
....
co co
~ -a ...
:a
w
0
U'I
.....! :a
w
0
ClO

~

J>
'a
'a --· n m .. -· 0 :s
a
c -· a.
CD

:I
r

1992
IDT R3051™/R3081TM

Application Guide

®

mldt

Integrated Device Technology, Inc.

1992
IDT R3051™/R3081™

Application Guide

®

Integrated Device Technology, Inc.

----------- -- -~

LIFE SUPPORT POLICY
Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems
unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT.
1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support

or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected
to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Note: Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve
design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry
embodied in an IDT product. The Company makes no representations that circuitry described herein is free from patent infringement or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device
Technology, Inc.

The IDT logo is a registered trademark, and BiCEMOS, CEMOS, Cache-3051, IDT/c, IDT/sim, IDT/kit, IDT79R3051, IDT79R3081, REALS, RISCore and
RISController are trademarks of Integrated Device Technology, Inc.
All others are trademarks of their respective companies.

Integrated Device Technology, Inc.

TABLE OF CONTENTS

Introduction v

AN-86 R3051™ System Design Example .. .

AN-89 R305x System Performance in Embedded Applications 32

AN-90 Designing A Discrete DRAM Controller for the R3051
RISController™ Family... 35

AN-92 IDT79R3051™ Main Memory and System 1/0 Interfacing 62

AN-93 Using the IDT79R3051™ With the HP16500 Logic Analyzer.............. 77

AN-95 Interfacing the R3051™ to the Sonic ... 84

AN-97 IDT79R3051™ Address/Data Bus Turn-Around Behavior................... 94

AN-98 IDT R3051™ Emulation of REALS™ Laser Printer Controller
Using IDT7RS385 Evaluation Board 101

AN-105 Compiler Trade-Offs in Code Development for the
IDT RISController™ Family.. 120

AN-1 07 Considerations When Benchmarking With the
7RS385 Evaluation Board .. 124

AN-108 Using Cache-3051'" for System Performance Evaluation 133

AN-109 Using the R3081™ in R3051™-Based Systems 141

AN-111 Using the IDT79R3051™ and the IDT79R3081™ with the
H P16500 Logic Analyzer 146

AN-112 IDT79R3081™ Performance Analysis ... 152

AN-113

CP-04

CP-05

CP-06

CP-07

CP-08

CP-09

Upgrade Stategies for R3051™-Based Designs 158

The IDT RISController'" Family: An Architecture
Well-Suited to X-Windows .. 165

Designing Memory Subsystems for the R3051'" Family..................... 170

Trade-Offs in Laser Printer Application Designs
Around the R3051 ™ Family 179

Next-Generation MIPS® RISC Architecture for
Embedded Applications 187

Introduction to the New R3081™ Processor.. 192

IDT RISC Technology, and Designing with Cache Coherency
in Mind .. 201

Integrated Device Technology, Inc.

INTRODUCTION

This manual is a collection of various applications notes and conference papers written
to describe the behavior and use of the I DT79R3051 ™ family of RISController'"
devices.

The application notes include descriptions of design techniques, development environ­
ments, and software development tools. The reader is encouraged to review the
introduction of the various application notes as a brief summary of the topic of that
paper.

This manual is complemented by other documentation, also available from your IDT
sales representative. These documents include:

The RISC data book, which contains data sheets for these devices. Also in­
cluded are the electrical specifications, pinout, current speed grades, and pack­
age dimensions.

The R3051 Hardware User's Manual, which contains a detailed description of the
hardware and software interface of the R3051 and R3052.

• The R3081 Hardware User's Manual, which contains a detailed description of the
hardware and software interface of the R3081.

• The DRAM Design Using the IDT RISChipset manual, which describes the use of
the R3721 DRAM controller with the R3051 or R3081.

• The IDT Development Products Catalog, which contains an overview description
of various development tools manufactured and sold directly by IDT.

• The various user's manuals on the IDT software tools, and the user's manual for
the IDT7RS385 Evaluation Board.

• The third-party support list, detailing various third-party tools, such as real-time
OS, in-circuit emulation, logic analyzer support, and program development tools
available to support applications development around the IDT R3051 family.

v

(;) IDT79R3051™ SYSTEM APPLICATION

DESIGN EXAMPLE NOTE
AN-86

Integrated Devke Technology, Inc.

By Andrew Ng

INTRODUCTION
This application note describes a memory evaluation board

that is an example of many of the design considerations for
systems based on an IDT79R3051™ RISController™ family
CPU.

The memory board, illustrated in Figure 1, consists of:
An R3051 CPU
Reset circuitry
An address demultiplexer

• A data transceiver
Wait-state and memory control logic

• 12BK bytes of SRAM
128K bytes of EPROM

• A dual channel UART
A real time counter
An interrupt controller
In addition, an expansion connector supplies all the CPU

signals for the addition of external modules such as DRAM
memory systems or other application specific 1/0 systems.
The memory and 1/0 system on the example board are
compatible with the IDT7RS382 R3COC Evaluation Board.
Thus 7RS382 software such as the IDT/sim PROM Debug
Monitor can run on the example board. The board is typical
of an embedded controller core such as for LAN adapters,
laser printers, facsimiles, and avionics applications. The
differences would appear in which peripherals are used and
memory type, size, and speed requirements.

The board was designed as a generic example of the
construction of a system using the IDT79R3051 RISController
with both low parts count and cost sensitive requirements.
However, since many generalities were taken into consider-

Address

ation, many systems can reduce both parts count and cost
even further. Although the board is not populated with parts
that have the highest performance achievable, its design can
beeasilymodifiedtodoso. In addition, PAL ®supportforfurther
experiments with optimizations and trade-offs can be done to
accommodate different kinds and speeds of memory and 1/0.
While the board is designed with SRAM for the simplicity of a
design example, the extension to a DRAM system with CAS
before RAS refresh is only slightly more complex.

THE R3051 RISController CPU
The IDT79R3051 family is a series of high-performance 32-

bit microprocessor RISControllers designed to bring the high­
performance inherent inthe MIPS® RISC architecture into low
cost, simplified, and power sensitive applications.

The instruction set is compatible with the 79R3000A and
79R3001 RISC CPUs. Features of the R3051 family include:
• 4kB (R3051) to BkB (R3052) of Instruction Cache on-chip
• 2kB of Data Cache on-chip
• Clocked from a single, double-frequency clock input
• On-chip 4-deep read and write buffer
• On-chip OMA arbiter
• Flexible burst/simple block bus interface

Multiplexed address and data bus for low cost packaging,
simplicity of use

• Base versions use fixed address translation to simplify
software
Extended architecture versions use 64-entry, fully asso­
ciative Translation Lookaside Buffer (TLB) to support page.

128K 128K
RAM EPROM

Latches 1-----4--i--i---_.

R3051 Family
RISController

CPU Data
Buffers

Memory
Control i-----t--t----;-;--.

UART Counter/
Timer

Figure 1. System Block Diagram

The IDT Logo, A3051, and RISController are trademarks of Integrated Device Technology, Inc.
MIPS is a registered trademark and R3000 is a trademark of MIPS Computer Systems, Inc. PAL is a registered trademark of AMO.

©1992 Integrated Device Technology, Inc 6/92

IDT79R3051™ SYSTEM DESIGN EXAMPLE

The R3051 RISController combines a similarly featured
R3000A CPU system consisting of over 50 LSl/MSI parts into
a single integrated chip.

DETAILED DESIGN REVIEW
The following sections give a detailed review of how each

functional block relates specifically to designing with the
R3051 RISController. Particular attention is focused on alter·
native design strategies that could reduce parts count and
improve performance as well as on a description of the original
design. The subsystem block designs include:
• Analog reset logic
• A PAL-based memory controller (3x PALs)
• Address demultiplexer (4x IDT74FCT373T)

Data transceiver (4x IDT74FCT623T)
128kB of SRAM (4x IDT71256 32kx8 45ns SRAM)

• 128kB of EPROM (4x 27256 32kx8 125ns EPROM)
• 68681 DUART
• 8254 Timer
• Interrupt controller (1 x PAL)
• Off-card connector

Reset, Reset Vector, and Clock Buffer Circuitry
The Reset signal is based on a linear integrated circuit, a Tl

TL7705A supply voltage supervisor with a Power-On Reset
Generator. A 1 µF capacitor is used to program the reset
generator for a 13ms Reset period.

Note that because the R3051 synchronizes the Reset input
signal internally, an RC circuit can be used instead. An
example is to pull Reset high with a resistor of about 1 Okn, tie
Reset to a 22µF capacitor which is tied to ground, and tie Reset
to a push button switch that is tied to ground. Then the RC
circuit should be gated through a buffer or synchronizer.

Certain configuration options (the reset vector) are se­
lected in the R3051 by using the interrupt pins at the rising
edge of Reset. On the example board, the interrupt pins are
simply pulled up (or down) since Slnt(2:0) are not used in this
system (software can permanently mask these interrupt in­
puts in the Status Register). However, if they are used (via the
expansion connector) they would need to be multiplexed with
the reset function. There are a number of techniques to
perform this multiplexing: for example, if the interrupting agent
is not capable of tri-stating its interrupt during Reset, an ex­
ternal multiplexer such as an IDT74FCT257T can be used,
with the enable always tied active and the select tied to Reset.
If the interrupting agent tri-states its interrupt during Reset,
then using simple pull-ups or pull-downs will still operate
properly.

The clocks on the board are buffered by an
IDT74FCT240C(T) inverting tri-state buffer. This buffer was
selected partially to provide a board testability path for inject­
ing a test clock, as well as to buffer the signals to increase their
drive. The primary reason for the buffer, however, is to invert
SysClk to form SysClk, the signal that is used to clock the state
machines on this board. Buffer output pins closest to the
ground pin (pins with the lowest pin inductance) were used
first to help lessen potential noise and ground bounce prob­
lems. The Clk2xln oscillator is socketed, so that the board

2

APPLICATION NOTE AN·86

may be populated with different speed parts.
In this design, the FCT240C(T) enables are pulled down to

be active all of the time. Since SysClk does not tri-state when
Tri-State (Slnt(1)) is active during the reset vector, it is helpful
to an ATE programmer to be able to tri-state the inverter.

Memory Controller

The example board's Memory Controller consists of three
22V10 PA Ls. The first PAL is used for address decoding, the
second for wait state and cycle counting, and the third for byte
enables. The PALs are functionally described in the following
paragraphs. The PAL equations are included in the appendi­
ces. The PALs are all placed in sockets, and thus can easily
be reprogrammed for various experiments.

Address Decoder
The Address Decoder PAL, MEMDEC.JED, uses Ad­

dress(31 :17) to generate chip selects. The chip selects are
decoded according to the 7RS382 address map as described
in the 7RS382 Hardware User's Guide. Three spare 1/0 pins
are provided, which could be used to decode additional chip
selects. These spare outputs are in place of the 'USER
CS 1 X*' chip selects provided for on the 7RS382 board, but not
explicitly supplied by this example board.

The address decoder does not wait for ALE to begin
generating the chip-select outputs. It does this so that
maximum performance may be achieved, since the Chip
Select outputs will be generated earlier in the transfer. How­
ever, as a result, the CS outputs may tend to "glitch" as a valid
address is driven. Thus, the Read Enable and Write Enable
seen in the memory system must be synchronized so that they
are valid only within the time that the CPU is attempting a read
or write transfer. This combination allows maximum perfor­
mance: address and chip enables are seen early in the
transfer, but the Read and Write signals are generated syn­
chronously to insure proper system operation.

One of the extra 1/0 pins can be used as a test enable input
to tri-state the outputs for board level ATE. Some systems will
not need to decode as many address bits or may have a fixed
map, and thus may able to use FCT138's or 16V8's to do the
address decoding instead of the relatively expensive 22V1 O
part.

Memory Cycle Controller
The purpose of the Memory Cycle Controller is to provide

a wait-state generator which stalls the R3051 's Bus Interface
Unit, so that various types and speeds of memory can be
used. The Memory Cycle Controller is implemented with a
22V10 PAL called MEMCONT.JED. Note that this PAL was
selected in order to make the PAL equations more readable.
A lower cost solution may implement the state machine in two
16R8 PALs.

The Memory Cycle Controller allows various speeds of
memory devices to be used, by using the throttled read
supported by the R3051 bus interface. Other kinds of trans­
actions are treated as simplified cases of the throttled read.

The basic state machine looks for the start of a read or write
transaction by looking for an asserting edge of Rd or Wr. When

IDTI9R3051™ SYSTEM DESIGN EXAMPLE

a transaction is begun, the state machine starts a 5-bit binary
up counter, C(4:0). C(4:0) then increments on each SysClk
rising edge. C(4:0) is used as the basic timing master for all
of the other control signals generated in the state machine.

In the memory scheme used here, rather than search for
the negating edge of Rd or Wr at the end of the transaction a
CycEnd synchronous decoder is used to tell the C counter
when the end of the memory cycle occurs. This type of
strategy is used because the de-asserting edges of Rd and Wr
occur within the setup and hold times of a buffered/inverted
(FCT240C(T)) SysClk. Typically, the de-asserting edge of Rd,
Wr, and Burst should not be used to control a SysClk based
state machine. Similarly, the rapid negation of ALE by the
processor makes it difficult to synchronously sample ALE
when using a state machine driven by a buffered clock.

CycEnd serves to synchronously reset the state machine
when a~-asserting Rd or Wr edge is expected, whether or
not the Rd or Wr de-asserting edge meets the setup and hold
times of the state machine. Another output, En Start is used to
start the byte enables by waiting a number of cycles before
asserting. The amount of time the transfer waits is used to
allow drivers used in the previous transfer to tri-state, and may
be necessary in systems which employ devices whose output
disable time is long relative to the system clock frequency.

Other outputs from the Memory Cycle Controller PAL
include the R3051 transfer termination inputs RdCEn, Ack, and
BusError. On a read transfer, Burst and one of the Chip En­
able inputs from the Address Decoder are used to determine
the timing and quantity of RdCEn signals to be asserted for this
transfer (according to the requested transfer size and the
memory device speed).

Ack is asserted at the end of a write cycle to indicate
completion of the transfer, and optionally towards the end of
a Quad Word (Burst) read cycle. A description of the various
kinds and options of read and write cycles is thoroughly
explained in the R3051 Family Hardware User's Guide. The
number of cycles before and between the assertion of Ack and

Wr

APPLICATION NOTE AN-86

RdCEn is programmable, allowing flexibility for various types
of memories.

~--Finally, the BusError output is used to end an undecoded
memory cycle. In the R3051, Rd is negated one-half cycle
after the BusError input is asserted.

Other Approaches
Of course, alternative methods and techniques to memory

interfacing with an R3051 family CPU exist. Four approaches
easily implemented in discrete components include:
• using a SysClk based CycEnd counter (as used in this

example)
• using asynchronously resettable registers for the counter
• using interlocking SysClk and SysClk registers
• using an unbuffered SysClk

All of these methods can be used to design for the clocking
scheme of the R3051 Family, which uses both the rising and
falling edges to control its outputs. The use of both edges of
the clock allows the R3051 to mitigate the 1 clock inter­
transaction latency that is associated with most other CPUs
that need the extra clock to fix up and start new memory cycles.
However, because the R3051 Family asserts and de-asserts
its edges the same way on both Rd and Wr cycles, specific
methods can be employed so that the memory system is
always clocked from one edge of SysClk. An example of this
is the CycEnd method used on this board, which ignores the
edges that are not synchronized with the state machine.
Although traditional high-performance CPUs require complex
state machines to operate efficiently, the beauty of the R3051
family is the simplicity of its interface. Memory control state
machines for the R3051 family are really only minor variations
on traditional wait-state machines, and can also easily take
advantage of the 1 /2 clock inter-transaction savings provided
by the CPU interface.

Each of the four approaches has advantages as well as
drawbacks relative to each other. The following paragraphs
will give a brief description of each technique. Each of the

C(4:0) X._ __ o _ ___,X.._ __ __.X.._ __ 2 _ _.X.._ __ 3 _ ___.X.._ __ o __

Figure 2. Timing of CycEnd

3

IDT79R3051™ SYSTEM DESIGN EXAMPLE

methods could be used by themselves or combined with one
or more of the other methods, to achieve the optimal price/
performance/parts count for a given application. Systems
employing dedicated interface chips (such as the IDT R372x
family, or customer specific AS IC or Gate Array devices), may
choose to make different trade-offs than those using discrete
component based solutions.

Using SysClk and generating a Cycle End indicator
The SysClk based CycEnd approach as described above

is straightforward because of its similarity to traditional wait­
state machines. As mentioned above, it does not require the
terminating edge of Rd or Wr to complete a transaction.

The system implemented in this design example is limited
in speed by:

tclk/2 >= 1240 + tpalco + 13051 setup + tcap + !wire

which works out to 28MHz for a 1Ons16V8, over 40MHz for a
5ns 16R8 PAL, and 33MHz for a 1 Ons 22V10 PAL.

Using Asynchronous Reset to terminate the Cycle
Counter

The second potential method, which uses an asynchro­
nous reset to terminate the cycle, requires ANDing together
Rd and Wr into the the reset line of the counter C(4:0) and can
be demonstrated by reprogramming the PAL on the example
board. The reset-to-valid output, reset width, and the reset
recovery time to clock are among the speed limiting paths in
this approach when implemented in PALs. Unfortunately, the
reset-to-output delay of a PAL is usually less optimized and
relatively slow.

tasyncreset <= tclk/2 - trdn - tcap - twire

For example, a 20MHz system would require a reset-to­
output delay of 17ns, which can be found in a 1Ons22V10 PAL
(with a 15ns reset-to-valid output data time).

Using interlocking PALs clocked on opposite edges
The third potential approach uses a SysClk based register

to detect asserting edges and a SysClkbased register to detect
de-asserting edges. The outputs of each of the PA Ls interlock
by controlling the outputs of the other PALs. This allows the
flexibility of seeing all edges and being able to control outputs
optimally by using any 1/2 clock edge (such as output en­
ables). Such an approach obviously requires more PALs, and
is somewhat speed limited by:

tclk/2 >= 1240 + tpalco + tpalsetup + tcap + twire

which works out to 20MHz for a 10ns 16V8 PAL.
In systems using chips designed specifically to interface to

the R3051 family (such as the IDT R3721 DRAM controller),
this approach is simpler to implement and leads to the highest
levels of performance.

Using an unbuffered SysClk

The fourth potential approach uses an unbuffered SysClk
based state machine. This leads to the requirement of having
0 hold time on the registers as well as a 2ns minimum
propagation delay time to meet the R3051 timing require-

4

APPLICATION NOTE AN-86

ments (note that using a buffered SysClk instead of the un­
buffered version would require negative hold time on the
registers). Despite these restrictions, some PALs can be
found that meet all of these requirements. This approach
leads to a one cycle latency in reacting to R3051 output
assertions. An asserting Rd or Wr would be seen a clock too
late to bring RdCEn or Ack LOW during their first possible
sampling clock. Using an unbuffered SysClk has a speed
advantage over the other techniques:

tclk >= tpalco + t3051setup +leap+ !wire

tclk/2 >= 13051 prop + tpalsetup + tcap + twire

which can support designs of 35MHz for a 1Ons16V8 PAL and
well over 40MHz with a 7.5ns 16R8 PAL.

An additional consideration relative to using an unbuffered
SysClk is the amount of loading placed on the clock, and the
impact of additional loading on R3051 AC parameters. Of
course, when using a single chip memory controller such as
the IDT R3721 or a customer designed ASIC, these loading
considerations are minimal.

In summary, the R3051 Family uses both edges of the clock
to assert control signals in order to reduce inter-transaction
delay between external bus cycles. However, by using one or
a combination of the above techniques in a design, a tradi­
tional wait-state machine can still be used with the addition of
only minor variations.

Read and Write Enables
The Read and Write Enables PAL, MEMEN.JED, uses

EnStart and CycEnd to control the initiation and length of the
output enable and write enable assertions. Rd and Wr are used
to select between read and write cycles. Note that it would
have been possible to combine individual bank selects with
the address decoder PAL, rather than use a distinct PAL to
control the timing of the assertion of Write and Read Byte
Strobes.

On read cycles, RaEr1 is asserted as the system's primary
output enable signal. Rd DataEn is used to enable the FCT623T
data transceiver bank. RdDataEn in most systems would
simply be 'DataEn' as supplied straight from the processor.
This system provides RdDataEn in case other transceiver
banks are added to the system.

The byte enables are used to support partial word writes
which are used during byte, halfword, and tri-byte operations.
Write cycles combine the byte enables, BE(3:0), with Wr,
EnStart, and CycEnd to form the write enable outputs
WrEn(D:A) which are attached to the byte banks within the
memory system. Whether or not the system is Little or Big
Endian, WrEn(A) is always attached to the LSB. WrEn(D:A) can
also be implemented using an FCT257T multiplexer.
WrDataEn is used to control the FCT623T data transceiver
bank and must be held extra long to provide memory data hold
time.

Finally, the Byte Enable PAL also has a synchronized Pon
used to update wReset output called ReS8t and a "guarded"
GUARTCS. The guarded chip select, GUARTCS is an ex­
ample of interfacing R3051 signals to a Motorola-type 1/0
Device as opposed to an Intel-type 1/0 Device.

IDT79R3051™ SYSTEM DESIGN EXAMPLE

Motorola-type devices multiplex their read/write input pin
and expect a data strobe pin to validate the data out or to latch
the data in, while Intel-type devices have separate read and
write strobes. Since the MC68681 DUART is a Motorola
device, the data strobe must start late and end early, so that
read/write is held throughout that period. Additionally, the
MC68681 uses its chip select pin as a data strobe. As a data

APPLICATION NOTE AN-86

strobe, it is important not to have decoder glitches on the chip
select since reads in 1/0 devices are often used to update
FIFO pointers. Thus, the guarded GUARTCS uses EnStart
and CycEnd to shorten up UARTCS. Finally, WrEn is pro­
vided to extend Wr to allow additional data hold time at the end
of the write cycle. WrEn cou Id easily be inserted with another
OR term into WrEn(A).

C(4:0) x~_o -~X ___ ~X __ 2 _ __,X..___3 _ __,X.._ __ o __

RdDataEn

Figure 3. Timing Diagram of RdEn

C(4:0) x~_o _ __,X.._ ___ _,X._ __ 2 _ __,X.___3_-JX __ o _ __,X~ __ x -

WrEn(A)

WrDataEn

Figure 4. Timing Diagram of WrEn(A)

5

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

Wr

C(4:0) x~_o _ _,X.__ __ __,X,_ __ 2 _ __,X,_ __ 3 _ __,X.___4 _ __,X,_ __ s __

GUARTCS

Figure 5. Timing Diagram of Start of GUARTCS

Wr

C(4:o) X.___s _ __.X~ __ 1_~X~_o ___ _

GUARTCS

Figure 6. Timing Diagram of End of GUARTCS

6

IDT79R3051™ SYSTEM DESIGN EXAMPLE

Address Latch and Transceiver Demultiplexer
The address latch bank consists of four FCT373T 8-bit

transparent latches. ALE is used for the latch enable on the
FCT373Ts. The transparent phase allows extra address de­
coding time during the time that ALE is HIGH; the outputs of
the latches are fed directly to the address decode PAL and to
the memory devices. In order to insure that address hold time
to the latches are met, it is important to take care with the use
of the ALE signal. The number and length of the ALE traces
is critical and should be kept to a minimum.

Rather than use FCT373s, DRAM systems may want to
use FCT821 s or FCT823s, which are wider latches. RAS/
GAS address multiplexing can be performed by sequencing
the output enables of the latches and having the outputs of the
latches tied together and driving the DRAM address bus.

The data transceiver bank on the example board uses four
FCT623T 8-bit transceivers. FCT623Ts were chosen over the
similar 10-bit FCT861 'sand 9-bit FCT863s simply to reduce
pin count. The FCT861/3s provide a more conventional
interface, since both output enables are active-LOW, instead
of one enable active-HIGH, and the other active-LOW as in the
FCT623Ts. However, since this system uses PALs to control
the transceivers, the use of FCT623s poses no additional
complexity to the design.

FCT623Ts were selected instead of FCT245s because of
the ease of interfacing to dual output enable pins instead of a
direction and enable pins as in the FCT245. Interfacing with
FCT245 controls would ideally require that the direction con­
trol only be changed when the output enable is disabled. This
requires extending a combined (latched) Rd and Wr based
signal for an extra cycle at the end of a memory transaction,
which may be the beginning of the next memory cycle. Unless
the direction pin is controlled with a SysClk based state ma­
chine, a signal like EnStart would be necessary to keep the
enable pin de-asserted in the subsequent cycle until the
direction pin control becomes valid. Some systems with high
noise tolerance, e.g., IBM-PC adapter boards, forgo the extra
cycle ideal and simply bus contend for a very short time (a few
ns) into its memory system by having the read strobe directly
control the direction. DataEn, output from the CPU, can be
used in such systems to simplify control signal generation.

When there are no pending OMA, read, or write requests,
the R3051 tri-states the A/0(31 :0) bus during these non-bus
clock cycles to reduce power consumption. One can option­
ally add external pullup or pulldown resistors so that the A/
0(31 :0) bus is always defined for board level ATE and so that
the input pins of the latches and transceivers are stabilized.

Finally, systems that can output disable (OE to Z-state) all
memory readable devices within:

!disable < tclk/2 - 13051 dataenn + taddr - leap - !wire

might not require the transceiver bank and thus could reduce
the parts count by 4.

7

APPLICATION NOTE AN-86

EPROM and Static RAM Memory
The memory on the example board is populated with 125ns

Erasable PROMs (EPROMs) and 45ns Static RAMs (SRAMs).
Four 27C256 32kx8 EPROMs are used to form 128kB of
ROM. The EPROMs are placed in sockets and thus can easily
be removed for reprogramming or replacement; alternative
designs may wish to add circuitry to allow in-board program­
ming of the EPROMs (e.g. Flash Erase EPROMs).

The EPROMs have a relatively long output disable time
(OE to Z-state), typical of ROMs and thus require data buffers
to prevent contention on the multiplexed AD(31 :0) bus, since
the following equation is not met:

tclk/2 >= tdisablecontrol +!disable - taddr + leap + twire

In addition, the disable time for these EPROMs is long
enough that, except for relatively slow systems (under20MHz),
extra clocks need to be added to the next bus cycle to prevent
bus contention with other memory banks. This is determined
by:

!elk>= tdisablecontrol + !disable - tdata + leap + twire

The SRAM bank is formed using four I DT71256 32kx8
SRAMs for a total of 128kB. The RAM chips have common
data 1/0 pins, separate read and write strobes, and chip
selects. RAMs without a separate read strobe (output enable
pin) may require more complex address decoding when used
in a multiple bank configuration.

DUART, Timer, and Interrupt Controller

An MC68681 DUART and an MAX235 RS232 transceiver are
used to form two RS232 serial communication links. The DUART
control registers are word addressed, but only 0(7:0) are used. The
MC68681 is an example of a Motorola-type 1/0 interface as ex­
plained above.

An iP8254 timer/counter chip is used for a real-time clock
or timer. The iP8254 is an example of an Intel-type 1/0 inter­
face. The iP8254s need for separate read and write strobes
matches up well with the R3051.

Software control of these chips is best described by their
respective data sheets. Typically, most software programs for
the 7RS382 have used the DUART in a polling mode and the
timer in a square wave mode. Interrupts lnt(5:3) are controlled
by UARTlntOC, Timer OutB, and Timer OutA respectively
from MSB to LSB. The 16R8 PAL, called MEMINT.JED, is
used to control these interrupts latches in the assertion
transition of the original interrupt lines.

The controller holds the interrupt line to the processor for
Timer A and Timer B until they are acknowledged (as required
by the R3051). Acknowledgement is indicated by reading the
interrupt controller at Virtual Address BF80001 O and BF800014
(Physical Address 1 F80001 O and 1 F800014) respectively.
This action incidentally reads extraneous data from the Timer
chip itself on 0(7:0). The DUART interrupt must be acknowl­
edged by using the DUART control registers.

IDT79R3051™ SYSTEM DESIGN EXAMPLE

The output disable to data in Z-state time for these 1/0
peripherals is relatively long, as is typical for 1/0 devices. This
forms the critical timing path for the placement of En Start in the
Memory Controller and Memory Enable PALs.

Expansion Connector

APPLICATION NOTE AN-86

lfDMA is to be used, the R3051 control outputs Rd, Wr, Burst,
DataEn, and ALE are pulled HIGH or LOW so that they remain
inactive when tri-stated.

SCHEMATICS AND PAL EQUATIONS
Two 50-pin connectors are provided which bring out the Appendices include the System Design Example Board

R3051 RISController pins to allow off-board expansion. The Schematics and the PAL equations.
BusReq and BusGnt pins are not presently used on this board.

AD(O) 54

R3051 AD(1) 55

AD(2) 56

PLCC-84 AD(3) 59

AD(4) 60

AD(5) 61

AD(6) 62

AD(?) 63

AD(8) 64

AD(9) 67
19 RSVD(O) AD(10) 68

RSVD(1) AD(11) 69

RSVD(2) AD(12) 70

RSVD(3) AD(13) 71

RSVD(4) AD(14) 72

AD(15) 75

AD(16) 76

AD(17) 77

AD(18) 78
27 SINTN(O) AD(19) 79
26 SINTN(1) AD(20) 80
25 SINTN(2) AD(21) 83
24 INTN(3) AD(22)

84
23 INTN(4) AD(23)
20 INTN(5) AD(24) 2

AD(25) 3

AD(26) 4

AD(27) 7
33 BRCOND(O) AD(28) 8
30 BRCOND(1) AD(29) 9
29 SBRCOND(2) AD(30) 10
28 SBRCOND(3) AD(31) 11

ADDR(2) 51

ADDR(3) 52

ACKN 36 ACKN RDN 45
RDCENN 35 RDCENN WRN 44
BUSERRORN 37 BUSERRORN BUSGNTN 39
BUSREQN 34 BUSREQN ALE 46

DATAENN 43

BURSTNIWRNEARN 53

DIAG(O) 47
48 RESETN 38 RESETN DIAG(1)

CLK2XIN 14 CLK2XIN SVSCLKN 40

Figure 7. R3051 RISController

8

IDT79R3051™ SYSTEM DESIGN EXAMPLE

+5V

4.7K
TL7705A

7 SENSE VCC 8

2 RESINN 2 RESIN RESET 6

16
4.7K

CT 3 CT RESET 1-"5'----~P=O,;..;W,;..;R:.=E=S=ET,;..;N~I

I-:- GND U32 REF 1 REF

1UF(TANl)t I' T0.1UF

Figure 8. Reset Logic

+5V

3.6864MHZ

osc
vcc 14

19

Q 8 IOOSC 2
GND

SVSCLKN

osc
vcc 14

GND Q 8 OSC2XIN

4.7K 4.7K

16 16

APPLICATION NOTE AN-86

+SV

16 16

4.7K 4.7K

4.7K 4.7K 4.7K 4.7K

16

+SV

16

4.7K

FCT240

OEA
OEB
DAO QAO
DA1 QAf

DA2 QA2
DA3 Qi'i3
DBO QBO
DB1 C'.iB"f
DB2 Q"£i2
DB3 QEi3

16 16 16

BUSREQN

Figure 9. Unused Inputs

IOCLK
SYSCLK

CLK2XIN

IOOSC

Figure 10. Clock Logic

9

IDT79R3051™ SYSTEM DESIGN EXAMPLE

NOTES:
MEMSPAREO--CARDCSNIXCSNO
MEMSPARE1 -- C4 I WRLASTN I WORLDBOOTN
MEMSPARE2 -- TESTEN I SHADOW RAM I DATAENN I XCSN1

A31:17

+SV

16 16

4.7K 4.7K

+SV

16
4.7K

+ 22µF

T

4.7K

4.7K

1
13
11
10

9
s
7
6
s
4
3
2

1
13
11
10

9
s
7
6
s
4
3
2

16

1
13
11
10

9
s
7
6
s
4
3
2

16

22V10

CLK
IN10 1/09
IN9 I/OS
INS 1/07
IN7 1/06
IN6 I/OS
INS 1/04
IN4 1/03
IN3 1/02
IN2 1/01
IN1 1/00
INO

MEMDEC.JED

22V10

CLK
IN10 1/09
IN9 I/OS
INS 1/07
IN7 1/06
IN6 I/OS
INS 1/04
IN4 1/03
IN3 1/02
IN2 1/01
IN1 1/00
INO

MEMCONT.JED

22V10

CLK
IN10 1/09
IN9 I/OS
INS 1/07
IN7 1/06
IN6 I/OS
INS 1/04
IN4 1/03
IN3 1/02
IN2 1/01
IN1 1/00
INO

MEMEN.JED

23
22
21
20
19
1S
17
16 A31
1S A 30
14 A 29

17
16
1S
14(C3)

23
22
21
20
19
1S
17
16
1S
14

Figure 11. Memory Controller

10

+SV

16

4.7K

16

4.7K

4.7K

16

.7K

APPLICATION NOTE AN-86

RAMCSN
EPROMCSN

UARTCSN
TIMERCSN

MEMSPARE(O)

16

-=- +SV

16

4.7K

RESETN
WREN NA
WREN NB
WREN NC
WREN ND

WRENN
WRDATAEN

RDENN
RDDATAENN

GUARTCSN

IDT79R3051™ SYSTEM DESIGN EXAMPLE

c WROATAEN

!::::> ROOATAENN

~ 12t31:0)

TESTEN(2)

!::::> ALE

4.7K

16

74FCT373

/~mion-~~t-11--~3~00 oor,~,--~~~B~EN~(~O)~
V~,m;,,+------1-+-4:!..101 01~6,-----,~,.,,,,~m~m.
/",.m~'oi----t-11--~7~02 02i-;;-----rrn"-"Nrr,(("'*''"2'

V/'~m7~3n---t-ll--~B~o3 03~9~-~__tlCl'll'=-=c.:;::3~.
vv~;.;;;,.~,;,;;.--+1--"13'-1 04 04 12 A(4; "
,;~"'7;+----1-+--'-14:!..105 05 15 ~

v/0Q1_6 ___ t--lr--.._11,, 06 06 16 = '- ,
vv',A~u1~---+-+-~1-"-"'s 07 07 19 ~

~LE '
t-----1- N
~--~

74FCT373

,A~l2.l!~~-+----t-+-3~oo oo~2-~~~s,
l/'.!,A,..,~o+~-+----t-+-4_,01 01 ~5-~~"'9[\,
V;,,A,..,Q.t~1or----+-t-__,1,, 02 02 6 A 1 a L'\
V,A~~-+-11-+---+-+-__,s ... 03 03 9 A 11 N
l/'.!,A~0""(~12,,.__-+-t---t13'-ID4 04 12 A 12N
V;,A"'C['"""'13,,_._-+-+--'-14c.ios 05 1s A 13N
V;,A~~~14+---+-+--'-'17-lD6 06 16 A 14 _'\
V,A~~-+-1S~--+-+-~1S'-<07 07 19 A 1S ~

V t-+--11- LE " t-----1- fil
~--~

74FCT373
,,A"'0~16,,___-t-+-~3'-l DO OD 2 A(16)

V,,A,..,D~17,,___-+-+--c4o-i 01 01 5 ~ 'j
V,,A~0,.,_.18~--+-+--7'-< 02 02 6 A(18)_'\
l/,,A~D-+--19+---+-+-~B_, 03 03 9 7\(1 9)~
V,:,A"'0~2'°'0+---+-+-"'1 3'-l 04 04 1 2 ~
J'jr.AA~~21~--t-+-~14'-I 05 05 1 s ~)~
t', 22 17 06 06 16 = . '
V,,A_D~2_3~--+-+-~1 S"-' 07 Q7 19 ~

V t-t----11-iLE "
~OE
~--~

74FCT373

,A~o~2~4~--+-+--3~ 00
l/1,A~D,.,,2~5~--+-+--4.c; 01
V'./,A~D~26=c---t-t--7'-lo2
V,,A~0~2~77----t-+-~s~ 03

OO 1-'2~~~.._2~4,_
o1 5 ~5N

V,A02S 13 04
j/,AO 29 14 OS
V,AD30 17 06
V,AD 31 1S 07

V ~LE
~ITE

02 6 A26N
03 9 A 27l_'j

04 12 ~sN
05 15 A29N
06 16 &3aN
07 19 A31l_'j

'1
~--~

4.7K

16

APPLICATION NOTE AN-86

74FCT623T
~GAB
~GBA

,,A,.,0<7oo+----t--+---=-i2 A1 B1 r1=s _ _,,o,,_o"-
V,A~o~1,,,_ __ -+--+---=-i3 A2 B2 ~1~1 __ 0.._1~l'\
V;,A~0~2,,_ __ -t--+---'-14 A3 B3 t--1~s--0~2[\,
V;,A~0~3':+-----t--+---=-i5 A4 B4 r1=5 _ _,,0~3l"-'\
V,A_0~4-+-----t--+---=-i6 A5 B5 l-'1~4 __ 0~4~l'\
l/'.!,A~QTI~5-+----+--+---'-<7 A6 B6 >-'1~3--QTI~sL\,
l/'.!,A~l!TI~6-+-----t--+---=-iS A7 B7 !-'1=2--0~6L\,
V;,A~QQ~7'-'----t--+---"-19 AB BBt--1~1 __ 0~7L\, v '\

74FCT623T
~GAB
~GBA

,A~12i!""~-+----+--+---=-i2 A1 B1t--1~8-~0(~SJ,
l/'.!,A~~_,9.,,~~---t-t--3_, A2 82 ,_1_7_~~~~~
V,A-~~1~0~--+--+---'-14 A3 B3 16 ~IT~
l/'.!,A~0-+-11,,__ __ t-t--"-<S A4 B4 15 ~'
l/'.!,A,..,0-+-12,,__ __ t-t----t6 A5 BS 14 U\12[\

V;,A""0+1-ce3~--+-+--'-"7 A6 B6 13 ~
l/'.!,A~0~14,,,_ __ t--11--~S~A7 B7 12 --=-'.:.2'

~,A_0~1_S~--+-+-__,9'"iAS BS 11 ~

74FCT623T
~GAB
~GBA

,ccA~0~16,,,__ __ t--11--~2~A 1
V,A~0,.,.__17-+---+-t--=-!3 A2
V:,A~0,,.,.,,1S,,._ __ t-t--'-14 A3
V:,A~0~19-+---t-t----ts A4
V:,ccA~0~20':+----t--11--~6~AS
V,A~0~21-+---+-t----t7 A6
V:,A~0,.,._22-+---+-+--=<S A7
V:,A_0-+--23-+---+-+--"-<9 AS v

~ Gr~FCT623T

~GBA
,A~0~~=24,,,._ ____ -=-i2 A1

V:,A~0~~=2S-+--------t3 A2
V,ccA~0~26,,,__ _____ 4:-jA3
V,A~D-+--27-+------=<5 A4
V:,A~D~IB=2s,,._ ____ -"-<6 A5
V:,A~0~~=29-+--------t7 A6
V:,,A"'O~Jf~30+------"-IS Al
Vr-cA~Df~3~1 ____ __,9~AB
v

B1 1S
B2 17
83 16
B4 1S
85 14
B6 13
B7 12
BS 11

B1 1S
B2 17
83 16
B4 15
BS 14
B6 13
B7 12
BS 11

BEN(3:0)

A(31:4)

Figure 12. Address Latch Data Transceiver Demultiplexer

11

IDT79R3051™ SYSTEM DESIGN EXAMPLE

L...
D(31"0)

B ADDR(~
ADDR(3)

~ A(1S:4)
L__)

71256
10 AO DOO 11 D(O)

9 A1 D01 12 D(1}'\..
A(4) B A2 D02 13 D(2l_"'-

V.:A(5) ? A3 D03 15 D(3}'\..
VA(S) s A4 D04 1S D(4)'\.
VA(7) 5 A5 D05 17 D(5['

~ 4 AS DOS 1B ~ v~ 3 A7 D07 19
v~o)_ 25 AB "" VA(11) 24 A9 V.:A(12) 21 A10
V_A(13) 23 A11 +5V
VA(14) 2 A12 u VA(15) 2S A13
v~s 1 A14 vcc v GND 11 20 cs

,.--11, WE
~ OE

§
RAMCSN
WREN NA
WREN NB
WREN NC
WREN ND
RDENN

27256
10 AO DO 11 D(O)

9 A1 D1 12 .£\!l"'-
~ B A2 D2 13 ~ v~ 7 A3 D3 15

VA(S) s A4 D4 1S D(4)'\.
VA(?) 5 A5 D5 17 0(5)"
V.:A(B) 4 AS DS 1B D(Sl'\.,
VA(9) 3 A7 D7 19 D(7)'\.

VB!O 25 AB "" V3!1 24 A9
v~2 21 +5V

A10
V.:A(13) 23 A11 r V.:A(14) 2 A12
VA(15) 2S A13 VPP ~ V.:A(1S) 27 A14 vcc v GND Fi ~ cs

~ OE

EPROMCSN

NOTE: BANK A - - LITTLE EN DIAN LSB BYTE 0
- - BIG ENDIAN LSB BYTE 3

~
9

A(4) B
VA(5) 7
VA(S) s
VA(7) 5
V~B 4
V~9 3
V.1'l-10)_ 25
VA(11) 24
VA(12) 21
V,A(13) 23
VA(14) 2
VA(15) 2S
~1S 1

v
20

.--1Z-
~

~
9

A4 B

V~5 7
VA(S) s
VA(?) 5
V:A(B) 4
V.:A(9) 3
v~o 25
V_l\(.11 24
VAj12)_ 21
VA(13) 23
V:A(14) 2
V.:A(15) 2S
VA(1S) 27

v
~
~

Figure 13. ROM and Static RAM Memory

12

APPLICATION NOTE AN-86

71256

AO DOO 11 D(B

A1 D01 12 D}9i'\

A2 D02 13 Qi:IO)"

A3 D03 15 D 11f\

A4 D04 1S D 12)'\.

A5 D05 17 D 13)"

AS DOS 1B D 14f\

A7 DQ7 19 D(15f\

AB "" A9
A10
A11 +5V

A12 u A13
A14 vcc

GND 11 cs
WE
OE

27256

AO DO 11 D(B)

A1 D1 12 Di91'\.

A2 D2
13 D(1<1_"'\.

A3 D3 15~1~

A4 D4 1S D(12)"

A5 D5
17 D(13)"

AS DS
1 B D(14)::'\

A7 D7 19 D(15)"

AB "" A9 +5V
A10
A11 >-
A12
A13 VPP l~B +
A14 vcc

GND Fi cs
OE

IDD9R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

D(31·0)
CJ

71256 71256

~ AO DQO 11 D(16)
~ AO DQO 11 D(24)

9 A1 DQ1 12 D(17)'""" 9 A1 DQ1 12 D(25)'\I
A(4) 8

A2 DQ2 13 D(18)"'\. A(4) 8
A2 DQ2 13 D(26)_"!

VA(5) 7
A3 DQ3 15 D(19)::'-. VA(5) 7

A3 DQ3 15 D(27)~
V::A(6) 6

A4 DQ4 16 D(20)::'-. V::A(6) 6
A4 DQ4 16 D(2B)'\I

VA(?) 5
A5 DQ5 17 D(21)"'\. VA(?) 5

A5 DQ5 17 D(29)_"!

v~ 4 A6 DQ6 18 ~2;:)_"'\. v~ 4 A6 DQ6 18 ~~~ v~ 3 A? DO? 19 ~~ v~ 3 A? DQ7 19
v310)_ 25 AB " v~10)_ 25 AB "I
VA(11) 24

A9
VA(11) 24

A9
VA(12) 21

A10
VA(12) 21

A10
V::A(13) 23

A11 +5V VA(13) 23
A11 +5V

VA(14) 2
A12 lJ

VA(14) 2
A12 lJ VA(15) 26

A13
VA(15) 26

A13
v~16 1 A14 vcc v~16 1 A14 vcc v GND n v GND n 20 cs 20 -cs ,----n, WE ,--2L WE
~ TIE ,_.gg_ OE

27256 27256
._____1Q_ AO DO 11 D(16) <---.1.Q_ AO DO

11 D(24)

9 A1 D1 12 E0~""- 9
A1 D1

12 _£_25)_"!

~ 8 A2 D2 13 ~~ ~ 8 A2 D2
13 :.'.!12~~

v~ 1 A3 D3 15 _i:>i 1 9)_" v~ 1 A3 D3
15 :.'.!12'.l_ '\I

VA(6) 6
A4 D4 16 D(20)"'\. VA(6) 6

A4 D4
16 D(28}_'\I

VA(?) 5
A5 D5 17 D(21)_"'\. VA(?) 5

A5 D5
17 0(29)_"!

VA(B) 4
A6 D6 18 D(22)::'-. VA(B) 4

A6 D6
18 0(30)~

VA(9) 3
A? D7 19 D(23) "'\. VA(9) 3

A? D7
19 0(31)'\I

v~10 25 AB
'"""'

v~1'1_ 25
AB "I

v~11 24
A9 +5V

v~11 24
A9 +5V v~12 21 A10

kJ
vl\(_12)_ 21

A10

kJ VA(13) 23
A11

VA(13) 23
A11 VA(14) 2

A12
VA(14) 2

A12 V::A(15) 26
A13 VPP

VA(15) 26
A13 VPP

J.-':A(16) 27 A14 vcc VA(16) 27
A14 vcc v GND r1

v GND n
~ cs Jr:c' ~ OE OE

OTE BANK D - - LITTLE ENDIAN MSB BYTE 3
- - BIG EN DIAN MSB BYTE 0

Figure 13. ROM and Static RAM Memory

13

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

+5V

~
68681

~ 1ACK
OTA(% i.2..

L) Q(?:Q)_
D7 19 D7 OPO

29 Oi:lQ)_
/DS 22 D6 TXDA

30 TXDA
VD5 18 D5 RXDA

31 RXDA
V,_D4 23 D4 IPO

7 I~
V,_D3 17 D3 OP1

12 oljIT
VD2 24 D2 TXDB

11 TXDB
VD1 16 10 RXDB
VDO

D1 RXDB IPill_ 25 DO IP1
4

D ADD~:~ IL OP2
28 oi:®._

Af§:4)_
AJ§_ 6 RS4 IP2

36 I~
L., /~ 5 RS3 v ADDR(3) 3 RS2 IRQ

21 UARTINTOC
VADD~ 1 RS1 v TESTEN(3)

8
GUARTCSN 35 cs
WRENN 8 T!lW
RESETN 34 !=!ES L/ 2 IP3 ~ ~ OP3

~ IP4 OP4 ~
[""") IOCLK ~ IP5 OP5 i-H

CLK OPS ~ ~

+5V ~ X2 t-1.§ OP?

~
""#

SYSCLK

ADD~ 19 AO
VADD~ 20 A1 v 8254

DO 8 DO
VD1 7 D1
VD2 6 D2 OUTO 10 OUT(O)

V,_D3 5 D3
V,_D4 4 D4
VD5 3 D5 ~ VD6 2 D6 v ADDA@:
VD7 13 OUT(1) 1 D7 OUT1 V.--v

21 (';S r--
22 RD WREN NA 23 WR"

OUT2
17 OUT(2)

~ GATEO
~ CLKO

H-1!1 GATE1

~ CLK1
~ GATE2

18 CLK2

R TIMERCSN
RDENN

L/
INTENN

Figure 14. Input/Output Devices

14

IDT79R3051™ SYSTEM DESIGN EXAMPLE

+5V

L;>.
+5V

~

16

~4.7K
MAX235

vcc~

-+------'8=-iTl1
--+----~7'-<Tl2
--+----~9'-<R01
--+----~6'-'R02

15 Tl3
16 Tl4

-+----2=3=-iR03
--+----~17'-<R04

22 Tl5
-+----~14'-IR05

~EN
..nso

-+---e til-GND

101 3 RTSNJQL

102 4 TXOJ.O
Rl1 10 RXOJQ[
Rl2 5 CTSN QL

103 2 RTSN 1l_
T04 1 TXOJ1

Rl3 24 RXOJ1
Rl4 18 CTSN :!l_

T05 19 OTRN IT
Rl5 13 OSRN IT

~---~

--,

-~
4.7K~

~1~

**

-+-+-

0825

5 -"Rm
3 _;TXO
2 :; RXO
4 :;CTS
s~rrm
~OS!i

.zt-<GNO

0825

~--+---'5'+_,..< RTS
~--+-~3+_;< ·rxo

~--+--'2'+-<:; RXO
~---t--4'+<:; CTS

~-----+---'6'+<-"rm1
20 ;OS!i

~GND

Figure 14. Input/Output Devices

15

APPLICATION NOTE AN-86

IDT79R3051"' SYSTEM DESIGN EXAMPLE

+5V
,6.

Figure 15. Power Connector

4.7K~
16

Figure 17. Spares

16

GND
DIAG(O)

BURSTN
ADDR(2)

GND
AD(O)
AD(2)
AD(4)
AD(6)
GND

AD(B)
AD(10)
AD(12)
AD(14)

GND
AD(16)
AD(18)
AD(20)
AD(22)

GND
AD(24)
AD(26)
AD(28)
AD(30)

GND

J1

GND
DIAG(1)

+5V
ADDR(3)

GND
AD(1)
AD(3)
AD(5)

AD(7)
GND

AD(9)
AD(11)
AD(13)
AD(15)

GND
AD(17)

AD(19)
AD(21)
AD(23)

GND
AD(25)
AD(27)
AD(29)
AD(31)

GND

APPLICATION NOTE AN·86

Figure 16. 50-Pln Connector

+5V

lUF :;EuF
T T

Figure 18. Primary Power Decoupling Capacitors

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

GND
ALE
RON

WRN

ACKN
BUSREQN

GND
SINTN(O)
SINTN(2)

INTN(4)
BRCOND(O)

SBRCOND(2)

GND
WRDATAEN

RDDATAENN
RDENN

INTENN

SVSCLKN

CLK2XIN
GND

J2

GND
GND

DATAENN
BUSERRORN

RDCENN
BUSGNTN

GND
SINTN(1)

INTN(3)
INTN(5)

BRCOND(1)
SBRCOND(3)

TESTEN(O)
MEMSPARE(O)
MEMSPARE(1)
MEMSPARE(2)

GND

RESETN
+5V

GND

Figure 19. 50-Pin Connector

+5V

+5V

0.1UF 0.1UF 0.1UF 0.1UF 0.1UF

TTTTT
+5V

TTTTT
+5V

GND

TESTEN(1)

IOCLK
TESTEN(4)

SYSCLK
TESTEN(O)

J5

GND

+5V
IOOSC

+5V
SYSCLKN

+5V

Figure 20. 100 Mil Jumper Headers

~1UF ~1UF ~1UF ~1UF 0.1UF

TTTTT

TTTTT

TTTTT TTTTT
Figure 21. Decoupling Capacitors

17

IDT79R3051™ SYSTEM DESIGN EXAMPLE

{ TITLE

PURPOSE
LANG
AUTHOR
UPDATES

MEMDEC.LPLC
UPALl MEMORY AND I/O ADDRESS DECODER PAL FOR THE R305X
BEHAVIORAL BUS EMULATOR MEMORY EVALUATION BOARD
DECODES DEMULTIPLEXED ADDRESS TO GENERATE CHIP SELECTS.
LPLC - TM OF CAPILANO COMPUTING SYSTEMS
ANDY NG, IDT INC.
C2503 03-18-91 AP NOTE FIRST RELEASE

MODULE UPALl
TITLE UPALl
TYPE AMD 22V10

INPUTS
DEMULTIPLEXED MEMORY ADDRESS LINES }

APPLICATION NOTE AN-86

A17 NODE[PINl] { MSB ADDRESS LINES 31-17

OUTPUTS

A18 NODE[PIN2]
A19 NODE [PIN3]
A20 NODE [PIN4]
A21 NODE [PINS]
A22 NODE [PIN6]
A23 NODE[PIN7]
A24 NODE [PINS]
A25 NODE [PIN9]
A26 NODE[PINlO]
A27 NODE [PIN11]
A28 NODE [PIN13]

{ OUTPUT FEEDBACK NODES (NEEDED FOR LPLC'ISM) }
A29 NODE[PIN16]
A30 NODE[PIN15]
A31
MEMSPAREO
MEMSPAREl
MEMSPARE2

NODE [PIN14]
NODE[PIN19]
NODE[PIN18]
NODE[PIN17]

{ ATTRIBUTES C - COMBINATIONAL, R - REGISTERED, H - HIGH, L - LOW }

CHIP SELECTS
RAMCSN NODE[PIN23] ATTR[CL] STATIC RAM CHIP SELECT
EPROMCSN NODE[PIN22] ATTR[CL] EPROM CHIP SELECT
UARTCSN NODE [PIN21] ATTR[CL] UNGATED UART CHIP SELECT
TIMERCSN NODE [PIN2 0] ATTR[CL] TIMER CHIP SELECT

{ I/O PINS USED AS INPUTS }
A29 NODE [PINl 4] ATTR[CL] { MSB ADDRESS LINES 31-17
A30 NODE [PINl 5] ATTR[CL]
A31 NODE [PINl 6] ATTR[CL]
MEMSPAREO NODE [PIN19] ATTR[CL]
MEMSPAREl NODE [PIN18] ATTR[CL]
MEMSPARE2 NODE[PIN17] ATTR[CL]

{ OUTPUT ENABLES }
RAMCSNEN NODE[PIN23EN]
EPROMCSNEN NODE[PIN22EN]
UARTCSNEN NODE[PIN21EN]

18

IDTI9R3051™ SYSTEM DESIGN EXAMPLE

TERMS

TIMERCSNEN NODE[PIN20EN]
A29EN NODE[PIN14EN]
A30EN NODE[PIN15EN]
A31EN NODE[PIN16EN]
MEMS PARE OEN NODE[PIN19EN]
MEMSPARElEN NODE[PIN18EN]
MEMSPARE2EN NODE[PIN17EN]

{ ASYNCHRONOUS RESET AND SYNCHRONOUS PRESET NODES }
RESET EN NODE[RESET]
PRESETEN NODE[PRESET]

7RS382 COMPATIBLE PHYSICAL ADDRESS DECODE MAP }
RAM OOOOOOOOH OOOlFFFFH 32K }

EPROM lFCOOOOOH lFClFFFFH 32K }

UART lFEOOOOOH 1FE0003FH }

TIMER 1F800000H 1F80002CH }

LPLC "TABLE" ALGORITHM TAKES TOO LONG TO COMPILE }

NOTES: MEMSPAREO IS BEING USED FOR A BOARD CHIP SELECT
DRIVABLE BY ANOTHER MEMORY SYSTEM. WITHOUT IT
ASSERTED LOW, THIS BOARD WILL NOT ISSUE ANY MEMORY
SIGNALS NOR OUTPUT ENABLE SHARED CONTROL PINS.

{ NOTES: MEMSPAREl IS NOT BEING USED. IT COULD BE USED AS AN
OUTPUT IF IT OR THE UPAL2 OUTPUT IT IS CONNECTED TO IS
TRISTATED.

{ NOTES: MEMSPARE2 IS BEING USED AS A TESTEN INPUT PIN TO
TRISTATE THE OUTPUTS DURING BOARD TESTING. ANOTHER
USE WOULD BE FOR A BOARD CHIP SELECT - MEMCSN.
MEMSPARE2 IS CONNECTED TO A UPAL3 INPUT PIN.

{ I/O PINS USED ONLY AS INPUTS }
A29EN 0
A30EN 0
A31EN 0
MEMSPAREOEN 0
MEMSPARElEN 0
MEMSPARE2EN 0
A29 NOT 0
A30 NOT 0
A31 NOT 0
MEMSPAREO NOT 0
MEMSPAREl NOT 0
MEMSPARE2 NOT 0

{ RESET AND PRESET ARE NOT USED IN THIS PAL. }

RESET EN 0
PRESETEN = 0

RAMCSNEN
RAMCSN NOT

;

!MEMSPARE2 ;
!MEMSPAREO AND

!A31 AND !A30 AND !A29 AND !A28
AND !A27 AND !A26 AND !A25 AND !A24

19

APPLICATION NOTE AN-86

IDT79R3051™ SYSTEM DESIGN EXAMPLE

EPROMCSNEN
EPROMCSN NOT

UARTCSNEN
UARTCSN NOT

TIMERCSNEN
TIMERCSN NOT

END;
END UPALl.

AND !A23 AND !A22 AND !A21 AND !A20
AND !A19 AND !A18 AND !A17

!MEMSPARE2 ;
!MEMSPAREO AND

!A31 AND !A30 AND !A29 AND A28
AND A27 AND A26 AND A25 AND A24
AND A23 AND A22 AND !A21 AND !A20
AND !A19 AND !A18 AND !A17

!MEMSPARE2 ;

!MEMSPAREO AND
!A31 AND !A30 AND !A29 AND A28

AND A27 AND A26 AND A25 AND A24
AND A23 AND A22 AND A21 AND !A20
AND !A19 AND !A18 AND !A17

!MEMSPARE2 ;

!MEMSPAREO AND
!A31 AND !A30 AND !A29 AND A28

AND A27 AND A26 AND A25 AND A24
AND A23 AND !A22 AND !A21 AND !A20
AND !A19 AND !A18 AND !A17

20

APPLICATION NOTE AN-86

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

{ TITLE MEMCONT.LPLC
UPAL2 MEMORY CONTROLLER PAL FOR THE R305X BEHAVIORAL BUS EMULATOR
MEMORY EVALUATION BOARD

PURPOSE: PRODUCES READ, WRITE, AND BUS ERROR ACKNOWLEDGE CONTROLS (RDCENN,
ACKN, BUSERRORN) BASED ON A 4 OR 5 BIT COUNTER AND CYCLE END
STALL CYCLE (WAIT STATE) EQUATIONS.

LANG LPLC - TM OF CAPILANO COMPUTING SYSTEMS
AUTHOR ANDY NG, IDT INC.
UPDATES: C4B76 03-18-91 AP NOTE SECOND RELEASE

MODULE UPAL2
TITLE UPAL2
TYPE AMD 22V10

INPUTS
REGULAR INPUT PINS }

SYSCLK NODE[PINl]
RESETN NODE [PIN2]
RDN NODE [PIN3]
WRN NODE[PIN4]
BURS TN NODE [PINS]
RAMCSN NODE [PIN6]
EPROMCSN NODE[PIN7]
UAR TC SN NODE [PINS]
TIMERCSN NODE[PIN9]
MEMSPAREO NODE [PINl 0]
MEMSPARE2 NODE [PINl 1]

UN-INVERTED SYSTEM CLOCK
MASTER RESET
READ
WRITE
BURST READ I WRITE NEAR
RAM CHIP SELECT
EPROM CHIP SELECT
UART CHIP SELECT
TIMER CHIP SELECT

TESTEN NODE[PIN13] TEST PIN TO Z-STATE OUTPUTS

OUTPUTS

{ REGISTER FEEDBACK PINS }
C WIDTH[5] NODE[PIN15,PIN14,PIN21,PIN22,PIN23]
ENSTARTN NODE[PIN16]
CYCENDN NODE[PIN18]
RDCENN NODE[PIN19]
ACKN NODE[PIN20]
BUSERRORN NODE[PIN17]

{ ATTRIBUTES C - COMBINATIONAL, R - REGISTERED, H - HIGH, L - LOW

REGISTERED OUTPUT PINS }
BINARY UP COUNTER INPUTS MSB TO LSB C4, C3, C2, Cl, co }

c WIDTH[5] NODE[PIN15,PIN14,PIN21,PIN22,PIN23] ATTR[RL]
ENSTARTN NODE[PIN16] ATTR[RL] { READ/WRITE OUTPUT ENABLE START
CYCENDN NODE[PIN18] ATTR[RL] { CYCLE END (COMPOSITE ACK)
RDCENN NODE[PIN19] ATTR[RL] { R305X READ BUFFER CLOCK ENABLE
ACKN NODE[PIN20] ATTR[RL] { R3050X ACKNOWLEDGE
BUSERRORN NODE[PIN17] ATTR[RL] { R305X BUS ERROR

{ OUTPUT ENABLES }
CEN WIDTH[5]
ENSTARTNEN
CYCENDNEN
RDCENNEN
ACKNEN
BUSERRORNEN

NODE[PIN15EN,PIN14EN,PIN21EN,PIN22EN,PIN23EN]
NODE[PIN16EN]
NODE[PIN18EN]
NODE[PIN19EN]
NODE[PIN20EN]
NODE [PINl 7EN]

21

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

TABLE

{ ASYNCHRONOUS RESET AND SYNCHRONOUS PRESET NODES }
RESETEN NODE[RESET]
PRESETEN NODE[PRESET] ;

{ RESET AND PRESET ARE NOT BEING USED.
RESET EN 0
PRESETEN = 0 ;

PURPOSE: PROVIDES REGISTERED VERSION OF RDN AND WRN.

NOTE:

NOTE:

QRDN NOT
QWRN NOT

QRDN AND QWRN ARE KEPT LOW ONE EXTRA CLOCK BY CYCENDN.
THIS IS BECAUSE THE RISING EDGE OF RDN OR WRN MAY NOT
HAVE ENOUGH HOLD TIME FROM THE RISING EDGE OF
(BUFFERRED) SYSCLK.
QRDN AND QWRN DO NOT NECESSARILY TRANSITION BACK HIGH
BETWEEN CONSECUTIVE MEMORY CYCLES, E.G., WRITE FOLLOWED
BY A WRITE.

RESETN AND (! RDN OR (! QRDN AND ! CYCENDN))
RESETN AND (!WRN OR (!QWRN AND !CYCENDN))

{ PURPOSE: C[4]-C(O] PROVIDES A 5-BIT BINARY UP COUNTER. IT IS RESET
ANYTIME RESETN IS ASSERTED AND AT THE END

NOTE:

{ NOTE:

CEN[O]
CEN[l]
CEN[2]
CEN[3]
CEN[4]

C(O] . -

C[l] . -

C[2] . -

OF EVERY MEMORY CYCLE AFTER CYCENDN IS ASSERTED.
IT BEGINS COUNTING UP WHEN A READ OR WRITE CYCLE IS
INITIATED.
CYCENDN IS ASSUMED TO ASSERT WITH THE LAST RDCENN
ON READS AND WITH ACKN ON WRITES. THUS CYCENDN WILL CLEAR
THE COUNTER WHETHER OR NOT RDN OR WRN HIGH TRANSITION
MEETS THE REGISTER SETUP AND HOLD TIME REQUIREMENTS.

TO ADD A GENERAL PURPOSE READY (A.K.A. BUSYN AND WAITN)
INPUT, CHANGE EACH OF THE COUNTER C[4:0] EQUATIONS SO
THAT THEIR VALUE CAN BE HELD WITH AN ADDITIONAL TERM, E.G.:
C[O] .- RESETN AND CYCENDN AND (!RDN OR !WRN)

AND ((C [OJ XOR 1)
OR (C[O] AND !READY)) ;

A READY INPUT CAN BE USED FOR DUAL-PORT MEMORY INTERFACING,
EEPROM WRITE INTERFACING, ETC.

!TESTEN
!TESTEN
!TESTEN
!TESTEN
!TESTEN

RESETN AND CYCENDN AND (!RDN OR !WRN)
AND (C[O] XOR 1) ;

RESETN AND CYCENDN AND (!RDN OR !WRN)
AND (C[l] XOR C[O])

RESETN AND CYCENDN AND (!RDN OR !WRN)
AND (C [2] XOR (C [1] AND C [0])) ;

22

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

c [3]

C[4]

RESETN AND CYCENDN AND (!RDN OR !WRN)
AND (C[3] XOR (C[2] AND C[l] AND C[O]))

RESETN AND CYCENDN AND (!RDN OR !WRN)
AND (C[4] XOR (C[3] AND C[2] AND C[l] AND C[O]))

{ PURPOSE: ENSTARTN OUTPUT PROVIDES THE TIMING FOR THE LEADING
EDGE OF OEN AND WEN STROBES SO THAT 1. THE ADDRESS LINES HAVE
TIME TO BE DECODED AND 2. OE/DATA PINS HAVE TIME TO Z-STATE
FROM READS ON THE PRECEDING CYCLE. THE CYCENDN TERM IS
NEEDED TO HOLD OFF A CONSECUTIVE MEMORY CYCLE, E.G., WHEN
WRITE DEASSERTS AND REASSERTS WITHIN THE SAME CLOCK.
ENSTARTN SHOULD NOT BE USED TO END WRITE TRANSCEIVER
ENABLES AS IT DEASSERTS WITH THE WRITE LINE INSTEAD OF
HOLDING FOR ONE MORE 1/2 CLOCK.

ENSTARTNEN !TESTEN ;
ENSTARTN NOT .- !MEMSPAREO AND RESETN AND (C >= 1) AND CYCENDN

{ PURPOSE: CYCLE END GOES LOW (SYNCHRONOUSLY) DURING THE LAST RDCENN ON
READS AND DURING ACKN ON WRITES. IT RETURNS HIGH
SYNCHRONOUSLY BY INTERLOCKING ON THE COUNTER OUTPUTS
WHICH COUNT ONE GREATER THAN THE ASKED FOR VALUE BEFORE
RESETTING BACK TO ZERO (VIA CYCENDN) . THUS CYCENDN WILL
DEASSERT ON THE SAME CLOCK AS THE RDN, WRN, OR BURSTN RISING
EDGES REGARDLESS OF WHETHER OR NOT THOSE RISING EDGES MEET
THE REGISTER'S SETUP AND HOLD TIMES.

{ NOTE: TO FIT CYCENDN INTO A 16V8, TWO OUTPUTS MAY BE NEEDED.

CYCENDNEN !TESTEN ;
CYCENDN NOT ·- RESETN AND CYCENDN AND (

(!RAMCSN AND (C 02H) AND !RDN AND BURS TN)
OR (!RAMCSN AND (C 08H) AND !RDN AND !BURSTN)
OR (!RAMCSN AND (C 03H) AND !WRN)

OR (! EPROMCSN AND (C 03H) AND !RDN AND BURSTN)
OR (! EPROMCSN AND (C OCH) AND !RDN AND !BURSTN)
OR (!UARTCSN AND (C 06H))

OR (! TIMERCSN AND (C 06H))

OR ({ ! BUSERRORN} (C lFH))

) ;

{ NOTE: IN THIS EXPERIMENT MEMSPAREO IS PULLED LOW AND CAN BE
USED TO DISABLE THIS CONTROLLER'S RDCENN, ACKN, AND BUSERRORN.
SINCE MEMSPAREO IS ATTACHED TO THE MEMDEC.LPLC PAL, THE
MEMDEC PAL COULD COMBINE THE CSN'S SO THAT THESE SIGNALS
ARE ONLY DRIVEN WHEN NEEDED.

{ NOTE: ANOTHER POSSIBILITY IS TO USE MEMSPAREO AS AN EXTRA CHIP
SELECT.

PURPOSE: READ BUFFER CLOCK ENABLE IS USED BY THE R305X TO STROBE
DATA INTO ITS INTERNAL READ BUFFERS.

NOTE: IT IS ASSUMED THAT THE UART AND TIMER ARE
IN UNCACHABLE MEMORY.SPACE AND WILL NOT BE BURST READ.
IF THEY ARE BURST READ, THE STATE MACHINE LOOPS 4 TIMES.

23

IDT79R3051™ SYSTEM DESIGN EXAMPLE

RDCENNEN
RDCENN NOT

) ;

!MEMSPAREO ;

·- RESETN AND CYCENDN AND (

(!RAMCSN AND !RDN
AND (

OR (!BURSTN AND
OR (! BURSTN AND
OR (! BURSTN AND

OR (! EPROMCSN AND !RDN
AND (

OR (! BURSTN AND
OR (! BURSTN AND
OR (! BURSTN AND

OR (!UARTCSN AND !RDN
AND (

)

OR (!TIMERCSN AND !RDN
AND (

)

APPLICATION NOTE AN-86

(C 02H)
(C 04H))
(C 06H))
(C 08H))

(C 03H)
(C 06H))
(C 09H))
(C OCH))

(C 06H)

(C 06H)

{ PURPOSE: ACKNOWLEDGE IS PRIMARILY USED TO END WRITE CYCLES. IT
SHOULD BE PULSED ONE (HALF) CLOCK CYCLE BEFORE THE WRITE
STROBE IS NEEDED. ON READ CYCLES, ACKNOWLEDGE WILL
IMPLICITLY BE GENERATED BY THE R305X, HOWEVER, IF OPTIMAL
TIMING IS DESIRED, ACK SHOULD BE DRIVEN NO SOONER THAN 1
CLOCK BEFORE THE END OF A SINGLE READ AND FOR BURSTS NO
SOONER THAN 4 CLOCKS BEFORE THE END OF THE LAST READ.

ACKNEN
ACKN NOT

!MEMSPAREO ;
.- RESETN AND CYCENDN AND

(!RAMCSN AND !WRN
AND (

)

(C

OR (!RAMCSN AND !RDN AND !BURSTN

03H)

AND ((C == OSH)
)

OR (!EPROMCSN AND !RDN AND !BURSTN
AND ((C == 09H)

)

OR (!UARTCSN AND !WRN
AND (

)

(C 06H)

24

{ WRITE CYCLE }

{ READ CYCLE }

{ READ CYCLE }

{ WRITE CYCLE }

IDT79R3051™ SYSTEM DESIGN EXAMPLE

) ;

OR (!TIMERCSN AND !WRN
AND (

)

APPLICATION NOTE AN-86

WRITE CYCLE }
(C 06H)

{ PURPOSE: BUSERRORN SIMPLY ENDS A WAYWARD UNDECODED BUS CYCLE. ON
READS IT CAUSES AN EXCEPTION. ON WRITES IT DOES NOT CAUSE
AN EXCEPTION CONDITION FOR THE PROCESSOR. TO DO THAT, LATCH
BUSERRORN AND FEED IT TO AN INTERRUPT PIN OR A BRANCH
CONDITION PIN.

BUSERRORNEN !MEMSPAREO
BUSERRORN NOT .- RESETN AND CYCENDN AND

(C lFH)

25

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

{ TITLE MEMEN.LPLC
UPAL3 MEMORY READ AND WRITE ENABLE PAL FOR THE R305X BEHAVIORAL BUS
EMULATOR MEMORY EVALUATION BOARD

PURPOSE
LANG
AUTHOR
UPDATES

GENERATES READ AND WRITE ENABLES FOR MEMORY CONTROLS.
LPLC - TM OF CAPILANO COMPUTING SYSTEMS
ANDY NG, IDT INC.
C7C4F 03-18-91 AP NOTE FIRST RELEASE

MODULE UPAL3
TITLE UPAL3
TYPE AMD 22V10

INPUTS
DEMULTIPLEXED MEMORY ADDRESS

SYSCLK NODE [PINl]
POWRESETN NODE[PIN2]
RDN NODE[PIN3]
WRN NODE[PIN4]
ENSTARTN NODE [PINS]
CYCENDN NODE[PIN6]
BENO NODE [PIN7]
BENl NODE [PIN8]
BEN2 NODE [PIN9]
BEN3 NODE [PINlO]
UAR TC SN NODE[PINll]
MEMSPARE2 NODE [PIN13]

LINES }
INVERTED SYSCLKN
POWER UP RESET
READ LINE
WRITE LINE
ENABLE START
CYCLE END
BYTE ENABLE 0
BYTE ENABLE 1
BYTE ENABLE 2
BYTE ENABLE 3
UART CHIP SELECT
SPARE INPUT

{ OUTPUT FEEDBACK NODES (NEEDED FOR LPLC'ISM) }

OUTPUTS

RESETN NODE[PIN23]
WRENN
WRDATAEN

NODE[PIN18]
NODE[PIN17]

{ ATTRIBUTES C - COMBINATIONAL, R - REGISTERED, H - HIGH, L - LOW }

WRITE ENABLES
WRENN A NODE[PIN22] ATTR[RL]
WRENNE NODE[PIN21] ATTR[RL]
WRENNC NODE[PIN20] ATTR[RL]
WRENND NODE[PIN19] ATTR[RL]
WRENN NODE [PINl 8] ATTR[RL]
WRDATAEN NODE [PINl 7] ATTR[RL]

{ READ ENABLES
RDENN NODE[PIN16] ATTR[RL]
RDDATAENN NODE[PIN15] ATTR[RL]

{ MISCELLANEOUS CONTROLS }
RESETN NODE[PIN23] ATTR[RL]
GU AR TC SN NODE [PINl 4] ATTR[RL]

I/O PINS USED AS INPUTS }
NONE }

OUTPUT ENABLES }
WRENNAEN NODE[PIN22EN]
WRENNE EN NODE[PIN21EN]

26

WRITE ENABLE FOR BYTE 0
WRITE ENABLE FOR BYTE 1
WRITE ENABLE FOR BYTE 2
WRITE ENABLE FOR BYTE 3
WRITE ENABLE MOTO-TYPE I/O
WRITE DATA XCEIVER ENABLE

READ OUTPUT ENABLE (FOR WORDS)}
READ DATA XCEIVER ENABLE }

SYNCHRONIZED RESET
GATED/GUARDED UART CHIP SELECT}

IDT79R3051™ SYSTEM DESIGN EXAMPLE

TABLE

WRENNCEN NODE[PIN20EN]
WRENNDEN NODE[PIN19EN]
WRENN EN NODE[PIN18EN]
WRDATAENEN NODE[PIN17EN]
RDENNEN NODE[PIN16EN]
RDDATAENNEN NODE[PIN15EN]
RESETNEN NODE[PIN23EN]
GUARTCSNEN NODE[PIN14EN]

{ ASYNCHRONOUS RESET AND SYNCHRONOUS PRESET NODES }
RESET EN NODE[RESET]
PRESETEN NODE[PRESET]

{ RESET AND PRESET ARE NOT USED IN THIS PAL. }
RESET EN 0
PRESETEN = 0 ;

{ PURPOSE: WRITE BYTE ENABLES AND WRITE WORD ENABLE ALLOW
SUFFICIENT TIME FOR THE ADDRESS TO DECODE AND
FOR A VALID CHIP SELECT BEFORE ENABLING THE
WRITE STROBE FOR A SPECIFIC BYTE BANK.

NOTE:

WRENNAEN
WRENN A

) ;

WRENNE EN
WRENNE

) ;

WRENNCEN
WRENNC

) ;

WRENNDEN
WRENND

) ;

BANK A IS THE BIG ENDIAN'S LSB BYTE3 OR THE LITTLE
ENDIAN'S LSB BYTEO. IT ALWAYS HOLDS D(7:0).
BANK D IS THE BIG ENDIAN'S MSB BYTEO OR THE BIG
ENDIAN'S MSB BYTE3. IT ALWAYS HOLDS D(31:23).

!MEMSPARE2 ;

NOT . - RESETN AND (

!WRN AND !BENO AND !ENSTARTN AND CYCENDN

!MEMSPARE2 ;
NOT . - RESETN AND (

!WRN AND !BENl AND !ENSTARTN AND CYCENDN

!MEMSPARE2 ;
NOT .- RESETN AND (

!WRN AND !BEN2 AND !ENSTARTN AND CYCENDN

!MEMSPARE2 ;

NOT ·- RESETN AND (

!WRN AND !BEN3 AND !ENSTARTN AND CYCENDN

{ PURPOSE: WRENN IS USED TO PROVIDE A WRITE LINE THAT HOLDS
LOW FOR AN EXTRA CYCLE, SO THAT IT CAN BE USED FOR
MOTOROLA-TYPE I/O DEVICES ON THEIR MULTIPLEXED
READ/WRITE LINE.

WRENN EN
WRENN

!MEMSPARE2
NOT .- RESETN AND

27

APPLICATION NOTE AN-86

IDT79R3051™ SYSTEM DESIGN EXAMPLE

(!WRN AND CYCENDN)
OR (! WRENN AND ! CYCENDN)

) ;

{ PURPOSE: WRDATAEN AND RDDATAENN DRIVE THE OUTPUT ENABLE
CONTROLS ON A FCT623T TRANSCEIVER BANK FOR THE
DATA BUS. THE CONTROLS CAN BE USED FOR ANY
DUAL-OUTPUT ENABLE TRANSCEIVER (1 FOR EACH
DIRECTION. OUTPUT ENABLE/DIRECTION CONTROLLED
TRANSCEIVERS (FCT245) REQUIRE MORE INTERFACING
IF OUTPUT CONTENTION IS TO BE AVOIDED BY

{ NOTE:

NOTE:

NOTES:

WRDATAENEN
WRDATAEN

) ;

RDENNEN
RDENN

) ;

ONLY CHANGING THE DIRECTION WHEN THE OUTPUTS ARE
DISABLED.

WRITE DATA ENABLE DEASSERTS ONE CLOCK AFTER
WRN DOES TO PROVIDE SUFFICIENT HOLD TIME FOR THE
WRITE DATA INTO THE MEMORY (SEE UPAL2 QWRN FOR A
MORE DETAILED EXPLANATION) .
WRDATAEN IS ACTIVE HIGH FOR THE FCT623T OUTPUT ENABLE
CONTROL. FOR THE FCT861 OUTPUT ENABLES, USE ACTIVE
LOW.
THE FIRST OR-TERM ASSERTS WRDATAEN WHILE THE SECOND
OR-TERM DEASSERTS WRDATAEN.

!MEMSPARE2 ;
.- RESETN AND (

(! WRN AND ! ENSTARTN)
OR (WRDATAEN AND (! ENSTARTN OR ! CYCENDN))

!MEMSPARE2 ;
NOT .- RESETN AND (

!RDN AND !ENSTARTN AND CYCENDN

{ PURPOSE: RDDATAENN IS CONNECTED TO THE MEMORY BOARD'S

{ NOTE:

DATA TRANSCEIVER OUTPUT ENABLE (FCT623T OR FCT861)
AND ONLY ENABLES FOR THIS BOARD'S CHIP SELECTS.
IF THE MEMORY CONTROLLER IS USED FOR ANOTHER
BOARD'S MEMORY, THEN THE TRANSCEIVER OUTPUT ENABLE
SHOULD BE DISABLED FOR THOSE CHIP SELECTS (VIA
MEMSPARE2.

IN MOST SYSTEMS, R305X'S DATAENN OUTPUT CAN BE
CONNECTED DIRECTLY TO THE TRANSCEIVER ENABLE PIN
INSTEAD OF USING A SYNTHESIZED RDDATAENN.

RDDATAENNEN !MEMSPARE2
RDDATAENN NOT .- RESETN AND

!RDN AND !ENSTARTN AND CYCENDN
) ;

{ PURPOSE: RESET SYNCHRONIZES THE POWER UP RESET FOR THE
MEMORY CONTROLLER STATE MACHINES AND FOR THE R305X.

RESETNEN
RESETN

!MEMSPARE2
NOT .- !POWRESETN

28

APPLICATION NOTE AN-86

IDT79R3051™ SYSTEM DESIGN EXAMPLE

END;

{ PURPOSE: GUARDED/GATED UART CHIP SELECT, GUARTCSN GATES
UARTCSN BECAUSE THE UART BEING USED HAS A MOTOROLA­
TYPE I/O DEVICE INTERFACE WHICH MULTIPLEXES ITS
READ/WRITE INPUT PIN SUCH THAT THE CHIP SELECT MUST
STROBE IN OR OUT DATA. THIS IS IN CONTRAST TO AN
INTEL-TYPE I/O DEVICE INTERFACE WHICH WOULD HAVE A
SEPARATE READ STROBE AND WRITE STROBE AS WELL AS A
CHIP SELECT. IT IS IMPORTANT NOT TO HAVE A
GLITCH (FROM ADDRESS DECODING THE CHIP SELECT) ON
READS IN ORDER TO ALLOW THE I/0 DEVICE TO UPDATE
FIFO POINTERS, ETC. THUS GUARTCSN STARTS LATE AND
ENDS EARLY, SO THAT READ/WRITE IS HELD VALID
THROUGHOUT THE CHIP SELECT.

GUARTCSNEN ! MEMS PARE2 ;
GUARTCSN NOT .- RESETN AND (

!UARTCSN AND !ENSTARTN AND CYCENDN
) ;

END UPAL3.

29

APPLICATION NOTE AN-86

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

{ TITLE MEMINT.LPLC
UPAL4 MEMORY I/0 INTERRUPT CONTROLLER PAL FOR THE R305X BEHAVIORAL
BUS EMULATOR MEMORY EVALUATION BOARD

PURPOSE: REPLICATES THE TIMER/UART INTERRUPT CONTROLLER ON THE 7RS382 BOARD.
ADDITIONAL FUSE BITS ADDED FOR 16V8 COMPATIBILITY.

LANG
AUTHOR

LPLC - TM OF CAPILANO COMPUTING SYSTEMS
IDT INC.

UPDATES: C3F98 01-04-91 16V8 PCB VERSION FIRST RELEASE A.N.

{ U24A_382 INTERRUPT PAL}
{ 1-2-90,12-14-89 }
{JEDEC file's CHECKSUM = 379E } { NOTE: 01-04-91 - NOT APPLICABLE TO 16V8 }

CONTROL PAL FOR 8254 TIMER'S AND UART INTERRUPT
USED FOR EVALUATION BOARD 382 }

MODULE U24A_382;
TITLE U24A_382;
TYPE MMI 16R8;

{ FUSE BITS FOR 16V8 FAMILY ATTRIBUTES USED AS A
FUSE 2048 .. 2079 00000000000000000000000000000000
FUSE 2080 .. 2111 00000000000000000000000000000000
FUSE 2112 .. 2143 00000000000000001111111111111111
FUSE 2144 .. 2175 11111111111111111111111111111111
FUSE 2176 .. 2193 111111111111111101

INPUTS;

NODE[PIN2];
NODE [PIN3] ;
NODE [PIN4];
NODE[PINS];
NODE[PIN6];
NODE [PIN7] ;

16R8

MRES/
UARTINT/
PMRD/
CST IM/
EA02
EA04
OUTl
OUTO

NODE[PIN8]; {input from Timer output OUTl}
NODE[PIN9]; {input from Timer output OUTO}

DTOA/
DTOB/
TO INT/

DTlA/
DTlB/
TlINT/

OUTPUTS;

UINT5/
DTOA/
DTOB/
TO INT/

DTlA/
DTlB/
TlINT/

NODE[PIN14]; {feedback}
NODE[PIN15]; {feedback}
NODE[PIN16]; {feedback}

NODE[PIN17]; {feedback}
NODE[PIN18]; {feedback}
NODE[PIN19]; {feedback}

NODE[PIN13];
NODE[PIN14];
NODE[PIN15];
NODE[PIN16]; {goes to R3000's UINT3}

NODE[PIN17];
NODE[PIN18];
NODE[PIN19]; { goes to R3000's UINT4}

30

IDT79R3051™ SYSTEM DESIGN EXAMPLE

TABLE;
{ 8254 TIMER generates 2 square-wave outputs OUTO and OUTl.

DTOA/
DTOB/

When OUTO goes from high to low, this PAL asserts interrupt
TOINT/, which will interrupt R3000 through UINT3.
Same scheme applies to OUTl, TlINT/ and UINT4.
Reading physical addresses 1F80 0010 and 1F80 0014 (which are
virtual addresses BF80 0010 and BF80 0014 in this 382 board)
will clear interrupt UINT3 and UINT4, respectively.

This PAL also synchronizes UART interrupt signal }

OUTO; {delay TIMER's OUTO through a register}
DTOA/; {delay again}

TOINT/ NOT . - MRES/ AND
((NOT DTOA/ AND DTOB/) OR

APPLICATION NOTE AN-86

(NOT TOINT/ AND (NOT EA04 OR EA02 OR CSTIM/ OR PMRD/)));

DTlA/
DTlB/
TlINT/ NOT . -

DINTS/

END;
END U24A_382.

OUTl;
DTlA/;
MRES/ AND
((NOT DTlA/ AND DTlB/) OR
(NOT TlINT/ AND (NOT EA04 OR NOT EA02 OR CSTIM/ OR PMRD/)));

UARTINT/ OR NOT MRES/
{put UART's interrupt through a register to synchronize
it with R3000 clock }

31

t;). R3051™ FAMILY PERFORMANCE APPLICATION

IN EMBEDDED APPLICATIONS NOTE
AN-89

Integrated Devke Technology, Inc.

By V. S. Ramaprasad

INTRODUCTION
The IDTR3051 ™ is a family of RISC controllers specially

suited for embedded applications. Instruction and data caches
are integrated on the chip to yield cache hit rates of over 90%
for a wide range of typical embedded applications. These
RISC controllers also provide the designer with a simple
interface to the rest of the system through built in read/write
buffers, a multiplexed address/data bus and a small set of
control signals. This simple interface enables the designer to
select an optimal price/performance memory and 1/0 system.

In this application note the performance of a 33MHz R3051-
based system is presented. Standard integer benchmarks are
run on the software model of the R3051 DRAM-based sytem,
and the results obtained are compared with the published
results for 33MHz i960 and 33MHz 29k RISC processor­
based systems. The performance of R3051-based systems
can be attributed to the raw horse power of R3000A core
coupled with the highly-desired optimal integration provided
on the chip.

SYSTEM DESCRIPTION
The 33MHz R3051-based system modelled is made up of

sons DRAMs with a page mode access time of 50ns. The refill
sizes for both the caches is four. The processors burst mode
of access is utilized for refilling both the caches on cache
misses. This implies that after the initial latency cycles the 2-
way interleaved main memory is capable of supplying the
subsequent instructions or data at the processor speed. The
instructions are streamed into the processor along with the on­
chip cache refill.

The 33MHz R3051 system is modelled with a software
simulation tool called Cache305x. This software is based on
the Cache2000,™ which is part of the Systems Programmers
Package developed by MIPS® Computer Systems, Inc.
Cache2000 is used to model R3000/R3001-based systems
with more than 98% accuracy of simulation.

To accurately model R3051-based systems, the existing
Cache2000 is modified. Besides setting the cache sizes, the
block refill sizes, the write buffer depth etc., sections are
added to the Cache2000 program to simulate the bus priority
scheme adopted by the R3051 family for processing the main
memory transactions and to implement the read/write proto­
cols. Memory transactions are listed here with descending
order of priorities. OMA activity is assumed not to be present
in these simulations.

1. Current transaction completes without pre-emption.
2. Instruction cache misses are processed.

3. Data residing in the four-deep write buffer is retired to
the main memory.

4. Data cache misses are carried out next.

The read/write operations follow the priority scheme. The
initiation of either of these transactions depends on the
pending memory transaction requests. The built-in bus arbi­
tration logic resolves the conflict for the memory bus following
the above mentioned priority scheme. The arbitration unit
operates in parallel with the execution core. The core could be
executing instructions from the caches, while the bus arbitra­
tion unit is retiring the writes currently residing in the write
buffer.

For instruction cache misses, in the best case where there
is no write in progress, a read signal to the external memory
is initiated one cycle after the core missed in the instruction
cache. This extra cycle is for the arbitration unit to generate the
read signal request. On top of this arbitration cycle, if a write
is currently in progress, the processor stalls till the write
operation is terminated. In this case, after a write operation a
DRAM-based system needs to be precharged before the read
operation. The first instruction is read into the processor after
the initial read latency of the memory system. The remaining
three instructions are read in three consecutive cycles. After
the reads, the DRAM precharge cycles are added to the total
cycle count.

For data cache misses, there is an extra penalty of flushing
the contents of the write buffer besides the extra one cycle for
the arbitration. The number of cycles it takes to flush the write
buffer depends on the number of words that are resident and
also whether they could be retired as idle writes, or page
writes, or non page writes. In the current system that is
modelled, four words of data is brought in on a cache miss.
The first word is read into the processor after the initial read
latency of the memory system. The remaining three words are
read in the following three consecutive cycles. Afterthe reads,
the DRAM precharge cycles are added to the total cycle count.

The write buffer interface decouples the core processor
from the external slow memory system. Writes are retired in
parallel with the processor executing out of the caches. In this
state of execution, write operations always win the arbitration,
and continuously retires the writes. This parallel mode of
operation gets terminated only when the write buffer is full and
a store is pending or when the processor can no longer
execute out the caches. Keeping in mind that our interest in
these simulations is the total cycle count for the complete
execution of the program, write operations contribute to the
total cycle count only when the processor needs to read from
the external memory or when the processor can not proceed

The IDT Logo is a registered trademark of Integrated Device Technology, Inc. and the R3051, and RISController are trademarks of lntegra1ed Device Technology, Inc.
MIPS is a registered trademark of MIPS Computer Systems, Inc. and Cache2000 Is a trademark of MIPS Computer Systems, Inc.

©1992 Integrated Device Technology, Inc.
32

6192

R3051™ FAMILY PERFORMANCE IN EMBEDDED APPLICATIONS

with the execution of a store instruction because the write
buffer is currently full.

The penalty cycles due to writes delaying the processor
external reads on cache misses are accounted for during the
read transactions. When the write buffer is full and the
processor is executing a store instruction, penalty cycles that
would vacate a single entry in the write buffer is added. This
is not the same as retiring a single write, but it is equivalent to
four cycles. This is due to the availability of an extra data
register that captures the data being vacated from the write
buffer. If another store follows in this situation where the four
entries of the write buffer are full and the extra data buffer that
drives the bus is loaded, the penalty is that of retiring a write
to the memory.

DRAM PARAMETERS
The memory system considered in this R3051 design is

made up of BOns DRAMs with page mode access time of 50ns.
The other parameters of the DRAM that affect the access time
in different modes of DRAM are the initial read latency cycles,
number of cycles to perform a write operation when the DRAM
is in idle mode, number of cycles to perform a read/write
operation when the DRAM is in page mode, number of cycles
to perform a write operation when the DRAM is not in page
mode. The parameters are set to fixed values to model a
DRAM system that works with R3051 running at 33MHz.

The initial read latency cycles at 33MHz is the summation
of the cycles to win the internal arbitration (1 cycle), cycles for
the DRAM controller to generate RAS/CAS signals and per·
form a random read from the DRAM (6 cycles). The first word
of instruction/data is read in the fixup cycle (1 cycle). The
remaining words are read in the three following cycles. It
should be noted that the DRAM precharge cycles are part of
the 6-cycle random read latency mentioned above.

The idle write latency is the number of cycles to retire a write
when the DRAM is in idle mode. Using BOns DRAMS this can
be accomplished in 6 cycles. The page mode read or write
operations can be completed in 3 cycles, while the non-page
writes can be carried out in 6 cycles. In the current system that
is modelled with Cache305x, DRAM RAS precharge cycles
are added when a read follows a write operation.

DRAM Parameters @ 33MHz

Read latency 7 Cycles

RAS precharge 3 Cycles

Idle write 6 Cycles

Page write 3 Cycles

Non-page write 6 Cycles

33

APPLICATION NOTE AN-89

COMPETITION
In this application note two other RISC systems, namely the

i960 and the 29k, are compared with the R3051 DRAM system.
The Intel i960CA system is the ASV960CA board running

at 33MHz with O wait-state memory for instructions and 3 wait·
state memory for the data. The memory is implemented with
15ns SRAM. Internally the i960CA has 1 kB of instruction
cache memory. The benchmarks are compiled with 1.35
GCC/960 (results obtained from Intel).

The 29ksystem is the VAR Cs card running at 33MHz using
RevD AM29000. It has a 2 MB of instruction memory, and a
512kB of data memory. The memories are implemented with
35ns Static RAMs (results obtained from AMO).

STANDARD INTEGER BENCHMARKS
Several standard integer benchmarks are run on the 33MHz

R3051-based system using the Cache305x. They are
Quicksort, Bubblesort, Pi500, Anneal, Matmult, and
Dhrystone1 .1. (0) The suite was selected by Intel, these
benchmarks are selected because of (1) the availability of
results for two other RISC processors, namely the i960 and
the 29k, and (2) though being small, they still provide an
insight into the capability of the processor in embedded
environments.

Quicksort performs sorting of 5000 elements of an integer
array using a recursive algorithm.

Bubblesort manipulates and sorts an array of 500 elements
after reading a file.

Pi500 computes the value of the mathematical constant 'Pi'
upto 500 decimal points. This program does not use any
floating point math, but more than 50% of the cycles are spent
in integer multiplications and integer divisions.

Anneal program solves the travelling-salesman problem by
the method of simulated annealing.

Matmult is a program that loops for 100 times, and in each
loop it performs the multiplication of two 8 x 8 integer arrays.
The result is stored in another 8 x 8 array.

Dhrystone 1.1 benchmark demonstrates the integer num­
ber crunching power of the processor, although it is susceptible
to compiler optimizations. Dhrystone 1.1 is reported here for
the R3051 system instead of Dhrystone 2.0 for lack of data for
the i960 and the 29k.

All the above mentioned integer benchmarks are compiled
with a C compiler version 2.0 on an M/120 system running
RISC/os 4.0. Except for Dhrystone benchmark, all the other
benchmarks are compiled with the highest level of optimiza­
tion 04. This includes optimization techniques such as global
register allocation, optimal calling sequences, common sub­
expression elimination, procedure merging/inlining etc. For
Dhrystone, 03 level of optimization is used. This lev~I ?f
optimization does not include procedure merging as 1t 1s
against the spirit of Dhrystone benchmarking.

R3051™ FAMILY PERFORMANCE IN EMBEDDED APPLICATIONS APPLICATION NOTE AN-89

IDT R3051 vs Intel i960CA vs AMD29K

2.0

1.5

Relative to 1.0
3051-33

0.5

0.0

• R3051-33
11J i960CA-33
111!1 29K-33

Quick Bubble Pi-500 Anneal Matmul Dhry1 .1

IDT
Benchmark R3051-33 1960CA-33 29K-33

QUICKSORT (ms) 36 50 46

BUBBLESORT (ms) 41 85 59

Pl-500 (ms) 1,023 1,624 1,282

ANNEAL(ms) 5,056 8,388 7,205

MATMULT (µs) 19,148 26,898 44,578

DHRYSTONE 1 .1 55,236 41,030 50,301

• R3051 system is sons DRAM based system.
• i960CA-33 system is ASV960CA with Ows for code and 3ws for data.
• 29k-33 system is YARC card with 35ns SRAMs.

34

The results for R3051 are listed below along with the results
published for 33MHz i960 and 29K. The execution times for
above mentioned programs are shown in the table (smaller
values are better except for Dhrystone 1 .1).

CONCLUSIONS
The standard integer benchmarks, even though they do not

represent any real applications, provide an insight into the
inherent performance of a processor when running typical
embedded applications. The R3051 system considered here
is a DRAM-based system, and still delivers more performance
compared to the fastest i960CA and 29k-based designs. It can
easily be deduced from the above data that the i960CA
33MHz system is actually equivalent to a 21.2MHz R3051-
based system, and the 29k 33MHz system is equivalent to a
23.1 MHz R3051-based system. Still faster R305x systems
are feasible when designed with Static RAMs and it is reason­
able to expect further gains in performance.

4L)" DESIGNING A DISCRETE DRAM APPLICATION

CONTROLLER FOR THE R3051 NOTE

RISController™ FAMILY AN-90
Integrated Device Technology, Inc.

By Bob Napaa

INTRODUCTION
The IDT R3051TM RISControllerTM family utilizes a high­

performance computing core to achieve high performance
across a variety of applications. Further, the amount of cache
incorporated in the R3051 family allow these CPUs to achieve
very high performance even with simple, low-speed, low-cost
memory subsystems.

The R3051 RISControllerCPU family includes a full R3000A
core RISC processor, and thus is fully software compatible
with the standard MIPS processor. In order to provide high­
bandwidth to the CPU core, the family also incorporates
on-chip up to BkB of instruction cache and 2kB of data cache.
The external memory interface from the R3051 family is very
flexible, and allows a wide variety of implementations according
to the price/performance goals of the application. For a
detailed reference to the system interface of the R3051 family,
the reader is advised to refer to the "R3051 Family Hardware
User's Manual".

This applications note is a design example on the interface
to a non-interleaved DRAM memory subsystem. The goals of

CONTROL LINES

DATA BUS

ADDRESS
LATCHES

ADDRESS BUS

ALE

this subsystem are to provide a simple, extensible memory
interface using off-the-shelf components, and to illustrate
basic design techniques for systems using an R3051 family
CPU.

GENERAL DESCRIPTION OF THE DRAM
SYSTEM

Figure 1 illustrates a typical system based on the R3051
RISController family. The R3051 family uses a double­
frequency input clock for its internal operation and provides a
nominal frequency reference clock output for the external
system. This output clock, SysClk, synchronizes the external
memory subsystems to the R3051.

Memory transactions from the R3051 use a single, time
multiplexed 32-bit address and data bus and a simple set of
control signals. External logic then performs address
demultiplexing and decoding, memory control, interface timing,
and data path control.

The system shown in Figure 1 runs at 25MHz (2x clock=
SOM Hz). The R3051 interfaces to a DRAM system as the main

IDT R3051/52
RISController

SysClk 1-----,

CONTROL LINES

FCT244AT

2880 drw 01

Figure 1. R3051 RISController Famlly Based System
The IDT Logo is a registered trademark and A3051, and RISController are trademarks of Integrated Device Technology, Inc.

©1992 Integrated Device Technology, Inc. 35 6/92

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController'™ FAMILY

memory, to an EPROM system and to various 1/0 devices and
controllers. Address latches decouple the address bus from
the data bus. Address decoders select among the various
external modules. The output clock from the R3051 (SysClk)
is buffered (BSysClk) to reduce the loading effect and to
provide clock drive capability with minimum clock skew for the
system. This applications note will focus on the DRAM control
and data path subsystem.

The main DRAM memory system is based on 1 to 4 banks
of non-interleaved DRAMs with BOns of access time (trac =

BOns). The density of the DRAMs used is 256K x 4 to provide
a maximum memory space of 4MB. The DRAM memory
space occupies the lower 4MB of the physical memory space
(A21 :AO). Figure 2 illustrates the architecture of the main
DRAM memory system.

Table 1 illustrates the decoding scheme used in accessing
the DRAM memory space. To simplify address decoding,
software will insure that all references to the DRAM memory
occur with address bit A(22) LOW, and thus only that bit will be
used in the decoding. Address bits A(21 :20) will select among
the four banks, and the Rd and Wr outputs from the R3051
differentiate between read and write accesses.

APPLICATION NOTE AN-90

Each 1 MB bank of DRAMs is individually controlled by
separate RAS and GAS control signals. Thus, each bank may
be independently selected. The banks are arranged so that
each bank represents a single, contiguous range of 1 MB (as
opposed to an interleaved memory structure).

Data buffers isolate the DRAM banks from the R3051 data
bus to reduce the loading effect and to prevent any bus
contentions between the R3051 and the DRAMs from
occurring. Note that this also alleviates concerns about the
relatively slow tri-state times associated with DRAM devices.
The data buffers selected are actually bidirectional latching
transceivers; the use of a latching transceiver greatly simplified
the timing control of the DRAM accesses, as will be described
later.

DRAM addresses are provided by multiplexing the latched
R3051 address bus, using IDT FBT2827B memory drivers.
This device type was chosen based on its ability to drive large
capacitive loads, such as that found when driving 32 DRAMs.
A single FBT output has sufficient drive to drive all four banks
of the DRAM subsystem.

DRAM
~BANKO

.....
~

RASO
CASO

I
DRAM

-""BANK 1 --
ADDRESS ~

RAS1

ADDRESS MUX CAS1 DATA
-"" _I_ BUFFERS

FCT543T DATA BU
i........

DRAM FBT ...a.i BANK2 2827B --

s

~
RAS2 CONTROL

~ CAS2

I
-"" DRAM

BANK3
--

I---+
RAS3
CAS3

~
DRAM

PAL i-----. REFRESH
....: CONTROL 14---- TIMER

CONTROL SYSTEM FCT161 2880 drw02

BYTE
~ DECODER t-

...... FACT32
BSysClk _f

Figure 2. DRAM Memory System Architecture

36

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

Table 1. DRAM Memory Space Decoding

A22 0 0 0

A21 0 0 1

A20 0 1 0

WR 1 1 1

RD 0 0 0

SELECTION READ READ READ
BANKO BANK1 BANK2

0 0

0 0

1 0

1 0

0 1

READ WRITE
BANK3 BANKO

In an R3051 system, it is possible to perform a 32-bit read
access even when smaller data elements are requested.
However, on writes, it is important to enable only those bytes
which are actually being written by the CPU. The R3051 bus
interface provides four individual byte enables to indicate
which byte lanes are involved in a particular transfer. The
DRAM subsystem uses a byte decoder (OR gate) to individually
select from 1 to 4 bytes for write accesses. Each write byte
enable is connected to those DRAMs which reside on that
particular byte lane (across the multiple banks)

An B·bit refresh timer requests the refreshing of the DRAMs
every 9.6µs. Although this is more frequent than is actually
required by the DRAMs, the use of this value simplified the

RIP*=O

REF_REQ=1

APPLICATION NOTE AN·90

0 0 0 1 1 x
0 1 1 x x x
1 0 0 x x x
0 0 0 1 0 1

1 1 1 0 1 1

WRITE WRITE WRITE READ WRITE NO
BANK1 BANK2 BANK3 OUTSIDE OUTSIDE ACCESS

DRAM DRAM
SPACE SPACE

control logic associated with page mode write. DRAMs require
that RAS be maintained low no longer than 1 Oµs; by choosing
a refresh value smaller than this maximum time, the system is
assured that maximum RAS low time will not be violated. The
operation of the DRAM memory system is synchronized by
BSysClk.

STATE MACHINE IMPLEMENTATION
A simple state machine is used to perform the major

aspects of DRAM control. The state machine uses a simple
four-bit counter (C(3:0)) to dictate the timing for the DRAM
control and CPU response, and is sequenced using BSysClk.
There are nine major states to the state machine, as illustrated
in Figure 3; these states are dictated by the type of transfer
requested and the state the DRAM control logic was left in by
the prior transfer. Three PALs are required to implement the
entire DRAM control logic.

•1111"'"1"""""""""""""""""""'"""""""""""'"""""'""""""""""""·"·

-··-~--
REF_ACK*

WR*=1 &
RD*=1

WR*=O &
WRNEAR*=1&
A22=0

WR*=1 &
RD*=1

Figure 3. State Machine

37

WR*=O &
WRNEAR*=O&
A22=0

2880 drw 03

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

The state machine uses the Reset pulse to reset its internal
states and to synchronize its operation to the R3051. During
the RESET state, it also performs one refresh cycle before
entering the IDLE state.

In the IDLE state, the state machine arbitrates between a
refresh cycle and a bus access. A DRAM bus access is started
whenever Rd or Wr are asserted and A22 is LOW. A refresh
request is detected using the REF _REQ (Refresh_Request)
pulse from the refresh timer.

The state machine supports four types of bus accesses:
"Block refill read", "Single read", "Single write" and "Page
write", according to the types of transfers which the R3051
may request.

After a "Single write" or a "Page write" access, the machine
enters the IDLE RAS ASSERTED state. This state is very
much analogous to the I OLE state, except thatthe RAS control
signal to the DRAMs remains asserted. This state allows
subsequent "near" writes to be retired using page mode
accesses, which are much quicker than standard accesses.
When the IDLE RAS ASSERTED state must be exited (i.e. an
action other than near write is requested) the RAS signal must
be pre-charged prior to another DRAM transaction.

THE DRAM MEMORY SYSTEM
IMPLEMENTATION DETAIL

The DRAM memory system consists of the control system,
the address path and the data path as illustrated earlier in
Figure 2.

PAL System
The state machine and control PAL system consists of

three standard speed PALs: PAL 1 (PAL22V10-10), PAL 2
(PAL20R8-10) and PAL 3(PAL16R8-10). Figure 4 illustrates
the control system and the address path. The PAL equations
are included in the appendix to this applications note.

PAL 1 is driven by SysClk directly. This allows the CIP line
to detect transitions on the Rd and Wr signals from the R3051.
Signals generated by PAL 1 include:

• 4 RAS signals (one per DRAM bank)
• The DRAM_ACK and DRAM_RDCEN response signals

to the R3051 family CPU.
These signals are used to provide termination response

to the pro_=ce~ss~or~. ~~--
• The CIP (Cycle_ln_Progress) indicates to the rest of the

control system that a bus access is being performed.
• The DRAM_WN (DRAM_WrNear) signal indicates that

the RAS signals are kept asserted after a "Single write"
or a "Page write" access.

PAL 2 is also driven by SysClk directly. PAL 2 generates:

• 4 CAS signals (one per DRAM bank)
• DRAM_LE (DRAM_Latch_Enable), which latches the

read data into the data buffers.
• The S (Select) controls the memory drivers selection.
• The T/R (TransmiVReceive) controls the data buffers

during read acces_s=e~s~. ~~~-
• The DRAM_WR (DRAM_Write), used during write

accesses.

38

APPLICATION NOTE AN-90

PAL 3 uses the buffered CIP signal (BCIP) which is delayed
with respect to CIP by the buffer propagation delay. This is
important to ensure the proper operation of PAL 3, which is
driven by the buffered SysClk (BSysClk). PAL 3 generates the
master 4-bit counter. It also generates:
• The RIP (Reset_ln_Progress), which indicates that a

reset cycle is being performed.
• The REF _ACK (Refresh_Acknowledge) signals that a

refresh cycle is being performed.
• The GATE_COUNTER controls the operation of the

counter when transitioning between bus accesses and
refresh accesses.

Refresh Timer
The refresh timer consists of two "74FCT161" counters

cascaded together as shown in Figure 4. The refresh timer
issues a REF _REQ pulse every 9.6µs. The refresh timer is
loaded with the value b00001111 after each refresh. It is
incremented by one for every clock cycle. At value b11111111,
it will issue the REF _REQ pulse. This amounts to a total count
of 240 which at 25MHz reflects a 9.6µs refresh period.

The refresh period is set to be shorter than the maximum
15.5µs refresh period that most DRAM require. The refresh
interval has been set to 9.6µs in order not to violate the RAS
maximum pulse width of 10µs (tras = 10µs max). In an IDLE
RAS ASSERTED state, the RAS signals are left asserted while
the CAS signals are de-asserted.

Byte Decoding
The byte decoding uses a "7 4FACT32" OR gate to OR the

BE signals from the R3051 with the DRAM_WR signal to
produce the write-byte signals WB(3:0). The DRAM_WR
signal ensures that the WB(3:0) are only asserted during
DRAM write accesses and that the WB(3:0) meet the "write
command hold time" (twch = 20ns) of the DRAMs. It also
ensure that the WB(3:0) are asserted before the CAS signals
for "Early Write" accesses. Every WB signal enables one byte
of the DRAM banks and of the data buffers during write
accesses to allow for partial word write operations. The
WB(3:0) are always issued one clock cycle before the CAS
signals are asserted, in order to meet the timing requirements
for a DRAM "Early Write" cycle.

Address Path
The DRAM address path consists of 2 "74FBT2827B"

memory drivers to multiplex the row and column address of
the DRAMs. The "FBT2827" have a 250 series resistance
incorporated in the output buffers and are used to drive
multiple memory banks with large capacitive loading. The Sbit
from PAL 2 selects between the row address and the column
address that drive all the DRAM banks. Figure 4 illustrates the
address path architecture. The address to the DRAMs is
always set one clock cycle before the assertion of either the
RAS or the CAS signals, in order to guarantee proper address
set-up time to the DRAMs.

Data Path
The data path consists of the DRAM banks and four

74FCT543 latched transceivers. Figure 5 illustrates the
architecture of the data path and of the data buffers. Latching

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

A22

A21

A20

RD

WR

BURST

RIP

REF_Ack
C3

C2

C1

co

ENABLE ~---'

REF_ACK

DRAM_WN

RIP

CIP

WR

A20

A21

C3

C2

C1

co

SYSCLK

REF_REQ

BCIP

DRAM_WN

RESET

PAL2

20R8-10

PAL3

CIP

"RAS3

1iAS2

RAS1

RASO

DRAM_WN

DRAM_ACK

DRAM_RDCEN

'FCT244A

CAS3

CAS2

CAS1

CASO

DRAM_ LE

s
DRAM_WR

T/R

RIP

C3

C2

C1

"Smi

co REF_ACK

CLK

REF_REQ

FCT161

TC R

A11

A12

A13

A14

A15

A16

A17

A18

A19

A2

A3

A4

AS

AS

A7

AS

A9

A10

'FCT240A

trEO

~

BE2

BE3

FBT
2827B

ROW
ADDRESS

FBT
2827B

BYTE
DECODING

FACT32

CEP FCT161

CET r.-----tTC R
CE

CE

APPLICATION NOTE AN-90

wtlO

WB1

WB2

WB3

DRAM

ADDRESS

BUS

2880 drw 04

Figure 4. Control System and Address Path

transceivers are used to allow more access time to the
DRAMs; the data is captured by the latches one-half cycle
before they are needed by the CPU. During this half-cycle, the
data propagates through the buffer; if traditional buffering
transceivers had been used, the buffer propagation delay
would have occurred at the expense of the DRAM access
time.

Up to four banks of DRAMs are used, with each bank
having its own set of RAS and CAS signals to minimize the

39

loading impact of multiple DRAM devices. Address bits A21
and A20 determine the bank selection.

The latched transceivers serve three roles in the DRAM
subsystem: they isolate the DRAMs from the AID bus of the
R3051 to minimize loading; they latch the data from the
DRAMs on reads to allow a better timing model; and they are
used to prevent bus contention from occurring at the end of a
read (as the processor begins another transaction). The

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISControlle(l'M FAMILY

R3051 is connected to the A bus of the transceivers, and the
DRAM system is connected to the B bus.

In a processor write access, the R3051 drives both the
address and the data. In this case the latches are lefttransparent
to pass the processor data through directly to the DRAMs.
Only those transceivers whose byte lanes are involved in the
write are output enabled, since only those DRAMs will be
written into. DRAMs not accessed in this write will output the
current contents of their memory at that location, since the OE
of the DRAMs is asserted. DRAM_WR controls the LEAB,
leaving the latch transparent throughout the write. WB(3:0)
controls the OEAB of the latches, thus enabling only those
bytes that are written.

In a processor read access, the DRAM system drives the
data bus. The DRAM system is synchronized to the rising

DRAM
BANK1

DRAM RAS1

ADDRESS CAS1

BUS OE1

DRAM
BANK2

APPLICATION NOTE AN-90

edge of BSysClk, and the R3051 samples the input data on the
falling edge of syscTk before terminating the access. Thus,
the DRAM control design, which drives the RAS and GAS
signals on the rising edge of SysClk, actually removes GAS
one-half cycle before the data is sampled by the CPU. Thus,
data output by the DRAMs is actually latched by the
transceivers, and remains valid when the CPU samples the
ND bus one-half clock cycle later.

The DRAM_LE from the DRAM controller is connected to
the LEBA pin, which latches the data into the transceivers. The
T/R signal connected to the CEBA pin, which controls the
direction of the bidirectional transceiver. The DataEn signal from
the R3051 is connected directly to the OEBA pin to control the
timing of the output enable onto the ND bus. This ensures that
the output buffers are tri-stated before the next R3051 access
starts and prevents any bus contention.

DATA BUFFERS
FCT543T

BBUS ABUS DATA BUS TO R3051

OEAB OEBA DATAEN

CEAB CEBA T/R

LEAB LEBA DRAM_LE

RAS2 DRAM_WR

CAS2

OE2

2880 drw 05

Figure 5. DRAM Banks and Data Buffers

40

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISControllet™ FAMILY

THE DRAM MEMORY SYSTEM TIMING
The R3051 system interface allows this DRAM interface to

be simply constructed. Features of the R3051 which are used
in this DRAM system include:
• On-chip four-deep read and a four-deep write buffers.

These buffers decouple the system interface speed from
the speed of the execution engine on-chip.

• Single word reads and four-word refills. Block refills
amortize the relatively long latency of DRAMs over
multiple words, taking advantage of high-bandwidth
capabilities (e.g. Page Mode) offered by DRAMs.

• The WrNear signal, which informs the external DRAM
subsystem that two consecutive writes have the same
upper 22 address bits (equivalent to a local page of 256
words), and can be written using a Page Mode access.
Fort he system running at 25MHz, the clock period is 40ns.

DRAMs with BOns of access time require 160ns (Ire =160ns)
to complete one read access (as per DRAM data sheet). A 5
clock cycles (200ns) read access time allows an acceptable
margin for address decoding, control signal propagation, and
bus interface.

For a four-word block refill read, the initial latency (time to
read the first word) is the same as for a single-word read
access (200ns). For the next three consecutive words, the
DRAM memory system provides a word every 2 clock cycles
(every 80ns). A block refill access can be completed in 11
clock cycles (440ns), which is an average of 11 Ons per word.
Thus, block refill, with this simple scheme, provides a significant
improvement in the average access time per word (over 2
clock cycles-per-word savings).

The state machine to manage write operations takes
advantage of two features of the R3051:

• On a write cycle, the write data from the processor is held
one full clock cycle after the clock edge where the
processor samples its ACK input. Thus, the DRAM
system can give an early acknowledge, and still rely on
the CPU to continue driving data.

• The WrNear output from the CPU, which indicates that
this write may be retired using a Page Mode write. This
reduces the number of cycles required to perform write­
intensive operations, such as building the program stack
or flushing the write buffer.

The state machine for single word writes is optimized to
allow subsequent near writes to be retired using page mode
accesses. The DRAM memory system takes advantage of the
WrNear signal from the R3051 by defaulting to the case that
any single write to the DRAM system will be followed by
another write with the same upper 22 address bits (within the
local page of 256 words). Given this assumption, the RAS
signals must be kept asserted after every write access to
remain in the page mode of the DRAMs.

Thus, an initial single write can be performed in 4 clock
cycles (160ns) since the RAS signals are not de-asserted and
the RAS precharge time (trp = 70ns) will be deferred until the
end of the page write mode. Note that this is faster than a
single read; the state machine takes advantage of the fact that

41

APPLICATION NOTE AN-90

the processor will drive data a full clock cycle after acknowledge
is given.

A consecutive write to the same DRAM page can be
performed in 3 clock cycles (120ns) since the RAS signal is
already asserted and doesn't need to be precharged. When
this state is exited (when a write outside of page or a different
type of access occurs) the RAS signal needs to be precharged
for 2 clock cycles (80ns) before responding to the pending
access.

Single Write Cycle/Page Write Cycle
Figure 6 illustrates the timing diagrams for a single write

access followed by a page write. The R3051 initiates a single
DRAM write access by the assertion of Wr and with A22 LOW.
Since the state machine isinthe IDLE state, RAS is de-asserted
and the ROW addresses are flowing through the address
multiplexer. The Cl P is issued on the next clock edge to inform
the rest of the machine that the write is being processed, thus
preventing the commitment of any other state (e.g. refresh).
The appropriate RAS signal is issued on the same edge as the
GIP. The DRAM_ACK is issued on the following edge and the
GAS signal on the 4th edge to terminate the write access. At
the end of the access, the GIP is removedwhilethe RAS signal
is kept asserted in anticipation of a consecutive write access
within the same page. At the end of an initial write access, the
DRAM_WN signal remains asserted. This signal informs the
rest of the state machine that the RAS signals are kept
asserted.

Idle, RAS Asserted State
At the end of a write access the state machine enters this

state where a RAS signal is kept asserted while the state
machine awaits a subsequent transaction. If the next access
is a local write (WrNear from the R3051 is asserted) the state
machine enters the page write mode. If a different access type
occurs (read, block refill, not local write) or a refresh is
pending, the state machine exits this state.

Upon exiting this state, the machine precharges the RAS
signal before responding to the pending access. For the ease
of discussion, any access that requires the RAS signals to be
precharged before the access is processed will be referred to
as "delayed" access. If an access outside the DRAM space is
detected (Wror Rd asserted while A22=1) the RAS signals are
immediately de-asserted and the machine goes into the IDLE
state. This is an important condition; an intervening write to
another memory location causes the R3051 to report
subsequent writes as "near'' to that other memory location,
and thus the DRAM controller should not process these writes
as near writes.

Page Write Cycle
A page write cycle is a write access to the DRAM following

another write with the same upper 22 address bits. Figure 6
illustrates the timing diagram for a page write access. The
R3051 initiates a page write cycle by the assertion of Wr,
wrf\fiIBi' and A22 = 0. On the following clock edge GIP and
DRAM_ACK are issued, and on the 3rd clock edge GAS is
asserted and the access is terminated (GIP is negated). The

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY APPLICATION NOTE AN-90

SYSCLK*

BSYSCLK*

RESET*

WR*

RD*

BURST*/
WRNEAR*

DATAEN*

A21 :20

DATA31:0

REF_REQ

DRAM_ACK*

DRAM_RDCEN*

REF_ACK*

S*

ROW/COLUMN
ADDRESS

RAS*

CAS*

T/R*

DRAM_LE

CIP*

RIP*

DRAM_WN*

DRAM_WR'

GATE_ COUNTER*

COUNTER

CYCLE 2 PAGE CYCLE 3
CYCLE 1 WRITE WRITE IDLE CYCLE 4 DELAYED WRITE _.. _.. ..._

C1 WT, WT_ C2 C1 WT C2 IDLE C1 WT WT WT WT C2
i..

~ rt-rLh-ru-u ri-h-h-h-h--hJ llJ1_ -
~ -~ ~ NL rL

ll I1l 1 \ t--I

[\ J

1. [I

- rl1. DATA lLI DATA 11. DATA

'

!\ J\ J !\ Ir
.l

ROW _jl_ COLUMN :X I OLUMN:X ow :X COLUMN:X

!\. 1 !\.

~WI ~LJ/ IL r
'

!b. r!_ I !\. ir-

!\.

~ r-1_ I !\. IJ
'

0 ll 1 ll. 2 I 3_l o 1. 1 2 _l 0 _l 1 1.21.3_14 5

' ' '
2880 drw 06

Figure 6. Single Write, Page Write and Delayed Write Timing Diagrams

42

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController'fM FAMILY

RAS and DRAM_WN signals are kept asserted, allowing
subsequent page writes to be rapidly processed. The state
machine exits this state into the IDLE RAS ASSERTED state
to await subsequent page mode writes.

Delayed Write Cycle
The delayed write cycle has exactly the same sequence as

a single write but is delayed by two clock cycles. A delayed
write is a "non-near" write detected in the ID LE RAS ASSERTED
state. Figure 6 illustrates the timing diagrams for a delayed
write access.

The R3051 initiates a delayed write access by the assertion
of Wr and A22 = O while RAS and DRAM_WN are asserted.
On the next clock edge RAS is de-asserted while the
DRAM_WN is kept asserted. The precharging of the RAS
signal takes two clock cycles. The DRAM_WN signal is kept
asserted to inform the state machine that the control signals
for this access have to be delayed by two clock cycles. This is
true for all the delayed accesses.

Single Read Cycle
A single read cycle is a read access to the DRAM following

an IDLE state in which the RAS and the DRAM_WN are not
asserted. Figure 7 illustrates the timing diagrams for a read
access. The R3051 initiates a single read access by the
assertion of Rd with A22 LOW while the state machine is IDLE
and all RAS outputs are de-asserted. The Cl Pis issued on the
next clock edge to inform the rest of the machine that a cycle
is ongoing, thus preventing the commitment of any other state.
The appropriate RAS signal is issued on the same edge as the
CW. Two clock cycles later, the CAS, DRAM_RDCE N and the
DRAM ACK are issued to terminate the cycle.

For-a read access both the DRAM_ACK and the
DRAM_RDCEN are required to end the cycle. The processor
will not actually sample RdCEn until one-clock after the clock
edge used to generate DRAM_RDCEN, and thus will not
sample the data until one and one-half clock cycles alter the
edge used to generate DRAM_RDCEN. From the timing
diagrams it is clear that the CAS and the RAS signals are
removed hall a clock cycle before the falling edge of the clock
when the R3051 samples the data. DRAM_LE latches the
DRAM data into the transceivers and holds it for one clock
cycle. At the end of the access the CIP is removed.

Delayed Read Cycle
The timings of a delayed read are exactly the same as for

a single read but shifted by two clock cycles to accommodate
RAS pre-charge time. A delayed read cycle is a read access
to the DRAM following an IDLE RAS ASSERTED state in
which the RAS and the DRAM_WN are still asserted. Figure
8 illustrates the timing diagrams for a delayed read access.
Once a read access is detected, the RAS signal is de-asserted
while the DRAM_WN is kept asserted. The RAS signal is
precharged for two clock cycles. At the end of a delayed read,
the DRAM_WN and the CIP are removed and the machine
enters the IDLE state.

43

APPLICATION NOTE AN-90

Block Refill Cycle
A block refill cycle is a four-word read access to the DRAM

following an IDLE state. Figure 7 illustrates the timing diagrams
for four-word block refill access. The R3051 indicates a block
refill read access by the assertion of Rd and Burst with A22
LOW. The DRAM control subsystem handles block refill
accesses using the Throttled Block Refill mode of the R3051.
In a throttled read, RdCEn is used to control the data rate of
memory back to the CPU. The Ack input is not provided back
to the processor until the transfer has sufficiently progressed
such that the last word of the transfer is clocked into the on­
chip read buffer before the processor core requires it.

In the block refill access the first word read takes the same
time as a single read while the three subsequent words are
read into the read buffer at the rate of one word every two clock
cycles. The DRAM_RDCEN is issued with every word being
read to cause the R3051 to latch the data into the read buffer.
The DRAM_ACK is issued between the second and the third
word read. This ensures that for four subsequent falling edges
of SysClk the read buffer can provide data to the R3000A core
at the rate of a word every clock cycle.

Block refill uses the Page Mode characteristics of the
DRAM to obtain subsequent words at a high data rate. In this
access, the RAS signal is kept asserted while the CAS signal
is toggled four times to produce four data words. Every word
from the DRAM system is latched into the transceivers as for
a single read operation, using the DRAM_LE to clock the latched
transceivers. At the end of the access RAS and CIP are de­
asserted, and the state machine returns to the IDLE state.

In the block refill access, address lines Addr(3:2) from the
R3051 act as a two-bit counter to provide the address of lour
consecutive words. These two lines are incremented on the
falling edge of SysClk. This timing could prove critical at high­
frequencies: this is only hall a clock margin (20ns) before the
CAS signals are asserted, in which address set-up time to
CAS must be provided. These two I ines are part of the address
path and are driving large capacitive loads. To minimize
additional delay due to loading, two sets or more of memory
address drivers could then be used to minimize the effect of
the capacitive loads and to ensure proper operation.

Delayed Block Refill Cycle
A delayed block refill cycle is a block refill access to the

DRAM following an IDLE RAS ASSERTED state in which the
RAS and the DRAM_WN are asserted. Figure 9 illustrates the
timing diagrams for a delayed block refill access. A delayed
block refill is exactly the same as a block refill with the
exception that the access is shifted by two clock cycles to
accommodate RAS precharge requirements. The DRAM_WN
signals to the machine that the access has a delayed timing.
At the end of the access, the DRAM_WN and the CIP are de­
asserted.

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

CYCLE 1 READ

SYSCLK*

BSYSCLK*

RESET*

WR*

RD*

BURST*/ ------;---;---;--""

APPLICATION NOTE AN·90

CYCLE 2 BLOCK REFILL READ

WRNEAR* ...__.__.....__..____. __.._ _...__..__..___.__,

DATA EN*

A21:20

DATA31:0

REF_REQ

DRAM_ACK*

DRAM_RDCEN*

REF_ACK*

S*

ROW/COLUMN
ADDRESS

RAS*

CAS*

T/R*

DRAM_LE

CIP*

RIP*

DRAM_WN*

DRAM_ WR*

GATE_ COUNTER*

COUNTER

DATA ADDR DATA DATA 1' DATA 2 ! DATA 3

0 2 3 4 0 2! 3! 4! 5! 6 7! 8! 9 A

2880 drw 07

Figure 7. Single Read and Block Refill Read Timing Diagrams

44

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY APPLICATION NOTE AN-90

SYSCLK•

BSYSCLK•

RESET'

Ro•

CYCLE 2 CYCLE 3
.._ CYCLE 1 WRITE PAGE WRITE IDLE CYCLE 4 DELAYED READ ...,

i...._C1 WT , WT . C2 C1 WT C2 ~:;: C1 WT WT WT WT WT C2 _...

'- _rr-...._ _____________ ~_.
I\ J BURST•;

WR NEAR'
DAT AEN' -+--;-----;----;-;--1---;--.;---+--;-----1----.\.'-+-: -;---;-----;---;-----;,__,rr-

A21 :20 :X ! [l_ l
DATA 31 :O -{._..I._.! __ D_A_T_A _ _.[... I_!_D_A_T_A_+-----1"[,._,)->--: -------' -i.-o.t-

ADDR ADDR [DATA ADDRl
REF_REQ ---1--;--....;-__,,__--+--....;--..,;----1--....;--1--__,_-_,_ ___ __,_ _ _,__....,_-+--

DRAM_AcK•

DRAM RDCEN'

REF_AcK•

s·

ROW/COLUMN
ADDRESS

RAS•

CAs·

T!W

DRAM_LE

c1p·

I'- ~ I l'- j
ROW ! i c°OLUMN i ! i OLUMN _l ! ROW : i COLUMN 1.

i\ J

f'----1]
---~---+-;.---f--;.-+--;--;---;-------lflL

,\..___.___._ __ Ij\. J ,\..___.___.____.____.____._ __ I]
RIP• ---1---!---!-----!.._--+--_._.._.._--+--_._-+--~--;--~~--;--;---+--

DRAM_WN'

DRAM_WW
!,,,;\.'--1~-------+-.....;....-+---!---0~P------_._-+----+'lr-

I'- 11---.....,.1
GATE_ COUNTER'

COUNTER __ o_! __ I.._1_11.._2~l.._3~I,,_o~ll,,_1~l,,_2~I.__o+--......... --i.__1_I.__2~I..._3~l..._4~I._s~[.__s

2880 drw OB

Figure 8. Delayed Single Read Timing Diagrams

45

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

SYSCLK'

BSYSCLK'

RESET'

WR'

RD'

BURST'/
WRNEAR'

DATAEN*

A21:20

DATA31:0

REF_REQ

DRAM_ACK*

DRAM_RDCEN'

REF_ACK'

S*

ROW/COLUMN
ADDRESS

RAS'

CAS*

T/R*

DRAM_LE

CIP'

RIP'

DRAM_WN'

DRAM_ WR'

GATE_ COUNTER'

COUNTER

CYCLE 1
PAGE WRITE

ADDA

0 i 1

APPLICATION NOTE AN-90

CYCLE 2 DELAYED BLOCK REFILL READ

ADDR DATA O ! DATA 1 ! DATA 2 DATA3

ROW

2 0 i 2 3

2880 drw 09

Figure 9. Delayed Block Refill Read Timing Diagrams

46

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController'™ FAMILY

Refresh Cycle
A refresh cycle is initiated every time a REF _REQ pulse is

detected. The state machine responds immediately by
asserting the REF _ACK signal on the following clock edge.
This disables the refresh timer until the refresh access is
completed. Figure 1 O illustrates the timing diagrams for a
refresh arbitration and the actual refresh access.

If a REF REQ occurs during an access or at the same time
as an access, the refresh is delayed until the access is
terminated (signaled by GIP de-asserted).Asserting REF _ACK
at the detection of REF REQ ensures that the following
access will be a refresh access and prevents the commitment
of any other state. Delaying a refresh request until the end of
a bus access doesn't affect the DRAM operation, since the
refresh period selected is much less than the maximum
refresh period of a DRAM row. The refresh period is every
9.6µs and the longest access is the delayed block refill with 14
clock cycles (until CIP is removed) which is 0.56µs. Thus, the
refresh will be serviced at a maximum of 10.16µs, which is
substantially below the maximum 15.5µs refresh requirement
of the DRAMs. By the same reasoning, if the granted access
is a delayed access, the RAS signal will be precharged prior
to the 1 Oµs RAS pulse width maximum requirements. If a
Page Mode Write is granted, it will be retired in three cycles,
or 0.12µs, and thus RAS will be precharged for the refresh no
longer than 9.72µs after it was asserted.

The refresh access is a GAS-before-RAS refresh in which
all four CAS and RAS signals are issued. The CAS signal is
issued one clock cycle before the RAS signal. A refresh access
takes 1 O clock cycles. This time is long enough to allow the
RAS signals to be precharged if needed (delayed refresh). A
delayed refresh has then the same timing as a refresh access.

47

APPLICATION NOTE AN·90

Figure 11 shows the timing diagrams for the delayed
refresh cycles. GATE_COUNTER controls the operation of
the 4-bit counter when transitioning between bus accesses
and refresh accesses. It is mainly used in the arbitration phase
when a bus access and refresh access are requested at the
same time.

Reset Cycle
A reset cycle is initiated by the assertion of the Reset signal.

This is a hardware reset and is used to initialize the PALs to
the correct IDLE state. The RIP signal is asserted on the
following clock edge to inform the machine that a reset cycle
is in progress. After the Reset signal is de-asserted, the RIP
stays asserted and one refresh access is initiated. At the end
of this refresh access, the RIP is removed and the state machine
enters the IDLE state. Figure 12 illustrates the timing diagrams
of the reset operation. __ __

Most DRAMs require at least 8 CAS before RAS refresh
accesses prior to a regular access, to insure proper initialization.
The actual state machine provides only one refresh access. It
is the responsibility of the software to ensure that no DRAM
access is made prior to the elapsing of 8 refresh periods from
the refresh timer. This can typically be insured by normal
operation of the boot PROM; however, software could "spin­
lock" for a pre-determined number of loops to insure that
sufficient time has elapsed.

Idle State
The IDLE state is the state in which the machine is not

performing any bus access or a refresh access but is constantly
monitoring the bus for any access request. All the signals are
de-asserted and the 4-bit counter operation is halted.

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

CYCLE 1 BLOCK REFILL

SYSCLK*

BSYSCLK*

RESET*

WW

RD*

BURST*/ --....;...-...;....-;...........;.--1
WR NEAR*

DATAEN*

DATA 31:0

DRAM_ ACK*

DRAM_RDCEN*

REF_ACK*

S*

APPLICATION NOTE AN-90

CYCLE 2 REFRESH

ROW/COLUMN ___,i--.,...;.--;---,,.-;---;.-,,......--;---;--.,._---;--;---;--.;-----;--;---+---;--~
ADDRESS--11--n..,.---,....,.....-.--''-+--!---;--.,._---;--;---;--.;-----;--;---+--+-~

RAs•

CAs•

DRAM_ LE

c1p·

DRAM_WN'

DRAM_WR'

GATE_ COUNTER'

COUNTER___,,..__5~!,._6......,..._7..;a-_B......,..__9.....,__A-i"'!..._O.....,._+n--2~!..__3...,__4....;n.-5...,__6....;n.-7..;.n...-8-+n-9~!,._0_

2880drw10

Figure 10. Refresh Arbitration and Refresh Timing Diagrams

48

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

CYCLE 1 CYCLE 2

APPLICATION NOTE AN-90

._PAGE WRITE IDLE CYCLE 3 DELAYED REFRESH _.

i..._c~. w~~2 ID~E C1 . W-:'..__ W-:'..__ W-:'..__ W-:'..__ W-:'..__ WT . WT _ c~ . .

-D-p{LILIL SYSCLK'

BSYSCLK'

RESET'

WR' I\ J

RD'

BURST'/ -\ J
WRNEAR'

--1~--~-i----t~--~+---i~--~..;.---;~--~..;.----~--;-~+----;.~~

DATAEN'

A21 :20 --r-X !
DATA31:o 1_r DATA

REF_REQ
ADDR

I
DRAM_ACK'

DRAM_RDCEN'

REF_ACK'

s· _rt\.__,___-+<IJ
ROW/COLUMN

ADDRESS

RAS'

CAS' j __,

T/R'

DRAM_LE

CIP'

RIP'

DRAM_WN'

DRAM_WR'

GATE_ COUNTER'

.l [.l COLUMN .l. [

COUNTER ll 3 ll 0 ll 1 I 2] 0

Figure 11. Delayed Refresh Timing Diagrams

49

IJ

2880 drw 11

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

CYCLE 1 CYCLE 2
PAGE WRITE IDLE_ _...._

APPLICATION NOTE AN·90

CYCLE 3 DELAYED REFRESH

C1 WT, C2 IDLE C1 WT WT WT WT WT WT WT C2

SYSCLK•

BSYSCLK•

RESET'

WR* -1_ J

RD•

BURST'/ -1_ J
WRNEAR•

-l"---;...~..;--l~-;...~+--;~-;.-~.;.----;.~-;.-~.;.----;.~...;...~+----;.~~

DATA EN*

A21 :20 --i--..X :
---r-- i

DATA31:0 [Ii DATA

ADDR
REF_REQ -l"--_._~......._-lJ_/

DRAM_AcK•

DRAM_RDCEN*

REF_ACK•

S* -r1---i'lf
ROW/COLUMN I '· I _OLUMN I '·

ADDRESS

RAS*

GAS* I/

T/R*

DRAM_LE

-I'

GIP* -n--;----t"lf
RIP*

DRAM_WN*

DRAM_WR* -n---1
GATE_ COUNTER*

COUNTER [3 ll 0 ll 1 l 2 ll O

j _ I j

1

Figure 12. Reset Timing Diagrams

50

1

j

2880drw 12

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

CRITICAL TIMING CALCULATIONS
The following is a timing analysis of some of the critical

paths in the DRAM system.

DRAM Data for a Read or Block Refill Access

As illustrated in all the timing diagrams, the CAS signal is
asserted for only one clock cycle for a read or a write access.
For a write access there is no critical timing since the DRAM
latches the data in at the CAS leading edge, and the processor
insures sufficient data hold time by holding data for one cycle
after ACK is detected.

For a read or a block refill access the DRAMs provide the
data to the R3051 and the maximum delays must be considered.
Figure 13 illustrates the detailed timing for a portion of a block
refill access which is also true for a read access. The R3051
uses the SysClk for its reference with a period Tclk of 40ns.
The GAS and the DRAM_LE signals are delayed with respect
to SysClk by the PAL 2 propagation delay T1. The data is
available from the DRAM after T2 (lcac = 25ns max). The critical
path requires that the DRAM data be available and meet the
setup time of the transceivers before the DRAM_ LE is asserted.
The timing calculation for this data path is as follows:

Tclk
- T1 max

- T2 max

- T setup

= 40.0ns
= 8.0
= 32.0
= 25.0
= 7.0
= 3.0 FCT543T data set-up time.
= 4.0

The available margin is 4.0ns. Some 80ns DRAMs have T2
(tcac = 20ns) which could offer more margin.

T2 max
DATA1FROM DRAM

DATA -----~===>-----
T setup

DRAM_LE _______ _.F \~---
2880 drw 13

Figure 13. Read or Block Refill Access

51

APPLICATION NOTE AN-90

Transceivers Turn Off Time

For a read or a block refill access, the DRAMs provide the
data to the R3051 through the latched transceivers. As
illustrated in Figure 7, the R3051 reads the data from the bus
half a clock cycle before it starts a new access in which it can
drive address on the bus. This information is explained in
detail in the R3051 User Manual.

The critical path requires that the transceivers be tri-stated
before the R3051 starts driving the bus in the next clock cycle.
The DataEn signal directly from the R3051 enables the B to A
output buffers of the transceivers (FCT543T). The DataEn is
delayed by T3 from the falling edge of SysClk at which the
R3051 samples the data (as per R3051 data sheet). The
transceivers disable the output buffers within T 4. Figure 14
illustrates the timing for this path.

Tclk/ 2
- T3 max

- T4 max

T margin

= 20.0ns
= 6.0
= 14.0
= 9.0
= 5.0ns

This margin of 5ns is long enough to accommodate for any
SySClk skews.

DRAM_ACK and DRAM_RDCEN Timings

The DRAM ACK and the DRAM RDCEN are issued for
one clock cycle only as illustrated in the timing diagrams. They
are removed by the clock edge which the R3051 uses to
sample them. The R3051 requires that these two signals be
held constant for a minimum of 4ns afterthe clock edge. These
two signals are usually combined with similar signals from
other memory subsystems (e.g. EPROM) to form one set that
is routed to the R3051. This extra delay, plus the PAL 1
minimum propagation delay are long enough to meet the
R3051 required hold time.

New access start

DRAM_ACK

DRAM_RDCEN
_J T3 max

UAiAEfT ---------J4 max

DATA 31:0 -----~<c...,,~--::,,-:_-:,~-J1,J ___ _
DATA FROM FcT543T

-
__________ _J_,iTmargin

AD 31 :O c=J-
FROM R3051 NEW ADDRESS

2880 drw 14

Figure 14. Termination of a Read or Block Refill Access

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

PERFORMANCE
The performance of the different types of R3051 bus

accesses to the DRAM memory is usually measured by the
number of clock cycles it takes to send the Ack back to the
R3051. This time is computed from the beginning of the
external access. The performance of the DRAM system can
be summarized as follows:

• single read: 4 clock cycles.
• block refill: 7 clock cycles.
• first write: 3 clock cycles.
• page write: 2 clock cycles.

The above numbers (with the exception of page write) will
be increased by 2 in the case of delayed accesses.

Thus, relatively high memory performance is obtained with
minimal external logic parts count, and low-cost commodity
DRAM. More aggressive designs could utilize faster DRAMs,
and techniques such as memory interleaving, to achieve still
higher levels of performance.

52

APPLICATION NOTE AN-90

CONCLUSION
The R3051 RISControllerfamily bus interface was designed

to allow memory systems of differing complexity and
performance to be implemented. Even a relatively simple
DRAM system, as the one described here, offers very high
performance. With simple modifications, this approach is
applicable to higher frequencies (33 and 40MHz) and to
interleaved memory systems yielding even higher performance.

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

TITLE:

PURPOSE:

PALl

RAS

AUTHOR:
DATE:

BOB NAPM, IDT INC.

4/5/91

MODULE PALl;

TITLE PALl;

TYPE AMD 22Vl0;

INPUTS;

SYSCLKB
ENABLEB

RDB
WRB

BURSTB
RIPB

REFACKB

A22
A21

A20

C3
C2

Cl

co

{FEED BACK PINS}
CIPB

RAS3B

RAS2B
RASlB

RAS OB

DRAMWNB
DRAMACKB

DRAMRDCENB

OUTPUTS;

CIPB

RAS3B

RAS2B
RASlB
RAS OB
DRAMWNB

DRAMACKB

DRAMRDCENB

{OUTPUT ENABLES}

NODE I PINl I;
NODE [PIN2] ;

NODE I PIN3];
NODE [PIN4];

NODE [PIN5 J ;
NODE [PIN6];

NODE I PIN7];
NODE [PINS];

NODE [PIN9 J ;

NODE I PINlO I;
NODE[PINllJ;
NODE [PIN13];

NODE[PIN14J;

NODE[PIN15J;

NODE [PIN16];

NODE [PINl 7 J;
NODE[PIN18J;

NODE [PIN19 J;

NODE I PIN20 I;
NODE [PIN2 l J;

NODE [PIN22 J;

NODE [PIN23 J;

NODE [PINl 6]

NODE I PINl 7]
NODE[PIN18]

NODE [PIN19 J

NODE[PIN20J
NODE [PIN21 J

NODE [PIN22 J

NODE[PIN23J

ATTR[RL];

ATTR[RLJ;

ATTR[RL];
ATTR[RLJ;

ATTR[RLJ;
ATTR[RLJ;

ATTR[RLJ;

ATTR[RLJ;

CIPBEN NODE[PIN16ENJ;

RAS3BEN NODE [PINl 7ENJ ;

RAS2BEN NODE[PIN18ENJ;
RASlBEN NODE[PIN19EN];

RASOBEN NODE[PIN20EN];

DRAMWNBEN
DRAMACKBNODE[PIN22ENJ;

DRAMRDCENBEN

NODE [PIN21ENJ ;

NODE[PIN23ENJ;

53

APPLICATION NOTE AN-90

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY APPLICATION NOTE AN-90

TERMS;

RAS3EEN

RAS3E NOT

RAS2BEN

RAS2E NOT

.-

OR

OR

OR
OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

·-

OR

OR

OR

OR

OR

OR

ENAELEB;

RAS3E AND REFACKB AND RIPE AND DRAMWNB AND !RDE AND
!A22 AND A21 AND A20 {read/block refill}

!RAS3E AND !CIPB AND !RDE AND DRAMACKB AND DRAMRDCENB
{keep for read/delayed read}

RAS3E AND !CIPE AND RIPE AND !DRAMWNB AND !RDE AND

!A22 AND A21 AND A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed read/delayed block refill}

!RAS3E AND !CIPE AND !RDE AND !EURSTE AND !C3 {keep block refill}

!RAS3E AND !CIPE AND !RDE AND !EURSTE AND !DRAMWNB AND
!Cl {keep delayed block refill}

RAS3E AND REFACKB AND RIPE AND DRAMWNB AND !WRB AND

!A22 AND A21 AND A20 {write}

RAS3B AND REFACKB AND RIPE AND !DRAMWNB AND !WRB AND

!A22 AND A21 AND A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed write}
!RAS3B AND !WRB AND !CIPB {keep for write}

! RAS3E AND ! DRAMWNB AND REFACKB AND RIPE AND RDE AND

WRE AND EURSTE {no access pending}

!RAS3E AND !DRAMWNB AND REFACKE AND RIPE AND !WRE AND
!EURSTE AND !A22 AND A21 AND A20 {keep for page write}

!REFACKE AND CIPB AND !RAS3E AND !DRAMWNB AND CO
{remove in refresh}

RAS3E AND !REFACKE AND CIPB AND DRAMWNB AND !C3 AND !C2
AND Cl AND CO {issue for refresh}

! RAS3E AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND C2
AND !Cl AND !CO {keep for refresh}

! RAS3E AND ! REFACKB AND CIPE AND DRAMWNB AND ! C3 AND C2
AND !Cl AND CO; {keep for refresh}

ENAELEB;

RAS2E AND REFACKB AND RIPE AND DRAMWNB AND !RDE AND
!A22 AND A21 AND !A20 {read/block refill}

!RAS2E AND !CIPE AND !RDE AND DRAMACKB AND DRAMRDCENB
{keep for read/delayed read}

RAS2B AND !CIPB AND RIPE AND !DRAMWNB AND !RDE AND

!A22 AND A21 AND !A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed read/delayed block refill}

!RAS2E AND !CIPB AND !RDE AND !BURSTB AND !C3 {keep block refill}

!RAS2E AND !CIPE AND !RDE AND !EURSTE AND !DRAMWNB AND
!Cl{keep delayed block refill}

RAS2E AND REFACKB AND RIPE AND DRAMWNB AND !WRB AND
!A22 AND A21 AND !A20 {write}

RAS2E AND REFACKB AND RIPB AND !DRAMWNB AND !WRB AND

!A22 AND A21 AND !A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed write}

OR !RAS2E AND !WRB AND !CIPE {keep for write}

OR !RAS2E AND !DRAMWNB AND REFACKB AND RIPE AND RDE AND
WRB AND EURSTE {no access pending}

OR !RAS2E AND !DRAMWNB AND REFACKE AND RIPB AND !WRE AND

!EURSTE AND !A22 AND A21 AND !A20 {keep for page write}
OR ! REFACKE AND CIPE AND ! RAS2E AND ! DRAMWNB AND CO

{remove in refresh}

OR RAS2E AND !REFACKB AND CIPE AND DRAMWNB AND !C3 AND !C2
AND Cl AND CO {issue for refresh}

OR ! RAS2E AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND C2
AND !Cl AND !CO {keep for refresh}

OR ! RAS2E AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND C2
AND !Cl AND CO; {keep for refresh}

54

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY APPLICATION NOTE AN-90

RASlBEN

RASlB NOT . -

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

RASO BEN

RAS OB NOT ·-

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

ENABLEB;

RASlB AND REFACKB AND RIPB AND DRAMWNB AND !RDB AND

!A22 AND !A21 AND A20 {read/block refill}

!RASlB AND !CIPB AND !RDB AND DRAMACKB AND DRAMRDCENB
(keep for read/delayed read}

RASlB AND !CIPB AND RIPB AND !DRAMWNB AND !RDB AND

!A22 AND !A21 AND A20 AND !C3 AND !C2 AND !Cl AND CO

(delayed read/delayed block refill}

!RASlB AND !CIPB AND !RDB AND !BURSTB AND !C3 (keep block refill}

!RASlB AND !CIPB AND !RDB AND !BURSTB AND !DRAMWNB AND

!Cl{keep delayed block refill}

RASlB AND REFACKB AND RIPB AND DRAMWNB AND !WRB AND

!A22 AND !A21 AND A20 (write}

RASlB AND REFACKB AND RIPB AND ! DRAMWNB AND !WRB AND

!A22 AND !A21 AND A20 AND !C3 AND !C2 AND !Cl AND CO
(delayed write}

!RASlB AND !WRB AND !CIPB (keep for write}

! RAS 1B AND ! DRAMWNB AND REF ACKB AND RIPB AND RDB AND

WRB AND BURSTB {no access pending}

!RASlB AND !DRAMWNB AND REFACKB AND RIPB AND !WRB AND

!BURSTB AND !A22 AND !A21 AND A20 {keep for page write}

!REFACKB AND CIPB AND !RASlB AND !DRAMWNB AND CO

(remove in refresh}

RASlB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND !C2
AND Cl AND CO {issue for refresh}

!RASlB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2

AND !Cl AND !CO {keep for refresh}

!RASlB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2

AND !Cl AND CO; {keep for refresh}

ENABLEB;

RASOB AND REFACKB AND RIPB AND DRAMWNB AND !RDB AND

!A22 AND !A21 AND !A20 {read/block refill}

! RAS OB AND ! CIPB AND ! RDB AND DRAMACKB AND DRAMRDCENB

{keep for read/delayed read}

RASOB AND !CIPB AND RIPB AND !DRAMWNB AND !RDB AND

!A22 AND !A21 AND !A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed read/delayed block refill}

!RASOB AND !CIPB AND !RDB AND !BURSTB AND !C3 {keep block refill}

!RASOB AND !CIPB AND !RDB AND !BURSTB AND !DRAMWNB AND

!Cl {keep delayed block refill}

RASOB AND REFACKB AND RIPB AND DRAMWNB AND !WRB AND

!A22 AND !A21 AND !A20 {write}

RASOB AND REFACKB AND RIPB AND !DRAMWNB AND !WRB AND

!A22 AND !A21 AND !A20 AND !C3 AND !C2 AND !Cl AND CO

{delayed write}

!RASOB AND !WRB AND !CIPB {keep for write}

!RASOB AND !DRAMWNB AND REFACKB AND RIPB AND RDB AND

WRB AND BURSTB {no access pending}

! RASOB AND !DRAMWNB AND REFACKB AND RIPB AND ! WRB AND

!BURSTB AND !A22 AND !A21 AND !A20 {keep for page write}

!REFACKB AND CIPB AND !RASOB AND !DRAMWNB AND CO

{remove in refresh}

RASOB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND !C2

AND Cl AND CO {issue for refresh}

! RAS OB AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND C2
AND !Cl AND !CO {keep for refresh}

!RASOB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2

AND !Cl AND CO; {keep for refresh}

55

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY APPLICATION NOTE AN·90

END;

DRAMWNBEN
DRAMWNB NOT

DRAMACKBEN
DRAMACKB NOT

DRAMRDCENBEN
DRAMRDCENB NOT

CIPBEN
CIPB NOT

END PALl.

OR

OR
OR
OR
OR
OR
OR

OR

ENABLEB;
DRAMWNB AND !CIPB AND RIPE AND !WRB AND !C3 AND !C2 AND
!Cl AND co {write}
!DRAMWNB AND !REFACKB AND CIPB AND RIPE AND !C3 AND !C2
AND !Cl AND !CO{remove at refresh}
!DRAMWNB AND RIPE AND !RAS3B {keep asserted if any RAS}
!DRAMWNB AND RIPE AND !RAS2B
!DRAMWNB AND RIPE AND ! RASlB
!DRAMWNB AND RIPE AND !RASOB
!DRAMWNB AND RIPE AND !RDB AND !CIPB {keep for read}
!DRAMWNB AND RIPE AND !WRB AND !CIPB; {keep for write}

ENABLEB;
!CIPB AND !RDB AND DRAMWNB AND BURSTB AND !C3 AND !C2 AND
!Cl AND CO {read}
! C IPB AND ! RDB AND ! DRAMWNB AND BURS TB AND ! C3 AND ! C2
AND Cl AND CO {delayed read}

OR !CIPB AND !RDB AND DRAMWNB AND !BURSTB AND !C3 AND C2 AND
!Cl AND !CO {block refill}

OR !CIPB AND !RDB AND !DRAMWNB AND !BURSTB AND !C3 AND C2
AND Cl AND !CO {delayed block refill}

OR !CIPB AND !WRB AND DRAMWNB AND !C3 AND !C2 AND !Cl AND !CO
{write}

OR !CIPB AND !WRB AND !DRAMWNB AND BURS TB AND !C3 AND !C2
AND Cl AND !CO {delayed write}

OR !WRB AND !BURSTB AND !DRAMWNB AND REF AC KB AND RIPE AND
CIPB AND !A22 AND !RAS3B {page write}

OR !WRB AND !BURSTB AND !DRAMWNB AND REFACKB AND RIPE AND
CIPB AND !A22 AND !RAS2B {page write}

OR !WRB AND !BURSTB AND !DRAMWNB AND REF AC KB AND RIPE AND
CIPB AND !A22 AND !RASlB {page write}

OR !WRB AND !BURSTB AND !DRAMWNB AND REF AC KB AND RIPE AND
CIPB AND !A22 AND !RASOB ; {page write}

ENABLEB;
!CIPB AND !ROB AND DRAMWNB AND BURSTB AND !C3 AND !C2 AND
!Cl AND co {read}

OR !CIPB AND !ROB AND !DRAMWNB AND BURS TB AND !C3 AND !C2
AND Cl AND co {delayed read}

OR !CIPB AND !RDB AND DRAMWNB AND !BURSTB AND !C3 AND co
{block refill}

OR !CIPB AND !RDB AND !DRAMWNB AND !BURSTB AND !C3 AND !C2
AND Cl AND co {delayed block refill}

OR !CIPB AND !RDB AND !DRAMWNB AND !BURSTB AND !C3 AND C2
AND co {delayed block refill}

OR !CIPB AND !RDB AND !DRAMWNB AND !BURSTB AND C3 AND !C2
AND !Cl AND CO; {delayed block refill}

ENABLEB;
CIPB AND REFACKB AND RIPE AND !ROB AND !A22 {read}

OR CIPB AND REFACKB AND RIPE AND !WRB AND !A22 {write}
OR !CIPB AND !ROB {keep for read}
OR !CIPB AND !WRB ; {keep for write}

56

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISControllerT>< FAMILY APPLICATION NOTE AN-90

TITLE:
PURPOSE:

AUTHOR:
DATE:

MODULE PAL2;
TITLE PAL2;

TYPE MMI 20R8;

INPUTS;

{SYSCLKB

REF AC KB

DRAMWNB
BURS TB

RIPB
CIPB

WRB

A21

A20
C3

C2
{OUTENABLEB

Cl

co

{FEED BACK PINS}

CAS3B
CAS2B
CASlB

CASOB

DRAMLE

DRAMWRB

SB
TRB

OUTPUTS;

TABLE;

CAS3B
CAS2B

CASlB
CASOB

DRAMLE

DRAMWRB

SB
TRB

CAS3B NOT

PAL2
CAS
BOB NAPAA, IDT INC.

4/5/91

OR

NODE[PINl];

NODE [PIN2];
NODE [PIN3];

NODE[PIN4];

NODE [PIN5];
NODE [PIN6] ;

NODE [PIN7];
NODE [PIN8];

NODE [PIN9];

NODE[PINlO];

NODE[PINll];
NODE [PIN13] ;
NODE[PIN14];

NODE [PIN23];

NODE[PIN22];
NODE[PIN21];

NODE [PIN20];

NODE [PIN19];

NODE [PIN18];

NODE [P INl 7] ;
NODE [PIN16] ;

NODE [PIN15];

NODE [PIN22];
NODE [PIN2 l];

NODE [PIN20];

NODE[PIN19];
NODE[PIN18];

NODE[PIN17];

NODE[PIN16];

NODE[PIN15];

CAS3B AND RIPB AND !CIPB AND DRAMWNB AND (A21 AND A20

AND !C3 AND !C2 AND !Cl AND CO} {read or write}
CAS3B AND RIPB AND !CIPB AND !DRAMWNB AND (A21 AND A20

AND !C3 AND !C2 AND Cl AND CO) {delayed read/write}

OR CAS3B AND RIPB AND !CIPB AND !BURSTB AND DRAMWNB AND
WRB AND !SB AND (A21 AND A20 AND !C3 AND CO) {block refill}

OR CAS3B AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND
WRB AND !SB AND (A21 AND A20 AND CO) {delayed block refill}

OR CAS3B AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND

! WRB AND ! SB AND (A2 l AND A2 0 AND ! C3 AND ! C2 AND ! Cl AND
!CO) (page write}

57

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY APPLICATION NOTE AN·90

CAS2B NOT

CASlB NOT

CASOB NOT

DRAMLE NOT

OR CIPB AND DRAMWNB AND ! REF ACKB AND CAS3B AND (! C3 AND ! C2

AND Cl AND !CO) {refresh}

OR CIPB AND DRAMWNB AND !REFACKB AND !CAS3B AND (!C3 AND !C2

AND Cl AND CO); {refresh}

CAS2B AND RIPE AND !CIPB AND DRAMWNB AND (A21 AND !A20

AND !C3 AND !C2 AND !Cl AND CO) {read or write}

OR CAS2B AND RIPE AND !CIPB AND !DRAMWNB AND (A21 AND !A20

AND !C3 AND !C2 AND Cl AND CO) {delayed read/write}

OR CAS2B AND RIPE AND !CIPB AND !BURSTB AND DRAMWNB AND
WRB AND !SB AND (A21 AND !A20 AND !C3 AND CO) {block refill}

OR CAS2B AND RIPE AND ! CIPB AND !BURSTB AND !DRAMWNB AND
WRB AND !SB AND (A21 AND !A20 AND CO) {delayed block refill}

OR CAS2B AND RIPE AND !CIPB AND !BURSTB AND !DRAMWNB AND
!WRB AND !SB AND (A21 AND !A20 AND !C3 AND !C2 AND !Cl AND

!CO) {page write}

OR CIPB AND DRAMWNB AND ! REFACKB AND CAS2B AND

(!C3 AND !C2 AND Cl AND !CO) {refresh}

OR CIPB AND DRAMWNB AND ! REFACKB AND ! CAS2B AND
(!C3 AND !C2 AND Cl AND CO); {refresh}

CASlB AND RIPB AND !CIPB AND DRAMWNB AND (!A21 AND A20

AND !C3 AND !C2 AND!Cl AND CO) {read or write}
OR CASlB AND RIPB AND !CIPB AND !DRAMWNB AND (!A21 AND A20

AND !C3 AND !C2 AND Cl AND CO) {delayed read/write}

OR CASlB AND RIPB AND !CIPB AND !BURSTB AND DRAMWNB AND
WRB AND !SB AND (!A21 AND A20 AND !C3 AND CO) {block refill}

OR CASlB AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND

WRB AND !SB AND (!A21 AND A20 AND CO) {delayed block refill}

OR CASlB AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND

!WRB AND !SB AND (!A21 AND A20 AND !C3 AND !C2 AND !Cl AND
!CO) {page write}

OR CIPB AND DRAMWNB AND !REFACKB AND CASlB AND (!C3 AND !C2

AND Cl AND !CO) {refresh}

OR CIPB AND DRAMWNB AND ! REFACKB AND ! CASlB AND (! C3 AND ! C2
AND Cl AND CO); {refresh}

CASOB AND RIPB AND !CIPB AND DRAMWNB AND (!A21 AND !A20

AND !C3 AND !C2 AND !Cl AND CO) AND CASOB {read or write}

OR CASOB AND RIPB AND !CIPB AND !DRAMWNB AND (!A21 AND !A20

AND !C3 AND !C2 AND Cl AND CO) AND CASOB {delayed read/write}

OR CASOB AND RIPB AND !CIPB AND !BURSTB AND DRAMWNB AND
WRB AND !SB AND (!A21 AND !A20 AND !C3 AND CO) {block refill}

OR CASOB AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND
WRB AND !SB AND (!A21 AND !A20 AND CO) {delayed block refill}

OR CASOB AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND
!WRB AND !SB AND (!A21 AND !A20 AND !C3 AND !C2 AND !Cl AND

!CO) {page write}

OR CIPB AND DRAMWNB AND !REFACKB AND CASOB AND (!C3 AND !C2

AND Cl AND !CO) {refresh}
OR CIPB AND DRAMWNB AND ! REFACKB AND ! CASOB AND (! C3 AND ! C2

AND Cl AND CO); {refresh}

OR

TRB AND CAS3B AND CAS2B AND CASlB AND !CASOB {issue after}

TRB AND !CAS3B AND CAS2B AND CASlB AND CASOB {any CAS if}

OR TRB AND CAS3B AND !CAS2B AND CASlB AND CASOB {read cycle}
OR TRB AND CAS3B AND CAS2B AND !CASlB AND CASOB
OR CAS3B AND CAS2B AND CASlB AND CASOB;

58

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY APPLICATION NOTE AN-90

DRAMWRB NOT

SB NOT

TRB NOT

END;

END PAL2.

OR

!CIPB AND RIPB AND !WRB AND DRAMWRB {issue for write}

!WRB AND !BURSTB AND !DRAMWNB AND DRAMWRB AND RIPB

AND REFACKB {issue for page write}
OR !CIPB AND !DRAMWRB AND CAS3B AND CAS2B AND CASlB

AND CASOB AND RIPB; (keep until end of write}

OR

OR

SB AND !CIPB AND DRAMWNB AND (!C3 AND !C2 AND !Cl

AND !CO) {read/write/block rnfill}
!SB AND !CIPB AND !BURSTB AND WRB AND !C3 {keep for blcKk nefill}

SB AND ! CI PB AND ! DRAMWNB AND (! C3 AND ! C2 AND Cl

AND !CO) {delayed read/write/block refill}
OR ! SB AND ! CI PB AND 'DRAMWNB AND ! BURSTB AND WRG AND

!Cl {delayed block refill)

OR !SB AND !CIPB AND BURSTB AND WRB AND CCI AND CM~3B AND
CAS2B AND CASlB AND CASOB (read and delayed re.ad)

OR !SB AND !CIPB AND !WRB AND CAS3B AND CAS2B AND CASlB AND

CASCIB {keep for write}

OR !WRB AND !BURSTB AND !DRAMWNB AND SB AND REFACKB; {page write}

TRB AND !CIPB AND WRB AND DRAMWNB AND (!C3 ANIJ !C2

AND !Cl AND !CO) (read/block refill)

OR TRB AND !CIPB AND WRB AND !DRAMWNB ANIJ SB AND (!C3

AND !C2 AND Cl AND !CO) (delayed read/block refill)

OR !TRB AND !CIPB AND !f~B; {keep asserted for read/block refill}

59

DESIGNING A DISCRETE .DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

TITLE:

PURPOSE:

AUTHOR:
DATE:

MODULE PAL3;
TITLE PAL3;

TYPE MMI 16R8;

INPUTS;

{BSYSCLKB

RESETB
REFREQ

BC I PB

DRAMWNB
{OUTENABLEB

{FEED BACK PINS}

RIPB
C3

C2
Cl

co
REFACKB

GATECOUNTERB

OUTPUTS;

TABLE;

RIPB

C3
C2

Cl

co
REFACKB
GATECOUNTERB

RIPB NOT

PAL3
COUNTER
BOB NAPAA, IDT INC.

4/5/91

NODE[PINl];

NODE [PIN2] ;

NODE [PIN3] ;
NODE[PIN4];

NODE [PIN5] ;
NODE [PIN11] ;

NODE[PIN18];
NODE[PIN17];

NODE [PIN16];
NODE [PIN15];

NODE[PIN14];
NODE [PIN13] ;

NODE [PIN12] ;

NODE [PIN18];

NODE[PIN17];

NODE[PIN16];
NODE [PIN15];

NODE[PIN14];
NODE [PIN13];
NODE [PIN12];

!RESETB {reset}

!RIPB AND !RESETB {keep for reset}

!RIPB AND REFACKB {keep for refresh}

APPLICATION NOTE AN-90

OR

OR
OR !RIPB AND !REFACKB AND !C3; {keep until end of refresh}

C3 NOT !GATECOUNTERB AND !BCIPB AND REFACKB

OR !GATECOUNTERB AND BCIPB

OR GATECOUNTERB AND BCIPB AND REFACKB

OR !C3 AND !C2
OR !C3 AND C2 AND !Cl

OR !C3 AND C2 AND Cl AND !CO
OR C3 AND C2 AND Cl AND CO;

C2 NOT !GATECOUNTERB AND !BCIPB AND REFACKB

OR !GATECOUNTERB AND BCIPB
OR GATECOUNTERB AND BCIPB AND REFACKB

OR !C2 AND ! Cl
OR !C2 AND Cl AND !CO
OR C2 AND Cl AND CO;

60

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISController™ FAMILY

Cl NOT

CO NOT

REFACKE NOT

!GATECOUNTERE AND !ECIPE AND REFACKB

OR !GATECOUNTERE AND ECIPE

OR GATECOUNTERB AND ECIPE AND REFACKB

OR !Cl AND !CO

OR Cl AND CO;

OR

OR

!GATECOUNTERE AND !ECIPE AND REFACKE

!GATECOUNTERB AND ECIPE

GATECOUNTERE AND ECIPE AND REFACKB

OR CO;

REFACKE AND REFREQ AND RESETE {for refreq)

APPLICATION NOTE AN-90

OR !REFACKE AND !ECIPE AND RESETE {as long as cipb low}

OR !REFACKB AND !C3 AND RESETE AND GATECOUNTERB

{keep asserted}

OR REFACKE AND RESETE AND !RIPE {reset}

OR !REFACKE AND !GATECOUNTERE; {keep for reset}

GATECOUNTERB NOT .- GATECOUNTERB AND !REFACKE AND !ECIPE AND RIPE

{issue for both refack and cipb}

OR ! GATECOUNTERB AND !ECIPE AND RIPB
{keep as long as cipb}

OR ! GATECOUNTERE AND !REFACKE AND RIPE AND C3

OR !GATECOUNTERE AND !REFACKE AND RIPE AND C2

OR !GATECOUNTERB AND !REFACKE AND RIPE AND Cl
OR !GATECOUNTERE AND !REFACKB AND RIPE AND CO;

END;

END PAL3.

61

~· IDT79R3051™ MAIN MEMORY APPLICATION

AND SYSTEM 1/0 INTERFACING NOTE
AN-92

Integrated Device Technology, Inc.

By Andrew Ng

INTRODUCTION
The IDT79R3051™ RISController™ family provides a

simple, flexible external bus interface to directly support main
memory and system 1/0 resources. The bus interface is
straightforward in that it uses a single, multiplexed 32-bit
address and data bus and a small number of supporting
control signals. The bus interface is adaptable in that it can
handle differenttypes and speeds of memory including DRAM,
SRAM, and EPROM and different kinds of 1/0 resources.
Thus the simple, flexible R3051 bus interface allows design­
ers to make optimal trade-offs between system speed and
cost issues.

MAIN MEMORY DESIGN
The R3051 normally accesses its internal instruction and

data cache memories as in Figure 1, while using external main
memory as a secondary source of memory as in Figure 5.
Since the R3051 contains its own internal instruction and data
caches, the complexity of the cache timing and interfacing is
kept on-chip, which allows the external interface to be dedi­
cated to main memory and system 1/0 interfacing. The system
interface is decoupled from cache memory by the use of an
internal 4-deep read buffer and an internal 4-deep write buffer.

The instruction and data cache allow the R3051 to access 1
instruction and 1 data word on each clock cycle. On reads,
when a cache miss or an uncachable reference occurs, the
R3051 begins an external read cycle which buffers 1 word on
non-burst reads and 4 words at a time on burst reads from
system 1/0 and main memory. On writes, the R3051 maintains
a write-through cache update policy which simultaneously
updates both the data cache and main memory. With the use
of its 4-deep write buffer, the R3051 can continue to execute
instructions from its instruction cache while the main memory
retires up to 4 words from the write buffer.

Read and Write Cycle Protocols
The simple read interface allows a wide range of memories

and 1/0 to be used with the R3051, from slow 1/0 peripherals
to high-speed burst accessed DRAM and SRAM. As shown in
Figure 2 and 3, the read interface supports both single datum
accesses and 4-word burst accesses simply by providing a
Burst output signal and by providing dedicated LSB address
line outputs Addr(3:2) which are used as a word counter.
System 1/0 or main memory is only required to acknowledge
each of the 4 words with the RdCEn input which is used as a
read clock enable to latch each word into the 4-deep read

BrCond(3:0)

+
Clk2xln J Clock] Generator I Master Pipeline Control 1- General Registers (32 x 32)

1 Unit I ALU
Exception/Control Registers Shifter

Memory Management Registers Mult/Div Unit

lntJ?:Ql_ Translation Lookaside Buffer Address Adder (64 Entries) PC Control

I Virtual Address

Physical Address Bus

32 ;1 v + 1 v
r

Instruction

~
Data l 32'1

cache Cache
(BkB/4kB) (2kB)

t-i Data Bus l
BUS INTERFACE UNIT .. OMA BIU 4-deep J

Write Buffer
4-deep]

Read Buffer Arbiter I Control 2881 drw 01

f
Address/

Data

1
OMA
Ctrl

l ~
Rd/Wr SysClk

Ctrl

Figure 1. R3051 RISController Internal Architecture

The IDT logo is a registered trademark and RISController, R3000, R3051, R3052. and BiCEMOS are trademarks of Integrated Device Technology. Inc.
MIPS is a registered trademark of MIPS Computer Systems, Inc.

©1992 Integrated Device Technology, Inc.
62

6192

IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING

buffer. Read interfacing also has the option of using the Ack
acknowledge input signal to optimally control when the R3051
core restarts its pipeline on burst read cycles.

The simple write interface allows a wide range of memories
and 1/0 to be used with the R3051 by buffering writes from the
R3051 core which are done at cache speeds. This allows main
memory and 1/0 to retire write cycles at their own rate of speed
by returning Ack, to acknowledge that the word has been
received as shown in Figure 4.

Basic System Functional Blocks

The following sections will describe the functional blocks
that are typical of R3051 main memory and system 1/0
interfacing. As shown in Figure 5 these blocks include:

• Address Demultiplexing
• Address Decoding and Chip Selection
• Data Transceivers
• Wait-State Controller and Interface Handshaking
• Read/Write Enables and Strobes

The discussion concentrates on the general interface blocks
involved when using the following modules:

• SRAM Interfacing
• DRAM Interfacing
• EPROM Interfacing
• 1/0 Interfacing
• OMA Interfacing

SysClk

APPLICATION NOTE AN-92

Specific information on using the different memory and
1/0 types is presented in detail in other application notes.

ADDRESS DEMULTIPLEXER AND DECODER
The R3051 uses a multiplexed A/0(31 :0) bus to output its

address and to send and receive data. Thus main memory
must de-multiplex the address by using the R3051 's Address
Latch Enable control signal, ALE, before decoding the ad­
dress to select chip enables.

Latching A/0(31 :0)

Transparent latches such as the I DT54/7 4FCT373 and the
IDT54/74FCT841 pass inputs straight through to the outputs
when their Latch Enable input is HIGH. When their Latch
Enable input is LOW, the data in the latches are held constant.
The R3051 provides the ALE output for direct connection to
the transparent latches' Latch Enable pins.Transparent latches
are typically used to allow address decoding to take place
when ALE is HIGH and the address begins to become valid,
instead of waiting until the latch closes.

The Address Latch Enable, ALE, is designed to clock the
address into a transparent latch such as the FCT373. ALE is
also designed to meet the address hold time of latches. As
with all high-speed processors, ALE should be considered a
critical signal. Thus Printed Circuit Board routing should
minimize ALE's trace length and crosstalk susceptibility.

Rd }"-----+--___ /
A/0(31:0)

Addr(3:2)

ALE

Data En

Ack

(~ Addr&BE} {oata; npu~

------+-.t . worn Add~•; I)C

---~.____.______.___c_

Start
Read

Turn
Bus

'--~/

Ack/ Sample New
RdCEn Data Transaction

2881 drw 02

Figure 2. R3051 Single Word Read

63

IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING APPLICATION NOTE AN-92

SysClk

Rd

A/0(31 :0) ---~ Addr&BE

Addr(3:2)

ALE

~~~¥~~~~~-i-1 

____._.11\~~~-+--+--*---*---*---*--~C~ 

'00' x '01' x '1 O' x '11 

i 

Data En 

'~-;--+-~+--+-~~--i-----+-~~_;_j_l~_!_-

\'-+-"'-CC\--<,,.__.__i--LfT\-<--1 ............... m'---+--1 ............... ! 
Ack ---...;......---<>---'\_j__/'r-!";---i----+---+---<---_..;---+---i---

RdCEn 

; 1 
2880 drw 03 

Figure 3. R3051 4 Word Burst Read 

Decoding A(31 :O) 
Address decoding, which selects between the various 

memory and 1/0 banks in the system, can be done with IDT54/ 
7 4FCT138/139 decoders as shown in Figure 6. 

The time for the main memory chip selects to become valid 
in such a scheme is: 

!Decode =max (t3051ALEProp+ l373LEto0, l3051AddrProp + l373Dto0) 

+ l138Ato0 +!Cap 

Systems that require the chip selects to not have decoding 
glitches while the address drives to a valid value can register 
the decoder outputs by using SysClk as the clock and a 
CycleStart signal as the clock enable. The CycleStart signal is 
derived from the Rd and Wr control lines so that it asserts at 
the beginning of every memory cycle. 

Decoding Byte Enables with Chip Selects 
During the address phase, the R3051 uses the lower 4 bits 

of the multiplexed A/D(31 :0) bus to output BE(3:0). Byte 
enables are used to determine which bytes of each word are 
being read or written to support partial word accesses. Be­
cause BE(3:0) are used throughout the memory cycle, they 
are latched by ALE along with the other AID bits. 

In general, it is permissible to process all reads as 32-bit 
reads-the processor will only take the data it requested from 
the bus. However, in write operations, the system must insure 
that only the specified bytes are written. Thus, the byte enable 
outputs are used to control this. 

64 

There are two ways in which the byte enables may be used: 
Gate the byte enables with the memory chip selects. Thus, 
only those bytes of memories which will be written are 
selected. A single write enable can then be presented to all 
banks of that memory subsystem. This solution requires 
that each memory subsystem further decode the chip­
selects, and thus one decoder per memory subsystem is 
required. 
Gate the byte enables with the memory chips read/write 
enables/strobes. Thus, although all of the devices in that 
bank of memory are "selected", only those bytes to be 
written are enabled for the writes. This is a common 
strategy in DRAM subsystems. Note that the individual 
byte strobes may be broadcast to all memory systems, and 
the address decoder will insure that only one subsystem is 
"Selected". Thus, a single decoder for byte enables can 
serve the entire memory system. 

If the memories being used are 1-bit to 8-bits wide, gating 
the byte enables with the chip selects can be done. Because 
the byte enables are predetermined within the R3051 by using 
the LSB address bits, the endianness of the system, and the 
type of load or store instruction, the byte enables have the 
same timing as the rest of the AID lines during the address 
phase when ALE is asserted. This allows a memory decoder 
to have individual chip selects for each byte of each bank with 
no timing penalty. An example is shown in Figure 7. 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING APPLICATION NOTE AN-92 

Wr 

A/D(31:0) 

Addr(3:2) 

ALE 

----t"I Reset 
-----4N Clk2xln 
__ ... f'iit(5:0) 

---91 BrCond (3:0) 
-----4"1 BusReq 
~---1 BusGnt 

\.......__.__ ____ .........,/ 
( ( A~~; X~.....,.--D-at_a..,...-ut __ ...,..)C 

----~-X word Address x== 

----i-"rl\~--;----;---;--o-c_ 

'-f-1 
\..__.;-.--.;-.--~/ 

Start Data Ack Negate New 
Write Out Wr Transfer 

Figure 4. R3051 Single Word Write 

IDT R3051/E52/E 
RISController™ 

2881 drw 04 

Burst/ 
RdCEn WrNear 

ALE Addr(3:2) S sClk Rd Wr ACK DataEn BusError 

DRAM Controller 

Wait-State Controller and Interface 
Handshaking Control PALs 

Address 
Decoder 

Figure 5. R3051 with Main Memory 

65 

2881drw05 



ID179R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING 

:2)~ 
FCT244 A(3:2) 
BUFFER Addr(3 

A(31 :4) 

FCT373 - LATCH BE(3:0) A/D(31 :0) 

ALE - ~ 

_. 

3 
FCT138 

~ DECODER I- CS(7:0) 

_. 

2881 

A(31:2) 
BE(3:0) 

drw06 

APPLICATION NOTE AN-92 

Figure 6. Address Demultiplexer and Decoder 

As gating the byte enables with the chip selects usually 
takes more output pins than gating the byte enables with the 
read and write enables, the latter is usually preferred. The use 
of byte enables with read/write enables will be discussed in the 
read/write enable/strobe section. 

Using Addr(3:2) 
Since the lower 4 ND bits are used for byte enables during 

the R3051 's address phase, the R3051 provides the informa­
tion for addressing words through its Addr(3 :2) output pins. 
The R3051 uses 4 bytes-per-word and pre-decodes the byte 
enables instead of providing the 2 LSB address lines. Addr(3:2) 
are driven throughout external bus cycles and do not require 
latching. During non-burst read cycles and all write cycles, 
Addr(3:2) contains the instruction cache miss address. The 
advantage of dedicating output pins for Addr(3 :2) is that 
during burst read cycles, Addr(3:2) are incremented from 0 to 
3 by the R3051 RdCEn protocol so that the system memory 
system does not have to provide a counter for this function. 

Since each memory chip requiresAddr(3:2), large memory 
systems that use Addr(3:2) extensively may want to use 
buffers. A common strategy may be to provide a buffered 
version of Addr(3:2) to non-time critical areas of memory (e.g. 
the boot prom), or to areas which do not perform burst 
accesses (1/0 devices), and directly use the outputs of the 
R3051 in time-critical areas such as the DRAM control. 

The crossover point where buffering is appropriate can be 
determined by determining if the delay through an IDT54/ 
74FCT244 buffer and the capacitive derating from all the 
Addr(3:2) inputs driven by the buffer (Addr(3:2) can be buff­
ered for separate branches of memory banks) would be less 
than the delay from the capacitive derating from all the 
Addr(3 :2) inputs driven directly from the R3051. In addition, 
the crossover doesn't occur until Addr(3:2) is delayed past 
when rest of the A(31 :4) lines reach their inputs. 

66 

l3051Addr(3:2) + 1244 + t244Cap $ max(t3051Addr(3:2) + 
t3051 Cap, tA(31 :4)) 

where: 
t244Cap = (sum(ClnpuVOutput) + C244 +!Trace - 50 )/33 pf/nsec 
t3051 Cap= (sum(ClnpuVOutput) + C3051 +!Trace - 25 )/25 pf/nsec 

Using Diag(1 :0) 
Some systems may need to know whether a read cycle is 

cachable or uncachable and whether a cachable read cycle is 
an instruction or a data fetch. In Figure 8, this information is 
provided by latching the diagnostic pins, Diag(1 :0) with the 
same latch controls as the address lines. These signals are 
useful during reads for: 
• Decoding whether a read in the lowest half GB of physi­

cal memory is from ksegO or kseg1. 
• Tracing processor execution by knowing which address 

caused the I-Cache miss. 

DATA TRANSCEIVERS 
The R3051 uses a multiplexed ND(31 :0) bus to output its 

address and to send and receive data. Thus main memory 
must drive or receive data after the R3051 has tri-stated its 
address. Further, to support high-performance memory sys­
tems, the R3051 family is capable of initiating a new bus 
transaction one-half clock cycle after data is sampled for a 
read operation. 

Determining if Data Transceivers are Needed 
Multiplexed CPU busses often use data transceivers to 

separate the memory system from the processor bus. Read 
cycles require the memory system to stop driving data on the 
A/D bus before the processor drives the next memory cycle's 
address. Slow memories with relatively long output disable 
times cannot meet this limitation without data transceivers. 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING 

However, some memories, such as the IDT718256 BiCMOS 
32k x 8 Static RAM, have very short access time and output 
disable time which makes it possible to consider attaching 
memory device data 1/0 pins directly to the multiplexed A/ 
0(31 :0) bus. Alternatively, in low-frequency systems, the 
amount of time provided by the R3051 may be sufficient forthe 
memory devices attached to the bus. 

The key parameter is the memory output disable time, toz, 
which has to be less than 1 /2 clock to disable before the next 
memory's address is driven. In addition the address and data 
driven from the R3051 is delayed because of the extra 
capacitance of the memory data 1/0 pins. 

toz <:: tsysClk/2 - tDisableControl + min(t3051Addr) 

Data Transceivers also serve to isolate memory banks 
from each other. In systems with varying speeds of memory, 
transceiver banks can be used to separate chips with rela­
tively long output disable times from those with relatively quick 
output disable times. Thus in many systems, fast scratch-pad 
SRAMs may have their own set of transceivers, while slower 
EPROMs and 1/0 peripherals might have a separate set of 
transceivers. 

BE(O) -----~ 

2 
A{31:2) 

Ea ooa CS(O)BE(O) 
ma CS(1)~0) 

AO a '02a CS{2)~0) 
A1a 03a CS(3)BE{O) 

FCT139 
DECODER 

BE(1) ----!----- Eb QQb CS(O)BE(1) 
Q1b CS(1)~1) 

A Ob Q.2.b CS{2)~1) 
A1b 03b CS{3)BE(1) 

BE(2) ----+---- Ea OOa CS(O)BE(2) 
01a CS{1)~2) 

AO a 02a CS(2)~2) 
A1a 03a CS(3)BE(2) 

FCT139 
DECODER 

Eb OOb CS{O)BE(3) 
01b CS(1)~3) 

A Ob 02b CS{2)~3) 
A1b IT36 CS{3)BE(3) 

2881 drw 07 

Figure 7. Gating Byte Enables with Chip Selects 

67 

APPLICATION NOTE AN-92 

Using IDT54/74FCT861s and IDT54/74FCT245s for Data 
Transceivers 

Most systems will use slower memories and thus require 
data buffering through a transceiver interface. There are two 
basic families of transceiver interfaces: 

1. IDT54/74FCT861 with separate enable pins for each 
direction. 

2. IDT54/74FCT245 with a direction pin and an enable pin. 

Using IDT54/74FCT861s for Data 
Transceivers 

The 10-bit transceiver FCT861 approach functionally com­
bines two 10-bit tri-statable FCT827 buffers internally. The 
8-bit FCT623T transceiver is similar to the FCT861 except that 
one of its output enables is Active-HIGH. On read cycles, if 
there is only one transceiver bank, then DataEn can be used 
directly to control the read direction output enable. Otherwise, 
combinational logic such as an FCT157/257 multiplexer can 
be used to combine DataEn with the chip selects of the bank 
whose transceivers need to be enabled (see Figure 16 for a 
similar common input OR gate circuit). Alternatively, some 
transceivers, such as the 9-bit I DT54/7 4FCT863 and the 8-bit 
IDT54/74FCT543 have two logically AND'ed output enables 
for each direction so that DataEn and the bank chip select can 
be hooked up directly to the transceiver. State machines using 
an inverted SysClk can also use a Rd derived signal to syn­
chronously assert and de-assert the read direction output 
enable. 

The write direction output enable can use a signal derived 
from Wrwhich asserts at the beginning of the cycle and waits 
until after the data has been strobed into the memory or 1/0 
device before de-asserting to provide sufficient data setup 
and hold time. For systems with 1 wait-state or more, the 
derived write direction enable signal should ideally assert after 
the A/D bus finishes driving its address phase to reduce 
switching noise. 

The transceiver control's critical timing path is the transition 
from a read cycle to a write cycle. After a read cycle, slower 
memory chips take a relatively long time to disable from the 
data bus. If the next memory cycle is a write, the transceivers 
will drive data onto the same bus. Such systems can use the 
second memory cycle's wait-states to delay the assertion of 

Diag(O) 

Diag(1) 

ALE 

FCT373 
or 

FCT841 ..... ..... 
LATCH 

t> 28 

Figure 8. Latching Diag(1 :0) 

Rdlnst 

Rd Cache 

81drw08 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING APPLICATION NOTE AN-92 

A/D(31 :0) 

Addr(3:2) 

ALE 

861RdEn 

Wr 

A/D(31:0) 

Addr(3:2) 

ALE 

'----~--~+---~---+-~/ 
( KAddr&BE ~ ( Dat."1npu1)-k._(..____,_) __ _ 

-----;-.... X : word Address X.__ _______ _ 

-~11\ /\~~ 

vv 
Start Turn Ack? Ack? Ack/ Sample End 2881 drw 09 

Read Bus RdCEn Data Read 

Figure 9a. Timing Diagram of FCT861 Read Direction Enable 

i ( ~Addr~BE X.__._ ____ __.__D_at_a_o_ut_p_ut _ _.__ ___ ...___,X ( ) 

----....:....~~ Word Address X'----+-------
---;....--11\ rn 

\U 
K \ 

Start Turn Ack? Ack? Ack 
Write Bus 

v v 
Strobe End 

Data Write 

Figure 9b. Timing Diagram of FCT861 Write Direction Enable 

68 

2881drw10 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING 

the transceiver's write direction output enable until the first 
memory cycle's memory has fully disabled. The cutoff for 
determining if the memory output disable time is small enough 
to require no wait-states is: 

tSysClk >= tDisableControl + tMemReadDisable - tWriteData 

Systems that use memory chips without an output enable 
pin (i.e., a read is implied for every chip select with no write 
enable) require special transceiver interfacing in order to 
support partial word writes. During partial word writes, where 
only some of the bytes are selected for writing, bytes which are 
not being written may actually output onto their byte lanes, and 
thus conflict with the transceiver write direction outputs. In 
such memory subsystems, there are two options: only chip 
select those devices actually being written into; or, only enable 
those transceivers whose byte lanes are used in this write 
transfer. Either of these solutions will insure that no bus 
conflict occurs. 

Using IDT54/74FCT245s for Data 
Transceivers 

The 8-bit FCT245 transceiver approach ideally requires 
that the direction control only be changed when the outputs 

APPLICATION NOTE AN-92 

are disabled to prevent bus contention. Although such sys­
tems are easy to design, this general discussion uses the 
following assumptions: 

1. Either a SysClk or SysClk-based state machine is used. 
2. The memories require at least 1 wait-state. 

The output enable of an FCT245 needs to be determined 
by finding the start and end of the memory cycle, which can be 
determined by logically ANDing Rd and Wr. The assertion of 
the output enable can be easily delayed to occur well after the 
transfer, depending on the number of wait-states in the 
memory controller. That is, the transceiver only needs to be 
enabled in time to allow the data to propagate through to the 
CPU as the read data response is finally returned to the 
processor. In read cycles, the output may be disabled using 
the same clock edge as is used by the CPU to negate Rd. On 
write transactions, the transceiver must be enabled until the 
data set-up and hold time requirements of the memory being 
written are met, which may extend until the next falling edge 
of SysClk (note for the R3051, the processor guarantees that 
valid data will remain for one-half clock cycle afterthe negation 
of Wr). 

\~~-+----'----"--~~~~! 
A/0(31 :O) ( {Addr&BE ~ ( Data Input)--{ ( ) 

Addr(32) -----+~X J J j word Address X._ _ __.. __ _._ __ 
ALE ~~l+~!~:----+-----+-~----+-~~rn~1-l.-i--

\~--;----;---_._____;_..J1 

\_} 

245DirTiR" f ~ 

\ > 
~----+~~____.____.~;~~V~~V 

vv 
Start Turn Ack? Ack? Ack/ Sample End 2881 drw 11 

Read Bus RdCEn Data Read 

Figure 10a. Timing Diagram of FCT245 Enable and T/R Direction Controls for a Read 

69 



IDT79R3051™ MAIN MEMORY AND SYSTEM 110 INTERFACING APPLICATION NOTE AN-92 

Wr 

AID(31:0) [ Data Output 

Addr(3:2) Word Address 

ALE 

245DirT/R" 

Start Turn Ack? Ack? Ack Strobe End 
Data Write 

2881drw12 
Write Bus 

Figure 10b. Timing Diagram of FCT245 Enable and T/R Direction Controls for a Write 

The T/R direction pin of the FCT245 should be asserted 
before the output enable asserts, which can be achieved by 
using a Rd or Wr derived signal. The direction should be held 
until the next clock edge after Rd or Wr de-asserts; that is, until 
after the output enable is de-asserted. 

Systems that use memories without a dedicated output 
enable pin require separate byte output enables in the data 
path, as discussed above. 

PULL-DOWN/UP RESISTORS ON R3051 
OUTPUTS 

The R3051 tri-states its outputs under three conditions: 
1. If no external read or write memory cycles are being 

executed, the A/D bus will tri-state. Control signal outputs 
will be driven to negated states. 

2. If a DMAbus grant is given, all bus interface outputswilltri­
state. 

3. If the Tri-State reset mode has been invoked, all outputs 
except SysClk will be tri-stated. 

The following paragraphs detail which outputs are affected 
when the R3051 is in a tri-stated condition. 

Pull-down/up Resistors on the A/D Bus 
The R3051 tri-states the A/D bus when it finishes a write (or 

read) cycle and there is not another pending memory cycle 
that it needs to execute. This situation occurs when the R3051 
is getting instructions from its internal instruction cache and it 
executes a sequence without store instructions. Since the Al 
D bus can be tri-stated for these periods, it is desirable for the 
input pins of the address latches and data transceivers to 

70 

maintain the A/D bus with defined, valid logic values by using 
pull-up/pull-down resistors. The use of pull-up or pull-down 
resistors also has the benefit of easing Automatic Test Equip­
ment programming on board-level and in-circuit tests. 

Pull-down/up Resistors on Control Lines for OMA 
The R3051 has an on-chip Direct Memory Access (OMA) 

arbiter that allows outside processors and controllers to take 
control of the external memory systems, and perform transac­
tions. It does this by indicating a request to the R3051, which 
then tri-states its bus interface to allow it to be driven by the 
external agent. 

During OMA, the R3051 will execute instructions from its 
internal caches until it has a cache miss, makes an uncacheable 
reference, or its write buffer becomes full. 

An external agent requests bus mastership by asserting 
the R3051 BusReq input. If BusReq is asserted by the OMA 
device, the R3051 tri-states its outputs and asserts BusGnt to 
signal to the OMA device so that it can begin to drive its own 
memory cycles. During OMA, the R3051 tri-states all outputs 
except SysClk and BusGnt. During the time that the R3051 
and the OMA controller transfer control back and forth, neither 
one drives the control line outputs (to avoid bus conflicts). In 
order to properly transfer control, the R3051 control outputs 
should be kept in their de-asserted state. If the transfer time 
is relatively short, the system designer may choose to rely on 
bus capacitance to hold these signals in their negated posi­
tions. Alternatively, a more conservative strategy is to hold the 
bus in a negated position with pull-down or pull-up resistors. 
Thus Rd, Wr, Burst/WrNear, and DataEn should use pull-up 
resistors and ALE should use a pull-down resistor. 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING 

Pull-down/up Resistors on Control Lines for Tri-State 
The R3051 has a reset mode vector which allows the chip 

to tri-state all its outputs, except SysClk. This mode is attained 
by asserting Tri-State via Slnt(1) while Reset is asserted. In 
addition to the control lines above, BusGnt is tri-stated. Thus 
for Automatic Test Equipment programming on board-level 
and in-circuit testing, a pull-up resistor for BusGnt can be used. 

WAIT-STATE CONTROLLER LOGIC 
Wait-states are used to extend the number of clocks within 

a memory transfer to provide sufficient memory access and 
data setup time for the particular type of memory being 
accessed. Such control can be provided with a wait-state 
controller state machine. In general, a wait-state machine has 
four steps: 
1. Detect the beginning of a memory cycle. 
2. Determine the type of cycle: 

a. Which chip select (address decode) 
b. Read or write 
c. Single word or burst, write near or non-page write. 

3. Count out cycles until memory is ready and assert R3051 
handshaking signals. 

4. Acknowledge the end the cycle. 

Thus, the basic control strategy is to use a counter which is 
held at zero until a cycle is started, and which then increments 
every clock cycle until the transfer is completed. This master 
counter then provides the reference by which control outputs 
to the memory, data path, and CPU are provided. 

R3051's Use of Both Clock Edges 
The R3051 uses both edges of the clock to assert and de­

assert its control signals. This is to ameliorate the fixup time 
between memory cycles, which for most processors, takes 1 
full clock cycle. The R3051 is able to do the fixup in 1/2 clock 
cycle. This would seem to complicate the design of state 
machines which must latch these signals synchronously to 
one edge or the other. However, as will be shown in the 
following sections, a traditional state machine that follows a 
small number of simple design rules can still use a single edge 
clock. 

The R3051 uses an input clock, Clk2xln, that runs at twice 
the frequency of the processor. The R3051 provides an output 
clock, SysClk, that runs at the same frequency as the proces­
sor and can be used to clock external state machines. The 
polarity of SysClk was chosen intentionally so that either an 
unbuffered SysClk or an inverted version of SysClk, (referred 
to here as SysClk) can be used. Because all the R3051 control 
outputs have very short propagation delays (less than 1 /2 
clock), a state machine can use either edge of SysClk. 

In developing the set of constraints brought on by the use 
of both the rising and falling clock edges, some observations 
can be made: 
1. All clockable control line outputs, except Data En assert off 

the rising edge of SysClk. 
2. All clockable control line outputs de-assert off the falling 

edge of SysClk. 

71 

APPLICATION NOTE AN-92 

3. All control line inputs required by the R3051 are sampled 
on the rising edge of SysClk. 

Observations 1 and 2 can be specifically applied to two of 
the primary control signals, Rd and Wr. 
1. Rd and Wr both assert off the rising edge of SysClk. 
2. Rd and Wr both de-assert off the falling edge of SysClk. 

The similarity of edge assertions for Rd and Wrcan be used 
to simplify the wait-state controller. 

Detecting the Beginning of a Memory Cycle 
State machines looking forthe beginning of a memory cycle 

can look for one of two things: 
1. Rd or Wr asserting. 
2. ALE asserting. 

In general, state machines have to choose between using 
SysClk and SysClk. State machines such as those imple­
mented in ASICs can use both clock edges, however, to 
simplify the discussion it will be assumed that only one or the 
other clocks is being used. If SysClk is used, certain registers 
must use SysClk directly from the processor to provide suffi­
cient hold time from the processor. Only a negative edge 
clocked register can synchronously clock ALE under worst 
case timing, since ALE is only HIGH surrounding the falling 
SysClk edge which requires a negative edge triggered flip­
flop. SysClk cannot be used because its inverter delay will put 
it past when ALE could fall. 

Machines which use SysClk (the inverted SysClk) will have 
a delay from inverting SysClk. All state machines can use Rd 
and Wr to determine the beginning of a cycle. SysClk ma­
chines are able to do this easily with wide margins on setup 
and hold times to its registers. SysClk machines must use 
SysClk directly from the processor and use registers with O 
hold time and also have a guaranteed minimum clock to output 
delay to meet the R3051 's input hold time. 

Determining the Type of Memory Cycle 
The type of memory cycle usually depends on the following 

variables: 
1. Type of memory. 
2. Read or write cycle. 
3. Burst or non-burst, write near or non-page write. 

These three variables are usually logically ANDed together 
to form equations for determining the number of wait-states 
before asserting RdCEn, Ack, or BusError as well as any 
transceiver controls. The chip selects from the memory decoder 
can be used to determine the type of memory to count the 
correct number of wait-states. By using the R3051 's Rd and 
Wr lines, the transceiver controls can be defined. On read 
cycles, the R3051 's Burst/WrNear line determines if 1 word or 
4 words are to be returned. On write cycles, Burst/WrNear 
determines if a consecutive write is on the same 256 word 
page as its predecessor. An example of a state transition 
diagram that uses the read/write and burst/non-burst vari­
ables for one memory type is shown in Figure 1 i. Each 
memory type in the system also has a state diagram. 

Further variables that affect the type of memory cycle are 
implied by the mode initialization vector which is supplied 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING APPLICATION NOTE AN-92 

Reset Counter 

!CS and !Rd and Burst/WrNear !CS and !Rd and Burst!WrNear !CS and !Rd and Burst!WrNear !CS and !Rd and Burst!WrNear 

Increment Counter Increment Counter 

Count == 2 ? Count == 2 ? 

Assert RdCEn, Ack, CycleEnd Assert RdCEn, Ack 
Increment Counter Increment Counter 

Count== 3? 

Assert RdCEn 
Increment Counter 

Count== 4? 

Assert RdCEn 
Increment Counter 

Count== 5? 

Assert RdCEn, CycleEnd 
Increment Counter 

Increment Counter Increment Counter 

Count== 3? Count== 2? 

Assert Ack, CycleEnd Assert Ack, CycleEnd 
Increment Counter Increment Counter 

2881 drw 13 

Figure 11. State Diagram of an Example Wait-State Controller for a Single Memory Type 

during processor reset initialization. The variables determine 
whether the data byte ordering is Big or Little Endian and 
whether data cache miss refills are handled one word at a time 
or as 4 word block refill reads. BigEndian and DBRefill are set 
by multiplexing the interrupt lines on the de-assertion of reset, 
an example of which is shown in Figure 12. 

The mode vector of the R3051 was chosen to allow it to be 
supplied by just using pull-up resistors on the appropriate 
interrupt inputs. For example, the multiplexer shown in Figure 
12 could be eliminated, and the pull-up resistors tied directly 
to the Slnt(2:0) pins. 

Note that to maintain compatibility with future versions of 
the R3051 family, lnl(5:3) should be HIGH when Reset is de­
asserted. This also can be performed using pull-up resistors. 

Memory Interface Handshaking 
The R3051 uses two inputs, RdCEn and Ack.to indicate 

that the memory system is ready to receive or return data. On 
read cycles, RdCEn is sampled on the rising edge of SysClk 
by the R3051 so that it can enable its internal read buffer clock 
on the next falling edge of SysClk. Thus on single word reads, 
a single RdCEn is asserted as the memory becomes ready as 
shown in Figures 2 and 11. On 4 word burst reads, RdCEn is 
asserted for each of the 4words. Thus on burst reads, thewait­
state controller can optionally "throttle" each word into the 
R3051 by delaying the return of each word by a varying 
number of clocks. RdCEn can be generated by gating the 
memory type and the count: 

72 

RdCEn not := Reset and CycleEnd and BusError and ( 
(!Rames and !Rd 

); 

and ( (Counter== 02H) 
or (!Burst!WrNearand (Counter== 03H)) 
or (!Burst!WrNear and (Counter== 04H)) 
or (!Burst!WrNear and (Counter== 05H)) 

The acknowledge input, Ack, has two uses. On reads, Ack 
can be used to optimize the processor execution engine 
restart. On writes, Ack is used to signal the end of the cycle, 
as will be explained later. The R3051 throttles burst reads into 
its internal read buffer at the rate of the memory system; 
however, it reads data from the read buffer on every clock 
cycle. Therefore, the R3051 will either wait until the last 
RdCEn has occurred to begin reading the internal read buffer, 
or until the memory system signals Ack to the processor. 
Asserting Ack on a read cycle causes the R3051 to start 
reading words from the read buffer in the next cycle; thus, the 
memory system times the assertion of Ack so that the last 
word can be presented by the memory system just before it is 
read from the read buffer. Thus for optimal speed burst reads, 
Ack should be asserted 3 clocks before the last RdCEn 
occurs, as shown in Figure 3. For optimal single datum reads, 
Ack should be asserted at the same time as RdCEn. 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING 

Big End !Oa Slnt(O) 
Userlnt(O) !Ob FCT157 

Tri-State 
11a or 

Slnt(1) 
Userlnt(1) 

11b FCT257 

DB Refill 
12a MULTI-

Slnt{2) 12b PLEXER 
Userlnt(2) 

l3a 
l3b 

SEL 

2881 drw 14 

Figure 12. Reset Vector Circuit 

On write cycles, Ack is sampled on the rising edge of 
SysClk by the R3051 so that the cycle ends on the next falling 
edge of SysClk as shown in Figure 4. Ack is used by the wait­
state controller on write cycles to acknowledge that data is 
being strobed into memory. Ack can be generated by gating 
the memory type and count. 

APPLICATION NOTE AN-92 

In method 1, the SysClk registering of Rd or Wr is 
straightforward. However, if the counting is based on SysClk, 
the state machine will not be able to bring Ack or RdCEn LOW 
during the first possible clock cycle that they are sampled for 
by the R3051. This is, because the state machine will not 
detect the assertion of Rd or Wr in time. This implies that a 
SysClk-based state machine will have a minimum of one or 
more wait-states. 

In method 2, SysClk-based state machines must determine 
when to stop counting independent of the de-assertion of Rd 
or Wr. In general they cannot use Rd or Wr to terminate the 
cycle because Rd or Wr may de-assert within the buffered 
(inverter delayed) SysClk register's setup or hold time. Thus 
SysClk-based state machines should use its counter to de­
termine when the cycle will end, e.g., with Cycle End. Cycle End 
or a similar signal uses the chip selects and a counter to 
determine the end of the memory cycle, without using the de­
asserting edges of Rd and Wr. Logic equations for CycleEnd 
and the LSB of an N-bit binary up counter look like: 

CycleEnd not := Reset and CycleEnd and ( 
(!Rames and (Counter== 02H) and !Rd and Burst) 
(!Rames and (Counter== 05H) and !Rd and !Burst) 
(!RamCS and (Counter== 03H) and !Wr and Burst) 
(!Rames and (Counter== 02H) and !Wr and !Burst) 
({Bus Error Timeout} (Counter == OFH}) 

Note that in writes, the WrNear output from the processor ); 
may also affect the write timing. For example, when writing to 
Page Mode DRAMs, it will be possible to retire near writes 
faster than non-near writes. 

Counter(O) := Reset and CycleEnd and BusError and (!Rd or IWr) 
and (Counter(O) xor 1) 

An example of generating Ack from gating the memory type 
and count is: 

Ack not := Reset and CycleEnd and BusError and ( 
(!Rames and !Wr 

); 

and ( ( ~B-ur-st/W~r~N-ea-r and (Counter== 03H)) 

or(!Burst/WrNear and (Counter== 02H)) 

or (!Rames and !Rd 
and (Counter == 02H) 

Stopping the Counting 
Four common ways to end the memory cycle and stop the 

counter include: 
1. Use a SysClk state machine and look for the de-asserting 

edge of Rd or Wr. 
2. Use a SysClkstate machine and gatethe type of cycle into 

the counter to reset it independently of the de-asserting 
edge of Rd and Wr (predict the end of the cycle). 

3. Use registers with asynchronous resets and gate Rd and 
Wr into the reset. 

4. Interlock a SysClk register looking for the asserting edge 
of Rd or Wr with a SysClk register looking for the de-as­
serting edge of Rd or Wr. 

73 

A Timing Diagram of CycleEnd showing how CycleEnd 
asserting at the end of the memory cycle will reset the wait­
state counter independently of Rd and Wr is shown in 
Figure 13. 

Counters using CycleEnd use the type of cycle to deter­
mine when the wait-state counter should stop and reset 
independent of the de-asserting edge of Rd or Wr. 

Wait-state machines implemented in ASICs can consider 
using method 4which involves interlocking SysClkand SysClk­
based registers as shown in Figure 15. ASICs can also 
selectively combine two independent SysClk and SysClk 
state machines to avoid 1 /2 cycle interlock timing constraints. 

Bus Errors 
Bus errors can be handled by timing out with the wait-state 

controller counter as it is about to overflow. For all types of 
memory cycles, the R3051 de-asserts its control edges, e.g., 
Rd or Wr, on the clock following the assertion of BusError. 
SysClk-based state machines can look for the de-asserting 
edge of Rd or Wr in order to reset the wait-state machine's 
counter. In SysClk-based state machines, BusError can di­
rectly reset the wait-state machine's counter or the overflow 
count can be used to assert CycleEnd which will then resetthe 
counter. 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING APPLICATION NOTE AN·92 

SysClk 

SysClk 

Rd '\~-----------_.___.._,/ 
1 ( ~Addr&BE )>-~ _..._ _____ __._ ______ ....__-<( Data Input )1-+---

~----!-~~~--;----;------W-o_rd_A_dd_r_e_s_s __ --;.----;--;----;~ 

A/0(31:0) 

Addr(3:2) 

ALE ~~11\~i---~_.___,__...___,__~C_ 
. \......_.... _ _____, ______ ! 

Cycle End 

Counter 

Start 
Read 

Turn 
Bus 

Ack? 

J\.__.........__~/ 

Ack? Ack/ Sample End 
RdCen Data Read 

2881drw15 

Figure 13. Timing Diagram of CycleEnd 

Rd ---jW"'lr-""" 
ReSef---.. CycleEnd ___ ,. 

wr_i---~r-, 
Reset -+--_.. .. 

CycleEnd -+--_.. .. 

D Ql----+--P Counter(O) 

FCT374 

SysClk ---toll> 

288t drw 16 

Figure 14. Using CycleEnd in a SysClk Based Counter 

74 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING APPLICATION NOTE AN-92 

D Q t---.-~ jRd 

FCT374 FCT374 

SysClk ---" > 

'---------------... iRd 

Figure 15. Using Interlocked Registers 2881drw17 

Bus errors signal an exception to the R3051 only if it is a 
read cycle. If exceptions need to be noted for write or OMA 
cycles, BusError should be gated into an interrupt line. The 
interrupt must be held until the R3051 can acknowledge it, 
since the R3051 re-registers its interrupt inputs on each clock 
cycle in which it is executing instructions in its run or fixup 
state. 

READ ENABLES AND WRITE ENABLES 
Memories and 1/0 devices have a combination of chip 

selects, read enables, and write enables to drive data out of 
the device and to strobe data into the device. Because the 
exact timing and functions of the selects, enables, and strobes 
differ for DRAM, SRAM, and 1/0, this section discusses read 
and write enables and their relationship to the byte enables. 

Read Enables 
In general, a memory or 1/0 device has an output enable pin 

to enable its data outputs on a read cycle. Typical designs will 
address all 8-bit and 16-bit 1/0 devices using 32-bit word 
addressed, (i.e., use Addr(3:2) as their LSBs). Even though 
the R3051 produces byte enables on read cycles, it is rare to 
require use of the byte enables for reads as the R3051 will 
internally mask the bytes not being used. The output enable 
for the device can be derived from Rd or from DataEn. 

If more than one memory device uses a single transceiver, 
it may be necessary to generate device Output Enables using 
a delayed version of DataEn. If one of the memory or 1/0 
devices has a long output disable to tri-state time, then extra 
time must be allowed for that device to tri-state before another 
device is enabled. An equation determining if the read enables 
should be delayed on a back to back read cycle is: 

1SysClk >= 1DisableControl + !Old Memory Disable ·· 1NewMemoryData + 
!Cap 

The output enable control should be asserted at least until 
the clock cycle that Rd and DataEn de-assert to provide suf­
ficient data hold time to the R3051. 

75 

Gating Write Enables and Byte Enables 

Memory and l/Odevices have a write enable pin or a similar 
protocol to strobe data into the device. A special case occurs 
for partial word stores, where only the pertinent bytes of a word 
have their byte enables asserted. Partial word stores occur 
when a store byte, store half-word, or store tri-byte instruction 
is executed. Because of the efficiency and optimization capa­
bilities of modern compilers, such as the MIPS® and IDT 
Compilers for the R3000™ family, the hardware must always 
assume that the software will make use of the partial word 
store instructions. Thus the write enables (or as shown earlier 
the chip selects) of each byte of a word must be gated with 
their respective byte enables. Gating the byte enables into the 
write enables can be done with an FCT157/257 multiplexer by 
configuring it as a set of four OR gates with a common input 
term as shown in Figure 16. The write enable signal can be 
derived from Wr. 

5V 

BE(O) IOa 
I Ob 

FCT157 

BE(1) 
11a or 
l1b FCT257 

12a MULTI-
WrEn(3:0) 

BE(2) 12b PLEXER 

BE(3) 

SEL 

WrEn WrEn 

2881 drw 18 

Figure 16. Gating Byte Enables into the Write Enables 



IDT79R3051™ MAIN MEMORY AND SYSTEM 1/0 INTERFACING 

SUMMARY 
The main memory interface of the R3051 is conventional 

and simple. Basic blocks include address de-multiplexing, 
address decoding, data transceivers, wait-state controller, as 
well as the memory and 1/0 modules themselves. The R3051 's 
uses both edges of the clock for control signals to reduce inter­
cycl e latency. Thus conventional wait-state controller 
algorithms can be used if the following guidelines are fol­
lowed: 

1. In SysClk-based wait-state controllers, the input clock 
should be unbuffered from the processor's SysClk output. 
SysClk controllers will have a minimum of 1 or more wait­
states. SysClk registers require small hold time and a 
minimum clock to output propagation delay to meet the 
R3051 input hold time. 

76 

APPLICATION NOTE AN-92 

2. In SysClk (inverted version of processor SysClk output) 
based wait-state controllers, the master reference counter 
must be reset independently of the de-asserting edges of 
Rd or Wr. This can be done by gating the memory type and 
cycle type into a CycleEnd output which deterministically 
resets the counter. 

The R3051 's integration of an instruction cache, a data 
cache, read buffers, and write buffers allows simple main 
memory interfacing which can be implemented using a small 
amount of external logic. Thus the R3051 reduces the cost 
and board size of RISC processing, while maintaining very 
high throughput. 



f;)" USING THE IDT79R3051™ APPLICATION 
WITH THE HP16500 LOGIC NOTE 

ANALYZER AN-93 
Integrated Devlc:e Tec:hnoiogy, Inc:. 

By Andrew Ng 

INTRODUCTION 
The IDT79R3051T" RISController™ is a highly-integrated, 

high-performance MIPS® R3000™ instruction set compatible 
CPU that minimizes system cost and power consumption 
across a wide variety of embedded applications. The R3051 
includes 4kB-8kB of instruction cache, 2k8 of data cache, 4-
deep read and write buffers, on-chip OMA arbitration, a simple 
external bus interface, as well as the core R3000A execution 
engine-all in a single chip 84-pin package. However, in 
today's marketplace, the technical features of a microproces­
sor are not enough to guarantee a successful product. A new 
CPU such as the R3051 must also have a large base of 
software applications, and very importantly, adequate hard­
ware and software development and debug tools. The R3051 
family already has a large base of software applications and 
a large set of development tools because of its R3000A 
instruction set compatibility and also because of its wide­
spread market acceptance. The use of just one of these tools, 
the IDT7RS364 Disassembler for the HP16500 Logic Ana­
lyzer will be explained here. 

THE IDT7RS364 DISASSEMBLER AND THE 
HP16500 LOGIC ANALYZER 

The IDT7RS364 Disassembler for the HP16500 Logic 
Analyzer is a useful tool meant to ease the task of debugging 
software run on R3000-based Target System Boards. Logic 
analyzers are inexpensive, general purpose debug tools 
which do not have the power of in-circuit emulators to actively 
control and simulate target system CPU and memory 
behavior. However, logic analyzers do provide a useful 
subset of in-circuit emulator debug capabilities by allowing an 
engineer to observe and analyze the digital circuit behavior of 
the target system. 

The IDT7RS364 Disassembler consists of a software pack­
age that when loaded into the HP16500, pre-processes and 
formats the state trace listings of the Logic Analyzer. As shown 
in Figure 1, the HP16500 allows the engineer to capture the 
CPU's executed hex/binary machine opcodes in a typical 
Logic Analyzer State Trace Listing format. The user can set 
multilevel trace traps to capture the area of interest. As shown 
in Figure 2, with the addition of the IDT7RS364 Disassembler, 
the hex machine opcodes are automatically decoded and 
displayed in R3000 assembly code level mnemonic format. 
Thus the readability and usefulness of the state trace list 
display screen of the Logic Analyzer are greatly improved. 

(State/Timing E) (Listing 1 ) ( lnvasm ) ( Print ) ( Run ) 

Markers 
Off 

ADDR 11 DATA 11 STAT 11 Time 

Hex 11 Hex II Hex II Absolute 

-6 lFCOOOOO OBF00088 0010 0 s 
-5 1FC00004 00000000 0010 760 ns 
-4 1FC00220 3C020010 0010 1. 52 us 
-3 1FC00224 40826000 0010 2.24 us 
-2 1FC00228 40806800 0010 3.00 us 
-1 1FC0022C 3C02AOOO 0010 3.76 us 

0 1FC00230 3C08AAAA 0010 4.52 us 
1 1FC00234 35085555 0010 5.24 us 
2 1FC00238 AC480000 0010 6.00 us 
3 1FC0023C AC400004 0010 6.76 us 
4 00000000 AAAA5555 0000 7.40 us 
5 1FC00240 8C490000 0010 7.88 us 
6 00000004 00000000 0000 8.52 us 
7 1FC00244 00000000 0010 9.00 us 
8 00000000 AAAA5555 0010 9.64 us 
9 1FC00248 11280003 0010 10.32 us 

2883 drwo1 

Figure 1. R3051 Address/Data Trace List on a Logic Analyzer 

The IDT Logo is a registered trademark. and RISController, IDT/sim and IDT79R3051 are trademarks of Integrated Device Technology, Inc. 
MIPS is a registered trademark and R3000 is a trademark of MIPS Computer Systems, Inc. 

©1992 Integrated Device Technology, Inc. 
77 

6192 



USING THE ID179R3051™ WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTE AN-93 

(State/Timing E) (Listing 1) ( lnvasm ) ( Print ) ( Run ) 

( Mab~r5 ) 
Label> AOOR 11 R3000 Mnemonic 11 STAT 11 Time 

Base> Hex 11 hex 11 Hex 11 Absolute 

-6 lFCOOOOO J OxlFC00220 0010 0 s 
-5 1FC00004 NOP 0010 760 ns 
-4 1FC00220 LUI vO,OxOOlO 0010 1. 52 us 
-3 1FC00224 MTCO v0,$12 0010 2.24 us 
-2 1FC00228 MTCO zero, $13 0010 3.00 us 
-1 1FC0022C LUI vO,OxAOOO 0010 3.76 us 

0 1FC00230 LUI tO,OxAAAA 0010 4.52 us 
1 1FC00234 ORI t0,t0,0x5555 0010 5.24 us 
2 1FC00238 SW tO,OxOOOO(vO) 0010 6.00 us 
3 1FC0023C SW zero,Ox0004(v0) 0010 6. 7 6 us 
4 00000000 STORE DATA OxAAAA5555 0000 7. 40 us 

1FC00240 LW tl,OxOOOO(vO) 0010 7.88 us 
00000004 STORE DATA OxOOOOOOOO 0000 8.52 us 

7 1FC00244 NOP 0010 9.00 us 
8 00000000 LOAD DATA OxAAAA5555 0010 9.64 us 

1FC00248 B Ox1FC00258 0010 10.32 us 

2883 drw 02 

Figure 2. R3051 Instruction Disassembly on the HP16500 Logic Analyzer 

Clk2xln, Reset __.. Oiag(1 :0) .. 
~-:««W~ 

~ ---. A/0(31 :O) .. FCT373T A(31 :4), BE(3:0) __.. 

LATCH 

ALE ~ 
lnt(5:3), Slnt(2:0) .. 
SBrCon~:~ .. R3051 MEMORY 

RISController SYSTEM 

BrCon@:~ 
FCT623T i.. 0(31:0) .. ..... TRANS- ..... 
CEIVER 

BusError __.. .. ~~ 
~~ 

RdCEn, Ack __.. Rd, Wr, BurstlWrNear, OataEn, Addr(3:2), SysClk ...... .. 
BusR~ __.. BusGnt ..... 

2883 drw 03 

Figure 3. Typical R3051 System 

Connecting the R3051 to the HP16500 Pod Sets Disassembler typically uses 32 Address lines, 32 Data lines, 
a Read line, and a Write line. Before the Disassembler can be used, the correct connec­

tions between the R3051 and the HP16500 must be made. 
The Disassembler requires five 16-channel probe pod sets. 
The Disassembler expects that the Pod Probe connections 
follow its interface protocol so that the pre-processing can 
correctly interpret the address, data, and status lines. The 

76 

In the typical R3051 system as shown in Figure 3, the 
R3051 's Rd output is used as the read line and the R3051 's Wr 
output is used as the write line. The Disassembler uses the 
read and write signals as clocks to strobe the address and 
data into the Logic Analyzer. Since the top speed of the State 



USING THE IDT79R3051™ WITH THE HP16500 LOGIC ANAL VZER 

traces on the HP16500 is 35MHz and the fastest possible 
memory cycle is 2 clocks, the Disassembler can easily sup· 
port 40MHz R3051 CPUs and has a theoretical limitation of 
?OM Hz. 

The Address lines can be gathered from the Address Latch 
outputs and Addr(3:2). Not all 32 address lines need to be 
attached, as the user can format the address line's MSB 
channel probes to not show up in the state trace listing if 
desired. In such a case, the user can use the extra channel 
probes for other purposes. 

In general, Data lines can be gathered from the AID bus. 
Some systems, with only one set of Data Transceivers, can 
gather the data from the memory side of the Data Transceivers 
in order to reduce AID bus loading. The R3051 connections to 
the five HP16500 Channel Probe Pod sets are listed in Table 1. 

The Disassembler has three status lines, Write, AccTyp(2) 
and AccTyp(O). The R3051 's Wr output can be used as the 
write line so that the Disassembler can distinguish between a 
read and a write cycle. AccTyp(2) and AccTyp(O) are optional 
connectionsforcached code and in general should be grounded 
or at least left unconnected. The optional use of AccTyp(2) 
and AccTyp(O) will be explained in more detail in the Cached 
Code/Data section. The 16-channel status pod has 13 un· 

APPLICATION NOTE AN-93 

used channels that can be used to display other signals, e.g., 
the Byte Enables. 

To a limited extent, the default ordering of the channel probe 
connections can be changed by the user. The relative ordering 
of the bits must still occur from MSB to LSB for the address/data/ 
status bus labels such that the Pod Number and Channel 
Numbers go from MSB to LSB. An example of reformatting the 
Pod interface is shown in Table 2 and Figure 4. The example 
in Table 2 and Figure 4 also demonstrates the use of the 
HP16500's demultiplexed clock feature. When using the 
demultiplexed clock, the address and data lines can use the 
same probes. This allows both the address and data to be taken 
from the multiplexed A/D(31 :0) bus. The address is slave­
clocked with ALE and the data is master-clocked with Wr or 
Rd. When using two clocks, only the 8 LSB probes on each pod 
can be used since the channels are internally multiplexed by the 
HP16500. Demultiplexed clocking is limited to 50ns master to 
slave clock recovery, which limits its use to 25MHz CPU 
systems. 

The HP16500 allows an extensive number of multi-level 
traps and triggers so thatthe code trace fort he area of interest 
can be found. Care should be taken when setting up trigger 
conditions. Sometimes when in the trace/trigger menu, the 

Table 1. R3051 Default Pod Connections on the HP16500 Logic Analyzer 

POD 5 POD 4 POD 3 POD 2 POD 1 
ch an sig ch an sig ch an sig ch an sig ch an sig 

15 x 15 A/0(31) 15 A/0(15) 15 A(31) 15 A(15) 

14 x 14 A/0(30) 14 A/0(14) 14 A(30) 14 A(14) 

13 x 13 A/0(29) 13 A/0(13) 13 A(29) 13 A(13) 

12 Gnd 12 A/0(28) 12 A/0(12) 12 A(28) 12 A(12) 

11 x 11 A/0(27) 11 A/0(11) 11 A(27) 11 A(11) 

10 Note2 10 A/0(26) 10 A/0(10) 10 A(26) 10 A(10) 

9 x 9 A/0(25) 9 A/0(9) 9 A(25) 9 A(9) 

8 x 8 A/0(24) 8 A/0(8) 8 A(24) 8 A(8) 

7 x 7 A/0(23) 7 AID(?) 7 A(23) 7 A(7) 

6 x 6 A/0(22) 6 A/0(6) 6 A(22) 6 A(6) 

5 x 5 A/0(21) 5 A/0(5) 5 A(21) 5 A(5) 

4 Wr 4 A/0(20) 4 A/0(4) 4 A(20) 4 A(4) 

3 x 3 A/0(19) 3 A/0(3) 3 A(19) 3 Addr(3) 

2 x 2 A/0(18) 2 A/D(2) 2 A(18) 2 Addr(2) 

1 x 1 A/0(17) 1 A/0(1) 1 A(17) 1 Gnd 

0 x 0 A/0(16) 0 A/D(O) 0 A(16) 0 Gnd 

NClk MClk Rd LClk KClk JClk Wr 
2883 tbl 01 

NOTES: 
1. Master Clock Format: Jt + Mt 
2. POD5(12) is AccTyp(2) and POD5(1 D) is AccTyp(D). If AccTyp(2) is grounded then AccTyp(O) is not used by the Disassembler and can be used for other 

purposes. See text for further explanation. 
3. A(31 :4) are connected to the Address Latch outputs. The rest of the signals are connected to R3051 outputs. X's denote unused probes that can be 

assigned by the user. 

79 



USING THE IDT79A3051™ WITH THE HP16500 LOGIC ANALYZER 

Disassembler format in the data field trigger condition can 
conceal a trap condition. Changing the Disassembler format 
temporarily to hex format while in the trigger menu can prevent 
such confusion. 

When Running with Cached Code/Data 
All Logic Analyzers and Disassemblers can only capture 

external CPU memory accesses. Since the R3051 is capable 
of running code and accessing data in its internal caches, such 
accesses are not seen by the external memory system. Thus 
in order for the Disassembler to accurately reflect the com-

Table 2. Example of Reformatted Pod Connections 

POD 5 POD 4 POD 
ch an sig ch an sig ch an 

15 15 15 

14 14 14 

13 13 13 

12 12 12 

11 11 11 

10 10 10 

9 9 9 

8 8 8 

7 A/0(31) 7 A/D(23) 7 

6 A/0(30) 6 A/0(22) 6 

5 A/0(29) 5 A/0(21) 5 

4 A/0(28) 4 A/0(20) 4 

3 A/0(27) 3 A/0(19) 3 

2 A/0(26) 2 A/0(18) 2 

1 A/0(25) 1 A/0(17) 1 

0 A/0(24) 0 A/0(16) 0 

NClk MClk Rd LClk 

NOTES: 
1. Master Clock Format: Jt +Mt 
2. Slave Clock Format: K0 

APPLICATION NOTE AN-93 

plete instruction/data flow, the R3051 must be run uncached. 
As the target system becomes more and more functional, 

it becomes necessary to begin running cached code and data. 
Running cached code/data will affect the Disassembler's 
accuracy in the following ways: 

Cached Instructions 
1. Instruction fetch i-cache hits are not seen. 
2. Only the last word of a cachable 4-word burst instruction 

i-cache miss will be seen. 

3 POD 2 POD 1 
sig ch an sig ch an sig 

15 15 x 
14 14 x 
13 13 x 
12 12 Gnd 

11 11 x 
10 10 Note 3 

9 9 x 
8 8 x 

A/0(15) 7 AID(?) 7 x 
A/0(14) 6 A/0(6) 6 x 
A/0(13) 5 A/0(5) 5 x 
A/0(12) 4 A/0(4) 4 Wr 

A/0(11) 3 A/0(3) 3 Addr(3) 

A/0(10) 2 A/0(2) 2 Addr(2) 

A/D(9) 1 A/0(1) 1 Gnd 

A/0(8) 0 A/D(O) 0 Gnd 

KClk ALE JClk Wr 
2883 tbl 02 

3. POD5(12) is AccTyp(2) and POD5(10) is AccTyp(O). If AccTyp(2) is grounded then AccTyp(O) is not used by the Disassembler and can be used for other 
purposes. See text for further explanation. 

4. On Master/Slave Pods, only the 8 LSB probes are actually connected. E.g., A/D(23:16) is connected to Pod4(7:0). 
5. X's denote unused probes that can be assigned by the user. 

State/Timing Format 

Pods 

Label 

ADDR 
DATA 
STAT 

Master Clock Slave Clock 
Jt+Mt K-i-

Pod 
Master I Slave 

7 .... 07 .... 0 

Pod 4 
Master I Slave 

7 .... 07 .... 0 

Pod 
Master I Slave 

7 .... 07 0 

Pod 2 
Master I Slave 

7 .... 07 .... 0 

Figure 4. Example of Reformatted Pod Format 

80 

Pod 1 
Clock 

.... 07 

2883 drw 04 



USING THE IDT79R3051™ WITH THE HP16500 LOGIC ANALYZER 

Cached Data Loads 
1 . Data load d-cache hits are not seen. 
2. Only the last word of a cachable 4-word data block refill 

d-cache miss will be seen. 
3. If the load instruction was an i-cache hit (not seen) then 

the associated data fetch if seen will be listed as an 
instruction. The data fetch is assumed to be the second 
(due to pipelining) read cycle after the load instruction. 

Cached Data Stores 
1. Data stores are handled correctly, since the R3051 

maintains a write-through cache policy which ALWAYS 
updates main memory as well as the d-cache. 

2. Because the R3051 has a 4-word deep write buffer, a 
data store may or may not occur on the second (due to 
pipelining) memory cycle following its instruction fetch. 
Multiple stores are always handled in the proper FIFO 
order, but each store may be interspersed with later 
instruction fetches. 

Other than running the software uncached, the following 
less intrusive methods may be used to help interpret cached 
code/data: 
1. Use the R3051 's testability mode to invoke the Force !­

Cache Miss Mode. This will put all instruction fetches 
onto the external main memory interface so that the logic 
analyzer can see all of them. However, forced i-cache 
misses may or may not be 4-word burst reads. 

In general, 4-word burst reads can be displayed properly 
if a more complex read strobe is formatted: 
J clock: Ack== LOW 
M clock: RdCEn == LOW 
N clock: SysClk == positive edge-triggered 

The HP16500 ORs level conditions together, OR's edge 
conditions together and ANDs level conditions with edge 

Diag(1) 

Diag(O) 

ALE 

R3051 Outputs 

.. 
_.. 

.. 
~ 

FCT373 
or 

FCT841 

LATCH 

~ 

APPLICATION NOTE AN-93 

conditions. Thus the above strobe clocks the state 
when: 

(SysClk == ,c) AND [(Ack== 0) OR (RdCEn == 0)] 

This example clock set-up is only applicable to systems 
that happen to bring Ack LOW at the same time RdCEn 
is LOW on 4-word burst reads or don't bring Ack LOW 
on 4-word burst reads. Also 1/2 clock margin on the 
memory read access time is necessary in this example. 
Thus depending on the particular system design, vari­
ants of RdCEn, Ack, and SysClk can be combined or 
temporarily modified to create a 4-word read strobe and 
a write strobe. 

2. Latch the R3051 's Diag(1 :0) outputs with ALE. On 
external main memory reads, if LatchedDiag(1) == 1 
then the fetch is cachable and can be used as an 
indication that the state trace entry should be interpreted 
judiciously. When LatchedDiag(1) == 1, LatchedDiag(O) 
== 1 indicates a cachable instruction fetch and 
LatchedDiag(O) == 0 indicates a cachable data load. 

LatchedDiag(1 :0) are the R3051 's equivalents of the 
R3000's AccTyp(2) and AccTyp(O). As such they can be 
connected to the Disassembler's AccTyp(2) and 
AccTyp(O) probes. This allows the Disassembler to 
differentiate between cached instructions and data so 
that they can be displayed properly. However, 
AccTyp(2) and Diag(1) are undefined for writes, e.g., 
when the write buffer is full or on partial word stores. So 
if the AccTyp(2) probe is used, in order for the 
Disassembler to interpret write cycles correctly, 
LatchedDiag(1) needs to be AND'ed with Wr as shown 
in Figure 5, so that it is always LOW during write cycles. 

3. Use the Reset Mode Vector to set the R3051 to use 
single word data refills instead of 4-word data block 
refills. This will allow all 4 words on a data load d-cache 
misses to be seen. 

Rd Cache .. ~ L 
AccTyp(2) 

_.. AccTyp(O) 

Logic Analyzer Probes 

2883 drw 05 

Figure 5. Using Diag(1 :0) with the Dlsassembler 

81 



USING THE IDT79R3051TM WITH THE HP16500 LOGIC ANALYZER 

Using State Trace Listings and 
Timing Waveforms 

The IDT7RS364 Disassembler is a good tool for easing the 
use of a Logic Analyzer when debugging a target system. 
However, sometimes, even lower level detail is needed to 
examine clock by clock behavior of particular bus cycles. The 
HP16500 performs this function in its State Analyzer mode by 
sampling with the CPU's system clock as shown in Figure 6. 
Because the state analyzer mode has a maximum speed of 
35MHz, certain restrictions apply. Ideally because the R3051 
uses both edges of its SysClk output to generate control lines, 
it is preferable to use Clk2xln or to clock on both edges of 

(State/Timing E) (Listing 1 ) 

( Markers ) Off 

Label> DATA 11 ADDR II 
Base> Hex 11 Hex II 

274 8C490000 4 
275 8C490000 0 
276 00000000 4 
277 00000000 4 
278 00000000 4 
279 00000000 4 
280 00000000 4 
281 00000000 4 
282 00000000 4 
283 00000000 4 
284 00000000 4 
285 00000000 4 
286 00000000 4 
287 00000000 4 
288 1FC00240 4 
289 1FC00240 4 

APPLICATION NOTE AN-93 

either SysClk or its buffered/inverted version SysClk. On the 
HP16500, high-speed clocks should always use their ground 
shield on the probe to reference the input properly so that the 
probe does not sense signal overdrive. The edge of the 
reference clock should be chosen carefully so that it ideally 
clocks just before ALE de-asserts as shown in Figure 7. This 
allows the address to be seen along with the data on the 
multiplexed AID bus so that dedicated address lines probes 
are not required. When choosing a clock, keep in mind that the 
HP16500 has 1 Ons set-up time and 1 ns hold time relative to 
the clock. In addition, the HP16500's Time Tagging feature if 
used is limited to 16.67MHz. 

( lnvasm ) ( Print ) ( Run ) 

CLKN II BAWRRA 11 ALE 11 WRNRDN I 

Hex II Binary 11 Binary 11 Binary I 
1 111110 0 11 
0 111110 0 11 
1 110111 1 01 
0 110110 0 01 
1 110110 0 01 
0 110110 0 01 
1 110110 0 01 
0 110110 0 01 
1 110110 0 01 
0 110110 0 01 
1 110110 0 01 
0 100110 0 01 
1 100110 0 01 
0 111110 0 11 
1 111101 1 10 
0 111100 0 10 

2883 drw 06 

Figure 6. R3051 State Trace Listing Using Clk2xln 

Clk2xln 

SysClk 

ALE 

A/0(31:0) -----(--<~Addr&BE)r-~(Data lnput>---C 

Addr(3:2) ~~~~~--'><~~~~W_o_r_d_A_d_dr_e_ss~~~~-><== 

\...._ __ _____,,/ 
2883 drw 07 

Figure 7. Choosing a Clock Edge 

82 



USING THE IDT79R3051™ WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTE AN-93 

( Print ) ( Run ) 

I Sample period = 10.000 ns I 

CLKN 

ALE 

ACKS 0 

WRNRDN 1 

ACKS 

BAWRRA5 

A_D all 11 11 II 111 11 

2883 drw 08 

Figure 8. R3051 Timing Mode Waveform 

Systems running with a Clk2xln over 35MHz (17.5MHz 
CPU) cari either clock the State Analyzer mode less frequently 
or use the Timing Analyzer mode. When clocking less 
frequently, care must be taken to chose a clock edge that 
adequately strobes ALE during its HIGH period so that the 
address can be determined. Because the R3051 only has a 
1/2 clock intercycle memory latency, Rd and Wr and other 
control lines may not be seen to de-assert between memory 
cycles when clocked at the SysClk frequency. 

The HP16500 Logic Analyzer's Timing mode displays 
signals in waveform format as shown in Figure 8 and is 
capable of internally generating a 100MHz (1 Ons) sample 
clock. To maintain all the functional timing relationships 
relative to the Clk2xln, the timing mode allows asynchronous 
sampling up to 50MHz CPU speed. The disadvantage of using 

83 

the Timing mode is that the value of busses is hard to decipher 
when shown in waveform format. If necessary, HP16500 can 
be set up in its mixed mode display to display both state and 
timing modes on the same screen. 

SUMMARY 
The use of the HP16500 and the IDT7RS364 Disassembler 

is but one example of the availability and compatibility of 
R3000 tools and software that can be used on the R3051 . The 
Disassembler formats logic analyzer state traces into assem­
bly level mnemonics to allow easier user interpretation. 
Similarly, other R3000 software, compilers, as well as other 
developmenttoolssuch as the IDT7RS901 IDT/sim'" ROMable 
Kernel/Boot Monitor can also be used on R3051 systems with 
little or no modification. 



(;)® INTERFACING THE IDT79R3051™ APPLICATION 

TO THE SONIC™ NOTE 
AN-95 

Integrated Device Technology, Inc. 

By Danh Le Ngoc (Integrated Device Technology, Inc.) and Paul Cheng and Bill Harmon (National Semiconductor) 

OVERVIEW 
The I DTR3051"' family is a series of high-performance 32-

bit microprocessors featuring a high-level integration and 
high-performance. The R3051 family integrates the MIPS® 
R3000A™ RISC CPU, along with BkB of instruction cache and 
2k8 of data cache. The R3051 family uses a simple time­
multiplexed 32-bit address and data bus to provide a low cost 
system interface (and to minimize the cost of ASIC devices 
designed to interface with the processor). In order to minimize 
the impact of a time-multiplexed bus, the R3051 family incor­
porates a 4-deep read buffer and 4-deep write buffer into the 
interface, allowing relatively slow memory systems to be 
mated to a high-speed processor. The R3051 family is able to 

Data/ 
Address 

R3051™ 
Family 

DRAM 
Controller 
79R3721 

VRAM 
Controller 

SONIC 
DP83932 

Logic Control 

offer35mipsofintegerperformanceat40MHzwithoutrequiring 
external SRAM or caches. 

The R3051 family is designed to bring the high-perfor­
mance inherent in the MIPS RISC architecture into low cost 
simplified embedded applications such as laser printers, X­
~indow terminals and network bridges and routers. Figure 1 
illustrates the simplified block diagram of the R3051-based X­
Window terminal. 

The focus of this application note to describe the interface 
between the R3051 and National Semiconductor's System 
Oriented Network Interface Controller (SONIC). 

The SONIC™ is National Semiconductor's System Ori­
ented Network Interface Controller (DP83932). This Ethernet 

Even 
Memory Bank 

Address Data 

Odd 
Memory Bank 

Address Data 

Frame Buffer 

Boot PROM 

Mouse 

Keyboard 

Bus 
Exchanger 
79R3720 

x 
Window 

2887 drw 01 

Figure 1. X-Wlndow Terminal 

RISController and IOT79R3051 are trademarks of Integrated Device Technology, Inc. 
All other trademarks are trademarks of their respective companies. 

©1992 Integrated Device Technology, Inc. 6/92 
84 



INTERFACING THE IDT79R3051™ TO THE SONIC™ 

controller is intended to provide a high performance 32 or 16-
bit Ethernet connection for systems that require efficient, high­
throughput, low-power network connectivity. The SON IC can 
be employed in an R3051-based system, in order to tightly 
couple the system's CPU and main memory to the network. 
Figure 2 depicts this interface. 

The SONIC is ideally suited to embedded processing 
applications such as X-Terminals, due to its unique feature 
set. The SONIC completely supports all the required specifi­
cations set forth in the IEEE 802.3 standard, including the 
Media Access Control (MAC) requirements contained in the 
IEEE 802.3 layer management specification. Additionally, 
SONIC's high performance OMA channels allow it to use a 
very small percentage of the bus bandwidth, while its efficient 
linked list buffer management scheme limits the number of 
descriptor and data fetches required. It is also important to 
note that the SONIC utilizes internal content addressable 
memory (CAM) to provide a 100% perfect address filter for 
both multicast and physical address packets. This alleviates 
the need to waste bus bandwidth, memory space, and CPU 

APPLICATION NOTE AN-95 

time on unwanted packets. Finally, the SONIC contains an 
integrated Manchester encoder/decoder, which is required in 
all Ethernet applications. This provides a savings in board 
space, as well as improved reliability. 

FUNCTIONAL OVERVIEW 

System Interface 
The R3051 has a multiplexed 32-bit address and data bus. 

Since the SONIC's address and data buses are demultiplexed, 
it is necessary to employ a set of external latches to connect 
the SONIC to the processor's address and data buses. In 
many applications, these latches may also be used to 
demultiplex the R3051 bus to other parts of the system 
memory and 1/0. 

In order to allow the R3051 to have access to the SON IC's 
internal registers, as well as allow the SONIC to gain control 
of the system bus and perform OMA operations, the SON IC is 
interfaced to the system bus as both a slave and a master. As 
a slave, the SON IC appears as a block of 256 bytes, consist-

12 v AUi Cable 

SONIC RX± CD± TX± 

<31 :0> 
data 

<31 :0> 
addr RA<5:0> 

<AID0:31> 
(Add 2,3) 

'

:.:'. I:.:: I:.:: ~ 3 3~(/)~ 
0 1(/) ~lw1°1~1~ wl~ ~ CDO (/)~ CDCD~O(J)(J) 

3051 

Figure 2. SONIC Interface to the R3051 

85 

DC-DC 
Converter 

MEMORY 

Add/Data Control 

2887 drw 02 



INTERFACING THE IDT79R3051™ TO THE SONIC™ 

ing of sixty-four 3- bit words. The SONIC can be mapped into 
any location of memory and will typically provide for a ?-cycle 
register access. In R3051 applications, the SONIC will typi­
cally be mapped into the processor kseg1, which is an 
unmapped, uncached address space typically used for pro­
cessor 1/0 resources. 

As a master, the SONIC will arbitrate with the R3051 for 
ownership of the bus and proceed to operate as a 32-bit OMA 
engine between the network and the system memory. While 
operating on the bus, the SONIC is capable of performing 
32-bit/3 cycle OMA operations. It is important to note that the 
ability to place the SONIC on the same bus as the R3051 and 
the system memory is critical: this eliminates the need for the 
Ethernet controller to have a local buffer, which the CPU must 
spend time and bandwidth to transfer to main memory. The 
ability of the SON IC to place data directly in main memory and 
communicate with the CPU through linked list descriptors, as 
well as register accesses, makes the SON IC/R3051 interface 
CPU and bandwidth efficient. 

Network Interface 
With respect to the physical layer design, both AUi drop 

cable Ethernet and thin wire Ethernet are supported. The 
block diagram in Figure 2 contains a 15-pin AU I drop cable 
connector for standard drop cable Ethernet implementations, 
as well as a thin-wire Ethernet connection via the National 
Semiconductor coaxial transceiver interface (CTI, DP8392). 
Either of these network connections can be chosen through 
the use of a single jumper between the 5V supply and the 5V 
to -9V DC-to-DC converter. In either case, the AUi signals 
(RX±, TX±, and CD±) are sent back to the SONIC. These 
signals are interfaced to the ENDEC portion of the SONIC, 
which provides for communication between the AUi interface 
and the non-return to zero (NRZ) signals (RXD,TXD, and 
COL) of the Media Access Control (MAC) module of the 
SON IC. It should be noted that the integrated E NDEC module 
of the SONIC alleviates the need for an external Ethernet 

Control 

Bus 

AID (31 :O) 
Addr(3:2) 

ADDRESS BUS INTERFACE 

SONIC 

RA(S:O) 

APPLICATION NOTE AN-95 

Manchester encoder/decoder, such as National's CMOS Serial 
Network Interface (CMOS SNI, DP83910). 

ARCHITECTURE AND DESIGN 

Bus Interface 
The SON IC's bus interface can be externally configured to 

operate in one of two modes. If the SONIC's BMODE pin is 
tied to ground, the SON IC will operate on the bus exactly like 
an 80386 microprocessor. If the SONIC's BMODE pin is tied 
to 5V, the SONIC will operate on the bus exactly like a 68030 
microprocessor. In this design, the most appropriate mode of 
operation was achieved by connecting BMODE to 5V. 

The bus interface, as depicted in Figure 3, consists of two 
parts. There is an address bus interface and a data bus 
interface. Since the R3051 's address and data buses are 
multiplexed, it is necessary to utilize a set of '244 buffers and 
'373 latches to multiplex the SON IC busses onto the CPU bus. 
The '244 buffers are required to tri-state the SONIC's address 
lines from the system bus during the data portion of master 
transfers, while the '373 is required to latch the register 
addresses being sent to the SON IC during slave operations. 
The output enable signal of the '244 is asserted when the 
SON IC is the master of the bus and both the SONIC's address 
strobe (AS) is asserted and the master logic's address latch 
enable (ALE) signal is asserted. The '373 should latch the 
address when the R3051 is the bus master and it asserts its 
ALE signal. 

The data bus interface requires the use of two sets of '244 
buffers. The first set of buffers (Buffer 1) prevent the SONIC 
from placing data onto the system's multiplexed address and 
data bus prematurely. In the slave mode of operation, the 
output buffer is enabled once the address output drivers are 
tri-stated. This is signaled by the assertion of the DataEn 
signal. In the case of a master operation, the buffers are 
enabled once the address buffers external to the SONIC are 

Control 

Bus 

DATA BUS INTERFACE 

SONIC 

Data (31:0) 

2887 drw 03 

Figure 3. Address and Data Bus Interface 

86 



INTERFACING THE IDT79R3051™ TO THE SONIC™ 

tri-stated, which takes place upon the de-assertion of the ALE 
signal. 

The second set of buffers is enabled when the SON IC's 
registers are being written by the R3051 and data is being 
presented on the multiplexed system address/data bus, or 
when the SONIC is reading system memory and the memory 
is placing data on the multiplexed address/data bus. The 
assertion of the Data En signal by the system signals that data 
is now able to be placed on the bus. The actual logic represen­
tation for the bus interface can be found in the bus interface 
logic segment of the Control Logic section of this application 
note. 

Slave Operation 
The timing diagram for a slave access of the SONIC is 

shown in Figure 4. The falling edge of the R3051 's ALE signal 
latches the output of an address decoder and the address 

APPLICATION NOTE AN-95 

lines being passed to the register address lines of the SONIC. 
If the address decode selects the SONIC, a signal called 
"AdrDec" will be asserted. The logic for generating this signal 
is shown in Figure 5. The value of this signal is passed to the 
chip select (CS) and slave address strobe (SAS) signals of the 
SONIC on the rising edge of the bus clock. The acknowledge 
signals back to the R3051 (ACK for a write and RdCEn for a 
read) are asserted 2 clocks after the SONIC generates its 
slave acknowledge signal (SMACK). These signals remain 
asserted to the R3051 for a clock cycle, after which they are 
removed. The ACK and RdCEn signals inform the R3051 that 
the data has been latched or is valid, respectively. The de­
assertion of these signals results in the de-assertion of CS and 
SAS to the SON IC. The logic for implementing this part of the 
design can be found in the slave logic segment of the Control 
Logic section. 

Slave Cycle 
One Slave Operation 

SysClk 

ALE 

AID (Read) 

AID (Write) 

RdorWr 

SR/W 

Addr 
RA <5:0> 

AdrDec 

cs 

SAS 

Rd2 

Data 

_n 
-s 

'"-~~~~-+-~~~~~--rl~~~~~~­
--~~~--~~~~~[]-0----------

-1 Addrl 

---, 

Ill 
_J 

Data In from 3051 

~ 
i 

IOlll Time May Vary : 

. "'! 

1111111 t 

Ill 

w 
~~~~~~~~~~~-r-1~~~~~~~~-

Data Out
2887 drw 04

Figure 4. Slave Access Timing Diagram

87

INTERFACING THE ID179R3051™ TO THE SONIC™

ALE

CLK

AID Address
Decoder

D a
R

Rd2

AdrDec

APPLICATION NOTE AN-95

AdrDec

3051 SONIC

Rd 1-.i---1 ">o--+=::..i SR/W

RdCEn

ACK

SAS

~--+-...ics

Tri-stat Buffer
2887 drw 05

Figure 5. Slave Interface Block Diagram

SONIC to 3051 BUS REQUEST

SysClk

BR 111 _____ ...u.illl Bus Operation!
l

Ill

t t
BGACK Ill Ill

2887 drw 06

Figure 6. Bus Request Timing Diagram

Master Operation
The first step in designing the master interface is imple­

menting the bus request logic. The timing diagram for this is
shown in Figure 6. The bus request (BR) signal of the SON IC
is passed to the R3051 's bus request (BusReq) on the falling
edge of the bus clock. The SON IC then waits for the bus grant
(BusGnt) from the R3051, which is passed directly to the
SONIC's bus grant (BG) signal. The assertion of BG causes
the SONIC to assert bus grant acknowledge (BGACK) and
begin its master OMA operations. It is important to note that
the assertion of BGACK causes the SONIC to de-assert BR,
which would cause the bus request logic to de-assert BG to
the SONIC. Thus, the BusReq signal to the R3051 should be
the logical "OR" of the SON IC BR and BGAck outputs. A block
diagram of the bus request logic appears in Figure 7, while the
actual illustration of the logic is found in the bus request logic
segment of the Control Logic section.

Once the SONIC has gained control of the bus, it will begin
to perform master OMA operations, as illustrated in the
Figure 9 timing diagram. Ideally, if the memory is fast enough,

88

the SONIC will be able to perform 3-cycle OMA. At 25MHz,
less than 3. 75% of the bus' bandwidth will be consumed by the
network interface.

There are two very important points to note. First, the
R3051's ACK signal is basically equivalent to the SONIC's
OSACK signals, but the SON IC's OSACK signals require that
the memory system provide a total of Bns hold time from the
rising edge of the clock, while the R3051 requires only 4ns.
Second, the ALE signal generated from the SONIC's control
signals will be de-asserted 3ns later than the R3051 's would
be. However, this should not be a significant factor, since the
address set-up and hold time provided to the memory system's
latches is consistent with the R3051 's specification.

When interfacing to the multiplexed bus, it is necessary for
the master logic to generate an ALE signal for the system bus.
The ALE signal is asserted on the rising edge of the second
cycle in the SON IC's memory access. It is necessary to assert
the ALE in this cycle, in order to guarantee that the latch will
be provided with an adequate amount of set-up time for the
address. The ALE signal is then removed on the falling edge

INTERFACING THE IDT79R3051™ TO THE SONIC™

of the same clock cycle. The de-assertion of ALE triggers the
assertion of DataEn on a read operation, in order to inform the
memory that the bus' address drivers are tri-stated and data
can now be driven. The Data En signal is actually arrived at by
delaying the the ALE signal through a buffer or PAL, since the
ALE signal is also responsible for disabling the output buffers
of the address drivers.

The final piece of interface logic is used to make the
SONIC's read and write (MR/W) strobe compatible with the
R3051 's read (Rd) and write (Wr) signals. The SON IC's read/
write signal is passed to the appropriate read or write strobe
of the system bus, on the falling edge of AS. The Rd or Wr
signal is then de-asserted on the falling edge of the last clock
cycle. The block diagram for the master interface is found in
Figure 9, while the logical implementation is shown in the
master interface logic segment of the Control Logic section.

Master Cycle One Memory Transfer

SysClk

AS tu 11111

Addr 111111111111

MR/W 111111111111

APPLICATION NOTE AN·95

3051 SONIC

BusReq BR

BusGnt BG
Logic

2887 drw Oi

Figure 7. Bus Request Interface Block Diagram

11111111I11 11111.....__

111111111111

111111111111 !

ALE

AID (Read)

I

i II
Hllllll
H111111

....,___..,., Ill ------+'""'tr
.............. _ __....II -I -[I]...,__-----11111111 I

AID (Write) 11111 Data Out IH 111111 I
Rd orWr 1111111 Ill 1111111 I

RW 1111111 Ill 1111111

DataEn (Read) Ill Ill
DataEn (Write)

-- --
ACK or RdCEn w

DSACK LtJ
ACK2 Ill II
In DE

i

111 ! 111 i
!

887 drw 08

Figure 8. Master Access Timing Diagram

89

INTERFACING THE IDT79R3051™ TO THE SONIC™

Tri-stat Buffer

3051

ALE
Data En

Wr
Rd

Burst

SONIC

M/RW

2887 drw 09

Figure 9. Master Interface Block Diagram

Physical Layer
Figure 10 contains a block diagram of the physical layer

interface, while a schematic of the physical layer design is
located on the last page of this application note. This design
can be used in either a thin wire or standard drop cable
Ethernet environment. When the design is used in a thin wire
Ethernet application, the 5V supply must be connected to the
DC-to-DC converter, so that the necessary-9V output can be
supplied to National Semiconductor's Coaxial Transceiver
Interface (CTI, DP8392). The CTI provides an interface be­
tween the 10MHz Manchester encoded coax cable and the
1 OM Hz Manchester encoded differential signals of the SONI C's
ENDEC. In the case of a standard drop cable Ethernet
application, the 5V supply is left unconnected, so that the CTI
will not receive power. This allows the signals of the SONIC's
ENDEC to pass directly to the AUi cable, via the 15-pin AUi
connector. In examining the schematic of the physical layer

SONIC
DP83932

CD+-----1
CD-----....
RX+------1
RX------1
"fi<+
TX- 1--1~---1~ ...__ ___

270 '5%

GND

39 '1%

GND

APPLICATION NOTE AN-95

design, it can be seen that there is a pulse transformer at the
AU I side of the CTI. This is placed here to isolate the CTI from
the SONIC's ENDEC signals, when the AUi drop cable
connection is being employed. This transformer also provides
the IEEE 802.3 specified isolation between the coax and the
differential AUi signals, when thin wire Ethernet is being used.
It is also necessary to provide a termination for the ?Sn AUi
cable's differential receive and collision pair (RX± and CD±).
This is the reason for the 390 -1% resistors and .01 µF
capacitors that are shown in Figure 10.

Additionally, there are two more significant considerations.
First, each one of the transmit pairs (TX+ and TX-) requires
a 2700 non-precision pull-down resistor to complete the
internal source follower amplifiers that drive these signals.
Second, there is an isolation transformer placed between the
differential signals of the SONIC's EN DEC and the AUi cable.
This isolation is necessary to guarantee that the SONIC meets
the IEEE 802.3 fail-safe specification of a 16V DC level
appearing on the AU I cable's differential signals. This external
isolation is necessary, because in the powered down state the
CMOS process, inwhichtheSONICis manufactured, may not
be able to withstand this voltage.

Control Logic
This application note was developed with the intention of

displaying the necessary requirements for interfacing the
SONIC to the R3051 system bus. Therefore, the actual
implementation of the control logic will be graphically depicted
in state machine form, as opposed to being partitioned into
actual PAL devices. This leaves the freedom for the designer
to incorporate this logic into his/her system in PALs, ASICs,
FPGAs, etc.

C\I

"' gJ
a_
0

-9Volts

DC-DC
CONVERTER

(
5Volts

2887drw 10

Figure 10. Physical Layer Interface Block Diagram

90

INTERFACING THE IDT79R3051™ TO THE SONIC™

BUS INTERFACE LOGIC

Async

11

01

Address

01" = 01 * 02 + 01 *ALE+ 02 *AS

02" = 01 * 02 + 01 *ALE+ 02 *AS

OE= 02"

Data

OE= (DataEn +CS) + (BGACK + DataEn)

1st case 2nd case

Async

lnDE * Wr
OE1 = DataEn +CS

APPLICATION NOTE AN-95

8==0 OE2 =QA= AS* lnDE +AS* Q + Wr. Q + lnDE. Q

AS

OE= DataEn +CS+ AS* lnDE +AS * OE2 + Wr * OE2 + lnDE * OE2

2887 drw 11

case 1 case 2

Note:
1 . 01' refers to the first state machine bit and 02' refers to the second state machine bit (1 O: 01'=1 & 02' = 0)

91

INTERFACING THE IDT79R3051™ TO THE SONIC™

SLAVE INTERFACE LOGIC

idle

Q1A = Q2 + Q1 • Q2. Rd2 11

-- -
Q2A = Q1• Q2 • AdrDec + Q1 • Q2 • Rd2 + Q1* Q2

cs= SAS= Q2A 01

QV = SMACK* Q2

Q2A = Q1 • Q2 *SMACK+ Q2 •SMACK

Rd2 = Q2A

Async

Rd2 • SR/W

1 I RdCEn ~ ~1 RdCEn jo
Rd2

RdCEn = QA = Rd2 + Q * SR/W

BUS REQUEST INTERFACE LOGIC

APPLICATION NOTE AN-95

Async

AdrDec • CLK

CS& SAS 10

Rd2

CS& SAS
Rd2

CS&SAS 00

idle Sync (Falling edge of bus clock)

10

~

Async

Rd2 * SR/W

1 I ACK ~ ~I ACK I 0

Rd2

ACK= QA= Rd2 + Q • SR/W
2887 drw 12

idle Sync (Falling edge of bus clock)

Q1A = BGACK + Q1 * Q2 ~ BusReq

Q2A =BR• Q2 + BGACK * Q1

BusReq = Q1 A • Q2A
00 BusReq 10

BGACK

Q1A=Q1 • Q2+Q2.BR
BG 10

Q2A = Q1 + Q2 • BusGnt BusGnt

BG 00
2887 drw 13

92

INTERFACING THE IDT79R3051™ TO THE SONIC™

MASTER INTERFACE LOGIC

Q1A=Q1 *AS+Q2*CLK+Q1*Q2

Q2A = Q1* AS+ Q1* Q2 + Q2* CLK

ALE= Q1A. Q2A

idle Sync (rising edge of bus clock)

idle

~ = o jcK2 I..- ~1 ACK2 I 1
UC!

QA=Q* ACK

ACK2= QA

Async

lnDE *Rd

DataEn O

In DE

QA= lnDE+ Rd. Q

DataEn =QA

Q1A = Q1 'Q2 + Q1 * lnDE +AS * Q2

Q2 A= lnDE • Q1 + Q1 • Q2 + Q2 •AS

RW=Q2A

"''~a
RW

Rd= QA= RW + Q * MR/W

idle Async

~
00 01

AS

10 11

idle Async

~
11 10

01 00

CLK * ACK2

Q1A = Q1 * Q2 + Q1 * Q2 *ALE

Q2A = Q1 * Q2 + Q1 * Q2 * CLK * ACK2

+ Q1 * Q2 *ALE

lnDE =Q2A

idle Async

~
11 10

AS

01 00

''"Bw, la
Wr

Wr = QA = RW + Q • MR/W

93

APPLICATION NOTE AN-95

2887 drw 14

IDT79R3051™ APPLICATION f;)' ADDRESS/DATA BUS NOTE
AN-97

TURN-AROUND BEHAVIOR
Integrated Device Technology, Inc.

by Andrew Ng

INTRODUCTION
This application note describes the behavior of the

I DTR3051 's multiplexed Address/Data, "A/D" bus and presents
the issues of a particular topic called "Bus Turn-Around." Bus
Turn-Around will be defined, design issues will be presented,
and design solutions will be given for conventional R3051
systems, as well as a "DMA BusReq" design solution for very
low-speed and very high-speed systems.

Definition of the R3051
The IDT79R3051™ RISController™ is a highly integrated

MIPS® R3000™ instruction set compatible microprocessor
that minimizes system cost and power consumption. The
R3051 includes 4kB to BkB of instruction cache, 2kB of data
cache, an optional on-chip TLB memory management unit, 4-
deep read and write buffers, on-chip OMA arbitration, a simple
external bus interface, as well as the R3000A CPU execution
engine - all in a single compact plastic 84-pin package.

Definition of the A/D Bus
One of the key features of the R3051 is its low pin count.

The low pin count is largely a result of its simple control
interface and its use of a multiplexed Address and Data bus,
calledA/0(31 :0). As shown in Figures 1 and2, the multiplexed
AID bus drives its address during the first phase of a read or

Address Phase

ALE

Rd

A/0(31 :0) --------+-< Addr&BE
(from CPU)

Data En

write memory cycle. In the second phase of a read memory
cycle, the CPU expects the external memory system to drive
the bus and return the data. In the second phase of a write
memory cycle, the CPU drives the data out to the memory
system. Thus in a typical R3051 system, the address can be
latched using a bank of transparent latches such as with the
54/7 4FCT373T or 54/7 4FCT841 T as shown in Figures 4 and
5 so that the address is de-multiplexed from the data lines.

In systems using an ASIC, such as for a DRAM or DMA
Controller or as an Integrated 1/0 Subsystem/Controller with
on-chip programmable registers, the multiplexed A/D bus has
an advantage over separate Address and Data busses in that
the ASIC requires substantially fewer pins. The ASIC can
latch the 32 Address bits internally, using the Address Latch
Enable output from the CPU called "ALE", and then use the
same input pins to provide data. In addition, the CPU has less
noise from simultaneous switching of the 32 AID lines than if
it had to switch 64 separate Address and Data lines. Thus
R3051 systems can often save cost and space by using
inexpensive and low pin count ASICs.

Although a multiplexed bus may be thought of as a disad­
vantage in terms of system performance, this is rarely the case
in R3051 systems. An analysis of memory behavior and the
bus shows that in conventional memory systems (those that
do not use exclusively high-speed, single-cycle SRAMs for

Data Phase

Data
(from Mem)

2531 drw 01

Figure 1. R3051 Read Cycle

The IDT Logo is a registered trademark and RISController and R3051 are trademarks of Integrated Device Technology, Inc.
The MIPS Logo is a registered trademark and R3000 is a trademark of MIPS Computer Systems, Inc.

©1992 Integrated Device Technology, Inc.
94

6/92

IDT79R3051™ ADDRESS/DATA BUS TURN·AROUND BEHAVIOR

Address Phase

ALE

Wr

Data Phase

Data
from CPU

APPLICATION NOTE AN·97

2531drw02

Figure 2. R3051 Write Cycle

the entire memory system), the R3051 bus structure causes
no real performance loss.

For example, conventional memory systems use the ad­
dress before the data is generated on read cycles or needed
by write cycles. On read cycles, the address is always needed
before the data array can be accessed. The multiplexed
R3051 bus provides the address as early as a non-multi­
plexed bus would; thus, the read access is not delayed. Since
memory read performance is described as "Address and
Chip-Select valid to Data Available", the multiplexed bus
causes no performance loss on reads.

Similarly, on write cycles, most memories (except for self­
timed memories) require the address before the data in order
to properly coordinate the write strobe with the correct internal
row and column address decode/selects. The R3051 bus
provides the write target address for one-half cycle, and then
immediately presents the write data. That half cycle is
required to perform address decoding, and to provide a Chip­
Select to the memory device. Thus, once the address and
Chip-Select are available to the memory, the data is also
available.

Further, the R3051 decouples the system bus performance
from processor performance based on the integration of on­
chip resources. Specifically, the large on-chip caches mini­
mize the number of main memory reads, thus making system
read performance less criticial. The on-chip 4-deep write
buffer isolates the processor from the memory system write
speed, allowing it to continue execution while store operations
are actually updated into the memory. Thus, R3051 perfor­
mance, while somewhat dependant on memory system per­
formance, is largely isolated from the memory system. Thus,
high-performance systems using relatively slow EPROM and
DRAM devices can be easily realized.

95

Definition of Bus Turn-Around
The other consequence of a multiplexed bus arises from

the fact that during a particular transaction, as well as from one
transaction to the next, transitions between sources of the bus
can occur. For example, a read transaction begins with the
processor driving the address on the bus, and ends with the
memory driving the data on the bus. Similarly, at the end of a
read, the next transaction on the bus will begin again with the
CPU driving an address on the bus.

Note that similar concerns are present even for non­
multiplexed busses. For example, a read followed by a write
results in the data bus first being driven by the memory, and
then being driven by the CPU. Thus, bus turn-around is also
a consideration in non-multiplexed bus systems.

Bus Turn-Around behavior is the action that the CPU takes
when its address/data bus transitions between the CPU and
the memory, particularly when it changes direction from being
a driver to being a non-driver or vice-versa. The actions that
the CPU can take are:

1 . Drive the address.
2. Drive the data.
3. Tri-state.

There are two basic times when the AID bus will transition:
1. Intra-Cycle-Within a memory cycle as the address

phase transitions into the data phase.
2. lntercycle-Between two memory cycles when the

data phase transitions into the address phase of the
next memory cycle.

Intra-Cycle Bus Turn-Around
A typical case of an address to data transition happens

during a read cycle. As shown in Figure 1, when the Address
Latch Enable (ALE) is negated, the address is externally

IDT79R3051™ ADDRESS/DATA BUS TURN-AROUND BEHAVIOR

latched and the CPU turns the bus around by tri-stating the Al
D bus, so that the external memory system can begin to drive
the expected data back to the CPU. The second case occurs
during write cycles when the CPU finishes driving the address,
it begins driving the data to the memory system. Since the
CPU drives both the address and data during write cycles, bus
turn-around is not a significant issue during write cycles. The
two intra-cycle transition cases are listed in Table 1, which
shows the state of the CPU A/D output buffers during the
address and data phases of the transaction.

Note that the processor provides an output, DataEn, to
indicate that this transaction has occurred. During the ad·
dressing phase, DataEn is negated, indicating the CPU is
driving the A/D bus. During the Data Phase, DataEn is as­
serted, indicating that the bus is to be driven by the external
memory system. During write cycles, and during idle cycles,
DataEn is guaranteed to be negated, indicating that the
external memory system should not be driving the A/D bus.

Table 1. R3051 Address to Data Bus Transitional Behavior
Within Memory Cycles

READ A,Z

WRITE A,D

Note: A = Address, D = Data, Z = Tri-State

Read Cycle

Address Phase Data Phase

ALE _____ _

ND(31 :O) -----... r-, ...;"\...111~~111.~,~~~.:.D._,

RdCEn

APPLICATION NOTE AN-97

lntercycle Bus Turn-Around
A typical case of the transition between two memory cycles

occurs on a read cycle that is immediately followed by a write
cycle as shown in Figure 3. In this case, the memory system
is required to turn the bus around by tri-stating the bus before
the next write cycle begins to drive its address onto the A/D
lines. Table 2 lists the R3051 's behavior on each of the cases
of intercycle memory transitions. The table lists the state of
the CPU output buffers at the end of the first transaction,
followed by the state of the buffers at the beginning of the next
transaction. Note that if a read or write cycle occurs while the
CPU is executing instructions from its internal cache, the next
external memory cycle might not occur until many clocks later,
in which case the A/D bus is tri-stated since it is idle. Also,
many of the cases, such as the transitions after writes have
both the data and address driven by the CPU. Thus bus turn­
around is not a significant issue after write cycles. Other
transitions may not actually be possible. For example, it is
impossible to have a read followed by a read. At least two idle
cycles are required, to accomodate the read buffer latch and
the internal fix-up cycle required by the processor (see the
R3051 Hardware User's Manual for more detail).

TBTA Write Cycle

Address Phase Data Phase

Addr&BE
from CPU

Data
from CPU

2531 drw 03

Figure 3. R3051 Read Cycle Followed by a Write Cycle

96

IDT79R3051™ ADDRESS/DATA BUS TURN-AROUND BEHAVIOR

Table 2. R3051 Data to Address Bus Transitional Behavior
Between Memory Transactions

From To READ WRITE OMA IDLE

READ Z,A Z,A Z,Z Z,Z

WRITE D,A D,A D,Z D,Z

OMA Z,A Z,A Z,Z Z,Z

IDLE Z,A Z,A Z,Z Z,Z

Note: A= Address, D = Data, Z =Tri-State

TYPICAL SYSTEMS AND BUS TURN-AROUND
To handle the timing associated with the bus turn-around

within a memory cycle, the Data Enable output, DataEn is
provided by the R3051. As shown in Figure 1, on read cycles,
DataEn gives an indication when the CPU has tri-stated the
AID bus. Thus after DataEn asserts, the memory system can
begin driving data onto the A/D bus. The system designer can
also look for the rising clock edge of SysClk after Rd asserts
before allowing the memory system to drive data.

To handle the timing associated with the bus turn-around
between two memory transactions, consider the case of a
read cycle immediately followed by a write cycle. The read
cycle output enable control of the memory system must be
such that the output drivers of the memory system turn off
within 1 /2 clock before the next address is driven by the write

Clk2xln, Reset __.. Diag(1:0)

APPLICATION NOTE AN-97

cycle. If the memory devices have an output disable to tri­
state time (TOEZ) of more than 1/2 clock, then they can be
isolated from the A/D bus with a bank of data transceivers
such as the 54/7 4FCT245T, 54/7 4FCTB61, or 54/7 4FCT623T
or with latched data transceivers such as the 54/7 4FCT543T
or 54/7 4FCT646T as shown in Figure 4. All of these transceiv­
ers have very fast output disable times.

VERY FAST SYSCLK OR VERY SLOW TOEZ
AND BUS TURN-AROUND

The majority of systems will use evenly matched memories
relative to the system clock speed or use transceivers. How­
ever, two exceptions may occur:

1. Very Fast SysClk- Even with the highest speed
transceivers, their output disable times (ToEZ) are
around 5-Bns. Thus at 40MHz, if DataEn is used, it has
a clock to de-assert time of 4ns. (Assume that the
transceiver has two internally Anded output enable
inputs. For example, as shown in Figure 4, the
FCT543T transceiver bank can use DataEn and the
bank select for inputs to the output enables). If 1 ns is
allowed for clock skew, this just meets the worst case
timing criterion of:

T1i2SysClk (12.5) ~ TDataEn + TOEZ + TClkSkew + Tcap
(4+6.5+ 1 +0)

A(31 :4), BE(3:0) 11111'.t--Al_D~(3_1_:0~)-___ ~ FCT373T
r LATCH

lnt(5:3), Slnt(2:0) __..

SBrCon<!{_3:~ R3051

BrCon<!{_1 :Ql
RISController

ALE

FCT543T

TRANS­

CEIVER

ii ~I ~I ~I

.. 0(31:0)

T+1 Data En WrDataEn
,.....::..-'=-=--------' '--1r------:::::::::::::::::=:::::::::-1

BankSelect

MEMORY

SYSTEM

Rd, Wr, Burst[WrNear, DataEn, Addr(3:2), SysClk

.....

2531 drw 04
Figure 4. R3051 Memory System Isolated with Transceivers

97

IDT79R3051™ ADDRESS/DATA BUS TURN-AROUND BEHAVIOR

Some choices of transceiver and PLA-based output enable
control combinations may need more time than is allowed by
the above equation. Solutions to this problem will be given in
the section below, "Using OMA BusReq to Match CPU and
Memory Speeds."

2. Very Slow Memories - The second case occurs when
relatively slow ToEz memories are attached directly to
the AID bus as shown in Figure 5. Such systems require
these memories to turn off within 1/2 clock. A 20MHz
R3051 has a ToataEn for the de-asserting edge of DataEn
of 7ns. Assume that additional output enable control
circuitry adds an additional delay of 1 Ons. 1 ns is allowed
for clock skew. For an inexpensive, slow 120ns
EPROM, the output disable time is about 50ns, which
seems to limit the clock speed to about ?MHz:

T112SysClk (71.4) <". TDataEn + ToutputEnableControl + TOEZ +
T ClkSkew + TCap (7 + 10+50+ 1 +0)

However, as will be explained below in the section called,
"Using OMA BusReq to Match CPU and Memory Speeds," the
overall CPU speed does not have to be slowed down just
because a slow TOEZ memory is attached directly to the A/D
bus.

Clk2xln, Reset ... Oiag(1 :O)

APPLICATION NOTE AN-97

USING OMA BUSREQ TO MATCH CPU AND
MEMORY SPEEDS

For systems with very fast SysC/k or very slow memories,
a solution exists to the bus turn-around timing constraints by
using the Direct Memory Access (OMA) interface on the
R3051. The R3051 OMA interface consists of two pins called
BusReq and BusGnt as shown in Figure 6. Normally these
pins are used for giving an external device control of the CPU
bus instead of giving control of the bus to the R3051. Jn the
R3051, when BusReq is asserted, OMA always has the
highest priority immediately alter the current memory cycle
completes. The BusReq input is always sampled on the rising
edge of SysC/k. After the BusGnt is given, all of the CPU
control line outputs, except SysC/k and BusGnt are tri-stated.
When the OMA device is finished with the bus, it de-asserts
BusReq which then causes the CPU to de-assert BusGnt. The
BusGnt output is always asserted on the rising edge of SysClk
and de-asserted on the falling edge of SysC/k.

Because a BusReq always has the highest priority, in a very
last SysC/k system or a very slow memory system, asserting
BusReq during the read cycle insures that the OMA request
will always be granted at the end of the read cycle. Alter this
happens, the BusReq pin can be de-asserted after the desired

_..
-

J..t A/0(31 :O) _.. FCT373T A(31 :4), BE(3:0) _.
,.... .. LATCH ..

ALE _.. I>
lnt(5:3). Slnt(2:0) ..
SBrCond(3:2) R3051 MEMORY

RISController SYSTEM
BrCond(1 :O) "

0(31 :0)

BusError ...
--- ------- --- --
RdCEn, Ack ->' Rd, Wr, BurstlWrNear, OataEn, Addr(3:2), SysClk ..

--
BusReq _.._ ... BusGnt _.._

2531 drwOS

Figure 5. R3051 Memory System Connected Directly to the AID Bus

98

IDT79R3051™ ADDRESS/DATA BUS TURN-AROUND BEHAVIOR

number of intercycle wait-states have been inserted. For
example, as shown in Figure 7, by attaching the buffered read
line, Rd to BusReq, the R3051 will grant the BusReq and
immediately release it. Note that Rd needs to be buffered to
meet the hold time of the BusReq input. Examine Figure 3,
where a write cycle normally can follow a read cycle after 0.5

BusGnt

CPUOUTPurs~~~~~~~~~~~~~~_.....

APPLICATION NOTE AN-97

clocks and then compare it with Figure 7. In Figure 7, by using
BusReq, it can be seen that a minimum of 1.5 clocks is
guaranteed before the next memory cycle is started by the
CPU.

Note that when using OMA, the system may choose to
resistively pull-up or down its control signals since the OMA

(except SysClk and --------------

SysClk

ALE

Rd

BusReq

BusGnt

Wr

A/D(31 :O)

Data En

RdCEn

Ack

BusGnt) ------------------' ~-------~

Figure 6. R3051 OMA BusReq and BusGnt Timing

Read Cycle
Address Phase Data Phase

Addr&BE
(from CPU)

Write Cycle
i-1----'T'-=B'-'-TAc:._ __ _..,..i Address Phase Data Phase

Addr&BE
(from CPU}

Data
(from CPU)

Figure 7. Using BusReq to Add More Bus Turn-around Time

99

2531 drw 06

2531 drw 07

IDT79R3051™ ADDRESS/DATA BUS TURN-AROUND BEHAVIOR

when granted will tri-state the CPU contro~utput signals.
Thus ALE could use a pull-down, while Rd, Wr, DataEn, and
BurstjWrNear could use pull-ups. The resistor value of the
pull-ups and pull-down is not that critical since the R3051
always drives the control signals to their de-asserted states
before tri-stating them. Also, if the BusReq is needed for
conventional OMA, a fixed-priority based arbiter can be used
to allow bus turn-around wait-state injection the highest prior­
ity and to allow conventional OMA the next priority.:___

Various improvements can be made to using the R~e for
BusReq. For example, instead of using the buffered Rd line,
use the decoded chip select of the particular memory (e.g., the
EPROM) that has the relatively slowToEz. Thus the extra wait­
states are only asserted as needed (that is, after the slow
memory is accessed).

SUMMARY
The R3051 allows inexpensive systems to be designed

with the high throughput R3000 RISC instruction set archi­
tecture. The small 84-pin count is achieved with a multiplexed
address and data bus, called "AID". The use of the multiplexed
AID bus allows ASICs and Memory Controllers such as the
R3721 DRAM Controller to have fewer interface pins, with no
real loss of system performance or real added complexity.
However, as for any high-speed bus (either multiplexed or not)
care has to be taken to avoid bus clashes as the bus transi­
tions from one device to another. This application note de­
scribes these considerations.

As shown in the text, the use of the AID bus does not
inherently limit the overall clock speed of the system, since
either transceivers, or the described method of using the OMA
BusReq input gives a solution for memory/CPU mismatches.
Thus any memory or 1/0 system can use the multiplexed AID
bus and be designed to run at the full CPU clock frequency.

APPLICATION NOTE AN-97

FOR FURTHER INFORMATION:
1. /DT79R3051 Family Hardware User's Manual,

MAN-RISC-00051, Integrated Device Technology, Inc.,
Santa Clara, CA, 1991. Describes the H/W features and
functionality of the device as well the bus interface.

2. IDT 1991 RISC Data Book, DBK-RISC-00021, Integrated
Device Technology, Inc., Santa Clara, CA, 1991. Contains
the data sheet with packaging, pinout, AC/DC electrical
and thermal parameters.

3. G. Kane, MIPS RISC Architecture, Prentice Hall, Englewood
Cliffs, NJ, 1988. Describes the R3000/R3051 instruction
set architecture from a systems and assembly-level pro­
gramming perspective.

4. IDT1991 Logic Data Book, DBK-LOGIC-00080, Integrated
Device Technology, Inc., Santa Clara, CA, 1991. Contains
the data sheets for many different high-speed FCT trans­
ceivers, latches, and buffers.

100

(;) IDTR3051™ EMULATION OF REALS™ APPLICATION

LASER PRINTER CONTROLLER USING NOTE

IDT7RS385 EVALUATION BOARD AN-98

Integrated Device Technology, Inc.

By Bob Napaa

INTRODUCTION
To evaluate the performance and system cost of IDT's

R3051™ RISController™ family in a laser printer environment,
IDT has developed an emulation of the REALS™ Laser Printer
Controller (IDT7RS3SS), complete with ports of the
PeerlessPage™ Imaging Environment, Microsoft®
Truelmage™ (Postscript® compatible) POL™ and
PeerlessPrint5™ (HP LaserJet Ill PCL5™ -compatible) lan­
guages, using the IDT7RS3S5 Evaluation Board as the
hardware platform. Like REALS, the 7RS385 board includes a
fast Centronics parallel input port and the identical video
interface for the Canon LBP-SX™ print engine has been
added in the wire-wrap area.

In this configuration, the emulation provides a checklist
design model for OEMs wanting to use the same processor
family, but adapting it to other 1/0 configurations, or driving
other laser print engines.

IDT7RS385 RISC Evaluation Board
The I DT7RS3S5 is a complete RISC system self-contained

on a single printed circuit board. The 7RS3S5 is designed

70
INT[5:0]

BR

BG
BE[3:0]

Read
Write

Ack
RdCEn

SysClk

R3051 ALE

AD[31 :O]

Control ..

Read
Write

1----+1 Control
Logic

around the IDT79R3051 RISControllerfamily. All four devices
in the family (R3051, R3051 E, R3052 and R3052E) are pin
and software compatible. As a consequence, any device can
be substituted for the R3051. The major features of the
7RS3S5 include:

• IDT79R3052E RISController
• 1 MB DRAM expandable to 4MB
• 12SkB EPROM expandable to 2MB
• Programmable DUART (2681) with two serial ports
• Programmable counter/timer (8254)

Centronics parallel input port with FIFO
• Clock, reset and interrupt generation circuitry
• IDT/sim™ - Initialization and monitor debugging software
• HP16500 logic analyzer pod connectors
• Expansion bus connectors
• User wire-wrap area

Figure 1 illustrates the 7RS3S5 block diagram while Figure
2 illustrates the block diagram of the REALS laser printer
controller. Additional information on the the IDT79R3051
family, including the CPUs, support chips and development

.-----. Timer_lnt
Interrupt UART_lnt
Control
Logic

DACK/
EXACK Timing

Control
Logic

Serial
Ports

a •

Parallel
Port

four 50-pin Address---------'--+-l~
To { Control

Connectors Data-----------i->

•• These control signals include R3051 and the on-board control logic signals as well.

Figure 1. 7RS385 Block Diagram

REALS, IDT79R3051, RISController, and IDT/c, IDT/sim are trademarks of Integrated Device Technology, Inc.
All others are trademarks of their respective companies.

©1992 Integrated Device Technology, Inc.

101
6192

IDTR3051 EMULATION OF REALS™ LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

· ·.· .· ... ·• ·· >R$?$?9> ••• \ ••·

[~ ~t6~~T
l .•· ~~LS) ¥~fh· J

R3001
CPU

A D

Rd/Wr Buffers

512KB ..
io

4MB
ROM/

......... EPROM ...

Optional
R3010

Floating
PointAccel.

MDATA/MADDR

1MB
io

4MB
DRAM

APPLICATION NOTE AN·98

Figure 2. REALS Laser Printer Controller Block Diagram

software is available from IDT. The I DT7RS3S5 User's Manual
provides more information on the 7RS3S5 Evaluation board.

IDT7RS385 REALB Emulation
The IDT7RS3S5_REALS_Emulation is a modified 7RS3S5

Evaluation board designed to control a Canon LBP-SX laser
printer engine. The 7RS3S5_REALS_Emulation is designed
to run at 25MHz with 1 bank non-interleaved of 4MB DRAM
and 1 bank non-interleaved of 2MB EPROM. The
7RS385 REALS Emulation emulates the complete memory
mapping~ interruPt structure, endianness and video interface
implemented on the IDT REALS Laser Printer Controller
board. The emulation of the hardware of the REALS board
enables the software from THE PEERLESSGROUPtoberun
with only minor modifications. The software however does
need to be recompiled with IDT/c™ using the floating-point
library since the current R3051 family does not support a
hardware floating-point accelerator.

The basic configuration of 7RS385 has been modified as
follows:
1. Change jumpers and DRAM to 4MB configuration.
2. Change jumpers and EPROM to 2MB configuration.
3. Modify "endianness" to little endian required by the soft·

ware.
4. Modify memory mapping and interrupt structure to match

REALS.
5. Disabling the 8254 timers not required by REALS.
6. Adding the engine interface in the wire-wrap area.

Figure 3 illustrates the physical layout of the 7RS3S5
Evaluation board.

IDT7RS385_REAL8_Emulation Implementation
Several steps of modifications of the original 7RS385

design are required to emulate the complete hardware of the
REALS board. In addition the video interface must be imple­
mented on the wire-wrap area on the board.
• Endianness

The original 7RS385 board includes a big endian ver­
sion of IDT/sim and thus is considered a big endian board.
The board has to be changed to a little endian board since
the software from The Peerless Group is a little endian one.
The endianness to the R3051 can be specified during reset
on interrupt pin O. A level "1" specifies big endian system
while a level "O" specifies a little endian system. The board
is converted to little endian by shorting pins 1 and 2 of
jumper P7.

• Timer

102

The original 7RS385 board uses an Intel 8254 timer
device which implements two timers. Each of the two timers
may be program med as an independent REAL-time interrupt
occurring at regular intervals. The two timer outputs (OUTO
and OUT1) are forwarded to the R3051 via the interrupt
PAL as synchronous interrupts. However, this timer device
has been disabled (by removing the Vee and ground pins)
since the software does not make use of it. The software
implements a timer function using the DUART device.
QUTO and OUT1 of the two timers are replaced by the
Timer interrupt (from the DUART timer) and the
Video -Filo Empty (from the video interface) signals re­
spectively.However, it is possible to keep the 8254 timers
enabled if the application software can make use of them.
This requires extra modifications in the interrupt structure
and in the address decoding.

IDTR3051 EMULATION OF REALS™ LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

• DUART
The original 7RS385 board uses a Signetics2681 DUART

to control two serial communications ports. The first port is
for the CRT terminal while the second is for auxiliary use
such as downloading software from a host. The functional­
ity of the DUA RT is almost unchanged in the modified board
(the 7RS385_REAL8_Emulation) with some few excep­
tions. The software implements a real-time timer using the
DUART and uses OP3 as the timer output. This signal is

~
0 c..
--'
<(

ii:
w
(/)
l{)

~
0

POWER

APPLICATION NOTE AN·98

forwarded to the R3051 through the interrupt PAL as the
timer interrupt signal. Five of the remaining general pur­
pose output pins (OP2, OP4, OP5, OP6 and OP7) are used
for the Centronics interface handshaking. These modifica­
tions require cuts and jumps on the OP2 and OP3 pins as
demonstrated in the schematics. Also, the input pin Tl5 on
the Max235 needs to be shorted to ground since this signal
was originally connected to OP2.

J15~~~~"'~~~

J14 f&-.'0.. "'"""""" "-"-"->\'1
J13f0..~'-....'-....~

~ a 1;;::mif.:::::1

1:::::9.~¥.::::i i::::H![J
~~g~ 1;::::R:~~;;;;;1
U31

::s::s:.s:.s:.s
R3051
PGA

U30
" ~
" "

i:::::R:~~::::1

i:::::R:~~::::1

1;::::R:~~;;;;;1

RESET
PUSHBUTTON

Figure 3. 7RS385 Physical Layout

103

IDTR3051 EMULATION OF REALBTM LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD APPLICATION NOTE AN-98

• Memory Mapping • Interrupt structure
Figure 4 illustrates the memory mapping of the original

7RS3S5 board. The address decoder PAL (U7) uses the
upper 12 bits of the address bus to select among different
memory segments. This memory mapping does not corre­
spond exactly to the required memory mapping of the
REALS board and thus modifications of the address de­
coder PAL are introduced. The new memory mapping is
presented in Figure 5 and still uses the upper 12 bits of the
address bus. The new memory decoding scheme can
support up to 4MB of DRAM space and up to 2MB of
EPROM space. For 4MB of DRAM, pins 1 and 2 of jumper
P11 need to be cut while pins 2 and 3 need to be shorted.
For2MB of EPROM, pins 1and2of jumpers P1, P2, P3, P4,
P5 and P6 need to be cut while pins 2 and 3 need to be
shorted.

/

ii

''"
DRAM 0000 0000 xxoo 0000
~ MBYTEfil 003F FFFF xxoo 0000

CENTRONICS 0060 0000 0000 0000

TIMER 1 F80 0000 0001 1111

EPROM 1FCO 0000 0001 1111
(2 MBYTES) 1 FDF FFFF 0001 1111

DUA RT 1 FEO 0000 0001 1111

USER CS 1FAO 0000 0001 1111

* These bits are decoded at the device

The 7RS3S5 generates four interrupts synchronized to
SysClk via the interrupt PAL (U2S) and may be connected
to any of the available interrupt inputs on the R3051 through
the jumper set P12. The interrupts and the default interrupt
input into the R3051 are shown below:

Interrupt Source Input to R3051

CINTO 8254 counter 0 SINTO

CINT1 8254 counter 1 SINT1

CENTI NT Centronics Fl FO full flag INT3

DINT DUART interrupt INT5

This interrupt structure does not correspond to the
requirements of the REALS board. Modifications of the

707

'"" /
1100 xxxx xx xx xxxx xx xx xx xx
0011 xx xx xx xx xxxx xx xx xx xx

0110 xxxx xx xx xxxx xxxx xxxx

1000 xx xx xx xx xxxx xxxx .. xx

1100 xx xx xxxx xx xx xxxx xx xx
1101 xx xx xxxx xxxx xxxx xx xx

1110 xxxx xx xx xxxx XX*' *'XX

1010 xx xx xx xx xxxx xx xx xx xx

Figure 4. The Memory Mapping of the 7RS385

I i.':
2J.

DRAM 0000 0000 xxoo 0000 1100 xxxx xxxx xx xx xx xx xxxx
4 MBYTESJ: 003F FFFF xxoo 0000 0011 xx xx xxxx xxxx xxxx xxxx
CENTRONICS 0060 0000 0000 0000 0110 xx xx xxxx xxxx xxxx xxxx

USER CS LASER FIFO UU4U UUUU uuuu uuuu 0100 .xxxx1 JS.><)()(IX~ XXX_)(.xxxx
005F FFFF 0000 0000 0101 xxxx xxxx xx xx xx xx xx xx

UNUSED AREA llmlooooo 0000 0000 1000 xxxx xxxx xx xx xx xx xxxx
LASER ENGINJ:: UU!:!U UUUU 0000 0000 1001 xx xx xxxx xxxx xxxx xx xx

DUARTITIMER OOAO 0000 0000 0000 1010 xx xx xxxx xxxx xx xx

EPROM 1FCO0000 0001 1111 1100 xxxx xxxx xx xx xx xx xxxx
(2 MBYTES) 1 FDF FFFF 0001 1111 1101 xxxx xx xx xxxx xx xx xxxx

• These bits are decoded at the device

Figure 5. The Memory Mapping of the 7RS385_REAL8_Emulation

104

IDTR3051 EMULATION OF REALS™ LASER PRINTER
CONTROLLER USING ID17RS385 EVALUATION BOARD

interrupt PAL and the P12 jumper set are introduced to
reflect the new interrupt structure shown below:

Interrupt Source Input to R3051

VREQINT Video request SINTO
VFEMPINT Video FIFO empty SINT2

CENTI NT Centronics FIFO full flag INT3

TM RI NT Timer interrupt INT4

DINT DUART interrupt INT5

To implement the new interrupt structure, COUTO,
COUT1 and TIMER inputs lines to the interrupt PAL are
replaced by VFEMPT, TIMERINT and VREQ respectively.
The jumper set P12 need to be modified as illustrated in the
schematics.

• DRAM Memory Latency
The original 7RS3S5-25 board design is optimized for

non-interleaved 25MHz systems with the following DRAM
memory latency for read and write accesses expressed in
terms of external bus clock cycles:

single read: 5 clock cycles
quad word read: 5 clock cycles for the first word, 2

clock cycles for the remaining 3
words

single write: 5 clock cycles
page write: 4 clock cycles
RAS precharge time: 2 clock cycles

• EPROM Memory Latency
The latency ofthesingle, non-interleaved bank of EPROM

has been improved for 25MHz, and is expressed in terms
of external bus clock cycles as follows:
single read: 5 clock cycles
quad word read: 5 clock cycles for the first word, 4

clock cycles for the remaining 3
words

• Software
The original 7RS3S5 board is shipped with a big endian

version of the IDT System Integration Manager software
(IDT/sim) which is a powerful tool for downloading software
and debugging both hardware and software. This version
of IDT/sim is tailored to the memory mapping of the existing
design. A little endian version of IDT/sim tailored to the
memory mapping of the REALS board is necessary to boot
up the new 7RS3S5_REALS_Emulation (a version of IDT/
sim with the appropriate DUART address). This version of
the software is readily available from IDT and is shipped
with the REALS board. It only needs to be compiled for a
little endian target system. No additional software modifica­
tions are required.

• Video Interface
The 7RS3S5_REALS_Emulation is designed to inter­

face to a Canon LBP-SX laser printer controller. The video
interface is implemented on the wire-wrap area of the
7RS3S5. The video interface resides in the User Chip
Select segment of the memory as defined by the address
decoder PAL (U7). The video interface PAL (U100) uses
the UserCS line and address bits A20 to A23 to select

105

APPLICATION NOTE AN-98

between accesses to the engine and accesses to the
LaserFifo. The video interface PAL uses a special signal
"State40" to synchronize its operation to the main state
machine of the board and to return the "EXACK" (External
Ack) in a proper manner. The "State40" signal has been
specially added to the existing design to inform the external
devices that the main state machine has finished all pend­
ing accesses and is waiting for a response from the User
segment of the memory. This signal has been added to the
U42 state machine PAL and prevents any confusion be­
tween the added external state machines and the existing
one.

The rest of the video interface design is a copy of the
existing design on the 7RS3S5_REALS_EMULATION
board. An S·bit register (FCT273) is used to output com­
mands and handshaking signals to the engine while an
FCTS27 buffers the input status from the engine. An IDT
Laser FIFO is used to store the bit map of the image to be
delivered to the engine. A clock generator PAL (U102)
divides a 14.91 MHz clock by S to provide the synchroniza­
tion clock between the controller and the laser printer
engine. The second PAL (U103) synchronizes the video
data (the bit map) from the LaserFifo to the laser printer
engine data requests signals.

Figure 6 illustrates the physical layout of the
7RS3S5_REALS_Emulation board with the video interface
added to the wire-wrap area.

CONCLUSION
The 7RS3S5 Evaluation board is a complete RISC system

design intended for use as a stand alone evaluation system for
the R3051 family and is flexible enough to be modified to fit the
application at hand. It is very simple to design a laser printer
controller based on the R3051 family and using the 7RS3S5
board for basically any type of laser engines (Canon, Sharp)
with minimal additions and modifications. Similarly, the design
of the 7RS3S5 can be tailored to fit an X Terminal application
or a data communications application with some external add­
on hardware and minimal changes to the existing design.

The Appendices include the schematics of the
7RS3S5_REALS_Emulation as well as the PAL equations for
the modified PAL and the new added PALs.

IDTR3051 EMULATION OF REALS™ LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

POWER

:s:s:s:s:s:s::s
R3051 " PGA

" U30 "

Figure 6. The Physical Layout of the 7RS385_REAL8_Emulatlon

106

APPLICATION NOTE AN-98

RESET
PUSHBUTTON

IDTR3051 EMULATION OF REALS™ LASER PRINTER
CONTROLLER USING ID17RS385 EVALUATION BOARD

"G. Takushi 03/26/91
"B. Napaa 09/10/91

"EDIT HISTORY:
"Date

"06/12/91
"07/18/91
"09/10/91
"10/22/91

Engineer

G. Takushi
G. Takushi
B. Napaa
B. Napaa

MODULE AddrDcdr

Checksum Modification

8852
9321

81A8

Initial release
Decode only 1Mb DRAM and 128kb EPROM
Modified to emulate 388 memory mapping
Modified the output enable of the timer

TITLE '3051 Evaluation Board: Address Decoder Pal'

U7 DEVICE 'P22V1 O';

"Inputs
A31,A30,A29,A28
A27 ,A26,A25,A24
A23,A22,A21,A20

"Outputs
DEV2
DEV1
DEVO
EPROM
ucs
TIMER
DUART
DRAM

"Constants
x = .X.;

PIN 22;
PIN 21;
PIN 20;
PIN 19;
PIN 18;
PIN 17;
PIN 16;
PIN 15;

PIN 13,11,10,9;
PIN 8,7,6,5;
PIN 4,3,2,1;

"Device code bit 2
"Device code bit 1
"Device code bit 0
"EPROM#
"UCS#
"TIMER#
"DUART#
"DRAM#

Address= (A31 .. A20, X,X,X,X, X,X,X,X, X,X,X,X, X,X,X,X, X,X,X,X);
DevCode = [DEV2 .. DEVO];
Dram_max = AH003FFFFF; "4 Mbyte DRAM
Eprom_max = AH1 FDFFFFF; "2 Mbyte EPROM

EQUATIONS
Dev Code = ((Address & AH3FFFFFFF) <= Dram_max) & (0,0,0] #

(Address== AH00600000) & (0,0,1] #

APPLICATION NOTE AN-98

"DRAM#O

"CENT# 1

((Address>= AH1 FCOOOOO) & (Address<= Eprom_max)) & [1,0, 1] #"EPROM# 5

(Address== AHOOAOOOOO) & (0, 1,0] # "DUART#2

(((Address>= AH00400000) & (Address<= AH005FFFFF)) #
((Address>= AH00800000) & (Address<= AH009FFFFF))) & (1,0,0); "UCS# 4

107

IDTR3051 EMULATION OF REALllT" LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

!DRAM =((Address & 11H3FFFFFFF) <= Dram_max); "A(31 :30) are don't cares for DRAM*

APPLICATION NOTE AN-98

"to insure compatibility between
"305x and 305xE.

TIMER.OE
!TIMER
!EPROM
!DUART
!UCS

END AddrDcdr

=0;
=0;
=(Address>= 11 H1 FCOOOOO) & (Address<= Eprom_max);
=(Address== 11 HOOAOOOOO);
= ((Address>= 11H00400000) & (Address<= 11H005FFFFF)) #
((Address>= 11 HOOBOOOOO) & (Address<= 11H009FFFFF));

108

IDTR3051 EMULATION OF REALBTM LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

"G. Takushi 04/11/91
"B. Napaa 09/12/91

"EDIT HISTORY:
"Date Engineer

"06/12/91 G. Takushi

Checksum Modification

88EC Initial release
"09/12/91 B. Napaa 355D Modified to emulate interrupt structure

of 388 board.

MODULE Interrupt

TITLE '3051 Evaluation Board: Interrupt PAL'

U28 DEVICE 'P22V10';

"Inputs
SYSCLK
MRES
DUARTINT
RD
VREQ
A02
A04
TIMER
VF EMPT
CENTFF
OutEn

"Outputs
DINT
CENTI NT
VFEMPINT
VREQINT
TMRINT

"Constants

pin 1;
pin 2;
pin 3;
pin 4;
pin 5;
pin 6;
pin 7;
pin 8;
pin 9;
pin 11;
pin 13;

pin 18; "INT 5
pin 19; "INT 3
pin 20; "INT 2
pin 21; "INT 0
pin 22; "INT 4

ON,OFF,T,F,X,C = 1,0,1,0,.X.,.C.;

EQUATIONS

DINT.OE= !OutEn;
CENTINT.OE = !OutEn;
VREQINT.OE = !Ou!En;
VFEMPINT.OE = !OutEn;
TMRINT.OE = !OutEn;

!CENTINT := MRES & !CENTFF;

109

APPLICATION NOTE AN-98

IDTR3051 EMULATION OF REALflTM LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

!VREQINT :=MAES & !VREQ;

!VFEMPINT := MRES & !VFEMPT;

!TMRINT := MRES & !TIMER;

!DINT := !DUARTINT;

END Interrupt

APPLICATION NOTE AN-98

110

IDTR3051 EMULATION OF REALS'™ LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

"G. Takushi 04/11/91
"B. Napaa 09/25/91

"EDIT HISTORY:
"Date Engineer Checksum Modification

A601 Initial release "06/12/91
"09/25/91
"11 /12/91
"01/13/92

G. Takushi
B.Napaa
B.Napaa
B.Napaa

A818
9197

Added State40 output to interface to the video
Modified UserCS by removing state 43
Modified to reduce EPROM read latency

MODULE StateMach1

FLAG '-r3','·f'

TITLE '3051 Evaluation Board: State Machine A'

U42 DEVICE 'P22V10';

"Inputs
SYSCLK
MAES
RD
WR
DRDCEN
DEVO
DEV1
DEV2
BWN
BUSGNT
EXACK
DACK
reset

"Outputs
ACK
STATE40
CNT5
CNT3
CNT2
CNTO
CNT1
CNT4
RDCEN

"Constants

pin 1;
pin 2;
pin 3;
pin 4;
pin 5;
pin 6;
pin 7;
pin 8;
pin 9;
pin 10;
pin 11;
pin 13;
node 25;

pin 14;
pin 15;
pin 16;
pin 17;
pin 18;
pin 19;
pin 20;
pin 21;
pin 23;

ON,OFF,T,F,X,C = 1,0, 1,0,.X.,.C.;
DevCode = [DEV2 .. DEVO];
Operation = [MRES,BUSGNT,RD,WR,DevCode];
Idle = [1, 1, 1, 1, X]; "Idle
EpromRd = [1, 1, 0, 1, 5]; "EPROM read
Dram = [1, 1, X, X, O); "DRAM operation

111

APPLICATION NOTE AN·98

IDTR3051 EMULATION OF REALS™ LASER PRINTER
CONTROLLER USING ID17RS385 EVALUATION BOARD

DTRd = [1, 1, 0, 1, 2]; "DUART/Timer rd
DTWr = [1, 1, 1, 0, 2]; "DUART/Timer wr
UserRd =[1, 1, 0, 1, 4]; "User rd
UserWr =[1, 1, 1, 0, 4]; "Userwr
CentRd = [1, 1, 0, 1, 1]; "Centronics read

Pstate = [CNT5 .. CNTO];
SOO = [1,1,1,1,1,1]; S32 = [0,0,1,1,1,1];
S01 = [1,1,1,1,1,0]; S33 = [0,0,1,1,1,0];
S02=[1,1,1,1,0,0]; 834=[0,0,1,1,0,0];
S03 = [1, 1, 1, 1,0, 1]; S35 = [0,0, 1, 1,0, 1];
S04=[1,1, 1,0,0, 1]; S36 = [0,0,1,0,0,1];
S05=[1,1,1,0,0,0]; S37 = [0,0,1,0,0,0];
S06=[1,1,1,0,1,0]; S38=[0,0,1,0, 1,0];
SO?= [1,1,1,0,1,1]; S39 = [0,0,1,0,1,1];
SOB= [1,1,0,0,1,1]; S40 = [0,0,0,0,1,1];
809=[1,1,0,0,1,0]; S41 = [0,0,0,0, 1,0];
810=[1,1,0,0,0,0]; 842 = [0,0,0,0,0,0];
811 = [1,1,0,0,0,1]; S43 = [0,0,0,0,0,1];
812=[1,1,0,1,0,1]; S44 = [0,0,0,1,0,1];
813=[1,1,0,1,0,0]; 845 = [0,0,0,1,0,0];
814=[1,1,0,1,1,0]; S46=[0,0,0,1,1,0];
815 = [1, 1,0, 1, 1, 1]; S47 = [0,0,0, 1, 1, 1];
816 = [1,0,0, 1, 1, 1]; 848 = [O, 1,0, 1, 1, 1];
817 = [1,0,0, 1, 1,0]; S49 = [O, 1,0, 1, 1,0];
818 = [1,0,0,1,0,0]; S50=[O,1,0,1,0,0];
819 = [1,0,0,1,0,1]; S51 = [0,1,0,1,0,1];
S20=[1,0,0,0,0,1]; 852=[O,1,0,0,0, 1];
S21 = [1,0,0,0,0,0]; S53=[O,1,0,0,0,0];
S22 = [1,0,0,0,1,0]; S54 = [0,1,0,0,1,0];
823 = [1,0,0,0,1,1]; 855 = [0,1,0,0,1,1];
S24 = [1,0,1,0,1,1]; 856 = [0,1,1,0,1,1];
S25 = [1,0,1,0,1,0]; 857 = [0,1,1,0,1,0];
S26 = [1,0,1,0,0,0]; S58=[O,1,1,0,0,0];
827=[1,0,1,0,0,1]; 859=[O,1,1,0,0,1];
828 = [1,0,1,1,0,1]; 860 = [0,1,1,1,0,1];
829 = [1,0,1,1,0,0]; S61 = [0,1,1,1,0,0];
830 = [1,0,1,1,1,0]; 862 = [0,1,1,1,1,0];
831=[1,0,1,1,1,1];863 = [0,1,1,1,1,1];

EQUATIONS
reset = !MRE8;

"!STATE40 = !CNT5 & !CNT4 & !CNT3 & !CNT2 & CNT1 & CNTO;

"OMA Request
ACK.OE= BUSGNT;
RDCEN.OE = BU8GNT;

"DRAM Operation
!ACK:= !DACK;
!RDCEN := !DRDCEN;

112

APPLICATION NOTE AN-98

IDTR3051 EMULATION OF REALS""' LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

STATE_DIAGRAM Pstate
state SOD:

case Operation== EpromRd:S01;
Operation== DTRd: S25;
Operation== DTWr: S25;
Operation== UserRd: S40;
Operation== UserWr: S40;
Operation == CentRd: S44;
Operation== Dram: S63;

endcase;

state S01:
state S02:

state S03:
state S04:

goto S02;
!RDCEN :=T;
goto S03;
goto S04;

if !BWN then S05 else SOD;

"Idle

"Eprom read

state S05:
state S06:

goto S06; "Eprom burst read

state SO?:
state SOB:
state S09:
state S10:

state S11:

state S12:
stateS13:
state S14:

state S15:
state S16:

state S25:
state S26:
state S27:
state S2B:
state S29:
state S30:
state S31:

state S32:
state S33:
state S34:
state S35:
state S36:
state S37:
state S3B:
state S39:

state S40:

!RDCEN :=T;
goto SO?;
goto SOB;
goto S09;
goto S10;
!RDCEN :=T;
goto S11;
!ACK :=T;
goto S12;
goto S13;
goto S14;
!RDCEN :=T;
goto S15;
goto S16;
goto SOD;

goto S26; "DUART/Timer read/write
goto S27;
goto S2B;
goto S29;
goto S30;
goto S31;
!RDCEN :=T;
!ACK :=T;
goto S32;
goto S33;
goto S34;
goto S35;
goto S36;
goto S37;
goto S3B;
goto S39;
goto SOD;

!STATE40 := T;
if EXACK then S40 else S41 "User read/write

with !ACK := T;
!RDCEN :=T;

endwith;

113

APPLICATION NOTE AN-98

IDTR3051 EMULATION OF REALS™ LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

state S41:
state S42:
state S43:

state S44:

state S45:
state S46:

goto S42;
goto SOO;
goto SOO;

!RDCEN :=T;
goto S45;
goto S46;
goto SOO;

"Centronics read

state S63: if (Operation== Dram) then S63; "DRAM

END StateMach1

114

APPLICATION NOTE AN-98

IDTR3051 EMULATION OF REALS™ LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

"G. Takushi 04/11/91

"EDIT HISTORY:
"Date Engineer Checksum Modification

"06/12/91 G. Takushi B5EB Initial release
"01/13/92 B. Napaa B5EB modified DBBUSY to reflect new changes

in EPROM reads

MODULE StateMach2

FLAG '-f'

TITLE '3051 Evaluation Board: State Machine B'

U43 DEVICE 'P22V10';

"Inputs
SYSCLK
MRES
RD
WR
CNTO
CNT1
CNT2
CNT3
CNT4
CNT5
DATAEN
reset

"Outputs
CENTRO
XWR
DBUSBSY
XRD
DOE

"Constants

pin 1;
pin 2;
pin 3;
pin 4;
pin 5;
pin 6;
pin 7;
pin B;
pin 9;
pin 10;
pin 11;
node 25;

pin 14;
pin 16;
pin 20;
pin 21;
pin 23;

ON,OFF,T,F,X,C = 1,0,1,0,.X.,.C.;
Pstate = [CNT5 .. CNTO];
SOD= (1,1,1,1,1,1]; S32 = (0,0,1,1,1,1];
S01 =[1,1,1,1,1,0];S33=[0,0,1,1,1,0];
S02=(1,1,1,1,0,0]; S34=(0,0,1,1,0,0];
S03 = (1, 1, 1, 1,0, 1]; S35 = (0,0, 1, 1,0, 1];
S04=(1,1, 1,0,0,1]; S36=(0,0,1,0,0,1];
S05 = (1,1,1,0,0,0]; S37 = (0,0,1,0,0,0];
S06 = [1,1,1,0,1,0]; S38 = [0,0,1,0,1,0];
SO?= [1,1,1,0,1,1]; S39 = [0,0,1,0,1,1];
SOB= [1, 1,0,0,1,1]; S40 = [0,0,0,0,1,1];
S09= [1,1,0,0,1,0]; S41 = [0,0,0,0,1,0];

115

APPLICATION NOTE AN-98

IDTR3051 EMULATION OF REALSTM LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

S10 = [1, 1,0,0,0,0]; S42 = [0,0,0,0,0,0];
S11 = [1, 1,0,0,0, 1]; S43 = [0,0,0,0,0, 1];
S12 = [1,1,0,1,0,1]; S44 = [0,0,0,1,0,1];
S13 = [1, 1,0, 1,0,0]; S45 = [0,0,0, 1,0,0];
S14=[1,1,0, 1,1,0]; S46=[0,0,0,1,1,0];
S15=[1,1,0,1,1,1]; S47=[0,0,0,1,1,1];
S16 = [1,0,0, 1, 1, 1]; S48 = [O, 1,0, 1, 1, 1];
S17 = [1,0,0,1,1,0]; S49 = [0,1,0,1,1,0];
S18 = [1,0,0,1,0,0]; S50 = [0,1,0,1,0,0];
S19 = [1,0,0,1,0,1]; S51 = [0,1,0,1,0,1];
820 = [1,0,0,0,0, 1]; 852=[O,1,0,0,0, 1];
821 = [1,0,0,0,0,0]; S53 = [O, 1,0,0,0,0];
S22 = [1,0,0,0, 1,0]; S54=[O,1,0,0, 1,0];
S23 = [1,0,0,0,1,1]; S55=[O,1,0,0,1,1];
S24 = [1,0,1,0,1,1]; S56 = [0,1,1,0,1,1];
S25 = [1,0,1,0,1,0]; S57 = [0,1,1,0,1,0];
826 = [1,0,1,0,0,0]; 858 = [0,1,1,0,0,0];
S27 = [1,0,1,0,0,1]; S59 = [0,1,1,0,0,1];
S28 = [1,0, 1, 1,0, 1]; S60 = [O, 1, 1, 1,0, 1];
S29 = [1,0, 1, 1,0,0]; S61 = [O, 1, 1, 1,0,0];
S30 = [1,0,1,1,1,0]; S62 = [0,1,1,1,1,0];
S31 = [1,0,1,1,1,1]; S63 = [0,1,1,1,1,1];

EQUATIONS
reset= !MRES;

!DOE= !DATAEN #(!WR & DBU8B8Y);

!DBUSBSY := (Pstate == SOD) #
(Pstate == S04) #
(Pstate == S16) #
(Pstate == S33) # (Pstate == S34) #
(Pstate == 842) # (Pstate == S43);

!XRD :=!RD & ((Pstate ==SOD)# (Pstate == 825) #
(Pstate == S26) # (Pstate == S27) #
(Pstate == S28) # (Pstate == S29) #
(Pstate == S30) # (Pstate == S31) #
(Pstate == S32));

!XWR :=!WR & ((Pstate ==SOD)# (Pstate == S25) #
(Pstate == S26) # (Pstate == S27) #
(Pstate == S28) # (Pstate == S29) #
(Pstate == S30) # (Pstate == S31) #
(Pstate == S32));

!CENTRO:= (Pstate == S44) # (Pstate == S45);

END 8tateMach2

116

"EPROM toff
"EPROM burst toff
"DUART toff

"User toll

APPLICATION NOTE AN-98

IDTR3051 EMULATION OF REALS™ LASER PRINTER
CONTROLLER USING 1Dl7RS385 EVALUATION BOARD

"B.Napaa 09/17/91

"EDIT HISTORY:
"Date Engineer Checksum Modification

"09/17/91 B.Napaa original release
"11 /12/91 B. Napaa CC82 modified the video fifo serial input clock VSOCP

MODULE videostate

FLAG '-R3', '-F'

TITLE '3051 Evaluation Board: Video state machine'

U100 DEVICE 'P22V10';

"Inputs
SYSCLK PIN 1;
MRES PIN 2;
USERCS PIN 3;
RD PIN 4;
WR PIN 5;
MA20 PIN 6;
MA21 PIN 7;
MA22 PIN 8;
MA23 PIN 9;
CLKEN PIN 10;
VIDCLK PIN 11;
STATE40 PIN 13;
reset node 25;

"Outputs
EXACK PIN 14;
ENGRD PIN 15;
ENGWR PIN 16;
FIFOWR PIN 17;
VCO PIN 18;
VC1 PIN 19;
VC2 PIN 20;
VC3 PIN 21;
VSOCPPIN 22;

"Constants
ON,OFF,T,F,X,C = 1,0, 1,0,.X.,.C.;
Madr = [MA23 .. MA20];
Operation= [MRES,STATE40,USERCS,RD,WR,Madr];
Idle = [1, 1, 1, X, X,X];
Engrd = [1, 0, 0, 0, 1,9];
Engwr = [1, 0, 0, 1, 0,9];
Fifowr = [1, 0, 0, 1, 0,4];

117

APPLICATION NOTE AN-98

IDTR3051 EMULATION OF REALS™ LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

Fifowr1 = (1,
Fiford = [1,
Fiford1 = (1 ,

0, 0, 1, 0,5];
0, 0, 0, 1,4];
0, 0, 0, 1,5];

Pstate = [VC3 .. VCO];
S00=(1,1,1,1];
S01 = (1,1,1,0];
S02=(1,1,0,0];
sos= (1,1,0,1];
S04 = (1,0,0,1];
S05 = (1,0,0,0];
sos= (1,0, 1,0];
S07 = [1,0,1,1];
SOB= (0,0,1,1];
S09 = (0,0,1,0];
S10 = (0,0,0,0];
S11 = [0,0,0,1];
S12 = (0,1,0,1];
S13 = (0,1,0,0];
S14 = (0,1,1,0];
S15 = (0,1,1,1];

EQUATIONS
reset =

VSOCP =

!MAES;

CLKEN & !VIDCLK;

STATE_DIAGRAM Pstate
state SOO: "Idle

case Operation== Engrd: S01 with
!EXACK:=T;
!ENGRD:= T;endwith;

Operation == Engwr: S04 with

Operation == Fifowr: S07

Operation == Fifowr1 : S07

Operation == Fiford: S12
Operation == Fiford1 : S12

end case;

state S01: !ENGRD:=T; "engrd
goto S02;

state S02: !ENGRD:=T;
goto S03;

state S03: goto SOO;

state S04: !ENGWR:=T;
goto S05;

!EXACK :=T;
!ENGWR :=T;
endwith;

with !FIFOWR := T;
endwith;

with !FIFOWR := T;
endwith;

with !EXACK:= T;endwith;
with !EXACK:= T;endwith;

118

APPLICATION NOTE AN-98

IDTR3051 EMULATION OF REALIP" LASER PRINTER
CONTROLLER USING IDT7RS385 EVALUATION BOARD

state S05:
state S06:

state SO?:

state SOB:

state S09:

state S10:
state S11:

state S12:
state S13:
state S14:

END videostate

goto S06;
goto SOO;

!FIFOWR:= T;
goto SOB;
!FIFOWR:= T;
!EXACK:=T;
goto S09;
!FIFOWR:= T;
goto S10;
goto S11;
goto SOO;

goto S13;
goto S14;
goto SQQ;

APPLICATION NOTE AN-98

"engwr

"fifowr

119

G. COMPILER TRADE-OFFS IN APPLICATION

CODE DEVELOPMENT FOR THE NOTE

IDT RISController™ FAMILY AN-105
Integrated Device Technology, Inc.

by Phil Bourekas

INTRODUCTION
An important part of system development involves the

software development tool chain selected. The most appro­
priate tool chain depends on the end system application and
on the desired development environment.

This application note attempts to differentiate between the
MIPS® "CC" compiler toolchain, and the JDT/c™ toolchain. A
discussion of the differences between these compilers, and
appropriate toolchains for various types of applications, are
also included.

In addition to the two compilers discussed here, a number
of third party compilers applicable to IDT79R3051™ family
development have recently been made available. While these
compilers are beyond the scope of this applications note,
many of the concepts contained here form a valid part of any
analysis of those toolsets.

Note that although this applications note does contain
some performance information, this information is intended
for comparison of relative performance of various toolchain
options. These results were not measured on an especially
fast benchmark board, nor was any effort made to compare
relative performance of different processors or systems.

MIPS COMPILERS: BACKGROUND
The MIPS compilertoolchain is a well-respected optimizing

compiler suite, offering the highest levels of RISC performance.
Unlike traditional microprocessor compilers, the MIPS com­
pilers were actually originally developed prior to finalization of
the microprocessor architecture. Thus, the compilers are able
to fully leverage all of the capabilities of the MIPS processor
family, and thus achieve the highest levels of optimizations.

A number of studies have shown that the MIPS compilers
are the most efficient (across all microprocessor architec­
tures) in obtaining the performance of assembly programming
when compiling from high-level languages. The efficiency of
the M JPS compilers serves to further the performance advan­
tage of the R3051 family over competing RISC architectures.

Continuing development of these compilers is driven al­
most exclusively by the needs of the reprogrammable ACE
and UNIX marketplaces. Feedback from common programs
such as the SPEC benchmark suite serves to drive future
enhancements.

Note, however, that reprogrammable systems tend to differ
substantially from embedded systems. Specifically, many
embedded systems choose to reduce cost by utilizing soft­
ware (rather than specialized hardware) floating-point. Addi­
tional differences are found in the types of libraries required,
whether or not the code is typically RAM or ROM resident, and

in assumptions about the processor cache and main memory
sizes (and memory latencies).

IDT/c: BACKGROUND
In order to directly address the needs of our embedded

customers, IDT undertook an effort to develop an alternative
toolchain. Rather than focus on competing with the perfor­
mance of the MIPS compilers, we chose to focus on the
various needs of embedded systems designers that were not
well satisfied by the MIPS compilers. These needs include:
• Alternative host environments. Originally, the MIPS compil­

ers were only available in native MI PS platforms. Embedded
system designers requested a software platform resident
on the same systems used for schematic entry, PCB layout,
ASIC and PAL development, etc. Thus, a goal for IDT/cwas
to have it hosted on a wide variety of platforms, both UN IX®
and DOS based.

• Efficient software floating-point emulation. The only meth­
ods available via the MIPS compiler suite were to either
explicitly avoid FPA operations (by modifying the source
code to directly call emulation routines), or to utilize a
dynamic trap and emulate strategy which introduces signifi­
cant overhead into the FPA emulation process. IDT/c takes
a different approach: a compile time flag is available which
will cause the compiler to emit calls to software emulation
routines, rather then emit hardware FPA instructions. The
result is a substantial performance gain during software
FPA emulation, since the overhead of the processor excep­
tion mechanism, and the overhead of fully emulating the
particular behavior of the R301 OA FPA, is eliminated. Thus,
IDT/c is a far more efficient compiler for applications using
software emulation of floating-point operations.

• Alternative library options. By developing and maintaining
our own toolchain, we are better able to integrate various
library functions desirable in embedded systems into the
toolchain.
Better control of memory utilization. Since many embedded
programs will be ROM resident with data references into a
RAM area, IDT/c features linker control which enables
binaries to be effectively partitioned according to the needs
of the embedded designer.
The basis for our compiler toolchain was the GNU-c com­

piler, obtained from the Free Software Foundation.
This compiler is an ongoing effort by a number of software

engineers at various industrial and academic locations. Thus,
it features an effective optimizer as well as a high degree of
portability across various UNIX operating systems. We used
GNU to perform the front-end lexical analysis, parsing, and

RISController, IDTR3051, IDT/c, IDT/kit and IDT/sim are trademarks of Integrated Device Technology, Inc.
All others are trademarks of their respective companies.

©1992 lntegrated Device Technology, Inc. 120 6/92

COMPILER TRADEOFFS IN CODE DEVELOPMENT
FOR THE IDT RISController"" FAMILY

high-level optimizations. We added to this a number of
additional optimizations, including a pipeline scheduler suited
to the particulars of the R3000 pipeline. In addition, we ported
the compiler to non-UNIX platforms such as the PC.

TOOLCHAIN SELECTION CRITERIA
The appropriate toolchain is thus a function of:

• Toolchain host environment
• Development system cost goals
• Floating point content/Hardware or software floating-point
• Libraries/binary development options
• Performance goals

Toolchain Host Environment
The preferences for host environment are frequently dic­

tated by the user's current CAD/CASE environment. It is
obviously an advantage to use a software toolchain compat­
ible with the in-place environment.

Note, however, that integrating newtoolchain hosts into an
existing environment can be relatively simple. For example,
MIPS systems (which host the MIPS compilers) can be easily
networked into an environment featuring other UNIX systems
such as HP, IBM, or Sun. In addition, an X-Windows interface
enables a MIPS system to be used as a host for dedicated X­
Terminals, or for PCs operating as X-Terminals.

Development System Cost Goals
Similar to the availability of various hosts, the net cost of the

development environment can also influence the choice of
toolchains. The development system cost goals are influ­
enced by the host availability, the cost of the tools, and the cost
of other tools in the development process. For example, if an
In-Circuit Emulator is to be used, a toolchain which is best
integrated with that tool may be most appopriate, regardless
of cost. On the other hand, if minimal development cost is a
concern, a toolchain which functions on low-cost PCs may be
most appropriate.

Floating Point Content/Hardware or Software Floating.
Point

One of the advantages of the R3051 family is the ability to
vary price performance in a single footprint. For example, the
R3051 and R3052 are both footprint-compatible devices
without hardware floating-point but with varied cache sizes;
the R3081 adds a hardware floating-point and substantially
increases the on-chip caches.

Depending on the application, the system designer may
decide to use an integer only device such as an R3051 or
R3052. In such a system, if some floating-point operations are
required, they must be emulated via integer software.

In this case, IDT/c provides a clear advantage over the
MIPS compiler. Table 1 shows the relative performance of a
floating-point intensive program under various floating-point
options. This table compares three different types of floating­
point performance. The values in the table are in units of time.
• The column labeled "R301 O" shows the results of a binary

which issues hardware FPA instructions. This binary was

121

APPLICATION NOTE AN-105

then run in a system with actual hardware FPA support. The
best performance is obviously obtained when an actual
hardware floating-point accelerator is included in the sys­
tem. This binary was generated by a MIPS compiler.

• The column labeled "R3010 Emulation" shows the same
binary run in a system with no hardware FPA support.
Significantly lesser performance is obtained when the com­
piler emits R301 OA instructions, and the system then traps
on these instructions to fully emulate the FPA. This binary
was generated using a MIPS compiler.

• The last column shows the results for IDT/c. In this binary,
the compiler is instructed to generate integer only code.
Thus, whenever a floating-point operation is required, the
compiler generates a call to the appropriate library routine
to perform the function. Thus, the overhead of the trap
exception mechanism, and the overhead of fully emulating
all aspects of the R301 OA, is bypassed, and higher software
floating-point performance is achieved.
While it is unlikely that a user would opt for an integer-only

solution to a problem as floating-point intensive as this, this
benchmark does serve to illustrate the performance gain from
the IDT/c approach to software floating-point emulation. In
this benchmark, a significant performance improvement is
seen when using the IDT/c approach over the R3010 emula­
tion approach.

Table 1. Floating Point Emulation Performance<1 •2•3>

Operation R3010 R301D Emulation IDT/c

add.s 5 1345 25
sub.s 0 1340 25
mul.s 5 1320 25
div.s 10 1830 55
sin.s 55 23490 430
cos.s 55 23650 440
ln.s 40 19045 580
sqrt.s 60 10480 235
add.d 5 2290 35
sub.d 5 2310 40
mul.d 10 2315 50
div.d 10 2485 110
sin.d 55 23295 390
cos.d 55 23535 350
ln.d 45 18930 560
sqrt.d 70 10380 220

NOTES:
1. ".s" means single precision; ".d" means double
2. Results in "centi-seconds" using a 20Hz timer-tick. A "O" result indicates

test completed prior to 1st tick.
3. Results indicate amount of time consumed by a particular floating point

emulation test. Each test performs 1 O floating point calculations per cycle
loop. Results are for 10,000 loops.

COMPILER TRADEOFFS IN CODE DEVELOPMENT
FOR THE IDT RISController™ FAMILY

Library and Binary Development Options
Another consideration has to do with the convenience of

generating appropriate binary files for the given application.
Specifically:

Does one compiler offer particular libraries well suited to the
application at hand?

• Is one toolchain better suited to mapping a binary into the
various memory resources of the target application?
IDT offers a number of libraries, some of which are bundled

with the IDT/c compiler. In addition, we have developed IDT/
kitTM (kernel integration toolkit) and IDT/simTM (system inte­
gration manager). Both packages contain numerous library
routines targeted to runtime support and/or software integration.
The data sheets for these products describe their capabilities
in more detail.

In addition to these stand alone packages, the floating­
point library discussed earlier provides an example of a library
package which may influence compiler selection.

Beyond libraries, other considerations include the capabili­
ties of the linker/loader, system download utilities, and sym­
bolic debug capability. While both MIPS and IDT/coffer these
capabilities, there are subtle differences in them which may
further influence toolchain selection. Differences include:

The MI PS linker attempts to place all code in one contiguous
section of memory, and all data in another. The linker for
IDT/c, on the other hand, allows the code and data seg­
ments of individual program modules to be separated,
resulting in more control over the resulting memory system.
This makes it simpler to place some code in ROM and some
in DRAM, for example.

• IDT/coffers superior support for partitioning code and data
into ROM and RAM areas. This support simplifies genera­
tion and download of binaries for the target system and
PROM programmer.
MIPS remote target symbolic debugger obtains more infor­
mation from the symbol table, including more information on
local variables.

• IDT/c symbolic debugger includes a full featured script
environment/debug control language, allowing the user to
more closely control debug activities such as variable
watching and breakpoints.
Again, the user is encouraged to consult the data sheet for

IDT/c and the various libraries as part of the toolchain
evaluation.

Performance Goals
Depending on the application, one compiler or another may

provide better performance. As illustrated earlier, IDT/coffers
better performance in systems which use integer software to
perform floating-point operations.

On the other hand, in an environment which utilizes hard­
ware floating-point, or an environment which performs no
floating-point, the application may realize a performance gain
from utilizing the highly efficient MIPS compiler toolchain.

Table 2 illustrates the results of a set of benchmarks
compiled by both the IDT/c and MIPS "C" compilers. These
benchmarks are commonly referred to as "The Intel Bench­
mark Suite", since Intel introduced them to measure the

APPLICATION NOTE AN-105

performance of various embedded processors began when
they announced the i960CA.

Table 3 may be more representative of the range of
differences, as the Stanford Benchmark suite tends to exer­
cise more of the processor.

The results indicate a variety of performance differences
between IDT/c and MIPS "C" across these benchmarks.
Note, however, that these benchmarks may not be fully
representative of either compiler, as these benchrmakrs are
extremely small, and feature integer only computation.

Note that the performance difference between these com­
pilers is different across different hardware platforms. Specifi­
cally, the ability of the benchmark to remain cache resident will
influence the performance gain of MIPS techniques such as
procedure inlining and loop unrolling. Systems with differing
cache sizes and/or memory latency may then show diffferent
gains for these techniques.

Mix and Match Strategy
To maximize performance, a system designer could choose

to use a "mix and match" strategy in the software toolchain.
For example, the bulk of the application could be compiled
using the MIPS compiler, while IDT/c is utilized in the floating­
point intensive portions of the code.

This approach marries the best of both toolchains. The
MIPS compiler extracts maximum performance from the ma­
jority of the integer only code, while IDT/c does the best job of
performing floating-point operations in software.

Table 2. Compiler Results on Intel Benchmarks(1,2l

Benchmark MIPS C IDT/c

Anneal 5200 5340

BubbleSort 448 542

Dhrystone 38,461 35,714

MatMult 1920 2710

Pl-500 1140 1540

QuickSort 392 477

NOTES:
1. Results measured on IDT7RS385 board at 33MHz with slow

memory.
2. Results in units of time except for Dhrystone.

Table 3. Compiler Results on Stanford Benchmarks<1•2l

Benchmark MIPS C IDT/c

Perm .059 .067

Towers .061 .066

Queens .039 .043

lntMatMult .083 .089

Puzzle .311 .396

Quick Sort .040 .047

BubbleSort .044 .054

NOTES:
1. Results measured on IDT7RS385 board at 33MHz with slow

memory.
2. Results in units of time.

122

COMPILER TRADEOFFS IN CODE DEVELOPMENT
FOR THE IDT RISControllel'™ FAMILY

IDT/c facilitates this approach by allowing IDT/c to use the
MIPS backend assembler, thus allowing code generated by
IDT/c to be directly linked with code generated by the MIPS
compiler. Thus, the programmer can use IDT/c (with the MIPS
backend assembler) on the floating-point intensive code, and
the MIPS compiler on the rest of the code.

Table 4 illustrates the performance gain achievable when
using such a mix and match strategy. In this table, two of the
Stanford Benchmarks are shown with an IDT/c only, and with
a mix and match strategy. In order to run these benchmarks,
the programmer would either have to use the runtime FPA
emulation strategy described earlier, or would have to use
IDT/c to compile the floating-point portions of the code.

Table 4. Benefits of Mix and Match Compiler Strategy{1·2>

Benchmark IDT/c Mix and Match

Mn .277 .267

FFT .327 .303

NOTES:
1. Results measured on IDT7RS385 board at 33MHz with slow

memory.
2. Results in units of time.

APPLICATION NOTE AN-105

SUMMARY
The compiler toolchain appropriate to a given system

development is an extension of the price-performance deci­
sions of the system itself. For the IDT RISController family,
various strategies may be appropriate for different systems.

MIPS compiler is shown to remain much more effective in
generating efficient code than is the GNU compiler. On the
other hand, the IDT toolchain is better at performing software
floating-point emulation, is better at allowing memory control
when linking, and offers a target debugger with the ability to
write debug "scripts". Finally, the availability of the toolchain
on the host development environment may also influence the
toolchain selection.

This applications note summarizes some of the consider­
ations, and presents some data to help facilitate toolchain
evaluation.

123

f;)" CONSIDERATIONS WHEN APPLICATION

BENCHMARKING WITH THE NOTE

IDT7RS385™ EVALUATION BOARD AN-107
Integrated Device Technology, Inc.

By Samuel Y. Shen

INTRODUCTION
The IDT7RS385 is a complete RISC system intended for

use as a low-cost porting target for applications of the
IDT79R3051"' RISControllerTM family. It is completely self­
contained on a single printed circuit board and only requires
a simple CRT terminal for operation. An IBM PC, IDT
MacStation™, SPARCstation™, or a MIPS® workstation can
be connected to the 7RS385 via one of the serial ports and
user developed code can be downloaded to the board. In
addition, a wire wrap area, expansion connectors and hard­
ware debugging facilities are provided allowing the user to
easily prototype additional circuitry. This board serves as a
generic example for the construction of an R3051 system.

However, the 7RS385 was never intended to be used as a
comparative benchmark vehicle. The design goals for the
board required a low-cost platform on which various pieces of
software could be developed and debugged. The board does
not utilize SRAM, fast DRAM, or techniques such as memory
interleaving, which are typically used only to maximize perfor­
mance.

This applications note describes factors which must be
considered if a user attempts to run a benchmark on this
board, and also attempts to give some rules of thumb with
respectto how a different design may perform. In addition, the
applications note presents routines used to manipulate the
on-board timer, so that time measurements can be accurately
taken.

7RS385 BACKGROUND
The 7RS385 was originally designed as a low-cost platform

for R3051 family software. Thus, the design features the
following characteristics:
• Easily modified to higher frequency by adding wait states in

the memory system. Although this helps satisfy the goals of
a test platform, the end result is more synchronization
stages than would otherwise be necessary at a given
(lower) frequency, such as 25MHz. Thus, the frequency
normalized performance (throughput) of the board is lower
than would be expected for a design optimized for a given
target frequency.

• Monitor program to easily debug software. The board is
shipped with IDT/sim™, a program which allows the debug
of other applications running on the board. In order to
implement debug, IDT/sim makes choices that adversely
affect performance. For example, IDT/sim runs uncached,
so that it does not interfere with the application being
debugged. Similarly, IDT/sim features a large number of
indirect references, to allow user supplied exception han­
dlers and 1/0 routines. The exception handlers have been
designed for application debug, and therefore store more
state information (in multiple locations) than would otherwise
be done. In addition, the exception handlers reside in
uncached memory, because the "breakpoint" handler is
among the exceptions handled. Thus, using the exception
handler provided by the debug monitor simplifies applica­
tion debug, but has a major impact on various benchmark
metrics.

8254 TIMER

3.6864 MHz

Crystal t-
Oscillator

~~1 Counter 2 ~ -· Counter O

~
Counter 1

Figure 1. Block Diagram of Timer Function on 7RS385

The logo is a registered trademark and MacStation, RISController, IOT79R3051, IDT79R3081, IDTJc, IDT/sim and IDT/kit are trademarks of Integrated Device Technology, Inc.
All others are registered trademarks of their respective companies.

e1992 Integrated Device Technology, Inc. 124

Control
Logic

6/92

CONSIDERATIONS WHEN BENCHMARKING WITH THE IDT7RS385~ EVALUATION BOARD APPLICATION NOTE AN-107

1 F80 0000 - - - 0 0 0 - - R counter O W counter O

1F80 0004 - - - 0 0 1 - - R counter 1 W counter 1

1 F80 0008 - - -01 0- - R counter 2 W counter 2

1F80 OOOC - - -01 1 - - No OP W ctrl reg

1F80 0010 - - -100 - - RST cint#O No OP

1F80 0004 - - -101 - - RST cint#1 No OP

Figure 2. 8254 Addressing on 7RS385

• Low cost. The 7RS385 was designed to be an low-cost
software platform. This precludes the use of SRAM, the use
of techniques such as memory interleaving, and the use of
high-speed memory and logic components. Thus, the fre­
quency normalized performance of the board is lower than
what would be typically implemented as an end customer
product.

USING THE ON-BOARD TIMER
The 7RS385 includes an 8254 timer on board. This timer

can be used to measure the actual execution time of a
program running on the board. However, in order to use the
timer in this fashion, additional software must be included.

/***********************************/
/* RS385 (8254 Timer Routine) */
/* idttimer.h */
/***********************************/
#define CONTROL Oxbf80000c+3 I*
#define COUNTERl Oxbf 800004+3 /*
#define COUNTER2 Oxbf800008+3 I*
#define INITIALV OxOOOOOOf f !*
#define INITIALVl Ox00000002 !*
#define INITIALV2 OxOOOOOOOO
#define CW_COUNTERl Ox00000070 /*

#define CW_COUNTER2 Ox000000b4 !*
#define CL_COUNTER2 Ox00000080 I*
#define CL_COUNTERl Ox00000040 /*
#define TRUE OxOOOOOOOl /*

#define ZERO $0 /*

#define vO $2 I*
#define vl $3
#define tl $9 I*
#define sp $29 I*
#define ra $31 /*

About the 8254
In order to time processes on the '385 board, runtime timer

functions need to be accessed to tell the execution time. In the
'385, there are two programmable timers/counters. Each of
the two timers may be programmed as an independent real­
time interrupt occuring at regular intervals. They are
implemented in the Intel 8254 timer device on the '385 system
board. The arrangement of the timers of the 8254 is outlined
in Figure1. Also, the address decode table of the 8254 on the
'385 is shown in Figure 2.

There are three 16-bit counters in the 8254, designated as
counter 0, 1, and 2. The arrangement used in the '385 is for
counter 2 to be a pre-scalar for each of the other counters
(counter 0 and counter 1). Counter 2, in turn, is clocked by a
crystal oscillator, running at 3.6864MHz (i.e., 271 ns per clock
cycle). Each counter in the 8254 is capable of handling clock
inputs up to 1 OM Hz. Also, each counter has six programmable
counter modes. All modes are software programmable.
Counters are programmed by writing a control word and then
an initial count. The control words are written into the control
word register while the initial counts are written into the
counters.

The listings for timer functions are shown below. These
functions may be compiled separately and linked with the
application programs to run out of DRAM on the '385 board.

The first function is an "include" file which sets up the initial
values for the separate counters/control registers and assigns
name to counters/general registers. The include file expresses
these registers as a base address for the register, plus a 3-
byte offset(" +3") due to the big-endian nature of the '385. Byte
3 of a word is always the least significant (rightmost) byte. The
data path connected to the 8254 timer is on 0(7:0). which is
the least significant byte; therefore the byte address for on­
chip registers will be the word address +3.

counter control register */

8-bit counter 0 register */

8-bit counter 2 register */
initial value */

temporary value */

control word for counter 1 */

control word for counter 2 */

counter latch for counter 2 */

counter latch for counter 1 */

true value *I
wired zero */
return value */

temporary register */

stack pointer */
return address *!

File 1. Timer Include Fiie

125

CONSIDERATIONS WHEN BENCHMARKING WITH THE IDT7RS385~ EVALUATION BOARD APPLICATION NOTE AN-107

/***********************************/
/* RS385 (8254 Timer Driver) */
/* idtTstart.s */
!***********************************/
#include "idttimer.h"

.glob! TimerStart

.ent TimerStart

.set noreorder
TimerStart:

subu sp,24
SW ra,20(sp)
.mask Ox80000000, -4
.frame sp,24,ra
li tl,CW_COUNTER2
li vl,CONTROL
sb tl, 0 (vl)
li tl,INITIALVl
li vl,COUNTER2
sb tl,O(vl)
li tl,INITIALV2
li vl,COUNTER2
sb tl, 0 (vl)
li tl,CW_COUNTERl
li vl,CONTROL
sb tl,O(vl)
li tl,INITIALV
li vl,COUNTERl
sb tl,O(vl)
li tl,INITIALV
li vl,COUNTERl
sb tl,O(vl)
li tl,CW_COUNTER2
li vl,CONTROL
sb tl,O(vl)
li tl,INITIALV
li vl,COUNTER2
sb tl,O(vl)
li tl,INITIALV
li vl,COUNTER2
sb tl, O (vl)
li vO,ZERO

.set reorder
addu sp,24

ra
.end Timer Start

!* 1011 0100 = select counter2, r/w LSB(byte) */
/* then MSB, mode2, binary counter 16-bit */

/* 0000 0002 = counter2 LSB */

/* 0000 0000 counter2 MSB */

/* 0111 0000 = select counterl, r/w LSB(byte) */
/* then MSB, mode 0, binary counter 16-bit */

/* 1111 1111 = counter LSB */

/* 1111 1111 counter MSB */

/* 1011 0100 = select counter2, r/w LSB (byte) */
!* then MSB, mode2, binary counter 16-bit */

/* 1111 1111 = counter LSB */

/* 1111 1111 counter MSB */

File 2. Initializing the 8254

126

CONSIDERATIONS WHEN BENCHMARKING WITH THE IDT7RS385N EVALUATION BOARD APPLICATION NOTE AN-107

File 2 is a timer-start routine example. The 8254 modes
used in this example were mode 2 and mode 0. Mode 2 is a
"rate generator" mode. It functions like a divide-by-n counter
and has been used in counter 2, the pre-scalar counter. Mode
O is an "interrupt on terminal count" mode, which is typically
used tor event counting. This was implemented in counter 1.
The timer-start routine starts with selecting counter 2, defining
it to be a 16-bit binary counter, and setting up r/w as LSB then
MSB order. Value 2 and value O chosen to be put into LSB and
MSB field is because counter 1 (in modeO) needs to be
activated by a clock input which happens to be the output of

/***********************************/
/* RS385 (8254 Timer Driver)
I* idtTreqll. s

*/
*/

/***********************************/

#include "idttimer.h"
.globl TimerllReq
.ent TimerllReq
.set noreorder

TimerllReq:
subu sp,24
SW ra,20(sp}
.mask Ox80000000,-4
.frame sp,24,ra
li tl,CL_COUNTERl
li vl,CONTROL
sb tl,O(vl)
li vl,COUNTERl
lbu vO,O(vl}
.set reorder
addu sp,24

ra
.end TimerllReq

/***********************************/
/* RS385 (8254 Timer Driver)
/* idtTreqlh.s

*/
*/

/***********************************/
#include "idttimer.h"

.globl TimerlhReq

.ent TimerlhReq

.set noreorder
TimerlhReq:

subu sp, 24
SW ra,20(sp)
.mask Ox80000000,-4
.frame sp,24,ra
li vl,COUNTERl
lbu vO, 0 (vl}
.set reorder
addu sp,24
j ra
.end TimerllReq

counter 2. Therefore, a small number in counter 2 is required
to drive the output low for one cycle. After that, an initial value
was put into the counter 1 and counter 2 to start counting.
"FFFF" was used as an initial value in this example.

The following programs serve the timer-request functions,
which try to read from the 16-bit counter2 and counter 1. The
8254 "counter latch" command was used. This command
allows reading the contents of the counters "on the fly" without
affecting counting in progress. Two counter latch commands
were used here to latch counter 2 and counter 1. Each counter
needs to be latched twice. Again, LSB comes first then MSB.

/***********************************/
/* RS385 (8254 Timer Driver}
/* idtTreq21.s

*/
*/

/***********************************/
#include "idttimer.h"

.globl Timer21Req

.ent Timer21Req

.set noreorder
Timer21Req:

subu sp,24
SW ra,20(sp)
.mask Ox80000000,-4
.frame sp,24,ra
li tl,CL_COUNTER2
li vl,CONTROL
sb tl,O(vl)
li vl,COUNTER2
lbu vO, 0 (vl)
.set reorder
ad du sp, 24

ra
.end Timer21Req

/***********************************/
/* RS385 (8254 Timer Driver)
/* idtTreq2h.s

*/
*/

/***********************************/
#include "idttimer.h"

.globl Timer2hReq

.ent Timer2hReq

.set noreorder
Timer2hReq:

subu sp, 24
SW ra,20(sp)
.mask Ox80000000,-4
.frame sp,24,ra
li vl,COUNTER2
lbu vO,O(vl}
.set reorder
addu sp, 24

ra
.end TimerllReq

File 3. Timer Driver Routines

127

CONSIDERATIONS WHEN BENCHMARKING WITH THE ID17RS385™ EVALUATION BOARD APPLICATION NOTE AN-107

Using the Timer Routines to Time Execution
The C program shown below is an example of calling timer

routines from C. First of all, these four timer routines are
declared to be the external functions. Then the return value of
each functions is assigned to an integer variable. These
variables will be used to calculate the execution time.

/* Sample "C" Program Using Timer */
extern TimerStart();
extern TimerllReq();
extern
extern
extern
main()
{

TimerlhReq();
Timer21Req();
Timer2hReq();

int
int

i, j, kO, klls;
klhs, k2ls, k2hs;

int klle, klhe, k2le;
int k2he,result;
kO = TimerStart();
klls TimerllReq();
klhs TimerlhReq();
k2ls Timer21Req();
k2hs Timer2hReq();

: (main body of this program)

klle TimerllReq();
klhe TimerlhReq();
k2le Timer21Req();
k2he Timer2hReq();

: (print out the timer result)

File 4. Using the Timer Routines

SOFTWARE ISSUES AFFECTING BENCH­
MARK RESULTS

The software environment shipped with the 7RS385 was
designed to enable the debug of code downloaded and
executed on the board. Thus, the 7RS385 includes in its on­
board PROMs a version of IDT/sim.

IDT/sim (System Integration Manager) is a set of routines
which builds an extensible PROM monitor environment, and
which also provides routines for system debug. An analogous
piece of software, IDT/kit™, is the software used when the
system developer wishes to utilize pre-written library func­
tions in the end product.

However, when running benchmarks on the 7RS385, it is
obviously tempting to utilize the library functions included on
board, in IDT/sim. Such a decision, however, has a seriously
adverse impact on the benchmark results obtained. This
section of the applications note describes some common
problems encountered when benchmarking on top of the IDT/
sim environment. Note that IDT/c™ will automatically default
to IDT/sim routines, unless other library routines are explicitly
provided.

IDT/sim Cache Utilization
The IDT/sim (system integration manager) provides a

range of standard entry point C functions for the IDT79R3051
family. These entry point functions are standard C-type func­
tions. There are formatted printing, string manipulation,
standard 1/0, conversion routines, etc. These functions are
provided to allow the system developer to:
• Include print statements in line with code to print debugging

messages.
• Debug key algorithms in advance of completing library

development.
• Use existing interrupt handlers during debug.
• Incrementally replace parts of the debug environment with

the applications own code, as it is developed.
The IDT/sim routines are shipped in the on-board EPROMs,

which are also used to hold the boot code. This results in two
benchmarking problems:
• These routines are stored in the EPROMs which are mapped

to kseg 1, an uncached space. Thus, using these routines
do not take advantage of the large on-chip caches of the
R3051 family. This also impacts measurements of excep­
tion response.
Single word reads and the burst reads from the EPROMs
are much slower than from the DRAMs. A single word read
from the EPROMs takes 8 cycles while a single word read
from the DRAMs takes 6 cycles. Quad word reads from the
EPROMs takes 26 cycles while quad word reads from the
DRAMs takes 15 cycles (refer to 7RS385 user's manual;
this data is for a 33MHz 7RS385).
Thus, benchmarks linked to and run with IDT/sim produce

results dramatically slower than would be achieved in a real
application environment.

An example of this problem can be found from one of the
benchmarks in the suite introduced by Intel when they intro­
duced the i960CA. The pi-500 program calculates the value
of the mathematical constant pi up to 500 decimal points using
iterative integer calculations. As a new value is calculated, its
result is printed to the terminal. This benchmark uses a large
number of printf function calls; as print! is provided by I DT/sim.
a serious (and non-representative) performance degradation
occurs. The execution times of the program with printf and
without print!, when run on the '385 are quite different: 1084ms
versus 1624ms (>50%). To avoid this problem, move entry
point functions into the DRAM, and use cached accesses. For
pi-500, the resulting execution time is 1086 ms.

Similarly, the Dhrystone benchmark makes heavy use of
the strcpy and strcmp functions. A common mistake would be
to link to those functions in the IDT/sim in the on-board
PROMs. The result may be less than 10,000 dhrystones per
second, due to the uncached use of the long latency EPROM
memory for much of the execution. Approximately 4-5 times
the performance, on the same board and with the same
source code, is achieved when the strcpy and strcmp is linked
from IDT/kit, and resides in cacheable DRAM memory.

Exception Response Issues
The R3051 family exception handling system efficiently

handles machine exceptions, including TLB misses, arith-

128

CONSIDERATIONS WHEN BENCHMARKING WITH THE IDT7RS385™ EVALUATION BOARD APPLICATION NOTE AN-107

metic overflows, 1/0 interrupts, system calls, breakpoints,
reset, and co-processor unusable conditions. Any of these
events interrupt the normal execution flow; the R3051 family
aborts the instruction causing the exception and flushes the
pipeline of subsequent instructions, thus not modifying pro­
cessor context. The R3051 then performs a direct jump into a
designated exception handler routine (bfcO_OOOO for reset,
and normally 8000_0000 for uTLB and BOOO_OOBOforgeneral
exceptions, if BEV=O. However, uTLB and general exceptions
can be moved to bfcO 0000 and bfc0_01 BO if BEV=1).

The 7RS385 is designed to have BEV=O, which tries to use
cacheable memory for exception handling. However, the
exception handlers and decoding of the exception cause still
occurs in the IDT/sim EPROMs; the DRAM merely contains a
few store instructions (for later debugging information) and a
jump into the EPROM (uncacheable) memory space. File 4
illustrates the way in which IDT/sim utilizes the DRAM for
exception handling. Notice the branch back to the uncached
EPROM space. This structure was included to allow the cache
state of a program to be preserved when the "breakpoint"
exception is signalled.

If a user chooses to measure exception or interrupt latency
by installing his own interrupt handler into IDT/sim, a serious
performance degradation will occur. This is due to three
factors: the extra overhead of the debug information and
branch in the DRAM memory, the longer latency of the
EPROM, and the uncached nature of the exception cause
decode and interrupt handler software. Thus, installing inter­
rupt handlers into IDT/sim to measure exception response will
not give a true reading of the processor's performance.

High Memory

CACHING THE STACK
In order to obtain representative performance, the user of

the 7RS385 must explicitly manage the location of the runtime
stack. IDT/sim defaults to an uncached location for the
runtime stack, since it may explicitly manipulate the stack at
various times. Thus, with the IDT/sim environment of the
7RS385, it is possible to have a program and its associated
data reside in cacheable memory, but to have the runtime
stack be uncacheable. In certain benchmarks, the perfor­
mance penalty which results can be significant. This is
exacerbated by the recursive nature of many common bench­
marks, such as Towers of Hanoi, which will make extensive
use of the stack in passing parameters.

To fully understand the performance degradation which
can occur, it is important to understand the role of the stack
during execution.

The compilers (IDT/c or MIPS/c) classify each routine into
one of the following two categories:

non-leaf routines; that is, routines that call some other
routines.

• leaf routines; that is, routines that do not themselves ex­
ecute any procedure calls. Two types of leaf routines exist:
leaf routines that require stack storage for local variables,
and leaf routines that do not require stack storage for local
variables.
For leaf procedures that use the stack, or for non_leaf

procedures which need to preserve registers, stack space
must be allocated for the routine's requirements. These re­
quirements include local variables, saved general registers,
saved floating point registers, and procedure call argument
area (also see Figure 3).

Argument

N

Virtual Frame Pointer ($fp)->

Low Memory

Argument

Local and Temporaries

Saved Registers

{Including Return Reg.)

Argument Build

Figure 3. Runtime Stack

129

Framesize

CONSIDERATIONS WHEN BENCHMARKING WITH THE IDT7RS385™ EVALUATION BOARD APPLICATION NOTE AN-107

(uTLB Miss) (General Miss)

8000 0000: lui kO,OxaOOO 8000 0080: lui kO,OxaOOO
8000 0004: ori k0,k0,0xl78 8000 0084: ori k0,k0,0x178
8000 0008: SW at, Ox4 (kO) 8000 0088: SW at, Ox4 (kO)
8000 OOOc: SW gp, Ox70 (kO) 8000 008c: SW gp, Ox70 (kO)
8000 0010: li v0,0x2 8000 0090: li vO, Oxl
8000 0014: lui at,OxbfcO 8000 0094: lui at,OxbfcO
8000 0018: ori at,at,Ox620 8000 0098: ori at,at,Ox620
8000 OOlc: jr at 8000 009c: jr at

/* jr branches to bfc0_0620, uncached EPROM */

File 4. Exception Handler Code in 7RS385

On a '385 board, the default address of the stack depends
on the runtime environment, rather than on the main program.
Unless the user explicitly sets up a stack, IDT/sim will allow the
application to use the default stack it set up. Thus, even
thought the program and its data area are cacheable (e.g.
kseg O), if the system environment defaults to kseg 1, the
runtime stack remains uncached when the benchmark is
executed.

This cached/uncached stack issue sometimes causes a
big difference in execution time. For example, the anneal
program (another benchmark promoted by Intel when they
announced the i960CA), calculates the shortest distance
between two points. This benchmark shows dramatically
different results, depending on whether the runtime stack is
cached. Execution times for cached and uncached stacks are
5.14sec and 6.81sec separately (>32%).

Th is situation can be handled by various methods. One way
around this is to issue the IDT/sim 'seg -0' command before
the benchmark is executed. This will force the runtime envi­
ronment to change to kseg 0, a cached space. By doing this,
the stack will be automatically cached accessed. Another
method is to change the startup code so that the stack will be
located in the same segment as the main program's.A sample
program is shown in File 5.

(initialization)

MEMORY LATENCY ISSUES
As discussed above, the 7RS385 was never intended as a

high-performance board for benchmarking, but rather as a
low-cost, flexible design for software porting and testing.
Thus, the memory characteristics of the board are not particu­
larly optimized for performance; specifically, the frequency
normalized performance of the board is less than would be
expected of any dedicated application board, due to extra
synchronization stages, the lack of interleaved memory sup­
port, and the particular partitioning of memory control

There are two memory areas on the 7RS385. The EPROM
memory, described above, is typically referenced as
uncacheable memory, and requires relatively long latency
when accessed. Techniques such as burst EPROMs were
specifically avoided, to avoid the high cost of these Intel­
proprietary EPROMs. Similarly, high-speed EPROMs were
not used, to reduce end cost.

The main DRAM memory used on the '385 uses sons
DRAMs, in a non-interleaved, single bank configuration. Two
22v1 O and one 16R8 PLDs make up the DRAM controller.
This simple controller handles all DRAM accesses as well as
refresh requirements, but is not aggressively optimized. Table
1 summarizes all DRAM access times. These times are

25 la
26 and

t2,_fbss
t2,0xf0000000
t1 ,6f

/* main program's mode as linked, usually cached mode*/
/*isolate segment*/

27 la
28 or t1 ,t2
29 t1
30 nap
31 6: or v0,t2
32 addiu vO,v0,16
33 move sp,vO
34 move v1 ,vO

/* load label 6's address into t1 *I
/* or with the main program's mode*/
/*back to the original mode*/

/*stack back to original mode*/
/* overhead *I
/* now replace count w top of memory*/

35 subu v1 ,STACK_SIZE
(clear STACK_SIZE stack)

File 5. Start-up Code to Insure Stackable Cache

130

CONSIDERATIONS WHEN BENCHMARKING WITH THE IDT7RS385"' EVALUATION BOARD APPLICATION NOTE AN-107

especially slow when compared to other alternatives such as
interleaved memory. In addition, since the design was not
particularly optimized for any given frequency, it is slower than
would be expected of alternative designs of roughly equiva­
lent complexity.

Table 1. DRAM Characteristics of 7RS385 Board

DRAM R/W RS385·33 RS385-25

Single read 6 cycles 5 cycles

Quad read 6/3/3/3 cycles 5/2/2/2 cycles

Idle write 5 cycles 5 cycles

Page write 4 cycles 4 cycles

COMPILER OPTIMIZATION ISSUES
Another area for performance increase has to do with the

amount of compiler optimization done. A separate applica­
tions note discusses some ofthe trade-offs involved in selecting
an appropriate compiler. In addition to those considerations,
the amount of optimizations enabled during a particular com­
pilation may effect the results of the benchmark.

Figure 4 illustrates the MIPS compiler system. The com­
piler processes one procedure at a time. Large procedures
offer more opportunities for optimization, since more inter­
relationships are exposed in terms of constructs and regions.

ucode lib
C program

(.b) -----.

library
(.a)

linked obj
file (a.out)

ucode file
(.u)

asmfile
(.s)

obj file
(.o)

Figure 4. MIPS Optimizing Compller Flow

131

The uload and umerge phases of the compiler toolchain
permit global optimization among separate units in the same
compilation.

Often, programs are divided into separate files, called
modules or compilation units, which are compiled separately.
Fore programs in MIPS system, cc (c compiler) both compiles
and link edits. The typical user seldom invokes Id (link editor)
directly, unless the user wants to compile modules separately
then link them together and download to some specified
address. This is what we do where benchmarking on the '385
board. Programs need to be downloaded to user space which
is somewhere between OxaOOO 46a4 and OxaOO ffffc (for 1 MB
DRAM w/ IDT/sim 3.1). Any place above this region will cause
a data bus error to be signalled, since this is the top of RAM.
Also, any place below this region will have an exception
handling problem. This is because the exception handler and
BSS for IDT/sim are located in the bottom of the DRAM.

Since the link loader does not have an optimization phase,
all the optimization is done in the compiler. If modules are
compiled separately, there is no way to do interprocedure
register allocation or procedure merging (optimization levels
3 or 4). This means that in order to download programs to '385,
ulink and umerge phases have to be bypassed, and only the
global optimizer (uopt) phase executes. It performs optimiza­
tion only within the bounds of individual compilation units
(optimization levels 1 and 2).

The inability to use all of the compilation optimizations
available can seriously degrade reported performance (-03
and -04 optimization levels can improve performance of
some benchmarks by 10-20%). These limitations are not
applicable when building a real application for a target system,
and thus downloading benchmarks to the 7RS385 will under­
report the results the designer should really expect.

Table 2 illustrates the variance in performance due to
compiler selection and choice of optimization. As can be
seen, on some benchmarks, the difference between the MIPS
compiler at full optimization vs. the IDT/c compiler can be as
much as 50% of performance. Additionally, the difference
between the MIPS compiler at "-02" and "-04" optimization
can be over 10%. Unfortunately, the "Intel benchmarks" may
not be fully indicative of the performance gain of aggressive

Table 2. Results from Different Compilers

IDT/c
BENCHMARK "-0"

Quicksort (ms) 50.8

Bubblesort (ms) 54.3

Pl-500 (ms) 1355

Anneal (ms) 5,149

MatMuit (ms) 29,276

Dhrystone 1.1
(dhrystone/sec) 35,714

NOTES:
MIPS results from Cache-3051 simulator.
Pl-500 results with 'Print!' disabled.
IDT/kit used for library functions.
Benchmark sources obtained from Intel.

MIPS
"-02"

38.6

44.9

1039

5,193

19,619

46,356

MIPS
"-04"

35.5

40.9

1015

5,115

19,599

49,116

CONSIDERATIONS WHEN BENCHMARKING WITH THE IDT7RS385~ EVALUATION BOARD APPLICATION NOTE AN-107

optimization, since most of the applications remain cache
resident even with small caches.

PROPERBENCHMAR~NG

IDT has a software simulator tool, Cache-3051 ™, which
bypasses many of these limitations, and in fact allows bench­
marks to be run in a number of proposed target environments.
Although it is a simulation, various studies have proven it to be
a highly accurate tool. There is a separate applications note
which measures the accuracy of the simulator by running
benchmarks on the 7RS385, and then simulating the same
memory characteristics. These results show that typical
simulations are within 2% accuracy.

The Cache-3051 applications note further describes more
of the capabilities of the tool, and is available from your local
IDT sales representative.

If benchmarking the 7RS385 is desired, the user should
check to insure or compensate for the following:
• Is the timer being used properly? Often, a simple program

to double check the use of the timer can insure that it is being
manipulated properly.

• Are library functions being provided through cacheable
references from DRAM? Unless explicit care is taken, the
benchmark may be using uncacheable debug routines out
of slow EPROM, thus seriously degrading performance.

• Is the exception response model reasonable? If the
benchmark builds ontop of IDT/sim, uncacheable exception
handlers will be used. In addition, extraneous store informa­
tion, appropriate for debug but not for benchmarking, will be
generated, seriously degrading exception response.

• Is the runtime stack cacheable? Unless explicit steps are
taken, the benchmark may run with an uncacheable runtime
stack, seriously degrading application performance. There
are two methods to insure the stack is cacheable: issue a
'seg -0' command in IDT/c, or have the program explicitly
initialize the stack pointer into the cacheable memory area.

• Is the memory latency of the benchmark board representa-

live of the target application? The RS385 features memory
latency typically longer than would be expected from a real
application board. The Cache-3051 cache simulator can
help determine the performance of the benchmark in a more
reasonable environment.

• Are the compiler optimizations representative of how the
end application would be developed? A common mistake
is to use lower levels of optimzation in a benchmark than
would otherwise be done. This can result in a 30% perfor­
mance degradation.

• Is the benchmark truly representative of the application
code. Typically, benchmarks are small programs, designed
to be simple to develop and port. Such small programs may
not fully exercise either the optimization capabilities of the
compiler, nor may they fully exploit the advantages of the
large caches available in the R3051 family.

CONCLUSION
A number of factors combine to render the 7RS385 an

inappropriate choice for benchmarking the capabilities of the
79R3051 family. These factors include the software environ­
ment of the board, the limitations imposed on the compiler,
and the memory design of the board.

The 7RS385 was originally designed as a software test and
porting vehicle, and does a very good job of providing services
for this use. However, these requirements in general conflict
with the use of this board as a performance evaluation vehicle,
and thus the 7RS385 should not be used for this purpose.

IDT has a performance profiling toolchain, Cache-3051,
which does a better job of predicting the performance of a
R3051 processor on a given piece of software. This simulator
has been shown to be highly accurate, and should be the
preferred method for benchmarking. In addition, IDT is able
to offer support during the benchmark process, to insure that
the results obtained are truly representative of the capabilities
of the processor.

132

(;)® USING Cache-3051™ FOR APPLICATION

SYSTEM PERFORMANCE NOTE

EVALUATION AN-108
Integrated Device Technology, Inc.

By Samuel Y. Shen

INTRODUCTION
IDT offers a performance profiling tool, Cache-3051 TM, which

allows the system designer to accurately measure the various
price-performance tradeoffs available. This program allows
the system architect to measure the effects of memory la­
tency, cache size, and various memory control strategies
before a final hardware design is committed.

This applications note describes the various capabilities of
the simulator. In addition, it demonstrates the accuracy of the
tool, and describes areas of the system modeled.

Cache-3051 BACKGROUND
The IDT Cache-3051 allows the designer to analyze the

performance of the simulated IDT79R3051 TM family system by
executing a designer's application program on the proposed
system. The modeler is derived from an earlier software
package, cache2000, which is part of the systems program­
mers package (SPP) developed by MIPS computer systems,

Cache-3051 models "cacheable" memory references; it
does not works for uncacheable references, which are typi­
cally only used for 1/0 and boot code. In order to model system
performance, the program analyzes the memory references
made by an application program during its execution and
generates various statistics about its dynamic behavior.
Cache-3051 determines the execution time taken by the
user's application program by simulating the latencies involved
in accessing the memory; that is, it models the amount of time
spent doing memory references.

Note, however, that there are other events within the
processor which affect execution time. For example, an
address trace analysis will not include the effects of processor
stalls which are not due to memory references. Thus, Cache-
3051 does not take into account interlock cycles of the CPU
or the FP A. These interlock cycles can be determined from the
output of Pixstats (a software tool for interlock cycle analysis),
so that a final system performance number is determined.

The main memory model simulated is page-mode, and the
latencies associated are changeable. By simulating different
memory subsystems with Cache-3051, the user can deter­
mine the performance of the application program on those
systems and can arrive at an optimal solution.

PARAMETERS IN Cache-3051
Cache-3051 models all of the parameters typically under

the control of the system designer when implementing an
R3051-based system. In addition, the simulator can model
the performance differences among the various members of
the R3051 family in a given system and for a given application;

that is, the user can alternately model the cache sizes of an
R3051, an R3052, or an R3081'", along with the various
memory speed parameters under his control.

The memory model includes all of the various types of
latencies found in a DRAM system: the initial read latency
cycles, number of cycles to perform a read/write operation
when the DRAM is in page-mode, number of cycles to perform
a write operation when the DRAM is not in page-mode. The
parameters in Cache-3051 are set to user values to model a
DRAM system that works at some user selected frequency.

"read_latency"
The number of cycles between the read signal asserted

and the end of the CPU fixup cycle.

"idle_write_time"
The number of cycles to retire a word from the write buffer

to an idle memory system (RAS and GAS are inactive).

"page_write_time"
The number of cycles to retire a write when the DRAM is in

page-mode. That means the two consecutive writes have the
same row address.

"non-page_write_time"
The number of cycles to retire a write when the DRAM is in

page-mode, but the write can not be processed as page­
mode. That means the two consecutive writes have different
row address. Therefore the RAS signal has to be driven HIGH
to precharge, prior to the write occurring.

"byte_extra_write_time"
The extra cycles to retire a partial write from write buffer to

memory. In R3051/52 systems, this parameter is set to be 0.
(This parameter is intended for ECG systems, which process
partial writes as page-mode read-modify-write sequences.)

"ras_precharge_time"
The number of cycles to precharge the RAS signal. (This

number is not the one defined in DRAM data books.)

"throttled"
A flag for quad-word read: 1 for throttled, 0 for burst. In a

burst read, each word is presented to the CPU at its clock rate;
in a throttled read, multiple clock cycles per word are required.

''throttled_latency"
The summation of the bus delay cycles between any two

consecutive read operation during the throttled read. This
parameter is ignored when "throttled" is false (zero).

Cache-3051, IDT79R3051, IDTR3081, IDT/sim and IDT/kit are trademarks of Integrated Device Technology, Inc.
All others are trademarks of their respective companies.

©1992 Integrated Device Technology, Inc. 133 6192

USING CACHE-3051™ FOR SYSTEM PERFORMANCE EVALUATION

RS385 BACKGROUND
The IDT evaluation board is a single-board test platform for

the R3051 family. The board was initially designed to be a
simple test platform for the CPU silicon, and for various
software programs.

Given its heritage as a test platform, the board is designed
to allow multiple wait-states to be inserted into memory in
order to allow the processor to be run at higher frequency.
Thus, the board reflects an extremely conservative, low-cost
board design philosophy, and is not particularly intended as a
benchmarking vehicle. A separate applications note describes
the use of this board. However, due to its widespread availabil­
ity this board was selected to be used as the platform for
validating the accuracy of Cache-3051.

A final note of history is appropriate when evaluating the
results of benchmarking on this board. Originally, boards
shipped to customers used a 33MHz R3052. In order to
support this system speed, additional memory wait states
were included in the DRAM state machine.

More recently, boards shipped to customers feature a
25MHz processor and memory system. The lower frequency
system also features reduced latency to memory (as mea­
sured in processor clock cycles) over the original 33MHz
board, and thus offers higher frequency normalized perfor­
mance.

RS385-33 MEMORY LATENCY
Two 22V1 Os and a 16RB are used to implement DRAM

control on the RS385 board. This chip set handles all DRAM
accesses as well as refresh requirements. Page-mode ac­
cesses are supported utilizing the Burst/WrNear output from
the R3052E. For additional detail on the specifics of the
DRAM control implementation of the 7S385, consult the
user's manual for the board.

The on-chip instruction and data caches allow the R3052E
to access one instruction and one data word in each clock
cycle. On reads, when a cache miss or an uncachable
reference occurs, the R3052E begins an external read cycle.
Figure 2 illustrates the single-datum read and Figure 3 illus­
trates the quad-word read sequence for the 7RS385 at 33MHz.

R3052E
Data
Buffer

RISController

ALE]
LE

AD[31:0] • 1

FCT
373T

APPLICATION NOTE AN-108

On writes, the R3052E maintains a write through strategy
which updates the memory as soon as the cache contents are
changed. With the use of of the on-chip 4-word deep write
buffer, the R3052E can continue to execute instructions from
its instruction cache while the main memory retires up four
pending stores from the write buffer. The DRAM controller on
RS385-33 board supports page-mode write (timing diagram
of RS385-33 as in Figure 4) and non-page-mode write (timing
diagram of RS385-33 as in Figure 5). On RS385-33, the
DRAM controller will go into a "page-mode idle state" after a
write which keeps RAS LOW in anticipation of a page-mode
write. If the next transaction is not a page-mode write, or a
refresh request is received, the controller will bring RAS
HIGH, precharging the DRAM, prior to servicing the next
access.

MODELING THE RS385 WITH Cache-3051
Creating a Cache-3051 model to simulate the desired

memory subsystem can be done either by editing the source
file (.c program), or defining the runtime parameters at the
UNIX command level. To set the read_latency, a timing
diagram of a Single Word Read has to be drawn to decide the
number of cycles between the asserting edge of Rd and the
end of fixup.

Figure 2 illustrates the timing diagrams for a single word
read of RS385-33. Once a read access is detected, the RAS
signal is brought to LOW after a cycle. Based on the DRAM
controller design of RS385-33, the data is sampled by R3052
three cycles after RAS asserted. Then a refill cycle/fix up cycle
is used to bring data out of the read buffer and into the internal
processor cache; during this fixup, the processor transitions
back into the RUN state. In this design, the RAS signal is
precharged for three clock cycles (one in the beginning and
two at the end), so no more RAS precharge time needs to be
added. In this example, the read_latency is set to be 6 cycles.

To determine the idle_write_time, the timing diagram of a
write following a read is drawn. In the case of a write following
a read operation, the RAS precharge time has already been
counted in the last two cycles of read_latency (Figure 2) and
the first cycle of write operation (Figures 4 and 5), and thus no

Data
L 7 32

DRAM

Address DRAM
256kx32

/ Ctrl

7
32

Figure 1. Simplified Block Diagram of 7RS385 DRAM Subsystem

134

USING CACHE·3051™ FOR SYSTEM PERFORMANCE EVALUATION

additional cycles are required. The first five cycles of the write
operation is defined to be the idle_write_time of RS385·33;
that is, it is the time from the assertion of Wr until the negation
of Wr. According to the definition of idle_write_time, this is the
time of a write operation while the previous operation is not a
write.

To determine the page_write_time, the page-mode write
timing diagram is drawn. This case occurs when the ongoing
write operation shares the same DRAM page as the previous
write operation. Page write allows faster data operation within
a row address defined page boundary. The current page is
determined when RAS is originally asserted; subsequent page­
mode cycles occur by selecting a new column address and
cycling GAS. These memory cycles are quicker, because
GAS precharge time is smaller than RAS precharge, and
because RAS and the ROW address have already been
presented to the DRAM. Returning RASH IGH terminates the
page-mode write. Figure 4 illustrates a RS385-33 page-mode
write (cycle 6 to cycle 9). In this system, 3 cycles are required
to retire a page-mode write.

The page-mode write timing diagram is also used to de­
termine the nonpage_write_time setting. a non-page write
occurs when the DRAM is anticipating a DRAM page-mode
write, but the write which is issued is to a different DRAM page.

APPLICATION NOTE AN-108

Therefore not only GAS signal but also RAS signal need to be
raised HIGH to strobe-in different column and row addresses.
Figure 5 illustrates this write. Note that the RAS needs to be
precharged before going LOW again. In this example, the
non-page_write_time is 8. It is counted from cycle 6 to cycle
14.

The ras_precharge_time is a little bit different from the RAS
precharge defined in DRAM data books. They both imply the
RAS signal has to be brought HIGH for precharging. However,
the ras_precharge_time in this simulator is only added for the
case of a read following a write. The other transactions already
implicitly include sufficient RAS precharge cycles, such that
no additional time need be allocated. However, in a read
following a write, additional precharge time needs to be
explicitly added to insure proper operation of the DRAM.
Figure 6 explains the RAS precharge time that is included
during transitions between bus operations.

The settings of throttled and throttled_latency are strongly
related. They both imply burst read operation. Throttled is a
flag to indicate how a quad-word read is processed. "Burst"
means the first word of the block is returned after an initial read
latency, and then each additional word is returned in the
immediately subsequent clock cycle. In this case, the "throttled"
flag is set false ("O"), and the "throttled_latency" is ignored.

5 9

~ ~ ~ ~ ~ ~ ~ E ~ ;

AD(31:0) ~ ~.
ALE ~---!----!-----!""-----t---!""-----'i

A(31:4) i
DRAM r---\~i~~~-.-~~~---~~~--~~~....-~-.-~.L.:'.::.::.::.::.::.::.::_;-.::.::.::.::.::.::::.;-.::.::.::.::.::.::.::;:.::.::.::.::.::_:-i~

RD i----..~;i ___ +-----+---f-----+---'
I ,,. 1 ~

BWN ~;.~ ~~~~~~~--t~~~--t~~~--1

DATAEN '· ~ ~~__,,.._~~--.~~~--~~~--1
DOE

D(31 :O)

RAOE

RAS

CAOE

CAS

DRA(8:0)

RDCEN

ACK

RASiAddr.

IT ,
::or;;

Valid Data i
~ .

1

j
i CASAddd

Figure 2. DRAM Single Datum Read

135

USING CACHE-3051™ FOR SYSTEM PERFORMANCE EVALUATION APPLICATION NOTE AN-108

5 10 15

SYSCLK

AD(31 :O)

A(31:4)
;o ;, i2

ADDR(3:2)

DRAM

RD

BWN

DATAEN

RAOE
RAS

CAOE

CAS

DRA(8:0)

RDCEN

ACK

Figure 3. DRAM Quad Word Read

5 10

SYSCLK

AD(31 :0) ,-~"i--__ ..._ __ ,___-; __ _,;.. __ .,,..___,_..._ __ .,___-; __ __,,,..~,..._....;.... ____-----1
A(31 :4)
DRAM

DATAEN 1---+----!-------~-------!-------~-~---!-----!---~------1
WR

BWNi---.;-----;---;------.---;----,,.--,,

DBUSBSY
DOE I=:;:::==+==~ ,___ _ ___, __ _,__

D(31:0)

DADR(8:0) 1--'-""'"'""--"'""""----"!>----"""""-=""-'----''~--...._..""""_.....~.__----r'---+---..._----1

RAOE 1---......_ __ ,___ __ ,

RAS>----~

>--~----------'----------------------------------1 CAOE 1---......_ __ ,__ __ ,

CAS ,____,__ __ ,__ _ ____,_ ___ ..,

ACK 1---+---------..

Figure 4. DRAM Page Mode Write

136

USING CACHE-3051™ FOR SYSTEM PERFORMANCE EVALUATION

On the other hand, if multiple clock cycles are required
between each response word of a quad word read, "throttled"
is true ("1 "), and the "throttled_latency" paramter is used to
indicate the number of idle cycles between words.
Throttled_latency is a bus delay cycles between two adjacent
words. (i.e., (w1 to w2)+(w2 to w3)+(w3 to w4)).

The summary of DRAM parameters setting based on the
RS385 (33Mhz) is shown in Table 1.

Table 1. Summary of 7RS385 Memory System

Parameter Setting

Read Latency 6 cycles

Idle Write_Time 5 cycles

Page Write Time 4 cycles

Non-Page_Write_ Time 8 cycles

Byte Extra Write_Time O cycles

RAS_Pre-charge_ Time 1 cycle

Throttled 1 (true)

Throttled Latency 6 cycles

5

SYSClK

AD(31:0)

DRAM

WR

RD

BWN

DATAEN

RAOE

RAS

CAOE

CAS

RDCEN

ACK

APPLICATION NOTE AN-108

SIMULATION ACCURACY
To validate the relative accuracy of the simulator, a set of

benchmarks was run first under the cache simulator and then
on the actual board.

The benchmark suite chosen is commonly known as the
"Intel Benchmark Suite". Intel chose to use these benchmarks
to indicate the performance of the i960CA, when that product
was originally introduced.

Although IDT views these benchmarks as inadequate
when used to determine actual system performance, they can
be used to help determine the relative accuracy of Cache-
3051 (for more information on the problems with this bench­
mark suite, refer to the IDT applications note on this topic).

The Intel integer benchmarks consist of six benchmarks
which are: bubblesort, quicksort, pi500, anneal, matmult, and
dhrystone1 .1 . The brief description of each benchmark, and
the aspect of system performance Intel feels each measures,
is given below:

bubblesort-Sorts a 500 element array in memory using
the "bubble sort" algorithm. Performance is heavily dependent
on the speed of data access. The benchmark features heavy
use of array manipulation.

10

Figure 5. DRAM Non-Page Mode Write

137

--------· - ----

USING CACHE-3051™ FOR SYSTEM PERFORMANCE EVALUATION APPLICATION NOTE AN-108

RAS Precharge Time for
Operation RS385's DRAM System

R-> R 2 Clock cycles (at the end of read) + 1 cloc~

ing together, then downloading to the RS385 board. This
process has to bypass the uload and the umerge phases (refer
to IDT RISC R3000 Family language Programmer's Guide)
which are the-03 and-04 phases in the MIPS compiler, and
use the link/load phase by linker/loader only. Since the linker/
loader does not have an optimization phase, the best optimi­
zation can be used in this example is -0.

c,y_cle (in the beginnina of reacfl_
W->R O Clock cycle (at the end of write) + 1 clock

cycle (in the beginning of read) + ras_pre-
charge time

R->W 2 Clock cycles (at the end of read) + 1 clock
~le_{in the b~nniQg_ of idle writ~

W->W O Clock cycle (at the end of write) + 0 clock
cycle (for page write) or+ 3 (4 -1: for non-

...£illl..e writ~
Figure 6. RAS Precharge Between Vanous Transfers

quicksort-Sorts a 5000 elements array in memory using
the "quick sort" algorithm. The benchmark is designed to test
recursion and array indexing.

pi500-Calculates the value of the mathematical con~tant
Pl up to 500 decimal points using iterative integer calculations.

anneal-Also known as the traveling salesman problem.
The benchmark calculates the shortest distance between two
points. (20 points were used)

matmult-Multiplication of a matrix of values tests the
multiply/divide speed of the processor. Few memory refer­
ences were used.

dhrystone1 .1-Classic integer benchmark measuring
relative processor performance for integer instructions. While
this benchrmark suppossedly demonstrates the integer num­
ber crunching power of the processor, its performance is
actually highly dependent on the coding of string library
functions.

All the above mentioned integer benchmarks are compiled
with a C compiler version 2.11 on an MIPS RC3240 system
running RISC/OS 4.51. All the benchmarks are compiled with
default optimization level (-0). This level of optimization does
not include the full optimization capabilities of the MIPS
compiler chain, such as inter-procedual register allocation
and procedure merging, due to the method of program gen­
eration used for the RS385.

In our example, downloadable benchmarks (.srec files) are
generated by compiling individual modules separately, link-

The results for Cache-3051 and for the RS385-33 board
are listed below. The execution times for above mentioned
programs are shown in Table 2 (smaller values are better
except for Dhrystone1 .1).

For the Pi-500 program, two values are given in each
column. One is with the "printf" function enabled, and the other
is with "printf" disabled. For benchmarking, and for comparing
the accuracy of the simulator, disabling "printf" is appropriate
for a couple of reasons. First, 1/0 processing time is system,
rather than processor dependent, and depends on the periph­
eral chosen and the communications channel. Secondly, this
function is linked with an entry point supplied by IDT/sim™
(PROM monitor). This monitor program resides on the RS385
in the EPROMs, and executes as an uncached access and
with longer memory latency than the DRAM subsystem.
Single reads and burst reads from these EPROMs are much
slower than from DRAMs.

As shown in Figures 7 and 8, single reads take 8 cycles and
burst reads take 6 cycles per subsequent word for accesses
to EPROM.

For basically the same reason, the dhrystone benchmark
was generated by linking to the IDT/kit™ -I library, rather than
the IDT/sim functions. Dhrystone performance 1s heavily
dependent on the strcpy and strcmp library functions. In or?er
to avoid accessing the EPROMs for these functions, IDT/kit 1s
used to integrate these library functions into the downloaded
benchmark file. Thus, these library routines will execute as
cacheable routines, and run with the same memory latency as
the rest of the program. (IDT/kit is a set of modules which
assists the system developer in interfacing with the R3000/
R3051 family of processors. It consists of a micromonitor, the
start-up module, kernel integration library, interface into IDT/
sim functions, ANSI compatible standard c library, and
transcendental math library. More information on IDT/kit and
IDT/sim can be obtained from the reference manuals for these
products.)

Table 2 Results of Intel Benchmarks on Cache-3051 and on 7RS385 Board

Benchmark Cache-3052-33 (MIPS-02) RS385 33 (MIPS-02) Cache-3052 vs. RS385

QuickSort (ms) 38.6 39.6 (38.6 39.6)/39-6 2.5%

BubbleSort (ms) 44.9 44.8 (44.9 44.8)/44.8 0.2%

Pl-500 (ms) 1,041 1,624 (1041 1626)/1626 35.9%
1,039* 1,084* J1039-10812."1084 = - 4.1%

Anneal (ms) 5,193 5,149 (5193 5149)/5149 0.2%

MatMult (ms) 19,619 19,417 (19619 19417)/19417 1.0%

Dhrystone 1.1 43,356 41,666 (44822 41666)/41666 7.5%
NOTES:
* Run with "print!" function disabled.
Dhrystone 1.1 run using string library from IDT/kit.
Compiled using MIPS/c with optimization --02.

138

USING CACHE-3051™ FOR SYSTEM PERFORMANCE EVALUATION APPLICATION NOTE AN-108

2 3 4 5 6 7 8 9 10

AD(31 :O) L__;;-"-"!""'""----+----!'""-----+------t'---"!""'""--""""V--v--!'""-----t------1

ALE

RD

~ead Addr. l

D(31 :0) 1----L--r~~---t-----t-------;---~---r--'>-...._.._-.L; -...(----r---r-------1

DBUSBY t--~---..___--~

Figure 7. EPROM Single-Word Read on 7RS385 Board

5 10 15 20 25

R
AD(31:0) Hl .l -1 J U -1

-,j ~ ~ i~
ADD R(3:2) H1---t---+--+~O--+--+---t-A"+---+-t--1 -+---t--+-J_'-+l'-t---t-=2-t--+---t-J\• '1---+__,~3 +--t--"I-!J_J'-l"-l---1

DOE '11
D(31:0) t--t--1 .l

A(31:4) H

RD

BWN h

I

l---+---+---+-+--+--+---+-+--t--+---1t--+--+---+--+-+--t--+---1t---+---t--+-t---+-'1J t---+--

1'---l--l--l--+--+--+--+--+--+--+--+--+---+--+---+---+--+--+---+---+---+---+--+--+l_1 t---+--
I

EPROM h I r---+-

DATA EN 'I_
i
11~~.-t--ll---1

~--+-+--+---+----1-+---t--+-t---+---+---+--t--+--+--+-t---+---+--+-+--+---!-'!

RDCEN

ACK "
I

DBUSBSY 1~
Figure 8. EPROM Quad-Word Read on 7RS385 Board

139

USING CACHE-3051™ FOR SYSTEM PERFORMANCE EVALUATION

PERFORMANCE DIFFERENCES BETWEEN
SIMULATION AND REAL SYSTEMS

Obviously, some performance differences between a
memory simulator and an actual system are inevitable. As can
be seen from this application note, the relative inaccuracy is
extremely small; in fact, they are due to a number of factors
which can not be effectively modeled by such a tool. These
factors include:

DRAM refresh. There can be no effective simulation which
will include the effects of DRAM refresh. If the processor were
operating out of cache during a DRAM refresh, no perfor­
mance would be lost. On the other hand, DRAM refresh may
prevent a subsequent write from being processed as page­
mode.

DRAM refresh cannot be modeled typically because its
timing is determined by a divide-down counter. Thus, the
power up state of the counter versus the reset time (often
determined by an RC network) determines when, relative to
execution, DRAM refreshes occur. Such an event may in fact
vary in a given system each time the system is turned on.

Exception events. Some exceptions, such as arithmetic
overflow, could be modeled. Others, such as a periodic time
slice counter interrupt, may not be modeled for much the same
reasons that DRAM refresh cannot be accurately modeled.

1/0 events. Since 110 timing may rely on the response
timing of a peripheral (such as a terminal or disk) external to
the CPU motherboard, the exact timing of 1/0 responses
cannot be effectively modeled.

Mixed memory systems. The modeler does not really
account for systems in which part of the code operates out of
a memory with latency characteristics different from the memory
for other parts of the program.

APPLICATION NOTE AN-108

Multi-master systems. The R3051 family can operate out
of its internal caches during OMA transactions. Thus, it is
difficult to derate performance based on bus bandwidth con­
sumed by an external OMA engine, because the processor
may operate out of cache during some of those transfers.
Similarly, if the processor must arbitrate over a bus or through
a multi-port arbiter for a given memory subsystem, the mod­
eler cannot effectively model a memory whose latency varies
according to external events.

SUMMARY
The IDT Cache-3051 is a very useful tool, allowing hard­

ware and software designers to project and model the per­
formance of different IDT79R3051-based systems accurately
prior to developing actual hardware. This allows effective
price-performance tradeoffs to be made early in the design
cycle, and allows the resulting software to be effectively tuned
to the end system.

When using a system modeler such as Cache-3051, the
user must be aware of the limitations of such a tool, and be
aware of the relative accuracy of the tool. This application note
describes the memory system variables under the user's
control, and demonstrates the accuracy of the tool on a
benchmark suite. Finally, the application note contains a
discussion of certain types of characteristics which cannot be
modeled.

140

~· USING THE R3081™ IN APPLICATION

R3051 TM -BASED SYSTEMS NOTE
AN-109

Integrated Device Technology, Inc.

By Peter McDonald

INTRODUCTION
The IDT79R30B1™ RISController™ is the newest member

of IDT's family of high-performance and price-competitive 32-
bit microprocessors. Designed to provide the high-perfor­
mance MIPS® RISC architecture to low-cost and system
integration-sensitive solutions, this processor adds to the
growing family of RISControllers from IDT. The R3081
RISController is superset and pin compatible with the R3051 I
52, and includes 20kB of cache, a Floating-Point Accelerator,
Hardware Cache Coherency support, and a series of system
integration and interface features.

With its larger caches, FPA and interface features, incorpo­
rating the R3081 in an existing R3051 design can dramatically
increase system performance without adding design com­
plexity. Often upgrading to the R3081 is as simple as placing
an R3081 in the R3051 socket. This applications note
describes common considerations when upgrading existing
R3051 systems with the R3081. As an example, this applica­
tion note describes how to upgrade the 7RS385 evaluation
board from an R3051 processor to an R3081 processor.

NEW FEATURES BROUGHT BY THE R3081
The R3081 is superset pin-compatible with the R3051.

That is, in general it is possible to remove an R3051 from a
system and replace it with an R3081. The system should run
without any hardware or software changes. However, the
R3081 adds additional capabilities to the R3051 family; some
systems may wish to take explicit steps to take advantage of
these new capabilities.

Before discussing system changes needed to implement
the superset features of the R3081, a definition of these
capabilities is needed. As mentioned above, the R3081
includes larger Instruction and Data Caches, a Floating-Point
Accelerator, Hardware Cache Coherency support, and a
series of integrated control options. All the hardware options
are selected by either the mode initialization vectors (values
sampled on the interrupt input lines during reset) or pro­
grammed through the new CPO Configuration register. Below
is a summary of the new R3081 features. A more detailed list
of these features along with a list of the differences between
the R3051 and R3081 are included in the IDT79R3081/3081 E
Integrated RISController Hardware User's Manual.

• Larger Instruction and Data Caches
The R3081 instruction and data caches total 20kB. The
default (reset) configuration is 16kBI and 4kBD, although
they are dynamically programmable to BkB apiece. Both
instruction and data caches are parity protected over the

data and tag fields. This differs from the R3051, in that both
caches are larger than the caches supported by the R3051
or R3052, the cache is configurable and the caches are
parity protected.

• Addition of a Floating-Point Accelerator
A full-featured R301 QA-compatible floating-point accelera­
tor is incorporated on the R3081 adding single- and double­
precision add, multiply, and divide instructions to the in­
struction set. Which of the six integer unit Interrupts inputs
is used for the floating-point interrupt signal is program­
mable. lnt3 is the default FP interrupt. Thus, one of the six
interrupt inputs of the R3051 is used for the floating-point
interrupt and coprocessor 1 instructions will be directly
executed by the on-chip floating-point units.

• Cache Coherency Interface
The R3081 has a hardware-based cache coherency inter­
face for multi-master systems. If selected, OMA cycles
between memory and 1/0 can invalidate lines within the
R3081 cache, insuring that there is no stale data and
avoiding software directed cache flushing. This mechanism
can be disabled to achieve full R3051 compatibility; alter­
nately, the system designer can choose to increase the
performance of multi-master systems, by performing hard­
ware cache coherency.

• Power Reduction Mode
The R3081 RISController can be dynamically programmed
to reduce its operation frequency. In this mode the execu­
tion clock, and therefore the output clock, is internally
divided by 16. This function allows the power reduction
benefits of a lower speed clock to be achieved during idle
periods, without requiring external clock shaping logic.

• Programmable Halt Mode
This programmable mode forces the R3081 RISController
to stall until either an interrupt or reset is issued. This mode
has two effects: it further reduces power consumption; and,
it allows software to halt until some external event occurs.

• Half-Frequency Bus Mode
A selectable mode allows the R3081 bus interface to
operate at one-half the frequency of the processor core. For
example, the execution core can run at 33MHz, and the bus
interface at 16MHz. Given the substantial amount of cache
on-chip, the slow system interface will not dramatically
degrade performance. The end result is a high-perfor­
mance system with very low system cost.

• 1 x or 2x Clock Input
The R3081 can operate with either an R3051 compatible
double-frequency clock input (2x clock mode), or can oper­
ate from a clock at the execution rate (1 x clock mode). This
capability both simplifies EMI at high frequency, and also

The IDT logo is a registered trademark and IDT79R3051, IDT79R3081, IDT/o, IDT/sim, IDT/kit and RISController are trademarks of Integrated Device Technology, Inc.
All others are trademarks of their respective companies.

©1992 Integrated Device Technology, Inc.
141

6192

USING THE R3081 IN R3051·BASED SYSTEMS

allows for "clock doubling" when used in conjunction with
the one-half frequency bus mode.

• Slow Bus Turnaround
A common problem for a high-speed 1/0 bus is the amount
of time available for mastership changes. The R3081 allows
software to specify a larger minimum time when transitioning
from the memory driving the bus (i.e. read data) and the
processor driving the bus (e.g. writes). This reduces the
speed requirement of data transceivers, with minimal per­
formance impact.

• Dynamically programmed data cache refill
The R3081 allows software to dynamically select between
single word and quad word refill on data cache miss. This
allows for additional performance tuning, by enabling the
kernel to select the best algorithm for a given section of
code. The default refill size is selected at reset time, the
same as for the R3051.

POSSIBLE CHANGES
The R3081 hardware options are either mode selectable at

reset or programmed through an internal register. Hardware
cache coherency support and all clocking modes, half-fre­
quency bus mode and 1xor2x clock input mode, are selected
at reset based on the level of the lnt[5:3]. In the R3051, lnt[5:3]
are required to be driven HIGH during reset initialization.

The interrupt inputs, Slnt[2:0] are already used by both the
R3051 & R3081 to select data cache refill sizes, tri-state test
mode, and big or little endian system architectures. The
complete table of the R3081 reset mode vectors is listed in
Table 1.

A complete description of these modes is provided in the
IDT79R3081/3081 E Integrated RISController Hardware User's
Manual.

Floating-Point Interrupt
The one area where hardware changes may be necessary

are with respect to the Floating-Point Accelerator. In the M !PS
RISC architecture, the floating-point interrupt is fed into a
general purpose interrupt. Interrupts cause the processor to
jump to the system's exception handler which then decodes
its status to determine the exception cause. One of the six
external R3081 interrupts (by default lnt3) is programmed to
be the FPA interrupt. All activity on the external interrupt pin
corresponding to the FPA interrupt is ignored.

Although software can use a different interrupt input other
than the default. it is still the case that only five external
interrupt pins remain available to external peripherals. There­
fore, systems that required six external interrupts will need to
modify their external interrupt structure, perhaps by causing
multiple peripherals to share a single interrupt input. Obvi­
ously, software would then need to decode which device on
that interrupt actually signalled the exception. _

Systems that have defined an interrupt other than lnt3 for
the FPA need to modify their startup code so as not to ignore
the assertion of lnt3.

APPLICATION NOTE AN-109

Table 1. R3081 Mode Selectable Features

Interrupt Pin Mode Feature

lnt5 CoherentDMAEn

lnt4 1xClockEn

lnt3 Half-frequency Bus

Slnt2 DBlockRefill

Slnt1 Tri-State

SlntO B_ig_Endian

Some software applications incorporate exception han­
dlers that allow the user to set the FPA interrupt through
software. The IDT/sim™ diagnostics uses this method. This
adds system flexibility at the cost of the extra performance
required to decode the interrupt.

The Config Register
Selecting which interrupt is used by the on-chip FPA, the

cache configuration, power reduction mode, current size of
data cache refill, halt/stall mode, or slow bus turnaround are
all accomplished by writing to the new CPO configuration
register. The Configuration Register data format is shown in
Figure 1.

The reset initialization value of the config register depends
somewhat on the mode vectors selected at reset. Specifically,
the initial values of the Data Block Refill bit, and of the slow bus
turnaround bit, are dependent on the reset vectors. At reset,
the FP Int field will correspond to lnt3, and the Lock, Alt. Cache,
Halt, and RF bits will be cleared.

Reading and writing all CPO registers is accomplished by
issuing coprocessor load and store instructions. The configu­
ration register is CPO register 3. An interactive tool to read and
write the R3081 configuration register, "the R3081 Configura­
tion Tool", is available as a demo tool through your local sales
office, and runs on IDT/sim-based platforms. To insure strict
software compatibility with older applications, the Config
register can be isolated from subsequent writes by writing a '1'
to the configuration register "Lock" field.

Software Compatibility
The R3081 will directly execute applications written for the

R3051. The larger on-chip caches will directly benefit existing
applications, and thus bring an increase in system perfor­
mance. Additional gains are possible, depending on the
application code, by taking advantage of the hardware FPA on
the R3081. Whereas the R3051 must either trap and emulate
floating-point instructions, or perform explicit calls to software
floating-point libraries, the R3081 can directly execute these
operations.

It may be advantageous to generate two distinct binaries
from one source; one, which uses software libraries to emu­
late floating-point operations, and is used with the R3051 or
R3052 and another, which uses the on-chip FPA to perform
floating point. However, ifthe prospect of two distinct binaries
is too onerous for a particular application, the binary could

142

USING THE R3081 IN R3051-BASED SYSTEMS APPLICATION NOTE AN-109

31 30 29 28 26 25 24 23 22

Lock~~: ~~II FPlnt Halt RF AC Reserved

Lock: 1 -> Ignore subsequent writes to this register
Slow Bus: 1 ->Extra time for bus turnaround
DB Refill: 1-> 4 word refill
FPlnt: Power of two encoding of FPlnt <->CPU Interrupt
Halt: 1 ->Stall CPU until reset or interrupt
RF: 1 ->Divide frequency by 16
AC: 1 -> BkB per cache configuration
Reserved: Must be written as O; returns 0 when read

Figure 1. CPO Configuration Register Data Format

include FPA instructions; with an R3051 processor, a trap will
be generated, and software could emulate the operation.
Although a single binary suffices for both processors, the cost
is reduced performance for the R3051.

Software can dynamically determine whether there is an
FPA available, by performing simple FPA diagnostics. Such
diagnostics is included in IDT/sim, IDT/c™, and IDT/kit™
startup code. Thus, the boot software could check for the
presence of an FPA, and initialize the Coprocessor One
useable bit according to the results. This allows a single
binary to dynamically determine whether a hardware FPA is
available, and can be used to enable the FPA instruction trap
mechanism of the R3051 and R3052.

Manipulating the Cache Characteristics
Another possible performance gain may exist by dynami­

cally manipulating the cache characteristics of the R3081.
The Config register allows the cache configuration to be
dynamically changed from 16kB I-Cache and 4kB D-Cache to
BkB I-Cache and BkB D-Cache. A kernel may choose to
dynamically change the cache organization, depending on
the nature of the task about to be executed. The only caveat
is that when changing the cache configuration (from 16kB/4kB
to BkB/BkB or vice versa), both the instruction and data caches
need to be flushed.

In addition, software could dynamically alter the D-Cache
refill size. Changing this bit does not require a cache flush.

Note that to insure compatibility amongst multiple genera­
tions of R3051 family members, cache flushing routines that
assume a constant cache size are discouraged. The R3081
Hardware User's Manual presents an algorithm where soft­
ware can determine the cache size available.

UPGRADING THE RS385 BOARD WITH THE
R3081

Upgrading the RS385 board with the R3081 R ISController
is easy to accomplish. Simply remove the R3051 and replace
it with the R3081. Both share the same footprint and pinout.
The 1 xClockEn, Half-frequency bus, and Coherent OMA
modes are all disabled in a default 7RS385, thus no further
hardware modifications are necessary. lnt[5:3] are pulled HIGH
during reset disabling these three modes.

The IDT/sim included with the 7RS385 automatically sizes
the cache available; thus, the increased cache sizes of the
R3081 pose no problem. IDT/sim will not, however, write to
the Config register. Thus, the FPU interrupt will default to -lnt3,
unless explicit steps are taken.

Currently on the RS385, the R3051 lnt3 is used for the
Centronics port interrupt. If using the Centronics port and the
R3081 FPA, the system and/or software must be modified so
thatthe FPA is allowed its own dedicated interrupt. This needs
to be done by either re-writing the boot prom to modify the
config register or using a different Centronics interrupt and
modifying the Centronics driver.

If the 7RS385 has been used as a porting target for another
application, the types of software changes needed will be
application dependent. Applications developed with IDT/kit
and/or I DT/c include startup code that resizse the cache every
time they are executed. IDT/sim startup code does not resize
the cache at each execution. In addition, it may be desirable
to recompile for any floating-point instructions that are imple­
mented with software emulation.

Implementing Additional Reset Modes
When using any of the three reset mode features unique to

the R3081, minor modifications to the RS385 board are
necessary to implement the interrupt input signal multiplexing
during reset. As a general note, the RS385 uses a tri-statable
interrupt bus to implement the multiplexing for the Slnt[2:0].
An asserted MRES# enables the reset mode vector driver. A
modification to the RS385 board was made to enable or
disable any of the six mode selectable features with jumpers,
including the new mode vectors of the R3081. Figure 2 shows
the modified R3051/R3081 interface to allow enabling and
disabling of the six reset modes. A buffer, U1 A, was added to
provide the tri-state mux for the three new reset modes.

Other solutions to implement the reset mode selection
abound, depending on one's application. All R3051 designs
should already pull lnt[5:3] HIGH during reset as specified in
the IDT79R3051 Family Hardware User's Manual. Therefore,
only the new modes being selected need to be added to the
current muxing on the RS385. If only one additional mode is
needed, jump the one remaining output on the current
74FCT244 reset mode mux (U37 pin 18) to the appropriate
interrupt input. The interrupt PAL, U28, can be reprogrammed

143

USING THE R3081 IN R3051·BASED SYSTEMS

to do some of the muxing. (If the PAL can not be easily
removed from the board, an additional device can be added
to the wire-wrap area.)

An Interesting Upgrade
One of the more interesting upgrades possible is to in­

crease the execution speed while decreasing the bus clock.
To do this, select 1 x clock mode and half-frequency bus from
the new mode reset logic, and replace the R3051 osciallator
with a 40MHz oscillator. The result will be a CPU core
executing at 40MHz rather than 25MHz, although the bus
speed has been reduced to 20MHz.

UPGRADING OTHER R3051 SYSTEMS
Upgrading any R3051-based system with the R3081 RIS­

Controller is very similar to updating the RS385 board. The
one hardware item that may differ has to do with DRAMs and
their refresh.

Specifically, if the refresh period is based on counting
SysClk cycles, then using the reduced frequency mode of the
R3081 may violate the reset period (reduced frequency mode

APPLICATION NOTE AN-109

also divides the frequency of the output clock). There are two
solutions to this, depending on the application:
• Reprogram the counter to a smaller number of SysClks.

This is possible with devices such as the R3721 DRAM
controller.

• Use a different reference clock for refresh. Choices include
a UART clock, or the clock used to generate the input clock
to the processor.
The RS385 board refresh request is generated from a clock

independent of SysClk. The clock used is derived from the
UART clock.

CONCLUSION
Incorporating the high-performance R3081 RISController

into existing R3051-based systems is often as simple as
merely swapping processors. Little design complexity is
added, yet system performance increases due to the larger
caches, Floating-Point Accelerator, and other features. Using
more of the R3081 features to increase performance even
more can be accomplished with minimal hardware and soft­
ware modifications.

144

"Tl
ii c
iii
!" 1

'"" .r ::D ~

~
8l
;:
8.
(I)

... , ~
ti §"

b ca
n
c: ;g
iil c.
(I)

I i

74FCT24~1~ INT#3
Pl!\., ! ~ l 1 OEA* QAO 16fHINT#4 ~ 1 r, 19 oEB* QA1 14 rnT#s
P2A LHFBUS IT DAO QA2 l¥ w.s---a,L.lXCLK~ _! DAl QA3 ~

I ~' ~MAEN ~ DA2 QBO~
2 0

""" 8 DA3 QB117
Rl

2 ~ ~ DBO QB2t9"
R2 :r ,i,....;::..;: DBl QB3 r-

,; i! q:j "'' "" ~,,, ,rnoo
"fl- °''~' ,__.., "'' '"" "°' "' ornoci
,;,.__ "' " " "" ., ; orno<' ,.!,(w" """'- ,. ""' "" ., orno;

lOKil

RPAK

~ I RP3

~COM

"~ ooc"' I e, I, I me"" rn g,, ,.~ nm '" ADO•

°"'cc ACU ~ 'i;Jce.• OAOIIT_ '"'° AID• AO ADO;_, sv l R9i.;;;. r "'p9 H" ,,,. QM" <mO< ~ AID' " ADOO

- • ' • DAO "'"' rnm '" A/DO 'A I AD" - ' t ~i ~ orn AA' QA>' ""' '''Jl'~MRES# A/D7 '86 ADDB
" I ' ~ ,j , ' " '-" AA' 000,.- ""'"' """"-' m ""'" A/°" "" AD°' '""°" oem WC D>' 00<, "'°' I =1 M' A/DO AWO .. " 3 ' I,, '" v~' .. " ~"'' "DOQ '" • "''~' • ' """'' '""" A/Drn ~: ADU " III " ""'"'DH '" "" ,, A/DH " ADU

--'--

2 2

RESIN# SETH D~.J!. ~' D" om mm ':om'°' A/DH AO ADU ~ " moo~• D,; QOf ~ l'J_Nm M """ A/DB m ADH

,------'- " .,,___,__ ..- ' ,jJ ~ wm '' """ A/DH" ADE
""" ; .. I~ "'- '""" A}W; °' ADH ~' • OND "' "'n ., ~ • mm "'rn'°' AJmo., Am~

r ' I< mu I - """" vn,,,. Ml rnN• A/DP n AD,0 " '; '' "'" n mu Uo>fh I .:L N"<' l"'; "'~" A/Drn" ADff '"' _ :I~ i ' ,,- ii'- rn' u°'l2t,rnJ:, >, -; ~ "AA' """' A/WO" ADn c; t'Crn1m n m<0 '100 ""' o - •' ,,- AID"" AM_• ~ F '°"'° Oc ml , uo; ,. "'"' J me"/ ~ocNDO "I "'°ND' A/DV " ADn

nm - o.rnc '°"" <-mo D <100 loc~<m• ,~ ""°"' AID" n ADO<

CTL

<' l'M• ' mo , uoo, 1
""'"- , "'"ND' cm "'°ND' Alm 1 " '""

i®' ~me >/W I' "°''" Ame
l"fm"' rn• <Mt# """ MHce"DNWAJm;" AD1"
t'!'Q! ~IN' Uo<t]i "-'"D2 M<O<e>eMmA/NO <' ADOI

mcm ""°AA'm" rn' uoo,_.. .,u ""- "'"-' "''°'"" A/WI" AD'"
MRES# INl U28 SV R213 A/D28 K2 AD29 c41f1ooopF~WK.!!. CLK/INO u R3~ J r'RDCEN# L12 RDCEN# A/D29 L2 AD30

e; ; rn I' ~ "' ,. ; I' A/DI o " AD><
, ; M ,,; O - "" '!.lACn A/M ADDO'

CO R6 7 BRCNDO t"" ADDR2 Cl lfil ~
R7 B BRCNDl'°' ADDR3lft1 ~
RB

9
BRCND3"' ALE F12DATA~ I osc

U27

sv

1~ veer

10Kil
7 GND CLK2XIN

B/WN# RD
R9 10 DATAEN#~lO BWN'

RD# Fll WR.!1,.1
WR#,-- ~

EXOE#
SYSCLK

Hl 2SYSCLK#
SYSCLK IUT1 orsGNr<N
BUSGNT#~DIAGO"
DIAGO~ DIAGl
DIAGl

~R
~~
kl 0-A/D

c:
!ll z
c;)

;!
m
:ti

"' ~
z

~
~
!!l

~
~
(/)

)>

:g
....
n
~
0 z
~
m

~
ill

G® USING THE IDT79R3051™ AND APPLICATION

THE IDT79R3081™ WITH THE NOTE
AN-111

HP16500 LOGIC ANALYZER
Integrated Device Technology, Inc. Supplement to Application Note AN-93

By Gary Szilagyi

INTRODUCTION
In Application Note-93, the use of IDT's 7RS364

disassembler with the HP16500 Logic Analyzer for the
IDT79R3051™ RISController™ family of CPUs was dis­
cussed in detail. However, the original versions of the
disassembler were form-fitted for the R3000 CPU interface of
a 32-bit non-multiplexed bus design. In order to accommodate
the high level of integration on-board the R3051, including the
4kB-8kB of instruction cache, 2kB of data cache, 4-deep read
and write buffers and the R3000A execution engine-all in a
single 84-pin package, the 32-bit bus required multiplexing
address and data pins. Although the original versions of the
disassembler remain compatible with the new family of IDT's
RISControllers, an effort was made to simplify the interface
between R3051 and the disassembler to accommodate simple
triggering schemes, as well as future IDT embedded control­
lers that continue in the path of the R3051 family.

THE IDT7RS364 DISASSEMBLER AND THE
IDTR3051

The I DT7RS364 Disassembler consists of a software pack­
age that greatly eases the task of debugging software on the
IDTR3051 family of CPUs. The HP16500 allows the capture
of executed hex/binary machine opcodes in a typical Logic

(State/Timing E) (Listing 1)

Markers
011

Analyzer State Trace Listing format with the ability to decode
and display the acquisitions in the R3000 assembly code
mnemonic format, as seen in Figure 1. Thus, the engineer
does not have to resort to look-up tables, and can effectively
determine the exact processor state for easy software debug­
ging.

The original versions of the disassembler were form-fitted
to the R3000 CPU interface. Although the derivative products
of the IDT R3051 family are compatible, the RD and WR
signals used for data acquisitions by the disassembler pack­
age causes some confusion during a high-speed burst read.
As discussed in Application NoteAN-93, the work-around was
to create a more complex read strobe in order to capture a
four-word burst read by setting up a trigger mechanism on the
HP16500 that looks like: [(SysClk == t) AND [(ACK== 0) OR
RDCEN == O.ll:_!:iowever, this is only applicable to systems
that bring the ACK signal LOW at precisely the same time the
RDCEN is LOW, or that don't bring it LOW at all during a four
word burst read. If, for instance, the ACK signal triggered in
the phase between two successive RDCENs, a duplicated
capture would occur. The disassembler was modified a
second time to remedy this situation. In a read cycle, the RD
pin will be asserted LOW for the entire cycle and the RDCEN
signal toggles to successfully pass each of the four words
across the bus. The newest version of the disassembler

(lnvasm) (Print) (Run)

ADDR 11 R3000 Mnemonic
11 STAT 11 Time

Hex 11 hex 11 Hex 11 Absolute

-6 lFCOOOOO J OxlFC00220 0010 0 s
-5 1FC00004 NOP 0010 760 ns
-4 1FC00220 LUI vO,OxOOlO 0010 1. 52 us
-3 1FC00224 MTCO v0,$12 0010 2.24 us
-2 1FC00228 MTCO zero,$13 0010 3. 0 0 us
-1 1FC0022C LUI vO,OxAOOO 0010 3.76 us

0 1FC00230 LUI tO,OxAAAA 0010 4.52 us
1 1FC00234 ORI t0,t0,0x5555 0010 5.24 us
2 1FC00238 SW tO,OxOOOO(vO) 0010 6.00 us
3 1FC0023C SW zero,Ox0004(v0) 0010 6.76 us
4 00000000 STORE DATA OxAAAA5555 0000 7.40 us
5 1FC00240 LW tl,OxOOOO(vO) 0010 7.88 us
6 00000004 STORE DATA OxOOOOOOOO 0000 8.52 us
7 1FC00244 NOP 0010 9.00 us
8 00000000 LOAD DATA OxAAAA5555 0010 9.64 us
9 1FC00248 B OxlFC00258 0010 10.32 us

Figure 1. R3051 Address/Data Trace List on a Logic Analyzer
The IDT Logo is a registered trademark and RISController, lDT79R3051 and IDT79R3081 are trademarks of Integrated Device Technology Inc.
All others are trademarks of their respective companies. '

©1992 Integrated Device Technology, Inc. 6192
146

USING THE IDT79R3051™ AND IDT79R3081™ WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTE AN-111

begins "LOAD" captures not on RD, but rather upon the RDCEN.
For interleaved memory systems that do not toggle the RDCEN
pin, please refer to section "Hazards" for more details. During
a write cycle, it triggers upon the rising edge (from LOW-to­
H IGH) of the WR signal. Thus, the newest revision of the
disassembler now expects the RDCEN and the WR signals as
clocks to strobe the address and data into the HP16500, as
well as the WR, D IAG_ 1 and DIAG_O to verify and decode the
processor status

INTERFACING THE HP16500 TO THE '385
EVALUATION BOARD

In order to insure proper operation of the disassembler, the
correct interface between the R305x target system and the
HP16500 must be available. The disassembler requires a
particular pinout setup on the logic analyzer's five 16-channel
probe pod sets. The interface protocol must be followed for
correct interpretation of the address, data, and status lines by
the pre-processor. Table 1 displays the default pod connec­
tions that the HP16500 expects (same setup for the 7RS385
evaluation board). This information is stored on disk in the
configuration file "DIS_305x_E". When loaded, this file not
only loads the disassembler, but also all the state and timing

information, including the default pod connections expected
at the system interface.

Application Note-93 discusses in detail the interface be­
tween typical R305x based systems and the logic analyzer.
Rather than repeat that discussion, the interface between the
7RS385 Evaluation board and the disassembler requires
some elaboration. For instance, the '385 Hardware User's
Manual shows the connections to be made from the board's
five 20-pin logic analyzer sockets and the logic analyzer's five,
16-channel pods. Note however that in section 2-5 of the '385
Hardware User's Manual, the connections on the status pod
(pod#5) are incorrect. In order to be consistent with the
protocol of the disassembler, some of the pins need to be
connected as follows:
•WR (J12 pin #17) needs to be on pod #5 channel #4
• RDCEN (J12 pin #14) needs to be on pod #5 channel #5

The disassembler also requires status lines for determining
processor status: WR, RDCEN, DIAG_ 1, and DIAG_O. The
WR signal distinguishes between read and write cycles. The
RDCEN pin is used to identify a false trigger for applications
that assert the RDCEN signal during writes. In order to avoid
a duplicate capture, the RDCEN signal is polled to determine
if it was the cause of the acquisition. If it was, then a trigger-

Table 1. R3051 Default Pod Connections on the HP16500 Logic Analyzer

POD 5 POD 4 POD 3 POD 2 POD 1
ch an sig ch an sig ch an sig ch an sig ch an sig

15 x 15 A/D(31) 15 A/D(15) 15 A(31) 15 A(15)

14 x 14 A/D(30) 14 A/D(14) 14 A(30) 14 A(14)

13 x 13 A/D(29) 13 A/D(13) 13 A(29) 13 A(13)

12 Diag_1<21 12 A/0(28) 12 A/0(12) 12 A(28) 12 A(12)

11 x 11 A/0(27) 11 A/D(11) 11 A(27) 11 A(11)

10 Diag_O 10 A/D(26) 10 A/0(10) 10 A(26) 10 A(10)

9 x 9 A/D(25) 9 A/D(9) 9 A(25) 9 A(9)

8 x 8 A/0(24) 8 A/D(8) 8 A(24) 8 A(8)

7 x 7 A/0(23) 7 A/0(7) 7 A(23) 7 A(7)

6 x 6 A/D(22) 6 A/D(6) 6 A(22) 6 A(6)

5 RDCEN 5 A/0(21) 5 A/0(5) 5 A(21) 5 A(5)

4 WR 4 A/D(20) 4 A/D(4) 4 A(20) 4 A(4)

3 x 3 A/0(19) 3 A/0(3) 3 A(19) 3 Addr(3)

2 x 2 A/0(18) 2 A/D(2) 2 A(18) 2 Addr(2)

1 x 1 A/D(17) 1 A/D(1) 1 A(17) 1 BEN(1)

0 x 0 A/D(16) 0 A/D(O) 0 A(16) 0 BEN(2)

NClk WR MClk RDCEN LClk KClk JClk

NOTES:
1. Master Clock Format: Nt +Mt (default for the 7RS385 Evaluation Board setup)
2. POD5(12) is Diag_1 and POD5(10) is Diag_O (Diag pins are not latched on the 7RS385 Eval Board). If running uncached, then Diag_1 MUST be grounded

(GND), and Diag_O is not used by disassembler.
3. A(31 :4) are connected to the Address Latch outputs. The rest of the signals are connected to R3051 outputs. X's denote unused probes that can be

assigned by the user.

147

USING THE IDT79R3051™ AND IDT79R3081™ WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTE AN-111

DIAG_1---i

DIAG_o---.

ALE---i

R3051 Outputs

FCT373
or

FCT841

LATCH

Rd Cache
Latched
DIAG_1

1---------- Latched
DIAG_O

Logic Analyzer Probes

error message, ''T.E", and the store instruction along with the
write data on the bus is displayed (e.g. ''T.E. (STORE
Oxxxxxxxxx)). The diagnostic pin D IAG_ 1 distinguishes if the
external memory read was cacheable, and if so, determines
with DIAG_O if it was an instruction or data read. Note that for
the newest IDT embedded controller, the R3081, DIAG_1 is
defined during writes, yielding cache information for "STORE"
instructions. A second version of the disassembler,
"DIS_3081", exploits this feature for external cache support.
By defining the DIAG_1 pin during writes, the CPU will signal
whether the data being written was retained in the on-chip
data cache. Keep in mind that the DIAG_O pin remains
undefined during write cycles. This information is extremely
helpful to the programmer to determine the processor's state
when tracing through the software. Figure 2. R3051 Address/Data Trace List on a Logic Analyzer

The diagnostic pins on the '385 board are NOT LATCHED,
and therefore are time-multiplexed pins. Thus, the user must
either latch these pins with an external latch as seen in Figure
2 or proper decoding of cached code, or connect both diag­
nostic pins to GND. Although the disassembler is capable of
interpreting the bus transactions of cached code, keep in mind
that all logic analyzers and disassemblers can only capture
external CPU memory accesses. The R3051 has large
internal caches, and is capable of running much of its code
from within. In order for the disassembler to accurately reflect
the entire instruction/data flow, the R3051 must be ran
uncached. For more information regarding running cached
code and data, please refer to Application Note AN-93 for a
complete discussion.

LOADING AND RUNNING THE
DISASSEMBLER

Included in the software package are two files. The first is
the disassembler application "DIS_305x". The second is the
setup file, "DIS_305x_E", containing all the state and timing
information required by the disassembler, as well as the
assigned pod connections expected by the HP16500 for the
R305x target system.

After the HP operating system boots up completely, the
system configuration screen as shown in Figure 3 should be
displayed. To load the disassembler into the HP16500, the
following steps must be taken:
1. Insert the disassembler diskette into the front disk drive.
2. Select the "Configuration" field as shown in Figure 3. A

pop-up menu with options will appear. Choose the "Front
Disk" under the pop-up menu.

3. A new screen will appear that looks like Figure 4. Select
the "Load" and "State/Timing" fields, and load in the
configuration file "Dis_305x_E" by selecting "Execute" as
shown in Figure 4.

The H P16500 will then load the disassembler, as well as all
the state and timing information and the expected pin-configu­
ration as shown in Table 1 previously. Once the disassembler
application and setup files are loaded into the HP, the logic
analyzer is ready to set trace conditions for data acquisition.

148

(

(

(System) Configuration

Master Frame

Al PATIERN GEN J-t­
B

c 111 ·.1 LJ
D H_\Jt::===--__JJ eS-232C J
E [STATE/TIMING J

Figure 3. HP16500 Screen Display

System) (Front Disk) EJ
Load) (State/Timing_E) from file(DIS_305x_E)

~
Filename File Type F'iJ e Description ---
DIS_JOSl inverse_assm R305x Inverse Assembler
DIS_JOSl_E 16510B_config R305x Config file

Figure 4. HP16500 Load Screen Display

USING THE ID179R3051™ AND ID179R3081™ WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTE AN-111

With the application files loaded, the disassembler is al­
most ready to be triggered by the target system. Follow the
steps below that describe how to run and trigger the
disassembler package:
1 . Select the "System" field as shown in Figure 4. A pop-up

menu will appear with the option of "State!Timing". Choose
this field to enter the state and timing mode of acquisition.

2. A new window will appear that is shown in Figure 5. Under
the "Configuration" menu lies options that allow the user to
set display or change the current configuration of the
interface, clocks, and pod connections.

3. Trigger the HP16500.

(Staterriming E) Configuration

Analyzer1 Analyzer2

Name: ~
Tjpe: ~ Type: GQ

lklassignedPods

E- Pod 1)

t- Pod2)

t- Pod3)
t- Pod4)
t- Pod5)

Figure 5. HP16500 State/Timing Mode Display

(Staterriming E) (Listing 1)
Markers

Off

Once triggered, the logic analyzer will begin its acquisition,
and go directly to the "Listing" field. The addresses and
disassembled data will be displayed. Note however that the
displayed disassembly may be incorrect. This is due to an
"unsynchronized" system. The captured data needs to be
synchronized with the logic analyzer's display to insure cor­
rect disassembly of the bus. The problem of unsynchronized
captures arises due to the incomplete status of the processor
state for data loads. As a result, when an instruction fetch is
scrolled to the top of the screen, and a load data is displayed,
but the corresponding load instruction was "cut off" or scrolled
off the screen, the disassembler software looses it reference
point by which it identifies the load data. As a resu It, the load
data may be decoded incorrectly as an instruction as seen in
Figure 6. Notice in this Figure the instruction on line-2. It was
disassembled as an instruction instead of as a data load. Also
notice the address of the instruction in the sequence of the four
word fetch to main memory. This is an unsynchronized
display because the corresponding load instruction was scrolled
off the top of the display, and due to the way the disassembler
interprets and tags the load datas, the reference point was
lost. As a result, the load data was interpreted and decoded
as an instruction. As shown in Figure 7, the correctly synchro­
nized system has the load instruction displayed at the top of
the screen (identified by its address), and the load data is
interpreted correctly.

(lnvasm) (Print) (Run)

ADDR 11 R3000 Mnemonic 11 STAT 11 Time

Hex 11 hex 11 Hex 11 Absolute

-3 1FC00224 NOP 0010 2.24 us
-2 1FC0022B SRL t4,zero,tB 0010 3.00 us
-1 1FC0022C NOP 0010 3.76 us

0 1FC00230 J OX1FC084FO 0010 4.52 us
1 1FC00234 NOP 0010 5.24 us
2 1FC00238 LW vO,OxOOOO(sO) 0010 6.00 us
3 1FC0023C NOP 0010 6. 76 us
4 00000000 STORE DATA OxAAAA5555 0000 7.40 us
5 1FC00240 LW tl,OxOOOO(vO) 0010 7.88 us
6 00000004 STORE DATA OxOOOOOOOO 0000 8.52 us
7 1FC00244 NOP 0010 9.00 us
8 00000000 LOAD DATA OxAAAA5555 0010 9.64 us
9 1FC00248 B OxlFC00258 0010 10.32 us

Figure 6. Incorrectly Synchronized Capture (Note line ·2)

149

USING THE IDT79R3051™ AND IDT79R3081™ WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTE AN-111

(State/Timing E) (Listing 1) (lnvasm) (Print)(Run)
Markers

Off

Label>

Base>

-4
-3
-2
-1

0
1
2
3
4
5
6
7
8
9

ADDR(2)

RD

ADDA 11 R3000 Mnemonic 11 STAT 11 Time

Hex 11 hex 11 Hex 11 Absolute

1FC00220 LW v0,0x0008(s0) 0010 2.24 us
1FC00224 NOP 0010 2.24 us
1FC0022B LOAD DATA Ox12620003 0010 3.00 us
1FC0022C NOP 0010 3. 7 6 us
1FC00230 J OX1FC084FO 0010 4.52 us
1FC00234 NOP 0010 5. 2 4 us
1FC00238 LW vO,OxOOOO(sO) 0010 6.00 us
1FC0023C NOP 0010 6. 7 6 us
00000000 STORE DATA OxAAAA5555 0000 7. 4 0 us
1FC00240 LW tl,OxOOOO(vO) 0010 7.88 us
00000004 STORE DATA OxOOOOOOOO 0000 8. 52 us
1FC00244 NOP 0010 9. 0 0 us
00000000 LOAD DATA OxAAAA5555 0010 9.64 us
1FC00248 B Ox1FC00258 0010 10.32 us

Figure 7. Correctly Synchronized Capture (Note line -2)

00 01

RD

0
0
1
1

00 01

ADDR(2) x

0
1
0
1

l

1
0
0 NOTE: Signal will remain low while

0 not in a read cycle

TRIGGER needs to be double transition
to capture all four words

Figure 8. Simulated RDCEN signal

STORE

b.y

If b.y :s; 1 Ons, a Trigger Error will
occur (data will be diplayed), and
the STORE will be missed.

Figure 9. RDCEN Asserted during STORE

150

USING THE IDT79R3051™ AND IDT79R3081™ WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTE AN-111

Rd

RDCEN

Wr

ACK

Trigger

Figure 10. Simple Trigger Logic

To synchronize the system and to insure valid results, the
following steps must be taken:
1 . Identify the first instruction fetch by its address, not its

displayed mnemonic, of the captured data and scroll this
line to the top of the screen display.

2. At the top of the HP16500 screen is the field "lvasm".
Select this, and the currently displayed capture will be
synchronized.

3. Always make sure that each new capture, or a jump ahead
in the analyzer's buffer memory is re-synchronized prop­
erly or erroneous data might be displayed. The same
applies for any move backwards for any displayed capture.

HAZARDS
For interleaved memory systems that do not toggle the

RDCEN four times, but rather keep it asserted, the only data
to be captured during quad-word reads will be the last word of
the transfer. In order to fix this, the usermightwishtosimulate
a RDCEN strobe during the quad-word read by utilizing the
lower order address pins Addr(3:2). This can be accom­
plished by gating the Addr(2) pin of this 2-bit bus with the RD
signal from the CPU. Whenever the next word in the se-

151

quence comes across the bus during a read cycle, the
transition from LOW-to-HIGH, or HIGH-to-LOW will begin an
acquisition, and thus simulate the strobbing of RDCEN. Note
however, the trigger transition on the HP must be set to both
rising and falling transitions as seen in Figure 8.

Another hazard to be cautious about is if the RDCEN comes
at precisely, or within a 1 Ons window (Ay} of the rising edge of
the WR signal. If so, then this would be regarded as an invalid
write with a trigger error (T.E) ocurring and the data on the bus
at the time of the invalid capture will be displayed. In this case,
the capture on the rising edge of write will be missed and the
data displayed with the T.E. is the valid capture as shown in
Figure 9. During any case that a RDCEN comes in on a write
cycle, a T.E. will occur.

Finally, a feature in HW that would be extremely useful for
triggering is a specified trigger signal for the HP logic analyzer
that would distinguish between the status of reads and writes
triggered by ACK. The trigger would simply be established by
gating the read and write signals and ORing the results as
shown in Figure 10. This should eliminate any trigger edge
problems associated with simple data acquisitions for inverse
assembly.

SUMMARY
The use of the H P16500 and the I DT7RS364 Disassembler

helps to ease the task of software development and debug­
ging on the R305x and the R3081. The disassembler formats
logic analyzer state traces into assembly level mnemonics to
allow easier user interpretation. It is one of the many useful
development tools already available for IDT's MIPS R3000
compatatible CPUs. Similarly, other R3000 software, compil­
ers, as well as other developmenttools such as the IDT7RS901
IDT/sim ROMable Kernel/Boot Monitor can also be used on
R3051 and R3081 systems with little or no modification.

(;)® IDT79R3081™ PERFORMANCE APPLICATION

ANALYSIS NOTE
AN-112

Integrated Device Technology, Inc.

By Samuel Y. Shen

INTRODUCTION
IDT79R3081'"M is a powerful, high-integration MIPS®­

compatible processor that combines the R3000A RISC CPU,
R301 OA FPA, 16k8 instruction cache and 4kB data cache
(dynamically configurable to BkB 1/BkB D), and 4-word deep
read and write buffers. It is packaged in an 84-pin PGA or
MQUAD, and is available at clock rates of 20, 25, 33, and
40MHz. The R3081 is designed to bring the high performance
inherent in the MIPS RISC architecture into low-cost, simpli­
fied, power-sensitive applications. The R3081 extends the
capabilities of the R3051™, by integrating additional re­
sources into the same pin-out. This new chip is aimed at two

separate markets: low-cost reprogrammable systems and
high-performance embedded applications. The block dia­
gram of R3081 is shown in Figure 1.

Like the R3051 and R3052, the R3081 is available in
versions with or without the on-chip MMU (i.e. E or non-E
version). In addition, the R3081 incorporates a number of
design improvements which include: an optional half-fre­
quency bus interface with support for low-cost, low-speed
memory systems with high computational throughput, user
configurable data-cache refill size, hardware-cache coher­
ency support, etc. This applications note provides some
guidelines for quantifying the performance available from the

r on BC d(3 2 0)

Clkln Clock J Master Pipeline 1
- 1 Control . r Generator

Unit
Clock Doubler

Integer
CPO CPU Core CP1

Exception /Control General Registers Register Unit
Registers (32x32) (16x64)

Memory Management ADJ :::Ei(Qonenill'rnt

Registers _§Mt er Md Unit

lnt(5:0)*
_Mt.illl[J1v-U nit _!21vTcJe--U nit

Translation Lookaside Aaaress Ade er :JVlUllT6lVO nit

Buffer (64 entries) PC control Exception/Control

1 Virtual Address 1 Fp Interrupt
Data Bus1 y

Physical Address Bus

32 v j
J.---36

Configurable Configurable
Instruction Data
Cache Cache
(16kB/8kB) (4kB/8kB)

Data Bus

1
1

Parity
R3051 Superset Bus Interface Unit Generator

4-Deep 4-Deep OMA BIU Coherency
Read Buffer Write Buffer Arbiter Control Logic

1 • ,,,L
Address/ R/w S sclk* y
Date Ctr I Ctr I Ctr I

Figure 1. The IDTR3081 Block Diagram

The logo is a registered trademark and IOT79R3051 and IDT79A3081 are trademarks of Integrated Device Technology Inc.
All others are trademarks of their respective companies. '

©1992 Integrated Device Technology, Inc. 152 6/92

IDT79R3081 PERFORMANCE ANALYSIS

R3081. The performance evaluation of the R3081 will be
presented based on the standard embedded, integer, float­
ing-point, and the SPEC benchmarkings. Finally, a perfor­
mance comparison between an R3000/R3010-based system
and an R3081-based system will be used to demonstrate the
high performance of the high-end version of the R3051
family.

FAMILY OVERVIEW
This section is intended to provide a brief overview of the

R3051 family, with emphasis on the R3081. For a detailed
description of these devices, the reader is referred to the
appropriate hardware user's manual. In addition, IDT has
prepared additional applications notes describing differences
between the various members of the family, and strategies to
insure system upgradeability. This technical literature is
available from your local IDT sales representative.

On-Chip Caches
The R3051 family achieves its high standard of perfor­

mance by combining a fast, efficient execution engine
(R3000A) with high-memory bandwidth, supplied from its
large internal instruction and data caches. These caches
insure that the majority of processor execution occurs at the
rate of one instruction per clock cycle, and serves to decouple
the high-speed execution engine from slower, external memory
resources. The R3051 family caches are direct-mapped. This
mapping coupled with the large cache sizes resident on the
R3051 family, achieve extremely high hit ratios (both instruc­
tion and data) while maximizing speed and minimizing com­
plexity and power comsumption. The R3051 family on-chip
caches are indexed with physical addresses. Therefore it
does not need to worry about cache flush on context switch.

As to the write policy, the R3051 family utilizes a write
through strategy. This means, whenever the processor is­
sues a write operation to memory, then both the cache and
main memory are written. If it is an uncacheable reference,
then only memory is written. Write through has the advantage
that main memory has the most current copy of the data. Also,
write through is easier to implement than write back. In the
R3051 family, the on-chip 4-word deep write buffer is used to
allow the processor to continue execution while the memory
is updated. This optimized write buffer implementation effi­
ciently reduces write stalls, a common disadvantage of the
write through policy.

The line size of a cache refers to the number of cache
elements mapped by a single TAG element. In the R3051
family, the instruction cache line size is 16 bytes, or 4 words,
and the data cache line size is 4 bytes, or 1 word. The reason
to have 4 words for instruction and 1 word for data is because
the instructions typically execute sequentially. Thus, there is
a high probability that the instruction address right after the
current one will be the next instruction according to the
principle of locality. Using a larger line size allows more
instructions to be stored on-chip with equivalently fewer
memory bits.

The current family offers a variety of different cache sizes.
The R3051 (E) contains 4kB of instruction cache and 2kB of

APPLICATION NOTE AN-112

data cache, the R3052(E) contains BkB of instruction cache
and 2kB of data cachewhilethe R3081 (E) doubles the R3052's
caches, providing a 16 kB instruction cache and a 4kB data
cache. The R3081 's caches can also be dynamically config­
ured as Bk each for instructions and data, so software can
select the most effective organization. Later in this applications
note, benchmarks will be shown which illustrates the impact of
cache organization on performance.

R3081 FPA
Unlike the R3051/52, the R3081 contains an on-chip Float­

ing-Point Accelerator (FPA), which operates as a coprocessor
for the R3000A integer processor and extends the instruction
set to perform arithmetic operations on values in floating-point
representations. The FPA, with associated system software,
fully conforms to the requirements of ANSI/IEEE Standard
754-1985, "IEEE Standard for Binary Floating-Point Arith­
metic." In addition, the MIPS architecture fully supports the
standard's recommendation.

The R3081 allows the on-chip FPU interrupt to be internally
connected to any of the CPU's six interrupt inputs. This can be
done by software.

R3081 Additional Enhancements
Although with the bigger cache and on-chip FPA, the R3081

also incorporates some other design improvements. For ex­
ample, the data cache block refill size can now be dynamically
set to either 1 or 4 words. (Again, this can be done by
programming the unique configuration register, shown in Fig­
ure 2.) In the R3051 /52, the refill size is selected at reset and
can not be changed dynamically.

The R3081 bus interface was modified to allow an external
bus master to invalidate selected cache lines. This cache
invalidation function is intended for OMA operations, and can
result in a net system throughput improvement.

A 1 x clock input mode is provided in the R3081. The R3081
can use either a 2x clock or a 1 x clock as an input clock. Thus,
a 40MHz R3081 can be plugged into an existing20MHz R3051
design. Half-frequency mode has been included in the R3081.
Again, when enabled, the bus will operate as for an R3051
operating at half the frequency of the R3081 CPU.

Power consumption reduction is a big issue for today's
microprocessors especially in the embedded system and
notebook market. Therefore, a halt mode and a reduce fre­
quency mode is incorporated in the R3081 to reduce power
consumption when the processor is idled. To enable these
modes, appropriate bits in the configuration register needs to
be set by software.

RESERVED

L: lock bit S: slow bus b

D: data block refill size bit FPINT: floating-point interrupt bit

H: stall processor bit R: reduce frequency bit

A: cache configuration bit RESERVED: must be zero

Figure 2. R3081 Configuration Register

153

IDT79R3081 PERFORMANCE ANAL VSIS

Additionally, the R3081 provides a slow bus turnaround
mode. This mode will allow extra cycles added between
changes in AID bus direction. This helps to eliminate high­
speed buffers from the system design, by allowing more time
for memory to tri-state.

UNIX® BENCHMARKS
The UNIX benchmarks consist of eight benchmarks which

are briefly described below. These benchmarks are significant
in that they will stress even the relatively large caches present
on the R3081, thus providing better insight into the perfor-

APPLICATION NOTE AN-112

mance gain achievable in large (real-world) applications.
Typical "standard" benchmarks are typically too small to
stress the R3081 caches, and thus do not provide such
representative results.

The various benchmarks shown are:
idtc-cc1 (v3.5)-The executable GNU 'C' compiler pro­

gram modified to generate code for the IDT/C cross assem­
bler. This benchmark uses input file "cca16355.cpp" with the
"-quiet -dumpbase st.c -0 -version" enabled.

idt-cpp (v3.5)-The executable GNU 'C' pre-processor
program compliant with the ANSI 'C' standard. This bench-

Table 1. Execution Times and Cache Misses for UNIX Benchmarks Running on the R3051 Family

4.78 4.04

9.62 14.00 6.33 13.40

159 166 159

0.02 14.36 0.02 15.52 0.01 14.36

Sec 36.8 37.1 34.5

Miss
Ratio 1.97 5.76 1.98 5.79 1.15 5.76

Sec 9.92 9.93 9.92

Miss
Ratio 0.00 17.27 0.00 17.29 0.00 17.27

Sec 1.43 1.44 1.00

Miss
Ratio 9.93 9.18 9.93 9.19 3.69 9.18

Sec 560 560 560 560

Miss
Ratio 0.00 0.27 0.00 0.27 0.00 0.27 0.00

Sec 130 131 92 92

Miss
Ratio 9.97 5.22 9.97 5.24 3.90 5.22 3.90

Sec 5.38 5.38 5.24 5.25

Miss
Ratio 0.42 19.79 0.42 19.79 0.12 19.79

NOTE:
Miss ratio - instruction miss ratio =total instruction miss I total instruction number •100%

- data miss ratio= total data miss I total load instruction •100%
- the marked area means the best configuration based on the execution time

154

D D

3.81 3.42

3.85 10.60

159

O.D1 13.08

29.9

8.80 9.08

0.00 11.93

0.87

2.19 6.88

557 558

0.00 O.D1 0.00 0.06

86 80

1.99 2.20 3.19

4.61 4.99

0.12 10.45 0.05 16.42

IDT79R3081 PERFORMANCE ANALYSIS

mark has an input file "st.c" with the "-v -undef -D_GNUC_
-D_CHAR_ UNSIGNED_ -D_OPTIMIZE_ -DR3000 -
DLANGUAGE_C" options enabled.

compress-A BSD4.3 data compression file. "Esp_pixie"
is an input file for this benchmark.

diff-A BSD4.3 differential file and directory comparator.
This benchmark compares two files f1 and f2 to see their
differences.

dis-Dis disassemble object files into machine instruc­
tions. Standard is the object file in our example. -hand-Sare
specified to print general register names and source listings.

grep-A BSD4.3 UNIX function. It searches a file for a
pattern. ATAN was used as a pattern to search file grepinput.

nm-A name list dump of MIPS object file. Again, standard
file was used as an input.

yacc-A standard compiler-compiler type language. Yacc
converts a context-free grammar into a set of table for a simple
automaton which executes a parsing algorithm. Yaccinput is
the input file for this benchmark.

During the tests, pseudo-FPA was added to the R3051 (E)/
52(E) to be able to eliminate the FPA factor; that is, if the
program requested an R301 O FPA operation, the nerfor­
mance shown assumes an FPA was available (that :,, these
results are as for an R3081 with its on-chip cac!1e size
reduced). This is done to force a cache-effect only shown in
this result. Table 1 is the summary of the test result.

These results basically illustrate the cache issues playing
a critical role on the microprocessor performance. In real­
world applications, larger caches can have a substantial
impact on system performance. In this example, bigger
caches and dynamical configuration are pushing the perfor­
mance of the R3051 family up 15%.

In addition, Table 1 illustrates the unique and important
dynamic configuration effect. It can be noticed that the 16KI/
4KD cache configuration provides the best hit ratios for IDTC­
cc1, IDTC-cpp, dis, and nm, while 8Kl/8KD is more suitable for
the otherfourprograms. Note thatthe same profiling tool used
to obtain these results is also available to system designers
attempting to tune the performance of their application.

Table 2. Stanford Benchmark Test Result

Benchmark R3081 System RC3240

Perm 0.063 0.090

Towers 0.066 0.068

Queen 0.047 0.045

lntmm 0.052 0.054

Puzzle 0.047 0.050

Quick 0.346 0.309

Bubble 0.047 0.047

Tree 0.054 0.055

FFT 0.089 0.094

Mm 0.083 0.086

APPLICATION NOTE AN-112

STANDARD BENCHMARKS
There are a number of popular benchmarks that are

commonly used to compare processor performance. Five of
the most popular are the Stanford, Dhrystone, Unpack,
Whetstone, and SPEC suite programs. Embedded system
performance is addressed by the Stanford benchmark. Inte­
ger performance is addressed by the Dhrystone benchmark.
Floating-point performance is addressed by the Linpack and
Whetstone programs. As to the SPEC suite, SPECmark is
used as a standard performance index nowadays for most
UNIX processor comparisons. The main memory used on the
R3081-based simulation system is sons DRAM, in a two way
interleaved configuration. This is viewed to be a fairly realistic
design around this processor (no zero wait state SRAMs).

Stanford Benchmarks
This is a suite of benchmarks that are relatively short, both

in program size and execution time. It requires no input, and
prints out the execution time for each program, using the
system-dependent routine Getclock to find out the current
CPU time. It does a rudimentary check to make sure each
program gets the right output. This suite consists of ten
different benchmarks which covers both integer and floating­
point operation, as described below:

perm-Computes permutations of seven elements five
times. Heavy use of arrays and procedure calls.

towers-Solves Towers of Hanoi for fourteen disks. Heavy
use of recursive procedures.

queen-Solves the eight queens problem fifty times. Ex­
tensive use of both loops and recursion with backtracking.

intmm-Multiplies two 40x40 integer matrices. Entirely
limited by integer multiply time.

puzzle-Forest Baskett's program solves a Soma Cube
type problem. Heavy use of small, tight loops.

quick-Performs a quick sort of 5000 elements. Tests
recursion and array indexing.

bubble-Reads a file and does a bubble sort of 500
elements. Heavy use of array manipulation.

tree-Performs binary tree sort of 50000 items. Heavy use
of pointers, dynamic data structures.

fft-computes a 256-point Fast Fourier Transform twenty
times. (This is an FP benchmark.)

mn-multiplies two 40 x 40 single-precision matrices. (This
is an FP benchmark.)

Table 2 illustrates the separate execution time for the
Stanford benchmark suite. Numbers for the 25MHz MIPS
RC3240 system are also given for comparison issues. This
system is a server based on the R3000A CPU, R301 OA FPA,
and external caches. More description of this system will be
given later in this AP note.

Dhrystone Integer Benchmark
Dhrystone is a CPU-intensive synthetic benchmark con­

sisting of a mix of higher level language instructions. Dhrystone
has become a de facto standard measure of integer perfor­
mance. In the synthetic benchmark program, 100 statements
are dynamically executed between the comment lines "start
timer" and "stop timer". The statements are balanced with

155

IDT79R3081 PERFORMANCE ANALYSIS

Table 3. Dhrystone 1.1 Benchmark Test Results

Benchmark lcache Miss Dcache Miss Result

Dhrystone 0.00% 1.52% 44,052 Dhry.

Table 4. Linpack/Whetstone Benchmark Test Results

Benchmark lcache Miss Dcache Miss Result

Unpack 0.01% 12.67% 2.6 Mflops

Whetstone 0.01% 0.00% 11,764 Whet.

regard to statement types, data types, and data locality.
Dhrystone does not contain any floating-point data or opera­
tions.

The benchmark also does not make any system calls.
However, its performance is highly dependent on two C library
functions, strcpy() and strcmp(), which represent about 25% of
computation.

Owing to the above attributes, Dhrystone performance can
be significantly impacted by compiler techniques and C library
implementation. There is a separate applications note which
mentions the common pitfalls when benchmarking with the
7RS385 (an R3051 /52 evaluation board) especially with Dhry­
stone program.

Another problem in using Dhrystone to measure perfor­
mance has to do with the size of its executable. Dhrystone
achieves a virtually 0% miss rate even in the R3051; thus, the
benefit of the larger caches in the R3081 will not be adequately
displayed by this benchmark.

Table 3 reflects Dhrystone v1 .1 running on an R3081-25-
based system. Again, however, IDT does not consider the
Dhrystone benchmark to be an adequate yardstick for modern
microprocessor performance, due to its unusual reliance on
two library functions and due to its small size. Further, the rules
for Dhrystone benchmarking (e.g. no procedure inlining) do not
allow the true capabilities of the MIPS compiler suite to be
demonstrated.

Unpack/Whetstone Floating-Point Benchmarks
Written in FORTRAN, Unpack is a general-purpose math­

ematical library of functions that solves systems of linear
equations. The Unpack benchmark is a program that solves a
dense system of linear equations using a small subset of the
standard Unpack library functions. As a linear-equations pack­
age, Unpack emphasizes floating-point addition and multipli­
cation. The results, measured in millions of floating-point
operations per second (Mflops), are typically derived from a
calculation of a 100 x 100 submatrix of linear equations.

Whetstone is a synthetic mix of integer and floating-point
calculations, transcendental functions, conditional jump, func­
tion calls and array indexing. This benchmark was originally
developed in 1970 and was written in ALGOL 60s. Since that
time, it has been rewritten in FORTRAN and, like Unpack, has
evolved into a standard benchmark of floating-point perfor­
mance. Results display in thousands or millions of Whetstone
interpreter instructions per second (Kwhips or Mwhips, some­
times referred to as MegaWhetstones).

156

APPLICATION NOTE AN-112

Table 4 shows the Unpack and the Whetstone number
(double precision only) coming out of the R3081 simulated
system. The system parameters are as described earlier.

SPECmarks
SPECmark is the geometric mean of the SPEC® bench­

mark suite. Compared with the arithmetic mean (average),
the geometric mean is a fairer way of reporting suite results
because it compensates for varying run lengths while giving
each program equal importance.

The SPEC benchmark suite includes ten different pro­
grams drawn from real-world applications and other scientific
and engineering areas. These programs are described briefly
below:

gee-the GNU C compiler distributed by the Free Soft­
ware Foundation. This benchmark measures the time ittakes
for the GNU C to convert 19 preprocessed source files into
optimized SUN-3 assembly language (.s file) output.

espresso-one of a collection of tools for the generation
and optimization of Programmable Logic Arrays (PLAs). This
benchmark was developed by UC Berkeley. It takes a set of
seven input models which are represented as truth tables and
produces the same format outputs.

spice2g6-an analog circuit simulation and analysis ap­
plication. This benchmark was developed by UC, Berkeley
also. It takes an input model from HP that simulates a bipolar
circuit.

doduc-a Monte Carlo simulation of the time evolution of
a thermohydraulical modelization for a nuclear reactor's
component.

nasa7-a collection of seven floating-point intensive ker­
nels. The input data is double-precision.

Ii-a lisp interpreter written in C. This benchmark mea­
sures the time to solve the 8-queens problem.

eqntott-an integer intensive benchmark developed by
UC, Berkeley. This benchmark translates a logical represen­
tation of a boolean equation to a truth table.

matrix300-a vectorizable FORTRAN scientific bench­
mark using double-precision floating-point arithmetic.

fppp--a quantum chemistry benchmark. It measures per­
formance on one style of computation which occurs in the
Gaussian XX series of programs.

tomcatv-a highly vectorizable double precision floating­
point FORTRAN benchmark.

Our purpose for running the SPEC benchmarks is merely
to compare the performance of a typical desktop R3081-
based system with the performance of a discrete R3000A
system. Note that compiler technology continually advances;
this has been demonstrated by the recent breakthroughs in
performance of the matrix300 benchmark by MIPS and
others, using compiler techniques. The results of these
techniques are obviously not included in this table, and thus
this table should not be construed as an absolute system
performance indicator. Rather, it should be used to relate the
performance of the R3081 to an existing, available, 25MHz
UN IX workstation/server.

IDT79R3081 PERFORMANCE ANAL VSIS

Table 5. SPECmark of R3081/R4000

Benchmarks R3081-25 RC3240

gee 17.2* 16.6

Integer espresso 16.1 18.4

Ii 15.7 20.3

eqntott 19.0 17.5

doduc 13.8 16.4

nasal 19.2 17.1

Floating spice2g6 13.1 12.4

Point tomcatv 16.7 14.1

fpppp 13.4 20.5

matrix300 10.5 8.8

Geometric SPECmark 15.2 15.8

Mean Integer only 17.0 18.1

• This is an approximate value and for reference use only.

Table 5 illustrates the detailed SPEC results, comparing
simulated SPEC mark estimates for the R3081 with the
RC3240. For simulation, an estimate of the overhead for the
operating system (especially important to gee) has been
included but not actually measured.

R3081-BASED SYSTEM VS. RC3240 (AN
R3000- AND R3010-BASED SYSTEM}

The MIPS RC3240 RISC computer is a 25MHz R3000/
R3010-based system. These processing units are comple­
mented by large, high-speed caches of 64kB each for
instructions and data, and by sophisticated read/write buffers
for minimizing memory access overhead. The resulting pro­
cessing power is measured at over 18mips, 15.0SPEC marks,
40,000 Dhrystones, 13,800 Whestones for double precision,
17, 100 Whetstones for single precision, 3.1 Mflops Lin pack for
double precision, and 5.9Mflops Linpack for single precision.

The RC3240 requires a CPU, FPA, 30-device SRAM
cache, and a number of logic devices to implement the CPU

APPLICATION NOTE AN-112

subsystem. The R3081 merely requires a single, 84-pin
monolithic device. While the cache sizes are smaller than the
discrete external caches used in the RC3240, the cache are
large enough to handle a wide variety of real-world applica­
tions with high-performance. Further, memory design
techniques such as interleaving on the mother board serve to
mitigate the disadvantage of smaller caches. The result is that
the R3081 system described performs within 10% of the
RC3240, while dramatically reducing device cost, count, and
power consumption in the CPU.

Figure 3 shows the bar chart of the comparison between
the R3081-based system and RC3240.

SUMMARY
The highly integrated R3081 was designed to take advan­

tage of the computing power inherent in the MIPS architecture,
with a priority on reducing overall system cost and design
complexity. This chip, which provides an excellent cache hit
ratio and a floating-point HW solution attaining 15.2 SPECmark
at25MHz, fills a vital performance niche between the standard
R3000A and the R4000. Because it is software and pin
compatible with the R3051, the CPU offers a upward compat­
ibility allows the R3051 /81 user to implement a single HW/SW
base system that can be easily upgraded by choosing the
appropriate processor to fitthe target price/performance range.

relative
to R3081

1.

0.

fill! R3081-25

BRC3240

Stanford Dhrystone Unpack Whetstone

Figure 3. R3081-25 vs. RC3240

157

t;)" UPGRADE STRATEGIES FOR APPLICATION

IDT79R3051 TM -BASED DESIGNS NOTE
AN-113

Integrated Device Technology, Inc.

By Phil Bourekas

INTRODUCTION
The IDT RISController'™ family includes various highly­

integrated microprocessors providing high levels of perfor­
mance with low system cost. Currently, the R3051™ family
includes three different devices, each providing differing levels
of price periormance, yet each pin-compatible with each
other. This allows the system designer to implement a single
base system, yet offer various end products at different
capability levels. The end result to the customer is reduced
time to market for a product family, and the amortization of a
single development effort over a wider variety of end products.
This wide range of pin-compatible performance is not currently
achieved by any other RISC processor family.

This application note describes system design techniques
that insure a high degree of interchangeability with no real
design impact.

THE R3051 FAMILY
Common characteristics of the R3051 family include high

integration at low cost. All current family members are pin­
compatible. All family members include:
• Substantial amounts of separate instruction and data caches

integrated on-chip. Although the amount of caches varies
acrossdifferentfamily members, all devices contain enough
cache on-chip to achieve extremely high performance with
low-cost memory systems. The caches on the R3052 and
on the R3081 ™ are actually larger than the cache on the
Intel 80486 high-end processor, enabling these devices to
offer higher performance at lower cost.

• MIPS R3000A compatible integer CPU. The R3051 family
was designed by integrating cache and a low-cost bus
interface around the standard MIPS R3000A CPU. This
RISC core is widely recognized as an extremely high­
performance execution engine, with powerful compiler and
development tools. Some of the features of the core include
a large register file, single cycle ALU, rich set of branch
instructions (including compare operations as part of the
branch), and separate, autonomous integer multiply and
divide. Since the R3051 was designed using the standard
core, 100% software compatibility is guaranteed. Thus,
compiler tools, real-time operating systems, and other
software tools developed around the standard R3000A
work without modification on the R3051 family.

• Optional Translation Look-aside Buffer (TLB). The "E"
(Extended Architecture) versions of the RISController fam­
ily feature a 64-entry, fully associative TLB. The TLB allows
virtual addresses to be translated into physical addresses
on a 4kB page basis. The TLB is useful in providing memory
protection and debug utilities in any application; in other

applications, such as those using a real-time operating
system, or in an X-windows server, the TLB allows in­
creased system functionality to be provided.

• Simple, low-pin count bus interface. The R3051 family uses
a time-multiplexed 32-bit address and data bus to commu­
nicate with memory. Internal to the processor are 4-deep
read buffer and write buffer FIFO's to decouple the speed of
the internal execution core from the slower speed memory
system. The multiplexed bus arrangement has many ad­
vantages, such as lower-cost interface chips and ASICs,
without impacting system performance.
Currently, there are three family members. These are:

• The R3051/51 E. This device features 4kB of Instruction
cache and 2kB of Data Cache. There is no hardware
floating-point unit available on this device.

• The R3052/52E. This device features 8kB of Instruction
cac!;e and 2kB of Data Cache. As with the R3051, there is
no hardware floating-point unit available on this device.

• The R3081/81 E. This device introduces a number of new
features to the family. The primary features of interest are
changes to the caches, and inclusion of a hardware floating­
point unit; other features will be described throughout this
application note. The R3081 implements 16kB of Instruc­
tion Cache and 4kB of Data Cache; kernel software can
dynamically reconfigure the on-chip caches as BkB of
Instruction and 8kB of Data Cache.

POTENTIAL UPGRADE OPPORTUNITIES
A number of possible system upgrades from a single, base

design are possible. Elsewhere in this application note,
design considerations to assure interchangeability are de­
scribed.

Possible upgrade strategies include the following tech­
niques:

Upgrading Cache Size
As all devices are pin compatible; it is possible to increase

performance of an application by upgrading the amount of
cache available on-chip. Thus, holding all other components
the same, an R3051 may be removed and replaced by an
R3052 to double the instruction cache. An R3052 can be
removed and replaced with an R3081 , doubling both the
instruction and data caches.

Add Hardware Floating-Point
One upgrade to higher performance involves upgrading an

R3051 or R3052 to an R3081 and taking advantage of the on­
chip floating-point accelerator. Later in this applications note,
software considerations for such an upgrade are described.

The IDT logo is a registered trademark and IOT79A3051, IDT79R3081, IDT/c, IDT/kit, IDT/sim and RISController are trademarks of Integrated Device T~chnology, Inc.
All others are trademarks of their respective companies.

te1992 Integrated Device Technology, Inc.
158

6/92

UPGRADE STRATEGIES FOR R3051·BASED DESIGNS

This upgrade will obviously substantially increase the per­
formance of software containing floating-point operations;
while the IDT software floating-point environment is very
efficient, the floating-point unit of the R3081 dramatically
outperforms integer emulation, and may result in a significant
speed-up of some applications.

Increasing Frequency
Obviously, one way to increase performance is to increase

the system frequency. This may or may not be easy to do,
depending on the exact system design. Obviously, such an
upgrade will typically require the replacement of multiple
devices on the PCB.

Note, however, that R3051 family packaging insures that
the same footprint and pinout is available across the full
frequency range of the family, and for all of the family mem­
bers. Thus, the same 84-pin PLCC footprint used for a 20MHz
R3051 accommodates the package for a 40MHz R3081 , even
though that device consumes more power. This obviously
simplifies upgrading a design to a higher frequency processor.
Design techniques for increasing frequency may include:
• Using faster memory devices to achieve the same relative

access time.
• Using faster control logic, such as faster PALs or transceiv­

ers, to increase set-up time and reduce propagation delays.
For example, a 1 Sns PAL may be replaced with a 10ns PAL,
effectively allowing the clock period to be reduced Sns.

• Re-programming PALs and control logic to increase the
number of wait cycles. While this will reduce the frequency
normalized performance, the absolute performance will be
increased substantially, since the processor will execute
(typically out of its internal cache) at a higher rate.

"Clock Doubler" Operation
The R3081 presents a particularly unique opportunity to

upgrade systems using an R3051 or R3052. This is particu­
larly due to the "half-frequency bus" mode of operation of the
R3081.
A dramatic system upgrade can be achieved by:
1. Removing a 20MHz R3051 or R3052 and replacing it with

a 40MHz R3081.
2.Selecting the "half-frequency bus" and "1 x clock" modes via

the reset vectors.
The resulting system bus will continue to operate at 20MHz,

but the CPU will execute out of its internal cache at 40MHz.
The resulting system will typically see its performance more
than double (recall that the upgrade to the R3081 will also
increase the on-chip caches and add hardware floating-point,
relative to the R3051 or R3052).

It is also interesting to note that the performance impact of
running a 40MHz processor with a 20MHz bus is not as severe
as one would intuitively guess. This is due to the fact that
memory access time is really in units of time, ratherthan in wait
states. That is, 200ns access memory is 4 clock cycles at
20MHz and is 8 cycles at 40MHz; the absolute time is not
improved by running the bus faster.

Intel has estimated that for the i486 with clock doubling,
running the bus at one-half the CPU execution rate is approxi­
mately 11 % less efficient than running the bus at the full CPU

APPLICATION NOTE AN-113

rate on benchmarks such as the SPEC benchmark suite. The
R3081 contains more than twice the amount of on-chip cache
as does the i486, and thus will be even less dependent on bus
performance; thus, the performance degradation should be
even less.

DESIGN CONSIDERATIONS FOR UPGRADING
The remainder of this applications note details specific

techniques which facilitates the interchange of various mem­
bers of the R3051 family. In general, all devices are pin and
footprint compatible, so there are no PCB issues to be
concerned about. In general, the only things needed to
upgrade a design are:
• Design it around an R3051. The R3081 does include some

superset features relative to the R3051 which simplifies
high-speed systems; however, if a system works for the
R3051, it will work for an R3081.

• Make the software independent of cache size. The various
devices include varying amounts of cache on-chip. An
algorithm to determine the amount of cache available is
presented in this applications note.

• Have a strategy for software floating-point versus hardware
floating-point. The R3081 adds a high-performance hard­
ware floating-point accelerator, as well as increasing the
cache size. This applications note describes various soft·
ware techniques for dealing with software emulation versus
hardware acceleration of floating-point.
Thus, this application note details specific hardware choices

and software choices which facilitate interchanging CPUs. In
addition, the application note illustrates techniques for de­
termining the presence or absence of the R3081 config
register, the R3081 FPA, and the amount of cache on-chip.

SOFTWARE CONSIDERATIONS FOR
UPGRADING SYSTEMS

Some of the system upgrade considerations should be
accommodated in the application software (especially the
kernel). It is possible to develop a single binary set of code
which performs across all of the family members.

Sensitivity to Cache Size
Obviously, one characteristic difference among the various

family members is the amount of Instruction and Data cache
available. Thus, to insure interchangeability among these
devices, the software should be written to be insensitive to the
cache sizes.

Typically, very little of the actual application will be function­
ally sensitive to the amount of on-chip cache; the primary
difference will be in the performance achieved. This is the
primary advantage of caches with respectto memory mapped
zero-wait state RAM; caches are transparent to the software,
and do not affect the memory map.

Typically, the only part of the software that may be sensitive
to the cache size will be the boot/initialization software, which
may perform certain memory (including on-chip cache) diag­
nostics, and which must initialize the on-chip cache by per­
forming a cache flush.

159

UPGRADE STRATEGIES FOR R3051·BASED DESIGNS

Figure 1 shows a listing of a routine to perform cache sizing.
This routine uses bits of the on-chip status register to isolate
the cache (to prevent writes or cache misses from propagating
to memory), and to swap the cache (to perform the algorithm
on the Instruction cache). In order to determine hit or miss, the
algorithm places a marker in the first word of the cache, and
then looking for the cache size such that a read of the cache
forces a wrap-around to reading location zero. Once this
occurs, the maximum cache size has been exceeded, and
thus the cache size is known. Other algorithms could use the
cache miss bit of the status register, rather than a marker
value. This capability is provided in the IDT/kit™ and IDT/sim™
software packages from IDT.

Once the cache size has been determined, it is used in the
cache flush routines (for example) to completely flush the
caches. Note that if the only time the cache is flushed is at
system start-up, it is acceptable to assume a worst case
(large) cache size and flush that amount of cache; caches
smaller than the size assumed will merely be flushed multiple
times, resulting in wasted execution time but correct function­
ality. On the other hand, applications which perform cache
flushing as part of ongoing operation (e.g. to assure cache
coherency when OMA operations are used) would be sensi­
tive to performance, and thus would desire to flush only the
proper amount of cache.

Floating-Point Presence
Another difference between various family members has to

do with the presence or absence of the floating-point. This
distinction may have two impacts on the software environ­
ment:
• The initial setting of the coprocessor 1 usable bit should

reflect whether or not a hardware floating-point is available.
It is possible to create a software environment which can
dynamically determine the presence or absence of the FPA.

• The actual binary executable of the application may be best
optimized according to the presence or absence of a hard­
ware floating-point. This is discussed below.

How to Determine Floating-Point Presence
There are at least two different methods for determining

whether a floating-point is present. One way is to perform
floating-point operations and determine whether the results
are reasonable; these operations could be as simple as
moving data into and out of the FPA registers to see if they are
present, through performing floating-point calculations and
examining the results (or even possibly seeing if an exception
is reported). If the floating-point is detected as present,
coprocessor 1 should be marked as usable by the kernel.

Another method would be to use the CpCond(1)
(coprocessor 1 condition) flag. The hardware could tie the
CpCond(1) to a known state (e.g. HIGH); software could then
perform a compare operation (or move to the Ip cscr register)
to cause CpCond(1) to report the opposite polarity. A simple
branch on coprocessor (1) condition will then determine
whether the CpCond(1) signal is driven by an on-chip FPA, or
by the off-chip pull-up resistor.

APPLICATION NOTE AN-113

FPA Impact on the Binary Code
There are two methods for dealing with the software which

may or may not have a hardware floating-point unit. The
optimal method depends on trade-offs between a single
binary set operating either with or without a hardware FPA,
versus a single source set compiled twice resulting in two
binaries (one targeted to a hardware FPA and one targeted to
an integer only environment).

Using a Single Binary with and Without an FPA
If the system designer chooses to implement a single

binary capable of taking advantage of a hardware FPA when
one is available, all that needs to be done is to tap into the
inherent capabilities of the MIPS coprocessor architecture.
Specifically, if the kernel marks the coprocessor 1 FPA as
unavailable, FPA instructions will cause a trap to occur. The
kernel can then perform an integer interpretation of the FPA
instruction. The application software is then compiled to
assume the availability of a hardware FPA: if one is available
in the system fine; if not, traps will occur when FPA operations
are encountered, and the kernel can perform an emulation of
the function.

Using this technique requires two things in the software:
• Boot software must perform the diagnostics described

above to determine the appropriate setting for the
coprocessor 1 usable bit.

• The kernel must include the capability to emulate the entire
FPA unit, including the FPA operations, the register file, and
the FPA exception mechanisms used by the application.
While this technique has the advantage of resulting in a

single binary which works in either environment, the result is
added complexity and a loss of performance in the environ­
ment in which no FPA is available. Specifically, the kernel
must provide an emulation library of the entire FPA; and,
software FPA operations will include additional overhead from
the CPU exception model and from emulating all aspects of
the FPA, even though a given operation only requires a subset
of the FPA functionality.

Developing Two Binaries from a Single Source
Another technique exists whereby two distinct binaries are

developed from a single source tree. Each of the resulting
binaries is fully optimized for either an integer only environ­
ment, orfor an environment in which a hardware floating-point
is available.

This is accomplished by taking advantage of the software
floating-point library capabilities of the IDT/c™ environment.
IDT/c includes a compile time flag which can be used to control
whether hardware FPA instructions (coprocessor 1 instruc­
tions) are generated, or whether direct calls to a software
floating-point library are generated. Thus, software floating­
point is not forced to emulate the register set and data type
conversions of the hardware FPA, and execution is not forced
to go through the CPU exception model. The resulting binary
operates much more efficiently than one which goes through
the trap and emulation model described above.

A separate applications note describes how to determine
the optimal compilation environment for a given application.

160

UPGRADE STRATEGIES FOR R3051·BASED DESIGNS APPLICATION NOTE AN-113

/**

**
** _size_cache()
** returns cache size in vO

**
**/

FRAME(_size_cache,sp,0,ra)

/* save current sr */
.set
mfcO
and
or
mtcO

noreorder
tO,CO_SR
tO,-SR_PE
vO,tO,SR_ISC
vO,CO_SR

/* do not inadvertently clear PE */

1:

2:

3:

/* isolate cache */

/*
* First check if there is a cache there at all
*I

move
li
SW

lw
nop
mfcO
nop
.set
and
bne
bne
/*

vO,zero
vl,Oxa5a5a5a5
vl,KOBASE
tl,KOBASE

t2,CO_SR

reorder
t2,SR_CM
t2,zero,3f
vl,tl,3f

/* distinctive pattern */
/* try to write into cache */
/* try to read from cache */

/* cache miss, must be no cache */
/* data not equal -> no cache */

* Clear cache size boundries to known state.
*/

li

SW

sll
ble

li
SW

li

lw
bne
sll
ble
move
.set
mtcO
j

vO,MINCACHE

zero,KOBASE(vO)
v0,1
vO,MAXCACHE,lb

v0,-1
vO,KOBASE(zero)
vO,MINCACHE

vl, KOBASE (vO)
vl,zero,3f
v0,1
vO , MAX CACHE, 2 b
vO, zero
noreorder
tO,CO_SR
ra

/*
/*

/*
/*
/*
/*
/*

/*

store marker in cache *I
MIN cache size */

Look for marker */
found marker */
cache size * 2 */
keep looking */
must be no cache */

restore sr *I

nop
ENDFRAME(_size_cache)

.set reorder

Figure 1. Cache Sizing Software

161

UPGRADE STRATEGIES FOR R3051·BASED DESIGNS APPLICATION NOTE AN-113

31 30 29 28 26 25 24 23 22

Lock ~~: R~~ll FPlnt Halt RF AC Reserved

Lock: 1 -> Ignore subsequent writes to this register
Slow Bus: 1 -> Extra time for bus turnaround
DB Refill: 1-> 4 word refill
FPlnt: Power of two encoding of FPlnt <->CPU Interrupt
Halt: 1 ->Stall CPU until reset or interrupt
RF: 1 -> Divide frequency by 16
AC: 1 -> SkB per cache configuration
Reserved: Must be written as O; returns O when read

Figure 2. R3081 Config Register

The method of dealing with floating-point operations in an
integer CPU only environment is particularly important in the
evaluation of a compiler platform; techniques such as the "mix
and match" approach supported by IDT/c allows the best
capabilities of the MIPS compiler toolchain to be integrated
with efficient software floating-point emulation.

The obvious advantage of this approach is the optimum
performance achieved for both the integer only system and
the R3081-based (hardware FPA) system. Using distinct
EPROM sets at manufacturing time, or upgrading both the
EPROMs and processor as a field upgrade, are obvious
consequences, but in general are not particularly onerous
(EPROM upgrade can be a replacement of EPROMs, or, for
FLASH EPROM, a re-programming of the EPROMs resident
on the board).

The R3081 Config Register
The R3081 includes, as part of coprocessor 0, an additional

control register called "Config". The R3081 Config Register is
shown in Figure 2.

The Config register controls various aspects of system
functionality. If these features are used in an R3081 system,
software must first determine whether they are available.

To determine whether the current device is an R3081 (and
thus whether the config register is available), software can use
various techniques. One straightforward technique is to
determine whether or not there is an FPA; if so, the device is
an R3081. Similarly, software could determine the cache
sizes available, and see if these correspond to the organiza­
tion the R3081.

Other techniques are also possible; for example, size the
cache, then reconfigure the cache by writing to the config
register; re-size the cache to determine that the change
occurred. Obviously, if the change occurs, the config register
is available.

Note that writes to this register location in the R3051 or
R3052will have no effect; no side effects occur, and no traps
are signalled. Reads of the config register produce an
undefined data result for the R3051 and R3052.

If the config register is used when an R3051 is in place,
various other considerations exist. These are:
• Floating Point Interrupt. In general, if an R3051 application

intends to also work with an R3081, one of the CPU interrupt
inputs needs to be reserved for the hardware FPA of the

R3081. The default interrupt is lnt(3), but the config register
allows a different interrupt assignment to be used. The
corresponding interrupt input pin of the R3081 is then
ignored. Thus, the PCB should contain a pull-up resistor at
the interrupt pin; when an R3051 is used in the application,
no interrupt will be signalled.

• Reduced Frequency. This mode dramatically reduces the
power consumption of the R3081 , by reducing its operation
frequency. This mode is unavailable in the R3051. In
general, the only real functional system change that occurs
is that the SysClk output clock frequency is also reduced;
thus, if DRAM refresh, for example, was derived from this
clock, the counter value should be reprogrammed. If an
R3051 is told to "reduce frequency", nothing will happen.

• Halt. This control bit forces the R3081 to stall until an
interrupt input is asserted, or a reset is encountered. This
mode is unavailable in the R3051, and no simple software
equivalent exists.

• Data Block Refill. The R3081 allows the block size read on
a data cache miss to be dynamically reconfigured by soft­
ware. The initial value is set by the reset value. In general,
this bit may affect the performance of software, but is
unlikely to impact its functionality.

• Alternate cache. This bit allows the caches to be dynami­
cally reconfigured for the R3081. A cache flush should be
performed after the cache is reconfigured. An earlier
section of this applications note discussed how to make
software independent of the cache organization.

• Lock. This bit allows software to inhibit subsequent writes
to the Config register. Thus, boot software can set up the
operation mode, and then protect it from other software.

• Slow Bus Turnaround. This bit allows systems to enjoy
longer time between AID bus mastership transitions. How­
ever, this software control is not available on the R3051. If
the system designer desires extra time, and also desires to
be able to interchange R3051s and R3081s, the hardware
technique described in applications note AN-97 is appropri­
ate. This technique uses the OMA arbiter interface of the
CPU to insure that new transactions are not begun until
ample time for bus turn-off has passed. This hardware
technique works equally well with both the R3051 and
R3081.

162

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS

HARDWARE DESIGN ISSUES
There are various hardware design considerations that

may impact the ability to interchange various members of the
CPU family. With proper design, these considerations can be
dealt with no real system impact.

Slow Bus Turn
Bus turn is the amount of time allowed to change master­

ship on the AID bus of the processor. In general, a read
followed by a write can cause a change in bus direction in one­
half bus cycle. At 33MHz, this is 15ns.

The system designer may implement an architecture which,
by using appropriate transceivers and control signals, can
tolerate a rapid bus turn. Alternatively, the designer may
desire to increase the minimum amount of time.

Although the R3081 includes a bit in the Config register to
slow the bus, this technique does not work with the R3051 .
Instead, the hardware technique of using BusReq to insure a
longer tri-state time is recommended. This technique is
described in applications note AN-97.

Coherent OMA
The R3081 includes a hardware interface to insure cache­

coherency in systems using OMA. This interface is unavail­
able in the R3051.

Many MIPS applications perform multi-master cache co­
herency via software techniques, and thus do not require
hardware-based coherency. While hardware-coherency will
improve the performance of some applications, relying on
software (which may, for example, flush the entire data cache
once a OMA operation is completed to insure coherency. This
technique will function equally well with either the R3051 or
R3081.

APPLICATION NOTE AN-113

Floating-Point Interrupt
The R3081 uses one of the interrupt input pins to report

exceptions to the CPU. The hardware should reserve one of
the input pins for this function, and provide logic or pull-up
resistors to insure that this input is held HIGH for an R3051 or
R3052.

CpCond(1)
The R3081 uses this input to report the results of compari­

sons back to the CPU; thus, the external input pin is ignored.
R3051 systems should provide a pull-up resistor for this pin.
Earlier in this applications note, a method to use this pin to
determine the presence or absence of an FPA was described.

Reset Mode Vectors
Both the R3051 and R3081 use the same basic technique

to perform reset mode selection of various options. Figure 3
illustrates the mode vector logic for the R3081. Note that for
the R3051, lnt(5:3) mode vectors are reserved, and must be
held HIGH during reset.

Options include:
Tri-state. This option is used to perform board testing, and
is available in all devices.

• BigEndian. This option selects the data byte ordering
convention, and is available in all devices.
Data Block Refill. This option selects single versus four­
word refill on data cache misses. Although this option is
available in all devices, software (via the config register) can
dynamically change the value for the R3081.
Coherent OMA Enable. This option enables the coherent
OMA interface of the R3081. For the R3051, this input must
be HIGH at reset.

R3081 Mode Vector Logic

Slnt(O)

Slnt{1) ---+.._.~

Slnt(2)

lnt(3)

lnt{4)

lnt{5) ---+.._.,..

Figure 3. R3081 Mode Vector Assignment

163

UPGRADE STRATEGIES FOR R3051·BASED DESIGNS

• tx Clock Mode. This option instructs the R3081 that the
input clock provided is at the CPU operation frequency,
rather than at twice the frequency. In the R3051, only the
"2x" clock is available, and this vector must be held HIGH.
Half-frequency Bus. This option instructs the R3081 to
operate its bus interface at one-half the execution rate. This
option is unavailable in the R3051, and must be held HIGH
at reset.
In order to design a system to accommodate either an

R3051 or R3081, it maybe desirable to includejumpersforthe
R3081-only options. Thus, when an R3081 is included in the
design, various of the hardware options may be changed.
This may open up other upgrade strategies, such as the clock
doubling capability described earlier.

APPLICATION NOTE AN·113

SUMMARY
By following a few simple rules, the system designer can

implement a base R3051 system which can easily upgraded
to higher performance. Upgrade options include more amounts
of cache on-chip, the addition of hardware floating-point, and
increases of frequency. With the R3081 half-frequency bus
mode, the operation frequency of the execution engine can be
substantially increased while maintaining the same (or even
slower) bus interface frequency.

Thus, the IDT RISController family effectively reduces the
time to market of new product families, and maximizes engi­
neering return on investment by enabling one design effort to
result in multiple end products.

164

G" THE IDT RISController™ FAMILY: CONFERENCE
AN ARCHITECTURE WELL- PAPER
SUITED TO X-WINDOWS CP-04

Integrated Device Technology, Inc.

As presented at Silicon Valley Networking Conference
By V.R. Ranganath and Phil Bourekas

ABSTRACT
Although an X-Terminal is an extension of the traditional

graphics terminal, the X-Windows system places additional
system level constraints. These constraints require a well­
balanced system architecture, not just good graphics
throughput. Evidence of this is the fact that many of today's
commercial X-Terminals use a dual-server architecture: a
good, general purpose CPU such as an MC68020 to handle
networking and 1/0 functions, and a dedicated graphics chip
such as the Tl 3401 Oto perform graphics functions.

Many of today's RISC microprocessors offer enough
performance to integrate both functions into a single CPU,
resulting in higher performance, simpler designs, and lower
cost. However, the system requirements of an X-Windows
application forces the system designer to evaluate more than
just the raw performance of the CPU. Factors such as memory
interface, memory management, and interrupt response are
at least as important as computational throughput.

This paper will discuss some of the other architectural
requirements of an X-Terminal system, and size up these
requirements against the IDT RISController™ family. Areas of
investigation will include:

The role of memory management in X-Windows. There is a
certain similarity between X-Windows systems and the
traditional virtual memory system associated with general
purpose computers. The paper will discuss methods of
window management, using a memory management unit to
provide both the client/server and server/hardware inter­
faceswithintheX-Terminal. The use of the MMU incorporated
within various members of the IDT RISController family will
be discussed.

• The importance of interrupt response in X-Windows. X­
Windows systems are designed to interface between the
network and the graphics device. Interrupt response and
network handling become key determinants in X-Windows
performance. This paper will discuss the importance of the
network interlace, as well as the interrupt handling capabili­
ties of the IDT RISController family.

• The particular nature of the memory requirements of X­
Terminals, and the difficulty in establishing a single, generic
memory controller to handle the wide range of X-Terminal
requirements. Differences between X-Terminals and other
embedded systems, such as Laser Printers, will be dis­
cussed.
Finally, this paper will discuss an example of the use of a

MIPS RISC processor in an X-Terminal application, drawing
on the MIPS Magnum™ workstation as an example of the

application of a generic, high-performance microprocessor
engine in an X-Window environment. Many of the design
goals of a workstation overlap with the design goals of an X­
Window system, as exemplified by this workstation. Specific
performance numbers for this implementation, as measured
by X-Stones, will also be presented. We will finally discuss
some X-Window specific support that could be added to this
basic architecture to further increase X-Window performance.

BACKGROUND
X-Windows has emerged as the networking standard to

facilitate applications sharing and interaction on a
heterogeneous network. X-Terminals, which are basically
graphics terminals which implement the X-Windows protocol,
have been developed as a way to lower the "per-seat" cost of
the network, and to optimize the cost/performance RISC has
brought to the general computing world. Further, X-Terminals
have facilitated the interaction and sharing of data and
applications amongst multiple users which the PC Revolution
made difficult, by allowing centralization of computing and
storage resources while distributing the accessibility of the
system through low cost terminals.

The marketforX-Terminals has grown dramatically recently,
for a variety of reasons:

X-Terminals lower the "per-seat" (per-user) cost of high­
performance networked computer systems.
The availability of excess "MIPS" in high-performance com­
pute servers, which allow X-Terminals networked to a
RISC-based server to outperform PC's at lower cost per
user.

• The development and use of Graphical User Interfaces
(GUl's), which make high-performance, centralized com­
puters as flexible and easy to use as PC's and Maclntosh'es.

• The X-Windows protocol has been widely adopted as the
"back-end" of the GUI available from most system vendors,
making it attractive to port applications software to the X­
Windows environment.
Finally, the technology required for X-Terminals to achieve
high-graphics and network performance with high-resolu­
tion monitors has become increasingly available and cost
effective, allowing the "break-even" point of a network of X­
Terminals with a high-performance compute server to be
lowered. This means that even relatively small networks can
lower the cost-per-seat of this environment relative to the
cost of a network of PCs.

The IDT logo is a registered trademark and RISController, IDT79R3051, IDT79R3081, IDT/c, IDT/kit and IDT/sim are trademarks of Integrated Device Technology, Inc.
All others are trademarks of their respective companies.

©1992 Integrated Device Technology, Inc. 6/92

165

THE IDT RISController™ FAMILY:
AN ARCHITECTURE WELL-SUITED TO X-WINDOWS

BASIC TERMINOLOGY
The hierarchy of software and interfaces of an X-Windows

environment is illustrated in Figure 1. The architects of X­
Windows reversed the traditional (intuitive) nomenclature
used in client/server relationship definitions: in the X-Windows
environment, the client (the applications software running on
the computer server) requests X-Windows activity from the X­
server (the terminal) running on the network. Following initiation
of an application program on the host machine, the client
enters a loop and waits to be notified of an event by the server.
The loop continually waits for the input from the server and,
depending on the type of request made, will execute a given
section of code in the application program. Following execution
of the specific section of code, control returns to the main loop
of the program to await a subsequent event.

The architecture of the software for the client portion of the
application is beyond the scope of this paper. Instead, this
paper will discuss some of the hardware considerations
involved in designing a high-performance, low cost X-Terminal
server.

As is obvious from the above discussion, the X-server sits
between the software of the X-protocol and the hardware
specific interfaces of the graphics output device, the local
keyboard and mouse resources of the terminal, and the
network interface.

An obvious architecture for this type of application is to use
heterogenous multiple processors, each specialized to a
particular aspect of the terminal, and coordinated under the
control of a centralized CPU responsible for interpreting the
"X" protocol and coordinating the various processors. This
architecture predominated the earliest implementations of X­
terminals, where graphics was managed by a graphics
processor such as a 34010 and a general purpose processor
such as a 68020 managed the network, keyboard and mouse,
and the interaction of these various subsystems.

Application

GUI (Graphic User
Interface)

XUI Toolkit

MITX-Toolkit Intrinsics

Xlib Libraries

CLIENT

(Host)

Network Interface
---t------------1-- X-PROTOCOL

Network Interface

X-Server Extensions

X-Server

(Transport)

SERVER

(Terminal)

2882 drw 01

Figure 1. X·Windows Display System

CONFERENCE PAPER CP-04

The advent of low cost, high-performance RISC processors
such as the IDT R3001 and R3051 ™family, however, allows
the integration of these subsystems into a single, high­
performance CPU, allowing both lower cost and higher
performance to be realized in X-terminals. RISC-based
solutions absolutely are a factor in improving the viability and
price/performance of the X-terminal marketplace.

TASKS OF THE TERMINAL PROCESSOR
The processor in the terminal obviously must respond to

variety of differenttypes of requests: requests from the network,
requests from the mouse or keyboard, and requests to perform
graphics. It is not obvious that these responsibilities all stress
the same attributes of a processor: for example, network
services will stress the interrupt response and real-time aspects
of the system, while graphics will tend to stress the memory
bandwidth and computational capabilities of the system.

Although in some ways, the X-Windows architecture sounds
very similar to a laser printer architecture (which takes
PostScript®from a variety of applications, often from a network,
and performs interpretation and graphics operations to render
an image on a page), the relative drawing and copy speed
requirements of an X-Terminal are substantially higher. Recall
that typical laser printers feature performance in the 8-20
pages per minute range, rather than a 70 times per second
refresh rate of a terminal (this comparison is slightly apples to
oranges, but it does reflect the fact that a terminal must feel
more like "real-time" response to graphics requests than a
printer does, at lower resolution than the 300-400 dots per
inch of a printer), and that the connection to a printer is rarely
a high-bandwidth network like Ethernet, but rather a slower
channel such as Apple Talk®, or a dedicated channel such as
Centronics.

THE MIPS® ARCHITECTURE IN X-TERMINALS
The MIPS architecture is well balanced, allowing its high­

performance capabilities to benefit all of the performance
critical areas of an X-Terminal design. The architectural
highlights pertinent to X-Terminal design include:
• Fast, efficient interrupt handling and context switching. The

MIPS architecture use a simple machine model, which uses
a single set of 32 orthogonal registers (speeding context
switch) and which hides the details of the pipeline from
software (speeding both interrupt handling and context
switch).

• On-chip Memory Management. There are actually a num­
ber of uses for memory management in an X-Terminal,
some of which will be discussed later. The MIPS architec­
ture includes memory management on-chip, and in fact also
maintains a large memory space that is unmapped. This
memory structure turns out to be a very good fit with the
software operations of an X-Terminal.

• High-bandwidth memory. The R3000 architecture is able to
fully utilize as much memory bandwidth as the system
designer can supply. Note that this is dramatically different
from traditional CISC architectures, which often cannot fully
utilize the bandwidth of memory because of their multi-cycle

166

THE IDT RISController™ FAMILY:
AN ARCHITECTURE WELL-SUITED TO X·WINDOWS

operations. Note that the R3000 family can take advantage
of both high-bandwidth caches and high-bandwidth main
memory (e.g. the frame buffer).

• Single-cycle ALU operations, including rotation, multi-bit
shifts, and basic integer arithmetic.

• Atomic, high-speed integer multiply and divide on the integer
chip, as a basic part of the architecture.

• The ability to include or exclude floating-point at will. Appli­
cations such as 3-D require the support of the
high-performance floating-point co-processor, while 2-D
applications do not. The mix-and-match attributes of the
R3000 architecture allows a single base set of software to
address multiple price-performance points by using various
system-level or chip-level implementations.

• Efficient, effective compiler technology, which allows pro­
grams coded in high-level languages to obtain most of the
inherent performance of the chip. Note that MIPS technol­
ogy is unique in considering the compilers an integral part
of the chip architecture.

THE IDT RISController FAMILY
IDT has performed modifications to the initial R3000 design

which maintain these high-performance attributes, but reduce
the cost of achieving that performance level by recognizing
the distinction between UNIX® computers and embedded
systems.

CONFERENCE PAPER CP-04

The RISController family achieve these system cost
reductions by integrating those functions which affect both the
performance and cost of R3000 based systems. For example,
the R3001 performs integration at the cache subsystem level
by reducing the overhead resulting from the TAG bits required
to implement a discrete cache subsystem. The R3001 still
allows the use of the high-performance R3010 hardware
floating-point unit, and thus achieves lower system cost while
preserving the full flexibility of the original R3000.

The R3051 family integrates the entire cache subsystem
onto the CPU function, eliminating the need for external fast
static rams. Today's technology allows enough cache to be
integrated onto the CPU function so that performance is
substantially maintained (other processors are so complex
that smaller, less effective caches are implemented, with
substantial performance loss; the R3000A core incorporated
into the R3051 family is compact enough that substantial
caches can be added into a low cost device family) 1 . However,
the current members of the R3051 family do not allow access
to a hardware FPA, leaving the R3001 as the appropriate
choice for high end, 3-D applications.

Thus, the IDT RISControllerfamily is an architecture ideally
suited to the requirements of X-Terminals. Specific vendor
product announcements in the upcoming months will further
serve to substantiate these claims, although certain existing
computing products will serve to show the X-performance
inherent in the MIPS architecture.

3051/52 or
3001+(3010) + External Cache

CPU

Cache

FIFO 1 MB 1-8 MB 1-2MB Generic
PROM DRAM VRAM Peripheral

Frame Buffer llF

Keyboard

Mouse

Timers

NVR am

Network Video Parallel 1/0
Interface Interface

etc.

2882 drw 02

Figure 2. X-Termlnal System Architecture

167

THE IDT RISController™ FAMILY:
AN ARCHITECTURE WELL-SUITED TO X-WINDOWS

SYSTEM ARCHITECTURE
A typical X-Terminal system features the following areas

(Figure 2) which much be managed by CPU hardware and
software:
• A Frame buffer for the active video area. The actual size of

the frame buffer is dependent on the resolution of the screen
and the number of bits per pixel.

• A DRAM area, used to manage the various distinct windows
merged together in the frame buffer, and also used to
manage the display list.

• A high speed network connection, such as Ethernet, to
support the TCP/IP communications protocol which has
become the de facto standard.

• As much as 1 MB of PROM space to hold theX-servercode.
Note, however, that some terminals have small boot proms,
and accept the server downloaded across the network
when the terminal is turned on.
In order to provide the highest levels of performance, the

system strives to support extremely fast memory to memory
copying, such as when copying a window into the frame buffer
or moving a window within the frame buffer. Given this, a
generic DRAM controller interface or PROM interface does
not solve the memory interface problems of an X-terminal.
Interface support for the network, the frame buffer, and for
tightly couple interactions between these subsystems must
also be provided. Thus, the CPU must support fast interrupt
response, to minimize the performance lost in servicing network
requests.

Additionally, it must perform addressing and general drawing
of lines, rectangles, etc., very quickly. Typically, this involves
the capability to read and write memory quickly, and to
perform integer arithmetic and logic functions quickly.

Much of the software can easily be derived directly from the
"C" source provided in the X11 X-windows reference source.
However, substantial tuning typically occurs, both in the
graphics drawing functions, and in the memory movement
operations. Some of these optimizations are performed in
reaction only to the architecture of the CPU chip (e.g. register
file size, load or branch delays, etc.), and others are performed
to tune both the chip and software to the bandwidth capabilities
of the memory system (for example, is it better to perform
block copies by performing burst reads followed by burst
writes, and should the register file be used, etc.; is there
hardware assist, such as BitBlt functions, provided in the
hardware system, etc.). However, to minimize the development
time required, these optimizations are kept to as small a
portion of the software as possible.

MEMORY MANAGEMENT SCHEMES
One of the more controversial areas is the area of memory

management schemes in an X-Terminal.
To a certain extent, the requirements of the X-Server

serving client applications from hosts on the network is very
analogous to the requirements of a UNIX operating system
handling multiple user tasks: the single operating system
(server) is responsible for managing the multiple tasks (clients
and their windows) interaction with the various resources (e.g.

CONFERENCE PAPER CP-04

the screen) under control of the kernel. The user tasks/client
programs each assume that they "own" the entire screen and
unlimited resources of the hosVterminal, while in fact the
resources of the terminal are limited and shared between
multiple clients.

This is an obvious situation that is solved by memory
management in general purpose computers. A similar approach
can be taken by X-terminals.

The X-server can allocate memory to various clients from
its fixed store. If it runs out of memory, a number of actions are
possible:
• No action, in which case the actions of the terminal are

unpredictable.
It can send a "fault" message to either the user or client
program to advise that it is out of memory.
It can use the network to find a backing store for least
recently used windows.
Obviously, many of these alternatives can be simplified by

taking advantage of the memory management facilities
provided in many processor architectures. Although an MMU
is not strictly necessary to implement an X-terminal, a well
conceived MMU (such as that provided in the MIPS R3000
architecture) can facilitate the X-terminal software.

The R3000 memory management structure (Figure 3)
provides all of the features desired in an X-terminal: the large,
unmapped kernel segments can be used to contain both the
frame buffer and X-server software, while the mapped
segments can be used to "translate" client references into
memory addresses on a page by page basis. Finally, to allow
the software to better interact directly with the memory system,
the software can reference any memory region using either
cacheable or uncacheable references, thus optimizing the
use of the cache resources of the processor.

THE MAGNUM AS AN X-TERMINAL
An existence proof of the capabilities of the MI PS architecture

in an X-terminal can be found in the Magnum workstation,
designed and sold by MIPS computer systems.
• The Magnum includes a 25MHz R3000 and R301 O, and

32kB of Instruction and 32kB of Data Cache, and is a high­
performance UNIX workstation/server. The Magnum is
capable of operating as an X-Terminal, although it would
have added responsibilities and costs relative to a simpler,
terminal-only design:

• The Magnum must manage disks, and the entire UNIX
operating system, as well as the X-Server responsibilities.

• The memory bus structure of the Magnum is designed to
support a standard 1/0 bus, and OMA transfers between
unspecified 1/0 and the memory. Thus, the memory is less
tightly coupled to the processor than for a terminal, and
memory and compute bandwidth may be lost to serving
"extraneous" 1/0 requests such as Disks.
The Magnum, on the other hand, may exceed the design of

a lower cost X-terminal, in some areas:
• The Magnum includes a hardware floating-point unit. To

reduce cost, this would not be provided in most X-terminals.
Trace analysis has shown that the floating-point content of

168

THE IDT RISController™ FAMILY:
AN ARCHITECTURE WELL-SUITED TO X-WINDOWS

Oxffffffff

OxcOOOOOOO

OxaOOOOOOO

OxBOOOOOOO

oxoooooooo

VIRTUAL

Kernel Mapped
(kseg2)

Kernel Uncached
(kseg1)

Kernel Cached
(ksegO)

User Mapped
Cacheable

(kuseg)

An

PHYSICAL

Physical
Memory

Memory

CONFERENCE PAPER CP-04

3548 MB

512 MB

2882 drw 03

Figure 3. Virtual to Physical Memory Mapping of R3000 Architecture

an X-server is minimal, and the absence of hardware
floating-point should not measurably affect performance.

• The cache size implemented in the Magnum is larger than
the cache size in an R3051 family RISController. Although
the smaller cache sizes of the R3051 family should translate
into somewhat lower performance, it is expected that this
effect will be relatively small. Many of the performance
critical operations of an X-terminal are independent of
cache size: for example, a block copy, which moves data
between various memory regions, would not benefit from a
data cache, and the algorithm to perform the block copy
would easily fit within the smaller caches of the R3051
family.

• The net effect of these differences would imply that a
dedicated X-terminal design, based on the RISController
family, and absent the system concerns of disk drive control
and long latency memory, should improve on the already
substantial performance achieved by the Magnum worksta­
tion. Also note that higher-frequency versions of the
RISController family will increase performance, while hav­
ing only a small effect on system cost.
The Magnum workstation achieves 42,000 X-stones color

drawing performance, and 91,000 X-stones monochrome (X­
stones is the reference benchmark for X-terminal display

1 Additional information on the RISController family is available from IDT.

performance; although it is slightly controversial, it is the most
widely used indicator of a terminals graphics performance).

SUMMARY
This paper analyzed some of the basic considerations in

the design of an X-terminal, and how the MIPS architecture,
embodied in the IDT RISController family, serves those
requirements while eliminating the dedicated graphics CPU's
of first generation X-terminals.

There are obviously significantly more than these
considerations in the evaluation of a processor for an X­
terminal: considerations such as complexity of design, power
consumption/dissipation, development environment, etc., are
also considered in the choice of an X-terminal CPU. Finally,
there is the intangible but often considered point that particular
CPUs are code compatible with CPU hosts in some networks,
opening the possibility that future terminals may actually be
able to "off-load" some of the tasks or computations of the
host.

These considerations, when weighed together, point to the
MIPS architecture as an obvious solution to X-terminal design.
Forthcoming products, to be announced by various vendors,
will further substantiate this analysis.

169

t;)" DESIGNING MEMORY CONFERENCE

SUBSYSTEMS FOR THE PAPER
CP-05

R305f"' FAMILY
Integrated Device Technology, Inc.

By Bob Napaa

INTRODUCTION
The IDT79R3051™ RISController™ family utilizes a high­

performance computing core to achieve high performance
across a variety of applications. Further, the amount of cache
incorporated in the R3051 family allow these CPUs to achieve
very high performance even with simple, low-speed low-cost
memory subsystems.

The R3051 and the R30B1™ RISController CPU families
include a full R3000A core RISC processor, and thus are fully
compatible with the standard MIPS processors. In order to
provide high band-width to the CPU core, the families also
incorporate relatively large instruction and data caches. The
external memory interface from the R3051 family is very
flexible and allows a wide variety of implementations depend­
ing on the price/performance goal of the application. The
R3081 is upward compatible to the R3051 family with the
same footprint and bus interface and the benefit of larger
caches and a hardware floating-point coprocessor.

This paper will discuss the cost and performance impact of
various trade-offs, and provide a concrete design of a DRAM
memory subsystem around the R3051 and the R3081. This
paper will specifically address the trade-offs between high­
performance and low-cost memory systems, the impact of a

high-frequency system on the memory interface and the
impact of systems which are intended to be field upgradeable.

DIFFERENT TYPES OF MEMORY
SRAM, DRAM and EPROM are today's industry standard

for memory subsystems. EPROMs usually provide boot code
in most systems and are much slower and more expensive
than SRAMs or DRAMs. SRAMs are typically less dense and
more expensive than DRAMs; however, they provide faster
memory access time with a simpler interface and can be used
in systems where performance (rather than cost) is the primary
criterion. DRAMs are the most popular choice for main
memory because of their position on the cost/performance
curve and the densities in which they are available.

MEMORY SYSTEMS
Most of today's systems use one of two memory architec­

tures: Non-Interleaved or Interleaved architectures. In this
paper, a memory array is defined as the group of memory
devices that produce a full width CPU data bus. For example
a 16-bit data bus CPU requires 4 "x4" DRAMs to compose a
memory array while a 32-bit data bus CPU requires 8 "x4"
DRAMs to compose a memory array.

32-BIT MEMORY DATA BUS

INPUT CONTROL LINES

INPUT ADDRESS LINES

Figure 1a. Single-Bank Non-Interleaved System

The IDT logo is a registered trademark and RISController, IDT79A3051 and IDT79R3081 are trademarks of Integrated Device Technology, Inc.
All others are trademarks of their respective companies.

©1992 Integrated Device Technology, Inc.
170

6/92

DESIGNING MEMORY SUBSYSTEMS FOR THE R3051 FAMILY

32-BIT
MEMORY

DATA BUS

CONFERENCE PAPER CP-05

::~:?: :·=·=·=·=·:;:;::::::::::::::::
::;::::: :=:::::;:; :·:·:·:·:·:·:;::::

IN PUT CONTROL 1--"""-'~t'tt?'':i'fa:'t·'·'
LINES

ADDRESS CONTROL LINES

Figure 1b. Two-Bank Non-Interleaved System

In non-interleaved architectures, a memory bank consists
of a single memory array with sequential addresses. Any read
or write to a memory bank accesses a single location. Figure
1 a illustrates the architecture of a single non-interleaved
memory bank. Non-interleaved memory architectures are
usually composed of multiple memory banks to satisfy the
memory requirements of the system. In these topologies, the
high order address lines select among the multiple memory
banks and only one memory bank can be selected at a time.
Figure 1 b illustrates the architecture of a non-interleaved two
banks memory system.

There are various types of interleaved architectures. The
most popular one is the address interleaved. There are
numerous variations of the address interleaved architectures.
Mainly, 2-way address interleaved, 4-way address interleaved
and so on. In a 2-way address interleaved architecture two

INPUT CONTROL
LINES

ADDRESS CONTROL LINES

32-BIT
DATA

memory arrays are grouped together in parallel to form a
Super memory bank. This Super memory bank thus has
double the data bus width and double the memory density of
a single non-interleaved bank, and consists then of an even
array and an odd array. A memory controller must be able to
select both arrays together or independently based on the
type of access. The memory controller uses the low order
address bit to select between the two arrays. It must be able
to direct the data path from every memory array independently
to the CPU through some data buffers. Figure 2 illustrates the
architecture of a2-way interleaved single Super memory bank
system. In a 4-way address interleaved architectures four
memory arrays are grouped together in parallel to form a
Super memory bank. This Super memory bank consists thus
of four quarters. The memory controller must be able to select
these four arrays together or independently using the two low

32-BIT
MEMORY

MEMORY DATA BUS
DATA ~

BUFFERS

Figure 2. 2-Way Interleaved Single Super Memory Bank

171

DESIGNING MEMORY SUBSYSTEMS FOR THE R3051 FAMILY

order address bits. It must be able to direct the data bus of
every quarter independently to the CPU through some data
buffers.

Address interleaved memory systems are thus inherently
more expensive than non-interleaved architecture since they
require a much more complex memory controller and wider
data paths. The basic amount of memory banks in address
interleaved architectures is a multiple of the basic memory
bank in non-interleaved architectures; however, for systems
with large amount of memory, the same memory banks could
be configured as interleaved or non-interleaved. The major
advantage of interleaved systems lie in block of data elements
accesses from/to the CPU. Interleaved systems can double or
quadruple the memory band-width and thus dramatically
improve the performance when the CPU reads or writes 4, 8,
16, 32 ... data elements at a time. Interleaved systems do not
offer any advantage for single independent read or write
accesses. Interleaved architectures are usually used in sys­
tems where performance (rather than cost) is of importance.
For embedded cost sensitive applications, non-interleaved is
usually the architecture of choice.

Input Clock

CONFERENCE PAPER CP-05

GENERAL DESCRIPTION OF THE DRAM
SYSTEM AROUND THE R3051

The R3051 is designed around the R3000A MIPS RISC
core and features a high level of integration with large on-chip
instruction and data cache. It incorporates up to BkB of
instruction cache and 2kB of data cache. These relatively
large caches achieve hit rates in excess of 90% and sub­
stantially contribute to the performance inherent in the R3051
family. The R3051 has also implemented on-chip a four-deep
read and a four-deep write buffers that isolate the high
frequency CPU core from the much slower external memory
and modules. This high level of integration simplifies the
interface between the R3051 and the external memory mod­
ules as is illustrated in Figure 3 and allows the use of low cost
memory subsystems without penalizing the performance.

The R3051 family uses a double frequency input clock for
its internal operation and provides a nominal frequency output
clock for the external system. This output clock, Sysclk,
synchronizes the external memory subsystems to the CPU.
Memory transactions from the R3051 use a single, time
multiplexed 32-bit address and data bus and a simple set of

IDT R3051 /52
RISController™

SysClk

ALE CONTROL LINES

Figure 3. R3051 RISController Family-Based System

172

DESIGNING MEMORY SUBSYSTEMS FOR THE R3051 FAMILY

control signals. External logic then performs address demul­
tiplexing and decoding, memory control, interface timing and
data path control.

The system shown in Figure 3 is a 25MHz system with a
50MHz input clock. The R3051 interfaces to a DRAM system
as the main memory, to an EPROM system and to various
1/0 devices and controllers. Address latches decouple the
address bus from the data bus. Address decoders select
among the various external modules. The output clock from
the R3051 (Sysclk) is usually buffered to reduce the loading
effect and to provide clock drive capability with minimum clock
skew for the system.

The main DRAM memory system is based on 1 to 4 banks
of non-interleaved DRAMswith sons of access time (trac= 80ns).
The DRAMs used are 256kx 4 to provide a maximum memory
space of 4MB. The DRAM memory space occupies the lower
4MB of the physical memory space. Figure 4 illustrates the
architecture of the main DRAM memory system. The DRAM
memory space resides between addresses 0000_0000 and
3FFF _FFFF. Address bits A(21 :20) select among the four
banks while the Rd and Wr outputs from the R3051 differentiate
between read and write accesses.

Each memory bank (32-bit array) of DRAM, which corre­
sponds to 1 MB when using 256k x 4 DRAMs, is individually
controlled by a separate RAS signal. RASO controls DRAM
bank 0, RAS1 controls DRAM bank 1, ... Each bank of DRAM
is also controlled by an individual WriteEnable signal.
WriteEnableO controls DRAM bank 0, WriteEnable1 controls

CONFERENCE PAPER CP-05

DRAM bank 1, ... This architecture enables only a single
DRAM bank for any DRAM read or a write access. The DRAM
banks are arranged so that each bank represents a single,
contiguous range of 1 MB.

In an R3051 system, it is possible to perform a 32-bit read
even when smaller data elements are requested. However on
writes, it is important to enable only those bytes which are
actually being written by the CPU. The R3051 bus interface
provides four individual byte-enable signals to indicate which
byte lanes are involved in a particular transfer. The DRAM
subsystem encodes the byte-enable information from the
R3051 into the GAS control signals of the DRAMs. In this
encoding, CASO corresponds to byte lane 0, CAS1 corre­
sponds to byte lane 1, etc. Each GAS signal is connected to
the DRAM devices that correspond to the byte lane under its
control in all four banks of the DRAM subsystem. That is to say
that CASO is connected to the two DRAM devices that com­
pose byte 0 in every DRAM bank.

Data buffers isolate the DRAM banks from the R3051 data
bus to reduce the loading effect and to prevent contentions
between the R3051 and the DRAMs. Note that this also
alleviates concerns about the relatively slow tri-state times
associated with DRAM devices. The data buffers selected are
industry standard bidirectional transceivers (7 4FCT245). These
data buffers actually isolate the data bus of the R3051 from all
the external modules.

DRAM addresses are provided by multiplexing the latched
R3051 address bus using the IDT FBT2827B memory drivers.

DRAM
BANKO

RASO
CAS3:0
W-ENABLEO

R3051 ADDRESS
DRAM

BANK1
RAS1
CAS3:0

ADDRESS MUX
BUS

INPUT
CONTRO

FBT
2827B

W-ENABLE1

DRAM
BANK2

RAS2
CAS3:0
W-ENABLE2

DRAM
BANK3

RAS3
DRAM ,__ _ __,CAS3:0

CONTROL W-ENABLE3
LOGIC

REFRESH
TIMER

32
MEMORY

SUB-SYSTEM
DATA BUS

DATA ••
BUFFERS ••
74FCT245.

32
CONTROL R3051

DATA
'"""'-=~ BUS

Figure 4. DRAM Memory Subsystem Architecture

173

DESIGNING MEMORY SUBSYSTEMS FOR THE R3051 FAMILY

This device type was selected based on its ability to drive large
capacitive loading, such as found when driving 32 DRAM
devices. A single FBT output has a series resistance incor­
porated in the output driver and is capable of driving all four
banks of the DRAM subsystem. To minimize the signal skew
among the DRAM devices, the address lines and the control
lines to the DRAMs must use the "star" or the "fork'' topology
on the PCB board. In this method, all the loads on a given
signal are lumped at the far end of the PCB trace. Series
termination is also well suited to drive lumped (or forked)
CMOS loads (like DRAMs) at the end of a PCB trace. The
series termination minimizes overshoots and undershoots at
the receiving end and does not add any power dissipation to
the system.

Every DRAM cell consists of a MOS cell and a capacitor
which encodes logic 1 and O in its charge. The capacitors in
the DRAM cells tend to loose their charges with time through
leakage. This is why DRAMs require to be refreshed at a
regular time interval. The refresh mechanism is internal to the
DRAMs where bits (cells) are rewritten with the same value to
keep the capacitors charged. This refresh mechanism is
enabled by the input control signals to the DRAM devices
through the RAS and the GAS signals. In this design a refresh
timer requests the refreshing of the DRAMs every 9.6µs. This
refresh timer can be driven by the Sysclk from the R3051 or
from an independent oscillator. The 9.6µs refresh interval
chosen is more frequent than is actually required by the
DRAMs. The use of this value simplified the control logic
associated with page mode write. DRAMs require that RAS be
maintained low no longer than 10µs; by choosing a refresh
value smaller than this maximum time, the system is assured
that maximum RAS low time will not be violated.

WR=O&

WRNEAR=1 &

DRAM-CS=O

CONFERENCE PAPER CP-05

DRAM STATE MACHINE DESIGN
For the system described in this paper, a simple state

machine performs the. major aspects of DRAM control. The
state machine uses a simple four-bit counter (C(3:0)) to
dictate the timing for the DRAM control and CPU response,
and is sequenced using SysClk. There are nine major states
to the state machine as is illustrated in Figure 5. These states
are dictated by the type of transfer requested and the state the
DRAM control logic was left in by the prior transfer.

The DRAM control logic uses the Reset pulse to reset its
internal states and to synchronize its operation to the R3051.
During the RESET state, it also performs one refresh cycle
before entering the IDLE state. In the IDLE state, the DRAM
control logic arbitrates between a refresh cycle and a bus
access. A DRAM bus access is started whenever the DRAM­
Chip-Select and the Rd or the Wr signals are asserted. A
refresh request is detected using the REF _REQ
(Refresh_Request) pulse from the refresh timer. The DRAM
controller supports 4 types of CPU bus accesses: "quad-word
read", "Single-word read", "Single-word write" and "Page­
word write". Alter a "Single-word write" or a "Page-word write"
access, the DRAM control logic enters the IDLE RAS AS­
SERTED state which is an IDLE state with the RAS signals
kept asserted. The RAS signals need to be precharged upon
exiting this state.

Reset Cycle

A reset cycle is initiated by the assertion of the Reset signal.
This is a hardware reset which initializes the control logic to
the correct IDLE state. After the Reset signal is de-asserted,
one DRAM refresh cycle is initiated. Most DRAMs require at
least 8 refresh cycles for proper initialization. This DRAM

REF_REQ=1 OR

DRAM-CS=1 OR

Figure 5. DRAM Control State Machine

174

DESIGNING MEMORY SUBSYSTEMS FOR THE R3051 FAMILY

ALE

AID 31:0

DAddr10:0)=low ADDRESS :

DRAM-CS

(n = O, 1, 2 or 3)

CONFERENCE PAPER CP-05

R3051
samples data

DATA

COLUMN ADDRESS

Figure 6. Single-Word Read Access Timing

control logic provides only one refresh cycle at reset time. It is
the responsibility of the software to ensure that no DRAM
access is made prior to the elapsing of 8 refresh periods. This
can be insured by normal operation of the boot PROM;
however, software could "spin-lock" for a predetermined num­
ber of loops to insure that sufficient time has elapsed.

Refresh Cycle
A refresh cycle is initiated every time a REF _REQ pulse

from the refresh timer is detected. The refresh timer issues a
REF _REQ pulse every 9.6µs. The DRAM control logic re­
sponds with a refresh acknowledge (REF-ACK) signal which
locks the refresh timer until the refresh is serviced. The refresh
interval has been set to 9.6µs which is shorter than the
maximum 15.5µs refresh period that most DRAM require.The
9.6µs refresh period ensures that for an IDLE RAS AS·
SERTED state, where the RAS signals can be left asserted for
long time periods, the maximum RAS pulse width of 1 Oµs is
not violated.

175

In the DRAM control logic, a refresh request has the highest
priority over any other CPU requests. However, if a CPU bus
requested is being serviced at the time the refresh is re­
quested, the refresh cycle will be delayed until the end of the
current bus cycle. The inverse is also true when bus requested
are being delayed until the end of a refresh cycle. In this
design, only the RAS-before-GAS refresh method is imple­
mented.

Idle State
The Idle state is when the state machine is not performing

any bus access or a refresh access but is constantly monitor­
ing the bus for any access request. All the signals are
deasserted and the operation of the 4-bit counter is halted.

Single-Word Read Cycle
There are two types of read transactions from the R3051:

quad-word reads and single-word reads. A single-word read
access is initiated by the R3051 by asserting the Rd signal.

DESIGNING MEMORY SUBSYSTEMS FOR THE R3051 FAMILY

The DRAM control logic responds by providing the R3051 with
a single data element (32-bit word). Both the Ack and the
RdCEn signals are used to terminate the single-word read
access. In the system described in this paper, the Ack and the
RdCEn signals are returned to the R3051 after 4 clock cycles,
as illustrated in Figure 6.

Quad-Word Read Cycle
Quad-word reads from the R3051 occur only in response to

internal cache misses. All instruction cache misses are pro­
cessed as quad-word reads while data cache misses may be
processed as either quad-word reads or single-word reads.
The R3051 indicates quad-word read accesses by asserting
both the Rd and the Burst signals. In the quad-word read
access, address linesAddr(3:2) from the R3051 act as a two­
bit counter to provide the address of 4 consecutive words,
always starting on a word boundary.

The DRAM control logic handles quad-word read accesses
using the Throttled Block Refill mode of the R3051. In a
throttled read, RdCEn controls the data rate of the memory
back to the CPU (latches the data into the on-chip read buffer).
The Ack input is not provided back to the processor until the
read transfer has sufficiently progressed such that the last
word of the transfer is clocked into the on-chip read buffer
(using RdCEn) one clock cycle before the processor core
requires it.

In this non-interleaved system, the first word read of a
quad-word read access takes the same time as a single read
while the 3 subsequent words are read into the on-chip read
buffer at the rate of 1 word every two clock cycles. The RdCEn
is asserted for every word being read to latch the data into the
R3051 read buffer. The Ack is asserted between the second

ALE

I I

ROW ADDRESS

R3051
samples data

I
I I

COLUMN ADDRESS O

CONFERENCE PAPER CP-05

and the third-word read. This ensures that for 4 subsequent
falling edges of Sysclk the on-chip read buffer can provide
data to the R3000A core atthe rate of a word every clock cycle.
Figure 7 illustrates the timing involved in quad-word read
accesses.

Quad-word read accesses use the page-mode character­
istics of the DRAM to obtain subsequent data word at a higher
data rate. In this access, the RAS signal is kept asserted while
the GAS signals are toggled 4 times to produce 4 data words.

Single-Word Write cycle
Unlike instruction fetches and data loads, which are usually

satisfied by the on-chip caches, all write activity to the caches
is seen at the bus interface of the R3051 as single write
transactions. The R3051 indicates a single-word write access
by asserting the Wr signal. The DRAM control logic enables
the writing of the CPU word or partial word into the DRAMs and
returns the Ack signal to terminate the write access. The Ack
signal is returned to the R3051 after 3 clock cycles, as
illustrated in Figure 8.

The DRAM memory system takes advantage of the WrNear
signal from the R3051 by defaulting to the case that any single
write to the DRAM subsystem will be followed by another write
with the same upper 22 address bits. Based on this informa­
tion the RAS signal must be kept asserted after every write
access to enter the page mode of the DRAMs. The end of a
single-word access is then different from a single read access
in that the RAS signal is kept asserted.

Idle RAS Asserted State
At the end of a write access the DRAM control logic enters

this idle state where a RAS signal is kept asserted while the

R3051
samples data

R3051
samples data

R3051
samples data

RD

BURST

AID 31 :O

DAddr10:0

RA Sn
I ~-~----'----'-----L-----'-----''----1-----.!-----'-'

CAS(3:0)

RDCEN

ACK

_ __,_ ___ , ___ ,,_ ----'-
'

DRAM-CS

(n = 0, 1, 2 or 3)
WORDO

INITIAL LATENCY

WORD 1 WORD 2 WORD 3

ONE WORD EVERY TWO CLOCK CYCLES

Figure 7. Quad-Word Read Access Timing

176

DESIGNING MEMORY SUBSYSTEMS FOR THE R3051 FAMILY

state machine awaits a subsequent transaction. If the next
access is a local write (WrNear from the R3051 is asserted)
the DRAM control logic enters the page write mode. If a
different access type occurs, the state machine exits this
state.

Page Write Cycle
A page write cycle is a single write access from the R3051

following a previous single write access with the same upper
22 address bits. The R3051 indicates a page write access by
asserting the Wr and the WrNear signals.

The timing for a page write access is very similar to a single­
write access but shorter since the RAS signal has been kept
asserted from the previous write cycle. The Ack is returned
back to the R3051 after 2 clock cycles. Figure 8 illustrates the
timing for a page write access.

Precharge RAS
Any access, except a page write access, following an Idle

RAS Asserted state needs to have the RAS signal precharged
(driven to a level HIGH) before the access is responded to.

PERFORMANCE
The performance of the different types of R3051 bus

accesses to the DRAM memory subsystem is usually mea­
sured by the number of clock cycles it takes to send the Ack

Single Word Write Access

ALE

WRNEAR

AID 31:0 DATAO

DAddr10:0 ROW ADDRESS

DRAM-CS

(n = 0, 1, 2 or 3)

CONFERENCE PAPER CP-05

back to the R3051. This time is computed from the beginning
of the external access. The performance of the DRAM system
can be summarized as follows:

• single read: 4 clock cycles
• block refill: 7 clock cycles
• first write: 3 clock cycles
• page write: 2 clock cycles.
This is a relatively high performance for a low-cost and

easy-to-implement DRAM memory subsystem. The perfor­
mance of the system can be improved by using more elabo­
rate DRAM memory controller and/or more complex memory
architectures such as address interleaving. Such systems
should be able to achieve optimum performance.

FIELD UPGRADEABILITY
Many of today's systems are designed to allow for future

fields upgrades of the base memory system to more memory
banks and/or deeper DRAM devices. The ability to offer a
base configuration (at a lower selling price) with upgrade
capabilities is often a selling feature of the end product.

The system software should then run diagnostics at boot
time to determine the maximum size of the available memory.
Typical strategies for such diagnostics include writing distinct
values into a given location within each bank, and then reading
the data back to see if any of the writes did not occur properly

Page Write Access

DATA 1

1 COLUMN ADDRESS 1

Figure 8. Single-Word Write Access Timing and Page Write Access Timing

177

DESIGNING MEMORY SUBSYSTEMS FOR THE R3051 FAMILY

or altered data previously written. Non-interleaved or inter­
leaved memory architectures should be transparent to the
system software.

The system hardware should make provision for extra
memory banks or deeper memory devices by routing all the
necessary signals to unused pins or sockets of future upgrade
memory. The system hardware should try to minimize the use
of jumpers to make the system much more user friendly.

In the system described in this paper, the user can upgrade
to deeper memory by replacing the 256k x 4 DRAMs with
deeper 1MBx4 DRAMs to obtain a maximum memory.space
of 16MB. It is also possible to replace the R3051 with the
R3081 to increase the performance of the system since they
both have the same footprint. The R3081 with its on-chip FPA
will have a great impact on the performance of floating-point
intensive applications; a further benefit is the larger on-chip
caches of the R3081.

CONFERENCE PAPER CP-05

CONCLUSION
The R3051 and the R3081 RISController families bus

interface was designed to allow memory systems of differing
complexity and performance to be implemented. Even a
relatively simple DRAM system, as the one described here,
offers very high performance. With simple modifications, this
approach is applicable to higher frequencies (33 and 40MHz)
and to interleaved memory systems yielding even higher
performance. The R3081 can also be used for existing R3051
designs to improve the floating-point performance and the
overall system throughput with no modifications of the exter­
nal hardware.

REFERENCES
• AN-50: "Series Termination" Application Note, by Suren

Kodical, 1990/91 IDT Logic Data Book.

178

G. TRADE-OFFS IN LASER PRINTER CONFERENCE

APPLICATION DESIGNS AROUND PAPER
CP-06

THE IDT79R3051™ FAMILY
Integrated Device Technology, Inc.

By Bob Napaa

INTRODUCTION
The IDT79R3051™ and R3os1™ RISController™ families

are a series of high-performance 32-bit microprocessors
featuring a high level of integration. The R3051 and the R3081
are designed to bring the high performance inherent in the
MIPS RISC architecture into low-cost, simplified, power­
sensitive applications.

The R3051 and the R3081 families are specially targeted
for high-performance, cost-sensitive embedded processing
applications such as laser printers. The R3051 and the R3081
families currently offer a variety of pin-compatible and soft­
ware-compatible CPUs in a common footprint. The R3051
and the R3081 families allow the system designer to imple­
ment a base design capable of accommodating a wide variety
of printer market places: low cost systems through high
resolution and color printers.

This paper will go through a low-cost laser printe: base
design around the R3051 family and will discuss the different
design decisions and their impact on performance and cost.
This paper will also discuss the impact of software and
hardware development. Specifically, the impact on perfor­
mance due to the variations among the R3051 and the R3081
family members: cache size, hardware FPA, etc. The paper
will describe various models which allow a single hardware
and software design effort to result in multiple customer
products.

THE R3051 DEVICE OVERVIEW
The R3051 is designed around the R3000A MIPS RISC

core and implements the MIPS-I ISA (instruction set archi­
tecture). The R3051 family incorporates on-chip 4kB or 8kB of
instruction cache with a cache line size of 16 bytes. These
relatively large caches achieve instruction hit rates in excess
of 95% in most applications and substantially contribute to the
performance inherent of the R3051 family. The R3051 family
also incorporates 2kB of data cache with a cache line size of
4 bytes. Both caches are implemented as direct mapped
physical address caches.

The R3051 family bus interface uses a 32-bit address and
data bus multiplexed onto a single set of pins and provides
simple handshake signals to process CPU read and write
requests. The R3051 family incorporates a 4-deep write buffer
to decouple the speed of the execution engine from the speed
of the memory system. The write buffer captures and FIFO
processes the address and data information (from the R3000A
core) in store operations, and presents it to the bus interface
as write transactions at a rate the memory system can
accommodate. The R3051 also incorporates a 4-deep read
buffer FIFO to allow the external memory system to queue up

the data within the R3051 when performing a quad-word burst
refill of the internal caches. Figure 1 illustrates the internal
architecture of the R3051 family.

LASER PRINTER CONTROLLER DESIGN
AROUND THE R3051 FAMILY

The following design example is a very basic laser printer
controller around the R3051 and implements the minimum
required configuration for a printer controller. This design can
be extended into a more complex and more powerful one to
accommodate the specific requirements of the various laser
printer controllers. In any generic system, the R3051 family
uses a double frequency input clock for its internal operation
and provides a nominal frequency output clock for the external
memory subsystems. Memory transactions from the R3051
use a single, time multiplexed 32-bitaddress and data bus and
a simple set of control signals. External logic then performs
address demultiplexing and decoding, memory control, in­
terface timing and data path control. In this basic design of
laser printer controller, the R3051 interfaces to 1 MB of DRAM
space expand-able to 4MB, 512kB of EPROM space ex­
pandable to 2MB, a Centronics (parallel) interface, two serial
ports (RS-232) and a Canon video (print engine) interface.
Figure 2 illustrates the simplified block diagram of the laser
printer controller.

The following sections describe in detail the implementa­
tion of various subsystems (1/0 and memory) of the laser
printer controller and the impact of these implementations on
the cost and the performance of the system.

External Logic and State Machine

The external logic and state machine necessary to perform
address demultiplexing and decoding, memory control, in­
terface timing and data path control is implemented using off­
the-shelf, low-cost parts such as address latches, data trans­
ceivers, and programmable logic devices. This approach has
the advantage of minimizing the cost of the components and
the disadvantage of not obtaining the maximum performance
out of the external system. It is possible to implement the
above functions in a Gate Array or an ASIC chip. This second
approach has the advantage of extracting the maximum
performance out of the external system and minimizing the
board space and the disadvantage of occurring the one time
charge of the design of the ASIC chip.

DRAM Memory Subsystem
The DRAM memory subsystem is implemented as a single

non-interleaved bank using "x4" DRAM devices. The basic
configuration has a memory space of 1 MB using 256k x 4
DRAMs. It can be extended to 4MB by using 1Mx4 DRAMs.

the fDT logo is a registered trademark and RJSController, IDT79R3051, IDT79R3061 are trademarks of Integrated Device Technology, lnc.
All others are trademarks of their respective companies.

©1992 Integrated Device Technology, Inc. 6/92

179

TRADE-OFFS IN LASER PRINTER APPLICATION DESIGNS
AROUND THE R3051 FAMILY CONFERENCE PAPER CP·06

Clk2xln Clock
Generator

Unit

BrCond (3:0)

Master Pipeline Control

System Control
Co-Processor

Excepti~n/Co nt ro I
Registers

Memory M.anagement
Registers

-~~) ii
L? << """'' <

l~<fl-

32 v
l'1

4-deep
Write
Buffer

Physical Address Bus

Instruction
Cache
(4k8)

Virtual Address

Data Bus

Bus Interface Unit

4-deep
Read
Buffer

DMA
Arbiter

Integer
CPU Core

J

General Registers
(32 x32)

ALU

Shifter

Mull/Div Unit

Address Adder

PC Control

Data
Cache
(2k8)

BIU
Control

~32

Rd/Wr
Ctr I

DMA
Ctr I

Figure 1. Internal Architecture of R3051 Family

180

Address/
Data

Byte
Enables

32 I/
/1

Fig 1.1

TRADE·OFFS IN LASER PRINTER APPLICATION DESIGNS
AROUND THE R3051 FAMILY

The 1 MB memory configuration (or even 512kB) is the mini·
mum requirements for most non-Postscript® laser printer
controllers. For systems which are Postscript or HP Laser Jet
Ill PCL5 compatible, the 4MB configuration is more appropriate.
This DRAM memory architecture has the advantage of mini­
mizing the cost and the disadvantage of limiting the flexibility
of the DRAM subsystem (only 1 increment to 4MB possible).
It is possible to offer more flexibility to the end user by
implementing 4 or more non-interleaved DRAM banks to
obtain the same memory depth or even a deeper memory.
This approach however will increase the board space to
accommodate the multiple banks of DRAMs and add more
complexity to the DRAM controller in order to independently
select the different banks. A third design yet is to interleave the
DRAM banks to maximize the performance of the DRAM
subsystem. This is a more expensive solution usually imple­
mented on large Network printers.

EPROM Memory Subsystem
The EPROM memory subsystem is implemented as a

single non-interleaved bank using "x8" EPROM devices. The
basic configuration has a memory space of 512kB using 32k
x 8 EPROMs. It can be extended to 2MB by using 512k x 8
EPROMs. The requirements of the EPROM memc•.' sub­
system is tightly coupled to the design and to tiw target
application. In systems where all the code resides in the
EPROM section, a deep EPROM space is usually required.
This is the case for this basic design where the 2MB EPROM
space is always used. In systems where only the boot code
resides in EPROM and the remaining of the code is down-

"•I•tI••·••·•8$2l'fa.¢"•.•I"•.tt•••

~
512kB

to
4mB
ROM/

EPROM

CONFERENCE PAPER CP-06

loaded to DRAM from a diskette (or other storage media), a
shallow EPROM space is sufficient (512kB). Again it is pos­
sible to maximize the performance of the EPROM memory
subsystems-if code is running out of EPROM-by interleav­
ing 2 or more banks of EPROMs which will also increase the
cost of the system.

Centronics Input Port
The Centronics (parallel) input port is an 8-bit parallel port

commonly used as a high-speed communications link between
the computer and the printer. To enhance the performance of
the Centronics interface, a standard 256 x 9 FIFO (IDT7200)
is used to buffer the input parallel data. This low-cost imple­
mentation of the Centronics interface greatly enhances the
performance of the 1/0 system. Figure 3 illustrates the block
diagram of the Centronics interface. In this implementation,
two methods are used to respond to incoming printer data
files. The FIFO empty flag signal is connected to a branch
condition input, BRCND2, on the R3051. The software should
take advantage of the R3051 's ability to branch on condition
inputs by regularly polling this pin. The FIFO full flag disables
further writes to the FIFO and is used to generate an interrupt
to the R3051. There are also other possible methods to
implement the parallel interface to even increase the perfor­
mance of the Centronics interface.

Serial Communications Ports
The laser printer controller design uses a D UART to control

two serial communications ports. The first port is usually used
to connect to a CRT terminal during the debugging phase of

MDATA/MADDR

1mB
to

4mB

DRAM

512

x16
Laser
FIFO

PAL St. Mach.

Figure 2. Block Diagram of Laser Printer Controller

181

TRADE-OFFS IN LASER PRINTER APPLICATION DESIGNS
AROUND THE R3051 FAMIL V

PAL L STATE CENTRONICS
MACHINE / CONNECTOR

STATUS

I CONTROL BUS

CPU DATA BUS

....

CONFERENCE PAPER CP-06

L 7200/1
..... CENTRONICS

/ INPUT
FIFO

8-BIT
PARALLEL

DATA

J

drw03

Figure 3. Centronlcs Interface Block Diagram

the project while the second is usually used to download data
from a computer. In the final product both serial ports can be
used to download data.

Canon Video Interface
The laser printer controller board is designed to interface

to the industry standard Canon LBP-SX laser printer engine.
To enhance the performance of the video interface and to
m inimizethe part count-and thus the cost-the video interface
is implemented using two registers and an IDT72115 512x16
LaserFIFO. The two register buffer the handshaking signals
between the controller and the print engine. The LaserFIFO is
large enough to buffer a horizontal scan line at 300 or 400
DPl-up to 400 bytes. For higher-resolution printers or for
larger page sizes, the LaserFIFO size can be increased to
1024 x 16 with a pin-compatible IDT72125 with no other
hardware modifications. Depending on the final product and
the print engine of choice, the video interface can be modified
to connect to the appropriate laser engine (TEC, IBM, etc.).

Unimplemented Features
There are other features that can be added to the above

basic design to satisfy the need of the applications. These
additional features, such as Font Cartridges interface, Banding
Coprocessor, Apple Talk interface, SCSI interface, etc., have
not been implemented. They are usually added to a given
printer application to increase the system performance and/or
to position the final printer product in a specified market place.
These features are beyond the scope of this document.

Software Implementation
The main Operating system of the laser printer controller is

the PeerlessPage™ Printer Operating System with a PCLS or
Postscript compatible emulations. Other printer emulations
are available but have not been implemented in this design.

The PeerlessPage POS provides a portable and extensible
environment for printer controllers and a flexible platform for
integration of other combinations of fonts, panel control or
emulations. Other off-the-shelf Operating Systems are also
available with similar or different set of capabilities. It is also
possible to develop a proprietary OS that best suits the target
application. The performance and the cost model of the
various software approaches differ from one hardware/software
combination to the other.

THE IDT7RS385 LASER PRINTER
CONTROLLER

To evaluate the performance of its RISController family in
a laser printer environment, IDT developed the REALS™
Laser Printer Controller (IDT7RS3SS) board based on the
R3001 CPU. The IDT7RS3SS is completely self-contained
and is intended for use as an evaluation system for a variety
of software and memory configurations. To also evaluate the
performance and system cost of IDT's R3051 RISController
familyinalaserprinterapplication, IDT developed an emulation
of the REALS board complete with ports of the PeerlessPage
Imaging Environment, Microsoft Truelmage™ (PostScript®­
compatible) POL and PeerlessPrint5 (HP LaserJet Ill PCL5-
compatible) languagesusingthe IDT7RS3S5 Evaluation Board
as the hardware platform. This new hardware platform, the
IDT7RS3S5-LPC is a basic laser printer controller and is
implemented according to the specifications of the design
explained in this paper. It is a 25MHz design which includes
a fast Centronics parallel input port, two serial ports, and a
video interface for the Canon LBP-SX print engine. The
memory subsystems of the I DT7RS3S5-LPC are designed to
minimize the cost of the system rather than maximize the
performance. The IDT7RS3S5-LPC includes a single non­
interleaved bank of 4MB DRAMs and a single non-interleaved

182

TRADE-OFFS IN LASER PRINTER APPLICATION DESIGNS
AROUND THE R3051 FAMILY

POWER
U103

IU101 OSl

CONFERENCE PAPER CP-06

···~··· ~ f'l11. ··~ ;{

~ ••L

····~ ~
~ J11~ J15~
z

'<!" 0
....,~ J10~~~~~ J14~

115 J9

1:::::~):~:::::1 11::::~:~~:::::::
I::::::~~::::::'. I I::::~:~~:::::::

1:::::~~:::::::1 1::::~:~~:::::::
I:::::~~:::::: I Ja I : : : : ~:~~: : : : : : :

. 1::::::~~::::::1 ~ 1::::~:~~:::::::
~ i:::::~i~::::::

~ 1::::::~~::::::1 J7 U18 . I U17

I::::::~{::::: I U16

U15

J6 ~·
~ ~1::::::~~i::::::1 ~ ~::

~ U12

. G U11

J13~

1:::::~~:~:::::1 D
C : : ~~~: : : : : : I

R3051
PLCC

1:: :::~~~::::::1
!'.:::: ~~~::::::I
I:::::~~!:::::: I

U31 I:::::~~~:::::: I
~~

I::::;~~~::;; ;:1
J6

I 1:::::~~~:::::1 1:::::~:~~:::::1
I:::::~~~:::::: I 1: :: : :~:~~ :: : : :1
-RP3 1:::::~:~~:::::1

§1:::::~~::::::::1 i:::::ii~:::::1 § ~ ~~l a:~
Figure 4. The Physical Layout of the IDT7RS385-LPC

163

TRADE-OFFS IN LASER PRINTER APPLICATION DESIGNS
AROUND THE R3051 FAMILY CONFERENCE PAPER CP-06

bank of 2MB EPROMs. The DRAM and the EPROM memory Both these languages require floating-point operations which
subsystems access latencies expressed in terms of external are emulated in software using the IDT/c floating-point librar-

clock cycles are the following: ~~RFORMANCE OF THE IDT7RS385-LPC
DRAM:

• single read:
• quad word read:

• single word write:
• page write:

EPROM:
• single word read:
• quad word read:

5 clock cycles
5 clock cycles for the first word,
2 clock cycles for the remaining
3 words
5 clock cycles
4 clock cycles

5 clock cycles
5 clock cycles for the first word,
4 clock cycles for the remaining
3 words

The above memory subsystems latencies represent the
number of external clock cycles required to process an external
access (read or write from the R3051) and do not include the
internal clock cycles involved in the internal arbitration for the
bus and the fix-up cycle of the R3000A core. These external
memory latencies can be greatly reduced by using fa~ter
memories and/or interleaving the memory banks or by using
an alternate/integrated DRAM control system. These more
elaborate schemes could inherently increase the cost of the
system. Figure 4 illustrates the physical layout of the
IDT7RS385-LPC board. The IDT7RS385-LPC can run both
the PeerleesPrint5 or the Microsoft Truelmage languages.

3.0

u; 3.2

0
C')
a:
CD -s
.9 2.0
CD
> ·-;
~
CD
0
c: 1.0 <tt
E

0.79 l5
't

CD c..

R3051 R3052

The performance measure of the simple laser printer
controller design represented by the IDT7RS385-LPC gives
an insight of the high performance inherent to the R3051
family. It is always possible to optimize a basic, simple design,
like this one, to obtain a better performance by using more
elaborate memory schemes.

The R3051 family offers a set of four pin-compatible CPUs
in the same footprint-the R3051, the R3051 E, the R3052 and
the R3052E. The"E" suffix stands for the Extended Architecture
parts in which the Memory Management Unit (MMU) is present.
The Software (PeerlessPrint5) does not make use of the
MMU, and thus the performance for these parts will be
identical to the non-E parts.

Table I illustrates the relative performance among the
different configurations of the R3051 and the R3081 families
normalized to the R3051. The performance was measured on
an IDT7RS385-LPC board at 25MHz and running the
PeerlessPrint5 language which uses extensively the floating­
point operations. The floating-point operations are imple­
mented on the R3051 family using the IDT/c™ floating-point
library. To keep a common hardware platform, the performance
test is implemented on an IDT7RS385-LPCwith different CPU
configurations. The test setup is the following: an IBM-PC is
connected to the board via the Centronics interlace. The
board is powered by the print engine and the video interface
links the board to the print engine. The relative performance

R3051
with quad
word read
disabled

R3051
with

instruction
cache disabled tt> 01

Table 01. Relative Performance of the R3051 Family and the R3081 Family in a Laser Printer Environment.
(The Performance is Normalized to the R3051.}

184

TRADE-OFFS IN LASER PRINTER APPLICATION DESIGNS
AROUND THE R3051 FAMIL V

presented here is the total of 10 different PCL5 benchmarks
(these benchmarks are listed at the end of this text). Every
benchmark measures the total time in seconds it takes from
the moment the carriage return is hit on the PC to the moment
the print engine starts running. These benchmarking compari­
son demonstrate the effect of the cache, the FPA, the read/
write buffer on the performance of the system.

The IDT7RS385-LPC using an R3052 CPU
The best performance for the R3051 family is obtained on

the IDT7RS385-LPC with the R3052 CPU. The R3052 CPU
offers 8kB of instruction cache and 2kB of data cache. Both
caches are implemented as direct mapped physical address
caches. There is more than 20% improvement in the perfor­
mance when doubling the size of the instruction cache for a
given size of the data cache.

The IDT7RS385-LPC using an R3051 CPU
The reference point of the benchmark performance is

based on the IDT7RS385-LPC with the R3051 CPU. The
R3051 CPU offers 4kB of instruction cache and 2kB of data
cache. Both caches are implemented as direct mapped physical
address caches.

The IDT7RS385-LPC using an R3051 CPU and a Single­
Word Data Read

The third benchmark performance is based on the
IDT7RS385-LPCwith the R3051 CPU. The R3051 CPU offers
4kB of instruction cache and 2kB of data cache. The R3051
family processes the data cache miss as a single-word read
or a quad-word read and the instruction cache miss as quad­
word read. It is possible then, at reset time, to disable the data
cache quad-word refill capability and, thus, to treat every data
cache miss as a single-word read. There is a minimal differ­
ence in the overall performance (for these types of embedded
applications) between refilling the data cache with a single­
word or a quad-word stream. For some benchmarks, it has
also been noticed that the performance with only a single­
word read enabled is slightly betterthan with quad-word cache
refills.

The IDT7RS385-LPC using an R3051 CPU and No
Instruction Cache

The fourth benchmark performance is based on the
IDT7RS385-LPC with the R3051 CPU. The R3051 family
processes the data cache miss as a single-word read or a
quad-word read and the instruction cache miss as quad-word
read. It is possible then, through the debug mode of the
R3051, to enable data caches and the data cache quad-word
refill while forcing instruction cache miss on every instruction
cycle. This is equivalent to reading and executing only one
instruction at a time from main memory, or in another word, an
R3051 without an instruction cache. This test is then very
memory intensive which is reflected in the relative perfor­
mance of such systems. The effect of the presence (or the
absence) of the instruction cache on the performance of a
system is very noticeable in this example. The average
performance of a system without an instruction cache is more

185

CONFERENCE PAPER CP-06

than three times slower than a system with the instruction
cache enabled.

The IDT7RS385-LPC using an R3081 CPU

The absence of the Floating-Point Coprocessor (FPA) from
the R3051 family impacts the performance of the applications
that require floating-point operations. The new R3081 family
from IDT offers pin-compatible CPUs, with the same footprint
and bus interface, to the R3051 family with a Floating-Point
Coprocessor incorporated on-chip. The presence of the FPA
in the R3081 family greatly improves the performance of
floating-point intensive applications such as Postscript-com­
patible laser printers.

The R3081 CPU has 20kB of caches which can be config­
ured as either 16kB of instruction cache and 4kB of data
cache, or 8kB of instruction cache and 8kB of data cache. Both
caches are implemented as direct-mapped physical address
caches. The R3081 family is pin- and footprint-compatible
with the R3051 and incorporates a hardware floating-point
coprocessor on-chip. The presence of the FPA greatly in­
creases the system performance for floating-point intensive
applications. Similarly, the deeper instruction and data caches
enhance the overall performance compared to the R3051
family (this effect is already noticeable in the R3051 family
when upgrading from the R3051 to the R3052). Comparison
data for the relative performance of the R3081 was not
available when this text was prepared.

The relative performance listed in this text addresses the
variations among different internal CPUs implementations,
such as the effects of the caches sizes, the presence of an
FPA, etc. The presence of an instruction cache (even a very
shallow one) has a major impact on the overall performance
of the system. Better performance can also be obtained by
increasing the instruction cache size. In most embedded
applications the presence of the data cache improves the
performance; however, the size of the data cache is not of
major importance. The FPA improves the performance of
applications that use the floating-point operations intensively.
For a given CPU architecture, R3051 or R3081, it is always
possible to optimize the absolute performance by implementing
more elaborate memory and 1/0 design techniques such as:
interleaved memory systems, burst EPROMs and/or inte­
grated memory controllers. The system designer is always left
in making the trade-offs between the cost and the performance
among the various choices to best suit the end product and the
application at hand.

CONCLUSION
IDT offers a wide spectrum of embedded RISController

CPUs in the form of the R3051 family and the R3081 family
targeted for price-sensitive or performance-sensitive appli­
cations. It is then possible to design a base system around any
processor within these families and then upgrade the design
as the performance requirements increase. For systems that
require more horsepower, the R3081 family can seamlessly
replace the R3051 family while keeping the same hardware
and software investment.

TRADE.OFFS IN LASER PRINTER APPLICATION DESIGNS
AROUND THE R3051 FAMIL V

BENCHMARKS
The following are the names of the 10 PCL5 files (as well

as their sizes in bytes) used in compiling the performance
results of the R3051 and the R3081 families:

•ARCS. PRN
• BITWFO. PRN
• CIRCLES. PRN
• PCL5TBIT. PRN
• PCL5TEXT. PRN
• PCL5X10. PRN
• PCL5X11 . PRN
• PCL5X14. PRN
• PCL5X2. PRN
• TRIANGLE. PRN

988 bytes
1935 bytes
1094 bytes
7219 bytes
3336 bytes
1247 bytes
1617 bytes
1274 bytes
1560 bytes
1633 bytes

186

CONFERENCEPAPERCP-ll6

(;)" NEXT-GENERATION MIPS® RISC CONFERENCE

ARCHITECTURE FOR PAPER
CP-07

EMBEDDED APPLICATIONS
Integrmed Device Technology, Inc.

By Philip Bourekas

INTRODUCTION
The IDT79R3051"' RISController"' RISC Family is a high­

performance 32-bit microprocessor featuring a high-level of
integration, and targeted to high-performance but cost-sensitive
embedded processing applications. The R3051 is designed to
bring the high-performance inherent in the MIPS RISC archi­
tecture into low-cost, simplified, power-sensitive applications.
The R3051 E adds a full featured Memory Management Unit
to the core architecture of the R3051, to support the require­
ments of particular embedded applications.

Functional units were integrated onto the CPU core in order
to reduce the total system cost, rather than to increase the
inherent performance of the integer engine. Thus, the R3051
is able to offer 20mips of integer performance at 25MHz
without requiring zero wait-state memory or caches.

Further, the R3051 achieves dramatic power reduction over
the R3000/R3001, allowing the use of low-cost packaging for
devices up to 25MHz. The R3051 allows customer applica­
tions to bring maximum performance at minimum cost, by
reducing both component cost and eliminating the need for
fast external memory.

FEATURES
• Instruction set compatible with IDT79R3000A

MIPS RISC CPU
• High level of integration minimizes system cost
• 20 MIPS at 25MHz
• Low cost 84-pin PLCC packaging
• Large on-chip instruction and data caches
• Flexible bus interface allows simple, low-cost designs.
• Single double-frequency clock input
• 12.5 through 33MHz operation
• On-chip 4-deep write buffer eliminates memory write stalls
• On-chip 4-deep read buffer supports the use of slow memory

devices
• On-chip OMA arbiter

DEVICE OVERVIEW
Figure 1 shows a block level representation of the functional

units within the R3051 and R3051 E. The R3051 could be
viewed as the embodiment of a discrete solution built around
the R3000 or R3001. However, by integrating this functional­
ity on a single chip, dramatic cost and power reductions are
achieved. An overview of these blocks is presented here.

CPU Core
The CPU core is a full 32-bit RISC integer execution engine,

capable of sustaining close to single-cycle execution rate.
The CPU core contains a five-stage pipeline, and 32 orthogo­
nal 32-bit registers. The R3051 implements the MIPS-I ISA.

In fact, the execution engine of the R3051 is the same as the
execution engine of the R3000 and R3001, eliminating the risk
of incompatibility issues and speeding development time.
Thus, the R3051 is fully binary compatible with the R3000/
R3001.

System Control Coprocessor
The R3051 also integrates on-chip the System Control

Coprocessor, CPO. CPO manages both the exception handling
capability of the R3051 as well as the virtual to physical
mapping of the R3051.

There are two members of the R3051 Family. The R3051 E
(Enhanced) version incorporates the same MMU as the
R30DO and R3001. This version contains a fully associative
64-entry TLB which maps 4kB virtual pages into the physical
address space. The virtual to physical mapping includes
kernel segments which are directly mapped to fixed physical
addresses and kernel and user segments which are mapped
page by page by the TLB into anywhere in the 4GB physical
address space. In this TLB, 8 pages can be "locked" by the
kernel to insure deterministic response in real-time applications.

The standard R3051 removes the TLB and institutes a fixed
address mapping for the various segments of the virtual
address space. The R3051 supports distinct kernel and user
mode operation without requiring page management soft­
ware, leading to a simpler software model.

Clock Generation Unit
The R3051 is driven from a single double-frequency input

clock. On-chip, the clock generator unit is responsible for
managing the interaction of the CPU core, caches, and bus
interface. The clock generator unit logically replaces the
external delay line required in R3000 and R3001 based
applications.

Instruction Cache
The R3051 incorporates an on-chip instruction cache of 4kB

(1 k instructions) organized as a line size of 16 bytes (four
entries). This relatively large cache achieves a hit rate in
excess of 95% in most applications and substantially contrib­
utes to the performance inherent in the R3051 . The cache is
implemented as a direct mapped cache and is capable of
caching instructions from anywhere within the 4GB physical
address space. The cache is implemented using physical
addresses (rather than virtual addresses) and thus does not
require flushing on context switch.

Data Cache
The R3051 incorporates an on-chip data cache of 2kB,

organized as a line size of 4 bytes (one word). This relatively
large data cache achieves hit rates in excess of 90% in most
applications and contributes substantially to the performance

The IDT logo is a registered trademark and Cache-3051, IDT79A3051 and RISController are trademarks of Integrated Device Technology, Inc.
All others are trademarks of their respective companies.

©1992 Integrated Device Technology, Inc. 6/92

187

NEXT-GENERATION MIPS RISC ARCHITECTURE
FOR EMBEDDED APPLICATIONS

Clk2xln Clock
Generator

Unit

4-deep
Write
Buffer

Rd/Wr
Ctrl

Master Pipeline Control

System Control
Co-Processor

Exception/Control
Registers

Memory Management
Registers

Physical Address Bus

Instruction
Cache
(4kB)

Virtual Address

Data Bus

Bus Interface Unit

4-deep
Read
Buffer

DMA
Arbiter

CONFERENCE PAPER CP-07

BrCond(3:0)

Integer
CPU Core

General Registers
(32 x 32)

ALU

Shifter

Mult/Div Unit

Address Adder

PC Control

Data
Cache
(2kB)

BIU
Control

32 4

32

DMA
Ctrl

Address/
Data

Byte
Enables Fig 1.1

Figure 1. R3051/R3051 E Block Diagram

188

NEXT-GENERATION MIPS RISC ARCHITECTURE
FOR EMBEDDED APPLICATIONS

inherent in the R3051. As with the instruction cache, the data
cache is implemented as a direct mapped physical address
cache. The cache is capable of mapping any word within the
4GB physical address space.

The data cache is implemented as a write through cache to
insure that main memory is always consistent with the internal
cache. In order to minimize processor stalls due to data write
operations, the bus interface unit incorporates a 4-deep write
buffer which captures address and data at the processor
execution rate, allowing it to be retired to main memory at a
much slower rate without impacting system performance.

Bus Interface Unit
The R3051 uses its large internal caches to provide the

majority of the bandwidth requirements of the execution
engine and thus can utilize a simple bus interface connected
to slow memory devices.

Reset ... Clk2xln

CONFERENCE PAPER CP-07

The R3051 bus interface utilizes a 32-bit address and data
bus multiplexed onto a single set of pins. The bus interface unit
also provides an ALE signal to demultiplex the AD bus and
simple handshake signals to process processor read and
write requests. In addition to the read and write interface, the
R3051 incorporates a OMA arbiter to allow an external master
to control the external bus.

The R3051 incorporates a 4-deep write buffer to decouple
the speed of the execution engine from the speed of the
memory system. The write buffers capture and FIFO proces­
sor address and data information in store operations, and
presents it to the bus interface as write transactions at the rate
the memory system can accommodate.

The R3051 read interface performs both single-word reads
and quad-word reads. Single-word reads work with a simple
handshake. Quad-word reads can either utilize the simple

IDT R3051
lnt(5:0) RISController™
BrCond(3:0)

BusReq

BusGnt Addr(3:2) Wr RdCEn DataEn
AD(31:0) ALE SysOut Rd Ack Burst BErr

t I I J I J
t

Memory and
[FCT373T _j-1 Interface

Control PALs

J-'~'p _.,_l Decode
PAL

....

l DRAM

J Control L. PALs 1/0
j_ j_ EPROM Devices/

...
l J

Peripherals System I/

DRAM

0

L FCT245T J

Figure 2. R3051·Based System

189

NEXT-GENERATION MIPS RISC ARCHITECTURE
FOR EMBEDDED APPLICATIONS

handshake (in lower-performance, simple systems) or utilize
a tighter timing mode when the memory system can generate
burst data at the processor clock rate. Thus, the system
designer can choose to utilize page- or nibble-mode DRAMs
(and possibly use interleaving, if desired, in high-performance
systems, or use simpler techniques to reduce complexity).

In order to accommodate slower quad-word reads, the
R3051 incorporates a 4-deep read buffer FIFO so that the
external interface can queue up data within the processor
before releasing it to perform a burst fill of the internal caches.

SYSTEM USAGE
The IDTR3051 has been specifically designed to easily

connect to low-cost memory systems. Typical low-cost memory
systems utilize slow EPROMs, DRAMs and application spe­
cific peripherals. These systems may also typically contain
large, slow static RAMs although the IDTR3051 has been
designed to not require the use of external SRAMs to achieve
high performance.

Figure 2 shows a typical system block diagram. Transpar­
ent latches are used to demultiplex the R3051 address and
data busses from the AD bus. The data paths between the

CONFERENCE PAPER CP-07

memory system elements and the R3051 AD bus is managed
by simple octal devices. A small set of simple PALs is used to
control the various data path elements, and to control the
handshake between the memory devices and the R3051.

Depending on the cost versus performance trade-offs ap­
propriate to a given application, the system design engineer
could include true burst support from the DRAM to provide for
high-performance cache-miss processing.

DEVELOPMENT SUPPORT
The IDTR3051 is supported by a rich set of development

tools, ranging from system simulation tools through Prom
monitor support. logic analysis tools and subsystem modules.

Figure 3 is an overview of the system development process
typically used when developing R3051 applications. The
R3051 is supported in all phases of project development.
These tools allow timely, parallel development of hardware
and software for R3051 based applications and include tools
such as:
• A program. Cache-3051 ™.which allows the performance of

an R3051-based system to be modeled and understood
without requiring actual hardware.

System
Architecture
Evaluation

System
Development

Phase

System
Integration

and Verification

SABLE Simulator
DBG Debugger
PIXIE Profiler

MIPS Compiler Suite
Stand-Alone Libraries
Floating Point Library

Cross Development Tools
Adobe Postscript POL

Microsoft Truelmage POL
Ada

Cache-R3051
Hardware Models

General CAD Tools
RISC Sub-systems
Evaluation Board

Laser Printer System

Figure 3. R3051 Development Support Tool Chain

190

Logic Analysis
Diagnostics

IDT PROM Monitor
Remote Debug
Real-Time OS

NEXT-GENERATION MIPS RISC ARCHITECTURE
FOR EMBEDDED APPLICATIONS

• Sable, an instruction set simulator.
• Optimizing compilers from MIPS, the acknowledged leader

in optimizing compiler technology.
• Cross development tools, available in a variety of develop­

ment environments.
• The high-performance IDT floating-point library

software.
• The IDT Evaluation Board, which includes RAM, EPROM,

110, and the IDT PROM Monitor.
• The IDT Laser Printer System board, which directly drives

a low-cost print engine, and runs Microsoft Truelmage™
Page Description Language on top of PeerlessPage™
Advanced Printer Controller BIOS.

• Adobe Postscript® Page Description Language, ported to
the R3000 instruction set, runs on the IDT R3051.

• The IDT R3051 PROM Monitor, which implements a full
PROM monitor (diagnostics, remote debug support, peek/
poke, etc.).

PERFORMANCE OVERVIEW
The R3051 achieves a very high level of performance. This
performance is based on:
• An efficient execution engine. The CPU performs ALU

operations and store operations in single cycle, has an
effective load time of 1.3 cycles, and branch effective
execution time of 1.5 cycles (based on the ability of the
compilers to avoid software interlocks). Thus, the execution
engine achieves over 22mips performance when operating
out of cache.

191

CONFERENCE PAPER CP-07

• Large on-chip caches. The R3051 contains caches which
are substantially larger than those on the majority of today's
microprocessors. These large caches minimize the number
of bus transactions required, and allow the R3051 to achieve
actual sustained performance very close to its peak execution
rate.

• Autonomous multiply and divide operations. The R3051
features an on-chip integer multiplier/divide unit which is
separate from the other ALU. This allows the R3051 to
perform multiply or divide operations in parallel with other
integer operations, using a single multiply or divide instruction
rather than "step" operations.

• Integrated write buffer. The R3051 features a 4-deep write
buffer which captures store target addresses and data at the
processor execution rate and retires it to main memory at
the slower main memory access rate. Use of on-chip write
buffers eliminates the need for the processor to stall when
performing store operations.

• Burst read support. The R3051 enables the system designer
to utilize page-mode or nibble-mode RAMs when perform­
ing read operations to minimize the main memory read
penalty and increase the effective cache hit rates.
Thesetechniquescombinetoallowtheprocessortoachieve

over 20mips integer performance without the use of external
caches or zero wait-state memory devices.

t;)" INTRODUCTION TO THE NEW CONFERENCE

R3081''M PROCESSOR PAPER
CP-08

Integrated Device Technology, Inc:.

By Philip Bourekas

INTRODUCTION
The IDTR3051 ™family is a series of high-performance 32-

bit microprocessors featuring a high level of integration, and
targeted to high-performance but cost-sensitive processing
applications. The R3051 family is designed to bring the high
performance inherent in the MIPS RISC architecture into low­
cost, simplified, power-sensitive applications.

Thus, functional units have been integrated onto the CPU
core to reduce the total system cost, rather than to increase
the inherent performance of the integer engine. Nevertheless,
the R3051 family is able to offer 35VUPS performance at
40MHz without requiring external SRAM or caches.

The R3081™ extends the capabilities of the R3051 by
integrating additional resources into the same pinout. The
R3081 family thus extends the range of applications addressed
by the R3051 family, and allows designers to implement a
single, base system and software set capable of accepting a
wide variety of CPUs, according to the price/performance
goals of the end system.

In addition to the embedded applications served by the
R3051 family, the R3081 allows low-cost, entry-level com­
puter systems to be constructed. These systems will offer
many times the performance of traditional PC systems, yet
cost approximately the same. The R3081 is able to run any of
the various other operating systems ported to the MIPS
R3000 architecture. Thus, the R3081 can be used to build a
low-cost system, further widening the range of performance
solutions of the ACE Initiative.

This paper provides a brief overview of the R3081 proces­
sor; consult the "R3081 Family Hardware User's Guide" for a
complete description of this processor.

DEVICE OVERVIEW
The R3051 family offers a wide range of functionality in a

compatible interface. The R3051 family allows the system
designer to implement a single base system, and utilize
interface-compatible processors of various complexity to
achieve the price/performance goals of the particular end
system.

Differences among the various R3051 family members
pertain to the on-chip resources of the processor. Current
family members include:
• The R3052E, which incorporates an 8kB instruction cache,

a 2kB data cache, and full function memory management
unit (MMU) including 64-entry fully associative Translation
Look-aside Buffer (TLB).

• The R3052, which also incorporates an 8kB instruction
cache and 2kB data cache, but does not include the TLB,

and instead uses a simpler virtual to physical address
mapping.

• The R3051 E, which incorporates 4kB of instruction cache
and 2kB of data cache, along with the full function MMU/TLB
of the R3000A.

• The R3051, which incorporates 4kB of instruction cache
and 2kB of data cache, but omits the TLB, and instead uses
a simpler virtual to physical address mapping.

• The R3081 E, which incorporates a 16kB instruction cache,
a 4kB data cache, and full function memory management
unit (MMU) including 64-entry fully associative Translation
Look-aside Buffer (TLB). The cache on the R3081 Eis user­
configurable to an 8kB Instruction Cache and 8kB Data
Cache.

• The R3081, which incorporates a 16kB instruction cache, a
4kB data cache, but uses the simpler memory mapping of
the R3051/52, and thus omits the TLB. The cache on the
R3081 is user configurable to an 8kB Instruction Cache and
8kB Data Cache.
Figure 1 shows a block level representation of the functional

units within the R3081 E. The R3081 E could be viewed as the
embodiment of a discrete solution built around the R3000A
and R301 OA. However, by integrating this functionality on a
single chip, dramatic cost and power reductions are achieved.

CPU Core
The CPU core is a full 32-bit RISC integer execution

engine, capable of sustaining close to single cycle execution.
The CPU core contains a five-stage pipeline, and 32 orthogonal
32-bit registers. The R3081 uses the same basic integer
execution core as the entire R3051 family, which is the
R3000A implementation of the MIPS instruction set. Thus, the
R3081 family is binary-compatible with the R3051, R3052,
R3000A, R3001 and R3500 CPUs. In addition, the R4000
represents an upwardly software compatible migration path to
still higher levels of performance.

The execution engine in the R3081 uses a five-stage
pipeline to achieve near single-cycle instruction execution
rates. A new instruction can be initiated in each clock cycle;
the execution engine actually processes five instructions
concurrently (in various pipeline stages). Figure 2 shows the
concurrency achieved in the R3081 execution pipeline.

System Control Coprocessor
The R3081 family also integrates on-chip the System

Control Coprocessor, CPO. CPO manages both the exception
handling capability of the R3081, as well as the virtual to
physical address mapping.

As with the R3051 and R3052, the R3081 family offers two
versions of memory management and virtual to physical

~~!~T~o:~ ~ra~:::sre~ ~'!1;::~:,~ ~s;;~:!~r, IOT79R3081, IOT79R3051, Cache-3051, IOT/sim, IDT/kit and IDT/c are trademarks of Integrated Device Technology, Inc.

@1992 Integrated Device Technology, Inc. 6192
192

INTRODUCTION TO THE NEW R3081 PROCESSOR CONFERENCE PAPER CP·OS

Clkln Clock
Generator

Univ
Clock Doubler

BrCond(3:2,0)

Master Pipeline Control 1-----+------------

System
Control

Coprocssor
(CPO)

Exception/Control
Registers

Integer
CPU Core

General Reisters

(32 x 32)

Floating Point
Coprocessor

(CP1)

Register Unit

(16X64)
Memory M.anagement

Registers
ALU

Shifter Exponent Unit

32

MulVDiv Unit Add Unit

Address Adder Divide Unit
PC Control

Multiply Unit

Virtual Address
Exception/Control

FP Interrupt

Physical Address Bus

Configurable

Instruction

Cache

{16kB/8kB)

Data Bus

Configurable

Data

Cache

(4kB/8kB)

Data Bus

36

Parity
Generator

R3051 Superset Bus Interface Unit

4-deep

Read

Buffer

4-deep

Write

Buffer

Address/
Data

DMA
Arbiter

DMA
Crtl

BIU
Control

Rd/Wr SysClk
Crtl

Figure 1. R3081 Block Diagram

193

Coherency
Logic

Invalidate drw os
Control

INTRODUCTION TO THE NEW R3081 PROCESSOR

address mapping: the extended architecture versions (the
R3051 E, R3052E and R3081 E) incorporate the same full­
function MMU as the R3000A. These versions contain a fully
associative 64-entry TLB which maps 4kB virtual pages into
the physical address space. The virtual to physical mapping
thus includes kernel segments which are hard-mapped to
physical addresses and kernel and user segments which are
mapped page by page by the TLB into anywhere in the 4GB
physical address space. In this TLB, 8-page translations can
be "locked" by the kernel to insure deterministic response in
real-time applications. Figure 3 illustrates the virtual to physical
mapping found in the R3081 E.

The Extended architecture versions of the R3051 family
(the R3051 E, R3052E,and R3081 E) allow the system designer
to implement kernel software which dynamically manages
User task utilization of system resources, and also allows the
Kernel to protect certain resources from User tasks. These
capabilities are important in general computing applications
such as ARC computers and are also important in a variety of
embedded applications, from process control (where protection
may be important) to X-Window display systems (where
virtual memory management can be used). The MMU can
also be used to simplify system debug.

R3051 family base versions (the R3051, R3052, and
R3081) remove the TLB and institute a fixed address mapping
for the various segments of the virtual address space. These
devices still support distinct kernel and user mode operation,

1#1 IF RD ALU MEM

1#2 IF RD ALU

1#3 IF RD

1#4 IF

1#5

CONFERENCE PAPER CP-08

but do not require page management software, leading to a
simpler software model. The memory mapping used by these
devices is shown in Figure 4. Note that the reserved spaces
are for compatiblity with future family members which may
map on-chip resources to these addresses. References to
these addresses in the R3081 will be translated in the same
fashion as the rest of their respective segments with no traps
or exceptions signalled.

When using the base versions of the architecture, the
system designer can implement a distinction between the
user tasks and the kernel tasks without having to implement
page management software. This distinction can be imple­
mented by decoding the output physical address. In systems
which do not need memory protection, and wish to have the
kernel and user tasks operate out of the same memory space,
high-order address lines can be ignored by the address
decoder and thus all references will be seen in the lower
gigabyte of the physical address space.

Floating-Point Coprocessor
The R3081 also integrates an R301 DA compatible floating­

point accelerator on-chip. The FPA is a high-performance
coprocessor (coprocessor 1 to the CPU) providing separate
add, multiply, and divide functional units for single- and
double-precision floating-point arithmetic. The floating-point
accelerator features low latency operations and autonomous
functional units which allow differing types of floating-point

WB

MEM WB

ALU MEM WB

RD ALU MEM WB

CURRENT CPU
CYCLE

Figure 2. R3081 5-Stage Pipeline

194

INTRODUCTION TO THE NEW R3081 PROCESSOR

operations to function concurrently with integer operations.
The FPA appears to the software programmer as a simple
extension of the integer execution unit with 16 dedicated 64-
bit floating-point registers (software references these as 32
32-bit registers when performing loads or stores). Figure 5
illustrates the functional block diagram of the on-chip FPA.

Clock Generator Unit
The R3081 is driven from a single input clock which can be

either at the processor rated speed, or at twice that speed. On­
chip, the clock generator unit is responsible for managing the
interaction of the CPU core, caches, and bus interface. The
R3081 includes an on-chip clock doubler to provide higher­
frequency signals to the internal execution core; if 1 x clock
mode is selected, the clock doubler will internally convert it to
a double-frequency clock. The 2x clock mode is provided for
compatiblitywith the R3051. The clock generator unit replaces
the external delay line required in R3000A-based applications.

Instruction Cache
The R3081 implements a 16kB Instruction Cache. The

system may choose to repartition the on-chip caches, so that
the instruction cache is reduced to BkB but the data cache is
increased to BkB. The instruction cache is organized with a
line size of 16 bytes (four entries). This large cache achieves
hit rates in excess of 98% in most applications and substan­
tially contributes to the performance inherent in the R3081 .
The cache is implemented as a direct mapped cache and is

VIRTUAL
Oxffffffff

Kernel Mapped
{kseg2) ~

OxcOOOOOOO

Kernel Uncached
{kseg1)

OxaOOOOOOO

Kernel Cached
{ksegO)

OxBOOOOOOO

User Mapped

~ Cacheable
{kuseg)

OxOOOOOOOO

CONFERENCEPAPERCP-08

capable of caching instructions from anywhere within the 4GB
physical address space. The cache is implemented using
physical addresses (rather than virtual addresses) and thus
does not require flushing on context switch.

The instruction cache is parity protected over the instruc­
tion word and tag fields. Parity is generated by the read buffer
during cache refill; during cache references, the parity is
checked, and in the case of a parity error, a cache miss is
processed.

Data Cache
The R3081 incorporates an on-chip data cache of 4kB,

organized as a line size of 4 bytes (one word). The R3081
allows the system to reconfigure the on-chip cache from the
default 16kB l-Cache/4kB D-Cache to BkB of Instruction and
BkB of Data caches.

The relatively large data cache achieves hit rates in excess
of 95% in most applications, and contributes substantially to
the performance inherent in the R3081. As with the instruction
cache, the data cache is implemented as a direct mapped
physical address cache. The cache is capable of mapping any
word within the 4GB physical address space.

The data cache is implemented as a write-through cache,
to insure that main memory is always consistent with the
internal cache. In order to minimize processor stalls due to
data write operations, the bus interface unit incorporates a 4-
deep write buffer which captures address and data at the
processor execution rate, allowing it to be retired to main

PHYSICAL

Physical Memory
~ 3548 MB

Memory 512 MB

DRW04

Figure 3. Virtual to Physical Mapping of Extended Architecture Versions

195

INTRODUCTION TO THE NEW R3081 PROCESSOR

memory at a much slower rate without impacting system
performance. Further, support has been provided to allow
hardware-based data cache coherency in a multi-master
environment, such as one utilizing OMA from 110 to memory.

The data cache is parity protected over the data and tag
fields. Parity is generated by the read buffer during cache refill;
during cache references, the parity is checked, and in the case
of a parity error, a cache miss is processed.

Bus Interface Unit
The R3081 uses its large internal caches to provide the

majority of the bandwidth requirements of the execution
engine, and thus can utilize a simple bus interface connected
to slower memory devices. Alternately, a high-performance,
low-cost secondary cache can be implemented, allowing the
processor to increase performance in systems where bus
bandwidth is a performance limitation.

The R3051 family bus interface utilizes a 32-bit address
and data bus multiplexed onto a single set of pins. The bus
interface unit also provides an ALE (Address Latch Enable)
output signal to demultiplex the ND bus, and simple hand­
shake signals to process CPU read and write requests. In
addition to the read and write interface, the R3051 family
incorporates a OMA arbiter to allow an external master to
control the external bus.

The R3081 also supports hardware-based cache coherency
during OMA writes. The R3081 can invalidate a specified line

VIRTUAL

Oxf ff ff ff f

Kernel Cached
(kseg2)

OxcOOOOOOO

Kernel Uncached
(kseg1)

OxaOOOOOOO

Kernel Cached
(ksegO)

Ox80000000

User Cached
(kuseg)

OxOOOOOOOO

CONFERENCE PAPER CP-08

of data cache, or in fact can perform burst invalidations during
burst DMA writes.

The R3081 incorporates a 4-deep write buffer to decouple
the speed of the execution engine from the speed of the
memory system. The write buffers capture and FIFO processor
address and data information in store operations and present
it to the bus interface as write transactions at the rate the
memory system can accommodate.

The R3081 read interface performs both single-datum
reads and quad-word reads. Single reads work with a simple
handshake and quad-word reads can either utilize the simple
handshake (in lower-performance, simple systems), or utilize
a tightertiming mode when the memory system can burst data
at the processor clock rate. Thus, the system designer can
choose to utilize page- or nibble-mode DRAMs (and possibly
use interleaving, if desired, in high-performance systems) or
use simpler techniques to reduce complexity.

In order to accommodate slower quad-word reads, the
R3081 incorporates a 4-deep read buffer FIFO, so that the
external interface can queue-up data within the processor
before releasing it to perform a burst fill of the internal caches.

The R3081 is R3051 superset-compatible in its bus inter­
face. Specifically, the R3081 has additional support to simplify
the design of very high-frequency systems. This support
includes the ability to run the bus interface at one-half the
processor execution rate, as well as the ability to slow the

PHYSICAL

Kernel Cacheable 1024 MB
Tasks

Kernel/User
Cacheable 2048 MB Tasks

Inaccessible 512 MB

Kernel Boot
and 1/0

512 MB

drw04

Figure 4. Virtual to Physical Mapping of Base Architecture Versions

196

INTRODUCTION TO THE NEW R3081 PROCESSOR

transitions between reads and writes to provide extra buffer
disable time for the memory interface. However, it is still
possible to design a system which, with no modification to the
PC Board or software, can accept either an R3051, R3052, or
R3081.

SYSTEM USAGE
The IDT R3051 family has been specifically designed to

allow a wide variety of memory systems. Low-cost systems
can use slow-speed memories and simple controllers, while
other designers may choose to incorporate higher frequen­
cies, faster memories, and techniques such as OMA to achieve

c
ocho Oro• ~Y") uatai:[us

Instructions

CONFERENCE PAPER CP·OB

maximum performance. The R3081 includes specific support
for high-performance systems, including signals necessary to
implement external secondary caches and the ability to per­
form hardware-based cache coherency in multi-master sys­
tems.

Figure 6 shows a typical system implementation. Trans­
parent latches are used to demultiplex the R3081 address and
data busses from the A/D bus. The data paths between the
memory system elements and the A/D bus is managed by
simple octal devices. A small set of simple PALs is used to
control the various data-path elements and to control the
handshake between the memory devices and the CPU. IDT
has implemented the R3720/21 support chip set specifically

l

ft(32)

Operands

Register Unit (16 x 64)

Exponent Part

Condition Codes
(11) (11) (11) (53) (53) (53)

' A B Result A B Result

Add Unit

Exponent Unit Round

...... Control Unit
and Clocks

(53) (53) (56)

A B Result

Divide Unit

(53) (53) (56)

A B Result

t-- Multiply Unit

drw5

Figre 5. FPA Functional Block Diagram

197

INTRODUCTION TO THE NEW R3081 PROCESSOR

tailored to R3051 family systems. This chip set directly
interfaces the processor to DRAM, simplifying design and
eliminating discrete logic chips and PAL devices.

Depending on the cost versus performanc~ trad~-offs
appropriate to a given application, the system design engineer
could include true burst support from the DRAM to provide for
high-performance cache-miss processing, or utilize a simp!er,
lower-performance memory system to reduce cost and sim­
plify the design. Similarly, the system designer could choose
to implement techniques such as external secondary cache,
or OMA, to further improve system performance.

Clkln

CONFERENCE PAPER CP-08

DEVELOPMENT SUPPORT
The IDT R3051 family is supported by a rich set of devel­

opment tools, ranging from system simulation tools through
PROM monitor and debug support, applications software and
utility libraries, logic analysis tools, subsystem ~o~ul~s and
shrink-wrap operating systems. The R3081, which 1s pin and
software compatible with the R3051 , can directly utilize these
existing tools to reduce time to market.

Figure 7 is an overview of the system devel?pmentpro_cess
typically used when developing R3051 family applications.
The R3051 family is supported in all phases of project devel-

IDT R3081
RISController

110 Controller

PROM 1/0

Address/Data

1/0

R3051
Local Bus

Control

1 1
IDT79R3721 DRAM

Controller

DRAM

IDT73720
Bus Exchanger

1
Figure 6. R3081 RISChipset Based System

198

l

DRAM

1

drw06

INTRODUCTION TO THE NEW R3081 PROCESSOR

opment. These tools allow timely, parallel development of
hardware and software for R3051 family applications, and
include tools such as:
• A program, Cache-3051 ™,which allows the performance of

an R3051 family system to be modeled and understood
without requiring actual hardware.

• Sable, an instruction set simulator.
• Optimizing compilers from MIPS, the acknowledged leader

in optimizing compiler technology.
• Cross development tools, available in a variety of develop­

ment environments.
• The high-performance IDT floating-point library software,

including transcendental functions and IEEE-compliant
exception handlers.

• The IDT Evaluation Board, which includes RAM, EPROM,
1/0, and the IDT PROM Monitor.

• The IDT Laser Printer System board, which directly drives
a low-cost print engine, and runs Microsoft Truelmage™
Page Description Language on top of PeerlessPageTM Ad­
vanced Printer Controller BIOS.

• Adobe Postscript® Page Description Language, ported to
the R3000 instruction set, runs on the IDT R3051 family.

• IDT/sim, which implements a full PROM monitor (diagnos­
tics, remote debug support, peek/poke, etc.).

CONFERENCE PAPER CP-08

• IDT/sae, which implements a run-time support package for
R3051 family systems.
Various Operating Systems ported to the R3000, including
ACE UNIX®.

PERFORMANCE OVERVIEW
The R3081 achieves a very high level of performance. This

performance is based on:
• An efficient execution engine. The CPU performs ALU

operations and store operations in a single cycle, and has
an effective load-time of 1.3 cycles, and branch execution
rate of 1 .5 cycles (based on the ability of the compilers to
avoid software interlocks). Thus, the execution engine
achieves over 35VUPS performance when operating out of
cache, and equivalently high SPECmark performance.

• A full-featured floating-point accelerator/coprocessor.
The R3081 incorporates an R3010A compatible floating­
point accelerator on-chip, with independentALUs forfloating­
point add, multiply, and divide. The floating-point unit is fully
hardware-interlocked, and features overlapped operation
and precise exceptions. The FPA allows floating-point adds,
multiplies and divides to occur concurrently with each other,
as well as concurrently with integer operations.

• Large on-chip caches. The R3051 family contains caches
which are substantially larger than those on the majority of

System Architecture
Evaluation

System Development
Phase

System Integration
and Verification

Cache-3051

SPP

Benchmarks

Evaluation Board

Laser Printer System

X-Terminal System

SABLE Simulator
DBG Debugger

Pixie Profiler
MIPS Computer Suite
Stand-Alone Libraries
Floating Point Library

Cross Development Tools
Adobe Postscript PDL

MicroSoft Truelmage PDL
PeerlessPage Printer OS

X-Server

Cache-3051
Hardware Models

General CAD Tools
Evaluation Board

Laser Printer System
X-Terminal System

Support Chips

Figure 7. R3051 Family Development Toolchain

199

Logic Analysis
Diagnostics

IDT/sim
IDT/sae

drw07

INTRODUCTION TO THE NEW R3081 PROCESSOR

today's microprocessors. These large caches minimize the
number of bus transactions required, and allow the R3051
family to achieve actual sustained performance very close
to its peak execution rate. The R3081 doubles the cache
available on the R3052, making it a suitable engine for many
general-purpose computing applications, such as ACE sys­
tems.

• Autonomousmultiplyanddivideoperations. The R3051
family features an on-chip integer multiplier/divide unit
which is separate from the other ALU. This allows the CPU
to perform multiply or divide operations in parallel with other
integer operations, using a single multiply or divide instruction
rather than "step" operations.

• Integrated write buffer. The R3081 features a four deep
write buffer, which captures store target addresses and data
at the processor execution rate and retires it to main
memory at the slower main memory access rate. Use of on­
chip write buffers eliminates the need for the processor to
stall when performing store operations.

• Burst read support. The R3051 family enables the system
designer to utilize page-mode or nibble-mode RAMs when
performing read operations to minimize the main memory
read penalty and increase the effective cache hit rates.
The performance differences between the various R3051

family members depends on the application software and the
design of the memory system. The impact of the various cache
sizes, and the hardware floating-point, can be accurately
modeled using Cache-3051. Since the R3051, R3052, and
R3081 are all pin and software compatible, the system designer
has maximum freedom in trading between performance and
cost. A system can be designed, and later the appropriate
CPU inserted into the board, depending on the desired system
performance.

SELECTABLE FEATURES
The R3081 allows the system designer to configure certain

aspects of operation. Some of these options are established
when the device is reset, while others are enabled via the
Config registers:
• Big Endian vs. Little Endian byte ordering. The part can

be configured to operate with either byte ordering. ACE
systems typically use Little Endian byte ordering. However,
various embedded applications, written originally for a Big
Endian processor such as the MC680x0, are easier to port
to a Big Endian system.

• Data Cache Refill of one or four words. The memory
system must be capable of performing four word refills of
instruction cache misses. The R3081 allows the system
designer to enable D-Cache refill of one or four words
dynamically. Thus, specialized algorithms can choose one
refill size, while the rest of the system can operate with the
other.

• Half-frequency bus mode. The processor can be config­
ured such that the external bus interface is at one-half the

CONFERENCE PAPER CP-08

frequency of the processor core. This simplifies system
design; however, the large on-chip caches mitigate the
performance impact of using a slower system bus clock.

• Slow bus turn-around. The R3081 allows the system de­
signer to space processor operations, so that more time is
allowed for transitions between memory and the processor
on the multiplexed address/data bus.

• Configurable cache. The R3081 allows the system de­
signer to use software to select either a 16kB Instruction
Cache/4kB Data Cache organization, or an BkB Instruction/
BkB Data Cache organization.

• Cache Coherent interface. The R3081 has an optional
hardware based cache coherency interface intended to
support multi-master systems such as those utilizing OMA
between memory and 1/0.

• Optional 1x or 2x clock input. The R3081 can be driven
with an R3051-compatible 2x clock input, or a lower fre­
quency 1 x clock input.

INTERCHANGEABILITY WITH OTHER
R3051 DEVICES

The R3081 family has been designed to allow inter­
changeability with other members of the R3051 family, with no
changes to the PCB. The last chapter of the R3081 User's
Manual describes the various design considerations involved.
Upgrade options within the R3051 family now include:
• Upgrading an R3051 to an R3052. This doubles the amount

of instruction cache, without modifying the frequency of the
system, and thus could be offered as a field upgrade.

• Upgrading an R3051 or R3052 to an R3081 at the same
frequency. This would have the effect of increasing both the
instruction and data cache sizes. In addition, the hardware
floating-point unit would be available to upgrade system
floating-point performance. This upgrade results in a sub­
stantial performance gain, with no board redesign.

• Upgrading an R3051 or R3052 to an R3081 running at twice
the frequency but the same bus interface speed. For ex­
ample, it is possible to upgrade a 20MHz R3051 to a 40MHz
R3081. The R3081 would run in "1x clock mode", so no
changes to the input clock would be required; the R3081 bus
could be run at one-half the processor speed (20MHz), so
no other system changes are required. This upgrade results
in twice the amount of cache, at twice the execution rate,
with additional hardware floating-point support, yet requires
no real modifications to the PCB or other components.

SUMMARY
The R3081 further extends the range of price-performance

served by the R3051 family. By offering different devices with
the same footprint, a single hardware design effort is lever­
aged into multiple end products, each addressing different
price/performance points.

200

(;)® IDT RISC TECHNOLOGY CONFERENCE

AND DESIGNING WITH CACHE PAPER
CP-09

COHERENCY IN MIND
Integrated Device Technology, Inc.

By Barry Seidner

INTRODUCTION
The objective of this paper is to discuss new performance

standards by which to judge the attributes of new RISC
architectures that were designed for very different applica­
tions. As any. micr?processor design engineer with experi­
ence will testify, microprocessors seem architected to ease
design-not validate performance. Digital design engineers
can get their arms around the interface requirements which
are finite enough to make trade-off studies, and they c~n look
at support chips to make sure the peripherals meet the needs
of the design. If the needs are not met they can look at what
other peripherals can meet those needs and how many PAL
devices it will take to use them on the selected processor.

The less tangible part of microprocessor selection is deter­
mining if a processor will meet the challenging demands of
today's software requirements. Most cursory investigations
will involve the comparison of standard benchmarks. One
commonly used set is called the "Intel Benchmark Suite",
because Intel showed the original six that include Quicksort
Bubblesort, Pi-500, Anneal, Matmult and Dhrystone 1.1. Th~
first problem not readily apparent is that Intel does not state
their latencies into main memory. In fact, they boast perfor­
mance on an all-SRAM system and then a DRAM system.

79R3000A
CPU

.---- ALU/Regs
Integer Mult/Div

MMU/TLB
Cache Control

T Addresses
Data

_L

11 1 1
79R3020 74FCT

Write Read
Buffer Buffer

' "TI
l System Bus Interface

What is of note here is that all the details of main memory
latency are important and missing. This leaves the designer to
depend on his benchmarks and define the latency he will use.
. The fact is that the majority of RISC chip designers are just
like the user. Because it takes years to get a reliable CPU into
production, they design processors on hardware features, not
proven performance. But MIPS RISC architectures are differ­
ent. They were designed by first architecting the instruction
set, writing compilers, selecting 20 large benchmarks (the
code sets were UNIX®-oriented applications in the multiple­
megabyte size range) and performing two years of optimiza­
tion. The /astth1ng MIPS did was to define the CPU hardware
architecture to execute the instruction set and the compilers.

Trade-offs continued into the CPU development as well.
Illustrated later in the feature set of MIPS RISC processors is
a background autonomous multiply/divide unit with 64-bit
re~ult versus the implementation of a multiply step instruction.
This feature allows multiply/divides to run while other code
continues, and because the compilers are designed to facili­
tate this, a vectorization of code occurs. Also, for the first time
a Write Buffer was included in the architecture to prevent CPU
write stalls. This feature helps lessen the problem of CPU
Write bandwidth to main memory Write bandwidth.

79R3010A
FPA

FP Regs
FP Adder

FP Mul!£1ier
FP Divider

::rI
1 j_ 1 1

I I Cache I D Cache I to 256K to 256K

l
System Bus

Main Memory Serial l/O Ethernet Disk Control

drw 01

Figure 1. Typical R3000A System Block Diagram

A
Tl

1
1e IDT logo is a registered tra~emark a~d RlSCore~ RISController, IDT79R3051 and IDT79A3081 are trademarks of Integrated Device Technology Inc
I others are trademarks of their respective companies. ' ·

©1992 Integrated Device Technology, Inc.
201

6/92

IDT RISC TECHNOLOGY, AND DESIGNING WITH
CACHE COHERENCY IN MIND

Briefly discussed, one can see a clear difference between
MIPS RISC architecture development versus others. In the
other camp, processor architectures are presented to com­
pilerwriters after the fact and they are forced to deal with a non­
conforming architecture. Even in situations where many com­
piler technology companies are pitted against each other,
(e.g., Metaware and Green Hills funded to do compilers for a
given architecture where the best gets the business) the
outcome falls short.

SYSTEMS SHIPPING TODAY
Todays' high-performance systems have been shipping

the 79R3000A for three years. Most notably, Silicon Graphics,
DEC, CDC, Tandem, Pyramid, NEC and Sony have found the
performance of the R3000A to be profound. These systems
still ship the MIPS RISC architecture known as MIPS 1. It
includes the R3000A CPU, the optional R301 OA floating-point
hardware accelerator, write buffer logic and as many as thirty
64K SRAMs to make up the cache. MIPS 2, which has been
in production for over a year, executes on the R6000 proces­
sor. Implemented in EGL logic, the processor is now shipping
in excess of 66MHz. MIPS 3, recently announced, defines the
R4000. The R4000 is a super-pipelined RISC that is a superset
of MIPS 1 and MIPS 2, where all application code is upwardly
binary compatible.

MIPS 1 systems define yesterday's two-chip set-the
79R3000A RISC CPU and ttie optional 79R3010A FPA, as
described in Figure 1. From a software standpoint, they
appear seamless operationally because both execution units
examine every opcode simultaneously. If an integer operation
is seen on the bus, the 79R3000A executes, or if it is a floating­
point operation, the FPA executes it.

The CPU contains thirty-two 32-bit registers. All registers
can be an ALU, can be shifted, and can be used as pointers,
offsets, etc. On-chip is a 32-bit multiply/divide unit that gives
64-bit results that can execute concurrently with integer opera­
tions. The compiler technology explained previously exam­
ines the source code and picks the most effective method to
schedule the multiply/divide unit. If the result is needed
immediately, the compiler will pick the most effective way to
perform the operation; if not, the autonomous unit will be
scheduled, if inactive. In cases where a register is modified by
a constant, the compilers will use clever code sequences to
perform the operation. Where two registers are used, and the
data is needed right away, the autonomous unit will be
scheduled and the processor will interlock on references to the
unit before data completion.

The 79R3000A RISC processor employs a five-stage
pipeline to effectively schedule all phases of instruction execu­
tion. The stages are: instruction fetch, register read, ALU,
memory read and write back. The FPA has a six-stage
pipeline. Both pipelines move at the clock rate, synchronized
by a phase-lock loop on the 79R301 QA.This facilitates the
seamless operation of the two independent devices. Since
they have their own set of registers, integer operations don't
interfere with floating-point operations and, as they are au­
tonomous units, the compiler can overlap execution units for

CONFERENCEPAPERCP-09

maximum performance. Also on the CPU is the MMU, which
is coprocessor 0. This coprocessor is responsible for virtual­
to-physical translations and exception processing. The MMU
is fully associative, resulting in high MMU hit rates. The
exception model is precise, which allows easy decoding of
which instruction caused the exception, integer or floating­
point. The 79R3000A has six dedicated interrupt inputs that
are level-sensitive and can be sensed individually for six
unique interrupts or can produce an offset into a jump table
realizing 64 vectored interrupts.

The 79R3010A FPU has a separate set of sixteen 64-bit
registers. Three separate operational units exist on the chip
that include the add/subtract, multiply and divide functions.
Their functions are overlappable and scheduled by the com­
piler. An example of overlap would show that multiplies can be
overlapped with divides and add/subtracts overlapped with
multiplies-resulting in all execution units operating in the
FPU concurrently with integer processing. The CPU and FPA
communicate over a set of individual lines indicating status.
As an example, if the FPA cannot accept another operation,
it will signal the CPU to stall the additional operation with the
FpBusy signal. Additionally, since the instruction set includes
floating-point comparisons, the architecture does not require
the data to be moved into the R3000A. Compare is done by the
FPA and the results are communicated via the FP-condition
signal. This signal connects to the CPU CpCond input and the
processor can jump on a true or false condition. Lastly, if a
floating-point exception occurs as a result of an operation, the
Fplnt output of the FPA will signal the CPU to examine the
situation.

CACHE MEMORIES
The data bus on the 79R3000A is a multiplexed data bus,

time-shared by the data cache and the instruction cache, with
1 /2 clock cycle coming from each. The cache is organized in
a classical Harvard architecture, maximizing standard SRAM
technology by providing a cache controller on-chip. The cache
is configured as a 60-bit-wide path, consisting of 32 bits of
data, 4 bits of data parity, 20 bits of tag, 3 parity bits on the tag
and a valid bit. All cache accesses require all 20 bits of tag to
be presented for comparison-allowing all 4GB to be
cacheable.

Several clever techniques can be implemented to reduce
cache density. One easy method takes advantage of the fact
that on instruction cache misses a block refill occurs. Since the
block always has the same tag, and the instruction cache is
not written to otherwise, the tag cache depth can be shallower.
Other methods include wrapping thetag bus back with latches
for the low-order tag to eliminate some tag SRAMS there, as
well. Semiconductor manufacturers continue to integrate
functions on-chip, like incorporating an FCT373 function, dual
cells that include I and D sides, to reduce parts count.

MAIN MEMORY INTERFACE
Whenever a cache miss occurs, main memory is referenced

to obtain the required data. Data is cacheable if the address
range falls within the user mode range, in special kernel mode

202

IDT RISC TECHNOLOGY, AND DESIGNING WITH
CACHE COHERENCY IN MIND

segments and is automatically loaded into the cache when
recovered from memory. On writes, the 79R3000A maintains
a cache write-through policy, so data is written to main
memory with the cache. The Write Buffer captures the 36 bits
of data, including parity and 32 bits of address, which can be
retired at the bandwidth acceptable to main memory. The
reason for Write Buffers become clear when an examination
of cache bandwidth, main memory bandwidth and the rate of
writes are examined. It is easy to see that the CPU can easily
overwhelm memory and have to stall frequently. The Write
Buffer separates the bandwidth mismatch by storing the data
until main memory can accept the Write.

SOLUTIONS TO REDUCE COST
Integration has always been a key method in reducing

system cost. Not only does this reduce the individual parts
counts and costs, it also reduces PC board costs, PC layers,
power, manufacturing costs and increases performance and
reliability, etc. Semiconductor manufacturers continue to inte­
grate for better solutions, to improve customer relationships
through improved business and to separate themselves from
the simple "we sell chips" suppliers.

IDT announced the release of RISCore™, the 79R3"i00, in
September of 1991. The 79R3500 integrates the 79R:1000A

2XCLKin

1

CONFERENCE PAPER CP-09

CPU and the 79R301 OA FPA into a package that fits into the
175 PGA socket (actually 161 pins)-the most popular foot­
print shipped. Because the 79R3500 includes hardware float­
ing-point, FP interrupts and the FP condition code are inter­
nally routed via the reset vectors to pick the decisions that are
wired externally in discrete designs. Other benefits of the
79R3500 include reduced power, better board layout permit­
ted by a smaller cache bus, an additional memory mapping
option for non-TLB versions, a new set of features to reduce
cache size and lower cost.

Three modes programmed via the reset vectors allow the
elimination of several cache SRAMs. These options allow the
elimination of tag bit comparisons, which are not possible on
the 79R3000A as it requires all 20 bits to be compared. The
first option limits cacheable main memory to 128MB and
saves four bits of tag in both caches. Very few systems today
have the bus width or allow the capacity to address the full
4GB of cacheable memory permitted by the 79R3000A. The
second option eliminates the lower four bits to the tag bus.
This mandates that the cache use at least 16k depth (i.e., 16k
x 4) cache SRAMs (64kB). The lower four tag bits are
redundant in caches of this depth. The last mode includes both
features, eliminating 16 bits of cache SRAMs, and is clearly
popular. Additionally, there is an option to eliminate parity

BrCond(3·0)

Clock
[Master Pipeline Control

(5.0)

Generator Unit I

~

Exception/Control Registers General Registers 32 x 32

Memory Management ALU

Registers Shifter

Translation MulVDiv Unit
Lookaside Buffer Address Adder

(64 entries) PC Control

1
Physical Address Bus Virtual Address

I]_
3~ Instruction Cache Data Cache)32

4-deep
Write
Buffer

(8kB/4kB)

1
BUS Interface Unit

Address/
Data

4-ded
Rea
Buffer

OMA
Arbiter

1
OMA
Crtl

2kB

I

Figure 2. The R3051 RISController

203

I BIU
Control

t l
Rd/Wr SysClk

Ctrl drw 02

IDT RISC TECHNOLOGY, AND DESIGNING WITH
CACHE COHERENCY IN MIND

checking in the cache. This option, combined with the last
mode, reduces the cache bus length to 32 data+ 1 valid + 12
tag = 45 bits-a clear cost savings!

Another cost savings solution is to address reducing the
number of cache SRAMs. Currently available from IDT is the
71 8229, a cache SRAM for all R3000NR3500 systems. The
IDT718229 includes the latching function on-chip, eliminating
the need for the external FCT373 address latches. It is x9 in
width and is bicameral (16K x 9 x 2). The bicameral feature
cuts the number of SRAMs needed in half because the
bicameral SRAMs actually have two differentiated sections,
where one is part of the instruction cache and the other is part
of the data cache. This solution is also footprint-effective as it
is available in a 300mil SOJ package. Using RISCore (which
integrates the CPU and FPA) and the third cache option
(which reduces the cache bus width to 45 bits), in conjunction
with five 71 8229 cache SRAMs, reduces yesterday's 32-chip
solution down to 6 devices. This represents significant board
and cost savings.

Clearly, these cost reduction solutions are significant for
the ultimate-performance systems, but what about systems
that don't require high-performance and are more cost sensi­
tive? IDT recognized the need for cost-sensitive solutions
where customers had experience with the MIPS ISA and
compiler suite and wanted to stick with that architecture in their
lower-performance applications. Also, designers in the x86
and 68020 performance market needed a cost-sensitive so­
lution to improve performance and still have complete devel­
opment support. IDT's solution was to maintain 100% code
compatibility, no modification of the architecture and integrate
to reduce cost. This solution is called the R3051'"' RISCon­
troller'I'M. Second-sourced by Siemens and costing $30 when
purchased in volume, it has clearly become a leading solution
for the embedded marketplace.

THE R3051 RISController
The R3051 integrates the R3000A CPU, cache, a 4-deep

read and 4-deep write buffer, signals to deal with page-mode
DRAMs and other features to reduce cost at the system level,
as shown in Figure 2. The cache includes 4k8 of Instruction
cache and 2k8 of Data cache. Simulations of many bench­
marksuites, including SPEC, show the cache size to be above
the knee of the curve to effectively address typical program
loops. The upgrade to the R3051 is the R3052, which doubles
the instruction cache to 8k8, is pin-for-pin compatible for
instant performance upgrades without any hardware or soft­
ware modifications.

The R305x products all come in cost-effective 84-pin PLCC
packages that reduce board space and manufacturing, facili­
tated by a multiplexed 32-bit address/data bus. This bus is
demultiplexed on a cache miss with ALE, which connects to
standard FCT373 latches, in one clock. No performance is lost
because the address flows through the FCT373, maximizing
address propagation. When an examination of non-multi­
plexed systems are performed, the first clock is used the same
way-to propagate the address. The DataEN output signal
from the R3051 is used by the memory interface to detect
when the processor has stopped driving the bus and external

CONFERENCE PAPER CP-09

memory can now supply data for read misses. As for writes,
the WrNear signal goes true if this write falls within the same
page as the last write, improving write bandwidth into main
memory. Just like the standard R3000A, the processor sup­
ports burst reads and includes a 4-deep read buffer which
allows instruction streaming. The refill can be as fast as a
single clock or multiple clocks, gated by RdClkEn.

The processor has the same precise exception model as
the R3000A, allowing six independent interrupts directly into
the processor. Upon sensing an interrupt, the general exception
vector goes to the address bus and the exception routine
executes. Under software control, the processor can imple­
ment any priority-based interrupt scheme imaginable-and
dynamically change it, which is especially useful when inter­
rupt loading varies in a system. Additionally, four independent
inputs, called branch conditions, can be used to sense exter­
nal conditions without any additional hardware or logic.

Integration of all the basic CPU components eliminated the
need for glue logic, but did not integrate peripherals-why
not? The answer lies in the types of peripherals needed by the
majority of the designs and the expertise of those customers.
A study of major customers in the embedded market was
conducted to discover what devices, and how many, were
most often needed. The conclusion of that study showed that
there were few functions that the majority of designs needed
and that most customers had significant design expertise in
ASIC technology to implement those differentiating functions.
Another result was that, though most needed some type of
timing function, the requirements were all different. If one
function is integrated and the user needed two, he gained
nothing because an additional chip is still needed. Since these
basic functions cost less than $2.00, IDT decided to concen­
trate on improving performance and lowering the CPU cost.
This has proven to be a significant factor in market acceptabil­
ity of the R305x products.

MUL TIMASTER MAIN MEMORY SYSTEMS
Systems where main memory can accept data from various

sources (i.e., contains arbitration logic to decide who controls
the data into and out of main memory) are classified as
multimaster systems. This is very common in standard sys­
tems and is true whenever the system incorporates a OMA
function, which is a peripheral that can master the bus and the
more elaborate systems that accept an additional CPU card
into a backplane. Cache coherency, a problem in these types
of systems, occurs when processors have private memory
that is a small copy of main memory and is not updated at the
same time as main memory. Cache is a typical form of this
configuration, as main memory typically does not have the
ability to update cache.

When implementing multimaster systems with R3000A
cache structures, designers have several choices to keep the
data cache coherent (identical with memory). The R3000A
has two control signals frequently called MP Stall and MP
Invalidate, which are used to stop the processor and invalidate
the cache entry. The major issue is when to do this. Trade-offs
are organized by cost and performance. The first method

204

IDT RISC TECHNOLOGY, AND DESIGNING WITH
CACHE COHERENCY IN MIND

involves using an external tag memory that stores the ad­
dresses of the items in the data cache. It is written to with the
address of the data item on every data cache miss and cleared
on data cache flush to maintain its correctness. When a
memory Write is requested from another device, the tag
SRAM is checked to see if an address appears that matches
what is contained in the data cache. On a hit, a simple state
machine stalls the transfer, stalls the processor, invalidates
the cache item and continues. This is the most expensive and
highest-performance process. One drawback is that the CPU
stalls whenever a cache invalidate cycle occurs. A second,
and simpler, method does not include the tag SRAM, but stalls
and invalidates any shared address. This, of course, affects
performance because the CPU is stalled more often.

One key in reducing the amount of CPU stalls due to data
cache hits is to reduce the amount of main memory that is
shared. When this is done, the state machine can decode the
address to first see if the address range is appropriate for
shared memory. This greatly simplifies the overall architec­
ture but has some impact on the software. It is important to
minimize shareable memory in all multimaster systems.

Systems that do not include a second processor but have
a multimaster structure allow simpler methods to keep data
coherent. The first method is simple because the pro ... essor
probably programmed the address transfer and can flush
those cacheable data addresses; the trade-off being the
overhead of the code it takes to flush the data cache. A second
method would include treating all OMA memory references as
uncacheable references; the trade-off again being lowered
performance, but a simpler software model. Both methods are
effective, cost sensitive and achieve the desired result.

The R305x products allow any of these methods to be
used, except the most sophisticated one where the external
state machine invalidates the data cache. This arrangement
is akin to the highest performance engines and the R305x
CPUs are targeted at lower-performance and lower-cost
systems. The next-generation product, the R30B1™, has the
necessary handshake signals to invalidate data cache loca­
tions inside a highly-integrated CPU.

THE R3081 RISController
The R30B1 RISController is the next logical step in integra­

tion, addressing performance applications beyond the reach
of the R305x products. The R30B1, as shown in Figure 3, has
many improved features, including twice the cache size (up to
20kB), on-chip R301 OA identical functionality, an optional 1 x
clock input, up to 50MHz operation and data cache coherency
hooks for invalidation. The cache features dynamic
reconfiguration, allowing the opportunity to change the
cachefrom 16kB of instruction cache and 4kB of data cache to
BkB of each. This feature is extremely important in certain
applications. For the embedded world, there are subroutines
that will improve in performance when more data cache is
available: the Bk/Bk configuration. In standard applications,
the SPEC benchmarks have shown a performance improve­
ment preference to 16k instruction caches. The configurable
feature allows the R30B1 to perform well in a variety of
situations.

205

CONFERENCE PAPER CP-09

During the definition of the R30B1, IDT wanted to provide
an upgrade path from the R305x by providing socket
upgradeability. That ambition is met by the this device be­
cause a user can simply unplug a top-end R3052-20MHz and
plug in the R30B1-40MHz for immediate performance im­
provement. This is facilitated by two major factors: twice the
cache and a 1 x clock. The cache size greatly improves the hit
rate and since the R3081 can be programmed at reset to run
at the 1 x rate while the bus to main memory is at half speed,
the system will not see the change and the result is double the
pipeline rate.

For more performance, the application can be recompiled
to take advantage of the hardware floating-point accelerator.
In a few applications for the R305x, some floating-point
calculations were needed. To use the integer-only nature of
the R305x, floating-point emulation software is linked into the
object code to emulate the hardware acceleration available in
the R301 OA. The R30B1 can still execute those instructions,
but more performance can be achieved by direct execution of
the FPA instruction set. The application can be compiled
without the FP emulation library and the final binary will
contain the FP opcodes. This will improve the floating-point
code execution by approximately 40%.

The R3081 has the added capability of modifying the data
cache refill size. On the R3000A and R305x products, data
cache refill size is set at reset and, as a data cache reference
is missed, the entire block is fetched, minimizing the miss rate.
For non-cacheable misses, a single data word is fetched and
is an example of reading an 1/0 register. The R3081 processor
can dynamically change refill from 4 words to 1 word on
cacheable references and, as always, non-cacheable refer­
ences are one word. This feature is selectable via a CPO
configuration register. One type of application that can benefit
from this feature is data manipulation, e.g., updating a graphic
display. When a bit line is drawn, it is not necessary to get the
non-adjacent four words, as these words may be on different
color planes. This feature allows individual subroutines to be
optimized, without any changes to the compiler suite.

Data cache invalidation is a significant feature of the R3081
RISController. This feature, enabled at reset, involves several
signals: ACK, WR, Address, CohReq (coherent request) and
lnvReq (invalidate request). If hardware-based cache coher­
ency is enabled at reset, the processor will stall on bus
requests when CohReq is true to allow the maximum invali­
date bandwidth. When that occurs, the processor will latch in
the address with ALE and invalidate the appropriate cache
line if lnvReq is true. It is also possible to perform a burst
invalidate. As discussed, the R30B1 captures address on the
ALE signal supplied by the external master device. At the end
of the cycle, whether an invalidate occurs or not, the internal
address counter increments with ACK. This allows the exter­
nal logic to continue the transfer, without another address
phase and invalidate the next address. Of course, the external
logic can invalidate all addresses as they come by or use an
external tag SRAM as described earlier to pick appropriate
addresses.

All the hooks are supplied to support the addition of a
secondary cache, as well. Common in today's systems,

IDT RISC TECHNOLOGY, AND DESIGNING WITH
CACHE COHERENCY IN MIND

BrCond(3 :2,0)

Clkln Clock
Generator

Univ
Clock Doubler

Master Pipeline Control

System
Control

CoFJrocssor
(CPO)

Exception/Control
Registers

Memory M.anagement
Registers

Integer
CPU Core

General Reisters

(32x 32)

ALU

Shifter

MulVDiv Unit

Address Adder

PC Control

Virtual Address

CONFERENCE PAPER CP..fl9

Floating Point
Coprocessor

(CP1)

Register Unit

(16x64)

Exponent Unit

Add Unit

Divide Unit

Multiply Unit

Exception/Control

FP Interrupt

32

Physical Address Bus

Configurable

Instruction

Cache

(16kB/8kB)

Data Bus

Configurable

Data

Cache

(4kB/8kB)

Data Bus

36

Parity
Generator

R3051 Superset Bus Interface Unit

4-deep

Read

Buffer

4-deep

Write

Buffer

Address/
Data

OMA
Arbiter

t
DMA
Crtl

BIU
Control

Rd/Wr SysClk
Crtl

Figure 3. R3081 RISController

206

Coherency
Logic

Invalidate drw os
Control

IDT RISC TECHNOLOGY, AND DESIGNING WITH
CACHE COHERENCY IN MIND

secondary caches improve CPU performance by providing a
faster intermediate memory between the primary cache and
main memory. Facts are facts. When dealing with cache
coherency, the secondary cache would first be checked to see
if a hit occurs within itself. If that happened, the location could
be invalidated or updated and another bit could define if that
word was in the primary cache. If the primary cache is
incoherent, the R3081 is stalled for an invalidate cycle. This
additional layer of insulation improves performance not only
by reducing CPU latency to memory, but also results in fewer
stalls in coherent systems.

CONCLUSION
The microprocessor selection process has changed dra­

matically over the past two years. Motorola, who dominated
the embedded market, is significantly challenged where it
once was a leader. This is because Intel has done well with the
960 line of embedded products and because they are Intel. In
fact, this author believes that a major component in the
microprocessor selection process is the vendor, not the prod­
uct ("if it has bat wings or an "i" on it, I will design it in"). Intel,
the most predominant processor supplier because of the IBM
PC era, still out in front by the definition of units shipped, is
being threatened by the ACE initiative and the Apple/IBM
"Power PC" product in the future. AMO has a significant lead

207

CONFERENCE PAPER CP-09

in the embedded RISC marketplace due to timeframe-the
29000 was on the market long before other RISC solutions
were available.

However, the dynamics of the microprocessor industry are
evolving. No longer are designers buying the fact that the
'manufacturer' is the key in the decision-making process. The
deciding factor is now performance, cost, integration and how
the architecture meets the requirements of the design. Growth
paths are an increasing concern. With six suppliers now in the
market, the designer is assured that many more products will
be available soon using the MIPS architecture. IDT has
already demonstrated three industry specific RISC proces­
sors that the majority of designers are admiring and design­
ing-in. And all incorporate !SA-identical, feature-common
compilers, development equipment, operating systems and
design mindset. This benefit has provided designers and
engineering managers a guiding light to what the next gen­
eration of microprocessor goals are: in the 1980s, we cen­
tralized on one processor ISA, the 68000, and for 1 O years the
evolution of derivatives served well. In the 1990s, MIPS RISC
solutions have all the essential attributes to establish the next
common platform for designers to use. IDT, dedicated to that
product arena, will continue to provide the necessary products
to keep designers' goals met, by providing products to keep
them successful in their marketplace.

Integrated
Device Technology, Inc.

2975 Stender Way
P.O. Box 58015
Santa Clara, CA 95052-8015
(408) 727-6116
FAX: 408-492-8674

© 1992 Integrated Device Technology, Inc.
Printed in U.S.A.

MISC-RISC-00062

