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ABOUT THIS MANUAL

This manual provides a qualitative description of the operation of members
of the IDT R3051 and R3052 integrated RISControllers.

A quantitative description of the processor electrical interface is provided in
the data sheets for these products. Also included in the data sheets are the
mechanical descriptions of the part, including packaging and pin-out.

Additionalinformation on development tools, complementary support chips,
and the use of these products in various applications, are provided in separate
data sheets and applications notes.

Additional information on other family members can be found in the
documentation for those devices.

Any of this information is readily available from your local IDT sales
representative.



CONTENTS OVERVIEW

Chapter 1 contains an overview description of the R3051 and R3052
integrated RISControllers, including a brief discussion of development tools.

Chapter 2 describes the instruction set architecture of the R3051 and
R3052.

Chapter 3 describes the on-chip cache of the R3051 and R3052.

Chapter 4 discusses the memory management capabilities of the R3051 and
R3052.

Chapter 5 describes the exception interface and handling capabilities of the
processors.

Chapter 6 provides an overview of the bus interface of the R3051 and R3052,
including signal description and transaction priority model.

Chapter 7 describes the read interface of the R3051 and R3052.
Chapter 8 describes the write interface of the R3051 and R3052.
Chapter 9 describes the DMA Arbiter interface.

Chapter 10 describes the reset, mode initialization, and clocking of the
processor.

Chapter 11 describes various debug features of the processor.

Appendix A describes design considerations for systems which may
interchange among the R3041, R3051, R3052, and R3081 processors.



Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice,
in order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for
use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that
circuitry described herein is free from patent infringement or other rights of third parties which may result fromits use. No license
is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

LIFE SUPPORT POLICY

Integrated Device Technology's products are not authorized for use as critical components in life support

devices or systems unless a specific written agreement pertaining to such intended use is executed

between the manufacturer and an officer of IDT.

1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into
the body or (b) support or sustain life and whose failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can be reasonably expected to result in a significant
injury to the user.

2. A critical component is any components of a life support device or system whose failure to perform can
be reasonably expected to cause the failure of the life support device or system, or to affect its safety
or effectiveness.

The IDT logo is a registered trademark and RISController, R3051, R3041, R3081 and RISChipset are trademarks of Integrated Device Technology, Inc.
MIPS is a registered trademarks of MIPS Computer Systems, Inc.

UNIX is a registered trademark of AT&T.

MC680x0 and iAPXx86 are registered trademarks of Motorola Corporation and Intel Corporation, respectively.
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Integrated Device Technology, Inc.

FAMILY OVERVIEW CHAPTER 1

INTRODUCTION

The IDTR3051 family is a series of high-performance 32-bit microprocessors
featuring a high-level of integration, and targeted to high-performance but cost
sensitive embedded processing applications. The R3051 family is designed to
bring the high-performance inherent in the MIPS RISC architecture into low-
cost, simplified, power sensitive applications. Thus, functional units have
been integrated onto the CPU core in order to reduce the total system cost,
rather than to increase the inherent performance of the integer engine.
Nevertheless, the R3051 family is able to offer 35 MIPS of integer performance
at 40 MHz without requiring external SRAM or caches.

Further, the R3051 family brings dramatic power reduction to these
embedded applications, allowing the use of low-cost packaging. Thus, the
R3051 family allows customer applications to bring maximum performance at
minimum cost.

The R3051 family offers the widest range of price-performance options in a
single footprint compatible family; the R3041, R3051, R3052, and R3081 can
all be used in a single board design, allowing a wide range of field upgrade and
manufacturing options to result from a single design effort. This range of
scaleability is unique to the IDT RISController family.

This manual describes the IDT79R3051 and R3052 devices; the R3041 and
R3081 are each described in separate manuals. Appendix A describes design
considerations for those wishing to interchange various CPUs in a given design.

R3051/52 FEATURES
¢ Instruction set compatible with IDT79R3000A MIPS RISC CPU.
¢ High level of integration minimizes system cost
35 MIPS at 40 MHz
Low cost 84-pin PLCC packaging
Large on-chip instruction and data caches
Flexible bus interface allows simple, low cost designs.
Single, double-frequency clock input
On-chip 4-deep write buffer eliminates memory write stalls
On-chip 4-deep read buffer supports burst or simple block reads
On-chip DMA arbiter
Pin and Software Compatible family includes R3041, R3051/52, and
R3081

DEVICE OVERVIEW

This manual describes four R3051 devices; throughout this document,
"R3051" will be used to describe features common to the R3051 and R3052. All
differences relate to the size of the on-chip instruction cache, and the structure
of the on-chip memory management unit. All four devices utilize the same
execution engine and bus interface unit, and all contain 2kB of data cache. The
four devices described in this manual are:

e R3052"E” incorporates an 8kB instruction cache, and full function
memory management unit (MMU) including 64-entry fully associative
Translation Lookaside Buffer (TLB).

¢ R3052, which also incorporates an 8kB instruction cache but does not
include the TLB.

¢ R3051"E”, which incorporates 4kB of instruction cache along with the full
function MMU/TLB set.

e R3051, which incorporates 4kB of instruction cache but omits the TLB.

1-1
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Figure 1.1. Block Diagram

In addition, the R3051/52 devices are pin and software compatible with the
IDT R3081 and IDT R3041. Table 1.1 highlights the differences among the

4-deep | 4-dee DMA BIU
Write Rea 4
Buffer Buffer Arbiter | Control
4
v
Address/ DMA  Rd/Wr SysClk
Data Ctrl Ctrl

4000 drw 09

Figure 1.1 shows a block level representation of the functional units within
the R3051/52. The R3051/52 could be viewed as the embodiment of a discrete
solution built around the R3000. However, by integrating this functionality on
a single chip, dramatic cost and power reductions are achieved.

An overview of these blocks is presented here, with detailed information on
each block found in subsequent chapters.

Device | Instruction | Data Floating Bus
Name | Cache Cache Point Options
R3051 | 4kB 2kB Software Emulation Mux’ed A/D
R3052 | 8kB 2kB Software Emulation Mux’ed A/D
R3081 | 16kB 4kB On-chip Hardware 1/2 frequency bus option
or 8kB or 8kB
R3041 |2kB 512B Software Emulation 8-, 16-, and 32-bit port widths support
Programmable timing support

Table 1.1. Pin, Socket, and Software Compatible R3051 Family Members
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CPU Core

The CPU core is a full 32-bit RISC integer execution engine, capable of
sustaining close to single cycle execution rate. The CPU core contains a five
stage pipeline, and 32 orthogonal 32-bitregisters. The R3051 family implements
the MIPS-1ISA. In fact, the execution engine of the R3051 family is the same
as the execution engine of the R3000A, ensuring binary compatibility.

System Control Co-Processor

The R3051 also integrates on-chip the System Control Co-processor, CPO.
CPO manages both the exception handling capability of the R3051/52, as well
as the virtual to physical mapping of the R3051/52. These topics are discussed
in subsequent chapters.

There are two versions of the R3051/52 MMU: the extended architecture
versions, which include the R3051E, R3052E, and R3081E, incorporate the
same MMU as the R3000A. These versions contain a fully associative 64-entry
TLB which maps 4kB virtual pages into the physical address space. The virtual
to physical mapping thus includes kernel segments which are hard-mapped to
physical addresses, and kernel and user segments which are mapped page by
page by the TLB into anywhere in the 4GB physical address space. In this TLB,
8 page translations can be “locked” by the kernel to insure deterministic
response in real-time applications.

The R3051 family base versions, which include the R304 1, R3051, R3052,
and R3081, remove the TLB and institute a fixed address mapping for the
various segments of the virtual address space. These devices still support
distinct kernel and user mode operation, but do not require page management
software, leading to a simpler software model.

Clock Generator Unit

The R3051/52 is driven from a single, double frequency input clock. On-
chip, the clock generator unit isresponsible for managing the interaction of the
CPU core, caches, and bus interface. The clock generator unit replaces the
external delay line required in R3000A based applications.

Instruction Cache

The R3051 and R3051E each contain 4kB of instruction cache, and the
R3052/R3052E each contain 8kB of instruction cache. In all devices, the
instruction cache is organized with a line size of 16 bytes (four 32-bit entries).
These relatively large caches achieve hit rates in excess of 95% in most
applications, and substantially contributes to the performance inherent in the
R3051 family. The cache is implemented as a direct mapped cache, and is
capable of caching instructions from anywhere within the 4GB physical
address space. The cache is implemented using physical addresses and
physical tags (rather than virtual addresses or tags), and thus does not require
flushing on context switch.

Data Cache

The R3051and R3052 incorporate an on-chip data cache of 2kB, organized
as a line size of 4 bytes (one word). This relatively large data cache achieves hit
rates in excess of 90% in most applications, and contributes substantially to
the performance inherent in the R3051 family. As with the instruction cache,
the data cache is implemented as a direct mapped physical address cache. The
cache is capable of mapping any word within the 4GB physical address space.

The data cache isimplemented as a write through cache, to insure that main
memory is always consistent with the internal cache. In order to minimize
processor stalls due to data write operations, the bus interface unit incorporates
a 4-deep write buffer which captures address and data at the processor
execution rate, allowing it to be retired to main memory at a much slower rate
without impacting system performance.
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Bus Interface Unit

The R3051 uses its large internal caches to provide the majority of the
bandwidth requirements of the execution engine, and thus can utilize a simple
bus interface connected to slow memory devices.

The R3051 bus interface utilizes a 32-bit address and data bus multiplexed
onto a single set of pins. The bus interface unit also provides an ALE (Address
Latch Enable) output signal to de-multiplex the A/D bus, and simple handshake
signals to process CPU read and write requests. In addition to the read and
write interface, the R3051 incorporates a DMA arbiter, to allow an external
master to control the external bus.

The R3051 incorporates a 4-deep write buffer to de-couple the speed of the
execution engine from the speed of the memory system. The write buffers
capture and FIFO processor address and data information in store operations,
and present it to the bus interface as write transactions at the rate the memory
system can accommodate.

The R3051 read interface performs both single word reads and quad word
reads. Single word reads work with a simple handshake, and quad word reads
can either utilize the simple handshake (in lower performance, simple systems)
or utilize a tighter timing mode when the memory system can burst data at the
processor clock rate. Thus, the system designer can choose to utilize page or
nibble mode DRAMs (and possibly use interleaving, if desired, in high-
performance systems), or use simpler techniques to reduce complexity.

In order to accommodate slower quad word reads, the R3051 incorporates
a 4-deep read buffer FIFO, so that the external interface can queue up data
within the processor before releasing it to perform a burst fill of the internal
caches.

SYSTEM USAGE

The IDT R3051 has been specifically designed to easily connect to low-cost
memory systems. Typical low-cost memory systems utilize slow EPROMSs,
DRAMs, and application specific peripherals. These systems may also
typically contain large, slow static RAMs, although the IDT R3051 family has
been designed to not specifically require the use of external SRAMs.

Figure 1.2 shows a typical system implementation using off-the-shelf logic
devices. Transparent latches are used to de-multiplex the R3051 address and
data busses from the A/D bus. The data paths between the memory system
elements and the R3051/52 A/D bus is managed by simple octal devices. A
small set of simple PALs is used to control the various data path elements, and
to control the handshake between the memory devices and the R3051/52. IDT
has also implemented the 73720 and 79R3721 support chip set specifically
tailored to R3051/52-based systems. This chip set directly interfaces the
processor to DRAM devices, eliminating the requirement for discrete logic chips
and PAL devices, as illustrated in Figure 1.3. These devices are described in
separate documents.

Depending on the cost vs. performance trade-offs appropriate to a given
application, the system design engineer could include true burst support from
the DRAM to provide for high-performance cache miss processing, or utilize a
simpler, lower performance memory system to reduce cost and simplify the
design.
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DEVELOPMENT SUPPORT

The IDT R3051 family is supported by a rich set of development tools,
ranging from system simulation tools through PROM monitor and debug
support, applications software and utility libraries, logic analysis tools, and
sub-system modules.

Figure 1.3 is an overview of the system development process typically used
when developing R3051 family applications. The R3051 family is supported in
all phases of project development. These tools allow timely, parallel development
of hardware and software for R3051 family based applications, and include
tools such as:

¢ Aprogram, Cache-R305%, which allows the performance of an R3051/52

based system to be modeled and understood without requiring actual
hardware.

¢ Sable, an instruction set simulator.

¢ Optimizing compilers from MIPS, the acknowledged leader in optimizing

compiler technology.

¢ Cross development tools, available in a variety of development
environments.

The high-performance IDT floating point library software.

The IDT Evaluation Board, which includes RAM, EPROM, 1/0, and the
IDT PROM Monitor.

¢ TheIDT Laser Printer System board, which directly drives a low-cost print
engine, and runs Microsoft Truelmage™ Page Description Language on
top of PeerlessPage™ Advanced Printer Controller BIOS.

Adobe PostScript™ Page Description Language, ported to the R3000
instruction set, runs on the IDT R3051 family.

The IDT/sim Prom Monitor, which implements a full prom monitor
(diagnostics, remote debug support, peek/poke, etc.).

The kernel integration toolkit, IDT/kit, which implements the core
componenets of kernel software for R3051 family applications.

L]

System System System
Architecture Development Integration
Evaluation Phase and Verfification

SABLE Simulator
DBG Debu?ger
PIXIE Profiler
MIPS Compiler Suite
Stand-Alone Libraries
Floating Point Library
Cross Development Tools
Adobe PostScript PDL
MicroSoft Truelmage PDL
PeerlessPage BIOS

In-circuit Emulation
ggﬁ?ﬁrﬁfi’é Logic Analysis
Diagnostics

Evaluation Board % .
; ) IDT/sim PROM Monitor
Laser Printer System L Remote Debug
7 Cache-305x Real-Time OS
Hardware Models
General CAD Tools
RISC Sub-systems
Evaluation Boards
FastX
Laser Printer System
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Figure 1.3. Development Support
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PERFORMANCE OVERVIEW

The R3051 family achieves a very high-level of performance. This perforrmance
is based on:

¢ An efficient execution engine. The CPU performs ALU operations and
store operations in single cycle, and has an effective load time of 1.3
cycles, and branch execution rate of 1.5 cycles (based on the ability of the
compilers to avoid software interlocks). Thus, the execution engine
achieves over 35 MIPS performance when operating out of cache.

e Large on-chip caches. The R3051 family contains caches which are
substantially larger than those on the majority of today’s microprocessors.
These large caches minimize the number of bus transactions required,
and allow the R3051 family to achieve actual sustained performance very
close to its peak execution rate.

e Autonomous multiply and divide operations. The R3051 family features
an on-chip integer multiplier /divide unit which is separate from the other
ALU. This allows the R3051 /52 to perform multiply or divide operations
in parallel with other integer operations, using a single multiply or divide
instruction rather than “step” operations.

* Integrated write buffer. The R3051 features a four deep write buffer,
which captures store targetaddresses and data at the processor execution
rate and retires it to main memory at the slower main memory access rate.
Use of on-chip write buffers eliminates the need for the processor to stall
when performing store operations.

¢ Burst read support. The R3051 enables the system designer to utilize
page mode or nibble mode RAMs when performing read operations to
minimize the main memory read penalty and increase the effective cache
hit rates.

These techniques combine to allow the processor to achieve over 35 MIPS
integer performance, and 64,000 dhrystones without the use of external
caches or zero wait-state memory devices.

The performance differences among the various family devices depends on
the application software and the design of the memory system. Since all
devices are pin and software compatible, the system designer has maximum
freedom in trading between performance and cost. The development tool
Cache-305x allows the system designer to analyze and understand the
performance difference between these devices in his application.
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INSTRUCTION SET CHAPTER 2
ARCHITECTURE

INTRODUCTION

The IDT R3051 family contains the same basic execution core as the IDT
MIPS R3000. In addition to being able to run software written for either of these
processors, this enables the R3051 family to achieve dramatic levels of
performance, based on the efficiency of the execution engine.

This chapter gives an overview of the MIPS-1 architecture implemented in the
R3051 family, and discusses the programmers' model for this device. Further
detail is available in the book “mips RISC Architecture”, available from IDT.

PROCESSOR FEATURES OVERVIEW
The R3051 family has many of the same attributes of the IDTR3000A, at a
higher level of integration geared to lower system cost. These features include:

Full 32-bit Operation. The R3051 family contains thirty-two 32-bit
registers, and all instructions and addresses are 32 bits.

¢ Efficient Pipelining. The CPU utilizes a 5-stage pipeline design to
achieve an execution rate approaching one instruction per cycle. Pipeline
stalls, hazards, and exceptional events are handled precisely and efficiently.

¢ Large On-Chip Instruction and Data Caches. The R3051 family utilizes
large on-chip caches to provide high-bandwidth to the execution engine.
The large size of the caches insures high hit rates, minimizing stalls due
to cache miss processing and dramatically contributing to overall
performance. Both the instruction and data cache can be accessed during
a single CPU cycle.

¢ On-chip Memory Management. The IDTR3051/52"E” utilizes the same
memory management scheme as the R30004A, providing a 64 fully-
associative TLB to provide fast virtual to physical address translation of
the 4GB address space. The base IDTR3051/52 does not utilize the TLB,
but performs fixed segment-based mapping of the virtual space to
physical addresses.

CPU REGISTERS OVERVIEW

The IDT R3051 family provides 32 general purpose 32-bit registers, a 32-bit
Program Counter, and two dedicated 32-bit registers which hold the result of
aninteger multiply or divide operation. The CPU registers, illustrated in Figure
2.1, are discussed later in this chapter.

General Purpose Multiply/Divide Result

Registers Registers
31 0

0 31 0
ri [ H ]
2 31 0

.
29 Program Counter
30 1
r31

d
Figure 2.1. CPU Registers“000 ot
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Note that the MIPS-I architecture does not use a traditional Program Status
Word (PSW) register. The functions normally provided by such a register are
instead provided through the use of “Set” instructions and conditional branches.
By avoiding the use of traditional condition codes, the architecture can be more
finely pipelined. This, coupled with the fine granularity of the instruction set,
allows the compilers to achieve dramatically higher levels of optimizations than
for traditional architectures.

Overflow and exceptional conditions are then handled through the use of the
on-chip Status and Causeregisters, which reside on-chip as part of the System
Control Co-Processor (Co-Processor 0). These registers contain information
about the run-time state of the machine, and any exceptional conditions it has
encountered.

INSTRUCTION SET OVERVIEW

All R3051 instructions are 32-bits long, and there are only three basic
instruction formats. This approach dramatically simplifiesinstruction decoding,
permitting higher frequency operation. More complicated (but less frequently
used) operations and addressing modes are synthesized by the assembler,
using sequences of the basic instruction set. This approach enables object
code optimizations at a finer level of resolution than achievable in micro-coded
CPU architectures.

Figure 2.2 shows theinstruction set encoding used by the MIPS architecture.
This approach simplifies instruction decoding in the CPU.

|-Type (Immediate)
31 26 25 21 20 16 15 0
op rs rt immediate
J-Type (Jump)
31 26 25 0
op target
R-Type (Register)
31 26 25 21 20 16 15 11 10 6 5 0
op rs rt rd shamt | funct
where:
op is a 6-bit operation code
rs is a five bit source register specifier
n is a 5-bit target register or branch condition
immediate | is a 16-bit immediate, or branch or address displacement
target is a 26-bit jump target address
rd is a 5-bit destination register specifier
shamt is a 5-bit shift amount
funct is a 6-bit function field

4000 drw 02
Figure 2.2. Instruction Encoding
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The R3051 family instruction set can be divided into the following basic
groups:

* Load/Store instructions move data between memory and the general
registers. They are all encoded as “I-Type” instructions, and the only
addressing mode implemented is base register plus signed, immediate
offset. This directly enables the use of three distinct addressing modes:
register plus offset; register direct; and immediate.

¢ Computational instructions perform arithmetic, logical, and shift
operations on values in registers. They are encoded as either “R-Type”
instructions, when both source operands as well as the result are general
registers, and “I-Type”, when one of the source operands is a 16-bit
immediate value. Computational instructions use a three address
format, so that operations don’t needlessly interfere with the contents of
source registers.

¢ Jump and Branch instructions change the control flow of a program. A
Jump instruction can be encoded as a “J-Type” instruction, in which case
the Jump target addressisa paged absolute address formed by combining
the 26-bit immediate value with four bits of the Program Counter. This
form is used for subroutine calls.

Alternately, Jumps can be encoded using the “R-Type” format, in which
case the target address is a 32-bit value contained in one of the general
registers. This form is typically used for returns and dispatches.

Branch operations are encoded as “I-Type” instructions. The target
address is formed from a 16-bit displacement relative to the Program
Counter.

The Jump and Link instructions save a return address in Register r31.
These are typically used as subroutine calls, where the subroutine return
address is stored into r31 during the call operation.

¢ Co-Processor instructions perform operations on the co-processor set.
Co-Processor Loads and Stores are always encoded as “I-Type” instructions;
co-processor operational instructions have co-processor dependent
formats.

In the R3051, the System Control Co-Processor (CPO) contains registers
which are used in memory management and exception handling.

Additionally, the R3051 implements four BrCond inputs. Software can
use the Branch on Co-Processor Condition instructions to test the state
of these external inputs, and thus they may be used like general purpose
input ports.

¢ Special instructions perform a variety of tasks, including movement of
data between special and general registers, system calls, and breakpoint
operations. They are always encoded as “R-Type” instructions.

Table 2.1 lists the instruction set mnemonics of the R3051. More detail on
these operations is presented later in this chapter. For further detail, consult
“mips RISC Architecture”, or one of the language programming guides,
available from IDT.
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oP Description orP Description
Load/Store Instructions Multiply/Divide Instructions
LB Load Byte MULT Multiply
LBU Load Byte Unsigned MULTU Multiply Unsigned
LH Load Halfword DIV Divide
LHU Load Halfword Unsigned DIVU Divide Unsigned
Lw Load Word
LWL Load Word Left MFHI Move From HI
LWR Load Word Right MTHI Move To HI
SB Store Byte MFLO Move From LO
SH Store Halfword MTLO Move To LO
sSw Store Word
SWL Store Word Left Jump and Branch Instructions
SWR Store Word Right J Jump
JAL Jump and Link
Arithmetic Instructions JR Jump to Register
(ALU Immediate) JALR Jump and Link Register
ADDI Add Immediate BEQ Branch on Equal
ADDIU | Add Immediate Unsigned BNE Branch on Not Equal
SLTI Set on Less Than Immediate BLEZ Branch on Less than or Equal
SLTIU Set on Less Than Immediate to Zero
Unsigned BGTZ Branch on Greater Than Zero
ANDI AND Immediate BLTZ Branch on Less Than Zero
ORI OR Immediate BGEZ Branch on Greater Than or
XORI Exclusive OR Immediate Equal to Zero
LuI Load Upper Immediate BLTZAL | Branch on Less Than Zero and
Link
BGEZAL | Branch on Greater Than or Equal
Arithmetic Instructions to Zero and Link
(3-operand, register-type)
ADD Add Special Instructions
ADDU Add Unsigned SYSCALL | System Call
SUB Subtract BREAK Break
SUBU Subtract Unsigned
SLT Set on Less Than Coprocessor Instructions
SLTU Set on Less Than Unsigned LWCz Load Word from Coprocessor
AND AND SWCz Store Word to Coprocessor
OR OR MTCz Move To Coprocessor
XOR Exclusive OR MFCz Move From Coprocessor
NOR NOR CTCz Move Control To Coprocessor
CFCz Move Control From Coprocessor
Shift Instructions COPz Coprocessor Operation
SLL Shift Left Logical BCzT Branch on Coprocessor z True
SRL Shift Right Logical BCzF Branch on Coprocessor z False
SRA Shift Right Arithmetic
SLLV Shift Left Logical Variable System Control Coprocessor
SRLV Shift Right Logical Variable (CPO) Instructions
SRAV Shift Right Arithmetic Variable MTCO Move To CPO
MFCO Move From CPO
TLBR Read indexed TLB entry
TLBWI Write indexed TLB entry
TLBWR Write Random TLB entry
TLBP Probe TLB for matching entry
RFE Restore From Exception
4000 tbl 01

Table 2.1. Instruction Set Mnemonics

PROGRAMMING MODEL

This section describes the organization of data in the general registers and
in memory, and discusses the set of general registers available. A summary
description of all of the CPU registers is presented.

Data Formats and Addressing

The MIPS-I architecture defines a word as 32-bits, a half-word as 16-bits,
and a byte as 8-bits. The byte ordering convention is configurable during
hardware reset (Chapter 9) into either a big-endian or little-endian convention.
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When configured as a big-endian system, byte O is always the most
significant (left-most) byte in a word. This is the order used in MC680x0®
microprocessors, and systems from MIPS.

When configured as a little-endian system, byte O is always the least
significant (right-most) byte in a word. This is compatible with the iAPX® x86
microprocessors and systems from Digital Equipment Corporation.

Higher Big-Endian Byte Ordering Word
Address 31 24 23 16 15 87 0 Address
8 9 A B 8
4 5 6 7 4
Lower 0 1 2 3 0
Address

+ Most significant byte is at lowest address

» Word is addressed by byte address of
most significant byte

Little-Endian Byte Ordering

Higher Word
Address 31 2423 16 16 87 0 Address
B A 9 8 8
7 6 5 4 4
Lower 3 2 1 0 0
Address

+ Least significant byte is at lowest address

+ Word is addressed by byte address of
least significant byte

4000 drw 03
Figure 2.3. Byte Ordering Conventions

Figure 2.3 shows the ordering of bytes within words and the ordering of
words within multiple word structures for the big-endian and little-endian
conventions.

The R3051 uses byte addressing for all accesses, including half-word and
word. The MIPS architecture has alignment constraints that require half-word
access to be aligned on an even byte boundary, and word access to be aligned
on a modulo-4 byte boundary. Thus, in big-endian systems, the address of a
multiple-byte data item is the address of the most-significant byte, while in
little-endian systems it is the address of the least-significant byte of the
structure.

For compatibility with older programs written for 8- or 16-bit machines, the
MIPS instruction set provides special instructions for addressing 32-bit words
which are not aligned on 4-byte boundaries. These instructions, which are
Load/Store Left/Right, are used in pairs to provide addressing of misaligned
words. This effectively means that these types of data movements require only
one-additional instruction cycle over that required for properly aligned words,
and provides a much more efficient way of dealing with this case than is
possible using sequences of loads/stores and shift operations. Figure 2.4
shows the bytes accessed when addressing a mis-aligned word with a byte
address of 3, for each of the two byte ordering conventions.

Higher
Address 31 24 23 16 15 8

Little
Endian

Lower

Address
4000 drw 04

Figure 2.4. Unaligned Words
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CPU General Registers

The R3051 family contains 32-general registers, each containing a single 32-
bit word. The 32 general registers are treated symmetrically (orthogonally),
with two notable exceptions: general regdister r0O is hardwired to a zero value,
and r31 is used as the link register in Jump and Link instructions

Register rO maintains the value zero under all conditions when used as a
source register, and discards data written to it. Thus, instructions which
attempt to write to it may be used as No-Op Instructions. The use of a register
wired to the zero value allows the simple synthesis of different addressing
modes, no-ops, register or memory clear operations, etc., without requiring
expansion of the basic instruction set.

Register r31is used as the link register in jump and link instructions. These
instructions are used in subroutine calls, and the subroutine return address
is placed in register r31. This register can be written to or read as a normal
register in other operations.

In addition to the general registers, the CPU contains two registers (HI and
LO) which store the double-word, 64-bit result of integer multiply operations,
and the quotient and remainder of integer divide operations.

CPO Special Registers

In addition to the general CPU registers, the R3051 family contains anumber
of special registers on-chip. These registers logically reside in the on-chip
System Control Co-processor CP0O, and are used in memory management and
exception handling.

Table 2.2 shows the logical CPO address of each of the registers. The format
of each of these registers, and their use, is discussed in Chapter 4 (Memory
Management), and Chapter 5 (Exception Handling).

Number | Mnemonic Description

Index Programmable pointer into on-chip TLB array

0

1 Random Pseudo-random pointer into on-chip TLB array (read only)
2 EntryLo Low-half of TLB entry
3

4

Reserved
Context Pointer to kernel virtual Page Table Entry Table
5-7 Reserved

8 BadVAddr | Bad virtual address

9 Reserved

10 EntryHi High-half of TLB entry

11 Reserved

12 SR Status Register

13 Cause Cause of last exception

14 EPC Exception Program Counter
15 PRId Processor Revision Identifier

16-31 Reserved

4000 tbl 02

Table 2.2. CPO Registers




INSTRUCTION SET ARCHITECTURE

CHAPTER 2

Operating Modes

The R3051 supports two different operating modes: Userand Kernel modes.
The R3051 normally operates in User mode until an exception is detected,
forcing it into kernel mode. It remains in Kernel mode until a Return From
Exception (RFE) instruction is executed, returning it to its previous operation
mode.

The processor supports these levels of protection by segmenting the 4GB
virtual address space into 4 distinct segments. One segment is accessible from
either the User state or the Kernel mode, and the other three segments are only
accessible from kernel mode.

In addition to providing memory address protection, the kernel can protect
the co-processors (in the case of the R3051, CP0) from access or modification
by the user task.

Finally, the R3051 supports the execution of user programs with the
opposite byte ordering (Reverse Endianness) of the kernel, facilitating the
exchange of programs and data between dissimilar machines.

Chapter 3 discusses the memory management facilities of the processor.

Pipeline Architecture

The IDTR3051 family uses the same basic pipeline structure as that
implemented in the R3000. Thus, the execution of a single instruction is
performed in five distinct steps.

¢ Instruction Fetch (IF). In this stage, the instruction virtual address is
translated to a physical address and the instruction is read from the
internal Instruction Cache.

¢ Read (RD). During this stage, the instruction is decoded and required
operands are read from the on-chip register file.

e ALU. The required operation is performed on the instruction operands.

¢ Memory Access (MEM). If the instruction was a load or store, the Data
Cacheisaccessed. Note that thereis a skew between the instruction cycle
which fetches the instruction and the one in which the required data
transfer occurs. This skew is a result of the intervening pipestages.

¢ Write Back (WB). During the write back pipestage, the results of the ALU
stage operation are updated into the on-chip register file.

Each of these pipestages requires approximately one CPU cycle, as shown
in Figure 2.5. Parts of some operations lap into the next cycle, while other
operations require only 1/2 cycle.

IF RD ALU MEM wB
I-Cache | ID OoP D-Cache | WB
PAddr PAddr
——
One Cycle

4000 drw 05
Figure 2.5. 5-Stage Pipeline
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The net effect of the pipeline structure is that a new instruction can be
initiated every clock cycle. Thus, the execution of five instructions at a time is
overlapped, as shown in Figure 2.6.

#1| IF | RD | ALU [MEM

#2 | IF | RD [ ALU [MEM| WB |

#3 | IF [ RD | ALU |[MEM| WB |

I#4 | IF ALU [MEM| WB |

I#5 RD | ALU [MEM| WB |

Current
CPU
Cycle

4000 drw 06
Figure 2.6. 5-Instructions per Clock Cycle

The pipeline operates efficiently, because different CPU resources such as
address and data bus access, ALU operations, and the register file, are utilized
on a non-interfering basis.

Pipeline Hazards

In a pipelined machine such as the R3051/52, there are certain instructions
which, based on the pipeline structure, can potentially disrupt the smooth
operation of the pipeline. The basic problem is that the current pipestage of
an instruction may require the result of a previous instruction, still in the
pipeline, whose result is not yet available. This class of problems is referred
to as pipeline hazards.

An example of a potential pipeline hazard occurs when a computational
instruction (instruction n+1) requires the result of the immediately prior
instruction (instruction n). Instruction n+1 wants to access the register file
during the RF pipestage. However, instruction n has not yet completed its
register writeback operation, and thus the current value is not available
directly from the register file. In this case, special logic within the execution
engine forwards the result of instruction n’s ALU operation to instruction n+1,
prior to the true writeback operation. The pipeline is undisturbed, and no
pipeline stalls need to occur.

Another example of a pipeline hazard handled in hardware is the integer
multiply and divide operations. If an instruction attempts to access the HI or
LO registers prior to the completion of the multiply or divide, that instruction
will be interlocked (held off) until the multiply or divide operation completes.
Thus, the programmer is isolated from the actual execution time of this
operation. The optimizing compilers attempt to schedule as many instructions
as possible between the start of the multiply/divide and the access of itsresult,
to minimize stalls.

However, not all pipeline hazards are handled in hardware. There are two
categories of instructions which require software intervention to insure logical
operation. The optimizing compilers (and peephole scheduler of the assembler)
are capable of insuring proper execution. These two instruction classes are:
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¢ Load instructions have a delay, or latency, of one cycle before the data
loaded from memory is available another instruction. This is because the
ALU stage of the immediately subsequent instruction is processed
simultaneously with the Data Cache access of the load operation. Figure
2.7 illustrates the cause of this delay slot.

IF | RD ALU MEM WB
I#1 I-Cache ID OoP D-Cache | WB
(Load)
1#2 I-Cache | ID op
(Delay Slot)
Data
v Available
1#3 I-Cache ID OP
[
One Cycle

4000 drw 07
Figure 2.7. Load Delay

e Jump and Branch instructions have a delay of one cycle before the
program flow change can occur. This is due to the fact that the next
instruction is fetched prior to the decode and ALU stage of the jump/
branch operation. Figure 2.8 illustrates the cause of this delay slot.

IF | RD ALU MEM WB
I#1 I-Cache ID oP D-Cache | WB
(Pranch) |-Address
[
#2 | LCache | ID OP
(Delay Slot) | l
1#3
Address |I-Cache ID OP
Avallilable |
One Cycle

4000 drw 08
Figure 2.8. Branch Delay

The R3051/52 continues execution, despite the delay in the operation.
Thus, loads, jumps and branches do not disrupt the pipeline flow of instruc-
tions, and the processor always executes the instruction immediately following
one of these “delayed” instructions.
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Rather than include extensive pipeline control logic, the MIPS-I instruction
set gives responsibility for dealing with “delay slots” to software. Thus, the
peephole optimizer (which can be performed as part of compilation or assembly)
can re-order the code to insure that the instruction in the delay slot does not
require the logical result of the “delayed” instruction. In the worst case, a NOP
can be inserted to guarantee proper software execution.

Chapter 5 discusses the impact of pipelining on exception handling. In
general, when an instruction causes an exception, it is desirable for all
instructions initiated prior to that instruction to complete, and all subsequent
instructions to abort. This insures that the machine state presented to the
exception handlerreflects the logical state that existed at the time the exception
was detected. In addition, it is desirable to avoid requiring software to explicitly
manage the pipeline when handling or returning from exceptions. The
IDTR3051/52 pipeline is designed to properly manage exceptional events.

INSTRUCTION SET SUMMARY

This section provides an overview of the R3051 family instruction set by
presenting each category of instructions in a tabular summary form. Refer to
the “mips RISC Architecture” reference for a detailed description of each
instruction.

Instruction Formats

Every instruction consists of a single word (32 bits) aligned on a word
boundary. There are only three instruction formats as shown in Figure 2.2.
This approach simplifiesinstruction decoding. More complicated (less frequently
used) operations and addressing modes are synthesized by the compilers.

Instruction Notational Conventions

In this manual, all variable sub-fields in an instruction format (such as rs,
rt, immediate, and so on) are shown in lower-case names.

For the sake of clarity, an alias is sometimes used for a variable sub-field in
the formats of specific instructions. For example, “base” rather than “rs” is
used in the format for Load and Store instructions. Such an alias is always
lower case, since it refers to a variable sub-field.

Instruction opcodes are shown in all upper case.

The actual bit encoding for all the mnemonics is specified at the end of this
chapter.

Load and Store Instructions

Load/Store instructions move data between memory and general registers.
They are all I-type instructions. The only addressing mode directly supported
isbaseregister plus 16-bit signed immediate offset. This can be used to directly
implement immediate addressing (using the rO register) or register direct
(using an immediate offset value of zero).

Allload operations have a latency of one instruction. Thatis, the data being
loaded from memory into a register is not available to the instruction that
immediately follows the load instruction: the data is available to the second
instruction after the load instruction. An exception is the target register for the
“load word left” and “load word right” instructions, which may be specified as
the same register used as the destination of a load instruction that immediately
precedes it.
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Big-Endian
BE(3) BE(2) BE(1) BE(0)
Size AdrLo(1) | AdrLo(0) | Data(31:24) | Data(23:16) | Data(15:8) | Data(7:0)

Word 0 0 Yes Yes Yes Yes
Tri-Byte (0] (0] Yes Yes Yes No
Tri-Byte 0 1 No Yes Yes Yes

16-Bit o 0o Yes Yes No No

16-Bit 1 o No No Yes Yes
Byte 0] (0] Yes No No No
Byte 0] 1 No Yes No No
Byte 1 (0] No No Yes No
Byte 1 1 No No No Yes

Little-Endian
BE(3) BE(2) BE(1) BE(0)
Size AdrLo(1) | AdrLo(0) | Data(31:24) | Data(23:16) | Data(15:8) | Data(7:0)
Word 0 0 Yes Yes Yes Yes
Tri-Byte 0 0 No Yes Yes Yes
Tri-Byte 0 1 Yes Yes Yes No
16-Bit 0 o No No Yes Yes
16-Bit 1 (0] Yes Yes No No
Byte 0 o No No No Yes
Byte 0 1 No No Yes No
Byte 1 0 No Yes No No
Byte 1 1 Yes No No No
4000 tbl 03

Table 2.3. Byte Addressing in Load/Store Operations

The Load /Store instruction opcode determines the size of the data item to
be loaded or stored as shown in Table 2.1. Regardless of access type or byte-
numbering order (endian-ness), the address specifies the byte which has the
smallest byte address of all bytes in the addressed field. For a big-endian
access, this is the most significant byte; for a little-endian access, this is the
least significant byte. Note thatin an R3051/52 based system, the endianness
of a given access is dynamic, in that the RE (Reverse Endianness) bit of the
Status Register can be used to force user space accesses of the opposite byte
convention of the kernel.

The bytes within the addressed word that are used can be determined
directly from the access size and the two low-order bits of the address, as shown
in Table 2.3. Note that certain combinations of access type and low-order
address bits can never occur: only the combinations shown in Table 2.3 are
permissible. The R3051 indicates which bytes are being accessed by the byte-
enable (BE) bus.

Table 2.4 shows the load/store instructions supported by the MIPS ISA.




CHAPTER 2 INSTRUCTION SET ARCHITECTURE
Instruction Format and Description
Load Byte LB rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Sign-extend contents of addressed byte and load into rt.
Load Byte Unsigned LBU rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Zero-extend contents of addressed byte and load into rt.
Load Halfword LH rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Sign-extend contents of addressed byte and load into rt.
Load Halfword Unsigned LHU rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Zero-extend contents of addressed byte and load into rt.
Load Word LW rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Load contents of addressed word into register rt.
Load Word Left LWL rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Shift addressed word left so that addressed byte is leftmost byte
of a word.
Merge bytes from memory with contents of register rt and load
result into register rt.
Load Word Right LWR rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Shift addressed word right so that addressed byte is rightmost
byte of a word.
Merge bytes from memory with contents of register rt and load
result into register rt.
Store Byte SB rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Store least significant byte of register rt at addressed location.
Store Halfword SH rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Storeleast significant halfword of register rtat addressed location.
Store Word SW rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Store least significant word of register rtat addressed location.
Store Word Left SWL rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Shift contents of register rtrightso that leftmost byte of the word
isin position of addressed byte. Store bytes containing original
data into corresponding bytes at addressed byte.
Store Word Right SWR rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Shift contents of register rtleft sothat rightmost byte of the word
is in position of addressed byte. Store bytes containing original
data into corresponding bytes at addressed byte.

4000 tbl 04

Table 2.4. Load and Store Instructions
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Computational Instructions
Computationalinstructions perform arithmetic, logical and shift operations
on values in registers. They occur in both R-type (both operands are registers)

and I-type (one operand is a 16-bit immediate) formats.

There are four

categories of computational instructions:

e ALU Immediate instructions are summarized in Table 2.5a.

3-Operand Register-Type instructions are summarized in Table 2.5b.
Shift instructions are summarized in Table 2.5c.

Multiply/Divide instructions are summarized in Table 2.5d.

Instruction

Format and Description

ADD Immediate

ADDI rt, rs, immediate
Add 16-bit sign-extended immediateto register rsand place 32-
bit result in register rt. Trap on two’s complement overflow.

ADD Immediate

ADDIU rt, rs, immediate

Unsigned Add 16-bit sign-extended immediateto register rs and place 32-
bit result in register rt . Do not trap on overflow.

Set on Less Than SLTI rt, rs, inmediate

Immediate Compare 16-bit sign-extended immediate with register rs as

signed 32-bit integers. Result = 1 if rsis less than immediate;
otherwise result = 0.
Place result in register rt.

Set on Less Than
Unsigned Immediate

SLTIU rt, rs, immediate

Compare 16-bit sign-extended immediate with register rs as
unsigned 32-bitintegers. Result =1 if rsis less than immediate;
otherwise result = 0. Place result in register rt. Do not trap on
overflow.

AND Immediate

ANDI rt, rs, immediate
Zero-extend 16-bit immediate, AND with contents of register rs
and place result in register rt.

OR Immediate

ORI rt, rs, immediate
Zero-extend 16-bit immediate, OR with contents of register rs
and place result in register rt.

Exclusive OR Immediate

XORI rt, rs, immediate
Zero-extend 16-bit immediate, exclusive OR with contents of
register rs and place result in register rt.

Load Upper Immediate

LUI rt, immediate
Shift 16-bit immediate left 16 bits. Set least significant 16 bits
of word to zeroes. Store result in register rt.

4000 tbl 05

Table 2.5a. ALU Immediate Operations
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Instruction

Format and Description

Add

ADD rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in
register rd. Trap on two’s complement overflow.

ADD Unsigned

ADDU rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in
register rd. Do not trap on overflow.

Subtract

SUB rd, rs, rt
Subtract contents of registers rtand rs and place 32-bit result
in register rd. Trap on two’s complement overflow.

Subtract Unsigned

SUBU rd, rs, rt
Subtract contents of registers rt and rs and place 32-bit result
in register rd. Do not trap on overflow.

Set on Less Than

SLT rd, rs, rt

Compare contents of register rt to register rs (as signed 32-bit
integers).

If register rs is less than rt, result = 1; otherwise, result = 0.

Set on Less Than
Unsigned

SLTU rd, rs, 1t

Compare contents of register rt to register rs (as unsigned 32-
bit integers). If register rsis less than rt, result = 1; otherwise,
result = 0.

AND rd, rs, rt
Bit-wise AND contents of registers rs and rt and place result in
register rd.

OR

OR rd, rs, 1t
Bit-wise OR contents of registers rs and rt and place result in
register rd.

Exclusive OR

XOR rd, rs, rt
Bit-wise Exclusive OR contents of registers rs and rtand place
result in register rd.

NOR

NOR rd, rs, rt
Bit-wise NOR contents of registers rs and rtand place result in

register rd.

Table 2.5b.

4000 tbl 06

Three Operand Register-Type Operations

Instruction

Format and Description

Shift Left Logical

SLL rd, rt, shamt
Shift contents of register rtleft by shamtbits, inserting zeroes
into low order bits. Place 32-bit result in register rd.

Shift Right Logical

SRL rd, rt, shamt
Shift contents of register rtright by shamtbits, inserting zeroes
into high order bits. Place 32-bit result in register rd.

Shift Right Arithmetic

SRA rd, rt, shamt
Shift contents of register rt right by shamt bits, sign-extending
the high order bits. Place 32-bit result in register rd.

Shift Left Logical
Variable

SLLV rd, rt, rs

Shift contents of register rtleft. Low-order 5 bits of register rs
specify number of bits to shift. Insert zeroes into low order bits
of rt and place 32-bit result in register rd.

Shift Right Logical
Variable

SRLV rd, rt, rs

Shift contents of register rtright. Low-order 5 bits of register rs
specify number of bits to shift. Insert zeroes into high order bits
of rt and place 32-bit result in register rd.

Shift Right Arithmetic
Variable

SRAV rd, rt, rs
Shift contents of register rt right. Low-order 5 bits of register rs
specify number of bits to shift. Sign-extend the high order bits

of rtand place 32-bit result in register rd.

4000 tbl 07

Table 2.5c. Shift Operations
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Instruction Format and Description

Multiply MULT rs, rt
Multiply contents of registers rs and rt as twos complement
values. Place 64-bit result in special registers HI/LO

Multiply Unsigned MULTU rs, rt
Multiply contents of registers rsand rtas unsigned values. Place
64-bit result in special registers HI/LO

Divide DIV rs, rt

Divide contents of register rs by rt treating operands as twos
complements values. Place 32-bit quotient in special register
LO, and 32-bit remainder in HI.

Divide Unsigned DIVU rs, rt

Divide contents of register rsby rt treating operands as unsigned
values. Place 32-bit quotient in special register LO, and 32-bit
remainder in HI.

Move From HI MFHI rd
Move contents of special register HI to register rd.
Move From LO MFLO rd
Move contents of special register LO to register rd.
Move To HI MTHI rd
Move contents of special register rd to special register HI.
Move To LO MTLO rd

Move contents of register rd to special register LO.

4000 tbl 08

Table 2.5d. Multiply and Divide Operations

Jump and Branch Instructions

Jump and Branch instructions change the control flow of a program. All
Jump and Branch instructions occur with a one instruction delay: that is, the
instruction immediately following the jump or branch is always executed while
the target instruction is being fetched from storage, regardless of whether the
branch is to be taken.

An assembler has several possibilities for utilizing the branch delay slot
productively:

¢ It can insert an instruction that logically precedes the branch instruction
in the delay slot since the instruction immediately following the jump/
branch effectively belongs to the block preceding the transfer instruction.

¢ It canreplicate the instruction that is the target of the branch/jump into
the delay slot provided that no side-effects occur if the branch falls
through.

¢ It can move an instruction up from below the branch into the delay slot,
provided that no side-effects occur if the branch is taken.

¢ Ifno other instruction is available, it can insert a NOP instruction in the
delay slot.

TheJ-typeinstruction formatis used for both jumps-and-links for subroutine
calls. In this format, the 26-bit target address is shifted left two bits, and
combined with high-order 4 bits of the current program counter to form a 32-
bit absolute address.

The R-type instruction format which takes a 32-bit byte address contained
in a register is used for returns, dispatches, and cross-page jumps.

Branches have 16-bit offsets relative to the program counter (I-type). Jump-
and-Link and Branch-and-Link instructions save a return address in register
31.
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Table 2.6a summarizes the R3051 family Jump instructions and Table 2.6b
summarizes the Branch instructions.

Instruction

Format and Description

Jump

d target

Shift 26-bit target address left two bits, combine with high-
order 4 bits of PC and jump to address with a one instruction
delay.

Jump and Link

JAL target

Shift 26-bit target address left two bits, combine with high-
order 4 bits of PC and jump to address with a one instruction
delay. Place address of instruction following delay slot in r31
(link register).

Jump Register

JRrs
Jump to address contained in register rs with a one instruction
delay.

Jump and Link Register

JALR rs, rd
Jump to address contained in register rs with a one instruction
delay. Place address of instruction following delay slot in rd.

4000 tbl 09

Table 2.6a. Jump Instructions

Instruction

Format and Description

Branch Target: All Branch instruction target addresses are
computed as follows: Add address of instruction in delay slot
and the 16-bit offset (shifted left two bits and sign-extended to
32 bits). All branches occur with a delay of one instruction.

Branch on Equal

BEQ rs, rt, offset
Branch to target address if register rs equal to rt

Branch on Not Equal

BNE rs, rt, offset
Branch to target address if register rs not equal to rt.

Branch on Less than or
Equal Zero

BLEZ rs,offset
Branch to target address if register rs less than or equal to 0.

Branch on Greater Than
Zero

BGTZ rs,offset
Branch to target address if register rs greater than 0.

Branch on Less Than
Zero

BLTZ rs,offset
Branch to target address if register rs less than 0.

Branch on Greater than
or Equal Zero

BGEZ rs,offset
Branch to target address if register rs greater than or equal to
0.

Branch on Less Than
Zero And Link

BLTZAL rs, offset

Place address of instruction following delay slot in register r31
(link register). Branch to target address if register rsless than
0.

Branch on greater than
or Equal Zero And Link

BGEZAL rs, offset
Place address of instruction following delay slot in register r31
(ink register). Branch to target address if register rs is greater
than or equal to O.

4000 tbl 10

Table 2.6b. Branch Instructions
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Special Instructions
The two Special instructions let software initiate traps. They are always R-
type. Table 2.7 summarizes the Special instructions.

Instruction Format and Description
System Call SYSCALL
Initiates system call trap, immediately transferring control to
exception handler.
Breakpoint BREAK
Initiates breakpoint trap, immediately transferring control to
exception handler.

4000 tbl 11

Table 2.7. Special Instructions

Co-processor Instructions

Co-processor instructions perform operations in the co-processors. Co-
processor Loads and Stores are I-type. Co-processor computational instructions
have co-processor-dependent formats (see co-processor manuals). For the
R3051, the BCZT/F instructions are used to test the state of the BrCond inputs.
Outside of these operations, the only co-processor operations of relevance to
the R3051 are those targeted at the on-chip CPO.

Table 2.8 summarizes the Co-processor Instruction Set of the MIPS ISA.

Instruction

Format and Description

Load Word to
Co-processor

LWCz rt, offset (base)

Sign-extend 16-bit offsetand add to baseto form address. Load
contents of addressed word into co-processor register rt of co-
processor unit z.

Store Word from
Co-processor

SWCz rt, offset (base)

Sign-extend 16-bit offsetand add to basetoformaddress. Store
contents of co-processor register rt from co-processor unit z at
addressed memory word.

Move To Co-processor

MTCz rt, rd
Move contents of CPU register rtinto co-processor register rd of
co-processor unit z.

Move from Co-processor

MFCz rt,rd
Move contents of co-processor register rd from co-processor unit
z to CPU register rt.

Move Control To
Co-processor

CTCz rt,rd
Move contents of CPU register rtinto co-processor control register
rd of co-processor unit z.

Move Control From
Co-processor

CFCz rt,rd
Move contents of control register rd of co-processor unit z into
CPU register rt.

Co-processor Operation

COPz cofun
Co-processor z performs an operation. The state of the R3051/
52 is not modified by a co-processor operation.

Branch on Co-processor
z True

BCZT offset

Compute a branch target address by adding address of
instruction in the 16-bit offset (shifted left two bits and sign-
extended to 32-bits). Branch to the target address (with a delay
of one instruction) if co-processor z's condition line is true.

Branch on Co-processor
z False

BCzF offset

Compute a branch target address by adding address of
instruction in the 16-bit offset (shifted left two bits and sign-
extended to 32-bits). Branch to the target address (with a delay
of one instruction) if co-processor z's condition line is false.

4000 tbl 12

Table 2.8. Co-Processor Operations
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System Control Co-processor (CP0O) Instructions

Co-processor 0 instructions perform operations on the System Control Co-
processor (CPO) registers to manipulate the memory management and exception
handling facilities of the processor. Memory Management is discussed in
chapter 4; exception handling is covered in detail in chapter 5.

Table 2.9 summarizes the instructions available to work with CPO.

Instruction

Format and Description

Move To CPO

MTCO rt, rd
Store contents of CPU register rt into register rd of CPO. This
follows the convention of store operations.

Move From CPO MFCO rt, rd
Load CPU register rt with contents of CPO register rd.
Read Indexed TLB Entry TLBR

Load EntryHiand EntryLoregisters with TLB entry pointed at by
Index register.

Write Indexed TLB Entry TLBWI
Load TLB entry pointed at by Index register with contents of
EntryHi and EntryLo registers.

Write Random TLB Entry | TLBWR
Load TLB entry pointed at by Random register with contents of
EntryHi and EntryLo registers.

Probe TLB for Matching TLBP

Entry Load Index register with address of TLB entry whose contents

match EntryHiand EntryLo. If no TLB entry matches, set high-
order bit of Index register.

Restore From Exception

RFE
Restore previous interrupt mask and mode bits of statusregister
into current status bits. Restore old status bits into previous

status bits.

4000 tbl 13

Table 2.9. System Control Co-Processor (CPO) Operations

R3051 OPCODE ENCODING
Table 2.10 shows the opcode encoding for the MIPS architecture.
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28..26 OPCODE
31..29 0 1 2 3 4 5 6 7
0 SPECIAL | BCOND J JAL BEQ BNE BLEZ | BGTZ
1 ADDI ADDIU SLTI | SLTIU ANDI ORI XORI LUI
2 COPO COP1 COP2 | COP3 T t T t
3 i i i i i 1 i i
4 LB LH LWL LW LBU LHU LWR t
5 SB SH SWL SW t t SWR t
6 LwcCo LWC1 LWC2 | LWC3 t t t il
7 SWCO SWC1 SWC2 | SWC3 T t t i
2.0 SPECIAL
5..3 0 1 2 3 4 5 6 7
0 SLL t SRL SRA SLLV T SRLV | SRAV
1 JR JALR 1 + SYSCALL | BREAK T il
2 MFHI MTHI MFLO | MTLO T } t 1
3 MULT MULTU DIV DIVU 1 T T t
4 ADD ADDU SUB | SUBU AND OR XOR NOR
5 i T SLT SLTU T i il T
6 i i i t t i i i
7 t t t t t t t t
18..16 BCOND
20..19 0 1 2 3 4 5 6 7
0 BLTZ BGEZ
1
2 BLTZAL | BGEZAL
3
4
23..21 COPz
25..24 0 1 2 3 4 5 6 7
0 MF CF MT CT
1 BC i i i i i i i
2 Co-Processor Specific
3 Operations
18..16
20..19 0 1 2 3 4 5 6 7
0 BCzF BCzT
1
2
3
2..0 CPO
4.3 0 1 2 3 4 5 6 7
0 TLBR TLBWI TLBWR
1 TLBP
2 RFE
3
4000 tbl 14

Table 2.10. Opcode Encoding
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INTRODUCTION

The R3051 family achieves its high standard of performance by combining
a fast, efficient execution engine (that of the R3000A) with high-memory
bandwidth, supplied from its large internal instruction and data caches. These
caches insure that the majority of processor execution occurs at the rate of one
instruction per clock cycle, and serve to decouple the high-speed execution
engine from slower, external memory resources.

Portions of this chapter review the fundamentals of general cache operation,
and may be skipped by readers already familiar with these concepts. This
chapter also discusses the particular organization of the on-chip caches of the
R3051. However, as these caches are managed by the R3051 CPU itself, the
system designer does not typically need to be explicitly aware of this structure.

FUNDAMENTALS OF CACHE OPERATION

High-performance microprocessor based systems frequently borrow from
computer architecture principles long used in mini-computers and mainframes.
These principlesinclude instruction execution pipelining (discussed in Chapter
2) and instruction and data caching.

A cache is a high-speed memory store which contains the instructions and
data most likely to be needed by the processor. Thatis, rather than implement
the entire memory system with zero wait-state memory devices, a small zero
wait-state memory is implemented. This memory, called a cache, then
contains the instructions/data most likely to be referenced by the processor.
If indeed the processor issues a reference to an item contained in the cache,
then a zero wait-state access is made; if the reference is not contained in the
cache, then the longer latency associated with the true processor memory is
incurred. The processor will achieve its maximum performance as long as its
references “hit” (are resident) in the cache.

Caches rely on the principles of locality of software. These principles state
that when a data/instruction element is used by a processor, it and its close
neighbors are likely to be used again soon. The cache is then constructed to
keep a copy of instructions and data referenced by the processor, so that
subsequent references occur with zero wait-states.

Since the cache is typically many orders of magnitude smaller than main
memory or virtual address space, each cache element must contain both the
data (or instruction) required by the processor, as well as information which
can be used to determine whether a cache “hit” occurs. Thisinformation, called
the cache “TAG”, is typically some or all of the address in main memory of the
dataitem contained in that cache element as well as a “Valid” flag for that cache
element. Thus, when the processorissues an address for a reference, the cache
controller compares the TAG with the processor address to determine whether
a hit occurs.

R3051 CACHE ORGANIZATION
There are a number of algorithms possible for managing a processor cache.
This section describes the cache organization of the R3051 family.

Basic Cache Operation

When the processor makes a reference, its 32-bit internal address bus
contains the address it desires. The processor address bus is split into two
parts; the low-order address bits specify a location in the cache to access, and

©1992 Integrated Device Technology, Inc.
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the remaining high-order address bits contain the value expected from the
cache TAG. Thus, both the instruction/data element and the cache TAG are
fetched simultaneously from the cache memory. If the value read from the TAG
memories is the same as the high-order address bits, a cache hit occurs and
the processor is allowed to operate on the instruction/data element retrieved.
Otherwise, a cache miss is processed. This operation is illustrated in Figure
3.1.

f )
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Execution 201 7
Core
Virtual — Physical Cache Cache
Address Translation Tag Data
Physical
Present? 204 Address
? | PID Match? -
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Data < 33/ Valid
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Figure 3.1. Cache Line Selection

To maximize performance, the R3051 implements a Harvard Architecture
caching strategy. That is, there are two separate caches: one contains
instructions (operations), and the other contains data (operands). By separating
the caches, higher overall bandwidth to the execution core is achieved, and
thus higher performance is realized.

Memory Address to Cache Location Mapping

The R3051 caches are direct-mapped. That is, each main memory address
can be mapped to (contained in) only one particular cache location. This is
different from set-associative mappings, where each main memory location
has multiple candidates for address mapping.

This organization, coupled with the large cache sizes resident on the R3051
family, achieve extremely high hit rates while maximizing speed and minimizing
complexity and power consumption.

Cache Addressing

The address presented to the cache and cache controller is that of the
physical (main) memory element to be accessed. That is, the virtual address
to physical address translation is performed by the memory management unit
prior to the processor issuing its reference address.

Some microprocessors utilize virtual indexing in the cache, where the
processor virtual address is used to specify the cache element to be retrieved.
This type of cache structure complicates software and slows embedded
applications:

¢ When the processor performs a context switch, a virtually indexed cache

must be flushed. This is because two different tasks can use the same
virtual address but mean totally different physical addresses. This cache
flushing for a large cache dramatically slows context switch performance.
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* Software must be aware of and specifically manage against “alias”
problems. Analias occurs when two different virtual addresses correspond
to the same physical address. If that occurs in a virtually indexed cache,
then the same data element may be present in two different cache
locations. If one virtual address is used to change the value of that
memory location, and a different address used to read it later, then the
second reference will not get the current value of that data item.

By providing for the memory management unit in the processor pipeline,
physical cache addressing is used with no inherent speed penalty.

Write Policy

The R3051 utilizes a write through cache. That is, whenever the processor
performs a write operation to memory, then both the cache (data and TAG
fields) and main memory are written. If the reference is un-cacheable, then
only main memory is written.

To minimize the delays associated with updating main memory, the R3051
contains a 4 element write buffer. The write buffer captures the target address
and data value in a single processor clock cycle, and subsequently performs the
main memory write at its own, slower rate. The write buffer can FIFO up to 4
pending writes, as described in a later chapter.

Partial Word Writes

In the case of partial word writes, the R3051 operates by performing a read-
modify-write sequence in the cache: the store target addressis used to perform
a cache fetch; if the cache “hits”, then the partial word data is merged with the
cache and the cache is updated. If the cache read results in a hit, the memory
interface will see the full word write, rather than the partial word. This allows
the designer to observe the actual activity in the eon-chip caches.

If the cache lookup of a partial word write “misses” in the cache, then only
main memory is updated.

Instruction Cache Line Size

The “line size” of a cache refers to the number of cache elements mapped by
a single TAG element. In the R3051, the instruction cache line size is 16 bytes,
or four words.

This means that each cache line contains four adjacent words from main
memory. Inorder to accommodate this, an instruction cache missis processed
by performing a quad word (block) read from the main memory, as discussed
in a later chapter. This insures that a cache line contains four adjacent
memory locations. Note that since the instruction cache is typically never
written into directly by user software, the larger line size is permissible. If
software does explicitly store into the instruction cache (perform store operations
with the caches “swapped”), the programmer must insure that either the
written lines are leftinvalidated, or that they contain four adjacent instructions.

Block refill uses the principle of locality of reference. Since instructions
typically execute sequentially, there is a high probability that the instruction
address immediately after the current instruction will be the next instruction.
Block refill then brings into the cache those instructions immediately near the
current instruction, resulting in a higher instruction cache hit rate.

Block refill also takes advantage of the difference between memory latency
and memory bandwidth. Memory latency refers to the amount of time required
to perform a processor request, while bandwidth refers to the rate at which
subsequent transfers can occur. Factors that affect memory latency include
address decoding, bus arbitration, and memory pre-charge requirements;
factors which maximize bandwidth include the use of page mode or nibble
mode accesses, memory interleaving, and burst memory devices.
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The processing of a quad word read is discussed in a later chapter; however,
it is worth noting that the R3051 can support either true burst accesses or can
utilize a simpler, slower memory protocol for quad word reads.

Finally, note that the R3051 performs "streaming” during instruction cache
refill. Thatis, the processor will simultaneously refill the instruction cache and
execute the incoming instructions. Simulations have shown that streaming
contributes an average of 5% of performance.

Data Cache Line Size

The data cache line size is different from that of the instruction cache, based
on differences in their use. The data cache is organized as a line size of one word
(four bytes).

This is optimal for the write policy of the data cache: since an individual
cache word may be written by a software store instruction, the cache controller
cannot guarantee that four adjacent words in the cache are from adjacent
memory locations. Thus each word is individually tagged. The partial word
writes (less than 4 bytes) are handled as a read-modify-write sequence, as
described above.

Although the data cache line size is one word, the system may elect to
perform data cache updates using quad word reads (block refill). The
performance of the data cache update options can be simulated using
Cache-305x; some systems may achieve higher performance through the use
of data cache burst fill. No “streaming” occurs on data cache refills.

Summary

The on-chip caches of the R3051 family can be thought of as constructed
from discrete devices around the R3000A. The block diagram of the cache
interface for the R3052 is shown in Figure 3.2; the interface for the R3051 is
similarly constructed.
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Figure 3.2. R3051 Family Execution Core and Cache Interface




CACHE ARCHITECTURE

CHAPTER 3

CACHE OPERATION
The operation of the on-chip caches is very straightforward, and is
automatically handled by the processor.
Basic Cache Fetch Operation
As with the R3000A, the R3051 family can access both the instruction and
data caches in a single clock cycle, resulting in 320 MB/sec bandwidth to the
execution core. It does this by time multiplexing the cycle in the cache
interface:
¢ During the first phase, a data cache address is presented, and a previous
instruction cache read is completed.
¢ During the second phase, the data cache is read into the processor (or
written by the processor). Also, the instruction cache is addressed with
the next desired instruction.
e During the first phase of the next cycle, the instruction fetch begun in the
previous phase is completed and a new data transaction is initiated.
This operation is illustrated in Figure 3.3. As long as the processor hits in
the cache, and no internal stall conditions are encountered, it will continue to
execute run cycles. A run cycle is defined to be a clock cycle in which forward
progress in the processor pipeline occurs.
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Figure 3.3. Phased Access of Instruction and Data Caches

Cache Miss Processing

In the case of a cache miss (due to either a failed tag comparison or because
the processor issued an un-cacheable reference), the main memory interface
(discussed in a later chapter) isinvoked. If, during a given clock cycle, both the
instruction and data cache miss, the data reference will be resolved before the
instruction cache miss is processed.

While the processor is waiting for a cache miss to be processed, it will enter
stall cycles until the bus interface unit indicates that it has obtained the
necessary data.

When the bus interface unit returns the data from main memory, it is
simultaneously brought to the execution unit and written into the on-chip
caches. This is performed in a processor fixup cycle.

During a fixup cycle, the processor re-issues the cache access that failed;
this occurs by having the processor re-address the instruction and data
caches, so that the data may be written into the caches. Ifthe cache miss was
due to an un-cacheable reference, the write is not performed, although a fixup
cycle does occur.
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Instruction Streaming

A special feature of the R3051 is utilized when performing block reads for
instruction cache misses. This process is called instruction streaming.
Instruction streaming is simultaneous instruction execution and cache refill.

As the block is brought in, the processor refills the instruction cache.
Execution of the instructions within the block begins when the instruction
corresponding to the cache miss is returned by the bus interface unit to the
execution core. Execution continues until the end of the block is reached (in
which case normal execution is resumed), or until some event forces the
processor core to discontinue execution of that stream. These events include:

¢ Taken branches

¢ Data cache miss

¢ Internal stalls (TLB miss, multiply/divide interlock)

¢ Exceptions

When one of these events occur, the processor re-enters simple cache refill
until the rest of the block has been written into the cache.

CACHEABLE REFERENCES

Chapter 4 on memory management explains how the processor determines
whether a particular reference (either instruction or data) is to a memory
location that may reside in the cache. The fundamental mechanism is that
certain virtual addresses are considered to be “cacheable”. If the processor
attempts to make a reference to a cacheable address, then it will employ its
cache management protocol through that reference. Otherwise, the cache will
be bypassed, and the execution engine core will directly communicate with the
bus interface unit to process the reference.

Whether a given reference should be cacheable or not depends very much
on the application, and on the target of the reference. Generally, I/0 devices
should be referenced as un-cacheable data; for example, if software was polling
a status register, and that register was cached, then it would never see the
I/0 device update the status (note that the compiler suite supports the
“volatile” data type to insure that the I/O device status register data in this case
never gets allocated into an internal register).

There may be otherinstances where the un-cacheableattribute is appropriate.
For example, software which directly manipulates or flushes the caches can
not be cached; similarly, boot software can not rely on the state of the caches,
and thus must operate un-cached at least until the caches are initialized.

SOFTWARE DIRECTED CACHE OPERATIONS

In order to support certain system requirements, the R3051 family provides
mechanisms for software to explicitly manipulate the caches. These mechanisms
support diagnostics, cache and memory sizing, and cache flushing. In general,
these mechanisms are enabled/disabled through the use of the Status Register
in CPO.

The primary mechanisms for supporting these operations are cache swapping
and cacheisolation. Cache swapping forces the processor touse the data cache
as an instruction cache, and vice versa. It is useful for allowing the processor
to issue store instructions which cause the instruction cache to be written.
Cache isolation causes the current data cache to be “isolated” from main
memory; store operations do not cause main memory to be written, and all load
operations “hit” in the data cache.

These mechanisms are enabled through the use of the “IsC” (Isolate Cache)
and SwC (Swap Cache) bits of the status register, which resides in the on-chip
System Control Co-Processor (CP0). Instructions which immediately precede
and succeed these operations must not be cacheable, so that the actual
swapping/isolation of the cache does not disrupt operation.
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Cache Sizing

It is possible for software to determine whether it is executing on an R3051
or an R3052 by determining the size of the instruction cache. Having software
determine the size of the cache at boot time, rather than building static values
into the software, allows for maximum flexibility in interchanging various
processors with differing amounts of cache on-chip.

Cache sizing in an R3051 is performed much like traditional memory sizing
algorithms, but with the cache isolated. This avoids side-effects in memory
from the sizing algorithm, and allows the software to use the “Cache Miss” bit
of the status register in the sizing algorithm.

To determine the size of the instruction cache, software should:

1: Swap Caches
2: Isolate Caches (not needed for D-Cache sizing)
3: Write a value at location 8000_0000
4: Write a value at location 8000_1000 (8000_0000 + 4kB)
Read location 8000_0000.
Examine the CM (Cache_Miss) bit of the status register; if it indicates a
cache miss, then the cache is 4kB; otherwise, the cache is 8kB or larger.
5: Write a value at location 8000_2000 (8000_0000 + 8kB)
Read location 8000_0000.
Examine the CM (Cache_Miss) bit of the status register; if it indicates a
cache miss, then the cache is 8kB; otherwise, the cache is 16kB or larger.
6. etc...

Of course a more generalized algorithm could be developed to determine the
cache size; this may be desirable for compatibility with discrete R3000A
systems or other R3051 family members. However, any algorithm will include
the Swap and Isolate of the Instruction Cache, and the use of the Cache Miss
bit. Sizing the data cache is done with a similar algorithm, although the caches
will not be swapped.

Note that this software should operate as un-cached. Once this algorithm
is done, software should return the caches to their normal state by performing
either a complete cache flush or an invalidate of those cache lines modified by
the sizing algorithm.

Cache Flushing

Cache flushing refers to the act of invalidating (indicating a line does not
have valid contents) lines within either the instruction or data caches.
Flushing must be performed before the caches are first used asreal caches, and
might also be performed during main memory page swapping or at certain
context switches (note that the R3051 implements physical caches, so that
cache flushing at context switch time is not generally required).

The basic concept behind cache flushing is to have the “Valid” bit of each
cache line set to indicate invalid. This is done in the R3051 family by having
the cache isolated, and then writing a partial word quantity into the current
data cache. Under these conditions, the R3051 /52 will negate the “Valid” bit
of the target cache line.
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Again, this software should operate as un-cached. To flush the data cache:

1: Isolate Caches

2: Perform a byte write every 4 bytes, starting at location 0, until <cachesize
div 4> such writes have been performed (512 is appropriate for the 2kB
data cache).

3: Return the data cache to its normal state by clearing the IsC function.

To flush the instruction cache:

1: Swap Caches

2: Isolate Caches

3: Perform a byte write every 16 bytes (based on the instruction cache line
size of 16 bytes). This should be done until each line (256 lines in the
R3051, 512 in the R3052) have been invalidated. Note that treating the
R3051 as an R3052 by flushing/invalidating 512 lines is acceptable
though less efficient.

4: Return the caches to their normal state (unswapped and not isolated).

To minimize the execution time of the cache flush, this software should
probably use an “unrolled” loop. That is, rather than have one iteration of the
loop invalidate only one cache line, each iteration should invalidate multiple
lines. This spreads the overhead of the loop flow control over more cache line
invalidates, thus reducing execution time.

Forcing Data into the Caches

Using these basic tools, it is possible to have software directly place values
into the caches. When combined with appropriate memory management
techniques, this could be used to “lock” values into the on-chip caches, by
insuring that software does not issue other address references which may
displace these locked values.

In order to force values into a cache, the cache should be Isolated. If software
is trying to write instructions into the instruction cache, then the caches
should also be swapped.

When forcing values into the instruction cache, software must take care with
regards to the line size of the instruction cache. Specifically, a single TAG and
Valid field describe four words in the instruction cache; software must then
insure that any instruction cache line tagged as Valid actually contains valid
data from all four words of the block.

SUMMARY

The on-chip caches of the R3051 family are key to the inherent performance
of the processor. The R3051 design, however, does not require the system
designer (either software or hardware) to explicitly manage this important
resource, other than to correctly choose virtual addresses which may or may
not be cached, and to flush the caches at system boot. This contributes to both
the simplicity and performance of an R3051/52 based system.
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MEMORY MANAGEMENT CHAPTER 4

INTRODUCTION

The R3051 provides two basic flavors of memory management. The base
versions (the R3051 and R3052) provide segment-based virtual to physical
address translation, and support the segregation of kernel and user tasks
without requiring extensive virtual page management. The extended versions
(the R3051E and R3052E) provide a full featured memory management unit
(MMU) identical to the MMU structure of the R3000A. The extended MMU uses
an on-chip translation lookaside buffer (TLB) and dedicated registers in CPO
to provide for software management of page tables.

This chapter describes the operating states of the processor (kernel and
user), and describes the virtual to physical address translation mechanisms
provided in both versions of the architecture.

VIRTUAL MEMORY IN THE R3051 FAMILY

There are two primary purposes of the memory management capabilities of
the R3051.

e Various areas of main memory can have individual sets of attributes
associated with them. For example, some segments may be indicated as
requiring kernel status to be accessed; others may have cacheable or un-
cacheable attributes. The virtual to physical address translation of the
R3051/52 establishes the rules appropriate for a given virtual address.

¢ The virtual memory system can be used to logically expand the physical
memory space of the processor, by translating addresses composed in a
large virtual address space into the physical address space of the system.
This is particularly important in applications where software may not be
explicitly aware of the hardware resources of the processor system, and
includes applications such as X-Window display systems. These types of
applications are better served by the “E” (extended architecture) versions
of the processor.

Figure 4.1 shows the form of an R3051 virtual address. The most significant
20 bits of the 32-bit virtual address are called the virtual page number, or VPN.
In the extended architecture versions, the VPN allows mapping of virtual
addresses based on 4kB pages; in the base versions, only the three highest bits
(segment number) are involved in the virtual to physical address translation.

31 12 11 0
VPN Offset

3130 29 20 12

0 x X kuseg

100 kseg0

101 Ksegl

11 x kseg2

4000 drw 15
Figure 4.1. Virtual Address Format

In all versions, the three most significant bits of the virtual address identify
which virtual address segment the processor is currently referencing; these
segments have associated with them the mapping algorithm to be employed,
and whether virtual addresses in that segment may reside in the cache. The
translation of the virtual address to an equivalent privilege level/segment is the
same for the base and extended versions of the architecture.
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PRIVILEGE STATES

The R3051 provides for two unique privilege states: the “Kernel” mode, which
is analogous to the “supervisory” mode provided in many systems, and the
“User” mode, where non-supervisory programs are executed. Kernel mode is
entered whenever the processor detects an exception; when a Restore From
Exception (RFE) instruction is executed, the processor will return either to its
previous privilege mode or to User mode, depending on the state of the machine
and when the exception was detected.

User Mode Virtual Addressing

While the processor is operating in User mode, a single, uniform virtual
address space (kuseg) of 2GB is available for Users. All valid user-mode virtual
addresses have the most significant bit of the virtual address cleared to 0. An
attempt to reference a Kernel address (most significant bit of the virtual
address set to 1) while in User mode will cause an Address Error Exception (see
chapter 5). Kuseg begins at virtual address O and extends linearly for 2GB.
This segment is typically used to hold user code and data, and the current user
processes. The virtual to physical address translation depends on whether the
processor is a base or extended architecture version.

Kernel Mode Virtual Addressing

When the processor is operating in Kernel mode, four distinct virtual

address segments are simultaneously available. The segments are:

* kuseg. The kernel may assert the same virtual address as a user process,
and have the same virtual to physical address translation performed for
it as the translation for the user task. This facilitates the kernel having
direct access to user memory regions. The virtual to physical address
translation depends on whether the processor is a base or extended
architecture version.

e kseg0. Kseg0O is a 512MB segment, beginning at virtual address

0x8000_0000. This segment is always translated to a linear 512MB
region of the physical address space starting at physical address 0. All
references through this segment are cacheable.
When the most significant three bits of the virtual address are “100”, the
virtual address resides in kseg0. The physical address is constructed by
replacing these three bits of the virtual address with the value “000”. As
thesereferences are cacheable, ksegOis typically used for kernel executable
code and some kernel data.

¢ ksegl. Ksegl is also a 512MB segment, beginning at virtual address

0xa000_0000. This segment is also translated directly to the 512MB
physical address space starting at address 0. All references through this
segment are un-cacheable.
When the most significant three bits of the virtual address are “101”, the
virtual address resides in ksegl. The physical address is constructed by
replacing these three bits of the virtual address with the value “000”.
Unlike kseg0, references through kseg1 are not cacheable. This segment
is typically used for I/0 registers, boot ROM code, and operating system
data areas such as disk buffers.

¢ kseg2. This segment is analogous to kuseg, but is accessible only from
kernel mode. This segment contains 1GB of linear addresses, beginning
at virtual address 0xcO00_0000. As with kuseg, the virtual to physical
address translation depends on whether the processor is a base or
extended architecture version.
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When the two most significant bits of the virtual address are “11”, the
virtual address resides in the 1024MB segment kseg2. The virtual to
physical translation is done either through the TLB (extended versions of
the processor) or through a direct segment mapping (base versions). An
operating system would typically use this segment for stacks, per-process
data that must be re-mapped at context switch, user page tables, and for
some dynamically allocated data areas.

Thus, in both the base and extended versions of the processor, kseg0 and
ksegl are always mapped in the same fashion, to the lowest 512MB of the
physical address space. In both versions of the architecture, ksegO references
may reside in the on-chip cache, while kseg1 references may never reside in the
on-chip caches.

The mapping of kuseg and kseg2 from virtual to physical addresses depends
on whether the processor is a base or extended version of the architecture.

A base version is distinguishable from an extended version in software by
examining the TS (TLB Shutdown) bit of the Status Register after reset, before
the TLB is used. If the TS bit is set (1) immediately after reset, indicating that
the TLB is non-functional, then the current processor is a base version of the
architecture. If the TS bit is cleared after reset, then the software is executing
on an extended architecture version of the processor.

Oxffffffff

Kernel Cached —> Kem?;g(asmed 1024 MB

(kseg?2)
0xc0000000

Kernel Uncached

0xa0000000 (kseg1) .
Kernel Cached Keé';z'r/]lé'gef 2048 MB
Tasks
0x80000000 (ksego)
Kernel/User )
Cached Inaccessible 512 MB
kuse; Kernel Boot
fosed —P and /0 512 MB

0x00000000
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Figure 4.2. Virtual to Physical Address Translation in Base Versions

BASE VERSIONS ADDRESS TRANSLATION
Processors which only implement the base versions of memory management
perform direct segment mapping of virtual to physical addresses, asillustrated
in Figure 4.2. Thus, the mapping of kuseg and kseg2 is performed as follows:
¢ Kuseg is always translated to a contiguous 2GB region of the physical
address space, beginning at location 0x4000_0000. That is, the value
“00” in the two highest order bits of the virtual address space are
translated to the value “01”, with the remaining 30 bits of the virtual
address unchanged.
¢ Virtual addresses in kseg2 are directly output as physical addresses; that
is, references to kseg2 occur with the physical address unchanged from
the virtual address.
¢ The upper 1MB of each of Kuseg and Kseg2 should not be used. This
region is being reserved for compatibility with future revisions of the chip,
which may include on-chipresources which map to these virtual addresses.
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The base versions of the architecture allow kernel software to be protected
fromuser mode accesses, without requiring virtual page management software.
User references to kernel virtual address will result in an address error
exception.

Some systems may elect to protect external physical memory as well. That
is, the system may include distinct memory devices which can only be accessed
from kemel mode. The physical address output determines whether the
reference occurred from kernel or user mode, according to Table 4.1.

Physical Address (31:29) Virtual Address Segment
‘000’ KsegO or Ksegl
‘001’ Inaccessible
01x’ Kuseg
10x° Kuseg
'11x Kseg2
4000 tbl 15

Table 4.1. Virtual and Physical Address Relationships in Base Versions

Thus, some systems may wish to limit accesses to some memory or I/0
devices to those physical address bits which correspond to kernel mode virtual
addresses.

Alternately, some systems may wish to have the kernel and user tasks share
common areas of memory. Those systems could choose to have their address
decoder ignore the high-order physical address bits, and compress all of
memory into the lower region of physical memory. The high-order physical
address bits may be useful as privilege mode status outputs in these systems.

EXTENDED VERSIONS ADDRESS TRANSLATION

The extended versions of the architecture use a full featured MMU, like that
found in the R3000A, to manage the virtual to physical address translation of
kuseg and kseg2. This MMU maps 4kB virtual pages to 4kB physical pages,
and controls the attribute of these pages on a page by page basis. The extended
versions of the architecture map the virtual address space as illustrated in
Figure 4.3.

VIRTUAL PHYSICAL

oxffffifif
Kernel Mapped

Cacheable Any

(kseg?)
0xc0000000

Kernel Uncached

0xa0000000 (kseg1) mﬁ':fy' >~ 3548 MB

Kernel Cached

0x80000000 (ksegO)

Kernel/User
Mapped N

appe!
Cacheable —
/

(kuseg) Memory } 512 MB

0x00000000 !
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Figure 4.3. Virtual to Physical Address Mapping of Extended Architecture
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Note that kuseg and kseg2 may be mapped anywhere in the 4GB physical
address space. Thus, the external memory system may not be able to examine
the physical address outputs from the processor to determine the virtual
segment origin of the reference. Software in such a system will be much more
responsible for managing the separation of kernel and user resources.

Pages are mapped by substituting a 20-bit physical frame number (PFN) for
the 20-bit virtual page number field of the virtual address. This substitution
is performed through the use of the on-chip Translation Lookaside Buffer
(TLB). The TLB is a fully associative memory that holds 64 entries to provide
amapping of 64 4kB pages. When a virtual reference to kuseg or kseg2 occurs,
each TLB entry is probed to see if it maps the corresponding VPN.

The mapping function is provided as part of the on-chip System Control Co-
Processor, CPO. CPO supports address translation, exception handling, and
other privileged transactions. CPO contains the TLB and the other registers
shown in Figure 4.4.

ENTRYHI ENTRYLO INDEX

63
RANDOM

~ 00

e /
\

NOT ACCESSED BY RANDOM

[] Used with Virtual Memory System

Used with Exception Processing
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Figure 4.4. The System Coprocessor Registers

The sections that follow describes the virtual to physical address mapping
performed by the TLB.

TLB Entries

Each TLB entry is 64 bits wide, and its format is illustrated in Figure 4.5.
Each field of a TLB entry has a corresponding field in the EntryHi/EntryLo
register pair (described next). Figure 4.6 describes each of the fields of a TLB
entry.

63 0
VPN PID 0 PFN NID}JV]G]| O

20 6 6 20 1t 1 1 1 8
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Figure 4.5. Format of a TLB Entry




CHAPTER 4

MEMORY MANAGEMENT

EntryHi and EntryLo Registers

These two registers provide the data path for operations which read, write,
or probe the TLB file. The format of these registers is the same as the format
of a TLB entry, and is illustrated in Figure 4.6.

TLB EntryHi Register

63 44 43 3 37 32
VPN PID 0

20 6 6

VPN  Virtual Page Number. Bits 31..12 of virtual address.

PID Process ID field. A 6-bit field which lets multiple processes share the TLB
whiI% each process has a distinct mapping of otherwise identical virtual page
numbers.

[Z' Reserved. Must be written as '0'; returns zero when read.

TLB EntryLo Register

31 12 11 10 9 8 7 0
PEN N|ID}JV]G 0
20 11 1 1 8

PFN  Page Frame Number. Bits 31..12 of the physical address. The R3051/52"FE'
maps a virtual page to the PFN.

N Non-cacheable. If this bit is set, the page is marked as non-cacheable and
the R3051/52"E" directly accesses main memory instead of first accessing
the cache.

D Dirty. If this bit is set, the page is marked as "dirty" and therefore writable.

This bit is actually a "write-protect” bit that software can use to prevent
alteration of data. If an entry is accessed for a write operation when the D
bit is cleared, the R3051/52"E" causes a TLB Mod trap. The TLB entry is
not modified on such a trap.

4 Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a
TLBL or TLBS Miss occurs.
G Global. If this bit is set, the R3051/52"E" ignores the PID match requirement

for valid translation. In kseg2, the Global bit lets the kernel access all
mapped data without requiring it to save or restore PID (Process ID) values.

E Reserved. Must be written as '0', returns '0' when read.

4000 drw 20
Figure 4.6. The TLB EntryLo and EntryHi Registers

For maximum software efficiency, operating system software could use the
format of EntryLo to describe a Page Table Entry in the operating system Page
Table; however, since PTE’s are managed through software algorithms, rather
than hardware, an operating system could choose a different format than that
of EntryLo.

Virtual Address Translation

During a virtual to physical address translation in kuseg or kseg2, the
R3051/52”E” compares the PID and the highest 20 bits of the virtual address
(the VPN) to the contents of each TLB entry. A generalized algorithm for this
mapping is illustrated in Figure 4.7.
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Address Translation
Input Virtual Address

Address
Error

Exception

Yes MS18 No

TLB TLB UTLB
Mod Miss Miss
Exception Exception

Access
Cache

Output Physical Address
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Figure 4.7. TLB Address Translation

A virtual address matches (is mapped by) a TLB entry if:

¢ the VPN of the virtual address matches the VPN field of aTLB entry

¢ either the “G” (global) bit of the TLB entry is set, or the PID field of the

virtual address (stored in the EntryHi register) matches the PID field of the
TLB entry.

If a match is found, then the corresponding physical address (PFN) field of
the TLB entry is retrieved from the matching entry, along with the access
control bits (N, D, and V). If no match is found, then either a TLB or UTLB miss
exception will occur. Figure 4.8 shows the generation of a physical address
from a specific virtual address mapped by the TLB.

If the access control bits (D and V) indicate that the access is not valid (either
the TLB entry is not valid, or the page is write protected or not yet dirty), then
a TLB modification or TLB miss exception will occur. If the N (Non-cacheable)
bit is set, then the processor will not look in its caches for the data, but rather
will directly use the bus interface unit to retrieve the word from main memory.
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Figure 4.8. Virtual to Physical TLB Translation

The Index Register

The Indexregister is a 32-bit, read-write register, which has a 6-bit field used
to index to a specific entry in the 64-entry TLB file. The high-order bit of the
register is a status bit which reflects the success or failure of a TLB Probe (t1bp)
instruction, described later in this chapter.

The Indexregister also specifies the TLB entry that will be affected by the TLB
Read (tlbr) and TLB Write Index (tlbwi) instructions. Figure 4.9 shows the
format of the Index register.

Index Register

31 14 13 8 7 0
P 0 Index 0
1 17 6 8
P Probe failure. Setto 1 when the last TLBProbe (tlbp) instruction was
unsuccessful.
Index  Index to the TLB entry that will be affected by the TLBRead and TLBWrite
instructions.
Reserved. Must be written as zero, returns zero when read.

4000 drw 23
Figure 4.9. The Index Register

The Random Register

The Random register is a 32-bit read-only register. The format of the
Random register is shown in figure 4.10.

The six-bit Random field indexes a Random entry in the TLB. It is basically
a counter which decrements on every clock cycle, but which is constrained to
count in the range of 63 to 8. That is, software is guaranteed that the Random
register will never index into the first 8 TLB entries. These entries can be
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Random Register

31 14 13 8 7 0
0 Random 0

18 6 8

Random A random index (with a value from 8 to 63) to a TLB entry.

IZ] Reserved. Returns zero when read.

4000 drw 24
Figure 4.10. The Random Register

“locked” by software into the TLB file, guaranteeing that no TLB miss
exceptions will occur in operations which use those virtual address. This is
useful for particularly critical areas of the operating system.

The Random register is typically used in the processing of a TLB miss
exception. The Random register provides software with a “suggested” TLB
entry to be written with the correct translation; although slightly less efficient
than a Least Recently Used (LRU) algorithm, Random replacement offers
substantially similar performance while allowing dramatically simpler hardware
and software management. To perform a TLB replacement, the TLB Write
Random (tIbwr) instruction is used to write the TLB entry indexed by this
register.

At reset, this counter is preset to the value ‘63’. Thus, it is possible for two
processors to operate in “lock-step”, even when using the Random TLB
replacement algorithm. Also, software may directly read thisregister, although
this feature probably has little utility outside of device testing and diagnostics.

TLB Instructions

The R3051/52”E” provides instructions for working with the TLB, as listed
in Table 4.2. These instructions are described briefly below. Their operation
in base versions of the R3051 is undefined.

Op Code Description
tlbp Translation Lookaside Buffer Probe
tlbr Translation Lookaside Buffer Read
tibwi Translation Lookaside Buffer Write at Index
tibwr Translation Lookaside Buffer Write at Random

4000 tbl 16

Table 4.2. TLB Instructions

Translation Lookaside Buffer Probe (tlbp). This instruction “probes” the
TLB to see if an entry matches the EntryHi register contents. If a match occurs,
the R3051/52E loads the Index register with the index of the entry that
matched. If no match exists, The R3051/52E will set the high order bit (the
Pbit) of the Index Register.

Translation Lookaside Buffer Read (tlbr). This instruction loads the
EntryHi and EntryLo registers with the contents of the TLB entry pointed to by
the Index register.

Translation Lookaside Buffer Write at Index (tlbwi). This instruction
loads the TLB entry pointed to by the Index register with the current values
of the EntryHi and EntryLo register.

Translation Lookaside Buffer Write at Random (tlbwr). This instruction
loads the TLB entry pointed to by the Random register with the current values
of the EntryHi and EntryLo register.




CHAPTER 4

MEMORY MANAGEMENT

TLB Shutdown

The status register contains a single bit which indicates whether the TLB is

operating properly. This bit, once set, may only be cleared by a device reset.

There are two reasons this bit might be set:

 Ifthisbitis set at devicereset, prior to the actual use of the TLB for address
mapping, then thisisnot an “Extended” version of the R3051 architecture,
and thus no TLB is present.

o If this bit is cleared at reset, but set subsequently, then the TLB detected
multiple virtual to physical mappings for the same VPN. Thisis either the
result of improper software, or of improper operation of the TLB. If this
condition is detected, the TLB will be shutdown, prohibiting further
virtual to physical address mappings through the TLB. The virtual to
physical translation of kuseg and kseg2 is undefined under these
conditions.

SUMMARY

The R3051 provides two models of memory management: a very simple,
segment based mapping, found in the base versions of the architecture, and
a more sophisticated, TLB-based page mapping scheme, present in the
extended versions of the architecture. Each scheme has advantages to
different applications.

For example, many stand-alone applications have no need for paging, as the
memory requirements of the application are absolutely determined when the
system is designed. Examples of these types of systems include data
communications applications, navigation, and process control.

Applications may have unpredictable memory requirements, since the
target system can not predict the resource requirements of the various tasks
which operate on it. This is the classic model for virtual memory management
in general purpose computers. However, this model is increasingly appropriate
in a number of embedded applications, such as X-Window Terminals.
Applications such as these may be connected on a network to numerous hosts,
each of which presents tasks to the system without explicit awareness of the
resource utilization of other hosts. Virtual memory management in such
applications may then be appropriate, with the unmapped segments (kseg0
and ksegl) used for the application operating system and I/0 channels.
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INTRODUCTION

Processors in general execute code in a highly-directed fashion. The
instruction immediately subsequent to the current instruction is fetched and
then executed; if that instruction is a branch instruction, the program
execution is diverted to the specified location. Thus, program execution is
relatively straightforward and predictable.

Exceptions are a mechanism used to break into this execution stream and
to force the processor to begin handling another task, typically related to either
the system state or to the erroneous or undesirable execution of the program
stream. Thus, exceptions typically are viewed by programmers as asynchronous
interruptions of their program. (Note that exceptions are not necessarily
unpredictable or asynchronous, in that the events which cause the exception
may be exactly repeatable by the same software executing on the same data;
however, the programmer does not typically "expect” an exception to occur
when and where it does, and thus will view exceptions as asynchronous
events).

The R3051 architecture provides for extremely fast, flexible interrupt and
exception handling. The processor makes no assumptions about interrupt
causes or handling techniques, and allows the system designer to build his own
model of the best response to exception conditions. However, the processor
provides enough information and resources to minimize both the amount of
time required to begin handling the specific cause of the exception, and to
minimize the amount of software required to preserve processor state information
so that the normal instruction stream may be resumed.

This chapter discusses exception handling issues in R3051/52-based
systems. The topics examined are: the exception model, the machine state to
be saved on an exception, and nested exceptions. Representative software
examples of exception handlers are also provided, as are techniques and issues
appropriate to specific classes of exceptions.

R3051 EXCEPTION MODEL

The exception processing capability of the R3051 is provided to assure an
orderly transfer of control from an executing program to the kernel. Exceptions
may be broadly divided into two categories: they can be caused by an
instruction or instruction sequence, including an unusual condition arising
during its execution; or can be caused by external events such as interrupts.
When an R3051/52 detects an exception, the normal sequence of instruction
flow is suspended; the processor is forced to kernel mode where it can respond
to the abnormal or asynchronous event. Table 5.1 lists the exceptions
recognized by the R3051.
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Exception Mnemonic Cause

Reset Reset Assertion of the Reset signal causes an exception
that transfers control to the special vector at
virtual address OxbfcO_0000.

UTLB Misst UTLB User TLB Miss. A reference is made (in either
kernel or user mode) to a page in kuseg that has
no matching TLB entry. This can occur only in
extended architecture versions of the processor.

TLB Misst TLBL (Load) A referenced TLB entry’s Valid bit isn’t set, or

TLBS (Store) there is a reference to a kseg2 page that has no
matching TLB entry. This can occur only in
extended architecture versions of the processor.

TLB Modifiedt| Mod During a store instruction, the Valid bit is set
but the dirty bit is not set in a matching TLB
entry. This can occur only in extended
architecture versions of the processor.

Bus Error IBE (Instruction) | Assertion of the Bus Error input during

DBE (Data) aread operation, due to such external events as
bus timeout, backplane memory errors, invalid
physical address, or invalid access types.

Address Error | AdEL (Load) Attempt to load, fetch, or store an unaligned

AdES (Store) word; that is, a word or halfword at an address
not evenly divisible by four or two, respectively.
Also caused by reference to a virtual address
with most significant bit set while in User Mode.

Overflow Ovf Twos complement overflow during add or
subtract.

System Call |Sys Execution of the SYSCALL Trap Instruction

Breakpoint Bp Execution of the break instruction

Reserved RI Execution of an instruction with an undefined

Instruction or reserved major operation code (bits 31:26), or
a special instruction whose minor opcode (bits
5:0) is undefined.

Co-processor | CpU Execution of a co-processor instruction when

Unusable the CU (Co-processor Usable) bit is not set for

the target co-processor.

Interrupt Int Assertion of one of the six hardware interrupt
inputs or setting of one of the two software
interrupt bits in the Cause register.

t: Extended versions only
4000 tb117

Table 5.1. R3051 Family Exceptions

Precise vs. Imprecise Exceptions

One classification of exceptions refers to the precision with which the
exception cause and processor context can be determined. That is, some
exceptions are precise in their nature, while others are “imprecise.”

In a precise exception, much is known about the system state at the exact
instance the exception is caused. Specifically, the exact processor context and
the exact cause of the exception are known. The processor thus maintains its
exact state before the exception was generated, and can accurately handle the
exception, allowing the instruction stream to resume when the situation is
corrected. Additionally, in a precise exception model, the processor can not
advance state; that is, subsequent instructions, which may already be in the
processor pipeline, are not allowed to change the state of the machine.
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Many real-time applications greatly benefit from a processor model which
guarantees precise exception context and cause information. The MIPS
architecture, including the R3051, implements a precise exception model for
all exceptional events.

EXCEPTION PROCESSING

The R3051/52’s exception handling system efficiently handles machine
exceptions, including Translation Lookaside Buffer (TLB) misses, arithmetic
overflows, I/0 interrupts, system calls, breakpoints, reset, and co-processor
unusable conditions. Any of these events interrupt the normal execution flow;
the R3051/52 aborts the instruction causing the exception and also aborts all
those following in the exception pipeline which have already begun, thus not
modifying processor context. The R3051/52 then performs a direct jump into
a designated exception handler routine. This insures that the R3051/52 is
always consistent with the precise exception model.

EXCEPTION HANDLING REGISTERS

The system co-processor (CPO) registers contain information pertinent to
exception processing. Software can examine these registers during exception
processing to determine the cause of the exception and the state of the
processor when it occurred There are five registers handling exception
processing, shown in shaded boxes in Figure 5.1. These are the Causeregister,
the EPC register, the Status register, the BadVAddr register, and the Context
register. A brief description of each follows.

ENTRYHI ENTRYLO INDEX

63
RANDOM

\

TLB

NOT ACCESSED BY RANDOM

[] Used with Virtual Memory System

Used with Exception Processing
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Figure 5.1. The CPO Execution Handling Registers
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Table 5.2 lists the register address of each of the CPO registers (as used in
CPO operations); the register number is used by software when issuing co-
processor load and store instructions.

Register Name Register Number (Decimal)
Status $12
Cause $13
Exception PC $14
TLB Entry Hi $10
TLB Entry Lo $2
Index $0
Random $1
Context $4
Bad Virtual Address $8
Prid $15
Reserved $3, $5-$7, $9, $11, $16-$31
4000 bl 18

Table 5.2. Co-processor O Register Addressing

The Cause Register

The contents of the Cause register describe the last exception. A 5-bit
exception code indicates the cause of the current exception; the remaining
fields contain detailed information specific to certain exceptions.

All bits in this register, with the exception of the SW bits, are read-only. The
SW bits can be written to set or reset software interrupts. Figure 5.2 illustrates
the format of the Cause register. Table 5.3 details the meaning of the various
exception codes.

31
IP[5..0] Sw ExcCode
1 1 2 12 6 2 1 5
BD: BRANCH DELAY ExcCode: EXCEPTION CODE FIELD
CE: COPROCESSOR ERROR
IP: INTERRUPTS PENDING : RESERVED
Sw: SOFTWARE INTERRUPTS* Must Be Written as 0

Returns 0 when Read

*READ AND WRITE. THE REST ARE READ-ONLY.
4000 drw 26

Figure 5.2. The Cause Register

Number | Mnemonic Description
0 Int External Interrupt
1 MOD TLB Modification Exception
2 TLBL TLB miss Exception (Load or instruction fetch)
3 TLBS TLB miss exception (Store)
4 AdEL Address Error Exception (Load or instruction fetch)
5 AdES Address Error Exception (Store)
6 IBE Bus Error Exception (for Instruction Fetch)
7 DBE Bus Error Exception (for data Load or Store)
8 Sys SYSCALL Exception
9 Bp Breakpoint Exception
10 RI Reserved Instruction Exception
11 CpU Co-Processor Unusable Exception
12 Ovf Arithmetic Overflow Exception

13-31 - Reserved

4000 tbl 19

Table 5.8. Cause Register Exception Codes

5-4
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The meaning of the other bits of the cause register is as follows:

BD The Branch Delay bit is set (1) if the last exception was taken while the
processor was executing in the branch delay slot. If so, then the EPC
will be rolled back to point to the branch instruction, so that it can be
re-executed and the branch direction re-determined.

CE The Co-processor Error field captures the co-processor unit number
referenced when a Co-processor Unusable exception is detected.

IP  The Interrupt Pending field indicates which interrupts are pending.
Regardless of which interrupts are masked, the IP field can be used
to determine which interrupts are pending.

SW The Software interrupt bits can be thought of as the logical extension
of the IPfield. The SWinterrupts can be written to to force an interrupt
to be pending to the processor, and are useful in the prioritization of
exceptions. To set a software interrupt, a “1” is written to the
appropriate SW bit, and a “0” will clear the pending interrupt. There
are corresponding interrupt mask bits in the status register for these
interrupts.

ExcCode The exception code field indicates the reason for the last
exception. Its values are listed in Table 5.3.

The EPC (Exception Program Counter) Register

The 32-bit EPC register contains the virtual address of the instruction which
took the exception, from which point processing resumes after the exception
has been serviced. When the virtual address of the instruction resides in a
branch delay slot, the EPC contains the virtual address of the instruction
immediately preceding the exception (that is, the EPC points to the Branch or
Jump instruction).

Bad VAddr Register
The Bad VAddr register saves the entire bad virtual address for any
addressing exception.

Context Register

The Context register duplicates some of the information in the BadVAddr
register, but provides this information in a form that may be more useful for
a software TLB exception handler.

Figure 5.3 illustrates the layout of the Context register. The Context register
is used to allow software to quickly determine the main memory address of the
page table entry corresponding to the bad virtual address, and allows the TLB
to beupdated by software very quickly (using a nine-instruction code sequence).

PTE Base BadVPN
11 19

0: RESERVED: READ AS 0, MUST BE WRITTEN AS 0

BadVPN: FAILING VIRTUAL PAGE NUMBER (SET BY HARDWARE;
READ ONLY FIELD DERIVED FROM BADVADDR REGISTER)

PTE Base: BASE ADDRESS OF PAGE TABLE ENTRY;
SET BY KERNEL SOFTWARE

4000 drw 27
Figure 5.3. Context Register
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The Status Register

The Statusregister contains all the major status bits; any exception puts the
system in Kernel mode. All bits in the status register, with the exception of the
TS (TLB Shutdown) bit, are readable and writable; the TS bit is read-only.
Figure 5.4 shows the functionality of the various bits in the status register.

The status register contains a three level stack (current, previous, and old)
of the kernel/user mode bit (KU) and the interrupt enable (IE) bit. The stack
is pushed when each exception is taken, and popped by the Restore From
Exception instruction. These bits may also be directly read or written.

At reset, the SWc¢, KUc, and IEc bits are set to zero; BEV is set to one; and
the value of the TS bit depends on whether the device is an Extended
Architecture version (TS = 0) or base version (TS = 1). The rest of the bit fields
are undefined after reset.

31 28 27 26 25
Ccu :

22 21 20 19 18 17 16 15 87 65 4 3 2 1 0
BEV| s I PE ICM I Pz |3wcl |sc| oM ack KUol IEo |KUp| IEp IKUcI lEcI

(Cu3...Cu0) E r5..0, Sw1:0
4 2 1 2 1 1 1 1 1 1 1 8 2 1 1 1 1 1 1

CU: COPROCESSOR USABILITY IntMASK: INTERRUPT MASK
BEV: BOOTSTRAP EXCEPTION VECTOR KUo: KERNEL/USER MODE, OLD
TS: TLB SHUTDOWN |IEo: INTERRUPT ENABLE, OLD
PE: PARITY ERROR KUp: KERNEL/USER MODE, PREVIOUS
CM: CACHE MISS |IEp: INTERRUPT ENABLE, PREVIOUS
PZ: PARITY ZERO KUc: KERNEL/USER MODE, CURRENT
SwC: SWAP CACHES |IEc: INTERRUPT ENABLE, CURRENT
IsC: ISOLATE CACHE 0: RESERVED: READ AS ZERO
RE: REVERSE ENDIANNESS MUST BE WRITTEN AS ZERO
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Figure 5.4. The Status Register

The various bits of the status register are defined as follows:

CU Co-processor Useability. These bits individually control user level
access to co-processor operations, including the polling of the BrCond
input port and the manipulation of the System Control Co-processor
(CPO).

RE Reverse Endianness. The R3051 allows the system to determine the
byte ordering convention for the Kernel mode, and the default setting
for user mode, at reset time. If this bit is cleared, the endianness
defined at reset is used for the current user task. If this bitis set, then
the user task will operate with the opposite byte ordering convention
from that determined at reset. This bit has no effect on kernel mode.

BEV Bootstrap Exception Vector. The value of this bit determines the
locations of the exception vectors of the processor. If BEV = 1, then
the processor is in “Bootstrap” mode, and the exception vectors reside
in un-cacheable space. If BEV = 0, then the processor is in normal
mode, and the exception vectors reside in cacheable space.

TS TLB Shutdown. This bit reflects whether the TLB is functioning. At
reset, this bit can be used to determine whether the current processor
is a base or extended architecture version. In extended architecture
versions, this bit will also reflect whether the TLB is operating
normally, as described in Chapter 4.
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PE

CM

SwC

IsC

KUo

KUp

IEp

KUc

‘o’

Parity Error. This field should be written with a "1" at boot time. Once
initialized, this field will always be read as "0'.

Cache Miss. This bit is set if a cache miss occurred while the cache
was isolated. Itis useful in determining the size and operation of the
internal cache subsystem.

Parity Zero. This field should always be written with a "0".

Swap Caches. Setting this bit causes the execution core to use the on-
chip instruction cache as a data cache and vice-versa. Resetting the
bit to zero unswaps the caches. This is useful for certain operations
such as instruction cache flushing. This feature is not intended for
normal operation with the caches swapped.

Isolate Cache. If this bit is set, the data cache is “isolated” from main
memory; that is, store operations modify the data cache but do not
cause a main memory write to occur, and load operations return the
data value from the cache whether or not a cache hit occurred. This
bit is also useful in various operations such as flushing, as described
in Chapter 3.

Interrupt Mask. This 8-bit field can be used to mask the hardware and
software interrupts to the execution engine (that is, not allow them to
cause an exception). IM(1:0) are used to mask the software interrupts,
and IM (7:2) mask the 6 external interrupts. A value of ‘0’ disables a
particularinterrupt, and a ‘1’ enables it. Note that the IE bitisa global
interrupt enable; that is, if the IE is used to disable interrupts, the
value of particular mask bits is irrelevant; if IE enables interrupts,
then a particular interrupt is selectively masked by this field.

Kernel/User old. Thisis the privilege state two exceptions previously.
A ‘0’ indicates kernel mode.

Interrupt Enable old. This is the global interrupt enable state two
exceptions previously. A ‘1’ indicates that interrupts were enabled,
subject to the IM mask.

Kernel/User previous. This is the privilege state prior to the current
exception A ‘0’ indicates kernel mode.

Interrupt Enable old. This is the global interrupt enable state prior to
the current exception. A ‘1’ indicates that interrupts were enabled,
subject to the IM mask.

Kernel/User current. Thisis the current privilege state. A‘O’indicates
kernel mode.

Interrupt Enable current. This is the current global interrupt enable
state. A ‘1’ indicates that interrupts are enabled, subject to the IM
mask.

Fields indicated as ‘0’ arereserved; they must be written as ‘0’, and will
return ‘0’ when read.
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Prid Register

This register is useful to software in determining which revision of the
processor is executing the code. The format of this register is illustrated in
Figure 5.5; the value currently returned is 0x0000_0230, which is the same as
the R3000A and R3081, but different from the R3041. Similar PrID values
indicate that the devices are kernel software identical.

0 Implementation Revision
16 8 8

0: READ AS 0, MUST BE WRITTEN AS 0
Implementation: EXECUTION ENGINE IMPLEMENTATION CODE
Revision: REVISION LEVEL FOR THIS IMPLEMENTATION

Figure 5.5. Format of Prid Register 4000 drw 29

EXCEPTION VECTOR LOCATIONS

The R3051 separates exceptions into three vector spaces. The value of each
vector depends on the BEV (Boot Exception Vector) bit of the status register,
which allows two alternate sets of vectors (and thus two different pieces of code)
to be used. Typically, this is used to allow diagnostic tests to occur before the
functionality of the cache is validated; processor reset forces the value of the
BEV bit to a 1. Tables 5.4 and 5.5 list the exception vectors for the R3051 for
the two different modes.

Table 5.5. Exception Vectors When BEV =1

Exception Virtual Address Physical Address
Reset 0OxbfcO_0000 0x1£fcO_0000
UTLB Miss 0x8000_0000 0x0000_0000
General 0x8000_0080 0x0000_0080
4000 tbl 20
Table 5.4. Exception Vectors When BEV = 0
Exception Virtual Address Physical Address
Reset OxbfcO_0000 0x1£fcO_0000
UTLB Miss OxbfcO_0100 0x1fc0_0100
General OxbfcO_0180 Ox1fc0_0180
4000 tbl 21

EXCEPTION PRIORITIZATION

It is important to understand the structure of the R3051 instruction
execution unit in order to understand the exception priority model of the
processor. The R3051 runs instructions through a five stage pipeline,
illustrated in Figure 5.6. The pipeline stages are:

e [F: Instruction Fetch. This cycle contains two parts: the IVA (Instruction
Virtual Address) phase, which generates the virtual instruction
address of the next instruction to be fetched, and the ITLB phase,
which performs the virtual to physical translation of the address.

e RD: Read and Decode. This phase obtains the required data from the
internal registers and also decodes the instruction.
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e ALU: Thisphaseeither performs the desired arithmetic orlogical operation,
or generates the address for the upcoming data operation. For data
operations, this phase contains both the data virtual address stage,
which generates the desired virtual address, and the data TLB stage,
which performs the virtual to physical translation.

¢ MEM: Memory. This phase performs the data load or store transaction.

e WB: Write Back. This stage updates the registers with the result data.

IF RD ALU MEM WB

IVA ID oP D-FETCH WB

|
TLB

D
DVA | 1B
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Figure 5.6. Pipelining in the R3051 Family

High performance is achieved because five instructions are operating
concurrently, each in a different stage of the pipeline. However, since multiple
instructions are operating concurrently, it is possible that multiple exceptions
are generated concurrently. If so, the processor must decide which exception
to process, basing this decision on the stage of the pipeline that detected the
exception. The processor will then flush all preceding pipeline stages to avoid
altering processor context, thus implementing precise exceptions. This
determines the relative priority of the exceptions.

For example, an illegal instruction exception can only be detected in the
instruction decode stage of the R3051/52; an Instruction Bus Error can only
be determined in the I-Fetch pipe stage. Since the illegal instruction was
fetched before the instruction which generated the bus error was fetched, and
since it is conceivable that handling this exception might have avoided the
second exception, itis important that the processor handle the illegal instruction
before the bus error. Therefore the exception detected in the latest pipeline
stage has priority over exceptions detected in earlier pipeline stages. All
instructions fetched subsequent to this (all preceding pipeline stages) are
flushed to avoid altering state information, maintaining the precise exception
model.
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Table 5.6 lists the priority of exceptions from highest first to lowest.

Mnemonic Pipestage
Reset Any
AdEL Memory (Load instruction)
AdES Memory (Store instruction)
DBE Memory (Load or store)
MOD ALU (Data TLB)
TLBL ALU (DTLB Miss)
TLBS ALU (DTLB Miss)
Ovf ALU
Int ALU
Sys RD (Instruction Decode)
Bp RD (Instruction Decode)
RI RD (Instruction Decode)
CpU RD (Instruction Decode)
TLBL I-Fetch (ITLB Miss)
AdEL IVA (Instruction Virtual Address)
IBE RD (end of I-Fetch)

4000 tbl 22

Table 5.6. R3051 Exception Priority

EXCEPTION LATENCY

A critical measurement of a processor’s throughput in interrupt driven
systems is the interrupt “latency” of the system. Interrupt latency is a
measurement of the amount time from the assertion of an interrupt until
software begins handling that interrupt. Often included when discussing
latency is the amount of overhead associated with restoring context once the
exception is handled, although this is typically less critical than the initial
latency.

In systems where the processor is responsible for managing a number of
time-critical operations in real time, it is important that the processor minimize
interrupt latency. Thatis, it is more important that every interrupt be handled
at arate above some given value, rather than occasionally handle an interrupt
at very high speed.

Factors which affect the interrupt latency of a system include the types of
operationsit performs (that is, systems which have long sequences of operations
during which interrupts can not be accepted have long latency), how much
information must be stored and restored to preserve and restore processor
context, and the priority scheme of the system.

Table 5.6 illustrates which pipestage recognizes which exceptions. As
mentioned above, all instructions less advanced in the pipeline are flushed
from the pipeline to avoid altering state execution. Those instructions will be
restarted when the exception handler completes.

Once the exception is recognized, the address of the appropriate exception
vector will be the next instruction to be fetched. In general, the latency to the
exception handler is one instruction cycle, and at worst the longest stall cycle
in that system.

INTERRUPTS IN THE R3051

The R3051 features two types of interrupt inputs: synchronized internally
and non-synchronized, or direct.
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The SInt(2:0) bus (Synchronized Interrupts) allow the system designer to
connect unsynchronized interrupt sources to the processor. The processor
includes special logic on these inputs to avoid meta-stable states associated
with switching inputs right at the processor sampling point. Because of this
logic, these interrupt sources have slightly longer latency from the SInt(n) pin
to the exception vector than the non-synchronized inputs. The operation of the
synchronized interrupts is illustrated in Figure 5.7.

Run Cycle Exception Vector

Phi /x_m_/—l/_l

Sint(n) \“\

tos' too
Figure 5.7. Synchronized Interrupt Operation
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The other interrupts, Int(5:3), do not contain this synchronization logic, and
thus have slightly better latency to the exception vector. However, the
interrupting agent must guarantee that it always meets the interrupt input set-
up and hold time requirements of the processor. These inputs are useful for
interrupting agents which operate off of the SysCIk output of the R3051/52.
The operation of these interrupts is illustrated in Figure 5.8.

Run Cycle Exception Vector

s N\ T N T T N

- \

tso a1

Figure 5.8. Direct Interrupt Operation 4000 drw 32

Since the interrupt exception is detected during the ALU stage of the
instruction currently in the processor pipeline, at least one run cycle must
occur between (or at) the assertion of the external interrupt input and the fetch
of the exception vector. Thus, if the processor is in a stall cycle when an
external agent sends an interrupt, it will execute at least one run cycle before
beginning exception processing. In this instance, there would be no difference
in the latency of synchronized and direct interrupt inputs.

All of the interrupts are level-sensitive and active low. They continue to be
sampled after an interrupt exception has occurred, and are not latched within
the processor when an interrupt exception occurs. It is important that the
external interrupting agent maintain the interrupt line until software
acknowledges the interrupt.

Note that the R3081 incorporates the floating point on-chip. The R3081
defaults to using Int(3) for the floating point interrupt, although it does allow
the interrupt to be moved to a different CPU interrupt.

Each of the eight interrupts (6 hardware and 2 software) can be individually
masked by clearing the corresponding bit in the Interrupt Mask field of the
Status Register. All eight interrupts can be masked at once by clearing the IEc
bit in the Status Register.

On the synchronized interrupts, care should be taken to allow at least two
clock cycles between the negation of the interrupt input and the re-enabling of
the interrupt mask for that bit.
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The value shown in the interrupt pending bits of the Cause register reflects
the current state of the interrupt pins of the processor. These bits are not
latched (except for sampling from the data bus to guarantee that they are stable
when examined), and the masking of specific interrupt inputs does not mask
the bits from being read.

USING THE BrCond INPUTS

In addition to the interrupt pins themselves, many systems can use the
BrCond input port pins in their exception model. These pins can be directly
tested by software, and can be used for polling or fast interrupt decoding.

As with the interrupt bus, there are two versions of the BrCond pins.
BrCond(1:0) are direct inputs, and thus the set-up and hold requirements of
the processor must be met. BrCond(3:2) are synchronized inputs, and thus
may be driven by asynchronous sources. The timing requirements of the
BrCond inputs are illustrated in Figure 5.9 and Figure 5.10.

Note that other family members feature slight differences in the BrCond
pins. Refer to Appendix A for a description of design considerations with
respect to these pins..

Run Cycle Capture BrCond BCzT/F Instruction

PRIV NV NV NV NV )

K™ N /| VT N/ /S

SBrCond(n) ;L
2

t2s  t2o

Figure 5.9. Synchronized BrCond Inputs
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Run Cycle Capture BrCond BCZT/F Instruction

PRy N ¥V N—V NV ¥V |

SysCk N /[ N— /| X /ST S

BrCond(n) %

tso ta1

Figure 5.10. Direct BrCond Inputs
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Similar to the interrupt inputs, at least one instruction must be executed (in
the ALU stage) of the instruction pipeline prior to software being able to detect
a change in one of these inputs. This is because the processor actually
captures the value of these flags one instruction prior to the branch on co-
processor instruction. Thus, if the processor is in a stall when the flag changes,
there will be no difference in the time required for the processor to recognize
synchronized or direct BrCond inputs.

INTERRUPT HANDLING

The assertion of an unmasked interrupt input causes the R3051 to branch
to the general exception vector at virtual address 0x8000_0080, and write the
‘Int’ code in the Cause register. The IP field of the Cause register shows which
of the six hardware interrupts are pending and the SW field in the Cause
register show which of the two software interrupts are pending. Multiple
interrupts can be pending at the same time, with no priority assumed by the
processor.
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When an interrupt occurs, the KUp, IEp, KUc and IEc bits of the Status
register are saved in the KUo, IEo, KUp, IEp bit fields in the Status register,
respectively, as illustrated in Figure 5.11. The current kernel status bit KUc
and the interrupt bit IEc are cleared. This masks all the interrupts and places
the processor in kernel mode. This sequence will be reversed by the execution
of an rfe (restore from exception) instruction.

INTERRUPT SERVICING

In case of an hardware interrupt, the interrupt must be cleared by de-
asserting the interrupt line, which has to be done by alleviating the external
conditions that caused the interrupt. Software interrupts have to be cleared
by clearing the corresponding bits, SW(1:0), in the Cause register to zero.

KUo | IEo | KUp | IEp | KUc | IEc

P

KUo | IEo | KUp | IEp [ KUc | IEc

Exception Recognition

NN

KUo | IEo

KUo | IEo | KUp | IEp | KUc | IEc
KUp | IE

p | KUc | IEc

RFE Instruction
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Figure 5.11. Kernel and Interrupt Status Being Saved on Interrupts

BASIC SOFTWARE TECHNIQUES FOR HANDLING
INTERRUPTS

Once an exception is detected the processor suspends the current task,
enters kernel mode, disables interrupts, and begins processing at the exception
vector location. The EPC is loaded with the address the processor will return
to once the exception event is handled.

The specific actions of the processor depend on the cause of the exception
being handled. The R3051 classifies exceptions into three distinct classes:
RESET, UTLB Miss, and General.

Coming out of reset, the processor initializes the state of the machine. In
addition to initializing system peripherals, page tables, the TLB, and the
caches, software clears both STATUS and CAUSE registers, and initializes the
exception vectors.

The code located at the exception vector may be just a branch to the actual
exception code; however, in more time critical systems the instructions located
at the exception vector may perform the actual exception processing. In order
to cause the exception vector location to branch to the appropriate exception
handler (presuming that such a jump is appropriate), a short code sequence
such as that illustrated in Figure 5.12 may be used.
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.set noreorder # tells the assembler not to reorder the code
*
* code sequence copied to UTLB exception vector
*/

la k0,excep_utlb #address of utlb excp. handler

i ko # jump via reg kO

nop

/*

dk

*/

code sequence copied to general exception vector

la k0,excep_general #address of general excp. handler
i kO # jump via reg kO

nop
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Figure 5.12. Code Sequence to Initialize Exception Vectors

It should be noted the contents of register kO are not preserved. This is not
a problem for software, since MIPS compiler and assembler conventions
reserve kO for kernel processes, and do not use it for user programs. For the
system developer it is advised that the use of kO be reserved for use by the
exception handling code exclusively. This will make debugging and development
much easier.

PRESERVING CONTEXT
The R3051 has the following five registers related to exception processing:

The Cause register

The EPC (exception program counter) register
The Status register

The BadVAddr (bad virtual address) register
The Context register

om b=

Typical exception handlers preserve the status, cause, and EPC registers in
general registers (or on the system stack). If the exception causeis due toaTLB
miss, software may also preserve the bad virtual address and context registers
for later processing.

Note that not all systems need to preserve this information. Since the R3051
disables subsequent interrupts, it is possible for software to directly process
the exception while leaving the processor context in the CPO registers. Care
must be taken to insure that the execution of the exception handler does not
generate subsequent exceptions.

Preserving the context in general registers (and on the stack) does have the
advantage that interrupts can be re-enabled while the original exception is
handled, thus allowing a priority interrupt model to be built.

A typical code sequence to preserve processor context is shown in Figure
5.13. This code sequence preserves the context into an area of memory pointed
to by the kO kernel register. This register points to a block of memory capable
of storing processor context. Constants identified by name (such as R_EPC) are
used to indicate the offset of a particular register from the start of that memory
area.

It should be noted that this sequence for fetching the co-processor zero
registers is required because there is a one clock delay in the register value
actually being loaded into the general registers after the execution of the mfcO
instruction.
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la k0,except_regs # fetch address of reg save array
sSwW AT,R_AT*4(k0) # save register AT
swW v0,R_V0*4(k0) # save register vO
= v1,R_V1*4(k0) # save register vi
mfcO v0,C0_EPC # fetch the epc register
mfcO v1,C0_SR # fetch the status register
swW v0,R_EPC*4(k0) # save the epc
mfcO v0,C0_CAUSE # fetch the cause register
sw vi,R_SR*4(k0) # save status register

I The above code is about the minimum required

* The user specific code would follow

*/

4000 drw 37

Figure 5.13. Preserving Processor Context

DETERMINING THE CAUSE OF THE EXCEPTION

The cause register indicates the reason the exception handler was invoked.
Thus, to invoke the appropriate exception service routine, software merely
needs to examine the cause register, and use its contents to direct a branch to
the appropriate handler.

One method of decoding the jump to an appropriate software routine to
handle the exception and cause is shown in Figure 5.14. Register vO contains
the cause register, and register kO still points to the register save array.

The above sequence of instructions extracts the exception code from the
causeregister and uses that code to index into the table of pointers to functions
(the cause_table). The cause_table data structure is shown in Figure 5.15.

Each of the entries in this table point to a function for processing the
particular type of interrupt detected. The specifics of the code contained in
each of these functions is unique for a given application; all registers used in
these functions must be saved and restored.

.set noreorder

swW a0,R_A0*4(k0) # save register a0

and v1,v0,EXCMASK # isolate exception code

Iw a0,cause_table(v1) # get address of interrupt routine.
sSwW al,R_A1*4(k0) # use delay slot to save register a1
j a0

sw k1,R_K1*4(sp) # save k1 register

.set reorder # re-enable pipeline scheduling
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Figure 5.14. Exception Cause Decoding
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int (*cause_table[16])() ={

int_extern, /* External interrupts */
int_tlbmod, /* TLB modification error */
int_tlbmiss, /* load or instruction fetch */
int_tlbmiss, /* write miss ¥/
int_addrerr, /* load or instruction fetch */
int_addrerr, [* write address error */
int_ibe, /* Bus error - Instruction fetch */
int_dbe, /* Bus error - load or store data */
int_syscall, /* SYSCALL exception */
int_breakpoint, /* breakpoint instruction */
int_trap, /* Reserved instruction *
int_cpunuse, /* coprocessor unusable */
int_trap, /* Arithmetic overflow */
int_unexp, /* Reserved */
int_unexp, /* Reserved */
int_unexp /* Reserved */
b
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Figure 5.15. Exception Service Branch Table

RETURNING FROM EXCEPTIONS

Returning from the exception routine is made through the rfe instruction.
When the exception first occurs the R3051/52 automatically saves some of the
processor context, the current value of the interrupt enable bit is saved into the
field for the previous interrupt enable bit, and the kernel /user mode context
is preserved.

The IE interrupt enable bit must be asserted (a one) for external interrupts
toberecognized. The KUkernel mode bit must be a zero in kernel mode. When
an exception occurs, external interrupts are disabled and the processor is
forced into kernel mode. When the rfe instruction is executed at completion of
exception handling, the state of the mode bits is restored to what it was when
the exception was recognized (presuming the programmer restored the status
register to its value when the exception occurred). This is done by “popping”
the old/previous/current KU and IE bits of the status register.

The code sequence in Figure 5.16 is an example of exiting an interrupt
handler. The assumption is that registers and context were saved as outlined
above.

This code sequence must either be replicated in each of the cause handling
functions, or each of them must branch to this code sequence to properly exit
from exception handling,.

Note that this code sequence must be executed with interrupts disabled. If
the exception handler routine re-enables interrupts they must be disabled
when the CPO registers are being restored.

gen_excp_exit:

.set noreorder
# by the time we have gotten here
# all general registers have been
# restored (except of kO and v0)
# reg. AT points to the reg save array

Iw k0,CO_SR*4(AT) # fetch status reg. contents

w vO,R_VO0*4(AT) # restore reg. vO

mtcO k0,C0_SR # restore the status reg. contents

w k0,R_EPC*4(AT) # Get the return address

w AT,R_AT*4(AT) # restore AT in load delay

i ko # return from int. via jump reg.

rfe # the rfe instr. is executed in the
# branch delay slot

.set reorder
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Figure 5.16. Returning from Exception
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SPECIAL TECHNIQUES FOR INTERRUPT HANDLING

There are a number of techniques which take advantage of the R3051
architecture to minimize exception latency and maximize throughput in
interrupt driven systems. This section discusses a number of those techniques.

Interrupt Masking

Only the six external and two software interrupts are maskable exceptions.
The mask for these interrupts are in the status register.

To enable a given external interrupt, the corresponding bit in the status
register must be set. The IEc bit in the status register must also be set. It
follows that by setting and clearing these bits within the interrupt handler that
interrupt priorities can be established. The general mechanism for doing this
is performed within the external interrupt-handler portion of the exception
handler.

The interrupt handler preserves the current mask value when the status
register is preserved. The interrupt handler then calculates which (if any)
external interrupts have priority, and sets the interrupt mask bit field of the
status register accordingly. Once this is done, the IEc bit is changed to allow
higher priority interrupts. Note that all interrupts must again be disabled
when the return from exception is processed.

Using BrCond For Fast Response

The R3051 instruction set contains mechanisms to allow external or
internal co-processors to operate as an extension of the main CPU. Some of
these features may also be used in an interrupt-driven system to provide the
highest levels of response.

Specifically, the R3051 has external input port signals, the BrCond(3:0)
signals. These signals are used by external agents to report status back to the
processor. The instruction set contains instructions which allow the external
bits to be tested, and branches to be executed depending on the value of
BrCond.

An interrupt-driven system can use these BrCond signals, and the
corresponding instructions, to implement an input port for time-critical
interrupts. Rather than mapping an input port in memory (which requires
external logic), the BrCond signals can be examined by software to control
interrupt handling,

There are actually two methods of advantageously using this. One method
uses these signals to perform interrupt polling; in this method, the processor
continually examines these signals, waiting for an appropriate value before
handling the interrupt. A sample code sequence is shown in Figure 5.17.

The software in this system is very compact, and easily resides in the on-chip
cache of the processor. Thus, thelatency to the interrupt service routine in this
system is minimized, allowing the fastest interrupt service capabilities.

A second method utilizes external interrupts combined with the BrCond
signals. In this method, both the BrCond signal and one of the external
interrupt lines are asserted when an external event occurs. This configuration
allows the CPU to perform normal tasks while waiting for the external event.




CHAPTER 5

EXCEPTION HANDLING

.set noreorder # prevents the assembler from
# reordering the code below

polling_loop: # branch to yourself until
be2f polling_loop # BrCond(2) is asserted
nop

# Once BrCond(2) is asserted, fall through

# and begin processing the external event
fast_response_cp2:

# code sequence that would do the

# event processing

b polling_loop # return to polling
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Figure 5.17. Polling System Using BrCond

For example, assume that a valve must be closed and then normal
processing continued when BrCond(2) isasserted TRUE. Thevalve is controlled
by aregister that is memory-mapped to address Oxaffe_0020 and writing a one
to thislocation closes the valve. The software in Figure 5.18 accomplishes this,
using BrCond(2) to aid in cause decoding.

The number of cycles for a deterministic system is five cycles between the
time the interrupt occurred and it was serviced. Interrupts were re-enabled in
four additional cycles. Note that none of the processor context needs to be
preserved and restored for this routine.

Nested Interrupts

Note that the processor does not automatically stack processor context
when an exception occurs; thus, to allow nested exceptions it is important that
software perform this stacking,.

Most of the software illustrated above also applies to a nested exception
system. However, rather than using just one register (pointed to by k0O) as a
save area, a stacking area must be implemented and managed by software.
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.set noreorder # prevents the assembler from reordering
# the code sequences below
/* This section of code is placed at the general exception
** vector location 0x8000_0080. When an external interrupt is
** asserted execution begins here.
i
bc2t close_valve # test for emergency condition and
li ko,1 # jump to close valve if TRUE
la kO,gen_exp_hand # otherwise,
j ko # jump to general exc. handler
nop # and process less critical excepts.
/* This is the close valve routine - its sole purpose is to close the
** valve as quickly as possible. The registers 'k0’ and 'k1’ are reserved
** for kernel use and therefore need not be saved when a client or
** user program is interrupted. It should be noted that the value to
** write to the valve close register was put in reg 'k0’ in the
** branch delay slot above - so by the time we get here itis
** ready to output to the close register.
*/
close_valve:
la k1,0xaffe0020 # the address of the close register
swW k0,0(k1) # write the value to the close register
mfcO k0,CO_EPC # get the return address to cont processing
nop
i ko # return to normal processing
rfe # restore previous interrupt mask
# and kernel/user mode bits of the
# status register.
.set reorder
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Figure 5.18. Using BrCond for Fast Interrupt Decoding

Also, since interrupts are automatically disabled once an exception is detected,
the interrupt handling routine must mask the interrupt it is currently
servicing, re-enable other interrupts (once context is preserved) through the
IEc bit.

The use of Interrupt Mask bits of the status register to implement an
interrupt prioritization scheme was discussed earlier. An analogous technique
can be performed by using an external interrupt encoder to allow more
interrupt sources to be presented to the processor.

Software interrupts can also be used as part of the prioritization of
interrupts. If the interrupt service routine desires to service the interrupting
agent, but not completely perform the interrupt service, it can cause the
external agent to negate the interrupt input but leave interrupt service pending
through the use of the SW bits of the Cause register.

Catastrophic Exceptions

There are certain types of exceptions that indicate fundamental problems
with the system. Although there is little the software can do to handle such
events, they are worth discussing. Exceptions such as these are typically
associated with faulty systems, such asin the initial debugging or development
of the system.




CHAPTER 5

EXCEPTION HANDLING

Potential problems can arise because the processor does not automatically
stack context information when an exception is detected. If the processor
context has not been preserved when another exception is recognized, the
value of the status, cause, and EPC registers are lost and thus the original task
can not be resumed.

An example of this occurring is an exception handler performing a memory
reference that results in a bus error (for example, when attempting to preserve
context). The bus error forces execution to the exception vector location,
overwriting the status, cause, and context registers. Proper operation cannot
be resumed.
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HANDLING SPECIFIC EXCEPTIONS

This section documents some specific issues and techniques for handling
particular R3051 exceptions.

Address Error Exception

Cause

This exception occurs when an attempt is made toload, fetch, or store a word
thatis not aligned on a word boundary. Attempting to load or store a half-word
that is not aligned on a half-word boundary will also cause this exception. The
exception also occurs in User mode if a reference is made to a virtual address
whose most significant bit is set (a kernel address). This exception is not
maskable.

Handling

The R3051 branches to the General Exception vector for this exception.
When the exception occurs, the R3051/52 sets the ADEL or ADES code in the
Cause register ExcCode field to indicate whether the address error occurred
during an instruction fetch or a load operation (ADEL) or a store operation
(ADES).

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the branch instruction that preceded the exception-causing instruction and
sets the BD bit of the Cause register.

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the Status register
in the KUo, IEo, KUp, and IEp bits, respectively and clears the KUc and IEc bits.

When this exception occurs, the BadVAddr register contains the virtual
address that was not properly aligned or thatimproperly addressed kernel data
while in User mode. The contents of the VPN field of the Context and EntryHi
registers are undefined.

Servicing

Akernel should hand the executing process a segmentation violation signal.
Such an error is usually fatal although an alignment error might be handled
by simulating the instruction that caused the error.
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Breakpoint Exception

Cause
This exception occurs when the R3051 /52 executes the BREAK instruction.
This exception is not maskable.

Handling

The R3051/52 branches to the General Exception vector for the exception
and sets the BP code in the CAUSE register ExcCode field.

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the Status register
in the KUo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

The EPCregister points at the BREAK instruction that caused the exception,
unless the instruction is in a branch delay slot: in that case, the EPC register
points at the BRANCH instruction that preceded the BREAK instruction and
sets the BD bit of the Cause register.

Service

The breakpoint exception is typically handled by a dedicated system routine.
Unused bits of the BREAK instruction (bits 25..6) can be used pass additional
information. To examine these bits, load the contents of the instruction
pointed at by the EPCregister. NOTE: If the instruction resides in the branch
delay slot, add four to the contents of the EPC register to find the instruction.

Toresume execution, change the EPCregister so that the R3051/52 does not
execute the BREAK instruction again. To do this, add four to the EPCregister
before returning. NOTE: If a BREAK instruction is in the branch delay slot,
the BRANCH instruction must be interpreted in order to resume execution.
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Bus Error Exception

Cause

This exception occurs when the Bus Error input to the CPU is asserted by
external logic during a read operation. For example, events like bus time-outs,
backplane bus parity errors, and invalid physical memory addresses or access
types can signal exception. This exception is not maskable.

This exception is used for synchronously occurring events such as cache
miss refills. The general interrupt mechanism must be used to report a bus
error thatresults from asynchronous events such as a buffered write transaction.

Handling

The R3051/52 branches to the General Exception vector for this exception.
When exception occurs, the R3051/52 sets the IBE or DBE code in the CAUSE
register ExcCode field to indicate whether the error occurred during an
instruction fetch reference (IBE) or during a data load or store reference (DBE).

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the BRANCH instruction that preceded the exception-causing instruction
and sets the BD bit of the cause register.

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the Status register
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc
bits.

Servicing
The physical address where the fault occurred can be computed from the
information in the CPO registers:

e If the Cause register's IBE code is set (showing an instruction fetch
reference), the virtual address resides in the EPC register.

 Ifthe Cause register's DBE exception code is set (specifying a load or store
reference), the instruction that caused the exception is at the virtual
address contained in the EPC register (if the BD bit of the cause register
is set, add four to the contents of the EPC register). Interpret the
instruction to get the virtual address of the load or store reference and
then use the TLBProbe (tlbp) instruction and read EntryLo to compute the
physical page number.

A kernel should hand the executing process a bus error when this exception
occurs. Such an error is usually fatal.
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Co-processor Unusable Exception

Cause

This exception occurs due to an attempt to execute a co-processor instruction
when the corresponding co-processor unit has not been marked usable (the
appropriate CU bit in the status register has not been set). For CPO
instructions, this exception occurs when the unit has not been marked usable
and the process is executing in User mode: CPO is always usable from Kernel
mode regardless of the setting of the CPO bit in the status register. This
exception is not maskable.

Handling

The R3051/52 branches to the General Exception vector for this exception.
It sets the CPU code in the CAUSE register ExcCode field. Only one co-
processor can fail at a time.

The contents of the cause register’s CE (Co-processor Error) field show which
of the four coprocessors (3,2,1, or 0) the R3051/52 referenced when the
exception occurred.

The EPC register points at the co-processor instruction that caused the
exception, unless the instruction is in a branch delay slot: in that case, the EPC
register points at the branch instruction that preceded the co-processor
instruction and sets the BD bit of the Cause register.

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc
bits.

Servicing

To identify the co-processor unit that was referenced, examine the contents
of the Cause register’s CE field. If the process is entitled to access, mark the
co-processor usable and restore the corresponding user state to the co-
processor.

If the process is entitled to access to the co-processor, but the co-processor
is known not to exist or to have failed, the system could interpret the co-
processor instruction. If the BD bit is set in the Cause register, the BRANCH
instruction must be interpreted; then, the co-processor instruction could be
emulated with the EPC register advanced past the co-processor instruction.

If the process is not entitled to access to the co-processor, the process
executing at the time should be handed an illegal instruction/privileged
instruction fault signal. Such an error is usually fatal.
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Interrupt Exception

Cause

This exception occurs when one of eight interrupt conditions (software
generates two, hardware generates six) occurs.

Each of the eight external interrupts can be individually masked by clearing
the corresponding bit in the IntMask field of the status register. All eight of the
interrupts can be masked at once by clearing the IEc bit in the status register.

Handling

The R3051/52 branches to the General Exception vector for this exception.
The R3051/52 sets the INT code in the Cause register's ExcCode field.

The IP field in the Cause register show which of six external interrupts are
pending, and the SW field in the cause register shows which two software
interrupts are pending. More than one interrupt can be pending at a time.

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc
bits.

Servicing

If software generates the interrupt, clear the interrupt condition by setting
the corresponding Cause register bit (SW1:0) to zero.

If external hardware generated the interrupt, clear the interrupt condition
by alleviating the conditions that assert the interrupt signal.
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Overflow Exception

Cause
This exception occurs when an ADD ADDI, SUB, or SUBI instruction results
in two’s complement overflow. This exception is not maskable.

Handling

The R3051/52 branches to the General Exception vector for this exception.
The R3051/52 sets the OV code in the CAUSE register.

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the Branch instruction that preceded the exception-causing instruction and
sets the BD bit of the CAUSE register.

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc
bits.

Servicing

A kernel should hand the executing process a floating point exception or
integer overflow error when this exception occurs. Such an error is usually
fatal.
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Reserved Instruction Exception

Cause

This exception occurs when the R3051/52 executes an instruction whose
major opcode (bits 31..26) is undefined or a Special instruction whose minor
opcode (bits 5..0) is undefined.

This exception provides a way to interpret instructions that might be added
to or removed from the R3051/52 processor architecture.

Handling

The R3051/52 branches to the General Exception vector for this exception.
It sets the RI code of the Cause register’'s ExcCode field.

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the Branch instruction that preceded the reserved instruction and sets the
BD bit of the CAUSE register.

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc
bits.

Servicing

If instruction interpretation is not implemented, the kernel should hand the
executing process an illegal instruction/reserved operand fault signal. Such
an error is usually fatal.

An operating system can interpret the undefined instruction and pass
control to a routine that implements the instruction in software. If the
undefined instruction is in the branch delay slot, the routine that implements
the instruction is responsible for simulating the branch instruction after the
undefined instruction has been “executed”. Simulation of the branch instruction
includes determining if the conditions of the branch were met and transferring
control to the branch target address (if required) or to the instruction following
the delay slot if the branch is not taken. If the branch is not taken, the next
instruction’s address is [EPC] + 8. If the branch is taken, the branch target
address is calculated as [EPC] + 4 + (Branch Offset * 4).

Note that the target address is relative to the address of the instruction in
the delay slot, not the address of the branch instruction. Refer to the
description of branch instruction for details on how branch target addresses
are calculated.
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Reset Exception

Cause
This exception occurs when the R3051/52 RESET signal is asserted and
then de-asserted.

Handling

The R3051/52 provides a special exception vector for this exception. The
Reset vector resides in the R3051/52’s unmapped and un-cached address
space; Therefore the hardware need not initialize the Translation Lookaside
Buffer (TLB) or the cache to handle this exception. The processor can fetch and
execute instructions while the caches and virtual memory are in an undefined
state.

The contents of all registers in the R3051/52 are undefined when this
exception occurs except for the following:

¢ The SWc¢, KUc, and IEc bits of the Status register are cleared to zero.
The BEV bit of the Status register is set to one.
The Random register is initialized to 63.
For extended versions of the architecture, the TS bit is cleared to zero.
For base versions of the architecture, the TS bit is frozen at one.

Servicing

The reset exception is serviced by initializing all processor registers, co-
processorregisters, the caches, and the memory system. Typically, diagnostics
would then be executed and the operating system bootstrapped. The reset
exception vector is selected to appear in the un-cached, unmapped memory
space of the machine so that instructions can be fetched and executed while
the cache and virtual memory system are still in an undefined state.




EXCEPTION HANDLING

CHAPTER 5

System Call Exception

Cause
This exception occurs when the R3051 /52 executes a SYSCALL instruction.

Handling

The R3051/52 branches to the General Exception vector for this exception
and sets the SYS code in the CAUSE register’s ExcCode field.

The EPC register points at the SYSCALL instruction that caused the
exception, unless the SYSCALL instruction is in a branch delay slot: in that
case, the EPC register points at the branch instruction that preceded the
SYSCALL instruction and the BD bit of the CAUSETregister is set.

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc
bits.

Servicing

The operating system transfers control to the applicable system routine. To
resume execution, alter the EPC register so that the SYSCALL instruction does
not execute again. To do this, add four to the EPC register before returning.
NOTE: If a SYSCALL instruction is in a branch delay slot, the branch
instruction must be interpreted in order to resume execution.
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TLB Miss Exceptions
There are three different types of TLB misses that can occur:

¢ Iftheinput Virtual Page Number (VPN) does not match the VPN of any TLB
entry, or if the Process Identifier (PID) in EntryHi does not match the TLB
entry’s PID (and the Global bit is not set), a miss occurs. For KUSEG
references, a UTLB Miss exception is taken. For KSEG2 references, a TLB
Miss occurs.

¢ If everything matches, but the valid bit of the matching TLB entry is not
set, a TLB Miss occurs.

o Ifthe dirty bit in a matching TLB entry is not set and the access is a write,
a TLB MOD exception occurs.

Figure 5.19 (a simplified version of TLB address translation figure used in
Chapter 4) illustrates how the three different kinds of TLB miss exceptions are
generated. Each of the exceptionsis described in detail in the pages that follow.

The TLB exceptions obviously only occur in extended architecture versions
of the processor.

Input Virtual Address

TLB TLB UTLB
Mod Miss Miss
Exception Exception

Output Physical Address
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Figure 5.19. TLB Miss Exceptions
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TLB Miss Exception

Cause

This exception occurs when a Kernel mode virtual address reference to
memory is not mapped, when a User mode virtual address reference to memory
matchesaninvalid TLB entry, or when a Kernel mode reference to user memory
space matches an invalid TLB entry.

Handling

The R3051/52 branches to the General Exception vector for this exception.
When the exception occurs, the R3051/52 sets the TLBL or TLBS code in the
CAUSE register’s ExcCode field to indicate whether the miss was due to an
instruction fetch or a load operation (TLBL) or a store operation (TLBS).

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the Branch instruction that preceded the exception-causing instruction and
sets the BD bit of the Cause register. The R3051/52 saves the KUp, IEp, KUc,
and IEc bits of the status register in the KUo, IEo, KUp, and IEp bits,
respectively, and clears the KUc and IEc bits.

When this exception occurs, the BadVAddr, Context, and EntryHi register
contain the virtual address that failed address translation. The PID field of
EntryHi remains unchanged by this exception. The Random register normally
specifies the pseudo-random location where the R3051 /52 can put areplacement
TLB entry.

Servicing

The failing virtual address or virtual page number identifies the corresponding
PTE. The operating system should load EntryLo with the appropriate PTE that
contains the physical page frame and access control bits and also write the
contents of EntryLo and EntryHi into the TLB.

Servicing Multiple (nested) TLB Misses

Within a UTLB Miss handler, the virtual address that specifies the PTE
contains physical address and access control information that might not be
mapped in the TLB. Then, a TLB Miss exception occurs. This caseisrecognized
by noting that the EPC register points within the UTLB Miss handler. The
operating system might interpret the event as an address error (when the
virtual address falls outside the valid region for the process) or as a TLB Miss
on the page mapping table.

This second TLB miss obscures the contents of the BadVAddr, Context, and
EntryHi registers as they were within the UTLB Miss handler. As a result, the
exact virtual address whose translation caused the first fault is not known
unless the UTLB Miss handler specifically saved this address. You can only
observe the failing PTE virtual address. The BadVAddr register now contains
the original contents of the Context register within the UTLB Miss handler,
which is the PTE for the original faulting address.

If the operating system interprets the exception as a TLB Miss on the page
table, it constructs a TLB entry to map the page table and writes the entry into
the TLB. Then, the operating system can determine the original faulting virtual
page number, but not the complete address. The operating system uses this
information to fetch the PTE that contains the physical address and access
control information. It also writes this information into the TLB.

The UTLB Miss handler must save the EPC in a way that allows the second
miss to find it. The EPC register information that the UTLB Miss handler saved
gives the correct address at which to resume execution. The "old" KUo and IEo
bits of the status register contain the correct mode after the R3051/52 services
a double miss. NOTE: You neither need nor want to return to the UTLB Miss
handler at this point.
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TLB Modified Exception

Cause

This exception occurs when the virtual address target of a store operation
matches a TLB entry is marked valid, but not marked dirty. This exception is
not maskable.

Handling

The R3051/52 branches to the General Exception vector for this exception
and sets the MOD exception code in the CAUSE register’'s ExcCode field.

When this exception occurs, the BadVAddr, Context, and EntryHi registers
contain the virtual address that failed address translation. EntryHi also
contains the PID from which the translation fault occurred.

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the Branch instruction that preceded the exception-causing instruction and
sets the BD bit of the Cause register.

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc
bits.

Servicing

A kernel should use the failing virtual address or virtual page number to
identify the corresponding access control information. The identified page
might or might not permit write accesses. (Typically, software maintains the
“real” write protection in other memory areas.) If the page does not permit write
access, a “Write Protection Violation” occurs.

If the page does permit write accesses, the kernel should mark the page
frame as dirty in its own data structures. Use the TLBProbe (tlbp) instruction
toput theindex of the TLB entry that must be altered in the Indexregister. Then
load the EntryLo register with a word that contains the physical page frame and
access control bits (with the data bit D set). Finally, use the TLBWrite Indexed
(tIbwi) instruction to write EntryHi and EntryLo into the TLB.
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UTLB Miss Exception

Cause

This exception occurs from User or Kernel mode references to user memory
space when no TLB entry matches both the VPN and the PID. Invalid entries
cause a TLB Miss rather than a UTLB Miss. This exception is not maskable.

Handling

The R3051 /52 uses the special UTLB Miss interrupt vector for this exception.
When the exception occurs, the R3051/52 sets the TLBL or TLBS code in the
Cause register ExcCode field to indicate whether the miss was due to an
instruction fetch or a load operation (TLBL) or a store operation (TLBS).

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the Branch instruction that preceded the exception-causing instruction and
sets the BD bit of the Cause register.

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc
bits.

The virtual address that failed translation is held in the BadVAddr, Context,
and EntryHi registers. The EntryHi register also contains the PID (Process
Identifier) from which the translation fault occurred. The Random register
contains a valid pseudo-random location in which to put a replacement TLB

entry.

Servicing

The contents of the Context register can be used as the virtual address of the
memory word that contains the physical page frame and the access control bits
(a Page Table Entry, or PTE) for the failing reference. An operating system
should put the memory word in EntryLo and write the contents of EntryHi and
EntryLointo the TLB by using a TLB Write Random (tIlbwr) assembly instruction.

The PTE virtual address might be on a page that is not resident in the TLB.
Therefore, before an operating system can reference the PTE virtual address,
it should save the EPC register’'s contents in a general register reserved for
kernel use or in a physical memory location. If the reference is not mapped in
the TLB, a TLB Miss exception would occur within the UTLB Miss handler.

A short routine (nine instructions, one load) to service a UTLB miss is shown

mfcO ko, CO_CTX # get address of PTE

mfcO k1, CO_EPC # get address of failed reference

Iw ko, 0(k0) # fetch PTE

nop # load delay slot

mtcO ko, Co_TLBLO # write EntryLo (EntryHi set by chip hardware)
nop # effective delay slot due to CPO move

c0 CO_WriteR # tlbwr; write random TLB entry

i k1 # return to EPC

rfe # restore context from exception

4000 drw 44

Figure 5.20. User TLB Refill Code
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The IDTR3051 utilizes a simple, flexible bus interface to its external memory
and I/Oresources. The interface uses a single, multiplexed 32-bit address and
data bus and a simple set of control signals to manage read and write
operations. Complementing the basicread and write interface isa DMA Arbiter
interface which allows an external agent to gain control of the memory interface
to transfer data.

The R3051 performs the following types of operations on its interface:

¢ Read Operations: The processor executes read operations as the result
of either a cache miss or an un-cacheable reference. As with the write
interface, the read interface has been designed to accommodate a wide
variety of memory system strategies. There are two types of reads
performed by the processor:

Burst (or quad word) reads occur when the processor requests a contiguous
block of four words from memory. Bursts occur in response to instruction
cache misses, and may occur in response to a data cache miss. The
processor incorporates an on-chip 4-deep read buffer which may be used
to “queue up” the read response before passing it through to the high-
bandwidth cache and execution core. Read buffering is appropriate in
systems which require wait states between adjacent words of a block read.
On the otherhand, systems which use high-bandwidth memory techniques
(such as page mode, static column, nibble mode, or memory interleaving)
can effectively bypass the read buffer by providing words of the block at
the processor clock rate. Note that the choice of burst vs. read buffering
isindependent of the initial latency of the memory; that is, burst mode can
be used even if multiple wait states are required to access the first word
of the block.

Single word reads are used for un-cacheable references (such as I/O or
boot code) and may be used in response to a data cache miss. The
processor is capable of retiring a single word read in as few as two clock
cycles.

The read interface of the R3051 is described in detail in Chapter 7.

¢ Write Operations: The R3051 utilizes an on-chip write buffer to isolate
the execution core from the speed of extermal memory during write
operations. The write interface of the R3051 is designed to allow a variety
of write strategies, from fast 2-cycle write operations through multiple
wait-state writes.

The R3051 supports the use of fast page mode writes by providing an
outputindicator, WrNear, to indicate that the current write may be retired
using a page mode access. This facilitates the rapid “flushing” of the on-
chip write buffer to main memory, since the majority of processor writes
will occur within a localized area of memory.

The write interface is described in detail in Chapter 8.
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¢ DMA Operations: The R3051 includes a DMA arbiter which allows an
external agent to gain full control of the processor read and write interface.
DMA is useful in systems which need to move significant amounts of data
within memory (e.g. BitBIT operations) or move data between memory and
1/0 channels.

The R3051 utilizes a very simple handshake to transfer control of its
interface bus. This handshake is described in detail in chapter 9.

MULTIPLE OPERATIONS

It is possible for the R3051 to have multiple interface activities pending.
Specifically, there may be data in the write buffer, a read request (e.g. due to
a cache miss), a DMA mastership request, and an ongoing transaction all
occurring simultaneously.

In establishing the order in which the requests are processed, the R3051 is
sensitive to possible conflicts and data coherency issues. For example, if the
on-chip write buffer contains data which has not yet been written to memory,
and the processor issues a read request to the target address of one of the write
buffer entries, then the processor strategy must insure that the read request
is satisfied by the new, current value of the data.

Note that there are two levels of prioritization: that performed by the CPU
engine internal to the R3051, and that performed by the bus interface unit. The
internal execution engine can be viewed as making requests to the bus
interface unit. In the case of multiple requestsin the same clock cycle, the CPU
core will:

1: Perform the data request first. That is, if both the data cache and
instruction cache miss in the same clock cycle, the processor core will
request a read to satisfy the data cache first. Similarly, a write buffer full
stall will be processed before an instruction cache miss.

2: Perform a read due to an instruction cache miss.

This prioritization is important in maintaining the precise exception model
of the MIPS architecture. Since data references are the result of instructions
which entered the pipeline earlier, they must be processed (and any exceptions
serviced) before subsequent instructions (and their exceptions) are serviced.

Once the processor core internally decides which type of request to make to
the bus interface unit, it then presents that request to the bus interface unit.

Thus, in the R3051 Bus Interface Unit, multiple operations are serviced in
the following order:

Ongoing transactions are completed without interruption.
DMA requests are serviced.

Instruction cache misses are processed.

Pending writes are processed.

Data cache misses or un-cacheable reads are processed.

aRwde

This service order has been designed to achieve maximum performance,
minimize complexity, and solve the data coherency problem possible in write
buffer systems.

Note that this order assumes that the write buffer does not contain
instructions which the processor may wish to execute. The processor does not
write directly into the instruction cache: store instructions generate data
writes which may change only the data cache. The only way in which an
instruction reference may reside in the write buffer is in the case of self
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modifying code, generated with the caches swapped. However, in order to un-
swap the caches, an un-cacheable instruction which modifies CPO must be
executed; the fetch of this instruction would cause the write buffer to be flushed
to memory. Thus, this ordering enforces strong ordering of operations in
hardware, even for self modifying code. Of course, software could perform an
un-cacheable reference to flush the write buffer at any time, thus achieving
memory synchronization with software.

EXECUTION ENGINE FUNDAMENTALS

This section describes the fundamentals of the processor read interface and
itsinteraction with the execution core. These fundamentals will help to explain
the relationship between design trade-offs in the system interface and the
performance achieved in R3051/52 based systems.
Execution Core Cycles

The R3051/52 execution core utilizes many of the same operation
fundamentals as does the R3000A processor. Thus, much of the terminology
used to describe the activity of the R3051/52 is derived from the terminology
used to describe the R3000A. In many instances, the activity of the execution
core is independent of that of the bus interface unit.

Cycles

A cycle is the basic timing reference of the R3051/52 execution core. Cycles
in which forward progress is made (the processor pipeline advances) are called
Run cycles. Cycles in which no forward progress occurs are called stall cycles.
Stall cycles are used for resolving exigencies such as cache misses, write stalls,
and other types of events. All cycles can be classified as either run or stall
cycles.

Run Cycles

Run cycles are characterized by the transfer of an instruction into the
processor core, and the optional transfer of data into or out of the execution
core. Thus, each run cycle can be thought of as having an instruction and data,
or ID, pair.

There are actually two types of run cycles: cache run cycles, and refill run
cycles. Cache run cycles (typically referred to as just run cycles) occur while
the execution core is executing out of its on chip cache; these are the principal
execution mechanism.

Refill run cycles, referred to as streaming cycles, occur when the execution
core is executing instructions as they are brought into the on-chip cache. For
the R3051/52, streaming cycles are defined as cycles in which data is brought
out of the on-chipread buffer into the execution core (rather than defining them
as cyclesin which data is brought from the memory interface to the read buffer).
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Stall Cycles

There are three types of stall cycles:

Wait Stall Cycles. These are commonly referred to simply as stall cycles.
During wait stall cycles, the execution core maintains a state consistent
with resolving a stall causing event. No cache activity will occur during
wait stalls. :

Refill Stall Cycles. These occur only during memory reads, and are used
to transfer data from the on-chip read buffer into the caches.

Fixup Stall Cycles. Fixup cycles occur during the final cycle of a stall; that
is, one cycle before entering a run cycle or entering another stall. During
the final fixup cycle (the one which occurs before finally re-entering run
operation), the ID pair which should have been processed during the last
run cycle is handled by the processor. The fixup cycle is used to restart
the processor and co-processor pipelines, and in general to fixup conditions
which caused the stall.

The basic causes of stalls include:

Read Busy Stalls: If the processor is utilizing its read interface, either to
process a cache miss or an un-cacheable reference, then it will be stalled
until the read data is brought back to the execution core.

Write Busy Stalls: If the processor attempts to perform a store operation
while the on-chip write buffer is already full, then the processor will stall
until a write transaction is begun on the interface to free up room in the
write buffer for the new address and data.

Multiply/Divide Busy Stalls: If software attempts to read the result
registers of the integer multiply/divide unit (the HI and LO registers) while
a multiply or divide operation is underway, the processor execution core
will stall until the results are available.

Micro-TLBFill Stalls: These stalls can occur when aninstruction translation
misses in the instruction TLB cache (the micro-TLB, which is a two-entry
cache of the main TLB used to translate instruction references). When
such an event occurs, the execution core will stall for one cycle, in order
torefill the micro-TLB from the main TLB. Since thisis a single-cycle stall,
it is of necessity a fixup cycle.

Multiple Stalls

Multiple stalls are possible whenever more than one stall initiating event
occurs within a single run cycle. An example of such activity is when a single
cycle results in both an instruction cache miss and a data cache miss.

The most important characteristic of any multiple stall cycle is the validity
of the ID pair processed in the final fixup cycle. The R3051/52 execution core
keeps track of nested stalls to insure that orderly operation is resumed once
all of the stall causing events are processed.

For the general case of multiple stalls, the service order is:

1: Micro-TLB Miss and Partial Word Store

2: Data Cache Miss or Write Busy Stall

3: Instruction Cache Miss

4: Multiply/Divide Unit Busy
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PIN DESCRIPTION

This section describes the signals used in the above interfaces. More detail
on the actual use of these pins is found in other chapters. Note that many of
the signals have multiple definitions which are de-multiplexed either by the
ALE signal or the Rd and Wr control signals. Note that signals indicated with
an overbar are active low.

System Bus Interface Signals

These signals are used by the bus interface to perform read and write
operations.

Address and Data Path
A/D(31:0) I/0

Address/Data: A 32-bit, time multiplexed bus which indicates the desired
address for a bus transaction in one cycle, and which is used to transmit data
between this device and external memory resources on other cycles.

Bus transactions on this bus are logically separated into two phases: during
the first phase, information about the transfer is presented to the memory
system to be captured using the ALE output. This information consists of:

Address(31:4): The high-order address for the transfer is presented.

BE(3:0): These strobes indicating which bytes of the 32-bit bus
will be involved in the transfer. BE(3) indicates that
AD(31:24) is used; BE(2) indicates that AD(23:16) is
used; BE(1) indicates that AD(15:8) is used; and BE(0O)
indicates that AD(7:0) is used.

During write cycles, the bus contains the data to be stored and is driven from
the internal write buffer. On read cycles, the bus receives the data from the
external resource, in either a single word transaction or in a burst of four words,
and places it into the on-chip read buffer.

Addr(3:2) (o)

Low Address (3:2) A 2-bit bus which indicates which word is currently
expected by the processor. Specifically, this two bit bus presents either the
address bits for the single word to be transferred (writes or single word reads)
or functions as a two bit counter starting at ‘00’ for burst read operations.

Read and Write Control Signals
ALE (o)
Address Latch Enable: Used to indicate that the A/D bus contains valid

address information for the bus transaction. This signal is used by external
logic (transparent latches) to capture the address for the transfer.
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DataEn (o)

Data Input Enable: This signalindicates that the AD bus isno longer being
driven by the processor during read cycles, and thus the external memory
system may enable the drivers of the memory system onto this bus without
having a bus conflict occur. During write cycles, or when no bus transaction
is occurring, then this signal is negated.

Burst/
WrNear (o)

Burst Transfer: Onread transactions, this signal indicates that the current
busread is requesting a block of four contiguous words from memory (a burst
read). This signal is asserted only in read cycles due to cache misses; it is
asserted for all I-Cache miss read cycles, and for D-Cache miss read cycles if
selected at device reset time.

Write Near: On write transactions, this output tells the external memory
system that the businterface unit is performing back-to-back write transactions
to an address within the same 256 entry memory “page” as the prior write
transaction. This signal is useful in memory systems which employ page mode
or static column DRAMs.

Rd (o)

Read: An output which indicates that the current bus transaction is a read.

Wr (0]

Write: An outputwhich indicates that the current bus transaction is a write.
Ack I

Acknowledge: An input which indicates to the device that the memory
system has sufficiently processed the bus transaction, and that the processor
may either advance to the next write buffer entry or release the execution core
to process the read data.

RACEn I

Read Buffer Clock Enable: Aninput which indicates to the device that the
memory system has placed valid data on the AD bus, and that the processor
may move the data into the on-chip Read Buffer.

BusError I

Bus Error: Input to the bus interface unit to terminate a bus transaction
due to an external bus error. This signalis only sampled during read and write
operations. If the bus transaction is a read operation, then the CPU will also
take a bus error exception.
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Status Information

Diag(1) (o)

Diagnostic Pin 1. This output indicates whether the current bus read
transaction is due to an on-chip cache miss, and also presents part of the miss
address. The value output on this pin is time multiplexed:

Cached: During the phase in which the A/D bus presents
address information, this pin is an active high output
which indicates whether the current read is a result of
a cache miss. The value of this pin at this time in other
than read cycles is undefined.

Miss Address (3): During the remainder of the read operation, this output
presents address bit (3) of the address the processor was
attempting to reference when the cache miss occurred.
Regardless of whether a cache miss is being processed,
this pin reports the transfer address during this time.

Diag(0) o

Diagnostic Pin 0. This output distinguishes cache misses due to instruction
references from those due to data references, and presents the remaining bit
of the miss address. The value output on this pin is also time multiplexed:

I/D: If the “Cached” Pin indicates a cache miss, then a high
on this pin at this time indicates an instruction reference,
and a low indicates a data reference. If the read is not
due to a cache miss but rather an un-cached reference
(“Cached” is negated), then this pin is undefined during
this phase.

Miss Address (2): During the remainder of the read operation, this output
presents address bit (2) of the address the processor was
attempting to reference when the cache miss occurred.
Regardless of whether a cache miss is being processed,
this pin reports the transfer address during this time.

DMA Arbiter Interface

These signals are involved when the processor exchanges bus mastership
with an external agent.

BusReq I

DMA Arbiter Bus Request: An input to the device which requests that the
processor tri-state its bus interface signals so that they may be driven by an
external master. The negation of this input releases the bus back to the
R3051/52.

BusGnt o

DMA Arbiter Bus Grant. An outputfrom the R3051/52 used toacknowledge
that a BusReq has been granted, and that the bus is relinquished to the
external master.
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Interrupt Interface

Chapter 5 discusses the exception model of the R3051.

BrCond(1:0)
SBrCond(3:2) I

Branch Condition Port: These external signals are available as an input
port to the processor, which can use the Branch on Co-Processor Condition
instructions to test their polarity. The SBrCond bus is synchronized by the
R3051/52, and thus may be driven by an asynchronous source; the BrCond
signals are directly tied to the execution core, and thus must be generated
synchronously.

SInt(2:0)
Int(5:3) I

Processor Interrupt: During operation, these signals are the same as the
Int(5:0) signals of the R3000. During processor reset, these signals perform
mode initialization of the processor. The Synchronized interrupt inputs are
internally synchronized by the R3051/52, and thus may be generated by an
asynchronous interrupt agent; the direct interrupts must be externally
synchronized by the interrupt agent.

Reset and Clocking
CIkIn I

Master clock Input: This is a double-frequency input used to control the
timing of the processor

SysCIk o

System Reference Clock: An output from the processor which reflects the
clock used to perform bus interface functions. This clock is used to control
state transitions in the read buffer, write buffer, memory controller, and bus
interface unit. It should be used as a timing reference by the external memory
system. There is no specific guaranteed AC timing relationship between the
input clock and SysClk.

Reset I
Master Processor Reset: This signal initializes the processor. Optional
features of the processor are established during the last cycle of reset using the
interrupt inputs.
Miscellaneous
Rsvd(4:0) I/0

Reserved: These five signal pins are reserved for testing and for future
revisions of this device. Users must not connect these pins.
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INTRODUCTION

The R3051 read protocol has been designed to interface to a wide variety of
memory and I/O devices. Particular care has been taken in the definition of
the control signals available to the system designer. These signals allow the
system designer to implement a memory interface appropriate to the cost and
performance goals of the end application.

This chapter includes both an overview of the read interface as well as
provides detailed timing diagrams of the read interface.

TYPES OF READ TRANSACTIONS

The majority of the execution engine read requests are never seen at the
memory interface, but rather are satisfied by the internal cache resources of
the processor. Only in the cases of un-cacheable references or cache misses
do read transactions occur on the bus.

In general, there are only two types of read transactions: quad word reads
and single word reads. Note that partial word reads of less than 32-bits can
be thought of as a simple subset of the single word read, with only some of the
byte enable strobes asserted.

Quad word reads occur only in response to cache misses. All instruction
cache misses are processed as quad word reads; data cache misses may be
processed as quad word reads or single word reads, depending on the mode
selection made during reset initialization of the device.

In processing reads, there are two parameters of interest. The first
parameter is the initial latency to the first word of the read. This latency is
influenced by the overall system architecture as well as the type of memory
system being addressed: time required to perform address decoding, and
perform bus arbitration, memory pre-charge requirements, and memory
control requirements, as well as memory access time. The initial latency is the
only parameter of interest in single word reads.

The second parameter of interest (only in quad word refills) is the repeat rate
of data; that is, time required for subsequent words to be processed back to the
processor. Factors which influence the repeat rate include the memory system
architecture, the types and speeds of devices used, and the sophistication of
the memory controller: memory interleaving, the use of page or static column
mode, and faster devices all serve to increase the repeat rate (minimize the
amount of time between adjacent words).

The R3051 has been designed to accommodate a wide variety of memory
system designs, including no wait state operations (first word available in two
cycles) and true burst operation (adjacent words every clock cycle), through
simpler, slower systems incorporating many bus wait states to the first word
and multiple clock cycles between adjacent words (this is accomplished by use
of the on-chip read buffer).




CHAPTER 7

READ INTERFACE

READ INTERFACE SIGNALS

Theread interface uses the signalslisted below. Signalnames indicated with
an overbar are active low.

Rd

o

This output indicates that a read operation is occurring.

A/D (31:0) I/O

ALE

During read operations, this bus is used to transmit the read target
address to the memory system, and is used by the memory system to
return the required data back to the processor. Its function is de-
multiplexed using other control signals.

During the addressing portion of the read transaction, this bus contains
the following:

Address(31:4) The upper 28 bits of the read address are presented
on A/D (31:4).

BE(3:0) The byte strobes for theread transaction are presented
on A/D(3:0).

o
This output signal is typically connected directly to the latch enable of

transparent latches. Latches are typically used to de-multiplex the
address and Byte Enable information from the A/D bus.

Addr(3:2) o

The remaining bits of the transfer address are presented directly on these
outputs. In the case of quad word reads, these pins function as a two bit
counter starting at ‘00’, and are used to perform the quad word transfer.
In the case of single datum reads, these pins contain Address (3:2) of the
transfer address.

DataEn (o]

This output indicates that the A/D bus is no longer being driven by the
processor, and thus the output drivers of the memory system may be
enabled.

Special logic on the R3051/52 guarantees the following:

The A/D busis driven to guarantee hold time from the negation of ALE,
The R3051/52 A/D bus output drivers will be disabled before the
assertion of DataEn.

Thus, the system designer is assured that ALE can be used to directly
control the latch enable of a transparent latch. Similarly, DataEn can be
used to directly control the output enable of memory system drivers.

Burst (0]

This output distinguishes between quad word and single datum reads.
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RACEn I

Read Buffer Clock Enable is used by the external memory system to cause
the processor to capture the contents of the A/D bus. In the case of quad
word reads, this causes the contents of the A/D bus to be strobed into the
on-chip read buffer; in the case of single datum reads, this causes the
processor to capture the read data and may also terminate the read
operation.

Ack I

Acknowledge is used by the memory system to indicate that it has
sufficiently processed theread transaction, and that the internal execution
core may begin processing the read data. Thus, Ack can be used by the
external memory system to cause the execution core to begin processing
the read data simultaneously with the memory system bringing in
additional words of the burst refill. The timing of the assertion of Ack by
the memory system must be constructed to insure that words not yet
retrieved from the memory will be brought in before they are required by
the execution core.

When the memory system is able to supply words at the rate of one per
clock cycle (after the initial latency), Ack can be asserted simultaneous
with the initial RACEn to achieve the highest levels of performance.

Other systems, which utilize simpler memory system strategies, may
ignore the use of Ack in read transactions. The processor will recognize
the implicit termination of a read operation by the assertion of the
appropriate number (one or four) of RACEn. While this approach is simpler
to design, a loss of performance will result.

BusError I
This input can be used to terminate a read operation. It will also cause
the processor to take a BusError exception. Read transactions terminated
by BusError do not require the assertion of Ack or RACEn.

Diag(1) o

During the address phase of the read transaction, this output indicates
whether the read is a result of a cache miss or an un-cacheable reference.

During the remainder of the transfer, this output indicates Address(3) of
the actual address reference which missed in the cache.

This pin is useful in the initial debug of R3051 based systems.
Diag(0) (0]

During the address phase of the read transaction, this output indicates
whether the read is a result of an instruction or data reference.

During the remainder of the transfer, this output indicates Address(2) of
the actual address reference which missed in the cache.

This pin is useful in the initial debug of R3051 based systems.
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READ INTERFACE TIMING OVERVIEW

The read interface is designed to allow a variety of memory strategies. An
overview of how data is transmitted from memory and I/O devices to the
processor is discussed below. Note that multiplexing the address and data bus
does not slow down read transactions: the address is on the A/D bus for only
one-half clock cycle, so the data drivers can be enabled quickly; memory and
I/0 devices initiate their transfers based on addressing and chip enable, not
on the availability of the bus. Thus, memory does not need to “wait” for the bus,
and no performance penalty occurs.

Initiation of Read Request

A read transaction occurs when the processor internally performs a run
cycle which is not satisfied by the internal caches. Immediately after the run
cycle, the processor enters a stall cycle and asserts the internal control signal
MemRd. This signals to the internal bus interface unit arbiter that a read
transaction is pending.

Assuming that the read transaction can be immediately processed (that is,
there are no ongoing bus operations, and no higher priority operations
pending), the processor will initiate a bus read transaction on rising edge of
SysClk which occurs during phase 2 of the processor stall cycle. Higher priority
operations would have the effect of delaying the start of the read by inserting
additional processor stall cycles.

Stall
(Arbitration) Stall

PhiClk /—\__/_\__/_\_

SysCIk \ / \ /_
emRd \
Rd
Burst
ALE \___
A/D(31:0) >< Addr —
DataEn \___
Diag(1:0) ) < Control Miss Addr
aress] B | s

Figure 7.1. CPU Latency to Start of Read
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Figure 7.1 illustrates the initiation of a read transaction, based on the
internal assertion of the MemRd control signal. This figure is useful in
determining the overall latency of cache misses on processor operation.

Memory Addressing

Aread transaction begins when the processor asserts its Rd control output,
and also drives the address and other control information onto the A/D and
memory interface bus. Figure 7.2 illustrates the start of a processor read
transaction, including the addressing of memory and the bus turn around.

The addressing occurs in a half-cycle of the SysClk output. At therising edge
of SysClIk, the processor will drive the read target address onto the A/D bus.
At this time, ALE will also be asserted, to allow an external transparent latch
to capture the address. Depending on the system design, address decoding
could occur in parallel with address de-multiplexing (that is, the decoder could
start on the assertion of ALE, and the output of the decoder captured by ALE),
or could occur on the output side of the transparent latches. During thisphase,
DataEn will be held high indicating that memory drivers should not be enabled
onto the A/D bus.

Concurrent with driving addresses on the A/D bus, the processor will
indicate whether the read transaction is a quad word read or single word read,
by driving Burst to the appropriate polarity (low for a quad word read). Ifa quad
word read is indicated, the Addr(3:2) lines will drive ‘00’ (the start of the block);
if a single datum is indicated, the Addr(3:2) lines will indicate the word address
for the transfer. The functioning of the counter during quad words is described
later.

Bus Turn Around

Once the A/D bus has presented the address for the transfer, it is “turned
around” by the processor to accept the incoming data. This occurs in the
second phase of the first clock cycle of the read transaction, as illustrated in
Figure 7.2.

The processor turns the bus around by carefully performing the following
sequence of events:

¢ It negates ALE, causing the transparent address latches to capture the
contents of the A/D bus.

¢ It disables its output drivers on the A/D bus, allowing it to be driven by
an external agent. The processor design guarantees that the ALE is
negated prior to tri-stating the A/D bus.

¢ The processor then asserts DataEn, to indicate that the bus may be now
driven by the external memory resource. The processor design insures
that the A/D busisreleased prior to DataEn being asserted. DataEn may
be directly connected to the output enable of external memory, and no bus
conflicts will occur.

Thus, the processor A/D bus is ready to be driven by the end of the second
phase of the read transaction. At this time, it begins to look for the end of the
read cycle.

Bringing Data into the Processor

Regardless of whether the transfer is a quad word read or a single word
transfer, the basic mechanism for transferring data presented on the A/D bus
into the processor is the same.

Although there are two control signals involved in terminatingread operations,
only the RACEn signal is used to cause data to be captured from the bus.
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Figure 7.2. Start of Bus Read Operation

The memory system asserts RACEn to indicate to the processor that it has
(or will have) data on the A/D bus to be sampled. The earliest that RACEn can
be detected by the processor is the rising edge of SysClk after it has turned the
bus around (start of phase 1 of the second clock cycle of the read).

If RACEn is detected as asserted (with adequate setup and hold time to the
rising edge of SysClk), the processor will capture (with proper setup and hold
time) the contents of the A/D bus on the immediately subsequent falling edge
of SysCIk. This captures the data in the internal read buffer for later processing
by the execution core/cache subsystem.

Figure 7.3 illustrates the sampling of data by an R3051/52.
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Figure 7.3. Data Sampling on R3051/52

Terminating the Read
There are actually three methods for the external memory system to
terminate an ongoing read operation:

¢ Itcan supply an Ack (acknowledge) to the processor, to indicate thatit has
sufficiently processed the read request and has or will supply the
requested data in a timely fashion. Note that Ack may be signalled to the
processor “early”, to enableit to begin processing the read data even while
additional data is brought from the A/D bus. This is applicable only in
quad word read operations.

¢ It can supply a BusError to the processor, to indicate that the requested
data transfer has “failed” on the bus, and force the processor to take a bus
error exception. Although the system interface behavior of the processor
when BusError is presented is similar to the behavior when Ack is
presented, no data will actually be written into the on-chip cache. Rather,
the cache line will either remain unchanged, or will be invalidated by the
processor, depending on howmuch of theread has already been processed.

¢ The external memory system can supply the requested data, using RACEn
to enable the processor to capture data from the bus. The processor will
“count” the number of times RACEn is sampled as asserted; once the
processor counts that the memory system has returned the desired
amount of data (one or four words), it will implicitly “acknowledge” the
read at the same time that it samples the last required RACEn. This
approachleads toa simpler memory design at the cost oflower performance.

Throughout this chapter, method one will beillustrated. The other cases can
easily be extrapolated from these diagrams (for example, the system designer
can assume that Ack is asserted simultaneous with the last RACEn of a read
transfer).

There are actually two phases of terminating the read: there is the phase
where the memory system indicates to the processor that it has sufficiently
processed the read request, and the internal read buffer can be released to
begin refilling the internal caches; and there is the phase in which the read
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control signals are negated by the processor bus interface unit. The difference
between these phases is due to block refill: it is possible for the memory system
to “release” the execution core even though additional words of the block are
still required; in that case, the processor will continue to assert the external
read control signals until all four words are brought into the read buffer, while
simultaneously refilling/executing based on the data already brought on
board.

Figure 7.4 shows the timing of the control signals when the read cycle is
being terminated.
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Figure 7.4. Read Cycle Termination

Latency Between Processor Operations

In general, the processor may begin a new bus activity in the phase
immediately after the termination of the read cycle. Although this operation
may logically be either a read, write, or bus grant, there are no cases where a
read operation can be signalled by the internal execution core at this time.

Since a new operation may begin one-half clock cycle after the data is
sampled from the bus, it is important that the external memory system cease
to drive the bus prior to this clock edge. In order to simplify design, the
processor provides the DataEn output, which can be used to control either the
Output Enable of the memory device (presuming its tri-state time is fast
enough), or to control the Output Enable of a buffer or transceiver between the
memory device data bus and the processor A/D bus. This is illustrated in
Figure 7.5.
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Figure 7.5. Use of DataEn as Output Enable Control

Processor Internal Activity

In general, the processor will execute stall cycles until Ack is detected. It will
then begin the process of refilling the internal caches from the read buffer.

The system designer should consider the difference between the time when
the memory interface has completed the read, and when the processor core has
completed the read. The bus interface may have successfully returned all of
the required data, but the processor core may still require additional clock
cycles to bring the data out of the read buffer and into the caches. Figure 7.6
illustrates the relationship between Ack and the internal activity for a block
read.
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Figure 7.6. Internal Processor States on Burst Read
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This figure illustrates that the processor may perform either a stream, fixup,
or refill cycle in cycles in which data is brought from the read buffer. The
difference between these cycles is defined as:

¢ Refill. Arefill cycleis a clock cycle in which data is brought out of the read
buffer and placed into the internal processor cache. The processor does
not execute on this data.

¢ Fixup. A fixup cycle is a cycle in which the processor transitions into
executing the incoming data. It can be thought of as a “retry” of the cache
cycle which resulted in a miss.

e Stream. A stream cycle is a cycle in which the processor simultaneously
refills the internal cache and executes the instruction brought out of the
read buffer.

When reading the block from the read buffer, the processor will use the
following rules:

For un-cacheable references, the processor will bring the single word out
of the read buffer using a fixup cycle.

For data cache refill, it will execute either one or four refill cycles, followed
by a fixup cycle.

Forinstruction cache refill, it will execute refill cycles starting at word zero
until it encounters the miss address, and then transition to a fixup cycle.
It will then execute stream cycles until either the entire block is processed,
or an event stops execution. If something causes execution to stop, the
processor will process the remainder of the block using simple refill cycles.
For example, Figure 7.7 illustrates the refill/fixup/stream sequence
appropriate for a miss which occurs on the second word of the block (word
address 1).

Although this operation is transparent to the external memory system, it is
important to understand this operation to gauge the impact of design trade-offs
on performance.
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Figure 7.7. Instruction Streaming Example
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READ TIMING DIAGRAMS

This section illustrates a number of timing diagrams applicable to R3051
read transactions. These diagrams reference AC parameters whose values are
contained in the R3051/52 data sheet.

Single Word Reads

Figure 7.8illustrates the case of a single word read which did not require wait
states. Thus, Ack was detected at the rising edge of SysClk which occurred
exactly one clock cycle after the rising edge of SysCIk which asserted Rd. Data
was sampled one phase later, and Rd and DataEn disabled from that falling
edge of SysClk. Thus, the execution core required three stall cycles and a fixup
to process the internal data.
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Figure 7.8. Single Word Read Without Bus Wait Cycles
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Figure 7.9 also illustrates the case of a single word read. However, in this
figure, two bus wait cycles were required before the data was returned. Thus,
two rising edges of SysClk occurred where neither RACEn or Ack were asserted.
On the third rising edge of SysCIk, RACEn was asserted. Ack should also be
asserted at this time; although it is not strictly necessary, asserting Ack will
eliminate one internal CPU stall cycle.
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Figure 7.9. Single Word Read With Bus Wait Cycles
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Figure 7.10. Burst Read With No Wait Cycles

Block Reads

Figure 7.10 illustrates the absolute fastest block read. The first word of the
block is returned in the second cycle of the read; each additional word is
returned in the immediately subsequent clock cycle. Thus, Ack can be returned
simultaneously with the first RACEn, to minimize the number of processor stall
cycles.

Note that although Ack is brought in the first data cycle, a number of clock
cycles are required before the processor negates the Rd control output. Thus,
the system designer is assured that Rd remains active as long as the processor
continues to expect data.

Figure 7.11 (a, b) illustrates a block read in which bus wait cycles are
required before the first word is brought to the processor, but in which
additional words can be brought in at the processor clock rate. Thus, as with
the no wait cycle operation, Ack is returned simultaneously with the first
RACEn. Figure 7.11 (a) illustrates the start of the block read, including initial
wait cycles to the first word; Figure 7.11 (b) illustrates the activity which occurs
as data is brought onto the chip and the read is terminated.
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Figure 7.11 (b). End of Burst Read
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Figure 7.12 (a, b) illustrates a block read in which bus wait cycles are
required before the first word is returned, and in which wait cycles are required
between subsequent words: figure 7.12 (a) illustrates the first two words of the
block being brought on chip; figure 7.12 (b) illustrates the last two words of the
read, including the optimum timing of Ack, and the negation of the read control

signals.
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In this diagram, the memory system returns Ack according to when the
processor will empty the read buffer. In order to determine the optimum time
toreturn Ack, the system designer must look at when the processor would read
the fourth word from the read buffer. Align this cycle with one clock cycle after
the memory system will return the fourth word to the processor. As shown in
figure 5.12(b), the memory system should return Ack five cycles prior to when
the execution core requires the fourth word. The system designer should also
insure that the third, second, etc. words of the read cycle are available to the
read buffer before the execution core removes them to the caches.
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Bus Error Operation

Figure 7.13 is a modified version of Figure 7.9 (single word read with wait
cycles), in which BusError is used to terminate the read cycle. In this diagram,
note that RACEn does not need to be asserted, since the processor will insure
that the contents of the A/D bus do not get written into the cache or executed.
In single word reads, BusError can be asserted anytime up until Ack isasserted.
If BusError and Ack are asserted simultaneously, the BusError will be processed;
if BusError is asserted after Ack is sampled, it will be ignored.

Figure 7.14 shows the impact of BusError on block reads. The assertion of
BusError is allowed up until the assertion of Ack. Once BusError is asserted
(sampled on a rising edge of SysCIk), the read cycle will be terminated
immediately, regardless of how many words have been written into the read
buffer. Note that this means that the external memory system should stop
cycling RdCen at this time, since a late RACEn may be erroneously detected as
part of a subsequent read. Note that if BusError and Ack are asserted
simultaneously, BusError processing will occur. If BusError is asserted after
Ack, the BusError will be ignored.
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Figure 7.13. Single Word Read Terminated by Bus Error
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Figure 7.14. Block Read Terminated by Bus Error
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WRITE INTERFACE CHAPTER 8

INTRODUCTION

The write protocol of the R3051 has been designed to complement the read
interface of the processor. Many of the same signals are used for both reads
and writes, simplifying the design of the memory system control logic.

This chapter includes both an overview of the write interface as well as
provides detailed timing diagrams of the write interface.

IMPORTANCE OF WRITES IN R3051 SYSTEMS
The design goal of the write interface was to achieve two things:

Insure that a relatively slow write cycle does not unduly degrade the
performance of the processor. To this end, a four deep write buffer has
been incorporated on chip. The role of the write buffer is to decouple the
speed of the memory interface from the speed of the execution engine. The
write buffer captures store information (data, address, and transaction
size) from the processor at its clock rate, and later presents it to the
memory interface at the rate it can perform the writes. Four such buffer
entries are incorporated, thus allowing the processor to continue execution
even when performing a quick succession of writes. Only when the write
buffer is filled must the processor stall; simulations have shown that
significantly less than 1% of processor clock cycles are lost to write buffer
full stalls.

Allow the memory system to optimize for fast writes. To this end, anumber
of design decisions were made: the WrNear signal is provided to allow page
mode writes to be used in even simple memory systems; the A/D bus
presents the data to be written in the second phase of the first clock cycle
of a write transaction; and writes can be performed in as few as two clock
cycles.

Although it may be counter-intuitive, a significant percentage of the bus
traffic will in fact be processor writes to memory. This can be demonstrated if
one assumes the following:

Instruction Mix:
ALU Operations 55%
Branch Operations 15%
Load Operations 20%
Store Operations 10%

Cache Performance
Instruction Hit Rate 98%
Data Hit Rate 96%

Under these assumptions, in 100 instructions, the processor would
perform:

2 Reads to process instruction cache misses on instruction fetches
4% x 20 = 0.8 reads to process data cache misses on loads

10 store operations to the write through cache

Total: 2.8 reads and 10 writes

©1992 Integrated Device Technology, Inc.
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Thus, in this example, over 75% of the bus transactions are write operations,
even though only 10 instructions were store operations, vs. 100 instruction
fetches and 20 data fetches.

TYPES OF WRITE TRANSACTIONS

Unlike instruction fetches and data loads, which are usually satisfied by the
on-chip caches and thus are not seen at the bus interface, all write activity is
seen at the bus interface as single write transactions. There is no such thing
as a “burst write”; the processor performs a word or subword write as a single
autonomous bus transaction; however, the WrNear output does allow successive
write transactions to be processed using page mode writes. This is particularly
important when “flushing” the write buffer before performing a data read.

Thus, there really is only one type of write transaction: however, the memory
system may elect to take advantage of the assertion of WrNear during a write
to perform quicker write operations than would otherwise be performed.
Alternately, a high-performance DRAM controller may utilize a different
strategy for performing page mode transactions (read or write) to the DRAM.

In processing writes, there is only one parameter of interest: the latency of
the write. This latency is influenced by the overall system architecture as well
as the type of memory system being addressed: time required to perform
address decoding and bus arbitration, memory pre-charge requirements, and
memory control requirements; as well as memory access time. WrNear may be
used to reduce the latency of successive write operations.

The R3051 has been designed to accommodate a wide variety of memory
system designs, including no wait cycle operations (write completed in two
cycles) through simpler, slower systems incorporating many bus wait cycles.

Partial Word Writes

When the processor issues a store instruction which stores less than a 32-
bit quantity, a partial word store occurs. The R3051 processes partial word
stores using a two clock cycle sequence:

It attempts a cache read to see if the store address is cache resident. If
itis, it will merge the partial word with the word read from the cache, and
write the resulting word back into the cache.

It will use a second clock cycle to allow the write buffer to capture the
partial word data and target address and update the cache if appropriate.
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WRITE INTERFACE SIGNALS
The write interface uses the following signals:

Wr (o)
This output indicates that a write operation is occurring.

A/D (31:0) o
During write operations, this bus is used to transmit the write target
address to the memory system, and is also used to transmit the store data

to the memory system. Its function is de-multiplexed using other control
signals.

During the addressing portion of the write transaction, this bus contains
the following:

Address(31:4) The upper 28 bits of the write address are presented
on A/D (31:4).

BE(3:0) The byte strobes for the write transaction are presented
on A/D(3:0).

During the data portion of the write transaction, the A/D bus contains the
store data on the appropriate data lines, as indicated by the BE strobes
during the addressing phase.

ALE o
This output signal is typically connected directly to the latch enable of
transparent latches. Latches are typically used to de-multiplex the
address and Byte Enable information from the A/D bus.

Addr(3:2) o
The remaining bits of the transfer address are presented directly on these
outputs. During write transactions, these pins contain Address (3:2) of
the transfer address.

DataEn o
This output will remain high throughout the write transaction. It is
typically used by the memory system to enable output drivers; the CPU
will maintain this output as high throughout write transactions, thus
disabling memory system output drivers.

WrNear (o)

This output is driven valid during the addressing phase of the write
transaction. It is asserted if:

1: The store target address of this write operation has the same
Addr(31:10) as the previous write transaction, and

2: No read or DMA transaction has occurred since the last write.

If one or both of these conditions are not met, the WrNear output will not
be asserted during the write transaction.

8-3
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Ack I

Acknowledge is used by the memory system to indicate that it has
sufficiently processed the write transaction, and that the CPU may
terminate the write transaction (and cease driving the write data).

BusError I

This input can also be used to terminate a write operation. BusError
asserted during a write will not cause the processor to take a BusError
exception. If the system designer would like the occurrence of a BusError
to cause a processor exception, he must use it to externally generate an
interrupt to the processor. Write transactions terminated by BusError do
notrequire the assertion of Ack. BusError can be asserted at any time the
processor is looking for Ack to be asserted, up to and including the cycle
in which the memory system does signal Ack.
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WRITE INTERFACE TIMING OVERVIEW
The protocol for transmitting data from the processor to memory and 1/0
devices is discussed below.

Initiating the Write

A write transaction occurs when the processor has placed data into the write
buffer, and the bus interface is either free, or write has the highest priority.
Internally, the processor bus arbiter uses the NotEmpty indicator from the
write buffer to indicate that a write is being requested.

Assuming that the write transaction can be processed (that is, there are no
ongoing bus operations, and no higher priority operations pending), the
processor will initiate a bus write transaction on the next rising edge of SysClk.
Higher priority operations would have the effect of delaying the start of the
write.

Figure 8.1 illustrates the initiation of a write transaction, based on the
internal negation of the WbEmpty control signal. This figure applies when the
processor is performing a write, and the write buffer is otherwise empty. If the
write buffer already had data in it, the buffer would continually request the use
of the bus until it was emptied. The decision would be up to the bus interface
unit arbiter for the priority of the request relative to other pending requests.
Additional stores would be captured by other write buffer entries, until the
write buffer was filled.
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Figure 8.1. Start of Write Operation — BIU Arbitration
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Memory Addressing

Awrite transaction begins when the processor asserts its Wr control output,
and also drives the address and other control information onto the A/D and
memory interface bus. Figure 8.2 illustrates the start of a processor write
transaction, including the addressing of memory and presenting the store data
on the A/D bus.

The addressing occurs in a half-cycle of the SysCIk output. At the rising edge
of SysCIk, the processor will drive the write target address onto the A/D bus.
At this time, ALE will also be asserted, to allow an external transparent latch
to capture the address. Depending on the system design, address decoding
could occur in parallel with address de-multiplexing (that is, the decoder could
start on the assertion of ALE, and the output of the decoder captured by ALE),
or could occur on the output side of the transparentlatches. During this phase,
WrNear will also be determined and driven out by the processor.

Data Phase
Once the A/D bus has presented the address for the transfer, the address
is replaced on the A/D bus by the store data. This occurs in the second phase
of the first clock cycle of the write transaction, as illustrated in Figure 8.2.
The processor enters the data phase by performing the following sequence
of events:

¢ It negates ALE, causing the transparent address latches to capture the
contents of the A/D bus.

¢ Itinternally captures the data in a register in the bus interface unit, and
enables this register onto its output drivers on the A/D bus. The
processor design guarantees that the ALE is negated prior to the address
being removed from the A/D bus.
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Figure 8.2. Memory Addressing and Start of Write
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Thus, the processor A/D bus is driving the store data by the end of the
second phase of the write transaction. At this time, it begins to look for the end
of the write cycle.

Terminating the Write
There are only two methods for the external memory system to terminate a
write operation:

¢ Itcan supply an Ack (acknowledge) to the processor, to indicate that it has
sufficiently processed the write request, and the processor may terminate
the write.

¢ It can supply a BusError to the processor, to indicate that the requested
data transfer has “failed” on the bus. The system interface behavior of the
processor when BusError is presented is identical to the behavior when
Ack is asserted. In the case of writes terminated by BusError, no
exception is taken, and the data transfer cannot be retried.

Figure 8.3 shows the timing of the control signals when the write cycle is
being terminated.

SysClk
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New Cycle
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Ack Negate Start New
Wr Transaction
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Figure 8.3. End of Write

Latency Between Processor Operations

In general, the processor may begin a new bus activity in the phase
immediately after the termination of the write cycle. This operation may be
either a read, write, or bus grant.

Since a new operation may begin one clock cycle after Ack is sampled from
the interface, it is important that the external memory system not rely on the
store data still being present on the bus at this time.
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Write Buffer Full Operation

It is possible that the execution core on occasion may be able to fill the on-
chip write buffer. If the processor core attempts to perform a store to the write
buffer while the buffer is full, the execution core will be stalled by the write
buffer until a space is available. Once space is made available, the execution
core will use a fix-up cycle to “retry” the store, allowing the data to be captured
by the write buffer. It will then resume execution.

The write buffer can actually be thought of as “four and one-half” entries: it
contains a special data buffer which captures the data being presented by an
ongoing bus write transaction. Thus, when the bus interface unit begins a
write transaction, the write buffer slot containing the data for that write is freed
up in the second phase of the write transaction. If the processor was in a write
busy stall, it will be released to write into the now available slot at this time,
regardless of how long it takes the memory system to retire the ongoing write.

This operation is illustrated in figure 8.4.
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Figure 8.4. Write Buffer Full Operation
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WRITE TIMING DIAGRAMS

This section illustrates a number of timing diagrams applicable to R3051
writes. The values for the AC parameters referenced are contained in the
R3051 data sheet.

Basic Write

Figure 8.5 illustrates the case of a write operation which did not require wait
states. Thus, Ack was detected at the rising edge of SysClk which occurred
exactly one clock cycle after the rising edge of SysClk which asserted Wr.

Figure 8.6 also illustrates the case of a basic write. However, in this figure,
two bus wait cycles were required before the data was retired. Thus, two rising
edges of SysClk occurred where Ack was not asserted. On the third rising edge
of SysClIk, Ack was asserted, and the write operation was terminated.
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Bus Error Operation

Figure 8.7 is a modified version of Figure 8.6 (basic write with wait cycles),
in which BusError is used to terminate the write cycle. If BusError and Ack
are asserted simultaneously, the BusError will be processed.

No exception is taken because such an exception would violate the precise
exception model of the processor. Since writes are buffered, the processor
program counter will no longer be pointing to the address of the store
instruction which requested the write, and other state information of the
processor may have been changed. Thus, if the system designer would like the
processor core to take an exception as a result of the bus error, he should
externally latch the BusError signal, and use the output of the latch to cause
an interrupt to the processor.
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Figure 8.7. Bus Error on Write




Integrated Device Technology, Inc.

DMA ARBITER INTERFACE CHAPTER 9

INTRODUCTION

The R3051 contains provisions to allow an external agent to remove the
processor from its memory bus, and thus perform transfers (DMA). These
provisions use the DMA arbiter to coordinate the external request for mastership
with the CPU read and write interface.

The DMA arbiter interface uses a simple two signal protocol to allow an
external agent to obtain mastership of the external system bus. Logic internal
to the CPU synchronizes the external interface to the internal arbiter unit to
insure that no conflicts between the internal synchronousrequesters (read and
write engines) and external asynchronous (DMA) requester occurs.

INTERFACE OVERVIEW

An external agent indicates the desire to perform DMA requests by asserting
the BusReq input to the processor. DMA requests have the highest priority,
and thus, once the request is detected, is guaranteed to gain mastership at the
next arbitration.

The CPU indicates that the external DMA cycle may begin by asserting its
BusGnt output on the rising edge of SysClk after BusReq is detected with
appropriate set-up time to the external rising edge of SysClk. During DMA
cycles, the processor holds the following memory interface signals in tri-state:

e A/D Bus
Addr(3:2)
* Interface control signals: Rd, Wr, DataEn, Burst/WrNear, and ALE
¢ Diag(1:0)

In addition to tri-stating these signals, the CPU will ignore transitions on
RACEn, Ack, and BusError during DMA cycles.

Thus, the DMA master can use the same memory control logic as that used
by the CPU; it may use Burst, for example, to obtain a burst of data from the
memory; it may use RACEn to detect whether the memory has satisfied its
request, etc. Thus, DMA can occur at the same speed at which the R3051
allows data transfers on its bus (a peak of one word per clock cycle). During
DMA cycles, the processor will continue to operate out of cache until it requires
the bus.

The external agent indicates that the DMA transfer has terminated by
negating the BusReq input to the processor, which is sampled on the rising
edge of SysClk. BusGnt is negated on a falling edge of SysCIk, so that it will
be negated before the assertion of Rd or Wr for a subsequent transfer. On the
nextrising edge of SysClk, the processor will resume driving tri-stated signals.

Note that there is no hardware coherency mechanism defined for DMA
transfers relative to either the internal caches or the write buffer. Software
must explicitly manage DMA transfers to insure that data conflicts are avoided.
This is an appropriate trade-off for the vast majority of embedded applications.

©1992 Integrated Device Technology, Inc.
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DMA ARBITER INTERFACE SIGNALS
BusReq I

This signal is an input to the processor, used to request mastership of the
external interface bus. Mastershipis granted according to the assertion of this
input, and taken back based on its negation.
BusGnt o

This signal is an output from the processor, used to indicate that it has
relinquished mastership of the external interface bus.
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DMA ARBITER TIMING DIAGRAMS

These figures reference AC timing parameters whose values are contained
in the R3051 data sheet.

Initiation of DMA Mastership

Figure 9.1 shows the beginning of a DMA cycle. Note that if BusReq were
asserted while the processor was performing a read or write operation, BusGnt
would be delayed until the next bus slot after the read or write operation is
completed.

Toinitiate DMA, the processor must detect the assertion of BusReq with proper
set-up time to SysClk. Once BusReq is detected, and the bus is free, the
processor will grant control to the requesting agent by asserting its BusGnt
output, and tri-stating its output drivers, from a rising edge of SysClk. The bus
will remain in the control of the external master until it negates BusReq,
indicating that the processor is once again the bus master.
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Figure 9.1. Bus Grant and Start of DMA Transaction
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Relinquishing Mastership Back to the CPU

Figure 9.2 shows the end of a DMA cycle. The next rising edge of SysClk after
the negation of BusReq is sampled may actually be the beginning of a processor
read or write operation.

To terminate DMA, the external master must negate the processor BusReq

input. Once this is detected (with proper setup and hold time), the processor
will negate its BusGnt output on the next falling edge of SysCIk. It will also re-
enable its output drivers. Thus, the external agent must disable its output
drivers by this clock edge, to avoid bus conflicts.
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RESET INITIALIZATION CHAPTER 10
AND INPUT CLOCKING

INTRODUCTION

This chapter discusses the reset initialization sequence required by the
R3051. Also included is a discussion of the mode selectable features of the
processor, and of the software requirements of the boot program.

There are a small number of selectable features in the R3051. These mode
selectable features are determined by the polarity of the appropriate Interrupt
inputs when the rising edge of Reset occurs.

RESET TIMING

Unlike the R3000A, which requires the use of a state machine during the last
four cycles of reset to initialize the device and perform mode selection, the
R3051 requires a very simple reset sequence. There are only two concerns for
the system designer:

¢ The set-up time and hold requirements of the interrupt inputs (mode
selectable features) with respect to the rising edge of Reset are met.

¢ The minimum Reset pulse width is satisfied.

MODE SELECTABLE FEATURES

The R3051 has features which are determined at reset time. This is done
using a latch internal to the CPU: this latch samples the contents of the
Interrupt bus (Int(5:3) and SInt(2:0)) at the negating edge of Reset. The
encoding of the mode selectable features on the interrupt bus is described in
Table 10.1.

Interrupt Pin Mode Feature
Int(5:3) Reserved
SInt(2) DBlockRefill
SInt(1) Tri-State
SInt(0) BigEndian

4000 tbl 23

Table 10.1. R3051 Mode Selectable Features

Reserved
Reserved mode bits must be driven high.

DBlockRefill

If asserted (active high), data cache misses will be processed using quad
word refills. If negated, data cache misses will be processed using single word
reads. This mode bit does not affect the processing of instruction cache misses
(always handled as quad word reads) or uncacheable references (always
handled as single word reads).

Tri-State

If asserted (active low) at the end of reset, all CPU outputs (except SysCIk)
will remain in tri-state after reset. They will remain in tri-state until another
reset occurs (with tri-state disabled).

©1992 Integrated Device Technology, Inc.

10-1



CHAPTER 10 RESET INITIALIZATION AND INPUT CLOCKING

This mode input has the unique feature that it can be used to force the CPU
outputs to tri-state during the entire reset period. That is, if Tri-State is
asserted while Reset is asserted, the processor outputs will be tri-stated
through thereset period. If Tri-State is negated duringreset, the outputdrivers
will be enabled. Again, note that the Tri-State mode does not affect SysClk,
which is driven regardless of the tri-state mode.

Thus, itis possible to hold tri-state low during the majority of reset, and bring
it high only during the last four cycles of reset. The CPU outputs would be tri-
state through the reset, but the processor would operate normally after reset.
This is useful in board testing, and also for in-circuit emulators.

BigEndian

If asserted (active high), the processor will operate as a big-endian machine,
and the RE bit of the status register would then allow little-endian tasks to
operate in a big-endian system. If negated, the processor will operate as a little-
endian machine, and the RE bit will allow big-endian tasks to operate ona little-
endian machine.

R3000A Equivalent Modes

The R3000A features a number of modes, which are selected at Reset time.
Although most of those modes are irrelevant, a number of equivalences can be
made:

IBlkSize = 4 word refill.

DBIkSize = 1 or 4 word refill, depending on the DBlockRefill mode selected.
Reverse Endianness capability enabled.

Instruction Streaming enabled.

Partial Word Stores enabled.

e o o o o

Other modes of the R3000A primarily pertain to its cache interface, which
is incorporated within the R3051 and thus transparent to users of these
processors.

RESET BEHAVIOR
While Reset is asserted, the processor maintains its interface in a state
which allows the rest of the system to also be reset. Specifically:
¢ A/D is tri-stated
SysClk operates at one-half the Clk2xIn frequency.
Addr(3:2) and Diag(1:0) are driven (reserved value).
ALE is driven negated (low).
DataEn, Burst/WrNear, BusGnt, Rd, and Wr are driven negated (high).
The R3051 samples for the negation of Reset relative to a falling edge of
SysClk. The processor will initiate a read request for the instruction located
at the Reset Vector at the 6th rising edge of SysClk after the negation of Reset
is detected. These cycles are a result of:

¢ Reset input synchronization performed by the CPU. The Reset input uses
special synchronization logic, thus allowing Reset to be negated
asynchronously to the processor. This synchronization logic introduces
a two cycle delay between the external negation of Reset and the negation
of Reset to the execution core.

¢ Internal clock cycles in which the execution core flushes its pipeline,
before it attempts to read the exception vector.

¢ One additional cycle for the read request to propagate from the internal
execution core to the read interface, as described in Chapter 7.

10-2
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BOOT SOFTWARE REQUIREMENTS

Basicmode selection is performed using hardware during the reset sequence,
as discussed in the mode initialization section. However, there are certain
aspects of the boot sequence that must be performed by software.

The assertion and subsequent negation of reset forces the CPU to begin
execution at the reset vector, which is address 0Ox1FC0_0000. This address
resides in uncached, unmapped memory, and thus does not require that the
caches or TLB be initialized for the processor to execute boot code.

The processor needs to perform the following activities during boot:

¢ Initialize the CPO Status Register
The processor must be assured of having the kernel enabled to perform
the boot sequence. Specifically, co-processor usable bits, and cache
control bits, must be set to the desired value for diagnostics and
initialization to occur.

¢ Initialize the caches
The processor needs to determine the sizes of the on-chip caches, and
flush each entry, as discussed in Chapter 3. This must be done before the
processor attempts to execute cacheable code.

¢ Initialize the TLB
The processor needs to examine the TLB Shutdown bit to determine if a
TLBispresent. Ifthisisan extended architecture version of the processor,
software must sequence through all 64 TLB entries, giving them either a
valid translation, or marking them as not Valid. This must be done before
software attempts to reference through mapped space.

¢ Imnitialize CPO Registers
The processor should establish appropriate values in various CPOregisters,
including:
The PID field of EntryHi.
The IM bits of the status register.
The BEV bit.

Initialize KUp/IEp so that user state can be entered using a RFE
instruction

* Enter User State

Branch to the first user task, and perform an RFE.

10-3
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DETAILED RESET TIMING DIAGRAMS

The timing requirements of the processor reset sequence are illustrated
below. The timing diagrams reference AC parameters whose values are
contained in the R3051 data sheet.

Reset Pulse Width

There are two parameters to be concerned with: the power on reset pulse
width, and the warm reset pulse width.

Figure 10.1 illustrates the power on reset requirements of the R3051.
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Figure 10.1. Cold Start

Figure 10.2 illustrates the warm reset requirements of the processor.
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Figure 10.2. Warm Reset

Mode Initialization Timing Requirements

The mode initialization vectors are sampled by a transparent latch, whose
output enable is directly controlled by the Reset input of the processor. The
internal structure of the processor is illustrated in Figure 10.3.

R3051 Family Mode Initialization Logic

Sint(0) ——
Sint(1) —|
Transparent

SINTP) p— Latch

Int(8) ——|
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Figure 10.3. Mode Vector Logic 4000 drw 72
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Thus, the mode vectors have a set-up and hold time with respect to the rising
edge of Reset, as illustrated in Figure 10.4.
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Figure 10.4. Mode Vector Timing

Reset Setup Time Requirements

The reset signal incorporates special synchronization logic which allows it
to be driven from an asynchronous source. This is done to allow the processor
Reset signal to be derived from a simple circuit, such as an RC network with
a time constant long enough to guarantee the reset pulse width requirement
is met.

The Reset set-up time parameter can then be thought of as the amount of
time Reset must be negated before the rising edge of SysClk for it to be guaranteed
to be recognized; failure to meet this requirement will not result in improper
operation, but rather will have the effect of delaying the internal recognition of
the end of reset by one clock cycle. This does not affect the timing of the
sampling of the mode initialization vectors.

Figure 10.5 illustrates the set-up time parameter of the R3051.
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Figure 10.5. Reset Timing

ClkIn Requirements

The input clock timing requirements are illustrated in Figure 10.6. The
system designer does not need to be explicitly aware of the timing relationship
between Clk2xIn and SysClk. Note that SysClk is driven even during the Reset
period, (regardless of the Tri-state mode), as long as Clk2xIn is provided.
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Figure 10.6. R3051 Family Clocking
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DEBUG MODE FEATURES CHAPTER 11

INTRODUCTION

This chapter discusses particular features of the R3051 included to facilitate
debugging of R3051-based systems. Although many of these features are
intended to be used by an In-Circuit Emulator, the features documented in this
chapter are also useful in environments which use a logic analyzer or similar
tool.

OVERVIEW OF FEATURES
The features described in this chapter include:
¢ The ability of the processor to display internal instruction addresses on
its A/D bus during idle bus cycles. This mode facilitates the trace of
instruction streams operating out of the internal cache.

¢ The ability of the processor to have instruction cache misses forced, thus

allowing control to be brought to the bus interface. This mode is useful
for breaking into infinite loops, and is also useful for “jamming” an
alternateinstruction stream (such as a debug monitor) into the instruction
stream.

Other features useful in debug and In-Circuit Emulation are contained in
the definition of the DIAG pins, described in an earlier chapter.

Note that the features described in this chapter are performed on the
“Reserved” pins of the processor. Thus, other family members may or may not
incorporate these features in the same fashion. The features described in this
chapter are intended for initial debug, rather than continued use in a
production system.

DEBUG MODE ACTIVATION

Debug mode in the R3051 is activated by driving the Reserved(2) pin high.
This mode can be selected any time that the part is running, or may be selected
while the part is being reset. Again, it is not recommended that logic driving
Reserved(2) be placed on the production board, since future variants of the
product may use this signal for a different function.

©1992 Integrated Device Technology, Inc.
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DEBUG MODE FEATURES

ADDRESS DISPLAY

Activating the debug mode forces the CPU to display Instruction stream
addresses on its A/D bus duringidle bus cycles. Refer to figure 11.1regarding
the timing relationship between instruction initiation in the on-chip cache and
the output address. Note that the address is driven out, but ALE is not
asserted. This is to reduce the impact of this mode on system designs which
may use the initiation of ALE to start a state machine to process the bus cycle.
Instead of ALE, external logic should use the rising edge of SysCIk to latch the
current contents of the address bus.

The address displayed is determined by capturing the low order address bits
used to address the instruction cache, and then capturing the TAG response
from the cache one-half clock cycle later. These addresslines are concatenated,
and presented as follows (Note AddrLo(1:0) will be '00' in all Instruction Cache
cycles):

e A/D(31:11) displays TAG(31:11)

A/D(10:4) displays AddrLo(10:4)
A/D(3:2) displays AddrLo(12:11)
A/D(1:0) is reserved for future use.
Addr(3:2) displays AddrLo(3:2)

®

This mode is intended to allow gross, rather than fine, instruction trace.
Specifically, branches taken while a write or DMA operation occurs may not be
displayed, and there is no indication that an exception has occurred (and thus
thatinitiated instructions have been aborted). Additionally, erroneous addresses
may be presented in cycles where internal processor stalls occur, such as those
for integer multiply/divide interlocks or pTLB misses.

Finally, note that the cycle immediately before a read may contain an
erroneous address, and the cycle immediately after a read or write may not
produce the address with appropriate timing. It is recommended that these
cycles be ignored when tracing execution.

Run 0 Run 1 Run 2 Run 3 Run 4 Run 5

seow | \__/ /] /| | /]
AddrLo ( XlAdro )( XIAer)( X|Adrzx )(lAdrﬂ/( XIAdM X XIAdrs)
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Figure 11.1. R3051 Debug Mode Instruction Address Display
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FORCING INSTRUCTION CACHE MISSES

Another feature for debugging is the ability to force an instruction cache
miss from an external signal pin. As with debug mode itself, this mode is not
intended for use in a production environment.

Forcing an instruction cache miss is a relatively simple operation with the
R3051. With the device in debug mode (Reserved(2) high), drive Reserved(1)
high, to be sampled on a falling edge of SysClk. This will force the next
instruction reference to “miss” in the cache, forcing a read operation to the bus.
Figure 11.2 illustrates a "jam" operation.

When jamming the instruction cache, a couple of things must be considered:

¢ The"Jam"inputis sampled relative to the falling edge of SysClk. However,
IDT does not guarantee the setup and hold time parameters for this
signal—it is recommended that a relatively conservative design be used
here, since the set-up and hold time of this input are probably slightly
larger than the parameters for other inputs.

¢ Due to the possibility of other bus activities (such as writes), the “Jam”
input should be asserted at least until a read is detected on the bus.

¢ The Jam input does not affect the value of the Valid bit written into the
cache on cache line refill. However, it isrecommended that the Jam input
be negated prior to the Acknowledge of the read (either implicit, by RACEn,
or explicit, by Ack), to avoid unwanted subsequent miss cycles.

¢ If an instruction other than the target of the read is forced onto the A/D
bus for the read, it is the responsibility of that debug monitor to use
software cache operations to fix-up the internal instruction cache before
resuming normal execution.

Run 3
Run 0 Run 1 Run 2 (Miss) Stall Stall

PhiClk /_\__/—\__ —\__/ \ \

Rsvd(1) l’ -

Rsvd(2)

Figure 11.2. Forcing an Instruction Cache Miss in Debug Mode
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COMPATIBILITY AMONG R3051 APPENDIX A

FAMILY DEVICES

INTRODUCTION

One of the unique advantages of the IDTR3051 family is the high level of pin,
socket, and software compatibility across a very wide price-performance range.
Although some devices do offer features not found in other family members, in
general it is very straightforward to design a single system and set of software
capable of using either the R3041, R3051, R3052, or R3081; the decision as
to which processor to use can be made at board manufacturing time (as
opposed to at design time) or as a program of field upgrades.

This appendix discusses compatibility issues among the various R3051
family members. The goal of this chapter is to provide the system designer with
the understanding necessary to be able to interchange various R3051 family
membersin a single design environment, and with a single set of software tools.

SOFTWARE CONSIDERATIONS
In general, software considerations among the various family members can
be summarized into the following areas:
¢ Cache Size differences. One of the obvious differences among the devices
is the amount of instruction and data cache integrated on chip. Although
the cache size is typically transparent to the applications software, the
kernel must typically know how much cache to flush, etc. during system
boot up. This manual presents an algorithm for determining the amount
of cache on the executing processor; to insure compatibility, software
should be written to dynamically determine the amount of cache on-chip.
¢ Differences in CPO registers. Another area where the various family
members differ slightly is in their implementation of CPO registers. Table
A.1 summarizes the CPO registers of the various family members.
In general, these differences are only relevent at system start-up. The
start-up code should determine which device is running, and branch to
a CPU specific CPO initialization routine. Determining which CPU is
executing is straightforward, and can be accomplished by reading the
PriD register (to determine the presence of an R3041) and/or performing
floating point diagnostics (to determine the presence of a R3081).

Register R3041 R3051/52 R3081
$0 rsvd Index Index
$1 rsvd Random Random
$2 BusCtrl EntryLo EntryLo
$3 CacheConfig rsvd Config
$4 rsvd Context Context

$5-$7 rsvd rsvd rsvd
$8 BadVA BadVA BadVA
$9 Count rsvd rsvd
$10 PortSize EntryHi EntryHi
$11 Compare rsvd rsvd
$12 Status Status Status
$13 Cause Cause Cause
$14 EPC EPC EPC
$15 PriD PriD PriD

Table A.1. CPO Registers in the R3051 Family
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e "E"vs. "non-E" parts. In general, few applications will freely interchange
devices with TLB's with those that do not. However, a given kernel source
tree may be used across multiple applications; in this case, the start-up
code should examine the "TS" bit of the status register after reset to
determine the presence of an on-chip TLB, and initialize the TLB ifneeded.

¢ Hardware vs. Software Floating Point. The R3081 offers a very high-
performance floating point accelerator on-chip, while the R3041 and
R3051/52 do not. In this case, it may be advantageous to generate two
distinct binaries from the same source tree (one for hardware floating
point and one for software). However, the R3051 architecture does
support the ability to trap on floating point instructions (for later
emulation), by negating the CP1 usable bit. Thus, initialization software
may wish to determine the presence of an on-chip FPA, and initialize the
CP1 usable bit accordingly.

HARDWARE CONSIDERATIONS

In general, the R3041, R3051/52, and R3081 offer the same system
interface and pin-out, simplifying the interchange of the various family
members. However, both the R3041 and the R3081 offer some device specific
features, which should be considered when designing a common board. The
differences among the devices are summarized below.

R3041 Unique Features
The R3041 includes features targeting reduced system cost. Systems may
wish to take full advantage of these features, in which case they may sacrifice
the ability to readily interchange various CPUs in the design. Specifically, the
R3041 can be interchanged with an R3051 or R3081 only in systems which
implement a full 32-bit wide memory interface to the CPU, since the R3051 and
R3081 do not offer the variable port width interface found in the R3041.
In general, the areas of differences between the R3041 and the R3051 are
summarized below:
¢ The R3041 has a unique processor ID (PRId) of 0x0000_0700.
e The R3041 has the base address translation memory map only (w/o TLB).
¢ Different Instruction and Data Cache sizes.
¢ The R3041 software selects the DBlockRefill mode, rather than as a reset
mode.
The R3041 does not externally connect the BrCond(1:0) input pins.
Diag(1:0) are not available on the R3041. Similar information is available
with the Diag pin.
The R3041 WrNear page size is decreased.
The R3041 has additional/different reset modes.
The R3041 includes new Co-processor O Config Registers.
The R3041 can configure SBrCond(3:2) as outputs.
The R3041 uses pins that are Reserved as no-connects on the R3051/
R3081. '
The R3041 has an Extended Address Hold mode.
¢ The R3041 has a Slow Bus Turnaround mode with programmable bus
wait timing.
e The R3041 has 8-bit and 16-bit ports with appropriately sized bus cycles.
The R3041 can boot directly from an 8- or 16-bit wide PROM.
e The R3041 has additional outputs for BE16(1:0), Last, MemStrobe,
ExtDataEn, and 10Strobe, and TC.
e The R3041 has a read/write mask for BE(3:0).
e The R3041 has an on-chip Timer with Count and Compare registers in
CPO.
¢ The R3041 has a DMA protocol option.

e o o o o *
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R3081 Unique Features

The R3081 includes features targeted to simplifying its use in high-
frequency, high-performance systems. Systems may wish to take advantage
of these features, in which case they may sacrifice somelevel of interchangeability
with other CPUs. Key differences between the R3081 and the R3051 are
summarized below:

e The R3081 includes an on-chip FPA.

e The R3081 features larger caches, which are configurable.

e The R3081lon-chip FPA uses one of the six CPU interrupts; the
corresponding input pin is logically not connected.

The R3081 implements Half-frequency bus mode.

The R3081 features Hardware cache coherency capability during DMA.
The R3081 can use an optional 1x (rather than 2x) clock input.

The R3081 WrNear page size is increased.

The R3081 implements an additional CPO Config register.

The R3081 implements a power down (reduced frequency, halt) option.
The R3081 features a dynamic data cache miss refill option.

The R3081 BrCond(1) input is not available externally. It may be used as
a "Run” output indicator.

¢ The R3081 implements additional reset mode vectors.

e The R3081 differs slightly in its use of the reserved pins.

In general, the similarities in features allow the R3041 to use the same
DRAM, 1/0, and peripheral controllers that the R3051/81 use. It is possible
by only using a subset of the interface features of the R3041 to also use the
same system board socket as the R3051 /81. However, many of these features,
for instance the Extended Address Hold mode and the BootProm8 mode, allow
inexpensive interface alternatives that often will justify a dedicated system
board design.

Pin Description Differences

Table A.2 lists the significant R3051, R3081, and R3081 pin differences.
These differences can easily be accommodated in a single board design, as
described in this chapter.

R3051 R3081 R3041
Rsvd(0) CohReq Addr(0)
Rsvd(1) Rsvd(1) Addr(1)
Rsvd(2) Rsvd(2) BE16(0)
Rsvd(3) Rsvd(3) BE16(1)
Rsvd(4) Rsvd(4) TriState
BrCond(0) BrCond(0) MemStrobe
BrCond(1) unused/Run] TC

Diag(0) Diag(0) Last
Diag(1) Diag(1) Diag

Table A.2. Pin Considerations Among R3051 Family Members
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Reset Mode Selection

Table A.3 shows the various reset mode vectors available in the various
family members. As can be seen from the table, there are differences in the
mode vector options available in the different devices.

Designing a board which accommodates these differences is very
straightforward:

e Use pull-up resistors on Addr(3:2). These pull-ups will have no effect
on the R3051 or R3081; in the R304 1, they will cause the device to boot from
a 32-bit wide EPROM, which is compatible with the R3051 and R3081.

¢ Do not connect anything to the R3051 reserved pins. This will insure
that the R3051 and R3081 function properly. In the R3041, this will negate
the Extended Address Hold feature, causing the address to data transition of
the processor A/D bus to be compatible with the R3051 and R3081.

e  Use dip-switches with a MUX or 3-state buffer to select the reset
initialization presented on the interrupt pins. Thus, selecting different reset
mode vectors merely involves setting the dip switches.

Note that may systems may not need to do this either. For example, using
pull-ups on the interrupt inputs will result in a BigEndian system for all
devices, and in general disable the various device specific modes of the R3081
and R3041.

Pin R3041 R3051/52 R3081
Int(5 Rsvd Rsvd CohereniDMA
Int(4) Rsvd Rsvd TxCIKEn
Int(3) AddrDisplay Rsvd 1/2FreqBus
SInt(@) Rsvd DBlockRefill DBIkRefill
SInt(1) Rsvd Tri-State Tri-State
SInt(0) BigEndian BigEndian BigEndian

Addr(3) BootProm16 N/A N/A
Addr(2) BootProm8 N/A N/A
Rsvd(4) Tri-State(¥) NC NC
Rsvd(3) Rsvd(¥ NC NC
Rsvd(2) Rsvd(*) NC NC
Rsvd(1) Rsvd(*) NC NC
Rsvd(0) ExtAddrHold(®) NC NC
NOTES

Rsvd:  Must be driven high

N/A: Must not be driven

NC: Must not be connected

* Contains an internal pull-up

Table A.3. Reset Mode Vectors of R3041, R3051 /52, and R3081
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Reserved No-Connect Pins
The R3051/81 contain not-to-be-connected reserved pins that R3041
systems may use. Table A.4 illustrates the different uses of the reserved pins.
To insure compatibility in systems using the same physical socket, various
options exist:
¢ Use the internal pull-ups of the R3041 by extending the length of warm
resets to be the same as that of power-up resets.
¢ Use external pull-ups which can be removed when an R3051/81 is used.
This is so the R3051/81 Reserved pins have no chance of being driven.
e Usea tri-statable device to drive the reset configuration mode pins during
reset and which then tri-state after reset when the R3041 is used, but
which can be removed when the R3051/81 is used.
Of these options, the first is obviously the simplest; by not connecting the
reserved pins, the R3051 and R3081 specifications will be met, and the
extended features of the R3041 will not be accessed.

Pin R3041 R3051/52 R3081
Rsvd(4) Tri-State Rsvd Rsvd
Rsvd(3) BEI16(1) Rsvd Rsvd
Rsvd(2) BE16(0) Rsvd Rsvd
Rsvd1) Addr(1) Rsvd Rsvd
Rsvd(0) Addr(0) Ravd CohReq

Table A.4. Rsvd Pins of R3041, R3051/52, and R3081

DIAG Pins

The R3051 features a pair of DIAG output pins which can be used during
system debug. There are subtle differences in these pins in the various family
members:

e The R3081 indicates the cacheability of data on writes, to simplify
cache coherency. Since the R3041 and R3051 do not feature cache coherency,
this feature would not be used in systems which wish to interchange the
various family members.

¢ TheR3041 uses a single DIAG pin (on the same physical pin as DIAG(1),
to report the cacheability of an access. The other pin is used as the "Last”
output of the R3041. Since the "Last” output is not available on the R3051 or
R3081, systems designed to interchange CPUs will not use this output.

In general, the DIAG pins will only be used in system debug, rather thanused
to control some aspect of board operation. Thus, the differences in these pins
will not impact the interchangeability of various CPUs.

BrCond(1:0), SBrCond(3:2)

There are also some differences among the devices in their treatment of the
BrCond input pins. Specifically:

e  The R3051 allows software to access all of BrCond(3:0).

e  TheR3081 uses BrCond(1) internally for the FPA. Software can access
the BrCond(83:2) and BrCond(0) inputs.

e The R3041 does not provide access to the BrCond(1:0) pins, which
instead are used for other functions. Additionally, the R3041 defaults to using
the SBrCond(3:2) pins as inputs on reset, although they can be used to provide
other functions.

Thus, to insure CPU interchangeability, the system designer should provide
pull-ups on BrCond(1:0), and only use BrCond(3:2). Of course, if these are also
not used, pull-ups should be provided.
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Slow Bus Turn Around Mode

Slow bus turn around on the R3041 allows extra cycles between changes in
A/D bus direction. The R3081 also has a bus turn around feature, but the
maximum number of extra cycles is fewer. Note that with the bus turnaround
slowed, the R3041 continues to operate in a 100% compatible fashion with the
R3051 (thereisno R3051 transaction that guaranteesa "quick"” bus turnaround).

Note that there is a hardware solution to bus turnaround in the R3051,
which will also work with the R3041/81. This involves using the DMA arbiter
to prevent the R3041/51/81 from issuing a bus cycle, and is explained in an
applications note available from IDT.

Most systems that are using an R3041 and R3051 in the same socket may
want to immediately reprogram the Bus Turn Around Control bits in the Bus
Control CPO register to '00' to match up exactly with the R3051 (and thus
increase performance), instead of the default '11' which is used at reset,
although it is not strictly necessary.

The R3081 FPA Interrupt

The on-chip FPA of the R3081 reports exceptions to the CPU using one of the
general purpose interrupts. The corresponding input pin is ignored. Systems
desiring to interchange an R3041 with an R3081 must reserve an interrupt pin
for the FPA, and provide a pull-up for that signal. The R3081 Config register
allows software to select any of the 6 interrupts; at reset, the default used is
interrupt 3.

Half-Frequency Bus Mode

The R3081 allows the bus to operate at one-half the CPU frequency. When
enabled, the bus will operate as for an R3041/51 operating at half the
frequency of the R3081 CPU. Thus, this mode is entirely compatible with an
R3041/51 at one-half the R3081 frequency.

In the R3081, this feature is enabled as a reset option. Systems may choose
to employ ajumper on this value, so that this feature may be selectively enabled
when a R3081 is used, but the pin may be pulled-high or pulled-low when an
R3041 is used.

Reduced Frequency/Halt Capability

This R3081 mode is incorporated to reduce power consumption when
waiting for an interrupt or other external event. This mode is unavailable in
an R3041/51.

Note that reduced frequency mode will appear to merely reduce the bus
frequency of the R3081; most R3041/51 systems should operate correctly
under this circumstance. However, the DRAM refresh timer, and other real-
time timers, should either use a clock source other than the SysCIk output, or
reprogram their time constants, when this feature is used.

The R3041/51 does not offer the software stall capability of the R3081.
Software executing on an R3041/51 which attempts to halt the processor will
product no effect, and thus may result in erroneous software operation.

DMA Issues

Each of the CPUs can operate using R3051 compatible DMA. In these
systems, the processor will attempt to continue execution out of on-chip cache
during bus DMA; however, once the CPU core needs the bus, it will wait for the
external master to relinquish the bus.

The R3081 allows hardware cache coherency during DMA writes. This
capability may be disabled using the Coherent DMA Enable feature of the
processor.
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The R3041 implements a DMA Pulse Protocol, whereby the R3041 may
negate BusGnt during an external DMA cycle to indicate that it wishes to regain
bus mastership. This feature isnot available on the other family members, and
can be enabled or disabled via the R3041 CPO registers.

To insure CPU compatibility, systems should disable both the R3081 cache
coherency mode, and the R3041 Pulse Protocol, so that all devices will operate
in R3051 compatible fashion.

Debug Features

Debug and in-circuit emulator features are not compatible between the
R3041 and the R3051/81. These debug features are intended for initial
development and manufacturing tests and are not recommended for functional
use on fielded end-user systems. These features include the Diag pin(s), Tri-
State mode, AddrDisplay mode, and ForceCacheMiss mode.

WrNear Page Size
The various processors implement different choices for the size of the
address compared for WrNear output assertion:
¢ The R3051 compares Address(31:10), compatible with 64k x 4 and larger
DRAMs.
¢ The R3081 compares Address(31:11), compatible with 256k x4 and larger
DRAMSs. '
¢ The R3041 compares Address(31:8), compatible with 64k x 4 and larger
DRAMSs in an 8-bit wide memory port.
To insure proper operation, the system designer can make one of two
choices:
¢ Ignore the WrNear output, which simplifies system design but sacrifices
performance.
¢ Always use 256k x 4 or larger DRAMs.

Hardware Compatibility Summary

It is very simple to design a board capable of using any of the 4 CPUs
described above. Table A.5 provides a summary of the design considerations
to insure CPU interchangeability. In general, any board designed around the
R3051 can easily be migrated up in performance to the R3081, or down in cost
to the R3041.

Design Consideration Compatible Solution
WrNear page size Use 256kx4 or larger DRAM
Rsvd Pins Leave unconnected
BrCond pins Use only BrCond(3:2); Pullups on BrCond(1:0)
R3081 FPA Interrupt Reserve one CPU interrupt for FPA;
Use external Pull-up
DIAG pins Use only for system debug; nota production function
Reset Logic Pull -ups on Addr(3:2); no connects on reserved lines
Dip switches and mux on Interrupt lines
DMA options Use R3051 compatible DMA
Bus Turn-around Meet R3051 timing or use DMA to add time

Table A.5. Summary of Hardware Design Considerations
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SUMMARY

The R3051 family offers a unique level of compatibility among various CPUs,
offering a wide range of price performance options for a single design. This
capability extends not only to the signal interface, but to the actual footprint
of the device itself. Using advanced packaging techniques, the 84-pin PLCC
footprint is available across the entire family, including the entire frequency
range of the family.

Although some systems will find it advantageous to use the features
particular to a given CPU; others will find advantage in the ability to offer a
single design, with real value added manufacturing and field upgrade capability.
This choice is unique among high-performance embedded processors.
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