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ABOUT THIS MANUAL

This manual provides a qualitative description of the functional operation of
the IDTR3041 integrated RISController.

A quantitative description of the processor electrical interface is provided in
the data sheet for this product. Also included in the data sheet is the
mechanical description of the part, including packaging and pin-out.

Additional information on development tools, complementary support chips,
and the use of these products in various applications, are provided in separate
data sheets and applications notes.

Any of this information is readily available from your local IDT sales
representative.



Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice,
in order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for
use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that
circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license
is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

LIFE SUPPORT POLICY

Integrated Device Technology's products are not authorized for use as critical components in life support

devices or systems unless a specific written agreement pertaining to such intended use is executed

between the manufacturer and an officer of IDT.

1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into
the body or (b) support or sustain life and whose failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can be reasonably expected to result in a significant
injury to the user.

2. A critical component is any components of a life support device or system whose failure to perform can
be reasonably expected to cause the failure of the life support device or system, or to affect its safety
or effectiveness.

The IDT logo is a registered trademark and RISController, R3041, R3051, R3081, and RISChipset are trademarks of Integrated Device Technology, Inc.
MIPS is a registered trademark of MIPS Computer Systems, Inc.

UNIX is a registered trademark of AT&T.

MC680x0 and iAPXx86 are registered trademarks of Motorola Corporation and Intel Corporation, respectively.
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INTRODUCTION

The IDTR3051 family is a series of high-performance 32-bit microprocessors
featuring a high-level of integration, and targeted to high-performance yet cost
sensitive embedded processing applications. The R3051 family is designed to
bring the high-performance inherent in the MIPS RISC architecture into low-
cost, simplified, power sensitive applications.

Thus, functional units have been integrated onto the CPU core in order to
reduce the total system cost, rather than to increase the inherent performance
of the integer engine. Nevertheless, the R3051 family is able to offer 35 MIPS
of integer performance at 40 MHz without requiring external SRAM or caches.

Further, the R3051 family brings dramatic power reduction to these
embedded applications, allowing the use of low-cost packaging. Thus, the
R3051 family allows customer applications to bring maximum performance at
minimum cost.

The R3041 extends the range of price/performance achievable with the
R3051 family, by dramatically lowering the cost of using the MIPS architecture.
The R3041 has been designed to achieve minimal system and components
cost, yet maintain the high-performance inherent in the MIPS architecture.
The R3041 also maintains pin and software compatibility with the R3051 and
R3081.

FEATURES
¢ Instruction set compatible with IDT 79R3000A and R3051 Family RISC
CPUs
¢ High level of integration minimizes system cost
—RISC CPU
— Multiply/divide unit
— Instruction Cache
— Data Cache
— Programmable bus interface
— Programmable port width support
14 MIPS at 20 MHz
On-chip 24-bit Timer
Low cost 84-pin PLCC packaging
On-chip instruction and data caches
— 2kB of Instruction Cache
—512B of Data Cache
» Flexible bus interface allows simple, low cost designs
— Superset Pin compatible with R3051
— Adds programmable port width interface
(8-, 16-, or 32-bit memory sub-regions)
— Adds programmable bus interface timing support
(Extended address hold, Bus turn around time, read /write masks)
Single, double-frequency clock input
16 and 20 MHz operation
On-chip 4-deep write buffer eliminates memory write stalls
On-chip 4-deep read buffer supports burst or simple block reads
On-chip DMA arbiter
Pin and Software Compatible family includes R3041, R3051, R3052, and
R3081

e o o o

e O o o o o
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FAMILY OVERVIEW

DEVICE OVERVIEW

The R3051 family offers a variety of price/performance features in a pin-
compatible, software compatible family. Table 1.1 provides an overview of the
current members of the R3051 family. Note that the R3051, R3052, and R3081
are also available in pin-compatible versions that include a full-function
memory management unit, including 64-entry TLB. The R3051/2 and R3081

Device | Instruction | Data Floating Bus
Name | Cache Cache Point Options
R3051 | 4kB 2kB Software Emulation Mux'ed A/D
R3052 | 8kB 2kB Software Emulation Mux'ed A/D
R3081 | 16kB 4kB On-chip Hardware 1/2 frequency bus option
or 8kB or 8kB
R3041 | 2kB 512B Software Emulation 8-, 16-, and 32-bit port widths support

Programmable timing support

Table 1.1. Pin compatible R3051 Family

are described in separate manuals and data sheets.

Figure 1.1 shows a block level representation of the functional units within
the R3041. The R3041 could be viewed as the embodiment of a discrete
solution built around the R3000A. However, by integrating this functionality
on a single chip, dramatic cost and power reductions are achieved.

An overview of these blocks is presented here, with detailed information on
each block found in subsequent chapters.

CPU Core

The CPU core is a full 32-bit RISC integer execution engine, capable of
sustaining close to single cycle execution rate. The CPU core contains a five
stage pipeline, and 32 orthogonal 32-bitregisters. The R3051 familyimplements
the MIPS-1 ISA. In fact, the execution engine of the R3041 is the same as the
execution engine of the R3000A. Thus, the R3041 is binary compatible with
those CPU engines, as well as compatible with other members of the R3051
family.

System Control Co-Processor

The R3041 also integrates on-chip a System Control Co-processor, CPO.
CPO manages the exception handling capability of the R3041, the virtual to
physical address mapping of the R3041, and the programmable bus interface
capabilities of the R3041. These topics are discussed in subsequent chapters.

The R304 1 does not include the optional TLB found in other members of the
R3051 family, but instead performs the same virtual to physical address
mapping of the base versions of the R3051 family. These devices still support
distinct kernel and user mode operation, but do not require page management
software or an on-chip TLB, leading to a simpler software model and a lower-
cost processor.

Clock Generator Unit

The R3041 is driven from a single, double frequency input clock. On-chip,
the clock generator unit is responsible for managing the interaction of the CPU
core, caches, and bus interface. The clock generator unitreplaces the external
delay line required in R3000A based applications.
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Int(5:0)

Clock
Generator
Unit

BrCond(3:2)

Master Pipeline Control

Instruction Cache

The R3041 integrates 2kB of on-chip Instruction Cache, organized with a
line size of 16 bytes (four 32-bit entries). This relatively large cache substantially
contributes to the performance inherent in the R3041, and allows systems
based on the R3041 to achieve high-performance even from low-cost memory
systems. The cache is implemented as a direct mapped cache, and is capable
of caching instructions from anywhere within the 4GB physical address space.
The cache is implemented using physical addresses and physical tags (rather
than virtual addresses or tags), and thus does not require flushing on context

switch.

System Control Integer
Coprocessor CPU Core
A A 4 A 4
Exception/Control General Registers
Registers (32x 32
Bus Interface ALU
Registers Shifter
PortSize Mul/Div Unit
Register
Address Adder
Counter
Registers PC Control
4 4
Virtual Address
32 \
y
Physical Address Bus
Instruction Data 32 A
Cache Cache
2kB 512B
4
1 Data Bus \
4
R3051 Superset
| Bus Interface Unit |
4-deep | 4-deep
» Wite | Read | OMA | BV
Buffer Buffer

!

Address/

Data

e

Vo

l

DMA  RdWr SysClk

Ctrl Ctrl

Figure 1.1. Block Diagram
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Data Cache

The R3041 incorporates an on-chip data cache of 512B, organized as a line
size of 4 bytes (one word). This relatively large data cache contributes
substantially to the performance inherent in the R3051 family. As with the
instruction cache, the data cache is implemented as a direct mapped physical
address cache. The cache is capable of mapping any word within the 4GB
physical address space.

The data cache isimplemented as a write through cache, to insure that main
memory is always consistent with the internal cache. In order to minimize
processor stalls due to data write operations, the bus interface unit incorporates
a 4-deep write buffer which captures address and data at the processor
execution rate, allowing it to be retired to main memory at a much slower rate
without impacting system performance.

Bus Interface Unit

The R3051 family uses its large internal caches to provide the majority of the
bandwidth requirements of the execution engine, and thus can utilize a simple
bus interface connected to slow memory devices.

The R3051 family bus interface utilizes a 32-bit address and data bus
multiplexed onto a single set of pins. The bus interface unit also provides an
ALE (Address Latch Enable) output signal to de-multiplex the A/D bus, and
simple handshake signals to process CPU read and write requests. In addition
to the read and write interface, the R304 1 incorporates a DMA arbiter, to allow
an external master to control the external bus.

The R304 1 augments the basic R3051 bus interface capability by adding the
ability to directly interface with varying memory port widths, for instructions
or data. Thus, the R3041 can be used in a system with an 8-bit boot PROM,
16-bit font cartridges, and 32-bit page buffer, transparently to software, and
without requiring external data packing, rotation, or unpacking.

In addition, the R3041 incorporates the ability to change some of the
interface timing of the bus. These features can be used to eliminate external
data buffers, and take advantage of lower speed (lower cost) interface
components.

The R3041 incorporates a 4-deep write buffer to decouple the speed of the
execution engine from the speed of the memory system. The write buffers
capture and FIFO processor address and data information in store operations,
and present it to the bus interface as write transactions at the rate the memory
system can accommodate. During main memory writes, the R304 1 can break
alarge datum (e.g. 32-bit word) into a series of smaller transactions (e.g. bytes),
according to the width of the memory port being written. This operation is
transparent to the software which initiated the store, insuring that the same
software can run in true 32-bit memory systems.

The R3051 family read interface performs both single word reads and quad
word reads. Single word reads work with a simple handshake, and quad word
reads can either utilize the simple handshake (in lower performance, simple
systems) or utilize a tighter timing mode when the memory system can burst
data at the processor clock rate. Thus, the system designer can choose to
utilize page, static or nibble mode DRAMs (and possibly use interleaving, if
desired, in high-performance systems), or use simpler techniques to reduce
complexity.

In order to accommodate slower quad word reads, the R3051 family
incorporates a 4-deep read buffer FIFO, so that the external interface can
queue up data within the processor before releasing it to perform a burst fill of
the internal caches.
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In addition, the R3041 can perform on-chip data packing when performing
large datum reads (e.g. quad words) from narrower memory systems (e.g. 16-
bits). Once again, this operation is transparent to the actual software,
simplifying migration of software to higher performance (true 32-bit) systems,
and simplifying field upgrades to wider memory. Since this capability works
for either instruction or data reads, using 8-, 16-, or 32-bit boot PROMsis easily
supported by the R3041.

SYSTEM USAGE

The IDTR3051 family has been specifically designed to easily connect to low-
cost memory systems. Typical low-cost memory systems utilize slow EPROMs,
DRAMs, and application specific peripherals. Embedded systems may also
optionally contain static RAMSs.

Figure 1.2 shows some of the flexibility inherent in the R3041. In this
example system, which is typical of a laser printer, a 32-bit PROM interface is
used due to the size of the PDL interpreter. Other embedded systems could
optionally use an 8-bit or a 16-bit PROM interface. A 16-bit font cartridge
interface is provided for add in cards and a 16-bit page buffer is used for low
cost. In this example, a field or manufacturing upgrade to a 32-bit page buffer
is supported by the boot software and DRAM controller. Such a system
features a very low entry price, with a range of field upgrade options including
the ability to upgrade to a more powerful member of the R3051 family.

——=1 Clkin

IDT R3041
RISController

Address/ Control
Data

e
ocal bus
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Controller

EPROM and
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Figure 1.2. Typical R3041 System




CHAPTER 1

FAMILY OVERVIEW

DEVELOPMENT SUPPORT

The IDT R3051 family is supported by a rich set of development tools,
ranging from system simulation tools through PROM monitor and debug
support, applications software and utility libraries, logic analysis tools, and
sub-system modules.

Figure 1.3 is an overview of the system development process typically used
when developing R3041 applications. The R3051 family is supported in all
phases of project development. These tools allow timely, parallel development
of hardware and software for R3051 family based applications, and include
tools such as:

» Aprogram, Cache-3041, which allows the performance ofan R304 1 based
system to be modeled and understood without requiring actual hardware.
Sable, an instruction set simulator.

Optimizing compilers from MIPS Technology, the acknowledged leader in
optimizing compiler technology.

Cross development tools, available in a variety of development
environments.

The high-performance IDT floating point library software.

The IDT Evaluation Board, which includes RAM, EPROM, 1/0, and the
IDT PROM Monitor.

The IDT Laser Printer System board, which directly drives a low-cost print
engine, and runs Microsoft TrueImage™ Page Description Language on
top of PeerlessPage™ Advanced Printer Controller BIOS.

Adobe PostScript™ Page Description Language running on the IDTR3051
family.

The IDT/sim PROM Monitor, which implements a full PROM monitor
(diagnostics, remote debug support, peek/poke, etc.).

IDT/kit (Kernel Integration Toolkit), providing library support and a frame
work for the system run time environment.

°

System System System
Architecture Development Integration
Evaluation Phase and Verfification

SABLE Simulator
DBG Debugger
PIXIE Profiler
MIPS Compiler Suite
Stand-Alone Libraries
Floating Point Library |
Cross Development Tools |
Adobe PostScript PDL
MicroSoft Truelmage PDL |:
PeerlessPage BIOS
IDT/kit

] Logic Analysis
Cache-3041 Diagnostics

Benchmarks i i
: DT/sim PROM Monito
Evaluation Board Remote Debug

Laser Printer System Real-Time OS

Cache-3041
Hardware Models
General CAD Tools
RISC Sub-systems
Evaluation Board
Laser Printer System

Figure 1.3. Development Support
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PERFORMANCE OVERVIEW

The R3051 family achieves a very high-level of performance. This performance

is based on:

¢ An efficient execution engine. The CPU performs ALU operations and
store operations in a single cycle, and has an effective load time of 1.3
cycles, and branch execution rate of 1.5 cycles (based on the ability of the
compilers to avoid software interlocks). Thus, the R3041 achieves over 16
MIPS performance when operating out of cache.

e Large on-chip caches. The R3051 family contains caches which are
substantially larger than those on the majority of embedded
microprocessors. These large caches minimize the number of bus
transactions required, and allow the R3051 family to achieve actual
sustained performance very close to its peak execution rate, even with low
cost memory systems.

¢ Autonomous multiply and divide operations. The R3051 family features
an on-chip integer multiplier/divide unit which is separate from the other
ALU. This allows the R3041 to perform multiply or divide operations in
parallel with other integer operations, using a single multiply or divide
instruction rather than with “step” operations.

¢ Integrated write buffer. The R3041 features a four deep write buffer,
which captures store target addresses and data at the processor execution
rate and retires it to main memory at the slower main memory accessrate.
Use of on-chip write buffers eliminates the need for the processor to stall
when performing store operations.

¢ Burst read support. The R3041 enables the system designer to utilize
page, static or nibble mode RAMs when performing read operations to
minimize the main memory read penalty and increase the effective cache
hit rates.

The performance differences among the various R3051 family members
depends on the application software and the design of the memory system.
Different family members feature different cache sizes, and the R3081 features
a hardware floating point accelerator. Since all these devices can be used in
a pin and software compatible fashion, the system designer has maximum
freedom in trading between performance and cost. The memory simulation
tools (e.g. Cache-3041) allows the system designer to analyze and understand
the performance differences among these devices in his application.




CHAPTER 1 FAMILY OVERVIEW




it

Integrated Device Technology, Inc.

4

INSTRUCTION SET CHAPTER 2
ARCHITECTURE

INTRODUCTION

The IDT R3051 family contains the same basic execution core as the IDT
MIPS R3000 and the IDT R3001. In addition to being able to run software
written for either of these processors, this enables the R3051 family to achieve
dramatic levels of performance, based on the efficiency of the execution engine.

This chapter gives an overview of the MIPS-1 architecture implemented in the
R3051 family, and discusses the programmers' model for this device. Further
detail is available in the book “mips RISC Architecture”, available from IDT.

The R3041 is software compatible with the base versions of the R3051
family. However, to reduce system cost, the TLB functions present in the "E"
versions are not available in the R3041; instead, the R304 1 features increased
control of the system interface, including the ability to control timing
relationships of the bus interface, and the ability to directly interface with
memory systems of varying widths.

PROCESSOR FEATURES OVERVIEW

The R3051 family has many of the same attributes of the IDTR3000/R3001,
at a higher level of integration geared to lower system cost. These features
include:

¢ Full 32-bit Operation. The R3051 family contains thirty-two 32-bit
registers, and all instructions and addresses are 32 bits.

¢ Efficient Pipelining. The CPU utilizes a 5-stage pipeline design to
achieve an execution rate approaching one instruction per cycle. Pipeline
stalls, hazards, and exceptional events are handled precisely and efficiently.

¢ Large On-Chip Instruction and Data Caches. The R3051 family utilizes
large on-chip caches to provide high-bandwidth to the execution engine.
The large size of the caches insures high hit rates, minimizing stalls due
to cache miss processing and dramatically contributing to overall
performance. Both the instruction and data cache can be accessed during
a single CPU cycle.

¢ On-chip Memory Management. The R3041 is compatible with the base
versions of the IDT R3051 family, which do not utilize a TLB, but perform
fixed segment-based mapping of the virtual space to physical addresses.
In addition, the R3041 allows kernel software to configure the "width" of
regions of the memory space, to allow direct interface to memory systems
of 8, 16, or 32-bits of data width.
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CPU REGISTERS OVERVIEW

The IDT R3051 family provides 32 general purpose 32-bit registers, an
internal 32-bit Program Counter, and two dedicated 32-bit registers which
hold the result of an integer multiply or divide operation. The CPU registers,
illustrated in Figure 2.1, are discussed later in this chapter.

Note that the MIPS-I architecture does not use a traditional Program Status
Word (PSW) register. The functions normally provided by such a register are
instead provided through the use of “Set” instructions and conditional branches.
By avoiding the use of traditional condition codes, the architecture can be more
finely pipelined. This, coupled with the fine granularity of the instruction set,
allows the compilers to achieve dramatically higher levels of optimizations than
for traditional architectures.

Overflow and exceptional conditions are then handled through the use of the
on-chip Status and Causeregisters, which reside on-chip as part of the System
Control Co-Processor (Co-Processor 0). These registers contain information
about the run-time state of the machine, and any exceptional conditions it has

encountered.
General Purpose Multiply/Divide Result

Registers Registers
31 0
0 3 0
r1
2 31 0
.
29 Program Counter
130 31 0
r31

4000 drw 01
Figure 2.1. CPU Registers

INSTRUCTION SET OVERVIEW

AllR3051 family instructions are 32-bits long, and there are only three basic
instruction formats. This approach dramatically simplifies instruction decoding,
permitting higher frequency operation. More complicated (but less frequently
used) operations and addressing modes are synthesized by the assembler,
using sequences of the basic instruction set. This approach enables object
code optimizations at a finer level of resolution than achievable in micro-coded
CPU architectures.

Figure 2.2 shows theinstruction set encoding used by the MIPS architecture.
This approach simplifies instruction decoding in the CPU.

The R3051 family instruction set can be divided into the following basic

groups:

e Load/Store instructions move data between memory and the general
registers. They are all encoded as “I-Type” instructions, and the only
addressing mode implemented is base register plus signed, immediate
offset. This directly enables the use of three distinct addressing modes:
register plus offset; register direct; and immediate.

e Computational instructions perform arithmetic, logical, and shift
operations on values in registers. They are encoded as either “R-Type”
instructions, when both source operands as well as the result are general
registers, and “I-Type”, when one of the source operands is a 16-bit
immediate value. Computational instructions use a three address
format, so that operations don’t needlessly interfere with the contents of
source registers.

¢ Jump and Branch instructions change the control flow of a program. A
Jump instruction can be encoded as a “J-Type” instruction, in which case
the Jump target addressis a paged absolute address formed by combining

2-2
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the 26-bit immediate value with four bits of the Program Counter. This
form is used for subroutine calls.

Alternately, Jumps can be encoded using the “R-Type” format, in which
case the target address is a 32-bit value contained in one of the general
registers. This form is typically used for returns and dispatches.

Branch operations are encoded as “I-Type” instructions. The target
address is formed from a 16-bit displacement relative to the Program
Counter.

The Jump and Link instructions save a return address in Register r31.
These are typically used as subroutine calls, where the subroutine return
address is stored into r31 during the call operation.

Co-Processor instructions perform operations on the co-processor set.
Co-Processor Loads and Stores are always encoded as “I-Type” instructions;
co-processor operational instructions have co-processor dependent
formats.

In the R3051 family, the System Control Co-Processor (CP0O) contains
registers which are used in memory management, system interface
control, cache control, and exception handling.

Additionally, the R3051 family implements BrCond inputs. Software can
use the Branch on Co-Processor Condition instructions to test the state
of these external inputs, and thus they may be used like general purpose
input ports.

Special instructions perform a variety of tasks, including movement of
data between special and general registers, system calls, and breakpoint
operations. They are always encoded as “R-Type” instructions.

I-Type (Immediate)
31 26 25 21 20 16 15 0
op rs rt immediate

J-Type (Jump)

31 26 25 0
op target
R-Type (Register)
31 26 25 21 20 16 15 11 10 6 5 0
op rs rt rd shamt | funct
where:
op is a 6-bit operation code
rs is a 5-bit source register specifier
rt is a 5-bit target register or branch condition
immediate | is a 16-bit immediate, or branch or address displacement
target is a 26-bit jump target address
rd is a 5-bit destination register specifier
shamt is a 5-bit shift amount
funct is a 6-bit function field
Figure 2.2. Instruction Encoding 4000 drw 02
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oP Description OP Description
Load/Store Instructions Multiply/Divide Instructions
LB Load Byte MULT Multiply
LBU Load Byte Unsigned MULTU Multiply Unsigned
LH Load Halfword DIV Divide
LHU Load Halfword Unsigned DIVU Divide Unsigned
Lw Load Word
LWL Load Word Left MFHI Move From HI
LWR Load Word Right MTHI Move To HI
SB Store Byte MFLO Move From LO
SH Store Halfword MTLO Move To LO
SW Store Word
SWL Store Word Left Jump and Branch Instructions
SWR Store Word Right J Jump
JAL Jump and Link
Arithmetic Instructions JR Jump to Register
(ALU Immediate) JALR Jump and Link Register
ADDI Add Immediate BEQ Branch on Equal
ADDIU | Add Immediate Unsigned BNE Branch on Not Equal
SLTI Set on Less Than Immediate BLEZ Branch on Less than or Equal
SLTIU Set on Less Than Immediate to Zero
Unsigned BGTZ Branch on Greater Than Zero
ANDI AND Immediate BLTZ Branch on Less Than Zero
ORI OR Immediate BGEZ Branch on Greater Than or
XORI Exclusive OR Immediate Equal to Zero
LUIL Load Upper Immediate BLTZAL Branch on Less Than Zero and
Link
BGEZAL | Branch on Greater Than or Equal
Arithmetic Instructions to Zero and Link
(3-operand, register-type)
ADD Add Special Instructions
ADDU Add Unsigned SYSCALL | System Call
SUB Subtract BREAK Break
SUBU Subtract Unsigned
SLT Set on Less Than Coprocessor Instructions
SLTU Set on Less Than Unsigned LWCz Load Word from Coprocessor
AND AND SWCz Store Word to Coprocessor
OR OR MTCz Move To Coprocessor
XOR Exclusive OR MFCz Move From Coprocessor
NOR NOR CTCz Move Control To Coprocessor
CFCz Move Control From Coprocessor
Shift Instructions COPz Coprocessor Operation
SLL Shift Left Logical BCzT Branch on Coprocessor z True
SRL Shift Right Logical BCzF Branch on Coprocessor z False
SRA Shift Right Arithmetic
SLLV Shift Left Logical Variable System Control Coprocessor
SRLV Shift Right Logical Variable (CPO) Instructions
SRAV Shift Right Arithmetic Variable MTCO Move To CPO
MFCO Move From CPO
TLBR! Read indexed TLB entry
TLBWI* Write indexed TLB entry
TLBWR! Write Random TLB entry
TLBP! Probe TLB for matching entry
RFE Restore From Exception

4000 tbl 01

fThese instructions are not valid with the R3041, which does not include the TLB.

Table 2.1 lists the instruction set mnemonics of the R3051 family. More

Table 2.1. Instruction Set Mnemonics

detail on these operations is presented later in this chapter. For further detail,
consult “mips RISC Architecture”, or one of the language programming guides,
available from IDT.

PROGRAMMING MODEL

This section describes the organization of data in the general registers and
in memory, and discusses the set of general registers available. A summary

description of all of the CPU registers is presented.
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Data Formats and Addressing

The MIPS-I architecture defines a word as 32-bits, a half-word as 16-bits,
and a byte as 8-bits. The byte ordering convention is configurable during
hardwarereset (Chapter 11) into either a big-endian or little-endian convention.

When configured as a big-endian system, byte O is always the most
significant (leftmost) byte in a word. This is the order used in MC680x0®
microprocessors, and systems from MIPS.

When configured as a little-endian system, byte O is always the least
significant (rightmost) byte in a word. This is compatible with the iAPX® x86
microprocessors and systems from Digital Equipment Corporation.

Figure 2.3 shows the ordering of bytes within words and the ordering of
words within multiple word structures for the big-endian and little-endian

conventions.
Big-Endian Byte Ordering

Higher Word
Address 31 2423 16 15 8 7 0 Address
8 9 A B 8
4 5 6 7 4
Lower 0 1 2 3 0
Address

+ Most significant byte is at lowest address

» Word is addressed by byte address of
most significant byte

Little-Endian Byte Ordering

Higher Word
Address 31 24 23 16 15 8 7 0 Address
B A 9 8 8
7 6 5 4 4
Lower 3 2 1 0 0
Address

« Least significant byte is at lowest address

» Word is addressed by byte address of
least significant byte

Figure 2.3. Byte Ordering Conventions “°%° 03

The R3051 family uses byte addressing for all accesses, including half-word
and word. The MIPS architecture has alignment constraints that require half-
word access to be aligned on an even byte boundary, and word access to be
aligned on a modulo-4 byte boundary. Thus, in big-endian systems, the
address of a multiple-byte data item is the address of the most-significant byte,
while in little-endian systems it is the address of the least-significant byte of
the structure.

For compatibility with older programs written for 8- or 16-bit machines, the
MIPS instruction set provides special instructions for addressing 32-bit words
which are not aligned on 4-byte boundaries. These instructions, which are
Load/Store Left/Right, are used in pairs to provide addressing of misaligned
words. This effectively means that these types of data movements require only
one-additional instruction cycle over that required for properly aligned words,
and provides a much more efficient way of dealing with this case than is
possible using sequences of loads/stores and shift operations. Figure 2.4
shows the bytes accessed when addressing a mis-aligned word with a byte
address of 3, for each of the two byte ordering conventions.

Higher
Address 31 24 23 16 15 8

Big
Endian

23 16 15 87 0

Little
Endian

Figure 2.4. Unaligned Words 4000 drw 04
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CPU General Registers

The R3051 family contains 32-generalregisters, each containing a single 32-
bit word. The 32 general registers are treated symmetrically (orthogonally),
with two notable exceptions: general register r0 is hardwired to a zero value,
and r31 is used as the link register in Jump and Link instructions

Register rO maintains the value zero under all conditions when used as a
source register, and discards data written to it. Thus, instructions which
attempt to write to it may be used as No-Op Instructions. The use of a register
wired to the zero value allows the simple synthesis of different addressing
modes, no-ops, register or memory clear operations, etc., without requiring
expansion of the basic instruction set.

Register r31 is used as the link register in jump and link instructions. These
instructions are used in subroutine calls, and the subroutine return address
is placed in register r31. This register can be written to or read as a normal
register in other operations.

In addition to the general registers, the CPU contains two registers (HI and
LO) which store the double-word, 64-bit result of integer multiply operations,
and the quotient and remainder of integer divide operations.

CPO Special Registers

In addition to the general CPU registers, the R3051 family contains anumber
of special registers on-chip. These registers logically reside in the on-chip
System Control Co-processor CP0O, and are used in memory management and
exception handling.

Table 2.2 shows the logical CP0 address of each of the registers. The format
of each of these registers, and their use, is discussed in Chapter 4 (Memory
Management), and Chapter 5 (System Control), and Chapter 6 (Exception
Handling). Note that the MIPS architecture allows CPO to vary by implementation;
the R3041 contains some new CPO registers not found in other R3051 family
members; however, their definition is such that it still remains possible to use
a single binary program across all family members.

Number | Mnemonic Description
0 Reserved®
1 Reserved®
2 BusCtrl® Bus Timing and Interface Control
3 Config® Cache Usage Configuration
4 Reserved®

5-7 Reserved
8 BadVAddr | Bad Virtual Address
9 Count® Timer Counter Register
10 PortSize? | Memory Sub-Region Port Width Control
11 Compare? | Timer Compare Register

12 SR Status Register
13 Cause Cause of Last Exception
14 EPC Exception Program Counter
15 PRId Processor Revision Identifier
16-31 Reserved
4000 tbl 02
Notes:
1: This register is used in Extended Architecture CPUs to control the TLB and virtual memory
system.

2: This register is reserved in other family members.
3: This register has a different meaning in other family members.

Table 2.2. R3041 CPO Registers
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Operating Modes

The R3051 family supports two different operating modes: User and Kernel
modes. The R3051/52 normally operates in User mode until an exception is
detected, forcing it into kernel mode. It remains in Kernel mode until a Return
From Exception (RFE) instruction is executed, returning it to its previous
operation mode.

The processor supports these levels of protection by segmenting the 4GB
virtual address space into 4 distinct segments. One segment is accessible from
either the User state or the Kernel mode, and the other three segments are only
accessible from kernel mode.

In addition to providing memory address protection, the kernel can protect
the co-processors (in the case of the R3041, CPO) from access or modification
by the user task.

Finally, the R3051 family supports the execution of user programs with the
opposite byte ordering (Reverse Endianness) of the kernel, facilitating the
exchange of programs and data between dissimilar machines.

Chapter 4 discusses the memory management facilities of the processor.

Pipeline Architecture

The IDT R3051 family uses the same basic pipeline structure as that
implemented in the R3000A. Thus, the execution of a single instruction is
performed in five distinct steps.

¢ Instruction Fetch (IF). In this stage, the instruction virtual address is
translated to a physical address and the instruction is read from the
internal Instruction Cache.

¢ Read (RD). During this stage, the instruction is decoded and required
operands are read from the on-chip register file.

e ALU. The required operation is performed on the instruction operands.

¢ Memory Access (MEM). If the instruction was a load or store, the Data
Cacheis accessed. Note that thereis a skew between the instruction cycle
which fetches the instruction and the one in which the required data
transfer occurs. This skew is a result of the intervening pipestages.

e Write Back (WB). During the write back pipestage, the results of the ALU
stage operation are updated into the on-chip register file.

Each of these pipestages requires approximately one CPU cycle, as shown
in Figure 2.5. Parts of some operations lap into the next cycle, while other
operations require only 1/2 cycle.

IF RD ALU MEM WwB
I-Cache | ID OP D-Cache | WB
PAddr| PAddr
;V_J
One Cycle

4000 drw 05
Figure 2.5. 5-Stage Pipeline
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The net effect of the pipeline structure is that a new instruction can be
initiated every clock cycle. Thus, the execution of five instructions at a time is
overlapped, as shown in Figure 2.6.

#1 | IF | RD | ALU [MEM

2| IF | RD [ ALU |MEM| WB |

#3| IF | RD | ALU [MEM| WB |

ALU [MEM| WB |

RD | ALU [MEM]| WB |

Current
CPU
Cycle

4000 drw 06
Figure 2.6. 5-Instructions per Clock Cycle

The pipeline operates efficiently, because different CPU resources such as
address and data bus access, ALU operations, and the register file, are utilized
on a non-interfering basis.

Pipeline Hazards

In a pipelined machine such as the R3041, there are certain instructions
which, based on the pipeline structure, can potentially disrupt the smooth
operation of the pipeline. The basic problem is that the current pipestage of
an instruction may require the result of a previous instruction, still in the
pipeline, whose result is not yet available. This class of problems is referred
to as pipeline hazards.

An example of a potential pipeline hazard occurs when a computational
instruction n+1) requires the result of the immediately prior instruction
(instruction n). Instruction n+1 wants to access the register file during the RF
pipestage. However, instruction n has not yet completed its register writeback
operation, and thus the current value is not available directly from the register
file. In this case, special logic within the execution engine forwards the result
of instruction n’s ALU operation to instruction n+1, prior to the true writeback
operation. The pipeline is undisturbed, and no pipeline stalls need to occur.

Another example of a pipeline hazard handled in hardware is the integer
multiply and divide operations. If an instruction attempts to access the HI or
LO registers prior to the completion of the multiply or divide, that instruction
will be interlocked (held off) until the multiply or divide operation completes.
Thus, the programmer is isolated from the actual execution time of this
operation. The optimizing compilers attempt to schedule as many instructions
as possible between the start of the multiply/divide and the access of itsresult,
to minimize stalls.

However, not all pipeline hazards are handled in hardware. There are two
categories of instructions which require software intervention to insure logical
operation. The optimizing compilers (and peephole scheduler of the assembler)
are capable of insuring proper execution. These two instruction classes are:

¢ Load instructions have a delay, or latency, of one cycle before the data
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loaded from memory is available another instruction. This is because the
ALU stage of the immediately subsequent instruction is processed
simultaneously with the Data Cache access of the load operation. Figure
2.7 illustrates the cause of this delay slot.

e Jump and Branch instructions have a delay of one cycle before the

IF ' RD ALU MEM WB
#1 | |cache | ID oP D-Cache | WB
(Load)
1#2 l-Cache | ID oP
(Delay Slot)
Data
{ Available
1#3 |-Cache ID OP
|
One Cycle

4000 drw 07
Figure 2.7. Load Delay

program flow change can occur. This is due to the fact that the next
instruction is fetched prior to the decode and ALU stage of the jump/
branch operation. Figure 2.8 illustrates the cause of this delay slot.

The R3041 continues execution, despite the delay in the operation. Thus,

IF | RD ALU MEM WB
1#1 |-Cache ID OP D-Cache | WB
(Branch) |-Address
I
l#2 l-Cache | ID oP
(Delay Slot) | l
1#3
Address |-Cache ID OP
Avalilable |
One Cycle

4000 drw 08
Figure 2.8. Branch Delay

loads, jumps and branches do not disrupt the pipeline flow of instructions, and
the processor always executes the instruction immediately following one of
these “delayed” instructions.

Note that there may also be latencies associated with changes to various of
the CPOregisters; for example, changing the bus interface control register may
require multiple cycles before the change is actually reflected in the chip
interface.

Rather than include extensive pipeline control logic, the MIPS-I instruction
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set gives responsibility for dealing with “delay slots” to software. Thus,
peephole optimizations (which can be performed as part of compilation or
assembly) can re-order the code to insure that the instruction in the delay slot
does not require the logical result of the “delayed” instruction. In the worst
case, a NOP can be inserted to guarantee proper software execution.

Chapter 6 discusses the impact of pipelining on exception handling. In
general, when an instruction causes an exception, it is desirable for all
instructions initiated prior to that instruction to complete, and all subsequent
instructions to abort. This insures that the machine state presented to the
exception handlerreflects thelogical state that existed at the time the exception
was detected. In addition, itis desirable to avoid requiring software to explicitly
manage the pipeline when handling or returning from exceptions. The IDT
R3041 pipeline is designed to properly manage exceptional events.
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INSTRUCTION SET SUMMARY

This section provides an overview of the R3051 family instruction set by
presenting each category of instructions in a tabular summary form. Refer to
the “mips RISC Architecture” reference for a detailed description of each
instruction.

Instruction Formats

Every instruction consists of a single word (32 bits) aligned on a word
boundary. There are only three instruction formats as shown in Figure 2.2.
This approach simplifies instruction decoding. More complicated (less frequently
used) operations and addressing modes are synthesized by the compilers.

Instruction Notational Conventions

In this manual, all variable sub-fields in an instruction format (such as rs,
rt, immediate, and so on) are shown in lower-case names.

For the sake of clarity, an alias is sometimes used for a variable sub-field in
the formats of specific instructions. For example, “base” rather than “rs” is
used in the format for Load and Store instructions. Such an alias is always
lower case, since it refers to a variable sub-field.

Instruction opcodes are shown in all upper case.

The actual bit encoding for all the mnemonics is specified at the end of this
chapter.




CHAPTER 2

INSTRUCTION SET ARCHITECTURE

Load and Store Instructions

Load/Store instructions move data between memory and general registers.
They are all I-type instructions. The only addressing mode directly supported
isbaseregister plus 16-bit signed immediate offset. This can be used to directly
implement immediate addressing (using the rO register) or register direct
(using an immediate offset value of zero).

Allload operations have a latency of one instruction. That is, the data being
loaded from memory into a register is not available to the instruction that
immediately follows the load instruction: the data is available to the second
instruction after the load instruction. An exception to this rule is that for the
target register for the “load word left” and “load word right” instructions may
be specified as the same register used as the destination of a load instruction
that immediately precedes it.

The Load/Store instruction opcode determines the size of the data item to
be loaded or stored as shown in Table 2.1. Regardless of access type or byte-
numbering order (endian-ness), the address specifies the byte which has the
smallest byte address of all bytes in the addressed field. For a big-endian
access, this is the most significant byte; for a little-endian access, this is the
least significant byte. Note that inan R3051/52 based system, the endianness
of a given access is dynamic, in that the RE (Reverse Endianness) bit of the
Status Register can be used to force user space accesses of the opposite byte
convention of the kernel.

Big-Endian (32-bit memory system)

CPU Core | CPU Core BE(3) BE(2) BE(1) BE(0)
Size VAdrLo(1) | VAdrLo(0) | Data(31:24) | Data(23:16) Data(15:8) | Data(7:0)
Word (0] 0] Yes Yes Yes Yes
Tri-Byte 0] 0 Yes Yes Yes No
Tri-Byte o 1 No Yes Yes Yes
16-Bit 0 0 Yes Yes No No
16-Bit 1 0 No No Yes Yes
Byte 0 0 Yes No No No
Byte 0 1 No Yes No No
Byte 1 0 No No Yes No
Byte 1 1 No No No Yes
Little-Endian (32-bit memory system)
BE(3) BE(2) BE(1) BE(0)
Size AdrLo(1) | AdrLo(0) | Data(31:24) | Data(23:16) | Data(15:8) | Data(7:0)

Word o 0 Yes Yes Yes Yes
Tri-Byte 0 0 No Yes Yes Yes
Tri-Byte (0] 1 Yes Yes Yes No
16-Bit 0 0 No No Yes Yes
16-Bit 1 0 Yes Yes No No
Byte 0 0 No No No Yes
Byte 0 1 No No Yes No
Byte 1 0 No Yes No No
Byte 1 1 Yes No No No

Table 2.3 (a). Byte Addressing in Load/Store Operations (32-bit memory)
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Big-Endian (16-bit memory system)

First Transfer Second Transfer
CPU Core | CPU Core BE16(1) BE16(0) BE16(1) BE16(0)
Size VAdrLo(1) | VAdrLo(0) | Data(31:24) Data(23:16) || Data(31:24) Data(23:16])
Word (0] 0 Yes Yes Yes Yes
Tri-Byte 0 0o Yes Yes Yes No
Tri-Byte (0] 1 No Yes Yes Yes
16-Bit 0 0 Yes Yes N/A N/A
16-Bit 1 0] Yes Yes N/A N/A
Byte 0 0 Yes No N/A N/A
Byte 0 1 No Yes N/A N/A
Byte 1 0 Yes No N/A N/A
Byte 1 1 No Yes N/A N/A
Little-Endian (16-bit memory system)
First Transfer Second Transfer
CPU Core | CPU Core BE16(1) BE16(0) BE16(1) BE16(0)
Size VAdrLo(1) | VAdrLo(0)| Data(15:8) Data(7:0) Data(15:8) Data(7:0)
Word 0 0 Yes Yes Yes Yes
Tri-Byte 0 0 Yes Yes No Yes
Tri-Byte o 1 Yes No Yes Yes
16-Bit 0 0 Yes Yes N/A N/A
16-Bit 1 0 Yes Yes N/A N/A
Byte 0 0 No Yes N/A N/A
Byte 0 1 Yes No N/A N/A
Byte 1 0 No Yes N/A N/A
Byte 1 1 Yes No N/A N/A

Table 2.3 (b). Byte Addressing in Load/Store Operations (16-bit memory)

Note that the size of the operand requested by the load instruction is
independent of the memory width of the addressed memory. Thus, if the actual
size of the datum is 32-bits, software can safely use a load or store word
instruction, even if the addressed memory is actually only 8- or 16-bits wide.
The bus interface unit will interact with CPO to determine the width of the
addressed memory, and will, if necessary, perform multiple datum transfers to
satisfy a single load or store instruction.

The bytes within the addressed word that are used can be determined
directly from the access size and the two low-order bits of the address, as shown
in Table 2.3 (a, b). Note that certain combinations of access type and low-order
address bits can never occur: only the combinations shown in Table 2.3(a, b)
are permissible. The R3051 family indicates which bytes are being accessed
by the byte-enable (BE) bus; the R3041 adds the BE16 bus to simplify the
interface to 16-bit wide memory subsystems.

Table 2.4 shows the load/store instructions supported by the MIPS ISA.
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Instruction

Format and Description

Load Byte

LB rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to
form address.

Sign-extend contents of addressed byte and load into rt.

Load Byte Unsigned

LBU rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to
form address.

Zero-extend contents of addressed byte and load into rt.

Load Halfword

LH rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to
form address.

Sign-extend contents of addressed byte and load into rt.

Load Halfword Unsigned

LHU rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to
form address.

Zero-extend contents of addressed byte and load into rt.

Load Word

LW rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to
form address.

Load contents of addressed word into register rt.

Load Word Left

LWL rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to
form address.

Shift addressed word left so that addressed byte is leftmost byte
of a word.

Merge bytes from memory with contents of register rt and load
result into register rt.

Load Word Right

LWR rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to
form address.

Shift addressed word right so that addressed byte is rightmost
byte of a word.

Merge bytes from memory with contents of register rt and load
result into register rt.

Store Byte

SB rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to
form address.

Store least significant byte of register rt at addressed location.

Store Halfword

SH rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to
form address.

Store least significant halfword of register rtat addressed location.

Store Word

SW rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to
form address.

Store least significant word of register rt at addressed location.

Store Word Left

SWL rt, offset (base)

Sign-extend 16-bit offsetand add to contents of register base to
form address.

Shift contents of register rtrightso that leftmost byte of the word
isin position of addressed byte. Store bytes containing original
data into corresponding bytes at addressed byte.

Store Word Right

SWR rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to
form address.

Shift contents of register rtleft so that rightmost byte of the word
is in position of addressed byte. Store bytes containing original
data into corresponding bytes at addressed byte.

4000 tbl 04

Table 2.4. Load and Store Instructions
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Computational Instructions
Computationalinstructions perform arithmetic, logical and shift operations
onvalues in registers. They occur in both R-type (both operands are registers)

and I-type (one operand is a 16-bit immediate) formats.

There are four

categories of computational instructions:

¢ ALU Immediate instructions are summarized in Table 2.5a.

¢ 3-Operand Register-Type instructions are summarized in Table 2.5b.

¢ Shift instructions are summarized in Table 2.5c.

¢ Multiply/Divide instructions are summarized in Table 2.5d.

Instruction

Format and Description

ADD Immediate

ADDI rt, rs, immediate
Add 16-bit sign-extended immediateto register rs and place 32-
bit result in register rt. Trap on two’s complement overflow.

ADD Immediate

ADDIU rt, rs, immediate

Unsigned Add 16-bit sign-extended immediateto register rs and place 32-
bit result in register rt . Do not trap on overflow.

Set on Less Than SLTI rt, rs, immediate

Immediate Compare 16-bit sign-extended immediate with register rs as

signed 32-bit integers. Result = 1 if rs is less than immediate;
otherwise result = 0.
Place result in register rt.

Set on Less Than
Unsigned Immediate

SLTIU rt, rs, immediate

Compare 16-bit sign-extended immediate with register rs as
unsigned 32-bit integers. Result =1 if rsis less than immediate;
otherwise result = 0. Place result in register rt. Do not trap on
overflow.

AND Immediate

ANDI rt, rs, inmediate
Zero-extend 16-bit immediate, AND with contents of register rs
and place result in register rt.

OR Immediate

ORI rt, rs, inmediate
Zero-extend 16-bit immediate, OR with contents of register rs
and place result in register rt.

Exclusive OR Immediate

XORI rt, rs, immediate
Zero-extend 16-bit immediate, exclusive OR with contents of
register rs and place result in register rt.

Load Upper Immediate

LUI rt, immediate
Shift 16-bit immediate left 16 bits. Set least significant 16 bits
of word to zeroes. Store result in register rt.

4000 tbl 05

Table 2.5a. ALU Immediate Operations




Subtract contents of registers rt and rs and place 32-bit result
in register rd. Trap on two’s complement overflow.

Subtract Unsigned

SUBU rd, rs, rt
Subtract contents of registers rt and rs and place 32-bit result
in register rd. Do not trap on overflow.

Set on Less Than

SLT rd, rs, rt

Compare contents of register rt to register rs (as signed 32-bit
integers).

If register rs is less than rt, result = 1; otherwise, result = 0.

Set on Less Than
Unsigned

SLTU rd, rs, rt

Compare contents of register rt to register rs (as unsigned 32-
bit integers). If register rs is less than rt, result = 1; otherwise,
result = 0.

AND rd, rs, rt
Bit-wise AND contents of registers rs and rt and place result in
register rd.

OR

OR rd, rs, rt
Bit-wise OR contents of registers rs and rt and place result in
register rd.

Exclusive OR

XOR rd, rs, rt
Bit-wise Exclusive OR contents of registers rs and rt and place
result in register rd.

NOR

NOR rd, rs, rt
Bit-wise NOR contents of registers rs and rtand place result in
register rd.

Table 2.5b.

4000 tbl 06

Three Operand Register-Type Operations

Instruction

Format and Description

Shift Left Logical

SLL rd, rt, shamt
Shift contents of register rtleft by shamtbits, inserting zeroes
into low order bits. Place 32-bit result in register rd.

Shift Right Logical

SRL rd, rt, shamt
Shift contents of register rtright by shamtbits, inserting zeroes
into high order bits. Place 32-bit result in register rd.

Shift Right Arithmetic

SRA rd, rt, shamt
Shift contents of register rt right by shamt bits, sign-extending
the high order bits. Place 32-bit result in register rd.

Shift Left Logical
Variable

SLLV rd, rt, rs

Shift contents of register rtleft. Low-order 5 bits of register rs
specify number of bits to shift. Insert zeroes into low order bits
of rt and place 32-bit result in register rd.

Shift Right Logical
Variable

SRLV rd, rt, rs

Shift contents of register rtright. Low-order 5 bits of register rs
specify number of bits to shift. Insert zeroes into high order bits
of rt and place 32-bit result in register rd.

Shift Right Arithmetic
Variable

SRAV rd, rt, rs

Shift contents of register rtright. Low-order 5 bits of register rs
specify number of bits to shift. Sign-extend the high order bits
of rt and place 32-bit result in register rd.

4000 tbl 07

Table 2.5c. Shift Operations
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Instruction Format and Description

Add ADD rd, rs, 1t
Add contents of registers rs and rt and place 32-bit result in
register rd. Trap on two’s complement overflow.

ADD Unsigned ADDU rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in
register rd. Do not trap on overflow.

Subtract SUB rd, rs, rt
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Instruction Format and Description

Multiply MULT rs, rt
Multiply contents of registers rs and rt as twos complement
values. Place 64-bit result in special registers HI/LO

Multiply Unsigned MULTU rs, rt
Multiply contents of registers rsand rtas unsigned values. Place
64-bit result in special registers HI/LO

Divide DIV rs, rt

Divide contents of register rs by rt treating operands as twos
complements values. Place 32-bit quotient in special register
LO, and 32-bit remainder in HI.

Divide Unsigned DIVU rs, rt

Divide contents of register rsby rt treating operands as unsigned
values. Place 32-bit quotient in special register LO, and 32-bit
remainder in HI.

Move From HI MFHI rd
Move contents of special register HI to register rd.
Move From LO MFLO rd
Move contents of special register LO to register rd.
Move To HI MTHI rd
Move contents of special register rd to special register HI.
Move To LO MTLO rd

Move contents of register rd to special register LO.

4000 tbl 08

Table 2.6d. Multiply and Divide Operations

Jump and Branch Instructions

Jump and Branch instructions change the control flow of a program. All
Jump and Branch instructions occur with a one instruction delay: that is, the
instruction immediately following the jump or branch is always executed while
the target instruction is being fetched, regardless of whether the branch is to
be taken.

An assembler has several possibilities for utilizing the branch delay slot
productively:

¢ It can insert an instruction that logically precedes the branch instruction
in the delay slot since the instruction immediately following the jump/
branch effectively belongs to the block preceding the transfer instruction.

¢ It canreplicate the instruction that is the target of the branch/jump into
the delay slot provided that no side-effects occur if the branch falls
through.

¢ It can move an instruction up from below the branch into the delay slot,
provided that no side-effects occur if the branch is taken.

¢ Ifno other instruction is available, it can insert a NOP instruction in the
delay slot.

TheJ-type instruction format is used for both jumps-and-links for subroutine
calls. In this format, the 26-bit target address is shifted left two bits, and
combined with high-order 4 bits of the current program counter to form a 32-
bit absolute address.

The R-type instruction format which takes a 32-bit byte address contained
in a register is used for returns, dispatches, and cross-page jumps.

Branches have 16-bit offsets relative to the program counter (I-type). Jump-
and-Link and Branch-and-Link instructions save a return address in register
r31.
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Table 2.6a summarizes the R3051 family Jump instructions and Table 2.6b
summarizes the Branch instructions.

Instruction

Format and Description

Jump

J target

Shift 26-bit target address left two bits, combine with high-
order 4 bits of PC and jump to address with a one instruction
delay.

Jump and Link

JAL target

Shift 26-bit target address left two bits, combine with high-
order 4 bits of PC and jump to address with a one instruction
delay. Place address of instruction following delay slot in r31
(link register).

Jump Register

JRrs
Jump to address contained in register rs with a one instruction
delay.

Jump and Link Register

JALR rs, rd
Jump to address contained in register rs with a one instruction
delay. Place address of instruction following delay slot in rd.

4000 tbl 09

Table 2.6a. Jump Instructions

Instruction Format and Description
Branch Target: All Branch instruction target addresses are
computed as follows: Add address of instruction in delay slot
and the 16-bit offset (shifted left two bits and sign-extended to
32 bits). All branches occur with a delay of one instruction.
Branch on Equal BEQ rs, rt, offset

Branch to target address if register rs equal to rt

Branch on Not Equal

BNE rs, rt, offset
Branch to target address if register rs not equal to rt.

Branch on Less than or
Equal Zero

BLEZ rs,offset
Branch to target address if register rs less than or equal to 0.

Branch on Greater Than
Zero

BGTZ rs,offset
Branch to target address if register rs greater than 0.

Branch on Less Than BLTZ rs,offset

Zero Branch to target address if register rs less than 0.

Branch on Greater than BGEZ rs,offset

or Equal Zero Branch to target address if register rs greater than or equal to

0.

Branch on Less Than
Zero And Link

BLTZAL rs, offset

Place address of instruction following delay slot in register r31
(link register). Branch to target address if register rsless than
0.

Branch on greater than
or Equal Zero And Link

BGEZAL rs, offset
Place address of instruction following delay slot in register r31
(link register). Branch to target address if register rs is greater
than or equal to 0.

4000 tbl 10

Table 2.6b. Branch Instructions
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Special Instructions
The two Special instructions let software initiate traps. They are always R-
type. Table 2.7 summarizes the Special instructions.

Instruction Format and Description
System Call SYSCALL
Initiates system call trap, immediately transferring control to
exception handler.
Breakpoint BREAK
Initiates breakpoint trap, immediately transferring control to
exception handler.

4000 tbl 11

Table 2.7. Special Instructions

Co-processor Instructions

Co-processor instructions perform operations in the co-processors. Co-
processor Loads and Stores are I-type. Co-processor computational instructions
have co-processor-dependent formats (see co-processor manuals). For the
R3051 family, the BCZT/F instructions are used to test the state of the BrCond
inputs. Outside of these operations, the only co-processor operations of
relevance for the R3041 are those targeted at the on-chip CPO.

Table 2.8 summarizes the Co-processor Instruction Set of the MIPS ISA.

Instruction

Format and Description

Load Word to
Co-processor

LWCz rt, offset (base)

Sign-extend 16-bit offsetand add to baseto form address. Load
contents of addressed word into co-processor register rt of co-
processor unit z.

Store Word from
Co-processor

SWCz rt, offset (base)

Sign-extend 16-bit offsetand add to baseto formaddress. Store
contents of co-processor register rt from co-processor unit z at
addressed memory word.

Move To Co-processor

MTCz rt, rd
Move contents of CPU register rtinto co-processor register rd of
co-processor unit z.

Move from Co-processor

MFCz rt,rd
Move contents of co-processor register rd from co-processor unit
z to CPU register rt.

Move Control To
Co-processor

CTCz rtrd
Move contents of CPU register rtinto co-processor control register
rd of co-processor unit z.

Move Control From
Co-processor

CFCz rtrd
Move contents of control register rd of co-processor unit z into
CPU register rt.

Co-processor Operation

COPz cofun
Co-processor z performs an operation. The state of the R3051/
52 is not modified by a co-processor operation.

Branch on Co-processor
z True

BCzT offset

Compute a branch target address by adding address of
instruction in the 16-bit offset (shifted left two bits and sign-
extended to 32-bits). Branch to the target address (with a delay
of one instruction) if co-processor z's condition line is true.

Branch on Co-processor
z False

BCzF offset

Compute a branch target address by adding address of
instruction in the 16-bit offset (shifted left two bits and sign-
extended to 32-bits). Branch to the target address (with a delay
of one instruction) if co-processor z's condition line is false.

4000 tbl 12

Table 2.8. Co-Processor Operations
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System Control Co-processor (CP0O) Instructions
Co-processor 0 instructions perform operations on the System Control Co-

processor (CPO) registers to manipulate the memory management, bus

programmability, timer, and exception handling facilities of the processor.

Memory management is discussed in Chapter 4; bus programmability and

timer features are described in Chapter 5; and exception handling is covered

in detail in Chapter 6.

Table 2.9 summarizes the instructions available to work with CPO.

Instruction

Format and Description

Move To CPO

MTCO rt, rd
Store contents of CPU register rtinto register rd of CPO. This
follows the convention of store operations.

Move From CPO MFCO rt, rd
Load CPU register rt with contents of CPO register rd.
Read Indexed TLB Entry TLBR!

Load EntryHiand EntryLo registers with TLB entry pointed at by
Index register.

Write Indexed TLB Entry

TLBWI*
Load TLB entry pointed at by Index register with contents of
EntryHi and EntryLo registers.

Write Random TLB Entry

TLBWR!
Load TLB entry pointed at by Random register with contents of
EntryHi and EntryLo registers.

Probe TLB for Matching
Entry

TLBP!

Load Index register with address of TLB entry whose contents
match EntryHiand EntryLo. If no TLB entry matches, set high-
order bit of Index register.

Restore From Exception

RFE
Restore previous interrupt mask and mode bits of statusregister
into current status bits. Restore old status bits into previous

status bits.

4000 tbl 13

tThese operations are undefined/reserved in the R3041, which does not include an on-chip TLB.

Table 2.9. System Control Co-Processor (CP0O) Operations

R3051 FAMILY OPCODE ENCODING
Table 2.10 shows the opcode encoding for the MIPS architecture.
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28..26 OPCODE
31..29 0 1 2 3 4 5 6 7
0 SPECIAL | BCOND J JAL BEQ BNE BLEZ | BGTZ
1 ADDI ADDIU SLTI | SLTIU ANDI ORI XORI LUIL
2 COPO COP1 COP2 | COP3 t t t t
3 i i i i i 1 T i
4 LB LH LWL Lw LBU LHU LWR t
5 SB SH SWL SW T t SWR T
6 Lwco LwC1 LWC2 | LWC3 t i t t
7 SWCO0 SWC1 SWC2 | SWC3 t t t t
2.0 SPECIAL
5..3 0 1 2 3 4 5 6 7
0] SLL T SRL SRA SLLV t SRLV | SRAV
1 JR JALR T 1 SYSCALL | BREAK 1 t
2 MFHI MTHI MFLO | MTLO t t t T
3 MULT MULTU DIV DIVU T T T t
4 ADD ADDU SUB | SUBU AND OR XOR NOR
5 t t SLT SLTU t t t i
6 i t t i t il i i
7 1 i i i i i i i
18..16 BCOND
20..19 0 1 2 3 4 5 6 7
0 BLTZ BGEZ
1
2 BLTZAL | BGEZAL
3
4
23..21 COPz
25..24 0 1 2 3 4 5 6 7
0 MF CF MT CT
1 BC t 1 i t i i i
2 Co-Processor Specific
3 Operations
18..16
20..19 0 1 2 3 4 5 6 7
0 BCzF BCzT
1
2
3
2..0 CPO
4.3 0 1 2 3 4 5 6 7
0 TLBR TLBWI TLBWR
1 TLBP
2 RFE
3

4000 tbl 14

Table 2.10. Opcode Encoding
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CACHE ARCHITECTURE CHAPTER 3

INTRODUCTION

The R3051 family achieves its high standard of performance by combining
a fast, efficient execution engine (that of the R3000A) with high-memory
bandwidth, supplied from its large internal instruction and data caches. These
caches insure that the majority of processor execution occurs at the rate of one
instruction per clock cycle, and serve to decouple the high-speed execution
engine from slower, external memory resources.

Portions of this chapter review the fundamentals of general cache operation,
and may be skipped by readers already familiar with these concepts. This
chapter also discusses the particular organization of the on-chip caches of the
R3041. However, as these caches are managed by the R3041 itself, the system
designer does not typically need to be explicitly aware of this structure.

FUNDAMENTALS OF CACHE OPERATION

High-performance microprocessor-based systems frequently borrow from
computer architecture principles long used in mini-computers and mainframes.
These principles include instruction execution pipelining (discussed in Chapter
2) and instruction and data caching.

A cache is a high-speed memory store which contains the instructions and
data most likely to be needed by the processor. That is, rather than implement
the entire memory system with zero wait-state memory devices, a small zero
wait-state memory is implemented. This memory, called a cache, then
contains the instructions/data most likely to be referenced by the processor.
If indeed the processor issues a reference to an item contained in the cache,
then a zero wait-state access is made; if the reference is not contained in the
cache, then the longer latency associated with the true processor memory is
incurred. The processor will achieve its maximum performance as long as its
references “hit” (are resident) in the cache.

Caches rely on the principles of locality of software. These principles state
that when a data/instruction element is used by a processor, it and its close
neighbors are likely to be used again soon. The cache is then constructed to
keep a copy of instructions and data referenced by the processor, so that
subsequent references occur with zero wait-states.

Since the cache is typically many orders of magnitude smaller than main
memory or virtual address space, each cache element must contain both the
data (or instruction) required by the processor, as well as information which
can be used to determine whether a cache “hit” occurs. This information, called
the cache “TAG”, is typically some or all of the address in main memory of the
dataitem contained in that cache element as well as a “Valid” flag for that cache
element. Thus, when the processor issues an address for a reference, the cache
controller compares the TAG with the processor address to determine whether
a hit occurs.

To minimize cost while maintaining high-performance, the R3051 family,
including the R3041, integrate a reasonable amount of cache internal to the
chip, eliminating the cost and complexity of external caches.

©1992 Integrated Device Technology, Inc.
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R3041 CACHE ORGANIZATION

There are a number of algorithms possible for managing a processor cache.
This section describes the cache organization of the R3041.

Basic Cache Operation

When the processor makes a reference, its 32-bit internal physical address
bus contains the address it desires. The processor address busis splitinto two
parts; the low-order address bits specify a location in the cache to access, and
the remaining high-order address bits contain the value expected from the
cache TAG. Thus, both the instruction/data element and the cache TAG are
fetched simultaneously from the cache memory. If the value read from the TAG
memories is the same as the high-order address bits, a cache hit occurs and
the processor is allowed to operate on the instruction/data element retrieved.
Otherwise, a cache miss is processed. This operation is illustrated in Figure
3.1.

\
( PID Virtual Address
. % >
Execution 3%
Core
Virtual — Physical Cache Cache
Address Translation Tag Data
Physical
Present?
” P'E\’,"{‘ﬁ‘?h? 32)/ Address
i alia? 7
Cache
TLB Miss +—I Index T ‘
Compare? , | Tag
Cache Hit < = 7
Valid
Data - 33/
. )

Figure 3.1. Cache Line Selection

To maximize performance, the R3041 implements a Harvard Architecture
caching strategy. That is, there are two separate caches: one contains
instructions (operations), and the other contains data (operands). By separating
the caches, higher overall bandwidth to the execution core is achieved, and
thus higher performance is realized.

Memory Address to Cache Location Mapping

The R3041 caches are direct-mapped. That is, each main memory address
can be mapped to (contained in) only one particular cache location. This is
different from set-associative mappings, where each main memory location
has multiple candidates for address mapping.

This organization, coupled with the relatively large cache sizes resident on
the R3041, achieve extremely high hit rates while maximizing speed and
minimizing complexity and power consumption.
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Cache Addressing

The address presented to the cache and cache controller is that of the
physical (main) memory element to be accessed. That is, the virtual address
to physical address translation is performed by the memory management unit
prior to the processor issuing its reference address.

Some microprocessors utilize virtual indexing in the cache, where the
processor virtual address is used to specify the cache element to be retrieved.
This type of cache structure complicates software and slows embedded
applications:

¢ When the processor performs a context switch, a virtually indexed cache

must be flushed. This is because two different tasks can use the same
virtual address but mean totally different physical addresses. This cache
flushing for a large cache dramatically slows context switch performance.
¢ Software must be aware of and specifically manage against “alias”
problems. An alias occurs when two different virtual addresses correspond
to the same physical address. If that occurs in a virtually indexed cache,
then the same data element may be present in two different cache
locations. If one virtual address is used to change the value of that
memory location, and a different address used to read it later, then the
second reference will not get the current value of that data item.

By providing for the virtual to physical address translation in the processor
pipeline, physical cache addressing is used with no inherent speed penalty.

Write Policy

The R3041 utilizes a write through cache. That is, whenever the processor
performs a write operation to memory, then both the cache (data and TAG
fields) and main memory are written. Ifthereference is uncacheable, then only
main memory is written.

To minimize the delays associated with updating main memory, the R3041
contains a 4 element write buffer. The write buffer captures the target address
and data value in a single processor clock cycle, and subsequently performs the
main memory write at its own, slower rate. The write buffer can FIFO up to 4
pending writes, as described in a later chapter.

Partial Word Writes

In the case of partial word writes, the R304 1 operates by performing a read-
modify-write sequence in the cache: the store target address is used to perform
a cache fetch; if the cache “hits”, then the partial word data is merged with the
cache and the cache is updated. If the cache read results in a hit, the memory
interface will see the full word write, rather than the partial word. This allows
the designer to observe the actual activity in the eon-chip caches.

If the cache lookup of a partial word write “misses” in the cache, then only
main memory is updated.

Instruction Cache Line Size

The “line size” of a cache refers to the number of cache elements mapped by
a single TAG element. In the R3041, the instruction cache line size is 16 bytes,
or four words.

This means that each cache line contains four adjacent words from main
memory. Inorder to accommodate this, an instruction cache missis processed
by performing a quad word (block) read from the main memory, as discussed
in a later chapter. This insures that a cache line contains four adjacent
memory locations. Note that since the instruction cache is typically never
written into directly by user software, the larger line size is permissible. If
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software does explicitly store into the instruction cache (perform store operations
with the caches “swapped”), the programmer must insure that either the
written lines are left invalidated, or that they contain four adjacent instructions.

Block refill uses the principle of locality of reference. Since instructions
typically execute sequentially, there is a high probability that the instruction
address immediately after the current instruction will be the next instruction.
Block refill then brings into the cache those instructions immediately near the
current instruction, resulting in a higher instruction cache hit rate.

Block refill also takes advantage of the difference between memory latency
and memory bandwidth. Memory latency refers to the amount of time required
to perform a processor request, while bandwidth refers to the rate at which
subsequent transfers can occur. Factors that affect memory latency include
address decoding, bus arbitration, and memory pre-charge requirements;
factors which maximize bandwidth include the use of page mode or nibble
mode accesses, memory interleaving, and burst memory devices.

The processing of a quad word read is discussed in a later chapter; however,
it is worth noting that the R304 1 can support either true burst accesses or can
utilize a simpler, slower memory protocol for quad word reads. Also note that
the variable bus sizing capability of the R3041 means that block reads can
occur from 8- or 16-bit memory systems. This includes the case of instruction
fetches; the bus interface unit will automatically translate the block read
protocol into a larger number of sub-word reads, depending on the memory
width programmed for the target memory location.

Finally, note that the R304 1 performs "streaming” during instruction cache
refill. Thatis, the processor will simultaneously refill the instruction cache and
execute the incoming instructions. Streaming contributes an average of 5% of
performance.

Data Cache Line Size

The data cache line size is different from that of the instruction cache, based
on differencesin their use. The data cache is organized as a line size of one word
(four bytes).

This is optimal for the write policy of the data cache: since an individual
cache word may be written by a software store instruction, the cache controller
cannot guarantee that four adjacent words in the cache are from adjacent
memory locations. Thus each word is individually tagged. The partial word
writes (less than 4 bytes) are handled as a read-modify-write sequence, as
described above.

Although the data cache line size is one word, the system may elect to
perform data cache updates using quad word reads (block refill. The
performance of the data cache update options can be simulated using
Cache-3041; some systems may achieve higher performance through the use
of data cache burst refill. No “streaming” occurs on data cache refills.

Summary

The on-chip caches of the R3051 family can be thought of as constructed
from discrete devices around the R3000A. Figure 3.2 shows the block diagram
of the cache interface for the R3041.
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Figure 3.2. R3041 Execution Core and Cache Interface

CACHE OPERATION
The operation of the on-chip caches is very straightforward, and is
automatically handled by the processor.
Basic Cache Fetch Operation
Aswith the R3000A /R3500, the R3051 family can access both the instruction
and data caches in a single clock cycle, resulting in high bandwidth to the
execution core. It does this by time multiplexing the cycle in the cache
interface:
¢ During the first phase, a data cache address is presented, and a previous
instruction cache read is completed.
¢ During the second phase, the data cache is read into the processor (or
written by the processor). Also, the instruction cache is addressed with
the next desired instruction.
¢ During the first phase of the next cycle, the instruction fetch begun in the
previous phase is completed and a new data transaction is initiated.
This operation is illustrated in Figure 3.3. As long as the processor hits in
the cache, and no internal stall conditions are encountered, it will continue to
execute run cycles. A run cycle is defined to be a clock cycle in which forward
progress in the processor pipeline occurs. Note that data in the cache is
organized into 32-bit words, regardless of the width associated with main-
memory from which the datum was taken. Thus, cache hits can retrieve a full
32-hits in a single cycle, minimizing the performance impact of the narrower
memory system.
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Figure 3.3. Phased Access of Instruction and Data Caches

Cache Miss Processing

In the case of a cache miss (due to either a failed tag comparison or because
the processor issued an uncacheable reference), the main memory interface
(discussed in a later chapter) is invoked. If, during a given clock cycle, both the
instruction and data cache miss, the data reference will be resolved before the
instruction cache miss is processed.

While the processor is waiting for a cache miss to be processed, it will enter
stall cycles until the bus interface unit indicates that it has obtained the
necessary data.

When the bus interface unit returns the data from main memory, it is
simultaneously brought to the execution unit and written into the on-chip
caches. This is performed in a processor fixup cycle.

During a fixup cycle, the processor re-issues the cache access that failed;
this occurs by having the processor re-address the instruction and data
caches, so that the data may be written into the caches. If the cache miss was
due to an uncacheable reference, the write is not performed, although a fixup
cycle does occur.

Instruction Streaming

A special feature of the R3051 family is utilized when performing block reads
for instruction cache misses. This process is called instruction streaming.
Instruction streaming is simultaneous instruction execution and cache refill.

As the block is brought in, the processor refills the instruction cache.
Execution of the instructions within the block begins when the instruction
corresponding to the cache miss is returned by the bus interface unit to the
execution core. Execution continues until the end of the block is reached (in
which case normal execution is resumed), or until some event forces the
processor core to discontinue execution of that stream. These events include:

¢ Taken branches

¢ Data cache miss

¢ Internal stalls (TLB miss, multiply/divide interlock)

¢ Exceptions

When one of these events occur, the processor re-enters simple cache refill
until the rest of the block has been written into the cache.
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CACHEABLE REFERENCES

Chapter 4 on memory management explains how the processor determines
whether a particular reference (either instruction or data) is to a memory
location that may reside in the cache. The fundamental mechanism is that
certain virtual addresses are considered to be “cacheable”. If the processor
attempts to make a reference to a cacheable address, then it will employ its
cache management protocol through that reference. Otherwise, the cache will
be bypassed, and the execution engine core will directly communicate with the
bus interface unit to process the reference.

Whether a given reference should be cacheable or not depends very much
on the application, and on the target of the reference. Generally, I/O devices
should be referenced as uncacheable data; for example, if software was polling
a status register, and that register was cached, then it would never see the
I/0 device update the status (note that the compiler suite supports the
“volatile” data type to insure that the I/O device status register data in this case
never gets allocated into an internal register).

There may be other instances where the uncacheable attribute is appropriate.
For example, software which directly manipulates or flushes the caches can
not be cached; similarly, boot software can not rely on the state of the caches,
and thus must operate uncached at least until the caches are initialized.

SOFTWARE DIRECTED CACHE OPERATIONS

In order to support certain system requirements, the R3051 family provides
mechanisms for software to explicitly manipulate the caches. These mechanisms
support diagnostics, cache and memory sizing, and cache flushing. In general,
these mechanisms are enabled/disabled through the use of the Status Register
in CPO.

The primary mechanisms for supporting these operations are cache swapping
and cacheisolation. Cache swapping forces the processor to use the data cache
as an instruction cache, and vice versa. It is useful for allowing the processor
to issue store instructions which cause the instruction cache to be written.
Cache isolation causes the current data cache to be “isolated” from main
memory; store operations do not cause main memory to be written, and all load
operations “hit” in the data cache.

These mechanisms are enabled through the use of the “IsC” (Isolate Cache)
and "SwC" (Swap Cache) bits of the statusregister, which resides in the on-chip
System Control Co-Processor (CP0). The 5 instructions which immediately
precede and succeed these operations must not be cacheable, so that the
actual swapping/isolation of the cache does not disrupt operation.

Cache Sizing

It is possible for software to determine the amount of cache resident on any
given R3051 family chip (note that the R3041, R3051, R3052, and R3081 each
feature differing amounts of cache on chip). Having software determine the size
of the cache at boot time, rather than building static values into the software,
allows for maximum flexibility in interchanging various members of the R3051
family, including future devices.

Cache sizing in an R3051 family CPU is performed much like traditional
memory sizing algorithms, but with the cache isolated. This avoids side-effects
in memory from the sizing algorithm, and allows the software to use the “Cache
Miss” bit of the status register in the sizing algorithm.
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To determine the size of the instruction cache, software should:

: Swap Caches (not needed for D-Cache sizing)
: Isolate Caches
: Write a value at location 8000_0000
: Write a value at location 8000_0200 (8000_0000 + 512B)
Read location 8000_0000.
Examine the CM (Cache_Miss) bit of the status register; if it indicates a
cache miss, then the cache is 512B; otherwise, the cache is 1kB or larger.
5: Write a value at location 8000_0400 (8000_0000 + 1kB)
Read location 8000_0000.
Examine the CM (Cache_Miss) bit of the status register; if it indicates a
cache miss, then the cache is 1kB; otherwise, the cache is 2kB or larger.
6. etc...

W N -~

Of course a more generalized algorithm could be developed to determine the
cache size; this may be desirable for compatibility with discrete R3000A/
R3500 systems or other R3051 family members. However, any algorithm will
probably include the Swap and Isolate of the Instruction Cache, and the use
of the Cache Miss bit. Sizing the data cache is done with a similar algorithm,
although the caches need not be swapped, and smaller cache sizes need to be
considered.

Note that this software should operate as uncached. Once this algorithm is
done, software should return the caches to their normal state by performing
either a complete cache flush or an invalidate of those cache lines modified by
the sizing algorithm.

Cache Flushing

Cache flushing refers to the act of invalidating (indicating a line does not
have valid contents) lines within either the instruction or data caches.
Flushing must be performed before the caches are first used asreal caches, and
might also be performed during main memory page swapping or at certain
context switches (note that the R3051 family implements physically addressed
caches, so that cache flushing at context switch time is not generally required).

The basic concept behind cache flushing is to have the “Valid” bit of each
cache line set to indicate invalid. This is done in the R3051 family by having
the cache isolated, and then writing a partial word quantity into the current
data cache. Under these conditions, the CPU will negate the “Valid” bit of the
target cache line.

Again, this software should operate as uncached. To flush the data cache:

1: Isolate Caches

2: Perform a byte write every 4 bytes, starting at location 0, until 128 such
writes have been performed (128 in the R3041, more for other R3051
family members).

3: Return the data cache to its normal state by clearing the IsC bit.
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To flush the instruction cache:

1: Swap Caches

2: Isolate Caches

3: Perform a byte write every 16 bytes (based on the instruction cache line
size of 16 bytes). This should be done until each line (128 lines in the
R3041, more for other R3051 family members) have been invalidated.
Note that treating the R3041 as if it had larger on-chip caches, and
flushing/invalidating more than 128 lines is acceptable though less
efficient.

4: Return the caches to their normal state (unswapped and not isolated).

To minimize the execution time of the cache flush, this software should
probably use an “unrolled” loop. That is, rather than have one iteration of the
loop invalidate only one cache line, each iteration should invalidate multiple
lines. This spreads the overhead of the loop flow control over more cache line
invalidates, thus reducing execution time.

Also, of course it is preferable to use the cache sizing algorithm described
earlier to determine the number of lines to be flushed.

Forcing Data into the Caches

Using these basic tools, it is possible to have software directly place values
into the caches. When combined with appropriate memory management
techniques, this could be used to “lock” values into the on-chip caches, by
insuring that software does not issue other cacheable address references
which may displace these locked values.

In order to force values into a cache, the cache should be Isolated. If software
is trying to write instructions into the instruction cache, then the caches
should also be swapped.

When forcing values into the instruction cache, software must take care with
regards to the line size of the instruction cache. Specifically, a single TAG and
Valid field describe four words in the instruction cache; software must then
insure that any instruction cache line tagged as Valid actually contains valid
data from all four words of the block.

SUMMARY

The on-chip caches of the R3051 family are key to the inherent performance
of the processor. The R3051 family design, however, does not require the
system designer (either software or hardware) to explicitly manage this
important resource, other than to correctly choose virtual addresses which
may or may not be cached, and to flush the caches at system boot. This
contributes to both the simplicity and performance of an R304 1 based system.
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INTRODUCTION

The R3041 provides the same basic virtual to physical address translation
as the rest of the R3051 family base versions (the R3051, R3052, and R3081).
These devices provide segment-based virtual to physical address translation,
and support the segregation of kernel and user tasks without requiring
extensive virtual page management.

The extended versions of the R3051 family (the R3051E, R3052E, and
R3081E) provide a full featured memory management unit (MMU) identical to
the MMU structure of the R3000A and R3500. The extended MMU uses an on-
chip translation lookaside buffer (TLB) and dedicated registers in CPO to
provide for software management of page tables. There is no Extended
Architecture version of the R3041.

This chapter describes the operating states of the processor (kernel and
user), and describes the virtual to physical address translation mechanisms
provided in the R3041.

VIRTUAL MEMORY IN THE R3051 FAMILY

There are two primary purposes of the memory management capabilities of
the R3051 family.

¢ Various areas of main memory can have individual sets of attributes

associated with them. For example, some segments may be indicated as
requiring kernel status to be accessed; others may have cacheable or
uncacheable attributes. The virtual to physical address translation
establishes the rules appropriate for a given virtual address. The R3041
memory manager provides for these mechanisms, without requiring the
use of a TLB.

¢ The virtual memory system can be used to logically expand the physical

memory space of the processor, by translating addresses composed in a
large virtual address space into the physical address space of the system.
This is particularly important in applications where software may not be
explicitly aware of the hardware resources of the processor system, and
includes applications such as X-Window display systems. These types of
applications are better served by the “E” (extended architecture) versions
of the R3051 family.

Figure 4.1 shows the format of an R3051 family virtual address. The most
significant 20 bits of the 32-bit virtual address are called the virtual page
number, or VPN. In the extended architecture versions, the VPN allows
mapping of virtual addresses based on 4kB pages; in the base versions (and
thus in the R3041), only the three highest bits (segment number) are involved
in the virtual to physical address translation.

31 12 11 0
VPN Offset

3130 29 20 12

0 X X kuseg

100 kseg0

101 ksegl

11 x kseg2

4000 drw 15

Figure 4.1. Virtual Address Format
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The three most significant bits of the virtual address identify which virtual
address segment the processor is currently referencing; these segments have
associated with them the mapping algorithm to be employed, and whether
virtual addresses in that segment may reside in the cache. The translation of
the virtual address to an equivalent privilege level/segment is the same for the
base and extended versions of the architecture. In addition, the R3041 uses the
high-order address bits of the physical address to determine which memory
region is being accessed; this information, along with the contents of the CPO
PortSize register, determine the width of the memory system being addressed
in a given memory transfer.

PRIVILEGE STATES

The R304 1 provides for two unique privilege states: the “Kernel” mode, which
is analogous to the “supervisory” mode provided in many systems, and the
“User” mode, where non-supervisory programs are executed. Kernel mode is
entered whenever the processor detects an exception; when a Restore From
Exception (RFE) instruction is executed, the processor will return either to its
previous privilege mode or to User mode, depending on the state of the machine
and when the exception was detected.

User Mode Virtual Addressing

While the processor is operating in User mode, a single, uniform virtual
address space (kuseg) of 2GB is available for Users. All valid user-mode virtual
addresses have the most significant bit of the virtual address cleared to 0. An
attempt to reference a Kernel address (most significant bit of the virtual
address set to 1) while in User mode will cause an Address Error Exception (see
chapter 6). Kuseg begins at virtual address 0 and extends linearly for 2GB.
This segment is typically used to hold user code and data, and the current user
processes.

Also note that the physical address space corresponding to kuseg is
independent of the physical address spaces of the various kernel only
segments. Thus, systems can be constructed which preclude user tasks from
affecting kernel memory. On the other hand, simple systems can, by virtue of
the address decode, compress the mapping into a single address region.

Kernel Mode Virtual Addressing

When the processor is operating in Kernel mode, four distinct virtual

address segments are simultaneously available. The segments are:

* kuseg. The kernel may assert the same virtual address as a user process,
and have the same virtual to physical address translation performed for
it as the translation for the user task. This facilitates the kernel having
direct access to user memory regions. The virtual to physical address
translation, including the Port Size attributes, is identical with User mode
addressing to this segment.

¢ kseg0. Kseg0O is a 512MB segment, beginning at virtual address

0x8000_0000. This segment is always translated to a linear 512MB
region of the physical address space starting at physical address 0. All
references through this segment are cacheable.
When the most significant three bits of the virtual address are “100”, the
virtual address resides in kseg0. The physical address is constructed by
replacing these three bits of the virtual address with the value “000”. As
thesereferences are cacheable, ksegQis typically used for kermel executable
code and some kernel data.

¢ ksegl. Ksegl is also a 512MB segment, beginning at virtual address
0xa000_0000. This segment is also translated directly to the 512MB
physical address space starting at address 0. All references through this
segment are uncacheable.
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When the most significant three bits of the virtual address are “101”, the
virtual address resides in ksegl. The physical address is constructed by
replacing these three bits of the virtual address with the value “000”.
Unlike kseg0, references through ksegl are not cacheable. This segment
is typically used for I/0 registers, boot ROM code, and operating system
data areas such as disk buffers.

¢ kseg2. This segment is analogous to kuseg, but is accessible only from
kernel mode. This segment contains 1GB of linear addresses, beginning
at virtual address 0xc000_0000. As with kuseg, the virtual to physical
address translation depends on whether the processor is a base or
extended architecture version.
When the two most significant bits of the virtual address are “11”, the
virtual address resides in the 1024MB segment kseg2. The virtual to
physical translation is done either through the TLB (extended versions of
the processor) or through a direct segment mapping (base versions). An
operating system would typically use this segment for stacks, per-process
data that must be re-mapped at context switch, user page tables, and for
some dynamically allocated data areas.

Base versions of the R3051 family (including the R304 1) are distinguishable
from extended versions in software by examining the TS (TLB Shutdown) bit of
the Status Register after reset, before the TLB is used. If the TS bit is set (1)
immediately after reset, indicating that the TLB is non-functional, then the
current processor is a base version of the architecture. If the TS bit is cleared
after reset, then the software is executing on an extended architecture version
of the processor.

The PRId register (described in chapter 6) can be used to distinguish the
R3041 (with its variable bus sizing features, among others) from other
members of the R3051 family.

R3041 ADDRESS TRANSLATION

Processors which only implement the base versions of memory management
perform direct segment mapping of virtual to physical addresses, asillustrated
in Figure 4.2. Thus, the mapping of kuseg and kseg?2 is performed as follows:

e Kuseg is always translated to a contiguous 2GB region of the physical

address space, beginning at location 0x4000_0000. That is, the value
“00” in the two highest order bits of the virtual address space are
translated to the value “01”, and “01” is translated to “10”, with the
remaining 30 bits of the virtual address unchanged.
Kuseg is broken into 4 equal sub-regions to support the variable width
bus interface capability of the R3041. The 2GB of Kuseg is divided into
4 equal 512MB regions (Kusegla:d]), whose port widths are indicated in
the CPO Port Size register. Thus, Kuseg can be composed of a mix of
memory spaces, of varying widths, independent from the widths of the
kernel address space.

¢ Virtual addresses in kseg2 are directly output as physical addresses; that
is, references to kseg2 occur with the physical address unchanged from
the virtual address. The 1MB kseg?2 physical address space is divided into
two equally sized 512MB subregions, whose memory width attributes are
controlled by the CPO PortSize register.

e Virtualaddressesin ksegO and kseg1 are both translated identically to the
same physical address region. This 512MB region is subdivided into 8
equal 64MB sub-spaces, whose memory widths are independently
selectable in the CPO Port Size register. This allows the various kernel
regions to have varying port widths, independent of kuseg.
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OXEEEfEfff
Kernel Cached Kern_re;s(‘::ched 1024 MB
(kseg2)
0xc0000000
Kernel Uncached
0xa0000000 (kseg1)
Kernel Cached Keér;ilr/]léger 2048 MB
Tasks
0x80000000 (kseg0)
Kernel/User .
Cached Inaccessible 512 MB
(kuseg) Kernel Boot
0x00000000 and 'O 512 M8

4000 drw 16
Figure 4.2. Virtual to Physical Address Translation in Base Versions

The base versions of the architecture allow kernel software to be protected
from user mode accesses, without requiring virtual page management software.
User references to kernel virtual address will result in an address error
exception.

Note that the reserved areas of the virtual address space shown in figure 4.2
are translated to physical addresses identically with the remainder of their
virtual segment; they are indicated as reserved to insure compatibility with
future family members which may incorporate on-chip resources in these
address spaces.

Some systems may elect to protect external physical memory as well. That
is, the system may include distinct memory devices which can only be accessed
from kernel mode. The physical address output determines whether the
reference occurred from kernel or user mode, according to Table 4.1.

Physical Address (31:29) Virtual Address Segment
‘000’ KsegO or Ksegl
‘001’ Inaccessible
'01x’ Kuseg
'10x Kuseg
11X Kseg2
4000 tbl 15

Table 4.1. Virtual and Physical Address Relationships in Base Versions

Thus, some systems may wish to limit accesses to some memory or I/0
devices to those physical address bits which correspond to kernel mode virtual
addresses.

Alternately, some systems may wish to have the kernel and user tasks share
common areas of memory. Those systems could choose to have their address
decoder ignore the high-order physical address bits, and compress all of
memory into the lower region of physical memory. The high-order physical
address bits may be useful as privilege mode status outputs in these systems.
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SUMMARY

The R3051 family provides two models of memory management: a very
simple, segment based mapping, found in the base versions of the architecture,
and a more sophisticated, TLB-based page mapping scheme, present in the
extended versions of the architecture. Each scheme has advantages to
different applications. The R3041 only implements the base version address
translation, but in addition, subdivides each segment into sub-regions. Each
sub-region may be declared, via the CPO Port Size register, as having either an
8-, 16-, or 32-bit memory interface. The Bus Interface Unit of the R3041
dynamically translates processor core references to the appropriate port width,
making the actual software independent of the port width. Both instruction
and data fetches can be transferred between memory and the CPU, regardless
of the memory port width.




CHAPTER 4 MEMORY MANAGEMENT




1 dt

Integrated Device Technology, Inc.

yar
Q

SYSTEM INTERFACE CHAPTER 5
CONTROL

INTRODUCTION

The R3041 bus interface has been designed to minimize system cost by
providing a simple, flexible bus interface. In addition, the bus interface has
been designed to allow the R3041, R3051, R3052, and R3081 to be easily
interchanged in a given design.

To allow the system designer to enjoy maximum flexibility, the bus interface
of the R3041 features a number of programmable options. These options are
controlled by various registers of the on-chip Co-Processor 0. This chapter
describes those registers and their impact on the bus interface.

CO-PROCESSOR 0 BUS INTERFACE CONTROL

Figure 5.1 illustrates the co-processor O registers used to control various
actions of the businterface. Note that the MIPS architecture allows the register
set of CPO to vary by implementation; software can easily identify the R3041
(and its CPO registers) from the R3051 and R3081 by reading the PRId from
CPO.

The fields of these registers, and their impact on the bus interface, are
described below. Note that software should allow a minimum of 10 instruction
cycles for changes to these registers to be reflected in subsequent bus
transactions.

Used for CPU Identification Used for Interface Control  Used with Exception Processing
PRID $15 STATUS $12
CAUSE $13
EPC $14
BADVA $8

Figure 5.1. R3041 Bus Interface Control Registers
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BUS CONTROL REGISTER

The Bus Control register allows the kernel to configure various aspects of the
bus interface, simplifying the I/0 interface in many systems.

Thisregister controls the use of the BE(3:0), BE16(1:0), TC, and SBrCond(3:2)
signals, and also controls the time between back to back transactions.

Figure 5.2 illustrates the various fields of the Bus Control register. Thereset
defaults for this register have been selected to insure R3051 compatible
operation.

The Bus Control register is both readable and writeable.

31 30 29 28 27 26 25 24 23 22 219 20 19 18 16

MEM ED 10 BE1

BTA | DMA| TC
2 1 1 2 2 8
Lock: Register Write Lock
1" Reserved: Must be written as '1'
‘0" Reserved: Must be written as '0'
MEM: MemStrobe Control
ED: ExtDataEn Control
10: I0Strobe Control
BE16: BE16 Read Control
BE: BE(3:0) Read Control
BTA: Bus Turn Around Time
DMA: DMA Protocol Control
TC: TC Negation Control
BR: SBrCond(3:2) Control
Figure 5.2. R3041 Bus Control Register
Lock

The lock bit can be used by the kernel to inhibit subsequent write operations
to thisregister. Itis useful in ensuring that operating systems written for other
R3000A-based applications, including applications which may run on other
R3051 family members, do not inadvertently change the fields of the Bus
Control register.

Atreset, the register is unlocked (Lock bit is '0'). Thus, the BusCtrl register
can be written and re-written as the operating system chooses. Once the Lock
bit is written with a '1', subsequent writes to the BusCtrl register will be
ignored.

Reserved-High ('1')

This bit is reserved for testing of the R3041. Atreset, the bit will be set high
('1"). Writes to the BusCtrl register must maintain these bit fields as high ('1').
Reserved-Low ('0')

These fields are reserved for testing and for future variants of the R3041. At
reset, these bit fields are reset (0). Writes to the BusCtrl register must
maintain these bit fields as low ('0').
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MemStrobe Control
These bits control the use of the MemStrobe pin, according to Table 5.1.
Reset initializes this field to '01', which allows the use of MemStrobe on
writes.

Value Action

'00' MemsStrobe remains high on both reads and writes

‘o1 Use MemStrobe on write cycles only (default)
'10' Use MemStrobe on read cycles only
11 Use MemStrobe on both read and write cycles

Table 5.1. R3041 MemStrobe Configuration Field

ExtDataEn Control
These bits control the use of the ExtDataEn pin, according to Table 5.2.
These bits depend on the settings of the SBRCond control bit; if the bit is
programmed to allow SBrCond(3:2) to be used as outputs, the settings of the
table apply. Otherwise, SBrCond(3:2) will be used as inputs, and the value of
the ExtDataEn Control field is ignored.

Value |Action
'00' ExtDataEn remains high on both reads and writes
‘o1’ Use as ExtDataEn on write cycles only

'10' Use as ExtDataEn on read cycles only
11" Use as ExtDataEn on both read and write cycles (default)

Table 5.2. R3041 ExtDataEn Configuration Field

I0Strobe Control
These bits control the use of the BrCond(3) pin, according to Table 5.3.
These bits depend on the settings of the SBRCond control bit; if the bit is
programmed to allow SBrCond(3:2) to be used as outputs, the settings of the
table apply. Otherwise, SBrCond(3:2) will be used as inputs, and the value of
the I0Strobe Control field is ignored.

Value | Action
'00' I0Strobe remains high on both reads and writes
‘o1’ Use as [0Strobe on write cycles only
'10' Use as I0Strobe on read cycles only
11 Use as [0Strobe on both read and write cycles (default)

Table 5.3. R3041 IOStrobe Configuration Field
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BE16 Control

When set high ('1'), the BE16(1:0) outputs will assert according to the datum
size in both read and write transfers. When reset low ('0'), both BE16(1:0)
outputs will be negated during read transactions; on write transactions,
BE16(1:0) will assert according to the size of the datum to be transferred.

This feature allows the BE16(1:0) outputs to be used as Write Strobes to 16-
bit DRAM systems, by directly connecting BE16(1:0) to the Write Enables of the
memories, and using the RAS and CAS lines to perform memory selects.
BE16(1:0) can also be connected to SRAMs and other memories if their chip
selects are registered instead of transparently latched.

Reset initializes this field to high ('1'), consistent with R3051 BE(3:0).

BE Control

When set high ('1'), the BE(3:0) outputs will assert according to the datum
size in both read and write transfers. When reset low ('0"), the BE(3:0) outputs
willbe negated during read transactions; on write transactions, BE(3:0) will assert
according to the size of the datum to be transferred.

This feature allows the BE(3:0) outputs to be used as Write Strobes to 32-bit
DRAM systems, by directly connecting BE(3:0) to the Write Enables of the
memories, and using the RAS and CAS lines to perform memory selects. IfRAS
before CASrefreshing is used, then the DRAMs must be 1Mb or less since many
4Mb DRAMs must de-assert their WE pin during refreshing. BE(3:0) can also
be connected to SRAMs and other memories if their chip selects are registered
instead of transparently latched.

Reset initializes this field to high ('1'), consistent with R3051 BE(3:0).

Bus Turn Around

This two-bit field controls the minimum number of clock cycles required
between sampling data on a read cycle, and asserting an address for a
subsequent transfer. Read response data is provided by memory or I/0
devices, which drive the A/D bus for sampling by the processor; during the
address phase of a subsequent transfer, the processor drives the A/D bus with
a target address. This change in mastership is referred to as "Bus Turn
Around”. Extending the minimum amount of time for bus turnaround allows
relatively slow memory devices to be used without data buffers.

Value |Action
'00' No additional delay; 0.5 cycles minimum
‘o1 One additional delay cycle; 1.5 cycles minimum
‘10’ Two additional delay cycles; 2.5 cycles minimum
11" Three additional delay cycles; 3.5 cycles minimum (default)

Table 5.4. R3041 Bus Turn Around Configuration Field

Table 5.4 shows the values supported by the R3041 for this field. Atreset,
the default value of this field is '11', corresponding to the maximum value of
3.5 cycles.

DMA Protocol Control

This bit enables the DMA pulse protocol of the R3041, described in Chapter
10. If this bit is set ('1'), the R304 1 may request that an external DMA master
relinquish bus mastership back to the CPU during a DMA cycle by negating its
BusGnt output, and waiting for the external master to negate the BusReq
input.

If this bitis cleared ('0'), R3051 compatible operation will result, and BusGnt
will remain asserted throughout the DMA mastership cycle.

The default is '0' on reset
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TC Control

This bit controls the waveform seen on the TC (Terminal Count) output pin
of the R3041 and defaults to '0' on reset.

Regardless of the bit setting, TC asserts (active low) on the rising edge of
SysClIk, two clock cycles after the Count register equals the Compare register.

If this bit value is cleared low ('0'), TC will then negate on the falling edge of
SysClIk that is 1.5 clock cycles after the assertion of TC, as shown in Figure 5.4.
This mode of operation may typically be used for DRAM refresh requests; no
software intervention is required to de-assert TC.

If this bit value is set high ('1'), TC will remain asserted until software re-
writes the Compare register. This mode of operation corresponds to the use of
the timer as an interrupt generator; TC may be tied to one of the CPU interrupt
inputs, and the interrupt handler will clear TC by re-writing the Compare
register. Note that for this mode of operation, the AC parameter propagation
delays associated with the assertion and negation of TC use the same values
as shown in Figure 5.3; however, the number of clock cycles between the
assertion and negation of TC will be longer.

T7
- = S
//
77/

Figure 5.3. R3041 TC Output

BR Control

This bit controls the usage of the SBrCond(3:2) pins. If high (the default on
reset), the SBrCond(3:2) pins will function as the SBrCond(3:2) inputs. If set
low, the SBrCond(3) and SBrCond(2) pins will function as the I0Strobe and
ExtDataEn outputs, respectively.
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CACHE CONFIGURATION REGISTER

The cache configuration register allows the kernel to control various
operational aspects of the on-chip caches of the R3041. These features can be
used to improve performance and/or implement debug capability for the
R3041. The Config register is both readable and writeable.

Figure 5.4 illustrates the various fields of the cache configuration register.
The reset defaults for this register insure R3051 compatible operation.

31 30 29 28 20 19 18

1 1 1 9 1 19

Lock: Register Write Lock '0': Reserved: Must be written as '0’
Q-

Reserved: Must be written as '1' FDM: Force Data-Cache Miss

DBR:  Data Cache Block Refill Enable
Figure 5.4. R3041 Cache Configuration Register

Lock

The lock bit can be used by the kernel to inhibit subsequent write operations
to thisregister. Itis useful in ensuring that operating systems written for other
R3000A-based applications do not inadvertently change the fields of the Cache
Configuration register.

At reset, the register is unlocked (Lock bit is '0"). Thus, the Config register
can be written and re-written as the operating system chooses. Once the Lock
bit is written with a '1', subsequent writes to the Config register will be ignored.
Reserved-High ('1')

This bit is reserved for testing of the R3041. Atreset, the bit will be set high
('1). Writes to the Config register must maintain this bit as high ('1').
Reserved-Low ('0')

These fields are reserved for testing and for future variants of the R3041. At
reset, these bit fields arereset ('0'). Writes to the Config register must maintain
these bit fields as low ('0').

DBlockRefill ('DBR')

If this bitis set high ('1'), data cache misses will be processed as a quad (four-
word) read, as described in Chapter 7. If this bit is reset low ('0'), data cache
misses will be processed as a single word read, as described in Chapter 7. At
reset, this bit is reset low ('0').

ForceDCacheMiss ('FDM')

If this bit is set high ('1'), all cacheable data load references will be forced to
miss in the data cache. The data references will then be supplied using the
Data Cache miss protocol (including DBlockRefill). Store operations will
continue to update the cache, and the cache miss processing will update the
cache. Thus, this bit provides a quick method of initializing the cache or
reloading the cache from an external device.

Atreset, thisbitisresetlow ('0'), allowing normal operation of the data cache.
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COUNT REGISTER

The Count register implements a 24-bit, free running timer as part of the
R3041 CPO. Figure 5.5 illustrates the count register.

Reset initializes the Count register to '0'. The count register is then
incremented on each SysClk cycle, regardless of processor activity.

The Count register is reset to '0' by the assertion of TC, when the Count
register equals the value of the Compare register.

The Count register is readable and writeable.

31 24 23 0
Reserved '0’ Count
8 24
Figure 5.5. R3041 Count Register
COMPARE REGISTER
The Compare register is used in conjunction with the Count register to
implement a 24-bit timer. When the value of the Count register reaches the
value programmed into the Compare register, the TC output pin is asserted.
Note that the negation of the TC output is controlled by the TC Control bit of
the Bus Control register, described above.
At reset, the Compare register is initialized to the value OxOOff_fiff. The
Compare register is both readable and writeable. Writing the Compare register
has no effect on the value of the Count register.
31 24 23 0
Reserved '0’ Compare
8 24

Figure 5.6. R3041 Compare Register
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PORTSIZE CONTROL REGISTER

The PortSize control register is used to interface the R3041 to varying width
memory regions. The PortSize register divides the physical address space into
sub-regions; the data path width of each sub-region is independently
programmed into the PortSize register by the operating system at boot time.

The software is then free to presume that all memory has a 32-bit data path;
each off-chip reference is looked up in the PortSize register to determine the
actual width of memory. The R3041 bus interface unit will then perform the
appropriate sequence of transfers between the CPU and memory, depending on
the actual size of the datum, and the actual width of the memory.

Figure 5.7 shows the format of the PortSize register. Atreset, the initial port
width of each memory region is initialized according to the width indicated for
the boot PROM; that is, the PortSize register will assume that all memory is the
same port width as the boot PROM. The kernel can then later re-program
individual memory sub-regions, according to their actual port width.

29 28 27 26 25 24 23 22 21 20 19 18 17 16

Kseg2b | Kseg2a | Kusegd | Kusegc | Kusegb

1 1 2 2 2 2 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Kseg1/0h | Kseg1/0g | Kseg1/0f | Kseg1/0e | Kseg1/0d | Kseg1/0c | Kseg1/0b | Kseg1/0a

2 2 2 2 2 2 2 2
Lock: Register Write Lock
‘0" Reserved: Must be written as '0'
X Reserved for future use
Kseg2(b:a): Subregions of Kseg2
Kuseg(d:a): Subregions of Kuseg
Kseg1/0(h:a): Subregions of Kseg1 and Kseg0

Figure 5.7. R3041 PortSize Register

This allows systems to be constructed from a mix of memory widths; for
example, an 8-bit boot prom, with 32-bit DRAM memory and 16-bit Font
cartridge cards. This maximizes the number of price/performance trade-offs
available to the system designer.

Inaddition, itis possible to construct a system such thatits base configuration
assumes a narrow memory width (e.g. a 16-bit DRAM system). However, field
upgrades to larger memory systems can increase both the width and total
amount of memory, increasing the performance of the system, and thus
increasing the value of the field upgrade option.

Table 5.5 shows the bit encodings of memory width for each of the memory
sub-regions.

Value Port Width

‘00’ 32-bit
‘ol 8-bit
‘10’ 16-bits

11" Reserved

Table 5.5. R3041 Port Width Encoding for PortSize Register
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Table 5.5 shows the correspondence between memory sub-regions, physical
addresses, and kernel/user segments of the R3041. From this, a system
designer can construct varying memory widths available exclusively to the
kernel or also available to the user, and can allow either cacheable or
uncacheable references to these regions.

Physical PortSize Description

Address Register

Bits(31:26) Bits

111x xx 29:28 Kseg2(b) 512MB sub-region
110x xx 27:26 Kseg2(a) 512MB sub-region
101x xx 25:24 Kuseg(d) 512MB sub-region
100x xx 23:22 Kuseg(c) 512MB sub-region
0l1x xx 21:20 Kuseg(b) 512MB sub-region
010x xx 19:18 Kuseg(a) 512MB sub-region
001x xx 17:16 Reserved; inaccessible 512MB
0001 11 15:14 Ksegl/0(h) 64MB sub-region
0001 10 13:12 Ksegl/0(g) 64MB sub-region
0001 01 11:10 Ksegl/0(f) 64MB sub-region
0001 00 9:8 Ksegl/0(e) 64MB sub-region
0000 11 7:6 Ksegl/0(d) 64MB sub-region
0000 10 5:4 Ksegl/0(c) 64MB sub-region
0000 01 3:2 Ksegl/0(b) 64MB sub-region
0000 00 1:0 Ksegl/0(a) 64MB sub-region

Table 5.5. R3041 PortSize Memory Subregions

Lock

Thelock bit can be used by the kernel to inhibit subsequent write operations
to thisregister. Itis usefulin ensuring that operating systems written for other
R3000A-based applications do not inadvertently change the fields of the
PortSize register.

Atreset, the register is unlocked (Lock bit is '0). Thus, the PortSize register
can be written and re-written as the operating system chooses. Once the Lock
bit is written with a '1', subsequent writes to the PortSize register will be
ignored.

Reserved

These fields are reserved for future variants of the R3041. Atreset, these bit
fields are set to a default value. Writes to the PortSize register should maintain
these values, however, it is not mandatory to do so.

KSeg2(b:a)

These are independent 512MB sub-regions of the kseg2 virtual address
space.
KUseg(d:a)

These are independent 512MB sub-regions of the kuseg virtual address
space.
Ksegl/0(h:a)

These are independent 64MB sub-regions of both the ksegl and kseg0
virtual address spaces. In the MIPS architecture, both kseg0 and kseg1 virtual
address spaces are translated to the same area of physical memory; the
difference between the spaces lies in the fact that references through one space
are cacheable, while references through the other are not.
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INTRODUCTION

Processors in general execute code in a highly-directed fashion. The
instruction immediately subsequent to the current instruction is fetched and
then executed; if that instruction is a branch instruction, the program
execution is diverted to the specified location. Thus, program execution is
relatively straightforward and predictable.

Exceptions are a mechanism used to break into this execution stream and
to force the processor to begin handling another task, typically related to either
the system state or to the erroneous or undesirable execution of the program
stream. Thus, exceptions typically are viewed by programmers as asynchronous
interruptions of their program. (Note that exceptions are not necessarily
unpredictable or asynchronous, in that the events which cause the exception
may be exactly repeatable by the same software executing on the same data;
however, the programmer does not typically "expect” an exception to occur
when and where it does, and thus will view exceptions as asynchronous
events).

The R3051 family architecture provides for extremely fast, flexible interrupt
and exception handling. The processor makes no assumptions aboutinterrupt
causes or handling techniques, and allows the system designer to build his own
model of the best response to exception conditions. However, the processor
provides enough information and resources to minimize both the amount of
time required to begin handling the specific cause of the exception, and to
minimize the amount of software required to preserve processor state information
so that the normal instruction stream may be resumed.

This chapter discusses exception handling issues in R304 1-based systems.
The topics examined are: the exception model, the machine state to be saved
on an exception, and nested exceptions. Representative software examples of
exception handlers are also provided, as are techniques and issues appropriate
to specific classes of exceptions.

R3051 FAMILY EXCEPTION MODEL

The exception processing capability of the R3051 family is provided to assure
an orderly transfer of control from an executing program to the kernel.
Exceptions may be broadly divided into two categories: they can be caused by
an instruction or instruction sequence, including an unusual condition arising
during its execution; or can be caused by external events such as interrupts.
When an R3041 detects an exception, the normal sequence of instruction flow
is suspended; the processor is forced to kernel mode where it can respond to
the abnormal or asynchronous event. Table 6.1 lists the exceptions recognized
by the R3051 family.
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Exception Mnemonic Cause

Reset Reset Assertion of the Reset signal causes an exception
that transfers control to the special vector at
virtual address OxbfcO_0000.

UTLB Miss! UTLB User TLB Miss. A reference is made (in either
kernel or user mode) to a page in kuseg that has
no matching TLB entry. This can occur only in
extended architecture versions of the processor.

TLB Misst TLBL (Load) A referenced TLB entry’s Valid bit isn’t set, or

TLBS (Store) there is a reference to a kseg2 page that has no
matching TLB entry. This can occur only in
extended architecture versions of the processor.

TLB Modified' | Mod During a store instruction, the Valid bit is set
but the dirty bit is not set in a matching TLB
entry. This can occur only in extended
architecture versions of the processor.

Bus Error IBE (Instruction) | Assertion of the Bus Error input during

DBE (Data) aread operation, due to such external events as
bus timeout, backplane memory errors, invalid
physical address, or invalid access types.

Address Error | AAEL (Load) Attempt to load, fetch, or store an unaligned

AdES (Store) word; that is, a word or halfword at an address
not evenly divisible by four or two, respectively.
Also caused by reference to a virtual address
with most significant bit set while in User Mode.

Overflow ovf Twos complement overflow during add or
subtract.

System Call |Sys Execution of the SYSCALL Trap Instruction

Breakpoint Bp Execution of the break instruction

Reserved RI Execution of an instruction with an undefined

Instruction or reserved major operation code (bits 31:26), or

a special instruction whose minor opcode (bits
5:0) is undefined.

Co-processor | CpU Execution of a co-processor instruction when
Unusable the CU (Co-processor Usable) bit is not set for
the target co-processor.

Interrupt Int Assertion of one of the six hardware interrupt
inputs or setting of one of the two software
interrupt bits in the Cause register.

4000 thl 17
fThese exceptions will not occur in a R3041, or in any base member of the R3051 family.

Table 6.1. R3051 Family Exceptions

Precise vs. Imprecise Exceptions

One classification of exceptions refers to the precision with which the
exception cause and processor context can be determined. That is, some
exceptions are precise in their nature, while others are “imprecise.”

In a precise exception, much is known about the system state at the exact
instance the exception is caused. Specifically, the exact processor context and
the exact cause of the exception are known. The processor thus maintains its
exact state before the exception was generated, and can accurately handle the
exception, allowing the instruction stream to resume when the situation is
corrected. Additionally, in a precise exception model, the processor can not
advance state; that is, subsequent instructions, which may already be in the
processor pipeline, are not allowed to change the state of the machine.
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Many real-time applications greatly benefit from a processor model which
guarantees precise exception context and cause information. The MIPS
architecture, including the R3051 family, implements a precise exception
model for all exceptional events.

EXCEPTION PROCESSING

The R3051 family's exception handling system efficiently handles machine
exceptions, including Translation Lookaside Buffer (TLB) misses, arithmetic
overflows, I/O interrupts, system calls, breakpoints, reset, and co-processor
unusable conditions. Any of these events interrupt the normal execution flow;
the R3041 aborts the instruction causing the exception and also aborts all
those following in the exception pipeline which have already begun, thus not
modifying processor context. The CPU then performs a direct jump into a
designated exception handler routine. This insures that the R3041 is always
consistent with the precise exception model.

EXCEPTION HANDLING REGISTERS

The system co-processor (CP0O) registers contain information pertinent to
exception processing. Software can examine these registers during exception
processing to determine the cause of the exception and the state of the
processor when it occurred There are four registers handling exception
processing, shown in shaded boxes in Figure 6.1. These are the Causeregister,
the EPC register, the Status register, and the BadVAddr register. A brief
description of each follows.

Used for CPU Identification Used for Interface Control  Used with Exception Processing

PRID $15 CONFIG $3

PORTSIZE $10

BUSCTRL $2

COUNT $9

COMPARE $11

Figure 6.1. The CPO Exception Handling Registers
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Table 6.2 lists the register address of each of the CPO registers (as used in
CPO operations); the register number is used by software when issuing co-
processor load and store instructions.

Register Name Register Number (Decimal)

Status $12

Cause $13

Exception PC $14

Count $9

Compare $11

Bus Control $2

Cache Configuration $3

PortSize $10

Bad Virtual Address $8

PRId $15

Reserved $0-$2, $4-$6, $16-$31

4000 tbl 18

Table 6.2. Co-processor O Register Addressing

The Cause Register

The contents of the Cause register describe the last exception. A 5-bit
exception code indicates the cause of the current exception; the remaining
fields contain detailed information specific to certain exceptions.

All bits in this register, with the exception of the SW bits, areread-only. The
SW bits can be written to set or reset software interrupts. Figure 6.2 illustrates
the format of the Cause register. Table 6.3 details the meaning of the various
exception codes.

31 _

0

IP[5..0] Sw ExcCode

BD: BRANCH DELAY

CE: COPROCESSOR ERROR
IP: INTERRUPTS PENDING
Sw: SOFTWARE INTERRUPTS*

1 2 12 6 2 1 5

ExcCode: EXCEPTION CODE FIELD

: RESERVED
Must Be Written as 0
Returns 0 when Read

*READ AND WRITE. THE REST ARE READ-ONLY.

4000 drw 26
Figure 6.2. The Cause Register

Number | Mnemonic Description
o Int External Interrupt
1 MOD! TLB Modification Exception
2 TLBL! TLB miss Exception (Load or instruction fetch)
3 TLBS! TLB miss exception (Store)
4 AdEL Address Error Exception (Load or instruction fetch)
5 AdES Address Error Exception (Store)
6 IBE Bus Error Exception (for Instruction Fetch)
7 DBE Bus Error Exception (for data Load or Store)
8 Sys SYSCALL Exception
9 Bp Breakpoint Exception
10 RI Reserved Instruction Exception
11 CpU Co-Processor Unusable Exception
12 ovf Arithmetic Overflow Exception

13-31 - Reserved

4000 tbl 19

tThese exceptions will not occur in a R3041

Table 6.3. Cause Register Exception Codes

6-4
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The meaning of the other bits of the cause register is as follows:

BD The Branch Delay bit is set (1) if the last exception was taken while the
processor was executing in the branch delay slot. If so, then the EPC
will be rolled back to point to the branch instruction, so that it can be
re-executed and the branch direction re-determined.

CE The Co-processor Error field captures the co-processor unit number
referenced when a Co-processor Unusable exception is detected.

IP  The Interrupt Pending field indicates which interrupts are pending.
Regardless of which interrupts are masked, the IP field can be used
to determine which interrupts are pending.

SW The Software interrupt bits can be thought of as the logical extension
of the IP field. The SW interrupts can be written to force an interrupt
to be pending to the processor, and are useful in the prioritization of
exceptions. To set a software interrupt, a “1” is written to the
appropriate SW bit, and a “0” will clear the pending interrupt. There
are corresponding interrupt mask bits in the status register for these
interrupts.

ExcCode The exception code field indicates the reason for the last
exception. Its values are listed in Table 6.3.

The EPC (Exception Program Counter) Register

The 32-bit EPC register contains the virtual address of the instruction which
took the exception, from which point processing resumes after the exception
has been serviced. When the virtual address of the instruction resides in a
branch delay slot, the EPC contains the virtual address of the instruction
immediately preceding the exception (that is, the EPC points to the Branch or
Jump instruction).

Bad VAddr Register
The Bad VAddr register saves the entire bad virtual address for any
addressing exception.

The Status Register

The Status register contains all the major status bits; any exception puts the
system in Kernel mode. All bits in the status register, with the exception of the
TS (TLB Shutdown) bit, are readable and writable; the TS bit is read-only.
Figure 6.3 shows the functionality of the various bits in the status register.

31 28272 25242322 21 20 19 18 17 16 15 876 5 4 3 2 1 0
cu Bev| Ts | PE [ cM | Pz |swcl 1sc | | IntMask kuol 1E0 |Kup| 1Ep |KUC| IEC
(Cu3..Cu0) Intr5..0, Sw1:0 P =P
4 2 1 2 1 1 1 1 1 1 1 8 2 1 1 1 1 1 1
CU: COPROCESSOR USABILITY INtMASK: INTERRUPT MASK
BEV: BOOTSTRAP EXCEPTION VECTOR KUo: KERNEL/USER MODE, OLD
TS: TLB SHUTDOWN [Eo: INTERRUPT ENABLE, OLD
PE: PARITY ERROR KUp: KERNEL/USER MODE, PREVIOUS
CM: CACHE MISS IEp: INTERRUPT ENABLE, PREVIOUS
PZ: PARITY ZERO KUc: KERNEUUSER MODE, CURRENT
SwC: SWAP CACHES IEc: INTERRUPT ENABLE, CURRENT
IsC: ISOLATE CACHE 0: RESERVED: READ AS ZERO
RE: REVERSE ENDIANNESS MUST BE WRITTEN AS ZERO

4000 drw 28
Figure 6.3. The Status Register
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The status register contains a three level stack (current, previous, and old)
of the kernel/user mode bit (KU) and the interrupt enable (IE) bit. The stack
is pushed when each exception is taken, and popped by the Restore From
Exception instruction. These bits may also be directly read or written.

At reset, the SWc, KUc, and IEc bits are set to zero; BEV is set to one; and
the value of the TS bitis set to "1". The rest of the bit fields are undefined after

reset.

The various bits of the status register are defined as follows:

Cu

BEV

TS

PE

CM

SwC

IsC

Co-processor Usability. These bits individually control user level
access to co-processor operations, including the polling of the BrCond
input pins and the manipulation of the System Control Co-processor
(CPO).

Reverse Endianness. The R3051 family allows the system to determine
the byte ordering convention for the Kernel mode, and the default
setting for user mode, at reset time. If this bit is cleared, the
endianness defined at reset is used for the current user task. If this
bit is set, then the user task will operate with the opposite byte
ordering convention from that determined at reset. This bit has no
effect on kernel mode. Also note that the setting of this bit does not
affect the byte lanes used in 16- and 8-bit memory ports; thus,
external byte lane shift logic is not required.

Bootstrap Exception Vector. The value of this bit determines the
locations of the exception vectors of the processor. If BEV = 1, then
the processor is in “Bootstrap” mode, and the exception vectors reside
in uncacheable space. If BEV = 0, then the processor is in normal
mode, and the exception vectors reside in cacheable space.

TLB Shutdown. This bit reflects whether the TLB is functioning. At
reset, this bit can be used to determine whether the current processor
is a base or extended architecture version. For the R3041, this bit is
frozen at "1".

Parity Error. This field should be written with a "1" at boot time. Once
initialized, this field will always be read as "0'.

Cache Miss. This bit is set if a cache miss occurred while the cache
was isolated. It is useful in determining the size and operation of the
internal cache subsystem.

Parity Zero. This field should always be written with a "0".

Swap Caches. Setting this bit causes the execution core to use the on-
chip instruction cache as a data cache and vice-versa. Resetting the
bit to zero un-swaps the caches. This is useful for certain operations
such as instruction cache flushing. This feature is not intended for
normal operation with the caches swapped.

Isolate Cache. If this bit is set, the data cache is “isolated” from main
memory; that is, store operations modify the data cache but do not
cause a main memory write to occur, and load operations return the
data value from the cache whether or not a cache hit occurred. This
bit is also useful in various operations such as flushing, as described
in Chapter 3.
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KUo

KUp

IEp

KUc

lo'

Interrupt Mask. This 8-bit field can be used to mask the hardware and
software interrupts to the execution engine (that is, not allow them to
cause an exception). IM(1:0) are used to mask the software interrupts,
and IM (7:2) mask the 6 external interrupts. A value of ‘0’ disables a
particular interrupt, and a ‘1’ enablesit. Note that the IE bitis a global
interrupt enable; that is, if the IE is used to disable interrupts, the
value of particular mask bits is irrelevant; if IE enables interrupts,
then a particular interrupt is selectively masked by this field.

Kernel/User old. Thisis the privilege state two exceptions previously.
A ‘0 indicates kernel mode.

Interrupt Enable old. This is the global interrupt enable state two
exceptions previously. A ‘1’ indicates that interrupts were enabled,
subject to the IM mask.

Kernel/User previous. This is the privilege state prior to the current
exception A ‘0’ indicates kernel mode.

Interrupt Enable old. This is the global interrupt enable state prior to
the current exception. A ‘1’ indicates that interrupts were enabled,
subject to the IM mask.

Kernel/User current. Thisis the current privilege state. A‘O’indicates
kernel mode.

Interrupt Enable current. This is the current global interrupt enable
state. A ‘1’ indicates that interrupts are enabled, subject to the IM
mask.

Fieldsindicated as ‘O’ arereserved; they must be written as ‘0, and will
return ‘0’ when read.

PRId Register

This register is useful to software in determining which revision of the
processor is executing the code. The format of this register is illustrated in
Figure 6.4; for the R3041, the value currently returned is 0x0000_0700. This
value is different from other members of the R3051 family, so that software can
easily determine the CPU type. This facilitates the development of one binary
working with all R3051 family members.

0 Implementation Revision

16 8 8

0: READ AS 0, MUST BE WRITTEN AS 0
Implementation: EXECUTION ENGINE IMPLEMENTATION CODE
Revision: REVISION LEVEL FOR THIS IMPLEMENTATION

4000 drw 29
Figure 6.4. Format of Prid Register
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EXCEPTION VECTOR LOCATIONS

The R3051 family separates exceptions into three vector spaces. The value
of each vector depends on the BEV (Boot Exception Vector) bit of the status
register, which allows two alternate sets of vectors (and thus two different
pieces of code) to be used. Typically, this is used to allow diagnostic tests to
occur before the functionality of the cache is validated; processor reset forces
the value of the BEV bit to a '1'. Tables 6.4 and 6.5 list the exception vectors
for the R3051 family for the two different modes.

Exception Virtual Address Physical Address
Reset OxbfcO_0000 0x1fcO_0000
UTLB Miss 0x8000_0000 0x0000_0000
General 0x8000_0080 0x0000_0080
4000 tbl 20

Table 6.4. Exception Vectors When BEV = 0

Exception Virtual Address Physical Address
Reset OxbfcO_0000 0x1fc0_0000
UTLB Miss OxbfcO_0100 0x1fc0_0100
General OxbfcO_0180 0x1fcO_0180
4000 tbl 21

Table 6.5. Exception Vectors When BEV = 1

EXCEPTION PRIORITIZATION

It is important to understand the structure of the R3051 family instruction
execution unit in order to understand the exception priority model of the
processor. The R3051 family runs instructions through a five stage pipeline,
illustrated in Figure 6.5. The pipeline stages are:

e IF: Instruction Fetch. This cycle contains two parts: the IVA (Instruction
Virtual Address) phase, which generates the virtual instruction
address of the next instruction to be fetched, and the ITLB phase,
which performs the virtual to physical translation of the address.

¢ RD: Read and Decode. This phase obtains the required.data from the
internal registers and also decodes the instruction.

e ALU: Thisphaseeitherperforms the desired arithmetic orlogical operation,
or generates the address for the upcoming data operation. For data
operations, this phase contains both the data virtual address stage,
which generates the desired virtual address, and the data TLB stage,
which performs the virtual to physical translation.

¢ MEM: Memory. This phase performs the data load or store transaction.
e WB: Write Back. This stage updates the registers with the result data.

High performance is achieved because five instructions are operating
concurrently, each in a different stage of the pipeline. However, since multiple
instructions are operating concurrently, it is possible that multiple exceptions
are generated concurrently. If so, the processor must decide which exception
to process, basing this decision on the stage of the pipeline that detected the
exception. The processor will then flush all preceding pipeline stages to avoid
altering processor context, thus implementing precise exceptions. This
determines the relative priority of the exceptions.
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MEM

WB

|
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OoP

D-FETCH

WB

DVA

TLB

Figure 6.5. Pipelining in the R3051 Family
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For example, an illegal instruction exception can only be detected in the
instruction decode stage of the R3041; an Instruction Bus Error can only be
determined in the I-Fetch pipe stage. Since the illegal instruction was fetched
before the instruction which generated the bus error was fetched, and since it
is conceivable that handling this exception might have avoided the second
exception, it is important that the processor handle the illegal instruction
before the bus error. Therefore the exception detected in the latest pipeline
stage has priority over exceptions detected in earlier pipeline stages. All
instructions fetched subsequent to this (all preceding pipeline stages) are
flushed to avoid altering state information, maintaining the precise exception

model.

Table 6.6 lists the priority of exceptions from highest first to lowest.

Mnemonic Pipestage
Reset Any
AdEL Memory (Load instruction)
AdES Memory (Store instruction)
DBE Memory (Load or store)
MOD! ALU (Data TLB)
TLBL! ALU (DTLB Miss)
TLBS! ALU (DTLB Miss)
Oovf ALU
Int ALU
Sys RD (Instruction Decode)
Bp RD (Instruction Decode)
RI RD (Instruction Decode)
CpU RD (Instruction Decode)
TLBL! I-Fetch (ITLB Miss)
AdEL IVA (Instruction Virtual Address)
IBE RD (end of I-Fetch)

fThese exceptions will not occur in an R3041, which does not include a TLB.

Table 6.6. R3051 Family Exception Priority

4000 tbl 22
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EXCEPTION LATENCY

A critical measurement of a processor’s throughput in interrupt driven
systems is the interrupt “latency” of the system. Interrupt latency is a
measurement of the amount time from the assertion of an interrupt until
software begins handling that interrupt. Often included when discussing
latency is the amount of overhead associated with restoring context once the
exception is handled, although this is typically less critical than the initial
latency.

In systems where the processor is responsible for managing a number of
time-critical operationsinreal timne, it is important that the processor minimize
interrupt latency. Thatis, it is more important that every interrupt be handled
at arate above some given value, rather than occasionally handle an interrupt
at very high speed.

Factors which affect the interrupt latency of a system include the types of
operationsit performs (that is, systems which havelong sequences of operations
during which interrupts can not be accepted have long latency), how much
information must be stored and restored to preserve and restore processor
context, and the priority scheme of the system.

Table 6.6 illustrates which pipestage recognizes which exceptions. As
mentioned above, all instructions less advanced in the pipeline are flushed
from the pipeline to avoid altering state execution. Those instructions will be
restarted when the exception handler completes.

Once the exception is recognized, the address of the appropriate exception
vector will be the next instruction to be fetched. In general, the latency to the
exception handler is one instruction cycle, and at worst the longest stall cycle
in that system.
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INTERRUPTS IN THE R3051 FAMILY

The R3051 family features two types of interrupt inputs: synchronized
internally and non-synchronized, or direct.

The SInt(2:0) bus (Synchronized Interrupts) allow the system designer to
connect unsynchronized interrupt sources to the processor. The processor
includes special logic on these inputs to avoid meta-stable states associated
with switching inputs right at the processor sampling point. Because of this
logic, these interrupt sources have slightly longer latency from the SInt(n) pin
to the exception vector than the non-synchronized inputs. The operation of the
synchronized interrupts is illustrated in Figure 6.6.

Run Cycle Exception Vector

L e s NEZe e NIDZe p NEVZg

SIntn) \|‘\

Ttas' too
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Figure 6.6. Synchronized Interrupt Operation

The other interrupts, Int(5:3), do not contain this synchronization logic, and
thus have slightly better latency to the exception vector. However, the
interrupting agent must guarantee that it always meets the interrupt input set-
up and hold time requirements of the processor. These inputs are useful for
interrupting agents which operate off of the SysClk output of the R3041. The
operation of these interrupts is illustrated in Figure 6.7.

Run Cycle Exception Vector

Phi /x /—\ /_x
s TN T TN

m \

tao  ta1
Figure 6.7. Direct Interrupt Operation
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Since the interrupt exception is detected during the ALU stage of the
instruction currently in the processor pipeline, at least one run cycle must
occur between (or at) the assertion of the external interrupt input and the fetch
of the exception vector. Thus, if the processor is in a stall cycle when an
external agent sends an interrupt, it will execute at least one run cycle before
beginning exception processing. In this instance, there would be no difference
in the latency of synchronized and direct interrupt inputs.

All of the interrupts are level-sensitive and active low. They continue to be
sampled after an interrupt exception has occurred, and are not latched within
the processor when an interrupt exception occurs. It is important that the
external interrupting agent maintain the interrupt line until software
acknowledges the interrupt.
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Note that the R3081 incorporates a hardware floating point accelerator on-
chip. The MIPS architecture recommends that Int(3) be used to handle the
floating point interrupt; thus, the R3081 defaults to this interrupt assignment.
However, the R3081 Config register (which differs from the R3041 Config
register) can be used to change the assignment. In any case, itis recommended
that the system designer reserve one interrupt for the FPA.

Each of the eight interrupts (6 hardware and 2 software) can be individually
masked by clearing the corresponding bit in the Interrupt Mask field of the
Status Register. All eight interrupts can be masked at once by clearing the IEc
bit in the Status Register.

On the synchronized interrupts, care should be taken to allow at least two
clock cycles between the negation of the interrupt input and the re-enabling of
the interrupt mask for that bit.

The value shown in the interrupt pending bits of the Cause register reflects
the current state of the interrupt pins of the processor. These bits are not
latched (except for sampling from the data bus to guarantee that they are stable
when examined), and the masking of specific interrupt inputs does not mask
the bits from being read.

USING THE BrCond INPUTS

In addition to the interrupt pins themselves, many systems can use the
BrCond input port pins in their exception model. These pins can be directly
tested by software, and can be used for polling or fast interrupt decoding.

The R304 1 provides two synchronized BrCond inputs: SBrCond(3:2). Note
that BrCond(0), corresponding to the on-chip CPO, and BrCond(1), corresponding
to Co-Processor 1 (the FPA, present on the R3081), are not available to the
R3041 as user inputs. Instructions that use BrCond(1:0) will always seea'l’
on the R3041. Also note that the SBrCond(3:2) on the R3041 may be
programmed as output functions for the bus interface, as described in Chapter
5, in which case the SBrCond(3:2) input values are undefined. When
programmed to be inputs, the timing requirements of the SBrCond inputs are
illustrated in Figure 6.8. Since these inputs are synchronized by the R3041,
they do not need to be driven synchronously to the processor.

Similar to the interrupt inputs, at least one instruction must be executed (in
the ALU stage) of the instruction pipeline prior to software being able to detect
a change in one of these inputs. This is because the processor actually
captures the value of these flags one instruction prior to the branch on co-
processor instruction.

Run Cycle Capture BrCond BCzT/F Instruction

Phi NV Nn— NV ¥V ]

K™ N /| VS N/ ) S

SBrCond(n) #
2
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Figure 6.8. Synchronized BrCond Inputs




EXCEPTION HANDLING

CHAPTER 6

INTERRUPT HANDLING

The assertion of an unmasked interrupt input causes the R3051 family to
branch to the general exception vector at virtual address 0x8000_0080, and
write the ‘Int’ code in the Cause register. The IPfield of the Cause register shows
which of the six hardware interrupts are pending and the SW field in the Cause
register show which of the two software interrupts are pending. Multiple
interrupts can be pending at the same time, with no priority assumed by the
processor.

When an interrupt occurs, the KUp, IEp, KUc and IEc bits of the Status
register are saved in the KUo, IEo, KUp, IEp bit fields in the Status register,
respectively, asillustrated in Figure 6.9. The current kernel status bit KUc and
the interrupt bit IEc are cleared. This masks all the interrupts and places the
processor in kernel mode. This sequence will be reversed by the execution of
an rfe (restore from exception) instruction.

Exception Recognition

RFE Instruction
4000 drw 35
Figure 6.9. Kernel and Interrupt Status Being Saved on Interrupts

INTERRUPT SERVICING

In case of an hardware interrupt, the interrupt must be cleared by de-
asserting the interrupt line, which has to be done by alleviating the external
conditions that caused the interrupt. Software interrupts have to be cleared
by clearing the corresponding bits, SW(1:0), in the Cause register to zero.
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BASIC SOFTWARE TECHNIQUES FOR HANDLING

INTERRUPTS

Once an exception is detected the processor suspends the current task,
enters kernelmode, disables interrupts, and begins processing at the exception
vector location. The EPC is loaded with the address the processor will return
to once the exception event is handled.

The specific actions of the processor depend on the cause of the exception
being handled. The R3051 family classifies exceptions into three distinct
classes: RESET, UTLB Miss, and General.

Coming out of reset, the processor initializes the state of the machine. In
addition to initializing system peripherals, page tables, the TLB, and the
caches, software clears both STATUS and CAUSE registers, and initializes the
exception vectors.

The code located at the exception vector may be just a branch to the actual
exception code; however, in more time critical systems the instructions located
at the exception vector may perform the actual exception processing. In order
to cause the exception vector location to branch to the appropriate exception
handler (presuming that such a jump is appropriate), a short code sequence
such as that illustrated in Figure 6.10 may be used.

It should be noted the contents of register kO are not preserved. This is not
a problem for software, since MIPS compiler and assembler conventions
reserve kO for kernel processes, and do not use it for user programs. For the
system developer it is advised that the use of kO be reserved for use by the
exception handling code exclusively. This will make debugging and development
much easier.

.set noreorder # tells the assembler not to reorder the code
/*
** code sequence copied to UTLB exception vector
i
la k0,excep_utlb #address of utlb excp. handler
i kO # jump via reg kO
nop
/*
** code sequence copied to general exception vector
¥
la k0,excep_general #address of general excp. handler
i kO # jump via reg kO
nop

4000 drw 36

Figure 6.10. Code Sequence to Initialize Exception Vectors
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PRESERVING CONTEXT
The R3041 has the following four registers related to exception processing:

The Cause register

The EPC (exception program counter) register
The Status register

The BadVAddr (bad virtual address) register

LN

Typical exception handlers preserve the status, cause, and EPC registers in
general registers (or on the system stack). If the exception cause is due to an
address error, software may also preserve the bad virtual address register for
later processing.

Note that not all systems need to preserve this information. Since the R3051
family disables subsequent interrupts, it is possible for software to directly
process the exception while leaving the processor context in the CPO registers.
Care must be taken to insure that the execution of the exception handler does
not generate subsequent exceptions.

Preserving the context in general registers (and on the stack) does have the
advantage that interrupts can be re-enabled while the original exception is
handled, thus allowing a priority interrupt model to be built.

A typical code sequence to preserve processor context is shown in Figure
6.11. This code sequence preserves the context into an area of memory pointed
to by the kO kernel register. This register points to a block of memory capable
of storing processor context. Constants identified by name (such as R_EPC) are
used to indicate the offset of a particular register from the start of that memory
area.

It should be noted that this sequence for fetching the co-processor zero
registers is required because there is a one clock delay in the register value
actually being loaded into the general registers after the execution of the mfcO
instruction.

la k0,except_regs # fetch address of reg save array
sSW AT,R_AT*4(k0) # save register AT
SW v0,R_V0*4(k0) # save register vO
sw v1,R_V1*4(k0) # save register v1
mfcO v0,C0_EPC # fetch the epc register
mfcO v1,C0_SR # fetch the status register
sW v0,R_EPC*4(k0) # save the epc
mfcO v0,C0_CAUSE # fetch the cause register
sw v1,R_SR*4(k0) # save status register

I The above code is about the minimum required

> The user specific code would follow

*/
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Figure 6.11. Preserving Processor Context
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DETERMINING THE CAUSE OF THE EXCEPTION

The cause register indicates the reason the exception handler was invoked.
Thus, to invoke the appropriate exception service routine, software merely
needs to examine the cause register, and use its contents to direct a branch to
the appropriate handler.

One method of decoding the jump to an appropriate software routine to
handle the exception and cause is shown in Figure 6.12. Register vO contains
the cause register, and register kO still points to the register save array.

.set noreorder

SW a0,R_A0"4(k0) # save register a0

and v1,v0,EXCMASK # isolate exception code

Iw a0,cause_table(v1) # get address of interrupt routine.
swW al,R_A1*4(k0) # use delay slot to save register a1
i a0

sw k1,R_K1*4(sp) # save k1 register

.set reorder # re-enable pipeline scheduling

4000 drw 38

Figure 6.12. Exception Cause Decoding

The above sequence of instructions extracts the exception code from the
causeregister and uses that code to index into the table of pointers to functions
(the cause_table). The cause_table data structure is shown in Figure 6.13.

Each of the entries in this table point to a function for processing the
particular type of interrupt detected. The specifics of the code contained in
each of these functions is unique for a given application; all registers used in
these functions must be saved and restored.

int (*cause_table[16])() = {

int_extern, /* External interrupts */
int_tlomod, /* TLB modification error *f
int_tlbmiss, /* load or instruction fetch *f
int_tlbmiss, /* write miss */
int_addrerr, /* load or instruction fetch *
int_addrerr, /* write address error *
int_ibe, /* Bus error - Instruction fetch */
int_dbe, /* Bus error - load or store data Y/
int_syscall, /* SYSCALL exception */
int_breakpoint, /* breakpoint instruction */
int_trap, /* Reserved instruction *
int_cpunuse, /* coprocessor unusable */
int_trap, /* Arithmetic overflow */
int_unexp, /* Reserved */
int_unexp, /* Reserved ¥/
int_unexp /* Reserved */
12
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Figure 6.13. Exception Service Branch Table
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RETURNING FROM EXCEPTIONS

Returning from the exception routine is made through the rfe instruction.
When the exception first occurs the R3041 automatically saves some of the
processor context, the current value of the interrupt enable bit is saved into the
field for the previous interrupt enable bit, and the kernel/user mode context
is preserved.

The IE interrupt enable bit must be asserted (a one) for external interrupts
toberecognized. The KUkernel mode bit must be a zero in kernel mode. When
an exception occurs, external interrupts are disabled and the processor is
forced into kernel mode. When the rfe instruction is executed at completion of
exception handling, the state of the mode bits is restored to what it was when
the exception was recognized (presuming the programmer restored the status
register to its value when the exception occurred). This is done by “popping”
the old/previous/current KU and IE bits of the status register.

The code sequence in Figure 6.14 is an example of exiting an interrupt
handler. The assumption is that registers and context were saved as outlined
above.

This code sequence must either be replicated in each of the cause handling
functions, or each of them must branch to this code sequence to properly exit
from exception handling.

Note that this code sequence must be executed with interrupts disabled. If
the exception handler routine re-enables interrupts they must be disabled
when the CPO registers are being restored.

gen_excp_exit:

.set noreorder
# by the time we have gotten here
# all general registers have been
# restored (except of kO and v0)
# reg. AT points to the reg save array

Iw k0,C0_SR*4(AT) # fetch status reg. contents

w vO,R_VO*4(AT) # restore reg. vO

mtcO k0,CO0_SR # restore the status reg. contents

w k0,R_EPC*4(AT) # Get the return address

w AT,R_AT*4(AT) # restore AT in load delay

i kO # return from int. via jump reg.

rfe # the rfe instr. is executed in the
# branch delay slot

.set reorder
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Figure 6.14. Returning from Exception
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SPECIAL TECHNIQUES FOR INTERRUPT HANDLING

There are a number of techniques which take advantage of the R3051 family
architecture to minimize exception latency and maximize throughput in
interrupt driven systems. This section discusses anumber of those techniques.

Interrupt Masking

Only the six external and two software interrupts are maskable exceptions.
The mask for these interrupts are in the status register.

To enable a given external interrupt, the corresponding bit in the status
register must be set. The IEc bit in the status register must also be set. It
follows that by setting and clearing these bits within the interrupt handler that
interrupt priorities can be established. The general mechanism for doing this
is performed within the external interrupt-handler portion of the exception
handier.

The interrupt handler preserves the current mask value when the status
register is preserved. The interrupt handler then calculates which (if any)
external interrupts have priority, and sets the interrupt mask bit field of the
status register accordingly. Once this is done, the IEc bit is changed to allow
higher priority interrupts. Note that all interrupts must again be disabled
when the return from exception is processed.

Using BrCond For Fast Response

The R3051 family instruction set contains mechanisms to allow external or
internal co-processors to operate as an extension of the main CPU. Some of
these features may also be used in an interrupt-driven system to provide the
highest levels of response.

Specifically, the R3041 has external input port signals, the BrCond(3:2)
signals. These signals are used by external agents to report status back to the
processor. The instruction set contains instructions which allow the external
bits to be tested, and branches to be executed depending on the value of
BrCond.

An interrupt-driven system can use these BrCond signals, and the
corresponding instructions, to implement an input port for time-critical
interrupts. Rather than mapping an input port in memory (which requires
external logic), the BrCond signals can be examined by software to control
interrupt handling.

There are actually two methods of advantageously using this. One method
uses these signals to perform interrupt polling; in this method, the processor
continually examines these signals, waiting for an appropriate value before
handling the interrupt. A sample code sequence is shown in Figure 6.15.

The software in this system is very compact, and easily resides in the on-chip
cache of the processor. Thus, thelatency to the interrupt service routine in this
system is minimized, allowing the fastest interrupt service capabilities.

A second method utilizes external interrupts combined with the BrCond
signals. In this method, both the BrCond signal and one of the external
interrupt lines are asserted when an external event occurs. This configuration
allows the CPU to perform normal tasks while waiting for the external event.

For example, assume that that a valve must be closed and then normal
processing continued when BrCond(2) is asserted TRUE. The valve is
controlled by a register that is memory-mapped to address Oxaffe_0020 and
writing a one to this location closes the valve. The software in Figure 6.16
accomplishes this, using BrCond(2) to aid in cause decoding.

The number of cycles for a deterministic system is five cycles between the
time the interrupt occurred and it was serviced. Interrupts were re-enabled in
four additional cycles. Note that none of the processor context needs to be
preserved and restored for this routine.
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.set noreorder # prevents the assembler from
# reordering the code below

polling_loop: # branch to yourself until
bc2f polling_loop # BrCond(2) is asserted
nop

# Once BrCond(2) is asserted, fall through

# and begin processing the external event
fast_response_cp2:

# code sequence that would do the

# event processing

b poliing_loop # return to polling
4000 drw 41
Figure 6.15. Polling System Using BrCond
.set noreorder # prevents the assembler from reordering
# the code sequences below
/* This section of code is placed at the general exception
** vector location 0x8000_0080. When an external interrupt is
** asserted execution begins here.
*/
bc2t close_valve # test for emergency condition and
li ko,1 # jump to close valve if TRUE
la k0,gen_exp_hand # otherwise,
j ko # jump to general exc. handler
nop # and process less critical excepts.
/* This is the close valve routine - its sole purpose is to close the
** valve as quickly as possible. The registers 'k0’ and k1’ are reserved
** for kernel use and therefore need not be saved when a client or
** user program is interrupted. It should be noted that the value to
** write to the valve close register was put in reg k0’ in the
** branch delay slot above - so by the time we get here it is
** ready to output to the close register.
*/
close_valve:
la k1,0xaffe0020 # the address of the close register
SW k0,0(k1) # write the value to the close register
mfcO k0,CO_EPC # get the return address to cont processing
nop
i ko # return to normal processing
rfe # restore previous interrupt mask
# and kernel/user mode bits of the
# status register.
.set reorder
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Figure 6.16. Using BrCond for Fast Interrupt Decoding
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Nested Interrupts

Note that the processor does not automatically stack processor context
when an exception occurs; thus, to allow nested exceptions it is important that
software perform this stacking.

Most of the software illustrated above also applies to a nested exception
system. However, rather than using just one register (pointed to by k0) as a
save area, a stacking area must be implemented and managed by software.
Also, since interrupts are automatically disabled once an exception is detected,
the interrupt handling routine must mask the interrupt it is currently
servicing, and re-enable other interrupts (once context is preserved) through
the IEc bit.

The use of Interrupt Mask bits of the status register to implement an
interrupt prioritization scheme was discussed earlier. An analogous technique
can be performed by using an external interrupt encoder to allow more
interrupt sources to be presented to the processor.

Software interrupts can also be used as part of the prioritization of
interrupts. If the interrupt service routine desires to service the interrupting
agent, but not completely perform the interrupt service, it can cause the
external agent to negate the interrupt input but leave interrupt service pending
through the use of the SW bits of the Cause register.

Catastrophic Exceptions

There are certain types of exceptions that indicate fundamental problems
with the system. Although there is little the software can do to handle such
events, they are worth discussing. Exceptions such as these are typically
associated with faulty systems, such asin the initial debugging or development
of the system.

Potential problems can arise because the processor does not automatically
stack context information when an exception is detected. If the processor
context has not been preserved when another exception is recognized, the
value of the status, cause, and EPC registers are lost and thus the original task
can not be resumed.

An example of this occurring is an exception handler performing a memory
reference that results in a bus error (for example, when attempting to preserve
context). The bus error forces execution to the exception vector location,
overwriting the status, cause, and context registers. Proper operation cannot
be resumed.




EXCEPTION HANDLING

CHAPTER 6

HANDLING SPECIFIC EXCEPTIONS
This section documents some specific issues and techniques for handling
particular R3041 exceptions.

Address Error Exception

Cause

This exception occurs when an attempt is made to load, fetch, or store a word
thatis not aligned on a word boundary. Attempting toload or store a half-word
that isnot aligned on a half-word boundary will also cause this exception. The
exception also occurs in User mode if a reference is made to a virtual address
whose most significant bit is set (a kernel address). This exception is not
maskable.

Handling

The R3051 family branches to the General Exception vector for this
exception. When the exception occurs, the R3041 sets the ADEL or ADES code
in the Cause register ExcCode field to indicate whether the address error
occurred during an instruction fetch or a load operation (ADEL) or a store
operation (ADES).

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the branch instruction that preceded the exception-causing instruction and
sets the BD bit of the Cause register.

The R3041 saves the KUp, IEp, KUc, and IEc bits of the Status register in the
KUo, IEo, KUp, and IEp bits, respectively and clears the KUc and IEc bits.

When this exception occurs, the BadVAddr register contains the virtual
address that was not properly aligned or that improperly addressed kernel data
while in User mode. The contents of the VPN field of the Context and EntryHi
registers are undefined.

Servicing

Akernel should hand the executing process a segmentation violation signal.
Such an error is usually fatal although an alignment error might be handled
by simulating the instruction that caused the error.
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Breakpoint Exception

Cause
This exception occurs when the R3041 executes the BREAK instruction.
This exception is not maskable.

Handling

The R3041 branches to the General Exception vector for the exception and
sets the BP code in the CAUSE register ExcCode field.

The R3041 saves the KUp, IEp, KUc, and IEcbits of the Status register in the
KUo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

The EPCregister points at the BREAK instruction that caused the exception,
unless the instruction is in a branch delay slot: in that case, the EPC register
points at the BRANCH instruction that preceded the BREAK instruction and
sets the BD bit of the Cause register.

Service

The breakpoint exception is typically handled by a dedicated system routine.
Unused bits of the BREAK instruction (bits 25..6) can be used pass additional
information. To examine these bits, load the contents of the instruction
pointed at by the EPCregister. NOTE: If the instruction resides in the branch
delay slot, add four to the contents of the EPC register to find the instruction.

To resume execution, change the EPC register so that the R3041 does not
execute the BREAK instruction again. To do this, add four to the EPC register
before returning. NOTE: If a BREAK instruction is in the branch delay slot,
the BRANCH instruction must be interpreted in order to resume execution.
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Bus Error Exception

Cause

This exception occurs when the Bus Error input to the CPU is asserted by
external logic during a read operation. For example, events like bus time-outs,
backplane bus parity errors, and invalid physical memory addresses or access
types can signal exception. This exception is not maskable.

This exception is used for synchronously occurring events such as cache
miss refills. The general interrupt mechanism must be used to report a bus
error thatresults from asynchronous events such as a buffered write transaction.

Handling

The R3041 branches to the General Exception vector for this exception.
When exception occurs, the R3041 sets the IBE or DBE code in the CAUSE
register ExcCode field to indicate whether the error occurred during an
instruction fetch reference (IBE) or during a data load or store reference (DBE).

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the BRANCH instruction that preceded the exception-causing instruction
and sets the BD bit of the cause register.

The R3041 saves the KUp, IEp, KUc, and IEc bits of the Status register in the
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing
The physical address where the fault occurred can be computed from the
information in the CPO registers:

e If the Cause register’s IBE code is set (showing an instruction fetch
reference), the virtual address resides in the EPC register.

¢ Ifthe Causeregister's DBE exception code is set (specifying a load or store
reference), the instruction that caused the exception is at the virtual
address contained in the EPC register (if the BD bit of the cause register
is set, add four to the contents of the EPC register). Interpret the
instruction to get the virtual address of the load or store reference and
then use the TLBProbe (tlbp) instruction and read EntryLo to compute the
physical page number.

Akernel should hand the executing process a bus error when this exception
occurs. Such an error is usually fatal.
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Co-processor Unusable Exception

Cause

This exception occurs due to anattempt to execute a co-processor instruction
when the corresponding co-processor unit has not been marked usable (the
appropriate CU bit in the status register has not been set). For CPO
instructions, this exception occurs when the unit has not been marked usable
and the process is executing in User mode: CPO is always usable from Kernel
mode regardless of the setting of the CPO bit in the status register. This
exception is not maskable.

Handling

The R3041 branches to the General Exception vector for this exception. It
sets the CPU code in the CAUSE register ExcCode field. Only one co-processor
can fail at a time.

The contents of the causeregister’s CE (Co-processor Error) field show which
of the four co-processors (3,2,1, or 0) the R304 1 referenced when the exception
occurred.

The EPC register points at the co-processor instruction that caused the
exception, unless the instruction is in a branch delay slot: in that case, the EPC
register points at the branch instruction that preceded the co-processor
instruction and sets the BD bit of the Cause register.

The R3041 saves the KUp, IEp, KUc, and IEc bits of the status register in the
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing .

To identify the co-processor unit that was referenced, examine the contents
of the Cause register’s CE field. If the process is entitled to access, mark the
co-processor usable and restore the corresponding user state to the co-
processor.

If the process is entitled to access to the co-processor, but the co-processor
is known not to exist or to have failed, the system could interpret the co-
processor instruction. If the BD bit is set in the Cause register, the BRANCH
instruction must be interpreted; then, the co-processor instruction could be
emulated with the EPC register advanced past the co-processor instruction.

If the process is not entitled to access to the co-processor, the process
executing at the time should be handed an illegal instruction/privileged
instruction fault signal. Such an error is usually fatal.
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Interrupt Exception

Cause

This exception occurs when one of eight interrupt conditions (software
generates two, hardware generates six) occurs.

Each of the eight external interrupts can be individually masked by clearing
the corresponding bit in the IntMask field of the status register. All eight of the
interrupts can be masked at once by clearing the IEc bit in the status register.

Handling

The R304 1 branches to the General Exception vector for this exception. The
R3041 sets the INT code in the Cause register’s ExcCode field.

The IP field in the Cause register show which of six external interrupts are
pending, and the SW field in the cause register shows which two software
interrupts are pending. More than one interrupt can be pending at a time.

The R3041 saves the KUp, IEp, KUc, and IEc bits of the status register in the
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing

If software generates the interrupt, clear the interrupt condition by setting
the corresponding Cause register bit (SW1:0) to zero.

If external hardware generated the interrupt, clear the interrupt condition
by alleviating the conditions that assert the interrupt signal.
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Overflow Exception

Cause
This exception occurs when an ADD ADDI, SUB, or SUBI instruction results
in two’s complement overflow. This exception is not maskable.

Handling

The R3041 branches to the General Exception vector for this exception. The
R3041 sets the OV code in the CAUSE register.

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the Branch instruction that preceded the exception-causing instruction and
sets the BD bit of the CAUSE register.

The R3041 saves the KUp, IEp, KUc, and IEc bits of the status register in the
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing

A kernel should hand the executing process a floating point exception or
integer overflow error when this exception occurs. Such an error is usually
fatal.
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Reserved Instruction Exception

Cause

This exception occurs when the R304 1 executes an instruction whose major
opcode (bits 31..26) is undefined or a Special instruction whose minor opcode
(bits 5..0) is undefined.

This exception provides a way to interpret instructions that might be added
to or removed from the R3041 processor architecture.

Handling

The R3041 branches to the General Exception vector for this exception. It
sets the RI code of the Cause register’s ExcCode field.

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the Branch instruction that preceded the reserved instruction and sets the
BD bit of the CAUSE register.

The R3041 saves the KUp, IEp, KUc, and IEc bits of the status register in the
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing

If instruction interpretation is not implemented, the kernel should hand the
executing process an illegal instruction/reserved operand fault signal. Such
an error is usually fatal.

An operating system can interpret the undefined instruction and pass
control to a routine that implements the instruction in software. If the
undefined instruction is in the branch delay slot, the routine that implements
the instruction is responsible for simulating the branch instruction after the
undefined instruction has been “executed”. Simulation of the branch instruction
includes determining if the conditions of the branch were met and transferring
control to the branch target address (if required) or to the instruction following
the delay slot if the branch is not taken. If the branch is not taken, the next
instruction’s address is [EPC] + 8. If the branch is taken, the branch target
address is calculated as [EPC] + 4 + (Branch Offset * 4).

Note that the target address is relative to the address of the instruction in
the delay slot, not the address of the branch instruction. Refer to the
description of branch instruction for details on how branch target addresses
are calculated.
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Reset Exception

Cause
This exception occurs when the R3041 RESET signal is asserted and then
de-asserted.

Handling

The R3041 provides a special exception vector for this exception. The Reset
vector resides in the R3041’'s un-mapped and un-cached address space;
Therefore the hardware need not initialize the Translation Lookaside Buffer
(TLB) or the cache to handle this exception. The processor can fetch and
execute instructions while the caches and virtual memory are in an undefined
state.

The contents of all registers in the R304 1 are undefined when this exception
occurs except for the following:

¢ The SWc, KUc, and IEc bits of the Status register are cleared to zero.
The BEV bit of the Status register is set to one.
The TS bit of the Status register is frozen at one.
The Config register is unlocked and initialized as described in Chapter 5.
The PortSize register is unlocked and initialized according to the Reset
width of Boot Prom selected at Reset, as described in Chapter 5.
¢ The BusCtrl is configured for R3051 compatible operation, as described

in Chapter 5.
¢ The Count register is initialized to 0.
¢ The Compare register is initialized to Oxffff_ffff.

e o o o

Servicing

The reset exception is serviced by initializing all processor registers, co-
processorregisters, the caches, and the memory system. Typically, diagnostics
would then be executed and the operating system bootstrapped, including
setting of the PortSize, Config, and BusCtrl registers. The reset exception
vector is selected to appear in the uncached, un-mapped memory space of the
machine so that instructions can be fetched and executed while the cache and
virtual memory system are still in an undefined state.
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System Call Exception

Cause
This exception occurs when the R3041 executes a SYSCALL instruction.

Handling

The R3041 branches to the General Exception vector for this exception and
sets the SYS code in the CAUSE register’s ExcCode field.

The EPC register points at the SYSCALL instruction that caused the
exception, unless the SYSCALL instruction is in a branch delay slot: in that
case, the EPC register points at the branch instruction that preceded the
SYSCALL instruction and the BD bit of the CAUSEregister is set.

The R3041 saves the KUp, IEp, KUc, and IEc bits of the status register in the
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing

The operating system transfers control to the applicable system routine. To
resume execution, alter the EPC register so that the SYSCALL instruction does
not execute again. To do this, add four to the EPC register before returning.
NOTE: If a SYSCALL instruction is in a branch delay slot, the branch
instruction must be interpreted in order to resume execution.
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The IDT R3051 family utilizes a simple, flexible bus interface to its external
memory and I/O resources. The interface uses a single, multiplexed 32-bit
address and data bus and a simple set of control signals to manage read and
write operations. The R3041 bus interface is superset compatible with the
R3051 family. Thus the R3041 can use the same interface chips, state
machines, and board designs as the rest of the R3051 family. In addition, to
the R3051 family bus, the R3041 adds interface options which are capable of
reducing system costs. The R304 1 adds new control signals and timing options
which can simplify memory and I/O controllers. In addition, the memory sub-
region CPO Port Size register allows preassigned memory blocks the capability
of handling 16-bit and 8-bit interfaces as well as the R3051 family compatible
32-bit interface. Complementing the basic read and write interface is a DMA
Arbiter interface which allows an external agent to gain control of the memory
interface to transfer data.

The R3041 supports the following types of operations on its interface:

¢ Read Operations: The processor executes an instruction fetch or a data
load operation as the result of either a cache miss or an uncacheable
reference. The read interface is designed to accommodate a wide variety
of memory system strategies. There are two primary types of reads
performed by the processor, bursts and single datumreads. An additional
type for 16-bit and 8-bit interfaces is also defined, called mini-bursts:

Burst reads (quad word, octi halfword, or 16 (sexdeci) byte reads
corresponding to 32-bit, 16-bit, and 8-bit interfaces, respectively) occur
when the processor requests a contiguous block of four words from
memory. Bursts occur in response to instruction cache misses, and will
occur inresponse to a data cache missif the DBlockRefill option in the CPO
Cache Configuration register is enabled. The processor incorporates an
on-chip 4-word deep read buffer which may be used to “queue up” theread
response before passing it through to the high-bandwidth cache and
execution core. Read buffering is appropriate in systems which require
wait states between adjacent datums of a block read or in interfacing to
memory systems narrower than 32-bits wide. On the other hand, systems
which use high-bandwidth memory techniques (such as page mode,
static column, nibble mode, or memory interleaving) can effectively
bypass the read buffer by providing words of the block at the processor
clock rate. Note that the choice of burst vs. read buffering is independent
of the initial latency of the memory; that is, burst mode can be used even
if multiple wait states are required to access the first datum of the block.

Single datum reads (Single word, halfword, or byte reads corresponding
to 32-bit, 16-bit, and 8-bitinterfaces, respectively) are used for uncacheable
references (such as for I/0 or boot code) and will be used in response to
a 32-bit interface data cache miss if the DBlockRefill option in the CPO
Cache Configuration register is disabled. A single datum reads returns
one unit of data per read transaction. The processor is capable of retiring
a single datum read in as few as two clock cycles.




CHAPTER 7 INTERFACE OVERVIEW

Mini-burst reads are a type of read that is in addition to the two primary
read types of burst and single datum reads. Only the memory sub-regions
using 16-bit and 8-bit interfaces are capable of mini-burst reads. For a
16-bit interface, a mini-burst consists of two halfwords returned within
the same read transaction. For an 8-bit interface, a mini-burst consists
of two, three, or four bytes returned within the same read transaction.

The read interface of the R3041 is described in detail in Chapter 8.

e Write Operations: The R3041 utilizes an on-chip write buffer to isolate
the execution core from the speed of external memory during write
operations. The write interface of the R3041 is designed to allow a variety
of write strategies, from fast 2-cycle write operations through multiple
wait-state writes to 32-bit, 16-bit, and 8-bit memory sub-regions. There
is a single primary type of write:

Single datum writes (word, halfword, or byte writes corresponding to 32-
bit, 16-bit and 8-bit interfaces, respectively) are used in response to a data
cache miss on the 32-bit interface or possibly for an uncacheable data
reference on any of the interface sizes. The processor is capable of retiring
a single datum write in as few as two clock cycles.

Mini-burst writes are a type of write that is in addition to the primary
write type of single datum writes. Only the memory sub-regions using 16-
bit and 8-bit interfaces are capable of mini-burst writes. For a 16-bit
interface, a mini-burst consists of two halfwords sent within the same
write transaction. For an 8-bit interface, a mini-burst consists of two,
three, or four bytes sent within the same write transaction.

The R3041 supports the use of fast page mode writes by providing an
outputindicator, WrNear, to indicate that the current write may be retired
using a page mode access. This facilitates the rapid “flushing” of the on-
chip write buffer to main memory, since the majority of processor writes
will occur within a localized area of memory.

The write interface is described in detail in Chapter 9.

¢ DMA Operations: The R3041 includes a DMA arbiter which allows an
external agent to gain full control of the processor read and write interface.
DMA is useful in systems which need to move significant amounts of data
within memory (e.g. BitBLT operations) or move data between memory
and I/0 channels.

The R3041 utilizes a very simple handshake to transfer control of its
interface bus. This handshake is described in detail in Chapter 10.
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MULTIPLE OPERATIONS

It is possible for the R3051 family interface to have multiple activities
pending. Specifically, there may be data in the write buffer, a read request (e.g.
due to a cache miss), a DMA mastership request, and an ongoing transaction
all occurring simultaneously.

In establishing the order in which the requests are processed, the R3041 is
sensitive to possible conflicts and data coherency issues as well as to
performance issues. For example, if the on-chip write buffer contains data
which has not yet been written to memory, and the processor issues a read
request to the target address of one of the write buffer entries, then the
processor strategy must insure that the read request is satisfied by the new,
current value of the data.

There are two levels of priority: that performed by the CPU engine internal
to the R3041, and that performed by the bus interface unit. The internal
execution engine can be viewed as making requests to the bus interface unit.
In the case of multiple requests in the same clock cycle, the CPU core will:

1: Perform the data request first. That is, if both the data cache and
instruction cache miss in the same clock cycle, the processor core will
request a read to satisfy the data cache first. Similarly, a write buffer full
stall will be processed before an instruction cache miss.

2: Perform a read due to an instruction cache miss.

This prioritization is important in maintaining the precise exception model
of the MIPS architecture. Since data references are the result of instructions
which entered the pipeline earlier, they must be processed (and any exceptions
serviced) before subsequent instructions (and their exceptions) are serviced.

Once the processor core internally decides which type of request to make to
the bus interface unit, it then presents that request to the bus interface unit.

Thus, in the R3041 Bus Interface Unit, multiple operations are serviced in
the following order:

Ongoing transactions are completed without interruption.
DMA requests are serviced.

Instruction cache misses are processed.

Pending writes are processed.

Data cache misses or uncacheable reads are processed.

AL

This service order has been designed to achieve maximum performance,
minimize complexity, and solve the data coherency problem possible in write
buffer systems.

This order assumes that the write buffer does not contain instructions which
the processor may wish to execute. The processor does not write directly into
the instruction cache: store instructions generate data writes which may
change only the data cache and main memory. The only way in which an
instruction reference may reside in the write buffer is in the case of self
modifying code, generated with the caches swapped. However, in order to
unswap the caches, an uncacheable instruction which modifies CPO must be
executed; the fetch of this instruction would cause the write buffer to be flushed
to memory. Thus, this ordering enforces strong ordering of operations in
hardware, even for self modifying code. Of course, software could perform an
uncacheable reference to flush the write buffer at any time, thus achieving
memory synchronization with software.
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EXECUTION ENGINE FUNDAMENTALS

This section describes the fundamentals of the processor interface and its
interaction with the execution core. These fundamentals will help to explain
the relationship between design trade-offs in the system interface and the
performance achieved in R3051 family systems.
Execution Core Cycles

The R3051 family execution core utilizes many of the same operation
fundamentals as does the R3000A processor. Thus, much of the terminology
used to describe the activity of the R3051 family is derived from the terminology
used to describe the R3000A. In many instances, the activity of the execution
core is independent of that of the bus interface unit.

Cycles

A cycle is the basic timing reference of the R3051 family execution core.
Cycles in which forward progress is made (the processor pipeline advances) are
called Run cycles. Cycles in which no forward progress occurs are called Stall
cycles. Stall cycles are used for resolving exigencies such as cache misses,
write stalls, and other types of events. All cycles can be classified as either run
or stall cycles.

Run Cycles

Run cycles are characterized by the transfer of an instruction into the
processor execution core, and the optional transfer of data into or out of the
execution core. Thus, each runcycle can be thought of ashaving aninstruction
and data, or ID, pair.

There are actually two types of run cycles: cache run cycles, and refill run
cycles. Cache run cycles (typically referred to as just run cycles) occur while
the execution core is executing out of its on chip cache; these are the principal
execution mechanism.

Refill run cycles, referred to as streaming cycles, occur when the execution
core is executing instructions as they are brought into the on-chip cache. For
the R3051 family, streaming cycles are defined as cycles in which data is
brought out of the on-chip read buffer into the execution core (rather than
defining them as cycles in which data is brought from the memory interface to
the read buffer).

Stall Cycles

There are three types of stall cycles:

Wait Stall Cycles. These are commonly referred to simply as stall cycles.
During wait stall cycles, the execution core maintains a state consistent
with resolving a stall causing event. No cache activity will occur during
wait stalls.

Refill Stall Cycles. These occur only during memory reads, and are used
to transfer data from the on-chip read buffer into the caches.

Fixup Stall Cycles. Fixup cycles occur during the final cycle of a stall; that
is, one cycle before entering a run cycle or entering another stall. During
the final fixup cycle (the one which occurs before finally re-entering run
operation), the Instruction/Data (ID) pair which should have been
processed during the last run cycle is handled by the processor. The fixup
cycle is used to restart the processor and co-processor pipelines, and in
general to fixup conditions which caused the stall.
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The basic causes of stalls include:

Read Busy Stalls: If the processor is utilizing its read interface, either to
process a cache miss or an uncacheable reference, then it will be stalled
until the read data is brought back to the execution core.

Write Busy Stalls: If the processor attempts to perform a store operation
while the on-chip write buffer is already full, then the processor will stall
until a write transaction is begun on the interface to free up room in the
write buffer for the new address and data.

Multiply/Divide Busy Stalls: If software attempts to read the result
registers of the integer multiply/divide unit (the HIl and LO registers) while
a multiply or divide operation is underway, the processor execution core
will stall until the results are available.

Micro-TLBFill Stallst: These stalls can occur when an instruction translation
misses in the instruction TLB cache (the micro-TLB, which is a two-entry
cache of the main TLB used to translate instruction references). When
such an event occurs, the execution core will stall for one cycle, in order
torefill the micro-TLB from the main TLB. Since thisis a single-cycle stall,
it is of necessity a fixup cycle.

Multiple Stalls

Multiple stalls are possible whenever more than one stall initiating event

occurs within a single run cycle. An example of such activity is when a single
cycle results in both an instruction cache miss and a data cache miss.

The most important characteristic of any multiple stall cycle is the validity

of the Instruction/Data (ID) pair processed in the final fixup cycle. The R3041
execution core keeps track of nested stalls to insure that orderly operation is
resumed once all of the stall causing events are processed.

For the general case of multiple stalls, the service order is:
1: Micro-TLB Misst and Partial Word Store

2: Data Cache Miss or Write Busy Stall

3: Instruction Cache Miss

4: Multiply/Divide Unit Busy

TMicrb-TLB stalls will not occur in the R3041, which does not include an on-chip
TLB.
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PIN DESCRIPTION

This section describes the signals used in the above interfaces. More detail
on the actual use of these pins is found in other chapters. Note that many of
the signals have multiple definitions which are de-multiplexed either by the
ALE signal or the Rd and Wr control signals. Also note that signals indicated
with an overbar are active low.

System Bus Interface Signals

These signals are used by the bus interface to perform read and write
operations.

Address and Data Path
A/D (31:0) I/0

Multiplexed Address/Data Bus: A 32-bit, time multiplexed bus which
indicates the desired address for a bus transaction in one cycle, and which
is used to transmit data between this device and external memory
resources on other cycles.

Bus transactions on this bus are logically separated into two phases:
during the first phase, information about the transfer is presented to the
memory system to be captured using the ALE output. This information
consists of:

Address(31:4): The high-order address for the transfer is presented.

BE(3:0): These strobes indicate which bytes of the 32-bit bus will
beinvolvedin the transfer. BE(3)indicates that AD(31:24)
is used; BE(2) indicates that AD(23:16) is used; BE(1)
indicates that AD(15:8) is used; and BE(0) indicates that
AD(7:0) is used. They are valid for the 32-bit port size.
For 16-bit or 8-bit port sizes, BE(3:0) are not valid,
however, they do indicate which bytes will be used
sometime during the (multi-datum) transaction. BE(3:0)
can also be masked (held in-active) during reads by
disabling the BE Control read mask bit in the CPO Bus
Control register.

Data(31:0): During write cycles, the bus contains the data to be

stored and is driven from the internal write buffer. On
read cycles, the bus receives the data from the external
resource, in either a single datum transaction, mini-
burst, or burst and places the data into the on-chipread
buffer.
Operations using less than 32-bits of data use the data
lines as described in Chapter 2 Table 2.3 describing
Byte Addressing. The byte addressing in summary
requires that 16-bit interfaces use the bytes associated
with address offsets O and 1, i.e., D(31:16) for big endian
and D(15:0) for little endian. 8-bit interfaces use the
byte associated with address offset 0, i.e., D(31:24) for
big endian and D(7:0) for little endian. These byte lane
assignments are independent of the Reverse Endianess
control bit in the CPO Status register.
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Addr(3:0) o

Dedicated Address Bus. The remaining least significant bits of the
transfer address are presented directly on these outputs and indicate
which word, halfword, or byte is currently expected by the processor.

Specifically, for 32-bit interfaces, Addr(3:2) presents either the address
bits for the single word to be transferred (single word reads or writes) or
functions as a two bit counter starting at '00' for burst (quad word) read
operations. Addr(1:0) are undefined for accesses to 32-bit memory sub-
regions.

For 16-bit interfaces, Addr(3:1) presents either the address bits for the
single halfword to be transferred (single halfword reads or writes), or
functions as a three bit counter starting at '000' for burst (octi halfword)
read, and mini-burst (double halfword) read or write operations. Addr(0)
is undefined for accesses to 16-bit memory sub-regions.

For 8-bit interfaces, Addr(3:0) presents either the address bits for the
single byte to be transferred (single byte reads or writes), or functions as
a four bit counter for burst (16 byte) read, and mini-burst (double, tri, or
quad byte) read or write operations.

The R3041 Addr(1:0) output pins are designated in the R3051 as the no-
connect Rsvd(1:0) pins respectively.

Primary Read and Write Control Signals
ALE o

Address Latch Enable: This active high output signal is used to indicate
thatthe A/Dbus contains valid address information for the bus transaction.
Typically itis connected directly to thelatch enable of transparent latches.
Latches are typically used to de-multiplex the address and Byte Enable
information from the A/D bus.

DataEn o

Data Input Enable: This active low output signal indicates that the A/
D bus is no longer being driven by the processor during read cycles, and
thus the external memory system may enable the drivers of the memory
system onto this bus without having a bus conflict occur. During write
cycles, or when no bus transaction is occurring, this signal is negated.
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Burst/
WrNear (0]

Burst Transfer: On read transactions, this active low output signal
indicates that the current bus read isrequesting a block of four contiguous
words (or eight halfwords, or sixteen bytes) from memory (a burst read).
This signal is asserted only in read cycles due to cache misses; it is
asserted for all I-Cache missread cycles, and for D-Cache missread cycles
if selected with the CPO Cache Configuration register.

Write Near: On write transactions, this active low output signal tells the
external memory system that the bus interface unit is performing back-
to-back write transactions to an address within the same 256 entry
memory “page” as the prior write transaction. This signal is useful in
memory systems which employ page mode or static column DRAMS.

Rd o

Read: An active low output signal which indicates that the current bus
transaction is a read.

Wr (o)

Write: An active low output signal which indicates that the current bus
transaction is a write.

Ack I

Acknowledge: On read transactions, this active low input indicates the
internal R3041 execution core can begin to process the data in the read
buffer and that the read transaction is near completion.

On write transactions, this active low input indicates to the R3041 that
the memory system has sufficiently processed the write data, and that the
processor may either advance to the next write data in a mini-burst write
and/or that the processor may advance to the next bus transaction.

RACEn I

Read Buffer Clock Enable: An active low input which indicates to the
R3041 that the memory system has placed valid data on the A/D bus, and
that the processor may move the data into the on-chip Read Buffer.

BusError I

Bus Error: An active low input which terminates a bus transaction due
to an external bus error. This signalis only sampled duringread and write
operations. If the bus transaction is a read operation, then the CPU will
also take a bus error exception.
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Secondary Read and Write Control Signals
BE16(1:0) O

Byte Enable Strobes for 16-Bit Ports: These active low outputs are the
byte enable strobes for 16-bit ports. If BE16(1) is asserted then the most
significant byte (D(31:24) for big endian or D(15:8) for little endian) is
going to be used in this transaction by the R3041. If BE16(0) is asserted
then the least significant byte (D(23:16) for big endian or D(7:0) for little
endian) is going to be used in this transaction by the R3041. BE16(1:0)
can also be masked (held in-active) during reads by disabling the BE16
Control read mask in the CPO Bus Control register. BE16(1:0) is not
necessarily valid for 32-bit or 8-bit ports.

The R3041 BE16(1:0) output pins are designated in the R3051 as the no-
connect Rsvd(3:2) pins, respectively.

Last (o)

Last Datum in Mini-Burst. This active low output indicates that the
last datum of a single datum, mini-burst or burst is being read or that
the last datum of a single datum or mini-burst is being written. It
goes active with Rd or Wr for single datum reads or writes, after the
next to last RACEn is sampled for multiple datum reads, and after the
next to last Ack is sampled for mini-burst writes. Last de-asserts
when Rd or Wr de-asserts.

The R3041 Last output pin is designated in the R3051 as the Diag(0)
output pin.

MemStrobe o

Memory Strobe: This active low output pulses low for each datum read
or written. It can be used either as aread strobe, write strobe, data strobe
for single datum (non-burst) I/O ports or for a write strobe (burst and non-
burst) for SRAM. It can be active for reads, writes, or both depending on
the settings in MemStrobe Control bits in the CPO Bus Control register as
described in Chapter 5. After reset, MemStrobe is only active for writes.

The R3041 MemStrobe output pin is designated in the R3051 as the
BrCond(0) input pin.
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I0Strobe/ (o)
SBrCond(3) I

The SBrCond(3) pin is used as an input when the SBrCond(3:2) In control
bitin the CPO Bus Control register is asserted. When de-asserted, the pin
becomes the I0Strobe output.

Input/Output Strobe: This active low output asserts on the first falling
edge of SysClk (1 clock) after ALE de-asserts. It asserts relatively late in
the cycle so that addresses and control lines are properly setup. It can be
active for reads, writes, or both depending on the setting of the IOStrobe
Control bits in the CPO Bus Control register.

Note that since this signal pin can only become an output after boot PROM
initialization has taken place, it cannot be used to control the boot PROM
itself. Typical uses include I/O chip select gating, an address mux select
for DRAMS, or a data strobe for 1/0.

Branch Condition Port 3: This input port to the processor can use the
Branch on Co-Processor Condition instructions to test its polarity. The
SBrCond(8) input is synchronized by the R3041, and thus may be driven
by an asynchronous source.

ExtDataEn/ (o)
SBrCond(2) I

The SBrCond(2) pin is used as an input when the SBrCond(3:2) In Control
bitin the CPO Bus Control register is asserted. When de-asserted, the pin
becomes the ExtDataEn output.

Extended Data Enable: This active low output asserts active low on the
first rising edge of SysClk after ALE de-asserts (1/2 clock later). It is
extended in that it de-asserts 1/2 clock after Rd de-asserts. ExtDataEn
provides extra hold time for data sampling (especially on writes) or for the
IOStrobe (if ExtDataEn is used as an extended read/write line. It can be
active forreads, writes, or both depending on the setting of the ExtDataEn
Control bits in the CPO Bus Control register.

Note that since this signal pin can only become an output after boot PROM
initialization has taken place, it cannot be used to control the boot PROM
itself. Typical usesinclude a write enable control line for data transceivers,
a write line for I/0, or an address mux select for DRAMS.

Branch Condition Port 2: This input port to the processor can use the
Branch on Co-Processor Condition instructions to test its polarity. The
SBrCond(2) input is synchronized by the R3041, and thus may be driven
by an asynchronous source.
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Status Information and Diagnostics
Diag (0]

Diagnostic Pin: This pin is useful in the initial debug of R3041 based
systems. During the address phase of the read transaction, this output
indicates whether the read is a result of a cache miss (high) or an
uncacheable reference (low).

During the remainder of the transfer, this output indicates whether the
read is an instruction (high) or a data reference (low).

The Diag pin is undefined during write transactions.

The R3041 Diag output pin is designated in the R3051 as the Diag(1)
output pin.

TriState I

Tri-State All Outputs: An active low input to the device which requests
that the processor tri-state all of its outputs. In addition to the outputs
which are tri-stated during a DMA operation, SysClk, TC, and BusGnt are
also tri-stated. TriState can be used for in-circuit testing and emulation
during board production manufacture.

The R3041 TriState input pin is designated in the R3051 as the no-
connect Rsvd(4) pin.

DMA Arbiter Interface

These signals are involved when the processor exchanges bus mastership
with an external agent.

BusReq I

DMA Arbiter Bus Request: An active low input to the device which
requests that the processor tri-state its bus interface signals so that they
may be driven by an external master. The negation of this input releases
the bus back to the R3041.

BusGnt (0]

DMA Arbiter Bus Grant: An active low output from the R3041 used to
acknowledge that a BusReq has been granted, and that the bus is
relinquished to the external master. When the DMAProtocol bit in the CPO
Bus Control register is not selected, the DMA device has the highest
priority. When the DMAProtocol option is selected, a handshake is
invoked that allows the CPU to have an equal priority with the DMA device.




CHAPTER 7

INTERFACE OVERVIEW

Interrupt Interface

Chapter 5 discusses the exception model of the R3041.

SInt(2:0)
Int(5:3) I

Processor Interrupt: These signals are functionally the same as the
Int(5:0) signals of the R3000. The Synchronized interrupt inputs are
internally synchronized by the R3041, and thus may be generated by an
asynchronous interrupt agent; the direct interrupts must be externally
synchronized by the interrupt agent.

Reset, Clocking, and Timer

Chapter 4 discusses the internal timer supplied by the R3041. Chapter 11
discusses the Reset and Clock Interface.

ClkIn I

Master clock Input: This is a double frequency input used to control the
timing of the processor.

SysClk o

System Reference Clock: An output from the processor which reflects
the clock used to perform bus interface functions. This clock is used to
control state transitionsin the read buffer, write buffer, memory controller,
and bus interface unit. It should be used as a timing reference by the
external memory system. There is no specific guaranteed AC timing
relationship between the ClkIn input clock and the output clock SysClk.

o

Terminal Count: An active low output from the processor which pulses
low for a minimum of 1.5 clocks whenever the CPO Timer register equals
the CPO Compare register. Thus TC can be used to initiate a DRAM
refresh. If the TC_Ack option is selected in the CPO Bus Control register,
then TC remains low until the CPO Compare register is written. Thus with
the TC_Ack option selected, TC can be used to implement a real-time clock
by connecting it to an interrupt pin.

The R3041 TC output pin is designated in the R3051 as the BrCond(1)
input pin.

Reset I

Master Processor Reset: This active low input signal initializes the
processor. Optional features of the processor are established during the
last cycle of reset using the reset configuration mode inputs.
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INTRODUCTION

The R3041 read protocol has been designed to interface to a wide variety of
memory and I/0O devices. Particular care has been taken in the definition of
the control signals available to the system designer. These signals allow the
system designer to implement a memory interface appropriate to the cost and
performance goals of the end application.

This chapter includes both an overview of the read interface and provides
detailed timing diagrams of the read interface.

TYPES OF READ TRANSACTIONS

The majority of the execution engine read requests are never seen at the
memory interface, but rather are satisfied by the internal cache resources of
the processor. Only in the cases of uncacheable references or cache misses do
read transactions occur on the bus.

Quad word reads occur only in response to cache misses. All instruction
cache misses are processed as quad word reads; data cache misses may be
processed as quad word reads or single word reads, depending on the
programming selection madein the CPO Cache Configuration register. Uncached
instruction fetches or data references are processed as a single word or partial
word read.

In processing multiple item reads, there are two parameters of interest. The
first parameter is the initial latency to the first data item of the read. This
latencyis influenced by the overall system architecture and the type of memory
system addressed: time required for address decoding, and perform bus
arbitration, memory pre-charge requirements, and memory control
requirements, as well as memory access time. The initial latency is the only
parameter of interest in single datum reads when the memory port is
sufficiently wide.

The second parameter of interest in burst and mini-burst transfers is the
repeat rate of data; that is, time required for subsequent data items to be
processed back to the processor. Factors which influence the repeat rate
include the memory system architecture, the types and speeds of devices used,
and the sophistication of the memory controller: memory interleaving, the use
of page or static column mode, and faster devices all serve to increase the repeat
rate (minimize the amount of time between adjacent words).

The R3041 has been designed to accommodate a wide variety of memory
system designs, including no wait state operations (first word available in two
cycles) and true burst operation (adjacent words every clock cycle), through
simpler, slower systems incorporating many bus wait states to the first data
item and multiple clock cycles between adjacent data items, including the
ability to process quad word reads as multiple data item reads of a narrow
memory subsystem.

The R3041 has a memory sub-region Port Size configuration CPO register,
which allows individual memory blocks to be configured to different size ports.
When using a memory block that is configured as a 32-bit port, the R3041 uses
single word reads or quad block reads as described above. When using a
memory block that is configured as a 16-bit port, the R3041 uses single
halfword reads, dual halfword mini-burst reads, or octi halfword burst reads.
When using a memory block that is configured as an 8-bit port, the R3041 uses
single byte reads, dual, tri or quad byte mini-burst reads, or 16 (sexdeci) byte
long burst block reads.
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READ INTERFACE SIGNALS
Theread interface uses the signalslisted below. Signal namesindicated with
an overbar are active low.

Rd

A/D

ALE

o

Read Transaction: This active low output indicates that a read operation
is occurring. It will assert when the R3041 initiates a read transaction.
It will de-assert automatically after all the data has been returned.

(31:0) I/0

Multiplexed Address/Data Bus: Duringread operations, thisbusis used
to transmit the read target address to the memory system, and is used by
the memory system to return the required data back to the processor. Its
function is de-multiplexed by using other control signals. The address
phase is at the beginning of the bus transaction and is 1/2 clock long if
the ExtAddrHold reset configuration mode is not selected. If the ExtAddr
Hold mode is selected, then the address portion is 1 clock long. The data
phase occurs during the remaining portion of the read.

During the address portion of the read transaction, this bus contains the
following:

Address(31:4) The upper 28 bits of the read address are presented
on A/D (31:4).

BE(3:0) Thebyte strobes for theread transaction are presented
on A/D(3:0). They are only valid for the 32-bit port
size. They are not valid for 16-bit or 8-bit port sizes,
however, they do indicate which bytes are used
sometime during the (multi-datum) transaction.
BE(8:0) can also be masked (held in-active) during
reads by disabling the read mask, BE Control field of
the CPO Bus Control register.

During the data portion of the read transaction, this bus contains the
following:

Data(31:0) The data lines are tri-stated. Operations using less
than 32-bits of data use the data lines as described in
Table 2.3 describing Byte Addressing. In summary,
the byte addressing requires that 16-bit ports use the
halfword associated with address offsets Oand 1, i.e.,
D(31:16) for big endian and D(15:0) for little endian.
8-bit ports use the byte associated with address offset
0, i.e., D(31:24) for big endian and D(7:0) for little
endian. These bytelane assignments areindependent
of the Reverse Endianess control bitin the CPO Status
register.

o

Address Latch Enable: This active high output signal is typically
connected directly to the latch enable of transparent latches. Latches are
typically used to de-multiplex the address and Byte Enable information
from the A/D bus.
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Addr(3:0) o

Dedicated Address Bus: The remaining least significant bits of the
transfer address are presented directly on these outputs. In the case of
32-bit quad word reads, the Addr(3:2) pins function as a two bit counter
starting at ‘00’, and are used to perform the quad word transfer. In the
case of single datum reads, these pins contain Address (3:2) of the transfer
address. Similarly, 16-bit ports use Addr(3:1) and 8-bit ports use
Addr(3:0).

Note that Addr(1:0) in the R304 1 correspond to the no-connect Rsvd(1:0)
pins of the R3051.

DataEn (0]

Data Enable: This active low output indicates that the A/D bus is no
longer being driven by the processor, and thus the output drivers of the
memory system may be enabled.

Special logic on the R3041 guarantees the following:

e The A/D bus is driven to guarantee hold time from the negation of
ALE.

¢ The R3041 A/D bus output drivers will be disabled on reads before
the assertion of DataEn.

If the ExtAddrHold reset configuration mode is not active, DataEn will be
asserted immediately after ALE de-asserts and as soon as the A/D bus is
tri-stated.

If the ExtAddrHold reset configuration mode is active, DataEn will be
asserted as soon as the A/D bus is tri-stated on the next rising edge of
SysClk after ALE de-asserts.

Thus, the system designer is assured that ALE can be used to directly
control the latch enable of a transparent latch. Similarly, DataEn can be
used to directly control the output enable of memory system drivers.

Burst (0]

Burst Read (multiplexed with Write Near): On read cycles, this active
low output distinguishes between 32-bit quad word block and single
datum reads. Similarly, on 16-bit reads, this output distinguishes
between 16-bit octi halfword block and all other halfword reads. On 8-bit
ports this output distinguishes between 8-bit 16 byte long block reads and
all other byte reads.

RACEn I

Read Buffer Clock Enable: This active low input is used by the external
memory system to cause the processor to capture the contents of the
A/Dbus. In the case of single datum reads, this causes the processor to
capture the read data and also terminates the read operation. In the case
of multiple data reads, this causes the contents of the A/D bus to be
strobed into the on-chip read buffer. When the final datum is captured,
it also terminates the read operation.
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I

Acknowledge: This active low input is used by the memory system to
indicate that it has sufficiently processed the read transaction, and that
the internal execution core may begin processing the read data. Thus,
Ack can be used by the external memory system to cause the execution
core to begin processing the read data simultaneously with the memory
system bringing in additional words of the burst refill. The timing of the
assertion of Ack by the memory system must be constructed to insure that
dataitemsnotyet retrieved from the memory will be brought in before they
are required by the execution core.

In general, the highest level of performance is achieved by asserting Ack
concurrent with the final RACEn for single datum and mini-burst block
reads and by asserting Ack three clocks before the final RACEn on burst
block reads.

Other systems, which utilize simpler memory system strategies, may
ignore the use of Ack in read transactions. The processor will recognize
the implicit termination of a read operation by the assertion of the
appropriate number of RACEn. While this approach is simpler to design,
a loss of performance will result for both single datum and burst reads.

BusError I

Bus Error: This active lowinput can be used to terminate a read operation
ifasserted before or concurrently with Ack. It will also cause the processor
to take a Bus Error exception. Read transactions terminated by BusError
do not require the assertion of Ack or RACEn.

BE16(1:0) o

Last

Byte Enable Strobes for 16-bit ports: These active low outputs are the
byte enable strobes for 16-bit ports. If BE16(1) is asserted then the most
significant byte (D(31:24) for big endian or D(15:8) for little endian) is
going to be sampled by the R3041. If BE16(0) is asserted then the least
significant byte (D(23:16) for big endian or D(7:0) for little endian) is going
to be sampled by the R3041. BE16 can also be masked (held in-active)
during reads by disabling the read mask, BE16 Control field of the CPO
Bus Control register for direct connection to the write enables in DRAM
systems or other systems with gated chip selects. BE16 is not valid for
32-bit or 8-bit ports.

The R3041 BE16(1:0) output pins are designated in the R3051 as no-
connect Rsvd(3:2) pins, respectively.

o

Last Datum in Mini-Burst: This active low output indicates that the
last datum of a single datum, mini-burst or burst is being read. It
goes active with Rd for single datum reads and after the next to last
RdACEn is sampled for multiple datum reads. Last de-asserts when Rd
de-asserts.
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MemStrobe O

Memory Strobe: This active low output pulses low for each datum read.
It can be used either as a read strobe or a data strobe. It can be active for
reads, writes, or both depending on the setting of the MemStrobe control
field of the CPO Bus Control Register. After reset, MemStrobe is only
active for writes.

The R3041 MemStrobe output pin is designated in the R3051 as the
BrCond(0) input pin.

I0Strobe o

Input/Output Strobe: This active low output asserts on the first falling
edge of SysClIk (1 clock) after ALE de-asserts. It asserts relatively late in
the cycle so that addresses and control lines are properly setup. I0Strobe
requires a total of least 3 clocks during a transaction in order to assert.
Thus IOStrobe can be used as an I/0 data strobe if ExtDataEn is used as
a read/write line or IOStrobe can be used for gating I/O chip selects. It
can be active for reads, writes, or both depending on the setting of the
10Strobe Control field of the CPO Bus Control Register. IOStrobe requires
the transaction be atleast 3 clocks long in order to assert. Since IOStrobe
isaninput on reset after which it can be configured with the SBrCond(3:2)
Control bit to be an output, it cannot be used to control the Boot PROM.

ExtDataEn O

Extended Data Enable: This active low output asserts active low on the
first rising edge of SysClk after ALE de-asserts (1/2 clock later). It is
extended in that it de-asserts 1/2 clock after Rd de-asserts. ExtDataEn
provides extra hold time for data sampling (especially on writes). It can
also be configured as an extended read /writeline for I/O interfaces. Itcan
be active for reads, writes, or both depending on the setting of the
ExtDataEn control field of the CPO Bus Control Register. Since
ExtDataEn is an input on reset after which it can be configured with the
SBrCond(3:2) Control bit to be an output, it cannot be used to control the
Boot PROM.

Diag o

Diagnostic Pin: This pin is useful in the initial debug of R304 1 based
systems. During the address phase of the read transaction, this output
indicates whether the read is a result of a cache miss (high) or an
uncacheable reference (low).

During the remainder of the transfer, this output indicates whether the
read is an instruction (high) or a data reference (low).
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READ INTERFACE TIMING OVERVIEW

The read interface is designed to allow a variety of memory strategies. An
overview of how data is transmitted from memory and I/O devices to the
processor is discussed below. Note that multiplexing the address and data bus
does not slow down read transactions: the address is on the A/D bus for only
one-half to one clock cycle, so that the system's data drivers can be enabled
quickly; memory and I/0 devices initiate their transfers based on addressing
and chip enable, not on the availability of the bus. Thus, memory does notneed
to “wait” for the bus, and no performance penalty occurs.

Initiation of Read Request

A read transaction occurs when the processor internally performs a run
cycle which is not satisfied by the internal caches. Immediately after the run
cycle, the processor enters a stall cycle and asserts the internal control signal
MemRd. This signals to the internal bus interface unit arbiter that a read
transaction is pending.

Assuming that the read transaction can be immediately processed (that is,
there are no ongoing bus operations, and no higher priority operations
pending), the processor will initiate a bus read transaction on the rising edge
of SysClk which occurs during phase 2 of the processor stall cycle. Higher
priority operations would have the effect of delaying the start of the read by
inserting additional processor stall cycles.

Figure 8.1 illustrates the initiation of a read transaction, based on the
internal assertion of the MemRd control signal. This figure is useful in
determining the overall latency of cache misses on processor operation.

Stall
(Arbitration) Stall

PhiClk /_Rl<_/__\_/_\_
/T /-

Burst

ALE \
Addr/
A/D(31:0) X Data

AddressI
Mem.

Figure 8.1. CPU Latency to Start of Read
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Memory Addressing

Aread transaction begins when the processor asserts its Rd control output,
and also drives the address and other control information onto the A/D and
memory interface bus. Figure 8.2 illustrates the start of a processor read
transaction, when using the non-Extended Address Hold reset configuration
mode option, including the addressing of memory and the intra-transaction
bus turn around.

The addressing occurs in a half-cycle of the SysClk output. At the rising edge
of SysClIk, the processor will drive the read target address onto the A/D bus.
At this time, ALE will also be asserted, to allow an external transparent latch
to capture the address. Depending on the system design, address decoding
could occur in parallel with address de-multiplexing (that is, the decoder could
start on the assertion of ALE, and the output of the decoder captured by ALE),
or could occur on the output side of the transparentlatches. During thisphase,
DataEn will be held high indicating that memory drivers should not be enabled
onto the A/D bus.

Address Turn Sample
Memory Bus Data?
SysClk A N A SF
- 7
. X
» t7a R

t149
A/D(31:0) —-—-—--E £ Addr
» 16 J To e
Addr(3:2) AZ

ol s = to
ALE

> ti2
DataEn t1
- tas
‘ExtDataEn \I:

= 7 [l

o X

Lo Y l—-

= X

-} ts0
MemStrobe
»l 147
10Strobe \l

> ot =
RdCEn \\ }{
= {2 |-
R XL__J(

| t7 =l t17
Diag Cached? I/D

I | | 1

Figure 8.2. Start of Bus Read Operation Without Extended Address Hold
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Concurrent with driving addresses on the A/D bus, the processor will
indicate whether the read transaction is a burst block read or not, by driving
Burst to the appropriate polarity (low for a burst block read). If a quad word
read is indicated the Addr bus will drive to the start of the block. If a single
datum or mini-burst is indicated, the Addr lines will indicate the address for
the transfer. The functioning of the counter during mini-burst and burstreads
is also described later.

Figure 8.2 illustrates the initiation of a read transaction when the Extended
Address Hold reset configuration mode option, ExtAddrHold is turned on.
ExtAddrHold delays the address to data bus turn around for an additional 1/
2 clock. Thus the address is held for an extra 1/2 clock and the assertion of
DataEn is delayed for 1/2 clock. Since the de-assertion of ALE is unchanged,
1/2 extra clock of address hold time is provided for easier use with ASICs,
FPGAs, and other low-cost interfaces.

The remaining figures and examples in this chapter will always be given
using the ExtAddrHold reset configuration mode, although either mode is
always applicable.

Initiation of Data Phase

Once the A/D bus has presented the address for the transfer, it is “turned
around” by the processor to accept the incoming data. If the ExtAddrHold reset
configuration mode is turned off, this occurs in the second phase of the first
clock cycle of the read transaction as illustrated in Figure 8.2. If the
ExtAddrHold reset mode is turned on, address to data bus turn around occurs
in the first phase of the second clock cycle of the read transaction as illustrated
in Figure 8.3.

The processor turns the bus around by carefully performing the following
sequence of events:

¢ It negates ALE, causing the transparent address latches to capture the
contents of the A/D bus.

¢ It disables its output drivers on the A/D bus, allowing it to be driven by
an external agent. The processor design guarantees that the ALE is
negated prior to tri-stating the A/D bus. The exact timing of this depends
on the reset setting of the Extended Address Hold feature, as described
above.

¢ The processor then asserts DataEn, to indicate that the bus may be now
driven by the external memory resource. The processor design insures
that the A/D busisreleased prior to DataEn being asserted. DataEn may
be directly connected to the output enable of external memory, and no bus
conflicts will occur.

Thus, the processor A/D bus is ready to be driven by the end of the second
phase of the read transaction if the ExtAddrHold reset configuration mode is
turmed off and by the end of the first phase of the second clock if the
ExtAddrHold mode is turned on. At this time, it begins to look for data to
sample.
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Bringing Data into the Processor

Regardless of whether the transfer is a burstread or a single datum transfer,
the basic mechanism for transferring data presented on the A/D bus into the
processor is the same.

Although there are two control signals involved in terminatingread operations,
only the RACEn signal is used to cause data to be captured from the bus.

The memory system asserts RACEn to indicate to the processor that it has
(or will have) data on the A/D bus to be sampled. The earliest that RACEn can
be detected by the processor is the rising edge of SysClk after it has asserted
ALE (start of phase 1 of the second clock cycle of the read).

If RACEn is detected as asserted (with adequate setup and hold time to the
rising edge of SysClk), the processor will capture (with proper setup and hold
time) the contents of the A/D bus on the immediately subsequent falling edge
of SysClk. This captures the data in the internal read buffer for later processing
by the execution core/cache subsystem.

The R3041 integrates on-chip a 4-word read buffer, capable of acting as a
speed-matching FIFO between the system interface and the execution core.
This bus interface then performs byte or half-word gathering, and assembles
them into 32-bit words for the read buffer. Thus, the bus interface supports
8-, 16-, and 32-bit memory subsystems, even for quad word reads, with no real
system impact.

Figure 8.4 illustrates the sampling of data by the R3041.

SysCk _\__7[_\_7
A/D(31:0)
Addr(3:2) Current Word Address Fext Word Address
R t16
RAdCEn 7’11 - 3( > t1 e
» 12
Ack »l 2 e )L_7F » o}
Ack or Ack/ Sample  Ackor
RdCEn? RACEn Data RdCEn?

Figure 8.4. Data Sampling on R3041
During the data phase, these three control signals may also assert:

eWhen programmed via the ExtDataEn and SBrCond(3:2) Control bits in
the CPO Bus Control register, ExtDataEn asserts one clock cycle after Rd
asserts and remains asserted 1/2 clock cycle after Rd de-asserts.
Although primarily intended for being programmed to assert on Wr
cycles, ExtDataEn can also be used as a DRAM address multiplexor select
if configured to assert on both reads and writes.

¢ When programmed via the MemStrobe Control bits in the CPO Bus
Control register, MemStrobe asserts one clock after Rd asserts. It de-
asserts 1/2 clock after every RACEn is sampled. If more datum are being
read within the same transaction (i.e., on a mini-burst or burst read),
MemStrobe asserts again 1/2 clock after the last de-assertion and
remains asserted until the next RACEn occurs. The (de)-assertions
continue until all datum are sampled. See Figure 8.13 for an example.
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*When programmed via the I0Strobe and SBrCond(3:2) Control bits in the
CPO Bus Control register, IOStrobe asserts 1.5 clock cycles after Rd
asserts and remains asserted until Rd de-asserts. It will only assert if
thereare atleast three clocksin the transaction. Thus this signal is useful
for 1/0 reads if disabled during writes. I0Strobe can be used as an 1/0
data strobe if ExtDataEn is configured as a read /write signal. 10Strobe
can also be used as a DRAM address multiplexor select if configured to
assert on both reads and writes.

Terminating the Read
There are actually three methods for the external memory system to
terminate an ongoing read operation:

* It can supply an Ack (acknowledge) to the processor, to indicate that it has
sufficiently processed the read request and has or will supply the
requested data in a timely fashion. Note that Ack may be signalled to the
processor “early”, to enable it to begin processing the read data even while
additional data is brought from the A/D bus. This is applicable only in
quad-word and mini-burst read operations.

¢ It can supply a BusError to the processor, to indicate that the requested
data transfer has “failed” on the bus, and force the processor to take a bus
error exception. Although the system interface behavior of the processor
when BusError is presented is similar to the behavior when Ack is
presented, no data will actually be written into the on-chip cache. Rather,
the cache line will either remain unchanged, or will be invalidated by the
processor, depending on how much of theread has already been processed.

¢ The external memory system can supply the requested data, using RACEn
to enable the processor to capture data from the bus. The processor will
“count” the number of times RACEn is sampled as asserted; once the
processor counts that the memory system has returned the desired
amount of data (one byte to four words), it will implicitly “acknowledge”
the read after it samples the last required RACEn. This approach leads
to a simpler memory design at the cost of lower performance.

Throughout this chapter, method one will beillustrated. The other cases can
easily be extrapolated from these diagrams (for example, the system designer
can assume that Ack is asserted simultaneous with the last RACEn of a single
word read transfer and 3 clocks before the last RACEn of a burst read transfer).

There are actually two phases of terminating the read: there is the phase
where the memory system indicates to the processor that it has sufficiently
processed the read request, and the internal read buffer can be released to
begin refilling the internal caches; and there is the phase in which the read
control signals are negated by the processor bus interface unit. The difference
between these phases is due to block refill: it is possible for the memory system
to “release” the execution core even though additional words of the block are
still required; in that case, the processor will continue to assert the external
read control signals until all four words are brought into the read buffer, while
simultaneously refilling/executing based on the data already brought on
board.
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To determine the end of the read transaction one of these methods may be
used:

Systems that only use 32-bit memory sub-region ports as with the rest of the
R3051 family only have single datum reads or burst reads and can either
count the number of wait-cycles or use the de-asserting edge of Rd to end
the transaction.

Systems thatuse 16 or 8-bit ports must in general support mini-burstreads.
Memory controllers for such systems can use the de-asserting edge of Rd to
reset the controller. The memory controller can also look for Last to assert.
When Last asserts, the controller knows that it is handling the final datum
of the transaction. It is also possible to decode BE(3:0) to determine how
many datum are to be returned.

Figure 8.5 shows the timing of the control signals when the read cycle is
being terminated.
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Latency Between Processor Operations

In general, the processor may begin a new bus activity as soon as the phase
immediately after the termination of the read cycle. Although this operation
may logically be either a read, write, or bus grant, there are no cases where a
read operation can be signalled by the internal execution core at this time.

Since a new operation may begin one-half clock cycle after the data is
sampled from the bus, it is important that the external memory system cease
to drive the bus prior to this clock edge. To simplify design, the processor
provides the DataEn output, which can be used to control either the Output
Enable of the memory device (presuming its tri-state time is fast enough), or
to control the Output Enable of a buffer or transceiver between the memory
device data bus and the processor A/D bus, as illustrated in Figure 8.6.

The R3041 also adds a new feature to the R3051 family to enable the system
designer to lengthen the amount of time available for bus turn-around. The
Bus Turn Around control field of the CPO Bus Control register enables the
system designer to extend the minimum guaranteed amount of time available
for bus tum-around. This enables the system designer to eliminate some
transceiver devices and/or use slower system components, without worrying
about bus conflicts.

R3051 RISController
A/D ALE DataEn
A
e o
Address Latch |ag -»Memory Data
_— B -
Addr »(CS 58
Y A |
Address
Decode
»{CS X
Memory: - 3 o
- oF R
\ ' OF

Figure 8.6. Use of DataEn as Output Enable Control
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Processor Internal Activity

In general, the processor will execute stall cycles until Ack is detected. It will
then begin the process of refilling the internal caches from the read buffer.

The system designer should consider the difference between the time when
the memory interface has completed the read, and when the processor core has
completed the read. The bus interface may have successfully returned all of
the required data, but the processor core may still require additional clock
cycles to bring the data out of the read buffer and into the caches. Figure 8.7
illustrates the relationship between Ack and the internal activity for a block

Refill Refily Refill/ Refill/
Fixup Stream/ Stream/ Stream/
Fixu, Fixuy| Fixu
Stall Stall Word 0 Word 1 Word 2 Word 3

PhiClk /_\_/_\ /__\__/_\_
oK /S S S S

— 4
Ack
RdBusy \
YEn Instr. X Data/Klnstr. XDataM Datamnstr. X Data
RdBusy
negated

Figure 8.7. Internal Processor States on Burst Read

read.

This figure illustrates that the processor may perform either a stream, fixup,
or refill cycle in cycles in which data is brought from the read buffer. The
difference between these cycles is defined as:

» Refill. Arefill cycleis a clock cycle in which data is brought out of the read
buffer and placed into the internal processor cache. The processor does
not execute on this data.

¢ Fixup. A fixup cycle is a cycle in which the processor transitions into
executing the incoming data. It can be thought of as a “retry” of the cache
cycle which resulted in a miss.

e Stream. A stream cycle is a cycle in which the processor simultaneously
refills the internal instruction cache and executes the instruction brought
out of the read buffer.
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When reading the block from the read buffer, the processor will use the
following rules:

For uncacheable references, the processor will bring the single word out
of the read buffer using a fixup cycle.

For data cache refill, it will execute either one or four refill cycles, followed
by a fixup cycle.

For instruction cache refill, it will executerefill cycles starting at word zero
until it encounters the miss address, and then transition to a fixup cycle.
It will then execute stream cycles until either the entire block is processed,
or an event stops execution. If something causes execution to stop, the
processor will process the remainder of the block using simple refill cycles.
For example, Figure 8.8 illustrates the refill/fixup/stream sequence
appropriate for a miss which occurs on the second word of the block (word
address 1).

Although this operation is transparent to the external memory system, it is
important to understand this operation to gauge the impact of design trade-offs
on performance.

Refill Fixup Stream Stream
Stall Stall Word 0 Word 1 Word 2 Word 3
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Figure 8.8. Instruction Streaming Example
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32-BIT READ TIMING DIAGRAMS

This section illustrates a number of timing diagrams applicable to R3041 32-
bit read transactions. These diagrams reference AC parameters whose values
are contained in the R3041 data sheet. Note that these timing diagrams
assume MemStrobe, I0Strobe, and ExtDataEn are all enabled for read
operations and that the ExtAddrHold reset configuration mode is enabled.

Single Word Reads

Figure 8.9illustrates the case of a single word read which did not require wait
states. Thus, RACEn and Ack were detected at the rising edge of SysClk which
occurred exactly one clock cycle after the rising edge of SysClk which asserted
Rd. Data was sampled one phase later, and Rd and DataEn disabled from that
falling edge of SysCIk. Thus, the execution core required three stall cycles and
a fixup to process the internal data.
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Figure 8.10 also illustrates the case of a single word read. However, in this
figure, two bus wait cycles were required before the data was returned. Thus,
two rising edges of SysClk occurred where neither RACEn nor Ack were
asserted. On the third rising edge of SysClk, RAICEn was asserted. Ack should
also be asserted at this time to optimally restart the pipeline.
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Block Reads

Figure 8.11 illustrates the absolute fastest 4 word block read. The first word
of the block is returned in the second cycle of the read; each additional word
is returned in the immediately subsequent clock cycle. In this example, Ack
can be returned simultaneously with the first RACEn, to minimize the number
of processor stall cycles.

Although Ack is brought in 3 clocks before the last RACEn, a number of clock
cycles are required before the processor negates the Rd control output. Thus,
the system designer is assured that Rd remains active as long as the processor
continues to expect data.
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Figure 8.12(a,b) illustrates a block read in which bus wait cycles are required
before the first word is brought to the processor, but in which additional words
can be brought in at the processor clock rate. Thus, as with the no wait cycle
operation, Ack is returned 3 clocks before the last RACEn. Figure 8.12(a)
illustrates the start of the block read, including initial wait cycles to the first
word; Figure 8.12(b) illustrates the activity which occurs as data is brought
onto the chip and the read is terminated.
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Figure 8.13(a,b) illustrates a block read in which bus wait cycles are required
before the first word is returned, and in which wait cycles are required between
subsequent words: Figure 8.13(a) illustrates the first two words of the block
being brought on chip; Figure 8.13(b) illustrates the last two words of the read,
including the optimum timing of Ack, and the negation of the read control
signals.
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Figure 8.13(a). First Two Words of Throttled Quad Word Read
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In this diagram, the memory system returns Ack according to

when the

processor will empty the read buffer. In order to determine the optimum time
toreturn Ack, the system designer must look at when the processor would read

the fourth word from the read buffer. Align this cycle with one clock

cycle after

the memory system will return the fourth word to the processor. As shown in
Figure 8.13(b), the memory system should return Ack five cycles prior to when
the execution core requires the fourth word, which is the equivalent of three
cycles prior to the last RACEn. The system designer should also insure that
the third, second, etc. words of the read cycle are available to the read buffer

before the execution core removes them to the caches.
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Figure 8.13(b). End of Throttled Quad Word Read
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Bus Error Operation

Figure 8.14 is a modified version of Figure 8.10 (single word read with wait
cycles), in which BusError is used to terminate the read cycle. In this diagram,
note that RACEn does not need to be asserted, since the processor will insure
that the contents of the A/D bus do not get written into the cache or executed.
In single word reads, BusError can be asserted anytime up until Ack is
asserted. If BusError and Ack are asserted simultaneously, the BusError will
be processed; if BusError is asserted after Ack is sampled, it will be ignored.
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Figure 8.15 shows the impact of BusError on block reads. The assertion of
BusError is allowed up until the assertion of Ack. Once BusError is asserted
(sampled on a rising edge of SysClk), the read cycle will be terminated
immediately, regardless of how many words have been written into the read
buffer. Note that this means that the external memory system should stop
cycling RACEn at this time, since a late RACEn may be erroneously detected
as part of a subsequent read. Note that if BusError and Ack are asserted
simultaneously, BusError processing will occur. If BusError is asserted after
Ack, the BusError will be ignored.

Stall Stall |
PhiClk _—\__/_—\__/—
SysCIk _3§ / \ /
> t15 ——
Rd
.Ilh_a<
A/D(31:0) N —
1 t2a
Addr(3:2) oo X XX
ALE /
L o r
t15 E—
DataEn 7£_
=] 149
ExtDataEn 4
T
Burst 7
Last }L
1 151
‘MemStrobe \ ZF
] {15 -
|0Strobe %
» 11 -
- \ 4
RdCEn N_| 7
> 12 |-
— \ 4
Ack N_| 7
BusError _—BLJL

Figure 8.15. Block Read Terminated by Bus Error




CHAPTER 8

READ INTERFACE

16-BIT READ TIMING DIAGRAMS

This section illustrates a number of timing diagrams applicable to R3041
read transactions when a 16-bit port has been selected via the CPO Port Size
register. These diagrams reference AC parameters whose values are contained
in the R3041 data sheet.

These timing diagrams assume that MemStrobe, IOStrobe, and ExtDataEn
are enabled for read transactions and that the ExtAddrHold reset configuration
mode is enabled.

Also, regardless of the Address 1 value, the half of the A/D bus used during
the data phase (A/D(31:16) for big endian or A/D(15:0) for little endian) is
constant, according to the system byte ordering (endianness) selected at reset.

Single Halfword Reads

Figure 8.16 illustrates the case of a single halfword read which did not
require wait states. Thus, RACEn and Ack were detected at the rising edge of
SysClk which occurred exactly one clock cycle after the rising edge SysClk
which asserted Rd. Data was sampled one phase later, and Rd and DataEn
disabled from that falling edge of SysClk. Thus, the execution core required
three stall cycles and a fixup to process the internal data. In the cases where
only one byte of data is needed, the 16-bit byte enables, BE16(1:0) indicate
which bytes are being used in this transaction.
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Figure 8.17 also illustrates the case of a single halfword read. However, in
this figure, one bus wait cycle is required before the data is returned. Thus,
one rising edge of SysClk occurred where neither RACEn or Ack were asserted.
On the second rising edge of SysClk, RACEn was asserted. The timing of Ack
in a single datum read should occur with the final RACEn in order to optimally
restart the internal pipeline.
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Mini-Burst Halfword Reads

Mini-burst halfword reads require two halfwords to be returned within the
same read cycle as in Figure 8.18. After the second halfword is read, Rd will
de-assert. Alternatively, external wait state machine controllers can find the
start of the final halfword of the mini-burst asindicated by the assertion of Last.
In a mini-burst, the Burst line remains de-asserted, since Burst is only used
to indicate an octi (8) halfword read corresponding to a four word block. Note
that during either of the halfwords in a mini-burst may have both or just one
of its byte enable, BE16(1:0) signals asserted. These three cases correspond
to instructions which generate tri-byte (addresses 0,1,2 or 1,2,3) and word
(addresses 0,1,2,3) loads or fetches.

The timing of Ack in a mini-burst read should occur with the final RACEn
in order to optimally restart the internal pipeline.
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16-Bit Block Reads

16-bit block reads involve a total of 8 halfwords of data. Figure 8.19(a)
illustrates the beginning of the absolute fastest halfword block read. Figure
8.19(b) illustrates the ending of the absolute fastest halfword block read. The
first halfword of the block is returned in the second cycle of the read; each
additional halfword is returned in the immediately subsequent clock cycles.
Thus, Ack can bereturned on the 3rd clock prior to the last RACEn, to minimize
the number of processor stall cycles.
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Figure 8.19(a). Start of Burst Block Halfword Read Without Bus Wait Cycles

Note that although Ack is brought low in the 3rd clock from the end clock
cycle, a number of clock cycles are required before the processor negates the
Rd control output. Thus, the system designeris assured that Rd remains active
as long as the processor continues to expect data.

Halfword block reads can insert bus wait cycles just like the 32-bit block
reads. Thus bus wait cycles can be inserted before the first halfword and /or
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between subsequent halfwords simply by delaying the assertion of RACEn until
the dataisready. In these cases, Ack must be timed so that the pipeline restarts
in time to read the last halfword. Thus the optimal placement of Ack is no
sooner than the 3rd clock from the last RACEn.
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Figure 8.19(b). End of Burst Block Halfword Read Without Bus Wait Cycles

Bus Error Operation

Bus errors for 16-bit halfword ports operate the same as 32-bit bus errors.
In single halfword reads, BusError can be asserted anytime up until Ack is
asserted. If BusError and Ack are asserted simultaneously, the BusError will
be processed; if BusError is asserted after Ack is sampled, it will be ignored.

On block reads, the assertion of BusError is allowed up until the assertion
of Ack. Once BusErroris asserted (sampled on a rising edge of SysClk), theread
cycle will be terminated immediately, regardless of how many halfwords have
been written into the read buffer. Note that this means that the external
memory system should stop cycling RACEn at this time, since a late RACEn
may be erroneously detected as part of a subsequent read. Note that if
BusError and Ack are asserted simultaneously, BusError processing will
occur. If BusError is asserted after Ack, the BusError will be ignored.
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8-BIT READ TIMING DIAGRAMS

This section illustrates a number of timing diagrams applicable to R3041
read transactions when an 8-bit port has been selected via the CPO Port Size
register. These diagrams reference AC parameters whose values are contained
in the R3041 data sheet.

These diagrams assume that MemStrobe, 10Strobe, and ExtDataEn are
enabled for reads and that the ExtAddrHold reset configuration mode is
enabled.

The byte lane used for a transfer is not dependent on the address bit 0, but
rather on the system byte ordering (endianness) selected at reset. A/D(31:24)
is used for big endian systems, and A/D(7:0) is used for little endian systems.

Single Halfword Reads

Figure 8.20 illustrates the case of a single byte read which did not require
wait states. Thus, Ack was detected at the rising edge of SysClk which occurred
exactly one clock cycle after the rising edge SysClk which asserted Rd. Data
was sampled one phase later, and Rd and DataEn disabled from that falling
edge of SysCIk. Thus, the execution core required three stall cycles and a fixup
to process the internal data.
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Figure 8.21 also illustrates the case of a single byte read. However, in this
figure, two bus wait cycles were required before the data was returned. Thus,
two rising edges of SysClk occurred where neither RACEn or Ack were asserted.
On the third rising edge of SysCIk, RACEn was asserted. The timing of Ack in
a single datum read should occur with the final RACEn in order to optimally
restart the internal pipeline.

AR
_— > t15
o A F—
traw] F ta | D-tm
A/D(31:0) N Addr g Datalnput ;l:
»ltis ’I toa
Addr(3:0) % Byte Address t

ol ts » to »it16!
ALE 4 F /
>-“2 1 115 Z-_
DataEn 7
1 149
ExtDataEn
~ 7= b
Burst |
»{ t7
Last
18] |-
1124 »1 151
MemStrobe
=1 t50
»1 47 i 115
IOStrobe {
] {1 |- t |-
RdCEn
> 2 |- = 2
Ack

117 »{117] »{t17
9
Diag * Cached? { 'D 4*
| | L 1 I

Start Extended RACEn? Sample Ack/ Sample  New
Read Address Data RdCEn Data Transaction
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Mini-Burst Byte Reads

Mini-burst byte reads require two, three, or four bytes to be returned within
the sameread cycle as illustrated in Figures 8.22, 8.23, and 8.24. After thelast
byte is read, Rd will de-assert. Alternatively, external wait state machine
controllers can find the start of the final byte of the mini-burst as indicated by
the assertion of Last. In a mini-burst, the Burst line remains de-asserted, since
Burst is only used to indicate a 16 byte block read corresponding to a four word
block. Note that the starting address of a mini-burst is not necessarily 0. For
example, it could be a '1'if the load or fetch corresponds to a tri-byte operation.

The timing of Ack in a mini-burst read should occur with the final RACEn
in order to optimally restart the internal pipeline.
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8-Bit Quad Word Reads

8-bit block reads involve a total of 16 bytes of data. Figure 8.25(a) illustrates
the beginning of the absolute fastest byte block read. Figure 8.25(b) illustrates
the ending of the absolute fastest byte block read. Intervening bytes 5 through
11 are similar. The first byte of the block is returned in the second cycle of the
read; each additional byte is returned in the immediately subsequent clock
cycles. Thus, Ack can be returned on the 3rd clock prior to the last RACEn,
to minimize the number of processor stall cycles.

Note that although Ack is brought low in the 3rd clock from the end clock
cycle, a number of clock cycles are required before the processor negates the
Rd control output. Thus, the system designeris assured that Rd remains active
as long as the processor continues to expect data.

Byte block reads can insert bus wait cycles just like the 32-bit block reads.
Thus bus wait cycles can be inserted before the first byte and/or between
subsequent bytes simply by delaying the assertion of RACEn until the data is
ready. In these cases, Ack must be timed so that the pipeline restarts in time
toread the last byte. Thus the optimal placement of Ack is no sooner than the
3rd clock from the last RACEn. Note that if Ack is not given at all, an implicit
Ack will be generated one clock after the last RACEn.
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Bus Error Operation

Bus errors for 8-bit byte ports operate the same as 32-bit bus errors. In
single halfword reads, BusError can be asserted anytime up until Ack is
asserted. If BusError and Ack are asserted simultaneously, the BusError will
be processed; if BusError is asserted after Ack is sampled, it will be ignored.
On block reads, the assertion of BusError is allowed up until the assertion of
Ack. Once BusError is asserted (sampled on a rising edge of SysCIk), the read
cycle will be terminated immediately, regardless of how many bytes have been
written into the read buffer. Note that this means that the external memory
system should stop cycling RACEn at this time, since a late RACEn may be
erroneously detected as part of a subsequent read. Note that if BusError and
Ack are asserted simultaneously, BusError processing will occur. If BusError
is asserted after Ack, the BusError will be ignored.
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INTRODUCTION

The write protocol of the R3041 has been designed to complement the read
interface of the processor. Many of the same signals are used for both reads
and writes, simplifying the design of the memory system control logic.

This chapter includes both an overview of the write interface as well as
provides detailed timing diagrams of the write interface.

IMPORTANCE OF WRITES IN R3041 SYSTEMS
The design goal of the write interface was to achieve two things:

Insure that a relatively slow write cycle does not degrade the performance
of the processor. To this end, a four deep write buffer has been
incorporated on chip. The role of the write buffer is to decouple the speed
of the memory interface from the speed of the execution engine. The write
buffer captures store information (data, address, and transaction size)
from the processor at its clock rate, and later presents it to the memory
interface at the rate it can perform the writes. Four such buffer entries
are incorporated, thus allowing the processor to continue execution even
when performing a quick succession of writes. Only when the write buffer
is already filled will the processor stall; simulations have shown that
significantly less than 1% of processor clock cycles are lost to write buffer
full stalls.

Allow the memory system to optimize for fast writes. Thus, a number of
design decisions were made: the WrNear signal is provided to allow page
mode writes to be used even in simple memory systems; the A/D bus
presents the store data as early as the second phase of the first clock cycle
of a write; and writes can be performed in as few as two clock cycles.

Although it may be counter-intuitive, a significant percentage of the bus
traffic will in fact be processor writes to memory. This can be demonstrated if
one assumes the following:

Instruction Mix:
ALU Operations 55%
Branch Operations 15%
Load Operations 20%
Store Operations 10%

Cache Performance
Instruction Hit Rate 95%
Data Hit Rate 90%

For these assumptions, in 100 instructions, the bus would see:

5 Reads to process instruction cache misses on instruction fetches
10% x 20 = 2 reads to process data cache misses on loads

10 store operations to the write through cache

Total: 7 reads and 10 writes

Thus, in this example, about 60% of the bus transactions are write
operations, even though only 10 instructions were store operations, vs. 100
instruction fetches and 20 data fetches.

©1992 Integrated Device Technology, Inc.
9-1
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TYPES OF WRITE TRANSACTIONS

The R3041 has two basic types of write transactions depending on the port
size selected in the CPO Port Size Configuration register for each memory sub-
region. 32-bit ports only use the single word write type. 16-bit ports can use
the single halfword write or the mini-burst (double halfword) write type. 8-bit
ports can use the single byte write or the mini-burst (double, tri, or quad byte)
write type.

Types of 32-Bit Write Transactions

Unlike instruction fetches and data loads, which are usually satisfied by the
on-chip caches and thus are not seen at the bus interface, all 32-bit write
activity is seen at the bus interface as single write transactions. There is no
such thing as a “four word block burst write”; the processor performs a word
or sub-word write as a single autonomous bus transaction; however, the
WrNear output does allow successive write transactions to be processed using
page mode writes. This is particularly important when “flushing” the write
buffer before performing a data read.

Uncached writes which contain only 1, 2, or 3 bytes of data assert the
appropriate byte enables, BE(3:0) during the address phase. Thus, there really
is only one type of 32-bit write transaction. However, the memory system may
elect to take advantage of the assertion of WrNear during a write to perform
quicker write operations than would otherwise be performed. Alternately, a
high-performance DRAM controller may utilize a different strategy for performing
page mode transactions (read or write) to the DRAM.

In processing 32-bit writes, there is only one parameter of interest: the
latency of the write. This latency is influenced by the overall system
architecture as well as the type of memory system being addressed: time
required to perform address decoding and bus arbitration, memory pre-charge
requirements, and memory control requirements, as well as memory access
time. WrNear may be used to reduce the latency of successive write operations.

The R3041 has been designed to accommodate a wide variety of memory
system designs, including no wait cycle operations (write completed in two
cycles) through simpler, slower systems incorporating many bus wait cycles.

Types of 16-Bit Transactions

When the R3041 uses a 16-bit port, it does its writes in halfword size
increments. Thus if the data contains 8 or 16 bits (1 or 2 bytes), it will be
handled with a single halfword write with the appropriate byte enables,
BE16(1:0) asserted. If the data contains 24 or 32 bits (3 or 4 bytes), it will
handled with a double halfword write mini-burst with the appropriate byte
enables, BE16(1:0) for each halfword asserted. A mini-burst puts both
halfwords out in the same write transaction. The memory system simply
returns an Ack for each halfword datum which will automatically increment
Addr(3:1) and change BE16(1:0) if appropriate. Similar to a read mini-burst,
a write mini-burst can be detected using the Last signal to determine when the
final halfword datum is being returned or by using the de-assertion of the Wr
line. The R3041 is designed to accommodate a wide variety of different memory
bandwidths, including DRAM systems that need precharge wait cycles for the
first halfword and then use a fast page mode access for bursting the second
halfword.

The data lines used in 16-bit ports are always A/D(31:16) for big endian
systems and A/D(15:0) for little endian systems. This is regardless of the
Reverse Endianess bit in the CPO Status register. For big endian systems,
BE16(1) corresponds to the byte lane in A/D(31:24) and BE16(0) corresponds
to A/D(23:16). Similarly, for little endian systems, BE16(1) corresponds to the
byte lane in A/D(15:8) and BE16(0) corresponds to A/D(7:0).
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Types of 8-Bit Transactions

When the R304 1 uses an 8-bit port, it does its writes in byte size increments.
Thus if the data contains 1 byte, it will be handled with a single byte write. If
the data contains 2, 3, or 4 bytes, it will handled with a double, tri, or quad byte
write mini-burst, respectively. A mini-burst puts 2, 3, or 4 bytes out in the
same write transaction. The memory system simply returns an Ack for each
byte datum which will automatically increment Addr(3:0). Similar to a read
mini-burst, a write mini-burst can be detected using the Last signal to
determine when the final byte datum is being returned or by using the de-
assertion of the Wr line. The R3041 is designed to accommodate a wide variety
of different memory bandwidths, including DRAM systems that need precharge
wait cycles for the first byte and then use a fast page mode access for bursting
subsequent bytes.

The data lines used in 8-bit ports are always A/D(31:24) for big endian
systems and A/D(7:0) for little endian systems. This is regardless of the
Reverse Endianess bitin the CPO Statusregister. There isno "BE8" signal since
bytes written are always valid and should always be enabled.

Partial Word Writes

When the processor issues a store instruction which stores less than a 32-
bit quantity, a partial word store occurs. The R3041 processes partial word
stores using a two clock cycle sequence:

It attempts a cache read to see if the store address is cache resident. If
itis and the store is cacheable, it will merge the partial word with the word
read from the cache, and write the resulting word back into the cache.

It will use a second clock cycle to allow the write buffer to capture the data
and target address. Cacheable stores update or invalidate the cache as
appropriate.
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WRITE INTERFACE SIGNALS
The write interface uses the following signals:

Wr

o

Write: This active low output indicates that a write operation is occurring.
It will assert when the R304 1 write buffer initiates a write transaction. It
will de-assert automatically after all the data has been acknowledged.

A/D (31:0)

o

Multiplexed Address/Data Bus: During write operations, this bus is
used to transmit the write target address to the memory system, and is
also used to transmit the store data to the memory system. Its function
is de-multiplexed using other control signals.

During the addressing portion of the write transaction, this bus contains
the following:

Address(31:4)

BE(3:0)

The upper 28 bits of the write address are presented
on A/D (31:4).

The byte strobes for the 32-bit write transaction are
presented on A/D(3:0). BE(3)indicates that AD(31:24)
is used; BE(2) indicates that AD(23:16) is used; BE(1)
indicates that AD(15:8) is used; and BE(0) indicates
that AD(7:0) is used. BE(3:0) can be held inactive
during reads by using the BE(3:0) Control read mask
in the CPO Bus Control register as might be done for
direct connection from the address latch to the WE
pins in systems using 1M bit or smaller DRAMs.
These byte strobes are only valid for 32-bit ports.
They are not valid for 16 or 8-bit ports, however, they
do indicate which bytes are used sometime during the
(multi-datum) transaction.

During the data portion of the write transaction, the A/D bus contains:

Data(31:0)

o

The R3041 drives the store data on the appropriate
data lines, as indicated by the byte enable strobes
during the addressing phase. Operations using less
than 32-bits of data use the data lines as described in
Chapter 2 Table 2.3 describing Byte Addressing. In
summary, the byte addressing requires that 16-bit
ports use the halfword associated with address offsets
0 and 1, i.e., D(31:16) for big endian and D(15:0) for
little endian. 8-bit ports use byte associated with
address offset O, i.e., D(31:24) for big endian and
D(7:0) for little endian. These byte lane assignments
are independent of the Reverse Endianess control bit
in the CPO Status register.

Address Latch Enable: This active high output signal is typically

connected directly to the latch enable of transparent latches. Latches are
typically used to de-multiplex the address and Byte Enable information

from the A/D bus.
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Addr(3:0) (0]

Dedicated Address Bus: The remaining bits of the transfer address are
presented directly on these outputs. During 32-bit write transactions,
these pins contain Address (3:2) of the transfer address. During 16-bit
transactions, these pins contain Address(3:1) of the transfer address
which act as a counter during halfword mini-bursts. During 8-bit
transactions, these pins contain Address(3:0) of the transfer address
which act as a counter during byte mini-bursts.

The R3041 Addr(1:0) output pins are designated in the R3051 as the no-
connect Rsvd(1:0) pins respectively.

DataEn (0]

Data Enable: This active low output will remain high throughout the write
transaction. Itis typically used by the memory system to enable read-side
output drivers; the CPU will maintain this output as high throughout
write transactions, thus disabling memory system output drivers.

WrNear (0]

Write Near (multiplexed with Burst): This active low output is driven
valid during the address phase of the write transaction. It is asserted if:

1: The store target address of this write operation has the same
Addr(31:8) as the previous write transaction, and

2: No read or DMA transaction has occurred since the last write.

If one or both of these conditions are not met, the WrNear output will not
be asserted during the write transaction. Note that for 16-bit and 8-bit
ports, WrNear only asserts if the entire mini-burst meets the above
conditions.

Ack I

Acknowledge: This active low input is used by the memory system to
indicate that it has sufficiently processed the write transaction, and that
ifitwas a single datum write, the CPU may terminate the write transaction
(and cease driving the write data). If the transaction was a mini-burst
write, Addr(3:0) and BE16(1:0) will be changed appropriately for the next
datum.

BusError 1

Bus Error: This active low input can also be used to terminate a write
operation. BusError asserted during a write will not cause the processor
to take a BusError exception. If the system designer would like the
occurrence of a BusError to cause a processor exception, it must be used
to externally generate an interrupt to the processor. Write transactions
terminated by BusError do not require the assertion of Ack. BusError can
be asserted at any time the processor is looking for Ack to be asserted, up
to and including the cycle in which the memory system does signal Ack.
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BE16(1:0) o

Byte Enable Strobes for 16-bit ports: These active low outputs are the
byte enable strobes for 16-bit ports. If BE16(1) is asserted then the most
significant byte (D(31:24) for big endian or D(15:8) for little endian) is
going to contain valid data. If BE16(0) is asserted then the least significant
byte (D(23:16) for big endian or D(7:0) for little endian) is going to contain
valid data. BE16 can also be masked (held in-active) during reads by
disabling the read mask, BE 16 Control bit in the CPO Bus Control register.
Using the read mask is useful for direct connection of BE16 to the WE pins
of DRAM systems or other systems with gated chip selects. BE16 is not
necessarily valid for 32-bit or 8-bit ports.

The R304 1 BE 16(1:0) outputs pins are designated in the R3051 as the no-
connect Rsvd(3:2) pins, respectively.

Last (0]

Last Datum in Mini-Burst: This active low output indicates that the
last datum of a single datum or mini-burst is being written. It goes
active with Wr for single datum writes and after the next to last Ack is
sampled for multiple datum writes. Last de-asserts when Wr de-
asserts.

The R3041 Last output pin is designated in the R3051 as the Diag(0)
output pin.

MemStrobe O

Memory Strobe: This active low output pulses low for each datum
written. It first goeslow 1 clock after the beginning of a write. It then de-
asserts 1/2 clock after an Ack is received. If there are more datum to be
written (as in a mini-burst write) then MemStrobe will assert again 1/2
clock after the previous de-assertion. MemStrobe will continue to (de)-
assert until all datum have been written. See Figure 9-18 for an example.
It can be used either as a write strobe or a data strobe for single datum
(non-burst) I/O ports or for a write strobe (single or mini-burst) for SRAM.
It can be active for reads, writes, or both depending on the settings in the
MemStrobe Control bits in the CPO Bus Control register. After reset,
MemStrobe is only active for writes.

The R3041 MemStrobe output pin is designated in the R3051 as the
BrCond(0) input pin.

IOStrobe (o]

Input/Output Strobe: This active low output asserts on the first falling
edge of SysCIk (1 clock) after ALE de-asserts. It asserts relatively late in
the cycle so that addresses and control lines are properly setup. It de-
asserts with at the end of the write along with Wr. It canbeactive forreads,
writes, or both depending if the read and write masks are enabled in the
10Strobe Control bit field in the CPO Bus Control register. Note that
IOStrobe requires that the transaction contain at least 3 clock cycles in
order for it to assert.

The I0Strobe pin is software configurable as an input by using the
SBrCond(3:2) Control bitin the CPO Bus Control register. The pin defaults
to an input after reset.
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ExtDataEn O

Extended Data Enable: This active low output asserts active low on the
first rising edge of SysClk after ALE de-asserts (1/2 clock later). It is
extended in that it de-asserts 1/2 clock after Wr de-asserts. ExtDataEn
provides extra hold time for data sampling (especially on writes) or for the
I0Strobe (if ExtDataEn is used as an extended read/write line). It can be
active for reads, writes, or both depending if the read and write masks are
enabled in the ExtDataEn Control bit field of the CPO Bus Control register.

The ExtDataEn pin is software configurable as an input by using the
SBrCond(3:2) Control bit in the CPO Bus Controlregister. The pin defaults
to an input after reset.
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WRITE INTERFACE TIMING OVERVIEW

The protocol for transmitting data from the processor to memory and I/0
devices is discussed below. Throughout this chapter it is assumed that
ExtDataEn and IOStrobe are configured as output pins and that they and
MemStrobe are enabled for writes.

Initiating the Write

Awrite transaction occurs when the processor has placed data into the write
buffer, and the bus interface is either free, or write has the highest priority.
Internally, the processor bus arbiter uses the NotEmpty indicator from the
write buffer to indicate that a write is being requested.

Assuming that the write transaction can be processed (that is, there are no
ongoing bus operations, and no higher priority operations pending), the
processor will initiate a bus write transaction on the next rising edge of SysCIk.
Higher priority operations would have the effect of delaying the start of the
write.

Figure 9.1 illustrates the initiation of a write transaction, based on the
internal negation of the WbEmpty control signal. This figure applies when the
processor is performing a write, and the write buffer is otherwise empty. If the
write buffer already had data in it, the buffer would continually request the use
of the bus until it was emptied; it would be up to the bus interface unit arbiter
to decide the priority of the request relative to other pending requests.
Additional stores would be captured by other write buffer entries, until the
write buffer was filled.

Run
Store (Arbitration) Run
PhiClk /—\___/— \___/—_-\___
Werwr |\ /
WoEmpty /
Wr
WrNear
ALE N |
A/D(31:0) Addr/Data
| !

Figure 9.1. Start of Write Operation — BIU Arbitration
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Memory Addressing

A write transaction begins when the processor asserts its Wr control output,
and also drives the address and other control information onto the A/D and
memory interface bus. The R3041 has two types of address phases. If the
ExtAddrHold reset configuration mode is not selected, the address is driven
with ALE. The data is driven as soon as ALE de-asserts. Figure 9.2 illustrates
the start of this type of processor write transaction, including the addressing
of memory and presenting the store data on the A/D bus. If the ExtAddrHold
reset configuration mode is selected, the address is driven for 1/2 clock past the
de-assertion of ALE. Figure 9.3 illustrates the start of this type of processor
write transaction. The remaining timing diagrams in this section will only be
shown with the ExtAddrHold option asserted even though either mode is always
applicable to every type of write transaction.

In either addressing mode, at the rising edge of SysClk, the processor will
drive the write target address onto the A/D bus. At this time, ALE will also be
asserted, to allow an external transparent latch to capture the address.
Depending on the system design, address decoding could occur in parallel with
address de-multiplexing (that is, the decoder could start on the assertion of
ALE, and the output of the decoder captured by ALE), or could occur on the
output side of the transparent latches. During this phase, WrNear will also be
determined and driven out by the processor.
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Figure 9.2. Memory Addressing and Start of Write for non ExtAddrHold Mode
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Figure 9.3. Memory Addressing and Start of Write for ExtAddrHold Mode

Data Phase

Once the A/D bus has presented the address for the transfer, the address
is replaced on the A/D bus by the store data. This occurs in the second phase
of the first clock cycle of the write transaction, as illustrated in Figure 9.2 for
the non-ExtAddrHold reset configuration mode, or in the first phase of the
second clock cycle for the ExtAddrHold mode, as illustrated in Figure 9.3.

The processor enters the data phase by performing the following sequence
of events:

¢ It negates ALE, causing the transparent address latches to capture the
contents of the A/D bus.

¢ Itinternally captures the data in a register in the bus interface unit, and
enables this register onto its output drivers on the A/D bus. The
processor design guarantees that the ALE is negated prior to the address
being removed from the A/D bus.

Thus, the processor A/D bus is driving the store data by the end of the
second phase of the write transaction. At this time, it begins to look for the end
of the write cycle.
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During the data phase, these three control signals may also assert:

When programmed via the ExtDataEn and SBrCond(3:2) Control bits in
the CPO Bus Control register, ExtDataEn asserts one clock cycle after Wr
asserts and remains asserted 1/2 clock cycle after Wr de-asserts. Thus
this signal is useful for enabling write data transceivers to allow extra hold
time or for acting as an I/0 read/write signal with extra hold time.

When programmed via the MemStrobe Control bits in the CPO Bus
Control register, MemStrobe asserts one clock after Wr asserts. It de-
asserts for 1/2 clock after every Ack is sampled. After 1 clock pastan Ack,
if more datum are being written within the same transaction, MemStrobe
asserts again and so on until all datum are acknowledged.

When programmed via the IOStrobe and SBrCond(3:2) Control bits in the
CPO Bus Control register, IOStrobe asserts 1.5 clock cycles after Wr
asserts and remains asserted until Wr de-asserts. It will only assert when
the write cycle is at least 3 clocks long. Thus this signal is useful for I/
O writes if disabled during reads. I0Strobe can be used as an I/0O data
strobe if ExtDataEn is configured as a read/write signal. 10Strobe can
also be used as a DRAM address multiplexor select if configured to assert
on both reads and writes.

Terminating the Write
There are only two methods for the external memory system to terminate a
write operation:

It can supply the appropriate number of Acks (acknowledges) to the
processor, to indicate that it has sufficiently processed the write request,
and that the processor may terminate the write.

¢ It can supply a BusError to the processor, to indicate that the requested
data transfer has “failed” on the bus. The system interface behavior of the
processor when BusError is presented is identical to the behavior when
the last Ack is asserted. In the case of writes terminated by BusError, no
exception is taken, and the data transfer cannot be retried.
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Figure 9.4 shows the timing of the control signals when the write cycle is
being terminated.

To determine the end of the write cycle one of these methods may be used:

Systems that only use 32-bit memory sub-region ports as with the rest of
the R3051 family only have single datum writes and either count the
number of wait-cycles or use the de-asserting edge of Wr to end the
transaction.

Systems that use 16 or 8-bit ports must in general support mini-burst
writes. Memory controllers for such systems can use the de-asserting
edge of Wr to reset the controller. The memory controller can also look for
Last to assert. When Last asserts, the controller knows that it is handling
the final datum of the transaction. It is also possible to decode BE(3:0) to
determine how many datum are to be returned.
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Figure 9.4. End of Write
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Latency Between Processor Operations

In general, the processor may begin a new bus activity in the phase
immediately after the termination of the write cycle. This operation may be
either a read, write, or bus grant. A new operation may begin as soon as one
clock cycle after the final Ack is sampled from the interface.

Also note that bus turn around after a write transaction does not occur. That
is, the processor continues to drive the A/D bus throughout the write
transaction (both address and data phases) , and will also drive the A/D bus
during the start of either a subsequent read or write transaction. Since no
change in bus ownership occurs, the Bus Turn Around field of the CPO Bus
Control register does not apply after write transactions.

Write Buffer Full Operation

It is possible that the execution core on occasion may be able to fill the on-
chip write buffer. If the processor core attempts to perform a store to the write
buffer while the buffer is full, the execution core will be stalled by the write
buffer until a space is available. Once space is made available, the execution
core will use an internal fixup cycle to “retry” the store, allowing the data to be
captured by the write buffer. It will then resume execution.

The write buffer can actually be thought of as “four and one-half” entries: it
contains a special data buffer which captures the data being presented by an
ongoing bus write transaction. Thus, when the bus interface unit begins a
write transaction, the write buffer slot containing the data for that write is freed
up in the second phase of the write transaction. If the processor was in a write
busy stall, it will be released to write into the now available slot at this time,
regardless of how long it takes the memory system to retire the ongoing write.

Note that each entry of the write buffer is one internal 32-bit word wide, but
each entry can only hold the result of one store operation. Thus a 32-bit port
can store 4 words while a 16-bit port can store up to 8 halfwords when using
store word operands. However, if for example, four store byte operations are
done, each byte takes a full entry.

The write buffer full operation is illustrated in Figure 9.5.

Write Start
Bus Write Stall Stall Fixup Run
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Figure 9.5. Write Buffer Full Operation
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WRITE TIMING DIAGRAMS

This section illustrates a number of timing diagrams applicable to R3041
writes. The values for the AC parameters referenced are contained in the
R3041 data sheet. Throughout this chapter it is assumed that ExtDataEn and
IOStrobe are configured as output pins and that they and MemStrobe are
enabled for writes. Although using the non-ExtAddrHold reset configuration
mode option is always applicable, these timing diagrams are all shown using
the ExtAddrHold mode.

32-Bit Basic Write

Figure 9.6 illustrates the case of a write operation which did not require wait
states. Thus, Ack was detected at the rising edge of SysClk which occurred
exactly one clock cycle after the rising edge of SysCIk which asserted Wr.
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Figure 9.6. Basic 32-Bit Port Write with No Wait Cycles
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Figure 9.7 also illustrates the case of a 32-bit memory sub-region basic
write. However, in this figure, two bus wait cycles were required before the data
was retired. Thus, two rising edges of SysCIk occurred where Ack was not
asserted. On the third rising edge of SysClk, Ack was asserted, and the write
operation was terminated.
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Figure 9.7. Basic 32-Bit Port Write with Wait Cycles
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Bus Error Operation

Figure 9.8 is a modified version of Figure 9.7 (basic write with wait cycles),
in which BusError is used to terminate the write cycle. If BusError and Ack
are asserted simultaneously, the BusError will be processed.

No exception is taken because such an exception would violate the precise
exception model of the processor. Since writes are buffered, the processor
program counter will no longer be pointing to the address of the store
instruction which requested the write, and other state information of the
processor may have been changed. Thus, if the system designer would like the
processor core to take an exception as a result of the bus error, he should
externally latch the BusError signal, and use the output of the latch to cause
an interrupt to the processor.
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Figure 9.8. Basic Write Terminated by Bus Error
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Figure 9.9. Single Datum 16-Bit Port Write with No Wait Cycles

16-Bit Write Timing Diagrams

This section illustrates a number of timing diagrams applicable to R3041
write transactions when a 16-bit port has been selected via the memory sub-
region configuration Port Size CPO Control register. These diagrams reference
AC parameters whose values are contained in the R3041 data sheet. It is
assumed that ExtDataEn and IOStrobe are configured as output pins and that
they and MemStrobe are enabled for writes. Although using the non-
ExtAddrHold reset configuration mode option is always applicable, these
timing diagrams are all shown using the ExtAddrHold mode.

16-Bit Basic Write

Figure 9.9 illustrates the case of a byte or halfword write operation to a 16-
bit port which did not require wait states. Thus, Ack was detected at the rising
edge of SysClk which occurred exactly one clock cycle after the rising edge of
SysCIk which asserted Wr. The 16-bit byte enables, BE16(1:0) indicate which
bytes are being used in this transaction.
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Figure 9.10. Single Datum 16-Bit Port Write with Wait Cycles

Figure 9.10 also illustrates the case of a basic halfword write. However, in
this figure, two bus wait cycles were required before the data was retired. Thus,
two rising edges of SysClk occurred where Ack was not asserted. On the third
rising edge of SysCIk, Ack was asserted, and the write operation was terminated.
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Figure 9.11. Mini-Burst 16-Bit Port Write

Figure 9.11 illustrates the case of a double halfword write operation which
did not require wait states. After the first Ack is sampled, Last asserts to
indicate that the second datum is the final datum. Also Addr(3:1) increments
and the BE16(1:0) change if appropriate. As with the single halfword write, bus
wait cycles can be inserted for either the first of second datum simply by
delaying the assertion of the corresponding Ack.
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Figure 9.12. 16-Bit Write Terminated by Bus Error

Bus Errors for 16-bit writes are handled similar to 32-bit writes.
BusError input is sampled whenever Ack is sampled. Bus errors which occur
before the end of a mini-burst will abandon any unsent datum. A case where
BusError is used to signal the end of a write transaction is illustrated in Figure

9.12.
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8-Bit Write Timing Diagrams

This section illustrates a number of timing diagrams applicable to R3041
write transactions when a 8-bit port has been selected via the memory sub-
region configuration Port Size CPO Control register. These diagrams reference
AC parameters whose values are contained in the R3041 data sheet. It is
assumed that ExtDataEn and IOStrobe are configured as output pins and that
they and MemStrobe are enabled for writes. Although using the non-
ExtAddrHold reset configuration mode option is always applicable, these
timing diagrams are all shown using the ExtAddrHold mode.

8-Bit Basic Write

Figure 9.13 illustrates the case of a single byte write operation to an 8-bit
port which did not require wait states. Thus, Ack was detected at the rising
edge of SysClk which occurred exactly one clock cycle after the rising edge of
SysClk which asserted Wr.
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Figure 9.13. Single Byte 8-Bit Port Write with No Wait Cycles
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Figure 9.14 also illustrates the case of a basic single byte write. However,
in this figure, two bus wait cycles were required before the data was retired.
Thus, two rising edges of SysClk occurred where Ack was not asserted. On the
third rising edge of SysCIlk, Ack was asserted, and the write operation was
terminated.
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Figure 9.14. Single Byte 8-Bit Port Write with Wait Cycles
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Figures 9.15, 9.16, and 9.17 illustrate the cases of a double, tri, and quad
byte write operation respectively. These cases did not require wait states. After
the second to last Ack is sampled, Last asserts to indicate that the next datum
is the final datum. Also Addr(3:0) increments. As with the single halfword
write, bus wait cycles can be inserted for any of the datum simply by delaying
the assertion of the corresponding Ack.

Bus Errors for 8-bit writes are handled similar to 32-bit writes. The
BusError input is sampled whenever Ack is sampled. Bus errors which occur
before the end of a mini-burst will abandon any unsent datum.
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Figure 9.15. Two Byte 8-Bit Port Write with Wait Cycles




CHAPTER 9 WRITE INTERFACE

sor \_f . f J—of Ff F_oF \
—_— = t15
K -
tham] T/i-‘ >t14£
A/D(31:0) N Addr % Byte N @ Byte N+1 % Byto N+2
L I o B
Addr(3:0) ¥ ‘nnn’ ‘nnnn41* { ‘nnnn+2' i
> 18 - *] to »1t16 »=lt16 »ltis
ALE ;‘F_ XF_ /—_
> t49
»| t48

WrNear *

179 ¢
Last
=l 52
| 150 15012 | 50
MemStrobe E 4 _If _‘_{
t51 51

t51 >

»1 147 » 115
t1 [ t1 |- t1 |-
- pEanranil;

ol ol Ul 1o e I t2

Start Extended Ack Ack Ack Negate New
Write Address WriteTransaction

Figure 9.16. Three Byte Mini-Burst 8-Bit Port Write




WRITE INTERFACE

CHAPTER 9

A/D(31:0)

Addr(3:0)

ALE

ExtDataEn

WrNear

[ast

MemStrobe

IOStrobe

“Ack

‘S
— X

\—

N/ N7

r

4
- tlSr

W
F Addr
N

#1116, I

t Byte 0 Byte 1
t1 9q I >|t1 9 | —I t

‘nn00"

X

‘nn01*

»lt1s
t Byte 2 t Byte 3 ﬁ
9 | >|t19 |
V

. tsr’-gm

16|

»>{t16}-

'nn10" )( ‘nntt E
16| »|t16

- t15|<

17 o=

-
ts2| =t
-%E_
ﬁ[ =

L o
E’f

> tlsﬁ
t -

Y4

1[4

> 2|

Start Extended  Ack

Write Address

>
Ack

T =

Y[ F

Ack Negate  New
Write Transaction

Figure 9.17. Four Byte Mini-Burst 8-Bit Port Write




CHAPTER 9 WRITE INTERFACE




&'

Integrated Device Technology, Inc.
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INTRODUCTION

The R3051 family contains provisions to allow an external agent to remove
the processor from its memory bus, and thus perform transfers on its own by
a direct memory access (DMA). These provisions use the internal DMA arbiter
interface to coordinate the external request for mastership with the CPU read
and write interface.

The DMA arbiter interface uses a simple two signal protocol to allow an
external agent to obtain mastership of the external system bus. Logic internal
to the CPU synchronizes the external interface to the internal arbiter unit to
insure that no conflicts between the internal synchronousrequesters (read and
write engines) and external asynchronous (DMA) requester occurs.

The R3041 expands on the basic capability of the R3051 family DMA Arbiter
by supporting an optional mode whereby the CPU can ask an external DMA
master to relinquish the bus. Onthe other hand, the R304 1 can use the default
DMA mode in an R3051 compatible fashion.

INTERFACE OVERVIEW

An external agent indicates the desire to perform DMA requests by asserting
the BusReq input to the processor. DMA requests have the highest priority,
and thus, once therequest is detected, is guaranteed to gain mastership at the
next arbitration.

The CPU indicates that the external DMA cycle may begin by asserting its
BusGnt output on the rising edge of SysClk after BusReq is detected with
appropriate set-up time to the external rising edge of SysClk. During DMA
cycles, the processor holds the following memory interface signals in tri-state:

A/D Bus

Addr(3:0)

Interface control signals: Rd, Wr, DataEn, Burst/WrNear, and ALE
Other control signals: Last, BE16(1:0), and MemStrobe

If enabled as outputs: ExtDataEn and IOStrobe

Diag

The extended data enable signal, ExtDataEn is slightly different from the
other tri-statable signals in that it tri-states 1/2 clock period after the other
signals. This allows it to do its primary function of staying asserted 1/2 clock
longer than the other signals and yet de-assert before tri-stating.

In addition to tri-stating these signals, the CPU will ignore transitions on
RdCEn, Ack, and BusError during DMA cycles.

During DMA cycles, the processor does not tri-state the following memory
interface signals:

¢ BusGnt
e SysClk
e TC

Thus, the DMA master can use the same memory control logic as that used
by the CPU; it may use Burst, for example, to obtain a burst of data from the
memory; it may use RACEn to detect whether the memory has satisfied its
request, etc. Since SysClk and TC do not tri-state, they can be used to continue
to clock the main memory state machine and to initiate DRAM refreshes during

©1992 Integrated Device Technology, Inc.
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DMA, respectively. Thus, DMA can occur at the same speed at which the R304 1
allows data transfers on its bus (a peak of one word per clock cycle). During
DMA cycles, the processor will continue to operate out of cache until it requires
the bus.

The R3041 has two protocols for de-asserting BusGnt. The protocol must
be selected using the DMA Protocol bit in the CPO Bus Control register. If DMA
Protocolis not selected then this default R3051 family equivalent mode causes
BusGnt during DMA to remain asserted until BusReq is removed. If the DMA
Protocol is selected, then during DMA, BusGnt will return high if the CPU
makes an internal request for the bus. In order to de-assert, BusGnt must have
first been asserted for at least 1.5 clocks. In both protocols, the CPU does not
begin driving the bus until it is given control of the bus back. As detailed below
in Figure 10.1, the bus control is returned to the CPU when the external DMA
agent de-asserts BusReq.

/* BusGntn and BusReqn are for the CPU BusGntn line.
BusGntn1 is for the highest priority device (DRAM refresher).
BusGntn2 is for the lowest priority device (DMA controlier).

*/

/* BusGntn1 has the highest priority, even over the CPU.
Line 3 state feedback gives BusGntn1 the default style
BusGntn priority by ignoring the |BusGntn signal after
it gets the bus.

*/

IBusGntn1 := Resetn and BusGntn1 and ( /f1%
('BusReqgn1 and BusGntn a2
or (IBusRegn1 and |BusGntn1) /3%

)i

/* BusGnt2n has the lowest priority, equal to that of the CPU.
Line 2 puts it request below the priority of the Device 1 request.
Line 3 allows the CPU to take back the bus.
This assumes that Device 2 will disconnect from the bus
immediately after the current DMA cycle is done and that it
will later restart gracefully.
*/
IBusGntn2 := Resetn and BusGntn1 and ( 1Y
('‘BusReqgn2 and BusReqn1 and |BusGntn) 2%
or (IBusReqgn2 and BusGntn2 and BusGntn) /*3*/

);

/* In this example, Device 2 and the CPU will alternate bus
mastership back and forth until done.
Line 3 allows the CPU to get the bus back after BusGntn1
is removed and Device 2 acknowledges by removing its
BusReqn2.
Device 2 should remove BusReqn?2 for at least 2 clocks
when it loses its BusGntn2. If it can't then the
BusGntn term is needed.

Wi

IBusReqgn := Resetn and ( i
(‘BusReqgn1) /~2%
or (IBusRegn2 /* and BusGntn */ /3% 4000 drw x
);

Figure 10.1. Example DMA Arbiter PLA Equations using the DMA Protocol Mode
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The external agent indicates that the DMA transfer has terminated by
negating the BusReq input to the processor, which is sampled on the rising
edge of SysClk. In the default mode with DMA Protocol turned off, BusGnt is
negated on a falling edge of SysCIk, so that it will be negated before the
assertion of Rd or Wr for a subsequent transfer. In the DMA Protocol mode,
BusGnt will be de-asserted on a falling edge of SysClk if it has not already done
so. In either mode, on the next rising edge of SysClk after BusReq has been
sampled as de-asserted, the processor will resume driving tri-stated signals.

Thus the DMA system can operate with the highest bus priority or it can use
the DMA Protocol to give DMA and the CPU equal priority. See Figure 10.1 for
example PLA equations that implement a typical external DMA arbitration
unit.

Note that there is no hardware coherency mechanism defined for DMA
transfers relative to either the internal caches or the write buffer. Software
must explicitly manage DMA transfers to insure that data conflicts are avoided.
This is an appropriate trade-off for the vast majority of embedded applications.

DMA ARBITER INTERFACE SIGNALS
BusReq I

Bus Request: This active low signal is an input to the processor, used to
request mastership of the external interface bus. Mastership is granted
according to the assertion of this input, and taken back based on its negation.

BusGnt (0]

Bus Grant: This active low signal is an output from the processor and has
two modes. In the default mode where the DMA Protocol bit in the CPO Bus
Control register is not selected, BusGnt is used to indicate that the CPU has
relinquished mastership of the external interface bus. When the DMA Protocol
is selected, BusGnt goes low initially for at least 1.5 clocks to indicate that the
CPU hasrelinquished mastership of the external interface bus. After goinglow,
BusGnt returns high either when the CPU makes an internal request for the
bus or after BusReq is de-asserted.

DMA ARBITER TIMING DIAGRAMS

These figures reference AC timing parameters whose values are contained
in the R3041 data sheet. These figures assume that ExtDataEn and IOStrobe
are enabled as outputs instead of as SBrCond(3:2) inputs.

Initiation of DMA Mastership

Figure 10.2 shows the beginning of a DMA cycle. Note that if BusReq were
asserted while the processor was performing a read or write operation, BusGnt
would be delayed until the next bus slot after the read or write operation is
completed.

To initiate DMA, the processor must detect the assertion of BusReq with
proper set-up time to SysClk. Once BusReq is detected, and the bus is free,
the processor will grant control to the requesting agent by asserting its BusGnt
output, and tri-stating its output drivers, from a rising edge of SysClk. The bus
will remain under the control of the external master until it negates BusReq,
indicating that the processor is once again the bus master.
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Figure 10.2. Bus Grant and Start of DMA Transaction

Relinquishing Mastership Back to the CPU

Figure 10.3 shows the end of a DMA cycle when not using the DMA Protocol
mode. The next rising edge of SysClk after the negation of BusReq is sampled
may actually be the beginning of a processor read or write operation.

To terminate DMA, the external master must negate the processor BusReq
input. Once this is detected (with proper setup and hold time), the processor
will negate its BusGnt output on the next falling edge of SysCIk if it hasn't
already done so. It will also re-enable its output drivers. Thus, the external
agent must disable its output drivers by this clock edge, to avoid bus conflicts.

Bus Grant Protocol CPU Initiated Bus Grant De-assertion

Figure 10.4 shows the middle of a DMA cycle when using the DMA Protocol
mode. If BusGnt has been low for at least 1.5 clock periods and the CPU has
apending external bus request due to either a cache miss or uncached memory
reference, then on the next rising edge of SysClk, BusGnt will be de-asserted.
Even when this occurs, the mastership is not given back to the CPU until the
DMA terminates the present transaction by releasing BusReq.
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RESET INITIALIZATION CHAPTER 11

AND INPUT CLOCKING

INTRODUCTION

This chapter discusses the reset initialization sequence required by the
R3041. Also included is a discussion of the configuration mode selectable
features of the processor, and of the software requirements of the boot
program.

There are a number of selectable features in the R3041. These mode
selectable features are determined by the polarity of the appropriate reset
configuration mode inputs when the rising edge of Reset occurs.

RESET TIMING

Unlike the R3000, which requires the use of a state machine during the last
four cycles of reset to initialize the device and perform mode selection, the
R3041 requires a very simple reset sequence. There are only two concerns for
the system designer:

¢ That the set-up time and hold requirements of the reset configuration
mode feature inputs with respect to the rising edge of Reset are met.

¢ That the minimum Reset pulse width is satisfied.

RESET CONFIGURATION MODE FEATURES

The R3041 has features which are determined at reset time. This is done
using a latch internal to the CPU: this latch samples the contents of the reset
mode feature bus at the negating edge of Reset. The encoding of the mode
selectable features on the reset mode feature bus is described in Table 11.1.
Note that the R3041 uses both input pins and output pins which are tri-stated
during Reset as inputs for the reset configuration mode features. Thus external
state machines should not depend on the value of these pins until after Reset
is negated.

Pin Mode Feature
SInt(0, BigEndian
SInt(1) Reserved
SInt(2) Reserved
Int(3) AddrDisplayAndForceCacheMiss
Int(4 Reserved
Int(5 Reserved

Addr(0) ExtAddrHold

Addr(1) ReservedHigh

Addr(2) BootProm8

Addr(3) BootProm16

BEI16(0) ReservedHigh

BET16(1) ReservedHigh

Table 11.1. R3041 Reset Configuration Mode Features

4000 tbl 23

©1992 Integrated Device Technology, Inc.
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Internal Reset Pull-ups
The R3041 contains internal pull-up resistors on the following pins:

e  reset configuration mode inputs: Addr(1:0), BE16(1:0)
. tri-state input: TriState

Addr(1:0), BE16(1:0), and TriState are designated as the no-connect Reserved
pins in the R3051 family. Thus if left un-connected on the R3041, these pins
have internal pull-ups to set them to their default values during reset. When
using the internal pull-up resistors, warm resets require the same amount of
reset time as power-up resets. If these pins are connected to an external device,
then external pull-up/pull-down resistors or a tri-stateable device are required
to initialize the reset configuration modes.

The other reset configuration inputs including SInt(0), Int(3) and Addr(3:2)
do not have internal pull-up resistors and must pull-up or down these inputs
externally. .

A special case occurs when one of the Addr(3:0) or BE16(1:0) pins is pulled-
down and is connected to a bipolar TTL input. Since BE16(1:0) are always
pulled high, they will be excluded from the remainder of this section. In such
a case, the external pull-down value would have to very low in order to supply
the bipolar input enough current which conflicts with the CPU's ability to drive
the signal high during normal operation after reset. This is in accordance with
the following equations (where R is the pull-down resistance, V_, and I, are
relative to the CPU and [ and I, are relative to the chip being driven):

RPULLDOWN 2 VOH / (IOH - IIH) where IOH 2 IIH

RPULLDOWN S VIL [lL

Using CMOS interfaces and/or memories will typically allow pull-up or pull-
down values in the 3K to 10KQ range. However, if bipolar interfaces and/or
memories are used then assuming that the Addr(3:0) lines are attached to
inputs which are on a bipolar buffer chip, solutions include:

Using a transceiver thatis enabled to drive the Addr(3:0) pins during reset
instead of using a buffer. External pull-downs (or pull-ups) are placed
on the other side of the transceiver, since transceivers usually have a very
large I, output current capability.

Using a transceiver instead of a buffer, since bipolar I/0 pins typically
have lower I than dedicated bipolar input pins. The Addr(3:0) side of the
transceiver is always disabled and external resistors are placed on the
Addr(3:0) lines.

Choosing a buffer chip with a relatively low I (of less than 600uA) and
using external pull-down (or pull-up) resistors.
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Reset Configuration Mode Pin Descriptions

Reserved

Reserved mode bits should be driven high if future compatibility is to be
maintained with the R3041 family. Note that it is not mandatory that these
pins be driven high.

BigEndian

Use Big Endian Addressing: if asserted (active high), the processor will
operate as a big-endian machine, and the RE bit of the status register would
then allow little-endian tasks to operate in a big-endian system. If negated
(inactive low), the processor will operate as a little-endian machine, and the RE
bit will allow big-endian tasks to operate on a little-endian machine.

AddrDisplayAndForceCacheMiss

If asserted (active low), two diagnostic functions are enabled:

Address Trace Display Mode: this mode (active low) will put the internally
latched cached address out onto the A/D bus during unused bus cycles.

Force Cache Miss Mode: this mode (active low) causes all cacheable
instruction and data references to do external bus accesses as if a cache miss
occurred.

ExtAddrHold

Extended Address Hold Time Mode: if asserted (active low) the address is
held for an additional half clock past ALE de-asserting. DataEnis also delayed
by one half clock. When not asserted (inactive low), the address is held only
until ALE is de-asserted.

ReservedHigh
ReservedHigh mode bits are reserved for internal testing and must be driven
high or if the pin is internally pulled-up, left un-connected.

BootProm8

8-bit Boot PROM Mode. Ifasserted (active low), this mode will cause the port
size mapping register to initialize all memory sub-regions to 8-bit ports instead
of 32-bit ports. Thus an 8-bit boot PROM can be used to initialize the R304 1.
This mode can only be asserted if BootProm16 is de-asserted.

BootProm16

16-bit Boot PROM Mode: if asserted (active low), this mode will cause the
port size mapping register to initialize all memory sub-regions to 16-bit ports
instead of 32-bit ports. Thus a 16-bit boot PROM can be used to initialize the
R3041. This mode can only be asserted if BootProm8 is de-asserted.

R3000A Equivalent Modes

The R3000A features a number of modes, which are selected at Reset time.
Although most of those modes are irrelevant, a number of equivalences can be
made:

¢ IBlkSize = 4 word refill.

e DBIkSize = 1 or 4 word refill, depending on the DBlockRefill mode as
selected in the CPO Cache Configuration register.

¢ Reverse Endianness capability enabled.

¢ Instruction Streaming enabled.

e Partial Word Stores enabled.

Other modes of the R3000A primarily pertain to its cache interface, which
is incorporated within the R3041 and thus transparent to users of this
Processor.
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RESET BEHAVIOR
While Reset is asserted, the processor maintains its interface in a state
which allows the rest of the system to also be reset. Specifically:
» SysCIk operates at one-half the ClkIn frequency.
A/D is tri-stated
ALE is driven negated (low).
DataEn, Burst/WrNear, Rd, and Wr are driven negated (high).
MemStrobe, Last, and TC are driven negated (high).
Diag is driven (value undefined).
Addr(3:0), and BE16(1:0) are tri-stated.
SBrCond(3:2) are configured as inputs and therefore tri-stated, i.e.,
ExtDataEn and IOStrobe are tri-stated.

e & & o o o o

The R3041 samples for the negation of Reset relative to a falling edge of
SysClk. The processor will initiate a read request for the instruction located
at the Reset Exception Address Vector at the 6th rising edge of SysClk after the
negation of Reset is detected. These cycles are a result of:

¢ Reset input synchronization performed by the CPU. The Reset input uses
special synchronization logic, thus allowing Reset to be negated
asynchronously to the processor. This synchronization logic introduces
a two cycle delay between the external negation of Reset and the negation
of Reset to the execution core.

e Internal clock cycles in which the execution core flushes its pipeline,
before it attempts to read the exception vector.

¢ One additional cycle for the read request to propagate from the internal
execution core to the read interface, as described in Chapter 8.

BOOT SOFTWARE REQUIREMENTS

Basicmode selection is performed using hardware during the reset sequence,
as discussed in the mode initialization section. However, there are certain
aspects of the boot sequence that must be performed by software.

The assertion and subsequent negation of reset forces the CPU to begin
execution at the reset vector, which is address 0x1FC0_0000. This address
resides in uncached, un-mapped memory, and thus does not require that the
caches be initialized for the processor to execute boot code.

The processor needs to perform the following activities during boot:

¢ Initialize the CPO Status Register
The processor must be assured of having the kernel enabled to perform
the boot sequence. Specifically, co-processor usable bits, and cache
control bits, must be set to the desired value before any data references,
diagnostics or initialization occurs.

¢ Initialize the CPO Configuration Registers
The software should decide on the Cache Configuration, Port Sizes, and
Bus Control during initialization.

 Initialize the caches
The processor needs to determine the sizes of the on-chip caches, and
flush each entry, as discussed in Chapter 3. This must be done before the
processor attempts to execute cacheable code.
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¢ Initialize CPO Registers
The processor should establish appropriate values in various CPOregisters,
including:

The IM bits of the status register.
The BEV bhit.

Initialize KUp/IEp so that user state can be entered using a RFE
instruction

¢ Enter User State

Branch to the first user task, and perform an RFE to enter the user mode.

DETAILED RESET TIMING DIAGRAMS

The timing requirements of the processor reset sequence are illustrated
below. The timing diagrams reference AC parameters whose values are
contained in the R3041 data sheet.

Reset Pulse Width
There are two parameters to be concerned with: the power on reset pulse
width, and the warm reset pulse width.

LL
77

Vce
Clkin |H|||[£J|I|H||

— - t23 "1
Reset ‘r
77 4000 drw 70

Figure 11.1. Cold Start

Figure 11.1 illustrates the power on reset requirements of the R3051 family.
Figure 11.2 illustrates the warm reset requirements of the processor when
the reset configuration mode bits are driven.

J— o to4 -
Reset . + rr
’ 77
4000 drw 71

Figure 11.2. Warm Reset

Figure 11.3 illustrates the warm reset requirements of the processor when
the reset configuration mode bits use the internal pull-ups.
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Figure 11.3. Warm Reset when using Internal Pull-Ups
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Mode Initialization Timing Requirements

The modeinitialization vectors are sampled by an internal transparent latch,
whose output enable is directly controlled by the Reset input of the processor.
The internal structure of the processor is illustrated in Figure 11.4.

R3041 Configuration Mode Initialization Logic

Sint(0)
Sint(1)

Transparent
Sint(2) Latch

@)
nt(@)
nt(5)
Addr(0)
Addr(1)
Addr(2)
Addr(3)
BET6(0)
BET8(1)

Reset

SysClk

TriState

4000 drw 72
Figure 11.4. Configuration Mode Initialization Logic

Thus, the mode vectors have a set-up and hold time with respect to the rising
edge of Reset, as illustrated in Figure 11.5.

SysClk / \ / Jr / !R
Reset ;. 5125
Mode Vector Inputs: 2
3 nt(2:0), nt(5:3) 7(
Mode Vector Inputs:
Addr(3:0), : Extornal Device Drives Signals £ ) S— :@
el 127

t
* 4000 drw 73
Figure 11.5. Mode Vector Timing

Reset Setup Time Requirements

The reset signal incorporates special synchronization logic which allows it
to be driven from an asynchronous source. This is done to allow the processor
Reset signal to be derived from a simple circuit, such as an RC network with
a time constant long enough to guarantee the reset pulse width requirement
ismet. Such a system should buffer the RC circuit such that a sufficiently fast
monotonic rise time is generated which is capable of synchronously resetting
any external state machines and logic at the same time as of resetting the CPU.

The Reset set-up time parameter can then be thought of as the amount of
time Reset must be negated before the rising edge of SysClk for it to be
guaranteed to be recognized; failure to meet this requirement will not result in
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improper operation, but rather will have the effect of delaying the internal
recognition of the end of reset by one clock cycle. This doesnot affect the timing
of the sampling of the mode initialization vectors.

Figure 11.6 illustrates the set-up time parameter of the R3041.

Sysck / \__ /X

Reset
to5

4000 drw 74
Figure 11.6. Reset Timing

ClkIn Requirements

The input clock timing requirements are illustrated in Figure 11.7. The
system designer does not need to be explicitly aware of the timing relationship
between ClkIn and SysClk. Note that SysClk is driven even during the Reset
period as long as ClklIn is provided.

122

clkin ;( 20 \<‘ 121 7( m

SysClk 7 4 132 \|\ 183 7 4

tsys

4000 drw 75
Figure 11.7. R3041 Clocking
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DEBUG MODE FEATURES CHAPTER 12

INTRODUCTION

This chapter discusses particular features of the R304 1 included to facilitate
debugging of R304 1-based systems. These features are intended to be used by
an in-circuit emulator, in-circuit tester, board level tester, logic analyzer,
hardware modeler, or similar tool.

OVERVIEW OF FEATURES
The features described in this chapter include:
¢ The ability of the processor to display internal instruction addresses on
its A/D bus during idle bus cycles. This mode facilitates the trace of
instruction streams operating out of the internal cache.
¢ The ability of the processor to have instruction and data cache misses
forced, thus allowing all internal cache accesses to be displayed on the
bus interface.
» The ability to tri-state all output pins including SysClk, thus allowing an
in-circuit emulator or tester to drive and control the output pins directly.
¢ The ability to deterministically set the phase relationship of the SysClk
output relative to the ClkIn input. This feature allows board level testers
and hardware modelers to control the SysClk output.
» The ability to distinguish data and instruction accesses via the Diag pin,
allowing logic analyzers to do instruction disassembly (see Chapter 6).
¢ A software breakpoint instruction.
Note that the features described in this chapter are intended for initial debug
or production testing rather than for functional use in a fielded end-user
system.

ADDRESS DISPLAY

Activating the AddrDisplay mode with its reset configuration mode forces the
CPU to display Instruction stream addresses on its A/D bus during idle bus
cycles. Note that activating the AddrDisplay mode also activates the
ForceCacheMiss mode described below. Refer to Figure 12.1 regarding the
timing relationship between instruction initiation in the on-chip cache and the
output address. Note that the address is driven out, but ALE is not asserted.
This is to reduce the impact of this mode on system designs which may use the
initiation of ALE to start a state machine to process the bus cycle. Instead of
ALE, external logic should use the rising edge of SysClk to latch the current
contents of the address bus.

The address displayed is determined by capturing the low order address bits
used to address the instruction cache, and then capturing the TAG response
from the cache one-half clock cyclelater. These addresslines are concatenated,
and presented as follows (Note AddrLo(1:0) will be '00' in all Instruction Cache
cycles):

A/D(31:9) displays TAG(31:9)
A/D(8:4) displays AddrLo(8:4)
A/D(3:2) displays AddrLo(10:9)
A/D(1:0) is reserved for future use.
Addr(3:2) displays AddrLo(3:2)

©1992 Integrated Device Technology, Inc.
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This mode is intended to allow gross, rather than fine, instruction trace.
Specifically, branches taken while a write or DMA operation occurs may not be
displayed, and there is no indication that an exception has occurred (and thus
thatinitiated instructions have been aborted). Additionally, erroneous addresses
may be presented in cycles where internal processor stalls occur, such as those
for integer multiply/divide interlocks.

Finally, note that the cycle immediately before a read may contain an
erroneous address, and the cycle immediately after a read or write may not
produce the address with appropriate timing. It is recommended that these
cycles be ignored when tracing execution.

Run o0 Run 1 Run 2 Run 3 Run 4 Run 5

ok [/ N\ \ A2 N N
sor | /| | /] S S| S
nasto (XY WX XY XY Xy X
1) D D Go) G G2 G GoD G G G
I S D D, S

Addr

Figure 12.1. R3041 Debug Mode Instruction Address Display

FORCING INSTRUCTION AND DATA CACHE MISSES

Another feature for debugging is the ability to force an instruction and data
cache miss. As with the AddrDisplay mode, this mode is not intended for use
in a fielded production system.

The ForceCacheMiss mode is invoked with the same reset configuration
mode bit as the AddrDisplay mode. Activating ForceCacheMiss forces all
instruction and data cache accesses to be treated like cache misses. Thus
cache accesses will be put onto the external A/D bus. Note that instruction
cache misses and 4-word data block refills are still done in burst mode.

Tri-Stating All Outputs

The R3041 has a dedicated TriState input pin, which when asserted,
disables all its outputs. This mode is useful for in-circuit emulators and testers
which can then drive those pins to simulate the functions of the chip. Exiting
this mode requires that a Reset be given before normal operation can take
place. The pin description is as follows:

TriState o

Tri-State All Outputs: An active lowinput to the device whichrequests
that the processor tri-state all ofits outputs. In addition to the outputs
which are tri-stated during a DMA operation, SysCIk, TC, and BusGnt
are also tri-stated. TriState can be used for in-circuit testing and
emulation during board production manufacture.

The R3041 TriState input pin is designated in the R3051 as the no-
connect Rsvd(4) pin.
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Figure 12.2. R3041 SysClk Phase Initialization Case A

SysClk / \ ,f—\_/

Internal_Reset

125

Figure 12.3. R3041 SysClk Phase Initialization Case B

Initializing SysClk for Test

Another feature for board level testing is the ability to initialize the phase of
SysClIk to its high phase. A high to low transition on Reset will cause the
internally synchronized (delay ofless than or equal to 2 clocks) version of Reset
to always set SysClk high during its next phase. Thus the state of SysClk can
be deterministically controlled within a known number of ClkIn transitions.
The two cases are shown in Figures 12.2 and 12.3.

Using Diag for Instruction Disassembly

The R3041 provides a Diagnosis pin which during its data phase outputs
whether a read transaction is the result of an instruction fetch or the result of
a data fetch. This information is independent of the information given during
the address phase of whether or not the read was a result of a cached or
uncached read. Note that this pin is undefined on writes, however, all writes
by necessity must be data writes. The pin description is as follows:

Diag o

Diagnostic Pin: During the address phase of the read transaction, this
output indicates whether the read is a result of a cache miss (high) or an
uncacheable reference (low).

During the remainder of the transfer, this output indicates whether the
read is an instruction (high) or a data reference (low).

The Diag pin is undefined during write transactions.
This pin is useful in the initial debug of R304 1 based systems.

The R3041 Diag output pin is designated in the R3051 family as the
Diag(1) output pin.

Breakpoint Instruction

The R3051 family defines as described in Chapter 2, the breakpoint
instruction, BREAK, that invokes an exception when executed. Thus debug
kernel software can set breakpoints and single step through RAM based
software.
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COMPATIBILITY AMONG R3051 APPENDIX A

FAMILY DEVICES

INTRODUCTION

One of the unique advantages of the IDTR3051 family is the high level of pin,
socket, and software compatibility across a very wide price-performance range.
Although some devices do offer features not found in other family members, in
general it is very straightforward to design a single system and set of software
capable of using either the R3041, R3051, R3052, or R3081; the decision as
to which processor to use can be made at board manufacturing time (as
opposed to at design time) or as a program of field upgrades.

This appendix discusses compatibility issues among the various R3051
family members. The goal of this chapter is to provide the system designer with
the understanding necessary to be able to interchange various R3051 family
members in a single design environment, and with a single set of software tools.

SOFTWARE CONSIDERATIONS
In general, software considerations among the various family members can
be summarized into the following areas:
¢ Cache Size differences. One of the obvious differences among the devices
is the amount of instruction and data cache integrated on chip. Although
the cache size is typically transparent to the applications software, the
kernel must typically know how much cache to flush, etc. during system
boot up. This manual presents an algorithm for determining the amount
of cache on the executing processor; to insure compatibility, software
should be written to dynamically determine the amount of cache on-chip.
» Differences in CPO registers. Another area where the various family
members differ slightly is in their implementation of CPO registers. Table
A.1 summarizes the CPO registers of the various family members.
In general, these differences are only relevant at system start-up. The
start-up code should determine which device is running, and branch to
a CPU specific CPO initialization routine. Determining which CPU is
executing is straightforward, and can be accomplished by reading the
PrID register (to determine the presence of an R3041) and/or performing
floating point diagnostics (to determine the presence of a R3081).

Register R3041 R3051/52 R3081
$0 rsvd Index Index
$1 rsvd Random Random
$2 BusCtrl EntryLo EntryLo
$3 CacheConfig rsvd Config
$4 rsvd Context Context

$5-$7 rsvd rsvd rsvd
$8 BadVA BadVA BadVA
$9 Count rsvd rsvd
$10 PortSize EntryHi EntryHi
$11 Compare rsvd rsvd
$12 Status Status Status
$13 Cause Cause Cause
$14 EPC EPC EPC
$15 PrID PriD PriD

Table A.1. CPO Registers in the R3051 Family
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e "E"vs. "non-E" parts. In general, few applications will freely interchange
devices with TLB's with those that do not. However, a given kernel source
tree may be used across multiple applications; in this case, the start-up
code should examine the "TS" bit of the status register after reset to
determine the presence of an on-chip TLB, and initialize the TLB if needed.

e Hardware vs. Software Floating Point. The R3081 offers a very high-
performance floating point accelerator on-chip, while the R3041 and
R3051/52 do not. In this case, it may be advantageous to generate two
distinct binaries from the same source tree (one for hardware floating
point and one for software). However, the R3051 architecture does
support the ability to trap on floating point instructions (for later
emulation), by negating the CP1 usable bit. Thus, initialization software
may wish to determine the presence of an on-chip FPA, and initialize the
CP1 usable bit accordingly.

HARDWARE CONSIDERATIONS

In general, the R3041, R3051/52, and R3081 offer the same system
interface and pin-out, simplifying the interchange of the various family
members. However, both the R3041 and the R3081 offer some device specific
features, which should be considered when designing a common board. The
differences among the devices are summarized below.

R3041 Unique Features
The R3041 includes features targeting reduced system cost. Systems may
wish to take full advantage of these features, in which case they may sacrifice
the ability to readily interchange various CPUs in the design. Specifically, the
R3041 can be interchanged with an R3051 or R3081 only in systems which
implement a full 32-bit wide memory interface to the CPU, since the R3051 and
R3081 do not offer the variable port width interface found in the R3041.
In general, the areas of differences between the R3041 and the R3051 are
summarized below:
¢ The R3041 has a unique processor ID (PRId) of 0x0000_0700.
¢ TheR3041 has the base address translation memory map only (w/o TLB).
¢ Different Instruction and Data Cache sizes.
¢ The R3041 software selects the DBlockRefill mode, rather than as a reset
mode.
The R3041 does not externally connect the BrCond(1:0) input pins.
Diag(1:0) are not available on the R304 1. Similar information is available
with the Diag pin.
The R3041 WrNear page size is decreased.
The R3041 has additional/different reset modes.
The R3041 includes new Co-processor O Config Registers.
The R3041 can configure SBrCond(3:2) as outputs.
The R3041 uses pins that are Reserved as no-connects on the R3051/
R3081.
The R3041 has an Extended Address Hold mode.
¢ The R3041 has a Slow Bus Turnaround mode with programmable bus
wait timing.
¢ The R3041 has 8-bit and 16-bit ports with appropriately sized bus cycles.
The R3041 can boot directly from an 8- or 16-bit wide PROM.
e The R3041 has additional outputs for BE16(1:0), Last, MemStrobe,
ExtDataEn, and IOStrobe, and TC.
e The R3041 has a read/write mask for BE(3:0).
e The R3041 has an on-chip Timer with Count and Compare registers in
CPO.
¢ The R3041 has a DMA protocol option.
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R3081 Unique Features

The R3081 includes features targeted to simplifying its use in high-
frequency, high-performance systems. Systems may wish to take advantage
of these features, in which case they may sacrifice somelevel ofinterchangeability
with other CPUs. Key differences between the R3081 and the R3051 are
summarized below:

¢ The R3081 includes an on-chip FPA.

¢ The R3081 features larger caches, which are configurable.

e The R3081 on-chip FPA uses one of the six CPU interrupts; the
corresponding input pin is logically not connected.

The R3081 implements Half-frequency bus mode.

The R3081 features Hardware cache coherency capability during DMA.
The R3081 can use an optional 1x (rather than 2x) clock input.

The R3081 WrNear page size is increased.

The R3081 implements an additional CPO Config register.

The R3081 implements a power down (reduced frequency, halt) option.
The R3081 features a dynamic data cache miss refill option.

The R3081 BrCond(1) input is not available externally. It may be used as
a "Run" output indicator.

¢ The R3081 implements additional reset mode vectors.

e The R3081 differs slightly in its use of the reserved pins.

In general, the similarities in features allow the R3041 to use the same
DRAM, I/0, and peripheral controllers that the R3051/81 use. It is possible
by only using a subset of the interface features of the R3041 to also use the
same system board socket as the R3051/81. However, many of these features,
for instance the Extended Address Hold mode and the BootProm8 mode, allow
inexpensive interface alternatives that often will justify a dedicated system
board design.

Pin Description Differences

Table A.2 lists the significant R3051, R3081, and R3081 pin differences.
These differences can easily be accommodated in a single board design, as
described in this chapter.

R3051 R3081 R3041
Rsvd(0) CohReq Addr(0)
Rsvd(1) Rsvd(1) Addr(1)
Rsvd(2) Rsvd(2) BE16(0)
Rsvd(3) Rsvd(3) BE16(1)
Rsvd(4) Rsvd(4) TriState
BrCond(0) BrCond(0) MemStrobe
BrCond(1) unused/Run | TC

Diag(0) Diag(0) Last
Diag(1) Diag(1) Diag

Table A.2. Pin Considerations Among R3051 Family Members
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Reset Mode Selection

Table A.3 shows the various reset mode vectors available in the various
family members. As can be seen from the table, there are differences in the
mode vector options available in the different devices.

Designing a board which accommodates these differences is very
straightforward:

e  Use pull-up resistors on Addr(3:2). These pull-ups will have no effect
on the R3051 or R3081; in the R304 1, they will cause the device to boot from
a 32-bit wide EPROM, which is compatible with the R3051 and R3081.

¢ Do not connect anything to the R3051 reserved pins. This will insure
that the R3051 and R3081 function properly. In the R3041, this will negate
the Extended Address Hold feature, causing the address to data transition of
the processor A/D bus to be compatible with the R3051 and R3081.

e  Use dip-switches with a MUX or 3-state buffer to select the reset
initialization presented on the interrupt pins. Thus, selecting different reset
mode vectors merely involves setting the dip switches.

Note that may systems may not need to do this either. For example, using
pull-ups on the interrupt inputs will result in a BigEndian system for all
devices, and in general disable the various device specific modes of the R3081
and R3041.

Pin R3041 R3051/52 R3081
Int(5 Rsvd Rsvd CoherentDMA
Int[@) Rsvd Rsvd TxCIkEn
Int(3) AddrDisplay Rsvd 1/2FreqBus

SInt(2) Rsvd DBlockRefill DBIkRefill
SInt(I) Rsvd Tri-State Tri-State
SInt(0) BigEndian BigEndian BigEndian
Addr(3) BootProm16 N/A N/A
Addr(2) BootProm8 N/A N/A
Rsvd(4) Tri-State(¥) NC NC
Rsvd(3) Rsvd(¥ NC NC
Rsvd(2) Rsvd(¥) NC NC
Rsvd(1) Rsvd(*) NC NC
Rsvd(0) ExtAddrHold(*) NC NC
NOTES:

Rsvd:  Must be driven high

N/A: Must not be driven

NC: Must not be connected

* Contains an internal pull-up

Table A.3. Reset Mode Vectors of R3041, R3051/52, and R3081
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Reserved No-Connect Pins
The R3051/81 contain not-to-be-connected reserved pins that R3041
systems may use. Table A.4 illustrates the different uses of the reserved pins.
To insure compatibility in systems using the same physical socket, various
options exist:
¢ Use the internal pull-ups of the R3041 by extending the length of warm
resets to be the same as that of power-up resets.
¢ Use external pull-ups which can be removed when an R3051/81 is used.
This is so the R3051/81 Reserved pins have no chance of being driven.
¢ Usea tri-statable device to drive the reset configuration mode pins during
reset and which then tri-state after reset when the R3041 is used, but
which can be removed when the R3051/81 is used.
Of these options, the first is obviously the simplest; by not connecting the
reserved pins, the R3051 and R3081 specifications will be met, and the
extended features of the R3041 will not be accessed.

Pin R3041 R3051/52 R3081
Rsvd(4) Tri-State Rsvd Rsvd
Rsvd(3) BE16(1) Rsvd Rsvd
Rsvd(2) BE16(0) Rsvd Rsvd
Rsvdl) Addr(1) Rsvd Rsvd
Rsvd(0) Addr(0) Ravd CohReq

Table A.4. Rsvd Pins of R3041, R3051/52, and R3081

DIAG Pins

The R3051 features a pair of DIAG output pins which can be used during
system debug. There are subtle differences in these pins in the various family
members:

* The R3081 indicates the cacheability of data on writes, to simplify
cache coherency. Since the R3041 and R3051 do not feature cache coherency,
this feature would not be used in systems which wish to interchange the
various family members.

¢  TheR3041 usesa single DIAG pin (on the same physical pin as DIAG(1),
to report the cacheability of an access. The other pin is used as the "Last"
output of the R3041. Since the "Last" output is not available on the R3051 or
R3081, systems designed to interchange CPUs will not use this output.

In general, the DIAG pins will only be used in system debug, rather than used
to control some aspect of board operation. Thus, the differences in these pins
will not impact the interchangeability of various CPUs.

BrCond(1:0), SBrCond(3:2)

There are also some differences among the devices in their treatment of the
BrCond input pins. Specifically:

e The R3051 allows software to access all of BrCond(3:0).

e  TheR3081 uses BrCond(1) internally for the FPA. Software can access
the BrCond(3:2) and BrCond(0) inputs.

e  The R3041 does not provide access to the BrCond(1:0) pins, which
instead are used for other functions. Additionally, the R3041 defaults to using
the SBrCond(3:2) pins as inputs on reset, although they can be used to provide
other functions.

Thus, to insure CPU interchangeability, the system designer should provide
pull-ups on BrCond(1:0), and only use BrCond(3:2). Of course, if these are also
not used, pull-ups should be provided.
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Slow Bus Turn Around Mode

Slow bus turn around on the R3041 allows extra cycles between changes in
A/D bus direction. The R3081 also has a bus turn around feature, but the
maximum number of extra cycles is fewer. Note that with the bus turnaround
slowed, the R3041 continues to operate in a 100% compatible fashion with the
R3051 (thereisno R3051 transaction that guarantees a "quick” bus turnaround).

Note that there is a hardware solution to bus turnaround in the R3051,
which will also work with the R3041/81. This involves using the DMA arbiter
to prevent the R3041/51/81 from issuing a bus cycle, and is explained in an
applications note available from IDT.

Most systems that are using an R3041 and R3051 in the same socket may
want to immediately reprogram the Bus Turn Around Control bits in the Bus
Control CPO register to '00' to match up exactly with the R3051 (and thus
increase performance), instead of the default '11' which is used at reset,
although it is not strictly necessary.

The R3081 FPA Interrupt

The on-chip FPA of the R3081 reports exceptions to the CPU using one of the
general purpose interrupts. The corresponding input pin is ignored. Systems
desiring to interchange an R3041 with an R3081 must reserve an interrupt pin
for the FPA, and provide a pull-up for that signal. The R3081 Config register
allows software to select any of the 6 interrupts; at reset, the default used is
interrupt 3.

Half-Frequency Bus Mode

The R3081 allows the bus to operate at one-half the CPU frequency. When
enabled, the bus will operate as for an R3041/51 operating at half the
frequency of the R3081 CPU. Thus, this mode is entirely compatible with an
R3041/51 at one-half the R3081 frequency.

In the R3081, this feature is enabled as a reset option. Systems may choose
to employ a jumper on this value, so that this feature may be selectively enabled
when a R3081 is used, but the pin may be pulled-high or pulled-low when an
R3041 is used.

Reduced Frequency/Halt Capability

This R3081 mode is incorporated to reduce power consumption when
waiting for an interrupt or other external event. This mode is unavailable in
an R3041/51.

Note that reduced frequency mode will appear to merely reduce the bus
frequency of the R3081; most R3041/51 systems should operate correctly
under this circumstance. However, the DRAM refresh timer, and other real-
time timers, should either use a clock source other than the SysCIk output, or
reprogram their time constants, when this feature is used.

The R3041/51 does not offer the software stall capability of the R3081.
Software executing on an R3041/51 which attempts to halt the processor will
product no effect, and thus may result in erroneous software operation.

DMA Issues

Each of the CPUs can operate using R3051 compatible DMA. In these
systems, the processor will attempt to continue execution out of on-chip cache
during bus DMA; however, once the CPU core needs the bus, it will wait for the
external master to relinquish the bus.

The R3081 allows hardware cache coherency during DMA writes. This
capability may be disabled using the Coherent DMA Enable feature of the
processor.
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The R3041 implements a DMA Pulse Protocol, whereby the R3041 may
negate BusGnt during an external DMA cycle to indicate that it wishes toregain
bus mastership. This feature is not available on the other family members, and
can be enabled or disabled via the R3041 CPO registers.

To insure CPU compatibility, systems should disable both the R3081 cache
coherency mode, and the R3041 Pulse Protocol, so that all devices will operate
in R3051 compatible fashion.

Debug Features

Debug and in-circuit emulator features are not compatible between the
R3041 and the R3051/81. These debug features are intended for initial
development and manufacturing tests and are not recommended for functional
use on fielded end-user systems. These features include the Diag pin(s), Tri-
State mode, AddrDisplay mode, and ForceCacheMiss mode.

WrNear Page Size
The various processors implement different choices for the size of the
address compared for WrNear output assertion:
¢ The R3051 compares Address(31:10), compatible with 64k x 4 and larger
DRAMSs.
¢ The R3081 compares Address(31:11), compatible with 256k x4 and larger
DRAMSs.
¢ The R3041 compares Address(31:8), compatible with 64kx4 and larger
DRAMSs in an 8-bit wide memory port.
To insure proper operation, the system designer can make one of two
choices:
¢ Ignore the WrNear output, which simplifies system design but sacrifices
performance.
¢ Always use 256k x 4 or larger DRAMs.

Hardware Compatibility Summary

It is very simple to design a board capable of using any of the 4 CPUs
described above. Table A.5 provides a summary of the design considerations
to insure CPU interchangeability. In general, any board designed around the
R3051 can easily be migrated up in performance to the R3081, or down in cost
to the R3041.

Design Consideration Compatible Solution
WrNear page size Use 256kx4 or larger DRAM
Rsvd Pins Leave unconnected
BrCond pins Use only BrCond(3:2); Pullups on BrCond(1:0)
R3081 FPA Interrupt Reserve one CPU interrupt for FPA;
Use external Pull-up
DIAG pins Use only for system debug; not a production function
Reset Logic Pull -ups on Addr(3:2); no connects on reserved lines
Dip switches and mux on Interrupt lines
DMA options Use R3051 compatible DMA
Bus Turn-around Meet R3051 timing or use DMA to add time

Table A.5. Summary of Hardware Design Considerations
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SUMMARY

The R3051 family offers a unique level of compatibility among various CPUs,
offering a wide range of price performance options for a single design. This
capability extends not only to the signal interface, but to the actual footprint
of the device itself. Using advanced packaging techniques, the 84-pin PLCC
footprint is available across the entire family, including the entire frequency
range of the family.

Some systems will find it advantageous to use the features particular to a
given CPU; others will find advantage in the ability to offer a single design, with
real value added manufacturing and field upgrade capability. This choice is
unique among high-performance embedded processors.
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