
L

XGA
SOFTWARE
PROGRAMMER'S
GUIDE
First Edition 1991

The information contained in this 1 st edition of the XGA Software Programmer's Guide (document
revision 00) is preliminary information A 2nd edition is in preparation.

INMOS IS a member of the SGS-THOMSON Microelectronics Group

72 OEK 258 00 September 1991

Other XGA documents

IMS G190 XGA serializer palette DAC, Preliminary information,
INMOS document number 42152601

IMS G200 XGA display controller, Preliminary information,
INMOS document number 42 152501

Copyright © INMOS Limited 1991

INMOS reserves the right to make changes in specifications at any time and without notice.
The information furnished by INMOS in this publication is believed to be accurate; however,
no responsibility is assumed for its use, nor for any infringement of patents or other rights of
third parties resulting from its use. No licence is granted under any patents, trademarks or oth­
er rights of INMOS .

• ,o[jjJmos, IMS and occam are trademarks of INMOS Limited.

iIii ~~~©;mY::IlC;»©' is a registered trademark of SGS-THOMSON Microelectronics Group.

IBM, PS/2, and Micro Channel are registered trademarks of IBM.

XGA is a trademark of IBM licensed to SGS-THOMSON.

INMOS is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 OEK 258 00

ORDER CODE: PMXGASOFT/1

Printed in Italy

72 OEK258 00 September 1991

I Contents overview

Contents... v

Preface xiii

XGA function ... 1

XGA Overview 3

2 VGA ... 8

3 132 Column Text .. " 9

4 Extended Graphics. 10

5 XGA System Interface ... 83

XGA programming considerations. 93

6 Adapter Co-existence 95

7 Locating the XGA Subsystem 96

8 VGA Primary Adapter Considerations .. " 100

9 General Systems Considerations 102

10 Extended Graphics Modes Selection ... 103

11 Mode Setting the XGA Subsystem 105

12 Upwards Compatibility. 115

13 Programming the XGA Subsystem in Extended Graphics Mode. 116

14 Other Programming Considerations. 131

15 Sample Code 134

iv Contents overview

r
---------- -

Contents L ________________ _ --~---------~----~------------=-----]

Preface xiii

XGA function ... 1

1 XGA Overview ... 3

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Major Components

1 .1 .1 System Bus Interface
1.1.2 Memory and CRT Controller
Coprocessor

1 .2.1 Video Memory
Attribute Controller

Sprite Controller

The Serializer, Palette and DAC

A/N Font and Sprite Buffer

Modes Of Operation.

Compatibility.

1.8.1 8514/A
1.8.2 LIM EMS Drivers.

4

5
5
5

5
5

6

6

6

6

6

6
7

2 VGA.. 8

3 132 Column Text ... 9

4 Extended Graphics ... 10

4.1

4.2

4.3

72 OEK 258 00

Display Controller Description

4.1.1 Video Memory Format.
4.1 2 Pixel Color Mapping
4.1 3 Border Color Mapping.
4.1.4 Direct Access to the Video Memory.

System Apertures Into Video Memory
4.1.5 CRT Controller.

4.1 6

4.1 7

CRTC Register Interpretations
Scrolling.
Sprite
Sprite Color Mapping
Sprite Buffer Accesses
Sprite Positioning
Palette
Palette Accesses

Direct Color Mode

Coprocessor Functions
Display Controller Registers

43.1 Register Usage Guidelines
4.3 2 Direct Access I/O Registers

Operating Mode Register (Address: 21xO)
Aperture Control Register (Address: 21 x1)
Interrupt Enable Register (Address: 21 x4)
Interrupt Status Register (Address: 21 x5)

10

10
11
11
11
11
12
12
13
14
14
14
15
16
16
17

18
18

19
19
19
20
21
21

September 1991

vi Contents

Virtual Memory Control Register (Address: 21x6) 21
Virtual Memory Interrupt Status Register (Address: 21x7) 21
Aperture Index Register (Address: 21x8) 22
Memory Access Mode Register (Address: 21x9) . 22
Index Register (Address: 21xA) . 23
Data Registers (Addresses: 21xB to 21xF) . 24

4.3.3 Indexed Access I/O Registers. 24
Auto-Configuration Register (Index: 04) . 24
Coprocessor Save/Restore Data Registers (Index: DC & OD) 24
Horizontal Total Registers (Index: 10 & 11) . 24
Horizontal Display End Registers (Index: 12 & 13) 25
Horizontal Blanking Start Registers (Index: 14 & 15) 25
Horizontal Blanking End Registers (Index: 16 & 17) 26
Horizontal Sync Pulse Start Registers (Index: 18 & 19) 26
Horizontal Sync Pulse End Registers (Index: 1 A & 1 B) 27
Horizontal Sync Pulse Position Registers (Index: 1 C & 1 E) 27
Vertical Total Registers (Index: 20 & 21) .. 28
Vertical Display End Registers (Index: 22 & 23) . 28
Vertical Blanking Start Registers (Index: 24 & 25) 29
Vertical Blanking End Registers (Index: 26 & 27) . 29
Vertical Sync Pulse Start Registers (Index: 28 & 29) 30
Vertical Sync Pulse End Register (Index: 2A) . 30
Vertical Line Compare Registers (Index: 2C & 2D) 31
Sprite Horizontal Start Registers (Index: 30 & 31) 31
Sprite Horizontal Preset (Index: 32) 32
Sprite Vertical Start Registers (Index: 33 & 34) . 32
Sprite Vertical Preset (Index: 35). 33
Sprite Control Register (Index: 36) 33
Sprite Color Registers (Index: 38 - 3D) 33
Display Pixel Map Offset Registers (Index: 40 - 42) 34
Display Pixel Map Width Registers (Index: 43 & 44) 34
Display Control 1 Register (Index: 50) 35
Display Control 2 Register (Index. 51) 36
Display ID and Comparator (Index: 52) 37
Clock Frequency Select Register (Index: 54) . 37
Border Color Register (Index: 55) 37
Sprite/Palette Index Registers (Index: 60 & 61) 38
Sprite/Palette Index Registers with Prefetch (Index: 62 & 63) 38
Palette Mask Register (Index: 64) 38
Palette Data Register (Index: 65) 39
Palette Sequence Register (Bits 2:0 only) (Index: 66) 39
Palette Red Prefetch Register (Index: 67) 39
Palette Green Prefetch Register (Index: 68) ... 40
Palette Blue Prefetch Register (Index: 69) 40
Sprite Data Register (Index: 6A) 40
Sprite Prefetch Register (Index: 6B) 40
External Clock Select Register (Index: 70) 41

4.4 Coprocessor Description 42

4.5 Programmer's View. 43

4.6 Pixel Formats 44

4.6.1 Pixel Data 44
Fixed And Variable Data 44
XGA Function 44

72 OEK258 00 September 1991

Contents

4.6.2 The Coprocessor View of Memory
4.6.3 XGA Pixel Maps

Pixel Maps A, B, And C (General Maps)
Pixel Map M (Mask Map)
Map Origin
X and Y Pointers .. .
Scissoring With The Mask Map1

4.6.4 Drawing Operations
Draw and Step:
Line Draw:
Pixel Block Transfer (PxBlt):
Area Fill: .. .

4.6.5 Logical And Arithmetic Functions
Mixes:
Breaking the ALU Carry Chain:3
Generating The Pattem From The Source:
Color Expansion: .. .
Pixel Bit Masking:4 .. .
Color Compare:5 .. .

4.6.6 Controlling Coprocessor Operations
Starting a Coprocessor Operation:
Suspending a Coprocessor Operation:
Terminating a Coprocessor Operation:

4.6.7 Coprocessor Operation Completion
Accesses To The Coprocessor During An Operation:3

4.6.8 Coprocessor State Save/Restore
Suspending Coprocessor Operations:4

4.6.9 Save/Restore Mechanism
4.7 Coprocessor Registers

4.7.1 Register Usage Guidelines
4.7.2 Virtual Memory Registers

Page Directory Base Address Register (Coprocessor Registers, Offset:O)
Current Virtual Address Register (Coprocessor Registers, Offset: 4)

4.7.3 State Save/Restore Registers
Coprocessor Control Register (Offset: 11)
State Length Registers (Offset: C & D)
Save/Restore Data Ports (I/O Index: C & D)

vii

44
44
44
45
45
46
48
51
51
53
56
58
60
60
61
62
62
62
62
63
63
63
63
63
64
64
64
64
65

4.7.4 Pixel Interface Registers

68
68
68
68
69
69
69
69
70
70
71
71
71
72
72
72
73
73
73
74
74
74
75
75

Pixel Map Index Register (Offset: 12)
Pixel Map n Base Pointer (Offset: 14)
Pixel Map n Width (Offset: 18)
Pixel Map n Height (Offset: 1 A)
Pixel Map n Format (Offset: 1 C)
Pixel Maps A, Band C
Mask Map
Bresenham Error Term E (Offset: 20)
Bresenham Constant K1 (Offset: 24)
Bresenham Constant K2 (Offset: 28)
Direction Steps Register (Offset: 2C)
Foreground Mix Register (Offset: 48)
Background Mix Register (Offset: 49)
Destination Color Compare Condition (Offset: 4A)
Destination Color Compare Value (Offset: 4C)

72 OEK258 00 September 1991

viii Contents

Pixel Bit Mask (Plane Mask) (Offset: 50) 75
Carry Chain Mask (Offset: 54). 76
Foreground Color Register (Offset: 58). 76
Background Color Register (Offset: 5C) 76
Operation Dimension 1 (Offset: 60) 77
Operation Dimension 2 (Offset: 62) 77
Mask Map Origin X Offset (Offset: 6C) 77
Mask Map Origin Y Offset (Offset: 6E) 77
Source X Address (Offset: 70) 78
Source Y Address (Offset· 72). 78
Pattern X Address (Offset· 74) 78
Pattern Y Address (Offset: 76) 78
Destination X Address (Offset: 78) 79
Destination Y Address (Offset: 7A) ' 79
Pixel Operations Register (Offset· 7C) 79

5 XGA System Interface ... 83

5.1

52

5.3

5.4

5.5

Multiple Instances

5 1 .1 Multiple XGA Subsystems in VGA Mode
5 1 .2 Multiple XGA Subsysterns in 132 Colurnn Text Mode
5.1.3 Multiple XGA Subsystems in Extended Graphics Mode
XGA POS Registers

52.1 Register Usage Guidelines
5 2.2 Subsystem Identification Low Byte (Base + 0)
5.2.3 Subsystem Identification High Byte (Base + 1)
5 2.4 POS Register 2 (Base + 2)

XGA Enable (EN, Bit 0)
I/O Device Address (IODA, Bits 1-3).
ROM Address (ROM Addr, Bits 4-7) .. .

5.2.5 POS Register 4 (Base + 4)
Video Memory Base Address (Bits 7-1)
Video Memory Enable (VE, Bit 0)

POS register 5 (Base + 5)

1 Mbyte Aperture Base Address (1 Mbyte Base, Bits 3-0)
Virtual Memory Description.

5 4.1 Address Translation
Page Directory and Page Table Entries

5.4.2 The XGA Irnplementation of Virtual Memory
The TLB..
TLB Misses
System COherency.
VM Page Not Present Interrupts
VM Protection Violation Interrupts
The XGA in Segmented Systems

Virtual Memory Registers

5.5.1 Page Directory Base Address Register (Coprocessor Registers, Offset:O)
5.5.2 Current Virtual Address Register (Coprocessor Registers, Offset: 4)
5.5.3 Virtual Memory Control Register (I/O Address: 21x6)
5 5.4 Virtual Memory Interrupt Status Register (I/O Address: 21 x7)

83

83
83
83
83

83
84
84
84
84
84
84
85
85
85
86

86
86

86
87
88
88
88
89
89
90
90
90

90
91
91
92

72 OEK258 00 September 1991

Contents ix

XGA programming considerations . 93

6 Adapter Co-existence . 95

6.1 Co-existence with VGA 95

6.2 Co-existence with Other XGA Subsystems 95

7 Locating the XGA Subsystem . 96

7.1 Reading POS Data. 96

7.2 Address Calculations. 97

7.2 1 ROM address 97
7 2 2 Coprocessor Registers 97
7.2.3 I/O Registers. 97
7.24 The Video Memory Base Address 97

4 Mbyte System Video Memory Aperture 98
Video Memory Location in Coprocessor Address Space.. 98

7.2.5 1 Mbyte Aperture Base Address. " 99
7.3 Display Type and Video Memory Size 99

8 VGA Primary Adapter Considerations 100

100

100

101

8.1

8.2

8.3

Chaining the Int 10h Video BIOS Handler ..

Int 24h, Critical Error Handler

Int 23h Ctrl-Break Exit Address

8 4 Int 21 h Function 4Ch Program Terminate function • 101

9 General Systems Considerations 102

9.1 Co-existing with LIM Expanded Memory Managers ... "

9 2 Screen Switch Notification, Int 2Fh ..

102

102

10 Extended Graphics Modes Selection 103

103 101 Modes Available ..

11 Mode Setting the XGA Subsystem. .. 105

11 .1 Individual Mode Setting Procedures 105

11.1.1 Extended Graphics Mode..... 105
111.2 VGA Mode............. 107
11.1.3 132 Column Text Mode 107

11.2 System Video Memory Apertures 109

11 2.1 64K System Video Memory Aperture 109
11 2.2 1 Mbyte System Video Memory Aperture 109
11 .2.3 4 Mbyte System Video Memory Aperture 109

11.3 Physical Addressability to System Memory. 110

11 3.1 Real Mode DOS Environments. 110
Extended Memory " . '" 110
LIM EMS Managers 110

11 3.2 32 bit DOS Extended Environments 111
11.3.3 Multiple Virtual DOS Machine Environments 111

72 OEK258 00 September 1991

x Contents

11.3.4 Protect Mode 16 Bit Segmented Environments 112
64K Segment Limit .. 112
Segment Motion .. 112
System Overheads .. 112
Access to XGA Registers and System Memory Apertures 112
Suggested Design Model 112

11.3.5 Paged Virtual Memory (VM) Environments .. 113
4K Discontiguous Pages .. 113
Page Table Coherency. .. 113
System Overheads. .. 113
Access to XGA Registers and System Memory Apertures 113
Suggested Design Model 113

11.3.6 Video Memory Addressability in VM Mode 113
11.3.7 System Memory Access Limitation. .. 114

12 Upwards Compatibility 115

12.1 XGA Subsystem POS 10 Allocations 115
12.1.1 General Register Usage 115
12.1.2 Video BIOS Mode 14h .. 115
12.1.3 PS/2 Video Memory Apertures 115

13 Programming the XGA Subsystem in Extended Graphics Mode 116

13.1

13.2

13.3

XGA Coprocessor Pixel Interface Registers

13.1.1 Pixel Map Index Register (OFFSET 12h)
13.1.2 Pixel Map Base Address Register (OFFSET 14h)

. 13.1 .3 Pixel Map Width Register (OFFSET 18h)
13.1.4 Pixel Map Height Register (OFFSET 20h)
13.1.5 Pixel Map Format Register (OFFSET 1 Ch)
13.1.6 Other Registers
Using the Coprocessor to Perform a Pixel Blit (PxBlt)

13.2.1 Mixes and Colors .. .
Foreground and Background Mix Registers
Foreground & Background Color Registers

13.2.2 PxBlt Dimensions .. .
13.2.3 Pixel Map, Source & Destination

Source Map X and Y Registers
Destination Map X and Y Registers
Pattern Map X and Y Registers
Mask Map Origin X and Y Offset Registers

13.2.4 Pixel Operations Register
Background Source .. .
Foreground Source .. .
Step Function
Source Pixel Map .. .
Destination Pixel Map .. .
Pattern Pixel Map .. .
Mask Pixel Map
Drawing Mode .. .
Direction Octant

-Conclusion
Using the Coprocessor to Perform a Bresenham Line Draw

13.3.1 Mixes and Colors .. .

116

116
116
116
117
117
117
118

118
119
119
119
119
119
119
119
120
120
120
121
121
121
121
122
122
122
122
123
123

124

72 OEK 258 00 September 1991

Contents

13.3.2

13.3.3

13.3.4

xi

Foreground and Background Mix Registers 124
Foreground and Background Color Registers . 124
Bresenham Line Draw .. 125
Bresenham Error Term Register 125
Bresenham Constant K1 Register 125
Bresenham Constant K2. Register . 126
Operation Dimension Registers . 126
Pixel Map, Source and Destination 126
Source Map X and Y Registers. 126
Destination Map X and Y Registers 126
Pattern Map X and Y Registers. 126
Mask Map Origin X and Y Offset Registers . 126
Pixel Operations Register. 127
Background Source. 127
Foreground Source 127
Step Function . 128
Source Pixel Map .. 128
Destination Pixel Map . 128
Pattern Pixel Map .. 128
Mask Pixel Map . 129
Drawing Mode . 129
Direction Octant. 129
Conclusion. 130

13.4 Memory Access Modes (Reg. 21x9) .. 130

13.5 Motorola/Intel Format. 130

13.5.1 System Processor Access 130
13.5.2 XGA Coprocessor Accesses 130
13.5.3 Exploitation. .. 130

14 Other Programming Considerations 131

14.1 Overlapping BitBlits 131

14.1.1 Pixel Block Transfer (PxBlt) . 131
14.1 .2 Inverting PxBlt ... 131

14.2 Sprite Handling. .. 131

14.2.1 Sprite Loading .. 131
14.2.2 Sprite Positioning .. 131

14.3 Waiting for Hardware Not Busy. .. 131

14.4 Destination Bitmap Width Restriction. 132

14.5 Line Length Restriction. .. 133

14.6 System Register Usage. .. 133

14.7 Direct Color Mode .. 133

14.7.1 Palette Loading.. 133
14.7.2 Coprocessor Support. .. 133

15 Sample Code 134

15.1 Putting the XGA Subsystem into Extended Graphics Mode 134

15.1.1 Pseudo Code.. 134
15.1.2 Code Example. 136

Main C Program ... 136
Assembler Subroutines. .. 149

72 OEK 258 00 September 1991

xii Contents

15.2 Putting the XGA Subsystem into 132 Column Text Mode. 151

15.2.1 Pseudo Code 151
15.2.2 Code Example. 152

Main C Program 152
Assembler Subroutines 160

72 OEK 258 00 September 1991

xiii

Preface

The XGA Software Programmer's Guide is intended to provide information for programming the XGA sub­
system which is implemented in the IMS G190 XGA serializer palette DAC and the IMS G200 XGA display
controller.

This guide contains an overview of the XGA architecture, a description of the XGA subsystem function, and
information on programming XGA device registers with programming examples. It should be used in
conjunction with the following documents:

IMS G190 XGA serializer palette DAC, Preliminary information,
INMOS document number 42152601

IMS G200 XGA display controller, Preliminary information,
INMOS document number 421525 01

This 1 st edition of the XGA Software Programmer's Guide (document revision 00) will be superseded by
the 2nd edition which is in preparation.

xiv

[J (R)

DD'UmOS

• XGA function

72 OEK 258 00 September 1991

2

72 OEK258 00 September 1991

3

1 XGA Overview

The following features summarize the capabilities of the XGA subsystem.

VGA: When in VGA mode, the XGA subsystem is VGA register compatible as defined in the 'VGA Function'
chapter of the 'Video Subsystem' section in the 'PS/2 Hardware Interface Technical Reference'.

132 Column Text: In this mode, text is displayed in 132 vertical columns using 200, 350 or 400 scan lines.
Each character is 8 Pixels wide

Extended Graphics: The extended graphics mode provides the following software and hardware support:

8514/A Adapter Interface Compatibility Compatibility is provided through the XGA Adapter Inter­
face, which is a device dnver supplied with the subsystem as programming support for applica­
tions operating in the DOS environment.

High Resolution Support Depending on the display attached and the amount of memory installed,
the image on a screen can be defined using 1024 Pixels and 768 scan lines with 256 colors.

Direct Color (16 bit True Color) Mode In this mode, each 16-bit Pixel in video memory directly speci­
fies the color of the Pixel, rather than using the palette.

Packed Pixel Format In the packed-format, reads and writes to the video memory can access all of
the data that defines a pixel (or pixels) in a single operation

Hardware Sprite The sprite is a 64 by 64 pixel image. When enabled, it overlays the picture that is
being displayed. It can positioned anywhere on the display without affecting the contents of video
memory

Display Identification Signals dnven by the display identify characteristics of the attached display.
Applications can use the IDs to determine the maximum resolution and whether the display is col­
or or mono.

Coprocessor A Coprocessor provides hardware drawing-assist functions throughout real or virtual
memory. These functions can be used with the XGA Adapter Interface.

• Pixel-block and bit-block transfers (PxBlt)

• Line drawing

• Area filling

• Logical and arithmetic mixing

• Map masking

• Scissoring

• X,V axis addressing.

72 OEK258 00 September 1991

4

1 .1 Major Components

The sUbsystem components providing extended graphics function are:

• System-bus interface

• Memory and CRT controller

• Coprocessor

• Video memory

• Attribute controller

• Sprite controller

• A/N font and sprite buffer

• Serializer

• Palette

• Digital-to-analog convertor (DAC).

Note: Major sUbsystem components are implemented in a 2-chip set: the IMS G200 XGA display controller;
and the IMS G190 XGA serializer palette DAC. Their boundaries are shown in Figure 1.1 .

Address

,---'-----.Control

System
Bus

I·

Adaptor
ROM1

Auxiliary Video
Extension

Video
Memory

.
Pixel
Data

(jj
.!:::!
Cii
.~

CI)

Coprocessor

NN Font, Sprite
Buffer

.--------- IMS G200

~IMSG190

Q Red -------- >-« co 0 Green Ci.
0 CIJ
ill is "0 Blue
':>

1 ROM Only present on Adaptors

Figure 1.1 XGA Function Block Diagram

72 OEK258 00 September 1991

5

1.1.1 System Bus Interface

This component provides control of the interface between the video subsystem and the system micropro­
cessor. It decodes the addresses for VGA and Extended Graphics I/O registers and the memory addresses
for the coprocessor memory-mapped registers and video memory.

It also provides the bus-master function and determines whether the system data bus is 16- or 32-bits wide.

1.1.2 Memory and CRT Controller

This component controls accesses to video memory by the system microprocessor, displays the contents
of video memory on the display, and provides support for the VGA and 132-column text modes.

1.2 Coprocessor

The coprocessor provides hardware drawing-assist functions. These functions can be performed on
graphics data in both video memory and system memory.

The coprocessor updates memory independent of the system microprocessor. The instructions are written
to a set of memory-mapped registers; the coprocessor then executes the drawing function.

The coprocessor functions are:

Pixel-Block or Bit-Block Transfers This function transfers an entire bit map, or part of a bit map,
from one location to another. This transfer can be:

• Within video memory

• Within system memory

• Between system and video memory.

Line Drawing This function draws lines, with a programmable style and thickness, into a bit map in
video memory or system memory.

Area Fill This function fills an outlined area with a programmable pattem. This function can be per­
formed on an area outline in video or system memory.

Logical and Arithmetic Mixing These functions provide logical and arithmetic operators that can be
used against data in video and system memory.

Map Masking This function provides control over updates to each Pixel for all drawing functions.

Scissoring This function provides a rectangular-mask function, which can be used instead of the
mask map.

X,V Axis Addressing This function allows a Pixel to be specified by its X and Y coordinates within
a pixel map, instead of its linear address in memory.

1.2.1 Video Memory

The video subsystem uses a dual-port video memory to store on-screen data. Because this memory is
dual port, video memory can be read serially to display its contents at the same time the data is being
updated.

1.3 Attribute Controller

The attribute controller works together with the memory and CRT controller to control the color selection
and character generation in the 132-column text mode and VGA text modes.

72 OEK258 00 September 1991

6

1 .4 Sprite Controller

This component is used to display and control the position and image of the sprite, which is used as the
cursor. The sprite is not available in 132-column text mode or VGA modes.

1.5 The Serializer, Palette and DAC

The serializer takes data from the serial port of video memory in 16- or 32-bit widths (depending on the
amount of video memory installed) and converts it to a serial stream of Pixel data. The Pixel data is used
to address a palette location, which contains the color value. The color value is then passed to the DAC,
which converts the digital information into analog red, green, and blue signals to the display

1.6 A/N Font and Sprite Buffer

This buffer holds the character fonts while in 132-column text mode and VGA modes. It also stores the sprite
image while in Extended Graphics modes.

1.7 Modes Of Operation

The 132 Column Text Mode and all VGA modes are available on the XGA subsystem regardless of the
amount of video memory installed.

However, when in Extended Graphics Mode, the amount of Video Memory installed determines the screen
resolutions and number of colors that are supported The following table summarises this relationship:

Video Memory Installed Resolution Maximum Colors

512 Kbytes 640 X 480 256

1 024 X 768 16

I Mbyte 640x480 65, 536

1 024 X 768 256

1 .8 Compatibility

1.8.1 8514/A

The Extended Graphics Function is not hardware register compatible with the 8514/A adapter. Applications
written directly to the register level interface of the 8514/A will not run.

The Extended Graphics Function is 8514/A Adapter Interface (AI) compatible in the DOS environment
through a DOS AI driver supplied with the the video SUbsystem.

Applications written to the 8514/ A DOS AI should continue to run unchanged with the XGA Ak The following
differences should be noted:

OS/2 Protect Mode AI. An XGA AI driver is not available for OS/2 Protect Mode.

640x480 4+ 4 Mode with 512k Display Buffer. This is not an Extended Graphics Mode. However
applications which use this mode and which are written to the rules in the 8514/A Technical Refer­
ence will run

Dual Display Buffer Applications. 8514/ A applications that use VGA and Advanced Function modes
on a single display configuration, and rely upon two separate Video display buffers, will not run
However such applications should run correctly with two video subsystems (one of which is an
XGA) each with a display attached.

72 OEK258 00 September 1991

7

Non-Display Memory. The XGA and 8514/A non-display (or offscreen) memory are mapped differ­
ently. Applications which use areas of the off screen memory for their own storage may not run.

Adapter Interface Code Size. The XGA AI code size is larger than thatforthe 8514/ A. This will reduce
the amount of system memory available to applications.

Adapter Interface Enhancements. The XGA AI is a superset of that provided with the 8514/ A. 8514/ A
applications which use invalid specification of parameter blocks could trigger some of the addi­
tional function provided by the XGA AI.

Use of LIM EMS drivers. Applications written to the 8514/ A AI which locate resources such as bIt­
maps or font definitions in LIM memory, and pass addresses of such a resource, located in LIM
memory, to the AI will need a LIM driver which has implemented the Physical Address Services
Interface for DMA busmasters.

Time dependent applications. Certain XGA and 8514/A functions run at different speeds. Applica­
tions which rely on a fixed performance may be affected by these differences.

XGA AI module name and directory. The module name and directory of the XGA AI
(\XGAPCDOS\XGAAIDOS. SYS) is different from that of the 8514/A (\HDIPCDOS\HDILOAD. EXE)
Applications written to rely on the existence of either the specific 8514/ A module name or directory
will not run on the XGA AI.

8514/ A and XGA AI code type. The XGA AI has been implemented as a SYS device driver, whereas
the 8514/ A AI was a TSR ('Terminate and Stay Resident' executable program). Applications writ­
ten to rely on the AI as a TSR will not run on the XGA AI

1.8.2 LIM EMS Drivers.

The XGA coprocessor memory mapped registers are located in system memory address space. They re­
side in the top 1 Kbyte of an 8 Kbyte block of memory assigned to the XGA subsystem. The lower 7 Kbyte
of this block is used to address ROM on an XGA subsystem implemented on an adapter card. Despite the
fact that an XGA subsystem integrated on the system board does not have a subsystem ROM, an 8 Kbyte
block of memory is still allocated to it in order to support the coprocessor memory mapped registers. In
this case the first 7 Kbytes of this block does not contain any memory. However the memory mapped regis­
ters are still accessed in the top 1 Kbyte.

Applications or drivers [e.g. LIM EMS (Lotus Intel Microsoft Expanded Memory Services Managers) drivers]
that scan memory addresses looking for RAM or ROM signatures can incorrectly assume that the entire
8 Kbytes or memory space is available for use.

The location of the 8 Kbyte block of memory assigned to the XGA subsystem can be determined using the
System Unit Reference Diskette. The LIM driver installation instructions should be consulted for details on
how to avoid address conflicts.

72 OEK 258 00 September 1991

8

2 VGA

The XGA subsystem is register compatible with the VGA as defined inthe VGA Function chapter of the Video
Subsystem, in the PS/2 Hardware Interface Technical Reference. Section 11 should be consulted for
switching between the different XGA modes.

72 OEK258 00 September 1991

9

3 132 Column Text

In this mode the XGA is capable of displaying 132, 8 pixel wide alphanumeric characters on the display.
It is register compatible with the VGA except for certain VGA CRTC registers detailed below.

The following VGA CRTC register meanings are altered:

Horizontal Total Register: VGA requires that this register holds a value that is five less than the num­
ber of characters on a scan line. In 132 column text mode this register requires a value that is one
less than the number of characters on a scan line.

The End Horizontal Retrace Register: In 132 Column Text Mode the VGA End Horizontal Retrace
Register (bits Oto 4) have no effect. The Extended Graphics Mode Horizontal Sync Pulse End Reg­
ister (Index: 1A) is used instead. This allows a larger horizontal count.

The Sync Pulse Delay Bits (bits 5 and 6) and the End Horizontal Blanking Bit 5 (bit 7) continue to be effective.
However the Sync Pulse Delay bits are now defined as follows:

bit 6 bit 5 No. of pixels Delay

0 0 o Pixels Delay.

0 1 2 Pixels Delay.

1 0 4 Pixels Delay.

1 1 6 Pixels Delay.

See Section 11 for details on invoking 132 Column Text mode.

72 OEK 258 00 September 1991

10 ___ _

4 Extended Graphics

The Extended Graphics Modes provide applications with high resolution, a large color range, and high per­
formance The XGA coprocessor provides hardware assistance in drawing and moving data in video
memory and in system memory, The Extended Graphics Modes are controlled uSing a bank of 161/0 regiS­
ters and the coprocessor is controlled by a bank of 128 memory mapped registers. Section 7.2 gives details
of register address calculations.

4.1 Display Controller Description

4.1.1 Video Memory Format

The XGA Video Memory appears to the system as a byte addressable, packed array of pixels The pixels
may be 1,2,4,8, or 16 bits long The first pixel in memory is displayed at the top left hand comer of the
screen, the next pixel is immediately to its right and so on. Addressing is not necessarily contiguous going
from one horizontal line to the next. ThiS depends on the values in the Display Pixel Map Width registers
as discussed in 4.1 5

There are two orders of pixels supported, Intel order and Motorola order.

The Memory Access Mode Register (for Display Controller accesses), and the Pixel Map n Format Register
(for coprocessor accesses), should be used to make the pixels appear in the required order to the system.

These two formats are described by the following tables:

Pixel size = 1 bpp

Pixel number

Bit significance

Pixel size = 2bpp

Pixel number

Byten+2

7 6 5 4 3 2 1 0

23 22 21 20 19 18 17 16\
0 0 0 o 0 0 0 0

11 11 10 10 9 9 8 8

Byten+1

7 6 5 4 3

15 14 13 12 11
0 0 0 0 0

7 7 6 6 5

Byte n+O

0 1 2 1 0 7 6 5 4 3 2 1

10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0

01

Bit significance
54 4 13322110

1 0 1 0 1 0 0 1 0 0 1 o 1 0; 1 0 1 0 1 0 ~ -i"-'-"'-
Pixel size = 4bpp

Pixel number

Bit significance

Pixel size = 8bpp

Pixel number

5 5
3 2

2 2

5 5 4 4

0 3 2

2 2 2 2

4 4 3 3 3 3
1 0 3 2 1 0
.. - ---,----

2 2 1

2 2 2 211 1 1 1 0 0 0 0

3 2 1 o 3 2 1 0 3 2 1 0
--_. __ ... _-._-. __ . __ .

1 1 1 1 I 0 0 0 0 0 0 0 01

7 6 5 4 3 2 0 7 6 5 4 3 2 1 0
-------_. I Bitsign_lf_ic_a_n_c_e __ +-_________ ~-----

Pixel size = 16bpp

I Pixel number

.~~4~_2 __ 1 l
1 1 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit significance 7 6 5 4 3 2 0 ! 15 14 13 12 11 10 9 8 i 7 6 5 4 3 2 1

The tables represent the first three bytes of the memory map in Intel Order, and shows the layout
of the pixels within them for all pixel sizes (bpp = blts-per-pixel).

0
0

.._"._--

Table 4.1 Memory map - Intel Order

72 OEK 258 00 September 1991

11

Byten+O Byte n+ 1 Byten+2

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Pixel size = 1 bpp

Pixel number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2
Bit significance 0

Pixel size = 2bpp

Pixel number 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10101111
Bit significance 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

--~---- f------- --

Pixel size = 4bpp

Pixel number 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
Bit significance 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

f--------- -~-- ------- -------- - -- ~ .- --- --- --- ---- --- -- ------ --- - - ------- --------

Pixel size = 8bpp

Pixel number 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
Bit significance 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Pixel size = 16bpp

Pixel number 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Bit significance 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

The tables represent the first three bytes of the memory map in Motorola Order, and shows the layout
of the pixels within them for all pixel sizes (bpp = bits-per-pixel)

Table 4_2 Memory map - Motorola Order

4.1.2 Pixel Color Mapping

In 1,2,4, or 8 bits-per-pixel modes the Palette address is the numerical value of the pixeL

In 16 bits-per-pixel (Direct Color) mode, the color mapping is 5 bits red. 6 bits green 5 bits blue. See Sec­
tion 4 2

4.1.3 Border Color Mapping

In the border area of the display, the palette is addressed by the Border Color Register (Index: 55). The
Border Area is defined in 4 1 5_

4.1.4 Direct Access to the Video Memory

An application can use normal memory accesses to read or write pixels in the Video Memory. All the bits
of one or more pixelS can be accessed In a single memory cycle

System Apertures Into Video Memory

The XGA subsystem Video Memory is accessed in system memory address space through three possible
'apertures'. These are'

The 4 Mbyte Aperture: ThiS aperture allows all of Video Memory to be addressed consecutively_ If
an access is made at an offset higher than the amount of memory installed, no memory is written
and undefined values are returned when read_

The 1 Mbyte Aperture: This aperture allows up to 1 Mbyte of Video Memory to be addressed consecu­
tively_ If an access is made at an offset higher than the amount of memory installed, no memory
is written and undefined values are returned when read.

Note: To use the 1 Mbyte window, the Aperture Index Register (Address: 21 x8) must be set to zero_

72 OEK 258 00 September 1991

12

The 64 Kbyte Aperture: This aperture allows up to 64 Kbytes of Video Memory to be addressed con­
secutively.

This aperture can be be located at any 64 Kbyte section of the Video Memory using the Aperture
Index Register (Address: 21x8).

See Section 11.2 for detailS on locating and using these apertures.

4.1.5 CRT Controller

This controller generates all the timing signals required to drive the serializer and the display. It consists
of two counters, one for horizontal parameters, and one for vertical parameters, and a series of registers.
The counters run continuously, and when the count value reaches that specified in one of the associated
registers, the event controlled by that register occurs.

See Section 11 for mode tables including CRTC register values.

CRTC Register Interpretations

A pictorial representation of what function each of the CRTC registers can be seen in Figure 4.1 .

Horizontal Sync HSPS --, HSPE---j

VDE

o
o

L
VBS

L

-VSPS

_VSPE

VBE

L
VT

L

72 OEK 258 00

HDE-~ HB~ HBEl HTl

Active
Picture
Area OJ OJ OJ

0 iii' 0 a. ::J a.
!ll " !ll s·

to

Border

Blanking

Border

Figure 4.1 CRTC Register Definitions

September 1991

The registers which control a horizontal scan of the display are:

HT:
HOE:

HBS:

HBE:

HSPS:

HSPE:

Horizontal Total Register.

Horizontal Display End Register.

Horizontal Blanking Start Register.

Horizontal Blanking End Register.

Horizontal Sync Pulse Start Register.

Horizontal Sync Pulse End Register.

The registers which control a vertical scan of the display are:

VT:
VOE:

VBS:

VBE:

VSPS:

VSPE:

Vertical Total Register.

Vertical Display End Register.

Vertical Blanking Start Register.

Vertical Blanking End Register.

Vertical Sync Pulse Start Register

Vertical Sync Pulse End Register.

13

The XGA can be programmed to to inform the host processor of the start and the end of the Active Picture
Area using a system interrupt. An enable and a status bit exist for each interrupt. See 'Interrupt Enable Reg­
ister (Address: 21 x4)' and' Interrupt Status Register (Address: 21 x5)'.

Scrolling

Some, or all, of the displayed picture can be made to scroll. The first pixel displayed on the screen is con­
trolled by the Display Pixel Map Offset registers. These can be altered to a granularity of 8 bytes giving
coarse horizontal scrolling. Vertical scrolling is achieved by altering the Display Pixel Map Offset registers
in units of 1 line length. The line length is stored in the Display Pixel Map Width registers. The value stored
in the width registers is the amount of memory allocated to each line, not necessarily the physical length
of the line being displayed. See Figure 4.2.

72 OEK258 00

Video Memory Base

Display Pixel Map Offset
(8 Byte Units)

Visible Picture Area

,__ Horizontal Display Enud~~~ ..

'--
(8 Pixel Units)

Display Pixel Map Width
(8 Byte Units)

Figure 4.2 Display Pixel Map Offset & Width Definitions

.,

September 1991

14

The Display Pixel Map Width Registers should be loaded with a value greater than or equal to the length
of line being displayed The most efficient use of Video Memory is achieved when the width value is made
equal to the length of the line being displayed. However, it is often more convenient to load a width value
that specifies the start of each line to be on a suitable address boundary.

An area at the bottom of the display can be prevented from scrolling using the Vertical Line Compare Regis­
ters (Index: 2C and 20).

4.1.6 Sprite

The sprite is a 64 x 64 pixel image stored in the XGA Alpha/Sprite buffer. When active, it overlays the picture
that is being displayed. Each pixel in the Sprite can take on four values, that can be used to achieve the
effect of a colored marker of arbitrary shape.

Sprite Color Mapping

The Sprite is stored as 2 bit packed pixels, using Intel format, in the Sprite Buffer. Address zero is at the
top left corner of the Sprite.

These 2 bit pixels determine the sprite appearance as shown in the table below:

Bits(1 :0) Sprite Effect

00 Sprite Color 0

01 Sprite Color 1

10 Transparent

11 Complement

Sprite Colors 0 and 1: These colors are set by writing to the Sprite Color Registers
(Index: 38 - 3D).
Transparent: The underlying pixel color is displayed.
Complement: The ones complement of the underlying pixel color is displayed.

Sprite Buffer Accesses

The sprite buffer is written to by loading a number into the non-prefetch Sprite Index Hi and Sprite/Palette
Index Lo registers which indicates the location of the first group of four sprite pixels to be updated (2 bits­
per-pixel implies 4 pixels per byte) Then the first four pixels are written to the Sprite Data register. This
stores the sprite pixels in the sprite buffer and automatically increments the Index registers A second write
to the Sprite Data register then loads the next four Sprite pixels and so on.

When reading from the Sprite buffer, the prefetch function is used. The index or address of the first sprite
buffer location to be read is loaded into the Index registers. Note however that writing to either the Sprite
Index Hi, or the Sprite/Palette Index Lo register with prefetch will Increment both registers as a single value.
As a result, the first byte of the index should be written to an non-prefetch Index register, and the second
byte to the other Index register with prefetch. For example: Sprite Index Hi (no prefetch) then Sprite/Palette
Index Lo (with prefetch).

The action of writing to an Index register with prefetch, causes the Sprite data stored at the location speci­
fied in the index registers to be stored in the a holding register and subsequently increments the index regis­
ters as a single value. The action of reading the Sprite Data Register returns the four Sprite pixels which
were prefetched, and causes the holding register to be loaded with the next four Sprite Pixels. Another read
from the Sprite Data register then returns the next 4 sprite pixels, and so on.

72 OEK258 00 September 1991

15

The sprite and the palette are written and read using the same hardware registers, so any task updating
either of these on an Interrupt thread must save and restore the following registers:

• Sprite/Palette Index Lo Register (Index: 60)

• Sprite Index Hi Register (Index: 61)

• Palette Sequence Register (Index: 66)

• Palette Red Prefetch Register (Index: 67)

• Palette Green Prefetch Register (Index: 68)

• Palette Blue Prefetch Register (Index' 69)

• Sprite Prefetch Register (Index: 6B)

Note: The Sprite/Palette Index Lo With Prefetch (Index' 62) and Sprite Index Hi With Prefetch (Index: 63)
should not be saved and restored.

Sprite Positioning

Display Screen

HS

---_ .. _--_ .. _-.....

Sprite Outline VtP

r~-~---
Visible i

~.-"----=-A::..:re::-:a:.......J

HP~

HS - Horizontal Sprite Start
HP - Horizontal Sprite Preset

VS - Vertical Sprite Start
VP - Vertical Sprite Preset

Figure 4.3 Sprite Positioning

The sprite position is controlled by two types of registers: Start and Preset. The start registers control where
the first displayed sprite pixel appears on the screen, and the preset registers control which sprite pixel
is first displayed within the 64x 64 Sprite definition. Using these registers, the sprite can be made to appear
at any point in the picture area. If the sprite overlaps any edge, the part of the sprite outside the picture area
is not visible (does not wrap). See Section 142

The XGA can be programmed to to inform the host processor when the last line of the spnte has been dis­
played on each frame using a system interrupt. This interrupt is called Sprite Display Complete. An enable
and a status bit exist for this interrupt See 'Interrupt Enable Register (Address: 21x4)' and 'Interrupt Status
Register (Address: 21 x5).

72 OEK258 00 September 1991

16

4.1 .7 Palette

The palette has 256 locations. Each location contains 3 fields, one each for red, green and blue. It is used
to translate the pixel value to a displayed color.

Before the pixel value is used to address the palette, it is masked by the palette mask register, thus all bits
in the pixel corresponding to zeros in the palette mask register are forced to zero before reaching the pal­
ette.

Palette Accesses

The Palette Data register is one by1e wide. However each palette location is made up of three fields (Red,
Green and Blue). As a result three writes to the Palette data register are required for each palette location.
The data written is held in a three field holding register, the contents of which is loaded into the palette RAM
when all three fields have been filled. The Palette Sequence register controls which of the three holding
register fields (Red, Green or Blue) is selected for access with each write to the Palette Data register.

There are two update sequences possible:

• Red,Green,Blue

• Red,Blue,Green,No access

The Palette is written to by loading a number into the non-prefetch Sprite/Palette Index Lo Register which
indicates the index, or address, of the first group of three palette color locations to be updated (Red, Green
and Blue). As the palette has only 256 locations, the Sprite Index Hi Register is not used. The first color
by1e can then be written to the Palette Data Register. This stores the color by1e in the holding register field
indicated by the Palette Sequence Register. The sequence register then increments to point to the next field
as determined by the update order. A second write to the Palette Data Register loads the next holding regis­
ter field, and the sequence register increments again. A third write to the Palette Data Register loads the
remaining holding register field. If update sequence 1 is selected the palette location is then loaded from
the holding register and the sequence register increments again, retuming to its starting value. However,
if the update sequence 2 is selected, a fourth write to the Palette Data Register is necessary before the
palette location is loaded; the No-access data is ignored.

When reading from the Palette, the prefetch function is used. The index or address of the first Palette loca­
tion to be read is loaded into the Sprite/Palette Index Lo Register (with prefetch).

The action of writing to the Index register with prefetch causes the Palette holding register to be loaded
with the three color fields from Palette location pOinted to by the value in the Index register and causes the
index to increment. A subsequent read from the Palette Data Register returns the data from the holding reg­
ister color field pOinted to by the Palette Sequence Register and causes the sequence registerto be increm­
ented to point to the next color field. When the last color field, indicated by the Palette Sequence Register
has been read, the holding register is loaded with the next palette location data and the index is increm­
ented as before.

The sprite and the palette are written and read using the same hardware registers, so any task updating
either of these on an interrupt thread must save and restore the following registers:

• Sprite/Palette Index Lo Register (Index: 60)

• Sprite Index Hi Register (Index: 61)

• Palette Sequence Register (Index: 66)

• Palette Red Prefetch Register (Index: 67)

• Palette Green Prefetch Register (Index: 68)

• Palette Blue Prefetch Register (Index: 69)

• Sprite Prefetch Register (Index: 6B)

Note: The Sprite/Palette Index Lo With Prefetch (Index: 62) and Sprite Index Hi With Prefetch (Index: 63)
should not be saved and restored.

Note: All of the palette Red and Blue locations must be loaded with '0' if the subsystem has a monochrome
monitor attached.

72 OEK258 00 September 1991

17

4.2 Direct Color Mode

Direct Color is a mode whereby the pixel values in the video memory directly specify the displayed color.

The XGA subsystem can display direct color as a 16 bit pixel where the color fields are shown below. These
fields provide the most significant bits of the inputs to the DACs with the color value. Any missing lower
order bits are always specified to be '0'

The bits in the 16-bit direct color data word are allocated to the DAC bits as follows.

Word bit

(5R, 6G, 5B)

When selecting this mode, the palette must be loaded with data shown in Figure 4.4. Only half of the palette
should be loaded. Bit 7 of the Border Color Register specifies which half to load. If the Border Color Register
bit 7 = 0, load the upper half of the palette (locations '80' hex to 'FF' hex). If the Border Color Register
bit 7 = 1, load the lower half (locations 0 to '7F' hex).

Location (hex) Red Green Blue
B.C = (hex) (hex) (hex)

0 : 1

80 :0 0 0 0

81 : 1 0 0 2

82 :2 0 0 4

83 :3 0 0 6

9E : 1E 0 0 3C

9F : iF 0 0 3E

AO : 20 0 0 0

Ai : 21 0 0 2

BE : 3E 0 0 3C

BF : 3F 0 0 3E

CO : 40 0 0 0

C1 : 41 0 0 2

DE : 5E 0 0 3C

DF : 5F 0 0 3E

EO : 60 0 0 0

E1 : 61 0 0 2

FE : 7E 0 0 3C

FF : 7F 0 0 3E

Figure 4.4 XGA Direct Color Palette Load

The values in the table above should be written as a byte to the Palette Data Register and have been chosen
to ensure future compatibility.

See Sections 11.1.1 and 14.7 for details on this mode.

72 OEK258 00 September 1991

18

Coprocessor Functions

The XGA subsystem coprocessor functions do not function in 16 bits-per-pixel mode. However the copro­
cessor can function in 8 bits-per-pixel mode while data is being displayed in 16 bits per pixel As a result
the coprocessor can be used to move data (PxBlt) from one area of memory to another.

Care should be taken however when attempting to use any of the logical or arithmetic functions as each
operation will be performed on only one byte of data at a time and not the full 16 bit pixel.

If using the coprocessor to move data into the Video Display Buffer in 8 bits-per-pixel format, while display­
ing in 16 bits per pixel mode the width of the destination map should be doubled. See Section 14.7

4.3 Display Controller Registers

The Display Controller Registers occupy sixteen I/O addresses, and they are referred to subsequently in
the text as (Base + 0) to (Base + F). Chapter 7 provides details of locating and using these registers.

An indexed addressing scheme is used in which an index number selecting a register is written to at ad­
dress (Base + A) and then the register can be read or written at addresses (Base + B) to (Base + F). The
multiple addresses for the data port mean that writes to a single register can be achieved in a single 16
bit instruction, the low byte containing the address, and the high byte the data, while registers which need
to be accessed repeatedly (that is, the Sprite Data, the Palette Data, and the Coprocessor Save/Restore
Data) can be accessed by setting the index correctly, and then executing REP INS or REP OUTS instruc­
tions, either 2 or 4 bytes at a ~e, to minimize the amount of PS/2 bus bandwidth used. Certain registers
which are used often can be read or written directly.

The sixteen I/O addresses are assigned as follows:

Base + 0 Operating Mode Register

Base + 1 Aperture Control Register

Base + 2 Reserved

Base + 3 Reserved

Base + 4 Interrupt Enable Register

Base + 5 Interrupt Status Register

Base + 6 Virtual Memory Control Register

Base + 7 Virtual Memory Interrupt Status Register

Base + 8 Aperture Index Register

Base + 9 Memory Access Mode

Base + A Index

Base +B Data

Base +C Data

Base +D Data

Base +E Data

Base +F Data

72 OEK258 00 September 1991

19 ---

4.3.1 Register Usage Guidelines

Unless stated otherwise:

All registers are eight bits long.

May be both read and written at the same address or index.

When read they retum the data last written for all implemented bits.

Registers are NOT initialized by reset.

Reserved Register Bits -

• Register Bits marked with a '-' are reserved and must be masked out if a test is to be per­
formed on the register contents. If non reserved bits of the same register are being updated,
these bits must be written to with '0'.

• Register Bits marked with a '#' are reserved and must be masked out if a test is to be per­
formed on the register contents. If non reserved bits of the same register are being updated,
these bits must be preserved. Therefore a Read-Modify-Write operation is recommended.

Reserved Registers. Unspecified Registers, or registers marked as Reserved, in the XGA I/O ad­
dress space are reserved. They must not be written to or read from.

Write Only Registers. On a read, the values returned from these registers are Reserved and Un­
specified.

Read Only Registers. The contents of these registers must not be modified.

Counters should not be relied upon to wrap from the high value to the low value.

Register fields defined with valid ranges must not be loaded with a value outside the specified
range.

Register field values defined as reserved must not be written

The function that all Extended Graphics Mode registers imply IS only operative In Extended Graph­
ics Mode even though the registers themselves are still readable and writable in VGA modes.

Writing to the Extended Graphics Mode registers when in VGA mode may cause VGA registers
to be corrupted.

4.3.2 Direct Access I/O Registers

Operating Mode Register (Address: 21xO)

7 6 5 4 3 2 o
I - I - I - I - RF DM

This register can be both written and read.

The fields are defined as follows:

72 OEK 258 00 September 1991

20

Coprocessor Register Interface Format

RF 0 Intel Layout

1 Motorola Layout

Display Mode

DM 000 VGA Mode (Address Decode Disabled)

001 VGA Mode (Address Decode Enabled)

010 132 Column Text Mode (Address Decode Disabled)

011 132 Column Text Mode (Address Decode Enabled)

100 Extended Graphics Modes

101 ReseNed

110 ReseNed

111 ReseNed

Coprocessor Register Interface Format (RF): This bit selects whether the coprocessor registers are
arranged in Intel or Motorola order. See Section 4.7.

Display Mode (OM): These bits are used to select between the display modes available. Both VGA
and 132 Column Text modes respond to VGA I/O and memory addresses. When the XGA subsys­
tem is in either of these modes addressing of the I/O registers and the video memory can be
inhibited.

Aperture Control Register (Address: 21x1)

7 6 5 4 3 210

I - I - I - I - I - ASL

This register can be both written and read.

It controls a 64 Kbyte Aperture through which the XGA memory can be accessed in system address space.
This window gives real mode applications and operating systems a means' of accessing the XGA video
memory. The 64 Kbyte area of the XGA memory accessed by this window is selected using the Aperture
Index Register. By varying the value of the index register, the 64 Kbyte aperture can be used to access the
entire memory contents of the subsystem.

The aperture is controlled as described in the following table:

Aperture Size and Location

ASL 00 No 64 Kbyte Aperture

01 64 Kbytes at address 'OOOAOOOO'x

10 64 Kbytes at address 'OOOBOOOO'x

11 ReseNed

This 64 Kbyte Aperture and a 1 Mbyte Aperture are both paged using the Aperture Index Register. As a result
these two apertures cannot be used together. See System Apertures Into Video Memory on page11 .

72 OEK258 00 September 1991

21

Interrupt Enable Register (Address: 21x4)

7 654 3 2 0

I CC I CR I - I - I - I SC I P I B

This register can be written and read.

It contains bits to enable and disable individually the interrupt conditions that can be generated by the sub­
system. When a bit is '1', the corresponding interrupt is enabled. When it is '0', the interrupt is disabled.
The bits of this register have no effect on the interrupt status bits as defined In the Interrupt Status register
below, but prevent the corresponding interrupt condition from causing a system interrupt. The bit definitions
are detailed in the Interrupt Status register following.

Interrupt Status Register (Address: 21 x5)

7 6 5 4 3 2 0

[cc-ICR] - I - I - L~£] P I B

This register can be written and read.

It indicates the interrupt status bits that can be generated by the subsystem and is used to reset the corre­
sponding interrupt. On a read a '1' indicates that the corresponding interrupt condition has occurred, and
a '0' that it has not. Writing a '1' to any defined bit clears the corresponding interrupt condition, while writing
a '0' has no effect. The bits are assigned and defined as follows:

Bit name Interrupt Assignment

CC Coprocessor Operation Complete (4.5)

CR Coprocessor Access Rejected (page 64)

SC Sprite Display Complete (1 .4)

P Picture (Figure 4.1.5) (End of blanking)

B End of Picture (Figure 4.1 .5) (Start of blanking)

Virtual Memory Control Register (Address: 21x6)

Full details of this register are given in Section 5.5.3.

Virtual Memory Interrupt Status Register (Address: 21x7)

Full details of this register are given in Section 5.5.4.

72 OEK258 00 September 1991

22

Aperture Index Register (Address: 21x8)

7 6 5 4 3 2 o
I - 1- L Aperture Index

This register can be written and read.

It is used to provide address bits to the video memory when the aperture in system address space being
used is smaller than the amount of video memory installed. It is used to move both the 64 Kbyte aperture
and the 1 Mbyte aperture All six bits are used to move the 64 Kbyte aperture in the video memory, with
a granularity of 64 Kbytes. When moving the 1 Mbyte aperture the granularity is restricted to 1 Mbyte and
only bits 5 and 4 are used The lower order bits should be written to '0' in thiS case.

See Section 4.1 4 for details on the use of video memory apertures. The bits used are described in the
following table·

Aperture Size Index bits used

64 Kbytes 5·0

1 Mbyte 5"4

Memory Access Mode Register (Address: 21x9)

7 6 5 432 1 0

I - I - I - LJ PO I PS ~

This register can be written and read.

It controls pixel ordering when the video memory is being accessed by the system (not the coprocessor).
Intel or Motorola order can be selected. The pixel size must also be declared, as this register is controlling
a 'pixel swapper' which converts from the extemal format specified, to the intemal format used by the adapt­
er when the pixels are written, and converts back when they are read. Note that it IS important always to
set this register correctly when accessing video memory with the system processor. Values are assigned
as follows.

Pixel Order

PO 0 Intel Order

1 Motorola Order

Pixel Size

PS 000 1 bit

001 2 bits

010 4 bits

011 8 bits

100 16 bits

101 Reserved

110 Reserved

111 Reserved

72 OEK258 00 September 1991

23

Index Register (Address: 21xA)

7 6 5 4 3 2 o
Register Index

This register can be written and read.

It selects which indexed Extended Graphics Mode register is accessed when any address (Base + B) to
(Base + F) is read or written. Index values are assigned as follows:

Index Register Index Register
04 Auto-Configuration Register 30 Sprite Honzontal Start Lo

OC Coprocessor Save/Restore Data A 31 Sprite Horizontal Start Hi

OD Coprocessor Save/Restore Data B 32 Sprite Horizontal Preset

33 Sprite Vertical Start Lo

34 Sprite Vertical Start Hi

10 Horizontal Total Lo 35 Sprite Vertical Preset

11 Horizontal Total Hi 36 Sprite Control

12 Horizontal Display End Lo 38 Sprite Color 0 Red

13 Horizontal Display End Hi 39 Sprite Color 0 Green

14 Horizontal Blanking Start Lo 3A Sprite Color 0 Blue

15 Horizontal Blanking Start Hi 3B Sprite Color 1 Red

16 Horizontal Blanking End Lo 3C Sprite Color 1 Green

17 Horizontal Blanking End HI 3D Sprite Color 1 Blue

18 Horizontal Sync Pulse Start Lo 40 Display Pixel Map Offset Lo

19 Horizontal Sync Pulse Start Hi 41 Display Pixel Map Offset Mi

1A Horizontal Sync Pulse End Lo 42 Display Pixel Map Offset Hi

1B Horizontal Sync Pulse End Hi 43 Display Pixel Map Width Lo

1C Horizontal Sync Position 44 Display Pixel Map Width Hi

1E Horizontal Sync Position 50 Display Control 1

51 Display Control 2

52 Display Id and Comparator

20 Vertical Total La 54 Clock Frequency Select

21 Vertical Total Hi 55 Border Color

22 Vertical Display End Enable La 60 Sprite/Palette Index La

23 Vertical Display End Enable Hi 61 Sprite Index Hi
24 Vertical Blanking Start La 62 Spnte/Palette Index La with Prefetch

25 Vertical Blanking Start Hi 63 Sprite Index Hi with Prefetch

26 Vertical Blanking End La 64 Palette Mask

27 Vertical Blanking End Hi 65 Palette Data
28 Vertical Sync Pulse Start La 66 Palette Sequence

29 Vertical Sync Pulse Start Hi 67 Palette Red Prefetch Register

2A Vertical Sync Pulse End 68 Palette Green Prefetch Register

2C Vertical Line Compare La 69 I Palette Blue Prefetch Register
2D Vertical Line Compare Hi 6A Sprite Data

I
6B I Sprite Prefetch Register
70 External Clock Select Register

Note: Undefined Index Values are Reserved.

Figure 4.5 XGA Index Register Assignments

72 OEK 258 00 September 1991

24

Data Registers (Addresses: 21xB to 21xF)

These data registers are used when reading and writing to the register indexed by the Index Register (21 xA).
The read/write operation can be of byte, word, or double-word size using these data registers.

To perform a byte write to an indexed register, a single 16 bit cycle to address 21 xA can be used with the
index in the lower byte and the data to be written in the upper byte. For indexed registers which reqUire
successive writes, the index can be loaded using a byte write to address 21 xA, followed by either a word
or a double-word access to address 21xC. Only the byte wide register selected by the index is updated.
Word or double-word accesses result in two or four byte wide accesses to the same indexed register

4.3.3 Indexed Access I/O Registers

See 'Index Register (Address: 21xA)' for a table of the indexed registers.

Auto-Configuration Register (Index: 04)

7654320

I - I - I - I - I - I - I - BS

This is a read only register.

Bus Size (BS, Bit 0): This bit indicates whether the sUbsystem is interfaced to a 16 or a 32 bit
system interface. When set to '0' the the system interface is 16 bit, and when set to '1' the system
interface is 32 bit.

Coprocessor Save/Restore Data Registers (Index: OC & 00)

These registers are an image of a port in the Coprocessor. See 4.6.8 for a description of their use.

Horizontal Total Registers (Index: 10 & 11)

Lo (Index: 10)

7 6 5 4 3 2 o
Horizontal Total Lo

These registers can be written and read.

Hi (Index: 11)

7 6 543 2 o
Horizontal Total Hi

They define the total length of a scan line in units of eight pixels. They must be loaded as a 16 bit value
in the range 0000 to OOFF hex. Values are assigned as follows:

Value (hex) Horiz Total (pixels)

0000 8

0001 16

0002 24

and so on until

OOFF I 2048

72 OEK258 00 September 1991

Horizontal Display End Registers (Index: 12 & 13)

Lo (Index: 12)

7 6 5 4 3 2 o
Horizontal Display End La

These registers can be written and read.

25

Hi (Index: 13)

7 6 543 2 o
Horizontal Display End Hi

They define the position of the end of the active picture area relative to (after) the start of the active picture
area in units of eight pixels. They must be loaded as a 16 bit value in the range 0000 to OOFF hex. Values
are assigned as follows:

Value (hex) Display End (pixels)

0000

0001

0002

and so on until

OOFF I

Horizontal Blanking Start Registers (Index: 14 & 15)

Lo (Index: 14)

7 6 5 4 3 2 o 7

8

16

24

2048

Hi (Index: 15)

6 543 2 o
Horizontal Blanking Start Lo Horizontal Blanking Start Hi

These registers can be written and read.

They define the position of the end of the picture border area relative to (after) the start of the active picture
area in units of eight pixels. They must be loaded as a 16 bit value in the range 0000 to OOFF hex. Values
are assigned as follows:

Value (hex) Blanking Start (pixels)

0000 8

0001 16

0002 24

and so on until

OOFF I 2048

72 OEK258 00 September 1991

26

Horizontal Blanking End Registers (Index: 16 & 17)

Lo (Index: 16)

7 6 5 4 3 2 a 7 6

Hi (Index: 17)

543 2

L Horizontal Blanking End Lo ~ L Horizontal Blanking End HI

These registers can be written or read.

a

They define the position of the start of the picture border area relative to (after) the start of the active picture
area In Units of eight pixels. They must be loaded as a 16 bit value in the range 0000 to OOFF hex Values
are assigned as follows:

Value (hex) Blanking End (pixels)

0000

0001

0002

and so on until

OOFF I

Horizontal Sync Pulse Start Registers (Index: 18 & 19)

Lo (Index: 18)

7 6 5 4 3 2 a 7

HSYNC Pulse Start Lo

8

I 16

24

2048

6

Hi (Index: 19)

543 2 a

L HSYNC Pulse Start Hi
-------- -------

These registers can be written and read.

They define the position of the start of horizontal sync pulse rE?lative to (after) the start of the active picture
area in units of eight pixels. They must be loaded as a 16 bit value In the range 0000 to OOFF hex. Values
are assigned as follows:

72 OEK258 00

Value (hex)

0000

0001

0002

OOFF

HSYNC Pulse Start
(pixels)

and so on until

8

16

24

2048

September 1991

Horizontal Sync Pulse End Registers (Index: 1 A & 1 B)

Lo (Index: 1 A)

7 6 543 2 o 7

L HSYNC Pulse End Lo
-------- ---------------~ L

These registers can be written and read

27

Hi (Index: 1 B)

6 5 4 3 2 o
HSYNC Pulse End Hi

They define the position of the end of horizontal sync pulse relative to (after) the start of the active picture
area In units of eight pixels. They must be loaded as a 16 bit value in the range 0000 to DOFF hex.

This Extended Graphics Mode register is also used in 132 Column Text Mode in place of the VGA "End
Horizontal Retrace" register. In that mode each eight pixel unit is equivalent to one eight pixel character
Values are assigned as follows:

Value (hex) HSYNC Pulse End
(pixels)

0000 8

0001 16

0002 24

and so on until

OOFF I 2048

Horizontal Sync Pulse Position Registers (Index: 1 C & 1 E)

Index: 1C

7 6 5 4 3 2 o 7 6 5

Index: 1E

4 3 2 o

CI PO CCI - I - I - ccel - I - I PO CI

These registers are WRITE ONLY

They allow the HSYNC signal to be delayed by up to 6 pixels. The required value must be written to both
registers.

Sync Pulse Delay

PO 00 10 pixels delay

01 2 pixels delay

I 10 14 pixels delay

L-_________ ~16 pixels delay

72 OEK258 00 September 1991

28

Vertical Total Registers (Index: 20 & 21)

Lo (Index: 20)

7 6 5 432

Vertical Total La

These registers can be written and read.

o
Hi (Index: 21)

7 6 5 4 '3 2 o
Vertical Total Hi

(

They define the total length of a frame in units of one scan line. They must be written as a 16 bit value in
the range 0000 to 07FF hex. Values are assigned as follows:

Value (hex) Total Length
(Scan Lines)

0000 1

0001 2

0002 3

and so on until

07FF I

Vertical Display End Registers (Index: 22 & 23)

Lo (Index: 22)

7 65432 o
Vertical Disp End La

These registers can be written and read.

2048

Hi (Index: 23)

7 6 543 2

Vertical Disp End Hi

o

They define the position of the end of the active picture area relative to (after) the start of the active picture
area in one scan line units. They must be written as a 16 bit value in the range 0000 to 07FF hex. Values
are assigned as follows:

Value (hex) Display End
(Scan Lines)

0000 1

0001 2

0002 3

and so on until

07FF I 2048

72 OEK258 00 September 1991

Vertical Blanking Start Registers (Index: 24 & 25)

Lo (Index: 24)

7 6 5 4 3 2 o
Vertical Blank Start La

These registers can be written and read,

29

Hi (Index: 25)

7 6 543 2 o
Vertical Blank Start Hi

They define the position of the end of the picture border area relative to (after) the start of the active picture
area in units of one scan line, They must be loaded as a 16 bit value in the range 0000 to 07FF hex, Values
are assigned as follows:

Value (hex) Border End (Scan Lines)
(Blanking Start)

0000 1

0001 2

0002 3

and so on until

07FF I 2048

Vertical Blanking End Registers (Index: 26 & 27)

Lo (Index: 26) Hi (Index: 27)

7 6 5 4 3 2 o 7 6 543 2

Vertical Blank End La Vertical Blank End Hi

These registers can be written and read,

o

They define the position of the start of the picture border area relative to (after) the start of the active picture
area in units of one scan line, They must be loaded as a 16 bit value in the range 0000 to 07FF hex, Values
are assigned as follows:

Value (hex) Border Start (Scan Lines)
(Blanking End)

0000 1

0001 2

0002 3

and so on until

07FF I 2048

72 OEK258 00 September 1991

30

Vertical Sync Pulse Start Registers (Index: 28 & 29)

Lo (Index: 28)

7 6 5 4 3 2 o 7 6

Hi (Index: 29)

54320

VSYNC Pulse Start La VSYNC Pulse Start Hi ~
~--------------~

These registers can be written and read

They define the position of the start of the vertical sync pulse relative to (after) the start of the active picture
area In Units of one scan line. They must be loaded as a 16 bit value in the range 0000 to 07FF hex. Values
are assigned as follows:

Value (hex) Sync Pulse Start
(Scan Lines)

0000 1

0001 2

0002 3

and so on until

07FF I 2048

Vertical Sync Pulse End Register (Index: 2A)

765432 0

L ____ V_S.YNC P_u_ls_e_E_n_d ____ =:J

This register can be written and read

It defines the position of the end of vertical sync pulse. The value loaded IS th'Ei Least Significant (LS) byte
of a 16 bit value which defines the end of the vertical sync pulse relative to (after) the start of the active
picture area in units of one scan line. The vertical sync end position must be within 31 scan lines of the
vertical sync start position.

Note: Before setting the Operating Mode Register (Address: 21XO) into VGA or 132 Column Text Mode, bit
5 of this register must be set to '1'.

This register may not return the value written. However the retumed value Is valid for Save/Restore opera­
tions.

72 OEK 258 00 September 1991

Vertical Line Compare Registers (Index: 2C & 20)

Lo (Index: 2C)

7 6 5 4 3 2 o

31

Hi (Index: 20)

7 6 5 4 3 2 o
L Vertical Line Compare Lo L Vertical Line Compare Hi

----,

These registers can be written and read.

They define the position of the end of the scrollable picture area relative to (after) the start of the active
picture area in units of one scan line. They must be loaded as a 16 bit value in the range 0000 to 07FF hex.
Values are assigned as follows:

Value (hex) Scrollable End
(Scan Lines)

0000 1

0001 2

0002 3

and so on until

07FF I

Sprite Horizontal Start Registers (Index: 30 & 31)

Lo (Index: 30)

7 6 543 2 o
Sprite Horiz Start Lo

These registers can be written and read.

2048

Hi (Index: 31)

7 6 5 4 3 2

L Sprite Horiz Start Hi

o

They define the position of the start of the Sprite relative to (after) the start of the active picture area in pixels
They must be loaded with a 16 bit value in the range 0000 to 07FF hex Values are assigned as follows:

Value (hex) Sprite Start (pixels)

0000 a
0001 1

0002 2

and so on until

07FF l 2047

72 OEK 258 00 September 1991

32

Sprite Horizontal Preset (Index: 32)

7 6 5 4 3 2 o
I - I - Sprite H Preset

This register can be written and read.

It defines the horizontal position within the 64 by 64 sprite area at which the sprite starts. The sprite always
ends at position 63 (that is, it does not wrap). Values are assigned as follows:

Value (hex) Sprite Start (pixels)

00 0

01 1

02 2

and so on until

3F I

Sprite Vertical Start Registers (Index: 33 & 34)

Lo (Index: 33)

7 65432 o
Sprite Vert Start La

These registers can be written and read.

63

Hi (Index: 34)

7 6 5 4 3 2

Sprite Vert Start Hi

o

They define the position of the start of the Sprite relative to (after) the start of the active picture area in units
of one scan line. TIley must be loaded with a 16 bit value in the range 0000 to 07FF hex. Values are assigned
as follows:

Value (hex) Sprite Start (Scan Lines)

0000 0

0001 1

0002 2

and so on until

07FF I 2047

72 OEK 258 00 September 1991

33

Sprite Vertical Preset (Index: 35)

765 4 3 2 o
1 - 1 - 1 Sprite V Preset

This register can be written and read.

It defines the vertical position within the 64 by 64 sprite area at which the Sprite starts. The sprite always
ends at position 63 (that is, it does not wrap). Values are assigned as follows:

Value (hex) Sprite Start (Scan Lines)

00 0

01 1

02 2

and so on until

3F I 63

Sprite Control Register (Index: 36)

765 4 320

1-1-1-1-1-1-1- SC

This register can be written and read.

It controls whether the Sprite is visible or invisible. When setto '1 " the Sprite appears on the screen at the
location controlled by the Sprite position registers. When set to '0', no Sprite is displayed. This bit should
be set to '0' before any attempt is made to access the Sprite image in the Sprite Buffer otherwise the Sprite
buffer contents will be corrupted.

Sprite Color Registers (Index: 38 - 3D)

Sprite Color 0

Red (Index: 38) Green (Index: 39) Blue (Index: 3A)

7 6 5 4 3 2 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Sprite Color 0 Red 1 1 Sprite Color 0 Green o=J Sprite Color 0 Blue

Sprite Color 1

Red (Index: 3B) Green (Index: 3C) Blue (Index: 3D)

7 6 5 4 3 2 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 0

Sprite Color 1 Red 1 1 Sprite Color 1 Green 1 1 Sprite Color 1 Blue

These registers can be written and read.

They define the red, green and blue components of the pixels displayed when the sprite data for those
pixels selects Color 0 or Color 1. These colors are passed directly to the DACs and not through the palette,
so should be programmed to give the actual color required.

Note: Only the 6 most significant bits of these registers are used.

72 OEK258 00 September 1991

34

Display Pixel Map Offset Registers (Index: 40 - 42)

Lo (Index: 40)

765432

Mi (Index: 41) Hi (Index: 42)

o 765432 0 7 6 5 4 3 2 1 0

L DPM Offset La ~ L~PM Offset Middle _I c= DPM Offset Hi 1

These registers can be written and read

They define the address of the start of the visible portion of the video buffer in units of 8 BYTES They must
be loaded as a single value in the range 00000 to 1 FFFF hex. Values are assigned as follows:

Value (hex)

00000

00001

00002

DPM Offset (bytes)

o
8

16

and so on until

1FFFF

Display Pixel Map Width Registers (Index: 43 & 44)

Lo (Index: 43)

7 6 5 4 3 2 o

1048658

Hi (Index: 44)

7 6 5 4 3 2

L DPM Width La -I
.--~ L DPM Width Hi

._---

These registers can be written and read.

o

They define the Width of the Display Pixel Map in units of 8 by1es. They must be loaded as a single value
In the range 000 to 3FF hex. Values are assigned as follows:

Value (hex)
1

DPM Width (bytes)

000

I

0

001 8

002 16

and so on until

7FF I 16376

72 OEK 258 00 September 1991

35 --------_ .. __ ._ ... __ .. _-_ .. _---------- ... ----~.-.----.. -.-----.-

Display Control 1 Register (Index: 50)

5 4 3 2 o
QCI-vE] SO I * DB

This register can be written and read.

Note: Bit 2 above (marked with a *) must be masked out if a test is being performed on the contents of
this register. Also it must only be written to a '1 '.

Bit 5 above (marked with a #) is Reserved. The rules specified in 4.3.1 for such bits must be observed.

Values are assigned as follows:

Sync Polarity

Vertical Horizontal (No. Lines)

00 + + (768 Lines)

SP 01 + -
(400 Lines)

10 - + (350 Lines)

11 - - (480 Lines)

Video Extension

VE 0 Video Extension Disabled

I

1 Video Extension Enabled I
Display Scan Order

SO 0 Non Interlaced

1 Interlaced

Display Blanking

DB I"~ :: ~-I DI'play BIMk,d, CRTC '''~ I
01 I Display Blanked, Prepare for reset

I 10 Reserved

11 I Normal operation

The Video Extension Bit (VE) should be set to '1' when the subsystem is In VGA Mode. Note that It must
be be set to '0' (Disabled) If the subsystem IS in Extended Graphics or 132 Column Text Mode.

When resetting the CRTC, the DB bits above should be set to '01' (prepare for reset) first, followed by '00'
(CRTC reset)

72 OEK 258 00 September 1991

36

Display Control 2 Register (Index: 51)

7 6 543 2 o
VSF HSF [- PS

This register can be written and read.

It contains fields defining the pixel size (for the serializer, palette and DAC) and the display scale factors
(horizontal and vertical). The horizontal scale factor controls how many times each pixel is replicated hori­
zontally, and the vertical scale factor controls how many times each line IS replicated.

Values are assigned as follows:

Vertical Scale Factor

VSF 00 x1

01 x2

10 x4

11 Reserved

Horizontal Scale Factor

HSF 00 x1

01 x2

10 x4

11 Reserved

Pixel Size

PS 000 1 bit

001 2 bits

010 4 bits

011 8 bits

100 16 bits (Direct Color Mode)

101 Reserved

110 Reserved

111 Reserved

72 OEK 258 00 September 1991

37

Display ID and Comparator (Index: 52)

7 6 543 2 o
I BD I GO I RD I # I DT

This register is a READ ONLY register.

It contains fields indicating the type of display attached and the state of three diagnostic status bits asso­
ciated with the DAC Values are assigned as follows:

Blue DAC Comparator Status

BD 0 Blue DAC output high

1 Blue DAC output low

Green DAC Comparator Status

GO 0 Green DAC output high

1 Green DAC output low

Red DAC Comparator Status

RO 0 Red DAC output high

1 Red OAC output low

Display Type

DT 0000 As defined by displays.

to See table 10.1.

1111

Clock Frequency Select Register (Index: 54)

7 6 5 4 3 2 1 0

I - I - I - I - I CS VCS

This register can be written and read.

This register must be used in conjunction with the "Extemal Clock Select" register. It is therefore defined
under 'Extemal Clock Select Register (Index:70),

Border Color Register (Index: 55)

7 6 5 4 3 2 o
Border Colour

This register can be written and read.

This register holds the Border Color palette index. That is, the index of the palette location selected to be
displayed in the picture border area of the display.

The inverse of bit 7 is used for palette address bit 7 when in Direct Color mode. See Section 4 2.

72 OEK 258 00 September 1991

38

Sprite/Palette Index Registers (Index: 60 & 61)

Lo (Index: 60)

7 6 5 4 3 2 o
Sprite/Palette Index Lo

----------------, L

These registers can be written and read

Hi (Index: 61)

7 6 543 2 o

L Sprite Index Hi

They are used for specifying the index when reading from the Sprite or the Palette. See Sections 4 1.6 and
4.1.7 for details on using these registers.

The Palette has 256 locations available and so only (Index:60) is used for the palette. It can be loaded
with any palette index value in the range 0 to FF hex.

The Sprite has more than 256 locations available and so both (Index:60) and (Index:61) are used. They can
be loaded with any Sprite Index value in the range 0 to 3FFF hex.

Accessing these registers does not cause any action other than loading or retuming the value of the index
to occur.

They must be saved and subsequently restored by any interrupting task that uses the palette or sprite regis­
ters.

Sprite/Palette Index Registers with Prefetch (Index: 62 & 63)

Lo (Index: 62)

7 6 5 4 3 2 o 7 6

Hi (Index: 63)

5 4 3 2

L Sprite/Palette Prefetch Index Lo Sprite/Palette Prefetch Index Hi

These registers can be written and read.

o

They are used for specifying the index when reading from the Sprite or the Palette See Sections 4.1.6 and
4.1.7 for details on using these registers.

When reading from the Palette, only (Index:62) should be used. In addition to loading the register, writing
(Index:62) also causes the Palette prefetch registers to be loaded, and the Index value to be Incremented.

When reading from the Sprite, either (Index:62) or (Index:63) can be used. Writing to either register also
causes the Sprite prefetch registers to be loaded, and the Index value to be incremented as a single value.

These registers should NOT be saved and subsequently restored in hardware task sWitches.

Palette Mask Register (Index: 64)

7 6 5 4 3 2 o

L Palette Mask

This register can be written and read.

The contents are ANDed with each Display Memory Pixel Value and the result IS used to Index the palette

72 OEK 258 00 September 1991

39

Palette Data Register (Index: 65)

7 6 5 4 3 2 o

L Palette Data

This register can be written and read.

It is an image of the currently selected Palette RAM location The data returned on read may not be that
last written because of the selection mechanism described in Section 4.1.7.

For Mono Displays, all of the Palette Red and Blue locations must be loaded with '0'.

Only the 6 most significant bits of this register are used.

Palette Sequence Register (Bits 2:0 only) (Index: 66)

7 6 5 4 3

This register can be written and read.

It contains two fields, one defining which of the R,G or B elements of the currently selected palette location
is the current one for the Palette Data Register, the other defining the sequence to be followed for selecting
the R,G and B elements for successive Palette Data Register accesses.

See Section 4 1.7.

Color Order

CO 0 I R, G, B, R, G, B,

1 R,G,B,x,R,G,B,~

Palette Color

PC 00 IR

01 I G

10 I B

11 I x

Note: x = discarded data

Palette Red Prefetch Register (Index: 67)

7 6 5 4 3 2 o

L Palette Red Prefetch

This register can be written and read.

It is not used for any normal function but must be saved and subsequently restored by any interrupting code
that uses the sprite or palette registers

72 OEK 258 00 September 1991

40

Palette Green Prefetch Register (Index: 68)

7 6 5 4 3 2 o
Palette Green Prefetch ~

----~

This register can be written and read.

It is not used for any normal function but must be saved and subsequently restored by any interrupting code
that uses the sprite or palette registers.

Palette Blue Prefetch Register (Index: 69)

7 6 5 4 3 2 o
Palette Blue Prefetch

This register can be written and read.

It is not used for any normal function but must be saved and subsequently restored by any interrupting code
that uses the sprite or palette registers.

Sprite Data Register (Index: 6A)

7 6 5 4 3 2 o
Sprite Data

'--------

This register can be written and read.

It is an image of the currently selected Sprite buffer location. The data returned on read may not be that
last written because of the selection mechanism described in Section 4.1 .6.

When used for writing sprite data, the sprite pixels are Intel format packed pixels.

Sprite Prefetch Register (Index: 6B)

7 6 5 4 3 2 o
Sprite Prefetch

This register can be written and read.

It is not used for any normal function but must be saved and subsequently restored by any interrupting code
that uses the sprite or palette registers.

72 OEK258 00 September 1991

41

External Clock Select Register (Index: 70)

765432 0

C I - I - I - I - I - I - I - I

This register can be written and read.

It must be used in conjunction with the Clock Frequency Select Register (Index 54) shown below:

7 6 5 4 3 2 1 0

I - I - I - I - I CS VCS

The combined function of these register fields is detailed in the table below:

Clock Selected

C CS Selected Clock

C and CS 0 00 VGA 8 pixel Character Mode and 640 X 480 Graphics Mode Clock.

X 01 VGA 9 pixel Character Modes clock.

X 10 Clock sourced from Video Extension Interface.

X 11 1024x768 Graphics Mode Clock.

1 00 132 Column Mode Clock.

Video Clock Scale Fac- Mode
tor

VCS 00 x1 VGA and 640 x 480 Graphics Modes.

01 x2

10 Reserved

11 Reserved

Clock Selection- The 'C' and 'CS' fields of index 70 and 54 must be used together. Setting each field to
the values shown in the table above will select the specified clock. Note: If the 132 Column Text Mode Clock
is selected, then 'C' must be returned to '0' before any VGA or 640 X 480 graphics is selected. See Section
11 for details on mode switching.

The video clock scale factor controls the divide ratio of the selected video clock before it is used by the
CRTC. The operation of the video clock scale factor is invisible to the programmer, but it must be set as
shown to allow correct operation of the hardware.

72 OEK258 00 September 1991

42

4.4 Coprocessor Description

The XGA coprocessor provides autonomous drawing functions for the video sub-system. "Autonomous
drawing functions" means that the coprocessor draws into memory (either video memory or system
memory) independently of the host system processor, while the host processor is performing some other
operation.

The coprocessor supports 1 ,2,4 or 8 bits bits per pixel. See Section 14 7 for details of using the coprocessor
when displaying in 16 bits-per-pixel (Direct Color) mode.

Typically, the execution of an operation using the coprocessor involves the following steps:

• The host system processor sets up the coprocessor registers to perform a particular operation

• The host system processor writes to the Pixel Operations register to start the coprocessor opera­
tion

• The coprocessor performs the drawing operation The host system processor can be performing
some other function at this time.

• The coprocessor completes the drawing operation, informs the host system processor, and be­
comes idle

• The process repeats ...

The coprocessor operates on pixels within pixel maps. A pixel map is an area of memory at a given address
with a defined height, width, and pixel format; see Section 4.6.3

Pixels from a Source are combined with pixels from a Destination under the control of a Pattem and Mask,
and the result is written back to the Destination.

After each access the Source, Destination, Pattern and Mask addresses are updated according to the func­
tion being performed, and the operation is repeated until a programmed limit is encountered.

The drawing operation can be one of Pixel Block Transfer (PxBlt), Bresenham Line Draw, or Draw and Step.

The function performed to combine the Source and Destination data can be a logical or arithmetic opera­
tion. One of two possible operations is selected for each pixel by the value of the corresponding Pattem
pixe/. In addition, a Mask pixel for each pixel allows the Destination to be protected from update.

Pattem data can be generated automatically from Source data ThiS is done by detecting pixels with a value
of "0".

A color compare function is provided. This allows the modifying of the destination pixel to be dependent
on the value of the destination pixel compared to a programmable value.

Three general purpose pixel maps can be defined in memory Each map has a defined start address, pixel
width and height, and number of bits-per-pixel. Source, Pattem and Destination data can reside In any com­
bination of these maps. There is also a mask map that has its own defined start address, width, height and
format. Mask data is always taken from this map.

Source, Pattem and Destination data are each addressed by unique X,Y pOinters. Mask data is addressed
by the Destination X,Y pointers; see Figure 4.7. Should the Source or Pattern X,Y pointers move outside
the defined extremities of their pixel maps, they are automatically reset so as to wrap round to the opposite
side of the pixel map. If the Destination X, Y pOinters move outside the extremities of the Destination map,
update of the Destination map is inhibited until the X,Y pointers move back inside the map.

Figure 4.6 shows a representation of the coprocessor graphics data flow. The diagram indicates the pas­
sage of one pixel through the data flow. In reality, multiple pixels are processed in one cycle.

72 OEK 258 00 September 1991

Fgd mix reg

Bgd mix reg ------

Pattem map -~-- -~---1--area]
mux fill ---[-SJ - - ------

Source map ---1-: --r---~ mux

Fgd c~~o~ _ _ __ ~----Ll
I-~-

Bgd Color ~-mux jn ___ J
reg 'L Src

'Old'
Destination -

map

Color Compare
reg . __

Carry chain mask and Pixel
Bit Mask Registers

___________________ Dest __

Fgd = Foreground
Bgd = Background
Src = Source
Dest = Destination
mux = multiplexor
ALU = Arithmetic
and Logic Unit

ALU

~-
Mask
mux

'New'
Dest
map

Mask map ___________ -1 combine f----------"
masks

Pixel Bit Mask -----------~

43

l· reg '------"

-~

_J
Figure 4.6 Coprocessor data flow.

4.5 Programmer's View

An 'operation' IS defined as the execution of a single PxBlt, Line Draw or Draw and Step function

An operation is set up by first loading the coprocessor's registers with appropriate data, such as X,Y coordi­
nates, function mixes, dimensions, and so on. The operation is then Initiated by writing to the Pixel Opera­
tion Register. This defines the flow of data in the operation and also starts the operation. The coprocessor
then executes and completes the operation when some programmed limit has been reached.

There is one exception to the above sequence of Initiating operations. This IS the Draw and Step function.
described in the section 'Draw and Step' on page 51.

The XGA can be programmed to inform the host processor of the completion of an operation using a system
interrupt. This interrupt is called the Coprocessor Operation Complete Interrupt. An enable bit and status
bit exist for this interrupt in the the 'Interrupt Enable Register (Address: 21 x4)' on page 21 and' Interrupt Sta­
tus Register (Address: 21 x5)' on page 21

A mechanism is provided to allow the host processor to either suspend or terminate an operation before
it has completed. The suspension of operations is required to allow task switches, while termination of
operations can be used to recover from errors.

72 OEK258 00 September 1991

44

4.6 Pixel Formats

The Coprocessor can manipulate images with 1, 2, 4 or 8 bits per pixel. It manipulates packed-pixel data,
so each data double-word (32 bits) contains 32,16,8 or 4 pixels respectively.

The pixels can be in one of two differentformats, 'Motorola' or 'Intel'. See Intel Order on page 10 and Moto­
rola Order on page 11.

Each pixel map manipulated by the Coprocessor can be defined as either Motorola or Intel format. If the
Destination Map has a different format to that of the Source, Pattern or Mask Maps, the Coprocessor auto­
matically translates between the two formats.

Motorola or Intel format is controlled by a bit in the Pixel Map Format Register.

4.6.1 Pixel Data

Fixed And Variable Data

In the course of executing an operation, the Coprocessor reads in Source, Pattern and Mask data, and
reads and writes Destination data. The Source, Pattern and Mask data can either be fixed throughout the
operation, or vary from pixel to pixel.

XGA Function

If fixed data is to be used, the data is written to the relevant fixed data register in the Coprocessor before
the operation is started (Foreground and Background Color Registers).

If variable data is required, the data is read from memory by the Coprocessor during the course of the
operation. The Coprocessor only allows variable data to be provided from memory, and does not allow
the system unit host processor to supply variable data.

4.6.2 The Coprocessor View of Memory

To the programmer, the Coprocessor treats video memory and system memory in the same manner. Thus
data can be moved between system memory and video memory by defining pixel maps at the appropriate
addresses.

Accesses to the XGA video memory are faster than accesses to system memory.

The Coprocessor can address all the video memory.

The Video Memory Base Address Registers hold a value that indicates the base address at which the Video
Memory appears in system address space. This base address is on a 4 Mbyte address boundary. The
Coprocessor assumes that the whole 4 Mbytes of address space above this boundary is reserved for its
own video memory. All addresses outside this 4 Mbyte block are treated as system memory.

Section 4.1.4 further describes video memory addressing.

4.6.3 XGA Pixel Maps

Pixel Maps A, B, And C (General Maps)

The Coprocessor defines three general purpose pixel maps in memory, called Pixel Maps A, Band C. Each
map is defined by four registers:

Pixel Map Base POinter This specifies the linear start address of the map in memory.

Pixel Map Width This specifies the width of the map in pixels. The value programmed should be 1
less than the required width.

Pixel Map Height This specifies the height of the map in pixels. The value programmed should be
1 less than the required height.

720EK 258 00 September 1991

45

Pixel Map Format This specifies the number of bits-per-pixel of the map, and whether the pixels are
stored in Motorola or Intel format.

The Source, Pattem and Destination data can each reside in any of Pixel Maps A, B or C, determined by
the contents of the Pixel Operations Register.

These maps may be defined to be any arbitrary size up to 4096 by 4096 pixels. Individual pixels within the
maps are addressed using X,Y pOinters. See 'X and Y Pointers' on page 46.

Pixel Maps can be located in video memory and in system memory.

There are two restrictions on map usage: the Source and Destination maps must have the same number
of bits-per-pixel, and the Pattem map must be 1 bit-per-pixel.

Pixel Map M (Mask Map)

In addition to the three general purpose maps, the Coprocessor also defines a Mask Map. This map is
closely related to the Destination map. It allows the Destination to be protected from update on a pixel-by­
pixel baSiS, and can be used to provide a scissoring-type function on any arbitrary shaped area. See' Scis­
soring with the Mask Map' on page 48.

The Mask Map is described by a similar set of registers to the general purpose pixel maps A, Band C, but
it is fixed at 1 bit-per-pixel.

The Mask Map differs from the Source, Pattem and Destination maps in that:

• The Mask Map uses the Destination X and Y pOinters.

• The position of the Mask Map origin relative to the Destination is defined by the Mask Map Origin
X and Y Offsets.

See 'X and Y Pointers' on page 46.

Map Origin

The origin of a pixel map is the point where X = 0 and Y = o.
The Coprocessor defines the origin of all its pixel maps as being at the top left comer of the map. The direc­
tion of increasing X is to the right; the direction of increasing Y is downwards. Figure 4.7 illustrates the X
Y addressing of an XGA map.

Map origin
(0,0)

increasing
Y

_____________ in_c_re_a_s_in~g~x ___________________ _

TheXGA
Pixel
Map

Figure 4.7 The XGA Pixel Map Origin

In storage, pixels to the right of and below the origin are stored in ascending, contiguous memory locations.

72 OEK258 00 September 1991

46
---------------~-

X and Y POinters

Source And Pattern Maps: These maps each have X and Y pointers that determine the pixel to be
accessed for that map. The two sets of pOinters are completely independent and are modified
as the operation proceeds.

If, in the course of an operation, the Source or Pattern pOinters are moved beyond the extremities of the
Pixel Map containing the Source or Pattem data, they are reset to the opposite edge of the pixel map.
Source and Pattern maps can thus be regarded as continuous in that they wrap round at their extremities.
This allows a small pattern to be repeated or 'tiled' over a large area in the destination map, in a single
operation; see Figure 4.8.

E D E D E D E D E D

F F F F F

D B CAB C A B CAB C A B C A

D E E D E D E D E D E D
F F F F F F i
Pattern B CAB C A B CAB CAB C A

~ Map E D E D E D E D E D

F F F F F

PxBlt Area

Destination Map

Figure 4.8 Repeating Pattern ('Tiling')

Destination Map: If a Destination X or Y pOinter is moved beyond the extremity of the Pixel Map con­
taining the Destination, the pOinters are not wrapped, but updates to the Destination are disabled
until the pOinters are moved to within the defined Pixel Map This mechanism is effectively a fixed
scissor window around the Destination pixel rnap.

72 OEK258 00 September 1991

47

A "guardband" exists around the Destination Map that ensures that the Destination X and
Y pOinters do not wrap when they move outside the limits of the map The guardband is
2048 pixels deep on all sides of the largest definable Destination Map. The guardband is
illustrated in Figure 4.9

----------------------------------,

(0,0)
up to 4096 -------------

up to 4096

Destination Map

Guardband (6143,6143)

~------------------.. ---------------------.--------.. _---------------

Figure 4.9 Destination Map Guardband

The Guardband allows the Destination X and Y addresses to range from -2048 to + 6143.
All pixels within the Destination Map can be updated, but updates to pixels that lie within
the guardband are inhibited. The size of the Destination Map is determined by the Map
Width and Height, so pixels that lie within the range (0,0) to (width-1 , height-1) can be up­
dated The Guardband occupies pixel X addresses -2048 to -1 and 'Width' to 6143, and
Y addresses -2048 to -1 and' Height' to 6143

In order to correctly address the Destination Map and take advantage of the Coprocessor's
Destination Boundary Scissor capability, programmers can calculate Destination X and Y
addresses using 16-bit two's-complement numbers. They should ensure that all X and Y
addresses generated by the operation they program lie within the range -2048 to 6143, and
bear in mind that all pixels that they want drawn should lie inside the bounds of the Destina­
tion Map. Any X and Y addresses generated that lie outside the range -2048 to 6143 cause
the XGA X and Y pOinters to wrap and can produce erroneous results.

Mask Map: The Mask Map width and height can be any size less than or equal to the dimenSions of
the Destination map. The Mask Map can therefore be smaller in size than the Destination Map.
If this is the case, the hardware needs to know where the Mask Map is positioned relative to the
Destination Map. Two pOinters, the Mask Map Origin X Offset and Mask Map Origin Y Offset spec­
ify the X,Y position in the Destination at which the Mask Map origin is located. Figure 4.10 illus­
trates the use of these pOinters.

72 OEK258 00 September 1991

48

(0,0)
Destination Map

I YOff~
Mask Map

... c-----.~.

~~::~ J~~
********* L-___ ~***** I

X Offset

I

Figure 4.10 Mask Map Origin X and Y Offsets

The Mask Map takes its X and Y pOinters from the Destination X and Y pointers. For every
pixel in the Destination, the corresponding pixel in the Mask Map is read and update of the
Destination enabled or disabled depending on the value of the Mask pixel.

Scissoring With The Mask Map

Hardware scissoring is provided in the Coprocessor using the Mask Map. There are three ways that the
Mask Map can be used for any operation, as follows:

Disabled The Mask Map contents and boundary position are ignored.

Boundary Enabled The contents of the Mask Map are disabled, but the boundary of the Mask Map
acts as a rectangular scissor window on the Destination map. No memory is required to store
the map contents in this mode.

Enabled The contents of the Mask Map can be used to provide a possibly non-rectangular scissor
window. The boundary of the Mask Map also provides a rectangular scissor window at the extre­
mities of the Mask Map.

The Mask Map mode is controlled by a field in the Pixel Operation Register. The modes are described in
detail below. Throughout the description below, pixels that are located on a scissor boundary are treated
as if they are inside it.

Mask Map Disabled: When the Mask Map is disabled, any updates to the Destination are always
performed regardless of the position or contents of the Mask Map. No memory need be reserved
for the Mask Map, and the contents of the Mask Map Base, Width, Height, Format and Origin Off­
set registers are ignored.

However, should the operation being performed attempt to draw outside the boundary of the Des­
tination Map, the update is automatically inhibited. The Destination X and Y pOinters are increm­
ented as normal, but update of the Destination is not enabled until the pOinters move back inside
the bounds of the Destination Map. Thus a fixed hardware scissor window exists around the
boundary of the Destination Map. This Destination Boundary Scissor is always enabled regard­
less of the Mask Map Mode.

Figure 4.11 illustrates the Destination Boundary Scissor operation when the Mask Map is dis­
abled.

72 OEK 258 00 September 1991

49

Destination Map

000

000 000

000 000

000

000

000

000

. ,. 0 000

000

"0" indicates a pixel drawn
"." indicates a scissored (not drawn) pixel

Figure 4.11 Destination Boundary Scissor.

Mask Map Boundary Enabled: Mask Map Boundary Enabled mode provides a single rectangular
scissor window within the Destination map. The contents of the Mask Map are ignored, and thus
no memory need be reserved for the Mask Map in this mode.

In Boundary Enabled mode, the size and position of the Mask Map must be specified. Thus the
Mask Map Width, Height, and Origin Offset registers must be defined. These four registers togeth­
er define a rectangular boundary within the Destination Map. Updates to the Destination Map that
lie inside this boundary take place as normal. Updates outside this boundary are inhibited.

Figure 4.12 illustrates a Mask Map Boundary Enabled scissoring operation.

Destination Map

Mask Map Boundary

000

000

000

"0" indicates a pixel drawn
"." indicates a scissored (not drawn) pixel

Figure 4.12 Mask Map Boundary Scissor.

Mask Map Enabled: When the Mask Map mode is enabled, both the Mask Map boundary and con­
tents provide scissoring action. Memory must be reserved to hold the Mask Map pixels and the

72 OEK 258 00 September 1991

50 ----

Mask Map Base, Width, Height, Format, and Origin Offset registers must be set up to point to the
mask data and describe its size and position relative to the Destination Map.

For any pixel in the Destination that is about to be updated, the corresponding Mask Map pixel
is examined.

If the Mask pixel is inactive (its value is '0'), the Destination pixel update are inhibited. If the Mask
pixel is active (its value is '1 '), the Destination pixel is updated as normal.

This mode allows the user to draw non-rectangular scissor windows in the Mask Map prior to an
operation, and then, in a single execution of an operation, to apply a non-rectangular scissor win­
dow to that operation.

Memory must be reserved to hold the Mask Map contents in this mode. The Mask data is fixed
at 1 bit-per-pixel, so for a full screen Mask Map for a 1024 x 768 screen, 96 Kbytes are required.
If, however the operation to be scissored does not cover the whole Destination Map, a Mask Map
smaller than the Destination Map can be used in order to save memory. For applications with no
memory available for the Mask Map contents, the Mask Map Boundary Enabled mode should be
used.

Figure 4.13 illustrates a Mask Map Enabled scissor operation.

'-------_._. ---_.

Destination Map

Mask Map Boundary

:"r
. . **

L******

~

L....... __ ******
~.---------------

"0" indicates a pixel drawn
"." indicates a scissored (not drawn) pixel
"*" indicates a "0" in the Mask Map

.---_ .. _------- ... _--_._-------"

Figure 4.13 Mask Map Enabled SCISSor

Before performing an operation that requires a non-rectangular scissor, the user must first draw
the non-rectangular mask into the Mask Map. Typically, windowing systems only permit rectan­
gular windows, so the mask can be drawn using a sequence of PxBlt operations that have fixed
source data. For more complex shapes, the Line Draw and Draw Step functions can be used to
draw area outlines that can then be filled.

Typically, a large number of operations can be performed, all using the same maSk, so the over­
head per operation in setting up the mask is small. Overall, the use of the mask to perform non-rec­
tangular scissors greatly improves the performance of a given drawing operation over that when
a single rectangular scissor IS provided by the hardware.

72 OEK 258 00 September 1991

51

4.6.4 Drawing Operations

There are four drawing operations provided by the Coprocessor. They are:

• Draw and Step

• line Draw

• Pixel Block Transfer (PxBlt)

• Area Fill

These operations are desCrIbed In detail In the following sections

The operations can be either one-dimensional or two-dimensional Draw and Step and line Draw are one­
dimensional while the PxBlts are two-dimensional. Draw and Step and line Draw are collectively desCrIbed
as 'draw' operations In the following text

Either of the draw operations can be either 'read' or 'write'. These qualifiers to the operation are described
in 'Line Draw' on page 53.

Draw and Step:

The Draw and Step operation draws a pixel at the Destination and then updates the X Y pOinters to one
of the pixel's 8 neighbors according to a 3-bit code.

A run of up to 15 address steps can be specified in a fixed direction by each Draw and Step code. An 8- bit
code deSCribes the vector, as shown in Figure 4.14

7 6 5 4 3 210
~---------~------,---------- -----l
L~rec~()f1~odU MID I No, Of Steps __ ~

-- ------------_.- -------------

Figure 4.14 Draw and Step code

No. Of Steps: This field indicates how many steps should be taken, trom 0 to 15_ The X Y pOinters
are updated after the pixel is drawn, so a Draw and Step function always atiempts to draw at least
one pixel

The number of steps to be taken In the Draw and Step operation IS one less than tne number of
pixels that the hardware attempts to draw. Thus when the number at steps is programmed to 5,
6 pixels are drawn; when 0 steps are specified, 1 pixel is drawn. Afterthe Draw and Step operation,
the X and Y pOinters point to the last pixel that the operation attempted to draw (this pixel may
not actually be drawn if the 'Last Pel Null' Drawing Mode IS active).

For example, a Draw and Step code of hex '35' moves X,Y pOinters starting at coordinates (17,10)
to coordinates (22,5), as shown in Figure 4.15.

72 OEK 258 00 September 1991

52

*
/

Start Point *
X,Y = (17,10)

!

*
/

*
.I

*
!

End Point
* XY = (22,5)

step code C~ hex '35'

(Draw In direction
of upper right pixel
taking 5 steps)

"*" indicates a pixel drawn

"/" represents the address step
to the next pixel

Figure 4,15 Example of Draw and Step

M/D:This field specifies if the operation is a move operation or draw a draw operation, When set to
a '1' this bit indicates that pixels should be drawn, When cleared to '0', it indicates that X and Y
pOinters should be modified as normal. but no pixels should be drawn,

Direction Code: This field indicates the direction of drawing relative to the current pixel, as shown in
Figure 4,16,

1------

2

3

4 o o

5 7
6

Figure 4,16 Draw and Step direction codes

Draw and Step codes should be written to the Direction Step Register. Each write to the register can load
up to four Draw and Step codes In one access, The Draw and Step codes are executed starting with that
in the least Significant byte, Each group of up to four codes written to the Direction Step register is treated

72 OEK25B 00 September 1991

53

as being ONE operation In that all codes are executed before the coprocessor Indicates that the operation
has completed However, for the purposes of first pixel null and last pixel null drawing (described below),
each code descrioes a distinct line.

The Draw and Step operation differs from other operations in that It is not Initiated through the Pixel Opera­
tIOn Register The action of wntlng a Draw and Step code to the most significant byte of the Direction Step
Register Initiates the Draw and Step operation.

The Pixel Operation Register still needs to be loaded In order to specify the particular Draw and Step func­
lion and the data flow lor the operation ThiS must be done before any data IS written to the Direction Step
Register Wntlng the Pixel OperatIOn register with a function of Draw and Step does NOT Initiate a Draw
and Step operation, but setf; Lip the parameters for the operation It is the action of writing steps to the Direc­
tIOn Step register that Initiates the Draw and Step operatIOn If the Pixel OperatIOn register specifies a func­
tIOn other that Draw and Step when the Direction Step register IS wntten, no operatIOn takes place

A Draw and Step corle of '00' is treated by XGA as a 'Stop' code If a Stop code IS encountered as one
of the (up to) four cfJdes In the [)lrectlOn Step register. the Draw and Step operatIOn completes after that
code has been executed The completIOn of the operation is ind Icated in the normal way through the Copro­
cessor Control register, and. in additIOn, a flag Olt in the Coprocessor Control register Indicates that the
operation completed because a Stop code was encountered. ThiS mechanism allows software to load se­
quencesof Draw and Step codes to the Corrocessor Without needing to keep track of the number of codes
that make up the figure being drawn

If It IS reqUired to program less than four codes to the Direction Step register, two possible approaches can
be taken. Either the first unwanted step code can be set to '00' (Stop), and all 32 bits of the register written,
or only the required number of codes can be written to the DirectIOn Step register However, In the latter
case, the codes must be written to the most sigOlficant bytes of the register The two methods are shown
in Figure 4.17

Writing 32-blts and using the Stop Code:

31

l-:" Don't care _ j . s~op COde'O~'X 1

Writing only those codes required:

31

code 2

o
1" '---1
! code 1 I

o

This figure shows the case when only two Step codes are reqUired

Note that the second method requires the I/O address programmed to change depending
on the number of Steps written.

Figure 4.17 Programming less than four Step codes

Line Draw:

The line Draw function uses the Bresenham line drawing algorithm to draw a line of pixels into the destina­
tion. The Bresenham line draWing algOrithm operates with all parameters normal ized to the first octant (oc­
tant 0). The octant code for the actual octant in which the line lies must be speCified In the octant field of
the Pixel Operation Register This contains a 3 bit code that is made up of three 1 bit flags called DX, DY
and OZ.

72 OEK258 00 September 1991

54 ------------------------------------

DX is 1 for negative X direction, 0 for positive X
DY is 1 for negative Y direction, 0 for positive Y
DZ is 1 for I X I < I Y I, 0 for I X I > IY I (' I X I' is the magnitude of X, the value ignoring the sign)

The octant value is formed by concatenating DX, DY and DZ.

Figure 4.18 shows the encoding of Octants.

·--~l

7 3

6 2

Start

4 o

I

5

________ . _____ ._~ ____ ..J

Figure 4 18 Bresenham Line Draw Octant encoding

The length of the line (delta X when normalized) must be specified In the Dimension 1 Register

The Coprocessor provides the following registers to control the Draw line address stepping:

• Bresenham Error Term, ET = 2*deltaY - deltaX

• Bresenham Constant, K1 = 2*deltaY

• Bresenham Constant, K2 = 2*(deltaY - deltaX)

On completion of the drawing operation, X and Y pointers point at the last pixel of the line.

The Coprocessor draw operations that take Source data from a Pixel Map apply the specified address up­
date to only one of either the Source or Destination Map. The X Y address in the other Map is always increm­
ented in X only. There are two possibilities, called Read Draw and Write Draw.

Write Draw After every pixel drawn, the Source X Ypolnters are incremented In X only. The Destination
X Y pOinters are updated according to the currentfunction specified (either Bresenham Line Draw,
or Draw and Step).

Read Draw After every pixel drawn, the Source X Y pointers are updated according to the current func­
tion specified (either Bresenham Line Draw, or Draw and Step). The Destination X Y pOinters are
incremented in X only.

The 'read' and 'write' in the terms Read Draw and Write Draw refer to the direction of data transfer of the
Map that is having its addresses updated by the specified function. So, during a Read Line Draw, the Map
from which data is read (the Source) has its addresses updated by the Bresenham Line Draw function. Dur­
ing a Write Draw and Step, the map to which data is written (the Destination) has its addresses updated
by the Draw and Step function.

Note, in particular, that to draw a fixed color line (by taking the source from the Foreground and/or Back­
ground Registers) a write draw function should be used.

Figure 419 illustrates the stepping of X and Y pOinters during a Read Line Draw and Write Line Draw

72 OEK258 00 September 1991

Write Line Draw

Source (and Pattern) map

.123456789

Read Line Draw

Source (and Pattern) map

345
.12

678
9

Destination (and Mask) map

9
678

345
.12

Destination (and Mask) map

-::4-5678~--------

_____________ J

(Numbers 1 to 9 denote each pixel In order of drawing)

55

'"--- ------ ------------- ------------------- ----------------"

Figure 4.19 Memory to memory Line Draw address stepping.

Note that in the map that is not having the current addressing function applied, the X painter is always in­
cremented regardless of the direction of X in the current addressing functJon. The Y pOinter for the same
map is not updated at all during the operation.

The above description refers only to the Source and Desllnation maps The Pattem map X and Y pointers
are updated in the same manner as the Source painters, and the Mask map X and Y pOinters (that are not
directly accessible by the user) are updated in the same manner as the Destination painters.

If an attempt is made to move any of the map pOinters outside the bounds of their current map then the
rules set out in 'X and Y Pointers' on page 46 apply as normal; the Source and Pattern painters wrap, and
the Mask and Destination scissor. Thus if it IS required to draw a line with a repeating color scheme and
pattern, the Source Map Width and Pattem Map Width should be set to the required run length of the repeat­
ing colors and pattem respectively. The coprocessor automatically draws the repeating run of colors and
pattern. Conversely, if a line with a long non-repeating color scheme or pattern is required, the Source and
Pattern Map Widths must be set to equal or exceed the line length, or wrapping occurs.

Drawing with Null Endpoint Pixels: It is common when drawing lines to draw a series of lines one after the
other with the endpoint of one line being the starting point of the next line. Such composite lines are called
'polylines'. A problem can arise in that the common endpoint of the two abutting lines is drawn twice, once
as the last pixel of the first line, and once as the first pixel of the second line. If, say, a mix of XOR is active,
then the common pixel IS first drawn and then removed, and similar problems arise with different mixes

In order to avoid drawing the endpoints of polylines twice, the Coprocessor provides functions that Inhibit
the drawing of the end pixel of lines. Depending on the function selected, either the first pixel or the last
pixel of individual lines is not drawn (drawn 'Null'). The choice of whether to draw first or last pixel null IS

72 OEK258 00 September 1991

56

arbitrary as long as one or the other is used for the whole figure being drawn. It is usually a convention of
the graphics application as to whether first or last pixel null is used.

First and Last pixel null drawing functions are provided for both the Bresenham Line Draw function, and
the Draw and Step function In all cases the programming of parameters is the same as for normal Line
Draw and Draw and Step. Only the contents of the Drawing Mode field in the Pixel Operations register are
different.

Area Boundary Drawing: The outline of an object is drawn using either Bresenham Line Draw or Draw and
Step functions, or a combination of both. The outline is created by observing a number of rules that are
detailed below.

The rules for area-boundary line drawing are:

• If a line is drawn from screen top-to-bottom, then draw with Last Pixel Null and draw only the Last
Pixel in every horizontal run of pixels.

• If a line is drawn from screen bottom-to-top, then draw with First Pixel Null and draw only the First
Pixel in every horizontal run of pixels.

• If a line is Horizontal, then draw none of the pixels.

• Always draw with a mix of XOR.

The Coprocessor implements the above drawing rules in hardware In order to draw a shape as an area
outline, it should be drawn as for a normal Line Draw or Draw and Step operation, but with the 'draw area
boundary' Drawing Mode selected in the Pixel Operation Register and a mix of XOR.

Area Outline Scissoring: It is important during area outline drawing to ensure that the correct outline is
drawn when the outline intersects the scissor boundary. In particular, when the outline is sCissored by a
vertical boundary at the left of a map (an XMIN boundary), a pixel is drawn in the outline to activate filling
at that boundary.

Using the XGA's combination of Mask Map and fixed Destination Boundary scissoring, area outlines are
incorrectly scissored by the Mask Map, but correctly scissored by Destination Map boundary scissoring.
The correct area can be filled by ensuring that the Mask Map scissoring is disabled when the outline is
drawn and enabled or boundary enabled when the scan/fill part of the area fill is drawn This results in
the correct, SCissored figure being drawn. See 'Scissoring with the Mask Map' on page 48.

Pixel Block Transfer (PxBlt):

The PxBlt function transfers a rectangular block of pixels from the Source to the Destination The width and
height of the rectangle are specified in the Dimension 1 and Dimension 2 registers. The transfer can be
programmed to start at any of the four comers of the rectangle and proceeds towards the diagonally oppo­
site corner. The address IS stepped in the X direction until the edge of the rectangle is encountered where­
upon X is reset and the Y direction is stepped This process is repeated until the entire rectangle has been
transferred.

PxBlt's can be implemented in normal WRITE mode or in READ/MODIFY/WRITE mode. This is dependent
on the number of bits per pixel and the mix being used.

If the PxBlt is being implemented in READ/MODIFY/WRITE mode (that is, 1,2 or 4 bits per pixel with ANY
mix or 8 bits per pixel with a READ/MODIFY/WRITE mix) then either:

• Ensure that the destination map has a base address that is on a double-word (four byte) address
boundary, and is an exact number of double-words wide.

• If the destination map is not double-word aligned, ensure that the destinatIOn map boundary is
not crossed during the PxBlt operation.

PxBlt Direction.The PxBlt direction indicates the direction in which the X, Y address is stepped across the
rectangle. It also defines the starting corner of the transfer. This is significant if the destination rectangle

72 OEK258 00 September 1991

57

overlaps the source rectangle, and care must be taken to ensure that the PxBlt direction is correctly pro­
grammed in such cases to achieve the desired result

This field, when concemed with PxBlts determine the direction that the PxBlt is drawn in

The encoding is as follows'

'OOO'b or '001'b
'100'b or '001'b
'010'b or '011 'b
'110'b or '111'b

Start at Top LH comer of Area increasing right and down.
Start at Top RH comer of Area increasing left and down
Start at Bottom LH comer of Area Increasing right and up.
Start at Bottom RH comer of Area Increasing left and up.

('OOO'b or '001 'b) ('100'b or '101 'b)

I

PxBlt'ing AREA

I~' . ____ . __ ~I
('01 O'b or '011 'b) ('110'b or '111 'b)

Figure 4.20 PxBlt Direction Codes

After a PxBlt operation has completed, the X and Y pOinters are set so that the X pOinter contains its original
value atthe start of the PxBlt, and the Y pointer points to its value on the last line of the PxBlt plus or minus 1,
depending on the Y direction that the PxBlt was programmed.

See Section 14 1 for details on PxBlts where the Source and Destinations overlap

Inverting PxBIt: As detailed in 'Map Origin' on page 45, the Coprocessor assumes that the origin of a pixel
map is at the top left comer of the map, with Y increasing downwards Applications which use an origin
at the bottom left of the map (Y increasing upwards) use either of the following'

• Modify all Y coordinates by subtracting the map height from them before passing the modified
coordinates to the display hardware.

• Use the coprocessor Inverting PxBlt operation.

The Inverting PxBlt use reqUires the application to draw into an off-screen pixel map without any Y coordi­
nate modification, and then use the Inverting PxBlt operation to move the data to the destination map

Figure 4.21 Illustrates the X, Y addressing of the Inverting PxBlt operation, and shows how the result of the
Inverting PxBlt appears the same as the original when displayed as an Inverted pixel map (i.e with the origin
at the bottom left).

72 OEK 258 00 September 1991

58

Map origin _____ in_c~e_asirlg X
(0,0); -----------

I Xs,Ys---

" * increas- *
ingY * ** *

* *
* *

a. Source b. Destination

PxBlt direction = 0 or 1 (Source: DX + ve., DY + vel
(Destination: DX +ve., DY -vel

The destination, when displayed
as an inverted pixel map, ap­
pears the same way up as the
original, increasing Y

(0,0)
Map origin

* *
* ** *

*
*

increasing X

c. Destination displayed as
an inverted pixel map

i
______ . ____ ---.l

Figure 4.21 Inverting PxBlt

An Inverting PxBlt is set up in the same manner as a standard PxBlt with the following notes:

• The PxBlt direction set by the user applies to the updating of the Source X and Y addresses.

• The Destination Y pOinter should be programmed to the opposite (in Y) comer of the Destination
rectangle,

• The function field in the Pixel Operation register should be set to Inverting PxBlt as opposed to
PxBIt.

See Section 14.1 for details on PxBlts where the Source and Destinations overlap.

Area Fill:

The following steps are required to perform an Area Fill operation without a 'user' pattern:

Draw the closed outline ofthe area to be filled using the kea Boundary Drawing Mode. Typically
a unique, off-screen pixel map would be defined into which the area boundary would be drawn.
This pixel map should be initialized to contain '0' valued pixels before the boundary is drawn.
This pixel map must be in a 1 bit-per-pixel format.

2 Designate the pixel map in which the area boundary was drawn to be the Pattern Map.

72 OEK 258 00 September 1991

59

3 Specify the desired Destination,

4 Select the desired Foreground Mix and Source,

5 Specify the Background Mix to be 'Destination (code 5)'.

6 Specify the operation direction to be any direction with X increasing (Codes 0 or 1 , 2 or 3), This
IS because the pattern data is scanned from left to right Selection of a negative X direction code
for Area Fill operations results in fill errors,

7 Initiate the Area Fill operation,

During the Area Fill operation, the Coprocessor applies a 'filling' function to the Pattern pixels before they
are used to select Background and Foreground Sources and Mixes in the usual way, The filling function
rnodifies the Pattern pixels horizontally line by line, It scans the Pattern from left to right, and on encounter­
ing the first Foreground (1) pixel, sets all subsequent pixels to Foreground (1) until the next Foreground pixel
is encountered, This process is illustrated in Figure 4.22

Pattern scanned to the right

original pattern 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0
• filling function

filled pattern 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0

Figure 4 22 Pattern Filling

The 'filled' Pattern is generated internally to the coprocessor It is then used exactly as the Pattern In any
normal operation, With Foreground (1) pixelS selecting Foreground Source and Mix, and Background (0)
pixels selecting Background Source and MIX DUring Area Fill operations, it IS desired to fill the speCified
area and leave all other pixels unchanged, This IS why the Background Mix was specified to be 'Destina­
tion' in the list above Figure 4,6 shows the pOSition of the Pattern-filling circuitry In the coprocessor data
flow

Area fill operations that do require a pattern fill must be performed in two stages, ThiS is because Area Fill
PxBlt operations use the Pattern Map to perforrn the area fill function and thus cannot Include a 'user' pattern
in a single operation However, by first combining the contents of the Mask Map with a mask of the filled
area, a full pattern PxBlt of an area can be achieved as follows'

Both the Pattern Map and the Destination Map should be defined as the map containing the pre­
viously-drawn area boundary, The Source map should be defined as the map that would norrnally
supply the Mask map for the operation, The Mask Map facility Itself should be disabled An Area
Fill PxBlt should be performed with the following conditions:

• Foreground Source = Source pixel map

• Foreground Mix= source (code 3)

• Background Source = Background Color

• Background Color = 0

• Background Mix = source (code 3)

Note that all the maps in this operation should be 1 bit-per-pixeL

This operation combines the Mask data for the pattern Area Fill with a mask of the filled area

72 OEK258 00 September 1991

60

2 A second non area fill PxBlt should be performed with the combined mask generated in stage 1
defined as the Mask Map. All other maps can be utilized as normal with no restrictions

4.6.5 Logical And Arithmetic Functions

During an operation in the Coprocessor, Source data is combined with Destination data, under the control
of Pattern data, and the result is written back to the Destination. In addition Mask data can be included in
the operation to selectively inhibit updating of Destination data

"Source data" can be either Foreground Source or Background Source on a pixel-by-pixel basis. The Fore­
ground Source is combined with the Destination using the Foreground Mix, the Background Source is com­
bined with the Destination using the Background Mix. It is the Pattern that determines whether the Source
and Mix are Foreground or Background for a particular pixel. If the Pattern pixel is "1", Source and Mix are
Foreground, if it is "0", they are Background.

The Foreground and Background Sources can each be either a fixed color over the whole operation, or
pixel data taken frorn the Source Pixel Map. Two fields in the Pixel Operation Register determine whether
fixed colors or Source Pixel Map data is used in an operation. The fixed color that can be used as the Fore­
ground Source is called the Foreground Color and is stored in the Foreground Color Register. The fixed
color that can be used as the Background Source is called the Background Color and is stored in the Back­
ground Color Register.

The possible combinations of Source, Destination and Pattern are shown below'

. Pattern Pixel = 1 (Foreground Source)

- New Destination Pixel = Old Destination Pixel Fgd OP Foreground color

- New Destination Pixel = Old Destination Pixel Fgd OP Pixel Map Source

. Pattern Pixel = 0 (Background Source)

- New Destination Pixel = Old Destination Pixel BgdOP Background color

- New Destination Pixel = Old Destination Pixel BgdOP Pixel Map Source

In the above, Fgd OP means the logical or arithmetic function specified in the Foreground Mix Register.
Bgd OP means the logical or arithmetic function specified in the Background Mix Register.

The above operations can be overridden by the contents of the Mask map. If the Mask pixel is 0, the Desti­
nation pixel is not modified. If the Mask pixel is 1, the selected operation is applied to the Destination pixel.

Mixes:

The Foreground and Background mixes provided by the XGA are independent. The XGA provides all logical
mixes of two operands and six arithmetic mixes. The arithmetic· mixes are the ones available through the
Adapter Interface The mixes provided are shown in Table 4.3

72 OEK258 00 September 1991

61

Code(hex) Function

r-----ob zeros

01 source AND dest

02 source AND NOT dest

03 source

04 NOT source AND dest

05 dest

06 source XOR dest

07 source OR dest

08 NOT source AND NOT dest

09 source XOR NOT dest

OA NOT dest

OB I source OR NOT dest

OC NOT source

OD NOT source OR dest

OE NOT source OR NOT dest

OF ones

10 maximum

11 minimum

12 add with saturate

13 subtract (dest-source) with saturate

14 subtract (source-dest) with saturate

15 average

Table 4.3 Mixes provided by XGA

Mix Codes 16 hex to FF hex are Reserved.

The term 'saturate' implies that if the result of an arithmetic operation is greater than all '1 's, the final result
under saturate remains all '1 's. Similarly if the result of an arithmetic operation is less than '0', the final
result under saturate remains at '0'.

Breaking the ALU Carry Chain:

It may be required to limit the operation of the ALU to certain bits In a pixel (for example to perform an opera­
tion on both the upper and lower four bits of an 8 bit pixel independently). In this case the user would not
want arithmetic operations to propagate a carry from one group of bits in the pixel to the next. One solution
is to use the XGA Pixel Bit Mask to ensure that only one component of the pixel is processed at a time.
The disadvantage of this technique is that the operation must be repeated once for each component in the
pixel.

The Carry Chain Mask: The XGA provides an alternative mechanism that allows pixels with component
fields to be correctly processed in one pass. The user can specify a mask that determines how carry bits
are propagated in the ALU (Arithmetic and Logic Unit). By loading the appropriate mask in the Carry Chain
Mask Register before performing an operation involving either or both an arithmetic operation or color com­
pare, the user effectively divides' the pixel into independent fields The mask prevents the ALU carry being
propagated across the field boundaries.

Each bit in the mask enables or disables the propagallon of the carry from the corresponding bit In the ALU
to its more significant neighbor. The mask is N-1 bits wide for a pixel N bits wide as the carry from the most
significant bit of the ALU is not propagated.

72 OEK 25800 September 1991

62

An example Carry Chain Mask for an 8-bit pixel with two 4 bit fields could be:

7 6 5 4 3 2 1 o

OiL 11 I 0 11 11 I~
'--'

Figure 4 23 Example Carry Chain Mask for an 8 bit pixel

Bits outside the required mask size for a given pixel size need not be written In the register.

Generating The Pattern From The Source:

Pattern data for an operation can be supplied by anyone of Pixel Maps A, B or C, or can be fixed to '1'
(Foreground Source) throughout the operation. In addition to these four possibilities, Pattern data can also
be internally generated by the coprocessor from Source Pixel Map data A comparison operation is per­
formed on each Source pixel and the Pattern data is generated depending on the result.

The comparison operation compares the Source pixel to '0' For any Source pixel with a value of '0', a '0'
(Background) Pattern pixel is generated. For any non-zero Source pixel, a '1' (Foreground) Pattern pixel
is generated. The internally-generated Pattern is then used to select between Foreground and Background
Sources and Mixes in the usual way. When the Pattern IS internally generated, the coprocessor ignores
the Pattern Pixel map contents.

This capability allows the Background Source data and Mixto be forced for all '0' value pixels in the Source.
In particular it allows a 'transparency' function to provided, whereby, for example, a multi-bit character can
be drawn onto a Destination with the Destination data 'showing through' any '0' (black) pixel in the Source
character definition

Color Expansion:

If the Source pixels for an operation have fewer bits-per-pixel than the Destination pixels, the Source pixels
must be 'expanded' to be the same size as those In the Destination before they are combined The process
is referred to as 'color expansion'

The major use of Color Expansion is to draw 1 bit-per-pixel character sets on 'n' bit-per-pixel Destinations
The Coprocessor performs thiS function in hardware, but does not have a Color Expansion Look-Up-Table
(LUT). Instead, the 1 blt-per-plxel character map should be defined as the Pattern map. The Pixel Opera­
tions Register should be programmed to use Foreground and Background Color Registers and not the
Source Map. The Foreground and Background Color registers act as a two-entry Color Expansion LUT in
this case, and the character map is correctly expanded to the number of bits-per-pixelln the Destination

Pixel Bit Masking:

The Pixel Bit Mask allows any combination of bits in a pixel in the Destination to be protected from update
(being written). A mask value should be loaded to the Pixel Bit Mask registerto selectively enable or disable
updating of Pixel bits as reqUired.

This mask IS entirely analogous to the Plane Mask in subsystems which are plane as opposed to packed­
pixel oriented

When the Destination bits-per-pixel is less than 8 bits, only the low order bits of the Pixel Bit Mask register
are significant.

A bit that is not write enabled is prevented from affecting either arithmetic operations orthe underpaint com­
parison. In effect, masked bits are completely excluded from the operation or comparison

Color Compare:

The value that the Destination pixels are compared with is stored in the Color Compare Value Register. The
Color Compare Condition Register Indicates the condition under which the Destination update is Inhibited.
The possible conditions are shown In Table 4.4.

72 OEK 25800 September 1991

Condition Code Condition

o
1

2

always true(disable update)

Destination data

Destination data

> Color compare value

Color compare value

3 Destination data < Color compare value

4 always false (enable update)

5 Destination data > = Color compare value

6 Destination data < > Color compare value

7 Destination data < = Color compare value

A comparison result of 'true' prevents update to the Destination.

Table 4.4 Color compare conditions.

4.6.6 Controlling Coprocessor Operations

Starting a Coprocessor Operation:

63

Coprocessor operations are started by writing the most significant byte of the Pixel Operations register
An exception to this is the Draw and Step function, for details see 'Draw and Step' on page 51.

Suspending a Coprocessor Operation:

Coprocessor operations can be suspended before they have completed The state of the Coprocessor,
including intemal register contents, can then be rapidly read to allow task state saving. A previous task
can be restored through the same data port, and the restored operation restarted.

A field in the Coprocessor Control register is used to suspend and restart Coprocessor operations

Terminating a Coprocessor Operation:

Operations can be terminated before they have completed. The state of the Coprocessor registers that are
updated as the operation proceeds is undefined after the operation is terminated, and their contents should
thus not be relied upon Section 4.7 details which registers are updated as an operation proceeds

A field in the Coprocessor Control register is used to terminate operations

4.6.7 Coprocessor Operation Completion

There are two methods by which the host can detect the completion of a Coprocessor operation:

Receive an Operation Complete interrupt from the XGA

2 Poll the Coprocessor Busy bit in the Coprocessor Control Register

These methods are described below:

Coprocessor Operation Complete Interrupt: The coprocessor provides an Operation Complete Interrupt
that can interrupt the system on completion of an operation. The interrupt is enabled by a bit in the 'Interrupt
Enable Register (Address: 21 x4)' on page 21 and its status is indicated by a bit in the 'Interrupt Status Regis­
ter (Address: 21 x5)' on page 21 .

Regardless of the state of the Operation Complete interrupt enable bit, the status bit is always set to '1'
on completion of an operation. The applicallon should ensure that this bit is reset before starting an opera­
tion This is done by writing a '1 ' back to the status bit

If the interrupt enable bit is '1' then the completion of an operallon not only sets the interrupt status bit, but
also causes an interrupt to be raised. Again, the host processor should reset the interrupt by writing a '1'
back to the status bit after servicing the interrupt.

72 OEK 258 00 September 1991

64

Coprocessor Busy Bit: The Coprocessor Busy bit in the Coprocessor Control register indicates if the copro­
cessor is executing an operation. It is set to '1' by the hardware when the Coprocessor is executing an
operation and reset to '0' when the operation completes. Applications can poll this bit to determine if the
Coprocessor is busy. See Section 14.3

Accesses To The Coprocessor During An Operation:

When the coprocessor IS executing an operation. the system processor can only perform read accesses
to the coprocessor registers Write accesses can corrupt operation data and are therefore not permitted.

If the system processor attempts to write data to the coprocessor registers during an operation, the copro­
cessor allows the access to complete, and the currently executing operation can be corrupted. The copro­
cessor raises an Interrupt to the host system to Indicate that a write access occurred during an active opera­
tion and that the operation may have been corrupted. This interrupt is called the Coproc,;;;;sor Access
Rejected Interrupt. An enable bit and status bit exist in the the 'Interrupt Enable Register (Address: 21x4)'
on page 21 and 'Interrupt Status Register (Address' 21x5)' on page 21 for this interrupt.

There IS one exception to this rule. The Coprocessor Control register can be written dUring an operation.
See 'Coprocessor Control Register (Offset: 11)' on page 69.

4.6.8 Coprocessor State Save/Restore

When operating in a multitasking environment it IS necessary to save and restore the state of the display
hardware when SWitching tasks

It is possible that a task switch IS required when the Coprocessor is in the course of executing an operation.
Thus not only the contents of registers visible to the host system but also contents of internal registers (the
'state' of the Coprocessor) must be saved/restored. The Coprocessor has special hardware that allows
it to suspend the execution of an operation and efficiently save and restore task states

Suspending Coprocessor Operations:

At any time during the execution of a Coprocessor operation, the operation can be suspended by writing
to a bit in the Coprocessor Control Register. Any currently executing memory cycle is completed, after
which the Coprocessor suspends the operation. The system can then save and restore the Coprocessor
contents as described below, and restart the restored operation by clearing the bit in the Coprocessor Con­
trol Register.

4.6.9 Save/Restore Mechanism

The Coprocessor provides two special 32-bit Save/Restore Data Ports through which all the coprocessor
state data passes when the state is being saved or restored. The number of double-words that should be
read or written is determined by two read only registers: the State Length registers, A and B. The amount
of data to be saved/restored is less than 1 Kbyte. State saving software should perform string I/O read in­
structions, reading data from the two Save/Restore Data Ports in turn into memory. The coprocessor hard­
ware automatically proVides successive double-words of data on successive reads. After the state has
been saved, the Coprocessor is in a reset state.

Restoring the state of the Coprocessor IS performed uSing a similar process. State data should be moved
back into the Coprocessor using string I/O write instructions. The state data should be written back into
the Coprocessor in the same order to that in which it was read (that is, first out should be first in).

Note that the exact number of double-words specified in the State Length Registers must be read/written
when saving/restoring the Coprocessor state. Failure to do this leaves the Coprocessor in an indeterminate
state

72 OEK258 00 September 1991

65

4.7 Coprocessor Registers

The XGA Coprocessor supports two register Interface formats. The type of interface required (Intel or Moto­
rola) is set when selecting the XGA Extended Graphics Mode in the Operating Mode Register.

The difference between Intel and Motorola formats is that. With two exceptions, the bytes Within each four
bytes of register space are reversed Thus byte 0 becomes byte 3. The two exceptions are the Direction
Steps register and the Pixel Operation register. The bytes Within these registers are not reversed because
the byte order is Important to the operation being performed

The majority of the registers are not directly readable by the host system All of those that cannot be read
directly can be indirectly read using the Coprocessor State Save/Restore mechanism See Section 4.6 9.
Only the following registers are directly readable by the host system:

• State Save/Restore Data Port

• State Length Registers

• Coprocessor Control register

• Virtual Memory Control register

• Virtual Memory Interrupt Status register

• Current Virtual Address register

• Bresenham Error Term

• Source Map X and Y Pointers

• Pattem Map X and Y Pointers

• Destination Map X and Y POinters

The contents of most Coprocessor registers are not changed dUring a Coprocessor operation. Most regis­
ters therefore do not need to have their contents reloaded before starting another Similar operation The
list below indicates which registers' contents change during an operation.

Bresenham Error Term The Error Term is updated throughout Line Draw opera1ions.

Source Map X and Y The Source map X and Y pOinters are updated for any operation that speci­
fies Source Pixel Map as either or both Foreground or Background second operands in the Func­
tion 0 or 1 fields in the Pixel Operations register (that is, any operation that uses the Source Pixel
Map updates these painters).

Pattern Map X and Y The Pattem Map X and Y painters are updated during any operation that
uses a Pattem Pixel Map (that is, any operation that does not have the Pattern field in the Pixel
Operation register set to 'Foreground').

Destination Map X and Y The Destination Map X and Y pointers are updated during all opera­
tions.

The following tables show the Coprocessor register space in both Intel and Motorola formats:

72 OEK 258 00 September 1991

XGA Coprocessor Registers- Intel Register Format

Coprocessor Address Space

Byte 3 J Byte 2 I Byte 1 I Byte 0

Page Directory Base Address 0

Current Virtual Address 4

8

I
I State Bien I State A len C

I Pixel Map Index Coprocessor Control I M Pixel Map n Base Pointer 14

Pixel Map n Height Pixel Map n Width

~ I Pixel Map n Format 1C

Bresenham Error Term 20

I Bresenham K1 24

I

Bresenham K2 28

Direction Steps 2C

I 30

44

~ I
Dest Color Comp

I
Bgd Mix

I
Fgd Mix 48

Cond,

Destination Color Compare Value 4C

Pixel Bit Mask 50

Carry Chain Mask 54

Foreground Color Register I 58 I
I Background Color Register 5C

I Operation Dimension 2 I Operation Dimension 1 60

I 64

~
68

Mask Map Origin Y Offset I Mask Map Origin X Offset 6C

I Source Map Y Adr I Source Map X Adr 70

~ ________ p_a_tt_e_rn_M __ ap __ Y_A_d_r ________ -+ _________ p_a_t_te_rn __ M_a_p_X __ A_d_r _________ I: 74 I

DesL Map Y Adr DesL Map X Adr I7sl
Pixel Operation

Table 4,5

72 OEK 258 00 September 1991

67

XGA Coprocessor Registers- Motorola Register Format

Coprocessor Address Space

Byte 0 J Byte 1 Byte 2 I Byte 03

Page Directory Base Address 0

Current Virtual Address 4

8

State Bien I State A len C

I Pixel Map Index Coprocessor Control I 10

Pixel Map n Base Pointer 14

Pixel Map n Height Pixel Map n Width 18

I Pixel Map n Format 1C

Bresenham Error Term 20

Bresenham K1 24

Bresenham K2 28

Direction Steps 2C

30

34

38

3C

40

44

I
Dest Color Compo Bgd Mix

I
Fgd Mix 48

Condo

Destination Color Compare Value 4C

Pixel Bit Mask 50

Carry Chain Mask 54

Foreground Color Register 58

Background Color Register 5C

Operation Dimension 2 Operation Dimension 1 60

64

68

Mask Map Origin Y,Offset Mask Map Origin X Offset 6C

Source Map Y Adr Source Map X Adr 70

Pattem Map Y Adr Pattem Map X Adr 74

Dest Map Y Adr Dest. Map X Adr 78

Pixel Operation 7C

Table 4.6

72 OEK258 00 September 1991

68

4.7.1 Register Usage Guidelines

Table 4.5 and Table 4.6 are summaries of the Coprocessor registers for Intel and Motorola format registers
respectively.

The following pOints should be noted when accessing registers detailed in this chapter:

Reserved Register Bits-

o Register Bits marked with a '-' are reserved and must be masked out if a test is to be per­
formed on the register contents. If non reserved bits of the same register are being updated,
these bits must be written to with '0'.

o Register Bits marked with a '#' are reserved and must be masked out if a test is to be per­
formed on the register contents. If non reserved bits of the same register are being updated,
these bits must be preserved. Therefore a Read-Modify-Write operation is recommended.

Reserved Registers. Unspecified Registers, or registers marked as Reserved, in the XGA copro­
cessor address space are reserved. They must not be written to or read from.

Write Only Registers. On a read, the values returned from these registers are Reserved and Un­
specified.

Read Only Registers. The contents of these registers must not be modified.

Counters should not be relied upon to wrap from the high value to the low value.

Register fields defined with valid ranges must not be loaded with a value outside the specified
range.

Register field values defined as reserved must not be written.

The following sections describe the Coprocessor registers in detail. Unless stated otherwise, the register
definitions are in Intel Format.

4.7.2 Virtual Memory Registers

The XGA Coprocessor Virtual Memory Implementation is detailed in Section 5.4.

Page Directory Base Address Register (Coprocessor Registers, Offset: 0)

This register is detailed in Section 5.5.1.

Current Virtual Address Register (Coprocessor Registers, Offset: 4)

This register is detailed in Section 5.5.2.

72 OEK 258 00 September 1991

69

4.7.3 State Save/Restore Registers

The following registers allow the internal state of the Coprocessor to be efficiently saved and restored. Sec­
tion 4.6.9 describes this rnechanism.

Coprocessor Control Register (Offset: 11)

This register indicates if the coprocessor is currently executing an operation. In addition, the current Copro­
cessor operation can be terminated or suspended by writing to this register.

The format of this register when writing is as follows:

7 6 543 2 0

1 - 1 - ~I - 1 SOp 1 - 1 SR 0

The format of this register when reading IS as follows:

7 654 3 2 1 0

r-~-Sy""L---rL§i-TO-p""l O-p-S '--1 S-Op--.I----rl-SR-O

Coprocessor Busy (BSy, bit 7): Reading thiS bit indicates whether the coprocessor is currently ex­
ecuting an operation. If the Busy bit is '1', the coprocessor is currently executing an operation.
If it is '0', the Coprocessor is idle

Terminate Operation (TOp, bit 5): Coprocessor Operations can be terrninated by writing a '1' to the
Terrninate Operation bit. The application should then ensure that the operation has terminated be­
fore proceeding. It can do this either by waiting for the Operation Complete interrupt (if enabled),
or it can poll the Coprocessor Busy bit until the coprocessor goes 'Not Busy' (bit = '0').

After the Coprocessor has terminated the operation it automatically clears the Terminate Opera­
tion bit to '0'.

The Coprocessor is returned to its initial power-on state, with Coprocessor interrupts masked off,
and certain other register bits reset. All registers should be assumed invalid and reprograrnmed
before another operation is initiated.

Suspend Operation (OpS, SOp, bits 4,3): Coprocessor Operations can be suspended by writing
a '1' tothe Suspend Operation bit. The Operation Suspended bit isthen setto'1' by the Coproces­
sor when it has suspended the operation. The OpS bit should therefore be polled by the host sys­
tem processor to ensure that an operation has been suspended before saving/restoring is started.

Writing a '0' to the SOp bit restarts a suspended Coprocessor operation This should be done
to restart a restored operation after a task switch. When the operation restarts, the Coprocessor
resets OpS to '0'.

The action of suspending an operation causes the TLB (Translate Look-aside Buffer,
Section 5.4.2) to be flushed.

State Save/Restore (SR, bit 1): This bit selects whether to save or restore the Coprocessor state.
When set to a '0', a state restore can be performed, when set to a '1', a state save can be per­
forrned. The Coprocessor Control Register must be written, with the Suspend Operation bit set
and the Save/Restore bit set appropriately before each State Save or State Restore.

State Length Registers (Offset: C & 0)

These read-only registers return the length, in double-words, of the two parts, A and B, of the Coprocessor
State for save and restore.

72 OEK 258 00 September 1991

70

Save/Restore Data Ports (I/O Index: C & D)

These registers are directly mapped to I/O address space and do not appear in the Coprocessor register
summary. However they are Coprocessor registers and are described here.

These registers are used to save and restore the two parts, A and B, of the intemal state of the Coprocessor.
After a state save/restore is initiated, string I/O reads/writes should be executed from/to these registers.
The data can be read/written using any combination of byte, word or dword accesses, provided that the
exact number of dwords specified in the State Length registers is read/written. Failure to read/write the cor­
rect amount of data leaves the Coprocessor in an indeterminate state

Data should be written back to this port in the same order as it was read (I.e. first out, first In).

4.7.4 Pixel Interface Registers

The following is a detailed description of the Coprocessor PI registers.

Pixel Map Index Register (Offset: 12)

7 6 5 4 3 2 o
CCI - ~CI - I Index

This is a WRITE ONLY register

Each Pixel Map used in the XGA is described by four registers, as follows:

• The Pixel Map Base Address register

• The Pixel Map Width register

• The Pixel Map Height register

• The Pixel Map Format register

Each Pixel Map has its own copy of these registers, so there are four copies of these registers in the XGA,
one for each of:

• The Mask Map

• Pixel Map A

• Pixel Map B

• Pixel Map C

Only one of these banks of Pixel Map registers is visible to the host system at any time, and the Pixel Map
Index register is used to select to which of the Maps the registers apply. The encoding of the 4-bit Pixel
Map Index register is shown in Table 4 7.

Pixel Map Index

00 I Mask Map

01 Pixel Map A

10 Pixel Map B

11 Pixel Map C

Table 4.7 Pixel Map Index register encoding

Before loading the Pixel Map Base Address, Width, Height, and Format for a particular Map, the program­
mer must set up the Pixel Map Index register to point to the required Map's registers For example, to set
up Map B's registers, the Pixel Map Index should first be loaded With '10'b

72 OEK258 00 September 1991

Pixel Map n Base Pointer (Offset: 14)

31

L

This is a WRITE ONLY register

71

o
Address

It specifies the byte address in memory of the start of a Pixel Map. If virtual address mode is enabled, this
address is a virtual address, otherwise It IS a phYSical address.

Pixel Map n Width (Offset: 18)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

L Pixel Map n Width

This is a WRITE ONLY register and can be loaded with any value in the range 0 to 4095.

It specifies the width of a Pixel Map The Width is measured in pixels, that is, independent of the number
of bits/pixel

Widths are used during address stepping to specify the width of the pixel map Steps with a Y direction
component are achieved by the hardware adding/subtracting the width ±O or 1 .

The pixel map width is also used for wrapping the Source and Pattem maps, or to implementthe fixed scis­
sor boundary around the Destination map

The value loaded in the width register should be 1 less than the bitmap width For a bitmap that IS 1024
pixels wide, the Width register should be loaded with 1023 (hex 03FF)

Pixel Map n Height (Offset: 1 A)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
Pixel Map n Height

This is a WRITE ONLY register and can be loaded with any value in the range 0 to 4095.

It specifies the height of a Pixel Map The height IS measured in pixels, that is, Independent of the number
of bits/pixel.

The pixel map height is used for wrapping the Source and Pattern maps, or to implement the fixed scissor
boundary around the Destination map.

The value loaded in the height register should be 1 less than the pixel map height. For a bitmap that is 768
pixels high, the height register should be loaded with 767 (hex 02FF).

72 OEK 258 00 September 1991

72

Pixel Map n Format (Offset: 1 C)

7 6 5 4 3 2 o
I - I - I - I - PS

This register is a WRITE ONLY register.

It specifies the format of a Pixel Map as detailed in the table below:

Pixel Order

PO 0 Intel Order

1 Motorola Order

Pixel Size

PS 000 1 bit

001 2 bits

010 4 bits

011 8 bits

100 Reserved

101 Reserved

110 Reserved

111 Reserved

Motorola/Intel Format (PO, Bit 3): This bit selects the format for the memory-to-screen mapping.
When set to '0', the pixel map is Intel-ordered; when set to '1', the pixel map is Motorola-ordered.
Section 4.6 describes the difference in formats.

Pixel Size (PS, Bits 2-0): This field specifies the number of bits/pixel in the pixel map. Pixel maps
occupied by the Source or Destination map can be 1 , 2, 4, or 8 bits-per-pixel. The Pixel map occu­
pied by the Pattem map must be 1 bit-per-pixel. Programming the Pattem to be taken from a Pixel
Map that does not contain 1-bit pixels produces undefined results.

Pixel Maps A, Band C

Pixel Maps A, Band C are all described by similar registers. The different maps are merely 3 instances
of pixel maps that can have different locations in memory, sizes and formats.

It should be remembered that the Pattem map used by the XGA must be 1 bit-per-pixel. It is the responsibil­
ity of the user to ensure that the Pattem map resides in a Pixel Map that is 1 bit-per-pixel. Failure to do this
produces undefined results.

Mask Map

The Mask Map has a Base POinter, Width, and Height that are similar to those of Pixel Maps A, B, and C.

The Mask Map Format register differs from Maps A, B, and C in that only the Motorola/Intel format bit of
the Mask Map is programmable by the user. This acts in the same way as the bit for Maps A, Band C. The
number of bits-per-pixel is assumed to be 1 bit-per-pixel. However, the bits-per-pixel should always be
programmed to 1 bit-per-pixel to ensure future compatibility.

72 OEK258 00 September 1991

73

Bresenham Error Term E (Offset: 20)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
Bresenham Error Term

This register can be written and read,

It specifies the Bresenham Error Term for the Draw Line function, The value is a signed quantity, calculated
as «2*deltay) - deltaX) after normalization to first octant.

This register must be written as a 16-bit sign extended two's complement number in the range -8192 to
+8191,

Bresenham Constant K1 (Offset: 24)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
Bresenham Constant K1

This register is a WRITE ONLY register,

It specifies the Bresenham Constant, K1, for the Draw Line function, The value is a signed quantity, calcu­
lated as 2*deltaY after normalization to first octant.

This register must be written as a 16-bit sign extended two's complement number in the range -8192 to
+ 8191.

Bresenham Constant K2 (Offset: 28)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

L Bresenham Constant K2

This register is a WRITE ONLY register

It specifies the Bresenham Constant, K2, for the Draw Line function, The value is a signed quantity, calcu­
lated as 2*(deltaY - deltaX) after normalization to first octant.

This register must be written as a 16-bit sign extended two's complement number in the range -8192 to
+ 8191,

72 OEK 258 00 September 1991

74

Direction Steps Register (Offset: 2C)

This is a WRITE ONLY register.

The byte order of this register is independent of whether the Intel or Motorola register interface is enabled.
For convenience, this register is also shown as it would appear in a 32 bit register in a Motorola style pro­
cessor.

Intel View of Register

byte 3

31

byte 2

L step code 4 __ L step code 3

Motorola View of Register

byte 0 byte 1

byte 1 byte 0

o
step code 2 step code 1

byte 2 byte 3

Lstep code 4 step code 3 Lstep code 2 L step code 1 I
------ ------

This register is be used to specify up to 4 Draw and Step codes to the coprocessor and to initiate a Draw
and Step operation.

The action of writing data to byte 3 of this register initiates a Draw and Step operation. Therefore a Draw
and Step operation can be initiated by a single 32 bit access, by two 16 bit accesses where bytes 2 & 3
are written last, or by four byte accesses where byte 3 is written last. If multiple Draw and Step operations
are required with the same Draw and Step codes, the operation can be initiated by simply writing to byte 3.

Before Initiating a Draw and Step operation, the Pixel Operation Register must be configured to set up the
data path and flags for the Draw and Step operation See Figure 4.14 for full details

Foreground Mix Register (Offset: 48)

7 6 5 4 3 2 o

:=J Foreground Mix
L-__________ _

This is a WRITE ONLY register

It holds the foreground mix value that specifies a logic or arithmetic function to be performed between the
Destination and Function 1 second operand pixels during an operation where the Pattem pixel value is 1.

See Section 4.6.5 for details and mix functions available.

Background Mix Register (Offset: 49)

7 6 5 4 3 2 o
L Background Mix

This is a WRITE ONLY register.

It holds the background mix value that specifies a logic or arithmetic function to be performed between the
Destination and Function 0 second operand pixels during an operation where the Pattem pixel value is O.

See Section 4.6.5 for details and mix functions available.

72 OEK258 00 September 1991

75

Destination Color Compare Condition (Offset: 4A)

7 6 543 2 1 0

[- I L~[=-__ I no -[Conditio~ __ 1
This is a WRITE ONLY register.

Condition (Bits 2-0): This three bit field specifies the Destination Color Compare Condition under which
Destination update is inhlbited_ The Condition IS encoded as follows

Destination Color Compare Condition
~~~---~~-------~-----

000 Always true (disable update) 

001 Dest> col comp value 

010 Dest = col comp value 

011 Dest < col camp value 

100 Always false (enable update) 

101 Dest > = col comp value 

110 Dest < > col camp value 

111 Dest < = col comp value 
------ -------'-~~~-----~ 

Destination Color Compare Value (Offset: 4C) 

31 o 

I Destination Color Compare Value ______ ~J 
This register IS a WRITE ONLY register. 

It contains the comparison value with which the Destination pixels are compared when Color Compare is 
enabled_ Only the corresponding number of bits-per-pixel in the Destination are required In this register (for 
example, if tile Destination is 4 bits-per-pixel, only the 4 low order bits of this register are used). Therefore 
the bits of this register more significant than the number of bits per pixel need not be written. 

See page 62 for details of the Color Compare function. 

Pixel Bit Mask (Plane Mask) (Offset: 50) 

31 

1-- Pixel Bit Mask 

This register is a WRITE ONLY register. 

o 

l 

It determines whictl bits within each pixel are subject to update by the coprocessor. A '1 ' means the corre­
sponding bit is enabled for updates A '0' means the corresponding bit is not updated 

A bit that is not write enabled is prevented from affecting either arithmetic operations or the Destination 
Color Compare comparison. In effect, masked bits are completely excluded from the operation or compari­
son. Only the corresponding number of bits-per-pixel in the Destination are required in this register (for ex­
ample, if the Destination is 4 bits-per-pixel, only the 4 low order bits of this register are used) Therefore 
the bits of this register more significant than the number of bits per pixel need not be written. 

See page 62 for details of the Pixel Bit Mask Function_ 

72 OEK 258 00 September 1991 



76 

Carry Chain Mask (Offset: 54) 

31 

Carry Chain Mask 

This register is a WRITE ONLY register 

o 

It contains a mask up to 31 bits wide. The mask used to specify how the carry chain ofthe ALU is propagated 
when performing arithmetic update mixes and color compare operations 

'0' in the mask means that the carry out of this bit position of the ALU is not to be propagated to the next 
significant bit position. A '1' in the mask means that propagation is to take place. Therefore the pixel value 
can be 'split' into sections within the pixel. 

Only the corresponding number of bits-per-pixel in the Destination are required in this register (for example, 
if the Destination is 4 bits-per-plxel, only the 4 low order bits of thiS register are used). Therefore the bits 
of this register more significant than the number of bits per pixel need not be written. Note that there is no 
carry out of the most-significant bit of the Pixel irrespective of the setting of the corresponding Carry Chain 
mask bit. 

See page 61 for details on the Carry Chain function. 

Foreground Color Register (Offset: 58) 

31 

L Foreground Color 
----_. 

This register is a WRITE ONLY register. 

o 

It holds the foreground color to be used during Coprocessor operations. The foreground color can be speci­
fied as the Foreground Source by setting up the appropriate field in the Pixel Operation Register. 

Only the corresponding number of bits-per-pixel in the Destination are required in this register (for example, 
if the Destination is 4 bits-per-pixel, only the 4 low order bits of this register are used) Therefore the bits 
of this register more significant than the number of bits per pixel need not be written 

Background Color Register (Offset: 5C) 

31 

L Background Color 

This register IS a WRITE ONLY register. 

It holds the background color to be used during Coprocessor operations. The background color can be 
specified as the Background Source by setting up the appropriate field in the Pixel Operation Register. 

Only the corresponding number of bits-per-plxel in the Destination are required in this register (for example, 
if the Destination is 4 bits-per-pixel, only the 4 low order bits of this register are used) Therefore the bits 
of this register more significant than the number of bits per pixel need not be written. 

72 OEK 258 00 September 1991 



Operation Dimension 1 (Offset: 60) 

31 

L ___________ O_p_e_ration Dimension 1 

This register is a WRITE ONLY register. 

77 

o 

It specifies the width of the rectangle to be drawn by the PxBlt function, or the length of line in a line draw 
operation. The value IS an unsigned quantity, and should be 1 less than the required width. Thus to draw 
a line 10 pixels long, the value 9 should be written to this register 

The value written to this register must be within the range 0 to 4095. 

Operation Dimension 2 (Offset: 62) 

31 

Operation Dimension 2 

This register is a WRITE ONLY register 

o 

It specifies the height of the rectangle to be drawn by the PxBIt function The value is an unsigned quantity, 
and should be 1 less than the required height Thus to draw a rectangle 10 pixels high. the value 9 should 
be written to this register. 

The value wntten to this register must be within the range 0 to 4095. 

Mask Map Origin X Offset (Offset: 6C) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

L __ Mask Map Origin X Offset 

This register is a WRITE ONLY register 

It specifies the X offset of the Mask Map ongln relative to the ongin of the Destination Map 

The value written to this register must be within the range 0 to 4095. 

Mask Map Origin Y Offset (Offset: 6E) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Mask Map Origin Y Offset 

This register is a WRITE ONLY register 

It specifies the Y offset of the Mask Map origin relative to the origin of the Destination Map. 

The value written to this register must be within the range 0 to 4095. 

o 

o 

72 OEK258 00 September 1991 



78 

Source X Address (Offset: 70) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
L __ Source X Address 

This register can be written and read. 

It specifies the X coordinate of the Coprocessor operation Source pixel. 

The value written to this register must be within the range 0 to 4095. 

Source Y Address (Offset: 72) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

L._. Source Y Address 
._------] 

This register can be written and read. 

It specifies the Y coordinate of the Coprocessor operation Source pixel. 

Trle value written to this register must be within the range 0 to 4095. 

Pattern X Address (Offset: 74) 

15 14 13 12 11 10 9 8 7 6 5 4 

c=. Pattern X Address 

This register can be written and read. 

It specifies the X coordinate of the Coprocessor operation Pattern pixel. 

The value written to this register must be within the range 0 to 4095. 

Pattern Y Address (Offset: 76) 

15 14 13 12 11 10 9 8 7 6 5 4 

3 2 0 
··--1 

3 2 o 
Pattern Y Address 

.----.. ---~ 

This register can be written and read 

It specifies the Y coordinate of the Coprocessor operation Pattern pixel. 

The value written to this register must be within the range 0 to 4095. 

72 OEK258 00 September 1991 



79 

Destination X Address (Offset: 78) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
Destination X Address I 

This register can be written and read. 

It specifies the X coordinate of the Coprocessor operation Destination pixel The Destination X coordinate 
can be negative if required. 

This register must be written as a 16 bit sign extended two's complement number In the range -2048 to 
+6143 

Destination Y Address (Offset: 7 A) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

L ---------------------1 
Destination Y Address I 

This register can be written and read. 

It speCifies the Y coordinate of the Coprocessor operation Destination pixel. The Destination Y coordinate 
can be negative If required 

This register must be written as a 16 bit sign extended two's complement number in the range -2048 to 
+6143 

Pixel Operations Register (Offset: 7C) 

This register is a WRITE ONLY register. 

It is used to define the flow of data during an operation, specifies the address update function that is to 
be performed, and initiates PxBIt and Line Draw operations 

The byte order of this register IS Independent of whether the Intel or Motorola register interface is enabled 
For convenience, this register is also shown as it would appear in a 32 bit register in a Motorola style pro­
cessor. 

Motorola view of register 

byte 0 I byte 1 

LMask 1--oM1[Cctl Patt 

byte 2 byte 3 I 

-rl-s-ou-rce TDe&JSS[FS[St;Pl __ J 
Figure 4.24 Pixel Operation Register fields 

72 OEK258 00 September 1991 



80 

The Pixel Operation Register is a 32-bit register that controls the function of the Coprocessor Its contents 
define address update operation to be performed and the path of data during the operation. 

All operations. with the exception of Draw and Step, are initiated by writing to the most significant byte 
of the Pixel Operations register. Therefore an operation can be initiated by a single 32 bit write. two 16 bit 
writes where bytes 2 and 3 are written last, or 4 byte wntes where byte 3 IS written last The contents of the 
Pixel Operation register are preserved throughout an operation. 

The field in the Pixel Operation Register are coded as follows. 

Background Source (BS, bits 31-30): These bits determine the Background Source that is to be 
combined with the Destination when the Pattern pixel equals 0 (Background rnlx used). 

F?"o"nr::~~;;--=~-====-l 
I ~ ~ Source pixel map I 
1... ______ •• _____ • ___ • _____ • ____ • _________ --l 

Foreground Source (FS, bits 29-28): These bits determine the Foreground Source that IS to be com­
bined with the Destinallon when the Pattern pixel equals 1 (Foreground mix used). 

I Foreground Source I 

I~~~ r~::::~:~ndCOIlli-----------J 
10 Soun-:e pixel map 

11 Reserved 
---------

Step function (Step, bits 27 -24): These 4 bits determine how the Coprocessor address is modified 
as pixel data are manipulated. These bits could be regarded as the Coprocessor function code. 
It is writing to these bits that starts the Coprocessor operation, except for Draw and Step functions. 
Draw and Step operations are started by writing to the Direction Steps register. 

--
Step 

DODO Reserved 

0001 Reserved 

0010 Draw and Step Read 

0011 Line Draw Read 

0100 Draw and Step Write 

0101 Line Draw Wnte 

0110 Reserved 

0111 Reserved 

1000 PxBlt 

1001 Inverting PxBlt 

1010 Area Fill PxBlt 

1011 Reserved 

1111 Reserved 

72 OEK258 00 September 1991 



81 

Source Pixel Map (Source, bits 23-20): These 4 bits determine the location of pixel map Source 
data. The combination of these bits and the Foreground and Background Source fields determine 
the data that IS to be used as the Source data for ALU functions. 

Source 

0000 Reserved 

0001 Pixel Map A 

0010 Pixel Map B 

0011 Pixel Map C 

0100 Reserved 

1111 Reserved 

Destination Pixel Map (Dest, bits 19-16): These 4 bits determine the location of Destination data 
to be modified dUring an operation 

-~~-.---.. ---.... _--_ ... _-------, 
Destination 

0000 Reserved 

0001 Pixel Map A 

0010 Pixel Map B 

0011 Pixel Map C 

0100 Reserved 

1111 Reserved 
L ... _.~ ____ ... _ ...... _____ ._._ 

Pattern Pixel Map (patt, bits 15-12): These 4 bits determine the Pattem data to be used during an 
operation Code 1000 causes the Coprocessor to assume that the Pattem IS 1 across the whole 
operation and therefore to use the Foreground function on all pixels This effectively tums off the 
use of the Pattern Code 1001 causes the Pattern to be generated from Source data Every "0·' 
pixel in the Source generates a Background Pattern pixel, every non-zero pixel in the Source gen· 
erates a Foreground Pattem pixel. 

I Step I 
I 

JR8s8--_ .... -. 
I 0000 Reserved 

I 0001 I Pixel Map A 

I I 
0010 Pixel Map B 

I 0011 I Pixel Map C I 
I 0100 I Reserved 

I I 0101 I Reserved 

I 
0110 Reserved I 
0111 I Reserved I 

I 1000 I Foreground (fixed) I 
I 1001 I Generated from Source I 
I 1010 I Reserved 

I I 
I ~eserved I 1111 .....J 

72 OEK258 00 September 1991 



82 

Mask Pixel Map (Mask, bits 7-6): These bits determine how the Mask Map is used. See page 48 
for details of Mask Map modes. 

Mask 

00 Mask Map Disabled 

01 Mask Map Boundary Enabled 

10 Mask Map Enabled 

11 Reserved 

Drawing Mode 'Register (OM, bits 5-4): This 2-bit field determines the attributes of Line Draw and 
Draw and Step operations. 

I Drawing Mode 

00 draw all pixels 

01 draw first pixel null 

10 draw last pixel null 

11 draw area boundary 

Direction Octant (Oct, bits 2-0): This 3-bit field specifies the Octant for Line Draw and PxBlt opera­
tions. The coding of the octant is illustrated for Line Draw in Figure 4.18, and for PxBlt in Figure 
4.20. 

I Direction Octant Bit Definition 

I 0 DZ 

~DY 

2 DX .L-____________________________ ~ 

72 OEK258 00 September 1991 



83 

5 XGA System Interface 

5.1 Multiple Instances 

Up to eight instances of an XGA subsystem can be Installed in a system. The addressing of the I/O regis­
ters, Memory Mapped Registers, and video memory for each instance IS controlled by the contents of the 
XGA POS registers. See Section 5 2. 

5.1.1 Multiple XGA Subsystems in VGA Mode 

The VGA has only one set of addresses allocated to it Therefore it IS not possible to have multiple XGA 
subsystems In VGA mode, responding to update requests, Simultaneously. However, more than one XGA 
subsystem may be in VGA mode as long as only one has VGA address decoding enabled using the Operat­
ing Mode Register (Address' 21 xO) SUbsystems with VGA address decoding disabled continue to display 
the correct picture. See Section 6 for further Information 

Note: At no time should the XGA be disabled using the card enable bit in the XGA POS registers. 

5.1.2 Multiple XGA Subsystems in 132 Column Text Mode. 

When in 132 Column Text Mode, the XGA responds to VGA address decodes Therefore, the same rules 
apply as for Multiple XGA Subsystems in VGA mode See Section 6 for further Information. 

5.1.3 Multiple XGA Subsystems in Extended Graphics Mode 

The Extended Graphics Modes are controlled by a bank of 16 I/O registers These registers are located 
in one of eight possible locations As a result up to eight XGA subsystems can be installed In a system. 
Each 'instance' of XGA installed is positioned at a unique 1/0 and memory location and so each can be 
used independently in the system See Section 6 for details on controlling multiple XGAs. 

Similarly the XGA Coprocessor memory-mapped registers occupy a bank of 128 contiguous register ad­
dresses that are mapped in memory space. These registers can also be relocated allowing up to 8 in­
stances of the XGA coprocessor to coexist In a system. 

The locations of these registers are controlled by the XGA POS registers See Section 5.2 for the register 
details and see Section 7for programming considerations on reading and using the data contained in them 

5.2 XGA POS Registers 

The XGA SUbsystem has movable 1/0 addresses for the display controller, allOWing more than one XGA 
subsystem to be installed In a system. 

All the POS registers detailed in this section are set-up during system configuration and must never be 
written. All the registers are specified relative to a 'Base' address. Details of how to locate the base address 
and read the registers are given In Section 7 

5.2.1 Register Usage Guidelines 

• All registers are 8 bits long. 

• All registers are READ ONLY. 

• All undefined register bits (marked with '-') should be masked out if the register contents are being 
tested. 

• All Reserved register bits (marked With '#') should be masked out if the register contents are being 
tested. 

72 OEK 258 00 September 1991 



84 

5.2.2 Subsystem Identification Low Byte (Base + 0) 

When read this register returns 'DB' hex as data. 

5.2.3 Subsystem Identification High Byte (Base + 1) 

When read this register returns '8F' hex as data. 

5.2.4 POS Register 2 (Base + 2) 

The fields in this register are as follows: 

7 6 5 4 3 2 o 
ROM Addr 100A EN 

XGA Enable (EN, Bit 0) 

This bit when' l' identified that the subsystem is enabled for address decoding for all non POS addresses 
When '0', only POS registers can be accessed, all other accesses to the subsystem have no effect. 

I/O Device Address (IODA, Bits 1-3) 

This field specifies which set of I/O addresses has been allocated to the Display Controller Registers. The 
lowest address of each set of addresses is referred to as the 'I/O Base Address'. 

10DA I/O Base Address (hex) 

000 2100 

001 2110 

010 2120 

011 2130 

100 2140 

101 2150 

110 2160 

111 2170 

Table 5.1 

ROM Address (ROM Addr, Bits 4-7) 

This field specifies which of sixteen possible 8 Kbyte memory locations has been assigned to the XGA 
ROM. The ROM occupies the first 7 Kbytes of this 8 Kbyte block, the other 1 Kbyte being occupied by the 
coprocessor memory-mapped registers. 

The 'IOOA' field above, specifies which 128 byte section within this 1 Kbyte block IS allocated to the sub­
system. For example XGA instance 2 has its coprocessor registers located in the third 128 byte section 
of the 1 Kbyte block. See Table 5.2. 

72 OEK 258 00 September 1991 



85 

ROM Address ROM Address Coprocessor Register Base Address (hex) 

Field Range (hex) Instance: 

1 2 3 4 5 6 

0000 COOOO C1BFF C1C80 C1DOO C1D80 C1EOO C1E80 C1FOO 

0001 C2000 C3BFF C3C80 C3DOO C3D80 C3EOO C3E80 C3FOO 

0010 C4000 C5BFF C5C80 C5DOO C5D80 C5EOO C5E80 C5FOO 

0011 C6000 C7BFF C7C80 C7DOO C7D80 C7EOO C7E80 C7FOO 

0100 C8000 C9BFF C9C80 C9DOO C9D80 C9EOO C9E80 C9FOO 

0101 CAOOO CBBFF CBC80 CBDOO CBD80 CBEOO CBE80 CBFOO 

0110 CCOOO CDBFF CDC80 CDDOO COD80 CDEOO CDEBO CDFOO 

0111 CEOOO CFBFF CFC80 CFDOO CFD80 CFEOO CFEBO CFFOO 

1000 DOOOO D1BFF D1C80 D1DOO D1D80 D1EOO D1EBO D1FOO 

1001 D2000 D3BFF D3C80 D3DOO D3D80 D3EOO D3EBO D3FOO 

1010 D4000 D5BFF D5C80 D5DOO D5D80 D5EOO D5EBO D5FOO 

1011 D6000 D7BFF D7C80 D7000 D7D80 D7EOO D7EBO D7FOO 

1100 D8000 D9BFF D9C80 D9000 D9D80 D9EOO D9EBO D9FOO 

1101 DAOOO DBBFF DBC80 DBOOO DBD80 DBEOO DBE80 DBFOO 

1110 DCOOO DDBFF DDC80 DDDOO DOD80 DDEOO DDE80 DOFOO 

1111 DEOOO DFBFF DFC80 DFDOO DFD80 DFEOO DFEBO DFFOO 

Table 5.2 XGA ROM, Memory Mapped Register Assignments 

5.2.5 POS Register 4 (Base + 4) 

7 6 543 2 0 

Video Memory Base VE 

Video Memory Base Address (Bits 7 -1 ) 

This register contains the most significant 7 bits of the address at which the XGA memory is located. Three 
more bits are provided by the I/O Device Address in POS byte 1 This gives a Video Memory Base address 
on a 4 Mbyte boundary. 

Video Memory 
Base 

Instance 
0-7 

4 Mbytes of Addressable Memory 

Figure 5 1 XGA Video Memory Base Address. 

For example, if the Video Memory Base address is set to 1 and I/O Device Address 6 (instance 6) has been 
selected, the XGA Video Memory is located, starting at '03800000'h (see diagram above). 

Video Memory Enable (VE, Bit 0) 

This bit signifies whether the 4 Mbyte Aperture is available for use When this bit is set to 'O'b the 4 Mbyte 
Aperture IS disabled, and when set to '1 'b the 4 Mbyte Aperture is enabled. 

72 OEK 258 00 September 1991 



86 

5.3 P~S register 5 (Base + 5) 

765 4 3 2 0 

# 1 Mbyte Base 

1 Mbyte Aperture Base Address (1 Mbyte Base, Bits 3-0) 

This field specifies where the 1 Mbyte Aperture has been positioned in system address space or if the aper­
ture has been disabled. The following table describes the use of this field. 

1 Mbyte Base 1 Mbyte Aperture Locn.(hex) 

0000 Disabled 

0001 00100000 

0010 00200000 

0011 00300000 

0100 00400000 

0101 00500000 

0110 00600000 

0111 00700000 

1000 00800000 

1001 00900000 

I 1010 OOAOOOOO 

I 1011 OOBOOOoo 

1100 OOCOOOOO 

1101 00000000 

1110 OOEOOOOO 

1111 OOFOOOOO 

5.4 Virtual Memory Description 

The XGA Coprocessor can address either real or virtual memory. When addressing real memory, the linear 
address calculated by the Coprocessor is passed directly to the host system or local video memory. When 
addressing virtual memory, the linear address from the Coprocessor is translated by on-Chip Virtual 
Memory Translation logic before the translated address is passed to the host system, or local Video 
Memory. Virtual Address Translation is enabled or disabled by a control bit in the XGA 

The Coprocessor uses two levels of tables to translate the I inear address from the Coprocessor to a phYSI­
cal address. Addresses are translated through a Page Directory and Page Table to generate a physical 
address to memory pages that are 4 Kbytes in size The Page Directory and Page Tables are of the same 
form as those used by the 80386 processor Paging Unit. 

5.4.1 Address Translation 

The linear address from the Coprocessor is divided into 3 fields that are used to look-up the corresponding 
physical address. The fields are called the Directory Index, the Table Index and the Offset, and are illus­
trated In Figure 5.2 

31 22 21 12 11 o 
Directory Index Table Index Offset 

Figure 5 2 Linear Address Fields 

72 OEK258 00 September 1991 



87 

The location of the Page Directory is at a fixed physical address in memory that must be on a page (4 Kbyte) 
address boundary. The Coprocessor has a Page Directory Base Address register that should be loaded 
with the address of the Page Directory Base. 

The translation process is illustrated in Figure 5.3 . 

.... _---------
Linear Address 

Figure 5.3 Linear to Physical Address Translation 

The Directory Index field of the linear address is used to index into the Page Directory. The entry read from 
the Page Directory contains a 20-bit Page Table address and some statistical information in the low order 
bits. 

The 20-bit Page Table address pOints to the base of a Page Table in memory. The Table Index field in the 
Linear address is used to index into the Page Table. The entry read from the Page Table contains a 20 bit 
Page Address and some statistical information in the low order bits. 

The 20-bit Page address pOints to the base of a 4 Kbyte page in memory. The Offset field in the Linear ad­
dress is use to index into the Page. The entry read from the Page contains the actual data required by the 
memory access. 

Page Directory and Page Table Entries 

The entries of the Page Directory and Page Table are very Similar. The format of an entry is shown below. 

31 12 o 
Page Table/Page Addr D A 

Figure 5.4 Page Directory and Page Table Entry 

The top 20 bits of the entry are either the Page Table address or the Page address. The low order bits are 
as follows: 

Dirty Bit (D, bit 6). This bit is set before a write to an address covered by that Page Table entry occurs. The 
D bit is undefined for Page Directory entries. 

Accessed Bit (A, bit 5) .This bit is set for both types of entry before a read or write access occurs to an ad­
dress covered by the entry. 

User/Supervisor and Read/Write (U/S, R/W bits 2,3). These bits prevent unauthorized use of Page Directory 
and Page Table entries. Accesses by the Coprocessor can be defined as a Supervisor or User access de­
pending on the status of the application using the Coprocessor. The access type is defined by a bit in the 
VM Control Register. If the access is defined as Supervisor, no protection is provided and all accesses to 
the Page Directory and Page Tables are permitted. 

72 OEK258 00 September 1991 



88 

If the access is a User access, the U/S and R/W bits are checked to ensure that access to that entry is 
permitted. The meaning of these bits is shown below. 

U/S R/W Access rights of User 

0 0 Access not permitted 

0 1 Access not permitted 

1 0 Reads permitted, Writes not permitted 

1 1 I Reads and Writes permitted I 
Table 5.3 Page Directory and Page Table access rights in User mode 

Present bit (P, bit 0). The Present bit indicates whether a Page Directory or Page Table entry can be used 
in translation. If the bit is set it indicates that the Page Table or Page to which the entry refers is present 
in memory 

5.4.2 The XGA Implementation of Virtual Memory 

The XGA Coprocessor operates with a Page Directory and Page Tables in the format described above. The 
Coprocessor contains its own intemal cache of translated addresses that avoids it having to perform the 
two-stage translation process on every Coprocessor access. In the following text this cache is referred to 
as a Translate Look-aside Buffer or TLB. 

The TLB 

The TLB is shown in the following figure. 

Source, Pattem & Mask entry 

Destination entry 

31 

Linear Address Tag 

Linear Address Tag 

12 31 12 

Real Page Address 

Real Page Address 

Figure 5.5 Translate Look-aside Buffer (TLB). The 'V' bits are the entry Valid bits. 

The TLB has two entries, one entry for the Source, Pattern and Mask Pixel Maps and another for the Destina­
tion Pixel Map. Each entry is specifically reserved for use by one of these Maps. Each entry in the TLB con­
tains the top 20 bits of a Linear address (the 'Address Tag'), an 'Entry Valid' flag bit, and the top 20 bits 
of the Physical address (the 'Real Page address') corresponding to that linear address. When a Linear ad­
dress is passed from the Coprocessor to the Virtual Address hardware, the top 20 bits of the Linear address 
are first compared against the appropriate TLB entry Address Tag. If they match and the TLB entry flag bit 
is 'Valid', the Real Page Address in that TLB entry is used as the top 20 bits of the Physical address for 
that access. The bottom 12 bits of the Physical address are provided from the bottom 12 bits of the linear 
address (the Offset). 

If the Linear address from the Coprocessor matches the Address Tag in the TLB for the particular map in 
use, the access is said to have caused a TLB "hit". If the Tag does not match, a TLB 'miss' occurs. 

Actions that Flush the TLB. The TLB contents are flushed by the hardware under the following circum­
stances: 

• Whenever the Page Directory Base Address Register is written 

• Whenever a Coprocessor operation is suspended (by setting the Suspend Operation bit in the 
Coprocessor Control Register. (See page 69) ). 

TLB Misses 

If a TLB miss occurs, the Coprocessor automatically performs the two-level translation required to form the 
required Page Address. The contents of the XGA Page Directory Base Address Register are used to access 

72 OEK258 00 September 1991 



89 

the appropriate Page Directory entry, that is in turn used to access the appropriate Page Table entry. The 
Real Page Address that results from the translation process is stored in the TLB for use by subsequent ac­
cesses that address the same Page 

Memory access performed by the Coprocessor can be categorized as follows: 

Read accesses Performed on the Source, Pattern, Mask, and Destination Maps 

Write accesses Performed only on the Destination Map 

When the Virtual Memory hardware accesses the Page Directory and Page Tables for a TLB miss, it ex­
amines and updates the flags in the low order bits of the entries, as follows: 

Accessed bit. Any access (read or write) sets this bit in both the Page Directory and Page Table entries. 

Dirty bit. Write accesses set the Dirty bit in the Page Table entry. The Dirty bit is undefined in Page Directory 
entries. 

User/Supervisor and Read/Write bits. These bits are examined by the Coprocessor. The Coprocessor has 
a bit programmed by the host operating system that indicates whether it is being used by a Supervisor or 
User. If in User mode, the Coprocessor determines whether access is permitted depending on the state 
of the User/Supervisor and ReadjWrite bits In the Page Directory and Page Table entries. Table 5.3 indicates 
the meaning of these bits. If access is not permitted, the Coprocessor raises a VM Protection Violation 
interrupt to the host system and terminates the access cycle. It is up to the host operating system to then' 
take appropriate action to recover from the Protection Violation Interrupt. 

Present bit. The Coprocessor examines the Present bit of both the Page Directory and Page Table entries. 
If this bit is not set, it indicates that the Page Table or Page corresponding to that entry may not be resident 
in memory Should this be the case, the XGA raises a VM Page Not Present interrupt to the host system, 
The host operating system should then fetch the Page Table or Page and place it in memory. The access 
then completes. 

Remaining Page Directory or Page Table entry bits. All the other bits in the Page Directory or Page Table 
entry are ignored by the Coprocessor. The Coprocessor does not modify these bits in any way, and they 
can therefore be used by the operating system. Note however that it may be desirable to keep entries in 
the same format as 80386 Page Directory and Page Table entry formats, and so the Intel rules on use of 
the remaining bits should be followed. 

System Coherency 

In any Virtual Memory system where more than one device is accessing Virtual Memory contents, problems 
arise over COherency, It is vital that one device does not corrupt the other's tables or Pages, and that the 
tables and TLBs are kept coherent (in step) with the physical allocation of storage, The hardware mecha­
nism provided by the Coprocessor is sufficient to implement coherent Virtual Memory systems. However, 
system designers should take care to avoid coherency problems. 

In particular, it is recommended that the 80386 and the Coprocessor do not share Page Directories or Page 
Tables. Pages should not be marked as present unless they are locked in place in memory. This maintains 
coherency between TLB entries in the Coprocessor and the true current allocation of real memory, It pre­
vents the Operating System from moving these Pages out of memory while the Coprocessor is accessing 
them. 

VM Page Not Present Interrupts 

When the Coprocessor detects that a Page Table or Page is not present, it raises a Page Not Present inter­
rupt to the host system. The host operating system then fetches the required Page Table or Page (usually 
from disk) and places it in memory. The host system can determine the faulting address by reading the 
Current Virtual Address register, After the required Page Table and/or Page has been fetched, the operating 
system restarts the faulting memory access by clearing the Page Not Present interrupt bit in the XGA. This 
action causes the hardware to retry the access to the faulted entry. 

72 OEK 258 00 September 1991 



90 

It is probable that the host operating system will want to switch tasks on receiving a Page Not Present inter­
rupt. In this case it should suspend the Coprocessor operation in the normal way (see page 63) be'fore 
clearing the Page Not Present interrupt. The Coprocessor state should then be saved. When the task in 
which the Page Not Present interrupt occurred is restarted, the Coprocessor state should be restored, the 
required Page Table or Page should be placed in memory, the interrupt cleared and the Coprocessor opera­
tion restarted. The interrupt must be cleared before the Coprocessor operation is restarted, otherwise fur­
ther interrupts can be lost. 

VM Protection Violation Interrupts 

If the Coprocessor is told to access Tables or Pages that it is not permitted to (as defined by the User/Super­
visor and Read/Write entry bits), the Coprocessor generates a ProtectIOn Violation Interrupt ThiS IS general­
ly indicative that something major is wrong with either the Virtual Memory system (as set up by operating 
system software), or that the Coprocessor has been incorrectly programmed. 

In either case the most likely course of action required is for the operating system to terminate the Copro­
cessor operation and possibly terminate the faulting task. The Coprocessor operation can be terminated 
by writing to a control bit in the Coprocessor Control Register. The Coprocessor behaves in a similar man­
ner for Protection Violation Interrupts as it does for Page Not Present Interrupts in that clearing the interrupt 
causes the hardware to retry the memory access. To avoid a repeated interrupt, the Coprocessor operation 
should be terminated before the Protection Violation Interrupt is cleared. 

The XGA in Segmented Systems 

In a segmented system design all memory is allocated in blocks called segments. Memory within a seg­
ment is guaranteed to be contiguous, and can therefore be addressed directly by the Coprocessor using 
physical addresses (that is, VM is tumed off). The segment must be locked in place before any Coproces­
sor operation to ensure that the operating system does not reuse the memory during the operation. 

When using 16 bit addressing in the 80386 (for example, under OS/2) it is not possible to define a segment 
of more than 64 Kbytes. Provided that the Coprocessor data in system memory is restricted to being no 
more than 64 Kbytes in length, then a single segment can be used and the Coprocessor can directly ad­
dress the data using physical addresses. 

Under OS/2 larger areas of memory can be requested, but are given in blocks of 64 Kbytes maximum that 
are unlikely to be contiguous in real memory. If larger areas in system memory are required if is possible 
for the driving software to tum on the Coprocessor VM address translation and perform ItS own memory 
management using memory allocated to it. 

5.5 Virtual Memory Registers 

The following registers provide virtual memory support for the Pixel Interface. 

5.5.1 Page Directory Base Address Register (Coprocessor Registers, Offset: 0) 

31 12 o 

L Pointer L _____ _ 
This register is a WRITE ONLY register. 

It contains a 20-bit pOinter to the page in physical memory containing the current Page Directory for the 
current task. Bits 31-12 are used, bits 11-0 are reserved and should be set to 0 when writing. 

Loading this register causes the TLB to be cleared. 

Note: this register can only be loaded after the XGA has been put into 'Supervisor' mode. 

72 OEK258 00 September 1991 



91 

5.5.2 Current Virtual Address Register (Coprocessor Registers, Offset: 4) 

31 12 o 
Faulting Page Address 

'------_. 

This register is a READ ONLY register. 

In the event of the VM hardware raising a Not Present or Protection Interrupt, the faulting page address can 
be read from this register. Only bits 31-12 are significant Bits 11-0 should be masked out when read. 

5.5.3 Virtual Memory Control Register (I/O Address: 21x6) 

This register is directly mapped to I/O address space. It can be written and read. 

7 6 543 2 1 0 

~I PV I - I - I - I US I-@] 

The fields in the Virtual Memory Control Register are shown in Figure 5.6. 

Page Not Present Interrupt Enable 

NP 0 Interrupt not raised on VM Page Not Present 

1 Interrupt raised on VM Page Not Present 

Protection Violation Interrupt Enable 

PV 0 Interrupt not raised on VM Protection Violation 

1 Interrupt raised on VM Protection 

Protection Level 

US 0 Supervisor controls XGA 

1 User controls XGA 

Virtual Address Lookup 

8/ 0 Disable Lookup 

1 Enable Lookup 

Figure 5.6 Virtual Memory Control Register Fields 

VM Page Not Present Interrupt Enable (NP, bit 7): This bit controls the raising of an Interrupt when 
a VM Page Not Present condition is detected. When this bit is set to '1', an Interrupt is raised to 
the host system when the Not Present condition is detected. When this bit IS set to '0', the Not 
Present condition does not cause an interrupt to be raised. In both cases the contents of the ap­
propriate VM Interrupt Status Register status bit are updated when the Not Present condition is 
detected. 

VM Protection Violation Interrupt Enable (PV, bit 6) This bit controls the raising of an interrupt when 
a VM Protection Violation condition is detected. When this bit is set to '1', an interrupt is raised 
to the host system when the Protection Violation condition is detected. When this bit is set to '0', 
the Protection Violation condition does not cause an interrupt to be raised In both cases the con­
tents of the appropriate VM Interrupt Status Register status bit are updated when the Protection 
Violation condition is detected. 

U/S bit (US, Bit 2) This bit should be set to '0' if the executing task is at privilege levels 0, 1, or 2, 
(a Supervisor task) or set to '1' if the executing task is at privilege level 3 (a User taSk). If set to 
Supervisor (0), then no protection checking is performed by the coprocessor on Page Directory 

72 OEK258 00 September 1991 



92 

and Page Table protection bits. If set to User (1), checking is performed, and a Protection interrupt 
raised If permitted access rights are violated. The user access rights are shown in table 5.3. 

Enable Virtual Address lookup (EV, Bit 0) Setting this bit turns on the virtual address translation, 
and subsequent addresses generated by the Pixel Interface hardware are looked up in page 
tables. If this bit is not set: 

• Bitmaps must be resident and contiguous 

• TIle Pixel Map Base Addresses are physical addresses 

• All addresses generated by the Coprocessor are physical addresses 

• Non-paged operating systems are supported 

5.5.4 Virtual Memory Interrupt Status Register (I/O Address: 21x7) 

This register is directly mapped to I/O address space. It can be written and read. 

7 654 3 2 0 

NP PV I - I - I - I - I - I - I 

The fields in the Virtual Memory Interrupt Status Register are shown below. 

Page Not Present Interrupt 

NP 0 Interrupt not caused by VM Page Not Present 

1 Interrupt caused by VM Page Not Present 

Protection Violation Interrupt 

PV 0 Interrupt not caused by VM Protection Violation 

1 Interrupt caused by VM Protection Violation 

Figure 5.7 Virtual Memory Interrupt Status Register Fields 

VM Page Not Present Interrupt (NP, Bit 7): When a VM Page Not Present condition occurs, this bit 
is automatically set to '1'. TIlis bit can be reset to '0' by writing a '1' to it. This allows the value 
just read to be written back to clear the bits that were set. Writing a '0' to this bit has no effect 

The act of resetting this bit (by writing a '1' to it) causes the VM hardware to retry page translation. 
If this bit is to be reset before the Not Present condition has been repaired, the Coprocessor opera­
tion should first be suspended or terminated, otherwise a further Not Present Interrupt is generated 
by the same Not Present condition. 

VM Protection Violation Interrupt (PV, Bit 6): When a VM Protection Violation condition occurs, this 
bit is automatically set to '1'. This bit can be reset to '0' by writing a '1' to it. This allows the value 
just read to be written back to clear the bits that were set. Writing a '0' to this bit has no effect. 

The act of resetting this bit (by writing a '1' to it) causes the VM hardware to retry page translation. 
If this bit is to be reset before the Protection Violation condition has been repaired, the Coproces­
sor operation should first be suspended or terminated, otherwise a further Protection Violation In­
terrupt is generated by the same Protection Violation condition. Most operating systems do not 
attempt to recover from a Protection Violation condition, and the guilty Coprocessor operation is 
terminated. 

72 OEK 258 00 September 1991 



o (R) 

DmJmoS 93 

• XGA . 
programming 
considerations 

72 OEK258 00 September 1991 



94 

72 OEK258 00 September 1991 



95 

6 Adapter Co-existence 

6.1 Co-existence with VGA 

As the VGA traditionally uses fixed register and mapped memory address spaces, it is characteristic of 
the VGA adapter that only one VGA may "exist" at anyone time without a system failure. When the XGA 
subsystem is installed alongside either a VGA or another XGA subsystem, this condition is fulfilled by only 
enabling one of the VGA capable subsystems as an active VGA 

An application can be written to use multiple coexisting VGA or XGA sUbsystems in VGA mode only by 
altemately disabling and re-enabling the various VGA's Never enable more than 1 VGA concurrently. A 
disabled or inactive VGA retains its visible displayed data, and the overall effect is that of a multiple VGA 
application. 

To successively enable and disable multiple coexisting XGA subsystems in VGA mode, use the Operating 
Mode Register (21xO). 

6.2 Co-existence with Other XGA Subsystems 

Up to 8 XGA subsystems may be installed in a system. 

Multiple XGA subsystems can co-exist in extended graphics mode, each occupying its own separate 
ranges of 10 and memory space. An application written to exploit multiple XGA subsystems in this mode 
can access each instance of the sUbsystem without enabling and disabling the subsystem(s) between ac­
cesses. 

To comply with the restriction on VGA co-existence, such a multiple display subsystem application should 
record, on initialisation, which XGA subsystem (if any) was originally in VGA mode. On termination only 
that subsystem should be retumed to VGA mode. 

72 OEK 258 00 September 1991 



96 

7 Locating the XGA Subsystem 

Before using the subsystem, it is first necessary to locate the subsystem in I/O and memory space. This 
is done by interrogating and interpreting the POS data for the subsystem. 

7.1 Reading P~S Data 

To do this, selectively enable for setup each adapter in the system, including the system board video sub­
system, and examine the POS ID. Do this using the System Services BIOS calliNT 15h, AH = C4h Program­
mable Option Select as documented in the IBM Personal System/2 and Personal Computer BIOS Interface 
Technical Reference The following calls are relevant, and are used as follows: 

AL = OOh Return Base P~S card register address Use this call once only to determine the base 
10 register address for reading POS data from all adapters in the system 

AL = 01 h Enable Slot for Setup Used to selectively enable each adapter to enable the POS data 
to be read for that adapter. 

If this call is used for adapter 0 (the system board), the POS data retumed using the I/O ports is 
that for the system board itself, rather than that for the system board Video subsystem. To access 
the system board Video subsystem POS data do not use this call, but instead write ODFh to Port 
94h using the OUT instruction. 

The POS data bytes forthe selected adapter may then be read by reading (IN) from the 6 consecu­
tive I/O port addresses starting with the Base register address retumed by the "Retum Base POS 
card register address" subfunction. 

Base, Base+ 1 POS ID 

Base + 2 - 5 POS data bytes 0 - 3 

Interrupts should be disabled while each card is Enabled for Setup 

AL = 02h Card Enable Used to restore each adapter to its normal Enabled state immediately after 
POS data has been read for that adapter. 

To re-enable the system board video adapter, do not use this call, but instead write OFFh to Port 
94h using the OUT instruction. 

Interrupts should remain disabled until each adapter has been "Enabled" in this way. 

If the POS 10 matches one of the list of POS IDs allocated to the XGA, and future register compatible sub­
systems, then the search is complete. The POS IDs a'llocated to the XGA subsystems are as follows: 

8FD8h 
8FD9h 
8FDAh 
8FDBh 

On successfully matching POS ID's read the remainder of the POS data bytes for that subsystem as de­
scribed above. This data can then be used to calculate the location of the XGA subsystem's registers and 
display buffers in 10 and physical system memory address space. Detailed descriptions of the POS Data 
bit assignments are available in Section 5.2. As also discussed in Section 12, it is important for reasons 
of future compatibility to mask out all reserved and unused POS data bits before using the data for these 
calculations. 

72 OEK 258 00 September 1991 



97 

7.2 Address Calculations 

See also Section 5.2 for the technical background to the following register and address space calculations. 

7.2.1 ROM address 

Calculate the ROM Address from POS data as follows: 

ROM Address = (ROM address field * 2000h) + OCOOOOh 

The ROM address field is READ from POS Register 2 bits 4 to 7. 

7.2.2 Coprocessor Registers 

The coprocessor registers are referenced from a base address. This address depends on the 'Instance' 
(0-7) of the XGA SUbsystem and the 'ROM address' calculated as shown in Section 7.21. The coprocessor 
register base address is calculated as follows: 

Coprocessor Register Base Address = (((128 * Instance) + 1COOh) + ROM address) 

The Instance is Read from POS Register 2 bits 1 to 3. 

For example: 

Assuming Instance = 6 and ROM address = OCOOOOh 
then the Coprocessor Base Address is OC1FOOh. 

7.2.3 I/O Registers. 

The XGA I/O registers are referenced from a base I/O address. The I/O address IS calculated as follows: 

I/O Base Address = 21xOh (where x is the Instance) 

The Instance is Read from POS Register 2 bits 1 to 3 

7.2.4 The Video Memory Base Address 

The video memory base address is calculated from the video memory base address field in POS Register 
4 bits 1 to 7 and the' Instance'. 

Figures 7.1 and 7.2 show how these two values combine to give the Video memory base address. 

31 25 24 22 21 o 

Video Memory Instance 
Base 0-7 4MB of Addressable Memory 

Figure 7.1 The XGA Video Memory Base Address 

72 OEK 258 00 September 1991 



98 

r-r- ADDRESS VMem Base Address 

( 
4096MB FFFFFFFFh 127 

( ( 
72MB 04800000h 2 

INSTANCE 1 
68MB 04400000h 2 

INSTANCE 0 
64MB 04000000h 2 

INSTANCE 7 
60MB 03COOOOOh 

INSTANCE 6 
56MB 03800000h 

INSTANCE 5 
52MB 03400000h 

INSTANCE 4 
48MB 03000000h 

INSTANCE 3 
44MB 02COOOOOh 

INSTANCE 2 
40MB 02800000h 

INSTANCE 1 
36MB 02400000h 

INSTANCE 0 
32MB 02000000h 

16MB 0 

1MB 
ROM 

AOOO/BOOO 

SYSTEM RAM OMB OOOOOOOOh o 

Figure 7.2 The XGA Video Memory Base Address Diagram 

The Video memory base address field defines a 32 Mby1e address range and the 'Instance' defines a 4 
Mby1e address range Within the 32 Mby1e range. 

For example: 

Assuming the Instance = 6 
and the Video Memory Base Address field = 1 

then the Video Memory Base Address is 03800000h. 

The Video Memory Base Address, once calculated seNes 2 totally separate purposes 

4 Mbyte System Video Memory Aperture 

If enabled (Read from bit 0 In POS Register 4 to ascertain if the Aperture IS enabled), the 4 Mby1e System 
Video Memory Aperture is located at this address in physical system address space. Provided virtual ad­
dressability to thiS range of phYSical address space can be achieved, the entire video memory may be 
accessed through this Aperture at this address. 

Video Memory Location in Coprocessor Address Space 

The Video Memory Base Address has a special significance to the XGA coprocessor It defines the location 
of the video memory, including the display pixel map, in the XGA coprocessor's view of system address 

72 OEK 25800 September 1991 



99 

space. The significance of this is that the XGA coprocessor recognizes addresses in this range to be ad­
dresses in local video memory ratherthan general system memory. This is how the XGA coprocessor differ­
entiates video memory from system memory. If an address passed to the XGA coprocessor is in this range, 
the XGA coprocessor knows that it is operating on a bitmap in video memory. If the address is outside this 
range, the coprocessor assumes It IS operating on a bitmap In normal system memory, and attempts to 
use DMA busmastership to access it. 

As the XGA subsystem operates intemallyona32bitbus.this address will be a 32 bit address irrespective 
of whether the XGA subsystem is installed in a 16 or 32 bit slot or system, or whether the 4 Mbyte system 
video memory aperture is enabled or disabled. This will therefore be a 32 bit address even on systems 
where such addresses are not otherwise possible. 

7.2.5 1 Mbyte Aperture Base Address 

The 1 Mbyte Aperture base address is calculated from the 1 Mbyte Base address field in POS Register 
5 bits 0 to 3. 

If (1Mb Base Field ~ 0) 
1Mb Aperture Base Address = 1Mb Base Field * 100000h 

If (1Mb Base Field = 0) 1Mb Aperture is disabled 

7.3 Display Type and Video Memory Size 

The attached display type is determined by reading the Display 10 register - Index 52h. The list of display 
IDs, including the retumed value indicating no attached display, is listed in Section 10. It may also be nec­
essary (depending on the application) to determine the video memory size to ensure that the required mode 
is available. The method for doing this is also described in Section 10 

If looking for multiple coexistent XGA subsystems, (for instance for a multiple display adapter application) 
continue until sufficient instances of the XGA have been located. 

72 OEK 258 00 September 1991 



100 

8 VGA Primary Adapter Considerations 

In situations where a single XGA subsystem is providing both VGA and Extended Graphics functions, par­
ticularly on a system with Single display subsystem/monitor, an application using the subsystem in Ex­
tended Graphics Mode takes on a number of additional systems responsibilities. 

Having found an instance of the XGA subsystem, and before switching the subsystem into Extended Graph­
ics Mode, examine the Operating mode register (Address 21 xOh) bits 0 and 2 to determine if the XGA sub­
system is in VGA mode and enabled as such. 

If the XGA sUbsystem is not enabled in VGA mode, the sUbsystem is operating an 'auxiliary video subsys­
tem' and systems messages, etc., may safely be left to the pnmaryVGA source. In thiS case the XGA sub­
system must not be put into VGA mode unless the current VGA is disabled. If the XGA subsystem is enabled 
in VGA mode then the subsystem is the system primary video subsystem, and a number of special consid­
erations apply. 

8.1 Chaining the Int 10h Video BIOS Handler 

The application should chain the Int 10h Video interrupt handler, and monitor calls to the Int 10h handler 
while the application is using the XGA subsystem in Extended Graphics Mode. 

There are a number of hot key and error handlers that may attempt to communicate with the VGA while the 
XGA subsystem is in Extended Graphics Mode, and code must be written to handle such calls. 

The majority of calls to the Int 1 Oh handler can be ignored (simply return to the caller) while the XGA subsys­
tem is in Extended Graphics Mode, but a small number of calls require correct handling. 

(Ah) = OOh Set Mode Any attempt to reset the subsystem into VGA mode while in Extended Graphics 
Mode should be complied with. 

As the application should be in control of the subsystem, any attempt to set the subsystem into 
a VGA mode can only be as a result of a catastrophic error Situation, and failure to restore VGA 
mode will inevitably result in the loss of critical data, and the result will be a blank, or at best un­
meaningful, display. 

The Int 10h handler should immediately restore the subsystem to VGA mode, and chain on to the 
saved Int 10h interrupt vector to allow the VGA set mode to be processed. 

The Non Maskable Interrupt (NMI) handler traditionally issues a Get Mode followed by a Set Mode 
to the mode returned by the Get Mode. If the application's Int 1 Oh Video interrupt handler detects 
an attempt to Set Mode 7Fh, then mode 03h should be substituted, and the Set Mode allowed 
to proceed, after putting the SUbsystem in VGA mode as described above. 

(Ah) = OFh Return current video state While in Extended Graphics Mode, the application's Int 10h 
interrupt handler should return a current mode of 7Fh in AL, to indicate that the subsystem is in 
a non-VGA mode. 

This is an special mode number assigned for this purpose. 

8.2 Int 24h, Critical Error Handler 

The application should trap and re-vector the DOS Critical Error Handler Interrupt Vector (Int 24h) , as de­
scribed in the DOS Technical Reference Manual. The application will then be notified on DOS Critical errors. 

The application's critical error handler should save the subsystem's video state (as far as necessary), and 
put the XGA subsystem into VGA mode before chaining on uSing the saved vector to the original Critical 
Error Handler. This will allow the Critical Error Handler's dialogue with the user to proceed normally. 

On returning from the chained Critical Error handler, the application's Critical Error handler should examine 
the return code in AL to determine the appropriate action. 

72 OEK258 00 September 1991 



101 

0, 1, 3 Control will be returned to the application. Put the XGA subsystem back into extended 
graphics mode, and restore the video state as necessary. 

2 The program will be aborted by the system. Leave the XGA SUbsystem in VGA mode and retum. 

Alternatively the application can take over the entire Critical Error handling dialogue while remaining in Ex­
tended Graphics Mode. 

Note: The C language signal function may (in some implementations) be used to intercept the Critical Error 
handler for this purpose. 

8.3 Int 23h Ctrl-Break Exit Address 

The application should trap and re-vector the DOS Gtrl-Break Exit Address, as described in the DOS Tech­
nical Reference Manual. The application will then be notified on when the Gtrl-Break key combination is 
entered. 

If the application is not otherwise intercepting Gtrl-Breaks, the XGA subsystem should be put back into 
VGA mode before chaining on using the saved vector to the original Gtrl-Break handler. This will allow the 
normal Gtrl-Break handler to proceed. 

Alternatively the application can take over the entire Gtrl-Break handling while remaining in Extended 
Graphics Mode. 

Note: The G language signal function may be used to intercept the Gtrl-Break handler for this purpose. 

8.4 Int 21h Function 4Ch Program Terminate function 

The subsystem must be left in VGA mode on program termination, irrespective of the howthe program termi­
nates, or IS terminated. 

To ensure that this is done, the application should trap and re-vector the normal DOS program terminate 
function DOS Int 21h function 4Ch, as described in the DOS Technical Reference Manual. On receiving 
notice of program termination, the application should put the SUbsystem back into VGA mode, and unhook 
all other hooked interrupt vectors before chaining on for the remainder of program termination handling. 

DOS Int 21 h function 4Gh is the conventional method used by all programs to terminate. By trapping the 
DOS function interrupt (Int 21 h) and monitoring calls to the Program terminate function (4Gh), all routes by 
which a program may terminate normally should be covered. 

Note: There are other Program Terminate functions, including: 

• Int 20h 

• Int 27h 

• Int 21 h Function OOh 

• Int 21 h Function 31 h 

For complete cover, these calls may be similarly re-vectored and trapped, but they are not as com­
monly used as the Int 21 h Function 4Gh. 

All other function calls should be passed on to the previous DOS function handler using the saved interrupt 
vector. 

On detecting a call to function 4Gh, put the XGA subsystem into VGA mode before chaining on using the 
saved vector to the original DOS function Handler. This will allow the DOS Program Terminate function to 
proceed normally. 

Note: The G language atexit function may be used for this purpose. 

72 OEK 258 00 September 1991 



102 

9 General Systems Considerations 

9.1 Co-existing with LIM Expanded Memory Managers 

The XGA sUbsystem uses memory mapped registers located in the COOOO/DOOOO region of physical ad­
dress space, as described in Section 5.2. Unfortunately this area is now heavily used by Expanded Memory 
Managers to provide Expanded Memory Services to applications 

Once the location of the XGA subsystem's memory mapped register space in the COOOO/DOOOO region has 
been determined, the application should interrogate any Expanded Memory Manager to ensure that there 
is no contention for this range of physical address space. 

This should be done as described in the Lotus/lntel/Microsoft Expanded Memory Specification Version 4.0, 
under Function 25 (Ah) = 58h Get Physical Address Array. If the application detects a clash between the 
XGA subsystem's use of physical address space and that claimed by the Expanded Memory Manager, 
a waming should be issued advising the user to resolve this contention by use of the Expanded Memory 
Manager call parameters, usually on the 'DEVICE =' statement In CONFIG.SYS. 

9.2 Screen Switch Notification, Int 2Fh 

For the application to work successfully in MVDM (Multiple Virtual DOS Machine) environments, or in the 
DOS compatibility box of OS/2, it should trap and re-vectorthe DOS Multiplex vector, looking for (Ah) = 40h. 
Any other values should be immediately passed to the chained Int 2fh handler. 

This multiplex interrupt is used with (Ah) = 40h to notify DOS applications of Screen Switches. 

(AI) = 01 h DOS Mode application being switched to the background 

The application should save its video state and put the display back into VGA mode 
(if applicable). 

(AI) = 02h DOS Mode application being switched to the foreground. 

The application can sWitch the subsystem back into Extended Graphics Mode, and restore the 
saved video state. 

The range of operations permitted within Int 2Fh processing is limited For instance it is not permissible 
to issue Disk I/O operations, which therefore precludes an entire save and restore of video memory and 
state. The only way of using this call is forthe Int 2Fh interrupt handler to notify or semaphore the application 
that a re-draw is required (if application program structure permits). 

72 OEK 25800 September 1991 



103 

10 Extended Graphics Modes Selection 

10.1 Modes Available 

The following table shows the list of modes available according to display type and amount of video 
memory configured on the XGA sUbsystem. 

Display Example Size Color Maximum 512K memory 1Meg memory 
ID Displays address-

ability 

1111b None None None 

1101b 8503 12in. mono 640x480 640x480x64 grays 640x480x64 grays 

1110b 8513 12in. color 640x480 640x480x256 colors 640x480x256 colors 
8512 14in 640x480x65536 colors 

1011b 8515 14in. color 1024x768 640x480x256 colors 640x480x256 colors 
1 024x768x16 colors 640x480x65536 colors 

1 024x768x16 colors 
1024x768x256 colors 

1001b 8604 151n mono 1024x768 640x480x64 grays 640x480x64 grays 
8507 19in 1 024x768x16 grays 1 024x768x16 grays 

1024x768x64 grays 

1010b 8514 16in. color 1024x768 640x480x256 colors 640x480x256 colors 
1 024x768x16 colors 640x480x65536 colors 

1 024x768x16 colors 
1024x768x256 colors 

Table 10.1 Availability of Ex1ended Graphics Modes 

To ascertain the display type read the XGA subsystem register index 52h, 'Display ID' and examine the 
Display ID bits retumed. 

To ascertain the amount of video memory installed, there are two options Both options rely on a 'write read­
back check', whereby a particular value is written to a key location, which is subsequently read to ascertain 
whether the written value has perSisted. 

Use the system processor to write a value through an aperture to the word at offset 768K into video 
memory. This technique assumes that the system video memory real mode aperture is available. 
Sample code to do this is shown In figure 10.1. 

2 Use the XGA subsystem's PxBlt capability to perform a similar test to the previous example; PxBlt 
a constant color to the location in video memory, then PxBlt that value back from video memory 
to system memory using DMA busmastership. 

This technique works irrespective of the availability of a system video memory aperture, but it 
does require physical addressability to a location in system memory for the DMA busmastership 
operation. 

72 OEK 258 00 September 1991 



104 

;* Assume GS points to start of AOOOO Real mode aperture 
;* Where registers are shown as (for instance 21xOh), this should 
.* be filled in with the appropriate 10 port address after 
.* determining the location of the XGA subsystem in 10 space 
;* 
;* First put the adapter PARTIALLY in extended graphics mode 
;* to allow use of the system video memory Aperture 

mov al,O 
mov dx,21x4h ; disable XGA interrupts 
out dx,al 

mov 
mov 
out 

mov 
mov 
out 

mov 
mov 
out 

mov 
mov 
out 

ax,0064h 
dx,21xAh 
dx,ax 

ax,04h 
dx,21xOh 
dx,al 

al,Olh 
dx,21x1h 
dx,al 

dx,21x8h 
al,Och 
dx,al 

Blank palette 
indexed XGA register 64h 

Set adapter in Extended Graphics Mode 

Locate video memory Aperture at AOOOO 

System video memory indx reg. 
Offset 768K 

Set byte to A5h mov 
mov 

byte ptr gs: [0] ,OA5h 
byte ptr gs: [1] ,Oh Avoid shadows on data lines 

cmp byte ptr gs: [0] ,OA5h Test against value written 
jne vram_512k ; 512K video memory only 

Set byte to 5Ah mov 
mov 

byte ptr gs: [0] ,5Ah 
byte ptr gs: [1] ,Oh Avoid shadows on data lines 

cmp byte ptr gs: [0] ,OA5h Test against value written 
je vram 1Meg 1 Meg if still matches 
jmp vram 512k ; Otherwise 1/2 meg found 

Figure 10.1 Video Memory Size Determination 

Having ascertained the monitor type and the video memory configuration available, the modes available 
can be read from the table above. 

72 OEK258 00 September 1991 



105 

11 Mode Setting the XGA Subsystem 

The following pOints should be observed by all software when switching between modes. 

• All data in the Video Memory is preserved during a mode switch, provided that the CRTC is halted 
at the time, using the Display Control 1 register (if switching out of Extended Graphics Mode), or 
the Reset register (if switching out of VGA mode). The CRTC is discussed in Section 4.1.5. 

• When switching between VGA modes, the mapping of the VGA memory maps to the Video 
Memory is controlled by two bits in VGA registers: 

• Word/Byte Mode (CRTC Mode Control Register, bit 6) 

• Double-Word Mode (CRTC Underline Location Register, bit 6) 

VGA modes can thus be split into three groups: byte modes, word modes and double-word modes. 

All switches between modes in the same group are indistinguishable from the same mode switches on 
VGA. 

Switches between modes in different groups produce different effects from those observed on the VGA, 
but since the bits controlling the mapping are used for display purposes, the picture is scrambled in both 
cases 

Partial mode switches (for example, to load fonts in a text mode) are also possible. As the bits used to 
control the mapping of the data in the Video Memory are those used to control the displaying of the picture, 
all partial mode switches to update the Video Memory which don't destroy the picture (and many that do) 
work correctly. 

11.1 Individual Mode Setting Procedures 

This section gives the register settings necessary to set the SUbsystem into the various modes available, 
subject to the rules described elsewhere in this chapter. It is important to follOW the order of register setting 
as shown here. 

11 .1 .1 Extended Graphics Mode 

To set the XGA SUbsystem into extended graphiCS mode (subject to the configuration being capable of sup­
porting the required mode as listed in Section 10), write the register values in the sequence shown to the 
XGA subsystem's registers. 

XGA register name XGA Oper 1024x 1024x 640x 640x Comments 
reg. 768x 768x 480x 480x 
id 256 16 256 65536 

color color color color 
mode mode mode mode 
values values values values 

Interrupt Enable 21x4 = OOh OOh OOh OOh Initial Value 

Interrupt Status 21x5 = FFh FFh FFh FFh 

Operating Mode 21xO = 04h 04h 04h 04h Set Extended 
Graphics Mode 

Palette Mask 64 = OOh OOh OOh OOh Blank Display 

Video memory Aperture Ctl 21x1 = OOh OOh OOh OOh Initial Value 

Video memory Aperture Index 21x8 = OOh OOh OOh OOh Initial Value 

Virt Mem Ctl 21x6 = OOh OOh OOh OOh Initial Value 

Memory Access Mode 21x9 = 03h 02h 03h 04h Initial Value 

Disp Mode 1 50 = 01h 01h 01h 01h Prepare for reset 

Disp Mode 1 50 = I OOh OOh OOh OOh Reset CRTC 

Horiz Total Lo. 10 = ~ 
9Dh 63h 63h ) 

Horiz Total Hi. 11 = OOh OOh OOh OOh ) 

72 OEK258 00 September 1991 



106 

XGA register name XGAr 1024x 1024x 640x 640x Comments 
reg. 768x 768x 480x 480x 
id 256 16 256 65536 

color color color color 
mode mode mode mode 
values values values values 

Horiz Display End La 12 = 7Fh 7Fh 4Fh 4Fh ) 

Horiz Display End HI I 13 = OOh OOh OOh OOh ) 

Honz Blank Start La 14 = 7Fh 7Fh 4Fh 4Fh ) 

Horiz Blank Start Hi 15 = OOh OOh OOh OOh ) 

Horiz Blank End La 16 = 9Dh 9Dh 63h 63h ) 

Horiz Blank End Hi 17 = OOh OOh OOh OOh ) 

Horiz Sync Start La 18 = 87h 87h 55h 55h ) 

Horiz Sync Start Hi 19 = OOh OOh OOh OOh ) 

Horiz Sync End La 1A = 9Ch 9Ch 61h 61h ) 

Horiz Sync End Hi 1B = OOh OOh OOh OOh ) 

Horiz Sync Posn 1C = 40h 40h OOh OOh ) 

Horiz Sync Posn 1E = 04h 04h OOh OOh ) 

Vert Total La 20 = 30h 30h OCh OCh ) 

Vert Total Hi 21 = 03h 03h 02h 02h ) XGA CRTC 

Vert Disp End La 22 = FFh FFH DFh DFh ) parameters 

Vert Disp End Hi 23 = 02h 02h 01h 01h ) 

Vert Blank Start La 24 = FFh FFh DFh DFh ) 

Vert Blank Start Hi 25 = 02h 02h 01h 01h ) 

Vert Blank End La 26 = 30h 30h OCh OCh ) 

Vert Blank End Hi 27 = 03h 03h 02h 02h ) 

Vert Sync Start La 28 = OOh OOh EAh EAh ) 

Vert Sync Start Hi 29 = 03h 03h 01h 01h ) 

I Vert Sync End 2A = 08h 08h ECh ECh ) 

Vert Line Camp La 2C = FFh FFh FFh FFh ) 

Vert Line Camp Hi 2D = FFh FFh FFh FFh ) 

Sprite Control 36 = OOh OOh OOh OOh Initial Value 

Start Addr La 40 = OOh OOh OOh OOh Initial Value 

Start Addr Me 41 = OOh OOh OOh OOh Initial Value 

Start Addr Hi 42 = OOh OOh OOh OOh Initial Value 

Buffer Pitch La 43 = 80h 40h 50h AOh 

Buffer Pitch Hi 44 = OOh OOh OOh OOh 

I Clock Sel 54 = Odh Odh OOh OOh 

Display Mode 2 51 = 03h 02h 03h 04h 

Ext Clock Sel 70 = OOh OOh OOh OOh 

Display Mode 1 50 = OFh OFh C7h C7h 

Note: Initial Palette loading should be done at this paint, by writing to the appropriate XGA subsystem 
palette/sprite registers. 
The video memory should also be initialised at this paint, to avoid random data appearing when the pal-
ette mask is set to make the current display pixel map contents visible. 

Border Color I 55 

I 

= 

I 

OOh OOh OOh OOh Initial Value 

Palette Mask 64 = FFh FFh FFh FFh Make visible 

72 OEK 258 00 September 1991 



107 

11.1.2 VGA Mode 

To put the XGA subsystem into VGA mode (subject to the rules for so doing as discussed in Section 8), 
perform in sequence the operations described here: 

Clear first 256K of video memory contents to avoid screen flash caused by random data being 
present on switching into VGA mode. 

2 Write data to the registers in the sequence as shown' 

Value Oper XGA VGA Comments 
reg reg 

OOh = 21x1 Aperture Control 

OOh = 21x4 Interrupt disable 

FFh = 21x5 Clear Interrupts 

FFh = 64 Palette Mask 

15h = 50 Enable VFB, Prepare for reset 

14h = 50 Enable VFB, Reset CRTC 

OOh = 51 Normal scale factors 

04h = 54 Select VGA Oscillator 

OOh = 70 Ext Oscillator CJGA) 

20h = 2A Ensure No VSync interrupts 

01h = 21xO Switch to VGA mode 

01h = 3C3 Enable VGA address decode 

3 Set no. lines in VGA mode (if required) using Video BIOS Int 10h Ah = 12h 

4 Set required VGA mode using Video BIOS Int 10h Ah = OOh - Set mode. 

Figure 11 1 Setting VGA Mode 

The XGA sUbsystem will now be in VGA mode. 

11.1.3 132 Column Text Mode 

The 132 column tex1 mode should eventually appear as Video BIOS Mode 14h on XGA sUbsystems and 
systems units Before directly setting the mode as described below, issue a Video BIOS Int 10h Return 
Functionality State Information call, and examine the list of BIOS supported modes for the existence of 
mode 14h. 

If Mode 14h is supported in BIOS, the appropriate Video BIOS Set Mode should be issued in preference 
to the method described here. 

72 OEK258 00 September 1991 



108 

Where Video BIOS mode 14h is not supported in BIOS, the following sequence of operations will put the 
subsystem into 132 column text mode: 

If necessary put the XGA subsystem into VGA mode as described in Section 11.1.2. 

2 Write data to registers in the sequence shown: 

Value Oper XGA VGA VGA Other Comments 
reg 304/5 3C4/5 VGA 

15h = 50 Prepare CRTC for reset 

14h = 50 Reset CRTC 

04h = 54 Select VGA Oscillator 

3 Set No. I ines in VGA mode using Int 10h Ah = 12h (200, 350 or 400) 

4 SetVGA mode 3 using Int 10h Ax=0003h. The 132 column text mode is a variation on the VGA 
text mode, and the table below is the variations from the standard mode. 

5 Write data to registers in the sequence as shown: 

Value Oper XGA VGA VGA Other Comments 
reg 304/5 3C4/5 VGA 

01h 1= 50 ) 
FDh &= 50 ) Prepare CRTC for reset 

FCh &= 50 Reset CRTC 

03h = 21XO 132 column text mode 

01h = 54 132 column clock frequency select 

80h = 70 Select internal 132 col clock 

EFh &= 50 DisableVFB 

7Fh &= 11 Enable VGA CRTC reg update 

A4h = 0 ) 

83h = 1 ) 

84h = 2 ) 

83h = 3 ) 

90h = 4 ) Variations on VGA CRTC syncs 

80h = 5 ) 

A3h = 1A ) 
OOh = 1B ) 

42h = 13 ) 

80h 1= 11 Disable VGA CRTC reg update 

03h 1= 50 Remove CRTC Reset 

01h 1= 01 8 bit characters 

** INP 3DA Read sets Attr Ctlr flip flop 

13h = 3CO ) Sets Attr Ctlr 

OOh = 3CO ) Reg 13h to OOh 

20h = 3CO Restore Palette 

6 MOVe 84h to 40:4Ah in BIOS data area to force Video BIOS recognition of 132 column text 
mode 

Figure 11.2 Setting 132 column text mode 

72 OEK 258 00 September 1991 



109 

Having set the mode, it is programmed similarly to any other VGA text mode, with a coded text buffer lo­
cated at B8000 in system address space. ObViously the coded text buffer is now 132 columns wide. 

If it is necessary to invoke a mode change using Video BIOS (Int 10h) while in 132 column text mode (for 
instance to vary the number of lines), the steps shown above from 2 to 6 should be followed. 

11.2 System Video Memory Apertures 

There are three possible apertures in the system's physical address space. If present, any of them may 
be used by the system processor to directly access the packed pixel display buffer mapped into system 
memory. Each aperture has its own rules for existence, advantages and drawbacks as described below. 
The XGA coprocessor may make the use of an aperture unnecessary. 

The precise location of each aperture, including whether it is enabled, may be determined by decoding 
the XGA subsystem's POS data as described In Section 7. 

11.2.1 64K System Video Memory Aperture 

ThiS aperture IS at either AOOOO or BOOOO in physical address space. The 64K aperture is insufficient to ac­
cess the entire SUbsystem display buffer at a time, so the aperture position over the display buffer is con­
trolled using the Aperture Index register (21x8). 

This is the only aperture in 8086 real mode address space. 

Other Video adapters, such as an another adapter or subsystem in either VGA or Extended Graphics mode 
may contend for the use of thiS aperture. Only one video subsystem may have this aperture enabled at any 
one time. Provided there is no contention for the AOOOO or BOOOO address spaces, this aperture is the only 
aperture that may be 'enabled' at will by the application. 

11.2.2 1 Mbyte System Video Memory Aperture 

This aperture may appear at a whole number of megabytes below 16 Mbytes, depending on the hardware 
configuration Its position, and whether it is enabled, must be determined by decoding the POS data as 
described in Section 7. 

In the case of multiple coexisting XGA subsystems, each may have its own such aperture. Dependent on 
hardware configuration it is possible for some but not all coexisting XGA SUbsystems to have their 1 Mbyte 
System Video Memory Apertures enabled 

This aperture is sufficiently large that the entire video memory is accessible without using the Aperture Index 
register (21x8) to move the aperture. The Aperture Index register must be set to zero when using this aper­
ture. 

This aperture is only easily accessible in protect mode environments. The operating system must provide 
addressability to the address range occupied by the aperture. Some operating systems attempt to restrict 
such addressability to protect or kernel device drivers only. It may be necessary to write a small kernel 
device driver to proVide addressability. For instance, in a 16 bit segmented system such as OS/2, the fol­
lowing steps may be necessary to build GDT addressability to an aperture. 

Allocate a GDT selector 

2 Modify the GDT entry directly to alter the permission bits to allow user mode (Ring 3) access. 

3 Alter the GDT segment length to be a 1 Megabyte segment. The entire 1 Mbyte video memory 
display buffers can be then accessed as a single segment. 

Always check that the aperture is enabled before assuming its existence. If this aperture is found to be dis­
abled, it cannot be enabled by the application The application should then try to use the 4 Mbyte aperture. 

11.2.3 4 Mbyte System Video Memory Aperture 

This aperture appears at a multiple of 4 Mbytes at or above 16 Mbytes, depending on the hardware configu­
ration. Its position, and whether it is enabled, must be determined by decoding the POS data as described 
in Section 7. 

72 OEK 25800 September 1991 



110 

In the case of multiple coexisting XGA subsystems, each will have its own such aperture. 

This aperture is not available In 16 bit systems based on the 80386SX. Neither does this aperture exist when 
the XGA subsystem adapter card is plugged into a 16 bit (short) slot on a 32 bit system. Always check that 
the aperture IS enabled before assuming its existence. Also, check the Auto-Configuration register as de­
scribed in 'Auto-Configuration Register (Index: 04)' on page 24 to determine the Bus width 

While this aperture is always present when the XGA subsystem is plugged into a 32 bit slot on a 32 bit sys­
tem, it may not be easily accessible in either real mode DOS or 16 bit protect mode operating systems. 

11.3 Physical Addressability to System Memory 

The XGA subsystem coprocessor is able to operate as a DMA busmaster. Using this, the coprocessor is 
capable of bitmap operations on bitmaps up to 4K by 4K pixels anywhere in system address space, includ­
ing video memory. A PxBlt operation can be defined as a function of 4 separate bitmaps, D' = f(S,D,P,M) 
That is, the modified destination pel (D') is a function of the source (S), the current destination pel (D), the 
pattem (P) and the mask (M) Any or all of these bitmaps can be anywhere in memory. The XGA coprocessor 
handles all bitmaps alike, no special handling of a bitmap in video memory is required. 

This flexibility is very powerful, but requires support from the operating system to fully realize the benefits. 

DMA busmastership is of necessity on i386 physical address space while applications run on the system 
processor in virtual or linear address space. The system processor automatically converts such addresses 
to physical addresses internally via the page tables or segment descriptor tables. An adapter such as the 
XGA coprocessor has no physical access to either the segment descriptors orthe page tables. To use DMA 
busmastership, the application (or its device drivers) must provide the XGA coprocessor with the physical 
address of all the bitmaps on which it requires the XGA coprocessor to operate. Methods for providing the' 
XGA coprocessor with physical addressabilityto all such resources, and the tasks necessary, vary accord­
ing to the operating system, and mode of the system processor. 

11.3.1 Real Mode DOS Environments 

The real mode DOS environment is the simplest and easiest in terms of memory management. The applica­
tion is limited to 640K of real mode DOS memory. Conversion from virtual to physical memory addresses 
is by means of a simple Shift left 4 and add One problem may be that the application written to run in the 
real mode DOS environment will be expected to migrate compatibly to Multiple Virtual DOS Machine 
(MVDM) environments. The simple Shift left 4 and add has now merely produced a linear, but not a physical 
address. Hopefully the MVDM hypervisor 'Virtualisation Display Driver' will cope with this, but applications 
must be tested in individual MVDM environments before full real mode DOS compatibility can be claimed. 

Extended Memory 

A DOS application can allocate large areas of Extended memory as working bitmaps for the application. 
It is unnecessary to have system processor addressability to such bitmaps, as the XGA coprocessor can 
do all the necessary accesses, and Extended memory is ideal for this purpose. 

The techniques required to allocate and use Extended memory in a DOS application are not covered here. 

LIM EMS Managers 

The commonest memory management technique that gives extra memory in the DOS environment is the 
Lotus-Intel-Microsoft Expanded Memory Services Manager. Such memory managers implement the LIM 
4.0 specification for a software interrupt driven memory management interface via software interrupt 67h. 
On 80386 and above processors, all the memory is physically allocated as Extended memory, and the LIM 
EMS manager maps this into Expanded memory via the 80386 page tables. 

The drawback to this technique is that a simple Shift left 4 and add will only yield the linear, but not the 
physical address of the LIM frame. To determine the physical address, it is necessary to call the Operating 
System DMA Services interface of the LIM EMS driver to convert linear addresses to physical. This inter-

72 OEK258 00 September 1991 



111 

face, based on Software Interrupt 4Bh, is described in the IBM Personal System/2 and Personal Computer 
BIOS Interface Technical Reference manual. 

This interface is of recent ongin, and early LIM drivers may be encountered that have not yet implemented 
it The application has 2 choices: 

Do not locate resources in LIM memory on which the XGA coprocessor is requested to operate 

2 Specify a dependency in the application documentation on LIM EMS drivers that have implem­
ented this interface. 

11.3.2 32 bit DOS Extended Environments 

This IS the mode of the processor In which full exploitation of the power of the XGA coprocessor is easiest 
The application can allocate huge memory bitmaps without needing to account for the behaviour of a 
memory manager that might change the location of the memory. Calculation of phySical addresses is easily 
accomplished without the system overheads of full blown protect mode operating systems Access to the 
XGA subsystem's system video memory aperture and coprocessor register address space can be accom­
plished eaSily. 

11.3.3 Multiple Virtual DOS Machine Environments 

This is a mode where multiple DOS applications can run concurrently (even windowed on the same 
screen), each application appears internally to be running in the bottom Megabyte of physical address 
space. 

Full compatibility with real mode DOS for a DMA busmaster such as the XGA coprocessor IS only provided 
if each such DOS application using the XGA subsystem in extended graphiCS mode IS locked In the bottom 
1 Mbyte of physical address space 

For the extended graphiCS mode DOS application to run successfully (even if not windowed), the MVDM 
hypervlsor's Virtualisation Display Driver must include specific support functions. 

A suggested technique is described here, although there may be others equally effective. 

On switching to the foreground ("Resurrection") a VDM in which an XGA extended graphics mode DOS 
application is running, the entire 640K of the VDM's linear address space be locked "discontiguous" by 
the VDD The VDDwil1 then use the foreground VDM's Page Directory Entry to provide phYSical addressabil­
ity to the VDM's discontiguous linear address space. The XGA coprocessor's virtual address capability 
can then be used, by giving the XGA coprocessor direct DMA access to the VDM's Page Tables. As the 
entire 640K DOS region IS locked, (except for LIM which will be discussed below), a DOS application will 
not supply addresses outside the locked 640K linear address range 

The technique relies on the XGA coprocessor Page Directory Base Address, once set by the VDD on resur­
rection, remaining unmodified by the application. Inadvertant updates to this field can be prevented by 
placing the XGA coprocessor into User Mode. 

It is pOSSible for an application to program the XGA coprocessor to access memory outSide ofthe applica­
tions own storage. If thiS IS done, the Integnty of the entire system is compromised. 

One complication is LIM, where the DOS application may locate a resource such as a font definition in LIM 
memory, and subsequently give the XGA coprocessor the linear address of the LIM frame, rather than the 
underlying address. This is normally handled in real mode DOS by calling the Operating System DMA Ser­
vices interface of the LIM EMS driver to convert Imear addresses to physical. This will not be appropriate 
In the MVDM environment, as the Linear address is now reqUired byvirtue ofthe factthat XGA is in VM mode, 
operating off the System Page Tables for the VDM in question The obvious solution IS for the VDDto monitor 
the LIM software Interrupt (Int 67h) , and ensure that any LIM 'logical 16K pages' currently mapped into the 
VDM's LIM frames or Windows are locked The VDM's page tables will then naturally reflect the correct 
physical addresses for the LIM pages at the linear address of the LIM frame. Calls to the Operating System 
DMA Services interface must also be filtered out 

72 OEK 258 00 September 1991 



112 

11.3.4 Protect Mode 16 Bit Segmented Environments 

An application written for this environments has a range of limitations imposed by the operating system. 

64K Segment Limit 

No memory object in this environment can be larger than 64K, unless allocated by a kernel device driver 
on initialisation. 

The application cannot assume that 2 adjacent segments are located adjacent in physical address space 

Segment Motion 

Segments are liable to be moved in physical system rnemory at any time Segments may even be 
'swapped' out to disk when mernory is overcommitted. 

All segments must be 'locked' before the physical address is established. 

Consideration must be given to the overall impact on system performance of long term locking of large 
areas of memory It also Increases the minimum physical memory configuration that is required to run the 
application. 

System Overheads 

Applications generally run at a low privilege level, and Video device drivers must be accessible easily and 
frequently by the application without large system overheads 

Applications using the XGA coprocessor typically need to make use of the operating system's memory 
management services. These services (used for locking segments and determining physical address of 
segments) are typically restricted to device drivers at operating at high privilege levels. 

The system overhead in reaching these services in such operating systems may be so high as to make 
the writing of high performance applications difficult. 

Access to XGA Registers and System Memory Apertures 

Considerable ingenuity is required to provide addressabllity to the XGA subsystem's I/O and memory 
space. A technique for this is described in Section 11.2. 

Suggested Design Model 

A suggested design for an application in this environment is as follows: 

Use a kernel or Ring 0 '.SYS' device driver to permanently allocate a range of physical memory (tYPically 
1281<) The device driver can then generate a GDT selector to this Kernel Work Space (KWS) that is valid 
In User mode at Ring 3. Both the virtual and physical addresses are passed back to the application in User 
mode The Kernel device driver also provides User mode addressability to the XGA coprocessor's register 
address space. 

The application can then operate totally in User mode, passing resources (for example, bitmaps, patterns, 
etc.) by system processor block moves Into the KWS. The application can then drive the XGA coprocessor 
to access the resources in the KWS without ever suffering the system overheads of switching into kernel 
mode again. Bitmaps are effectively 'cached' via the KWS to the XGA coprocessor. 

The prinCipal feature of this technique is to minimize kernel or system overheads. 

72 OEK258 00 September 1991 



_______ ~ ________ ~_~. __ ~ ___ ~ ___ ..... ___ .~_ .. ~ ___ 1~ 

11.3.5 Paged Virtual Memory (VM) Environments 

This environment shares many constraints with the 16 bit segmented environment The principle difference 
is that the unit of granularity of memory objects has dropped from 64K to 4K, the VM support in the XGA 
coprocessor IS Intended to support this environment 

4K Discontiguous Pages 

In this environment, memory is allocated to applications In 4K pages. The system memory manager looks 
after all paging, and may swap pages in and out of physical memory transparently to the application. The 
application can make no assumptions about the relationship between adjacent pages. 

There are memory management calls available to the kemel or Ring 0 device driver that will allow such 
a device driver to build a table containing the physical addresses of all the component pages of a large 
bitmap. As with 16 bit segmented environments, described in Section 11.34, the overhead of the transition 
to kernel mode to make such calls expensive It is, however, possible to bUild such a table, and to operate 
the XGA coprocessor in wtual memory mode. The overall impact on system performance and minimum 
physical memory configurations should be considered, particularly as a bitmap in this case could theoreti­
cally be 4Kx4Kx8bpp, a total of 16 Mbytes of locked physical memory 

It is possible to use the XGA coprocessor to interrupt to indicate a page fault, but this interrupt is a normal 
shared adapter interrupt rather than a 1386 page fault interrupt As such it is handled at a lower priority. A 
further complication is that most such operating systems do not allow device drivers to call the Memory 
Management services (to request the faulting pages) on an interrupt thread 

Page Table Coherency 

It would seem obvious that the XGA coprocessor should be able to operate off the system page tables, 
as the XGA coprocessor uses i386 like page tables. 

Unfortunately a typical VM operating system uses a set of page tables per task. In a multi tasking environ­
ment, only the currently executing task's page tables remain coherent, while background task's page 
tables are allowed to become outdated or incoherent 

This implies that the XGA coprocessor can be operating on a set of page tables belonging to what may 
be a background task, and so it cannot assume that the page table remains coherent unless the component 
pages have been locked by a call to the system memory management Interface by a kernel device driver. 

System Overheads 

The overheads associated in switching from the applications privilege level to the kernel level have been 
described earlier, see System Overheads in Section 11.3.4. 

Access to XGA Registers and System Memory Apertures 

Again it is necessary to provide addressabillty to these XGA subsystem's I/O spaces. The Operating sys­
tem memory management services must be called to map these ranges of physical system memory Into 
the application'S task address space 

Suggested Design Model 

The optimum design model is one that minimizes kemel overhead at all cost A similar model to that sug­
gested In Section 11.3.4 IS again appropriate for this enVIronment 

11.3.6 Video Memory Addressability in VM Mode 

In 'Video Memory Location in Coprocessor Address Space' on page 98 there is a description of how the 
XGA coprocessor differentiates video memory from system memory When operating the XGA subsystem 
in VM mode, this comparison is done post-translate, on physical address space, while all addresses 
passed to the coprocessor are pre-translate, that is on linear address space When bUilding VM addressa-

72 OEK258 00 September 1991 



114 

bility to system memory bitmaps for the XGA subsystem, it is also necessary to map local video memory 
into the page directory structure to allow the XGA coprocessor to differentiate video memory from system 
memory. 

11.3.7 System Memory Access Limitation 

The XGA sUbsystem can be plugged into any 16 or 32 bit slot in any i386SX, i386DX and i486 systems. 
In a 16 bit slot, the address range is limited since there are only 24 address lines on 16 bit slots. The range 
of physical addressability to system memory using DMA busmastership is limited to 24 bit physical ad­
dress space (or 16 Megabytes) when the subsystem occupies a 16 bit slot. 

Systems based on the i386SX are 16 bit throughout, and 16 Mbytes is the limit of addressability of the sys­
tem processor in any case so there are no constraints. 

The constraint applies when 

• It is a 32 bit system based on the i386DX or i486 

• There is more than 16 Megabytes of physical memory installed 

• The XGA subsystem is plugged into a 16 bit slot. 

In this case, the XGA coprocessor cannot access memory located above the 16 Mbyte line in physical 
address space. To determine if the XGA subsystem is in a 16 bit slot, examine the Auto-Configuration regis­
ter, as described in 'Auto-Configuration Register (Index: 04)' on page 24. The application must ensure (with 
operating system assistance if necessary) that all memory bitmaps on which the XGA processor is asked 
to operate are located below the 16 Mbyte line in physical address space. 

The alternative is for the application to specify that the XGA subsystem is always plugged into 32 bit slots 
on 32 bit systems. 

72 OEK 258 00 September 1991 



________ ~ __ .. _______ ~ ... ____________ 1_15 

12 Upwards Compatibility 

Upwards compatibility problems can be minimized by sensible programming practices, and some specific 
precautions 

12.1 XGA Subsystem POS ID Allocations 

A number of POS 10's have been pre-allocated to the XGA subsystem and follow-on XGA register compat­
ible subsystems, as follows: 

8FD8h 
8FD9h 
8FDAh 
8FOBh 

Application writers should check for all these POS ID's when determining the existence and location of the 
XGA subsystem in the system. 

12.1.1 General Register Usage 

To avoid conflicts with possible future changes in the use of registers or register fields, applications must 
comply with the Register Usage Guidelines at the start of the various register definition sections. 

12.1.2 Video BIOS Mode 14h 

Video BIOS mode 14h has been reserved to support the 132 column text mode. Applications should plan 
to use BIOS support for this mode as it becomes available, and should, therefore, query Video BIOS for 
the existence of the mode, and in the case of a positive response, the Video BIOS Int 10h Set mode should 
be used for mode setting. Only in the absence of Int 1 Oh Video BIOS support should the direct mode setting 
procedure described in this chapter be used. 

12.1.3 PS/2 Video Memory Apertures 

As described In Section 11.2 none of the apertures may always be relied upon to exist, depending on con­
figurations, bus size, etc. For maximum flexibility, applications are recommended to avoid using the aper­
tures, but if this is not possible, the following considerations apply' 

Providing the XGA subsystem is not plugged into a 16 bit slot on a 32 bit system at least one of 
the two potential protect mode apertures should always be available. 

2 The user of the application should be instructed that the XGA subsystem must be installed in a 
32 bit slot on a 32 bit system. 

72 OEK258 00 September 1991 



116 

13 Programming the XGA Subsystem in Extended Graphics Mode 

Having set the subsystem into the required mode as described in Section 11.1.1 this section describes 
using the Extended Graphics Functions of the XGA coprocessor. 

13.1 XGA Coprocessor Pixel Interface Registers 

All extended graphics functions devolve down to graphics update operations involving up to 4 Pixel Maps. 
A Pixel Map is defined by five registers: 

Pixel Map Index Register 

2 Pixel Map n Base Pointer Register 

3 Pixel Map n Width Register 

4 Pixel Map n Height Register 

5 Pixel Map n Format Register 

13.1.1 Pixel Map Index Register (OFFSET 12h) 

The Pixel Map Index Register defines which of the 4 possible maps is to be defined. The encoding of this 
4-bit register IS as follows: 

Mask Map 0 

Pixel Map A 

Pixel Map B 2 

Pixel Map C 3 

Example' 

To use Pixel Map A, WRITE Olh to copr_regs offset I2h. 

13.1.2 Pixel Map Base Address Register (OFFSET 14h) 

The Pixel Map Base Address Register defines the byte address in memory of the start of the Pixel Map 
It is a 32-bit address register and can therefore address up to 4096 Mbytes of memory. A Pixel Map can 
be defined to be in the XGA video memory or in system memory. 

As described in 'Video Memory Location in Coprocessor Address Space' on page 97, to define a Pixel 
Map as being in XGA video memory, the address put in this register must be in the range' 

Video Memory Base Address ++ (Video Memory Base Address + Video Memory size) 

If the Pixel map is in system memory and the Micro Channel interface is a 16 bit interface (for example, 
if the XGA adapter is installed in a.16 bit slot) then the address of the map must be below 16 Mbytes. 

13.1.3 Pixel Map Width Register (OFFSET ISh) 

The Pixel Map Width is measured in pixels and is defined as 1 less than the reqUired width. 

Examples: 

To set the Width of a Pixel Map to 640 pixels, 
WRITE 027Fh to copr_regs offset ISh 

To set the Width of a Pixel Map to 1024 pixels, 
WRITE 03FFh to copr_regs offset ISh 

72 OEK258 00 September 1991 



13. i.4 Pixel Map Height Register (OFFSET 20h) 

The Pixel Map Height is measured in pixels and is defined as 1 less than the required height. 

Examples: 

To set the Height of a Pixel Map to 480 pixels. 
WRITE OlDFh to copr_regs offset 20h 

To set the Height of a Pixel Map to 768 pixels, 
WRITE 02FFh to copr_regs offset 20h 

13.1.5 Pixel Map Format Register (OFFSET 1Ch) 

This register specifies the bits/pixel of the Pixel Map. The encoding of the register is as follows: 

1 bit/pixel Intel format 
2 bits/pixel Intel format 
4 bits/pixel Intel format 
8 bits/pixel Intel format 
1 bit/pixel Motorola format 
2 bit/pixel Motorola format 
4 bit/pixel Motorola format 
8 bit/pixel Motorola format 

Example: 

(OOh) 
(01h) 
(02h) 
(03h) 
(08h) 
(09h) 
(OAh) 
(OBh) 

For an 8 bit/pixel Motorola format Pixel Map, 
WRITE OBh to copr regs offset leh 

117 

The relationship between Intel and Motorola format Pixel maps is discussed in Section 4.1.1 and 
Section 13.5. 

All four Pixel Maps (Maps A, Band C and the Mask map) can be initialized in this manner ready for later 
use. Maps A, Band C can be used interchangeably as the source, destination or pattem in all subsequent 
pixel operations. 

13.1.6 Other Registers 

For simple operations the Pixel Interface Control register should be cleared. 

Example: 

WRITE OOh to copr_regs offset llh 

For simple operations the Destination Color Compare Register should be set so that it has no effect on the 
operation. 

Example: 

WRITE 04h to copr regs offset 4Ah 

To allow all planes of a Pixel Map to be updated, the Pixel Bit Mask should be turned on. That is set all 
bits to a '1' that are required for the pixel size selected. 

Example: 

WRITE OOFFh to copr_regs offset 50h for 8 bits per pixel 

For simple operations the Carry Chain Mask should be turned on. That is set all bits to a '1' that are required 
for the pixel size selected. 

Example: 

WRITE FFh to copr regs offset 54h for 8 bits per pixel 

72 OEK 258 00 September 1991 



118 

13.2 Using the Coprocessor to Perform a Pixel Blit (PxBlt) 

This section describes in detail the actions necessary to use the XGA coprocessor to perform a typical 
simple PxBIt. 

Various types of PxBlt can be performed but the subject of this example is for a PxBlt into video memory 
using the Foreground Color Register as the Source Data. The effect achieved will be to draw a solid rectan­
gle into the Display Pixel Map. 

This section will detail the steps necessary to perform the PXBlt mentioned above with a foreground color 
of 05h, 100 pixels wide and 60 pixels deep. This is positioned at screen coordinates X = 200 and Y = 150. 

The example is summarized in the table below and each value is explained in detail in the following sec­
tions which also give useful information on the other forms of PxBlt available. 

Value Copr regs Offset 
03h 48h. 

05h 58h 

0063h 60h 

003Bh 62h 

00C8h 78h 

0096h 7Ah 

08118000h 7Ch 

13.2.1 Mixes and Colors 

Before a coprocessor operation can be performed, the background and foreground 'mixes' have to be set. 
Mixes are logical or arithmetic functions performed on the source and destination data when performing 
a coprocessor operation. The full range of mix functions available are as follows' 

Code Function 
0 zeros 

1 source AND destination 

2 source AND NOT destination 

3 source I 
4 NOT source AND destination 

5 destination 

6 source XOR destination 

7 source OR destination 

8 NOT source AND NOT destination 

9 source XOR NOT destination 

A NOT destination 

B source OR NOT destination 

C NOT source 

D NOT source OR destination 

E NOT source OR NOT destination 

F ones 

10 maximum 

11 minimum 

12 add with saturate 

13 subtract (destination - source) with saturate 

14 subtract (source - destination) with saturate 

15 average 

72 OEK 258 00 September 1991 



119 

Foreground and Background Mix Registers 

The mixes to be applied to foreground and background pixels are specified in these two registers, The 
contents of the pattem map determine which pixels are foreground and which are background, For this sim­
ple example the PxBlt is solid, and so contains only foreground pixels, The foreground mix register should 
be set to 'SOURCE' to give a readily understandable result on the screen, 

For our example: 

WRITE 03h to copr_regs offset 4Sh (Foreground Mix Register) 

Foreground & Background Color Registers 

The colors to be used for foreground and background pixels are specified in these two registers, In this 
simple example the PxBlt is solid and so only the Foreground Color Register needs to be set up, 

For our example: 

WRITE 05h to copr_regs offset 5Sh (Foreground Color Register) 

Other forms of PxBlt (for example, video memory to video memory and so on) PxBlt from a Source Map 
into a Destination Map and therefore do not use these color registers, 

13.2.2 PxBlt Dimensions 

The Operation Dimension 1 Register should be loaded with the WIDTH of PxBlt that is to be performed, 
The value loaded into the register should be 1 pixel less than the required Width (in pixels), 

For our example: 

For a PxBlt 100 pixels wide, WRITE 0063h to copr_regs offset 60h 

The Operation Dimension 2 Register should be loaded with the HEIGHT of PxBlt that is to be performed, 
The value loaded into the register should be 1 pixel less than the required Height (in pixels). 

For our example: 

For a PxBlt 60 pixels High, WRITE 003Bh to copr_regs offset 62h 

13.2.3 Pixel Map, Source & Destination 

Source Map X and Y Registers 

The Source Map IS initialized as detailed in the previous chapter. Two registers exist that contain the X & 
Y offset positions within the Source map of the start of the source data for a PxBIt. These registers are used 
if you are performing a PxBlt using a Source Map, In this example these registers are unused, 

Destination Map X and Y Registers 

The Destination Map is initialized as detailed in the previous chapter, Two registers exist that contain the 
X & Y offset positions within the Destination map of the start of the PxBIt. 

For our example: 

To position the PxBLt at X=200 and Y=150 in the destination map 
WRITE OOCSh to copr_regs offset 7Sh (Destination Map X position) 
WRITE 0096h to copr regs offset 7Ah (Destination Map Y position) 

Pattern Map X and Y Registers 

The Pattem Map is initialized as detailed In the prevIous chapter. Two registers exist that contain the X & 
Y offset positions within the Pattern map of the start of the pattern data for a PxBIt. These registers are used 
if you are performing a PxBlt uSing a Pattern Map. 

For this example these registers are unused. 

72 OEK258 00 September 1991 



120 

Mask Map Origin X and Y Offset Registers 

The Mask Map is initialized as detailed in the previous chapter. Two registers exist that contain the X & y 
offset positions of the start of the Mask Map relative to the top left corner of the Destination Map. These 
registers are used if you are performing a PxBlt using a Mask Map. 

For this example these registers are unused. 

13.2.4 Pixel Operations Register 

This is a 32-bit register which defines the operation that the coprocessor performs. 

31 3C 2928 27 24 23 20 19 16 15 12 11 876 5 4 3 2 0 

I I I I I I I I I I I I I I xlxlxlx I I X I I 
1 2 3 4 5 6 7 8 9 

Figure 13.1 Bit Layout Pixel Operations Register 

The bits 0:31 are shown on the top of the diagram above and fields 1-9 are shown on the bottom. The defini­
tion of these fields are: 

Background Source 

2 Foreground Source 

3 Step Function 

4 Source Pixel Map 

5 Destination Pixel Map 

6 Pattern Pixel Map 

7 Mask Pixel Map 

8 Drawing Mode 

9 Direction Octant 

These fields will be described in turn until we have assembled the complete Pixel Operations Register con­
tents. 

Background Source 

These bits determine the origin of the Background source pixels when an operation is performed. 

The encoding for these bits is as follows: 

Background Color 'OO'b (for example, for a fixed register value to video memory PxBlt). 

Source Pixel Map '10'b (for example, for a video memory to video memory PxBlt). 

For this example, there is no background color, and the field is ignored. 

Background Source = 'OO'b 

72 OEK 258 00 September 1991 



Foreground Source 

These bits determine the origin of the Foreground Source pixels when an operation is performed. 

The encoding for these bits is as follows. 

Foreground Color 'OO'b (for example, for a fixed register value to Video memory PxBlt). 

Source Pixel Map '10'b (for example, for a video memory to video memory PxBlt). 

For this example: 

Foreground Source 'OO'b (Solid Foreground Color) 

Step Function 

These bits define the type of operation that the coprocessor is required to do 

Draw & Step Read 
Line Draw Read 
Draw & Step Write 
Line Draw Write 
PxBlt 
Inverting PxBlt 
Area Fill PxBlt 

For this example: 

Step Function 

Source Pixel Map 

'0010'b 
'OOll'b 
'0100'b 
'0101'b 
'1000'b 
'1001'b 
'1010'b 

'1000b' (PxBlt) 

121 

These bits define which Pixel Map is used as the Source Map in the operation. This enables different maps 
to be setup in advance, and defined for use as this register is loaded. 

The encoding for these bits IS as follows: 

Pixel Map A 
Pixel Map B 
Pixel Map C 

'0001 'b 
'0010'b 
'OOll'b 

For this example the contents of this field will be ignored. 

Source Pixel Map ~ 'OOOl'b (must not be a reserved value) 

Destination Pixel Map 

These bits define which Pixel Map is used as the Destination Map in the operation This enables different 
maps to be setup in advance, and defined for use as this register is loaded. 

The encoding for these bits is as follows: 

Pixel Map A 
Pixel Map B 
Pixel Map C 

For this example· 

'OOOl'b 
'0010'b 
'OOll'b 

Destination Pixel Map 

72 OEK258 00 

'OOOl'b (Pixel Map A) 

September 1991 



122 

Pattern Pixel Map 

These bits define which Pixel Map is used as the Pattern Map in the operation. This enables different rnaps 
to be setup in advance, and defined for use as this register is loaded. 

The encoding for these bUs is as follows: 

Pixel Map A 
Pixel Map B 
Pixel Map C 
Foreground (fixed) 
Generated from Source 

For this exarnple: 

'0001'b 
'0010'b 
'0011'b 
'1000'b 
'1001'b 

Pattern Pixel Map 'lOOO'b (Foreground (fixed), for a solid Pxblt) 

Mask Pixel Map 

These bits define whether the Mask Map is used, or not, in the operation. 

The encoding for these bits is as follows: 

Mask Map Disabled 'OO'b 
Mask Map Boundary Enabled '01 'b 
Mask Map Enabled '10'b 

For this exarnple: 

Mask Pixel Map 

Drawing Mode 

'OO'b (Mask Map disabled) 

These bits only concern line drawing only and so are discussed else where. They are ignored during a 
PxBIt. 

For this exarnple: 

Drawing Mode 

Direction Octant 

'OO'b 

These bits, when concerned with PxBlts deterrnine the direction that the PxBlt is drawn in. 

The encoding for these bits is as follows: 

'OOO'b or '001'b Start at Top LH corner of Area increasing right and down. 
'100'b or '101'b Start at Top RH corner of Area increasing left and down. 
'010'b or '011'b Start at Bottorn LH corner of Area increasing right and up. 
'110'b or '111'b Start at Bottorn RH corner of Area increasing left and up 

('OOO'b or '001 'b) ('100'b or '101'b) 

PxBlt'ing AREA 

r --~~----- r 
('010'b or '011 'b) ('110'b or '111 'b) 

Figure 13.2 Operation Direction Diagrarn 

72 OEK258 00 Septernber 1991 



123 

These bits are normally set to 'OOO'b, but other values are necessary to avoid pixel corruption when Source 
and Destination rectangles overlap. 

For this example: 

Direction Octant 'OOO'b (Top Left) 

Conclusion 

Putting all these together, for our PxBlt the Pixel Operations Register should be set as: 

Figure 133 Example Definition for Pixel Operations Register 

For this example: 

WRITE 08118000h to copr regs offset 7Ch 

13.3 Using the Coprocessor to Perform a Bresenham Line Draw 

The next example is the detailed steps necessary to draw a line of palette color 05h from (20,15) to (80,35). 

The example is summarized in the table below and each value is then explained in detail in the following 
sections which also give useful information on the other line drawing options available. 

Value Copr Jegs Offset 
03h 48h 

05h 58h 

-20d 20h 

40d 24h 

-80d 28h 

59d 60h 

20d 78h 

15d 7Ah 

05118000h 7Ch 

72 OEK 258 00 September 1991 



124 

13.3.1 Mixes and Colors 

Before a coprocessor operation can be performed, the Background and Foreground 'mixes' have to be 
set Mixes are logical or arithmetic functions performed on the Source and Destination data when perform­
ing a coprocessor operation The mix functions available are as follows: 

Code 

o 

2 

3 

4 

5 
6 
7 

8 

9 

A 

B 

C 

D 

E 

F 

10 

Function 

zeros 

source AND destination 

source AND NOT destination 

source 

NOT source AND destination 

destination 

source XOR destination 

source OR destination 

NOT source AND NOT destination 

source XOR NOT destination 

NOT destination 

source OR NOT destination 

NOT source 

NOT source OR destination 

NOT source OR NOT destination 

ones 

maximum 

11 minimum 

12 add with saturate li3 I subtract (destination - source) with saturate 

14 I subtract (source - destination) with saturate 

15 average 

Foreground and Background Mix Registers 

The Foreground and Background Mix registers allow a mix (as detailed in the table above) to be specified. 
These Registers are discussed in the previous example in Section 13 2. 

For the purposes of the simple example being followed here, the Foreground Mix Register should be loaded 
with 'SOURCE' The Background Mix Register is not used in this example. 

For our example: 

WRITE 03h to copr_regs offset 4Sh (Foreground Mix Register) 

Foreground and Background Color Registers 

The Foreground Color register should be set to the color required for the line. 

For this example: 

WRITE 05h to copr_regs offset 5Sh (Foreground Color Register) 

72 OEK 258 00 September 1991 



125 

13.3.2 Bresenham Line Draw 

The algorithm used to perform the linedraw function on the XGA is the Bresenham Line Draw Algorithm. 
This algorithm operates with all parameters normalized to the first octant (Octant 0). 

The first task is to calculate DeltaX and DeltaY as shown in the figure 13.4. 

(0,0) 
X pixels 

(20,15) deltaX=60 
~----------------I 

Line Start I 

I 
I deltaY=20 

Y pixels 

deltaX = 60 (decimal) 

deltaY = 20 (decimal) 

Figure 13.4 Line Draw Example in Octant 0 

I 

~ (80,35) 

Line End 

A line in the first octant as shown above has deltaX greater than deltaY with both deltaX and deltaY positive 
and deltaX greater than deltaY. If a line is to be drawn in another octant, the octant information is specified 
in the octant bits of the Pixel Operation Register and the line drawn as if it was in the first octant. 

To normalize a line to the first octant the following rules should be followed: 

• If deltax is -ve , set DX in Octant bits of the Pixel Operation Register and make deltaX +ve. 

• If deltaY is -ve , set DY In Octant bits of the Pixel Operation Register and make deltaY + ve 

• If deltaY 2:: deltaX , set DZ in Octant bits of the Pixel Operation Register and exchange deltaX and 
deltaY. 

The terms deltax and deltaY referred to below are the lengths of the line after it has been normalized to 
Octant O. The algorithm requires several parameters to be calculated. These are. 

Bresenham Error Term Register 

Bresenham Error Term ET = (2*deltay) - deltaX 

For this example: 

WRITE -20 decimal (FFECh) copr_regs offset 20h 

Bresenham Constant K1 Register 

Bresenham Constant K1 = 2*deltaY 

For this example: 

WRITE +40 decimal (0028h) copr_regs offset 24h 

72 OEK 258 00 September 1991 



126 

Bresenham Constant K2. Register 

Bresenham Constant K2 = 2*(deltaY - deltaX) 

For this example: 

WRITE -80 decimal (FFBOh) copr_regs offset 28h 

Operation Dimension Registers 

The Operation Dimension 1 Register should be loaded with (deltaX - 1) after normalization. 

For this example· 

WRITE +59 decimal (003Bh) to copr_regs offset SOh 

The Operation Dimension 2 Register is not used for line draw. 

13.3.3 Pixel Map, Source and Destination 

Source Map X and Y Registers 

The Source Map is defined as described in Section 13.1. Two registers exist that contain the X & Y offset 
positions within the Source map of the start of the source data for a PxBIt. These registers are used if you 
are drawing a line using a Source Map. In this example these registers are unused. 

Destination Map X and Y Registers 

The Destination Map is initialized as described in Section 13.1. Two registers exist that contain the X & Y 
offset positions within the Destination map of the start of the Line. 

In this example: 

WRITE +20 decimal (0014h) 
to copr_regs offset 7Sh (Destination Map X position) 

WRITE +15 decimal (OOOFh) 
to copr_regs offset 7Ah (Destination Map Y position) 

Pattern Map X and Y Registers 

The Pattern Map is initialized as described in Section 13.1 Two registers exist that contain the X & Y offset 
positions within the Pattern map of the start of the pattern data for a Line. These registers are used if you 
are drawing a line using a Pattern Map. In this example these registers are unused 

Mask Map Origin X and Y Offset Registers 

The Mask Map is initialized as described in Section 13.1 Two registers exist that contain the X & Y offset 
positions of the start of the Mask Map relative to the top left corner of the Destination Map. These registers 
are used If you are drawing a line using a Mask Map In this example these registers are unused. 

72 OEK258 00 September 1991 



127 

13.3.4 Pixel Operations Register. 

This is a 32-bit register which defines the operation that the coprocessor performs. 

31 3C 2928 27 2~ 23 20 19 16 15 12 11 876 5 4 3 2 0 

I I I I I I I I I I I I I I xlxl xix I I x I I 
1 2 3 4 5 6 7 8 9 

Figure 13.5 Bit Layout Pixel Operations Register 

The bits 0:31 are shown on the top of the diagram above and fields 1-9 are shown onthe bottom. The defini­
tion of these fields are: 

Background Source 

2 Foreground Source 

3 Step Function 

4 Source Pixel Map 

5 Destination Pixel Map 

6 Pattern Pixel Map 

7 Mask Pixel Map 

8 Drawing Mode 

9 Direction Octant 

These fields will be described in turn until we have assembled the complete Pixel Operations Register con­
tents. 

Background Source 

These bits determine the origin of the Background source pixels when an operation IS performed. 

The encoding for these bits is as follows' 

Background Color 'OO'b (for example, for a fixed pattern line draw using a fixed register value) 

Source Pixel Map '10'b (for example, for a variable color data pattern held invldeo memory 
to video memory draw). 

In this example the contents of this field are ignored as the line is solid and so has no Background pixels: 

Background Source = 'OO'b 

Foreground Source 

These bits determine the' origin of the Foreground Source pixels when an operation is performed. 

The encoding for these bits is as follows: 

Foreground Color 

Source Pixel Map 

For this example: 

'OO'b (for example, for a fixed pattem line draw uSing a fixed register value) 

'10'b (for example, for a variable color data pattern held in video memory 
to video memory draw). 

. Foreground Source 'OO'b (Solid Foreground Color) 

72 OEK 258 00 September 1991 



128 

Step Function 

These bits define the type of operation that the coprocessor is required to do. 

Draw & Step Read '0010'b 

Line Draw Read 

Draw & Step Write 

Line Draw Write 

PxBlt 

Inverting PxBlt 

Area Fill PxBlt 

For this example: 

step Function 

Source Pixel Map 

'0011'b 

'0100'b 

'0101'b 

'1000'b 

'1001'b 

'1010'b 

'OlOlb' (Line Draw Write) 

These bits define which Pixel Map is used as the Source Map in the operation. This enables different maps 
to be setup in advance, and defined for use as this register is loaded. 

The encoding for these bits is as follows· 

Pixel Map A '0001 'b 

Pixel Map B 

Pixel Map C 

'0010'b 

'0011'b 

In this example the contents of this field is ignored: 

Source Pixel Map = 'OOOl'b (must not be a reserved value) 

Destination Pixel Map 

These bits define which Pixel Map is used as the Destination Map in the operation This enables different 
maps to be setup in advance, and defined for use as this register is loaded. 

The encoding for these bits is as follows· 

Pixel Map A '0001'b 

Pixel Map B 

Pixel Map C 

For this example: 

'0010'b 

'0011 'b 

Destination Pixel Map 

Pattern Pixel Map 

'OOOl'b (Pixel Map A) 

These bits define which Pixel Map is used as the Pattern Map in the operation. This enables different maps 
to be setup in advance, and defined for use as this register is loaded. 

The encoding for these bits is as follows· 

Pixel Map A '0001 'b 

Pixel Map B '0010'b 

Pixel Map C 

Foreground (fixed) 

Generated from Source 

For this example: 

'0011'b 

'1000'b 

'1001 'b 

Pattern Pixel Map = 'lOOO'b 
(Foreground (fixed), for a solid Line) 

72 OEK258 00 September 1991 



-----~-~---~----------

Mask Pixel Map 

These bits define whether Mask Map is used, or not, in the operation~ 

The encoding for these bits is as follows: 

Mask Map Disabled 'OO'b 

Mask Map Boundary Enabled '01 'b 

Mask Map Enabled '10'b 

For this example~ 

Mask Pixel Map 

Drawing Mode 

'OO'b (Mask Map disabled) 

These bits determine the attributes of a Line Draw~ 

The encoding for these bits is as follows· 

Draw All Pixels 'OO'b 

Draw First Pixel Null '01 'b 

Draw Last Pixel Null '11 'b 

Mask Area Boundary '11 'b 

129 

The first three of these options can be used when drawing a line The fourth option is for use when drawing 
the outline of a shape to be filled using the AreaFili capability of the hardware. 

For this example: 

Drawing Mode 

Direction Octant 

'OO'b (Draw All Pixels) 

These bits, when concerned with Line Draws determine the direction that the Line is drawn in~ 

The encoding for these bits is as follows: 

Bit2(DX) '1 'b if Negative X direction 

Bit 2(DX) 'O'b if Positive X direction 

Bit l(DY) 'l'b if Negative Y direction 

Bit l(DY) 'O'b if Positive Y direction 

Bit O(DZ) 'l'b If IXI < IYI 
Bit O(DZ) 'O'b if I X I > I Y I, (magnitude) 

X----

Y 

For this example: 

Direction Octant 'OOO'b (X +ve, Y +ve, Ixi > IYI) 

72 OEK258 00 September 1991 



130 

Conclusion 

Putting all these together for our example Line Draw operation, the Pixel Operations Register should be 
set as: 

Figure 13.6 Example Definition for Pixel Operations Register 

For this example: 

WRITE 05118000h to copr_regs offset 7Ch 

13.4 Memory Access Modes (Reg. 21x9) 

This register IS used to control the format of the data supplied by the system processor through a system 
video memory aperture. For conventional use, this register should be set to match the format of the data 
as seen by the system processor (see Section 13.5), and the depth of the video memory bitmap. 

It is possible to exploit the different formats available using this register to achieve useful and otherwise 
difficult conversions. 

13.5 Motorola/Intel Format 

The internal organization of the video memory is Intel format. However images and bitmaps are traditionally 
stored in Motorola format It is important and necessary to understand the format of the application's bit­
maps in system memory to get the correct results. The different formats are described in Section 4.1.1 

The intemal organization of video memory as Intel format can be entirely hidden by appropriate use of the 
Memory Access Mode register (Section 13.4) and the various Coprocessor Pixel Map format registers. 

13.5.1 System Processor Access 

When using the system processor to read or write data direct to or from video memory via a system video 
memory aperture, it is necessary to specify the format of the data via the Memory Access Mode Register 
(21x9). 

13.5.2 XGA Coprocessor Accesses 

The format of all bitmaps in system memory must be specified, via the Pixel Map format register. This pa­
rameter IS ignored for bitmaps in video memory. 

13.5.3 Explonation 

Writing data in one format, and reading it back in another is a technique that performs many useful and 
otherwise difficult and/or expensive bitmap conversions. 

72 OEK 258 00 September 1991 



131 

14 Other Programming Considerations 

14.1 Overlapping BitBlits 

14.1.1 Pixel Block Transfer (PxBlt) 

The coprocessor PxBltfunction is used to transfer a rectangular block of pixels from the Source to the Desti­
nation subject to a number of modifiers, in other words a standard BitBlit operation. Where the Source and 
Destination rectangles do not overlap, the order of processing pixels is obviously immaterial. In cases 
where the rectangles do overlap, it is important to pre-determine that this is the case, and to program the 
PxBlt direction (via the Direction Octant) correctly to ensure the expected result. 

14.1.2 Inverting PxBlt 

The inverting PxBlt is intended to convert images from the traditional application format of Y increasing up­
wards to the traditional display hardware format of Y increasing downwards. As such a PxBlt operates from 
both ends towards the middle, an Inverting PxBIt involving overlapping Source and Target rectangles inevit­
ably overwrites pixels. The lesson here is that Inverting Pxblts on overlapping rectangles should be 
avoided, unless for carefully considered special effects. 

14.2 Sprite Handling 

14.2.1 Sprite Loading 

The sprite is loaded as a 64 x 64 x 2bpp Intel format image definition. As the application's Sprite definition 
is invariably held in 2 separate 1 bpp Motorola format bitmaps it is necessary to merge and 'pixel swap' 
the Sprite definition into 2bpp Intel format before loading the Sprite. 

14.2.2 Sprite Positioning 

The position of the sprite is then controlled by 2 separate controls, as follows: 

Sprite Start Registers The sprite is positioned on the display surface by specifying the position of 
the upper left comer of the sprite definition relative to the upper left comer of the viSible bitmap 
using the Horizontal and Vertical Start registers. 

Sprite Preset Registers The Sprite Start registers only accept positive values, and cannot be used 
to move the sprite partially off the display surface at the left and top edges. The Sprite Preset Reg­
isters are used to offset the start of the displayed sprite definition horizontally and/or vertically 
relative to the loaded definition. 

For example, if it is desired to display a 64 x 64 sprite with the leftmost 32 pels outside the left 
edge of the display surface, set the Horizontal Start Registerto 0, and the Horizontal Preset Regis­
ter to 32. The Start position has now been preset to the centre of the loaded definition, giving the 
desired effect. 

The Sprite Preset can also be used to display sprites smaller than 64x64. 

14.3 Waiting for Hardware Not Busy 

The XGA coprocessor operates asynchronously with the system processor. It is necessary to wait for the 
previous operation to complete before issuing the next operation. There are 2 ways to do this, each with 
its own drawbacks and advantages. 

Polling the Busy bit There is a Coprocessor Busy bit provided in XGA coprocessor PI Control register 
that may be polled to ascertain the completion of the previous operation prior to initiating the next 
operation. 

72 OEK258 00 September 1991 



132 

Continuous polling of this bit slows down the coprocessor which must pause in its current opera­
tion to process the 'read' of the PI control register 

If this method is chosen, it is advisable to code a double polling loop, only checking the Copro­
cessor busy bit once for every 100 times around the loop, for example. 

Advantages: 

• Minimal overhead. For typical PxBlts used to display text, the previous PxBlt operation will be 
almost complete before the system processor is ready to issue the next operation. 

• Simplicity 

Disadvantages: 

• Frequent use delays the XGA coprocessor. This can be partially reduced by a double loop 
algorithm. 

• The processor is kept busy doing nothing, although it has to be 'doing nothing' for a long time 
to exceed the interrupt response codepath. 

Operation complete interrupt The coprocessor can be programmed to cause an interrupt to the sys­
tem processor when an operation is completed. 

This interrupt is a shared level, and interrupt response time therefore depends on other interrupt 
handlers chained on this shared level. In protect mode operating systems, in particular, the over­
heads and restrictions placed on interrupt handlers may make the performance of this technique 
prohibitive. 

Advantages: 

• The XGA coprocessor is not slowed while waiting for completion. 

• The system processor may be freed up for other tasks. 

Disadvantages: 

• Program complexity. 

• Interrupt response time gives a threshold in size of operation that is only exceeded by large 
PxBlt operations. The more complex the operating system, the higher the interrupt response 
time, and the larger the operation must be to benefit from using interrupts to notify the applica­
tion of operation complete. 

14.4 Destination Bitmap Width Restriction 

Incorrect results can be obtained if the XGA coprocessor is used to write over the edge of a destination 
bitmap where the edge of the bitmap IS not four byte aligned. To avoid this, either: 

• Ensure that all destination bitmaps have a base address that is on a four byte boundary, and are 
an exact multiple of 4 bytes in width. 

The visible display bitmap naturally complies with this restriction. 

or 

• Where bitmaps are not aligned, software clip all PxBlts in advance so that the destination bitmap 
boundary is not crossed during the PxBIt. 

72 OEK 258 00 September 1991 



133 

14.5 Line Length Restriction 

The XGA coprocessor Destination X Address and Destination Y Address register accept coordinates in the 
range -2048 to + 6143. This gives a guardband effect, where it is possible to write coordinates anywhere 
in this range, and the operation is hardware scissored to the edge of the destination bitmap. The limit on 
bitmap size for coprocessor operations is 0 to 4095. 

However, the Operation Dimension 1 register only accepts values in the range 0 to 4095. It is therefore not 
possible to draw a line in a single operation across the entire guardband coordinate space. 

A 2 stage line draw can be performed easily, since the line parameters (ET, K1, K2, Destination X &amp. 
Y, Pattem X etc.) are already set up in the hardware at the end of the previous line segment. It is necessary 
merely to update the new line length in the Operation Dimension 1 register to draw the remainder of the 
line. 

14.6 System Register Usage 

When programming the XGA subsystem, it is often necessary to maintain addressability to: 

XGA coprocessor memory mapped address space. 

2 XGA state data segment (application dependent) containing the 10 base address, in other words 
the location of the XGA registers in 10 space. 

3 The normal function dependent application data, such as parameter blocks. 

4 Global application dependent data. 

In addition, many of the XGA registers are 32 bit registers. 

To program the XGA subsystem efficiently, it is helpful to use the full i386 register set, specifically the FS 
and GS segment registers and the 32 bit extended data registers. 

Use of the extra segment registers allows concurrent addressability to all the separate data areas to be 
maintained without frequent segment register loading ~ a particularly expensive operation in protect 
modes. 

14.7 Direct Color Mode 

This section deals with matters unique to the Direct Color mode of the XGA subsystem. 

14.7.1 Palette Loading 

It is necessary to load the palette with a fixed set of values. These are described in Section 4.2. 

14.7.2 Coprocessor Support 

The XGA coprocessor does not support the 16 bpp mode. This mode is a display mode only and must be 
programmed using the system processor to access the video memory display buffer directly using one 
of the system video memory apertures (See also Section 11.2 & Section 13.4). 

The processor is not, however, disabled while in this mode. The restriction is rather that the pixel map for­
mats available for coprocessor operations is restricted to 1, 2, 4 or 8 bpp. The graphics coprocessor can 
be used while in this mode ifthis is allowed for. Some ingenuity is necessary to achieve useful results using 
the coprocessor in this way, but the rewards could be justified. 

BitBlt Operations By using the PxBlt operations on an 8 bpp bitmap, doubling the dimension width 
of the bitmaps involved and avoiding arithmetic mixes, BitBlt operations are possible. Use of the 
1 bpp pattem and mask maps are possible if carefully considered and calculated. 

Text Operations Text operations using the coprocessor PxBlt function rely on 1 bpp pattems. By doub­
ling the width of the individual character bitmap patterns, (interspersing the active bits with zero 
bits), and writing the high and low order bytes of the required color index separately, Text Opera­
tions are possible. 

72 OEK 258 00 September 1991 



134 

15 Sample Code 

15.1 Putting the XGA Subsystem into Extended Graphics Mode 

15.1 .1 Pseudo Code 

Main Program 

• Locate first XGA subsystem with attached monitor 

• If XGA is current system VGA subsystem 
- Chain Int 10h Video handler 
- Chain Int 21 h DOS Function handler 
- Chain Int 23h Ctrl Break Exit Address 
- Chain Int 24h Critical Error handler 

• If LIM Expanded Memory Manager installed 
- Call LIM Fn 25.Get Physical Address Array 
- Examine returned list for Memory Contention 
- If contention found 

- Display Warning Message. 
- Terminate Application 

• Chain Int 2Fh Screen Switch Notification handler 

• Put XGA in highest Extended Graphics Mode for attached monitor (see Section 11.1.1) 

• Draw simple rectangle ( or whatever) 

• Exit 

Int 10 Handler 

• Examine value of (Ah) 

OOh Set Mode 
- Put XGA subsystem in VGA mode (see Section 11.1.2) 
- Chain on to saved Int 10h Video Interrupt handler. 

OFh Return current video state 
- Set (AL) = 7Fh 
- Interrupt return (I RET) 

Any other value 
- Interrupt return (IRET) 

Int 21 h DOS Function handler 

• Examine value of (Ah) 

4Ch Program Terminate 
- Put XGA subsystem in VGA mode 
- UnChain and restore original Int 10h Video handler 
- UnChain and restore original Int 21 h DOS function handler 

• Chain on to saved Int 21 h handler 

72 OEK 258 00 September 1991 



135 

Int 23h Ctrl Break Exit Address 

• Chain on to saved Int 23h handler, using a method that will ensure return of control via this function 
handler. 

• On return from chained handler, Examine Carry Flag (CF). If set 
- Put XGA subsystem in VGA mode 
- UnChain and restore original Int 10h Video handler 
- UnChain and restore original Int 21 h DOS function handler 

• Interrupt return (IRET) 

Int 24h Critical Error handler 

• Save video state (or as much as is corrupted by a temporary switch into VGA text mode). 

• Put XGA sUbsystem in VGA mode 

• Chain on to saved Int24h handler, using a method that will ensure return of control via this function 
handler. 

• On return from chained handler, examine AL, as follows: 
0,1,3 

2 

Put XGA sUbsytem in Extended graphics mode 
Restore video state 

UnChain and restore original Int 10h Video handler 
UnChain and restore original Int 21 h DOS function handler 

• I nterrupt return (I R ET) 

Int 2Fh Screen Switch Notification Handler 

• Examine value of (Ah) 

40h Screen Switch Notification 
Examine value of (AL) 
01 h Impending switch to background. 

- Put XGA subsystem in VGA mode 
02h Impending switch to foreground 

Put XGA subsystem in Extended Graphics Mode 
- Semaphore "re-draw required" to application 
- Chain on to saved Int 2Fh handler ( if any) 

Any other value 
- Chain on to saved Int 2F Interrupt vector ( if any) 

72 OEK258 00 September 1991 



136 

15.1.2 Code Example 

Main C Program 

/* **************************************************************** 

/* 
/* 
/* Program s ext 
/* 
/* Description This program is sample code to illustrate entry to 
/* Ext Graphics mode and back to VGA mode upon program 
/* termination. 
/* 
/* **************************************************************** 

#define POS 
#define POS GET BASE ADDRESS 
#define FALSE 
#define TRUE 
#define EMM INT 
#define DEVICE NAME LENGTH -
#define MAX SLOTS 
#define XGA ID UPPER 
#define XGA ID LOWER 
#define INDEX_SELECT 
#define INDEX DATA 
#define MONITOR ID 

#include <dos.h> 
#include <stdio.h> 
#include <conio.h> 
#include <signal.h> 
#include <malloc .h> 
#include <memory.h> 
#include <stdlib.h> 
#include <conio.h> 

typedef struct 
{ 

page segment ; 
page_number 

Oxc4 
OXOO 
OxOO 
OxOl 
Ox67 
Ox08 
Ox09 
Ox8fdb 
Ox8fd8 
OxOa 
OxOb 
Ox52 

*/ 

*/ 

int 
int 

MPAA /* Mapable Physical Address Array struct */ 

typedef struct 
{ 

unsigned int pos id 
char pos_bytel 
char pos_byte2 
char pos_byte3 
char pos_byte4 

POS_REC ; 

/* POS Record */ 

union,REGS inregs , outregs ; 
struct SREGS segregs ; 
unsigned int pos_base address , IoRegBase , slot number 

POS REC pos record 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

72 OEK258 00 September 1991 



137 

long int ROS_add rec[16] OxcOOOO 
Oxc2000 
Oxc4000 , 
Oxc6000 
Oxc8000 
OxcaOOO 
OxccOOO , 
OxceOOO 
OxdOOOO , 
Oxd2000 
Oxd4000 , 
Oxd6000 
Oxd8000 , 
OxdaOOO 
OxdcOOO 
OxdeOOO 

unsigned char vga_data[] OxOI OxOO OxOO 
Ox04 , OxOO OxOO 
Ox05 Oxff OxOO 
OxOa Oxff Ox64 
OxOa OxI5 Ox50 
OxOa OxI4 Ox50 
OxOa OxOO Ox5I 
OxOa Ox04 Ox54 
OxOa Ox7f Ox70 
OxOa , Ox20 , Ox2a 
OxOO OxOI OxOO 

unsigned char nm_data [] Ox04 OxOO OxOO OxOO 
Ox05 Oxff Oxff OxOO , 
OxOO Ox04 Ox04 OxOO 
OxOa , OxOO , OxOO Ox64 
OxOI OxOO OxOO OxOO 
Ox08 , OxOO , OxOO , OxOO , 
Ox06 0,:,00 OxOO OxOO 
Ox09 Ox03 , Ox02 OxOO , 
OxOa OxOI OxOI Ox50 
OxOa OxOO OxOO , Ox50 , 
OxOa Ox9d Ox9d OxlO 
OxOa , OxOO , OxOO Oxll 
OxOa Ox7f Ox7f OxI2 
OxOa OxOO OxOO , Ox13 
OxOa Ox7f Ox7f OxI4 
OxOa OxOO OxOO OxI5 
OxOa Ox9d Ox9d Ox16 
OxOa OxOO OxOO OxI7 
OxOa Ox87 Ox87 OxI8 
OxOa OxOO OxOO OxI9 
OxOa , Ox9c , Ox9c , Oxla , 
OxOa OxOO OxOO Oxlb 
OxOa , Ox40 , Ox40 , OxIc , 
OxOa Ox04 Ox04 Oxle 
OxOa Ox30 Ox30 , Ox20 
OxOa Ox03 Ox03 Ox21 
OxOa Oxff Oxff , Ox22 , 
OxOa Ox02 Ox02 Ox23 
OxOa , Oxff , Oxff , Ox24 
OxOa Ox02 Ox02 Ox25 

72 OEK 258 00 September 1991 



138 

OxOa , Ox30 
OxOa , Ox03 
OxOa , OxOO 
OxOa Ox03 
OxOa Ox08 
OxOa , Oxff 
OxOa , Oxff 
OxOa OxOO 
OxOa , OxOO 
OxOa OxOO 
OxOa , OxOO 
OxOa Ox80 
OxOa , OxOO 
OxOa OxOd 
OxOa Ox03 
OxOa OxOO 
OxOa OxOf 
OxOa , OxOO 
OxOa OxOO 
OxOa OxOO 
OxOa , OxOO 
OxOa OxOO 
OxOa Oxff 

/* colour_default_palette 
unsigned char colour_default_palette[] 

int 
long int 
char 
char 

IpInt , cop instance ; 
ROS address 

XGAFound , VRAM_1Meg; 
XGAInVGA , ExtG_mode set 

void far *int_10_original_vector 
void far *int 2f original_vector 
FILE *stream ; 
int delay time = 1000 
char VramIr , AI024x768 ; 

Ox30 , Ox26 
, Ox03 , Ox27 

OxOO Ox28 
, Ox03 , Ox29 
, Ox08 , Ox2a 
, Oxff Ox2c 

Oxff , Ox2d 
, OxOO , Ox36 

OxOO , Ox40 
, OxOO Ox41 
, OxOO , Ox42 
, Ox40 Ox43 
, OxOO , Ox44 
, OxOd , Ox54 
, Ox02 , Ox51 
, OxOO , Ox70 

OxOf Ox50 
OxOO Ox55 

, OxOO , Ox60 
, OxOO , Ox61 

OxOO , Ox62 
, OxOO Ox63 

Oxff Ox64 

R G 
OxOO OxOO 
OxOO , OxOO 
OxOO Oxa8 
OxOO , OxA8 
OxA8 OxOO 
OxA8 , OxOO 
OxA8 , Ox54 
OxA8 OxA8 
Ox54 Ox54 
Ox54 , Ox54 
Ox54 , Oxfc 
Ox54 , OxFC 
OxFC , Ox54 
OxFC Ox54 
OxFC , OxFC 
OxFC OxFC 

unsigned short int VRAM_address 10 VRAM address hi 

interrupt far int_lO( void) ; 
interrupt far int_2f( void) ; 

- -

char *build_ptr( unsigned int unsigned int ); 
char emm_installed( void ) ; 
int far return_ax ( void ) ; 

, 
, 
, 

, 

, 

, 

, 

, 
, 
, 

, 

, 

B */ 
OxOO 

, Oxa8 , 
, OxOO 
, OxA8 , 

OxOO 
, Oxa8 , 

OxOO 
, OxA8 , 
, Ox54 
, Oxfc , 
, Ox54 
, OxFC , 

Ox54 , 
, OxFC , 

Ox54 
OxFC 

72 OEK 258 00 September 1991 



int far return_7f( void) 
void PutXGAlnVGA (void) 
void PutXGAlnExtG(void); 
int exit_handler ( void) ; 
void signal_handler( void) 
void co_pro_blit(void); 
void CoProWriteByte(int , unsigned char); 
void COProWriteWord(int , unsigned int ); 
void CoProPrintByte( int , char * ); 
void WaitForCoProReady(void) ; 
void delay(long int); 

/* ************************************************************ */ 
/* */ 
/* */ 
/* Function main() */ 
/* */ 
/* Description This is the program entry point. */ 
/* */ 
/* */ 
/* ************************************************************* */ 

void main( void ) 
{ 

int index 
MPAA *mpaa 
unsigned int ipdata 
unsigned char far *vram address 
unsigned char ip_byte ; 

atexit( exit_handler); 
signal ( SIGINT ,signal handler ); 
signal( SIGFPE ,signal_handler); 
signal( SIGABRT signal_handler); 

ExtG mode set = FALSE ; 
int_IO_original vector 0 
int 2f_original_vector 0 

inregs.h.ah POS; 
inregs.h.al POS GET_BASE_ADDRESS ; 
int86( OxI5 , &inregs , &outregs ); 

pos_base_address = outregs.x.dx 
XGAFound = FALSE ; 
if( outregs.x.cflag ) 
{ 

printf ( "No XGA Installed\n" 

else 
{ 

/* get base pas address */ 
/* from system services */ 

/* carry flag set means */ 
/* not a microchannel */ 
/* machine */ 

XGAFound = FALSE ; 
slot_enabled = FALSE 
for (slot_number = 0 slot number <= MAX_SLOTS ; slot_number++) 
{ 

disable(); /* Disable interrupts */ 
if (slot number == 0) 
{ /* Look at the planar for XGA */ 

139 

72 OEK 25800 September 1991 



140 

outp( OX094 , OxOdf ) /* Enable planar for setup */ 

else 
{ /* Look in the slots for XGA */ 

inregs.x.ax 
inregs.x.bx 
int86( Ox15 

Oxc401 ; 
slot_number ; 
&inregs , &outregs ) ; 

/* enable slot for update */ 

slot_enabled = TRUE ; 
/* Get pos record for the slot */ 
pos record.pos_id = inpw( pos_base address) ; 
pos_record.pos_bytel (char)inp( pos_base_address + 2 
pos_record.pos_byte2 (char)inp( pos_base_address + 3 
pos_record.pos_byte3 (char)inp( pos_base_address + 4 
pos_record.pos_byte4 (char)inp( pos_base_address + 5 
IoRegBase = « pos_record.pos_bytel & OxOe ) « 3 ) + Ox2100 
if(slot number == 0) 
{ -

outp( OX094 , OxOff) /* Enable planar for normal mode */ 

else 

inregs.x.ax Oxc402; 
inregs.x.bx slot number 
int86( Ox15 , &inregs , &outregs ) ; 

/* enable slot normal mode 

slot enabled FALSE 
enable(); /* Enable interrupts */ 

/* Check for a valid XGA POS id */ 
if ( pos_record.pos_id >= XGA_ID_LOWER && 

pos_record.pos id <= XGA_ID_UPPER ) 

/* XGA found in slot */ 

/* Look to see if monitor connected to XGA */ 
outp( IoRegBase + INDEX_SELECT, MONITOR_ID ); 
if ( ( inp(IoRegBase + INDEX DATA) & OxOf) != OxOF 
{ -

/* Monitor connected to XGA */ 
XGAFound = TRUE 

/* Determine if XGA in VGA */ 
ipdata = inp( IoRegBase ) ; 
if( ipdata & OxOl ) 
{ 

XGAInVGA = TRUE ; 
/* Chain Int 10H */ 
int_10_original_vector _dos_getvect( OxlO ) 

dos setvect( OxlO , int 10 ) ; 

else 
XGAInVGA = FALSE ; 

/* calculate VRAM address */ 
VRAM_address 10 = OxO ; 
VRAM_address_hi = «short int) 

( pos_record.pos_byte3 & Oxfe )) « 8 

72 OEK258 00 September 1991 



72 OEK258 00 

VRAM_address_hi &lor.= «short int) 
(pos_record.pos_byte1 & OxOe» « 5 

/* check VRAM */ 
outp(IoRegBase + 4 OxOO) ; 
outp(IoRegBase + 0 , Ox04 ); 
outp(IoRegBase + 1 Ox01); 
outpw(IoRegBase + OxOa , Ox0064 ); 

VRAM_1Meg = FALSE 
outp(IORegBase + 8 , OxOc) ; 
vram_address = (unsigned char far *)OxaOOOOOOO 
*vram_address = Oxa5 

vram_address++ ; 
*vram_address = 0 

vram_address-- ; 
ip_byte = *vram_address 

if(ip byte == Oxa5) 
{ -

VRAM_1Meg = TRUE 

index = (pos record.pos_byte1 » 4) & Oxf 
cop_instance = (pos_record.pos_byte1 » 1) & Ox07 
ROS_address = ROS_add_rec[ index 1 ; 
if( emm installed() ) 
{ -

/* get number of entries in mappable physical page */ 
inregs.x.ax = Ox5801 ; 
int86( Ox15 , &inregs , &outregs ) ; 
if (outregs. x. cx) 
{ 

/* entries exist in the list */ 
mpaa = (MPAA *)calloc(outregs.x.cx, sizeof(MPAA»; 
if( !mpaa) 
{ 

printf("Unable to allocate memory\n"); 
} 
else 
{ 

segregs.es = FP_SEG( mpaa ) ; 
inregs.x.di = FP_OFF( mpaa ) ; 
int86x( Ox67 , &inregs , &outregs , &segregs ); 

for( ; outregs.x.cx > 0 ; mpaa++ 
{ 

if(ROS address == mpaa->page_segment 
{ -

} 

printf("Extended memory conflict at") ; 
printf(1I segement address ll ); 

printf(1I %x\n" , mpaa->page_segment ); 
exit (0) ; 

141 

September 1991 



142 

} 

/* Chain Int 2fH */ 
int_2f_original_vector _dos_getvect( Ox2f ) 
_dos_setvect( Ox2f • int_2f ) ; 
PutXGAInExtG() ; 
co_pro_bli t () ; 

if( XGAFound ) break 

/* **************************************************************** 

/* 
/* Function pointer = build_ptr( segment • offset ) 
/* 
Description Constructs a pointer from segment and offset. 
/* 
/* 
/* 
/* **************************************************************** 

char *build ptr( unsigned int segment • unsigned int offset 
{ char *ptr ; 

ptr = (char *)«(unsigned long)segment « 16) + offset) 
return ( ptr ) ; 

/* **************************************************************** 
/* 
Function status = emm_installed() 
/* 
/* Description checks to see if extended memory installed 
/* 
/* 
/* **************************************************************** 

char emm installed( 
{ -

char *EMM_device_name = "EMMXXXXO" 
char *int_67_device_name_ptr 
inregs.h.ah = Ox35 ; 
inregs.h.al = EMM_INT ; 
intdosx( &inregs • &outregs • &segregs ) ; 
int_67_device_name_ptr = build_ptr( segregs.es • OxOa 
if( memcmp(EMM_device_name. int_67_device_name_ptr. 

else 

DEVICE_NAME_LENGTH » 
return ( FALSE ); 

return TRUE) ; 

*/ 
*/ 
*/ 
*/ /* 
*/ 
*/ 
*/ 
*/ 

*/ 

*/ 
*/ /* 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

72 OEK258 00 September 1991 



/* **************************************************************** 

1* 
1* Function interrupt routine int lO() 
1* 
Description internal INT lOh interrupt handler 
1* 
1* 

*1 

/* **************************************************************** */ 

interrupt far int lO( void) 
{ 

unsigned int ax ; 
ax = return_ax() » 8 
if ( ax == 0 ) 
{ 

} 

1* set xga to vga mode *1 
_chain_intr( int_10_original vector 

else if ( ax OxOf 
{ 

else 
{ 

chain intr( int_10_original vector 

/* **************************************************************** */ 

*1 
*1 
*1 
*1 
*1 
*1 

1* * I 
1* Function Interrupt routine int 2f() *1 
1* * I 
1* Description Internal INT 2fh interrupt handler *1 
1* * / 
/* * I 
/* **************************************************************** */ 

interrupt far int 2f( void) 
{ 

unsigned int ax ; 
unsigned char ah 
unsigned char al 

ax return_ax () 
ah (unsigned char) (ax » 8) 
al (unsigned char) (ax & OxOf) ; 
if( ah == Ox40 ) 
{ 1* Screen switch notification received *1 

if (al == OxOl ) 1* Switch to background *1 
PutXGAInVGA() ; 

else if (al == Ox02) 1* Switch to foreground *1 
PutXGAInExtG() ; 

if(int 2f_original_vector) 
_chain_intr( int 2f_original_vector 

143 

1* 

72 OEK 258 00 September 1991 



144 

/* **************************************************************** */ 
/* 
/* Function signal_handler() 
/* 
/* Description error handler 
/* 
/* 
/* **************************************************************** */ 

void signal handler( void) 
{ -

exit(O); 

/* **************************************************************** *; 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/* * / 
/* Function exit_handler() */ 
/* */ 
/* Description Exit handler */ 
/* */ 
/* **************************************************************** */ 

int exit handler ( void) 
{ -

/* reset interrupt vectors to original values */ 
if int_lO_original_vector) 

dos_setvect( OxlO , int 10_original vector 
if int 2f original_vector ) 

_dos setvect( Ox2f , int 2f_original vector 

/* reset to VGA if originally in VGA mode */ 
if ( ExtG_mode set && XGAlnVGA ) PutXGAlnVGA () 
printf ("Completed\n"); 
return (0) 

/* **************************************************************** */ 

/* * / 
/* Function co_pr_blit() */ 
/* */ 
/* Description Use co-processor to blit to the display */ 
/* */ 
/* **************************************************************** */ 

void co pro blit(void) { --

unsigned char i , j , k; 
Al024x768 = TRUE ; 

CoProWriteByte( Oxll 
CoProWriteByte( Oxl2 

OxOO ) 
OxOI ) 

/* set up VRAM base address */ 
COProWriteword( Ox14 VRAM_address 10 ); 
COProWriteWord( Oxl6 VRAM address hi ); 

AI024x768 ? Ox03ff Ox02a8 COProWriteword( Ox18 
COProWriteWord( Oxla 
CoProWriteByte( OxIc 

AI024x768 ? Ox02ff OxOleO 
(unsigned char) (VRAM_lMeg ? Ox03 

72 OEK 258 00 

Ox02 )) 

September 1991 



CoProWriteByte( Ox48 Ox03 
CoProWriteByte( Ox49 Ox05 
CoProWriteByte( Ox4a Ox04 
COProWriteWord( Ox50 Oxff 
COProWriteword( Ox54 Ox7f 
COProWriteByte( Ox58 OxOO 
CoProWriteByte( Ox5c OxOO 
COProWriteWord( Ox60 Al024x768 ? Ox03ff Ox02a8 
COProWriteWord( Ox62 Al024x768 ? Ox02ff OxOleO 
CoProWriteWord( Ox6c OxOOOO ) 

COProWriteWord( Ox6e OxOOOO ) 

COProWriteWord( Ox70 OxOOOO ) 

CoProWriteWord( Ox72 OxOOOO ) 

CoProWriteWord( Ox74 OxOOOO ) 

COProWriteWord( Ox76 OxOOOO ) 

CoProWriteWord( Ox78 OxOOOO ) 

CoProWriteword( Ox7a OxOOOO ) 

COProWriteword( Ox7c Ox8000 ) 

COProWriteWord( Ox7e Ox0811 ) 

WaitForCoProReady() ; 

COProWriteword( Ox60 OxOO15 ) ; 
COProWriteword( Ox62 Ox02ff ) ; 
CoProWriteword( Ox60 Al024x768 ? OxOO15 OxOOlO 
CoProWriteWord( Ox62 Al024x768 ? Ox02ff Ox02ff 
for (j=O; j < 30 ; j++) 
{ 

k=O; 
for (i=l; i<= 34 i++) 
{ 

if (k > 15 
k = 1 

else 
k++ 

COProWriteword( Ox78 (Ox0030 * i) - 15 +j) 
CoProWriteWord( Ox7a OxOOOO) 
CoProWriteByte( Ox58 k) 
CoProWriteByte( Ox7f ,Ox08 ) ; 
WaitForCoProReady() ; 

COProWriteWord( Ox60 Ox03ff) 
CoProWriteWord( Ox62 Ox02ff) 
CoProWriteWord( Ox70 Ox0015) 
CoProWriteWord( Ox72 OxOOOO) 
COProWriteWord( Ox78 Ox0030) 
COProWriteWord( Ox7a Ox0024) 
CoProWri teByte ( Ox7f ,Ox28 ) ; 
WaitFQrCoProReady() ; 

72 OEK258 00 

145 

September 1991 



146 

/* **************************************************************** */ 

/* * / 
/* Function CoProWriteByte(offset, data) */ 
/* * / 
/* Description Writes a data byte to the co-processor at the */ 
/* supplied offset. */ 
/* * / 
/* **************************************************************** */ 

void CoProWriteByte(int offset, unsigned char ipdata) 
{ 

unsigned char far *cop 
unsigned long tmp 

tmp = ROS_address + Ox1cOO + offset + (cop_instance * 128 ) ; 
cop = (void far *) «(tmp & OxffffO )«12 ) + (tmp & OxOf)) ; 
*cop= ipdata ; 

void CoProPrintByte(int offset, char *string) 
{ 

unsigned char far *cop 
unsigned long tmp 

tmp = ROS_address + Ox1cOO + offset + (cop_instance * 128 ) 
cop = (void far *)«(tmp & OxffffO )«12 ) + (tmp & OxOf)) 
printf(string) ; 
printf(" %x\n", *cop) ; 

/* **************************************************************** */ 

/* * / 
/* Function CoProWriteWord(offset, data) */ 
/* * / 
/* Description Writes a data word to the co-processor at the */ 
/* supplied offset. */ 
/* * / 
/* **************************************************************** */ 

void CoPrOWriteword(int offset , unsigned int ipdata) 
{ unsigned int far *cop 

unsigned long tmp ; 

tmp = ROS address + Ox1cOO + offset + (cop_instance * 128 ) ; 
cop = (void far *)«(tmp & OxffffO )«12 ) + (tmp & OxOf)) 
*cop= ipdata ; 

/* **************************************************************** */ 

/* * / 
/* Function WaitForCoProReady() */ 
/* */ 
/* Description Waits until co-processor in ready state */ 
/* * / 
/* **************************************************************** */ 

void WaitForCoProReady(void) 
{ 

unsigned char far *cop ; 
unsigned long tmp ; 
long int count 

72 OEK 258 00 September 1991 



tmp = ROS_address + Ox1cOO + Ox11 + (cop_instance * 128 ) ; 
cop = (void far *)«(tmp & OxffffO )«12 ) + (tmp & OxOf» ; 
count 0; 
for(;; ) 
{ 

if ( «*cop & Ox80)==0) II (count> 20000» break; 
count++; 

/* **************************************************************** */ 

/* * / 
/* Function PutXGAInExtG() * / 
/* */ 
/* Description Puts the XGA into Extended Graphics Mode */ 
/* */ 
/* **************************************************************** */ 

void PutXGAInExtG( void ) 
{ 

} 

int i, res , palette_size 

outp( Ox03c3 , Ox01 ); 
ExtG_mode_set = TRUE ; 
/* 1meg VRAM res = 1 if 512K VRAM res = 2 */ 
res = VRAM_IMeg ? 1 : 2 
for (i = 0 ; i < sizeof (nm data) ; i = i + 4 
{ -

if (nm_data[i+3]) 
outpw( IoRegBase + nm_data[i] , 

«(int)nm_data[i+res]) « 8) + (unsigned) nm_data [i+3] 

else 
outp( IoRegBase + nm_data[i] , (int)nm_data[i+res] ); 

outpw( IoRegBase + OxOa , Ox0066 ); 
outpw( IoRegBase + OxOa , Ox0060 ); 
outpw( IoRegBase + OxOa , Ox0061 ); 

palette size = sizeof(colour default_palette) 
for ( i=O ; i <= palette_size ; i++ ) 
{ 

/* select palette data register */ 
outp( IoRegBase + INDEX_SELECT, Ox65 ) ; 
outp( IoRegBase + OxOb , (int)colour_default-palette[i] 

147 

72 OEK 258 00 September 1991 



148 

/* **************************************************************** */ 
/* */ 
/* Function PutXGAlnVGA() */ 
/* */ 
/* Description puts the XGA into VGA mode */ 
/* */ 
/* **************************************************************** */ 

void PutXGAlnVGA( void ) 
{ 

int i ; 
vram_address = (unsigned char far *)OxAOOOOOOO; 
/* clear 1st 256k of vram */ 
for (i = 0 ; i < 4 ; i++) 
{ 

outp(IoRegBase + S , i) ; 
ptr = vram_address ; 
memset(ptr , 0 , OxSOOO) ; /* set 1st 32K of 
ptr = vram_address + OxSOOO ; 
memset(ptr , 0 , OxSOOO) ; /* set 2nd 32K of 

for (i = 0 ; i < sizeof(vga_data) i i + 3 ) 
{ 

if (vga_data[i+2]) 
outpw( IoRegBase + vga_data[i] , 

«(unsigned)vga_data[i+1]) « S) 
+ (unsigned) vga_data [i+2] 

) ; 
else 

64K aperture*/ 

64K aperture*/ 

outp( IoRegBase + vga_data[i] , (int)vga_data[i+1] ); 

outp( Ox03c3 , Ox01 ); 

/* select scan lines for alphanumeric modes */ 
inregs.h.ah Ox12 
inregs.h.al Ox02; /* 400 scan lines */ 
inregs.h.hl Ox30; 
intS6( Ox10 , &inregs , &outregs ) ; 
inregs.h.ah OxOO; 
inregs.h.al Ox03; 
intS6( Ox10 &inregs, &outregs ) 

72 OEK258 00 September 1991 



Assembler Subroutines 

;********************************************************************* 
;** 
;** Function 
;** 

** 
** 
** 

;** Description unwinds the stack after a call to an interrupt ** 
;** routine to obtain contents of ax register, the ** 
;** value of which is returned. The stack is restored •• 
;** prior to the return. ** 
;** ** 
;********************************************************************* 

.286c 

. MODEL SMALL 

. DATA 
return segment_address 
return_offset_address 
ret_data_seg 

dw ? 
dw ? 
dw ? 
dw ? ret_bp 

. CODE 
PUBLIC return ax 

return ax PROC FAR -
mov ret_bp bp 
pop bx 
pop es 
mov return segment address 
mov return offset address - -
add sp,+2 
pop es 
pop bx ; data seg 
mov ret data_seg bx 
papa 
pusha 
mov bx,ret_data seg 
push bx ; data seg 
push es 
sub sp,+2 

, es 
bx 

mov es,return segment_address 
mov bx,return_offset_address 
push es 
push bx 
mov bp ret_bp 
ret 

return ax ENDP 

END 

149 

72 OEK258 00 September 1991 



150 

;********************************************************************* 
;** 
;** Function return 7f 
;** 

** 
** 
** 

;** Description unwinds the stack after a call to an interrupt ** 
;** routine to obtain contents of ax register, the ** 
;** value of which is returned. The stack is restored ** 
;** prior to the return. ** 
;** ** 
;********************************************************************* 

.286c 

. MODEL SMALL 

. DATA 
return_segment_address 
return offset address 

dw ? 
dw ? 
dw ? 
dw ? 

- -
ret data_seg 
ret_bp 

. CODE 
PUBLIC 

_return_7f 
mov 
pop 
pop 
mov 
mov 
add 
pop 

_return_7f 
PROC FAR 
ret_bp , bp 
bx 
es 
return segment_address , es 
return_off set_address , bx 
sp,+2 
es 

pop bx; data seg 
mov ret data_seg bx 
popa 
mov 
pusha 
mov 
push 
push 
sub 
mov 
mov 
push 
push 
mov 
ret 

return 7f 
END 

72 OEK258 00 

ah,7fh 

bx,ret_data_seg 
bx ; data seg 
es 
sp,+2 
es,return segment_address 
bx,return_offset_address 
es 
bx 
bp , ret_bp 

ENDP 

September 1991 



15.2 Punlng the XGA Subsystem Into 132 Column Text Mode 

15.2.1 Pseudo Code 

Main Program 

• Locate XGA subsystem with attached monitor in VGA mode 

• If none, display error message and return. 

• Chain Int 10h Video handler 

• Chain Int 21 h DOS Function handler 

• Chain Int 23h Ctrl Break Exit Address 

• Chain Int 2Fh Screen Switch Notification handler 

• Put XGA into 132 column text mode (see Section 11.1.3) 

• Display simple text 

• Exit 

Int 10 Handler 

• Examine value of (Ah) 

OOh Set Mode 
- Put XGA subsystem in normal VGA mode (see Section 11 .1.2) 
- Chain on to saved Int 10h Video Interrupt handler. 

Any other value 
- Interrupt return (I RET) 

Int 21h DOS Function handler 

• Examine value of (Ah) 

4Ch Program Terminate 
Put XGA sUbsystem in normal VGA mode 

- UnChain and restore original Int 10h Video handler 
- UnChain and restore original Int 21 h DOS function handler 

• Chain on to saved Int 21 h handler 

Int 23h Ctrl Break ExH Address 

151 

• Chain on to saved Int 23h handler, using a method that will ensure return of control via this function 
handler. 

• On return from chained handler, examine Carry Flag (CF). If set 
Put XGA subsystem in normal VGA mode 

- UnChain and restore original Int 10h Video handler 
- UnChain and restore original Int 21 h DOS function handler 

• Interrupt return (I RET) 

72 OEK258 00 September 1991 



152 

Int 2Fh Screen Switch Notification Handler 

Examine value of (Ah) 

40h Screen Switch Notification 
Examine value of (AL) 
01 h Impending switch to background. 

Put XGA subsystem in normal VGA mode 
Chain on to saved Int 2Fh handler ( if any) 

02h Impending switch to foreground 
Put XGA subsystem in 132 column text mode 
Semaphore "re-draw required" to application 
Chain on to saved Int 2Fh handler ( if any) 

Any other value 
Chain on to saved Int 2F Interrupt vector ( if any) 

15.2.2 Code Example 

Main C Program 

/* **************************************************************** 
/* 
/* 
/* Program s 132n 
/* 
/* 
/* 
/* 
/* 

Description This program is sample code to illustrate 
to 132 mode and back to VGA mode upon program 
termination. 

entry 

/* **************************************************************** 

#define POS Oxc4 
#define POS GET BASE ADDRESS OXOO - - -
#define FALSE OxOO 
#define TRUE Ox01 
#define EMM INT Ox67 
#define DEVICE NAME LENGTH Ox08 
#define MAX_SLOTS Ox09 
#define XGA~ID_UPPER Ox8fdb 
#define XGA ID LOWER Ox8fd8 
#define INDEX SELECT OxOa 
#define INDEX DATA OxOb 
#define MONITOR ID Ox52 

#include <dos.h> 
#include <stdio.h> 
#include <conio.h> 
#include <signal.h> 
#include <malloc.h> 
#include <memory.h> 
#include <stdlib. h> 
#include <conio.h> 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

72 OEK258 00 September 1991 



typedef struct 
{ 
unsigned int pos id 

char pos_bytel 
char pos_byte2 
char pos_byte3 
char pos_byte4 

POS_REC ; 

union REGS inregs , outregs ; 
struct SREGS segregs ; 
unsigned int pos_base address 

POS REC pos_record ; 

unsigned char vga_data[] 

char RedrawRequired 
char XGAFound ; 
char XGAlnVGA; 

, 

void far *int_10_original_vector 
void far *int 2f_original_vector 

interrupt far int_10( void) 
interrupt far int_2f( void) 
int far return_ax( void) 
int far return_7f( void) 
void PutXGAlnVGA(void) ; 
void PutXGAln132 (void) ; 
int exit_handler( void) 
void signal_handler( void 
void DisplayText( void); 

72 OEK258 00 

153 

/* POS Record */ 

IoRegBase , slot number 

OxOl OxOO OxOO 
Ox04 OxOO OxOO , 
Ox05 , Oxff , OxOO 
OxOa Oxff ox64 , 
OxOa Ox15 Ox50 
OxOa , Ox14 Ox50 , 
OxOa OxOO Ox51 
OxOa , Ox04 Ox54 , 
OxOa , Ox7f , Ox70 
OxOa , Ox20 , Ox2a , 
OxOO OxOl OxOO 

September 1991 



154 

/* **************************************************************** */ 
/* Function main() */ 
/* */ 
/* Description This is the program entry point. */ 
/* **************************************************************** */ 

void main( void) 
{ 

int index 
unsigned int ipdata 
unsigned char far *vram address 
unsigned char ip_byte ; 

atexit( exit_handler); 
signal ( SIGINT , signal handler ); 
signal ( SIGFPE signal_handler); 
signal ( SIGABRT , signal_handler ); 

int_IO_original vector 0 
int_2f_original_vector 0 

inregs.h.ah POS; 
inregs.h.al POS_GET_BASE ADDRESS; 
int86( OxI5 , &inregs , -&outregs ); 

pos_base_address = outregs.x.dx 
XGAFound = FALSE ; 
if( outregs.x.cflag ) 
{ 

printf ( "No XGA Installed\n" 

else 
{ 

XGAFound 
XGAlnVGA 

FALSE 
FALSE 

/* get base POS address */ 
/* from system services */ 

/* carry flag set means */ 
/* not a microchannel */ 
/* machine */ 

for (slot_number o slot number <= MAX_SLOTS ; slot_number++) 
{ 

_disableO; /* Disable interrupts */ 
if (slot number == 0) 
{ /* Look at the planar for 

outp( OX094 , OxOdf ) ; 
XGA */ 
/* Enable planar for setup */ 

} 
else 

/* Look in the slots for XGA */ 
inregs.x.ax Oxc401; 
inregs.x.bx slot_number; 
int86( OxI5 , &inregs , &outregs ) ; 

/* enable slot for update */ 

/* Get pos record for the slot */ 
pos_record.pos_id = inpw( pos_base address) ; 
pos_record.pos_bytel (char)inp( pos_base_address + 2 
pos_record.pos_byte2 (char)inp( pos_base_address + 3 
pos_record.pos_byte3 (char)inp( pos_base_address + 4 
pos_record.pos_byte4 (char)inp( pos_base_address + 5 
IoRegBase = « pos_record.pos_bytel & OxOe ) « 3 ) + Ox2100 

72 OEK258 00 September 1991 



} 

if(slot number == 0) 
{ -

outp(OX094 • OxOff) /* Enable planar for normal mode */ 
} 
else 
{ 

inregs.x.ax Oxc402; 
inregs.x.bx slot_number 
int86( Ox15 • &inregs • &outregs ) ; 

/* enable slot normal mode */ 

_enable(); /* Enable interrupts */ 
/* Check for a valid XGA POS id */ 
if ( pos_record.pos_id >= XGA_ID_LOWER && 

pos_record.pos_id <= XGA_ID_UPPER ) 

/* XGA found in slot */ 

/* Look to see if monitor connected to XGA */ 
outp( IoRegBase + INDEX_SELECT. MONITOR_ID ); 
if ( ( inp(IoRegBase + INDEX DATA) & OxOf) != OxOF 
{ -

/* Monitor connected to XGA */ 
XGAFound = TRUE ; 
/* Determine if XGA in VGA */ 
ipdata = inp( IoRegBase ) ; 
if( ipdata & OxOI ) 
{ 

XGAInVGA = TRUE ; 
break; 

if (XGAInVGA FALSE ) 
{ 

printf( "XGA in VGA with attached monitor - not found\n"); 
} 
else 
{ 

RedrawRequired = FALSE 
/* Chain Int IOH */ 
int_IO_original_vector _dos_getvect( OxIO ) 
_dos_setvect( OxlO • int_IO ) ; 

/* Chain Int 2fH */ 
int_2f_original_vector _dos_getvect( Ox2f ) 
_dos_setvect( Ox2f • int_2f ) ; 

PutXGAIn132(); 

DisplayText(); 

155 

72 OEK 258 00 September 1991 



156 

/* **************************************************************** */ 
/* */ 
/* Function interrupt routine int lOt) */ 
/* */ 
/* Description - internal INT lOh interrupt handler */ 
/* */ 
/* */ 
/* **************************************************************** */ 

interrupt far int_10( void ) 
{ 

int ax 
ax = return_axe) » 8 
if(ax==O) 
{ 

/* set xga to vga mode */ 
PutXGAInVGAO; 
_chain_intr( int_10_original_vector 

else if ( ax == OxOf 
{ 

} 
else 
{ 

} 

/* ******************************************************~********* */ 
/* */ 
/* Function Interrupt routine int_2f 0 * / 
/* */ 
/* Description Internal INT 2fh interrupt handler */ 
/* */ 
/* */ 
/* **************************************************************** */ 

interrupt far int 2f( void) 
{ -

unsigned int ax 
unsigned char ah 
unsigned char al 

ax return_ax 0 
ah (unsigned char) (ax » 8) ; 
al (unsigned char) (ax & OxOf); 
if( ah == Ox40 ) 
{ /* Screen switch notification received */ 

if (al == OxOl ) /* Switch to background */ 
PutXGAInVGAO; 

else if (al == Ox02) /* Switch to foreground */ 
{ 

RedrawRequired = FALSE ; 
PutXGAIn132(); 

72 OEK 258 00 September 1991 



/* **************************************************************** 
/* 
/* Function signal_handler() 
/* 
/* Description error handler 
/* 
/* 
/* **************************************************************** 

void signal handler( void) 
{ -

exit(O); 

*/ 

*/ 

/* **************************************************************** */ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/* "/ 
/* Function exit_handler () "/ 
/* */ 
/* Description Exit handler */ 
/* / 
/* **************************************************************** */ 

int exit handler( void) 
{ -

/* reset interrupt vectors to original values */ 
if int 10_original_vector ) 

_dos_setvect( Ox10 int_10_original vector 
if int 2f_original_vector 

_dos setvect( Ox2f int_2f_original_vector 

if(XGAlnVGA)putXGAlnVGA (); return (0) ; 

/* **************************************************************** */ 

/* */ 
/* Function PutXGAln132 () * / 
/* */ 
/* Description Puts the XGA into 132 mode 
"/ 
/* "/ 
/* **************************************************************** */ 

void PutXGAln132( void) 
{ 

int ipdata ; 
int far "bios 

outw IoRegBase + OxOa 

outw IoRegBase + OxOa 

outw IoRegBase + OxOa 

Ox1550 

Ox1450 

Ox0454 

/* select scan lines for alphanumeric modes */ 
inregs.h.ah Ox12 
inregs.h.al Ox02; /* 400 scan lines "/ 
inregs.h.bl Ox30; 
int86( Ox10 &inregs &outregs) 

157 

72 OEK 258 00 September 1991 



158 

/* set vga mode */ 
inregs.h.ah OxOO 
inregs.h.al Ox03 
intB6( OxlO &inregs &outregs 

outp ( IoRegBase + OxOa Ox50) 
ipdata = inp (IoRegBase + OxOb 
ipdata &lor.= OxOl 
outp ( IoRegBase + OxOb , ipdata) 

outp ( IoRegBase + OxOa , Ox50 ) 
ipdata = inp (IoRegBase + OxOb ) ; 
ipdata &= OxFD ; 
outp ( IoRegBase + OxOb , ipdata) 

outp ( IoRegBase + OxOa , Ox50 ) 
ipdata = inp (IoRegBase + OxOb ) ; 
ipdata &= OxFC ; 
outp ( IoRegBase + OxOb , ipdata) 

outp IoRegBase ,Ox03) ; 

outpw( IoRegBase + OxOa Ox0154 

outpw( IoRegBase + OxOa OxB070 

outp ( IoRegBase + OxOa Ox50) 
ipdata = inp (IoRegBase + OxOb 
ipdata &= Oxef ; 
outp ( IoRegBase + OxOb , ipdata) ; 

outp( Ox03d4 , Oxll ) 
ipdata = inp( Ox03d5) 
ipdata &= Ox7f 
outp( Ox03d5 , ipdata ); 

outp( Ox03d4 OxOO 
outp( Ox03d5 , Oxa4 ); 

outp( Ox03d4 , OxOl ) ; 
outp( Ox03d5 , Ox83 ); 

outp( Ox03d4 , Ox02 ) ; 
outp( Ox03d5 , Ox84 ) ; 

outp( Ox03d4 , Ox03 ) ; 
outp( Ox03d5 , Ox83 ) ; 

outp( Ox03d4 , Ox04 ) ; 
outp( Ox03d5 , Ox90 ) ; 

outp( Ox03d4 , Ox05 ) ; 
outp( Ox03d5 , Ox80 ) ; 

.outpw( IoRegBase + OxOa Oxa31a 
outpw( IoRegBase + OxOa OxOOlb 

outp( Ox03d4 , Ox13 ) ; 

72 OEK 258 00 September 1991 



outp( Ox03d5 , Ox42 ); 

outp( Ox03d4 Ox11 
ipdata = inp( Ox03d5) 
ipdata &lor.= Ox80 ; 
outp( Ox03d5 , ipdata ); 

outp ( IoRegBase + OxOa , Ox50 ) 
ipdata = inp (IoRegBase + OxOb 
ipdata &lor.= Ox03 
outp ( IoRegBase + OxOb , ipdata) ; 

outp( Ox03c4 , Ox01 ) 
ipdata = inp( Ox03c5) 
ipdata &lor.= Ox01 ; 
outp( Ox03c5 , ipdata ); 

ipdata = inp( Ox03da) 

outp( Ox03cO Ox13 ); 

outp( Ox03cO , OxOO ); 

outp( Ox03cO , Ox20 ); 

bios = (int far *)Ox40004a 
*bios = Ox84 ; /* tell BIOS we have 132 columns */ 

/* **************************************************************** */ 

/* 
/* Function PutXGAInVGAO 

*/ 
*/ 

/* * / 
/* Description puts the XGA into VGA mode */ 
/* * / 
/* ****************************************************************, */ 

void PutXGAInVGA( void ) 
{ 

int i; 
vram address = (unsigned char far *)OxAOOOOOOO; 

/* clear 1st 256k of vram */ 
for (i = 0 ; i < 4 ; i++) 
{ 

outp(IoRegBase + 8 , i); 
ptr = vram_address ; 
memset(ptr , 0 , Ox8000); /* set 1st 32K of 64K aperture*/ 
ptr = vram_address + Ox8000 ; 
memset(ptr , 0 , Ox8000); /* set 2nd 32K of 64K aperture*/ 

for (i = 0 ; i < sizeof(vga_data) i + 3 ) 
{ 

if (vga_data[i+2) 
outpw( IoRegBase + vga_data[i) , 

(((unsigned)vga_data[i+1) « 8) 
+ (unsigned)vga_data[i+2) 
) ; 

159 

72 OEK 258 00 September 1991 



160 

} 

else 
outp( IoRegBase + vga_data[i] , (int)vga_data[i+1] ); 

outp( Ox03c3 , Ox01 ); 

/* select scan lines for alphanumeric modes */ 
inregs.h.ah Ox12 
inregs.h.al Ox02; /* 400 scan lines */ 
inregs.h.bl Ox30; 
int86( Ox10 , &inregs , &outregs ) ; 

/* set vga mode */ 
inregs.h.ah OxOO 
inregs.h.al Ox03 
int86( Ox10 &inregs, &outregs ) 

void DisplayText( void) 
{ 

int j ; 
char ch 

for (j =1 ; j < 24 j ++ ) 
{ /* sample code to fill screen with 24 x 132 chars */ 
printf ("This line ...................................... ") 
printf(" ................................................ ") 
printf("................. is 132 chars longll) 
} 

printf("Press Enter to continue ....... "); 
ch = getchar(); 

Assembler Subroutines 

See Section 15.1. 

72 OEK258 00 September 1991 





SALES OFFICES 

EUROPE 

DENMARK 
2730HERLEV 
Herlev Torv, 4 
Tel (45-42) 94 85.33 
Telex 35411 
Telefax (45-42) 948694 

FINLAND 
LOHJA SF-08150 
Karjalankatu, 2 
Tel (358-12) 15511 
Telefax. (358-12) 15566 

FRANCE 
94253 GENTILLY Cedex 
7 - avenue Gallienl - BP. 93 
Tel' (33-1) 47.40 75 75 
Telex' 632570 STMHQ 
Telefax: (33-1) 47.40.7910 

67000 STRASBOURG 
20, Place des Hailes 
Tel (33) 88 75 50 66 
Telefax (33) 66 22 29 32 

GERMANY 
6000 FRANKFURT 
Gutleutstrasse 322 
Tel (49-69) 237492-3 
Telex' 176997689 
Telefax (49-69) 231957 
Teletex.6997689=STVBP 

8011 GRASBRUNN 
Bretonlscher Ring 4 
Neukeferloh Technopark 
Tel: (49-89) 46006-0 
Telex. 528211 
Telefax. (49-89) 4605454 
Teletex 897107=STDISTR 

3000 HANNOVER 51 
Rotenburger Strasse 28A 
Tel (49-511) 615960 
Telex 175118418 
Teletex. 5118418 CSFBEH 
Telefax (49-511) 6151243 

5202HENNEF 
Reuther Strasse 1 A-C 
Tel (49-2242) 6088 
. (49-2242) 4019/4010 

Telefax (49-2242) 84181 

8500 NORNBERG 20 
Erlenstegenstrasse, 72 
Tel (49-911) 59893-0 
Telex 626243 
Telefax (49-911) 5980701 

7000 STUTTGART 31 
Mlttlerer Pfad 2-4 
Tel (49-711) 13968-0 
Telex 721718 
Telefax (49-711) 8661427 

ITALY 
20090 ASSAGO (MI) 
V.le Milanoflon - Strada 4 - Palazzo N4/A 
Tel (39-2) 89213.1 (10 linee) 
Telex 330131 - 330141 SGSAGR 
Telefax: (39-2) 8250449 

40033 CASALECCHIO 01 RENO (BO) 
Via R. Fucinl, 12 
Tel (39-51) 591914 
Telex. 512442 
Telefax: (39-51) 591305 

00161 ROMA 
Via A Torlonia, 15 
Tel (39-6) 8443341 
Telex' 620653 SGSATE I 
Telefax. (39-6) 8444474 

NETHERLANDS 
5652 AR EINDHOVEN 
Meerenakkerweg 1 
Tel' (31-40) 550015 
Telex' 51186 
Telefax (31-40) 528835 

SPAIN 
08021 BARCELr;,>NA 
Calle Platon, 6 4' Floor, 5~ Door 
Tel (34-3) 4143300-4143361 
Telefax (34-3) 2021461 

28027 MADRID 
Calle Albacete, 5 
Tel (34-1) 4051615 
Telex 46033 TCCEE 
Telefax (34-1) 4031134 

SWEDEN 
5-16421 KISTA 
Borgarflordsgatan, 13 - Box 1094 
Tel (46-8) 7939220 
Telex 12078 THSWS 
Telefax (46-8) 7504950 

SWITZERLAND 
1218 GRAND-SACONNEX (GENEVA) 
Chemin Francois-Lehmann, 18/A 
Tel (41-22) 7986462 
Telex. 415493 STM CH 
Telefax (41-22) 7984869 

UNITED KINGDOM and EIRE 
MARLOW, BUCKS 
Planar House, Parkway 
Globe Park 
Tel (44-628) 890800 
Telex 847458 
Telefax (44-628) 890391 

AMERICAS 

BRAZIL 
05413 sAo PAULO 
R. Hennque Schaumann 286-CJ33 
Tel. (55-11) 883-5455 
Telex' (391 )11-37988 "UMBR BR" 
Telefax (55-11)282-2367 

U.S.A. 
NORTH & SOUTH AMERICAN 
MARKETING HEADQUARTERS 
1000 East Bell Road 
Phoenix, AZ 85022 
(1-602) 867-6100 

SALES COVERAGE BY STATE 

ALABAMA 
HuntsVille - (205) 533-5995' 

ARIZONA 
PhoeniX - (602) 867-6217 

CALIFORNIA 
Santa Ana - (714) 957-6018 
San Jose - (408) 452-8585 

COLORADO 
Boulder (303) 449-9000 

ILLINOIS 
Schaumburg - (708) 517-1890 

INDIANA 
Kokomo - (317) 459-4700 

MASSACHUSETTS 
Lincoln - (617) 25~0300 

MICHIGAN 
Livonia - (313) 462-4030 

NEW JERSEY 
Voorhees - (609) 772-6222 

NEW YORK 
Poughkeepsie - (914) 454-8813 

NORTH CAROLINA 
Raleigh - (919) 787-6555 

TEXAS 
Carrollton - (214) 466-8844 

FOR RF AND MICROWAVE 
POWER TRANSISTORS CON­
TACT 
THE FOLLOWING REGIONAL 
OFFICE IN THE U.s.A 

PENNSYLVANIA 
MontgomeryVille - (215) 361-6400 

ASIA / PACIFIC 

AUSTRALIA 
NSW 2027 EDGECLIFF 
Suite 211, Edgecltff centre 
203-233, New South Head Road 
Tel (61-2) 327.39 22 
Telex 071 126911 TCAUS 
Telefax (61-2) 327 61 76 

HONG KONG 
WANCHAI 
22nd Floor - Hopewell centre 
183 Queen's Road East 
Tel (852-5) 8615788 
Telex 60955 ESGIES HX 
Telefax (852-5) 8658589 

INDIA 
NEW DELHI 110001 
LiasonOfflce 
62, Upper Ground Floor 
World Trade Centre 
Barakharnba Lane 
Tel (91-11) 3715191 
Telex 031-66816 STMIIN 
Telefax. (91-11) 3715192 

MALAYSIA 
PULAU PINANG 10400 
4th Floor - SUite 4-03 
Bangunan FOP-123D Jalan Anson 
Tel (04) 379735 
Telefax (04) 379816 

KOREA 
SEOUL 121 
8th floor Shinwon Building 
823-14, Yuksam-Dong 
Kang-Nam-Gu 
Tel (82-2) 553-0399 
Telex SGSKOR K29998 
Telefax (82-2) 552-1051 

SINGAPORE 
SINGAPORE 2056 
28 Ang Mo Klo - I ndustnal Park 2 
Tel (65) 4821411 
Telex RS 55201 ESGIES 
Telefax (65) 4820240 

TAIWAN 
TAIPEI 
12th Floor 
325, Section 1 Tun Hua South Road 
Tel (886-2) 755-4111 
Telex 10310ESGIETW 
Telefax (886-2) 755-4008 

JAPAN 
TOKYO 108 
Nlssekl - Takanawa Bid 4F 
2-18-10 Takanawa 
Mlnato-Ku 
Tel (81-3) 3280-4121 
Telefax (81-3) 3280-4131 




