
PowerPC Architecture

First Edition

PowerPC Architecture

First Edition

First Edition (May 1993)

Notice --~

This manual contains preliminary specifications. As such they are subject to change without notice. Interna­
tional Business Machines Corporation provides this manual "AS IS'" without warranty of any kind, either
expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose.

IBM does not warrant the contents of this publication or the accompanying source code examples, whether indi­
vidually or as one or more groups,will meet your requirements or that the publication or the accompanying
source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; ·these changes will be incorporated in new editions of the publication.

Requests for copies of this publication and for technical information about IBM products should be made to your
IBM Authorized Dealer or you IBM Marketing Representative.

IBM is a registered trademark of the International Business Machines Corporation.

PowerPC is a registered trademark of the International Business Machines Corporation.

© Copyright International Business Machines Corporation, 1993. All rights reserved.

First Edition (May 1993) iii

iv PowerPC Architecture First Edition

About This Book

This book describes the PowerPC Architecture in three parts. Part 1, "PowerPC User Instruction Set Architecture"
on page 1, describes the base instruction set and related facilities available to the application programmer.
Part 2, "PowerPC Virtual Environment Architecture" on page 117, describes the storage model and related
instructions and facilities available to the application programmer, and the Time Base as seen by the application
programmer. Part 3, "PowerPC Operating Environment Architecture" on page 141, describes the system (privi­
leged) instructions and related facilities. Each Power PC Implementation Features document defines the imple­
mentation dependent aspects of a particular implementation. The complete description of the PowerPC
Architecture as instantiated in a given implementation includes also the material in the PowerPC Implementation
Features document for that implementation.

About This Book V

•

vi PowerPC Architecture First Edition

Table of Contents

Part 1. PowerPC User Instruction Set
Architecture 1

Chapter 1. Introduction 3
1.1 Overview 3
1.2 Computation Modes 3
1.3 Instruction Mnemonics and

Operands 3
1.4 Compatibility with the Power

Architecture 3
1.5 Document Conventions 4
1.6 Processor Overview 6
1.7 Instruction Formats 8
1.8 Classes of Instructions 12
1.9 Forms of Defined Instructions 13
1.10 Exceptions 14
1.11 Storage Addressing 14

Chapter 2. Branch Processor 17
2.1 Branch Processor Overview 17
2.2 Instruction Fetching 17
2.3 Branch Processor Registers 17
2.4 Branch Processor Instructions '" 19

Chapter 3. Fixed-Point Processor 27
3.1 Fixed-Point Processor Overview 27
3.2 Fixed-Point Processor Registers 27
3.3 Fixed-Point Processor Instructions 29

Chapter 4. Floating-Point Processor 83
4.1 Floating-Point Processor Overview 83
4.2 Floating-Point Processor Registers 83
4.3 Floating-Point Data 86
4.4 Floating-Point Exceptions 90
4.5 Floating-Point Execution Models .. 95
4.6 Floating-Point Processor

Instructions 99

Part 2. PowerPC Virtual
Environment Architecture

Chapter 5. Storage Model

117

119

5.1 Definitions and Notation
5.2 Introduction
5.3 Sing Ie-copy Atomicity
5.4 Memory Coherence
5.5 Storage Control Attributes
5.6 Cache Models ·
5.7 Shared Storage ·
5.8 Virtual Storage ·

Chapter 6. 'Effect of Operand
Placement on Performance

6.1 Instruction Restart
6.2 Atomicity and Order

Chapter 7. Storage Control
Instructions

7.1 Parameters Useful to Application
Programs

7.2 Cache Management Instructions
7.3 Enforce In-order Execution of I/O

119
120
120
120
121
122
125
128

129
130
130

131

131
132

Instruction 135

Chapter 8. Time Base 137
8.1 Time Base Instructions 137
8.2 Reading the Time Base on 64-bit

Implementations 138
8.3 Reading the Time Base on 32-bit

Implementations 138
8.4 Computing Time of Day from the

Time Base 138

Part 3. PowerPC Operating
Environment Architecture 141

Chapter 9. Introduction 143
9.1 Overview 143
9 .. 2 Compatibility with the Power

Architecture 143
9.3 Document Conventions 143
9.4 General Systems Overview 144
9.5 Instruction Formats 144
9.6 Exceptions 144
9.7 Synchronization 144

Table of Contents vii

Chapter 10. Branch Processor
10.1 Branch Processor Overview
10.2 Branch Processor Registers
10.3 Branch Processor Instructions

147
147
147
150

Chapter 11. Fixed-Point Processor 151
11.1 Fixed-Point Processor Overview 151 .
11.2 PowerPC Special Purpose

Registers 151
11.3 Fixed-Point Processor Registers 151
11.4 Fixed-Point Processor Privileged

Instructions 152

Chapter 12. Storage Control 155
12.1 Storage Addressing 155
12.2 Storage Model 155
12.3 Address Translation ·Overview . 159
12.4 Segmented Address Translation,

64-bit Implementations 160
12.5 Segmented Address Translation,

32-bit Implementations 168
12.6 Direct-Store Segments 173
12.7 Block Address Translation 174
12.8 Storage Access Modes 176
12.9 Reference and Change Recording 178
12.10 Storage Protection 179
12.11 Storage Control Instructions .. 181
12.12 Table Update Synchronization

Requirements 186

Chapter 13. Interrupts 191
13.1 Overview 191
13.2 Interrupt Synchronization 191
13.3 Interrupt Classes 191
13.4 Interrupt Processing 192
13.5 Interrupt Definitions 193
13.6 Partially Executed Instructions . 199
13.7 Exception Ordering 200
13.8 Interrupt Priorities 201

Chapter 14. Timer Facilities 203
14.1 Overview 203
14.2 Time Base 203
14.3 Decrementer, 204

Appendix A. Optional Instructions . 207
A.1 Floating-Point Processor

Instructions 208

Appendix B. Suggested
Floating-Point Models 211

B.1 Floating-Point Round to
Single-Precision Model 211

viii PowerPC Architecture First Edition

B.2 Floating-Point Convert to Integer
Model 216

B.3 Floating-Point Convert from
Integer Model 219

Appendix C. Assembler Extended
Mnemonics

C.1 Branch mn.emonics
C.2 Condition Register logical

mnemonics
C.3 Subtract mnemonics
C.4 Compare mnemonics
C.5 Trap mnemonics
C.6 Rotate and Shift mnemonics
C.7 Move To/From Special Purpose

Register mnemonics
C.8 Miscellaneous mnemonics .

Appendix D. Little-Endian Byte
Ordering

0.1 Byte Ordering
0.2 Structure Mapping Examples
0.3 PowerPC Byte Ordering
0.4 PowerPC Data Storage

Addressing in Little-Endian Mode
0.5 PowerPC Instruction Storage

Addressing in Little-Endian Mode
0.6 PowerPC Cache Management and

Lookaside Buffer Management
Instructions in Little-Endian Mode

0.7 PowerPC I/O in Little Endian Mode
0.8 Origin of Endian

Appendix E. Programming
Examples

E.1 Synchronization
E.2 Multiple-Precision Shifts
E.3 Floating-Point Conversions
E.4 Floating-Point Selection ..

Appendix F. Cross-Reference for

221
221

224
225
226
228
229

231
232

233
233
233
234

236

237

239
239
240

241
241
245
248
251

Changed Power Mnemonics . 253

Appendix G. Incompatibilities with
the Power Architecture 255

G.1 New Instructions, Formerly
Privileged Instructions 255

G.2 Newly Privileged Instructions 255
G.3 Reserved Bits in Instructions 255
G.4 Reserved Bits in Registers 255
G.5 Alignment Check 256
G.6 Condition Register " 256

Go7 Inappropriate use of LK and Rc
bits 0 0·0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 • 0 256

Go8 BO Field 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 256
Go9 Branch Conditional to Count

Register 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0

Go10 System Call 0 0 0 0 • 0 • 0 •• 0 0

Go11 Fixed-Point Exception Register
(XER) 0 0 • 0 0 0 0 0 0 0 0 0 ••• 0 0 0 0

G.12 Update Forms of Storage Access
G.13 Multiple Register Loads 0 0 0 0 0

Go14 Alignment for Load/Store
Multiple o. 0 0 0 0 0 0 0 • 0 • 0 0 • 0 0

Go15 Move Assist Instructions

256
256

257
257
257

257
257

Go16 Synchronization" o. 0 0 0 0 0 0 0 257
Go17 Move To/From SPR 0 0 0 0 0 0 0 258
Go18 Effects of Exceptions on FPSCR

Bits FR and FI 0 0 0 0 0 0 0 0 0 0 0 0 0 258
Go19 Floating-Point Store Instructions 258
Go20 Move From FPSCR 0 0 0 0 • 0 0 0 258
Go21 Zeroing Bytes in the Data Cache 258
G.22 Floating-Point Load/Store to

Direct-Store Segment . 0 0 0 0 0 0 0 0 258
Go23 Segment Register Instructions 0 258
Go24 TLB Entry Invalidation 0 0 • 0 0 0 259
Go25 Floating-Point Interrupts 259
G.26 Timing Facilities . 0 •• 0 0 0 0 0 259
Go27 Deleted Instructions . 0 0 0 0 0 0 260
Go28 Discontinued Opcodes 0 0 0 • 0 260

Appendix H. New Instructions . 0 • 0 261
H.1 New Instructions for All

Implementations 0 0 0 0 0 0 0 0 0 0 0 0 261
Ho2 New Instructions for 64-Bit

Implementations Only o. 0 0 0 • 0 0 0 262
Ho3 New Instructions for 32-Bit

Implementations Only o. 0 0 0 0 0 0 0 262

Appendix I. Illegal Instructions ... 263

Appendix J. Reserved Instructions 265

Appendix K. Optional Facilities and
Instructions 0 0 • 0 0 • • 0 0 0 • • 0 0 • 0 0 267

Ko1 External Control . 0 0 0 • 0 • 0 0 0 267

Appendix L. Synchronization
Requirements for Special Registers 269

L.1 Affected Registers . 0 0 0 • 0 0 0 0 269
L.2 Context Synchronizing Operations 269
L.3 Software Synchronization

Requirements . 0 •• 0 0 0 0 •• 0 • 0 270
L.4 Additional Software Requirements 270

Appendix M.
Implementation-Specific SPRs 273

Appendix N. Interpretation of the
DSISR as set by an Alignment
I nterru pt 0 0 0 • • 0 0 • 0 • • 0 0 0 • • • 0 0 275

Appendix O. PowerPC Instruction
Set Sorted by Opcode . 0 0 • 0 • 0 0 0 277

Appendix P. PowerPC Instruction
Set Sorted by Mnemonic 0 0 • 0 0 0 0 283

Index o. 0 0 0 0 • 0 0 0 ••• 0 0 • 0 0 0 • 0 0 289

Last Page - End of Document 291

Table of Contents ix

x PowerPC Architecture First Edition

Figures

1. PowerPC User Register Set 7
2. Logical Processing Model 8
3. I Instruction Format 8
4. B Instruction Format 8
5. SC Instruction Format 8
6. 0 Instruction Format 9
7. OS Instruction Format (64-bit

implementations only) 9
8. X Instruction Format 9
9. XL Instruction Format 9

10. XFX Instruction Format 10
11. XFL Instruction Format 10
12. XS Instruction Format (64-bit

implementations only) 10
13. XO Instruction Format 10
14. A Instruction Format 10
15. M Instruction Format 10
16. M 0 Instruction Format (64-bit

implementations only) 10
17. MDS Instruction Format (64-bit

implementations only) 10
18. Condition Register 17
19. Link Register 18
20. Count Register 18
21. General Purpose Registers 27
22. Fixed-Point Exception Register 27
23. Floating-Point Registers 84
24. Floating-Point Status and Control Register 84
25. Floating-Point Result Flags 86
26. Floating-Point Single Format 86
27. Floating-Point Double Format 86
28. I EEE Floating-Point Fields .. 87
29. Approximation to Real Numbers 87
30. Selection of Zl and Z2 90
31. IEEE 64-bit Execution Model 96
32. Interpretation of G, R, and X bits 96
33. Location of the Guard, Round and Sticky

Bits 96
34. Multiply-Add Execution Model 97
35. Performance Effects of Storage Operand

Placement, Big-Endian mode 129
36. Performance Effects of Storage Operand

Placement, Little-Endian mode 130
37. Time Base 137
38. TBR encodings for mftb 138
39. Logical View of the Power PC Processor

Architecture 145
40. Save/Restore Register 0 147
41. Save/Restore Register 1 147
42. Machine State Register 148
43. Processor Version Register 149

44. Data Address Register 151
45. Data Storage Interrupt Status Register 151
46. Software-use SPRs 151
47. SPR encodings for mtspr 153
48. SPR encodings for mfspr 154
49. Power PC Address Translation 159
SO. Address Translation Overview (64-bit

implementations) 160
51. Translation of 64-bit Effective Address to

Virtual Address 161
52. Address Space Register 161
53. Segment Table Entry format 162
54. Translation of 80-bit Virtual Address to

64-bit Real Address 164
55. Page Table Entry, 64-bit implementations 165
56. SDR1, 64-bit implementations 165
57. Address Translation Overview (32-bit

implementations) 168
58. Translation of 32-bit Effective Address to

Virtual Address 169
59. Segment Register format 169
60. Translation of 52-bit Virtual Address to

32-bit Real Address 170
61. Page Table Entry, 32-bit implementations 171
62. SDR1, 32-bit implementations 171
63. BAT Registers, 64-bit implementations 175
64. BAT Registers, 32-bit implementations 175
65. Formation of Real Address via BAT, 64-bit

implementations 176
66. Formation of Real Address via BAT, 32-bit

implementations. 176
67. Protection Key Processing 180
68. MSR Setting Due to Interrupt 193
69. Offset of Interrupt Vector by Interrupt Type 193
70. Time Base 203
71. Decrementer 204
72. C structure's', showing values of elements 234
73. Big-Endian mapping of structure's' 234
74. Little-Endian mapping of structure's' 234
75. Power PC Little-Endian, structure's' in

storage subsystem 235
76. PowerPC Little-Endian, structure's' as

seen by processor 236
77. Little-Endian mapping of word 'w' stored at

address 5 237
78. Power PC Little-Endian, word 'w' stored at

address 5, in storage subsystem 237
79. Assembly language program 'p' 238
80. Big-Endian mapping of program 'p' 238
81. Uttle-Endian mapping of program 'p' 238

Figures xi

82. Power PC little-Endian, program 'p' in 83. External Access Register 267
storage subsystem 238

xii PowerPC Architecture First Edition

Part 1. PowerPC User Instruction Set Architecture

This part describes the base instruction set and
related facilities available to the application pro­
grammer.

Chapter 1. Introduction
1.1 Overview
1.2 Computation Modes
1.3 Instruction Mnemonics and

Operands
1.4 Compatibility with the Power

Architecture
1.5 Document Conventions

3
3
3

3

3
4

1.6 Processor Overview 6
1.7 Instruction Formats 8
1.8 Classes of Instructions 12
1.9 Forms of Defined Instructions 13
1.10 Exceptions 14
1.11 Storage Addressing 14

Chapter 2. Branch Processor 17
2.1 Branch Processor Overview 17

2.2 Instruction Fetching 17
2.3 Branch Processor Registers 17
2.4 Branch Processor Instructions 19

Chapter 3. Fixed-Point Processor 27
3.1 Fixed-Point Processor Overview 27
3.2 Fixed-Point Processor Registers 27
3.3 Fixed-Point Processor .Instructions 29

Chapter 4. Floating-Point Processor 83
4.1 Floating-Point Processor Overview 83
4.2 Floating-Point Processor Registers 83
4.3 Floating-Point Data 86
4.4 Floating-Point Exceptions 90
4.5 Floating-Point Execution Models 95
4.6 Floating-Point Processor

Instructions 99

Part 1. PowerPC User Instruction Set Architecture 1

2 PowerPC Architecture First Edition

Chapter 1. Introduction

1.1 Overview

This chapter describes computation modes, compat­
ibility with the Power Architecture, document con­
ventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Computation Modes

The PowerPC Architecture allows for the following
types of implementation:

• 64-bit implementations, in which all registers
except some Special Purpose Registers are 64
bits long, and effective addresses are 64 bits
long. All 64-bit implementations have two modes
of operation: 64-bit mode and 32-bit mode. The
mode controls how the effective address is inter­
preted, how status bits are set, and how the
Count Register is tested by Branch Conditional
instructions. All instructions provided for 64-bit
implementations are available in both modes.

• 32-bit implementations, in which all registers
except Floating-Point Registers are 32 bits long,
and effective addresses are 32 bits long.

Instructions defined in this document are provided in
both 64-bit implementations and 32-bit implementa­
tions unless otherwise stated. Instructions that are
provided only for 64-bit implementations are illegal in
32-bit implementations, and vice versa.

1.2.1 64-bit Implementations

In both 64-bit mode and 32-bit mode of a 64-bit imple­
mentation, instructions that set a 64-bit register affect
all 64 bits, and the value placed into the register is
independent of mode. In both modes, effective
address computations use all 64 bits of the relevant
registers (General Purpose Registers, Link Register,
Count Register, etc.), and produce a 64-bit result.
However, in 32-bit mode, the high-order 32 bits of the
computed effective address are ignored when

accessing data, and are set to 0 when fetching
instructions.

1.2.2 32-bit Implementations

For a .32-bit implementation, all references to 64-bit
mode in this document should be disregarded. The
semantics of instructions are as shown in this docu­
ment for 32-bit mode in a 64-bit implementation,
except that in a 32-bit implementation all registers
except Floating-Point Registers are 32 bits long. Bit
numbers for registers are shown in braces ({ }) when
they differ from the corresponding numbers for a
64-bit implementation, as described in Section 1.5.1,
"Definitions and Notation" on page 4.

1.3 Instruction Mnemonics and
Operands

The description of each instruction includes the mne­
monic and a formatted list of operands. Some exam­
ples are the following.

stw RS,D(RA)
addis RT,RA,SI

PowerPC-compliant assemblers will support the mne­
monics and operand lists exactly as shown. They will
also provide certain extended mnemonics, as
described in Appendix C, "Assembler Extended
Mnemonics" on page 223.

1.4 Compatibility with the Power
Architecture

The PowerPC Architecture provides binary compat­
ibility for Power application programs, except as
described in Appendix G, "Incompatibilities with the
Power Architecture" on page 257.

Chapter 1. Introduction 3

Many of the Power PC instructions are identical to
Power instructions. For some of these the PowerPC
instruction name and/or mnemonic differs from that in
Power. To assist readers familiar with the Power
Architecture, Power mnemonics are shown with the
individual instruction descriptions when they differ
from the Power PC mnemonics. Also, Appendix F,
"Cross~Reference for Cnanged Power MnerT)onics"on
page 255, provides a cross-reference from Power
mnemonics to PowerPC mnemonics for the
instructions in this document.

1.5 Document Conventions

1.5.1 Definitions and Notation

The following definitions and notation are used
throughout the PowerPC Architecture documents.

• A program is a sequence of related instructions.

• Quadwords are 128 bits, doublewords are 64 bits,
words are 32 bits, halfwords are 16 bits, and
bytes are 8 bits.

• All numbers are decimal unless specified in some
special way.

Obnnnn means a number expressed in binary
format.
Oxnnnn means a number expressed in
hexadecimal format.

Underscores may be used between digits.

• RT, RA, R1, ... refer to General Purpose Regis­
ters.

• FRT, FRA, FR1, ... refer to Floating-Point Regis­
ters.

• (x) means the contents of register x, where x is
the name of an instruction field. For example,
(RA) means the contents of register RA, and
(FRA) means the contents of register FRA, where
RA and FRA are instruction fields. Names such
as LR and CTR denote registers, not fields, so
parentheses are not used ~ith them. Also, when
register x is assigned to, parentheses are
omitted.

• (RAIO) means the contents of register RA if the
RA field has the value 1-31, or the value 0 if the
RA field is O.

• Bits in registers, instructions, and fields are spec-
ified as follows.

Bits are numbered left to right, starting with
bit O.
Ranges of bits are specified by two numbers
separated by a colon (:). The range p:q con­
sists of bits p through q.
For registers that are 64 bits long in 64-bit
implementations and 32 bits long in 32-bit

4 PowerPC Architecture First Edition

implementations, bit numbers and ranges are
specified with the values for 32-bit implemen­
tations enclosed in braces ({ }). {} means a
bit that does not exist in 32-bit implementa­
tions. {:} means a range that does not exist
in 32-bit implementations.

• Xp means bit p of register/field X.

Xp{r} means bit p of register/field X in a 64-bit
Implementation, and bit r of register/field X in a
32-bit implementation.

• Xp:q means bits p through q of register/field X.
Xp:q{r:s} means bits p through q of register/field X
in a 64-bit implementation, and bits r through s of
registerlfield X in a 32-bit implementation.

• Xp q ... means bits p, q, ... of register/field X. .
Xp q ... {r s ... } means bits p, q, ... of register/field X
in a 64-bit implementation, and bits r, s, ... of
register/field X in a 32-bit implementation.

• -. (RA) means the one's complement of the con­
tents of register RA.

• Field i refers to bits 4xi to 4xi + 3 of a register.

• A period (.) as the last character of an instruction
mnemonic means that the instruction records
status information in certain fields of certain
Special Purpose Registers as a side effect of exe­
cution, as described in Chapter 2 through
Chapter 4.

• The symbol II is used to describe the concat­
enation of two values. For example, 010 II 111 is
the same as 010111.

• xn means x raised to the nth power.

• "x means the replication of x, n times (Le., x con­
catenated to itself n-1 times). "0 and n1 are
special cases:

no means a field of n bits with each bit equal
to O. Thus 50 is equivalent to ObOOOOO.
n1 means a field of n bits with each bit equal
to 1. Thus 51 is equivalent to Ob11111.

• Positive means greater than zero.

• Negative means less than zero.

• A system library program is a component of the
system software that can be called by an applica­
tion program using a Branch instruction.

• A system service program is a component of the
system software that can be called by an applica­
tion program using a System Call instruction.

• The system trap handler is a component of the
system software that receives control when the
conditions specified in a Trap instruction are sat­
isfied.

• The system error handler is a component of the
system software that receives control when an
error occurs. The system error handler includes
a component for each of the various kinds of

error. These error-specific components are
referred to as the system alignment error
handler, the system data storage error handler,
etc.

• Each bit and field in instructions, and in status
and control registers (XER and FPSCR) and
Special Purpose Registers, is either defined or
reserved.

• /, II, 1/1, ... denotes a reserved field in an instruc­
tion.

• Latency refers to the interval from the time an
instruction begins execution until it produces a
result that is available for use by a subsequent
instruction.

• Unavailable refers to a resource that cannot be
used by the program. Data or instruction storage
is unavailable if an instruction is denied access to
it. Floating-point instructions are unavailable if
use of them is denied. See Part 3, "PowerPC
Operating Environment Architecture" on
page 141.

1.5.2 Reserved Fields

All reserved fields in instructions should be zero. If
they are not, the instruction form is invalid: see
Section 1.9.2, "Invalid Instruction Forms" on page 13.

The handling of reserved bits in status and control
registers (XER and FPSCR) and in Special Purpose
Registers (and Segment Registers: see Part 3,
"PowerPC Operating Environment Architecture" on
page 141) is implementation dependent. For each
such reserved bit, an implementation shall.either:

• ignore the source value for the bit on write, and
return zero for it on read; or

• set the bit from the source value on write, and
return the value last set for it on read.

Programming Note --------------.

It is the responsibility of software to preserve bits
that are now reserved in status and control regis­
ters and in Special Purpose Registers (and
Segment Registers: see Part 3, "PowerPC Oper­
ating Environm~nt Architecture" on page 141), as
they may be assigned a meaning in some future
version of the· architecture or in. Book IV,
PowerPC Implementation Features for some
implementation. In order to accomplish this pres­
ervation in implementation independent fashion,
software should do the following.

• Initialize each such register supplying zeros
for all reserved bits.

• Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the
register.

When a currently reserved bit is subsequently
assigned a meaning, every effort will be made to
have the value to which the system initializes the
bit correspond to the "old behavior."

1.5.3 Description of Instruction
Operation

A formal description is given of the operation of each
instruction. In addition, the operation of most
instructions is described by a semiformal language at
the register transfer level (RTL). This RTL uses the
notation given below, in addition to the definitions and
notation described in Section 1.5.1, "Definitions and
Notation" on page 4. RTL notation not summarized
here should be self-explanatory.

The RTL descriptions do not imply any particular
implementation.

The RTL descriptions do not cover the following:

• "Standard" setting of the Condition Register,
Fixed-Point Exception Register, and Floating-Point
Status and Control Register. "Non-standard"
setting of these registers (e.g., the setting of Con­
dition Register Field 0 by the stwcx. instruction)
is shown.

• Invalid instruction forms.

Notation

+-iea

x

Meaning
Assignment
Assignment of an instruction effec­
tive address. In 32-bit mode of a
64-bit implementation the high-order
32 bits of the 64-bit target are set to
O.
NOT logical operator
Multiplication
Division (yielding quotient)

Chapter 1. Introduction 5

+

=,¢
<,S,>,~

~,~
?
&, I
(t), ==

CEiL(x)
DOUBLE(x)

EXTS(x)

GPR(x) .
MASK(x, y)

MEM(x, y)

Two's-complement addition
Two's-complement subtraction, unary
minus
Equals and Not Equals relations
Signed comparison relations
Unsigned comparison relations
Unordered comparison relation
AND, OR logical operators
Exclusive.-OR, Equivalence logical
operators ((a==b) = (a(f) -. b))
Least integer ~ x
Resl,llt of converting x from f1oating­
point single format to floating-point
double format, using the model
shown on page 99
Result of extending x on the left with
sign bit~
General Purpose Register x
Mask having 1's in positions x
through y (wrapping if x > y) and O's
elsewhere
Contents of y bytes of memory
starting at address x. In 32-bit mode
of a 64-bit implementation the high­
order 32 bits of the 64-bit value x are
ignored.

ROTLs4(x, y) Result of rotating the 64-bit value x
left y positions

ROTL32(x, y) Result of rotating the 64-bit value xlix
left y positions, where x is 32 bits
long

SINGLE(x) Result of converting x from floating­
point double format to floating-point
single format, using the model shown
on page 102

SPREG(x) Special Purpose Register x
TRAP Invoke the system trap handler
characterization Reference to the setting of status

bits, in a standard way that is
explained in the text

undefined An undefined value. The value may
vary from one implementation to
another, and from one execution to
another on the same implementa­
tion.

CIA Current Instruction Address, which is
the 64{32}-bit address of the instruc­
tion being described by a sequence
of RTL. Used by relative branches
to set the Next Instruction Address
(NIA), and by Branch instructions
with LK = 1 to set the Link Register.
In 32-bit mode of 64-bit implementa­
tions, the high-order 32 bits of CIA
are always set to O. Does not corre­
spond to any architected register.

NIA Next Instruction Address, which is
the 64{32}-bit address of the next
instruction to be executed. For a
successful branch, the next instruc­
tion address is the branch target
address: in RTL, this indicated by

6 PowerPC Architecture First Edition

assigning a value to NIA. For other
instructions that cause non­
sequential instruction fetching (see
Part 3, "PowerPC Operating Environ­
ment Architecture" on page 141),
the RTL is similar. For instructions
that do not branch, and do not other­
wise cause .instruction. fetching to be
non-sequential, the next instruction
address is CIA + 4, In 32-bit mode of
64-bit implementations, the high­
order 32 bits of NIA are always set
to O. Does not correspond to any
architected register.

if ... then .. , else '" Conditional execution, indenting
shows range, else is optional

do Do loop, indenting shows range. "'To'"
and/or "'by'" clauses specify incre­
menting an iteration variable, and
"'while'" and/or "'until" clauses give
termination conditions, in the usual
manner.

leave Leave innermost do loop, or do loop
described in leave statement·

The precedence rules for RTL operators are summa­
rized in Table 1. Operators higher in the table are
applied before those lower in the table. Operators at
the same level in the table associate from left to
right, from right to left, or not at all, as shown. (For
example, - associates from left to right, so a-b-c =
(a-b)-c.) Parentheses are used to override the eval­
uation order implied by the table, or to increase
clarity: parenthesized expressions are evaluated
before serving as operands.

Table 1. Operator Precedence

Operators Associativity

subscript, function evaluation left to right

pre-superscript (replication), right to left
post-superscript (exponentiation)

unary -, -. right to left

x,-:- left to right

+,- left to right

II left to right

=,¢,<,S,>,~,~,~,? left to right

&, (f), == left to right

I left to right

: (range) none

+- none

1.6 Processor Overview

64-bit implementations 32-bit implementations

I CR I Condition Register (page 17) I CR I
0 31 0 31

I LR I Link Register (page 18) I LR I
0 63 0 31

I CTR I Count Register (page 18) I CTR I
0 63 0 31

GPROO GPR 00

GPR 01 GPR 01

... General Purpose Registers (page 27) ...

... . ..
GPR 31 GPR 31

0 63 0 31

I XER I Fixed-Poinl Exception Register (page 27) I XER I
0 31 0 31

FPR 00 FPR 00

FPR 01 FPR 01

...

...
Floating-paint
Registers (page 83)

. ..

. ..
FPR 31 FPR31

0 63 o 63

FPSCR
o 31

Floating-Point Status and

Control Register (page 84)
I FPSCR I
0 31

Figure 1. PowerPC User Register Set

The processor implements the instruction set, the
storage model, and other facilities defined in this doc­
ument. Instructions which the processor can execute
fall into the following classes.

• branch instructions,

• fixed-point instructions, and

• floating-point instructions.

Branch instructions are described in Section 2.4,
"Branch Processor Instructions" on page 19. Fixed­
point instructions are described in Section 3.3, "Fixed­
Point Processor Instructions" on page 29.
Floating-point instructions are described in Section
4.6, "Floating-Point Processor Instructions" on
page 99.

Fixed-point instructions operate on byte, halfword,
word, and, in 64-bit implementations, doubleword
operands. Floating-point instructions operate on

single-precision and double-precision floating-point
operands. The Power PC Architecture .uses
instructions that are four bytes long and word-aligned.
It provides for byte, halfword, word, and, in 64-bit
implementations, doubleword operand fetches and
stores between storage and a set of 32 General
Purpose Registers (GPRs). It also provides for word
and doubleword operand fetches and stores between
storage and a set of 32 Floating-Point Registers
(FPRs).

There are no computational instructions that modify
storage. To use a storage operand in a computation
and then modify the same or another storage
location, the content of storage must be loaded into a
register, modified, and then stored back to the target
location. Figure 2 on page 8 is a logical represen­
tation of instruction processing. Figure 1 shows the
registers of the Power PC User Instruction Set Archi­
tecture.

Chapter 1. Introduction 7

1

Branch
Processing

Fixed-P
Floatin
Instruc

1
Fixed-Pt Floa
Processing Proc

I
Instructl ons
from Storage

Data to/from
Storage

1
Storage

oint and
g-Point
tions

t-pt
essing

I

Figure 2. Logical Processing Model

1.7 Instruction Formats

All instructions are four bytes long and word-aligned.
Thus, whenever instruction addresses are presented
to the processor (as in Branch instructions) the two
low order bits are ignored. Similarly, whenever the
processor develops an instruction address its two low
order bits are zero.

Bits 0:5 always specify the opcode (OpeD, below).
Many instructions also have an extended opcode (XO,
below). The remaining bits of the instruction contain
one or more fields as shown below for the different
instruction formats.

The format di agrams given below show horizontally
all valid combinations of instruction fields. The dia­
grams include instruction fields that are used only by
instructions defined in Part 2, "PowerPC Virtual Envi­
ronment Architecture" on page 117, or in Part 3,
"PowerPC Operating Environment Architecture" on
page 141. See those Books for the definitions of such
fields.

8 PowerPC Architecture First Edition

In some cases an instruction field. is reserved, or
must contain a particular value. If a reserved field
does not have all bits set to 0, or if a field that must
contain a particular value does not contain that value,
the instruction form is invalid and the results are as
described in Section 1.9.2, "Invalid Instruction Forms"
on page 13.

Split Field Notation

In some cases an instruction field occupies more than
one contiguous sequence of bits, or occupies one con­
tiguous sequence of bits which are used in permuted
order. Such a field is called a "split field." In the
format diagrams given below and in the individual
instruction layouts, the name of a split field is shown
in small letters, once for each of the contiguous
sequences. In the RTL description of an instruction
having a split field, and in certain other places where
individual bits of a split field are identified, the name
of the field in small letters represents the concat­
enation of the sequences from left to right. In all
other places, the name of the field is capitalized, and
represents the concatenation of the sequences in
some order, which need not be left to right, as
described for each affected instruction.

1.7.1 I-Form

o 6 30 31

I OPCD LI

Figure 3. I Instruction Format

1.7.2 B-Form

o 6 11 16 30 31

I OPCD BO BI I BD

Figure 4. B Instruction Format

1.7.3 SC-Form

o 6 11 16 30 31

I OPCD II/ II/ /11

Figure 5. SC Instruction Format

1.7.4 D-Form

o 6 11 16 31

opeD RT RA D
opeD RT RA St·

opeD RS RA D
opeD RS RA UI

opeD BF IlL RA SI

opeD BF I iL RA UI

opeD TO RA SI

opeD FRT RA 0

opeD FRS RA D

Figure 6. 0 Instruction Format

1.7.5 OS-Form

o 6 11 16 30 31

lopeD
OS

OS

opeD

Figure 7. OS Instruction Format (64-bit implementa­
tions only)

1.7.6 X-Form

o 6 11 16 21 31

opeD RT RA RB XO I

opeD RT RA NB XO I

opeD RT II SR III XO I

opeD RT III RB XO I

opeD RT III III XO I

opeD RS RA RB XO Rc

opeD RS RA RB XO 1

opeD RS RA RB XO I

opeD RS RA NB XO I

opeD RS RA SH XO Rc

opeD RS RA III xo Rc

opeD RS II SR III XO I

opeD RS III RB xo I

opeD RS III III XO I

opeD BF IlL RA RB xo I

opeD BF II FRA FRB xo I

opeD BF II BFAI" III xo I

opeD BF II III U II xo Rc

opeD BF II III III xo I

opeD TO RA RB xo I

opeD FRT RA RB xo I

opeD FRT III FRB xo Rc

opeD FRT III III xo Rc

opeD FRS RA RB xo I

opeD BT III III xo Rc

opeD III RA RB xo I

opeD III III RB xo I

opeD III III III XO I

Figure 8. X Instruction Format

1.7.7 XL-Form

o 6 11 16 21 31

opeD BT BA BB xo I

opeD BO BI III xo LK
opeD BF /11 BFAI" III xo I

opeD III III III xo I

Figure 9. XL Instruction Format

Chapter 1. Introduction 9

1.7.8 XFX-Form

o 6 11 21 31

OPCD RT spr XO I

OPCD RT tbr XO I

OPCD RT II FXM II XO I

OPCD RS spr XO I

Figure 10. XFX Instruction Format

1.7.9 XFL-Form

o 67 1516 21 31

i OPCD III FLM III FRB I XO

Figure 11. XFL Instruction Format

1.7.10 XS-Form

o 6 11 16 21 30 31

I OPCD I RS RA sh XO

Figure 12. XS Instruction Format (64-bit implementa­
tions only)

1.7.11 XO-Form

o 6 11 16 21 22 31

OPCD RT RA RB OE XO Rc

OPCD RT RA RB I XO Rc

OPCD RT RA III OE XO Rc

Figure 13. XO Instruction Format

1.7.12 A-Form

o 6 11 16 21 26 31

OPCD FRT FRA FRB FRC XO Rc

OPCD FRT FRA FRB III XO Rc

OPCD FRT FRA III FRC XO Rc

OPCD FRT III FRB III XO Rc

Figure 14. A Instruction Format

1.7.13 M-Form

10 PowerPC Architecture First Edition

o 6 11. 16 21 26 3·1

OPCD RS RA RB MB ME Rc

OPCD RS RA SH MB ME Rc

Figure 15. M Instruction Format

1.7.14 MD-Form

o 6 11 16 21 27 3031

OPCD RS RA sh mb XO sli Rc
OPCD RS RA sh me XO sh Rc

Figure 16. MD Instruction Format (64-bit implementa­
tions only)

1.7.15 MDS-Form

o 6 11 16 21 27 31

. OPCD RS RA RB mb XO Rc

OPCD RS RA RB me XO Rc

Figure 17. MDS Instruction Format (64-bit implemen­
tations only)

1.7.16 Instruction Fields

AA (30)
Absolute Address bit

o The immediate field represents an address
relative to the current instruction address.
For I-form branches the effective address of
the branch target is the sum of the LI field
sign-extended to 64 bits and the address of
the branch instruction. For B-form branches
the effective address of the branch target is
the sum of the BD field sign-extended to 64
bits and the address of the branch instruc­
tion.

The immediate field represents an absolute
address. For I-form branches the effective
address of the branch target is the LI field
sign-extended to 64 bits. For B-form
branches the effective address of the branch
target is the BD field sign-extended to 64
bits.

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.

BB (16:20)
Field used to specify a bit in the CR to be used as
a source.

BD (16:29)
Immediate field specifying a 14-bit signed two's
complement branch displacement which is con­
catenated on the right with ObOO and sign­
extended to 64 bi ts.

BF (6:8)
Field used to specify one of the CR fields or one
of the FPSCR fields as a target.

BFA (11:13)
Field used to specify one of the CR fields or one
of the FPSCR fields as a source.

BI (11:15)
Field used to specify a bit in the CR to be used as
the condition of a Branch Conditional instruction.

BO (6:10)
Field used to specify options for the Branch Con­
ditional instructions. The encoding is described in
Section 2.4, "Branch Processor Instructions" on
page 19.

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR as the target of the result of an instruc­
tion.

D (16:31)
Immediate field specifying a 16-bit signed two's
complement integer which is sign-extended to 64
bits.

DS (16:29)
Immediate field specifying a 14-bit signed two's
complement integer which is concatenated on the
right with ObOO and sign-extended to 64 bits. This
field is defined in 64-bit implementations only.

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mtfst instruction.

FRA (11:15)
Field used to specify an FPR as a source of an
operation.

FRB (16:20)
Field used to specify an FPR as a source of an
operation.

FRC (21:25)
Field used to specify an FPR as a source of an
operation.

FRS (6:10)
Field used to specify an FPR as a source of an
operation.

FRT (6:10)
Field used to specify an FPR as the target of an
operation.

FXM (12:19)
Field mask used to identify the CR fields that are
to be updated by the mtcrf instruction.

L (10)
Field used to specify whether a· Fixed-Point
Compare instruction is to compare 64-bit
numbers or 32-bit numbers. This field is defined
in 64-bit implementations only.

LI (6:29)
Immediate field specifying a 24-bit signed two's
complement integer which is concatenated on the
right with ObOO and sign-extended to 64 bits.

LK (31)
LINK bit.

o Do not set the Link Register.

Set the Link Register. If the. instruction is a
Branch instruction, the address of the
instruction following the Branch instruction is
placed into the Link Register.

MB (21 :25) and ME (26:30)
Fields used in M-form instructions to specify a
64-bit mask consisting of 1-bits from bit MB+32
through bit ME + 32 inclusive, and O-bits else­
where, as described in Section 3.3.13, "Fixed­
Point Rotate and Shift Instructions" on page 69.

MB (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.13, "Fixed-Point Rotate
and Shift Instructions" on page 69. This field is
defined in 64-bit implementations only.

ME (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.13, "Fixed-Point Rotate
and Shift Instructions" on page 69. This field is
defined in 64-bit implementations only.

NB (16:20)
Field used to specify the number of bytes to
move in an immediate string load or store.

OPCD (0:5)
Primary opcode field.

OE (21)
Used for extended arithmetic to enable setting
OV and SO in the XER.

RA(11:15)
Field used to specify a GPR to be used as a
source or as a target.

RB (16:20)
Field used to specify a GPR to be used as a
source.

Rc (31)
RECORD bit

o Do not set the Condition Register.

Set the Condition Register to reflect the
result of the operation.

For fixed-point instructions, CR bits 0:3 are

Chapter 1. Introduction 11

RS (6:10)

set to reflect the result as a signed quantity.
The result as an unsigned quantity or a bit
string can be deduced from the EO bit.

For floating-point instructions, CR bits 4:7
are set to reflect Floating-Point Exception,
Floating-Point Enabled Exception, Floating­
Point Invalid Operation Exception, and
Floating-Point Overflow Exception.

Field used to specify a GPR to be used as a
source.

RT (6:10)
Field used to specify a GPR to be used as a
target.

SH (16:20, or 16:20 and 30)
Field used to specify a shift amount. Location
16:20 and 30 pertains to 64-bit implementations
only.

SI (16:31)
Immediate field used to specify a 16-bit signed
integer.

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions. The
encoding is described in Section 3.3.14, "Move
To/From System Register Instructions" on
page 79.

SR (12:15)
See Part 3, "PowerPC Operating Environment
Architecture" on page 141.

TBR (11:20)
See Part 2, "PowerPC Virtual Environment
Architecture" on page 117.

TO (6:10)
Field used to specify the conditions on which to
trap. The encoding is described in Section 3.3.11,
"Fixed-Point Trap Instructions" on page 61.

U (16:19)
Immediate field used as the data to be placed
into a field in the FPSCR.

UI (16:31)
Immediate field used to specify a 16-bit unsigned
integer.

XO (21 :29, 21 :30, 22:30, 26:30, 27:29, 27:30, 30, or
30:31)
Extended opcode field. Locations 21 :29, 27:29,
27:30, and 30:31 pertain to 64-bit implementations
only.

12 PowerPC Architecture First Edition

1.8 Classes of Instructions

An instruction falls into exactly one of the following
three classes:

Defined
Illegal
Reserved

The class is determined by examining the opcode, and
the extended opcode if any. If the opcode, or combi­
nation of opcode and extended opcode, is not that of
a defined instruction nor of a reserved instruction, the
instruction is illegal.

Some instructions are defined only for 64-bit imple­
mentations and a few are defined only for 32-bit
implementations (see 1.8.2, "Illegal Instruction Class"
on page 13). With the exception of these, a given
instruction is in the same class for all implementa­
tions of the PowerPC Archite~ture. In future versions
of this architecture, instructions that are now illegal
may become defined (by being added to the architec­
ture) or reserved (by being assigned to one of the
special purposes described in Appendix J, "Reserved
Instructions" on page 265). Similarly,· instructions
that are now reserved may become defined.

The results of attempting to execute a given instruc­
tion are said to be bounded/y undefined if they could
have been achieved by executing an arbitrary
sequence of defined instructions, in valid form (see
below), starting in the state the machine was in
before attempting to execute the given instruction.
Boundedly undefined results for a given instruction
may vary between implementations, and between
execution attempts in the same implementation, and
are not further defined in this document.

1.8.1 Defined Instruction Class

This class of instructions contains all the instructions
defined in the PowerPC User Instruction Set Architec­
ture, Power PC Virtual Environment Architecture, and
Power PC Operating Environment Architecture.

Defined instructions are guaranteed to be supported
in all implementations, except as stated in the instruc­
tion descriptions. (The exceptions are instructions
that are supported only in 64-bit implementations or
only in 32-bit implementations.)

A defined instruction can have preferred and/or
invalid forms, as described in Section 1.9.1, "Pre­
ferred Instruction Forms" on page 13, and Section
1.9.2, "Invalid Instruction Forms" on page 13.

1.8.2 Illegal Instruction Class

This class of instructions contains the set of
instructions described in Appendix I, "Illegal
Instructions" on page 263. For 64-bit implementa­
tions this class includes all instructions that are
defined only for 32-bit implementations. For 32-bit
implementations it includes all instructions that are
defined only for 64-bit implementations.

Excluding instructions that are defined for one type of
implementation but not the other, illegal instructions
are available for future extensions of the PowerPC
Architecture: that is, some future version of the
Power PC Architecture may define any of these
instructions to perform new functions.

Any attempt to execute an illegal instruction will
cause the system illegal instruction error handler to
be invoked and will have no other effect.

An instruction consisting entirely of binary O's is guar­
anteed always to be an illegal instruction. This
increases the probability that an attempt to execute
data or uninitialized storage will result in the invoca­
tion of the system illegal instruction error handler.

1.8.3 Reserved Instruction Class

This class of instructions contains the set of
instructions described in Appendix J, "Reserved
Instructions" on page 265.

Reserved instructions are allocated to specific pur­
poses that are outside the scope of the PowerPC
Architecture.

Any attempt to execute a reserved instruction will
either cause the system illegal instruction error
handler to be invoked or will yield boundedly unde­
fined results.

1.9 Forms of Defined
Instructions

1.9.1 Preferred Instruction Forms

Some of the defined instructions have preferred
forms. For such an instruction, the preferred form will
execute in an efficient manner, but any other form
may take significantly longer to execute than the pre­
ferred form.

Instructions having preferred forms are:

• the Load/Store Multiple instructions
• the Load/Store String instructions

• the Or Immediate instruction (preferred form of
no-op)

1.9.2 Invalid Instruction Forms

Some of the defined instructions have invalid forms.
An instruction form is invalid if one or more fields of
the instruction, excluding the opcode field(s), are
coded incorrectly.

Any attempt to execute an invalid form of an instruc­
tion will either cause the system illegal instruction
error handler to be invoked or will yield boundedly
undefined results. Exceptions to this rule are stated
in the instruction descriptions.

Some kinds of invalid form can be deduced from the
instruction layout. These are listed below.

• Field shown as 'I'(s) but coded as non-zero.

• Field shown as containing a particular value but
coded as some other value.

These invalid forms are not discussed further.

Instructions having invalid forms that cannot be so
deduced are listed below. For these, the invalid
forms are identified in the instruction descriptions.

• the Branch Conditional instructions
• the Load/Store with Update instructions
• the Load Multiple instructions
• the Load String instructions
• the Fixed-Point Compare instructions (invalid

form exists only in 32-bit implementations)
• Move To/From Special Purpose Register (mtspr,

mfspr)
• the Load/Store Floating-Point with Update

instructions

Assembler Note --------------,

To the extent possible, the Assembler should
report uses of invalid instruction forms as errors.

1.9.3 Optional Instructions

Some of the defined instructions are optional. The
optional instructions are defined in Appendix A,
"Optional Instructions" on page 207, and also in the
section entitled "Lookaside Buffer Management
Instructions (Optional)" and the appendix entitled
"Optional Facilities and Instructions" of Part 3,
"PowerPC Operating Environment Architecture" on
page 141.

Any attempt to execute an optional instruction that is
not provided by the implementation will cause the
system illegal instruction error handler to be invoked.

Chapter 1. Introduction 13

Exceptions to this rule are stated in the instruction
descriptions.

1.10 Exceptions

There are two kinds of exception, those caused
directly by the execution of an instruction and those
caused by an asynchronous event. In either case, the
exception may cause one of several components of
the system software to be invoked.

The exceptions that can be caused directly by the
execution of an instruction ~nclude the following.

• an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
"privileged" instruction (see Part 3, "PowerPC
Operating Environment Architecture" on
page 141) (system illegal instruction error
handler or system privileged instruction error
handler)

• the execution of a defined instruction using an
invalid form (system illegal instruction error
handler or system privileged instruction error
handler)

• the execution of an optional instruction that is not
provided by the implementation (system illegal
instruction error handler)

• an attempt to access a storage location that is
unavailable (system error handler)

• an attempt to access storage with an effective
address alignment that is invalid for the instruc­
tion (system alignment error handler)

• the execution of a System Call instruction
(system service program)

• the execution of a Trap instruction that traps
(system trap handler)

• the execution of a floating-point instruction when
floating-point instructions are unavailable (system
floating-point unavailable error handler)

• the execution of a floating-point instruction that
causes a floating-point exception that is enabled
(system floating-point enabled exception error
handler)

• the execution of a floating-point instruction that
requires system software assistance (system
floating-point assist error handler; the conditions
under which such software assistance is required
are implementation-dependent)

The exceptions that can be caused by an asynchro­
nous event are described in Part 3, "PowerPC Oper­
ating Environment Architecture" on page 141.

14 PowerPC Architecture First Edition

The invocation of the system error handler is precise,
except that if one of the imprecise modes for invoking
the system floating-point enabled exception error
handler is in effect (see page 92) then the invocation
of the system floating-point enabled exception error
handler may be imprecise. When the system error
handler is invoked imprecisely, the excepting instruc­
tion does not appear to complete before the next
instruction starts (because one of the effects of the
excepting instruction, namely the invocation of the
system error handler, has not yet occurred).

Additional information about exception handling can
be found in Part 3, "PowerPC Operating Environment
Architecture" on page 141.

1.11. Storage Addressing

A program references storage· using the effective
address computed by the processor when it executes
a Storage Access or Branch instruction (or certain
other instructions described in Part 2, "PowerPC
Virtual Environment Architecture" on page 117, and
Part 3, "PowerPC Operating Environment
Architecture" on page 141), or when it fetches the
next sequential instruction.

1.11.1 Storage Operands

Bytes in storage are numbered consecutively starting
with O. Each number is the address of the corre­
sponding byte.

Storage operands may be bytes, halfwords, words, or
doublewords, or, for the Load/Store Multiple and
Move Assist instructions, a sequence of bytes or
words. The address of a storage operand is the
address of its first byte (i.e., of its lowest-numbered
byte). Byte ordering is Big-Endian by default, but
Power PC can be operated in a mode in which byte
ordering is Little-Endian. See Appendix 0, "Little­
Endian Byte Ordering" on page 233.

Operand length is implicit for each instruction.

The operand of a single-register Storage Access
instruction has a "natural" alignment boundary equal
to the operand length. In other words, the "natural"
address of an operand is an integral multiple of the
operand length. A storage operand is said to be
"aligned" if it is aligned at its natural boundary: other­
wise it is said to be "unaligned."

Storage operands for single-register Storage Access
instructions have the following characteristics.
(Although not permitted as storage operands,
quadwords are shown because quadword alignment is
desirable for certain storage operands.)

Operand Length Addr 60:63 if aligned

Byte 8 bits xxxx
Halfword 2 bytes xxxO
Word 4 bytes xxOO
Doubleword 8 bytes xOOO
Quadword 16 bytes 0000

Note: An "x" in an address bit position indicates
that the bit can be 0 or 1 independent of the state of
other bits in the address.

The concept of alignment is also applied more gener­
ally, to any datum in storage. For example; a 12-byte
datum in storage is said to be word-aligned if its
address is an integral multiple of 4.

Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. For single-register Storage
Access instructions the best performance is obtained
when storage operands are aligned. Additional
effects of data placement on performance are
described in Part 2, "PowerPC Virtual Environment
Architecture" on page 117.

Instructions are always four bytes long and word­
aligned.

1.11.2 Effective Address Calculation

The 64- or 32-bit address computed by the processor
when executing a Storage Access or Branch instruc­
tion (or certain other instructions described in Part 2,
"PowerPC Virtual Environment Architecture" on
page 117, and Part 3, "PowerPC Operating Environ­
ment Architecture" on page 141), or when fetching
the next sequential instruction, is called the "effective
address," and specifies a byte in storage. For a
Storage Access instruction, if the sum of the effective
address and the operand length exceeds the
maximum effective address, the storage operand is
considered to wrap around from the maximum effec­
tive address to effective address 0, as described
below.

Effective address computations, for both data and
instruction accesses, use 64{32}-bit unsigned binary
arithmetic regardless of mode. A· carry from bit 0 is
ignored. In a 64-bit implementation, the 64-bit current
instruction address and next instruction address are
not affected by a change from 32-bit mode to 64-bit
mode, but they are affected by a change from 64-bit
mode to 32-bit mode (the high-order 32 bits are set to
0).

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arith­
metic wraps around from the maximum address,
264_1, to address O.

In 32-bit mode, the low-order 32 bits of the 64-bit
result comprise the effective address for the purpose
of addressing storage. The high-order 32 bits of the
64-bit effective address are ignored for the purpose of
accessing data, but are included whenever a 64-bit
effective address is placed into a GPR by Load with
Update and Store with Update instructions. The high­
order 32 bits of the 64-bit effective address are set to
o for the purpose of fetching instructions, and when­
ever a 64-bit effective address is placed into the Link
Register by Branch instructions having LK = 1. The
high-order 32 bits of the 64-bit effective address are
set to 0 in Special Purpose Registers when the
system error handler is invoked. As used to address
storage, the effective address arithmetic appears to
wrap around from the maximum address, 232_1, to
address O.

A zero in the RA field indicates the absence of the
corresponding address component. For the absent
component, a value of zero is used for the. address.
This is shown in the instruction descriptions as (RAIO).

In both 64-bit and 32-bit modes, the calculated Effec­
tive Address may be modified in its three low-order
bits before accessing storage if the PowerPC system
is operating in Little-Endian mode. See Appendix 0,
"Uttle-Endian Byte Ordering" on page 233.

Effective addresses are computed as follows. In the
descriptions below, it should be understood that "the
contents of a GPR" refers to the entire 64-bit con­
tents, independent of mode, but that in 32-bit mode,
only bits 32:63 of the 64-bit result of the computation
are used to address storage.

• With X-form instructions, in computing the effec­
tive address of a data element, the contents of
the GPR designated by RB is added to the con­
tents of the GPR designated by RA or to zero if
RA=O.

• With O-form instructions, the 16-bit 0 field is sign­
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero
if RA=O.

• With OS-form instructions, the 14-bit OS field is
concatenated on the right with ObOO and sign­
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero
if RA=O.

• With I-form Branch instructions, the 24-bit LI field
is concatenated on the right with ObOO and sign­
extended to form a 64-bit address component. If
AA=O, this address component is added to the
address of the branch instruction to form the
effective address of the next instruction. If

Chapter 1. Introduction 15

AA == 1, this address component is the effective
address of the next instruction.

• With B-form Branch instructions, the 14-bit BO
field is concatenated on the right with ObOO and
sign-extended to form a 64-bit address compo­
nent. If AA == 0, this address component is added
to the address of the branch instruction to form
the effective address of the next instruction. If

16 PowerPC Architecture First Edition

AA == 1, this address component is the effective
address of the next instruction.

• With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concat­
enated on the right with ObOO to form the effec­
tive address of the next instruction.

• With sequential instruction fetching, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction.

Chapter 2. Branch Processor

2.1 Branch Processor Overview

This chapter describes the registers and instructions
that make up the Branch Processor facilities. Section
2.3, "Branch Processor Registers" on page 17
describes the registers associated with the Branch
Processor. Section 2.4; "Branch Processor
Instructions" on page 19 describes the instructions
associated with the Branch Processor.

2.2 Instruction Fetching

In general, instructions appear to execute sequen­
tially, in the order in which they appear in storage.
The exceptions to this rule are listed below.

• Branch instructions for which the branch is taken
cause execution to continue at the target address
generated by the Branch instruction.

• Trap and System Call instructions cause the
appropriate system handler to be invoked.

• Exceptions can cause the system error handler to
be invoked, as described in Section 1.10,
"Exceptions" on page 14.

• The Return From Interrupt instruction, described
in "Return From Interrupt XL-form" on page 150,
causes execution to continue at the address con­
tained in a Special Purpose Register.

In general, each instruction appears to complete
before the next instruction starts. The only excep­
tions to this rule arise when the system error handler
is invoked imprecisely, as described in Section 1.10,
"Exceptions" on page 14, or when certain special reg­
isters are altered, as described in the appendix enti­
tled "Synchronization Requirements for Special
Registers" in Appendix L, "Synchronization Require­
ments for Special Registers" on page 275. None of
these special registers can be altered by an applica­
tion program.

Programming Note

CAUTION
Implementations are allowed to prefetch any
number of instructions before the instructions are
actually executed. If a program modifies the
instructions it intends to execute, it should call a
system library program to ensure that the modifi­
cations have been made visible to the instruction
fetching mechanism prior to attempting to execute
the modified instructions.

2.3 Branch Processor Registers

2.3.1 Condition Register

The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides
a mechanism for testing (and branching).

CR

o 31

Figure 18. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CRO), ... , CR Field
7 (CR7), which are set in one of the following ways:

• Specified fields of the CR can be set by a move
to the CR from a GPR (mtcrf).

• A specified field of the CR can be set by a move
to the CR from another CR field (mcrf) , from the
XER (mcrxr) , or from the FPSCR (mcrfs).

• CR Field ° can be set as the implicit result of a
fixed-point operation.

• CR Field 1 can be set as the implicit result of a
floating-point operation.

• A specified CR field can be set as the result of
either a fixed-point or a floating-point Compare
instruction.

Instructions are provided to perform logical oper­
ations on individual CR bits, and to test individual CR
bits.

Chapter 2. Branch Processor 17

When Rc= 1 in most fixed-point instructions, the first
three bits of CR Field 0 (bits 0:2 of the Condition Reg­
ister) are set by an algebraic comparison of the result
(the low-order 32 bits of the result in 32-bit mode) to
zero, and the fourth bit of CR Field 0 (bit 3 of the Con­
dition Register) is copied from the SO field of the
XER. addic;., andi., and andis. set these four bits
implicitly. These bits are interpreted. ~s follows. As
used below, "result" refers to the entire 54-bit value
placed into the target register in 64-bit mode, and to
bits 32:63 of the 64-bit value placed into the target
register in 32-bit mode. If any portion of the result is
undefined, then the value placed into the first three
bits of CR Field 0 is undefined.

Bit Description

o Negative (LT)
The result is negative.

Positive (GT)
The 'result is positive.

2 Zero (EQ)
The result is zero.

3 Summary Overflow (SO)
This is a copy of the final state of XERso at the
completion of the instruction.

Programming Note -------------,

CR Field 0 may not reflect the "true" (infinitely
precise) result if overflow occurs: see Section
3.3.9, "Fixed-Point Arithmetic Instructions" on
page 50.

When Rc=1 in all floating-point instructions, CR Field
1 (bits 4:7 of the Condition Register) is set to the
Floating-Point exception status, copied from bits 0:3 of
the Floating-Point Status and Control Register. These
bits are interpreted as follows.

Bit Description

4 Floating-Point Exception (FX)
This is a copy of the final state of FPSCRFX at the
completion of the instruction.

S Floating-Point Enabled Exception (FEX)
This is a copy of the final state of FPSCRFEX at
the completion of the instruction.

6 Floating-Point Invalid Operation Exception (VX)
This is a copy of the final state of FPSCRvx at the
completion of the instruction.

7 Floating-Point Overflow Exception (OX)
This is a copy of the final state of FPSCRox at
the completion of the instruction.

When a specified CR field is set by a Compare
instruction, the bits of the specified field are inter­
preted as follows.

18 PowerPC Architecture First Edition

Bit Description

o Less Than, Floating-Point Less Than (LT, FL)
For fixed-point Compare instructions, (RA) < SI,
UI, or (RS) (algebraic comparison) or (RA) ~ SI,
UI, or (RS) (logical comparison). For floating­
point Compare instr'uctions, (FRA) < (FRS).

1 Greater. Than, Floating-Point Greater ThaI) (GT,
FG)
For fixed-point Compare instructions, (RA) > SI,
UI, or (RS) (algebraic comparison) or (RA) ~ SI,
UI, or (RS) (logical comparison). For floating­
point Compare instructiofls, (FRA) > (FRS).

2 Equal, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions, (RA) = SI,
UI, or (RS). For floating-point Compare
instructions, (FRA) = (FRS).

3 Summary Overflow, Floating-Point Unordered
(SO, FU)
For fixed-point Compare instructions, this is a
copy of the final state of XERso at the completion
of the instruction. For floating-point Compare
instructions, one or both of (FRA) and (FRS) is a
NaN.

2.3.2 Link Register

The Link Register (LR) is a 64-bit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it
holds the return address after Branch and Link
instructions.

I LR
o 63

Figure 19. Link Register

2.3.3 Count Register

The Count Register (CTR) is a 54-bit register. It can
be used to hold a loop count that can be decremented
during execution of Branch instructions that contain
an appropriately coded SO field. If the value in the
Count Register is 0 before being decremented, it is
-1 afterward. The Count Register can also be used
to provide the branch target address for the Branch
Conditional to Count Register instruction.

CTR

o 63

Figure 20. Count Register

2.4 Branch Processor Instructions

2.4.1 Branch Instructions

The sequence of instruction- execution can be changed
by the Branch instructions. Because all instructions
are on word boundaries, bits 62 and 63 of the gener­
ated branch target address are ignored by the
processor in performing the branch.

The Branch instructions compute the effective
address (EA) of the target in one of the following four
ways, as described in Section 1.11.2, "Effective
Address Calculation" on page 15.

1. Adding a displacement to the address of the
branch instruction (Branch or Branch Conditional
with AA=O).

2. Specifying an absolute address (Branch or
Branch Conditional with AA = 1).

3. Using the address contained in the Link Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Reg-
ister (Branch Conditional to Count Register).

In all four cases, in 32-bit mode of 64-bit implementa­
tions, the final step in the address computation is
setting the high-order 32 bits of the target address to
O.

For the first two methods, the target addresses can
be computed sufficiently ahead of the branch instruc­
tion that instructions can be prefetched along the
target path. For the third and fourth methods, pre­
fetching instructions along the target path is also pos­
sible provided the Link Register or· the Count Register
is loaded sufficiently ahead of the branch instruction.

Branching can be conditional or unconditional, and
the return address can optionally be provided. If the
return address is to be provided (LK = 1), the effective
address of the instruction following the branch
instruction is placed into the Link Register after the
branch target address has been computed: this is
done whether or not the branch is taken.

In Branch Conditional instructions, the BO field speci­
fies the conditions under which the branch is taken.
The first four bits of the BO field specify how the
branch is affected by or affects the Condition Register
and the Count Register. The fifth bit, shown below as
having the value "y," may be used by some imple­
mentations as described below.

The encoding for the BO field is as follows. Here
M=32 in 32-bit mode and M=O in 64-bit mode. If the
BO field specifies that the CTR is to be decremented,
the entire 64-bit CTR is decremented regardless of
the mode.

BO

OOOOy

0001y

001zy

0100y

.0101y

011zy

1z00y

Description

Decrement the CTR, then branch if the decre­
mented CTRM:63;CO and the condition is
FALSE.

Decrement the CTR, then branch if the decre­
mented CTRM:63=O and the condition is
FALSE.

Branch if the condition is FALSE.

Decrement the CTR, then branch if the decre­
mented CTRM:63;cO and the condition is
TRUE.

Decrement the CTR, then branch if the decre­
mented CTRM:63=O and the condition is
TRUE.

Branch if the condition is TRUE.

Decrement the CTR, then branch if the decre­
mented CTRM:63;cO.

1z01y Decrement the CTR, then branch if the decre­
mented CTRM:63=O.

1 z1 zz Branch always.

Above, "z" denotes a bit that must be zero: if it is not
zero the instruction form is invalid.

The "y" bit provides a hint about whether a condi­
tional branch is likely to be taken, and may be used
by some implementations to improve performance.

The "branch always" encoding of the BO field does
not have a "y" bit.

For Branch Conditional instructions that have a "y"
bit, using y = 0 indicates that the following behavior is
likely.

• If the instruction is bc[l][a] with a negative value
in the displacement field, the branch is taken.

• In all other cases (bc[/][a] with a non-negative
value in the displacement field, bclr[1], or
bcctr[l]), the branch falls through (is not taken).

Using y = 1 reverses the preceding indications.

The displacement field is used as described above
even if the target is an absolute address.

Chapter 2. Branch Processor 19

Programming Note -----------.,

The default value for the "y" bit should be 0: the
value 1 should be used only if software has deter­
mined that the prediction corresponding to y= 1 is
more likely to be correct than the prediction cor­
responding to y=O.

Extended mnemonics for branches

Many extended mnemonics are provided so that
Branch Conditional instructions can be coded with the
condition as part of the instruction mnemonic rather
than as a numeric operand. Some of these are shown
as examples with the Branch instructions. See
Appendix C, "Assembler Extended Mnemonics" on
page 223 for additional extended mnemonics.

20 PowerPC Architecture First Edition

Programming Note ------------,

In some implementations the processor may keep
a stack of the Link Register values most recently
set by Branch and Link instructions, with the pos­
sible exception of the form shown below for
obtaining the address of the next instruction .. To
benefit from this stack, the following programming
conventions should be used.

Let A, B, and Glue be programs.

• Obtaining the address of the next instruction:

Use the following form of Branch and Link.

bel 28,31,$+4

• Loop counts:
Keep them in the Count Register, and use
one of the Branch Conditional instructions to
decrement the count and to control branching
(e.g., branching back to the start of a loop if
the decremented counter value is non-zero).

• Computed goto's, case statements, etc.:

Use the Count Register to hold the address to
branch to, and use the beetr instruction
(LK = 0) to branch to the selected address.

• Direct subroutine linkage:

Here A calls Band B returns to A. The two
branches should be as follows.

A calls B: use a Branch instruction that
sets the Link Register (LK = 1).

B returns to A: use the belr instruction
(LK = 0) (the return address is in, or can
be restored to, the Link Register).

• Indirect subroutine linkage:

Here A calls Glue, Glue calls B, and B returns
to A rather than to Glue. (Such a calling
sequence is common in linkage code used
when the subroutine that the programmer
wants to call, here B, is in a different module
from the caller: the Binder inserts "glue"
code to mediate the branch.) The three
branches should be as follows.

A calls Glue: use a Branch instruction
that sets the Link Register (LK = 1).

Glue calls B: place the address of B in
the Count Register, and use the bectr
instruction (LK = 0).

B returns to A: use the belr instruction
(LK = 0) (the return address is in, or can
be restored to, the Link Register).

Branch I-form

b target_addr (AA=O LK=O)
ba target_addr (AA=1 LK=O)
bl target_addr (AA=O LK=1)
bla target_addr (AA=1 LK=1)

10
18 I. LI l:t~1

if AA then NIA +-iea EXTS(LI II abaa)
else NIA +-iea CIA + EXTS(LI II abaa)
if LK then LR +-iu CIA + 4

target_addr specifies the branch target address.

If AA = ° then the branch target address is the sum of
LI II ObOO sign-extended and the address of this
instruction, with the high-order 32 bits of the branch
target address set to ° in 32-bit mode of 64-bit imple­
mentations.

If AA= 1 then the branch target address is the value
LI II ObOO sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode of
64-bit implementations.

If LK = 1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK= 1)

Branch Conditional B-form

bc BO, BI, target_ addr (AA=O LK=O)
bca BO,BI,target_addr (AA= 1 LK=O)
bel BO, B I, target_ addr (AA=O LK=1)
bela BO,BI,target_addr (AA= 1 LK=1)

10
16 I. BO· 111 Bl I,. BO r:1~~1

if (64-bit implementation) & (54-bit mode)
then M +- a
el se M +- 32

if ~B02 then CTR +- CTR - 1
ctr _ok +- B02 I «CTRM:63 1- a) @ B03)

cond_ok +- BOo I (CRsl = B01)

if ctr ok & cond ok then
if AA then NIA - +-iea EXTS(BD II abee)
else NIA +-;u CIA + EXTS(BD II abee)

if LK then LR +-iea CIA + 4

The BI field specifies the bit in the Condition Register
to be used as the condition of the branch. The BO
field is used as described above. target_addr speci­
fies the branch target address.

If AA=O then the branch target address is the sum of
BO II ObOO sign-extended and the address of this
instruction, with the high-order 32 bits of the branch
target address set to ° in 32-bit mode of 64-bit imple­
mentations.

If AA= 1 then the branch target address is the value
BO II ObOO sign-extended, with the high-order 32 bits
of the branch target address set to ° in 32-bit mode of
64-bit implementations.

If LK= 1 then the effective address of the instruction
following the Branch instruction is placed into the Unk
Register.

Special Registers Altered:
CTR
LR

Extended Mnemonics:

(if B02=0)
(if LK= 1)

Examples of extended mnemonics for Branch Condi­
tional:

Extended: Equivalent to:

bit target bc 12,0,target
bne cr2, target bc 4,10,target
bdnz target bc 16,O,target

Chapter 2. Branch Processor 21

Branch Conditional to Link Register
XL-form

bclr BO,BI (LK ==0)
bclrl BO,BI (LK== 1)

[Power mnemonics: bcr, bcrl]

10
19 I. BO I" BI 1 •• "1 121

16

if (64-bit implementation) & (64-bit mode)
then M ~ e
else M ~ 32

if ~B02 then eTR ~ eTR - 1
ctr _ok ~ B02 I «CTRM:63 :f 0) (£) B03)
cond_ok ~ BOo I (CRs1 :: B01)
if ctr _ok & cond_ok then NIA ~iea LRo:61 II ehee
if LK then LR ~u CIA + 4

I~~I

The BI field specifies the bit in the Condition Register
to be used as the condition of the branch. The BO
field is used as described above, and the branch
target address is LRo:61 II ObOO, with the high-order 32
bits of the branch target address set to 0 in 32-bit
mode of 64-bit implementations.

If LK == 1 then the effective' address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered: .
CTR
LR

Extended Mnemonics:

(if B02 ==0)
(if LK== 1)

Examples of extended mnemonics for Branch Condi­
tional To Link Register:

Extended:

bltlr
bnelr cr2
bdnzlr

Equivalent to:

belr 12,0
belr 4,10
bclr 16,0

22 PowerPC Architecture First Edition

Branch Conditional to Count Register
XL-form

bcctr BO,BI (LK==O)
bcctrl BO,BI (LK= 1)

[Power mnemonics: bee, beel]

10
19 I. BO I" BI I,. /II 12.

528 I~~I
cond_ok ~ BOo (CRs1 - B01)
if cond_ok then NIA ~iell CTRo:61 II ebee
if LK then LR ~iu CIA + 4

The BI field specifies the bit in the Condition Register
to be used as the condition of the branch. The BO
field is used as described above, and the branch
target address is CTRo:61 II ObOO, with the high-order
32 bits of the branch target address set to 0 in 32-bit
mode of 64-bit implementations.

If LK == 1 then the effective address of the instruction
following the Bra.nch instruction is placed into the Link
R.egister.

If the "decrement and test CTR" option is specified
(B02 == 0), the instruction form is invalid.

Special Registers Altered:
LR (if LK== 1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi­
tional To Count Register:

Extended:

bltctr
bnectr cr2

Equivalent to:

bcctr 12,0
bcctr 4,10

2.4.2 System Call Instruction

This instruction provides These instructions provide
the means by which a program can call upon the
system to perform a service.

System Call SC-form

sc

[Power mnemonic: svcaJ

I. 11/ I" III I,. III

This instruction calls the system to perform a service.
A complete description of this instruction can be
found in "System Call SC-form" on page 150.

When control is returned to the program that exe­
cuted the System Call, the content of the registers will
depend on the register conventions used by the
program providing the system service.

This instruction is context synchronizing, see "System
Call SC-form" on page 150.

Special Registers Altered:
Dependent on the system service

Compatibility Note ---------------,

For a discussion of Power compatibility with
respect to instruction bits 16:29, please refer to
Appendix G, "Incompatibilities with the Power
Architecture" on page 257. For compatibility with
future versions of this architecture, these bits
should be coded as zero.

Chapter 2. Branch Processor 23

2.4.3 Condition Register Logical Instructions

Extended mnemonics for Condition
Register logical operations

A set of extended mnemonics is provided that allow
additional Condition Register logical operations,

Condition Register AND XL-form

crand BT,BA,BB

10 19
257

1:,1

CRST ~ CRSA & CRss

The bit in the Condition Register specified by BA is
ANDed with the bit in the Condition Register specified
by BB and the result is placed into the bit in the Con­
dition Register specified by BT.

Special Registers Altered:
CR

Condition Register XOR XL-form

crxor BT,BA,BB

10 19
193

1:,1
CRST ~ CRSA ~ CRss

The bit in the Condition Register specified by BA is
XORed with the bit in the Condition Register specified
by BB and the result is placed into the bit in the Con­
dition Register specified by BT.

Special Registers Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg­
ister XOR:

Extended:

crclr Bx

Equivalent to:

crxor Bx, Bx, Bx

24 PowerPC Architecture First Edition

beyond those provided by the basic Condition Reg­
ister Logical instructions, to be coded easily. Some of
these are shown as ~xamples with the CR. Logical
instructions. See Appendix C, "Assembler Extended
Mnemonics" on page 223 for additional extended
mnemonics.

Condition Register OR XL-form

cror BT,BA,BB

10 19
449

1 :,1

CRST ~ CRSA CRss

The bit in the Condition Register specified by BA is
ORed with the bit in the Condition Register specified
by BB and the result is placed into the bit in the Con­
dition Register specified by BT.

Special Registers Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg­
ister OR:

Extended:

crmove BX,By

Equivalent to:

cror BX,BY,By

Condition Register NAND XL-form

crnand BT,BA,BB

10 19
225

CRST ~ ~(CRSA & CRss)

1 :,1

The bit in the Condition Register specified by BA is
ANDed with the bit in the Condition Register specified
by BB and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Registers Altered:
CR

Condition Register NOR XL-form

crnor BT,BA,BB

CRST ~ ~(CRSA CRss)

The bit in the Condition Register specified by SA is
ORed with the bit in the Condition Register specified
by SS and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Registers Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg­
ister NOR:

Extended:

crnot BX,By

Equivalent to:

crnor BX,By,By

Condition Register AND With
Complement XL-form

crandc BT,BA,BB

CRST ~ CRSA & ~CRss

The bit in the Condition Register specified by BA is
ANDed with the complement of the bit in the Condi­
tion Register specified by BB and the result is placed
into the bit in the Condition Register specified by BT.

Special Registers Altered:
CR

Condition Register Equivalent XL-form

creqv BT,BA,SB

eRST ~ CRSA = CRss

The bit in the Condition Register specified by BA is
XORed with the bit in the Condition Register specified
by BB and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Registers Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg­
ister Equivalent:

Extended:

crset Bx

Equivalent to:

creqv BX,Bx,Bx

Condition Register OR With Complement
XL-form

crorc BT,BA,BB

417

CRST ~ CRSA I ~CRss
The bit in the Condition Register specified by SA is
ORed with the complement of the bit in the Condition
Register specified by BS and the result is placed into
the bit in the Condition Register specified by ST.

Special Registers Altered:
CR

Chapter 2. Branch Processor 25

2.4.4 Condition Register Field
Instruction

Move Condition Register Field XL-form

mcrf BF,BFA

o

CR4XBF:4xBF + 3 to- CR4xBFA:4xBFA + 3

The contents of Condition Register field BFA are
copied into Condition Register field BF.

Special Registers Altered:
CR

26 PowerPC Architecture First Edition

Chapter 3. Fixed-Poi·nt Processor

3.1 Fixed-Point Processor
Overview

This chapter describes the registers and instructions
that make up the Fixed-Point Processor facility.
Section 3.2, "Fixed-Point Processor Registers" on
page 27 describes the registers ·associated with the
Fixed-Point Processor. Section 3.3, "Fixed-Point
Processor Instructions" on page 29 describes the
instructions associated with the Fixed-Point Processor.

3.2 Fixed-Point Processor
Registers

3.2.1 General Purpose Registers

All manipulation of information is done in registers
internal to the Fixed-Point Processor. The principal
storage internal to the Fixed-Point Processor is a set
of 32 general purpose registers (GPRs). See
Figure 21.

GPROO

GPR 01

.. .

.. .
GPR 30

GPR 31

o ~

Figure 21. General Purpose Registers

Each GPR is a 64-bit register.

3.2.2 Fixed-Point Exception Register

The Fixed-Point Exception Register (XER) is a 32-bit
register.

XER

o 31

Figure 22. Fixed-Point Exception Register

The bit definitions for the Fixed-Point Exception Reg­
ister are as shown below. Here M =0 in 64-bit mode
and M = 32 in 32-bit mode.

The bits are set based on the operation of an instruc­
tion considered as a whole, not on intermediate
results (e.g., the Subtract From Carrying instruction,
the result of which is specified as the sum of three
values, sets bits in the Fixed-Point Exception Register
based on the entire operation, not on an intermediate
sum).

Bit(s) Description

o

1

Summary Overflow (SO)
The Summary Overflow bit is set to one
whenever an instruction (except mtspr) sets
the Overflow bit to indicate overflow. Once
set, the SO bit remains set until it is cleared
by an mtspr instruction (specifying the XER)
or an mcrxr instruction. It is not altered by
Compare instructions, nor by other
instructions (except mtspr to the XER, and
mcrxr) that cannot overflow. Executing an
mtspr instruction to the XER, supplying the
values zero for SO and one for OV, causes
SO to be set to zero and OV to be set to one .

Overflow (OV)
The Overflow bit is set to indicate that an
overflow has occurred duri ng execution of an
instruction. XO-form Add and Subtract
instructions having OE = 1 set it to one if the
carry out of bit M is not equal to the carry
out of bit M + 1, and set it to zero otherwise.
The OV bit is not altered by Compare
instructions, nor by other instructions (except
mtspr to the XER, and mcrxr) that cannot
overflow.

Chapter 3. Fixed-Point Processor 27

2 Carry (CA)
In general, the Carry bit is set to indicate that
a carry out of bit M has occurred during exe­
cution of an instruction. Add Carrying, Sub­
tract From Carrying, Add Extended, and
Subtract From Extended instructions set it to
one if there is a carry out of bit M, and set it
to zero otherwise. However, Shift Right Alge­
braic instructions set the CA bit to indicate
whether any '1' bits have been shifted out of
a negative quantity. The CA bit is not altered
by Compare instructions, nor by other
instructions (except Shift Right Algebraic,
mtspr to the XER, and mcrxr) that cannot
carry.

28 PowerPC Architecture First Edition

3:24 Reserved

25:31 This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

Compatibility Note -----------..,

For a discussion of Power compatibi·lity with
respect to XER bits 16:23, please refer to
Appendix G, "Incompatibilities with the Power
Architecture" on page 257. For compatibility with
future versions of this architecture, these bits
should be set to zero.

3.3 Fixed-Point Processor· Instructions

This section describes the instructions executed by the Fixed-Point processor.

3.3.1 Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.11.2, "Effective Address
Calculation" on page 15.

The order of bytes accessed by halfword, word, and
doubleword loads and stores is Big-Endian, unless
Little-Endian storage ordering is selected as
described in Appendix 0, "Little-Endian Byte
Ordering" on page 235.

Programming Note -------------,

The "Ia" extended mnemonic permits computing
an Effective Address as a Load or Store instruc­
tion would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in "Load Address" on page 234.

3.3.1.1 Storage Access Exceptions

Storage accesses will cause the system error handler
to be invoked if the program is not allowed to modify
the target storage (Store only), or if the program
attempts to access storage that is unavailable.

3.3.2 Fixed-Point Load Instructions

The byte, halfword, word, or· doubleword in storage
addressed by EA is loaded into register RT.

Byte order of PowerPC is Big-Endian by default; see
Appendix 0, "Little-Endian Byte Ordering" on
page 235 for PowerPC systems operated with Little­
Endian byte ordering.

Many of the Load instructions have an "update" form,
in which register RA is updated with the effective
address. For these forms, if RA*O and RA*RT, the
effective address is placed into register RA and the
storage element (byte, halfword, word, or doubleword)
addressed by EA is loaded into RT.

Programming Note -------------.

In some implementations, the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions.
Moreover, Load with Update instructions may take
longer to execute in some implementations than
the corresponding pair of a non-update Load
instruction and an Add instruction.

Chapter 3. Fixed-Point Processor 29

Load Byte and Zero D-form

Ibz RT.D(RA)

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + EXTS(D)
RT ~ 56e II MEM(EA, 1)

Let the effective address (EA) be the sum (RAIO) + D.
The byte in storage addressed by EA is loaded into
RT 56:63' RT 0:55 are set to O.

Special Registers Altered:
None

Load Byte and Zero with Update
D-form

Ibzu RT.D(RA)

EA ~ (RA) + EXTS(D)
RT ~ 56e II MEM(EA, 1)
RA ~ EA

Let the effective address (EA) be the sum (RA) + D.
The byte in storage addressed by EA is loaded into
RTs6:63. RTo:55 are set to O.

EA is placed into register RA.

If RA = 0 or RA = RT. the instruction form is invalid.

Special Registers Altered:
None

30 PowerPC Architecture First Edition

Load Byte and Zero Indexed X-form

Ibzx RT.RA.RB

87

1 :,1

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
RT ~ 56e II MEM(EA, 1)

Let the effective address (EA) be the sum
(RAIO) + (RB). The byte in storage addressed by EA is
loaded into RT56:63. RTo:55 are set to O.

Special Registers Altered:
None

Load Byte and Zero with Update
Indexed X-form

Ibzux RT,RA.RB

EA ~ (RA) + (RB)
RT ~ 56e II MEM(EA, 1)
RA ~ EA

119

1:,1

Let the effective address (EA) be the sum (RA) + (RB).
The byte in storage addressed by EA is loaded into
RT 56:63' RTo:55 are set to O.

EA is placed into register RA.

If RA = 0 or RA = RT. the instruction form is invalid.

Special Registers Altered:
None

Load Halfword and Zero D-form

1hz RT,D(RA)

10 40 I. RT I" RA I,.

D

3,1

if RA = 8 then b ~ 8
else b ~ (RA)
EA ~ b + EXTS(D)
RT ~ 488 II NEM(EA, 2)

Let the effective address (EA) be the sum (RAIO) + D.
The halfword in storage addressed by EA is loaded
into RT48:63. RTo:47 are set to O.

Special Registers Altered:.
None

Load Halfword and Zero with Update
D-form

Ihzu RT,D(RA)

Load Halfword and Zero Indexed
X-form

Ihzx RT,RA,RB

10 31 I. RT I11RA I,. RB
12,

279

1:,1

if RA = 8 then b ~ 8
else b ~ (RA)
EA ~ b + (RB)
RT ~ 488 II MEM(EA, 2)

Let the effective address (EA) be the sum
(RAIO) + (RB). The halfword in storage addressed by
EA is loaded into RT 48:63' RT 0:47 are set to O.

Special Registers Altered:
None

Load Halfword and Zero with Update
Indexed X-form

Ihzux RT,RA,RB

IL...--? 41~1._RT ..i...--1"RA~I'6_D-----,3,1 10 31 I. RT I RA 116
RB

11 .
311

1:,1
EA ~ (RA) + EXTS(D)
RT ~ 488 II f;lEM(EA, 2)
RA ~ EA

Let the effective address (EA) be the sum (RA) + D.
The halfword in storage addressed by EA is loaded
into RT48:63. RTo:47 are set to O.

EA is placed into register RA.

If RA = 0 or RA = RT, the instruction form is invalid.

Special Registers Altered:
None

EA ~ (RA) + (RB)
RT ~ 488 II MEM(EA, 2)
RA ~ EA

Let the effective addr~ss (EA) be the sum (RA) + (RB).
The halfword in storage addressed by EA is loaded
into RT48:63. RTo:47 are set to O.

EA is placed into register RA.

If RA=O or RA= RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 31

Load Halfword Algebraic D-form

Iha RT.D(RA)

Load Halfword Algebraic Indexed
X-form

Ihax RT.RA.RB

,---10 42~1._RT ...r......--111RA__..I,._D-----o3,1 10 311. RT I11RA I,.RB 12, 343

·1 :,1·
if RA = 0 then b ~ 0
else b ~ (RA)
EA ~ b + EXTS(D)
RT ~ EXTS(MEM(EA, 2»

Let the effective address (EA) be the sum (RAIO) + D.
The halfword in storage addressed by EA is loaded
into RT 48:63. RT 0:47 are filled with a copy of bit 0 of
the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update
D-form

Ihau RT.D(RA)

10 43

EA ~ (RA) + EXTS(D)
RT ~ EXTS(fvlEM(EA, 2»
RA ~ EA

D

Let the effective address (EA) be the sum (RA) + D.
The halfword in storage addressed by EA is loaded
into RT 48:63. RT 0:47 are filled with a copy of bit 0 of
the loaded halfword.

EA is placed into register RA.

If RA = 0 or RA = RT. the instruction form is invalid.

Special Registers Altered:
None

32 PowerPC Architecture First Edition

if RA = 0 then b ~ e
else b ~ (RA)
EA ~ b + (RB)
RT ~ EXTS(MEM(EA, 2»

Let the effective address (EA) be the sum
(RAIO)+ (RB). The halfword in storage addressed by
EA is loaded into RT48:63. RTo:47 are filled with a copy
of bit 0 of the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update
Indexed X-form

Ihaux RT,RA.RB

10 31

EA ~ (RA) + (RB)
RT ~ EXTS(MEM(EA, 2»
RA ~ EA

375

Let the effective address (EA) be the sum (RA) + (RB).
The halfword in storage addressed by EA is loaded
into RT48:63. RTo:47 are filled with a copy of bit 0 of
the loaded halfword.

EA is placed into register RA.

If RA=O or RA=RT. the instruction form is invalid.

Special Registers Altered:
None

Load Word and Zero D-form

Iwz RT,O(RA)

[Power mnemonic: I]

if RA = 0 then b ~ 0
else b ~ (RA)
EA ~ b + EXTS(D)
RT ~ 320 II MEM(EA, 4)

Let the effective address (EA) be the sum (RAIO) + O.
The word in storage addressed by EA is loaded into
RT 32:63. RT 0:31 are set to O.

Special Registers Altered:
None

Load Word and Zero with Update
D-form

Iwzu RT,O(RA)

[Power mnemonic: lu]

EA ~ (RA) + EXTS(D)
RT ~ 320 II MEM(EA, 4)
RA ~ EA

Let the effective address (EA) be the sum (RA) + O.
The word in storage addressed by EA is loaded into
RT 32:63. RT 0:31 are set to O.

EA is placed into register RA.

If RA=O or RA= RT, the instruction form is "invalid.

Special Registers Altered:
None

Load Word and Zero Indexed X-form

Iwzx RT,RA,RB

[Power mnemonic: Ix]

23
1 :,1

if"RA = e then b ~ 0
el se b ~ (RA)
EA ~ b + (RB)
RT ~ 320 II MEM(EA, 4)

Let the effective address (EA) be the sum
(RAIO) + (RB). The word in storage addressed by EA
is loaded into RT32:63. RTo:31 are set to O.

Special Registers Altered:
None

Load Word and Zero with Update
Indexed X-form

Iwzux RT,RA,RB

[Power mnemonic: lux]

EA ~ (RA) + (RB)
RT ~ 320 II MEM(EA, 4)
RA ~ EA

55
1 :,1

Let the effective address (EA) be the sum (RA)+(RB).
The word in storage addressed by EA is loaded into
RT32:63. RTo:31 are set to O.

EA is placed into register RA.

If RA=O or RA= RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 33

Load Word Algebraic DS-form

Iwa RT,DS(RA)

if RA = a then b ~ a
else b ~ (RA)
EA ~ b + EXTS(DSII0baa)
RT ~ EXTS(MEM(EA, 4»

Let the effective address (EA) be the sum
(RAIO) + (DSIiObOO). The word in storage addressed by
EA is loaded into RT 32:63. RT 0:31 are filled with a copy
of bit 0 of the loaded word.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

34 PowerPC Architecture First Edition

Load Word Algebraic Indexed X-form

Iwax RT,RA,RB

341

1:,1
if RA = 0 then b ~ e
else b ~ (RA)
EA ~ b + (RB)
RT ~ EXTS(MEM(EA, 4»

Let the effective address (EA) be the sum
(RAIO) +- (RB). The word in storage addressed by EA
is loaded into RT32:63. RTo:31 are filled with a copy of
bit 0 of the loaded word.

This instruction is defined only for 64-bit implementa­
tions. Using it on .a 32-bit implementation will cause
the system illegal instruction error handler to t;>e
invoked.

Special Registers Altered:
None

Load Word Algebraic with Update
Indexed X-form

Iwaux RT,RA,RB

10 31

EA ~ (RA) + (RB)
RT ~ EXTS(MEM(EA, 4»
RA ~ EA

373

1 :,1

Let the effective address (EA) be the sum' (RA) + (RB).
The word in storage addressed by EA is loaded into
RT32:63. RTo:31 are filled with a copy of bit 0 of the
loaded word.

EA is placed into register RA.

If RA=O or RA=RT, the instruction form is invalid.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Load Doubleword DS-form

Id RT,DS(RA)

if RA = 0 then b ~ 0
else b ~ (RA)
EA ~ b + EXTS(DSUSb0S)
RT ~ MEM(EA, 8)

Let the effective address (EA) be the sum
(RAIO) + (DSIIObOO). The doubleword in storage
addressed by EA is loaded into RT.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Load Doubleword with Update DS-form

Idu RT,DS(RA)

Load Doubleword Indexed X-form

Idx RT,RA,RB

21

if RA = 0 then b ~ S
else b ~ (RA)
EA ~ b + (RB)
RT ~ MEM(EA, 8)

Let the effective address (EA) be the sum
(RAIO) + (RB). The doubleword in storage addressed
by EA is loaded into RT.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Load Doub/eword with Update Indexed
X-form

Idux RT,RA,RB

1,---0 58--,--1._RT -,--ll1RA~I,._DS ~13013,1 10 31 I. RT I11RA I,.RB 12' 53

EA ~ (RA) + EXTS(DSII0b00)
RT ~ MEM(EA, 8)
RA ~ EA

Let the effective address (EA) be
(RA) + (DSIIObOO). The doubleword in
addressed by EA is loaded into RT.

EA is placed into register RA.

the sum
storage

If RA = 0 or RA = RT, the instruction form is invalid.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

EA ~ (RA) + (RB)
RT ~ MEM(EA, 8)
RA ~ EA

Let the effective address (EA) be the sum (RA) + (RB).
The doubleword in storage addressed by EA is loaded
into RT.

EA is placed into register RA.

If RA = 0 or RA = RT, the instruction form is invalid.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 35

3.3.3 Fixed-Point Store Instructions

The contents of register RS is stored into the byte,
halfword, word, or doubleword in storage addressed
by EA.

Byte order of Power PC, is Big-Endian by default; see
Appendix 0, "Little-Endian Byte' Ordering" on
page 235 for PowerPC systems operated with Little­
Endian byte ordering.

Store Byte D-form

stb RS,D(RA)

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + EXTS(D)
MEM(EA, 1) ~,(RS)S6:63

Let the effective address (EA) be the sum (RAIO) + D.
(RSls6:63 is stored into the byte in storage addressed
by EA.

Special Registers Altered:
None

Store Byte with Update D-form

stbu RS,D(RA)

Many of the Store instructions have an "update" form,
in which register RA is updated with the effective
address. For these forms, the following rules apply.

• If RA~O, the effective address is placed into reg­
ister RA.'

• If RS == RA, the contents of register RS is copied
to the target storage element and then EA is
placed into RA (RS).

store Byte Indexed X-form

stbx RS.RA,RB

215

1:,1
if RA = a then b ~ e
else b ~ (RA)
EA ~ b + (RB)
MEM(EA, 1) ~ (RSls6:63

Let the effective address (EA) be the sum
(RAIO) + (RB). (RS)SS:63 is stored into the byte in
storage addressed by EA.

Special Registers Altered:
None

Store Byte with Update Indexed X-form

stbux RS,RA,RB

1,---0 39 ______ �._RS ~ll1RA----L-I,._D----'3,1 10 31 I. RS I11RA I,.RB 12, 247

1:,1
EA ~ (RA) + EXTS(D)
MEM(EA, 1) ~ (RSls6:63
RA ~ EA

Let the effective address (EA) be the sum (RA) + D.
(RS)S6:63 is stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

Special Registers Altered:
None

36 PowerPC Architecture First Edition

EA ~ (RA) + (RB)
MEM(EA, 1) ~ (RS)56:63
RA ~ EA

Let the effective address (EA) be the sum (RA) + (RB).
(RS)56:63 is stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

Special Registers Altered:
None

Store Halfword D-form

sth RS,D(RA)

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + EXTS(D)
MEM(EA, 2) ~ (RS)48:63

Let the effective address (EA) be the sum (RAIO) + D.
(RS)48:63 is stored into the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Halfword with Update D-form

sthu RS,D(RA)

10 45 111
RA I

. 16

EA ~ (RA) + EXTS(D)
MEM(EA, 2) ~ (RS)48:63
RA ~ EA

o

Let the effective address (EA) be the sum (RA) + D.
(RS)48:63 is stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

Special Registers Altered:
None

Store Halfword Indexed X-form

sthx RS,RA,RB

407

1:,1

if RA = e then b ~ a
else b ~ (RA)
EA .~ b + (RB)
MEM(EA, 2) ~ (RS)48:63

Let the effective address (EA) be the sum
(RAIO) + (RB). (RS)48:63 is stored into the halfword in
storage addressed by EA.

Special Registers Altered:
None

Store Halfword with Update Indexed
X-form

sthux RS,RA,RB

10 31

EA ~ (RA) + (RB)
MEM(EA, 2) ~ (RS)48:63
RA ~ EA

439

1 :,1

Let the effective address (EA) be the sum (RA) + (RB).
(RS)48:63 is stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=O, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor. 37

Store WordD-form

stw RS,D(RA)

[Power mnemonic: st]

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + EXTS(D)
MEM(EA, 4) ~ (RSh2:63

Let the effective address (EA) be the sum (RAIO)+ D.
(RSb2:63 is stored into the word in storage addressed
by EA.

Special Registers Altered:
None

Store Word with Update

stwu RS,D(RA)

[Power mnemonic: stu]

10
37 I. RS I" RA

EA ~ (RA) + EXTS(D)
MEM(EA, 4) ~ (RSh2:63
RA ~ EA

I,.

D-form

0
3,1

Let the effective address (EA) be the sum (RA) + D.
(RSb2:63 is stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

Special Registers Alt~red:
None

38 PowerPC Architecture First Edition

Store Word Indexed X-form

stwx RS,RA,RB

[Power mnemonic: stx]

151

1:,1
if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
MEM(EA, 4) ~ (RSh2:63

Let the effective address (EA) be the sum
(RAIO)+ (RB). (RSb2:63 is stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Word with Update Indexed

stwux RS,RA,RB

[Power mnemonic: stux]

10
31

1/
5

I" RA

EA ~ (RA) + (RB)
MEM(EA, 4) ~ (RSh2:63
RA ~ EA

I,.RB 12,
183

X-form

1:,1

Let the effective address (EA) be the sum (RA) + (RB).
(RSb2:S3 is stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

Special Registers Altered:
None

Store Doubleword DS-form

std RS,DS(RA)

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + EXTS (DSn0b00)
MEM(EA, 8) ~ (RS)

Let the effective address (EA) be
(RAIO) + (DSnObOO). (RS) is stored
doubleword in storage addressed by EA.

the sum
into the

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Store Doubleword with Update DS-form

stdu RS,DS(RA)

10 62 I. RS I" RA

EA ~ (RA) + EXTS(DSn0b00)
MEM(EA, 8) ~ (RS)
RA ~ EA

I,. DS

130\,1

Let the effective address (EA) be the sum
(RA) + (DSnObOO). (RS) is stored into the doubleword
in storage addressed by EA.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Store Doubleword Indexed X-form

stdx RS,RA,RB

149

1:,1
if RA = 0 then b ~ e
else b ~ (RA)
EA ~ b + (RB)
MEM(EA, 8) ~ (RS)

Let the effective address (EA) be the sum
(RAIO) + (RB). (RS) is stored into the doubleword in
storage addressed by EA.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

SpeCial Registers Altered:
None

Store Doubleword with Update Indexed
X-form

stdux RS,RA,RB

10 31 I. RS

EA ~ (RA) + (RB)
MEM(EA, 8) ~ (RS)
RA ~ EA

I" RA
I,. RB 12,

181

1:,1

Let the effective address (EA) be the sum (RA) + (RB).
(RS) is stored into the doubleword in storage
addressed by EA.

EA is placed into register RA.

If RA=O, the instruction form is invalid.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 39

3.3.4 Fixed-Point Load and Store with Byte Reversal Instructions

When used in a Power PC system operating with Big­
Endian byte order (the default), these instructions
have the effect of loading and storing data in Little­
Endian order. Likewise, when used in 'a PowerPC
system operating with Little-Endian byte order, these "
instructions have the effect of loading and storing
data in Big-Endian order. See Appendix 0, "Little-

Load Halfword Byte-Reverse Indexed
X-form

Ihbrx RT,RA,RB

Endian Byte Ordering" on page 235 for a discussion
of byte order.

Programming Note ------------,

In some implementations; the Load Byte-Reverse
instructions may have greater latency than other
Load instructions.

Load Word Byte-Reverse Indexed
X-form

Iwbrx RT,RA,RB

[Power mnemonic: Ibrx]

~Io 31--L-1._RT ...&..--1
11RA--L-I,.R--L

B
1_21 7_90 --J.-....I1:,1 10 31 I. RT I11RA I,.RB 12,

1:,1
534

if RA = 0 then b ~ 9
else b ~ (RA)
EA ~ b + (RB)
RT ~ 480 II MEM(EA+1, 1) II MEM(EA, 1)

Let the effective address (EA) be the sum
(RA/O) + (RB). Bits 0:7 of the halfword in storage
addressed by EA are loaded into RTs6:S3' Bits 8:15 of
the halfword in storage addressed by EA are loaded
into RT48:SS' RTo:47 are set to O.

Special Registers Altered:
None

40 PowerPC Architecture First Edition

if RA = 9 then b ~ 0
else b ~ (RA)
EA ~ b + (RB)
RT ~ 329 II MEM(EA+3, 1) /I MEM(EA+2, 1)

II MEM(EA+1, 1) /I MEM(EA, 1)

Let the effective address (EA) be the sum
(RAIO) + (RB). Bits 0:7 of the word in storage
addressed by EA are loaded into RT 56:63. Bits 8:15 of
the word in storage addressed by EA are loaded into
RT48:ss• Bits 16:23 of the word in storage addressed
by EA are loaded into RT40:47. Bits 24:31 of the word
in storage addressed by EA are loaded into RT 32:39'
RTO:31 are set to O.

Special Registers Altered:
None

Store Halfword Byte-Reverse Indexed
X-form

sthbrx RS,RA,RB

Store Word Byte-Reverse Indexed
X-form

stwbrx RS,RA,RB

[Power mnemonic: stbrx]

IL.:.--O 31--J....:.-16 R---J....:..S 111~RA 1L....--16RB ~121 _918 ~1:,1 10 31 16 RS I11RA 1'6RB 121 662

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
~IEM(EA, 2) ~ (RS)56:63 II (RS)48:55

Let the effective address (EA) be the sum
(RAIO) + (RB). (RSb6:63 are stored into bits 0:7 of the
halfword in storage addressed by EA. (RS)48:55 are
stored into bits 8:15 of the halfword in storage
addressed by EA.

Special Registers Altered:
None

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
MEM(EA, 4) ~ (RS)56:63 II (RS)48:55 II (RS)40:47 II (RSh2:39

Let the effective address (EA) be the sum
(RAIO) + (RB). (RS)56:63 are stored into bits 0:7 of the
word in storage addressed by EA. (RS)48:55 are stored
into bits 8:15 of the word in storage addressed by EA.
(RS)40:47 are stored into bits 16:23 of the word in
storage addressed by EA. (RSb2:39 are stored into
bits 24:31 of the word in storage addressed by EA.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processo,r 41

3.3.5 Fixed-Point Load and Store Multiple Instructions

The Load/Store Multiple instructions have preferred
forms: see Section 1.9.1, "Preferred Instruction
Forms" on page 13. In the preferred forms, storage
alignment satisfies the following rule.

• The combination of the EA and RT (RS) is such
that the low-order byte of GPR 31 is loaded
(stored) from (into) the last byte of an aligned
quadword in storage.

On Power PC systems operating with Little-Endian byte
order, execution of a Load Multiple or Store Multiple
instruction causes the system alignment error handler

Load Multiple Word D-form

Imw RT,D(RA)

[Power mnemonic: 1m]

10 46

if RA = 0 then b ~ 0
else b ~ (RA)
EA ~ b + EXTS(D)
r ~ RT
do while r s 31

GPR(r) ~ 320 " MEM(EA, 4)
r ~ r + 1
EA ~ EA + 4

D

Let n = (32-RT). Let the effective address (EA) be
the sum (RAIO) + D.

n consecutive words starting at EA are loaded into
the low-order 32 bits of GPRs RT through 31. The
high-order 32 bits of these GPRs are set to zero.

EA must be a multiple of 4. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

If RA is in the range of registers to be loaded or
RT=RA=O, the instruction form is invalid.

Special Registers Altered:
None

42 PowerPC Architecture First Edition

to be invoked. See Appendix D, "Little-Endian Byte
Ordering" on page 235.

Compatibility Note ------------,

For a discussion of Power compatibility with
respect to the alignment of the EA for the Load
Multiple Word and Store Multiple Word
instructions, please refer to Appendix G, "Incom­
patibilities with the Power Architecture" on
page 257. For compatibility with future versions
of this architecture, these EAs should be word­
aligned.

Store Multiple Word D-form

stmw RS,D(RA)

[Power mnemonic: stm]

10 47

if RA = 0 then b ~ e
else b ~ (RA)
EA ~ b + EXTS(D)
r ~ RS
do while r s 31

MEM(EA, 4) ~ GPR(rh2:63
r ~ r + 1
EA ~ EA + 4

D

Let n = (32-RS). Let the effective address (EA) be
the sum (RAIO)+ D.

n consecutive words starting at EA are stored from
the low-order 32 bits of GPRs RS through 31.

EA must be a multiple of 4. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

Special Registers Altered:
None

3.3.6 Fixed-Point Move Assist Instructions

The Move Assist instructions allow movement of data
from storage to registers or from registers to storage
without concern for alignment. These instructions can
be used for a short move between arbitrary storage
locations or to initiate a long move between unaligned
storage fields.

Load/Store String Indexed instructions of zero length
have no effect, except that Load String Indexed
instructions of zero length may set register RT to an
undefined value.

The Load/Store String instructions have preferred
forms: see Section 1.9.1, "Preferred Instruction

Forms" on page 13. In the preferred forms, register
usage satisfies the following rules.

• RS = 5
• RT = 5
• last register loaded/stored S 12

On Power PC systems operating with Little-Endian byte
order, execution of a Load/Store String instruction
causes the system alignment error handler to be
invoked. See Appendix D, "Little-Endian Byte
Orderi ng" on page 235.

Chapter 3. Fixed-Point Processor 43

Load String Word Immediate X-form

Iswi RT,RA,NB

[Power mnemonic: lsi]

10
31 I. RT I" RA I,. NB

if RA = a then EA ~ e
else EA ~ (RA)
if NB = e then n ~ 32
else n ~ NB
r ~ RT - 1
i ~ 32
do whil en> e

if i = 32 then
r ~ r + 1 (mod 32)
GPR(r) ~ e

GPR(r)i:i +7 ~ MEM(EA, 1)
i ~ i + 8
if i = 64 then i ~ 32
EA ~ EA + 1
n ~ n - 1

12,
597

Let the effective address (EA) be (RAIO). Let n = NB
if NB:;eO, n = 32 if NB=O: n is the number of bytes to
load. Let nr = CEIL(n+4): nr is the number of regis­
ters to receive data.

n consecutive bytes starting at EA are loaded into
GPRs RT through RT+nr-1. Data is loaded into the
low-order four bytes of each GPR; the high-order four
bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR ° if
required. If the low-order four bytes of register
RT + nr-1 are only partially filled, the unfilled low­
order byte(s) of that register are set to 0.

If RA is in the range of registers to be loaded or
RT= RA=O, the instruction form is invalid.

Special Registers Altered:
None

44 PowerPC Architecture First Edition

Load String Word Indexed X-form

Iswx RT,RA,RB

[Power mnemonic: Isx]

if RA = e then b ~ e
el se b ~ (RA)
EA ~ b + (RB)
n ~ XER25:31
r ~ RT - 1
i ~ 32
RT ~ undefined
do while n > a

if i = 32 then
r ~ r + 1 (mod 32)
GPR(r) ~ 9

GPR(r)i:i+7 ~ MEM(EA, 1)
i ~ i + 8
if i = 64 then i ~ 32
EA ~ EA + 1
n ~ n - 1

533

1:,1

Let the effective address (EA) be the sum
(RAIO)+ (RB). Let n = XER25:31 : n is the number of
bytes to load. Let nr = CEIL(n+4): nr is the number
of registers to receive data.

If n> 0, n consecutive bytes starting at EA are loaded
into GPRs RT through RT + nr-1. Data is loaded into
the low-order four bytes of each GPR; the high-order
four bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR ° if
required. If the low-order four bytes of register
RT+nr-1 are only partially filled, the unfilled low­
order byte(s) of that register are set to 0.

If n = 0, the content of register RT is undefined.

If RA or RB is in the range of registers to be loaded
or RT = RA = 0, the instruction form is invalid.

Special Registers Altered:
None

Store String Word Immediate X-form

stswi RS,RA,NB

[Power mnemonic: stsi]

if RA = e then EA ~ e
else EA ~ (RA)
if NB = e then n ~ 32
else
r ~ RS - 1
; ~ 32
do while n > e

n ~ NB

if i = 32 then r ~ r + 1 (mod 32)
MEM(EA, 1) ~ GPR(r)i:i+7
i ~ i + 8
if i = 64 then i ~ 32
EA ~ EA + 1
n ~ n - 1

Let the effective address (EA) be (RAIO,. Let n = NB
if NB:;cO, n = 32 if NB=O: n is the number of bytes to
store. Let nr = CEIL(n+4): nr is the number of regis­
ters to supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS + nr-1. Data is stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

Special Registers Altered:
None

Store String Word Indexed X-form

stswx RS,RA,RB

[Power mnemonic: stsx]

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
n ~ XER25:31
r ~ RS - 1
i ~ 32
do while n > e

if i = 32 then r ~ r + 1 (mod 32)
MEM(EA, 1) ~ GPR(r)i:i+7
i ~ i + 8
if ; = 64 then ; ~ 32
EA ~ EA + 1
n ~ n - 1

661

1:,1

Let the effective address (EA) be the sum
(RAIO) + (RB). Let n = XER25:31 : n is the number of
bytes to store. Let nr = CEIL(n+4): nr is the number
of registers to supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr-1. Data is stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 45

3.3.7 Storage Synchronization Instructions

The Storage Synchronization instructions can be used
to control the order in which storage operations are
completed with respect to asynchronous events, and
the order in which storage operations are seen by
other processors and by other mechanisms that
access storage. Additional information about these
instructions, and about related aspects of storage
management, can be found in Part 2, "PowerPC
Virtual Environment Architecture" on page 117, and
Part 3, "PowerPC Operating Environment
Architecture" on page 141.

Load Word And Reserve Indexed
X-form

Iwarx RT,RA,RB

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
RESERVE ~ 1
RESERVE ADDR ~ func(EA)
RT ~ 328 II MEM(EA, 4)

Let the effective address (EA) be the sum
(RAIO) + (RB). The word in storage addressed by EA
is loaded into RT32:63. RTo:31 are set to O.

This instruction creates a reservation for use by a
Store Word Conditional instruction. An address com­
puted from the EA is associated with the reservation,
and replaces any address previously associated with
the reservation: the manner in which the address to
be associated with the reservation is computed from
the EA is described in Part 2, "PowerPC Virtual Envi­
ronment Architecture" on page 117.

EA must be a multiple of 4. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

Special Registers Altered:
None

46 PowerPC Architecture First Edition

Programming Note -------------,

Because the Storage Synchronization instructions
have implementation dependencies (e.g., the
granularity at which reservations are managed),
they must be used with care. The operating
system should provide system library programs
that use these instructions to implement the high­
level synchronization functions (Test and Set,
Compare and Swap, etc.) needed by application
programs. Application programs should use these
library programs; rather than use the Storage
Synchronization instructions directly.

Load Doubleword And Reserve Indexed
X-form

Idarx RT,RA,RB

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
RESERVE ~ 1
RESERVE ADDR ~ func(EA)
RT ~ MEM(EA, 8)

84

Let the effective address (EA) be the sum
(RAIO) + (RB). The doubleword in storage addressed
by EA is loaded into RT.

This instruction creates a reservation for use by a
Store Doubleword Conditional instruction. An
address computed from the EA is associated with the
reservation, and replaces any address previously
associated with the reservation: the manner in which
the address to be associated with the reservation is
computed from the EA is described in Part 2,
"PowerPC Virtual Environment Architecture" on
page 117.

EA must be a multiple of 8. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Store Word Conditional Indexed X-form

stwcx. RS,RA,RB

10
31 I. RS 111 RA

if RA = 0 then b ~ 0
else b ~ (RA)
EA ~ b + (RB)
if RESERVE then

MEM(EA, 4) ~ (RSh2:63
RESERVE ~ e

I,.RB

eRe ~ 0bee II 0bl II XERso
else

eRe ~ 0b0e II 0b0 II XERso

121
150 I ~,1

Let the effective address (EA) be the sum
(RAIO) + (RB).

If a reservation exists, (RSh2:63 is stored into the
word in storage addressed by EA and the reservation
is cleared.

If a reservation does not exist, the instruction com­
pletes without altering storage.

CR Field 0 is set to reflect whether the store opera­
tion was performed (Le., whether a reservation
existed when the stwcx. instruction commenced exe­
cution), as follows.

CROLT GT EQ so = ObOO II store_performed II XERso

EA must be a multiple of 4. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

Special Registers Altered:
CRO

Store Doubleword Conditional Indexed
X-form

stdcx. RS,RA,RB

10 31 I. RS 111 RA

if RA = 0 then b ~ 0
else b ~ (RA)
EA ~ b + (RB)
if RESERVE then

MEM(EA, 8) ~ (RS)
RESERVE ~ 0

1,. RB

eRe ~ 0b00 II 0bl II XERso
else

eRe ~ 0b00 II 0be II XERso

121
214 I ~,1

Let the effective address (EA) be the sum
(RAIO) + (RB).

If a reservation exists, (RS) is stored into the
doublewordin storage addressed by EA and the res­
ervation is cleared.

If a reservation does not exist, the instruction com­
pletes without altering storage.

CR Field 0 is set to reflect whether the store opera­
tion was performed (i.e., whether a reservation
existed when the stdcx. instruction commenced exe­
cution), as follows.

CROLT GT EQ so = ObOO II store_performed II XERso

EA must be a multiple of 8. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO

Programming Note ------------,

The granularity with which reservations are
managed is implementation-dependent. Therefore
the storage to be accessed by the Load And
Reserve and Store Conditional instructions should
be allocated by a system library program. Addi­
tional information can be found in Part 2,
"PowerPC Virtual Environment Architecture" on
page 117.

Chapter 3. Fixed-Point Processor 47

Programming Note -----------.....,

When correctly used, the Load And Reserve and
Store Conditional instructions can provide an
atomic update function for a single aligned word
(Load Word And Reserve and Store Word Condi­
tional) or doubleword (Load Doubleword And
Reserve and Store Doubleword Conditional) of
storage.

One of the requirements for correct use is that
Load Word knd Reserve be paired with Store
Word Conditional, and Load Doubleword And
Reserve with Store Doubleword Conditional, with
the same effective address used for both
instructions of the pair. Examples of correct uses
of these instructions, to emulate primitives such
as "Fetch and Add," "Test and Set," and
"Compare and Swap," can be found in Appendix
E.1, "Synchronization" on page 243.

At most one reservation exists on any given
processor: there are not separate reservations for
words and for doublewords.

The conditionality of the Store Conditional
instruction's store is based only on whether a res­
ervation exists, not on a match between the
address associated with the reservation and the
address computed from the EA of the Store Con­
ditional instruction.

A reservation is cleared if any of the following
events occurs.

• The processor holding the reservation exe­
cutes another Load And Reserve instruction;
this clears the first reservation and estab­
lishes a new one.

• The processor holding the reservation exe­
cutes a Store Conditional instruction to any
address.

• Another processor executes any Store
instruction to the address associated with the
reservation.

• Any mechanism, other than the processor
holding the reservation, stores to the address
associated with the reservation.

See Part 2, "PowerPC Virtual Environment
Architecture" on page 117, for additional informa­
tion.

48 PowerPC Architecture First Edition

Synchronize X-form

sync

[Power mnemonic: dcsJ

I III

6 1

'1111/ I III I
. 1621

598

The sync instruction provides an ordering function for
the effects of all instructions executed by a given
processor. Executing a sync instruction ensures that
all instructions previously initiated by the given
processor appear to have completed before the sync
instruction completes, and that no subsequent
instructions are initiated by the given processor until
after the sync instruction completes. When the sync
instruction completes, all storage accesses initiated
by the given processor prior to the sync will have
been performed with respect to all other mechanisms
that access storage. (See Part 2, "PowerPC Virtual
Environment Architecture" on page 117, for a more
complete description. See also the section entitled
"Table Update Synchronization Requirements" in
Part 3, "PowerPC Operating Environment
Architecture" on page 141, for an exception involving
TLB invalidates.)

This instruction is execution synchronizing (see
Part 3, "PowerPC Operating Environment
Architecture" on page 141).

Special Registers Altered:
None

Programming Note -----------.....,

The sync instruction can be used to ensure that
the results of all stores into a data structure, per­
formed in a "critical section" of a program, are
seen by other processors before the data struc­
ture is seen as unlocked.

The functions performed by the sync instruction
will normally take a significant amount of time to
complete, so indiscriminate use of this instruction
may adversely affect performance. In addition,
the time required to execute sync may vary from
one execution to another.

The Enforce In-order Execution of 110 (eieio)
instruction, described in Part 2, "PowerPC Virtual
Environment Architecture" on page 117, may be
more appropriate than sync for cases in which the
only requirement is to control the order in which
storage references are seen by I/O devices.

3.3.8 Other Fixed-Point Instructions

The remainder of the fixed-point instructions use the
content of the General Purpose Registers (GPRs) as
source operands, and place results into GPRs, into the
fixed-point Exception Register (XER), and into Condi­
tion Register fields. In addition, the Trap instructions
compare the contents of one GPR with a second GPR
or immediate data and, if the conditions are met,
invoke the system trap handler.

These instructions treat the source operands as
signed integers unless the instruction is explicitly
identified as performing an unsigned operation.

The X-form and XC-form instructions with Rc = 1, and
the D-form instructions addic., andi., and andis., set
the first three bits of CR Field 0 to characterize the

result placed into the target register. In 64-bit mode,
these bits are set as if the 64-bit result were com­
pared algebraically to zero. In 32-bit mode, these bits
are set as if the low-order 32 bits of the result were
compared algebraically to zero.

Unless otherwise noted and when appropriate, when
CR Field 0 and the XER are set they reflect the value
placed in the target register.

Programming Note -------------,

Instructions with the OE bit set or which set CA
may execute slowly or may prevent the execution
of subsequent instructions until the operation is
completed.

Chapter 3. Fixed-Point Processor 49

3.3.9 Fixed-Point Arithmetic Instructions

The XO-form Arithmetic instructions with Rc = 1, and
the D-form Arithmetic instruction addie., set the first
three bits of CR Field 0 as described in Section 3.3.8,
"Other Fixed-Point Instructions" on page 49.

addie, addie., subfie, addc, subfe, adde, subfe, addme,
subfme, addze, and subfze always set CA, to reflect
the carry out of bit 0 in 64-bit mode and out of bit 32
in 32-bit mode. With the exception of mulld and
mullw, the XO-form Arithmetic instructions set SO and
OV when OE = 1, to reflect overflow of the 64-bit result
in 64-bit mode and overflow of the low-order 32-bit
result in 32-bit mode. mulld and mullw set SO and OV
when OE = 1, to reflect overflow of the 64-bit result for
mulld and overflow of the low-order 32-bit result for
mullw.

Programming Note ------------,

Notice that CR Field 0 may not reflect the "true"
(infinitely precise) result if overflow occurs.

Add Immediate D-form

addi RT,RA,SI
[Power mnemonic: cal]

I. 14 I. RT I11RA I,. SI
3,1

if RA = 0 then RT ~ EXTS(S1)
else RT ~ (RA) + EXTS(S1)

The sum (RAIO) + SI is placed into register RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate:

Extended: Equivalent to:

Ii RX,value addi Rx,O, value
la Rx,disp(Ry) addi RX,Ry,disp
subi RX,RY,value addi RX,Ry,-value

Programming Note ------------,

addi, addis, add, and sub' are the preferred
instructions for addition and subtraction, because
they set few status bits.

Notice that addi and addis use the value 0, not the
contents of GPR 0, if RA = O.

50 PowerPC Architecture First Edition

Extended mnemonics for addition and
subtraction

S,everal ,extended mnemonics ar.e provided that use
the Add Immediate and Add Immediate Shifted
instructions to load an immediate value or an address
into a target register. Some of these are shown as
examples with the two instructions.

The PowerPC Architecture supplies Subtract From
instructions, which subtract the second operand from
the third. A set of extended mnemonics is provided
that use the more "normal" order, in which the third
operand is subtracted from the second, with the third
operand being either an immediate field or a register.
Some of these are shown as examples with the appro­
priate Add and Subtract From instructions.

See Appendix C, "Assembler Extended Mnemonics"
on page 223 for additional extended mnemonics.

Add Immediate Shifted D-form

addis RT,RA,SI

[Power mnemonic: cau]

I.
15 I. RT 111 RA I,.

SI
3,1

if RA = 0 then RT ~ EXTS (S1 II 160)
else RT ~ (RA) + EXTS(S1 n 160)

The sum (RAIO) + (SI II OxOOOO) is placed into register
RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for, Add Immediate
Shifted:

Extended:

lis RX,value
subis RX,Ry,value

Equivalent to:

addis RX,O,value
addis RX,Ry,-value

Add XO-form

add RT,RA,RB (OE=O Rc=O)
add. RT,RA,RB (OE=O Rc= 1)
addo RT,RA,RB (OE= 1 Rc=O)
addo. RT,RA,RB (OE= 1 Rc= 1)

[Power mnemonics: cax, cax., caxo, caxo.]

10 31

RT +- (RA) + (RB)

The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
CRO
SOOV

(if Rc= 1)
(if OE= 1)

Add Immediate Carrying D-form

addic RT,RA,SI

[Power mnemonic: ai]

10 12
SI

RT +- (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered:
CA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying:

Extended: Equivalent to:

subic RX,Ry,value addic Rx,Ry,-value

Subtract From XO-form

subf
subf.
subfo
subfo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

(OE=O Rc=O)
(OE=O Rc=1)
(OE= 1 Rc=O)
(OE= 1 Rc= 1)

I. 31
Is

RT "111RA 11sRB IOE I" 40
. . . 2122

RT +- ~(RA) + (RB) + 1

The sum ..., (RA) + (RB) + 1 is placed into register
RT.

Special Registers Altered:
CRO
SOOV

Extended Mnemonics:

(if Rc=1)
(ifOE=1)

Example of extended mnemonics for Subtract From:

Extended: Equivalent to:

sub Rx, Ry, Rz subf Rx, Rz, Ry

Add Immediate Carrying and Record
D-form

addic. RT,RA,SI

[Power mnemonic: ai.]

SI

RT +- (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered:
CROCA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying and Record:

Extended: Equivalent to:

subic. RX,Ry,value addic. Rx,Ry,-value

Chapter 3. Fixed-Point Processor 51

Subtract From Immediate Carrying
D-form

subfic RT,RA,SI

[Power mnemonic: sfiJ

10 08 I. RT L RA I,. SI

RT ~ ~(RA) + EXTS(SI) + 1

The sum -. (RA) + Sl + 1 is placed into register RT.

Special Registers Altered:
CA

Add Carrying XO-form

addc RT,RA,RB (OE=O Rc=O)
addc. RT,RA,RB (OE=O Rc=1)
addco RT,RA,RB (OE=1 Rc=O)
add co. RT,RA,RB (OE= 1 Rc= 1)

[Power mnemonics: a, a., ao, aO.J

Subtract From Carrying XO-form

subfc RT,RA,RB (OE=O Rc=O)
subfc. RT,RA,RB (OE=O Rc=1)
subfco RT,RA,RB (OE=1 Rc=O)
subfco. RT,RA,RB (OE= 1 Rc= 1)

[Power mnemonics: st, st., sto, sto.J

I ,--0 3_1 ___ 1._
RT

---o.I_ll RA_Ir....-16 R_B ...L.-1~~~122 _1
0
---'----II :~I 10 31 I. RT I RA 116

RB

~ 1 •

RT ~ (RA) + (RB)

The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
CA
CRO
SOOV

(if Rc= 1)
(if OE= 1)

52 PowerPC Architecture First Edition

RT ~ ~(RA) + (RB) + 1

The sum -. (RA) + (RB) + 1 is placed into register
RT.

Special Registers Altered:
CA
CRO
SOOV

Extended Mnemonics:

(if Rc= 1)
(if OE= 1)

Example of extended mnemonics for Subtract From
Carrying:

Extended:

subc Rx, Ry, Rz

Equivalent to:

subfc Rx, Rz, Ry

Add Extended XO-form

adde RT,RA,RB (OE=O Rc=O)
adde. RT,RA,RB (OE=O Rc=1)
addeo RT,RA,RB (OE= 1 Rc=O)
addeo. RT,RA,RB (OE=1 Rc=1)

[Power mnemonics: ae, ae., aeo, aeo.]

RT ~ (RA) + (RB) + CA

The sum (RA) + (RB) + CA is pJaced into register
RT.

Special Registers Altered:
CA
CRO
SOOV

(if Rc = 1)
(if OE= 1)

Add To Minus One Extended XO-form

addme RT,RA
add me. RT,RA
addmeo RT, RA
addmeo. RT,RA

(OE=O Rc=O)
(OE=O Rc=1)
(OE= 1 Rc=O)
(OE= 1 Rc= 1)

[Power mnemonics: arne, arne., ameo, ameo.]

Subtract From Extended XO-form

subfe RT,RA,RB (OE=O Rc=O)
subfe. RT,RA,RB (OE=ORc=1)
subfeo RT,RA,RB (OE= 1 Rc=O)
subfeo. RT,RA,RB (OE= 1 Rc= 1)

[Power mnemonics: ste, ste., stea, sfeo.]

136

RT ~ ~(RA) + (RB) + CA

The sum ..., (RA) + (RB) + CA is placed into register
RT.

Special Registers Altered:
CA
CRO
SOOV

(if Rc= 1)
(ifOE=1)

Subtract From Minus One Extended
XO-form

subfme RT, RA
subfme. RT, RA
subfmeo RT, RA
subfmeo. RT, RA

(OE=O Rc=O)
(OE=O Rc=1)
(OE= 1 Rc=O)
(OE= 1 Rc= 1)

[Power mnemonics: sfme, sfme., sfmeo, sfmeo.]

10
31 16 RT 111RA 116"1

I02
E
1 122 234 IRcl r----~--r-. ---r--r---r--~

L... __ ----I.:.....-_---L. __ --L.. ---"-. ____ .L--__ ---L_
3

..,." 10 31 I. RT I" RA I,. III I~~ 122 232 I ~~I
RT ~ eRA) + CA - 1

The sum (RA) + CA + 641 is placed into register RT.

Special Registers Altered:
CA
CRO
SOOV

(if Rc=1)
(if OE= 1)

RT ~ ~(RA) + CA - 1

The sum, (RA) + CA + 641 is placed into register
RT.

Special Registers Altered:
CA
CRO
SOOV

(if Rc= 1)
(if OE= 1)

Chapter 3. Fixed-Point Processor 53

Add To Zero Extended XO-form

addze
addze.
addzeo
addzeo.

RT,RA
RT,RA
RT,RA
RT,RA

[Power mnemonics: aze, aze., azeo, azeo.]

(OE==O Rc==O)
(OE==O Rc== 1)
(OE==1 Rc=O)
(OE== 1 Rc== 1)

Subtract From Zero Extended XO-form

subfze
subfze.
subfzeo
subfzeo.

RT,RA
RT,RA
RT,RA
RT,RA

(OE-O Rc==O)
(OE-O Rc==1)
(OE=1 Rc=O)
(OE=1 Rc=1)

[Power mnemonics: sfze, sfze., sfzeo, sfzeo.]

,--10 _31 --,--I. _
RT

---IoI_11 RA---,-I,_6 /I/----'--I~~..J._122_20_2 ---Io1---,:~1 10 31 I. RT I RA I /1/ IOE I 200
. 11 16 21 22

RT +- (RA) + CA

The sum (RA) + CA is placed into register RT.

Special Registers Altered:
CA
CRO
SOOV

(if Rc== 1)
(if OE== 1)

54 PowerPC Architecture First Edition

RT +- (RA) + CA

The sum .~ (RA) + CA is placed into register RT.

Special Registers Altered:
CA
CRO
SOOV

(if Rc== 1)
(if OE== 1)

Programming Note -----------,

The setting of CA by the Add and Subtract
instructions, including the Extended versions
thereof, is mode-dependent. If a sequence of
these instructions is used to perform extended­
precision addition or subtraction, the same mode
should be used throughout the sequence.

Negate XO-form

neg RT,RA (OE=O Rc=O)
neg. RT,RA (OE=O Rc=1)
nego RT,RA (OE=1 Rc=O)
nego. RT,RA (OE=1 Rc=1)

10

31
I. RT I" RA 1,./1/ I~~ 122 104 I:~I

RT +- (RA) + 1

The sum -, (RA) + 1 is placed into register RT.

If executing in 64-bit mode and register RA contains
the most negative 64-bit number (Ox8000 _ 0000_0000_
0000), the result is the most negative number and, if
OE= 1, OV is set to 1. Similarly, if executing in 32-bit
mode and (RAh2:63 contains the most negative 32-bit
number (Ox8000_0000), the low-order 32 bits of the
result contain the most negative 32-bit number and, if
OE=1, OV is set to 1.

Special Registers Altered:
CRO
SOOV

(if Rc == 1)
(if OE= 1)

Multiply Low Immediate D-form

mulli RT,RA,SI

[Power mnemonic: mUli]

10 07
1
.6 RT I RA I
. 11· 16

prod~127 ~ (RA) x EXTS(SI)
RT ~ prod64:127

SI

The 64-bit first operand is (RA). The 64-bit second
operand is the sign-extended value of the SI field.
The low-order 64 bits of the 128-bit product of the
operands are placed into register RT.

Both the operands and the product are interpreted as
signed integers.

Special Registers Altered:
None

Multiply Low Doubleword XO-form

mulld
mulld.
mulldo
mull do.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

(OE=O Rc=O)
(OE=O Rc= 1)
(OE=1 Rc=O)
(OE=1 Rc=1)

I RT I RA I RB 10.2E1 122 233
6 1116 ._

prodO:127 ~ (RA) x (RB)
RT ~ prod64:127

The 64-bit operands are (RA) and (RB). The low-order
64 bits of the 128-bit product of the operands are
placed into register RT.

If OE = 1 then OV is set to 1 if the product cannot be
represented in 64 bits.

Both the operands and the product are interpreted as
signed integers.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO
SOOV

(if Rc= 1)
(if OE= 1)

Programming Note -----------.

The XO-form Multiply instructions may execute
faster on some implementations if RB contains
the operand having the smaller absolute value.

Multiply Low Word XO-form

mullw
mullw.
mullwo
mullwo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

(OE=O Rc=O)
(OE=O Rc= 1)
(OE= 1 Rc=O)
(OE= 1 Rc= 1)

[Power mnemonics: muls, muls., mulso, mulso.]

10 31 I. RT I RA 116
RB

11 _

RT ~ (RAh2:63 x (RBh2:63

The 32-bit operands are the low-order 32 bits of RA
and of RB. The 64-bit product of the operands is
placed into register RT.

If OE = 1 then OV is set to 1 if the product cannot be
represented in 32 bits.

Both the operands and the product are interpreted as
signed integers.

Special Registers Altered:
eRO
SOOV

(if Rc= 1)
(if OE= 1)

Programming Note -----------...

For mulli and mullw, the low-order 32 bits of the
product are the correct 32-bit product for 32-bit
mode.

For mulli and mulld, the low-order 64 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 64-bit inte­
gers. For mulli and mullw, the low-order 32 bits
of the product are independent of whether the
operands are regarded as signed or unsigned
32-bit integers.

Chapter 3. Fixed-Point Processor 55

Multiply High Doubleword

mulhd RT,RA,RB
mulhd. RT,RA,RB

10 31 I. RT I" RA

prodO:127 +- (RA) x (RB)
RT +- prodO:63

I,. RB

XO-form

(Rc=O)
(Rc= 1)

I ~,I22 73 I~~I

The 64-bit operands are (RA) and (RB). The high­
order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both the operands and the product are interpreted as
signed integers.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO (if Rc=1)

Multiply High Do·ubleword Unsigned
XO-form

mulhdu
mulhdu.

RT,RA,RB
RT,RA,RB

prod~127 +- eRA) x eRB)
RT +- prodO:63

(Rc=O)
(Rc= 1)

The 64-bit operands are (RA) and (RB). The high­
order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both the operands and the product are interpreted as
unsigned integers.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO (if Rc=1)

56 PowerPC Architecture First Edition

Multiply High Word XO-form

mulhw RT,RA,RB
mulhw. RT,RA,RB

10 31 I. RT I" RA
I,. RB

prodO:63 +- (RAh2:63 x (RBh2:63
RT 32:63 +- prodO:31
RT 0:31 +- undefi ned

I ~, 122

(Rc=O)
(Rc= 1)

75 I~~I

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit
product of the operands are placed into RT32:63.
(RT)0:31 are undefined.

Both the operands and the product are interpreted as
signed integers.

Special Registers Altered:
eRO (if Rc= 1)

Multiply High Word Unsigned XO-form

mulhwu
mulhwu.

RT,RA,RB
RT,RA,RB

prodO:63 +- (RAh2:63 x (RBh2:63
RT 32:63 +- prodO:31
RT 0:31 +- undefi ned

(Rc=O)
(Rc= 1)

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit
product of the operands are placed into RT32:63.
(RT)o:31 are undefined.

Both the operands and the product are interpreted as
unsigned integers.

Special Registers Altered:
eRO (ifRc=1)

Divide Doubleword XO-form

divd
divd.
divdo
divdo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

dividendO:63 ~ (RA)
divisorO:63 ~ (RB)
RT ~ dividend + divisor

(OE=O Rc=O)
(OE=O Rc=1)
(OE=1 Rc=O)
(OE= 1 Rc= 1)

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient of the dividend and divisor is
placed into RT. The remainder is not supplied as a
result.

Both the dividend and the divisor are interpreted as
signed integers. The quotient is the unique signed
integer that satisfies

dividend = (quotient x divisor) + r

where 0 ::; r < I divisor I if the dividend is nonnegative,
and - I divisor I < r::; 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

8x8888_8888_8888_8888 + -1
<anything> + S

then the contents of register RT are undefined as are
(i f Rc = 1) the contents of the L T, GT, and EO bits of
CR Field O. In these cases, if OE = 1 then OV is set to
1.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO
SOOV

(if Rc= 1)
(if OE= 1)

Programming Note ----------...,

The 64-bit signed remainder of dividing (RA) by
(RB) can be computed as follows, except in the
case that (RA) = _263 and (RB) = -1.

divd RT,RA,RB
mu 11 d RT ,RT ,RB
subf RT,RT,RA

RT = quotient
RT = quotient*divisor
RT = remainder

Divide Word XO-form

divw
divw.
divwo
divwo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

dividendo:63 ~ EXTS« RAb2:63)
divisorO:63 ~ EXTS«RBh2:63)
RT32:63 ~ dividend + divisor
RT 0:31 ~ undefi ned

(OE=O Rc=O)
(OE=O Rc=1)
(OE=1 Rc=O)
(OE=1 Rc=1)

I~~ 122 491

The 64-bit dividend is the sign-extended value of
(RAh2:63. The 64-bit divisor is the sign-extended
value of (RBh2:63. The 64-bit quotient is formed. The
low-order 32 bits of the 64-bit quotient are placed into
RT32:63. (RT)o:31 are undefined. The remainder is not
supplied as a result.

Both the dividend and the divisor are interpreted as
signed integers. The quotient is the unique signed
integer that satisfies

dividend = (quotient x divisor) + r

where 0 ::5 r < I divisor I if the dividend is nonnegative,
and - Idivisorl < r ::5 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

8xS888_S888 + -1
<anything> + 8

then the contents of register RT are undefined as are
(if Rc = 1) the contents of the L T, GT, and EO bits of
CR Field O. In these cases, if OE = 1 then OV is set to
1.

Special Registers Altered:
CRO
SOOV

(if Rc= 1)
(if OE= 1)

. Programming Note -----------...,

The 32-bit signed remainder of dividing (RAh2:63
by (RBh2:63 can be computed as follows, except in
the case that (RA) = _231 and (RB) = -1.

divw RT,RA,RB
mullw RT ,RT ,RB
subf RT,RT,RA

RT = quotient
RT = quotient*divisor
RT = remainder

Chapter 3. Fixed-Point Processor 57

Divide Doubleword Unsigned XO-form

divdu
divdu.
divduo
divduo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

dividendo:63 +- (RA)
di vi sorO:63 +- (RB)
RT +- dividend + divisor

(OE==O Rc=O)
(OE=O Rc==1)
(OE== 1 Rc==O)
(OE==1 Rc==1)

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient of the dividend and divisor is
placed into RT. The remainder is not supplied as a
result.

Both the dividend and the divisor are interpreted as
unsigned integers. The quotient is the unique
unsigned integer that satisfies

dividend = (quotient x divisor) + r

where 0 S r < divisor.

If an attempt is made to perform the division

<anything> + 9

then the contents of register RT are undefined as are
(if Rc == 1) the contents of the L T, GT, and EO bits of
CR Field O. In this case, if OE == 1 then OV is set to 1.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO
SOOV

(if Rc= 1)
(if OE== 1)

Programming Note -----------,

The 64-bit unsigned remainder of dividing (RA) by
(RB) can be computed as follows.

divdu RT,RA,RB
mulld RT,RT,RB
subf RT,RT,RA

RT = quotient
RT = quotient*divisor
RT = remainder

58 PowerPC Architecture First Edition

Divide Word Unsigned XO-form

divwu
divwu.
divwuo
divwuo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

di vi dendo:63 +-3:29 II (RAh2:63
di vi sorO:63 +- 9 II (RB h2:63
RT 32:63 ~ di vi dend + di vi sor
RT~31 ~ undefined

(OE==O Rc==O)
(OE=O Rc==1)
(OE= 1 Rc==O)
(OE= 1 Rc== 1)

The 64-bit dividend is the zero-extended value of
(RAh2:63. The 64-bit divisor is the zero-extended
value of (RBh2:63. The 64-bit quotient is formed. The
low-order 32 bits of the 64-bit quotient are placed into
RT32:63. (RT)o:31 are undefined. The remainder is not
supplied as a result.

Both the dividend and the divisor are interpreted as
unsigned integers. The quotient is the unique
unsigne~ integer that satisfies

dividend = (quotient x divisor) + r

where 0 S r < divisor.

If an attempt is made to perform the division

<anything> + 9

then the contents of register RT are undefined as are
(if Rc == 1) the contents of the L T, GT, and EO bits of
CR Field O. In this case, if OE == 1 then OV is set to 1.

Special Registers Altered:
CRO
SOOV

(if Rc== 1)
(if OE == 1)

Programming Note -----=----------,
The 32-bit unsigned remainder of dividing
(RAh2:63 by (RBh2:63 can be computed as follows.

divwu RT,RA,RB
mullw RT ,RT ,RB
subf RT,RT,RA

RT = quotient
RT = quotient*divisor
RT = remainder

3.3.10 Fixed-Point Compare Instructions

The Fixed-Point Compare instructions algebraically or
logically compare the contents of register RA with (1)
the sign-extended value of the 51 field, (2) the UI field,
or (3) the contents of register RB. Algebraic compar­
ison compares two signed integers. Logical compar­
ison compares two unsigned integers.

For 64-bit implementations, th~ L field controls
whether the operands are treated as 64- or 32-bit
quantities, as follows:

L Operand length
o 32-bit operands
1 64-bit operands

When the operands are treated as 32-bit signed quan­
tities, bit 32 of the register (RA or RS) is the sign bit.

For 32-bit implementations, the L field must be zero.

The Compare instructions set one bit in the leftmost
three bits of the designated CR field to one, and the

Compare Immediate D-form

cmpi BF,L,RA,51

if L = a then a ~ EXTS«RAh2:63)

if
else
else

else a ~ (RA)
a < EXTS(SI) then c ~ ablaa

if a > EXTS(SI) then c ~ abala
c ~ abSal

CR4xBF:4XBF + 3 ~ c II XERso

51

The contents of register RA ((RAb2:63 sign-extended
to 64 bits if L=O) is compared with the sign-extended
value of the 51 field, treating the operands as signed
integers. The result of the comparison is placed into
CR field SF.

In 32-bit implementations, if L= 1 the instruction form
is invalid.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Imme­
diate:

Extended:

cmpdi Rx, value
cmpwi cr3,Rx,value

Equivalent to:

cmpi O,1,Rx,value
cmpi 3,O,Rx,value

other two to zero. XERso is copied into bit 3 of the
designated CR field.

The CR field is set as follows.

Bit
o
1
2
3

Name
LT
GT
EO
SO

Description
(RA) < 51, UI, or (RB)
(RA) > 51, UI, or (RB)
(RA) = 51, UI, or (RB)
5ummary Overflow from the XER

Extended mnemonics for compares

A set of extended mnemonics is provided so that
compares can be coded with the operand length as
part of the instruction mnemonic rather than as a
numeric operand. Some of these are shown as exam­
ples with the Compare instructions. The extended
mnemonics for doubleword comparisons are available
only in 64-bit implementations. 5ee Appendix C,
"Assembler Extended Mnemonics" on page 223 for
additional extended mnemonics.

Compare X-form

cmp BF,L,RA,RB

if L = a then a ~ EXTS((RAh2:63)
b ~ EXTS«RBh2:63)

else a ~ (RA)
b ~ (RB)

if a < b then c ~ eblaa
else if a > b then c ~ ebele
el se c ~ ebeel
CR4xBF:4xBF + 3 ~ c II XERso

o 1:,1

The contents of register RA ((RAb2:63 if L=O) is com­
pared with the contents of register RB ((RBb2:63 if
L = 0), treating the operands as signed integers. The
result of the comparison is placed into CR field BF.

In 32-bit implementations, if L = 1 the instruction form
is invalid.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare:

Extended:

. cmpd Rx,Ry
cmpw cr3,Rx,Ry

Equivalent to:

cmp 0,1 ,Rx,Ry
cmp 3,0,Rx,Ry

Chapter 3. Fixed-Point Processor 59

Compare Logical Immediate D-form

cmpli BF,L,RA,UI

if L = S then a +- 32S II (RAh2:63
else a +- (RA)

if
else
else

a ~ (48S II UI) then c +- ablSS
if a ~ (48S II UI) then c +- SbSIS

c +- SbSSI
CR4xBF:4xBF + 3 +- c II XERso

The contents of register RA ((RAb2:63 zero-extended
to 64 bits if L=O) is compared with 480 " UI, treating
the operands as unsigned integers. The result of the
comparison is placed into CR field BF.

In 32-bit implementations, if L= 1 the instruction form
is invalid.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare
Logical Immediate:

Extended:

cmpldi Rx,value
cmplwi cr3,Rx,value

Equivalent to:

cmpli 0,1 ,Rx,value
cmpli 3,0,Rx,value

60 PowerPC Architecture First Edition

Compare Logical X-form

cmpl BF,L,RA,RB

if L = e then a +- 32S II {RAh2°63
b +- 32S II (RBh2;S3

else a +- (RA)
b +- (RB)

if a ~ b then c +- SblSS
else if a ~ b then c +- SbSIS
else c +- SbSSI
CR4xBF:4xBF + 3 +- C II XERso

1:,1

The contents of register RA ((RAb2:63 if L= 0) is com­
pared with the contents of register RB «RBh2:63 if
L=O), treating the operands as unsigned integers.
The result of the comparison is placed into CR field
BF.

In 32-bit implementations, if L= 1 the. instruction form
is invalid.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended
Logical:

Extended:

cmpld Rx,Ry
cmplw cr3,Rx,Ry

mnemonics for Compare

Equivalent to:

cmpl 0,1,Rx,Ry
cmpl 3,0,Rx,Ry

3.3.11 Fixed-Point Trap Instructions

The Trap instructions are provided to test for a speci­
fied set of conditions. If any of the conditions tested
by a Trap instruction are met, the system trap handler
is invoked. If the tested conditions are not met,
instruction execution continues normally.

The contents of register RA is compared with either
the sign-extended value of the SI field or the contents
of register RB, depending on the Trap instruction. For
tdi and td, the entire contents of RA (and RB) partic­
ipate in the comparison; for twi and tw, only the con­
tents of the low-order 32 bits of RA (and RB)
participate in the comparison.

This comparison results in five conditions which are
ANDed with TO. If the result is not 0 the system trap
handler is invoked. These conditions are:

Trap Doubleword Immediate

tdi TO,RA,SI

10
02

16 TO I" RA 1,6

a ~ (RA)
if (a < EXTS(SI» & TOo then TRAP
if (a > EXTS(SI» & TO l then TRAP
if (a = EXTS(SI» & T02 then TRAP
if (a ~ EXTS(SI» & T03 then TRAP
if (a ~ EXTS(SI» & T04 then TRAP

D-form

SI
3,1

The contents of register RA is compared with the
sign-extended value of the SI field. If any bit in the
TO field is set to 1 and its corresponding condition is
met by the result of the comparison, then the system
trap handler is invoked.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended
Doubleword Immediate:

Extended:

tdlti RX,value
tdnei RX,value

mnemonics for Trap

Equivalent to:

tdi 16,Rx,value
tdi 24,Rx,value

TO bit
o
1
2
3
4

ANDed with Condition
Less Than
Greater Than
Equal .
LogicaHy Less Than
Logically Greater Than

Extended mnemonics for traps

A set of extended mnemonics is provided so that
traps can be coded with the condition as part of the
instruction mnemonic rather than as a numeric
operand. Some of these are shown as examples with
the Trap instructions. See Appendix C, "Assembler
Extended Mnemonics" on page 223 for additional
extended mnemonics.

Trap Word Immediate D-form

twi TO,RA,SI

[Power mnemonic: ti]

10
03

16 TO I" RA 1,6

a ~ EXTS((RAh2:63)
if (a < EXTS(SI» & TOo then TRAP
if (a > EXTS(SI» & T0 1 then TRAP
if (a = EXTS(SI» & T02 then TRAP
if (a ~ EXTS(SI» & T03 then TRAP
if (a ~ EXTS(SI» & T04 then TRAP

SI
3,1

The contents of RA32:63 is compared with the sign­
extended value of the SI field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, then the system trap
handler is invoked.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word
Immediate:

Extended:

twgti
twllei

RX,value
RX,value

Equivalent to:

twi
twi

8,Rx,value
6,Rx,value

Chapter 3. Fixed-Point Processor 61

Trap Doubleword X-form

td TO,RA,RB

10
31

Is TO I" RA l,sRB 12,
68

1:.1

a +- (RA)
b +- (RB)
if (a < b) & TOo then TRAP
if (a > b) & T0 1 then TRAP
if (a = b) & T02 then TRAP
if (a ~ b) & T03 then TRAP
if (a ~ b) & T04 then TRAP

The contents of register RA is compared with the con­
tents of register RB. If any bit in the TO field is set to
1 and its corresponding condition is met by the result
of the comparison, then the system trap handler is
invoked.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation 'N.i'l cause
the system illegal instruction error hand. to be
invoked.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap
Doubleword:

Extended: Equivalent to:

tdge RX,Ry td 12,Rx,Ry
tdlnl RX,Ry td 5,Rx,Ry

62 PowerPC Architecture First Edition

Trap Word X-form

tw TO,RA,RB

[Power mnemonic: t]

10
31 Va I"RA

a +- EXTS((RAh2:63)
b +- EXTS((RBh2:63)

l,sRB

if (a < b) & TOo then TRAP
if (a > b) & T01 then TRAP
if (a = b) & T02 then TRAP
if (a ~ b) & T03 then TRAP
if (a ~ b) & T04 then TRAP

12,
4

1:,1

The contents of RA32:63 is compared with the contents
of RB32:63. If any bit in the TO field is set to 1 and its
corresponding condition is met by the result of the
comparison, then the system trap handler is invoked.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word:

Extended: Equivalent to:

tweq RX,Ry tw 4,Rx,Ry
twlge RX,Ry tw 5,Rx,Ry
trap tw 31,0,0

3.3.12 Fixed-Point Logical Instructions

The Logical instructions perform bit-parallel oper­
ations on 64-bit operands.

The X-form Logical instructions with Rc = 1, and the
D-form Logical instructions andi. and andis., set the
first three bits of CR Field 0 as described in Section
3.3.8, "Other Fixed-Point Instructions" on page 49.
The Logical instructions do not change the SO, OV,
and CA bits in the XER.

AND Immediate D.;.form

andi. RA,RS,UI

[Power mnemonic: andil.]

10
28 I. RS I11RA 1,.

UI

311

RA ~ (RS) & (488 II UI)

The contents of register RS is ANDed with 4SO II UI and
the result is placed into register RA.

Special Registers Altered:
CRO

Extended mnemonics for logical
operations

An extended mnemonic is provided that generates the
preferred form of "no-op" (an instruction that does
nothing). This is shown as an example with the OR
Immediate instruction.

Extended mnemonics are provided that use the OR
and NOR instructions to copy the contents of one reg­
ister to another, with and without complementing.
These are shown as examples with the two
instructions.

See Appendix C, "Assembler Extended Mnemonics"
on page 223 for additional extended mnemonics.

AND Immediate Shifted D-form

andis. ,RA,RS,UI

[Power mnemonic: andiu.]

10
29 I. RS I11RA 1,.

UI

311

RA ~ (RS) & (328 II UI II 160)

The contents of register RS is ANDed with 320 \I UI II
160 and the result is placed into register RA.

Special Registers Altered:
CRO

Chapter 3. Fixed-Point Processor 63

OR Immediate D-form

ori RA,RS,UI

[Power mnemonic: oril]

RA ~ (RS) I (480" UI)

The contents of register RS is ORed with 480 " UI and
the result is placed into register RA.

The preferred "no-op" (an instruction that does
nothing) is:

or; 0,13,0

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for OR Immediate:

Extended:

nop

Equivalent to:

ori 0,0,0

XOR Immediate D-form

xori RA,RS,UI

[Power mnemonic: xorilJ

RA ~ (RS) (t) (480 II UI)

The contents of register RS is XORed with 480 II UI
and the result is placed int9 register RA.

Special Registers Altered:
None

64 PowerPC Architecture First Edition

OR Immediate Shifted D-form

oris RA,RS,UI

[Power mnemonic: oriu]

UI

RA ~ (RS) I (320 II UI " 16(3)

The contents of register RS is ORed with 320 II UI " 160
and the result is placed into register RA.

Special Registers Altered:
None

XOR Immediate Shifted D-form

xoris RA,RS,UI

[Power mnemonic: xoriu]

UI
3,1

RA ~ (RS) <!) (3213 II UI II 16(3)

The contents of register RS is XORed with 320 II UI II
160 and the result is placed into register RA.

Special Registers Altered:
None

AND X-form

and RA,RS,RB (Rc=O)
and. RA,RS,RB (Rc= 1)

I. 31 I/s I" RA
1,6 RB 12,

28 I~~I
RA +- (RS) & (RB)

The contents of register RS is ANDed with the con­
tents of register RB and the result is placed into reg­
ister RA.

Special Registers Altered:
eRO

XOR X-form

xor RA,RS,RB
xor. RA,RS,RB

I. 31 16 RS I" RA

RA +- (RS) ~ (RB)

(if Rc= 1)

(Rc=O)
(Rc= 1)

1'6
RB

12,
316 I:~I

The contents of register RS is XORed with the con­
tents of register RB and the result is placed into reg­
ister RA.

Special Registers Altered:
eRO (if Rc= 1)

OR X-form

or RA,RS,RB (Rc=O)
or. RA,RS,RB (Rc= 1)

I. 31 16 RS I" RA
1,6 RB 12,

444 I:~I
RA +- (RS) I (RB)

The contents of register RS is ORed with the contents
of register RB and the result is placed into register
RA.

Special Registers Altered:
eRO

Extended Mnemonics:

(if Rc=1)

Example of extended mnemonics for OR:

Extended: Equivalent to:

mr RX,Ry or RX,Ry,Ry

NAND X-form

nand RA,RS,RB (Rc=O)
nand. RA,RS,RB (Rc= 1)

I. 31 16 RS I" RA
1,6 RB 12,

476 I:~I
RA +- ~«RS) & (RB»

The contents of register RS is ANDed with the con­
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
eRO (if Rc= 1)

Programming Note -----------,

nand or nor with RA= RB can be used to obtain
the one's complement.

Chapter 3. Fixed-Point Processor 65

NOR X-form

nor RA,RS,RB (Rc=O)
nor. RA,RS,RB (Rc=1)

I.
31 I. RS 111 RA I,. RB 12,

124 I:~I
RA ~ ~«RS) (RB»

The contents of register RS is ORed with the contents
of register RB and the complemented result is placed
into register RA.

Special Registers Altered:
eRO

Extended Mnemonics:

Example of extended mnemonics for NOR:

Extended: Equivalent to:

(if Rc= 1)

not RX,Ry nor RX,Ry,Ry

AND with Complement X-form

andc
andc.

RA,RS,RB
RA,RS,RB

RA ~ (RS) & ~(RB)

(Rc=O)
(Rc= 1)

The contents of register RS is ANDed with the com­
plement of the contents of register RB and the result
is placed into register RA.

Special Registers Altered:
eRO (if Rc= 1)

66 PowerPC Architecture First Edition

Equivalent X-form

eqv RA,RS,RB (Rc=O)
eqv. RA,RS,RB (Rc= 1)

I.
31 I. RS I11RA I,.RB 12,

284 I:~I
RA ~ (RS) = (RB)

The contents of register RS is XORed with the con­
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
eRO

OR with Complement X-form

orc
orc.

RA,RS,RB
RA,RS,RB

RA ~ (RS) I ~(RB)

(if Rc=1)

412

(Rc=O)
(Rc = 1)

The contents of register RS is ORed with the comple­
ment of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
eRO (if Rc= 1)

Extend Sign Byte X-form

extsb
extsb.

RA,RS
RA,RS

(Rc=O)
(Rc= 1)

Extend Sign Halfword X-form

extsh
extsh.

RA,RS
RA,RS

(Rc=O)
(Rc= 1)

[Power mnemonics: exts, exts.]

1,----0 31 ___ 16 R __ S I,-------"RA 1_16"/ ~12' _954 ~I:~I 10 31 I. RS I11RA 1'6//1 12, 922

5 f- (RS)S6
RAS6"63 f- (RS)S6"63
RAo:;s f- S65 "

(RS)S6:63 are placed into RASS:63' Bit 56 of register RS
is placed into RAo:ss.

Special Registers Altered:
eRO (if Rc= 1)

Extend Sign Word X-form

extsw RA,RS (Rc=O)
extsw. RA,RS (Rc= 1)

10
31 16 RS 111 RA 1'6/IJ 12,

986 I:~I
5 ~ (RSh2
RA32"63 f- (RS h2"63
RAo:~l f-

325 "

(RSb2:63 are placed into RA32:63. Bit 32 of register RS
is placed into RAO:31 '

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO (if Rc= 1)

5 ~ (RS'48
RA48:63 ~ (RS)48:63
RAO:47 ~ 485

(RS)48:63 are placed into RA48:63. Bit 48 of register RS
is placed into RAO:47'

Special Registers Altered:
eRO (if Rc= 1)

Chapter 3. Fixed-Point Processor 67

Count Leading Zeros Doub/eword
X-form

cntlzd
cntlzd.

n ~ e

RA,RS
RA,RS

do while n < 64
if (RS)n = 1 then leave
n ~ n + 1

RA ~ n

(Rc=O)
(Rc == 1)

A count of the number of consecutive zero bits
starting at bit 0 of register RS is placed into RA. This
number ranges from 0 to 64, inclusive.

If Rc == 1, CR Field 0 is set to reflect the result.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc==1)

68 PowerPC Architecture First Edition

Count Leading Zeros Word X-form

cntlzw
cntlzw.

RA,RS
RA,RS

[Power mnemonics: cntlz, cntlz.]

n ~ 32
do while n < 64

if (RS)n = 1 then leave
n ~ n + 1

RA ~ n - 32

26

(Rc==O)
(Rc== 1)

A count of the number of consecutive zero bits
starting at bit 32 of of register RS is placed into RA.
This number ranges from 0 to 32, inclusive.

If Rc == 1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CRO (if Rc= 1)

Programming Note ------------.

For both Count Leading Zeros instructions, if
Rc== 1 then LT is set to zero in CR Field O.

3.3.13 Fixed-Point Rotate' and Shift Instructions

The Fixed-Point Processor performs rotation oper­
ations on data from a GPR and returns the result, or a'
portion of the result, to a GPR.

The rotation operations rotate a 64-bit quantity left by
a specified number of bit positions. Bits that exit from
position 0 enter at position 63.

Two types of rotation operation are supported.

For the first type, denoted rotates4 or ROT'-64 , the
value rotated is the given 64-bit value. The rotates4
operation is used to rotate a given 64-bit quantity.

For the second type, denoted rotate32 or ROTL32, the
value rotated consists of two copies of· bits 32:63 of
the given 64-bit value, one copy in bits 0:31 and the
other in bits 32:63. The rotate32 operation is used to
rotate a given 32-bit quantity.

The Rotate and Shift instructions employ a mask gen­
erator. The mask is 64 bits long, and consists of
1-bits from a start bit, mstart, through and including a
stop bit, mstop, and O-bits elsewhere. The values of
mstart and mstop range from zero to 63. If mstart >
mstop, the 1-bits wrap around from position 63 to
position O. Thus the mask is formed as follows:

if mstart ~ mstop then
maskmstart:mstop = ones
maskall other bits = zeros

else
maskmstart:S3 = ones
masko:mstop = ones
maskall other bits = zeros

There is no way to specify an all-zero mask.

For instructions that use the rotate32 operation, the
mask start and stop positions are always in the low­
order 32 bits of the register.

The use of the mask is described in following
sections.

The Rotate and Shift instructions with Rc = 1 set the
first three bits of CR field 0 as described in Section
3.3.8, "Other Fixed-Point Instructions" on page 49.
Rotate and Shift instructions do not change the OV
and SO bits. Rotate and Shift instructions, except
algebraic right shifts, do not change the CA bit.

Extended mnemonics for rotates and
shifts

The Rotate and Shift instructions, while powerful, can
be complicated to code (they have up to five oper­
ands). A set of extended mnemonics is provided that
allow simpler coding of often-used functions such as
clearing the leftmost or rightmost bits of a register,
left justifying or right justifying an arbitrary field, and
simple rotates and shifts. Some of these are shown
as examples with the Rotate instructions. See
Appendix C, "Assembler Extended Mnemonics" on
page 223 for additional extended mnemonics.

3.3.13.1 Fixed-Point Rotate Instructions

These instructions rotate the contents of a register.
The result of the rotation is

• Inserted into the target register under control of a
mask (if a mask bit is 1 the associated bit of the
rotated data is placed into the target register,
and if the mask bit is 0 the associated bit in the
target register remains unchanged); or

• ANDed with a mask before being placed into the
target register.

The Rotate Left instructions allow right-rotation of the
contents of a register to be performed (in concept) by
a le~-rotation of 64-N, where N is the number of bits
by which to rotate right. They allow right-rotation of
the contents of the low-order 32 bits of a register to
be performed (in concept) by a left-rotation of 32-N,
where N is the number of bits by which to rotate right.

Chapter 3. Fixed-Point Processor 69

Rotate Left Doubleword Immediate then
Clear Left MD-form

rldicJ RA,RS,SH,MB (Rc=O)
rldicl. RA,RS,SH,MB (Rc= 1)

I. 30 16 RS I" RA
1,6 sh 121 mb I;~~

n ~ shs II shO:4
r ~ ROTL64 «RS), n)
h ~ mhs II mbO:4
m ~ MASK(b, 63)
RA ~ r & m

The contents of register RS are rotated64 left SH bits.
A mask is generated having 1-bits from bit MB
through bit 63 and O-bits elsewhere. The rotated data
is ANDed with the generated mask and the result is
placed into register RA.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc= 1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left
Doubleword Immediate then Clear Left:

Extended: Equivalent to:

extrdi RX,Ry,n,b rldicl RX,Ry,b + n,64-n
srdi RX,Ry,n rldicl RX,Ry,64-n,n
clrldi RX,Ry,n rldicl RX,Ry,O,n

Programming Note ------------.,

rldicl can be used to extract an n-bit field, that
starts at bit position b in register RS, right­
justified into register RA (clearing the remaining
64-n bits of RA), by setting SH = b + nand
MB=64-n. It can be used to rotate the contents
of a register left (right) by n bits, by setting SH = n
(64-n) and MB =0. It can be used to shift the
contents of a register right by n bits, by setting
SH=64-n and MB=n. It can be used to clear
the high-order n bits of a. register, by setting
SH=O and MB=n.

Extended mnemonics are provided for all of these
uses: see Appendix C, "Assembler Extended
Mnemonics" on page 223.

70 PowerPC Architecture First Edition

Rotate Left Doubleword Immedia.te then
Clear Right MD-form

rldicr RA,RS,SH,ME (Rc=O)
rldicr. RA,RS,SH,ME (Rc=1)

I. 30 16 RS I" RA
1,6 sh 121

me

12: ~~~~
n ~ shs II shO:4
r ~ ROTL64 ((RS), n) .
e ~ mes II meO:4
m ~ MASK(0, e)
RA~r&m

The contents of register RS are rotated64 left SH bits.
A mask is generated having 1-bits from bit 0 through
bit ME and O-bits elsewhere. The rotated data is
ANDed with the generated mask and the result is
placed into register RA.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc= 1)

'Extended Mnemonics:

Examples of extended mnemonics for Rotate Left
Doubleword Immediate then Clear Right:

Extended: Equivalent to:

extldi RX,RY,n,b rldicr RX,Ry,b,n-1
sldi RX,RY,n rldicr Rx,Ry,n,63-n
clrrdi RX,RY,n rldicr RX,Ry,O,63-n

Programming Note ------------,

rldicr can be used to extract an n-bit field, that
starts at bit position b in register RS, left-justified
into register RA (clearing the remaining 64-n bits
of RA), by setting SH=b and ME=n-1. It can be
used to rotate the contents of a register left
(right) by n bits, by setting SH = n (64-n) and
ME = 63. It can be used to shift the contents of a
register left by n bits, by setting SH = nand
ME=63-n. It can be used to clear the low-order
n bits of a register, by setting SH =0 and
ME=63-n.

Extended mnemonics are provided for all of these'
uses (some devolve to rldic/): see Appendix C,
"Assembler Extended Mnemonics" on page 223.

Rotate Left Doubleword Immediate then
Clear MD-form

rldic RA,RS,SH,MB
rldic. RA,RS,SH,MB

10
30 I. RS I" RA

n ~ shs II shO:4
r ~ ROTL64 «RS), n)
b ~ mbs II mbO:4
m ~ MASK(b, -,n)
RA ~ r & m

(Rc=O)
(Rc= 1)

1,. sh 121 mb I:, G~~j

The contents of register RS are rotated64 left SH bits.
.A mask is generated having 1-bits from bit MB
through bit 63-SH, and O-bits elsewhere. The rotated
data is ANDed with the generated mask and the result
is placed into register RA.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the· system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO

Extended Mnemonics:

(if Rc= 1)

Example of extended mnemonics for Rotate Left
Doubleword Immediate then Clear:

Extended: Equivalent to:

c1rlsldi RX,RY,b,n rldic RX,RY,n,b-n

Programming Note ------------,

rldic can be used to clear the high-order b bits of
the contents of a register and then shift the result
left by n bits by setting SH = nand MB = b-n. It
can be used to clear the high-order n bits of a
register, by setting SH=O and MB=n.

Extended mnemonics are provided for both of
these uses (the second devolves to rldicl): see
Appendix e, "Assembler Extended Mnemonics"
on page 223.

Rotate Left Word Immediate then AND
with Mask M-form

r1winm RA,RS,SH,MB,ME (Rc=O)
rlwinm. RA,RS,SH,MB,ME (Rc= 1)

[Power mnemonics: rlinm, rlinm.]

10
21 I. RS I11RA 1,.

SH
121MB I .. ME I~~I

n ~ SH
r ~ ROTL32«RSh2:63' n)
m ~ MASK(MB+32, ME+32)
RA ~ r & m

The contents of register RS are rotated32 left SH bits.
A mask is generated having 1-bits from bit MB
through bit ME and O-bits elsewhere. The rotated
data is ANDed with the generated mask and the result
is placed into register RA.

Special Registers Altered:
eRO

Extended Mnemonics:

(if Rc= 1)

Examples of extended mnemonics for Rotate Left
Word Immediate then AND with Mask:

Extended:

extlwi
srwi
clrrwi

RX,RY,n,b
RX,RY,n
RX,RY,n

Equivalent to:

rlwinm RX,RY,b,0,n-1
rlwinm Rx,Ry,32-n,n,31
rlwinm RX,Ry,0,0,31-n

Chapter 3. Fixed-Point Processor 71

Programming Note -------------,

Let RSL represent the low-order 32 bits of reg­
ister RS, with the bits numbered from 0 through
31.

rlwinm can be used to extract an n-bit field, that
starts at bit position b in RSL, right-justified into
the low-order 32 bits of register RA (clearing the
remaining 32-n bits qf the low-order 32 bits of
RA), by setting SH=b+n, MB=32-n, and
ME=31. It'can be used to extract an n-bit field,
that starts at bit position b in RSL, left-justified
into the low-order 32 bits of register RA (clearing
the remaining 32-n bits of the low-order 32 bits
of RA), by setting SH=b, MB = 0, and ME=n-1.
It can be used to rotate the contents of the low­
order 32 bits of a register left (right) by n bits, by
setting SH=n (32-n), MB=O, and ME=31. It can
be used to shift the contents of the low-order 32
bits of a register right by n bits, by setting
SH=32-n, MB=n, and ME=31. It can be used to
clear the high-order b bits of the low-order 32 bits
of the contents of a register and then shift the
result left by n bits by setting SH=n, MB=b-n
and ME = 31-n. It can be used to clear the low­
order n bits of the low-order 32 bits of a register,
by setting SH=O, MB=O, and ME=31-n.

For all the uses given above, the high-order 32
bits of register RA are cleared.

Extended mnemonics are provided for all of these
uses: see Appendix C, "Assembler Extended
Mnemonics" on page 2~3.

72 PowerPC Architecture First Edition

Rotate Left Doubleword then Clear Left
MDS-form

rldcl RA,RS,RB,MB (Rc=O)
rldcl. RA,RS,RB,MB (Rc=1)

10
30 I. RS I11RA I,. RB 12, mb 12: I~~I

n ~ (RB)S8:63
r ~ ROTL64 ((RS), n)
b ~ mbs II mbO:4
m ~ MASK(b, 63)
RA ~ r & m

The contents of register RS are rotateds4 left the
number of bits specified by (RB)S8:63. A mask is gen­
erated having 1-bits from bit MB through bit 63 and
O-bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into register
RA.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO

ExtendedM nemonics:

(if Rc= 1)

Example of extended mnemonics for Rotate Left
Doubleword then Clear Left

Extended: Equivalent to:
rotld RX,Ry,Rz rldel RX,RY,Rz,O

Programming Note ----------...,

rldel can be used to extract an n-bit field, that
starts at variable bit position b in register RS,
right-justified into register RA (clearing the
remammg 64-n bits of RA), by setting
RBs8:63 =b+n and MB=64-n. It can be used to
rotate the contents of a register left (right) by var­
iable n bits by setting RBs8:63 = n (64-n) and
MB=O.

Extended mnemonics are provided for some of
these uses: see Appendix C, "Assembler
Extended Mnemonics" on page 223.

Rotate Left Doubleword then Clear Right
MDS-form

rldcr RA,RS,RB,M.E (Rc=O)
rldcr. RA,RS,RB,ME (Rc= 1)

I. 30 I. RS I" RA
I,.RB 12,

me

12: I~~I
n ~ (RB)S8:63
r ~ ROTL64 «RS), n)
e ~ mes 1\ meO:4
m ~ MASK(0, e)
RA ~ r & rri

The contents of register RS are rotated64 left the
number of bits specified by (RB)S8:63' A mask is gen­
erated having 1-bits from bit 0 through bit ME and
O-bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into register
RA.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO (if Rc= 1)

Programming Note ------------,

rider can be used to extract an n-bit field, that
starts at variable bit position b in register RS, left­
justified into register RA (clearing the remaining
64-n bits of RA), by setting RBs8:63 =b and
ME = n-1. It can be used to rotate the contents of
a register left (right) by variable n bits by setting
RBs8:63=n (64-n) and ME=63.

Extended mnemonics are provided for some of
these uses (some devolve to rlde/) see
Appendix e, "Assembler Extended Mnemonics"
on page 223.

Rotate Left Word then AND with Mask
M-form

rlwnm RA,RS,RB,MB,ME (Rc=O)
rlwnm. RA,RS,RB,MB,ME (Rc= 1)

[Power mnemonics: rlnm, rlnm.]

I.
23 I. RS I11RA I,.RB 12,MB 12~E I:~I

n ~ (RB) S9:63
r ~ ROTL32 ((RSh2:63' n)
m ~ MASK(MB+32, ME+32)
RA ~ r & m

The contents of register RS are rotated32 left the
number of bits specified by (RB)S9:63' A mask is gen­
erated having 1-bits from bit M B through bit ME and
O-bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into register
RA.

Special Registers Altered:
eRO

Extended Mnemonics:

(ifRc=1)

Example of extended mnemonics for Rotate Left Word
then AND with Mask:

Extended: Equivalent to:
rotlw RX,Ry,Rz rlwnm RX,RY,Rz,O,31

Programming Note -------------,

Let RSL represent the low-order 32 bits of reg­
ister RS, with the bits numbered from 0 through
31.

rlwnm can be used to extract an n-bit field, that
starts at variable bit position b in RSL, right­
justified into the low-order 32 bits of register RA
(clearing the remaining 32-n bits of the low-order
32 bits of RA), by setting RBs9:63 =b+n,
MB=32-n, and ME=31. It can be used to extract
an n-bit field, that starts at variable bit position b
in RSL, left-justified into the low-order 32 bits of
register RA (clearing the remaining 32-n bits of
the low-order 32 bits of RA), by setting RBs9:63 =b,
MB = 0, and ME=n-1. It can be used to rotate
the contents of the low-order 32 bits of a register
left (right) by variable n bits, by setting RBS9:63 = n
(32-n), MB=O, and ME=31.

For all the uses given above, the high-order 32
bits of register RA are cleared.

Extended mnemonics are provided for some of
these uses: see Appendix e, "Assembler
Extended Mnemonics" on page 223.

Chapter 3. Fixed-Point Processor 73

Rotate Left Doubleword Immediate then
Mask Insert MD-form

rldimi RA,RS,SH,MB
rldimi. RA,RS,SH,MB

I.
30 I. RS I11RA

n f- shs II ShO:4
r f- ROTLs4 ((RS), n)
b f- mbs II mbO:4
m f- MASK(b, n)
RA f- r&m I (RA)& m

(Rc=O)
(Rc= 1)

I,. sh 12, mb 12~ ~3:~

The contents of register RS are rotateds4 left SH bits.
A mask is generated having 1-bits from bit MB
through bit 63-SH, and O-bits elsewhere. The rotated
data is inserted into register RA under control of the
generated mask.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left
Doubleword Immediate then Mask Insert

Extended: Equivalent to:
insrdi RX,RY,n,b rldimi RX,Ry,64-(b + n),b

Programming Note ------------,

rldimi can be used to insert an n-bit field, that is
right-justified in register RS, into register RA
starting at bit position b, by setting
SH=64-(b+n) and MB=b.

An extended mnemonic is provided for this use:
see Appendix C, "Assembler Extended
Mnemonics" on page 223.

74 PowerPC Architecture First Edition

Rotate Left Word Immediate then Mask
Insert M-form

rlwimi
rlwimi.

RA,RS,SH,MB,ME
RA,RS,SH,MB,ME

[Power mnemonics: rlimi, rlimi.]

n f- SH
r f- ROTL32((RSh2:S3' n)
m f- MASK(MB+32, ME+32)
RA f- r&m I (RA)& m

(Rc=O)
(Rc= 1)

The contents of register RS are rotated32 left SH bits.
A mask is generated having 1-bits from bit MB
through bit ME and O-bits el sewhere. The rotated
data is inserted into register RA under control of the
generated mask.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
Immediate then Mask Insert

Extended: Equivalent to:
inslwi RX,Ry,n,b rlwimi RX,Ry,32-b,b,b+ n-1

Programming Note -----------...,

Let RAL represent the low-order 32 bits of reg­
ister RA, with the bits numbered from 0 through
31.

rlwimi can be used to insert an n-bit field, that is
left-justified in the low-order 32 'bits of register
RS, into RAL starting at bit position b, by setting
SH=32-b, MB=b, and ME=(b+n)-1. It can be
used to insert an n-bit field, that is right-justified
in the low-order 32 bits of register RS, into RAL
starting at bit position b, by setting
SH=32-(b+n), MB=b, and ME={b+n)-1.

Extended mnemonics are provided for both of
these uses: see Appendix C, "Assembler
Extended Mnemonics" on page 223.

3.3.13.2 Fixed-Point Shift Instructions

The instructions in this section perform left and right
shifts.

Extended mnemonics for shifts

Immediate-form logical (unsigned) shift operations are
obtained by specifying appropriate masks and shift
values for certain Rotate instructions. A set of
extended mnemonics is provided to make coding of
such shifts simpler and easier to understand. and
simple rotates and shifts. Some of these are shown
as examples with the Rotate instructions. See
Appendix C, "Assembler Extended Mnemonics" on
page 223 for additional extended mnemonics.

Shift Left Daub/eward X-form

sid RA, RS, RB
sid. RA,RS,RB

111
RA I RB I

. 16 21

n to- (RB)S8:63
r to- ROTL64 «RS), n)
if (RB)S7 = e then

m to- MASK(e, 63-n)
else m to- 64e
RA to- r & m

(Rc=O)
(Rc= 1)

27 I:~I

The contents of register RS are shifted left the
number of bits specified by (RB)S7:63. Bits shifted out
of position 0 are lost. Zeros are supplied to the
vacated positions on the right. The result is placed
into register RA. Shift amounts from 64 to 127 give a
zero result.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc=1)

Programming Note ----------...,--,

Any Shift Right Algebraic instruction, followed by
addze, can be used to divide quickly by 2N. The
setting of the CA bit by the Shift Right Algebraic
instructions is independent of mode.

Programming Note

Multiple-precision shifts can be programmed as
shown in Appendix E.2, "Multiple-Precision Shifts"
on page 247.

Shift Left Word X-form

slw RA,RS,RB
slw. RA,RS;RB

[Power mnemonics: sl, sl.]

I.
31 I. RS I" RA

n to- (RB) 59:63
r to- ROTL32 ((RSh2:63' n)
if (RB)58 = e then

m to- MASK(32, 63-n)
else m to- 649 .
RA to- r & m

It. RB

(Rc=O)
(Rc= 1)

12t
24 I:~I

The contents of the low-order 32 bits of register RS
are shifted left the number of bits specified by
(RB)S8:63. Bits shifted out of position 32 are lost.
Zeros are supplied to the vacated pOSitions on the
right. The 32-bit result is placed into RA32:63· RAO:31
are set to zero. Shift amounts from 32 to 63 give a
zero result.

Special Registers Altered:
CRO (if Rc= 1)

Chapter 3. Fixed-Point Processor 75

Shift Right Doubleword X-form

srd RA,RS,RB
srd. RA,RS,RB

10 31

n ~ (RB) 58:63
r ~ ROTL64 «RS), 54-n)
if (RB)57 = 8 then

m ~ MASK(n, 53)
el se m ~ 648
RA ~ r & m

(Rc=O)
(Rc= 1)

539 I~~I

The contents of register RS are shifted right the
number of bits specified by (RB)s7:63. Bits shifted out
of position 63 are lost. Zeros are supplied to the
vacated positions on the left. The result is placed into
register RA. Shift amounts from 64 to 127 give a zero
result.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc= 1)

76 PowerPC Architecture First Edition

Shift Right Word X-form

srw RA,RS,RB
srw. RA,RS,RB

[Power mnemonics: sr, sr.]

10
31

1/
5

I" RA
I,.RB

n ~ (RB)S9:63
r ~ ROTL32 ((RSh2:63' 64-n)
if (RB)S8 = 9 then

m ~ MASK(n+32, 63)
else m ~ 649
RA ~ r & m

(Rc=O)
(Rc= 1)

12,
536 I:~I

The contents of the low-order 32 bits of register RS
are shifted right the number of bits specified by
(RB)ss:63. Bits shifted out of position 63 are lost.
Zeros are supplied to the vacated positions on the
left. The 32-bit result is placed into RA32:63· RAO:31
are set· to zero. Shift amounts from 32 to 63 give a
zero result.

Special Registers Altered:
CRO (if Rc= 1)

Shift Right Algebraic Doubleword
Immediate XS-form

sradi RA,RS,SH
sradi. RA,RS,SH

10
31 16 RS I" RA

n +- 5hs II ShO:4

r +- ROTL64 (RS), 64-n)
m +- MASK(n, 63)
5 +- (RS)o
RA +- r&m I (64 5) & m
CA +- S & «(r& m)j9)

1,6 sh 12,
413

(Rc=O)
(Rc= 1)

~~I:~

The contents of register RS are shifted right SH bits.
Bits shifted out of position 63 are lost. Bit 0 of RS is
replicated to fill the vacated positions on the left. The
result is placed in~o register RA. CA is set to 1 if (RS)
is negative and any 1-bits are shifted out of position
63; otherwise CA is set to O. A shift amount of zero
causes RA to be set equal to (RS), and CA to be set
to O.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CA
eRO (ifRc=l)

Shift Right Algebraic Word Immediate
X-form

srawi
srawi.

RA,RS,SH
RA,RS,SH

[Power mnemonics: srai, srai.]

n +- SH
r +- ROT L32 ((RSh2:63' 64-n)
m +- fvIASK(n+32, 63)
5 +- (RSh2
RA +- r&m I (645)& m
CA +- 5 & (r& m)32:6319)

824

(Rc=O)
(Rc= 1)

The contents of the low-order 32 bits of register RS
are shifted right SH bits. Bits shifted out of position
63 are lost. Bit 32 of RS is replicated to fill the
vacated positions on the left. The 32-bit result is
placed into RA32:63. Bit 32 of RS is replicated to fill
RAO:31 ' CA is set to 1 if the low-order 32 bits of (RS)
contain a negative number and any 1-bits are shifted
out of position 63; otherwise CA is set to O. A shift
amount of zero causes RA to receive EXTS((RSh2:63)'
and CA to be set to O.

Special Registers Altered:
CA
CRO (if Rc= 1)

Chapter 3. Fixed-Point Processor 77

Shift Right Algebraic Doubleword
X-form

srad
srad.

RA,RS,RB
RA,RS,RB

n ~ (RB)58:63
r ~ ROTL64 «RS), 64-n)
if (RB)S7 = 8 then

m ~ MASK(n, 63)
el se m ~ 648
s.~ (RS)o
RA ~ r&m I (64s)&-.m
CA ~ s & «r&-.m)i8)

(Rc=O)
(Rc= 1)

The contents of register RS are shifted right the
number of bits specified by (RB)S7:63. Bits shifted out
of position 63 are lost. Bit 0 of RS is replicated to fill
the vacated positions on the left. The result is placed
into register RA. CA is set to 1 if (RS) is negative and
any 1-bits are shifted out of position 63; otherwise CA
is set to O. A shift amount of zero causes RA to be
set equal to (RS), and CA to be set to O. Shift
amounts from 64 to 127 give a result of 64 sign bits in
RA, and cause CA to receive the sign bit of (RS).

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CA
CRO (if Rc= 1)

78 PowerPC Architecture First Edition

Shift Right Algebraic Word X-form

sraw RA,RS,RB
sraw. RA,RS,RB

[Power mnemonics: sra, sra.]

n ~ (RB) 59:63
r ~ ROTL32 ((RSh2:63, 64-n)
if (RB)S8 = 8 then

m ~ MASK(n+32, 63)
el se m ~ 649
s ~ (RSh2
RA ~ r&m I (64s)&-'m
CA ~ s & «r&.,mh2:63iC:l)

792

(Rc=O)
(Rc= 1)

The contents of the low-order 32 bits of register RS
are shifted right the number of bits specified by
(RB)58:63. Bits shifted out of position 63 are lost. Bit
32 of RS is replicated to fill the vacated positions on
the left. The 32-bit result is placed into RA32:63. Bit
32 of RS is replicated to fill RAO:31 • CA is set to 1 if
the low-order 32 bits of (RS) contain a negative
number and any 1-bits are shifted out of position 63;
otherwise CA is set to O. A shift amount of zero
causes RA to receive EXTS«RSb2:63)' and CA to be
set to O. Shift amounts from 32 to 63 give a result of
64 sign bits, and cause CA to recetve the sign bit of

(RSb2:63·

Special Registers Altered:
CA
CRO (if Rc= 1)

3.3.14 Move To/From System Register Instructions

Extended mnemonics

A set of extended mnemonics is provided for the
mtspr and mfspr instructions so that they can be

Move To Special Purpose Register
XFX-form

mtspr SPR,RS

31 I. RS I" spr

n ~ sprS:9 II Spr O:4

if length(SPREG(n)) 64 then
SPREG(n) ~ (RS)

else
SPREG(n) ~ (RSh2:63{O:31}

12,
467

1:,1

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. The contents of
register RS are placed into the designated Special
Purpose Register. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RS are
placed into the SPR.

SPR* Register
decimal SprS:9 SprO:4 name

1 0000000001 XER
8 0000001000 LR
9 . 00000 01001 CTR

to Note that the order of the two 5-bit
halves of the SPR number is reversed.

Additional values of the SPR field are defined in
Part 3, "PowerPC Operating Environment
Architecture" on page 141, and others may be
defined in Book IV, PowerPC Implementation Features
for the implementation. If the SPR field contains any
value other than one of these implementation-specific
values or one of the values shown above or in Book
III, the instruction form is invalid. However, the only
effect of executing an invalid instruction form in which
spro = 1 is to invoke either the system privileged
instruction error handler or the system illegal instruc­
tion error handler.

Special Registers Altered:
See above

coded with the SPR name as part of the mnemonic
rather than as a numeric operand. Some of these are
shown as examples with the two instructions. See
Appendix C, "Assembler Extended Mnemonics" on
page 221 for additional extended mnemonics.

Extended Mnemonics:

Examples of extended mnemonics for Move To
Special Purpose Register:

Extended: Equivalent to:

mtxer Rx mtspr 1,Rx
mtlr Rx mtspr 8,Rx
mtctr Rx mtspr 9,Rx

Compiler and Assembler Note ------....,

For the mtspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two
5-bit halves that are reversed in the instruction,
with the high-order 5 bits appearing in bits 16:20
of the instruction and the low-order 5 bits in bits
11:15. This maintains compatibility with Power
SPR encodings, in which these two instructions
had only a 5-bit SPR field occupying bits 11:15.

Compatibility Note --------------.

For a discussion of Power compatibility with
respect to SPR numbers not shown in the instruc­
tion descriptions for mtspr and mfspr, please refer
to Appendix G, "Incompatibilities with the Power
Architecture" on page 255. For compatibility with
future versions of this architecture, only SPR
numbers discussed in these instruction
descriptions should be used.

Chapter 3. Fixed-Point Processor 79

Move From Special Purpose Register
XFX-form

mfspr RT,SPR

Move To Condition Register Fields
XFX-form

mtcrf FXM,RS

I ,---0 31--,--1. --'-oRT 1,_1 s_pr --,--12, _339 ---,---,I :,1 10 .31 I. RS 1:.1.2 FXM 144

1:,1

n ~ sprS:9 " sprO:4
if length(SPREG(n» = 64 then

RT ~ SPREG(n)
else

RT ~ 320 II SPREG(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. The contents of
the designated Special Purpose Register are placed
into register RT. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of. RT receive
the contents of the Special Purpose Register and the
high-order 32 bits of RT are set to zero ..

SPR* Register
decimal sprS:9 sprO:4 name

1 0000000001 XER
8 0000001000 LR
9 0000001001 CTR

* Note that the order of the two 5-bit
halves of the SPR number is reversed.

Additional values of the SPR field are defined in
Part 3, "PowerPC Operating Environment
Architecture" on page 141, and others may be
defined in Book IV, PowerPC Implementation Features
for the implementation. If the SPR field contains any
value other than one of these implementation-specific
values or one of the values shown above or in Book
III, the instruction form is invalid. However, the only
effect of executing an invalid instruction form in which
spro= 1 is to invoke either the system privileged
instruction error handler or the system illegal instruc­
tion error handler.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Move From
Special Purpose Register:

Extended:

mfxer Rx
mflr Rx
mfctr Rx

Equivalent to:

mfspr Rx,1
mfspr RX,8
mfspr RX,9

Compiler/Assembler/Compatibility Notes

See the Notes that appear with mtspr.

80 PowerPC Architecture First Edition

mask ~ 4(FXMo) II 4(FXM1) II 4 (FXM7)

CR ~ «RSh2:63 & mask) I (CR & .,mask)

The contents of bits 32:63 of register RS are placed
into the Condition Register under control of the field
mask specified by FXM. The field mask identifies the
4-bit fields affected. Let i be an integer in the range
0-7. If FXM(i) = 1 then CR field i (CR bits 4xi through
4xi + 3) is set to the contents of the corresponding
field of the low-order 32 bits of RS.

Special Registers Altered:
CR fields selected by mask

Programming Note -------------,

Updating a proper subset of the eight fields of the
Condition Register may have substantially poorer
performance on some implementations than
updating all of the fields.

Move to Condition Register from XER
X-form

mcrxr SF

10 31 I.BF 1:'1., III 1,.111 12,

CR4xBF:4xBF+3 ~ XERo:3
XERo:3 ~ abasas

512

1 :,1

The contents of XERo:3 are copied into the Condition
Register field designated by BF. XERo:3 is set to zero.

Special Registers Altered:
CR XER o:3

Move From Condition Register X-form

mfcr RT

10 31 I. RT I" 11/ I,. III 12,
19

1:,1
RT (- 320 II CR

The contents of the Condition Register are placed into
RT32:63. RTo:31 are set to O.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 81

82 PowerPC Architecture First Edition

Chapter 4. Floating-Point Processor

4.1 Floating-Point Processor
Overview

The Floating-Point Processor provides high perform­
ance execution of floating-point operations.
Instructions are provided to perform arithmetic, con­
version, comparison, and other operations in floating­
point registers, and to move floating-point data
between storage and these registers. Instructions in
the first group are called "arithmetic instructions,"
and instructions in the second group are called
"storage access instructions." Instructions are also
provided that manipulate the Floating-Point Status
and Control Register.

This architecture provides for the processor to imple­
ment a floating-point system as defined in ANSIIJEEE
Standard 754-1985, "IEEE Standard for Binary
Floating-Point Arithmetic" (hereafter referred to as
"the IEEE standard"), but has a dependency on sup­
porting software to be in "conformance" with that
standard. All floating-point operations conform to that
standard, except if software sets the Floating-Point
Non-IEEE Mode (NI) bit in the Floating-Point Status
and Control Register to 1 (see page 86), in which case
floating-point operations do not necessarily conform
to that standard.

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by
this number is the product of the significand and the
number 2exponent. Encodings are provided in the data
format to represent finite numeric values, ±Infinity,
and values which are "Not a Number" (NaN). Oper­
ations involving infinities produce results obeying tra­
ditional mathematical conventions. NaNs have no
mathematical interpretation. Their encoding permits
a variable diagnostic information field. They may be
used to indicate such things as uninitialized variables
and can be produced by certain invalid operations.

There is one class of exceptional events which occur
during instruction execution which are unique to the
Floating-Point Processor:

• Floating-Point Exception

Floating-point exceptions are signalled with bits set in
the Floating-Point Status and Control Register

- (FPSCR). They can cause the system floating-point
enabled exception error handler to be invoked,- pre­
cisely or imprecisely, if the proper control bits are set.

Floating-Point Exceptions

The following floating-point exceptions are detected
by the processor:

• Invalid Operation Exception
SNaN
Infinity-Infinity
Infinity+lnfinity
Zero+Zero
InfinityxZero
Invalid Compare
Software Request
Invalid Square Root
Invalid Integer Convert

• Zero Divide Exception
• Overflow Exception
• Underflow Exception
• Inexact Exception

(VX)
(VXSNAN)

(VXISI)
(VXIDI)

(VXZDZ)
(VXIMZ)
(VXVC)

(VXSOFT)
(VXSORT)

(VXCVI)
(ZX)
(OX)
(UX)
(XX)

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in
the FPSCR. In addition, each floating-point exception
has a corresponding enable bit in the FPSCR. See
Section 4.2.2, "Floating-Point Status and Control
Register" on page 84, for a description of these
exception and enable bits, and Section 4.4, "Floating­
Point Exceptions" on page 90, for a detailed dis­
cussion of floating-point exceptions, including the
effects of the enable bits.

4.2 Floating-Point Processor
Registers

Chapter 4. Floating-Point Processor 83

4.2.1 Floating-Point Registers

Implementations of this architecture provide 32
floating-point registers (FPR). The floating-point
instruction formats provide a 5-bit field for specifying
the FPRs to be used in the execution of the instruc­
tion. The FPRs are numbered 0-31.

Each FPR contains 64 bits which support the f1oating­
point double format. Every instruction that interprets
the contents of an FPR as a floating-point value uses
the f1oating-poi~t double format for this interpretation.

Every floating-point arithmetic instruction operates on
data located in FPRs and, with the exception of the
Compare instructions, places the result value into an
FPR. Status information is placed into the Floating­
Point Status and Control Register and in some cases
into the Condition Register.

Load and store double instructions are provided that
transfer 64 bits of data between storage and the FPRs
in the Floating-Point Processor with no conversion.
Load single instructions are provided to transfer and
convert floating-point values in floating-point single
format from storage to the same value in floating­
point double format in the FPRs. Store single
instructions are provided to transfer and convert
floating-point values in floating-point double format
from the FPRs to the same value in floating-point
single format in storage.

Single- and double-precision arithmetic instructions
accept values from the FPRs in double format. For
single-precision arithmetic instructions, all input
values must be representable in single format: if they
are not, the result placed into the target FPR, and the
setting of status bits in the FPSCR and in the Condi­
tion Register (if Rc = 1), are undefined.

The arithmetic instructions produce intermediate
results which may be regarded as being infinitely
precise. After normalization or denormalization, if the
infinitely precise intermediate result is not represent­
able in the destination format (either 32-bit or 64-bit)
then it is rounded. The final result is then placed into
the FPR in the double format.

FPR 00

FPR 01

...

...

FPR 30

FPR 31

o 63

Figure 23. Floating-Point Registers

84 PowerPC Architecture First Edition

4.2.2 Floating-Point Status and
Control Register

The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point excep­
tions and records status resulting from the f1oating­
point operations. Bits 0:23 are status bits. Bits 24:31
are control bits.

The exception bits in the FPSCR (bits 0:12, 21:23) are
sticky, with the exception of Floating-Point Enabled
Exception Summary (FEX) and Floating-Point Invalid
Operation Exception Summary (VX). That is, once set
the sticky bits remain set until they are cleared by an
mcris, mtfsti, mtfst, or mtfsbO instruction.

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

FPSCR

o 31

Figure 24. Floating-Point Status and Control Register

The format of the FPSCR is:

Bit(s) Description

o Floating-Point Exception Summary (FX)
Every floating-point instruction shall implicitly
set FPSCRFX if that instruction causes any of
the floating-point exception bits in the FPSCR to
transition from 0 to 1. mcrfs shall implicitly
reset FPSCRFX if the FPSCR field containing
FPSCRFX is copied. mt/sf, mtfsti, mtfsbO, and
mtfsb1 shall be able to set or clear FPSCRFX
explicitly.

1 Floating-Point Enabled Exception Summary
(FEX)

2

3

This bit signals the occurrence of any of the
enabled· exception conditions. tt is the OR of all
the floating-point exceptions masked with their
respective enables. mcrfs shall implicitly reset
FPSCRFEX if the result of the logical operation
descri bed above becomes zero. mt/sf, mtfs'i,
mtfsbO, and mtfsb1 cannot set or clear
FPSCRFEX explicitly.

Floating-Point Invalid Operation Exception
Summary (VX)
This bit signals the occurrence of any invalid
operation exception. It is the OR of all the
Invalid Operation exceptions. mcrfs shall
implicitly reset FPSCRvx if the result of the
logical operation described above becomes
zero. mtfsf, mtfsfi, mtfsbO, and mtfsb1 cannot
set or clear FPSCRvx explicitly.

Floating-Point Overflow Exception (OX)
See Section 4.4.3, "Overflow Exception" on
page 94.

4

5

6

7

Floating-Point Underflow Exception (UX)
See Section 4.4.4, "Underflow Exception" on
page 94.

Floating-Point Zero Divide Exception (ZX)
See Section 4.4.2, "Zero Divide Exception" on
page 94.·

Floating-Point Inexact Exception (XX)
See Section 4.4.5, "Inexact Exception" on
page 95. .

FPSCRxx is a sticky version of FPSCRF1 (see
below). Thus the following rules completely
describe how FPSCRxx is set by a .given instruc­
tion.

• If the instruction affects FPSCRF1 , the new
value of FPSCRxx is obtained by ORing the
old value of FPSCRxx with the new value of
FPSCRF1 •

• If the instruction does not affect FPSCRF1 ,

the value of FPSCRxx is unchanged.

Floating-Point Invalid Operation Exception
(SHaN) (VXSNAN)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

8 Floating-Point Invalid Operation Exception
(00-00) (VXISI)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

9 Floating-Point Invalid Operation Exception
(00+00) (VXIDI)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

10 Floating-Point Invalid Operation Exception
(0+0) (VXZDZ)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

11 Floating-Point Invalid Operation Exception
(ooxO) (VXIMZ)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

12 Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

13 Floating-Point Fraction Rounded (FR)
The last floating-point instruction that poten­
tially rounded the intermediate result incre­
mented the fraction (see Section 4.3.6,
"Rounding" on page 90). This bit is not sticky.

14 Floating-Point Fraction Inexact (FI)
The last floating-point instruction that poten­
tially rounded the intermediate result produced
an inexact fraction or a disabled Overflow
Exception (see Section 4.3.6, "Rounding" on
page 90). This bit is not sticky.

See the definition of FPSCRxx, above, regarding
the relationship between FPSCRF1 and FPSCRxx.

15:19 Floating-Point Result Flags (FPRF)
This field is set as described below. For
floating-point instructions other than the
Compare instructions, the field is set based on
the result placed into the target register, except
that if any portion of the result is undefined
then the value placed into the FPRF is unde­
fined.

15 Floating-Point Result Class Descripter (C)
Floating-point instructions other than the
Compare instructions may set this bit with the
FPCC bits, to indicate the class of the result as
shown in Figure 25 on page 86.

16:19 Floating-Point Condition Code (FPCC)
Floating-point Compare instructions set one of
the FPCC bits to one and the other three FPCC
bits to zero. Other floating-point instructions
may set the FPCC bits with the C bit, to indicate
the class of the result as shown in Figure 25 on
page 86. Note that in this case the high-order
three bits of the FPCC retain their relational sig­
nificance indicating that the value is less than,
greater than, or equal to zero.

16 Floating-Point Less Than or Negative (FL or <)

17 Floating-Point Greater Than or Positive (FG or
>)

18 Floating-Point Equal or Zero (FE or =)

19 Floating-Point Unordered or NaN (FU or ?)

20. Reserved

21 Floating-Point Invalid Operation Exception
(Software Request) (VXSOFT)
This bit can be altered only by mcrls, mtfsfi,
mtfsf, mtfsbO, or mtfsb1. See Section 4.4.1,
"Invalid Operation Exception" on page 93.

22 Floating-Point Invalid Operation Exception
(Invalid Square Root) (VXSQRT)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

Programming Note ----------,

If the implementation does not support the
Floating Square Root instruction or the
Floating Reciprocal Square Root Estimate
instruction, software can simulate the
instruction and set this bit to reflect the
exception.

23 Floating-Point Invalid Operation Exception
(Invalid Integer Convert) (VXCVI)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

24 Floating-Point Invalid Operation Exception
Enable (V E)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

Chapter 4. Floating-Point Processor 85

25 Floating-Point Overflow Exception Enable (OE)
See Section 4.4.3, "Overflow Exception" on
page 94.

26 Floating-Point Underflow Exception Enable (UE)
See Section 4.4.4, "Underflow Exception" on
page 94.

27 Floating-Point Zero Divide Exception Enable
(ZE)
See Section 4.4.2, "Zero Divide Exception" on
page 94.

28 Floating-Point Inexact Exception Enable (XE)
See Section 4.4.5, "Inexact Exception" on
page 95.

29 Floating-Point Non-IEEE Mode (NI)
If this bit is set to 1, the remaining FPSCR bits
may have meanings other than those given in
this document, and the results of floating-point
instructions need not conform to the IEEE
standard. If the IEEE-conforming result of a
floating-point arithmetic instruction would be a
denormalized number, the result of that instruc­
tion is 0 (with the same sign as the denormal­
ized number) i·f FPSCRN1 = 1 and other
requirements specified in Book IV, PowerPC
Implementation Features, for the implementa­
tion are met. The other effects of setting this
bit to 1 are described in Book IV, and may differ
between implementations.

30:31 Floating-Point Rounding Control (RN)

C

1
0
0
1
1
0
1
0
0

See Section 4.3.6, "Rounding" on page 90.

00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

Result
Flags Result Value Class

< > = ?

0 0 0 1 Quiet NaN
1 0 0 1 - Infinity
1 0 0 0 - Normalized Number
1 0 0 0 - Denormalized Number
0 0 1 0 -Zero
0 0 1 0 + Zero
0 1 0 0 + Denormalized Number
0 1 0 0 + Normalized Number
0 1 0 1 + Infinity

Figure 25. Floating-Point Result Flags

86 PowerPC Architecture First Edition

4.3 Floating-Point Data

4.3.1 Data Format

This architecture defines the representation of a
floating-point value in two different binary fixed length
formats. The format may be a 32-bit single format for
a single-precision value or a 64-bit double format for
a double-precision value. The single format may be
used for data in storage. The double format format
may be used for data in storage and for data in
floating-point registers.

The length of the exponent and the fraction fields
differ between these two formats. The structure of
the single and double formats is shown below:

EXP FRACTION

01 9 31

Figure 26. Floating-Point Single Format

EXP FRACTION

01 12 63

Figure 27. Floating-Point Double Format

Values in floating-point format are composed of three
fields:

S
EXP
FRACTION

sign bit
exponent + bias
fraction

If only a portion of a floating-point data item in
storage is accessed, such as with a load or store
instruction for a byte or halfword (or word in the case
of floating-point double format), the value affected will
depend on whether the Power PC system is operating
with Big-Endian byte order (the default), or Little­
Endian byte order. See Appendix 0, "Little-Endian
Byte Ordering" on page 235.

Representation of numerical values in the f1oating­
point formats consist of a sign bit S, a biased expo­
nent EXP, and the fraction portion FRACTION of the
significand. The significand consists of a leading
implied bit concatenated on the right with the FRAC­
TION. This leading implied bit is a one for normalized
numbers and a zero for denormalized numbers and is
located in the unit bit position (Le. the first bit to the
left of the binary point). Values representable within
the two floating-point formats can be specified by the
parameters listed in Figure 28 on page 87.

Format

Single Double

Exponent Bias + 127 + 1023
Maximum Exponent + 127 + 1023
Minimum Exponent -126 -1022

Widths (bits)
Format 32 64
Sign 1 1
Exponent 8 11
Fraction 23 52
Significand 24 53

Figure 28. IEEE Floating-Point Fields

The architecture requires that the FPRs of the
Floating-Point Processor support the arithmetic
instructions on values in the floating-point double
format only.

4.3.2 Value Representation

This architecture defines numerical and non-numerical
values representable within each of the two supported
formats. The numerical values are approximations to
the real numbers and include the normalized
numbers, denormalized numbers, and zero values.
The non-numerical values representable are the infin­
ities, and the Not a Numbers (NaNs). The infinities
are adjoined to the real numbers, but are not
numbers themselves, and the standard rules of arith­
metic do not hold when they appear in an operation.
They are related to the reals by order alone. It is
possible however to define restricted operations
among numbers and infinities as defined below. The
relative location on the real number line for each of
the defined entities is shown in'Figure 29.

~INFI -NOR +NOR

Figure 29. Approximation to Real Numbers

The NaNs are not related to the numbers or infinities
by order or value but are encodings used to convey
diagnostic information such as the representation of
uninitialized variables.

The following is a description of the different f1oating­
point values defined in the architecture:

Binary floating-point numbers
Machine representable values used as approxi­
mations to real numbers. Three categories of
numbers are supported: normalized numbers, denor­
malized numbers, and zero values.

Normalized numbers (±NOR)
These are values which have a biased exponent value
in the range:

1 to 254 in single format
1 to 2046 in double format

They are values in which the implied unit bit is one.
Normalized numbers are interpreted as follows:

NOR = (-1)S x 2E x (1.fraction)

where (s) is the sign, (E) is the unbiased exponent and
(1.fraction) is the significand which is composed of a
leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a nor­
malized floating-point number are approximately
equal to:

Single Format:

1.2x10-38 :S M :S 3.4x1038

Double Format:

2.2x10-308 :S M :S 1.8x10308

Zero values (±O)
These are values which have a biased exponent value
of zero and a fraction value of zero. Zeros can have
a positive or negative sign. The sign of zero is
ignored by comparison operations (i.e., comparison
regards + 0 as equal to -0).

Denormalized numbers (±DEN)
These are values which have a biased exponent value
of zero and a non-zero fraction value. They are non­
zero numbers smaller in magnitude than the repre­
sentable normalized numbers. They are values in
which the implied unit bit is zero. Denormalized
numbers are interpreted as follows:

DEN = (_1)S X 2Emin X (O.fraction)

where Emin is the minimum representable exponent
value (-126 for single-precision, -1022 for double­
precision).

Infinities (±oo)
These are values which have the maximum biased
exponent value:

255 in the single format
2047 in the double format

and a zero fraction value. They are used to approxi­
mate values greater in magnitude than the maximum
normalized value.

Infinity arithmetic is defined as the limiting case of
real arithmetic, with restricted operations defined
among numbers and infinities. Infinities and the reals
can be related by ordering in the affine sense:

-00 < every finite number < +00

Chapter 4. Floating-Point Processor 87

Arithmetic on infinities is always exact and does not
signal any exception, except when an exception
occurs due to the invalid operations as described in
Section 4.4.1, "Invalid Operation Exception" on
page 93.

Not a Numbers (NaNs)
These are values which have the maximum biased
exponent value and a non-zero fraction value. The
sign bit is ignored (i.e. NaNs are neither positive nor
negative). If the high-order bit of the fraction field is
a zero then the NaN is a Signalling NaN, otherwise it
is a Quiet NaN.

Signalling NaNs are used to signal exceptions when
they appear as arithmetic operands.

Quiet NaNs are used to represent the results of
certain invalid operations, such as invalid arithmetic
operations on infinities or on NaNs, when Invalid
Operation Exception is disabled (FPSCRvE = 0). Quiet
NaNs propagate through all operations except ordered
comparison, Floating Round to Single-Precision, and
conversion to integer. Ouiet NaNs do not signal
exceptions, except for ordered comparison and con­
version to integer operations. Specific encodings, in
ONaNs, can thus be preserved through a sequence of
operations, and used to convey diagnostic information
to help identify results from invalid operations.

When a QNaN is the result of an operation because
one of the operands is a NaN or because a ON aN was
generated due to a disabled Invalid Operation Excep­
tion, then the following rule is applied to determine
the NaN with the high-order fraction bit set to one that
is to be stored as the result.

if (FRA) is a NaN
then FRT +- (FRA)
else if (FRS) is a NaN

then if instruction is frsp
then FRT +- (FRS)O:34 II 290
else FRT +- (FRS)

else if (FRC) is a NaN
then FRT +- (FRC)
else if generated ONaN

then FRT +- generated ONaN

If the operand specified by FRA is a NaN, then that
NaN is stored as the result. Otherwise, if the operand
specified by FRS is a NaN (if the instruction specifies
an FRB operand), then that NaN is stored as the
result, with the low-order 29 bits of the result set to 0
if the instruction is frsp. Otherwise, if the operand
specified by FRC is a NaN (if the instruction specifies
an FRC operand), then that NaN is stored as the
result. Otherwise, if a QNaN was generated due to a
disabled Invalid Operation Exception, then that ON aN
is stored as the result. If a QNaN is to be generated
as a result, then the QNaN generated has a sign bit of
zero, an exponent field of all ones, and a high-order
fraction bit of one with all other fraction bits zero.
Any instruction that generates a QNaN as the result of

88 PowerPC Architecture First Edition

a disabled Invalid Operation must generate this ONaN
(i.e., Ox7FF8_0000_0000_0000).

A double-precision NaN is considered to be represent­
able in single format if and only if the low-order 29
bits of the double-precision NaN's fraction are zero.

4.3.3 Sign of Result

The following rules govern the sign of the result of an
arithmetic operation, when the operation does not
yield an exception. They apply even when the oper­
ands or results are zeros or infinities.

• The sign of the result of an addition operation is
the sign of the operand having the larger abso­
lute value. If both operands have the same sign,
the sign of the result of an addition operation is
the same as the sign of the operands. The sign
of the result of the subtraction operation x-y is
the same as the sign of the result of the addition
operation x + (-y).

When the sum of two operands with opposite
sign, or the difference of two operands with the
same sign, is exactly zero, the sign of the result
is positive in all rounding modes except Round
toward -Infinity, in which mode the· sign is nega­
tive.

• The sign of the result of a multiplication or divi­
sion qperation is the Exclusive OR of the signs of
the operands.

• The sign of the result of a Square Root or Recip­
rocal Square Root Estimate operation is always
positive, except that the square root of -0 is -0
and the reciprocal square root of -0 is -Infinity.

• The sign of the result of a Round to Single­
Precision or Convert tolfrom Integer operation is
the sign of the operand being converted.

For the Multiply-Add instructions, the rules given
above are applied first to the multiplication operation
and then to the addition or subtraction operation (one
of the inputs to the addition or subtraction operation
is the result of the multiplication operation).

4.3.4 Normalization and
Denormalization

When an arithmetic operation produces an interme­
diate result, consisting of a sign bit, an exponent, and
a non-zero significand with a zero leading bit, it is not
a normalized number and must be normalized before
it is stored.

A number is normalized by shifting its significand left
while decrementing its exponent by one for each bit
shifted, until the leading significand bit becomes one.
The guard bit and the round bit (see Section 4.5.1,
"Execution Model for IEEE Operations" on page 96)

participate in the shift with zeros shifted into the
round bit. The exponent is regarded as if its range
were unlimited. If the resulting exponent value is less
than the minimum value that can be represented in
the format specified for the result, the intermediate
result is said to be "Tiny" and the stored result is
determined by the rules described in Section 4.4.4,
"Underflow Exception" on page 94. The sign of the
number does not change.

When an arithmetic operation produces a non-zero
intermediate result with an exponent value less than
the minimum value that can be represented in the
format specified for the result, the stored result is
determined by the rules described in Section 4.4.4,
"Underflow Exception" on page 94. This process may
require denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by one for each
bit shifted, until the exponent is equal to the format's
minimum value. If any significant bits are lost in this
shifting process then "Loss of Accuracy" has occurred
(See Section 4.4.4, "Underflow Exception" on
page 94) and Underflow Exception is signalled. The
sign of the number does not change.

4.3.5 Data Handling and Precision

Instructions are defined to move floating-point data
between the FPRs and storage. For double format
data the data is not altered during the move. For
single format data, a format conversion from single to
double is performed when loading from storage into
an FPR and a format conversion from double to single
is performed when storing from an FPR to storage.
No floating-point exceptions are raised during these
operations.

All arithmetic operations are performed using
floating-point double format.

Floating-point single-precision is obtained with the
implementation of four types of instruction.

1. Load Floating-Point Single

This form of instruction accesses a single­
precision operand in single format in storage,
converts it to double-precision, and loads it into
an FPR. No exceptions are detected on the load
operation.

2. Round to Floating-Point Single-Precision

The Floating Round to Single-Precision instruction
rounds a double-precision oRerand to single­
precision if the operand is not already in single­
precision range, checking the exponent for

single-precision range and handling any excep­
tions according to respective enable bits, and
places that operand into an FPR as a double­
precision operand. For results produced by
single-precision arithmetic instructions and by
single-precision loads, this operation does not
alter the value.

3. Single-Precision Arithmetic Instructions

This form of instruction takes operands from the
FPRs in double format, performs the operation as
if it produced an intermediate result correct to
infinite preciSion and with unbounded range, and
then coerces this intermediate result to fit in
single format. Status bits, in the FPSCR and in
the Condition Register, are set to reflect the
single-precision result. The result is then con­
verted to double format and placed into an FPR.
The result lies in the range supported by the
single format.

All input values must be representable in single
format: if they are not, the result placed into the
target FPR, and the setting of status bits in the
FPSCR and in the Condition Register (if Rc = 1),
are undefined.

4. Store Floating-Point Single

This form of instruction converts a double­
precision operand to single format and stores
that operand into storage. No exceptions are
detected on the store operation (the value being
stored is effectively assumed to be the result of
an instruction of one of the preceding three
types).

When the result of a Load Floating-Point Single,
Floating Round to Single-Precision, or single-precision
arithmetic instruction is stored in an FPR, the low­
order 29 FRACTION bits are zero.

Programming Note -------------,

The Floating Round to Single-Precision instruction
is provided to allow value conversion from
double-precision to single-precision with appro­
priate exception checking and rounding. This
instruction should be used to convert double­
precIsion floating-point values (produced by
double-precision load and arithmetic instructions)
to single-precision values prior to storing them
into single format storage elements or using them
as operands for single-precision arithmetic
instructions. Values produced by single-precision
load and arithmetic instructions can be stored
directly, or used directly as operands for single­
precision arithmetic instructions, without pre­
ceding the store, or the arithmetic instruction, by
a Floating Round to Single-Precision instruction.

Chapter 4. Floating-Point Processor 89

Programming Note -------------,

A single-precision value can be used in double­
precision arithmetic operations. The reverse is
not necessari~y true (it is true only if the double­
precision value is representable in single format).

Some implementations may execute single­
precision arithmetic instructions faster than
double-precision arithmetic instructions. There­
fore, if double-precision accuracy is not required,
single-precision data and instructions should be
used.

4.3.6 Rounding

With the exception of the two optional Estimate
instructions, Floating Reciprocal Estimate Single and
Floating Reciprocal Square Root Estimate, all arith­
metic instructions defined by this architecture
produce an intermediate result that can be regarded
as being infinitely precise. This result must then be
written with a precision of finite length into an FPR.
After normalization or denormalization, if the infinitely
precise intermediate result is not representable in the
precision required by the instruction then it is
rounded before being placed into the target FPR.

The instructions that potentially round their result are
the Arithmetic, Multiply-Add, and Rounding and Con­
version instructions. For a given instance of one of
these instructions, whether rounding occurs depends
on the values of the inputs. Each of these instructions
sets FPSCR bits FR and FI, according to whether
rounding occurred (FI) and whether the fraction was
incremented (FR). If rounding occurred, FI is set to
one, and FR may be set to either zero or one. If
rounding did not occur, both FR and FI are set to
zero.

The two Estimate instructions set FR and FI to unde­
fined values. The remaining Floating-Point
instructions do not alter FR and FI.

Four modes of rounding are provided which are user­
selectable through the Floating-Point Rounding
Control field in the FPSCR. See Section 4.2.2,
"Floating-Point Status and Control Register" on
page 84. These are encoded as follows:

RN Rounding Mode
00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

Let Z be the infinitely precise intermediate arithmetic
result or the operand of a convert operation. If Z can
be represented exactly in the target format, then no
rounding occurs, and the result in all rounding modes
is equivalent to truncation of Z. If Z cannot be
represented exactly in the target format, let Z1 and

90 PowerPC Architecture First Edition

Z2 be the next larger and next smaller numbers
representable in the target format that bound Z, then
Z1 or Z2 can be used to approximate the result in the
target format.

Figure 30 shows the relation of Z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes. "LSB" means "least significant bit."

,..--- By Incrementing LSB of Z -----,
Infinitely Precise Value

By Truncating after LSB

Z2 ZI 0 Z2 ZI
Z Z

Negat i ve va 1 ues .4 -+--.~ Pos i ti ve va 1 ues

Figure 30. Selection of Z1 and Z2

Round to Nearest
Choose the best approximation of Zl or Z2. In
case of a tie, choose the one which is even (least
significant bit 0).

Round toward Zero
Choose the smaller in magnitude (Zl or Z2).

Round toward +Infinity
Choose Z1.

Round toward -Infinity
Choose Z2.

See Section 4.5.1, "Execution Model for IEEE
Operations" on page 96 for a detailed explanation of
rouriding.

If Z is to be rounded up and Zl does not exist (i.e., if
there is no number larger than Z that is representable
in the target format), then an Overflow Exception
occurs if Z is positive and an Underflow Exception
occurs if Z is negative. Similarly, if Z is to be
rounded down and Z2 does not exist, then an Over­
flow Exception occurs if Z is negative and an Under­
flow Exception occurs if Z is positive. The results in
these cases are defined in Section 4.4, "Floating-Point
Exceptions" on page 90.

4.4 Floating-Point Exceptions

This architecture defines the following floating-point
exceptions:

• Invalid Operation Exception
SNaN
Infinity-Infinity
Infinity+lnfinity
Zero+Zero
InfinityxZero
Invalid Compare
Software Request
Invalid Square Root
Invalid Integer Convert

• Zero Divide Exception
• Overflow Exception
• Underflow Exception
• Inexact Exception

These exceptions may occur during execution of
floating-point arithmetic instructions. In addition, an
Invalid Operation Exception occurs when a Status and
Control Register instruction sets FPSCRVXSOFT· to 1
(Software Request). An Invalid Square Root opera­
tion can occur only if .at least one of the Floating
Square Root instructions defined in Appendix A,
"Optional Instructions" on page 209, is implemented.

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in
the FPSCR. In addition, each floating-point exception
has a corresponding enable bit in the FPSCR. The
exception bit indicates occurrence of the corre­
sponding exception. If an exception occurs, the corre­
sponding enable bit governs the result produced by
the instruction and, in conjunction with the FEO and
FE1 bits (see page 92), whether and how the system
floating-point enabled exception error handler is
invoked. (In general, the enabling specified by the
enable bit is of invoking the system error handler, not
of permitting the exception to occur. The occurence
of an exception depends only on the instruction and
its inputs, not on the setting of any control bits. The
only deviation from this general rule is that the occur­
rence of an Underflow Exception may depend on the
setting of the enable bit.)

The Floating-Point Exception Summary bit (FX) in the
FPSCR is set when any of the exception bits transi­
tions from a zero to a one or when explicitly set by
software. The Floating-Point Enabled Exception
Summary bit (FEX) in the FPSCR is set when any of
the exceptions is set and the exception is enabled
(enable bit is one).

A single instruction, other than mtfsfi or mtfst, may
set more than one exception in the following cases:

• Inexact Exception may be set with Overflow
Exception.

• Inexact Exception may be set with Underflow
Exception.

• Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception. (00 xO) for
Multiply-Add instructions.

• Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid
Compare) for Compare Ordered instructions.

• Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Integer
Convert) for Convert to Integer instructions.

When an exception occurs the instruction execution
may be suppressed or a result may be delivered,
depending on the exception.

Instruction execution is suppressed for the following
kinds of exception, so that there is no possibility that
one of the operands is lost.

• Enabled Invalid Operation
• Enabled Zero Divide

For the remaining kinds of exception, a result is gen­
erated and written to the destination specified by the
instruction causing the exception. The result may be
a different value for the enabled and disabled condi­
tions for some of these exceptions. The kinds of
exception that deliver a result are the following.

• Disabled Invalid Operation
• Disabled Zero Divide
• Disabled Overflow
• Disabled Underflow
• Disabled Inexact
• Enabled Overflow
• Enabled Underflow
• Enabled Inexact

Subsequent sections define each of the floating-point
exceptions and specifY the action that is taken when
they are detected.

The IEEE standard specifies the handling of excep­
tional conditions in terms of "traps" and "trap han­
dlers." In this architecture, an FPSCR exception
enable bit of 1 causes generation of the result value
specified in the I EEE standard for the "trap enabled"
case: the expectation is that the exception will be
detected by software, which will revise the result. An
FPSCR exception enable bit of 0 causes generation of
the "default result" value specified for the "trap disa­
bled" (or "no trap occurs" or "trap is not imple­
mented") case: the expectation is that the exception
will not be detected by software, which will simply use
the default result. The result to be delivered in each
case for each exception is described in the sections
below.

The IEEE default behavior when an exception occurs
is to generate a default value and not to notify soft­
ware. In this architecture, if the IEEE default behavior
when an exception occurs is desired for all excep­
tions, all FPSCR exception enable bits should be set
to 0 and Ignore Exceptions Mode (see below) should
be used. In this case the system floating-point
enabled exception error handler is not invoked, even
if floating-point exceptions occur: software can inspect
the FPSCR exception bits if necessary, to determine
whether exceptions have occurred.

In this architecture, if software is ,to be notified that a
given kind of exception has occurred, the corre­
sponding FPSCR exception enable bit must be set to 1
and a mode other than Ignore Exceptions Mode must
be used. In this case the system floating-point
enabled exception error handler is invoked if an
enabled floating-point exception occurs.

Chapter 4. Floating-Point Processor 91

Whether and how the system floating-point enabled
exception error handler is invoked if an enabled
floating-point exception occurs is controlled by the
FED and FE1 bits. The location of these bits and the
requirements for altering them are described in
Part 3, "PowerPC Operating Environment
Architecture" on page 141. (The system floating­
point enabled exception error handler is never
invoked b~cause of a disabled floating-point excep­
tion.) The effects of the four possible settings of
these bits are as follows.

FEO FE1 Description

o 0 Ignore Exceptions Mode
Floating-point exceptions do not cause the
system floating-point enabled exception
error handler to be invoked.

o Imprecise Nonrecoverable Mode
The system floating-point enabled exception
error handler is invoked at some point at or
beyond the instruction that caused the
enabled exception. It may not be possible to
identify the excepting instruction nor the
data that caused the exception. Results
produced by the excepting instruction may
have been used by or may have affected
subsequent instructions that are executed
before the error handler is invoked.

o Imprecise Recoverable Mode
The system floating-point enabled exception
error handler is invoked at some point at or
beyond the instruction that caused the
enabled exception. Sufficient information is
provided to the error handler that it can
identify the excepting instruction and the
operands, and correct the result. No results
produced by the excepting instruction have
been used by or have affected subsequent
instructions that are executed before the
error handler is invoked.

1 Precise Mode
The system floating-point enabled exception
error handler is invoked precisely at the
instruction that caused the enabled excep­
tion.

In all cases the question of whether or not a f1oating­
point result is stored, and what value is stored, is
governed by the FPSCR exception enable bits, as
described in subsequent sections, and is not affected
by the value of the FED and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions
before the instruction at which the system floating­
point enabled exception error handler is invoked have
completed, and no instruction after the instruction at
which the system floating-point enabled exception
error handler is invoked has been executed. (Recall
that, for the two Imprecise modes, the instruction at

92 PowerPC Architecture First Edition

which the system floating-point enabled exception
error handler. is invoked need not be the instruction
that caused the exception.) The instruction at which
the system floating-point enabled exception error
handler is invoked has not been executed, unless it is
the excepting instruction, in which case it has been
executed unless the kind of exception i·s· among those
.Iisted above as suppressed·.

Programming Note -----------....,

In any of the three non-Precise modes, a Floating­
Point Status and Control Register instruction can
be used to force any exceptions, due to
instructions initiated before the Floating-Point
Status and Control Register instruction, to be
recorded in the FPSCR. (This forcing is super­
fluous for Precise Mode.)

In either of the Imprecise modes, a Floating-Point
Status' and Control Register instruction can be
used to force any invocations of the system
floating-point enabled exception error handler,
due to instructions initiated before the Floating­
Point Status and Control Register instruction, to
occur. (This forcing has no effect in Ignore Excep­
tions Mode, and is superfluous for Precise Mode.)

A sync instruction, or any other execution syn­
chronizing instruction or event (e.g., isync: see
Part 2, "PowerPC Virtual Environment
Architecture" on page 117), also has the effects
described above. However, in order to obtain the
best performance across the widest range of
implementations, a Floating-Point Status and
Control Register instruction should be used to
obtain these effects.

In order to obtain the best performance across the
widest range' of implementations, the programmer
should obey the following guidelines.

• If the I EEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used, with all FPSCR exception enable bits set to
o.

• If the IEEE default results are not acceptable to
the application, Imprecise Non-Recoverable Mode
should be used, or Imprecise Recoverable Mode
if recoverability is needed, with FPSCR exception
enable bits set to 1 for those exceptions for which
the system floating-point enabled exception error
handler is to be invoked.

• Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to 1.

• Precise Mode may degrade performance in some
implementations, perhaps substantially, and
therefore should be used only for debugging and
other specialized applications.

4.4.1 Invalid Operation Exception

4.4.1.1 Definition

An Invalid Operation Exception occurs whenever an
operand is invalid for the specified operation. The
invalid operations are:

• Any operation, except Load, Store, Move, Select,
and mtfst, on a signalling NaN (SNaN)

• For add or subtract operations, magnitude sub-
traction of infinities (00-00)

• Division of infinity by infinity (00+00)
• Division of zero by zero (0+0)
• Multiplication of infinity by zero (ooxO)
• Ordered comparison involving a NaN (Invalid

Compare)
• Square root or reciprocal square root of a nega­

tive (and non-zero) number (Invalid Square Root)
• Integer convert involving a large number, an

infinity, or a NaN (Invalid Integer Convert)

In addition, an Invalid Operation Exception occurs if
software explicitly requests this by executing a mtfsfi,
mtfst, or mttsb1 instruction that sets FPSCRVXSOFT to
1 (Software Request). An Invalid Square Root opera­
tion can occur only if at least one of the Floating
Square Root instructions defined in Appendix A,
"Optional Instructions" on page 209, is implemented.

Programming Note ------------,

The purpose of FPSCRVXSOFT is to allow software
to cause an Invalid Operation Exception for a con­
dition that is not necessarily associated with the
execution of a floating-point instruction. For
example, it might be set by a program that com­
putes a square root, if the source operand is neg­
ative.

4.4.1.2 Action

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled
(FPSCRvE = 1) and Invalid Operation occurs or soft­
ware explicitly requests the exception then the fol­
lowing actions are taken:

1. One or two Invalid Operation Exceptions is set
FPSCRvXSNAN (if SNaN)
FPSCRvx1s1 (if 00-(0)
FPSCRvXIDI (if 00+(0)
FPSCRvxzDZ (if 0+0)
FPSCRvxlMZ (if 00 xO)
FPSCRvxvc (if invalid comp)
FPSCRvXSOFT (if software req)
FPSCRvXSQRT (if invalid sqrt)

FPSCRVXCV1 (if invalid int cvrt)
2. If the operation is an arithmetic, Floating Round

to Single-Precision, or convert to integer opera­
tion,

the target FPR is unchanged
FPSCRFR FI are set to zero
FPSCRFPRF is unchanged

3. If the operation is a compare,
. FPSCRF·R FI C are unchanged

FPSCRFPCC is set to reflect unordered
4. If software explicitly requests the exception,

FPSCRFR FI FPRF are as set by the mtfsfi,
mtfsf, or mtfsb1 instruction·

When Invalid Operation Exception is disabled
(FPSCRvE = 0) and Invalid Operation occurs or soft­
ware explicitly requests the exception then the fol­
lowing actions are taken:

1. One or two Invalid Operation Exceptions is set
FPSCRvxSNAN (if SNaN)
FPSCRvx1S1 (if 00-(0)
FPSCRvx1D1 (if 00+(0)
FPSCRvxzDZ (if 0+0)
FPSCRvxlMZ (if ooxO)
FPSCRvxvc (if invalid comp)
FPSCRVXSOFT (if software req)
FPSCRvxSQRT (if invalid sqrt)
FPSCRvxcv1 (if invalid int cvrt)

2. If the operation is an arithmetic or Floating
Round to Single-Precision operation

the target FPR is set to a Quiet NaN
FPSCRFR FI are set to zero
FPSCRFPRF is set to indicate the class of the
result (Quiet NaN)

3. If the operation is a convert to 32-bit integer
operation,

the target FPR is set as follows:
FRT 0:31 +- undefined
FRT 32:63 are set to the most positive
32-bit integer if the operand in FRB is a
positive number or + 00, and to the most
negative 32-bit integer if the operand in
FRB is a negative number, -00, or NaN

FPSCRFR FI are set to zero
FPSCRFPRF is undefined

4. If the operation is a convert to 64-bit integer
operation,

the target FPR is set as follows:
FRT is set to the most positive 64-bit
integer if the operand in FRB is a posi­
tive number or + 00, and to the most
negative 64-bit integer if the operand in
FRB is a negative number, -00, or NaN

FPSCRFR FI are set to zero
FPSCRFPRF is undefined

5. If the operation is a compare,
FPSCRFR FI C are unchanged
FPSCRFPCC is set to reflect unordered

6. If software explicitly requests the exception,
FPSCRFR FI FPRF are as set by the mtfsfi,
mtfsf, or mtfsb1 instruction

Chapter 4. Floating-Point Processor 93

4.4.2 Zero Divide Exception

4.4.2.1 Definition

A Zero Divide Exception occurs when a Divide instruc­
tion is executed with a zero divisor value and a finite
non-zero dividend value. It also occurs when a Recip­
rocal Estimate instruction (Ires or Irsqrte) is executed
with an operand value of zero~ .

4.4.2.2 Action

The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (FPSCRzE = 1)
and Zero Divide occurs then the following actions are
taken: .

1. Zero Divide Exception is set
FPSCRzx 1

2. The target FPR is unchanged
3. FPSCRFR FJ are set to zero
4. FPSCRFPRF is unchanged

When Zero Divide Exception is disabled (FPSCRzE = 0)
and Zero Divide occurs then the following actions are
taken:

1. Zero Divide Exception is set
FPSCRzx 1

2. The target FPR is set to a ±Infinity, where the
sign is determined by the XOR of the signs of the
operands

3. FPSCRFR FI are set to zero
4. FPSCRFPRF is set to indicate the class and sign of

the result (±Infinity)

4.4.3 Overflow Exception

4.4.3.1 Definition

Overflow occurs when the magnitude of what would
have been the rounded result if the exponent range
were unbounded exceeds that of the largest finite
number of the specified result precision.

4.4.3.2 Action

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (FPSCRoE = 1)
and exponent overflow occurs then the following
actions are taken:

1. Overflow Exception is set
FPSCRox 1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by subtracting 1536

94 PowerPC Architecture First Edition

3. For single-precision arithmetic instructions and
the Floating Round to Single-Precision instruc­
tion, the exponent of the normalized intermediate
result is adjusted by subtracting 192

4. The adjusted rounded result is placed into the
target FPR

5. FPSCRFPRF is set to indicate the class and sign· of
th~ result (±Normal Number)

When Overflow Exception is disabled (FPSCRoE = 0)
and overflow occurs then the following actions are
taken:

1. Overflow Exception is set
FPSCRox +- 1

2. Inexact Exception is set
FPSCRxx +- 1

3. The result is determined by the rounding mode
(FPSCRRN) and the sign of the intermediate result
as follows:
A. Round to Nearest

Store ± Infinity, where the sign is the sign of
the intermediate result .

B. Round toward Zero
Store the format's largest finite number with
the sign of the intermediate result

C. Round toward +Infinity
For negative overflow, store the format's
most negative finite number; for positive
overflow, store +Infinity

D. Round toward -Infinity
For negative overflow, store -Infinity; for
positive overflow, store the format's largest
finite number

4. The result is placed into the target FPR
5. FPSCRFR is undefined
6. FPSCRF1 is set to one
7. FPSCRFPRF is set to indicate the class and sign of

the result (±Infinity or ±Normal Number)

4.4.4 Underflow Exception

4.4.4.1 Definition

Underflow Exception is defined separately for the
enabled and disabled states:

• Enabled:
Underflow occurs when the intermediate result is
"Tiny."

• Disabled:
Underflow occurs when the intermediate result is
"Tiny" and there is "Loss of Accuracy."

A "Tiny" result is detected before rounding, when a
non-zero result value computed as though the expo­
nent range were unbounded would be less in magni­
tude than the smallest normalized number.

If the intermediate result is "Tiny" and the Underflow
Exception Enable is off (FPSCRuE=O) then the inter­
mediate result is denormalized (Section 4.3.4, "Nor­
malization and Denormalization" on page 88) and

rounded (Section 4.3.6, "Rounding" on page 90)
before being placed into the target FPR.

"Loss of Accuracy" is detected when the delivered
result value differs from what would have been com­
puted were both the exponent range and precision
unbounded. .

4.4.4.2 Action

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR. .

When Underflow Exception is enabled (FPSCRuE =1)
and exponent underflow occurs then the following
actions are taken:

1. Underflow Exception is set
FPSCRux +- 1

2. For double-precision arithmetic and conversion
instructions, the exponent of the normalized inter­
mediate result is adjusted by adding 1536

3. For single-precision arithmetic instructions and
the Floating Round to Single-Precision instruc­
tion, the exponent of the normalized intermediate
result is adjusted by adding 192

4. The adjusted rounded result is placed into the
target FPR

5. FPSCRFPRF is set to indicate the class and sign of
the result (±Normalized Number)

Programming Note ------------,

The FR and FI bits are provided to allow the
system floating-point enabled exception error
handler, when invoked because of an Underflow
Exception, to simulate a "trap disabled" environ­
ment. That is, the FR and FI bits allow the system
floating-point enabled exception error handler to
unround the result, thus allowing the result to be
denormalized.

When Underflow Exception is disabled (FPSCRuE = 0)
and underflow occurs then the following actions are
taken:

1. Underflow Exception is set
FPSCRux +- 1

2. The rounded result is placed into the target FPR
3. FPSCRFPRF is set to indicate the class and sign of

the result (±Denormalized Number or ±Zero)

4.4.5 Inexact Exception

4.4.5.1 Definition

Inexact Exception occurs when one of two conditions
occur during rounding:

1. The rounded result differs from the intermediate
result assuming the intermediate result exponent
range and precision to be unbounded.

2. The rounded result overflows and Overflow
Exception is disabled.

4.4.5.2 Action

The action to be taken does not depend on the setti ng
of the Inexact Exception Enable bit of the FPSCR.

When Inexact Exception occurs then the following
actions are taken:

1. Inexact Exception is set
FPSCRxx +- 1

2. The rounded or overflowed result is placed into
the target FPR

3. FPSCRFPRF is set to indicate the Class and sign of
the result

Programming Note --------------,

In some implementations, enabling Inexact Excep­
tions may degrade performance more than ena­
bling other types of floating-point exception.

4.5 Floating-Point Execution
Models

All implementations of this architecture must provide
the equivalent of the following execution models to
insure that identical results are obtained.

Special rules are provided in the definition of the
arithmetic instructions for the infinities, denormalized
numbers and NaNs.

Although the double format specifies an 11-bit expo­
nent, exponent arithmetic makes use of two additional
bit positions to avoid potential transient overflow con­
ditions. One extra bit is required when denormalized
double-precision numbers are prenormalized. The
second bit is required to permit the computation of
the adjusted exponent value in the following cases
when the corresponding exception enable bits is one:

• Underflow during multiplication using a denormal­
ized factor.

• Overflow during division using a denormalized
divisor.

Chapter 4. Floating-Point Processor 95

The IEEE standard includes 32-bit and 64-bit arith­
metic. The standard requires that single-precision
arithmetic be provided for single-precision operands.
The standard permits double-precision arithmetic
instructions to have either (or both) single-precision
or double-precision operands, but states that single­
precision arithmetic instructions should not accept
double-precision operands. The Power PC Architecture
follows these guidelines: double-precision arithmetic·
instructions can have operands of either or both pre­
cisions, while single-precision arithmetic instructions
require all operands to be single-precision. . Double­
precision arithmetic instructions produce double­
precision values, while single-precision arithmetic
instructions produce single-precision values.

For arithmetic instructions, conversions from double­
precision to single-precision must be done explicitly
by software, while conversions from single-precision
to double-precision are done implicitly.

4.5.1 Execution Model for IEEE
Operations

The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this
section) are logically adjacent to the 23-bit FRACTION
field.

IEEE-conforming significand arithmetic is considered
to be performed with a floating-point accumulator
having the following format:

FRACTION

o 1 52

Figure 31. IEEE 54-bit Execution Model

The S bit is the sign bit.

The C bit is the carry bit that captures the carry out of
the significand.

The L bit is the leading unit bit of the significand
which receives the implicit bit from the operands.

The FRACTION is a 52-bit field which accepts the frac­
tion of the operands.

The Guard (G), Round (R), and Sticky (X) bits are
extensions to the low order bits of the accumulator.
The G and R bits are required for post normalization
of the result. The G, R, and X bits are required during
rounding to determine if the intermediate result is
equally near the two nearest representable values.
The X bit serves as an extension to the G and R bits
by representing the logical OR of all bits which may
appear to the low-order side of the R bit, either due to
shifting the accumulator right or other generation of

96 PowerPC Architecture First Edition

low-order result bits. The G and R bits participate in
the left shifts with zeros being shifted into the R bit.
Figure 32 shows the significance of the G, R, and X
bits with respect to the intermediate result (IR), the
next lower in magnitude representable number (N L),
and the next higher in magnitude representable
number (NH).

G R X Interpretation

0 0 0 IR is exact

0 0 1
0 1 0 IR closer to NL
0 1 1

1 0 0 I'R midway between NL & NH

1 0 1
1 1 0 IR closer to NH
1 1 1

Figure 32. Interpretation of G, R, and X bits

The significand of the intermediate result is made up
of the· L bit, the FRACTION, and the G,R and X bits.

The infinitely precise intermediate result of an opera­
tion is the result normalized in bits L, FRACTION, G,
R, and X of the floating-point accumulator.

Before the results are stored into an FPR, the
significand is rounded if necessary, using the
rounding mode specified by FPSCRRN• If rounding
results in a carry into C, the significand is shifted right
one position and the exponent incremented by one.
This yields an inexact result and possibly also expo­
nent overflow. Fraction bits to the left of the bit posi­
tion used for rounding are stored into the FPR and
low-order bit positions, if any, are set to zero.

Four rounding modes are provided which are user­
selectable through FPSCRRN as decribed in Section
4.3.6, "Rounding" on page 90. For rounding, the con­
~eptual Guard, Round, and Sticky bits are defined in
terms of accumulator bits. Figure 33 shows the posi­
tions of the Guard, Round, and Sticky bits for double­
precision and single-precision floating-point numbers.

Format Guard Round Sticky

Double G bit R bit X bit
Single 24 25 26:52 G,R,X

Figure 33. Location of the Guard, Round and Sticky
Bits

Rounding can be treated as though the significand
were shifted right, if required, until the least signif­
icant bit to be retained is in the low-order bit position
of the FRACTION. If any of the Guard, Round, or
Sticky bits is non-zero, then the result is inexact.

Z1 and Z2, as defined on page 90, can be used to
approximate the result in the target format when one
of the following rules is used.

• Round to Nearest

Guard bit = 0
The result is truncated. (Result exact (GRX =
000) or closest to next lower value in magni­
tude (GRX = 001, 010, or 011))

Guard bit = 1
Depends on Round and Sticky bits:

Case a
If the Round or Sticky bit is one (inclu­
sive), the result is incremented. (Result
closest to next higher value in magitude
(G RX = 1 01, 11 0, or 111»

Case b
If the Round and Sticky bits are zero
(result midway between closest repre­
sentable values) then if the low-order bit
of the result is one the result is incre­
mented. Otherwise (the low-order bit of
the result is zero) the result is truncated
(this is the case of a tie rounded to
even).

If during the Round to Nearest process, trun­
cation of the unrounded number would
produce the maximum magnitude for the
specified precision, then the following action
is taken:

Guard bit = 1
Store infinity with the sign of the
unrounded result.

Guard bit = 0
Store the truncated (maximum magni­
tude) value.

• Round toward Zero
Choose the smaller in magnitude of Z1 or Z2.
See "Rounding" on page 90 for the definitions of
Z1 and Z2. If Guard, Round, or Sticky bit is non­
zero, the result is inexact.

• Round toward +Infinity
Choose Z1. See "Rounding" on page 90 for the
definition of Z1.

• Round toward -Infinity
Choose Z2. See "Rounding" on page 90 for the
definition of Z2.

Where the result is to have fewer than 53 bits of pre­
cision because the instruction is a Floating Round to
Single-Precision or single-precision arithmetic instruc­
tion, the intermediate result either is normalized or is
placed in correct denormalized form before the result
is potentially rounded.

4.5.2 Execution Model for
Multiply-Add Type Instructions

The Power PC Architecture makes use of a special
form of instruction which performs up to three oper­
ations in one instruction (a multiply, an add and a
negate). With this added capability is the special
feature of being able to produce a more exact inter­
mediate result as an input to the rounder. 32-bit
arithmetic is similar except that the FRACTION field is
smaller.

The multiply-add operations produce intermediate
results conforming to the following model:

FRACTION IX'I·
o 1 105

Figure 34. Multiply-Add Execution Model

The first part of the operation is a multiply. The mul­
tiply has two 53-bit significands as inputs, which are
assumed to be prenormalized, and produces a result
conforming to the above model. If there. is a carry
out of the significand (into the C bit), then the
significand is shifted right one position, shifting the L
bit (leading unit bit) into the most significant bit of the
fraction and shifting the C bit (carry out) into the L bit.
All 106 bits (L bit, the fraction) of the .product take
part in the add operation. If the exponents of the two
inputs to the adder are not equal, the significand of
the operand with the smaller exponent is aligned
(shifted) to the right by an amount which is added to
that exponent to make it equal to the other input's
exponent. Zeros are shifted into the left of the
significand as it is aligned and bits shifted out of bit
105 of the significand are ORed into the X' bit. The
add operation also produces a result conforming to
the above model with the X' bit taking part in the add
operation.

The result of the add is then normalized, with all bits
of the add result, except the X' bit, participating in the
shift. The normalized result provides an intermediate
result as input to the rounder which conforms to the
model described in Section 4.5.1, "Execution Model
for IEEE Operations" on page 96, where:

• The Guard bit is bit 53 of the intermediate result.
• The Round bit is bit 54 of the intermediate result.
• The Sticky bit is the OR of all remaining bits to

the right of bit 55, inclusive.

The rules of rounding the intermediate result are the
same as the described in Section 4.5.1, "Execution
Model for IEEE Operations" on page 96.

If the instruction is Floating Negative Multiply-Add or
Floating Negative Multiply-Subtract the final result is
negated.

Chapter 4. Floating-Point Processor 97·

Status bits are set to reflect the result of the entire
operation: e.g., no status is recorded for the result of
the multiplication part of the operation.

98 PowerPC Architecture First Edition

4.6 Floating-Point Processor Instructions

4.6.1 Floating-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.11.2, "Effective Address
Calculation" on page 15.

The order of bytes accessed by floating-point loads
and stores is Big-Endian, unless Little-Endian storage
ordering is selected as described in Appendix 0,
"Little-Endian Byte Ordering" on page 235.

4.6.2 Floating-Point Load Instructions

There are two basic forms of load instruction, single­
precision and double-precision. Because the FPRs
support only floating-point double format, single­
precision Load Floating-Paint instructions convert
single-precision data to double format prior to loading
the operands into the target FPR. The conversion and
loading steps are as follows:

Let WORDo:31 be the floating-point single-precision
operand accessed from storage.

Normalized Operand
if WORD1:8 > 0 and WORD1:8 < 255 then

FRTo:1 +- WORDo:1
FRT2 +- --'WORD1
FRT3 +- --'WORD1
FRT4 +- --'WORD1
FRT5:63 +- WORD2:31 11 290

Denormalized Operand
if WORD 1:8 = 0 and WORD9:31 #: 0 then

sign +- WORDo
exp +- -126
fracO:52 +- ObO II WORD9:31 II 290
normalize the operand

Do while fraco = 0
frac +- frac1:52II ObO
exp +- exp - 1

End
FRTo +- sign
FRT1:11 +- exp + 1023
FRT12:63 +- frac1:52

Zero I Infinity I NaN
if WORD 1:8 = 255 or WORD1:31 = ° then

FRTo:1 +- WORDo:1
FRT2 +- WORD1
FRT3 +- WORD1
FRT4 +- WORD1
FRT 5:63 +- WORD2:31 II 290

Programming Note ------------,

The "I a" extended mnemonic permits computing
an Effective Address as a Load or Store instruc­
tion would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in "Load Address" on page 234.

4.6.1.1 Storage Access Exceptions

Storage accesses will cause the system error handler
to be invoked if the program is not allowed to modify
the target storage (Store only), or if the program
attempts to access storage that is unavailable.

For double-precision Load Floating-Point instructions,
no conversion is required as the data from storage is
copied directly into the FPR.

Many of the Load Floating-Point instructions have an
"update" form, in which register RA is updated' with
the effective address. For these forms, if RA#:O, the
effective address is placed into register RA and the
storage element (word or doubleword) addressed by
EA is loaded into FRT.

Note: Recall that RA, RB, and RT denote General
Purpose Registers, while FRA, FRB, FRC and FRT
denote Floating-Point Registers.

Byte order of Power PC is Big-Endian by default; see
Appendix 0, "Little-End'ian Byte Ordering" on
page 235 for PowerPC systems operated with Little­
Endi an byte orderi ng.

Chapter 4. Floating-Point Processor 99

Load Floating-Point Single D-form

Ifs FRT,O(RA)

Load Floating-Point Single Indexed
X-form

Ifsx FRT, RA, RB

lL...o_4_8_...LI,_F_R_T_IL...1_1RA_~I'_6 ____ D ___ ----IJ 10 31 I,FRT I"RA I16RB 121 535

1:.1
if RA = e then b ~ e
else b ~ (RA)
EA ~ b + EXTS(D)
FRT ~ DOUBLE(MEM(EA, 4»

Let the effective address (EA) be the sum (RAIO) + D.

The word in storage addressed by EA is interpreted
as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 99) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update
D-form

Ifsu FRT,O(RA)

EA ~ (RA) + EXTS(D)
FRT ~ DOUBLE(MEM(EA, 4»
RA ~ EA

Let the effective address (EA) be the sum (RA) + D.

The word in storage addressed by EA is interpreted .
as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 99) and placed into register FRT.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

Special Registers Altered:
None

100 PowerPC Architecture First Edition

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
FRT ~ DOUBLE(MEM(EA, 4»

Let the effective address (EA) be the sum
(RAIO) + (RB).

The word in .storage addressed by EA is interpreted
as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 99) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update
Indexed X-form

Ifsux FRT,RA,RB

EA ~ (RA) + (RB)
FRT ~ DOUBLE(MEM(EA, 4»
RA ~ EA

567

Let the effective address (EA) be the sum (RA) + (RB).

The word in storage addressed by EA is interpreted
as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 99) and placed into register FRT.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Double D-form

Ifd FRT,O(RA)

Load Floating-Point Double Indexed
X-form

Ifdx FRT,RA,RB

1,--0 _5°----l.1_6F_RT---II_"RA_I'--'6 __ D __ ---'3tl Ie 31 I/RT Itl RA ItaRB 12t 599

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + EXTS(D)
FRT ~ MEM(EA, 8)

Let the effective address (EA)be the sum (RAIO)+ D.

The doubleword in storage addressed by EA is placed
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update
D-form

Ifdu FRT,D(RA)

EA ~ (RA) + EXTS(D)
FRT ~ MEM(EA, 8)
RA ~ EA

Let the effective address (EA) be the sum (RA)+ D.

The doubleword in storage addressed by EA is placed
into register FRT.

EA is placed into register RA.

If RA=O, the instruction form is invalid.

Special Registers Altered:
None

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
FRT ~ MEM{EA, 8)

Let the effective address (EA) be the sum
(RAIO) + (RB).

The doubleword in storage addressed by EA is placed
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update
Indexed X-form

Ifdux FRT,RA,RB

EA ~ (RA) + (RB)
FRT +- MEM(EA, 8)
RA ~ EA

631

Let the effective address (EA) be the sum (RA) + (RB).

The doubleword in storage addressed by EA is placed
into register FRT.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Processor 101

4.6.3 Floating-Point Store Instructions

There are three basic forms of store instruction,
single-precision, double-precision, and integer. The
integer form is provided by the optional Store
Floating-Point as Integer Word instruction, described
on page 210. Because the FPRs support only f1oating­
point double format for floating-point data, single­
precision Store Floating-Point instructions convert
double-precision data to single format prior to storing
the operands into storage. The conversion steps are
as follows:

Let WORDo:31 be the word in storage written t~.

No Denormalization Required (includes Zero Ilnfinify
I NaN)
if FRS1:11 > 896 or FRS1:63 == ° then

WORDo: 1 - FRSo: 1
WORD2:31 - FRSS:34

Denormalizafion Required
if 874 S FRS1:11 S 896 then

sign - FRSo
exp - FRS1:11 - 1023
frac - Ob1 II FRS12:63
Denormalize operand

. Do while exp < -126

End

frac - ObO II fracO:62
exp -exp + 1

WORDo +- sign
WORD1:8 - OxOO
WORD9:31 - frac1:23

else WORD - undefined

Notice that if the value to be stored by a single­
precision Store Floating-Point instruction is larger in
magnitude than the maximum number representable
in single format, the first case above (No Denormal­
ization Required) applies. The result stored in WORD
is then a well-defined value, but is not numerically
equal to the value in the source register (Le., the
result of a single-precision Load Floating-Point from
WORD will not compare equal to the contents of the
original source register).

102 PowerPC Architecture First Edition

For double-precision Store Floating-Point instructions
and for the Store Floating-Point as Integer Word
instruction, no conversion is required as the data
from the FPR is copied directly into storage.

Many of the Store Floating-Point instructions have an
"update" form, in which register RA is updated with
the effective address. For these forms, if RA*O, the
effective address is placed into register RA.

Note: Recall that RA, RB, and RT denote General
Purpose Registers, while FRA, FRB, FRC and FRT
denote Floating-Point Registers.

Byte order of Power PC is Big-Endian by default; see
Appendix 0, "Little-Endian Byte Ordering" on
page 235 for Power PC systems operated with Little­
Endian byte ordering.

Store Floating-Point Single D-form

stfs FRS,D(RA)

Store Floating-Point Single Indexed
X-form

stfsx FRS,RA,RB

1&....0_5_2_...r..I_sF_R_S_ I,_1
R

_

A

_..L.1_1s ____
D

____ 3-.1,1 10 31 I.FRS I11RA I,.RB 12' 663

if RA = e then b ~ a
else b ~ (RA)
EA ~ b + EXTS(D)
MEM(EA, 4) ~ SINGLE(FRS)

Let the effective address (EA) be the sum (RAIO) + D.

The contents of register FRS is converted to single
format (see page 102) and stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update
D-form

stfsu FRS,D(RA)

10 53

EA ~ (RA) + EXTS(D)
MEM(EA, 4) ~ SINGLE(FRS)
RA ~ EA

D

Let the effective address (EA) be the sum (RA) + D.

3,1

The contents of register FRS is converted to single
format (see page 102) and stored into the word in
storage addressed by EA.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

Special Registers Altered:
None

if RA = e then b ~ 8
else b ~ (RA)
EA ~ b + (RB)
MEM(EA, 4) ~ SINGLE(FRS)

Let the effective address (EA) be the sum
(RAIO) + (RB).

The contents of register FRS is converted to single
format (see page 102) and stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update
Indexed X-form

stfsux FRS,RA,RB

10 31

EA ~ (RA) + (RB)
MEM(EA, 4) ~ SINGLE(FRS)
RA ~ EA

695
1:,1

Let the effective address (EA) be the sum (RA) + (RB).

The contents of register FRS is converted to single
format (see page 102) and stored into the word in
storage addressed by EA.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Processor 103

Store Floating-Point Double D-form

stfd FRS,O(RA)

Store Floating-Point Double Indexed
X-form

stfdx FRS, RA, RB

IL...-O _54--'--V_RS----II~11 RA---,-I,_6 __ 0_------'311 10 31 I. FRS I" RA I,. RB 12, 727
1:,1

if RA = e then b ~ a
else b ~ (RA)
EA ~ b + EXTS(D)
MEM(EA, 8) ~ (FRS)

Let the effective address (EA) be the sum (RAIO) + D.

The contents of register FRS is stored into the
doubleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update
D-form

stfdu FRS,D(RA)

EA ~ (RA) + EXTS(D)
MEM(EA, 8) ~ (FRS)
RA ~ EA

Let the effective address (EA) be the sum (RA) + D.

The contents of register FRS is stored into the
doubleword in storage addressed by EA.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

Special Registers Altered:
None

104 PowerPC Architecture First Edition

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
MEM(EA, 8) ~ (FRS)

Let the effective address (EA) be the sum
(RAIO) + (RB).

The contents of register FRS is stored into the
doubleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update
Indexed X-form

stfdux FRS,RA,RB

EA ~ (RA) + (RB)
MEM(EA, 8) ~ (FRS)
RA ~ EA

759

Let the effective address (EA) be the sum (RA) + (RB).

The contents of register FRS is stored into the
doubleword in storage addressed by EA.

EA is placed into register RA.

If RA = 0, the instruction form is invalid.

Special Registers Altered:
None

4.6.4 Floating-Point Move Instructions

These instructions copy data from one floating-point
register to another with data modifications as

Floating Move Register X-form

fmr
fmr.

FRT,FRB
FRT,FRB

(Rc=O)
(Rc= 1)

described for each instruction. These instructions do
not modify the FPSCR.

Floating Negate X-form

fneg
fneg.

FRT,FRB
FRT,FRB

(Rc=O)
(Rc= 1)

1 ,-0_
6
_
3
_-,,1_6 _F_RT_ I,_1_"_'---I1_16_

F
_
RB

_ 1 ,_1 __ 7_2 __ 1 R--,3~1 10 63 16 FRT 111 //I 1'6
FRB

I . 21

40

The contents of register FRB is placed into register
FRT.

Special Registers Altered:
CR1

Floating Absolute Value X-form

fabs
fabs.

FRT,FRB
FRT,FRB

(if Rc= 1)

(Rc=O)
(Rc= 1)

The contents of register FRB with bit 0 inverted is
placed into register FRT.

Special Registers Altered:
CR1 (if Rc= 1)

Floating Negative Absolute Value
X-form

fnabs
fnabs.

FRT,FRB
FRT,FRB

(Rc=O)
(Rc= 1)

I ,-0_
6

_

3

_-,,1_6 _F_RT_ I,_'_"_'---I1_16_
F

_

RB

_ 1 ,_1 __
26

_

4

__ 1 R--,3~1 10 63 VRT 111 1/1

1'6
FRB I _ ..2 '

136

The contents of register FRB with bit 0 set to zero is
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

The contents of register FRB with bit 0 set to one is
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Chapter 4. Floating-Point Processor 105

4.6.5 Floating-Point Arithmetic Instructions

Floating Add [Single] A-form

fadd
fadd.

FRT,FRA,FRB
FRT, FRA, FRB

[Power mnemonics: fa, fa.]

fadds
fadds.

FRT,FRA,FRB
FRT, FRA, FRS

(Rc=O)
(Rc= 1)

(Rc=O)
(Rc= 1)

The floating-point operand in register FRA is added to
the floating-point operand in register FRS. If the most
significant bit of the resultant significand is not a one
the result is normalized. The result is rounded to the
target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point addition is based on exponent compar­
ison and addition of the two significands. The expo­
nents of the two operands are compared, and the
significand accompanying the smaller exponent is
shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal.
The two significands are then added algebraically to
form an intermediate sum. All 53 bits in the
significand as well as all three guard bits (G, R, and
X) enter into the computation.

If a carry occurs, the sum's significand is shifted right
one bit position and the exponent is increased by one.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRvE =1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc= 1)

106 PowerPC Architecture First Ed·ition

Floating Subtract [Single] A-form

fsub
fsub.

FRT,FRA,FRB
FRT,FRA,FRB

[Power mnemonics: fs; 15.]

10
63 I. FRT I,;RA

fsubs FRT,FRA,FRB
fsubs. FRT,FRA,FRS

10
59 I/RT I,;RA

I,:RB 12, III

I,:RB 12, III

(Rc=O)
(Rc= 1)

126
20 I:~I
(Rc=O)
(Rc= 1)

126
20 I:~I

The floating-point operand in register FRS is sub­
tracted from the floating-point operand in register
FRA. If the most significant bit of the resultant
significand is not a one the result is normalized. The
result is rounded to the target precision under control
of the Floating-Point Rounding Control field RN of the
FPSCR and placed into register FRT.

The execution of the Floating Subtract instruction is
identical to that of Floating Add, except that the con­
tents of FRB participates in the operation with its sign
bit (bit 0) inverted.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRvE =1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc= 1)

Floating Multiply [Single] A-form

fmul
fmul.

FRT, FRA, FRC
FRT, FRA, FRC

[Power mnemonics: fm, fm.]

fmuls
fmuls.

FRT,FRA,FRC
FRT,FRA,FRC

(Rc=O)
(Rc= 1)

(Rc=O)
(Rc=1)

Floating Divide [Single] A-form

fdiv
fdiv.

FRT,FRA,FRB
FRT, FRA, FRB

[Power mnemonics: fd, fd.]

fdivs
fdivs.

FRT, FRA, FRB
FRT,FRA,FRB

(Rc=O)
(Rc = 1)

(Rc=O)
(Rc= 1)

I. FRT I"FRA I,. III 12,FRC 126
25

I :~I lL....o_
5
_
9

_....\.1_6 F_R_T_IL....1_1F_RA_·--..I.1_16_FR_B_.l..12_1_1 I_I ---<1I.-.2_6
1
_
8

--..1.1_:1-,cl

The floating-point operand in register FRA is multi­
plied by the floating-point operand in register FRC.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

Floating-point multiplication is based on exponent
addition and multiplication of the significands.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRvE =1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXIMZ
CR1 (if Rc=1)

The floating-point operand in register FRA is divided
by the floating-point operand in register FRB. The
remainder is not supplied as a result.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

Floating-point division is based on exponent sub­
traction and division of the significands.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FP~CRvE = 1 and Zero Divide Exceptions when
FPSCRzE =1.

Special Registers Altered:
FPRF FR FI
FX OX UX ZX XX
VXSNAN VXIDI VXZOZ
CR1 (if Rc= 1)

Chapter 4. Floating-Point Processor 107

4.6.6 Floating-Point Multiply-Add Instructions

These instructions combine a multiply and add opera­
tion without an intermediate rounding operation. The
fraction part of. the intermediate product is 106 bits

Floating Multiply-Add [Single] A-form

fmadd
fmadd.

FRT, FRA, FRC, FRS
FRT,FRA,FRC,FRS

[Power mnemonics: fma, fma.]

(Rc=O)
(Rc= 1)

wide, and all 106 bits take part in the add/subtract
portion of the instruction.

Floating Multiply-Subtract [Single]
A-form

fmsub
fmsub.

FRT,FRA,FRC,FRB
FRT,FRA,FRC,FRB

[Power mnemonics: fms, fms.]

(Rc=O)
(Rc= 1)

10
63 Is FRT 1"FRA l,s

FRS
121

FRC
I 29 IRcl

'-. ___ ..L. __ ---J.I..-__ .L.. __ --'-___ --"_26_--""_3--0' " 10 63 j/RT I,;RA I,:RB

fmadds FRT, FRA, FRC, FRB
fmadds. FRT,FRA,FRC,FRB

10
59 I. FRT I,;RA I,:RB L,FRC

The operation
FRT +- [(FRA)x(FRC)] + (FRB)

is performed.

(Rc=O)
(Rc= 1)

1 ..
29 I~~I

The floating-point operand in register FRA is multi­
plied by the floating-point operand in register FRC.
The floating-point operand in register FRB is added to
this intermediate result.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

FPSCRFPRF is set to the cI ass and sign of the result,
except for Invalid Operation Exceptions when
FPSCRvE =1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc= 1)

108 PowerPC Architecture First Edition

fmsubs FRT,FRA,FRC,FRB
fmsubs. FRT,FRA,FRC,FRB

10
59 I/RT I,;RA I,:RB 12,FRC

The operation
FRT +- [(FRA)x(FRC)] - (FRS)

is performed.

(Rc=O)
(Rc= 1)

12.
28 I~~I

The floating-point operand in register FRA is multi­
plied by the floating-point operand in register FRC.
The floating-point operand in register FRS is sub­
tracted from this intermediate result.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRvE =1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc= 1)

Floating Negative Multiply-Add [Single]
A-form

fnmadd
fnmadd.

FRT, FRA, FRC, FRS
FRT, FRA, FRC, FRS

[Power mnemonics: fnma, fnma.]

(Rc=O)
(Rc= 1)

Floating Negative Multiply-Subtract
[Single] A-form

fnmsub
fnmsub.

FRT,FRA,FRC,FRS
FRT,FRA,FRC,FRS

[Power mnemonics: fnms, fnms.]

(Rc=O)
(Rc= 1)

10 63 I FRT I FRA I FRS I FRC 1
31

IRCI I 63 16
FRT

111FRA 116
FRS

121
FRC

126
30

IR
31

Cl
611162126 31 0 __ --'-. __ __ --1.-. __ ...L.. __ __ "-.--'.

fnmadds FRT,FRA,FRC,FRS
fnmadds. FRT, FRA, FRC, FRS

The operation
FRT - - ([(FRA)x(FRC)] + (FRS))

is performed.

(Rc=O)
(Rc= 1)

The floating-point operand in register FRA is multi­
plied by the floating-point operand in register FRC.
The floating-point operand in register FRS is added to
this intermediate result.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the
FPSCR, then negated and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Add instruc­
tion and then negating the result, with the following
exceptions:

• ONaNs propagate with no effect on their "sign"
bit.

• ONaNs that are generated as the result of a disa­
bled Invalid Operation Exception have a "sign" bit
of zero.

• SNaNs that are converted to ONaNs as the result
of a disabled Invalid Operation Exception retain
the "sign" bit of the SNaN.

FPSCRFPRF is set to the class and sign of the result,
except for' Invalid Operation Exceptions when
FPSCRvE = 1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc= 1)

fnmsubs FRT,FRA,FRC, FRS
fnmsubs. FRT,FRA,FRC,FRS

The operation
FRT - - ([(FRA)x(FRC)] - (FRS))

is performed.

(Rc=O)
(Rc= 1)

The floating-point operand in register FRA is multi­
plied by the floating-point operand in register FRC.
The floating-point operand in register FRS is sub­
tracted from this intermediate result.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the
FPSCR, then negated and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Subtract
instruction and then negating the result, with the fol­
lowing exceptions:

• QNaNs propagate with no effect on their "sign"
bit.

• ONaNs that are generated as the result of a disa­
bled Invalid Operation Exception have a "sign" bit
of zero.

• SNaNs that are converted to ONaNs as the result
of a disabled Invalid Operation Exception retain
the "sign" bit of the SNaN.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRvE =1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc= 1)

Chapter 4. Floating-Point Processor 109

4.6.7 Floating-Point Rounding and Conversion Instructions

Programming Note ------------,

Examples of uses of these instructions to perform
various conversions can be found in Appendix E.3,
"Floating-Point Conversions" on page 250.

Floating Round to Single-Precision
X-form

frsp
frsp.

FRT,FRS
FRT,FRS

(Rc=O)
(Rc= 1)

Floating Convert To Integer Doubleword
X-form

fctid
fctid.

FRT,FRB
FRT,FRB

(Rc=O)
(Rc= 1)

I L-O_6_3_.....&I_s_F_RT_...L.1_11_"_' __ 1L-1_:_R_s--,-12_1 __ 1_2 __ .L.I ~---J~I 10 63 16 FRT 111 //I 11S
FRS

I . }1

814

If it is already in single-precision range, the floating­
point operand in register FRS is placed into register
FRT. Otherwise the floating-point operand in register
FRS is rounded to single-precision using the rounding
mode specified by FPSCRRN and placed into register
FRT.

The rounding is described fully in Appendix 8.1,
"Floating-Point Round to Single-Precision Model" on
page 213.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRvE =1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN
CR1 (if Rc= 1)

110 PowerPC Architecture First Edition

The floating-point operand in register FRB is con­
verted to a 64-bit signed fixed-point integer, using the
rounding mode specified by FPSCRRN, and placed into
register FRT.

If the operand in FRS is greater than 263 - 1, then
FRT is set to Ox7FFF _FFFF _FFFF _FFFF. If the
operand in FRS is less than - 263, then FRT is set to
Ox8000_0000_0000_0000.

The conversion is described fully in Appendix B.2,
"Floating-Point Convert to Integer Model" on
page 218.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined. FPSCRFR is set if the result
is incremented when rounded. FPSCRF1 is set if the
result is inexact.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system iIIegaJ . instruction error handler to be
invoked.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert To Integer Doubleword
with round toward Zero X-form

fctidz
fctidz.

FRT,FRB
FRT,FRB

(Rc=O)
(Rc= 1)

Floating Convert To Integer Word
X-form

fctiw
fctiw.

FRT,FRB
FRT,FRB

(Rc=O)
(Rc= 1)

I L.-O_6_3_-,,1_6_F_RT_ ... I'_1_"_'--,1_16_F_R_B~12_1 __ 81_5 __ 1:--"~1 10 63 I. FRT 1,,//1 I,:RB 12,
14

The floating-point operand in register FRB is con­
verted to a 64-bit signed fixed-point integer, using the
rounding mode Round toward Zero, and placed into
register FRT.

If the operand in FRB is greater than 263 - 1, then
FRT is set to Ox7FFF _FFFF _FFFF _FFFF. If the
operand in FRB is less than - 263, then FRT is set to
Ox8000_0000_0000_0000.

The conversion is described fully in Appendix B.2,
"Floating-Point Convert to Integer Model" on
page 218.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined. FPSCRFR is set if the result
is incremented when rounded. FPSCRF1 is set if the
result is inexact.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

The floating-point operand in register FRB is con­
verted to a 32-bit signed fixed-point integer, using the
rounding mode specified by FPSCRRN, and placed in
bits 32:63 of register FRT. Bits 0:31 of register FRT
are undefined.

If the operand in FRB is greater than 231 - 1, then bits
32:63 of FRT are set to Ox7FFF _FFFF. If the operand
in FRB is less than - 231, then bits 32:63 of FRT are
set to Ox8000 _0000.

The conversion is described fully in Appendix B.2,
"Floating-Point Convert to Integer Model" on
page 218.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined. FPSCRFR is set if the result
is incremented when rounded. FPSCRF1 is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (ifRc=1)

Chapter 4. Floating-Point Processor 111

Floating Convert To Integer Word with
round toward Zero X-form

fctiwz
fctiwz.

FRT,FRB
FRT,FRB

(Rc=O)
(Rc= 1)

Floating Convert From Integer
Doubleword X-form

fcfid
fcfid.

FRT,FRB
FRT,FRB

(Rc=O)
(Rc= 1)

I '-0_6_3_ I._F_R_T ___ i l_l /_//_ I,_:_R_B-"'I_21 __ 1_5 __ I--"~~1 10 63 VRT 1,/" I,:RB 121
846

The floating-point operand in register FRB is con­
verted to a 32-bit signed fixed-point integer, using the
rounding mode Round toward Zero, and placed in bits
32:63 of register FRT. Bits 0:31 of regi'ster FRT are
undefined.

If the operand in FRB is greater than 231 - 1, then bits
32:63 of FRT are set to Ox7FFF _FFFF. If the operand
in FRB is less than - 231, then bits 32:63 of FRT are
set to Ox8000_0000.

The conversion is described fully in Appendix B.2,
"Floating-Point Convert to Integer Model" on
page 218.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined. FPSCRFR is set if the result
is incremented when rounded. FPSCRF1 is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc= 1)

112 PowerPC Architecture First Edition

The 64-bit signed fixed-point operand in register FRB
is converted to an infinitely precise floating-point
integer. If the result of the conversion is already in
double-precision range it is placed into register FRT.
Otherwise the result of the conversion is rounded to
double-precision using the rounding mode specified
by FPSCRRN and placed into register FRT.

The conversion is described fully in Appendix B.3,
"Floating-Point Convert from Integer Model" on
page 221.

FPSCRFPRF is set to the class and sign of the result.
FPSCRFR is set if the result is incremented when
rounded. FPSCRF1 is set if the result is inexact.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Rc=1)

4.6.8 Floating-Point Compare Instructions

The floating-point Compare instructions compare the
contents of two floating-point registers. Comparison
ignores the sign of zero (i.e., regards + 0 as equal to
-0). The comparison can be ordered or unordered.

The comparison sets one bit in the designated CR
field to one, and the other three to zero. The FPCC is
set in the same way.

Floating Compare Unordered X-form

fcmpu BF,FRA,FRB

if (FRA) is a NaN or
(FRB) is a NaN then c ~ 0b0001

else if (FRA) < (FRB) then c ~ 0b1000
else if (FRA) > (FRB) then c ~ 0b0108
else c ~ 8b8818

FPCC ~ C

CR4xBF:4xBF+3 ~ C

if (FRA) is an SNaN or
(FRB) is an SNaN then

VXSNAN ~ 1

The floating-point operand in register FRA is com­
pared to the floating-point operand in register FRB.
The result of the compare is placed into CR field BF
and the FPCC.

If either of the operands is a NaN, either quiet or sig­
nalling, then CR field BF and the FPCC are set to
reflect unordered. If either of the operands is a Sig­
nalling NaN, then VXSNAN is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN

The CR field and the FPCC are interpreted as follows:

Bit Name Description
0 FL (FRA) < (FRS)
1 FG (FRA) > (FRB)
2 FE (FRA) = (FRS)
3 FU (FRA) ? (FRB) (unordered)

Floating Compare Ordered X-form

fcmpo BF,FRA,FRB

if (FRA) is a NaN or
(FRB) is a NaN then c ~ 8b8S81

else if (FRA) < (FRS) then c ~ 8b1888
else if (FRA) > (FRS) then c ~ 8b8188
else c ~ 8b8S18

FPCC ~ C

CR4xBF:4xBF + 3 ~ C

if (FRA) is an SNaN or
(FRS) is an SNaN then

VXSNAN ~ 1
if VE = 8 then VXVC ~ 1

else if (FRA) is a QNaN or
(FRS) is a QNaN then VXVC ~ 1

The floating-point operand in register FRA is com­
pared to the floating-point operand in register FRS.
The result of the compare is placed into CR field SF
and the FPCC.

If either of the operands is a NaN, either quiet or sig­
nalling, then CR field SF and the FPCC are set to
reflect unordered. If either of the operands is a Sig­
nalling NaN, then VXSNAN is set and, if Invalid Opera­
tion is disabled (VE = 0), VXVC is set. If neither
operand is a Signalling NaN but at least one operand
is a Quiet NaN, then VXVC is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN VXVC

Chapter 4. Floating-Point Processor 113

4.6.9 Floating-Point Status and Control Register Instructions

Every Floating-Point Status and Control Register
instruction appears to synchronize the effects of all
floating-point instructions executed by a given
processor. Executing a Floating-Point Status and
Control Register instruction ensures that all flo'ating­
point instructions previously initiated by the given
processor appear to have completed before the
Floating-Point Status and Control Register instruction
is initiated, and that no subsequent floating-point
instructions appear to be initiated by the given
processor until the Floating-Point Status and Control
Register instruction has completed. In particular:

• all exceptions that will be caused by the previ­
ously initiated instructions are recorded in the

Move From FPSCR

mffs FRT
mffs. FRT

10 63 I/RT I" 1/1

X-form

1,.111 121
583

(Rc=O)
(Rc= 1)

The contents of the FPSCR is placed into bits 32:63 of
register FRT. Bits 0:31 of register FRT are undefined.

Special Registers Altered:
CR1 (if Rc= 1)

114 PowerPC Architecture First Edition

FPSCR before the Floating-Point Status and
Control Register instruction is initiated;

• all invocations of the system floating-point
enabled exception error handler that will be
caused by the previously initiated instructions
have occurred before the Floating-Point Status
and Control Register instruction is initiated; and

• no subsequent floating-point instruction that
depends on or alters the settings of any FPSCR
bits appears to be initiated until the Floating­
Point Status and Control Register instruction has
completed.

(Floating-point Storage Access instructions are not
affected.)

Move to Condition Register from FPSCR
X-form

mcrfs BF,BFA

The contents of FPSCR field BFA are copied to CR
field BF. All exception bits copied are reset to zero in
the FPSCR.

Special Registers Altered:
CR field BF
FX OX
UX ZX XX VXSNAN
VXISI VXIDI VXZDZ VXIMZ
~C

VXSOFT VXSQRT VXCVI

(if BFA=O)
(if BFA= 1)
(if BFA=2)
(if BFA=3)
(if BFA=5)

Move To FPSCR Field Immediate
X-form

mtfsfi
mtfsfi.

10 63

BF,U
BF,U

134

(Rc=O)
(Rc = 1)

The value of the U field is placed into FPSCR field BF.

Special Registers Altered:
FPSCR field BF
CR1 (if Rc=1)

Programming Note ------------,

When FPSCRo:3 is specified, bits 0 (FX) and 3 (OX)
are set to the values of Uo and U3 (i.e., even if
this instruction causes OX to change from 0 to 1,
FX is set from Uo and not by the usual rule that
FX is set to 1 when an exception bit changes from
o to 1). Bits 1 and 2 (FEX and VX) are set
according to the usual rule, given on page 84, and
not from U1:2.

Move To FPSCR Fields XFL-form

mtfsf
mtfsf.

10 63

FLM,FRB
FLM,FRB

FLM 711

(Rc=O)
(Rc= 1)

The contents of bits 32:63 of register FRB are placed
into the FPSCR under control of the field mask speci­
fied by FLM. The field mask identifies the 4-bit fields
affected. Let i be an integer in the range 0-7. If
FLM j = 1 then FPSCR field i (FPSCR bits 4xi through
4xi + 3) is set to the contents of the corresponding
field of the low-order 32 bits of register FRB.

Special Registers Altered:
FPSCR fields selected by mask
CR1 (ifRc=1)

Programming Note --------------.

Updating fewer than all eight fields of the FPSCR
may have substantially poorer performance on
some implementations than updating all the fields.

Programming Note -------------,

When FPSCRo:3 is specified, bits 0 (FX) and 3 (OX)
are set to the values of (FRBb2 and (FRBbs (Le.,
even if this instruction causes OX to change from
o to 1, FX is set from (FRBb2 and not by the usual
rule that FX is set to 1 when an exception bit
changes from 0 to 1). Bits 1 and 2 (FEX and VX)
are set according to the usual rule, given on page
84, and not from (FRBb3:34.

Chapter 4. Floating-Point Processor 115

Move To FPSCR Bit 0 X-form

mtfsbO
mtfsbO.

BT
BT

(Rc=O)
(Rc= 1)

Move To FPSCR Bit 1 X-form

mtfsb1
mtfsb1.

BT
BT

(Rc=O)
(Rc= 1)

1-10_
6
_
3

_...1.1_6 _B_T----l11-.1_1 '_"_..L.1'_6_"_' --'"1_21 __ 7_0 __ ..L.1 R---,3~1 10 63 I. BT I" //I 1,./1/ 12,
38

Bit BT of the FPSCR is set to zero.

Special Registers Altered:
FPSCR bit BT
CR1 (if Rc= 1)

Programming Note -----------,

Bits 1 and 2 (FEX and VX) cannot be explicitly
reset.

116 PowerPC Architecture First Edition

Bit BT of the FPSCR is set to one.

Special Registers Altered:
FPSCR bit BT
CR1 (if Rc= 1)

Programming Note ------------,

Bits 1 and 2 (FEX and VX) cannot be explicitly set.

Part 2. PowerPC Virtual Environment Architecture

This part defines the additional instructions and facili­
ties, beyond those of the Power PC User Instruction
Set Architecture. It covers the storage model and

Chapter 5. Storage Model
5.1 Definitions and Notation
5.2
5.3
5.4
5.5
5.5
5.7
5.8

Introduction
Single-copy Atomicity
Memory Coherence
Storage Control Attributes
Cache Models
Shared Storage
Virtual Storage

Chapter 6. Effect of Operand
Placement on Performance

5.1 Instruction Restart
5.2 Atomicity and Order

119
119
120
120
120
121
122
125
128

129
130
130

related instructions and facilities available to the
application programmer, and the Time Base as seen
by the application programmer.

Chapter 7. Storage Control
Instructions

7.1 Parameters Useful to Application
Programs .. '

7.2 Cache Management Instructions
7.3 Enforce In-order Execution of 1/0

Instruction

Chapter 8. Time Base
8.1 Time Base Instructions
8.2 Reading the Time Base on 54-bit

Implementations
8.3 Reading the Time Base on 32-bit

Implementations
8.4 Computing Time of Day from the

Time Base

131

131
132

135

137
137

138

138

138

Part 2. PowerPC Virtual Environment Architecture 117

118 PowerPC Architecture First Edition

Chapter 5. Storage Model

5.1 Definitions and Notation

The following definitions, in addition to those specified
in Book I, are used in this document.

• main storage
The common storage that a processor or other
mechanism accesses when it has no cache or has
no copy of the storage being accessed in its
cache.

• sequential execution
A . model for the execution of a sequence of
instructions (program) in which one instruction is
executed and completed before the next instruc­
tion is begun. Instructions are executed in the
order in which they appear in the program,
except following the execution of a branch
instruction, which causes sequential execution to
continue at the location specified by the branch
instruction.

• program order
The execution of instructions in the strict order in
which they occur in the program. See sequential
execution above.

• processor
A hardware component that executes the
PowerPC instructions specified in a program.

• storage location
One or more sequential bytes of storage begin­
ning at the address computed by a Storage
Access instruction. The number of bytes com­
prising the location depends on the type of
Storage Access instruction being executed.

• load
An instruction that copies one or more bytes from
a storage location to one or more registers (GPRs
or FPRs).

• store
An instruction that copies one or more bytes from
one or more registers (GPRs or FPRs) to a
storage location.

• system
A combination of processors, storage, and associ­
ated mechanisms that is capable of executing

programs. Sometimes the reference to system
includes services provided by the operating
system.

• uniprocessor
A system that contains one Power PC processor.

• multiprocessor
A system that contains two or more PowerPC
processors.

• shared storage multiprocessor
A multiprocessor that contains some common
storage, which all the PowerPC processors in the
system can access.

• performed
A load is performed with respect to all other
processors (and mechanisms) when the value to
be returned by the load can no longer be
changed by a subsequent store by any processor
(or other mechanism).
A store is performed with respect to all other
processors (and mechanisms) when any load
from the same location used by the store returns
the value stored (or a value stored subsequently).

• storage page
The aligned unit of storage that is managed by
the virtual storage system and that can be
assigned storage control attributes.

• block
The aligned unit of storage operated on by each
Cache Management instruction. The size of a
block can vary by instruction and by implementa­
tion. The maximum block size is one page.

• aligned storage access
A load or store is aligned if the address of the
target storage location is a multiple of the size of
the transfer effected by the instruction.

• atomic access
A storage access executed by a processor during
which no other processor or mechanism can
access any byte of the target location between
the time the processor performing the access
accesses any byte of the location and the time
that it completes the access to all bytes of that
location.

Chapter 5. Storage Model 119

5.2 Introduction

The PowerPC User Instruction Set Architecture
defines storage as a 1inear array of bytes indexed
from 0 to a maximum of 264 - 1 {232 - 1}. Each byte is
identified by its index, called its address. Each byte
contains a value. This information is sufficient to
allow the programming of applications which require
no special features of any particular system environ­
ment. The Power PC Virtual Environment Architecture,
described herein, expands this simple storage model
to include caches, virtual storage, and shared
storage multiprocessors. The Power PC Virtual Envi­
ronment Architecture in conjunction with services
based on the PowerPC Operating Environment Archi­
tecture and provided by the operating system permit
explicit control of this expanded storage model. A
simple model for sequential execution allows at most
one storage access to be performed at a time, and
requires that all storage accesses appear to be per­
formed in program order. In contrast to this simple
model, the PowerPC architecture specifies a relaxed
model of memory consistency. In a multiprocessor
system that allows multiple copies of a location,
aggressive implementations of the architecture can
permit intervals of time during which different copies
of a location have different values. This chapter
describes features of the Power PC architecture that
enable programmers to write correct programs for
this memory model.

5.3 Single-copy Atomicity

An access is single-copy atomic, or simply atomic, if it
is always performed in its entirety with no visible
fragmentation. Atomic accesses are thus serialized:
each happens in its entirety in some order, even
when that order is not specified in the program nor
enforced between processors.

In PowerPC the following single-register accesses are
always atomic:

• byte accesses (all bytes are aligned on byte
boundaries)

• halfword accesses aligned on halfword bounda­
ries

• word accesses aligned on word boundaries

• doubleword accesses aligned on doubleword
boundaries (64-bit implementations only)

No other accesses are guaranteed to be atomic. In
particular, multiple-register loads and stores are not
atomic, nor are floating-point doubleword accesses on
a 32-bit implementation.

The results for several combinations of loads and
stores to the same or overlapping locations are
described below.

120 PowerPC Architecture First Edition

1. When two processors execute atomic stores to
locations that do not overlap and no other stores
are performed to those locations, the content of
those locations is the same as if the two stores
were performed by a single processor.

2. When two processors execute atomic stores to
the same storage location, and no other store is
performed to that location, the content of that
location is the result stored by one of the
processors.

3. When two processors execute stores that have
the same target location and that are not guaran­
teed to be atomic, and no other store is per­
formed to that location, the result is some
combination of the bytes stored by both
processors.

4. When two processors execute stores to over­
lapped locations, and no other store is performed
to those locations, the result is some combination
of the bytes stored by the processors to the over­
lapping bytes. The portions of the locations that
do not overlap contain the bytes stored by the
processor storing to the location.

S. When a processor executes an atomic store to a
location, a second processor executes an atomic
load from that location, and no other store is per­
formed to that location, the value returned by the
load is the content of the location prior to the
store or the content of the location subsequent to
the store.

6. When a load and a store with the same target
location can be executed simultaneously, and no
other store is performed to the location, the value
returned by the load some combination of the
content of the location before the store and after
the store.

5.4 Memory Coherence

Coherence refers to the ordering of writes to a single
location. Atomic stores to a given location are
coherent if they are serialized in some order, and no
processor is able to observe any subset of those
stores as occurring in a conflicting order. This serial­
ization order is an abstract sequence of values; the
physical memory location need not assume each of
the values written to it. For example, if a processor
has a store-in cache, it may update a location several
times before the value is written to the physical
memory. The result of a store operation is not avail­
able to every processor at the same instant, and it
may be that a processor observes only some of the
values that are written to a location. However, when
a location is accessed atomically and coherently by
all processors, then, for any processor, the sequence
of values it loads from the location during any interval
of time forms a subsequence of the sequence of
values that the location logically held during that
interval. That is, a processor can never load a
"newer" value first and then, later, load an "older"
value.

As noted in Section 5.5, "Storage Control Attributes"
on page 121, the coherence of storage pages may be
managed by hardware or software depending on the
setting of the Memory Coherence attribute.

Memory coherence is managed in blocks called
coherence blocks. Their size is implementation­
dependent (see the Book IV, PowerPC Implementation
Features document for the implementation), but is
usually larger than a word and often the size of a
cache block.

5.4.1 Coherence Required

When a processor accesses a page in Memory Coher­
ence Required mode, each store to a location in that
page must be serialized with all stores to that location
by all other processors that also access the location
coherently. This can be implemented, for example, by
an ownership protocol that allows at most one
processor at a time to store to the location.

Coherence does not ensure that the result of a store
by one processor will be immediately visible to all
other processors and mechanisms in the system.
Only after a program has executed the sync instruc­
tion are previous storage accesses it executed guar­
anteed to be globally visible.

5.4.2 Coherence Not Required

When an accessed page is in Memory Coherence Not
Required mode, the processor need not enforce
storage coherence. This coherence mode may be
selected by software to improve performance when it
is known that the particular area of storage the
processor is accessing will not be accessed by
another processor or mechanism. In this mode, soft­
ware must ensure that the appropriate Cache Man­
agement instructions have been used to put storage
in a consistent state prior to changing the mode or
allowing access to that storage area by a different
processor or mechanism.

Programming Note -----------...,

In a single-cache system, Coherence Required is
not necessary for correct coherent execution. In
fact, in such a system, Coherence Not Required
may give better performance.

5.5 Storage Control Attributes

Some operating systems may provide means to allow
programs to specify storage control attributes not
described in this document. The definition of these
attributes can be found in Part 3, "PowerPC Operating
Environment Architecture" on page 141. The fol­
lowing describes what is expected to be provided
when the operating system supports these functions.
The details may vary among operating systems, so
the details of the specific system being used must be
known before these functions can be used.

Generally, the pr.ogram may use one of each of the
following pairs of storage attributes:

• Write Through Required or Not Required
• Caching Inhibited or Allowed
• Memory Coherence Required or Not Required

Not all combinations of these three modes are sup­
ported; see Part 3, "PowerPC Operating Environment
Architecture" on page 141 for further details.

A program can specify, through an operating system
service, the attributes for each page of storage to
which it has access. Each load or store will be per­
formed in the following manner, depending on the
setting of the storage control attributes for the page
of storage containing the addressed storage location.

Write Through
This attribute is meaningful only for Caching
Allowed storage. It provides the program control
over whether

• the processor is required to update the copy of
the storage location in the cache and in main
storage, or

• the processor is allowed to update the copy of
the storage location in the cache and to defer
the update of main storage.

Required
Loads use the copy in the cache if it is there.
Stores update the copy of the storage location
in the cache if it is in the cache and also
update the storage location in main ~torage.

Not Required
Loads and stores use the copy in the cache if
it is there. The block containing the target
storage location may be copied to the cache.
The storage location in main storage need not
contain the value most recently stored to that
location.

Chapter 5. Storage Model 121

Caching

Inhibited
When caching is inhibited, the Write Through
attribute has no meaning. The load or store is
executed in the following manner:

1. The operation is performed to main
storage bypassing the cache (Le., neither
the target location nor any of the block(s)
containing it are copied into the cache).

2. The operation causes an access
(load/store) of appropriate length (i.e.,
byte, halfword, word, etc.) to the target
location in main storage.

It is considered a programming error if a copy
of the target location of an access to Caching
Inhibited storage is in the cache. Software
must ensure that the location has not previ­
ously been brought into the cache or, if it has,
that it has been flushed from the cache. If the
programming error occurs, the result of the
access is boundedly undefined.

Allowed
When caching is allowed, the access is per­
formed in the following manner:

1. If the block containing the target storage
location is in the cache, it is used.

2. If the block containing the target location
is not in the cache, the block(s) of storage
containing the target location may be
copied to the cache and, if the access is a
store, the target location is updated in the
cache if it is in the cache.

Memory Coherence
This attribute provides the program control over
whether the processor maintains storage coher­
ence:

Required
Stores by all processors to the same location
are serialized into some order and no
processor is able to observe any subset of
those stores as occurring in a conflicting·
order.

Not Required
The order in which one processor observes
the stores performed by one or more other
processors is undefined.

When coherence is required, its serialization func­
tion is effective for all supported combinations of
the Write Through and Caching modes (see Part 3,
"PowerPC Operating Environment Architecture" on
page 141).

When coherence is not required, the programmer
must manage the coherence of storage through use
of syne and Cache Management instructions, and
facilities provided by the operating system.

Programming Note -----------...,

Software must ensure that all locations in a page
have been purged from the cache prior to
changing the storage mode for the page from
Caching Allowed to Caching Inhibited.

122 PowerPC Architecture First Edition

5.6 Cache Models

The PowerPC architecture does not require any partic­
ular cache organization and allows many different
implementations. However, for a program to execute
correctly on all implementations, the programmer
should assume that separate instruction and data
caches exist, and should program to the separate
cache model. The functions of these caches are
affected by the storage control attributes associated
with each storage access as described in 5.5,
"Storage Control Attributes" on page 121. Cache
Management instructions are provided so programs
can manage the caches when needed. Depending on
the storage control attributes specified by the
program and the function being performed, the
program may need to use these instructions to guar­
antee that the function is performed correctly. The
Cache Management instructions are also useful to
optimize the use of memory bandwidth in such appli­
cations as graphics and numerically intensive com­
puting ..

The processor is not required to maintain copies of
storage locations in the instruction cache consistent
with changes to storage resulting from the execution
of store instructions. Program management of the
cache is required when the program generates or
modifies code that will be executed (i.e., when the
program modifies data in storage and then attempts
to execute the modified data as instructions).

The instructions provided allow the p~ogram to

• invalidate the copy of storage in an instruction
cache block (iebi)

• perform context synchronization, as described in
Part 3, "PowerPC Operating Environment
Architecture" on page 141 (isyne)

• copy the content of a data cache block to main
storage (debst)

• copy the content of a data cache block to main
storage and make the copy of the block in the
data cache invalid (debt)

• set the content of a data cache block to zeroes
(debz)

• give a hint that a block of storage should be
copied into the data cache, so that the copy of
the block may be in the cache when subsequent
accesses to the block occur, thereby reducing
delays (debt, debtst)

The function of the Cache Management instructions
depends on the implementation of the caches and on
the storage control attributes associated with the
cache block that is the target of the cache instruction.

There are many variations of cache implementations
and the following sections do not attempt to describe
them exhaustively. However, the variations that
affect the function of the Cache Management
instructions are discussed here.

Programming Note -----------,

Implementations will vary as to what instructions
need be executed to perform a function such as
code modification. Operating systems are encour­
aged to provide a service (implementation­
dependent) to perform the function in an efficient
manner.

5.6.1 Split or Dual Caches

A cache model in which there are separate caches for
instructions and data is called a "Harvard style"
cache. This style is the standard Power PC cache
model; that is, it is the model assumed by this archi­
tecture and the function of the Cache Management
instructions depends on this model as well as on the
storage control attributes of the target storage block.
A copy of a target block in the cache is said to be
marked invalid if it will not be used for subsequent
accesses. The following sections describe the func­
tions performed by each of the Cache Management
instructions in this model.

5.6.1.1 Instruction Cache Block
Invalidate

Invalidating the target block causes any subsequent
fetch request for an instruction in the block to not find
the block in the cache and to be sent to storage. The
instruction performs the following operations:

1. If the target block is not accessible to the
program for loads, the system data storage error
handler may be invoked.

2. The target block in the instruction cache of the
executing processor-is marked invalid.

3. If the effective address has an attribute of Coher­
ence Required, the block is invalidated in the
instruction caches of all other processors in the
system.

4. This access need not be recorded, but if it is, it is
considered a load and not a store.

5.6.1.2 Data Cache Block Store

This instruction permits the program to ensure that
the latest version of the target storage block is in
main storage. The instruction performs the following
operations:

1. If the target block is not accessible to the
program for loads, the system data storage error
handler may be invoked.

2. Memory Coherence
Required

If the target block is in any of the data caches
in the system and has been modified, it is
copied to main storage.

_ Not Required
If the target block is in the data cache of the
executing processor and has been modified, it
is copied to main storage.

3. This access need not be recorded, but if it is it is
considered a load and not a store.

The above action is taken regardless of the setting of
the other storage control attributes.

5.6.1.3 Data Cache Block Flush

This instruction permits the program to ensure that
the latest version of the target storage block is in
main storage and no longer in the data cache. The
instruction performs the same operations as does the
Data Cache Block Store. In addition to those oper­
ations, the following is done.

Memory Coherence Required
If the target block is in any of the data caches in
the system, it is marked invalid in those data
caches.

Memory Coherence Not Required
If the target block is in the data cache of the exe­
cuting processor, it is marked invalid in that data
cache.

These actions are taken regardless of the setting of
the other storage control attributes.

5.6.1.4 Data Cache Block set to Zero

This instruction permits the program to set large
areas of storage to zeros in an efficient manner. The
instruction performs the following operations:

1. If the target block is not accessible to the
program for stores, the system data storage error
handler is invoked.

2. Write Through Required
Either each byte Qf the block in main storage is
set to OxOO, or the system alignment error
handler is invoked.

3. Caching Inhibited
Either each byte of the block in main storage is
set to OxOO, or the system alignment error
handler is invoked.

4. Memory Coherence
• Required

If the target block is in the data cache of
the executing processor, each byte in the
block is set to OxOO and all copies of the
block in all data caches are made con­
sistent.
If the target block is not in the data
cache of the executing processor, the
block is established in the data cache
without fetching it from storage and each
byte in the block is set to OxOO. All
copies of the block in all data caches are
made consistent.

• Not Required

Chapter 5. Storage Model 123

If the target block is in the data cache of
the executing processor, each byte in the
block is set to OxOO.
If the target block is not in the data
cache of the executing processor, the
block -is established in the data cache
without fetching it from storage and each
byte in the block is set to OxOO.

5. This access must be recorded. It is considered a
store to the target location.

5.6.1.5 Data Cache Block Touch

The two Touch instructions (one for reading, the other
for writing) provide a mechanism by which a program
may avoid some of the delays due to accessing
storage by attempting to have the target storage
location in the cache prior to its first use. These
instructions are performance hints and operate as
follows:

1. If the target block is not accessible to the
program for loads, no other operation is per­
formed.

2. Caching Inhibited
The block is not copied into the cache and no
other operations are performed.

3. Caching Allowed
• Memory Coherence Required

If the block is not in the cache, the most
recent version of the block may be copied
into the cache.

• Memory Coherence Not Required
If the block is not in the cache, the block may
be copied into the cache from main storage
without regard for the location of the most
recently modified version.

4. This access need not be recorded, but if it is it is
considered a load and not a store.

If the instruction is Touch for Store and the block is
copied into the cache, it is copied in a manner such
that a subsequent store to the block will execute effi­
ciently.

The execution of either of these instructions never
causes the system data error handler to be invoked.

5.6.2 Combined Cache

A combined cache implementation provides a single
cache for instructions and data. For this implementa­
tion, the Instruction Cache Block Invalidate instruction
need not perform the same operations as it would for
an implementation with separate caches. It can be
treated as a no-op, but it is acceptable to invalidate
the instruction caches of other processors if the
addressed storage is in Coherence Required mode.

124 PowerPC Architecture First Edition

Following are recommended and required functions of
this instruction for combined cache implementations.

Prohibited Operations
It must not invalidate a block in the combined
cache that has been modified. The access must not
be treated as a store.

Unnecessary _ Operations
The access should not be treated as a load or
store, but to treat it as a load is not a violation of
the architecture.

Suggested Operations
If the program executing icbi does not have access
to the target block for loads, the system data
storage error handler should be invoked.

5.6.3 Write Through Data Cache

The Cache Management instructions affected by the
write through implementation of the data cache are
listed in this section. These instructions must perform
all the operations specified for a Harvard style cache
except as specified in this section. Some of the differ­
ences depend on whether the write through imple­
mentation is a write through to main storage or just a
write through to a second level of cache.

5.6.3.1 Write Through to Main Storage

1. Data Cache Block set to Zero
The processor may invoke the system alignment
error handler regardless of the setting of the
storage control attributes.

2. Data Cache Block Store
By definition, the cache cannot contain a modified
block. The processor is not required to copy the
target block to main storage.

3. Data Cache Block Flush
By definition, the cache cannot contain a modified
block. The processor is not required to copy the
target block to main storage.

5.6.3.2 Write Through to Multi-Level
Cache

For Data Cache Block set to Zero, the processor may
invoke the system alignment error handler regardless
of the setting of the storage control attributes.

If a cache is the interface to main storage for all
processors and other mechanisms that access
storage, that cache can be considered main storage
with respect to the Cache Management instructions.
Otherwise, the cache instructions that cause the
content of a cache block to be copied back to main
storage or to be marked invalid must be performed
against all levels of the cache.

5.7 Shared Storage

This architecture supports the sharing of storage
between programs, between different instances of the
same program on systems with one or more
processors, and between processors and other mech­
anisms. It also supports access to a storage location
by one or more programs using different effective
addresses. All these cases are considered storage
sharing. Storage is shared in blocks that are an inte­
gral number of pages.

When the same storage location has different effec­
tive addresses, the addresses are said to be
"aliases." Each application can be granted separate
access privileges to aliased pages.

5.7.1 Storage Access Ordering

The Power PC architecture specifies a weakly con­
sistent storage model for shared storage multi­
processor systems. This model provides an
opportunity for significantly improved performance
over the strongly consistent model, but places the
responsibility on the program to ensure that ordering
or synchronization instructions are properly placed
when necessary for the correct execution of the
program.

In this architecture, the order in which the processor
performs storage accesses, the order in which those
accesses complete in main storage, and the order in
which those accesses are viewed as occurring by
another processor may all be different. This property
is referred to storage access ordering. A means of
enforcing an ordering of storage accesses is provided
to allow programs or instances of programs to share
storage. Similar means are needed to allow pro­
grams executing on a processor to share storage with
some other mechanism, such as an I/O device, that
can also access storage.

The purpose of specifying a weakly consistent storage
model is to allow the processor to run very fast for
most storage accesses. Two instructions, Enforce In­
order Execution of I/O and Synchronize, are provided
that enable the program to control the order in which
storage accesses are performed by separate
instructions. No ordering should be assumed for the
storage accesses done by a multiple-register load or
store instruction, and no means are provided for con­
trolling that order.

5.7.1.1 The Enforce In-order Execution
of 110 Instruction

The eieio instruction permits the program to control
the order in which loads and stores are performed in
main storage when the accessed storage is both
Caching Inhibited and Guarded, and the order in
which stores are performed in main storage when the
accessed storage is Write Through Required. It does
not affect the order of other data accesses, nor of
cache operations (whether caused explicitly by exe­
cution of a Cache Management instruction, or implic­
itly by the cache coherence mechanism). See Part 3,
"PowerPC Operating Environment Architecture" on
page 141, for the definition of Guarded storage.

eieio ensures that all applicable data accesses to
main storage previously initiated by the processor
have completed with respect to main storage before
any applicable storage accesses subsequently initi­
ated by the processor access main storage. It acts
like a barrier that flows through the storage queues
and to main storage, preventing the reordering of
storage accesses across the barrier. The eieio
instruction may complete before previously initiated
storage accesses have been performed with respect
to other processors and mechanisms.

eieio can be used, for example, to ensure that the
data from a sequence of stores to the control regis­
ters of an 110 device update those control registers in
the order specified by the stores as ordered by eieio.

If stronger ordering is desired or if it is necessary to
order accesses to storage that may be in the cache,
the sync instruction must be used.

5.7.1.2 The Synchronize Instruction

When a portion of storage must be forced to a known
state, it is necessary to synchronize storage with
respect to all processors. This is accomplished by
requiring programs to indicate explicitly in the instruc­
tion stream that synchronization is required, by
inserting a sync instruction. Only when sync com­
pletes are the effects of all storage accesses previ­
ously executed by the program guaranteed to have
been performe~ with respect to all other processors
and mechanisms.

The sync instruction permits the program to ensure
that all storage accesses it has initiated have been
performed with respect to all other processors and
mechanisms before its next instruction is executed. A
program can use this instruction to ensure that all
updates to a shared data structure are visible to all
other processors prior to executing a store that will
release the lock on that data structure. Execution of
this instruction does the following:

Chapter 5. Storage Model 125

• Performs the functions described for the sync
instruction in Part 1, "PowerPC User Instruction
Set Architecture" on page 1.

• Ensures that consistency operations and the
effects of icbi, dcbz, dcbst, dcbt, and dcbi
instructions (see Part 3, "PowerPC Operating
Environment Architecture" on page 141) previ­
ously executed by the processor executing the
sync have completed on all other processors.

• Ensures that TLB invalidates executed by the
processor executing the sync have completed on
that processor. sync does not wait for such inval­
idates to complete on other processors (see the
Book 1/1 section entitled "Table Update Synchroni­
zation Requirements").

• Ensures that Reference and Change bits in the
Page Table (see Part 3, "PowerPC Operating
Environment Architecture" on page 141) are up­
to-date.

The sync instruction is execution synchronizing (see
Part 3, "PowerPC Operating Environment
Architecture" on page 141). It is not context synchro­
nizing (see Book III), and therefore need not discard
prefetched instructions.

For storage that is maintained as Memory Coherence
Not Required, the only effect of sync on storage oper­
ations is to ensure that all previous storage accesses
have completed to the level of storage specified by
the Caching and Write Through storage control attri­
butes (including the updating of Reference and
Change bits).

5.7.2 Atomic Update Primitives

The Load And Reserve and Store Conditional
instructions together permit atomic update of a
storage location. 64-bit implementations have word
and doubleword forms of each of these instructions.
Described here is the operation of the word forms
(lwarx and stwcx.); operation of the doubleword forms
(ldarx and stdcx.) is the same except for obvious sub­
stitutions.

These instructions function in Caching Inhibited, as
well as in Caching Allowed, storage. The addressed
page must, however, have the Memory Coherence
Required attribute for every processor other than the
one doing the atomic update that might execute a
store to the location being atomically updated. The
remainder of this section assumes that if the system
is a multiprocessor, then all processors have the
addressed page in Memory Coherence Required
mode.

If the addressed storage is in Write Through Required
mode, it is implementation-dependent whether these
instructions function correctly or cause the system
data storage error handler to be invoked.

126 PowerPC Architecture First Edition

The Iwarx is a load from a word-aligned location that
has two side effects.

1. A nonspecific reservation for a subsequent stwcx.
or stdcx. is created.

2. The storage coherence mechanism is notified that
a reservation exists for the real address (see
Part 3, "PowerPC Operating Environment
Architecture" on page 141) corresponding to the
storage location accessed by the Iwarx.

The stwcx. is a store to a word-aligned location that is
conditioned on the existence of the reservation
created by the Iwarx or Idarx. To emulate an atomic
operation with these instructions, it is necessary that
both the Iwarx and the stwcx. access the same
storage location even though this requirement is not
enforced by the hardware. Iwarx and stwcx. are
ordered by a dependence on the reservation, and the
program is not required to insert other instructions to
maintain the order of storage accesses by these two
instructions.

A stwcx. performs a store to the target storage
location only if the storage location accessed by the
Iwarx that established the reservation has not been
stored into by another processor or mechanism
between supplying a value for the Iwarx and storing
the value supplied by the stwcx.. In this case, CRO is
set to indicate that the store was performed.

If the stwcx. completes "but does not perform the
store because a reservation no longer exists, CRO is
set to indicate that the stwcx. completed but storage
was not altered.

Examples of the use of Iwarx and stwcx. are given in
the "Programming Examples" appendix of Part 1,
"PowerPC User" Instruction Set Architecture" on
page 1.

When stwcx. to a given location succeeds, its store
has been performed but may not yet be globally
visible. As a result, a subsequent load or Iwarx from
the given location on another processor may return a
"stale" value. However, a subsequent Iwarx from the
given location on the other processor followed by a
successful stwcx. on that processor is guaranteed to
have returned the value stored by the first process­
or's stwcx. (in the absence of other stores to the
given location).

Programming Note ------------,

To ensure that a store or stwcx. to a given
location has become globally visible, it must be
followed by a sync. A subsequent load or Iwarx
from the given location by another processor will
then return a value at least as recent as the value
sto"red. This is often more synchronization than is
actually needed to ensure program correctness.

5.7.2.1 Reservations

The ability to emulate an atomic operation using
Iwarx and stwcx. is based on the conditional behavior
of stwcx., the reservation set by Iwarx, and the
cleari ng of that reservation if the target location is
modified by another processor or other mechanism
before the stwcx. performs its store ..

Programming Note -----------....,

The combination of Iwarx and stwcx. improves
upon compare_and_swap in that the reservation
binds the Iwarx and stwcx. together more reliably.
Compare_and_swap can only check that the old
and current values of the variable are equal, and
can cause the program to err if the variable has
been modified and the old value subsequently
restored. The reservation is always lost if the
variable is modified by another processor or
mechanism between the Iwan and stwcx., so the
stwcx. never succeeds unless the variable has not
been stored into (by another processor or mech­
anism) since the Iwarx.

A processor has at most one reservation at any time.
A reservation is established by executing a Iwarx
instruction and is lost if any of the following occur:

• The processor holding the reservation executes
another Iwarx or Idarx; this clears the first reser­
vation and establishes a new one.

• The processor holding the reservation executes
any stwcx. or stdcx., whether or not its address
matches that of the Iwarx.

• Some other processor executes a store or dcbz to
the same reservation granule.

• Some other mechanism modifies a storage
location in the same reservation granule.

• Any additional causes of reservation loss are
described in Book IV, PowerPC Implementation
Features, for the implementation.

Interrupts (see Part 3, "PowerPC Operating Environ­
ment Architecture" on page 141) do not clear reser­
vations (however, system software invoked by
interrupts may clear reservations). Immunity to
random reservation loss ensures that programs using
Iwarx and stwcx. can make forward progress.

Programming Note ------------,

Programming convention must ensure that Iwarx
and stwcx. addresses match. In proper use, a
stwcx. should be paired with a specific Iwarx to
the same real address. Situations in which a
stwcx. may erroneously be issued after some
Iwarx other than that with which it is intended to
be paired must be scrupulously avoided. For
example, there must not be a context change in
which the old context leaves a Iwarx dangling and
the new context resumes after a Iwarx and before
the paired stwcx.. The stwcx. would be success­
fully completed, which is not what was intended
by the programmer.

Such a situation must be prevented by issuing a
stwcx. to a dummy writable word-aligned location
as part of the context switch, thereby clearing the
reservation of the dangling lwarx. Executing
stwcx. to a word-aligned location suffices to clear
the reservation, whether it was obtained by lwarx
or Idarx.

5.7.2.2 Guaranteeing Forward Progress

Forward progress in loops that use Iwarx and stwcx.
is guaranteed by a cooperative effort between hard­
ware, operating system software, and application soft­
ware. Hardware guarantees that:

• one stwcx. among a set of processors holding
reservations to the same real address will
succeed, and

• reservations are not lost unnecessarily, i.e. when
the reserved location has not been modified.

While no general rules can be given regarding oper­
ating system guarantees, programs that use the
examples in the Programming Examples appendix of
Part 1, "PowerPC User Instruction Set Architecture"
on page 1 are guaranteed forward progress.

5.7.2.3 Reservation Loss Due to
Granularity

When one processor holds a reservation, and another
processor performs a store that might clear that res­
ervation, the address comparison is done in a way
that ignores an implementation-dependent number of
low-order bits of the real addresses. The storage
block corresponding to the ignored low-order bits is
called the reservation granule. Its size is
implementation-dependent (see the Book IV, PowerPC
Implementation Features document for the implemen­
tation), but is a multiple of the coherence block size.

Lock variables should be allocated such that con­
tention for the locks and updates to nearby data
structures do not cause excessive reservation losses

Chapter 5. storage Model 127

due to false indications of sharing that can occur due
to the reservation granularity.

A processor holding a reservation on any word in a
reservation granule will lose its reservation if some
other processor stores anywhere in that granule.
Such problems can be avoided only by ensuring that
few such stores occur. This can most easily be
accomplished by allocating an entire granule for a
lock and wasting all but one word.

Reservation granularity may vary for each implemen­
tation. There are no architectural restrictions
bounding the granularity implementations must
support, so reasonably portable code must dynam­
ically allocate aligned and padded storage for locks to
guarantee absence of granularity-induced reservation
loss.

5.8 Virtual Storage

The PowerPC system implements a virtual storage
model for applications. This means that a combina­
tion of hardware and software can present a storage
model which allows applications to exist within a
"virtual" address space larger than either the effec­
tive address space or the real address space.

Each program can access 264 {232} bytes of "effective
address" (EA) space, subject to limitations imposed

128 PowerPC Architecture First Edition

by the operating system. In a typical Power PC
system, each program's EA space is a subset of a
larger "virtual address" (VA) space managed by the
operating system.

The operating system is responsible for managing the
real (physical) storage resources of the system by
means of a "storage mapping" mechanism.. Storage
is always allocated and managed in units of "pages,"
which have a fixed, implementation-dependent size.
The storage mapping process translates accesses to
pages in the EA space into accesses to real pages in
main storage.

In general, main storage may not be large enough to
contain all of the virtual pages used by the currently
active applications. With support provided by hard­
ware mechanisms, the operating system can attempt
to use the available real pages to map a sufficient set
of effective address pages of the applications. If a
sufficient set is maintained, "paging" activity is mini­
mized. If not, performance degradation is likely to
occur.

The operating system can support restricted access to
pages (including read-write, read-only, and no access:
see Part 3, "PowerPC Operating Environment
Architecture" on page 141), based on system stand­
ards (e.g., program code might be read-only) and
application requests.

Chapter 6. Effect of Operand Placement on Performance

The placement (location and alignment) of operands
in storage affects relative performance of storage
accesses, and in some cases affects it significantly.
The best performance is guaranteed if storage oper­
ands are aligned. In order to obtain the best perform­
ance across the widest range of implementations, the
programmer should assume the performance model
described in Figures 35 and 36 with respect to the
placement of storage operands. Figure 35 applies
when the processor is in Big-Endian mode, and Figure
36 applies when the processor is in Little-Endian
mode. Performance of accesses varies depending on
the following:

1. Operand Size
2. Operand Alignment
3. Endian mode (Big-Endian or Little-Endian)
4. Crossing no boundary
5. Crossing a Cache Block Boundary
6. Crossing a Page Boundary that is also a pro­

tection boundary (see Part 3, "PowerPC Oper­
ating Environment Architecture" on page 141,
"Storage Protection").

7. Crossing a BAT Boundary
See Book III for a description of BAT.

8. Crossing a Segment Boundary
See Book III for a description of storage seg­
ments.

The Load and Store Multiple instructions are defined
to operate only on aligned operands. The Move
Assist instructions have no alignment requirements.
Both of these sets of instructions are supported only
in Big-Endian mode.

For the purposes of Figures 35 and 36, crossing pages
with different storage control attributes is equivalent
to crossing a segment boundary.

Operand Boundary Crossing

Byte Cache BAT I
Size Align. None Block Page Seg.

Integer

8 Byte 8 optimal - - -
4 good good poor poor
<4 poor poor poor poor

4 Byte 4 optimal - - -
<4 good good poor poor

2 Byte 2 optimal - - -
<2 good good poor poor

1 Byte 1 optimal - - -
Imw, 4 good good good poor
stmw

string good good poor poor

Float

8 Byte 8 optimal - - -
4 good good poor poor
<4 poor poor poor poor

4 Byte 4 optimal - - -
<4 poor poor poor poor

Figure 35. Performance Effects of Storage Operand
Placement, Big-Endian mode

Chapter 6. Effect of Operand Placement on Performance 129

Operand Boundary Crossing

Byte Cache BAT I
Size Align. None Block Page Seg.

Integer

8 Byte 8 optimal - - -
<8 poor poor poor poor

4 Byte 4 optimal - - -
<4 poor poor poor poor

2 Byte 2 optimal - - -
<2 poor poor poor poor

1 Byte 1 optimal - - -
Float

8 Byte 8 optimal - - -
<8 poor poor poor poor

4 Byte 4 optimal - - -
<4 poor poor poor poor

Figure 36. Performance Effects of Storage Operand
Placement, Little-Endian mode

6.1 Instruction Restart

If a storage access crosses a page boundary that is
also a protection boundary, a BAT boundary, or a
segment boundary, a number of conditions could
cause the execution of the instruction to be aborted
after part of the access has been performed. For
example, this may occur when a program attempts to
access a page it has not previously accessed, or
when the processor must check for a possible change
in storage control attributes when an access crosses
a page boundary. When this occurs, the implementa­
tion or the operating system may restart the instruc­
tion. If the instruction is restarted, some bytes of the
location may be loaded from or stored to the target
location a second time.

The following rules apply to storage accesses with
regard to restarting the instruction.

Aligned Accesses
A single-register instruction which accesses an
aligned operand is never restarted.

130 PowerPC Architecture First Edition

Unaligned Accesses
A single-register instruction which accesses an
unaligned operand may be restarted if the access
crosses a page, BAT, or segment boundary.

Load and Store Multiple, Move Assist
These instructions may be restarted if, in
accessing the locations specified by the instruc­
tion, a page, BAT, or segment boundary is
crossed.

Programming Note -------------,

The programmer should assume that any una­
ligned access in an ordinary storage segment
might be restarted. Software· can ensure this
does not occur by use of direct-store segments or
BAT areas, neither of which have page bounda­
ries (see Part 3, "PowerPC Operating Environment
Architecture" on page 141).

Unsynchronized TLB invalidates do not have a
defined res""lt.

6.2 Atomicity and Order

Access Atomicity
With the exception of double-precision floating-point
operands in 32-bit implementations, all aligned
accesses are atomic. No other access is required to
be atomic. Instructions causing multiple accesses
(Load and Store Multiple and Move Assist) are not
atomic ..

Access Order
Since the ordering of storage accesses is not guaran­
teed unless the programmer inserts the appropriate
ordering instructions, the order of accesses generated
by a single instruction is not guaranteed. Unaligned
accesses, Load and Store Multiple instructions, and
Move Assist instructions have no implicit ordering
characteristics. For example, processor A may store
a word operand on an odd halfword boundary. It may
appear to processor A that the store completed atom-_
ically. Processor or other mechanism B, executing a
load from the same location, may get a result that is­
a combination of the value of the first halfword that
existed prior to the store by processor A and the
value of the second halfword stored by processor A.

Chapter 7. Storage Control Instructions

The instructions in this chapter are not privileged.
For most of them, if the applicable cache is not
present the operation is a "no-op" and has no effect
on any register or on storage. The only exception is
the debz instruction. When the data cache does not
exist, debz either zeros a certain number of bytes of
storage (which has an effect similar to zeroing bytes
in a cache block which are later written to storage) or
invokes the system alignment error handler (so that
its function can be simulated).

As with other storage instructions, the effect of the
Cache Management instructions on storage is weakly
consistent. If the programmer needs to ensure that
Cache Management or other instructions have been
performed with respect to all other processors and
mechanisms, a sync instruction must be placed in the
program following those instructions.

The description of many of the Cache Management
instructions has a statement that defines its storage
semantics, such as "This instruction is treated as a
store to the addressed byte with respect to address
translation and protection." This statement defines
the operation of the instruction with respect to how it
affects the page Reference and Change bits, and
whether or not interrupts occur for a translation error
or a protection violation (see Part 3, "PowerPC Oper­
ating Environment Architecture" on page 141).

7.1 Parameters Useful to
Application Programs

It is suggested that the operating system provide a
service that allows an application program to obtain
the following information.

1. Page size
2. Coherence block size
3. Granule size for reservations
4. An indicator of whether the processor has (a) a

combined cache or no caches, or (b) some other
cache configuration (split caches or one cache
only; if instruction cache fetches pass through the
data cache, the cache is considered to be a split
cache)

5. Instruction cache size
6. Data cache size
7. Instruction cache line size (see Book IV, PowerPC

Implementation Features)
8. Data cache line size (see Book IV)
9. Block size for iebi (if no instruction cache, number

of bytes zeroed by debz)
10. Block size for debt and debtst (if no data cache,

number of bytes zeroed by debz)
11. Block size for dcbz, debst, debt, and deb; (see

Part 3, "PowerPC Operating Environment
Architecture" on page 141 for a description of
debi) (if no data cache, number of bytes zeroed
by debz)

12. Instruction cache associativity
13. Data cache associativity
14. Factors for converting the Time Base to seconds

If the caches are combined, the same value should be
given for an l-cache attribute and the corresponding
D-cache attribute.

Chapter 7. storage Control Instructions 131

7.2 Cache Management Instructions

7.2.1 Instruction Cache Instructions

Instruction caches, if they exist, are not required to be
consistent with data caches, storage, nor 110 data
transfers. Software must use the appropriate Cache
Management instructions to ensure that instruction
caches are kept consistent when instructions are
modified by the processor or by input data transfer.
When a processor alters a storage location that may
be contained in an instruction cache, software must
ensure that updates to storage are visible to the
instruction fetching mechanism. Although the
instructions to accomplish this vary among implemen­
tations and hence many operating systems will
provide a system service for this function, the fol­
lowing sequence is typical.

Instruction Cache Block Invalidate X-form

icbi RA,RB

1. debst - update storage
2. sync - wait for update (see Part 1, "PowerPC

User Instruction Set Architecture" on page 1)
3. icbi - invalidate copy in instruction cache
4. isync - perform context synchronization (see

Part 3, "PowerPC Operating Environment
Architecture" on page 141)

These operations are necessary because the storage
may be in Write Through Not Required mode. Since
instruction fetching may bypass the data cache,
changes made to items in the data cache may not be
reflected in storage until after the instruction fetch
completes.

Instruction Synchronize XL-form

isync

[Power mnemonic: ics]

IL-O_

3

_

1

_ I_s _'_"_ I,_1_RA_ 1_1s_R_B_ 12_1 __ 98_2 __ .&...1 '-....I', I 10 19 16 "' I" '" 1,6 "' 12, 150

1:,1
Let the effective address (EA) be the sum
(RAIO) + (RB).

If the block containing the byte addressed by EA is in
Coherence Required mode, and a block containing the
byte addressed by EA is in the instruction cache of
any processor, the block is made invalid in all such
processors, so that subsequent references cause the
block to be refetched.

If the block containing the byte addressed by EA is in
Coherence Not Required mode, and a block containing
the byte addressed by EA is in the instruction cache
of this processor, the block is made invalid in this
processor, so that subsequent references cause the
block to be fetched from main storage (or perhaps
from a data cache).

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans­
lation and protection. Implementations with a com­
bined data and instruction cache may treat the icbi
instruction as a no-op, even to the extent of not vali-
dating the EA. .

If the EA references storage outside of main storage
(see Direct-Store Segments in Part 3, "PowerPC
Operating Environment Architecture" on page 141),
the instruction is treated as a no-op.

Special Registers Altered:
None

132 PowerPC Architecture First Edition

This instruction waits for all previous instructions to
complete and then discards any prefetched
instructions, causing subsequent instructions to be
fetched (or refetched) from storage and to execute in
the context established by the previous instructions.
This instruction has no effect on other processors or
on their caches.

This instruction is context synchronizing (see Part 3,
"PowerPC Operating Environment Architecture" on
page 141).

Special Registers Altered:
None

7.2.2 Data Cache Instructions

Data caches and combined caches, if they exist, are
required to be consistent with other data caches,
combined caches, storage, and I/O data transfers.
However, to ensure consistency, aliased effective
addresses (two effective addresses that map to the

Data Cache Block Touch X-form

dcbt RA,RB

Let the effective address (EA) be the sum
(RAIO) + (RB).

This instruction is a hint that performance will prob­
ably be improved if the block containing the byte
addressed by EA is fetched into the data cache,
because the program will probably soon load from the
addressed byte. Executing debt will not cause the
system error handler to be invoked.

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans­
lation and protection, except that the system error
handler must not be invoked for a translation or pro­
tection violation.

Special Registers Altered:
None

Programming Note ------------,

The purpose of this instruction is to allow the
program to request a cache block fetch before it
is actually needed by the program. The program
can later perform loads to put data into registers.
However, the processor is not obliged to load the
addressed block into the data cache.

same real address) must have the same page offset
(see Section 5.7, "Shared Storage" on page 125).

If the effective address references storage outside of
main storage (see Direct-Store Segments in Part 3,
"PowerPC Operating Environment Architecture" on
page 141), the ins~ruction is treated as a no-op.

Data Cache Block Touch for Store X-form

dcbtst RA,RB

246 1:,1
Let the effective address (EA) be the sum
(RAIO)+ (RB).

This instruction is a hint that performance will prob­
ably be improved if the block containing the byte
addressed by EA is fetched into the data cache,
because the program will probably soon store into the
addressed byte. Executing debtst will not cause the
system error handler to be invoked.

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans­
lation and protection, except that the system error
handler must not be invoked for a translation or pro­
tection violation. Since debtst does not modify
storage, it must not be recorded as a store.

Special Registers Altered:
None

Programming Note ------------,

The purpose of this instruction is to allow the
program to request a cache block fetch before it
is actually needed by the program. The program
can later perform stores to put data into storage.
However, the processor is not obliged to load the
addressed block into the data cache.

Chapter 7. storage Control Instructions 133

Data Cache Block set to Zero X-form

dcbz RA,RB

[Power mnemonic: delZ]

Let the effective address (EA) be the sum
(RAIO) + (RB).

If the block containing the byte addressed by EA is in
the data cache, all bytes qf the block are set to zero.

If the block containing the byte addressed by EA is
not in the data cache and the corresponding page is
Caching Allowed, the block is established in the data
cache without fetching the block from main storage,
and all bytes of the block are set to zero.

If the page containing the byte addressed by EA is
Caching Inhibited or Write Through Required, then
either (a) all bytes of the area of main storage that
corresponds to the addressed block are set to zero,
or (b) the system alignment error handler is invoked.

If the block containing the byte addressed by EA is in
Coherence Required mode, and the block exists in the
data cache(s) of any other processor(s), it is kept
coherent in those caches.

This instruction is treated as a store to the addressed
byte with respect to address translation and pro­
tection.

Special Registers Altered:
None

Programming Note --------------.

If the page containing the byte addressed by EA is
Caching Inhibited or Write Through Required, the
system alignment error handler should set to zero
all bytes of the area of main storage that corre­
sponds to the addressed block.

See the Interrupt chapter of Part 3, "PowerPC
Operating Environment Architecture" on page 141
for discussion of a possible delayed Machine
Check interrupt that can be caused by dcbz if the
operating system has set up an incorrect storage
mapping.

134 PowerPC Architecture First Edition

Data Cache Block store X-form

dcbst RA,RB

54

Let the effective address (EA) be the sum
(RAIO) + (RB).

If the block containing the byte addr~ssed by EA is in
Coherence Required mode, and a block containing the
byte addressed by EA is in the data cache of any
processor and has been modified, the writing of it to
main storage is initiated.

If the block containing the byte addressed by EA is in
Coherence Not Required mode, and a block containing
the byte addressed by EA is in the data cache of this
processor and has been modified, the writing of it to
main storage is initiated.

The function of this instruction is i"ndependent of the
Write Through Required/Not Required and Caching
Inhibited/Allowed modes of the block containing the
byte addressed by EA.

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans­
lation and protection.

Special Registers Altered:
None

Data Cache Block Flush X-form

dcbf RA,RB

86
1:,1

7.3 Enforce In-order Execution
of I/O Instruction

Enforce In-order Execution of 110
X-form

Let the effective address (EA) be the sum eieio
(RAID) + (RB).

The action taken depends on the storage mode asso­
ciated with the target and on the state of the block.
The list below describes the action taken for the
various cases. The actions described must be exe­
cuted regardless of whether the page containing the
addressed byte is in Caching Inhibited or Caching
Allowed mode.

1. Coherence Required
Unmodified Block

Invalidate copies of the block in the caches of
all processors.

Modified Block
Copy the block to storage. Invalidate copies of
the block in the caches of all processors.

Absent Block
If modified copies of the block are in the
caches of other processors, cause them to be
copied to storage and invalidated. If unmodi­
fied copies are in the caches of other
processors, cause those copies to be invali­
dated.

2. Coherence Not Required
Unmodified Block

Invalidate the block in the processor's cache.
Modified Block

Copy the block to storage. Invalidate the block
in the processor's cache.

Absent Block
Do nothing.

The function of this instruction is independent of the
Write Through Required/Not Required and Caching
Inhibited/Allowed modes of the block containing the
byte addressed by EA.

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans­
lation and protection.

Special Registers Altered:
None

I. //I I" //I 1,./1/ 12,
854

1:,1
The eieio instruction provides an ordering function for
the effects of loads and stores executed by a
processor. Executing an eieio instruction ensures that
all applicable loads and stores previously initiated by
the processor are complete with respect to main
storage before any applicable loads and stores subse­
quently initiated by the processor access main
storage.

eieio orders loads and stores to storage that is both
Caching Inhibited and Guarded (see Part 3, "PowerPC
Operating Environment Architecture" on page 141),
and stores to storage that is Write Through Required.
It does not affect the order of other data accesses,
nor of cache operations (whether caused explicitly by
execution of a Cache Management instruction, or
implicitly by the cache coherence mechanism).

Special Registers Altered:
None

Programming Note -------------,

The eieio instruction is intended for use in doing
memory-mapped 110 (see Part 3, "PowerPC Oper­
ating Environment Architecture" on page 141)
and in preventing load/store combining operations
in main storage. It can be thought of as placing a
barrier into the stream of storage accesses issued
by a processor, such that any given storage
access appears to be on the same side of the
barrier to both the processor and the 110 device.

The eieio instruction may complete before previ­
ously initiated storage accesses have been per­
formed with respect to other processors and
mechanisms.

Chapter 7. Storage Control Instructions i 35

136 PowerPC Architecture First Edition

Chapter 8. Time Base

The Time Base (TB) is a 64-bit register (see
Figure 37) containing a 64-bit unsigned integer which
is incremented periodically. Each increment adds 1 to
the .Iow-order bit (bit 63). The frequency at which the
counter is updated is implementation-dependent.

o

Field
TBU
TBl

TBU TBl

32

Description
Upper 32 bits of Time Base
lower 32 bits of Time Base

Figure 37. Time Base

63

The Time Base increments until its value becomes
OxFFFF _FFFF _FFFF _FFFF (264 - 1). At the next incre­
ment, its value becomes OxOOOO_OOOO_OOOO_OOOO.
There is no explicit indication (such as an interrupt:
see Part 3, "PowerPC Operating Environment
Architecture" on page 141) that this has occurred.

The period of the Time Base depends on the driving
frequency. As an order of magnitude example,
suppose that the CPU clock is 1 00 MHz and that the
Time Base is driven by this frequency divided by 32.
Then the period of the Time Base would be

264 x 32 12
TTS = 100 MHz = 5.90 x 10 seconds

which is approximately 187,000 years.

The PowerPC Architecture does not specify a relation­
ship between the frequency at which the Time Base is
updated and other frequencies, such as the CPU clock
or bus clock, in a Power PC system. The Time Base
update frequency is not required to be constant.
What is required, so that system software can keep
time of day and operate interval timers, is that either:

• The system provides an (implementation­
dependent) interrupt to software whenever the
update frequency of the Time Base changes, and

also a means to determine what the current
update frequency is; or

• The update frequency of the Time Base is under
the control of the system software.

Programming Note ----------~

If the operating system initializes the Time Base
on power-on to some reasonable value and the
update frequency of the Time Base is constant,
the Time Base can be used as a source of values
which increase at a constant rate, such as for
time stamps in trace entries.

Even if the update frequency is not constant,
values read from the Time Base are
monotonically increasing (except when the Time
Base wraps from 264_1 to 0). If a trace entry is
recorded each time the update frequency
changes, the sequence of Time Base values can
be post-processed to become actual time values.

8.1 Time Base Instructions

Extended mnemonics

A pair of extended mnemonics is provided for the
mftb instruction so that it can be coded with the TBR
name as part of the mnemonic rather than as a
numeric operand. See the Assembler Extended Mne­
monics appendix in Part 3, "PowerPC Operating Envi­
ronment Architecture" on page 141.

Move From Time Base XFX-form

mftb RT,TBR

31
16 RT I" tbr

12,
371 1:,1

Chapter 8. Time Base 137

n +- tbrS:9 II tbro:4
if n = 268 then

if (64-bit implementation) then
RT +- TB

else
RT +- TB32:63

else if n = 269 then
if (64-bit implementation) then

RT +- 328 II TBo:31
else

RT +- TBo:31

The TBR field denotes either the Time Base or Time
Base Upper, encoded as shown in Figure 38. The
contents of the designated register are placed into
register RT. When reading Time Base Upper on a
64-bit implementation, the high-order 32 bits of reg­
ister RT are set to zero.

TBR" Register Privi-
decimal tbrS:9 tbro:4 name leged

268 01000 01100 TB no
269 0100001101 TBU no

.. Note that the order of the two 5-bit halves
of the TBR number is reversed.

Figure 38. TBR encodings for mftb

If the TBR field contains any value other than one of
the values shown above, the instruction form is
invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Move From Time Base:

Extended:

mftb Rt
mftbu Rt

Equivalent to:
mftb Rt,268
mftb Rt,269

Programming Note -----------,

mftb serves as both a basic and an extended
mnemonic. The assembler will recognize an mftb
mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the
extended form. Another way of saying this is that
if mftb is coded with one operand, then that
operand is assumed to be RT, and TBR defaults to
the value corresponding to TB.

Compiler and Assembler Note --------.

The TBR number coded in assembler language
does not appear directly as a 10-bit binary
number in the instruction. The number coded is
split into two 5-bit halves that are reversed in the
instruction, with the high-order 5 bits appearing in
bits 16:20 of the instruction and the low-order 5
bits in bits 11: 15.

138 PowerPC Architecture First Edition

8.2 Reading the Time Base on
64-bit Implementations

The contents of the Time Base may be read into a
GPR by the mftb extended mnemonic •. To read the
contents of the Time Base into register Rx, execute:

mftb Rx

Reading the Time Base has no effect on the value it
contains or the periodic incrementing of that value.

8.3 Reading the Time Base on
32-bit Implementations

On 32-bit implementations, it is not possible to read
the entire 64-bit Time Base in a single instruction.
The mftb extended mnemonic moves from the lower
half of the Time Base (TBl) to a GPR, and the mftbu
extended mnemonic moves from the upper half (TBU)
to a GPR.

Because of the possibility of a carry from TBl to TBU
occurring between reads of TBl and TBU, a sequence
such as the following is necessary to read the Time
Base on 32-bit impl~mentations.

loop:
mftbu Rx
mftb Ry
mftbu Rz
cmpw RZ,Rx
bne loop

load from TBU
load from TBl
load from TBU

see if 'old' = 'new'
loop if carry occurred

The comparison and loop are necessary to ensure
that a consistent pair of values has been obtained.

8.4 Computing Time of Day
from the Time Base

Since the update frequency of the Time Base is
implementation-dependent, the algorithm for con­
verting the current value in the Time Base to time of
day is also implementation-dependent.

As an example, assume that the Time Base is incre­
mented at a constant rate of once for every 32 cycles
of a 100 MHZ CPU instruction clock. What is wanted
is the pair of 32-bit values comprising a POSIX

standard clock1: the ·number of whole seconds which
have passed since midnight January 0, 1970, and the
remaining fraction of a second expressed as a
number of nanoseconds.

Assume that:

• The value ° in the Time Base represents the start
time of the POSIX clock (if this is not true, a
simple 64-bit subtraction will make it so).

• Integer constant ticksyer _sec contains the value

100 MHz
32

3,125,000

which is the number of times the Time Base is
updated each second.

• Integer constant ns_adj contains the value

1,000,000,000 = 320
3,125,000

which is the number of nanoseconds per tick of
the Time Base.

64-bit Implementations

The POSIX clock can be computed with an instruction
sequence such as this:

mftb Ry # Ry = Time Base
Iwz Rx,ticks_per _sec
divd Rz,Ry,Rx # Rz = whole seconds
stw Rz,posix_sec
mulld Rz,Rz,Rx # Rz = quotient ~ divisor
sub RZ,Ry,Rz # Rz = excess ticks
Iwz Rx,ns_adj
mulld RZ,Rz,Rx # Rz = excess nanoseconds
stw Rz,posix_ns

32-bit Implementations

On a 32-bit machine, direct implementation of the
code given above for 64-bit machines is awkward, due
mainly to the difficulty of doing 64-bit division.2 Such
division can be avoided entirely if a time of day clock
in POSIX format is updated at least once each second.

Assume that:

• The operating system maintains the following var­
iables:

posix_tb (64 bits)
posix_sec (32 bits)
posix_ns (32 bits)

These variables hold the value of the Time Base
and the computed POS IX seconds and
nanoseconds values from the last time the POSIX
clock was computed.

• The operating system arranges for an interrupt
(see Part 3, "PowerPC Operating Environment
Architecture" on page 141) to occur at least once
per second, at which time it recomputes the
POSIX clock values.

• The integer constant billion contains the value
1,000,000,000.

The POSIX clock can be computed with an instruction
sequence such as this:

loop:
mftbu Rx # Rz = TBU
mftb Ry # Ry = TBl
mftbu Rz # Rz = 'new' TBU value
cmpw RZ,Rx # see if 'old' = 'new'
bne loop # loop if carry occurred

now have 64-bit TB in Rx and Ry
Iwz Rz,posix_tb+4
sub RZ,RY,Rz # Rz = delta in ticks
Iwz Rw,ns_adj
mullw RZ,Rz,Rw # Rz = delta in ns
Iwz Rw,posix_ns
add RZ,Rz,Rw # Rz = new ns value
Iwz Rw, bill ion
cmpw Rz, Rw # see if past 1 sec
bit nochange # branch if not
sub RZ,Rz,Rw # adjust nanoseconds
Iwz Rw,posix_sec
addi RW,Rw,1 # adjust seconds
stw Rw,posix_sec # store new seconds

nochange:
stw Rz,posix_ns # store new ns
stw Rx,posix_tb # store new time base
stw Ry,posix_tb+4

Note that the upper part of the Time Base does not
participate in the calculation to determine the new
POSIX time of day. This is correct as long as the
delta value does not exceed one second.

Non-constant update frequency

In a system in which the update frequency of the Ti me
Base may change over time, it is not possible to
convert an isolated Time Base value into time of day.
Instead, a Time Base value has meaning only with
respect to the current update frequency and the time
of day that the update frequency was last changed.
Each time the update frequency changes, either the
system software is notified of the change via an inter­
rupt (see Part 3, "PowerPC Operating Environment

1 Described in POSIX Draft Standard P1003.4/D12, Draft Standard for Information Technology - Portable Operating System Interlace (POS/X) -­
Part 1: System Application Program Interlace (API) - Amendment 1: Realtime Extension [C Language]. Institute of Electrical and Electronics
Engineers, Inc., Feb. 1992.

2 See D. E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algorithms, section 4.3.1, Algorithm D. Addison-Wesley, 1981.

Chapter 8. Time Base 139

Architecture" on page 141), or else the change was
instigated by the system software itself. At each such
change, the system software must compute the
current time of day using the old update frequency,
compute a new value of ticks_per_second for the new
frequency, and save the time of day, Time Base
value, and tick rate.· Subsequent calls to compute
time of day use the current Time Base value and the
saved data.

140 PowerPC Architecture First Edition

Programming Note -----------,

A generalized service to compute time of day
could take the following as input.

1. Time of day at beginning of current epoch
2. Time Base value at beginning of current

epoch
3. Time Base update frequency
4. Time Base value for which time of day is

desired

For a Power PC system in which the Time Base
update frequency does not vary, the first three
inputs would be constant.

Part 3. PowerPC Operating Environment Architecture

This part defines the additional instructions and facili­
ties, beyond those of the Power PC User Instruction
Set Architecture and PowerPC Virtual Environment

Chapter 9. Introduction 143
9.1 Overview '" 143
9.2 Compatibility with the Power

Architecture 143
9.3 Document Conventions 143
9.4 General Systems Overview 144
9.5 Instruction Formats 144
9.6 Exceptions 144
9.7 Synchronization 144

Chapter 10. Branch Processor 147
10.1 Branch Processor Overview 147
10.2 Branch Processor Registers 147
10.3 Branch Processor Instructions 150

Chapter 11. Fixed-Point Processor 151
11.1 Fixed-Point Processor Overview 151
11.2 PowerPC Special Purpose

Registers 151
11.3 Fixed-Point Processor Registers 151
11.4 Fixed-Point Processor Privileged

Instructions 152

Chapter 12. Storage Control 155
12.1 Storage Addressing 155
12.2 Storage Model 155
12.3 Address Translation Overview 159

Architecture. It covers instructions and facilities not
available to the application programmer, affecting
storage control, interrupts, and timing facilities.

12.4 Segmented Address Translation,
64-bit Implementations 160

12.5 Segmented Address Translation,
32-bit Implementations 168

12.6 Direct-Store Segments " 173
12.7 Block Address Translation 174
12.8 Storage Access Modes 176
12.9 Reference and Change Recording 178
12.10 Storage Protection 179
12.11 Storage Control Instructions '. 181
12.12 Table Update Synchronization

Requirements 186

Chapter 13. Interrupts 191
13.1 Overview 191
13.2 Interrupt Synchronization 191
13.3 Interrupt Classes 191
13.4 Interrupt Processing 192
13.5 Interrupt Definitions 193
13.6 Partially Executed Instructions 199
13.7 Exception Ordering 200
13.8 Interrupt Priorities 201

Chapter 14. Timer Facilities 203
14.1 Overview 203
14.2 Time Base 203
14.3 Decrementer 204

Part 3. PowerPC Operating Environment Architecture 141

142 PowerPC Architecture First Edition

Chapter 9. Introduction

9.1 Overview

Part 1, "PowerPC User Instruction Set Architecture"
on page 1 describes computation modes, compat­
ibility with the Power Architecture, document con­
ventions, a general systems overview, instruction
formats, and storage addressing. This chapter aug­
ments that description as necessary for the Power PC
Operating Environment Architecture.

9.2 Compatibility with the Power
Architecture

The PowerPC Architecture provides binary compat­
ibility for Power application programs, except as
described in the "Incompatibilities with the Power
Architecture" appendix of Part 1, "PowerPCUser
Instruction Set Architecture" on page 1. Binary com­
patibility is not necessarily provided for privileged
Power instructions.

9.3 Document Conventions

The notation and terminology used in Book I applies
to this document also, with the following substitutions.

• For "system alignment error handler" substitute
"Alignment interrupt."

• For "system data storage error handler" substi­
tute "Data Storage interrupt."

• For "system error handler" substitute "interrupt."

• For "system floating-point assist error handler"
substitute "Floating-Point Assist interrupt."

• For "system floating-point enabled exception
error handler" substitute "Floating-Point Enabled
Exception type Program interrupt."

• For "system floating-point unavailable error
handler" substitute "Floating-Point Unavailable
interrupt."

• For "system illegal instruction error handler" sub-
. stitute "Illegal Instruction type Program

Interrupt. "

• For "system instruction storage error handler"
substitute "Instruction Storage interrupt."

• For "system privileged instruction error handler"
substitute "Privileged Instruction type Program
interrupt."

• For "system service program" substitute "System
Call interrupt."

• For "system trap. handler" substitute "Trap type
Program interrupt."

9.3.1 Definitions and Notation

The following augments the definitions given in Book
I.

• The context of a program is defined by the
content of the MSR when the program is exe­
cuting. It defines the manner in which the
program accesses and executes instructions,
accesses data, controls interrupts, accesses the
floating-point unit, and interprets addresses or
fixed-point data (32 bits or 64 bits).

• An exception is an error, unusual condition, or
external signal, that may set a status bit, and
which mayor may not cause an interrupt,
depending upon whether or not the corresponding
interrupt is enabled.

• An interrupt is the act of changing the machine
state in response to an exception, as described in
Chapter 13, "Interrupts" on page 193.

• A trap interrupt is an interrupt that results from
execution of a Trap instruction.

• Hardware means any combination of hard-wired
implementation, "fast trap" to implementation­
dependent software assistance, or interrupt for
software assistance. In the last case, the inter­
rupt may be to an architected location or to an
implementation-dependent location. Any use of
fast traps or interrupts to implement the architec-

Chapter 9. Introduction 143

ture is described in Book IV, PowerPC Implemen­
tation Features.

• I, II, III, ... denotes a field that is reserved in an
instruction, a register, or in an architected
storage table.

9.3.2 Reserved Fields

System software should initialize reserved fields in
architected storage tables (Segment Table, Page
Table) to Os and not keep data in them, as the fields
may be used in the future by subsequent versions of
Power PC Architecture.

Some fields of certain storage tables may be written
to automatically by hardware, e.g. Reference and
Change bits in the Page Table. When the hardware
writes to such a table, the following rules must be fol­
lowed:

• No defined field other than the one(s) the hard­
ware is specifically updating may be modified.

• Contents of reserved fields may be preserved by
hardware or such fields may be written as Os. No
other changes to reserved fields may be made.

The handling of reserved bits in status and control
registers described in Book I applies here as well. In
addition, the reader should be cognizant that reading
and writing of some of these registers (e.g., the MSR)
can occur as a side effect of processing an interrupt
and of returning from an interrupt, as well as when
requested explicitly by the appropriate instruction
(e.g., mtmsr).

9.3.3 Description of Instruction
Operation

The following augments the definitions given in Book I
in the description of the RTL

Notation
SEGREG(x)

Meaning
Segment Register x

9.4 General Systems Overview

The processor or processor unit contains the
sequencing and processing controls for instruction
fetch, instruction execution and interrupt action.
Instructions that the processing unit can execute fall
into a number of classes:

• instructions executed in the Branch Processor
• instructions executed in the Fixed-Point Processor

144 PowerPC Architecture First Edition

• instructions executed in the Floating-Point
Processor

Almost all instructions executed in the Branch
Processor, Fixed-Point Processor, and Floating-Point
Processor are non-privileged and are described in
Part 1, "PowerPC User Instruction Set Architecture"
on page 1. Part 2, "PowerPC Virtual Environment
Architecture" on page 117 contains some cache man­
agement instructions. Instructions related to the priv­
ileged state of the processor, control of processor
resources, control of the storage hierarchy, and all
other privileged instructions are described here or in
Book IV, PowerPC Implementation Features.

9.5 Instruction Formats

See Part 1, "PowerPC User Instruction Set
Architecture" on page 1 for a description of the
instruction formats and addressing.

9.5.1 Instruction Fields

The following augments the instruction fields
described in Book I.

SPR (11:20)
Special Purpose Register

See the descriptions of the mtspr (page 79) and
mfspr (page 80) instructions for a list of SPR
encodings.

SR (12:15)
Field used to specify one of the 16 Segment Reg­
isters.

9.6 Exceptions

The following augments the list, given in Book I, of
exceptions that can be caused by the execution of an
instruction.

• the execution of a Load or Store instruction to a
direct-store segment, in a manner that causes an
exception (direct-store error exception)

• the execution of a traced instruction (Trace
exception)

9.7 Synchronization

The synchronization described in this section refers to
the state of the processor that is performing the syn­
chronization.

BRANCH

PROCESSOR

I NSTRUCTI ON
CACHE

i

~ FIXED
POINT

- PROCESSOR

FLOATING
'-+ POINT

PROCESSOR

MAIN MEMORY

1
DIRECT MEMORY ACCESS

DATA
CACHE

Figure 39. Logical View of the PowerPC Processor
Architecture

9.7.1 Context Synchronization

An instruction ·or event is "context synchronizing" if it
satisfies the requirements listed below. Such
instructions and events are collectively called
"context synchronizing operations." Examples of
context synchronizing operations include the sc
instruction (see Part 1, "PowerPC User Instruction Set
Architecture" on page 1), the rfi instruction, and most
interrupts.

1. The operation causes instruction dispatching (the
issuance of instructions by the instruction fetch
mechanism to any instruction execution mech­
anism) to be halted.

2. The operation is not initiated or, in the case of
isync, is not completed, until all instructions
already in execution have completed to a point at
which they have reported all exceptions they will
cause. (If a storage access due to a previously
initiated instruction may cause one or more
Direct-Store Error exceptions, the determination
of whether it does cause such exceptions is made
before the operation is initiated.)

3. If the operation directly causes an interrupt (e.g.,
sc directly causes a System Call interrupt) or is
an interrupt, the operation is not initi.ated until no
exception exists having higher priority than the
exception associated with the interrupt (see
Section 13.8, "Interrupt Priorities" on page 203).

4. The instructions that precede the operation will
complete execution in the context (privilege, relo­
cation, storage protection,etc.) in which they
were initiated.

5. The instructions that follow the operation will be
fetched and executed in the context established
by the operation. (This requires that any pre­
fetched instructions be discarded, which in turn
requires that any effects and side effects of spec­
ulatively executing them also be discarded. The
only side effects of these instructions that are
permitted to survive are those specified in
Section 12.2.5, "Speculative Execution" on
page 159.)

A context synchronizing operation is necessarily exe­
cution synchronizing; see Section 9.7.2, "Execution
Synchronization." Unlike the sync instruction (see
Part 2, "PowerPC Virtual Environment Architecture"
on page 117), a context synchronizing operation need
not wait for storage-related operations to complete on
other processors, nor for Reference and Change bits
in the Page Table (see Chapter 12, "Storage Control"
on page 157) to be updated.

9.7.2 Execution Synchronization

An instruction is "execution synchronizing" if all pre­
viously initiated instructions appear to have com­
pleted before the instruction is initiated or, in the case
of sync and isync, before the instruction completes.
Examples of execution synchronizing instructions are
sync (see Part 1, "PowerPC User Instruction Set
Architecture" on page 1) and mtmsr. Also, all
context synchronizing instructions (see Section 9.7.1)
are execution synchronizing.

Unlike a context synchronizing operation, an exe­
cution synchronizing instruction need not ensure that
the instructions following that instruction will execute
in the context established by that instruction. This
new context becomes effective sometime after the
execution synchronizing instruction completes and
before or at a subsequent context synchronizing oper­
ation.

Chapter 9. Introduction 145

146 PowerPC Architecture First Edition

Chapter 10. Branch Processor

10.1 Branch Processor Overview

This chapter describes the details concerning the reg­
isters and the privileged instructions implemented in
the Branch Processor that are in addition to those
shown in Part 1, "PowerPC User Instruction Set
Architecture" on page 1.

1 0.2 Branch Processor Registers

1 0.2.1 Machine Status Save/Restore
Register 0

The Machine Status Save/Restore Register 0 (SRRO)
is a 32-bit or 64-bit register depending on the version
of the architecture implemented. This register is used
to save machine status on interrupts, and to restore
machine status when a Return From Interrupt (rilJ
instruction is executed.

On interrupt, SRRO is set to the current or next
instruction address. Thus if the interrupt occurs in
32-bit mode, the high-order 32 bits of SRRO are set to
O. When rii is executed, the contents of SRRO are
copied to the current instruction address (CIA), except
that the high-order 32 bits of the CIA are set to 0
when returning to 32-bit mode.

o
o

SRRO

Figure 40. Save/Restore Register 0

61 63

{29}{31}

In general, SRRO contains the instruction address that
caused the interrupt, or the instruction address to
return to after an interrupt is serviced.

Programming Note ------------,

In some implementations, every instruction fetch
when MSR1R = 1, and every instruction execution
requiring address translation when MSRoR = 1,
may have the side effect of modifying SRRO. For
further details see the Book IV, PowerPC Imple­
mentation Features document for the implementa­
tion.

10.2.2 Machine Status Save/Restore
Reg'ister 1

The Machine Status Save/Restore Register 1 (SRR1)
is a 32-bit or 64-bit register depending on the version
of the architecture implemented. This register is used
to save machine status on interrupts, and to restore
machine status when an rii instruction is executed.

SRR1

o 63 {31}

Figure 41. Save/Restore Register 1

In general, when an interrupt occurs, bits 33:36 and
42:47 {1:4 and 10:15} of SRR1 are loaded with infor­
mation specific to the interrupt type, and bits 0:32,
37:41, and 48:63 {O, 5:9, and 16:31} of the MSR are
placed into the corresponding bit positions of SRR1.

Programming Note -------------,

In some implementations, every instruction fetch
when MSR1R = 1, and every instruction execution
requiring address translation when MSRoR = 1,
may have the side effect of modifying SRR1. For
further detail,s see the Book IV, PowerPC Imple­
mentation Features document for the implementa­
tion.

Chapter 10. Branch Processor 147

10.2.3 Machine State Register

The Machine State Register (MSR) is a 32-bit or 64-bit
register depending on the version of the architecture
implemented. This register defines the state of the
processor. On interrupt, the MSR bits are altered in
accordance with Figure 68 on page 195. The MSR
can also be modified by the mtmsr, sc, and rfi

instructions. It can be read by the mfmsr instruction.

MSR

o 63 {31}

Figure 42. Machine State Register

Below are shown the bit definitions for the Machine
State Register. The notation "full function" on a
reserved bit means that it is saved in SRR1 when an
interrupt occurs. The notation "partial function"
means that it is not saved.

Bit(s) Description

o Sixty-Four-bit mode (SF)

o the processor runs in 32-bit mode.
1 the processor runs in 64-bit mode.

1 :32 {O} Reserved full function

33:36 {1 :4} Reserved partial function

37:41 {5:9} Reserved full function

42:44 {10:12} Reserved partial function

45 {13} Power Management Enable (POW)

o power management disabled (normal
operation mode).

1 power management enabled (reduced
power mode).

Power management functions are
implementation-dependent. For further
descriptions of the effect of this bit, see the
Book IV, PowerPC Implementation Features
document for the implementation.

46 {14} Implementation-Dependent Function
See the Book IV, PowerPC Implementation
Features document for the implementation.

47 {15} Interrupt Little-Endian Mode (ILE)
When an interrupt is taken, this bit is copied
into MSR LE to select the Endian mode for the
context established by the'interrupt.

48 {16} External Interrupt Enable (EE)

o the processor is disabled against External
and Decrementer interrupts.
the processor is enabled to take an
External or Decrementer interrupt.

49 {17} Problem State (PR)

o the processor is privileged to execute any
instruction

148 PowerPC Architecture First Edition

the processor can only execute the non­
privileged instructions.

MSRpR also affects storage protection, as
described in Chapter 12, "Storage Control"
on page 157.

50 {18} Floating-Point Available (FP)

o the processor cannot execute any floating­
point instructions, including floating-point
loads, stores and moves.
the processor can execute floating-point
instructions.

51 {19} Machine Check Enable (ME)

o Machine Check interrupts are disabled.
1 Machine Check interrupts are enabled.

52 {20} Floating-Point Exception Mode 0 (FEO)
See below.

53 {21} Single-Step Trace Enable (SE)

o the processor executes instructions
normally.
the processor generates a Single-Step
type Trace interrupt upon the successful
execution of the next instruction., Suc­
cessful execution means the instruction
caused no other interrupt. See Book IV,
PowerPC Implementation Features.

Single-step tracing may not be present on all
implementations. If the function is not imple­
mented, MSRsE should be treated as a
reserved MSR bit: mfmsr may return the last
value written to the bit, or may return 0
always.

54 {22} Branch Trace Enable (BE)

o the processor executes branch
instructions normally.
the processor generates a Branch type
Trace interrupt after completing the exe­
cution of a branch instruction, whether or
not the branch is taken. See Book IV,
PowerPC Implementation Features.

Branch tracing may not be present on all
implementations. If the function is not imple­
mented, MSRsE should be treated as a
reserved MSR bit: mfmsr may return the last
value written to the bit, or may return 0
always.

55 {23} Floating-Point Exception Mode 1 (FE1)
See below.

56 {24} Reserved full function
This bit corresponds to the AL bit of the
Power Architecture. It will not be assigned
new meaning in the near future. As for any
other reserved bit in a register, software is
permitted to write the value 1 to this bit, but
there is no guarantee that a subsequent

"reading of this bit will yield the value that
software "wrote" there.

Programming Note ----------,

Power-compatible operating systems will
probably write the value 1 to this bit.

57 {25} Interrupt Prefix (IP)
In the following description, nnnnn is the
offset of the interrupt. See Figure 69 on
page 195.

o interrupts vectored to the real address
OxOOOn_nnnn in 32-bit versions and real
address OxOOOO_OOOO_OOOn_nnnn in 64-bit
versions
interrupts vectored to the real address
OxFFFn_nnnn in 32-bit versions and real
address OxFFFF _FFFF _FFFn_nnnn in 64 bit
versions.

58 {26} Instruction Relocate (IR)

o instruction address translation is off.
1 instruction address translation is on.

59 {27} Data Relocate (DR)

o data address translation is off.
data address translation is on.

60 {28} Reserved full function

61 {29} Reserved full function

62 {30} Recoverable Interrupt (RI)

o interrupt is not recoverable.
1 interrupt is recoverable.

Additional information about the use of this
bit is given in Sections 13.4, "Interrupt
Processing" on page 194, 13.5.1, "System
Reset Interrupt" on page 196, and 13.5.2,
"Machine Check hiterrupt" on page 196.

63 {31} Litt/e-Endian Mode (LE)

o the processor runs in Big-Endian mode.
1 the processor runs in Little-Endian mode.

The Floating-Point Exception Mode bits are inter­
preted as shown below. For further details see
Part 1, "PowerPC User Instruction Set Architecture"
on page 1.

FEO FE1
o 0
o 1
1 0
1 1

Mode
Interrupts disabled
Imprecise Nonrecoverable
Imprecise Recoverable
Precise

"10.2.4 Processor Version Register

The Processor Version Register is a 32-bit read-only
register that contains a value identifying the specific
version (model) and revision level of the Power PC
processor. The contents of the PVR can be copied to
a GPR by the mfspr instruction. Read access to the
PVR is privileged; write access is not provided.

I Version I Revision I
o 16 31

Figure 43. Processor Version Register

The PVR contains two fields:

Version A 16-bit number that uniquely determines
a particular processor version and
version of the PowerPC Architecture.
This number can be used to determine
the version of a processor; it may not dis­
tinguish between different product models
if more than one model uses the same
processor.

Revision A 16-bit number that distinguishes
between various releases of a particul ar
version, i.e. an Engineering Change level.

The value of the Version portion of the PVR is
assigned by the Power PC Architecture process.
Values assigned to date are listed in - Heading 'PVN'
unknown -.

The value of the Revision portion of the PVR is imple­
mentation defined.

Chapter 10. Branch Processor 149

10.3 Branch Processor Instructions

10.3.1 System Linkage Instructions

These instructions provide the means by which a
program can call upon the system to perform a
service, and by which the system can return from per­
forming a service or from processing an interrupt.

These instructions are context synchronizing, as
defined in Section 9.7.1, "Context Synchronization" on
page 145.

The System Call instruction is described in Part 1,
"PowerPC User Instruction Set Architecture" on
page 1, but only at the level required by an applica­
tion programmer. A complete description of this
instruction appears below.

System Call SC-form

sc

[Power mnemonic: svca]

10 17 I. /1/ I" 11/ I,. /II

SRR8 ~;ea CIA + 4
SRR133:36 42:47 {1:4 10:15} ~ undefi ned
SRRIO:32 37:41 48:63 {O 5:9 16:31} ~ MSRO:32 37:41 48:63 {O 5:9 16:31}
MSR ~ new_value (see below)
NIA ~;ea base_ea + 8xC88 (see below)

The effective address of the instruction following the
System Call instruction is placed into SRRO. Bits 0:32,
37:41, and 48:63 {O, 5:9, and 16:31} of the MSR are
placed into the corresponding bits of SRR1, and bits
33:36 and 42:47 {1:4 and 10:15} of SRR1 are set to
undefined values.

Then a System Call interrupt is generated. The inter­
rupt causes the MSR to be altered as described in
Section 13.5, "Interrupt Definitions" on page 195.

The interrupt causes the next instruction to be fetched
from offset OxCOO from the base real address indi­
cated by the new setting of MSR,p.

This instruction is context synchronizing.

Spe~ial Registers Altered:
SRRO SRR1 MSR

150 PowerPC Architecture First Edition

Compatibility Note -------------.

For a discussion of Power compatibility with
respect to instruction bits 16:29, please refer to
the "Incompatibilities with the Power
Architecture" appendix of Part 1, "PowerPC User
Instruction Set Architecture" on page 1. For com­
patibility with future versions of this architecture,
these bits should be coded as zero.

Return From Interrupt XL-form

rfi

10 19
50

MSRO:32 37:41 48:63 {O 5:9 16:31} ~ SRRIO:3237:41 48:63 {05:9 16:31}
NIA ~;ea SRRBO:61 {O:29} II ebee
Bits 0:32, 37:41, and 48:63 {O, 5:9, and 16:31} of SRR1
are placed into the corresponding bits of the MSR.
Then the next instruction is fetched, under control of
the new MSR value, from the address
SRROo:61{O:29} II ObOO (32-bit implementations, and
64-bit implementations when SF= 1 in the new MSR
value) or 320 II SRR032:61 II ObOO (64-bit implementa­
tions when SF=O in the new MSR value).

If this instruction enables any pending exceptions, the
interrupt associated with the highest priority pending
exception is generated.

This instruction is privileged and context synchro­
nizing.

Special Registers Altered:

Chapter 11. Fixed-Point Processor

11.1 Fixed-Point Processor
Overview

This chapter describes the details concerning the reg­
isters and the privileged instructions implemented in
the Fixed-Point Processor that are in addition to those
shown in Part 1, "PowerPC User Instruction Set
Architecture" on page 1.

11.2 PowerPC Special Purpose
Registers

The Special Purpose Registers are read and written
via the mfspr (page 79) and mtspr (page 79)
instructions. The descriptions of these instructions
list the valid encodings of SPR numbers. Encodings
not listed are reserved for future use or for use as
implementation-specific registers.

Most SPRs are defined in other parts of this book; see
the index to locate those definitions. Some SPRs are
specific to an implementation. See Appendix M,
"Implementation-Specific SPRs" on page 273 and
Book IV, PowerPC Implementation. Features.

11.3 Fixed-Point Processor
Registers

11.3.1 Data Address Register

The Data Address Register (DAR) is a 32-bit or 64-bit
register depending on the version of the architecture
implemented. See Sections 13.5.3, "Data Storage
Interrupt" on page 194, and 13.5.6, "Alignment
Interrupt" on page 196 ..

When an interrupt that uses the DAR occurs, the DAR
is set to the effective address associated with the
interrupting instruction. If the interrupt occurs in

32-bit mode, the high-order 32 bits of the DAR are set
to O.

DAR

o 63 {31}

Figure 44. Data Address Register

11.3.2 Data Storage I nterrupt Status
·Register

The Data Storage Interrupt Status Register (DSISR) is
a 32-bit register that defines the cause of Data
Storage and Alignment interrupts. See Sections
13.5.3, "Data Storage Interrupt" on page 194 and
13.5.6, "Alignment Interrupt" on page 196.

DSISR

o 31

Figure 45. Data Storage Interrupt Status Register

11.3.3 Software-use SPRs

SPRGO through SPRG3 are 64-bit {32-bit} registers
provided for operating system use.

SPRGO

SPRG1

SPRG2

SPRG3

o 63 {31}

Figure 46. Software-use SPRs

The following list describes the conventional uses of
SPRGO through SPRG3.

SPRGO
Software may load a unique real address in this
register to identify an area of storage reserved for
use by the first level interrupt handler. This area
must be unique for each processor in the system,

Chapter 11. Fixed-Point Processor 151

SPRG1
This register may be used as a scratch register by
the first level interrupt handler to save the content
of a GPR. That GPR then can be loaded from
SPRGO and used as a base register to save other
GPR's to storage.

SPRG2
This register may be used by the operating system
as needed.

SPRG3
This register may be used by the operating system
as needed.

11.4 Fixed-Point Processor
Privileged Instructions

11.4.1 Move To/From System
Registers Instructions

The Move To Special Purpose Register and Move
From Special Purpose Register instructions are
described in Part 1, "PowerPC User Instruction Set
Architecture" on page 1, but only at the level avail­
able to an application programmer. In particular, no
mention is made there of registers that can be
accessed only in privileged state. A complete
description of these instructions appears below.

Extended mnemonics

A set of extended mnemonics is provided for the
mtspr and mfspr instructions so that they can be
coded with the SPR name as part of the mnemonic
rather than as a numeric operand. See Appendix C,
"Assembler Extended Mnemonics" on page 221.

152 PowerPC Architecture First Edition

Move To Special Purpose Register
XFX-form

mtspr SPR,RS

I. 31 I. RS I" spr 467

n = spr S:9 II Spr O:4
if length(SPREG(n» 64 then

SPREG(n) +- (RS)
else

SPREG (n) +- (RS h2:63{O:31)

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 47 on page 153. The
contents of register RS are placed into the designated
Special Purpose Register. For Special Purpose Regis­
ters that are 32 bits long, the low-order 32 bits of RS
are placed into the SPR.

For this instruction, SPRs TBl and TBU are treated as
separate 32-bit registers; setting one leaves the other
unaltered.

spro= 1 if and only if writing the register is privileged.
Execution of this instruction specifying a defined and
privileged register when MSRpR =1 will result in a
Privileged Instruction type Program interrupt.

Additional values of the SPR field, beyond those
shown in Figure 47 on page 153, may be defined in
Book IV, PowerPC Implementation Features for the
implementation (see also Appendix M,
"Implementation-Specific SPRs" on page 273). If the
SPR field contains any value other than one of these
implementation-specific values or one of the values
shown in the Figure, the instruction form is invalid.
However, if MSRpR = 1 then the only effect of exe­
cuting an invalid instruction form in which spro= 1 is
to cause either a Privileged Instruction type Program
interrupt or an Illegal Instruction type Program inter­
rupt.

Special Registers Altered:
See Figure 47 on page 153

Compiler and Assembler Note --------,

For the mtspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two
5-bit halves that are reversed in the instruction,
with the high-order 5 bits appearing in bits 16:20
of the instruction and the low-:order 5 bits in bits
11:15. This maintains compatibility with Power
SPR encodings, in which these two instructions
had only a 5-bit SPR field occupying bits 11:15.

SPR1 Register Privi-
decimal sprS:9 sprO:4 name leged

1 0000000001 XER no
8 0000001000 LR no
9 00000 01001 CTR no

18 00000 10010 DSISR yes
19 00000 10011 DAR yes
22 00000 10110 DEC yes
25 00000 11001 SDRl yes
26 00000 11010 SRRO yes
27 00000 11011 SRRl yes

272 01000 10000 SPRGO yes
273 01000 10001 SPRGl yes
274 01000 10010 SPRG2 yes
275 01000 10011 SPRG3 yes
280 01000 11000 ASR 2 yes
282 01000 11010 EAR yes
284 01000 11100 TBl yes
285 01000 11101" TBU yes

528 10000 10000 IBATOU yes
529 10000 10001 IBATOL yes
530 10000 10010 IBAT1U yes
531 10000 10011 IBAT1L yes
532 10000 10100 IBAT2U yes
533 10000 10101 IBAT2L yes
534 10000 10110 IBAT3U yes
535 10000 10111 IBAT3L yes

536 10000 11000 DBATOU yes
537 10000 11001 DBATOL yes
538 10000 11010 DBAT1U yes
539 10000 11011 DBAT1L yes
540 10000 11100 DBAT2U yes
541 10000 11101 DBAT2L yes
542 10000 11110 DBAT3U yes
543 10000 11111 DBAT3L yes

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 64-bit implementations only.

Figure 47. SPR encodings for mtspr

Programming Note ------------.

For a discussion of software synchronization
requirements when altering certain Special.
Purpose Registers, please refer to Appendix L,
"Synchronization Requirements for Special
Registers" on page 269.

Compatibility Note -----------,

For a discussion of Power compatibility with
respect to SPR numbers not shown in the instruc­
tion descriptions for mtspr and mfspr, please refer
to the "Incompatibilities with the Power Architec­
ture" appendix of Part 1, "PowerPC User Instruc­
tion Set Architecture" on page 1. For
compatibility with future versions of this architec­
ture, only SPR numbers discussed in these
instruction descriptions should be used.

Move From Special Purpose Register
XFX-form

mfspr RT,SPR

10
31 spr

n f- sprS:9 II SprO:4
if length(SPREG(n» = 64 then

RT f- SPREG(n)
else

RT f- 32e II SPREG(n)

339

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 48 on page 154. The
contents of the designated Special Purpose Register
are placed into register RT. For Special Purpose Reg­
isters that are 32 bits long, the low-order 32 bits of RT
receive the contents of the Special Purpose Register
and the high-order 32 bits of RT are set to zero.

spro = 1 if and only if reading the register is PrIVI­

leged. Execution of this instruction specifying a
defined and privileged register when MSRpR = 1 will
result in a Privileged Instruction type Program inter­
rupt.

Additional values of the SPR field, beyond those
shown in Figure 48 on page 154, may be defined in
Book IV, PowerPC Implementation Features for the
implementation (see also Appendix M,
"Implementation-Specific SPRs" on page 273). If the
SPR field contains any value other than one of these
implementation-specific values or one of the values
shown in the Figure, the instruction form is invalid.
However, if MSRpR = 1 then the only effect of exe­
cuting an invalid instruction form in which spro= 1 is
to cause either a Privileged Instruction type Program
interrupt or an Illegal Instruction type Program inter­
rupt.

Special Registers Altered:
None

Compiler/Assembler/Compatibility Notes

See the Notes that appear with mtspr.

Chapter 11. Fixed-Point Processor 153

SPR1 Register Privi-
decimal spr 5:9 spr 0:4 name leged

1 0000000001 XER no
8 0000001000 LR no
9 0000001001 CTR no

18 00000 10010 DSISR yes
19 00000 10011 DAR yes
22 00000 10110 DEC yes
25 00000 11001 SDR1 yes
26 00000 11010 SRRO yes
27 00000 11011 SRR1 yes

272 01000 10000 SPRGO yes
273 01000 10001 SPRG1 yes
274 01000 10010 SPRG2 yes
275 01000 10011 SPRG3 yes
280 01000 11000 ASR 2 yes
282 01000 11010 EAR yes
287 01000 11111 PVR yes

528 10000 10000 IBATOU yes
529 10000 10001 IBATOL yes
530 10000 10010 IBAT1U yes
531 10000 10011 IBAT1L yes
532 10000 10100 IBAT2U yes
533 10000 10101 IBAT2L yes
534 10000 10110 IBAT3U yes
535 10000 10111 IBAT3L yes

536 10000 11000 DBATOU yes
537 10000 11001 DBATOL yes
538 10000 11010 DBAT1U yes
539 10000 11011 DBAT1L yes
540 10000 11100 DBAT2U yes
541 10000 11101 DBAT2L yes
542 10000 11110 DBAT3U yes
543 10000 11111 DBAT3L yes

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.

264-bit implementations only.

Moving from the Time Base (TB and TBU) is
accomplished with the mftb instruction,
descri bed in Book II.

Figure 48. SPR encodings for mfspr

154 PowerPC Architecture First Edition

Move To Machine State Register X-form

mtmsr RS

10 31 Is RS 111 III I III I
• " 16 21

146

1:,1

MSR +- (RS)

The contents of register RS are placed into the MSR.

This instruction is privileged and execution synchro­
nizing.

In addition, alterations to the EE and RI bits are effec­
tive as soon as the instruction completes. Thus if
MSREE = 0 and an External or Decrementer interrupt
is pending, executing an mtmsr instruction that sets
MSREE to 1 will cause the External or Decrementer
interrupt to be taken before the next instruction is
executed.

Special Registers Altered:
MSR

Programming Note ----------.....,

For a discussion of software synchronization
requirements when altering certain MSR bits,
please refer to Appendix L, "Synchronization
Requirements for Special Registers" on page 269.

Move From Machine State Register
X-form

mfmsr RT

10 31 Is RT 111 III I III I
• • 16 21

83

RT +- MSR

The contents of the MSR are placed into RT.

This instruction is privileged.

Special Registers Altered:
none

1 :,1

.

I

~

I

I

Chapter 12. Storage Control

12.1 Storage Addressing

A program references storage .using the Effective
Address computed by the processor when it executes
a load, store, branch, or cache instruction, and when
it fetches the next sequential instruction. The effec­
tive address is translated to a real address according
to procedures described in section 12.3, "Address
Translation Overview" on page 159 and following.
The real address is what is sent to the memory sub­
system. See Figure 49 on page 159.

For a complete discussion of storage addressing and
effective address calculation, refer to "Storage
Addressing" in Chapter 1 of Part 1, "PowerPC User
Instruction Set Architecture" on page 1.

Storage Control Overview

• Page size is 212 bytes (4 KB)

• Segment size is 228 bytes (256 MB)

• For 64-bit implementations:

Maximum real memory size 264 bytes (16 EB)

Effective Address Range 264

Virtual Address Range 280

Number of segments 252

• For 32-bit implementations:

Maximum real memory size 232 bytes (4 GB)

Effective Address Range 232

Virtual Address Range 252

Number of segments 224

• Two types of storage segments based on the
state of the T bit in the Segment Table Entry or
segment register selected by the Effective
Address:

T = 0: Ordinary storage segment

T= 1: Direct-store segment

12.2 Storage Model

The storage model provides the following features:

1. The architecture allows the storage implementa­
tions to take advantage of the performance bene­
fits of weak ordering of storage access between
processors or between processors and devices.

2. The architecture provides instructions that allow
the programmer to ensure a consistent and
ordered storage state.

• dcbf • Iwarx
• dcbst • eieio
• dcbz • stdcx.
• icbi • stwcx.
• isync • sync
• Idarx

3. Processor ordering: storage accesses by a single
processor appear to complete sequentially from
the view of the programming model but may com­
plete out of order with respect to the ultimate
destination in the storage hierarchy. Order is
guaranteed at each level of the storage hierarchy
for accesses to the same address from the same
processor.

4. Storage consistency between processors and
between a processor and I/O is controlled by soft­
ware through mode bits in the page table. See
12.8.2, "Supported Storage Modes" on page 177.
Six modes are supported using the control bits:

• Write Through
• Caching Inhibited
• Memory Coherence

12.2.1 Storage Segments

Storage is divided into 256 MB (228) segments.

Programming Note -------------,

It is possible to provide larger segments to appli­
cation programs by using multiple adjacent seg­
ments.

Chapter 12. Storage Control 155

These segments can be of two types:

• An ordinary storage segment, referred to as a
"storage segment" or simply as a "segment."
Address translation is controlled by the setting of
the relocate bits MSRoR for data and MSR1R for
instructions. MSR1R and MSRoR are independent
bits and may be set differently. The state of
these bits may be changed by interrupts or by
executing the appropriate instructions. An effec­
tive address in these segments represents a real
or virtual address depending on the setting of the
relocate bits of the MSR.

• A direct-store segment, always referred to by the
entire name "direct-store segment." Such seg­
ments may be used for access to 110. Instruction
fetch from direct-store segments is not allowed.
MSRoR must be 1 when accessing data in a
direct-store segment. See 12.6, "Direct-Store
Segments" on page 173 for an explanation of
direct-store segments.

The value of the T bit" in the Segment Table Entry or
Segment Register distinguishes between ordinary
storage segments and direct-store segments.

T Segment type

0 Ordi nary storage segment

1 Direct-store segment

The T bit in the Segment Table Entry or Segment Reg­
ister is ignored when fetching instructions with
MSR1R = 0 or when accessing data with MSRoR = O.
Such accesses are not considered references to
direct-store segments.

See also section 12.6, "Direct-Store Segments" on
page 173.

12.2.2 Storage Exceptions

Each Effective Address must be translated to real in
order to complete the storage access. A storage
exception occurs if this translation fails for one of the
following reasons:

64·bit implementations

• There is no valid entry in the Segment Table
for the segment specified by the Effective
Address.

• The appropriate Segment Table entry is
found, but there is no valid entry in the Page
Table for the page specified by the Effective
Address.

• Both the appropriate Segment Table and
Page Table entries are found, but the access
is not allowed by the storage protection
mechanism.

156 PowerPC Architecture First Edition

32·bit implementations

• There is no valid entry in the Page Table for
the page specified by the Effective Address.

• The appropriate Page Table entry is found
but the access is not allowed by the storage
protection mechanism.

Storage exceptions cause Instruction Storage inter­
rupts and Data Storage interrupts that identify the
address of the failing instruction.

In certain cases a storage exception may result in the
"restart" of (re-execution of at least part of) a load or
store instruction. See the section entitled "Instruction
Restart" in Part 2, "PowerPC Virtual Environment

- Architecture" on page 117

12.2.3 "Instruction Fetch

Instructions are fetched under control of MSR1R.
When any context synchronizing event occurs, any
prefetched instructions are discarded, and then
refetched using the then-current state of MSR1R.

MSR1R=O

When instruction relocation is off, MSR1R = 0, the
effective address is interpreted as described in
section 12.2.6, "Real Addressing Mode" on page 158.

MSR1R=1

Instructions are fetched using the address translated
by one of the following mechanisms:

1. Segmented Address Translation Mechanism

2. Block Address Translation Mechanism

Instruction fetch from direct-store segments is not
supported. An attempt to execute an instruction
fetched from a direct-store segment will result in an
Instruction Storage interrupt.

12.2.4 Data Storage Access

Data accesses are controlled by MSRoR. When the
state of MSRoR changes, subsequent accesses are
made using the new state of MSRoR.

MSROR=O

When data relocation is off, MSRoR = 0, the effective
address is interpreted as described in section 12.2.6,
"Real Addressing Mode" on page 158.

MSROR=1

When address relocation is on, MSROR = 1, the effec­
tive address is translated by one of the following
mechanisms:

1. Segmented Address Translation Mechanism

2. Block Address Translation Mechanism

3. Direct-Store Segment Translation Mechanism

12.2.5 Speculative Execution

Data Access

A speculative operation is one that a program
"might" perform and that the hardware decides to
execute out of order on the speculation that the result
will be needed. If subsequent events indicate that the
speculative instruction would not have been executed,
the processor abandons any result the instruction
produced. Typically, hardware executes instructions
speculatively when it has resources that would other­
wise be idle, so that the operation is done without
cost or almost so.

Most operations can be performed speculatively, as
long as the machine appears to follow a simple
sequential model such as presented in Part 1,
"PowerPC User Instruction Set Architecture" on
page 1. Certain speculative operations are not per­
mitted:

• A speculative store may not be performed in such
a manner that the alteration of the target location
can be observed by other processors or mech­
anisms until it can be determined that the store is
no longer speculative.

• Speculative loads from "Guarded storage" (see
below) are prohibited, except that if a load or
store operation will be executed, the entire cache
block(s) containing the referenced data may be
loaded into the cache.

• No error of any kind other than Machine Check
may be reported due to the speculative execution
of an instruction, until such time as it is known
that execution of the instruction is required.

Speculative loads are allowed from any storage that
is not "Guarded storage." If in doing so a Machine
Check exception results, a Machine Check interrupt
may be generated even though the data access that
caused the Machine Check exception would not have
been performed because a previous uncompleted
operation would have changed the execution path.

Only one side effect (other than Machine Check) of
speculative execution is permitted when a speculative
instruction's result is abandoned: the Reference bit in
a Page Table Entry may be set due to a speculative
load.

Instruction Prefetch

The processor typically fetches instructions ahead of
the one(s) currently being executed in order to avoid
delay. Such instruction prefetching is a speculative

operation in that prefetched instructions may not be
executed due to intervening branches or interrupts.

Most prefetching is permitted, as long as the machine
appears to follow a simple sequential model such as
presented in Part 1, "PowerPC User Instruction Set
Architecture" on page 1. Certain prefetching is not
permitted:

• Prefetching from "Guarded storage" (see below)
is prohibited, except that if an instruction in a
cache block will be executed, the entire cache
block may be loaded.

• No error of any kind other than Machine Check
may be reported due to instruction prefetching,
until such time as the instruction that is the
target of such prefetch becomes the instruction to
be executed.

Speculative instruction fetches are allowed from any
storage that is not "Guarded storage." If in doing so,
a Machine Check exception results, a Machine Check
interrupt may be generated even if the instruction
fetch that caused the Machine Check exception would
not have been executed because a previous uncom­
pleted operation would have changed the execution
path.

Only one side effect (other than Machine Check) of
instruction prefetching is permitted: the Reference bit
in a Page Table Entry may be set.

Guarded Storage

Storage is said to be "Guarded" if either (a) the G bit
is one in the relevant PTE or DBAT register, or (b)
MSR bit IR or DR is zero for instruction fetches or
data loads respectively. (In case (b) all of storage is
Guarded).

Storage in a Guarded area may not be well-behaved
with regard to prefetching and other speculative
storage operations. Such storage may represent an
I/O device, and a speculative load or instruction fetch
directed to such a device may cause the device to
perform unexpected or incorrect operations.

Storage addresses in a Guarded area may not have
successors; that is, there may be "holes" in a
Guarded area of the real address space. On any
system, the highest real address has no successor.
Lack of a successor address means that speculative
sequential operations such as instruction prefetching
may fail and may result in a Machine Check.

Load or Store Instruction

A load or store instruction may not speculatively
access Guarded storage unless one of the following
conditions exist:

Chapter 12. Storage Control 157

1. The target storage location is in a cache. In this
case, the location may be accessed in the cache
or in main storage.

2. The target storage is Caching Allowed (I =0) and
it is guaranteed that the load or store is on the
branch path that will be executed (in the absence
of any intervening interrupts). In this case, the
entire cache block containing the target storage
location may be loaded into the cache.

3. The target storage is Caching Inhibited (I = 1), the
load or store is on the branch path that will be
executed, and no prior instructions can cause an
interrupt.

Instruction Fetch

Instructions may not be speculatively fetched from
Guarded storage unless one of the following condi­
tions exist:

1. The target storage location is in a cache. In this
case, the location may be accessed in the cache
or in main storage.

2. MSR(IR) = 1 and an instruction has been previ­
ously fetched from the page.

3. It is guaranteed that the instruction to be fetched
is on the branch path that will be taken (in the
absence of any intervening interrupts). If
MSR1R = 0, only the block containing the target
instruction may be fetched.

158 PowerPC Architecture First Edition

12.2.6 Real Addressing Mode

Whether address translation is enabled is controlled
by MSR1R for instruction fetching and by MSRoR for
data loads and stores. If address translation is disa­
bled for a particular access (fetch, load, or store), the
Effective Address is treated as the Real Address and
is passed directly to the memory subsystem.

The EA - is a 64-bit {32-bit} quantity computed by the
CPU. The width of the Real Address supported by a
particular implementation will be less than or equal to
this. If it is less, the high-order bits of the EA are
ignored when forming the Real Address.

Accesses in real mode bypass all storage protection
checks (section 12.10) and do not cause the recording
of reference and change information (section 12.9).
Real mode data accesses are executed as though the
storage access mode bits "WIMG" were 0011 (section
12.8). This mode allows accesses to be cached, does
not require the accesses to be written through the
cache to main storage, requires the hardware to
enforce data consistence with storage, 110, and other
processors (caches), and treats all storage as
Guarded storage. Real mode instruction fetches are
executed as though the "WIMG" bits were either 0001
or 0011. Speculative fetching of instructions and
speculative loads from storage in real mode are pro­
hibited (see "Guarded Storage" above).

Access to direct-store segments (section 12.6) is not
possible when translation is disabled, as Segment
Table Entries (section 12.4.1.2) or Segment Registers
(section 12.5.1.1) are.not checked for a T=1 specifica­
tion.

WARNING: An attempt to fetch from, load from, or
store to a Real Address that is not physically present
in the machine may result in a Machine Check inter­
rupt or a Checkstop (Section 13.5.2).

12.3 Address Translation Overview

Figure 49 gives an overview of the address translation process on Power PC.

Segmented Address
Translation

Lookup in
Segment Table

Ordinary
Segment

Di rect-Store
Segment

!
,----..--

Vi rtua 1 Address
Translation

Lookup in
Page Tabl e

!
Rea 1 Address

Figure 49. PowerPC Address Translation

1/0 Address

The Effective Address (EA) is the address generated
by the processor for load and store instructions or for
instruction fetch. This address is passed simultane­
ously to two translation mechanisms:

• Segmented Address Translation, described in
section 12.4 on page 160 for 64-bit implementa­
tions, and in section 12.5 on page 168 for 32-bit
implementations, and

• Block Address Translation, described in section
12.7 on page 174.

A typical Effective Address will be successfully trans­
lated by just one of these mechanisms. If neither
mechanism is successful, a storage exception (page
156) results. If both mechanisms are successful,
Block Address Translation takes precedence.

Block Address
Translation

Match against
BAT Registers

Rea 1 Address

An Effective Address that translates successfully via
the Segmented Address Translation mechanism (but
not by the Block Address Translation mechanism) is a
reference to one of two types of segments:

• A direct-store segment, in which case the address
is converted directly into an 1/0 address and is
passed to the 1/0 subsystem for further action, or

• An ordinary segment, in which case the address
is converted into a real address that is then used
to access storage.

An Effective Address that translates successfully via
the Block Address Translation mechanism is con­
verted directly into a real address that is then used to
access storage.

Chapter 12. Storage Control 159

12.4 Segmented Address Translation, 64-bit Implementations

Figure 50 shows the steps involved in translating from an Effective Address to a Real Address on a 64-bit imple­
mentation.

64-bi t EA I Effecti ve Segment i~ I Page

I lookup

Segment Table

1
sa-bi t VA Vi rtua 1 Segment ID

52'--,------16 I
Page .

I lookup

Page Tabl e

1
64-bit RA Real Page Number 12l Byte _

Figure 50. Address Translation Overview (64-bit implementations)

If an access is translated by the Block Address Trans­
lation mechanism (BAT, see Section 12.7 on page
174), the BAT translation takes precedence and the
results of segmented address translation are not
used. If an access is not translated by a BAT, seg­
mented address translation proceeds as follows.

The Effective Address (EA) is a 64-bit quantity com­
puted by the processor. Bits 0:35 of the EA are the
Effective Segment ID (ESIO); these are looked up in
the Segment Table to produce a Virtual Segment 10
(VSID). Bits 36:51 of the EA are the Page Number
within the segment; these are concatenated with the
VSID from the Segment Table to form the Virtual Page
Number (VPN). The VPN is looked up in the Page
Table to produce a Real Page Number (RPN). Bits
52:63 of the EA are the Byte Offset within the page;
these are concatenated with the RPN to form the Real
Address (RA) that is used to access storage.

If the processor is executing in 32-bit mode
(MSRsF=O), the translation process described above
is followed except that the high-order 32 bits of the
64-bit Effective Address (that is, bits 0:31 of the ESIO)

160 PowerPC Architecture First Edition

are forced to zero before the lookup in the Segment
Table starts. Bits 32:35 of the EA, which are the high­
order 4 bits of the lower 32 bits of the EA, thus consti­
tute the ESIO.

If the selected Segment Table Entry identifies the
segment as a direct-store segment, the Page Table is
not referred to. Rather, translation continues as
described in 12.6, "Direct-Store Segments" on
page 173.

For ordinary storage segments the translation moves
in two steps from Effective Address to Virtual Address
(which never exists as a specific entity but can be
considered to be the' concatenation of the VPN and
Byte Offset), and from Virtual Address to Real
Address.

The first step in segmented address translation is to
convert the effective address into a virtual address,
described in section 12.4.1 on page 161. The second
step, conversion of the virtual address into a real
address, is described in section 12.4.2 on page 164.

12.4.1 Virtual Address Generation, 64-bit Implementations

Conversion of a 64-bit Effective Address to a Virtual Address is done by searching a hashed segment table
pointed to by the Address Space Register.

Address Space Reg; ster (ASR)

Real Address of Segment Tabl e

e
1

i
51

1

I
• i i

I Hash Funct; on I
I I
, !

I

63

SEGMENT TABLE
4896 bytes

64-BIT EFFECTIVE ADDRESS

.----------36 I 16-,--1c-,
ESID I Page I Byte I

1- 16 bytes

I I I

31 35 36 51 52 63
L--,---J 1'--_~-'1 L.-.,---...J

I I
I I
I I
I I
I
I
I
I
I
I
1

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I /r, --~I---r--~--.---~---r--'---' , I I
I / I STEe I I STE7 I STEGe
I / rl -~I--+-~--r--+-~---r~ I I • • / I I I I

.-----------------5c-,-5....,-7., / I I
I I eeeaaee I = I
1 1 1 \ I I

\ I I
\ I I

64-b; t Real Address of Segment Tabl e Entry Groull \ I I I STEG3l

SEGMENT TABLE ENTRY (STE)
16 bytes

\ I 1 1

------ 128 bytes ---------

~-----~---36~1 ---~~~-~~--~r---------------------
I III iviriKsiKPilll Ii ESID Vi rtual Seg1l!ent 10 (VSID)

5~

I 1/ I
1 1

~ ______________ ~I ______ ~I~I~I_I~~I __ -'I~1 _______________________ ~~

35 56 57 58 59 63 e I
I
I
I

•
VS1D

51 63

52 I
I
I

I
I
I
I
I
I
I
I
I
I
I"
I
I
I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
• t

16-,--1c-,
Page I Byte I

I 1

---------"Virtual Page Nu!11ber (VPN)--------

8S-BIT VIRTUAL ADDRESS

Figure 51. Translation of 64-bit Effective Address to Virtual Address

12.4.1.1 Address Space Register XFX-form" on page 79 and "Move To Special Purpose
Register XFX-form" on page 79.

The ASR is shown in Figure 52. This 64-bit special­
purpose register holds the real address of the
Segment Table. The Segment Table defines the set of
segments than can be addressed at anyone time; it is
usual to have different segment tables for different
processes. The contents of the ASR are usually part
of the process state.

Access to the ASR is privileged. The ASR may be
read or written by the mfspr and mtspr instructions.
See "Move From Special Purpose Register

Real address of Segment Table III

o 51 63

Figure 52. Address Space Register

Programming Note ---------------,

The values 0, Ox1000, and Ox2000 cannot be used
as Segment Table addresses, since these pages
contain interrupt vectors.

Chapter 12. Storage Control 161

T=O ESIO 11/ I V I T IK~K~ ///11 VSIO III

0 35 56 57 58 59 630 51 63

T=1 ESID /II I Vi TIK~K~ ///11 10

0 35 56 57 58 59

Dword Bit Name Description

0 0:35 ESID Effective Segment 10
56 V Entry valid if V = 1
57 T Direct-store segment if T = 1
58 Ks Supervisor state storage key
59 Kp Problem state storage key

All other fields are reserved.

Figure 53. Segment Table Entry format

12.4.1.2 Segment Table

The Segment Table (STAB) is a one-page data struc­
ture that defines the mapping between Effective
Segment IDs and Virtual Segment IDs. The STAB
must be on a page boundary.

The STAB contains 32 Segment Table Entry Groups,
or STEGs. A STEG contains 8 Segment Table Entries
(STEs) of 16 bytes each; each STEG is thus 128 bytes
long. STEGs are entry points for searches of the
Segment Table.

See section 12.12, "Table Update Synchronization
Requirements" on page 186 for the rules that soft­
ware must follow when updating the Segment Table.

Segment Table Entry

Each Segment Table Entry (STE) maps one ESID to
one VSID. Additional information in the STE controls
the STAB search process and provides input to the
storage protection mechanism. Figure 53 shows the
layout of an STE.

See 12.10, "Storage Protection" on page 179 for a
discussion of the storage key bits.

12.4.1.3 Segment Table Search

An outline of the STAB search process is shown in
Figure 51 on page 161. The detailed algorithm is .as
follows:

1. Primary Hash: Bits 0:51 of the ASR are concat­
enated with bits 31 :35 of the Effective Address
(the low 5 bits of the ESIO)· and with a field of
seven Os to form the 64-bit real address of a
Segment Table Entry Group. This operation is

162 PowerPC Architecture First Edition

630 63

Dword Bit Name Description

0:51 VSID Virtual SID

0:63 10 I/O specific

referred to as the "Primary STAB Hash." This
identifies a particular STEG, each of whose 8
STEs will be tested in turn.

2. The first STE in the selected STEG is tested for a
match with the EA. In order for a match to exist,
the following must be true:

• STEv = 1
• STEESID = EAo:35

If a match is found, the STE search terminates
successfully

3. Step 2 is repeated for each of the other 7 STEs in
the STEG. The first matching STE terminates the
search. If none of the 8 STEs match, the sec­
ondary hash must be tried.

4. Secondary Hash: Bits 0:51 of the ASR are con­
catenated with the ones-complement of bits 31:35
of the Effective Address and with a field of seven
Os to form the 64-bit real address of a Segment
Table Entry Group. This operation is referred to
as the "Secondary STAB Hash."

5. The first STE in the selected STEG is tested for a
match with the EA. In order for a match to exist,
the following must be true:

• STEv = 1
• STEESID = EAo:35

If a match is found, the STE search terminates
successfully.

6. Step 5 is repeated for each of the other 7 STEs in
the STEG. The first matching STE terminates the
search. If none of the 8 STEs match, the search
fails.

If the Segment Table search succeeds, the Virtual
Page Number (VPN) is formed by concatenating the
VSIO from the matching STE with bits 36:51 of the
Effective Address (the page number). The complete

80-bit Virtual Address (VA) is formed by concatenating
the VPN with bits 52:63 of the EA (the byte offset).

If the search fails, a page fault interrupt is taken. This
will be an Instruction Storage interrupt or a Data
Storage interrupt, depending on whether the Effective
Address is for an instruction fetch or for data access.

If the selected STE has T = 1, the reference is to a
direct-store segment. No reference is made to the
Page Table; processing continues as described in
12.6, "Direct-Store Segments" on page 173.

Segment Lookaside Buffer

Conceptually, the segment table is searched by the
address relocation hardware to translate every refer­
ence. For performance reasons the hardware usually
keeps a Segment Lookaside Buffer (SLB) that holds
STEs that have recently been used. The SLB is
searched prior to searching the Segment Table. As a
consequence, when software makes changes to the
Segment Table it must perform the appropriate SLB
invalidate operations to maintain the consistency of
the SLB with the tables.

Programming Notes -----------,

1. Segment table entries mayor may not be
cached in an SLB.

2. Table lookups are done using real addresses
and storage access mode M = 1 (Memory
Coherence).

3. If software plans to access the STAB with
data relocate on, MSRoR = 1, it must avoid
cache' synonyms by mapping these tables
such that the real and virtual address bits
used for cache set selection are the same,
just as is required for other virtual accesses.
See address alignment requirements
described in Part 2, "PowerPC Virtual Envi­
ronment Architecture" on page 117.

4. It is possible that the hardware implements
two SLB arrays (one for data and one for
instruction). In this case the size, shape and
values contained by the arrays may be dif­
ferent.

5. The ASR must point to a valid Segment Table
whenever address relocation is enabled
(MSR1R = 1 or MSROR = 1 or both) and the
Effective Address is not covered by BAT
translation.

6. Use the slbie or slbia instruction to ensure
that the SLB no longer contains a mapping for
a particular segment.

7. See Appendix L, "Synchronization Require­
ments for Special Registers" on page 269, for
the synchronization requirements that must
be satisfied when a program changes the con­
tents of the ASR.

8. Hardware never modifies the Segment Table.

12.4.1.4 32-bit Execution Mode

When a 64-bit implementation executes in 32-bit mode
(MSRsF=O), the Segment Table search is modified as
follows:

1. The 64·bit Effective Address is computed by the
processor as usual.

2. The high-order 32 bits of the EA are forced to
zero. Thus the Effective Segment ID consists of
32 O's concatenated with the high-ord~r 4 bits of
the lower half of the 64-bit EA.

3. The modified EA is then used as input to the
Segment Table search.

The zeroing of the high-order 32 bits effectively trun­
cates the 64-bit EA to a 32-bit EA such as would have
been generated on a 32-bitimplementation. The ESID
in 32-bit mode is the high-order 4 bits of this trun­
cated EA; the ESID thus lies in the range 0:15: These
4 bits would sel'ect a Segment Register on a 32-bit
implementation; they select one of 16 STEGs in the
Segment Table on a 64-bit implementation. These
STEGs can be used to emulate the 32-bit machine's
Segment Registers.

This truncation of the EA is the sole effect of 32-bit
mode (MSRsF=O) on address translation; everything
else proceeds as for 64-bit mode.

Chapter 12. Storage Control 163

12.4.2 Virtual to Real Translation, 64-bit Implementations

Conversion of an 80-bit Virtual Address to a Real Address is done by searching a hashed page table located by
SDR1.

Vi rtual Page Number (VPN)

8e·8IT VIRTUAL ADDRESS

HTABORG HTABSIZE
, 46-6 ..-, ----.----&_.,

SDRI I XlOt •••••••••••••••••••• xxeee ••••• 8e I III I
I ! I

8 17 18 45
~I _.--...J1 ~I __ .-_-...J1

i i
I I
I I
I I
I I
I I
I I
I I
I I
I I MaSk

58
1

i
t

63

r-----,
1 1
I DECODE 1

I 1
L-..,--J

1
I
t

1

VSID

13
1

i
t

Hash F unct ion

i
t

52 , 1&-r--1M
I Page I 8yte I
1 1 1

51 52 67 68 79 , , , ' L..-,.-I
I I
I

1

t
23 , I&_.,

8' s I I
I 1

I I , 28-,
I 8ee ••••• e8111 ••••• U I

..----------39-,
I I I
I I I I ,
I I i 8 27 28 38
I I ~I __ .-_-...J1 ~I __ ..--...J1

I I
I I
I I
I L--....,
I I
I I
L--...., I

I I
I 1
I I
I I
I I
I I
I I
I I
I t

,----,
I 1
I OR I
1 1
L-,---J

I

I i
t +

r-----,

I I
1 AND I

I I
L-..,--J

I ,

i

I
,..-----18-8 ..-, -----28-8 ...-, --11-,--7-, I

I
'1
I
I
I
I
t

I
t

I
I
I
1
I
I
I
I
t

I I I eeeeeea I
I I! t \

64·bi t Real Address of Page Table Entry Group

PAGE TABLE ENTRY (PTE)
16 bytes

\

I
I

I

\
\
\

.fAGE TA8LE

I PTE8 I
1 1
I I

I

i .
I

1- 16 bytes

i PTE7 i PTEG9
I' I
I I
I =

I ,.
~~--+-~-+-~~-+-~~I

I PTEGn
'--~_~_...J-_~-...J_~_-'---...J'

------ 128 bytes -------...

I
I

VSID
52-;--5-r,--r-, "",-'1,..----------52 'III'IR 'Ic 'IIIIMG 'II', pip II ,I

I API I III I H I V II Real Page Number (RPN) '--_________ '-' _,-I _--J.'~I ...JII I I !! I I " I
52 56 62 63 8 51 S5 56 57 68 62 63 ,

Figure 54. Translation of SO·bit Virtual Address to 64-bit Real Address

Generation of the 80-bit Virtual Address that is input
to this stage of the translation process is described in

164 PowerPC Architecture First Edition

~I ____ .-_____ ...J, I

I

i I
t •

..-------------:5~IM
64·8IT REAL ADDRESS RPN I Byte I

I !

12.4.1, "Virtual Address Generation,
Implementations" on page 161.

64-bit

12.4.2.1 Page Table

The Hashed Page Table (HTAB) is a variable-sized
data structure that defines the mapping between
Virtual Page Numbers and Real Page Numbers. The
HTAB's size must be a power of 2, and its starting
address mlist be a multiple of its size.

The layout of the HTAB is similar to that of the
Segment Table, except that the HTAB's size is vari­
able while the STAB's size is exactly one page. The
HTAB contains a number of Page Table Entry Groups,
or PTEGs. A PTEG contains 8 Page Table Entries
(PTEs) of 16 bytes each; each PTEG is thus 128 bytes
long. PTEGs are entry points for searches of the Page
Table.

See section 12.12, "Table Update Synchronization
Requirements" on page 186 for the rules that soft­
ware must follow when updating the Page Table.

Page Table Entry

Each Page Table Entry (PTE) maps one VPN to one
RPN. Additional information in the PTE controls the
HTAB search process and provides input to the
storage protection mechanism. Figure 55 shows the
! ayout of a PTE.

0 52 56 6263

I
VSIO I API I III IHlvl
RPN : "IRIC:WIMGI < PP :

0 51 555657 60 62 63

Dword Bit Name Description
0 0:51 VSID Virtual Segment 10

52:56 API Abbreviated Page Index
62 H Hash function identifier
63 V Entry valid (V = 1)

or invalid (V = 0)

0:51 RPN Real Page Number
55 R Reference bit
56 C Change bit
57:60 WIMG Storage access controls
62:63 PP Page protection bits

All other fields are reserved.

Figure 55. Page Table Entry, 64-bit implementations

The PTE contains an Abbreviated Page Index rather
than the complete Page field. At least 11 of the low­
order bits of the VPN are used in the hash function to
select a PTEG. These bits are not repeated in the
PTEs of that PTEG.

Page Table Size

The number of entries in the Page Table directly
affects performance because it influences the hit ratio

in the Page Table and thus the rate of page fault
interrupts. If the table is too small, it is possible that
not all the virtual pages that actually have real page
frames assigned can be mapped via the Page Table.
This can happen if too many hash collisions occur and
there are more than 16 entries for the same
primary/secondary pair of PTEGs. While this situation
cannot be guaranteed not to occur for any size Page
Table, making the Page Table larger than the
minimum size will reduce the frequency of occurrence
of such collisions.

Programming Note -------------,

It is recommended that the number of PTEGs in
the Page Table be at least one-half the number of
real pages to be accessed.

As an example, if the amount of real memory to
be accessed is 231 bytes (2 GB), then we have
231 -12 = 219 real pages. The minimum recom­
mended Page Table size would be 218 PTEGs, or
225 bytes (32 MB).

12.4.2.2 Storage Description Register 1

The SOR1 register is shown in Figure 56.

HTABORG

o 45 58 63

Bits Name Description
0:45 HTABORG Real address of page table
58:63 HTABSIZE Encoded size of table

All other fields are reserved.

Figure 56. SDR1, 64-bit implementations

The HTABORG field in SOR1 contains the high-order
46 bits of the 64-bit real address of the page table.
The Page Table is thus constrained to lie on a 218 byte
(256 KB) boundary at a minimum. At least 11 bits
from the hash function (Figure 54 on page 164) are
used to index into the Page Table. The minimum size
Page Table is 256 KB (211 PTEGs of 128 bytes each).

The Page Table can be any size 2n where 18 S n S 46.
As the table size is increased, more bits are used
from the hash to index into the table and the value in
HTABORG must have more of its low-order bits equal
to O. The HTABSIZE field in SOR1 contains an integer
giving the number of bits from the hash that are used
in the Page Table index. HTABSIZE is used to gen­
erate a mask of the form ObOO ... 011 ... 1, that is, a
string of 0 bits followed by a string of 1 bits. The 1
bits determine which additional bits (beyond the
minimum of 11) from the hash are used in the index;
HTABORG must have this same number of low-order
bits equal to O. See Figure 54 on page 164.

Example

Chapter 12. Storage Control 165

Suppose that the Page Table is 16,384 (214) 128-byte
PTEGs, for a total size of 221 bytes (2 MB). A 14-bit
index is required. Eleven bits are provided from the
hash to start with, so 3 additional bits from the hash
must be selected. Thus the value in HTABSIZE must
be 3 and the value in HTABORG must have its low­
order 3 bits (bits 31:33 of SDR1) equal to O. This
means that the Page Table must begin on a
23 + 11 + 7 = 221 = 2 MB boundary.

12.4.2.3 Hashed Page Table Search

An outline of the HTAB search process is shown in
Figure 54 on page 164. The detailed algorithm is as
follows:

1. Primary Hash: A 39-bit hash value is computed
by Exclusive-ORing the low-order 39 bits of the
VSID with a 39-bit value formed by concatenating
23 bits of 0 with the Page index.

2. The 64-bit real address of a PTEG is formed by
concatenating the following values:

• Bits 0:17 of SDR1 (the 18 high-order bits of
HTABORG).

• Bits 0:27 of the value formed in step 1 ANDed
with the mask generated from bits 58:63 of
SDR1 (HTABSIZE) and then ORed with bits
18:45 of SDR1 (the 28 low-order bits of
HTABORG).

• Bits 28:38 of the value formed in step 1.
• A 7 -bit field of Os.

This operation is referred to as the "Primary
HTAB Hash." This identifies a particular PTEG,
each of whose 8 PTEs will be tested in turn.

3. The first PTE in the selected PTEG is tested for a
match with VPN. In order for a match to exist,
the following must be true:

• PTEH=O
• PTEv=1
• PTEvs1D = VAO:51
• PTEAP1 = VA52:56

If a match is found, the PTE search terminates
successfully.

4. Step 3 is repeated for each of the other 7 PTEs in
the PTEG. The first matching PTE terminates the
search. If none of the 8 PTEs match, the sec­
ondary hash must be tried.

5. Secondary Hash: A 39-bit hash value is com­
puted by taking the ones complement of the
Exclusive OR of the low-order 39 bits of the VSID

166 PowerPC Architecture First Edition

with a 39-bit value formed by concatenating 23
bits of 0 with' the Page index.

6. The 64-bit real address of a PTEG is formed by
concatenating the following values:

• Bits 0:17 of SDR1 (the 18 high-order bits of
HTABORG).

• Bits 0:27 of the value formed in step 5 ANDed
with the mask generated from bits 58:63 of
SDR1 (HTABSIZE) and then ORed with bits
18:45 of SDR1 (the 28 low-order bits of
HTABORG).

• Bits 28:38 of the value formed in step 5.
• A 7 -bit field of Os.

This operation is referred to as the "Secondary
HTAB Hash."

7. The first PTE in the selected PTEG is tested for a
match with VPN. In order for a match to exist,
the following must be true:

• PTEH = 1
• PTEv = 1
• PTEvslD = VAO:51
• PTEAP1 = VA52:56

If a match is found, the PTE search terminates
successfully.

8. Step 7 is repeated for each of the other 7 PTEs in
the PTEG. The first matching PTE terminates the
search. If none of the 8 PTEs match, the search
fails.

If the Page Table search succeeds, the content of the
PTE that translates the EA is returned. The Real
Address (RA) is formed by concatenating the RPN
from the matching PTE with bits 52:63 of the Effective
Address (the byte offset).

If the search fails, a page fault interrupt is taken. This
will be an Instruction Storage interrupt or a Data
Storage interrupt, depending on whether the Effective
Address is for an instruction fetch or for data access.

Translation Lookaside Buffer

Conceptually, the Page Table is searched by the
address relocation hardware to translate every refer­
ence. For performance reasons the hardware usually
keeps a Translation Lookaside Buffer (TLB) that holds
PTEs that have recently been used. The TLB is
searched prior to searching the Page Table. As a
consequence, when software makes changes to the
Page Table it must perform the appropriate TLB inval­
idate operations to maintain the consistency of the
TLB with the Page Table.

Programming Notes ----------~

1. Page table entries mayor may not be cached
in a TLB.

2. Table lookups are done using real addresses
and storage access mode M = 1 (Memory
Coherence).

3. If software plans to access the HTAB with
data relocate on, MSRoR = 1, it must avoid
cache synonyms by mapping these tables
such that the real and virtual address bits
used for cache set selection are the same,
just as is required for other virtual accesses.
See address alignment requirements
described in Part 2, ~'PowerPC Virtual Envi­
ronment Architecture" on page 117.

4. It is possible that the hardware implements
two TLB arrays (one for data and one for
instruction). In this case the size, shape and
values contained by the arrays may be dif­
ferent.

5. Use the tlbie or tibia instruction to ensure
that the TLB no longer contains a mapping for
a particular page.

6. Refer to Book IV, PowerPC Implementation
Features for the procedure to be used to
invalidate the entire TLB.

Chapter 12. Storage Control 167

1'2.5 Segmented Address Translation, 32-bit Implementations

Figure 57 shows the steps involved in translating from an effective address to a real address on a 32-bit imple­
mentation.

32-bi t EA Page

Segment Regi sters

1
52-bi t VA

24 I
Vi rtua 1 Segment 10 . Page

I Lookup

Page Table

j
32-bi t RA 29 I

Rea 1 Rea 1 Page Number . 11 Byte _

Figure 57. Address Translation Overview (32-bit implementations.)

If an access is translated by the Block Address Trans­
lation mechanism (BAT, see Section 12.7 on page
174), the BAT translation takes precedence and the
results of segmented address translation are not
used. If an access is not translated by a BAT, seg­
mented address translation proceeds as follows.

The Effective Address (EA) is a 32-bit quantity com­
puted by the processor. Bits 0:3 of the EA are the
Segment Register number. These are used to select
a Segment Register, from which is extracted a Virtual
Segment 10 (VSID). Bits 4:19 of the EA are the Page
Number within the segment; these are concatenated
with the VSIO from the Segment Register to form the
Virtual Page Number (VPN). The VPN is looked up in
the Page Table to produce a Real Page Number (RPN).
Bits 20:31 of the EA are the Byte Offset within "the
page; these are concatenated with the RPN to 'form
the Real Address (RA) that is used to access storage.

168 PowerPC Architecture First Edition

If the selected Segment Register identifies the
segment as a direct-store segment, the Page Table is
not referred to. Rather, translation continues as
described in 12.6, "Direct-Store Segments" on
page 173.

For ordinary storage segments the translation moves
in two steps from Effective Address to Virtual Address
(which never exists as a specific entity but can be
considered to be the concatenation of the VPN and
Byte Offset), and from Virtual Address to Real
Address.

The first step in segmented address translation is to
convert the effective address into a virtual address,
described in section 12.5.1 on page 169. The second
step, conversion of the virtual address into a real
address, is described in section 12.5.2 on page 170.

12.5.1 Virtual Address Generation,
32-bit Implementations

Conversion of a 32-bit Effective Address to a Virtual
Address is done by using the 4 high-order bits of the
EA to select a Segment Register.

32·BIT EFFECTIVE ADDRESS

r-4 , 16t---12t
1 SR 1 Page 1 Byte I
I I I I

9 3 4 19 29 31
L,-I 1..-

1 -....,---" L...-,----J
1 i 1 Sel ect

r--------------~, 1 1

·16 SEGMENT REGISTERS

I r, ---------,

I 1
I f-I -------I

I 1
I f-I -------I

I 1

L-. f-I -------I
\ 1
\
\
\
\ 1

\ ,-I ____ --'

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 I
1 1
1 1
1 1
1 1
1 1

SEGMENT REGISTER
32 bits

1 1
1 1
1 1

r-r---r--r-___,r-------24..,
i T i Ks i Kp i III VSID 1

1 1
1 1

I ! ! ! I
1 1

9 1 31 1 1
1 1
1 1 • •------24 ,---16t---12t

VSID 1 Page 1 Byte 1
I I I

-Vi rtual Page Number (VPN)-

52·BIT VIRTUAL ADDRESS

Figure 58. Translation of 32-bit Effectiv. Address to Virtual Address

12.5.1.1 Segment Registers

The 16 32-bit registers are present only in 32-bit
implementations of PowerPC. Figure 59 shows the
layout of a Segment Register. The fields in the
Segment Register are interpreted differently
depending on the value of bit 0 (the T bit).

o 1 2 8

Bit
o
1
2
8:31

Name
T
Ks
Kp
VSIO

VSID

Description
T=O selects this format
Supervisor state storage key
Problem state storage key
Virtual Segment 10

All other fields are reserved

controller specific

o 1 2 3 12

Bit
o
1
2
3:11
12:31

Name
T

Description
T = 1 selects this format
Supervisor state storage key
Problem state storage key
Bus Unit 10
Device dependent data for

110 controller

Figure 59. Segment Register format

31

31

If an access is translated by the Block Address Trans­
lation mechanism (BAT, see Section 12.7 on page
174), the BAT translation takes precedence and the
results of translation using Segment Registers are not
used. If an access is not translated by a BAT, and
T=O in the selected Segment Register, the Effective
Address is a reference to an ordinary storage
segment. The 52-bit Virtual Address (VA) is formed
by concatenating

• the 24-bit VSID field from the Segment Register.
• the 16-bit page index, EA4:19, and
• the 12-bit byte offset, EA20:31 •

The VA is then translated to a Real Address as
described in the next section.

If T= 1 in the selected Segment Register (and the
access is not translated by a BAT), the Effective
Address is a reference to a direct-store segment. No
reference is made to the page table; processing con­
tinues as in 12.6, "Direct-Store Segments" on
page 173.

Chapter 12. Storage Control 169

12.5.2 Virtual to Real Translation, 32-bit Implementations

Conversion of a 52-bit Virtual Address to a Real Address is done by searching a hashed page table located by
SDR1.

----'Vi rtual Page Number (VPN)----

24 ,
52·BIT VIRTUAL ADDRESS Vi rtual Segment 10 (VSID) I Page

!

5 23 24 , I I , ,
I I
I I
I t
I r--3 ,

I I eee I
I , I

I ,
I I
I ~
I I
t t

Hash Function

i
HTABORG HTABMASK t

, 16 , , 9-;
I 99 •••••• 911 •••• 1 I

.-----------------------19-;
SDRI I lOOt •••••• xx999 •••••• ge I III

I I I I

9 6 7 15
L,--.J ' -----,----'1

23 31 9 8 9 18
~I _~-~! !~ __ ~--~I

I I
, , ,

1
1 ,

I I I I
I L---...., t t
I I ,-----,
I I 1 1
, 1

i I
I AND I
I 1

I I L-y---J
I I I

I I i 1

1 1 I
I I I
I I 1
Itt
I ,----,
I I 1
I 1 OR I
1 1 I I
I L--r-J I
1 1 I
ttl

r----7-r,------9-9 .,-, -------Ie,-&_, I
I I I la999991
, 1 , 'I \

\
32-bit Real Address of Page Table Entry Group \

PAGE TABLE

I PTE a i
I I
I I

I

I
1

16,---120

I Byte I
! !

39 49 51

' L--r-J
I ,

I&_,

I
1

i PTE7 i PTEGa

I I
I 1
I •

I
I
I
I
I PTEGn \

\ ~~-~---~-~~---~_~~I

PAGE TABLE ENTRY (PTE)
8 bytes

---------- 64 bytes ------

I " --------;24..,.--&, jr-----------:za, , " ! I I I

Ivi VSID IH I API II Real Page Number (RPN) IIIIIR Ie I WIMG II I P P I
.... 1 ' ____________ --'-I~I --,II I ! I! '" I I
a 1 24 25 26 31 a 19 23 24 25 28 39 31 I

Figure 60. Translation of 52·bit Virtual Address to 32·bit Real Address

Generation of the 52-bit Virtual Address that is input
to this stage of the translation process is described in

170 PowerPC Architecture First Edition

L..' _________ ,..--___ --'1
1
I
I
I
t

.----------:2&-r--120
32-8IT REAL ADDRESS RPN I Byte I

I !

12.5.1, "Virtual Address Generation,
Implementations" on page 169.

32-bit

12.5.2.1 Page Table

The Hashed Page Table (HTAB) is a variable-sized
data structure that defines the mapping between
Virtual Page Numbers and Real Page Numbers. The
HTAB's size must be a power of 2, and its starting
address must be a multiple of its size.

The HTAB contains a number of Page Table Entry
Groups, or PTEGs. A PTEG contains 8 Page Table
Entries (PTEs) of 8 bytes each; each PTEG is thus 64
bytes long. PTEGs are entry points for searches of
the Page Table.

See section 12.12, "Table Update Synchronization
Requirements" on page 186 for the rules that soft­
ware must follow when updating the Page Table.

Page Table Entry

Each Page Table Entry (PTE) maps one VPN to one
RPN. Additional information in the PTE controls the
HTAB search process and provides input to the
storage protection mechanism. Figure 61 shows the
I ayout of a PTE.

o 1 2526 31

Ivl VSIO
IHI API I

RPN 1"IRIC:WIMGj;! PP:
0 19 232425 2S 3031

Word Bit Name Description
0 0 V Entry valid (V = 1)

or invalid (V = 0)
1:24 VSIO Virtual Segment 10
25 H Hash function identifier
26:31 API Abbreviated Page Index

0:19 RPN Real Page Number
23 R Reference bit
24 C Change bit
25:28 WIMG Storage access controls
30:31 PP Page protection bits

All other fields are reserved.

Figure 61. Page Table Entry. 32·bit implementations

The PTE contains an Abbreviated Page Index rather
than the complete Page field. At least 10 of the low­
order bits of the Page are used in the hash function to
select a PTEG. These bits are not repeated in the
PTEs of that PTEG.

Page Table Size

The number of entries in the Page Table directly
affects performance because it influences the hit ratio
in the Page Table and thus the rate of page fault
interrupts. If the table is too small, it is possible that
not all the virtual pages that actually have real page

frames assigned can be mapped via the Page Table.
This can happen if too many hash collisions occur and
there are more than 16 entries for the same
primary/secondary pair of PTEGs. While this situation
cannot be guaranteed not to occur for any size Page
Table, making the Page Table larger than the
minimum size will reduce the frequency of occurrence
of such· collisions.

Programming Note -------------,

It is recommended that the number of PTEGs in
the Page Table be at least one-half the number of
real pages to be accessed.

As an example, if the amount of real memory to
be accessed is 229 bytes (512 MB), then we have
229 -12 = 217 real pages. The minimum recom­
mended Page Table size would be 216 PTEGs, or
222 bytes (4 MB).

12.5.2.2 Storage Description Register 1

The SOR1 register is shown in Figure 62.

HTABORG II/ I HTABMASK I
o 15 23 31

Bits Name Description
0:15 HTABORG Real address of page table
23:31 HTABMASK Mask for page table address

All other fields are reserved.

Figure 62. SDR1, 32·bit implementations

The HTABORG field in SOR1 contains the high·order
16 bits of the 32-bit real address of the page table.
The Page Table is thus constrained to lie on a 216 byte
(64 KB) boundary at a minimum. At least 10 bits from
the hash function (Figure 60 on page 170) are used
to index into the Page Table. The minimum size Page
Table is 64 KB (210 PTEGs of 64 bytes each).

The Page Table can be any size 2n where 16 S n S 25.
As the table size is increased, more bits are used
from the hash to index into the table and the value in
HTABORG must have more of its low-order bits equal
to O. The HTABMASK field in SOR1 contains a mask
value that determines how many bits from the hash
are.used in the Page Table index. This mask must be
of the form ObOO ... 011 ... 1, that is, a string of 0 bits fol­
lowed by a string of 1 bits. The 1 bits determine how
many additional bits (beyond the minimum of 10) from
the hash are used in the index; HTABORG must have
this same number of low-order bits equal to O. See
Figure 60 on page 170.

Example

Suppose that the Page Table is 8,192 (2 13) 64-byte
PTEGs, for a total size of 219 bytes (512 KB). A 13-bit

Chapter 12. Storage Control 171

index is required. Ten bits are provided from the
hash to start with, so 3 additional bits from the hash
must be selected. Thus the value in HTABMASK
must be Ox007 and the value in HTABORG must have
its low-order 3 bits (bits 13:15 of SDR1) equal to o.
This means that. the Page Table must begin on a
23 + 10 + 6 = 219 = 512 KB boundary.

12.5.2.3 Hashed Page Table Search

An outline of the HTAB search process is shown in
Figure 60 on page 170. The detailed algorithm is as
follows:

1. A 19-bit hash value is computed by
Exciusive-ORing the low-order 19 bits of the VSID
with a 19-bit value formed by concatenating 3 bits
of 0 with the Page index.

2. Primary Hash: The 32-bit real address of a PTEG
is formed by concatenating the following values:

• Bits 0:6 of SDR1 (the 7 high-order bits of
HTABORG).

• Bits 0:8 of the value formed in step 1 ANDed
with bits 23:31 of SDR1 (the value of
HTABMASK) and then ORed with bits 7:15 of
SDR1 (the 9 low-order bits of HTABORG).

• Bits 9:18 of the value formed in step 1.
• A 6-bit field of Os.

This operation is referred to as the "Primary
HTAB Hash." This identifies a particular PTEG,
each of whose 8 PTEs will be tested in turn.

3. The first PTE in the selected PTEG is tested for a
match with VPN. In order for a match to exist,
the following must be true:

• PTEH = 0
• PTEv = 1
• PTEvSID = VAO:23

• PTEAP1 = VA24:29

If a match is found, the PTE search terminates
successfully.

4. Step 3 is repeated for each of the other 7 PTEs in
the PTEG. The first matching PTE terminates the
search. If none of the 8 PTEs match, the sec­
ondary hash must be tried.

5. A 19-bit hash value is computed by taking the
ones complement of the Exclusive OR of the low­
order 19 bits of the VSID with a 19-bit value
formed by concatenating 3 bits of 0 with the Page
index.

172 PowerPC Architecture First Edition

6. Secondary Hash: The 32-bit real address of a
PTEG is formed by concatenating the following
values:

• Bits 0:6 of SDR1 (the 7 high-order bits of
HTABORG).

• Bits 0:8 of the value formed in step 5 ANDed
with bits 23:31 of SDR1 (the value of
HTABMASK) and then ORed with bits 7:15 of
SDR1 (the 9 low-order bits of HTABORG}.

• Bits 9:18 of the value formed in step 5.
• A 6-bit field of Os.

This operation is referred to as the "Secondary
HTAB Hash."

7. The first PTE in the selected PTEG is tested for a
match with VPN. In order for a match to exist,
the following must be true:

• PTEH = 1
• PTEv = 1
• PTEvs1D = VAO:23

• PTEAP1 = VA24:29

If a match is found, th~ PTE search terminates
successfully.

8. Step 7 is repeated for each of the other 7 PTEs in
the PTEG. The first matching PTE terminates the
search. If none of the 8 PTEs match, the search
fails.

If the Page Table search succeeds, the content of the
PTE that translates the EA is returned. The Real
Address (RA) is formed by concatenating the RPN
from the matching PTE with bits 20:31 of the Effective
Address (the byte offset).

If the search fails, a page fault interrupt is taken. This
will be an Instruction Storage interrupt or a Data
Storage interrupt, depending on whether the Effective
Address is for an instruction fetch or for data access.

Translation Lookaside Buffer

Conceptually, the Page Table is searched by the
address relocation hardware to translate every refer­
ence. For performance reasons the hardware usually
keeps a Translation Lookaside Buffer (TLB) that holds
PTEs that have recently been used. The TLB is
·searched prior to searching the Page Table. As a
consequence, when software makes changes to the
Page Table it must perform the appropriate TLB inval­
idate operations to maintain the consistency of the
TLB with the Page Table.

Programming Notes ------------,

1. Page table entries mayor may not be cached
in a TLB.

2. Table lookups are done using real addresses
and storage access mode M = 1 (Memory
Coherence).

3. If software plans to access the HTAB with
data relocate on, MSRoR =1, it must avoid
cache synonyms by mappi ng these tables
such that the real and virtual address bits
used for cache set selection are the same,
just as is required for other virtual accesses.
See address alignment requirements
described in Part 2, "Power PC Virtual Envi­
ronment Architecture" on page 117.

4. It is possible that the hardware implements
two TLB arrays (one for data and one for
instruction). In this case the size, shape and
values contained by the arrays may be dif­
ferent.

5. Use the tlbie or tibia instruction to ensure
that the TLB no longer contains a mapping for
a particular page.

6. Refer to Book IV, PowerPC Implementation
Features for the procedure to be used to
invalidate the entire TLB.

12.6 Direct-Store Segments

A direct-store segment is a mapping of effective
addresses onto an external address space, typically
an I/O bus.

Effective addresses that lie within direct-store seg­
ments complete only the first step of the ordinary
segmented address translation.

• In 64-bit implementations, this is the search of the
Segment Table. If the resulting Segment Table
Entry has T = 1, the reference is to a direct-store
segment.

• In 32-bit implementations, this is the selection of
the Segment Register. If the SR has T=1, the
reference is to a direct-store segment.

Direct-store data accesses are executed as though
the storage access mode bits "WIMG" were x101 (see
Section 12.8). This mode requires bypassing the
cache, does not require the hardware to enforce data
coherence with storage, 1/0, and other processors
(caches), and treats the segment as Guarded storage.

12.6.1 Completion of direct-store
access

If an access is translated by the Block Address Trans­
lation mechanism (BAT, Section 12.7), the BAT trans­
lation takes precedence and the results of segmented
address translation are not used. If an access is not
translated by a BAT, and the segmented address
translation process has discovered that the segment
has T = 1, translation terminates. No reference. is
made to the Page Table; Reference and Change bits
are not updated. The following data is sent to the
storage controller:

For 64-bit implementations:

• A one bit field representing the privilege of
the storage access, computed as follows:

Key +- (Kp & MSRpR) I (Ks & ~MSRpR)

• The 32-bit 10 field from bits 32:63 of the
second doubleword of the STE

• The low-order 28 bits of the Effective
Address, EA36:63

For 32-bit implementations:

• A one bit field representing the privilege of
the storage access, computed as follows:

Key +- (Kp & MSRpR) I (Ks & ~MSRpR)

• The contents of bits 3:31 of the Segment
Register, which is the BUID field concat­
enated with the "controller specific" field.

• The low-order 28 bits of the Effective
Address, EA4:31

An implementation of Power PC Architecture may
cause multiple addressldata transfers for a single
instruction. The address for each transfer will be
handled in the same manner that addresses for
access to main store are handled.

12.6.2 Direct-store segment
protection

Page-level protection as described in 12.10.1, "Page
Protection" on page 179 is not provided by the
PowerPC processor for direct-store segments. The
appropriate key bit (Ks or Kp) from the STE or SR is
sent to the storage controller, but it is up to the
storage controller to implement any protection mech­
anism. Frequently no such mechanism will be pro­
vided; the fact that a direct-store segment is mapped
into the address space of a process may be regarded
as sufficient authority to access the segment.

Chapter 12. Storage Control 173

12.6.3 Instructions not supported for
T=1

The following instructions are not supported when
issued with an Effective Address in a segment where
T=1:

• Iwarx • stwex.
• Idarx • stdex.
• eeiwx • eeowx

If one of these instructions is executed with an effec­
tive address in a segment with T = 1, a Data Storage
interrupt may occur or the results may be boundedly
undefined.

12.6.4 Instructions with no effect for
T=1

The following instructions are treated as no-ops when
issued with an Effective Address in a segment where
T=1:

• debt • debst
• debtst • debz
• debf • iebi
• debi

For further details of storage references to direct­
store segments, refer to Book IV, PowerPC Implemen­
tation Features.

12.7 Block Address Translation

The Block Address Translation (BAT) mechanism pro­
vides a means for mapping ranges of virtual
addresses larger than a single page onto contiguous
areas of real storage. Such areas can be used for
data that is not subject to normal virtual storage han­
dling (paging), such as a memory-mapped display
buffer or an extremely large array of numerical data.

12.7.1 Recognition of Addresses in
BAT Areas

Block Address Translation is enabled only when
address translation is enabled (MSR1R = 1 or
MSRoR = 1 or both).

A set of Special Purpose Registers (SPRs) called BAT
registers define the starting addresses and sizes of
BAT areas. The BAT registers are accessed in parallel
with segmented address translation to determine
whether a particular EA corresponds to a BAT area.
If an EA is within a BAT area, the real address for
storage access is determined as described below.

174 PowerPC Architecture First Edition

It is possible to set up the BAT registers and the seg­
mented address translation mechanism such that a
particular Effective Address is within a BAT area and
also is covered by page translation. When this
happens, the BAT takes precedence over entries in
the Segment Table or the content of a Segment Reg­
ister (including the T bit).

Programming Note --------------,

It is possible for a BAT area to overlay part of an
ordinary segment, such that the BAT portion is
non-pagable while the rest of the segment is
pageable. If this is done, it is not necessary to
supply Page Table entries for the portion of the
segment overlaid by the BAT.

The BAT areas are defined by pairs of SPRs. These
SPRs can be read or written by the mfspr and mtspr
instructions; see page 79 .. Access to these SPRs is
privileged. The layout of the BAT registers is shown
in figure 63 for 64-bit implementations and in figure 64
for 32-bit implementations.

Four pairs of BAT registers are provided for trans­
lating instruction addresses ~the IBAT registers), and
four pairs are provided for translating data addresses
(the DBAT registers).

Programming Note -------------,

If the same storage address is to be mapped via
BAT for both I-fetch and data load and store, it is
necessary to load the mapping into both an IBAT
pair and a DBAT pair. This is true even on an
implementation that does not have split I and D
caches.

It is an error for system software to set up the BAT
registers such that an Effective Address is translated
by more than one IBAT pair or by more than one
DBAT pair. If this occurs, the results are undefined
and may include a violation of the storage protection
mechanism, a Machine Check interrupt, or a
Checkstop.

Each pair of BAT registers defines the starting
address of a BAT area in Effective Address space, the
length of the area, and the start of the corresponding
area in Real Address space. If an Effective Address
is within the range of EAs defined by a pair of BAT
registers that is valid (see below) for the access, its
Real Address is developed by (conceptually) sub­
tracting the starting effective address of the BAT area
from the EA and adding the starting real address of
the BAT area.

BAT areas are restricted to a finite set of allowable
lengths, all of which are powers of 2. The smallest
BAT area defined is 128 KB (217 bytes). The largest

BAT area defined is 256 MB (228 bytes). The starting
address of a BAT area in both EA space and RA
space must be a multiple of the area's length.

12.7.2 BAT Registers

See section "Move To Special Purpose Register
XFX-form" on page 79 for a list of the SPR numbers
for the BAT registers. See Appendix C, "Assembler
Extended Mnemonics" on page 221 for a list of
extended mnemonics for use with the BAT registers.
The equation for determining whether a BAT entry is
valid for a particular access is:

BAT_entry_valid = (Vs & ~MSRpR) I (Vp & MSRpR)

If a BAT entry is not valid for a given access, it does
not participate in address translation for that access.

Two BAT entries may not map an overlapping effec­
tive address range and be valid at the same time.

Programming Note -----------,

Entries that have complementary settings of V s
and V p may map overlapping effective address
blocks. Complementary settings would be:

BAT entry A: Vs = 1, Vp = e
BAT entry B: Vs = 8, Vp = 1

The BL field in the upper BAT register is a mask that
encodes the length of the BAT area.

BAT Area
BL

Length

128 KB 000 0000 0000

256 KB 000 0000 0001

512 KB 000 0000 0011

1 MB 0000000 0111

2 MB 000 0000 1111

4 MB 000 0001 1111

8 MB 000 0011 1111

16 MB 000 0111 1111

32 MB 00011111111

64 MB 001 1111 1111

128 MB 01111111111

256 MB 11111111111

Only the values shown are valid for BL The rightmost
bit of BL is aligned with bit 46 {14} of the EA.

An Effective Address is determined to be within a BAT
area if EA matches BEPI. The boundary between the
string of Os and the string of 1s in BL determines the
bits of EA that participate in the comparison with

Upper BAT Register

o 46 51 6263

BEPI
11111

III
BL ~F1
/WIMGI/PP BRPN

o 46 57 60 62 63

Lower BAT Register

Reg Bit Name

BEPI
BL

Description

Upper 0:46 Block Effective Page Index
Block Length 51:61

62
63

Vs
Vp

Supervisor state valid bit
Problem state valid bit

Lower 0:46 BRPN
WIMG

Block Real Page Number
Storage access controls 57:60

62:63 PP
Bit 60 is reserved in IBATs.
Protection bits for BAT area

All other fields are reserved.

Figure 63. BAT Registers, 64-bit implementations

BEPI: bits in EA corresponding to 1s in BL are forced
to 0 for this comparison.

Bits in EA corresponding to 1 s in BL, concatenated
with the 17 bits of EA to the right of .BL, form the
offset within the BAT area.

0

I
0

Programming Note ----------...,

The value loaded into BL determines both the
length of the BAT area and the alignment of the
area in both EA space and RA space. It is a pro­
gramming error if the value loaded into BL is not
one of those given in the table above, or if the
values loaded into BEPt and BRPN do not have at
least as many low-order Os as there are 1 s in BL

Upper BAT Register

14 19 3031

BEPI

I
III

I BL WJ~
BRPN III IWIMGII =PP _

14 25 28 30 31

Lower BAT Register

Reg Bit Name Description

Upper 0:14 BEPI Block Effective Page Index
19:29 BL Block Length
30 Vs Supervisor state valid bit
31 Vp Problem state valid bit

Lower 0:14 BRPN Block Real Page Number
25:28 WIMG Storage access controls

Bit 28 is reserved in IBATs.
30:31 PP Protection bits for BAT area

All other fields are reserved.

Figure 64. BAT Registers, 32-bit implementations

Chapter 12. Storage Control 175

~----------36~-----

EA

BL

36
BRPN

~

T
36 11 1] RA

Figure 65. Formation of Real Address via BAT, 64·bit
implementations

12.7.2.1 BAT storage Protection

If an Effective Address is determined to be within a
BAT area that is valid for the access, the access is
next validated by the storage protection scheme
described in section 12.10.2, "BAT Protection" on
page 180. If this protection mechanism rejects the
EA, a page fault (Data Storage interrupt or Instruction
Storage interrupt) is generated.

12.7.2.2 BAT Real Address

If the protection mechanism accepts the access, then
a Real Address is formed as shown in figure 65 for
64-bit implementations, and figure 66 for 32·bit imple­
mentations.

Access to the real memory of the BAT area is made
according to the storage mode defined by the "WIMG"
bits in the lower BAT register. These bits apply to the
entire BAT area rather than to an individual page.
See 12.8.2, "Supported Storage Modes" on page 177
for an explanation of these bits.

176 PowerPC Architecture First Edition

EA

BL

4
BRPN

~

T
4 11 1] RA

Figure 66. Formation of Real Address via BAT, 32·bit
implementations.

12.8 Storage Access Modes

When address relocation is enabled and the effective
address generated by a storage access is translated
by the Segmented Address Translation mechanism or
by the Block Address Translation mechanism, the
access is performed under the control of the Page
Table Entry or BAT entry used to translate the effec­
tive address. Each Page Table Entry or DBAT entry
contains four mode control bits, W, I, M, and G, that
specify the storage mode for all accesses translated
by the entry. The IBAT entry contains the W, I, and M
bits, but not the G bit. The Wand I bits control how
the processor executing the access uses its own
cache. The M bit specifies whether the processor
executing the access must use the storage coherence
protocol to ensure that all copies of the addressed
storage location are made consistent. The G bit con­
trols whether or not speculative data and instruction
fetching is permitted. For an access translated by an
IBAT entry, G is assumed to be O.

The mode control bits only have meaning when an
effective address is translated in the processor per­
forming a storage access. When an access is per­
formed for which coherence is required, the processor
performing the access must inform the coherence
mechanism that the access requires memory coher­
ence. Other processors affected by the access must
respond to the coherence mechanism. However since
these mode control bits are only relevant when an

effective address is translated and have no direct
relation to data in the cache, processors responding
to the coherence request are able to respond without
knowledge of the state of these bits.

12.8.1 W, I, M and G bits

The W, I, M, and G bits in a Page Table Entry or DBAT
entry, or the W, I, and M bits in an IBAT entry, control
the way in which the processor accesses cache and
main storage. Each bit controls a separate aspect of
storage references.

W Write Through

If the data is in the cache, a store must update
that copy of the data. In addition, if W = 1 the
update must be written to the home storage
location (see below).

Store combining optimizations are allowed
except when the store instructions are sepa­
rated by sync or eieio. The architecture pre­
sumes that data present in the cache is valid
and a store may cause any part of that data to
be copied back to main storage.

The definition of the home storage location is
dependent upon the implementation of the
memory system· but can be illustrated by the
following examples:

• RAM Storage
The store must be sent to the RAM con­
troller to be written into the target RAM.

• I/O Adapter Card
the store must be sent to the adapter card
to be written to the target register or
storage location.

In systems with multilevel caching, the store
must be written to at least a depth in the
memory hierarchy that is seen by all
processors and devices.

Caching Inhibited

If 1= 1, the storage access is completed by ref­
erencing the location in main storage,
bypassing the cache. During the access, the
accessed location is not brought into the cache
nor is the location allocated in the cache. It is
considered a programming error if a copy of
the target location of an access to Caching
Inhibited storage is in the cache. Software
must ensure that the location has not previ­
ously been brought into the cache or, if it has,
that it has been flushed from the cache. If the
programming error occurs, the result of the
access is boundedly undefined.

Load/store combining optimizations are
allowed except when the accesses are sepa­
rated by sync, or by eieio when the storage
access is also Guarded.

M Memory Coherence

This mode control is provided to allow
improved performance in systems in which
accesses to storage kept consi stent by hard­
ware is slower than accesses to storage not
kept consistent by hardWare, and in which soft­
ware is able to enforce the required consist­
ency. When the mode is off (M = 0), the
hardware need not enforce data coherence.
When the mode is on (M = 1), the hardware
must enforce data coherence. Because
instruction storage need not be consistent with
data storage, it is permissible for an imple­
mentation to ignore the M bit for instruction
fetches.

G Guarded Storage

If G = 1, accesses to storage must conform to
the restrictions described in Section 12.2.5,
"Speculative Execution" on page 157.

12.8.2 Supported Storage Modes

The combinations of the Write Through bit, the
Caching Inhibited bit, and the Memory Coherence bit
define eight different storage modes. Six of these
modes are supported. For each, the G bit may be 0
or 1.

• W1M = 000

1. Data may be cached.
2. Loads or stores for which the target location

is in the cache may use that copy of the
location.

3. Exclusive ownership of the block containing
the target location is not required for store
accesses and consistency operations for the
block may be ignored when fetching the
block, storing it back, or changing its state
from shared to exclusive.

• W1M = 001

1. Data may be cached.
2. Loads or stores for which the target location

is in the cache may use that copy of the
location.

3. Exclusive ownership of the block containing
the target location is required before store
accesses are allowed. When fetching the
block, the processor must indicate that con­
sistency is to be enforced on the bus trans­
action. If the state of the block is read
shared, the processor must gain exclusive
use of the block before storing into it.

• WlM = 010

Caching is inhibited. The storage access goes to
storage bypassing the cache. Hardware enforced
storage consistency is not required.

Chapter 12. Storage Control 177

• WlM = 011

Caching is inhibited. The storage access goes to
storage bypassing the cache. Storage consist­
ency is enforced by hardware.

• WlM = 100

1. Data may be cached.
2. Loads for which the target location is in the

cache may use that copy of the location.
3. Stores must be written to main storage. The

target location of the store may be cached
and must be updated if there.

4. Exclusive ownership of the block containing
the target location is not required for store
accesses and consistency operations for the
block may be ignored when fetching the
block, storing it back, or changing its state
from shared to exclusive.

• WlM = 101

1. Data may be cached.
2. Loads for which the target location is in the

cache may use that copy of the location.
3. Stores must be written to main storage. The

target location of the store may be cached
and must be updated if there.

4. Exclusive ownership of the block containing
the target location is required before store
accesses are allowed. When fetching the
block, the processor must indicate that con­
sistency is to be enforced on the bus trans­
action. If the state of the block is read
shared, the processor must gain exclusive
use of the block before storing into it.

• WlM = 110

This mode would represent memory that is Write
Through, Caching Inhibited, and Memory Coher­
ence Not Required. This mode is not supported.

• WlM = 111

This mode would represent memory that is Write
Through, Caching Inhibited, and Memory Coher­
ence Required. This mode is not supported.

12.8.3 Mismatched WIMG Bits

Accesses to the same storage location using two
effective addresses for which the Write Through mode
(W bit) differs must meet the Memory Coherence
requirements described in Part 2, "PowerPC Virtual
Environment Architecture" on page 117.

178 PowerPC Architecture First Edition

12.9 Reference and Change
Recording

If address translation is enabled (MSR1R = 1 or
MSRoR = 1), Reference (R) and Change (C) bits are
maintained in the Page Table Entry for each real page
for accesses due to segment and page table address
translation. Reference and change recording is not
performed for translations due to BAT or for direct­
store (T = 1) segments.

The Rand C bits are set automatically by hardware or
by software assist in conjunction with normal Page
Table processing as follows:

Reference bit

As a result of page table processing for a
storage access (load, store, or cache instruc­
tion, or instruction fetch), the Reference bit may
be set to 1 immediately or its setting may be
delayed until the storage access is determined
to be successful.

The Reference bit may be set for a specula­
tively executed access. The Reference bit may
also be set for accesses that are not performed
when the access is prohibited by page pro­
tection, or if the access is the result of a string
operation of zero length, or if the access is a
Store Conditional but no store is performed
because a reservation does not exist.

~hange Bit

Whenever a data store is executed successfully,
as part of the TLB look-up procedure the
Change bit in the TLB is checked. If it is already
set to 1, no further action is taken. If the TLB
Change bit is 0, it is set to 1 and the corre­
sponding Change bit in the Page Table Entry is
set to 1.

The Power PC Architecture requires that the
Change bit be set to 1 only if the store is
allowed by storage protection and all branches
prior to the store that will cause the Change bit
to be set have been resolved and it has been
determined that the store is on the path that is
to be executed.

Furthermore, the Change bit may be set even
when a store is not performed successfully in
the following cases:

1. A Store Conditional (stwcx. or stdcx.) is
executed and is allowed by the storage pro­
tection mechanism, but no store is per­
formed because a reservation does not
exist.

2. A Store String Word Indexed (stswx) is exe­
cuted and is allowed by the storage pro­
tection mechanism, but no store is
performed because the length is zero.

3. The store operation is not performed
because the instruction stream is inter­
rupted before the store is performed.

Execution of either of the Data Cache Block Touch
instructions (dcbt, dcbtst) may result in setting the R
bit for a page. Neither instruction may result in
setting the C bit for a page.

See section 12.12, "Table Update Synchronization
Requirements" on page 186 for the rules software
must follow when updating the Reference and Change
bits in the Page Table.

12.9.1 Synchronization of Reference
and Change Bit Updates

If processor A executes a load or store that causes a
Reference bit and/or Change bit update, the following
conditions must be met with respect to setting of the
bits and performing the access:

1. If processor A subsequently executes a sync,
both the updates to the bits and the access must
be performed with respect to all other processors
and mechanisms before the sync completes on
processor A.

2. If processor B subsequently executes a tlbie that
invalidates the TLB entry in processor A that was
used to translate the access, and processor B
then executes a tlbsync that is broadcast, both
the updates to the bits and the access must be
performed with respect to all other processors
and mechanisms before the tlbsync completes on
processor A.

Updates to the Reference and Change bits may not
be immediately visible to the program after executing
a load or store that sets them indirectly.

Programming Note --------------,

If it is important that the program that loads from
the PTE retrieve the correct Rand C bits, a sync
instruction must be executed between a load or
store that indirectly sets an R or C bit, and the
load of these bits from the PTE.

Programming Note --------------,

On systems with Translation Lookaside Buffers,
the Reference and Change bits are only set on the
basis of TLB activity. When software resets these
bits to zero it must synchronize the TLB's actions
by invalidating the TLB entries associated with
the pages whose Reference and Change bits were
reset.

12.10 Storage Protection

The storage protection mechanism provides a means
for selectively granting read access, granting
read/write access, and prohibiting access to areas of
storage based on a number of control criteria.

Since the protection mechanism operates as part of
the address translation mechanism, storage pro­
tection applies to translated accesses only. Instruc­
.tion storage access protection is active only when
MSR1R = 1. Data storage access protection is active
only when MSRoR = 1.

A page (4 KB) crossing is relevant to performance
and instruction restart when it corresponds to a pro­
tection boundary. Crossing a 4 KB boundary in an
area mapped by Block Address Translation or in a
direct-store segment should have no effect on per­
formance and should not cause an instruction restart.

For ordinary translated accesses to memory via the
Page Table, the Page Protection mechanism described
in the next section is active. Different mechanisms
are used for Block Address Translation (BAT)
accesses (see section 12.10.2, "BAT Protection" on
page 180) and for Direct-store segments (see section
12.6.2, "Direct-store segment protection" on
page 173).

12.10.1 Page Protection

The page protection mechanism provides protection
at the granularity of a page (4 KB). It is controlled by
the following inputs:

• MSRpR, which distinguishes between supervisor
state and problem state.

• Ks and Kp' supervisor and problem key bits in the
Segment Table Entry or Segment Register.

• PP bits in the Page Table Entry.

A reference made via the segmented address trans­
lation mechanism is associated with a Segment Table
Entry (STE) and a Page Table Entry (PTE) by the
address translation mechanism. The K bits, the PP
bits, and the MSRpR bit are used as follows:

A Key value is developed according to the following
formula:

Key +- (Kp & MSRpR) I (Ks & ~MSRpR)

Using the generated Key, the following table is
applied:

When a reference is not permitted because of the pro­
tection mechanism one of the following occurs.

• Data Storage interrupt is generated and bit 4 of
the DSISR is set to 1.

Chapter 12. Storage Control 179

Load Store
Key PP Page Type Access Access

Permitted Permitted

0 00 read/write yes yes
0 01 read/write yes yes
0 10 read/write yes yes
0 11 read only yes no

1 00 no access no no
1 01 read only yes no
1 10 read/write yes yes
1 11 read only yes no

Key Key selected by state of MSRpR bit
PP PTE page protect bits

Figure 67. Protection Key Processing

• Instruction Storage interrupt is generated and bit
36 {4} of SRR1 is set to 1.

180 PowerPC Architecture First Edition

Programming Note ------------,

A store that is not permitted because of the
storage protection mechanism will not cause a
Change bit to be set in a PTE; such an access may
cause a Reference bit to be set in a PTE.

12.10.2 BAT Protection

The BAT protection mechanism operates on an entire
BAT area, not on individual pages. If an Effective
Address is determined to be within a BAT area that is
valid for the access, the operations described above
in section 12.10.1, "Page Protection" on page 179 are
performed, with these exceptions:

• For BATs, no Key value is defined; Figure 67 is
used with an assumed Key == 1.

• The PP bits from the lower BAT register are used,
not bits from a Page Table Entry.

12.11 Storage Control
Instructions

12.11.1 Cache Management
Instructions

This section contains the only privileged cache man­
agement instruction and additional specifications' for
the other cache management instructions described in
Part 2, "PowerPC Virtual Environment Architecture"
on page 117. See that document for further details.

If the effective address references a direct-store
segment, the instruction is treated as a no-op.

When data relocate is off, MSR DR = 0, the Data Cache
Block set to Zero instruction establishes a block in
the cache and may not verify that the real address is
valid. If a block is created for an invalid real address,
a Machine Check may result when an attempt is made
to write that block back to storage. The block could
be written back as the result of the execution of an
instruction that causes a cache miss and the invalid
address block is the target for replacement or as the
result of a Data Cache Block Store instruction.

Data Cache Block Invalidate X-form

dcbi RA,RB

10 31
470

Let the effective address (EA) be the sum
(RAIO) + (RB).

The action taken is dependent on the storage mode
associated with the target, and the state of the block.
The list below describes the action to take if the block
containing the byte addressed by EA is or is not in the
cache.

1. Coherence Not Required
Unmodified Block

Invalidate the block in the local cache.
Modified Block

Invalidate the block in the local cache. (Discard
the modified contents.)

Absent Block
No action is taken.

2. Coherence Required
Unmodified Block

Invalidate copies of the block in the caches of
all processors.

Modified Block
Invalidate copies of the block in the caches of
all processors. (Discard the modified con­
tents.)

Absent Block
If copies are in the caches of any other
processor, cause the copies to be invalidated.
(Discard any modified contents.)

When data address translation is enabled, MSRoR = 1,
and the virtual address has no translation a Data
Storage Interrupt occurs. See 13.5.3, "Data Storage
Interrupt" on page 194.

The function of this instruction is independent of the
Write Through and Caching Inhibited/Allowed modes
of the block containing the byte addressed by EA.

This instruction is treated as a store to the addressed
byte with respect to address translation and pro­
tection. The Reference bit for EA may be set, the Ref­
erence and Change bits may be set, or neither may
be set.

This instruction is privileged.

Special Registers Altered:
None

Chapter 12. Storage Control 181

12.11.2 Segment Register Manipulation Instructions

Move To Segment Register X-form

mtsr SR,RS

I. RS 1:.I.2
sR I,. 11/ 12,

210

1:,1
SEGREG(SR) ~ (RS)

The contents of register RS is placed into Segment
Register SR.

This instr.uction is privileged.

This instruction is defined only for 32-bit implementa­
tions. Using it on a 64-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Move From Segment Register X-form

mfsr RT,SR

I. RT I:LSR I,. III 12,
595

1:,1
RT ~ SEGREG(SR)

The contents of Segment Register SR is placed into
register RT.

This instruction is privileged.

This instruction is defined only for 32-bit implementa­
tions. Using it on a 64-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Programming Note -----------,

For a discussion of software synchronization
requirements when altering Segment Registers,
please refer to Appendix L, "Synchronization
Requirements for Special Registers" on page 269.

182 PowerPC Architecture First Edition

Move To Segment Register Indirect
X-form

mtsrin RS,RB

[Power mnemonic: mtsri]

I. RS I" 11/
242

SEGREG((RB)~3) ~ (RS)

1:,1

The contents of register. RS are copied to the
Segment Register selected by bits 0:3 of register RB.

This instruction is privileged.

This instruction is defined only for 32-bit implementa­
tions. Using it on a 64-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Move From Segment Register Indirect
X-form

mfsrin RT,RB

I. RT I" 1/1 Ila
RB

I . 21

659

1:,1

RT ~ SEGREG((RB)~3)

The contents of the Segment Register selected by bits
0:3 of register RB are copied into register RT.

This instruction is privileged.

This instruction is defined only for 32-bit implementa­
tions. Using it on a 64-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Programming Note ------------,

The RA field is not defined for the mtsrin and
mfsrin instructions in this architecture. However,
mtsrin and mfsrin will perform the same function
in Power PC as do mtsri and mfsri in Power if RA
is 0 in the Power instructions.

12.11.3 Lookaside Buffer
Management Instructions (Optional)

While the Power PC Architecture describes logically
separate instruction fetch and fixed-point (including
effective address computation) execution units, the
programming model is that there is one translation
mechanism and, for 32-bit implementations, one set of
segment registers.

For performance reasons, most implementations will
implement a Segment Lookaside Buffer (64-bit imple­
mentations) and a Translation Lookaside Buffer.
These are caches of portions of the Segment Table
and Page Table respectively. As changes are made
to the address translation tables, it is necessary to
force the SLB and TLB into line with the updated
tables. This is done by invalidating SLB and TLB
entries, or occasionally by invalidating the entire SLB
or TLB, and aI/owing the translation caching mech­
anism to re-fetch from the tables.

Each PowerPC implementation which has an SLB must
provide means for doing the fol/owing:

• Invalidating an individual SLB entry

• Invalidating the entire SLB

Each Power PC implementation which has a TLB must
provide means for doing the following:

• Invalidating an individual TLB entry

• Invalidating the entire TLB

An implementation may choose to provide one or
more of the instructions listed in this section in order
to satisfy requirements in the preceding list. If an

instruction is implemented that matches the seman­
tics of an instruction described here, the implementa­
tion should be as specified here. Alternatively, an
algorithm may be given that performs one of the func­
tions listed above (a loop invalidating individual SLB
entries may be used to invalidate the entire SLB, for
exampfe), or instructions with different semantics may
be implemented. Such algorithms or instructions
must be described in Book IV, PowerPC Implementa­
tion Features.

It is permissible for an instruction described here to
be implemented so that more is done than absolutely
required. For example, an instruction whose seman­
tics are to purge an SLB entry may be implemented
so as to purge an entire congruence class or perhaps
even the entire SLB. Such additional actions should
be described in Book IV.

If a 64-bit implementation does not implement an
SLB, it does not provide the optional instructions that
affect the SLB (s/bie and s/bia). In such an implemen­
tation, it is permissible to treat these SLB instructions
as no-ops. Similarly, if the implementation does not
implement a TLB, it does not provide the optional
instructions that affect the TLB (tlbie, tIbia, and
tlbsync). In such an implementation, it is permissible
to treat these TLB instructions as no-ops.

Programming Note ------------,

Because the presence, absence, and exact
semantics of the various Lookaside Buffer man­
agement instructions are model dependent, it is
recommended that system software
"encapsulate" uses of such instructions into sub­
routines to minimize the impact of moving from
one implementation to another.

Chapter 12. Storage Control 183

SLB Invalidate Entry X-form SLB Invalidate All X-form

slbie RB slbia

L.lo_3_1_ 1_6 _I_II---"IL-'_' 1_1/_..LI'_6_~_B---,I_21 __ 4_34 __ I---,:, I 10 31 I. 11/ I" 11/ 1,.111 12,
498

1:,1
EA +- (RB)
if SLB entry exists for EA, then

SLB entry +- invalid

Let the effective address (EA) be the contents of reg­
ister RB. If the Segment Lookaside Buffer (SLB) con­
tains an entry corresponding to EA, that entry is made
invalid (i.e., removed from the SLB).

The SLB search is done regardless of the settings of
MSR1R and MSRoR•

Block Address Translation for EA, if any, is ignored.

This instruction is privileged.

This instruction is optional in Power PC Architecture.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Programming Note -----------,

It is not necessary that the ASR point to a valid
Segment Table when issuing slbie.

184 PowerPC Architecture First Edition

All SLB entries +- invalid

The entire SLB is made invalid (Le., all entries are
removed).

The SLB is invalidated regardless of the settings of
MSR1R and MSRoR•

This instruction is privileged.

This instruction is optional in Power PC Architecture.

This instruction is defined only for 64-bit implementa­
tions. Using it on a 32-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Programming Note -----------,

It is not necessary that the ASR point to a valid
Segment Table when issuing slbia.

TLB Invalidate Entry X-form

tlbie RB

[Power mnemonic: tlbi]

10 31 I. III I" III 306

VPI ~ (RBh6:51 {4:19}
Identify TLB entries corresponding to VPI
Each such TLB entry ~ invalid

1:,1

Let the effective address (EA) be the contents of reg­
ister RB. If the Translation Lookaside Buffer (TLB)
contains an entry corresponding to EA, that entry is
made invalid (Le., removed from the TLB).

The TLB search is done regardless of the settings of
MSR1R and MSRoR• The search is done based on a
portion of the Virtual Page Index, including the least
significant bits, without reference to the SLB, segment
table, or segment register. All entries matching the
search criteria are invalidated.

Block Address Translation for EA, if any, is ignored.

This instruction is privileged.

This instruction is optional in Power PC Architecture.

See Section 12.12, "Table Update Synchronization
Requirements" on page 186 for a description of other
requirements associated with the use of this instruc­
tion.

Special Registers Altered:
None

Programming Notes ----------.....

Nothing is guaranteed about instruction fetching in
other processors if tlbie deletes the TLB entry for
the page in which some other processor is cur­
rentlyexecuting.

TLB Invalidate All X-form

tibia

10 31 I. III I" 11/ I,. 11/ 12,
370

1:,1
All TLB entries ~ invalid

The entire TLB is invalidated (Le., all entries are
removed).

The TLB is invalidated regardless of the settings of
MSR1R and MSRoR•

This instruction is privileged.

This instruction is optional in PowerPC Architecture.

Special Registers Altered:
None

Programming Notes ------------,

It is not necessary that the ASR point to a valid
Segment Table or that SDR 1 point to a valid
page table when issuing tibia.

Nothing is guaranteed about instruction fetching in
other processors if tlbie deletes the TLB entry for
the page in which some other processor is cur­
rently executing.

Chapter 12. Storage Control 185

TLB Synchronize X-form

tlbsync

/0 31 /. III
566 /:,1 1

,,
//1 I III I

. 1621

The tlbsync instruction watts does not complete until
all previous tlbie and tibia instructions executed by
the processor executing this instruction have been
received and completed by all other processors.

This instruction is privileged.

This instruction is optional in PowerPC Architecture,
but it must be implemented if any of the following are
true:

• A TLB invalidation instruction that broadcasts is
implemented.

• The eciwx or ecowx instructions are imple­
mented.

See Section 12.12, "Table Update Synchronization
Requirements" for a description of other require­
ments associated with the use of this instruction.

Special Registers Altered:
None

186 PowerPC Architecture First Edition

12.12 Table Update
Synchronization Requirements

This section describes the steps that software must
take .when updating the tables involved in address
translation. Updates to these tables include:

• Adding a new Page Table Entry (PTE).

• Modifying an existing PTE, including the special
case of modifying the PTE's Reference bit.

• Deleting a PTE .

• Adding a new Segment Table Entry (STE).

• Modifying an existing STE.

• Deleting a STE.

In a multiprocessor system it is critical that these
rules be followed to ensure that all processors see a
consistent set of tables. Even in a uniprocessor
system certain rules must be followed, notably those
regarding Reference and Change bit updates, because
software changes must be synchronized with auto­
matic updates by the hardware.

A sync instruction ensures that all prior tlbie
instructions executed by the processor executing the
sync instruction have completed on that processor.

To ensure that a tlbie instruction executed by one
processor has completed on all other processors, the
sequence tlbie followed by sync is not sufficient. This
sequence must be followed by a tlbsync instruction
and then a sync instruction on the processor that exe­
cuted the tlbie to ensure that

1. the prior tlbie instructions have completed on
other processors, and

2. the t/bsync has completed on the processorexe­
cuting this sequence.

When tlbie is executed on one processor, software
must ensure that the following sequence of
instructions is executed on that processor before a
tlbie is executed on a second processor.

1. sync
2. tlbsync
3. sync

Other instructions may be interleaved with this
sequence of instructions but these instructions must
appear in the sequence in the order shown.

12.12.1 Page Table Updates

HTAB entries must be locked on multiprocessors.
Access to HTAB entries must be appropriately syn­
chronized by software locking of (Le., guaranteeing
exclusive access to) entries or groups of entries if
more than one processor can modify the table at
once.

On uniprocessors, HTAB entries need not be locked.
To adapt the examples given below for the
uniprocessor case, simply delete the "I ockO " and
"unlockO" lines. The sync instructions shown are still
required even on uniprocessors.

TLBs are non-coherent caches of the HTAB. TlB
entries must be flushed explicitly with one of the TlB
invalidate instructions. The sync instruction waits
until all prior TlB invalidates by this processor are
complete. This may cost a sync per HTAB entry
update.

Unsynchronized lookups in the HTAB continue even
while it is being modified. Any processor, even
including the processor modifying the HTAB, may look
in the HTAB at any time in an attempt to reload a TlB
entry. An inconsistent HTAB entry must never acci­
dentally become visible, thus there must be synchro­
nization between modifications to the valid bit and
any other modifications. This costs as many as two
syncs per HTAB entry update.

Processors write Reference and Change bits with
unsynchronized atomic byte stores. This requires that
the V, R, and C bits be in distinct bytes. It also
requires extreme care to ensure that no store over­
writes one of these bytes accidentally.

In the examples below,

• "lockO" and "unlockO" refer to software locks for
exclusive access to the table entry in question,

• sync refers to the sync instruction,
• tlbsync refers to the tlbsync instruction, and
• tlbie refers to the tlbie instruction.

12.12.1.1 Adding a Page Table Entry

This is the simplest Page Table case. It requires no
synchronization with the hardware, just a lock on the
PTE in a multiprocessor system. We fill in the entries
in the PTE except for the Valid bit, issue a sync to
ensure that the updates have all made it to storage,
and turn on the Valid bit.

10ck(PTE)
PTEvslD,H,API (- new val ues
PTERPN,R,C,WIM,PP (- new values
sync
PTEv (- 1
unlock(PTE)

12.12.1.2 Modifying a Page Table Entry

General case

In this case a currently-valid PTE must be changed.
To do this we must lock the PTE, mark it invalid, flush
it from the TlB, update the information in the PTE,
mark it valid again, and unlock, using sync at appro­
priate times to wait for modifications to complete.

lock(PTE)
PTEv (- e
sync
tlbie(PTE)
sync
tlbsync
sync
PTEvslD H API (- new values
PTERPN,~,~,WIM,PP (- new values
sync
PTEv (- 1
unlock(PTE)

Resetting the Reference bit

In the case where the PTE is modified only to set the
Reference bit to 0, a much simpler algorithm suffices
because the Reference bit need not be maintained
exactly.

lock(PTE)
oldR (- PTER
if oldR = 1 then

PTER (- e
tlbie(PTE)

unlock(PTE)

Since only the Rand C bits are modified by hardware,
and since Rand C are in different bytes, the R bit can
be set to 0 by reading the current contents of the byte
in the PTE containing R (bits 48:55 of the second
doubleword on 64-bit implementations, bits 16:23 of
the second word on 32-bit implementations), ANDing
the value with OxFE, and storing the byte back into
the PTE.

Modifying the virtual address

If the virtual address is being changed to a different
address within the same TLB hash class and cache
hash class, it suffices to:

lock(PTE)
val (- PTEVSID API H V
insert new VSID 'into val

. PTEvslD,APl,H,V (- val
sync
tlbie(PTE)
sync
tlbsync
sync
unlock(PTE)

Chapter 12. Storage Control 187

Here we take advantage of the fact that the store into
the first doubleword of the PTE (word, on 32-bit
systems) is performed atomically.

Note that if the new address is not a cache synonym
of the old, it will be necessary to flush or invalidate
the page in the cache(s) as· well. This may involve
assigning a temporary virtual address that is such a
synonym, and using that address to do the cache
operations.

12.12.1.3 Deleting a Page Table Entry

Here we just lock the entry, mark it invalid, wait for
the change to complete, and unlock.

lock(PTE)
PTEv ~ a
sync
tlbie(PTE)
sync
tlbsync
sync
unlock(PTE)

12.12.2 Segment Table Updates

These updates are similar to Page Table updates, but
without the complication of hardware updates to Ref­
erence and Change bits.

STAB entries must be locked on multiprocessors.
Access to STAB entries must be appropriately syn­
chronized by software locking of (Le., guaranteeing
exclusive access to) entries or groups of entries if
more than one processor can modify the table at
once.

On uniprocessors, STAB entries need not be locked.
To adapt the examples given below for the
uniprocessor case, simply delete the "lockO" and
"unlockO" lines. The sync instructions shown are still
required even on uniprocessors.

SLBs are non-coherent caches of the STAB. SLB
entries must be flushed explicitly with one of the SLB
invalidate instructions. The sync instruction waits
until all prior SLB invalidates by this processor are
complete. This may cost a sync per STAB entry
update.

Unsynchronized lookups in the STAB continue even
while it is being modified. Any processor, even
including the processor modifying the STAB, may look
in the STAB at any time in an attempt to reload a SLB
entry. An inconsistent STAB entry must never acci­
dentally become visible, thus there must be synchro-

188 PowerPC Architecture First Edition

nization between modifications to the valid bit and
any other modifications. This costs as many as two
syncs per STAB entry update.

In the examples below,

• "lockO" and "unlockO" refer to software locks for
exclusive access to the table entry in question,

• sync refers to the sync instruction, and
• slbie refers to the slbie instruction.

12.12.2.1 Adding a Segment Table Entry

We fill in the entries in the STE except for the Valid
bit, issue a sync to ensure that the updates have all
made it to storage, and turn on the Valid bit.

lock(STE)
STEESID,T,Ks,Kp ~ new values
if T = a

then STEvSID ~ new value
else STE IO ~ new value

sync
STEv ~ 1
unlock(STE)

12.12.2.2 Modifying a Segment Table
Entry

In t~is case a currently-valid STE must be changed.
To do this we must lock the STE, mark it invalid, flush
it from the SLB, update the information in the STE,
mark it valid again, and unlock, using sync at appro­
priate times to wait for modifications to complete.

lock(STE)
STEv ~ a
sync
slbie(STE)
sync
STEESID,T,Ks,Kp Eo new values
if T = a

then STEvslD ~ new value
else STE IO ~ new value

sync
STEv ~ 1

·unlock(STE)

12.12.2.3 Deleting a Segment Table
Entry

Here we just lock the entry, mark it invalid, wait for
the change to complete, and unlock.

lock(STE)
STEv ... a
sync
slbie(STE)
sync
unlock(STE)

12.12.3 Segment Register Updates

On an implementation that provides Segment Regis­
ters rather than a Segment Table, there is no table to
be locked but there are certain synchronization
requirements that must be satisfied when using. the
Move to Segment Register instructions. See
Appendix L, "Synchronization Requirements for
Special Registers" on page 269.

Chapter 12. Storage Control 189

190 PowerPC Architecture First Edition

Chapter 13. Interrupts

13.1 Overview

The Power PC architecture provides an interrupt mech­
anism to allow the processor to change state as a
result of external signals, errors, or unusual condi­
tions arising in the execution of instructions.

System Reset and Machine Check interrupts are not
ordered. AU other interrupts are ordered such that
only one interrupt is reported, and when it is proc­
essed (taken), no program state is lost. Since
save/restore registers SRRO and SRR1 are serially
reusable resources used by most interrupts, program
state will be· lost when an unordered interrupt is
taken.

13.2 Interrupt Synchronization

When an interrupt occurs, SRRO is set to point to an
instruction such that all preceding instructions have
completed execution, no subsequent instruction has
begun execution, and the instruction addressed by
SRRO mayor may not have completed execution,
depending on the interrupt -type.

All interrupts are context synchronizing, as defined in
Section 9.7.1, "Context Synchronization" on page 145,
except that System Reset and Machine Check inter­
rupts need not be context synchronizing if they are
not recoverable (i.e., if bit 62 {30} of SRR1 is set to 0
by.the interrupt).

13.3 Interrupt Classes

Interrupts are classified by whether they are directly
caused by the execution of an instruction or are
caused· by some other system exception. Those that
are "system-caused" are:

• System Reset
• Machine Check
• External
• Decrementer

External and Decrementer are maskable interrupts.
While MSREE = 0, the interrupt meChanism ignores the
exceptions that generate these interrupts. Therefore,
software may delay the generation of these interrupts
by setting MSREE=O or by failing to set MSREE =l
after processing an interrupt. When any interrupt is
taken, MSREE is set to 0 by the interrupt mechanism,
delaying the recognition of any further exceptions
causing these interrupts.

System Reset and Machine Check exceptions are not
maskable. These exceptions will be recognized
regardless of the setting of the MSR.

"Instruction-caused" interrupts are further divided
into two classes, precise and imprecise.

13.3.1 Precise Interrupt

Except for the Imprecise Mode Floating-Point Enabled
Exception interrupt, all instruction-caused interrupts
are precise. When the execution of an instruction
causes a precise interrupt, the following conditions
exist at the interrupt point:

1. SRRO addresses either the instruction causing the
exception or the immediately following instruc­
tion. Which instruction is addressed can be
determined from the interrupt type and status
bits.

2. An interrupt is generated such that all
instructions preceding the instruction causing the
exception appear to have completed with respect
to the executing processor. However, some
storage accesses generated by these preceding
instructions may not have been performed with
respect to all other processors and mechanisms.

3. The instruction causing the exception may not
have begun execution, may have parti ally com­
pleted, or may have completed, depending on the
interrupt type.

Chapter 13. Interrupts 191

4. Architecturally, no subsequent instruction has
begun execution.

13.3.2 Imprecise Interrupt

This architecture defines one imprecise interrupt:

• Imprecise Mode Floating-Point Enabled Exception

When the execution of an instruction causes an impre­
cise interrupt, the following conditions exist at the
interrupt point:

1. SRRO addresses either the instruction causing the
exception or some instruction following the
instruction causing the exception that generated
the interrupt.

2. An interrupt is generated such that all
instructions preceding the instruction addressed
by SRRO appear to have completed with respect
to the executing processor.

3. If the imprecise interrupt is forced, by the context
synchronizing mechanism, due to an instruction
that causes another interrupt (e.g., Alignment,
OSI) then SRRO addresses the interrupt-forcing
instruction, and the interrupt-forcing instruction
may have been partially executed (see section
13.6, "Partially Executed Instructions" on
page 199).

4. If the imprecise interrupt is forced, by the exe­
cution synchronizing mechanism, due to exe­
cuting an execution synchronizing instruction
other than sync or isync, then SRRO addresses
the interrupt-forcing instruction, and the interrupt­
forcing instruction appears not to have begun
execution (except for its forcing the imprecise
interrupt). If the imprecise interrupt is forced by
a sync or isync instruction, then SRRO may
address either the sync or isync instruction, or
the following instruction.

5. If the imprecise interrupt is not forced by either
the context or the execution synchronizing mech­
anism, then the instruction addressed by SRRO
appears not to have begun execution, if it is not
the excepting instruction.

6. No instruction following the instruction addressed
by SRRO appears to have begun execution.

All Floating-Point Enabled Exception interrupts are
maskable using the MSR bits FEO and FE1. Although
these interrupts are maskable, they differ significantly
from the other maskable interrupts in that the
masking of these interrupts is usually controlled by
the application program whereas the masking of
External and Oecrementer interrupts is controlled by
the operating system.

192 PowerPC Architecture First Edition

13.4 Interrupt Processing

Associated with each kind of interrupt is an interrupt
vector, which contains the initial sequence of
instructions that is executed when the corresponding
interrupt occurs.

Interrupt processing consists of saving a small part of
the processor's state in certain registers, identifying
the cause of the interrupt in another register, and
continuing execution at the corresponding interrupt
vector iocation. When an exception exists that will
cause an interrupt to be generated and it has been
determined that the interrupt can be taken, the fol­
lowing actions are performed:

1. SRRO is loaded with an instruction address that
depends on the type of interrupt; see the specific
interrupt descripti,on for details.

2. Bits 33:36 and 42:47 {1:4 and 10:15} of SRR1 are
loaded with information specific to the interrupt
type.

3. Bits 0:32, 37:41, and 48:63 {O, 5:9, and 16:31} of
SRR1 are loaded with a copy of the corre­
sponding bits of the MSR, except for the Machine
Check interrupt, for which these bits are set to
implementation-dependent values.

4. The MSR is set as described in Figure 68 on
page 193. The new values take effect beginning
with the first instruction following the interrupt.
MSR bits of particular interest are:

• MSR1R and MSRoR are set to 0 for all inter­
rupt types. Thus relocate is turned off for
both instruction fetch and data access begin­
ning with the first instruction following the
acceptance of the interrupt. See Chapter 12,
"Storage Control" on page 155.

• MSRsF bit is set to 1 in 64-bit implementa­
tions and execution after the interrupt begins
in 64-bit mode. This bit is reserved (not
defined) in 32-bit implementations.

5. Instruction fetch and execution resumes, using
the new MSR value, at a location specific to the
interrupt type. The location is determined by
adding the interrupt vector's offset (see
Figure 69 on page 193) to the base address
determined by MSR1P (see Interrupt Prefix on
page 149). For a Machine Check that occurs
when MSRME = 0, the Checkstop state is entered
(the machine stops executing instructions). See
13.5.2, "Machine Check Interrupt" on page 194.

Interrupts do not clear reservations obtained with
Iwarx or Idarx. The operating system should do so at
appropriate points, such as at process switch.

Programming Note --------------.

In some implementations, any instruction fetch
with MSR1R = 1, and any load or store with
MSRoR = 1, may have the side effect of modifying
SRRs 0 and 1.

Programming Note -------------.

In general, at process switch, due to possible
process interlocks and possible data availability
requirements, the operating system needs to con­
sider executing the following:

• stwcx., to clear the reservation if one is out­
standing, to ensure that a Iwarx or Idarx in
the "old" process is not paired with a stwcx.
or stdcx. in the "new" process.

• sync, to ensure that all storage operations of
an interrupted process are complete with
respect to other processors before that
process begins executing on another
processor.

• isync or rfi, to ensure that the instructions in
the "new" process execute in the "new"
context.

Programming Note -------------.

The operating system should manage MSRR1 as
follows:

• In the Machine Check and System Reset
interrupt handlers, interpret SRR1 bit 62 {30}
(where MSRR1 is placed) as:

0: interrupt is not recoverable
- 1: interrupt is recoverable with respect to

the processor

• In each interrupt handler, when enough state
has been saved that a Machine Check or
System Reset interrupt can be recovered
from, set MSRR1 to 1.

• In each interrupt handler, do the following just
before returning.

Set MSRR1 to O.
Set SRRO and SRR1 to the values to be
used by rfi. The new value of SRR1
should have bit 62 {30} set to 1 (which
will happen naturally if SRR1 is restored
to the value saved there by the interrupt,
because the interrupt handler will not be
executing this sequence unless the inter­
rupt is recoverable).
Execute rfi.

13.5 Interrupt Definitions

Figure 68 below shows all the types of interrupts and
the values assigned to the MSR for each. Figure 69
shows the offset of the interrupt vector, for each
interrupt type.

Interrupt Type MSR bit
IP ILE LE ME SF{}

System Reset - - (1) - 1
Machine Check - - (1) 0 1
Data Storage - - (1) - 1
Instruction Storage - - (1) - 1
External - - (1) - 1
Alignment - - (1) - 1
Program - - (1) - 1
FP Unavailable - - (1) - 1
Decrementer - - (1) - 1
System Call - - (1) - 1
Trace - - (1) - 1
Floating-Point Assist - - (1) - 1

0 bit is set to 0
1 bit is set to 1
. bit is not altered
(1) bit is copied from ILE

Defined bits not shown above (BE, DR, EE, FEO,
FE1, FP, IR, POW, PR, RI, and SE) are set.to O.

Reserved bits are set as if written as O.

Figure 68. MSR Setting Due to Interrupt

Offset (hex) Interrupt Type

00000 Reserved
00100 System Reset
00200 Machine Check
00300 Data Storage
00400 Instruction Storage
00500 External
00600 Alignment
00700 Program
00800 Floating-Point Unavailable
00900 Oecrementer
OOAOO Reserved
OOBOO Reserved
OOCOO System Call
00000 Trace
OOEOO Floating-Point Assist
00E10 Reserved
.. . " .

OOFFF Reserved
01000 Reserved, implementation-specific
.. . " .

02FFF (end of interrupt vector locations)

Figure 69. Offset of Interrupt Vector by Interrupt
Type

Chapter 13. Interrupts 193

Programming Note -------------,

Use of any of the locations shown as reserved
risks incompatibility with future implementations.

13.5.1 System Reset Interrupt

System Reset begins with a System Reset interrupt.

If the System Reset exception caused the processor
state to be corrupted such that the content of SRRO
or SRR1 are not valid or other processor resources
are corrupt and would preclude a reliable restart,
then the processor sets SRR1 bit 62 {30} (where
MSRR1 is normally placed) to 0, to indicate to the
interrupt handler that the interrupt is not recoverable.

The following registers are set:

SRRO

SRR1

Set to the effective address of the instruc­
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

33:36 {1:4} Set to O.
42:47 {10:15} Set to O.
62 {30} Loaded from bit 62 {30} of the MSR if the

processor is in a recoverable state, other­
wise set to O.

Others Loaded from the MSR.

MSR See Figure 68 on page 193.

Execution resumes at offset Ox00100 from the base
real address indicated by MSR1P'

13.5.2 Machine Check Interrupt

Machine Check interrupts are enabled when
MSRMe =1. If MSRMe=O and a Machine Check
occurs, the processor enters the Checkstop state.

Disabled Machine Check (Checkstop State)

When a processor is in Checkstop state, instruction
processing is suspended and generally cannot be
restarted without resetting the processor. Some
implementations may freeze the content of all latches
when entering Checkstop state so that the state of the
processor can be analyzed as an aid in problem
determi nation.

Enabled Machine Check

If the Machine Check exception caused the processor
state to be corrupted such that the content of SRRO
or SRR1 are not valid or other processor resources
are corrupt and would preclude a reliable restart,
then the processor sets SRR1 bit 62 {30} (where

194 PowerPC Architecture First Edition

MSRR1 is normally placed) to 0, to indicate to the
interrupt handler that the interrupt is not recoverable.

In some systems, the operating system may attempt
to identify and log the cause of the Machine Check. If
the exception that caused the Machine Check does
not preclude continued execution (i.e., if SRR1 bit 62
{30} is set to 1 for the interrupt handler), the
processor must be able to continue execution at the
Machine Check interrupt vector address.

The following registers are set:

SRRO

SRR1

MSR

Set on a "best effort" basis to the effective
address of some instruction that was exe­
cuting or was about to be executed when
the Machine Check exception occurred.
For further details see the Book IV,
PowerPC Implementation Features docu­
ment for the implementation.

See the Book IV, PowerPC Implementation
Features document for the implementation.

See Figure 68 on page 193.

Execution resumes at offset Ox00200 from the base
real address indicated by MSR1P'

Programming Note --------------,

On some implementations a Machine Check inter­
rupt may occur due to referencing an invalid (non­
existent) real address, either directly (with
MSRoR=O), or through an invalid translation. On
such a system, execution of Data Cache Block set
to Zero can cause a delayed Machine Check inter­
rupt by introducing a block into the data cache
that is associated with an invalid real address. A
Machine Check interrupt could eventually occur
when and if a subsequent attempt is made to
store that block to main storage.

13.5.3 Data Storage Interrupt

A Data Storage interrupt occurs when no higher pri­
ority exception exists and a data storage access
cannot be performed for any of the following reasons:

• The instruction results in a Direct-Store Error
exception.

• The effective address of a load, store, dcbi, dcbst,
deb!, dcbz, or iebi instruction cannot be trans­
lated.

• The instruction is not supported for the type of
storage addressed. (An interrupt may not occur
for this condition; see Section 12.6.3, "Instructions
not supported for T = 1" on page 174).

• The access violates storage protection.
• Execution of a eeiwx or eeowx instruction is disal­

lowed because EARe = O.

Such accesses can be generated by load/store type
instructions (discussed in Part 1, "PowerPC User
Instruction Set Architecture" on page 1), certain
storage control instructions, certain cache control
instructions (discussed in Part 2, "PowerPC Virtual
Environment Architecture" on page 117), and the
eciwx and ecowx instructions (discussed in Part 3,
"PowerPC Operating Environment Architecture" on
page 141).

If a stwcx. or stdcx. has an effective address for
which a normal store would cauSe a Data Storage
interrupt, but the processor does not have the reser­
vation from Iwarx or Idarx, then it is implementation­
dependent whether or not a Data Storage interrupt
occurs.

If a Move Assist instruction has a length of zero (in
the XER), a Data Storage interrupt does not occur,
regardless of the effective address.

The interrupt cause is defined in the Data Storage
Interrupt Status Register. These interrupts also use
the Data Address Register.

The following registers are set:

SRRO

SRR1

Set to the effective address of the instruc­
tion that caused the interrupt.

33:36 {1 :4} Set to O.
42:47 {10:15} Set to O.
Others Loaded from the MSR.

MSR

DSISR
o

1

2:3
4

5

6

See Figure 68 on page 193.

Set to 1 if a load or store instruction
results in a Direct-Store Error exception,
otherwise O.
Set to 1 if the translation of an attempted
access is not found in the hashed primary
HTEG, or in the re-hashed secondary
HTEG, or in the range of a DBAT register;
otherwise O.
Set to O.
Set to 1 if a storage access is not per­
mitted by the page or DBAT protection
mechanism described on page 179, other­
wise O.
Set to 1 if the access was due to an eciwx,
ecowx, Iwarx, Idarx, stwcx., or stdcx. that
addresses a direct-store segment (T = 1 in
Segment register or Segment Table Entry),
or if the access was due to a Iwarx, Idarx,
stwcx., or stdcx. that addresses Write
Through storage; set to 0 otherwise.
Set to 1 for a store operation and to 0 for a
load operation.

7:8 Set to O.
9 Reserved for DABR (see the Book IV,

PowerPC Implementation Features docu­
ment for the implementation).

10 Set to 1 if the Segment Table Search fails
to find a translation for the effective
address, otherwise set to 0.·

11 Set to 1 if execution of a eciwx or ecowx
instruction was attempted with EARE = 0,
otherwise set to O.

12:31 Set to O.

DAR Set to the effective address of a storage
element as described in the following list.

• A byte in the first word accessed in
the page that caused the Data Storage
interrupt, for a byte, halfword, or word
access to a non-direct-store segment.

• A byte in the first doubleword
accessed in the page that caused the
Data Storage interrupt, for a
doubleword access to a non-direct­
store segment.

• A byte in the first word accessed in
the BAT area that caused the Data
Storage interrupt, for a byte, halfword,
or word access to a BAT area.

• A byte in the first doubleword
accessed in the BAT area that caused
the Data Storage interrupt, for a
doubleword access to a BAT area.

• Any effective address in the range of
storage being addressed, for a Direct­
Store Error exception.

Execution resumes at offset Ox00300 from the base
real address indicated by MSR1P'

13.5.4 Instruction Storage Interrupt

An Instruction Storage interrupt occurs when no
higher priority exception exists and an attempt to
fetch the next instruction to be executed cannot be
performed for any of the following reasons:

• The effective address cannot be translated.
• The fetch access is to a direct-store segment.
• The fetch access violates storage protection.

Such accesses can only be generated by instruction
fetches. The following registers are set:

SRRO Set to the effective address of the instruc­
tion that the processor would have
attempted to execute next if no interrupt
conditions were present (if the interrupt
occurs on attempting to fetch a branch
target, SRRO is set to the branch target
address).

Chapter 13. Interrupts 195

SRR1
33 {1}

34 {2}
35 {3}

36 {4}

42 {10}

Set to 1 if the translation of an attempted
access is not found in the hashed primary
HTEG, or in the re-hashed secondary
HTEG, or in the range of an I BAT register;
otherwise O.
Set to O.
Set to 1 if the fetch access was to a direct­
store segment (T = 1 in Segment Register
or Segment Table Entry); set to 0 other­
wise.
Set to 1 if a storage access is not per­
mitted by the page or IBAT protection
mechanism described on page 179, other­
wiseO.
Set to 1 if the Segment Table Search fails
to find a translation for the effective
address, otherwise set to O.

43:47 {11 :15} Set to O.
Others Loaded from the MSR.

MSR See Figure 68 on page 193.

Execution resumes at offset Ox00400 from the base
real address indicated by MSR,p.

13.5.5 External Interrupt

An External interrupt occurs when no higher priority
exception exists, an External interrupt exception is
presented to the interrupt mechanism, and MSREE = 1.
The occurrence of the interrupt does not cancel the
request.

The following registers are set:

SRRO

SRR1

Set to the effective address of the instruc­
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

33:36 {1 :4} Set to O.
42:47 {10:15} Set to O.
Others Loaded from the MSR.

MSR See Figure 68 on page 193.

Execution resumes at offset Ox00500 from the base
real address indicated by MSR,p.

196 PowerPC Architecture First Edition

13.5.6 Alignment Interrupt

An Alignment interrupt occurs when no higher priority
exception exists and the implementation cannot
perform a storage access for one of the reasons listed
below. The t~rm "protection boundary," used below,
refers to the boundary between protection domains.
A protection domain is a direct-store segment, a block
of storage defined by a BAT entry, or a 4K block of
storage defined by a Page Table entry. Protection
domains are defined only when DR = 1.

• The operand of a floating-point load or store is
not word-aligned, for any storage class.

• The operand of a fixed-point doubleword load or
store is not word-aligned, for any storage class.

• The operand of Imw, stmw, Iwarx, or stwcx. is
not word-aligned, or the operand of Idarx or
stdcx. is not doubleword-aligned, for any storage
class.

• The operand of a floating-point load or store is in
a direct-store segment (T = 1).

• The operand of an elementary or string load or
store crosses a protection boundary.

• The operand of Imw or stmw crosses a segment
or BAT boundary.

• The operand of Data Cache Block set to Zero
(dcbz) is in a page that is Write Through or
Caching Inhibited, for a virtual mode access.

In all cases above, an implementation may correctly
do the operation and not cause an Alignment inter­
rupt. Details can be found in the Book IV, PowerPC
Implementation Features document for the implemen­
tation.

The following registers are set:

SRRO

SRR1

Set to the effective address of the instruc­
tion that caused the interrupt.

33:36 {1 :4} Set to O.
42:47 {10:15} Set to O.
Others Loaded from the MSR.

MSR

DSISR
0:11
12:13

14
15:16

17

See Figure 68 on page 193.

Set to O.
Set to bits 30:31 of the instruction if
OS-form.
Set to ObOO if 0- or X-form. (Set to ObOO on
32-bit implementations.)
Set to O.
Set to bits 29:30 of the instruction if X-form.
Set to ObOO if 0- or OS-form.
Set to bit 25 of the instruction if X-form.
Set to bit 5 of the instruction if 0- or
OS-form.

18:21 Set to bits 21:24 of the instruction if X-form.
Set to. bits 1:4 of the instruction if 0- or
OS-form.

22:26 Set to bits 6:10 of the instruction
(RT/RS/FRT/FRS), except undefined for
dcbz.

27:31 Set to bits 11:15 of the instruction (RA) for
update form instructions; set to either bits
11: 15 of the instruction or to any register
number not in the range of registers loaded
by a valid form instruction, for Imw, Iswi,
and Iswx; undefined for other instructions.

DAR Set to the effective address of the data
access as computed by the instruction
causing the alignment exception.

For an X-form Load or Store, it is acceptable to set
the OSISR to the same value that would have
resulted if the corresponding 0- or OS-form instruc­
tion had caused the interrupt. Similarly, for a 0- or
OS-form Load or Store, it is acceptable to set the
OSISR to the value that would have resulted for the
corresponding X-form instruction. For example, an
unaligned Iwax (that crosses a protection boundary)
would normally, following the description above,
cause the OSISR to be set to binary:

aaeeeeeeeeee ae a a1 a alaI ttttt ?????

where "ttttt" denotes the RT field, and "?????"
denotes undefined bits. However, it is acceptable if it
causes the OSISR to be set as for Iwa, which is

aaeeeaaaaaaa 1a a aa a 11e1 ttttt ?????

If there is no corresponding alternate form instruction
(e.g., for Iwaux), the value described above must be
set in the OSISR.

The instruction pairs that may use the same OSISR
value are: .

1 bzflbzx
1 hafl hax
lwaflwax
stb/stbx
stw/stwx
1 fsflfsx
stfs/stfsx

lbzu/lbzux
1 hau/l haux
ld/ldx
stbu/stbux
stwu/stwux
1 fsuflfsux
stfsu/stfsux

1 hzfl hzx
lwz/lwzx
ldufldux
sth/sthx
std/stdx
1 fdflfdx
stfd/stfdx

1 hzu/l hzux
lwzu/lwzux

sthu/sthux
stdu/stdux
lfdufl fdux
stfdu/stfdux

Execution resumes at offset Ox00600 from the base
real address indicated by MSRlp.

Programming Note -------------,

Software should not attempt to obtain a reserva­
tion for an unaligned Iwarx or Idarx, nor to simu­
late an unaligned stwcx. or stdcx ..

13.5.7 Program Interrupt

A Program interrupt occurs when no higher priority
exception exists and one or more of the following
exceptions arises during execution of an instruction:

Floating-Point Enabled Exception
A Floating-Point Enabled Exception type Program
interrupt is generated when the expression

(MSRFEO I MSRFE1) & FPSCRFEX

is 1. FPSCRFEX is turned on by the execution of a
floating-point instruction that causes an enabled
exception or by the execution of a "Move to
FPSCR" type instruction that results in both an
exception bit and its correspon'ding enable bit
being 1.

Illegal Instruction
An Illegal Instruction type Program interrupt is
generated when execution is attempted of an
instruction with an illegal opcode or an illegal
combination of opcode and extended opcode
fields, or when execution is attempted of an
optional instruction that is not provided by the
implementation (with the exception of optional
instructions that are treated as no-ops). Also,
implementations are allowed to generate this
interrupt for any invalid form instructions.

See the Part 1, "PowerPC User Instruction Set
Architecture" on page 1 appendix "Incompatibili­
ties with the Power Architecture" regarding
moving to and from the MQ and Oecrementer
registers.

Privileged Instruction
A Privileged Instruction type Program interrupt is
generated when the execution of a privileged
instruction is attempted and MSRpR = 1. Some
implementations may generate this interrupt for
mtspr or infspr with an invalid SPR field if spr 0 = 1
and MSRpR = 1.

Trap
A Trap type Program interrupt is generated when
any of the conditions specified in a Trap instruc­
tion is met.

The following registers are set:

SRRO For all Program interrupts except a
Floating-Point Enabled Exception when in
one of the Imprecise modes, set to the
effective address of the instruction that
caused the Program interrupt.

For an Imprecise Mode Floating-Point
Enabled Exception, set to the effective
address of the excepting instruction or to
the effective address of some subsequent
instruction. If it points to a subsequent
instruction, that instruction has not been
executed. If a subsequent instruction is
Synchronize (sync) or Instruction Synchro­
nize (isync), SRRO will not point more than

Chapter 13. Interrupts 197

SRR1

four bytes beyond the sync or isync
instruction.

If FPSCRFEX = 1 but Floating-Point Enabled
Exception interrupt is disabled by having
both MSRFEO and MSRFE1 = 0, a Floating­
Point Enabled Exception interrupt will occur
prior to or at the next synchronizing event
if these MSR bits are altered with any
instruction that can set the MSR so that
the expression

(MSRFEO I MSRFE1) & FPSCRFEX

is 1. When this occurs, SRRO is loaded
with the address of the instruction that
would have executed next, not with the
address of the instruction that modified the
MSR causing the interrupt.

33:36 {1:4} Set to O.
42 {10} Set to O.
43 {11} Set to 1 for a Floating-Point Enabled Excep­

tion type Program interrupt, otherwise O.
44 {12} Set to 1 for an Illegal Instruction type

Program interrupt, otherwise O.
45 {13} Set to 1 for a Privileged Instruction type

Program interrupt, otherwise O.
46 {14} Set to 1 for a Trap type Program interrupt,

otherwise O.
47 {15} Set to 0 if SRRO contains the address of

the instruction causing the exception, and
to 1 if SRRO contains the address of a sub­
sequent instruction.

Others Loaded from the MSR.

MSR

Only one of bits 43:46 {11:14} can be set to
1.

See Figure 68 on page 193.

Execution resumes at offset Ox00700 from the base
real address indicated by MSRlp.

13.5.8 Floating-Point Unavailable
Interrupt

A Floating-Point Unavailable interrupt occurs when no
higher priority exception exists, an attempt is made to
execute a floating-point instruction (including f1oating­
point loads, stores, and moves), and MSRFP = O.

The following registers are set:

198 PowerPC Architecture First Edition

SRRO

SRR1

Set to the effective address of the instruc­
tion that caused the interrupt.

33:36 {1:4} Set to O.
42:47 {10:15} Set to O.
Others Loaded from the MSR.

MSR See Figure 68 on page 193.

Execution resumes at offset Ox00800 from the base
real address indicated by MSR1P'

13.5.9 Decrementer Interrupt

A Decrementer interrupt occurs when no higher pri­
ority exception exists, the Decrementer exception
exists, and MSREE = 1. The occurrence of the inter­
rupt cancels the request.

The following registers are set:

SRRO

SRR1

Set to the effective address of the instruc­
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

33:36 {1:4} Set to O.
42:47 {10:15} Set to O.
Others Loaded from the MSR.

MSR See Figure 68 on page 193.

Execution resumes at offset Ox00900 from the base
real address indicated by MSR1P'

13.5.10 System Call Interrupt

A System Call interrupt occurs when a System Call
instruction is executed.

The following registers are set:

SRRO

SRR1

Set to. the effective address of the instruc­
tion following the System Call instruction.

32:47 {O:15} Undefined.
Others Loaded from the MSR.

MSR See Figure 68 on page 193.

Execution resumes at offset OxOOCOO from the base
real address indicated by MSR1P'

13.5.11 Trace Interrupt

The Trace interrupt may optionally be implemented.

If implemented, a Trace interrupt occurs when no
higher priority exception exists and either MSRsE= 1
and any instruction except rfi is successfully com­
pleted, or MSRsE = 1 and a branch instruction is com­
pleted.

The following registers are set:

SRRO

SRR1

Set to the effective address of the instruc­
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

33:36 and 42:47 {1:4 and 10:15} See the Book IV,
PowerPC Implementation Features docu­
ment for the implementation.

Others Loaded from the MSR.

MSR See Figure 68 on page 193.

"For further details see the Book IV, PowerPC Imple­
mentation Features document for the implementation.

Execution resumes at offset OxOODOO from the base
real address indicated by MSR lp•

13.5.12 Floating-Point Assist
Interrupt

The Floating-Point Assist interrupt may optionally be
implemented. Its purpose is to allow software assist­
ance for relatively infrequent and complex floating­
point operations such as computations involving
denormalized numbers.

If implemented, the following registers are set:

SRRO

SRR1

Set to the effective address of the instruc­
tion that caused the Floating-Point Assist
interrupt.

33:36 and 42:47 {1:4 and 10:15} See the Book IV,
PowerPC Implementation Features docu­
ment for the implementation.

Others Loaded from the MSR.

MSR See Figure 68 on page 193.

For further details see the Book IV, PowerPC Imple­
mentation Features document for the implementation.

Execution resumes at offset OxOOEOO from the base
real address indicated by MSRlp•

13.6 Partially Executed
Instructions

The architecture permits certain instructions to be
partially executed when an Alignment or Data Storage
interrupt occurs, or an imprecise interrupt is forced by
an instruction that causes an Alignment or Data
Storage exception. These are:

1. Load Multiple or Load String that causes an
Alignment or Data Storage interrupt: Some regis­
ters in the range of registers to be loaded may
have been loaded.

2. Store Multiple or Store String that causes an
Alignment or Data Storage interrupt: Some bytes
of storage in the range addressed may have been
updated.

3. An elementary (non-multiple and non-string) store
that causes an Alignment or Data Storage inter­
rupt: Some bytes just before the boundary may
have been updated. If the instruction normally
alters eRO (stwcx., stdcx.), eRO is set to an unde­
fined value. For update forms, tlJe update reg­
ister (RA) is not altered.

4. A floating-point load that causes an Alignment or
Data Storage interrupt the target register may
be altered. For update forms, the update register
(RA) is not altered.

5. A load or store to a direct-store segment that
causes a Data Storage interrupt due to a Direct­
Store Error exception: Some of the associated
address/data transfers may not have been initi­
ated. All initiated transfers are completed before
the exception is reported, and the non-initiated
transfers are aborted. Thus the instruction com­
pletes before the Data Storage interrupt occurs.

In the cases above, the questions of how many regis­
ters and how much storage is altered are implemen­
tation-, instruction-, and boundary-dependent.
However, storage protection is not violated. Further­
more, if some of the data accessed is in direct-store
(T = 1), and the instruction is not supported for direct­
store, the locations in direct-store are not accessed.

In the following situation, partial execution is not
allowed (this preserves restartability):

An elementary (non-multiple and non-string)
fixed-point load that causes an Alignment or Data
Storage interrupt: the target register is not
altered. For update forms, the update register
(RA) is not altered.

Chapter 13. Interrupts 199

13.7 Exception Ordering

Since multiple exceptions can exist at the same time
and the architecture does not provide for reporting
more than one interrupt at a time, the generation of
more than one interrupt is prohibited. Also some
exceptions would be lost if they were not recognized
and handled when they occur. For example, if an
external interrupt was generated when a data storage
exception existed, the data storage exception would
be lost. If the data storage exception was caused by
a Store Multiple instruction that spanned a page
boundary and the exception was a result of
attempting to access the second page, the store could
have modified locations in the first page even though
it appeared that the Store Multiple instruction was
never executed.

In addition, the architecture defines imprecise inter­
rupts that must be recoverable, cannot be lost, and
can occur at any time with respect to the executing
instruction stream. Some of the maskable and non­
maskable exceptions are persistent and can be
deferred. The following exceptions persist even
though some other interrupt is generated:

• Floating-Point Enabled Exceptions
• External
• Decrementer

For the above reasons, all exceptions are prioritized
with respect to other exceptions that may exist at the
same instant to prevent the loss of any exception that
is not persistent. Some exceptions cannot exist at the
same instant as some others.

13.7.1 Unordered Interrupt
Conditions

The exceptions listed here are unordered, meaning
that they may occur at any time regardless of the
state of the interrupt mechanism. These exceptions
must be recognized and processed when presented.

1. System Reset
2. Machine Check

All other interrupts are ordered with respect to the
interrupt mechanism resources.

200 PowerPC Architecture First Edition

13.7.2 Ordered Exceptions

The exceptions described here are ordered, meaning
that only one can be reported. However, the single
ordered exception that can be reported may exist in
concert with unordered exceptions. Ordered excep­
tions mayor may not be instruction-caused. The two
lists identify the ordered interrupts by type. The
order within the lists does not imply priority but only
lists the possible exceptions that may be reported.

System-caused or Imprecise

1. Program
- Imprecise Mode Floating-Point Enabled Exception

2. External
3. Decrementer

Instruction-caused and Precise

1. Instruction Storage
2. Program

- Illegal Instruction
- Privileged Instruction

3. Function Dependent
3.a Fixed-Point

1 a Program - Trap
1 b System Call
1c.1 Alignment
1 c.2 Data Storage
2 Trace (if implemented)

3.b Floating-Point
1 FP Unavailable
2a Program

- Precise Mode Floating-Point Enabled Excep'n
2b Floating-Point Assist (if implemented)
2c.1 Alignment
2c.2 Data Storage
3 Trace (if implemented)

For implementations that execute multiple instructions
in parallel using pipeline or super-scalar techniques,
or combinations of these, it can be difficult to under­
stand the ordering of exceptions. To understand this
ordering it is useful to consider a model in which an
instruction is fetched, decoded, and then executed. In
this model, the exceptions a single instruction would
generate are in the order shown in the list of
instruction-caused exceptions. Exceptions with dif­
ferent numbers have different ordering. Exceptions
with the same numbering but different lettering are
mutually exclusive and cannot be caused by the same
instruction.

Even on processors that are capable of executing
several instructions simultaneously, or out of order,
instruction-caused interrupts (precise and imprecise)
occur in program order.

13.8 Interrupt Priorities

This section describes the relationship of nonmask­
able, maskable, precise, and imprecise interrupts. In
the following descriptions, the interrupt mechanism
waiting for all possible exceptions to be reported
includes only exceptions caused by previously initi­
ated instructions (e.g. it does not include waiting for
the Decrementer to step through zero). The excep­
tions are listed in order of highest to lowest priority.

1. System Reset
System Reset exception has the highest priority
of all exceptions. If this exception exists, the
interrupt mechanism ignores all other exceptions
and generates a System Reset interrupt.

Once the System Reset interrupt is generated, no
nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

2. Machine Check
Machine Check exception is the second highest
priority exception. If this exception exists and a
System Reset exception does not exist, the inter­
rupt mechanism ignores all other exceptions and
generates a Machine Check interrupt.

Once the Machine Check interrupt is generated,
no nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

3. Instruction Dependent
This exception is the third highest priority excep­
tion. When this exception is created, the interrupt
mechanism waits for all possible Imprecise
exceptions to be reported. It then generates the
appropriate ordered interrupt if no higher priority
interrupt exception exists when the interrupt is to
be generated. Within this category a particular
instruction may present more than a single
exception. When this occurs, those exceptions
are ordered in priority as indicated in the fol­
lowing lists.

A. Fixed-Point Loads and Stores

a. Alignment
b. Data Storage
c. Trace (if implemented)

B. Floating-Point Loads and Stores

a. Floating-Point Unavailable
b. Alignment
c. Data Storage
d. Trace (if implemented)

C. Other Floating-Point Instructions

a. Floating-Point Unavailable
b. Program - Precise Mode Floating-Point

Enabled Exception
c. Floating-Point Assist (if implemented)

d. Trace (if implemented)

Not all floating-point instructions can cause
enabled exceptions.

D. rfi and mtmsr

a. Program - Privileged Instruction
b. Program - Precise Mode Floating-Point

Enabled Exception
c. Trace (if implemented)

If the MSR bits FEO and FE1 are set such that
Precise Mode Floating-Point Enabled Excep­
tion interrupts are enabled and the
FPSCR(FEX) bit is set, a Program interrupt
will result prior to or at the next synchro­
nizing event.

The Trace interrupt should not be generated
after an rfi.

E. Other exceptions
These exceptions are mutually exclusive and
have the same priority:

• Program - Trap
• System Call
• Program - Privileged Instruction
• Program - Illegal Instruction

F. Instruction Storage
This exception has the lowest priority in this
category. It is only recognized when all
instructions prior to the instruction causing
this exception appear to have completed and
that instruction is to be executed.

The priority of this interrupt is specified for
completeness and to ensure that it is not
given more favorable treatment. It is accept­
able for an implementation to treat this inter­
rupt as though it had a lower priority.

4. Program - Imprecise Mode Floating-Point Enabled
Exception
This exception is the fourth highest priority
exception. When this exception is created, the
interrupt mechanism waits for all other possible
exceptions to be reported. It then generates this
interrupt if no higher priority exception exists
when the interrupt is to be generated.

5. External
This exception is the fifth highest priority excep­
tion. When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if
no higher priority exception exists when the inter­
rupt is to be generated.

6. Decrementer
This exception is the lowest priority exception.
When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if
no higher priority exception exists when the inter­
rupt is to be generated.

Chapter 13. Interrupts 201

202 PowerPC Architecture First Edition

Chapter 14. Timer Facilities

14.1 Overview

The Time Base and the Decrementer provide timing
functions for the system. Specific instructions are
provided for reading and writing the Time Base, while
the Decrementer is manipulated as an SPR. Both are
volatile resources and must be initialized during start
up.

Time Base (TB)
The Time Base provides a long-period counter
driven by an implementation-dependent fre­
quency.

Decrementer (DEC)
The Decrementer, a counter that is updated at
the same rate as the Time Base, provides a
means of signalling an interrupt after a specified
amount of time has elapsed unless

• the Decrementer is altered in the interim, or
• the Time Base update frequency changes.

14.2 Time Base

The Time Base (TB) is a 64-bit register (see
Figure 70) containing a 64-bit unsigned integer that is
incremented periodically. Each increment adds 1 to
the low-order bit (bit 63). The frequency at which the
counter is updated is implementation-dependent and
need not be constant over long periods of time.

o

Field
TBU
TBl

TBU

32

Description
Upper 32 bits of Time Base
lower 32 bits of Time Base

Figure 70. Time Base

TBl

63

The Time Base runs continuously when powered on.
There is no automatic initialization of the Time Base
to a known value when the CPU is powered up;
system software must perform this initialization if the
value of the Time Base at any instant (rather than the
difference between two values of the :rime Base at
different instants) is important.

The Time Base increments until its value becomes
OxFFFF _FFFF _FFFF _FFFF (264 - 1). At the next incre­
ment, its value· becomes OxOOOO_OOOO_OOOO_OOOO.
There is no interrupt or other indication when this
occurs.

The period of the Time Base depends on the driving
frequency. As an order of magnitude example,
suppose that the CPU clock is 100 MHz and that the
Time Base is driven by this frequency divided by 32.
Then the period of the Time Base would be

264 x 32 . 12
TTS = 100 MHz = 5.90 x 10 seconds

which is approximately 187,000 years.

The PowerPC Architecture does not specify a relation­
ship between the frequency at which the Time Base is
updated and other frequencies, such as the CPU clock
or bus clock, in a Power PC system. The Time Base
update frequency is not required to be constant.
What is required, so that system software can keep
time of day and operate interval timers, is:

• The system provides an (implementation­
dependent) interrupt to software whenever the
update frequency of the Time Base changes, plus
a means to determine what the current update
frequency is, or

• The update frequency of the Time Base is under
the control of the system software.

Chapter 14. Timer Facilities 203

Programming Notes ----------.....,

Assuming that the operating system initializes the
Time Base on power-on to some reasonable value
and that the update frequency of the Time Base is
constant, the Time Base can be used as a source
of values that increase at a constant rate, such as
for time stamps in trace entries.

Even if the update frequency is not constant,
values read from the Time Base will be
monotonically increasing. If a trace entry is
recorded each time the update frequency
changes, the sequence of Time Base values can
be post-processed to become actual time values.

On an implementation that performs speculative
execution, the Time Base may be read arbitrarily
far "ahead" of the point at which it appears in the
instruction stream. If it is important that this not
occur, a context synchronizing operation such as
the isync instruction should be placed imme­
diately before the instructions that read the Time
Base.

See the description of the Time Base in Part 2,
"PowerPC Virtual Environment Architecture" on
page 117 for ways to compute time of day in
POSIX format from the Time Base.

14.2.1 Writing the Time Base

Writing the Time Base is privileged; reading the Time
Base is not privileged; it is discussed in Part 2,
"PowerPC Virtual Environment Architecture" on
page 117.

It is not possible to write the entire 64-bit Time Base
in a single instruction. The mttbl and mttbu extended
mnemonics write the lower and upper halves of the
Time Bas~ (TBl and TBU), respectively, preserving
the other half. These are extended mnemonics for
the mtspr instruction; see page 231.

The Time Base can be written by a sequence such as:

Iwz RX,upper # load 64-bit value for
Iwz Ry,lower # TB into Rx and Ry
Ii Rz,O
mttbl Rz
mttbu Rx
mttbl Ry

force TBl to 0
set TBU
set TBl

loading 0 into TBl prevents the possibility of a carry
from TBl to TBU while the Time Base is being initial­
ized.

204 PowerPC Architecture First Edition

Programming Note ------------,

The instructions for writing the Time Base are
implementation- and mode-independent. Thus
code written to set the Time Base on a 32-bit
implementation will work correctly on a 64-bit
implementation running in either 64- or 32-bit
mode.

14.3 Decrementer

The Decrementer (DEC) is a 32-bit decrementing
counter that provides a mechanism for causing a
Decrementer Interrupt after a programmable delay.

DEC

o 31

Figure 71. Decrementer

. The Decrementer is driven by the same frequency as
the Time Base. The period of the Decrementer will
depend on the driving frequency, but if the same
values are used as given above for the Time Base
(section Chapter 8), and if the Time Base update fre­
quency is constant, the period would be

232 x 32 3
TOEC = 100 MHz = 1.37 x 10 seconds

which is approximately 23 minutes.

The Decrementer counts down, causing an interrupt
(unless masked) when passing through zero. The
Decrementer must be implemented such that the fol­
lowing requirements are satisfied:

1. The operation of the Time Base and the
Decrementer are coherent, i.e. the counters are
driven by the same fundamental time base.

2. loading a GPR from the Decrementer shall have
no effect on the Decrementer.

3. Storing a GPR to the Decrementer shall replace
the value in the Decrementer with the value in
the GPR.

4. Whenever bit 0 of the Decrementer changes from
o to 1, an interrupt request is signalled. If mul­
tiple Decrementer Interrupt requests are received
before the first can be reported, only one inter­
rupt is reported. The occurrence of a
Decrementer Interrupt cancels the request.

5. If the Decrementer is altered by software and the
content of bit 0 is changed from 0 to 1, an inter­
rupt request is signaled.

Programming Note -----------,

In systems that change the Time Base update fre­
quency for purposes such as power management,
the Decrementer input frequency will also change.
Software must be aware of this in order to set
interval timers.

On an implementation that performs speculative
execution, the Decrementer may be read arbi­
trarily far "ahead" of the point at which it appears
in the instruction stream. If it is important that
this not occur, a context synchronizing operation
such as the isync instruction should be placed
immediately before the instruction that reads the
Decrementer.

14.3.1 Writing and Reading the
Decrementer

The content of the Decrementer can be read or
written using the mfspr and mtspr instructions, both
of which are privileged when they refer to the
Decrementer. Using an extended mnemonic (see
page 231), the Decrementer may be written from reg­
ister GPR Rx with:

mtd"ec Rx

Programming Note -------------,

If the execution of this instruction causes bit 0 of
the Decrementer to change from 0 to 1, an inter­
rupt request is signalled.

The Decrementer may be read into GPR Rx with:

mfdec Rx

Copying the Decrementer to a GPR has no effect on
the Decrementer content or interrupt mechanism.

Chapter 14. Timer Facilities 205

206 PowerPC Architecture First Edition

Appendix A. Optional Instructions

The instructions described in this appendix are
optional. If an instruction is implemen~ed that
matches the semantics of an instruction described
here, the implementation should. be as specified here.

The optional instructions are divided into two groups.
Additional groups may be defined in the future.

• General Purpose group: fsqrt and fsqrts.

• Graphics group: stfiwx, fres, frsqrte, and fsel.

If an implementation cl aims to support a given group,
it must implement all the instructions in the group.

Appendix A. Optional Instructions 207

A.1 Floating-Point Processor Instructions

A.1.1 Floating-Point Store Instruction

Byte ordering on PowerPC is Big-Endian by default.
See Appendix 0, "Little-Endian Byte Ordering" on
page 233 for the effects of operating a Power PC
system with Little-Endian byte ordering.

Store Floating-Point as Integer Word
Indexed X-form

stfiwx FRS,RA,RB

IS
FRS 111RA I RB I

" " 1621

983 10 31

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
MEM(EA, 4) ~ (FRSh2:63

1:,1

Let the effective address (EA) be the sum
(RAIO) + (RB).

The contents of the low-order 32 bits of register FRS
are stored, without conversion, into the word in
storage addressed by EA.

If the contents of register FRS were produced, either
directly or indirectly, by a Load Floating-Point Single
instruction, a single-precision arithmetic instruction,
or frsp, then the value stored is undefined. (The con­
tents of register FRS are produced directly by such an
instruction if FRS is the target register for the instruc­
tion. The contents of register FRS are produced indi­
rectly by such an instruction if FRS is the final target
register of a sequence of one or more Floating-Point
Move instructions, with the input to the sequence
having been produced directly by such an instruction.)

Special Registers Altered:
None

208 PowerPC Architecture First Edition

A.1.2 Floating-Point Arithmetic Instructions

Floating Square Root [Single]
A-form

fsqrt
fsqrt.

fsqrts
fsqrts.

FRT,FRB
FRT,FRB

FRT,FRB
FRT,FRB

(Rc=O)
(Rc= 1)

(Rc=O)
(Rc= 1)

The square root of the floating-point operand in reg­
ister FRB is placed into register FRT.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

Operation with various special values of the operand
is summarized below.

Ogerand Result ExceQtion
_00 QNaN'

VXSQRT
< 9 QNaN' VXSQRT
-9 -9 None
+00 +00 None
SNaN QNaN' VXSNAN
QNaN QNaN None

'No result if FPSCRve = 1.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRvE =1.

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN VXSQRT
CR1 (if Rc= 1)

Floating Reciprocal Estimate Single
A-form

fres
fres.

FRT,FRB
FRT,FRB

(Rc=O)
(Rc= 1)

A single-precision estimate of the reciprocal of the
floating-point operand in register FRB is placed into
register FRT. The estimate placed into register FRT
is correct to a precision of one part in 256 of the
reciprocal of (FRB).

Operation with various special values of the operand
is summarized below.

OQerand Result ExceQtion
_00 -0 None
-9 _001 ZX
+9 +001 ZX
+00 +9 None
SNaN QNaN2 VXSNAN
QNaN QNaN None

1 No result if FPSCRzE = 1.
2No result if FPSCRvE = 1.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRvE = 1 and Zero Divide Exceptions when
FPSCRzE =1.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX OX UX ZX
VXSNAN
CR1 (if Rc= 1)

Appendix A. Optional Instructions 209

Floating Reciprocal Square Root
Estimate A-form

frsqrte
frsqrte.

FRT,FRS
FRT, FRS

(Rc=O)
(Rc= 1)

A double-precision estimate of the reciprocal of the
square root of the floating-point operand in register­
FRS is placed into register FRT. The estimate placed
into register FRT is correct to a precision of one part
in 32 of the reciprocal of the square root of (FRB).

Operation with various special values of -the operand
is summarized below.

O~erand Result Exce~tion
-co QNaN2 VXSQRT
< 0 QNaN2 VXSQRT
-0 _col ZX
+0 +co1 ZX
+co +0 None
SNaN QNaN2 VXSNAN
QNaN QNaN None

1 No result if FPSCRzE = 1.
2No result if FPSCRvE = 1.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRvE = 1 and Zero Divide Exceptions when
FPSCRzE =1.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX ZX
VXSNAN VXSQRT
CR1 (if Rc=1)

210 PowerPC Architecture First Edition

A.1.3 Floating-Point Select
Instruction

Floating Select A-form

fsel
fsel.

FRT,FRA, FRC,FRS
FRT,FRA,FRC,FRS

if (FRA) ~ 0.S then FRT ~ (FRC)
else FRT ~ (FRB)

(Rc=O)
(Rc= 1)

The floating-point operand in register FRA is com­
pared to the value zero. If the operand is greater
than or equal to zero, register FRT is set to the con­
tents of register FRC. If the operand is less than zero
or is a NaN, register FRT is set to the contents of reg­
ister FRB. The comparison ignores the sign of zero
(Le., regards + 0 as equal to -0).

Special Registers Altered:
CR1 (if Rc= 1)

Programming Note -----------,

Examples of uses of this instruction can be found
in Appendices E.3, "Floating-Point Conversions"
on page 248, and E.4, "Floating-Point _ Selection"
on page 251.

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being
tested can be NaNs or infinities; see Section E.4.4,
"Notes" on page 251.

Appendix B. Suggested Floating-Point Model~

B.1 Floating-Point Round to Single-Precision Model

The following describes algorithmically the operation of the Floating Round to Single-Precision instruction.

If (FRBkll < 897 and (FRB)l:63 > 0 then
Do

If FPSCRuE = 0 then goto Disabled Exponent Underflow
If FPSCRuE = 1 then goto Enabled Exponent Underflow

End

If (FRBkll > 1150 and (FRB)1:11 < 2047 then
Do

If FPSCRoE = 0 then goto Disabled Exponent Overflow
If FPSCRoE = 1 then goto Enabled Exponent Overflow

End

If (FRB)1:11 > 896 and (FRB)1:11 < 1151 then goto Normal Operand

If (FRB)U3 = 0 then gato Zero Operand

If (FRB)1:11 = 2047 then
Do

If (FRB)12:63 = 0 then goto Infinity Operand
If (FRB)12 = 1 then goto QNaN Operand
If (FRB)12 = 0 and (FRB)13:63 > 0 then gota SNaN Operand

End

Appendix B. Suggested Floating-Point Models 211

Disabled Exponent Underflow:

sign ~ (FRB)o
If (FRB)';11 = 0 then

Do
exp ~ -1022
frac ~ ObO II (FRB)12:63

End
If (FRB)1:11 > 0 then

Do
exp ~ (FRBk11 - 1023
frac ~ Ob1 II (FRB)12:63

End
Denormalize operand:

G II R II X ~ ObOOO
Do while exp < -126

exp ~ exp + 1
frac II G II R II X ~ ObO II frac II G II (R I X)

End
FPSCRux ~ frac24:52 II G II R II X > 0
Round si ngle(sign,exp, frac, G, R,X)
FPSCRxx ~ FPSCRxx I FPSCRF1
If frac = 0 then

Do

End

FRToo ~ sign
FRTo1 :63 ~ 0
If sign = 0 then FPSCRFPRF ~ "+zero"
If sign = 1 then FPSCRFPRF ~ "-zero"

If frac > 0 then
Do

End
Done

If traco = 1 then
Do

It sign = 0 then FPSCRFPRF ~ .. +normal number"
It sign = 1 then FPSCRFPRF ~ "-normal number"

End
If fraco = 0 then

Do
If sign = 0 then FPSCRFPRF ~ .. +denormalized number"
If sign = 1 then FPSCRFPRF ~ , -denormalized number'

End
Normalize operand:

Do while traco = 0
exp ~ exp-1
frac II G II R ~ trac1:52 II G II R II ObO

End
FRTo ~ sign
FRT1:11 ~ exp + 1023
FRT 12:63 ~ frac1:23 II 290

212 PowerPC Architecture First Edition

Enabled Exponent Underflow:

FPSCRux 1
sign (FRB)o
If (FRB),;11 == ° then

Do
exp -1022

End
frac ObO II (FRB)12:63

If (FRB),;11 > 0 then
Do

End

exp (FRS)1:11 - 1023
frac Ob1 II (FRB)12:63

Normalize operand:
Do while fraco == 0

exp exp - 1

End
frac frac1 :52 II ObO

Round single(sign,exp, frac,O,O,O)
FPSCRxx FPSCRxx I FPSCRF1
exp +- exp + 192
FRTo +- sign
FRT1:11 +- exp + 102~
FRT12:63 +- frac1:23II 0
If sign == 0 then FPSCRFPRF "+normal number'"
If sign == 1 then FPSCRFPRF +- Ir -normal number'"
Done

Disabled Exponent Overflow:

FPSCRox +- 1
If FPSCRRN == ObOO then r Round to Nearest */

Do

End

If (FRS)o = 0 then FRT +- Ox7FFO_OOOO_OOOO_OOOO
If (FRB)o == 1 then FRT +- OxFFFO_OOOO_OOOO_OOOO
If (FRB)o == 0 then FPSCRFPRF +- Ir+infinity'"
If (FRB)o == 1 then FPSCRFPRF +- Ir-infinity"

If FPSCRRN == Ob01 then J* Round Truncate */
Do

End

If (FRB)o == 0 then FRT +- Ox47EF _FFFF _EOOO_OOOO
If (FRB)o == 1 then FRT +- OxC7EF _FFFF _EOOO_OOOO
If (FRB)o = 0 then FPSCRFPRF +- Ir+normal number'"
If (FRB)o = 1 then FPSCRFPRF +- "-normal number"

If FPSCRRN == Ob10 then /* Round to + Infinity */
Do

If (FRB)o = 0 then FRT +- Ox7FFO_0000_0000_0000
If (FRB)o == 1 then FRT +- OxC7EF _FFFF _EOOO_OOOO
If (FRB)o = 0 then FPSCRFPRF +- Ir+infinity"
If (FRS)o = 1 then FPSCRFPRF +- Ir -normal numberlr

End

If FPSCRRN = Ob11 then J* Round to -Infinity */
Do

End

If (FRB)o = 0 then FRT +- Ox47EF _FFFF _EOOO_OOOO
If (FRS)o = 1 then FRT +- OxFFFO_OOOO_OOOO_OOOO
If (FRB)o == 0 then FPSCRFPRF +- "'+normal number'"
If (FRB)o == 1 then FPSCRFPRF +- Ir-infinity'"

FPSCRFR +- undefined
FPSCRF1 +- 1
FPSCRxx +- 1
Done

Appendix B. Suggested Floating-Point Models 213

Enabled Exponent Overflow:

sign +- (FRB)o
exp +- (FRB)1:11 - 1023
frac +- Ob1 /I (FRB)12:63
Round single(sign,exp,frac,O,O,O)
FPSCRxx +- FPSCRxx I FPSCRF1

Enabled Overflow:
FPSCRox +- 1
exp +- exp - 192
FRTo +- sign
FRT1:11 +- exp + 1023
FRT12:63 +- frac1:23 11 290
If sign = ° then FPSCRFPRF +- '" +normal number'"
If sign = 1 then FPSCRFPRF +- ... -normal number'"
Done

Zero Operand:

FRT +- (FRB)
If (FRB)o = ° then FPSCRFPRF +- "'+zero'"
If (FRB)o = 1 then FPSCRFPRF +- "-zero'"
FPSCRFR FI +- ObOO
Done

Infinity Operand:

FRT +- (FRB)
If (FRB)o = ° then FPSCRFPRF +- "'+infinity'"
If (FRB)o = 1 then FPSCRFPRF +- "-infinity'"
FPSCRFR FI +- ObOO
Done

QNaN Operand:

FRT +- (FRB)o:34 11 290
FPSCRFPRF +- "'ON aN'"
FPSCRFR FI +- ObOO
Done

SNaN Operand:

FPSCRVXSNAN +- 1
If FPSCRvE = ° then

Do

End

FRTo:11 +- (FRB)o:11
FRT12 +- 1
FRT13:63 +- (FRB)13:34 11 290
FPSCRFPRF +- "'ONaN'"

FPSCRFR FI +- ObOO
Done

214 PowerPC Architecture First Edition

Normal Operand:

sign (FRB)o
exp (FRB),:11 - 1023
frac Ob1 II (FRB)t2:63
Round single(sign,exp,frac,O,O,O)
FPSCRxx FPSCRxx I FPSCRF1
If exp > + 127 and FPSCRoE = 0 then go to Disabled Exponent Overflow
If exp > + 127 and FPSCRoE = 1 then go to Enabled Overflow
FRTo sign
FRTt:tt exp + 1023
FRT12:63 +- fract:23 11 290
If sign = 0 then FPSCRFPRF +- '" +normal number'"
If sign = 1 then FPSCRFPRF +- ,. -normal number'"
Done

Round single(sign,expJrac,G.R,x):

inc 0
Isb frac23
gbit +- frac24
rbit frac25
xbit +- (frac26:52I1GIIRIIX)#:O
If FPSCRRN = ObOO then

Do
If sign IIlsb II gbit \I rbit II xbit =:= Obu11 uu then tnc +- 1 1* comparison ignores u bits */
If sign IIlsb II gbit II rbit \I xbit = Obu011 u then inc +- 1 r comparison ignores u ·bits */
If sign IIlsb \I gbit \I rbit II xbit = Obu01 u1 then inc +- 1 1* comparison ignores u bits */

End
If FPSCRRN = Ob10 then

Do
If sign IIlsb \I gbit \I rbit II xbit = ObOu1uu then inc +- 1 /* comparison ignores u bits */
If sign IIlsb \I gbit \I rbit II xbit = ObOuu1 u then inc +- 1 r comparison ignores u bits */
If sign IIlsb \I gbit II rbit II xbit = ObOuuu1 then inc +- 1 1* comparison ignores u bits */

End
If FPSCRRN = Ob11 then

Do
If sign IIlsb II gbit II rbit II xbit = Ob1u1uu then inc 1 '* comparison ignores u bits "'/
If sign IIlsb II gbit II rbit II xbit = Ob1uu1u then inc 1 '''' comparison ignores u bits "'/
If sign IIlsb II gbit \I rbit II xbit = Ob1 uuu1 then inc +- 1 '''' comparison ignores u bits */

End
fracO:23 +- fracO:23 + inc
If carry_out = 1 then

Do
fracO:23 +- Ob1 II fracO:22

exp exp + 1
End

FPSCRFR +- inc
FPSCRF1 gbit I rbit I xbit
Return

Appendix B. Suggested Floating-Point Models 215

B.2 Floating-Point Convert to Integer Model

The following describes algorithmically the operation of the Floating Convert to Integer instructions.

If Floating Convert to Integer Word
Then Do

Then round_mode +- FPSCRRN
tgt_precision +- "'32-bit integer'"

End

If Floating Convert to Integer Word with round toward Zero
Then Do

round_mode +- Ob01
tgt_precision +- "'32-bit integer'"

End

If Floating Convert to Integer Doubleword
Then Do

round_mode +- FPSCRRN
tgt_precision +- "'S4-bit integer'"

End

If Floating Convert to Integer Doubleword with round toward Zero
Then Do

End

round_mode +- Ob01
tgt_precision +- "'64-bit intege

If (FRS)1:11 = 2047 and (FRB)12:63 = 0 then goto Infinity Operand
If (FRS)1:11 = 2047 and (FRB),2 = 0 then goto SNaN Operand
If (FRS)1:11 = 2047 and (FRB)'2 = 1 then goto QNaN Operand
If (FRS)1:11 > 108S then goto Large Operand

sign +- (FRS)o
If (FRS)1:11 > 0 then exp +- (FRB)1:11 - 1023 /" exp - bias */
If (FRS)':11 = 0 then exp +- -1022
If (FRS)1:11 > 0 then fracO:64 +- Ob01 II (FRS)12:63 II 110 '* normal *'
If (FRS)1:11 = 0 then fracO:64 +- ObOO II (FRB)12:63 II 110 1* denormal *'
gbit II rbit II xbit +- ObOOO
Do i = 1,S3-exp /" do the loop 0 times if exp = S3 */

fracO:64 II gbit II rbit II xbit +- ObO II fracO:64 II gbit II (rbit I xbit)
End

Round Integer(sign,frac,gbit,rbit,xbit,round_mode)

If sign = 1 then fracO:64 +- ..,fracO:64 + 1

If tgCprecision = AO'32-bit intege and fracO:64 > +231 _1 then goto Large Operand
If tgt_precision = AO'64-bit integer'" and fracO:64 > + 263_1 then goto Large Operand
If tgt_precision = "'32-bit intege and fracO:64 < _231 then goto Large Operand
If tgt_precision = "'64-bit integer'" and fracO:64 < _263 then goto Large Operand

FPSCRxx +- FPSCRxx I FPSCRF1

If tgt_precision = "'32-bit integer'" then FRT +- Oxuuuu_uuuu II frac33:64 /" u is undefined hex digit */
If tgt_precision = "'S4-bit intege then FRT +- frac1:64
FPSCRFPRF +- undefined
Done

216 PowerPC Architecture First Edition

Round Integer(sign Jrae ,gbit/"bit,xbit/"ound _mode):

inc +- 0
If round_mode = ObOO then

Do
If sign II frac64II gbit II rbit II xbit = Obu11uu then inc +- 1 r comparison ignores u bits leI
If sign II frac64II gbit II rbit II xbit = Obu011 u then inc +- 1 r comparison ignores u bits leI
If sign II frac64 II gbit II rbit II xbit = Obu01 u1 then inc +- 1 r comparison ignores u bits leI

End
If round_mode = Ob10 then

Do
If sign II frac64II gbit II rbit II xbit = ObOu1uu then inc +- 1 r comparison ignores u bits leI
If sign II frac64II gbit II rbit II xbit == ObOuu1 u then inc +- 1 r comparison ignores u bits leI
If sign II frac64II gbit II rbit II xbit = ObOuuu1 then inc +- 1 r comparison ignores u bits leI

End
If round_mode = Ob11 then

Do
If sign II frac64 II gbit II rbit II xbit == Ob1 u1 uu then inc +- 1 r comparison ignores u bits leI
If sign II frac64 II gbit II rbit II xbit = Ob1uu1u then inc +- 1 r comparison ignores u bits leI
If sign II frac64II gbit II rbit II xbit == Ob1uuu1 then inc +- 1 r comparison ignores u bits leI

End
fraco:64 +- fracO:64 + inc
FPSCRFR +- inc
FPSCRF1 +- gbit I rbit I xbit
Return

Infinity Operand:

FPSCRFR FI VXCVI +- Ob001
If FPSCRvE == 0 then Do

If tgt_precision == ""32-bit integer"" then
Do

If sign == 0 then FRT +- Oxuuuu_uuuu_7FFF _FFFF 11< u is undefined hex digit 1<1
If sign = 1 then FRT +- Oxuuuu_uuuu_8000_0000 ,1< u is undefined hex digit 1<,

End
Else

Do
If sign == 0 then FRT +- Ox7FFF _FFFF _FFFF _FFFF
If sign = 1 then FRT +- OX8000_0000_0000_0000

End
FPSCRFPRF +- undefined
End

Done

SNaN Operand:

FPSCRFR FI VXSNAN VXCVI +- Ob0011
If FPSCRvE = 0 then

Do
If tgt_precision == "'32-bit integer'" then FRT +- Oxuuuu_uuuu_8000_0000 ,1< u is undefined hex digit *'
If tgt_precision = ""64-bit integer'" then FRT +- Ox8000_0000_0000_0000

End
Done

FPSCRFPRF +- undefined

Appendix B. Suggested Floating-Point Models 217

QNaN Operand:

FPSCRFR FI VXCVI .-.Ob001
If FPSCRvE == 0 then

Do

End
Done

If tgt_precision == "32-bit integer' then FRT .-.Oxuuuu_uuuu_8000_0000 r u is undefined hex digit '"
If tgt_precision == "64-bit integer'" then FRT .-. Ox8000_0000_0000~OOOO
FPSCRFPRF .-. undefined

Large Operand:

FPSCRFR FI VXCVI .-.Ob001
If FPSCRvE == 0 then Do

If tgt_precision == "32-bit integer'" then
Do

If sign == 0 then FRT.-. Oxuuuu_uuuu_7FFF _FFFF r u is undefined hex digit '"
If sign == 1 then FRT.-. Oxuuuu_uuuu_8000_0000 '" u is undefined hex digit '"

End
Else

Do
If sign == 0 then FRT .-. Ox7FFF _FFFF _FFFF _FFFF
If sign == 1 then FRT .-. Ox8000_0000_0000_0000

End
FPSCRFPRF .-. undefined
End

Done

218 PowerPC Architecture First Edition

8.3 Floating-Point Convert from Integer Model

The following describes algorithmically the operation of the Floating Convert from Integer instructions.

sign +- (FRB)o
exp +- 63
fracO:63 +- (FRB)

If fracO:63 = 0 then go to Zero Operand

If sign = 1 then fracO:63 +- ...,fracO:63 + 1

Do while fraco = 0 /* do the loop 0 times if (FRB) = maximum negative integer */
fracO:63 <4- frac1:63 II ObO
exp <4- exp - 1

End

Round Float{ sign,exp, frac, FPSCRRN)

If sign = 1 then FPSCRFPRF <4- "-normal number"
If sign = 0 then FPSCRFPRF · <4- "+normal number"
FRTo +- sign
FRT1:11 +- exp + 1023 r exp + bias */
FRT12:63 <4- frac1:52
Done

Zero Operand:

FPSCRFR FI <4- ObOO
FPSCRFPRF <4- "+zero'"
FRT +- OxOOOO _ 0000 _0000_0000
Done

Appendix B. Suggested Floating-Point Models 219

Round Float(sign,exp/rac,round_mode):

inc +- 0
Isb +- frac52
gbit +- fracs3
rbit +- fracs4
xbit +- fracS5:63 > 0
If round_mode = ObOO then

Do

End

If sign IIlsb II gbit II rbit II xbit = Obu11 uu then inc +- 1 /* comparison ignores u bits */
If sign IIlsb II gbit II rbit II xbit = Obu011 u then inc +- 1 /* comparison ignores u bits */
If sign lI.1sb II gbit II rbit II xbit = Obu01 u1 then inc +- 1 1* comparison ignores u bits */

If round_mode = Ob10 then
Do

End

If sign IIlsb " gbit II rbit II xbit = ObOu1 uu then inc +- 1 1* comparison ignores u bits */
If sign IIlsb II gbit II rbit II xbit = ObOuu1 u then inc +- 1 /* comparison ignores u bits */
If sign IIlsb II gbit II rbit II xbit = ObOuuu1 then inc +- 1 /* comparison ignores u bits */

If round_mode = Ob11 then
Do

End

If sign IIlsb II gbit II rbit "xbit = Ob1 u1 uu then inc +- 1 /* comparison ignores u bits */
If sign" Isb II gbit " rbit " xbit = Ob1 uu1 u then inc +- 1 /* comparison ignores u bits */
If sign IIlsb " gbit II rbit "xbit = Ob1 uuu1 then inc +- 1 I'" comparison ignores u bits */

fracO:52 +- fracO:52 + inc
If carry_out = 1 then exp +- exp +
FPSCRFR +- inc
FPSCRF1 +- gbit I rbit I xbit
FPSCRxx +- FPSCRxx I FPSCRF1
Return

220 PowerPC Architecture First Edition

Appendix C. Assembler Extended Mnemonics

In order to make assembler language programs simpler to write and easier to understand, a set of extended
mnemonics and symbols is provided that defines simple shorthand for the most frequently used forms of Branch
Conditional, Compare, Trap, Rotate and Shift. and certain other instructions.

Assemblers should provide the mnemonics and symbols listed here, and may provide others.

C.1 Branch mnemonics

The mnemonics discussed in this section are variations of the Branch Conditional instructions.

C.1.1 BO and BI fields

The S-bit BO field in Branch Conditional instructions encodes the following operations:

• Decrement CTR
• Test CTR equal to 0
• Test CTR not equal to 0
• Test condition true
• Test condition false
• Branch prediction (taken, fall through)

The 5-bit BI field in Branch Conditional instructions specifies which of the 32 bits in the CR represents the condi­
tion to test.

To provide an extended mnemonic for every possible combination of BO and BI fields would require 210 = 1024
mnemonics. Most of these would be only marginally useful. The following abbreviated set is intended to cover
the most useful cases. Unusual cases can be coded using a basic Branch Conditional mnemonic (be, bclr, bcctr)
with the condition to be tested specified as a numeric operand.

C.1.2 Simple branch mnemonics

The mnemonics in Table 2 allow all the useful BO encodings to be specified, along with the AA (absolute address)
and LK (set Link Register) fields.

Notice that there are no extended mnemonics for relative and absolute unconditional branches. For these the
basic mnemonics b, ba, bl, and bla should be used.

Appendix C. Assembler Extended Mnemonics 221

Table 2. Simple branch mnemonics

LR not set LR set

Branch semantics be bea belr beetr bel bela bc/rl beetrl
Relative Absolute To LR ToCTR Relative Absolute To LR To CTR

Branch unconditionally - - blr bctr - - blrl bctrl

Branch if condition true bt bta btlr btctr btl btla btlrl btctrl

Branch if condition false bf bfa bflr bfctr btl bfla bflrl bfctrl

Decrement CTR,
bdnz bdnza bdnzlr - bdnzl bdnzla bdnzlrl -branch if CTR non-zero

Decrement CTR,
branch if CTR non-zero bdnzt bdnzta bdnztlr - bdnztl bdnztla bdnztlrl -
AN D condition true

Decrement CTR,
branch if CTR non-zero bdnzf bdnzfa bdnzflr - bdnzfl bdnzfla bdnzflrl -
AN D condition false

Decrement CTR,
bdz bdza bdzlr - bdzl bdzla bdzlrl -branch if eTR zero

Decrement CTR,
branch if CTR zero bdzt bdzta bdztlr - bdztl bdztla bdztlrl -
AND condition true

Decrement CTR,
branch if CTR zero bdzf bdzfa bdzflr - bdzfl bdzfla bdzflrl -
AND condition false

Instructions using one of the mnemonics in Table 2 that tests a condition specify the condition as the first
operand of the instruction. The following symbols are defined for use in such an operand. They can be combined
with other values in an expression that identifies the CR bit (0:31) to be tested. These symbols and expressions
can also be used with the basic Branch Conditional mnemonics, to specify the BI field.

Symbol Value Meaning

It 0 Less than
gt 1 Greater than
eq 2 Equal
so 3 Summary overflow
un 3 Unordered (after floating-point comparison)
crO 0 CR field 0
cr1 1 CR field 1
cr2 2 CR field 2
cr3 3 CR field 3
cr4 4 CR field 4
cr5 5 CR field 5
cr6 6 CR field 6
cr7 7 CR field 7

Examples

1. Decrement CTR and branch if it is still non-zero (closure of a loop controlled by a count loaded into CTR).

bdnz target (equivalent to: be 16,0,target)

2. Same as (1) but branch only if CTR is non zero and condition in CRO is "equal."

bdnzt eq,target (equivalent to: be 8,2,target)

3. Same as (2), but "equal" condition is in CR5.

bdnzt 4·cr5 + eq, target (equivalent to: bc 8,22, target)

4. Branch if bit 27 of CR is false.

222 PowerPC Architecture First Edition

bf 27,target (equivalent to: bc 4,27,target)

5. Same as (4), but set the Link Register. This is a form of conditional "call."

bfl 27,target (equivalent to: bcl 4,27,target)

C.1.3 Branch mnemonics incorporating conditions

The mnemonics defined in Table 3 are variations of the "branch if condition true" and "branch if condition false"
BO encodings, with the most useful values of BI represented in the mnemonic rather than specified as a numeric
operand.

A standard set of codes has been adopted for the most common combinations of branch conditions.

Code Meaning

It Less than
Ie Less than or equal
eq Equal
ge Greater than or equal
gt Greater than
nl Not less than
ne Not equal
ng Not greater than
so Summary overflow
ns Not summary overflow
un Unordered (after floating-point comparison)
nu Not unordered (after floating-point comparison)

These codes are reflected in the mnemonics shown in Table 3.

Table 3. Branch mnemonics incorporating conditions

LR not set LR set

Branch semantics bc bca bclr bcctr bel bcla bclrl bcctrl
Relative Absolute To LR To CTR Relative Absolute To LR To CTR

Branch if less than bit blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than or equal bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if sum!1"ary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary overflow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunt bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

Instructions using the mnemonics in Table 3 specify the Condition Register field in an optional first operand. If
the CR field being tested is CRO, this operand need not be specified. Otherwise, one of the CR field symbols
listed earlier is coded as the first operand.

Appendix C. Assembler Extended Mnemonics 223

Examples

1. Branch if CRO reflects condition "not equaL"

bne target

2. Same as (1), but condition is in CR3.

bne cr3, target

(equivalent to:

(equivalent to:

bc 4,2,target)

bc 4,14,target)

3. Branch to an absolute target if CR4 specifies "greater than," setting the Unk Register. This is a form of
conditional "call."

bgtla cr4,target (equivalent to: bcla 12,17,target)

4. Same as (3), but target address is in the Count Register.

bgtctrl cr4 (equivalent to: bcctrl 12,17)

C.1.4 Branch prediction

In Branch Conditional instructions that are not always taken, the low-order bit ("y" bit) of the BO field provides a
hint about whether the branch is likely to be taken: see the discussion of the lOy" bit in Section 2.4.1, Branch
Instructions, on page 19.

Assemblers should set this bit to 0 unless otherwise directed. This default action means that:

• A Branch Conditional with a negative displacement field is predicted to be taken.

• A Branch Conditional with a non-negative displacement field is predicted not to be taken (fall through).

• A Branch Conditional to an address in the LR or CTR is predicted not to be taken (fall through).

If the likely outcome (branch or fall through) of a given Branch Conditional instruction is known, a suffix can be
added to the mnemonic that tells the assembler how to set the lOy" bit.

+ Predict branch to be taken.

Predict branch not to be taken.

Such a suffix can be added to any Branch Conditional mnemonic, either basic or extended.

For relative and absolute branches (be[l][a]), the setting of the "y" bit depends on whether the displacement field
is negative or non-negative. For negative displacement fields, coding the suffix" +" causes the bit to be set to 0,
and coding the suffix "-" causes the bit to be set to 1. For non-negative displacement fields, coding the suffix
" +" causes the bit to be set to 1, and coding the suffix "-" causes the bit to be set to O.

For branches to an address in the LR or CTR (be/r[1] or beetr[l]), coding the suffix "+" causes the "y" bit to be
set to 1, and coding the suffix" -" causes the bit to be set to O.

Examples

1. Branch if CRO reflects condition "less than," specifying that the branch should be predicted to be taken.

blt+ target

2. Same as (1), but target address is in the Link Register and the branch should be predicted not to be taken.

bltlr-

C.2 Condition Register logical mnemonics

The Condition Register Logical instructions can be used to set (to 1), clear (to 0), copy, or invert a given Condition
Register bit. Extended mnemonics are provided that allow these operations to be coded easily.

224 PowerPC Architecture First Edition

Table 4. Condition Register logical mnemonics

Operation

Condition Register set

Condition Register clear

Condition Register move

Condition Register not

Examples

1. Set CR bit 25.

crset 25

2. Clear the SO bit of CRO.

crclr so

Extended mnemonic

crset bx

crclr bx

crmove bx,by

crnot bx,by

(equivalent to:

(equivalent to:

3. Same as (2), but SO bit to be cleared is in CR3.

crclr 4"cr3 + so

4. Invert the EO bit.

crnot eq,eq

(equivalent to:

(equivalent to:

Equivalent to

creqv bx,bx,bx

crxor bx, bx,bx

cror bx,by,by

crnor bx,by,by

creqv 25,25,25)

crxor 3,3,3)

crxor 15,15,15)

crnor 2,2,2)

5. Same as (4), but EO bit to be inverted is in CR4, and the result is to be placed into the EO bit of CR5.

crnot 4"cr5 + eq,4"cr4 + eq (equivalent to: crnor 22,18,18)

C.3 Subtract mnemonics

C.3.1 Subtract Immediate

Although there is no "Subtract Immediate" instruction, its effect can be achieved by using an Add Immediate
instruction with the immediate operand negated. Extended mnemonics are provided that include this negation,
making the intent of the computation clearer.

subi Rx,Ry,value

subis Rx,Ry,value

subic Rx,Ry,value

subic. Rx, Ry, value

C.3.2 Subtract

(equivalent to:

(equivalent to:

(equivalent to:

(equivalent to:

addi Rx,Ry, -value)

addis Rx,Ry, -value)

addic Rx,Ry, -value)

addic. Rx,Ry, - value)

The Subtract From instructions subtract the second operand (RA) from the third (RB). Extended mnemonics are
provided that use the more "normal" order, in which the third operand is subtracted from the second. Both these
mnemonics can be coded with a final "0" and/or "." to cause the OE and/or Rc bit to be set in the underlying
instruction.

sub Rx,Ry,Rz

subc Rx,Ry,Rz

(equivalent to:

(equivalent to:

subf Rx,Rz,Ry)

subfc Rx,Rz,Ry)

Appendix C. Assembler Extended Mnemonics 225

C.4 Compare mnemonics

The L field in the fixed-point Compare instructions controls whether the operands are treated as 64-bit quantities
(L= 1) or as 32-bit quantities (L=O). Extended mnemonics are provided that represent the L value in the mne­
monic rather than requiring it to be coded as a numeric operand.

The SF field can be omitted if the result of the comparison is to be placed in CR Field O. Otherwise the target CR
field must be specified as the first operand, using one of the CR field symbols listed above or an explicit field
number.

Note: The basic Compare mnemonics of PowerPC are the same as those of Power, but the Power instructions
have three operands while the PowerPC instructions have four. The assembler will recognize a basic Compare
mnemonic with three operands as the Power form, and will generate the instruction with L = O. (Thus the assem­
bler must require that the SF field, which normally can be omitted when CR Field 0 is the target, be specified
explicitly if Lis.)

226 PowerPC Architecture First Edition

C.4.1 Doubleword comparisons

These operations are available only in 54-bit implementations.

Table 5. Doubleword compare mnemonics

Operation Extended mnemonic Equivalent to

Compare doubleword immediate cmpdi bf;ra,si cmpi bf,l ,ra,si

Compare doubleword cmpd bf,ra,rb cmp bf,l,ra,rb

Compare logical doubleword immediate cmpldi bf,ra,ui cmpli bf,l ,ra,ui

Compare logical doubleword cmpld bf,ra,rb cmpl bf,l,ra,rb

Examples

1. Compare logical (unsigned) 64 bits in register Rx with immediate value 100 and place result in CRO.

cmpldi Rx,100 (equivalent to: cmpli 0,1,Rx,100)

2. Same as (1), but place results in CR4.

cmpldi cr4,Rx,100 (equivalent to: cmpli 4,1,Rx,100)

3. Compare registers Rx and Ry as signed 64-bit quantities and place result in CRO.

cmpd Rx,Ry (equivalent to: cmp 0,1,Rx,Ry)

C.4.2 Word comparisons

These operations are available in all implementations.

Table 6. Word compare mnemonics

Operation Extended mnemonic Equivalent to

Compare word immediate cmpwi bf,ra,si cmpi bf,O,ra,si

Compare word cmpw bf,ra,rb cmp bf,O,ra,rb

Compare logical word immediate cmplwi bf,ra,ui cmpli bf,O,ra,ui

Compare logical word cmplw bf,ra,rb cmpl bf,O,ra,rb

Examples

1. Compare 32 bits in register Rx with immediate value 100 and place result in CRO.

cmpwi Rx,1 00 (equivalent to: cmpi 0,0, Rx, 1 00)

2. Same as (1), but place results in CR4.

cmpwi cr4,Rx,100 (equivalent to: cmpi 4,O,Rx,100)

3. Compare registers Rx and Ry as logical 32-bit quantities and place result in CRO.

cmplw Rx,Ry (equivalent to: cmpl O,O,Rx,Ry)

Appendix C. Assembler Extended Mnemonics 227

c.s Trap mnemonics

The mnemonics defined in Table 7 are variations of the Trap instructions, with the most useful values of TO
represented in the mnemonic rather than specified as a numeric operand.

A standard set of codes has been adopted for the most common combinations of trap conditions.

Code Meaning TO encoding <>=<>
It Less than 16 1 o 0 o 0
Ie Less than or equal 20 1 o 1 o 0
eq Equal 4 0 o 1 o 0
ge Greater than or equal 12 0 1 1 o 0
gt Greater than 8 0 1 0 o 0
nl Not less than 12 0 1 1 o 0
ne Not equal 24 1 1 0 o 0
ng Not greater than 20 1 o 1 o 0
lit Logically less than 2 0 o 0 1 0
lie Logica~ly less than or equal 6 0 o 1 1 0
Ige Logically greater than or equal 5 0 o 1 o 1
Igt Logically greater than 1 0 o 0 o 1
Inl Logically not less than 5 0 0 1 o 1
Ing Logically not greater than 6 0 0 1 0

(none) Unconditional 31 1 1 1 1

These codes are reflected in the mnemonics shown in Table 7.

Table 7. Trap mnemonics

64-bit comparison 32-bit comparison

Trap semantics

Trap unconditionally

Trap if less than

Trap if less than or equal

Trap if equal

Trap if greater than or equal

Trap if greater than

Trap if not less than

Trap if not equal

Trap if not greater than

Trap if logically less than

Trap if logically less than or equal

Trap if logically greater than or equal

Trap if logically greater than

Trap if logically not less than

Trap if logically not greater than

Examples

1. Trap if 64-bit register Rx is not O.

tdnei Rx,O

228 PowerPC Architecture First Edition

tdi
Immediate

-
tdlti

tdlei

tdeqi

tdgei

tdgti

tdnli

tdnei

tdngi

tdllti

tdllei

tdlgei

tdlgti

tdlnli

tdlngi

(equivalent to:

td twi tw
Register Immediate Register

- - trap

tdlt twlti twit

tdle twlei twle

tdeq tweqi tweq

tdge twgei twge

tdgt twgti twgt

tdnl twnli twnl

tdne twnei twne

tdng twngi twng

tdllt twllti twllt

tdlle twllei twlle

tdlge twlgei twlge

tdlgt twlgti twlgt

tdlnl twlnli twlnl

tdlng twlngi twlng

tdi 24, Rx,O)

2. Same as (1), but comparison is to register Ry.

tdne RX,Ry (equivalent to: td 24,Rx,Ry)

3. Trap if register Rx, considered as a 32-bit quantity, is logically greater than Ox7FF.

twlgti RX,Ox7FF (equivalent to: twi 1,Rx,Ox7FF)

4. Trap unconditionally.

trap (equivalent to: tw 31,0,0)

C.6 Rotate and Shift mnemonics

The Rotate and Shift instructions provide powerful and general ways to manipulate register contents, but can be
difficult to understand. Extended mnemonics are provided that allow some of the simpler operations to be coded
easily.

Mnemonics are provided for the following types of operation:

Extract Select a field of n bits starting at bit position b in the source register; right or left justify this field in
the target register; clear all other bits of the target register to 0.

Insert Select a left-justified or right-justified field of n bits in the source register; insert this field starting at
bit position b of the target register; leave other bits of the targe~ register unchanged. (No extended
mnemonic is provided for insertion of a left-justified field when operating on doublewords, because
such an insertion requires more than one instruction.)

Rotate

Shift

Clear

Rotate the contents of a register right or left n bits without masking.

Shift the contents of a register right or left n bits, clearing vacated bits to ° (logical shift).

Clear the leftmost or rightmost n bits of a register to 0.

Clear left and shift left
Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be used
to scale a (known non-negative) array index by the width of an element.

C.S.1 Operations on doublewords

These operations are available only in 64-bit implementations. All these mnemonics can be coded with a final
to cause the Rc bit to be set in the underlying instruction.

Table 8. Doubleword rotate and shift mnemonics

Operation Extended mnemonic Equivalent to

Extract and' left justify immediate extldi ra,rs,n,b rldicr ra,rs,b,n-1

Extract and right justify immediate extrdi ra,rs,n,b rldicl ra,rs,b + n,64-n

Insert from right immediate insrdi ra,rs,n,b rldimi ra,rs,64-(b+n),b

Rotate left immediate rotldi ra,rs,n rldicl ra,rs,n,O

Rotate right immediate rotrdi ra,rs,n rldicl ra,rs,64-n,0

Rotate left rotld ra,rs,rb rldcl ra,rs,rb,O

Shift left immediate sldi ra,rs,n rldicr ra,rs,n,63-n

Shift right immediate srdi ra,rs,n rldicl ra,rs,64-n,n

Clear left immediate clrldi ra,rs,n rldicl ra,rs,O,n

Clear right immediate clrrdi ra,rs,n rldicr ra,rs,O,63 - n

Clear left and shift left immediate clrlsldi ra,rs,b,n rldic ra,rs,n,b-n

Appendix C. Assembler Extended Mnemonics 229

Examples

1. Extract the sign bit (bit 0) of register Ry and place the result right-justified into register Rx.

extrdi RX,Ry,1 ,0 (equivalent to: rldicl RX,Ry,1,63)

2. Insert the bit extracted in (1) into the sign bit (bit 0) of register Rz.

insrdi RZ,Rx,1 ,0 (equivalent to: rldimi RZ,Rx,63,0)

3. Shift the contents of register Rx left 8 bits.

sldi RX,Rx,8 (equivalent to: rldicr RX,Rx,8,55)

4. Clear the high-order 32 bits of Ry and place the result into Rx.

clrldi RX,RY,32 (equivalent to: rldicl RX,Ry,O,32)

C.6.2 Operations on words

These operations are available in all implementations. All these mnemonics can be coded with a final . to
cause the Rc bit to be set in the underlying instruction.

Table 9. Word rotate and shift mnemonics

Operation Extended mnemonic Equivalent to

Extract and left justify immediate extlwi ra,rs,n,b rlwinm ra,rs,b,0,n-1

Extract and right justify immediate extrwi ra,rs,n,b rlwinm ra,rs,b + n,32 - n,31

Insert from left immediate inslwi ra,rs,n,b rlwimi ra,rs,32 - b,b,(b + n)-1

Insert from right immediate insrwi ra,rs,n,b rlwimi ra,rs,32 - (b + n),b,(b + n)-1

Rotate left immediate rotlwi ra,rs,n rlwinm ra,rs,n,O,31

Rotate right immediate rotrwi ra,rs,n rlwinm ra,rs,32 - n,0,31

Rotate left rotlw ra,rs,rb rlwnm ra,rs,rb,O,31

Shift left immediate slwi ra,rs,n rlwinm ra,rs,n,O,31 - n

Shift right immediate srwi ra,rs,n rlwinm ra,rs,32-n,n,31

Clear left immediate clrlwi ra,rs,n rlwinm ra,rs,O,n,31

Clear right immediate clrrwi ra,rs,n rlwinm ra,rs,O,O,31-n

Clear left and shift left immediate c1rlslwi ra,rs,b,n rlwinm ra,rs,n,b-n,31-n

Examples

1. Extract the sign bit (bit 32) of register Ry and place the result right-justified into register Rx.

extrwi RX,Ry,1,O (equivalent to: rlwinm RX,Ry,1,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit 32) of register Rz.

insrwi RZ,Rx,1 ,0 (equivalent to: rlwimi RZ,Rx,31 ,0,0)

3. Shift the contents of register Rx left 8 bits, clearing the high-order 32 bits.

slwi RX,Rx,8 (equivalent to: rlwinm RX,Rx,8,O,23)

4. Clear the high-order 16 bits of the low-order 32 bits of Ry and place the result into Rx, clearing the high-order
32 bits of Rx.

clrlwi RX,Ry,16 (equivalent to: rlwimn RX,Ry,O,16,31)

230 PowerPC Architecture First Edition

C.7 Move To/From Special Purpose Register mnemonics

The mtspr and mfspr instructions specify a Special Purpose Register (SPR) as a numeric operand. Extended mne­
monics are provided that represent the SPR in the mnemonic rather than requiring it to be coded as an operand.
Also shown here are extended mnemonics for Move From Time Base and Move From Time Base Upper, which
are variants of the mftb instruction rather than of mfspr.

Note: mftb serves as both a basic and an extended mnemonic. The assembler will recognize an mftb mnemonic
with two operands as the basic form, and an mftb mnemonic with one operand as the extended form.

Table 10. Extended mnemonics for moving to/from an SPR

Move To SPR
Special Purpose Register

Extended Equivalent to

Fixed Point Exception
mtxer Rx mtspr 1,Rx

Register

Link Register mtlr Rx mtspr 8,Rx

Count Register mtctr Rx mtspr 9,Rx

Data Storage Interrupt
mtdsisr Rx mtspr 18,Rx

Status Register

Data Address Register mtdar Rx mtspr 19,Rx

Decrementer mtdec Rx mtspr 22,Rx

Storage Description
mtsdr1 Rx mtspr 25,Rx

Register 1

Save/Restore Register 0 mtsrrO Rx mtspr 26,Rx

Save/Restore Register 1 mtsrr1 Rx mtspr 27,Rx

Special Purpose Registers
mtsprg n,Rx mtspr 272 + n,Rx

GO through G3

Address Space Register mtasr Rx mtspr 280, R)(

External Access Register mtear Rx mtspr 282, Rx

Time Base [Lower] mttbl Rx mtspr 2B4,Rx

Time Base Upper mttbu Rx mtspr 285, Rx

Processor Version Register - -
IBAT Registers, Upper mtibatu n,Rx mtspr 528+2xn,Rx

I BAT Regi sters, Lower mtibatl n,Rx mtspr 529 + 2xn, Rx

DBAT Registers, Upper mtdbatu n,Rx mtspr 536 + 2xn,Rx

DBAT Registers, Lower mtdbatl n,Rx mtspr 537 + 2xn,Rx

1 Except for mftb and mftbu.

Examples

1. Copy the contents of the low-order 32 bits of Rx to the XER.

mtxer Rx (equivalent to:

2. Copy the contents of the LR to register Rx.

mflr Rx

3. Copy the contents of Rx to the CTR.

mtctr Rx

(equivalent to:

(equivalent to:

Move From SPR 1

Extended Equivalent to

mfxer Rx mfspr RX,1

mflr Rx mfspr RX,8

mfctr Rx mfspr RX,9

mfdsisr Rx mfspr RX,18

mfdar Rx mfspr RX,19

mfdec Rx mfspr Rx,22

mfsdr1 Rx mfspr RX,25

mfsrrO Rx mfspr RX,26

mfsrr1 Rx mfspr RX,27

mfsprg RX,n mfspr Rx,272 + n

mfasr Rx mfspr RX,280

mfear Rx· mfspr Rx,282

mftb Rx mftb RX,268

mftbu Rx mftb RX,269

mfpvr Rx mfspr RX,287

mfibatu RX,n mfspr RX,528+2xn

mfibatl Rx,n mfspr RX,529+2xn

mfdbatu Rx,n mfspr Rx,536+2xn

mfdbatl RX,n mfspr Rx,537+2xn

mtspr 1,Rx)

mfspr RX,8)

mtspr 9,Rx)

Appendix C. Assembler Extended Mnemonics 231

C.8 Miscellaneous mnemonics

. No-op

Many Power PC instructions can be coded in a way such that, effectively, no operation is performed. An extended
mnemonic is provided for the "preferred" form of no-op. If an implementation performs any type of run-time
optimization related to no-ops, the preferred form is the no-op that will trigger this.

nop (equivalent to: ori 0,0,0)

Load Immediate

The add; and addis instructions can be used to load an immediate value into a register. Extended mnemonics are
provided to convey the idea that no addition is being performed but merely data movement (from the immediate
field of the instruction to a register).

Load a 16-bit signed immediate value into register Rx:

Ii RX,value (equivalent to: addi RX,O,value)

Load a 16-bit signed immediate value, shifted left by 16 bits, into register Rx:

lis RX,value (equivalent to: addis RX,O,value)

Load Address

This mnemonic permits computing the value of a base-displacement operand, using the addi instruction which
normally requires separate register and immediate operands.

la Rx,D(Ry) (equivalent to: addi RX,Ry,D)

The la mnemonic is useful for obtaining the address of a variable specified by name, allowing the assembler to
supply the base register number and compute the displacement. If the variable v is located at offset Dv bytes
from the address in register Rv, and the assembler has been told to use register Rv as a base for references to
the data structure containing v, then the following line causes the address of v to be loaded into register Rx.

la Rx,v (equivalent to: addi RX,Rv,Dv)

Move Register

Several PowerPC instructions can be coded in a way such that they simply copy the contents of one register to
another. An extended mnemonic is provided to convey the idea that no computation is being performed but
merely data movement (from one register to another).

The following instruction copies the contents of register Ry into register Rx. This mnemonic can be coded with a
final "." to cause the Rc bit to be set in the underlying instruction.

mr RX,Ry (equivalent to: or RX,RY,Ry)

~omplement Register

Several Power PC instructions can be coded in a way such that they complement the contents of one register and
place the result into another register. An extended mnemonic is provided that allows this operation to be coded
easily.

The following instruction complements the contents of register Ry and places the result into register Rx. This
mnemonic can be coded with a final "." to cause the Rc bit to be set in the underlying instruction.

not RX,Ry (equivalent to: nor RX,Ry,Ry)

232 PowerPC Architecture First Edition

Appendix D. Little-Endian Byte Ordering

It is computed that eleven Thousand Persons
have, at several Times, suffered Death,
rather than submit to break their Eggs at the
smaller End. Many hundred large Volumes

D.1 Byte Ordering

If scalars (individual data items and instructions) were
indivisible, then there would be no such concept as
"byte ordering." It is meaningless to talk of the
"order" of bits or groups of bits within the smallest
addressable unit of storage, because nothing can be
observed about such order. Only when scalars, which
the programmer and processor regard as indivisible
quantities, can be made up of more than one address­
able unit of storage does the question of "order"
arise.

For a machine in which the smallest addressable unit
of storage is the 64-bit doubleword, there is no ques­
tion of the ordering of "bytes" within doublewords.
All transfers of individual scalars to and from storage
(e.g., between registers and storage) are of
doublewords, and the address of the "byte" con­
taining the high-order 8 bits of a scalar is no different
from the address of a "byte" containing any other
part of the scalar.

For Power PC, as for most computers currently avail­
able, the smallest addressable unit of storage is the
8-bit byte. Many scalars are halfwords, words, or
doublewords, which consist of groups of bytes. When
a word-length scalar is moved from a register to
storage, the scalar occupies four consecutive byte
addresses. It thus becomes meaningful to discuss the
order of the byte addresses with respect to the value
of the scalar: which byte contains the highest-order 8
bits of the scalar, which byte contains the next­
highest-order 8 bits, and so on.

Given a scalar that spans multiple bytes, the choice of
byte ordering is essentially arbitrary. There are
4! = 24 ways to specify the ordering of four bytes

have been published upon this Controversy

Jonathan Swift, Gulliver's Travels

within a word, but only two of these orderings are
sensible:

• The ordering that assigns the lowest address to
the highest-order ("leftmost") 8 bits of the scalar,
the next sequential address to the next-highest­
order 8 bits, and so on. This is called Big-Endian
because the "big end" of the scal ar, considered
as a binary number, comes first in storage. IBM
RISC System/6000, IBM System/370, and
Motorola 680xO are examples of computers using
this byte ordering.

• The ordering that assigns the lowest address to
the lowest-order ("rightmost") 8 bits of the scalar,
the next sequential address to the next-Iowest­
order 8 bits, and so on. This is called Little­
En~.Jian because the "little end" of the scalar,
considered as a binary number, comes first in
storage. DEC VAX and Intel x86 are examples of
computers using this byte ordering.

D.2 Structure Mapping
Examples

Figure 72 on page 234 shows an example of a C lan­
guage structure s containing an assortment of scalars
and one character string. The value assumed to be in
each structure element is shown in hex in the C com­
ments; these values are used below to show how the
bytes making up each structure element are mapped
into storage.

C structure mapping rules permit the use of padding
(skipped bytes) in order to align the scalars on desir­
able boundaries. Figures 73 and 74 show each scalar
aligned at its natural boundary. This introduces
padding of 4 bytes between a and b, one byte

Appendix D. Little-Endian Byte Ordering 233

struct {
int a; r Ox1112_1314 word */
double b; r Ox2122_2324_2526_2728 doubleword */
char * c; r Ox3132_3334 word */
char d[7]; r 'A', 'B', 'C', '0', 'E', 'F', 'G' array of bytes */
short e; r Ox5152 halfword */
int f; r Ox6162_6364 word *l

} s· ,

Figure 72. C structure '5', showing values of elements

between d and e, and two bytes between e and f. The
same amount of padding is present for both Big­
Endian and Little-Endian mappings.

D.2.1 Big-Endian mapping

The Big-Endian mapping of structure 5 is shown in
Figure 73. Addresses are shown in hex at the left of
each doubleword, and in small figures below each
byte. The content of each byte, as indicated in the C
example in Figure 72, is shown in hex (as characters
for the elements of the string).

aa 11 12 13 14
00 01 02 03 04 05 06 07

a8 21 22 23 24 25 26 27 28
08 09 OA 08 oc 00 OE OF

H) 31 32 33 34 'A' 'B' 'C' '0'

10 11 12 13 14 15 16 17

'E' 'F' 'G'I 51 52

1 18 19 1A 18 1C 10 1E 1F

18

20 61 62 63 64
20 21 22 23

Figure 73. Big-Endian mapping of structure '5'

D.2.2 Little-Endian mapping

The same structure 5 is shown mapped Little-Endian
in Figure 74. Ooublewords are shown laid out from
right to left, which is the common way of showing
storage maps for Little-Endian machines.

11 12 13 14 aa
07 06 05 04 03 02 01 00

21 22 23 24 25 26 27 28 a8
OF OE 00 OC 08 OA 09 08

D.3 PowerPC Byte Ordering

The body of each of the three Power PC Architecture
Books. Part 1. "PowerPC User Instruction Set
Architecture" on page 1. Part 2, "PowerPC Virtual
Environment Architecture" on page 117, and Part 3,
"PowerPC Operating Environment Architecture" on
page 141, are written as if a Power PC system runs
only in Big-Endian mode. In fact. a PowerPC system
can instead run in Little-Endian mode, in which the
instruction set behaves as if the byte ordering were
Little-Endian, and can change Endian mode dynam­
ically. The remainder of this appendix describes how
the mode is controlled, and how running in Little­
Endian mode differs from running in Big-Endian mode.

D.3.1 Controlling PowerPC Byte
Ordering

The Endian mode of a Power PC processor is con­
trolled by two bits: the LE (Little-Endian Mode) ·bit
specifies the current mode of the processor. and the
ILE (Interrupt Little-Endian Mode) bit specifies the
mode that the processor enters when the system
error handler is invoked. For both bits, a value of 0
specifies Big-Endian mode and a value of 1 specifies
Uttle-Endian mode. The location of these bits and the
requirements for altering them are described in
Part 3, .. Power PC Operating Environment
Architecture" on page 141.

When a Power PC system comes up after power-on­
reset, Big-Endian mode is in effect (see Part 3,
"PowerPC Operating Environment Architecture" on
page 141). Thereafter, methods described in Book III
can be used to change the mode, as can both
invoking the system error handler and returning from
the system error handler.

Programming Note -------------,

'0' 'C' 'B' 'A'

17 16 15 14

31 32
13 12

33
11

34
10

la For a discussion of software synchronization
requirements when altering the LE and ILE bits,

I 51 52 I'G' 'F' 'E'
1F 1E 10 1C 18 1A 19 18

61 62 63 64
23 22 21 20

Figure 74. Little-Endian mapping of structure '5'

18 please refer to the appendix entitled "Synchroni­
zation Requirements for Special Registers."

29

234 PowerPC Architecture First Edition

0.3.2 PowerPC Little-Endian Byte
Ordering

One might expect that a PowerPC system running in
Little-Endian mode would have to perform a 2-way,
4-way, or 8-way byte swap when transferring a
halfword, word, or doubleword to or from storage,
e.g., when transferring data between storage and a
general purpose or floating-point register, when
fetching instructions, and when transferring data
between storage and an Input/Output (I/O) device.
Power PC systems do not do such swapping, but
instead achieve the effect of UUle-Endian byte
ordering by modifying the low-order three bits of the
effective address (EA) as described below. Individual
scalars actually appear in storage in Big-Endian byte
order.

The modification affects only the addresses presented
to the storage subsystem (see Part 3, "PowerPC
Operating Environment Architecture" on page 141).
All effective addresses in architecturally defined reg­
isters, as well as the Current Instruction Address
(CIA) and Next Instruction Address (NIA), are inde­
pendent of Endi an mode. For example:

• The effective address placed into the Link Reg­
ister by a Branch instruction with LK = 1 is equal
to the CIA of the Branch instruction + 4;

• The effective address placed into RA by a
Load/Store with Update instruction is the value
computed as described in the instruction
description; and

• The effective addresses placed into System Reg­
isters when the system error handler is invoked
(e.g., SRRO, DAR: see Part 3, "PowerPC Oper­
ating Environment Architecture" on page 141)
are those that were computed or would have
been computed by the interrupted program.

The modification is independent of the address trans­
lation mechanism, and thus, e.g., applies regardless
of whether translation is enabled or disabled, whether
the accessed storage is in an ordinary storage
segment, a direct-store segment, or a BAT area, etc.
(see Part 3, "PowerPC Operating Environment
Architecture" on page 141). The actual transfer of
data and instructions to and from storage is unaf­
fected (and thus unencumbered by multiplexors for
byte swapping).

The modification of the low-order three bits of the
effective address in Uttle-Endian mode is done as
follows, for access to an individual aligned scalar.
(Alignment is as determined before this modification.)
Access to an individual unaligned scalar or to multiple
scalars is described in subsequent sections, as is
access to certain architecturally defined data in
storage, data in caches (see Part 2, "PowerPC Virtual
Environment Architecture" on page 117, and Part 3,
"PowerPC Operating Environment Architecture" on
page 141), etc.

In Little-Endian mode, the effective address is com­
puted in the same way as in Big-Endian mode. Then,
in LiUle-Endian mode only, the low-order three bits of
the effective address are exclusive-ored with a
three-bit value that depends on the length of the
operand (1, 2, 4, or 8 bytes), as shown in Table 11.
This modified effective address is then passed to the
storage subsystem, and data of the specified length
are transferred to or from the addressed (as modified)
storage locations(s).

Data length (bytes) EA modification:

1 XOR with Ob111

2 XOR with Ob11 0

4 XOR with Ob100

8 (no change)

Table 11. Power PC Little-Endian, effective address
modification for individual aligned scalars

The effective address modification makes it appear to
the processor that individual aligned scalars are
stored Little-Endian, while in fact they are stored Big­
Endian but in different bytes within doublewords from
the order in which they are stored in Big-Endian
mode.

For example, in UUle-Endian mode structure s would
be placed in storage as follows, from the point of view
of the storage subsystem (Le., after the effective
address modification described above).

88 11 12 13 14
00 01 02 03 04 05 06 07

88 21 22 23 24 25 26 27 28
08 09 OA OB OC 00 OE OF

18 , 0' 'e' '8' 'A' 31 32 33 34
10 11 12 13 14 15 16 17

I 51 52 I'G' 'F' 'E'
18 19 1A 1B 1C 10 1E 1F

18

28 61 62 63 64
20 21 22 23 24 25 26 27

Figure 75. PowerPC Little-Endian, structure's' in
storage subsystem

Figure 75 is identical to Figure 74 on page 234
except that the byte numbers within each doubleword
are reversed. (This identity is in some sense an
artifact of depicting storage as a sequence of
doublewords. If storage is instead depicted as a
sequence of words, a single byte stream. etc., then no
such identity appears. However, regardless of the
unit in which storage is depicted or accessed, the
address of a given byte in Figure 75 differs from the
address of the same byte in Figure 74 on page 234
only in the low-order three bits, and the sum of the

Appendix D. Little-Endian Byte Ordering 235

two 3-bit values that comprise the low-order three
bits of the two addresses is equal to 7. Depicting
storage as a sequence of doublewords makes this
relationship easy to see.)

Because of the modification performed on effective
addresses, structure s appears to the processor to be
mapped into storage as follows when the processor is
in Little-Endian mode.

11 12 13 14 a8
07 06 05 04 03 02 01 00

21 22 23 24 25 26 27 28 88
OF OE 00 OC OB OA 09 08

'0' 'e' 'B' 'A' 31 32 33 34 18

17 16 15 14 13 12 11 10

I 51 52 I'G' , F' IE'

1F 1E 10 1C 1B 1A 19 18

18

61 62 63 64 28
23 22 21 20

Figure 76. PowerPC Little-Endian, structure. 's' as
seen by processor

Notice that, as seen by the program executing in the
processor, the mapping for structure s is identical to
the Little-Endian mapping shown in Figure 74. From a
point of view outside the processor, however, the
addresses of the bytes making up structure s are as
shown in Figure 75. These addresses match neither
the Big-Endian mapping of Figure 73 nor the Little­
Endian mapping of Figure 74; allowance must be
made for this in certain circumstances (e.g., when
performing 1/0: see Section 0.7).

The following four sections describe in greater detail
the effects of running in Uttle-Endian mode on
accessing data storage, on fetching instructions, on
explicitly accessing the caches, the Segment
Lookaside Buffer, and the· Translation Lookaside
Buffer (see Part 2, "PowerPC Virtual Environment
Architecture" on page 117, and Part 3, "PowerPC
Operating Environment Architecture" on page 141),
and on doing 1/0.

0.4 PowerPC Data Storage
Addressing in Little-Endian Mode

236 PowerPC Architecture First Edition

D.4.1 Individual Aligned Scalars

When the storage operand is aligned for any instruc­
tion in the following classes, the effective address
presented to the storage subsystem is computed as
described in Section 0.3.2: Fixed-Point Load (Section
3.3.2), Fixed-Point Store (Section 3.3.3), Load and
Store with Byte Reversal. Storage Synchronization
(excluding sync), Floating-Point Load, and Floating­
Point Store (including stfiwx).

The Load and Store with Byte Reversal instructions
have the effect of loading or storing data in the oppo­
site Endian mode from that in which the processor is
running. That is, data are loaded or stored in UUle­
Endian order if the processor is running in Big-Endian
mode, and in Big-Endian order if the processor is
running in Little-Endian mode.

D.4.2 Other Scalars

As described below, the system alignment error
handler may be (Section 0.4.2.1, "Individuaf Una­
ligned Scalars" on page 237) or is (Section 0.4.2.2,
"Multiple Scalars" on page 237) invoked if attempt is
made in Little-Endian mode to execute any of the
instructions described in the following two sub­
sections.

Programming Note ------------,

It is up to system software whether the system
alignment error handler, when invoked because of
attempt to execute any of the instructions
described in this section when the processor is in
Little-Endian mode, should emulate the instruction
and resume the program that made the attempt,
or should treat the instruction as illegal and termi­
nate the program.

Little-Endian mode programs on Power PC are of
necessity new (not old Power binaries). It is prob­
ably best for the compiler not to generate these
instructions in Little-Endian mode, since emulation
would be slower than using a series of aligned
Load or Store instructions, either in-line or in a
subroutine. An exception is the case of accessing
an individual scalar (see Section 0.4.2.1) when the
alignment is not known by the compiler but the
operand is expected usually to be aligned: in this
case it may be better for the compiler to generate
the individual Load or Store instruction, and let
the system alignment error handler be invoked
and emulate the instruction if the operand is in
fact unaligned.

D.4.2.1 Individual Unaligned Scalars

The "trick" of exclusive-oring the low order three bits
of the effective address of an individual scalar does
not work unless the scalar is aligned. In Little-Endian
mode, PowerPC processors may cause the system
alignment error handler to be invoked whenever any
of the Load or Store instructions listed in Section
0.4.1 is issued with an unaligned effective address,
regardless of whether such an access could be
handled without invoking the system alignment error
handler in Big-Endian mode.

Power PC processors are not required to invoke the
system alignment error handler when an unaligned
access is attempted in Little-Endian mode. The imple­
mentation may handle some or all such accesses
without invoking the system alignment error handler,
just as in Big-Endian mode. The architectural require­
ment is that halfwords, words, and doublewords be
placed in storage such that the Little-Endian effective
address of the lowest-order byte is the effective
address computed by the Load or Store instruction,
the Little-Endian address of the next-lowest-order byte
is one greater, and so on. (/warx, Idarx, stwcx., and
stdcx. differ somewhat from the rest of the
instructions listed in Section 0.4.1, in that neither the
implementation nor the system alignment error
handler is expected to handle these four instructions
"correctly" if their operands are not aligned.)

Figure 77 shows an example of a word w stored at
Little-Endian address 5. The word is assumed to
contain the binary value Ox1112_1314.

12 13 14 I ae
07 06 05 04 03 02 01 00

.. I 11 e8
OF OE 00 oc OS OA 08

Figure 77. Little-Endian mapping of word 'w' stored
at address 5

In LittJe-Endian mode word w would be placed in
storage as follows, from the point of view of the
storage subsystem (i.e., after the effective address
modification described in Section 0.3.2, "PowerPC
Little-Endian Byte Ordering" on page 235).

ae 141
02 03 04 05 06 07

12 13

00 01

OA os oc 00

as
1

11
OE OF 08 09

Figure 78. PowerPC Little-Endian, word 'w' stored at
address 5, in storage subsystem

Notice that the unaligned word w in Figure 78 spans
two doublewords. The two parts of the unaligned

word are not contiguous as seen by the storage sub­
system.

An implementation may choose to support some but
not all unaligned Little-Endian accesses. For example,
an unaligned Little-Endian access that is contained
within a single doubleword may be supported, while
one that spans doublewords may cause the system
alignment error handler to be invoked.

0.4.2.2 Multiple Scalars

PowerPC has two classes of instructions that handle
multiple scalars, namely the Load and Store Multiple
instructions and the Move Assist instructions.
Because both classes of instructions potentially deal
with more than one word-length scalar, neither class
is amenable to the effective address modification
described in Section 0.3.2 (e.g., pairs of aligned words
would be accessed in reverse order from what the
program would expect). Attempting to execute any of
these instructions in Little-Endian mode causes the
system alignment error handler to be invoked.

D.4.3 Segment Tables and Page
Tables

The layout of Segment Tables and Page Tables in
storage (see Part 3, "PowerPC Operating Environment
Architecture" on page 141) is independent of Endian
mode. A given byte in one of these tables must be
accessed using an effective address appropriate to
the mode of the executing program (e.g., the high­
order byte of a Page Table entry must be accessed
with an effective address ending with ObOOO in Big­
Endian mode, and with an effective address ending
with Ob111 in Little-Endian mode) .

Engineering Note -------------,

An implementation that uses software assistance
to facilitate the hardware's searching and alter­
ation of Segment Tables and/or Page Tables must
supply two separate software routines, one for
Big-Endian mode and one for Little-Endian mode.

0.5 PowerPC Instruction
storage Addressing in
Little-Endian Mode

Each Power PC instruction occupies an aligned word in
storage. The processor fetches and executes
instructions as if the CIA were advanced by four for
each sequentially fetched instruction. When the
processor is in Little-Endian mode, the effective
address presented to the storage subsystem to fetch

Appendix D. Little-Endian Byte Ordering 237

an instruction is the value from the CIA, modified as
described in Section 0.3.2 for aligned word-length
scalars. A Little-Endian program is thus an array of
aligned Little-Endian words, with each word fetched
and executed in order (discounting branches and
invocations of the system error handler).

Figure 79 shows an example of a small assembly lan­
guage program p.

loop:
cmplwi r5,9
beq done
lwzux r4,r5,r6
add r7,r7,r4
subi r5,r5,4
b loop

done:
stw r7, total

Figure 79. Assembly language program 'p'

The Big-Endian mapping for program p is shown in
Figure 80 (assuming the program starts at address 0).

ee loop: cmplwi r5,8 beq done
00 01 02 03 04 OS 06 07

e8 lwzux r4,r5,r6 add r7,r7,r4
08 09 OA OB oc 00 OE OF

19 subi r5,r5,4 bloop
10 11 12 13 14 15 16 17

18 done: stw r7,total
18 19 1A 1B 1C 10 1E 1F

Figure 80. Big-Endian mapping of program 'p'

The same program p is shown mapped Uttle-Endian
in Figure 81.

beq done loop: cmplwi r5,8 ae
07 06 OS 04 03 02 01 00

add r7,r7,r4 lwzux r4,r5,r6 a8
OF OE 00 OC 08 OA 09 08

bloop subi r5,r5,4 19
17 16 15 14 13 12 11 10

done: stw r7,total 18
1F 1E 10 1C 18 1A 19 18

Figure 81. Little-Endian mapping of program 'p'

In Little-Endian mode program p would be placed in
storage as follows, from the point of view of the
storage subsystem (i.e., after the effective address
modification described in Section 0.3.2).

238 PowerPC Architecture First Edition

e9 beq done loop: cmplwi r5,8
00 01 02 03 04 05 06 07

98 add r7,r7,r4 lwzux r4,r5,r6
08 09 OA OB OC 00 OE OF

19 bloop subi r5,r5,4
10 11 12 13 14 15 16 17

18 done: stw r7,total
18 19 1A 1B 1C 10 1E 1F

Figure 82. PowerPC Little-Endian, program 'p' in
storage subsystem

Figure 82 is identical to Figure 81 except that the
byte numbers within each doub/eword are reversed.
(This identity is in some sense an artifact of depicting
storage as a sequence of doublewords. If storage is
instead depicted as a sequence of words, a single
byte stream. etc., then no such identity appears.
However, regardless of the unit in which storage is
depicted or accessed, the address of a given byte in
Figure 82 differs from the address of the same byte
in Figure 81 only in the low-order three bits, and the
sum of the two 3-bit values that comprise the low­
order three bits of the two addresses is equal to 7.
Depicting storage as a sequence of doublewords
makes this relationship easy to see.)

Each individual machine instruction appears in
storage as a 32-bit integer containing the value
described in the instruction description, regardless of
the Endian mode. This is a consequence of the fact
that individual aligned scalars are mapped in st0rage
in Big-Endian byte order.

Notice that, as seen by the processor when executing
program p, the mapping for program p is identical to
the Little-Endian mapping shown in Figure 81. From a
point of view outside 'the processor, however, the
addresses of the bytes maki ng up program p are as
shown in Figure 82. These addresses match neither
the Big-Endian mapping of Figure 80 nor the Little­
Endian mapping of Figure 81.

All instruction effective addresses visible to an exe­
cuting program are the effective addresss that are
computed by that program or, in the case of the
system error handler, effective addresses that were
or could have been computed by the interrupted
program. These effective addresses are independent
of Endian mode. Examples for Little-Endian mode
include the following.

• An instruction address placed in the Link Register
by a Branch instruction with LK = 1, or an instruc­
tion address saved in a System Register when
the system error handler is invoked, is the effec­
tive address that a program executing in Uttle­
Endian mode would use to access the instruction
as a data word using a Load instruction.

• An offset in a relative Branch instruction (Branch
or Branch Conditional with AA = 0) reflects the

difference between the addresses of the branch
and target instructions, using the addresses that
a program executing in Uttle-Endian mode would
use to access the instructions as data words
using Load instructions.

• A target address in an absolute Branch instruc­
tion (Branch or Branch Conditional with AA = 1) is
the address that a program executing in Little­
Endian mode would use to access the target
instruction as a data word using a Load instruc­
tion.

• The storage locations that contain the first set of
instructions executed by each kind of system
error handler must be set in a manner consistent
with the Endian mode in which the system error
handler will be invoked. (These sets of
instructions occupy architecturally defined
locations: see Part 3, "PowerPC Operating Envi­
ronment Architecture" on page 141.) Thus if the
system error handler is to be invoked in Little­
Endian mode, the first set of instructions com­
prising each kind of system error handler must
appear in storage, from the point of view of the
storage subsystem (i.e., after the effective
address modification described in Section 0.3.2),
with the pairs of instructions within each
doubleword reversed from the order in which
they are to be executed. (If the instructions are
placed into storage by a program running in the
same Endian mode as that in which the system
error handler will be invoked, the approriate
order will be achieved naturally.)

Programming Note -----------.,

In general, a given copy of a subroutine in
storage cannot be shared between programs
running in different Endian modes. This affects
the sharing of subroutine libraries. (It is possible,
in principle, to write a subroutine that could be
thus shared - e.g., let every second instruction
be a no-op - but such a subroutine is not likely to
be useful in practice.)

D.6 PowerPC Cache
Management and Lookaside
Buffer Management Instructions
in Little-Endian Mode

The instructions for explicitly accessing the caches,
Segment Lookaside Buffer, and Translation Lookaside
Buffer (see Part 2, "PowerPC Virtual Environment
Architecture" on page 117, and Part 3, "PowerPC
Operating Environment Architecture" on page 141)
are unaffected by Endian mode. (Identification of the
block, Segment Table Entry, or Page Table Entry to be

accessed is not affected by the low-order three bits of
the effective address.)

D.7 PowerPC I/O in Little Endian
Mode

Input/output (110), such as writing the contents of a
large area of storage to disk, transfers a byte stream
on both Big-Endian and Little-Endian systems. For the
disk transfer, the first byte of the area is written to
the fi rst byte of the di sk record and so on.

For a Power PC system running in Big-Endian mode,
110 transfers happen "naturally" because the byte
that the processor sees as byte 0 is the same one
that the storage subsystem sees as byte O.

For a PowerPC system running in Little-Endian mode
this is not the case, because of the modification of the
low-order three bits of the effective address when the
processor accesses storage. In order for I/O transfers
to transfer byte streams properly, in Little-Endian
mode I/O transfers must be performed as if the bytes
transferred were accessed one byte at a time, using
the address modification described in Section 0.3.2
for single-byte scalars. This does not mean that I/O
on Little-Endian Power PC systems must . use only
1-byte-wide transfers; data transfers can be as wide
as desired, but the order of the bytes transferred
within doublewords must appear as if the bytes were
fetched or stored one byte at a time. See the System
Architecture documentation for a given Power PC
system for details on the transfer width and byte
ordering on that system.

However, not all I/O done on Power PC systems is for
large areas of storage as described above. I/O can
be performed with certain devices merely by storing
to or loading from addresses that are associated with
the devices (the terms "memory-mapped 110" and
"programmed 110" or "PIO" are used for this). For
such PIO transfers, care must be taken when defining
the addresses to be used, for these addresses are
subject to the effective address modification shown in
Table 11 on page 235. A Load or Store instruction
that maps to a control register on a device may
require that the value loaded or stored have its bytes
reversed; if this is required, the Load and Store with
Byte Reversal instructions can be used. Any require­
ment for such byte reversal for a particular I/O device
register is independent of whether the Power PC
system is running in Big-Endian or Little-Endian mode.

Similarly, the address sent to an I/O device by an
eciwx or ecowx instruction (see Part 3, "PowerPC
Operating Environment Architecture" on page 141) is
subject to the effective address modification shown in
Table 11 on page 235.

Appendix D. Little-Endian Byte Ordering 239

0.8 Origin of Endi·an

The terms Big-Endian and Little-Endian come from
Part I, Chapter 4, of Jonathan Swift's Gu/livers
Travels. Here is the complete passage, from the
edition printed in 1734 by George Faulkner in Dublin.

... our Histories of six Thousand Moons make
no Mention of any other Regions, than the
two great Empires of Lilliput and Blefuscu.
Which two mighty Powers have, as I was
going to tell you, been engaged in a most
obstinate War for six and thirty Moons past.
It began upon the following Occasion. It is
allowed on all Hands, that the primitive Way
of breaking Eggs before we eat them, was
upon the larger End: But his present Majes­
ty's Grand-father, while he was a Boy, going
to eat an Egg, and breaking it according to
the ancient Practice, happened to cut one of
his Fingers. Whereupon the Emperor his
Father, published an Edict, commanding all
his Subjects, upon great Penalties, to break
the smaller End of their Eggs. The People so
highly resented this Law, that our Histories
tell us, there have been six Rebellions raised
on that Account; wherein one Emperor lost
his Life, and another his Crown. These civil
Commotions were constantly fomented by the
Monarchs of Blefuscu; and when they were
quelled, the Exiles always fled for Refuge to
that Empire. It is computed that eleven
Thousand Persons have, at several TImes,
suffered Death, rather than submit to break
their Eggs at the smaller End. Many hundred
large Volumes have been published upon this

240 PowerPC Architecture First Edition

Controversy: But the Books of the Big­
Endians have been long forbidden, and the
whole Party rendered incapable by Law of
holding Employments. During the Course of
these Troubles, the Emperors of Blefuscu did
frequently expostulate by their Ambassadors,
accusing us of making a Schism in Religion,·
by offending against a fundamental Doctrine
of our great Prophet Lustrog, in the fifty­
fourth Chapter of the Brundrecal, (which is
their Alcoran.) This, however, is thought to
be a mere Strain upon the text: For the
Words are these; That all true Believers shall
break their Eggs at the convenient End: and
which is the convenient End, seems, in my
humble Opinion, to be left to every Man's
Conscience, or at least in the Power of the
chief Magistrate to determine. Now the Big­
Endian Exiles have found so much Credit in
the Emperor of Blefuscu's Court; and so
much private Assistance and Encouragement
from their Party here at home, that a bloody
War has been carried on between the two
Empires for six and thirty Moons with various
Success; during which Time we have lost
Forty Capital Ships, and a much greater
Number of smaller Vessels, together with
thirty thousand of our best Seamen and Sol­
diers; and the Damage received by the
Enemy is reckoned to be somewhat greater
than ours. However, they have now
equipped a numerous Fleet, and are just pre­
paring to make a Descent upon us: and his
Imperial Majesty, placing great Confidence in
your Valour and Strength, hath commanded
me to lay this Account of his Affairs before
you.

Appendix E. Programming Examples

E.1 Synchronization

This appendix gives examples of how the Storage
Synchronization instructions can be used to emulate
various synchronization primitives, and to provide
more complex forms of synchronization.

These examples have a common form. After possible
initialization, there is a "conditional sequence" that:
begins with a Load And Reserve instruction; may be
followed by memory accesses and/or computation
that include neither a Load And Reserve nor a Store
Conditional; and ends with a Store Conditional
instruction with the same target address as the initial
Load And Reserve. In most of the examples, failure
of the Store Conditional causes a branch back to the
Load And Reserve for a repeated attempt. In the
examples, on the assumption that contention is low,
the conditional branch is optimized for the case in
which the stwcx. succeeds, by setting the branch­
prediction bit appropriately. This is done by
appending a minus sign to the instruction mnemonic,

. as described in Appendix C.1.4, "Branch prediction"
on page 224. These examples focus on techniques
for the correct modification of shared storage
locations: see Note 4 in Section E.1.4 for a discussion
of how the retry strategy can affect performance.

The Load And Reserve and Store Conditional
instructions depend on the coherence mechanism of
the system. Stores to a given location are coherent if
they are serialized in some order, and no processor is
able to observe a subset of those stores as occurring
in a conflicting order. See Part 2, "PowerPC Virtual
Environment Architecture" on page 117, for additional
details.

Each load operation, whether ordinary or Load And
Reserve, returns a value that has a well-defined
source. The source can be the Store or Store Condi­
tional instruction that wrote the value, an operation
by some other mechanism that accesses storage
(e.g., an I/O device), or the initial state of storage.

The function of an atomic read/modify/write operation
is to read a location and write its next value, possibly
as a function of its current value, all as a single
atomic operation. We assume that locations accessed
by read/modify/write operations are accessed
coherently, so the concept of a value being the next
in the sequence of values for a location is well
defined. The conditional sequence, as defined above,
provides the effect of an atomic read/modify/write
operation, but not with a single atomic instruction.
Let addr be the location that is the common target of
the Load And Reserve and Store Conditional
instructions. Then the guarantee the architecture
makes for the successful execution of the conditional
sequence is that no store into addr by another
processor or mechanism intervened between the
source of the Load And Reserve and the Store Condi­
tional.

For each of these examples, it is assumed that a
similar sequence of instructions is used by all proc­
esses requiring synchronization on the accessed data.

The examples deal with words: they can be used for
doublewords by changing all Iwarx instructions to
Idarx, all stwcx. instructions to stdcx., all stw
instructions to std, and all cmpw[i] extended mne­
monics to cmpd[i].

Programming Note -------------,

B~ause the Storage Synchronization instructions
have implementation dependencies (e.g., the
granularity at which reservations are managed),
they must be used with care. The operating
system should provide system library programs
that use these instructions to implement the high­
level synchronization functions (Test and Set,
Compare and Swap, etc.) needed by application
programs. Application programs should use these
library programs, rather than use the Storage
Synchronization instructions directly.

Appendix E. Programming Examples 241

E.1.1 Synchronization Primitives

The following examples show how the Iwarx and
stwcx. instructions can be used to emulate various
synchronization primitives.

The sequences used to emulate the various primitives
consist primarily of a loop using Iwarx and stwcx .. No
additional synchronization is necessary, because the
stwcx. will fail, setting the EO bit to 0, if the word
loaded by Iwarx has changed before the stwcx. is
executed: see Part 2, "PowerPC Virtual Environment
Architecture" on page 117 for more detail.

Fetch and No-op

The "Fetch and No-op" primitive atomically loads the
current value in a word in storage.

In this example it is assumed that the address of the
word to be loaded is in GPR 3 and the data loaded
are returned in GPR 4.

loop: lwarx r4,9,r3
stwcx. r4,9,r3

bne- loop
Notes:

#load and reserve
#store old value if
still reserved
#lo~p if lost reserv'n

1. The stwcx., if it succeeds, stores to the target
location the same value that was loaded by the
preceding Iwarx. While the store is redundant
with respect to the value in the location, its
success ensures that the value loaded by the
Iwarx was the current value, i.e., that the source
of the value loaded by the Iwarx was the last
store to the location that preceded the stwcx. in
the coherence order for the location.

Fetch and Store

The "Fetch and Store" primitive atomically loads and
replaces a word in storage.

In this example it is assumed that the address of the
word to be loaded and replaced is in GPR 3, the new
value is in GPR 4, ~nd the old value is returned in
GPR5.

loop: lwarx rS,8, r3
stwcx. r4,fl,r3

bne- loop

Fetch and Add

#load and reserve
#store new value if
still reserved
#loop if lost reserv'n

The "Fetch and Add" primitive atomically increments
a word in storage.

In this example it is assumed that the address of the
word to be incremented is in GPR 3, the increment is
in GPR 4, and the old value is returned in GPR 5.

242 PowerPC Architecture First Edition

loop: lwarx r5,fl,r3 #load and reserve
add rfl,r4,rS #increment word
stwcx. rfl,fl,r3 #store new value if

still reserved
bne- loop #loop if lost reserv'n

Fetch and AND

The "Fetch and AND" primitive atomically ANDs a
value into a word in storage.

In this example it is assumed t!:lat the address of the
word to be ANDed is in GPR 3, the value to AND into
it is in GPR 4, and the old value is returned in GPR 5.

loop: lwarx r5,S,r3 #load and reserve
and rfl,r4,r5 #AND word
stwcx. rfl,fl,r3 #store new value if

sti 11 reserved
bne- loop #loop if lost reserv'n

Notes:

1. The sequence given above can be changed to
perform another Boolean operation atomically on
a word in storage, simply by changing the and
instruction to the desired Boolean instruction (or,
xor, etc.).

Test and Set

The "Test and Set" primitive atomically loads a word
from storage, ensures that the word in storage con­
tains a non-zero value, and sets the EO bit of CR Field
o according to whether the value loaded is zero.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the new value (non­
zero) is in GPR 4, and the old value is returned in
GPR 5.

loop: lwarx rS,fl,r3 #load and reserve
cmpwi r5,9 #done if word
bne- $+12 # not equal to 9
stwcx. r4,9,r3 #try to store non-9
bne- loop #loop if lost reserv'n

Notes:

1. Depending on the application, if Test and Set fails
(Le., sets the EO bit of CR Field 0 to zero) it may
be appropriate to re-execute the Test and Set.

Compare and Swap

The "Compare and Swap" primitive atomically com­
pares a value in a register with a word in storage, if
they are equal stores the value from a second reg­
ister into the word in storage, if they are unequal
loads the word from storage into the first register,
and sets the EO bit of CR Field 0 to indicate the result
of the comparison.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the comparand is in

GPR 4 and the old value is returned there, and the
new value is in GPR 5.

loop: lwarx r6,B,r3 #load and reserve
cmpw r4,r6 #lst 2 operands equal?
bne- exit #skip if not
stwcx. r5,8,r3 #store new value if

still reserved
bne- loop #loop if lost reserv'n

exit: mr r4,r6 #return value from storage

Notes:

1. The semantics given for "Compare and Swap"
above are based on those of the IBM System/370
Compare and Swap instruction. Other architec­
tures may define a Compare and Swap instruction
differently.

2. "Compare and Swap" is shown primarily for ped­
agogical reasons. It is useful on machines that
lack the better synchronization facilities provided
by Iwarx and stwcx.. A major weakness of a
System/370-style Compare and Swap i·nstruction
is that, although the instruction itself is atomic, it
checks only that the old and current values of the
word being tested are equal, with the result that
programs that use such a Compare and Swap to
control a shared resource can err if the word has
been modified and the old value subsequently
restored. The sequence shown above has the
same weakness.

3. In some applications the second bne- instruction
and/or the mr instruction can be omitted. The
bne- is needed only if the application requires
that if the EO bit of CR Field 0 on exit indicates
"not equal" then (r4) and (rS) are in fact not
equal. The mr is needed only if the application
requires that if the comparands are not equal
then the word from storage is loaded into the reg­
ister with which it was compared (rather than into
a third register). If either or both of these
instructions is omitted, the resulting Compare and
Swap does not obey System/370 semantics.

4. Depending on the application, if Compare and
Swap fails (Le., sets the EO bit of CR Field 0 to
zero) it may be appropriate to recompute the
value potentially to be stored and then reexecute
the Compare and Swap.

E.1.2 Lock Acquisition and Release

This example gives an algorithm for locking that dem­
onstrates the use of synchronization with an atomic
read/modify/write operation. A shared storage
loc~tion, the address of which is an argument of the
"lock" and "unlock" procedures, given by GPR 3, is
used as a lock, to control access to some shared
resource such as a shared data structure. The lock is
open when its value is 0, and closed (locked) when its
value is 1. Before accessing the shared resource, a
processor sets the lock, by changing its value from 0
to 1. To do this, the "lock" procedure calls
test_and_set, which executes the code sequence
shown in the "Test and Set" example of Section E.1.1,
thereby atomically loading the old value of the lock,
writing to the lock the new value (1) given in GPR 4,
returning the old value in GPR 5 (not used below), and
setting the EO bit of CR Field 0 according to whether
the value loaded is zero. The "lock" procedure
repeats the tesCand_set until it succeeds in changing
the value of the lock from 0 to 1.

The processor must not access the shared resource
until it sets the lock. After the bne- that checks for
the success of test_and_set, the processor executes
an isync instruction (see Part 2, "PowerPC Virtual
Environment Architecture" on page 117). This delays
all subsequent instructions until all previous
instructions have completed to the extent required by
context synchronization (see Part 3, "PowerPC Oper­
ating Environment Architecture" on page 141). sync
could be used, but performance would be degraded
unnecessarily because sync waits for all prior storage
accesses to complete with respect to all other
processors, which is not necessary here.

lock: li r4,1 #obtain lock:
loop: bl test and set # test-and-set

bne- loop- - # retry til old = e
Delay subsequent inst'ns til prior inst'ns finish

isync
blr #return

The "unlock" procedure writes a 0 to the lock
location. Most applications that use locking require,
for correctness, that if the access to the shared
resource included write operations, the processor
must execute a sync instruction to make its modifica­
tions visible to all processors before releasing the
lock. In this example, the "unlock" procedure begins
with a sync for this purpose.

unlock: sync #delay til prior stores finish
li rl,8 #store zero to lock location
stw rl,8(r3)
blr #return

Appendix E. Programming Examples 243

E.1.3 List Insertion

This example shows how the Iwarx and ·stwcx.
instructions can be used to implement simple
insertion into a singly linked list. (Complicated list
insertion, in which multiple values must be changed
atomically, or in which the correct order of insertion
depends on the contents of the elements, cannot be
implemented in the manner shown below, and
requires a more complicated strategy such as using
locks.)

The "next element pointer" from the list element after
which the new element is to be inserted, here called
the "parent element," is stored into the new element,
so that the new element points to the next element in
the list: this store is performed unconditionally. Then
the address of the new element is conditionally stored
into the parent element, thereby adding the new
element to the list.

In this example it is assumed that the address of the
parent element is in GPR 3,· the address of the new
element is in GPR 4, and the next element pointer is
at offset 0 from the start of the element. It is also
assumed that the next element pointer of each list
element is in a "reservation granule" separate from
that of the next element pointer of all other list ele­
ments: see Part 2, "PowerPC Virtual Environment
Architecture" on page 117.

loop: lwarx r2,8,r3 #get next pointer
stw r2,8(r4) #store in new element
sync #let store settle (can

stwcx. r4,8,r3
bne- loop

omit if not MP)
#add new element to list
#loop if stwcx. failed

In the preceding example, if two list elements have
next element pointers in the same reservation
granule then, in a multiprocessor, "Iivelock" can
occur. (Livelock is a state in which processors
interact in a way such that no processor makes
progress.)

If it is not possible to allocate list elements such that
each element's next element pointer is in a different
reservation granule, then livelock can be avoided by
using the following, more complicated, sequence.

lwz r2,8(r3) #get next pointer
loopl: mr r5,r2 #keep a copy

loop2:

stw r2,8(r4) #store in new element
sync
lwarx
cmpw
bne-
stwcx.
bne-

r2,8,r3
r2,r5
loopl
r4,8,r3
loop2

#let store settle
#get it again
#loop if changed (someone
else progressed)
#add new element to list
#loop if failed

244 PowerPC Architecture First Edition

E.1.4. Notes

1. In general, Iwarx and stwcx. instructions should
be paired, with the same effective address used
for both. The exception is an isolated stwcx.
instruction that is used to clear any existing res­
ervation on the processor, for which there IS no
paired Iwarx and for which any (scratch) effective
address can be used.

2. It is acceptable to execute a Iwarx instruction for
which no stwcx. instruction is executed. For
example, such a "dangling Iwarx" occurs if the
value loaded in the "Test and Set" sequence
shown above is not zero.

3. To increase the likelihood that forward progress
is made, it is important that looping on
Iwarx/stwcx. pairs be minimized. For example, in
the sequence shown above for "Test and Set,"
this is achieved by testing the old value before
attempting the store: were the order reversed,
more stwcx. instructions might be executed, and
reservations might more often be lost between
the Iwarx and the stwcx •.

4. The manner in which Iwarx and stwcx. are com­
municated to other processors and mechanisms,
and between levels of the storage subsystem
within a given processor (see Part 2, "PowerPC
Virtual Environment Architecture" on page 117),
is implementation-dependent. In some implemen­
tations performance may be improved by mini­
mizing looping on a Iwarx instruction that fails to
return a desired \(alue. For example, in the "Test
and Set" example shown above, if the pro­
grammer wishes to stay in the loop until the word
loaded is zero, he could change the "bne- $ + 12"
to "bne- loop." However, in some implementa­
tions better performance may be obtained by
using an ordinary Load instruction to do the initial
checking of the value, as follows.

loop: lwz r5,9(r3) #load the word
cmpwi r5,8 #loop back if word
bne- loop # not equal to 8
lwarx r5,8,r3 #try again, reserving
cmpwi r5,8 # (likely to succeed)
bne- loop
stwcx. r4,8,r3
bne- loop

#try to store non-8
#loop if lost reserv'n

5. In a multiprocessor, livelock is possible if a loop
containing a Iwarxlstwcx. pair also contains an
ordinary Store instruction for which any byte of
the affected storage area is in the reservation
granule of the reservation: see Part 2, "PowerPC
Virtual Environment Architecture" on page 117.
For example, the first code sequence shown in
Section E.1.3, List Insertion, can cause livelock if
two list elements have next element pointers in
the same reservation granule.

E.2 Multiple-Precision Shifts

This appendix gives examples of how multiple­
precision shifts can be programmed.

A multiple-precision shift is initially defined to be a
shift of an N-doubleword quantity (64-bit mode) or an
N-word quantity (32-bit mode), where N>1. (This defi­
nition is relaxed somewhat for 32-bit mode, below.)
The quantity to be shifted is contained in N registers
(in the low-order 32 bits in 32-bit mode). The shift
amount is specified either by an immediate value in
the instruction, or by bits 57:63 (64-bit mode) or 58:63
(32-bit mode) of a register.

The examples shown below distinguish between the
cases N=2 and N>2. If N==2, the shift amount may be
in the range 0 through 127 (64-bit mode) or 0 through
63 (32-bit mode), which are the maximum ranges sup­
ported by the Shift instructions used. However if
N>2, the shift amount must be in the range 0 through
63 (64-bit mode) or 0 through 31 (32-bit mode), in
order for the examples to yield the desired result.
The specific instance shown for N>2 is N == 3:
extending those code sequences to larger N is
straightforward, as is reducing them to the case N == 2

Multiple-precision shifts in 64-bit mode

Shift Left Immediate, N = 3 (shift amnt < 64)
rldicr r5,r4,sh,63-sh
rldimi r4,r3,O,sh
rldicl r4,r4,sh,O
rldimi r3,r2,O,sh
rldicl r3,r3,sh,O

Shift Left, N = 2 (shift amnt < 128)
subfic r31,r6,64
sid r2,r2,rS
srd rO,r3,r31
or r2,r2,rO
addic r31,rS,-64
sid rO,r3,r31
or r2,r2,rO
sid r3,r3,rS

when the more stringent restriction on shift amount is
met. For shifts with immediate shift amounts only the
case N ==3 is shown, because the more stringent
restriction on shift amount is always met.

In the examples it is assumed that GPRs 2 and 3 (and
4) contain the quantity to be shifted, and that the
result is to be placed into the same registers, except
for the immediate left shifts in 64-bit mode for which
the result is placed into GPRs 3, 4, and 5. In all
cases, for both input and result, the lowest-numbered
register contains the highest-order part of the data
and highest-numbered register contains the lowest­
order part. In 32-bit mode, the high-order 32 bits of
these registers are assumed not to be part of the
quantity to be shifted nor of the result. For non­
immediate shifts, the shift amount is assumed to be in
bits 57:63 (64-bit mode) or 58:63 (32-bit mode) of GPR
6. For immediate shifts, the shift amount is assumed
to be greater than O. GPRs 0 and 31 are used as
scratch registers.

For N>2, the number of instructions required is 2N-1
(immediate shifts) or 3N-1 (non-immediate shifts).

Multiple-precision shifts in 32-bit mode

Shift Left Immediate, N = 3 (shift amnt < 32)
rlwinm r2,r2,sh,O,31-sh
rlwimi r2,r3,sh,32-sh,31
rlwinm r3,r3,sh,O,31-sh
rlwimi r3,r4,sh,32-sh,31
rlwinm r4,r4,sh,O,31-sh

Shift Left, N = 2 (shift amnt < 64)
subfic r31,rS,32
slw r2,r2,rS
srw rO,r3,r31
or r2,r2,rO
addic r31,r6,-32
slw rO,r3,r31
or r2,r2,rO
slw r3,r3,rS

Appendix E. Programming Examples 245

Multiple-precision shifts in 64-bit mode,
continued

Shift Left,N = 3 (shift amnt < 64)
subfic r31lS,64
sid r2,r2,rS
srd rO,r3,r31
or r2,r2,rO
sid r3,r3,rS
srd rO,r4,r31
or r3,r3,rO
sid r4,r4,rS

Shift Right Immediate, N = 3 (shift amnt < 64)
rldimi r4,r3,O,S4-sh
rldicl r4,r4,64-sh,O
rldimi r3,r2,O,S4-sh
rldicl r3,r3,S4-sh,O
rldicl r2,r2,64-sh,sh

Shift Right, N = 2 (shift amnt < 128)
subfic r31,r6,64
srd r3,r3,rS
sid rO,r2;r31
or r3,r3,rO
addic r31,rS,-64
srd rO,r2,r31
or r3,r3,rO
srd r2,r2,rS

Shift Right, N = 3 (shift amnt < 64)
subfic r31,r6,64
srd r4,r4,r6
sid rO,r3,r31
or r4,r4,rO
srd r3,r3,rS
sid rO,r2,r31
or r3,r3,rO
srd r2,r2,r6

Shift Right Algebraic Immediate, N = 3 (shift amnt < 64)
rldimi r4,r3,O,64-sh
rldicl r4,r4,64-sh,O
rldimi r3,r2,O,64-sh
rldicl r3,r3,64-sh,O
sradi r2,r2,sh

Shift Right Algebraic, N = 2 (shift amnt < 128)
subfic r31,r6,64
srd r3,r3,rS
sid rO,r2,r31
or r3,r3,rO
addic. r31,rS,-64
srad rO,r2,r31
ble $+8
ori r3,rO,O
srad r2,r2,rS

246 PowerPC Architecture First Edition

Multiple-precision shifts in 32-bit mode,
continued

Shift Left, N = 3 (shift amnt < 32)
subfic r31,rS,32
slw r2,r2,rS
srw rO,r3,r31
or r2,r2,rO
slw r3,r3,rS
srw rO,r4,r31
or r3,r3,rO
slw r4,r4,rS

Shift Right Immediate, N = 3 (shift amnt < 32)
rlwinm r4,r4,32-sh,sh,31
rlwimi r4,r3,32-sh,O,sh-1
rlwinm r3,r3,32-sh,sh,31
rlwimi r3,r2,32-sh,O,sh-1
rlwinm r2,r2,32-sh,sh,31

Shift Right, N = 2 (shift amnt < 64)
subfic r31,rS,32
srw r3,r3,rS
slw rO,r2,r31
or r3,r3,rO
addic r31,rS,-32
srw rO,r2,r31
or r3,r3,rO
srw r2,r2,rS

Shift Right, N = 3 (shift amnt < 32)
subfic r31,rS,32
srw r4,r4,rS
slw rO,r3,r31
or r4,r4,rO
srw r3,r3,rS
slw rO,r2,r31
or r3,r3,rO
srw r2,r2,r6

Shift Right Algebraic Immediate, N = 3 (shift amnt < 32)
rlwinm r4,r4,32-sh,sh,31
rlwimi r4,r3,32-sh,O,sh-1
rlwinm r3,r3,32-sh,sh,31
rlwimi r3,r2,32-sh,O,sh-1
srawi r2,r2,sh

Shift Right Algebraic, N = 2 (shift amnt < 64)
subfic r31 , rS,32
srw r3,r3,r6
slw rO,r2,r31
or r3,r3,rO
addic. r31,rS,-32
sraw rO,r2,r31
ble $+8
ori r3,rO,O
sraw r2,r2,r6

Multiple-precision shifts in 64-bit mode,
continued

Shift Right Algebraic, N = 3 (shift amnt < 64)
subfic r31,r6,64
srd r4,r4,rS
sid rO,r3,r31
or r4,r4,rO
srd r3,r3,r6
sid rO,r2,r31
or r3,r3,rO
srad r2,r2,r6

The examples shown above for 32-bit mode work both
in 32-bit mode of a 64-bit implementation and in a
32-bit implementation. They perform the shift in units
of words. If ability to run in 32-bit implementations is
not required, in a 64-bit implementation better per­
formance can be obtained in 32-bit mode than that of
the examples shown above, by using all 64 bits of
GPRs 2 and 3 (and 4) to contain the quantity to be
shifted, and placing the result into all 64 bits of the
same registers.

Multiple-precision shifts in 32-bit mode,
continued

Shift Right Algebraic, N = 3 (shift amnt < 32)
subfic r31,r6,32
srw r4,r4,r6
slw rO,r3,r31
or r4,r4,rO
srw r3,r3,r6
slw rO,r2,r31
or r3,r3,rO
sraw r2,r2,r6

Let N be the number of doublewords to be shifted.

The examples shown above for 64-bit mode work
equally well in 32-bit mode of a 64-bit implementation,
using all 64 bits of the registers. For N>2, the
number of instructions required is 2N-1 (immediate
shifts) or 3N-1 (non-immediate shifts), compared with
4N-1 (immediate shifts) or 6N-1 (non-immediate
shifts) for the examples shown above for 32-bit mode.
(The examples shown above require using twice as
many registers to hold the quantity to be shifted.)

Appendix E. Programming Examples 247

E.3 Floating-Point Conversions

This appendix gives examples of how the Floating­
Point Conversion instructions can be used to perform
various conversions.

E.3.1 Conversion from
Floating-Point Number to
Floating-Point Integer

In a 64-bit Implementation

The full convert to floating-point integer function. can
be implemented with the sequence shown below,
assuming the floating-point value to be converted is
in FPR 1, and the result is returned in FPR 3.

rntfsb9 23 #clear VXCVI
fctid[z] f3,f1 #convert to fx int
fcfid f3,f3 #convert back again
rncrfs 7,5 #VXCVI to CR
bf 31,$+8 #skip if VXCVI was e
frnr f3, f1 #i nput was fp i nt

E.3.2 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Doubleword

This example applies to 64-bit implementations only.

The full convert to signed fixed-point integer
doubleword function can be implemented with the
sequence shown below, assuming the floating-point
value to be converted is in FPR 1, the result is
returned in GPR 3, and a doubleword at displacement
"disp" from the address in GPR 1 can be used as
scratch space.

fctid[z] f2,f1 #convert to dword int
stfd f2,disp(r1) #store float
ld r3,disp(r1) #load dword

248 PowerPC Architecture First Edition

Warning: Some of the examples use the fsel instruc­
tion. Care must be taken in using fsel if IEEE compat­
ibility is required, or if the values being tested can be
NaNs or infinities: see Section E.4.4, "Notes" on
page 251.

E.3.3 Conversion from Floating-Point
Number to Unsigned Fixed-Point
Integer Doubleword

This example applies to 64-bit implementations only.

The full convert to. unsigned fixed-point integer
double word function can be implemented with the
sequence shown below, assuming the floating-point
value to be converted is in FPR 1, the value 0 is in
FPR 0, the value 264-2048 is in FPR 3, the value 263 is
in FPR 4 and GPR 4, the result is returned in GPR 3,
and a doubleword at displacement "disp" from the
address in GPR 1 can be used as scratch space.

fsel f2,f1,fl,f9 #use 9 if < e
fsub f5,f3,fl #use max if > max
fsel f2,f5,f2,f3
fsub fS,f2,f4
fcrnpu cr2,f2,f4
fsel f2,f5,f5,f2
fctid[z] f2,f2
stfd f2,disp(rl)
ld r3,disp(r1)
blt cr2,$+8
add r3,r3,r4

#subtract 2**63
#use diff if ~ 2**63

#convert to fx int
#store float
#load dword
#add 2**63 if input
was ~ 2**63

E.3.4 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Word

The full convert to signed fixed-point integer word
function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the result is returned in GPR 3,
and a doubleword at displacement "disp" from the
address in GPR 1 can be used as scratch space. The
last instruction is needed only if a 64-bit result is
required, and applies to 64-bit implementations only.

fctiw[z] f2,f1 #convert to fx int
stfd f2,disp(rl) #store float
lwz r3,disp+4(rl) #load word and zero
extsw r3,r3 'efor 64-bit result)

E.3.S Conversion from Floating-Point
Number to Unsigned Fixed-Point
Integer Word

In a 64-bit Implementation

The full convert to unsigned fixed-point integer word
function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the value 0 is in FPR 0, the
value 232_1 is in FPR 3, the result is returned in GPR
3, and a doubleword at displacement "disp" from the
address in GPR 1 can be used as scratch space.

fsel f2,fl,fl,f9 #use B if < B
fsub f4,f3,fl #use max if > max
fsel f2,f4,f2,f3
fctid[z] f2,f2 #convert to fx int
stfd f2,disp(rl) #store float
lwz r3,disp+4(rl) #load word and zero

In a 32-bit Implementation

The full convert to unsigned fixed-point integer word
function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR .1, the value 0 is in FPR 0, the
value 232 is in FPR 3, the value 231 is in FPR 4 and
GPR 4, the result is returned in GPR 3, and a
doubleword at displacement "disp" from the address
in GPR 1 can be used as scratch space.

fsel f2,fl,fl,f9 #use B if < e
fsub f5,f3,fl #use max if > max
fsel f2,f5,f2,f3
fsub f5,f2,f4
fcmpu cr2,f2,f4
fsel f2,f5,f5,f2
fctiw[z] f2,f2
stfd f2,disp(rl)
lwz r3,disp+4(rl)
blt cr2,$+8
add r3,r3,r4

#subtract 2**31
#use diff if ~ 2**31

#convert to fx int
#store float
#load word
#add 2**31 if input
was ~ 2**31

E.3.6 Conversion from Sig~ed
Fixed-Point Integer Doubleword to
Floating-Point Number

This example applies to 64-bit implementations only.

The full convert from signed fixed-point integer
double word function, using the rounding mode speci­
fied by FPSCRRN, can be· implemented with the
sequence shown below, assuming the fixed-point
value to be converted is in GPR 3, the result is
returned inFPR 1, and a doubleword at displacement
"disp" from the address in GPR 1 can be used as
scratch space.

std
lfd
fcfid

r3,disp(rl)
fl,disp(rl)
fl,fl

#store dword
#load float
#convert to fpu int

E.3.7 Conversion from Unsigned
Fixed-Point Integer Doubleword to
Floating-Point Number

This example applies to 64-bit implementations only.

The full convert from unsigned fixed-point integer
double word function, using the rounding mode speci­
fied by FPSCRRN, can be implemented with the
sequence shown below, assuming the fixed-point
value to be converted is in GPR 3, the value 232 is in
FPR 4, the result is returned in FPR 1, and . two
doublewords at displacement "disp" from the address
in GPR 1 can be used as scratch space.

rldicl r2,r3,32,32 #isolate high half
'rldicl rB,r3,B,32 #isolate low half
std r2,disp(rl) #store dword both
std rB,disp+8(rl)
lfd f2,disp(rl)
lfd fl,disp+8(r1)
fcfid f2,f2
fcfid fl,fl
fmadd fl,f4,f2,fl

#load float both
#load float both
#convert each half to
fpu int (no rnd)
#(2**32)*high + low
(only add can rnd)

An alternative, shorter, sequence can be used if
rounding according to FSCPRRN is desired and
FPSCRRN specifies R~und toward +Infinity or Round
toward -Infinity, or if it is acceptable for a rounded
answer to be either of the two representable floating­
point integers nearest algebraically to the given fixed­
point integer. In this case the full convert from
unsigned fixed-point integer doubleword function can
be implemented with the sequence shown below,
assuming the value 264 is in FPR 2.

std r3,disp(rl) #store dword
lfd fl,disp(rl) #load float
fcfid fl,fl #convert to fpu int
fadd f4,fl,f2 #add 2**64
fsel fl,fl,fl,f4 # if r3 < e

Appendix E. Programming Examples 249

E.3.8 Conversion from Signed
FixedOO!Point Integer Word to
Floating-Point Number

In a 64-bit Implementation

The full convert from signed fixed-point integer word
function can be implemented with the sequence
shown below, assuming the fixed-point value to be
converted is in GPR 3, the result is returned in FPR 1.
and a doubleword at displacement "disp" from the
address in GPR 1 can be used as scratch space.
(Rounding cannot occur.)

extsw
std
lfd
fefid

r3,r3
r3,disp(rl)
fl,disp(rl)
fl,fl

#extend sign
#store dword
#load float
#eonvert to fpu int

E.3.9 Conversion from Unsigned
Fixed-Point I'nteger Word to
Floating-Point Number

In a 64-bit' Implementation

The full convert from unsigned fixed-point integer
word function can be implemented with the sequence
shown below, assuming the fixed-point value to be
converted is in GPR 3. the result is returned in FPR 1.
and a doubleword at displacement "disp" from the
address in GPR 1 can be used as scratch space.
(Rounding cannot occur.)

rldicl
std
1 fd
fefid

r8,r3,8,32
r8,disp(rl)
fl,disp(rl)
fl,fl

#zero-extend
#store dword
#load float
#convert to fpu int

250 PowerPC Architecture First Edition

E.4 Floating-Point Selection

This appendix gives examples of how the Floating
Select instruction can be used to implement floating­
point minimum and maximum functions, and certain
simple forms of if-then-else constructions, without
branching.

The examples show program fragments in an imagi­
nary, C-like, high-level programming language, and
the corresponding program fragment using fsel and
other PowerPC instructions. In the examples, a, b, x.

E.4.1 Comparison to Zero

High-level language: PowerPC:

if a ~ 8.S then x ~ y fsel fX,fa,fy,fz
else x ~ Z

if a > S.S then x ~ y fneg fs,fa
else x ~ Z fsel fX,fs,fz,fy

if a = S.S then x ~ y fsel fx,fa,fy,fz
else x ~ z fneg fs,fa

fsel fx,fs,fx,fz

E.4.2 Minimum and Maximum

High-level language: Power pc:

x ~ min(a,b) fsub fs,fa,fb
fsel fx,fs,fb,fa

x ~ max(a,b) fsub fs,fa,fb
fsel fx,fs,fa,fb

E.4.3 Simple if-then-else
Constructions

High-level language:

if a ~ b then x ~ y
else x ~ z

if a > b then x ~ y
else x ~ z

if a = b then x ~ y
else x ~ z

Power pc:

fsub fs,fa,fb
fsel fx,fs,fy,fz

fsub fs,fb,fa
fsel fx,fs,fz,fy

fsub fs,fa,fb
fsel fx,fs,fy,fz
fneg fs,fs
fsel fx,fs,fx,fz

Notes

(1)

(1,2)

(1)

Notes

(3,4,5)

(3,4,5)

Notes

(4,5)

(3,4,5)

(4,5)

y. and z are floating-point variables, which are
assumed to be in FPRs fa, fb, (x, (y, and (z. FPR (s is
assumed to be available for scratch space.

Additional examples can be found in Section E.3,
"Floating-Point Conversions" on page 248.

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being tested
can be NaNs or infinities: see Section E.4.4, "Notes."

E.4.4 Notes

The following Notes apply to the preceding examples,
and to the corresponding cases using the other three
arithmetic relations «, S, and ¢). They should also
be considered when any other use of fsel is contem­
plated.

In these Notes, the "optimized program" is the
PowerPC program shown, and the "unoptimized
program" (not shown) is the corresponding Power PC
program that uses fcmpu and Branch Conditional
instructions instead of fse/.

1. The unoptimized program affects the VXSNAN bit
of the FPSCR, and therefore may cause the
system error handler to be invoked if the corre­
sponding exception is enabled, while the opti­
mized program does not affect this bit. This is
incompatible with the IEEE standard.

2. The optimized program gives the incorrect result
if a is a NaN.

3. The optimized program gives the incorrect result
if a and/or b is a NaN (except that it may give the
correct result in some cases for the minimum and
maximum functions, depending on how those
functions are defined to operate on NaNs).

4.

5.

The optimized program "gives the incorrect result
if a and b are infinities of the same sign. (Here it
is assumed that Invalid Operation Exceptions are
disabled, in which case the result of the sub­
traction is a NaN. The analysis is more compli­
cated if Invalid Operation Exceptions are enabled,
because in that case the target register of the
subtraction is unchanged.)

The optimized program affects the OX, UX, XX,
and VXISI bits of the FPSCR, and therefore may
cause the system error handler to be invoked if
the corresponding exceptions are enabled, while
the unoptimized program does not affect these
bits. This is incompatible with the IEEE standard.

Appendix E. Programming Examples 251

252 PowerPC Architecture First Edition

Appendix F. Cross-Reference for Changed Power Mnemonics

The following table lists the Power instruction mne­
monics that have been changed in the Power PC Archi­
tecture, sorted by Power mnemonic.

To determine the Power PC mnemonic for one of these
Power mnemonics, find the Power mnemonic in the
second column of the table: the remainder of the line
gives the Power PC mnemonic and the page or Book in
which the instruction is described, as well as the
instruction names. A page number is shown for
instructions that are defined in this Book (Part 1,
"PowerPC User Instruction Set Architecture" on

Page I Power

Bk Mnemonic Instruction

52 a[o][.] Add
53 ae[o][.] Add Extended
51 ai Add Immediate
51 ai. Add Immediate and Record
53 ame[o][.] Add To Minus One Extended
63 andil. AND Immediate Lower
63 andiu. AND Immediate Upper
54 aze[o][.] Add To Zero Extended

page 1), and the Book number is shown for
instructions that are defined in other Books (Part 2,
"PowerPC Virtual Environment Architecture" on
page 117, and Part 3, "PowerPC Operating Environ­
ment Architecture" on page 141). If an instruction is
defined in more than one Book, the lowest-numbered
Book is used.

Power mnemonics that have not changed are not
listed. Power instruction names that are the same in
Power PC are not repeated: i.e., for these, the last
column of the table is blank.

PowerPC

Mnemonic Instruction

addc[o][.] Add Carrying
adde[o][.]
addic Add Immediate Carrying
addic. Add Immediate Carrying and Record
addme[o][.]
andi. AND Immediate
andis. AND Immediate Shifted
addze[o][.]

22 bcc[l] Branch Conditional to Count Register bcctr[l]
22 bcr[l] Branch Conditional to Unk Register bclr[l]
50 cal Compute Address Lower addi Add Immediate
50 cau Compute Address Upper addis Add Immediate Shifted
51 cax[o][.] Compute Address add[o][.] Add
68 cntlz[.] Count Leading Zeros cntlzw[.] Count Leading Zeros Word

Bk II· dclz Data Cache Une Set to Zero dcbz Data Cache Block set to Zero
48 dcs Data Cache Synchronize sync Synchronize
67 exts[.] Extend Sign extsh[.] Extend Sign Halfword

106 fa[.] Floating Add fadd[.]
107 fd[.] Floating Divide fdiv[.]
107 fm[.] Floating Multiply fmul[.]
108 fma[.] Floating Multiply-Add fmadd[.]
108 fms[.] Floating Multiply-Subtract fmsub[.]
109 fnma[.] Floating Negative Multiply-Add fnmadd[.]
109 fnms[.] Floating Negative Multiply-Subtract fnmsub[.]
106 fs[.] Floating Subtract fsub[.]

Bk II ics Instruction Cache Synchronize isync Instruction Synchronize
33 I Load Iwz Load Word and Zero
40 Ibrx Load Byte-Reverse Indexed Iwbrx Load Word Byte-Reverse Indexed
42 1m Load Multiple Imw Load Multiple Word
44 lsi Load String Immediate Iswi Load String Word Immediate
44 Isx Load String Indexed Iswx Load String Word Indexed

Appendix F. Cross-Reference for Changed Power Mnemonics 253

Page I Power PowerPC

Bk Mnemonic Instruction Mnemonic Instruction

33 lu Load with Update IW2u Load Word and Zero with Update
33 lux Load with Update Indexed IW2ux Load Word and Zero with Update

Indexed
33 Ix Load Indexed IW2x Load Word and Zero Indexed

Bklll mtsri Move To Segment Register Indirect mtsrin
55 muli Multiply Immediate mulli Multiply Low Immediate
55 muls[o][.] Multiply Short mullw[o][.] Multiply Low Word
64 oril OR Immediate lower ori OR Immediate
64 oriu OR Immediate Upper oris OR Immediate Shifted
74 rlimi[.] Rotate Left Immediate Then Mask rlwimi[.] Rotate left Word Immediate then

Insert Mask Insert
71 rlinm[.] Rotate left Immediate Then AND rlwinm[.] Rotate Left Word Immediate then

With Mask AND with Mask
73 rlnm[.] Rotate left Then AND With Mask rlwnm[.] Rotate left Word then AND with

Mask
52 sf[o][.] Subtract From subfc[o][.] Subtract From Carrying
53 sfe[o][.] Subtract From Extended subfe[o][.]
52 sfi Subtract From Immediate subfic Subtract From Immediate Carrying
53 sfme[o][.] Subtract From Minus One Extended subfme[o][.]
54 sfze[o][.] Subtract From Zero Extended subfze[o][.]
75 sl[.] Shift left slw[.] Shift left Word
76 sr[.] Shift Right srw[.] Shift Right Word
78 sra[.] Shift Right Algebraic sraw[.] Shift Right Algebraic Word
77 srai[.] Shift Right Algebraic Immediate srawi[.] Shift Right Algebraic Word Imme-

diate
38 st Store stw Store Word
41 stbrx Store Byte-Reverse Indexed stwbrx Store Word Byte-Reverse Indexed
42 stm Store Multiple stmw Store Multiple Word
45 stsi Store String Immediate stswi Store String Word Immediate
45 stsx Store String Indexed stswx Store String Word Indexed
38 . stu Store with Update stwu Store Word with Update
38 stux Store with Update Indexed stwux Store Word with Update Indexed
38 stx Store Indexed stwx Store Word Indexed
23 svca Supervisor Call sc System Call
62 t Trap tw Trap Word
61 ti Trap Immediate twi Trap Word Immediate

Bk III tlbi TlB Invalidate Entry tlbie TlB Entry Invalidate
64 xoril XOR Immediate Lower xori XOR Immediate
64 xoriu XOR Immediate Upper xoris XOR Immediate Shifted

254 PowerPC Architecture First Edition

Appendix G. Incompatibilities with the Power Architecture

This section identifies the known incompatibilities that
must be managed in the migration from the Power
Architecture to the Power PC Architecture. Some of
the incompatibilities can, at least in principle, be
detected by the processor, which could trap and let
software simulate the Power operation. Others
cannot be detected by the processor even in prin­
ciple.

G.1 New Instructions, Formerly
Privileged Instructions

Instructions new to Power PC typically use opcode
values (including extended opcode) that are illegal in
Power. A few instructions that are privileged in
Power (e.g., dc/z, called dcbz in PowerPC) have been
made non-privileged in Power PC. Any Power program
that executes one of these now-valid or now-non­
privileged instructions, expecting to cause the system
illegal instruction error handler or the system privi­
leged instruction error handler to be invoked, will not
execute correctly on Power PC.

G.2 Newly Privileged
Instructions

The following instructions are non-privileged in Power
but privileged in Power pc.

mfmsr
mfsr

In general, the incompatibilities identified here are
those that affect a Power application program:
incompatiblities for instructions that can be used only
by Power system programs are not necessarily dis­
cussed.

G.3 Reserved Bits in
Instructions

These are shown with '/'s in the instruction layouts.
In Power such bits are ignored by the processor. In
Power PC they must be 0 or the instruction form is
invalid.

In several cases the Power PC Architecture assumes
that such bits in Power instructions are indeed O. The
cases include the following.

• cmpi, cmp, cmpii, and cmp/ assume that bit 10 in
the Power instructions is O.

• mtspr and mfspr assume that bits 16:20 in the
Power instructions are O.

G.4 Reserved Bits in Registers

Power defi nes these bits to be 0 on read, and either 0
or 1 on write. In PowerPC it is implementation
dependent, for each bit, whether the bit is:

• 0 on read and ignored on write; or
• copied from source to target on both read and

write.

Appendix G. Incompatibilities with the Power Architecture 255

G.S Alignment Check

The Power MSR AL bit (bit 24) is no longer supported:
the bit is reserved in PowerPC. The low-order bits of
the EA are always used. (Notice that the value 0 -
the normal value for a reserved SPR bit - means
"ignore the low-order EA bits" in Power, and the
value 1 means "use the low-order EA bits.") However,
MSR bit 24 will not be assigned new meaning in the
near future (see Part 3, "PowerPC Operating Environ­
ment Architecture" on page 141), and software is per­
mitted to write the value 1 to the bit.

G.6 Condition Register

The following instructions specify a field in the CR
explicitly (via the SF field) and also, in Power, use bit
31 as the Record bit. In Power PC, if bit 31 = 1 for
these instructions the instruction form is invalid. In
Power, if Rc= 1 the instructions execute normally
except as follows.

cmp
cmpl
mcrxr
fcmpu
fcmpo
mcrfs

CRO is undefined if Rc= 1 and BF¢O
eRO is undefined if Rc= 1 and BF¢O
CRO is undefined if Rc= 1 and BF¢O
CR1 is undefined if Rc= 1
CR1 is undefined if Rc= 1
CR1 is undefined if Rc= 1 and BF¢1

G.7 Inappropriate use of LK and
Rc bits

For the instructions listed below, if bit 31 (LK or Rc bit
in Power) is set to 1, Power executes the instruction
normally with the exception of setting the Link Reg­
ister (if LK = 1) or Condition Register Field 0 or 1 (if
Rc = 1) to an undefined value. In PowerPC such
instruction forms are invalid.

Power PC instruction form invalid if bit 31
in Power):

sc (sve in Power)

1 (LK bit

the Condition Register Logical instructions
merf
isyne (ies in Power)

PowerPC instruction form invalid if bit 31 = 1 (Rc bit
in Power):

fixed-point X-form Load and Store instructions
fixed-point X-form Compare instructions
the X-form Trap instruction
mtspr, mfspr, mtcrf, merxr, mfcr
floating-point X-form Load and Store instructions
floating-point Compare instructions

256 PowerPC Architecture First Edition

merfs
dcbz (de/z in Power)

G.8 BO Field

Power shows certain bits in the 80 field - used by
Branch Conditional instructions - as "x." Although
the Power Architecture does not say how these bits
are to be interpreted, they are in fact ignored by the
processor. Power PC treats these bits differently, as
follows.

800:3 PowerPC shows the bit as "z." (For the
"branch always" encoding of the BO field, 804
is also shown as "z.") If a "z" bit is not zero
the instruction form is invalid.

804 This bit - which is shown as "x" in Power
independent of the other four bits - is shown
in Power PC as "y" (except for the "branch
always" encoding of the BO field). The "y" bit
gives a hint about whether the branch is likely
to be taken. If a Power program has the
"wrong" value for this bit, the program will run
correctly but performance may suffer.

G.9 Branch Conditional to Count
Register

For the case in which the Count Register is decre­
mented and tested (i.e., the case in which B02 =0),
Power specifies only that the branch target address is
undefined, with the implication that the Count Reg­
ister, and the Link Register if LK = 1, are updated in
the normal way. Power PC considers this instruction
form invalid.

G.10 System Call

There are several respects in which Power PC is
incompatible with Power for System Call instructions
- which in Power are called Supervisor Call
instructions.

• Power provides a version of the Supervisor Call
instruction (bit 30 = 0) that allows instruction
fetching to continue at anyone of 128 locations.
It is used for "fast SVCs." PowerPC provides no
such version: if bit 30 of the instruction is 0 the
instruction is reserved.

• Power provides a version of the Supervisor Call
instruction (bits 30:31 = Ob11) that resumes
instruction fetching at one location and sets the
Link Register to the address of the next instruc­
tion. Power PC provides no such version: if bit 31

of the instruction is 1 the instruction form is
invalid.

• For Power, information from the MSR is saved in
the Count Register. For Power PC this information
is saved in SRR1.

• Power permits bits 16:29 of the instruction to be
non-zero, while in Power PC such an instruction
form is invalid.

• Power saves the low-order 16 bits of the instruc­
tion, in the Count Register. Power PC does not
save them.

• The settings of MSR bits by the associated inter­
rupt differ between Power and Power PC: see
POWER Processor Architecture and Part 3,
"PowerPC Operating Environment Architecture"
on page 141.

G.11 Fixed-Point Exception
Register (XER)

Bits 16:23 of the XER are reserved in Power PC, while
in Power they are defined and contain the comparison
byte for the Iscbx instruction (which Power PC lacks).

Engineering Note -----------,

For reasons of compatibility with the Power Archi­
tecture, early implementations must handle XER
bits 16:23 according to the second of the two per­
mitted treatments of reserved bits in status and
control registers. That is, early implementations
must set the bits from the source value on write,
and return the value last set for them on read.

G.12 Update Forms of Storage
Access

Power PC requires that RA not be equal to either RT
(fixed-point Load only) or O. If the restriction is vio­
lated the instruction form is invalid. Power permits
these cases, and simply avoids saving the EA.

G.13 Multiple Register Loads

Power PC requires that RA, and RB if present in the
instruction format, not be in the range of registers to
be loaded, while Power permits this and does not
alter RA or RB in this case. (The PowerPC restriction
applies even if RA = 0, although there is no obvious
benefit to the restriction in this case since RA is not
used to compute the effective address if RA = 0.) If

the PowerPC restriction is violated, the instruction
form is invalid. The instructions affected are:

Imw (1m in Power)
Iswi (lsi in Power)
Iswx (/sx in Power)

Thus, for example, an Imw instruction that loads all 32
registers is valid in Power but is an invalid form in
PowerPC.

G.14 Alignment for Load/Store
Multiple

PowerPC requires the EA to be word-aligned, and
yields an Alignment interrupt or boundedly undefined
results if it is not. Power specifies that an Alignment
interrupt occurs (if AL = 1).

Engineering Note -----------,

If attempt is made to execute an Imw or stmw
instruction having an incorrectly aligned effective
address, early implementations must either cor­
rectly transfer the addressed bytes or cause an
Alignment interrupt, for reasons of compatibility
with the Power Architecture.

G.1S Move Assist Instructions

There are several respects in which Power PC is
incompatible with Power for Move Assist instructions.

• In Power PC an Iswx instruction with zero length
leaves the content of RT undefined, while in
Power the corresponding instruction (/sx) does
not alter RT in this case.

• In Power PC an Iswx instruction with zero length
may alter the Reference bit, and an stswx
instruction with zero length may alter the Refer­
ence and Change bits, while in Power the corre­
sponding instructions (Isx and stsx) do not alter
the Reference and Change bits in this case.

G.16 Synchronization

The sync instruction (called dcs in Power) and the
isync instruction (called ics in Power) cause much
more pervasive synchronization in Power PC than in
Power.

Appendix G. Incompatibilities with the Power Architecture 257

G.17 Move To/From SPR

There are several respects in which PowerPC is
incompatible with Power for Move TolFrom Special
Purpose Register instructions.

• The SPR field is ten bits long in Power PC, but only
five in Power (see also Section G.3, "Reserved
Bits in Instructions" on page 255).

• mfspr can be used to read the Decrementer in
problem state in Power, but only in privileged
state in Power PC.

• If the SPR value specified in the instruction is not
one of the defined values, Power PC considers the
instruction form invalid. (In problem state, the
allowed SPR values exclude those accessible only
in privileged state.) Power does not alter any
architected registers in this case, and generates
a Privileged Instruction type Program interrupt if
the instruction is executed in problem state and
SPRo= 1.

G.18 Effects of Exceptions on
FPSCR Bits FR and ·FI

For the following cases, Power does not say how FR
and FI are set, while PowerPC preserves them for
Invalid Operation Exception caused by a Compare
instruction, sets FI to 1 and FR to an undefined value
for disabled Overflow Exception, and clears them oth­
erwise.

• Invalid Operation Exception (enabled or disabled)
• Zero Divide Exception (enabled or disabled)
• Disabled Overflow Exception

G.19 Floating-Point Store
Instructions

Power uses FPSCRUE to help determine whether
denormalization should be done, while Power PC does
not. Using FPSCRuE is in fact incorrect: if
FPSCRuE = 1 and a denormalized single-precision
number is copied from one storage location to
another by means of lis followed by stfs, the two
"copies" may not be the same.

258 PowerPC Architecture First Edition

G.20 Move From FPSCR

Power defines the high-order 32 bits of the result of
mffs to be OxFFFF _FFFF, while PowerPC says they are
undefined.

G.21 Zeroing Bytes in the Data
Cache

The dc/z instruction of Power and the dcbz instruction
of Power PC have the same opcode. However, the
functions differ in the following respects.

• dc/z clears a line while dcbz clears a block.
• dc/z saves the EA in RA (if RA:FO) while dcbz

does not.
• dc/z is privileged while dcbz is not.

G.22 Floating-Point Load/Store
to Direct-Store Segment

In Power a floating-point Load or Store instruction to a
direct-store segment causes a Data Storage
interrrupt, while in Power PC the instruction either exe­
cutes correctly or causes an Alignment interrupt.

G.23 Segment Register
Instructions

The definitions of the four Segment Register
instructions (mtsr, mtsrin, misr, and mfsrin) differ in
two respects between Power and Power PC.
Instructions similar to mtsrin and mfsrin are called
mtsri and mfsri in Power.

privilege: mfsr and mfsri are problem state
instructions in Power, while mfsr and
mfsrin are privileged in Power PC.

function: the "indirect" instructions (mtsri and
misri) in Power use an RA register in
computing the Segment Register number,
and the computed EA is stored into RA (if
RA:FO and RA:FRT), while in Power PC
mtsrin and misrin have no RA field and
EA is not stored.

mtsr, mtsrin (mtsri), and mfsr have the same opcodes
in Power PC as in Power. mfsri (Power) and mfsrin
(PowerPC) have different opcodes.

G~24 TLB Entry Invalidation

The tlb; instruction of Power and the tlbie instruction
of PowerPC have the same opcode. However, the
functions differ in the following respects.

• tlbi computes the EA as (RAIO) + (RB), while
tlbie lacks an RA field and computes the EA as
(RB).

• flbi saves the EA in RA (if RA;i:O) , while tlbie
lacks an RA field and does not save the EA.

G.2S Floating-Point Interrupts

Both architectures use MSR bit 20 to control the gen­
eration of interrupts for floating-point enabled excep­
tions. However, in Power PC this bit is part of a
two-bit value which controls the occurrence, precision,
and recoverability of the interrupt, while in Power this
bit is used independently to control the occurence of
the interrupt (in Power all floating-point interrupts are
precise).

G.26 Timing Facilities

G.26.1 Real-Time Clock

The Power Real-Time Clock is not supported in
Power pc. Instead, PowerPC provides a Time Base.
Both the RTC and the TB are 64-bit Special Purpose
Registers, but they differ in the following respects.

• The RTC counts seconds and nanoseconds, while
the TB counts "ticks." The ticking rate of the RTC
is implementation-dependent.

• The RTC increments discontinuously: 1 is added
to RTCU when the value in RTCL passes
999_999_999. The TB increments continuously: 1
is added to TBU when the value in TBl passes
OxFFFF _FFFF.

• The RTC is written and read by the mtspr and
mfspr instructions, using SPR numbers that
denote the RTCU and RTCL The TB is written by
the mtspr instruction (using new SPR numbers),
and read by the new mftb instruction.

• The SPR numbers that denote Power's RTCl and
RTCU are invalid in Power PC.

• The RTC is guaranteed to increment at least once
in the time required to execute ten Add Imme­
diate instructions. No analogous guarantee is
made for the TB.

• Not all bits of RTCl need be implemented, while
all bits of the TB must be implemented.

G.26.2 Decrementer

The Power PC Decrementer differs from the Power
Decrementer in the following respects.

• The Power PC DEC decrements at the same rate
that the TB increments, while the Power
Decrementer decrements every nanosecond
(which is the same rate that the RTC increments).

• Not all bits of the Power DEC need be imple­
mented, while all bits of the PowerPC DEC must
be implemented.

• The interrupt caused by the DEC has its own
interrupt vector location in Power PC, but is con­
sidered an External interrupt in Power.

Appendix G. Incompatibilities with the Power Architecture 259

G.27 Deleted Instructions

The following instructions are part of the Power Archi­
tecture but have been dropped from the PowerPC
Architecture.

abs Absol ute
eles Cache Line Compute Size
elf Cache Line Flush
eli
deist
div
divs
doz
dozi
Isebx
maskg
maskir
mfsri
mul
nabs
rae
rlmi
rrib
s/e
s/eq
sliq
slliq
sl/q
slq
sraiq
sraq
sre
srea
sreq
sriq
srliq
srlq
srq
sve[l]

Cache Line Invalidate
Data Cache Line Store
Divide
Divide Short
Difference Or Zero
Difference Or Zero Immediate
Load String And Compare Byte Indexed
Mask Generate
Mask Insert From Register
Move From Segment Register Indirect
Multiply
Negative Absolute
Real Address Compute
Rotate Left Then M ask Insert
Rotate Right And Insert Bit
Shift Left Extended
Shift Left Extended With MQ
Shift Left Immediate With MQ
Shift Left Long Immediate With MQ
Shift Left Long With MQ
Shift Left With MQ
Shift Right Algebraic Immediate With MQ
Shift Right Algebraic With MQ
Shift Right Extended
Shift Right Extended Algebraic
Shift Right Extended With MQ
Shift Right Immediate With MQ
Shift Right Long Immediate With MQ
Shift Right Long With MQ
Shift Right With MQ
Supervisor Call, with SA = 0

Note: Many of these instructions use the MQ reg­
ister. The MQ is not defined in the PowerPC Architec­
ture.

260 PowerPC Architecture First Edition

G.28 Discontinued Opcodes

The opcodes listed below are defined in the Power
Architecture but have been dropped from the
PowerPC Architecture. The list contains the old mne­
monic (MNEM), the primary opcode (PRI), and the
extended opcode (XOP) if appropriate.

MNEM PRI XOP

abs .31 360
eles 31 531
elf 31 118.
eli 31 502
deist 31 630
div 31 331
divs 31 363
doz 31 264
dozi 09
Isebx 31 277
maskg 31 29
maskir 31 541
mfsri 31 627
mul 31 107
nabs 31 488
rae 31 818
rlmi 22
rrib 31 537
s/e 31 153
s/eq 31 217
sliq 31 184
slliq 31 248
sl/q 31 216
slq 31 152
sraiq 31 952
sraq 31 920
sre 31 665
srea 31 921
sreq 31 729
sriq 31 696
srliq 31 760
srlq 31 728
srq 31 664
sve[l] 17 0

Assembler Note ------------,

It might be helpful to current software writers for
the Assembler to flag the discontinued Power
instructions.

Appendix' H. New Instructions

The following -instructions in the Power PC Architecture
are new: they are not in the Power Architecture.

They are listed in three groups, according to whether
they exist in all Power PC implementations, only in
64-bit implementations, or only in 32-bit implementa­
tions.

The following instructions are optional: eeiwx, eeowx,
fres, frsqrte, fsel, fsqrt[s], slbia, slbie, stfiwx, tIbia,
tlbsyne.

H.1 New Instructions for All
Implementations

debt
deb;
debst
debt
debtst
divw
divwu
eeiwx
eeowx
eieio
extsb
fadds
fetiw
fetiwz

fdivs
fmadds
fmsubs
fmuls
fnmadds
fnmsubs
fres
frsqrle
fsel
fsqrl[s]
fsubs
iebi
Iwane
mftb
mulhw
mulhwu
stfiwx

stwcx.
subf
tIbia
tlbsync

Data Cache Block Ftush
Data Cache Block Invalidate
Data Cache Block Store
Data Cache Block Touch
Data Cache Block Touch for Store
Divide Word
Divide Word Unsigned
External Control In Word Indexed
External Control Out Word Indexed
Enforce In-order Execution of I/O
Extend Sign Byte
Floating Add Single
Floating Convert To Integer Word
Floating Convert To Integer Word with
round toward Zero
Floating Divide Single
Floating Multiply-Add Single
Floating Multiply-Subtract Single
Floating Multiply Single
Floating Negative Multiply-Add Single
Floating Negative Multiply-Subtract Single
Floating Reciprocal Estimate Single
Floating Reciprocal Square Root Estimate
Floating Select
Floating Square Root [Single]
Floating Subtract Single
Instruction Cache Block Invalidate
Load Word And Reserve Indexed
Move From Time Base
Multiply High Word
Multiply High Word Unsigned
Store Floating-Paint as Integer Word
Indexed
Store Word Conditional Indexed
Subtract From
TLB Invalidate All
TLB Synchronize

Appendix H. New Instructions 261

H.2 New Instructions for 64-Bit
Implementations Only

entlzd
divd
divdu
extsw
fefid

fetid
fetidz

Iwa
Iwaux
Iwax
Id
Idarx
Idu
Idux
Idx
mulhd
mulhdu
mulld
rldel
rIder
rldie

rldiel

rldier

rldimi

slbia
slbie
sid
srad
sradi

srd
std
stdex.
stdu
stdux
stdx
td
tdi

262

Count Leading Zeros Doubleword
Divide Doubleword
Divide Doubleword Unsigned
Extend Sign Word
Floating Convert From Integer
Doubleword
Floating Convert To Integer Doubleword
Floating Convert To Integer Doubleword
with round toward Zero
Load Word Algebraic
Load Word Algebraic with Update Indexed
Load Word Algebraic Indexed
Load Doubleword
Load Doubleword And Reserve Indexed
Load Doubleword with Update
Load Doubleword with Update Indexed
Load Doubleword Indexed
Multiply High Doubleword
Multiply High Doubleword Unsigned
Multiply Low Doubleword
Rotate Left Doubleword then Clear Left
Rotate Left Doubleword then Clear Right
Rotate Left Doubleword Immediate then
Clear
Rotate Left Doubleword
Clear Left
Rotate Left Doubleword
Clear Right
Rotate Left Doubleword
Mask Insert
SLB Invalidate All
SLB Invalidate Entry
Shift Left Doubleword

Immediate then

Immediate then

Immediate then

Shift Right Algebraic Doubleword
Shift Right Algebraic Doubleword Imme­
diate
Shift Right Doubleword
Store Doubleword
Store Doubleword Conditional Indexed
Store Doubleword with Update
Store Doubleword with Update Indexed
Store Doubleword Indexed
Trap Doubleword
Trap Doubleword Immediate

PowerPC Architecture First Edition

H.3 New Instructions for 32-Bit
Implementations Only

mfsrin Move From Segment Register Indirect

Appendix I. Illegal Instructions

With the exception of the instruction consisting
entirely of binary O's, the instructions in this class are
available for future extensions of the PowerPC Archi­
tecture: that is, some future version of the Power PC
Architecture may define any of these instructions to
perform new functions.

The following primary opcodes are illegal.

1,4,5,6,56,57,60,61

In addition, the following primary opcodes are illegal
for 32-bit implementations (they are defined only for
64-bit implementations).

2,30,58,62

The following primary opcodes have unused extended
opcodes. Their unused extended opcodes can be
determined from the opcode maps in - Heading
'OPMAPS' unknown -. Extended opcodes for
instructions that are defined only for 64-bit implemen­
tations are illegal in 32-bit implementations, and
extended opcodes for instructions that are defined
only for 32-bit implementations are illegal in 64-bit
implementations. All unused extended opcodes are
illegal.

17, 19,301,31, 59, 621, 63

1 Applies only for 64-bit implementations (illegal
primary opcode for 32-bit implementations)

An instruction consisting entirely of binary O's is
illegal, and is guaranteed to be illegal in all future
versions of this architecture.

Appendix I. Illegal Instructions 263

264 PowerPC Architecture First Edition

Appendix J. Reserved Instructions

The instructions in this class are allocated to specific
purposes that are outside the scope of the Power PC
User Instruction Set Architecture, Power PC Virtual
Environment Architecture, and Power PC Operating
Environment Architecture.

The following types of instruction are included in this
class.

1. The instruction having primary opcode 0, except
the instruction consisting entirely of binary O's
(which is an illegal instruction: see Section 1.8.2,
"Illegal Instruction Class" on page 13).

2. Instructions for the Power Architecture which
have not been included in the Power PC Architec-

ture. These are listed in Appendix G, "Incompat­
ibilities with the Power Architecture" on
page 255.

3. Implementation-specific instructions used to
conform to the Power PC Architecture specifica­
tions.

4. Any other instructions contained in Book IV,
PowerPC Implementation Features for any imple­
mentation, which are not defined in the Power PC
User Instruction Set Architecture, PowerPC
Virtual Environment Architecture, nor Power PC
Operating Environment Architecture.

Appendix J. Reserved Instructions 265

266 PowerPC Architecture First Edition

Appendix K. Optional Facilities and Instructions

The facilities (special purpose registers and
instructions) described in this appendix are optional.
An implementation may choose to provide all, some,
or none of them. If a facility is implemented that
matches semantics of a facility described here, the
implementation should be as specified here.

K.1 External Control

The External Control facility provides a means for a
problem state program to communicate with a special
purpose device. Two instructions are provided:

• External Control Out Word Indexed (ecowx) , which
does the following:

Computes an Effective Address (EA) as for
any X-form instruction
Validates the EA as would be done for a
store to that address
Translates the EA to a Real Address
Transmits the Real Address and a word of
data from a general register to the device

• External Control In Word Indexed (eciwx), which
does the following:

Computes an Effective Address (EA) as for
any X-form instruction
Validates the EA as would be done for a load
from that address
Translates the EA to a Real Address
Transmits the Real Address to the device
Accepts a word of data from the device and
places it in a general register

Depending on the setting of a control bit in a special
purpose register, the External Access Register (EAR),
the processor either performs the external control
operation or it takes a Data Storage interrupt. The
EAR controls access to the external access facility.
Access to the EAR itself is privileged; the operating
system can determine which tasks are allowed to

issue External Access instructions and when they are
allowed to do so.

Interpretation of the real address transmitted by
ecowx and eciwx -and the 32-bit value transmitted by
ecowx is up to the target device. Such interpretation
is not specified by Power PC Architecture. See the
System Architecture documentation for a given
Power PC system for details on how the External
Control facility can be used with devices on that
system.

Example

An example of a device designed to be used with the
External Control facility might be a graphics adapter.
The ecowx instruction might be used to send the
device the translated real address of a buffer con­
taining graphics data, and the word transmitted from
the general register might be control information that
tells the adapter what operation to perform on the
data in the buffer. The eciwx instruction might be
used to load status information from the adapter.

K.1.1 External Access Register

This 32-bit Special Purpose Register controls access
to the External Control facility and, for external
control operations that are permitted, determines
which device is the target.

o

Bit
o
26:31

II/

Name
E
RID

I RID I
26 31

Description
Enable bit
Resource 10

All other fields are reserved.

Figure 83. External Access Register

Appendix K. Optional Facilities and Instructions 267

K.1.2 External Access Instructions

External Control In Word Indexed
X-form

eciwx RT,RA,RB

10 31

if RA = e then b ~ a
else b ~ (RA)
EA ~ b + (RB)
if EARe = 1 then

raddr ~ address translation of EA
send load request for raddr to

device identified by EARR10
RT ~ 32a II word from dev; ce

else
DSISR11 ~ 1
generate Data Storage interrupt

310

1 :.1

Let the effective address (EA) be the sum
(RAIO)+(RB).

If EARe == 1, a load request for the real address corre­
sponding to EA sent to the device identified by
EARR10' bypassing the cache. RT 0:31 is set to O. The
word returned by the device is placed in RT32:63{0:31}.

If EARe == 0, a Data Storage interrupt is taken, with bit
11 of DSISR set to 1.

The eciwx instruction is supported for Effective
Addresses that reference ordinary (T == 0) segments
and for EAs mapped by Data BAT registers. The
instruction is not supported and the results are
boundedly undefined for EAs in direct-store (T == 1)
segments and for EAs generated when MSRoR == 0
(real addresses).

The access caused by this instruction is treated as a
load from the location addressed by EA with respect
to protection and reference and change recording.

Special Registers Altered:
None

268 PowerPC Architecture First Edition

External Control Out Word Indexed
X-form

ecowx RS,RA,RB

!
RA ·!16RB

11 .

if RA = 8 then b ~ 8
el se b ~ (RA)
EA ~ b + (RB)
if EARe = 1 then

raddr ~ address translation of EA
send store request for raddr to

device identified by EARR10
send (RS32:63{0:31}) to devi ce

else
DSISR11 ~ 1
generate Data Storage interrupt

438

1 :.1

Let the effective address (EA) be the sum
(RAIO) + (RB).

If EARe== 1, a store request for the real address corre­
sponding to EA and the contents of RS32:63{0:31} are
sent to the device identified by EARR10' bypassing the
cache.

If EARe == 0, a Data Storage interrupt is taken, with bit
11 of DSISR set to 1.

The ecowx instruction is supported for Effective
Addresses that reference ordinary (T == 0) segments
and for EAs mapped by Data BAT registers. The
instruction is not supported and the results are
boundedly undefined for EAs in direct-store (T== 1)
segments and for EAs generated when MSRoR == 0
(real addresses).

The access caused by this instruction is treated as a
store to the location addressed by EA with respect to
protection and reference and change recording.

Special Registers Altered:
None

Appendix L. Synchronization Requirements for Special
Registers

The processor checks for input and output depend­
ences with respect to all registers, and honors these
dependences when executing a series of instructions
involving a given register. For example, if an mtspr
instruction writes a value to a particular SPR and an
mfspr instruction later in the instruction stream reads
the same SPR, the mfspr receives the .value written
by the mtspr.

Such dependence checking does not extend to certain
side effects of writing to status and control registers,
SPRs, and Segment Registers, as described in the
remainder of this appendix.

L.1 Affected Registers

Software synchronization may be required for alter­
ation of the registers listed in the following sub­
sections, because they affect instruction fetch and
data access.

L.1.1 Instruction Fetch

Altering the content of the following registers or MSR
bits may change the manner in which instruction
addresses are interpreted, or the context in which
instructions execute.

• ASR
• Segment Registers
• SDR1
• IBAT registers
• MSR bits:

SF, POW, PR, FP, ME, FEO, FE1, SE, BE, IP, IR, LE

The processor automatically provides all synchroniza­
tion required for the GPRs, FPRs, CR, LR, CTR, XER,
FPSCR, SRRO, SRR1, DAR, DSISR, SPRGO through
SPRG3, Time Base, and Decrementer, and for the EE
and RI bits of the MSR, including side effects. These
registers and MSR bits are not discussed further, in
this appendix.

For the remainder of this appendix, words like
"before," "after," "preceding," "following," etc.,
when referring to instruction sequence, are with
respect to program order. (Program order is defined
in Part 2, "PowerPC Virtual Environment Architecture"
on page 11~.)

L.1.2 Data Access

Altering the content of the following registers or MSR
bits may change the manner in which data accesses
are performed, or the context in which they are per­
formed.

• ASR
• Segment Registers
• SDR1
• DBAT registers
• EAR
• MSR bits:

SF, POW, PR, DR, LE

L.2 Context Synchronizing
Operations

The following instructions and events comprise the
context synchronizing operations (see Section 9.7.1,
"Context Synchronization" on page 145). They can
be used to synchronize alteration of the registers
listed above, as described below.

• isync
• sc
• rfi

Appendix L. Synchronization Requirements for Special Registers 269

• any interrupt, other than System Reset and
Machine Check

(As described in Chapter 13, "Interrupts" on
page 191, System Reset and Machine Check are
context synchronizing if they are recoverable.)

The sync instruction, although not context­
synchronizing, can sometimes be used to provide the
required synchronization, as described be,ow.

L.3 Software Synchronization
Requirements

To ensure that instructions appear to execute in
program order (i.e., with the correct semantics and in
the correct context), software must use synchroniza­
tion instructions, as described below, when altering
any of the registers and MSR bits listed in L 1,
"Affected Registers" on page 269. .

Sometimes advantage can be taken of the fact that
certain instructions that occur naturally in the
program, such as the rfi at the end of an interrupt
handler, provide the required synchronization.

Before Alteration

If the corresponding relocation is enabled (IR== 1 for
Section L 1.1, DR == 1 for Section L 1.2), a context syn­
chronizing operation or sync instruction must precede
an alteration of any of the registers listed in Section .
L 1, with the exception of SDR1 and ·the MSR.

If the corresponding relocation is enabled, a sync
instruction must precede an alteration of SDR1. The
sync forces alterations of Reference and Change bits,
due to instructions before the alteration of SDR1, to
be made in the correct context.

No explicit synchronization is required before soft­
ware alters the MSR, because mtmsr is execution
synchronizing (see Section 9.7.2, "Execution
Synchronization" on page 145).

After Alteration

If the corresponding relocation is enabled (IR == 1 for
Section L 1.1, DR = 1 for Section L 1.2), a context syn­
chronizing operation must follow an alteration of any
of the registers listed in Section L 1, with the excep­
tion of the MSR.

A context synchronizing operation must follow an
alteration of any of the MSR bits listed in Sections
L 1.1 and L 1.2, except MSR1P if software does not
care which value of this bit is used for non­
recoverable System Reset and Machine Check. inter­
rupts.

270 PowerPC Architecture First Edition

Instructions fetched and/or executed after the alter­
ation but before the context synchronizing operation
may be fetched and/or executed in either the context
that existed before the alteration or the context estab­
lished by the alteration.

Multiple Alterations

When several of the registers listed in Section L 1 are
altered with no intervening instructions that are
affected by the alterations, no context synchronizing
operations or sync instructions are required between
the alterations.

Examples

• A single Segment Register is to be altered in iso-
lation:

; sync
mtsr SRn,Rx
; sync

• All the Segment Registers are to be reloaded
upon task dispatch at the end of an interrupt.

mtsr SR9,R •••
mtsr SRI ,R •••

mtsr SRI5,R •••
rfi

Because this instruction sequence reloads all
Segment Registers, it must be executed with
MSR1R = 0 and therefore no synchronization is
required before the Segment Registers are
loaded. (If the Segment Register that is being
used for instruction fetch is not to be reloaded,
the sequence can be executed with MSR1R == 1,
and still no such synchronization is required.)
The rfi provides the needed synchronization after
the Segment Registers have been loaded, and
before subsequent instructions are fetched and
subsequent loads and stores executed.

L.4 Additional Software
Requirements

This section describes additional software require­
ments with respect to instruction fetching and address
translation. The results of failing to satisfy these
requirements are undefined.

MSRpOWlE
A special sequence of instructions may be
required for changing the Power Management
Enable and Uttle-Endian Mode bits; see the Book
IV, PowerPC Implementation Features document
for the implementation.

MSR1R
MSR1R should be altered only from code that is
mapped virtual equals real.

ASR
If MSR1R = 1, alteration of the ASR is permitted
only if the instructions in storage immediately fol­
lowing the mtspr that alters the ASR are identical
in both the old and the new address space. Any
resulting changes in storage protection or storage
access mode are not guaranteed to take effect
until a context synchronizing operation is exe­
cuted.

Segment Registers
No fields in the Segment Register that is being
used for instruction fetch should be altered, with
the exception of the Key bits (Ks and Kp). Alter­
ation of the Key bits is always permitted. Any
resulting changes in storage protection are not
guaranteed to take effect until a context synchro­
nizing operation is executed.

SDR1
SDR1 should be altered only when MSR1R = O.

IBAT registers
No fields in the IBAT Register that is being used
for instruction fetch should be altered, with the
exception of the Valid (V) bit and the Key bits (Ks
and Kp). Alteration of the V bit is permitted only if
the instructions in storage immediately following
the mtspr that alters the IBAT register are also
mapped by the segmented address translation
mechanism to the same address, or if the
instructions are duplicated in the newly mapped
space. Alteration of the Key bits is always per­
mitted. Any resulting changes in storage pro­
tection or storage access mode are not
guaranteed to take effect until a context synchro­
nizing operation is executed.

To make an IBAT register valid in a manner such
that the IBAT register then translates the current
instruction stream, the following sequence should
be used if fields in both the upper and lower IBAT
registers are being altered.

1. The V bit in the IBAT register should be set to
zero.

2. The other fields in the IBAT register should be
initialized appropriately while the V bit
remai ns zero.

3. The V bit should be set to one.
4. A context synchronizing operation should be

executed.

If all altered fields are contained in either the
upper or lower IBAT register, a single mtspr suf­
fices (a synchronizing operation is not necessarily
required).

Appendix L. Synchronization Requirements for Special Registers 271

272 PowerPC Architecture First Edition

Appendix M. Implementation-Specific SPRs

This appendix lists Special Purpose Register (SPR)
numbers assigned by the Power PC Architecture
Review Process for implementation-specific uses. If a
register shown here is present in a particular imple­
mentation, a detailed description will be found in Book
IV, PowerPC Implementation Features.

The intent of this Ust is to ensure that if an SPR is
needed for a particul ar function on more than one
implementation, the same SPR number will be used.

Note that ordering of the bits shown in the table
below matches the descriptions in Move To/From
Special Purpose Register on pages 79 and 80. The
two 5-bit halves of the SPR number are reversed from
the order in which they appear in an assembled
instruction.

SPR Register Privi-
decimal spr 5:9 spr 0:4 name leged

1023 1111111111 PIR yes
1022 1111111110 FPECR yes

Processor 10 Register (PIR)

This register holds a value that distinguishes this
processor from others in a multiprocessor.

Floating-Point Exception Cause Register
(FPECR)

This register identifies the reason a Floating-Point
Exception occurred.

Appendix M. Implementation-Specific SPRs 273

274 PowerPC Architecture First Edition

Appendix N. Interpretation of the DSISR as set by an
Alignment Interrupt

For most causes of Alignment interrupt, the interrupt
handler will emulate the interrupting instruction. To
do this, it needs the following characteristics of the
interrupting instruction:

Load or store
Length (half, word, or double)
String, multiple, or elementary
Fixed or float
Update or non-update
Byte reverse or not
Is it dcbz?

The PowerPC Architecture provides this information
implicitly, by setting opcode bits in the OSISR that
identify the interrupting instruction type. It is not nec­
essary for the interrupt handler to load the inter­
rupting instruction from storage. The mapping is
unique except for a few exceptions that are discussed
below. The near-uniqueness depends upon the fact
that many instructions cannot cause an Alignment
interrupt, such as the fixed- and floating-point arith­
metic instructions and the byte-width loads and
stores.

See Section 13.5.6, "Alignment Interrupt" on
page 196 for a description of how the opcode and
extended opcode is mapped to a OSISR value for an
X-, 0-, or OS-form instruction that causes an Align­
ment interrupt.

The table on the next page shows the inverse
mapping: how the OSISR bits identify the interrupting
instruction. The following notes apply to this table.

(1) The instructions Iwz and Iwarx give the same
OSISR bits (all zero). But if Iwarx causes an align­
ment interrupt, it is an invalid form, so it need not
be emulated in any precise way. It is adequate
for the Alignment interrupt handler to simply
emulate the instruction as if it were an Iwz. It is
important that the emulator use the address in the
DAR, rather than computing it from RA/RB/O,
because Iwz and Iwarx are different formats.

If opcode 0 ("Illegal or reserved") can cause an
alignment interrupt, it will be indistinguishable
from Iwarx and Iwz.

(2) These are distinguished by OSISR bits 12:13, which
are not shown in the table.

The Alignment interrupt handler will not be able to
distinguish a floating-point load or store interrupting
because it is misaligned, or because it addresses
direct-store. But this does not matter; in either case
it will be emulated by doing the operation with fixed­
point instructions.

The interrupt handler has no need to distinguish
between an X-form instruction and the corresponding
0- or OS-form instruction, if one exists. Therefore two
such instructions may report the same OSISR value
(all 32 bits). For example, stw and stwx may both
report either the OSISR value shown in the following
table for stw, or that shown for stwx.

Appendix N. Interpretation of the DSISR as·set by an Alignment Interrupt 275

then it is or then it is or
either D/DS- either D/OS-

If DSISR X-form form If OSISR X-form form
15:21 is: opcode: opcode: so the instruction is: 15:21 is: opcode: opcode: so the instruction is:

0000000 OOOOOxxxOO xOOOOO Iwarx, Iwz, reserved 1000000 00000xxx10 -
(1) 100 0001 00010xxx10 -

0000001 00010xxxOO xOO010 Idarx 1000010 00100xxx10 stwcx.
0000010 00100xxxOO x00100 stw 1000011 00110xxx10 stdcx.
0000011 00110xxxOO x00110 - 100 0100 01000xxx10 -
0000100 01000xxxOO x01000 1hz 10 0 0101 01010xxx10 -
0000101 01 01 OxxxOO x01010 Iha 100 0110 01100xxx10 -
0000110 01100xxxOO x01100 sth 1000111 01110xxx10 -
0000111 01110xxxOO x01110 Imw 100 1000 10000xxx10 Iwbrx
000 1000 10000xxxOO x10000 Ifs 100 1001 10010xxx10 -
0001001 10010xxxOO x10010 Ifd 100 1010 10100xxx10 stwbrx
000 1010 10100xxxOO x10100 stfs 100 1011 10110xxx10 -
000 1011 10110xxxOO x10110 stfd 100 1100 11000xxx10 Ihbrx
00'0 1100 11000xxxOO x11000 - 10 0 1101 11010xxx10 -
000 1101 11010xxxOO x11010 Id, Idu, Iwa (2) 1001110 11100xxx10 sthbrx
000 1110 11100xxxOO x11100 - 1001111 11110xxx10 -
00 0 1111 11110xxxOO x11110 std, stdu (2) 10 1 0000 00001xxx10 -
00 1 0000 00001xxxOO xOOO01 Iwzu 10 1 0001 00011xxx10 -
00 1 0001 00011xxxOO x00011 - 10 1 0010 00101xxx10 -
00 1 0010 00101xxxOO x00101 stwu 10 1 0011 00111xxx10 -
00 1 0011 00111xxxOO x00111 - 10 1 0100 01001xxx10 eciwx
00 1 0100 01001xxxOO x01001 Ihzu 10 1 0101 01011xxx10 -
00 1 0101 01011xxxOO x01011 Ihau 1010110 01101xxx10 ecowx
00 1 0110 01101xxxOO x01101 sthu 1010111 01111xxx10 -
00 1 0111 01111xxxOO x01111 stmw 10 1 1000 10001xxx10 -
00 1 1000 10001xxxOO x10001 Ifsu 10 1 1001 10011xxx10 -
00 1 1001 10011xxxOO x10011 Ifdu 10 1 1010 10101xxx10 -
00 1 1010 10101xxxOO x10101 stfsu 10 1 1011 10111xxx10 -
00 1 1011 10111xxxOO x10111 stfdu 10 1 1100 11001xxx10 -
00 1 1100 11001xxxOO x11001 - 1021101 11011xxx10 -
00 1 1101 11011xxxOO x11011 - 1011110 11101xxx10 -
00 1 1110 11101xxxOO x11101 - 1011111 11111xxx10 dcbz
00 1 1111 11111xxxOO x11111 - 11 00000 OOOOOxxx11 Iwzx
01 00000 00000xxx01 Idx 11 00001 00010xxx11 -
01 00001 00010xxx01 - 11 00010 00100xxx11 stwx
01 00010 00100xxx01 stdx 11 00011 00110xxx11 -
01 00011 00110xxx01 - 11 00100 01000xxx11 Ihzx
01 00100 01000xxx01 - 1100101 01010xxx11 Ihax
01 00101 01010xxx01 Iwax 1100110 01100xxx11 sthx
01 0 0110 01100xxx01 - 11 0,0111 01110xxx11 -
0100111 01110xxx01 - 1101000 10000xxx11 Ifsx
01 0 1000 10000xxx01 Iswx 11 0 1001 10010xxx11 Ifdx
01 0 1001 10010xxx01 Iswi 11 0 1010 10100xxx11 stfsx
01 0 1010 10100xxx01 stswx 1101011 10110xxx11 stfdx
01 0 1011 10110xxx01 stswi 11 0 1100 11000xxx11 -
01 0 1100 11000xxx01 - 1101101 11010xxx11 -
0101101 11010xxx01 - 1101110 11100xxx11 -
0101110 11100xxx01 - 1101111 11110xxx11 stfiwx
0101111 11110xxx01 - 11 1 0000 00001xxx11 Iwzux
01 1 0000 00001xxx01 Idux 11 1 0001 00011xxx11 -
01 1 0001 00011xxx01 - 11 1 0010 00101xxx11 stwux
01 1 0010 00101xxx01 stdux 11 1 0011 00111xxx11 -
01 1 0011 00111xxx01 - 11 1 0100 01001xxx11 Ihzux
01 1 0100 01001xxx01 - 11 1 0101 01011xxx11 Ihaux
01 1 0101 01011xxx01 Iwaux 1110110 01101xxx11 sthux
0110110 01101xxx01 - 11 1 0111 01111xxx11 -
01 1 0111 01111xxx01 - 11 1 1000 10001xxx11 Ifsux
01 1 1000 10001xxx01 - 11 1 1001 10011xxx11 Ifdux
01 1 1001 10011xxx01 - 11 1 1010 10101xxx11 stfsux
01 11010 10101xxx01 - 1111011 10111xxx11 stfdux
01 1 1011 10111xxx01 - 11 1 1100 11001xxx11 -
01 1 1100 11001xxx01 - 1111101 11011xxx11 -
01 1 1101 11011xxx01 - 1111110 11101xxx11 -
01 1 1110 11101xxx01 - 1111111 11111xxx11 -
01 1 1111 11111xxx01 -

276 PowerPC Architecture First Edition

Appendix O. PowerPC Instruction Set Sorted by Opcode

This appendix lists all the instructions in the PowerPC
Architecture. A page number is shown for
instructions that are defined in this Book (Part 1,
"PowerPC User Instruction Set Architecture" on
page 1), and the Book number is shown for
instructions that are defined in other Books (Part 2,

Form
Opcode Mode Page

Mnemonic
Primary Extend Dep.1 I Bk

D 2 0 61 tdi
D 3 61 twi
D 7 55 mulli
D 8 SR 52 subfic
D 10 60 cmpli
D 11 59 cmpi
D 12 SR 51 addic
D 13 SR 51 addic.
D 14 50 addi
D 15 50 addis
B 16 CT 21 bc[l][a]
SC 17 1 23 sc
I 18 21 b[I][a]
XL 19 0 26 mcrf
XL 19 16 CT 22 bclr[l]
XL 19 33 25 crnor
XL 19 50 Bk III rfi
XL 19 129 25 crandc
XL 19 150 Bk II isync
XL 19 193 24 crxor
XL 19 225 24 crnand
XL 19 257 24 crand
XL 19 289 25 creqv
XL 19 417 25 crorc
XL 19 449 24 cror
XL 19 528 CT 22 bcctr[l]
M 20 SR 74 rlwimi[.]
M 21 SR 71 rlwinm[.]
M 23 SR 73 rlwnm[.]
D 24 64 ori
D 25 64 oris
D 26 64 xori
D 27 64 xoris
D 28 SR 63 andi.
D 29 SR 63 andis.
MD 30 0 (SR) 70 rldicl[.]
MD 30 1 (SR) 70 rldicr[.]

"PowerPC Virtual Environment Architecture" on
page 117, and Part 3, "PowerPC Operating Environ­
ment Architecture" on page 141). If an instruction is
defined in more than one Book, the lowest-numbered
Book is used.

Instruction

Trap Doubleword Immediate
Trap Word Immediate
Multiply Low Immediate
Subtract From Immediate Carrying
Compare Logical Immediate
Compare Immediate
Add Immediate Carrying
Add Immediate Carrying and Record
Add Immediate
Add Immediate Shifted
Branch Conditional
System Call
Branch
Move Condition Register Field
Branch Conditional to Unk Register
Condition Register NOR
Return From Interrupt
Condition Register AND with Complement
Instruction Synchronize
Condition Register XOR
Condition Register NAND
Condition Register AND
Condition Register Equivalent
Condition Register OR with Complement
Condition Register OR
Branch Conditional to Count Register
Rotate Left Word Immediate then Mask Insert
Rotate Left Word Immediate then AND with Mask
Rotate Left Word then AND with Mask
OR Immediate
OR Immediate Shifted
XOR Immediate
XOR Immediate Shifted
AND Immediate
AND Immediate Shifted
Rotate Left Doubleword Immediate then Clear Left
Rotate Left Doubleword Immediate then Clear Right

Appendix O. PowerPC Instruction Set Sorted by Opcode 277

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Dep.1 I Bk

MD 30 2 (SR) 71 rldic[.] Rotate Left Doubleword Immediate then Clear
MD 30 3 (SR) 74 rldimi[.] Rotate Left Doubleword Immediate then Mask Insert
MDS 30 8 (SR) 72 rldcl[.] Rotate Left Doubleword then Clear Left
MDS 30 9 (SR) 73 rldcr[.] Rotate Left Doubleword then Clear Right
X 31 0 59 cmp Compare
X 31 4 62 tw Trap Word
XO 31 8 SR 52 subfc[o][.] Subtract From Carrying
XO 31 9 (SR) 56 mulhdu[.] Multiply High Doubleword Unsigned
XO 31 10 SR 52 addc[o][.] Add Carrying
XO 31 11 SR 56 mulhwu[.] Multiply High Word Unsigned
X 31 19 81 mfcr Move From Condition Register
X 31 20 46 Iwarx Load Word And Reserve Indexed
X 31 21 0 35 Idx Load Doubleword Indexed
X 31 23 33 . Iwzx Load Word and Zero Indexed
X 31 24 SR 75 slw[.] Shift Left Word
X 31 26 SR 68 cntlzw[.] Count Leading Zeros Word
X 31 27 (SR) 75 sld[.] Shift Left Doubleword
X 31 28 SR 65 and[.] AND
X 31 32 60 cmpl Compare Logical
XO 31 40 SR 51 subf[o][.] Subtract From
X 31 53 0 35 Idux Load Doubleword with Update Indexed
X 31 54 134 dcbst Data Cache Block Store
X 31 55 33 Iwzux Load Word and Zero with Update Indexed
X 31 58 (SR) 68 cntlzd[.] Count Leading Zeros Doubleword
X 31 60 SR 66 andc[.] AN D with Complement
X 31 68 0 62 td Trap Doubleword
XO 31 73 (SR) 56 mUlhd[.] Multiply High Doubleword
XO 31 75 SR 56 mulhw[.] Multiply High Word
X 31 83 Bk III mfmsr Move From Machine State Register
X 31 84 0 46 Idarx Load Doubleword And Reserve Indexed
X 31 86 135 dcbf Data Cache Block Flush
X 31 87 30 Ibzx Load Byte and Zero Indexed
XO 31 104 SR 54 neg [0] [.] Negate
X 31 119 30 Ibzux Load Byte and Zero with Update Indexed
X 31 124 SR 66 nor[.] NOR
XO 31 136 SR 53 subfe[o][.] Subtract From Extended
XO 31 138 SR 53 adde[o][.] Add Extended
XFX 31 144 80 mtcrf Move To Condition Register Fields
X 31 146 Bk III mtmsr Move To Machine State Register
X 31 149 0 39 stdx Store Doubleword Indexed
X 31 150 47 stwcx. Store Word Conditional Indexed .
X 31 151 38 stwx Store Word Indexed
X 31 181 0 39 stdux Store Doubleword Indexed with Update
X 31 183 38 stwux Store Word with Update Indexed
XO 31 200 SR 54 subfze[o][.] Subtract From Zero Extended
XO 31 202 SR 54 addze[o][.] Add to Zero Extended
X 31 210 {} Bk III mtsr Move To Segment Register
X 31 214 0 47 stdcx. Store Doubleword Conditional Indexed
X 31 215 36 stbx Store Byte Indexed
XO 31 232 SR 53 subfme[o][.] Subtract From Minus One Extended
XO 31 233 55 mUlld[o][.] Multiply Low Doubleword
XO 31 234 SR 53 addme[o][.] Add to Minus One Extended
XO 31 235 55 mullw[o][.] Multiply Low Word
X 31 242 {} Bk III mtsrin Move To Segment Register Indirect
X 31 246 133 dcbtst Data Cache Block Touch for Store
X 31 247 36 stbux Store Byte with Update Indexed
XO 31 266 SR 51 add [0] [.] Add
X 31 278 133 dcbt Data Cache Block Touch

278 PowerPC Architecture First Edition

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Dep.1 I Bk

X 31 279 31 Ihzx Load Halfword and Zero Indexed
X 31 284 SR 66 eqv[.] Equivalent
X 31 306 Bk III tlbie TLB Invalidate Entry
X 31 310 Bk III eciwx External C;;ontrolln Word Indexed
X 31 311 31 Ihzux Load Halfword and Zero with Update Indexed
X 31 316 SR 65 xor[.] XOR
XFX 31 339 80 mfspr Move From Special Purpose Register
X 31 341 0 34 Iwax Load Word Algebraic Indexed
X 31 343 32 Ihax Load Halfword Algebraic Indexed
X 31 370 Bk III tibia TLB Invalidate All
XFX 31 371 Bk II mftb Move From Time Base
X 31 373 0 34 Iwaux Load Word Algebraic with Update Indexed
X 31 375 32 Ihaux Load Halfword Algebraic with Update Indexed
X 31 407 37 sthx Store Halfword Indexed
X 31 412 SR 66 orc[.] OR with Complement
XS 31 413 (SR) 77 sradi[.] Shift Right Algebraic Doubleword Immediate
X 31 434 0 Bklll slbie SLB Invalidate Entry
X 31 438 Bk III ecowx External Control Out Word Indexed
X 31 439 37 sthux Store Halfword with Update Indexed
X 31 444 SR 65 or[.] OR
XO 31 457 (SR) 58 divdu[o][.] Divide Doubleword Unsigned
XO 31 459 SR 58 divwu[o][.] Divide Word Unsigned
XFX 31 467 79 mtspr Move To Special Purpose Register
X 31 470 181 dcbi Data Cache Block Invalidate
X 31 476 SR 65 nand[.] NAND
XO 31 489 (SR) 57 divd[o][.] Divide Doubleword
XO 31 491 SR 57 divw[o][.] Divide Word
X 31 498 0 Bk III slbia SLB Invalidate All
X 31 512 80 mcrxr Move to Condition Register from XER
X 31 533 44 Iswx Load String Word Indexed
X 31 534 40 Iwbrx Load Word Byte-Reverse Indexed
X 31 535 100 Ifsx Load Floating-Point Single Indexed
X 31 536 SR 76 srw[.] Shift Right Word
X 31 539 (SR) 76 srd[.] Shift Right Doubleword
X 31 566 Bk III tlbsync TLB Synchronize
X 31 567 100 Ifsux Load Floating-Point Single with Update Indexed
X 31 595 {} Bk III mfsr Move From Segment Register
X 31 597 44 Iswi Load String Word Immediate
X 31 598 48 sync Synchronize
X 31 599 101 Ifdx Load Floating-Point Double Indexed
X 31 631 101 Ifdux Load Floating-Point Double with Update Indexed
X 31 659 {} Bk III mfsrin Move From Segment Register Indirect
X 31 661 45 stswx Store String Word Indexed
X 31 662 41 stwbrx Store Word Byte-Reverse Indexed
X 31 663 103 stfsx Store Floating-Point Single Indexed
X 31 695 103 stfsux Store Floating-Point Single with Update Indexed
X 31 725 45 stswi Store String Word Immediate
X 31 727 104 stfdx Store Floating-Point Double Indexed
X 31 759 104 stfdux Store Floating-Point Double with Update Indexed
X 31 790 40 Ihbrx Load Halfword Byte-Reverse Indexed
X 31 792 SR 78 sraw[.] Shift Right Algebraic Word
X 31 794 (SR) 78 srad[.] Shift Right Algebraic Doubleword
X 31 824 SR 77 srawi[.] Shift Right Algebraic Word Immediate
X 31 854 Bk II eieio Enforce In-order Execution of 110
X 31 918 41 sthbrx Store Halfword Byte-Reverse Indexed
X 31 922 SR 67 extsh[.] Extend Sign Halfword
X 31 954 SR 67 extsb[.] Extend Sign Byte
X 31 982 132 icbi Instruction Cache Block Invalidate

Appendix o. PowerPC Instruction Set Sorted by Opcode 279

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Dep.' I Bk

X 31 983 208 stfiwx Store Floating-Point as Integer Word Indexed
X 31 986 (SR) 67 extsw[.] Extend Sign Word
X 31 1014 134 dcbz Data Cache Block set to Zero
0 32 33 Iwz Load Word and Zero
0 33 33 Iwzu Load Word and Zero with Update
0 34 30 Ibz Load Byte and Zero
0 35 30 Ibzu Load Byte and Zero with Update
0 36 38 stw Store Word
0 37 38 stwu Store Word with Update
0 38 36 stb Store Byte
0 39 36 stbu Store Byte with Update
0 40 31 1hz Load Halfword and Zero
0 41 31 Ihzu Load Halfword and Zero with Update
0 42 32 Iha Load Halfword Algebraic
0 43 32 Ihau Load Halfword Algebraic with Update
0 44 37 sth Store Halfword
0 45 37 sthu Store Halfword with Update
0 46 42 Imw Load Multiple Word
0 47 42 stmw Store Multiple Word
0 48 100 Ifs Load Floating-Point Single
0 49 100 Ifsu Load Floating-Point Single with Update
0 50 101 Ifd Load Floating-Point Double
0 51 101 Ifdu Load Floating-Point Double with Update
0 52 103 stfs Store Floating-Point Single
0 53 103 stfsu Store Floating-Point Single with Update
0 54 104 stfd Store Floating-Point Double
0 55 104 stfdu Store Floating-Point Double with Update
OS 58 0 0 35 Id Load Doubleword
OS 58 1 0 35 Idu Load Ooubleword with Update
OS 58 2 0 34 Iwa Load Word Algebraic
A 59 18 107 fdivs[.] Floating Divide Single
A 59 20 106 fsubs[.] Floating Subtract Single
A 59 21 106 fadds[.] Floating Add Single
A 59 22 209 fsqrts[.] Floating Square Root Single
A 59 24 209 fres[.] Floating Reciprocal Estimate Single
A 59 25 107 fmuls[.] Floating Multiply Single
A 59 28 108 fmsubs[.] ·Floating Multiply-Subtract Single
A 59 29 108 fmadds[.] Floating Multiply-Add Single
A 59 30 109 fnmsubs[.] Floating Negative Multiply-Subtract Single
A 59 31 109 fnmadds[.] Floating Negative Multiply-Add Single
OS 62 0 0 39 std Store Ooubleword
OS 62 1 0 39 stdu Store Ooubleword with Update
X 63 0 113 fcmpu Floating Compare Unordered
X 63 12 110 frsp[.] Floating Round to Single-Precision
X 63 14 111 fctiw[.] Floating Convert To Integer Word
X 63 15 112 fctiwz[.] Floating Convert To Integer Word with round toward Zero
A 63 18 107 fdiv[.] Floating Divide
A 63 20 106 fsub[.] Floating Subtract
A 63 21 106 fadd[.] Floating Add
A 63 22 209 fsqrt[.] Floating Square Root
A 63 23 210 fsel[.] Floating Select
A 63 25 107 fmul[.] Floating Multiply
A 63 26 210 frsqrte[.] Floating Reciprocal Square Root Estimate
A 63 28 108 fmsub[.] Floating Multiply-Subtract
A 63 29 108 fmadd[.] Floating Multiply-Add
A 63 30 109 fnmsub[.] Floating Negative Multiply-Subtract
A 63 31 109 fnmadd[.] Floating Negative Multiply-Add
X 63 32 113 fcmpo Floating Compare Ordered

280 PowerPC Architecture First Edition

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Dep.1 I Bk

X 63 38 116 mtfsb1 [.] Move To FPSCR Bit 1
X 63 40 105 fneg[.] Floating Negate
X 63 64 114 mcrfs Move to Condition Register from FPSCR
X 63 70 116 mtfsbO[.] Move To FPSCR Bit 0
X 63 72 105 fmr[.] Floating Move Register
X 63 134 115 mtfsfi[.] Move To FPSCR Field Immediate
X 63 136 105 fnabs[.] Floating Negative Absolute Value
X 63 264 105 fabs[.] Floating Absolute Value
X 63 583 114 mffs[.] Move From FPSCR
XFL 63 711 115 mtfsf[.] Move To FPSCR Fields
X 63 814 0 110 fctid[.] Floating Convert To Integer Doubleword
X 63 815 0 111 fctidz[.] Floating Convert To Integer Doubleword with round

toward Zero
X 63 846 0 112 fcfid[.] Floating Convert From Integer Doubleword

1See key to mode dependency column, on page 287.

Appendix O. PowerPC Instruction Set Sorted by Opcode 281

282 PowerPC Architecture First Edition

Appendix P. PowerPC Instruction Set Sorted by Mnemonic

This appendix lists all the instructions in the Power PC
Architecture. A page number is shown for
instructions that are defined in this Book (Part 1,
"PowerPC User Instruction Set Architecture" on
page 1), and the Book number is shown for
instructions that are defined in other Books (Part 2,

Form
Opcode Mode Page

Mnemonic
Primary Extend Oep.' I Bk

XO 31 266 SR 51 add[o][.]
XO 31 10 SR 52 addc[o][.]
XO 31 138 SR 53 adde [0] [.]
D 14 50 addi
D 12 SR 51 addic
D 13 SR 51 addic.
D 15 50 addis
XO 31 234 SR 53 addme[o][.]
XO 31 202 SR 54 addze[o][.]
X 31 28 SR 65 and[.],
X 31 60 SR 66 andc[.]
D 28 SR 63 andi.
D 29 SR 63 andis.
I 18 21 b[l][a],
B 16 CT 21 bc[l][a]
XL 19 528 CT 22 bcctr[l]
XL 19 16 CT 22 bclr[l]
X 31 0 59 cmp
D 11 59 cmpi
X 31 32 60 cmpl
D 10 60 cmpli
X 31 58 (SR) 68 cntlzd[.]
X 31 26 SR 68 cntlzw[.]
XL 19 257 24 crand
XL 19 129 25 crandc
XL 19 289 25 creqv
XL 19 225 24 crnand
XL 19 33 25 crnor
XL 19 449 24 cror
XL 19 417 25 crorc
XL 19 193 24 crxor
X 31 86 135 dcbf
X 31 470 181 dcbi
X 31 54 134 dcbst
X 31 278 133 dcbt
X 31 246 133 dcbtst
X 31 1014 134 dcbz

"PowerPC Virtual Environment Architecture" on
page 117, and Part 3, "PowerPC Operating Environ­
ment Architecture" on page 141). If an instruction is
defined in more than one Book, the lowest-numbered
Book is used.

Instruction

Add
Add Carrying
Add Extended
Add Immediate
Add Immediate Carrying
Add Immediate Carrying and Record
Add Immediate Shifted
Add to Minus One Extended
Add to Zero Extended
AND
AN D with Complement
AND Immediate
AND Immediate Shifted
Branch
Branch Conditional
Branch Conditional to Count Register
Branch Conditional to Unk Register
Compare
Compare Immediate
Compare Logical
Compare Logical Immediate
Count Leading Zeros Doubleword
Count Leading Zeros Word
Condition Register AN D
Condition Register AND with Complement
Condition Register Equivalent
Condition Register NAND
Condition Register NOR
Condition Register OR
Condition Register OR with Complement
Condition Register XOR
Data Cache Block Flush
Data Cache Block Invalidate
Data Cache Block Store
Data Cache Block Touch
Data Cache B.ock Touch for Store
Data Cache Block set to Zero

Appendix P. PowerPC Instruction Set Sorted by Mnemonic 283

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Oep.1 I Bk

XO 31 489 (SR) 57 divd[o][.] Divide Doubleword
XO 31 457 (SR) 58 divdu[o][.] Divide Doubleword Unsigned
XO 31 491 SR 57 divw[o][.] Divide Word
XO 31 459 SR 58 divwu[o][.] Divide Word Unsigned
X 31 310 Bk III eciwx External Control In Word Indexed
X 31 438 Bk III ecowx External Control Out Word Indexed
X 31 854 Bk II eieio Enforce In-order Execution of 110
X 31 284 SR 66 eqv[.] Equivalent
X 31 954 SR 67 extsb[.] Extend Sign Byte
X 31 922 SR 67 extsh[.] Extend Sign Halfword
X 31 986 (SR) 67 extsw[.] Extend Sign Word
X 63 264 105 fabs[.] Floating Absolute Value
A 63 21 106 fadd[.] Floating Add
A 59 21 106 fadds[.] Floating Add Single
X 63 846 0 112 fcfid[.] Floating Convert From Integer Doubleword
X 63 32 113 fcmpo Floating Compare Ordered
X 63 0 113 fcmpu Floating Compare Unordered
X 63 814 0 110 fctid[.] Floating Convert To Integer Doubleword
X 63 815 0 111 fctidz[.] Floating Convert To Integer Doubleword with round

toward Zero
X 63 14 111 fctiw[.] Floating Convert To Integer Word
X 63 15 112 fctiwz[.] Floating Convert To Integer Word with round toward Zero
A 63 18 107 fdiv[.] Floating Divide
A 59 18 107 fdivs[.] Floating Divide Single
A 63 29 108 fmadd[.] Floating Multiply-Add
A 59 29 108 fmadds[.] Floating Multiply-Add Single
X 63 72 105 fmr[.] Floating Move Register
A 63 28 108 fmsub[.] Floating Multiply-Subtract
A 59 28 108 fmsubs[.] Floating Multiply-Subtract Single
A 63 25 107 fmul[.] Floating Multiply
A 59 25 107 fmuls[.] Floating Multiply Single
X 63 136 105 fnabs[.] Floating Negative Absolute Value
X 63 40 105 fneg[.] Floating Negate
A 63 31 109 fnmadd[.] Floating Negative Multiply-Add
A 59 31 109 fnmadds[.] Floating Negative Multiply-Add Single
A 63 30 109 fnmsub[.] Floating Negative Multiply-Subtract
A 59 30 109 fnmsubs[.] Floating Negative Multiply-Subtract Single
A 59 24 209 fres[.] Floating Reciprocal Estimate Single
X 63 12 110 frsp[.] Floating Round to Single-Precision
A 63 26 210 frsqrte[.] Floating Reciprocal Square Root Estimate
A 63 23 210 fsel[.] Floating Select
A 63 22 209 fsqrt[.] Floating Square Root
A 59 22 209 fsqrts[.] Floating Square Root Single
A 63 20 106 fsub[.] Floating Subtract
A 59 20 106 fsubs[.] Floating Subtract Single
X 31 982 132 icbi Instruction Cache Block Invalidate
XL 19 150 Bk II isync Instruction Synchronize
0 34 30 Ibz Load Byte and Zero
0 35 30 Ibzu Load Byte and Zero with Update
X 31 119 30 Ibzux Load Byte and Zero with Update Indexed
X 31 87 30 Ibzx Load Byte and Zero Indexed
OS 58 0 0 35 Id Load Doubleword
X 31 84 0 46 Idarx Load Doubleword And Reserve Indexed
OS 58 1 0 35 Idu Load Doubleword with Update
X 31 53 0 35 Idux Load Doubleword with Update Indexed
X 31 21 0 35 Idx Load Doubleword Indexed
0 50 101 Ifd Load Floating-Point Double
0 51 101 Ifdu Load Floating-Point Double with Update

284 PowerPC Architecture First Edition

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Oep.l I Bk

X 31 631 101 Ifdux Load Floating-Point Double with Update Indexed
X 31 599 101 Ifdx Load Floating-Point Double Indexed
D 48 100 Ifs Load FI~atlng-Point Single
D 49 100 Ifsu Load Floating-Point Single with Update
X 31 567 100 Ifsux Loa~ Floating-Point Single with Update Indexed
X 31 535 100 Ifsx Load Floating-Point Single Indexed
D 42 32 Iha Load Halfword Algebraic
D 43 32 Ihau Load Halfword Algebraic with Update
X 31 375 32 Ihaux Load Halfword Algebraic with Update Indexed
X 31 343 32 Ihax Load Halfword Algebraic Indexed
X 31 790 40 Ihbrx Load Halfword Byte-Reverse Indexed
D 40 31 1hz Load Halfword and Zero
0 41 31 Ihzu Load Halfword and Zero with Update
X 31 311 31 Ihzux Load Halfword and Zero with Update Indexed
X 31 279 31 Ihzx Load Halfword and Zero Indexed.
D 46 42 Imw Load Multiple Word
X 31 597 44 Iswi Load String Word Immediate
X 31 533 44 Iswx Load String Word Indexed
OS 58 2 0 34 Iwa Load Word Algebraic
X 31 20 46 Iwarx Load Word And Reserve Indexed
X 31 373 0 34 Iwaux Load Word Algebraic with Update Indexed
X 31 341 0 34 Iwax Load Word Algebraic Indexed
X 31 534 40 Iwbrx Load Word Byte-Reverse Indexed
0 32 33 Iwz Load Word and Zero
D 33 33 Iwzu Load Word and Zero with Update
X 31 55 33 Iwzux Load Word and Zero with Update Indexed
X 31 23 33 Iwzx Load Word and Zero Indexed
XL 19 0 26 mcrf Move Condition Register Field
X 63 64 114 mcrfs Move to Condition Register from FPSCR
X 31 512 80 mcrxr Move to Condition Register from XER
X 31 19 81 mfcr Move From Condition Register
X 63 583 114 mffs[.] Move From FPSCR
X 31 83 Bk 11\ mfmsr Move From Machine State Register
XFX 31 339 79 mfspr Move From Special Purpose Register
X 31 595 {} Bk III mfsr Move From Segment Register
X 31 659 {} Bk III mfsrin Move From Segment Register Indirect
XFX 31 371 Bk II mftb Move From Time Base
XFX 31 144 80 mtcrf Move To Condition Register Fields
X 63 70 116 mtfsbO[.] MoveTo FPSCR Bit 0
X 63 38 116 mtfsb1 [.] Move To FPSCR Bit 1
XFL 63 711 115 mtfsf[.] Move To FPSCR Fields
X 63 134 115 mtfsfi[.] Move To FPSCR Field Immediate
X 31 146 Bk 11\ mtmsr Move To Machine State Register
XFX 31 467 79 mtspr Move To Special Purpose Register
X 31 210 {} Bk III mtsr Move To Segment Register
X 31 242 {} Bk 1\1 mtsrin Move To Segment Register Indirect
XO 31 73 (SR) 56 mUlhd[.] Multiply High Ooubleword
XO 31 9 (SR) 56 mulhdu[.] Multiply High Ooubleword Unsigned
XO 31 75 SR 56 mulhw[.] Multiply High Word
XO 31 11 SR 56 mulhwu[.] Multiply High Word Unsigned
XO 31 233 55 mulld[o][.] Multiply Low Ooubleword
0 7 55 mulli Multiply Low Immediate
XO 31 235 55 mullw[o][.] Multiply Low Word
X 31 476 SR 65 nand[.] NAND
XO 31 104 SR 54 neg[o][.] Negate
X 31 124 SR 66 nor[.] NOR
X 31 444 SR 65 or[.] OR
X 31 412 SR 66 orc[.] OR with Complement

Appendix P. PowerPC Instruction Set Sorted by Mnemonic 285

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Oep.1 I Bk

D 24 64 ori OR Immediate
D 25 64 oris OR Immediate Shifted
XL 19 50 Bk III rfi Return From Interrupt
MDS 30 8 (SR) 72 rldcl[.] Rotate Left Doubleword then Clear Left
MDS 30 9 (SR) 73 rldcr[.] Rotate Left Doubleword then Clear Right
MD 30 2 (SR) 71 rldic[.] Rotate Left Doubleword Immediate then Clear
MD 30 0 (SR) 70 rldicl[.] Rotate Left Doubleword Immediate then Clear Left
MD 30 1 (SR) 70 rldicr[.] Rotate Left [)oubleword Immediate then Clear Right
MD 30 3 (SR) 74 rldimi[.] Rotate Left Doubleword Immediate then Mask Insert
M 20 SR 74 rlwimi[.] Rotate Left Word Immediate then Mask Insert
M 21 SR 71 rlwinm[.]. Rotate Left Word Immediate then AND with Mask
M 23 SR 73 rlwnm[.] Rotate Left Word then AND with Mask
SC 17 1 23 sc System Call
X 31 498 0 Bk III slbia SLB Invalidate All
X 31 434 0 Bk III slbie SLB Invalidate Entry
X 31 27 (SR) 75 sld[.] Shift Left Doubleword
X 31 24 SR 75 slw[.] Shift Left Word
X 31 794 (SR) 78 srad[.] Shift Right Algebraic Doubleword
XS 31 413 (SR) 77 sradi[.] Shift Right Algebraic Doubleword Immediate
X 31 792 SR 78 sraw[.] Shift Right Algebraic Word
X 31 824 SR 77 srawi[.] Shift Right Algebraic Word Immediate
X 31 539 (SR) 76 srd[.] Shift Right Doubleword
X 31 536 SR 76 srw[.] Shift Right Word
D 38 36 stb Store Byte
D 39 36 stbu Store Byte with Update
X . 31 247 36 stbux Store Byte with Update Indexed
X 31 215 36 stbx Store Byte Indexed
DS 62 0 0 39 std Store Doubleword
X 31 214 0 47 stdcx. Store Doubleword Conditional Indexed
DS 62 1 0 39 stdu Store Doubleword with Update
X 31 181 0 39 stdux Store Doubleword Indexed with Update
X 31 149 0 39 stdx Store Doubleword Indexed
D 54 104 stfd Store Floating-Point Double
D 55 104 stfdu Store Floating-Point Double with Update
X 31 759 104 stfdux Store Floating-Point Double with Update Indexed
X 31 727 104 stfdx Store Floating-Point Double Indexed
X 31 983 208 stfiwx Store Floating-Point as Integer Word Indexed
D 52 103 stfs Store Floating-Point Single
D 53 103 stfsu Store F~oating-Point Single with Update
X 31 695 103 stfsux Store Floating-Point Single with Update Indexed
X 31 663 103 stfsx Store Floating-Point Single Indexed
D 44 37 sth Store Halfword
X 31 918 41 sthbrx Store Halfword Byte-Reverse Indexed
D 45 37 sthu Store Halfword with Update
X 31 439 37 sthux Store Halfword with Update Indexed
X 31 407 37 sthx Store Halfword Indexed
D 47 42 stmw Store Multiple Word
X 31 725 45 stswi Store String Word Immediate
X 31 661 45 stswx Store String Word Indexed
D 36 38 stw Store Word
X 31 662 41 stwbrx Store Word Byte-Reverse Indexed
X 31 150 47 stwcx. Store Word Conditional Indexed
D 37 38 stwu Store Word with Update
X 31 183 38 stwux Store Word with Update Indexed
X 31 151 38 stwx Store Word Indexed
XO 31 40 SR 51 subf[o][.] Subtract From
XO 31 8 SR 52 subfc[o][.] Subtract From Carrying
XO 31 136 SR 53 subfe[o][.] Subtract From Extended

286 PowerPC Architecture First Edition

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Dep.t I Bk

D 8 SR 52 subfic Subtract From Immediate Carrying
XO 31 232 SR 53 subfme[o][.] Subtract From Minus One Extended
XO 31 200 SR 54 subfze[o][.] Subtract From Zero Extended
X 31 598 48 sync Synchronize
X 31 68 0 62 td Trap Doubleword
D 2 () 61 tdi Trap Doubleword Immediate
X 31 370 Bk III tibia TLB Invalidate All
X 31 306 Bk III tlbie TLB Invalidate Entry
X 31 566 Bk III tlbsync TLB Synchronize
X 31 4 62 tw Trap Word
D 3 61 twi Trap Word Immediate
X 31 316 SR 65 xor[.] XOR
D 26 64 xori XOR Immediate
D 27 64 xoris XOR Immediate Shifted

'Key to Mode Dependency Column

The entry is shown in parentheses () if the instruction is defined only for 64-bit implementations.

The entry is shown in braces 0 if the instruction is defined only for 32-bit implementations.

blank The instruction has no mode dependence,
except that if the instruction refers to storage
when in 32-bit mode, only the low-order 32
bits of the 64-bit effective address are used
to address storage. Storage reference
instructions inclu~e loads, stores, branch
instructions, etc.

CT

SR

If the instruction tests the Count Register, it
tests the low-order 32 bits when in 32-bit
mode, and all 64 bits when in 64-bit mode.

The instruction's primary function is mode­
independent, but the setting of status regis­
ters (such as XER and CRO) is
mode-dependent.

Appendix P. PowerPC Instruction Set Sorted by Mnemonic 287

288 PowerPC Architecture First Edition

Index

I Numerics I
32-bit mode 163

A-form 10
AA field 10
address 14

effective 15
real 158

address translation 178
32-bit mode 163
64-bit mode 160
BAT 174,178
block 159
EA to VA 160, 161, 163, 168, 169
esid to vsid 160, 161, 163, 168, 169
overview 159, 168
Page Table Entry 165, 171,178
PTE 165, 171
Reference bit 178
RPN 164, 170
Segment Table Entry 162
STE 162
VA to RA 160, 164, 168, 170
VPN 164, 170

aliasing 125
alignment

effect on performance 129
Alignment interrupt 196

OSISR 275
Architecture

intent 270
ASR 161
assembler language

extended mnemonics 221
mnemonics 221
symbols 221

atomic operation 126
atomicity

single-copy 120

~
B-form 8
BA field 10
BAT 159,174
BB field 10
BO field 11
BE 148
BF field 11
BFA field 11
BI field 11
Big-Endian 233
block (def) 119
block address translation 159, 174
BO field 11
boundedly undefined 12
Branch Trace 199
BT field 11
byte ordering 233
bytes 4

@]
C 85
CA 28
cache management instructions 132
cache model 122
cache parameters 131
Caching Inhibited 155, 177
Change bit 178, 181, 186, 270
CIA 6
Coherence, Memory 177
combined cache 124
combining

accesses 177
stores 177

context (def) 143
context synchronization 145
CR 17
CTR 18

Index 289

o field 11
O-form 9
DAR 151, 195, 197
data

access
synchronization 269

data cache instructions 133·
Data Storage interrupt 194
dcbf 135
dcbi 181
dcbst 134
dcbt 133
dcbtst 133
dcbz 134
DEC 204
Oecrementer interrupt 198
defined instructions 12
delayed Machine Check interrupt 194
denormalization 88
denormalized number 87
direct-store segment 173
double-precision 89
doublewords 4
DR 149
OS field 11
OS-form 9
OSISR 151

alignment interrupt 275
dual cache 123

o
E (Enable bit) 267
EA 15
EAR 267
eciwx 268
ecowx 268
EE 148
effective address 15, 155, 159

32-bit 169
64-bit 161

eieio 125, 135
EO 18
exception (def) 143
execution synchronization 145
External interrupt 196

o
FE 18, 85
FEO 148
FE1 148
FEX 84
FG 18,85
FI 85
FL 18, 85

290 PowerPC Architecture First Edition

FLM field 11
floating-point

denormalization 88
double-precision 89
exceptions 83, 90

inexact 95
invalid operation 92
overflow 94
underflow 94
zero divide 94

execution models 95
normalization 88
number

denormalized 87
infinity 87
normalized 87
not a number 88
zero 87

rounding 90
sign 88
single-precision 89

Floating-Point Assist interrupt 199
Floating-Point Unavailable interrupt 198
FP 148
FPCC 85
FPR 84
FPRF 85
FPSCR 84

C 85
FE 85
FEX 84
FG 85
FI 85
FL 85
FPCC 85
FPRF 85
FR 85
FU 85
FX 84
NI 86
OE 86
OX 84
RN 86
UE 86
UX 85
VE 85
VX 84
VXCVI 85
VXIOI 85
VXIMZ 85
VXISI 85
VXSNAN 85
VXSOFT 85
VXSORT 85
VXVC 85
VXZOZ 85
XE 86
XX 85
ZE 86

FPSCR (continued)
ZX 85

FR 85
FRA field 11
FRB field 11
FRC field 11
FRS field 11
FRT field 11
FU 18,85
FX 84
FXM field 11

@J
GPR 27
GT 18
Guarded storage 157, 177
Gulliver's Travels 233

halfwords 4
hardware (def) 143
hardware description language 5
hashed page table 165, 171

search 166, 172
HTAB 165, 171

search 166, 172

[!J
I-form 8
icbi 132
ILE 148
illegal instructions 13
inexact 95
infinity 87
Inhibited, Caching 177
instruction

fetch
synchronization 269

fields 10, 11, 12, 144
AA 10
BA 10
BB 10
BD 11
BF 11
BFA 11
BI 11
BO 11
BT 11
o 11
OS 11
FLM 11
FRA 11
FRB 11
FRC 11

instruction (continued)
fields (continued)

FRS 11
FRT 11
FXM 11
L 11
LI 11
LK 11
MB 11
ME 11
NB 11
OE 11
RA 11
RB 11
Rc 11
RS 12
RT 12
SH 12
SI 12
SPR 12, 144
SR 12,144
TBR 12
TO 12
U 12
UI 12
XO 12

formats 8, 9, 10, 144
A-form 10
B-form 8
D-form 9
DS-form 9
I-form 8
M-form 10
MD-form 10
MDS-form 10
SC-form 8
X-form 9
XFL-form 10
XFX-form 9
XL-form 9
XO-form 10
XS-form 10

instruction cache instructions 132
instruction prefetch 157
Instruction Storage interrupt 195
instruction-caused interrupt 191
instructions

classes 12
dcbf 135
dcbi 181
dcbst 134
dcbt 133
dcbtst 133
dcbz 134
defined 12

forms 13
eciwx 268
ecowx 268
eieio 125, 135

Index 291

instructions (continued)
icbi 132
illegal 13
invalid forms 13
isync 132
Idarx 126
Iwarx 126
optional 13, 267
preferred forms 13
reserved 13
stdcx. 126
storage control 131, 181
stwcx. 126
sync 125

interrupt (def) 143
interrupt priorities 201
interrupt synchronization 191
interrupt vector 193
interrupts

Alignment 196
Data Storage 194
Decrementer 198
External 196
Floating-Point Assist 199
Floating-Point Unavailable 198
Instruction Storage 195
instruction-caused 191
Machine Check 194
new MSR 193
precise 191
Program 197
System Call 198
System Reset 194
system-caused 191
Trace 199

invalid instruction forms 13
invalid operation 92
IP 149
IR 149
isync 132

~
K bits 179

in IBAT 271
key, storage 179

[g
L field 11
language used for instruction operation description
LE 149
LI field 11
Little-Endian 233
LK field 11
load (def) 119

5

292 PowerPC Architecture First Edition

LR 18
LT 18

~
M-form 10
Machine Check interrupt 194
Machine State Register

Branch Trace Enable 148
Data Relocate 149
External Interrupt Enable 148
FP Available 148
FP Exception Mode 148
Instruction Relocate 149
Interrupt Little-Endian Mode 148
Interrupt Prefix 149
Uttle-Endian Mode 149
Machine Check Enable 148
Power Management Function Enable 148
Problem State 148
Recoverable Interrupt 149
Single-Step Trace Enable 148
Sixty-Four-bit mode 148

main storage 119
MB field 11
MD-form 10
MDS-form 10
ME 148
ME field 11
memory coherence 120, 155, 177
mismatched WIMG bits 178
mnemonics

extended 221
MSR 148

~
NB field 11
Next Instruction Address 150
NI 86
NIA 6
no-op 64
normalization 88
normalized number 87
not a number 88

@J
OE 86
OE field 11
optional instruction 13
OV 27
overflow 94
OX 84

o
page fault 156
page protection 179
page table 165, 171

search 166, 172
update 186

Page Table Entry 165, 171, 178
POW 148
PP bits 179
PR 148
precise interrupt 191
preferred instruction forms 13
prefetch

instruction 157
Program interrupt 197
program order (def) 119
PTE 165, 171
PVR 149

quadwords 4

~
RA field 11
RB field 11
RC bits 178
Rc field 11
real address 158, 159
reference and change recording 178
Reference bit 178, 181, 186,270
register transfer level language 5
registers

Address Space Register 161
Condition Register 17
Count Register 18
Data Address Register 151, 195,197
Data Storage Interrupt Status Register 151
Decrementer 204
External Access Register 267
Fixed-Point Exception Register 27
Floating-Point Registers 84
Floating-Point Status and Control Register 84
General Purpose Registers 27
implementation-specific 273
Link Register 18
Machine State Register 148
Machine Status Save

Restore Regi ster 0 147
Restore Register 1 147

optional 267
Processor Version Register 149
SDR1 165, 171
Segment Registers 269

registers (continued)
SPRGn 151
SPRs 151, 269, 273
SRRO 147
SRR1 147
status and control 269
Time Base 137, 203

reserved field 5, 144
reserved instructions 13
RI 149
RID (Resource 10) 267
RN 86
rounding 90
RS field 12
RT field 12
RTL 5,144

o
SC-form 8
SDR1 165, 171
SE 148
segment

direct-store 159, 173
ordinary 159

segment lookaside buffer 163
Segment Registers 269
segment table 162

search 162
update 186

Segment Table Entry 162
SF 148
SH field 12
SI field 12
sign 88
single-copy atomicity 120
single-precision 89
Single-Step Trace 199
SLB 163
SO 18,27
software

synchronization
requirements 270

speculative operations 157
split cache 123
split field notation 8
SPR field 12, 144
SPRGn 151
SPRs 151, 269
SR field 12, 144
SRRO 147
SRR1 147
STAB 162

search 162
status and control registers 269
STE 162
storage

access
synchronization 269

Index 293

storage (continued)
access atomicity 130
access order 125, 130
atomic operation 126
coherence 120
consistency 155
Guarded 157
instruction restart 130
order 125
ordering 125, 135, 155
reservation 127
segments 155
shared 125
weak ordering 155

storage access
definitions

load 119
program order 119
store 119

floating-point 99
storage access modes

defined 176
supported 177

storage address 14
storage control

instructions 181
storage con~,ol instructions 131
storage key 179
storage model 155
storage operations

speculative 157
storage protection 179
storage, Guarded 177
store (def) 119
Swift, Jonathan 233
symbols 221
sync 125
sync exceptions 186
synchronization 144, 186, 269

context 145
execution 145
interrupts 191
requirements 270

System Call interrupt 198
System Reset interrupt 194
system-caused interrupt 191

~
table update 186
TB 137,203
TBL 137,203
TBR field 12
TBU 137,203
Time Base 137, 203
TLB 166, 172
TO field 12

294 PowerPC Architecture First Edition

Trace interrupt 199
translation lookaside buffer 166, 172
trap interrupt (def) 143

@]
U field 12
UE 86
UI field 12
undefined

boundedly 12
underflow 94
UX 85

~
VE 85
virtual address 159,161,164,169,170
virtual storage 128
VX 84
VXCVI 85
VXIDI 85
.VXIMZ 85
VXISI 85
VXSNAN 85
VXSOFT 85
VXSQRT 85
VXVC 85
VXZOZ 85

[!]
WIMG bits 158, 173, 177
words 4
Write Through 155, 177
write through cache 124

X-form 9
XE 86
XER 27
XFL-form 10
XFX-form 9
XL-form 9
XO field 12
XO-form 10
XS-form 10
XX 85

o
ZE 86.
zero 87

zero divide 94
ZX 85

Index 295

296 PowerPC Architecture First Edition

Last Page - End of Document

Last Page - End of Document 297

SR28-5124-00

II

Printed in U.S.A.

