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Integrated Device Technology, Inc. 

INTRODUCTION 

This manual is a collection of various applications notes and conference papers written 
to describe the behavior and use of the I DT79R3051 ™ family of RISController'" 
devices. 

The application notes include descriptions of design techniques, development environ­
ments, and software development tools. The reader is encouraged to review the 
introduction of the various application notes as a brief summary of the topic of that 
paper. 

This manual is complemented by other documentation, also available from your IDT 
sales representative. These documents include: 

The RISC data book, which contains data sheets for these devices. Also in­
cluded are the electrical specifications, pinout, current speed grades, and pack­
age dimensions. 

The R3051 Hardware User's Manual, which contains a detailed description of the 
hardware and software interface of the R3051 and R3052. 

• The R3081 Hardware User's Manual, which contains a detailed description of the 
hardware and software interface of the R3081. 

• The DRAM Design Using the IDT RISChipset manual, which describes the use of 
the R3721 DRAM controller with the R3051 or R3081. 

• The IDT Development Products Catalog, which contains an overview description 
of various development tools manufactured and sold directly by IDT. 

• The various user's manuals on the IDT software tools, and the user's manual for 
the IDT7RS385 Evaluation Board. 

• The third-party support list, detailing various third-party tools, such as real-time 
OS, in-circuit emulation, logic analyzer support, and program development tools 
available to support applications development around the IDT R3051 family. 

v 
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Integrated Devke Technology, Inc. 

By Andrew Ng 

INTRODUCTION 
This application note describes a memory evaluation board 

that is an example of many of the design considerations for 
systems based on an IDT79R3051™ RISController™ family 
CPU. 

The memory board, illustrated in Figure 1, consists of: 
An R3051 CPU 
Reset circuitry 
An address demultiplexer 

• A data transceiver 
Wait-state and memory control logic 

• 12BK bytes of SRAM 
128K bytes of EPROM 

• A dual channel UART 
A real time counter 
An interrupt controller 
In addition, an expansion connector supplies all the CPU 

signals for the addition of external modules such as DRAM 
memory systems or other application specific 1/0 systems. 
The memory and 1/0 system on the example board are 
compatible with the IDT7RS382 R3COC Evaluation Board. 
Thus 7RS382 software such as the IDT/sim PROM Debug 
Monitor can run on the example board. The board is typical 
of an embedded controller core such as for LAN adapters, 
laser printers, facsimiles, and avionics applications. The 
differences would appear in which peripherals are used and 
memory type, size, and speed requirements. 

The board was designed as a generic example of the 
construction of a system using the IDT79R3051 RISController 
with both low parts count and cost sensitive requirements. 
However, since many generalities were taken into consider-

Address 

ation, many systems can reduce both parts count and cost 
even further. Although the board is not populated with parts 
that have the highest performance achievable, its design can 
beeasilymodifiedtodoso. In addition, PAL ®supportforfurther 
experiments with optimizations and trade-offs can be done to 
accommodate different kinds and speeds of memory and 1/0. 
While the board is designed with SRAM for the simplicity of a 
design example, the extension to a DRAM system with CAS 
before RAS refresh is only slightly more complex. 

THE R3051 RISController CPU 
The IDT79R3051 family is a series of high-performance 32-

bit microprocessor RISControllers designed to bring the high­
performance inherent inthe MIPS® RISC architecture into low 
cost, simplified, and power sensitive applications. 

The instruction set is compatible with the 79R3000A and 
79R3001 RISC CPUs. Features of the R3051 family include: 
• 4kB (R3051) to BkB (R3052) of Instruction Cache on-chip 
• 2kB of Data Cache on-chip 
• Clocked from a single, double-frequency clock input 
• On-chip 4-deep read and write buffer 
• On-chip OMA arbiter 
• Flexible burst/simple block bus interface 

Multiplexed address and data bus for low cost packaging, 
simplicity of use 

• Base versions use fixed address translation to simplify 
software 
Extended architecture versions use 64-entry, fully asso­
ciative Translation Lookaside Buffer (TLB) to support page. 

128K 128K 
RAM EPROM 

Latches 1-----4--i--i---_. 

R3051 Family 
RISController 

CPU Data 
Buffers 

Memory 
Control i-----t--t----;-;--. 

UART Counter/ 
Timer 

Figure 1. System Block Diagram 

The IDT Logo, A3051, and RISController are trademarks of Integrated Device Technology, Inc. 
MIPS is a registered trademark and R3000 is a trademark of MIPS Computer Systems, Inc. PAL is a registered trademark of AMO. 
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The R3051 RISController combines a similarly featured 
R3000A CPU system consisting of over 50 LSl/MSI parts into 
a single integrated chip. 

DETAILED DESIGN REVIEW 
The following sections give a detailed review of how each 

functional block relates specifically to designing with the 
R3051 RISController. Particular attention is focused on alter· 
native design strategies that could reduce parts count and 
improve performance as well as on a description of the original 
design. The subsystem block designs include: 
• Analog reset logic 
• A PAL-based memory controller (3x PALs) 
• Address demultiplexer (4x IDT74FCT373T) 

Data transceiver (4x IDT74FCT623T) 
128kB of SRAM (4x IDT71256 32kx8 45ns SRAM) 

• 128kB of EPROM (4x 27256 32kx8 125ns EPROM) 
• 68681 DUART 
• 8254 Timer 
• Interrupt controller (1 x PAL) 
• Off-card connector 

Reset, Reset Vector, and Clock Buffer Circuitry 
The Reset signal is based on a linear integrated circuit, a Tl 

TL7705A supply voltage supervisor with a Power-On Reset 
Generator. A 1 µF capacitor is used to program the reset 
generator for a 13ms Reset period. 

Note that because the R3051 synchronizes the Reset input 
signal internally, an RC circuit can be used instead. An 
example is to pull Reset high with a resistor of about 1 Okn, tie 
Reset to a 22µF capacitor which is tied to ground, and tie Reset 
to a push button switch that is tied to ground. Then the RC 
circuit should be gated through a buffer or synchronizer. 

Certain configuration options (the reset vector) are se­
lected in the R3051 by using the interrupt pins at the rising 
edge of Reset. On the example board, the interrupt pins are 
simply pulled up (or down) since Slnt(2:0) are not used in this 
system (software can permanently mask these interrupt in­
puts in the Status Register). However, if they are used (via the 
expansion connector) they would need to be multiplexed with 
the reset function. There are a number of techniques to 
perform this multiplexing: for example, if the interrupting agent 
is not capable of tri-stating its interrupt during Reset, an ex­
ternal multiplexer such as an IDT74FCT257T can be used, 
with the enable always tied active and the select tied to Reset. 
If the interrupting agent tri-states its interrupt during Reset, 
then using simple pull-ups or pull-downs will still operate 
properly. 

The clocks on the board are buffered by an 
IDT74FCT240C(T) inverting tri-state buffer. This buffer was 
selected partially to provide a board testability path for inject­
ing a test clock, as well as to buffer the signals to increase their 
drive. The primary reason for the buffer, however, is to invert 
SysClk to form SysClk, the signal that is used to clock the state 
machines on this board. Buffer output pins closest to the 
ground pin (pins with the lowest pin inductance) were used 
first to help lessen potential noise and ground bounce prob­
lems. The Clk2xln oscillator is socketed, so that the board 

2 
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may be populated with different speed parts. 
In this design, the FCT240C(T) enables are pulled down to 

be active all of the time. Since SysClk does not tri-state when 
Tri-State (Slnt(1 )) is active during the reset vector, it is helpful 
to an ATE programmer to be able to tri-state the inverter. 

Memory Controller 

The example board's Memory Controller consists of three 
22V10 PA Ls. The first PAL is used for address decoding, the 
second for wait state and cycle counting, and the third for byte 
enables. The PALs are functionally described in the following 
paragraphs. The PAL equations are included in the appendi­
ces. The PALs are all placed in sockets, and thus can easily 
be reprogrammed for various experiments. 

Address Decoder 
The Address Decoder PAL, MEMDEC.JED, uses Ad­

dress(31 :17) to generate chip selects. The chip selects are 
decoded according to the 7RS382 address map as described 
in the 7RS382 Hardware User's Guide. Three spare 1/0 pins 
are provided, which could be used to decode additional chip 
selects. These spare outputs are in place of the 'USER 
CS 1 X*' chip selects provided for on the 7RS382 board, but not 
explicitly supplied by this example board. 

The address decoder does not wait for ALE to begin 
generating the chip-select outputs. It does this so that 
maximum performance may be achieved, since the Chip 
Select outputs will be generated earlier in the transfer. How­
ever, as a result, the CS outputs may tend to "glitch" as a valid 
address is driven. Thus, the Read Enable and Write Enable 
seen in the memory system must be synchronized so that they 
are valid only within the time that the CPU is attempting a read 
or write transfer. This combination allows maximum perfor­
mance: address and chip enables are seen early in the 
transfer, but the Read and Write signals are generated syn­
chronously to insure proper system operation. 

One of the extra 1/0 pins can be used as a test enable input 
to tri-state the outputs for board level ATE. Some systems will 
not need to decode as many address bits or may have a fixed 
map, and thus may able to use FCT138's or 16V8's to do the 
address decoding instead of the relatively expensive 22V1 O 
part. 

Memory Cycle Controller 
The purpose of the Memory Cycle Controller is to provide 

a wait-state generator which stalls the R3051 's Bus Interface 
Unit, so that various types and speeds of memory can be 
used. The Memory Cycle Controller is implemented with a 
22V10 PAL called MEMCONT.JED. Note that this PAL was 
selected in order to make the PAL equations more readable. 
A lower cost solution may implement the state machine in two 
16R8 PALs. 

The Memory Cycle Controller allows various speeds of 
memory devices to be used, by using the throttled read 
supported by the R3051 bus interface. Other kinds of trans­
actions are treated as simplified cases of the throttled read. 

The basic state machine looks for the start of a read or write 
transaction by looking for an asserting edge of Rd or Wr. When 
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a transaction is begun, the state machine starts a 5-bit binary 
up counter, C(4:0). C(4:0) then increments on each SysClk 
rising edge. C(4:0) is used as the basic timing master for all 
of the other control signals generated in the state machine. 

In the memory scheme used here, rather than search for 
the negating edge of Rd or Wr at the end of the transaction a 
CycEnd synchronous decoder is used to tell the C counter 
when the end of the memory cycle occurs. This type of 
strategy is used because the de-asserting edges of Rd and Wr 
occur within the setup and hold times of a buffered/inverted 
(FCT240C(T)) SysClk. Typically, the de-asserting edge of Rd, 
Wr, and Burst should not be used to control a SysClk based 
state machine. Similarly, the rapid negation of ALE by the 
processor makes it difficult to synchronously sample ALE 
when using a state machine driven by a buffered clock. 

CycEnd serves to synchronously reset the state machine 
when a~-asserting Rd or Wr edge is expected, whether or 
not the Rd or Wr de-asserting edge meets the setup and hold 
times of the state machine. Another output, En Start is used to 
start the byte enables by waiting a number of cycles before 
asserting. The amount of time the transfer waits is used to 
allow drivers used in the previous transfer to tri-state, and may 
be necessary in systems which employ devices whose output 
disable time is long relative to the system clock frequency. 

Other outputs from the Memory Cycle Controller PAL 
include the R3051 transfer termination inputs RdCEn, Ack, and 
BusError. On a read transfer, Burst and one of the Chip En­
able inputs from the Address Decoder are used to determine 
the timing and quantity of RdCEn signals to be asserted for this 
transfer (according to the requested transfer size and the 
memory device speed). 

Ack is asserted at the end of a write cycle to indicate 
completion of the transfer, and optionally towards the end of 
a Quad Word (Burst) read cycle. A description of the various 
kinds and options of read and write cycles is thoroughly 
explained in the R3051 Family Hardware User's Guide. The 
number of cycles before and between the assertion of Ack and 

Wr 
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RdCEn is programmable, allowing flexibility for various types 
of memories. 

~--Finally, the BusError output is used to end an undecoded 
memory cycle. In the R3051, Rd is negated one-half cycle 
after the BusError input is asserted. 

Other Approaches 
Of course, alternative methods and techniques to memory 

interfacing with an R3051 family CPU exist. Four approaches 
easily implemented in discrete components include: 
• using a SysClk based CycEnd counter (as used in this 

example) 
• using asynchronously resettable registers for the counter 
• using interlocking SysClk and SysClk registers 
• using an unbuffered SysClk 

All of these methods can be used to design for the clocking 
scheme of the R3051 Family, which uses both the rising and 
falling edges to control its outputs. The use of both edges of 
the clock allows the R3051 to mitigate the 1 clock inter­
transaction latency that is associated with most other CPUs 
that need the extra clock to fix up and start new memory cycles. 
However, because the R3051 Family asserts and de-asserts 
its edges the same way on both Rd and Wr cycles, specific 
methods can be employed so that the memory system is 
always clocked from one edge of SysClk. An example of this 
is the CycEnd method used on this board, which ignores the 
edges that are not synchronized with the state machine. 
Although traditional high-performance CPUs require complex 
state machines to operate efficiently, the beauty of the R3051 
family is the simplicity of its interface. Memory control state 
machines for the R3051 family are really only minor variations 
on traditional wait-state machines, and can also easily take 
advantage of the 1 /2 clock inter-transaction savings provided 
by the CPU interface. 

Each of the four approaches has advantages as well as 
drawbacks relative to each other. The following paragraphs 
will give a brief description of each technique. Each of the 

C(4:0) X._ __ o _ ___,X.._ __ __.X.._ __ 2 _ _.X.._ __ 3 _ ___.X.._ __ o __ 

Figure 2. Timing of CycEnd 
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methods could be used by themselves or combined with one 
or more of the other methods, to achieve the optimal price/ 
performance/parts count for a given application. Systems 
employing dedicated interface chips (such as the IDT R372x 
family, or customer specific AS IC or Gate Array devices), may 
choose to make different trade-offs than those using discrete 
component based solutions. 

Using SysClk and generating a Cycle End indicator 
The SysClk based CycEnd approach as described above 

is straightforward because of its similarity to traditional wait­
state machines. As mentioned above, it does not require the 
terminating edge of Rd or Wr to complete a transaction. 

The system implemented in this design example is limited 
in speed by: 

tclk/2 >= 1240 + tpalco + 13051 setup + tcap + !wire 

which works out to 28MHz for a 1Ons16V8, over 40MHz for a 
5ns 16R8 PAL, and 33MHz for a 1 Ons 22V10 PAL. 

Using Asynchronous Reset to terminate the Cycle 
Counter 

The second potential method, which uses an asynchro­
nous reset to terminate the cycle, requires ANDing together 
Rd and Wr into the the reset line of the counter C( 4:0) and can 
be demonstrated by reprogramming the PAL on the example 
board. The reset-to-valid output, reset width, and the reset 
recovery time to clock are among the speed limiting paths in 
this approach when implemented in PALs. Unfortunately, the 
reset-to-output delay of a PAL is usually less optimized and 
relatively slow. 

tasyncreset <= tclk/2 - trdn - tcap - twire 

For example, a 20MHz system would require a reset-to­
output delay of 17ns, which can be found in a 1Ons22V10 PAL 
(with a 15ns reset-to-valid output data time). 

Using interlocking PALs clocked on opposite edges 
The third potential approach uses a SysClk based register 

to detect asserting edges and a SysClkbased register to detect 
de-asserting edges. The outputs of each of the PA Ls interlock 
by controlling the outputs of the other PALs. This allows the 
flexibility of seeing all edges and being able to control outputs 
optimally by using any 1/2 clock edge (such as output en­
ables). Such an approach obviously requires more PALs, and 
is somewhat speed limited by: 

tclk/2 >= 1240 + tpalco + tpalsetup + tcap + twire 

which works out to 20MHz for a 10ns 16V8 PAL. 
In systems using chips designed specifically to interface to 

the R3051 family (such as the IDT R3721 DRAM controller), 
this approach is simpler to implement and leads to the highest 
levels of performance. 

Using an unbuffered SysClk 

The fourth potential approach uses an unbuffered SysClk 
based state machine. This leads to the requirement of having 
0 hold time on the registers as well as a 2ns minimum 
propagation delay time to meet the R3051 timing require-

4 
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ments (note that using a buffered SysClk instead of the un­
buffered version would require negative hold time on the 
registers). Despite these restrictions, some PALs can be 
found that meet all of these requirements. This approach 
leads to a one cycle latency in reacting to R3051 output 
assertions. An asserting Rd or Wr would be seen a clock too 
late to bring RdCEn or Ack LOW during their first possible 
sampling clock. Using an unbuffered SysClk has a speed 
advantage over the other techniques: 

tclk >= tpalco + t3051setup +leap+ !wire 

tclk/2 >= 13051 prop + tpalsetup + tcap + twire 

which can support designs of 35MHz for a 1Ons16V8 PAL and 
well over 40MHz with a 7.5ns 16R8 PAL. 

An additional consideration relative to using an unbuffered 
SysClk is the amount of loading placed on the clock, and the 
impact of additional loading on R3051 AC parameters. Of 
course, when using a single chip memory controller such as 
the IDT R3721 or a customer designed ASIC, these loading 
considerations are minimal. 

In summary, the R3051 Family uses both edges of the clock 
to assert control signals in order to reduce inter-transaction 
delay between external bus cycles. However, by using one or 
a combination of the above techniques in a design, a tradi­
tional wait-state machine can still be used with the addition of 
only minor variations. 

Read and Write Enables 
The Read and Write Enables PAL, MEMEN.JED, uses 

EnStart and CycEnd to control the initiation and length of the 
output enable and write enable assertions. Rd and Wr are used 
to select between read and write cycles. Note that it would 
have been possible to combine individual bank selects with 
the address decoder PAL, rather than use a distinct PAL to 
control the timing of the assertion of Write and Read Byte 
Strobes. 

On read cycles, RaEr1 is asserted as the system's primary 
output enable signal. Rd DataEn is used to enable the FCT623T 
data transceiver bank. RdDataEn in most systems would 
simply be 'DataEn' as supplied straight from the processor. 
This system provides RdDataEn in case other transceiver 
banks are added to the system. 

The byte enables are used to support partial word writes 
which are used during byte, halfword, and tri-byte operations. 
Write cycles combine the byte enables, BE(3:0), with Wr, 
EnStart, and CycEnd to form the write enable outputs 
WrEn(D:A) which are attached to the byte banks within the 
memory system. Whether or not the system is Little or Big 
Endian, WrEn(A) is always attached to the LSB. WrEn(D:A) can 
also be implemented using an FCT257T multiplexer. 
WrDataEn is used to control the FCT623T data transceiver 
bank and must be held extra long to provide memory data hold 
time. 

Finally, the Byte Enable PAL also has a synchronized Pon 
used to update wReset output called ReS8t and a "guarded" 
GUARTCS. The guarded chip select, GUARTCS is an ex­
ample of interfacing R3051 signals to a Motorola-type 1/0 
Device as opposed to an Intel-type 1/0 Device. 
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Motorola-type devices multiplex their read/write input pin 
and expect a data strobe pin to validate the data out or to latch 
the data in, while Intel-type devices have separate read and 
write strobes. Since the MC68681 DUART is a Motorola 
device, the data strobe must start late and end early, so that 
read/write is held throughout that period. Additionally, the 
MC68681 uses its chip select pin as a data strobe. As a data 

APPLICATION NOTE AN-86 

strobe, it is important not to have decoder glitches on the chip 
select since reads in 1/0 devices are often used to update 
FIFO pointers. Thus, the guarded GUARTCS uses EnStart 
and CycEnd to shorten up UARTCS. Finally, WrEn is pro­
vided to extend Wr to allow additional data hold time at the end 
of the write cycle. WrEn cou Id easily be inserted with another 
OR term into WrEn(A). 

C(4:0) x~_o -~X ...... ___ ~X ...... __ 2 _ __,X..___3 _ __,X.._ __ o __ 

RdDataEn 

Figure 3. Timing Diagram of RdEn 

C(4:0) x~_o _ __,X.._ ___ _,X._ __ 2 _ __,X.___3_-JX ...... __ o _ __,X~ __ x -

WrEn(A) 

WrDataEn 

Figure 4. Timing Diagram of WrEn(A) 
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Wr 

C(4:0) x~_o _ _,X.__ __ __,X,_ __ 2 _ __,X,_ __ 3 _ __,X.___4 _ __,X,_ __ s __ 

GUARTCS 

Figure 5. Timing Diagram of Start of GUARTCS 

Wr 

C(4:o) X.___s _ __.X~ __ 1_~X~_o ___ _ 

GUARTCS 

Figure 6. Timing Diagram of End of GUARTCS 
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Address Latch and Transceiver Demultiplexer 
The address latch bank consists of four FCT373T 8-bit 

transparent latches. ALE is used for the latch enable on the 
FCT373Ts. The transparent phase allows extra address de­
coding time during the time that ALE is HIGH; the outputs of 
the latches are fed directly to the address decode PAL and to 
the memory devices. In order to insure that address hold time 
to the latches are met, it is important to take care with the use 
of the ALE signal. The number and length of the ALE traces 
is critical and should be kept to a minimum. 

Rather than use FCT373s, DRAM systems may want to 
use FCT821 s or FCT823s, which are wider latches. RAS/ 
GAS address multiplexing can be performed by sequencing 
the output enables of the latches and having the outputs of the 
latches tied together and driving the DRAM address bus. 

The data transceiver bank on the example board uses four 
FCT623T 8-bit transceivers. FCT623Ts were chosen over the 
similar 10-bit FCT861 'sand 9-bit FCT863s simply to reduce 
pin count. The FCT861/3s provide a more conventional 
interface, since both output enables are active-LOW, instead 
of one enable active-HIGH, and the other active-LOW as in the 
FCT623Ts. However, since this system uses PALs to control 
the transceivers, the use of FCT623s poses no additional 
complexity to the design. 

FCT623Ts were selected instead of FCT245s because of 
the ease of interfacing to dual output enable pins instead of a 
direction and enable pins as in the FCT245. Interfacing with 
FCT245 controls would ideally require that the direction con­
trol only be changed when the output enable is disabled. This 
requires extending a combined (latched) Rd and Wr based 
signal for an extra cycle at the end of a memory transaction, 
which may be the beginning of the next memory cycle. Unless 
the direction pin is controlled with a SysClk based state ma­
chine, a signal like EnStart would be necessary to keep the 
enable pin de-asserted in the subsequent cycle until the 
direction pin control becomes valid. Some systems with high 
noise tolerance, e.g., IBM-PC adapter boards, forgo the extra 
cycle ideal and simply bus contend for a very short time (a few 
ns) into its memory system by having the read strobe directly 
control the direction. DataEn, output from the CPU, can be 
used in such systems to simplify control signal generation. 

When there are no pending OMA, read, or write requests, 
the R3051 tri-states the A/0(31 :0) bus during these non-bus 
clock cycles to reduce power consumption. One can option­
ally add external pullup or pulldown resistors so that the A/ 
0(31 :0) bus is always defined for board level ATE and so that 
the input pins of the latches and transceivers are stabilized. 

Finally, systems that can output disable (OE to Z-state) all 
memory readable devices within: 

!disable < tclk/2 - 13051 dataenn + taddr - leap - !wire 

might not require the transceiver bank and thus could reduce 
the parts count by 4. 
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EPROM and Static RAM Memory 
The memory on the example board is populated with 125ns 

Erasable PROMs (EPROMs) and 45ns Static RAMs (SRAMs). 
Four 27C256 32kx8 EPROMs are used to form 128kB of 
ROM. The EPROMs are placed in sockets and thus can easily 
be removed for reprogramming or replacement; alternative 
designs may wish to add circuitry to allow in-board program­
ming of the EPROMs (e.g. Flash Erase EPROMs). 

The EPROMs have a relatively long output disable time 
(OE to Z-state), typical of ROMs and thus require data buffers 
to prevent contention on the multiplexed AD(31 :0) bus, since 
the following equation is not met: 

tclk/2 >= tdisablecontrol +!disable - taddr + leap + twire 

In addition, the disable time for these EPROMs is long 
enough that, except for relatively slow systems (under20MHz), 
extra clocks need to be added to the next bus cycle to prevent 
bus contention with other memory banks. This is determined 
by: 

!elk>= tdisablecontrol + !disable - tdata + leap + twire 

The SRAM bank is formed using four I DT71256 32kx8 
SRAMs for a total of 128kB. The RAM chips have common 
data 1/0 pins, separate read and write strobes, and chip 
selects. RAMs without a separate read strobe (output enable 
pin) may require more complex address decoding when used 
in a multiple bank configuration. 

DUART, Timer, and Interrupt Controller 

An MC68681 DUART and an MAX235 RS232 transceiver are 
used to form two RS232 serial communication links. The DUART 
control registers are word addressed, but only 0(7:0) are used. The 
MC68681 is an example of a Motorola-type 1/0 interface as ex­
plained above. 

An iP8254 timer/counter chip is used for a real-time clock 
or timer. The iP8254 is an example of an Intel-type 1/0 inter­
face. The iP8254s need for separate read and write strobes 
matches up well with the R3051. 

Software control of these chips is best described by their 
respective data sheets. Typically, most software programs for 
the 7RS382 have used the DUART in a polling mode and the 
timer in a square wave mode. Interrupts lnt(5:3) are controlled 
by UARTlntOC, Timer OutB, and Timer OutA respectively 
from MSB to LSB. The 16R8 PAL, called MEMINT.JED, is 
used to control these interrupts latches in the assertion 
transition of the original interrupt lines. 

The controller holds the interrupt line to the processor for 
Timer A and Timer B until they are acknowledged (as required 
by the R3051 ). Acknowledgement is indicated by reading the 
interrupt controller at Virtual Address BF80001 O and BF800014 
(Physical Address 1 F80001 O and 1 F800014) respectively. 
This action incidentally reads extraneous data from the Timer 
chip itself on 0(7:0). The DUART interrupt must be acknowl­
edged by using the DUART control registers. 
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The output disable to data in Z-state time for these 1/0 
peripherals is relatively long, as is typical for 1/0 devices. This 
forms the critical timing path for the placement of En Start in the 
Memory Controller and Memory Enable PALs. 

Expansion Connector 

APPLICATION NOTE AN-86 

lfDMA is to be used, the R3051 control outputs Rd, Wr, Burst, 
DataEn, and ALE are pulled HIGH or LOW so that they remain 
inactive when tri-stated. 

SCHEMATICS AND PAL EQUATIONS 
Two 50-pin connectors are provided which bring out the Appendices include the System Design Example Board 

R3051 RISController pins to allow off-board expansion. The Schematics and the PAL equations. 
BusReq and BusGnt pins are not presently used on this board. 

AD(O) 54 

R3051 AD(1) 55 

AD(2) 56 

PLCC-84 AD(3) 59 

AD(4) 60 

AD(5) 61 

AD(6) 62 

AD(?) 63 

AD(8) 64 

AD(9) 67 
19 RSVD(O) AD(10) 68 

RSVD(1) AD(11) 69 

RSVD(2) AD(12) 70 

RSVD(3) AD(13) 71 

RSVD(4) AD(14) 72 

AD(15) 75 

AD(16) 76 

AD(17) 77 

AD(18) 78 
27 SINTN(O) AD(19) 79 
26 SINTN(1) AD(20) 80 
25 SINTN(2) AD(21) 83 
24 INTN(3) AD(22) 

84 
23 INTN(4) AD(23) 
20 INTN(5) AD(24) 2 

AD(25) 3 

AD(26) 4 

AD(27) 7 
33 BRCOND(O) AD(28) 8 
30 BRCOND(1) AD(29) 9 
29 SBRCOND(2) AD(30) 10 
28 SBRCOND(3) AD(31) 11 

ADDR(2) 51 

ADDR(3) 52 

ACKN 36 ACKN RDN 45 
RDCENN 35 RDCENN WRN 44 
BUSERRORN 37 BUSERRORN BUSGNTN 39 
BUSREQN 34 BUSREQN ALE 46 

DATAENN 43 

BURSTNIWRNEARN 53 

DIAG(O) 47 
48 RESETN 38 RESETN DIAG(1) 

CLK2XIN 14 CLK2XIN SVSCLKN 40 

Figure 7. R3051 RISController 
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+5V 

4.7K 
TL7705A 

7 SENSE VCC 8 

2 RESINN 2 RESIN RESET 6 

16 
4.7K 

CT 3 CT RESET 1-"5'----~P=O,;..;W,;..;R:.=E=S=ET,;..;N~I 

I-:- GND U32 REF 1 REF 

1UF(TANl)t I' T0.1UF 

Figure 8. Reset Logic 

+5V 

3.6864MHZ 

osc 
vcc 14 

19 

Q 8 IOOSC 2 
GND 

SVSCLKN 

osc 
vcc 14 

GND Q 8 OSC2XIN 

4.7K 4.7K 

16 16 
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+SV 

16 16 

4.7K 4.7K 

4.7K 4.7K 4.7K 4.7K 

16 

+SV 

16 

4.7K 

FCT240 

OEA 
OEB 
DAO QAO 
DA1 QAf 

DA2 QA2 
DA3 Qi'i3 
DBO QBO 
DB1 C'.iB"f 
DB2 Q"£i2 
DB3 QEi3 

16 16 16 

BUSREQN 

Figure 9. Unused Inputs 

IOCLK 
SYSCLK 

CLK2XIN 

IOOSC 

Figure 10. Clock Logic 
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NOTES: 
MEMSPAREO--CARDCSNIXCSNO 
MEMSPARE1 -- C4 I WRLASTN I WORLDBOOTN 
MEMSPARE2 -- TESTEN I SHADOW RAM I DATAENN I XCSN1 

A31:17 

+SV 

16 16 

4.7K 4.7K 

+SV 

16 
4.7K 

+ 22µF 

T 

4.7K 

4.7K 

1 
13 
11 
10 

9 
s 
7 
6 
s 
4 
3 
2 

1 
13 
11 
10 

9 
s 
7 
6 
s 
4 
3 
2 

16 

1 
13 
11 
10 

9 
s 
7 
6 
s 
4 
3 
2 

16 

22V10 

CLK 
IN10 1/09 
IN9 I/OS 
INS 1/07 
IN7 1/06 
IN6 I/OS 
INS 1/04 
IN4 1/03 
IN3 1/02 
IN2 1/01 
IN1 1/00 
INO 

MEMDEC.JED 

22V10 

CLK 
IN10 1/09 
IN9 I/OS 
INS 1/07 
IN7 1/06 
IN6 I/OS 
INS 1/04 
IN4 1/03 
IN3 1/02 
IN2 1/01 
IN1 1/00 
INO 

MEMCONT.JED 

22V10 

CLK 
IN10 1/09 
IN9 I/OS 
INS 1/07 
IN7 1/06 
IN6 I/OS 
INS 1/04 
IN4 1/03 
IN3 1/02 
IN2 1/01 
IN1 1/00 
INO 

MEMEN.JED 

23 
22 
21 
20 
19 
1S 
17 
16 A31 
1S A 30 
14 A 29 

17 
16 
1S 
14(C3) 

23 
22 
21 
20 
19 
1S 
17 
16 
1S 
14 

Figure 11. Memory Controller 
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+SV 

16 

4.7K 

16 

4.7K 

4.7K 

16 

.7K 
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RAMCSN 
EPROMCSN 

UARTCSN 
TIMERCSN 

MEMSPARE(O) 

16 

-=- +SV 

16 

4.7K 

RESETN 
WREN NA 
WREN NB 
WREN NC 
WREN ND 

WRENN 
WRDATAEN 

RDENN 
RDDATAENN 

GUARTCSN 
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c WROATAEN 

!::::> ROOATAENN 

~ 12t31:0) 

TESTEN(2) 

!::::> ALE 

4.7K 

16 

74FCT373 

/~mion-~~t-11--~3~00 oor,~,--~~~B~EN~(~O)~ 
V~,m;,,+------1-+-4:!..101 01~6,-----,~,.,,,,~m~m. 
/",.m~'oi----t-11--~7~02 02i-;;-----rrn"-"Nrr,(("'*''"2' 

V/'~m7~3n---t-ll--~B~o3 03~9~-~__tlCl'll'=-=c.:;::3~. 
vv~;.;;;,.~,;,;;.--+1--"13'-1 04 04 12 A(4; " 
,;~"'7;+----1-+--'-14:!..105 05 15 ~ 

v/0Q1_6 ___ t--lr--.._11,, 06 06 16 = '- , 
vv',A~u1~---+-+-~1-"-"'s 07 07 19 ~ 

~LE ' 
t-----1- N 
~--~ 

74FCT373 

,A~l2.l!~~-+----t-+-3~oo oo~2-~~~s, 
l/'.!,A,..,~o+~-+----t-+-4_,01 01 ~5-~~"'9[\, 
V;,,A,..,Q.t~1or----+-t-__,1,, 02 02 6 A 1 a L'\ 
V,A~~-+-11-+---+-+-__,s ... 03 03 9 A 11 N 
l/'.!,A~0""(~12,,.__-+-t---t13'-ID4 04 12 A 12N 
V;,A"'C['"""'13,,_._-+-+--'-14c.ios 05 1s A 13N 
V;,A~~~14+---+-+--'-'17-lD6 06 16 A 14 _'\ 
V,A~~-+-1S~--+-+-~1S'-<07 07 19 A 1S ~ 

V t-+--11- LE " t-----1- fil 
~--~ 

74FCT373 
,,A"'0~16,,___-t-+-~3'-l DO OD 2 A(16) 

V,,A,..,D~17,,___-+-+--c4o-i 01 01 5 ~ 'j 
V,,A~0,.,_.18~--+-+--7'-< 02 02 6 A(18)_'\ 
l/,,A~D-+--19+---+-+-~B_, 03 03 9 7\(1 9)~ 
V,:,A"'0~2'°'0+---+-+-"'1 3'-l 04 04 1 2 ~ 
J'jr.AA~~21~--t-+-~14'-I 05 05 1 s ~)~ 
t', 22 17 06 06 16 = . ' 
V,,A_D~2_3~--+-+-~1 S"-' 07 Q7 19 ~ 

V t-t----11-iLE " 
~OE 
~--~ 

74FCT373 

,A~o~2~4~--+-+--3~ 00 
l/1,A~D,.,,2~5~--+-+--4.c; 01 
V'./,A~D~26=c---t-t--7'-lo2 
V,,A~0~2~77----t-+-~s~ 03 

OO 1-'2~~~.._2~4,_ 
o1 5 ~5N 

V,A02S 13 04 
j/,AO 29 14 OS 
V,AD30 17 06 
V,AD 31 1S 07 

V ~LE 
~ITE 

02 6 A26N 
03 9 A 27l_'j 

04 12 ~sN 
05 15 A29N 
06 16 &3aN 
07 19 A31l_'j 

'1 
~--~ 

4.7K 

16 
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74FCT623T 
~GAB 
~GBA 

,,A,.,0<7oo+----t--+---=-i2 A1 B1 r1=s _ _,,o,,_o"-
V,A~o~1,,,_ __ -+--+---=-i3 A2 B2 ~1~1 __ 0.._1~l'\ 
V;,A~0~2,,_ __ -t--+---'-14 A3 B3 t--1~s--0~2[\, 
V;,A~0~3':+-----t--+---=-i5 A4 B4 r1=5 _ _,,0~3l"-'\ 
V,A_0~4-+-----t--+---=-i6 A5 B5 l-'1~4 __ 0~4~l'\ 
l/'.!,A~QTI~5-+----+--+---'-<7 A6 B6 >-'1~3--QTI~sL\, 
l/'.!,A~l!TI~6-+-----t--+---=-iS A7 B7 !-'1=2--0~6L\, 
V;,A~QQ~7'-'----t--+---"-19 AB BBt--1~1 __ 0~7L\, v '\ 

74FCT623T 
~GAB 
~GBA 

,A~12i!""~-+----+--+---=-i2 A1 B1t--1~8-~0(~SJ, 
l/'.!,A~~_,9.,,~~---t-t--3_, A2 82 ,_1_7_~~~~~ 
V,A-~~1~0~--+--+---'-14 A3 B3 16 ~IT~ 
l/'.!,A~0-+-11,,__ __ t-t--"-<S A4 B4 15 ~' 
l/'.!,A,..,0-+-12,,__ __ t-t----t6 A5 BS 14 U\12[\ 

V;,A""0+1-ce3~--+-+--'-"7 A6 B6 13 ~ 
l/'.!,A~0~14,,,_ __ t--11--~S~A7 B7 12 --=-'.:.2' 

~,A_0~1_S~--+-+-__,9'"iAS BS 11 ~ 

74FCT623T 
~GAB 
~GBA 

,ccA~0~16,,,__ __ t--11--~2~A 1 
V,A~0,.,.__17-+---+-t--=-!3 A2 
V:,A~0,,.,.,,1S,,._ __ t-t--'-14 A3 
V:,A~0~19-+---t-t----ts A4 
V:,ccA~0~20':+----t--11--~6~AS 
V,A~0~21-+---+-t----t7 A6 
V:,A~0,.,._22-+---+-+--=<S A7 
V:,A_0-+--23-+---+-+--"-<9 AS v 

~ Gr~FCT623T 

~GBA 
,A~0~~=24,,,._ ____ -=-i2 A1 

V:,A~0~~=2S-+--------t3 A2 
V,ccA~0~26,,,__ _____ 4:-jA3 
V,A~D-+--27-+------=<5 A4 
V:,A~D~IB=2s,,._ ____ -"-<6 A5 
V:,A~0~~=29-+--------t7 A6 
V:,,A"'O~Jf~30+------"-IS Al 
Vr-cA~Df~3~1 ____ __,9~AB 
v 

B1 1S 
B2 17 
83 16 
B4 1S 
85 14 
B6 13 
B7 12 
BS 11 

B1 1S 
B2 17 
83 16 
B4 15 
BS 14 
B6 13 
B7 12 
BS 11 

BEN(3:0) 

A(31:4) 

Figure 12. Address Latch Data Transceiver Demultiplexer 
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L... 
D(31"0) 

B ADDR(~ 
ADDR(3) 

~ A(1S:4) 
L__) 

71256 
10 AO DOO 11 D(O) 

9 A1 D01 12 D(1}'\.. 
A(4) B A2 D02 13 D(2l_"'-

V.:A(5) ? A3 D03 15 D(3}'\.. 
VA(S) s A4 D04 1S D(4)'\. 
VA(7) 5 A5 D05 17 D(5[' 

~ 4 AS DOS 1B ~ v~ 3 A7 D07 19 
v~o)_ 25 AB "" VA(11) 24 A9 V.:A(12) 21 A10 
V_A(13) 23 A11 +5V 
VA(14) 2 A12 u VA(15) 2S A13 
v~s 1 A14 vcc v GND 11 20 cs 

,.--11, WE 
~ OE 

§ 
RAMCSN 
WREN NA 
WREN NB 
WREN NC 
WREN ND 
RDENN 

27256 
10 AO DO 11 D(O) 

9 A1 D1 12 .£\!l"'-
~ B A2 D2 13 ~ v~ 7 A3 D3 15 

VA(S) s A4 D4 1S D(4)'\. 
VA(?) 5 A5 D5 17 0(5)" 
V.:A(B) 4 AS DS 1B D(Sl'\., 
VA(9) 3 A7 D7 19 D(7)'\. 

VB!O 25 AB "" V3!1 24 A9 
v~2 21 +5V 

A10 
V.:A(13) 23 A11 r V.:A(14) 2 A12 
VA(15) 2S A13 VPP ~ V.:A(1S) 27 A14 vcc v GND Fi ~ cs 

~ OE 

EPROMCSN 

NOTE: BANK A - - LITTLE EN DIAN LSB BYTE 0 
- - BIG ENDIAN LSB BYTE 3 

~ 
9 

A(4) B 
VA(5) 7 
VA(S) s 
VA(7) 5 
V~B 4 
V~9 3 
V.1'l-10)_ 25 
VA(11) 24 
VA(12) 21 
V,A(13) 23 
VA(14) 2 
VA(15) 2S 
~1S 1 

v 
20 

.--1Z-
~ 

~ 
9 

A4 B 

V~5 7 
VA(S) s 
VA(?) 5 
V:A(B) 4 
V.:A(9) 3 
v~o 25 
V_l\(.11 24 
VAj12)_ 21 
VA(13) 23 
V:A(14) 2 
V.:A(15) 2S 
VA(1S) 27 

v 
~ 
~ 

Figure 13. ROM and Static RAM Memory 
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71256 

AO DOO 11 D(B 

A1 D01 12 D}9i'\ 

A2 D02 13 Qi:IO)" 

A3 D03 15 D 11f\ 

A4 D04 1S D 12)'\. 

A5 D05 17 D 13)" 

AS DOS 1B D 14f\ 

A7 DQ7 19 D(15f\ 

AB "" A9 
A10 
A11 +5V 

A12 u A13 
A14 vcc 

GND 11 cs 
WE 
OE 

27256 

AO DO 11 D(B) 

A1 D1 12 Di91'\. 

A2 D2 
13 D(1<1_"'\. 

A3 D3 15~1~ 

A4 D4 1S D(12)" 

A5 D5 
17 D(13)" 

AS DS 
1 B D(14)::'\ 

A7 D7 19 D(15)" 

AB "" A9 +5V 
A10 
A11 >-
A12 
A13 VPP l~B + 
A14 vcc 

GND Fi cs 
OE 
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D(31·0) 
CJ 

71256 71256 

~ AO DQO 11 D(16) 
~ AO DQO 11 D(24) 

9 A1 DQ1 12 D(17)'""" 9 A1 DQ1 12 D(25)'\I 
A(4) 8 

A2 DQ2 13 D(18)"'\. A(4) 8 
A2 DQ2 13 D(26)_"! 

VA(5) 7 
A3 DQ3 15 D(19)::'-. VA(5) 7 

A3 DQ3 15 D(27)~ 
V::A(6) 6 

A4 DQ4 16 D(20)::'-. V::A(6) 6 
A4 DQ4 16 D(2B)'\I 

VA(?) 5 
A5 DQ5 17 D(21)"'\. VA(?) 5 

A5 DQ5 17 D(29)_"! 

v~ 4 A6 DQ6 18 ~2;:)_"'\. v~ 4 A6 DQ6 18 ~~~ v~ 3 A? DO? 19 ~~ v~ 3 A? DQ7 19 
v310)_ 25 AB " v~10)_ 25 AB "I 
VA(11) 24 

A9 
VA(11) 24 

A9 
VA(12) 21 

A10 
VA(12) 21 

A10 
V::A(13) 23 

A11 +5V VA(13) 23 
A11 +5V 

VA(14) 2 
A12 lJ 

VA(14) 2 
A12 lJ VA(15) 26 

A13 
VA(15) 26 

A13 
v~16 1 A14 vcc v~16 1 A14 vcc v GND n v GND n 20 cs 20 -cs ,----n, WE ,--2L WE 
~ TIE ,_.gg_ OE 

27256 27256 
._____1Q_ AO DO 11 D(16) <---.1.Q_ AO DO 

11 D(24) 

9 A1 D1 12 E0~""- 9 
A1 D1 

12 _£\_25)_"! 

~ 8 A2 D2 13 ~~ ~ 8 A2 D2 
13 :.'.!12~~ 

v~ 1 A3 D3 15 _i:>i 1 9)_" v~ 1 A3 D3 
15 :.'.!12'.l_ '\I 

VA(6) 6 
A4 D4 16 D(20)"'\. VA(6) 6 

A4 D4 
16 D(28}_'\I 

VA(?) 5 
A5 D5 17 D(21)_"'\. VA(?) 5 

A5 D5 
17 0(29)_"! 

VA(B) 4 
A6 D6 18 D(22)::'-. VA(B) 4 

A6 D6 
18 0(30)~ 

VA(9) 3 
A? D7 19 D(23) "'\. VA(9) 3 

A? D7 
19 0(31)'\I 

v~10 25 AB 
'"""' 

v~1'1_ 25 
AB "I 

v~11 24 
A9 +5V 

v~11 24 
A9 +5V v~12 21 A10 

kJ 
vl\(_12)_ 21 

A10 

kJ VA(13) 23 
A11 

VA(13) 23 
A11 VA(14) 2 

A12 
VA(14) 2 

A12 V::A(15) 26 
A13 VPP 

VA(15) 26 
A13 VPP 

J.-':A(16) 27 A14 vcc VA(16) 27 
A14 vcc v GND r1 

v GND n 
~ cs Jr:c' ~ OE OE 

OTE BANK D - - LITTLE ENDIAN MSB BYTE 3 
- - BIG EN DIAN MSB BYTE 0 

Figure 13. ROM and Static RAM Memory 
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+5V 

~ 
68681 

~ 1ACK 
OTA(% i.2.. 

L) Q(?:Q)_ 
D7 19 D7 OPO 

29 Oi:lQ)_ 
/DS 22 D6 TXDA 

30 TXDA 
VD5 18 D5 RXDA 

31 RXDA 
V,_D4 23 D4 IPO 

7 I~ 
V,_D3 17 D3 OP1 

12 oljIT 
VD2 24 D2 TXDB 

11 TXDB 
VD1 16 10 RXDB 
VDO 

D1 RXDB IPill_ 25 DO IP1 
4 

D ADD~:~ IL OP2 
28 oi:®._ 

Af§:4)_ 
AJ§_ 6 RS4 IP2 

36 I~ 
L., /~ 5 RS3 v ADDR(3) 3 RS2 IRQ 

21 UARTINTOC 
VADD~ 1 RS1 v TESTEN(3) 

8 
GUARTCSN 35 cs 
WRENN 8 T!lW 
RESETN 34 !=!ES L/ 2 IP3 ~ ~ OP3 

~ IP4 OP4 ~ 
[""") IOCLK ~ IP5 OP5 i-H 

CLK OPS ~ ~ 

+5V ~ X2 t-1.§ OP? 

~ 
""# 

SYSCLK 

ADD~ 19 AO 
VADD~ 20 A1 v 8254 

DO 8 DO 
VD1 7 D1 
VD2 6 D2 OUTO 10 OUT(O) 

V,_D3 5 D3 
V,_D4 4 D4 
VD5 3 D5 ~ VD6 2 D6 v ADDA@: 
VD7 13 OUT(1) 1 D7 OUT1 V.--v 

21 (';S r--
22 RD WREN NA 23 WR" 

OUT2 
17 OUT(2) 

~ GATEO 
~ CLKO 

H-1!1 GATE1 

~ CLK1 
~ GATE2 

18 CLK2 

R TIMERCSN 
RDENN 

L/ 
INTENN 

Figure 14. Input/Output Devices 
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+5V 

L;>. 
+5V 

~ 

16 

~4.7K 
MAX235 

vcc~ 

-+------'8=-iTl1 
--+----~7'-<Tl2 
--+----~9'-<R01 
--+----~6'-'R02 

15 Tl3 
16 Tl4 

-+----2=3=-iR03 
--+----~17'-<R04 

22 Tl5 
-+----~14'-IR05 

~EN 
..nso 

-+---e til-GND 

101 3 RTSNJQL 

102 4 TXOJ.O 
Rl1 10 RXOJQ[ 
Rl2 5 CTSN QL 

103 2 RTSN 1l_ 
T04 1 TXOJ1 

Rl3 24 RXOJ1 
Rl4 18 CTSN :!l_ 

T05 19 OTRN IT 
Rl5 13 OSRN IT 

~---~ 

--, 

-~ 
4.7K~ 

~1~ 

** 

-+-+-

0825 

5 -"Rm 
3 _;TXO 
2 :; RXO 
4 :;CTS 
s~rrm 
~OS!i 

.zt-<GNO 

0825 

~--+---'5'+_,..< RTS 
~--+-~3+_;< ·rxo 

~--+--'2'+-<:; RXO 
~---t--4'+<:; CTS 

~-----+---'6'+<-"rm1 
20 ;OS!i 

~GND 

Figure 14. Input/Output Devices 

15 

APPLICATION NOTE AN-86 



IDT79R3051"' SYSTEM DESIGN EXAMPLE 

+5V 
,6. 

Figure 15. Power Connector 

4.7K~ 
16 

Figure 17. Spares 

16 

GND 
DIAG(O) 

BURSTN 
ADDR(2) 

GND 
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{ TITLE 

PURPOSE 
LANG 
AUTHOR 
UPDATES 

MEMDEC.LPLC 
UPALl MEMORY AND I/O ADDRESS DECODER PAL FOR THE R305X 
BEHAVIORAL BUS EMULATOR MEMORY EVALUATION BOARD 
DECODES DEMULTIPLEXED ADDRESS TO GENERATE CHIP SELECTS. 
LPLC - TM OF CAPILANO COMPUTING SYSTEMS 
ANDY NG, IDT INC. 
C2503 03-18-91 AP NOTE FIRST RELEASE 

MODULE UPALl 
TITLE UPALl 
TYPE AMD 22V10 

INPUTS 
DEMULTIPLEXED MEMORY ADDRESS LINES } 

APPLICATION NOTE AN-86 

A17 NODE[PINl] { MSB ADDRESS LINES 31-17 

OUTPUTS 

A18 NODE[PIN2] 
A19 NODE [PIN3] 
A20 NODE [PIN4] 
A21 NODE [PINS] 
A22 NODE [PIN6] 
A23 NODE[PIN7] 
A24 NODE [PINS] 
A25 NODE [PIN9] 
A26 NODE[PINlO] 
A27 NODE [ PIN11] 
A28 NODE [ PIN13] 

{ OUTPUT FEEDBACK NODES (NEEDED FOR LPLC'ISM) } 
A29 NODE[PIN16] 
A30 NODE[PIN15] 
A31 
MEMSPAREO 
MEMSPAREl 
MEMSPARE2 

NODE [PIN14] 
NODE[PIN19] 
NODE[PIN18] 
NODE[PIN17] 

{ ATTRIBUTES C - COMBINATIONAL, R - REGISTERED, H - HIGH, L - LOW } 

CHIP SELECTS 
RAMCSN NODE[PIN23] ATTR[CL] STATIC RAM CHIP SELECT 
EPROMCSN NODE[PIN22] ATTR[CL] EPROM CHIP SELECT 
UARTCSN NODE [ PIN21] ATTR[CL] UNGATED UART CHIP SELECT 
TIMERCSN NODE [ PIN2 0] ATTR[CL] TIMER CHIP SELECT 

{ I/O PINS USED AS INPUTS } 
A29 NODE [ PINl 4] ATTR[CL] { MSB ADDRESS LINES 31-17 
A30 NODE [ PINl 5] ATTR[CL] 
A31 NODE [ PINl 6] ATTR[CL] 
MEMSPAREO NODE [PIN19] ATTR[CL] 
MEMSPAREl NODE [PIN18] ATTR[CL] 
MEMSPARE2 NODE[PIN17] ATTR[CL] 

{ OUTPUT ENABLES } 
RAMCSNEN NODE[PIN23EN] 
EPROMCSNEN NODE[PIN22EN] 
UARTCSNEN NODE[PIN21EN] 
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TERMS 

TIMERCSNEN NODE[PIN20EN] 
A29EN NODE[PIN14EN] 
A30EN NODE[PIN15EN] 
A31EN NODE[PIN16EN] 
MEMS PARE OEN NODE[PIN19EN] 
MEMSPARElEN NODE[PIN18EN] 
MEMSPARE2EN NODE[PIN17EN] 

{ ASYNCHRONOUS RESET AND SYNCHRONOUS PRESET NODES } 
RESET EN NODE[RESET] 
PRESETEN NODE[PRESET] 

7RS382 COMPATIBLE PHYSICAL ADDRESS DECODE MAP } 
RAM OOOOOOOOH OOOlFFFFH 32K } 

EPROM lFCOOOOOH lFClFFFFH 32K } 

UART lFEOOOOOH 1FE0003FH } 

TIMER 1F800000H 1F80002CH } 

LPLC "TABLE" ALGORITHM TAKES TOO LONG TO COMPILE } 

NOTES: MEMSPAREO IS BEING USED FOR A BOARD CHIP SELECT 
DRIVABLE BY ANOTHER MEMORY SYSTEM. WITHOUT IT 
ASSERTED LOW, THIS BOARD WILL NOT ISSUE ANY MEMORY 
SIGNALS NOR OUTPUT ENABLE SHARED CONTROL PINS. 

{ NOTES: MEMSPAREl IS NOT BEING USED. IT COULD BE USED AS AN 
OUTPUT IF IT OR THE UPAL2 OUTPUT IT IS CONNECTED TO IS 
TRISTATED. 

{ NOTES: MEMSPARE2 IS BEING USED AS A TESTEN INPUT PIN TO 
TRISTATE THE OUTPUTS DURING BOARD TESTING. ANOTHER 
USE WOULD BE FOR A BOARD CHIP SELECT - MEMCSN. 
MEMSPARE2 IS CONNECTED TO A UPAL3 INPUT PIN. 

{ I/O PINS USED ONLY AS INPUTS } 
A29EN 0 
A30EN 0 
A31EN 0 
MEMSPAREOEN 0 
MEMSPARElEN 0 
MEMSPARE2EN 0 
A29 NOT 0 
A30 NOT 0 
A31 NOT 0 
MEMSPAREO NOT 0 
MEMSPAREl NOT 0 
MEMSPARE2 NOT 0 

{ RESET AND PRESET ARE NOT USED IN THIS PAL. } 

RESET EN 0 
PRESETEN = 0 

RAMCSNEN 
RAMCSN NOT 

; 

!MEMSPARE2 ; 
!MEMSPAREO AND 

!A31 AND !A30 AND !A29 AND !A28 
AND !A27 AND !A26 AND !A25 AND !A24 
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EPROMCSNEN 
EPROMCSN NOT 

UARTCSNEN 
UARTCSN NOT 

TIMERCSNEN 
TIMERCSN NOT 

END; 
END UPALl. 

AND !A23 AND !A22 AND !A21 AND !A20 
AND !A19 AND !A18 AND !A17 

!MEMSPARE2 ; 
!MEMSPAREO AND 

!A31 AND !A30 AND !A29 AND A28 
AND A27 AND A26 AND A25 AND A24 
AND A23 AND A22 AND !A21 AND !A20 
AND !A19 AND !A18 AND !A17 

!MEMSPARE2 ; 

!MEMSPAREO AND 
!A31 AND !A30 AND !A29 AND A28 

AND A27 AND A26 AND A25 AND A24 
AND A23 AND A22 AND A21 AND !A20 
AND !A19 AND !A18 AND !A17 

!MEMSPARE2 ; 

!MEMSPAREO AND 
!A31 AND !A30 AND !A29 AND A28 

AND A27 AND A26 AND A25 AND A24 
AND A23 AND !A22 AND !A21 AND !A20 
AND !A19 AND !A18 AND !A17 
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{ TITLE MEMCONT.LPLC 
UPAL2 MEMORY CONTROLLER PAL FOR THE R305X BEHAVIORAL BUS EMULATOR 
MEMORY EVALUATION BOARD 

PURPOSE: PRODUCES READ, WRITE, AND BUS ERROR ACKNOWLEDGE CONTROLS (RDCENN, 
ACKN, BUSERRORN) BASED ON A 4 OR 5 BIT COUNTER AND CYCLE END 
STALL CYCLE (WAIT STATE) EQUATIONS. 

LANG LPLC - TM OF CAPILANO COMPUTING SYSTEMS 
AUTHOR ANDY NG, IDT INC. 
UPDATES: C4B76 03-18-91 AP NOTE SECOND RELEASE 

MODULE UPAL2 
TITLE UPAL2 
TYPE AMD 22V10 

INPUTS 
REGULAR INPUT PINS } 

SYSCLK NODE[PINl] 
RESETN NODE [PIN2] 
RDN NODE [PIN3] 
WRN NODE[PIN4] 
BURS TN NODE [PINS] 
RAMCSN NODE [PIN6] 
EPROMCSN NODE[PIN7] 
UAR TC SN NODE [PINS] 
TIMERCSN NODE[PIN9] 
MEMSPAREO NODE [ PINl 0] 
MEMSPARE2 NODE [ PINl 1] 

UN-INVERTED SYSTEM CLOCK 
MASTER RESET 
READ 
WRITE 
BURST READ I WRITE NEAR 
RAM CHIP SELECT 
EPROM CHIP SELECT 
UART CHIP SELECT 
TIMER CHIP SELECT 

TESTEN NODE[PIN13] TEST PIN TO Z-STATE OUTPUTS 

OUTPUTS 

{ REGISTER FEEDBACK PINS } 
C WIDTH[5] NODE[PIN15,PIN14,PIN21,PIN22,PIN23] 
ENSTARTN NODE[PIN16] 
CYCENDN NODE[PIN18] 
RDCENN NODE[PIN19] 
ACKN NODE[PIN20] 
BUSERRORN NODE[PIN17] 

{ ATTRIBUTES C - COMBINATIONAL, R - REGISTERED, H - HIGH, L - LOW 

REGISTERED OUTPUT PINS } 
BINARY UP COUNTER INPUTS MSB TO LSB C4, C3, C2, Cl, co } 

c WIDTH[5] NODE[PIN15,PIN14,PIN21,PIN22,PIN23] ATTR[RL] 
ENSTARTN NODE[PIN16] ATTR[RL] { READ/WRITE OUTPUT ENABLE START 
CYCENDN NODE[PIN18] ATTR[RL] { CYCLE END (COMPOSITE ACK) 
RDCENN NODE[PIN19] ATTR[RL] { R305X READ BUFFER CLOCK ENABLE 
ACKN NODE[PIN20] ATTR[RL] { R3050X ACKNOWLEDGE 
BUSERRORN NODE[PIN17] ATTR[RL] { R305X BUS ERROR 

{ OUTPUT ENABLES } 
CEN WIDTH[5] 
ENSTARTNEN 
CYCENDNEN 
RDCENNEN 
ACKNEN 
BUSERRORNEN 

NODE[PIN15EN,PIN14EN,PIN21EN,PIN22EN,PIN23EN] 
NODE[PIN16EN] 
NODE[PIN18EN] 
NODE[PIN19EN] 
NODE[PIN20EN] 
NODE [PINl 7EN] 
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TABLE 

{ ASYNCHRONOUS RESET AND SYNCHRONOUS PRESET NODES } 
RESETEN NODE[RESET] 
PRESETEN NODE[PRESET] ; 

{ RESET AND PRESET ARE NOT BEING USED. 
RESET EN 0 
PRESETEN = 0 ; 

PURPOSE: PROVIDES REGISTERED VERSION OF RDN AND WRN. 

NOTE: 

NOTE: 

QRDN NOT 
QWRN NOT 

QRDN AND QWRN ARE KEPT LOW ONE EXTRA CLOCK BY CYCENDN. 
THIS IS BECAUSE THE RISING EDGE OF RDN OR WRN MAY NOT 
HAVE ENOUGH HOLD TIME FROM THE RISING EDGE OF 
(BUFFERRED) SYSCLK. 
QRDN AND QWRN DO NOT NECESSARILY TRANSITION BACK HIGH 
BETWEEN CONSECUTIVE MEMORY CYCLES, E.G., WRITE FOLLOWED 
BY A WRITE. 

RESETN AND ( ! RDN OR ( ! QRDN AND ! CYCENDN) ) 
RESETN AND ( !WRN OR ( !QWRN AND !CYCENDN)) 

{ PURPOSE: C[4]-C(O] PROVIDES A 5-BIT BINARY UP COUNTER. IT IS RESET 
ANYTIME RESETN IS ASSERTED AND AT THE END 

NOTE: 

{ NOTE: 

CEN[O] 
CEN[l] 
CEN[2] 
CEN[3] 
CEN[4] 

C(O] . -

C[l] . -

C[2] . -

OF EVERY MEMORY CYCLE AFTER CYCENDN IS ASSERTED. 
IT BEGINS COUNTING UP WHEN A READ OR WRITE CYCLE IS 
INITIATED. 
CYCENDN IS ASSUMED TO ASSERT WITH THE LAST RDCENN 
ON READS AND WITH ACKN ON WRITES. THUS CYCENDN WILL CLEAR 
THE COUNTER WHETHER OR NOT RDN OR WRN HIGH TRANSITION 
MEETS THE REGISTER SETUP AND HOLD TIME REQUIREMENTS. 

TO ADD A GENERAL PURPOSE READY (A.K.A. BUSYN AND WAITN) 
INPUT, CHANGE EACH OF THE COUNTER C[4:0] EQUATIONS SO 
THAT THEIR VALUE CAN BE HELD WITH AN ADDITIONAL TERM, E.G.: 
C[O] .- RESETN AND CYCENDN AND (!RDN OR !WRN) 

AND ( (C [OJ XOR 1) 
OR (C[O] AND !READY) ) ; 

A READY INPUT CAN BE USED FOR DUAL-PORT MEMORY INTERFACING, 
EEPROM WRITE INTERFACING, ETC. 

!TESTEN 
!TESTEN 
!TESTEN 
!TESTEN 
!TESTEN 

RESETN AND CYCENDN AND (!RDN OR !WRN) 
AND (C[O] XOR 1) ; 

RESETN AND CYCENDN AND (!RDN OR !WRN) 
AND (C[l] XOR C[O]) 

RESETN AND CYCENDN AND (!RDN OR !WRN) 
AND ( C [ 2 ] XOR ( C [ 1 ] AND C [ 0 ] ) ) ; 
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c [3] 

C[4] 

RESETN AND CYCENDN AND (!RDN OR !WRN) 
AND (C[3] XOR (C[2] AND C[l] AND C[O])) 

RESETN AND CYCENDN AND (!RDN OR !WRN) 
AND (C[4] XOR (C[3] AND C[2] AND C[l] AND C[O])) 

{ PURPOSE: ENSTARTN OUTPUT PROVIDES THE TIMING FOR THE LEADING 
EDGE OF OEN AND WEN STROBES SO THAT 1. THE ADDRESS LINES HAVE 
TIME TO BE DECODED AND 2. OE/DATA PINS HAVE TIME TO Z-STATE 
FROM READS ON THE PRECEDING CYCLE. THE CYCENDN TERM IS 
NEEDED TO HOLD OFF A CONSECUTIVE MEMORY CYCLE, E.G., WHEN 
WRITE DEASSERTS AND REASSERTS WITHIN THE SAME CLOCK. 
ENSTARTN SHOULD NOT BE USED TO END WRITE TRANSCEIVER 
ENABLES AS IT DEASSERTS WITH THE WRITE LINE INSTEAD OF 
HOLDING FOR ONE MORE 1/2 CLOCK. 

ENSTARTNEN !TESTEN ; 
ENSTARTN NOT .- !MEMSPAREO AND RESETN AND (C >= 1) AND CYCENDN 

{ PURPOSE: CYCLE END GOES LOW (SYNCHRONOUSLY) DURING THE LAST RDCENN ON 
READS AND DURING ACKN ON WRITES. IT RETURNS HIGH 
SYNCHRONOUSLY BY INTERLOCKING ON THE COUNTER OUTPUTS 
WHICH COUNT ONE GREATER THAN THE ASKED FOR VALUE BEFORE 
RESETTING BACK TO ZERO (VIA CYCENDN) . THUS CYCENDN WILL 
DEASSERT ON THE SAME CLOCK AS THE RDN, WRN, OR BURSTN RISING 
EDGES REGARDLESS OF WHETHER OR NOT THOSE RISING EDGES MEET 
THE REGISTER'S SETUP AND HOLD TIMES. 

{ NOTE: TO FIT CYCENDN INTO A 16V8, TWO OUTPUTS MAY BE NEEDED. 

CYCENDNEN !TESTEN ; 
CYCENDN NOT ·- RESETN AND CYCENDN AND ( 

( !RAMCSN AND (C 02H) AND !RDN AND BURS TN) 
OR ( !RAMCSN AND (C 08H) AND !RDN AND !BURSTN) 
OR ( !RAMCSN AND (C 03H) AND !WRN ) 

OR ( ! EPROMCSN AND (C 03H) AND !RDN AND BURSTN) 
OR ( ! EPROMCSN AND (C OCH) AND !RDN AND !BURSTN) 
OR ( !UARTCSN AND (C 06H) ) 

OR ( ! TIMERCSN AND (C 06H) ) 

OR ( { ! BUSERRORN} (C lFH) ) 

) ; 

{ NOTE: IN THIS EXPERIMENT MEMSPAREO IS PULLED LOW AND CAN BE 
USED TO DISABLE THIS CONTROLLER'S RDCENN, ACKN, AND BUSERRORN. 
SINCE MEMSPAREO IS ATTACHED TO THE MEMDEC.LPLC PAL, THE 
MEMDEC PAL COULD COMBINE THE CSN'S SO THAT THESE SIGNALS 
ARE ONLY DRIVEN WHEN NEEDED. 

{ NOTE: ANOTHER POSSIBILITY IS TO USE MEMSPAREO AS AN EXTRA CHIP 
SELECT. 

PURPOSE: READ BUFFER CLOCK ENABLE IS USED BY THE R305X TO STROBE 
DATA INTO ITS INTERNAL READ BUFFERS. 

NOTE: IT IS ASSUMED THAT THE UART AND TIMER ARE 
IN UNCACHABLE MEMORY.SPACE AND WILL NOT BE BURST READ. 
IF THEY ARE BURST READ, THE STATE MACHINE LOOPS 4 TIMES. 
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RDCENNEN 
RDCENN NOT 

) ; 

!MEMSPAREO ; 

·- RESETN AND CYCENDN AND ( 

( !RAMCSN AND !RDN 
AND ( 

OR ( !BURSTN AND 
OR ( ! BURSTN AND 
OR ( ! BURSTN AND 

OR ( ! EPROMCSN AND !RDN 
AND ( 

OR ( ! BURSTN AND 
OR ( ! BURSTN AND 
OR ( ! BURSTN AND 

OR (!UARTCSN AND !RDN 
AND ( 

) 

OR (!TIMERCSN AND !RDN 
AND ( 

) 

APPLICATION NOTE AN-86 

(C 02H) 
(C 04H)) 
(C 06H)) 
(C 08H)) 

(C 03H) 
(C 06H)) 
(C 09H)) 
(C OCH)) 

(C 06H) 

(C 06H) 

{ PURPOSE: ACKNOWLEDGE IS PRIMARILY USED TO END WRITE CYCLES. IT 
SHOULD BE PULSED ONE (HALF) CLOCK CYCLE BEFORE THE WRITE 
STROBE IS NEEDED. ON READ CYCLES, ACKNOWLEDGE WILL 
IMPLICITLY BE GENERATED BY THE R305X, HOWEVER, IF OPTIMAL 
TIMING IS DESIRED, ACK SHOULD BE DRIVEN NO SOONER THAN 1 
CLOCK BEFORE THE END OF A SINGLE READ AND FOR BURSTS NO 
SOONER THAN 4 CLOCKS BEFORE THE END OF THE LAST READ. 

ACKNEN 
ACKN NOT 

!MEMSPAREO ; 
.- RESETN AND CYCENDN AND 

(!RAMCSN AND !WRN 
AND ( 

) 

(C 

OR (!RAMCSN AND !RDN AND !BURSTN 

03H) 

AND ( (C == OSH) 
) 

OR (!EPROMCSN AND !RDN AND !BURSTN 
AND ( (C == 09H) 

) 

OR (!UARTCSN AND !WRN 
AND ( 

) 

(C 06H) 
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) ; 

OR (!TIMERCSN AND !WRN 
AND ( 

) 

APPLICATION NOTE AN-86 

WRITE CYCLE } 
(C 06H) 

{ PURPOSE: BUSERRORN SIMPLY ENDS A WAYWARD UNDECODED BUS CYCLE. ON 
READS IT CAUSES AN EXCEPTION. ON WRITES IT DOES NOT CAUSE 
AN EXCEPTION CONDITION FOR THE PROCESSOR. TO DO THAT, LATCH 
BUSERRORN AND FEED IT TO AN INTERRUPT PIN OR A BRANCH 
CONDITION PIN. 

BUSERRORNEN !MEMSPAREO 
BUSERRORN NOT .- RESETN AND CYCENDN AND 

(C lFH) 
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{ TITLE MEMEN.LPLC 
UPAL3 MEMORY READ AND WRITE ENABLE PAL FOR THE R305X BEHAVIORAL BUS 
EMULATOR MEMORY EVALUATION BOARD 

PURPOSE 
LANG 
AUTHOR 
UPDATES 

GENERATES READ AND WRITE ENABLES FOR MEMORY CONTROLS. 
LPLC - TM OF CAPILANO COMPUTING SYSTEMS 
ANDY NG, IDT INC. 
C7C4F 03-18-91 AP NOTE FIRST RELEASE 

MODULE UPAL3 
TITLE UPAL3 
TYPE AMD 22V10 

INPUTS 
DEMULTIPLEXED MEMORY ADDRESS 

SYSCLK NODE [PINl] 
POWRESETN NODE[PIN2] 
RDN NODE[PIN3] 
WRN NODE[PIN4] 
ENSTARTN NODE [PINS] 
CYCENDN NODE[PIN6] 
BENO NODE [PIN7] 
BENl NODE [PIN8] 
BEN2 NODE [PIN9] 
BEN3 NODE [PINlO] 
UAR TC SN NODE[PINll] 
MEMSPARE2 NODE [ PIN13] 

LINES } 
INVERTED SYSCLKN 
POWER UP RESET 
READ LINE 
WRITE LINE 
ENABLE START 
CYCLE END 
BYTE ENABLE 0 
BYTE ENABLE 1 
BYTE ENABLE 2 
BYTE ENABLE 3 
UART CHIP SELECT 
SPARE INPUT 

{ OUTPUT FEEDBACK NODES (NEEDED FOR LPLC'ISM) } 

OUTPUTS 

RESETN NODE[PIN23] 
WRENN 
WRDATAEN 

NODE[PIN18] 
NODE[PIN17] 

{ ATTRIBUTES C - COMBINATIONAL, R - REGISTERED, H - HIGH, L - LOW } 

WRITE ENABLES 
WRENN A NODE[PIN22] ATTR[RL] 
WRENNE NODE[PIN21] ATTR[RL] 
WRENNC NODE[PIN20] ATTR[RL] 
WRENND NODE[PIN19] ATTR[RL] 
WRENN NODE [ PINl 8] ATTR[RL] 
WRDATAEN NODE [ PINl 7] ATTR[RL] 

{ READ ENABLES 
RDENN NODE[PIN16] ATTR[RL] 
RDDATAENN NODE[PIN15] ATTR[RL] 

{ MISCELLANEOUS CONTROLS } 
RESETN NODE[PIN23] ATTR[RL] 
GU AR TC SN NODE [ PINl 4] ATTR[RL] 

I/O PINS USED AS INPUTS } 
NONE } 

OUTPUT ENABLES } 
WRENNAEN NODE[PIN22EN] 
WRENNE EN NODE[PIN21EN] 
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WRITE ENABLE FOR BYTE 0 
WRITE ENABLE FOR BYTE 1 
WRITE ENABLE FOR BYTE 2 
WRITE ENABLE FOR BYTE 3 
WRITE ENABLE MOTO-TYPE I/O 
WRITE DATA XCEIVER ENABLE 

READ OUTPUT ENABLE (FOR WORDS)} 
READ DATA XCEIVER ENABLE } 

SYNCHRONIZED RESET 
GATED/GUARDED UART CHIP SELECT} 
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TABLE 

WRENNCEN NODE[PIN20EN] 
WRENNDEN NODE[PIN19EN] 
WRENN EN NODE[PIN18EN] 
WRDATAENEN NODE[PIN17EN] 
RDENNEN NODE[PIN16EN] 
RDDATAENNEN NODE[PIN15EN] 
RESETNEN NODE[PIN23EN] 
GUARTCSNEN NODE[PIN14EN] 

{ ASYNCHRONOUS RESET AND SYNCHRONOUS PRESET NODES } 
RESET EN NODE[RESET] 
PRESETEN NODE[PRESET] 

{ RESET AND PRESET ARE NOT USED IN THIS PAL. } 
RESET EN 0 
PRESETEN = 0 ; 

{ PURPOSE: WRITE BYTE ENABLES AND WRITE WORD ENABLE ALLOW 
SUFFICIENT TIME FOR THE ADDRESS TO DECODE AND 
FOR A VALID CHIP SELECT BEFORE ENABLING THE 
WRITE STROBE FOR A SPECIFIC BYTE BANK. 

NOTE: 

WRENNAEN 
WRENN A 

) ; 

WRENNE EN 
WRENNE 

) ; 

WRENNCEN 
WRENNC 

) ; 

WRENNDEN 
WRENND 

) ; 

BANK A IS THE BIG ENDIAN'S LSB BYTE3 OR THE LITTLE 
ENDIAN'S LSB BYTEO. IT ALWAYS HOLDS D(7:0). 
BANK D IS THE BIG ENDIAN'S MSB BYTEO OR THE BIG 
ENDIAN'S MSB BYTE3. IT ALWAYS HOLDS D(31:23). 

!MEMSPARE2 ; 

NOT . - RESETN AND ( 

!WRN AND !BENO AND !ENSTARTN AND CYCENDN 

!MEMSPARE2 ; 
NOT . - RESETN AND ( 

!WRN AND !BENl AND !ENSTARTN AND CYCENDN 

!MEMSPARE2 ; 
NOT .- RESETN AND ( 

!WRN AND !BEN2 AND !ENSTARTN AND CYCENDN 

!MEMSPARE2 ; 

NOT ·- RESETN AND ( 

!WRN AND !BEN3 AND !ENSTARTN AND CYCENDN 

{ PURPOSE: WRENN IS USED TO PROVIDE A WRITE LINE THAT HOLDS 
LOW FOR AN EXTRA CYCLE, SO THAT IT CAN BE USED FOR 
MOTOROLA-TYPE I/O DEVICES ON THEIR MULTIPLEXED 
READ/WRITE LINE. 

WRENN EN 
WRENN 

!MEMSPARE2 
NOT .- RESETN AND 
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( !WRN AND CYCENDN) 
OR ( ! WRENN AND ! CYCENDN) 

) ; 

{ PURPOSE: WRDATAEN AND RDDATAENN DRIVE THE OUTPUT ENABLE 
CONTROLS ON A FCT623T TRANSCEIVER BANK FOR THE 
DATA BUS. THE CONTROLS CAN BE USED FOR ANY 
DUAL-OUTPUT ENABLE TRANSCEIVER (1 FOR EACH 
DIRECTION. OUTPUT ENABLE/DIRECTION CONTROLLED 
TRANSCEIVERS (FCT245) REQUIRE MORE INTERFACING 
IF OUTPUT CONTENTION IS TO BE AVOIDED BY 

{ NOTE: 

NOTE: 

NOTES: 

WRDATAENEN 
WRDATAEN 

) ; 

RDENNEN 
RDENN 

) ; 

ONLY CHANGING THE DIRECTION WHEN THE OUTPUTS ARE 
DISABLED. 

WRITE DATA ENABLE DEASSERTS ONE CLOCK AFTER 
WRN DOES TO PROVIDE SUFFICIENT HOLD TIME FOR THE 
WRITE DATA INTO THE MEMORY (SEE UPAL2 QWRN FOR A 
MORE DETAILED EXPLANATION) . 
WRDATAEN IS ACTIVE HIGH FOR THE FCT623T OUTPUT ENABLE 
CONTROL. FOR THE FCT861 OUTPUT ENABLES, USE ACTIVE 
LOW. 
THE FIRST OR-TERM ASSERTS WRDATAEN WHILE THE SECOND 
OR-TERM DEASSERTS WRDATAEN. 

!MEMSPARE2 ; 
.- RESETN AND ( 

( ! WRN AND ! ENSTARTN) 
OR (WRDATAEN AND ( ! ENSTARTN OR ! CYCENDN) ) 

!MEMSPARE2 ; 
NOT .- RESETN AND ( 

!RDN AND !ENSTARTN AND CYCENDN 

{ PURPOSE: RDDATAENN IS CONNECTED TO THE MEMORY BOARD'S 

{ NOTE: 

DATA TRANSCEIVER OUTPUT ENABLE (FCT623T OR FCT861) 
AND ONLY ENABLES FOR THIS BOARD'S CHIP SELECTS. 
IF THE MEMORY CONTROLLER IS USED FOR ANOTHER 
BOARD'S MEMORY, THEN THE TRANSCEIVER OUTPUT ENABLE 
SHOULD BE DISABLED FOR THOSE CHIP SELECTS (VIA 
MEMSPARE2. 

IN MOST SYSTEMS, R305X'S DATAENN OUTPUT CAN BE 
CONNECTED DIRECTLY TO THE TRANSCEIVER ENABLE PIN 
INSTEAD OF USING A SYNTHESIZED RDDATAENN. 

RDDATAENNEN !MEMSPARE2 
RDDATAENN NOT .- RESETN AND 

!RDN AND !ENSTARTN AND CYCENDN 
) ; 

{ PURPOSE: RESET SYNCHRONIZES THE POWER UP RESET FOR THE 
MEMORY CONTROLLER STATE MACHINES AND FOR THE R305X. 

RESETNEN 
RESETN 

!MEMSPARE2 
NOT .- !POWRESETN 
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END; 

{ PURPOSE: GUARDED/GATED UART CHIP SELECT, GUARTCSN GATES 
UARTCSN BECAUSE THE UART BEING USED HAS A MOTOROLA­
TYPE I/O DEVICE INTERFACE WHICH MULTIPLEXES ITS 
READ/WRITE INPUT PIN SUCH THAT THE CHIP SELECT MUST 
STROBE IN OR OUT DATA. THIS IS IN CONTRAST TO AN 
INTEL-TYPE I/O DEVICE INTERFACE WHICH WOULD HAVE A 
SEPARATE READ STROBE AND WRITE STROBE AS WELL AS A 
CHIP SELECT. IT IS IMPORTANT NOT TO HAVE A 
GLITCH (FROM ADDRESS DECODING THE CHIP SELECT) ON 
READS IN ORDER TO ALLOW THE I/0 DEVICE TO UPDATE 
FIFO POINTERS, ETC. THUS GUARTCSN STARTS LATE AND 
ENDS EARLY, SO THAT READ/WRITE IS HELD VALID 
THROUGHOUT THE CHIP SELECT. 

GUARTCSNEN ! MEMS PARE2 ; 
GUARTCSN NOT .- RESETN AND ( 

!UARTCSN AND !ENSTARTN AND CYCENDN 
) ; 

END UPAL3. 
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{ TITLE MEMINT.LPLC 
UPAL4 MEMORY I/0 INTERRUPT CONTROLLER PAL FOR THE R305X BEHAVIORAL 
BUS EMULATOR MEMORY EVALUATION BOARD 

PURPOSE: REPLICATES THE TIMER/UART INTERRUPT CONTROLLER ON THE 7RS382 BOARD. 
ADDITIONAL FUSE BITS ADDED FOR 16V8 COMPATIBILITY. 

LANG 
AUTHOR 

LPLC - TM OF CAPILANO COMPUTING SYSTEMS 
IDT INC. 

UPDATES: C3F98 01-04-91 16V8 PCB VERSION FIRST RELEASE A.N. 

{ U24A_382 INTERRUPT PAL} 
{ 1-2-90,12-14-89 } 
{JEDEC file's CHECKSUM = 379E } { NOTE: 01-04-91 - NOT APPLICABLE TO 16V8 } 

CONTROL PAL FOR 8254 TIMER'S AND UART INTERRUPT 
USED FOR EVALUATION BOARD 382 } 

MODULE U24A_382; 
TITLE U24A_382; 
TYPE MMI 16R8; 

{ FUSE BITS FOR 16V8 FAMILY ATTRIBUTES USED AS A 
FUSE 2048 .. 2079 00000000000000000000000000000000 
FUSE 2080 .. 2111 00000000000000000000000000000000 
FUSE 2112 .. 2143 00000000000000001111111111111111 
FUSE 2144 .. 2175 11111111111111111111111111111111 
FUSE 2176 .. 2193 111111111111111101 

INPUTS; 

NODE[PIN2]; 
NODE [ PIN3] ; 
NODE [PIN4]; 
NODE[PINS]; 
NODE[PIN6]; 
NODE [ PIN7] ; 

16R8 

MRES/ 
UARTINT/ 
PMRD/ 
CST IM/ 
EA02 
EA04 
OUTl 
OUTO 

NODE[PIN8]; {input from Timer output OUTl} 
NODE[PIN9]; {input from Timer output OUTO} 

DTOA/ 
DTOB/ 
TO INT/ 

DTlA/ 
DTlB/ 
TlINT/ 

OUTPUTS; 

UINT5/ 
DTOA/ 
DTOB/ 
TO INT/ 

DTlA/ 
DTlB/ 
TlINT/ 

NODE[PIN14]; {feedback} 
NODE[PIN15]; {feedback} 
NODE[PIN16]; {feedback} 

NODE[PIN17]; {feedback} 
NODE[PIN18]; {feedback} 
NODE[PIN19]; {feedback} 

NODE[PIN13]; 
NODE[PIN14]; 
NODE[PIN15]; 
NODE[PIN16]; {goes to R3000's UINT3} 

NODE[PIN17]; 
NODE[PIN18]; 
NODE[PIN19]; { goes to R3000's UINT4} 
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TABLE; 
{ 8254 TIMER generates 2 square-wave outputs OUTO and OUTl. 

DTOA/ 
DTOB/ 

When OUTO goes from high to low, this PAL asserts interrupt 
TOINT/, which will interrupt R3000 through UINT3. 
Same scheme applies to OUTl, TlINT/ and UINT4. 
Reading physical addresses 1F80 0010 and 1F80 0014 (which are 
virtual addresses BF80 0010 and BF80 0014 in this 382 board) 
will clear interrupt UINT3 and UINT4, respectively. 

This PAL also synchronizes UART interrupt signal } 

OUTO; {delay TIMER's OUTO through a register} 
DTOA/; {delay again} 

TOINT/ NOT . - MRES/ AND 
((NOT DTOA/ AND DTOB/) OR 

APPLICATION NOTE AN-86 

(NOT TOINT/ AND (NOT EA04 OR EA02 OR CSTIM/ OR PMRD/))); 

DTlA/ 
DTlB/ 
TlINT/ NOT . -

DINTS/ 

END; 
END U24A_382. 

OUTl; 
DTlA/; 
MRES/ AND 
((NOT DTlA/ AND DTlB/) OR 
(NOT TlINT/ AND (NOT EA04 OR NOT EA02 OR CSTIM/ OR PMRD/))); 

UARTINT/ OR NOT MRES/ 
{put UART's interrupt through a register to synchronize 
it with R3000 clock } 
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By V. S. Ramaprasad 

INTRODUCTION 
The IDTR3051 ™ is a family of RISC controllers specially 

suited for embedded applications. Instruction and data caches 
are integrated on the chip to yield cache hit rates of over 90% 
for a wide range of typical embedded applications. These 
RISC controllers also provide the designer with a simple 
interface to the rest of the system through built in read/write 
buffers, a multiplexed address/data bus and a small set of 
control signals. This simple interface enables the designer to 
select an optimal price/performance memory and 1/0 system. 

In this application note the performance of a 33MHz R3051-
based system is presented. Standard integer benchmarks are 
run on the software model of the R3051 DRAM-based sytem, 
and the results obtained are compared with the published 
results for 33MHz i960 and 33MHz 29k RISC processor­
based systems. The performance of R3051-based systems 
can be attributed to the raw horse power of R3000A core 
coupled with the highly-desired optimal integration provided 
on the chip. 

SYSTEM DESCRIPTION 
The 33MHz R3051-based system modelled is made up of 

sons DRAMs with a page mode access time of 50ns. The refill 
sizes for both the caches is four. The processors burst mode 
of access is utilized for refilling both the caches on cache 
misses. This implies that after the initial latency cycles the 2-
way interleaved main memory is capable of supplying the 
subsequent instructions or data at the processor speed. The 
instructions are streamed into the processor along with the on­
chip cache refill. 

The 33MHz R3051 system is modelled with a software 
simulation tool called Cache305x. This software is based on 
the Cache2000,™ which is part of the Systems Programmers 
Package developed by MIPS® Computer Systems, Inc. 
Cache2000 is used to model R3000/R3001-based systems 
with more than 98% accuracy of simulation. 

To accurately model R3051-based systems, the existing 
Cache2000 is modified. Besides setting the cache sizes, the 
block refill sizes, the write buffer depth etc., sections are 
added to the Cache2000 program to simulate the bus priority 
scheme adopted by the R3051 family for processing the main 
memory transactions and to implement the read/write proto­
cols. Memory transactions are listed here with descending 
order of priorities. OMA activity is assumed not to be present 
in these simulations. 

1. Current transaction completes without pre-emption. 
2. Instruction cache misses are processed. 

3. Data residing in the four-deep write buffer is retired to 
the main memory. 

4. Data cache misses are carried out next. 

The read/write operations follow the priority scheme. The 
initiation of either of these transactions depends on the 
pending memory transaction requests. The built-in bus arbi­
tration logic resolves the conflict for the memory bus following 
the above mentioned priority scheme. The arbitration unit 
operates in parallel with the execution core. The core could be 
executing instructions from the caches, while the bus arbitra­
tion unit is retiring the writes currently residing in the write 
buffer. 

For instruction cache misses, in the best case where there 
is no write in progress, a read signal to the external memory 
is initiated one cycle after the core missed in the instruction 
cache. This extra cycle is for the arbitration unit to generate the 
read signal request. On top of this arbitration cycle, if a write 
is currently in progress, the processor stalls till the write 
operation is terminated. In this case, after a write operation a 
DRAM-based system needs to be precharged before the read 
operation. The first instruction is read into the processor after 
the initial read latency of the memory system. The remaining 
three instructions are read in three consecutive cycles. After 
the reads, the DRAM precharge cycles are added to the total 
cycle count. 

For data cache misses, there is an extra penalty of flushing 
the contents of the write buffer besides the extra one cycle for 
the arbitration. The number of cycles it takes to flush the write 
buffer depends on the number of words that are resident and 
also whether they could be retired as idle writes, or page 
writes, or non page writes. In the current system that is 
modelled, four words of data is brought in on a cache miss. 
The first word is read into the processor after the initial read 
latency of the memory system. The remaining three words are 
read in the following three consecutive cycles. Afterthe reads, 
the DRAM precharge cycles are added to the total cycle count. 

The write buffer interface decouples the core processor 
from the external slow memory system. Writes are retired in 
parallel with the processor executing out of the caches. In this 
state of execution, write operations always win the arbitration, 
and continuously retires the writes. This parallel mode of 
operation gets terminated only when the write buffer is full and 
a store is pending or when the processor can no longer 
execute out the caches. Keeping in mind that our interest in 
these simulations is the total cycle count for the complete 
execution of the program, write operations contribute to the 
total cycle count only when the processor needs to read from 
the external memory or when the processor can not proceed 

The IDT Logo is a registered trademark of Integrated Device Technology, Inc. and the R3051, and RISController are trademarks of lntegra1ed Device Technology, Inc. 
MIPS is a registered trademark of MIPS Computer Systems, Inc. and Cache2000 Is a trademark of MIPS Computer Systems, Inc. 

©1992 Integrated Device Technology, Inc. 
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with the execution of a store instruction because the write 
buffer is currently full. 

The penalty cycles due to writes delaying the processor 
external reads on cache misses are accounted for during the 
read transactions. When the write buffer is full and the 
processor is executing a store instruction, penalty cycles that 
would vacate a single entry in the write buffer is added. This 
is not the same as retiring a single write, but it is equivalent to 
four cycles. This is due to the availability of an extra data 
register that captures the data being vacated from the write 
buffer. If another store follows in this situation where the four 
entries of the write buffer are full and the extra data buffer that 
drives the bus is loaded, the penalty is that of retiring a write 
to the memory. 

DRAM PARAMETERS 
The memory system considered in this R3051 design is 

made up of BOns DRAMs with page mode access time of 50ns. 
The other parameters of the DRAM that affect the access time 
in different modes of DRAM are the initial read latency cycles, 
number of cycles to perform a write operation when the DRAM 
is in idle mode, number of cycles to perform a read/write 
operation when the DRAM is in page mode, number of cycles 
to perform a write operation when the DRAM is not in page 
mode. The parameters are set to fixed values to model a 
DRAM system that works with R3051 running at 33MHz. 

The initial read latency cycles at 33MHz is the summation 
of the cycles to win the internal arbitration (1 cycle), cycles for 
the DRAM controller to generate RAS/CAS signals and per· 
form a random read from the DRAM (6 cycles). The first word 
of instruction/data is read in the fixup cycle (1 cycle). The 
remaining words are read in the three following cycles. It 
should be noted that the DRAM precharge cycles are part of 
the 6-cycle random read latency mentioned above. 

The idle write latency is the number of cycles to retire a write 
when the DRAM is in idle mode. Using BOns DRAMS this can 
be accomplished in 6 cycles. The page mode read or write 
operations can be completed in 3 cycles, while the non-page 
writes can be carried out in 6 cycles. In the current system that 
is modelled with Cache305x, DRAM RAS precharge cycles 
are added when a read follows a write operation. 

DRAM Parameters @ 33MHz 

Read latency 7 Cycles 

RAS precharge 3 Cycles 

Idle write 6 Cycles 

Page write 3 Cycles 

Non-page write 6 Cycles 
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COMPETITION 
In this application note two other RISC systems, namely the 

i960 and the 29k, are compared with the R3051 DRAM system. 
The Intel i960CA system is the ASV960CA board running 

at 33MHz with O wait-state memory for instructions and 3 wait· 
state memory for the data. The memory is implemented with 
15ns SRAM. Internally the i960CA has 1 kB of instruction 
cache memory. The benchmarks are compiled with 1.35 
GCC/960 (results obtained from Intel). 

The 29ksystem is the VAR Cs card running at 33MHz using 
RevD AM29000. It has a 2 MB of instruction memory, and a 
512kB of data memory. The memories are implemented with 
35ns Static RAMs (results obtained from AMO). 

STANDARD INTEGER BENCHMARKS 
Several standard integer benchmarks are run on the 33MHz 

R3051-based system using the Cache305x. They are 
Quicksort, Bubblesort, Pi500, Anneal, Matmult, and 
Dhrystone1 .1. (0) The suite was selected by Intel, these 
benchmarks are selected because of (1) the availability of 
results for two other RISC processors, namely the i960 and 
the 29k, and (2) though being small, they still provide an 
insight into the capability of the processor in embedded 
environments. 

Quicksort performs sorting of 5000 elements of an integer 
array using a recursive algorithm. 

Bubblesort manipulates and sorts an array of 500 elements 
after reading a file. 

Pi500 computes the value of the mathematical constant 'Pi' 
upto 500 decimal points. This program does not use any 
floating point math, but more than 50% of the cycles are spent 
in integer multiplications and integer divisions. 

Anneal program solves the travelling-salesman problem by 
the method of simulated annealing. 

Matmult is a program that loops for 100 times, and in each 
loop it performs the multiplication of two 8 x 8 integer arrays. 
The result is stored in another 8 x 8 array. 

Dhrystone 1.1 benchmark demonstrates the integer num­
ber crunching power of the processor, although it is susceptible 
to compiler optimizations. Dhrystone 1.1 is reported here for 
the R3051 system instead of Dhrystone 2.0 for lack of data for 
the i960 and the 29k. 

All the above mentioned integer benchmarks are compiled 
with a C compiler version 2.0 on an M/120 system running 
RISC/os 4.0. Except for Dhrystone benchmark, all the other 
benchmarks are compiled with the highest level of optimiza­
tion 04. This includes optimization techniques such as global 
register allocation, optimal calling sequences, common sub­
expression elimination, procedure merging/inlining etc. For 
Dhrystone, 03 level of optimization is used. This lev~I ?f 
optimization does not include procedure merging as 1t 1s 
against the spirit of Dhrystone benchmarking. 
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IDT R3051 vs Intel i960CA vs AMD29K 

2.0 

1.5 

Relative to 1.0 
3051-33 

0.5 

0.0 

• R3051-33 
11J i960CA-33 
111!1 29K-33 

Quick Bubble Pi-500 Anneal Matmul Dhry1 .1 

IDT 
Benchmark R3051-33 1960CA-33 29K-33 

QUICKSORT (ms) 36 50 46 

BUBBLESORT (ms) 41 85 59 

Pl-500 (ms) 1,023 1,624 1,282 

ANNEAL(ms) 5,056 8,388 7,205 

MATMULT (µs) 19,148 26,898 44,578 

DHRYSTONE 1 .1 55,236 41,030 50,301 

• R3051 system is sons DRAM based system. 
• i960CA-33 system is ASV960CA with Ows for code and 3ws for data. 
• 29k-33 system is YARC card with 35ns SRAMs. 
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The results for R3051 are listed below along with the results 
published for 33MHz i960 and 29K. The execution times for 
above mentioned programs are shown in the table (smaller 
values are better except for Dhrystone 1 .1). 

CONCLUSIONS 
The standard integer benchmarks, even though they do not 

represent any real applications, provide an insight into the 
inherent performance of a processor when running typical 
embedded applications. The R3051 system considered here 
is a DRAM-based system, and still delivers more performance 
compared to the fastest i960CA and 29k-based designs. It can 
easily be deduced from the above data that the i960CA 
33MHz system is actually equivalent to a 21.2MHz R3051-
based system, and the 29k 33MHz system is equivalent to a 
23.1 MHz R3051-based system. Still faster R305x systems 
are feasible when designed with Static RAMs and it is reason­
able to expect further gains in performance. 
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By Bob Napaa 

INTRODUCTION 
The IDT R3051TM RISControllerTM family utilizes a high­

performance computing core to achieve high performance 
across a variety of applications. Further, the amount of cache 
incorporated in the R3051 family allow these CPUs to achieve 
very high performance even with simple, low-speed, low-cost 
memory subsystems. 

The R3051 RISControllerCPU family includes a full R3000A 
core RISC processor, and thus is fully software compatible 
with the standard MIPS processor. In order to provide high­
bandwidth to the CPU core, the family also incorporates 
on-chip up to BkB of instruction cache and 2kB of data cache. 
The external memory interface from the R3051 family is very 
flexible, and allows a wide variety of implementations according 
to the price/performance goals of the application. For a 
detailed reference to the system interface of the R3051 family, 
the reader is advised to refer to the "R3051 Family Hardware 
User's Manual". 

This applications note is a design example on the interface 
to a non-interleaved DRAM memory subsystem. The goals of 

CONTROL LINES 

DATA BUS 

ADDRESS 
LATCHES 

ADDRESS BUS 

ALE 

this subsystem are to provide a simple, extensible memory 
interface using off-the-shelf components, and to illustrate 
basic design techniques for systems using an R3051 family 
CPU. 

GENERAL DESCRIPTION OF THE DRAM 
SYSTEM 

Figure 1 illustrates a typical system based on the R3051 
RISController family. The R3051 family uses a double­
frequency input clock for its internal operation and provides a 
nominal frequency reference clock output for the external 
system. This output clock, SysClk, synchronizes the external 
memory subsystems to the R3051. 

Memory transactions from the R3051 use a single, time 
multiplexed 32-bit address and data bus and a simple set of 
control signals. External logic then performs address 
demultiplexing and decoding, memory control, interface timing, 
and data path control. 

The system shown in Figure 1 runs at 25MHz (2x clock= 
SOM Hz). The R3051 interfaces to a DRAM system as the main 

IDT R3051/52 
RISController 

SysClk 1-----, 

CONTROL LINES 

FCT244AT 

2880 drw 01 

Figure 1. R3051 RISController Famlly Based System 
The IDT Logo is a registered trademark and A3051, and RISController are trademarks of Integrated Device Technology, Inc. 

©1992 Integrated Device Technology, Inc. 35 6/92 
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memory, to an EPROM system and to various 1/0 devices and 
controllers. Address latches decouple the address bus from 
the data bus. Address decoders select among the various 
external modules. The output clock from the R3051 (SysClk) 
is buffered (BSysClk) to reduce the loading effect and to 
provide clock drive capability with minimum clock skew for the 
system. This applications note will focus on the DRAM control 
and data path subsystem. 

The main DRAM memory system is based on 1 to 4 banks 
of non-interleaved DRAMs with BOns of access time (trac = 

BOns). The density of the DRAMs used is 256K x 4 to provide 
a maximum memory space of 4MB. The DRAM memory 
space occupies the lower 4MB of the physical memory space 
(A21 :AO). Figure 2 illustrates the architecture of the main 
DRAM memory system. 

Table 1 illustrates the decoding scheme used in accessing 
the DRAM memory space. To simplify address decoding, 
software will insure that all references to the DRAM memory 
occur with address bit A(22) LOW, and thus only that bit will be 
used in the decoding. Address bits A(21 :20) will select among 
the four banks, and the Rd and Wr outputs from the R3051 
differentiate between read and write accesses. 

APPLICATION NOTE AN-90 

Each 1 MB bank of DRAMs is individually controlled by 
separate RAS and GAS control signals. Thus, each bank may 
be independently selected. The banks are arranged so that 
each bank represents a single, contiguous range of 1 MB (as 
opposed to an interleaved memory structure). 

Data buffers isolate the DRAM banks from the R3051 data 
bus to reduce the loading effect and to prevent any bus 
contentions between the R3051 and the DRAMs from 
occurring. Note that this also alleviates concerns about the 
relatively slow tri-state times associated with DRAM devices. 
The data buffers selected are actually bidirectional latching 
transceivers; the use of a latching transceiver greatly simplified 
the timing control of the DRAM accesses, as will be described 
later. 

DRAM addresses are provided by multiplexing the latched 
R3051 address bus, using IDT FBT2827B memory drivers. 
This device type was chosen based on its ability to drive large 
capacitive loads, such as that found when driving 32 DRAMs. 
A single FBT output has sufficient drive to drive all four banks 
of the DRAM subsystem. 

DRAM 
~BANKO 

..... 
~ 

RASO 
CASO 

_I_ 
DRAM 

-""BANK 1 ..... --
ADDRESS ~ 

RAS1 

ADDRESS MUX CAS1 DATA 
-"" _I_ BUFFERS 

FCT543T DATA BU 
i........ ..... 

DRAM FBT ...a.i BANK2 2827B -- ..... 

s 

~ 
RAS2 CONTROL 

~ CAS2 ........ 

I 
-"" DRAM 

BANK3 
-- ..... 

I---+ 
RAS3 
CAS3 

~ 
DRAM 

PAL i-----. REFRESH 
....: CONTROL 14---- TIMER 

CONTROL SYSTEM FCT161 2880 drw02 

BYTE 
~ DECODER t-

...... FACT32 
BSysClk _f 

Figure 2. DRAM Memory System Architecture 
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Table 1. DRAM Memory Space Decoding 

A22 0 0 0 

A21 0 0 1 

A20 0 1 0 

WR 1 1 1 

RD 0 0 0 

SELECTION READ READ READ 
BANKO BANK1 BANK2 

0 0 

0 0 

1 0 

1 0 

0 1 

READ WRITE 
BANK3 BANKO 

In an R3051 system, it is possible to perform a 32-bit read 
access even when smaller data elements are requested. 
However, on writes, it is important to enable only those bytes 
which are actually being written by the CPU. The R3051 bus 
interface provides four individual byte enables to indicate 
which byte lanes are involved in a particular transfer. The 
DRAM subsystem uses a byte decoder (OR gate) to individually 
select from 1 to 4 bytes for write accesses. Each write byte 
enable is connected to those DRAMs which reside on that 
particular byte lane (across the multiple banks) 

An B·bit refresh timer requests the refreshing of the DRAMs 
every 9.6µs. Although this is more frequent than is actually 
required by the DRAMs, the use of this value simplified the 

RIP*=O 

REF_REQ=1 
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0 0 0 1 1 x 
0 1 1 x x x 
1 0 0 x x x 
0 0 0 1 0 1 

1 1 1 0 1 1 

WRITE WRITE WRITE READ WRITE NO 
BANK1 BANK2 BANK3 OUTSIDE OUTSIDE ACCESS 

DRAM DRAM 
SPACE SPACE 

control logic associated with page mode write. DRAMs require 
that RAS be maintained low no longer than 1 Oµs; by choosing 
a refresh value smaller than this maximum time, the system is 
assured that maximum RAS low time will not be violated. The 
operation of the DRAM memory system is synchronized by 
BSysClk. 

STATE MACHINE IMPLEMENTATION 
A simple state machine is used to perform the major 

aspects of DRAM control. The state machine uses a simple 
four-bit counter (C(3:0)) to dictate the timing for the DRAM 
control and CPU response, and is sequenced using BSysClk. 
There are nine major states to the state machine, as illustrated 
in Figure 3; these states are dictated by the type of transfer 
requested and the state the DRAM control logic was left in by 
the prior transfer. Three PALs are required to implement the 
entire DRAM control logic. 

•1111"'"1"""""""""""""""""""'"""""""""""'"""""'""""""""""""·"· ................. . 

-··-~--
REF_ACK* 

WR*=1 & 
RD*=1 

WR*=O & 
WRNEAR*=1& 
A22=0 

WR*=1 & 
RD*=1 

Figure 3. State Machine 
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The state machine uses the Reset pulse to reset its internal 
states and to synchronize its operation to the R3051. During 
the RESET state, it also performs one refresh cycle before 
entering the IDLE state. 

In the IDLE state, the state machine arbitrates between a 
refresh cycle and a bus access. A DRAM bus access is started 
whenever Rd or Wr are asserted and A22 is LOW. A refresh 
request is detected using the REF _REQ (Refresh_Request) 
pulse from the refresh timer. 

The state machine supports four types of bus accesses: 
"Block refill read", "Single read", "Single write" and "Page 
write", according to the types of transfers which the R3051 
may request. 

After a "Single write" or a "Page write" access, the machine 
enters the IDLE RAS ASSERTED state. This state is very 
much analogous to the I OLE state, except thatthe RAS control 
signal to the DRAMs remains asserted. This state allows 
subsequent "near" writes to be retired using page mode 
accesses, which are much quicker than standard accesses. 
When the IDLE RAS ASSERTED state must be exited (i.e. an 
action other than near write is requested) the RAS signal must 
be pre-charged prior to another DRAM transaction. 

THE DRAM MEMORY SYSTEM 
IMPLEMENTATION DETAIL 

The DRAM memory system consists of the control system, 
the address path and the data path as illustrated earlier in 
Figure 2. 

PAL System 
The state machine and control PAL system consists of 

three standard speed PALs: PAL 1 (PAL22V10-10), PAL 2 
(PAL20R8-10) and PAL 3(PAL16R8-10). Figure 4 illustrates 
the control system and the address path. The PAL equations 
are included in the appendix to this applications note. 

PAL 1 is driven by SysClk directly. This allows the CIP line 
to detect transitions on the Rd and Wr signals from the R3051. 
Signals generated by PAL 1 include: 

• 4 RAS signals (one per DRAM bank) 
• The DRAM_ACK and DRAM_RDCEN response signals 

to the R3051 family CPU. 
These signals are used to provide termination response 

to the pro_=ce~ss~or~. ~~--
• The CIP (Cycle_ln_Progress) indicates to the rest of the 

control system that a bus access is being performed. 
• The DRAM_WN (DRAM_WrNear) signal indicates that 

the RAS signals are kept asserted after a "Single write" 
or a "Page write" access. 

PAL 2 is also driven by SysClk directly. PAL 2 generates: 

• 4 CAS signals (one per DRAM bank) 
• DRAM_LE (DRAM_Latch_Enable), which latches the 

read data into the data buffers. 
• The S (Select) controls the memory drivers selection. 
• The T/R (TransmiVReceive) controls the data buffers 

during read acces_s=e~s~. ~~~-
• The DRAM_WR (DRAM_Write), used during write 

accesses. 
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PAL 3 uses the buffered CIP signal (BCIP) which is delayed 
with respect to CIP by the buffer propagation delay. This is 
important to ensure the proper operation of PAL 3, which is 
driven by the buffered SysClk (BSysClk). PAL 3 generates the 
master 4-bit counter. It also generates: 
• The RIP (Reset_ln_Progress), which indicates that a 

reset cycle is being performed. 
• The REF _ACK (Refresh_Acknowledge) signals that a 

refresh cycle is being performed. 
• The GATE_COUNTER controls the operation of the 

counter when transitioning between bus accesses and 
refresh accesses. 

Refresh Timer 
The refresh timer consists of two "74FCT161" counters 

cascaded together as shown in Figure 4. The refresh timer 
issues a REF _REQ pulse every 9.6µs. The refresh timer is 
loaded with the value b00001111 after each refresh. It is 
incremented by one for every clock cycle. At value b11111111, 
it will issue the REF _REQ pulse. This amounts to a total count 
of 240 which at 25MHz reflects a 9.6µs refresh period. 

The refresh period is set to be shorter than the maximum 
15.5µs refresh period that most DRAM require. The refresh 
interval has been set to 9.6µs in order not to violate the RAS 
maximum pulse width of 10µs (tras = 10µs max). In an IDLE 
RAS ASSERTED state, the RAS signals are left asserted while 
the CAS signals are de-asserted. 

Byte Decoding 
The byte decoding uses a "7 4FACT32" OR gate to OR the 

BE signals from the R3051 with the DRAM_WR signal to 
produce the write-byte signals WB(3:0). The DRAM_WR 
signal ensures that the WB(3:0) are only asserted during 
DRAM write accesses and that the WB(3:0) meet the "write 
command hold time" (twch = 20ns) of the DRAMs. It also 
ensure that the WB(3:0) are asserted before the CAS signals 
for "Early Write" accesses. Every WB signal enables one byte 
of the DRAM banks and of the data buffers during write 
accesses to allow for partial word write operations. The 
WB(3:0) are always issued one clock cycle before the CAS 
signals are asserted, in order to meet the timing requirements 
for a DRAM "Early Write" cycle. 

Address Path 
The DRAM address path consists of 2 "74FBT2827B" 

memory drivers to multiplex the row and column address of 
the DRAMs. The "FBT2827" have a 250 series resistance 
incorporated in the output buffers and are used to drive 
multiple memory banks with large capacitive loading. The Sbit 
from PAL 2 selects between the row address and the column 
address that drive all the DRAM banks. Figure 4 illustrates the 
address path architecture. The address to the DRAMs is 
always set one clock cycle before the assertion of either the 
RAS or the CAS signals, in order to guarantee proper address 
set-up time to the DRAMs. 

Data Path 
The data path consists of the DRAM banks and four 

74FCT543 latched transceivers. Figure 5 illustrates the 
architecture of the data path and of the data buffers. Latching 
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Figure 4. Control System and Address Path 

transceivers are used to allow more access time to the 
DRAMs; the data is captured by the latches one-half cycle 
before they are needed by the CPU. During this half-cycle, the 
data propagates through the buffer; if traditional buffering 
transceivers had been used, the buffer propagation delay 
would have occurred at the expense of the DRAM access 
time. 

Up to four banks of DRAMs are used, with each bank 
having its own set of RAS and CAS signals to minimize the 
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loading impact of multiple DRAM devices. Address bits A21 
and A20 determine the bank selection. 

The latched transceivers serve three roles in the DRAM 
subsystem: they isolate the DRAMs from the AID bus of the 
R3051 to minimize loading; they latch the data from the 
DRAMs on reads to allow a better timing model; and they are 
used to prevent bus contention from occurring at the end of a 
read (as the processor begins another transaction). The 
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R3051 is connected to the A bus of the transceivers, and the 
DRAM system is connected to the B bus. 

In a processor write access, the R3051 drives both the 
address and the data. In this case the latches are lefttransparent 
to pass the processor data through directly to the DRAMs. 
Only those transceivers whose byte lanes are involved in the 
write are output enabled, since only those DRAMs will be 
written into. DRAMs not accessed in this write will output the 
current contents of their memory at that location, since the OE 
of the DRAMs is asserted. DRAM_WR controls the LEAB, 
leaving the latch transparent throughout the write. WB(3:0) 
controls the OEAB of the latches, thus enabling only those 
bytes that are written. 

In a processor read access, the DRAM system drives the 
data bus. The DRAM system is synchronized to the rising 
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edge of BSysClk, and the R3051 samples the input data on the 
falling edge of syscTk before terminating the access. Thus, 
the DRAM control design, which drives the RAS and GAS 
signals on the rising edge of SysClk, actually removes GAS 
one-half cycle before the data is sampled by the CPU. Thus, 
data output by the DRAMs is actually latched by the 
transceivers, and remains valid when the CPU samples the 
ND bus one-half clock cycle later. 

The DRAM_LE from the DRAM controller is connected to 
the LEBA pin, which latches the data into the transceivers. The 
T/R signal connected to the CEBA pin, which controls the 
direction of the bidirectional transceiver. The DataEn signal from 
the R3051 is connected directly to the OEBA pin to control the 
timing of the output enable onto the ND bus. This ensures that 
the output buffers are tri-stated before the next R3051 access 
starts and prevents any bus contention. 
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Figure 5. DRAM Banks and Data Buffers 
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THE DRAM MEMORY SYSTEM TIMING 
The R3051 system interface allows this DRAM interface to 

be simply constructed. Features of the R3051 which are used 
in this DRAM system include: 
• On-chip four-deep read and a four-deep write buffers. 

These buffers decouple the system interface speed from 
the speed of the execution engine on-chip. 

• Single word reads and four-word refills. Block refills 
amortize the relatively long latency of DRAMs over 
multiple words, taking advantage of high-bandwidth 
capabilities (e.g. Page Mode) offered by DRAMs. 

• The WrNear signal, which informs the external DRAM 
subsystem that two consecutive writes have the same 
upper 22 address bits (equivalent to a local page of 256 
words), and can be written using a Page Mode access. 
Fort he system running at 25MHz, the clock period is 40ns. 

DRAMs with BOns of access time require 160ns (Ire =160ns) 
to complete one read access (as per DRAM data sheet). A 5 
clock cycles (200ns) read access time allows an acceptable 
margin for address decoding, control signal propagation, and 
bus interface. 

For a four-word block refill read, the initial latency (time to 
read the first word) is the same as for a single-word read 
access (200ns). For the next three consecutive words, the 
DRAM memory system provides a word every 2 clock cycles 
(every 80ns). A block refill access can be completed in 11 
clock cycles (440ns), which is an average of 11 Ons per word. 
Thus, block refill, with this simple scheme, provides a significant 
improvement in the average access time per word (over 2 
clock cycles-per-word savings). 

The state machine to manage write operations takes 
advantage of two features of the R3051: 

• On a write cycle, the write data from the processor is held 
one full clock cycle after the clock edge where the 
processor samples its ACK input. Thus, the DRAM 
system can give an early acknowledge, and still rely on 
the CPU to continue driving data. 

• The WrNear output from the CPU, which indicates that 
this write may be retired using a Page Mode write. This 
reduces the number of cycles required to perform write­
intensive operations, such as building the program stack 
or flushing the write buffer. 

The state machine for single word writes is optimized to 
allow subsequent near writes to be retired using page mode 
accesses. The DRAM memory system takes advantage of the 
WrNear signal from the R3051 by defaulting to the case that 
any single write to the DRAM system will be followed by 
another write with the same upper 22 address bits (within the 
local page of 256 words). Given this assumption, the RAS 
signals must be kept asserted after every write access to 
remain in the page mode of the DRAMs. 

Thus, an initial single write can be performed in 4 clock 
cycles (160ns) since the RAS signals are not de-asserted and 
the RAS precharge time (trp = 70ns) will be deferred until the 
end of the page write mode. Note that this is faster than a 
single read; the state machine takes advantage of the fact that 
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the processor will drive data a full clock cycle after acknowledge 
is given. 

A consecutive write to the same DRAM page can be 
performed in 3 clock cycles (120ns) since the RAS signal is 
already asserted and doesn't need to be precharged. When 
this state is exited (when a write outside of page or a different 
type of access occurs) the RAS signal needs to be precharged 
for 2 clock cycles (80ns) before responding to the pending 
access. 

Single Write Cycle/Page Write Cycle 
Figure 6 illustrates the timing diagrams for a single write 

access followed by a page write. The R3051 initiates a single 
DRAM write access by the assertion of Wr and with A22 LOW. 
Since the state machine isinthe IDLE state, RAS is de-asserted 
and the ROW addresses are flowing through the address 
multiplexer. The Cl P is issued on the next clock edge to inform 
the rest of the machine that the write is being processed, thus 
preventing the commitment of any other state (e.g. refresh). 
The appropriate RAS signal is issued on the same edge as the 
GIP. The DRAM_ACK is issued on the following edge and the 
GAS signal on the 4th edge to terminate the write access. At 
the end of the access, the GIP is removedwhilethe RAS signal 
is kept asserted in anticipation of a consecutive write access 
within the same page. At the end of an initial write access, the 
DRAM_WN signal remains asserted. This signal informs the 
rest of the state machine that the RAS signals are kept 
asserted. 

Idle, RAS Asserted State 
At the end of a write access the state machine enters this 

state where a RAS signal is kept asserted while the state 
machine awaits a subsequent transaction. If the next access 
is a local write (WrNear from the R3051 is asserted) the state 
machine enters the page write mode. If a different access type 
occurs (read, block refill, not local write) or a refresh is 
pending, the state machine exits this state. 

Upon exiting this state, the machine precharges the RAS 
signal before responding to the pending access. For the ease 
of discussion, any access that requires the RAS signals to be 
precharged before the access is processed will be referred to 
as "delayed" access. If an access outside the DRAM space is 
detected (Wror Rd asserted while A22=1) the RAS signals are 
immediately de-asserted and the machine goes into the IDLE 
state. This is an important condition; an intervening write to 
another memory location causes the R3051 to report 
subsequent writes as "near'' to that other memory location, 
and thus the DRAM controller should not process these writes 
as near writes. 

Page Write Cycle 
A page write cycle is a write access to the DRAM following 

another write with the same upper 22 address bits. Figure 6 
illustrates the timing diagram for a page write access. The 
R3051 initiates a page write cycle by the assertion of Wr, 
wrf\fiIBi' and A22 = 0. On the following clock edge GIP and 
DRAM_ACK are issued, and on the 3rd clock edge GAS is 
asserted and the access is terminated (GIP is negated). The 
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Figure 6. Single Write, Page Write and Delayed Write Timing Diagrams 
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RAS and DRAM_WN signals are kept asserted, allowing 
subsequent page writes to be rapidly processed. The state 
machine exits this state into the IDLE RAS ASSERTED state 
to await subsequent page mode writes. 

Delayed Write Cycle 
The delayed write cycle has exactly the same sequence as 

a single write but is delayed by two clock cycles. A delayed 
write is a "non-near" write detected in the ID LE RAS ASSERTED 
state. Figure 6 illustrates the timing diagrams for a delayed 
write access. 

The R3051 initiates a delayed write access by the assertion 
of Wr and A22 = O while RAS and DRAM_WN are asserted. 
On the next clock edge RAS is de-asserted while the 
DRAM_WN is kept asserted. The precharging of the RAS 
signal takes two clock cycles. The DRAM_WN signal is kept 
asserted to inform the state machine that the control signals 
for this access have to be delayed by two clock cycles. This is 
true for all the delayed accesses. 

Single Read Cycle 
A single read cycle is a read access to the DRAM following 

an IDLE state in which the RAS and the DRAM_WN are not 
asserted. Figure 7 illustrates the timing diagrams for a read 
access. The R3051 initiates a single read access by the 
assertion of Rd with A22 LOW while the state machine is IDLE 
and all RAS outputs are de-asserted. The Cl Pis issued on the 
next clock edge to inform the rest of the machine that a cycle 
is ongoing, thus preventing the commitment of any other state. 
The appropriate RAS signal is issued on the same edge as the 
CW. Two clock cycles later, the CAS, DRAM_RDCE N and the 
DRAM ACK are issued to terminate the cycle. 

For-a read access both the DRAM_ACK and the 
DRAM_RDCEN are required to end the cycle. The processor 
will not actually sample RdCEn until one-clock after the clock 
edge used to generate DRAM_RDCEN, and thus will not 
sample the data until one and one-half clock cycles alter the 
edge used to generate DRAM_RDCEN. From the timing 
diagrams it is clear that the CAS and the RAS signals are 
removed hall a clock cycle before the falling edge of the clock 
when the R3051 samples the data. DRAM_LE latches the 
DRAM data into the transceivers and holds it for one clock 
cycle. At the end of the access the CIP is removed. 

Delayed Read Cycle 
The timings of a delayed read are exactly the same as for 

a single read but shifted by two clock cycles to accommodate 
RAS pre-charge time. A delayed read cycle is a read access 
to the DRAM following an IDLE RAS ASSERTED state in 
which the RAS and the DRAM_WN are still asserted. Figure 
8 illustrates the timing diagrams for a delayed read access. 
Once a read access is detected, the RAS signal is de-asserted 
while the DRAM_WN is kept asserted. The RAS signal is 
precharged for two clock cycles. At the end of a delayed read, 
the DRAM_WN and the CIP are removed and the machine 
enters the IDLE state. 
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Block Refill Cycle 
A block refill cycle is a four-word read access to the DRAM 

following an IDLE state. Figure 7 illustrates the timing diagrams 
for four-word block refill access. The R3051 indicates a block 
refill read access by the assertion of Rd and Burst with A22 
LOW. The DRAM control subsystem handles block refill 
accesses using the Throttled Block Refill mode of the R3051. 
In a throttled read, RdCEn is used to control the data rate of 
memory back to the CPU. The Ack input is not provided back 
to the processor until the transfer has sufficiently progressed 
such that the last word of the transfer is clocked into the on­
chip read buffer before the processor core requires it. 

In the block refill access the first word read takes the same 
time as a single read while the three subsequent words are 
read into the read buffer at the rate of one word every two clock 
cycles. The DRAM_RDCEN is issued with every word being 
read to cause the R3051 to latch the data into the read buffer. 
The DRAM_ACK is issued between the second and the third 
word read. This ensures that for four subsequent falling edges 
of SysClk the read buffer can provide data to the R3000A core 
at the rate of a word every clock cycle. 

Block refill uses the Page Mode characteristics of the 
DRAM to obtain subsequent words at a high data rate. In this 
access, the RAS signal is kept asserted while the CAS signal 
is toggled four times to produce four data words. Every word 
from the DRAM system is latched into the transceivers as for 
a single read operation, using the DRAM_LE to clock the latched 
transceivers. At the end of the access RAS and CIP are de­
asserted, and the state machine returns to the IDLE state. 

In the block refill access, address lines Addr(3:2) from the 
R3051 act as a two-bit counter to provide the address of lour 
consecutive words. These two lines are incremented on the 
falling edge of SysClk. This timing could prove critical at high­
frequencies: this is only hall a clock margin (20ns) before the 
CAS signals are asserted, in which address set-up time to 
CAS must be provided. These two I ines are part of the address 
path and are driving large capacitive loads. To minimize 
additional delay due to loading, two sets or more of memory 
address drivers could then be used to minimize the effect of 
the capacitive loads and to ensure proper operation. 

Delayed Block Refill Cycle 
A delayed block refill cycle is a block refill access to the 

DRAM following an IDLE RAS ASSERTED state in which the 
RAS and the DRAM_WN are asserted. Figure 9 illustrates the 
timing diagrams for a delayed block refill access. A delayed 
block refill is exactly the same as a block refill with the 
exception that the access is shifted by two clock cycles to 
accommodate RAS precharge requirements. The DRAM_WN 
signals to the machine that the access has a delayed timing. 
At the end of the access, the DRAM_WN and the CIP are de­
asserted. 
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Refresh Cycle 
A refresh cycle is initiated every time a REF _REQ pulse is 

detected. The state machine responds immediately by 
asserting the REF _ACK signal on the following clock edge. 
This disables the refresh timer until the refresh access is 
completed. Figure 1 O illustrates the timing diagrams for a 
refresh arbitration and the actual refresh access. 

If a REF REQ occurs during an access or at the same time 
as an access, the refresh is delayed until the access is 
terminated (signaled by GIP de-asserted).Asserting REF _ACK 
at the detection of REF REQ ensures that the following 
access will be a refresh access and prevents the commitment 
of any other state. Delaying a refresh request until the end of 
a bus access doesn't affect the DRAM operation, since the 
refresh period selected is much less than the maximum 
refresh period of a DRAM row. The refresh period is every 
9.6µs and the longest access is the delayed block refill with 14 
clock cycles (until CIP is removed) which is 0.56µs. Thus, the 
refresh will be serviced at a maximum of 10.16µs, which is 
substantially below the maximum 15.5µs refresh requirement 
of the DRAMs. By the same reasoning, if the granted access 
is a delayed access, the RAS signal will be precharged prior 
to the 1 Oµs RAS pulse width maximum requirements. If a 
Page Mode Write is granted, it will be retired in three cycles, 
or 0.12µs, and thus RAS will be precharged for the refresh no 
longer than 9.72µs after it was asserted. 

The refresh access is a GAS-before-RAS refresh in which 
all four CAS and RAS signals are issued. The CAS signal is 
issued one clock cycle before the RAS signal. A refresh access 
takes 1 O clock cycles. This time is long enough to allow the 
RAS signals to be precharged if needed (delayed refresh). A 
delayed refresh has then the same timing as a refresh access. 
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Figure 11 shows the timing diagrams for the delayed 
refresh cycles. GATE_COUNTER controls the operation of 
the 4-bit counter when transitioning between bus accesses 
and refresh accesses. It is mainly used in the arbitration phase 
when a bus access and refresh access are requested at the 
same time. 

Reset Cycle 
A reset cycle is initiated by the assertion of the Reset signal. 

This is a hardware reset and is used to initialize the PALs to 
the correct IDLE state. The RIP signal is asserted on the 
following clock edge to inform the machine that a reset cycle 
is in progress. After the Reset signal is de-asserted, the RIP 
stays asserted and one refresh access is initiated. At the end 
of this refresh access, the RIP is removed and the state machine 
enters the IDLE state. Figure 12 illustrates the timing diagrams 
of the reset operation. __ __ 

Most DRAMs require at least 8 CAS before RAS refresh 
accesses prior to a regular access, to insure proper initialization. 
The actual state machine provides only one refresh access. It 
is the responsibility of the software to ensure that no DRAM 
access is made prior to the elapsing of 8 refresh periods from 
the refresh timer. This can typically be insured by normal 
operation of the boot PROM; however, software could "spin­
lock" for a pre-determined number of loops to insure that 
sufficient time has elapsed. 

Idle State 
The IDLE state is the state in which the machine is not 

performing any bus access or a refresh access but is constantly 
monitoring the bus for any access request. All the signals are 
de-asserted and the 4-bit counter operation is halted. 
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CYCLE 1 BLOCK REFILL 

SYSCLK* 

BSYSCLK* 

RESET* 

WW 

RD* 

BURST*/ --....;...-...;....-;...........;.--1 
WR NEAR* 

DATAEN* 

DATA 31:0 

DRAM_ ACK* 

DRAM_RDCEN* 

REF_ACK* 

S* 
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CYCLE 2 REFRESH 

ROW/COLUMN ___,i--.,...;.--;---,,.-;---;.-,,......--;---;--.,._---;--;---;--.;-----;--;---+---;--~ 
ADDRESS--11--n..,.---,.... ....... ...,.....-.--''-+--!---;--.,._---;--;---;--.;-----;--;---+--+-~ 

RAs• 

CAs• 

DRAM_ LE 

c1p· 

DRAM_WN' 

DRAM_WR' 

GATE_ COUNTER' 

COUNTER___,,..__5~!,._6......,..._7..;a-_B......,..__9.....,__A-i"'!..._O.....,._+n--2~!..__3...,__4....;n.-5...,__6....;n.-7..;.n...-8-+n-9~!,._0_ 

2880drw10 

Figure 10. Refresh Arbitration and Refresh Timing Diagrams 

48 



DESIGNING A DISCRETE DRAM CONTROLLER 
FOR THE R3051 RISController™ FAMILY 

CYCLE 1 CYCLE 2 

APPLICATION NOTE AN-90 

._PAGE WRITE IDLE CYCLE 3 DELAYED REFRESH _. 

i..._c~. w~~2 ID~E C1 . W-:'..__ W-:'..__ W-:'..__ W-:'..__ W-:'..__ WT . WT _ .... c~ . . 

-D-p{LILIL SYSCLK' 

BSYSCLK' 

RESET' 

WR' I\ J 

RD' 

BURST'/ -\ J 
WRNEAR' 

--1~--~-i----t~--~+---i~--~..;.---;~--~..;.----~--;-~+----;.~~ 

DATAEN' 

A21 :20 --r-X ! 
DATA31:o 1_r DATA 

REF_REQ 
ADDR 

I 
DRAM_ACK' 

DRAM_RDCEN' 

REF_ACK' 

s· _rt\.__,___-+<IJ 
ROW/COLUMN 

ADDRESS 

RAS' 

CAS' j __, 

T/R' 

DRAM_LE 

CIP' 

RIP' 

DRAM_WN' 

DRAM_WR' 

GATE_ COUNTER' 

.l [ .l COLUMN .l. [ 

COUNTER ll 3 ll 0 ll 1 I 2 ] 0 

Figure 11. Delayed Refresh Timing Diagrams 
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CYCLE 1 CYCLE 2 
PAGE WRITE IDLE ......_ _...._ ............ 
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CYCLE 3 DELAYED REFRESH 

C1 WT, C2 IDLE C1 WT WT WT WT WT WT WT C2 

SYSCLK• 

BSYSCLK• 

RESET' 

WR* -1\_ J 

RD• 

BURST'/ -1\_ J 
WRNEAR• 

-l"---;...~..;--l~-;...~+--;~-;.-~.;.----;.~-;.-~.;.----;.~...;...~+----;.~~ 

DATA EN* 

A21 :20 --i--..X : 
---r-- i 

DATA31:0 [Ii DATA 

ADDR 
REF_REQ -l"--_._~......._-lJ_/ 

DRAM_AcK• 

DRAM_RDCEN* 

REF_ACK• 

S* -r1---i'lf 
ROW/COLUMN I '· I _OLUMN I '· 

ADDRESS 

RAS* 

GAS* I/ 

T/R* 

DRAM_LE 

-I' 

GIP* -n--;----t"lf 
RIP* 

DRAM_WN* 

DRAM_WR* -n---1 
GATE_ COUNTER* 

COUNTER [ 3 ll 0 ll 1 l 2 ll O 

j \\_ I j 

1 

Figure 12. Reset Timing Diagrams 
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CRITICAL TIMING CALCULATIONS 
The following is a timing analysis of some of the critical 

paths in the DRAM system. 

DRAM Data for a Read or Block Refill Access 

As illustrated in all the timing diagrams, the CAS signal is 
asserted for only one clock cycle for a read or a write access. 
For a write access there is no critical timing since the DRAM 
latches the data in at the CAS leading edge, and the processor 
insures sufficient data hold time by holding data for one cycle 
after ACK is detected. 

For a read or a block refill access the DRAMs provide the 
data to the R3051 and the maximum delays must be considered. 
Figure 13 illustrates the detailed timing for a portion of a block 
refill access which is also true for a read access. The R3051 
uses the SysClk for its reference with a period Tclk of 40ns. 
The GAS and the DRAM_LE signals are delayed with respect 
to SysClk by the PAL 2 propagation delay T1. The data is 
available from the DRAM after T2 (lcac = 25ns max). The critical 
path requires that the DRAM data be available and meet the 
setup time of the transceivers before the DRAM_ LE is asserted. 
The timing calculation for this data path is as follows: 

Tclk 
- T1 max 

- T2 max 

- T setup 

= 40.0ns 
= 8.0 
= 32.0 
= 25.0 
= 7.0 
= 3.0 FCT543T data set-up time. 
= 4.0 

The available margin is 4.0ns. Some 80ns DRAMs have T2 
(tcac = 20ns) which could offer more margin. 

T2 max 
DATA1FROM DRAM 

DATA -----~===>-----
T setup 

DRAM_LE _______ _.F \~---
2880 drw 13 

Figure 13. Read or Block Refill Access 
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Transceivers Turn Off Time 

For a read or a block refill access, the DRAMs provide the 
data to the R3051 through the latched transceivers. As 
illustrated in Figure 7, the R3051 reads the data from the bus 
half a clock cycle before it starts a new access in which it can 
drive address on the bus. This information is explained in 
detail in the R3051 User Manual. 

The critical path requires that the transceivers be tri-stated 
before the R3051 starts driving the bus in the next clock cycle. 
The DataEn signal directly from the R3051 enables the B to A 
output buffers of the transceivers (FCT543T). The DataEn is 
delayed by T3 from the falling edge of SysClk at which the 
R3051 samples the data (as per R3051 data sheet). The 
transceivers disable the output buffers within T 4. Figure 14 
illustrates the timing for this path. 

Tclk/ 2 
- T3 max 

- T4 max 

T margin 

= 20.0ns 
= 6.0 
= 14.0 
= 9.0 
= 5.0ns 

This margin of 5ns is long enough to accommodate for any 
SySClk skews. 

DRAM_ACK and DRAM_RDCEN Timings 

The DRAM ACK and the DRAM RDCEN are issued for 
one clock cycle only as illustrated in the timing diagrams. They 
are removed by the clock edge which the R3051 uses to 
sample them. The R3051 requires that these two signals be 
held constant for a minimum of 4ns afterthe clock edge. These 
two signals are usually combined with similar signals from 
other memory subsystems (e.g. EPROM) to form one set that 
is routed to the R3051. This extra delay, plus the PAL 1 
minimum propagation delay are long enough to meet the 
R3051 required hold time. 

New access start 

DRAM_ACK 

DRAM_RDCEN 
_J T3 max 

UAiAEfT ---------J4 max 

DATA 31:0 -----~<c...,,~--::,,-:_-:,~-J1,J ___ _ 
DATA FROM FcT543T 

-
__________ _J_,iTmargin 

AD 31 :O c=J-
FROM R3051 NEW ADDRESS 

2880 drw 14 

Figure 14. Termination of a Read or Block Refill Access 
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PERFORMANCE 
The performance of the different types of R3051 bus 

accesses to the DRAM memory is usually measured by the 
number of clock cycles it takes to send the Ack back to the 
R3051. This time is computed from the beginning of the 
external access. The performance of the DRAM system can 
be summarized as follows: 

• single read: 4 clock cycles. 
• block refill: 7 clock cycles. 
• first write: 3 clock cycles. 
• page write: 2 clock cycles. 

The above numbers (with the exception of page write) will 
be increased by 2 in the case of delayed accesses. 

Thus, relatively high memory performance is obtained with 
minimal external logic parts count, and low-cost commodity 
DRAM. More aggressive designs could utilize faster DRAMs, 
and techniques such as memory interleaving, to achieve still 
higher levels of performance. 
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CONCLUSION 
The R3051 RISControllerfamily bus interface was designed 

to allow memory systems of differing complexity and 
performance to be implemented. Even a relatively simple 
DRAM system, as the one described here, offers very high 
performance. With simple modifications, this approach is 
applicable to higher frequencies (33 and 40MHz) and to 
interleaved memory systems yielding even higher performance. 
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TITLE: 

PURPOSE: 

PALl 

RAS 

AUTHOR: 
DATE: 

BOB NAPM, IDT INC. 

4/5/91 

MODULE PALl; 

TITLE PALl; 

TYPE AMD 22Vl0; 

INPUTS; 

SYSCLKB 
ENABLEB 

RDB 
WRB 

BURSTB 
RIPB 

REFACKB 

A22 
A21 

A20 

C3 
C2 

Cl 

co 

{FEED BACK PINS} 
CIPB 

RAS3B 

RAS2B 
RASlB 

RAS OB 

DRAMWNB 
DRAMACKB 

DRAMRDCENB 

OUTPUTS; 

CIPB 

RAS3B 

RAS2B 
RASlB 
RAS OB 
DRAMWNB 

DRAMACKB 

DRAMRDCENB 

{OUTPUT ENABLES} 

NODE I PINl I; 
NODE [ PIN2] ; 

NODE I PIN3]; 
NODE [ PIN4]; 

NODE [ PIN5 J ; 
NODE [ PIN6]; 

NODE I PIN7]; 
NODE [PINS]; 

NODE [ PIN9 J ; 

NODE I PINlO I; 
NODE[PINllJ; 
NODE [ PIN13]; 

NODE[PIN14J; 

NODE[PIN15J; 

NODE [ PIN16]; 

NODE [ PINl 7 J; 
NODE[PIN18J; 

NODE [ PIN19 J; 

NODE I PIN20 I; 
NODE [PIN2 l J; 

NODE [ PIN22 J; 

NODE [ PIN23 J; 

NODE [ PINl 6] 

NODE I PINl 7] 
NODE[PIN18] 

NODE [ PIN19 J 

NODE[PIN20J 
NODE [PIN21 J 

NODE [ PIN22 J 

NODE[PIN23J 

ATTR[RL]; 

ATTR[RLJ; 

ATTR[RL]; 
ATTR[RLJ; 

ATTR[RLJ; 
ATTR[RLJ; 

ATTR[RLJ; 

ATTR[RLJ; 

CIPBEN NODE[PIN16ENJ; 

RAS3BEN NODE [ PINl 7ENJ ; 

RAS2BEN NODE[PIN18ENJ; 
RASlBEN NODE[PIN19EN]; 

RASOBEN NODE[PIN20EN]; 

DRAMWNBEN 
DRAMACKBNODE[PIN22ENJ; 

DRAMRDCENBEN 

NODE [ PIN21ENJ ; 

NODE[PIN23ENJ; 
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TERMS; 

RAS3EEN 

RAS3E NOT 

RAS2BEN 

RAS2E NOT 

.-

OR 

OR 

OR 
OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

·-

OR 

OR 

OR 

OR 

OR 

OR 

ENAELEB; 

RAS3E AND REFACKB AND RIPE AND DRAMWNB AND !RDE AND 
!A22 AND A21 AND A20 {read/block refill} 

!RAS3E AND !CIPB AND !RDE AND DRAMACKB AND DRAMRDCENB 
{keep for read/delayed read} 

RAS3E AND !CIPE AND RIPE AND !DRAMWNB AND !RDE AND 

!A22 AND A21 AND A20 AND !C3 AND !C2 AND !Cl AND CO 
{delayed read/delayed block refill} 

!RAS3E AND !CIPE AND !RDE AND !EURSTE AND !C3 {keep block refill} 

!RAS3E AND !CIPE AND !RDE AND !EURSTE AND !DRAMWNB AND 
!Cl {keep delayed block refill} 

RAS3E AND REFACKB AND RIPE AND DRAMWNB AND !WRB AND 

!A22 AND A21 AND A20 {write} 

RAS3B AND REFACKB AND RIPE AND !DRAMWNB AND !WRB AND 

!A22 AND A21 AND A20 AND !C3 AND !C2 AND !Cl AND CO 
{delayed write} 
!RAS3B AND !WRB AND !CIPB {keep for write} 

! RAS3E AND ! DRAMWNB AND REFACKB AND RIPE AND RDE AND 

WRE AND EURSTE {no access pending} 

!RAS3E AND !DRAMWNB AND REFACKE AND RIPE AND !WRE AND 
!EURSTE AND !A22 AND A21 AND A20 {keep for page write} 

!REFACKE AND CIPB AND !RAS3E AND !DRAMWNB AND CO 
{remove in refresh} 

RAS3E AND !REFACKE AND CIPB AND DRAMWNB AND !C3 AND !C2 
AND Cl AND CO {issue for refresh} 

! RAS3E AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND C2 
AND !Cl AND !CO {keep for refresh} 

! RAS3E AND ! REFACKB AND CIPE AND DRAMWNB AND ! C3 AND C2 
AND !Cl AND CO; {keep for refresh} 

ENAELEB; 

RAS2E AND REFACKB AND RIPE AND DRAMWNB AND !RDE AND 
!A22 AND A21 AND !A20 {read/block refill} 

!RAS2E AND !CIPE AND !RDE AND DRAMACKB AND DRAMRDCENB 
{keep for read/delayed read} 

RAS2B AND !CIPB AND RIPE AND !DRAMWNB AND !RDE AND 

!A22 AND A21 AND !A20 AND !C3 AND !C2 AND !Cl AND CO 
{delayed read/delayed block refill} 

!RAS2E AND !CIPB AND !RDE AND !BURSTB AND !C3 {keep block refill} 

!RAS2E AND !CIPE AND !RDE AND !EURSTE AND !DRAMWNB AND 
!Cl{keep delayed block refill} 

RAS2E AND REFACKB AND RIPE AND DRAMWNB AND !WRB AND 
!A22 AND A21 AND !A20 {write} 

RAS2E AND REFACKB AND RIPB AND !DRAMWNB AND !WRB AND 

!A22 AND A21 AND !A20 AND !C3 AND !C2 AND !Cl AND CO 
{delayed write} 

OR !RAS2E AND !WRB AND !CIPE {keep for write} 

OR !RAS2E AND !DRAMWNB AND REFACKB AND RIPE AND RDE AND 
WRB AND EURSTE {no access pending} 

OR !RAS2E AND !DRAMWNB AND REFACKE AND RIPB AND !WRE AND 

!EURSTE AND !A22 AND A21 AND !A20 {keep for page write} 
OR ! REFACKE AND CIPE AND ! RAS2E AND ! DRAMWNB AND CO 

{remove in refresh} 

OR RAS2E AND !REFACKB AND CIPE AND DRAMWNB AND !C3 AND !C2 
AND Cl AND CO {issue for refresh} 

OR ! RAS2E AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND C2 
AND !Cl AND !CO {keep for refresh} 

OR ! RAS2E AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND C2 
AND !Cl AND CO; {keep for refresh} 
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RASlBEN 

RASlB NOT . -

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

RASO BEN 

RAS OB NOT ·-

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

ENABLEB; 

RASlB AND REFACKB AND RIPB AND DRAMWNB AND !RDB AND 

!A22 AND !A21 AND A20 {read/block refill} 

!RASlB AND !CIPB AND !RDB AND DRAMACKB AND DRAMRDCENB 
(keep for read/delayed read} 

RASlB AND !CIPB AND RIPB AND !DRAMWNB AND !RDB AND 

!A22 AND !A21 AND A20 AND !C3 AND !C2 AND !Cl AND CO 

(delayed read/delayed block refill} 

!RASlB AND !CIPB AND !RDB AND !BURSTB AND !C3 (keep block refill} 

!RASlB AND !CIPB AND !RDB AND !BURSTB AND !DRAMWNB AND 

!Cl{keep delayed block refill} 

RASlB AND REFACKB AND RIPB AND DRAMWNB AND !WRB AND 

!A22 AND !A21 AND A20 (write} 

RASlB AND REFACKB AND RIPB AND ! DRAMWNB AND !WRB AND 

!A22 AND !A21 AND A20 AND !C3 AND !C2 AND !Cl AND CO 
(delayed write} 

!RASlB AND !WRB AND !CIPB (keep for write} 

! RAS 1B AND ! DRAMWNB AND REF ACKB AND RIPB AND RDB AND 

WRB AND BURSTB {no access pending} 

!RASlB AND !DRAMWNB AND REFACKB AND RIPB AND !WRB AND 

!BURSTB AND !A22 AND !A21 AND A20 {keep for page write} 

!REFACKB AND CIPB AND !RASlB AND !DRAMWNB AND CO 

(remove in refresh} 

RASlB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND !C2 
AND Cl AND CO {issue for refresh} 

!RASlB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2 

AND !Cl AND !CO {keep for refresh} 

!RASlB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2 

AND !Cl AND CO; {keep for refresh} 

ENABLEB; 

RASOB AND REFACKB AND RIPB AND DRAMWNB AND !RDB AND 

!A22 AND !A21 AND !A20 {read/block refill} 

! RAS OB AND ! CIPB AND ! RDB AND DRAMACKB AND DRAMRDCENB 

{keep for read/delayed read} 

RASOB AND !CIPB AND RIPB AND !DRAMWNB AND !RDB AND 

!A22 AND !A21 AND !A20 AND !C3 AND !C2 AND !Cl AND CO 
{delayed read/delayed block refill} 

!RASOB AND !CIPB AND !RDB AND !BURSTB AND !C3 {keep block refill} 

!RASOB AND !CIPB AND !RDB AND !BURSTB AND !DRAMWNB AND 

!Cl {keep delayed block refill} 

RASOB AND REFACKB AND RIPB AND DRAMWNB AND !WRB AND 

!A22 AND !A21 AND !A20 {write} 

RASOB AND REFACKB AND RIPB AND !DRAMWNB AND !WRB AND 

!A22 AND !A21 AND !A20 AND !C3 AND !C2 AND !Cl AND CO 

{delayed write} 

!RASOB AND !WRB AND !CIPB {keep for write} 

!RASOB AND !DRAMWNB AND REFACKB AND RIPB AND RDB AND 

WRB AND BURSTB {no access pending} 

! RASOB AND !DRAMWNB AND REFACKB AND RIPB AND ! WRB AND 

!BURSTB AND !A22 AND !A21 AND !A20 {keep for page write} 

!REFACKB AND CIPB AND !RASOB AND !DRAMWNB AND CO 

{remove in refresh} 

RASOB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND !C2 

AND Cl AND CO {issue for refresh} 

! RAS OB AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND C2 
AND !Cl AND !CO {keep for refresh} 

!RASOB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2 

AND !Cl AND CO; {keep for refresh} 
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END; 

DRAMWNBEN 
DRAMWNB NOT 

DRAMACKBEN 
DRAMACKB NOT 

DRAMRDCENBEN 
DRAMRDCENB NOT 

CIPBEN 
CIPB NOT 

END PALl. 

OR 

OR 
OR 
OR 
OR 
OR 
OR 

OR 

ENABLEB; 
DRAMWNB AND !CIPB AND RIPE AND !WRB AND !C3 AND !C2 AND 
!Cl AND co {write} 
!DRAMWNB AND !REFACKB AND CIPB AND RIPE AND !C3 AND !C2 
AND !Cl AND !CO{remove at refresh} 
!DRAMWNB AND RIPE AND !RAS3B {keep asserted if any RAS} 
!DRAMWNB AND RIPE AND !RAS2B 
!DRAMWNB AND RIPE AND ! RASlB 
!DRAMWNB AND RIPE AND !RASOB 
!DRAMWNB AND RIPE AND !RDB AND !CIPB {keep for read} 
!DRAMWNB AND RIPE AND !WRB AND !CIPB; {keep for write} 

ENABLEB; 
!CIPB AND !RDB AND DRAMWNB AND BURSTB AND !C3 AND !C2 AND 
!Cl AND CO {read} 
! C IPB AND ! RDB AND ! DRAMWNB AND BURS TB AND ! C3 AND ! C2 
AND Cl AND CO {delayed read} 

OR !CIPB AND !RDB AND DRAMWNB AND !BURSTB AND !C3 AND C2 AND 
!Cl AND !CO {block refill} 

OR !CIPB AND !RDB AND !DRAMWNB AND !BURSTB AND !C3 AND C2 
AND Cl AND !CO {delayed block refill} 

OR !CIPB AND !WRB AND DRAMWNB AND !C3 AND !C2 AND !Cl AND !CO 
{write} 

OR !CIPB AND !WRB AND !DRAMWNB AND BURS TB AND !C3 AND !C2 
AND Cl AND !CO {delayed write} 

OR !WRB AND !BURSTB AND !DRAMWNB AND REF AC KB AND RIPE AND 
CIPB AND !A22 AND !RAS3B {page write} 

OR !WRB AND !BURSTB AND !DRAMWNB AND REFACKB AND RIPE AND 
CIPB AND !A22 AND !RAS2B {page write} 

OR !WRB AND !BURSTB AND !DRAMWNB AND REF AC KB AND RIPE AND 
CIPB AND !A22 AND !RASlB {page write} 

OR !WRB AND !BURSTB AND !DRAMWNB AND REF AC KB AND RIPE AND 
CIPB AND !A22 AND !RASOB ; {page write} 

ENABLEB; 
!CIPB AND !ROB AND DRAMWNB AND BURSTB AND !C3 AND !C2 AND 
!Cl AND co {read} 

OR !CIPB AND !ROB AND !DRAMWNB AND BURS TB AND !C3 AND !C2 
AND Cl AND co {delayed read} 

OR !CIPB AND !RDB AND DRAMWNB AND !BURSTB AND !C3 AND co 
{block refill} 

OR !CIPB AND !RDB AND !DRAMWNB AND !BURSTB AND !C3 AND !C2 
AND Cl AND co {delayed block refill} 

OR !CIPB AND !RDB AND !DRAMWNB AND !BURSTB AND !C3 AND C2 
AND co {delayed block refill} 

OR !CIPB AND !RDB AND !DRAMWNB AND !BURSTB AND C3 AND !C2 
AND !Cl AND CO; {delayed block refill} 

ENABLEB; 
CIPB AND REFACKB AND RIPE AND !ROB AND !A22 {read} 

OR CIPB AND REFACKB AND RIPE AND !WRB AND !A22 {write} 
OR !CIPB AND !ROB {keep for read} 
OR !CIPB AND !WRB ; {keep for write} 
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TITLE: 
PURPOSE: 

AUTHOR: 
DATE: 

MODULE PAL2; 
TITLE PAL2; 

TYPE MMI 20R8; 

INPUTS; 

{SYSCLKB 

REF AC KB 

DRAMWNB 
BURS TB 

RIPB 
CIPB 

WRB 

A21 

A20 
C3 

C2 
{OUTENABLEB 

Cl 

co 

{FEED BACK PINS} 

CAS3B 
CAS2B 
CASlB 

CASOB 

DRAMLE 

DRAMWRB 

SB 
TRB 

OUTPUTS; 

TABLE; 

CAS3B 
CAS2B 

CASlB 
CASOB 

DRAMLE 

DRAMWRB 

SB 
TRB 

CAS3B NOT 

PAL2 
CAS 
BOB NAPAA, IDT INC. 

4/5/91 

OR 

NODE[PINl]; 

NODE [ PIN2]; 
NODE [ PIN3]; 

NODE[PIN4]; 

NODE [ PIN5]; 
NODE [ PIN6] ; 

NODE [ PIN7]; 
NODE [ PIN8]; 

NODE [ PIN9]; 

NODE[PINlO]; 

NODE[PINll]; 
NODE [ PIN13 ] ; 
NODE[PIN14]; 

NODE [ PIN23]; 

NODE[PIN22]; 
NODE[PIN21]; 

NODE [ PIN20]; 

NODE [ PIN19]; 

NODE [ PIN18]; 

NODE [ P INl 7 ] ; 
NODE [ PIN16] ; 

NODE [ PIN15]; 

NODE [ PIN22]; 
NODE [ PIN2 l]; 

NODE [ PIN20]; 

NODE[PIN19]; 
NODE[PIN18]; 

NODE[PIN17]; 

NODE[PIN16]; 

NODE[PIN15]; 

CAS3B AND RIPB AND !CIPB AND DRAMWNB AND (A21 AND A20 

AND !C3 AND !C2 AND !Cl AND CO} {read or write} 
CAS3B AND RIPB AND !CIPB AND !DRAMWNB AND (A21 AND A20 

AND !C3 AND !C2 AND Cl AND CO) {delayed read/write} 

OR CAS3B AND RIPB AND !CIPB AND !BURSTB AND DRAMWNB AND 
WRB AND !SB AND (A21 AND A20 AND !C3 AND CO) {block refill} 

OR CAS3B AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND 
WRB AND !SB AND (A21 AND A20 AND CO) {delayed block refill} 

OR CAS3B AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND 

! WRB AND ! SB AND (A2 l AND A2 0 AND ! C3 AND ! C2 AND ! Cl AND 
!CO) (page write} 
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CAS2B NOT 

CASlB NOT 

CASOB NOT 

DRAMLE NOT 

OR CIPB AND DRAMWNB AND ! REF ACKB AND CAS3B AND ( ! C3 AND ! C2 

AND Cl AND !CO) {refresh} 

OR CIPB AND DRAMWNB AND !REFACKB AND !CAS3B AND ( !C3 AND !C2 

AND Cl AND CO); {refresh} 

CAS2B AND RIPE AND !CIPB AND DRAMWNB AND (A21 AND !A20 

AND !C3 AND !C2 AND !Cl AND CO) {read or write} 

OR CAS2B AND RIPE AND !CIPB AND !DRAMWNB AND (A21 AND !A20 

AND !C3 AND !C2 AND Cl AND CO) {delayed read/write} 

OR CAS2B AND RIPE AND !CIPB AND !BURSTB AND DRAMWNB AND 
WRB AND !SB AND (A21 AND !A20 AND !C3 AND CO) {block refill} 

OR CAS2B AND RIPE AND ! CIPB AND !BURSTB AND !DRAMWNB AND 
WRB AND !SB AND (A21 AND !A20 AND CO) {delayed block refill} 

OR CAS2B AND RIPE AND !CIPB AND !BURSTB AND !DRAMWNB AND 
!WRB AND !SB AND (A21 AND !A20 AND !C3 AND !C2 AND !Cl AND 

!CO) {page write} 

OR CIPB AND DRAMWNB AND ! REFACKB AND CAS2B AND 

(!C3 AND !C2 AND Cl AND !CO) {refresh} 

OR CIPB AND DRAMWNB AND ! REFACKB AND ! CAS2B AND 
(!C3 AND !C2 AND Cl AND CO); {refresh} 

CASlB AND RIPB AND !CIPB AND DRAMWNB AND ( !A21 AND A20 

AND !C3 AND !C2 AND!Cl AND CO) {read or write} 
OR CASlB AND RIPB AND !CIPB AND !DRAMWNB AND ( !A21 AND A20 

AND !C3 AND !C2 AND Cl AND CO) {delayed read/write} 

OR CASlB AND RIPB AND !CIPB AND !BURSTB AND DRAMWNB AND 
WRB AND !SB AND ( !A21 AND A20 AND !C3 AND CO) {block refill} 

OR CASlB AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND 

WRB AND !SB AND ( !A21 AND A20 AND CO) {delayed block refill} 

OR CASlB AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND 

!WRB AND !SB AND (!A21 AND A20 AND !C3 AND !C2 AND !Cl AND 
!CO) {page write} 

OR CIPB AND DRAMWNB AND !REFACKB AND CASlB AND (!C3 AND !C2 

AND Cl AND !CO) {refresh} 

OR CIPB AND DRAMWNB AND ! REFACKB AND ! CASlB AND ( ! C3 AND ! C2 
AND Cl AND CO); {refresh} 

CASOB AND RIPB AND !CIPB AND DRAMWNB AND ( !A21 AND !A20 

AND !C3 AND !C2 AND !Cl AND CO) AND CASOB {read or write} 

OR CASOB AND RIPB AND !CIPB AND !DRAMWNB AND ( !A21 AND !A20 

AND !C3 AND !C2 AND Cl AND CO) AND CASOB {delayed read/write} 

OR CASOB AND RIPB AND !CIPB AND !BURSTB AND DRAMWNB AND 
WRB AND !SB AND (!A21 AND !A20 AND !C3 AND CO) {block refill} 

OR CASOB AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND 
WRB AND !SB AND (!A21 AND !A20 AND CO) {delayed block refill} 

OR CASOB AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND 
!WRB AND !SB AND (!A21 AND !A20 AND !C3 AND !C2 AND !Cl AND 

!CO) {page write} 

OR CIPB AND DRAMWNB AND !REFACKB AND CASOB AND ( !C3 AND !C2 

AND Cl AND !CO) {refresh} 
OR CIPB AND DRAMWNB AND ! REFACKB AND ! CASOB AND ( ! C3 AND ! C2 

AND Cl AND CO); {refresh} 

OR 

TRB AND CAS3B AND CAS2B AND CASlB AND !CASOB {issue after} 

TRB AND !CAS3B AND CAS2B AND CASlB AND CASOB {any CAS if} 

OR TRB AND CAS3B AND !CAS2B AND CASlB AND CASOB {read cycle} 
OR TRB AND CAS3B AND CAS2B AND !CASlB AND CASOB 
OR CAS3B AND CAS2B AND CASlB AND CASOB; 

58 



DESIGNING A DISCRETE DRAM CONTROLLER 
FOR THE R3051 RISController™ FAMILY APPLICATION NOTE AN-90 

DRAMWRB NOT 

SB NOT 

TRB NOT 

END; 

END PAL2. 

OR 

!CIPB AND RIPB AND !WRB AND DRAMWRB {issue for write} 

!WRB AND !BURSTB AND !DRAMWNB AND DRAMWRB AND RIPB 

AND REFACKB {issue for page write} 
OR !CIPB AND !DRAMWRB AND CAS3B AND CAS2B AND CASlB 

AND CASOB AND RIPB; (keep until end of write} 

OR 

OR 

SB AND !CIPB AND DRAMWNB AND ( !C3 AND !C2 AND !Cl 

AND !CO) {read/write/block rnfill} 
!SB AND !CIPB AND !BURSTB AND WRB AND !C3 {keep for blcKk nefill} 

SB AND ! CI PB AND ! DRAMWNB AND ( ! C3 AND ! C2 AND Cl 

AND !CO) {delayed read/write/block refill} 
OR ! SB AND ! CI PB AND 'DRAMWNB AND ! BURSTB AND WRG AND 

!Cl {delayed block refill) 

OR !SB AND !CIPB AND BURSTB AND WRB AND CCI AND CM~3B AND 
CAS2B AND CASlB AND CASOB (read and delayed re.ad) 

OR !SB AND !CIPB AND !WRB AND CAS3B AND CAS2B AND CASlB AND 

CASCIB {keep for write} 

OR !WRB AND !BURSTB AND !DRAMWNB AND SB AND REFACKB; {page write} 

TRB AND !CIPB AND WRB AND DRAMWNB AND ( !C3 ANIJ !C2 

AND !Cl AND !CO) (read/block refill) 

OR TRB AND !CIPB AND WRB AND !DRAMWNB ANIJ SB AND ( !C3 

AND !C2 AND Cl AND !CO) (delayed read/block refill) 

OR !TRB AND !CIPB AND !f~B; {keep asserted for read/block refill} 
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TITLE: 

PURPOSE: 

AUTHOR: 
DATE: 

MODULE PAL3; 
TITLE PAL3; 

TYPE MMI 16R8; 

INPUTS; 

{BSYSCLKB 

RESETB 
REFREQ 

BC I PB 

DRAMWNB 
{OUTENABLEB 

{FEED BACK PINS} 

RIPB 
C3 

C2 
Cl 

co 
REFACKB 

GATECOUNTERB 

OUTPUTS; 

TABLE; 

RIPB 

C3 
C2 

Cl 

co 
REFACKB 
GATECOUNTERB 

RIPB NOT 

PAL3 
COUNTER 
BOB NAPAA, IDT INC. 

4/5/91 

NODE[PINl]; 

NODE [ PIN2] ; 

NODE [ PIN3] ; 
NODE[PIN4]; 

NODE [ PIN5] ; 
NODE [ PIN11] ; 

NODE[PIN18]; 
NODE[PIN17]; 

NODE [ PIN16]; 
NODE [ PIN15]; 

NODE[PIN14]; 
NODE [ PIN13] ; 

NODE [ PIN12] ; 

NODE [ PIN18]; 

NODE[PIN17]; 

NODE[PIN16]; 
NODE [ PIN15]; 

NODE[PIN14]; 
NODE [ PIN13]; 
NODE [ PIN12]; 

!RESETB {reset} 

!RIPB AND !RESETB {keep for reset} 

!RIPB AND REFACKB {keep for refresh} 

APPLICATION NOTE AN-90 

OR 

OR 
OR !RIPB AND !REFACKB AND !C3; {keep until end of refresh} 

C3 NOT !GATECOUNTERB AND !BCIPB AND REFACKB 

OR !GATECOUNTERB AND BCIPB 

OR GATECOUNTERB AND BCIPB AND REFACKB 

OR !C3 AND !C2 
OR !C3 AND C2 AND !Cl 

OR !C3 AND C2 AND Cl AND !CO 
OR C3 AND C2 AND Cl AND CO; 

C2 NOT !GATECOUNTERB AND !BCIPB AND REFACKB 

OR !GATECOUNTERB AND BCIPB 
OR GATECOUNTERB AND BCIPB AND REFACKB 

OR !C2 AND ! Cl 
OR !C2 AND Cl AND !CO 
OR C2 AND Cl AND CO; 
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Cl NOT 

CO NOT 

REFACKE NOT 

!GATECOUNTERE AND !ECIPE AND REFACKB 

OR !GATECOUNTERE AND ECIPE 

OR GATECOUNTERB AND ECIPE AND REFACKB 

OR !Cl AND !CO 

OR Cl AND CO; 

OR 

OR 

!GATECOUNTERE AND !ECIPE AND REFACKE 

!GATECOUNTERB AND ECIPE 

GATECOUNTERE AND ECIPE AND REFACKB 

OR CO; 

REFACKE AND REFREQ AND RESETE {for refreq) 

APPLICATION NOTE AN-90 

OR !REFACKE AND !ECIPE AND RESETE {as long as cipb low} 

OR !REFACKB AND !C3 AND RESETE AND GATECOUNTERB 

{keep asserted} 

OR REFACKE AND RESETE AND !RIPE {reset} 

OR !REFACKE AND !GATECOUNTERE; {keep for reset} 

GATECOUNTERB NOT .- GATECOUNTERB AND !REFACKE AND !ECIPE AND RIPE 

{issue for both refack and cipb} 

OR ! GATECOUNTERB AND !ECIPE AND RIPB 
{keep as long as cipb} 

OR ! GATECOUNTERE AND !REFACKE AND RIPE AND C3 

OR !GATECOUNTERE AND !REFACKE AND RIPE AND C2 

OR !GATECOUNTERB AND !REFACKE AND RIPE AND Cl 
OR !GATECOUNTERE AND !REFACKB AND RIPE AND CO; 

END; 

END PAL3. 
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By Andrew Ng 

INTRODUCTION 
The IDT79R3051™ RISController™ family provides a 

simple, flexible external bus interface to directly support main 
memory and system 1/0 resources. The bus interface is 
straightforward in that it uses a single, multiplexed 32-bit 
address and data bus and a small number of supporting 
control signals. The bus interface is adaptable in that it can 
handle differenttypes and speeds of memory including DRAM, 
SRAM, and EPROM and different kinds of 1/0 resources. 
Thus the simple, flexible R3051 bus interface allows design­
ers to make optimal trade-offs between system speed and 
cost issues. 

MAIN MEMORY DESIGN 
The R3051 normally accesses its internal instruction and 

data cache memories as in Figure 1, while using external main 
memory as a secondary source of memory as in Figure 5. 
Since the R3051 contains its own internal instruction and data 
caches, the complexity of the cache timing and interfacing is 
kept on-chip, which allows the external interface to be dedi­
cated to main memory and system 1/0 interfacing. The system 
interface is decoupled from cache memory by the use of an 
internal 4-deep read buffer and an internal 4-deep write buffer. 

The instruction and data cache allow the R3051 to access 1 
instruction and 1 data word on each clock cycle. On reads, 
when a cache miss or an uncachable reference occurs, the 
R3051 begins an external read cycle which buffers 1 word on 
non-burst reads and 4 words at a time on burst reads from 
system 1/0 and main memory. On writes, the R3051 maintains 
a write-through cache update policy which simultaneously 
updates both the data cache and main memory. With the use 
of its 4-deep write buffer, the R3051 can continue to execute 
instructions from its instruction cache while the main memory 
retires up to 4 words from the write buffer. 

Read and Write Cycle Protocols 
The simple read interface allows a wide range of memories 

and 1/0 to be used with the R3051, from slow 1/0 peripherals 
to high-speed burst accessed DRAM and SRAM. As shown in 
Figure 2 and 3, the read interface supports both single datum 
accesses and 4-word burst accesses simply by providing a 
Burst output signal and by providing dedicated LSB address 
line outputs Addr(3:2) which are used as a word counter. 
System 1/0 or main memory is only required to acknowledge 
each of the 4 words with the RdCEn input which is used as a 
read clock enable to latch each word into the 4-deep read 

BrCond(3:0) 

+ 
Clk2xln J Clock ] Generator I Master Pipeline Control 1- General Registers (32 x 32) 

1 Unit I ALU 
Exception/Control Registers Shifter 

Memory Management Registers Mult/Div Unit 

lntJ?:Ql_ Translation Lookaside Buffer Address Adder .... (64 Entries) PC Control 

I Virtual Address 

Physical Address Bus 

32 ;1 v + 1 v 
r 

Instruction 

~ 
Data l 32'1 

cache Cache 
(BkB/4kB) (2kB) 

t-i Data Bus l 
BUS INTERFACE UNIT .. OMA BIU 4-deep J 

Write Buffer 
4-deep ] 

Read Buffer Arbiter I Control 2881 drw 01 

f 
Address/ 

Data 

1 
OMA 
Ctrl 

l ~ 
Rd/Wr SysClk 

Ctrl 

Figure 1. R3051 RISController Internal Architecture 
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buffer. Read interfacing also has the option of using the Ack 
acknowledge input signal to optimally control when the R3051 
core restarts its pipeline on burst read cycles. 

The simple write interface allows a wide range of memories 
and 1/0 to be used with the R3051 by buffering writes from the 
R3051 core which are done at cache speeds. This allows main 
memory and 1/0 to retire write cycles at their own rate of speed 
by returning Ack, to acknowledge that the word has been 
received as shown in Figure 4. 

Basic System Functional Blocks 

The following sections will describe the functional blocks 
that are typical of R3051 main memory and system 1/0 
interfacing. As shown in Figure 5 these blocks include: 

• Address Demultiplexing 
• Address Decoding and Chip Selection 
• Data Transceivers 
• Wait-State Controller and Interface Handshaking 
• Read/Write Enables and Strobes 

The discussion concentrates on the general interface blocks 
involved when using the following modules: 

• SRAM Interfacing 
• DRAM Interfacing 
• EPROM Interfacing 
• 1/0 Interfacing 
• OMA Interfacing 

SysClk 

APPLICATION NOTE AN-92 

Specific information on using the different memory and 
1/0 types is presented in detail in other application notes. 

ADDRESS DEMULTIPLEXER AND DECODER 
The R3051 uses a multiplexed A/0(31 :0) bus to output its 

address and to send and receive data. Thus main memory 
must de-multiplex the address by using the R3051 's Address 
Latch Enable control signal, ALE, before decoding the ad­
dress to select chip enables. 

Latching A/0(31 :0) 

Transparent latches such as the I DT54/7 4FCT373 and the 
IDT54/74FCT841 pass inputs straight through to the outputs 
when their Latch Enable input is HIGH. When their Latch 
Enable input is LOW, the data in the latches are held constant. 
The R3051 provides the ALE output for direct connection to 
the transparent latches' Latch Enable pins.Transparent latches 
are typically used to allow address decoding to take place 
when ALE is HIGH and the address begins to become valid, 
instead of waiting until the latch closes. 

The Address Latch Enable, ALE, is designed to clock the 
address into a transparent latch such as the FCT373. ALE is 
also designed to meet the address hold time of latches. As 
with all high-speed processors, ALE should be considered a 
critical signal. Thus Printed Circuit Board routing should 
minimize ALE's trace length and crosstalk susceptibility. 

Rd }"-----+--___ / 
A/0(31:0) 

Addr(3:2) 

ALE 

Data En 

Ack 

( ~ Addr&BE} {oata; npu~ 

------+-.t . worn Add~•; I )C 

---~.____.______.___c_ 

Start 
Read 

Turn 
Bus 

'--~/ 

Ack/ Sample New 
RdCEn Data Transaction 

2881 drw 02 

Figure 2. R3051 Single Word Read 
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SysClk 

Rd 

A/0(31 :0) ---~ Addr&BE 

Addr(3:2) 

ALE 

~~~¥~~~~~-i-1 

____._.11\~~~-+--+--*---*---*---*--~C~ 

'00' x '01' x '1 O' x '11 

i 

Data En 

'~-;--+-~+--+-~~--i-----+-~~_;_j_l~_!_-

\'-+-"'-CC\--<,,.__.__i--LfT\-<--1 ............... m'---+--1 ............... ! 
Ack ---...;......---<>---'\_j__/'r-!";---i----+---+---<---_..;---+---i---

RdCEn 

; 1 
2880 drw 03 

Figure 3. R3051 4 Word Burst Read 

Decoding A(31 :O) 
Address decoding, which selects between the various 

memory and 1/0 banks in the system, can be done with IDT54/ 
7 4FCT138/139 decoders as shown in Figure 6. 

The time for the main memory chip selects to become valid 
in such a scheme is: 

!Decode =max (t3051ALEProp+ l373LEto0, l3051AddrProp + l373Dto0) 

+ l138Ato0 +!Cap 

Systems that require the chip selects to not have decoding 
glitches while the address drives to a valid value can register 
the decoder outputs by using SysClk as the clock and a 
CycleStart signal as the clock enable. The CycleStart signal is 
derived from the Rd and Wr control lines so that it asserts at 
the beginning of every memory cycle. 

Decoding Byte Enables with Chip Selects 
During the address phase, the R3051 uses the lower 4 bits 

of the multiplexed A/D(31 :0) bus to output BE(3:0). Byte 
enables are used to determine which bytes of each word are 
being read or written to support partial word accesses. Be­
cause BE(3:0) are used throughout the memory cycle, they 
are latched by ALE along with the other AID bits. 

In general, it is permissible to process all reads as 32-bit 
reads-the processor will only take the data it requested from 
the bus. However, in write operations, the system must insure 
that only the specified bytes are written. Thus, the byte enable 
outputs are used to control this. 
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There are two ways in which the byte enables may be used: 
Gate the byte enables with the memory chip selects. Thus, 
only those bytes of memories which will be written are 
selected. A single write enable can then be presented to all 
banks of that memory subsystem. This solution requires 
that each memory subsystem further decode the chip­
selects, and thus one decoder per memory subsystem is 
required. 
Gate the byte enables with the memory chips read/write 
enables/strobes. Thus, although all of the devices in that 
bank of memory are "selected", only those bytes to be 
written are enabled for the writes. This is a common 
strategy in DRAM subsystems. Note that the individual 
byte strobes may be broadcast to all memory systems, and 
the address decoder will insure that only one subsystem is 
"Selected". Thus, a single decoder for byte enables can 
serve the entire memory system. 

If the memories being used are 1-bit to 8-bits wide, gating 
the byte enables with the chip selects can be done. Because 
the byte enables are predetermined within the R3051 by using 
the LSB address bits, the endianness of the system, and the 
type of load or store instruction, the byte enables have the 
same timing as the rest of the AID lines during the address 
phase when ALE is asserted. This allows a memory decoder 
to have individual chip selects for each byte of each bank with 
no timing penalty. An example is shown in Figure 7. 
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Wr 
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Figure 4. R3051 Single Word Write 
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Figure 5. R3051 with Main Memory 
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:2)~ 
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_. 

3 
FCT138 
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_. 

2881 

A(31:2) 
BE(3:0) 

drw06 
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Figure 6. Address Demultiplexer and Decoder 

As gating the byte enables with the chip selects usually 
takes more output pins than gating the byte enables with the 
read and write enables, the latter is usually preferred. The use 
of byte enables with read/write enables will be discussed in the 
read/write enable/strobe section. 

Using Addr(3:2) 
Since the lower 4 ND bits are used for byte enables during 

the R3051 's address phase, the R3051 provides the informa­
tion for addressing words through its Addr(3 :2) output pins. 
The R3051 uses 4 bytes-per-word and pre-decodes the byte 
enables instead of providing the 2 LSB address lines. Addr(3:2) 
are driven throughout external bus cycles and do not require 
latching. During non-burst read cycles and all write cycles, 
Addr(3:2) contains the instruction cache miss address. The 
advantage of dedicating output pins for Addr(3 :2) is that 
during burst read cycles, Addr(3:2) are incremented from 0 to 
3 by the R3051 RdCEn protocol so that the system memory 
system does not have to provide a counter for this function. 

Since each memory chip requiresAddr(3:2), large memory 
systems that use Addr(3:2) extensively may want to use 
buffers. A common strategy may be to provide a buffered 
version of Addr(3:2) to non-time critical areas of memory (e.g. 
the boot prom), or to areas which do not perform burst 
accesses (1/0 devices), and directly use the outputs of the 
R3051 in time-critical areas such as the DRAM control. 

The crossover point where buffering is appropriate can be 
determined by determining if the delay through an IDT54/ 
74FCT244 buffer and the capacitive derating from all the 
Addr(3:2) inputs driven by the buffer (Addr(3:2) can be buff­
ered for separate branches of memory banks) would be less 
than the delay from the capacitive derating from all the 
Addr(3 :2) inputs driven directly from the R3051. In addition, 
the crossover doesn't occur until Addr(3:2) is delayed past 
when rest of the A(31 :4) lines reach their inputs. 
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l3051Addr(3:2) + 1244 + t244Cap $ max(t3051Addr(3:2) + 
t3051 Cap, tA(31 :4)) 

where: 
t244Cap = (sum(ClnpuVOutput) + C244 +!Trace - 50 )/33 pf/nsec 
t3051 Cap= (sum(ClnpuVOutput) + C3051 +!Trace - 25 )/25 pf/nsec 

Using Diag(1 :0) 
Some systems may need to know whether a read cycle is 

cachable or uncachable and whether a cachable read cycle is 
an instruction or a data fetch. In Figure 8, this information is 
provided by latching the diagnostic pins, Diag(1 :0) with the 
same latch controls as the address lines. These signals are 
useful during reads for: 
• Decoding whether a read in the lowest half GB of physi­

cal memory is from ksegO or kseg1. 
• Tracing processor execution by knowing which address 

caused the I-Cache miss. 

DATA TRANSCEIVERS 
The R3051 uses a multiplexed ND(31 :0) bus to output its 

address and to send and receive data. Thus main memory 
must drive or receive data after the R3051 has tri-stated its 
address. Further, to support high-performance memory sys­
tems, the R3051 family is capable of initiating a new bus 
transaction one-half clock cycle after data is sampled for a 
read operation. 

Determining if Data Transceivers are Needed 
Multiplexed CPU busses often use data transceivers to 

separate the memory system from the processor bus. Read 
cycles require the memory system to stop driving data on the 
A/D bus before the processor drives the next memory cycle's 
address. Slow memories with relatively long output disable 
times cannot meet this limitation without data transceivers. 
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However, some memories, such as the IDT718256 BiCMOS 
32k x 8 Static RAM, have very short access time and output 
disable time which makes it possible to consider attaching 
memory device data 1/0 pins directly to the multiplexed A/ 
0(31 :0) bus. Alternatively, in low-frequency systems, the 
amount of time provided by the R3051 may be sufficient forthe 
memory devices attached to the bus. 

The key parameter is the memory output disable time, toz, 
which has to be less than 1 /2 clock to disable before the next 
memory's address is driven. In addition the address and data 
driven from the R3051 is delayed because of the extra 
capacitance of the memory data 1/0 pins. 

toz <:: tsysClk/2 - tDisableControl + min(t3051Addr) 

Data Transceivers also serve to isolate memory banks 
from each other. In systems with varying speeds of memory, 
transceiver banks can be used to separate chips with rela­
tively long output disable times from those with relatively quick 
output disable times. Thus in many systems, fast scratch-pad 
SRAMs may have their own set of transceivers, while slower 
EPROMs and 1/0 peripherals might have a separate set of 
transceivers. 

BE(O) -----~ 

2 
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AO a '02a CS{2)~0) 
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BE(1) ----!----- Eb QQb CS(O)BE(1) 
Q1b CS(1)~1) 

A Ob Q.2.b CS{2)~1) 
A1b 03b CS{3)BE(1) 

BE(2) ----+---- Ea OOa CS(O)BE(2) 
01a CS{1)~2) 

AO a 02a CS(2)~2) 
A1a 03a CS(3)BE(2) 

FCT139 
DECODER 

Eb OOb CS{O)BE(3) 
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A Ob 02b CS{2)~3) 
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Figure 7. Gating Byte Enables with Chip Selects 
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Using IDT54/74FCT861s and IDT54/74FCT245s for Data 
Transceivers 

Most systems will use slower memories and thus require 
data buffering through a transceiver interface. There are two 
basic families of transceiver interfaces: 

1. IDT54/74FCT861 with separate enable pins for each 
direction. 

2. IDT54/74FCT245 with a direction pin and an enable pin. 

Using IDT54/74FCT861s for Data 
Transceivers 

The 10-bit transceiver FCT861 approach functionally com­
bines two 10-bit tri-statable FCT827 buffers internally. The 
8-bit FCT623T transceiver is similar to the FCT861 except that 
one of its output enables is Active-HIGH. On read cycles, if 
there is only one transceiver bank, then DataEn can be used 
directly to control the read direction output enable. Otherwise, 
combinational logic such as an FCT157/257 multiplexer can 
be used to combine DataEn with the chip selects of the bank 
whose transceivers need to be enabled (see Figure 16 for a 
similar common input OR gate circuit). Alternatively, some 
transceivers, such as the 9-bit I DT54/7 4FCT863 and the 8-bit 
IDT54/74FCT543 have two logically AND'ed output enables 
for each direction so that DataEn and the bank chip select can 
be hooked up directly to the transceiver. State machines using 
an inverted SysClk can also use a Rd derived signal to syn­
chronously assert and de-assert the read direction output 
enable. 

The write direction output enable can use a signal derived 
from Wrwhich asserts at the beginning of the cycle and waits 
until after the data has been strobed into the memory or 1/0 
device before de-asserting to provide sufficient data setup 
and hold time. For systems with 1 wait-state or more, the 
derived write direction enable signal should ideally assert after 
the A/D bus finishes driving its address phase to reduce 
switching noise. 

The transceiver control's critical timing path is the transition 
from a read cycle to a write cycle. After a read cycle, slower 
memory chips take a relatively long time to disable from the 
data bus. If the next memory cycle is a write, the transceivers 
will drive data onto the same bus. Such systems can use the 
second memory cycle's wait-states to delay the assertion of 
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the transceiver's write direction output enable until the first 
memory cycle's memory has fully disabled. The cutoff for 
determining if the memory output disable time is small enough 
to require no wait-states is: 

tSysClk >= tDisableControl + tMemReadDisable - tWriteData 

Systems that use memory chips without an output enable 
pin (i.e., a read is implied for every chip select with no write 
enable) require special transceiver interfacing in order to 
support partial word writes. During partial word writes, where 
only some of the bytes are selected for writing, bytes which are 
not being written may actually output onto their byte lanes, and 
thus conflict with the transceiver write direction outputs. In 
such memory subsystems, there are two options: only chip 
select those devices actually being written into; or, only enable 
those transceivers whose byte lanes are used in this write 
transfer. Either of these solutions will insure that no bus 
conflict occurs. 

Using IDT54/74FCT245s for Data 
Transceivers 

The 8-bit FCT245 transceiver approach ideally requires 
that the direction control only be changed when the outputs 

APPLICATION NOTE AN-92 

are disabled to prevent bus contention. Although such sys­
tems are easy to design, this general discussion uses the 
following assumptions: 

1. Either a SysClk or SysClk-based state machine is used. 
2. The memories require at least 1 wait-state. 

The output enable of an FCT245 needs to be determined 
by finding the start and end of the memory cycle, which can be 
determined by logically ANDing Rd and Wr. The assertion of 
the output enable can be easily delayed to occur well after the 
transfer, depending on the number of wait-states in the 
memory controller. That is, the transceiver only needs to be 
enabled in time to allow the data to propagate through to the 
CPU as the read data response is finally returned to the 
processor. In read cycles, the output may be disabled using 
the same clock edge as is used by the CPU to negate Rd. On 
write transactions, the transceiver must be enabled until the 
data set-up and hold time requirements of the memory being 
written are met, which may extend until the next falling edge 
of SysClk (note for the R3051, the processor guarantees that 
valid data will remain for one-half clock cycle afterthe negation 
of Wr). 
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Addr(32) -----+~X J J j word Address X._ _ __.. __ _._ __ 
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Figure 10a. Timing Diagram of FCT245 Enable and T/R Direction Controls for a Read 
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Figure 10b. Timing Diagram of FCT245 Enable and T/R Direction Controls for a Write 

The T/R direction pin of the FCT245 should be asserted 
before the output enable asserts, which can be achieved by 
using a Rd or Wr derived signal. The direction should be held 
until the next clock edge after Rd or Wr de-asserts; that is, until 
after the output enable is de-asserted. 

Systems that use memories without a dedicated output 
enable pin require separate byte output enables in the data 
path, as discussed above. 

PULL-DOWN/UP RESISTORS ON R3051 
OUTPUTS 

The R3051 tri-states its outputs under three conditions: 
1. If no external read or write memory cycles are being 

executed, the A/D bus will tri-state. Control signal outputs 
will be driven to negated states. 

2. If a DMAbus grant is given, all bus interface outputswilltri­
state. 

3. If the Tri-State reset mode has been invoked, all outputs 
except SysClk will be tri-stated. 

The following paragraphs detail which outputs are affected 
when the R3051 is in a tri-stated condition. 

Pull-down/up Resistors on the A/D Bus 
The R3051 tri-states the A/D bus when it finishes a write (or 

read) cycle and there is not another pending memory cycle 
that it needs to execute. This situation occurs when the R3051 
is getting instructions from its internal instruction cache and it 
executes a sequence without store instructions. Since the Al 
D bus can be tri-stated for these periods, it is desirable for the 
input pins of the address latches and data transceivers to 
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maintain the A/D bus with defined, valid logic values by using 
pull-up/pull-down resistors. The use of pull-up or pull-down 
resistors also has the benefit of easing Automatic Test Equip­
ment programming on board-level and in-circuit tests. 

Pull-down/up Resistors on Control Lines for OMA 
The R3051 has an on-chip Direct Memory Access (OMA) 

arbiter that allows outside processors and controllers to take 
control of the external memory systems, and perform transac­
tions. It does this by indicating a request to the R3051, which 
then tri-states its bus interface to allow it to be driven by the 
external agent. 

During OMA, the R3051 will execute instructions from its 
internal caches until it has a cache miss, makes an uncacheable 
reference, or its write buffer becomes full. 

An external agent requests bus mastership by asserting 
the R3051 BusReq input. If BusReq is asserted by the OMA 
device, the R3051 tri-states its outputs and asserts BusGnt to 
signal to the OMA device so that it can begin to drive its own 
memory cycles. During OMA, the R3051 tri-states all outputs 
except SysClk and BusGnt. During the time that the R3051 
and the OMA controller transfer control back and forth, neither 
one drives the control line outputs (to avoid bus conflicts). In 
order to properly transfer control, the R3051 control outputs 
should be kept in their de-asserted state. If the transfer time 
is relatively short, the system designer may choose to rely on 
bus capacitance to hold these signals in their negated posi­
tions. Alternatively, a more conservative strategy is to hold the 
bus in a negated position with pull-down or pull-up resistors. 
Thus Rd, Wr, Burst/WrNear, and DataEn should use pull-up 
resistors and ALE should use a pull-down resistor. 
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Pull-down/up Resistors on Control Lines for Tri-State 
The R3051 has a reset mode vector which allows the chip 

to tri-state all its outputs, except SysClk. This mode is attained 
by asserting Tri-State via Slnt(1) while Reset is asserted. In 
addition to the control lines above, BusGnt is tri-stated. Thus 
for Automatic Test Equipment programming on board-level 
and in-circuit testing, a pull-up resistor for BusGnt can be used. 

WAIT-STATE CONTROLLER LOGIC 
Wait-states are used to extend the number of clocks within 

a memory transfer to provide sufficient memory access and 
data setup time for the particular type of memory being 
accessed. Such control can be provided with a wait-state 
controller state machine. In general, a wait-state machine has 
four steps: 
1. Detect the beginning of a memory cycle. 
2. Determine the type of cycle: 

a. Which chip select (address decode) 
b. Read or write 
c. Single word or burst, write near or non-page write. 

3. Count out cycles until memory is ready and assert R3051 
handshaking signals. 

4. Acknowledge the end the cycle. 

Thus, the basic control strategy is to use a counter which is 
held at zero until a cycle is started, and which then increments 
every clock cycle until the transfer is completed. This master 
counter then provides the reference by which control outputs 
to the memory, data path, and CPU are provided. 

R3051's Use of Both Clock Edges 
The R3051 uses both edges of the clock to assert and de­

assert its control signals. This is to ameliorate the fixup time 
between memory cycles, which for most processors, takes 1 
full clock cycle. The R3051 is able to do the fixup in 1/2 clock 
cycle. This would seem to complicate the design of state 
machines which must latch these signals synchronously to 
one edge or the other. However, as will be shown in the 
following sections, a traditional state machine that follows a 
small number of simple design rules can still use a single edge 
clock. 

The R3051 uses an input clock, Clk2xln, that runs at twice 
the frequency of the processor. The R3051 provides an output 
clock, SysClk, that runs at the same frequency as the proces­
sor and can be used to clock external state machines. The 
polarity of SysClk was chosen intentionally so that either an 
unbuffered SysClk or an inverted version of SysClk, (referred 
to here as SysClk) can be used. Because all the R3051 control 
outputs have very short propagation delays (less than 1 /2 
clock), a state machine can use either edge of SysClk. 

In developing the set of constraints brought on by the use 
of both the rising and falling clock edges, some observations 
can be made: 
1. All clockable control line outputs, except Data En assert off 

the rising edge of SysClk. 
2. All clockable control line outputs de-assert off the falling 

edge of SysClk. 
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3. All control line inputs required by the R3051 are sampled 
on the rising edge of SysClk. 

Observations 1 and 2 can be specifically applied to two of 
the primary control signals, Rd and Wr. 
1. Rd and Wr both assert off the rising edge of SysClk. 
2. Rd and Wr both de-assert off the falling edge of SysClk. 

The similarity of edge assertions for Rd and Wrcan be used 
to simplify the wait-state controller. 

Detecting the Beginning of a Memory Cycle 
State machines looking forthe beginning of a memory cycle 

can look for one of two things: 
1. Rd or Wr asserting. 
2. ALE asserting. 

In general, state machines have to choose between using 
SysClk and SysClk. State machines such as those imple­
mented in ASICs can use both clock edges, however, to 
simplify the discussion it will be assumed that only one or the 
other clocks is being used. If SysClk is used, certain registers 
must use SysClk directly from the processor to provide suffi­
cient hold time from the processor. Only a negative edge 
clocked register can synchronously clock ALE under worst 
case timing, since ALE is only HIGH surrounding the falling 
SysClk edge which requires a negative edge triggered flip­
flop. SysClk cannot be used because its inverter delay will put 
it past when ALE could fall. 

Machines which use SysClk (the inverted SysClk) will have 
a delay from inverting SysClk. All state machines can use Rd 
and Wr to determine the beginning of a cycle. SysClk ma­
chines are able to do this easily with wide margins on setup 
and hold times to its registers. SysClk machines must use 
SysClk directly from the processor and use registers with O 
hold time and also have a guaranteed minimum clock to output 
delay to meet the R3051 's input hold time. 

Determining the Type of Memory Cycle 
The type of memory cycle usually depends on the following 

variables: 
1. Type of memory. 
2. Read or write cycle. 
3. Burst or non-burst, write near or non-page write. 

These three variables are usually logically ANDed together 
to form equations for determining the number of wait-states 
before asserting RdCEn, Ack, or BusError as well as any 
transceiver controls. The chip selects from the memory decoder 
can be used to determine the type of memory to count the 
correct number of wait-states. By using the R3051 's Rd and 
Wr lines, the transceiver controls can be defined. On read 
cycles, the R3051 's Burst/WrNear line determines if 1 word or 
4 words are to be returned. On write cycles, Burst/WrNear 
determines if a consecutive write is on the same 256 word 
page as its predecessor. An example of a state transition 
diagram that uses the read/write and burst/non-burst vari­
ables for one memory type is shown in Figure 1 i. Each 
memory type in the system also has a state diagram. 

Further variables that affect the type of memory cycle are 
implied by the mode initialization vector which is supplied 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING APPLICATION NOTE AN-92 

Reset Counter 

!CS and !Rd and Burst/WrNear !CS and !Rd and Burst!WrNear !CS and !Rd and Burst!WrNear !CS and !Rd and Burst!WrNear 

Increment Counter Increment Counter 

Count == 2 ? Count == 2 ? 

Assert RdCEn, Ack, CycleEnd Assert RdCEn, Ack 
Increment Counter Increment Counter 

Count== 3? 

Assert RdCEn 
Increment Counter 

Count== 4? 

Assert RdCEn 
Increment Counter 

Count== 5? 

Assert RdCEn, CycleEnd 
Increment Counter 

Increment Counter Increment Counter 

Count== 3? Count== 2? 

Assert Ack, CycleEnd Assert Ack, CycleEnd 
Increment Counter Increment Counter 

2881 drw 13 

Figure 11. State Diagram of an Example Wait-State Controller for a Single Memory Type 

during processor reset initialization. The variables determine 
whether the data byte ordering is Big or Little Endian and 
whether data cache miss refills are handled one word at a time 
or as 4 word block refill reads. BigEndian and DBRefill are set 
by multiplexing the interrupt lines on the de-assertion of reset, 
an example of which is shown in Figure 12. 

The mode vector of the R3051 was chosen to allow it to be 
supplied by just using pull-up resistors on the appropriate 
interrupt inputs. For example, the multiplexer shown in Figure 
12 could be eliminated, and the pull-up resistors tied directly 
to the Slnt(2:0) pins. 

Note that to maintain compatibility with future versions of 
the R3051 family, lnl(5:3) should be HIGH when Reset is de­
asserted. This also can be performed using pull-up resistors. 

Memory Interface Handshaking 
The R3051 uses two inputs, RdCEn and Ack.to indicate 

that the memory system is ready to receive or return data. On 
read cycles, RdCEn is sampled on the rising edge of SysClk 
by the R3051 so that it can enable its internal read buffer clock 
on the next falling edge of SysClk. Thus on single word reads, 
a single RdCEn is asserted as the memory becomes ready as 
shown in Figures 2 and 11. On 4 word burst reads, RdCEn is 
asserted for each of the 4words. Thus on burst reads, thewait­
state controller can optionally "throttle" each word into the 
R3051 by delaying the return of each word by a varying 
number of clocks. RdCEn can be generated by gating the 
memory type and the count: 
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RdCEn not := Reset and CycleEnd and BusError and ( 
(!Rames and !Rd 

); 

and ( (Counter== 02H) 
or (!Burst!WrNearand (Counter== 03H)) 
or (!Burst!WrNear and (Counter== 04H)) 
or (!Burst!WrNear and (Counter== 05H)) 

The acknowledge input, Ack, has two uses. On reads, Ack 
can be used to optimize the processor execution engine 
restart. On writes, Ack is used to signal the end of the cycle, 
as will be explained later. The R3051 throttles burst reads into 
its internal read buffer at the rate of the memory system; 
however, it reads data from the read buffer on every clock 
cycle. Therefore, the R3051 will either wait until the last 
RdCEn has occurred to begin reading the internal read buffer, 
or until the memory system signals Ack to the processor. 
Asserting Ack on a read cycle causes the R3051 to start 
reading words from the read buffer in the next cycle; thus, the 
memory system times the assertion of Ack so that the last 
word can be presented by the memory system just before it is 
read from the read buffer. Thus for optimal speed burst reads, 
Ack should be asserted 3 clocks before the last RdCEn 
occurs, as shown in Figure 3. For optimal single datum reads, 
Ack should be asserted at the same time as RdCEn. 
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Figure 12. Reset Vector Circuit 

On write cycles, Ack is sampled on the rising edge of 
SysClk by the R3051 so that the cycle ends on the next falling 
edge of SysClk as shown in Figure 4. Ack is used by the wait­
state controller on write cycles to acknowledge that data is 
being strobed into memory. Ack can be generated by gating 
the memory type and count. 
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In method 1, the SysClk registering of Rd or Wr is 
straightforward. However, if the counting is based on SysClk, 
the state machine will not be able to bring Ack or RdCEn LOW 
during the first possible clock cycle that they are sampled for 
by the R3051. This is, because the state machine will not 
detect the assertion of Rd or Wr in time. This implies that a 
SysClk-based state machine will have a minimum of one or 
more wait-states. 

In method 2, SysClk-based state machines must determine 
when to stop counting independent of the de-assertion of Rd 
or Wr. In general they cannot use Rd or Wr to terminate the 
cycle because Rd or Wr may de-assert within the buffered 
(inverter delayed) SysClk register's setup or hold time. Thus 
SysClk-based state machines should use its counter to de­
termine when the cycle will end, e.g., with Cycle End. Cycle End 
or a similar signal uses the chip selects and a counter to 
determine the end of the memory cycle, without using the de­
asserting edges of Rd and Wr. Logic equations for CycleEnd 
and the LSB of an N-bit binary up counter look like: 

CycleEnd not := Reset and CycleEnd and ( 
(!Rames and (Counter== 02H) and !Rd and Burst) 
(!Rames and (Counter== 05H) and !Rd and !Burst) 
(!RamCS and (Counter== 03H) and !Wr and Burst) 
(!Rames and (Counter== 02H) and !Wr and !Burst) 
({Bus Error Timeout} (Counter == OFH}) 

Note that in writes, the WrNear output from the processor ); 
may also affect the write timing. For example, when writing to 
Page Mode DRAMs, it will be possible to retire near writes 
faster than non-near writes. 

Counter(O) := Reset and CycleEnd and BusError and (!Rd or IWr) 
and (Counter(O) xor 1) 

An example of generating Ack from gating the memory type 
and count is: 

Ack not := Reset and CycleEnd and BusError and ( 
(!Rames and !Wr 

); 

and ( ( ~B-ur-st/W~r~N-ea-r and (Counter== 03H)) 

or(!Burst/WrNear and (Counter== 02H)) 

or (!Rames and !Rd 
and (Counter == 02H) 

Stopping the Counting 
Four common ways to end the memory cycle and stop the 

counter include: 
1. Use a SysClk state machine and look for the de-asserting 

edge of Rd or Wr. 
2. Use a SysClkstate machine and gatethe type of cycle into 

the counter to reset it independently of the de-asserting 
edge of Rd and Wr (predict the end of the cycle). 

3. Use registers with asynchronous resets and gate Rd and 
Wr into the reset. 

4. Interlock a SysClk register looking for the asserting edge 
of Rd or Wr with a SysClk register looking for the de-as­
serting edge of Rd or Wr. 
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A Timing Diagram of CycleEnd showing how CycleEnd 
asserting at the end of the memory cycle will reset the wait­
state counter independently of Rd and Wr is shown in 
Figure 13. 

Counters using CycleEnd use the type of cycle to deter­
mine when the wait-state counter should stop and reset 
independent of the de-asserting edge of Rd or Wr. 

Wait-state machines implemented in ASICs can consider 
using method 4which involves interlocking SysClkand SysClk­
based registers as shown in Figure 15. ASICs can also 
selectively combine two independent SysClk and SysClk 
state machines to avoid 1 /2 cycle interlock timing constraints. 

Bus Errors 
Bus errors can be handled by timing out with the wait-state 

controller counter as it is about to overflow. For all types of 
memory cycles, the R3051 de-asserts its control edges, e.g., 
Rd or Wr, on the clock following the assertion of BusError. 
SysClk-based state machines can look for the de-asserting 
edge of Rd or Wr in order to reset the wait-state machine's 
counter. In SysClk-based state machines, BusError can di­
rectly reset the wait-state machine's counter or the overflow 
count can be used to assert CycleEnd which will then resetthe 
counter. 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING APPLICATION NOTE AN·92 

SysClk 

SysClk 

Rd '\~-----------_.___.._,/ 
1 ( ~Addr&BE )>-~ _..._ _____ __._ ______ ....__-<( Data Input )1-+---

~----!-~~~--;----;------W-o_rd_A_dd_r_e_s_s __ --;.----;--;----;~ 

A/0(31:0) 

Addr(3:2) 

ALE ~~11\~i---~_.___,__...___,__~C_ 
. \......_.... _ _____, ______ ! 

Cycle End 

Counter 

Start 
Read 

Turn 
Bus 

Ack? 

J\.__.........__~/ 

Ack? Ack/ Sample End 
RdCen Data Read 

2881drw15 

Figure 13. Timing Diagram of CycleEnd 
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Figure 14. Using CycleEnd in a SysClk Based Counter 
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Figure 15. Using Interlocked Registers 2881drw17 

Bus errors signal an exception to the R3051 only if it is a 
read cycle. If exceptions need to be noted for write or OMA 
cycles, BusError should be gated into an interrupt line. The 
interrupt must be held until the R3051 can acknowledge it, 
since the R3051 re-registers its interrupt inputs on each clock 
cycle in which it is executing instructions in its run or fixup 
state. 

READ ENABLES AND WRITE ENABLES 
Memories and 1/0 devices have a combination of chip 

selects, read enables, and write enables to drive data out of 
the device and to strobe data into the device. Because the 
exact timing and functions of the selects, enables, and strobes 
differ for DRAM, SRAM, and 1/0, this section discusses read 
and write enables and their relationship to the byte enables. 

Read Enables 
In general, a memory or 1/0 device has an output enable pin 

to enable its data outputs on a read cycle. Typical designs will 
address all 8-bit and 16-bit 1/0 devices using 32-bit word 
addressed, (i.e., use Addr(3:2) as their LSBs). Even though 
the R3051 produces byte enables on read cycles, it is rare to 
require use of the byte enables for reads as the R3051 will 
internally mask the bytes not being used. The output enable 
for the device can be derived from Rd or from DataEn. 

If more than one memory device uses a single transceiver, 
it may be necessary to generate device Output Enables using 
a delayed version of DataEn. If one of the memory or 1/0 
devices has a long output disable to tri-state time, then extra 
time must be allowed for that device to tri-state before another 
device is enabled. An equation determining if the read enables 
should be delayed on a back to back read cycle is: 

1SysClk >= 1DisableControl + !Old Memory Disable ·· 1NewMemoryData + 
!Cap 

The output enable control should be asserted at least until 
the clock cycle that Rd and DataEn de-assert to provide suf­
ficient data hold time to the R3051. 
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Gating Write Enables and Byte Enables 

Memory and l/Odevices have a write enable pin or a similar 
protocol to strobe data into the device. A special case occurs 
for partial word stores, where only the pertinent bytes of a word 
have their byte enables asserted. Partial word stores occur 
when a store byte, store half-word, or store tri-byte instruction 
is executed. Because of the efficiency and optimization capa­
bilities of modern compilers, such as the MIPS® and IDT 
Compilers for the R3000™ family, the hardware must always 
assume that the software will make use of the partial word 
store instructions. Thus the write enables (or as shown earlier 
the chip selects) of each byte of a word must be gated with 
their respective byte enables. Gating the byte enables into the 
write enables can be done with an FCT157/257 multiplexer by 
configuring it as a set of four OR gates with a common input 
term as shown in Figure 16. The write enable signal can be 
derived from Wr. 
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WrEn(3:0) 
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Figure 16. Gating Byte Enables into the Write Enables 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING 

SUMMARY 
The main memory interface of the R3051 is conventional 

and simple. Basic blocks include address de-multiplexing, 
address decoding, data transceivers, wait-state controller, as 
well as the memory and 1/0 modules themselves. The R3051 's 
uses both edges of the clock for control signals to reduce inter­
cycl e latency. Thus conventional wait-state controller 
algorithms can be used if the following guidelines are fol­
lowed: 

1. In SysClk-based wait-state controllers, the input clock 
should be unbuffered from the processor's SysClk output. 
SysClk controllers will have a minimum of 1 or more wait­
states. SysClk registers require small hold time and a 
minimum clock to output propagation delay to meet the 
R3051 input hold time. 
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2. In SysClk (inverted version of processor SysClk output) 
based wait-state controllers, the master reference counter 
must be reset independently of the de-asserting edges of 
Rd or Wr. This can be done by gating the memory type and 
cycle type into a CycleEnd output which deterministically 
resets the counter. 

The R3051 's integration of an instruction cache, a data 
cache, read buffers, and write buffers allows simple main 
memory interfacing which can be implemented using a small 
amount of external logic. Thus the R3051 reduces the cost 
and board size of RISC processing, while maintaining very 
high throughput. 
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INTRODUCTION 
The IDT79R3051T" RISController™ is a highly-integrated, 

high-performance MIPS® R3000™ instruction set compatible 
CPU that minimizes system cost and power consumption 
across a wide variety of embedded applications. The R3051 
includes 4kB-8kB of instruction cache, 2k8 of data cache, 4-
deep read and write buffers, on-chip OMA arbitration, a simple 
external bus interface, as well as the core R3000A execution 
engine-all in a single chip 84-pin package. However, in 
today's marketplace, the technical features of a microproces­
sor are not enough to guarantee a successful product. A new 
CPU such as the R3051 must also have a large base of 
software applications, and very importantly, adequate hard­
ware and software development and debug tools. The R3051 
family already has a large base of software applications and 
a large set of development tools because of its R3000A 
instruction set compatibility and also because of its wide­
spread market acceptance. The use of just one of these tools, 
the IDT7RS364 Disassembler for the HP16500 Logic Ana­
lyzer will be explained here. 

THE IDT7RS364 DISASSEMBLER AND THE 
HP16500 LOGIC ANALYZER 

The IDT7RS364 Disassembler for the HP16500 Logic 
Analyzer is a useful tool meant to ease the task of debugging 
software run on R3000-based Target System Boards. Logic 
analyzers are inexpensive, general purpose debug tools 
which do not have the power of in-circuit emulators to actively 
control and simulate target system CPU and memory 
behavior. However, logic analyzers do provide a useful 
subset of in-circuit emulator debug capabilities by allowing an 
engineer to observe and analyze the digital circuit behavior of 
the target system. 

The IDT7RS364 Disassembler consists of a software pack­
age that when loaded into the HP16500, pre-processes and 
formats the state trace listings of the Logic Analyzer. As shown 
in Figure 1, the HP16500 allows the engineer to capture the 
CPU's executed hex/binary machine opcodes in a typical 
Logic Analyzer State Trace Listing format. The user can set 
multilevel trace traps to capture the area of interest. As shown 
in Figure 2, with the addition of the IDT7RS364 Disassembler, 
the hex machine opcodes are automatically decoded and 
displayed in R3000 assembly code level mnemonic format. 
Thus the readability and usefulness of the state trace list 
display screen of the Logic Analyzer are greatly improved. 

(State/Timing E) (Listing 1 ) ( lnvasm ) ( Print ) ( Run ) 

Markers 
Off 

ADDR 11 DATA 11 STAT 11 Time 

Hex 11 Hex II Hex II Absolute 

-6 lFCOOOOO OBF00088 0010 0 s 
-5 1FC00004 00000000 0010 760 ns 
-4 1FC00220 3C020010 0010 1. 52 us 
-3 1FC00224 40826000 0010 2.24 us 
-2 1FC00228 40806800 0010 3.00 us 
-1 1FC0022C 3C02AOOO 0010 3.76 us 

0 1FC00230 3C08AAAA 0010 4.52 us 
1 1FC00234 35085555 0010 5.24 us 
2 1FC00238 AC480000 0010 6.00 us 
3 1FC0023C AC400004 0010 6.76 us 
4 00000000 AAAA5555 0000 7.40 us 
5 1FC00240 8C490000 0010 7.88 us 
6 00000004 00000000 0000 8.52 us 
7 1FC00244 00000000 0010 9.00 us 
8 00000000 AAAA5555 0010 9.64 us 
9 1FC00248 11280003 0010 10.32 us 

2883 drwo1 

Figure 1. R3051 Address/Data Trace List on a Logic Analyzer 

The IDT Logo is a registered trademark. and RISController, IDT/sim and IDT79R3051 are trademarks of Integrated Device Technology, Inc. 
MIPS is a registered trademark and R3000 is a trademark of MIPS Computer Systems, Inc. 

©1992 Integrated Device Technology, Inc. 
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(State/Timing E) (Listing 1) ( lnvasm ) ( Print ) ( Run ) 

( Mab~r5 ) 
Label> AOOR 11 R3000 Mnemonic 11 STAT 11 Time 

Base> Hex 11 hex 11 Hex 11 Absolute 

-6 lFCOOOOO J OxlFC00220 0010 0 s 
-5 1FC00004 NOP 0010 760 ns 
-4 1FC00220 LUI vO,OxOOlO 0010 1. 52 us 
-3 1FC00224 MTCO v0,$12 0010 2.24 us 
-2 1FC00228 MTCO zero, $13 0010 3.00 us 
-1 1FC0022C LUI vO,OxAOOO 0010 3.76 us 

0 1FC00230 LUI tO,OxAAAA 0010 4.52 us 
1 1FC00234 ORI t0,t0,0x5555 0010 5.24 us 
2 1FC00238 SW tO,OxOOOO(vO) 0010 6.00 us 
3 1FC0023C SW zero,Ox0004(v0) 0010 6. 7 6 us 
4 00000000 STORE DATA OxAAAA5555 0000 7. 40 us 

1FC00240 LW tl,OxOOOO(vO) 0010 7.88 us 
00000004 STORE DATA OxOOOOOOOO 0000 8.52 us 

7 1FC00244 NOP 0010 9.00 us 
8 00000000 LOAD DATA OxAAAA5555 0010 9.64 us 

1FC00248 B Ox1FC00258 0010 10.32 us 

2883 drw 02 

Figure 2. R3051 Instruction Disassembly on the HP16500 Logic Analyzer 

Clk2xln, Reset __.. Oiag(1 :0) .. 
~-:««W~ 

~ ---. A/0(31 :O) .. FCT373T A(31 :4), BE(3:0) __.. 

LATCH 

ALE ~ 
lnt(5:3), Slnt(2:0) .. 
SBrCon~:~ .. R3051 MEMORY 

RISController SYSTEM 

BrCon@:~ 
FCT623T i.. 0(31:0) .. ..... TRANS- ..... 
CEIVER 

BusError __.. .. ~~ 
~~ 

RdCEn, Ack __.. Rd, Wr, BurstlWrNear, OataEn, Addr(3:2), SysClk ...... .. 
BusR~ __.. BusGnt ..... 

2883 drw 03 

Figure 3. Typical R3051 System 

Connecting the R3051 to the HP16500 Pod Sets Disassembler typically uses 32 Address lines, 32 Data lines, 
a Read line, and a Write line. Before the Disassembler can be used, the correct connec­

tions between the R3051 and the HP16500 must be made. 
The Disassembler requires five 16-channel probe pod sets. 
The Disassembler expects that the Pod Probe connections 
follow its interface protocol so that the pre-processing can 
correctly interpret the address, data, and status lines. The 
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In the typical R3051 system as shown in Figure 3, the 
R3051 's Rd output is used as the read line and the R3051 's Wr 
output is used as the write line. The Disassembler uses the 
read and write signals as clocks to strobe the address and 
data into the Logic Analyzer. Since the top speed of the State 
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traces on the HP16500 is 35MHz and the fastest possible 
memory cycle is 2 clocks, the Disassembler can easily sup· 
port 40MHz R3051 CPUs and has a theoretical limitation of 
?OM Hz. 

The Address lines can be gathered from the Address Latch 
outputs and Addr(3:2). Not all 32 address lines need to be 
attached, as the user can format the address line's MSB 
channel probes to not show up in the state trace listing if 
desired. In such a case, the user can use the extra channel 
probes for other purposes. 

In general, Data lines can be gathered from the AID bus. 
Some systems, with only one set of Data Transceivers, can 
gather the data from the memory side of the Data Transceivers 
in order to reduce AID bus loading. The R3051 connections to 
the five HP16500 Channel Probe Pod sets are listed in Table 1. 

The Disassembler has three status lines, Write, AccTyp(2) 
and AccTyp(O). The R3051 's Wr output can be used as the 
write line so that the Disassembler can distinguish between a 
read and a write cycle. AccTyp(2) and AccTyp(O) are optional 
connectionsforcached code and in general should be grounded 
or at least left unconnected. The optional use of AccTyp(2) 
and AccTyp(O) will be explained in more detail in the Cached 
Code/Data section. The 16-channel status pod has 13 un· 
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used channels that can be used to display other signals, e.g., 
the Byte Enables. 

To a limited extent, the default ordering of the channel probe 
connections can be changed by the user. The relative ordering 
of the bits must still occur from MSB to LSB for the address/data/ 
status bus labels such that the Pod Number and Channel 
Numbers go from MSB to LSB. An example of reformatting the 
Pod interface is shown in Table 2 and Figure 4. The example 
in Table 2 and Figure 4 also demonstrates the use of the 
HP16500's demultiplexed clock feature. When using the 
demultiplexed clock, the address and data lines can use the 
same probes. This allows both the address and data to be taken 
from the multiplexed A/D(31 :0) bus. The address is slave­
clocked with ALE and the data is master-clocked with Wr or 
Rd. When using two clocks, only the 8 LSB probes on each pod 
can be used since the channels are internally multiplexed by the 
HP16500. Demultiplexed clocking is limited to 50ns master to 
slave clock recovery, which limits its use to 25MHz CPU 
systems. 

The HP16500 allows an extensive number of multi-level 
traps and triggers so thatthe code trace fort he area of interest 
can be found. Care should be taken when setting up trigger 
conditions. Sometimes when in the trace/trigger menu, the 

Table 1. R3051 Default Pod Connections on the HP16500 Logic Analyzer 

POD 5 POD 4 POD 3 POD 2 POD 1 
ch an sig ch an sig ch an sig ch an sig ch an sig 

15 x 15 A/0(31) 15 A/0(15) 15 A(31) 15 A(15) 

14 x 14 A/0(30) 14 A/0(14) 14 A(30) 14 A(14) 

13 x 13 A/0(29) 13 A/0(13) 13 A(29) 13 A(13) 

12 Gnd 12 A/0(28) 12 A/0(12) 12 A(28) 12 A(12) 

11 x 11 A/0(27) 11 A/0(11) 11 A(27) 11 A(11) 

10 Note2 10 A/0(26) 10 A/0(10) 10 A(26) 10 A(10) 

9 x 9 A/0(25) 9 A/0(9) 9 A(25) 9 A(9) 

8 x 8 A/0(24) 8 A/0(8) 8 A(24) 8 A(8) 

7 x 7 A/0(23) 7 AID(?) 7 A(23) 7 A(7) 

6 x 6 A/0(22) 6 A/0(6) 6 A(22) 6 A(6) 

5 x 5 A/0(21) 5 A/0(5) 5 A(21) 5 A(5) 

4 Wr 4 A/0(20) 4 A/0(4) 4 A(20) 4 A(4) 

3 x 3 A/0(19) 3 A/0(3) 3 A(19) 3 Addr(3) 

2 x 2 A/0(18) 2 A/D(2) 2 A(18) 2 Addr(2) 

1 x 1 A/0(17) 1 A/0(1) 1 A(17) 1 Gnd 

0 x 0 A/0(16) 0 A/D(O) 0 A(16) 0 Gnd 

NClk MClk Rd LClk KClk JClk Wr 
2883 tbl 01 

NOTES: 
1. Master Clock Format: Jt + Mt 
2. POD5(12) is AccTyp(2) and POD5(1 D) is AccTyp(D). If AccTyp(2) is grounded then AccTyp(O) is not used by the Disassembler and can be used for other 

purposes. See text for further explanation. 
3. A(31 :4) are connected to the Address Latch outputs. The rest of the signals are connected to R3051 outputs. X's denote unused probes that can be 

assigned by the user. 
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Disassembler format in the data field trigger condition can 
conceal a trap condition. Changing the Disassembler format 
temporarily to hex format while in the trigger menu can prevent 
such confusion. 

When Running with Cached Code/Data 
All Logic Analyzers and Disassemblers can only capture 

external CPU memory accesses. Since the R3051 is capable 
of running code and accessing data in its internal caches, such 
accesses are not seen by the external memory system. Thus 
in order for the Disassembler to accurately reflect the com-

Table 2. Example of Reformatted Pod Connections 

POD 5 POD 4 POD 
ch an sig ch an sig ch an 

15 15 15 

14 14 14 

13 13 13 

12 12 12 

11 11 11 

10 10 10 

9 9 9 

8 8 8 

7 A/0(31) 7 A/D(23) 7 

6 A/0(30) 6 A/0(22) 6 

5 A/0(29) 5 A/0(21) 5 

4 A/0(28) 4 A/0(20) 4 

3 A/0(27) 3 A/0(19) 3 

2 A/0(26) 2 A/0(18) 2 

1 A/0(25) 1 A/0(17) 1 

0 A/0(24) 0 A/0(16) 0 

NClk MClk Rd LClk 

NOTES: 
1. Master Clock Format: Jt +Mt 
2. Slave Clock Format: K0 
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plete instruction/data flow, the R3051 must be run uncached. 
As the target system becomes more and more functional, 

it becomes necessary to begin running cached code and data. 
Running cached code/data will affect the Disassembler's 
accuracy in the following ways: 

Cached Instructions 
1. Instruction fetch i-cache hits are not seen. 
2. Only the last word of a cachable 4-word burst instruction 

i-cache miss will be seen. 

3 POD 2 POD 1 
sig ch an sig ch an sig 

15 15 x 
14 14 x 
13 13 x 
12 12 Gnd 

11 11 x 
10 10 Note 3 

9 9 x 
8 8 x 

A/0(15) 7 AID(?) 7 x 
A/0(14) 6 A/0(6) 6 x 
A/0(13) 5 A/0(5) 5 x 
A/0(12) 4 A/0(4) 4 Wr 

A/0(11) 3 A/0(3) 3 Addr(3) 

A/0(10) 2 A/0(2) 2 Addr(2) 

A/D(9) 1 A/0(1) 1 Gnd 

A/0(8) 0 A/D(O) 0 Gnd 

KClk ALE JClk Wr 
2883 tbl 02 

3. POD5(12) is AccTyp(2) and POD5(10) is AccTyp(O). If AccTyp(2) is grounded then AccTyp(O) is not used by the Disassembler and can be used for other 
purposes. See text for further explanation. 

4. On Master/Slave Pods, only the 8 LSB probes are actually connected. E.g., A/D(23:16) is connected to Pod4(7:0). 
5. X's denote unused probes that can be assigned by the user. 

State/Timing Format 

Pods 

Label 

ADDR 
DATA 
STAT 

Master Clock Slave Clock 
Jt+Mt K-i-

Pod 
Master I Slave 

7 .... 07 .... 0 

Pod 4 
Master I Slave 

7 .... 07 .... 0 

Pod 
Master I Slave 

7 .... 07 0 

Pod 2 
Master I Slave 

7 .... 07 .... 0 

Figure 4. Example of Reformatted Pod Format 
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Pod 1 
Clock 

.... 07 

2883 drw 04 
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Cached Data Loads 
1 . Data load d-cache hits are not seen. 
2. Only the last word of a cachable 4-word data block refill 

d-cache miss will be seen. 
3. If the load instruction was an i-cache hit (not seen) then 

the associated data fetch if seen will be listed as an 
instruction. The data fetch is assumed to be the second 
(due to pipelining) read cycle after the load instruction. 

Cached Data Stores 
1. Data stores are handled correctly, since the R3051 

maintains a write-through cache policy which ALWAYS 
updates main memory as well as the d-cache. 

2. Because the R3051 has a 4-word deep write buffer, a 
data store may or may not occur on the second (due to 
pipelining) memory cycle following its instruction fetch. 
Multiple stores are always handled in the proper FIFO 
order, but each store may be interspersed with later 
instruction fetches. 

Other than running the software uncached, the following 
less intrusive methods may be used to help interpret cached 
code/data: 
1. Use the R3051 's testability mode to invoke the Force !­

Cache Miss Mode. This will put all instruction fetches 
onto the external main memory interface so that the logic 
analyzer can see all of them. However, forced i-cache 
misses may or may not be 4-word burst reads. 

In general, 4-word burst reads can be displayed properly 
if a more complex read strobe is formatted: 
J clock: Ack== LOW 
M clock: RdCEn == LOW 
N clock: SysClk == positive edge-triggered 

The HP16500 ORs level conditions together, OR's edge 
conditions together and ANDs level conditions with edge 

Diag(1) 

Diag(O) 

ALE 

R3051 Outputs 

.. 
_.. 

.. 
~ 

FCT373 
or 

FCT841 

LATCH 

~ 
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conditions. Thus the above strobe clocks the state 
when: 

(SysClk == ,c) AND [(Ack== 0) OR (RdCEn == 0)] 

This example clock set-up is only applicable to systems 
that happen to bring Ack LOW at the same time RdCEn 
is LOW on 4-word burst reads or don't bring Ack LOW 
on 4-word burst reads. Also 1/2 clock margin on the 
memory read access time is necessary in this example. 
Thus depending on the particular system design, vari­
ants of RdCEn, Ack, and SysClk can be combined or 
temporarily modified to create a 4-word read strobe and 
a write strobe. 

2. Latch the R3051 's Diag(1 :0) outputs with ALE. On 
external main memory reads, if LatchedDiag(1) == 1 
then the fetch is cachable and can be used as an 
indication that the state trace entry should be interpreted 
judiciously. When LatchedDiag(1) == 1, LatchedDiag(O) 
== 1 indicates a cachable instruction fetch and 
LatchedDiag(O) == 0 indicates a cachable data load. 

LatchedDiag(1 :0) are the R3051 's equivalents of the 
R3000's AccTyp(2) and AccTyp(O). As such they can be 
connected to the Disassembler's AccTyp(2) and 
AccTyp(O) probes. This allows the Disassembler to 
differentiate between cached instructions and data so 
that they can be displayed properly. However, 
AccTyp(2) and Diag(1) are undefined for writes, e.g., 
when the write buffer is full or on partial word stores. So 
if the AccTyp(2) probe is used, in order for the 
Disassembler to interpret write cycles correctly, 
LatchedDiag(1) needs to be AND'ed with Wr as shown 
in Figure 5, so that it is always LOW during write cycles. 

3. Use the Reset Mode Vector to set the R3051 to use 
single word data refills instead of 4-word data block 
refills. This will allow all 4 words on a data load d-cache 
misses to be seen. 

Rd Cache .. ~ L 
AccTyp(2) 

_.. AccTyp(O) 

Logic Analyzer Probes 

2883 drw 05 

Figure 5. Using Diag(1 :0) with the Dlsassembler 
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Using State Trace Listings and 
Timing Waveforms 

The IDT7RS364 Disassembler is a good tool for easing the 
use of a Logic Analyzer when debugging a target system. 
However, sometimes, even lower level detail is needed to 
examine clock by clock behavior of particular bus cycles. The 
HP16500 performs this function in its State Analyzer mode by 
sampling with the CPU's system clock as shown in Figure 6. 
Because the state analyzer mode has a maximum speed of 
35MHz, certain restrictions apply. Ideally because the R3051 
uses both edges of its SysClk output to generate control lines, 
it is preferable to use Clk2xln or to clock on both edges of 

(State/Timing E) (Listing 1 ) 

( Markers ) Off 

Label> DATA 11 ADDR II 
Base> Hex 11 Hex II 

274 8C490000 4 
275 8C490000 0 
276 00000000 4 
277 00000000 4 
278 00000000 4 
279 00000000 4 
280 00000000 4 
281 00000000 4 
282 00000000 4 
283 00000000 4 
284 00000000 4 
285 00000000 4 
286 00000000 4 
287 00000000 4 
288 1FC00240 4 
289 1FC00240 4 
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either SysClk or its buffered/inverted version SysClk. On the 
HP16500, high-speed clocks should always use their ground 
shield on the probe to reference the input properly so that the 
probe does not sense signal overdrive. The edge of the 
reference clock should be chosen carefully so that it ideally 
clocks just before ALE de-asserts as shown in Figure 7. This 
allows the address to be seen along with the data on the 
multiplexed AID bus so that dedicated address lines probes 
are not required. When choosing a clock, keep in mind that the 
HP16500 has 1 Ons set-up time and 1 ns hold time relative to 
the clock. In addition, the HP16500's Time Tagging feature if 
used is limited to 16.67MHz. 

( lnvasm ) ( Print ) ( Run ) 

CLKN II BAWRRA 11 ALE 11 WRNRDN I 

Hex II Binary 11 Binary 11 Binary I 
1 111110 0 11 
0 111110 0 11 
1 110111 1 01 
0 110110 0 01 
1 110110 0 01 
0 110110 0 01 
1 110110 0 01 
0 110110 0 01 
1 110110 0 01 
0 110110 0 01 
1 110110 0 01 
0 100110 0 01 
1 100110 0 01 
0 111110 0 11 
1 111101 1 10 
0 111100 0 10 

2883 drw 06 

Figure 6. R3051 State Trace Listing Using Clk2xln 

Clk2xln 

SysClk 

ALE 

A/0(31:0) -----(--<~Addr&BE)r-~(Data lnput>---C 

Addr(3:2) ~~~~~--'><~~~~W_o_r_d_A_d_dr_e_ss~~~~-><== 

\...._ __ _____,,/ 
2883 drw 07 

Figure 7. Choosing a Clock Edge 
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( Print ) ( Run ) 

I Sample period = 10.000 ns I 

CLKN 

ALE 

ACKS 0 

WRNRDN 1 

ACKS 

BAWRRA5 

A_D all 11 11 II 111 11 

2883 drw 08 

Figure 8. R3051 Timing Mode Waveform 

Systems running with a Clk2xln over 35MHz (17.5MHz 
CPU) cari either clock the State Analyzer mode less frequently 
or use the Timing Analyzer mode. When clocking less 
frequently, care must be taken to chose a clock edge that 
adequately strobes ALE during its HIGH period so that the 
address can be determined. Because the R3051 only has a 
1/2 clock intercycle memory latency, Rd and Wr and other 
control lines may not be seen to de-assert between memory 
cycles when clocked at the SysClk frequency. 

The HP16500 Logic Analyzer's Timing mode displays 
signals in waveform format as shown in Figure 8 and is 
capable of internally generating a 100MHz (1 Ons) sample 
clock. To maintain all the functional timing relationships 
relative to the Clk2xln, the timing mode allows asynchronous 
sampling up to 50MHz CPU speed. The disadvantage of using 
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the Timing mode is that the value of busses is hard to decipher 
when shown in waveform format. If necessary, HP16500 can 
be set up in its mixed mode display to display both state and 
timing modes on the same screen. 

SUMMARY 
The use of the HP16500 and the IDT7RS364 Disassembler 

is but one example of the availability and compatibility of 
R3000 tools and software that can be used on the R3051 . The 
Disassembler formats logic analyzer state traces into assem­
bly level mnemonics to allow easier user interpretation. 
Similarly, other R3000 software, compilers, as well as other 
developmenttoolssuch as the IDT7RS901 IDT/sim'" ROMable 
Kernel/Boot Monitor can also be used on R3051 systems with 
little or no modification. 



(;)® INTERFACING THE IDT79R3051™ APPLICATION 

TO THE SONIC™ NOTE 
AN-95 

Integrated Device Technology, Inc. 

By Danh Le Ngoc (Integrated Device Technology, Inc.) and Paul Cheng and Bill Harmon (National Semiconductor) 

OVERVIEW 
The I DTR3051"' family is a series of high-performance 32-

bit microprocessors featuring a high-level integration and 
high-performance. The R3051 family integrates the MIPS® 
R3000A™ RISC CPU, along with BkB of instruction cache and 
2k8 of data cache. The R3051 family uses a simple time­
multiplexed 32-bit address and data bus to provide a low cost 
system interface (and to minimize the cost of ASIC devices 
designed to interface with the processor). In order to minimize 
the impact of a time-multiplexed bus, the R3051 family incor­
porates a 4-deep read buffer and 4-deep write buffer into the 
interface, allowing relatively slow memory systems to be 
mated to a high-speed processor. The R3051 family is able to 

Data/ 
Address 

R3051™ 
Family 

DRAM 
Controller 
79R3721 

VRAM 
Controller 

SONIC 
DP83932 

Logic Control 

offer35mipsofintegerperformanceat40MHzwithoutrequiring 
external SRAM or caches. 

The R3051 family is designed to bring the high-perfor­
mance inherent in the MIPS RISC architecture into low cost 
simplified embedded applications such as laser printers, X­
~indow terminals and network bridges and routers. Figure 1 
illustrates the simplified block diagram of the R3051-based X­
Window terminal. 

The focus of this application note to describe the interface 
between the R3051 and National Semiconductor's System 
Oriented Network Interface Controller (SONIC). 

The SONIC™ is National Semiconductor's System Ori­
ented Network Interface Controller (DP83932). This Ethernet 

Even 
Memory Bank 

Address Data 

Odd 
Memory Bank 

Address Data 

Frame Buffer 

Boot PROM 

Mouse 

Keyboard 

Bus 
Exchanger 
79R3720 

x 
Window 
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Figure 1. X-Wlndow Terminal 

RISController and IOT79R3051 are trademarks of Integrated Device Technology, Inc. 
All other trademarks are trademarks of their respective companies. 

©1992 Integrated Device Technology, Inc. 6/92 
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controller is intended to provide a high performance 32 or 16-
bit Ethernet connection for systems that require efficient, high­
throughput, low-power network connectivity. The SON IC can 
be employed in an R3051-based system, in order to tightly 
couple the system's CPU and main memory to the network. 
Figure 2 depicts this interface. 

The SONIC is ideally suited to embedded processing 
applications such as X-Terminals, due to its unique feature 
set. The SONIC completely supports all the required specifi­
cations set forth in the IEEE 802.3 standard, including the 
Media Access Control (MAC) requirements contained in the 
IEEE 802.3 layer management specification. Additionally, 
SONIC's high performance OMA channels allow it to use a 
very small percentage of the bus bandwidth, while its efficient 
linked list buffer management scheme limits the number of 
descriptor and data fetches required. It is also important to 
note that the SONIC utilizes internal content addressable 
memory (CAM) to provide a 100% perfect address filter for 
both multicast and physical address packets. This alleviates 
the need to waste bus bandwidth, memory space, and CPU 
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time on unwanted packets. Finally, the SONIC contains an 
integrated Manchester encoder/decoder, which is required in 
all Ethernet applications. This provides a savings in board 
space, as well as improved reliability. 

FUNCTIONAL OVERVIEW 

System Interface 
The R3051 has a multiplexed 32-bit address and data bus. 

Since the SONIC's address and data buses are demultiplexed, 
it is necessary to employ a set of external latches to connect 
the SONIC to the processor's address and data buses. In 
many applications, these latches may also be used to 
demultiplex the R3051 bus to other parts of the system 
memory and 1/0. 

In order to allow the R3051 to have access to the SON IC's 
internal registers, as well as allow the SONIC to gain control 
of the system bus and perform OMA operations, the SON IC is 
interfaced to the system bus as both a slave and a master. As 
a slave, the SON IC appears as a block of 256 bytes, consist-

12 v AUi Cable 

SONIC RX± CD± TX± 

<31 :0> 
data 

<31 :0> 
addr RA<5:0> 

<AID0:31> 
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Figure 2. SONIC Interface to the R3051 
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ing of sixty-four 3- bit words. The SONIC can be mapped into 
any location of memory and will typically provide for a ?-cycle 
register access. In R3051 applications, the SONIC will typi­
cally be mapped into the processor kseg1, which is an 
unmapped, uncached address space typically used for pro­
cessor 1/0 resources. 

As a master, the SONIC will arbitrate with the R3051 for 
ownership of the bus and proceed to operate as a 32-bit OMA 
engine between the network and the system memory. While 
operating on the bus, the SONIC is capable of performing 
32-bit/3 cycle OMA operations. It is important to note that the 
ability to place the SONIC on the same bus as the R3051 and 
the system memory is critical: this eliminates the need for the 
Ethernet controller to have a local buffer, which the CPU must 
spend time and bandwidth to transfer to main memory. The 
ability of the SON IC to place data directly in main memory and 
communicate with the CPU through linked list descriptors, as 
well as register accesses, makes the SON IC/R3051 interface 
CPU and bandwidth efficient. 

Network Interface 
With respect to the physical layer design, both AUi drop 

cable Ethernet and thin wire Ethernet are supported. The 
block diagram in Figure 2 contains a 15-pin AU I drop cable 
connector for standard drop cable Ethernet implementations, 
as well as a thin-wire Ethernet connection via the National 
Semiconductor coaxial transceiver interface (CTI, DP8392). 
Either of these network connections can be chosen through 
the use of a single jumper between the 5V supply and the 5V 
to -9V DC-to-DC converter. In either case, the AUi signals 
(RX±, TX±, and CD±) are sent back to the SONIC. These 
signals are interfaced to the ENDEC portion of the SONIC, 
which provides for communication between the AUi interface 
and the non-return to zero (NRZ) signals (RXD,TXD, and 
COL) of the Media Access Control (MAC) module of the 
SON IC. It should be noted that the integrated E NDEC module 
of the SONIC alleviates the need for an external Ethernet 

Control 

Bus 

AID (31 :O) 
Addr(3:2) 

ADDRESS BUS INTERFACE 

SONIC 

RA(S:O) 
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Manchester encoder/decoder, such as National's CMOS Serial 
Network Interface (CMOS SNI, DP83910). 

ARCHITECTURE AND DESIGN 

Bus Interface 
The SON IC's bus interface can be externally configured to 

operate in one of two modes. If the SONIC's BMODE pin is 
tied to ground, the SON IC will operate on the bus exactly like 
an 80386 microprocessor. If the SONIC's BMODE pin is tied 
to 5V, the SONIC will operate on the bus exactly like a 68030 
microprocessor. In this design, the most appropriate mode of 
operation was achieved by connecting BMODE to 5V. 

The bus interface, as depicted in Figure 3, consists of two 
parts. There is an address bus interface and a data bus 
interface. Since the R3051 's address and data buses are 
multiplexed, it is necessary to utilize a set of '244 buffers and 
'373 latches to multiplex the SON IC busses onto the CPU bus. 
The '244 buffers are required to tri-state the SONIC's address 
lines from the system bus during the data portion of master 
transfers, while the '373 is required to latch the register 
addresses being sent to the SON IC during slave operations. 
The output enable signal of the '244 is asserted when the 
SON IC is the master of the bus and both the SONIC's address 
strobe (AS) is asserted and the master logic's address latch 
enable (ALE) signal is asserted. The '373 should latch the 
address when the R3051 is the bus master and it asserts its 
ALE signal. 

The data bus interface requires the use of two sets of '244 
buffers. The first set of buffers (Buffer 1) prevent the SONIC 
from placing data onto the system's multiplexed address and 
data bus prematurely. In the slave mode of operation, the 
output buffer is enabled once the address output drivers are 
tri-stated. This is signaled by the assertion of the DataEn 
signal. In the case of a master operation, the buffers are 
enabled once the address buffers external to the SONIC are 

Control 

Bus 

DATA BUS INTERFACE 

SONIC 

Data (31:0) 
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Figure 3. Address and Data Bus Interface 
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tri-stated, which takes place upon the de-assertion of the ALE 
signal. 

The second set of buffers is enabled when the SON IC's 
registers are being written by the R3051 and data is being 
presented on the multiplexed system address/data bus, or 
when the SONIC is reading system memory and the memory 
is placing data on the multiplexed address/data bus. The 
assertion of the Data En signal by the system signals that data 
is now able to be placed on the bus. The actual logic represen­
tation for the bus interface can be found in the bus interface 
logic segment of the Control Logic section of this application 
note. 

Slave Operation 
The timing diagram for a slave access of the SONIC is 

shown in Figure 4. The falling edge of the R3051 's ALE signal 
latches the output of an address decoder and the address 
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lines being passed to the register address lines of the SONIC. 
If the address decode selects the SONIC, a signal called 
"AdrDec" will be asserted. The logic for generating this signal 
is shown in Figure 5. The value of this signal is passed to the 
chip select (CS) and slave address strobe (SAS) signals of the 
SONIC on the rising edge of the bus clock. The acknowledge 
signals back to the R3051 (ACK for a write and RdCEn for a 
read) are asserted 2 clocks after the SONIC generates its 
slave acknowledge signal (SMACK). These signals remain 
asserted to the R3051 for a clock cycle, after which they are 
removed. The ACK and RdCEn signals inform the R3051 that 
the data has been latched or is valid, respectively. The de­
assertion of these signals results in the de-assertion of CS and 
SAS to the SON IC. The logic for implementing this part of the 
design can be found in the slave logic segment of the Control 
Logic section. 
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Figure 4. Slave Access Timing Diagram 
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Figure 5. Slave Interface Block Diagram 
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Figure 6. Bus Request Timing Diagram 

Master Operation 
The first step in designing the master interface is imple­

menting the bus request logic. The timing diagram for this is 
shown in Figure 6. The bus request (BR) signal of the SON IC 
is passed to the R3051 's bus request (BusReq) on the falling 
edge of the bus clock. The SON IC then waits for the bus grant 
(BusGnt) from the R3051, which is passed directly to the 
SONIC's bus grant (BG) signal. The assertion of BG causes 
the SONIC to assert bus grant acknowledge (BGACK) and 
begin its master OMA operations. It is important to note that 
the assertion of BGACK causes the SONIC to de-assert BR, 
which would cause the bus request logic to de-assert BG to 
the SONIC. Thus, the BusReq signal to the R3051 should be 
the logical "OR" of the SON IC BR and BGAck outputs. A block 
diagram of the bus request logic appears in Figure 7, while the 
actual illustration of the logic is found in the bus request logic 
segment of the Control Logic section. 

Once the SONIC has gained control of the bus, it will begin 
to perform master OMA operations, as illustrated in the 
Figure 9 timing diagram. Ideally, if the memory is fast enough, 
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the SONIC will be able to perform 3-cycle OMA. At 25MHz, 
less than 3. 75% of the bus' bandwidth will be consumed by the 
network interface. 

There are two very important points to note. First, the 
R3051's ACK signal is basically equivalent to the SONIC's 
OSACK signals, but the SON IC's OSACK signals require that 
the memory system provide a total of Bns hold time from the 
rising edge of the clock, while the R3051 requires only 4ns. 
Second, the ALE signal generated from the SONIC's control 
signals will be de-asserted 3ns later than the R3051 's would 
be. However, this should not be a significant factor, since the 
address set-up and hold time provided to the memory system's 
latches is consistent with the R3051 's specification. 

When interfacing to the multiplexed bus, it is necessary for 
the master logic to generate an ALE signal for the system bus. 
The ALE signal is asserted on the rising edge of the second 
cycle in the SON IC's memory access. It is necessary to assert 
the ALE in this cycle, in order to guarantee that the latch will 
be provided with an adequate amount of set-up time for the 
address. The ALE signal is then removed on the falling edge 
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of the same clock cycle. The de-assertion of ALE triggers the 
assertion of DataEn on a read operation, in order to inform the 
memory that the bus' address drivers are tri-stated and data 
can now be driven. The Data En signal is actually arrived at by 
delaying the the ALE signal through a buffer or PAL, since the 
ALE signal is also responsible for disabling the output buffers 
of the address drivers. 

The final piece of interface logic is used to make the 
SONIC's read and write (MR/W) strobe compatible with the 
R3051 's read (Rd) and write (Wr) signals. The SON IC's read/ 
write signal is passed to the appropriate read or write strobe 
of the system bus, on the falling edge of AS. The Rd or Wr 
signal is then de-asserted on the falling edge of the last clock 
cycle. The block diagram for the master interface is found in 
Figure 9, while the logical implementation is shown in the 
master interface logic segment of the Control Logic section. 

Master Cycle One Memory Transfer 
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AS tu 11111 

Addr 111111111111 

MR/W 111111111111 
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Figure 7. Bus Request Interface Block Diagram 
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Figure 8. Master Access Timing Diagram 
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Figure 9. Master Interface Block Diagram 

Physical Layer 
Figure 10 contains a block diagram of the physical layer 

interface, while a schematic of the physical layer design is 
located on the last page of this application note. This design 
can be used in either a thin wire or standard drop cable 
Ethernet environment. When the design is used in a thin wire 
Ethernet application, the 5V supply must be connected to the 
DC-to-DC converter, so that the necessary-9V output can be 
supplied to National Semiconductor's Coaxial Transceiver 
Interface (CTI, DP8392). The CTI provides an interface be­
tween the 10MHz Manchester encoded coax cable and the 
1 OM Hz Manchester encoded differential signals of the SONI C's 
ENDEC. In the case of a standard drop cable Ethernet 
application, the 5V supply is left unconnected, so that the CTI 
will not receive power. This allows the signals of the SONIC's 
ENDEC to pass directly to the AUi cable, via the 15-pin AUi 
connector. In examining the schematic of the physical layer 
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design, it can be seen that there is a pulse transformer at the 
AU I side of the CTI. This is placed here to isolate the CTI from 
the SONIC's ENDEC signals, when the AUi drop cable 
connection is being employed. This transformer also provides 
the IEEE 802.3 specified isolation between the coax and the 
differential AUi signals, when thin wire Ethernet is being used. 
It is also necessary to provide a termination for the ?Sn AUi 
cable's differential receive and collision pair (RX± and CD±). 
This is the reason for the 390 -1% resistors and .01 µF 
capacitors that are shown in Figure 10. 

Additionally, there are two more significant considerations. 
First, each one of the transmit pairs (TX+ and TX-) requires 
a 2700 non-precision pull-down resistor to complete the 
internal source follower amplifiers that drive these signals. 
Second, there is an isolation transformer placed between the 
differential signals of the SONIC's EN DEC and the AUi cable. 
This isolation is necessary to guarantee that the SONIC meets 
the IEEE 802.3 fail-safe specification of a 16V DC level 
appearing on the AU I cable's differential signals. This external 
isolation is necessary, because in the powered down state the 
CMOS process, inwhichtheSONICis manufactured, may not 
be able to withstand this voltage. 

Control Logic 
This application note was developed with the intention of 

displaying the necessary requirements for interfacing the 
SONIC to the R3051 system bus. Therefore, the actual 
implementation of the control logic will be graphically depicted 
in state machine form, as opposed to being partitioned into 
actual PAL devices. This leaves the freedom for the designer 
to incorporate this logic into his/her system in PALs, ASICs, 
FPGAs, etc. 
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Figure 10. Physical Layer Interface Block Diagram 
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BUS INTERFACE LOGIC 
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8==0 OE2 =QA= AS* lnDE +AS* Q + Wr. Q + lnDE. Q 

AS 

OE= DataEn +CS+ AS* lnDE +AS * OE2 + Wr * OE2 + lnDE * OE2 
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case 1 case 2 

Note: 
1 . 01' refers to the first state machine bit and 02' refers to the second state machine bit (1 O: 01'=1 & 02' = 0) 
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SLAVE INTERFACE LOGIC 
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MASTER INTERFACE LOGIC 
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IDT79R3051™ APPLICATION f;)' ADDRESS/DATA BUS NOTE 
AN-97 

TURN-AROUND BEHAVIOR 
Integrated Device Technology, Inc. 

by Andrew Ng 

INTRODUCTION 
This application note describes the behavior of the 

I DTR3051 's multiplexed Address/Data, "A/D" bus and presents 
the issues of a particular topic called "Bus Turn-Around." Bus 
Turn-Around will be defined, design issues will be presented, 
and design solutions will be given for conventional R3051 
systems, as well as a "DMA BusReq" design solution for very 
low-speed and very high-speed systems. 

Definition of the R3051 
The IDT79R3051™ RISController™ is a highly integrated 

MIPS® R3000™ instruction set compatible microprocessor 
that minimizes system cost and power consumption. The 
R3051 includes 4kB to BkB of instruction cache, 2kB of data 
cache, an optional on-chip TLB memory management unit, 4-
deep read and write buffers, on-chip OMA arbitration, a simple 
external bus interface, as well as the R3000A CPU execution 
engine - all in a single compact plastic 84-pin package. 

Definition of the A/D Bus 
One of the key features of the R3051 is its low pin count. 

The low pin count is largely a result of its simple control 
interface and its use of a multiplexed Address and Data bus, 
calledA/0(31 :0). As shown in Figures 1 and2, the multiplexed 
AID bus drives its address during the first phase of a read or 

Address Phase 

ALE 

Rd 

A/0(31 :0) --------+-< Addr&BE 
(from CPU) 

Data En 

write memory cycle. In the second phase of a read memory 
cycle, the CPU expects the external memory system to drive 
the bus and return the data. In the second phase of a write 
memory cycle, the CPU drives the data out to the memory 
system. Thus in a typical R3051 system, the address can be 
latched using a bank of transparent latches such as with the 
54/7 4FCT373T or 54/7 4FCT841 T as shown in Figures 4 and 
5 so that the address is de-multiplexed from the data lines. 

In systems using an ASIC, such as for a DRAM or DMA 
Controller or as an Integrated 1/0 Subsystem/Controller with 
on-chip programmable registers, the multiplexed A/D bus has 
an advantage over separate Address and Data busses in that 
the ASIC requires substantially fewer pins. The ASIC can 
latch the 32 Address bits internally, using the Address Latch 
Enable output from the CPU called "ALE", and then use the 
same input pins to provide data. In addition, the CPU has less 
noise from simultaneous switching of the 32 AID lines than if 
it had to switch 64 separate Address and Data lines. Thus 
R3051 systems can often save cost and space by using 
inexpensive and low pin count ASICs. 

Although a multiplexed bus may be thought of as a disad­
vantage in terms of system performance, this is rarely the case 
in R3051 systems. An analysis of memory behavior and the 
bus shows that in conventional memory systems (those that 
do not use exclusively high-speed, single-cycle SRAMs for 

Data Phase 

Data 
(from Mem) 
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Figure 1. R3051 Read Cycle 
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2531drw02 

Figure 2. R3051 Write Cycle 

the entire memory system), the R3051 bus structure causes 
no real performance loss. 

For example, conventional memory systems use the ad­
dress before the data is generated on read cycles or needed 
by write cycles. On read cycles, the address is always needed 
before the data array can be accessed. The multiplexed 
R3051 bus provides the address as early as a non-multi­
plexed bus would; thus, the read access is not delayed. Since 
memory read performance is described as "Address and 
Chip-Select valid to Data Available", the multiplexed bus 
causes no performance loss on reads. 

Similarly, on write cycles, most memories (except for self­
timed memories) require the address before the data in order 
to properly coordinate the write strobe with the correct internal 
row and column address decode/selects. The R3051 bus 
provides the write target address for one-half cycle, and then 
immediately presents the write data. That half cycle is 
required to perform address decoding, and to provide a Chip­
Select to the memory device. Thus, once the address and 
Chip-Select are available to the memory, the data is also 
available. 

Further, the R3051 decouples the system bus performance 
from processor performance based on the integration of on­
chip resources. Specifically, the large on-chip caches mini­
mize the number of main memory reads, thus making system 
read performance less criticial. The on-chip 4-deep write 
buffer isolates the processor from the memory system write 
speed, allowing it to continue execution while store operations 
are actually updated into the memory. Thus, R3051 perfor­
mance, while somewhat dependant on memory system per­
formance, is largely isolated from the memory system. Thus, 
high-performance systems using relatively slow EPROM and 
DRAM devices can be easily realized. 

95 

Definition of Bus Turn-Around 
The other consequence of a multiplexed bus arises from 

the fact that during a particular transaction, as well as from one 
transaction to the next, transitions between sources of the bus 
can occur. For example, a read transaction begins with the 
processor driving the address on the bus, and ends with the 
memory driving the data on the bus. Similarly, at the end of a 
read, the next transaction on the bus will begin again with the 
CPU driving an address on the bus. 

Note that similar concerns are present even for non­
multiplexed busses. For example, a read followed by a write 
results in the data bus first being driven by the memory, and 
then being driven by the CPU. Thus, bus turn-around is also 
a consideration in non-multiplexed bus systems. 

Bus Turn-Around behavior is the action that the CPU takes 
when its address/data bus transitions between the CPU and 
the memory, particularly when it changes direction from being 
a driver to being a non-driver or vice-versa. The actions that 
the CPU can take are: 

1 . Drive the address. 
2. Drive the data. 
3. Tri-state. 

There are two basic times when the AID bus will transition: 
1. Intra-Cycle-Within a memory cycle as the address 

phase transitions into the data phase. 
2. lntercycle-Between two memory cycles when the 

data phase transitions into the address phase of the 
next memory cycle. 

Intra-Cycle Bus Turn-Around 
A typical case of an address to data transition happens 

during a read cycle. As shown in Figure 1, when the Address 
Latch Enable (ALE) is negated, the address is externally 
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latched and the CPU turns the bus around by tri-stating the Al 
D bus, so that the external memory system can begin to drive 
the expected data back to the CPU. The second case occurs 
during write cycles when the CPU finishes driving the address, 
it begins driving the data to the memory system. Since the 
CPU drives both the address and data during write cycles, bus 
turn-around is not a significant issue during write cycles. The 
two intra-cycle transition cases are listed in Table 1, which 
shows the state of the CPU A/D output buffers during the 
address and data phases of the transaction. 

Note that the processor provides an output, DataEn, to 
indicate that this transaction has occurred. During the ad· 
dressing phase, DataEn is negated, indicating the CPU is 
driving the A/D bus. During the Data Phase, DataEn is as­
serted, indicating that the bus is to be driven by the external 
memory system. During write cycles, and during idle cycles, 
DataEn is guaranteed to be negated, indicating that the 
external memory system should not be driving the A/D bus. 

Table 1. R3051 Address to Data Bus Transitional Behavior 
Within Memory Cycles 

READ A,Z 

WRITE A,D 

Note: A = Address, D = Data, Z = Tri-State 

Read Cycle 

Address Phase Data Phase 

ALE _____ _ 

ND(31 :O) -----... r-, ...;"\...111~~111.~,~~~.:.D._, 

RdCEn 
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lntercycle Bus Turn-Around 
A typical case of the transition between two memory cycles 

occurs on a read cycle that is immediately followed by a write 
cycle as shown in Figure 3. In this case, the memory system 
is required to turn the bus around by tri-stating the bus before 
the next write cycle begins to drive its address onto the A/D 
lines. Table 2 lists the R3051 's behavior on each of the cases 
of intercycle memory transitions. The table lists the state of 
the CPU output buffers at the end of the first transaction, 
followed by the state of the buffers at the beginning of the next 
transaction. Note that if a read or write cycle occurs while the 
CPU is executing instructions from its internal cache, the next 
external memory cycle might not occur until many clocks later, 
in which case the A/D bus is tri-stated since it is idle. Also, 
many of the cases, such as the transitions after writes have 
both the data and address driven by the CPU. Thus bus turn­
around is not a significant issue after write cycles. Other 
transitions may not actually be possible. For example, it is 
impossible to have a read followed by a read. At least two idle 
cycles are required, to accomodate the read buffer latch and 
the internal fix-up cycle required by the processor (see the 
R3051 Hardware User's Manual for more detail). 

TBTA Write Cycle 

Address Phase Data Phase 

Addr&BE 
from CPU 

Data 
from CPU 

2531 drw 03 

Figure 3. R3051 Read Cycle Followed by a Write Cycle 
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Table 2. R3051 Data to Address Bus Transitional Behavior 
Between Memory Transactions 

From To READ WRITE OMA IDLE 

READ Z,A Z,A Z,Z Z,Z 

WRITE D,A D,A D,Z D,Z 

OMA Z,A Z,A Z,Z Z,Z 

IDLE Z,A Z,A Z,Z Z,Z 

Note: A= Address, D = Data, Z =Tri-State 

TYPICAL SYSTEMS AND BUS TURN-AROUND 
To handle the timing associated with the bus turn-around 

within a memory cycle, the Data Enable output, DataEn is 
provided by the R3051. As shown in Figure 1, on read cycles, 
DataEn gives an indication when the CPU has tri-stated the 
AID bus. Thus after DataEn asserts, the memory system can 
begin driving data onto the A/D bus. The system designer can 
also look for the rising clock edge of SysClk after Rd asserts 
before allowing the memory system to drive data. 

To handle the timing associated with the bus turn-around 
between two memory transactions, consider the case of a 
read cycle immediately followed by a write cycle. The read 
cycle output enable control of the memory system must be 
such that the output drivers of the memory system turn off 
within 1 /2 clock before the next address is driven by the write 

Clk2xln, Reset __.. Diag(1:0) 
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cycle. If the memory devices have an output disable to tri­
state time (TOEZ) of more than 1/2 clock, then they can be 
isolated from the A/D bus with a bank of data transceivers 
such as the 54/7 4FCT245T, 54/7 4FCTB61, or 54/7 4FCT623T 
or with latched data transceivers such as the 54/7 4FCT543T 
or 54/7 4FCT646T as shown in Figure 4. All of these transceiv­
ers have very fast output disable times. 

VERY FAST SYSCLK OR VERY SLOW TOEZ 
AND BUS TURN-AROUND 

The majority of systems will use evenly matched memories 
relative to the system clock speed or use transceivers. How­
ever, two exceptions may occur: 

1. Very Fast SysClk- Even with the highest speed 
transceivers, their output disable times (ToEZ) are 
around 5-Bns. Thus at 40MHz, if DataEn is used, it has 
a clock to de-assert time of 4ns. (Assume that the 
transceiver has two internally Anded output enable 
inputs. For example, as shown in Figure 4, the 
FCT543T transceiver bank can use DataEn and the 
bank select for inputs to the output enables). If 1 ns is 
allowed for clock skew, this just meets the worst case 
timing criterion of: 

T1i2SysClk (12.5) ~ TDataEn + TOEZ + TClkSkew + Tcap 
(4+6.5+ 1 +0) 

A(31 :4), BE(3:0) 11111'.t--Al_D~(3_1_:0~)-___ .... ~ FCT373T 
r LATCH 

lnt(5:3), Slnt(2:0) __.. 

SBrCon<!{_3:~ .... R3051 

BrCon<!{_1 :Ql ..... 
RISController 

ALE 

FCT543T 

TRANS­

CEIVER 

ii ~I ~I ~I 

.. 0(31:0) 

T+1 Data En WrDataEn 
,.....::..-'=-=--------' '--1r------:::::::::::::::::=:::::::::-1 

BankSelect 

MEMORY 

SYSTEM 

Rd, Wr, Burst[WrNear, DataEn, Addr(3:2), SysClk 

..... 

2531 drw 04 
Figure 4. R3051 Memory System Isolated with Transceivers 
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Some choices of transceiver and PLA-based output enable 
control combinations may need more time than is allowed by 
the above equation. Solutions to this problem will be given in 
the section below, "Using OMA BusReq to Match CPU and 
Memory Speeds." 

2. Very Slow Memories - The second case occurs when 
relatively slow ToEz memories are attached directly to 
the AID bus as shown in Figure 5. Such systems require 
these memories to turn off within 1/2 clock. A 20MHz 
R3051 has a ToataEn for the de-asserting edge of DataEn 
of 7ns. Assume that additional output enable control 
circuitry adds an additional delay of 1 Ons. 1 ns is allowed 
for clock skew. For an inexpensive, slow 120ns 
EPROM, the output disable time is about 50ns, which 
seems to limit the clock speed to about ?MHz: 

T112SysClk (71.4) <". TDataEn + ToutputEnableControl + TOEZ + 
T ClkSkew + TCap (7 + 10+50+ 1 +0) 

However, as will be explained below in the section called, 
"Using OMA BusReq to Match CPU and Memory Speeds," the 
overall CPU speed does not have to be slowed down just 
because a slow TOEZ memory is attached directly to the A/D 
bus. 

Clk2xln, Reset ... Oiag(1 :O) 
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USING OMA BUSREQ TO MATCH CPU AND 
MEMORY SPEEDS 

For systems with very fast SysC/k or very slow memories, 
a solution exists to the bus turn-around timing constraints by 
using the Direct Memory Access (OMA) interface on the 
R3051. The R3051 OMA interface consists of two pins called 
BusReq and BusGnt as shown in Figure 6. Normally these 
pins are used for giving an external device control of the CPU 
bus instead of giving control of the bus to the R3051. Jn the 
R3051, when BusReq is asserted, OMA always has the 
highest priority immediately alter the current memory cycle 
completes. The BusReq input is always sampled on the rising 
edge of SysC/k. After the BusGnt is given, all of the CPU 
control line outputs, except SysC/k and BusGnt are tri-stated. 
When the OMA device is finished with the bus, it de-asserts 
BusReq which then causes the CPU to de-assert BusGnt. The 
BusGnt output is always asserted on the rising edge of SysClk 
and de-asserted on the falling edge of SysC/k. 

Because a BusReq always has the highest priority, in a very 
last SysC/k system or a very slow memory system, asserting 
BusReq during the read cycle insures that the OMA request 
will always be granted at the end of the read cycle. Alter this 
happens, the BusReq pin can be de-asserted after the desired 

_.. 
-

J..t A/0(31 :O) _.. FCT373T A(31 :4), BE(3:0) _. 
,.... .. LATCH .. 

ALE _.. I> 
lnt(5:3). Slnt(2:0) .. 
SBrCond(3:2) .... R3051 MEMORY 

RISController SYSTEM 
BrCond(1 :O) .... " 

0(31 :0) .... 

BusError ... 
--- ------- --- --
RdCEn, Ack ->' Rd, Wr, BurstlWrNear, OataEn, Addr(3:2), SysClk .. 

--
BusReq _.._ ... BusGnt _.._ 

2531 drwOS 

Figure 5. R3051 Memory System Connected Directly to the AID Bus 
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number of intercycle wait-states have been inserted. For 
example, as shown in Figure 7, by attaching the buffered read 
line, Rd to BusReq, the R3051 will grant the BusReq and 
immediately release it. Note that Rd needs to be buffered to 
meet the hold time of the BusReq input. Examine Figure 3, 
where a write cycle normally can follow a read cycle after 0.5 

BusGnt 

CPUOUTPurs~~~~~~~~~~~~~~_..... 
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clocks and then compare it with Figure 7. In Figure 7, by using 
BusReq, it can be seen that a minimum of 1.5 clocks is 
guaranteed before the next memory cycle is started by the 
CPU. 

Note that when using OMA, the system may choose to 
resistively pull-up or down its control signals since the OMA 

(except SysClk and --------------

SysClk 

ALE 

Rd 

BusReq 

BusGnt 

Wr 

A/D(31 :O) 

Data En 

RdCEn 

Ack 

BusGnt) ------------------' ~-------~ 

Figure 6. R3051 OMA BusReq and BusGnt Timing 

Read Cycle 
Address Phase Data Phase 

Addr&BE 
(from CPU) 

Write Cycle 
i-1----'T'-=B'-'-TAc:._ __ _..,..i Address Phase Data Phase 

Addr&BE 
(from CPU} 

Data 
(from CPU) 

Figure 7. Using BusReq to Add More Bus Turn-around Time 
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when granted will tri-state the CPU contro~utput signals. 
Thus ALE could use a pull-down, while Rd, Wr, DataEn, and 
BurstjWrNear could use pull-ups. The resistor value of the 
pull-ups and pull-down is not that critical since the R3051 
always drives the control signals to their de-asserted states 
before tri-stating them. Also, if the BusReq is needed for 
conventional OMA, a fixed-priority based arbiter can be used 
to allow bus turn-around wait-state injection the highest prior­
ity and to allow conventional OMA the next priority.:___ 

Various improvements can be made to using the R~e for 
BusReq. For example, instead of using the buffered Rd line, 
use the decoded chip select of the particular memory (e.g., the 
EPROM) that has the relatively slowToEz. Thus the extra wait­
states are only asserted as needed (that is, after the slow 
memory is accessed). 

SUMMARY 
The R3051 allows inexpensive systems to be designed 

with the high throughput R3000 RISC instruction set archi­
tecture. The small 84-pin count is achieved with a multiplexed 
address and data bus, called "AID". The use of the multiplexed 
AID bus allows ASICs and Memory Controllers such as the 
R3721 DRAM Controller to have fewer interface pins, with no 
real loss of system performance or real added complexity. 
However, as for any high-speed bus (either multiplexed or not) 
care has to be taken to avoid bus clashes as the bus transi­
tions from one device to another. This application note de­
scribes these considerations. 

As shown in the text, the use of the AID bus does not 
inherently limit the overall clock speed of the system, since 
either transceivers, or the described method of using the OMA 
BusReq input gives a solution for memory/CPU mismatches. 
Thus any memory or 1/0 system can use the multiplexed AID 
bus and be designed to run at the full CPU clock frequency. 

APPLICATION NOTE AN-97 

FOR FURTHER INFORMATION: 
1. /DT79R3051 Family Hardware User's Manual, 

MAN-RISC-00051, Integrated Device Technology, Inc., 
Santa Clara, CA, 1991. Describes the H/W features and 
functionality of the device as well the bus interface. 

2. IDT 1991 RISC Data Book, DBK-RISC-00021, Integrated 
Device Technology, Inc., Santa Clara, CA, 1991. Contains 
the data sheet with packaging, pinout, AC/DC electrical 
and thermal parameters. 

3. G. Kane, MIPS RISC Architecture, Prentice Hall, Englewood 
Cliffs, NJ, 1988. Describes the R3000/R3051 instruction 
set architecture from a systems and assembly-level pro­
gramming perspective. 

4. IDT1991 Logic Data Book, DBK-LOGIC-00080, Integrated 
Device Technology, Inc., Santa Clara, CA, 1991. Contains 
the data sheets for many different high-speed FCT trans­
ceivers, latches, and buffers. 
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(;) IDTR3051™ EMULATION OF REALS™ APPLICATION 

LASER PRINTER CONTROLLER USING NOTE 

IDT7RS385 EVALUATION BOARD AN-98 

Integrated Device Technology, Inc. 

By Bob Napaa 

INTRODUCTION 
To evaluate the performance and system cost of IDT's 

R3051™ RISController™ family in a laser printer environment, 
IDT has developed an emulation of the REALS™ Laser Printer 
Controller (IDT7RS3SS), complete with ports of the 
PeerlessPage™ Imaging Environment, Microsoft® 
Truelmage™ (Postscript® compatible) POL™ and 
PeerlessPrint5™ (HP LaserJet Ill PCL5™ -compatible) lan­
guages, using the IDT7RS3S5 Evaluation Board as the 
hardware platform. Like REALS, the 7RS385 board includes a 
fast Centronics parallel input port and the identical video 
interface for the Canon LBP-SX™ print engine has been 
added in the wire-wrap area. 

In this configuration, the emulation provides a checklist 
design model for OEMs wanting to use the same processor 
family, but adapting it to other 1/0 configurations, or driving 
other laser print engines. 

IDT7RS385 RISC Evaluation Board 
The I DT7RS3S5 is a complete RISC system self-contained 

on a single printed circuit board. The 7RS3S5 is designed 

70 
INT[5:0] 

BR 

BG 
BE[3:0] 

Read 
Write 

Ack 
RdCEn 

SysClk 

R3051 ALE 

AD[31 :O] 

Control .. 

Read 
Write 

1----+1 Control 
Logic 

around the IDT79R3051 RISControllerfamily. All four devices 
in the family (R3051, R3051 E, R3052 and R3052E) are pin 
and software compatible. As a consequence, any device can 
be substituted for the R3051. The major features of the 
7RS3S5 include: 

• IDT79R3052E RISController 
• 1 MB DRAM expandable to 4MB 
• 12SkB EPROM expandable to 2MB 
• Programmable DUART (2681) with two serial ports 
• Programmable counter/timer (8254) 

Centronics parallel input port with FIFO 
• Clock, reset and interrupt generation circuitry 
• IDT/sim™ - Initialization and monitor debugging software 
• HP16500 logic analyzer pod connectors 
• Expansion bus connectors 
• User wire-wrap area 

Figure 1 illustrates the 7RS3S5 block diagram while Figure 
2 illustrates the block diagram of the REALS laser printer 
controller. Additional information on the the IDT79R3051 
family, including the CPUs, support chips and development 

.-----. Timer_lnt 
Interrupt UART_lnt 
Control 
Logic 

DACK/ 
EXACK Timing 

Control 
Logic 

Serial 
Ports 

a • 

Parallel 
Port 

four 50-pin Address---------'--+-l~ 
To { Control 

Connectors Data-----------i-> 

•• These control signals include R3051 and the on-board control logic signals as well. 

Figure 1. 7RS385 Block Diagram 

REALS, IDT79R3051, RISController, and IDT/c, IDT/sim are trademarks of Integrated Device Technology, Inc. 
All others are trademarks of their respective companies. 

©1992 Integrated Device Technology, Inc. 
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Figure 2. REALS Laser Printer Controller Block Diagram 

software is available from IDT. The I DT7RS3S5 User's Manual 
provides more information on the 7RS3S5 Evaluation board. 

IDT7RS385 REALB Emulation 
The IDT7RS3S5_REALS_Emulation is a modified 7RS3S5 

Evaluation board designed to control a Canon LBP-SX laser 
printer engine. The 7RS3S5_REALS_Emulation is designed 
to run at 25MHz with 1 bank non-interleaved of 4MB DRAM 
and 1 bank non-interleaved of 2MB EPROM. The 
7RS385 REALS Emulation emulates the complete memory 
mapping~ interruPt structure, endianness and video interface 
implemented on the IDT REALS Laser Printer Controller 
board. The emulation of the hardware of the REALS board 
enables the software from THE PEERLESSGROUPtoberun 
with only minor modifications. The software however does 
need to be recompiled with IDT/c™ using the floating-point 
library since the current R3051 family does not support a 
hardware floating-point accelerator. 

The basic configuration of 7RS385 has been modified as 
follows: 
1. Change jumpers and DRAM to 4MB configuration. 
2. Change jumpers and EPROM to 2MB configuration. 
3. Modify "endianness" to little endian required by the soft· 

ware. 
4. Modify memory mapping and interrupt structure to match 

REALS. 
5. Disabling the 8254 timers not required by REALS. 
6. Adding the engine interface in the wire-wrap area. 

Figure 3 illustrates the physical layout of the 7RS3S5 
Evaluation board. 

IDT7RS385_REAL8_Emulation Implementation 
Several steps of modifications of the original 7RS385 

design are required to emulate the complete hardware of the 
REALS board. In addition the video interface must be imple­
mented on the wire-wrap area on the board. 
• Endianness 

The original 7RS385 board includes a big endian ver­
sion of IDT/sim and thus is considered a big endian board. 
The board has to be changed to a little endian board since 
the software from The Peerless Group is a little endian one. 
The endianness to the R3051 can be specified during reset 
on interrupt pin O. A level "1" specifies big endian system 
while a level "O" specifies a little endian system. The board 
is converted to little endian by shorting pins 1 and 2 of 
jumper P7. 

• Timer 
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The original 7RS385 board uses an Intel 8254 timer 
device which implements two timers. Each of the two timers 
may be program med as an independent REAL-time interrupt 
occurring at regular intervals. The two timer outputs (OUTO 
and OUT1) are forwarded to the R3051 via the interrupt 
PAL as synchronous interrupts. However, this timer device 
has been disabled (by removing the Vee and ground pins) 
since the software does not make use of it. The software 
implements a timer function using the DUART device. 
QUTO and OUT1 of the two timers are replaced by the 
Timer interrupt (from the DUART timer) and the 
Video -Filo Empty (from the video interface) signals re­
spectively.However, it is possible to keep the 8254 timers 
enabled if the application software can make use of them. 
This requires extra modifications in the interrupt structure 
and in the address decoding. 



IDTR3051 EMULATION OF REALS™ LASER PRINTER 
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• DUART 
The original 7RS385 board uses a Signetics2681 DUART 

to control two serial communications ports. The first port is 
for the CRT terminal while the second is for auxiliary use 
such as downloading software from a host. The functional­
ity of the DUA RT is almost unchanged in the modified board 
(the 7RS385_REAL8_Emulation) with some few excep­
tions. The software implements a real-time timer using the 
DUART and uses OP3 as the timer output. This signal is 
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POWER 
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forwarded to the R3051 through the interrupt PAL as the 
timer interrupt signal. Five of the remaining general pur­
pose output pins (OP2, OP4, OP5, OP6 and OP7) are used 
for the Centronics interface handshaking. These modifica­
tions require cuts and jumps on the OP2 and OP3 pins as 
demonstrated in the schematics. Also, the input pin Tl5 on 
the Max235 needs to be shorted to ground since this signal 
was originally connected to OP2. 

J15~~~~"'~~~ 

J14 f&-.'0.. "'"""""" "-"-"->\'1 
J13f0..~'-....'-....~ 

~ a 1;;::mif.:::::1 

1:::::9.~¥.::::i i::::H![J 
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Figure 3. 7RS385 Physical Layout 
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• Memory Mapping • Interrupt structure 
Figure 4 illustrates the memory mapping of the original 

7RS3S5 board. The address decoder PAL (U7) uses the 
upper 12 bits of the address bus to select among different 
memory segments. This memory mapping does not corre­
spond exactly to the required memory mapping of the 
REALS board and thus modifications of the address de­
coder PAL are introduced. The new memory mapping is 
presented in Figure 5 and still uses the upper 12 bits of the 
address bus. The new memory decoding scheme can 
support up to 4MB of DRAM space and up to 2MB of 
EPROM space. For 4MB of DRAM, pins 1 and 2 of jumper 
P11 need to be cut while pins 2 and 3 need to be shorted. 
For2MB of EPROM, pins 1and2of jumpers P1, P2, P3, P4, 
P5 and P6 need to be cut while pins 2 and 3 need to be 
shorted. 

/ 

ii 

''" 
DRAM 0000 0000 xxoo 0000 
~ MBYTEfil 003F FFFF xxoo 0000 

CENTRONICS 0060 0000 0000 0000 

TIMER 1 F80 0000 0001 1111 

EPROM 1FCO 0000 0001 1111 
(2 MBYTES) 1 FDF FFFF 0001 1111 

DUA RT 1 FEO 0000 0001 1111 

USER CS 1FAO 0000 0001 1111 

* These bits are decoded at the device 

The 7RS3S5 generates four interrupts synchronized to 
SysClk via the interrupt PAL (U2S) and may be connected 
to any of the available interrupt inputs on the R3051 through 
the jumper set P12. The interrupts and the default interrupt 
input into the R3051 are shown below: 

Interrupt Source Input to R3051 

CINTO 8254 counter 0 SINTO 

CINT1 8254 counter 1 SINT1 

CENTI NT Centronics Fl FO full flag INT3 

DINT DUART interrupt INT5 

This interrupt structure does not correspond to the 
requirements of the REALS board. Modifications of the 
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'"" / 
1100 xxxx xx xx xxxx xx xx xx xx 
0011 xx xx xx xx xxxx xx xx xx xx 

0110 xxxx xx xx xxxx xxxx xxxx 

1000 xx xx xx xx xxxx xxxx .. xx 

1100 xx xx xxxx xx xx xxxx xx xx 
1101 xx xx xxxx xxxx xxxx xx xx 

1110 xxxx xx xx xxxx XX*' *'XX 

1010 xx xx xx xx xxxx xx xx xx xx 

Figure 4. The Memory Mapping of the 7RS385 

I i.': 
2J. 

DRAM 0000 0000 xxoo 0000 1100 xxxx xxxx xx xx xx xx xxxx 
4 MBYTESJ: 003F FFFF xxoo 0000 0011 xx xx xxxx xxxx xxxx xxxx 
CENTRONICS 0060 0000 0000 0000 0110 xx xx xxxx xxxx xxxx xxxx 

USER CS LASER FIFO UU4U UUUU uuuu uuuu 0100 .xxxx1 JS.><)()( IX~ XXX_)( .xxxx 
005F FFFF 0000 0000 0101 xxxx xxxx xx xx xx xx xx xx 

UNUSED AREA llmlooooo 0000 0000 1000 xxxx xxxx xx xx xx xx xxxx 
LASER ENGINJ:: UU!:!U UUUU 0000 0000 1001 xx xx xxxx xxxx xxxx xx xx 

DUARTITIMER OOAO 0000 0000 0000 1010 xx xx xxxx xxxx xx .. .. xx 

EPROM 1FCO0000 0001 1111 1100 xxxx xxxx xx xx xx xx xxxx 
(2 MBYTES) 1 FDF FFFF 0001 1111 1101 xxxx xx xx xxxx xx xx xxxx 

• These bits are decoded at the device 

Figure 5. The Memory Mapping of the 7RS385_REAL8_Emulation 
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interrupt PAL and the P12 jumper set are introduced to 
reflect the new interrupt structure shown below: 

Interrupt Source Input to R3051 

VREQINT Video request SINTO 
VFEMPINT Video FIFO empty SINT2 

CENTI NT Centronics FIFO full flag INT3 

TM RI NT Timer interrupt INT4 

DINT DUART interrupt INT5 

To implement the new interrupt structure, COUTO, 
COUT1 and TIMER inputs lines to the interrupt PAL are 
replaced by VFEMPT, TIMERINT and VREQ respectively. 
The jumper set P12 need to be modified as illustrated in the 
schematics. 

• DRAM Memory Latency 
The original 7RS3S5-25 board design is optimized for 

non-interleaved 25MHz systems with the following DRAM 
memory latency for read and write accesses expressed in 
terms of external bus clock cycles: 

single read: 5 clock cycles 
quad word read: 5 clock cycles for the first word, 2 

clock cycles for the remaining 3 
words 

single write: 5 clock cycles 
page write: 4 clock cycles 
RAS precharge time: 2 clock cycles 

• EPROM Memory Latency 
The latency ofthesingle, non-interleaved bank of EPROM 

has been improved for 25MHz, and is expressed in terms 
of external bus clock cycles as follows: 
single read: 5 clock cycles 
quad word read: 5 clock cycles for the first word, 4 

clock cycles for the remaining 3 
words 

• Software 
The original 7RS3S5 board is shipped with a big endian 

version of the IDT System Integration Manager software 
( IDT/sim) which is a powerful tool for downloading software 
and debugging both hardware and software. This version 
of IDT/sim is tailored to the memory mapping of the existing 
design. A little endian version of IDT/sim tailored to the 
memory mapping of the REALS board is necessary to boot 
up the new 7RS3S5_REALS_Emulation (a version of IDT/ 
sim with the appropriate DUART address). This version of 
the software is readily available from IDT and is shipped 
with the REALS board. It only needs to be compiled for a 
little endian target system. No additional software modifica­
tions are required. 

• Video Interface 
The 7RS3S5_REALS_Emulation is designed to inter­

face to a Canon LBP-SX laser printer controller. The video 
interface is implemented on the wire-wrap area of the 
7RS3S5. The video interface resides in the User Chip 
Select segment of the memory as defined by the address 
decoder PAL (U7). The video interface PAL (U100) uses 
the UserCS line and address bits A20 to A23 to select 
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between accesses to the engine and accesses to the 
LaserFifo. The video interface PAL uses a special signal 
"State40" to synchronize its operation to the main state 
machine of the board and to return the "EXACK" (External 
Ack) in a proper manner. The "State40" signal has been 
specially added to the existing design to inform the external 
devices that the main state machine has finished all pend­
ing accesses and is waiting for a response from the User 
segment of the memory. This signal has been added to the 
U42 state machine PAL and prevents any confusion be­
tween the added external state machines and the existing 
one. 

The rest of the video interface design is a copy of the 
existing design on the 7RS3S5_REALS_EMULATION 
board. An S·bit register (FCT273) is used to output com­
mands and handshaking signals to the engine while an 
FCTS27 buffers the input status from the engine. An IDT 
Laser FIFO is used to store the bit map of the image to be 
delivered to the engine. A clock generator PAL (U102) 
divides a 14.91 MHz clock by S to provide the synchroniza­
tion clock between the controller and the laser printer 
engine. The second PAL (U103) synchronizes the video 
data (the bit map) from the LaserFifo to the laser printer 
engine data requests signals. 

Figure 6 illustrates the physical layout of the 
7RS3S5_REALS_Emulation board with the video interface 
added to the wire-wrap area. 

CONCLUSION 
The 7RS3S5 Evaluation board is a complete RISC system 

design intended for use as a stand alone evaluation system for 
the R3051 family and is flexible enough to be modified to fit the 
application at hand. It is very simple to design a laser printer 
controller based on the R3051 family and using the 7RS3S5 
board for basically any type of laser engines (Canon, Sharp .... ) 
with minimal additions and modifications. Similarly, the design 
of the 7RS3S5 can be tailored to fit an X Terminal application 
or a data communications application with some external add­
on hardware and minimal changes to the existing design. 

The Appendices include the schematics of the 
7RS3S5_REALS_Emulation as well as the PAL equations for 
the modified PAL and the new added PALs. 
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R3051 " PGA 

" U30 " 

Figure 6. The Physical Layout of the 7RS385_REAL8_Emulatlon 
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IDTR3051 EMULATION OF REALS™ LASER PRINTER 
CONTROLLER USING ID17RS385 EVALUATION BOARD 

"G. Takushi 03/26/91 
"B. Napaa 09/10/91 

"EDIT HISTORY: 
"Date 

"06/12/91 
"07/18/91 
"09/10/91 
"10/22/91 

Engineer 

G. Takushi 
G. Takushi 
B. Napaa 
B. Napaa 

MODULE AddrDcdr 

Checksum Modification 

8852 
9321 

81A8 

Initial release 
Decode only 1Mb DRAM and 128kb EPROM 
Modified to emulate 388 memory mapping 
Modified the output enable of the timer 

TITLE '3051 Evaluation Board: Address Decoder Pal' 

U7 DEVICE 'P22V1 O'; 

"Inputs 
A31,A30,A29,A28 
A27 ,A26,A25,A24 
A23,A22,A21,A20 

"Outputs 
DEV2 
DEV1 
DEVO 
EPROM 
ucs 
TIMER 
DUART 
DRAM 

"Constants 
x = .X.; 

PIN 22; 
PIN 21; 
PIN 20; 
PIN 19; 
PIN 18; 
PIN 17; 
PIN 16; 
PIN 15; 

PIN 13,11,10,9; 
PIN 8,7,6,5; 
PIN 4,3,2,1; 

"Device code bit 2 
"Device code bit 1 
"Device code bit 0 
"EPROM# 
"UCS# 
"TIMER# 
"DUART# 
"DRAM# 

Address= (A31 .. A20, X,X,X,X, X,X,X,X, X,X,X,X, X,X,X,X, X,X,X,X); 
DevCode = [DEV2 .. DEVO]; 
Dram_max = AH003FFFFF; "4 Mbyte DRAM 
Eprom_max = AH1 FDFFFFF; "2 Mbyte EPROM 

EQUATIONS 
Dev Code = ((Address & AH3FFFFFFF) <= Dram_max) & (0,0,0] # 

(Address== AH00600000) & (0,0,1] # 

APPLICATION NOTE AN-98 

"DRAM#O 

"CENT# 1 

((Address>= AH1 FCOOOOO) & (Address<= Eprom_max)) & [1,0, 1] #"EPROM# 5 

(Address== AHOOAOOOOO) & (0, 1,0] # "DUART#2 

(((Address>= AH00400000) & (Address<= AH005FFFFF)) # 
((Address>= AH00800000) & (Address<= AH009FFFFF))) & (1,0,0); "UCS# 4 
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!DRAM =((Address & 11H3FFFFFFF) <= Dram_max); "A(31 :30) are don't cares for DRAM* 

APPLICATION NOTE AN-98 

"to insure compatibility between 
"305x and 305xE. 

TIMER.OE 
!TIMER 
!EPROM 
!DUART 
!UCS 

END AddrDcdr 

=0; 
=0; 
=(Address>= 11 H1 FCOOOOO) & (Address<= Eprom_max); 
=(Address== 11 HOOAOOOOO); 
= ((Address>= 11H00400000) & (Address<= 11H005FFFFF)) # 
((Address>= 11 HOOBOOOOO) & (Address<= 11H009FFFFF)); 
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IDTR3051 EMULATION OF REALBTM LASER PRINTER 
CONTROLLER USING IDT7RS385 EVALUATION BOARD 

"G. Takushi 04/11/91 
"B. Napaa 09/12/91 

"EDIT HISTORY: 
"Date Engineer 

"06/12/91 G. Takushi 

Checksum Modification 

88EC Initial release 
"09/12/91 B. Napaa 355D Modified to emulate interrupt structure 

of 388 board. 

MODULE Interrupt 

TITLE '3051 Evaluation Board: Interrupt PAL' 

U28 DEVICE 'P22V10'; 

"Inputs 
SYSCLK 
MRES 
DUARTINT 
RD 
VREQ 
A02 
A04 
TIMER 
VF EMPT 
CENTFF 
OutEn 

"Outputs 
DINT 
CENTI NT 
VFEMPINT 
VREQINT 
TMRINT 

"Constants 

pin 1; 
pin 2; 
pin 3; 
pin 4; 
pin 5; 
pin 6; 
pin 7; 
pin 8; 
pin 9; 
pin 11; 
pin 13; 

pin 18; "INT 5 
pin 19; "INT 3 
pin 20; "INT 2 
pin 21; "INT 0 
pin 22; "INT 4 

ON,OFF,T,F,X,C = 1,0,1,0,.X.,.C.; 

EQUATIONS 

DINT.OE= !OutEn; 
CENTINT.OE = !OutEn; 
VREQINT.OE = !Ou!En; 
VFEMPINT.OE = !OutEn; 
TMRINT.OE = !OutEn; 

!CENTINT := MRES & !CENTFF; 
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!VREQINT :=MAES & !VREQ; 

!VFEMPINT := MRES & !VFEMPT; 

!TMRINT := MRES & !TIMER; 

!DINT := !DUARTINT; 

END Interrupt 

APPLICATION NOTE AN-98 
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"G. Takushi 04/11/91 
"B. Napaa 09/25/91 

"EDIT HISTORY: 
"Date Engineer Checksum Modification 

A601 Initial release "06/12/91 
"09/25/91 
"11 /12/91 
"01/13/92 

G. Takushi 
B.Napaa 
B.Napaa 
B.Napaa 

A818 
9197 

Added State40 output to interface to the video 
Modified UserCS by removing state 43 
Modified to reduce EPROM read latency 

MODULE StateMach1 

FLAG '-r3','·f' 

TITLE '3051 Evaluation Board: State Machine A' 

U42 DEVICE 'P22V10'; 

"Inputs 
SYSCLK 
MAES 
RD 
WR 
DRDCEN 
DEVO 
DEV1 
DEV2 
BWN 
BUSGNT 
EXACK 
DACK 
reset 

"Outputs 
ACK 
STATE40 
CNT5 
CNT3 
CNT2 
CNTO 
CNT1 
CNT4 
RDCEN 

"Constants 

pin 1; 
pin 2; 
pin 3; 
pin 4; 
pin 5; 
pin 6; 
pin 7; 
pin 8; 
pin 9; 
pin 10; 
pin 11; 
pin 13; 
node 25; 

pin 14; 
pin 15; 
pin 16; 
pin 17; 
pin 18; 
pin 19; 
pin 20; 
pin 21; 
pin 23; 

ON,OFF,T,F,X,C = 1,0, 1,0,.X.,.C.; 
DevCode = [DEV2 .. DEVO]; 
Operation = [MRES,BUSGNT,RD,WR,DevCode]; 
Idle = [ 1, 1, 1, 1, X]; "Idle 
EpromRd = [ 1, 1, 0, 1, 5]; "EPROM read 
Dram = [ 1, 1, X, X, O); "DRAM operation 
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DTRd = [ 1, 1, 0, 1, 2]; "DUART/Timer rd 
DTWr = [ 1, 1, 1, 0, 2]; "DUART/Timer wr 
UserRd =[ 1, 1, 0, 1, 4]; "User rd 
UserWr =[ 1, 1, 1, 0, 4]; "Userwr 
CentRd = [ 1, 1, 0, 1, 1 ]; "Centronics read 

Pstate = [CNT5 .. CNTO]; 
SOO = [1,1,1,1,1,1]; S32 = [0,0,1,1,1,1]; 
S01 = [1,1,1,1,1,0]; S33 = [0,0,1,1,1,0]; 
S02=[1,1,1,1,0,0]; 834=[0,0,1,1,0,0]; 
S03 = [1, 1, 1, 1,0, 1 ]; S35 = [0,0, 1, 1,0, 1 ]; 
S04=[1,1, 1,0,0, 1]; S36 = [0,0,1,0,0,1]; 
S05=[1,1,1,0,0,0]; S37 = [0,0,1,0,0,0]; 
S06=[1,1,1,0,1,0]; S38=[0,0,1,0, 1,0]; 
SO?= [1,1,1,0,1,1]; S39 = [0,0,1,0,1,1]; 
SOB= [1,1,0,0,1,1]; S40 = [0,0,0,0,1,1]; 
809=[1,1,0,0,1,0]; S41 = [0,0,0,0, 1,0]; 
810=[1,1,0,0,0,0]; 842 = [0,0,0,0,0,0]; 
811 = [1,1,0,0,0,1]; S43 = [0,0,0,0,0,1]; 
812=[1,1,0,1,0,1]; S44 = [0,0,0,1,0,1]; 
813=[1,1,0,1,0,0]; 845 = [0,0,0,1,0,0]; 
814=[1,1,0,1,1,0]; S46=[0,0,0,1,1,0]; 
815 = [1, 1,0, 1, 1, 1 ]; S47 = [0,0,0, 1, 1, 1 ]; 
816 = [1,0,0, 1, 1, 1 ]; 848 = [O, 1,0, 1, 1, 1 ]; 
817 = [1,0,0, 1, 1,0]; S49 = [O, 1,0, 1, 1,0]; 
818 = [1,0,0,1,0,0]; S50=[O,1,0,1,0,0]; 
819 = [1,0,0,1,0,1]; S51 = [0,1,0,1,0,1]; 
S20=[1,0,0,0,0,1 ]; 852=[O,1,0,0,0, 1 ]; 
S21 = [1,0,0,0,0,0]; S53=[O,1,0,0,0,0]; 
S22 = [1,0,0,0,1,0]; S54 = [0,1,0,0,1,0]; 
823 = [1,0,0,0,1,1]; 855 = [0,1,0,0,1,1]; 
S24 = [1,0,1,0,1,1]; 856 = [0,1,1,0,1,1]; 
S25 = [1,0,1,0,1,0]; 857 = [0,1,1,0,1,0]; 
S26 = [1,0,1,0,0,0]; S58=[O,1,1,0,0,0]; 
827=[1,0,1,0,0,1]; 859=[O,1,1,0,0,1]; 
828 = [1,0,1,1,0,1]; 860 = [0,1,1,1,0,1]; 
829 = [1,0,1,1,0,0]; S61 = [0,1,1,1,0,0]; 
830 = [1,0,1,1,1,0]; 862 = [0,1,1,1,1,0]; 
831=[1,0,1,1,1,1];863 = [0,1,1,1,1,1]; 

EQUATIONS 
reset = !MRE8; 

"!STATE40 = !CNT5 & !CNT4 & !CNT3 & !CNT2 & CNT1 & CNTO; 

"OMA Request 
ACK.OE= BUSGNT; 
RDCEN.OE = BU8GNT; 

"DRAM Operation 
!ACK:= !DACK; 
!RDCEN := !DRDCEN; 
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STATE_DIAGRAM Pstate 
state SOD: 

case Operation== EpromRd:S01; 
Operation== DTRd: S25; 
Operation== DTWr: S25; 
Operation== UserRd: S40; 
Operation== UserWr: S40; 
Operation == CentRd: S44; 
Operation== Dram: S63; 

endcase; 

state S01: 
state S02: 

state S03: 
state S04: 

goto S02; 
!RDCEN :=T; 
goto S03; 
goto S04; 

if !BWN then S05 else SOD; 

"Idle 

"Eprom read 

state S05: 
state S06: 

goto S06; "Eprom burst read 

state SO?: 
state SOB: 
state S09: 
state S10: 

state S11: 

state S12: 
stateS13: 
state S14: 

state S15: 
state S16: 

state S25: 
state S26: 
state S27: 
state S2B: 
state S29: 
state S30: 
state S31: 

state S32: 
state S33: 
state S34: 
state S35: 
state S36: 
state S37: 
state S3B: 
state S39: 

state S40: 

!RDCEN :=T; 
goto SO?; 
goto SOB; 
goto S09; 
goto S10; 
!RDCEN :=T; 
goto S11; 
!ACK :=T; 
goto S12; 
goto S13; 
goto S14; 
!RDCEN :=T; 
goto S15; 
goto S16; 
goto SOD; 

goto S26; "DUART/Timer read/write 
goto S27; 
goto S2B; 
goto S29; 
goto S30; 
goto S31; 
!RDCEN :=T; 
!ACK :=T; 
goto S32; 
goto S33; 
goto S34; 
goto S35; 
goto S36; 
goto S37; 
goto S3B; 
goto S39; 
goto SOD; 

!STATE40 := T; 
if EXACK then S40 else S41 "User read/write 

with !ACK := T; 
!RDCEN :=T; 

endwith; 
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state S41: 
state S42: 
state S43: 

state S44: 

state S45: 
state S46: 

goto S42; 
goto SOO; 
goto SOO; 

!RDCEN :=T; 
goto S45; 
goto S46; 
goto SOO; 

"Centronics read 

state S63: if (Operation== Dram) then S63; "DRAM 

END StateMach1 
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CONTROLLER USING IDT7RS385 EVALUATION BOARD 

"G. Takushi 04/11/91 

"EDIT HISTORY: 
"Date Engineer Checksum Modification 

"06/12/91 G. Takushi B5EB Initial release 
"01/13/92 B. Napaa B5EB modified DBBUSY to reflect new changes 

in EPROM reads 

MODULE StateMach2 

FLAG '-f' 

TITLE '3051 Evaluation Board: State Machine B' 

U43 DEVICE 'P22V10'; 

"Inputs 
SYSCLK 
MRES 
RD 
WR 
CNTO 
CNT1 
CNT2 
CNT3 
CNT4 
CNT5 
DATAEN 
reset 

"Outputs 
CENTRO 
XWR 
DBUSBSY 
XRD 
DOE 

"Constants 

pin 1; 
pin 2; 
pin 3; 
pin 4; 
pin 5; 
pin 6; 
pin 7; 
pin B; 
pin 9; 
pin 10; 
pin 11; 
node 25; 

pin 14; 
pin 16; 
pin 20; 
pin 21; 
pin 23; 

ON,OFF,T,F,X,C = 1,0,1,0,.X.,.C.; 
Pstate = [CNT5 .. CNTO]; 
SOD= (1,1,1,1,1,1]; S32 = (0,0,1,1,1,1]; 
S01 =[1,1,1,1,1,0];S33=[0,0,1,1,1,0]; 
S02=(1,1,1,1,0,0]; S34=(0,0,1,1,0,0]; 
S03 = (1, 1, 1, 1,0, 1 ]; S35 = (0,0, 1, 1,0, 1 ]; 
S04=(1,1, 1,0,0,1]; S36=(0,0,1,0,0,1]; 
S05 = (1,1,1,0,0,0]; S37 = (0,0,1,0,0,0]; 
S06 = [1,1,1,0,1,0]; S38 = [0,0,1,0,1,0]; 
SO?= [1,1,1,0,1,1]; S39 = [0,0,1,0,1,1]; 
SOB= [1, 1,0,0,1,1]; S40 = [0,0,0,0,1,1]; 
S09= [1,1,0,0,1,0]; S41 = [0,0,0,0,1,0]; 
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S10 = [1, 1,0,0,0,0]; S42 = [0,0,0,0,0,0]; 
S11 = [1, 1,0,0,0, 1 ]; S43 = [0,0,0,0,0, 1 ]; 
S12 = [1,1,0,1,0,1]; S44 = [0,0,0,1,0,1]; 
S13 = [1, 1,0, 1,0,0]; S45 = [0,0,0, 1,0,0]; 
S14=[1,1,0, 1,1,0]; S46=[0,0,0,1,1,0]; 
S15=[1,1,0,1,1,1]; S47=[0,0,0,1,1,1]; 
S16 = [1,0,0, 1, 1, 1 ]; S48 = [O, 1,0, 1, 1, 1 ]; 
S17 = [1,0,0,1,1,0]; S49 = [0,1,0,1,1,0]; 
S18 = [1,0,0,1,0,0]; S50 = [0,1,0,1,0,0]; 
S19 = [1,0,0,1,0,1]; S51 = [0,1,0,1,0,1]; 
820 = [1,0,0,0,0, 1 ]; 852=[O,1,0,0,0, 1 ]; 
821 = [1,0,0,0,0,0]; S53 = [O, 1,0,0,0,0]; 
S22 = [1,0,0,0, 1,0]; S54=[O,1,0,0, 1,0]; 
S23 = [1,0,0,0,1,1]; S55=[O,1,0,0,1,1]; 
S24 = [1,0,1,0,1,1]; S56 = [0,1,1,0,1,1]; 
S25 = [1,0,1,0,1,0]; S57 = [0,1,1,0,1,0]; 
826 = [1,0,1,0,0,0]; 858 = [0,1,1,0,0,0]; 
S27 = [1,0,1,0,0,1]; S59 = [0,1,1,0,0,1]; 
S28 = [1,0, 1, 1,0, 1 ]; S60 = [O, 1, 1, 1,0, 1 ]; 
S29 = [1,0, 1, 1,0,0]; S61 = [O, 1, 1, 1,0,0]; 
S30 = [1,0,1,1,1,0]; S62 = [0,1,1,1,1,0]; 
S31 = [1,0,1,1,1,1]; S63 = [0,1,1,1,1,1]; 

EQUATIONS 
reset= !MRES; 

!DOE= !DATAEN #(!WR & DBU8B8Y); 

!DBUSBSY := (Pstate == SOD) # 
(Pstate == S04) # 
(Pstate == S16) # 
(Pstate == S33) # (Pstate == S34) # 
(Pstate == 842) # (Pstate == S43); 

!XRD :=!RD & ((Pstate ==SOD)# (Pstate == 825) # 
(Pstate == S26) # (Pstate == S27) # 
(Pstate == S28) # (Pstate == S29) # 
(Pstate == S30) # (Pstate == S31) # 
(Pstate == S32)); 

!XWR :=!WR & ((Pstate ==SOD)# (Pstate == S25) # 
(Pstate == S26) # (Pstate == S27) # 
(Pstate == S28) # (Pstate == S29) # 
(Pstate == S30) # (Pstate == S31) # 
(Pstate == S32)); 

!CENTRO:= (Pstate == S44) # (Pstate == S45); 

END 8tateMach2 
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"B.Napaa 09/17/91 

"EDIT HISTORY: 
"Date Engineer Checksum Modification 

"09/17/91 B.Napaa original release 
"11 /12/91 B. Napaa CC82 modified the video fifo serial input clock VSOCP 

MODULE videostate 

FLAG '-R3', '-F' 

TITLE '3051 Evaluation Board: Video state machine' 

U100 DEVICE 'P22V10'; 

"Inputs 
SYSCLK PIN 1; 
MRES PIN 2; 
USERCS PIN 3; 
RD PIN 4; 
WR PIN 5; 
MA20 PIN 6; 
MA21 PIN 7; 
MA22 PIN 8; 
MA23 PIN 9; 
CLKEN PIN 10; 
VIDCLK PIN 11; 
STATE40 PIN 13; 
reset node 25; 

"Outputs 
EXACK PIN 14; 
ENGRD PIN 15; 
ENGWR PIN 16; 
FIFOWR PIN 17; 
VCO PIN 18; 
VC1 PIN 19; 
VC2 PIN 20; 
VC3 PIN 21; 
VSOCPPIN 22; 

"Constants 
ON,OFF,T,F,X,C = 1,0, 1,0,.X.,.C.; 
Madr = [MA23 .. MA20]; 
Operation= [MRES,STATE40,USERCS,RD,WR,Madr]; 
Idle = [ 1, 1, 1, X, X,X]; 
Engrd = [ 1, 0, 0, 0, 1,9]; 
Engwr = [ 1, 0, 0, 1, 0,9]; 
Fifowr = [ 1, 0, 0, 1, 0,4]; 
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Fifowr1 = ( 1, 
Fiford = [ 1, 
Fiford1 = ( 1 , 

0, 0, 1, 0,5]; 
0, 0, 0, 1,4]; 
0, 0, 0, 1,5]; 

Pstate = [VC3 .. VCO]; 
S00=(1,1,1,1]; 
S01 = (1,1,1,0]; 
S02=(1,1,0,0]; 
sos= (1,1,0,1]; 
S04 = (1,0,0,1]; 
S05 = (1,0,0,0]; 
sos= (1,0, 1,0]; 
S07 = [1,0,1,1]; 
SOB= (0,0,1,1]; 
S09 = (0,0,1,0]; 
S10 = (0,0,0,0]; 
S11 = [0,0,0,1]; 
S12 = (0,1,0,1]; 
S13 = (0,1,0,0]; 
S14 = (0,1,1,0]; 
S15 = (0,1,1,1]; 

EQUATIONS 
reset = 

VSOCP = 

!MAES; 

CLKEN & !VIDCLK; 

STATE_DIAGRAM Pstate 
state SOO: "Idle 

case Operation== Engrd: S01 with 
!EXACK:=T; 
!ENGRD:= T;endwith; 

Operation == Engwr: S04 with 

Operation == Fifowr: S07 

Operation == Fifowr1 : S07 

Operation == Fiford: S12 
Operation == Fiford1 : S12 

end case; 

state S01: !ENGRD:=T; "engrd 
goto S02; 

state S02: !ENGRD:=T; 
goto S03; 

state S03: goto SOO; 

state S04: !ENGWR:=T; 
goto S05; 

!EXACK :=T; 
!ENGWR :=T; 
endwith; 

with !FIFOWR := T; 
endwith; 

with !FIFOWR := T; 
endwith; 

with !EXACK:= T;endwith; 
with !EXACK:= T;endwith; 
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state S05: 
state S06: 

state SO?: 

state SOB: 

state S09: 

state S10: 
state S11: 

state S12: 
state S13: 
state S14: 

END videostate 

goto S06; 
goto SOO; 

!FIFOWR:= T; 
goto SOB; 
!FIFOWR:= T; 
!EXACK:=T; 
goto S09; 
!FIFOWR:= T; 
goto S10; 
goto S11; 
goto SOO; 

goto S13; 
goto S14; 
goto SQQ; 
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G. COMPILER TRADE-OFFS IN APPLICATION 

CODE DEVELOPMENT FOR THE NOTE 

IDT RISController™ FAMILY AN-105 
Integrated Device Technology, Inc. 

by Phil Bourekas 

INTRODUCTION 
An important part of system development involves the 

software development tool chain selected. The most appro­
priate tool chain depends on the end system application and 
on the desired development environment. 

This application note attempts to differentiate between the 
MIPS® "CC" compiler toolchain, and the JDT/c™ toolchain. A 
discussion of the differences between these compilers, and 
appropriate toolchains for various types of applications, are 
also included. 

In addition to the two compilers discussed here, a number 
of third party compilers applicable to IDT79R3051™ family 
development have recently been made available. While these 
compilers are beyond the scope of this applications note, 
many of the concepts contained here form a valid part of any 
analysis of those toolsets. 

Note that although this applications note does contain 
some performance information, this information is intended 
for comparison of relative performance of various toolchain 
options. These results were not measured on an especially 
fast benchmark board, nor was any effort made to compare 
relative performance of different processors or systems. 

MIPS COMPILERS: BACKGROUND 
The MIPS compilertoolchain is a well-respected optimizing 

compiler suite, offering the highest levels of RISC performance. 
Unlike traditional microprocessor compilers, the MIPS com­
pilers were actually originally developed prior to finalization of 
the microprocessor architecture. Thus, the compilers are able 
to fully leverage all of the capabilities of the MIPS processor 
family, and thus achieve the highest levels of optimizations. 

A number of studies have shown that the MIPS compilers 
are the most efficient (across all microprocessor architec­
tures) in obtaining the performance of assembly programming 
when compiling from high-level languages. The efficiency of 
the M JPS compilers serves to further the performance advan­
tage of the R3051 family over competing RISC architectures. 

Continuing development of these compilers is driven al­
most exclusively by the needs of the reprogrammable ACE 
and UNIX marketplaces. Feedback from common programs 
such as the SPEC benchmark suite serves to drive future 
enhancements. 

Note, however, that reprogrammable systems tend to differ 
substantially from embedded systems. Specifically, many 
embedded systems choose to reduce cost by utilizing soft­
ware (rather than specialized hardware) floating-point. Addi­
tional differences are found in the types of libraries required, 
whether or not the code is typically RAM or ROM resident, and 

in assumptions about the processor cache and main memory 
sizes (and memory latencies). 

IDT/c: BACKGROUND 
In order to directly address the needs of our embedded 

customers, IDT undertook an effort to develop an alternative 
toolchain. Rather than focus on competing with the perfor­
mance of the MIPS compilers, we chose to focus on the 
various needs of embedded systems designers that were not 
well satisfied by the MIPS compilers. These needs include: 
• Alternative host environments. Originally, the MIPS compil­

ers were only available in native MI PS platforms. Embedded 
system designers requested a software platform resident 
on the same systems used for schematic entry, PCB layout, 
ASIC and PAL development, etc. Thus, a goal for IDT/cwas 
to have it hosted on a wide variety of platforms, both UN IX® 
and DOS based. 

• Efficient software floating-point emulation. The only meth­
ods available via the MIPS compiler suite were to either 
explicitly avoid FPA operations (by modifying the source 
code to directly call emulation routines), or to utilize a 
dynamic trap and emulate strategy which introduces signifi­
cant overhead into the FPA emulation process. IDT/c takes 
a different approach: a compile time flag is available which 
will cause the compiler to emit calls to software emulation 
routines, rather then emit hardware FPA instructions. The 
result is a substantial performance gain during software 
FPA emulation, since the overhead of the processor excep­
tion mechanism, and the overhead of fully emulating the 
particular behavior of the R301 OA FPA, is eliminated. Thus, 
IDT/c is a far more efficient compiler for applications using 
software emulation of floating-point operations. 

• Alternative library options. By developing and maintaining 
our own toolchain, we are better able to integrate various 
library functions desirable in embedded systems into the 
toolchain. 
Better control of memory utilization. Since many embedded 
programs will be ROM resident with data references into a 
RAM area, IDT/c features linker control which enables 
binaries to be effectively partitioned according to the needs 
of the embedded designer. 
The basis for our compiler toolchain was the GNU-c com­

piler, obtained from the Free Software Foundation. 
This compiler is an ongoing effort by a number of software 

engineers at various industrial and academic locations. Thus, 
it features an effective optimizer as well as a high degree of 
portability across various UNIX operating systems. We used 
GNU to perform the front-end lexical analysis, parsing, and 

RISController, IDTR3051, IDT/c, IDT/kit and IDT/sim are trademarks of Integrated Device Technology, Inc. 
All others are trademarks of their respective companies. 
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high-level optimizations. We added to this a number of 
additional optimizations, including a pipeline scheduler suited 
to the particulars of the R3000 pipeline. In addition, we ported 
the compiler to non-UNIX platforms such as the PC. 

TOOLCHAIN SELECTION CRITERIA 
The appropriate toolchain is thus a function of: 

• Toolchain host environment 
• Development system cost goals 
• Floating point content/Hardware or software floating-point 
• Libraries/binary development options 
• Performance goals 

Toolchain Host Environment 
The preferences for host environment are frequently dic­

tated by the user's current CAD/CASE environment. It is 
obviously an advantage to use a software toolchain compat­
ible with the in-place environment. 

Note, however, that integrating newtoolchain hosts into an 
existing environment can be relatively simple. For example, 
MIPS systems (which host the MIPS compilers) can be easily 
networked into an environment featuring other UNIX systems 
such as HP, IBM, or Sun. In addition, an X-Windows interface 
enables a MIPS system to be used as a host for dedicated X­
Terminals, or for PCs operating as X-Terminals. 

Development System Cost Goals 
Similar to the availability of various hosts, the net cost of the 

development environment can also influence the choice of 
toolchains. The development system cost goals are influ­
enced by the host availability, the cost of the tools, and the cost 
of other tools in the development process. For example, if an 
In-Circuit Emulator is to be used, a toolchain which is best 
integrated with that tool may be most appopriate, regardless 
of cost. On the other hand, if minimal development cost is a 
concern, a toolchain which functions on low-cost PCs may be 
most appropriate. 

Floating Point Content/Hardware or Software Floating. 
Point 

One of the advantages of the R3051 family is the ability to 
vary price performance in a single footprint. For example, the 
R3051 and R3052 are both footprint-compatible devices 
without hardware floating-point but with varied cache sizes; 
the R3081 adds a hardware floating-point and substantially 
increases the on-chip caches. 

Depending on the application, the system designer may 
decide to use an integer only device such as an R3051 or 
R3052. In such a system, if some floating-point operations are 
required, they must be emulated via integer software. 

In this case, IDT/c provides a clear advantage over the 
MIPS compiler. Table 1 shows the relative performance of a 
floating-point intensive program under various floating-point 
options. This table compares three different types of floating­
point performance. The values in the table are in units of time. 
• The column labeled "R301 O" shows the results of a binary 

which issues hardware FPA instructions. This binary was 
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then run in a system with actual hardware FPA support. The 
best performance is obviously obtained when an actual 
hardware floating-point accelerator is included in the sys­
tem. This binary was generated by a MIPS compiler. 

• The column labeled "R3010 Emulation" shows the same 
binary run in a system with no hardware FPA support. 
Significantly lesser performance is obtained when the com­
piler emits R301 OA instructions, and the system then traps 
on these instructions to fully emulate the FPA. This binary 
was generated using a MIPS compiler. 

• The last column shows the results for IDT/c. In this binary, 
the compiler is instructed to generate integer only code. 
Thus, whenever a floating-point operation is required, the 
compiler generates a call to the appropriate library routine 
to perform the function. Thus, the overhead of the trap 
exception mechanism, and the overhead of fully emulating 
all aspects of the R301 OA, is bypassed, and higher software 
floating-point performance is achieved. 
While it is unlikely that a user would opt for an integer-only 

solution to a problem as floating-point intensive as this, this 
benchmark does serve to illustrate the performance gain from 
the IDT/c approach to software floating-point emulation. In 
this benchmark, a significant performance improvement is 
seen when using the IDT/c approach over the R3010 emula­
tion approach. 

Table 1. Floating Point Emulation Performance<1 •2•3> 

Operation R3010 R301D Emulation IDT/c 

add.s 5 1345 25 
sub.s 0 1340 25 
mul.s 5 1320 25 
div.s 10 1830 55 
sin.s 55 23490 430 
cos.s 55 23650 440 
ln.s 40 19045 580 
sqrt.s 60 10480 235 
add.d 5 2290 35 
sub.d 5 2310 40 
mul.d 10 2315 50 
div.d 10 2485 110 
sin.d 55 23295 390 
cos.d 55 23535 350 
ln.d 45 18930 560 
sqrt.d 70 10380 220 

NOTES: 
1. ".s" means single precision; ".d" means double 
2. Results in "centi-seconds" using a 20Hz timer-tick. A "O" result indicates 

test completed prior to 1st tick. 
3. Results indicate amount of time consumed by a particular floating point 

emulation test. Each test performs 1 O floating point calculations per cycle 
loop. Results are for 10,000 loops. 
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Library and Binary Development Options 
Another consideration has to do with the convenience of 

generating appropriate binary files for the given application. 
Specifically: 

Does one compiler offer particular libraries well suited to the 
application at hand? 

• Is one toolchain better suited to mapping a binary into the 
various memory resources of the target application? 
IDT offers a number of libraries, some of which are bundled 

with the IDT/c compiler. In addition, we have developed IDT/ 
kitTM (kernel integration toolkit) and IDT/simTM (system inte­
gration manager). Both packages contain numerous library 
routines targeted to runtime support and/or software integration. 
The data sheets for these products describe their capabilities 
in more detail. 

In addition to these stand alone packages, the floating­
point library discussed earlier provides an example of a library 
package which may influence compiler selection. 

Beyond libraries, other considerations include the capabili­
ties of the linker/loader, system download utilities, and sym­
bolic debug capability. While both MIPS and IDT/coffer these 
capabilities, there are subtle differences in them which may 
further influence toolchain selection. Differences include: 

The MI PS linker attempts to place all code in one contiguous 
section of memory, and all data in another. The linker for 
IDT/c, on the other hand, allows the code and data seg­
ments of individual program modules to be separated, 
resulting in more control over the resulting memory system. 
This makes it simpler to place some code in ROM and some 
in DRAM, for example. 

• IDT/coffers superior support for partitioning code and data 
into ROM and RAM areas. This support simplifies genera­
tion and download of binaries for the target system and 
PROM programmer. 
MIPS remote target symbolic debugger obtains more infor­
mation from the symbol table, including more information on 
local variables. 

• IDT/c symbolic debugger includes a full featured script 
environment/debug control language, allowing the user to 
more closely control debug activities such as variable 
watching and breakpoints. 
Again, the user is encouraged to consult the data sheet for 

IDT/c and the various libraries as part of the toolchain 
evaluation. 

Performance Goals 
Depending on the application, one compiler or another may 

provide better performance. As illustrated earlier, IDT/coffers 
better performance in systems which use integer software to 
perform floating-point operations. 

On the other hand, in an environment which utilizes hard­
ware floating-point, or an environment which performs no 
floating-point, the application may realize a performance gain 
from utilizing the highly efficient MIPS compiler toolchain. 

Table 2 illustrates the results of a set of benchmarks 
compiled by both the IDT/c and MIPS "C" compilers. These 
benchmarks are commonly referred to as "The Intel Bench­
mark Suite", since Intel introduced them to measure the 
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performance of various embedded processors began when 
they announced the i960CA. 

Table 3 may be more representative of the range of 
differences, as the Stanford Benchmark suite tends to exer­
cise more of the processor. 

The results indicate a variety of performance differences 
between IDT/c and MIPS "C" across these benchmarks. 
Note, however, that these benchmarks may not be fully 
representative of either compiler, as these benchrmakrs are 
extremely small, and feature integer only computation. 

Note that the performance difference between these com­
pilers is different across different hardware platforms. Specifi­
cally, the ability of the benchmark to remain cache resident will 
influence the performance gain of MIPS techniques such as 
procedure inlining and loop unrolling. Systems with differing 
cache sizes and/or memory latency may then show diffferent 
gains for these techniques. 

Mix and Match Strategy 
To maximize performance, a system designer could choose 

to use a "mix and match" strategy in the software toolchain. 
For example, the bulk of the application could be compiled 
using the MIPS compiler, while IDT/c is utilized in the floating­
point intensive portions of the code. 

This approach marries the best of both toolchains. The 
MIPS compiler extracts maximum performance from the ma­
jority of the integer only code, while IDT/c does the best job of 
performing floating-point operations in software. 

Table 2. Compiler Results on Intel Benchmarks(1,2l 

Benchmark MIPS C IDT/c 

Anneal 5200 5340 

BubbleSort 448 542 

Dhrystone 38,461 35,714 

MatMult 1920 2710 

Pl-500 1140 1540 

QuickSort 392 477 

NOTES: 
1. Results measured on IDT7RS385 board at 33MHz with slow 

memory. 
2. Results in units of time except for Dhrystone. 

Table 3. Compiler Results on Stanford Benchmarks<1•2l 

Benchmark MIPS C IDT/c 

Perm .059 .067 

Towers .061 .066 

Queens .039 .043 

lntMatMult .083 .089 

Puzzle .311 .396 

Quick Sort .040 .047 

BubbleSort .044 .054 

NOTES: 
1. Results measured on IDT7RS385 board at 33MHz with slow 

memory. 
2. Results in units of time. 
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IDT/c facilitates this approach by allowing IDT/c to use the 
MIPS backend assembler, thus allowing code generated by 
IDT/c to be directly linked with code generated by the MIPS 
compiler. Thus, the programmer can use IDT/c (with the MIPS 
backend assembler) on the floating-point intensive code, and 
the MIPS compiler on the rest of the code. 

Table 4 illustrates the performance gain achievable when 
using such a mix and match strategy. In this table, two of the 
Stanford Benchmarks are shown with an IDT/c only, and with 
a mix and match strategy. In order to run these benchmarks, 
the programmer would either have to use the runtime FPA 
emulation strategy described earlier, or would have to use 
IDT/c to compile the floating-point portions of the code. 

Table 4. Benefits of Mix and Match Compiler Strategy{1·2> 

Benchmark IDT/c Mix and Match 

Mn .277 .267 

FFT .327 .303 

NOTES: 
1. Results measured on IDT7RS385 board at 33MHz with slow 

memory. 
2. Results in units of time. 
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SUMMARY 
The compiler toolchain appropriate to a given system 

development is an extension of the price-performance deci­
sions of the system itself. For the IDT RISController family, 
various strategies may be appropriate for different systems. 

MIPS compiler is shown to remain much more effective in 
generating efficient code than is the GNU compiler. On the 
other hand, the IDT toolchain is better at performing software 
floating-point emulation, is better at allowing memory control 
when linking, and offers a target debugger with the ability to 
write debug "scripts". Finally, the availability of the toolchain 
on the host development environment may also influence the 
toolchain selection. 

This applications note summarizes some of the consider­
ations, and presents some data to help facilitate toolchain 
evaluation. 
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IDT7RS385™ EVALUATION BOARD AN-107 
Integrated Device Technology, Inc. 

By Samuel Y. Shen 

INTRODUCTION 
The IDT7RS385 is a complete RISC system intended for 

use as a low-cost porting target for applications of the 
IDT79R3051"' RISControllerTM family. It is completely self­
contained on a single printed circuit board and only requires 
a simple CRT terminal for operation. An IBM PC, IDT 
MacStation™, SPARCstation™, or a MIPS® workstation can 
be connected to the 7RS385 via one of the serial ports and 
user developed code can be downloaded to the board. In 
addition, a wire wrap area, expansion connectors and hard­
ware debugging facilities are provided allowing the user to 
easily prototype additional circuitry. This board serves as a 
generic example for the construction of an R3051 system. 

However, the 7RS385 was never intended to be used as a 
comparative benchmark vehicle. The design goals for the 
board required a low-cost platform on which various pieces of 
software could be developed and debugged. The board does 
not utilize SRAM, fast DRAM, or techniques such as memory 
interleaving, which are typically used only to maximize perfor­
mance. 

This applications note describes factors which must be 
considered if a user attempts to run a benchmark on this 
board, and also attempts to give some rules of thumb with 
respectto how a different design may perform. In addition, the 
applications note presents routines used to manipulate the 
on-board timer, so that time measurements can be accurately 
taken. 

7RS385 BACKGROUND 
The 7RS385 was originally designed as a low-cost platform 

for R3051 family software. Thus, the design features the 
following characteristics: 
• Easily modified to higher frequency by adding wait states in 

the memory system. Although this helps satisfy the goals of 
a test platform, the end result is more synchronization 
stages than would otherwise be necessary at a given 
(lower) frequency, such as 25MHz. Thus, the frequency 
normalized performance (throughput) of the board is lower 
than would be expected for a design optimized for a given 
target frequency. 

• Monitor program to easily debug software. The board is 
shipped with IDT/sim™, a program which allows the debug 
of other applications running on the board. In order to 
implement debug, IDT/sim makes choices that adversely 
affect performance. For example, IDT/sim runs uncached, 
so that it does not interfere with the application being 
debugged. Similarly, IDT/sim features a large number of 
indirect references, to allow user supplied exception han­
dlers and 1/0 routines. The exception handlers have been 
designed for application debug, and therefore store more 
state information (in multiple locations) than would otherwise 
be done. In addition, the exception handlers reside in 
uncached memory, because the "breakpoint" handler is 
among the exceptions handled. Thus, using the exception 
handler provided by the debug monitor simplifies applica­
tion debug, but has a major impact on various benchmark 
metrics. 

8254 TIMER 

3.6864 MHz 

Crystal t-
Oscillator 

~~1 Counter 2 ~ -· Counter O 

~ 
Counter 1 ...... 

Figure 1. Block Diagram of Timer Function on 7RS385 

The logo is a registered trademark and MacStation, RISController, IOT79R3051, IDT79R3081, IDTJc, IDT/sim and IDT/kit are trademarks of Integrated Device Technology, Inc. 
All others are registered trademarks of their respective companies. 
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1 F80 0000 - - - 0 0 0 - - R counter O W counter O 

1F80 0004 - - - 0 0 1 - - R counter 1 W counter 1 

1 F80 0008 - - -01 0- - R counter 2 W counter 2 

1F80 OOOC - - -01 1 - - No OP W ctrl reg 

1F80 0010 - - -100 - - RST cint#O No OP 

1F80 0004 - - -101 - - RST cint#1 No OP 

Figure 2. 8254 Addressing on 7RS385 

• Low cost. The 7RS385 was designed to be an low-cost 
software platform. This precludes the use of SRAM, the use 
of techniques such as memory interleaving, and the use of 
high-speed memory and logic components. Thus, the fre­
quency normalized performance of the board is lower than 
what would be typically implemented as an end customer 
product. 

USING THE ON-BOARD TIMER 
The 7RS385 includes an 8254 timer on board. This timer 

can be used to measure the actual execution time of a 
program running on the board. However, in order to use the 
timer in this fashion, additional software must be included. 

/***********************************/ 
/* RS385 (8254 Timer Routine) */ 
/* idttimer.h */ 
/***********************************/ 
#define CONTROL Oxbf80000c+3 I* 
#define COUNTERl Oxbf 800004+3 /* 
#define COUNTER2 Oxbf800008+3 I* 
#define INITIALV OxOOOOOOf f !* 
#define INITIALVl Ox00000002 !* 
#define INITIALV2 OxOOOOOOOO 
#define CW_COUNTERl Ox00000070 /* 

#define CW_COUNTER2 Ox000000b4 !* 
#define CL_COUNTER2 Ox00000080 I* 
#define CL_COUNTERl Ox00000040 /* 
#define TRUE OxOOOOOOOl /* 

#define ZERO $0 /* 

#define vO $2 I* 
#define vl $3 
#define tl $9 I* 
#define sp $29 I* 
#define ra $31 /* 

About the 8254 
In order to time processes on the '385 board, runtime timer 

functions need to be accessed to tell the execution time. In the 
'385, there are two programmable timers/counters. Each of 
the two timers may be programmed as an independent real­
time interrupt occuring at regular intervals. They are 
implemented in the Intel 8254 timer device on the '385 system 
board. The arrangement of the timers of the 8254 is outlined 
in Figure1. Also, the address decode table of the 8254 on the 
'385 is shown in Figure 2. 

There are three 16-bit counters in the 8254, designated as 
counter 0, 1, and 2. The arrangement used in the '385 is for 
counter 2 to be a pre-scalar for each of the other counters 
(counter 0 and counter 1). Counter 2, in turn, is clocked by a 
crystal oscillator, running at 3.6864MHz (i.e., 271 ns per clock 
cycle). Each counter in the 8254 is capable of handling clock 
inputs up to 1 OM Hz. Also, each counter has six programmable 
counter modes. All modes are software programmable. 
Counters are programmed by writing a control word and then 
an initial count. The control words are written into the control 
word register while the initial counts are written into the 
counters. 

The listings for timer functions are shown below. These 
functions may be compiled separately and linked with the 
application programs to run out of DRAM on the '385 board. 

The first function is an "include" file which sets up the initial 
values for the separate counters/control registers and assigns 
name to counters/general registers. The include file expresses 
these registers as a base address for the register, plus a 3-
byte offset(" +3") due to the big-endian nature of the '385. Byte 
3 of a word is always the least significant (rightmost) byte. The 
data path connected to the 8254 timer is on 0(7:0). which is 
the least significant byte; therefore the byte address for on­
chip registers will be the word address +3. 

counter control register */ 

8-bit counter 0 register */ 

8-bit counter 2 register */ 
initial value */ 

temporary value */ 

control word for counter 1 */ 

control word for counter 2 */ 

counter latch for counter 2 */ 

counter latch for counter 1 */ 

true value *I 
wired zero */ 
return value */ 

temporary register */ 

stack pointer */ 
return address *! 

File 1. Timer Include Fiie 
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/***********************************/ 
/* RS385 (8254 Timer Driver) */ 
/* idtTstart.s */ 
!***********************************/ 
#include "idttimer.h" 

.glob! TimerStart 

.ent TimerStart 

.set noreorder 
TimerStart: 

subu sp,24 
SW ra,20(sp) 
.mask Ox80000000, -4 
.frame sp,24,ra 
li tl,CW_COUNTER2 
li vl,CONTROL 
sb tl, 0 (vl) 
li tl,INITIALVl 
li vl,COUNTER2 
sb tl,O(vl) 
li tl,INITIALV2 
li vl,COUNTER2 
sb tl, 0 (vl) 
li tl,CW_COUNTERl 
li vl,CONTROL 
sb tl,O(vl) 
li tl,INITIALV 
li vl,COUNTERl 
sb tl,O(vl) 
li tl,INITIALV 
li vl,COUNTERl 
sb tl,O(vl) 
li tl,CW_COUNTER2 
li vl,CONTROL 
sb tl,O(vl) 
li tl,INITIALV 
li vl,COUNTER2 
sb tl,O(vl) 
li tl,INITIALV 
li vl,COUNTER2 
sb tl, O (vl) 
li vO,ZERO 

.set reorder 
addu sp,24 

ra 
.end Timer Start 

!* 1011 0100 = select counter2, r/w LSB(byte) */ 
/* then MSB, mode2, binary counter 16-bit */ 

/* 0000 0002 = counter2 LSB */ 

/* 0000 0000 counter2 MSB */ 

/* 0111 0000 = select counterl, r/w LSB(byte) */ 
/* then MSB, mode 0, binary counter 16-bit */ 

/* 1111 1111 = counter LSB */ 

/* 1111 1111 counter MSB */ 

/* 1011 0100 = select counter2, r/w LSB (byte) */ 
!* then MSB, mode2, binary counter 16-bit */ 

/* 1111 1111 = counter LSB */ 

/* 1111 1111 counter MSB */ 

File 2. Initializing the 8254 
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File 2 is a timer-start routine example. The 8254 modes 
used in this example were mode 2 and mode 0. Mode 2 is a 
"rate generator" mode. It functions like a divide-by-n counter 
and has been used in counter 2, the pre-scalar counter. Mode 
O is an "interrupt on terminal count" mode, which is typically 
used tor event counting. This was implemented in counter 1. 
The timer-start routine starts with selecting counter 2, defining 
it to be a 16-bit binary counter, and setting up r/w as LSB then 
MSB order. Value 2 and value O chosen to be put into LSB and 
MSB field is because counter 1 (in modeO) needs to be 
activated by a clock input which happens to be the output of 

/***********************************/ 
/* RS385 (8254 Timer Driver) 
I* idtTreqll. s 

*/ 
*/ 

/***********************************/ 

#include "idttimer.h" 
.globl TimerllReq 
.ent TimerllReq 
.set noreorder 

TimerllReq: 
subu sp,24 
SW ra,20(sp} 
.mask Ox80000000,-4 
.frame sp,24,ra 
li tl,CL_COUNTERl 
li vl,CONTROL 
sb tl,O(vl) 
li vl,COUNTERl 
lbu vO,O(vl} 
.set reorder 
addu sp,24 

ra 
.end TimerllReq 

/***********************************/ 
/* RS385 (8254 Timer Driver) 
/* idtTreqlh.s 

*/ 
*/ 

/***********************************/ 
#include "idttimer.h" 

.globl TimerlhReq 

.ent TimerlhReq 

.set noreorder 
TimerlhReq: 

subu sp, 24 
SW ra,20(sp) 
.mask Ox80000000,-4 
.frame sp,24,ra 
li vl,COUNTERl 
lbu vO, 0 (vl} 
.set reorder 
addu sp,24 
j ra 
.end TimerllReq 

counter 2. Therefore, a small number in counter 2 is required 
to drive the output low for one cycle. After that, an initial value 
was put into the counter 1 and counter 2 to start counting. 
"FFFF" was used as an initial value in this example. 

The following programs serve the timer-request functions, 
which try to read from the 16-bit counter2 and counter 1. The 
8254 "counter latch" command was used. This command 
allows reading the contents of the counters "on the fly" without 
affecting counting in progress. Two counter latch commands 
were used here to latch counter 2 and counter 1. Each counter 
needs to be latched twice. Again, LSB comes first then MSB. 

/***********************************/ 
/* RS385 (8254 Timer Driver} 
/* idtTreq21.s 

*/ 
*/ 

/***********************************/ 
#include "idttimer.h" 

.globl Timer21Req 

.ent Timer21Req 

.set noreorder 
Timer21Req: 

subu sp,24 
SW ra,20(sp) 
.mask Ox80000000,-4 
.frame sp,24,ra 
li tl,CL_COUNTER2 
li vl,CONTROL 
sb tl,O(vl) 
li vl,COUNTER2 
lbu vO, 0 (vl) 
.set reorder 
ad du sp, 24 

ra 
.end Timer21Req 

/***********************************/ 
/* RS385 (8254 Timer Driver) 
/* idtTreq2h.s 

*/ 
*/ 

/***********************************/ 
#include "idttimer.h" 

.globl Timer2hReq 

.ent Timer2hReq 

.set noreorder 
Timer2hReq: 

subu sp, 24 
SW ra,20(sp) 
.mask Ox80000000,-4 
.frame sp,24,ra 
li vl,COUNTER2 
lbu vO,O(vl} 
.set reorder 
addu sp, 24 

ra 
.end TimerllReq 

File 3. Timer Driver Routines 
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Using the Timer Routines to Time Execution 
The C program shown below is an example of calling timer 

routines from C. First of all, these four timer routines are 
declared to be the external functions. Then the return value of 
each functions is assigned to an integer variable. These 
variables will be used to calculate the execution time. 

/* Sample "C" Program Using Timer */ 
extern TimerStart(); 
extern TimerllReq(); 
extern 
extern 
extern 
main() 
{ 

TimerlhReq(); 
Timer21Req(); 
Timer2hReq(); 

int 
int 

i, j, kO, klls; 
klhs, k2ls, k2hs; 

int klle, klhe, k2le; 
int k2he,result; 
kO = TimerStart(); 
klls TimerllReq(); 
klhs TimerlhReq(); 
k2ls Timer21Req(); 
k2hs Timer2hReq(); 

: (main body of this program) 

klle TimerllReq(); 
klhe TimerlhReq(); 
k2le Timer21Req(); 
k2he Timer2hReq(); 

: (print out the timer result) 

File 4. Using the Timer Routines 

SOFTWARE ISSUES AFFECTING BENCH­
MARK RESULTS 

The software environment shipped with the 7RS385 was 
designed to enable the debug of code downloaded and 
executed on the board. Thus, the 7RS385 includes in its on­
board PROMs a version of IDT/sim. 

IDT/sim (System Integration Manager) is a set of routines 
which builds an extensible PROM monitor environment, and 
which also provides routines for system debug. An analogous 
piece of software, IDT/kit™, is the software used when the 
system developer wishes to utilize pre-written library func­
tions in the end product. 

However, when running benchmarks on the 7RS385, it is 
obviously tempting to utilize the library functions included on 
board, in IDT/sim. Such a decision, however, has a seriously 
adverse impact on the benchmark results obtained. This 
section of the applications note describes some common 
problems encountered when benchmarking on top of the IDT/ 
sim environment. Note that IDT/c™ will automatically default 
to IDT/sim routines, unless other library routines are explicitly 
provided. 

IDT/sim Cache Utilization 
The IDT/sim (system integration manager) provides a 

range of standard entry point C functions for the IDT79R3051 
family. These entry point functions are standard C-type func­
tions. There are formatted printing, string manipulation, 
standard 1/0, conversion routines, etc. These functions are 
provided to allow the system developer to: 
• Include print statements in line with code to print debugging 

messages. 
• Debug key algorithms in advance of completing library 

development. 
• Use existing interrupt handlers during debug. 
• Incrementally replace parts of the debug environment with 

the applications own code, as it is developed. 
The IDT/sim routines are shipped in the on-board EPROMs, 

which are also used to hold the boot code. This results in two 
benchmarking problems: 
• These routines are stored in the EPROMs which are mapped 

to kseg 1, an uncached space. Thus, using these routines 
do not take advantage of the large on-chip caches of the 
R3051 family. This also impacts measurements of excep­
tion response. 
Single word reads and the burst reads from the EPROMs 
are much slower than from the DRAMs. A single word read 
from the EPROMs takes 8 cycles while a single word read 
from the DRAMs takes 6 cycles. Quad word reads from the 
EPROMs takes 26 cycles while quad word reads from the 
DRAMs takes 15 cycles (refer to 7RS385 user's manual; 
this data is for a 33MHz 7RS385). 
Thus, benchmarks linked to and run with IDT/sim produce 

results dramatically slower than would be achieved in a real 
application environment. 

An example of this problem can be found from one of the 
benchmarks in the suite introduced by Intel when they intro­
duced the i960CA. The pi-500 program calculates the value 
of the mathematical constant pi up to 500 decimal points using 
iterative integer calculations. As a new value is calculated, its 
result is printed to the terminal. This benchmark uses a large 
number of printf function calls; as print! is provided by I DT/sim. 
a serious (and non-representative) performance degradation 
occurs. The execution times of the program with printf and 
without print!, when run on the '385 are quite different: 1084ms 
versus 1624ms (>50%). To avoid this problem, move entry 
point functions into the DRAM, and use cached accesses. For 
pi-500, the resulting execution time is 1086 ms. 

Similarly, the Dhrystone benchmark makes heavy use of 
the strcpy and strcmp functions. A common mistake would be 
to link to those functions in the IDT/sim in the on-board 
PROMs. The result may be less than 10,000 dhrystones per 
second, due to the uncached use of the long latency EPROM 
memory for much of the execution. Approximately 4-5 times 
the performance, on the same board and with the same 
source code, is achieved when the strcpy and strcmp is linked 
from IDT/kit, and resides in cacheable DRAM memory. 

Exception Response Issues 
The R3051 family exception handling system efficiently 

handles machine exceptions, including TLB misses, arith-
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metic overflows, 1/0 interrupts, system calls, breakpoints, 
reset, and co-processor unusable conditions. Any of these 
events interrupt the normal execution flow; the R3051 family 
aborts the instruction causing the exception and flushes the 
pipeline of subsequent instructions, thus not modifying pro­
cessor context. The R3051 then performs a direct jump into a 
designated exception handler routine (bfcO_OOOO for reset, 
and normally 8000_0000 for uTLB and BOOO_OOBOforgeneral 
exceptions, if BEV=O. However, uTLB and general exceptions 
can be moved to bfcO 0000 and bfc0_01 BO if BEV=1 ). 

The 7RS385 is designed to have BEV=O, which tries to use 
cacheable memory for exception handling. However, the 
exception handlers and decoding of the exception cause still 
occurs in the IDT/sim EPROMs; the DRAM merely contains a 
few store instructions (for later debugging information) and a 
jump into the EPROM (uncacheable) memory space. File 4 
illustrates the way in which IDT/sim utilizes the DRAM for 
exception handling. Notice the branch back to the uncached 
EPROM space. This structure was included to allow the cache 
state of a program to be preserved when the "breakpoint" 
exception is signalled. 

If a user chooses to measure exception or interrupt latency 
by installing his own interrupt handler into IDT/sim, a serious 
performance degradation will occur. This is due to three 
factors: the extra overhead of the debug information and 
branch in the DRAM memory, the longer latency of the 
EPROM, and the uncached nature of the exception cause 
decode and interrupt handler software. Thus, installing inter­
rupt handlers into IDT/sim to measure exception response will 
not give a true reading of the processor's performance. 

High Memory 

CACHING THE STACK 
In order to obtain representative performance, the user of 

the 7RS385 must explicitly manage the location of the runtime 
stack. IDT/sim defaults to an uncached location for the 
runtime stack, since it may explicitly manipulate the stack at 
various times. Thus, with the IDT/sim environment of the 
7RS385, it is possible to have a program and its associated 
data reside in cacheable memory, but to have the runtime 
stack be uncacheable. In certain benchmarks, the perfor­
mance penalty which results can be significant. This is 
exacerbated by the recursive nature of many common bench­
marks, such as Towers of Hanoi, which will make extensive 
use of the stack in passing parameters. 

To fully understand the performance degradation which 
can occur, it is important to understand the role of the stack 
during execution. 

The compilers (IDT/c or MIPS/c) classify each routine into 
one of the following two categories: 

non-leaf routines; that is, routines that call some other 
routines. 

• leaf routines; that is, routines that do not themselves ex­
ecute any procedure calls. Two types of leaf routines exist: 
leaf routines that require stack storage for local variables, 
and leaf routines that do not require stack storage for local 
variables. 
For leaf procedures that use the stack, or for non_leaf 

procedures which need to preserve registers, stack space 
must be allocated for the routine's requirements. These re­
quirements include local variables, saved general registers, 
saved floating point registers, and procedure call argument 
area (also see Figure 3). 

Argument 

N 

Virtual Frame Pointer ($fp)-> 

Low Memory 

Argument 

Local and Temporaries 

Saved Registers 

{Including Return Reg.) 

Argument Build 

Figure 3. Runtime Stack 
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(uTLB Miss) (General Miss) 

8000 0000: lui kO,OxaOOO 8000 0080: lui kO,OxaOOO 
8000 0004: ori k0,k0,0xl78 8000 0084: ori k0,k0,0x178 
8000 0008: SW at, Ox4 (kO) 8000 0088: SW at, Ox4 (kO) 
8000 OOOc: SW gp, Ox70 (kO) 8000 008c: SW gp, Ox70 (kO) 
8000 0010: li v0,0x2 8000 0090: li vO, Oxl 
8000 0014: lui at,OxbfcO 8000 0094: lui at,OxbfcO 
8000 0018: ori at,at,Ox620 8000 0098: ori at,at,Ox620 
8000 OOlc: jr at 8000 009c: jr at 

/* jr branches to bfc0_0620, uncached EPROM */ 

File 4. Exception Handler Code in 7RS385 

On a '385 board, the default address of the stack depends 
on the runtime environment, rather than on the main program. 
Unless the user explicitly sets up a stack, IDT/sim will allow the 
application to use the default stack it set up. Thus, even 
thought the program and its data area are cacheable (e.g. 
kseg O), if the system environment defaults to kseg 1, the 
runtime stack remains uncached when the benchmark is 
executed. 

This cached/uncached stack issue sometimes causes a 
big difference in execution time. For example, the anneal 
program (another benchmark promoted by Intel when they 
announced the i960CA), calculates the shortest distance 
between two points. This benchmark shows dramatically 
different results, depending on whether the runtime stack is 
cached. Execution times for cached and uncached stacks are 
5.14sec and 6.81sec separately (>32%). 

Th is situation can be handled by various methods. One way 
around this is to issue the IDT/sim 'seg -0' command before 
the benchmark is executed. This will force the runtime envi­
ronment to change to kseg 0, a cached space. By doing this, 
the stack will be automatically cached accessed. Another 
method is to change the startup code so that the stack will be 
located in the same segment as the main program's.A sample 
program is shown in File 5. 

(initialization) 

MEMORY LATENCY ISSUES 
As discussed above, the 7RS385 was never intended as a 

high-performance board for benchmarking, but rather as a 
low-cost, flexible design for software porting and testing. 
Thus, the memory characteristics of the board are not particu­
larly optimized for performance; specifically, the frequency 
normalized performance of the board is less than would be 
expected of any dedicated application board, due to extra 
synchronization stages, the lack of interleaved memory sup­
port, and the particular partitioning of memory control 

There are two memory areas on the 7RS385. The EPROM 
memory, described above, is typically referenced as 
uncacheable memory, and requires relatively long latency 
when accessed. Techniques such as burst EPROMs were 
specifically avoided, to avoid the high cost of these Intel­
proprietary EPROMs. Similarly, high-speed EPROMs were 
not used, to reduce end cost. 

The main DRAM memory used on the '385 uses sons 
DRAMs, in a non-interleaved, single bank configuration. Two 
22v1 O and one 16R8 PLDs make up the DRAM controller. 
This simple controller handles all DRAM accesses as well as 
refresh requirements, but is not aggressively optimized. Table 
1 summarizes all DRAM access times. These times are 

25 la 
26 and 

t2,_fbss 
t2,0xf0000000 
t1 ,6f 

/* main program's mode as linked, usually cached mode*/ 
/*isolate segment*/ 

27 la 
28 or t1 ,t2 
29 t1 
30 nap 
31 6: or v0,t2 
32 addiu vO,v0,16 
33 move sp,vO 
34 move v1 ,vO 

/* load label 6's address into t1 *I 
/* or with the main program's mode*/ 
/*back to the original mode*/ 

/*stack back to original mode*/ 
/* overhead *I 
/* now replace count w top of memory*/ 

35 subu v1 ,STACK_SIZE 
(clear STACK_SIZE stack) 

File 5. Start-up Code to Insure Stackable Cache 
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especially slow when compared to other alternatives such as 
interleaved memory. In addition, since the design was not 
particularly optimized for any given frequency, it is slower than 
would be expected of alternative designs of roughly equiva­
lent complexity. 

Table 1. DRAM Characteristics of 7RS385 Board 

DRAM R/W RS385·33 RS385-25 

Single read 6 cycles 5 cycles 

Quad read 6/3/3/3 cycles 5/2/2/2 cycles 

Idle write 5 cycles 5 cycles 

Page write 4 cycles 4 cycles 

COMPILER OPTIMIZATION ISSUES 
Another area for performance increase has to do with the 

amount of compiler optimization done. A separate applica­
tions note discusses some ofthe trade-offs involved in selecting 
an appropriate compiler. In addition to those considerations, 
the amount of optimizations enabled during a particular com­
pilation may effect the results of the benchmark. 

Figure 4 illustrates the MIPS compiler system. The com­
piler processes one procedure at a time. Large procedures 
offer more opportunities for optimization, since more inter­
relationships are exposed in terms of constructs and regions. 

ucode lib 
C program 

(.b) -----. 

library 
(.a) 

linked obj 
file (a.out) 

ucode file 
(.u) 

asmfile 
(.s) 

obj file 
(.o) 

Figure 4. MIPS Optimizing Compller Flow 
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The uload and umerge phases of the compiler toolchain 
permit global optimization among separate units in the same 
compilation. 

Often, programs are divided into separate files, called 
modules or compilation units, which are compiled separately. 
Fore programs in MIPS system, cc (c compiler) both compiles 
and link edits. The typical user seldom invokes Id (link editor) 
directly, unless the user wants to compile modules separately 
then link them together and download to some specified 
address. This is what we do where benchmarking on the '385 
board. Programs need to be downloaded to user space which 
is somewhere between OxaOOO 46a4 and OxaOO ffffc (for 1 MB 
DRAM w/ IDT/sim 3.1 ). Any place above this region will cause 
a data bus error to be signalled, since this is the top of RAM. 
Also, any place below this region will have an exception 
handling problem. This is because the exception handler and 
BSS for IDT/sim are located in the bottom of the DRAM. 

Since the link loader does not have an optimization phase, 
all the optimization is done in the compiler. If modules are 
compiled separately, there is no way to do interprocedure 
register allocation or procedure merging (optimization levels 
3 or 4). This means that in order to download programs to '385, 
ulink and umerge phases have to be bypassed, and only the 
global optimizer (uopt) phase executes. It performs optimiza­
tion only within the bounds of individual compilation units 
(optimization levels 1 and 2). 

The inability to use all of the compilation optimizations 
available can seriously degrade reported performance (-03 
and -04 optimization levels can improve performance of 
some benchmarks by 10-20%). These limitations are not 
applicable when building a real application for a target system, 
and thus downloading benchmarks to the 7RS385 will under­
report the results the designer should really expect. 

Table 2 illustrates the variance in performance due to 
compiler selection and choice of optimization. As can be 
seen, on some benchmarks, the difference between the MIPS 
compiler at full optimization vs. the IDT/c compiler can be as 
much as 50% of performance. Additionally, the difference 
between the MIPS compiler at "-02" and "-04" optimization 
can be over 10%. Unfortunately, the "Intel benchmarks" may 
not be fully indicative of the performance gain of aggressive 

Table 2. Results from Different Compilers 

IDT/c 
BENCHMARK "-0" 

Quicksort (ms) 50.8 

Bubblesort (ms) 54.3 

Pl-500 (ms) 1355 

Anneal (ms) 5,149 

MatMuit (ms) 29,276 

Dhrystone 1.1 
(dhrystone/sec) 35,714 

NOTES: 
MIPS results from Cache-3051 simulator. 
Pl-500 results with 'Print!' disabled. 
IDT/kit used for library functions. 
Benchmark sources obtained from Intel. 

MIPS 
"-02" 

38.6 

44.9 

1039 

5,193 

19,619 

46,356 

MIPS 
"-04" 

35.5 

40.9 

1015 

5,115 

19,599 

49,116 
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optimization, since most of the applications remain cache 
resident even with small caches. 

PROPERBENCHMAR~NG 

IDT has a software simulator tool, Cache-3051 ™, which 
bypasses many of these limitations, and in fact allows bench­
marks to be run in a number of proposed target environments. 
Although it is a simulation, various studies have proven it to be 
a highly accurate tool. There is a separate applications note 
which measures the accuracy of the simulator by running 
benchmarks on the 7RS385, and then simulating the same 
memory characteristics. These results show that typical 
simulations are within 2% accuracy. 

The Cache-3051 applications note further describes more 
of the capabilities of the tool, and is available from your local 
IDT sales representative. 

If benchmarking the 7RS385 is desired, the user should 
check to insure or compensate for the following: 
• Is the timer being used properly? Often, a simple program 

to double check the use of the timer can insure that it is being 
manipulated properly. 

• Are library functions being provided through cacheable 
references from DRAM? Unless explicit care is taken, the 
benchmark may be using uncacheable debug routines out 
of slow EPROM, thus seriously degrading performance. 

• Is the exception response model reasonable? If the 
benchmark builds ontop of IDT/sim, uncacheable exception 
handlers will be used. In addition, extraneous store informa­
tion, appropriate for debug but not for benchmarking, will be 
generated, seriously degrading exception response. 

• Is the runtime stack cacheable? Unless explicit steps are 
taken, the benchmark may run with an uncacheable runtime 
stack, seriously degrading application performance. There 
are two methods to insure the stack is cacheable: issue a 
'seg -0' command in IDT/c, or have the program explicitly 
initialize the stack pointer into the cacheable memory area. 

• Is the memory latency of the benchmark board representa-

live of the target application? The RS385 features memory 
latency typically longer than would be expected from a real 
application board. The Cache-3051 cache simulator can 
help determine the performance of the benchmark in a more 
reasonable environment. 

• Are the compiler optimizations representative of how the 
end application would be developed? A common mistake 
is to use lower levels of optimzation in a benchmark than 
would otherwise be done. This can result in a 30% perfor­
mance degradation. 

• Is the benchmark truly representative of the application 
code. Typically, benchmarks are small programs, designed 
to be simple to develop and port. Such small programs may 
not fully exercise either the optimization capabilities of the 
compiler, nor may they fully exploit the advantages of the 
large caches available in the R3051 family. 

CONCLUSION 
A number of factors combine to render the 7RS385 an 

inappropriate choice for benchmarking the capabilities of the 
79R3051 family. These factors include the software environ­
ment of the board, the limitations imposed on the compiler, 
and the memory design of the board. 

The 7RS385 was originally designed as a software test and 
porting vehicle, and does a very good job of providing services 
for this use. However, these requirements in general conflict 
with the use of this board as a performance evaluation vehicle, 
and thus the 7RS385 should not be used for this purpose. 

IDT has a performance profiling toolchain, Cache-3051, 
which does a better job of predicting the performance of a 
R3051 processor on a given piece of software. This simulator 
has been shown to be highly accurate, and should be the 
preferred method for benchmarking. In addition, IDT is able 
to offer support during the benchmark process, to insure that 
the results obtained are truly representative of the capabilities 
of the processor. 

132 



(;)® USING Cache-3051™ FOR APPLICATION 

SYSTEM PERFORMANCE NOTE 

EVALUATION AN-108 
Integrated Device Technology, Inc. 

By Samuel Y. Shen 

INTRODUCTION 
IDT offers a performance profiling tool, Cache-3051 TM, which 

allows the system designer to accurately measure the various 
price-performance tradeoffs available. This program allows 
the system architect to measure the effects of memory la­
tency, cache size, and various memory control strategies 
before a final hardware design is committed. 

This applications note describes the various capabilities of 
the simulator. In addition, it demonstrates the accuracy of the 
tool, and describes areas of the system modeled. 

Cache-3051 BACKGROUND 
The IDT Cache-3051 allows the designer to analyze the 

performance of the simulated IDT79R3051 TM family system by 
executing a designer's application program on the proposed 
system. The modeler is derived from an earlier software 
package, cache2000, which is part of the systems program­
mers package (SPP) developed by MIPS computer systems, 

Cache-3051 models "cacheable" memory references; it 
does not works for uncacheable references, which are typi­
cally only used for 1/0 and boot code. In order to model system 
performance, the program analyzes the memory references 
made by an application program during its execution and 
generates various statistics about its dynamic behavior. 
Cache-3051 determines the execution time taken by the 
user's application program by simulating the latencies involved 
in accessing the memory; that is, it models the amount of time 
spent doing memory references. 

Note, however, that there are other events within the 
processor which affect execution time. For example, an 
address trace analysis will not include the effects of processor 
stalls which are not due to memory references. Thus, Cache-
3051 does not take into account interlock cycles of the CPU 
or the FP A. These interlock cycles can be determined from the 
output of Pixstats (a software tool for interlock cycle analysis), 
so that a final system performance number is determined. 

The main memory model simulated is page-mode, and the 
latencies associated are changeable. By simulating different 
memory subsystems with Cache-3051, the user can deter­
mine the performance of the application program on those 
systems and can arrive at an optimal solution. 

PARAMETERS IN Cache-3051 
Cache-3051 models all of the parameters typically under 

the control of the system designer when implementing an 
R3051-based system. In addition, the simulator can model 
the performance differences among the various members of 
the R3051 family in a given system and for a given application; 

that is, the user can alternately model the cache sizes of an 
R3051, an R3052, or an R3081'", along with the various 
memory speed parameters under his control. 

The memory model includes all of the various types of 
latencies found in a DRAM system: the initial read latency 
cycles, number of cycles to perform a read/write operation 
when the DRAM is in page-mode, number of cycles to perform 
a write operation when the DRAM is not in page-mode. The 
parameters in Cache-3051 are set to user values to model a 
DRAM system that works at some user selected frequency. 

"read_latency" 
The number of cycles between the read signal asserted 

and the end of the CPU fixup cycle. 

"idle_write_time" 
The number of cycles to retire a word from the write buffer 

to an idle memory system (RAS and GAS are inactive). 

"page_write_time" 
The number of cycles to retire a write when the DRAM is in 

page-mode. That means the two consecutive writes have the 
same row address. 

"non-page_write_time" 
The number of cycles to retire a write when the DRAM is in 

page-mode, but the write can not be processed as page­
mode. That means the two consecutive writes have different 
row address. Therefore the RAS signal has to be driven HIGH 
to precharge, prior to the write occurring. 

"byte_extra_write_time" 
The extra cycles to retire a partial write from write buffer to 

memory. In R3051/52 systems, this parameter is set to be 0. 
(This parameter is intended for ECG systems, which process 
partial writes as page-mode read-modify-write sequences.) 

"ras_precharge_time" 
The number of cycles to precharge the RAS signal. (This 

number is not the one defined in DRAM data books.) 

"throttled" 
A flag for quad-word read: 1 for throttled, 0 for burst. In a 

burst read, each word is presented to the CPU at its clock rate; 
in a throttled read, multiple clock cycles per word are required. 

''throttled_latency" 
The summation of the bus delay cycles between any two 

consecutive read operation during the throttled read. This 
parameter is ignored when "throttled" is false (zero). 

Cache-3051, IDT79R3051, IDTR3081, IDT/sim and IDT/kit are trademarks of Integrated Device Technology, Inc. 
All others are trademarks of their respective companies. 
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USING CACHE-3051™ FOR SYSTEM PERFORMANCE EVALUATION 

RS385 BACKGROUND 
The IDT evaluation board is a single-board test platform for 

the R3051 family. The board was initially designed to be a 
simple test platform for the CPU silicon, and for various 
software programs. 

Given its heritage as a test platform, the board is designed 
to allow multiple wait-states to be inserted into memory in 
order to allow the processor to be run at higher frequency. 
Thus, the board reflects an extremely conservative, low-cost 
board design philosophy, and is not particularly intended as a 
benchmarking vehicle. A separate applications note describes 
the use of this board. However, due to its widespread availabil­
ity this board was selected to be used as the platform for 
validating the accuracy of Cache-3051. 

A final note of history is appropriate when evaluating the 
results of benchmarking on this board. Originally, boards 
shipped to customers used a 33MHz R3052. In order to 
support this system speed, additional memory wait states 
were included in the DRAM state machine. 

More recently, boards shipped to customers feature a 
25MHz processor and memory system. The lower frequency 
system also features reduced latency to memory (as mea­
sured in processor clock cycles) over the original 33MHz 
board, and thus offers higher frequency normalized perfor­
mance. 

RS385-33 MEMORY LATENCY 
Two 22V1 Os and a 16RB are used to implement DRAM 

control on the RS385 board. This chip set handles all DRAM 
accesses as well as refresh requirements. Page-mode ac­
cesses are supported utilizing the Burst/WrNear output from 
the R3052E. For additional detail on the specifics of the 
DRAM control implementation of the 7S385, consult the 
user's manual for the board. 

The on-chip instruction and data caches allow the R3052E 
to access one instruction and one data word in each clock 
cycle. On reads, when a cache miss or an uncachable 
reference occurs, the R3052E begins an external read cycle. 
Figure 2 illustrates the single-datum read and Figure 3 illus­
trates the quad-word read sequence for the 7RS385 at 33MHz. 

R3052E 
Data 
Buffer 

RISController 

ALE ] 
LE 

AD[31:0] • 1 

FCT 
373T 
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On writes, the R3052E maintains a write through strategy 
which updates the memory as soon as the cache contents are 
changed. With the use of of the on-chip 4-word deep write 
buffer, the R3052E can continue to execute instructions from 
its instruction cache while the main memory retires up four 
pending stores from the write buffer. The DRAM controller on 
RS385-33 board supports page-mode write (timing diagram 
of RS385-33 as in Figure 4) and non-page-mode write (timing 
diagram of RS385-33 as in Figure 5). On RS385-33, the 
DRAM controller will go into a "page-mode idle state" after a 
write which keeps RAS LOW in anticipation of a page-mode 
write. If the next transaction is not a page-mode write, or a 
refresh request is received, the controller will bring RAS 
HIGH, precharging the DRAM, prior to servicing the next 
access. 

MODELING THE RS385 WITH Cache-3051 
Creating a Cache-3051 model to simulate the desired 

memory subsystem can be done either by editing the source 
file (.c program), or defining the runtime parameters at the 
UNIX command level. To set the read_latency, a timing 
diagram of a Single Word Read has to be drawn to decide the 
number of cycles between the asserting edge of Rd and the 
end of fixup. 

Figure 2 illustrates the timing diagrams for a single word 
read of RS385-33. Once a read access is detected, the RAS 
signal is brought to LOW after a cycle. Based on the DRAM 
controller design of RS385-33, the data is sampled by R3052 
three cycles after RAS asserted. Then a refill cycle/fix up cycle 
is used to bring data out of the read buffer and into the internal 
processor cache; during this fixup, the processor transitions 
back into the RUN state. In this design, the RAS signal is 
precharged for three clock cycles (one in the beginning and 
two at the end), so no more RAS precharge time needs to be 
added. In this example, the read_latency is set to be 6 cycles. 

To determine the idle_write_time, the timing diagram of a 
write following a read is drawn. In the case of a write following 
a read operation, the RAS precharge time has already been 
counted in the last two cycles of read_latency (Figure 2) and 
the first cycle of write operation (Figures 4 and 5), and thus no 
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L ..... 7 32 
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Address DRAM 
256kx32 

/ Ctrl 
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Figure 1. Simplified Block Diagram of 7RS385 DRAM Subsystem 
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additional cycles are required. The first five cycles of the write 
operation is defined to be the idle_write_time of RS385·33; 
that is, it is the time from the assertion of Wr until the negation 
of Wr. According to the definition of idle_write_time, this is the 
time of a write operation while the previous operation is not a 
write. 

To determine the page_write_time, the page-mode write 
timing diagram is drawn. This case occurs when the ongoing 
write operation shares the same DRAM page as the previous 
write operation. Page write allows faster data operation within 
a row address defined page boundary. The current page is 
determined when RAS is originally asserted; subsequent page­
mode cycles occur by selecting a new column address and 
cycling GAS. These memory cycles are quicker, because 
GAS precharge time is smaller than RAS precharge, and 
because RAS and the ROW address have already been 
presented to the DRAM. Returning RASH IGH terminates the 
page-mode write. Figure 4 illustrates a RS385-33 page-mode 
write (cycle 6 to cycle 9). In this system, 3 cycles are required 
to retire a page-mode write. 

The page-mode write timing diagram is also used to de­
termine the nonpage_write_time setting. a non-page write 
occurs when the DRAM is anticipating a DRAM page-mode 
write, but the write which is issued is to a different DRAM page. 

APPLICATION NOTE AN-108 

Therefore not only GAS signal but also RAS signal need to be 
raised HIGH to strobe-in different column and row addresses. 
Figure 5 illustrates this write. Note that the RAS needs to be 
precharged before going LOW again. In this example, the 
non-page_write_time is 8. It is counted from cycle 6 to cycle 
14. 

The ras_precharge_time is a little bit different from the RAS 
precharge defined in DRAM data books. They both imply the 
RAS signal has to be brought HIGH for precharging. However, 
the ras_precharge_time in this simulator is only added for the 
case of a read following a write. The other transactions already 
implicitly include sufficient RAS precharge cycles, such that 
no additional time need be allocated. However, in a read 
following a write, additional precharge time needs to be 
explicitly added to insure proper operation of the DRAM. 
Figure 6 explains the RAS precharge time that is included 
during transitions between bus operations. 

The settings of throttled and throttled_latency are strongly 
related. They both imply burst read operation. Throttled is a 
flag to indicate how a quad-word read is processed. "Burst" 
means the first word of the block is returned after an initial read 
latency, and then each additional word is returned in the 
immediately subsequent clock cycle. In this case, the "throttled" 
flag is set false ("O"), and the "throttled_latency" is ignored. 
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On the other hand, if multiple clock cycles are required 
between each response word of a quad word read, "throttled" 
is true ("1 "), and the "throttled_latency" paramter is used to 
indicate the number of idle cycles between words. 
Throttled_latency is a bus delay cycles between two adjacent 
words. (i.e., (w1 to w2)+(w2 to w3)+(w3 to w4)). 

The summary of DRAM parameters setting based on the 
RS385 (33Mhz) is shown in Table 1. 

Table 1. Summary of 7RS385 Memory System 

Parameter Setting 

Read Latency 6 cycles 

Idle Write_Time 5 cycles 

Page Write Time 4 cycles 

Non-Page_Write_ Time 8 cycles 

Byte Extra Write_Time O cycles 

RAS_Pre-charge_ Time 1 cycle 

Throttled 1 (true) 

Throttled Latency 6 cycles 
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SIMULATION ACCURACY 
To validate the relative accuracy of the simulator, a set of 

benchmarks was run first under the cache simulator and then 
on the actual board. 

The benchmark suite chosen is commonly known as the 
"Intel Benchmark Suite". Intel chose to use these benchmarks 
to indicate the performance of the i960CA, when that product 
was originally introduced. 

Although IDT views these benchmarks as inadequate 
when used to determine actual system performance, they can 
be used to help determine the relative accuracy of Cache-
3051 (for more information on the problems with this bench­
mark suite, refer to the IDT applications note on this topic). 

The Intel integer benchmarks consist of six benchmarks 
which are: bubblesort, quicksort, pi500, anneal, matmult, and 
dhrystone1 .1 . The brief description of each benchmark, and 
the aspect of system performance Intel feels each measures, 
is given below: 

bubblesort-Sorts a 500 element array in memory using 
the "bubble sort" algorithm. Performance is heavily dependent 
on the speed of data access. The benchmark features heavy 
use of array manipulation. 

10 

Figure 5. DRAM Non-Page Mode Write 
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RAS Precharge Time for 
Operation RS385's DRAM System 

R-> R 2 Clock cycles (at the end of read) + 1 cloc~ 

ing together, then downloading to the RS385 board. This 
process has to bypass the uload and the umerge phases (refer 
to IDT RISC R3000 Family language Programmer's Guide) 
which are the-03 and-04 phases in the MIPS compiler, and 
use the link/load phase by linker/loader only. Since the linker/ 
loader does not have an optimization phase, the best optimi­
zation can be used in this example is -0. 

c,y_cle (in the beginnina of reacfl_ 
W->R O Clock cycle (at the end of write) + 1 clock 

cycle (in the beginning of read) + ras_pre-
charge time 

R->W 2 Clock cycles (at the end of read) + 1 clock 
~le_{in the b~nniQg_ of idle writ~ 

W->W O Clock cycle (at the end of write) + 0 clock 
cycle (for page write) or+ 3 (4 -1: for non-

...£illl..e writ~ 
Figure 6. RAS Precharge Between Vanous Transfers 

quicksort-Sorts a 5000 elements array in memory using 
the "quick sort" algorithm. The benchmark is designed to test 
recursion and array indexing. 

pi500-Calculates the value of the mathematical con~tant 
Pl up to 500 decimal points using iterative integer calculations. 

anneal-Also known as the traveling salesman problem. 
The benchmark calculates the shortest distance between two 
points. (20 points were used) 

matmult-Multiplication of a matrix of values tests the 
multiply/divide speed of the processor. Few memory refer­
ences were used. 

dhrystone1 .1-Classic integer benchmark measuring 
relative processor performance for integer instructions. While 
this benchrmark suppossedly demonstrates the integer num­
ber crunching power of the processor, its performance is 
actually highly dependent on the coding of string library 
functions. 

All the above mentioned integer benchmarks are compiled 
with a C compiler version 2.11 on an MIPS RC3240 system 
running RISC/OS 4.51. All the benchmarks are compiled with 
default optimization level (-0). This level of optimization does 
not include the full optimization capabilities of the MIPS 
compiler chain, such as inter-procedual register allocation 
and procedure merging, due to the method of program gen­
eration used for the RS385. 

In our example, downloadable benchmarks (.srec files) are 
generated by compiling individual modules separately, link-

The results for Cache-3051 and for the RS385-33 board 
are listed below. The execution times for above mentioned 
programs are shown in Table 2 (smaller values are better 
except for Dhrystone1 .1 ). 

For the Pi-500 program, two values are given in each 
column. One is with the "printf" function enabled, and the other 
is with "printf" disabled. For benchmarking, and for comparing 
the accuracy of the simulator, disabling "printf" is appropriate 
for a couple of reasons. First, 1/0 processing time is system, 
rather than processor dependent, and depends on the periph­
eral chosen and the communications channel. Secondly, this 
function is linked with an entry point supplied by IDT/sim™ 
(PROM monitor). This monitor program resides on the RS385 
in the EPROMs, and executes as an uncached access and 
with longer memory latency than the DRAM subsystem. 
Single reads and burst reads from these EPROMs are much 
slower than from DRAMs. 

As shown in Figures 7 and 8, single reads take 8 cycles and 
burst reads take 6 cycles per subsequent word for accesses 
to EPROM. 

For basically the same reason, the dhrystone benchmark 
was generated by linking to the IDT/kit™ -I library, rather than 
the IDT/sim functions. Dhrystone performance 1s heavily 
dependent on the strcpy and strcmp library functions. In or?er 
to avoid accessing the EPROMs for these functions, IDT/kit 1s 
used to integrate these library functions into the downloaded 
benchmark file. Thus, these library routines will execute as 
cacheable routines, and run with the same memory latency as 
the rest of the program. (IDT/kit is a set of modules which 
assists the system developer in interfacing with the R3000/ 
R3051 family of processors. It consists of a micromonitor, the 
start-up module, kernel integration library, interface into IDT/ 
sim functions, ANSI compatible standard c library, and 
transcendental math library. More information on IDT/kit and 
IDT/sim can be obtained from the reference manuals for these 
products.) 

Table 2 Results of Intel Benchmarks on Cache-3051 and on 7RS385 Board 

Benchmark Cache-3052-33 (MIPS-02) RS385 33 (MIPS-02) Cache-3052 vs. RS385 

QuickSort (ms) 38.6 39.6 (38.6 39.6)/39-6 2.5% 

BubbleSort (ms) 44.9 44.8 (44.9 44.8)/44.8 0.2% 

Pl-500 (ms) 1,041 1,624 (1041 1626)/1626 35.9% 
1,039* 1,084* J1039-10812."1084 = - 4.1% 

Anneal (ms) 5,193 5,149 (5193 5149)/5149 0.2% 

MatMult (ms) 19,619 19,417 (19619 19417)/19417 1.0% 

Dhrystone 1.1 43,356 41,666 (44822 41666)/41666 7.5% 
NOTES: 
* Run with "print!" function disabled. 
Dhrystone 1.1 run using string library from IDT/kit. 
Compiled using MIPS/c with optimization --02. 
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PERFORMANCE DIFFERENCES BETWEEN 
SIMULATION AND REAL SYSTEMS 

Obviously, some performance differences between a 
memory simulator and an actual system are inevitable. As can 
be seen from this application note, the relative inaccuracy is 
extremely small; in fact, they are due to a number of factors 
which can not be effectively modeled by such a tool. These 
factors include: 

DRAM refresh. There can be no effective simulation which 
will include the effects of DRAM refresh. If the processor were 
operating out of cache during a DRAM refresh, no perfor­
mance would be lost. On the other hand, DRAM refresh may 
prevent a subsequent write from being processed as page­
mode. 

DRAM refresh cannot be modeled typically because its 
timing is determined by a divide-down counter. Thus, the 
power up state of the counter versus the reset time (often 
determined by an RC network) determines when, relative to 
execution, DRAM refreshes occur. Such an event may in fact 
vary in a given system each time the system is turned on. 

Exception events. Some exceptions, such as arithmetic 
overflow, could be modeled. Others, such as a periodic time 
slice counter interrupt, may not be modeled for much the same 
reasons that DRAM refresh cannot be accurately modeled. 

1/0 events. Since 110 timing may rely on the response 
timing of a peripheral (such as a terminal or disk) external to 
the CPU motherboard, the exact timing of 1/0 responses 
cannot be effectively modeled. 

Mixed memory systems. The modeler does not really 
account for systems in which part of the code operates out of 
a memory with latency characteristics different from the memory 
for other parts of the program. 
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Multi-master systems. The R3051 family can operate out 
of its internal caches during OMA transactions. Thus, it is 
difficult to derate performance based on bus bandwidth con­
sumed by an external OMA engine, because the processor 
may operate out of cache during some of those transfers. 
Similarly, if the processor must arbitrate over a bus or through 
a multi-port arbiter for a given memory subsystem, the mod­
eler cannot effectively model a memory whose latency varies 
according to external events. 

SUMMARY 
The IDT Cache-3051 is a very useful tool, allowing hard­

ware and software designers to project and model the per­
formance of different IDT79R3051-based systems accurately 
prior to developing actual hardware. This allows effective 
price-performance tradeoffs to be made early in the design 
cycle, and allows the resulting software to be effectively tuned 
to the end system. 

When using a system modeler such as Cache-3051, the 
user must be aware of the limitations of such a tool, and be 
aware of the relative accuracy of the tool. This application note 
describes the memory system variables under the user's 
control, and demonstrates the accuracy of the tool on a 
benchmark suite. Finally, the application note contains a 
discussion of certain types of characteristics which cannot be 
modeled. 
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INTRODUCTION 
The IDT79R30B1™ RISController™ is the newest member 

of IDT's family of high-performance and price-competitive 32-
bit microprocessors. Designed to provide the high-perfor­
mance MIPS® RISC architecture to low-cost and system 
integration-sensitive solutions, this processor adds to the 
growing family of RISControllers from IDT. The R3081 
RISController is superset and pin compatible with the R3051 I 
52, and includes 20kB of cache, a Floating-Point Accelerator, 
Hardware Cache Coherency support, and a series of system 
integration and interface features. 

With its larger caches, FPA and interface features, incorpo­
rating the R3081 in an existing R3051 design can dramatically 
increase system performance without adding design com­
plexity. Often upgrading to the R3081 is as simple as placing 
an R3081 in the R3051 socket. This applications note 
describes common considerations when upgrading existing 
R3051 systems with the R3081. As an example, this applica­
tion note describes how to upgrade the 7RS385 evaluation 
board from an R3051 processor to an R3081 processor. 

NEW FEATURES BROUGHT BY THE R3081 
The R3081 is superset pin-compatible with the R3051. 

That is, in general it is possible to remove an R3051 from a 
system and replace it with an R3081. The system should run 
without any hardware or software changes. However, the 
R3081 adds additional capabilities to the R3051 family; some 
systems may wish to take explicit steps to take advantage of 
these new capabilities. 

Before discussing system changes needed to implement 
the superset features of the R3081, a definition of these 
capabilities is needed. As mentioned above, the R3081 
includes larger Instruction and Data Caches, a Floating-Point 
Accelerator, Hardware Cache Coherency support, and a 
series of integrated control options. All the hardware options 
are selected by either the mode initialization vectors (values 
sampled on the interrupt input lines during reset) or pro­
grammed through the new CPO Configuration register. Below 
is a summary of the new R3081 features. A more detailed list 
of these features along with a list of the differences between 
the R3051 and R3081 are included in the IDT79R3081/3081 E 
Integrated RISController Hardware User's Manual. 

• Larger Instruction and Data Caches 
The R3081 instruction and data caches total 20kB. The 
default (reset) configuration is 16kBI and 4kBD, although 
they are dynamically programmable to BkB apiece. Both 
instruction and data caches are parity protected over the 

data and tag fields. This differs from the R3051, in that both 
caches are larger than the caches supported by the R3051 
or R3052, the cache is configurable and the caches are 
parity protected. 

• Addition of a Floating-Point Accelerator 
A full-featured R301 QA-compatible floating-point accelera­
tor is incorporated on the R3081 adding single- and double­
precision add, multiply, and divide instructions to the in­
struction set. Which of the six integer unit Interrupts inputs 
is used for the floating-point interrupt signal is program­
mable. lnt3 is the default FP interrupt. Thus, one of the six 
interrupt inputs of the R3051 is used for the floating-point 
interrupt and coprocessor 1 instructions will be directly 
executed by the on-chip floating-point units. 

• Cache Coherency Interface 
The R3081 has a hardware-based cache coherency inter­
face for multi-master systems. If selected, OMA cycles 
between memory and 1/0 can invalidate lines within the 
R3081 cache, insuring that there is no stale data and 
avoiding software directed cache flushing. This mechanism 
can be disabled to achieve full R3051 compatibility; alter­
nately, the system designer can choose to increase the 
performance of multi-master systems, by performing hard­
ware cache coherency. 

• Power Reduction Mode 
The R3081 RISController can be dynamically programmed 
to reduce its operation frequency. In this mode the execu­
tion clock, and therefore the output clock, is internally 
divided by 16. This function allows the power reduction 
benefits of a lower speed clock to be achieved during idle 
periods, without requiring external clock shaping logic. 

• Programmable Halt Mode 
This programmable mode forces the R3081 RISController 
to stall until either an interrupt or reset is issued. This mode 
has two effects: it further reduces power consumption; and, 
it allows software to halt until some external event occurs. 

• Half-Frequency Bus Mode 
A selectable mode allows the R3081 bus interface to 
operate at one-half the frequency of the processor core. For 
example, the execution core can run at 33MHz, and the bus 
interface at 16MHz. Given the substantial amount of cache 
on-chip, the slow system interface will not dramatically 
degrade performance. The end result is a high-perfor­
mance system with very low system cost. 

• 1 x or 2x Clock Input 
The R3081 can operate with either an R3051 compatible 
double-frequency clock input (2x clock mode), or can oper­
ate from a clock at the execution rate (1 x clock mode). This 
capability both simplifies EMI at high frequency, and also 

The IDT logo is a registered trademark and IDT79R3051, IDT79R3081, IDT/o, IDT/sim, IDT/kit and RISController are trademarks of Integrated Device Technology, Inc. 
All others are trademarks of their respective companies. 

©1992 Integrated Device Technology, Inc. 
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allows for "clock doubling" when used in conjunction with 
the one-half frequency bus mode. 

• Slow Bus Turnaround 
A common problem for a high-speed 1/0 bus is the amount 
of time available for mastership changes. The R3081 allows 
software to specify a larger minimum time when transitioning 
from the memory driving the bus (i.e. read data) and the 
processor driving the bus (e.g. writes). This reduces the 
speed requirement of data transceivers, with minimal per­
formance impact. 

• Dynamically programmed data cache refill 
The R3081 allows software to dynamically select between 
single word and quad word refill on data cache miss. This 
allows for additional performance tuning, by enabling the 
kernel to select the best algorithm for a given section of 
code. The default refill size is selected at reset time, the 
same as for the R3051. 

POSSIBLE CHANGES 
The R3081 hardware options are either mode selectable at 

reset or programmed through an internal register. Hardware 
cache coherency support and all clocking modes, half-fre­
quency bus mode and 1xor2x clock input mode, are selected 
at reset based on the level of the lnt[5:3]. In the R3051, lnt[5:3] 
are required to be driven HIGH during reset initialization. 

The interrupt inputs, Slnt[2:0] are already used by both the 
R3051 & R3081 to select data cache refill sizes, tri-state test 
mode, and big or little endian system architectures. The 
complete table of the R3081 reset mode vectors is listed in 
Table 1. 

A complete description of these modes is provided in the 
IDT79R3081/3081 E Integrated RISController Hardware User's 
Manual. 

Floating-Point Interrupt 
The one area where hardware changes may be necessary 

are with respect to the Floating-Point Accelerator. In the M !PS 
RISC architecture, the floating-point interrupt is fed into a 
general purpose interrupt. Interrupts cause the processor to 
jump to the system's exception handler which then decodes 
its status to determine the exception cause. One of the six 
external R3081 interrupts (by default lnt3) is programmed to 
be the FPA interrupt. All activity on the external interrupt pin 
corresponding to the FPA interrupt is ignored. 

Although software can use a different interrupt input other 
than the default. it is still the case that only five external 
interrupt pins remain available to external peripherals. There­
fore, systems that required six external interrupts will need to 
modify their external interrupt structure, perhaps by causing 
multiple peripherals to share a single interrupt input. Obvi­
ously, software would then need to decode which device on 
that interrupt actually signalled the exception. _ 

Systems that have defined an interrupt other than lnt3 for 
the FPA need to modify their startup code so as not to ignore 
the assertion of lnt3. 
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Table 1. R3081 Mode Selectable Features 

Interrupt Pin Mode Feature 

lnt5 CoherentDMAEn 

lnt4 1xClockEn 

lnt3 Half-frequency Bus 

Slnt2 DBlockRefill 

Slnt1 Tri-State 

SlntO B_ig_Endian 

Some software applications incorporate exception han­
dlers that allow the user to set the FPA interrupt through 
software. The IDT/sim™ diagnostics uses this method. This 
adds system flexibility at the cost of the extra performance 
required to decode the interrupt. 

The Config Register 
Selecting which interrupt is used by the on-chip FPA, the 

cache configuration, power reduction mode, current size of 
data cache refill, halt/stall mode, or slow bus turnaround are 
all accomplished by writing to the new CPO configuration 
register. The Configuration Register data format is shown in 
Figure 1. 

The reset initialization value of the config register depends 
somewhat on the mode vectors selected at reset. Specifically, 
the initial values of the Data Block Refill bit, and of the slow bus 
turnaround bit, are dependent on the reset vectors. At reset, 
the FP Int field will correspond to lnt3, and the Lock, Alt. Cache, 
Halt, and RF bits will be cleared. 

Reading and writing all CPO registers is accomplished by 
issuing coprocessor load and store instructions. The configu­
ration register is CPO register 3. An interactive tool to read and 
write the R3081 configuration register, "the R3081 Configura­
tion Tool", is available as a demo tool through your local sales 
office, and runs on IDT/sim-based platforms. To insure strict 
software compatibility with older applications, the Config 
register can be isolated from subsequent writes by writing a '1' 
to the configuration register "Lock" field. 

Software Compatibility 
The R3081 will directly execute applications written for the 

R3051. The larger on-chip caches will directly benefit existing 
applications, and thus bring an increase in system perfor­
mance. Additional gains are possible, depending on the 
application code, by taking advantage of the hardware FPA on 
the R3081. Whereas the R3051 must either trap and emulate 
floating-point instructions, or perform explicit calls to software 
floating-point libraries, the R3081 can directly execute these 
operations. 

It may be advantageous to generate two distinct binaries 
from one source; one, which uses software libraries to emu­
late floating-point operations, and is used with the R3051 or 
R3052 and another, which uses the on-chip FPA to perform 
floating point. However, ifthe prospect of two distinct binaries 
is too onerous for a particular application, the binary could 
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31 30 29 28 26 25 24 23 22 

Lock~~: ~~II FPlnt Halt RF AC Reserved 

Lock: 1 -> Ignore subsequent writes to this register 
Slow Bus: 1 ->Extra time for bus turnaround 
DB Refill: 1-> 4 word refill 
FPlnt: Power of two encoding of FPlnt <->CPU Interrupt 
Halt: 1 ->Stall CPU until reset or interrupt 
RF: 1 ->Divide frequency by 16 
AC: 1 -> BkB per cache configuration 
Reserved: Must be written as O; returns 0 when read 

Figure 1. CPO Configuration Register Data Format 

include FPA instructions; with an R3051 processor, a trap will 
be generated, and software could emulate the operation. 
Although a single binary suffices for both processors, the cost 
is reduced performance for the R3051. 

Software can dynamically determine whether there is an 
FPA available, by performing simple FPA diagnostics. Such 
diagnostics is included in IDT/sim, IDT/c™, and IDT/kit™ 
startup code. Thus, the boot software could check for the 
presence of an FPA, and initialize the Coprocessor One 
useable bit according to the results. This allows a single 
binary to dynamically determine whether a hardware FPA is 
available, and can be used to enable the FPA instruction trap 
mechanism of the R3051 and R3052. 

Manipulating the Cache Characteristics 
Another possible performance gain may exist by dynami­

cally manipulating the cache characteristics of the R3081. 
The Config register allows the cache configuration to be 
dynamically changed from 16kB I-Cache and 4kB D-Cache to 
BkB I-Cache and BkB D-Cache. A kernel may choose to 
dynamically change the cache organization, depending on 
the nature of the task about to be executed. The only caveat 
is that when changing the cache configuration (from 16kB/4kB 
to BkB/BkB or vice versa), both the instruction and data caches 
need to be flushed. 

In addition, software could dynamically alter the D-Cache 
refill size. Changing this bit does not require a cache flush. 

Note that to insure compatibility amongst multiple genera­
tions of R3051 family members, cache flushing routines that 
assume a constant cache size are discouraged. The R3081 
Hardware User's Manual presents an algorithm where soft­
ware can determine the cache size available. 

UPGRADING THE RS385 BOARD WITH THE 
R3081 

Upgrading the RS385 board with the R3081 R ISController 
is easy to accomplish. Simply remove the R3051 and replace 
it with the R3081. Both share the same footprint and pinout. 
The 1 xClockEn, Half-frequency bus, and Coherent OMA 
modes are all disabled in a default 7RS385, thus no further 
hardware modifications are necessary. lnt[5:3] are pulled HIGH 
during reset disabling these three modes. 

The IDT/sim included with the 7RS385 automatically sizes 
the cache available; thus, the increased cache sizes of the 
R3081 pose no problem. IDT/sim will not, however, write to 
the Config register. Thus, the FPU interrupt will default to -lnt3, 
unless explicit steps are taken. 

Currently on the RS385, the R3051 lnt3 is used for the 
Centronics port interrupt. If using the Centronics port and the 
R3081 FPA, the system and/or software must be modified so 
thatthe FPA is allowed its own dedicated interrupt. This needs 
to be done by either re-writing the boot prom to modify the 
config register or using a different Centronics interrupt and 
modifying the Centronics driver. 

If the 7RS385 has been used as a porting target for another 
application, the types of software changes needed will be 
application dependent. Applications developed with IDT/kit 
and/or I DT/c include startup code that resizse the cache every 
time they are executed. IDT/sim startup code does not resize 
the cache at each execution. In addition, it may be desirable 
to recompile for any floating-point instructions that are imple­
mented with software emulation. 

Implementing Additional Reset Modes 
When using any of the three reset mode features unique to 

the R3081, minor modifications to the RS385 board are 
necessary to implement the interrupt input signal multiplexing 
during reset. As a general note, the RS385 uses a tri-statable 
interrupt bus to implement the multiplexing for the Slnt[2:0]. 
An asserted MRES# enables the reset mode vector driver. A 
modification to the RS385 board was made to enable or 
disable any of the six mode selectable features with jumpers, 
including the new mode vectors of the R3081. Figure 2 shows 
the modified R3051/R3081 interface to allow enabling and 
disabling of the six reset modes. A buffer, U1 A, was added to 
provide the tri-state mux for the three new reset modes. 

Other solutions to implement the reset mode selection 
abound, depending on one's application. All R3051 designs 
should already pull lnt[5:3] HIGH during reset as specified in 
the IDT79R3051 Family Hardware User's Manual. Therefore, 
only the new modes being selected need to be added to the 
current muxing on the RS385. If only one additional mode is 
needed, jump the one remaining output on the current 
74FCT244 reset mode mux (U37 pin 18) to the appropriate 
interrupt input. The interrupt PAL, U28, can be reprogrammed 
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to do some of the muxing. (If the PAL can not be easily 
removed from the board, an additional device can be added 
to the wire-wrap area.) 

An Interesting Upgrade 
One of the more interesting upgrades possible is to in­

crease the execution speed while decreasing the bus clock. 
To do this, select 1 x clock mode and half-frequency bus from 
the new mode reset logic, and replace the R3051 osciallator 
with a 40MHz oscillator. The result will be a CPU core 
executing at 40MHz rather than 25MHz, although the bus 
speed has been reduced to 20MHz. 

UPGRADING OTHER R3051 SYSTEMS 
Upgrading any R3051-based system with the R3081 RIS­

Controller is very similar to updating the RS385 board. The 
one hardware item that may differ has to do with DRAMs and 
their refresh. 

Specifically, if the refresh period is based on counting 
SysClk cycles, then using the reduced frequency mode of the 
R3081 may violate the reset period (reduced frequency mode 

APPLICATION NOTE AN-109 

also divides the frequency of the output clock). There are two 
solutions to this, depending on the application: 
• Reprogram the counter to a smaller number of SysClks. 

This is possible with devices such as the R3721 DRAM 
controller. 

• Use a different reference clock for refresh. Choices include 
a UART clock, or the clock used to generate the input clock 
to the processor. 
The RS385 board refresh request is generated from a clock 

independent of SysClk. The clock used is derived from the 
UART clock. 

CONCLUSION 
Incorporating the high-performance R3081 RISController 

into existing R3051-based systems is often as simple as 
merely swapping processors. Little design complexity is 
added, yet system performance increases due to the larger 
caches, Floating-Point Accelerator, and other features. Using 
more of the R3081 features to increase performance even 
more can be accomplished with minimal hardware and soft­
ware modifications. 
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G® USING THE IDT79R3051™ AND APPLICATION 

THE IDT79R3081™ WITH THE NOTE 
AN-111 

HP16500 LOGIC ANALYZER 
Integrated Device Technology, Inc. Supplement to Application Note AN-93 

By Gary Szilagyi 

INTRODUCTION 
In Application Note-93, the use of IDT's 7RS364 

disassembler with the HP16500 Logic Analyzer for the 
IDT79R3051™ RISController™ family of CPUs was dis­
cussed in detail. However, the original versions of the 
disassembler were form-fitted for the R3000 CPU interface of 
a 32-bit non-multiplexed bus design. In order to accommodate 
the high level of integration on-board the R3051, including the 
4kB-8kB of instruction cache, 2kB of data cache, 4-deep read 
and write buffers and the R3000A execution engine-all in a 
single 84-pin package, the 32-bit bus required multiplexing 
address and data pins. Although the original versions of the 
disassembler remain compatible with the new family of IDT's 
RISControllers, an effort was made to simplify the interface 
between R3051 and the disassembler to accommodate simple 
triggering schemes, as well as future IDT embedded control­
lers that continue in the path of the R3051 family. 

THE IDT7RS364 DISASSEMBLER AND THE 
IDTR3051 

The I DT7RS364 Disassembler consists of a software pack­
age that greatly eases the task of debugging software on the 
IDTR3051 family of CPUs. The HP16500 allows the capture 
of executed hex/binary machine opcodes in a typical Logic 

(State/Timing E) (Listing 1) 

Markers 
011 

Analyzer State Trace Listing format with the ability to decode 
and display the acquisitions in the R3000 assembly code 
mnemonic format, as seen in Figure 1. Thus, the engineer 
does not have to resort to look-up tables, and can effectively 
determine the exact processor state for easy software debug­
ging. 

The original versions of the disassembler were form-fitted 
to the R3000 CPU interface. Although the derivative products 
of the IDT R3051 family are compatible, the RD and WR 
signals used for data acquisitions by the disassembler pack­
age causes some confusion during a high-speed burst read. 
As discussed in Application NoteAN-93, the work-around was 
to create a more complex read strobe in order to capture a 
four-word burst read by setting up a trigger mechanism on the 
HP16500 that looks like: [(SysClk == t) AND [(ACK== 0) OR 
RDCEN == O.ll:_!:iowever, this is only applicable to systems 
that bring the ACK signal LOW at precisely the same time the 
RDCEN is LOW, or that don't bring it LOW at all during a four 
word burst read. If, for instance, the ACK signal triggered in 
the phase between two successive RDCENs, a duplicated 
capture would occur. The disassembler was modified a 
second time to remedy this situation. In a read cycle, the RD 
pin will be asserted LOW for the entire cycle and the RDCEN 
signal toggles to successfully pass each of the four words 
across the bus. The newest version of the disassembler 

( lnvasm) ( Print ) ( Run ) 

ADDR 11 R3000 Mnemonic 
11 STAT 11 Time 

Hex 11 hex 11 Hex 11 Absolute 

-6 lFCOOOOO J OxlFC00220 0010 0 s 
-5 1FC00004 NOP 0010 760 ns 
-4 1FC00220 LUI vO,OxOOlO 0010 1. 52 us 
-3 1FC00224 MTCO v0,$12 0010 2.24 us 
-2 1FC00228 MTCO zero,$13 0010 3. 0 0 us 
-1 1FC0022C LUI vO,OxAOOO 0010 3.76 us 

0 1FC00230 LUI tO,OxAAAA 0010 4.52 us 
1 1FC00234 ORI t0,t0,0x5555 0010 5.24 us 
2 1FC00238 SW tO,OxOOOO(vO) 0010 6.00 us 
3 1FC0023C SW zero,Ox0004(v0) 0010 6.76 us 
4 00000000 STORE DATA OxAAAA5555 0000 7.40 us 
5 1FC00240 LW tl,OxOOOO(vO) 0010 7.88 us 
6 00000004 STORE DATA OxOOOOOOOO 0000 8.52 us 
7 1FC00244 NOP 0010 9.00 us 
8 00000000 LOAD DATA OxAAAA5555 0010 9.64 us 
9 1FC00248 B OxlFC00258 0010 10.32 us 

Figure 1. R3051 Address/Data Trace List on a Logic Analyzer 
The IDT Logo is a registered trademark and RISController, lDT79R3051 and IDT79R3081 are trademarks of Integrated Device Technology Inc. 
All others are trademarks of their respective companies. ' 

©1992 Integrated Device Technology, Inc. 6192 
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begins "LOAD" captures not on RD, but rather upon the RDCEN. 
For interleaved memory systems that do not toggle the RDCEN 
pin, please refer to section "Hazards" for more details. During 
a write cycle, it triggers upon the rising edge (from LOW-to­
H IGH) of the WR signal. Thus, the newest revision of the 
disassembler now expects the RDCEN and the WR signals as 
clocks to strobe the address and data into the HP16500, as 
well as the WR, D IAG_ 1 and DIAG_O to verify and decode the 
processor status 

INTERFACING THE HP16500 TO THE '385 
EVALUATION BOARD 

In order to insure proper operation of the disassembler, the 
correct interface between the R305x target system and the 
HP16500 must be available. The disassembler requires a 
particular pinout setup on the logic analyzer's five 16-channel 
probe pod sets. The interface protocol must be followed for 
correct interpretation of the address, data, and status lines by 
the pre-processor. Table 1 displays the default pod connec­
tions that the HP16500 expects (same setup for the 7RS385 
evaluation board). This information is stored on disk in the 
configuration file "DIS_305x_E". When loaded, this file not 
only loads the disassembler, but also all the state and timing 

information, including the default pod connections expected 
at the system interface. 

Application Note-93 discusses in detail the interface be­
tween typical R305x based systems and the logic analyzer. 
Rather than repeat that discussion, the interface between the 
7RS385 Evaluation board and the disassembler requires 
some elaboration. For instance, the '385 Hardware User's 
Manual shows the connections to be made from the board's 
five 20-pin logic analyzer sockets and the logic analyzer's five, 
16-channel pods. Note however that in section 2-5 of the '385 
Hardware User's Manual, the connections on the status pod 
(pod#5) are incorrect. In order to be consistent with the 
protocol of the disassembler, some of the pins need to be 
connected as follows: 
•WR (J12 pin #17) needs to be on pod #5 channel #4 
• RDCEN (J12 pin #14) needs to be on pod #5 channel #5 

The disassembler also requires status lines for determining 
processor status: WR, RDCEN, DIAG_ 1, and DIAG_O. The 
WR signal distinguishes between read and write cycles. The 
RDCEN pin is used to identify a false trigger for applications 
that assert the RDCEN signal during writes. In order to avoid 
a duplicate capture, the RDCEN signal is polled to determine 
if it was the cause of the acquisition. If it was, then a trigger-

Table 1. R3051 Default Pod Connections on the HP16500 Logic Analyzer 

POD 5 POD 4 POD 3 POD 2 POD 1 
ch an sig ch an sig ch an sig ch an sig ch an sig 

15 x 15 A/D(31) 15 A/D(15) 15 A(31) 15 A(15) 

14 x 14 A/D(30) 14 A/D(14) 14 A(30) 14 A(14) 

13 x 13 A/D(29) 13 A/D(13) 13 A(29) 13 A(13) 

12 Diag_1<21 12 A/0(28) 12 A/0(12) 12 A(28) 12 A(12) 

11 x 11 A/0(27) 11 A/D(11) 11 A(27) 11 A(11) 

10 Diag_O 10 A/D(26) 10 A/0(10) 10 A(26) 10 A(10) 

9 x 9 A/D(25) 9 A/D(9) 9 A(25) 9 A(9) 

8 x 8 A/0(24) 8 A/D(8) 8 A(24) 8 A(8) 

7 x 7 A/0(23) 7 A/0(7) 7 A(23) 7 A(7) 

6 x 6 A/D(22) 6 A/D(6) 6 A(22) 6 A(6) 

5 RDCEN 5 A/0(21) 5 A/0(5) 5 A(21) 5 A(5) 

4 WR 4 A/D(20) 4 A/D(4) 4 A(20) 4 A(4) 

3 x 3 A/0(19) 3 A/0(3) 3 A(19) 3 Addr(3) 

2 x 2 A/0(18) 2 A/D(2) 2 A(18) 2 Addr(2) 

1 x 1 A/D(17) 1 A/D(1) 1 A(17) 1 BEN(1) 

0 x 0 A/D(16) 0 A/D(O) 0 A(16) 0 BEN(2) 

NClk WR MClk RDCEN LClk KClk JClk 

NOTES: 
1. Master Clock Format: Nt +Mt (default for the 7RS385 Evaluation Board setup) 
2. POD5(12) is Diag_1 and POD5(10) is Diag_O (Diag pins are not latched on the 7RS385 Eval Board). If running uncached, then Diag_1 MUST be grounded 

(GND), and Diag_O is not used by disassembler. 
3. A(31 :4) are connected to the Address Latch outputs. The rest of the signals are connected to R3051 outputs. X's denote unused probes that can be 

assigned by the user. 
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DIAG_1---i 

DIAG_o---. 

ALE---i 

R3051 Outputs 

FCT373 
or 

FCT841 

LATCH 

Rd Cache 
Latched 
DIAG_1 

1---------- Latched 
DIAG_O 

Logic Analyzer Probes 

error message, ''T.E", and the store instruction along with the 
write data on the bus is displayed (e.g. ''T.E. (STORE 
Oxxxxxxxxx)). The diagnostic pin D IAG_ 1 distinguishes if the 
external memory read was cacheable, and if so, determines 
with DIAG_O if it was an instruction or data read. Note that for 
the newest IDT embedded controller, the R3081, DIAG_1 is 
defined during writes, yielding cache information for "STORE" 
instructions. A second version of the disassembler, 
"DIS_3081", exploits this feature for external cache support. 
By defining the DIAG_1 pin during writes, the CPU will signal 
whether the data being written was retained in the on-chip 
data cache. Keep in mind that the DIAG_O pin remains 
undefined during write cycles. This information is extremely 
helpful to the programmer to determine the processor's state 
when tracing through the software. Figure 2. R3051 Address/Data Trace List on a Logic Analyzer 

The diagnostic pins on the '385 board are NOT LATCHED, 
and therefore are time-multiplexed pins. Thus, the user must 
either latch these pins with an external latch as seen in Figure 
2 or proper decoding of cached code, or connect both diag­
nostic pins to GND. Although the disassembler is capable of 
interpreting the bus transactions of cached code, keep in mind 
that all logic analyzers and disassemblers can only capture 
external CPU memory accesses. The R3051 has large 
internal caches, and is capable of running much of its code 
from within. In order for the disassembler to accurately reflect 
the entire instruction/data flow, the R3051 must be ran 
uncached. For more information regarding running cached 
code and data, please refer to Application Note AN-93 for a 
complete discussion. 

LOADING AND RUNNING THE 
DISASSEMBLER 

Included in the software package are two files. The first is 
the disassembler application "DIS_305x". The second is the 
setup file, "DIS_305x_E", containing all the state and timing 
information required by the disassembler, as well as the 
assigned pod connections expected by the HP16500 for the 
R305x target system. 

After the HP operating system boots up completely, the 
system configuration screen as shown in Figure 3 should be 
displayed. To load the disassembler into the HP16500, the 
following steps must be taken: 
1. Insert the disassembler diskette into the front disk drive. 
2. Select the "Configuration" field as shown in Figure 3. A 

pop-up menu with options will appear. Choose the "Front 
Disk" under the pop-up menu. 

3. A new screen will appear that looks like Figure 4. Select 
the "Load" and "State/Timing" fields, and load in the 
configuration file "Dis_305x_E" by selecting "Execute" as 
shown in Figure 4. 

The H P16500 will then load the disassembler, as well as all 
the state and timing information and the expected pin-configu­
ration as shown in Table 1 previously. Once the disassembler 
application and setup files are loaded into the HP, the logic 
analyzer is ready to set trace conditions for data acquisition. 
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Figure 3. HP16500 Screen Display 

System ) ( Front Disk ) EJ 
Load ) ( State/Timing_E) from file( DIS_305x_E ) 

~ 
Filename File Type F'iJ e Description ---
DIS_JOSl inverse_assm R305x Inverse Assembler 
DIS_JOSl_E 16510B_config R305x Config file 

Figure 4. HP16500 Load Screen Display 
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With the application files loaded, the disassembler is al­
most ready to be triggered by the target system. Follow the 
steps below that describe how to run and trigger the 
disassembler package: 
1 . Select the "System" field as shown in Figure 4. A pop-up 

menu will appear with the option of "State!Timing". Choose 
this field to enter the state and timing mode of acquisition. 

2. A new window will appear that is shown in Figure 5. Under 
the "Configuration" menu lies options that allow the user to 
set display or change the current configuration of the 
interface, clocks, and pod connections. 

3. Trigger the HP16500. 

( Staterriming E ) Configuration 

Analyzer1 Analyzer2 

Name: ~ 
Tjpe: ~ Type: GQ 

lklassignedPods 

E- Pod 1 ) 

t- Pod2 ) 

t- Pod3 ) 
t- Pod4 ) 
t- Pod5 ) 

Figure 5. HP16500 State/Timing Mode Display 

( Staterriming E) (Listing 1) 
Markers 

Off 

Once triggered, the logic analyzer will begin its acquisition, 
and go directly to the "Listing" field. The addresses and 
disassembled data will be displayed. Note however that the 
displayed disassembly may be incorrect. This is due to an 
"unsynchronized" system. The captured data needs to be 
synchronized with the logic analyzer's display to insure cor­
rect disassembly of the bus. The problem of unsynchronized 
captures arises due to the incomplete status of the processor 
state for data loads. As a result, when an instruction fetch is 
scrolled to the top of the screen, and a load data is displayed, 
but the corresponding load instruction was "cut off" or scrolled 
off the screen, the disassembler software looses it reference 
point by which it identifies the load data. As a resu It, the load 
data may be decoded incorrectly as an instruction as seen in 
Figure 6. Notice in this Figure the instruction on line-2. It was 
disassembled as an instruction instead of as a data load. Also 
notice the address of the instruction in the sequence of the four 
word fetch to main memory. This is an unsynchronized 
display because the corresponding load instruction was scrolled 
off the top of the display, and due to the way the disassembler 
interprets and tags the load datas, the reference point was 
lost. As a result, the load data was interpreted and decoded 
as an instruction. As shown in Figure 7, the correctly synchro­
nized system has the load instruction displayed at the top of 
the screen (identified by its address), and the load data is 
interpreted correctly. 

( lnvasm ) ( Print ) ( Run ) 

ADDR 11 R3000 Mnemonic 11 STAT 11 Time 

Hex 11 hex 11 Hex 11 Absolute 

-3 1FC00224 NOP 0010 2.24 us 
-2 1FC0022B SRL t4,zero,tB 0010 3.00 us 
-1 1FC0022C NOP 0010 3.76 us 

0 1FC00230 J OX1FC084FO 0010 4.52 us 
1 1FC00234 NOP 0010 5.24 us 
2 1FC00238 LW vO,OxOOOO(sO) 0010 6.00 us 
3 1FC0023C NOP 0010 6. 76 us 
4 00000000 STORE DATA OxAAAA5555 0000 7.40 us 
5 1FC00240 LW tl,OxOOOO(vO) 0010 7.88 us 
6 00000004 STORE DATA OxOOOOOOOO 0000 8.52 us 
7 1FC00244 NOP 0010 9.00 us 
8 00000000 LOAD DATA OxAAAA5555 0010 9.64 us 
9 1FC00248 B OxlFC00258 0010 10.32 us 

Figure 6. Incorrectly Synchronized Capture (Note line ·2) 
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(State/Timing E) (Listing 1) ( lnvasm) ( Print )( Run ) 
Markers 

Off 

Label> 

Base> 

-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

ADDR(2) 

RD 

ADDA 11 R3000 Mnemonic 11 STAT 11 Time 

Hex 11 hex 11 Hex 11 Absolute 

1FC00220 LW v0,0x0008(s0) 0010 2.24 us 
1FC00224 NOP 0010 2.24 us 
1FC0022B LOAD DATA Ox12620003 0010 3.00 us 
1FC0022C NOP 0010 3. 7 6 us 
1FC00230 J OX1FC084FO 0010 4.52 us 
1FC00234 NOP 0010 5. 2 4 us 
1FC00238 LW vO,OxOOOO(sO) 0010 6.00 us 
1FC0023C NOP 0010 6. 7 6 us 
00000000 STORE DATA OxAAAA5555 0000 7. 4 0 us 
1FC00240 LW tl,OxOOOO(vO) 0010 7.88 us 
00000004 STORE DATA OxOOOOOOOO 0000 8. 52 us 
1FC00244 NOP 0010 9. 0 0 us 
00000000 LOAD DATA OxAAAA5555 0010 9.64 us 
1FC00248 B Ox1FC00258 0010 10.32 us 

Figure 7. Correctly Synchronized Capture (Note line -2) 

00 01 

RD 

0 
0 
1 
1 

00 01 

ADDR(2) x 

0 
1 
0 
1 

l 

1 
0 
0 NOTE: Signal will remain low while 

0 not in a read cycle 

TRIGGER needs to be double transition 
to capture all four words 

Figure 8. Simulated RDCEN signal 

STORE 

b.y 

If b.y :s; 1 Ons, a Trigger Error will 
occur (data will be diplayed), and 
the STORE will be missed. 

Figure 9. RDCEN Asserted during STORE 
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Rd 

RDCEN 

Wr 

ACK 

Trigger 

Figure 10. Simple Trigger Logic 

To synchronize the system and to insure valid results, the 
following steps must be taken: 
1 . Identify the first instruction fetch by its address, not its 

displayed mnemonic, of the captured data and scroll this 
line to the top of the screen display. 

2. At the top of the HP16500 screen is the field "lvasm". 
Select this, and the currently displayed capture will be 
synchronized. 

3. Always make sure that each new capture, or a jump ahead 
in the analyzer's buffer memory is re-synchronized prop­
erly or erroneous data might be displayed. The same 
applies for any move backwards for any displayed capture. 

HAZARDS 
For interleaved memory systems that do not toggle the 

RDCEN four times, but rather keep it asserted, the only data 
to be captured during quad-word reads will be the last word of 
the transfer. In order to fix this, the usermightwishtosimulate 
a RDCEN strobe during the quad-word read by utilizing the 
lower order address pins Addr(3:2). This can be accom­
plished by gating the Addr(2) pin of this 2-bit bus with the RD 
signal from the CPU. Whenever the next word in the se-
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quence comes across the bus during a read cycle, the 
transition from LOW-to-HIGH, or HIGH-to-LOW will begin an 
acquisition, and thus simulate the strobbing of RDCEN. Note 
however, the trigger transition on the HP must be set to both 
rising and falling transitions as seen in Figure 8. 

Another hazard to be cautious about is if the RDCEN comes 
at precisely, or within a 1 Ons window (Ay} of the rising edge of 
the WR signal. If so, then this would be regarded as an invalid 
write with a trigger error (T.E) ocurring and the data on the bus 
at the time of the invalid capture will be displayed. In this case, 
the capture on the rising edge of write will be missed and the 
data displayed with the T.E. is the valid capture as shown in 
Figure 9. During any case that a RDCEN comes in on a write 
cycle, a T.E. will occur. 

Finally, a feature in HW that would be extremely useful for 
triggering is a specified trigger signal for the HP logic analyzer 
that would distinguish between the status of reads and writes 
triggered by ACK. The trigger would simply be established by 
gating the read and write signals and ORing the results as 
shown in Figure 10. This should eliminate any trigger edge 
problems associated with simple data acquisitions for inverse 
assembly. 

SUMMARY 
The use of the H P16500 and the I DT7RS364 Disassembler 

helps to ease the task of software development and debug­
ging on the R305x and the R3081. The disassembler formats 
logic analyzer state traces into assembly level mnemonics to 
allow easier user interpretation. It is one of the many useful 
development tools already available for IDT's MIPS R3000 
compatatible CPUs. Similarly, other R3000 software, compil­
ers, as well as other developmenttools such as the IDT7RS901 
IDT/sim ROMable Kernel/Boot Monitor can also be used on 
R3051 and R3081 systems with little or no modification. 
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INTRODUCTION 
IDT79R3081'"M is a powerful, high-integration MIPS®­

compatible processor that combines the R3000A RISC CPU, 
R301 OA FPA, 16k8 instruction cache and 4kB data cache 
(dynamically configurable to BkB 1/BkB D), and 4-word deep 
read and write buffers. It is packaged in an 84-pin PGA or 
MQUAD, and is available at clock rates of 20, 25, 33, and 
40MHz. The R3081 is designed to bring the high performance 
inherent in the MIPS RISC architecture into low-cost, simpli­
fied, power-sensitive applications. The R3081 extends the 
capabilities of the R3051™, by integrating additional re­
sources into the same pin-out. This new chip is aimed at two 

separate markets: low-cost reprogrammable systems and 
high-performance embedded applications. The block dia­
gram of R3081 is shown in Figure 1. 

Like the R3051 and R3052, the R3081 is available in 
versions with or without the on-chip MMU (i.e. E or non-E 
version). In addition, the R3081 incorporates a number of 
design improvements which include: an optional half-fre­
quency bus interface with support for low-cost, low-speed 
memory systems with high computational throughput, user 
configurable data-cache refill size, hardware-cache coher­
ency support, etc. This applications note provides some 
guidelines for quantifying the performance available from the 
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Figure 1. The IDTR3081 Block Diagram 
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R3081. The performance evaluation of the R3081 will be 
presented based on the standard embedded, integer, float­
ing-point, and the SPEC benchmarkings. Finally, a perfor­
mance comparison between an R3000/R3010-based system 
and an R3081-based system will be used to demonstrate the 
high performance of the high-end version of the R3051 
family. 

FAMILY OVERVIEW 
This section is intended to provide a brief overview of the 

R3051 family, with emphasis on the R3081. For a detailed 
description of these devices, the reader is referred to the 
appropriate hardware user's manual. In addition, IDT has 
prepared additional applications notes describing differences 
between the various members of the family, and strategies to 
insure system upgradeability. This technical literature is 
available from your local IDT sales representative. 

On-Chip Caches 
The R3051 family achieves its high standard of perfor­

mance by combining a fast, efficient execution engine 
(R3000A) with high-memory bandwidth, supplied from its 
large internal instruction and data caches. These caches 
insure that the majority of processor execution occurs at the 
rate of one instruction per clock cycle, and serves to decouple 
the high-speed execution engine from slower, external memory 
resources. The R3051 family caches are direct-mapped. This 
mapping coupled with the large cache sizes resident on the 
R3051 family, achieve extremely high hit ratios (both instruc­
tion and data) while maximizing speed and minimizing com­
plexity and power comsumption. The R3051 family on-chip 
caches are indexed with physical addresses. Therefore it 
does not need to worry about cache flush on context switch. 

As to the write policy, the R3051 family utilizes a write 
through strategy. This means, whenever the processor is­
sues a write operation to memory, then both the cache and 
main memory are written. If it is an uncacheable reference, 
then only memory is written. Write through has the advantage 
that main memory has the most current copy of the data. Also, 
write through is easier to implement than write back. In the 
R3051 family, the on-chip 4-word deep write buffer is used to 
allow the processor to continue execution while the memory 
is updated. This optimized write buffer implementation effi­
ciently reduces write stalls, a common disadvantage of the 
write through policy. 

The line size of a cache refers to the number of cache 
elements mapped by a single TAG element. In the R3051 
family, the instruction cache line size is 16 bytes, or 4 words, 
and the data cache line size is 4 bytes, or 1 word. The reason 
to have 4 words for instruction and 1 word for data is because 
the instructions typically execute sequentially. Thus, there is 
a high probability that the instruction address right after the 
current one will be the next instruction according to the 
principle of locality. Using a larger line size allows more 
instructions to be stored on-chip with equivalently fewer 
memory bits. 

The current family offers a variety of different cache sizes. 
The R3051 (E) contains 4kB of instruction cache and 2kB of 
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data cache, the R3052(E) contains BkB of instruction cache 
and 2kB of data cachewhilethe R3081 (E) doubles the R3052's 
caches, providing a 16 kB instruction cache and a 4kB data 
cache. The R3081 's caches can also be dynamically config­
ured as Bk each for instructions and data, so software can 
select the most effective organization. Later in this applications 
note, benchmarks will be shown which illustrates the impact of 
cache organization on performance. 

R3081 FPA 
Unlike the R3051/52, the R3081 contains an on-chip Float­

ing-Point Accelerator (FPA), which operates as a coprocessor 
for the R3000A integer processor and extends the instruction 
set to perform arithmetic operations on values in floating-point 
representations. The FPA, with associated system software, 
fully conforms to the requirements of ANSI/IEEE Standard 
754-1985, "IEEE Standard for Binary Floating-Point Arith­
metic." In addition, the MIPS architecture fully supports the 
standard's recommendation. 

The R3081 allows the on-chip FPU interrupt to be internally 
connected to any of the CPU's six interrupt inputs. This can be 
done by software. 

R3081 Additional Enhancements 
Although with the bigger cache and on-chip FPA, the R3081 

also incorporates some other design improvements. For ex­
ample, the data cache block refill size can now be dynamically 
set to either 1 or 4 words. (Again, this can be done by 
programming the unique configuration register, shown in Fig­
ure 2.) In the R3051 /52, the refill size is selected at reset and 
can not be changed dynamically. 

The R3081 bus interface was modified to allow an external 
bus master to invalidate selected cache lines. This cache 
invalidation function is intended for OMA operations, and can 
result in a net system throughput improvement. 

A 1 x clock input mode is provided in the R3081. The R3081 
can use either a 2x clock or a 1 x clock as an input clock. Thus, 
a 40MHz R3081 can be plugged into an existing20MHz R3051 
design. Half-frequency mode has been included in the R3081. 
Again, when enabled, the bus will operate as for an R3051 
operating at half the frequency of the R3081 CPU. 

Power consumption reduction is a big issue for today's 
microprocessors especially in the embedded system and 
notebook market. Therefore, a halt mode and a reduce fre­
quency mode is incorporated in the R3081 to reduce power 
consumption when the processor is idled. To enable these 
modes, appropriate bits in the configuration register needs to 
be set by software. 

RESERVED 

L: lock bit S: slow bus b 

D: data block refill size bit FPINT: floating-point interrupt bit 

H: stall processor bit R: reduce frequency bit 

A: cache configuration bit RESERVED: must be zero 

Figure 2. R3081 Configuration Register 
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Additionally, the R3081 provides a slow bus turnaround 
mode. This mode will allow extra cycles added between 
changes in AID bus direction. This helps to eliminate high­
speed buffers from the system design, by allowing more time 
for memory to tri-state. 

UNIX® BENCHMARKS 
The UNIX benchmarks consist of eight benchmarks which 

are briefly described below. These benchmarks are significant 
in that they will stress even the relatively large caches present 
on the R3081, thus providing better insight into the perfor-
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mance gain achievable in large (real-world) applications. 
Typical "standard" benchmarks are typically too small to 
stress the R3081 caches, and thus do not provide such 
representative results. 

The various benchmarks shown are: 
idtc-cc1 (v3.5)-The executable GNU 'C' compiler pro­

gram modified to generate code for the IDT/C cross assem­
bler. This benchmark uses input file "cca16355.cpp" with the 
"-quiet -dumpbase st.c -0 -version" enabled. 

idt-cpp (v3.5)-The executable GNU 'C' pre-processor 
program compliant with the ANSI 'C' standard. This bench-

Table 1. Execution Times and Cache Misses for UNIX Benchmarks Running on the R3051 Family 

4.78 4.04 

9.62 14.00 6.33 13.40 

159 166 159 

0.02 14.36 0.02 15.52 0.01 14.36 

Sec 36.8 37.1 34.5 

Miss 
Ratio 1.97 5.76 1.98 5.79 1.15 5.76 

Sec 9.92 9.93 9.92 

Miss 
Ratio 0.00 17.27 0.00 17.29 0.00 17.27 

Sec 1.43 1.44 1.00 

Miss 
Ratio 9.93 9.18 9.93 9.19 3.69 9.18 

Sec 560 560 560 560 

Miss 
Ratio 0.00 0.27 0.00 0.27 0.00 0.27 0.00 

Sec 130 131 92 92 

Miss 
Ratio 9.97 5.22 9.97 5.24 3.90 5.22 3.90 

Sec 5.38 5.38 5.24 5.25 

Miss 
Ratio 0.42 19.79 0.42 19.79 0.12 19.79 

NOTE: 
Miss ratio - instruction miss ratio =total instruction miss I total instruction number •100% 

- data miss ratio= total data miss I total load instruction •100% 
- the marked area means the best configuration based on the execution time 
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mark has an input file "st.c" with the "-v -undef -D_GNUC_ 
-D_CHAR_ UNSIGNED_ -D_OPTIMIZE_ -DR3000 -
DLANGUAGE_C" options enabled. 

compress-A BSD4.3 data compression file. "Esp_pixie" 
is an input file for this benchmark. 

diff-A BSD4.3 differential file and directory comparator. 
This benchmark compares two files f1 and f2 to see their 
differences. 

dis-Dis disassemble object files into machine instruc­
tions. Standard is the object file in our example. -hand-Sare 
specified to print general register names and source listings. 

grep-A BSD4.3 UNIX function. It searches a file for a 
pattern. ATAN was used as a pattern to search file grepinput. 

nm-A name list dump of MIPS object file. Again, standard 
file was used as an input. 

yacc-A standard compiler-compiler type language. Yacc 
converts a context-free grammar into a set of table for a simple 
automaton which executes a parsing algorithm. Yaccinput is 
the input file for this benchmark. 

During the tests, pseudo-FPA was added to the R3051 (E)/ 
52(E) to be able to eliminate the FPA factor; that is, if the 
program requested an R301 O FPA operation, the nerfor­
mance shown assumes an FPA was available (that :,, these 
results are as for an R3081 with its on-chip cac!1e size 
reduced). This is done to force a cache-effect only shown in 
this result. Table 1 is the summary of the test result. 

These results basically illustrate the cache issues playing 
a critical role on the microprocessor performance. In real­
world applications, larger caches can have a substantial 
impact on system performance. In this example, bigger 
caches and dynamical configuration are pushing the perfor­
mance of the R3051 family up 15%. 

In addition, Table 1 illustrates the unique and important 
dynamic configuration effect. It can be noticed that the 16KI/ 
4KD cache configuration provides the best hit ratios for IDTC­
cc1, IDTC-cpp, dis, and nm, while 8Kl/8KD is more suitable for 
the otherfourprograms. Note thatthe same profiling tool used 
to obtain these results is also available to system designers 
attempting to tune the performance of their application. 

Table 2. Stanford Benchmark Test Result 

Benchmark R3081 System RC3240 

Perm 0.063 0.090 

Towers 0.066 0.068 

Queen 0.047 0.045 

lntmm 0.052 0.054 

Puzzle 0.047 0.050 

Quick 0.346 0.309 

Bubble 0.047 0.047 

Tree 0.054 0.055 

FFT 0.089 0.094 

Mm 0.083 0.086 
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STANDARD BENCHMARKS 
There are a number of popular benchmarks that are 

commonly used to compare processor performance. Five of 
the most popular are the Stanford, Dhrystone, Unpack, 
Whetstone, and SPEC suite programs. Embedded system 
performance is addressed by the Stanford benchmark. Inte­
ger performance is addressed by the Dhrystone benchmark. 
Floating-point performance is addressed by the Linpack and 
Whetstone programs. As to the SPEC suite, SPECmark is 
used as a standard performance index nowadays for most 
UNIX processor comparisons. The main memory used on the 
R3081-based simulation system is sons DRAM, in a two way 
interleaved configuration. This is viewed to be a fairly realistic 
design around this processor (no zero wait state SRAMs). 

Stanford Benchmarks 
This is a suite of benchmarks that are relatively short, both 

in program size and execution time. It requires no input, and 
prints out the execution time for each program, using the 
system-dependent routine Getclock to find out the current 
CPU time. It does a rudimentary check to make sure each 
program gets the right output. This suite consists of ten 
different benchmarks which covers both integer and floating­
point operation, as described below: 

perm-Computes permutations of seven elements five 
times. Heavy use of arrays and procedure calls. 

towers-Solves Towers of Hanoi for fourteen disks. Heavy 
use of recursive procedures. 

queen-Solves the eight queens problem fifty times. Ex­
tensive use of both loops and recursion with backtracking. 

intmm-Multiplies two 40x40 integer matrices. Entirely 
limited by integer multiply time. 

puzzle-Forest Baskett's program solves a Soma Cube 
type problem. Heavy use of small, tight loops. 

quick-Performs a quick sort of 5000 elements. Tests 
recursion and array indexing. 

bubble-Reads a file and does a bubble sort of 500 
elements. Heavy use of array manipulation. 

tree-Performs binary tree sort of 50000 items. Heavy use 
of pointers, dynamic data structures. 

fft-computes a 256-point Fast Fourier Transform twenty 
times. (This is an FP benchmark.) 

mn-multiplies two 40 x 40 single-precision matrices. (This 
is an FP benchmark.) 

Table 2 illustrates the separate execution time for the 
Stanford benchmark suite. Numbers for the 25MHz MIPS 
RC3240 system are also given for comparison issues. This 
system is a server based on the R3000A CPU, R301 OA FPA, 
and external caches. More description of this system will be 
given later in this AP note. 

Dhrystone Integer Benchmark 
Dhrystone is a CPU-intensive synthetic benchmark con­

sisting of a mix of higher level language instructions. Dhrystone 
has become a de facto standard measure of integer perfor­
mance. In the synthetic benchmark program, 100 statements 
are dynamically executed between the comment lines "start 
timer" and "stop timer". The statements are balanced with 
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Table 3. Dhrystone 1.1 Benchmark Test Results 

Benchmark lcache Miss Dcache Miss Result 

Dhrystone 0.00% 1.52% 44,052 Dhry. 

Table 4. Linpack/Whetstone Benchmark Test Results 

Benchmark lcache Miss Dcache Miss Result 

Unpack 0.01% 12.67% 2.6 Mflops 

Whetstone 0.01% 0.00% 11,764 Whet. 

regard to statement types, data types, and data locality. 
Dhrystone does not contain any floating-point data or opera­
tions. 

The benchmark also does not make any system calls. 
However, its performance is highly dependent on two C library 
functions, strcpy() and strcmp(), which represent about 25% of 
computation. 

Owing to the above attributes, Dhrystone performance can 
be significantly impacted by compiler techniques and C library 
implementation. There is a separate applications note which 
mentions the common pitfalls when benchmarking with the 
7RS385 (an R3051 /52 evaluation board) especially with Dhry­
stone program. 

Another problem in using Dhrystone to measure perfor­
mance has to do with the size of its executable. Dhrystone 
achieves a virtually 0% miss rate even in the R3051; thus, the 
benefit of the larger caches in the R3081 will not be adequately 
displayed by this benchmark. 

Table 3 reflects Dhrystone v1 .1 running on an R3081-25-
based system. Again, however, IDT does not consider the 
Dhrystone benchmark to be an adequate yardstick for modern 
microprocessor performance, due to its unusual reliance on 
two library functions and due to its small size. Further, the rules 
for Dhrystone benchmarking (e.g. no procedure inlining) do not 
allow the true capabilities of the MIPS compiler suite to be 
demonstrated. 

Unpack/Whetstone Floating-Point Benchmarks 
Written in FORTRAN, Unpack is a general-purpose math­

ematical library of functions that solves systems of linear 
equations. The Unpack benchmark is a program that solves a 
dense system of linear equations using a small subset of the 
standard Unpack library functions. As a linear-equations pack­
age, Unpack emphasizes floating-point addition and multipli­
cation. The results, measured in millions of floating-point 
operations per second (Mflops), are typically derived from a 
calculation of a 100 x 100 submatrix of linear equations. 

Whetstone is a synthetic mix of integer and floating-point 
calculations, transcendental functions, conditional jump, func­
tion calls and array indexing. This benchmark was originally 
developed in 1970 and was written in ALGOL 60s. Since that 
time, it has been rewritten in FORTRAN and, like Unpack, has 
evolved into a standard benchmark of floating-point perfor­
mance. Results display in thousands or millions of Whetstone 
interpreter instructions per second (Kwhips or Mwhips, some­
times referred to as MegaWhetstones). 
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Table 4 shows the Unpack and the Whetstone number 
(double precision only) coming out of the R3081 simulated 
system. The system parameters are as described earlier. 

SPECmarks 
SPECmark is the geometric mean of the SPEC® bench­

mark suite. Compared with the arithmetic mean (average), 
the geometric mean is a fairer way of reporting suite results 
because it compensates for varying run lengths while giving 
each program equal importance. 

The SPEC benchmark suite includes ten different pro­
grams drawn from real-world applications and other scientific 
and engineering areas. These programs are described briefly 
below: 

gee-the GNU C compiler distributed by the Free Soft­
ware Foundation. This benchmark measures the time ittakes 
for the GNU C to convert 19 preprocessed source files into 
optimized SUN-3 assembly language (.s file) output. 

espresso-one of a collection of tools for the generation 
and optimization of Programmable Logic Arrays (PLAs). This 
benchmark was developed by UC Berkeley. It takes a set of 
seven input models which are represented as truth tables and 
produces the same format outputs. 

spice2g6-an analog circuit simulation and analysis ap­
plication. This benchmark was developed by UC, Berkeley 
also. It takes an input model from HP that simulates a bipolar 
circuit. 

doduc-a Monte Carlo simulation of the time evolution of 
a thermohydraulical modelization for a nuclear reactor's 
component. 

nasa7-a collection of seven floating-point intensive ker­
nels. The input data is double-precision. 

Ii-a lisp interpreter written in C. This benchmark mea­
sures the time to solve the 8-queens problem. 

eqntott-an integer intensive benchmark developed by 
UC, Berkeley. This benchmark translates a logical represen­
tation of a boolean equation to a truth table. 

matrix300-a vectorizable FORTRAN scientific bench­
mark using double-precision floating-point arithmetic. 

fppp--a quantum chemistry benchmark. It measures per­
formance on one style of computation which occurs in the 
Gaussian XX series of programs. 

tomcatv-a highly vectorizable double precision floating­
point FORTRAN benchmark. 

Our purpose for running the SPEC benchmarks is merely 
to compare the performance of a typical desktop R3081-
based system with the performance of a discrete R3000A 
system. Note that compiler technology continually advances; 
this has been demonstrated by the recent breakthroughs in 
performance of the matrix300 benchmark by MIPS and 
others, using compiler techniques. The results of these 
techniques are obviously not included in this table, and thus 
this table should not be construed as an absolute system 
performance indicator. Rather, it should be used to relate the 
performance of the R3081 to an existing, available, 25MHz 
UN IX workstation/server. 
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Table 5. SPECmark of R3081/R4000 

Benchmarks R3081-25 RC3240 

gee 17.2* 16.6 

Integer espresso 16.1 18.4 

Ii 15.7 20.3 

eqntott 19.0 17.5 

doduc 13.8 16.4 

nasal 19.2 17.1 

Floating spice2g6 13.1 12.4 

Point tomcatv 16.7 14.1 

fpppp 13.4 20.5 

matrix300 10.5 8.8 

Geometric SPECmark 15.2 15.8 

Mean Integer only 17.0 18.1 

• This is an approximate value and for reference use only. 

Table 5 illustrates the detailed SPEC results, comparing 
simulated SPEC mark estimates for the R3081 with the 
RC3240. For simulation, an estimate of the overhead for the 
operating system (especially important to gee) has been 
included but not actually measured. 

R3081-BASED SYSTEM VS. RC3240 (AN 
R3000- AND R3010-BASED SYSTEM} 

The MIPS RC3240 RISC computer is a 25MHz R3000/ 
R3010-based system. These processing units are comple­
mented by large, high-speed caches of 64kB each for 
instructions and data, and by sophisticated read/write buffers 
for minimizing memory access overhead. The resulting pro­
cessing power is measured at over 18mips, 15.0SPEC marks, 
40,000 Dhrystones, 13,800 Whestones for double precision, 
17, 100 Whetstones for single precision, 3.1 Mflops Lin pack for 
double precision, and 5.9Mflops Linpack for single precision. 

The RC3240 requires a CPU, FPA, 30-device SRAM 
cache, and a number of logic devices to implement the CPU 
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subsystem. The R3081 merely requires a single, 84-pin 
monolithic device. While the cache sizes are smaller than the 
discrete external caches used in the RC3240, the cache are 
large enough to handle a wide variety of real-world applica­
tions with high-performance. Further, memory design 
techniques such as interleaving on the mother board serve to 
mitigate the disadvantage of smaller caches. The result is that 
the R3081 system described performs within 10% of the 
RC3240, while dramatically reducing device cost, count, and 
power consumption in the CPU. 

Figure 3 shows the bar chart of the comparison between 
the R3081-based system and RC3240. 

SUMMARY 
The highly integrated R3081 was designed to take advan­

tage of the computing power inherent in the MIPS architecture, 
with a priority on reducing overall system cost and design 
complexity. This chip, which provides an excellent cache hit 
ratio and a floating-point HW solution attaining 15.2 SPECmark 
at25MHz, fills a vital performance niche between the standard 
R3000A and the R4000. Because it is software and pin 
compatible with the R3051, the CPU offers a upward compat­
ibility allows the R3051 /81 user to implement a single HW/SW 
base system that can be easily upgraded by choosing the 
appropriate processor to fitthe target price/performance range. 

relative 
to R3081 

1. 

0. 

fill! R3081-25 

BRC3240 

Stanford Dhrystone Unpack Whetstone 

Figure 3. R3081-25 vs. RC3240 
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INTRODUCTION 
The IDT RISController'™ family includes various highly­

integrated microprocessors providing high levels of perfor­
mance with low system cost. Currently, the R3051™ family 
includes three different devices, each providing differing levels 
of price periormance, yet each pin-compatible with each 
other. This allows the system designer to implement a single 
base system, yet offer various end products at different 
capability levels. The end result to the customer is reduced 
time to market for a product family, and the amortization of a 
single development effort over a wider variety of end products. 
This wide range of pin-compatible performance is not currently 
achieved by any other RISC processor family. 

This application note describes system design techniques 
that insure a high degree of interchangeability with no real 
design impact. 

THE R3051 FAMILY 
Common characteristics of the R3051 family include high 

integration at low cost. All current family members are pin­
compatible. All family members include: 
• Substantial amounts of separate instruction and data caches 

integrated on-chip. Although the amount of caches varies 
acrossdifferentfamily members, all devices contain enough 
cache on-chip to achieve extremely high performance with 
low-cost memory systems. The caches on the R3052 and 
on the R3081 ™ are actually larger than the cache on the 
Intel 80486 high-end processor, enabling these devices to 
offer higher performance at lower cost. 

• MIPS R3000A compatible integer CPU. The R3051 family 
was designed by integrating cache and a low-cost bus 
interface around the standard MIPS R3000A CPU. This 
RISC core is widely recognized as an extremely high­
performance execution engine, with powerful compiler and 
development tools. Some of the features of the core include 
a large register file, single cycle ALU, rich set of branch 
instructions (including compare operations as part of the 
branch), and separate, autonomous integer multiply and 
divide. Since the R3051 was designed using the standard 
core, 100% software compatibility is guaranteed. Thus, 
compiler tools, real-time operating systems, and other 
software tools developed around the standard R3000A 
work without modification on the R3051 family. 

• Optional Translation Look-aside Buffer (TLB). The "E" 
(Extended Architecture) versions of the RISController fam­
ily feature a 64-entry, fully associative TLB. The TLB allows 
virtual addresses to be translated into physical addresses 
on a 4kB page basis. The TLB is useful in providing memory 
protection and debug utilities in any application; in other 

applications, such as those using a real-time operating 
system, or in an X-windows server, the TLB allows in­
creased system functionality to be provided. 

• Simple, low-pin count bus interface. The R3051 family uses 
a time-multiplexed 32-bit address and data bus to commu­
nicate with memory. Internal to the processor are 4-deep 
read buffer and write buffer FIFO's to decouple the speed of 
the internal execution core from the slower speed memory 
system. The multiplexed bus arrangement has many ad­
vantages, such as lower-cost interface chips and ASICs, 
without impacting system performance. 
Currently, there are three family members. These are: 

• The R3051/51 E. This device features 4kB of Instruction 
cache and 2kB of Data Cache. There is no hardware 
floating-point unit available on this device. 

• The R3052/52E. This device features 8kB of Instruction 
cac!;e and 2kB of Data Cache. As with the R3051, there is 
no hardware floating-point unit available on this device. 

• The R3081/81 E. This device introduces a number of new 
features to the family. The primary features of interest are 
changes to the caches, and inclusion of a hardware floating­
point unit; other features will be described throughout this 
application note. The R3081 implements 16kB of Instruc­
tion Cache and 4kB of Data Cache; kernel software can 
dynamically reconfigure the on-chip caches as BkB of 
Instruction and 8kB of Data Cache. 

POTENTIAL UPGRADE OPPORTUNITIES 
A number of possible system upgrades from a single, base 

design are possible. Elsewhere in this application note, 
design considerations to assure interchangeability are de­
scribed. 

Possible upgrade strategies include the following tech­
niques: 

Upgrading Cache Size 
As all devices are pin compatible; it is possible to increase 

performance of an application by upgrading the amount of 
cache available on-chip. Thus, holding all other components 
the same, an R3051 may be removed and replaced by an 
R3052 to double the instruction cache. An R3052 can be 
removed and replaced with an R3081 , doubling both the 
instruction and data caches. 

Add Hardware Floating-Point 
One upgrade to higher performance involves upgrading an 

R3051 or R3052 to an R3081 and taking advantage of the on­
chip floating-point accelerator. Later in this applications note, 
software considerations for such an upgrade are described. 

The IDT logo is a registered trademark and IOT79A3051, IDT79R3081, IDT/c, IDT/kit, IDT/sim and RISController are trademarks of Integrated Device T~chnology, Inc. 
All others are trademarks of their respective companies. 

te1992 Integrated Device Technology, Inc. 
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This upgrade will obviously substantially increase the per­
formance of software containing floating-point operations; 
while the IDT software floating-point environment is very 
efficient, the floating-point unit of the R3081 dramatically 
outperforms integer emulation, and may result in a significant 
speed-up of some applications. 

Increasing Frequency 
Obviously, one way to increase performance is to increase 

the system frequency. This may or may not be easy to do, 
depending on the exact system design. Obviously, such an 
upgrade will typically require the replacement of multiple 
devices on the PCB. 

Note, however, that R3051 family packaging insures that 
the same footprint and pinout is available across the full 
frequency range of the family, and for all of the family mem­
bers. Thus, the same 84-pin PLCC footprint used for a 20MHz 
R3051 accommodates the package for a 40MHz R3081 , even 
though that device consumes more power. This obviously 
simplifies upgrading a design to a higher frequency processor. 
Design techniques for increasing frequency may include: 
• Using faster memory devices to achieve the same relative 

access time. 
• Using faster control logic, such as faster PALs or transceiv­

ers, to increase set-up time and reduce propagation delays. 
For example, a 1 Sns PAL may be replaced with a 10ns PAL, 
effectively allowing the clock period to be reduced Sns. 

• Re-programming PALs and control logic to increase the 
number of wait cycles. While this will reduce the frequency 
normalized performance, the absolute performance will be 
increased substantially, since the processor will execute 
(typically out of its internal cache) at a higher rate. 

"Clock Doubler" Operation 
The R3081 presents a particularly unique opportunity to 

upgrade systems using an R3051 or R3052. This is particu­
larly due to the "half-frequency bus" mode of operation of the 
R3081. 
A dramatic system upgrade can be achieved by: 
1. Removing a 20MHz R3051 or R3052 and replacing it with 

a 40MHz R3081. 
2.Selecting the "half-frequency bus" and "1 x clock" modes via 

the reset vectors. 
The resulting system bus will continue to operate at 20MHz, 

but the CPU will execute out of its internal cache at 40MHz. 
The resulting system will typically see its performance more 
than double (recall that the upgrade to the R3081 will also 
increase the on-chip caches and add hardware floating-point, 
relative to the R3051 or R3052). 

It is also interesting to note that the performance impact of 
running a 40MHz processor with a 20MHz bus is not as severe 
as one would intuitively guess. This is due to the fact that 
memory access time is really in units of time, ratherthan in wait 
states. That is, 200ns access memory is 4 clock cycles at 
20MHz and is 8 cycles at 40MHz; the absolute time is not 
improved by running the bus faster. 

Intel has estimated that for the i486 with clock doubling, 
running the bus at one-half the CPU execution rate is approxi­
mately 11 % less efficient than running the bus at the full CPU 
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rate on benchmarks such as the SPEC benchmark suite. The 
R3081 contains more than twice the amount of on-chip cache 
as does the i486, and thus will be even less dependent on bus 
performance; thus, the performance degradation should be 
even less. 

DESIGN CONSIDERATIONS FOR UPGRADING 
The remainder of this applications note details specific 

techniques which facilitates the interchange of various mem­
bers of the R3051 family. In general, all devices are pin and 
footprint compatible, so there are no PCB issues to be 
concerned about. In general, the only things needed to 
upgrade a design are: 
• Design it around an R3051. The R3081 does include some 

superset features relative to the R3051 which simplifies 
high-speed systems; however, if a system works for the 
R3051, it will work for an R3081. 

• Make the software independent of cache size. The various 
devices include varying amounts of cache on-chip. An 
algorithm to determine the amount of cache available is 
presented in this applications note. 

• Have a strategy for software floating-point versus hardware 
floating-point. The R3081 adds a high-performance hard­
ware floating-point accelerator, as well as increasing the 
cache size. This applications note describes various soft· 
ware techniques for dealing with software emulation versus 
hardware acceleration of floating-point. 
Thus, this application note details specific hardware choices 

and software choices which facilitate interchanging CPUs. In 
addition, the application note illustrates techniques for de­
termining the presence or absence of the R3081 config 
register, the R3081 FPA, and the amount of cache on-chip. 

SOFTWARE CONSIDERATIONS FOR 
UPGRADING SYSTEMS 

Some of the system upgrade considerations should be 
accommodated in the application software (especially the 
kernel). It is possible to develop a single binary set of code 
which performs across all of the family members. 

Sensitivity to Cache Size 
Obviously, one characteristic difference among the various 

family members is the amount of Instruction and Data cache 
available. Thus, to insure interchangeability among these 
devices, the software should be written to be insensitive to the 
cache sizes. 

Typically, very little of the actual application will be function­
ally sensitive to the amount of on-chip cache; the primary 
difference will be in the performance achieved. This is the 
primary advantage of caches with respectto memory mapped 
zero-wait state RAM; caches are transparent to the software, 
and do not affect the memory map. 

Typically, the only part of the software that may be sensitive 
to the cache size will be the boot/initialization software, which 
may perform certain memory (including on-chip cache) diag­
nostics, and which must initialize the on-chip cache by per­
forming a cache flush. 
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Figure 1 shows a listing of a routine to perform cache sizing. 
This routine uses bits of the on-chip status register to isolate 
the cache (to prevent writes or cache misses from propagating 
to memory), and to swap the cache (to perform the algorithm 
on the Instruction cache). In order to determine hit or miss, the 
algorithm places a marker in the first word of the cache, and 
then looking for the cache size such that a read of the cache 
forces a wrap-around to reading location zero. Once this 
occurs, the maximum cache size has been exceeded, and 
thus the cache size is known. Other algorithms could use the 
cache miss bit of the status register, rather than a marker 
value. This capability is provided in the IDT/kit™ and IDT/sim™ 
software packages from IDT. 

Once the cache size has been determined, it is used in the 
cache flush routines (for example) to completely flush the 
caches. Note that if the only time the cache is flushed is at 
system start-up, it is acceptable to assume a worst case 
(large) cache size and flush that amount of cache; caches 
smaller than the size assumed will merely be flushed multiple 
times, resulting in wasted execution time but correct function­
ality. On the other hand, applications which perform cache 
flushing as part of ongoing operation (e.g. to assure cache 
coherency when OMA operations are used) would be sensi­
tive to performance, and thus would desire to flush only the 
proper amount of cache. 

Floating-Point Presence 
Another difference between various family members has to 

do with the presence or absence of the floating-point. This 
distinction may have two impacts on the software environ­
ment: 
• The initial setting of the coprocessor 1 usable bit should 

reflect whether or not a hardware floating-point is available. 
It is possible to create a software environment which can 
dynamically determine the presence or absence of the FPA. 

• The actual binary executable of the application may be best 
optimized according to the presence or absence of a hard­
ware floating-point. This is discussed below. 

How to Determine Floating-Point Presence 
There are at least two different methods for determining 

whether a floating-point is present. One way is to perform 
floating-point operations and determine whether the results 
are reasonable; these operations could be as simple as 
moving data into and out of the FPA registers to see if they are 
present, through performing floating-point calculations and 
examining the results (or even possibly seeing if an exception 
is reported). If the floating-point is detected as present, 
coprocessor 1 should be marked as usable by the kernel. 

Another method would be to use the CpCond(1) 
(coprocessor 1 condition) flag. The hardware could tie the 
CpCond(1) to a known state (e.g. HIGH); software could then 
perform a compare operation (or move to the Ip cscr register) 
to cause CpCond(1) to report the opposite polarity. A simple 
branch on coprocessor (1) condition will then determine 
whether the CpCond(1) signal is driven by an on-chip FPA, or 
by the off-chip pull-up resistor. 
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FPA Impact on the Binary Code 
There are two methods for dealing with the software which 

may or may not have a hardware floating-point unit. The 
optimal method depends on trade-offs between a single 
binary set operating either with or without a hardware FPA, 
versus a single source set compiled twice resulting in two 
binaries (one targeted to a hardware FPA and one targeted to 
an integer only environment). 

Using a Single Binary with and Without an FPA 
If the system designer chooses to implement a single 

binary capable of taking advantage of a hardware FPA when 
one is available, all that needs to be done is to tap into the 
inherent capabilities of the MIPS coprocessor architecture. 
Specifically, if the kernel marks the coprocessor 1 FPA as 
unavailable, FPA instructions will cause a trap to occur. The 
kernel can then perform an integer interpretation of the FPA 
instruction. The application software is then compiled to 
assume the availability of a hardware FPA: if one is available 
in the system fine; if not, traps will occur when FPA operations 
are encountered, and the kernel can perform an emulation of 
the function. 

Using this technique requires two things in the software: 
• Boot software must perform the diagnostics described 

above to determine the appropriate setting for the 
coprocessor 1 usable bit. 

• The kernel must include the capability to emulate the entire 
FPA unit, including the FPA operations, the register file, and 
the FPA exception mechanisms used by the application. 
While this technique has the advantage of resulting in a 

single binary which works in either environment, the result is 
added complexity and a loss of performance in the environ­
ment in which no FPA is available. Specifically, the kernel 
must provide an emulation library of the entire FPA; and, 
software FPA operations will include additional overhead from 
the CPU exception model and from emulating all aspects of 
the FPA, even though a given operation only requires a subset 
of the FPA functionality. 

Developing Two Binaries from a Single Source 
Another technique exists whereby two distinct binaries are 

developed from a single source tree. Each of the resulting 
binaries is fully optimized for either an integer only environ­
ment, orfor an environment in which a hardware floating-point 
is available. 

This is accomplished by taking advantage of the software 
floating-point library capabilities of the IDT/c™ environment. 
IDT/c includes a compile time flag which can be used to control 
whether hardware FPA instructions (coprocessor 1 instruc­
tions) are generated, or whether direct calls to a software 
floating-point library are generated. Thus, software floating­
point is not forced to emulate the register set and data type 
conversions of the hardware FPA, and execution is not forced 
to go through the CPU exception model. The resulting binary 
operates much more efficiently than one which goes through 
the trap and emulation model described above. 

A separate applications note describes how to determine 
the optimal compilation environment for a given application. 
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/************************************************************************ 

** 
** _size_cache() 
** returns cache size in vO 

** 
************************************************************************/ 

FRAME(_size_cache,sp,0,ra) 

/* save current sr */ 
.set 
mfcO 
and 
or 
mtcO 

noreorder 
tO,CO_SR 
tO,-SR_PE 
vO,tO,SR_ISC 
vO,CO_SR 

/* do not inadvertently clear PE */ 

1: 

2: 

3: 

/* isolate cache */ 

/* 
* First check if there is a cache there at all 
*I 

move 
li 
SW 

lw 
nop 
mfcO 
nop 
.set 
and 
bne 
bne 
/* 

vO,zero 
vl,Oxa5a5a5a5 
vl,KOBASE 
tl,KOBASE 

t2,CO_SR 

reorder 
t2,SR_CM 
t2,zero,3f 
vl,tl,3f 

/* distinctive pattern */ 
/* try to write into cache */ 
/* try to read from cache */ 

/* cache miss, must be no cache */ 
/* data not equal -> no cache */ 

* Clear cache size boundries to known state. 
*/ 

li 

SW 

sll 
ble 

li 
SW 

li 

lw 
bne 
sll 
ble 
move 
.set 
mtcO 
j 

vO,MINCACHE 

zero,KOBASE(vO) 
v0,1 
vO,MAXCACHE,lb 

v0,-1 
vO,KOBASE(zero) 
vO,MINCACHE 

vl, KOBASE (vO) 
vl,zero,3f 
v0,1 
vO , MAX CACHE, 2 b 
vO, zero 
noreorder 
tO,CO_SR 
ra 

/* 
/* 

/* 
/* 
/* 
/* 
/* 

/* 

store marker in cache *I 
MIN cache size */ 

Look for marker */ 
found marker */ 
cache size * 2 */ 
keep looking */ 
must be no cache */ 

restore sr *I 

nop 
ENDFRAME(_size_cache) 

.set reorder 

Figure 1. Cache Sizing Software 
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31 30 29 28 26 25 24 23 22 

Lock ~~: R~~ll FPlnt Halt RF AC Reserved 

Lock: 1 -> Ignore subsequent writes to this register 
Slow Bus: 1 -> Extra time for bus turnaround 
DB Refill: 1-> 4 word refill 
FPlnt: Power of two encoding of FPlnt <->CPU Interrupt 
Halt: 1 ->Stall CPU until reset or interrupt 
RF: 1 -> Divide frequency by 16 
AC: 1 -> SkB per cache configuration 
Reserved: Must be written as O; returns O when read 

Figure 2. R3081 Config Register 

The method of dealing with floating-point operations in an 
integer CPU only environment is particularly important in the 
evaluation of a compiler platform; techniques such as the "mix 
and match" approach supported by IDT/c allows the best 
capabilities of the MIPS compiler toolchain to be integrated 
with efficient software floating-point emulation. 

The obvious advantage of this approach is the optimum 
performance achieved for both the integer only system and 
the R3081-based (hardware FPA) system. Using distinct 
EPROM sets at manufacturing time, or upgrading both the 
EPROMs and processor as a field upgrade, are obvious 
consequences, but in general are not particularly onerous 
(EPROM upgrade can be a replacement of EPROMs, or, for 
FLASH EPROM, a re-programming of the EPROMs resident 
on the board). 

The R3081 Config Register 
The R3081 includes, as part of coprocessor 0, an additional 

control register called "Config". The R3081 Config Register is 
shown in Figure 2. 

The Config register controls various aspects of system 
functionality. If these features are used in an R3081 system, 
software must first determine whether they are available. 

To determine whether the current device is an R3081 (and 
thus whether the config register is available), software can use 
various techniques. One straightforward technique is to 
determine whether or not there is an FPA; if so, the device is 
an R3081. Similarly, software could determine the cache 
sizes available, and see if these correspond to the organiza­
tion the R3081. 

Other techniques are also possible; for example, size the 
cache, then reconfigure the cache by writing to the config 
register; re-size the cache to determine that the change 
occurred. Obviously, if the change occurs, the config register 
is available. 

Note that writes to this register location in the R3051 or 
R3052will have no effect; no side effects occur, and no traps 
are signalled. Reads of the config register produce an 
undefined data result for the R3051 and R3052. 

If the config register is used when an R3051 is in place, 
various other considerations exist. These are: 
• Floating Point Interrupt. In general, if an R3051 application 

intends to also work with an R3081, one of the CPU interrupt 
inputs needs to be reserved for the hardware FPA of the 

R3081. The default interrupt is lnt(3), but the config register 
allows a different interrupt assignment to be used. The 
corresponding interrupt input pin of the R3081 is then 
ignored. Thus, the PCB should contain a pull-up resistor at 
the interrupt pin; when an R3051 is used in the application, 
no interrupt will be signalled. 

• Reduced Frequency. This mode dramatically reduces the 
power consumption of the R3081 , by reducing its operation 
frequency. This mode is unavailable in the R3051. In 
general, the only real functional system change that occurs 
is that the SysClk output clock frequency is also reduced; 
thus, if DRAM refresh, for example, was derived from this 
clock, the counter value should be reprogrammed. If an 
R3051 is told to "reduce frequency", nothing will happen. 

• Halt. This control bit forces the R3081 to stall until an 
interrupt input is asserted, or a reset is encountered. This 
mode is unavailable in the R3051, and no simple software 
equivalent exists. 

• Data Block Refill. The R3081 allows the block size read on 
a data cache miss to be dynamically reconfigured by soft­
ware. The initial value is set by the reset value. In general, 
this bit may affect the performance of software, but is 
unlikely to impact its functionality. 

• Alternate cache. This bit allows the caches to be dynami­
cally reconfigured for the R3081. A cache flush should be 
performed after the cache is reconfigured. An earlier 
section of this applications note discussed how to make 
software independent of the cache organization. 

• Lock. This bit allows software to inhibit subsequent writes 
to the Config register. Thus, boot software can set up the 
operation mode, and then protect it from other software. 

• Slow Bus Turnaround. This bit allows systems to enjoy 
longer time between AID bus mastership transitions. How­
ever, this software control is not available on the R3051. If 
the system designer desires extra time, and also desires to 
be able to interchange R3051s and R3081s, the hardware 
technique described in applications note AN-97 is appropri­
ate. This technique uses the OMA arbiter interface of the 
CPU to insure that new transactions are not begun until 
ample time for bus turn-off has passed. This hardware 
technique works equally well with both the R3051 and 
R3081. 

162 



UPGRADE STRATEGIES FOR R3051-BASED DESIGNS 

HARDWARE DESIGN ISSUES 
There are various hardware design considerations that 

may impact the ability to interchange various members of the 
CPU family. With proper design, these considerations can be 
dealt with no real system impact. 

Slow Bus Turn 
Bus turn is the amount of time allowed to change master­

ship on the AID bus of the processor. In general, a read 
followed by a write can cause a change in bus direction in one­
half bus cycle. At 33MHz, this is 15ns. 

The system designer may implement an architecture which, 
by using appropriate transceivers and control signals, can 
tolerate a rapid bus turn. Alternatively, the designer may 
desire to increase the minimum amount of time. 

Although the R3081 includes a bit in the Config register to 
slow the bus, this technique does not work with the R3051 . 
Instead, the hardware technique of using BusReq to insure a 
longer tri-state time is recommended. This technique is 
described in applications note AN-97. 

Coherent OMA 
The R3081 includes a hardware interface to insure cache­

coherency in systems using OMA. This interface is unavail­
able in the R3051. 

Many MIPS applications perform multi-master cache co­
herency via software techniques, and thus do not require 
hardware-based coherency. While hardware-coherency will 
improve the performance of some applications, relying on 
software (which may, for example, flush the entire data cache 
once a OMA operation is completed to insure coherency. This 
technique will function equally well with either the R3051 or 
R3081. 
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Floating-Point Interrupt 
The R3081 uses one of the interrupt input pins to report 

exceptions to the CPU. The hardware should reserve one of 
the input pins for this function, and provide logic or pull-up 
resistors to insure that this input is held HIGH for an R3051 or 
R3052. 

CpCond(1) 
The R3081 uses this input to report the results of compari­

sons back to the CPU; thus, the external input pin is ignored. 
R3051 systems should provide a pull-up resistor for this pin. 
Earlier in this applications note, a method to use this pin to 
determine the presence or absence of an FPA was described. 

Reset Mode Vectors 
Both the R3051 and R3081 use the same basic technique 

to perform reset mode selection of various options. Figure 3 
illustrates the mode vector logic for the R3081. Note that for 
the R3051, lnt(5:3) mode vectors are reserved, and must be 
held HIGH during reset. 

Options include: 
Tri-state. This option is used to perform board testing, and 
is available in all devices. 

• BigEndian. This option selects the data byte ordering 
convention, and is available in all devices. 
Data Block Refill. This option selects single versus four­
word refill on data cache misses. Although this option is 
available in all devices, software (via the config register) can 
dynamically change the value for the R3081. 
Coherent OMA Enable. This option enables the coherent 
OMA interface of the R3081. For the R3051, this input must 
be HIGH at reset. 

R3081 Mode Vector Logic 

Slnt(O) 

Slnt{1) ---+.._.~ 

Slnt(2) 

lnt(3) 

lnt{4) 

lnt{5) ---+.._.,.. 

Figure 3. R3081 Mode Vector Assignment 
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• tx Clock Mode. This option instructs the R3081 that the 
input clock provided is at the CPU operation frequency, 
rather than at twice the frequency. In the R3051, only the 
"2x" clock is available, and this vector must be held HIGH. 
Half-frequency Bus. This option instructs the R3081 to 
operate its bus interface at one-half the execution rate. This 
option is unavailable in the R3051, and must be held HIGH 
at reset. 
In order to design a system to accommodate either an 

R3051 or R3081, it maybe desirable to includejumpersforthe 
R3081-only options. Thus, when an R3081 is included in the 
design, various of the hardware options may be changed. 
This may open up other upgrade strategies, such as the clock 
doubling capability described earlier. 

APPLICATION NOTE AN·113 

SUMMARY 
By following a few simple rules, the system designer can 

implement a base R3051 system which can easily upgraded 
to higher performance. Upgrade options include more amounts 
of cache on-chip, the addition of hardware floating-point, and 
increases of frequency. With the R3081 half-frequency bus 
mode, the operation frequency of the execution engine can be 
substantially increased while maintaining the same (or even 
slower) bus interface frequency. 

Thus, the IDT RISController family effectively reduces the 
time to market of new product families, and maximizes engi­
neering return on investment by enabling one design effort to 
result in multiple end products. 
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ABSTRACT 
Although an X-Terminal is an extension of the traditional 

graphics terminal, the X-Windows system places additional 
system level constraints. These constraints require a well­
balanced system architecture, not just good graphics 
throughput. Evidence of this is the fact that many of today's 
commercial X-Terminals use a dual-server architecture: a 
good, general purpose CPU such as an MC68020 to handle 
networking and 1/0 functions, and a dedicated graphics chip 
such as the Tl 3401 Oto perform graphics functions. 

Many of today's RISC microprocessors offer enough 
performance to integrate both functions into a single CPU, 
resulting in higher performance, simpler designs, and lower 
cost. However, the system requirements of an X-Windows 
application forces the system designer to evaluate more than 
just the raw performance of the CPU. Factors such as memory 
interface, memory management, and interrupt response are 
at least as important as computational throughput. 

This paper will discuss some of the other architectural 
requirements of an X-Terminal system, and size up these 
requirements against the IDT RISController™ family. Areas of 
investigation will include: 

The role of memory management in X-Windows. There is a 
certain similarity between X-Windows systems and the 
traditional virtual memory system associated with general 
purpose computers. The paper will discuss methods of 
window management, using a memory management unit to 
provide both the client/server and server/hardware inter­
faceswithintheX-Terminal. The use of the MMU incorporated 
within various members of the IDT RISController family will 
be discussed. 

• The importance of interrupt response in X-Windows. X­
Windows systems are designed to interface between the 
network and the graphics device. Interrupt response and 
network handling become key determinants in X-Windows 
performance. This paper will discuss the importance of the 
network interlace, as well as the interrupt handling capabili­
ties of the IDT RISController family. 

• The particular nature of the memory requirements of X­
Terminals, and the difficulty in establishing a single, generic 
memory controller to handle the wide range of X-Terminal 
requirements. Differences between X-Terminals and other 
embedded systems, such as Laser Printers, will be dis­
cussed. 
Finally, this paper will discuss an example of the use of a 

MIPS RISC processor in an X-Terminal application, drawing 
on the MIPS Magnum™ workstation as an example of the 

application of a generic, high-performance microprocessor 
engine in an X-Window environment. Many of the design 
goals of a workstation overlap with the design goals of an X­
Window system, as exemplified by this workstation. Specific 
performance numbers for this implementation, as measured 
by X-Stones, will also be presented. We will finally discuss 
some X-Window specific support that could be added to this 
basic architecture to further increase X-Window performance. 

BACKGROUND 
X-Windows has emerged as the networking standard to 

facilitate applications sharing and interaction on a 
heterogeneous network. X-Terminals, which are basically 
graphics terminals which implement the X-Windows protocol, 
have been developed as a way to lower the "per-seat" cost of 
the network, and to optimize the cost/performance RISC has 
brought to the general computing world. Further, X-Terminals 
have facilitated the interaction and sharing of data and 
applications amongst multiple users which the PC Revolution 
made difficult, by allowing centralization of computing and 
storage resources while distributing the accessibility of the 
system through low cost terminals. 

The marketforX-Terminals has grown dramatically recently, 
for a variety of reasons: 

X-Terminals lower the "per-seat" (per-user) cost of high­
performance networked computer systems. 
The availability of excess "MIPS" in high-performance com­
pute servers, which allow X-Terminals networked to a 
RISC-based server to outperform PC's at lower cost per 
user. 

• The development and use of Graphical User Interfaces 
(GUl's), which make high-performance, centralized com­
puters as flexible and easy to use as PC's and Maclntosh'es. 

• The X-Windows protocol has been widely adopted as the 
"back-end" of the GUI available from most system vendors, 
making it attractive to port applications software to the X­
Windows environment. 
Finally, the technology required for X-Terminals to achieve 
high-graphics and network performance with high-resolu­
tion monitors has become increasingly available and cost 
effective, allowing the "break-even" point of a network of X­
Terminals with a high-performance compute server to be 
lowered. This means that even relatively small networks can 
lower the cost-per-seat of this environment relative to the 
cost of a network of PCs. 

The IDT logo is a registered trademark and RISController, IDT79R3051, IDT79R3081, IDT/c, IDT/kit and IDT/sim are trademarks of Integrated Device Technology, Inc. 
All others are trademarks of their respective companies. 

©1992 Integrated Device Technology, Inc. 6/92 

165 



THE IDT RISController™ FAMILY: 
AN ARCHITECTURE WELL-SUITED TO X-WINDOWS 

BASIC TERMINOLOGY 
The hierarchy of software and interfaces of an X-Windows 

environment is illustrated in Figure 1. The architects of X­
Windows reversed the traditional (intuitive) nomenclature 
used in client/server relationship definitions: in the X-Windows 
environment, the client (the applications software running on 
the computer server) requests X-Windows activity from the X­
server (the terminal) running on the network. Following initiation 
of an application program on the host machine, the client 
enters a loop and waits to be notified of an event by the server. 
The loop continually waits for the input from the server and, 
depending on the type of request made, will execute a given 
section of code in the application program. Following execution 
of the specific section of code, control returns to the main loop 
of the program to await a subsequent event. 

The architecture of the software for the client portion of the 
application is beyond the scope of this paper. Instead, this 
paper will discuss some of the hardware considerations 
involved in designing a high-performance, low cost X-Terminal 
server. 

As is obvious from the above discussion, the X-server sits 
between the software of the X-protocol and the hardware 
specific interfaces of the graphics output device, the local 
keyboard and mouse resources of the terminal, and the 
network interface. 

An obvious architecture for this type of application is to use 
heterogenous multiple processors, each specialized to a 
particular aspect of the terminal, and coordinated under the 
control of a centralized CPU responsible for interpreting the 
"X" protocol and coordinating the various processors. This 
architecture predominated the earliest implementations of X­
terminals, where graphics was managed by a graphics 
processor such as a 34010 and a general purpose processor 
such as a 68020 managed the network, keyboard and mouse, 
and the interaction of these various subsystems. 

Application 
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Interface) 

XUI Toolkit 

MITX-Toolkit Intrinsics 

Xlib Libraries 
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(Host) 

Network Interface 
---t------------1-- X-PROTOCOL 

Network Interface 

X-Server Extensions 

X-Server 

(Transport) 

SERVER 

(Terminal) 
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Figure 1. X·Windows Display System 
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The advent of low cost, high-performance RISC processors 
such as the IDT R3001 and R3051 ™family, however, allows 
the integration of these subsystems into a single, high­
performance CPU, allowing both lower cost and higher 
performance to be realized in X-terminals. RISC-based 
solutions absolutely are a factor in improving the viability and 
price/performance of the X-terminal marketplace. 

TASKS OF THE TERMINAL PROCESSOR 
The processor in the terminal obviously must respond to 

variety of differenttypes of requests: requests from the network, 
requests from the mouse or keyboard, and requests to perform 
graphics. It is not obvious that these responsibilities all stress 
the same attributes of a processor: for example, network 
services will stress the interrupt response and real-time aspects 
of the system, while graphics will tend to stress the memory 
bandwidth and computational capabilities of the system. 

Although in some ways, the X-Windows architecture sounds 
very similar to a laser printer architecture (which takes 
PostScript®from a variety of applications, often from a network, 
and performs interpretation and graphics operations to render 
an image on a page), the relative drawing and copy speed 
requirements of an X-Terminal are substantially higher. Recall 
that typical laser printers feature performance in the 8-20 
pages per minute range, rather than a 70 times per second 
refresh rate of a terminal (this comparison is slightly apples to 
oranges, but it does reflect the fact that a terminal must feel 
more like "real-time" response to graphics requests than a 
printer does, at lower resolution than the 300-400 dots per 
inch of a printer), and that the connection to a printer is rarely 
a high-bandwidth network like Ethernet, but rather a slower 
channel such as Apple Talk®, or a dedicated channel such as 
Centronics. 

THE MIPS® ARCHITECTURE IN X-TERMINALS 
The MIPS architecture is well balanced, allowing its high­

performance capabilities to benefit all of the performance 
critical areas of an X-Terminal design. The architectural 
highlights pertinent to X-Terminal design include: 
• Fast, efficient interrupt handling and context switching. The 

MIPS architecture use a simple machine model, which uses 
a single set of 32 orthogonal registers (speeding context 
switch) and which hides the details of the pipeline from 
software (speeding both interrupt handling and context 
switch). 

• On-chip Memory Management. There are actually a num­
ber of uses for memory management in an X-Terminal, 
some of which will be discussed later. The MIPS architec­
ture includes memory management on-chip, and in fact also 
maintains a large memory space that is unmapped. This 
memory structure turns out to be a very good fit with the 
software operations of an X-Terminal. 

• High-bandwidth memory. The R3000 architecture is able to 
fully utilize as much memory bandwidth as the system 
designer can supply. Note that this is dramatically different 
from traditional CISC architectures, which often cannot fully 
utilize the bandwidth of memory because of their multi-cycle 
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operations. Note that the R3000 family can take advantage 
of both high-bandwidth caches and high-bandwidth main 
memory (e.g. the frame buffer). 

• Single-cycle ALU operations, including rotation, multi-bit 
shifts, and basic integer arithmetic. 

• Atomic, high-speed integer multiply and divide on the integer 
chip, as a basic part of the architecture. 

• The ability to include or exclude floating-point at will. Appli­
cations such as 3-D require the support of the 
high-performance floating-point co-processor, while 2-D 
applications do not. The mix-and-match attributes of the 
R3000 architecture allows a single base set of software to 
address multiple price-performance points by using various 
system-level or chip-level implementations. 

• Efficient, effective compiler technology, which allows pro­
grams coded in high-level languages to obtain most of the 
inherent performance of the chip. Note that MIPS technol­
ogy is unique in considering the compilers an integral part 
of the chip architecture. 

THE IDT RISController FAMILY 
IDT has performed modifications to the initial R3000 design 

which maintain these high-performance attributes, but reduce 
the cost of achieving that performance level by recognizing 
the distinction between UNIX® computers and embedded 
systems. 

CONFERENCE PAPER CP-04 

The RISController family achieve these system cost 
reductions by integrating those functions which affect both the 
performance and cost of R3000 based systems. For example, 
the R3001 performs integration at the cache subsystem level 
by reducing the overhead resulting from the TAG bits required 
to implement a discrete cache subsystem. The R3001 still 
allows the use of the high-performance R3010 hardware 
floating-point unit, and thus achieves lower system cost while 
preserving the full flexibility of the original R3000. 

The R3051 family integrates the entire cache subsystem 
onto the CPU function, eliminating the need for external fast 
static rams. Today's technology allows enough cache to be 
integrated onto the CPU function so that performance is 
substantially maintained (other processors are so complex 
that smaller, less effective caches are implemented, with 
substantial performance loss; the R3000A core incorporated 
into the R3051 family is compact enough that substantial 
caches can be added into a low cost device family) 1 . However, 
the current members of the R3051 family do not allow access 
to a hardware FPA, leaving the R3001 as the appropriate 
choice for high end, 3-D applications. 

Thus, the IDT RISControllerfamily is an architecture ideally 
suited to the requirements of X-Terminals. Specific vendor 
product announcements in the upcoming months will further 
serve to substantiate these claims, although certain existing 
computing products will serve to show the X-performance 
inherent in the MIPS architecture. 
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Figure 2. X-Termlnal System Architecture 
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SYSTEM ARCHITECTURE 
A typical X-Terminal system features the following areas 

(Figure 2) which much be managed by CPU hardware and 
software: 
• A Frame buffer for the active video area. The actual size of 

the frame buffer is dependent on the resolution of the screen 
and the number of bits per pixel. 

• A DRAM area, used to manage the various distinct windows 
merged together in the frame buffer, and also used to 
manage the display list. 

• A high speed network connection, such as Ethernet, to 
support the TCP/IP communications protocol which has 
become the de facto standard. 

• As much as 1 MB of PROM space to hold theX-servercode. 
Note, however, that some terminals have small boot proms, 
and accept the server downloaded across the network 
when the terminal is turned on. 
In order to provide the highest levels of performance, the 

system strives to support extremely fast memory to memory 
copying, such as when copying a window into the frame buffer 
or moving a window within the frame buffer. Given this, a 
generic DRAM controller interface or PROM interface does 
not solve the memory interface problems of an X-terminal. 
Interface support for the network, the frame buffer, and for 
tightly couple interactions between these subsystems must 
also be provided. Thus, the CPU must support fast interrupt 
response, to minimize the performance lost in servicing network 
requests. 

Additionally, it must perform addressing and general drawing 
of lines, rectangles, etc., very quickly. Typically, this involves 
the capability to read and write memory quickly, and to 
perform integer arithmetic and logic functions quickly. 

Much of the software can easily be derived directly from the 
"C" source provided in the X11 X-windows reference source. 
However, substantial tuning typically occurs, both in the 
graphics drawing functions, and in the memory movement 
operations. Some of these optimizations are performed in 
reaction only to the architecture of the CPU chip (e.g. register 
file size, load or branch delays, etc.), and others are performed 
to tune both the chip and software to the bandwidth capabilities 
of the memory system (for example, is it better to perform 
block copies by performing burst reads followed by burst 
writes, and should the register file be used, etc.; is there 
hardware assist, such as BitBlt functions, provided in the 
hardware system, etc.). However, to minimize the development 
time required, these optimizations are kept to as small a 
portion of the software as possible. 

MEMORY MANAGEMENT SCHEMES 
One of the more controversial areas is the area of memory 

management schemes in an X-Terminal. 
To a certain extent, the requirements of the X-Server 

serving client applications from hosts on the network is very 
analogous to the requirements of a UNIX operating system 
handling multiple user tasks: the single operating system 
(server) is responsible for managing the multiple tasks (clients 
and their windows) interaction with the various resources (e.g. 
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the screen) under control of the kernel. The user tasks/client 
programs each assume that they "own" the entire screen and 
unlimited resources of the hosVterminal, while in fact the 
resources of the terminal are limited and shared between 
multiple clients. 

This is an obvious situation that is solved by memory 
management in general purpose computers. A similar approach 
can be taken by X-terminals. 

The X-server can allocate memory to various clients from 
its fixed store. If it runs out of memory, a number of actions are 
possible: 
• No action, in which case the actions of the terminal are 

unpredictable. 
It can send a "fault" message to either the user or client 
program to advise that it is out of memory. 
It can use the network to find a backing store for least 
recently used windows. 
Obviously, many of these alternatives can be simplified by 

taking advantage of the memory management facilities 
provided in many processor architectures. Although an MMU 
is not strictly necessary to implement an X-terminal, a well 
conceived MMU (such as that provided in the MIPS R3000 
architecture) can facilitate the X-terminal software. 

The R3000 memory management structure (Figure 3) 
provides all of the features desired in an X-terminal: the large, 
unmapped kernel segments can be used to contain both the 
frame buffer and X-server software, while the mapped 
segments can be used to "translate" client references into 
memory addresses on a page by page basis. Finally, to allow 
the software to better interact directly with the memory system, 
the software can reference any memory region using either 
cacheable or uncacheable references, thus optimizing the 
use of the cache resources of the processor. 

THE MAGNUM AS AN X-TERMINAL 
An existence proof of the capabilities of the MI PS architecture 

in an X-terminal can be found in the Magnum workstation, 
designed and sold by MIPS computer systems. 
• The Magnum includes a 25MHz R3000 and R301 O, and 

32kB of Instruction and 32kB of Data Cache, and is a high­
performance UNIX workstation/server. The Magnum is 
capable of operating as an X-Terminal, although it would 
have added responsibilities and costs relative to a simpler, 
terminal-only design: 

• The Magnum must manage disks, and the entire UNIX 
operating system, as well as the X-Server responsibilities. 

• The memory bus structure of the Magnum is designed to 
support a standard 1/0 bus, and OMA transfers between 
unspecified 1/0 and the memory. Thus, the memory is less 
tightly coupled to the processor than for a terminal, and 
memory and compute bandwidth may be lost to serving 
"extraneous" 1/0 requests such as Disks. 
The Magnum, on the other hand, may exceed the design of 

a lower cost X-terminal, in some areas: 
• The Magnum includes a hardware floating-point unit. To 

reduce cost, this would not be provided in most X-terminals. 
Trace analysis has shown that the floating-point content of 
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Figure 3. Virtual to Physical Memory Mapping of R3000 Architecture 

an X-server is minimal, and the absence of hardware 
floating-point should not measurably affect performance. 

• The cache size implemented in the Magnum is larger than 
the cache size in an R3051 family RISController. Although 
the smaller cache sizes of the R3051 family should translate 
into somewhat lower performance, it is expected that this 
effect will be relatively small. Many of the performance 
critical operations of an X-terminal are independent of 
cache size: for example, a block copy, which moves data 
between various memory regions, would not benefit from a 
data cache, and the algorithm to perform the block copy 
would easily fit within the smaller caches of the R3051 
family. 

• The net effect of these differences would imply that a 
dedicated X-terminal design, based on the RISController 
family, and absent the system concerns of disk drive control 
and long latency memory, should improve on the already 
substantial performance achieved by the Magnum worksta­
tion. Also note that higher-frequency versions of the 
RISController family will increase performance, while hav­
ing only a small effect on system cost. 
The Magnum workstation achieves 42,000 X-stones color 

drawing performance, and 91,000 X-stones monochrome (X­
stones is the reference benchmark for X-terminal display 

1 Additional information on the RISController family is available from IDT. 

performance; although it is slightly controversial, it is the most 
widely used indicator of a terminals graphics performance). 

SUMMARY 
This paper analyzed some of the basic considerations in 

the design of an X-terminal, and how the MIPS architecture, 
embodied in the IDT RISController family, serves those 
requirements while eliminating the dedicated graphics CPU's 
of first generation X-terminals. 

There are obviously significantly more than these 
considerations in the evaluation of a processor for an X­
terminal: considerations such as complexity of design, power 
consumption/dissipation, development environment, etc., are 
also considered in the choice of an X-terminal CPU. Finally, 
there is the intangible but often considered point that particular 
CPUs are code compatible with CPU hosts in some networks, 
opening the possibility that future terminals may actually be 
able to "off-load" some of the tasks or computations of the 
host. 

These considerations, when weighed together, point to the 
MIPS architecture as an obvious solution to X-terminal design. 
Forthcoming products, to be announced by various vendors, 
will further substantiate this analysis. 
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INTRODUCTION 
The IDT79R3051™ RISController™ family utilizes a high­

performance computing core to achieve high performance 
across a variety of applications. Further, the amount of cache 
incorporated in the R3051 family allow these CPUs to achieve 
very high performance even with simple, low-speed low-cost 
memory subsystems. 

The R3051 and the R30B1™ RISController CPU families 
include a full R3000A core RISC processor, and thus are fully 
compatible with the standard MIPS processors. In order to 
provide high band-width to the CPU core, the families also 
incorporate relatively large instruction and data caches. The 
external memory interface from the R3051 family is very 
flexible and allows a wide variety of implementations depend­
ing on the price/performance goal of the application. The 
R3081 is upward compatible to the R3051 family with the 
same footprint and bus interface and the benefit of larger 
caches and a hardware floating-point coprocessor. 

This paper will discuss the cost and performance impact of 
various trade-offs, and provide a concrete design of a DRAM 
memory subsystem around the R3051 and the R3081. This 
paper will specifically address the trade-offs between high­
performance and low-cost memory systems, the impact of a 

high-frequency system on the memory interface and the 
impact of systems which are intended to be field upgradeable. 

DIFFERENT TYPES OF MEMORY 
SRAM, DRAM and EPROM are today's industry standard 

for memory subsystems. EPROMs usually provide boot code 
in most systems and are much slower and more expensive 
than SRAMs or DRAMs. SRAMs are typically less dense and 
more expensive than DRAMs; however, they provide faster 
memory access time with a simpler interface and can be used 
in systems where performance (rather than cost) is the primary 
criterion. DRAMs are the most popular choice for main 
memory because of their position on the cost/performance 
curve and the densities in which they are available. 

MEMORY SYSTEMS 
Most of today's systems use one of two memory architec­

tures: Non-Interleaved or Interleaved architectures. In this 
paper, a memory array is defined as the group of memory 
devices that produce a full width CPU data bus. For example 
a 16-bit data bus CPU requires 4 "x4" DRAMs to compose a 
memory array while a 32-bit data bus CPU requires 8 "x4" 
DRAMs to compose a memory array. 

32-BIT MEMORY DATA BUS 

INPUT CONTROL LINES 

INPUT ADDRESS LINES 

Figure 1a. Single-Bank Non-Interleaved System 
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Figure 1b. Two-Bank Non-Interleaved System 

In non-interleaved architectures, a memory bank consists 
of a single memory array with sequential addresses. Any read 
or write to a memory bank accesses a single location. Figure 
1 a illustrates the architecture of a single non-interleaved 
memory bank. Non-interleaved memory architectures are 
usually composed of multiple memory banks to satisfy the 
memory requirements of the system. In these topologies, the 
high order address lines select among the multiple memory 
banks and only one memory bank can be selected at a time. 
Figure 1 b illustrates the architecture of a non-interleaved two 
banks memory system. 

There are various types of interleaved architectures. The 
most popular one is the address interleaved. There are 
numerous variations of the address interleaved architectures. 
Mainly, 2-way address interleaved, 4-way address interleaved 
and so on. In a 2-way address interleaved architecture two 

INPUT CONTROL 
LINES 

ADDRESS CONTROL LINES 

32-BIT 
DATA 

memory arrays are grouped together in parallel to form a 
Super memory bank. This Super memory bank thus has 
double the data bus width and double the memory density of 
a single non-interleaved bank, and consists then of an even 
array and an odd array. A memory controller must be able to 
select both arrays together or independently based on the 
type of access. The memory controller uses the low order 
address bit to select between the two arrays. It must be able 
to direct the data path from every memory array independently 
to the CPU through some data buffers. Figure 2 illustrates the 
architecture of a2-way interleaved single Super memory bank 
system. In a 4-way address interleaved architectures four 
memory arrays are grouped together in parallel to form a 
Super memory bank. This Super memory bank consists thus 
of four quarters. The memory controller must be able to select 
these four arrays together or independently using the two low 

32-BIT 
MEMORY 

MEMORY DATA BUS 
DATA ~ 

BUFFERS 

Figure 2. 2-Way Interleaved Single Super Memory Bank 
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order address bits. It must be able to direct the data bus of 
every quarter independently to the CPU through some data 
buffers. 

Address interleaved memory systems are thus inherently 
more expensive than non-interleaved architecture since they 
require a much more complex memory controller and wider 
data paths. The basic amount of memory banks in address 
interleaved architectures is a multiple of the basic memory 
bank in non-interleaved architectures; however, for systems 
with large amount of memory, the same memory banks could 
be configured as interleaved or non-interleaved. The major 
advantage of interleaved systems lie in block of data elements 
accesses from/to the CPU. Interleaved systems can double or 
quadruple the memory band-width and thus dramatically 
improve the performance when the CPU reads or writes 4, 8, 
16, 32 ... data elements at a time. Interleaved systems do not 
offer any advantage for single independent read or write 
accesses. Interleaved architectures are usually used in sys­
tems where performance (rather than cost) is of importance. 
For embedded cost sensitive applications, non-interleaved is 
usually the architecture of choice. 

Input Clock 
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GENERAL DESCRIPTION OF THE DRAM 
SYSTEM AROUND THE R3051 

The R3051 is designed around the R3000A MIPS RISC 
core and features a high level of integration with large on-chip 
instruction and data cache. It incorporates up to BkB of 
instruction cache and 2kB of data cache. These relatively 
large caches achieve hit rates in excess of 90% and sub­
stantially contribute to the performance inherent in the R3051 
family. The R3051 has also implemented on-chip a four-deep 
read and a four-deep write buffers that isolate the high 
frequency CPU core from the much slower external memory 
and modules. This high level of integration simplifies the 
interface between the R3051 and the external memory mod­
ules as is illustrated in Figure 3 and allows the use of low cost 
memory subsystems without penalizing the performance. 

The R3051 family uses a double frequency input clock for 
its internal operation and provides a nominal frequency output 
clock for the external system. This output clock, Sysclk, 
synchronizes the external memory subsystems to the CPU. 
Memory transactions from the R3051 use a single, time 
multiplexed 32-bit address and data bus and a simple set of 

IDT R3051 /52 
RISController™ 

SysClk 

ALE CONTROL LINES 

Figure 3. R3051 RISController Family-Based System 
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control signals. External logic then performs address demul­
tiplexing and decoding, memory control, interface timing and 
data path control. 

The system shown in Figure 3 is a 25MHz system with a 
50MHz input clock. The R3051 interfaces to a DRAM system 
as the main memory, to an EPROM system and to various 
1/0 devices and controllers. Address latches decouple the 
address bus from the data bus. Address decoders select 
among the various external modules. The output clock from 
the R3051 (Sysclk) is usually buffered to reduce the loading 
effect and to provide clock drive capability with minimum clock 
skew for the system. 

The main DRAM memory system is based on 1 to 4 banks 
of non-interleaved DRAMswith sons of access time (trac= 80ns). 
The DRAMs used are 256kx 4 to provide a maximum memory 
space of 4MB. The DRAM memory space occupies the lower 
4MB of the physical memory space. Figure 4 illustrates the 
architecture of the main DRAM memory system. The DRAM 
memory space resides between addresses 0000_0000 and 
3FFF _FFFF. Address bits A(21 :20) select among the four 
banks while the Rd and Wr outputs from the R3051 differentiate 
between read and write accesses. 

Each memory bank (32-bit array) of DRAM, which corre­
sponds to 1 MB when using 256k x 4 DRAMs, is individually 
controlled by a separate RAS signal. RASO controls DRAM 
bank 0, RAS1 controls DRAM bank 1, ... Each bank of DRAM 
is also controlled by an individual WriteEnable signal. 
WriteEnableO controls DRAM bank 0, WriteEnable1 controls 

CONFERENCE PAPER CP-05 

DRAM bank 1, ... This architecture enables only a single 
DRAM bank for any DRAM read or a write access. The DRAM 
banks are arranged so that each bank represents a single, 
contiguous range of 1 MB. 

In an R3051 system, it is possible to perform a 32-bit read 
even when smaller data elements are requested. However on 
writes, it is important to enable only those bytes which are 
actually being written by the CPU. The R3051 bus interface 
provides four individual byte-enable signals to indicate which 
byte lanes are involved in a particular transfer. The DRAM 
subsystem encodes the byte-enable information from the 
R3051 into the GAS control signals of the DRAMs. In this 
encoding, CASO corresponds to byte lane 0, CAS1 corre­
sponds to byte lane 1, etc. Each GAS signal is connected to 
the DRAM devices that correspond to the byte lane under its 
control in all four banks of the DRAM subsystem. That is to say 
that CASO is connected to the two DRAM devices that com­
pose byte 0 in every DRAM bank. 

Data buffers isolate the DRAM banks from the R3051 data 
bus to reduce the loading effect and to prevent contentions 
between the R3051 and the DRAMs. Note that this also 
alleviates concerns about the relatively slow tri-state times 
associated with DRAM devices. The data buffers selected are 
industry standard bidirectional transceivers (7 4FCT245). These 
data buffers actually isolate the data bus of the R3051 from all 
the external modules. 

DRAM addresses are provided by multiplexing the latched 
R3051 address bus using the IDT FBT2827B memory drivers. 
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Figure 4. DRAM Memory Subsystem Architecture 
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This device type was selected based on its ability to drive large 
capacitive loading, such as found when driving 32 DRAM 
devices. A single FBT output has a series resistance incor­
porated in the output driver and is capable of driving all four 
banks of the DRAM subsystem. To minimize the signal skew 
among the DRAM devices, the address lines and the control 
lines to the DRAMs must use the "star" or the "fork'' topology 
on the PCB board. In this method, all the loads on a given 
signal are lumped at the far end of the PCB trace. Series 
termination is also well suited to drive lumped (or forked) 
CMOS loads (like DRAMs) at the end of a PCB trace. The 
series termination minimizes overshoots and undershoots at 
the receiving end and does not add any power dissipation to 
the system. 

Every DRAM cell consists of a MOS cell and a capacitor 
which encodes logic 1 and O in its charge. The capacitors in 
the DRAM cells tend to loose their charges with time through 
leakage. This is why DRAMs require to be refreshed at a 
regular time interval. The refresh mechanism is internal to the 
DRAMs where bits (cells) are rewritten with the same value to 
keep the capacitors charged. This refresh mechanism is 
enabled by the input control signals to the DRAM devices 
through the RAS and the GAS signals. In this design a refresh 
timer requests the refreshing of the DRAMs every 9.6µs. This 
refresh timer can be driven by the Sysclk from the R3051 or 
from an independent oscillator. The 9.6µs refresh interval 
chosen is more frequent than is actually required by the 
DRAMs. The use of this value simplified the control logic 
associated with page mode write. DRAMs require that RAS be 
maintained low no longer than 10µs; by choosing a refresh 
value smaller than this maximum time, the system is assured 
that maximum RAS low time will not be violated. 

WR=O& 

WRNEAR=1 & 

DRAM-CS=O 
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DRAM STATE MACHINE DESIGN 
For the system described in this paper, a simple state 

machine performs the. major aspects of DRAM control. The 
state machine uses a simple four-bit counter (C(3:0)) to 
dictate the timing for the DRAM control and CPU response, 
and is sequenced using SysClk. There are nine major states 
to the state machine as is illustrated in Figure 5. These states 
are dictated by the type of transfer requested and the state the 
DRAM control logic was left in by the prior transfer. 

The DRAM control logic uses the Reset pulse to reset its 
internal states and to synchronize its operation to the R3051. 
During the RESET state, it also performs one refresh cycle 
before entering the IDLE state. In the IDLE state, the DRAM 
control logic arbitrates between a refresh cycle and a bus 
access. A DRAM bus access is started whenever the DRAM­
Chip-Select and the Rd or the Wr signals are asserted. A 
refresh request is detected using the REF _REQ 
(Refresh_Request) pulse from the refresh timer. The DRAM 
controller supports 4 types of CPU bus accesses: "quad-word 
read", "Single-word read", "Single-word write" and "Page­
word write". Alter a "Single-word write" or a "Page-word write" 
access, the DRAM control logic enters the IDLE RAS AS­
SERTED state which is an IDLE state with the RAS signals 
kept asserted. The RAS signals need to be precharged upon 
exiting this state. 

Reset Cycle 

A reset cycle is initiated by the assertion of the Reset signal. 
This is a hardware reset which initializes the control logic to 
the correct IDLE state. After the Reset signal is de-asserted, 
one DRAM refresh cycle is initiated. Most DRAMs require at 
least 8 refresh cycles for proper initialization. This DRAM 

REF_REQ=1 OR 

DRAM-CS=1 OR 

Figure 5. DRAM Control State Machine 
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Figure 6. Single-Word Read Access Timing 

control logic provides only one refresh cycle at reset time. It is 
the responsibility of the software to ensure that no DRAM 
access is made prior to the elapsing of 8 refresh periods. This 
can be insured by normal operation of the boot PROM; 
however, software could "spin-lock" for a predetermined num­
ber of loops to insure that sufficient time has elapsed. 

Refresh Cycle 
A refresh cycle is initiated every time a REF _REQ pulse 

from the refresh timer is detected. The refresh timer issues a 
REF _REQ pulse every 9.6µs. The DRAM control logic re­
sponds with a refresh acknowledge (REF-ACK) signal which 
locks the refresh timer until the refresh is serviced. The refresh 
interval has been set to 9.6µs which is shorter than the 
maximum 15.5µs refresh period that most DRAM require.The 
9.6µs refresh period ensures that for an IDLE RAS AS· 
SERTED state, where the RAS signals can be left asserted for 
long time periods, the maximum RAS pulse width of 1 Oµs is 
not violated. 

175 

In the DRAM control logic, a refresh request has the highest 
priority over any other CPU requests. However, if a CPU bus 
requested is being serviced at the time the refresh is re­
quested, the refresh cycle will be delayed until the end of the 
current bus cycle. The inverse is also true when bus requested 
are being delayed until the end of a refresh cycle. In this 
design, only the RAS-before-GAS refresh method is imple­
mented. 

Idle State 
The Idle state is when the state machine is not performing 

any bus access or a refresh access but is constantly monitor­
ing the bus for any access request. All the signals are 
deasserted and the operation of the 4-bit counter is halted. 

Single-Word Read Cycle 
There are two types of read transactions from the R3051: 

quad-word reads and single-word reads. A single-word read 
access is initiated by the R3051 by asserting the Rd signal. 

-----------
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The DRAM control logic responds by providing the R3051 with 
a single data element (32-bit word). Both the Ack and the 
RdCEn signals are used to terminate the single-word read 
access. In the system described in this paper, the Ack and the 
RdCEn signals are returned to the R3051 after 4 clock cycles, 
as illustrated in Figure 6. 

Quad-Word Read Cycle 
Quad-word reads from the R3051 occur only in response to 

internal cache misses. All instruction cache misses are pro­
cessed as quad-word reads while data cache misses may be 
processed as either quad-word reads or single-word reads. 
The R3051 indicates quad-word read accesses by asserting 
both the Rd and the Burst signals. In the quad-word read 
access, address linesAddr(3:2) from the R3051 act as a two­
bit counter to provide the address of 4 consecutive words, 
always starting on a word boundary. 

The DRAM control logic handles quad-word read accesses 
using the Throttled Block Refill mode of the R3051. In a 
throttled read, RdCEn controls the data rate of the memory 
back to the CPU (latches the data into the on-chip read buffer). 
The Ack input is not provided back to the processor until the 
read transfer has sufficiently progressed such that the last 
word of the transfer is clocked into the on-chip read buffer 
(using RdCEn) one clock cycle before the processor core 
requires it. 

In this non-interleaved system, the first word read of a 
quad-word read access takes the same time as a single read 
while the 3 subsequent words are read into the on-chip read 
buffer at the rate of 1 word every two clock cycles. The RdCEn 
is asserted for every word being read to latch the data into the 
R3051 read buffer. The Ack is asserted between the second 
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and the third-word read. This ensures that for 4 subsequent 
falling edges of Sysclk the on-chip read buffer can provide 
data to the R3000A core atthe rate of a word every clock cycle. 
Figure 7 illustrates the timing involved in quad-word read 
accesses. 

Quad-word read accesses use the page-mode character­
istics of the DRAM to obtain subsequent data word at a higher 
data rate. In this access, the RAS signal is kept asserted while 
the GAS signals are toggled 4 times to produce 4 data words. 

Single-Word Write cycle 
Unlike instruction fetches and data loads, which are usually 

satisfied by the on-chip caches, all write activity to the caches 
is seen at the bus interface of the R3051 as single write 
transactions. The R3051 indicates a single-word write access 
by asserting the Wr signal. The DRAM control logic enables 
the writing of the CPU word or partial word into the DRAMs and 
returns the Ack signal to terminate the write access. The Ack 
signal is returned to the R3051 after 3 clock cycles, as 
illustrated in Figure 8. 

The DRAM memory system takes advantage of the WrNear 
signal from the R3051 by defaulting to the case that any single 
write to the DRAM subsystem will be followed by another write 
with the same upper 22 address bits. Based on this informa­
tion the RAS signal must be kept asserted after every write 
access to enter the page mode of the DRAMs. The end of a 
single-word access is then different from a single read access 
in that the RAS signal is kept asserted. 

Idle RAS Asserted State 
At the end of a write access the DRAM control logic enters 

this idle state where a RAS signal is kept asserted while the 
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state machine awaits a subsequent transaction. If the next 
access is a local write (WrNear from the R3051 is asserted) 
the DRAM control logic enters the page write mode. If a 
different access type occurs, the state machine exits this 
state. 

Page Write Cycle 
A page write cycle is a single write access from the R3051 

following a previous single write access with the same upper 
22 address bits. The R3051 indicates a page write access by 
asserting the Wr and the WrNear signals. 

The timing for a page write access is very similar to a single­
write access but shorter since the RAS signal has been kept 
asserted from the previous write cycle. The Ack is returned 
back to the R3051 after 2 clock cycles. Figure 8 illustrates the 
timing for a page write access. 

Precharge RAS 
Any access, except a page write access, following an Idle 

RAS Asserted state needs to have the RAS signal precharged 
(driven to a level HIGH) before the access is responded to. 

PERFORMANCE 
The performance of the different types of R3051 bus 

accesses to the DRAM memory subsystem is usually mea­
sured by the number of clock cycles it takes to send the Ack 

Single Word Write Access 
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back to the R3051. This time is computed from the beginning 
of the external access. The performance of the DRAM system 
can be summarized as follows: 

• single read: 4 clock cycles 
• block refill: 7 clock cycles 
• first write: 3 clock cycles 
• page write: 2 clock cycles. 
This is a relatively high performance for a low-cost and 

easy-to-implement DRAM memory subsystem. The perfor­
mance of the system can be improved by using more elabo­
rate DRAM memory controller and/or more complex memory 
architectures such as address interleaving. Such systems 
should be able to achieve optimum performance. 

FIELD UPGRADEABILITY 
Many of today's systems are designed to allow for future 

fields upgrades of the base memory system to more memory 
banks and/or deeper DRAM devices. The ability to offer a 
base configuration (at a lower selling price) with upgrade 
capabilities is often a selling feature of the end product. 

The system software should then run diagnostics at boot 
time to determine the maximum size of the available memory. 
Typical strategies for such diagnostics include writing distinct 
values into a given location within each bank, and then reading 
the data back to see if any of the writes did not occur properly 

Page Write Access 

DATA 1 

1 COLUMN ADDRESS 1 

Figure 8. Single-Word Write Access Timing and Page Write Access Timing 
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or altered data previously written. Non-interleaved or inter­
leaved memory architectures should be transparent to the 
system software. 

The system hardware should make provision for extra 
memory banks or deeper memory devices by routing all the 
necessary signals to unused pins or sockets of future upgrade 
memory. The system hardware should try to minimize the use 
of jumpers to make the system much more user friendly. 

In the system described in this paper, the user can upgrade 
to deeper memory by replacing the 256k x 4 DRAMs with 
deeper 1MBx4 DRAMs to obtain a maximum memory.space 
of 16MB. It is also possible to replace the R3051 with the 
R3081 to increase the performance of the system since they 
both have the same footprint. The R3081 with its on-chip FPA 
will have a great impact on the performance of floating-point 
intensive applications; a further benefit is the larger on-chip 
caches of the R3081. 

CONFERENCE PAPER CP-05 

CONCLUSION 
The R3051 and the R3081 RISController families bus 

interface was designed to allow memory systems of differing 
complexity and performance to be implemented. Even a 
relatively simple DRAM system, as the one described here, 
offers very high performance. With simple modifications, this 
approach is applicable to higher frequencies (33 and 40MHz) 
and to interleaved memory systems yielding even higher 
performance. The R3081 can also be used for existing R3051 
designs to improve the floating-point performance and the 
overall system throughput with no modifications of the exter­
nal hardware. 
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INTRODUCTION 
The IDT79R3051™ and R3os1™ RISController™ families 

are a series of high-performance 32-bit microprocessors 
featuring a high level of integration. The R3051 and the R3081 
are designed to bring the high performance inherent in the 
MIPS RISC architecture into low-cost, simplified, power­
sensitive applications. 

The R3051 and the R3081 families are specially targeted 
for high-performance, cost-sensitive embedded processing 
applications such as laser printers. The R3051 and the R3081 
families currently offer a variety of pin-compatible and soft­
ware-compatible CPUs in a common footprint. The R3051 
and the R3081 families allow the system designer to imple­
ment a base design capable of accommodating a wide variety 
of printer market places: low cost systems through high 
resolution and color printers. 

This paper will go through a low-cost laser printe: base 
design around the R3051 family and will discuss the different 
design decisions and their impact on performance and cost. 
This paper will also discuss the impact of software and 
hardware development. Specifically, the impact on perfor­
mance due to the variations among the R3051 and the R3081 
family members: cache size, hardware FPA, etc. The paper 
will describe various models which allow a single hardware 
and software design effort to result in multiple customer 
products. 

THE R3051 DEVICE OVERVIEW 
The R3051 is designed around the R3000A MIPS RISC 

core and implements the MIPS-I ISA (instruction set archi­
tecture). The R3051 family incorporates on-chip 4kB or 8kB of 
instruction cache with a cache line size of 16 bytes. These 
relatively large caches achieve instruction hit rates in excess 
of 95% in most applications and substantially contribute to the 
performance inherent of the R3051 family. The R3051 family 
also incorporates 2kB of data cache with a cache line size of 
4 bytes. Both caches are implemented as direct mapped 
physical address caches. 

The R3051 family bus interface uses a 32-bit address and 
data bus multiplexed onto a single set of pins and provides 
simple handshake signals to process CPU read and write 
requests. The R3051 family incorporates a 4-deep write buffer 
to decouple the speed of the execution engine from the speed 
of the memory system. The write buffer captures and FIFO 
processes the address and data information (from the R3000A 
core) in store operations, and presents it to the bus interface 
as write transactions at a rate the memory system can 
accommodate. The R3051 also incorporates a 4-deep read 
buffer FIFO to allow the external memory system to queue up 

the data within the R3051 when performing a quad-word burst 
refill of the internal caches. Figure 1 illustrates the internal 
architecture of the R3051 family. 

LASER PRINTER CONTROLLER DESIGN 
AROUND THE R3051 FAMILY 

The following design example is a very basic laser printer 
controller around the R3051 and implements the minimum 
required configuration for a printer controller. This design can 
be extended into a more complex and more powerful one to 
accommodate the specific requirements of the various laser 
printer controllers. In any generic system, the R3051 family 
uses a double frequency input clock for its internal operation 
and provides a nominal frequency output clock for the external 
memory subsystems. Memory transactions from the R3051 
use a single, time multiplexed 32-bitaddress and data bus and 
a simple set of control signals. External logic then performs 
address demultiplexing and decoding, memory control, in­
terface timing and data path control. In this basic design of 
laser printer controller, the R3051 interfaces to 1 MB of DRAM 
space expand-able to 4MB, 512kB of EPROM space ex­
pandable to 2MB, a Centronics (parallel) interface, two serial 
ports (RS-232) and a Canon video (print engine) interface. 
Figure 2 illustrates the simplified block diagram of the laser 
printer controller. 

The following sections describe in detail the implementa­
tion of various subsystems (1/0 and memory) of the laser 
printer controller and the impact of these implementations on 
the cost and the performance of the system. 

External Logic and State Machine 

The external logic and state machine necessary to perform 
address demultiplexing and decoding, memory control, in­
terface timing and data path control is implemented using off­
the-shelf, low-cost parts such as address latches, data trans­
ceivers, and programmable logic devices. This approach has 
the advantage of minimizing the cost of the components and 
the disadvantage of not obtaining the maximum performance 
out of the external system. It is possible to implement the 
above functions in a Gate Array or an ASIC chip. This second 
approach has the advantage of extracting the maximum 
performance out of the external system and minimizing the 
board space and the disadvantage of occurring the one time 
charge of the design of the ASIC chip. 

DRAM Memory Subsystem 
The DRAM memory subsystem is implemented as a single 

non-interleaved bank using "x4" DRAM devices. The basic 
configuration has a memory space of 1 MB using 256k x 4 
DRAMs. It can be extended to 4MB by using 1Mx4 DRAMs. 

the fDT logo is a registered trademark and RJSController, IDT79R3051, IDT79R3061 are trademarks of Integrated Device Technology, lnc. 
All others are trademarks of their respective companies. 
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AROUND THE R3051 FAMILY 

The 1 MB memory configuration (or even 512kB) is the mini· 
mum requirements for most non-Postscript® laser printer 
controllers. For systems which are Postscript or HP Laser Jet 
Ill PCL5 compatible, the 4MB configuration is more appropriate. 
This DRAM memory architecture has the advantage of mini­
mizing the cost and the disadvantage of limiting the flexibility 
of the DRAM subsystem (only 1 increment to 4MB possible). 
It is possible to offer more flexibility to the end user by 
implementing 4 or more non-interleaved DRAM banks to 
obtain the same memory depth or even a deeper memory. 
This approach however will increase the board space to 
accommodate the multiple banks of DRAMs and add more 
complexity to the DRAM controller in order to independently 
select the different banks. A third design yet is to interleave the 
DRAM banks to maximize the performance of the DRAM 
subsystem. This is a more expensive solution usually imple­
mented on large Network printers. 

EPROM Memory Subsystem 
The EPROM memory subsystem is implemented as a 

single non-interleaved bank using "x8" EPROM devices. The 
basic configuration has a memory space of 512kB using 32k 
x 8 EPROMs. It can be extended to 2MB by using 512k x 8 
EPROMs. The requirements of the EPROM memc•.' sub­
system is tightly coupled to the design and to tiw target 
application. In systems where all the code resides in the 
EPROM section, a deep EPROM space is usually required. 
This is the case for this basic design where the 2MB EPROM 
space is always used. In systems where only the boot code 
resides in EPROM and the remaining of the code is down-
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loaded to DRAM from a diskette (or other storage media), a 
shallow EPROM space is sufficient (512kB). Again it is pos­
sible to maximize the performance of the EPROM memory 
subsystems-if code is running out of EPROM-by interleav­
ing 2 or more banks of EPROMs which will also increase the 
cost of the system. 

Centronics Input Port 
The Centronics (parallel) input port is an 8-bit parallel port 

commonly used as a high-speed communications link between 
the computer and the printer. To enhance the performance of 
the Centronics interface, a standard 256 x 9 FIFO (IDT7200) 
is used to buffer the input parallel data. This low-cost imple­
mentation of the Centronics interface greatly enhances the 
performance of the 1/0 system. Figure 3 illustrates the block 
diagram of the Centronics interface. In this implementation, 
two methods are used to respond to incoming printer data 
files. The FIFO empty flag signal is connected to a branch 
condition input, BRCND2, on the R3051. The software should 
take advantage of the R3051 's ability to branch on condition 
inputs by regularly polling this pin. The FIFO full flag disables 
further writes to the FIFO and is used to generate an interrupt 
to the R3051. There are also other possible methods to 
implement the parallel interface to even increase the perfor­
mance of the Centronics interface. 

Serial Communications Ports 
The laser printer controller design uses a D UART to control 

two serial communications ports. The first port is usually used 
to connect to a CRT terminal during the debugging phase of 
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Figure 2. Block Diagram of Laser Printer Controller 
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the project while the second is usually used to download data 
from a computer. In the final product both serial ports can be 
used to download data. 

Canon Video Interface 
The laser printer controller board is designed to interface 

to the industry standard Canon LBP-SX laser printer engine. 
To enhance the performance of the video interface and to 
m inimizethe part count-and thus the cost-the video interface 
is implemented using two registers and an IDT72115 512x16 
LaserFIFO. The two register buffer the handshaking signals 
between the controller and the print engine. The LaserFIFO is 
large enough to buffer a horizontal scan line at 300 or 400 
DPl-up to 400 bytes. For higher-resolution printers or for 
larger page sizes, the LaserFIFO size can be increased to 
1024 x 16 with a pin-compatible IDT72125 with no other 
hardware modifications. Depending on the final product and 
the print engine of choice, the video interface can be modified 
to connect to the appropriate laser engine (TEC, IBM, etc.). 

Unimplemented Features 
There are other features that can be added to the above 

basic design to satisfy the need of the applications. These 
additional features, such as Font Cartridges interface, Banding 
Coprocessor, Apple Talk interface, SCSI interface, etc., have 
not been implemented. They are usually added to a given 
printer application to increase the system performance and/or 
to position the final printer product in a specified market place. 
These features are beyond the scope of this document. 

Software Implementation 
The main Operating system of the laser printer controller is 

the PeerlessPage™ Printer Operating System with a PCLS or 
Postscript compatible emulations. Other printer emulations 
are available but have not been implemented in this design. 

The PeerlessPage POS provides a portable and extensible 
environment for printer controllers and a flexible platform for 
integration of other combinations of fonts, panel control or 
emulations. Other off-the-shelf Operating Systems are also 
available with similar or different set of capabilities. It is also 
possible to develop a proprietary OS that best suits the target 
application. The performance and the cost model of the 
various software approaches differ from one hardware/software 
combination to the other. 

THE IDT7RS385 LASER PRINTER 
CONTROLLER 

To evaluate the performance of its RISController family in 
a laser printer environment, IDT developed the REALS™ 
Laser Printer Controller (IDT7RS3SS) board based on the 
R3001 CPU. The IDT7RS3SS is completely self-contained 
and is intended for use as an evaluation system for a variety 
of software and memory configurations. To also evaluate the 
performance and system cost of IDT's R3051 RISController 
familyinalaserprinterapplication, IDT developed an emulation 
of the REALS board complete with ports of the PeerlessPage 
Imaging Environment, Microsoft Truelmage™ (PostScript®­
compatible) POL and PeerlessPrint5 (HP LaserJet Ill PCL5-
compatible) languagesusingthe IDT7RS3S5 Evaluation Board 
as the hardware platform. This new hardware platform, the 
IDT7RS3S5-LPC is a basic laser printer controller and is 
implemented according to the specifications of the design 
explained in this paper. It is a 25MHz design which includes 
a fast Centronics parallel input port, two serial ports, and a 
video interface for the Canon LBP-SX print engine. The 
memory subsystems of the I DT7RS3S5-LPC are designed to 
minimize the cost of the system rather than maximize the 
performance. The IDT7RS3S5-LPC includes a single non­
interleaved bank of 4MB DRAMs and a single non-interleaved 
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bank of 2MB EPROMs. The DRAM and the EPROM memory Both these languages require floating-point operations which 
subsystems access latencies expressed in terms of external are emulated in software using the IDT/c floating-point librar-

clock cycles are the following: ~~RFORMANCE OF THE IDT7RS385-LPC 
DRAM: 

• single read: 
• quad word read: 

• single word write: 
• page write: 

EPROM: 
• single word read: 
• quad word read: 

5 clock cycles 
5 clock cycles for the first word, 
2 clock cycles for the remaining 
3 words 
5 clock cycles 
4 clock cycles 

5 clock cycles 
5 clock cycles for the first word, 
4 clock cycles for the remaining 
3 words 

The above memory subsystems latencies represent the 
number of external clock cycles required to process an external 
access (read or write from the R3051) and do not include the 
internal clock cycles involved in the internal arbitration for the 
bus and the fix-up cycle of the R3000A core. These external 
memory latencies can be greatly reduced by using fa~ter 
memories and/or interleaving the memory banks or by using 
an alternate/integrated DRAM control system. These more 
elaborate schemes could inherently increase the cost of the 
system. Figure 4 illustrates the physical layout of the 
IDT7RS385-LPC board. The IDT7RS385-LPC can run both 
the PeerleesPrint5 or the Microsoft Truelmage languages. 

3.0 
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The performance measure of the simple laser printer 
controller design represented by the IDT7RS385-LPC gives 
an insight of the high performance inherent to the R3051 
family. It is always possible to optimize a basic, simple design, 
like this one, to obtain a better performance by using more 
elaborate memory schemes. 

The R3051 family offers a set of four pin-compatible CPUs 
in the same footprint-the R3051, the R3051 E, the R3052 and 
the R3052E. The"E" suffix stands for the Extended Architecture 
parts in which the Memory Management Unit (MMU) is present. 
The Software (PeerlessPrint5) does not make use of the 
MMU, and thus the performance for these parts will be 
identical to the non-E parts. 

Table I illustrates the relative performance among the 
different configurations of the R3051 and the R3081 families 
normalized to the R3051. The performance was measured on 
an IDT7RS385-LPC board at 25MHz and running the 
PeerlessPrint5 language which uses extensively the floating­
point operations. The floating-point operations are imple­
mented on the R3051 family using the IDT/c™ floating-point 
library. To keep a common hardware platform, the performance 
test is implemented on an IDT7RS385-LPCwith different CPU 
configurations. The test setup is the following: an IBM-PC is 
connected to the board via the Centronics interlace. The 
board is powered by the print engine and the video interface 
links the board to the print engine. The relative performance 

R3051 
with quad 
word read 
disabled 

R3051 
with 

instruction 
cache disabled tt> 01 

Table 01. Relative Performance of the R3051 Family and the R3081 Family in a Laser Printer Environment. 
(The Performance is Normalized to the R3051.} 
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presented here is the total of 10 different PCL5 benchmarks 
(these benchmarks are listed at the end of this text). Every 
benchmark measures the total time in seconds it takes from 
the moment the carriage return is hit on the PC to the moment 
the print engine starts running. These benchmarking compari­
son demonstrate the effect of the cache, the FPA, the read/ 
write buffer on the performance of the system. 

The IDT7RS385-LPC using an R3052 CPU 
The best performance for the R3051 family is obtained on 

the IDT7RS385-LPC with the R3052 CPU. The R3052 CPU 
offers 8kB of instruction cache and 2kB of data cache. Both 
caches are implemented as direct mapped physical address 
caches. There is more than 20% improvement in the perfor­
mance when doubling the size of the instruction cache for a 
given size of the data cache. 

The IDT7RS385-LPC using an R3051 CPU 
The reference point of the benchmark performance is 

based on the IDT7RS385-LPC with the R3051 CPU. The 
R3051 CPU offers 4kB of instruction cache and 2kB of data 
cache. Both caches are implemented as direct mapped physical 
address caches. 

The IDT7RS385-LPC using an R3051 CPU and a Single­
Word Data Read 

The third benchmark performance is based on the 
IDT7RS385-LPCwith the R3051 CPU. The R3051 CPU offers 
4kB of instruction cache and 2kB of data cache. The R3051 
family processes the data cache miss as a single-word read 
or a quad-word read and the instruction cache miss as quad­
word read. It is possible then, at reset time, to disable the data 
cache quad-word refill capability and, thus, to treat every data 
cache miss as a single-word read. There is a minimal differ­
ence in the overall performance (for these types of embedded 
applications) between refilling the data cache with a single­
word or a quad-word stream. For some benchmarks, it has 
also been noticed that the performance with only a single­
word read enabled is slightly betterthan with quad-word cache 
refills. 

The IDT7RS385-LPC using an R3051 CPU and No 
Instruction Cache 

The fourth benchmark performance is based on the 
IDT7RS385-LPC with the R3051 CPU. The R3051 family 
processes the data cache miss as a single-word read or a 
quad-word read and the instruction cache miss as quad-word 
read. It is possible then, through the debug mode of the 
R3051, to enable data caches and the data cache quad-word 
refill while forcing instruction cache miss on every instruction 
cycle. This is equivalent to reading and executing only one 
instruction at a time from main memory, or in another word, an 
R3051 without an instruction cache. This test is then very 
memory intensive which is reflected in the relative perfor­
mance of such systems. The effect of the presence (or the 
absence) of the instruction cache on the performance of a 
system is very noticeable in this example. The average 
performance of a system without an instruction cache is more 
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than three times slower than a system with the instruction 
cache enabled. 

The IDT7RS385-LPC using an R3081 CPU 

The absence of the Floating-Point Coprocessor (FPA) from 
the R3051 family impacts the performance of the applications 
that require floating-point operations. The new R3081 family 
from IDT offers pin-compatible CPUs, with the same footprint 
and bus interface, to the R3051 family with a Floating-Point 
Coprocessor incorporated on-chip. The presence of the FPA 
in the R3081 family greatly improves the performance of 
floating-point intensive applications such as Postscript-com­
patible laser printers. 

The R3081 CPU has 20kB of caches which can be config­
ured as either 16kB of instruction cache and 4kB of data 
cache, or 8kB of instruction cache and 8kB of data cache. Both 
caches are implemented as direct-mapped physical address 
caches. The R3081 family is pin- and footprint-compatible 
with the R3051 and incorporates a hardware floating-point 
coprocessor on-chip. The presence of the FPA greatly in­
creases the system performance for floating-point intensive 
applications. Similarly, the deeper instruction and data caches 
enhance the overall performance compared to the R3051 
family (this effect is already noticeable in the R3051 family 
when upgrading from the R3051 to the R3052). Comparison 
data for the relative performance of the R3081 was not 
available when this text was prepared. 

The relative performance listed in this text addresses the 
variations among different internal CPUs implementations, 
such as the effects of the caches sizes, the presence of an 
FPA, etc. The presence of an instruction cache (even a very 
shallow one) has a major impact on the overall performance 
of the system. Better performance can also be obtained by 
increasing the instruction cache size. In most embedded 
applications the presence of the data cache improves the 
performance; however, the size of the data cache is not of 
major importance. The FPA improves the performance of 
applications that use the floating-point operations intensively. 
For a given CPU architecture, R3051 or R3081, it is always 
possible to optimize the absolute performance by implementing 
more elaborate memory and 1/0 design techniques such as: 
interleaved memory systems, burst EPROMs and/or inte­
grated memory controllers. The system designer is always left 
in making the trade-offs between the cost and the performance 
among the various choices to best suit the end product and the 
application at hand. 

CONCLUSION 
IDT offers a wide spectrum of embedded RISController 

CPUs in the form of the R3051 family and the R3081 family 
targeted for price-sensitive or performance-sensitive appli­
cations. It is then possible to design a base system around any 
processor within these families and then upgrade the design 
as the performance requirements increase. For systems that 
require more horsepower, the R3081 family can seamlessly 
replace the R3051 family while keeping the same hardware 
and software investment. 
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BENCHMARKS 
The following are the names of the 10 PCL5 files (as well 

as their sizes in bytes) used in compiling the performance 
results of the R3051 and the R3081 families: 

•ARCS. PRN 
• BITWFO. PRN 
• CIRCLES. PRN 
• PCL5TBIT. PRN 
• PCL5TEXT. PRN 
• PCL5X10. PRN 
• PCL5X11 . PRN 
• PCL5X14. PRN 
• PCL5X2. PRN 
• TRIANGLE. PRN 

988 bytes 
1935 bytes 
1094 bytes 
7219 bytes 
3336 bytes 
1247 bytes 
1617 bytes 
1274 bytes 
1560 bytes 
1633 bytes 
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By Philip Bourekas 

INTRODUCTION 
The IDT79R3051"' RISController"' RISC Family is a high­

performance 32-bit microprocessor featuring a high-level of 
integration, and targeted to high-performance but cost-sensitive 
embedded processing applications. The R3051 is designed to 
bring the high-performance inherent in the MIPS RISC archi­
tecture into low-cost, simplified, power-sensitive applications. 
The R3051 E adds a full featured Memory Management Unit 
to the core architecture of the R3051, to support the require­
ments of particular embedded applications. 

Functional units were integrated onto the CPU core in order 
to reduce the total system cost, rather than to increase the 
inherent performance of the integer engine. Thus, the R3051 
is able to offer 20mips of integer performance at 25MHz 
without requiring zero wait-state memory or caches. 

Further, the R3051 achieves dramatic power reduction over 
the R3000/R3001, allowing the use of low-cost packaging for 
devices up to 25MHz. The R3051 allows customer applica­
tions to bring maximum performance at minimum cost, by 
reducing both component cost and eliminating the need for 
fast external memory. 

FEATURES 
• Instruction set compatible with IDT79R3000A 

MIPS RISC CPU 
• High level of integration minimizes system cost 
• 20 MIPS at 25MHz 
• Low cost 84-pin PLCC packaging 
• Large on-chip instruction and data caches 
• Flexible bus interface allows simple, low-cost designs. 
• Single double-frequency clock input 
• 12.5 through 33MHz operation 
• On-chip 4-deep write buffer eliminates memory write stalls 
• On-chip 4-deep read buffer supports the use of slow memory 

devices 
• On-chip OMA arbiter 

DEVICE OVERVIEW 
Figure 1 shows a block level representation of the functional 

units within the R3051 and R3051 E. The R3051 could be 
viewed as the embodiment of a discrete solution built around 
the R3000 or R3001. However, by integrating this functional­
ity on a single chip, dramatic cost and power reductions are 
achieved. An overview of these blocks is presented here. 

CPU Core 
The CPU core is a full 32-bit RISC integer execution engine, 

capable of sustaining close to single-cycle execution rate. 
The CPU core contains a five-stage pipeline, and 32 orthogo­
nal 32-bit registers. The R3051 implements the MIPS-I ISA. 

In fact, the execution engine of the R3051 is the same as the 
execution engine of the R3000 and R3001, eliminating the risk 
of incompatibility issues and speeding development time. 
Thus, the R3051 is fully binary compatible with the R3000/ 
R3001. 

System Control Coprocessor 
The R3051 also integrates on-chip the System Control 

Coprocessor, CPO. CPO manages both the exception handling 
capability of the R3051 as well as the virtual to physical 
mapping of the R3051. 

There are two members of the R3051 Family. The R3051 E 
(Enhanced) version incorporates the same MMU as the 
R30DO and R3001. This version contains a fully associative 
64-entry TLB which maps 4kB virtual pages into the physical 
address space. The virtual to physical mapping includes 
kernel segments which are directly mapped to fixed physical 
addresses and kernel and user segments which are mapped 
page by page by the TLB into anywhere in the 4GB physical 
address space. In this TLB, 8 pages can be "locked" by the 
kernel to insure deterministic response in real-time applications. 

The standard R3051 removes the TLB and institutes a fixed 
address mapping for the various segments of the virtual 
address space. The R3051 supports distinct kernel and user 
mode operation without requiring page management soft­
ware, leading to a simpler software model. 

Clock Generation Unit 
The R3051 is driven from a single double-frequency input 

clock. On-chip, the clock generator unit is responsible for 
managing the interaction of the CPU core, caches, and bus 
interface. The clock generator unit logically replaces the 
external delay line required in R3000 and R3001 based 
applications. 

Instruction Cache 
The R3051 incorporates an on-chip instruction cache of 4kB 

(1 k instructions) organized as a line size of 16 bytes (four 
entries). This relatively large cache achieves a hit rate in 
excess of 95% in most applications and substantially contrib­
utes to the performance inherent in the R3051 . The cache is 
implemented as a direct mapped cache and is capable of 
caching instructions from anywhere within the 4GB physical 
address space. The cache is implemented using physical 
addresses (rather than virtual addresses) and thus does not 
require flushing on context switch. 

Data Cache 
The R3051 incorporates an on-chip data cache of 2kB, 

organized as a line size of 4 bytes (one word). This relatively 
large data cache achieves hit rates in excess of 90% in most 
applications and contributes substantially to the performance 

The IDT logo is a registered trademark and Cache-3051, IDT79A3051 and RISController are trademarks of Integrated Device Technology, Inc. 
All others are trademarks of their respective companies. 

©1992 Integrated Device Technology, Inc. 6/92 
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inherent in the R3051. As with the instruction cache, the data 
cache is implemented as a direct mapped physical address 
cache. The cache is capable of mapping any word within the 
4GB physical address space. 

The data cache is implemented as a write through cache to 
insure that main memory is always consistent with the internal 
cache. In order to minimize processor stalls due to data write 
operations, the bus interface unit incorporates a 4-deep write 
buffer which captures address and data at the processor 
execution rate, allowing it to be retired to main memory at a 
much slower rate without impacting system performance. 

Bus Interface Unit 
The R3051 uses its large internal caches to provide the 

majority of the bandwidth requirements of the execution 
engine and thus can utilize a simple bus interface connected 
to slow memory devices. 

Reset ... Clk2xln 

CONFERENCE PAPER CP-07 

The R3051 bus interface utilizes a 32-bit address and data 
bus multiplexed onto a single set of pins. The bus interface unit 
also provides an ALE signal to demultiplex the AD bus and 
simple handshake signals to process processor read and 
write requests. In addition to the read and write interface, the 
R3051 incorporates a OMA arbiter to allow an external master 
to control the external bus. 

The R3051 incorporates a 4-deep write buffer to decouple 
the speed of the execution engine from the speed of the 
memory system. The write buffers capture and FIFO proces­
sor address and data information in store operations, and 
presents it to the bus interface as write transactions at the rate 
the memory system can accommodate. 

The R3051 read interface performs both single-word reads 
and quad-word reads. Single-word reads work with a simple 
handshake. Quad-word reads can either utilize the simple 

IDT R3051 
lnt(5:0) RISController™ 
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Figure 2. R3051·Based System 
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handshake (in lower-performance, simple systems) or utilize 
a tighter timing mode when the memory system can generate 
burst data at the processor clock rate. Thus, the system 
designer can choose to utilize page- or nibble-mode DRAMs 
(and possibly use interleaving, if desired, in high-performance 
systems, or use simpler techniques to reduce complexity). 

In order to accommodate slower quad-word reads, the 
R3051 incorporates a 4-deep read buffer FIFO so that the 
external interface can queue up data within the processor 
before releasing it to perform a burst fill of the internal caches. 

SYSTEM USAGE 
The IDTR3051 has been specifically designed to easily 

connect to low-cost memory systems. Typical low-cost memory 
systems utilize slow EPROMs, DRAMs and application spe­
cific peripherals. These systems may also typically contain 
large, slow static RAMs although the IDTR3051 has been 
designed to not require the use of external SRAMs to achieve 
high performance. 

Figure 2 shows a typical system block diagram. Transpar­
ent latches are used to demultiplex the R3051 address and 
data busses from the AD bus. The data paths between the 
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memory system elements and the R3051 AD bus is managed 
by simple octal devices. A small set of simple PALs is used to 
control the various data path elements, and to control the 
handshake between the memory devices and the R3051. 

Depending on the cost versus performance trade-offs ap­
propriate to a given application, the system design engineer 
could include true burst support from the DRAM to provide for 
high-performance cache-miss processing. 

DEVELOPMENT SUPPORT 
The IDTR3051 is supported by a rich set of development 

tools, ranging from system simulation tools through Prom 
monitor support. logic analysis tools and subsystem modules. 

Figure 3 is an overview of the system development process 
typically used when developing R3051 applications. The 
R3051 is supported in all phases of project development. 
These tools allow timely, parallel development of hardware 
and software for R3051 based applications and include tools 
such as: 
• A program. Cache-3051 ™.which allows the performance of 

an R3051-based system to be modeled and understood 
without requiring actual hardware. 

System 
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System 
Development 

Phase 

System 
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SABLE Simulator 
DBG Debugger 
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Figure 3. R3051 Development Support Tool Chain 
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• Sable, an instruction set simulator. 
• Optimizing compilers from MIPS, the acknowledged leader 

in optimizing compiler technology. 
• Cross development tools, available in a variety of develop­

ment environments. 
• The high-performance IDT floating-point library 

software. 
• The IDT Evaluation Board, which includes RAM, EPROM, 

110, and the IDT PROM Monitor. 
• The IDT Laser Printer System board, which directly drives 

a low-cost print engine, and runs Microsoft Truelmage™ 
Page Description Language on top of PeerlessPage™ 
Advanced Printer Controller BIOS. 

• Adobe Postscript® Page Description Language, ported to 
the R3000 instruction set, runs on the IDT R3051. 

• The IDT R3051 PROM Monitor, which implements a full 
PROM monitor (diagnostics, remote debug support, peek/ 
poke, etc.). 

PERFORMANCE OVERVIEW 
The R3051 achieves a very high level of performance. This 
performance is based on: 
• An efficient execution engine. The CPU performs ALU 

operations and store operations in single cycle, has an 
effective load time of 1.3 cycles, and branch effective 
execution time of 1.5 cycles (based on the ability of the 
compilers to avoid software interlocks). Thus, the execution 
engine achieves over 22mips performance when operating 
out of cache. 
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• Large on-chip caches. The R3051 contains caches which 
are substantially larger than those on the majority of today's 
microprocessors. These large caches minimize the number 
of bus transactions required, and allow the R3051 to achieve 
actual sustained performance very close to its peak execution 
rate. 

• Autonomous multiply and divide operations. The R3051 
features an on-chip integer multiplier/divide unit which is 
separate from the other ALU. This allows the R3051 to 
perform multiply or divide operations in parallel with other 
integer operations, using a single multiply or divide instruction 
rather than "step" operations. 

• Integrated write buffer. The R3051 features a 4-deep write 
buffer which captures store target addresses and data at the 
processor execution rate and retires it to main memory at 
the slower main memory access rate. Use of on-chip write 
buffers eliminates the need for the processor to stall when 
performing store operations. 

• Burst read support. The R3051 enables the system designer 
to utilize page-mode or nibble-mode RAMs when perform­
ing read operations to minimize the main memory read 
penalty and increase the effective cache hit rates. 
Thesetechniquescombinetoallowtheprocessortoachieve 

over 20mips integer performance without the use of external 
caches or zero wait-state memory devices. 
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INTRODUCTION 
The IDTR3051 ™family is a series of high-performance 32-

bit microprocessors featuring a high level of integration, and 
targeted to high-performance but cost-sensitive processing 
applications. The R3051 family is designed to bring the high 
performance inherent in the MIPS RISC architecture into low­
cost, simplified, power-sensitive applications. 

Thus, functional units have been integrated onto the CPU 
core to reduce the total system cost, rather than to increase 
the inherent performance of the integer engine. Nevertheless, 
the R3051 family is able to offer 35VUPS performance at 
40MHz without requiring external SRAM or caches. 

The R3081™ extends the capabilities of the R3051 by 
integrating additional resources into the same pinout. The 
R3081 family thus extends the range of applications addressed 
by the R3051 family, and allows designers to implement a 
single, base system and software set capable of accepting a 
wide variety of CPUs, according to the price/performance 
goals of the end system. 

In addition to the embedded applications served by the 
R3051 family, the R3081 allows low-cost, entry-level com­
puter systems to be constructed. These systems will offer 
many times the performance of traditional PC systems, yet 
cost approximately the same. The R3081 is able to run any of 
the various other operating systems ported to the MIPS 
R3000 architecture. Thus, the R3081 can be used to build a 
low-cost system, further widening the range of performance 
solutions of the ACE Initiative. 

This paper provides a brief overview of the R3081 proces­
sor; consult the "R3081 Family Hardware User's Guide" for a 
complete description of this processor. 

DEVICE OVERVIEW 
The R3051 family offers a wide range of functionality in a 

compatible interface. The R3051 family allows the system 
designer to implement a single base system, and utilize 
interface-compatible processors of various complexity to 
achieve the price/performance goals of the particular end 
system. 

Differences among the various R3051 family members 
pertain to the on-chip resources of the processor. Current 
family members include: 
• The R3052E, which incorporates an 8kB instruction cache, 

a 2kB data cache, and full function memory management 
unit (MMU) including 64-entry fully associative Translation 
Look-aside Buffer (TLB). 

• The R3052, which also incorporates an 8kB instruction 
cache and 2kB data cache, but does not include the TLB, 

and instead uses a simpler virtual to physical address 
mapping. 

• The R3051 E, which incorporates 4kB of instruction cache 
and 2kB of data cache, along with the full function MMU/TLB 
of the R3000A. 

• The R3051, which incorporates 4kB of instruction cache 
and 2kB of data cache, but omits the TLB, and instead uses 
a simpler virtual to physical address mapping. 

• The R3081 E, which incorporates a 16kB instruction cache, 
a 4kB data cache, and full function memory management 
unit (MMU) including 64-entry fully associative Translation 
Look-aside Buffer (TLB). The cache on the R3081 Eis user­
configurable to an 8kB Instruction Cache and 8kB Data 
Cache. 

• The R3081, which incorporates a 16kB instruction cache, a 
4kB data cache, but uses the simpler memory mapping of 
the R3051/52, and thus omits the TLB. The cache on the 
R3081 is user configurable to an 8kB Instruction Cache and 
8kB Data Cache. 
Figure 1 shows a block level representation of the functional 

units within the R3081 E. The R3081 E could be viewed as the 
embodiment of a discrete solution built around the R3000A 
and R301 OA. However, by integrating this functionality on a 
single chip, dramatic cost and power reductions are achieved. 

CPU Core 
The CPU core is a full 32-bit RISC integer execution 

engine, capable of sustaining close to single cycle execution. 
The CPU core contains a five-stage pipeline, and 32 orthogonal 
32-bit registers. The R3081 uses the same basic integer 
execution core as the entire R3051 family, which is the 
R3000A implementation of the MIPS instruction set. Thus, the 
R3081 family is binary-compatible with the R3051, R3052, 
R3000A, R3001 and R3500 CPUs. In addition, the R4000 
represents an upwardly software compatible migration path to 
still higher levels of performance. 

The execution engine in the R3081 uses a five-stage 
pipeline to achieve near single-cycle instruction execution 
rates. A new instruction can be initiated in each clock cycle; 
the execution engine actually processes five instructions 
concurrently (in various pipeline stages). Figure 2 shows the 
concurrency achieved in the R3081 execution pipeline. 

System Control Coprocessor 
The R3081 family also integrates on-chip the System 

Control Coprocessor, CPO. CPO manages both the exception 
handling capability of the R3081, as well as the virtual to 
physical address mapping. 

As with the R3051 and R3052, the R3081 family offers two 
versions of memory management and virtual to physical 

~~!~T~o:~ ~ra~:::sre~ ~'!1;::~:,~ ~s;;~:!~r, IOT79R3081, IOT79R3051, Cache-3051, IOT/sim, IDT/kit and IDT/c are trademarks of Integrated Device Technology, Inc. 
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address mapping: the extended architecture versions (the 
R3051 E, R3052E and R3081 E) incorporate the same full­
function MMU as the R3000A. These versions contain a fully 
associative 64-entry TLB which maps 4kB virtual pages into 
the physical address space. The virtual to physical mapping 
thus includes kernel segments which are hard-mapped to 
physical addresses and kernel and user segments which are 
mapped page by page by the TLB into anywhere in the 4GB 
physical address space. In this TLB, 8-page translations can 
be "locked" by the kernel to insure deterministic response in 
real-time applications. Figure 3 illustrates the virtual to physical 
mapping found in the R3081 E. 

The Extended architecture versions of the R3051 family 
(the R3051 E, R3052E,and R3081 E) allow the system designer 
to implement kernel software which dynamically manages 
User task utilization of system resources, and also allows the 
Kernel to protect certain resources from User tasks. These 
capabilities are important in general computing applications 
such as ARC computers and are also important in a variety of 
embedded applications, from process control (where protection 
may be important) to X-Window display systems (where 
virtual memory management can be used). The MMU can 
also be used to simplify system debug. 

R3051 family base versions (the R3051, R3052, and 
R3081) remove the TLB and institute a fixed address mapping 
for the various segments of the virtual address space. These 
devices still support distinct kernel and user mode operation, 

1#1 IF RD ALU MEM 

1#2 IF RD ALU 

1#3 IF RD 

1#4 IF 
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but do not require page management software, leading to a 
simpler software model. The memory mapping used by these 
devices is shown in Figure 4. Note that the reserved spaces 
are for compatiblity with future family members which may 
map on-chip resources to these addresses. References to 
these addresses in the R3081 will be translated in the same 
fashion as the rest of their respective segments with no traps 
or exceptions signalled. 

When using the base versions of the architecture, the 
system designer can implement a distinction between the 
user tasks and the kernel tasks without having to implement 
page management software. This distinction can be imple­
mented by decoding the output physical address. In systems 
which do not need memory protection, and wish to have the 
kernel and user tasks operate out of the same memory space, 
high-order address lines can be ignored by the address 
decoder and thus all references will be seen in the lower 
gigabyte of the physical address space. 

Floating-Point Coprocessor 
The R3081 also integrates an R301 DA compatible floating­

point accelerator on-chip. The FPA is a high-performance 
coprocessor (coprocessor 1 to the CPU) providing separate 
add, multiply, and divide functional units for single- and 
double-precision floating-point arithmetic. The floating-point 
accelerator features low latency operations and autonomous 
functional units which allow differing types of floating-point 
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Figure 2. R3081 5-Stage Pipeline 
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operations to function concurrently with integer operations. 
The FPA appears to the software programmer as a simple 
extension of the integer execution unit with 16 dedicated 64-
bit floating-point registers (software references these as 32 
32-bit registers when performing loads or stores). Figure 5 
illustrates the functional block diagram of the on-chip FPA. 

Clock Generator Unit 
The R3081 is driven from a single input clock which can be 

either at the processor rated speed, or at twice that speed. On­
chip, the clock generator unit is responsible for managing the 
interaction of the CPU core, caches, and bus interface. The 
R3081 includes an on-chip clock doubler to provide higher­
frequency signals to the internal execution core; if 1 x clock 
mode is selected, the clock doubler will internally convert it to 
a double-frequency clock. The 2x clock mode is provided for 
compatiblitywith the R3051. The clock generator unit replaces 
the external delay line required in R3000A-based applications. 

Instruction Cache 
The R3081 implements a 16kB Instruction Cache. The 

system may choose to repartition the on-chip caches, so that 
the instruction cache is reduced to BkB but the data cache is 
increased to BkB. The instruction cache is organized with a 
line size of 16 bytes (four entries). This large cache achieves 
hit rates in excess of 98% in most applications and substan­
tially contributes to the performance inherent in the R3081 . 
The cache is implemented as a direct mapped cache and is 
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capable of caching instructions from anywhere within the 4GB 
physical address space. The cache is implemented using 
physical addresses (rather than virtual addresses) and thus 
does not require flushing on context switch. 

The instruction cache is parity protected over the instruc­
tion word and tag fields. Parity is generated by the read buffer 
during cache refill; during cache references, the parity is 
checked, and in the case of a parity error, a cache miss is 
processed. 

Data Cache 
The R3081 incorporates an on-chip data cache of 4kB, 

organized as a line size of 4 bytes (one word). The R3081 
allows the system to reconfigure the on-chip cache from the 
default 16kB l-Cache/4kB D-Cache to BkB of Instruction and 
BkB of Data caches. 

The relatively large data cache achieves hit rates in excess 
of 95% in most applications, and contributes substantially to 
the performance inherent in the R3081. As with the instruction 
cache, the data cache is implemented as a direct mapped 
physical address cache. The cache is capable of mapping any 
word within the 4GB physical address space. 

The data cache is implemented as a write-through cache, 
to insure that main memory is always consistent with the 
internal cache. In order to minimize processor stalls due to 
data write operations, the bus interface unit incorporates a 4-
deep write buffer which captures address and data at the 
processor execution rate, allowing it to be retired to main 
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Figure 3. Virtual to Physical Mapping of Extended Architecture Versions 
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memory at a much slower rate without impacting system 
performance. Further, support has been provided to allow 
hardware-based data cache coherency in a multi-master 
environment, such as one utilizing OMA from 110 to memory. 

The data cache is parity protected over the data and tag 
fields. Parity is generated by the read buffer during cache refill; 
during cache references, the parity is checked, and in the case 
of a parity error, a cache miss is processed. 

Bus Interface Unit 
The R3081 uses its large internal caches to provide the 

majority of the bandwidth requirements of the execution 
engine, and thus can utilize a simple bus interface connected 
to slower memory devices. Alternately, a high-performance, 
low-cost secondary cache can be implemented, allowing the 
processor to increase performance in systems where bus 
bandwidth is a performance limitation. 

The R3051 family bus interface utilizes a 32-bit address 
and data bus multiplexed onto a single set of pins. The bus 
interface unit also provides an ALE (Address Latch Enable) 
output signal to demultiplex the ND bus, and simple hand­
shake signals to process CPU read and write requests. In 
addition to the read and write interface, the R3051 family 
incorporates a OMA arbiter to allow an external master to 
control the external bus. 

The R3081 also supports hardware-based cache coherency 
during OMA writes. The R3081 can invalidate a specified line 
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of data cache, or in fact can perform burst invalidations during 
burst DMA writes. 

The R3081 incorporates a 4-deep write buffer to decouple 
the speed of the execution engine from the speed of the 
memory system. The write buffers capture and FIFO processor 
address and data information in store operations and present 
it to the bus interface as write transactions at the rate the 
memory system can accommodate. 

The R3081 read interface performs both single-datum 
reads and quad-word reads. Single reads work with a simple 
handshake and quad-word reads can either utilize the simple 
handshake (in lower-performance, simple systems), or utilize 
a tightertiming mode when the memory system can burst data 
at the processor clock rate. Thus, the system designer can 
choose to utilize page- or nibble-mode DRAMs (and possibly 
use interleaving, if desired, in high-performance systems) or 
use simpler techniques to reduce complexity. 

In order to accommodate slower quad-word reads, the 
R3081 incorporates a 4-deep read buffer FIFO, so that the 
external interface can queue-up data within the processor 
before releasing it to perform a burst fill of the internal caches. 

The R3081 is R3051 superset-compatible in its bus inter­
face. Specifically, the R3081 has additional support to simplify 
the design of very high-frequency systems. This support 
includes the ability to run the bus interface at one-half the 
processor execution rate, as well as the ability to slow the 
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transitions between reads and writes to provide extra buffer 
disable time for the memory interface. However, it is still 
possible to design a system which, with no modification to the 
PC Board or software, can accept either an R3051, R3052, or 
R3081. 

SYSTEM USAGE 
The IDT R3051 family has been specifically designed to 

allow a wide variety of memory systems. Low-cost systems 
can use slow-speed memories and simple controllers, while 
other designers may choose to incorporate higher frequen­
cies, faster memories, and techniques such as OMA to achieve 
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maximum performance. The R3081 includes specific support 
for high-performance systems, including signals necessary to 
implement external secondary caches and the ability to per­
form hardware-based cache coherency in multi-master sys­
tems. 

Figure 6 shows a typical system implementation. Trans­
parent latches are used to demultiplex the R3081 address and 
data busses from the A/D bus. The data paths between the 
memory system elements and the A/D bus is managed by 
simple octal devices. A small set of simple PALs is used to 
control the various data-path elements and to control the 
handshake between the memory devices and the CPU. IDT 
has implemented the R3720/21 support chip set specifically 
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tailored to R3051 family systems. This chip set directly 
interfaces the processor to DRAM, simplifying design and 
eliminating discrete logic chips and PAL devices. 

Depending on the cost versus performanc~ trad~-offs 
appropriate to a given application, the system design engineer 
could include true burst support from the DRAM to provide for 
high-performance cache-miss processing, or utilize a simp!er, 
lower-performance memory system to reduce cost and sim­
plify the design. Similarly, the system designer could choose 
to implement techniques such as external secondary cache, 
or OMA, to further improve system performance. 

Clkln 
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DEVELOPMENT SUPPORT 
The IDT R3051 family is supported by a rich set of devel­

opment tools, ranging from system simulation tools through 
PROM monitor and debug support, applications software and 
utility libraries, logic analysis tools, subsystem ~o~ul~s and 
shrink-wrap operating systems. The R3081, which 1s pin and 
software compatible with the R3051 , can directly utilize these 
existing tools to reduce time to market. 

Figure 7 is an overview of the system devel?pmentpro_cess 
typically used when developing R3051 family applications. 
The R3051 family is supported in all phases of project devel-
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opment. These tools allow timely, parallel development of 
hardware and software for R3051 family applications, and 
include tools such as: 
• A program, Cache-3051 ™,which allows the performance of 

an R3051 family system to be modeled and understood 
without requiring actual hardware. 

• Sable, an instruction set simulator. 
• Optimizing compilers from MIPS, the acknowledged leader 

in optimizing compiler technology. 
• Cross development tools, available in a variety of develop­

ment environments. 
• The high-performance IDT floating-point library software, 

including transcendental functions and IEEE-compliant 
exception handlers. 

• The IDT Evaluation Board, which includes RAM, EPROM, 
1/0, and the IDT PROM Monitor. 

• The IDT Laser Printer System board, which directly drives 
a low-cost print engine, and runs Microsoft Truelmage™ 
Page Description Language on top of PeerlessPageTM Ad­
vanced Printer Controller BIOS. 

• Adobe Postscript® Page Description Language, ported to 
the R3000 instruction set, runs on the IDT R3051 family. 

• IDT/sim, which implements a full PROM monitor (diagnos­
tics, remote debug support, peek/poke, etc.). 

CONFERENCE PAPER CP-08 

• IDT/sae, which implements a run-time support package for 
R3051 family systems. 
Various Operating Systems ported to the R3000, including 
ACE UNIX®. 

PERFORMANCE OVERVIEW 
The R3081 achieves a very high level of performance. This 

performance is based on: 
• An efficient execution engine. The CPU performs ALU 

operations and store operations in a single cycle, and has 
an effective load-time of 1.3 cycles, and branch execution 
rate of 1 .5 cycles (based on the ability of the compilers to 
avoid software interlocks). Thus, the execution engine 
achieves over 35VUPS performance when operating out of 
cache, and equivalently high SPECmark performance. 

• A full-featured floating-point accelerator/coprocessor. 
The R3081 incorporates an R3010A compatible floating­
point accelerator on-chip, with independentALUs forfloating­
point add, multiply, and divide. The floating-point unit is fully 
hardware-interlocked, and features overlapped operation 
and precise exceptions. The FPA allows floating-point adds, 
multiplies and divides to occur concurrently with each other, 
as well as concurrently with integer operations. 

• Large on-chip caches. The R3051 family contains caches 
which are substantially larger than those on the majority of 
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today's microprocessors. These large caches minimize the 
number of bus transactions required, and allow the R3051 
family to achieve actual sustained performance very close 
to its peak execution rate. The R3081 doubles the cache 
available on the R3052, making it a suitable engine for many 
general-purpose computing applications, such as ACE sys­
tems. 

• Autonomousmultiplyanddivideoperations. The R3051 
family features an on-chip integer multiplier/divide unit 
which is separate from the other ALU. This allows the CPU 
to perform multiply or divide operations in parallel with other 
integer operations, using a single multiply or divide instruction 
rather than "step" operations. 

• Integrated write buffer. The R3081 features a four deep 
write buffer, which captures store target addresses and data 
at the processor execution rate and retires it to main 
memory at the slower main memory access rate. Use of on­
chip write buffers eliminates the need for the processor to 
stall when performing store operations. 

• Burst read support. The R3051 family enables the system 
designer to utilize page-mode or nibble-mode RAMs when 
performing read operations to minimize the main memory 
read penalty and increase the effective cache hit rates. 
The performance differences between the various R3051 

family members depends on the application software and the 
design of the memory system. The impact of the various cache 
sizes, and the hardware floating-point, can be accurately 
modeled using Cache-3051. Since the R3051, R3052, and 
R3081 are all pin and software compatible, the system designer 
has maximum freedom in trading between performance and 
cost. A system can be designed, and later the appropriate 
CPU inserted into the board, depending on the desired system 
performance. 

SELECTABLE FEATURES 
The R3081 allows the system designer to configure certain 

aspects of operation. Some of these options are established 
when the device is reset, while others are enabled via the 
Config registers: 
• Big Endian vs. Little Endian byte ordering. The part can 

be configured to operate with either byte ordering. ACE 
systems typically use Little Endian byte ordering. However, 
various embedded applications, written originally for a Big 
Endian processor such as the MC680x0, are easier to port 
to a Big Endian system. 

• Data Cache Refill of one or four words. The memory 
system must be capable of performing four word refills of 
instruction cache misses. The R3081 allows the system 
designer to enable D-Cache refill of one or four words 
dynamically. Thus, specialized algorithms can choose one 
refill size, while the rest of the system can operate with the 
other. 

• Half-frequency bus mode. The processor can be config­
ured such that the external bus interface is at one-half the 
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frequency of the processor core. This simplifies system 
design; however, the large on-chip caches mitigate the 
performance impact of using a slower system bus clock. 

• Slow bus turn-around. The R3081 allows the system de­
signer to space processor operations, so that more time is 
allowed for transitions between memory and the processor 
on the multiplexed address/data bus. 

• Configurable cache. The R3081 allows the system de­
signer to use software to select either a 16kB Instruction 
Cache/4kB Data Cache organization, or an BkB Instruction/ 
BkB Data Cache organization. 

• Cache Coherent interface. The R3081 has an optional 
hardware based cache coherency interface intended to 
support multi-master systems such as those utilizing OMA 
between memory and 1/0. 

• Optional 1x or 2x clock input. The R3081 can be driven 
with an R3051-compatible 2x clock input, or a lower fre­
quency 1 x clock input. 

INTERCHANGEABILITY WITH OTHER 
R3051 DEVICES 

The R3081 family has been designed to allow inter­
changeability with other members of the R3051 family, with no 
changes to the PCB. The last chapter of the R3081 User's 
Manual describes the various design considerations involved. 
Upgrade options within the R3051 family now include: 
• Upgrading an R3051 to an R3052. This doubles the amount 

of instruction cache, without modifying the frequency of the 
system, and thus could be offered as a field upgrade. 

• Upgrading an R3051 or R3052 to an R3081 at the same 
frequency. This would have the effect of increasing both the 
instruction and data cache sizes. In addition, the hardware 
floating-point unit would be available to upgrade system 
floating-point performance. This upgrade results in a sub­
stantial performance gain, with no board redesign. 

• Upgrading an R3051 or R3052 to an R3081 running at twice 
the frequency but the same bus interface speed. For ex­
ample, it is possible to upgrade a 20MHz R3051 to a 40MHz 
R3081. The R3081 would run in "1x clock mode", so no 
changes to the input clock would be required; the R3081 bus 
could be run at one-half the processor speed (20MHz), so 
no other system changes are required. This upgrade results 
in twice the amount of cache, at twice the execution rate, 
with additional hardware floating-point support, yet requires 
no real modifications to the PCB or other components. 

SUMMARY 
The R3081 further extends the range of price-performance 

served by the R3051 family. By offering different devices with 
the same footprint, a single hardware design effort is lever­
aged into multiple end products, each addressing different 
price/performance points. 
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INTRODUCTION 
The objective of this paper is to discuss new performance 

standards by which to judge the attributes of new RISC 
architectures that were designed for very different applica­
tions. As any. micr?processor design engineer with experi­
ence will testify, microprocessors seem architected to ease 
design-not validate performance. Digital design engineers 
can get their arms around the interface requirements which 
are finite enough to make trade-off studies, and they c~n look 
at support chips to make sure the peripherals meet the needs 
of the design. If the needs are not met they can look at what 
other peripherals can meet those needs and how many PAL 
devices it will take to use them on the selected processor. 

The less tangible part of microprocessor selection is deter­
mining if a processor will meet the challenging demands of 
today's software requirements. Most cursory investigations 
will involve the comparison of standard benchmarks. One 
commonly used set is called the "Intel Benchmark Suite", 
because Intel showed the original six that include Quicksort 
Bubblesort, Pi-500, Anneal, Matmult and Dhrystone 1.1. Th~ 
first problem not readily apparent is that Intel does not state 
their latencies into main memory. In fact, they boast perfor­
mance on an all-SRAM system and then a DRAM system. 
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What is of note here is that all the details of main memory 
latency are important and missing. This leaves the designer to 
depend on his benchmarks and define the latency he will use. 
. The fact is that the majority of RISC chip designers are just 
like the user. Because it takes years to get a reliable CPU into 
production, they design processors on hardware features, not 
proven performance. But MIPS RISC architectures are differ­
ent. They were designed by first architecting the instruction 
set, writing compilers, selecting 20 large benchmarks (the 
code sets were UNIX®-oriented applications in the multiple­
megabyte size range) and performing two years of optimiza­
tion. The /astth1ng MIPS did was to define the CPU hardware 
architecture to execute the instruction set and the compilers. 

Trade-offs continued into the CPU development as well. 
Illustrated later in the feature set of MIPS RISC processors is 
a background autonomous multiply/divide unit with 64-bit 
re~ult versus the implementation of a multiply step instruction. 
This feature allows multiply/divides to run while other code 
continues, and because the compilers are designed to facili­
tate this, a vectorization of code occurs. Also, for the first time 
a Write Buffer was included in the architecture to prevent CPU 
write stalls. This feature helps lessen the problem of CPU 
Write bandwidth to main memory Write bandwidth. 
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Briefly discussed, one can see a clear difference between 
MIPS RISC architecture development versus others. In the 
other camp, processor architectures are presented to com­
pilerwriters after the fact and they are forced to deal with a non­
conforming architecture. Even in situations where many com­
piler technology companies are pitted against each other, 
(e.g., Metaware and Green Hills funded to do compilers for a 
given architecture where the best gets the business) the 
outcome falls short. 

SYSTEMS SHIPPING TODAY 
Todays' high-performance systems have been shipping 

the 79R3000A for three years. Most notably, Silicon Graphics, 
DEC, CDC, Tandem, Pyramid, NEC and Sony have found the 
performance of the R3000A to be profound. These systems 
still ship the MIPS RISC architecture known as MIPS 1. It 
includes the R3000A CPU, the optional R301 OA floating-point 
hardware accelerator, write buffer logic and as many as thirty 
64K SRAMs to make up the cache. MIPS 2, which has been 
in production for over a year, executes on the R6000 proces­
sor. Implemented in EGL logic, the processor is now shipping 
in excess of 66MHz. MIPS 3, recently announced, defines the 
R4000. The R4000 is a super-pipelined RISC that is a superset 
of MIPS 1 and MIPS 2, where all application code is upwardly 
binary compatible. 

MIPS 1 systems define yesterday's two-chip set-the 
79R3000A RISC CPU and ttie optional 79R3010A FPA, as 
described in Figure 1. From a software standpoint, they 
appear seamless operationally because both execution units 
examine every opcode simultaneously. If an integer operation 
is seen on the bus, the 79R3000A executes, or if it is a floating­
point operation, the FPA executes it. 

The CPU contains thirty-two 32-bit registers. All registers 
can be an ALU, can be shifted, and can be used as pointers, 
offsets, etc. On-chip is a 32-bit multiply/divide unit that gives 
64-bit results that can execute concurrently with integer opera­
tions. The compiler technology explained previously exam­
ines the source code and picks the most effective method to 
schedule the multiply/divide unit. If the result is needed 
immediately, the compiler will pick the most effective way to 
perform the operation; if not, the autonomous unit will be 
scheduled, if inactive. In cases where a register is modified by 
a constant, the compilers will use clever code sequences to 
perform the operation. Where two registers are used, and the 
data is needed right away, the autonomous unit will be 
scheduled and the processor will interlock on references to the 
unit before data completion. 

The 79R3000A RISC processor employs a five-stage 
pipeline to effectively schedule all phases of instruction execu­
tion. The stages are: instruction fetch, register read, ALU, 
memory read and write back. The FPA has a six-stage 
pipeline. Both pipelines move at the clock rate, synchronized 
by a phase-lock loop on the 79R301 QA.This facilitates the 
seamless operation of the two independent devices. Since 
they have their own set of registers, integer operations don't 
interfere with floating-point operations and, as they are au­
tonomous units, the compiler can overlap execution units for 
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maximum performance. Also on the CPU is the MMU, which 
is coprocessor 0. This coprocessor is responsible for virtual­
to-physical translations and exception processing. The MMU 
is fully associative, resulting in high MMU hit rates. The 
exception model is precise, which allows easy decoding of 
which instruction caused the exception, integer or floating­
point. The 79R3000A has six dedicated interrupt inputs that 
are level-sensitive and can be sensed individually for six 
unique interrupts or can produce an offset into a jump table 
realizing 64 vectored interrupts. 

The 79R3010A FPU has a separate set of sixteen 64-bit 
registers. Three separate operational units exist on the chip 
that include the add/subtract, multiply and divide functions. 
Their functions are overlappable and scheduled by the com­
piler. An example of overlap would show that multiplies can be 
overlapped with divides and add/subtracts overlapped with 
multiplies-resulting in all execution units operating in the 
FPU concurrently with integer processing. The CPU and FPA 
communicate over a set of individual lines indicating status. 
As an example, if the FPA cannot accept another operation, 
it will signal the CPU to stall the additional operation with the 
FpBusy signal. Additionally, since the instruction set includes 
floating-point comparisons, the architecture does not require 
the data to be moved into the R3000A. Compare is done by the 
FPA and the results are communicated via the FP-condition 
signal. This signal connects to the CPU CpCond input and the 
processor can jump on a true or false condition. Lastly, if a 
floating-point exception occurs as a result of an operation, the 
Fplnt output of the FPA will signal the CPU to examine the 
situation. 

CACHE MEMORIES 
The data bus on the 79R3000A is a multiplexed data bus, 

time-shared by the data cache and the instruction cache, with 
1 /2 clock cycle coming from each. The cache is organized in 
a classical Harvard architecture, maximizing standard SRAM 
technology by providing a cache controller on-chip. The cache 
is configured as a 60-bit-wide path, consisting of 32 bits of 
data, 4 bits of data parity, 20 bits of tag, 3 parity bits on the tag 
and a valid bit. All cache accesses require all 20 bits of tag to 
be presented for comparison-allowing all 4GB to be 
cacheable. 

Several clever techniques can be implemented to reduce 
cache density. One easy method takes advantage of the fact 
that on instruction cache misses a block refill occurs. Since the 
block always has the same tag, and the instruction cache is 
not written to otherwise, the tag cache depth can be shallower. 
Other methods include wrapping thetag bus back with latches 
for the low-order tag to eliminate some tag SRAMS there, as 
well. Semiconductor manufacturers continue to integrate 
functions on-chip, like incorporating an FCT373 function, dual 
cells that include I and D sides, to reduce parts count. 

MAIN MEMORY INTERFACE 
Whenever a cache miss occurs, main memory is referenced 

to obtain the required data. Data is cacheable if the address 
range falls within the user mode range, in special kernel mode 
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segments and is automatically loaded into the cache when 
recovered from memory. On writes, the 79R3000A maintains 
a cache write-through policy, so data is written to main 
memory with the cache. The Write Buffer captures the 36 bits 
of data, including parity and 32 bits of address, which can be 
retired at the bandwidth acceptable to main memory. The 
reason for Write Buffers become clear when an examination 
of cache bandwidth, main memory bandwidth and the rate of 
writes are examined. It is easy to see that the CPU can easily 
overwhelm memory and have to stall frequently. The Write 
Buffer separates the bandwidth mismatch by storing the data 
until main memory can accept the Write. 

SOLUTIONS TO REDUCE COST 
Integration has always been a key method in reducing 

system cost. Not only does this reduce the individual parts 
counts and costs, it also reduces PC board costs, PC layers, 
power, manufacturing costs and increases performance and 
reliability, etc. Semiconductor manufacturers continue to inte­
grate for better solutions, to improve customer relationships 
through improved business and to separate themselves from 
the simple "we sell chips" suppliers. 

IDT announced the release of RISCore™, the 79R3"i00, in 
September of 1991. The 79R3500 integrates the 79R:1000A 

2XCLKin 

1 
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CPU and the 79R301 OA FPA into a package that fits into the 
175 PGA socket (actually 161 pins)-the most popular foot­
print shipped. Because the 79R3500 includes hardware float­
ing-point, FP interrupts and the FP condition code are inter­
nally routed via the reset vectors to pick the decisions that are 
wired externally in discrete designs. Other benefits of the 
79R3500 include reduced power, better board layout permit­
ted by a smaller cache bus, an additional memory mapping 
option for non-TLB versions, a new set of features to reduce 
cache size and lower cost. 

Three modes programmed via the reset vectors allow the 
elimination of several cache SRAMs. These options allow the 
elimination of tag bit comparisons, which are not possible on 
the 79R3000A as it requires all 20 bits to be compared. The 
first option limits cacheable main memory to 128MB and 
saves four bits of tag in both caches. Very few systems today 
have the bus width or allow the capacity to address the full 
4GB of cacheable memory permitted by the 79R3000A. The 
second option eliminates the lower four bits to the tag bus. 
This mandates that the cache use at least 16k depth (i.e., 16k 
x 4) cache SRAMs (64kB). The lower four tag bits are 
redundant in caches of this depth. The last mode includes both 
features, eliminating 16 bits of cache SRAMs, and is clearly 
popular. Additionally, there is an option to eliminate parity 
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checking in the cache. This option, combined with the last 
mode, reduces the cache bus length to 32 data+ 1 valid + 12 
tag = 45 bits-a clear cost savings! 

Another cost savings solution is to address reducing the 
number of cache SRAMs. Currently available from IDT is the 
71 8229, a cache SRAM for all R3000NR3500 systems. The 
IDT718229 includes the latching function on-chip, eliminating 
the need for the external FCT373 address latches. It is x9 in 
width and is bicameral (16K x 9 x 2). The bicameral feature 
cuts the number of SRAMs needed in half because the 
bicameral SRAMs actually have two differentiated sections, 
where one is part of the instruction cache and the other is part 
of the data cache. This solution is also footprint-effective as it 
is available in a 300mil SOJ package. Using RISCore (which 
integrates the CPU and FPA) and the third cache option 
(which reduces the cache bus width to 45 bits), in conjunction 
with five 71 8229 cache SRAMs, reduces yesterday's 32-chip 
solution down to 6 devices. This represents significant board 
and cost savings. 

Clearly, these cost reduction solutions are significant for 
the ultimate-performance systems, but what about systems 
that don't require high-performance and are more cost sensi­
tive? IDT recognized the need for cost-sensitive solutions 
where customers had experience with the MIPS ISA and 
compiler suite and wanted to stick with that architecture in their 
lower-performance applications. Also, designers in the x86 
and 68020 performance market needed a cost-sensitive so­
lution to improve performance and still have complete devel­
opment support. IDT's solution was to maintain 100% code 
compatibility, no modification of the architecture and integrate 
to reduce cost. This solution is called the R3051'"' RISCon­
troller'I'M. Second-sourced by Siemens and costing $30 when 
purchased in volume, it has clearly become a leading solution 
for the embedded marketplace. 

THE R3051 RISController 
The R3051 integrates the R3000A CPU, cache, a 4-deep 

read and 4-deep write buffer, signals to deal with page-mode 
DRAMs and other features to reduce cost at the system level, 
as shown in Figure 2. The cache includes 4k8 of Instruction 
cache and 2k8 of Data cache. Simulations of many bench­
marksuites, including SPEC, show the cache size to be above 
the knee of the curve to effectively address typical program 
loops. The upgrade to the R3051 is the R3052, which doubles 
the instruction cache to 8k8, is pin-for-pin compatible for 
instant performance upgrades without any hardware or soft­
ware modifications. 

The R305x products all come in cost-effective 84-pin PLCC 
packages that reduce board space and manufacturing, facili­
tated by a multiplexed 32-bit address/data bus. This bus is 
demultiplexed on a cache miss with ALE, which connects to 
standard FCT373 latches, in one clock. No performance is lost 
because the address flows through the FCT373, maximizing 
address propagation. When an examination of non-multi­
plexed systems are performed, the first clock is used the same 
way-to propagate the address. The DataEN output signal 
from the R3051 is used by the memory interface to detect 
when the processor has stopped driving the bus and external 
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memory can now supply data for read misses. As for writes, 
the WrNear signal goes true if this write falls within the same 
page as the last write, improving write bandwidth into main 
memory. Just like the standard R3000A, the processor sup­
ports burst reads and includes a 4-deep read buffer which 
allows instruction streaming. The refill can be as fast as a 
single clock or multiple clocks, gated by RdClkEn. 

The processor has the same precise exception model as 
the R3000A, allowing six independent interrupts directly into 
the processor. Upon sensing an interrupt, the general exception 
vector goes to the address bus and the exception routine 
executes. Under software control, the processor can imple­
ment any priority-based interrupt scheme imaginable-and 
dynamically change it, which is especially useful when inter­
rupt loading varies in a system. Additionally, four independent 
inputs, called branch conditions, can be used to sense exter­
nal conditions without any additional hardware or logic. 

Integration of all the basic CPU components eliminated the 
need for glue logic, but did not integrate peripherals-why 
not? The answer lies in the types of peripherals needed by the 
majority of the designs and the expertise of those customers. 
A study of major customers in the embedded market was 
conducted to discover what devices, and how many, were 
most often needed. The conclusion of that study showed that 
there were few functions that the majority of designs needed 
and that most customers had significant design expertise in 
ASIC technology to implement those differentiating functions. 
Another result was that, though most needed some type of 
timing function, the requirements were all different. If one 
function is integrated and the user needed two, he gained 
nothing because an additional chip is still needed. Since these 
basic functions cost less than $2.00, IDT decided to concen­
trate on improving performance and lowering the CPU cost. 
This has proven to be a significant factor in market acceptabil­
ity of the R305x products. 

MUL TIMASTER MAIN MEMORY SYSTEMS 
Systems where main memory can accept data from various 

sources (i.e., contains arbitration logic to decide who controls 
the data into and out of main memory) are classified as 
multimaster systems. This is very common in standard sys­
tems and is true whenever the system incorporates a OMA 
function, which is a peripheral that can master the bus and the 
more elaborate systems that accept an additional CPU card 
into a backplane. Cache coherency, a problem in these types 
of systems, occurs when processors have private memory 
that is a small copy of main memory and is not updated at the 
same time as main memory. Cache is a typical form of this 
configuration, as main memory typically does not have the 
ability to update cache. 

When implementing multimaster systems with R3000A 
cache structures, designers have several choices to keep the 
data cache coherent (identical with memory). The R3000A 
has two control signals frequently called MP Stall and MP 
Invalidate, which are used to stop the processor and invalidate 
the cache entry. The major issue is when to do this. Trade-offs 
are organized by cost and performance. The first method 
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involves using an external tag memory that stores the ad­
dresses of the items in the data cache. It is written to with the 
address of the data item on every data cache miss and cleared 
on data cache flush to maintain its correctness. When a 
memory Write is requested from another device, the tag 
SRAM is checked to see if an address appears that matches 
what is contained in the data cache. On a hit, a simple state 
machine stalls the transfer, stalls the processor, invalidates 
the cache item and continues. This is the most expensive and 
highest-performance process. One drawback is that the CPU 
stalls whenever a cache invalidate cycle occurs. A second, 
and simpler, method does not include the tag SRAM, but stalls 
and invalidates any shared address. This, of course, affects 
performance because the CPU is stalled more often. 

One key in reducing the amount of CPU stalls due to data 
cache hits is to reduce the amount of main memory that is 
shared. When this is done, the state machine can decode the 
address to first see if the address range is appropriate for 
shared memory. This greatly simplifies the overall architec­
ture but has some impact on the software. It is important to 
minimize shareable memory in all multimaster systems. 

Systems that do not include a second processor but have 
a multimaster structure allow simpler methods to keep data 
coherent. The first method is simple because the pro ... essor 
probably programmed the address transfer and can flush 
those cacheable data addresses; the trade-off being the 
overhead of the code it takes to flush the data cache. A second 
method would include treating all OMA memory references as 
uncacheable references; the trade-off again being lowered 
performance, but a simpler software model. Both methods are 
effective, cost sensitive and achieve the desired result. 

The R305x products allow any of these methods to be 
used, except the most sophisticated one where the external 
state machine invalidates the data cache. This arrangement 
is akin to the highest performance engines and the R305x 
CPUs are targeted at lower-performance and lower-cost 
systems. The next-generation product, the R30B1™, has the 
necessary handshake signals to invalidate data cache loca­
tions inside a highly-integrated CPU. 

THE R3081 RISController 
The R30B1 RISController is the next logical step in integra­

tion, addressing performance applications beyond the reach 
of the R305x products. The R30B1, as shown in Figure 3, has 
many improved features, including twice the cache size (up to 
20kB), on-chip R301 OA identical functionality, an optional 1 x 
clock input, up to 50MHz operation and data cache coherency 
hooks for invalidation. The cache features dynamic 
reconfiguration, allowing the opportunity to change the 
cachefrom 16kB of instruction cache and 4kB of data cache to 
BkB of each. This feature is extremely important in certain 
applications. For the embedded world, there are subroutines 
that will improve in performance when more data cache is 
available: the Bk/Bk configuration. In standard applications, 
the SPEC benchmarks have shown a performance improve­
ment preference to 16k instruction caches. The configurable 
feature allows the R30B1 to perform well in a variety of 
situations. 
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During the definition of the R30B1, IDT wanted to provide 
an upgrade path from the R305x by providing socket 
upgradeability. That ambition is met by the this device be­
cause a user can simply unplug a top-end R3052-20MHz and 
plug in the R30B1-40MHz for immediate performance im­
provement. This is facilitated by two major factors: twice the 
cache and a 1 x clock. The cache size greatly improves the hit 
rate and since the R3081 can be programmed at reset to run 
at the 1 x rate while the bus to main memory is at half speed, 
the system will not see the change and the result is double the 
pipeline rate. 

For more performance, the application can be recompiled 
to take advantage of the hardware floating-point accelerator. 
In a few applications for the R305x, some floating-point 
calculations were needed. To use the integer-only nature of 
the R305x, floating-point emulation software is linked into the 
object code to emulate the hardware acceleration available in 
the R301 OA. The R30B1 can still execute those instructions, 
but more performance can be achieved by direct execution of 
the FPA instruction set. The application can be compiled 
without the FP emulation library and the final binary will 
contain the FP opcodes. This will improve the floating-point 
code execution by approximately 40%. 

The R3081 has the added capability of modifying the data 
cache refill size. On the R3000A and R305x products, data 
cache refill size is set at reset and, as a data cache reference 
is missed, the entire block is fetched, minimizing the miss rate. 
For non-cacheable misses, a single data word is fetched and 
is an example of reading an 1/0 register. The R3081 processor 
can dynamically change refill from 4 words to 1 word on 
cacheable references and, as always, non-cacheable refer­
ences are one word. This feature is selectable via a CPO 
configuration register. One type of application that can benefit 
from this feature is data manipulation, e.g., updating a graphic 
display. When a bit line is drawn, it is not necessary to get the 
non-adjacent four words, as these words may be on different 
color planes. This feature allows individual subroutines to be 
optimized, without any changes to the compiler suite. 

Data cache invalidation is a significant feature of the R3081 
RISController. This feature, enabled at reset, involves several 
signals: ACK, WR, Address, CohReq (coherent request) and 
lnvReq (invalidate request). If hardware-based cache coher­
ency is enabled at reset, the processor will stall on bus 
requests when CohReq is true to allow the maximum invali­
date bandwidth. When that occurs, the processor will latch in 
the address with ALE and invalidate the appropriate cache 
line if lnvReq is true. It is also possible to perform a burst 
invalidate. As discussed, the R30B1 captures address on the 
ALE signal supplied by the external master device. At the end 
of the cycle, whether an invalidate occurs or not, the internal 
address counter increments with ACK. This allows the exter­
nal logic to continue the transfer, without another address 
phase and invalidate the next address. Of course, the external 
logic can invalidate all addresses as they come by or use an 
external tag SRAM as described earlier to pick appropriate 
addresses. 

All the hooks are supplied to support the addition of a 
secondary cache, as well. Common in today's systems, 
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secondary caches improve CPU performance by providing a 
faster intermediate memory between the primary cache and 
main memory. Facts are facts. When dealing with cache 
coherency, the secondary cache would first be checked to see 
if a hit occurs within itself. If that happened, the location could 
be invalidated or updated and another bit could define if that 
word was in the primary cache. If the primary cache is 
incoherent, the R3081 is stalled for an invalidate cycle. This 
additional layer of insulation improves performance not only 
by reducing CPU latency to memory, but also results in fewer 
stalls in coherent systems. 

CONCLUSION 
The microprocessor selection process has changed dra­

matically over the past two years. Motorola, who dominated 
the embedded market, is significantly challenged where it 
once was a leader. This is because Intel has done well with the 
960 line of embedded products and because they are Intel. In 
fact, this author believes that a major component in the 
microprocessor selection process is the vendor, not the prod­
uct ("if it has bat wings or an "i" on it, I will design it in"). Intel, 
the most predominant processor supplier because of the IBM 
PC era, still out in front by the definition of units shipped, is 
being threatened by the ACE initiative and the Apple/IBM 
"Power PC" product in the future. AMO has a significant lead 
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in the embedded RISC marketplace due to timeframe-the 
29000 was on the market long before other RISC solutions 
were available. 

However, the dynamics of the microprocessor industry are 
evolving. No longer are designers buying the fact that the 
'manufacturer' is the key in the decision-making process. The 
deciding factor is now performance, cost, integration and how 
the architecture meets the requirements of the design. Growth 
paths are an increasing concern. With six suppliers now in the 
market, the designer is assured that many more products will 
be available soon using the MIPS architecture. IDT has 
already demonstrated three industry specific RISC proces­
sors that the majority of designers are admiring and design­
ing-in. And all incorporate !SA-identical, feature-common 
compilers, development equipment, operating systems and 
design mindset. This benefit has provided designers and 
engineering managers a guiding light to what the next gen­
eration of microprocessor goals are: in the 1980s, we cen­
tralized on one processor ISA, the 68000, and for 1 O years the 
evolution of derivatives served well. In the 1990s, MIPS RISC 
solutions have all the essential attributes to establish the next 
common platform for designers to use. IDT, dedicated to that 
product arena, will continue to provide the necessary products 
to keep designers' goals met, by providing products to keep 
them successful in their marketplace. 
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