherence blocks. Their size is implementation-
dependent (see the Book IV, PowerPC Implementation
Features document for the implementation), but is
usually larger than a word and often the size of a
cache block.

5.41 Coherence Required

When a processor accesses a page in Memory Coher-
ence Required mode, each store to a location in that
page must be serialized with all stores to that location
by all other processors that also access the location
coherently. This can be implemented, for example, by
an ownership protocol that allows at most one
processor at a time to store to the location.

Coherence does not ensure that the result of a store
by one processor will be immediately visible to all
other processors and mechanisms in the system.
Only after a program has executed the sync instruc-
tion are previous storage accesses it executed guar-
anteed to be globally visible.

5.4.2 Coherence Not Required

When an accessed page is in Memory Coherence Not
Required mode, the processor need not enforce
storage coherence. This coherence mode may be
selected by software to improve performance when it
is known that the particular area of storage the
processor is accessing will not be accessed by
another processor or mechanism. In this mode, soft-
ware must ensure that the appropriate Cache Man-
agement instructions have been used to put storage
in a consistent state prior to changing the mode or
allowing access to that storage area by a different
processor or mechanism.

—— Programming Note

In a single-cache system, Coherence Required is
not necessary for correct coherent execution. In
fact, in such a system, Coherence Not Required
may give better performance.

5.5 Storage Control Attributes

Some operating systems may provide means to allow
programs to specify storage control attributes not
described in this document. The definition of these
attributes can be found in Part 3, “PowerPC Operating
Environment Architecture” on page 141. The fol-
lowing describes what is expected to be provided
when the operating system supports these functions.
The details may vary among operating systems, so
the details of the specific system being used must be
known before these functions can be used.

Generally, the program may use one of each of the
following pairs of storage attributes:

= Write Through Required or Not Required
= Caching Inhibited or Allowed
= Memory Coherence Required or Not Required

Not all combinations of these three modes are sup-
ported; see Part 3, “PowerPC Operating Environment
Architecture” on page 141 for further details.

A program can specify, through an operating system
service, the attributes for each page of storage to
which it has access. Each load or store will be per-
formed in the following manner, depending on the
setting of the storage control attributes for the page
of storage containing the addressed storage location.

Write Through
This attribute is meaningful only for Caching
Allowed storage. It provides the program control
over whether

= the processor is required to update the copy of
the storage location in the cache and in main
storage, or ’

» the processor is allowed to update the copy of
the storage location in the cache and to defer
the update of main storage.

Required
Loads use the copy in the cache if it is there.
Stores update the copy of the storage location
in the cache if it is in the cache and also
update the storage location in main storage.
Not Required '
Loads and stores use the copy in the cache if
it is there. The block containing the target
storage location may be copied to the cache.
The storage location in main storage need not
contain the value most recently stored to that
location.

Chapter 5. Storage Model 121

Caching

Inhibited
When caching is inhibited, the Write Through
attribute has no meaning. The load or store is
executed in the following manner:

1. The operation is performed to main
storage bypassing the cache (i.e., neither
the target location nor any of the block(s})
containing it are copied into the cache).

2. The operation causes an access
(load/store) of appropriate length (i.e.,
byte, halfword, word, etc.) to the target
location in main storage.

It is considered a programming error if a copy
of the target location of an access to Caching
Inhibited storage is in the cache. Software
must ensure that the location has not previ-
ously been brought into the cache or, if it has,
that it has been flushed from the cache. If the
programming error occurs, the result of the
access is boundedly undefined.
Allowed

When caching is allowed, the access is per-
formed in the following manner:

1. If the biock containing the target storage
location is in the cache, it is used.

2. If the block containing the target location
is not in the cache, the block(s) of storage
containing the target location may be
copied to the cache and, if the access is a
store, the target location is updated in the
cache if it is in the cache.

Memory Coherence
This attribute provides the program control over
whether the processor maintains storage coher-
ence:

Required
Stores by all processors to the same location
are serialized into some order and no
processor is able to observe any subset of

those stores as occurring in a conflicting”

order.

Not Required
The order in which one processor observes
the stores performed by one or more other
processors is undefined.

When coherence is required, its serialization func-
tion is effective for all supported combinations of
the Write Through and Caching modes (see Part 3,
“PowerPC Operating Environment Architecture” on
page 141).

When coherence is not required, the programmer
must manage the coherence of storage through use
of sync and Cache Management instructions, and
facilities provided by the operating system.

—— Programming Note

Software must ensure that all locations in a page
have been purged from the cache prior to
changing the storage mode for the page from
Caching Allowed to Caching Inhibited.

5.6 Cache Models

The PowerPC architecture does not require any partic-
ular cache organization and allows many different
implementations. However, for a program to execute
correctly on all implementations, the programmer
should assume that separate instruction and data
caches exist, and should program to the separate
cache model. The functions of these caches are
affected by the storage control attributes associated
with each storage access as described in 5.5,
“Storage Control Attributes” on page 121. Cache
Management instructions are provided so programs

" can manage the caches when needed. Depending on

the storage control attributes specified by the
program and the function being performed, the
program may need to use these instructions to guar-
antee that the function is performed correctly. The
Cache Management instructions are also useful to
optimize the use of memory bandwidth in such appli-
cations as graphics and numerically intensive com-
puting.. :

The processor is not required to maintain copies of
storage locations in the instruction cache consistent
with changes to storage resulting from the execution
of store instructions. Program management of the
cache is required when the program generates or
modifies code that will be executed (i.e., when the
program modifies data in storage and then attempts
to execute the modified data as instructions).

The instructions provided allow the program to

= invalidate the copy of storage in an instruction
cache block (ichi)

= perform context synchronization, as described in
Part 3, “PowerPC ~ Operating Environment
Architecture” on page 141 (isync)

= copy the content of a data cache block to main
storage (dcbst)

= copy the content of a data cache block to main
storage and make the copy of the block in the
data cache invalid (dcbf}

= set the content of a data cache block to zeroes
(dcbz)

= give a hint that a block of storage should be
copied into the data cache, so that the copy of
the block may be in the cache when subsequent
accesses to the block occur, thereby reducing
delays (dcbt, dcbtst)

The function of the Cache Management instructions
depends on the implementation of the caches and on .
the storage control attributes associated with the
cache block that is the target of the cache instruction.

There are many variations of cache implementations
and the following sections do not attempt to describe
them exhaustively. However, the variations that
affect the function of the Cache Management
instructions are discussed here.

122 PowerPC Architecture First Edition

—— Programming Note

Implementations will vary as to what instructions
need be executed to perform a function such as
code modification. Operating systems are encour-
aged to provide a service (implementation-
dependent) to perform the function in an efficient
manner.

5.6.1 Split or Dual Caches

A cache model in which there are separate caches for
instructions and data is called a “Harvard style”
cache. This style is the standard PowerPC cache
model; that is, it is the model assumed by this archi-
tecture and the function of the Cache Management
instructions depends on this model as well as on the
storage control attributes of the target storage block.
A copy of a target block in the cache is said to be
marked invalid if it will not be used for subsequent
accesses. The following sections describe the func-
tions performed by each of the Cache Management
instructions in this model.

5.6.1.1 Instruction Cache Block
Invalidate

Invalidating the target block causes any subsequent
fetch request for an instruction in the block to not find
the block in the cache and to be sent to storage. The
instruction performs the following operations:

1. If the target block is not accessible to the
program for loads, the system data storage error
handler may be invoked.

2. The target block in the instruction cache of the
executing processor-is marked invalid.

3. If the effective address has an attribute of Coher-
ence Required, the block is invalidated in the
instruction caches of all other processors in the
system.

4. This access need not be recorded, but if it is, it is
considered a load and not a store.

5.6.1.2 Data Cache Block Store

This instruction permits the program to ensure that
the latest version of the target storage block is in
main storage. The instruction performs the following
operations: :

1. If the target block is not accessible to the
program for loads, the system data storage error
handler may be invoked. ‘

2. Memory Coherence
Required

If the target block is in any of the data caches
in the system and has been modified, it is
copied to main storage.

Not Required
If the target block is in the data cache of the
executing processor and has been modified, it
is copied to main storage.
3. This access need not be recorded, but if it is it is
considered a load and not a store.

The above action is taken regardless of the setting of
the other storage control attributes.

5.6.1.3 Data Cache Block Flush

This instruction permits the program to ensure that
the latest version of the target storage block is in
main storage and no longer in the data cache. The
instruction performs the same operations as does the
Data Cache Block Store. In addition to those oper-
ations, the following is done.

Memory Coherence Required
If the target block is in any of the data caches in
the system, it is marked invalid in those data
caches.

Memory Coherence Not Required
If the target block is in the data cache of the exe-
cuting processor, it is marked invalid in that data
cache.

These actions are taken regardless of the setting of
the other storage control attributes.

5.6.1.4 Data Cache Block set to Zero

This instruction permits the program to set large
areas of storage to zeros in an efficient manner. The
instruction performs the following operations:

1. if the target block is not accessible to the
program for stores, the system data storage error
handier is invoked.

2. Write Through Required
Either each byte of the block in main storage is
set to 0x00, or the system alignment error
handler is invoked.

3. Caching Inhibited
Either each byte of the block in main storage is
set to O0x00, or the system alignment error
handler is invoked.

4. Memory Coherence

= Required

— If the target block is in the data cache of
the executing processor, each byte in the
block is set to 0x00 and all copies of the
block in all data caches are made con-
sistent.

— If the target block is not in the data
cache of the executing processor, the
block is established in the data cache
without fetching it from storage and each
byte in the block is set to 0x00. All
copies of the block in all data caches are
made consistent.

= Not Required

Chapter 5. Storage Model 123

— If the target block is in the data cache of
the executing processor, each byte in the
block is set to 0x00.

— If the target block is not in the data
cache of the executing processor, the
block -is established in the data cache
without fetching it from storage and each
byte in the block is set to 0x00.

5. This access must be recorded. It is considered a
store to the target location.

5.6.1.5 Data Cache Block Touch

The two Touch instructions (one for reading, the other
for writing) provide a mechanism by which a program
may avoid some of the delays due to accessing
storage by attempting to have the target storage
location in the cache prior to its first use. These
instructions are performance hints and operate as
follows:

1. If the target block is not accessible to the
program for loads, no other operation is per-
formed.

2. Caching Inhibited
The block is not copied into the cache and no
other operations are performed.

3. Caching Allowed

= Memory Coherence Required
If the block is not in the cache, the most
recent version of the block may be copied
into the cache.

= Memory Coherence Not Required
If the block is not in the cache, the block may
be copied into the cache from main storage
without regard for the location of the most
recently modified version.

4. This access need not be recorded, but if it is it is
considered a load and not a store.

If the instruction is Touch for Store and the block is
copied into the cache, it is copied in a manner such
that a subsequent store to the block will execute effi-
ciently.

The execution of either of these instructions never
causes the system data error handler to be invoked.

5.6.2 Combined Cache

A combined cache implementation provides a single
cache for instructions and data. For this implementa-
tion, the Instruction Cache Block Invalidate instruction
need not perform the same operations as it would for
an implementation with separate caches. It can be
treated as a no-op, but it is acceptable to invalidate
the instruction caches of other processors if the
addressed storage is in Coherence Required mode.

Following are recommended and required functions of
this instruction for combined cache implementations.

Prohibited Operations
It must not invalidate a block in the combined
cache that has been modified. The access must not
be treated as a store.

Unnecessary Operations
The access should not be treated as a load or
store, but to treat it as a load is not a violation of
the architecture.

Suggested Operations
If the program executing icbi does not have access
to the target block for loads, the system data
storage error handler should be invoked.

5.6.3 Write Through Data Cache

The Cache Management instructions affected by the
write through implementation of the data cache are
listed in this section. These instructions must perform
all the operations specified for a Harvard style cache
except as specified in this section. Some of the differ-
ences depend on whether the write through imple-
mentation is a write through to main storage or just a
write through to a second level of cache.

5.6.3.1 Write Through to Main Storage

1. Data Cache Block set to Zero
The processor may invoke the system alignment
error handler regardless of the setting of the
storage control attributes.

2. Data Cache Block Store
By definition, the cache cannot contain a modified
block. The processor is not required to copy the
target block to main storage.

3. Data Cache Block Flush
By definition, the cache cannot contain a modified
block. The processor is not required to copy the
target block to main storage.

5.6.3.2 Write Through to Multi-Level
Cache

For Data Cache Block set to Zero, the processor may
invoke the system alignment error handler regardless
of the setting of the storage control attributes.

If a cache is the interface to main storage for all
processors and other mechanisms that access
storage, that cache can be considered main storage
with respect to the Cache Management instructions.
Otherwise, the cache instructions that cause the
content of a cache block to be copied back to main
storage or to be marked invalid must be performed
against all levels of the cache.

124 PowerPC Architecture First Edition

5.7 Shared Storage

This architecture supports the sharing of storage
between programs, between different instances of the
same program on systems with one or more
processors, and between processors and other mech-
anisms. |t also supports access to a storage location
by one or more programs using different effective
addresses. All these cases are considered storage
sharing. Storage is shared in blocks that are an inte-
gral number of pages.

When the same storage location has different effec-
tive addresses, the addresses are said to be
“aliases.” Each application can be granted separate
access privileges to aliased pages.

5.7.1 Storage Access Ordering

The PowerPC architecture specifies a weakly con-
sistent storage model for shared storage muiti-
processor systems. This model provides an
opportunity for significantly improved performance
over the strongly consistent model, but places the
responsibility on the program to ensure that ordering
or synchronization instructions are properly placed
when necessary for the correct execution of the
program.

In this architecture, the order in which the processor
performs storage accesses, the order in which those
accesses complete in main storage, and the order in
which those accesses are viewed as occurring by
another processor may all be different. This property
is referred to storage access ordering. A means of
enforcing an ordering of storage accesses is provided
to allow programs or instances of programs to share
storage. Similar means are needed to allow pro-
grams executing on a processor to share storage with
some other mechanism, such as an 1/O device, that
can also access storage.

The purpose of specifying a weakly consistent storage
model is to allow the processor to run very fast for
most storage accesses. Two instructions, Enforce In-
order Execution of 1/0 and Synchronize, are provided
that enable the program to control the order in which
storage accesses are performed by separate
instructions. No ordering should be assumed for the
storage accesses done by a multiple-register load or
store instruction, and no means are provided for con-
trolling that order. ’

5.7.1.1 The Enforce In-order Execution
of 1/0 Instruction

The eieio instruction permits the program to control
the order in which loads and stores are performed in
main storage when the accessed storage is both
Caching Inhibited and Guarded, and the order in
which stores are performed in main storage when the
accessed storage is Write Through Required. It does
not affect the order of other data accesses, nor of
cache operations (whether caused explicitly by exe-
cution of a Cache Management instruction, or implic-
itly by the cache coherence mechanism). See Part 3,
“PowerPC Operating Environment Architecture” on
page 141, for the definition of Guarded storage.

eieio ensures that all applicable data accesses to
main storage previously initiated by the processor
have completed with respect to main storage before
any applicable storage accesses subsequently initi-
ated by the processor access main storage. It acts
like a barrier that flows through the storage queues
and to main storage, preventing the reordering of
storage accesses across the barrier. The eieio
instruction may complete before previously initiated
storage accesses have been performed with respect
to other processors and mechanisms.

eieio can be used, for example, to ensure that the
data from a sequence of stores to the control regis-
ters of an I/0O device update those control registers in
the order specified by the stores as ordered by ejeio.

If stronger ordering is desired or if it is necessary to
order accesses to storage that may be in thé cache,
the sync instruction must be used.

5.71.2 The Synchronize Instruction

When a portion of storage must be forced to a known
state, it is necessary to synchronize storage with
respect to all processors. This is accomplished by
requiring programs to indicate explicitly in the instruc-
tion stream that synchronization is required, by
inserting a sync instruction. Only when sync com-
pletes are the effects of all storage accesses previ-
ously executed by the program guaranteed to have
been performed with respect to all other processors
and mechanisms.

The sync instruction permits the program to ensure
that all storage accesses it has initiated have been
performed with respect to all other processors and
mechanisms before its next instruction is executed. A
program can use this instruction to ensure that all
updates to a shared data structure are visible to all
other processors prior to executing a store that will
release the lock on that data structure. Execution of
this instruction does the following:

Chapter 5. Storage Model 125

» Performs the functions described for the sync
instruction in Part 1, “PowerPC User Instruction
Set Architecture” on page 1.

= Ensures that consistency operations and the
effects of icbi, dcbz, dcbst, dcbf, and dcbhi
instructions (see Part 3, “PowerPC Operating
Environment Architecture” on page 141) previ-
ously executed by the processor executing the
sync have completed on all other processors.

= Ensures that TLB invalidates executed by the
processor executing the sync have completed on
that processor. sync does not wait for such inval-
idates to complete on other processors (see the
Book 1l section entitled “Table Update Synchroni-
zation Requirements”).

» Ensures that Reference and Change bits in the
Page Table (see Part 3, “PowerPC Operating
Environment Architecture” on page 141) are up-
to-date.

The sync instruction is execution synchronizing (see
Part 3, “PowerPC Operating Environment
Architecture” on page 141). It is not context synchro-
nizing (see Book Ill), and therefore need not discard
prefetched instructions.

For storage that is maintained as Memory Coherence
Not Required, the only effect of sync on storage oper-
ations is to ensure that all previous storage accesses
have completed to the level of storage specified by
the Caching and Write Through storage control attri-
butes (including the updating of Reference and
Change bits).

5.7.2 Atomic Update Primitives

The Load And Reserve and Store Conditional
instructions together permit atomic update of a
storage location. 64-bit implementations have word
and doubleword forms of each of these instructions.
Described here is the operation of the word forms
(lwarx and stwcx.); operation of the doubleword forms
(Idarx and stdcx.) is the same except for obvious sub-
stitutions.

These instructions function in Caching Inhibited, as
well as in Caching Allowed, storage. The addressed
page must, however, have the Memory Coherence
Required attribute for every processor other than the
one doing the atomic update that might execute a
store to the location being atomically updated. The
remainder of this section assumes that if the system
is a multiprocessor, then all processors have the
addressed page in Memory Coherence Required
mode.

If the addressed storage is in Write Through Required
mode, it is implementation-dependent whether these
instructions function correctly or cause the system
data storage error handler to be invoked.

The lwarx is a load from a word-aligned location that
has two side effects.

1. A nonspecific reservation for a subsequent stwcx.
or stdex. is created.)

2. The storage coherence mechanism is notified that
a reservation exists for the real address (see
Part 3, “PowerPC Operating Environment
Architecture” on page 141) corresponding to the
storage location accessed by the iwarx.

The stwex. is a store to a word-aligned location that is
conditioned on the existence of the reservation
created by the Jwarx or Idarx. To emulate an atomic
operation with these instructions, it is necessary that
both the Jwarx and the stwex. access the same
storage location even though this requirement is not
enforced by the hardware. IJwarx and stwex. are
ordered by a dependence on the reservation, and the
program is not required to insert other instructions to
maintain the order of storage accesses by these two
instructions.

A stwex. performs a store to the target storage
location only if the storage location accessed by the
lwarx that established the reservation has not been
stored into by another processor or mechanism
between supplying a value for the lwarx and storing
the value supplied by the stwex.. In this case, CRO is
set to indicate that the store was performed.

If the stwex. completes but does not perform the
store because a reservation no longer exists, CRO is
set to indicate that the stwex. completed but storage
was not altered.

Examples of the use of iwarx and stwcx. are given in
the “Programming Examples” appendix of Part 1,
“PowerPC User - Instruction Set Architecture” on
page 1.

When stwex. to a given location succeeds, its store
has been performed but may not yet be globally
visible. As a result, a subsequent load or Iwarx from
the given location on another processor may return a
“stale” value. However, a subsequent Jwarx from the
given location on the other processor followed by a
successful stwex. on that processor is guaranteed to
have returned the value stored by the first process-
or's stwex. (in the absence of other stores to the
given location).

—— Programming Note

To ensure that a store or stwex. to a given
location has become globally visible, it must be
followed by a sync. A subsequent load or Iwarx
from the given location by another processor will
then return a value at least as recent as the value
stored. This is often more synchronization than is
actually needed to ensure program correctness.

126 PowerPC Architecture First Edition

5.7.21 Reservations

The ability to emulate an atomic operation using
Iwarx and stwcex. is based on the conditional behavior
of stwcx., the reservation set by lwarx, and the
clearing of that reservation if the target location is
modified by another processor or other mechanism
before the stwcex. performs its store.

—— Programming Note

The combination of lwarx and stwex. improves
upon compare_and_swap in that the reservation
binds the Iwarx and siwcx. together more reliably.
Compare_and_swap can only check that the old
and current values of the variable are equal, and
can cause the program to err if the variable has
been modified and the old value subsequently
restored. The reservation is always lost if the
variable is modified by another processor or
mechanism between the lwarx and stwex., so the
stwex. never succeeds unless the variable has not
been stored into (by another processor or mech-
anism) since the lwarx.

A processor has at most one reservation at any time.
A reservation is established by executing a Iwarx
instruction and is lost if any of the following occur:

= The processor holding the reservation executes
another Iwarx or Idarx; this clears the first reser-
vation and establishes a new one.

= The processor holding the reservation executes
any stwcx. or stdcx., whether or not its address
matches that of the Iwarx.

= Some other processor executes a store or dcbz to
the same reservation granule.

= Some other mechanism modifies a storage
location in the same reservation granule.

= Any additional causes of reservation loss are
described in Book IV, PowerPC Implementation
Features, for the implementation.

Interrupts (see Part 3, “PowerPC Operating Environ-
ment Architecture” on page 141) do not clear reser-
vations (however, system software invoked by
interrupts may clear reservations). Immunity to
random reservation loss ensures that programs using
lwarx and stwcx. can make forward progress.

—— Programming Note

Programming convention must ensure that lwarx
and stwcx. addresses match. In proper use, a
stwex. should be paired with a specific lwarx to
the same real address. Situations in which a
stwex. may erroneously be issued after some
lwarx other than that with which it is intended to
be paired must be scrupulously avoided. For
example, there must not be a context change in
which the old context leaves a lwarx dangling and
the new context resumes after a lwarx and before
the paired stwex.. The stwex. would be success-
fully completed, which is not what was intended
by the programmer.

Such a situation must be prevented by issuing a
stwex. to a dummy writable word-aligned location
as part of the context switch, thereby clearing the
reservation of the dangling Jwarx. Executing
stwex. to a word-aligned location suffices to clear
the reservation, whether it was obtained by lwarx
or Idarx.

§.7.2.2 Guaranteeing Forward Progress

Forward progress in loops that use Iwarx and stwex.
is guaranteed by a cooperative effort between hard-
ware, operating system software, and application soft-
ware. Hardware guarantees that:

= one stwcx. among a set of processors holding
reservations to the same real address will
succeed, and

= reservations are not lost unnecessarily, i.e. when
the reserved location has not been modified.

While no general rules can be given regarding oper-
ating system guarantees, programs that use the
examples in the Programming Examples appendix of
Part 1, “PowerPC User Instruction Set Architecture”
on page 1 are guaranteed forward progress.

5.7.2.3 Reservation Loss Due to
Granularity

When one processor holds a reservation, and another
processor performs a store that might clear that res-
ervation, the address comparison is done in a way
that ignores an implementation-dependent number of
low-order bits of the real addresses. The storage
block corresponding to the ignored low-order bits is
called the reservation granule. Its size is
implementation-dependent (see the Book IV, PowerPC
Implementation Features document for the implemen-
tation), but is a multiple of the coherence block size.

Lock variables should be allocated such that con-
tention for the locks and updates to nearby data
structures do not cause excessive reservation losses

Chapter 5. Storage Model 127

due to false indications of sharing that can occur due
to the reservation granularity.

A processor holding a reservation on any word in a
reservation granule will lose its reservation if some
other processor stores anywhere in that granule.
Such problems can be ‘avoided only by ensuring that
few such stores occur. This can most easily be
accomplished by aliocating an entire granule for a
lock and wasting all but one word.

Reservation granularity may vary for each impiemen-
tation. There are no architectural restrictions
bounding the granularity implementations must
support, so reasonably portable code must dynam-
ically allocate aligned and padded storage for locks to
guarantee absence of granularity-induced reservation
loss.

5.8 Virtual Storage

The PowerPC system implements a virtual storage
model for applications. This means that a combina-
tion of hardware and software can present a storage
model which allows applications to exist within a
“virtual” address space larger than either the effec-
tive address space or the real address space.

Each program can access 254 {232} bytes of “effective
address” (EA) space, subject to limitations imposed

by the operating system. In a typical PowerPC
system, each program’s EA space is a subset of a
larger “virtual address” (VA) space managed by the
operating system.

The operating system is responsible for managing the
real (physical) storage resources of the system by
means of a “storage mapping” mechanism. Storage
is always allocated and managed in units of “pages,”
which have a fixed, implementation-dependent size.
The storage mapping process translates accesses to
pages in the EA space into accesses to real pages in
main storage.

In general, main storage may not be large enough to
contain all of the virtual pages used by the currently
active applications. With support provided by hard-
ware mechanisms, the operating system can attempt
to use the available real pages to map a sufficient set
of effective address pages of the applications. If a
sufficient set is maintained, “paging” activity is mini-
mized. If not, performance degradation is likely to
occur.

The operating system can support restricted access to
pages (including read-write, read-only, and no access:
see Part 3, “PowerPC Operating Environment
Architecture” on page 141), based on system stand-
ards (e.g., program code might be read-only} and
application requests.

128 PowerPC Architecture First Edition

Chapter 6. Effect of Operand Placement on Performance

The placement (location and alignment) of operands
in storage affects relative performance of storage
accesses, and in some cases affects it significantly.
The best performance is guaranteed if storage oper-
ands are aligned. In order to obtain the best perform-
ance across the widest range of implementations, the
programmer should assume the performance model
described in Figures 35 and 36 with respect to the
placement of storage operands. Figure 35 applies
when the processor is in Big-Endian mode, and Figure
36 applies when the processor is in Littie-Endian
mode. Performance of accesses varies depending on
the following:

Operand Size
Operand Alignment
Endian mode (Big-Endian or Little-Endian)
Crossing no boundary
Crossing a Cache Block Boundary
Crossing a Page Boundary that is also a pro-
tection boundary (see Part 3, “PowerPC Oper-
ating Environment Architecture” on page 141,
“Storage Protection”).
7. Crossing a BAT Boundary

See Book 1l for a description of BAT.
8. Crossing a Segment Boundary
See Book Il for a description of storage seg-
ments.

oobhop~

The Load and Store Multiple instructions are defined
to operate only on aligned operands. The Move
Assist instructions have no alignment requirements.
Both of these sets of instructions are supported only
in Big-Endian mode.

For the purposes of Figures 35 and 36, crossing pages
with different storage control attributes is equivalent
to crossing a segment boundary.

Operand Boundary Crossing
Byte Cache BAT /
Size Align. |None Block |Page Seg.
Integer
8 Byte |8 optimal |— - -
4 good good | poor poor
<4 poor poor | poor poor
4 Byte |4 optimal |— - -
<4 good good {poor poor
2 Byte {2 optimal |- - -
<2 good gocd | poor poor
1 Byte |1 optimal | — - -
Imw, 4 good good |good poor
stmw
string good good | poor poor
Float
8 Byte (8 optimal | — - -
4 good good |poor poor
<4 poor poor | poor poor
4 Byte |[4 optimal | — - -
<4 poor poor | poor poor

Figure 35. Performance Effects of Storage Operand
Placement, Big-Endian mode

Chapter 6. Effect of Operand Placement on Performance 129

Operand Boundary Crossing
Byte Cache BAT/
Size Align. |None Block |Page |Seg.
Integer
8 Byte |8 optimal |- - -
<8 poor poor | poor poor
4 Byte |4 optimal | — - -
<4 poor poor |poor poor
2 Byte |2 optimal |- - -
<2 poor poor | poor poor
1 Byte 1 optimal | — - -
Float
8 Byte |8 optimal | — - -
<8 poor poor | poor poor
4 Byte |4 optimal |— - -
<4 poor poor | poor poor

Figure 36. Performance Effects of Storage Operand
Placement, Little-Endian mode

6.1 Instruction Restart

If a storage access crosses a page boundary that is
also a protection boundary, a BAT boundary, or a
segment boundary, a number of conditions could
cause the execution of the instruction to be aborted
after part of the access has been performed. For
example, this may occur when a program attempts to
access a page it has not previously accessed, or
when the processor must check for a possible change
in storage control attributes when an access crosses
a page boundary. When this occurs, the implementa-
tion or the operating system may restart the instruc-
tion. If the instruction is restarted, some bytes of the
location may be loaded from or stored to the target
location a second time.

The following rules apply to storage accesses with
regard to restarting the instruction.

Aligned Accesses
A single-register instruction which accesses an
aligned operand is never restarted.

Unaligned Accesses
A single-register instruction which accesses an
unaligned operand may be restarted if the access
crosses a page, BAT, or segment boundary.

Load and Store Multiple, Move Assist
These instructions may be restarted if, in
accessing the locations specified by the instruc-
tion, a page, BAT, or segment boundary is
crossed.

—— Programming Note

The programmer should assume that any una-
ligned access in an ordinary storage segment
might be restarted. Software can ensure this
does not occur by use of direct-store segments or
BAT areas, neither of which have page bounda-
ries (see Part 3, “PowerPC Operating Environment
Architecture” on page 141).

Unsynchronized TLB invalidates do not have a
defined result.

6.2 Atomicity and Order

Access Atomicity

With the exception of double-precision floating-point
operands in 32-bit implementations, all aligned
accesses are atomic. No other access is required to
be atomic. Instructions causing multiple accesses
(Load and Store Multiple and Move Assist) are not
atomic.

Access Order

Since the ordering of storage accesses is not guaran-
teed unless the programmer inserts the appropriate
ordering instructions, the order of accesses generated
by a single instruction is not guaranteed. Unaligned
accesses, Load and Store Multiple instructions, and
Move Assist instructions have no implicit ordering
characteristics. For example, processor A may store
a word operand on an odd halfword boundary. It may
appear to processor A that the store completed atom-
ically. Processor or other mechanism B, executing a’
load from the same location, may get a result that is
a combination of the value of the first halfword that
existed prior to the store by processor A and the
value of the second halfword stored by processor A.

130 PowerPC Architecture First Edition

Chapter 7. Storage Control Instructions

The instructions in this chapter are not privileged.
For most of them, if the applicable cache is not
present the operation is a “no-op” and has no effect
on any register or on storage. The only exception is
the dcbz instruction. When the data cache does not
exist, dcbz either zeros a certain number of bytes of
storage (which has an effect similar to zeroing bytes
in a cache block which are later written to storage) or
invokes the system alignment error handler (so that
its function can be simulated).

As with other storage instructions, the effect of the
Cache Management instructions on storage is weakly
consistent. If the programmer needs to ensure that
Cache Management or other instructions have been
performed with respect to all other processors and
mechanisms, a sync instruction must be placed in the
program following those instructions.

The description of many of the Cache Management
instructions has a statement that defines its storage
semantics, such as “This instruction is treated as a
store to the addressed byte with respect to address
transiation and protection.” This statement defines
the operation of the instruction with respect to how it
affects the page Reference and Change bits, and
whether or not interrupts occur for a translation error
or a protection violation (see Part 3, “PowerPC Oper-
ating Environment Architecture” on page 141).

7.1 Parameters Useful to
Application Programs

It is suggested that the operating system provide a
service that allows an application program to obtain
the following information. :

1. Page size

2. Coherence block size

3. Granule size for reservations

4. An indicator of whether the processor has (a) a
combined cache or no caches, or (b) some other
cache configuration (split caches or one cache
only; if instruction cache fetches pass through the
data cache, the cache is considered to be a split
cache)

5. Instruction cache size

6. Data cache size

7. Instruction cache line size (see Book 1V, PowerPC
Implementation Features)

8. Data cache line size (see Book V)

9. Block size for ichi {if no instruction cache, number

of bytes zeroed by dcbz)

10. Block size for dcbt and dcbtst (if no data cache,
number of bytes zeroed by dcbz)

11. Block size for dcbz, dcbst, dcbf, and dcbi (see
Part 3, “PowerPC Operating Environment
Architecture” on page 141 for a description of
dcbi) (if no data cache, number of bytes zeroed
by dcbz)

12. Instruction cache associativity

13. Data cache associativity

14. Factors for converting the Time Base to seconds

If the caches are combined, the same value should be
given for an l-cache attribute and the corresponding
D-cache attribute.

Chapter 7. Storage Control Instructions 131

7.2 Cache Management Instructions

7.2.1 Instruction Cache Instructions

Instruction caches, if they exist, are not required to be
consistent with data caches, storage, nor I/0 data
transfers. Software must use the appropriate Cache
Management instructions to ensure that instruction
caches are kept consistent when instructions are
modified by the processor or by input data transfer.
When a processor alters a storage location that may
be contained in an instruction cache, software must
ensure that updates to storage are visible to the
instruction fetching mechanism. Although the
instructions to accomplish this vary among implemen-
tations and hence many operating systems will
provide a system service for this function, the fol-
lowing sequence is typical.

-

. dcbst - update storage

2. sync - wait for update (see Part 1, “PowerPC
User Instruction Set Architecture” on page 1)

3. ichi - invalidate copy in instruction cache

4. isync - perform context synchronization (see

Part 3, “PowerPC Operating Environment

Architecture” on page 141)

These operations are necessary because the storage
may be in Write Through Not Required mode. Since
instruction fetching may bypass the data cache,
changes made to items in the data cache may not be
reflected in storage until after the instruction fetch
completes.

Instruction Cache Block Invalidate X-form

icbi RA,RB

31 1! RA RB 982 /

Let the effective
(RA]0)+(RB).

address (EA) be the sum

If the block containing the byte addressed by EA is in
Coherence Required mode, and a block containing the
byte addressed by EA is in the instruction cache of
any processor, the block is made invalid in all such
processors, so that subsequent references cause the
block to be refetched.

If the block containing the byte addressed by EA is in
Coherence Not Required mode, and a block containing
the byte addressed by EA is in the instruction cache
of this processor, the block is made invalid in this
processor, so that subsequent references cause the
block to be fetched from main storage (or perhaps
from a data cache).

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans-
lation and protection. Implementations with a com-
bined data and instruction cache may treat the icbi
instruction as a no-op, even to the extent of not vali-
dating the EA.)

If the EA references storage outside of main storage
(see Direct-Store Segments in Part 3, “PowerPC
Operating Environment Architecture” on page 141),
the instruction is treated as a no-op. -

Special Registers Altered:
None

Instruction Synchronize XL-form

isync

[Power mnemonic: ics]

19 " 1 1 150 /
o 6 11 16 21 31

This instruction waits for all previous instructions to
complete and then discards any prefetched
instructions, causing subsequent instructions to be
fetched (or refetched) from storage and to execute in
the context established by the previous instructions.
This instruction has no effect on other processors or
on their caches.

This instruction is context synéhronizing (see Part 3,
“PowerPC Operating Environment Architecture” on
page 141).

 Special Registers Altered:

None

132 PowerPC Architecture First Edition

7.2.2 Data Cache Instructions

Data caches and combined caches, if they exist, are
required to be consistent with other data caches,
combined caches, storage, and 1/O data transfers.
However, to ensure consistency, aliased effective
addresses (two effective addresses that map to the

same real address) must have the same page offset
(see Section 5.7, “Shared Storage” on page 125).

If the effective address references storage outside of
main storage (see Direct-Store Segments in Part 3,
“PowerPC Operating Environment Architecture” on
page 141), the instruction is treated as a no-op.

Data Cache Block Touch X-form

dcbt RA,RB

Data Cache Block Touch for Store X-form

dcbtst RA,RB

31 i RA RB 278 /

31 1" RA RB 246 /

Let the effective address (EA) be the sum
(RA]0) + (RB).

This instruction is a hint that performance will prob-
ably be improved if the block containing the byte
addressed by EA is fetched into the data cache,
because the program will probably soon load from the
addressed byte. Executing dcbt will not cause the
system error handler to be invoked.

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans-
lation and protection, except that the system error
handler must not be invoked for a transiation or pro-
tection violation.

Special Registers Altered:
None

—— Programming Note

The purpose of this instruction is to allow the
program to request a cache block fetch before it
is actually needed by the program. The program
can later perform loads to put data into registers.
However, the processor is not obliged to load the
addressed block into the data cache.

Let the effective address (EA)} be the sum
(RA|0) + (RB).

This instruction is a hint that performance will prob-
ably be improved if the block containing the byte
addressed by EA is fetched into the data cache,
because the program will probably soon store into the
addressed byte. Executing dcbtst will not cause the
system error handler to be invoked.

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans-
lation and protection, except that the system error
handler must not be invoked for a translation or pro-
tection violation. Since dcbtst does not modify
storage, it must not be recorded as a store.

Special Registers Altered:
None

r— Programming Note

The purpose of this instruction is to allow the
program to request a cache block fetch before it
is actually needed by the program. The program
can later perform stores to put data into storage.
However, the processor is not obliged to load the
addressed block into the data cache.

Chapter 7. Storage Control Instructions 133

Data Cache Block set to Zero X-form

dcbz RA,RB
[Power mnemonic: dciz]

A M RA RB - 1014 !
o 6 1 16 21 31

Let the effective address (EA) be the sum
(RA|0) + (RB).

If the block containing the byte addressed by EA is in
the data cache, all bytes of the block are set to zero.

If the block containing the byte addressed by EA is
not in the data cache and the corresponding page is
Caching Allowed, the block is established in the data
cache without fetching the block from main storage,
and all bytes of the block are set to zero.

If the page contzining the byte addressed by EA is
Caching Inhibited or Write Through Required, then
either (a) all bytes of the area of main storage that
corresponds to the addressed block are set to zero,
or (b) the system alignment error handier is invoked.

If the block containing the byte addressed by EA is in
Coherence Required mode, and the block exists in the
data cache(s) of any other processor(s), it is kept
coherent in those caches.

This instruction is treated as a store to the addressed
byte with respect to address translation and pro-
tection.

Special Registers Altered:
None

—— Programming Note

If the page containing the byte addressed by EA is
Caching Inhibited or Write Through Required, the
system alignment error handler should set to zero
all bytes of the area of main storage that corre-
sponds to the addressed block.

See the Interrupt chapter of Part 3, “PowerPC
Operating Environment Architecture” on page 141
for discussion of a possible delayed Machine
Check interrupt that can be caused by dcbz if the
operating system has set up an incorrect storage
mapping.

Data Cache Block Store X-form

dcbst RA,RB

31 1 RA RB 54 /

Let the effective address (EA) be the sum
(RA|0) + (RB).

If the block containing the byte addressed by EA is in
Coherence Required mode, and a block containing the
byte addressed by EA is in the data cache of any
processor and has been madified, the writing of it to
main storage is initiated.

If the block containing the byte addressed by EA is in
Coherence Not Required mode, and a block containing
the byte addressed by EA is in the data cache of this
processor and has been modified, the writing of it to
main storage is initiated.

The function of this instruction is independent of the
Write Through Required/Not Required and Caching
Inhibited/Allowed modes of the block containing the
byte addressed by EA.

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans-
lation and protection.

Special Registers Altered:
None

134 PowerPC Architecture First Edition

Data Cache Block Flush X-form

dcbf RA,RB

31 mn RA RB 86 /
{21) 31

Let the effective address (EA) be the sum
(RA|0) + (RB).

The action taken depends on the storage mode asso-
ciated with the target and on the state of the block.
The list below describes the action taken for the
various cases. The actions described must be exe-
cuted regardless of whether the page containing the
addressed byte is in Caching Inhibited or Caching
Allowed mode.

1. Coherence Required

Unmodified Block
Invalidate copies of the block in the caches of
all processors.

Modified Block
Copy the block to storage. Invalidate copies of
the block in the caches of all processors.

Absent Block
If modified copies of the block are in the
caches of other processors, cause them to be
copied to storage and invalidated. If unmodi-
fied copies are in the caches of other
processors, cause those copies to be invali-
dated.

2. Coherence Not Required

Unmodified Block
Invalidate the block in the processor’s cache.

Modified Block
Copy the block to storage. Invalidate the block
in the processor’s cache.

Absent Block
Do nothing.

The function of this instruction is independent of the
Write Through Required/Not Required and Caching
Inhibited/Allowed modes of the block containing the
byte addressed by EA.

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans-
lation and protection.

Special Registers Altered:
None

7.3 Enforce In-order Execution
of 1/0 Instruction

Enforce In-order Execution of 110
X-form '

eieio

31 n m 1 854 /
0 & 11 18 21 31

The eieio instruction provides an ordering function for
the effects of loads and stores executed by a
processor. Executing an eiejo instruction ensures that
all applicable loads and stores previously initiated by
the processor are complete with respect to main
storage before any applicable loads and stores subse-
quently initiated by the processor access main
storage.

eiejo orders loads and stores to storage that is both
Caching Inhibited and Guarded (see Part 3, “PowerPC
Operating Environment Architecture” on page 141),
and stores to storage that is Write Through Required.
It does not affect the order of other data accesses,
nor of cache operations (whether caused explicitly by
execution of a Cache Management instruction, or
implicitly by the cache coherence mechanism).

Special Registers Altered:
None

—— Programming Note

The eieio instruction is intended for use in doing
memory-mapped /O (see Part 3, “PowerPC Oper-
ating Environment Architecture” on page 141)
and in preventing load/store combining operations
in main storage. It can be thought of as placing a
barrier into the stream of storage accesses issued
by a processor, such that any given storage
access appears to be on the same side of the
barrier to both the processor and the 1/O device.

The eieio instruction may complete before previ-
ously initiated storage accesses have been per-
formed with respect to other processors and
mechanisms.

Chapter 7. Storage Control Instructions i35

136 PowerPC Architecture First Edition

Chapter 8. Time Base

The Time Base (TB) is a 64-bit register (see
Figure 37) containing a 64-bit unsigned integer which
is incremented periodically. Each increment adds 1 to
the low-order bit (bit 63). The frequency at which the
counter is updated is implementation-dependent.

] TBU] TBL |
0 32 63

Field Description
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base

Figure 37. Time Base

The Time Base increments until its value becomes
OXFFFF_FFFF_FFFF_FFFF (2% — 1). At the next incre-
ment, its value becomes 0x0000_0000_0000_0000.
There is no explicit indication (such as an interrupt:
see Part 3, “PowerPC Operating Environment
Architecture” on page 141) that this has occurred.

The period of the Time Base depends on the driving
frequency. As an order of magnitude example,
suppose that the CPU clock is 100 MHz and that the
Time Base is driven by this frequency divided by 32.
Then the period of the Time Base would be

_ 2% x32 _ 12
Tig = 100 MHz = 5.90 x 10°“ seconds

which is approximately 187,000 years.

The PowerPC Architecture does not specify a relation-
ship between the frequency at which the Time Base is
updated and other frequencies, such as the CPU clock
or bus clock, in a PowerPC system. The Time Base
update frequency is not required to be constant.
What is required, so that system software can keep
time of day and operate interval timers, is that either:

= The system provides an (implementation-
dependent) interrupt to software whenever the
update frequency of the Time Base changes, and

also a means to determine what the current
update frequency is; or

= The update frequency of the Time Base is under
the control of the system software.

—— Programming Note

If the operating system initializes the Time Base
on power-on to some reasonable value and the
update frequency of the Time Base is constant,
the Time Base can be used as a source of values
which increase at a constant rate, such as for
time stamps in trace entries.

Even if the update frequency is not constant,
values read from the Time Base are
- monotonically increasing (except when the Time
Base wraps from 2%4—1 to 0). if a trace entry is
recorded each time the update frequency
changes, the sequence of Time Base values can
be post-processed to become actual time values.

8.1 Time Base Instructions

Extended mnemonics

A pair of extended mnemonics is provided for the
mfth instruction so that it can be coded with the TBR
name as part of the mnemonic rather than as a
numeric operand. See the Assembler Extended Mne-
monics appendix in Part 3, “PowerPC Operating Envi-
ronment Architecture” on page 141.

Move From Time Base XFX-form

mftb RT,TBR

3 RT tbr 371 /

Chapter 8. Time Base 137

n e thrgsg || thrgg
if n = 268 then
if (64-bit implementation) then
RT « TB
else
RT €« T832163
else if n = 269 then _
if (64-bit implementation) then
RT « 320 || TBy.q
else
RT « TB°:31

The TBR field denotes either the Time Base or Time

Base Upper, encoded as shown in Figure 38. The
contents of the designated register are placed into
register RT. When reading Time Base Upper on a
64-bit implementation, the high-order 32 bits of reg-
ister RT are set to zero.

TBR" Register Privi-
decimal tbrgg tbry, name leged
268 01000 01100 B no
268 01000 01101 TBU no

" Note that the order of the two 5-bit halves
of the TBR number is reversed.

Figure 38. TBR encodings for mftb

If the TBR field contains any value other than one of
the values shown above, the instruction form is
invalid.

Special Registers Altered:
None

Extended Mnemonics:
Extended mnemonics for Move From Time Base:

Extended: Equivalent to:
mftb Rt mftb Rt,268
mftbu Rt mftb Rt 269

—— Programming Note

miftb serves as both a basic and an extended
mnemonic. The assembler will recognize an mftb
mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the
extended form. Another way of saying this is that
if mftb is coded with one operand, then that
operand is assumed to be RT, and TBR defaults to
the value corresponding to TB.

—— Compiler and Assembler Note

The TBR number coded in assembler language
does not appear directly as a 10-bit binary
number in the instruction. The number coded is
split into two 5-bit halves that are reversed in the
instruction, with the high-order § bits appearing in
bits 16:20 of the instruction and the low-order 5
bits in bits 11:15.

8.2 Reading the Time Base on
64-bit Implementations

The contents of the Time Base may be read into a
GPR by the mftb extended mnemonic. - To read the
contents of the Time Base into register Rx, execute:

mfth Rx

Reading the Time Base has no effect on the value it
contains or the periodic incrementing of that value.

8.3 Reading the Time Base on
32-bit Implementations

On 32-bit implementations, it is not possible to read
the entire 64-bit Time Base in a single instruction.
The mftb extended mnemonic moves from the lower
half of the Time Base (TBL) to a GPR, and the mftbu
extended mnemonic moves from the upper half (TBU)
to a GPR.

Because of the possibility of a carry from TBL to TBU
occurring between reads of TBL and TBU, a sequence
such as the following is necessary to read the Time
Base on 32-bit implementations.

loop:
mftbu Rx # load from TBU
mftb Ry # load from TBL

mftbu Rz # load from TBU
cmpw Rz,Rx # see if ‘old” = "‘new’
bne loop # loop if carry occurred

The comparison and loop are necessary to ensure
that a consistent pair of values has been obtained.

8.4 Computing Time of Day
from the Time Base

Since the update frequency of the Time Base is
implementation-dependent, the algorithm for con-
verting the current value in the Time Base to time of
day is also implementation-dependent.

As an example, assume that the Time Base is incre-
mented at a constant rate of once for every 32 cycles
of a 100 MHZ CPU instruction clock. What is wanted
is the pair of 32-bit values comprising a POSIX

138 PowerPC Architecture First Edition

standard clock!: the number of whole seconds which
have passed since midnight January 0, 1970, and the
remaining fraction of a second expressed as a
number of nanoseconds.

Assume that:

= The value 0 in the Time Base represents the start
time of the POSIX clock (if this is not true, a
simple 64-bit subtraction will make it so).

= |nteger constant ticks_per_sec contains the value

100 MHz
32

which is the number of times the Time Base is
updated each second. ‘

= 3,125,000

= Integer constant ns_adj contains the value

1,000,000,000

3125000 = 20

which is the number of nanoseconds per tick of
the Time Base.

64-bit Implementations

The POSIX clock can be computed with an instruction
sequence such as this:

mftb Ry # Ry = Time Base

lwz Rxticks_per_sec

divd RzRy,Rx # Rz = whole seconds

stw Rzposix_sec

mulld Rz,RzRx # Rz quotient * divisor
sub RzRy,Rz # Rz = excess ticks

lwz Rx,ns_adj

mulld Rz,Rz,Rx # Rz = excess nanoseconds
stw Rz,posix_ns

32-bit Implementations

On a 32-bit machine, direct implementation of the
code given above for 64-bit machines is awkward, due
mainly to the difficulty of doing 64-bit division.2 Such
division can be avoided entirely if a time of day clock
in POSIX format is updated at least once each second.

Assume that:

» The operating system maintains the following var-
iables: '
— posix_tb (64 bits)
— posix_sec (32 bits)
— posix_ns (32 bits)

These variables hold the value of the Time Base
and the computed POSIX seconds and
nanoseconds values from the last time the POSIX
clock was computed.

s The operating system arranges for an interrupt
(see Part 3, “PowerPC Operating Environment
Architecture” on page 141) to occur at least once
per second, at which time it recomputes the
POSIX clock values.

= The integer constant billion contains the value
1,000,000,000.

The POSIX clock can be computed with an instruction
sequence such as this:

loop:
mftbu Rx # Rz = TBU
mftb Ry # Ry = TBL
mftbu Rz # Rz = 'new’ TBU value

cmpw Rz,Rx # see if ‘old’ = "new’

bne loop # loop if carry occurred
now have 64-bit TB in Rx and Ry

lwz Rzposix_tb+4

sub RzRy,Rz # Rz = deltain ticks

lwz Rw,ns_adj

mullw Rz,Rz,Rw # Rz = deltainns

Ilwz Rw,posix_ns

add Rz,Rz,Rw # Rz = new ns value

Ilwz Rw,billion

cmpw Rz, Rw # see if past 1 sec

bit nochange # branch if not

sub Rz, Rz,Rw # adjust nanoseconds

lwz Rw,posix_sec

addi Rw,Rw,1 # adjust seconds

stw Rw,posix_sec # store new seconds
nochange:

stw Rzposix_ns # store new ns

stw Rx,posix_tb # store new time base

stw Ry,posix_tb+4

Note that the upper part of the Time Base does not
participate in the calculation to determine the new
POSIX time of day. This is correct as long as the
delta value does not exceed one second.

Non-constant update frequency

In a system in which the update frequency of the Time
Base may change over time, it is not possible to
convert an isolated Time Base value into time of day.
Instead, a Time Base value has meaning only with
respect to the current update frequency and the time
of day that the update frequency was last changed.
Each time the update frequency changes, either the
system software is notified of the change via an inter-
rupt (see Part 3, “PowerPC Operating Environment

1 Described in POSIX Draft Standard P1003.4/D12, Draft Standard for information Technology -- Portable Operating System interface (POSIX) --
Part 1. System Application Program Interface (APl) - Amendment 1. Realtime Extension [C Language]. Institute of Electrical and Electronics

Engineers, Inc., Feb. 1992.

2 See D. E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algorithms, section 4.3.1, Algorithm D. Addison-Wesley, 1981.

Chapter 8. Time Base 139

Architecture” on page 141), or else the change was
instigated by the system software itself. At each such
change, the system software must compute the
current time of day using the old update frequency,
compute a new value of ticks_per_second for the new
frequency, and save the time of day, Time Base
value, and tick rate.. Subsequent calls to compute
time of day use the current Time Base value and the
saved data.

—— Programming Note

A generalized service to compute time of day
could take the following as input.

1. Time of day at beginning of current epoch

2. Time Base value at beginning of current
epoch

3. Time Base update frequency

4. Time Base value for which time of day is
desired

For a PowerPC system in which the Time Base
update frequency does not vary, the first three
inputs would be constant.

140 PowerPC Architecture First Edition

Part 3. PowerPC Operating Environment Architecture

This part defines the additional instructions and facili-
ties, beyond those of the PowerPC User Instruction
Set Architecture and PowerPC Virtual Environment

Architecture. It covers instructions and facilities not
available to the application programmer, affecting
storage control, interrupts, and timing facilities.

Chapter 9. Introduction
9.1 Overview
9.2 Compatibility with the Power
Architecture
9.3 Document Conventions
9.4 General Systems Overview
9.5 Instruction Formats
9.6 Exceptions
9.7 Synchronization

Chapter 10. Branch Processor
10.1 Branch Processor Overview
10.2 Branch Processor Registers
10.3 Branch Processor Instructions

Chapter 11. Fixed-Point Processor
11.1 Fixed-Point Processor Overview
11.2 PowerPC Special Purpose
Registers
11.3 Fixed-Point Processor Registers
11.4 Fixed-Point Processor Privileged
Instructions

Chapter 12. Storage Control
12.1 Storage Addressing
12.2 Storage Model
12.3 Address Translation Overview

147
147
147

150

151
151

151
151

152

155
155
155
159

12.4 Segmented Address Translation,

64-bit Implementations 160
12.5 Segmented Address Translation,
32-bit Implementations 168
12.6 Direct-Store Segments 173
12.7 Block Address Translation . .. 174
12.8 Storage Access Modes 176
12.9 Reference and Change Recording 178
12.10 Storage Protection 179
12.11 Storage Control Instructions . . 181
12.12 Table Update Synchronization
Requirements 186
Chapter 13. Interrupts 191
13.1 Overview 191
13.2 Interrupt Synchronization 191
13.3 Interrupt Classes 191
13.4 Interrupt Processing 192
13.5 Interrupt Definitions 193
13.6 Partially Executed Instructions . 189
13.7 Exception Ordering 200
13.8 Interrupt Priorities 201
Chapter 14. Timer Facilities 203
141 Overview 203
142 TimeBase 203
14.3 Decrementer 204

Part 3. PowerPC Operating Environment Architecture 141

142 PowerPC Architecture First Edition

Chapter 9. Introduction

9.1 Overview

Part 1, “PowerPC User Instruction Set Architecture”
on page 1 describes computation modes, compat-
ibility with the Power Architecture, document con-
ventions, a general systems overview, instruction
formats, and storage addressing. This chapter aug-
ments that description as necessary for the PowerPC
Operating Environment Architecture.

9.2 Compatibility with the Power
Architecture

The PowerPC Architecture provides binary compat-
ibility for Power application programs, except as
described in the “Incompatibilities with the Power
Architecture” appendix of Part 1, “PowerPC User
Instruction Set Architecture” on page 1. Binary com-
patibility is not necessarily provided for privileged
Power instructions.

9.3 Document Conventions

The notation and terminology used in Book | applies
to this document also, with the following substitutions.

= For “system alignment error handler” substitute
“Alignment interrupt.”

= For “system data storage error handler” substi-
tute “Data Storage interrupt.”

= For “system error handler” substitute “interrupt.”

= For “system floating-point assist error handler”
substitute “Floating-Point Assist interrupt.”

= For ‘“system floating-point enabled exception
error handler” substitute “Floating-Point Enabled
Exception type Program interrupt.”

= For “system floating-point unavailable error
handler” substitute “Floating-Point Unavailable
interrupt.”

= For “system illegal instruction error handler” sub-
. stitute “lllegal Instruction type Program
Interrupt.”

= For “system instruction storage error handler”
substitute “Instruction Storage interrupt.”

s For “system privileged instruction error handler”
substitute “Privileged Instruction type Program
interrupt.”

= For “system service program” substitute “System
Call interrupt.”

s For “system trap handler” substitute “Trap type
Program interrupt.”

9.3.1 Definitions and Notation

The following augments the definitions given in Book
I

s The context of a program is defined by the

" content of the MSR when the program is exe-
cuting. It defines the manner in which the
program accesses and executes instructions,
accesses data, controls interrupts, accesses the
floating-point unit, and interprets addresses or
fixed-point data (32 bits or 64 bits).

= An exception is an error, unusual condition, or
external signal, that may set a status bit, and
which may or may not cause an interrupt,
depending upon whether or not the corresponding
interrupt is enabled.

= An interrupt is the act of changing the machine
state in response to an exception, as described in
Chapter 13, “Interrupts” on page 193.

= A trap interrupt is an interrupt that results from
execution of a Trap instruction.

= Hardware means any combination of hard-wired
implementation, “fast trap” to implementation-
dependent software assistance, or interrupt for
software assistance. In the last case, the inter-
rupt may be to an architected location or to an
implementation-dependent location. Any use of
fast traps or interrupts to implement the architec-

Chapter 9. Introduction 143

ture is described in Book IV, PowerPC Iimplemen-
tation Features.

= / /I, Ill, ... denotes a field that is reserved in an
instruction, a register, or in an architected
storage table.

9.3.2 Reserved Fields

System software should initialize reserved fields in
architected storage tables (Segment Table, Page
Table) to 0s and not keep data in them, as the fields
may be used in the future by subsequent versions of
PowerPC Architecture.

Some fields of certain storage tables may be written
to automatically by hardware, e.g. Reference and
Change bits in the Page Table. When the hardware
writes to such a table, the following rules must be fol-
lowed:

= No defined field other than the one(s) the hard-
ware is specifically updating may be modified.

= Contents of reserved fields may be preserved by
hardware or such fields may be written as 0s. No
other changes to reserved fields may be made.

The handling of reserved bits in status and control
registers described in Book | applies here as well. In
addition, the reader should be cognizant that reading
and writing of some of these registers (e.g., the MSR)
can occur as a side effect of processing an interrupt
and of returning from an interrupt, as well as when
requested explicitly by the appropriate instruction
(e.g., mtmsr).

9.3.3 Description of Instruction
Operation

The following augments the definitions given in Book |
in the description of the RTL.

Notation
SEGREG(x)

Meaning
Segment Register x

9.4 General Systems Overview

The processor or processor unit contains the
sequencing and processing controls for instruction
fetch, instruction execution and interrupt action.
Instructions that the processing unit can execute fall
into a number of classes:

= instructions executed in the Branch Processor
= instructions executed in the Fixed-Point Processor

» jnstructions executed in

Processor

the Floating-Point

Almost all instructions executed in the Branch
Processor, Fixed-Point Processor, and Floating-Point
Processor are non-privileged and are described in
Part 1, “PowerPC User Instruction Set Architecture”
on page 1. Part 2, “PowerPC Virtual Environment
Architecture” on page 117 contains some cache man-
agement instructions. Instructions related to the priv-
ileged state of the processor, control of processor
resources, control of the storage hierarchy, and all
other privileged instructions are described here or in
Book IV, PowerPC Implementation Features.

9.5 Instruction Formats

See Part 1, “PowerPC User Instruction Set
Architecture” on page 1 for a description of the
instruction formats and addressing.

9.5.1 Instruction Fields

The following augments the instruction fields
described in Book |.

SPR (11:20)
Special Purpose Register

See the descriptions of the mispr (page 79) and
mifspr (page 80) instructions for a list of SPR
encodings.

SR (12:15)
Field used to specify one of the 16 Segment Reg-
isters.

9.6 Exceptions

The following augments the list, given in Book |, of
exceptions that can be caused by the execution of an
instruction.

= the execution of a Load or Store instruction to a
direct-store segment, in a manner that causes an
exception (direct-store error exception)

= the execution of a traced instruction (Trace
exception)

9.7 Synchronization

The synchronization described in this section refers to
the state of the processor that is performing the syn-
chronization.

144 PowerPC Architecture First Edition

BRANCH —> FIXED
POINT R DATA

PROCESSOR PROCESSOR CACHE
INSTRUCTION FLOATING
CACHE POINT

PROCESSOR |«

MAIN MEMORY

!

DIRECT MEMORY ACCESS

Figure 39. Logical View of the PowerPC Processor
Architecture

9.7.1 Context Synchronization

An instruction or event is “context synchronizing” if it
satisfies the requirements listed below. Such
instructions and events are collectively called
“context synchronizing operations.” Examples of
context synchronizing operations include the sc
instruction (see Part 1, “PowerPC User Instruction Set
Architecture” on page 1), the rfi instruction, and most
interrupts.

1. The operation causes instruction dispatching (the
issuance of instructions by the instruction fetch
mechanism to any instruction execution mech-
anism) to be halted.

2. The operation is not initiated or, in the case of
isync, is not completed, until all instructions
already in execution have completed to a point at
which they have reported all exceptions they will
cause. (If a storage access due to a previously
initiated instruction may cause one or more
Direct-Store Error exceptions, the determination
of whether it does cause such exceptions is made
before the operation is initiated.)

3. If the operation directly causes an interrupt (e.g.,
sc directly causes a System Call interrupt) or is
an interrupt, the operation is not initiated until no
exception exists having higher priority than the
exception associated with the interrupt (see
Section 13.8, “Interrupt Priorities” on page 203).

4. The instructions that precede the operation will

" complete execution in the context (privilege, relo-
cation, storage protection, etc.) in which they
were initiated.

5. The instructions that follow the operation will be
fetched and executed in the context established
by the operation. (This requires that any pre-
fetched instructions be discarded, which in turn
requires that any effects and side effects of spec-
ulatively executing them also be discarded. The
only side effects of these instructions that are
permitted to survive are those specified in
Section 12.2.5, “Speculative Execution” on
page 159.)

A context synchronizing operation is necessarily exe-
cution synchronizing; see Section 9.7.2, “Execution
Synchronization.” Unlike the sync instruction (see
Part 2, “PowerPC Virtual Environment Architecture”
on page 117), a context synchronizing operation need
not wait for storage-related operations to complete on
other processors, nor for Reference and Change bits
in the Page Table (see Chapter 12, “Storage Control”
on page 157) to be updated.

9.7.2 Execution Synchronization

An instruction is “execution synchronizing” if all pre-
viously initiated instructions appear to have com-
pleted before the instruction is initiated or, in the case
of sync and isync, before the instruction completes.
Examples of execution synchronizing instructions are
sync (see Part 1, “PowerPC User Instruction Set
Architecture” on page 1) and mtmsr. Also, all
context synchronizing instructions (see Section 9.7.1)
are execution synchronizing.

Unlike a context synchronizing operation, an exe-
cution synchronizing instruction need not ensure that
the instructions following that instruction will execute
in the context established by that instruction. This
new context becomes effective sometime after the
execution synchronizing instruction completes and
before or at a subsequent context synchronizing oper-
ation.

Chapter 9. Introduction 145

146 PowerPC Architecture First Edition

Chapter 10. Branch Processor

10.1 Branch Processor Overview

This chapter describes the details concerning the reg-
isters and the privileged instructions implemented in
the Branch Processor that are in addition to those
shown in Part 1, “PowerPC User Instruction Set
Architecture” on page 1.

10.2 Branch Processor Registers

10.21 Machine Status Save/Restore
Register 0

The Machine Status Save/Restore Register 0 (SRRO)
is a 32-bit or 64-bit register depending on the version
of the architecture implemented. This register is used
to save machine status on interrupts, and to restore
machine status when a Return From Interrupt (rfi)
instruction is executed.

On interrupt, SRRO is set to the current or next
instruction address. Thus if the interrupt occurs in
32-bit mode, the high-order 32 bits of SRRO are set to
0. When rfi is executed, the contents of SRRO are
copied to the current instruction address (CIA), except
that the high-order 32 bits of the CIA are set to 0
when returning to 32-bit mode.

[SRRO [I |
0 . 61 &3
0 {29131}

Figure 40. Save/Restore Register 0

In general, SRRO contains the instruction address that
caused the interrupt, or the instruction address to
return to after an interrupt is serviced.

—— Programming Note

In some implementations, every instruction fetch
when MSRg=1, and every instruction execution
requiring address translation when MSRpgr=1,
may have the side effect of modifying SRR0O. For
further details see the Book IV, PowerPC Imple-
mentation Features document for the implementa-
tion.

10.2.2 Machine Status Save/Restore
Register 1

The Machine Status Save/Restore Register 1 (SRR1)
is a 32-bit or 64-bit register depending on the version
of the architecture implemented. This register is used
to save machine status on interrupts, and to restore
machine status when an rfi instruction is executed.

| SRR1 1

0) 63 (31}

Figure 41. Save/Restore Register 1

In general, when an interrupt occurs, bits 33:36 and
42:47 {1:4 and 10:15} of SRR1 are loaded with infor-
mation specific to the interrupt type, and bits 0:32,
37:41, and 48:63 {0, 59, and 16:31} of the MSR are
placed into the corresponding bit positions of SRR1.

—— Programming Note

In some implementations, every instruction fetch
when MSRz=1, and every instruction execution
requiring address translation when MSRpg=1,
may have the side effect of modifying SRR1. For
further details see the Book IV, PowerPC Imple-
mentation Features document for the implementa-
tion.

Chapter 10. Branch Processor 147

10.2.3 Machine State Register

The Machine State Register (MSR) is a 32-bit or 64-bit
register depending on the version of the architecture
implemented. This register defines the state of the
processor. On interrupt, the MSR bits are altered in
accordance with Figure 68 on page 195. The MSR
can also be modified by the mtmsr, sc, and rfi
instructions. It can be read by the mfmsr instruction.

MSR]
o & (31)

Figure 42. Machine State Register

Below are shown the bit definitions for the Machine
State Register. The notation “full function” on a
reserved bit means that it is saved in SRR1 when an
interrupt occurs. The notation “partial function”
means that it is not saved.

Bit(s) Description
0 Sixty-Four-bit mode (SF)

0 the processor runs in 32-bit mode.
1 the processor runs in 64-bit mode.

1:32 {0} Reserved full function

33:36 {1:4} Reserved partial function
37:41 {5:9} Reserved full function

42:44 {10:12} Reserved partial function

45 {13} Power Management Enable (POW)

0 power management disabled (normal
operation mode).

1 power management enabled (reduced
power mode).

Power management functions are
implementation-dependent. For further
descriptions of the effect of this bit, see the
Book 1V, PowerPC Implementation Features
document for the implementation.

46 {14} implementation-Dependent Function
See the Book |V, PowerPC [mplementation
Features document for the implementation.

47 {15} Interrupt Little-Endian Mode (ILE)
When an interrupt is taken, this bit is copied
into MSR | ¢ to select the Endian mode for the
context established by the’interrupt.

48 {16} External Interrupt Enable (EE)

0 the processor is disabled against External
and Decrementer interrupts.

1 the processor is enabled to take an
External or Decrementer interrupt.

49 {17} Problem State (PR)

0 the processor is privileged to execute any
instruction

1 the processor can only execute the non-
privileged instructions.

MSRpg also affects storage protection, as
described in Chapter 12, “Storage Control”
on page 157.

50 {18} Floating-Point Available (FP)

0 the processor cannot execute any floating-
point instructions, including floating-point
loads, stores and moves.

1 the processor can execute floating-point
instructions.

51 {19} Machine Check Enabie (ME)

0 Machine Check interrupts are disabled.
1 Machine Check interrupts are enabled.

§2 {20} Floating-Point Exception Mode 0 (FEOQ)
See below.

53 {21} Single-Step Trace Enable (SE)

0 the processor executes instructions
normally.

1 the processor generates a Single-Step
type Trace interrupt upon the successful
execution of the next instruction.. Suc-
cessful execution means the instruction
caused no other interrupt. See Book IV,
PowerPC implementation Features.

Single-step tracing may not be present on all
implementations. If the function is not imple-
mented, MSRgg should be treated as a
reserved MSR bit: mfmsr may return the last
value written to the bit, or may return 0
always.

54 {22} Branch Trace Enable (BE)

0 the processor executes branch
instructions normally.

1 the processor generates a Branch type
Trace interrupt after completing the exe-
cution of a branch instruction, whether or
not the branch is taken. See Book iV,
PowerPC Implementation Features.

Branch tracing may not be present on all
implementations. If the function is not imple-
mented, MSRge should be treated as a
reserved MSR bit: mfmsr may return the last
value written to the bit, or may return 0
always.

55 {23} Floating-Point Exception Mode 1 (FE1)
See below.

56 {24} Reserved full function
This bit corresponds to the AL bit of the
Power Architecture. It will not be assigned
new meaning in the near future. As for any
other reserved bit in a register, software is
permitted to write the value 1 to this bit, but
there is no guarantee that a subsequent

148 PowerPC Architecture First Edition

‘reading of this bit will yield the value that
software “wrote” there.

— Programming Note

Power-compatible operating systems will
probably write the value 1 to this bit.

57 {25} Interrupt Prefix (IP)
In the following description, nnann is the
offset of the interrupt. See Figure 69 on
page 185. ’

0 interrupts vectored to the real address
0x000n_nnnn in 32-bit versions and real
address 0x0000_0000_000n_nnnn in 64-bit
versions

1 interrupts vectored to the real address
OxFFFn_nnnn in 32-bit versions and real
address OxFFFF_FFFF_FFFn_nnnn in 64 bit

" versions.

58 {26} Instruction Relocate (IR}

0 instruction address translation is off.
1 instruction address translation is on.

59 {27} Data Relocate (DR)

0 data address translation is off.
1 data address translation is on.

60 {28} Reserved full function
61 {29} Reserved full function
62 {30} Recoverable interrupt (RI)

0 interrupt is not recoverable.
1 interrupt is recoverable.

Additional information about the use of this
bit is given in Sections 13.4, “Interrupt
Processing” on page 194, 13.5.1, “System
Reset Interrupt” on page 196, and 13.5.2,
“Machine Check Interrupt” on page 196.

63 {31} Little-Endian Mode (LE)

0 the processor runs in Big-Endian mode.
1 the processor runs in Littie-Endian mode.

The Floating-Point Exception Mode bits are inter-
preted as shown below. For further details see
Part 1, “PowerPC User Instruction Set Architecture”
on page 1.

FEO FE1 Mode
0 0 Interrupts disabled
0 1 Imprecise Nonrecoverable
1 0 Imprecise Recoverable
1t 1 Precise

10.2.4 Processor Version Register

The Processor Version Register is a 32-bit read-only
register that contains a value identifying the specific
version (model) and revision level of the PowerPC
processor. The contents of the PVR can be copied to
a GPR by the mfspr instruction. Read access to the
PVR is privileged; write access is not provided.

Version I Revision
0 16 31

Figure 43. Processor Version Register

The PVR contains two fields:

A 16-bit number that uniquely determines
a particular processor version and
version of the PowerPC Architecture.
This number can be used to determine
the version of a processor; it may not dis-
tinguish between different product models
if more than one model uses the same
processor.

Revision A 16-bit number that distinguishes
between various releases of a particular
version, i.e. an Engineering Change level.

Version

The value of the Version portion of the PVR is
assigned by the PowerPC Architecture process.
Values assigned to date are listed in - Heading "PVN’
unknown —.

The value of the Revision portion of the PVR is imple-
mentation defined.

Chapter 10. Branch Processor 149

10.3 Branch Processor Instructions

10.3.1 System Linkage Instructions

These instructions provide the means by which a
program can call upon the system to perform a
service, and by which the system can return from per-
forming a service or from processing an interrupt.

These instructions are context synchronizing, as
defined in Section 9.7.1, “Context Synchronization” on
page 145.

The System Call instruction is described in Part 1,
“PowerPC User Instruction Set Architecture” on
page 1, but only at the level required by an applica-
tion programmer. A complete description of this
instruction appears below.

System Call SC-form

SC

[Power mnemonic: svca]

17 7 " m 11/
0 8 11 16 30 31

SRRB €, CIA + 4
SRR133:36 42:47 {1:4 10:15) ¢ undefined

R1p:32 37:41 48:63 {0 5:2 16:31) € MSRo:32 37:41 48:63 (0 5:9 16:31)

MSR « new_value (see below)
NIA «;., base_ea + OxCBO (see below)

The effective address of the instruction following the
System Call instruction is placed into SRRO. Bits 0:32,
37:41, and 48:63 {0, 5:9, and 16:31} of the MSR are
placed into the corresponding bits of SRR1, and bits
33:36 and 42:47 {1:4 and 10:15} of SRR1 are set to
undefined values.

Then a System Call interrupt is generated. The inter-
rupt causes the MSR to be altered as described in
Section 13.5, “Interrupt Definitions” on page 195.

The interrupt causes the next instruction to be fetched
from offset 0xC00 from the base real address indi-
cated by the new setting of MSRp.

This instruction is context synchronizing.

Special Registers Altered:
SRRO SRR1 MSR

—— Compatibility Note

For a discussion of Power compatibility with
respect to instruction bits 16:29, please refer to
the “Incompatibilities with the Power
Architecture” appendix of Part 1, “PowerPC User
Instruction Set Architecture” on page 1. For com-
patibility with future versions of this architecture,
these bits should be coded as zero.

Return From Interrupt XL-form

rfi

19 1" m i 50 /

MSRy.32 37:41 48:63 {0 5:9 16:31) € SRR10:32 37:41 48:63 (0 5:9 16:31)
NIA “iea SRRBOG1(029) " 0boo

Bits 0:32, 37:41, and 48:63 {0, 5:9, and 16:31} of SRR1
are placed into the corresponding bits of the MSR.
Then the next instruction is fetched, under control of
the new MSR value, from the address
SRROg.g1(0:20y I ObOC (32-bit implementations, and
64-bit implementations when SF=1 in the new MSR
value) or 320 || SRRO3,.6; || Ob00 (64-bit implementa-
tions when SF=0 in the new MSR value).

If this instruction enables any pending exceptions, the
interrupt associated with the highest priority pending
exception is generated. .

This instruction is privileged and context synchro-
nizing.

Special Registers Altered:

150 PowerPC Architecture First Edition

Chapter 11. Fixed-Point Processor

11.1 Fixed-Point Processor
Overview

This chapter describes the details concerning the reg-
isters and the privileged instructions implemented in
the Fixed-Point Processor that are in addition to those
shown in Part 1, “PowerPC User Instruction Set
Architecture” on page 1.

11.2 PowerPC Special Purpose
Registers

The Special Purpose Registers are read and written
via the mfspr (page 79) and mtspr (page 79)
instructions. The descriptions of these instructions
list the valid encodings of SPR numbers. Encodings
not listed are reserved for future use or for use as
implementation-specific registers.

Most SPRs are defined in other parts of this book; see
the index to locate those definitions. Some SPRs are
specific to an implementation. See Appendix M,
“Implementation-Specific SPRs” on page 273 and
Book IV, PowerPC Implementation Features.

11.3 Fixed-Point Processor
Registers

11.3.1 Data Address Register

The Data Address Register (DAR} is a 32-bit or 64-bit
register depending on the version of the architecture
implemented. See Sections 13.5.3, “Data Storage
Interrupt” on page 194, and 13.5.6, “Alignment
Interrupt” on page 196.

When an interrupt that uses the DAR occurs, the DAR
is set to the effective address associated with the
interrupting instruction. If the interrupt occurs in

32-bit mode, the high-order 32 bits of the DAR are set
to 0.

r DAR

0 » 63 {31}

Figure 44. Data Address Register

11.3.2 Data Storage Interrupt Status
Register :

The Data Storage Interrupt Status Register (DSISR) is
a 32-bit register that defines the cause of Data
Storage and Alignment interrupts. See Sections
13.5.3, “Data Storage Interrupt” on page 194 and
13.5.6, “Alignment Interrupt” on page 196.

| DSISR
(4] 31

Figure 45. Data Storage Interrupt Status Register

11.3.3 Software-use SPRs

SPRGO through SPRG3 are 64-bit {32-bit} registers
provided for operating system use.

SPRGO
SPRGt
SPRG2

SPRG3
0 63 (31)

Figure 46. Software-use SPRs

The following list describes the conventional uses of
SPRGO through SPRG3.

SPRGO
Software may load a unique real address in this
register to identify an area of storage reserved for
use by the first level interrupt handier. This area
must be unique for each processor in the system.

Chapter 11. Fixed-Point Processor 151

SPRG1
This register may be used as a scratch register by
the first level interrupt handler to save the content
of a GPR. That GPR then can be loaded from
SPRGO and used as a base register to save other
GPR’s to storage.

SPRG2
This register may be used by the operating system
as needed.

SPRG3
This register may be used by the operating system
as needed.

11.4 Fixed-Point Processor
Privileged Instructions

11.4.1 Move To/From System
Registers Instructions

The Move To Special Purpose Register and Move
From Special Purpose Register instructions are
described in Part 1, “PowerPC User Instruction Set
Architecture” on page 1, but only at the level avail-
able to an application programmer. In particular, no
mention is made there of registers that can be
accessed only in privileged state. A complete
description of these instructions appears below.

Extended mnemonics

A set of extended mnemonics is provided for the
mtspr and mfspr instructions so that they can be
coded with the SPR name as part of the mnemonic
rather than as a numeric operand. See Appendix C,
“Assembler Extended Mnemonics” on page 221.

Move To Special Purpose Register
XFX-form

mtspr SPR,RS

31 RS spr 467 /

n = sprsg |l sproy

if Tength(SPREG(n)) = 64 then
SPREG(n) « (RS)

else
SPREG(n) « (RS)3263(0:31)

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 47 on page 153. The
contents of register RS are placed into the designated
Special Purpose Register. For Special Purpose Regis-
ters that are 32 bits long, the low-order 32 bits of RS
are placed into the SPR.

For this instruction, SPRs TBL and TBU are treated as
separate 32-bit registers; setting one leaves the other
unaltered.

spro=1 if and only if writing the register is privileged.
Execution of this instruction specifying a defined and
privileged register when MSRpg=1 will result in a
Privileged Instruction type Program interrupt.

Additional values of the SPR field, beyond those
shown in Figure 47 on page 153, may be defined in
Book IV, PowerPC Implementation Features for the
implementation (see also Appendix M,
“Implementation-Specific SPRs” on page 273). If the
SPR field contains any value other than one of these
implementation-specific values or one of the vaiues
shown in the Figure, the instruction form is invalid.
However, if MSRpg=1 then the only effect of exe-
cuting an invalid instruction form in which spro=1 is
to cause either a Privileged Instruction type Program
interrupt or an lllegal Instruction type Program inter-
rupt.

Special Registers Altered:
See Figure 47 on page 153

—— Compiler and Assembler Note

For the mtspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two
5-bit halves that are reversed in the instruction,
with the high-order § bits appearing in bits 16:20
of the instruction and the low-order § bits in bits
11:15. This maintains compatibility with Power
SPR encodings, in which these two instructions
had only a 5-bit SPR field occupying bits 11:15.

152 - PowerPC Architecture First Edition

SPR! Register Privi-
decimal sprs.g Sprog name leged
1 00000 00001 XER no
8 00000 01000 LR no
9 00000 01001 CTR no
18 00000 10010 DSISR yes
19 00000 10011 DAR yes
22 00000 10110 DEC yes
25 00000 11001 SDR1 yes
26 00000 11010 SRRO yes
27 00000 11011 SRR1 yes
272 01000 10000 SPRGO yes
273 01000 10001 SPRG1 yes
274 01000 10010 SPRG2 yes
275 01000 10011 SPRG3 yes
280 01000 11000 ASR 2 yes
282 01000 11010 EAR yes
284 01000 11100 TBL yes
285 01000 111071 TBU yes
528 10000 10000 IBATOU yes
5§29 10000 10001 IBATOL yes
530 10000 10010 IBAT1U yes
531 10000 10011 IBATIL yes
532 10000 10100 IBAT2U yes
533 10000 10101 _IBAT2L ves
534 10000 10110 IBAT3V yes
535 10000 10111 IBAT3L | vyes
536 10000 11000 DBATOU yes
537 10000 11001 DBATOL yes
538 10000 11010 DBAT1U yes
539 10000 11011 DBATIL yes
540 10000 11100 DBAT2U yes
541 10000 11101 DBAT2L yes
542 10000 11110 DBAT3U yes
543 10000 11111 DBAT3L yes
! Note that the order of the two 5-bit halves
of the SPR number is reversed.
264-bit implementations only.

Figure 47. SPR encodings for mtspr

—— Programming Note
For a discussion of software synchronization
Purpose Registers, please refer to Appendix L,

“Synchronization Requirements for Special
Registers” on page 269.

requirements when altering certain Special

—— Compatibility Note

For a discussion of Power compatibility with
respect to SPR numbers not shown in the instruc-
tion descriptions for mtspr and mfspr, please refer
to the “Incompatibilities with the Power Architec-
ture” appendix of Part 1, “PowerPC User Instruc-
tion Set Architecture” on page 1. For
compatibility with future versions of this architec-
ture, only SPR numbers discussed in these
instruction descriptions should be used.

Move From Special Purpose Register
XFX-form

mfspr RT,SPR

31 RT spr 339 /

n € sprsg || sprog

if length(SPREG(n)) = 64 then
RT « SPREG(n)

else
RT « 329 || SPREG(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 48 on page 154. The
contents of the designated Special Purpose Register
are placed into register RT. For Special Purpose Reg-
isters that are 32 bits long, the low-order 32 bits of RT
receive the contents of the Special Purpose Register
and the high-order 32 bits of RT are set to zero.

spro=1 if and only if reading the register is privi-
ileged. Execution of this instruction specifying a
defined and privileged register when MSRpg=1 will
result in a Privileged Instruction type Program inter-
rupt.

Additional values of the SPR field, beyond those
shown in Figure 48 on page 154, may be defined in
Book IV, PowerPC Implementation Features for the
implementation (see also Appendix M,
“Implementation-Specific SPRs” on page 273). If the
SPR field contains any value other than one of these
implementation-specific values or one of the values
shown in the Figure, the instruction form is invalid.
However, if MSRpg=1 then the only effect of exe-
cuting an invalid instruction form in which spro=1 is
to cause either a Privileged Instruction type Program
interrupt or an lllegal Instruction type Program inter-
rupt.

Special Registers Altered:
None

—— Compiler/Assembler/Compatibility Notes

See the Notes that appear with mtspr.

Chapter 11. Fixed-Point Processor 153

SPR! Register Privi-

decimal sprsg sprog name leged
1 00000 00001 XER no
8 00000 01000 LR no
9 00000 01001 CTR no
18 00000 10010 DSISR yes
19 00000 10011 DAR yes
22 00000 10110 DEC yes
25 00000 11001 SDR1 yes
26 00000 11010 SRRO yes
27 00000 11011 SRR1 yes
272 01000 10000 SPRGO yes
273 01000 10001 SPRG1 yes
274 01000 10010 SPRG2 yes
275 01000 10011 SPRG3 yes
280 01000 11000 ASR 2| vyes
282 01000 11010 EAR yes
287 01000 11111 PVR yes

528 10000 10000 IBATOU yes

529 10000 10001 IBATOL yes
530 10000 10010 IBAT1U yes
531 10000 10011 IBAT1L yes
532 10000 10100 IBAT2U yes
533 10000 10101 IBAT2L yes
534 10000 10110 IBAT3U yes
5§35 10000 10111 IBAT3L yes

536 10000 11000
537 10000 11001

DBATOU yes
DBATOL yes

538 10000 11010 DBAT1U yes
539 10000 11011 DBAT1L yes
540 10000 11100 DBAT2U yes
541 10000 11101 DBAT2L yes

542 10000 11110 DBAT3U yes
543 10000 11111 DBAT3L yes

' Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 64-bit implementations only.

Moving from the Time Base (TB and TBU) is
accomplished with the mftb instruction,
described in Book Il.

Figure 48. SPR encodings for mfspr

Move To Machine State Register X-form

mtmsr RS
31 RS I 1/ 146 /
0 6 1 18 21 31
MSR « (RS)

The contents of register RS are placed into the MSR.

This instruction is privileged and execution synchro-
nizing.

In addition, alterations to the EE and Rl bits are effec-
tive as soon as the instruction completes. Thus if
MSRge=0 and an External or Decrementer interrupt
is pending, executing an mtmsr instruction that sets
MSRge to 1 will cause the External or Decrementer
interrupt to be taken before the next instruction is
executed.

Special Registers Altered:
MSR

—— Programming Note

For a discussion of software synchronization
requirements when altering certain MSR bits,
please refer to Appendix L, “Synchronization
Requirements for Special Registers” on page 269.

Move From Machine State Register
X-form

mfmsr RT

31 RT " nn 83 /
0 6 1 16 21 31
RT « MSR

The contents of the MSR are placed into RT.
This instruction is privileged.

Special Registers Altered:
none

154 PowerPC Architecture First Edition

Chapter 12. Storage Control

121 Storage Addressing

A program references storage using the Effective
Address computed by the processor when it executes
a load, store, branch, or cache instruction, and when
it fetches the next sequential instruction. The effec-
tive address is translated to a real address according
to procedures described in section 12.3, “Address
Translation Overview” on page 159 and following.
The real address is what is sent to the memory sub-
system. See Figure 49 on page 159.

For a complete discussion of storage addressing and
effective address calculation, refer to “Storage
Addressing” in Chapter 1 of Part 1, “PowerPC User
Instruction Set Architecture” on page 1.

Storage Control Overview

= Page size is 2'2 bytes (4 KB)
= Segment size is 228 bytes (256 MB)
= For 64-bit implementations:
— Maximum real memory size 2% bytes (16 EB)
— Effective Address Range 284
— Virtual Address Range 280
— Number of segments 252
= For 32-bit implementations:
— Maximum real memory size 232 bytes (4 GB)
— Effective Address Range 232
— Virtual Address Range 252

— Number of segments 22

= Two types of storage segments based on the

state of the T bit in the Segment Table Entry or
segment register selected by the Effective
Address:

— T=0: Ordinary storage segment

— T=1: Direct-store segment

12.2 Storage Model

The storage model provides the following features:

1. The architecture allows the storage implementa-
tions to take advantage of the performance bene-
fits of weak ordering of storage access between
processors or between processors and devices.

2. The architecture provides instructions that allow
the programmer to ensure a consistent and
ordered storage state.

* dcbf e lwarx
e dcbst * eieio
* dcbz « stdcx.
e icbi * stwex.
* isync * sync
* idarx

3. Processor ordering: storage accesses by a single
processor appear to complete sequentially from
the view of the programming model but may com-
plete out of order with respect to the ultimate
destination in the storage hierarchy. Order is
guaranteed at each level of the storage hierarchy
for accesses to the same address from the same
processor.

4. Storage consistency between processors and
between a processor and I/0 is controlied by soft-
ware through mode bits in the page table. See
12.8.2, “Supported Storage Modes” on page 177.
Six modes are supported using the control bits:

= Write Through
= Caching Inhibited
= Memory Coherence

12.2.1 Storage Segments

Storage is divided into 256 MB (22%) segments.

Programming Note

It is possible to provide larger segments to appli-
cation programs by using multiple adjacent seg-
ments.

Chapter 12. Storage Control 155

These segments can be of two types:

= An ordinary storage segment, referred to as a
“storage segment” or simply as a “segment.”
Address translation is controlled by the setting of
the relocate bits MSRpg for data and MSRg for
instructions. MSR;g and MSRp are independent
bits and may be set differently. The state of
these bits may be changed by interrupts or by
executing the appropriate instructions. An effec-
tive address in these segments represents a real
or virtual address depending on the setting of the
relocate bits of the MSR.

= A direct-store segment, always referred to by the
entire name “direct-store segment.” Such seg-
ments may be used for access to 1/0O. Instruction
fetch from direct-store segments is not allowed.
MSRpg must be 1 when accessing data in a
direct-store segment. See 12.6, “Direct-Store
Segments” on page 173 for an explanation of
direct-store segments.

The value of the T bit in the Segment Table Entry or
Segment Register distinguishes between ordinary
storage segments and direct-store segments.

T |Segment type

Ordinary storage segment

1 |Direct-store segment

The T bit in the Segment Table Entry or Segment Reg-
ister is ignored when fetching instructions with
MSRg=0 or when accessing data with MSRpg=0.
Such accesses are not considered references to
direct-store segments.

See also section 12.6, “Direct-Store Segments” on
page 173.

12.2.2 Storage Exceptions

Each Effective Address must be translated to real in
order to complete the storage access. A storage
exception occurs if this translation fails for one of the
following reasons:

64-bit implementations

= There is no valid entry in the Segment Table
for the segment specified by the Effective
Address.

= The appropriate Segment Table entry is
found, but there is no valid entry in the Page
Table for the page specified by the Effective
Address.

= Both the appropriate Segment Table and
Page Table entries are found, but the access
is not allowed by the storage protection
mechanism.

32-bit implementations

= There is no valid entry in the Page Table for
the page specified by the Effective Address.

= The appropriate Page Table entry is found
but the access is not allowed by the storage
protection mechanism.

Storage exceptions cause Instruction Storage inter-
rupts and Data Storage interrupts that identify the
address of the failing instruction.

In certain cases a storage exception may result in the
“restart” of (re-execution of at least part of) a load or
store instruction. See the section entitled “Instruction
Restart” in Part 2, “PowerPC Virtual Environment

" Architecture” on page 117

12.2.3 Instruction Fetch

Instructions are fetched under control of MSR;g.
When any context synchronizing event occurs, any
prefetched instructions are discarded, and then
refetched using the then-current state of MSR .

MSRg=0
When instruction relocation is off, MSRg=0, the
effective address is interpreted as described in
section 12.2.6, “Real Addressing Mode” on page 158.
MSRi=1

Instructions are fetched using the address translated
by one of the following mechanisms:

1. Segmented Address Translation Mechanism
2. Block Address Translation Mechanism

Instruction fetch from direct-store segments is not
supported. An . attempt to execute an instruction
fetched from a direct-store segment will result in an
Instruction Storage interrupt.

12.2.4 Data Storage Access

Data accesses are controlled by MSRpr. When the
state of MSRpg changes, subsequent accesses are
made using the new state of MSRpg.

MSRpz=0

When data relocation is off, MSRpr =0, the effective
address is interpreted as described in section 12.2.6,
“Real Addressing Mode” on page 158.

MSRpz=1

When address relocation is on, MSRpr =1, the effec-
tive address is translated by one of the following
mechanisms:

1. Segmented Address Translation Mechanism

156 PowerPC Architecture First Edition

2. Block Address Translation Mechanism

3. Direct-Store Segment Translation Mechanism

12.2.5 Speculative Execution

Data Access

A speculative operation is one that a program
“might” perform and that the hardware decides to
execute out of order on the specul/ation that the result
will be needed. If subsequent events indicate that the
speculative instruction would not have been executed,
the processor abandons any result the instruction
produced. Typically, hardware executes instructions
speculatively when it has resources that would other-
wise be idle, so that the operation is done without
cost or almost so.

Most operations can be performed speculatively, as
long as the machine appears to follow a simple
sequential model such as presented in Part 1,
“PowerPC User Instruction Set -Architecture” on
page 1. Certain speculative operations are not per-
mitted:

= A speculative store may not be performed in such
a manner that the alteration of the target location
can be observed by other processors or mech-
anisms until it can be determined that the store is
no longer speculative.

= Speculative loads from “Guarded storage” (see
below) are prohibited, except that if a load or
store operation will be executed, the entire cache
block(s) containing the referenced data may be
loaded into the cache.

s No error of any kind other than Machine Check
may be reported due to the speculative execution
of an instruction, until such time as it is known
that execution of the instruction is required.

Speculative loads are allowed from any storage that
is not “Guarded storage.” If in doing so a Machine
Check exception results, a Machine Check interrupt
may be generated even though the data access that
caused the Machine Check exception would not have
been performed because a previous uncompleted
operation would have changed the execution path.

Only one side effect (other than Machine Check) of
speculative execution is permitted when a speculative
instruction’s result is abandoned: the Reference bit in
a Page Table Entry may be set due to a speculative
load.

Instruction Prefetch

The processor typically fetches instructions ahead of
the one(s) currently being executed in order to avoid
delay. Such instruction prefetching is a speculative

operation in that prefetched instructions may not be
executed due to intervening branches or interrupts.

Most prefetching is permitted, as long as the machine
appears to follow a simple sequential model such as
presented in Part 1, “PowerPC User Instruction Set
Architecture” on page 1. Certain prefetching is not
permitted:

» Prefetching from “Guarded storage” (see below)
is prohibited, except that if an instruction in a
cache block will be executed, the entire cache
block may be loaded.

= No error of any kind other than Machine Check
may be reported due to instruction prefetching,
until such time as the instruction that is the
target of such prefetch becomes the instruction to
be executed.

Speculative instruction fetches are allowed from any
storage that is not “Guarded storage.” If in doing so,
a Machine Check exception results, a Machine Check
interrupt may be generated even if the instruction
fetch that caused the Machine Check exception would
not have been executed because a previous uncom-
pleted operation would have changed the execution
path.

Only one side effect (other than Machine Check) of
instruction prefetching is permitted: the Reference bit
in a Page Table Entry may be set.

Guarded Storage

Storage is said to be “Guarded” if either (a) the G bit
is one in the relevant PTE or DBAT register, or {(b)
MSR bit IR or DR is zero for instruction fetches or
data loads respectively. (In case (b) all of storage is
Guarded).

Storage in a Guarded area may not be well-behaved
with regard to prefetching and other speculative
storage operations. Such storage may represent an
I/0 device, and a speculative load or instruction fetch
directed to such a device may cause the device to
perform unexpected or incorrect operations.

Storage addresses in a Guarded area may not have
successors; that is, there may be “holes” in a
Guarded area of the real address space. On any
system, the highest real address has no successor.
Lack of a successor address means that speculative
sequential operations such as instruction prefetching
may fail and may result in a Machine Check.

Load or Store Instruction

A load or store instruction may not speculatively
access Guarded storage unless one of the following
conditions exist:

Chapter 12. Storage Control 157

1. The target storage location is in a cache. In this
case, the location may be accessed in the cache
or in main storage.

2. The target storage is Caching Allowed {I=0) and
it is guaranteed that the load or store is on the
branch path that will be executed {in the absence
of any intervening interrupts). In this case, the
entire cache block containing the target storage
location may be loaded into the cache.

3. The target storage is Caching Inhibited (I=1), the
load or store is on the branch path that will be
executed, and no prior instructions can cause an
interrupt.

Instruction Fetch

Instructions may not be speculatively fetched from
Guarded storage unless one of the following condi-
tions exist:

1. The target storage location is in a cache. In this
case, the location may be accessed in the cache
or in main storage.

2. MSR(IR) = 1 and an instruction has been previ-
ously fetched from the page.

3. It is guaranteed that the instruction to be fetched

is on the branch path that will be taken (in the
absence of any intervening interrupts). If
MSR;g =0, only the block containing the target
instruction may be fetched.

12.2.6 Real Addressing Mode

Whether address translation is enabled is controlled
by MSRr for instruction fetching and by MSRpg for
data loads and stores. If address translation is disa-
bled for a particular access (fetch, load, or store), the
Effective Address is treated as the Real Address and
is passed directly to the memory subsystem.

The EA is a 64-bit {32-bit} quantity computed by the
CPU. The width of the Real Address supported by a
particular implementation will be less than or equal to
this. If it is less, the high-order bits of the EA are
ignored when forming the Real Address.

Accesses in real mode bypass all storage protection
checks (section 12.10) and do not cause the recording
of reference and change information (section 12.9).
Real mode data accesses are executed as though the
storage access mode bits “WIMG” were 0011 (section
12.8). This mode allows accesses to be cached, does
not require the accesses to be written through the
cache to main storage, requires the hardware to
enforce data consistence with storage, I/O, and other
processors (caches), and treats all storage as
Guarded storage. Real mode instruction fetches are
executed as though the “WIMG” bits were either 0001
or 0011. Speculative fetching of instructions and
speculative loads from storage in real mode are pro-
hibited (see “Guarded Storage” above).

Access to direct-store segments (section 12.6) is not
possible when translation is disabled, as Segment
Table Entries (section 12.4.1.2) or Segment Registers
(section 12.5.1.1) are not checked for a T=1 specifica-
tion.

WARNING: An attempt to fetch from, load from, or
store to a Real Address that is not physically present
in the machine may result in a Machine Check inter-
rupt or a Checkstop (Section 13.5.2).

158 PowerPC Architecture First Edition

12.3 Address Translation Overview

Figure 49 gives an overview of the address transiation process on PowerPC.

Effective Address

l

Segmented Address
Translation

Lookup in
Segment Table

Ordinary Direct-Store

Segment Segment

—

Virtual Address
Translation

Lookup in
Page Table

l

)

l

Block Address
Translation

Match against
BAT Registers

v

[Real Address I [

1/0 Address

Real Address

Figure 49. PowerPC Address Translation

The Effective Address (EA) is the address generated
by the processor for load and store instructions or for
instruction fetch. This address is passed simultane-
ously to two translation mechanisms:

= Segmented Address Translation, described in
section 12.4 on page 160 for 64-bit implementa-
tions, and in section 12.5 on page 168 for 32-bit
implementations, and

s Block Address Translation, described in section
12.7 on page 174.

A typical Effective Address will be successfully trans-
lated by just one of these mechanisms. If neither
mechanism is successful, a storage exception (page
166) results. If both mechanisms are successful,
Block Address Translation takes precedence.

An Effective Address that translates successfully via
the Segmented Address Translation mechanism (but
not by the Block Address Translation mechanism) is a
reference to one of two types of segments:

= A direct-store segment, in which case the address
is converted directly into an I/O address and is
passed to the 1/0 subsystem for further action, or

s An ordinary segment, in which case the address
is converted into a rea/ address that is then used
to access storage.

An Effective Address that translates successfully via
the Block Address Transiation mechanism is con-
verted directly into a rea/ address that is then used to
access storage.

Chapter 12. Storage Control 159

12.4 Segmented Address Translation, 64-bit Implementations

Figure 50 shows the steps involved in translating from an Effective Address to a Real Address on a 64-bit imple-

mentation.

16 1
Page l Byte

64-bit EA [Effective Segment
L L I]
l Lookup
Segment Table
l v
52 16 12
80-bit VA Virtual Segment ID 4]47 Page Byte -1
L i 1L)
] Lookup
Page Table
52 12
64-bit RA Real Page Number J47 Byte _]

Figure 50. Address Translation Overview {64-bit implementations)

If an access is translated by the Block Address Trans-
lation mechanism (BAT, see Section 12.7 on page
174), the BAT translation takes precedence and the
results of segmented address translation are not
used. If an access is not translated by a BAT, seg-
mented address translation proceeds as follows.

The Effective Address (EA) is a 64-bit quantity com-
puted by the processor. Bits 0:35 of the EA are the
Effective Segment ID (ESID); these are looked up in
the Segment Table to produce a Virtual Segment ID
(VSID). Bits 36:51 of the EA are the Page Number
within the segment; these are concatenated with the
VSID from the Segment Table to form the Virtual Page
Number (VPN). The VPN is looked up in the Page
Table to produce a Real Page Number (RPN). Bits
52:63 of the EA are the Byte Offset within the page;
these are concatenated with the RPN to form the Real
Address (RA) that is used to access storage.

If the processor is executing in 32-bit mode
{(MSRge=0), the translation process described above
is followed except that the high-order 32 bits of the
64-bit Effective Address (that is, bits 0:31 of the ESID)

are forced to zero before the lookup in the Segment
Table starts. Bits 32:35 of the EA, which are the high-
order 4 bits of the lower 32 bits of the EA, thus consti-
tute the ESID.

If the selected Segment Table Entry identifies the
segment as a direct-store segment, the Page Table is
not referred to. Rather, translation continues as
described in 12.6, “Direct-Store Segments” on
page 173.

For ordinary storage segments the translation moves
in two steps from Effective Address to Virtual Address
(which never exists as a specific entity but can be
considered to be the concatenation of the VPN and
Byte Offset), and from Virtual Address to Real
Address.

The first step in segmented address translation is to
convert the effective address into a virtual address,
described in section 12.4.1 on page 161. The second
step, conversion of the virtual address into a real
address, is described in section 12.4.2 on page 164.

160 PowerPC Architecture First Edition

12.4.1 Virtual Address Generation, 64-bit Implementations

Conversion of a 64-bit Effective Address to a Virtual Address is done by searching a hashed segment table

pointed to by the Address Space Register.

64-BIT EFFECTIVE ADDRESS

r 36T 16~ 124
| 50 | Page | eyte |
L 1 L J
] 31 336 51 s2 63
L J L J L -
Address Space Register (ASR)
] T
| Real Address of Segment Table I|
[
[} 51 63
L 3
]
|
v
Hash Function
SEGMENT TABLE
4896 bytes
| —| le— 16 bytes
| / :
| 7 | stee sTe7 | stece
| /
v /
r tlas S—7 =/ = = = =
| | eaeoase| = = = =
L 1 1 J \
\
\
64-bit Real Address of Segment Table Entry Group \ STEG31
\
— 128 bytes ——————
SEGMENT TABLE ENTRY (STE)
16 bytes
r T 361 T 10 52—
| €510 | e tvitliss e | |l Virtual Segment I0 (VSID) | 1]
{ L .) I S JL |
8 35 56 57 58 59 63 @ | 51 63
!
|
|
v 4
r 527 16~ 12
VSID | Page | eyte |
L 1 1]

4———————————Virtual Page Number (VPN)-——————s

Figure 51. Translation of 64-bit Effective Address to Virtual Address

12.4.1.1 Address Space Register

The ASR is shown in Figure 52. This 64-bit special-
purpose register holds the real address of the
Segment Table. The Segment Table defines the set of
segments than can be addressed at any one time; it is
usual to have different segment tables for different
processes. The contents of the ASR are usually part
of the process state.

Access to the ASR is privileged. The ASR may be
read or written by the mfspr and mtspr instructions.
See “Move From Special Purpose Register

88-8IT VIRTUAL ADDRESS

XFX-form” on page 79 and “Move To Special Purpose
Register XFX-form” on page 79.

Real address of Segment Table

0

Figure 52. Address Space Register

Programming Note

The values 0, 0x1000, and 0x2000 cannot be used
as Segment Table addresses, since these pages
contain interrupt vectors.

Chapter 12. Storage Control 161

=0 | ESID IZANURRE VSID | w |
[} 35 56 57 58 59 630 51 63
T=1 L | m |v]Tcded || 10 |
0 35 56 57 58 59 630 63
Dword Bit Name Description Dword Bit Name Description
0 0:35 ESID Effective Segment ID 1 0:51 VSID Virtual SID
56 v Entry valid if V=1
57 T Direct-store segment if T=1 063 IO 1/0 specific
58 K Supervisor state storage key
59 Ko Problem state storage key

All other fields are reserved.

Figure 53. Segment Table Entry format
12.41.2 Segment Table

The Segment Table (STAB) is a one-page data struc-
ture that defines the mapping between Effective
Segment IDs and Virtual Segment IDs. The STAB
must be on a page boundary.

The STAB contains 32 Segment Table Entry Groups,
or STEGs. A STEG contains 8 Segment Table Entries
(STEs) of 16 bytes each; each STEG is thus 128 bytes
long. STEGs are entry points for searches of the
Segment Table.

See section 12.12, “Table Update Synchronization
Requirements” on page 186 for the rules that soft-
ware must follow when updating the Segment Table.

Segment Table Entry

Each Segment Table Entry (STE) maps one ESID to
one VSID. Additional information in the STE controls
the STAB search process and provides input to the
storage protection mechanism. Figure 53 shows the
layout of an STE.

See 12.10, “Storage Protection”

on page 179 for a
discussion of the storage key bits. ‘

12.41.3 Segment Table Search

An outline of the STAB search process is shown in
Figure 51 on page 161. The detailed algorithm is as
follows:

1. Primary Hash: Bits 0:51 of the ASR are concat-
enated with bits 31:35 of the Effective Address
(the low 5 bits of the ESID) and with a field of
seven Os to form the 64-bit real address of a
Segment Table Entry Group. This operation is

referred to as the “Primary STAB Hash.” This
identifies a particular STEG, each of whose 8
STEs will be tested in turn.

2. The first STE in the selected STEG is tested for a
match with the EA. In order for a match to exist,
the following must be true:

- STE, =1
= STEggp = EAgas

If a match is found, the STE search terminates
successfully

3. Step 2 is repeated for each of the other 7 STEs in
the STEG. The first matching STE terminates the
search. If none of the 8 STEs match, the sec-
ondary hash must be tried.

4. Secondary Hash: Bits 0:51 of the ASR are con-
catenated with the ones-complement of bits 31:35
of the Effective Address and with a field of seven
0s to form the 64-bit real address of a Segment
Table Entry Group. This operation is referred to
as the “Secondary STAB Hash.”

5. The first STE in the selected STEG is tested for a
match with the EA. In order for a match to exist,
the following must be true:

. STE, =1
= STEggp = EAgas

If a match is found, the STE search terminates
successfully.

6. Step S is repeated for each of the other 7 STEs in
the STEG. The first matching STE terminates thie
search. If none of the 8 STEs match, the search
fails.

If the Segment Table search succeeds, the Virtual
Page Number (VPN) is formed by concatenating the
VSID from the matching STE with bits 36:51 of the
Effective Address (the page number). The complete

162 PowerPC Architecture First Edition

80-bit Virtual Address (VA) is formed by concatenating
the VPN with bits 5§2:63 of the EA (the byte offset).

If the search fails, a page fault interrupt is taken. This
will be an Instruction Storage interrupt or a Data
Storage interrupt, depending on whether the Effective
Address is for an instruction fetch or for data access.

If the selected STE has T=1, the reference is to a
direct-store segment. No reference is made to the
Page Table; processing continues as described in
12.6, “Direct-Store Segments” on page 173.

Segment Lookaside Buffer

Conceptually, the segment table is searched by the
address relocation hardware to translate every refer-
ence. For performance reasons the hardware usually
keeps a Segment Loockaside Buffer (SLB) that holds
STEs that have recently been used. The SLB is
searched prior to searching the Segment Table. As a
consequence, when software makes changes to the
Segment Table it must perform the appropriate SLB
invalidate operations to maintain the consistency of
the SLB with the tables.

—— Programming Notes

1. Segment table entries may or may not be
cached in an SLB.

2. Table lookups are done using real addresses
and storage access mode M=1 (Memory
Coherence).

3. If software plans to access the STAB with
data relocate on, MSRpr=1, it must avoid
cache synonyms by mapping these tables
such that the real and virtual address bits
used for cache set selection are the same,
just as is required for other virtual accesses.
See address alignment requirements
described in Part 2, “PowerPC Virtual Envi-
ronment Architecture” on page 117.

4. 1t is possible that the hardware implements
two SLB arrays (one for data and one for
instruction). In this case the size, shape and
values contained by the arrays may be dif-
ferent.

5. The ASR must point to a valid Segment Table
whenever address relocation is enabled
(MSRg=1 or MSRpg=1 or both) and the
Effective Address is not covered by BAT
translation. .

6. Use the sibie or sibia instruction to ensure
that the SLB no longer contains a mapping for
a particular segment.

7. See Appendix L, “Synchronization Require-
ments for Special Registers” on page 269, for
the synchronization requirements that must
be satisfied when a program changes the con-
tents of the ASR.

8. Hardware never modifies the Segment Table.

12.4.1.4 32-bit Execution Mode

When a 64-bit implementation executes in 32-bit mode
(MSRgeg=0), the Segment Table search is modified as
follows:

1. The 64-bit Effective Address is computed by the
processor as usual.

2. The high-order 32 bits of the EA are forced to
zero. Thus the Effective Segment ID consists of
32 0’s concatenated with the high-order 4 bits of
the lower half of the 64-bit EA.

3. The modified EA is then used as input to the
Segment Table search.

The zeroing of the high-order 32 bits effectively trun-
cates the 64-bit EA to a 32-bit EA such as would have
been generated on a 32-bit implementation. The ESID
in 32-bit mode is the high-order 4 bits of this trun-
cated EA; the ESID thus lies in the range 0:15. These
4 bits would select a Segment Register on a 32-bit
implementation; they select one of 16 STEGs in the
Segment Table on a 64-bit implementation. These
STEGs can be used to emulate the 32-bit machine’s
Segment Registers.

This truncation of the EA is the sole effect of 32-bit
mode (MSRge=0) on address translation; everything
else proceeds as for 64-bit mode.

Chapter 12. Storage Control 163

12.4.2 Virtual to Real Translation, 64-bit Implementations

Conversion of an 80-bit Virtual Address to a Real Address is done by searching a hashed page table located by
SDR1.

Virtual Page Number (VPN)———————o

r - 527 167 12+
89-8IT VIRTUAL ADDRESS ! vsIo ! Page ! Byte !
] 13 s1 s2 67 68 79
L I J L]
T T
| |
e
|
HTABORG HTABSIZE v
r 40T T L] f 23T 16—
SORD | Mevncnnnraaaennnenns axooe.....00 | s | | ! o's | |
L 1 1] L 1 J
[} 17 18 a3 8 63 L y 4
L |] ‘_‘P._' . I
|)
* |
v v
DECODE
Hash Function
1
[T
| |
Mask v v
r 28 3
| 886.....00110.....11 | | |
L J 1 J
_ [] 27 28 8
l L T J o1 J
| |
| ——
]
vy
AND
T
|
PR |
|
|
|
|
)
_FAGE TABLE
OR —| |*— 16 bytes
/
T / PTED PTET | PTEGE
| /
) " /
f 18- 28T 1lyp——1— / = = = =
| | | |agess0s| - - . .
L - i 1 1 J. \
\
64-bit Real Address of Page Table Entry Group \
\ PTEGR
\
128 bytes
PAGE TABLE ENTRY (PTE)
16 bytes
f 5: T : T T i N "z T T T T t i T 1
| vsIo | aer | 77 vl Real Page Number (RPN) lreirfe fwime |7 (P |
L 1 1 1 _JL 1 1 1L 1 i1
] 52 56 5263 9 51 555657 68 6263
T
|
I—'
|
v q
. 52 1
64-81T REAL ADDRESS | RPN | ayte
L L
Figure 54. Translation of 80-bit Virtual Address to 64-bit Real Address
Generation of the 80-bit Virtual Address that is input 12.4.1, “Virtual Address Generation, 64-bit

to this stage of the translation process is described in

Implementations” on page 161.

164 PowerPC Architecture First Edition

12.4.21 Page Table

The Hashed Page Table (HTAB) is a variable-sized
data structure that defines the mapping between
Virtual Page Numbers and Real Page Numbers. The
HTAB’s size must be a power of 2, and its starting
address must be a multiple of its size.

The layout of the HTAB is similar to that of the
Segment Table, except that the HTAB’s size is vari-
able while the STAB’s size is exactly one page. The
HTAB contains a number of Page Table Entry Groups,
or PTEGs. A PTEG contains 8 Page Table Entries
(PTEs) of 16 bytes each; each PTEG is thus 128 bytes
long. PTEGs are entry points for searches of the Page
Table.

See section 12.12, “Table Update Synchronization
Requirements” on page 186 for the rules that soft-
ware must follow when updating the Page Table. '

Page Table Entry

Each Page Table Entry (PTE) maps one VPN to one
RPN. Additional information in the PTE controls the
HTAB search process and provides input to the
storage protection mechanism. Figure 55 shows the
layout of a PTE.

0 52 56 62 63
VSID aet | WV
RPN i|r|clwima] /| pp
0 51 555657 60 62 63
Dword Bit Name Description
0 0:51 VSID Virtual Segment ID
52:56 AP} Abbreviated Page Index
62 H Hash function identifier
63 v Entry valid (V=1)
or invalid (V=0)
1 0:51 RPN Real Page Number
55 R Reference bit
56 C Change bit
5§7:60 WIMG Storage access controls
62:63 PP Page protection bits

All other fields are reserved.

Figure §5. Page Table Entry, 64-bit implementations

The PTE contains an Abbreviated Page Index rather
than the complete Page field. At least 11 of the low-
order bits of the VPN are used in the hash function to
select a PTEG. These bits are not repeated in the
PTEs of that PTEG.

Page Table Size

The number of entries in the Page Table directly
affects performance because it influences the hit ratio

in the Page Table and thus the rate of page fauit
interrupts. If the table is too small, it is possible that
not all the virtual pages that actually have real page
frames assigned can be mapped via the Page Table.
This can happen if too many hash collisions occur and
there are more than 16 entries for the same
primary/secondary pair of PTEGs. While this situation
cannot be guaranteed not to occur for any size Page
Table, making the Page Table larger than the
minimum size will reduce the frequency of occurrence
of such collisions.

—— Programming Note

It is recommended that the number of PTEGs in
the Page Table be at least one-half the number of
real pages to be accessed.

As an example, if the amount of real memory to
be accessed is 2% bytes (2 GB), then we have
2%1-12 =219 real pages. The minimum recom-
mended Page Table size would be 2" PTEGs, or
27 pytes (32 MB).

12.4.2.2 Storage Description Register 1

The SDR1 register is shown in Figure 56.

| HTABORG r I J-rrABSI%E
0 45 58 63

Bits Name Description
0:45 HTABORG Real address of page table
58:63 HTABSIZE Encoded size of table

All other fields are reserved.

Figure 56. SDR1, 64-bit implementations

The HTABORG field in SDR1 contains the high-order
46 bits of the 64-bit real address of the page table.
The Page Table is thus constrained to lie on a 2'8 byte
(256 KB) boundary at a minimum. At least 11 bits
from the hash function (Figure 54 on page 164) are
used to index into the Page Table. The minimum size
Page Table is 256 KB (2'' PTEGs of 128 bytes each).

The Page Table can be any size 27 where 18 < n < 46.
As the table size is increased, more bits are used
from the hash to index into the table and the value in
HTABORG must have more of its low-order bits equal
to 0. The HTABSIZE field in SDR1 contains an integer
giving the number of bits from the hash that are used
in the Page Table index. HTABSIZE is used to gen-
erate a mask of the form 0b00..011...1, that is, a
string of 0 bits followed by a string of 1 bits. The 1
bits determine which additional bits (beyond the
minimum of 11) from the hash are used in the index;
HTABORG must have this same number of low-order
bits equal to 0. See Figure 54 on page 164.

Example

Chapter 12. Storage Control 165

Suppose that the Page Table is 16,384 (2'4) 128-byte
PTEGs, for a total size of 22! bytes (2 MB). A 14-bit
index is required. Eleven bits are provided from the
hash to start with, so 3 additional bits from the hash
must be selected. Thus the value in HTABSIZE must
be 3 and the value in HTABORG must have its low-
order 3 bits (bits 31:33 of SDR1) equal to 0. This
means that the Page Table must begin on a
23+1147 =221 =2 MB boundary.

12.4.2.3 Hashed Page Table Search

An outline of the HTAB search process is shown in
Figure 54 on page 164. The detailed algorithm is as
follows:

1. Primary Hash: A 39-bit hash value is computed
by Exclusive-ORing the low-order 39 bits of the
VSID with a 39-bit value formed by concatenating
23 bits of 0 with the Page index.

2. The 64-bit real address of a PTEG is formed by
concatenating the following values:

= Bits 0:17 of SDR1 (the 18 high-order bits of
HTABORG).

s Bits 0:27 of the value formed in step 1 ANDed
with the mask generated from bits 58:63 of
SDR1 (HTABSIZE) and then ORed with bits
18:45 of SDR1 (the 28 low-order bits of
HTABORG).

= Bits 28:38 of the value formed in step 1.

= A 7-bit field of Os.

This operation is referred to as the “Primary
HTAB Hash.” This identifies a particular PTEG,
each of whose 8 PTEs will be tested in turn.

3. The first PTE in the selected PTEG is tested for a
match with VPN. In order for a match to exist,
the following must be true:

PTE, = 0
PTE, = 1
PTEysip = VAg:s1
PTEap; = VAsj:56

If a match is found, the PTE search terminates
successfully.

4. Step 3 is repeated for each of the other 7 PTEs in
the PTEG. The first matching PTE terminates the
search. If none of the 8 PTEs match, the sec-
ondary hash must be tried.

5. Secondary Hash: A 39-bit hash value is com-
puted by taking the ones complement of the
Exclusive OR of the low-order 39 bits of the VSID

with a 39-bit value formed by concatenating 23
bits of 0 with the Page index.

6. The 64-bit real address of a PTEG is formed by
concatenating the following values:

= Bits 0:17 of SDR1 (the 18 high-order bits of
HTABORG).

s Bits 0:27 of the value formed in step 5§ ANDed
with the mask generated from bits 58:63 of
SDR1 (HTABSIZE) and then ORed with bits
18:45 of SDR1 (the 28 low-order bits of
HTABORG).

Bits 28:38 of the value formed in step S.
A 7-bit field of 0s.

This operation is referred to as the “Secondary
HTAB Hash.”

7. The first PTE in the selected PTEG is tested for a
match with VPN. In order for a match to exist,
the following must be true:

PTE,
PTE,
PTEvsip = VAo:s1
PTEap = VAsz:s6

If a match is found, the PTE search terminates
successfully.

=1
=1

8. Step 7 is repeated for each of the other 7 PTEs in
the PTEG. The first matching PTE terminates the
search. If none of the 8 PTEs match, the search
fails.

If the Page Table search succeeds, the content of the
PTE that translates the EA is returned. The Real
Address {RA) is formed by concatenating the RPN
from the matching PTE with bits 52:63 of the Effective
Address (the byte offset).

If the search fails, a page fault interrupt is taken. This
will be an Instruction Storage interrupt or a Data
Storage interrupt, depending on whether the Effective
Address is for an instruction fetch or for data access.

Translation Lookaside Buffer

Conceptually, the Page Table is searched by the
address relocation hardware to translate every refer-
ence. For performance reasons the hardware usually
keeps a Translation Lookaside Buffer (TLB) that holds
PTEs that have recently been used. The TLB is
searched prior to searching the Page Table. As a
consequence, when software makes changes to the
Page Table it must perform the appropriate TLB inval-
idate operations to maintain the consistency of the
TLB with the Page Table.

166 PowerPC Architecture First Edition

r— Programming Notes
1.

2.

Page table entries may or may not be cached
in a TLB.

Table lookups are done using real addresses
and storage access mode M=1 (Memory
Coherence). .

If software plans to access the HTAB with
data relocate on, MSRpg=1, it must avoid
cache synonyms by mapping these tables
such that the real and virtual address bits
used for cache set selection are the same,
just as is required for other virtual accesses.
See address alignment requirements
described in Part 2, “‘PowerPC Virtual Envi-
ronment Architecture” on page 117.

It is possible that the hardware implements
two TLB arrays (one for data and one for
instruction). In this case the size, shape and
values contained by the arrays may be dif-
ferent.

Use the tibie or tlbia instruction to ensure
that the TLB no longer contains a mapping for
a particular page.

Refer to Book IV, PowerPC Implementation
Features for the procedure to be used to
invalidate the entire TLB.

Chapter 12. Storage Control

167

12.5 Segmented Address Translation, 32-bit Implementations

Figure 57 shows the steps involved in translating from an effective address to a real address on a 32-bit imple-

mentation.

32-hit EA l SR I

16 1
Page Byte

L

J 1 J

Select

Segment Registers

|

24

A A

52-bit VA [Virtual Segment ID l

16 1
Page Byte

L

l Lookup

Page Table

|

26 1
32-bit RA [Real Real Page Number Byte 2-]

Figure 57. Address Translation Overview {32-bit implementations)

If an access is translated by the Block Address Trans-
lation mechanism (BAT, see Section 12.7 on page
174), the BAT translation takes precedence and the
resuits of segmented address translation are not
used. If an access is not translated by a BAT, seg-
mented address translation proceeds as follows.

The Effective Address (EA) is a 32-bit quantity com-
puted by the processor. Bits 0:3 of the EA are the
Segment Register number. These are used to select
a Segment Register, from which is extracted a Virtual
Segment ID (VSID). Bits 4:19 of the EA are the Page
Number within the segment; these are concatenated
with the VSID from the Segment Register to form the
Virtual Page Number (VPN). The VPN is looked up in
the Page Table to produce a Real Page Number (RPN).
Bits 20:31 of the EA are the Byte Offset within the
page; these are concatenated with the RPN to‘form
the Real Address (RA) that is used to access storage.

If the selected Segment Register identifies the
segment as a direct-store segment, the Page Table is
not referred to. Rather, translation continues as
described in 12.6, “Direct-Store Segments” on
page 173.

For ordinary storage segments the translation moves
in two steps from Effective Address to Virtual Address
(which never exists as a specific entity but can be
considered to be the concatenation of the VPN and
Byte Offset), and from Virtual Address to Real
Address.

The first step in segmented address translation is to
convert the effective address into a virtual address,
described in section 12.5.1 on page 169. The second
step, conversion of the virtual address into a real
address, is described in section 12.5.2 on page 170.

168 PowerPC Architecture First Edition

12.5.1 Virtual Address Generation,
32-bit Implementations

Conversion of a 32-bit Effective Address to a Virtual
Address is done by using the 4 high-order bits of the
EA to select a Segment Register.

32-BIT EFFECTIVE ADORESS

4 167 12
| sk | Page | syte |
L I i J
6 3 4 19 28 31
L 3L)
Select]
i
-16 SEGMENT REGISTERS
/
/
/
/
/
/
 —
\
\ =
\ =
\ p—
\ |
\Ve——e
SEGMENT REGISTER
32 bits
T T T 1 T 26 1
{tliks || 1r | vSID |
L 1 L 1 1 i
8 1 2 8 | 31
!
!
v ¥
241 167 124
vsSID I Page | Byte l
1 1 J

+———Virtual Page Number (YPN)———

§2-BIT VIRTUAL ADORESS
Figure 58. Translation of 32-bit Effective Address to Virtuali Address

12511 Segment Registers

The 16 32-bit registers are present only in 32-bit
implementations of PowerPC. Figure 59 shows the
layout of a Segment Register. The fields in the
Segment Register are interpreted differently
depending on the value of bit 0 (the T bit).

URE VSID

01 2 8 31
Bit Name Description

0 T T=0 selects this format

1 K Supervisor state storage key
2 Kp Problem state storage key
8:31 VSID Virtual Segment ID

All other fields are reserved

controller specific

|T|KJKEL BUID]
0 1 23 12

31

Bit Name Description

0 T T=1 selects this format

1 Ks Supervisor state storage key
2 Kp Problem state storage key
3111 BUID Bus Unit ID

12:31 Device dependent data for

1/0 controller

Figure 59. Segment Register format

If an access is translated by the Block Address Trans-
lation mechanism (BAT, see Section 12.7 on page
174), the BAT translation takes precedence and the
results of translation using Segment Registers are not
used. If an access is not translated by a BAT, and
T=0 in the selected Segment Register, the Effective
Address is a reference to an ordinary storage
segment. The 52-bit Virtual Address (VA) is formed
by concatenating

= the 24-bit VSID field from the Segment Register.
= the 16-bit page index, EA,.49, and
= the 12-bit byte offset, EA20:31.

The VA is then translated to a Real Address as
described in the next section.

If T=1 in the selected Segment Register (and the
access is not translated by a BAT), the Effective
Address is a reference to a direct-store segment. No
reference is made to the page table; processing con-
tinues as in 126, “Direct-Store Segments” on
page 173.

Chapter 12. Storage Control 169

12.5.2 Virtual to Real Translation, 32-bit Implementations

Conversion of a 52-bit Virtual Address to a Real Address is done by searching a hashed page table located by
SDR1.

i rtual Page Number (YPN)=—ermm————ece—s

[28~ 16— 124
52-8IT VIRTUAL ADDRESS | Virtual Segment 10 (VSID) | Page [syte |
L d 1 J
8 H 23 2 39 48 Sl
L J L } L }
T T
| |
! L
'
316
| oo | |
L L J
l——ﬂ___'.
|
|
¥)
Hash Function
T
|
HTABORG HTABMASK v
1 T 9 g 18y
SORL | xeeeen. XX088. oo et sl ! 1 TR oll....1 ! ! !
8 6 7 15 23 3 [} 8 9 18
L T J L T J 1 —
| | |
| | ———
| I
| vy
;
[— AND
T
]
—
|
|
|
|
v v
PAGE TABLE
OR —] |*— 8 bytes
/
- / PTE® PTE? | PTECS
| /
v /
r 1T T 1T / = = = b
| | | | 000006]
L L 1 J J \
\
32-bit Real Address of Page Table Entry Group \
A\ PTEGR
\
64 bytes
PAGE TABLE ENTRY (PTE)
8 bytes
rT U6 1 28T T T ™ T
!v! Vs10 Ih | AP1 || Real Page Number (RPN) |s/7[R Jc | wiMs |7 | PP |
Ll Ji) 1 1 1 1 1 1_J
91 24252631 @ 19 232825 28 3831
|
—
|
v
f 207 124
32-BIT REAL ADDRESS | RPN | eyte |
L 1 J

Figure 60. Translation of 52-bit Virtual Address to 32-bit Real Address

Generation of the 52-bit Virtual Address that is input 12.5.1, “Virtual Address Generation, 32-bit
to this stage of the translation process is described in Implementations” on page 169.

170 PowerPC Architecture First Edition

12.5.21 Page Table

The Hashed Page Table (HTAB) is a variable-sized
data structure that defines the mapping between
Virtual Page Numbers and Real Page Numbers. The
HTAB’s size must be a power of 2, and its starting
address must be a multiple of its size.

The HTAB contains a number of Page Table Entry
Groups, or PTEGs. A PTEG contains 8 Page Table
Entries (PTEs) of 8 bytes each; each PTEG is thus 64
bytes long. PTEGs are entry points for searches of
the Page Table.

See section 12.12, “Table Update Synchronization
Requirements” on page 186 for the rules that soft-
ware must follow when updating the Page Table.

Page Table Entry

Each Page Table Entry (PTE) maps one VPN to one
RPN. Additional information in the PTE controls the
HTAB search process and provides input to the
storage protection mechanism. Figure 61 shows the
layout of a PTE.

01 2526 31

v| VSID H AP
RPN | /]r]|clwima|] pp

0 19 23 2425 28 30 31

Word Bit Name Description
0 0 \'% Entry valid (V=1)
or invalid (V=0)
1:24 VSID Virtual Segment ID
25 H Hash function identifier

26:31 APl Abbreviated Page Index
1 0:19 RPN Real Page Number

23 R Reference bit

24 C Change bit

25:28 WIMG Storage access controls
30:31 PP Page protection bits

All other fields are reserved.

Figure 61. Page Table Entry, 32-bit implementations

The PTE contains an Abbreviated Page Index rather
than the complete Page field. At least 10 of the low-
order bits of the Page are used in the hash function to
select a PTEG. These bits are not repeated in the
PTEs of that PTEG.

Page Table Size

The number of entries in the Page Table directly
affects performance because it influences the hit ratio
in the Page Table and thus the rate of page fault
interrupts. If the table is too small, it is possible that
not all the virtual pages that actually have real page

frames assigned can be mapped via the Page Table.
This can happen if too many hash collisions occur and
there are more than 16 entries for the same
primary/secondary pair of PTEGs. While this situation
cannot be guaranteed not to occur for any size Page
Table, making the Page Table larger than the
minimum size will reduce the frequency of occurrence
of such collisions.

— Programming Note

It is recommended that the number of PTEGs in
the Page Table be at least one-half the number of
real pages to be accessed.

As an example, if the amount of real memory to
be accessed is 22 bytes (512 MB), then we have
28-12 =27 real pages. The minimum recom-
mended Page Table size would be 2% PTEGs, or
22 pytes {4 MB).

12.5.2.2 Storage Description Register 1

The SDR1 register is shown in Figure 62.

[HTABORG] " LHTABMASK‘]
0 1§ 23 31

Bits Name Description
0:15 HTABORG Real address of page table
23:31 HTABMASK Mask for page table address

All other fields are reserved.

Figure 62. SDR1, 32-bit implementations

The HTABORG field in SDR1 contains the high-order
16 bits of the 32-bit real address of the page table.
The Page Table is thus constrained to lie on a 2'¢ byte
(64 KB) boundary at a minimum. At least 10 bits from
the hash function (Figure 60 on page 170) are used
to index into the Page Table. The minimum size Page
Table is 64 KB (2'° PTEGs of 64 bytes each).

The Page Table can be any size 2” where 16 < n < 25.
As the table size is increased, more bits are used
from the hash to index into the table and the value in
HTABORG must have more of its low-order bits equal
to 0. The HTABMASK field in SDR1 contains a mask
value that determines how many bits from the hash
are used in the Page Table index. This mask must be
of the form 0b00...011...1, that is, a string of 0 bits fol-
lowed by a string of 1 bits. The 1 bits determine how
many additional bits (beyond the minimum of 10) from
the hash are used in the index; HTABORG must have
this same number of low-order bits equal to 0. See
Figure 60 on page 170.

Example

Suppose that the Page Table is 8,192 (2'3) 64-byte
PTEGs, for a total size of 2'° bytes (512 KB). A 13-bit

Chapter 12. Storage Control 171

index is required. Ten bits are provided from the
hash to start with, so 3 additional bits from the hash
must be selected. Thus the value in HTABMASK
must be 0x007 and the value in HTABORG must have
its low-order 3 bits (bits 13:15 of SDR1) equal to 0.
This means that the Page Table must begin on a
23+10+6 = 218 = 512 KB boundary.

12.5.2.3 Hashed Page Table Search

An outline of the HTAB search process is shown in
Figure 60 on page 170. The detailed algorithm is as
follows:

1. A 18-bit hash value is computed by
Exclusive-ORing the low-order 19 bits of the VSID
with a 19-bit value formed by concatenating 3 bits
of 0 with the Page index.

2. Primary Hash: The 32-bit real address of a PTEG
is formed by concatenating the following values:

= Bits 0:6 of SDR1 (the 7 high-order bits of
HTABORG).

= Bits 0:8 of the value formed in step 1 ANDed
with bits 23:31 of SDR1 (the value of
HTABMASK) and then ORed with bits 7:15 of
SDR1 (the 9 low-order bits of HTABORG).
Bits 9:18 of the value formed in step 1.
A 6-bit field of 0s.

This operation is referred to as the “Primary
HTAB Hash.” This identifies a particular PTEG,
each of whose 8 PTEs will be tested in turn.

3. The first PTE in the selected PTEG is tested for a
match with VPN. In order for a match to exist,
the following must be true:

PTE, =0

PTE, = 1 :
PTEvsip = VAp.23

PTEapi = VAgs20

if a match is found, the PTE search terminates
successfully.

4. Step 3 is repeated for each of the other 7 PTEs in
the PTEG. The first matching PTE terminates the
search. If none of the 8 PTEs match, the sec-
ondary hash must be tried.

5. A 19-bit hash value is computed by taking the
ones complement of the Exclusive OR of the low-
order 18 bits of the VSID with a 19-bit value
formed by concatenating 3 bits of 0 with the Page
index.

6. Secondary Hash: The 32-bit real address of a
PTEG is formed by concatenating the following
values:

= Bits 0.6 of SDR1 (the 7 high-order bits of
HTABORG).

= Bits 0:8 of the value formed in step 5 ANDed
with bits 23:31 of SDR1 (the value of
HTABMASK) and then ORed with bits 7:15 of
SDR1 (the 8 low-order bits of HTABORG).

= Bits 9:18 of the value formed in step 5.

= A 6-bit field of Os.

This operation is referred to as the “Secondary
HTAB Hash.”

7. The first PTE in the selected PTEG is tested for a
match with VPN. In order for a match to exist,
the following must be true:

PTE, = 1
PTE, = 1
PTEysip = VAo:23
PTEap = VAgs.20

]

If a match is found, the PTE search terminates
successfully.

8. Step 7 is repeated for each of the other 7 PTEs in
the PTEG. The first matching PTE terminates the
search. If none of the 8 PTEs match, the search
fails.

If the Page Table search succeeds, the content of the
PTE that translates the EA is returned. The Real
Address (RA) is formed by concatenating the RPN
from the matching PTE with bits 20:31 of the Effective
Address (the byte offset).

If the search fails, a page fault interrupt is taken. This
will be an Instruction Storage interrupt or a Data

Storage interrupt, depending on whether the Effective
Address is for an instruction fetch or for data access.

Translation Lookaside Buffer

Conceptually, the Page Table is searched by the

address relocation hardware to translate every refer-

ence. For performance reasons the hardware usually
keeps a Translation Lookaside Buffer (TLB) that holds
PTEs that have recently been used. The TLB is

'searched prior to searching the Page Table. As a

consequence, when software makes changes to the
Page Table it must perform the appropriate TLB inval-
idate operations to maintain the consistency of the
TLB with the Page Table.

172 PowerPC Architecture First Edition

—— Programming Notes

1. Page table entries may or may not be cached
inaTLB.

2. Table lookups are done using real addresses
and storage access mode M=1 (Memory
Coherence).

3. If software plans to access the HTAB with
data relocate on, MSRpgr=1, it must avoid
cache synonyms by mapping these tables
such that the real and virtual address bits
used for cache set selection are the same,
just as is required for other virtual accesses.
See address alignment requirements
described in Part 2, “PowerPC Virtual Envi-
ronment Architecture” on page 117.

4. It is possible that the hardware implements
two TLB arrays (one for data and one for
instruction). In this case the size, shape and
values contained by the arrays may be dif-
ferent.

5. Use the tlbie or tlbia instruction to ensure
that the TLB no longer contains a mapping for
a particular page.

6. Refer to Book IV, PowerPC Implementation
Features for the procedure to be used to
invalidate the entire TLB.

12.6 Direct-Store Segments

A direct-store segment is a mapping of effective
addresses onto an external address space, typically
an /0 bus.

Effective addresses that lie within direct-store seg-
ments complete only the first step of the ordinary
segmented address translation.

= In 64-bit implementations, this is the search of the
Segment Table. If the resulting Segment Table
Entry has T=1, the reference is to a direct-store
segment.

= |n 32-bit implementations, this is the selection of
the Segment Register. If the SR has T=1, the
reference is to a direct-store segment.

Direct-store data accesses are executed as though
the storage access mode bits “WIMG” were x101 (see
Section 12.8). This mode requires bypassing the
cache, does not require the hardware to enforce data
coherence with storage, 1/0, and other processors
(caches), and treats the segment as Guarded storage.

12.6.1 Completion of direct-store
access

If an access is translated by the Block Address Trans-
lation mechanism (BAT, Section 12.7), the BAT trans-
lation takes precedence and the results of segmented
address translation are not used. If an access is not
translated by a BAT, and the segmented address
transiation process has discovered that the segment
has T=1, translation terminates. No reference .is
made to the Page Table; Reference and Change bits
are not updated. The following data is sent to the
storage controller:

For 64-bit implementations:

= A one bit field representing the privilege of
the storage access, computed as follows:

Key « (K, & MSRpg) | (K¢ & -MSRppg)

» The 32-bit 10 field from bits 32:63 of the
second doubleword of the STE

= The low-order 28 bits of the Effective
Address, EA36263

For 32-bit implementations:

= A one bit field representing the privilege of
the storage access, computed as follows:

Key « (K, & MSRpg) | (Kg & -MSRpg)

= The contents of bits 3:31 of the Segment
Register, which is the BUID field concat-
enated with the “controller specific” field.

= The low-order 28 bits of the Effective
Address, EA4.3,

An implementation of PowerPC Architecture may
cause multiple address/data transfers for a single
instruction. The address for each transfer will be
handled in the same manner that addresses for
access to main store are handled.

12.6.2 Direct-store segment
protection

Page-level protection as described in 12.10.1, “Page
Protection” on page 179 is not provided by the
PowerPC processor for direct-store segments. The
appropriate key bit (K, or K;) from the STE or SR is
sent to the storage controller, but it is up to the
storage controller to implement any protection mech-
anism. Frequently no such mechanism will be pro-
vided; the fact that a direct-store segment is mapped
into the address space of a process may be regarded
as sufficient authority to access the segment.

Chapter 12. Storage Control 173

12.6.3 Instructions not supported for
T=1

The following instructions are not supported when
issued with an Effective Address in a segment where
T=1:

e lwarx * stwex.
* Idarx * stdcx.
* eciwx * ecowx

If one of these instructions is executed with an effec-
tive address in a segment with T=1, a Data Storage
interrupt may occur or the results may be boundedly
undefined.

12.6.4 Instructions with no effect for
T=1

The following instructions are treated as no-ops when
issued with an Effective Address in a segment where
T=1:

* dcbt * dcbst
* dcbtst * dcbz
* dcbf * jchi
e dcbi

For further details of storage references to direct-
store segments, refer to Book IV, PowerPC Implemen-
tation Features.

12.7 Block Address Translation

The Block Address Translation (BAT) mechanism pro-
vides a means for mapping ranges of virtual
addresses larger than a single page onto contiguous
areas of real storage. Such areas can be used for
data that is not subject to normal virtual storage han-
dling (paging), such as a memory-mapped display
buffer or an extremely large array of numerical data.

12.7.1 Recognition of Addresses in
BAT Areas

Block Address Translation is enabled only when
address translation is enabled (MSRg=1 or
MSRpg=1 or both).

A set of Special Purpose Registers (SPRs) called BAT
registers define the starting addresses and sizes of
BAT areas. The BAT registers are accessed in parallel
with segmented address translation to determine
whether a particular EA corresponds to a BAT area.
If an EA is within a BAT area, the real address for
storage access is determined as described below.

It is possible to set up the BAT registers and the seg-
mented address translation mechanism such that a
particular Effective Address is within a BAT area and
also is covered by page translation. When this
happens, the BAT takes precedence over entries in
the Segment Table or the content of a Segment Reg-
ister {(including the T bit).

—— Programming Note

It is possible for a BAT area to overlay part of an
ordinary segment, such that the BAT portion is
non-pagable while the rest of the segment is
pageable. If this is done, it is not necessary to
supply Page Table entries for the portion of the
segment overlaid by the BAT.

The BAT areas are defined by pairs of SPRs. These
SPRs can be read or written by the mfspr and mtspr
instructions; see page 78. Access to these SPRs is
privileged. The layout of the BAT registers is shown
in figure 63 for 64-bit implementations and in figure 64
for 32-bit implementations.

Four pairs of BAT registers are provided for trans-
lating instruction addresses {the IBAT registers), and
four pairs are provided for translating data addresses
(the DBAT registers).

—— Programming Note

If the same storage address is to be mapped via
BAT for both I-fetch and data load and store, it is
necessary to ioad the mapping into both an IBAT
pair and a DBAT pair. This is true even on an
implementation that does not have split | and D
caches.

It is an error for system software to set up the BAT
registers such that an Effective Address is translated
by more than one IBAT pair or by more than one
DBAT pair. If this occurs, the results are undefined
and may include a violation of the storage protection
mechanism, a Machine Check interrupt, or a
Checkstop. '

Each pair of BAT registers defines the starting
address of a BAT area in Effective Address space, the
length of the area, and the start of the corresponding
area in Real Address space. If an Effective Address
is within the range of EAs defined by a pair of BAT
registers that is valid (see below) for the access, its
Real Address is developed by (conceptually) sub-
tracting the starting effective address of the BAT area
from the EA and adding the starting real address of
the BAT area.

BAT areas are restricted to a finite set of allowable
lengths, all of which are powers of 2. The smallest
BAT area defined is 128 KB (2'7 bytes). The largest

174 PowerPC Architecture First Edition

BAT area defined is 256 MB (22 bytes). The starting
address of a BAT area in both EA space and RA
space must be a multiple of the area’s length.

12.7.2 BAT Registers

See section “Move To Special Purpose Register
XFX-form” on page 79 for a list of the SPR numbers
for the BAT registers. See Appendix C, “Assembler
Extended Mnemonics” on page 221 for a list of
extended mnemonics for use with the BAT registers.
The equation for determining whether a BAT entry is
valid for a particular access is: ‘

BAT_entry_valid = (Vg & -MSRpg) | (V, & MSRpg)
If a BAT entry is not valid for a given access, it does
not participate in address translation for that access.

Two BAT entries may not map an overlapping effec-
tive address range and be valid at the same time.

—— Programming Note

Entries that have complementary settings of V,
and V, may map overlapping effective address
blocks. Complementary settings would be:

BAT entry A: Vg =1, Vo 0
BAT entry B: Ve =8, V, 1

(1]

The BL field in the upper BAT register is a mask that
encodes the length of the BAT area.

“Longh. Bt

128 KB 000 0000 0000
256 KB 000 0000 0001
512 KB 000 0000 0011
1 MB 000 0000 0111
2 MB 000 0000 1111
4 MB 000 0001 1111
8 MB 000 0011 1111
16 MB 000 0111 1111
32 MB 000 1111 1111
64 MB 001 1111 1111
128 MB 011 1111 11114
256 MB 1M1 1111 1111

Only the values shown are valid for BL. The rightmost
bit of BL is aligned with bit 46 {14} of the EA.

An Effective Address is determined to be within a BAT
area if EA matches BEPl. The boundary between the
string of Os and the string of 1s in BL determines the
bits of EA that participate in the comparison with

Upper BAT Register

0 46 51 82 63
BEPI //d BL VSM,
BRPN " [wume]/ PP

0 46 57 80 62 63

Lower BAT Register
Reg Bit Name Description

Upper 0:46 BEPI Block Effective Page Index

51:61 BL Block Length
62 Vg Supervisor state valid bit
63 V, Problem state valid bit

Lower 0:46 BRPN Block Real Page Number
57.60 WIMG Storage access controls
Bit 60 is reserved in IBATSs.

62:63 PP Protection bits for BAT area

All other fields are reserved.

Figure 63. BAT Registers, 64-bit implementations

BEPI: bits in EA corresponding to 1s in BL are forced
to O for this comparison.

Bits in EA corresponding to 1s in BL, concatenated
with the 17 bits of EA to the right of BL, form the
offset within the BAT area.

—— Programming Note

The value loaded into BL determines both the
length of the BAT area and the alignment of the
area in both EA space and RA space. It is a pro-
gramming error if the value loaded into BL is not
one of those given in the table above, or if the
values loaded into BEPI and BRPN do not have at
least as many low-order Os as there are 1s in BL

Upper BAT Register

0 14 19 30 31
BEPI m | BL ﬂv
BRPN mo |wima|/| pp

) 14 25 28 30 31
Lower BAT Register

Reg Bit Name Description
Upper 0:14 BEPI Block Effective Page Index

1929 BL Block Length
30 Vs Supervisor state valid bit
31 Vo Problem state valid bit

Lower 0:14 BRPN Block Real Page Number
2528 WIMG Storage access controls
Bit 28 is reserved in IBATs.

30:31 PP Protection bits for BAT area

All other fields are reserved.

Figure 64. BAT Registers, 32-bit implementations

Chapter 12. Storage Control 175

36— 11 17
” T

BL MASK

11— 17
]

BRPN

36— 11 17
RA —l

Figure 65. Formation of Real Address via BAT, 64-bit
implementations

12.7.21 BAT Storage Protection

If an Effective Address is determined to be within a
BAT area that is valid for the access, the access is
next validated by the storage protection scheme
described in section 12.10.2, “BAT Protection” on
page 180. If this protection mechanism rejects the
EA, a page fault (Data Storage interrupt or Instruction
Storage interrupt) is generated.

12.7.2.2 BAT Real Address

If the protection mechanism accepts the access, then
a Real Address is formed as shown in figure 65 for
64-bit implementations, and figure 66 for 32-bit imple-
mentations.

Access to the real memory of the BAT area is made
according to the storage mode defined by the “WIMG”
bits in the lower BAT register. These bits apply to the
entire BAT area rather than to an individual page.
See 12.8.2, “Supported Storage Modes” on page 177
for an explanation of these bits.

4 11 17
EA _ 1

BL MASK

BRPN

4 11 17
RA —]
] 1
Figure 66. Formation of Real Address via BAT, 32-bit
implementations.

12.8 Storage Access Modes

When address relocation is enabled and the effective
address generated by a storage access is translated
by the Segmented Address Translation mechanism or
by the Block Address Translation mechanism, the
access is performed under the control of the Page
Table Entry or BAT entry used to translate the effec-
tive address. Each Page Table Entry or DBAT entry
contains four mode control bits, W, I, M, and G, that
specify the storage mode for all accesses translated
by the entry. The IBAT entry contains the W, !}, and M
bits, but not the G bit. The W and I bits control how
the processor executing the access uses its own
cache. The M bit specifies whether the processor
executing the access must use the storage coherence
protocol to ensure that all copies of the addressed
storage location are made consistent. The G bit con-
trols whether or not speculative data and instruction
fetching is permitted. For an access translated by an
IBAT entry, G is assumed to be 0.

The mode control bits only have meaning when an
effective address is translated in the processor per-
forming a storage access. When an access is per-
formed for which coherence is required, the processor
performing the access must inform the coherence
mechanism that the access requires memory coher-
ence. Other processors affected by the access must
respond to the coherence mechanism. However since
these mode control bits are only relevant when an

176 PowerPC Architecture First Edition

effective address is translated and have no direct
relation to data in the cache, processors responding
to the coherence request are able to respond without
knowledge of the state of these bits.

12.81 W, I, M and G bits

The W, I, M, and G bits in a Page Table Entry or DBAT
entry, or the W, I, and M bits in an IBAT entry, control
the way in which the processor accesses cache and
main storage. Each bit controls a separate aspect of
storage references.

w Write Through

If the data is in the cache, a store must update
that copy of the data. In addition, if W=1 the
update must be written to the home storage
location (see below).

Store combining optimizations are allowed
except when the store instructions are sepa-
rated by sync or eieio. The architecture pre-
sumes that data present in the cache is valid
and a store may cause any part of that data to
be copied back to main storage.

The definition of the home storage location is
dependent upon the implementation of the
memory system but can be illustrated by the
following exampiles:

= RAM Storage
The store must be sent to the RAM con-
troller to be written into the target RAM.

= {/O Adapter Card
the store must be sent to the adapter card
to be written to the target register or
storage location.

In systems with multilevel caching, the store
must be written to at least a depth in the
memory hierarchy that is seen by all
processors and devices.

1 Caching Inhibited

If 1=1, the storage access is completed by ref-
erencing the location in main storage,
bypassing the cache. During the access, the
accessed location is not brought into the cache
nor is the location allocated in the cache. It is
considered a programming error if a copy of
the target location of an access to Caching
Inhibited storage is in the cache. Software
must ensure that the location has not previ-
ously been brought into the cache or, if it has,
that it has been flushed from the cache. If the
programming error occurs, the result of the
access is boundedly undefined.

Load/store combining optimizations are
allowed except when the accesses are sepa-
rated by sync, or by eieio when the storage
access is also Guarded.

M Memory Coherence

This mode control is provided to allow
improved performance in systems in which
accesses to storage kept consistent by hard-
ware is slower than accesses to storage not
kept consistent by hardware, and in which soft-
ware is able to enforce the required consist-
ency. When the mode is off (M=0), the
hardware need not enforce data coherence.
When the mode is on (M=1), the hardware
must enforce data coherence. Because
instruction storage need not be consistent with
data storage, it is permissible for an imple-

" mentation to ignore the M bit for instruction
fetches.

G Guarded Storage

If G=1, accesses to storage must conform to
the restrictions described in Section 12.2.5,
“Speculative Execution” on page 157.

12.8.2 Supported Storage Modes

The combinations of the Write Through bit, the
Caching Inhibited bit, and the Memory Coherence bit
define eight different storage modes. Six of these
modes are supported. For each, the G bit may be 0
or 1.

= WIM = 000

1. Data may be cached.

2. Loads or stores for which the target location
is in the cache may use that copy of the
location.

3. Exclusive ownership of the block containing
the target location is not required for store
accesses and consistency operations for the
block may be ignored when fetching the
block, storing it back, or changing its state
from shared to exclusive.

= WIM = 001

1. Data may be cached.

2. Loads or stores for which the target location
is in the cache may use that copy of the
location.

3. Exclusive ownership of the block containing
the target location is required before store
accesses are allowed. When fetching the
block, the processor must indicate that con-
sistency is to be enforced on the bus trans-
action. If the state of the block is read
shared, the processor must gain exclusive
use of the block before storing into it.

= WIM = 010

Caching is inhibited. The storage access goes to
storage bypassing the cache. Hardware enforced
storage consistency is not required.

Chapter 12. Storage Control 177

= WIM = 011

Caching is inhibited. The storage access goes to
storage bypassing the cache. Storage consist-
ency is enforced by hardware.

= WIM = 100

1. Data may be cached.

2. Loads for which the target location is in the

cache may use that copy of the location.

3. Stores must be written to main storage. The
target location of the store may be cached
and must be updated if there.

4. Exclusive ownership of the block containing
the target location is not required for store
accesses and consistency operations for the
block may be ignored when fetching the
block, storing it back, or changing its state
from shared to exclusive.

= WIM = 101

1. Data may be cached.

2. Loads for which the target location is in the
cache may use that copy of the location.

3. Stores must be written to main storage. The
target location of the store may be cached
and must be updated if there.

4. Exclusive ownership of the block containing
the target location is required before store
accesses are allowed. When fetching the
block, the processor must indicate that con-
sistency is to be enforced on the bus trans-
action. If the state of the block is read
shared, the processor must gain exclusive
use of the block before storing into it.

= WIM = 110

This mode would represent memory that is Write
Through, Caching Inhibited, and Memory Coher-
ence Not Required. This mode is not supported.

= WIM = 111

This mode would represent memory that is Write
Through, Caching Inhibited, and Memory Coher-
ence Required. This mode is not supported.

12.8.3 Mismatched WIMG Bits

Accesses to the same storage location using two
effective addresses for which the Write Through mode
(W bit) differs must meet the Memory Coherence
requirements described in Part 2, “PowerPC Virtual
Environment Architecture” on page 117.

12.9 Reference and Change
Recording

If address translation is enabled (MSRgz=1 or
MSRpgr=1), Reference (R} and Change (C) bits are
maintained in the Page Table Entry for each real page
for accesses due to segment and page table address
translation. Reference and change recording is not
performed for translations due to BAT or for direct-
store (T=1) segments.

The R and C bits are set automatically by hardware or
by software assist in conjunction with normal Page
Table processing as follows:

Reference bit

As a result of page table processing for a
storage access (load, store, or cache instruc-
tion, or instruction fetch), the Reference bit may
be set to 1 immediately or its setting may be
delayed until the storage access is determined
to be successful.

The Reference bit may be set for a specula-
tively executed access. The Reference bit may
also be set for accesses that are not performed
when the access is prohibited by page pro-
tection, or if the access is the result of a string
operation of zero length, or if the access is a
Store Conditional but no store is performed
because a reservation does not exist.
Change Bit

Whenever a data store is executed successfully,
as part of the TLB look-up procedure the
Change bit in the TLB is checked. If it is already
set to 1, no further action is taken. If the TLB
Change bit is O, it is set to 1 and the corre-
sponding Change bit in the Page Table Entry is
set to 1.

The PowerPC Architecture requires that the
Change bit be set to 1 only if the store is
allowed by storage protection and all branches
prior to the store that will cause the Change bit
to be set have been resolved and it has been
determined that the store is on the path that is
to be executed.

Furthermore, the Change bit may be set even
when a store is not performed successfully in
the following cases:

1. A Store Conditional (stwex. or stdex.) is
executed and is allowed by the storage pro-
tection mechanism, but no store is per-
formed because a reservation does not
exist.

2. A Store String Word Indexed (stswx) is exe-
cuted and is allowed by the storage pro-
tection mechanism, but no store is
performed because the length is zero.

178 PowerPC Architecture First Edition

3. The store operation is not performed
because the instruction stream is inter-
rupted before the store is performed.

Execution of either of the Data Cache Block Touch
instructions (dcbt, dcbtst) may result in setting the R
bit for a page. Neither instruction may result in
setting the C bit for a page.

See section 12.12, “Table Update Synchronization
Requirements” on page 186 for the rules software
must follow when updating the Reference and Change
bits in the Page Table.

12.9.1 Synchronization of Reference
and Change Bit Updates

If processor A executes a load or store that causes a
Reference bit and/or Change bit update, the following
conditions must be met with respect to setting of the
bits and performing the access:

1. If processor A subsequently executes a sync,
both the updates to the bits and the access must
be performed with respect to all other processors
and mechanisms before the sync completes on
processor A.

2. If processor B subsequently executes a tlbie that
invalidates the TLB entry in processor A that was
used to translate the access, and processor B
then executes a tlbsync that is broadcast, both
the updates to the bits and the access must be
performed with respect to all other processors
and mechanisms before the tibsync completes on
processor A.

Updates to the Reference and Change bits may not
be immediately visible to the program after executing
a load or store that sets them indirectly.

—— Programming Note

If it is important that the program that loads from
the PTE retrieve the correct R and C bits, a sync
instruction must be executed between a load or
store that indirectly sets an R or C bit, and the
load of these bits from the PTE.

— Programming Note

On systems with Translation Lookaside Buffers,
the Reference and Change bits are only set on the
basis of TLB activity. When software resets these
bits to zero it must synchronize the TLB’s actions
by invalidating the TLB entries associated with
the pages whose Reference and Change bits were
reset.

1210 Storage Protection

The storage protection mechanism provides a means
for selectively granting read access, granting
read/write access, and prohibiting access to areas of
storage based on a number of control criteria.

Since the protection mechanism operates as part of
the address translation mechanism, storage pro-
tection applies to translated accesses only. Instruc-
tion storage access protection is active only when
MSRjg=1. Data storage access protection is active
only when MSRpg=1.

A page (4 KB) crossing is relevant to performance
and instruction restart when it corresponds to a pro-
tection boundary. Crossing a 4 KB boundary in an
area mapped by Block Address Translation or in a
direct-store segment should have no effect on per-
formance and should not cause an instruction restart.

For ordinary translated accesses to memory via the
Page Table, the Page Protection mechanism described
in the next section is active. Different mechanisms
are used for Block Address Translation (BAT)
accesses (see section 12.10.2, “BAT Protection” on
page 180) and for Direct-store segments (see section
12.6.2, “Direct-store segment protection” on
page 173).

12.10.1 Page Protection

The page protection mechanism provides protection
at the granularity of a page (4 KB). It is controlled by
the following inputs:

= MSRpg, which distinguishes between supervisor
state and problem state.

= K, and K, supervisor and problem key bits in the
Segment Table Entry or Segment Register.

= PP bits in the Page Table Entry.

A reference made via the segmented address trans-
lation mechanism is associated with a Segment Table
Entry (STE) and a Page Table Entry (PTE) by the
address translation mechanism. The K bits, the PP
bits, and the MSRpg bit are used as follows:

A Key value is developed according to the following
formula:

Key « (K, & MSRpg) | (Ks & -MSRpg)
Using the generated Key, the following table is
applied:
When a reference is not permitted because of the pro-
tection mechanism one of the following occurs.

= Data Stdrage interrupt is generated and bit 4 of
the DSISR is set to 1.

Chapter 12. Storage Control 179

Load Store
Key| PP | Page Type | Access Access
Permitted | Permitted
0 00 read/write yes yes
0 01 read/write yes yes
0 10 read/write | yes yes
0 11 read only yes no
1 00 no access no no
1 o1 read only yes no
1 10 read/write yes yes
1 11 read only yes no

Key Key selected by state of MSRpg bit
PTE page protect bits

PP

Figure 67. Protection Key Processing

= Instruction Storage interrupt is generated and bit

36 {4} of SRR1 is set to 1.

—— Programming Note

A store that is not permitted because of the
storage protection mechanism will not cause a
Change bit to be set in a PTE; such an access may
cause a Reference bit to be set in a PTE.

12.10.2 BAT Protection

The BAT protection mechanism operates on an entire

BAT area, not on individual pages. If an Effective
Address is determined to be within a BAT area that is
valid for the access, the operations described above
in section 12.10.1, “Page Protection” on page 179 are
performed, with these exceptions:

s For BATs, no Key value is defined; Figure 67 is
used with an assumed Key=1.

= The PP bits from the lower BAT register are used,
not bits from a Page Table Entry.

180 PowerPC Architecture First Edition

1211 Storage Control
Instructions

12.11.1 Cache Management
Instructions

This section contains the only privileged cache man-
agement instruction and additional specifications for
the other cache management instructions described in
Part 2, “PowerPC Virtual Environment Architecture”
on page 117. See that document for further details.

If the effective address references a direct-store
segment, the instruction is treated as a no-op.

When data relocate is off, MSR pg =0, the Data Cache
Block set to Zero instruction establishes a block in
the cache and may not verify that the real address is
valid. If a block is created for an invalid real address,
a Machine Check may result when an attempt is made
to write that block back to storage. The block could
be written back as the result of the execution of an
instruction that causes a cache miss and the invalid
address block is the target for replacement or as the
result of a Data Cache Block Store instruction.

Data Cache Block Invalidate X-form

dcbi RA,RB

31 1 RA RB 470 /

Let the effective address (EA) be the sum
(RA|0)+ (RB).

The action taken is dependent on the storage mode
associated with the target, and the state of the block.
The list below describes the action to take if the block
containing the byte addressed by EA is or is not in the
cache.

1. Coherence Not Required

Unmadified Block
Invalidate the block in the local cache.

Modified Block
Invalidate the block in the local cache. (Discard
the modified contents.)

Absent Block
No action is taken.

2. Coherence Required

Unmaodified Block
Invalidate copies of the block in the caches of
all processors.

Modified Block
Invalidate copies of the block in the caches of
all processors. (Discard the modified con-
tents.)

Absent Block
If copies are in the caches of any other
processor, cause the copies to be invalidated.
(Discard any modified contents.)

When data address translation is enabled, MSRpg =1,
and the virtual address has no translation a Data
Storage Interrupt occurs. See 13.5.3, “Data Storage
Interrupt” on page 194.

The function of this instruction is independent of the
Write Through and Caching Inhibited/Allowed modes
of the block containing the byte addressed by EA.

This instruction is treated as a store to the addressed
byte with respect to address translation and pro-
tection. The Reference bit for EA may be set, the Ref-
erence and Change bits may be set, or neither may
be set.

This instruction is privileged.

Special Registers Altered:
None

Chapter 12. Storage Control 181

12.11.2 Segment Register Manipulation Instructions

Move To Segment Register X-form

mtsr SR,RS .

31 RS |/| SR /I/ 210 /
o 6 1] 12 16 21 3t

Move To Segment Register Indirect
X-form

RS,RB
[Power mnemonic: mtsri]

mtsrin

SEGREG(SR) « (RS)

The contents of register RS is placed into Segment
Register SR. '

This instruction is privileged.
This instruction is defined only for 32-bit implementa-
tions. Using it on a 64-bit implementation will cause

an lllegal Instruction type Program interrupt.

Special Registers Altered:
None

Move From Segment Register X-form

mfsr RT,SR

31 RT |/ SR 1 595 /

RT « SEGREG(SR)
The contents of Segment Register SR is placed into
register RT.)

This instruction is privileged.

This instruction is defined only for 32-bit implementa-
tions. Using it on a 64-bit implementation will cause
an lllegal Instruction type Program interrupt.

Special Registers Altered:
None

31 RS " RB 242 /
0 6 11 16 21 31

SEGREG((RB)g.3) ¢ (RS)
The contents of register RS are copied to the
Segment Register selected by bits 0:3 of register RB.

This instruction is privileged.

This instruction is defined only for 32-bit implementa-
tions. Using it on a 64-bit implementation will cause
an lliegal Instruction type Program interrupt.

Special Registers Altered:
None

Move From Segment Register Indirect
X-form

mfsrin RT.RB

31 RT " RB 659 /

RT « SEGREG((RB)g.3)
The contents of the Segment Register selected by bits
0:3 of register RB are copied into register RT.

This instruction is privileged.

This instruction is defined only for 32-bit implementa-
tions. Using it on a 64-bit implementation will cause
an llilegal Instruction type Program interrupt.

Special Registers Altered:
None

—— Programming Note

For a discussion of software synchronization
requirements when altering Segment Registers,
piease refer to Appendix L, “Synchronization
Requirements for Special Registers” on page 269.

Programming Note

The RA field is not defined for the mtsrin and
misrin instructions in this architecture. However,
mtsrin and mfsrin will perform the same function
in PowerPC as do mtsri and mfsri in Power if RA
is 0 in the Power instructions.

182 PowerPC Architecture First Edition

12.11.3 Lookaside Buffer
Management Instructions (Optional)

While the PowerPC Architecture describes logically
separate instruction fetch and fixed-point (including
effective address computation) execution units, the
programming model is that there is one translation
mechanism and, for 32-bit implementations, one set of
segment registers.

For performance reasons, most implementations will
implement a Segment Lookaside Buffer (64-bit imple-
mentations) and a Translation Lookaside Buffer.
These are caches of portions of the Segment Table
and Page Table respectively. As changes are made
to the address translation tables, it is necessary to
force the SLB and TLB into line with the updated
tables. This is done by invalidating SLB and TLB
entries, or occasionally by invalidating the entire SLB
or TLB, and allowing the translation caching mech-
anism to re-fetch from the tables.

Each PowerPC implementation which has an SLB must
provide means for doing the following:

= Invalidating an individual SLB entry

= Invalidating the entire SLB
Each PowerPC implementation which has a TLB must
provide means for doing the following:

= Invalidating an individual TLB entry

= |Invalidating the éntire TLB
An implementation may choose to provide one or

more of the instructions listed in this section in order
to satisfy requirements in the preceding list. If an

instruction is implemented that matches the seman-
tics of an instruction described here, the implementa-
tion should be as specified here. Alternatively, an
algorithm may be given that performs one of the func-
tions listed above (a loop invalidating individual SLB
entries may be used to invalidate the entire SLB, for
example), or instructions with different semantics may
be implemented. Such algorithms or instructions
must be described in Book IV, PowerPC Implementa-
tion Features.

It is permissible for an instruction described here to
be implemented so that more is done than absolutely
required. For example, an instruction whose seman-
tics are to purge an SLB entry may be implemented
so as to purge an entire congruence class or perhaps
even the entire SLB. Such additional actions should
be described in Book V.

If a 64-bit implementation does not implement an
SLB, it does not provide the optional instructions that
affect the SLB (slbie and sibia). In such an implemen-
tation, it is permissible to treat these SLB instructions
as no-ops. Similarly, if the implementation does not
implement a TLB, it does not provide the optional
instructions that affect the TLB (tibie, tibia, and
tibsync). In such an impilementation, it is permissible
to treat these TLB instructions as no-ops.

r— Programming Note

Because the presence, absence, and exact
semantics of the various Lookaside Buffer man-
agement instructions are model dependent, it is
recommended that system software
“encapsulate” uses of such instructions into sub-
routines to minimize the impact of moving from
one implementation to another.

Chapter 12. Storage Control 183

SLB Invalidate Entry X-form

SLB Invalidate All X-form

slbie RB slbia

31 mn " RB 434 / 31 nn " I 498 /
0 6 1 16 21 31 0 6 1 16 21 31
EA « (RB) A1l SLB entries ¢ invalid

if SLB entry exists for EA, then
SLB entry ¢« invalid

Let the effective address (EA) be the contents of reg-
ister RB. If the Segment Lookaside Buffer (SLB) con-
tains an entry corresponding to EA, that entry is made
invalid (i.e., removed from the SLB).

The SLB search is done regardless of the settings of
MSR|R and MSRDR.

Block Address Translation for EA, if any, is ignored.
This instruction is privileged.

This instruction is optional in PowerPC Architecture.
This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause

an lllegal Instruction type Program interrupt.

Special Registers Altered:
None

—— Programming Note

It is not necessary that the ASR point to a valid
Segment Table when issuing sibie.

The entire SLB is made invalid (i.e., all entries are
removed).

The SLB is invalidated regardless of the settings of
MSR,R and MSRDR'

This instruction is privileged.

This instruction is optional in PowerPC Architecture.
This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause

an lilegal Instruction type Program interrupt.

Special Registers Altered:
None

—— Programming Note

It is not necessary that the ASR point to a valid
Segment Table when issuing sibia.

184 PowerPC Architecture First Edition

TLB Invalidate Entry X-form

tibie RB

[Power mnemonic: tibi]

31 n 1" RB 306 /
0 6 11 16 21 31

VPL « (RB)gg:51 (4:19)
Identify TLB entries corresponding to VPI
Each such TLB entry « invalid

Let the effective address (EA) be the contents of reg-
ister RB. If the Translation Lookaside Buffer (TLB)
contains an entry corresponding to EA, that entry is
made invalid (i.e., removed from the TLB).

The TLB search is done regardless of the settings of
MSR|g and MSRpgr. The search is done based on a
portion of the Virtual Page Index, including the least
significant bits, without reference to the SLB, segment
table, or segment register. All entries matching the
search criteria are invalidated.

Block Address Translation for EA, if any, is ignored.
This instruction is privileged.

This instruction is optional in PowerPC Architecture.
See Section 12.12, “Table Update Synchronization
Requirements” on page 186 for a description of other
requirements associated with the use of this instruc-

tion.

Special Registers Altered:
None

—— Programming Notes

Nothing is guaranteed about instruction fetching in
other processors if tibie deletes the TLB entry for
the page in which some other processor is cur-
rently executing.

TLB Invalidate All X-form

tibia

31 1" 1" 1 370 /

A1l TLB entries ¢ invalid

The entire TLB is invalidated (i.e.,, all entries are
removed).

The TLB is invalidated regardless of the settings of
MSR[R and MSRDR'

This instruction is privileged.
This instruction is optional in PowerPC Architecture.

Special Registers Altered:
None

—— Programming Notes

It is not necessary that the ASR point to a valid
Segment Table or that SDR 1 point to a valid
page table when issuing tlbia.

Nothing is guaranteed about instruction fetching in
other processors if tibie deletes the TLB entry for
the page in which some other processor is cur-
rently executing.

Chapter 12. Storage Control 185

TLB Synchronize X-form
tibsync

31 1 " m 566 /
0 6 11 16 21 31

The tibsync instruction waits does not complete until
all previous tibie and tlbia instructions executed by
the processor executing this instruction have been
received and completed by all other processors.

This instruction is privileged.

This instruction is optional in PowerPC Architecture,
but it must be implemented if any of the following are
true:

= A TLB invalidation instruction that broadcasts is
implemented.

= The eciwx or ecowx instructions are imple-
mented.

See Section 12.12, “Table Update Synchronization
Requirements” for a description of other require-
ments associated with the use of this instruction.

Special Registers Altered:
None

12.12 Table Update
Synchronization Requirements

This section describes the steps that software must
take .when updating the tables involved in address
translation. Updates to these tables include:

= Adding a new Page Table Entry (PTE).

s Modifying an existing PTE, including the special
case of madifying the PTE’s Reference bit.

= Deleting a PTE.

» Adding a new Segment Table Entry {STE).
s Modifying an existing STE.

= Deleting a STE.

In a multiprocessor system it is critical that these
rules be followed to ensure that all processors see a
consistent set of tables. Even in a uniprocessor
system certain rules must be followed, notably those
regarding Reference and Change bit updates, because
software changes must be synchronized with auto-
matic updates by the hardware.

A sync instruction ensures that all prior tlbie
instructions executed by the processor executing the
sync instruction have completed on that processor.

To ensure that a tlbie instruction executed by one
processor has completed on all other processors, the
sequence tlbie followed by sync is not sufficient. This
sequence must be followed by a tlbsync instruction
and then a sync instruction on the processor that exe-
cuted the tibie to ensure that

1. the prior tlbie instructions have completed on
other processors, and

2. the tibsync has completed on the processor exe-
cuting this sequence.

When tlbie is executed on one processor, software
must ensure that the following sequence of
instructions is executed on that processor before a
tibie is executed on a second processor.

1. sync
2. tibsync
3. sync

Other instructions may be interleaved with this
sequence of instructions but these instructions must
appear in the sequence in the order shown.

186 PowerPC Architecture First Edition

12.12.1 Page Table Updates

HTAB entries must be locked on multiprocessors.
Access to HTAB entries must be appropriately syn-
chronized by software locking of (i.e,, guaranteeing
exclusive access to) entries or groups of entries if
more than one processor can modify the table at
once.

On uniprocessors, HTAB entries need not be locked.
To adapt the examples given below for the
uniprocessor case, simply delete the “lock()” and
“unlock()” lines. The sync instructions shown are still
required even on uniprocessors.

TLBs are non-coherent caches of the HTAB. TLB
entries must be flushed explicitly with one of the TLB
invalidate instructions. The sync instruction waits
until all prior TLB invalidates by this processor are
complete. This may cost a sync per HTAB entry
update. .

Unsynchronized lookups in the HTAB continue even
while it is being modified. Any processor, even
including the processor modifying the HTAB, may look
in the HTAB at any time in an attempt to reload a TLB
entry. An inconsistent HTAB entry must never acci-
dentally become visible, thus there must be synchro-
nization between modifications to the valid bit and
any other modifications. This costs as many as two
syncs per HTAB entry update.

Processors write Reference and Change bits with
unsynchronized atomic byte stores. This requires that
the V, R, and C bits be in distinct bytes. It also
requires extreme care to ensure that no store over-
writes one of these bytes accidentally.

In the examples below,

= “lock()” and “unlock()” refer to software locks for
exclusive access to the table entry in question,
sync refers to the sync instruction,
tibsync refers to the tlbsync instruction, and
tibie refers to the tibie instruction.

1212.1.1 Adding a Page Table Entry

This is the simplest Page Table case. It requires no
synchronization with the hardware, just a lock on the
PTE in a multiprocessor system. We fill in the entries
in the PTE except for the Valid bit, issue a sync to
ensure that the updates have all made it to storage,
and turn on the Valid bit.

Tock(PTE)

PTEysip,H.aPI € New values
TEgpn,R.CWIMPP © New values
sync

PTEy ¢ 1

unlock(PTE)

1212.1.2 Modifying a Page Table Entry

General case

In this case a currently-valid PTE must be changed.
To do this we must lock the PTE, mark it invalid, flush
it from the TLB, update the information in the PTE,
mark it valid again, and unlock, using sync at appro-
priate times to wait for modifications to complete.

lock(PTE)

PTEy « ©

sync

t1bie(PTE)

sync

tlbsync

sync

PTEygip H.ap1 ¢ New values
PTERPN,R,C,WIM.PP « new values
sync

PTEy « 1

unlock(PTE)

Resetting the Reference bit

In the case where the PTE is modified only to set the
Reference bit to 0, a much simpler algorithm suffices
because the Reference bit need not be maintained
exactly. :

lock(PTE)

oldR « PTER

if 01dR = 1 then
PTER « O
t1lbie(PTE)

unlock(PTE)

Since only the R and C bits are modified by hardware,
and since R and C are in different bytes, the R bit can
be set to 0 by reading the current contents of the byte
in the PTE containing R (bits 48:55 of the second
doubleword on 64-bit implementations, bits 16:23 of
the second word on 32-bit implementations), ANDing
the value with OxFE, and storing the byte back into
the PTE.

Modifying the virtual address

If the virtual address is being changed to a different
address within the same TLB hash class and cache
hash class, it suffices to:

lock(PTE)

val « PTEygip ap1uv
insert new VSID into val
- PTEvsip apthy € Val

sync

tibie(PTE)

sync

t1bsync

sync

unlock(PTE)

Chapter 12. Storage Control 187

Here we take advantage of the fact that the store into
the first doubleword of the PTE (word, on 32-bit
systems) is performed atomically. ‘

Note that if the new address is not a cache synonym
of the old, it will be necessary to flush or invalidate
the page in the cache(s) as well. This may involve
assigning a temporary virtual address that is such a
synonym, and using that address to do the cache
operations.

12.12.1.3 Deleting a Page Table Entry

Here we just lock the entry, mark it invalid, wait for
the change to complete, and unlock.

lock(PTE)
PTEy, ¢« 0
sync
tlbie(PTE)
sync
t1bsync
sync
unlock(PTE)

12.12.2 Segment Table Updates

These updates are similar to Page Table updates, but
without the complication of hardware updates to Ref-
erence and Change bits.

STAB entries must be locked on multiprocessors.
Access to STAB entries must be appropriately syn-
chronized by software locking of (i.e., guaranteeing
exclusive access to) entries or groups of entries if
more than one processor can modify the table at
once.

On uniprocessors, STAB entries need not be locked.
To adapt the examples given below for the
uniprocessor case, simply delete the “lock()” and
“unlock()” lines. The sync instructions shown are still
required even on uniprocessors.

SLBs are non-coherent caches of the STAB. SLB
entries must be flushed explicitly with one of the SLB
invalidate instructions. The sync instruction waits
until all prior SLB invalidates by this processor are
complete. This may cost a sync per STAB entry
update.

Unsynchronized lookups in the STAB continue even
while it is being modified. Any processor, even
including the processor modifying the STAB, may look
in the STAB at any time in an attempt to reload a SLB
entry. An inconsistent STAB entry must never acci-
dentally become visible, thus there must be synchro-

nization between modifications to the valid bit and
any other modifications. This costs as many as two
syncs per STAB entry update.

In the examples below,

= “lock()” and “unlock()” refer to software locks for
exclusive access to the table entry in question,

s sync refers to the sync instruction, and

= sibie refers to the slbie instruction.

12.12.21 Adding a Segment Table Entry

We fill in the entries in the STE except for the Valid
bit, issue a sync to ensure that the updates have all
made it to storage, and turn on the Valid bit.

lock(STE)
STEESID,T,KS,KD « new values
ifT=29
then STEygp ¢ new value
else STE,o ¢« new value
sync
STEy « 1
unlock(STE)

12.12.2.2 Modifying a Segment Table
Entry

In this case a currently-valid STE must be changed.
To do this we must lock the STE, mark it invalid, flush
it from the SLB, update the information in the STE,
mark it valid again, and unlock, using sync at appro-
priate times to wait for modifications to complete.

Tock(STE)
STEy ¢ 8
sync
s1bie(STE)
sync
STEgsiD T Ks,Kp ¢ NeW values
ifT=0
then STEygp ¢ new value
else STE,p « new value
sync
STEy « 1
“unlock(STE)

12.12.2.3 Deleting a Segment Table
Entry

Here we just lock the entry, mark it invalid, wait for
the change to complete, and unlock.

Tock(STE)
STEV « 0
sync
slbie(STE)
sync
unlock(STE)

188 PowerPC Architecture First Edition

12.12.3 Segment Register Updates

On an implementation that provides Segment Regis-
ters rather than a Segment Table, there is no table to
be locked but there are certain synchronization
requirements that must be satisfied when using the
Move to Segment Register instructions. See
Appendix L, “Synchronization Requirements for
Special Registers” on page 269.

Chapter 12. Storage Control

189

190 PowerPC Architecture First Edition

Chapter 13. Interrupts

13.1 Overview

The PowerPC architecture provides an interrupt mech-
anism to allow the processor to change state as a
result of external signals, errors, or unusual condi-
tions arising in the execution of instructions.

System Reset and Machine Check interrupts are not
ordered. All other interrupts are ordered such that
only one interrupt is reported, and when it is proc-
essed (taken), no program state is lost. Since
save/restore registers SRR0 and SRR1 are serially
reusable resources used by most interrupts, program
state will be lost when an unordered interrupt is
taken.

13.2 Interrupt Synchronization

When an interrupt occurs, SRRO is set to point to an
instruction such that all preceding instructions have
completed execution, no subsequent instruction has
begun execution, and the instruction addressed by
SRRO may or may not have completed execution,
depending on the interrupt type.

All interrupts are context synchronizing, as defined in
Section 9.7.1, “Context Synchronization” on page 145,
except that System Reset and Machine Check inter-
rupts need not be context synchronizing if they are
not recoverable (i.e., if bit 62 {30} of SRR1 is set to 0
by the interrupt).

13.3 Interrupt Classes

Interrupts are classified by whether they are directly
caused by the execution of an instruction or are
caused by some other system exception. Those that
are “system-caused” are:

System Reset
Machine Check
External
Decrementer

External and Decrementer are maskable interrupts.
While MSRge =0, the interrupt mechanism ignores the
exceptions that generate these interrupts. Therefore,
software may delay the generation of these interrupts
by setting MSRg=0 or by failing to set MSRge=1
after processing an interrupt. When any interrupt is
taken, MSRg¢ is set to 0 by the interrupt mechanism,
delaying the recognition of any further exceptions
causing these interrupts.

System Reset and Machine Check exceptions are not
maskable. These exceptions will be recognized
regardless of the setting of the MSR.

“Instruction-caused” interrupts are further divided
into two classes, precise and imprecise.

13.3.1 Precise Interrupt

Except for the Imprecise Mode Floating-Point Enabled
Exception interrupt, all instruction-caused interrupts
are precise. When the execution of an instruction
causes a precise interrupt, the following conditions
exist at the interrupt point:

1. SRRO addresses either the instruction causing the
exception or the immediately following instruc-
tion. Which instruction is addressed can be
determined from the interrupt type and status
bits.

2. An interrupt is generated such that all
instructions preceding the instruction causing the
exception appear to have completed with respect
to the executing processor. However, some
storage accesses generated by these preceding
instructions may not have been performed with
respect to all other processors and mechanisms.

3. The instruction causing the exception may not
have begun execution, may have partially com-
pleted, or may have completed, depending on the
interrupt type.

Chapter 13. Interrupts 191

4. Architecturally, no subsequent instruction has
begun execution.

13.3.2 Imprecise Interrupt

This architecture defines one imprecise interrupt:
= |mprecise Mode Floating-Point Enabled Exception

When the execution of an instruction causes an impre-
cise interrupt, the following conditions exist at the
interrupt point:

1. SRRO addresses either the instruction causing the
exception or some instruction following the
instruction causing the exception that generated
the interrupt.

2. An interrupt is generated such that all
instructions preceding the instruction addressed
by SRRO appear to have completed with respect
to the executing processor.

3. If the imprecise interrupt is forced, by the context
synchronizing mechanism, due to an instruction
that causes another interrupt (e.g., Alignment,
DSI) then SRRO addresses the interrupt-forcing
instruction, and the interrupt-forcing instruction
may have been partially executed (see section
13.6, “Partially Executed Instructions” on
page 199).

4. If the imprecise interrupt is forced, by the exe-
cution synchronizing mechanism, due to exe-
cuting an execution synchronizing instruction
other than sync or isync, then SRR0 addresses
the interrupt-forcing instruction, and the interrupt-
forcing instruction appears not to have begun
execution (except for its forcing the imprecise
interrupt). If the imprecise interrupt is forced by
a sync or isync instruction, then SRRO may
address either the sync or isync instruction, or
the following instruction.

5. If the imprecise interrupt is not forced by either
the context or the execution synchronizing mech-
anism, then the instruction addressed by SRRO
appears not to have begun execution, if it is not
the excepting instruction.

6. No instruction following the instruction addressed
by SRRO appears to have begun execution.

All Floating-Point Enabled Exception interrupts are
maskable using the MSR bits FE0 and FE1. Although
these interrupts are maskable, they differ significantly
from the other maskable interrupts in that the
masking of these interrupts is usually controlled by
the application program whereas the masking of
External and Decrementer interrupts is controlled by
the operating system.

13.4 Interrupt Processing

Associated with each kind of interrupt is an interrupt
vector, which contains the initial sequence of
instructions that is executed when the corresponding
interrupt occurs.

Interrupt processing consists of saving a small part of
the processor’s state in certain registers, identifying
the cause of the interrupt in another register, and
continuing execution at the corresponding interrupt
vector {ocation. When an exception exists that will
cause an interrupt to be generated and it has been
determined that the interrupt can be taken, the fol-
lowing actions are performed:

1. SRRO is loaded with an instruction address that
depends on the type of interrupt; see the specific
interrupt description for details.

2. Bits 33:36 and 42:47 {1:4 and 10:15} of SRR1 are
loaded with information specific to the interrupt
type.

3. Bits 0:32, 37:41, and 48:63 {0, 5:9, and 16:31} of
SRR1 are loaded with a copy of the corre-
sponding bits of the MSR, except for the Machine
Check interrupt, for which these bits are set to
implementation-dependent values.

4. The MSR is set as described in Figure 68 on
page 193. The new values take effect beginning
with the first instruction following the interrupt.
MSR bits of particular interest are:

= MSRg and MSRpR are set to 0 for all inter-
rupt types. Thus relocate is turned off for
both instruction fetch and data access begin-
ning with the first instruction following the
acceptance of the interrupt. See Chapter 12,
“Storage Control” on page 155.

= MSRge bit is set to 1 in 64-bit implementa-
tions and execution after the interrupt begins
in 64-bit mode. This bit is reserved (not
defined) in 32-bit implementations.

5. Instruction fetch and execution resumes, using
the new MSR value, at a location specific to the
interrupt type. The location is determined by
adding the interrupt vector's offset (see
Figure 69 on page 193) to the base address
determined by MSR|p (see Interrupt Prefix on
page 149). For a Machine Check that occurs
when MSRy,=0, the Checkstop state is entered
(the machine stops executing instructions). See
13.5.2, “Machine Check Interrupt” on page 194.

Interrupts do not clear reservations obtained with
lwarx or ldarx. The operating system should do so at
appropriate points, such as at process switch.

192 PowerPC Architecture First Edition

— Programming Note

In some implementations, any instruction fetch
with MSRz=1, and any load or store with
MSRpg =1, may have the side effect of modifying
SRRs 0 and 1. ,

—— Programming Note

In general, at process switch, due to possible
process interlocks and possible data availability
requirements, the operating system needs to con-
sider executing the following:

= stwex., to clear the reservation if one is out-
standing, to ensure that a Iwarx or Idarx in
the “old” process is not paired with a stwex.
or stdex. in the “new” process.

= sync, to ensure that all storage operations of
an interrupted process are complete with
respect to other processors before that
process begins executing on another
processor.

» jsync or rfi, to ensure that the instructions in
the “new” process execute in the “new
context.

”

13.5 Interrupt Definitions

Figure 68 below shows all the types of interrupts and
the values assigned to the MSR for each. Figure 69
shows the offset of the interrupt vector, for each
interrupt type.

—— Programming Note

The operating system should manage MSRg, as
follows:

= In the Machine Check and System Reset
interrupt handlers, interpret SRR1 bit 62 {30}
(where MSRg, is placed) as:

— 0: interrupt is not recoverable
— 1: interrupt is recoverable with respect to
the processor

= |n each interrupt handler, when enough state
has been saved that a Machine Check or
System Reset interrupt can be recovered
from, set MSRg, to 1.

= |n each interrupt handler, do the following just
before returning.

— Set MSRg,; to 0.

— Set SRR0O and SRR1 to the values to be
used by rfii The new value of SRR1
should have bit 62 {30} set to 1 (which
will happen naturally if SRR1 is restored
to the value saved there by the interrupt,
because the interrupt handler will not be
executing this sequence uniess the inter-
rupt is recoverable).

— Execute rfi.

Interrupt Type MSR bit
IP ILE LE ME SF{}

System Reset - - m - 1
Machine Check - - (1) 1
Data Storage - - {1 1
Instruction Storage - - {1 - 1
External - - mn - 1
Alignment - - - 1
Program - - M - 1
FP Unavailable - - M - 1
Decrementer - - - 1
System Call - - {1 - 1
Trace ’ - - -1
Floating-Point Assist - - m - 1
0 bit is set to 0

1 bit is set to 1

- bit is not altered

(1) Dbitis copied from ILE

Defined bits not shown above (BE, DR, EE, FEO,
FE1, FP, IR, POW, PR, RI, and SE) are set.to 0.

Reserved bits are set as if written as 0.

Figure 68. MSR Setting Due to Interrupt

Offset (hex) | Interrupt Type

00000 Reserved

00100 System Reset

00200 Machine Check

00300 Data Storage

00400 Instruction Storage

00500 External

00600 Alignment

00700 Program

00800 Floating-Point Unavailable
003900 Decrementer

00A00 Reserved

00B0O Reserved

00C00 System Call

00D00 Trace

00EQO Floating-Point Assist
00E10 Reserved

O0FFF Reserved

01000 Reserved, implementation-specific

02FFF (end of interrupt vector locations)

Figure 69. Offset of Interrupt Vector by Interrupt

Type

Chapter 13. Interrupts 193

—— Programming Note

Use of any of the locations shown as reserved
risks incompatibility with future implementations.

13.5.1 System Reset Interrupt

System Reset begins with a System Reset interrupt.

If the System Reset exception caused the processor
state to be corrupted such that the content of SRRO
or SRR1 are not valid or other processor resources
are corrupt and would preclude a reliable restart,
then the processor sets SRR1 bit 62 {30} (where
MSRg, is normally placed) to 0, to indicate to the
interrupt handler that the interrupt is not recoverable.

The following registers are set:

SRRO Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 {1:4} - Setto 0.
42:47 {10:15} Set to 0.
62 {30} Loaded from bit 62 {30} of the MSR if the
processor is in a recoverable state, other-
wise set to 0.
Others Loaded from the MSR.

MSR See Figure 68 on page 193.

Execution resumes at offset 0x00100 from the base
real address indicated by MSRp.

13.5.2 Machine Check Interrupt

Machine Check interrupts are enabled when
MSRye=1. If MSRye=0 and a Machine Check
occurs, the processor enters the Checkstop state.

Disabled Machine Check (Checkstop State)
When a processor is in Checkstop state, instruction

processing is suspended and generally cannot be
restarted without resetting the processor. Some

implementations may freeze the content of all latches -

when entering Checkstop state so that the state of the
processor can be analyzed as an aid in problem
determlnatlon

Enabled Machine Check

If the Machine Check exception caused the processor
state to be corrupted such that the content of SRRO
or SRR1 are not valid or other processor resources
are corrupt and would preclude a reliable restart,
then the processor sets SRR1 bit 62 {30} (where

MSRg, is normally placed) to 0, to indicate to the
interrupt handler that the interrupt is not recoverable.

In some systems, the operating system may attempt
to identify and log the cause of the Machine Check. If
the exception that caused the Machine Check does
not preclude continued execution (i.e., if SRR1 bit 62
{30} is set to 1 for the interrupt handler), the
processor must be able to continue execution at the
Machine Check interrupt vector address.

The following registers are set:

SRRO Set on a “best effort” basis to the effective
address of some instruction that was exe-
cuting or was about to be executed when
the Machine Check exception occurred.
For further details see the Book IV,
PowerPC Implementation Features docu-
ment for the implementation.

SRR1 See the Book IV, PowerPC Implementation
Features document for the implementation.

MSR See Figure 68 on page 193.

Execution resumes at offset 0x00200 from the base
real address indicated by MSRp.

— Programming Note

On some implementations a Machine Check inter-
rupt may occur due to referencing an invalid {(non-
existent) real address, either directly (with
MSRpg=0), or through an invalid translation. On
such a system, execution of Data Cache Block set
to Zero can cause a delayed Machine Check inter-
rupt by introducing a block into the data cache
that is associated with an invalid real address. A
Machine Check interrupt could eventually occur
when and if a subsequent attempt is made to
store that block to main storage.

13.5.3 Data Storage Interrupt

A Data Storage interrupt occurs when no higher pri-
ority exception exists and a data storage access
cannot be performed for any of the following reasons:

s The instruction results in a Direct-Store Error
exception.

= The effective address of a load, store, dcbl dcbst,
dcbf, dcbz, or icbi instruction cannot be trans-
lated.

= The instruction is not supported for the type of
storage addressed. (An interrupt may nct occur
for this condition; see Section 12.6.3, “Instructions
not supported for T=1" on page 174).

= The access violates storage protection.
Execution of a eciwx or ecowx instruction is disal-
lowed because EAR=0.

194 PowerPC Architecture First Edition

Such accesses can be generated by load/store type
instructions (discussed in Part 1, “PowerPC User
Instruction Set Architecture” on page 1), certain
storage control instructions, certain cache control
instructions (discussed in Part 2, “PowerPC Virtual
Environment Architecture” on page 117), and the
eciwx and ecowx instructions (discussed in Part 3,
“PowerPC Operating Environment Architecture” on
page 141).

If a stwex. or stdex. has an effective address for
which a normal store would cause a Data Storage
interrupt, but the processor does not have the reser-
vation from Iwarx or Idarx, then it is implementation-
dependent whether or not a Data Storage interrupt
occurs.

If a Move Assist instruction has a length of zero (in
the XER), a Data Storage interrupt does not occur,
regardless of the effective address.

The interrupt cause is defined in the Data Storage
Interrupt Status Register. These interrupts also use
the Data Address Register.

The following registers are set:

SRRO Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 {1:4} SettoO.
42:47 {10:15} Set to 0.
Others lLoaded from the MSR.

MSR See Figure 68 on page 193.
DSISR
0 Set to 1 if a load or store instruction
results in a Direct-Store Error exception,
otherwise 0.
1 Set to 1 if the translation of an attempted

access is not found in the hashed primary
HTEG, or in the re-hashed secondary
HTEG, or in the range of a DBAT register;

otherwise 0.
2:3 Set to 0. -
4 Set to 1 if a storage access is not per-

mitted by the page or DBAT protection
mechanism described on page 179, other-
wise 0.

5 Set to 1 if the access was due to an eciwx,
ecowx, lwarx, Idarx, stwcx., or stdex. that
addresses a direct-store segment (T=1 in
Segment register or Segment Table Entry),
or if the access was due to a lwarx, Idarx,
stwex., or stdex. that addresses Write
Through storage; set to 0 otherwise.

6 Set to 1 for a store operation and to 0 for a
load operation.

7:8 Set to 0.

9 Reserved for DABR (see the Book 1V,
PowerPC Implementation Features docu-
ment for the implementation).

10 Set to 1 if the Segment Table Search fails
to find a translation for the effective
address, otherwise set to 0.-

1 Set to 1 if execution of a eciwx or ecowx
instruction was attempted with EAR=0,
otherwise set to 0.

12:31 Set to 0.

DAR Set to the effective address of a storage
element as described in the following list.

= A byte in the first word accessed in
the page that caused the Data Storage
interrupt, for a byte, halfword, or word
access to a non-direct-store segment.

= A byte in the first doubleword
accessed in the page that caused the
Data Storage interrupt, for a
doubleword access to a non-direct-
store segment.

= A byte in the first word accessed in
the BAT area that caused the Data
Storage interrupt, for a byte, halfword,
or word access to a BAT area.

= A byte in the first doubleword
accessed in the BAT area that caused
the Data Storage interrupt, for a
doubleword access to a BAT area.

= Any effective address in the range of
storage being addressed, for a Direct-
Store Error exception.

Execution resumes at offset 0x00300 from the base
real address indicated by MSRp.

13.5.4 Instruction Storage Interrupt

An Instruction Storage interrupt occurs when no
higher priority exception exists and an attempt to
fetch the next instruction to be executed cannot be
performed for any of the following reasons:

= The effective address cannot be translated.
= The fetch access is to a direct-store segment.
= The fetch access violates storage protection.

Such accesses can only be generated by instruction
fetches. The following registers are set:

SRRO Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present (if the interrupt
occurs on attempting to fetch a branch
target, SRRO is set to the branch target
address).

Chapter 13. Interrupts 195

SRR1

33 {1} Set to 1 if the translation of an attempted
access is not found in the hashed primary
HTEG, or in the re-hashed secondary
HTEG, or in the range of an IBAT register;
otherwise 0.

34 {2} SettoO.

35 {3} Set to 1 if the fetch access was to a direct-
store segment (T=1 in Segment Register
or Segment Table Entry); set to 0 other-
wise.

36 {4} Set to 1 if a storage access is not per-
mitted by the page or IBAT protection
mechanism described on page 179, other-
wise 0.

42 {10} Set to 1 if the Segment Table Search fails
to find a translation for the effective
address, otherwise set to 0.

43:47 {11:15} Set to 0.

Others Loaded from the MSR.

MSR See Figure 68 on page 193.

Execution resumes at offset 0x00400 from the base
real address indicated by MSRp.

13.5.5 External Interrupt

An External interrupt occurs when no higher priority
exception exists, an External interrupt exception is
presented to the interrupt mechanism, and MSRge=1.
The occurrence of the interrupt does not cancel the
request.

The following registers are set:

SRRO Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 {114} SettoO.
42:47 {10:15} Set to 0.
Others Loaded from the MSR.

MSR See Figure 68 on page 193.

Execution resumes at offset 0x00500 from the base
real address indicated by MSRp.

13.5.6 Alignment Interrupt

An Alignment interrupt occurs when no higher priority
exception exists and the implementation cannot
perform a storage access for one of the reasons listed
below. The term “protection boundary,” used below,
refers to the boundary between protection domains.
A protection domain is a direct-store segment, a block
of storage defined by a BAT entry, or a 4K block of
storage defined by a Page Table entry. Protection
domains are defined only when DR=1.

= The operand of a floating-point load or store is
not word-aligned, for any storage class.

= The operand of a fixed-point doubleword load or
store is not word-aligned, for any storage class.

= The operand of Imw, stmw, lwarx, or stwex. is
not word-aligned, or the operand of idarx or
stdex. is not doubleword-aligned, for any storage
class.

= The operand of a floating-point load or store is in
a direct-store segment (T=1).

= The operand of an elementary or string load or
store crosses a protection boundary.

= The operand of Imw or stmw crosses a segment
or BAT boundary.

» The operand of Data Cache Block set to Zero
(debz) is in a page that is Write Through or
Caching Inhibited, for a virtual mode access.

In all cases above, an implementation may correctly
do the operation and not cause an Alignment inter-
rupt. Details can be found in the Book IV, PowerPC
Implementation Features document for the implemen-
tation.

The following registers are set:
SRRO Set to the effective address of the instruc-

tion that caused the interrupt.

SRR1
33:36 {114} Setto0.
42:47 {10:15} Set to 0.
Others Loaded from the MSR.

MSR See Figure 68 on page 193.

DSISR
0:11 Set to 0.
12:13 Set to bits 30:31 of the instruction if

DS-form.
Set to 0b0O if D- or X-form. (Set to 0b00 on
32-bit implementations.)

14 Setto 0.

15:16 Set to bits 29:30 of the instruction if X-form.
Set to 0b00 if D- or DS-form.

17 Set to bit 25 of the instruction if X-form.
Set to bit 5 of the instruction if D- or
DS-form.

196 PowerPC Architecture First Edition

18:21 Set to bits 21:24 of the instruction if X-form.
Set to bits 1:4 of the instruction if D- or
DS-form.

22:26 Set to bits 6:10 of the instruction
(RT/RS/FRT/FRS), except undefined for
dcbz.

27:31 Set to bits 11:15 of the instruction (RA) for
update form instructions; set to either bits
11:15 of the instruction or to any register
number not in the range of registers loaded
by a valid form instruction, for Imw, Iswi,
and Iswx; undefined for other instructions.

DAR Set to the effective address of the data
access as computed by the instruction
causing the alignment exception.

For an X-form Load or Store, it is acceptable to set
the DSISR to the same value that would have
resulted if the corresponding D- or DS-form instruc-
tion had caused the interrupt. Similarly, for a D- or
DS-form Load or Store, it is acceptable to set the
DSISR to the value that would have resulted for the
corresponding X-form instruction. For example, an
unaligned lwax (that crosses a protection boundary)
would normally, following the description above,
cause the DSISR to be set to binary:

where “ttttt” denotes the RT field, and “??77??”
denotes undefined bits. However, it is acceptable if it
causes the DSISR to be set as for lwa, which is

If there is no corresponding alternate form instruction
(e.g., for lwaux), the value described above must be
set in the DSISR.

The instruction pairs that may use the same DSISR
value are:

1bz/1bzx 1bzu/1bzux Thz/1hzx Thzu/1hzux
1ha/1hax Thau/1haux 1wz /Twzx Twzu/lwzux
Twa/lwax 1d/1dx 1du/Tdux

sth/stbhx stbu/stbux sth/sthx sthu/sthux
stw/stwx stwu/stwux std/stdx stdu/stdux
1fs/1fsx 1fsu/1fsux 1fd/1fdx 1fdu/1fdux

stfs/stfsx stfsufstfsux stfd/stfdx stfdu/stfdux

Execution resumes at offset 0x00600 from the base
real address indicated by MSRp.

—— Programming Note

Software should not attempt to obtain a reserva-
tion for an unaligned Iwarx or idarx, nor to simu-
late an unaligned stwex. or stdcx..

13.5.7 Program Interrupt

A Program interrupt occurs when no higher priority
exception exists and one or more of the following
exceptions arises during execution of an instruction:

Floating-Point Enabled Exception
A Floating-Point Enabled Exception type Program
interrupt is generated when the expression

(MSRego | MSRegq) & FPSCRepx

is 1. FPSCRgg is turned on by the execution of a
floating-point instruction that causes an enabled
exception or by the execution of a “Move to
FPSCR” type instruction that results in both an
exception bit and its corresponding enable bit
being 1.

Hlegal Instruction

An lllegal Instruction type Program interrupt is
generated when execution is attempted of an
instruction with an illegal opcode or an illegal
combination of opcode and extended opcode
fields, or when execution is attempted of an
optional instruction that is not provided by the
implementation (with the exception of optional
instructions that are treated as no-ops). Also,
implementations are allowed to generate this
interrupt for any invalid form instructions.

See the Part 1, “PowerPC User Instruction Set
Architecture” on page 1 appendix “Incompatibili-
ties with the Power Architecture” regarding
moving to and from the MQ and Decrementer
registers.

Privileged Instruction

A Privileged Instruction type Program interrupt is
generated when the execution of a privileged
instruction is attempted and MSRpg=1. Some
implementations may generate this interrupt for
mtspr or mfspr with an invalid SPR field if spro=1
and MSRPR= 1.

Trap

A Trap type Program interrupt is generated when
any of the conditions specified in a Trap instruc-
tion is met.

The following registers are set:

SRRO For all Program interrupts except a
Floating-Point Enabled Exception when in
one of the Imprecise modes, set to the
effective address of the instruction that
caused the Program interrupt.

For an Imprecise Mode Floating-Point
Enabled Exception, set to the effective
address of the excepting instruction or to
the effective address of some subsequent
instruction. If it points to a subsequent
instruction, that instruction has not been
executed. If a subsequent instruction is
Synchronize (sync) or Instruction Synchro-
nize (isync), SRRO will not point more than

Chapter 13. Interrupts 197

four bytes beyond the sync or isync
instruction.

If FPSCRegx=1 but Floating-Point Enabled
Exception interrupt is disabled by having
both MSRggo and MSRgg; = 0, a Floating-
Point Enabled Exception interrupt will occur
prior to or at the next synchronizing event
if these MSR bits are altered with any
instruction that can set the MSR so that
the expression

(MSRego | MSRegq) & FPSCRegx

is 1. When this occurs, SRRO is loaded
with the address of the instruction that
would have executed next, not with the
address of the instruction that modified the
MSR causing the interrupt.

SRR1

33:36 {114} Set to 0.

42 {10} Setto 0.

43 {11} Set to 1 for a Floating-Point Enabled Excep-
tion type Program interrupt, otherwise 0.

44 {12} Set to 1 for an lllegal Instruction type
Program interrupt, otherwise 0.

45 {13} Set to 1 for a Privileged Instruction type
Program interrupt, otherwise 0.

46 {14} Set to 1 for a Trap type Program interrupt,
otherwise 0.

47 {15} Set to 0 if SRRO contains the address of
the instruction causing the exception, and
to 1 if SRRO contains the address of a sub-
sequent instruction.

Others Loaded from the MSR.

Only one of bits 43:46 {11:14} can be set to
1.
MSR See Figure 68 on page 193.

Execution resumes at offset 0x00700 from the base
real address indicated by MSRp.

13.5.8 Floating-Point Unavailable
Interrupt

A Floating-Point Unavailable interrupt occurs when no
higher priority exception exists, an attempt is made to
execute a floating-point instruction (including floating-
point loads, stores, and moves), and MSRgp=0.

The following registers are set:

SRRO Set to the effective address of the instruc-

tion that caused the interrupt.

SRR1
33:36 {1:4} SettoO.
42:47 {10:15} Set to 0.
Others Loaded from the MSR.

MSR See Figure 68 on page 193.

Execution resumes at offset 0x00800 from the base
real address indicated by MSRp.

13.5.9 Decrementer Interrupt

A Decrementer interrupt occurs when no higher pri-
ority exception exists, the Decrementer exception
exists, and MSRg:=1. The occurrence of the inter-
rupt cancels the request.

The following registers are set:

SRRO Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1

33:36 {1:4} SettoO.
42:47 {10:15} Set to 0.
Others Loaded from the MSR.
MSR See Figure 68 on page 193.

Execution resumes at offset 0x00900 from the base
real address indicated by MSR,p.

13.5.10 System Call Interrupt

A System Call interrupt occurs when a System Cal/
instruction is executed.

The following registers are set:

SRRO Set to the effective address of the instruc-

tion following the System Call instruction.

SRR1
32:47 {0:15} Undefined.
Others lLoaded from the MSR.

MSR See Figure 68 on page 193.

Execution resumes at offset 0x00C00 from the base
real address indicated by MSRp.

198 PowerPC Architecture First Edition

13.5.11 Trace Interrupt

The Trace interrupt may optionally be implemented.

If implemented, a Trace interrupt occurs when no
higher priority exception exists and either MSRge=1
and any instruction except rfi is successfully com-
pleted, or MSRge=1 and a branch instruction is com-
pleted. '

The following registers are set:

SRRO Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 and 42:47 {1:4 and 10:15} See the Book 1V,
PowerPC Implementation Features docu-
ment for the implementation.
Others Loaded from the MSR.

MSR See Figure 68 on page 193.

For further details see the Book IV, PowerPC Imple-
mentation Features document for the implementation.

Execution resumes at offset 0x00D00 from the base
real address indicated by MSRp.

13.5.12 Floating-Point Assist
Interrupt

The Floating-Point Assist interrupt may optionally be
implemented. Its purpose is to allow software assist-
ance for relatively infrequent and complex floating-
point operations such as computations involving
denormalized numbers.

If implemented, the following registers are set:

SRRO Set to the effective address of the instruc-
tion that caused the Floating-Point Assist
interrupt.

SRR1
33:36 and 42:47 {1:4 and 10:15} See the Book 1V,
PowerPC Implementation Features docu-
ment for the implementation.
Others Loaded from the MSR.

MSR See Figure 68 on page 193.

For further details see the Book IV, PowerPC Imple-
mentation Features document for the implementation.

Execution resumes at offset 0x00EOO0 from the base
real address indicated by MSRp.

13.6 Partially Executed
Instructions

The architecture permits certain instructions to be
partially executed when an Alignment or Data Storage
interrupt occurs, or an imprecise interrupt is forced by
an instruction that causes an Alignment or Data
Storage exception. These are:

1. Load Multiple or Load String that causes an
Alignment or Data Storage interrupt: Some regis-
ters in the range of registers to be loaded may
have been loaded.

2. Store Multiple or Store String that causes an
Alignment or Data Storage interrupt: Some bytes
of storage in the range addressed may have been
updated.

3. An elementary (non-multiple and non-string) store
that causes an Alignment or Data Storage inter-
rupt: Some bytes just before the boundary may
have been updated. If the instruction normally
alters CRO (stwex., stdex.), CRO is set to an unde-
fined value. For update forms, the update reg-
ister (RA) is not altered.

4. A floating-point load that causes an Alignment or
Data Storage interrupt: the target register may
be altered. For update forms, the update register
(RA) is not altered.

5. A load or store to a direct-store segment that
causes a Data Storage interrupt due to a Direct-
Store Error exception: Some of the associated
address/data transfers may not have been initi-
ated. All initiated transfers are completed before
the exception is reported, and the non-initiated
transfers are aborted. Thus the instruction com-
pletes before the Data Storage interrupt occurs.

In the cases above, the questions of how many regis-
ters and how much storage is altered are implemen-
tation-, instruction-, and boundary-dependent.
However, storage protection is not violated. Further-
more, if some of the data accessed is in direct-store
(T=1), and the instruction is not supported for direct-
store, the locations in direct-store are not accessed.

In the following situation, partial execution is not
allowed (this preserves restartability):

An elementary (non-multiple and non-string)
fixed-point load that causes an Alignment or Data
Storage interrupt: the target register is not
altered. For update forms, the update register
(RA) is not altered.

Chapter 13. Interrupts 199

13.7 Exception Ordering

Since multiple exceptions can exist at the same time
and the architecture does not provide for reporting
more than one interrupt at a time, the generation of
more than one interrupt is prohibited. Also some
exceptions would be lost if they were not recognized
and handied when they occur. For example, if an
external interrupt was generated when a data storage
exception existed, the data storage exception would
be lost. If the data storage exception was caused by
a Store Multiple instruction that spanned a page
boundary and the exception was a resuit of
attempting to access the second page, the store could
have modified locations in the first page even though
it appeared that the Store Muitiple instruction was
never executed.

In addition, the architecture defines imprecise inter-
rupts that must be recoverable, cannot be lost, and
can occur at any time with respect to the executing
instruction stream. Some of the maskable and non-
maskable exceptions are persistent and can be
deferred. The following exceptions persist even
though some other interrupt is generated:

= Floating-Point Enabled Exceptions
= External
= Decrementer

For the above reasons, all exceptions are prioritized
with respect to other exceptions that may exist at the
same instant to prevent the loss of any exception that
is not persistent. Some exceptions cannot exist at the
same instant as some others.

13.7.1 Unordered Interrupt
Conditions

The exceptions listed here are unordered, meaning
that they may occur at any time regardless of the
state of the interrupt mechanism. These exceptions
must be recognized and processed when presented.

1. System Reset
2. Machine Check

All other interrupts are ordered with respect to the
interrupt mechanism resources.

13.7.2 Ordered Exceptions

The exceptions described here are ordered, meaning
that only one can be reported. However, the single
ordered exception that can be reported may exist in
concert with unordered exceptions. Ordered excep-
tions may or may not be instruction-caused. The two
lists identify the ordered interrupts by type. The
order within the lists does not imply priority but only
lists the possible exceptions that may be reported.

System-caused or Imprecise

1. Program

- Imprecise Mode Floating-Point Enabled Exception
2. External
3. Decrementer

Instruction-caused and Precise

1. Instruction Storage
2. Program

- lllegal Instruction

- Privileged Instruction
3. Function Dependent

3.a Fixed-Point
1a Program - Trap
1b System Call

1c.1 Alignment
1¢.2 Data Storage
2 Trace (if implemented)

3.b Floating-Point
1 FP Unavailable

2a Program
- Precise Mode Floating-Point Enabled Excep’n
2b Floating-Point Assist (if implemented)
2c.1 Alignment
2c.2 Data Storage
3 Trace (if implemented)

For implementations that execute muitiple instructions
in parallel using pipeline or super-scalar techniques,
or combinations of these, it can be difficult to under-
stand the ordering of exceptions. To understand this
ordering it is useful to consider a model in which an
instruction is fetched, decoded, and then executed. In
this model, the exceptions a single instruction would
generate are in the order shown in the list of
instruction-caused exceptions. Exceptions with dif-
ferent numbers have different ordering. Exceptions
with the same numbering but different lettering are
mutually exclusive and cannot be caused by the same
instruction.

Even on processors that are capable of executing
several instructions simultaneously, or out of order,
instruction-caused interrupts (precise and imprecise)
occur in program order.

200 PowerPC Architecture First Edition

13.8 Interrupt Priorities

This section describes the relationship of nonmask-
able, maskable, precise, and imprecise interrupts. In
the following descriptions, the interrupt mechanism
waiting for all possible exceptions to be reported
includes only exceptions caused by previously initi-
ated instructions (e.g. it does not include waiting for
the Decrementer to step through zero). The excep-
tions are listed in order of highest to lowest priority.

1. System Reset
System Reset exception has the highest priority
of all exceptions. If this exception exists, the
interrupt mechanism ignores all other exceptions
and generates a System Reset interrupt.

Once the System Reset interrupt is generated, no
nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

2. Machine Check
Machine Check exception is the second highest
priority exception. If this exception exists and a
System Reset exception does not exist, the inter-
rupt mechanism ignores all other exceptions and
generates a Machine Check interrupt.

Once the Machine Check interrupt is generated, .

no nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

3. Instruction Dependent

This exception is the third highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all possible Imprecise
exceptions to be reported. It then generates the
appropriate ordered interrupt if no higher priority
interrupt exception exists when the interrupt is to
be generated. Within this category a particular
instruction may present more than a single
exception. When this occurs, those exceptions
are ordered in priority as indicated in the fol-
lowing lists.

A. Fixed-Point Loads and Stores

a. Alignment
b. Data Storage
c. Trace (if implemented)

B. Floating-Point Loads and Stores

a. Floating-Point Unavailable
b. Alignment

c. Data Storage

d. Trace (if implemented)

C. Other Floating-Point Instructions

a. Floating-Point Unavailable

b. Program - Precise Mode Floating-Point
Enabled Exception

c. Floating-Point Assist (if implemented)

d. Trace (if implemented)

Not all floating-point instructions can cause
enabled exceptions.

D. rfi and mtmsr

a. Program - Privileged Instruction

b. Program - Precise Mode Floating-Point
Enabled Exception

c. Trace (if implemented)

If the MSR bits FEO and FE1 are set such that
Precise Mode Floating-Point Enabled Excep-
tion interrupts are enabled and the
FPSCR(FEX) bit is set, a Program interrupt
will result prior to or at the next synchro-
nizing event.

The Trace interrupt should not be generated
after an rfi.

E. Other exceptions
These exceptions are mutually exclusive and
have the same priority:

= Program - Trap

= System Call

» Program - Privileged Instruction
= Program - lllegal Instruction

F. Instruction Storage
This exception has the lowest priority in this
category. It is only recognized when all
instructions prior to the instruction causing
this exception appear to have completed and
that instruction is to be executed.

The priority of this interrupt is specified for
completeness and to ensure that it is not
given more favorable treatment. It is accept-
able for an implementation to treat this inter-
rupt as though it had a lower priority.

4. Program - Imprecise Mode Floating-Point Enabled

Exception

This exception is the fourth highest priority
exception. When this exception is created, the
interrupt mechanism waits for all other possible
exceptions to be reported. It then generates this
interrupt if no higher priority exception exists
when the interrupt is to be generated.

. External

This exception is the fifth highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if
no higher priority exception exists when the inter-
rupt is to be generated.

. Decrementer

This exception is the lowest priority exception.
When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if
no higher priority exception exists when the inter-
rupt is to be generated.

Chapter 13. Interrupts 201

202 PowerPC Architecture First Edition

Chapter 14. Timer Facilities

141 Overview

The Time Base and the Decrementer provide timing
functions for the system. Specific instructions are
provided for reading and writing the Time Base, while
the Decrementer is manipulated as an SPR. Both are
volatile resources and must be initialized during start

up.
Time Base (TB)
The Time Base provides a long-period counter
driven by an implementation-dependent fre-
quency.

Decrementer (DEC)
The Decrementer, a counter that is updated at
the same rate as the Time Base, provides a
means of signalling an interrupt after a specified
amount of time has elapsed unless

= the Decrementer is altered in the interim, or
= the Time Base update frequency changes.

14.2 Time Base

The Time Base (TB) is a 64-bit register (see
Figure 70) containing a 64-bit unsigned integer that is
incremented periodically. Each increment adds 1 to
the low-order bit (bit 63). The frequency at which the
counter is updated is implementation-dependent and
need not be constant over long periods of time.

| TBU | TBL
o 32 63
Field Description

TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base

Figure 70. Time Base

The Time Base runs continuously when powered on.
There is no automatic initialization of the Time Base
to a known value when the CPU is powered up;
system software must perform this initialization if the
value of the Time Base at any instant (rather than the
difference between two values of the Time Base at
different instants) is important.

The Time Base increments until its value becomes
OxFFFF_FFFF_FFFF_FFFF (2% — 1). At the next incre-
ment, its value becomes 0x0000_0000_0000_0000.
There is no interrupt or other indication when this
occurs.

The period of the Time Base depends on the driving
frequency. As an order of magnitude example,
suppose that the CPU clock is 100 MHz and that the
Time Base is driven by this frequency divided by 32.
Then the period of the Time Base would be

64)
_ 27x32 _ 12
Trs =100 MHz = 5.90 x 10'“ seconds

which is approximately 187,000 years.

The PowerPC Architecture does not specify a relation-
ship between the frequency at which the Time Base is
updated and other frequencies, such as the CPU clock
or bus clock, in a PowerPC system. The Time Base
update frequency is not required to be constant.
What is required, so that system software can keep
time of day and operate interval timers, is:

= The system provides an (implementation-
dependent) interrupt to software whenever the
update frequency of the Time Base changes, plus
a means to determine what the current update
frequency is, or

= The update frequency of the Time Base is under
the control of the system software.

Chapter 14. Timer Facilities 203

—— Programming Notes

Assuming that the operating system initializes the
Time Base on power-on to some reasonable value
and that the update frequency of the Time Base is
constant, the Time Base can be used as a source
of values that increase at a constant rate, such as
for time stamps in trace entries.

Even if the update frequency is not constant,
values read from the Time Base will be
monotonically increasing. If a trace entry is
recorded each time the update frequency
changes, the sequence of Time Base values can
be post-processed to become actual time values.

On an implementation that performs speculative
execution, the Time Base may be read arbitrarily
far “ahead” of the point at which it appears in the
instruction stream. If it is important that this not
occur, a context synchronizing operation such as
the isync instruction should be placed imme-
diately before the instructions that read the Time
Base. '

See the description of the Time Base in Part 2,
“PowerPC Virtual Environment Architecture” on
page 117 for ways to compute time of day in
POSIX format from the Time Base.

14.2.1 Writing the Time Base

Writing the Time Base is privileged; reading the Time
Base is not privileged; it is discussed in Part 2,
“PowerPC Virtual Environment Architecture” on
page 117.

It is not possible to write the entire 64-bit Time Base
in a single instruction. The mttbl and mttbu extended
mnemonics write the lower and upper halves of the
Time Base (TBL and TBU), respectively, preserving
the other half. These are extended mnemonics for
the mtspr instruction; see page 231.

The Time Base can be written by a sequence such as:

lwz Rx,upper # load 64-bit value for
lwz Ry,lower # TB into Rx and Ry

i Rz0

mttbl Rz # force TBLto 0
mttbu Rx # set TBU
mttbl Ry # set TBL

Loading 0 into TBL prevents the possibility of a carry
from TBL to TBU while the Time Base is being initial-

ized.

Programming Note

The instructions for writing the Time Base are
implementation- and mode-independent. Thus
code written to set the Time Base on a 32-bit
implementation will work correctly on a 64-bit
implementation running in either 64- or 32-bit
mode.

14.3 Decrementer

The Decrementer (DEC) is a 32-bit decrementing
counter that provides a mechanism for causing a
Decrementer Interrupt after a programmable delay.

DEC
0 31

Figure 71. Decrementer

- The Decrementer is driven by the same frequency as

the Time Base. The period of the Decrementer will
depend on the driving frequency, but if the same
values are used as given above for the Time Base
(section Chapter 8), and if the Time Base update fre-
guency is constant, the period would be

_ 2%x32 _ 3
Toec = 100 MHz = 1.37 x 10 seconds

which is approximately 23 minutes.

The Decrementer counts down, causing an interrupt
(unless masked) when passing through zero. The
Decrementer must be implemented such that the fol-
lowing requirements are satisfied:

1. The operation of the Time Base and the
Decrementer are coherent, i.e. the counters are
driven by the same fundamental time base.

2. Loading a GPR from the Decrementer shall have
no effect on the Decrementer.

Storing a GPR to the Decrementer shall replace
the value in the Decrementer with the value in
the GPR.

4. Whenever bit 0 of the Decrementer changes from

0 to 1, an interrupt request is signalled. If mul-
- tiple Decrementer Interrupt requests are received
before the first can be reported, only one inter-
rupt is reported. The occurrence of a
Decrementer Interrupt cancels the request.

If the Decrementer is altered by software and the
content of bit 0 is changed from 0 to 1, an inter-
rupt request is signaled.

204 PowerPC Architecture First Edition

—— Programming Note

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Decrementer input frequency will also change.
Software must be aware of this in order to set
interval timers.

On an implementation that performs speculative
execution, the Decrementer may be read arbi-
trarily far “ahead” of the point at which it appears
in the instruction stream. If it is important that
this not occur, a context synchronizing operation
such as the isync instruction should be placed
immediately before the instruction that reads the
Decrementer.

14.3.1 Writing and Reading the
Decrementer

The content of the Decrementer can be read or
written using the mfspr and mtspr instructions, both
of which are privileged when they refer to the
Decrementer. Using an extended mnemonic (see
page 231), the Decrementer may be written from reg-
ister GPR Rx with:

mtdec Rx

—— Programming Note

If the execution of this instruction causes bit 0 of
the Decrementer to change from 0 to 1, an inter-
rupt request is signalled.

The Decrementer may be read into GPR Rx with:
mfdec Rx

Copying the Decrementer to a GPR has no effect on
the Decrementer content or interrupt mechanism.

Chapter 14. Timer Facilities 205

206 PowerPC Architecture First Edition

Appendix A. Optional Instructions

The instructions described in this appendix are
optional. If an instruction is implemented that
matches the semantics of an instruction described
here, the implementation should be as specified here.

The optional instructions are divided into two groups.
Additional groups may be defined in the future.

= General Purpose group: fsqrt and fsqrts. '
= Graphics group: stfiwx, fres, frsqrte, and fsel.

If an implementation claims to support a given group,
it must implement all the instructions in the group.

Appendix A. Optional Instructions 207

A.1 Floating-Point Processor Instructions

A.1.1 Floating-Point Store Instruction

Byte ordering on PowerPC is Big-Endian by default.
See Appendix D, “Little-Endian Byte Ordering” on
page 233 for the effects of operating a PowerPC
system with Little-Endian byte ordering.

Store Floating-Point as Integer Word
Indexed X-form

stfiwx FRS,RA,RB

31 FRS RA RB 983 /
0 6 11 16 21 31

if RA =0 thenb « 0
else b « (RA)
EA « b + (RB)

MEM(EA, 4) € (FRS)32:63

Let the effective address (EA) be the sum
(RA|0) + (RB).

The contents of the low-order 32 bits of register FRS
are stored, without conversion, into the word in
storage addressed by EA.

If the contents of register FRS were produced, either
directly or indirectly, by a Load Floating-Point Single
instruction, a single-precision arithmetic instruction,
or frsp, then the value stored is undefined. (The con-
tents of register FRS are produced directly by such an
instruction if FRS is the target register for the instruc-
tion. The contents of register FRS are produced indi-
rectly by such an instruction if FRS is the final target
register of a sequence of one or more Floating-Point
Move instructions, with the input to the sequence
having been produced directly by such an instruction.)

Special Registers Altered:
None

208 PowerPC Architecture First Edition

A.1.2 Floating-Point Arithmetic Instructions

Floating Square Root [Single]

A-form
fsqrt FRT,FRB (Rc=0)
fsqrt. FRT,FRB (Rc=1)

Floating Reciprocal Estimate Single
A-form

(Rc=0).
{Rc=1)

fres FRT,FRB
fres. FRT,FRB

63 FRT m FRB " 22 IRc

59 FRT i FRB m 24 |Rc

0 6 1 16 21 26 31 0 6 11 16 21 26 31
fsqrts FRT,FRB (Rc=0) A single-precision estimate of the reciprocal of the
fsqrts. FRT,FRB (Re=1) floating-point operand in register FRB is placed into
register FRT. The estimate placed into register FRT
59 FRT 1 FRB 7 2 |Re s <.:orrect to a precision of one part in 256 of the
reciprocal of (FRB).
0 6 11 16 21 26 31

The square root of the floating-point operand in reg-
ister FRB is placed into register FRT.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

Operation with various special values of the operand
is summarized below.

Operand Result Exception
- QNaN! VXSQRT
<0 QNaN? VXSQRT

-0 -0 None

+ +o None

SNaN QNaN! VXSNAN
QNaN QNaN None

*No result if FPSCRyg = 1.

FPSCRepge is set to the class and sign of the resuilt,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN VXSQRT
CR1 (if Re=1)

Operation with various special values of the operand
is summarized below.

Operand Result - Exception
-o -0 None

-0 -l X

+0 400! X

4 10 None

SNaN QNaN? VXSNAN
QNaN QNaN None

No result if FPSCRyg = 1.
2No result if FPSCRyg = 1.

FPSCRepge is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1 and Zero Divide Exceptions when
FPSCRye=1.

Special Registers Altered:
FPRF FR (undefined) F! (undefined)
FX OX UX ZX
VXSNAN
CR1 (if Rc=1)

Appendix A. Optional Instructions 209

Floating Reciprocal Square Root
Estimate A-form

frsgrte FRT,FRB (Rc=0)
frsqrte. FRT,FRB (Rc=1)

63 FRT 17 FRB 1 26 |Rc
0 6 11 16 21 26 31

A double-precision estimate of the reciprocal of the
square root of the floating-point operand in register
FRB is placed into register FRT. The estimate placed
into register FRT is correct to a precision of one part
in 32 of the reciprocal of the square root of (FRB).

Operation with various special values of the operand
is summarized below.

Operand Result Exception
-0 QNaN2 VXSQRT
<0 QNaN2 VXSQRT

-0 -w! ZX

+0 400! ZX

+00 +0 None

SNaN QNaN? VXSNAN
QNaN QNaN None

'No result if FPSCRyg = 1.
2No result if FPSCRyg = 1.

FPSCRgpgr is set to the class and sign of the result,

except for |Invalid Operation Exceptions when
FPSCRyg=1 and Zero Divide Exceptions when
FPSCRze=1.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX zZX
VXSNAN VXSQRT
CR1 (if Rc=1)

A.1.3 Floating-Point Select
Instruction

Floating Select A-form

fsel FRT,FRA,FRC,FRB
fsel. FRT,FRA,FRC,FRB

(Rc=0)
(Rc=1)

63 FRT FRA FRB FRC 23 |Rc
0 [1 16 21 26 31

if (FRA) = 0.0 then FRT ¢ (FRC)
else FRT « (FRB)

The floating-point operand in register FRA is com-
pared to the value zero. If the operand is greater
than or equal to zero, register FRT is set to the con-
tents of register FRC. If the operand is less than zero
or is a NaN, register FRT is set to the contents of reg-
ister FRB. The comparison ignores the sign of zero
(i.e., regards +0 as equal to —0). :

Special Registers Altered:
CR1 (if Rc=1)

— Programming Note

Examples of uses of this instruction can be found
in Appendices E.3, “Floating-Point Conversions”
on page 248, and E4, “Floating-Point Selection”
on page 251.

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being
tested can be NaNs or infinities; see Section E.4.4,
“Notes” on page 251.

210 PowerPC Architecture First Edition

Appendix B. Suggested Floating-Point Models

B.1 Floating-Point Round to Single-Precision Model

The following describes algorithmically the operation of the Floating Round to Single-Precision instruction.

If (FRB),.,; < 897 and (FRB),.53 > O then

Do .
If FPSCRyg = 0 then goto Disabled Exponent Underflow
If FPSCRyg = 1 then goto Enabled Exponent Underflow

End

If (FRB);.; > 1150 and (FRB);.{; < 2047 then

Do
If FPSCRog = 0 then goto Disabled Exponent Overflow
If FPSCRog = 1 then goto Enabled Exponent Overflow

End

If (FRB);.41 > 896 and (FRB);.,; < 1151 then goto Normal Operand
If (FRB),.¢z = 0 then goto Zero Operand

If (FRB);.qy = 2047 then
Do
If (FRB)42.63 = O then goto Infinity Operand
If (FRB);, = 1 then goto QNaN Operand
If (FRB)y, = 0 and (FRB),3.¢3 > 0 then goto SNaN Operand
End

Appendix B. Suggested Floating-Point Models 211

Disabled Exponent Underflow:

sign « {(FRB),
If (FRB)]:n = 0 then
Do
exp «~ —1022
frac. « ObO || (FRB);2.43
End
If (FRB);.4; > O then
Do
exp « (FRB);.q4 — 1023
frac « Ob1 || (FRB};2.¢63
End
Denormalize operand:
G|l R|| X « 0b000
Do while exp < —126
exp « exp + 1
frac [GIIRJIX « 0b0 || frac |G|l (R | X)
End
FPSCRUX - frac24._52 " G " R " X>0
Round single(sign,exp,frac,G,R,X)
FPSCRyyx «— FPSCRyx | FPSCRg
If frac = O then
Do
FRTyo « sign
FRTg1.63 <~ 0
If sign = 0 then FPSCRgpge « "+zero”
If sign = 1 then FPSCRgpge « "—zero”

End
If frac > 0 then
Do
If frac, = 1 then
Do
If sign = 0 then FPSCRgpge « “+normal number”
If sign = 1 then FPSCRgpge «+ “—normal number”
End
If fracy = 0 then
Do
If sign = 0 then FPSCRgpre «+ "+denormalized number”
If sign = 1 then FPSCRppge « “—denormalized number”
End

Normalize operand:
Do while fracy = 0
exp « exp-1
frac | G| R « frac,.5, I G || R || ObO
End
FRT, « sign
FRT,.q1 « exp + 1023
FRT .63 « fracy. I 2°0
End
Done

212 PowerPC Architecture First Edition

Enabled Exponent Underflow:

FPSCRy
sign « ()l%
If (FRB)1 = 0 then

exp « —1022
frac « ObO || (FRB)y5.43
End
If (FRB)t“ > 0 then
Do

exp « (FRB),.q; — 1023
frac « Ob1] (FRB)12 -63
End
Normalize operand:
Do while fracy = 0
exp « exp — 1
frac « frac,.5, | ObO
End

Round single(sign,exp,frac,0,0,0)

FPSCRyyx < FPSCRyy | FPSCRF,

exp « exp + 192

FRT, « sign

FRT,.q; < exp + 1023

FRT12 -63 € fraC1 "

If sign = 0 then PSCRFPRF + “+normal number”
If sign = 1 then FPSCRgpge + “—normal number”
Done

Disabled Exponent Overflow:

FPSCRgx + 1
If FPSCRRN = 0b00 then /* Round to Nearest */

If (FRB), = 0 then FRT « 0x7FF0_0000_0000_0000
If (FRB)O = 1 then FRT « OxFFFO_0000_0000_0000

If (FRB), = O then FPSCRepge « "+infinity”
If (FRB)O = 1 then FPSCRFPRF L ”'—inﬁnity’
End
If FPSCRgy = 0b01 then /* Round Truncate */
Do
If (FRB), = O then FRT « O0x47EF_FFFF_E000_0000
If (FRB), 1 then FRT « OxC7EF_FFFF_E000_0000

if (FRB) = 0 then FPSCRgpge + “+normal number”

If (FRB)O 1 then FPSCRgpre «— “—normal number”
End
If FPSCRgy = 0b10 then /* Round to + Infinity */
Do
If (FRB)o = 0 then FRT « 0x7FF0_0000_0000_0000
If (FRB), = 1 then FRT « OxC7EF_FFFF_E000_0000
If (FRB)y = 0 then FPSCRgpge + “+infinity”
If (FRB)g = 1 then FPSCRpgg « "—normal number”
End
If FPSCRgy = 0b11 then /* Round to —Infinity */
Do

If (FRB)y = 0 then FRT « 0x47EF_FFFF_E000_0000

If (FRB)O = 1 then FRT « OxFFFO_0000_0000_0000
If (FRB)y = O then FPSCRgpge « “+normal number”
If (FRB)O = 1 then FPSCRFPRF « "—infinity”
End
FPSCRgg « undefined
FPSCRE « 1
FPSCRyy « 1

Done

Appendix B. Suggested Floating-Point Models 213

Enabled Exponent Overflow:

sign « (FRB),

exp « (FRB);.qy — 1023

frac « Ob1 || (FRB),s.63

Round single(sign,exp,frac,0,0,0)

FPSCRyy « FPSCRyy | FPSCR
Enabled Overflow: :

FPSCRgy « 1

exp « exp — 192

FRT, « sign

FRT{.q1 « exp + 1023

FRTy263 « fracy [l °0

If sign = 0 then FPSCRgpge « "+normal number”
If sign = 1 then FPSCRgpge «+ “—normal number”
Done

Zero Operand:

FRT « (FRB)

If (FRB)y = 0 then FPSCRgpre + “+zero”
If (FRB)g = 1 then FPSCRgpgre «+ “—zero”
FPSCRgR g « 0b00

Done

Infinity Operand:

FRT « (FRB)

If (FRB)g = 0 then FPSCRepge «+ “+infinity”
If (FRB)g 1 then FPSCRgpge + “—infinity”
FPSCRgR g + 0b0O

Done

QNaN Operand:

FRT « (FRB)g.34 Il 20
FPSCRFPRF - ”QNaN’
FPSCRgg « 0b0O
Done

SNaN Operand:

FPSCRyxsnan 1
If FPSCRyg = O then
Do
FRTo.1y < (FRB)gq4
FRT,p « 1
FRT,3.63 « (FRB);3.34 | 20
FPSCRFPRF « "QNaN”
End
FPSCRg g + 0b00
Done

214 PowerPC Architecture First Edition

Normal Operand:

sign « (FRB),

e)(p Rt (FRB)1:11 - 1023

frac « Ob1 || (FRB)z.63

Round single(sign,exp,frac,0,0,0)
FPSCRyyx «+ FPSCRyx | FPSCRg,

If exp > +127 and FPSCRoeg = 0 then go to Disabled Exponent Overflow

If exp > +127 and FPSCRoe = 1 then go to Enabled Overflow

FRT, « sign
FRT g3 « fracy.p; Il 2%

If sign = 0 then FPSCRgpge « "+normal number”
If sign = 1 then FPSCRgpge «— “—normal number”
Done

Round single(sign,exp frac,G,R X):

inc<0
Isb « fracy,
gbit « fracy,
rbit « frac,s
xbit « (fracyg.5JlIGIIRIX)#0
If FPSCRgy = 0b0O then
Do
If sign || Isb || gbit || rbit || xbit = Obu11uu then inc « 1
If sign || Isb || gbit || rbit || xbit = Obu011u then inc « 1
If sign || Isb || gbit || rbit || xbit = ObuO1u1 then inc « 1
End
If FPSCRgy = Ob10 then
Do
If sign [} Isb || gbit || rbit || xbit = ObOutuu then inc « 1
If sign || Isb || gbit || rbit || xbit = ObOuulu then inc « 1
if sign || Isb || gbit || rbit || xbit = ObOuuu1 then inc « 1
End
If FPSCRgy = Ob11 then
Do
If sign [} Isb || gbit || rbit |} xbit = Obtutuu then inc « 1
If sign || Isb || gbit || rbit |} xbit = Obtuuiu then inc « 1
If sign || Isb || gbit || rbit || xbit = Ob1uuut then inc « 1
End
fracy.o3 « fracg.,3 + inc
If carry_out = 1 then
Do
fracg.oz + 0b1 || fracy.o
exp « exp + 1
End
FPSCRgg « inc
FPSCRg, « gbit | rbit | xbit
Return

]

1

I~ compariéon ignores u bits */
/* comparison ignores u bits */
/* comparison ignores u bits */

/* comparison ignores u bits */
/* comparison ignores u bits */
/* comparison ignores u bits */

I* comparison ignores u bits */
/* comparison ignores u bits */
/* comparison ignores u bits */

{

Appendix B. Suggested Floating-Point Models 215

B.2 Floating-Point Convert to Integer Model

The following describes algorithmically the operation of the Floating Convert to Integer instructions.

If Floating Convert to Integer Word
Then Do
Then round_mode « FPSCRgy
tgt_precision « "32-bit integer”
End

If Floating Convert to Integer Word with round toward Zero
Then Do
round_mode « 0b01
tgt_precision « ~32-bit integer”
End

If Floating Convert to Integer Doubleword
Then Do
round_mode « FPSCRgy
tgt_precision « "64-bit integer”
End

If Floating Convert to Integer Doubleword with round toward Zero
Then Do
round_mode « 0b01
tgt_precision « “64-bit integer”

End
If (FRB);.44 = 2047 and (FRB);,.¢3 = 0 then goto Infinity Operand
If (FRB);.q4; = 2047 and (FRB),, = 0 then goto SNaN Operand

If (FRB),.4; = 2047 and (FRB),, = 1 then goto QNaN Operand
If (FRB);.,4 > 1086 then goto Large Operand

sign « (FRB),

If (FRB);.;; > O then exp « (FRB),.;; — 1023 /* exp — bias */

If (FRB);.44 = O then exp « —1022

If (FRB);.1; > O then fracq.gq « 0b01 || (FRB);565 Il 10 /* normal */

If (FRB);.q; = 0 then fracy.gy « 0bOO || (FRB)yp.63 Il 1'0 /* denormal */

gbit || rbit || xbit « 0b00O
Do i=1,63—exp /* do the loop 0 times if exp = 63 */

fracg.g4 Il gbit || rbit j| xbit « 0bO || fracy.g, Il gbit | (rbit | xbit)
End

Round Integer(sign,frac,gbit,rbit,xbit,round_mode})
If sign = 1 then fracy.gq « —fracog, + 1

If tgt_precision = "32-bit integer” and fracyq, > +23'—1 then goto Large Operand
If tgt_precision = “64-bit integer” and fracy.g, > +2%—1 then goto Large Operand
If tgt_precision = “32-bit integer” and frac,.¢, < —23' then goto Large Operand
If tgt_precision = “64-bit integer” and fracy g4 < —2% then goto Large Operand

FPSCRyy « FPSCRyx | FPSCRg

If tgt_precision = ~32-bit integer” then FRT « Oxuuuu_uuuu || fraczs.g4 /* U is undefined hex digit */
If tgt_precision = "64-bit integer” then FRT « frac;.¢4

FPSCRgpgr « undefined

Done

216 PowerPC Architecture First Edition

Round Integer(sign frac,gbit rbit xbit ,(ound_mode):

inc « 0
If round_mode = 0b00 then
Do
If sign || fracg, || gbit || rbit || xbit = Obul1uu then inc « 1 /* comparison ignores u bits */
If sign |} fracg, || gbit || rbit || xbit = Obu011u then inc « 1 /* comparison ignores u bits */
If sign |} fracg, || gbit |f rbit || xbit = ObuO1ut then inc « 1 /* comparison ignores u bits */

End
If round_mode = 0b10 then
Do
If sign || fracg, |l gbit 1 rbit || xbit = ObOutuu then inc « 1 /* comparison ignores u bits */
If sign || fracg, || gbit || rbit || xbit = ObOuutu then inc « 1 /* comparison ignores u bits */
If sign || fracg Il gbit || rbit || xbit = ObOuuu1 then inc « 1 /* comparison ignores u bits */
End
If round_mode = 0b11 then
Do
If sign || fracg, || gbit || rbit [xbit = Obtutuu then inc « 1 /* comparison ignores u bits */
If sign || fracg, |} gbit || rbit | xbit = Obluulu then inc « 1 /* comparison ignores u bits */
If sign | fracg, Il gbit |l rbit || xbit = Ob%uuu1l then inc « 1 /* comparison ignores u bits */
End

fracy.gq « fracggs + inc
FPSCRFR « inc

FPSCRg, « gbit | rbit | xbit
Return

Infinity Operand:

FPSCRFR FI VXCVI < 0b001
If tgt_precision = ”32-bit integer” then
Do : :
If sign = 0 then FRT « Oxuuuu_uuuu_7FFF_FFFF /* u is undefined hex digit */
If sign = 1 then FRT « Oxuuuu_uuuu_8000_0000 /* u is undefined hex digit */

End
Else
Do
If sign = 0 then FRT « Ox7FFF_FFFF_FFFF_FFFF
If sign = 1 then FRT « 0x8000_0000_0000_0000
End
FPSCRgpre « undefined
End

Done

SNaN Operand:

FPSCReg 1 vxsnan vxewi + 000011
if FPSCR\g = O then
Do
If tgt_precision = "32-bit integer” then FRT « Oxuuuu_uuuu_8000_0000 /* u is undefined hex digit */
If tgt_precision = “64-bit integer” then FRT « 0x8000_0000_0000_0000
FPSCRgpre « undefined
End
Done

Appendix B. Suggested Floating-Point Models 217

QNaN Operand:

FPSCRgR g vxcvi + 0b001
If FPFSCRyg = 0 then
Do
If tgt_precision = “32-bit integer” then FRT « Oxuuuu_uuuu_8000_0000 /* uis undefined hex digit */
If tgt_precision = "64-bit integer” then FRT « 0x8000_0000_0000-0000
FPSCRppgre + undefined
End
Done

Large Operand:

FPSCRFR Fl VXCVI - 0b001
If FPSCRyg = 0 then Do
If tgt_precision = ”32-bit integer” then

Do
If sign = 0 then FRT « Oxuuuu_uuuu_7FFF_FFFF /* uis undefined hex digit */
If sign = 1 then FRT « Oxuuuu_uuuu_8000_0000 /* u is undefined hex digit */
End
Else
Do
If sign = 0 then FRT « Ox7FFF_FFFF_FFFF_FFFF
If sign = 1 then FRT « 0x8000_0000_0000_0000
End
FPSCRgpre « undefined
End

Done

218 PowerPC Architecture First Edition

B.3 Floating-Point Convert from Integer Model

The following describes algorithmically the operation of the Floating Convert from Integer instructions.
sign « (FRB),
exp « 63
fracy.gz « (FRB)
If fracy.g3 = O then go to Zero Operand
If sign = 1 then fracg.gy « —fracge + 1
Do while frac, = 0 /* do the loop 0 times if (FRB) = maximum negative integer */
fracy.gz « frac,g3 || 0bO
exp « exp — 1

End

Round Float(sign,exp,frac,FPSCRgy)

If sign = 1 then FPSCRgpge « "—normal number”
If sign = 0 then FPSCRpre « "+normal number”
FRT, « sign

FRT,.4y « exp + 1023 /* exp + bias */

FRT 263 « frac.s, '

Done

Zero Operand:

FPSCRgR f « 0b0O

FPSCRgpgr « "+2zero”

FRT « 0x0000_0000_0000_0000
Done

Appendix B. Suggested Floating-Point Models 219

Round Float(sign exp,fracround_mode):

inc « 0
Isb « fl'aC52
gbit « fracs,
rbit « fracs,
xbit « fracgs.gz > 0
If round_mode = 0b00 then
Do
If sign || Isb || gbit || rbit || xbit = Obul1uu then inc « 1
If sign || Isb || gbit || rbit || xbit = 0bu011u then inc « 1
If sign || Isb || gbit || rbit || xbit = ObuO1u1 then inc « 1
End
If round_mode = 0b10 then
Do
If sign || Isb [gbit || rbit || xbit = ObOutuu then inc « 1
If sign || Isb || gbit || rbit || xbit = 0bOuulu then inc « 1
If sign || Isb || gbit || rbit || xbit = ObOuuu1 then inc « 1
End
If round_mode = 0b11 then
Do
If sign || Isb || gbit || rbit || xbit = Obiutuu then inc « 1
If sign | Isb || gbit || rbit || xbit = Obluuiu then inc « 1
If sign |} Isb || gbit || rbit || xbit = Ob1uuut then inc « 1
End
fracy.sp « fracy.s, + inc
If carry_out = 1 then exp « exp + 1
FPSCRFR « inc
FPSCRg, « gbit | rbit | xbit
FPSCRyx + FPSCRyy | FPSCRg,
Return

I* comparison ignores u bits */
/* comparison ignores u bits */
/* comparison ignores u bits */

I* comparison ignores u bits */
/* comparison ignores u bits */
/* comparison ignores u bits */

/* comparison ignores u bits */
/* comparison ignores u bits */
/* comparison ignores u bits */

220 PowerPC Architecture First Edition

Appendix C. Assembler Extended Mnemonics

In order to make assembler language programs simpler to write and easier to understand, a set of extended
mnemonics and symbols is provided that defines simple shorthand for the most frequently used forms of Branch
Conditional, Compare, Trap, Rotate and Shift, and certain other instructions.

Assemblers should provide the mnemonics and symbols listed here, and may provide others.

C.1 Branch mnemonics

The mnemonics discussed in this section are variations of the Branch Conditional instructions.

C.1.1 BO and Bl fields

The 5-bit BO field in Branch Conditional instructions encodes the following operations:

Decrement CTR

Test CTR equal to 0

Test CTR not equal to 0

Test condition true

Test condition false

Branch prediction (taken, fall through)

The 5-bit Bl field in Branch Conditional instructions specifies which of the 32 bits in the CR represents the condi-
tion to test.

To provide an extended mnemonic for every possible combination of BO and Bl fields would require 2" = 1024
mnemonics. Most of these would be only marginally useful. The following abbreviated set is intended to cover
the most useful cases. Unusual cases can be coded using a basic Branch Conditional mnemonic (bc, bclr, bectr)
with the condition to be tested specified as a numeric operand.

C.1.2 Simple branch mnemonics

The mnemonics in Table 2 allow all the useful BO encodings to be specified, along with the AA (absolute address)
and LK (set Link Register) fields.

Notice that there are no extended mnemonics for relative and absolute unconditional branches. For these the
basic mnemonics b, ba, bl, and bla should be used.

Appendix C. Assembler Extended Mnemonics 221

Table 2. Simple branch mnemonics

LR not set LR set
Branch semantics be bca belr | beetr bel bela belrl | bectr!
Relative | Absolute|{ To LR | To CTR | Relative | Absolute | To LR | To CTR

Branch unconditionally - - bir betr - - birl betrl
Branch if condition true bt bta btir btctr bti btla btirl btctrl
Branch if condition false bf bfa bflr bfctr bfl bfla bfirt bfctrl
Decrement CTR,

branch if CTR non-zero bdnz bdnza bdnzlr - bdnzl bdnzia | bdnzirl -
Decrement CTR, :

branch if CTR non-zero bdnzt bdnzta | bdnztir - bdnztl | bdnztla | bdnztiri -

AND condition true
Decrement CTR,

branch if CTR non-zero bdnzf bdnzfa | bdnzfir - bdnzfl bdnzfla | bdnzfirl -

AND condition false
Decrement CTR,

branch if CTR zero bdz bdza bdzir - bdzl bdzia bdzirl -
Decrement CTR,

branch if CTR zero bdzt bdzta bdztir - bdztl bdztla bdztirl -
AND condition true
Decrement CTR,

branch if CTR zero bdzf bdzfa bdzfir - bdzfl bdzfla bdzflrl -
AND condition false

Instructions using one of the mnemonics in Table 2 that tests a condition specify the condition as the first
operand of the instruction. The following symbols are defined for use in such an operand. They can be combined
with other values in an expression that identifies the CR bit (0:31) to be tested. These symbols and expressions
can also be used with the basic Branch Conditional mnemonics, to specify the Bl field.

Symbol Value
It
gt
eq
SO
un
cr0
cri
cr2
cr3
crd
crd
cré
cr?

NOODWOUN=2O0OWWN=0

Examples

Meaning

Less than
Greater than
Equal

Summary overflow
Unordered (after floating-point comparison)

CR field 0
CR field 1
CR field 2
CR field 3
CR field 4
CR field §
CR field 6
CR field 7

1. Decrement CTR and branch if it is still non-zero (closure of a loop controlled by a count loaded into CTR).
bc 16,0,target)
2. Same as (1) but branch only if CTR is non zero and condition in CR0 is “equal.”

be 8,2,target)

bdnz target

bdnzt eq,target

(equivalent to:

(equi\)alent to:

3. Same as (2), but “equal” condition is in CRS.

bdnzt 4*cr5+ eq,target
4. Branch if bit 27 of CR is false.

(equivalent to:

bc 8,22 target)

222 PowerPC Architecture First Edition

bf 27 target

(equivalent to:

bc

5. Same as (4), but set the Link Register. This is a form of conditional “call.”

bfi 27,target

(equivalent to:

C.1.3 Branch mnemonics incorporating conditions

bcl

4,27 target)

4,27 target)

The mnemonics defined in Table 3 are variations of the “branch if condition true” and “branch if condition false”
BO encodings, with the most useful values of Bl represented in the mnemonic rather than specified as a numeric

operand.

A standard set of codes has been adopted for the most common combinations of branch conditions.

Code Meaning

It Less than
le Less than or equal
eq Equal

ge Greater than or equal

gt Greater than
nl Not less than
ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow
un Unordered (after floating-point comparison)
nu Not unordered (after floating-point comparison)

These codes are reflected in the mnemonics shown in Table 3.

Table 3. Branch mnemonics incorporating conditions

LR not set LR set

Branch semantics be bca belr bectr bel bela belrl | bectr!
Relative | Absolute| To LR | To CTR | Relative | Absolute | To LR | To CTR

Branch if less than bit blta bitir bltctr bitl bitla bitirl bitctrl
Branch if iess than or equal ble blea blelr blectr blel blela bleirl | blectrl
Branch if equal beq bega beqir beqctr beql begla begqirl | beqctri
Branch if greater than or equal bge bgea bgelr | bgectr bgel bgela bgelrl | bgectri
Branch if greater than bgt bgta bgtir bgtctr bgt! bgtia bgtirl | bgtctrl
Branch if not less than bn! bnla bnlir bnlctr bnll bnlia bnlirl | bnictrl
Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl | bnectrl
Branch if not greater than bng bnga bngir | bngctr bngl bngla bngirl | bngctrl
Branch if summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl | bsoctrl
Branch if not summary overflow bns bnsa bnslir bnsctr bnsl bnsla bnsirl | bnsctrl
Branch if unordered bun buna bunir bunctr bunl bunia bunlirl | bunctrl
Branch if not unordered bnu bnua bnulr | bnuctr bnul bnula bnulrl | bnuctrl

Instructions using the mnemonics in Table 3 specify the Condition Register field in an optional first operand.
the CR field being tested is CRO, this operand need not be specified. Otherwise, one of the CR field symbols
listed earlier is coded as the first operand.

if

Appendix C. Assembler Extended Mnemonics 223

Examples

1. Branch if CRO reflects condition “not equal.”

bne target (equivalent to: be 4,2 target)
2. Same as (1), but condition is in CR3.

bne cr3,target (équivaleht to: bc 4,14 target)

3. Branch to an absolute target if CR4 specifies “greater than,” setting the Link Register. This is a form of
conditional “call.”)

bgtla cr4,target (equivalent to: bcla 12,17,target)
4. Same as (3), but target address is in the Count Register.

bgtctrl cr4 {equivalent to: beetrl 12,17)

C.1.4 Branch prediction

In Branch Conditional instructions that are not always taken, the low-order bit (“y” bit) of the BO field provides a
hint about whether the branch is likely to be taken: see the discussion of the “y” bit in Section 2.4.1, Branch
Instructions, on page 19.
Assemblers should set this bit to 0 unless otherwise directed. This default action means that:

s A Branch Conditional with a negative displacement field is predicted to be taken.

= A Branch Conditional with a non-negative displacement field is predicted not to be taken (fall through).

= A Branch Conditional to an address in the LR or CTR is predicted not to be taken (fall through).
If the likely outcome (branch or fall through) of a given Branch Conditional instruction is known, a suffix can be
added to the mnemonic that tells the assembler how to set the “y” bit.
+ Predict branch to be taken.
— Predict branch not to be taken.
Such a suffix can be added to any Branch Conditional mnemonic, either basic or extended.
For relative and absolute branches (bc[l][a]), the setting of the “y” bit depends on whether the displacement field
is negative or non-negative. For negative displacement fields, coding the suffix “+” causes the bit to be set to 0,

and coding the suffix “—” causes the bit to be set to 1. For non-negative displacement fields, coding the suffix
“+” causes the bit to be set to 1, and coding the suffix “~—" causes the bit to be set to 0.

For branches to an address in the LR or CTR (bcir[[] or beetr[l]), coding the suffix “+” causes the “y” bit to be
set to 1, and coding the suffix “—" causes the bit to be set to 0.

Examples

1. Branch if CRO reflects condition “less than,” specifying that the branch should be predicted to be taken.
blt+ target

2. Same as (1), but target address is in the Link Register and the branch should be predicted not to be taken.
bitlir—

C.2 Condition Register Iogical mnemonics

The Condition Register Logical instructions can be used to set (to 1), clear (to 0), copy, or invert a given Condition
Register bit. Extended mnemonics are provided that allow these operations to be coded easily.

224 PowerPC Architecture First Edition

Table 4. Condition Register logical mnemonics

Operation Extended mnemonic Equivalent to
Condition Register set crset bx creqv bx,bx,bx
Condition Register clear crcir bx crxor bx,bx,bx

Condition Register move

crmove bx,by

cror bx,by,by

Condition Register not

crnot bx,by

crnor bx,by,by

Examples

1. Set CR bit 25.

crset 25
2. Clear the SO bit of CRO.
crclr SO

(equivalent to:

(equivalent to:

3. Same as (2), but SO bit to be cleared is in CR3.

crclr 4*cr3+so
4. |nvert the EQ bit.
crnot eq,eq

5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be placed into the EQ bit of CRS.

crnot 4*crS+eq4*crd+eq

C.3 Subtract mnemonics

C.3.1 Subtract Immediate

Although there is no “Subtract Immediate” instruction, its effect can be achieved by using an Add /mmediate
instruction with the immediate operand negated. Extended mnemonics are provided that include this negation,

making the intent of the computation clearer.

subi Rx,Ry,value
subis RXx,Ry,value
subic Rx,Ry,value

subic. Rx,Ry,value

C.3.2 Subtract

The Subtract From instructions subtract the second operand {RA) from the third (RB). Extended mnemonics are
provided that use the more “normal” order, in which the third operand is subtracted from the second. Both these
mnemonics can be coded with a final “0” and/or “.” to cause the OE and/or Rc bit to be set in the underlying

instruction.

sub Rx,Ry,Rz

subc Rx,Ry,Rz

(equivalent to:

(equivalent to:

(equivalent to:

(equivalent to:
(equivalent to:
(equivalent to:

(equivalent to:

(equivalent to:

(equivalent to:

creqv 25,25,25)

crxor 3,3,3)
crxor 15,15,15)
crnor 2,2,2)

crnor 22,18,18)

addi
addis Rx,Ry,—value)

Rx,Ry, —value)

addic Rx,Ry, —value)
addic. Rx,Ry, —value)

subf Rx,Rz,Ry)
subfc Rx,RzRy)

Appendix C. Assembler Extended Mnemonics 225

C.4 Compare mnemonics

The L field in the fixed-point Compare instructions controls whether the operands are treated as 64-bit quantities
(L=1) or as 32-bit quantities (L=0). Extended mnemonics are provided that represent the L value in the mne-
monic rather than requiring it to be coded as a numeric operand.

The BF field can be omitted if the result of the comparison is to be placed in CR Field 0. Otherwise the target CR
field must be specified as the first operand, using one of the CR field symbols listed above or an explicit field
number.

Note: The basic Compare mnemonics of PowerPC are the same as those of Power, but the Power instructions
have three operands while the PowerPC instructions have four. The assembler will recognize a basic Compare
mnemonic with three operands as the Power form, and will generate the instruction with L=0. (Thus the assem-
bler must require that the BF field, which normally can be omitted when CR Field 0 is the target, be specified
explicitly if L is.)

226 PowerPC Architecture First Edition

C.4.1 Doubleword comparisons

These operations are available only in 64-bit implementations.

Table 5. Doubleword compare mnemonics _
Operation Extended mnemonic Equivalent to
Compare doubleword immediate cmpdi bfra,si cmpi bf,1,rasi
Compare doubleword cmpd bfrarb cmp bf1,rarb
Compare logical doubleword immediate cmpldi bf,ra,ui cmpli bf,1,ra,ui
Compare logical doubleword cmpld bfrarb - cmpl bf,1,rarb

Examples

1. Compare logical (unsigned) 64 bits in register Rx with immediate value 100 and place resuit in CRO.

cmpldi Rx,100 (equivalent to: cmpli 0,1,Rx,100)

2. Same as (1), but place results in CR4.
cmpldi cr4,Rx,100 {equivalent to: cmpli 4,1,Rx,100)

3. Compare registers Rx and Ry as signed 64-bit quantities and place resuit in CRO.
cmpd Rx,Ry (equivalent to: cmp 0,1,Rx,Ry)

C.4.2 Word comparisons

These operations are available in all implementations.

Table 6. Word compare mnemonics
Operation Extended mnemonic Equivalent to
Compare word immediate cmpwi bf,ra,si cmpi bf,0,ra,si
Compare word cmpw bfra,rb cmp bf,0,ra,rb
Compare logical word immediate cmplwi bf,ra,ui cmpli bf,0,ra,ui
Compare logical word cmplw bfra,rb cmpl bf,0,ra,rb
Examples

1. Compare 32 bits in register Rx with immediate value 100 and place result in CRO.

cmpwi Rx,100 (equivalent to: cmpi 0,0,Rx,100)
2. Same as (1), but place results in CR4.

cmpwi cr4,Rx,100 (equivalent to: cmpi 4,0,Rx,100)
3. Compare registers Rx and Ry as logical 32-bit quantities and place result in CRO.

cmplw Rx,Ry (equivalent to: cmpl 0,0,Rx,Ry)

Appendix C. Assembler Extended Mnemonics

227

C.5 Trap mnemonics

The mnemonics defined in Table 7 are variations of the Trap instructions, with the most useful values of TO
represented in the mnemonic rather than specified as a numeric operand.

A standard set of codes has been adopted for the most common combinations of trap conditions.

Code Meaning TO encoding <>=<5
It Less than 16 10000
le Less than or equal 20 10100
eq Equal 4 00100
ge Greater than or equal 12 01100
gt Greater than 8 01000
nl Not less than 12 01100
ne Not equal 24 11000
ng Not greater than 20 10100
It Logically less than 2 000160
lle Logically iess than or equal 6 00110
Ige Logically greater than or equal 5 00101
Igt Logically greater than 1 00001
Ini Logically not less than 5 00101
Ing Logically not greater than 6 00110
(none) Unconditional 31 11111

These codes are reflected in the mnemonics shown in Table 7.

Table 7. Trap mnemonics
64-bit comparison 32-bit comparison
Trap semantics tdi td twi w
Immediate Register Immediate Register
Trap unconditionally - - - trap
Trap if less than tditi tdit twiti twit
Trap if less than or equal tdlei tdle twlei twie
Trap if equal tdeqi tdeq tweqi tweq
Trap if greater than or equal tdgei tdge twgei twge
Trap if greater than tdgti tdgt twgti twgt
“Trap if not less than tdnli tdnl twnli twnl
Trap if not equal tdnei tdne twnei twne
Trap if not greater than tdngi tdng twngi twng
Trap if logically less than tdllti tdlit twilti twilt
Trap if logically less than or equal tdllei tdlie twllei twlle
Trap if logically greater than or equal tdigei tdige twigei twige
Trap if logically greater than tdigti tdigt twigti twigt
Trap if logically not less than tdinli tdinl twinli twinl
Trap if logically not greater than tdingi tding twingi twing
Examples
1. Trap if 64-bit register Rx is not 0.
tdnei Rx,0 (equivalent to: tdi 24,Rx,0)

228 PowerPC Architecture First Edition

2. Same as (1), but comparison is to register Ry.

tdne Rx,Ry

(equivalent to:

24,Rx,Ry)

3. Trap if register Rx, considered as a 32-bit qhantity, is logically greater than Ox7FF.

twigti Rx,0x7FF
4. Trap unconditionally.

trap

{equivalent to:

(equivalent to:

C.6 Rotate and Shift mnemonics

1,Rx,0x7FF)

31,0,0)

The Rotate and Shift instructions provide powerful and general ways to manipulate register contents, but can be
difficult to understand. Extended mnemonics are provided that allow some of the simpler operations to be coded

easily.

Mnemonics are provided for the following types of operation:

Extract Select a field of n bits starting at bit position b in the source register; right or left justify this field in

the target register; clear all other bits of the target register to 0.

Insert Select a left-justified or right-justified field of n bits in the source register; insert this field starting at
bit position b of the target register; leave other bits of the target register unchanged. {No extended
mnemonic is provided for insertion of a left-justified field when operating on doublewords, because
such an insertion requires more than one instruction.)

Rotate Rotate the contents of a register right or left n bits without masking.
Shift Shift the contents of a register right or left n bits, clearing vacated bits to 0 (logical shift).
Clear Clear the leftmost or rightmost n bits of a register to 0.

Clear left and shift left

Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be used
to scale a (known non-negative) array index by the width of an element.

C.6.1 Operations on doublewords

These operations are available only in 64-bit implementations. All these mnemonics can be coded with a final “.”
to cause the Rc bit to be set in the underlying instruction.

Table 8. Doubleword rotate and shift mnemonics

Operation

Extended mnemonic

Equivalent to

Extract and left justify immediate

extidi ra,rs,n,b

ridicr ra,rs,b,n—1

Extract and right justify immediate

extrdi ra,rs,n,b

ridic! ra,rs,b+n,64—n

Insert from right immediate

insrdi ra,rs,n,b

ridimi ra,rs,64—(b+n),b

Rotate left immediate

rotldi ra,rs,n

ridicl ra,rs,n,0

Rotate right immediate

rotrdi ra,rs,n

ridicl ra,rs,64—n,0

Rotate left

rotld ra,rs,rb

ridc! ra,rs,rb,0

Shift left immediate

sidi ra,rs,n

ridicr ra,rs,n,63—n

Shift right immediate

srdi ra,rs,n

ridicl ra,rs,64—n,n

Clear left immediate

ciridi ra,rs,n

ridicl ra,rs,0,n

Clear right immediate

clrrdi ra,rs,n

ridicr ra,rs,0,63—n

Clear left and shift left immediate

clrisidi ra,rs,b,n

rldic ra,rs,nb—n

Appendix C. Assembler Extended Mnemonics

229

Examples

1. Extract the sign bit (bit 0) of register Ry and place the result right-justified into register Rx.

extrdi Rx,Ry,1,0 (equivalent to: ridici Rx,Ry,1,63)
2. Insert the bit extracted in (1) into the sign bit (bit 0) of register Rz.

insrdi Rz,Rx,1,0 . (equivalent to: ridimi Rz,Rx,63,0)
3. Shift the contents of register Rx left 8 bits.

sldi Rx,Rx,8 (equivalent to: ridicr Rx,Rx,8,55)

4. Clear the high-order 32 bits of Ry and place the result into Rx.
clridi Rx,Ry,32 (equivalent to: ridicl Rx,Ry,0,32)
C.6.2 Operations on words

These operations are available in all implementations. All these mnemonics can be coded with a final “.” to
cause the Rc bit to be set in the underlying instruction.

Table 9. Word rotate and shift mnemonics
Operation Extended mnemonic Equivalent to
Extract and left justify immediate . extlwi ra,rs,n,b rlwinm ra,rs,b,0,n—1
Extract and right justify immediate extrwi ra,rs,n,b riwinm ra,rs,b +n,32-n,31 .
Insert from left immediate inslwi ra,rs,n,b rlwimi ra,rs,32—b,b,(b+n)—1
Insert from right immediate _ insrwi ra,rs,n,b riwimi ra,rs,32—(b+n),b,(b+n)—1
Rotate left immediate rotlwi ra,rs,n riwinm ra,rs,n,0,31
Rotate right immediate rotrwi ra,rs,n riwinm ra,rs,32—n,0,31
Rotate left rotlw ra,rs,rb riwnm ra,rs,rb,0,31
Shift left immediate slwi ra,rs,n rlwinm ra,rs,n,0,31—n
Shift right immediate srwi ra,rs,n ‘rlwinm ra,rs,32—n,n,31
Clear left immediate cirlwi ra,rs,n riwinm ra,rs,0,n,31
Clear right immediate clrrwi ra,rs,n rlwinm ra,rs,0,0,31—n
Clear left and shift left immediate clrislwi ra,rs,b,n riwinm ra,rs,n,b—n,31—n
Examples

1. Extract the sign bit (bit 32) of register Ry and place the result right-justified into register Rx.

extrwi Rx,Ry,1,0 (equivalent to: riwinm Rx,Ry,1,31,31)
2. Insert the bit extracted in (1) into the sign bit (bit 32) of register Rz.

insrwi Rz,Rx,1,0 (equivalent to: riwimi Rz,Rx,31,0,0)
3. Shift the contents of register Rx left 8 bits, clearing the high-order 32 bits.

slwi Rx,Rx,8 (equivalent to: riwinm Rx,Rx,8,0,23)

4. Clear the high-order 16 bits of the low-order 32 bits of Ry and place the result into Rx, clearing the high-order
32 bits of Rx.

cilwi Rx,Ry,16 (equivalent to: riwimn Rx,Ry,0,16,31)

230 PowerPC Architecture First Edition

C.7 Move To/From Special Purpose Register mnemonics

The mtspr and mfspr instructions specify a Special Purpose Register (SPR) as a numeric operand. Extended mne-
monics are provided that represent the SPR in the mnemonic rather than requiring it to be coded as an operand.
Also shown here are extended mnemonics for Move From Time Base and Move From Time Base Upper, which
are variants of the mftb instruction rather than of mfspr.

Note: mftb serves as both a basic and an extended mnemonic. The assembler will recognize an mftb mnemonic
with two operands as the basic form, and an mftb mnemonic with one operand as the extended form.

Table 10. Extended mnemonics for moving to/from an SPR

Spacial Purpose Ragister Move To SPR Move From SPR'
Extended Equivalent to Extended Equivalent to
Fixed‘ Point Exception mtxer Rx mtspr 1,Rx mfxer Rx mfspr Rx,1
Register
Link Register mtir Rx mtspr 8,Rx mflr Rx mfspr Rx,8
Count Register mtctr Rx mtspr 9,Rx mfctr Rx mfspr Rx,9
Dsatt:tiogzgieszz:errupt mtdsisr Rx mtspr 18,Rx mfd;isr Rx mfspr Rx,18
Data Address Register mtdar Rx mtspr 19,Rx mfdar Rx mfspr Rx,19
Decrementer mtdec Rx mtspr 22,Rx mfdec Rx mfspr Rx,22
Storage Description mtsdri Rx mtspr 25,Rx mfsdr1 Rx mfspr Rx,25
Register 1
Save/Restore Register 0 mtsrr0 Rx mtspr 26,Rx mfsrr0 Rx mfspr Rx,26
Save/Restore Register 1 misrr1 Rx mtspr 27,Rx mfsrr1 Rx mfspr Rx,27
Sggcti:::utggcgse Registers mtsprg n,Rx mtspr 272+ n,Rx mfsprg Rx,n mfspr Rx,272+n
Address Space Register mtasr Rx mtspr 280,Rx mfasr Rx mfspr Rx,280
External Access Register mtear Rx mtspr 282,Rx mfear Rx: mfspr Rx,282
Time Base [Lower] mttbl Rx mtspr 284,Rx mftb Rx mftb Rx,268
Time Base Upper mttbu Rx mtspr 285,Rx mftbu Rx mftb Rx,269
Processor Version Register - - mfpvr Rx mfspr Rx,287
IBAT Registers, Upper mtibatu n,Rx mtspr 528 +2xn,Rx mfibatu Rx,n mfspr Rx,528 +2xn
IBAT Registers, Lower mtibat! n,Rx mtspr 529 +2xn,Rx mfibatl Rx,n mfspr Rx,529+2xn
DBAT Registers, Upper mtdbatu n,Rx mtspr 536 +2xn,Rx mfdbatu Rx,n mfspr Rx,536+2xn
DBAT Registers, Lower mtdbatl n,Rx mtspr 537 +2xn,Rx mfdbatl Rx,n mfspr Rx,537 +2xn
'Except for mftb and mftbu.
Examples
1. Copy the contents of the low-order 32 bits of Rx to the XER.
mtxer RXx (equivalent to: mtspr 1,Rx)
2. Copy the contents of the LR to register Rx.
mflr Rx (equivalent to: mfspr Rx,8)
3. Copy the contents of Rx to the CTR.
mtctr Rx (equivalent to: mtspr 9,Rx)

Appendix C. Assembler Extended Mnemonics 231

C.8 Miscellaneous mnemonics

No-op

Many PowerPC instructions can be coded in a way such that, effectively, no operation is performed. An extended
mnemonic is provided for the “preferred” form of no-op. If an implementation performs any type of run-time
optimization related to no-ops, the preferred form is the no-op that will trigger this.

nop (equivalent to: ori 0,0,0)

Load Immediate
The addi and addis instructions can be used to load an immediate value into a register. Extended mnemonics are
provided to convey the idea that no addition is being performed but merely data movement (from the immediate
field of the instruction to a register).
Load a 16-bit signed immediate value into register Rx:

li Rx,value (equivalent to: addi Rx,0,value)

Load a 16-bit signed immediate value, shifted left by 16 bits, into register Rx:

lis Rx,value (equivalent to: addis Rx,0,value)

Load Address

This mnemonic permits computing the value of a base-displacement operand, using the addi instruction which
normally requires separate register and immediate operands.

la Rx,D(Ry) (equivalent to: addi Rx,Ry,D)
The Ia mnemonic is useful for obtaining the address of a variable specified by name, allowing the assembler to
supply the base register number and compute the displacement. [f the variable v is located at offset Dv bytes
from the address in register Rv, and the assembler has been told to use register Rv as a base for references to

the data structure containing v, then the following line causes the address of v to be loaded into register Rx.

la Rx,v (equivalent to: addi Rx,Rv,Dv})

Move Register

Several PowerPC instructions can be coded in a way such that they simply copy the contents of one register to
another. An extended mnemonic is provided to convey the idea that no computation is being performed but
merely data movement (from one register to another).

The following instruction copies the contents of register Ry into register Rx. This mnemonic can be coded with a
final “.” to cause the Rc bit to be set in the underlying instruction.

mr Rx,Ry (equivalent to: or Rx,Ry,Ry)

Complement Register
Several PowerPC instructions can be coded in a way such that they complement the contents of one register and
place the result into another register. An extended mnemonic is provided that allows this operation to be coded

easily.

The following instruction complements the contents of register Ry and places the result into register Rx. This
mnemonic can be coded with a final “.” to cause the Rc bit to be set in the underlying instruction.

not RxRy (equivalent to: nor Rx,Ry,Ry)

232 PowerPC Architecture First Edition

Appendix D. Little-Endian Byte Ordering

It is computed that eleven Thousand Persons
have, at several Times, suffered Death,
rather than submit to break their Eggs at the
smaller End. Many hundred large Volumes

have been published upon this Controversy

Jonathan Swift, Gulliver's Travels

D.1 Byte Ordering

If scalars (individual data items and instructions) were
indivisible, then there would be no such concept as
“byte ordering.” It is meaningless to talk of the
“order” of bits or groups of bits within the smallest
addressable unit of storage, because nothing can be
observed about such order. Only when scalars, which
the programmer and processor regard as indivisible
quantities, can be made up of more than one address-
able unit of storage does the question of “order”
arise.

For a machine in which the smallest addressable unit
of storage is the 64-bit doubleword, there is no ques-
tion of the ordering of “bytes” within doublewords.
All transfers of individual scalars to and from storage
{e.g., between registers and storage) are of
doublewords, and the address of the “byte” con-
taining the high-order 8 bits of a scalar is no different
from the address of a “byte” containing any other
part of the scalar.

For PowerPC, as for most computers currently avail-
able, the smallest addressable unit of storage is the
8-bit byte. Many scalars are halfwords, words, or
doublewords, which consist of groups of bytes. When
a word-length scalar is moved from a register to
storage, the scalar occupies four consecutive byte
addresses. It thus becomes meaningful to discuss the
order of the byte addresses with respect to the value
of the scalar: which byte contains the highest-order 8
bits of the scalar, which byte contains the next-
highest-order 8 bits, and so on.

Given a scalar that spans multiple bytes, the choice of
byte ordering is essentially arbitrary. There are
4! =24 ways to specify the ordering of four bytes

within a word, but only two of these orderings are
sensible:

= The ordering that assigns the lowest address to
the highest-order (“leftmost”) 8 bits of the scalar,
the next sequential address to the next-highest-
order 8 bits, and so on. This is called Big-Endian
because the “big end” of the scalar, considered
as a binary number, comes first in storage. IBM
RISC System/6000, IBM System/370, and
Motorola 680x0 are examples of computers using
this byte ordering.

s The ordering that assigns the lowest address to
the lowest-order (“rightmost”) 8 bits of the scalar,
the next sequential address to the next-lowest-
order 8 bits, and so on. This is called Litt/le-
Endian because the “little end” of the scalar,
considered as a binary number, comes first in
storage. DEC VAX and Intel x86 are examples of
computers using this byte ordering.

D.2 Structure Mapping
Examples

Figure 72 on-page 234 shows an example of a C lan-
guage structure s containing an assortment of scalars
and one character string. The value assumed to be in
each structure element is shown in hex in the C com-
ments; these values are used below to show how the
bytes making up each structure element are mapped
into storage.

C structure mapping rules permit the use of padding
(skipped bytes) in order to align the scalars on desir-
able boundaries. Figures 73 and 74 show each scalar
aligned at its natural boundary. This introduces
padding of 4 bytes between a and b, one byte

Appendix D. Little-Endian Byte Ordering 233

struct {

int a; /~ 0x1112_1314 word */
double b; /~ 0x2122_2324_2526_2728 doubleword */
char * c¢; /~ 0x3132_3334 word */
char d[7};, / 'A,’B,°C,'D’,’F,’F,’G"” array of bytes */
short ¢ /* 0x5152 halfword */
int f; I+ 0x6162_6364 - word */

}s

Figure 72. C structure ’s’, showing values of elements

between d and e, and two bytes between e and f. The
same amount of padding is present for both Big-
Endian and Little-Endian mappings.

D.2.1 Big-Endian mapping

The Big-Endian mapping of structure s is shown in
Figure 73. Addresses are shown in hex at the left of
each doubleword, and in small figures below each
byte. The content of each byte, as indicated in the C
example in Figure 72, is shown in hex (as characters
for the elements of the string).

00 1 12 13 14

00 01 02 03] 04 05 06 07
08 21 22 23 24 25 26 27 28

08 09 O0A 0B OC OD OE OF
10 31 32 33 34]'A" 'B' ‘C" D'

10 11 12 13| 14 15 16 17
18 'E' F' '@’ 51 52

18 19 1A] 1B} 1C 1D]| 1E IF
20 61 62 63 64

20 21 2 23

Figure 73. Big-Endian mapping of structure ’s’

D.2.2 Little-Endian mapping

The same structure s is shown mapped Little-Endian
in Figure 74. Doublewords are shown laid out from
right to left, which is the common way of showing
storage maps for Little-Endian machines.

11 12 13 14 06
07 06 05 04} 03 02 01 00
21 22 23 24 25 26 27 28 08
OF OE OD O0C 0B OA 09 08

‘DT 'CT B’ ‘AT 31 32 33 34 10
17 1615 14113 12 11 10
51 §2 ‘6" 'F' 'E' 18

1IF_1EJ D 1c|[1B] 1A 19 18
61 62 63 64 28
23 2 21 2

Figure 74. Little-Endian mapping of structure ’s’

D.3 PowerPC Byte Ordering

The body of each of the three PowerPC Architecture
Books, Part 1, “PowerPC User Instruction Set
Architecture” on page 1, Part 2, “PowerPC Virtual
Environment Architecture” on page 117, and Part 3,
“PowerPC Operating Environment Architecture” on
page 141, are written as if a PowerPC system runs
only in Big-Endian mode. In fact, a PowerPC system
can instead run in Little-Endian mode, in which the
instruction set behaves as if the byte ordering were
Little-Endian, and can change Endian mode dynam-
ically. The remainder of this appendix describes how
the mode is controlled, and how running in Little-
Endian mode differs from running in Big-Endian mode.

D.3.1 Controlling PowerPC Byte
Ordering

The Endian mode of a PowerPC processor is con-
trolled by two bits: the LE (Little-Endian Maode) bit
specifies the current mode of the processor, and the
ILE (Interrupt Little-Endian Mode) bit specifies the
mode that the processor enters when the system
error handler is invoked. For both bits, a value of 0
specifies Big-Endian mode and a value of 1 specifies
Little-Endian mode. The location of these bits and the
requirements for altering them are described in
Part 3, “PowerPC Operating Environment
Architecture” on page 141.

When a PowerPC system comes up after power-on-
reset, Big-Endian mode is in effect (see Part 3,
“PowerPC Operating Environment Architecture” on
page 141). Thereafter, methods described in Book Il
can be used to change the mode, as can both
invoking the system error handler and returning from
the system error handler.

—— Programming Note

For a discussion of software synchronization
requirements when altering the LE and ILE bits,
please refer to the appendix entitled “Synchroni-
zation Requirements for Special Registers.”

234 PowerPC Architecture First Edition

D.3.2 PowerPC Little-Endian Byte
Ordering

One might expect that a PowerPC system running in
Little-Endian mode would have to perform a 2-way,
4-way, or 8-way byte swap when transferring a
halfword, word, or doubleword to or from storage,
e.g., when transferring data between storage and a
general purpose or floating-point register, when
fetching instructions, and when transferring data
between storage and an input/Output (1/0O) device.
PowerPC systems do not do such swapping, but
instead achieve the effect of Little-Endian byte
ordering by modifying the low-order three bits of the
effective address (EA) as described below. Individual
scalars actually appear in storage in Big-Endian byte
order.

The madification affects only the addresses presented
to the storage subsystem (see Part 3, “PowerPC
Operating Environment Architecture” on page 141).
All effective addresses in architecturally defined reg-
isters, as well as the Current instruction Address
(CIA) and Next Instruction Address (NIA), are inde-
pendent of Endian mode. For example:

= The effective address placed into the Link Reg-
ister by a Branch instruction with LK=1 is equal
to the CIA of the Branch instruction + 4;

= The effective address placed into RA by a
Load/Store with Update instruction is the value
computed as described in the instruction
description; and

= The effective addresses placed into System Reg-
isters when the system error handler is invoked
(e.g., SRRO, DAR: see Part 3, “PowerPC Oper-
ating Environment Architecture” on page 141)
are those that were computed or would have
been computed by the interrupted program.

The modification is independent of the address trans-
lation mechanism, and thus, e.g., applies regardless
of whether translation is enabled or disabled, whether
the accessed storage is in an ordinary storage
segment, a direct-store segment, or a BAT area, etc.
(see Part 3, “PowerPC Operating Environment
Architecture” on page 141). The actual transfer of
data and instructions to and from storage is unaf-
fected (and thus unencumbered by multiplexors for
byte swapping).

The modification of the low-order three bits of the
effective address in Little-Endian mode is done as
follows, for access to an individual aligned scalar.
(Alignment is as determined before this modification.)
Access to an individual unaligned scalar or to multiple
scalars is described in subsequent sections, as is
access to certain architecturally defined data in
storage, data in caches (see Part 2, “PowerPC Virtual
Environment Architecture” on page 117, and Part 3,
“PowerPC Operating Environment Architecture” on
page 141), etc.

In Little-Endian mode, the effective address is com-
puted in the same way as in Big-Endian mode. Then,
in Little-Endian mode only, the low-order three bits of
the effective address are exclusive-ored with a
three-bit value that depends on the length of the
operand (1, 2, 4, or 8 bytes), as shown in Table 11.
This modified effective address is then passed to the
storage subsystem, and data of the specified length
are transferred to or from the addressed (as modified)
storage locations(s).

Data length (bytes) EA modification:
1 XOR with 0b111
2 XOR with 0b110
4 XOR with 0b100
8 (no change)

Table 11. PowerPC Little-Endian, effective address
modification for individual aligned scalars

The effective address modification makes it appear to
the processor that individual aligned scalars are
stored Little-Endian, while in fact they are stored Big-
Endian but in different bytes within doublewords from
the order in which they are stored in Big-Endian
mode.

For example, in Little-Endian mode structure s would
be placed in storage as follows, from the point of view
of the storage subsystem (i.e., after the effective
address madification described above).

00 11 12 13 14
00 01 02 03| 04 05 08 07
08 21 22 23 24 25 26 27 28
08 09 OA 0B O0C OD OE OF
10 DY 'C’ B 'A'} 31 32 33 34
10 11 12 13) 14 15 16 17
18 51 52 'G" 'FT 'EY
18 _19{11A 1B|1C|1D 1E _IF
20 61 62 63 64
20 21 22 23| 24 25 26 27

Figure 75. PowerPC Little-Endian, structure ’‘s’ in
storage subsystem

Figure 75 is identical to Figure 74 on page 234
except that the byte numbers within each doubleword
are reversed. (This identity is in some sense an
artifact of depicting storage as a sequence of
doublewords. If storage is instead depicted as a
sequence of words, a single byte stream. etc., then no
such identity appears. However, regardless of the
unit in which storage is depicted or accessed, the
address of a given byte in Figure 75 differs from the
address of the same byte in Figure 74 on page 234
only in the low-order three bits, and the sum of the

Appendix D. Little-Endian Byte Ordering 235

two 3-bit values that comprise the low-order three
bits of the two addresses is equal to 7. Depicting
storage as a sequence of doublewords makes this
relationship easy to see.)

Because of the modification performed on effective
addresses, structure s appears to the processor to be
mapped into storage as follows when the processor is
in Little-Endian mode.

1 12 13 14 08

07 08 05 ©04] 03 02 o0f 00
21 22 23 24 25 26 27 28 68

OF OE _OD 0OC 0B OA 09 08
Dt 'C' 'B' 'A'| 31 32 33 34 10

17 1615 14] 13 12 11 10
51 52 'GT 'F' 'ET 18

IF_1E{ 1D 1C|1B|1A 19 18
61 62 63 64 20

28 2 21 20

Figure 76. PowerPC Little-Endian, structure .’s’ as
seen by processor

Notice that, as seen by the program executing in the
processor, the mapping for structure s is identical to
the Little-Endian mapping shown in Figure 74. From a
point of view outside the processor, however, the
addresses of the bytes making up structure s are as
shown in Figure 75. These addresses match neither
the Big-Endian mapping of Figure 73 nor the Little-
Endian mapping of Figure 74; allowance must be
made for this in certain circumstances (e.g., when
performing 1/O: see Section D.7).

The following four sections describe in greater detail
the effects of running in Little-Endian mode on
accessing data storage, on fetching instructions, on
explicitly accessing the caches, the Segment
Lookaside Buffer, and the Translation Lookaside
Buffer (see Part 2, “PowerPC Virtual Environment
Architecture” on page 117, and Part 3, “PowerPC
Operating Environment Architecture” on page 141),
and on doing /0.

D.4 PowerPC Data Storage
Addressing in Little-Endian Mode

D.4.1 Individual Aligned Scalars

When the storage operand is aligned for any instruc-
tion in the following classes, the effective address
presented to the storage subsystem is computed as
described in Section D.3.2: Fixed-Point Load {Section
3.3.2), fixed-Point Store (Section 3.3.3), Load and
Store with Byte Reversal, Storage Synchronization
{excluding sync), Floating-Point Load, and Floating-
Point Store (inctuding stfiwx).

The Load and Store with Byte Reversal instructions
have the effect of loading or storing data in the oppo-
site Endian mode from that in which the processor is
running. That is, data are loaded or stored in Little-
Endian order if the processor is running in Big-Endian
mode, and in Big-Endian order if the processor is
running in Little-Endian mode.

D.4.2 Other Scalars

As described below, the system alighment error
handler may be (Section D.4.2.1, “Individual Una-
ligned Scalars” on page 237) or is (Section D.4.2.2,
“Multiple Scalars” on page 237) invoked if attempt is
made in Little-Endian mode to execute any of the
instructions described in the following two sub-
sections.

—— Programming Note

It is up to system software whether the system
alignment error handler, when invoked because of
attempt to execute any of the instructions
described in this section when the processor is in
Littie-Endian mode, should emulate the instruction
and resume the program that made the attempt,
or should treat the instruction as illegal and termi-
nate the program.

Little-Endian mode programs on PowerPC are of
necessity new (not old Power binaries). It is prob-
ably best for the compiler not to generate these
instructions in Little-Endian mode, since emulation
would be slower than using a series of aligned
Load or Store instructions, either in-line or in a
subroutine. An exception is the case of accessing
an individual scalar (see Section D.4.2.1) when the
alignment is not known by the compiler but the
operand is expected usually to be aligned: in this
case it may be better for the compiler to generate
the individual Load or Store instruction, and let
the system alignment error handler be invoked
and emulate the instruction if the operand is in
fact unaligned.

236 PowerPC Architecture First Edition

D.4.2.1 Individual Unaligned Scalars

The “trick” of exclusive-oring the low order three bits
of the effective address of an individual scalar does
not work unless the scalar is aligned. In Little-Endian
mode, PowerPC processors may cause the system
alignment error handler to be invoked whenever any
of the Load or Store instructions listed in Section
D.4.1 is issued with an unaligned effective address,
regardless of whether such an access could be
handled without invoking the system alignment error
handler in Big-Endian mode.

PowerPC processors are not required to invoke the
system alignment error handler when an unaligned
access is attempted in Little-Endian mode. The imple-
mentation may handle some or all such accesses
without invoking the system alignment error handler,
just as in Big-Endian mode. The architectural require-
ment is that halfwords, words, and doublewords be
placed in storage such that the Little-Endian effective
address of the lowest-order byte is the effective
address computed by the Load or Store instruction,
the Little-Endian address of the next-lowest-order byte
is one greater, and so on. (lwarx, Idarx, stwex., and
stdcx. differ somewhat from the rest of the
instructions listed in Section D.4.1, in that neither the
implementation nor the system alignment error
handier is expected to handie these four instructions
“correctly” if their operands are not aligned.)

Figure 77 shows an example of a word w stored at
Little-Endian address 5. The word is assumed to
contain the binary value 0x1112_1314.

12 13 14 00
07 06 05 04 03 02 01 00

11 08
OF OE OD o0C 08 OA 09 08

Figure 77. Little-Endian mapping of word 'w’ stored
at address 5

In Little-Endian mode word w would be placed in
storage as follows, from the point of view of the
storage subsystem (i.e., after the effective address
modification described in Section D.3.2, “PowerPC
Little-Endian Byte Ordering” on page 235).

68 12 13 14
60 01 02 03 04 05 06 07
08 11
08 09 OA 0B 0C OD OE | OF

Figure 78. PowerPC Little-Endian, word 'w’ stored at
address §, in storage subsystem

Notice that the unaligned word w in Figure 78 spans
two doubiewords. The two parts of the unaligned

word are not contiguous as seen by the storage sub-
system.

An implementation may choose to support some but
not all unaligned Little-Endian accesses. For example,
an unaligned Little-Endian access that is contained
within a single- doubleword may be supported, while
one that spans doublewords may cause the system
alignment error handler to be invoked.

D.4.2.2 Multiple Scalars

PowerPC has two classes of instructions that handle
multiple scalars, namely the Load and Store Multiple
instructions and the Move Assist instructions.
Because both classes of instructions potentially deal
with more than one word-length scalar, neither class
is amenable to the effective address maodification
described in Section D.3.2 (e.g., pairs of aligned words
would be accessed in reverse order from what the
program would expect). Attempting to execute any of
these instructions in Little-Endian mode causes the
system alignment error handler to be invoked.

D.4.3 Segment Tables and Page
Tables

The layout of Segment Tables and Page Tables in
storage (see Part 3, “PowerPC Operating Environment
Architecture” on page 141) is independent of Endian
mode. A given byte in one of these tables must be
accessed using an effective address appropriate to
the mode of the executing program (e.g., the high-
order byte of a Page Table entry must be accessed
with an effective address ending with 0b000 in Big-
Endian mode, and with an effective address ending
with 0b111 in Little-Endian mode).

—— Engineering Note

An implementation that uses software assistance
to facilitate the hardware’s searching and alter-
ation of Segment Tables and/or Page Tables must
supply two separate software routines, one for
Big-Endian mode and one for Little-Endian mode.

D.5 PowerPC Instruction
Storage Addressing in
Little-Endian Mode

Each PowerPC instruction occupies an aligned word in
storage. The processor fetches and executes
instructions as if the CIA were advanced by four for
each sequentially fetched instruction. When the
processor is in Little-Endian mode, the effective
address presented to the storage subsystem to fetch

Appendix D. Little-Endian Byte Ordering 237

an instruction is the value from the CIA, modified as
described in Section D.3.2 for aligned word-length
scalars. A Llittle-Endian program is thus an array of
aligned Little-Endian words, with each word fetched
and executed in order (discounting branches and
invocations of the system error handler).

Figure 79 shows an example of a small assembly lan-
guage program p.

loop:
cmplwi r5,0
beg done
Twzux rd,r5,r6
add r7,r7,r4
subi r5,r5,4
b loop
done:
stw r7,total

Figure 79. Assembly language program ’p’

The Big-Endian mapping for program p is shown in
Figure 80 (assuming the program starts at address 0).

60 toop: cmplwi r5,8 beq done
00 01 02 03| 04 05 06 07
08 Iwzux r4,r5,r6 add r7,r7,r4
08 09 0A OB|oOC OD OE OF
10 subi r5,r5,4 b Teop

10 11 12 13} 14 15 16 17
18 done: stw r7,total
18 19 1A 1B|l1C 1D 1E F

Figure 80. Big-Endian mapping of program ’p’

The same program p is shown mapped Little-Endian
in Figure 81.

beq done loop: cmplwi r5,0 06
07 06 05 04| 03 02 01 00
add rv7,r7,r4 Twzux r4,r5,r6 08
OF O o> oc}os oA 09 08
b loop subi r5,r5,4 10

17 16 15 14| 13 12 11 10
done: stw r7,total 18
1F 1E 1D 1cC|1B 1A 19 18

Figure 81. Little-Endian mapping of program ’p’

In Little-Endian mode program p would be placed in
storage as follows, from the point of view of the
storage subsystem (i.e., after the effective address
modification described in Section D.3.2).

00 beq done Toop: cmplwi r5,8
00 01 02 03|04 05 o086 07
08 add r7,r7,r4 Twzux r4,r5,r6
08 09 O0OA OB|Joc ob OF OF

10 b loop subi r5,r5,4
10 11 12 13| 14 15 16 17
18 | done: stw r7,total

18 19 1A 1B | 1C 1D 1E 1F

Figure 82. PowerPC Little-Endian, program ’‘p’ in
storage subsystem

Figure 82 is identical to Figure 81 except that the
byte numbers within each doubleword are reversed.
(This identity is in some sense an artifact of depicting
storage as a sequence of doublewords. If storage is
instead depicted as a sequence of words, a single
byte stream. etc.,, then no such identity appears.
However, regardless of the unit in which storage is
depicted or accessed, the address of a given byte in
Figure 82 differs from the address of the same byte
in Figure 81 only in the low-order three bits, and the
sum of the two 3-bit values that comprise the low-
order three bits of the two addresses is equal to 7.
Depicting storage as a sequence of doublewords
makes this relationship easy to see.)

Each individual machine instruction appears in
storage as a 32-bit integer containing the value
described in the instruction description, regardless of
the Endian mode. This is a consequence of the fact
that individual aligned scalars are mapped in storage
in Big-Endian byte order.

Notice that, as seen by the processor when executing

" program p, the mapping for program p is identical to

the Little-Endian mapping shown in Figure 81. From a
point of view outside the processor, however, the
addresses of the bytes making up program p are as
shown in Figure 82. These addresses match neither
the Big-Endian mapping of Figure 80 nor the Little-
Endian mapping of Figure 81.

All instruction effective addresses visible to an exe-
cuting program are the effective addresss that are
computed by that program or, in the case of the
system error handler, effective addresses that were
or could have been computed by the interrupted
program. These effective addresses are independent
of Endian mode. Examples for Little-Endian mode
include the following.

= An instruction address placed in the Link Register
by a Branch instruction with LK=1, or an instruc-
tion address saved in a System Register when
the system error handler is invoked, is the effec-
tive address that a program executing in Littie-
Endian mode would use to access the instruction
as a data word using a Load instruction.

= An offset in a relative Branch instruction (Branch
or Branch Conditional with AA=0) reflects the

238 PowerPC Architecture First Edition

difference between the addresses of the branch
and target instructions, using the addresses that
a program executing in Little-Endian mode would
use to access the instructions as data words
using Load instructions.

= A target address in an absolute Branch instruc-
tion (Branch or Branch Conditional with AA=1) is
the address that a program executing in Little-
Endian mode would use to access the target
instruction as a data word using a Load instruc-
tion.

= The storage locations that contain the first set of
instructions executed by each kind of system
error handler must be set in a manner consistent
with the Endian mode in which the system error
handler will be invoked. (These sets of
instructions occupy architecturally defined
locations: see Part 3, “PowerPC Operating Envi-
ronment Architecture” on page 141.) Thus if the
system error handler is to be invoked in Little-
Endian mode, the first set of instructions com-
prising each kind of system error handler must
appear in storage, from the point of view of the
storage subsystem (i.e.,, after the effective
address modification described in Section D.3.2),
with the pairs of instructions within each
doubleword reversed from the order in which
they are to be executed. (If the instructions are
placed into storage by a program running in the
same Endian mode as that in which the system
error handler will be invoked, the approriate
order will be achieved naturally.)

—— Programming Note

In general, a given copy of a subroutine in
storage cannot be shared between programs
running in different Endian modes. This affects
the sharing of subroutine libraries. (It is possible,
in principle, to write a subroutine that could be
thus shared — e.g., let every second instruction
be a no-op — but such a subroutine is not likely to
be useful in practice.)

D.6 PowerPC Cache
Management and Lookaside

Buffer Management Instructions
in Little-Endian Mode

The instructions for explicitly accessing the caches,
Segment Lookaside Buffer, and Translation Lookaside
Buffer (see Part 2, “PowerPC Virtual Environment
Architecture” on page 117, and Part 3, “PowerPC
Operating Environment Architecture” on page 141)
are unaffected by Endian mode. (ldentification of the
block, Segment Table Entry, or Page Table Entry to be

accessed is not affected by the low-order three bits of
the effective address.)

D.7 PowerPC 1/0O in Little Endian
Mode

Input/output (1/0), such as writing the contents of a
large area of storage to disk, transfers a byte stream
on both Big-Endian and Little-Endian systems. For the
disk transfer, the first byte of the area is written to
the first byte of the disk record and so on.

For a PowerPC system running in Big-Endian mode,
1/0 transfers happen “naturally” because the byte
that the processor sees as byte 0 is the same one
that the storage subsystem sees as byte 0.

For a PowerPC system running in Little-Endian mode
this is not the case, because of the modification of the
low-order three bits of the effective address when the
processor accesses storage. !n order for 1/O transfers
to transfer byte streams properly, in Little-Endian
mode 1/0 transfers must be performed as if the bytes
transferred were accessed one byte at a time, using
the address modification described in Section D.3.2
for single-byte scalars. This does not mean that 1/0
on Little-Endian PowerPC systems must use only
1-byte-wide transfers; data transfers can be as wide
as desired, but the order of the bytes transferred
within doublewords must appear as if the bytes were
fetched or stored one byte at a time. See the System
Architecture documentation for a given PowerPC
system for details on the transfer width and byte
ordering on that system.

However, not all I/0 done on PowerPC systems is for
large areas of storage as described above. /O can
be performed with certain devices merely by storing
to or loading from addresses that are associated with
the devices (the terms “memory-mapped /0" and
“programmed 1/0” or “PIO” are used for this). For
such PIO transfers, care must be taken when defining
the addresses to be used, for these addresses are
subject to the effective address modification shown in
Table 11 on page 235. A Load or Store instruction
that maps to a control register on a device may
require that the value loaded or stored have its bytes
reversed; if this is required, the Load and Store with
Byte Reversal instructions can be used. Any require-
ment for such byte reversal for a particular 1/0 device
register is independent of whether the PowerPC
system is running in Big-Endian or Little-Endian mode.

Similarly, the address sent to an /O device by an
eciwx or ecowx instruction (see Part 3, “PowerPC
Operating Environment Architecture” on page 141) is
subject to the effective address modification shown in
Table 11 on page 235.

Appendix D. Little-Endian Byte Ordering 239

Controversy: But the Books of the B8ig-
Endians have been long forbidden, and the
whole Party rendered incapable by Law of
holding Employments. During the Course of
these Troubles, the Emperors of Blefuscu did
frequently expostulate by their Ambassadors,
accusing us of making a Schism in Religion,.

D.8 Origin of Endian

The terms Big-Endian and Little-Endian come from
Part 1, Chapter 4, of Jonathan Swift’'s Gulliver's
Travels. Here is the complete passage, from the
edition printed in 1734 by George Faulkner in Dublin.

... our Histories of six Thousand Moons make
no Mention of any other Regions, than the
two great Empires of Lilliput and Blefuscu.
Which two mighty Powers have, as | was
going to tell you, been engaged in a most
obstinate War for six and thirty Moons past.
It began upon the following Occasion. It is
allowed on all Hands, that the primitive Way
of breaking Eggs before we eat them, was
upon the larger End: But his present Majes-
ty’s Grand-father, while he was a Boy, going
to eat an Egg, and breaking it according to
the ancient Practice, happened to cut one of
his Fingers. Whereupon the Emperor his
Father, published an Edict, commanding ali
his Subjects, upon great Penalties, to break
the smaller End of their Eggs. The People so
highly resented this Law, that our Histories
tell us, there have been six Rebellions raised
on that Account; wherein one Emperor lost
his Life, and another his Crown. These civil
Commotions were constantly fomented by the
Monarchs of Blefuscu; and when they were
quelled, the Exiles always fled for Refuge to
that Empire. It is computed that eleven
Thousand Persons have, at several Times,
suffered Death, rather than submit to break
their Eggs at the smaller End. Many hundred
large Volumes have been published upon this

by offending against a fundamental Doctrine
of our great Prophet Lustrog, in the fifty-
fourth Chapter of the Brundrecal, (which is
their Alcoran.) This, however, is thought to
be a mere Strain upon the text: For the
Words are these; That all true Believers shall
break their Eggs at the convenient End: and
which is the convenient End, seems, in my
humble Opinion, to be left to every Man’s
Conscience, or at least in the Power of the
chief Magistrate to determine. Now the Big-
Endian Exiles have found so much Credit in
the Emperor. of Blefuscu’s Court; and so
much private Assistance and Encouragement
from their Party here at home, that a bloody
War has been carried on between the two
Empires for six and thirty Moons with various
Success; during which Time we have lost
Forty Capital Ships, and a much greater
Number of smaller Vessels, together with
thirty thousand of our best Seamen and Sol-
diers; and the Damage received by the
Enemy is reckoned to be somewhat greater
than ours. However, they have now
equipped a numerous Fleet, and are just pre-
paring to make a Descent upon us: and his
Imperial Majesty, placing great Confidence in
your Valour and Strength, hath commanded
me to lay this Account of his Affairs before
you.

240 PowerPC Architecture First Edition

Appendix E. Programming Examples

E.1 Synchronization

This appendix gives examples of how the Storage
Synchronization instructions can be used to emulate
various synchronization primitives, and to provide
more complex forms of synchronization.

These examples have a common form. After possible
initialization, there is a “conditional sequence” that:
begins with a Load And Reserve instruction; may be
followed by memory accesses and/or computation
that include neither a Load And Reserve nor a Store
Conditional; and ends with a Store Conditional
instruction with the same target address as the initial
Load And Reserve. In most of the examples, failure
of the Store Conditional causes a branch back to the
Load And Reserve for a repeated attempt. In the
examples, on the assumption that contention is low,
the conditional branch is optimized for the case in
which the stwex. succeeds, by setting the branch-
prediction bit appropriately. This is done by
appending a minus sign to the instruction mnemonic,
-as described in Appendix C.1.4, “Branch prediction”
on page 224. These examples focus on techniques
for the correct modification of shared storage
locations: see Note 4 in Section E.1.4 for a discussion
of how the retry strategy can affect performance.

The Load And Reserve and Store Conditional
instructions depend on the coherence mechanism of
the system. Stores to a given location are coherent if
they are serialized in some order, and no processor is
able to observe a subset of those stores as occurring
in a conflicting order. See Part 2, “PowerPC Virtual
Environment Architecture” on page 117, for additional
details.

Each load operation, whether ordinary or Load And
Reserve, returns a value that has a well-defined
source. The source can be the Store or Store Condi-
tional instruction that wrote the value, an operation
by some other mechanism that accesses storage
{e.g., an /O device), or the initial state of storage.

The function of an atomic read/modify/write operation
is to read a location and write its next value, possibly
as a function of its current value, all as a single
atomic operation. We assume that locations accessed
by read/modify/write operations are accessed
coherently, so the concept of a value being the next
in the sequence of values for a location is well
defined. The conditional sequence, as defined above,

" provides the effect of an atomic read/modify/write

operation, but not with a single atomic instruction.
Let addr be the location that is the common target of
the Load And Reserve and Store Conditional
instructions. Then the guarantee the architecture
makes for the successful execution of the conditional
sequence is that no store into addr by another
processor or mechanism intervened between the
source of the Load And Reserve and the Store Condi-
tional.

For each of these examples, it is assumed that a
similar sequence of instructions is used by all proc-
esses requiring synchronization on the accessed data.

The examples deal with words: they can be used for
doublewords by changing all Iwarx instructions to
Idarx, all stwecx. instructions to stdex., all stw
instructions to std, and all cmpw(i] extended mne-
monics to cmpd[il.

—— Programming Note

Because the Storage Synchronization instructions
have implementation dependencies (e.g., the
granularity at which reservations are managed),
they must be used with care. The operating
system should provide system library programs
that use these instructions to implement the high-
level synchronization functions (Test and Set,
Compare and Swap, etc.) needed by application
programs. Application programs should use these
library programs, rather than use the Storage
Synchronization instructions directly.

Appendix E. Programming Examples 241

E.1.1 Synchronization Primitives

The following examples show how the Jwarx and
stwex. instructions can be used to emulate various
synchronization primitives.

The sequences used to emulate the various primitives
consist primarily of a loop using Iwarx and stwcx.. No
additional synchronization is necessary, because the
stwex. will fail, setting the EQ bit to 0, if the word
loaded by Ilwarx has changed before the stwex. is
executed: see Part 2, “PowerPC Virtual Environment
Architecture” on page 117 for more detail.

Fetch and No-op

The “Fetch and No-op” primitive atomically loads the
current value in a word in storage.

In this example it is assumed that the address of the
word to be loaded is in GPR 3 and the data loaded
are returned in GPR 4.

loop: lwarx r4,0,r3
stwex. r4,0,r3

#load and reserve
#store old value if
still reserved

bne- loop #loop if Tost reserv'n

Notes:

1. The stwex., if it succeeds, stores to the target
location the same value that was loaded by the
preceding lwarx. While the store is redundant
with respect to the value in the location, its
success ensures that the value loaded by the
lwarx was the current value, i.e., that the source
of the value loaded by the lwarx was the last
store to the location that preceded the stwex. in
the coherence order for the location.

Fetch and Store

The “Fetch and Store” primitive atomically loads and
replaces a word in storage.

In this example it is assumed that the address of the
word to be loaded and replaced is in GPR 3, the new
value is in GPR 4, and the old value is returned in
GPR 5. a

loop: lwarx r5,0,r3
stwcx. r4,0,r3

#load and reserve
#store new value if
still reserved

bne- loop #loop if lost reserv'n

Fetch and Add

The “Fetch and Add” primitive atomically increments
a word in storage.

In this example it is assumed that the address of the
word to be incremented is in GPR 3, the increment is
in GPR 4, and the old value is returned in GPR 5.

#load and reserve
#increment word

#store new value if

still reserved
#loop 1f lost reserv'n

toop: lwarx r5,8,r3
add ro,r4,r5
stwex. r0,0,r3

bne- Toop

Fetch and AND

The “Fetch and AND” primitive atomically ANDs a
value into a word in storage.

In this example it is assumed that the address of the
word to be ANDed is in GPR 3, the value to AND into
itis in GPR 4, and the old value is returned in GPR 5.

loop: Iwarx 15,0,r3
and ro,r4,r5
stwcx. r0,0,r3

#load and reserve
#AND word

#store new value if
still reserved

bne- loop #loop if lost reserv'n

Notes:

1. The sequence given above can be changed to
perform another Boolean operation atomically on
a word in storage, simply by changing the and
instruction to the desired Boolean instruction (or,
xor, etc.).

Test and Set

The “Test and Set” primitive atomically loads a word
from storage, ensures that the word in storage con-
tains a non-zero value, and sets the EQ bit of CR Field
0 according to whether the value loaded is zero.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the new value (non-
zero) is in GPR 4, and the old value is returned in
GPR 5.

loop: lwarx r5,0,r3 #load and reserve

cmpwi r5,0 #done if word

bne- $+12 # not equal to ©

stwex. r4,0,r3 #try to store non-6

bne- Toop #loop if lost reserv'n
Notes:

1. ‘Depending on the application, if Test and Set fails
(i.e., sets the EQ bit of CR Field 0 to zero) it may
be appropriate to re-execute the Test and Set.

Compare and Swap

The “Compare and Swap” primitive atomically com-
pares a value in a register with a word in storage, if
they are equal stores the value from a second reg-
ister into the word in storage, if they are unequal
loads the word from storage into the first register,
and sets the EQ bit of CR Field 0 to indicate the result
of the comparison.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the comparand is in

242 PowerPC Architecture First Edition

GPR 4 and the old value is returned there, and the
new value is in GPR 5.

loop: lwarx r6,6,r3 #load and reserve
cmpw rd,rb6 #1st 2 operands equal?
bne- exit #skip if not

#store new value if

still reserved

#loop if Tost reserv'n
#return value from storage

stwex. r5,0,r3

bne- loop
exit: mr r4,r6

Notes:

1. The semantics given for “Compare and Swap”
above are based on those of the IBM System/370
Compare and Swap instruction. Other architec-
tures may define a Compare and Swap instruction
differently.

2. “Compare and Swap” is shown primarily for ped-
agogical reasons. It is useful on machines that
lack the better synchronization facilities provided
by lwarx and stwecx.. A major weakness of a
System/370-style Compare and Swap instruction
is that, although the instruction itself is atomic, it
checks only that the old and current vaiues of the
word being tested are equal, with the result that
programs that use such a Compare and Swap to
control a shared resource can err if the word has
been modified and the old value subsequently
restored. The sequence shown above has the
same weakness.

3. In some applications the second bne- instruction
and/or the mr instruction can be omitted. The
bne- is needed only if the application requires
that if the EQ bit of CR Field 0 on exit indicates
“not equal” then (r4) and (r6) are in fact not
equal. The mr is needed only if the application
requires that if the comparands are not equal
then the word from storage is loaded into the reg-
ister with which it was compared (rather than into
a third register). If either or both of these
instructions is omitted, the resulting Compare and
Swap does not obey System/370 semantics.

4. Depending on the application, if Compare and
Swap fails (i.e., sets the EQ bit of CR Field 0 to
zero) it may be appropriate to recompute the
value potentially to be stored and then reexecute
the Compare and Swap.

E.1.2 Lock Acquisition and Release

This example gives an algorithm for locking that dem-
onstrates the use of synchronization with an atomic
read/modify/write operation. A shared storage
location, the address of which is an argument of the
“lock” and “unlock” procedures, given by GPR 3, is
used as a lock, to control access to some shared
resource such as a shared data structure. The lock is
open when its value is 0, and closed (locked) when its
value is 1. Before accessing the shared resource, a
processor sets the lock, by changing its value from 0
to 1. To do this, the “lock” procedure calls
test_and_set, which executes the code sequence
shown in the “Test and Set” example of Section E.1.1,
thereby atomically loading the old value of the lock,
writing to the lock the new value (1) given in GPR 4,
returning the old value in GPR 5 (not used below), and
setting the EQ bit of CR Field 0 according to whether
the value loaded is zero. The “lock” procedure
repeats the test_and_set until it succeeds in changing
the value of the lock from 0 to 1.

The processor must not access the shared resource
until it sets the lock. After the bne- that checks for
the success of test_and_set, the processor executes
an isync instruction (see Part 2, “PowerPC Virtual
Environment Architecture” on page 117). This delays
all subsequent instructions wuntil all previous
instructions have completed to the extent required by
context synchronization (see Part 3, “PowerPC Oper-
ating Environment Architecture” on page 141). sync
could be used, but performance would be degraded
unnecessarily because sync waits for all prior storage
accesses to complete with respect to all other
processors, which is not necessary here.

Tocks T1i r4,1 #obtain lock:

Toop: bl test_and_set # test-and-set
bne- loop # retry til old = 6

Delay subsequent inst'ns til prior inst'ns finish
isync
bir #return

The “unlock” procedure writes a 0 to the lock
location. Most applications that use locking require,
for correctness, that if the access to the shared
resource included write operations, the processor
must execute a sync instruction to make its modifica-
tions visible to all processors before releasing the
lock. In this example, the “unlock” procedure begins
with a sync for this purpose.

unlock: sync #delay til prior stores finish

19 ri1,0 #store zero to lock location
stw r1,0(r3)
bir #return

Appendix E. Programming Examples 243

E.1.3 List Insertion

This example shows how the Iwarx and stwex.
instructions can be used to implement simple
insertion into a singly linked list. (Complicated list
insertion, in which muitiple values must be changed
atomically, or in which the correct order of insertion
depends on the contents of the elements, cannot be
implemented in the manner shown below, and
requires a more complicated strategy such as using
locks.)

The “next element pointer” from the list element after
which the new element is to be inserted, here called
the “parent element,” is stored into the new element,
so that the new element points to the next element in
the list: this store is performed unconditionally. Then
the address of the new element is conditionally stored
into the parent element, thereby adding the new
element to the list.

In this example it is assumed that the address of the
parent element is in GPR 3, the address of the new
element is in GPR 4, and the next element pointer is
at offset 0 from the start of the element. It is also
assumed that the next element pointer of each list
element is in a “reservation granule” separate from
that of the next element pointer of all other list ele-
ments: see Part 2, “PowerPC Virtual Environment
Architecture” on page 117.

Toop: lwarx r2,0,r3
stw r2,0(r4)
sync

#get next pointer
#store in new element
#let store settle (can
omit if not MP)

#add new element to list
#loop if stwcx. failed

stwcx. r4,0,r3
bne- loop

In the preceding example, if two list elements have
next element pointers in the same reservation
granule then, in a multiprocessor, “livelock” can
occur. (Livelock is a state in which processors
interact in a way such that no processor makes
progress.)

If it is not possible to allocate list elements such that
each element’s next element pointer is in a different
reservation granule, then livelock can be avoided by
using the following, more complicated, sequence.

Twz r2,0(r3) #get next pointer

E.1.4 Notes

1.

In general, lwarx and stwex. instructions should
be paired, with the same effective address used
for both. The exception is an isolated stwcx.
instruction that is used to clear any existing res-
ervation on the processor, for which there is no
paired Iwarx and for which any (scratch) effective
address can be used.

It is acceptable to execute a lwarx instruction for
which no stwex. instruction is executed. For
example, such a “dangling lwarx” occurs if the
value loaded in the “Test and Set” sequence
shown above is not zero.

To increase the likelihood that forward progress
is made, it is important that looping on
lwarx/stwcx. pairs be minimized. For example, in
the sequence shown above for “Test and Set,”
this is achieved by testing the old value before
attempting the store: were the order reversed,
more stwex. instructions might be executed, and
reservations might more often be lost between
the lwarx and the stwcx..

The manner in which warx and stwcx. are com-
municated to other processors and mechanisms,
and between levels of the storage subsystem
within a given processor (see Part 2, “PowerPC
Virtual Environment Architecture” on page 117),
is implementation-dependent. In some implemen-
tations performance may be improved by mini-
mizing looping on a lwarx instruction that fails to
return a desired value. For example, in the “Test
and Set” example shown above, if the pro-
grammer wishes to stay in the loop until the word
loaded is zero, he could change the “bne- $+ 12"
to “bne- loop.” However, in some implementa-
tions better performance may be obtained by
using an ordinary Load instruction to do the initial
checking of the value, as follows.

loop: 1wz r5,0(r3) #load the word
cmpwi r5,8 #loop back if word
bne- loop # not equal to 6
Twarx r5,0,r3 #try again, reserving
cmpwi r5,0 # (likely to succeed)
bne- loop
stwcx. r4,0,r3 #try to store non-0
bne- loop #loop if lost reserv'n

In a multiprocessor, livelock is possible if a loop
containing a lwarx/stwex. pair also contains an
ordinary Store instruction for which any byte of
the affected storage area is in the reservation
granule of the reservation: see Part 2, “PowerPC
Virtual Environment Architecture” on page 117.
For example, the first code sequence shown in
Section E.1.3, List Insertion, can cause livelock if
two list elements have next element pointers in
the same reservation granule.

loopl: mr r5,r2 #keep a copy
stw r2,0(r4) #store in new element
sync #let store settle

loop2: lwarx r2,0,r3 #get it again
cmpw r2,r5 #loop if changed (someone
bne- loopl # else progressed)
stwcx. r4,0,r3 #add new element to list
bne- Toop2 #loop if failed

244 PowerPC Architecture First Edition

E.2 Multiple-Precision Shifts

This appendix gives examples of how multiple-
precision shifts can be programmed.

A multiple-precision shift is initially defined to be a
shift of an N-doubleword quantity (64-bit mode) or an
N-word quantity (32-bit mode), where N>1. (This defi-
nition is relaxed somewhat for 32-bit mode, below.)
The quantity to be shifted is contained in N registers
(in the low-order 32 bits in 32-bit mode). The shift
amount is specified either by an immediate value in
the instruction, or by bits 57:63 (64-bit mode) or 58:63
(32-bit mode) of a register.

The examples shown below distinguish between the
cases N=2 and N>2. If N=2, the shift amount may be
in the range 0 through 127 (64-bit mode) or 0 through
63 (32-bit mode), which are the maximum ranges sup-
ported by the Shift instructions used. However if
N>2, the shift amount must be in the range 0 through
63 (64-bit mode) or 0 through 31 (32-bit mode}, in
order for the examples to yield the desired result.
The specific instance shown for N>2 is N=3:
extending those code sequences to larger N is
straightforward, as is reducing them to the case N=2

when the more stringent restriction on shift amount is
met. For shifts with immediate shift amounts only the
case N=3 is shown, because the more stringent
restriction on shift amount is always met.

In the examples it is assumed that GPRs 2 and 3 (and
4) contain the quantity to be shifted, and that the
result is to be placed into the same registers, except
for the immediate left shifts in 64-bit mode for which
the result is placed into GPRs 3, 4, and 5. In all
cases, for both input and result, the lowest-numbered
register contains the highest-order part of the data
and highest-numbered register contains the lowest-
order part. in 32-bit mode, the high-order 32 bits of
these registers are assumed not to be part of the
quantity to be shifted nor of the result. For non-
immediate shifts, the shift amount is assumed to be in
bits 57:63 (64-bit mode) or 58:63 (32-bit mode) of GPR
6. For immediate shifts, the shift amount is assumed
to be greater than 0. GPRs 0 and 31 are used as
scratch registers.

For N>2, the number of instructions required is 2N—1
(immediate shifts) or 3N—1 (non-immediate shifts).

Multiple-precision shifts in 64-bit mode

Shift Left Immediate, N = 3 (shift amnt < 64)

ridicr r5,r4,sh,63-sh
ridimi r4,r3,0,sh
ridicl r4,r4,sh,0
ridimi r3,r2,0,sh
ridicl r3,r3,sh,0
Shift Left, N = 2 (shift amnt < 128)

subfic r31,r6,64

sid r2,r2,ré

srd r0,r3,r31

or r2,r2,r0
addic r31,r6,-64

sid r0,r3,r31

or r2,r2,r0

sid r3,r3,ré

Multiple-precision shifts in 32-bit mode

Shift Left Immediate, N = 3 (shift amnt < 32)
riwinm r2,r2,sh,0,31-sh

riwimi r2,r3,sh,32-sh,31
riwinm r3,r3,sh,0,31-sh
riwimi r3,r4,sh,32-sh,31

rlwinm r4,r4,sh,0,31-sh

Shift Left, N = 2 (shift amnt < 64)

subfic r31,r6,32
siw r2,r2,ré
Srw r0,r3,r31
or r2,r2,r0
addic r31,r6,-32
slw r0,r3,r31
or r2,r2,r0
slw r3,r3,r6

Appendix E. Programming Examples 245

Multiple-precision shifts in 64-bit mode,
continued

Shift Left, N = 3 (shift amnt < 64)
subfic r31,r6,64

sid r2,r2,r6
srd r0,r3,r31
or r2,r2,r0
sid r3,r3,r6
srd r0,r4,r31
or r3,r3,r0
sid rd4,r4,r6
Shift Right Immediate, N = 3 (shift amnt < 64)
ridimi r4,r3,0,64-sh
ridicl r4,r4,64-sh,0
ridimi r3,r2,0,64-sh
ridicl r3,r3,64-sh,0
ridicl r2,r2,64-sh,sh
Shift Right, N = 2 (shift amnt < 128)
subfic r31,r6,64
srd r3,r3,ré
sid r0,r2,r31
or r3,r3,r0
addic r31,r6,-64
srd r0,r2,ra1
or r3,r3,r0
srd r2,r2,ré
Shift Right, N = 3 (shift amnt < 64)
subfic r31,r6,64
srd rd,r4,r6
sid r0,r3,r31
or rd,r4,r0
srd r3,r3,ré
sid r0,r2,r31
or r3,r3,r0
srd r2,r2,ré
Shift Right Algebraic Immediate, N = 3 (shift amnt < 64)
ridimi r4,r3,0,64-sh
ridicl r4,r4,64-sh,0
ridimi r3,r2,0,64-sh
ridicl r3,r3,64-sh,0
sradi r2,r2,sh

Shift Right Algebraic, N = 2 (shift amnt < 128)
subfic r31,r6,64

srd r3,r3,r6
sid r0,r2,r31
or r3,r3,r0
addic. r31,r6,-64
srad r0,r2,r31
ble $+8

ori r3,r0,0
srad r2,r2,ré

Multiple-precision shifts in 32-bit mode,
continued

Shift Left, N = 3 (shift amnt < 32)
' subfic r31,r6,32

slw r2,r2,r6
srw r0,r3,r31
or r2,r2,r0
slw r3,r3,ré
srw r0,r4,r31
or r3,r3,r0
slw r4,r4,r6

Shift Right Immediate, N = 3 {shift amnt < 32)
riwinm r4,r4,32-sh,sh,31

rlwimi r4,r3,32-sh,0,sh-1
riwinm r3,r3,32-sh,sh,31
riwimi r3,r2,32-sh,0,sh-1

riwinm r2,r2,32-sh,sh,31

Shift Right, N = 2 (shift amnt < 64)

subfic r31,r6,32
srw r3,r3,ré
slw r0,r2,r31
or r3,r3,r0
addic r31,r6,-32
srw r0,r2,r31
or r3,r3,r0
srw r2,r2,ré

Shift Right, N = 3 (shift amnt < 32)

subfic r31,r6,32
srw r4,r4,r6
slw r0,r3,r31
or r4,r4,r0
STW r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
srw r2,r2,ré

Shift Right Algebraic Immediate, N = 3 (shift amnt < 32)

riwinm r4,r4,32-sh,sh,31
riwimi r4,r3,32-sh,0,sh-1
riwinm r3,r3,32-sh,sh,31
riwimi r3,r2,32-sh,0,sh-1
srawi r2,r2,sh

Shift Right Algebraic, N = 2 (shift amnt < 64)
subfic r31,r6,32

srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
addic. r31,r6,-32
sraw r0,r2,r31
ble $+8

ori r3,r0,0
sraw r2,r2,r6

246 PowerPC Architecture First Edition

Multiple-precision shifts in 64-bit mode,
continued

Shift Right Algebraic, N = 3 (shift amnt < 64)

subfic r31,r6,64
srd rd,r4,r6
sid r0,r3,r31
or rd4,r4,r0
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,ro
srad r2,r2,r6

Multiple-precision shifts in 32-bit mode,
continued

Shift Right Algebraic, N = 3 (shift amnt < 32)

subfic r31,r6,32
srw rd,r4,r6
slw r0,r3,r31
or rd,r4,r0
srw r3,r3,ré
slw r0,r2,r31
or r3,r3,r0
sraw r2,r2,ré

The examples shown above for 32-bit mode work both
in 32-bit mode of a 64-bit implementation and in a
32-bit implementation. They perform the shift in units
of words. [f ability to run in 32-bit implementations is
not required, in a 64-bit implementation better per-
formance can be obtained in 32-bit mode than that of
the examples shown above, by using all 64 bits of
GPRs 2 and 3 (and 4) to contain the quantity to be
shifted, and placing the result into all 64 bits of the
same registers.

Let N be the number of doublewords to be shifted.

The examples shown above for 64-bit mode work
equally well in 32-bit mode of a 64-bit implementation,
using all 64 bits of the registers. For N>2, the
number of instructions required is 2N—1 (immediate
shifts) or 3N—1 (non-immediate shifts), compared with
4N—1 (immediate shifts) or 6N—1 (non-immediate
shifts) for the examples shown above for 32-bit mode.
(The examples shown above require using twice as
many registers to hold the quantity to be shifted.)

Appendix E. Programming Examples 247

E.3 Floating-Point Conversions

This appendix gives examples of how the Floating-
Point Conversion instructions can be used to perform
various conversions.

Warning: Some of the examples use the fsel instruc-
tion. Care must be taken in using fsel if IEEE compat-
ibility is required, or if the values being tested can be
NaNs or infinities: see Section E4.4, “Notes” on
page 251. :

E.3.1 Conversion from
Floating-Point Number to
Floating-Point Integer

In a 64-bit Implementation

The full convert to floating-point integer function can
be implemented with the sequence shown below,
assuming the floating-point value to be converted is
in FPR 1, and the result is returned in FPR 3.

mtfsb@ 23 #clear VXCVI
fetid[z] f3,f1 #convert to fx int
fefid 3,3 #convert back again
merfs 7,5 #VXCVI to CR

bf 31,$+8 #skip if VXCVI was ©
fmr f3,f1 #input was fp int

E.3.2 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Doubleword

This example applies to 64-bit implementations only.

The full convert to signed fixed-point integer
doubleword function can be implemented with the
sequence shown below, assuming the floating-point
value to be converted is in FPR 1, the result is
returned in GPR 3, and a doubleword at displacement
“disp” from the address in GPR 1 can be used as
scratch space.

fetid[z] f2,f1
stfd f2,disp(rl)
1d r3,disp(rl)

#convert to dword int
#store float
#load dword

E.3.3 Conversion from Floating-Point
Number to Unsigned Fixed-Point
Integer Doubleword

This example applies to 64-bit implementations only.

The full convert to unsigned fixed-point integer
doubleword function can be implemented with the
sequence shown below, assuming the floating-point
value to be converted is in FPR 1, the value 0 is in
FPR 0, the value 2842048 is in FPR 3, the value 2% is
in FPR 4 and GPR 4, the result is returned in GPR 3,
and a doubleword at displacement “disp” from the
address in GPR 1 can be used as scratch space.

fsel f2,f1,f1,f0 #use 0 if <0
fsub 5,13,f1 #use max if > max
fsel f2,f5,f2,13
fsub f5,f2,f4
fempu cr2,f2,fa
fsel f2,f5,f5,f2
fctid[z] f2,f2

stfd f2,disp(rl)

#subtract 2**63
#use diff if = 2**63

#convert to fx int
#store float

1d r3,disp(rl) #load dword
b1t cr2,$+48 #add 2**63 if input
add r3,r3,r4 # was 2 2**63

E.3.4 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Word

The full convert to signed fixed-point integer word
function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the result is returned in GPR 3,
and a doubleword at displacement “disp” from the
address in GPR 1 can be used as scratch space. The
last instruction is needed only if a 64-bit result is
required, and applies to 64-bit implementations only.

fetiw[z] f2,f1 #convert to fx int
stfd f2,disp(rl) #store float

Twz r3,disp+4(rl) #load word and zero
extsw r3,r3 #(for 64-bit result)

248 PowerPC Architecture First Edition

E.3.5 Conversion from Floating-Point
Number to Unsigned Fixed-Point
integer Word

In a 64-bit Implementation

The full convert to unsigned fixed-point integer word
function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the value 0 is in FPR 0, the
value 232—1 is in FPR 3, the result is returned in GPR
3, and a doubleword at displacement “disp” from the
address in GPR 1 can be used as scratch space.

fsel f2,f1,f1,f8 #use 0 if < @

fsub f4,¥3,f1 fuse max if > max
fsel f2,74,12,13

fetid[z] f2,f2 #convert to fx int
stfd f2,disp(rl) #store float

Twz r3,disp+4(rl) #load word and zero

In a 32-bit Implementation

The full convert to unsigned fixed-point integer word
function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the value 0 is in FPR 0, the
value 232 s in FPR 3, the value 23! is in FPR 4 and
GPR 4, the result is returned in GPR 3, and a
doubleword at displacement “disp” from the address
in GPR 1 can be used as scratch space.

fsel f2,f1,f1,f6 #use 6 if < 6
fsub £5,3,f1 #use max if > max
fsel f2,f5,f2,f3
fsub f5,f2,f4
fempu cr2,f2,f4
fsel f2,f5,f5,f2
fetiw[z] f2,f2 #convert to fx int
stfd f2,disp(rl) #store float

Twz r3,disp+4(rl) #load word

b1t cr2,$+8 #add 2**31 if input
add r3,r3,r4 # was = 2**31

#subtract 2**31
#use diff if 2 2**31

E.3.6 Conversion from Signed
Fixed-Point Integer Doubleword to
Floating-Point Number

This example applies to 64-bit implementations only.

The full convert from signed fixed-point integer
doubleword function, using the rounding mode speci-
fied by FPSCRgy, can be implemented with the
sequence shown below, assuming the fixed-point
value to be converted is in GPR 3, the result is
returned in FPR 1, and a doubleword at displacement
“disp” from the address in GPR 1 can be used as
scratch space.

std r3,disp(rl)

1fd f1,disp(rl)
fcfid f1,f1

#store dword
#load float
#convert to fpu int

E.3.7 Conversion from Unsigned
Fixed-Point Integer Doubleword to
Floating-Point Number

This example applies to 64-bit implementations only.

The full convert from unsigned fixed-point integer
doubleword function, using the rounding mode speci-
fied by FPSCRgzy, can be implemented with the
sequence shown below, assuming the fixed-point
value to be converted is in GPR 3, the value 232 is in
FPR 4, the result is returned in FPR 1, and two
doublewords at displacement “disp” from the address
in GPR 1 can be used as scratch space.

rldicl r2,r3,32,32 #isolate high half
rldicl r0,r3,8,32 #isolate low half
std r2,disp(rl) #store dword both
std ro,disp+8(rl)

1fd f2,disp(rl) #load float both
1fd f1,disp+8(rl) #load float both

#convert each half to
fpu int (no rnd)
#(2**32)*high + Tow
(only add can rnd)

fefid f2,f2
fcfid f1,f1
fmadd f1,f4,f2,f1

An alternative, shorter, sequence can be used if
rounding according to FSCPRgy is desired and
FPSCRgy specifies Round toward +infinity or Round
toward —Infinity, or if it is acceptable for a rounded
answer to be either of the two representable floating-
point integers nearest algebraically to the given fixed-
point integer. In this case the full convert from
unsigned fixed-point integer doubleword function can
be implemented with the sequence shown below,
assuming the value 2% is in FPR 2.

std r3,disp(rl)
1fd f1,disp(rl)
fefid f1,f1 #convert to fpu int
fadd f4,f1,f2 #add 2**64

fsel f1,f1,f1,f4 # ifr3 <0

#store dword
#load float

Appendix E. Programming Examples 249

E.3.8 Conversion from Signed
Fixed-Point Integer Word to
Floating-Point Number

In a 64-bit Implementation

The full convert from signed fixed-point integer word
function can be implemented with the sequence
shown below, assuming the fixed-point value to be
converted is in GPR 3, the result is returned in FPR 1,
and a doubleword at displacement “disp” from the
address in GPR 1 can be used as scratch space.
(Rounding cannot occur.)

extsw r3,r3 #extend sign
std r3,disp(rl) #store dword
1fd f1,disp(rl) #load float
fefid f1,f1 #convert to fpu int

E.3.9 Conversion from Unsigned
Fixed-Point Integer Word to
Floating-Point Number

In a 64-bit Implementation

The full convert from unsigned fixed-point integer
word function can be implemented with the sequence
shown below, assuming the fixed-point value to be
converted is in GPR 3, the result is returned in FPR 1,
and a doubleword at displacement “disp” from the
address in GPR 1 can be used as scratch space.
(Rounding cannot occur.)

rldicl ro,r3,0,32 #zero-extend

std ro,disp(rl) #store dword
1fd f1,disp(rl) #load float

fcfid f1,f1 #convert to fpu int

250 PowerPC Architecture First Edition

E.4 Floating-Point Selection

This appendix gives examples of how the Floating
Select instruction can be used to implement floating-
point minimum and maximum functions, and certain
simple forms of if-then-else constructions, without
branching. '

The examples show program fragments in an imagi-
nary, C-like, high-level programming language, and
the corresponding program fragment using fsel and
other PowerPC instructions. In the examples, a, b, x,

y, and z are floating-point variables, which are
assumed to be in FPRs fa, fb, fx, fy, and fz. FPR fs is
assumed to be available for scratch space.

Additional examples can be found in Section E.3,
“Floating-Point Conversions” on page 248.

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being tested
can be NaNs or infinities: see Section E.4.4, “Notes.”

E.41 Comparison to Zero

High-level language: PowerPC: Notes

if a 2 0.0 then x ¢ ¥y fsel fx,fa,fy,fz (1)
else x « z

if a > 6.8 then x « y fneg fs,fa (1,2)
else x ¢« z fsel fx,fs,fz,fy

if a = 0.0 then x ¢ y fsel fx,fa,fy,fz (1)
else x ¢« z freg fs,fa

fsel fx,fs,fx,fz

E.4.2 Minimum and Maximum

High-level language: PowerPC: Notes
X ¢ min{a,b) fsub fs,fa,fb (3,4,5)
fsel fx,fs,fb,fa
X ¢ max(a,b) fsub fs,fa,fb (3,4,5)
fsel fx,fs,fa,fb
E.4.3 Simple if-then-else
Constructions
High-level language: PowerPC: Notes
ifazb thenxey fsub fs,fa,fb (4,5)
else x ¢ z fsel fx,fs,fy,fz
ifa>bthenx ey fsub fs,fb,fa (3,4,5)
else x « z fsel fx,fs,fz,fy
ifa=bthenx ¢y fsub fs,fa,fb (4,5)

else x

T
N

fsel fx,fs,fy,fz
fneg fs,fs
fsel fx,fs,fx,fz

E.4.4 Notes

The following Notes apply to the preceding examples,
and to the corresponding cases using the other three
arithmetic relations (<, <, and #). They should also
be considered when any other use of fsel is contem-
plated.

In these Notes, the “optimized program” is the
PowerPC program shown, and the “unoptimized
program” (not shown) is the corresponding PowerPC
program that uses fcmpu and Branch Conditional
instructions instead of fsel.

1. The unoptimized program affects the VXSNAN bit
of the FPSCR, and therefore may cause the
system error handler to be invoked if the corre-
sponding exception is enabled, while the opti-
mized program does not affect this bit. This is
incompatible with the IEEE standard.

2. The optimized program gives the incorrect result
if 2 is a NaN.

3. The optimized program gives the incorrect result
if 2 and/or b is a NaN (except that it may give the
correct result in some cases for the minimum and
maximum functions, depending on how those
functions are defined to operate on NaNs).

4. The optimized program gives the incorrect result
if 2 and b are infinities of the same sign. (Here it
is assumed that Invalid Operation Exceptions are
disabled, in which case the result of the sub-
traction is a NaN. The analysis is more compli-
cated if Invalid Operation Exceptions are enabled,
because in that case the target register of the
subtraction is unchanged.)

5. The optimized program affects the OX, UX, XX,
and VXISI bits of the FPSCR, and therefore may
cause the system error handler to be invoked if
the corresponding exceptions are enabled, while
the unoptimized program does not affect these
bits. This is incompatible with the IEEE standard.

Appendix E. Programming Examples 251

252 PowerPC Architecture First Edition

Appendix F. Cross-Reference for Changed Power Mnemonics

The following table lists the Power instruction mne-
monics that have been changed in the PowerPC Archi-
tecture, sorted by Power mnemonic.

To determine the PowerPC mnemonic for one of these
Power mnemonics, find the Power mnemonic in the
second column of the table: the remainder of the line
gives the PowerPC mnemonic and the page or Book in
which the instruction is described, as well as the
instruction names. A page number is shown for
instructions that are defined in this Book (Part 1,
“PowerPC User Instruction Set Architecture” on

page 1), and the Book number is shown for
instructions that are defined in other Books (Part 2,
“PowerPC Virtual Environment Architecture” on
page 117, and Part 3, “PowerPC Operating Environ-
ment Architecture” on page 141). If an instruction is
defined in more than one Book, the lowest-numbered
Book is used. .

Power mnemonics that have not changed are not
listed. Power instruction names that are the same in
PowerPC are not repeated: i.e., for these, the last
column of the table is blank.

Page / Power ‘ PowerPC
Bk |{Mnemonic Instruction Mnemonic |{Instruction
52 ja[o][.] Add addcfo][.] |Add Carrying
53 [ae[o][.] Add Extended adde[o][.]
51 |ai Add Immediate addic Add Immediate Carrying
51 |ai. Add Immediate and Record addic. Add Immediate Carrying and Record
53 [ame[o][.] Add To Minus One Extended addme[o][.]
63 |andil. AND Immediate Lower andi. AND Immediate
63 |andiu. AND Immediate Upper andis. AND Immediate Shifted
54 |aze[o][.] Add To Zero Extended addze[o][.]
22 |bcefl] Branch Conditional to Count Register | becetr[l]
22 jber[l] Branch Conditional to Link Register |bcir[i]
50 |cal Compute Address Lower addi Add Immediate
50 {cau Compute Address Upper addis Add Immediate Shifted
51 [cax[o][.] Compute Address add[o][.] Add
68 |cntiz[.] Count Leading Zeros entlzw[.] Count Leading Zeros Word
Bk ll-idclz Data Cache Line Set to Zero dcbz Data Cache Block set to Zero
48 |dcs Data Cache Synchronize sync Synchronize
67 |exts[.] Extend Sign extsh[.] Extend Sign Halfword
106 |fa[.] Floating Add fadd[.]
107 1fd[.] Floating Divide fdiv[.]
107 |fm[.] Floating Multiply frul[.]
108 |fmal.] Floating Multiply-Add fmadd[.]
108 |fms[.] Floating Multiply-Subtract fmsub[.]
108 |{fnmal.] Floating Negative Multiply-Add fnmaddf.]
109 |[fnms[.] Floating Negative Multiply-Subtract |fnmsub[.]
106 (fs[.] Floating Subtract fsub[.]
Bk ll]ics Instruction Cache Synchronize isync Instruction Synchronize
33 |i Load lwz Load Word and Zero
40 |lbrx Load Byte-Reverse Indexed lwbrx Load Word Byte-Reverse Indexed
42 {Im Load Multiple) Imw Load Multiple Word
44 |lsi Load String Immediate Iswi Load String Word Immediate
44 Jlsx Load String Indexed Iswx Load String Word Indexed

Appendix F. Cross-Reference for Changed Power Mnemonics 253

Page / Power PowerPC
Bk |Mnemonic |Instruction Mnemonic |Instruction
33 |lu Load with Update lwzu Load Word and Zero with Update
33 |lux Load with Update Indexed lwzux Load Word and Zero with Update
Indexed
33 |Ix Load Indexed lwzx Load Word and Zero Indexed
Bk I | mtsri Move To Segment Register Indirect [mtsrin
§5 {muli Multiply Immediate mulli Muitiply Low Immediate
55 |muls[o][.] Multiply Short mullw[o][.] |Multiply Low Word
64 |oril OR Immediate Lower ori OR Immediate
64 |oriu OR Immediate Upper oris OR Immediate Shifted
74 |rlimi[.] Rotate Left Immediate Then Mask riwimi[.] Rotate Left Word Immediate then
Insert Mask Insert
71 |rlinm[.] Rotate Left Immediate Then AND riwinm[.] Rotate Left Word Immediate then
With Mask AND with Mask
73 jrinm[.] Rotate Left Then AND With Mask rlwnm[.] Rotate Left Word then AND with
Mask
52 |sflo][.] Subtract From subfc[o][.] |Subtract From Carrying
53 |sfe[o][.] Subtract From Extended subfefo][.]
52 |sfi Subtract From Immediate subfic Subtract From Immediate Carrying
53 |sfme[o][.] Subtract From Minus One Extended |subfme[o][.]
54 |sfze[o][.] Subtract From Zero Extended subfze[o][.]
75 |sl[.] Shift Left siw[.] Shift Left Word
76 |sr[.] Shift Right srwl.] Shift Right Word
78 |sra[.] Shift Right Algebraic sraw[.] Shift Right Algebraic Word
77 |srail.] Shift Right Algebraic Immediate srawi[.] Shift Right Algebraic Word Imme-
diate
38 |st Store stw Store Word
41 |stbrx Store Byte-Reverse Indexed stwbrx Store Word Byte-Reverse Indexed
42 |stm Store Multiple stmw Store Multiple Word
45 |stsi Store String Immediate stswi Store String Word Immediate
45 [stsx Store String Indexed stswx Store String Word Indexed
38 Istu Store with Update stwu Store Word with Update
38 |stux Store with Update Indexed stwux Store Word with Update Indexed
38 |stx Store Indexed stwx Store Word indexed
23 |svca Supervisor Call sc System Call
62 |t Trap tw Trap Word
61 |ti Trap Immediate twi Trap Word Immediate
Bk HI tibi TLB Invalidate Entry tibie TLB Entry Invalidate
64 |xoril XOR Immediate Lower xori XOR Immediate
64 {[xoriu XOR Immediate Upper xoris XOR immediate Shifted

254 PowerPC Architecture First Edition

Appendix G. Incompatibilities with the Power Architecture

This section identifies the known incompatibilities that
must be managed in the migration from the Power
Architecture to the PowerPC Architecture. Some of
the incompatibilities can, at least in principle, be
detected by the processor, which could trap and let
software simulate the Power operation. Others
cannot be detected by the processor even in prin-
ciple.

In general, the incompatibilities identified here are
those that affect a Power application program:
incompatiblities for instructions that can be used only
by Power system programs are not necessarily dis-
cussed.

G.1 New Instructions, Formerly
Privileged Instructions

Instructions new to PowerPC typically use opcode
values (including extended opcode) that are illegal in
Power. A few instructions that are privileged in
Power (e.g., dclz, called dcbz in PowerPC) have been
made non-privileged in PowerPC. Any Power program
that executes one of these now-valid or now-non-
privileged instructions, expecting to cause the system
illegal instruction error handler or the system privi-
leged instruction error handler to be invoked, will not
execute correctly on PowerPC.

G.2 Newly Privileged
Instructions

The following instructions are non-privileged in Power
but privileged in PowerPC.

mimsr
mfsr

G.3 Reserved Bits in
Instructions

These are shown with ’/’s in the instruction layouts.
In Power such bits are ignored by the processor. in
PowerPC they must be 0 or the instruction form is
invalid.

In several cases the PowerPC Architecture assumes
that such bits in Power instructions are indeed 0. The
cases include the following.

= cmpi, cmp, cmpli, and cmpl assume that bit 10 in
the Power instructions is 0.

» mtspr and mfspr assume that bits 16:20 in the
Power instructions are 0.

G.4 Reserved Bits in Registers

Power defines these bits to be 0 on read, and either 0
or 1 on write. In PowerPC it is implementation
dependent, for each bit, whether the bit is:

= 0 on read and ignored on write; or
= copied from source to target on both read and
write.

Appendix G. Incompatibilities with the Power Architecture 255

G.5 Alignment Check

The Power MSR AL bit (bit 24) is no longer supported:
the bit is reserved in PowerPC. The low-order bits of
the EA are always used. (Notice that the value 0 —
the normal value for a reserved SPR bit — means
“ignore the low-order EA bits” in Power, and the
value 1 means “use the low-order EA bits.”) However,
MSR bit 24 will not be assigned new meaning in the
near future (see Part 3, “PowerPC Operating Environ-
ment Architecture” on page 141), and software is per-
mitted to write the value 1 to the bit.

G.6 Condition Register

The following instructions specify a field in the CR
explicitly (via the BF field) and also, in Power, use bit
31 as the Record bit. In PowerPC, if bit 31 = 1 for
these instructions the instruction form is invalid. In
Power, if Rc=1 the instructions execute normally
except as follows.

cmp CRO is undefined if Rc=1 and BF#0
cmp! CRO is undefined if Rc=1 and BF#0
merxr CRO is undefined if Rc=1 and BF#0

fempu CR1 is undefined if Rc=1
fempo CR1 is undefined if Rc=1
mcrfs CR1 is undefined if Rc=1 and BF#1

G.7 Inappropriate use of LK and
Rc bits

For the instructions listed below, if bit 31 (LK or Rc bit
in Power) is set to 1, Power executes the instruction
normally with the exception of setting the Link Reg-
ister (if LK=1) or Condition Register Field 0 or 1 (if
Rc=1) to an undefined value. In PowerPC such
instruction forms are invalid.

PowerPC instruction form invalid if bit 31 = 1 (LK bit
in Power):

sc (svc in Power)

the Condition Register Logical instructions
mcrf

isync (ics in Power)

PowerPC instruction form invalid if bit 31 = 1 (Rc bit
in Power):

fixed-point X-form Load and Store instructions
fixed-point X-form Compare instructions

the X-form Trap instruction

mtspr, mfspr, mtcrf, merxr, mfcr

floating-point X-form Load and Store instructions
floating-point Compare instructions

mcrfs
debz (dciz in Power)

G.8 BO Field

Power shows certain bits in the BO field — used by
Branch Conditional instructions — as “x.” Although
the Power Architecture does not say how these bits

are to be interpreted, they are in fact ignored by the

processor. PowerPC treats these bits differently, as
follows. :

BOy.; PowerPC shows the bit as “z.” (For the
“branch always” encoding of the BO field, BO,
is also shown as “2.”) If a “2” bit is not zero
the instruction form is invalid.

BO; This bit — which is shown as “x” in Power
independent of the other four bits — is shown
in PowerPC as “y” (except for the “branch
always” encoding of the BO field). The “y” bit
gives a hint about whether the branch is likely
to be taken. If a Power program has the
“wrong” value for this bit, the program will run
correctly but performance may suffer.

G.9 Branch Conditional to Count
Register

For the case in which the Count Register is decre-
mented and tested (i.e., the case in which BO,=0),
Power specifies only that the branch target address is
undefined, with the implication that the Count Reg-
ister, and the Link Register if LK=1, are updated in
the normal way. PowerPC considers this instruction
form invalid.

G.10 System Call

There are several respects in which PowerPC is
incompatible with Power for System Call instructions
— which in Power are called Supervisor Call
instructions.

= Power provides a version of the Supervisor Call
instruction (bit 30 = 0) that allows instruction
fetching to continue at any one of 128 locations.
It is used for “fast SVCs.” PowerPC provides no
such version: if bit 30 of the instruction is 0 the
instruction is reserved.

= Power provides a version of the Supervisor Call
instruction (bits 30:31 = Obi1) that resumes
instruction fetching at one location and sets the
Link Register to the address of the next instruc-
tion. PowerPC provides no such version: if bit 31

256 PowerPC Architecture First Edition

of the instruction is 1 the instruction form is
invalid.

= For Power, information from the MSR is saved in
the Count Register. For PowerPC this information
is saved in SRR1.

= Power permits bits 16:29 of the instruction to be
non-zero, while in PowerPC such an instruction
form is invalid.

= Power saves the low-order 16 bits of the instruc-
tion, in the Count Register. PowerPC does not
save them.

= The settings of MSR bits by the associated inter-
rupt differ between Power and PowerPC: see
POWER Processor Architecture and Part 3,
“PowerPC Operating Environment Architecture”
on page 141.

G.11 Fixed-Point Exception
Register (XER)

Bits 16:23 of the XER are reserved in PowerPC, while
in Power they are defined and contain the comparison
byte for the Iscbx instruction (which PowerPC lacks).

—— Engineering Note

For reasons of compatibility with the Power Archi-
tecture, early implementations must handle XER
bits 16:23 according to the second of the two per-
mitted treatments of reserved bits in status and
control registers. That is, early implementations
must set the bits from the source value on write,
and return the value last set for them on read.

G.12 Update Forms of Storage
Access

PowerPC requires that RA not be equal to either RT
(fixed-point Load only) or 0. If the restriction is vio-
lated the instruction form is invalid. Power permits
these cases, and simply avoids saving the EA.

G.13 Multiple Register Loads

PowerPC requires that RA, and RB if present in the
instruction format, not be in the range of registers to
be loaded, while Power permits this and does not
alter RA or RB in this case. (The PowerPC restriction
applies even if RA=0, although there is no obvious
" benefit to the restriction in this case since RA is not
used to compute the effective address if RA=0.) If

the PowerPC restriction is violated, the instruction
form is invalid. The instructions affected are:

Imw (Im in Power)
Iswi (Isi in Power)
Iswx (Isx in Power)

Thus, for example, an Imw instruction that loads all 32
registers is valid in Power but is an invalid form in
PowerPC.

G.14 Alignment for Load/Store
Multiple

PowerPC requires the EA to be word-aligned, and
yields an Alignment interrupt or boundedly undefined
results if it is not. Power specifies that an Alignment
interrupt occurs (if AL=1).

—— Engineering Note

If attempt is made to execute an Imw or stmw
instruction having an incorrectly aligned effective
address, early implementations must either cor-
rectly transfer the addressed bytes or cause an
Alignment interrupt, for reasons of compatibility
with the Power Architecture.

G.15 Move Assist Instructions

There are several respects in which PowerPC is
incompatible with Power for Move Assist instructions.

= |n PowerPC an Iswx instruction with zero length
leaves the content of RT undefined, while in
Power the corresponding instruction (/sx) does
not alter RT in this case.

= |n PowerPC an Iswx instruction with zero length
may alter the Reference bit, and an stswx
instruction with zero length may alter the Refer-
ence and Change bits, while in Power the corre-
sponding instructions (Isx and stsx) do not alter
the Reference and Change bits in this case.

G.16 Synchronization

The sync instruction (called dcs in Power) and the
isync instruction (called ics in Power) cause much
more pervasive synchronization in PowerPC than in
Power.

Appendix G. Incompatibilities with the Power Architecture 257

G.17 Move To/From SPR

There are several respects in which PowerPC is
incompatible with Power for Move To/From Special
Purpose Register instructions.

= The SPR field is ten bits long in PowerPC, but only
five in Power (see also Section G.3, “Reserved
Bits in Instructions” on page 255).

» mfspr can be used to read the Decrementer in
problem state in Power, but only in privileged
state in PowerPC.

= |f the SPR value specified in the instruction is not
one of the defined values, PowerPC considers the
instruction form invalid. (In problem state, the
allowed SPR values exclude those accessible only
in privileged state.) Power does not alter any
architected registers in this case, and generates
a Privileged Instruction type Program interrupt if
the instruction is executed in problem state and
SPRy=1.

G.18 Effects of Exceptions on
FPSCR Bits FR and Fli

For the following cases, Power does not say how FR
and Fl are set, while PowerPC preserves them for
Invalid Operation Exception caused by a Compare
instruction, sets Fl to 1 and FR to an undefined value
for disabled Overflow Exception, and clears them oth-
erwise.

= Invalid Operation Exception (enabled or disabled)
= Zero Divide Exception (enabled or disabled)
= Disabled Overflow Exception

G.19 Floating-Point Store
Instructions

Power uses FPSCRyz to help determine whether
denormalization should be done, while PowerPC does
not. Using FPSCRye is in fact incorrect: if
FPSCRyg=1 and a denormalized single-precision
number is copied from one storage location to
another by means of Ifs followed by stfs, the two
“copies” may not be the same.

G.20 Move From FPSCR

Power defines the high-order 32 bits of the result of
mffs to be OxFFFF_FFFF, while PowerPC says they are
undefined.

G.21 Zeroing Bytes in the Data
Cache

The dclz instruction of Power and the dcbz instruction
of PowerPC have the same opcode. However, the
functions differ in the following respects.

dciz clears a line while dcbz clears a block.
dciz saves the EA in RA (if RA#0) while dcbz
does not.

= dclz is privileged while dcbz is not.

G.22 Floating-Point Load/Store
to Direct-Store Segment

In Power a floating-point Load or Store instruction to a
direct-store segment causes a Data Storage
interrrupt, while in PowerPC the instruction either exe-
cutes correctly or causes an Alignment interrupt.

G.23 Segment Register
Instructions

The definitions of the four Segment Register
instructions (mtsr, mtsrin, mfsr, and mfsrin) differ in
two respects between Power and PowerPC.
Instructions similar to mtsrin and mfsrin are called
mtsri and mfsri in Power.

privilege: mfsr and mfsri are problem state
instructions in Power, while mfsr and
mfsrin are privileged in PowerPC.

function: the “indirect” instructions (misri and
mfsri) in Power use an RA register in
computing the Segment Register number,
and the computed EA is stored into RA (if
RA#0 and RA#RT), while in PowerPC
mtsrin and mfsrin have no RA field and
EA is not stored.

mtsr, mtsrin (mtsri), and mfsr have the same opcodes
in PowerPC as in Power. mfsri (Power) and mfsrin
(PowerPC) have different opcodes.

258 PowerPC Architecture First Edition

G.24 TLB Entry Invalidation

The tlbi instruction of Power and the tlbie instruction
of PowerPC have the same opcode. However, the
functions differ in the following respects.

= tibi computes the EA as {(RA|0) + (RB), while
tibie lacks an RA field and computes the EA as
(RB).

= tibi saves the EA in RA (if RA#0), while tibie
lacks an RA field and does not save the EA.

G.25 Floating-Point Interrupts

Both architectures use MSR bit 20 to control the gen-
eration of interrupts for floating-point enabled excep-
tions. However, in PowerPC this bit is part of a
two-bit value which controls the occurrence, precision,
and recoverability of the interrupt, while in Power this
bit is used independently to control the occurence of
the interrupt (in Power all floating-point interrupts are
precise).

G.26 Timing Facilities

G.26.1 Real-Time Clock

The Power Real-Time Clock is not supported in
PowerPC. Instead, PowerPC provides a Time Base.
Both the RTC and the TB are 64-bit Special Purpose
Registers, but they differ in the following respects.

= The RTC counts seconds and nanoseconds, while
the TB counts “ticks.” The ticking rate of the RTC
is implementation-dependent.

= The RTC increments discontinuously: 1 is added
to RTCU when the value in RTCL passes
999 899 _999. The TB increments continuously: 1
is added to TBU when the value in TBL passes
OxFFFF_FFFF.

= The RTC is written and read by the mtspr and
mfspr instructions, using SPR numbers that
denote the RTCU and RTCL. The TB is written by
the mtspr instruction (using new SPR numbers),
and read by the new mftb instruction.

» The SPR numbers that denote Power’s RTCL and
RTCU are invalid in PowerPC.

= The RTC is guaranteed to increment at least once
in the time required to execute ten Add /mme-
diate instructions. No analogous guarantee is
made for the TB.

= Not all bits of RTCL need be implemented, while
all bits of the TB must be implemented.

G.26.2 Decrementer

The PowerPC Decrementer differs from the Power
Decrementer in the following respects.

s The PowerPC DEC decrements at the same rate
that the TB increments, while the Power
Decrementer decrements every nanosecond
{which is the same rate that the RTC increments).

= Not all bits of the Power DEC need be imple-
mented, while all bits of the PowerPC DEC must
be implemented.

s The interrupt caused by the DEC has its own
interrupt vector location in PowerPC, but is con-
sidered an External interrupt in Power.

Appendix G. Incompatibilities with the Power Architecture 259

G.27 Deleted Instructions

The following instructions are part of the Power Archi-
tecture but have been dropped from the PowerPC
Architecture.

abs Absolute

cles Cache Line Compute Size

clf Cache Line Flush

cli Cache Line Invalidate

dcist Data Cache Line Store

div Divide

divs Divide Short

doz Difference Or Zero

dozi Difference Or Zero immediate
Iscbx Load String And Compare Byte Indexed
maskg Mask Generate

maskir Mask Insert From Register

mfsri Move From Segment Register Indirect
mul Multiply

nabs Negative Absolute

rac Real Address Compute

rimi Rotate Left Then Mask Insert

rrib Rotate Right And Insert Bit

sle Shift Left Extended

sleq Shift Left Extended With MQ

sliq Shift Left Immediate With MQ

slliq Shift Left Long Immediate With MQ
silq Shift Left Long With MQ

siq Shift Left With MQ

sraiq Shift Right Algebraic Immediate With MQ
sraq Shift Right Algebraic With MQ

sre Shift Right Extended

srea Shift Right Extended Algebraic

sreq Shift Right Extended With MQ

sriq Shift Right Immediate With MQ

srliq Shift Right Long Immediate With MQ
srig Shift Right Long With MQ

srq Shift Right With MQ

sve[l] Supervisor Call, with SA=0

Note: Many of these instructions use the MQ reg-
ister. The MQ is not defined in the PowerPC Architec-
ture.

G.28 Discontinued Opcodes

The opcodes listed below are defined in the Power
Architecture but have been dropped from the
PowerPC Architecture. The list contains the old mne-
monic (MNEM), the primary opcode (PRI), and the
extended opcode (XOP) if appropriate.

MNEM PRI XopP
abs .31 360
cles 3 531
cif 31 118
cli 31 502
dclst 31 630
div 3 331
divs 31 363
doz 31 264
dozi 09 -
Iscbx 31 277
maskg 31 29
maskir 31 541
mfsri 31 827
mul 31 107
nabs 31 488
rac 31 818
rimi 22 -
rrib 31 5§37
sle 31 153
sleq 31 217
slig 31 184
sllig 31 248
sliq 31 216
slq 31 152
sraiq 31 952
sraq 31 920
sre 31 665
srea 31 921
sreq 31 729
sriq 31 636
srliq 31 760
srlg 31 728
srq 31 664
svell] 17 0

—— Assembler Note

It might be helpful to current software writers for
the Assembler to flag the discontinued Power
instructions.

260 PowerPC Architecture First Edition

Appendix H. New Instructions

The following instructions in the PowerPC Architecture
are new: they are not in the Power Architecture.

They are listed in three groups, according to whether
they exist in all PowerPC implementations, only in
64-bit implementations, or only in 32-bit implementa-
tions.

The following instructions are optional: eciwx, ecowx,
fres, frsqrte, fsel, fsqrt[s], sibia, sibie, stfiwx, tibia,
tibsync.

H.1 New Instructions for All

Implementations

dcbf Data Cache Block Flush

dcbi Data Cache Block Invalidate

dcbst Data Cache Block Store

dcbt Data Cache Block Touch

dcbtst Data Cache Block Touch for Store

divw Divide Word

divwu Divide Word Unsigned

eciwx External Control In Word Indexed

ecowx External Control Out Word Indexed

eieio Enforce In-order Execution of I/O

extsb Extend Sign Byte

fadds Floating Add Single

fetiw Floating Convert To Integer Word

fctiwz Floating Convert To Integer Word with
. round toward Zero

fdivs Floating Divide Single

fmadds Floating Multiply-Add Single

fmsubs Floating Multiply-Subtract Single

fmuls Floating Multiply Single

fnmadds Floating Negative Multiply-Add Single

fnmsubs Floating Negative Multiply-Subtract Single

fres Floating Reciprocal Estimate Single

frsqrte Floating Reciprocal Square Root Estimate

fsel Floating Select

fsqrt[s] Floating Square Root [Single]

fsubs Floating Subtract Single

icbi Instruction Cache Block Invalidate

lwarx Load Word And Reserve Indexed

mitb Move From Time Base

mulhw Multiply High Word

mulhwu Muitiply High Word Unsigned

stfiwx Store Floating-Point as Integer Word

Indexed

stwex. Store Word Conditional indexed

subf Subtract From

tibia TLB Invalidate All

tibsync

TLB Synchronize

Appendix H. New Instructions 261

H.2 New Instructions for 64-Bit H.3 New Instructions for 32-Bit

Implementations Only Implementations Only

cntizd Count Leading Zeros Doubleword mfsrin Move From Segment Register Indirect

divd Divide Doubleword

divdu Divide Doubleword Unsigned

extsw Extend Sign Word

fcfid Floating Convert From Integer
Doubleword

fctid Floating Convert To Integer Doubleword

fetidz Floating Convert To Integer Doubleword
with round toward Zero

iwa Load Word Algebraic

Iwaux Load Word Algebraic with Update Indexed

lwax Load Word Algebraic Indexed

id Load .Doubleword

Idarx Load Doubleword And Reserve Indexed

Idu Load Doubleword with Update

idux Load Doubleword with Update Indexed

Idx Load Doubleword Indexed

mulhd Mulitiply High Doubleword

mulhdu Mulitiply High Doubleword Unsigned

mulid Multiply Low Doubleword

ridcl Rotate Left Doubleword then Clear Left

ridcr Rotate Left Doubleword then Clear Right

ridic Rotate Left Doubleword immediate then
Clear

ridict Rotate Left Doubleword Immediate then
Clear Left

ridicr Rotate Left Doubleword Immediate then
Clear Right

ridimi Rotate Left Doubleword Immediate then
Mask Insert

slbia SLB Invalidate All

sibie SLB Invalidate Entry

sid Shift Left Doubleword

srad Shift Right Algebraic Doubleword

sradi Shift Right Algebraic Doubleword Imme-
diate

srd Shift Right Doubleword

std Store Doubleword

stdcx. Store Doubleword Conditional Indexed

stdu Store Doubleword with Update

stdux Store Doubleword with Update Indexed

stdx Store Doubleword Indexed

td Trap Doubleword

tdi Trap Doubleword Immediate

262 PowerPC Architecture First Edition

Appendix I. lllegal Instructions

With the exception of the instruction consisting
entirely of binary 0’s, the instructions in this class are
available for future extensions of the PowerPC Archi-
tecture: that is, some future version of the PowerPC
Architecture may define any of these instructions to
perform new functions.

The following primary opcodes are illegal.
1,4, 5, 6, 56, 57, 60, 61

In addition, the following primary opcodes are illegal
for 32-bit implementations (they are defined only for
64-bit implementations).

2, 30, 58, 62

The following primary opcodes have unused extended
opcodes. Their unused extended opcodes can be
determined from the opcode maps in - Heading
"OPMAPS’ unknown --. Extended opcodes for
instructions that are defined only for 64-bit implemen-
tations are illegal in 32-bit implementations, and
extended opcodes for instructions that are defined
only for 32-bit implementations are illegal in 64-bit
implementations. All unused extended opcodes are

illegal.

17, 19, 30, 31, 59, 621, 63

! Applies only for 64-bit implementations (illegal
primary opcode for 32-bit implementations)

An instruction consisting entirely of binary 0’s is
illegal, and is guaranteed to be illegal in all future
versions of this architecture.

Appendix I. lllegal Instructions 263

264 PowerPC Architecture First Edition

Appendix J. Reserved Instructions

The instructions in this class are allocated to specific
purposes that are outside the scope of the PowerPC

User Instruction Set Architecture, PowerPC Virtual
Environment Architecture, and PowerPC Operating 3
Environment Architecture.

The following types of instruction are included in this
class. 4.

1. The instruction having primary opcode 0, except
the instruction consisting entirely of binary 0’s
(which is an illegal instruction: see Section 1.8.2,
“lllegal Instruction Class” on page 13).

2. Instructions for the Power Architecture which
have not been included in the PowerPC Architec-

ture. These are listed in Appendix G, “Incompat-
ibilities with the Power Architecture” on
page 255.

. Implementation-specific instructions used to

conform to the PowerPC Architecture specifica-
tions.

Any other instructions contained in Book IV,
PowerPC Implementation Features for any imple-
mentation, which are not defined in the PowerPC
User Instruction Set Architecture, PowerPC
Virtual Environment Architecture, nor PowerPC
Operating Environment Architecture.

Appendix J. Reserved Instructions 265

266 PowerPC Architecture First Edition

Appendix K. Optional Facilities and Instructions

The facilities (special purpose registers and
instructions) described in this appendix are optional.
An implementation may choose to provide all, some,
or none of them. If a facility is implemented that
matches semantics of a facility described here, the
implementation should be as specified here.

K.1 External Control

The External Control facility provides a means for a
problem state program to communicate with a special
purpose device. Two instructions are provided:

= External Control Out Word Indexed (ecowx), which
does the following:

— Computes an Effective Address (EA) as for
any X-form instruction

— Validates the EA as would be done for a
store to that address

— Translates the EA to a Real Address

— Transmits the Real Address and a word of
data from a general register to the device

= External Control In Word Indexed (eciwx), which
does the following:

— Computes an Effective Address (EA) as for

any X-form instruction

— Validates the EA as would be done for a load
from that address

— Translates the EA to a Real Address

— Transmits the Real Address to the device

— Accepts a word of data from the device and
places it in a general register

Depending on the setting of a control bit in a special
purpose register, the External Access Register (EAR),
the processor either performs the external control
operation or it takes a Data Storage interrupt. The
EAR controls access to the external access facility.
Access to the EAR itself is privileged; the operating
system can determine which tasks are allowed to

issue External Access instructions and when they are
allowed to do so.

Interpretation of the real address transmitted by
ecowx and eciwx and the 32-bit value transmitted by
ecowx is up to the target device. Such interpretation
is not specified by PowerPC Architecture. See the
System Architecture documentation for a given
PowerPC system for details on how the External
Control facility can be used with devices on that
system.

Example

An example of a device designed to be used with the
External Control facility might be a graphics adapter.
The ecowx instruction might be used to send the
device the translated real address of a buffer con-
taining graphics data, and the word transmitted from
the general register might be control information that
tells the adapter what operation to perform on the
data in the buffer. The eciwx instruction might be
used to load status information from the adapter.

K.1.1 External Access Register
This 32-bit Special Purpose Register controls access
to the External Control facility and, for external

control operations that are permitted, determines
which device is the target.

ﬁl I | RID |
0

2% 3
Bit Name Description
0 E Enable bit

26:31 RID Resource 1D
All other fields are reserved.

Figure 83. External Access Register

Appendix K. Optional Facilities and Instructions 267

K.1.2 External Access Instructions

External Control In Word Indexed
X-form

eciwx RT,RA,RB

External Control Out Word Indexed
X-form

ecowx RS,RA,RB

31 RT RA RB 310 /
0 6 11 16 21 31

31 RS RA | RB 438 /

if RA =0 thenb « 0
else b « (RA)
EA « b + (RB)
if EARg = 1 then
raddr ¢ address translation of EA
send load request for raddr to
device identified by EARg;p
RT « 329 || word from device
else
DSISRyy ¢ 1
generate Data Storage interrupt

Let the effective address (EA) be the sum
(RA|0)+ (RB).

If EAR;=1, a load request for the real address corre-
sponding to EA sent to the device identified by
EARg|p, bypassing the cache. RT3, is set to 0. The
word returned by the device is placed in RT35.63:0.31}-

If EAR;=0, a Data Storage interrupt is taken, with bit
11 of DSISR set to 1.

The eciwx instruction is supported for Effective
Addresses that reference ordinary (T=0) segments
and for EAs mapped by Data BAT registers. The
instruction is not supported and the results are
boundedly undefined for EAs in direct-store (T=1)
segments and for EAs generated when MSRpz=0
(real addresses).

The access caused by this instruction is treated as a
load from the location addressed by EA with respect
to protection and reference and change recording.

Special Registers Altered:
None

0 6 11 16 21 31

if RA =8 thenb « 0
else b « (RA)
EA « b + (RB)
if EARg = 1 then
raddr « address translation of EA
send store request for raddr to
device identified by EARg|p
send (RS3pe3(0:31)) to device
else
DSISRyy ¢ 1
generate Data Storage interrupt

Let the effective address (EA) be the sum
(RA|0) +(RB).

If EARgz=1, a store request for the real address corre-
sponding to EA and the contents of RS3;.4310.31) are
sent to the device identified by EARg;p, bypassing the
cache.

If EARg=0, a Data Storage interrupt is taken, with bit
11 of DSISR set to 1.

The ecowx instruction is supported for Effective
Addresses that reference ordinary (T=0) segments
and for EAs mapped by Data BAT registers. The
instruction is not supported and the results are
boundedly undefined for EAs in direct-store (T=1)
segments and for EAs generated when MSRpr=0
(real addresses).

The access caused by this instruction is treated as a
store to the location addressed by EA with respect to
protection and reference and change recording.

Special Registers Altered:
None

268 PowerPC Architecture First Edition

Appendix L. Synchronization Requirements for Special

Registers

The processor checks for input and output depend-
ences with respect to all registers, and honors these
dependences when executing a series of instructions
involving a given register. For example, if an mtspr
instruction writes a value to a particular SPR and an
mfspr instruction later in the instruction stream reads
the same SPR, the mfspr receives the value written
by the mtspr.

Such dependence checking does not extend to certain
side effects of writing to status and control registers,
SPRs, and Segment Registers, as described in the
remainder of this appendix.

The processor automatically provides all synchroniza-
tion required for the GPRs, FPRs, CR, LR, CTR, XER,
FPSCR, SRR0O, SRR1, DAR, DSISR, SPRGO through
SPRG3, Time Base, and Decrementer, and for the EE
and RI bits of the MSR, including side effects. These
registers and MSR bits are not discussed further, in
this appendix.

For the remainder of this appendix, words like
“before,” “after,” “preceding,” “following,” etc.,
when referring to instruction sequence, are with
respect to program order. {Program order is defined
in Part 2, “PowerPC Virtual Environment Architecture”
on page 117.)

L.1 Affected Registers

Software synchronization may be required for alter-
ation of the registers listed in the following sub-
sections, because they affect instruction fetch and
data access. '

L.1.1 Instruction Fetch

Altering the content of the following registers or MSR
bits may change the manner in which instruction
addresses are interpreted, or the context in which
instructions execute.

ASR

Segment Registers

SDR1

IBAT registers

MSR bits:

SF, POW, PR, FP, ME, FEQ, FE1, SE, BE, IP, IR, LE

L.1.2 Data Access

Altering the content of the following registers or MSR
bits may change the manner in which data accesses
are performed, or the context in which they are per-
formed.

ASR

Segment Registers
SDR1

DBAT registers

EAR

MSR bits:

SF, POW, PR, DR, LE

L.2 Context Synchronizing
Operations

The following instructions and events comprise the
context synchronizing operations (see Section 9.7.1,
“Context Synchronization” on page 145). They can
be used to synchronize alteration of the registers
listed above, as described below.

isync
= sc
» i

Appendix L. Synchronization Requirements for Special Registers 269

= any interrupt, other than System Reset and
Machine Check

(As described in Chapter 13, “Interrupts” on
page 191, System Reset and Machine Check are
context synchronizing if they are recoverable.)

The sync instruction, althoisgh not context-
synchronizing, can sometimes be used to provide the
required synchronization, as described below.

L.3 Software Synchronization
Requirements

To ensure that instructions appear to execute in
program order (i.e., with the correct semantics and in
the correct context), software must use synchroniza-
tion instructions, as described below, when altering
any of the registers and MSR bits listed in L1,
“Affected Registers” on page 269.

Sometimes advantage can be taken of the fact that
certain instructions that occur naturally in the
program, such as the rfi at the end of an interrupt
handler, provide the required synchronization.

Before Alteration

If the corresponding relocation is enabled {IR=1 for
Section L.1.1, DR=1 for Section L.1.2), a context syn-
chronizing operation or sync instruction must precede

an alteration of any of the registers listed in Section -

L.1, with the exception of SDR1 and the MSR.

If the corresponding relocation is enabled, a sync
instruction must precede an alteration of SDR1. The
sync forces alterations of Reference and Change bits,
due to instructions before the alteration of SDR1, to
be made in the correct context.

No explicit synchronization is required before soft-
ware alters the MSR, because mtmsr is execution
synchronizing (see Section 9.7.2, “Execution
Synchronization” on page 145). :

After Alteration

If the corresponding relocation is enabled (IR=1 for
Section L.1.1, DR=1 for Section L.1.2), a context syn-
chronizing operation must follow an alteration of any
of the registers listed in Section L1, with the excep-
tion of the MSR.

A context synchronizing operation must follow an
alteration of any of the MSR bits listed in Sections
L.1.1 and L.1.2, except MSRp if software does not
care which value of this bit is used for non-
recoverable System Reset and Machine Check inter-
rupts.

instructions fetched and/or executed after the alter-
ation but before the context synchronizing operation
may be fetched and/or executed in either the context
that existed before the alteration or the context estab-
lished by the alteration.

Multiple Alterations

When several of the registers listed in Section L.1 are
altered with no intervening instructions that are
affected by the alterations, no context synchronizing
operations or sync instructions are required between
the alterations.

Examples

= A single Segment Register is to be aitered in iso-
lation:

isync
mtsr SRn,Rx
isync

s All the Segment Registers are to be reloaded
upon task dispatch at the end of an interrupt.

mtsr SRO,R...
mtsr SR1,R...

mtsr SR15,R...
rfi

Because this instruction sequence reloads all
Segment Registers, it must be executed with
MSR,g=0 and therefore no synchronization is
required before the Segment Registers are
loaded. (If the Segment Register that is being
used for instruction fetch is not to be reloaded,
the sequence can be executed with MSRg=1,
and still no such synchronization is required.)
The rfi provides the needed synchronization after
the Segment Registers have been loaded, and
before subsequent instructions are fetched and
subsequent loads and stores executed.

L.4 Additional Software
Requirements

This section describes additional software require-
ments with respect to instruction fetching and address
translation. The results of failing to satisfy these
requirements are undefined.

MSRpow Le)
A special sequence of instructions may be

required for changing the Power Management
Enable and Little-Endian Mode bits; see the Book
IV, PowerPC Implementation Features document
for the implementation.

270 PowerPC Architecture First Edition

MSR g
MSR|z should be altered only from code that is
mapped virtual equals real.

ASR

If MSRg=1, alteration of the ASR is permitted
only if the instructions in storage immediately fol-
lowing the mtspr that alters the ASR are identical
in both the old and the new address space. Any
resulting changes in storage protection or storage
access mode are not guaranteed to take effect
until a context synchronizing operation is exe-
cuted. '

Segment Registers

No fields in the Segment Register that is being
used for instruction fetch should be altered, with
the exception of the Key bits (K; and K). Alter-
ation of the Key bits is always permitted. Any
resulting changes in storage protection are not
guaranteed to take effect until a context synchro-
nizing operation is executed.

SDR1 -
SDR1 should be altered only when MSRg=0.

IBAT registers

No fields in the IBAT Register that is being used
for instruction fetch should be altered, with the
exception of the Valid (V) bit and the Key bits (K,
and K,). Alteration of the V bit is permitted only if
the instructions in storage immediately following
the mtspr that alters the IBAT register are also
mapped by the segmented address translation
mechanism to the same address, or if the
instructions are duplicated in the newly mapped
space. Alteration of the Key bits is always per-
mitted. Any resulting changes in storage pro-
tection or storage access mode are not
guaranteed to take effect until a context synchro-
nizing operation is executed.

To make an IBAT register valid in a manner such
that the 1BAT register then translates the current
instruction stream, the following sequence should
be used if fields in both the upper and lower IBAT
registers are being altered.

1. The V bit in the IBAT register should be set to
zero.

2. The other fields in the IBAT register should be
initialized appropriately while the V bit
remains zero.

3. The V bit should be set to one.

4. A context synchronizing operation should be
executed.

If all altered fields are contained in either the
upper or lower IBAT register, a single mtspr suf-
fices (a synchronizing operation is not necessarily
required).

Appendix L. Synchronization Requirements for Special Registers 271

272 PowerPC Architecture First Edition

Appendix M. Implementation-Specific SPRs

This appendix lists Special Purpose Register (SPR)
numbers assigned by the PowerPC Architecture
Review Process for implementation-specific uses. If a
register shown here is present in a particular imple-
mentation, a detailed description will be found in Book
IV, PowerPC Implementation Features.

The intent of this list is to ensure that if an SPR is
needed for a particular function on more than one
implementation, the same SPR number will be used.

Note that ordering of the bits shown in the table
below matches the descriptions in Move To/From
Special Purpose Register on pages 79 and 80. The
two 5-bit halves of the SPR number are reversed from
the order in which they appear in an assembled

instruction.
SPR Register Privi-
decimal sprsg Sprog4 name leged
1023 1M1 1111 PIR yes
1022 11111 11110 FPECR yes

Processor ID Register (PIR)

This register holds a value that distinguishes this
processor from others in a multiprocessor.

Floating-Point Exception Cause Register
(FPECR)

This register identifies the reason a Floating-Point
Exception occurred.

Appendix M. Implementation-Specific SPRs 273

274 PowerPC Architecture First Edition

Appendix N. Interpretation of the DSISR as set by an

Alignment Interrupt

For most causes of Alignment interrupt, the interrupt
handler will emulate the interrupting instruction. To
do this, it needs the following characteristics of the
interrupting instruction:

Load or store

Length (half, word, or double)
String, multiple, or elementary
Fixed or float

Update or non-update

Byte reverse or not

Is it debz?

The PowerPC Architecture provides this information
implicitly, by setting opcode bits in the DSISR that
identify the interrupting instruction type. It is not nec-
essary for the interrupt handler to load the inter-
rupting instruction from storage. The mapping is
unique except for a few exceptions that are discussed
below. The near-uniqueness depends upon the fact
that many instructions cannot cause an Alignment
interrupt, such as the fixed- and floating-point arith-
metic instructions and the byte-width loads and
stores.

See Section 13.5.6, “Alignment Interrupt” on
page 196 for a description of how the opcode and
extended opcode is mapped to a DSISR value for an
X-, D-, or DS-form instruction that causes an Align-
ment interrupt.

The table on the next page shows the inverse
mapping: how the DSISR bits identify the interrupting
instruction. The following notes apply to this table.

(1) The instructions Iwz and lwarx give the same
DSISR bits (all zero). But if Iwarx causes an align-
ment interrupt, it is an invalid form, so it need not
be emulated in any precise way. It is adequate
for the Alignment interrupt handler to simply
emulate the instruction as if it were an lwz. it is
important that the emulator use the address in the
DAR, rather than computing it from RA/RB/D,
because iwz and lwarx are different formats.

If opcode 0 (“lliegal or reserved”} can cause an
alignment interrupt, it will be indistinguishable
from lwarx and iwz.

(2) These are distinguished by DSISR bits 12:13, which
are not shown in the table.

The Alignment interrupt handler will not be able to
distinguish a floating-point load or store interrupting
because it is misaligned, or because it addresses
direct-store. But this does not matter; in either case
it will be emulated by doing the operation with fixed-
point instructions. :

The interrupt handler has no need to distinguish
between an X-form instruction and the corresponding
D- or DS-form instruction, if one exists. Therefore two
such instructions may report the same DSISR value
(all 32 bits). For example, stw and stwx may both
report either the DSISR value shown in the following
table for stw, or that shown for stwx.

Appendix N. Interpretation of the DSISR as-set by an Alignment Interrupt 275

thenitis or then it is or
either D/DS- either D/DS-

If DSISR {X-form form If DSISR |X-form form
15:21 is: |opcode: opcode:| so the instruction is: 15:21 is: |opcode: opcode:| so the instruction is:
00 0 0000 | 00000xxx00 [x00000 |lwarx, Iwz, reserved 10 0 0000 { 00000xxx10 -

(1) 10 0 0001 | 00010xxx10 -
00 0 0001 | 00010xxx00 | x00010 |Idarx 10 0 0010 | 00100xxx10 stwex.
00 0 0010 | 00100xxx00 | x00100 | stw 10 0 0011 | 00110xxx10 stdex.
00 0 0011 | 00110xxx00 | x00110 |- 10 0 0100 | 01000xxx10 -
00 0 0100 | 01000xxx00 | x01000 |lhz 10 0 0101 | 61010xxx10 -
00 00101 | 01010xxx00 | x01010 |lha 100 0110 |01100xxx10 -
00 0 0110 |{01100xxx00 | x01100 | sth 1000111 |01110xxx10 -
00 00111 |01110xxx00 | x01110 [Imw 10 0 1000 | 10000xxx10 Iwbrx
00 0 1000 | 10000xxx00 | x10000 |ifs 10 0 1001 | 10010xxx10 -
00 0 1001 | 10010xxx00 | x10010 |Ifd 10 0 1010 | 10100xxx10 stwbrx
00 0 1010 |{ 10100xxx00 | x10100 | stfs 10 0 1011 | 10110xxx10 -
00 0 1011 1 10110xxx00 | x10110 | stfd 10 0 1100 | 11000xxx10 {hbrx
000 1100 { 11000xxx00 | x11000 |- 10 0 1101 } 11010xxx10 -
00 0 1101 | 11010xxx00 | x11010 {Id, Idu, lwa (2) 100 1110 | 11100xxx10 sthbrx
00 0 1110] 11100xxx00 | x11100 |- 160 1111 [11110xxx10 -
000 1111 | 11110xxx00 | x11110 | std, stdu (2) 10 1 0000 | 00001xxx10 -
00 1 0000 | 00001xxx00 | x00001 {lwzu 10 1 0001 | 00011xxx10 -
00 1 0001 | 00011xxx00 | x00011 |- 10 1 0010 | 00101xxx10 -
00 1 0010 { 00101xxx00 [x00101 | stwu 10 1 0011 | 00111xxx10 -
00 1 0011 | 00111xxx00 | x00111 |- 10 1 0100 | 01001xxx10 eciwx
00 1 0100 | 01001xxx00 | x01001 | lhzu 10 1 0101 |01011xxx10 -
00 1 0101 101011xxx00 | x01011 {lhau 10 1 0110 [01101xxx10 ecowXx
00 1 0110 [01101xxx00 | x01101 | sthu 101 0111 [01111xxx10 -
0010111]01111xxx00 | x01111 | stmw 10 1 1000 | 10001xxx10 -
00 1 1000 | 10001xxx00 | x10001]Ifsu 10 1 1001 | 1001 1xxx10 -
00 1 1001 | 10011xxx00 | x10011 {Ifdu 10 1 1010 | 10101xxx10 -
00 1 1010 | 10101xxx00 | x10101 | stfsu 101 1011 | 10111xxx10 -
00 1 1011 | 10111xxx00 | x10111 | stfdu 10 1 1100 | 11001xxx10 -
00 1 1100 { 11001xxx00 | x11001 |- 101 1101 [11011xxx10 -
0011101 | 11011xxx00 | x11011 |- 101 1110 [11101xxx10 -
0011110 [11101xxx00 | x11101 |- 101 1111 { 11111xxx10 dcbz
0011111 | 11111xxx00 | x11111 |- 11 0 0000 | 00000xxx11 lwzx
01 0 0000 | 00000xxx01 Idx 11 0 0001 | 00010xxx11 -
01 0 0001 | 00010xxx01 - 11 0 0010 | 00100xxx11 stwx
01 0 0010 { 00100xxx01 stdx 11 0 0011 | 00110xxx11 -
01 00011 | 00110xxx01 - 11 0 0100 | 01000xxx11 lhzx
01 0 0100 | 01000xxx01 - 11 0 0101 1 01010xxx11 lhax
01 00101 {01010xxx01 Iwax 11 00110 | 01100xxx11 sthx
01 00110 | 01100xxx01 - 1100111 [01110xxx11 -
0100111 01110xxx01 - 11 0 1000 [10000xxx11 Ifsx
01 0 1000 | 10000xxx01 Iswx 11 0 1001 { 10010xxx11 Ifdx
01 0 1001 | 10010xxx01 Iswi 11 0 1010 | 10100xxx11 stfsx
01 0 1010 | 10100xxx01 stswx 1101011 | 10110xxx11 stfdx
01 0 1011 | 10110xxx01 stswi 11 0 1100 | 11000xxx11 -
01 0 1100 | 11000xxx01 - 110 1101 | 11010xxx11 -
010 1101 | 11010xxx01 - 110 1110 | 11100xxx11 -
010 1110 | 11100xxx01 - 110 1111 [11110xxx11 stfiwx
0101111 | 11110xxx01 - 11 1 0000 | 0000 1xxx11 Iwzux
01 1 0000 { 00001xxx01 Idux 11 1 0001 | 0001 1xxx11 -
01 1 0001 | 00011xxx01 - 11 1 0010 {00101xxx11 stwux
01 1 0010 | 00101xxx01 stdux 11 1 0011 | 0011 1xxx11 -
01 1 0011 |00111xxx01 - 11 1 0100 [01001xxx11’ lhzux
01 1 0100 {01001xxx01 - 11 16101 [01011xxx11 lhaux
01 10101 | 01011xxx01 Iwaux 1110110 [01101xxx11 sthux
01 10110 |01101xxx01 - 1110111 {0111 1xxx11 -
0110111 {01111xxx01 - 11 1 1000 | 10001xxx11 Ifsux
01 1 1000 | 10001xxx01 - 11 1 1001 { 1001 1xxx11 Ifdux
01 11001 | 1001 1xxx01 - 111 1010 | 10101xxx11 stfsux
01 11010 | 10101xxx01 - 1111011 | 1011 1xxx11 stfdux
0111011 | 10111xxx01 - 111 1100 | 11001xxx11 -
01 1 1100 | 11001xxx01 - 1111101 | 1101 1xxx11 -
0111101 | 1101 1xxx01 - 1111110 | 11101xxx11 -
0111110 |11101xxx01 - 1111111 1111 ot -
0111111 11111xxx01 -

276 PowerPC Architecture First Edition

Appendix O. PowerPC Instruction Set Sorted by Opcode

This appendix lists all the instructions in the PowerPC
Architecture. A page number is shown for
instructions that are defined in this Book (Part 1,
“PowerPC User Instruction Set Architecture” on

“PowerPC Virtual Environment Architecture”

on

page 117, and Part 3, “PowerPC Operating Environ-
ment Architecture” on page 141). If an instruction is
defined in more than one Book, the lowest-numbered

page 1), and the Book number is shown for Book is used.
instructions that are defined in other Books (Part 2,
Form Opcode MOd? Page Mnemonic Instruction
Primary| Extend | Pep.'| / Bk
D 2 () 61 | tdi Trap Doubleword Immediate
D 3 61 | twi Trap Word Immediate
D 7 _ 55 | mulii Multiply Low Immediate ,
D 8 SR 52 | subfic Subtract From Immediate Carrying
D 10 60 | cmpli Compare Logical Immediate
D 11 59 | cmpi Compare Immediate
D 12 SR 51 | addic Add Immediate Carrying
D 13 SR 51 | addic. Add Immediate Carrying and Record
D 14 50 | addi Add Immediate
D 15 50 | addis Add Immediate Shifted
B 16 CT 21 | be[1][a] Branch Conditional
sC 17 1 23 | sc System Call
1 18 21 | b[t][a] Branch
XL 19 0 26 | merf Move Condition Register Field
XL 19 16 CcT 22 | bcir[l} Branch Conditional to Link Register
XL 19 33 25 | crnor Condition Register NOR
XL 19 50 Bk 1] rfi Return From Interrupt
XL 19 129 25 | crandc Condition Register AND with Complement
XL 19 150 Bk 1l isync Instruction Synchronize
XL 19 193 24 | crxor Condition Register XOR
XL 19 225 24 | crnand Condition Register NAND
XL 19 257 24 | crand Condition Register AND
XL 19 289 25 | creqv Condition Register Equivalent
XL 19 417 25 | crorc Condition Register OR with Complement
XL 19 449 24 | cror Condition Register OR
XL 19 528 CcT 22 | beetr[l] Branch Conditional to Count Register
M 20 SR 74 | riwimi[.] Rotate Left Word Immediate then Mask Insert
M 21 SR 71 | riwinm[.] Rotate Left Word Immediate then AND with Mask
M 23 SR 73 | riwnm[.] Rotate Left Word then AND with Mask
D 24 64 | ori OR Immediate
D 25 64 | oris OR Immediate Shifted
D 26 64 | xori XOR Immediate
D 27 64 | xoris XOR Immediate Shifted
D 28 SR 63 | andi. AND Immediate
D 29 SR 63 | andis. AND Immediate Shifted
MD 30 0 | (SR) 70 | ridicl[.] Rotate Left Doubleword immediate then Clear Left
MD 30 1 | (SR) 70 | ridicr[.] Rotate Left Doubleword immediate then Clear Right

Appendix O. PowerPC Instruction Set Sorted by Opcode

277

Opcode

Page

mePmmenmdDWJ/Bkmmm”m Instruction

MD 30 2 | (SR){ 71 { ridic[.] Rotate Left Doubleword Immediate then Clear
MD 30 3 | (SR)| 74 | ridimi[.] Rotate Left Doubleword Immediate then Mask Insert
MDsS 30 8 | (SRy| 72 { ridcl[.] Rotate Left Doubleword then Clear Left
MDS 30 9 | (SR)y| 73 | rider[.] Rotate Left Doubleword then Clear Right
X 31 0 59 | cmp Compare

X 31 4 62 | tw Trap Word

X0 31 8 SR 52 | subfc[o][.] Subtract From Carrying

X0 31 9 | (SR)| 56 | mulhdu[.] Multiply High Doubleword Unsigned
X0 31 10 SR 52 | addc[o][.] Add Carrying

X0 31 1 SR 56 | muthwul.] Multiply High Word Unsigned

X 31 19 81 | mfcr Move From Condition Register

X 31 20 46 | iwarx Load Word And Reserve Indexed

X 31 21 0 35 | ldx Load Doubleword Indexed

X 31 23 33 | Iwax Load Word and Zero Indexed

X 31 24 SR 75 | slw[.] Shift Left Word

X 31 26 SR 68 | cntlzw[.] Count Leading Zeros Word

X 31 27 | (SR)| 75 | sid[.] Shift Left Doubleword

X 3 28 SR 65 | and[.] AND

X 31 32 60 | cmpl Compare Logical

X0 31 40 SR 51 | subffo][.] Subtract From

X 31 53 0O 35 | Idux Load Doubleword with Update indexed
X 31 54 134 | dcbst Data Cache Block Store

X 31 55 33 | lwzux Load Word and Zero with Update Indexed
X 31 58 | (SR)| 68 | cntlzd[.] Count Leading Zeros Doubleword

X 31 60 SR 66 | andc[.] AND with Complement

X 31 68 () 62 | td’ Trap Doubleword

X0 31 73 | (SR)| 56 | mulhd[.] Multiply High Doubleword

X0 31 75 SR 56 | mulhw[.] Multiply High Word

X 31 83 Bk Itl| mfmsr Move From Machine State Register

X 31 84 0 46 | Idarx Load Doubleword And Reserve indexed
X 31 86 135 | dcbf Data Cache Block Flush

X 31 87 30 | Ibzx Load Byte and Zero Indexed

X0 31 104 SR 54 | neg[o][.] Negate

X 31 119 30 | Ibzux Load Byte and Zero with Update Indexed
X 31 124 SR 66 | nor[.] NOR

X0 31 136 SR 53 | subfe[o][.] Subtract From Extended

X0 31 138 SR 53 | addefo][.] Add Extended

XFX 31 144 80 | mtcrf Move To Condition Register Fields

X 31 146 Bk Iil| mtmsr Move To Machine State Register

X 31 149 () 39 | stdx Store Doubleword Indexed

X 31 150 47 | stwex. Store Word Conditional Indexed

X 31 151 38 | stwx Store Word Indexed .

X 31 181 () 39 | stdux Store Doubleword Indexed with Update
X 31 183 38 | stwux Store Word with Update indexed

X0 31 200 SR 54 | subfze[o][.] | Subtract From Zero Extended

X0 31 202 SR 54 | addze[o][.] Add to Zero Extended

X 31 210 { | Bk lll} mtsr Move To Segment Register

X 31 214 0 47 | stdex. Store Doubleword Conditional Indexed
X 31 215 36 | stbx Store Byte Indexed

X0 31 232 SR 53 | subfme[o][.] | Subtract From Minus One Extended

X0 31 233 55 | mulld[o][.] Multiply Low Doubleword

X0 31 234 SR 53 | addme[o][.] | Add to Minus One Extended

X0 3 235 55 | muliw[o][.] Multiply Low Word

X 31 242 {3 | Bk lll|{ mtsrin Move To Segment Register Indirect

X 31 246 133 | dcbtst Data Cache Block Touch for Store

X 31 247 36 | stbux Store Byte with Update Indexed

X0 K| 266 SR 51 | add[o][.] Add

X 31 278 133 | dcbt Data Cache Block Touch
278 PowerPC Architecture First Edition

Form Opcode MOd? Page Mnemonic Instruction
Primary| Extend | Dep."' | / Bk
X 31 279 31 | Ihax Load Halfword and Zero Indexed
X 31 284 | SR 66 | eqv[.] Equivalent
X 31 306 Bk 11| tlbie TLB Invalidate Entry-
X 31 310 Bk Il eciwx External Control In Word Indexed
X 31 31 31 | thzux Load Halfword and Zero with Update Indexed
X 31 316 SR 65 | xor[.] XOR
XFX 31 339 80 | mfspr Move From Special Purpose Register
X 31 341)] 34 | lwax Load Word Algebraic indexed
X 31 343 32 | lhax Load Halfword Algebraic Indexed
X 31 370 Bk i} tibia TLB Invalidate All
XFX 31 371 Bk Il| mftb Move From Time Base
X 31 373 0 34 | lwaux Load Word Algebraic with Update Indexed
X 31 375 32 | Ihaux Load Halfword Algebraic with Update indexed
X 31 407 37 | sthx Store Halfword Indexed
X 31 412 SR 66 | orc[.] OR with Complement
XS 31 413 | (SR) 77 | sradil.] Shift Right Algebraic Doubleword Immediate
X 31 434 0 Bk | slbie SLB Invalidate Entry
X 31 438 Bk 1l ecowx External Control Out Word Indexed
X 31 439 37 | sthux Store Halfword with Update Indexed
X 31 444 SR 65 | or[.] OR
X0 3 457 | (SR) | 58 | divdu[o][.] Divide Doubleword Unsigned
X0 31 459 SR 58 | divwu[o][.] Divide Word Unsigned
XFX 31 467 79 | mtspr Move To Special Purpose Register
X 31 470 181 | dcbi Data Cache Block Invalidate ’
X 31 476 SR 65 | nand[.] NAND
X0 31 489 | (SR) 57 | divd[o][.] Divide Doubleword
X0 31 491 SR 57 | divw[o][.] Divide Word
X 31 498 () [Bk HI] slbia SLB Invalidate Al
X 31 512 80 | merxr Move to Condition Register from XER
X 31 533 44 | Iswx Load String Word Indexed
X 31 534 40 | iwbrx Load Word Byte-Reverse Indexed
X 31 535 100 | Ifsx Load Floating-Point Single Indexed
X 31 536 SR 76 | srw[.] Shift Right Word
X 31 539 [(SR) | 76 | srd[.] Shift Right Doubleword
X 31 566 Bk lii| tlbsync TLB Synchronize
X 31 567 100 | Hfsux Load Floating-Point Single with Update Indexed
X 31 595 {3 | Bkill} mfsr Move From Segment Register
X 31 597 44 | Iswi Load String Word Immediate
X 31 598 48 | sync Synchronize
X 31 599 101 | Mdx Load Floating-Point Double Indexed
X 3 631 101 | Ifdux Load Floating-Point Double with Update Indexed
X 31 659 { | Bk | mfsrin Move From Segment Register Indirect
X 31 661 45 | stswx Store String Word Indexed
X 31 662 41 | stwbrx Store Word Byte-Reverse Indexed
X 31 663 103 | stfsx Store Floating-Point Single Indexed
X 31 695 103 | stfsux Store Floating-Point Single with Update Indexed
X 31 725 45 | stswi Store String Word Immediate
X 31 727 104 | stfdx Store Floating-Point Double Indexed
X 31 759 104 | stfdux Store Floating-Point Double with Update Indexed
X 31 790 40 | Ihbrx Load Halfword Byte-Reverse Indexed
X 31 792 SR 78 | sraw[.] Shift Right Algebraic Word
X 31 794 | (SR) 78 | srad[.] Shift Right Algebraic Doubleword
X 31 824 SR 77 | srawi[.] Shift Right Algebraic Word Immediate
X 31 854 Bk I} eieio Enforce In-order Execution of /0
X 3 918 41 | sthbrx Store Halfword Byte-Reverse Indexed
X 31 922 SR 67 | extsh[.] Extend Sign Halfword
X 31 954 SR 67 | extsb[.] Extend Sign Byte
X 31 982 132 | icbi Instruction Cache Block Invalidate

Appendix O. PowerPC Instruction Set Sorted by Opcode 279

Form Opcode MOd? Page Mnemonic Instruction
Primary| Extend | Dep.'| / Bk
X 31 983 208 | stfiwx Store Floating-Point as Integer Word Indexed
X 31 986 | (SR)| 67 | extsw[.] Extend Sign Word
X 31 1014 134 | dcbz Data Cache Block set to Zero
D 32 33 | Iwz Load Word and Zero
D 33 33 | lwzu Load Word and Zero with Update
D 34 30 | Ibz Load Byte and Zero
D 35 30 | Ibzu Load Byte and Zero with Update
D 36 38 | stw Store Word
D 37 38 | stwu Store Word with Update
D 38 36 | stb Store Byte
D 39 36 | stbu Store Byte with Update
D 40 31 | lhz Load Halfword and Zero
D 41 31 | thzu Load Halfword and Zero with Update
D 42 32 | lha Load Halfword Algebraic
D 43 32 | lhau Load Halfword Algebraic with Update
D 4 37 | sth Store Halfword
D 45 37 | sthu Store Halfword with Update
D 46 42 | Imw Load Mulitiple Word
D 47 42 | stmw Store Muitiple Word
D 48 100 | ifs Load Floating-Point Single
D 49 100 | Ifsu Load Floating-Point Single with Update
D 50 101 | Ifd Load Floating-Paint Double
D 51 101 | Ifdu Load Floating-Point Double with Update
D 52 103 | stfs Store Floating-Point Single
D 53 103 | stfsu Store Floating-Point Single with Update
D 54 104 | stfd Store Floating-Point Double
D 55 104 | stfdu Store Floating-Point Double with Update
DS 58 0 0 35 | d Load Doubleword
DS 58 1 0 35 | Idu Load Doubleword with Update
DS 58 2 0O 34 | lwa Load Word Algebraic
A 59 18 107 | fdivs[.] Floating Divide Single
A 59 20 106 | fsubs[.] Floating Subtract Single
A 59 21 106 | fadds[.] Fioating Add Single
A 59 22 209 | fsqrts[.] Floating Square Root Single
A 59 24 209 | fres[.] Floating Reciprocal Estimate Single
A 59 25 107 | fmuls[.] Floating Muitiply Single
A 59 28 108 | fmsubs[.] Floating Multiply-Subtract Single
A 59 29 108 | fmadds[.] Floating Multiply-Add Single
A 59 30 109 | fnmsubs[.] Floating Negative Multiply-Subtract Single
A 59 31 109 | fnmadds[.] Fioating Negative Multiply-Add Single
DS 62 0 0 39 | std Store Doubleword
Ds 62 1 0 39 | stdu Store Doubleword with Update
X 63 0 113 | fcmpu Floating Compare Unordered
X 63 12 110 | frsp[.] Floating Round to Single-Precision
X 63 14 111 | fetiwl.] Floating Convert To Integer Word
X 63 15 112 | fetiwz[.] Floating Convert To Integer Word with round toward Zero
A 63 18 107 | fdiv[.] Floating Divide
A 63 20 106 | fsub[.] Floating Subtract
A 63 21 106 | fadd[.] Floating Add
A 63 22 209 | fsqrt[.] Floating Square Root
A 63 23 210 | fsell.] Floating Select
A 63 25 107 | fmul[.] Floating Multiply
A 63 26 210 | frsqrte[.] Floating Reciprocal Square Root Estimate
A 63 28 108 | fmsub[.] Floating Multiply-Subtract
A 63 29 108 | fmadd[.] Floating Multiply-Add
A 63 30 108 | fnmsub[.] Floating Negative Multiply-Subtract
A 63 31 108 | fnmadd[.] Floating Negative Multiply-Add
X 63 32 113 | fcmpo Floating Compare Ordered

280 PowerPC Architecture First Edition

Form Opcode MOd? Page Mnemonic Instruction
Primary| Extend | Dep." | / Bk
X 63 38 116 | mtfsb1[.] Move To FPSCR Bit 1
X 63 40 105 | fneg[.] Floating Negate
X 63 64 114 | mcrfs Move to Condition Register from FPSCR
X 63 70 116 | mtfsbO[.] Move To FPSCR Bit 0
X 63 72 105 | fmr[.] Floating Move Register
X 63 134 115 | mtfsfi[.] Move To FPSCR Field Immediate
X 63 136 105 | fnabs[.] Floating Negative Absolute Value
X 63 264 105 | fabs[.] Floating Absolute Value
X 63 583 114 | mffs[.] Move From FPSCR
XFL 63 71 115 | mtfsf[.] Move To FPSCR Fields
X 63 814 () 110 | fetid[.] Floating Convert To Integer Doubleword
X 63 815 }) 111 | fetidz[.] Floating Convert To Integer Doubleword with round
toward Zero
X 63 846 () 112 | fefid[.] Floating Convert From Integer Doubleword

1See key to mode dependency column, on page 287.

Appendix O. PowerPC Instruction Set Sorted by Opcode 281

282 PowerPC Architecture First Edition

Appendix P. PowerPC Instruction Set Sorted by Mnemonic

This appendix lists all the instructions in the PowerPC
Architecture. A page number is shown for
instructions that are defined in this Book (Part 1,

“PowerPC Virtual Environment

Architecture”

on

page 117, and Part 3, “PowerPC Operating Environ-

ment Architecture” on page 141).

If an instruction is

“PowerPC User Instruction Set Architecture” on defined in more than one Book, the lowest-numbered
page 1), and the Book number is shown for Book is used.
instructions that are defined in other Books (Part 2,
Form Opcode MOd? Page Mnemonic Instruction
Primary| Extend | Dep.’ | / Bk
X0 31 266 SR 51 | add[o][.] Add
XOo 31 10 SR 52 | addc[o][.] Add Carrying
X0 31 138 SR 53 | adde[o][.] Add Extended
D 14 50 | addi Add Immediate
D 12 SR 51 | addic Add Immediate Carrying
D 13 SR 51 | addic. Add Immediate Carrying and Record
D 15 50 | addis Add Immediate Shifted
X0 31 234 SR 53 | addme[o][.] | Add to Minus One Extended
X0 31 202 SR 54 | addze[o][.] Add to Zero Extended
X 31 28 SR 65 | and[.] AND
X 31 60 SR 66 | andcf.] AND with Complement
D 28 SR 63 | andi. AND Immediate
D 29 SR 63 | andis. AND Immediate Shifted
I 18 21 | b[1][a] Branch
B 16 CcT 21 | befi][a] Branch Conditional
XL 19 528 cT 22 | becetr[1] Branch Conditional to Count Register
XL 19 16 CT 22 | bclr[1] Branch Conditional to Link Register
X 3 0 59 | cmp Compare
D 1 59 | cmpi Compare Immediate
X 31 32 60 | cmpl Compare Logical
D 10 60 | cmpli Compare Logical Immediate
X 31 58 | (SR)| 68 | cntlzd[.] Count Leading Zeros Doubleword
X 3N 26 SR 68 | cntizw(.] Count Leading Zeros Word
XL 19 257 24 | crand Condition Register AND
XL 19 129 25 | crandc Condition Register AND with Complement
XL 19 289 25 | creqv Condition Register Equivalent
XL 19 225 24 | crnand Condition Register NAND
XL 19 33 25 | crnor Condition Register NOR
XL 19 449 24 | cror Condition Register OR
XL 19 417 25 | crorc Condition Register OR with Complement
XL 19 193 24 | crxor Condition Register XOR
X 31 86 135 | dcbf Data Cache Block Flush
X Ky 470 181 | dcbi Data Cache Block Invalidate
X 31 54 134 | dcbst Data Cache Block Store
X 31 278 133 | dcbt Data Cache Block Touch .
X 3 246 133 | dcbtst Data Cache Block Touch for Store
X 31 1014 134 | dcbz Data Cache Block set to Zero

Appendix P. PowerPC Instruction Set Sorted by Mnemonic

283

Opcode

Mode

Page

Form Primary] Extend Dep.'| / Bk Mnemonic Instruction

X0 3 489 | (SR)| 57 | divd[o][.] Divide Doubleword

X0 31 457 | (SR) | 58 | divdufo][.] Divide Doubleword Unsigned

X0 K| 491 SR 57 | divw[o][.] Divide Word

X0 31 459 SR 58 | divwu[o][.] Divide Word Unsigned

X 31 310 Bk lil] eciwx External Control In Word Indexed

X 31 438 Bk lif} ecowx External Control Out Word Indexed

X 31 854 Bk Il eieio Enforce In-order Execution of 1/0

X 31 284 SR 66 | eqv[.] Equivalent

X 31 954 SR 67 | extsb[.] Extend Sign Byte

X 31 922 SR 67 | extsh[.] Extend Sign Halfword

X 31 986 | (SR)| 67 | extsw[.] Extend Sign Word

X 63 264 105 | fabs[.] Floating Absolute Value

A 63 21 106 | fadd[.] Floating Add

A 59 21 106 | fadds[.] Floating Add Single

X 63 846 0 112 | fefidf.] Floating Convert From Integer Doubleword

X 63 32 ‘ 113 | fcmpo Floating Compare Ordered

X 63 0 113 | fcmpu Floating Compare Unordered

X 63 814 0 110 | fctid[.] Floating Convert To Integer Doubleword

X 63 815 () 111 | fetidz[.] Floating Convert To Integer Doubleword with round
toward Zero

X 63 14 111 | fetiw[.] Floating Convert To Integer Word

X 63 15 112 | fctiwz[.] Floating Convert To Integer Word with round toward Zero

A 63 18 107 § fdiv[.] Floating Divide

A 59 18 107 | fdivs[.] Floating Divide Single

A 63 29 108 | fmadd[.] Floating Multiply-Add

A 59 29 108 | fmadds[.] Floating Multiply-Add Single

X 63 72 105 | fmr[.] Floating Move Register

A 63 28 108 | fmsub[.] Floating Muitiply-Subtract

A 59 28 108 | fmsubs[.] Floating Multiply-Subtract Single

A 63 25 107 | fmul[.] Floating Multiply

A 59 25 107 | fmuls[.] Floating Multiply Single

X 63 136 105 | fnabs[.] Floating Negative Absolute Value

X 63 40 105 | fneg[.] Floating Negate

A 63 31 109 | famaddf.] Floating Negative Multiply-Add

A 59 31 109 | famadds[.] Floating Negative Multiply-Add Single

A 63 30 109 | fnmsub[.] Floating Negative Multiply-Subtract

A 59 30 109 | famsubs[.] Floating Negative Multiply-Subtract Single

A 59 24 209 | fres[.] Floating Reciprocal Estimate Single

X 63 12 110 | frsp[.] Floating Round to Single-Precision

A 63 26 210 | frsqrte[.] Floating Reciprocal Square Root Estimate

A 63 23 210 | fsel[.] Floating Select

A 63 22 209 | fsqrt[.] Floating Square Root

A 59 22 209 | fsqrtsf.] Floating Square Root Single

A 63 20 106 | fsub[.] Floating Subtract

A 59 20 106 | fsubs[.] Floating Subtract Single

X 31 982 132 | icbi Instruction Cache Block Invalidate

XL 19 150 Bk 1l isync Instruction Synchronize

D 34 30 | Ibz Load Byte and Zero

D 35 30 | Ibzu Load Byte and Zero with Update

X 31 119 30 | Ibzux Load Byte and Zero with Update Indexed

X 31 87 30 | Ibax Load Byte and Zero indexed

DS 58 0 1) 35 | id Load Doubleword

X 31 84 ") 46 | Idarx Load Doubleword And Reserve Indexed

DS 58 1 () 35 | Idu Load Doubleword with Update

X 31 53 0O 35 | Idux Load Doubleword with Update Indexed

X 31 21 M) 35 | ldx Load Doubleword Indexed

D 50 101 | Ifd Load Floating-Point Double

D 51 101 | Ifdu Load Floating-Point Double with Update

284

PowerPC Architecture Firsi Edition

Form Opcode MOde, Page Mnemonic Instruction
Primary| Extend | Dep.'| / Bk
X 31 631 101 | ifdux Load Floating-Point Double with Update Indexed
X 31 599 101 | Ifdx Load Floating-Point Double Indexed
D 48 100 | Ifs Load Floating-Point Single
D 49 100 | Ifsu Load Floating-Point Single with Update
X 31 567 100 | Ifsux Load Floating-Point Single with Update Indexed
X 31 535 100 | Ifsx Load Floating-Point Single Indexed
D 42 32 | Iha Load Halfword Algebraic
D 43 32 | lhau Load Halfword Algebraic with Update
X 31 375 32 | Thaux Load Halfword Algebraic with Update Indexed
X 31 343 32 | thax Load Halfword Algebraic Indexed
X 31 790 40 | thbrx Load Halfword Byte-Reverse Indexed
D 40 31 | lhz Load Halfword and Zero
D 41 31 | Ihzu Load Halfword and Zero with Update
X 31 311 31 | lhzux Load Halfword and Zero with Update Indexed
X 31 279 31 | Ihax Load Halfword and Zero Indexed.
D 46 42 | Imw Load Multiple Word
X 31 597 44 | lswi Load String Word Immediate
X 31 533 44 | Iswx Load String Word Indexed
Ds 58 2 0 34 | lwa Load Word Algebraic
X 31 20 46 | lwarx Load Word And Reserve Indexed
X 31 373 () 34 | lwaux Load Word Algebraic with Update indexed
X 31 341 0 34 | Iwax Load Word Algebraic indexed
X 31 534 40 | lwbrx Load Word Byte-Reverse Indexed
D 32 33 | lwz Load Word and Zero
D 33 33 | lwzu Load Word and Zero with Update
X 31 55 33 | lwzux Load Word and Zero with Update Indexed
X 31 23 33 | lwzx Load Word and Zero Indexed
XL 19 6 26 | merf Move Condition Register Field
X 63 64 114 | merfs Move to Condition Register from FPSCR
X 31 512 80 | merxr Move to Condition Register from XER
X 31 19 81 | mfcr Move From Condition Register
X 63 583 114 | mffs[.] Move From FPSCR
X 31 83 Bk Hl| mfmsr Move From Machine State Register
XFX 31 339 79 | mfspr Move From Special Purpose Register
X 31 595 { | Bk | mfsr Move From Segment Register
X 31 659 O | Bkl mfsrin Move From Segment Register Indirect
XFX 31 371 Bk 1] mftb Move From Time Base
XFX 31 144 80 | mtcrf Move To Condition Register Fields
X 63 70 116 | mtfsbO[.] Move To FPSCR Bit 0
X 63 38 116 | mtfsb1[.] Move To FPSCR Bit 1
XFL 63 71 115 | mtfsf[.] Move To FPSCR Fields
X 63 134 115 | mtfsfi[.] Move To FPSCR Field Immediate
X 31 146 Bk II| mtmsr Move To Machine State Register
XFX 31 467 79 | mtspr Move To Special Purpose Register
X 31 210 { | Bkill| mtsr Move To Segment Register
X 31 242 { | Bkl mtsrin Move To Segment Register indirect
X0 31 73 | (SR) | 56 | mulhd[.] Muitiply High Doubleword
X0 31 9 [(SR){ 56 | mulhdu[.] Multiply High Doubleword Unsigned
X0 31 75 SR 56 | mulhw[.] Multiply High Word
X0 31 11 SR 56 { mulhwu[.] Multiply High Word Unsigned
X0 3N 233 55 | mulld[o][.] Multiply Low Doubleword
D 7 55 | mulli Multiply Low Immediate
XO 31 235 55 | multw[o][.] Muitiply Low Word
X 31 476 SR 65 | nand[.] NAND
X0 31 104 SR 54 | neglo][.] Negate
X 31 124 SR 66 | nor[.] NOR
X 31 444 | SR 65 | or{.] OR
X N 412 SR 66 | orc[.] OR with Complement

Appendix P. PowerPC Instruction Set Sorted by Mnemonic

285

Opcode

Mode

Page

Form Primary| Extend Dep.!| 7 Bk Mnemonic Instruction
D 24 64 | ori OR Immediate
D 25 64 | oris OR Immediate Shifted
XL 19 50 Bk | rfi Return From Interrupt
MDS 30 8 |(SR)| 72 | ridcli[.] Rotate Left Doubleword then Clear Left
MDS 30 9 | (SR)| 73 | rider[.] Rotate Left Doubleword then Clear Right
MD 30 2 [(SR)} 71 | ridic[.] Rotate Left Doubleword Immediate then Clear
MD 30 0 | (SR) 70 | ridici[.] Rotate Left Doubleword Immediate then Clear Left
MD 30 1 | (SR) 70 | ridicr[.] Rotate Left Doubleword Immediate then Clear Right
MD 30 3 |(SR)| 74 | ridimi[.] Rotate Left Doubleword Immediate then Mask Insert
M 20 SR 74 | riwimi[.] Rotate Left Word Immediate then Mask Insert
M 21 SR 71 | riwinm[.] Rotate Left Word Immediate then AND with Mask
M 23 SR 73 | riwnm{.] Rotate Left Word then AND with Mask
SC 17 1 23 | sc System Call
X 31 498 () | Bk i} slbia SLB Invalidate All
X 31 434 () | Bklil} slbie SLB Invalidate Entry
X 31 27 [(SR)| 75 | sid[.] Shift Left Doubleword
X 31 24 SR 75 | siw[.] Shift Left Word
X 31 794 | (SR) 78 | srad[.] Shift Right Algebraic Doubleword
Xs 3 413 | (SR) 77 | sradi[.] Shift Right Algebraic Doubleword Immediate
X 31 792 SR 78 | srawl[.] Shift Right Algebraic Word
X 31 824 SR 77 | srawil.] Shift Right Algebraic Word immediate
X 31 539 [(SR)| 76 | srd[.] Shift Right Doubleword
X 31 536 SR 76 | srw[.] Shift Right Word
D 38 36 | stb Store Byte
D 39 36 | stbu Store Byte with Update
X 31 247 36 | stbux Store Byte with Update Indexed
X 31 215 36 | stbx Store Byte Indexed
DS 62 0 ") 39 | std Store Doubleword
X 31 214 () 47 | stdex. Store Doubleword Conditional Indexed
DS 62 1 Q) 39 | stdu Store Doubleword with Update
X 31 181 Q 39 | stdux Store Doubleword Indexed with Update
X 31 148 ") 39 | stdx Store Doubleword Indexed
D 54 104 | stfd Store Floating-Point Double
D 55 104 | stfdu Store Floating-Point Double with Update
X 31 759 104 | stfdux Store Floating-Point Double with Update Indexed
X 31 727 104 | stfdx Store Floating-Point Double Indexed
X 31 983 208 | stfiwx Store Floating-Point as Integer Word Indexed
D 52 103 | stfs Store Floating-Point Single
D 53 103 | stfsu Store Floating-Point Single with Update
X 31 695 103 | stfsux Store Floating-Point Single with Update Indexed
X 31 663 103 | stfsx Store Floating-Point Single Indexed
D 44 37 | sth Store Halfword
X 31 918 41 | sthbrx Store Halfword Byte-Reverse Indexed
D 45 37 | sthu Store Halfword with Update
X 31 439 37 | sthux Store Halfword with Update Indexed
X 31 407 37 | sthx Store Halfword Indexed
D 47 42 | stmw Store Multiple Word
X 31 725 45 | stswi Store String Word immediate
X 31 661 45 | stswx Store String Word Indexed
D 36 38 | stw Store Word
X 31 662 41 | stwbrx Store Word Byte-Reverse Indexed
X 31 150 47 | stwex. Store Word Conditional Indexed
D 37 38 | stwu Store Word with Update
X 31 183 38 | stwux Store Word with Update Indexed
X 31 151 38 | stwx Store Word Indexed
X0 31 40 SR 51 | subf[o][.] Subtract From
X0 31 8 SR 52 | subfcfo][.] Subtract From Carrying
X0 31 136 SR 53 | subfe[o][.] Subtract From Extended
286 PowerPC Architecture First Edition

Form Opcode Mod? Page Mnemonic Instruction
Primary | Extend | Dep."{ / Bk :
D 8 SR 52 | subfic Subtract From Immediate Carrying
X0 | 232 SR 53 | subfme[o][.] | Subtract From Minus One Extended
X0 31 200 | SR 54 | subfze[o][.] | Subtract From Zero Extended
X 31 598 48 | sync Synchronize
X 31 68 O 62 | td Trap Doubleword
D 2) 61 | tdi Trap Doubleword Immediate
X 31 370 Bk It tibia TLB Invalidate All
X 31 306 Bk 1| tibie TLB Invalidate Entry
X 31 566 Bk Ill| tibsync TLB Synchronize
X 3 4 62 | tw Trap Word
D 3 61 | twi Trap Word Immediate
X K 316 SR 65 | xor[.] XOR
D 26 64 | xori XOR Immediate
D 27 64 | xoris XOR Immediate Shifted

'Key to Mode Dependency Column
The entry is shown in parentheses () if the instruction is defined only for 64-bit implementations.

The entry is shown in braces {} if the instruction is defined only for 32-bit implementations.

blank The instruction has no mode dependence, CcT If the instruction tests the Count Register, it
except that if the instruction refers to storage tests the low-order 32 bits when in 32-bit
when in 32-bit mode, only the low-order 32 mode, and all 64 bits when in 64-bit mode.
bits of the 64-bit effective address are used . ., . . .
SR The instruction’s primary function is mode-
to address storage. Storage reference . . .
instructions include loads, stores, branch independent, but the setting of status regis-
: ’ ’ ters (such as XER and CRO) is

instructions, etc. mode-dependent.

Appendix P. PowerPC Instruction Set Sorted by Mnemonic 287

288 PowerPC Architecture First Edition

Index

Numerics

32-bit mode 163

A

A-form 10
AA field 10
address 14
effective 15
real 158
address translation 178
32-bit mode 163
64-bit mode 160
BAT 174, 178
block 159
EA to VA 160, 161, 163, 168, 169
esid to vsid 160, 161, 163, 168, 169
overview 159, 168
Page Table Entry 165, 171, 178
PTE 165, 171
Reference bit 178
RPN 164, 170
Segment Table Entry 162
STE 162
VA to RA 160, 164, 168, 170
VPN 164, 170
aliasing 125
alignment
effect on performance 129
Alignment interrupt 196
DSISR 275
Architecture
intent 270
ASR 161
assembler language
extended mnemonics 221
mnemonics 221
symbols 221
atomic operation 126
atomicity
single-copy 120

B-form 8

BA field 10

BAT 159, 174

BB field 10

BD field 11

BE 148

BF field 11

BFA field 11

Bl field 11

Big-Endian 233

block {def) 119

block address translation 159, 174
BO field 11

boundedly undefined 12
Branch Trace 199

BT field 11

byte ordering 233
bytes 4

Cc

C 85
CA 28
cache management instructions 132
cache model 122
cache parameters 131
Caching Inhibited 155, 177
Change bit 178, 181, 186, 270
CIA 6
Coherence, Memory 177
combined cache 124
combining

accesses 177

stores 177
context (def) 143
context synchronization 145

CR 17
CTR 18
D

Index

289

D field 11
D-form 9
DAR 151, 195, 197
data

access

synchronization 269

data cache instructions 133 -
Data Storage interrupt 194
dcbf 135
dchi 181
dcbst 134
dcbt 133
dcbtst 133
dcbz 134
DEC 204
Decrementer interrupt 198
defined instructions 12
delayed Machine Check interrupt 194
denormalization 88
denormalized number 87
direct-store segment 173
double-precision 89
doublewords 4
DR 149
DS field 11
DS-form 9
DSISR 151

alignment interrupt 275
dual cache 123

=]

E (Enable bit) 267

EA 15

EAR 267

eciwx 268

ecowx 268

EE 148

effective address 15, 155, 159
32-bit 169
64-bit 161

eieio 125, 135

EQ 18

exception (def) 143

execution synchronization 145

External interrupt 196

F

FE 18,85
FEO 148
FE1 148
FEX 84
FG 18,85
FI 85

FL 18,85

FLM field 11
floating-point
denormalization 88
double-precision 89
exceptions 83, 90
inexact 95
invalid operation 92
overflow 94
underflow 94
zero divide 94
execution models 95
normalization 88

number
denormalized 87
infinity 87

normalized 87
not a number 88
zero 87
rounding 90
sign 88
single-precision 89
Floating-Point Assist interrupt 199
Floating-Point Unavailable interrupt
FP 148
FPCC 85
FPR 84
FPRF 85
FPSCR 84
C 85
FE 85
FEX 84
FG 85
FI 85
FL 85
FPCC 85
FPRF 85
FR 85
FU 85
FX 84
NI 86
OE 86
. OX 84
RN 86
UE 86
UX 85
VE 85
VX 84
VXCVI 85
VXIDl 85
VXIMZ 85
VXisl 85
VXSNAN 85
VXSOFT 85
VXSQRT 85
VXVC 85
VXZDZ 85
XE 86
XX 85
ZE 86

198

290 PowerPC Architecture First Edition

FPSCR (continued)

ZX 85
FR 85
FRA field
FRB field
FRC field
FRS field
FRT field

FU 18,85

FX 84
FXM field

G

GPR 27
GT 18

11
1
11
11
11

1

Guarded storage 157, 177
Gulliver’s Travels 233

H
halfwords

4

hardware (def) 143

hardware description language §

hashed page table 165, 171

search

166, 172

HTAB 165, 171

search

1

|-form 8
icbi 132
ILE 148

166, 172

illegal instructions 13
inexact 95
infinity 87
Inhibited, Caching 177

instruction
fetch

synchronization 269

fields
AA
BA
BB
BD
BF
BFA
Bl
BO
BT

10, 11, 12, 144
10
10
10
1
1
1"

1

1
11

D 11

DS

FLM
FRA
FRB
FRC

11
11
11
1
11

instruction (continued)

fields (continued)
FRS 11
FRT 11
FXM 11
L 11
L1
LK 11
MB 11
ME 11
NB 11
OE 11
RA 11
RB 11
Rc 11
RS 12
RT 12
SH 12
Si 12
SPR 12, 144
SR 12,144
TBR 12
TO 12
U 12
Ul 12
X0 12
formats 8, 9, 10, 144
A-form 10
B-form 8
D-form 9
DS-form 9
I-form 8
M-form 10
MD-form 10
MDS-form 10
SC-form 8
X-form 9
XFL-form 10
XFX-form 9
XL-form 9
XO-form 10
XS-form 10
instruction cache instructions 132
instruction prefetch 157
Instruction Storage interrupt 195
instruction-caused interrupt 191
instructions
classes 12
dcbf 135
dcbi 181
dcbst 134
dcbt 133
dcbtst 133
dcbz 134
defined 12
forms 13
eciwx 268
ecowx 268
eieio 125, 135

Index

291

instructions (continued)
icbi 132
illegal 13
invalid forms 13
isync 132
Idarx 126
lwarx 126
optional 13, 267
preferred forms 13
reserved 13
stdex. 126
storage control 131, 181
stwex. 126
sync 125
interrupt (def) 143
interrupt priorities 201
interrupt synchronization 191
interrupt vector 193
interrupts
Alignment 196
Data Storage 194
Decrementer 198
External 196
Floating-Point Assist 199
Floating-Point Unavailable 198
Instruction Storage 185
instruction-caused 181
Machine Check 194
new MSR 193
precise 191
Program 197
System Call 198
System Reset 194
system-caused 191
Trace 198
invalid instruction forms 13
invalid operation 92
IP 149
IR 149
isync 132

K

K bits 179
in IBAT 271
key, storage 179

L field 11

language used for instruction operation description 5
LE 149

Ll field 11

Little-Endian 233

LK field 11

load (def) 119

LR 18
LT 18

M-form 10

Machine Check interrupt 194

Machine State Register
Branch Trace Enable 148
Data Relocate 149
External Interrupt Enable 148
FP Available 148
FP Exception Mode 148
Instruction Relocate 149
Interrupt Little-Endian Mode 148
Interrupt Prefix 149
Little-Endian Mode 149
Machine Check Enable 148
Power Management Function Enable 148
Problem State 148
Recoverable Interrupt 149
Single-Step Trace Enable 148
Sixty-Four-bit mode 148

main storage 119

MB field 11

MD-form 10

MDS-form 10

ME 148

ME field 11

memory coherence 120, 155, 177

mismatched WIMG bits 178

mnemonics
extended 221

MSR 148

N

NB field 11

Next Instruction Address 150
NI 86

NIA 6

no-op 64

normalization 88
normalized number 87

not a number 88

o

OE 86

OE field 11

optional instruction 13
ov 27

overflow 94

OX 84

292 PowerPC Architecture First Edition

P

page fault 156
page protection 179
page table 165, 171
search 166, 172
update 186
Page Table Entry 165, 171, 178
POW 148
PP bits 179
PR 148
precise interrupt 191
preferred instruction forms 13
prefetch
instruction 157
Program interrupt 197
program order (def) 119
PTE 165, 171
PVR 149

Q

quadwords 4

R

RA field 11
RB field 11
RC bits 178
Rc field 11
real address 158, 159
reference and change recording 178
Reference bit 178, 181, 186, 270
register transfer level language 5
registers
Address Space Register 161
Condition Register 17
Count Register 18
Data Address Register 151, 195, 197
Data Storage Interrupt Status Register 151
Decrementer 204
External Access Register 267
Fixed-Point Exception Register 27
Floating-Point Registers 84
Floating-Point Status and Control Register 84
General Purpose Registers 27
implementation-specific 273
Link Register 18
Machine State Register 148
Machine Status Save
Restore Register 0 147
Restore Register 1 147
optional 267
Processor Version Register 149
SDR1 165, 171
Segment Registers 269

registers (continued)
SPRGn 151
SPRs 151, 269, 273
SRRO 147
SRR1 147
status and control 269
Time Base 137, 203
reserved field §, 144
reserved instructions 13
Rl 149
RID {(Resource ID) 267
RN 86
rounding 90
RS field 12
RT field 12
RTL 5, 144

S

SC-form 8
SDR1 1685, 171
SE 148
segment
direct-store 159, 173
ordinary 159
segment lookaside buffer 163
Segment Registers 269
segment table 162

search 162
update 186
Segment Table Entry 162
SF 148
SH field 12
Sl field 12
sign 88

single-copy atomicity 120
single-precision 89
Single-Step Trace 199
SLB 163
SO 18,27
software

synchronization

requirements 270

speculative operations 157
split cache 123
split field notation 8
SPR field 12, 144
SPRGn 151
SPRs 151, 269
SR field 12,144
SRRO 147
SRR1 147
STAB 162

search 162
status and control registers 269
STE 162
storage

access

synchronization 269

Index

293

storage (continued)
access atomicity 130
access order 125, 130
atomic operation 126
coherence 120
consistency 155
Guarded 157
instruction restart 130
order 125
ordering 125, 135, 155
reservation 127
segments 155
shared 125
weak ordering 155
storage access
definitions
load 119
program order 119
store 119
floating-point 99
storage access modes
defined 176
supported 177
storage address 14
storage control
instructions 181
storage con!+ol instructions 131
storage key 179
storage model 155
storage operations
speculative 157
storage protection 179
storage, Guarded 177
store (def) 119
Swift, Jonathan 233
symbols 221
sync 125
sync exceptions 186
synchronization 144, 186, 269
context 145
execution 145
interrupts 191
requirements 270
System Call interrupt 198
System Reset interrupt 194
system-caused interrupt 191

table update 186
TB 137, 203

TBL 137, 203

TBR field 12

TBU 137, 203

Time Base 137, 203
TLB 1686, 172

TO field 12

Trace interrupt 199
translation lookaside buffer 166, 172
trap interrupt (def) 143

U

U field 12

UE 86

Ul field 12

undefined
boundedly 12

underflow 94

Ux 85

v

VE 85

virtual address 159, 161, 164, 169, 170
virtual storage 128
VX 84

VXCvVI 85

VXIDI 85

VXIMZ 85

VXISl 85

VXSNAN 85
VXSOFT 85
VXSQRT 85

VXVC 85

vXzZDZ 85

w

WIMG bits 158, 173, 177
words 4

Write Through 155, 177
write through cache 124

X

X-form 9
XE 86
XER 27
XFL-form 10
XFX-form 9
XL-form 9
XO field 12
XO-form 10
XS-form 10
XX 85

4

ZE 86 .
zero 87

294 PowerPC Architecture First Edition

zero divide 94
ZX 85

index 295

296 PowerPC Architecture First Edition

Last Page - End of Document

Last Page - End of Document 297

IOCHOn

