

•
INMOS Business Centre
Headquarters (USA)
SGS-THOMSON Microelectronics Inc
2225 Executive Circle
PO Box 16000
Colorado SPri ngs
Colorado 80935-6000
Telephone (719) 6304000
Fax (719) 630 4325
Telex Easyllnk 62944936

SGS-THOMSON Microelectronics Inc
Sales and Marketing Headquarters (USA)
1000 East Bell Road
Phoenix
Arizona 85022
Telephone (602) 867 6100
Fax (602) 867 6102
Telex 249976 SGSPH UR

INMOS BUSiness Centre
SGS-THOMSON Microelectronics Inc
Five Burlington Woods Drive
SUite 201
Burlington
Massachusetts 01803
Telephone (617) 229 2550
Fax (617) 229 6010
Telex Easylink 62934544

United Kingdom

INMOS BUSiness Centre
SGS-THOMSON Microelectronics Ltd
Planar House
Parkway Globe Park
Marlow
Bucks SL7 1YL
Telephone (0628) 890 800
Fax (0628) 890 391
Telex 847458

Japan

INMOS BUSiness Centre
SGS-THOMSON Microelectronics K K
Nisseki Takanawa BUilding, 4th Floor
18-10 Takanawa 2-chome
Mlnato-ku
Tokyo 108
Telephone (03) 280 4125
Fax (03) 280 4131

Worldwide Headquarters

INMOS Limited
1000 Aztec West
Almondsbury
Bristol BS12 4SQ
UNITED KINGDOM
Telephone (0454) 616616
Fax (0454) 617910
Telex 444723

Worldwide Business Centres

USA

INMOS BUSiness Centre
SGS-THOMSON Microelectronics Inc
9861 Broken Land Parkway
SUite 320
Columbia
Maryland 21045
Telephone (301) 995 6952
Fax (301) 290 7047
Telex Easyllnk 62034521

INMOS BUSiness Centre
SGS-THOMSON Microelectronics Inc
200 East Sandpolnte
SUite 650
Santa Ana
California 92707
Telephone (714) 9576018
Fax (714) 9573281
Telex Easylink 62034531

INMOS BUSiness Centre
SGS-THOMSON Microelectronics Inc
2620 Augustine Drive
SUite 100
Santa Clara
California 95054
Telephone (408) 727 7771
Fax (408) 727 1458
Telex Easyllnk 62203010

EUROPE

France

INMOS BUSiness Centre
SGS-THOMSON Microelectronics SA
7 Avenue Gallien!
BP 93
94253 Gentilly Cedex
Telephone (1) 47 40 75 75
FAX (1) 47 40 79 10
Telex 632570 STMHQ

ASIA PACIFIC

Singapore

INMOS BUSiness Centre
SGS-THOMSON Microelectronics Pte Ltd
28 Ang Mo Klo Industrial Park 2
Singapore 2056
Telephone (65) 482 14 11
Fax (65) 482 02 40
Telex RS 55201 ESGIES

INMOS BUSiness Centre
SGS-THOMSON Microelectronics Inc
1310 ElectrOnics Drive
Carrollton
Texas 75006
Telephone (214) 4668844
Fax (214) 466 7352

West Germany

INMOS BUSiness Centre
SGS-THOMSON Microelectronics GmbH
Bretonlscher Ring 4
8011 Grasbrunn
Telephone (089) 46 00 60
Fax (089) 460 54 54
Telex 528211

TRANSPUTER
APPLICATIONS
NOTEBOOK

Architecture and Software

First Edition May 1989

INMOS Databook Series

Transputer Databook
Transputer Support Databook: Development and Sub-systems
Memory Databook
Graphics Databook
Digital Signal Processing Databook
Military Micro-Products Databook
Transputer Applications Notebook: Architecture and Software
Transputer Applications Notebook: Systems and Performance

Copyright ©INMOS Limited 1989

INMOS reserves the right to make changes in specifications at any time and without notice.
The information furnished by INMOS in this publication is believed to be accurate; however,
no responsibility is assumed for its use, nor for any infringement of patents or other rights
of third parties resulting from its use. No licence is granted under any patents, trademarks
or other rights of INMOS .

• , IIIiJnos , IMS and occam are trademarks of the INMOS Group of Companies.

INMOS is a member of the SGS-THOMSON Microelectronics Group of Companies.

INMOS document number: 72-TRN-206-00

Printed at Redwood Press Limited, Melksham, Wiltshire

Contents overview

1 INMOS

Principles

2

3

4

5

Practice

6

7

8

9

10

11

12

13

14

15

Communicating
processes and occam

The transputer
implementation of

occam
Communicating process

computers

Compiling occam into
silicon

The development of
occam 2

IMS TBOO architecture

The role of occam in
the design of the IMS

TBOO
Simpler real-time

programming with the
transputer

Long arithmetic on the
computer

Exploiting concurrency:
a ray tracing example

High-performance
graphics with the IMS

TBOO

A transputer based
multi-user flight

simulator
Porting SPICE to the

INMOS IMS rBOO
transputer

A transputer farm
accelerator for

networked computing
facilities

An overview.

Discusses the design of occam.
(INMOS technical note 20)
Explains how the concurrent processes of occam can be
implemented by the transputer.
(INMOS technical note 21)

Discusses construction of parallel computers from collections of
transputers. (INMOS technical note 22)

Describes how communicating processes can be implemented
directly on silicon. (INMOS technical note 23)

Shows how occam has been extended to support numerical
applications. (Originally INMOS technical note 32)
Describes the design of the IMS T800 transputer.
(lNMOS technical note 06)

Shows how the floating-point unit of the IMS T800 was verified.
(lNMOS technical note 47)

Illustrates how occam and the transputer simplifies the design of
real-time processing systems. (INMOS technical note 51)

Shows how to perform efficient multiple length arithmetic
on the transputer. (lNMOS technical note 39)
Describes a concurrent ray tracing program.
(lNMOS technical note 07)

Discusses concurrency in computer graphics.
(INMOS technical note 37)

Describes the operation of a multi-pilot flight simulator.
(lNMOS technical note 36)

Describes an example of porting existing FORTRAN applications to
the transputer. (INMOS technical note 52)

Shows a general purpose technique for using multiple transputers to
accelerate conventional applications. (INMOS technical note 54)

iii

iv

v

Contents

Preface xiii

1 INMOS 1
1.1 Introduction 2
1.2 Manufacturing 2
1.3 Assembly 2
1.4 Test 2
1.5 Quality and Reliability 2
1.6 Military 2
1.7 Future Developments 3

1.7.1 Research and Development 3
1.7.2 Process Developments 3

1 Princi~les 5

2 Communicating processes and occam 7
2.1 Introduction 7
2.2 Architecture 7

2.2.1 Locality 7
2.2.2 Simulated and real concurrency 7

2.3 The occam primitives 8
2.4 The parallel construct 9

2.4.1 Synchronised communication 9
2.5 The alternative construct 10

2.5.1 Output guards 11
2.6 Channels and hierarchical decomposition 12
2.7 Arrays and replicators 12
2.8 Time 13
2.9 Types and data structures 14
2.10 Implementation of occam 14

2.10.1 Compile-time allocation 15
2.11 Program development 15

2.11.1 Configuration 16
2.12 occam programs 17

2.12.1 Example: systolic arrays 18
2.12.2 Exam~le: occam compiler 18

2.13 Conclusions 20
2.14 References 20

3 The transputer implementation of occam 21
3.1 Introduction 21
3.2 Architecture 21
3.3 occam 21
3.4 The transputer 22

3.4.1 Sequential processing 22
3.4.2 Instructions 23

Direct functions 23
Prefix functions 24
Indirect functions 24

3.4.3 Expression evaluation 25
Efficiency of encoding 25

vi

3.4.4 Support for concurrency 25
Communications 27
Internal channel communication 27
External channel communication 29
Timer 30
Alternative 30

3.4.5 Inter-transputer links 30
3.5 Summary 31
3.6 References 31

4 Communicating process computers 33
4.1 Introduction 33
4.2 Applications with seecial configurations 33

4.2.1 Algorithmic parallelism or dataflow decomposition 34
Example: occam compiler 34
Example: solid modelling 35

4.2.2 Geometric parallelism or data structure decomposition 37
Statistical mechanics 37

4.2.3 Farming out processing 39
Example: Graphical representation of the Mandelbrot Set 39
Example: ray tracing 41
Some comments about the previous two examples 42

4.3 General-purpose structures 42
4.3.1 Routing and the communication/computation trade-off 43
4.3.2 Comparison of pipelines and processor farms 44

4.4 References 46

5 Compiling occam into silicon 47
5.1 Introduction 47
5.2 VLSI design 47
5.3 occam 47
5.4 Implementation of occam 48
5.5 The abstract micro-machine 49
5.6 The compiler output 49
5.7 Variables, expressions, assignment and SEQ 50
5.8 IF and WHILE 51
5.9 Arrays 52
5.10 Procedures 53
5.11 PAR 53
5.12 Channels and communication 53
5.13 ALT 54
5.14 Example: the prime farm 55
5.15 Example: signal processing 56
5.16 Example: simele processor 56
5.17 Conclusions 59
5.18 References 59

vii

2 Practice 61

6 The development of occam 2 63
6.1 Introduction 63
6.2 The data types of occam 2 63
6.3 Channel protocols 64
6.4 Numerical behaviour 66
6.5 Abbreviations 67
6.6 Alias checking 68
6.7 Checking the validity of parallel constructs 70
6.S Run-time error handling in occam 2 71
6.9 Conclusions 72
6.10 References 72

7 IMS TSOO architecture 73
7.1 Introduction 73
7.2 The transputer: basic architecture and concepts 73

7.2.1 A programmable device 73
7.2.2 Processor and memory on a single chip 73
7.2.3 Serial communication between transputers 74
7.2.4 Simplified processor with microcoded scheduler 74
7.2.5 Transputer products 74

7.3 IMS TSOO architecture 74
7.3.1 Instruction encoding 75
7.3.2 Floating-point instructions 76
7.3.3 Optimising use of the stack 78
7.3.4 Concurrent operation of FPU and CPU 78

7.4 Floating-point unit design 80
7.5 Floating-point performance 82
7.6 Formal methods ensure correctness and quick design 82

7.6.1 Z specification 83
7.6.2 High-level occam implementation 83
7.6.3 Low-level occam implementation 84
7.6.4 Flattened low-level implementation 84
7.6.5 Microcode 85
7.6.6 Summary 85

7.7 Communication links 85
7.S Graphics capability 86

7.S.1 Instruction description 86
7.S.2 Drawing coloured text 88

7.9 Conclusions 90
7.10 References 90
7.11 Note on occam 90
7.12 Note on the 'Livermore Loops' 92
7.13 Note on the formal specification language Z 92

S The role of occam in the design of the IMS TSOO 95
S.1 Introduction 95
S.2 occam 95

8.2.1 occam transformations 95
An example transformation 96

8.2.2 The occam transformation system 97

viii

8.3 Instruction development 97
8.4 An example instruction development 97

8.4.1 Preliminary definitions 98
8.4.2 The instruction specification 99
8.4.3 Refinins to procedural form 99
8.4.4 Refining to occam 99
8.4.5 Hish-Ievel occam implementation 100
8.4.6 Transformations towards microcode 101

Refining the conditionals 101
Refining the expressions 101
Introducing sequencing 102

8.4.7 Translation to microcode 103
8.4.8 Microcode assembler source 104

8.5 Current and future work 104
8.6 Conclusions 105
8.7 References 105

9 Simpler real-time programming with the transputer 107
9.1 Introduction 107
9.2 The occam programming language 107

9.2.1 occam programs 107
9.2.2 Timers in occam 110
9.2.3 Timer values 110
9.2.4 Modulo operators 111

9.3 USing timers 112
9.3.1 Measuring time Intervals 112
9.3.2 Generating a known delay 112
9.3.3 Generating events at regUlar intervals 113
9.3.4 Use in ALTs 114

Interleaving-processing 114
Timeouts on channels 114
Multiple dela~ed in~uts 115

9.4 Transputer implementation of timers 116
9.4.1 Scheduling latency 116

Low-priority processes 116
High-priority processes 117

9.4.2 Timer instructions 117
Delayed inputs 117

9.5 Some application examples 117
9.5.1 Interrupts 117
9.5.2 Polling 118
9.5.3 A real-time clock/calendar 120
9.5.4 A task scheduler 121
9.5.5 Very long delays 121

9.6 Conclusions 121
9.7 References 122

10 Long arithmetic on the transputer 123
10.1 Introduction 123
10.2 Requirements 123
10.3 Facilities available on the transputer 123
10.4 Interface description for the Occam Predefines 124

10.4.1 The Integer arithmetic functions 124

ix

10.4.2 Arithmetic shifts 126
10.5 Methodology 126

10.5.1 Addition 127
'10.5.2 Subtraction 128
10.5.3 Multiplication 128
10.5.4 Division 131

10.6 Shift Operations 132
10.6.1 Normalisation 133

10.7 Performance 133
10.7.1 Optimisation, using multiplication as an example 133

Simple Code 134
Using Array Abbreviations and opened loops 134

10.7.2 Performance Figures 135
10.8 Conclusions 135
10.9 References 135
10.10 The Occam Predefined Procedures 136

10.10.1 Definition of terms 136
10.10.2 The integer arithmetic functions 136
10.10.3 Arithmetic shifts 141
10.10.4 Word rotation 142

11 Exploiting concurrency: a ray tracing example 144
11.1 Introduction 144
11.2 Logical architecture 145

11.2.1 Ray tracing 145
11.2.2 Introducing concurrency 146

11.3 Physical architecture 147
11.3.1 General description 147
11.3.2 The control/display transputer 148
11.3.3 The calculating transputers 148

11.4 Maximising performance 150
11.5 Fault tolerance of the system 151
11.6 References 151
11.7 Note on the ray tracing program 152

12 High-performance graphics with the IMS T800 155
12.1 Introduction 155
12.2 Computer graphics techniques 155

12.2.1 Modelling objects 155
12.2.2 Transformation 156

The homogeneous coordinate system 156
Translation 156
Rotation 157
Concatenation 157
Perspective projection 157

12.2.3 Scan conversion 158
12.2.4 Shading 158
12.2.5 Clipping 159
12.2.6 Hidden surface removal 159

12.3 The IMS T800 transputer 159
12.3.1 Serial links 160
12.3.2 On-chip floating-point unit 161
12.3.3 2-D block move instructions 161

x

12.3.4 The occam programming language 161
12.3.5 Meeting computer graphics requirements 161

12.4 3-0 transformation on the IMS T800 162
12.5 The INMOS distributed Z-buffer 164

12.5.1 The Z-buffer algorithm 165
12.5.2 Scan conversion 165

Scan-converting polygons 165
Scan-converting spheres 165
Implementation details 166
Distributing scan conversion over multiple transputers 167

12.5.3 Architecture 168
12.5.4 Performance 169

12.6 The INMOS multi-player flight simulator 169
12.6.1 Requirements 169
12.6.2 Implementation details 169

The distributed polygon shader 169
Geometry system 170
BSP-trees 170

12.6.3 Architecture 172
12.6.4 Performance 173

12.7 Conclusions 174
12.8 References 174

13 A transputer based multi-user flight simulator 175
13.1 Introduction 175
13.2 Flight simulators 175
13.3 Architecture 176

13.3.1 An overview 176
13.4 Implementation 179

13.4.1 The ring Control process 179
The ring Controller 179
The simulation process 180
The main process 181

13.4.2 The Data Base manager 182
Building the BSP tree 182
Traversing the BSP tree 185

13.4.3 The transformation process 186
13.4.4 Clipping 186
13.4.5 Shading 187
13.4.6 The display 188
13.4.7 User interface 189
13.4.8 The hardware implementation 190

13.5 Conclusions 191
13.6 References 192

14 Porting SPICE to the INMOS IMS T800 transputer 193
14.1 Introduction 193
14.2 Background on SPICE 193
14.3 Background on transputers 194

14.3.1 Transputers 194
14.3.2 The transputer I host relationship 195
14.3.3 SPICE and the transputer 195
14.3.4 Multiple tasks on one or many transputers 195

xi

14.4 The transputer implementation of FORTRAN 196
14.4.1 Placement of the run-time stack 196
14.4.2 Placement of the code 197
14.4.3 Use of stack space 197

14.5 Porting SPICE 197
14.5.1 Routines needing no modification 197
14.5.2 Routines that set the size of VALUE in a COMMON block 198
14.5.3 Routines often supplied in assembler 199
14.5.4 Other routines to be modified 199
14.5.5 Calculating the FORTRAN VALUE array size 200
14.5.6 Problems with long or large simulations 201

14.6 Performance information 201
14.6.1 Performance comparisons 201
14.6.2 Additional performance improvements to SPICE on a T800 201

Faster memory and shorter cycle times 201
Optimum linkage strategy 202
Rewriting critical routines In assembler 202

14.7 Multiple transputer SPICE 202
14.7.1 Ways of running SPICE on multiple transputers 202
14.7.2 A multiple SPICE farm 205
14.7.3 A networked SPICE farm example 206

14.8 Summary 206
14.9 References 207
14.10 Routines for copy, zero and move 208
14.11 Changes to ROOT found by VAX DIFFERENCES 210
14.12 Changes to TITLE found by VAX DIFFERENCES 211
14.13 Rewriting routines in transputer assembler 212

15 A transputer farm accelerator for networked computing facilities 213
15.1 Introduction 213

15.1.1 A modern trend 213
15.1.2 Resolving the loading problem 213

15.2 The systems involved 214
15.2.1 The INMOS transputer 214
15.2.2 The transputer host 215
15.2.3 The existing computing resource 215
15.2.4 The communications network 215

DECnet Introduction 215
DECnet concepts 215

15.2.5 How everything fits together 216
15.3 A specific implementation 216

15.3.1 Overview 216
15.3.2 System design notes 217

Requirements 217
Overall system floorplan and development strategy 217
Automated failure recovery and network topology implications 217

15.3.3 PC support 219
An outline of the PC server 219
Server extensions 220
System operation 220
Implementation of the new server commands 221

15.3.4 Transputer support 225
Modifications to the application 225

xii

The occam harness 227
The occam multiplexers 228

15.3.5 VAX support 229
15.3.6 Operating the system 230

Running MultiSPICE at the PC end 230
Running MultiSPICE at the VAX end 230

15.4 Other considerations 231
15.4.1 Implementation guidelines 231

Tools required 231
Suitable applications 231
Implementation strategy 231
Timescales 232

15.4.2 Multiple task farms 232
15.4.3 Receiving work from DOS rather than DECnet 232
15.4.4 Network monitoring software 232
15.4.5 Other transputer hosts 233
15.4.6 Is it worth it? - Weighing up the pros and cons of using

transputers 233
15.5 Summary and conclusions 233
15.6 References 234

xiii

Preface

The Transputer Applications Notebook - Architecture and Software is a compilation of technical notes written
by INMOS technologists to explain the architectural foundation of occam and the INMOS transputer. The
collection is divided into two sections which describe an approach to VLSI computer architecture based on
communicating processes.

The papers were originally written as a series of individual technical notes with the intention of investigating
and developing specific areas of interest or application. The publication will be of particular interest to
the computer scientist, electronic engineer, mathematician and system designer. It has been published in
response to the growing interest and requests for information about occam and the transputer.

The INMOS transputer is a VLSI building block for concurrent processing systems with occam as the
associated design formalism. occam is an easy and natural language for the programming and specification
of concurrent systems.

Information concerning the use of transputer products is available in a companion publication of technical
notes, ie The Transputer Applications Databook - Systems and Performance.

In addition to transputer products, the INMOS product range includes graphics devices, digital signal pro­
cessing devices and fast static RAMs. For further information concerning INMOS products please contact
your local INMOS sales outlet.

The role of occam in the design of the T800, presented at the 20th Workshop on Microprogramming, December 1-4, 1987, Colorado
Springs, CO. To appear in ACM SIGMICRO Newsletter, Vol. 18, No.4, 1987.

A transputer based multi-user flight simulator, parts of this chapter are published by The Intemational Supercomputing Institute, Inc.
(151, Inc.) in the proceedings of the 3rd Intemational Conference of Supercomputing and, as such, are copyright of 151, Inc.

xiv

mos Chapter 1

_ INMOS

2

1.1 Introduction

INMOS is a recognised leader in the development and design of high-performance integrated circuits and is
a pioneer in the field of parallel processing. The company manufactures components designed to satisfy the
most demanding of current processing applications and also provide an upgrade path for future applications.
Current designs and development will meet the requirements of systems in the next decade. Computing
requirements essentially include high-performance, flexibility and simplicity of use. These characteristics are
central to the design of all INMOS products.

INMOS has a consistent record of innovation over a wide product range and supplies components to system
manufacturing companies in the United States, Europe, Japan and the Far East. As developers of the
Transputer, a unique microprocessor concept with a revolutionary architecture, and the occam parallel
processing language, INMOS has established the standards for the future exploitation of the power of parallel
processing. INMOS products include a range of transputer products in addition to a highly successful range
of high-performance graphics devices, an innovative and successful range of high-performance digital signal
processing (DSP) devices and a broad range of fast static RAMs, an area in which it has achieved a greater
than 10% market share.

The corporate headquarters, product design team and worldwide sales and marketing management are based
at Bristol, UK.

INMOS is constantly upgrading, improving and developing its product range and is committed to maintaining
a global position of innovation and leadership.

1.2 Manufacturing

INMOS products are manufactured at the INMOS Newport, Duffryn facility which began operations in 1983.
This is an 8000 square metre building with a 3000 square metre cleanroom operating to Class 10 environment
in the work areas.

To produce high performance products, where each microchip may consist of up to 300,000 transistors,
INMOS uses advanced manufacturing equipment. Wafer steppers, plasma etchers and ion implanters form
the basis of fabrication.

1.3 Assembly

Sub-contractors in Korea, Taiwan, Hong Kong and the UK are used to assemble devices.

1.4 Test

The final testing of commercial products is carried out at the INMOS Newport, Coed Rhedyn faCility. Military
final testing takes place at Colorado Springs.

1.5 Quality and Reliability

Stringent controls of quality and reliability provide the customer with early failure rates of less than 1000
ppm and long term reliability rates of better than 100 FITs (one FIT is one failure per 1000 million hours).
Requirements for military products are even more stringent.

1.6 Military

Various INMOS products are already available in military versions processed in full compliance with MIL-STD-
883C. Further military programmes are currently in progress.

1 INMOS 3

1.7 Future Developments

1.7.1 Research and Development

INMOS has achieved technical success based on a position of innovation and leadership in products and
process technology in conjunction with substantial research and development investment. This investment
has averaged 18% of revenues since inception and it is anticipated that future investment will be increased.

1.7.2 Process Developments

One aspect of the work of the Technology Development Group at Newport is to scale the present 1.2 micron
technology to 1.0 micron for products to be manufactured in 1988/89. In addition, work is in progress on the
development of 0.8 micron CMOS technology.

4

mos Part 1 5

Principles

6 1 Principles

7

2 Communicating processes and occam
2.1 Introduction

The occam programming language [1] enables an application to be described as a collection of processes
which operate concurrently and communicate through channels. In such a description, each occam process
describes the behaviour of one component of the implementation, and each channel describes a connection
between components.

The design of occam allows the components and their connections to be implemented In many different
ways. This allows the choice of implementation technique to be chosen to suit available technology, to
optimise performance, or to minimise cost.

occam has proved useful in many application areas. It can be efficiently implemented on almost any com­
puter and is being used for many purposes - real-time systems, compilers and editors, hardware specification
and simulation.

2.2 Architecture

Many programming languages and algorithms depend on the existence of the uniformly accessible memory
provided by a conventional computer. Within the computer, memory addressing is implemented by a global
communications system, such as a bus. The major disadvantage of such an approach is that speed of
operation is reduced as the system size increases. The reduction in speed arises both from the increased
capacitance of the bus which slows down every bus cycle, and from bus contention.

The aim of occam is to remove this difficulty; to allow arbitrarily large systems to be expressed in terms of
localised processing and communication. The effective use of concurrency requires new algorithms designed
to exploit this locality.

The main design objective of occam was therefore to provide a language which could be directly implemented
by a network of processing elements, and could directly express concurrent algorithms. In many respects,
occam is intended as an assembly language for such systems; there is a one-to-one relationship between
occam processes and processing elements, and between occam channels and links between processing
elements.

2.2.1 Locality

Almost every operation performed by a process involves access to a variable, and so it is desirable to provide
each processing element with local memory in the same VLSI device.

The speed of communication between electronic devices is optimised by the use of one directional signal
wires, each connecting only two devices. This provides local communication between pairs of devices.

occam can express the locality of processing, In that each process has local variables; it can express locality
of communication in that each channel connects only two processes.

2.2.2 Simulated and real concurrency

Many concurrent languages have been designed to provide simulated concurrency. This Is not surprising,
since until recently it has not been economically feasible to build systems with a lot of real concurrency.

Unfortunately, almost anything can be simulated by a sequential computer, and there is no guarantee that a
language designed in this way will be relevant to the needs of systems with real concurrency. The choice of
features in such languages has been motivated largely by the need to share one computer between many
independent tasks. In contrast, the choice of features in occam has been motivated by the need to use
many communicating computers to perform one single task.

8 1 Principles

An important objective in the design of occam was to use the same concurrrent programming techniques
both for a single computer and for a network of computers. In practice, this meant that the choice of features
in occam was partly determined by the need for an efficient distributed implementation. Once this had been
achieved, only simple modifications were needed to ensure an efficient implementation of concurrency on a
single sequential computer. This approach to the design of occam perhaps explains some of the differences
between occam and other 'concurrent' languages.

2.3 The occam primitives

occam programs are built from three primitive processes:

v:= e
c!e
c?v

assign expression e to variable v
output expression e to channel c
input variable v from channel c

The primitive processes are combined to form constructs:

SEQ sequence
IF conditional

PAR parallel
AL T alternative

A construct is itself a process, and may be used as a component of another construct.

Conventional sequential programs can be expressed with variables and assignments, combined in sequential
and conditional constructs. The order of expression evaluation is unimportant, as there are no side effects
and operators always yield a value.

Conventional iterative programs can be written using a while loop. The absence of explicit transfers of control
perhaps needs no justification in a modern programming language; in occam it also removes the need to
prohibit, or define the effect of, transferring control out of a parallel component or procedure.

Concurrent programs make use of channels, inputs and outputs, combined using parallel and alternative
constructs.

The definition and use of occam procedures follows ALGOL-like scope rules, with channel, variable and
value parameters. The body of an occam procedure may be any process, sequential or parallel. To ensure
that expression evaluation has no side effects and always terminates, occam does not include functions.

A very simple example of an occam program is the buffer process below:

WHILE '!'RUE
VAR ch:
SEQ

in ? ch
out ! ch

in ~L __ C_h_--I~ut

Indentation is used to indicate program structure. The buffer consists of an endless loop, first setting the
variable ch to a value from the channel in, and then outputting the value of ch to the channel out. The
variable ch is declared by VAR ch. The direct correspondence between the program text and the pictorial
representation is important, as a picture of the processes (processors) and their connections is often a useful
starting point in the design of an efficiently implementable concurrent algorithm.

Communicating processes and occam 9

2.4 The parallel construct

The components of a parallel construct may not share access to variables, and communicate only through
channels. Each channel provides one-way communication between two components; one component may
only output to the channel and the other may only input from it. These rules are checked by the compiler.

The parallel construct specifies that the component processes are 'executed together'. This means that the
primitive components may be interleaved in any order. More formally:

PAR
SEQ

Q

x := •
P

=
SEQ

x := •
PAR

P
Q

so that the initial assignments of two concurrent processes may be executed in sequence until both processes
start with an input or output. If one process starts with an input on channel c, and the other an output on the
same channel c, communication takes place:

PAR
SEQ

c ! •
P

SEQ
c ? x
Q

=
SEQ

x := •
PAll

P
Q

The above rule states that communication can be thought of as a distributed assignment.

Two examples of the parallel construct are shown below:

CBAR c:
PAll

WHILE i'lllJE
VAR ch:
SEQ

in ? ch
c ! ch

WHILE i'RUB
VAll ch:
SEQ

c ? ch
out ! ch

in

out

VAR ch1:
VAll ch2:
SEQ

in ? ch1
WBILE nUB

SEQ
PAR

in ? ch2
out ! ch1

PAR
in ? ch1
out ! ch2

in

ch1 002

out

The first consists of two concurrent versions of the previous example, joined by a channel to form a 'double
buffer'. The second is perhaps a more conventional version. As 'black boxes', each with an input and an
output channel, the behaviour of these two programs is identical; only their internals differ.

2.4.1 Synchronised communication

Synchronised, zero-buffered, communication greatly simplifies programming, and can be efficiently imple­
mented. In fact, it corresponds directly to the conventions of self timed signalllng[21. Zero-buffered communi­
cation eliminates the need for message buffers and queues. Synchronised communication prevents accidental
loss of data arising from programming errors. In an unsynchronised scheme, failure to acknowledge data
often results in a program which is sensitive to scheduling and timing effects.

10 1 Principles

Synchronised communication requires that one process must wait for the other. However, a process which
requires to continue processing whilst communicating can easily be written:

PAR
c ! x
P

2.5 The alternative construct

In occam programs, it is sometimes necessary for a process to input from anyone of several other concurrent
processes. This could have been provided by a channel 'tesr, which is true if the channel is ready, false
otherwise. However, this is unsatisfactory because it requires a process to poll its inputs 'busily'; in some
(but by no means all) cases this is inefficient.

Consequently, occam includes an alternative construct similar to that of CSP [3). As in CSP, each component
of the alternative starts with a guard - an input, possibly accompanied by a boolean expression. From an
implementation point of view, the alternative has the advantage that it can be implemented either 'busily' by a
channel test or by a 'non-busy' scheme. The alternative enjoys a number of useful semantic properties more
fully discussed in [4,5]; in particular, the formal relationship between parallel and alternative is shown below:

ALT
c ? x

PAR
PAR P

SEQ SEQ
c ? x d ? Y
P = Q

SEQ d ? Y
d ? Y PAR
Q Q

SEQ
c ? x
P

This equivalence states that if two concurrent processes are both ready to input (communicate) on different
channels, then either input (communication) may be performed first.

One feature of CSP omitted from occam is the automatic failure of a guard when the process connected to
the other end of the channel terminates. Although this is a convenient programming feature, it complicates
the channel communication protocol, introducing the need for further kinds of message. In addition, it can be
argued that many programs are clearer if termination is expressed explicitly.

A simple example of the alternative Is shown below; this is a 'stoppable' buffer program:

WBI:LE going
ALT

in ? ch
out ! ch

stop? ANY
going := FALSE

in ~L.._-,Chr---,~ut
f

stop

in which stop ? ANY inputs any value from the channel stop, and as a result causes the loop to terminate.

Communicating processes and occam 11

2.5.1 Output guards

Output guards are a very convenient programming tool. In particular, they allow programs such as the
following buffer process to be written in a natural way:

WSlLE 'l'ROB
AL'l'

count>O , output ! buff [outpo~nt.r 1
SEQ
outpo~nt.r := (outpo~nt.r + 1) REM max
count := count - 1

count<max , ~nput ? buff [~npo~nt.r 1
SEQ
~npo~nt.r := (~po~nt.r + 1) REM max
count : = count + 1

It is very tempting to include output guards in a communicating process language, and attempts have been
made to include output guards in occam. The major difficulty is in the distributed implementation; in a
program such as:

PAR
AL'l'

c ! xl
c1 ? x2

AL'l'
c ? yl
c1 ! y2

what is expected to happen in the event that two identical processors both enter their alternative at exactly
the same time? Clearly some asymmetry must be introduced; the easiest way to do this is to give each
processor in a system a unique number. Even so, the provision of output guards greatty complicates the
communications protocol. For this reason, output guards are omitted from occam, and the above buffer
must be written as shown below:

PAR
WBlLE 'l'ROB

AL'l'
count>O , req ? ANY

SEQ
reply ! buff [outpointer 1
outpo~nter := (outpointer + 1) REM max
count := count - 1

count <max , input ? buff [inpointer 1
SEQ

inpo~nter := (inpointer + 1) REM max
count := count + 1

WBlLE 'l'IlOB
SEQ

req ! ANY
repl.y ? ch
output ! ch

On the other hand, an occam implementation with only input guards can be used to write the communications
kernel for a 'higher level' version of occam with output guards. An example of an algorithm to implement
output guards in CSP is given in [6); and one for occam is given in [7).

12 1 Principles

2.6 Channels and hierarchical decomposition

An important feature of occam is the ability to successively decompose a process into concurrent component
processes. This is the main reason for the use of named communication channels in occam. Once a
named channel is established between two processes, neither process need have any knowledge of the
internal details of the other. Indeed, the internal structure of each process can change during execution of
the program.

The parallel construct, together with named channels provides for decomposition of an application into a
hierarchy of communicating processes, enabling occam to be applied to large-scale applications. This
technique cannot be used in languages which use process (or 'entry') names, rather than channels, for
communication.

In specifying the behaviour of a process, it is important that a specification of the protocol used on the channel
exists, and the best way to do this varies from program to program (or even from channel to channell). For
example, Backus-Naur Form is often suitable for describing the messages which pass between the individ­
ual processes of a linear pipeline of processes. On the other hand, for more complex interactions between
processes, it is often useful to describe the interactions by an occam 'program' in which all unnecessary
features are omitted. This often enables the interactions between processes to be studied independently of
the data values manipulated. For example:

SEQ
request?
WHILE TRUE

PAR
rep1y !
request ?

describes a process which inputs a request, and then endlessly inputs a new request and outputs a reply, in
either order. Such a process would be compatible, in some sense, with any of the following processes:

WalLE TRUE
SEQ

request
rep1y ?

SEQ
request !
WHILE i'RUE

SEQ
request
rep1y ?

SEQ
request !
WHILE i'RUE

PAR
request
rep1y ?

More design aids are needed to assist in the specification and checking of channel protocols.

2.7 Arrays and replicators

The representation of arrays and 'for' loops in occam is unconventional. Although this has nothing to do
with the concurrency features of occam, it seems to have significant advantages over alternative schemes.

To eliminate trivial programming errors, it is desirable that there is a simple relationship between an array
declaration and a loop which performs some operation for every element of an array. This might lead a
language designer to a choice of:

ARRAY a [base i'O 1.imit] .. .

FOR .i IN [base i'O 1.imi.t] .. .

It is also useful if the number of elements in an array, or the number of iterations of a loop, is easily visible.
For this reason, a better choice might be:

ARRAY a [base FOR count] ...

FOR.i IN [base FOR count] ...

Communicating processes and occam 13

For the loop, this gives a further advantage: the 'empty'loop corresponds to count=O instead of limitibase.
This removes the need for the unsatisfactory 'loop':

FOR i IN [0 TO -1]

Implementation can be simplified by insisting that all arrays start from O. Finally, in occam the FOR loop Is
generalised, and its semantics simplified. An occam 'replicator' can be used with any of SEQ, PAR, ALT
and IF; its meaning is defined by:

Xn=bFORc
P (n)

= X
P(b)
P(b+1)

P(b+c-1)

where X is one of SEQ, PAR, ALT and IF, n is a name and b, c expressions. This definition implicitly defines
the 'control variable' n, and prevents it being changed by assignments within P.

The introduction of arrays of variables and channels does complicate the rules governing the correct use of
channels and variables. Simple compile-time checks which are not too restrictive are:

No array changed by assignment (to one of its components) in any of the components of a parallel
may be used in any other component

No two components of a parallel may select channels from the same array using variable subscripts

A component of a parallel which uses an array for both input and output may not select channels
from the array using variable subscripts

where a variable subscript is a subscript which cannot be evaluated by the compiler.

2.8 Time

The treatment of time in occam directly matches the behaviour of a conventional alarm clock.

Time itself is represented in occam by values Which cycle through all possible integer values. Of course,
it would have been possible to represent time by a value large enough (say 64 bits) to remove the cyclic
behaviour, but this requires the use of multiple-length arithmetic to maintain the clock and is probably not
justified.

Using an alarm clock, it is possible at any time to observe the current time, or to wait until the alarm goes
off. Similarly, a process must be able to read the clock at any time, or wait until a particular time. If it were
possible only to read the clock, a program could only wait until a particular time 'busily'. Like the alternative
construct, the 'wait until a time' operation has the advantage that it can be implemented 'busily' or 'non-busily'.

A timer is declared in the same way as a channel or variable. This gives rise to a relativistic concept of time,
with different timers being used in different parts of a program. A localised timer is much easier to implement
than a global timer.

A timer is read by a special 'input':

time? v

which is always ready, and sets the variable v to the time. Similarly, the 'input':

time ? AFTER t

waits until time t.

14 1 Principles

The use of an absolute time in occam instead of a delay is to simplify the construction of programs such as:

WHILE '!'RUE
SEQ

time ? AFTER t
t := t + interva1
output ! be11

in which n rings of the bell will always take between (n*interva1) and n* (interva1+1) ticks. This
would not be true of a program such as:

WHILE '!'ROE
SEQ

DELAY interva1
output ! be11

because of the time taken to ring the bell.

It is not possible, in occam, for a process to implement a timer. This would require a 'timer output' such as:

timer ! PLUS n

which advances the timer by n ticks. There is no obvious reason why this could not be included in occam.
It would be particularly useful in constructing timers of different rates, or in writing a process to provide
'Simulated time'.

2.9 Types and data structures

The occam described so far makes few assumptions about data types. Any data type could be used -
provided that values of that type can be assigned, input and output according to the rule:

PAR
c ! x
c ? y

= y := x

To preserve this rule, and keep the implementation of communication simple, it is best for assignment not to
make type conversions.

The initial version of occam provides untyped variables and one-dimensional arrays. No addressing opera­
tions are provided, as this would make it impossible for the compiler to check that variables are not shared
between concurrent processes.

occam has been extended to include data types. The simple variable is replaced with boolean, byte and
integer types, and multi-dimensional arrays are provided. Communication and assignment operate on vari­
ables of any data type, allowing arrays to be communicated and assigned.

A detailed description can be found in [8).

2.10 Implementation of occam

The implementation of concurrent processes and process interaction in occam is straightforward. This
results from the need to implement occam on the transputer using simple hardware and a small number of
microcoded instructions. Conveniently, the transputer instructions used to implement occam can be used as
definitions of the 'kernel primitives' in other implementations of occam. A discussion of the implementation of
occam can be found in [9). However, some measure of the efficiency of the occam primitives is provided by
the performance of the INMOS transputer: about 1 microsecond/component of PAR, and 1.5 microseconds
for a process communication.

Another interesting feature of occam is that the process interactions directly represent hardware mechanisms,
which is one reason why occam is being used as a hardware description language.

Communicating processes and occam 15

2.10.1 Compile-time allocation

For run-time efficiency, the advantages of allocating processors and memory at compile-time are clear. To
allow the compiler to allocate memory, some implementation restrictions are imposed. Firstly, the number of
components of an array, and the number of concurrent processes created by a parallel replicator, must be
known at compile-time. Secondly, no recursive procedures are allowed. The effect of these restrictions is that
the compiler can establish the amount of space needed for the execution of each component of a parallel
construct, and this makes the run-time overhead of the parallel construct very small.

On the other hand, there is nothing In occam Itself to prevent an Implementation without these restrictions,
and this would be fairly straightforward for a single computer with dynamic memory allocation.

A distributed implementation of 'recursive occam' might allow a tree of processors to be described by:

PROC tree (VALUE n, CHAN down, CHAN up)
XI'

n=O
lea~ (down, up)

n>O
CHAN left.down, left.up
CHAN right.down, right.up
PAR

tree (n-l, left.down, left.up)
tree (n-l, right.down, right. up)
node (down, up,

left.down, left.up,
right. down, right.up)

If the depth of the tree is known at compile-time (as it normally would be if the program is to be executed on
a fixed-size processor array), the same effect can be achieved by a non-recursive program such as:

DEF p = TABLE [1, 2, 4, 8, 16, 32, 64, 128] :

-- depth o~ tree = n
CHAN down [n*(n-l)]
CHAN up [n*(n-l)]

PAR
PAR i = [0 FOR n - 1]

PAR j = [0 FOR p[i]]
branch (down [p[i] + j], up [p[i] + j],

down [p[i+l]+(j*2)], up [p[i+l]+(j*2)],
down [p[i+l]+(j*2)+l], up [p[i+l]+(j*2)+l]

PAR i = [0 FOR p[n]]
leaf (down [p[n]+i], up [p[n]+i])

Obviously, a preprocessor could be used to provide a correctness preserving transformation between these
two programs.

If the depth of the tree above were not known, it is not clear how such a program could be mapped on to
a processor array, either explicitly by the programmer or implicitly by the implementation. Fortunately, this
problem can be left for the future; many applications require only simple compile time allocation of processors
and memory space.

2.11 Program development

The development of programs for multiple processor systems is not trivial. One problem is that the most
effective configuration is not always clear until a substantial amount of work has been done. For this reason,
it is very deSirable that most of the design and programming can be completed before hardware construction
is started.

16 1 Principles

This problem is greatly reduced by the property of occam mentioned above: the use of the same concurrent
programming techniques for both a network and a single computer. A direct consequence of this is that a
program ultimately intended for a network of computers can be compiled and executed efficiently by a single
computer used for program development.

Another important property of occam in this context is that occam provides a clear notion of 'logical be­
haviour'; this relates to those aspects of a program not affected by real-time effects. It is guaranteed that the
logical behaviour of a program is not altered by the way in which processes are mapped on to processors,
or by the speed of processing and communication.

This notion of 'logical behaviour' results from the relatively abstract specification of parallel and alternative;
it allows almost any scheduling system to be used to simulate concurrency. For the parallel construct, an
implementation may choose the order in which the individual actions of the components are executed. If
several components are ready (not waiting to communicate), the implementation may execute an arbitrary
subset of them and temporarily ignore the rest. For the alternative, an implementation may select any ready
component; there is no requirement to select the 'earliest', or to select randomly.

2.11.1 Configuration

The configuration of a program to meet real-time constraints is provided by annotations to the parallel and
alternative constructs. For the parallel construct, the components may be placed on different processors, or
may be prioritised. For the alternative construct, the components may be prioritised. A better version of the
'stoppable' buffer shown earlier would therefore be:

WalLE going
PRI AL'l'

stop? ANY
going .- FALSE

in ? ch
out! ch

A prioritised alternative can easily be used to provide either a prioritised or a 'fair' multiplexor:

WalLE '!'RUE -- prioritised
PRI AL'l' i = 0 FOR 10

in [i) ? ch
out! ch

WalLE '!'RUE -- 'fair'
PRI AL'l' i = 0 FOR 10

in [(i+last) REM 10] ? ch
SEQ

out! ch
last := (i+1) REM 10

In practice, only limited use is made of prioritisation. For most applications, the scheduling of concurrent
processes and the method of selecting alternatives is unimportant. This is because, assuming that the
system is executing one program, the processes which are consuming all of the processing resources must
eventually stop, and wait for the other processes to do something. If this is not the case, the other processes
are redundant, and can be removed from the program. An implementation should not, of course, allow a
processor to idle if there is something for it to do. But this property is true of any programming language!

Scheduling is important where a system executes two disjoint processes, or has to meet some externally
imposed constraint. Both of these occur, for example, in an operating system which deals with disjoint users,
and needs to take data from a disk at an externally imposed rate.

Communicating processes and occam 17

2.12 occam programs

Despite being a fairly small language, occam supports a very wide variety of programming techniques. Most
important, the programmer may choose between a concurrent algorithm or an equivalent sequential one. A
final program often consists of a mixture of the two, in which the concurrent algorithm describes a network of
transputers, each of which executes the sequential algorithm.

In practice, it is often best to write the concurrent algorithm first. The reason for this is that only the concurrent
program provides freedom in the implemention. A pipeline of ten processes could be executed by a pipeline
constructed from up to ten transputers; the number being chosen according to the performance required. It is
very unlikely that a sequential program can easily be adapted to produce a concurrent program, never mind
one suitable for execution by a network of transputers with no shared memory.

The following example is a concurrent searching algorithm. It uses the tree program shown earlier. The data
to be searched is held in the leaf processors; the node processors are used to disperse the data to the leaves
and collect the replies:

PROC ~eaf (CHAN down, up) =
VAR data, enq:
SEQ

. .. -- ~oad data
WHILE TRUE

SEQ
down? enq
up ! (enq = data)

PROC node (CHAN down, up,
CHAN ~eft.down, ~eft.up,

CHAN right.down, right.up) =
WHILE TRUE

VAR enq, ~eft.found, right.found :
SEQ

down ? enq
PAR

~eft.down ! enq
right.down ! enq

PAR
~eft.up ? ~eft.found
right.up ? right.found

up ! ~eft.found OR right. found

However, it is unlikely to be economic to store only one data item in each leaf. Although each leaf could itself
execute the above algorithm using a tree of processes, this would not be very efficient. What is needed in
each leaf is a conventional sequential searching algorithm operating on an array of data:

PROC ~eaf (CHAN down, up) =
VAR enq, data [~ength], found:
SEQ

... -- initia~ise data
WHILE TRUE

SEQ
found := FALSE
down ? enq
SEQ i = [0 FOR ~ength]

found := (data [i] = enq) OR found
up ! found :

It now remains to choose the number of items held in each leaf so that the time taken to disperse the enquiry
and collect the response is small relative to the time taken for the search at each leaf. For example, if the
time taken for a single communication is 5 microseconds, and the tree is of depth 7 (128 leaves) only 70
microseconds are spent on communication, about one-tenth of the time taken to search 1000 items.

18 1 Principles

2.12.1 E~mple: systolic arrays

A very large number of concurrent algorithms require only the simplest concurrency mechanisms: tlie parallel
construct and the communication channel. These include the 'systolic array' algorithms described by Kung
[10]. In fact, occam enables a systolic algorithm to be written in one of two ways, illustrated by the following
two versions of a simple pipeline, each element of which performs a 'compute' step. First, the traditional
version:

VAR master [n]:
VAR s~ave [n] :
WHILE 'l'RUE

SEQ
PAR i = 0 FOR n

compute (master i], s~ave [i])
PAR

input ? master [0
PAR i = 0 FOR n-l

master [i + 1] := s~ave [i]
output ! s~ave [n

This pipeline describes a conventional synchronous array processor. The compute operations are performed
in parallel, each taking data from a master register and leaving its result in a slave register. The array
processor is globally synchronised; in each iteration all compute operations start and terminate together, then
the data is moved along the pipeline. The initialisation of the pipeline is omitted, so the first n outputs will be
rubbish.

The main problem with the above program is the use of global synchronisation, which gives rise to the same
implementation difficulties as global communication; it requires that the speed of operation must be reduced
as the array size increases. A more natural program in occam would be:

CHAN c [n + 1]
PAR i = 0 FOR n

WHILE TRUE
VAR d:
VAR r:
SEQ

c [n] ? d
compute (d, r)
c [n + 1] ! r

In this program, c[O] is the input channel, c[n+ 1] the output channel. Once again, all of the compute operations
are performed together. This time there is no need for initialisation, as no output can be produced until the
first input has passed right through the pipeline. More important, the pipeline is self-synchronising; adjacent
elements synchronise only as needed to communicate data. It seems likely that many systolic array algorithms
could usefully be re-expressed and implemented in this form.

2.12.2 Example: occam compiler

The structure of the occam compiler is shown opposite. It demonstrates an important feature of the occam
support system; the ability to 'fold' sections of program away, leaving only a comment visible. This enables
a program, or part of a program, to be viewed at the appropriate level of detail.

Communicating processes and occam

-- occam compi~er
CHAN ~exed.program:
CHAN parsed.program:
CHAN scoped.program:
PAR

-- ~exer
CHAN name.text:
CHAN name. code:
PAR

scanner
nametab~e

-- parser
CHAN parsed.~ines
PAR

~ine parser
construct parser

-- scoper

-- generator
CHAN generated. constructs
CHAN generated. program :
PAR

construct generator
~ine generator
space a~~ocator

19

The compiler also illustrates an important programming technique. The nametable process contains data
structures which are hidden from the rest of the program. These structures are modified only as a result of
messages from the lexical analyser. They are initialised prior to receipt of the first message:

-- nametab~e
SEQ

-- initia~ise
WHILE going

-- input text of name
- - ~ook up name
-- output corresponding code

-- terminate

From the outside, the compiler appears to be a single-pass compiler. Internally, it is more like a multiple-pass
compiler; each process performs a simple transformation on the data which flows through it. The effect of
decomposing the compiler in this way was that each component process was relatively easy to write, specify
and test; this meant that the component processes could be written concurrently!

20 1 Principles

2.13 Conclusions

In many application areas, concurrency can be used to provide considerable gains in performance provided
that programs are structured to exploit available technology. For many application areas (especially sig­
nal processing and scientific computation) suitable algorithms already exist, but many areas remain to be
explored.

Writing programs in terms of communicating processes tends to produce programs with a large number of
concurrent processes, ranging in size from 1 to 1000 lines. Consequently, it is particularly important that the
concurrent processing features in the language are efficiently implementable. occam demonstrates that this
efficiency can be achieved for a widely applicable language.

In occam programs, the process/channel structure tends to be used as a major program structuring tool,
procedures being used in the normal way within the larger concurrent processes. The process/channel
structure seems to be effective for managing the construction of large programs, although more experience
is needed in this area.

2.14 References

occam Programming Manual,Prentice-Halllnternational 1984.

2 Introduction to VLSI Systems, C A Mead and L A Conway, Addison Wesley 1980, Section 5.

3 Communicating Sequential Processes, CAR Hoare,
Communications of the ACM Vol. 21 8 (August 1978), p. 666.

4 Denotational Semantics for occam, A W Roscoe,Presented at NSF/SERC Seminar on Concurrency,
Carnegie-Mellon University, July 1984, To be published.

5 The Laws of occam Programming, A W Roscoe and CAR Hoare,
Programming Research Group, Oxford University 1986.

6 An Effective Implementation for the Generalised Input-Output Construct of CSP,
G N Buckley and A Silberschatz, ACM Transactions on Programming Languages and Systems
Vol. 5 (April 1983), p. 224.

7 A Protocol for Generalised occam, R Bornat, Department of Computer Science,
Queen Mary College, London 1984.

8 occam 2 Reference Manual, INMOS Ltd, Prentice Hall 1988.

9 The Transputer Implementation of occam, INMOS Ltd, Technical note 21.

10 Lets Design Algorithms for VLSI Systems, H T Kung in Introduction to VLSI Systems,
C A Mead and L A Conway, Addison Wesley 1980, Section 8.3

21

3 The transputer implementation of occam

3.1 Introduction

VLSI technology allows a large number of identical devices to be manufactured cheaply. For this reason, it is
attractive to implement an occam [1] program using a number of identical components, each programmed
with the appropriate occam process. A transputer [2] is such a component.

A transputer is a single VLSI device with memory, processor and communications links for direct connection
to other transputers. Concurrent systems can be constructed from a collection of transputers which operate
concurrently and communicate through links.

The transputer can therefore be used as a building block for concurrent processing systems, with occam
as the associated design formalism.

3.2 Architecture

An important property of VLSI technology is that communication between devices is very much slower than
communication on the same device. In a computer, almost every operation that the processor performs in­
volves the use of memory. A transputer therefore includes both processor and memory in the same integrated
circuit device.

In any system constructed from integrated circuit devices, much of the physical bulk arises from connections
between devices. The size of the package for an integrated circuit is determined more by the number of
connection pins than by the size of the device itself. In addition, connections between devices provided by
paths on a circuit board consume a considerable amount of space.

The speed of communication between electronic devices is optimised by the use of one-directional Signal
wires, each connecting two devices. If many devices are connected by a shared bus, electrical problems
of driving the bus require that the speed is reduced. Also, additional control logic and wiring is required to
control sharing of the bus.

To provide maximum speed with minimal wiring, the transputer uses point-to-point serial communication links
for direct connection to other transputers.

3.3 occam

occam enables a system to be described as a collection of concurrent processes, which communicate with
each other and with peripheral devices through channels. occam programs are built from three primitive
processes:

v := e assign expression e to variable v
c ! e output expression e to channel c
c ? v input from channel c to variable v

The primitive processes are combined to form constructs:

SEQuential
PARallel
ALTernative

components executed one after another
components executed together
component first ready is executed

A construct is itself a process, and may be used as a component of another construct.

Conventional sequential programs can be expressed with variables and assignments, combined in sequential
constructs. IF and WHILE constructs are also provided.

Concurrent programs can be expressed with channels, inputs and outputs, which are combined in parallel
and alternative constructs.

22 1 Principles

Each occam channel provides a communication path between two concurrent processes. Communication
is synchronised and takes place when both the inputting process and the outputting process are ready. The
data to be output is then copied from the outputting process to the inputting process, and both processes
continue.

An alternative process may be ready for input from anyone of a number of channels. In this case, the input
is taken from the channel which is first used for output by another process.

3.4 The transputer

A transputer system consists of a number of interconnected transputers, each executing an occam process
and communicating with other transputers. As a process executed by a transputer may itself consist of a num­
ber of concurrent processes the transputer has to support the occam programming model internally. Within
a transputer concurrent processing is implemented by sharing the processor time between the concurrent
processes.

The most effective implementation of simple programs by a programmable computer is provided by a sequen­
tial processor. Consequently, the transputer processor is fairly conventional, except that additional hardware
and microcode support the occam model of concurrent processing.

3.4.1 Sequential processing

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set enables the processor to have relatively simple
(and fast) data paths and control logic.

The six registers are:

The workspace pOinter which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, Band C registers which form an evaluation stack, and are the sources and destinations for
most arithmetic and logical operations. Loading a value into the stack pushes B into C, and A into
B, before loading A. Storing a value from A, pops B into A and C into B.

Registers L oca s Program

A

8

C

Workspace ~
Next inst

Operand

The transputer implementation of occam 23

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the 'add' instruction adds the top two values in the stack and places the result on the top of the stack.
The use of a stack removes the need for instructions to respecify the location of their operands. Statistics
gathered from a large number of programs show that three registers provide an effective balance between
code compactness and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded on to the stack.
It is easy for the compiler to ensure that this never happens.

3.4.2 Instructions

It was a design decision that the transputer should be programmed in a high-level language. The instruction
set has, therefore, been designed for simple and efficient compilation. It contains a relatively small number
of instructions, all with the same format, chosen to give a compact representation of the operations most
frequently occurring in programs. The instruction set is independent of the processor wordlength, allowing
the same microcode to be used for transputers with different word lengths. Each instruction consists of a
single byte divided into two 4-bit parts. The four most significant bits of the byte are a function code, and the
four least significant bits are a data value.

Function Data

7 4 3 o

Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of
these are used to encode the most important functions performed by any computer. These include:

load constant
add constant

load local
store local
load local pointer

load non-local
store non-local

jump
conditional jump

call

The most common operations in a program are the loading of small literal values, and the loading and storing
of one of a small number of variables. The 'load constant' instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The 'load local' and 'store local' instructions access locations in memory
relative to the workspace pointer. The first sixteen locations can be accessed using a single byte instruction.

The 'load non-local' and 'store non-local' instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of block-structured programming languages such as occam.

24 1 Principles

Prefix functions

Two more of the function codes are used to allow the operand of any instruction to be extended in length.
These are:

prefix
negative prefix

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

I Function I Data I
7 4 3 o

I Operand Register I I

The 'prefix' instruction loads its four data bits into the operand register, and then shifts the operand register up
four places. The 'negative prefix' instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation, by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

Indirect functions

The remaining function code, 'operate', causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to sixteen such operations to be encoded in a single byte
instruction. However, the prefix instructions can be used to extend the operand of an 'operate' instruction just
like any other. The instruction representation therefore provides for an indefinite number of operations.

The encoding of the indirect functions is chosen so that the most frequently occurring operations are repre­
sented without the use of a prefix instruction. These include arithmetic, logical and comparison operations
such as

add
exclusive or
greater than

Less frequently occurring operations have encodings which require a single prefix operation (the transputer
instruction set is not large enough to require more than 512 operations to be encoded!).

The transputer implementation of occam 25

3.4.3 Expression evaluation

Evaluation of expressions may require the use of temporary variables in the process workspace, but the
number of these can be minimised by careful choice of the evaluation order.

Let depth(e) be the number of stack locations needed for the evaluation of expression e, defined by:

depth(constant)
depth(variable)
depth(e1 op e2)

1
1
IF depth(e1»depth(e2) THEN

depth(e1)
ELSE IF depth(e1)<depth(e2) THEN

depth(e2)
ELSE depth(e1) + 1

Let commutes(operator) be true if the operator commutes, false otherwise.

Let e1 and e2 be expressions. The expression of (e1 op e2) is compiled for the three-register stack by:

compi/e(e1 op e2) =
IF depth(e2) > depth(e1)
THEN

IF depth(et»2
THEN (compile(e2); store temp; compile(e1); load temp; op)
ELSE IF commutes(op)

THEN (compi/e(e2); compi/e(e1); op)
ELSE (compile(e2); compile(e1); reverse; op)

ELSE
IF depth(e2)<3
THEN (compi/e(e1); compile(e2); op)
ELSE (compile(e2); store temp; compile(et); load temp; op)

where (/1; 12; ... In) represents a sequence of instructions.

Efficiency of encoding

Measurements show that about 80% of executed instructions are encoded in a single byte (Le. without the
use of prefix instructions). Many of these instructions, such as 'load constant' and 'add' require just one
processor cycle.

The instruction representation gives a more compact representation of high-level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive several instructions for every fetch.

Short instructions also improve the effectiveness of instruction prefetch, which in turn improves processor
performance. There is an extra word of prefetch buffer so that the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

3.4.4 Support for concurrency

The processor provides efficient support for the occam model of concurrency and communication. It has a
microcoded scheduler which enables any number of concurrent processes to be executed together, sharing
the processor time. This removes the need for a software kernel. The processor does not need to support the
dynamic allocation of storage as the occam compiler is able to perform the allocation of space to concurrent
processes.

26

At any time, a concurrent process may be:

active - being executed
- on a list waiting to be executed

inactive - ready to input
- ready to output
- waiting until a specified time

1 Principles

The scheduler operates in such a way that inactive processes do not consume any processor time.

The active processes waiting to be executed are held on a list. This is a linked list of process workspaces,
implemented using two registers, one of which points to the first process on the list, the other to the last.

In this illustration, S is executing, and P, Q and R are active, awaiting execution:

Registers Locals Program

Front . ..
P

I Back r-- I I
~

a ~ : : I A ... R .J B I I

C Lr s

Workspace ..
Next Inst

Operand

A process is executed until it is unable to proceed because it is waiting to input or output, or waiting for the
timer. Whenever a process is unable to proceed, its instruction pointer is saved in its workspace and the next
process is taken from the list. Actual process switch times are very small as little state needs to be saved; it
is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model. These include:

start process
end process

When a parallel construct is executed, 'start process' instructions are used to create the necessary concurrent
processes. A 'start process' instruction creates a new process by adding a new workspace to the end of the
scheduling list, enabling the new concurrent process to be executed together with the ones already being
executed.

The correct termination of a parallel construct is assured by use of the 'end process' instruction. This uses a
workspace location as a counter of the components of the parallel construct which have still to terminate. The
counter is initialised to the numb'er of components before the processes are 'started'. Each component ends
with an 'end process' instruction which decrements and tests the counter. For all but the last component, the
counter is non-zero and the component is descheduled. For the last component, the counter is zero and the

The transputer implementation of occam

component continues.

Communications

27

Communication between processes is achieved by means of channels. occam communication is point-to­
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being:

input message
output message

The 'input message' and 'output message' instructions use the address of the channel to determine whether
the channel is internal or external. This means that the same instruction sequence can be used for both hard
and soft channels, allowing a process to be written and compiled without knowledge of where its channels
are connected.

As in the occam model, communication takes place when both the inputting and outputting processes are
ready. Consequently, the process which first becomes ready must wait until the second one is also ready.

A process performs an input or output by loading the evaluation stack with a pointer to a message, the
address of a channel, and a count of the number of bytes to be transferred, and then executing an 'input
message' or an 'output message' instruction.

Internal channel communication

At any time, an internal channel (a single word in memory) either holds the identity of a process, or holds the
speCial value 'empty'. The channel is initialised to 'empty' before it is used.

When a message is passed using the channel, the identity of the first process to become ready is stored
in the channel, and the processor starts to execute the next process from the scheduling list. When the
second process to use the channel becomes ready, the message is copied, the waiting process is added to
the scheduling list, and the channel reset to its initial state. It does not matter whether the inputting or the
outputting process becomes ready first.

In the following illustration, a process P is about to execute an output instruction on an 'empty' channel C.
The evaluation stack holds a pointer to a message, the address of channel C, and a count of the number of
bytes in the message.

P C

Registers

A: Count

B: Channel ~ Empty I I
C: Pointer

28 1 Principles

After executing the output instruction, the channel C holds the address of the workspace of P, and the address
of the message to be transferred is stored in the workspace of P. P is descheduled, and the process starts
to execute the next process from the scheduling list.

P C

Workspace

I
P I Next Insl I

Pointer

The channel C and the process P remain in this state until a second process, Q executes an output instruction
on the channel.

P C a
Workspace

A: Counl

Next Insl I P L.. B: Channel
l J

Pointer C: Poinler

The message is copied, the waiting process P is added to the scheduling list, and the channel C is reset to
its initial 'empty' state.

P C

Workspace

Next Insl ~
-+ Lisl --.

The transputer Implementation of occam 29

External channel communication

When a message is passed via an external channel the processor delegates to an autonomous link interface
the job of transferring the message and deschedules the process. When the message has been transferred
the link interface causes the processor to reschedule the waiting process. This allows the processor to
continue the execution of other processes whilst the external message transfer is taking place.

Each link interface uses three registers:

a pointer to a process workspace
a pointer to a message
a count of bytes in the message

In the following illustration, processes P and Q executed by different transputers communicate using a channel
C implemented by a link connecting two transputers: P outputs, and Q inputs.

P C a
R eQlsters R eQlsters

Count Count

Channel Channel

Pointer POinter

When P executes its output instruction, the registers in the link interface of the transputer executing Pare
initialised, and P is descheduled. Similarly, when Q executes its input instruction, the registers in the link
interface of the process executing Q are initialised, and Q is descheduled.

P C a
Workspace Workspace

Next Insl P a .. Nexl Inst

Pointer POinter

Count Counl

30 1 Principles

The message is now copied through the link, after which the workspaces of P and Q are returned to the
corresponding scheduling lists. The protocol used on P and Q ensures that it does not matter which of P and
Q first becomes ready.

p

W k or space

Next Inst

List -..

Timer

c

a
W k or space

Next Inst

List

The transputer has a clock which 'ticks' every microsecond. The current value of the processor clock can be
read by executing a 'Read timer' instruction.

A process can arrange to perform a 'timer input', in which case it will become ready to execute after a
specified time has been reached.

The timer input instruction requires a time to be specified. If this time is in the 'past' (Le. ClockReg AFTER
SpecifiedTime) then the instruction has no effect. If the time is in the 'future' (Le. SpecifiedTime AFTER
Clockreg or SpecifiedTime = ClockReg) then the process is descheduled. When the specified time is reached
the process is scheduled again.

Alternative

The occam alternative construct enables a process to wait for input from anyone of a number of channels,
or until a specific time occurs. This requires special instructions, as the normal 'input' instruction deschedules
a process until a specific channel becomes ready, or until a specific time is reached. The instructions used
are:

enable channel
disable channel
alternative wait

enable timer
disable timer

The alternative is implemented by 'enabling' the channel input or timer input specified in each of its compo­
nents. The 'alternative wait' is then used to deschedule the process if none of the channel or timer inputs is
ready; the process will be rescheduled when anyone of them becomes ready. The channel and timer inputs
are then 'disabled'. The 'disable' instructions are also designed to select the component of the alternative to
be executed; the first component found to be ready is executed.

3.4.5 Inter-transputer links

To provide synchronised communication, each message must be acknowledged. Consequently, a link requires
at least one signal wire in each direction.

A link between two transputers is implemented by connecting a link interface on one transputer to a link
interface on the other transputer-by two one-directional Signal lines, along which data is transmitted serially.

The two signal wires of the link can be used to provide two occam channels, one in each direction. This
requires a simple protocol. Each signal line carries data and control information.

The transputer implementation of occam 31

The link protocol provides the synchronised communication of occam. The use of a protocol providing for
the transmission of an arbitrary sequence of bytes allows transputers of different wordlength to be connected.

Each message is transmitted as a se~uence of single byte communications, requiring only the presence of
a single byte buffer in the receiving transputer to ensure that no information is lost. Each byte is transmitted
as a start bit followed by a one bit followed by the eight data bits followed by a stop bit. After transmitting a
data byte, the sender waits until an acknowledge is received; this consists of a start bit followed by a zero
bit. The acknowledge signifies both that a process was able to receive the acknowledged byte, and that the
receiving link is able to receive another byte. The sending link reschedules the sending process only after
the acknowledge for the final byte of the message has been received.

Data o

Data byte

Acknowledge message

Data bytes and acknowledges are multiplexed down each signal line. An acknowledge is transmitted as soon
as reception of a data byte starts (if there is room to buffer another one). Consequently transmission may be
continuous, with no delays between data bytes.

3.5 Summary

Experience with occam has shown that many applications naturally decompose into a large number of
fairly simple processes. Once an application has been described in occam, a variety of implementations
are possible. In particular, the use of occam together with the transputer enables the designer to exploit
the peformance and economics of VLSI technnolgy. The concurrent processing features of occam can be
efficiently implemented by a small, simple and fast processor.

The transputer therefore has two important uses. Firstly it provides a new system 'building block' which
enables occam to be used as a design formalism. In this role, occam serves both as a system description
language and a programming language. Secondly, occam and the transputer can be used for prototyping
highly concurrent systems in which the individual processes are ultimately intended to be implemented by
dedicated hardware.

3.6 References

occam Programming Manual, Prentice-Hall International 1984.

2 The Transputer Databook, INMOS Ltd 1989.

32 1 Principles

33

4 Communicating process computers

4.1 Introduction

This paper is concerned with the construction of computers based on communicating process architecture.
We wish to establish that this architecture is practical and that it is feasible to build a general-purpose computer
based on this architecture. We shall start by looking briefly at the technological background and the questions
that this raises, then look at a number of real applications, and finally we will discuss the possible structure
of a general-purpose parallel computer.

At the present level of VLSI technology we can implement in the same area of silicon the following components
of a computer:

a 10 MIPS processor
2 Kbytes of memory
a 10 Mbyte/second communications system

Consequently, using the same silicon area, we can construct a single 10 MIPS processor with 4 Mbytes of
memory (a conventional sequential computer) or a 10000 MIPS computer with 2 Mbytes of memory. Both
machines would require about 1000 VLSI devices, and so are quite small computers.

The problems are now to decide on the correct ratio of memory to processors and how to construct a system
with many processing elements with small amounts of memory dispersed through the system, in such a way
that it can be applied to practical problems. Obviously, a collection of 1000 or more processing elements
must be arranged in a regular structure, and a number of different structures have been proposed. Examples
are:

pipeline
array (1 D, 2D, 3D ...)
hypercube
toroidal surface
shuffle

These structures vary in three important respects:

ability to extend
ability to implement on silicon (in two dimensions)
cost of non-local communication

We will return to these matters when we consider the implemention of applications on general-purpose com­
municating process computers. But first we will look at some applications.

4.2 Applications with special configurations

We now look at a number of applications where the concurrent implementation seems to dictate a specific
processor structure. All these applications have been developed and actually run on mUlti-transputer systems.
The examples are divided into three groups. The first group contains applications where the parallelism has
been obtained by decomposing the algorithm into a number of smaller, simpler components which can be
executed in parallel. The second group contains applications where the parallelism has been obtained by
distributing the data to be processed between a number of processors in such a way that the geometrical
structure of the data is preserved. The final group contains applications where a number of processors
are used to process data farmed out by a controlling processor. Of course, these groups are not mutually
exclusive, and our solid modelling application shows aspects of both algorithmic and geometric decomposition.

34 1 Principles

4.2.1 Algorithmic parallelism or dataflow decomposition

In the following two examples the algorithm used follows from a dataflow analysis of the application and the
parallelism arises directly from that algorithm.

Example: occam compiler

The first example is the ocCam-in-ocCam compiler. One of the reasons for the choice of this example is to
illustrate that concurrency can arise where it might not be expected. In order to write this compiler concurrently
(deliberate ambiguity!) a dataflow approach was taken; the parallel decomposition of the algorithm then follows
straightforwardly. The diagram below shows the structure of the compiler.

Scoper

Lexer Parser

Code cruncher

Generator

From the outside, the compiler appears to be a single-pass compiler. Internally, it is more like a multiple-pass
compiler; each process performs a simple transformation on the data which flows through it. For example,
the lexer process inputs a sequence of characters and outputs a sequence of tokenised lexemes. It is able to
do this continuously; as soon as it has recognised a sequence of characters as a lexeme it is able to output
the appropriate token.

The effect of decomposing the compiler in this way was that each component process was relatively easy
to write, specify and test; this meant that the component processes could be written concurrently! Also, as
the machine dependencies were restricted to the final stages of the compiler, it was possible to develop the
compiler for different targets concurrently.

4 Communicating process computers

The occam program for the compiler is outlined below:

-- occam compi1er
CHAN 1exed.program:
CHAN parsed.program:
CHAN scoped.program:
CHAN coded. program:
PAR

-- 1exer
CHAN name. text:
CHAN name. code:
PAR

scanner
nametab1e

-- parser
CHAN parsed.1ines
PAR

1ine parser
construct parser

scoper

-- generator
CHAN generated. constructs
CHAN generated. program :
PAR

construct generator
1ine generator
space a11ocator

code cruncher

35

The program, as shown, could be executed on a pipeline of processors. However, it is unlikely that it will
offer an increase in speed which is proportional the number of processors used.

There are two important reasons for this. The first is that the throughput of a pipeline is limited by the
throughput of the slowest element of the pipeline. This means that in order to have the potential for maximum
multi-processor speed-up a pipeline must be 'balanced'; that is each component of the pipeline must process
data at the same rate. The compiler pipeline is not balanced; measurements show that the code cruncher
accounts for about 40% of the processing resource used. The second reason is that the pipeline does not
contain sufficent buffering to allow each individual stage to operate as fast as possible. For example, the line
parser operates on a line of lexemes at a time, whereas the lexer operates on only a lexeme at a time. This
means that without a buffer inserted between the lexer and the line parser, the lexer will halt whilst the line
parser transforms a line.

Example: solid modelling

Another example of an application for which the algorithm decomposes easily is solid modelling. This involves
the generation of shaded images of polygonal objects in real time. This ras application in the areas of
computer-aided design and computer animation.

For each object the following steps are performed. First the object is translated into the 'world space' (the world
space defines the spacial relationships between the objects to be modelled). The object is then transformed
into the 'image space', this involves rotating and projecting the object so that it will appear in proper perspective
as seen by an observer at the chosen 'viewpoint'. The image of each object must be 'clipped' to the screen
and then 'drawn' into a Z-buffer which is used to resolve depth. The algorithm can be extended to provide
animation by allowing the objects, the world, and the viewpoint to change for each frame.

At the top level we choose to implement the algorithm as shown in the next diagram.

36 1 Principles

Transform

Here each object is passed to a transformer which passes the transformed object to the drawing process.
We use several transformers to increase the rate at which we can draw objects. As a transformer becomes
free, the object store can send it another object to transform. In this way we obtain a linear multiprocessor
speed-up; n-transformers can process data at n-times the rate that one transformer can. This speed-up is
predicated on the object store being able to supply objects at a great enough rate and on the drawing process
being able to draw objects fast enough.

We can now turn to the implementation of the transformation process. The sequential implementation of this
process could be written as:

WalLE active
SEQ

from. object. store ? object
world (object)
viewpoint (object)
clip (object)
to.drawinq.process ! object

This process can be distributed over a pipeline:

4 Communicating process computers

Transform process

the program becoming:

CHAN world. to. viewpoint
CHAN viewpoint.to.clip
PAR

world
viewpoint
clip

37

The parallel processes would all have the same general form; for example, the viewpoint process would be:

WHILE active
SEQ

world.to.viewpoint ? object
viewpoint (object)
viewpoint.to.clip ! object

In practice these processes would be probably be more complex than the program above suggests, we would
want to introduce buffering so that the whole of the transformation pipeline could be kept busy.

4.2.2 Geometric parallelism or data structure decomposition

In the example below use is made of the geometric structure of the data to distribute the application on to a
number of processors.

Statistical mechanics

Statistical mechanics is the study of mechanical systems where the behaviour of the components is described
statistically and cannot be resolved analytically. A familiar example of a statistical mechanical system is
provided by the magnetic properties of iron. For this purpose iron can be modelled as a cubic lattice of small
magnets.

38 1 Principles

The orientation of these magnets is known as a spin because the magnetism is related to the spins of the
electrons in the iron. This model is thus called a three-dimensional spin system.

We can simulate the behaviour of iron on heating by examining what happens to the lattices over successive
time steps as it is heated. During each time step there are two important influences on each small magnet.
Firstly, there are thermal vibrations which will tend to move the magnet away from its current orientation.
The thermal effects are described statistically, with the distribution being dependent on the temperature of
the iron. The second influence will be the magnetic forces applied by the neighbours of the magnet under
consideration. If we start with a magnetised lattice and raise the temperature the thermal effects will eventually
overcome the magnetic forces and the lattice will become disordered and thus demagnetised.

It is easy to see that a statistical mechanical system can be decomposed in terms of its natural geometrical
structure. For example, the cubic lattice of iron could be split between a number of transputers, each dealing
with a small portion of the problem. Each transputer can then update that part of the lattice for which it contains
the data. Communication will be needed with neighbouring transputers so as to exchange information about
adjacent lattice sites which are placed on different transputers.

We will now look at a practical example of a statistical mechanical simulation. This is a simulation of a
generalised planar spin model (I.e. a 2-D spin system) with both 'Exchange' and 'Nematic interactions [1J
which has actually been implemented on a number of transputers. The system can be interpreted in terms
o(liquid crystal films; however, the major interest in the system is theoretical in that it exhibits an unusual
phase structure.

The program operates on an L x L square lattice of spins with periodic boundary conditions. The spins are
represented by angles which are discretised to lower the storage requirements and to allow a table look-up
for fast cosine generation.

The original aim of the design was for the system to be implemented on an array of transputers without any
external memory. This imposed a large constraint because the straightforward geometric decomposition of the
updating process gave rise to a collection of processes each of which was too large to reside in the memory
of a single transputer. The solution was to split the updating work into two parallel processes, 'random' and
'updata' each of which could fit on a transputer.

4 Communicating process computers 39

Periodic boundary conditions

The random process generates uniformly distributed and exponentially distributed random numbers and com­
municates with the controller process. The updata process performs the rest of the updating algorithm, stores
data (512 spins) and computes correlations. Each random/updata pair of processes implements a vertical
'strip' of the lattice. Horizontal communication is required for the interaction of the spins on the vertical edges
of the strips.

In practice the 'no-external memory' requirement was relaxed. The program was run at INMOS on seventeen
transputer evaluation boards (each board having an 80 nS cycle time transputer with external memory). The
extra memory permitted the random and updata processes to be implemented on a single transputer, the
lattice to be decomposed into sixteen 4 x 64 strips, and the discretisation of the spins to be increased to 128
states as the size of the cosine table could be enlarged.

The efficiency of the simulation was:

time of program on 1 processor 800!.
17 x time for program on 17 processors Fd °

The simulation, which took about 60 hours to run, would have taken about 3 months on a VAX 111780.

4.2.3 Farming out processing

Example: Graphical representation of the Mandelbrot Set

The Mandelbrot set, M, is the set of complex numbers:

M = {c : I Mn(c) I < 00 'In EN}

where:

o
Mn(c)2 +c

It can be shown that if 3n: I Mn(c) I> 2 then c f/. M.

The edges of the Mandelbrot set are intricate, and, because complex numbers can be represented on a
two-dimensional plane, the set can be plotted on a graphics screen with impressive results. In practice, the
colour of each pixel on the screen represents whether or not the corresponding point of the complex plane is
in the Mandelbrot set. If a point is not in the Mandelbrot set then the colour plotted at that point represents
the number of applications of the recurrence required to determine that it is not in the set. A point will be
considered to be in the set if the recurrence has been applied more than a fixed number of times (for example
1000) without the modulus becoming greater than 2.

40 1 Principles

For a given point (x, y) the following process applies the recurrence until a colour can be chosen:

iterations := 0
z := COMPLEX(O.O, 0.0)
WHILE (iteration < 1000) AND «MOD z) < 2)

SEQ
z := (z*z) + COMPLEX(x, y)
iteration := iteration + 1

To plot a picture of the Mandelbrot set requires that we perform the above process for every pixel on the
screen. However, as the computation for each pixel is independent we may perform it for many pixels in
parallel. The implementation we have chosen is shown in the diagram below:

... ~ Mandelbrot

The basic idea used in this implementation is that the controller process hands out a point to each Mandelbrot
process. When a Mandelbrot process has computed the colour to be displayed at that pixel it sends the
information to the controller which passes the pixel to the graphics engine and hands the Mandelbrot process
another pixel. This approach is very attractive because the amount of computation required varies from pixel
to pixel and this implementation automatically balances the load.

As can be seen from the previous diagram, Mandelbrot processes not only compute the colour for a pixel
but they also provide a means for the controller to communicate with Mandelbrot processes to which it is not
directly connected. The structure of the Mandelbrot process is as shown below:

This implementation turns out to be quite effective. If mere are N processors available to execute Mandelbrot
processes then an upper bound on the amount of communication required for each pixel will be 10 x N bytes.
This is not a large amount considering that the computation for each pixel may require up to 2000 operations
on floating-point complex numbers.

It turns out that in order to keep the processors busy the Mandelbrot process has to buffer an extra item of

4 Communicating process computers 41

work so that when it completes the computation for a pixel it can start on its next pixel at once rather than
having to wait for the controller to send it the next Item of work. In the diagram above the extra work is buffered
in the router, and when the Mandelbrot computer process finishes its computation it sends a message to the
router requesting more work.

The algorithm sketched above can be improved upon so as to decrease the number of interactions between
the controller and the Mandelbrot processes by handing each Mandelbrot process more than a single pixel
as its item of work. In practice we have chosen to use a quarter of a scan line as the unit of work. We have
found that the communication cost with this approach is insignificant even with tens of processors connected
in the manner shown.

Example: ray tracing

Whilst the previous example of a computer graphics application may seem a little artifiCial and especially
suited to parallel implementation this example is very real. A large amount of super-computer time is spent
on this application by people such as film-makers.

The application is 'ray tracing'. This is a means of producing very high-quality, life-like computer graphics. It
is capable of correctly representing reflective and refractive objects (mirrors and lenses) and light sources.

800

~

I
600

Pixels

1 'world'

-'c
I'

-'c
Lightl'
source

The way in which the technique works is to take a point on the screen and to produce the ray that would
arrive at that point from a pinhole sitting between the screen and the objects to be drawn. The ray is then
extended into the object space and intersected with each object in the space. The first object with which
the ray intersects is determined. In the simplest case this object will be matt and the colour of the object is
plotted at that point on the screen. If the object is reflective, the path that the ray would take after reflection
is computed and the process repeated. The same general principal allows the pinhole to be replaced by a
lens, giving depth-of-field effects.

It may now be seen that the basic structure of the problem is essentially the same as plotting the Mandelbrot
set. For each point on the screen a colour has to be generated. The computation for each point is indepen­
dent and computationally intensive. Ray tracing, can, therefore, be implementated on exactly the processor
structure as was used for drawing the Mandelbrot set.

42 1 Principles

Some comments about the previous two examples

It is quite interesting that the previous two examples are implementable on exactly the same configuration
of processors. It is also interesting that these configurations actually seem to have nothing to do with the
application in hand.

In fact further consideration of both these algorithms will show that almost any configuration of processors will
do, subject to it providing sufficient communication capability. Both these applications have two distinct parts;
the first farms out work to a of number application-specific processes, the second is the application-specific
process. We call this type of arrangement a processor farm.

4.3 General-purpose structures

From the last two examples we have seen that there are applications which are basically insensitive to the
arrangement of processors on which they are run. Of course, there is the proviSO that the arrangement
of processors must provide sufficient communication capability. As we now have evidence that it might be
reasonable to try and construct a general-purpose structure of processors we can return the issues raised in
the introduction.

Pipelines and simple (two-dimensional) arrays can be easily implemented or extended. Arrays (and hyper­
cubes) become progressively more difficult to implement as the dimension increases, with much space taken
by connections which need to cross over. However, 1000 or so processing elements can be connected in
this way.

One difficulty with the hypercube structure is that the number of links provided at each node must be at least
the dimension of the hypercube. This means that a standard component (which has a fixed number of links)
cannot be used to implement an arbitrarily extenSible array. An alternative structure which avoids this problem
is obtained by implementing each node of the hypercube with a ring of transputers - this structure is known
as 'cube-connected cycles'.

The cost of non-local communication, which arises when two nodes need to communicate via intermediate
nodes, varies widely. A one-dimensional array is obviously the worst. It is clearly desirable that the worst
case path between two pOints (the 'diameter') of the network is small in relation to the number of nodes, and
several structures have this property:

structure diameter size

hypercube - n - 1
cube-connected cycle - (n X 5)/2
folded tree - n

If such a structure is being used, for example to implement a processor farm, it may be necessary to implement
a routing algorithm. It is quite easy to design a general-purpose algorithm for this purpose but for many
applications an application-specific router may be better.

4 Communicating process computers

4.3.1 Routing and the communication/computation trade-off

An example of a routing process is shown below:

. .. dec~arat:i.ons
SEQ

:i.n:i.t:i.a~:i.sat:i.on
WHILE act:i.ve

SEQ
ALT

ALT ~ = 0 FOR 4
~:i.nk.:i.n[~] ? message

SKIP
interna~.:i.n ? message

SKIP
dest := route.tab~e[message[O]]
IF

dest = :i.nterna~
:i.nterna~.out ! message

TRUE
~:i.nk.out[dest] ! message

check for terminat:i.on

43

The above routing process inputs a message from a link or from the process coresident on the transputer. The
process examines the first word of the message to determine the destination, and looks up that destination
in a route table which identifies whether it should be sent to the local process or retransmitted down a link.

More complex versions of the routing process would enable the transputer's links to operate concurrently.
However, they would almost certainly impose a larger overhead on the processor's computing power, and
thus might be suitable for algorithms where the required communication bandwidth is relatively high.

Normally the routing process in a transputer would be prioritised over other processes. This ensures that
when a message arrives at the routing process it is inspected (and forwarded if necessary) immediately it
is received. If a high-priority process were not used the message would not be examined until the routing
process was executed on the round-robin.

Although a routing process has an impact on the computing power available at each node, once a data transfer
has been initiatated the transputer's autonomous links will transfer the data without the further intervention
of the processor. This means that the processor resource used by a routing process is dependent on the
number of communications rather than the quantity of data transmitted in each communication. This in turn
suggests that the correct strategy is to maximise the length of message passed at one time.

On the other hand, where the length of time it takes for a message to reach its destination is critical, there
are advantages in breaking data into small messages. This enables several processors to transfer the data
concurrently. This is also true where it is necessary to broadcast data throughout an array. These matters
have been investigated elsewhere in the literature [2].

For a given problem, it is usually possible to adjust the processing time per communication by use of a
combination of parallel and sequential algorithms. At one end of the spectrum is the 'dataflow' program
with many simple processes each of which inputs a message, performs a single operation and outputs it; at
the other end is a sequential program which inputs a message, performs many operations, and outputs the
result. One of the advantages of a communicating process language is that it combines both sequential and
parallel programming techniques, and one of the uses of program transformations is to perform this kind of
optimisation.

It is possible to write programs in a manner whereby the granularity of the computation is easy to adjust.
For example, in the Mandelbrot set drawing program it is easy to alter the granularity from a single pixel
(large potential for parallelism) to a whole screen (small amount of communication). This is useful because
the communication-to-computation ratio can vary as hardware changes. For example, the introduction of
the floating-point transputer will drastically reduce the computation load of a transputer which is drawing the
Mandelbrot set. As a result of this, the program should be altered to increase the number of pixels computed

44 1 Principles

at a time.

Experience suggests that many numerical problems can be organised so that communication times are
dominated by computing time. For example, a process which inputs two n x n arrays, and outputs the
products involves 3 x n2 communications but the multiplication involves n3 operations.

4.3.2 Comparison of pipelines and processor farms

Given a general-purpose structure. such as a two-dimensional array, it is obviously possible to use a number
of different techniques to implement an application. For example, a number of applications could suit either
a pipeline or processor farm implementation.

The question then arises as to which implementation is preferrable. There are a number of considerations
here:

The throughput of a pipeline is limited by the throughput of the slowest part of the pipeline. This
means that the processing time for an n-stage pipeline is n x max(t(1)," " t(n)) where t(i) is the
time taken for stage i of the pipeline, whereas the processing time for the equivalent sequential
implementation (as would be used on a farm), is L:::'1 t(i), which is smaller. In addition the pipeline
implementation will use some processor time passing messages from one stage to the next.

2 The amount of code required in each stage of the pipeline will be smaller than the amount of
code needed in each processor in a farm. This could be important where memory capacity is
limited. The smaller code might also run faster due to better utilisation of the transputer's on-Chip
memory. However, the'code size consideration will only apply to heterogeneous pipelines; the code
to implement all stages of a homogeneous pipeline on a Single farm processor will be essentially
the same size as the code to implement one stage of the pipeline.

3 There may be sequential dependencies in the data which would be difficult to deal with using a
processor farm. For example, in a compiler, it is necessary to know which procedures have already
been compiled in order to enforce scope roles. This would seem to make it difficult to transform the
implementation to a farm.

We would like to give one final example of a processor farm implementation. The application we have chosen
is producing the sum of all prime numbers less than a specified number. We calculate this by producing all
prime numbers less than the specified number and summing them. The prime numbers are produced by
successively testing the primality of odd integers. We test the primality of an integer n by dividing by primes
up to.;n.

This problem is of interest because it contains the sequential dependency that an number n cannot be tested
for primality until we have tested all numbers up to.;n. We have chosen a very simple solution to this problem
for the sake of exposition.

We distribute the problem by having a number of processors running primality testers and a single controller
processor. Each primality tester maintains a list of prime numbers, supplied to it by the controller process. It
uses this list to determine the primality of candidates passed to it by the controller. The controller ensures
that when a primality tester tests a candidate n the tester contains all primes up to .;n.

4 Communicating process computers

The program for the primality tester is:

initialisation
WHILE active

SEQ
from. controller ? object.type; object.value
IF

object.type = candidate
VAR candidate.is.prime :
SEQ

IF
IF i = 0 FOR primes.stored

(object.value \ primes[i]) = 0
candidate. is . prime : = FALSE

TRUE
candidate.is.prime := TRUE

to.controller ! object.value; candidate.is.prime
object.type = prime

add to list of primes
object.type = halt

active := FALSE

The program for the controller is:

... initialisation
problem? upper.bound; root.upper.bound
... generate primes until prime> root.upper.bound

WHILE next.candidate < upper.bound
VAR nactive :
SEQ

hand out next batch of primes
start primality testers

nactive := ntesters
WHILE nactive > 0

ALT i = [0 FOR number.testers]
from.prime.test[i] ? resolved.candidate; is.a.prime

SEQ
add into prime sum if is.a.prime

IF
more. candidates

... send next candidate
TRUE

nactive := nactive - 1
terminate primality testers

result ! prime.sum

45

The inner WHILE loop hands out a new candidate to a tester in response to the tester returning the result
of its previous test. The loop terminates when there are no more candidates which can be tested using only
the primes currently stored by the testers.

The outer WHILE loop will then cause another prime to be supplied to all the testers and the testers to be
restarted. This continues until all candidates less than the upper bound have been tested.

Although this solution requires a certain number of primes to be generated sequentially the program could
be altered so that just sufficient primes were generated to ensure that the testers could start operating; that
is, in order to sum primes up to n, primes up to V7n would be generated. At this stage the testers can
start working and a further concurrent process could start generating the primes which become needed by
the testers as testing continues.

It is also possible to make the controller maintain an ordered list of primes produced by the testers. The early

46

primes produced can than be used in the testing of larger primes.

4.4 References

Simulation of Statistical Mechanical Systems on Transputer Arrays,
C R Askew, D B Carpenter, J T Chalker, A J G Hey, D A Nicole and D S Pritchard
Physics Department, University of Southampton, To be published.

2 Signal Processing with Transputer Arrays, J G Harp, J B G Roberts and J SWard,
Royal Signals and Radar Establishment, Malvern, Worcestershire,
Computer Physics Communications 1985.

1 Principles

47

5 Compiling occam into silicon

5.1 Introduction

The occam language [1] allows a system to be hierarchically decomposed into a collection of concurrent
processes communicating via channels. An occam program can be implemented by a single programmable
microcomputer, or by a collection of programmable computers each executing an occam process. An
occam process can also be implemented directly in hardware. This paper describes a compiler which
translates occam programs into silicon layout.

5.2 VLSI design

In designing a VLSI device, it is useful to have a behavioural description of what the device does, and a
hardware description of the components of the device and the way in which they are interconnected.

Hardware description languages are used in many computer-aided design systems. The hardware description
of a device can be checked against the silicon layout supplied by the designer and can be used as input to
simulators. The hardware description language used by INMOS allows libraries of standard checked modules
to be assembled. All of these techniques combine to remove much of the risk from silicon design once the
hardware description of a device has been constructed.

Behavioural description languages have been used to design sequential processors for many years. As the
process of interpreting instructions in a sequential computer is (nearly) sequential, a conventional sequential
programming language can be used to write the behavioural description of a processor. An advantage of
using a programming language for this purpose is that the description of the device can be compiled into an
efficient simulator of the device.

The behaviour of VLSI devices with many interacting components can only be expressed in a language which
can express parallelism and communication. Communicating process languages are therefore beginning to
be used to describe the behaviour of such devices. For example, occam has been used extensively for this
purpose in the design of the INMOS transputer.

occam has several advantages as a behavioural description language. Firstly, the concepts of concurrency
and communication in occam correspond closely to the behaviour of hardware devices. Secondly, as a
programming language, occam has a very efficient implementation, and this enables fast execution of a
system description as a simulation. Thirdly, occam has rich formal semantics [2] which facilitate program
transformation and proof, and a simple interactive transformation system has been constructed. These
techniques have been used to formally establish the correctness of an occam implementation of IEEE
standard 754 floating-point arithmetic [3], a task which takes too long to be performed by experimental
testing. The transformation system can also be used to optimise programs and can, for example, transform
certain kinds of sequential program into an equivalent parallel program, and conversely.

The problem of ensuring that the hardware description of a device indeed implements the behavioural de­
scription in occam is a significant one. One possible approach is to write a compiler to compile an occam
program into a hardware description.

5.3 occam

occam programs are built from three primitive processes:

v := e assign expression e to variable v
c ! e output expression e to channel c
c? v input variable v from channel c

48 1 Principles

The primitive processes are combined to form constructs:

SEQ sequence
IF conditional

PAR parallel
ALT alternative

A construct is itself a process, and may be used as a component of another construct.

Conventional sequential programs can be expressed with variables and assignments, combined in sequential
and conditional constructs. Conventional iterative programs can be written using a WHILE loop.

Concurrent programs make use of channels, inputs and outputs, combined using parallel and alternative
constructs.

In hardware terms, it is useful to think of a variable as a storage register and a channel as a communication
path with no storage.

Each occam channel provides a communication path between two concurrent processes. Communication
is synchronised and takes place when both the inputting and the outputting process are ready. The data to
be output is then copied from the outputting process to the inputting process, and both processes continue.

An alternative process may be ready to input from anyone of a number of channels. In this case, the input
is taken from the channel which is first used for output by another process.

5.4 Implementation of occam

The concepts of sequence and concurrency in occam are abstract, and allow a wide variety of implementa­
tions. An occam process can be implemented:

1 by compilation into a program for execution by a general-purpose computer such as a transputer

2 (1) with a fixed program held in ROM

3 by compilation into a special-purpose computer, with just sufficient registers, ALU operations, mem­
ory and microcode to implement the process

4 by compilation into 'random' logic

Similarly, the concept of communication is abstract, and allows a channel to be implemented in various ways:

1 store location(s) and program

2 (1) with microprogram instead of program

3 a parallel path with handshaking signals

4 a (more) serial version of (3), the communicating processes breaking the data into several pieces

5 a completely serial path

Any of the above can be implemented using any clocking scheme, ranging from a globally synchronous
system to a fully self-timed system. It should be possible to mix the implementation techniques within a
system, though this requires a range of different channel implementations which operate as 'adaptors' to
provide communication between processes implemented in different ways.

Implementation of occam processes using programmable computers and transputers has been described
elsewhere [4]. Implementation of processes using self-timed circuit elements is the subject of current research
e.g.[5]. This paper concentrates on the compilation of a process into a tailored datapath controlled by compiled

Compiling occam into silicon 49

microcode. A set of concurrent processes may be compiled into a corresponding set of such machines, with
each communication channel implemented by a simple synchronous connection between two machines.

5.5 The abstract micro-machine

Each process is compiled into a datapath controlled by horizontal microcode. The datapath contains a set of
registers connected to an arithmetic logic unit by three buses. These are called the Xbus, Ybus and Zbus.
Each cycle of the machine involves transferring the contents of two selected registers via the Xbus and Ybus
to the arithmetic logic unit for use as operands, and transferring the result from the logic unit back to a
selected register via the Zbus.

DATAPATH ROM

... X SELECT
~

.... y SELECT
REGISTERS

X Z Y Z SELECT

, , ... ALU OP
ALU

,......- NEXT

IlPOINTER

+
The selection of the registers and the operation to be performed by the logic unit is determined by four
components of a microinstruction held in the read-only memory (ROM). The registers in the datapath are
designed so that a single microinstruction can use the same register as both an operand and as the result,
but this is not essential (a compiler can easily allocate registers to avoid the need for it). The microinstruction
ROM is addressed by a microinstruction pointer register.

A further 'next address' component of each microinstruction gives the next value of the microinstruction
register. The microinstruction pointer register is loaded from this field as each microinstruction is executed.
The 'next address' field can be omitted and the microinstruction pointer register replaced by an incrementer
if the process to be implemented consists only of a simple loop with no conditional behaviour.

A number of other components of the microinstruction may be needed, depending on the program being
compiled. These will be described below.

5.6 The compiler output

The compiler makes extensive use of the module library used in the INMOS transputer itself. This library
contains all of the hardware modules needed to construct ALUs and registers, together with special control
logic for fast multiplication, division, shifts etc. It also provides for microinstruction pointer registers, control
line drivers and clock generators. The microcode ROM itself can be generated and optimised automatically
from the textual form of the micrOinstructions. The output of the compiler is therefore:

1 a microprogram ready for input to the ROM generator

2 an HDL (INMOS hardware description language) description of the datapath including the minimum
number of registers and the simplest ALU which are sufficient to implement the process

50 1 Principles

3 an 'array' file containing information about the physical placement of the modules comprising the
datapath

The output can be 'input' to the INMOS CAD system, enabling logic and circuit simulations to be performed,
allowing the layout to be inspected, and ultimately enabling masks to be produced. It is, however, envisaged
that the design process would be interactive, and that having inspected the result of a compilation the designer
would modify the occam specification (probably using correctness preserving transformations) and try again.

5.7 Variables, expressions, assignment and SEQ

Values of variables are held in registers, and expressions are evaluated as a sequence of microinstructions
of the form described above.

Expressions also involve 'literal' operands. These are derived directly from a 'literal' component of the mi­
croinstruction. This need only be able to supply a single operand of each microinstruction, as any operation
involving two literal operands can be performed by the compiler.

The compilation of:

WHILE 'l'ROE
P

where P is a sequence of assignments therefore proceeds as follows:

1) Identify the number of registers needed. At any point in the program, a number Vof variables is in
scope, and each of these must have a register allocated to it. Also, a number T of temporary registers may
be needed to hold temporary values arising during the evaluation of complex expressions. The number of
registers needed for P is the largest value taken by V+ Tin P. This is a conventional compiling technique.

2) Identify the operations needed in the arithmetic logic unit. This depends on the expression operators
used in the program being compiled. If only bit operators are used, the carry path can be omitted, and it is
worthwhile only including:

the carry path (adder)
the shifter
the multiply divide step control logic
the conditional logic

if they are needed. The multiply and divide control logic require conditional selection of the next microinstruc­
tion to be executed, and this is described below.

3) Break all expressions and assignments into a sequence of operations of the form:

Z:=XopY

For example:

VAR a , b , resu~t:
SEQ

a := 10
b := 20
resu~t := (a + b) - 5

generates microcode field definitions to control the registers, 'constants box', and ALU, in addition to the 'next'

Compiling occam Into silicon

field. The following example is the definition of the register control field:

FIELD "Reqfiel.d" Microword[22, 23, 24, 25, 26, 27]
XbusFromRO = #B100000
XbusFromR2 = #B010000
YbusFromRl = #B001000
ROFromZbus = #B000100
R1FromZbus = #B000010
R2FromZbus = #B000001;

51

The register RO is used for a, R1 for band R2 for resul.t. RO and R2 can supply data to the Xbus, R1 to
the Ybus. All three registers can be loaded from the Zbus.

A microinstruction is constructed by combining values from each of a number of fields; for example:

LABl: XbusFromRO YbusFromRl
ZbusFromXbusPl.usYbus R2FromZbus LAB2;

selects RO and R1 as the sources for the Xbus and Ybus respectively, selects the ALU operation as Plus
(ZbusFromXbusPlusYbus) and selects the R2 as the destination for the result. LAB2 indicates the next
microinstruction to be executed.

The microcode for the above program is:

START: XbusFromlO ZbusFromXbus
ROFromZbus LABO;

LABO: XbusFrom20 ZbusFromXbus
R1FromZbus LABl;

LABl : XbusFromRO YbusFromRl
ZbusFromXbusPl.usYbus R2FromZbus LAB2;

LAB2 : XbusFromR2 YbusFrom5
ZbusFromXbusMinusYbus R2FromZbus END;

An example of the HDL generated is the registers a, b, result:

MODULE Registers (IN Cl.ocks[4:1], ROMoutputs[27:22],
Zbus[31:0],

OUT Xbus[31:0], Ybus[31:0])
Xreq32 RO(IN Cl.ocks[4:1], ROMoutputs[22],

ROMoutputs[25], Zbus[31:0],
OUT Xbus[31:0])

Yreg32 Rl(IN Cl.ocks[4:1], ROMoutputs[24],
ROMoutputs[26], Zbus[31:0],·

OUT Ybus[31:0])
Xreg32 R2(IN Cl.ocks[4:1], ROMoutputs[23],

ROMoutputs[27], Zbus[31:0],
OUT Xbus[31:0])

END REGISTERS

which defines the collection of the three registers and their control signals and bus connections. XReg32 is
itself the name of a module which defines a 32-bit register with outputs to the Xbus; YReg32 similarly defines
a register with outputs to the Ybus.

5.8 IF and WHILE

The occam IF and WHILE constructs can both be implemented by allowing the address of the next microin­
struction to be determined by a selected condition.

Conditional behaviour is provided by arranging for the least significant bit of the microinstruction pointer to
be loaded from a selected conditional input; the selection being made by a further microinstruction field
connected to a multiplexor. To allow unconditional branching, one input from the multiplexor is derived from

52

the least significant bit in the 'next address' field.

NEXT

COND
SELECT

ILPOINTER

1 Principles

CONDITION INPUTS

An example is the following process which computes the greatest common divisor of two numbers:

VAR m, n, result:
SEQ

m := 100
n := 35
WHILE (m <> n)

IF
(m > n)

m := m - n
(m < n)

n := n - m
TRUE

SKIP
result := m

which generates the following microcode, and requires three registers for m, n and result:

START:

LABO:

LBLO:

LABl:

LAB2:

LBL2:

LAB3:

LBL1:

5.9 Arrays

XbusFromlOO ZbusFromXbus
ROFromZbus LABO;
XbusFrom35 ZbusFromXbus
R1FromZbus LBLO;
XbusFromRO YbusFromRl ZbusFromXbusMinusYbus
(CondFromNotZbusEqO -> LABl, LBL1);
XbusFromRl YbusFromRO ZbusFromXbusMinusYbus
(CondFromZbusGrO -> LBL2, LAB2);

XbusFromRO YbusFromRl ZbusFromXbusMinusYbus
ROFromZbus LBLO;
XbusFromRO YbusFromRl ZbusFromXbusMinusYbus
(CondFromZbusGrO -> LBLO, LAB3)
XbusFromRl YbusFromRO ZbusFromXbusMinusYbus
R1FromZbus LBLO;
XbusFromRO ZbusFromXbus
R2FromZbus END;

Arrays are implemented by including a random access memory. Indexing operations are provided by con­
structing the bitwise OR of the base address and the subscript (the base being a literal and the subscript
being held in a register), eliminating the need for address arithmetic and enabling a selected component of an
array to be transferred to or from a register in a single cycle. The base address of each array in the process

Compiling occam into silicon 53

is chosen to make this possible, and unused rows are omitted from the memory array.

5.10 Procedures

occam procedures can be implemented either by substitution of the procedure body prior to compilation or
by a conventional closed procedure call.

As no recursion is permitted, the maximum depth of calling is known to the compiler, and it is possible to
compile a stack of microinstruction pointer registers of the appropriate depth. Dedicated registers can be
allocated for the variables in each procedure; temporaries can be shared by all procedures as occam does
not contain functions.

5.11 PAR

The easiest way to implement concurrent processes is to use one processing element for each process, and
the present compiler does this.

5.12 Channels and communication

Synchronisation of input and output requires that the processor idles as the first process waits for the second.
This is achieved by a microprogram polling loop.

It is clearly desirable to minimise the amount of hardware associated with each channel, and to minimise the
number of connections needed to implement a channel.

For any process which includes channel communication, the compiler generates a shift register, two control
signals, sync and shift, and an input to the condition multiplexor, ready.

shift

in

ready

out
sync -I~-------·o

For each pair of devices which communicate, two connections are used to form a link. Each link is connected
to a device as shown; only one additional control signal is needed for each link on a device; this is used to
select which link is in use.

shift link shift

ready ready

syncl------1/ \.r----~ sync

link select link select

54 1 Principles

An input or output is performed by asserting the sync signal together with the appropriate link select signal,
and polling the ready signal. When a ready signal is detected, this indicates that both devices are ready to
communicate. At this point the process at the other end of the link will also have detected a ready signal.
Both devices now release their sync signals, and clock their shift registers using the shift signals. With only
the link select signals asserted, the two shift registers at either end of the channel effectively form one long
cyclic shift register, so the data in the two shift registers is exchanged. After the data has been exchanged,
the link select signals are released.

Clearly, this operation is completely symmetrical. Each link between two devices can be used for both input
and output; it is not necessary for these to be performed concurrently as each device implements only one
process.

An example of a simple process which inputs a value, adds 1, and outputs the result is:

CHAN c, d:
VAR x:
SEQ

c ? x
d ! (x + 1)

The microcode is as follows:

SETUPO: YbusFrom32 ZbusFromYbus TOFromZbus
SelectChO SYNC
(CondFromReady -> TRANSFERO, SETUP 0) ;

TRANSFERO: XbusFromTO YbusFrom1 ZbusFromXbusMinusYbus
TOFromZbus
SelectChO ShiftChan
(CondFromNotZbusEqO -> TRANSFERO, DONEO) ;

DONEO: XbusFromChan ZbusFromXbus
ROFromZbus LASO;

LASO: XbusFromRO YbusFrom1 ZbusFromXbusPlusYbus
ChanFromZbus SETUP1;

SETUP1: YbusFrom32 ZbusFromYbus TOFromZbus
SelectCh1 SYNC
(CondFromReady -> TRANSFER1, SETUP 1)

TRANSFER1: XbusFromTO YbusFrom1 ZbusFromXbusMinusYbus
TOFromZbus
SelectCh1 ShiftChan
(CondFromNotZbusEqO -> TRANSFER1, END) ;

A temporary register (TO) is introduced to count the number of bits to be transferred to or from the channel
register (CHAN). The value of x is held in a further register (RO). The ALU is used to decrement the count
register and test for zero at the same time that each bit is shifted through the link.

5.13 ALT

Alternative input requires that the inputting processor can poll a number of channels in turn until one is found
to be ready for input. The link implementation described above can be used for this purpose; an example is
shown below:

ALT
in1 ? x

count .- count + 1
in2 ? x

count .- count - 1

Compiling occam into silicon 55

The microcode for polling the channels is:

LBL1: Sel.ectChO SYNC
(CondFromReady -> TRANSFER1, LBL2)

TRANSFER1:

LBL2: Sel.ectChO SYNC
(CondFromReady -> TRANSFER2, LBL1)

TRANSFER2:

The microcode loop attempts to synchronise with each of the two links until it succeeds, in which case it
continues with the input.

5.14 Example: the prime farm

Prime numbers can be generated concurrently using a 'processor farm'. A program is given in [6]. It uses a
controller which farms out successive numbers to an arbitrary number of primality testers. Each tester stores
all of the primes up to the square root of the number to be tested; it uses these to test whether or not the
number is prime, and responds to the controller accordingly.

Here we use an even simpler program. Each tester divides its new number by all numbers up to the square
root of the new number. This removes the need for an array to store the prime numbers up to the square
root.

This is entirely justified because we are trying to optimise the use of silicon area; the area taken for one tester
with memory can be better used for many testers without. This is certainly true for generating primes up to
2**32.

PROC primetest(CHAN from.control.l.er, to.control.l.er)
DEF isprime = 0, notprime = 1:
VAR mextest, candidate, active:
SEQ

active := true
WHILE TRUE

SEQ
from.control.l.er ? maxtest; candidate
IF

maxtest = 0
active := FALSE

maxtest <> 0
VAR nexttest:
SEQ

nexttest := 3
WHILE «candidate REM nexttest) <> 0) AND

(nexttest < maxtest)

IF
nexttest := nexttest + 2

nexttest < maxtest
to.control.l.er not.prime

TRUE
to.control.l.er is.prime

The controller is about 1.5 mm x 2.5 mm in area; each tester is about 1.2 mm x 2.3 mm. The space occupied
by a controller with sixteen testers is about 50 mm2 , and can easily be implemented on a single chip using a
current manufacturing process. Such a chip would require very few external connections; a single link, clock
and reset inputs, and power. There is a great deal of freedom in configuring the devices on the chip, as they
communicate only by two-wire links. It seems likely that 'process farms' are an effective way of organising
specialised VLSI systems.

56 1 Principles

5.15 Example: signal processing

The following example is a second·order filter which filters a stream of values. It would normally be used as
a component in a pipeline in which each component filter has different parameters.

PROC Fi1ter (Chan In, Out)
VAR x, y, t1, t2, t3, zl, z2:
SEQ

zl := 3
z2 := 4
WHILE TRUE

SEQ
in ? x
t1 .-
t2 .-
z2 .-
t3 .-
out !

x -
a2 *
t1 -
t2 +
t3 +

in ? x
t1 .- x -
t2 .- a2 *
z2 .- t1 -
t3 .- t2 +
out ! t3 +

(b2 * z2)
z2
(b1 * zl)
(a1 * zl)
(aO * z2)

(b2 * zl)
zl
(b1 * z2)
(a1 * z2)
(aO * zl)

This requires 9 registers and 93 microinstructions; the relatively large number of microinstructions arises
because each multiplication requires a short sequence of microinstructions including a loop. This could be
improved by providing microcode subroutines (using an additional microinstruction pointer register). Multipli­
cation speed could also be improved (at the expense of area) by use of a parallel multiplier.

The filter occupies 3 mm2 ; so a pipeline of 20 filters could be fitted on a single VLSI device.

5.16 Example: simple processor

Our final example is a simple programmable processor with a (very) reduced instruction set. Despite its tiny
instruction set, it provides all of the functions needed to implement a sequential occam process; in fact it is
very easy to compile an occam process into the instruction set of this processor. The processor has four
input and four output links, and 256 bytes of random-access memory.

PROC Processor(CHAN InO, In1, In2, In3,
CHAN OutO, Out1, Out2, Out3)

VAR Iptr, Wptr:
VAR Areg, Breg:
VAR Instruction, Function, Operand:
VAR Memory [256] :
SEQ

Memory [0] := Boot
Iptr := 0
Operand := 0

WHILE TRUE
SEQ

Instruction := Memory [Iptr]
Iptr := Iptr + 1
Function := Instruction /\ #FO
Operand := (Instruction /\ #OF) \/ Operand

IF
Function=Prefix

Operand : = Operand « 4

Compiling occam into silicon

TRUE
SEQ

IF
Function=Loadavar

Areg : = Memory (Wptr+Operand]

Function=Loadbvar
Breg : = Memory (Wptr+Operand]

Function=Loada~it
Areg : = Operabd

Function=Loadb~it
Breg : = Operand

Function=Storeavar
Memory (Wptr+Operand] := Areg

Function=Loadaind
Areg := Memory (Areg+Operand]

Function=Storebind
Memory (Areg+Operand] := Breg

Function=Jump
Iptr := Iptr + Operand

Function=Jumpfa~se
IF

Areg = 0
Iptr := Iptr + Operand

TRUE
SKIP

Function=Equa~a~it
Areg := Areg = Operand

Function=Adda~it
Areg : = Areg + Operand

Function=Adjust
Wptr : = Wptr + Operand

Function=Ca~~
SEQ

Areg : = Iptr
Iptr := Iptr + Operand

Function=Operate
IF

Operand=input
IF

Areg=O
InO ? Areg

Areg=l
In1 ? Areg

Areg=2
In2 ? Areg

Areg=3
In3 ? Areg

57

58

Operand=output
IF

Areg=l
Out 0 Breg

Areg=2
Out 1 Breg

Areg=4
Out 2 Breg

Areg=8
Out3 Breg

Operand~lternative
ALT

«Areg /\ 1) <> 0) & InO ? Areg
Iptr .- Iptr + 0

«Areg /\ 2) <> 0) & In1 ? Areg
Iptr := Iptr + 1

«Areg /\ 4) <> 0) & In2 ? Areg
Iptr .- Iptr + 2

«Areg /\ 8) <> 0) & In3 ? Areg
Iptr := Iptr + 3

Operand=Greater
Areg := Areg > Breg

Operand=Shiftleft
Areg := Areg « Breg

Operand=Shiftright
Areg := Areg » Breg

Operand=Xorbits
Areg := Areg >< Breg

Operand~dbits
Areg := Areg /\ Breg

Operand~dd
Areg := Areg + Breg

Operand=Subtract
Areg := Areg - Breg

Operand= Boot
SEQ

InO ? Wptr
Iptr := 0

WHILE Iptr < wptr
SEQ

InO ? Memory [Iptr
Iptr := Iptr + 1

Iptr := 0
Operand := 0

1 Principles

On reset, the processor waits for a program to be supplied via link O. It then loads a program, and executes
it until a 'boot' instruction is executed.

There is obviously considerable scope for better optimisation in this case; in particular it would be desirable
to implement the instruction decoding 'IF' construct with a mechanism which replaces the microinstruction
pOinter register with a value held in a register.

Compiling occam into silicon 59

The processor requires 11 registers and has 140 microinstructions. The whole device including the memory
occupies about 6.25 mm2 ; 10 such devices with their interconnections would take less area than a typical
32-bit microprocessor.

5_17 Conclusions

A communicating process language such as occam can be used to design VLSI devices, and can be
compiled into silicon layout. Some parts of the design process are still performed by hand (such as the
final placement of the functional blocks), but this cannot introduce errors. It is therefore possible to design
concurrent VLSI systems using occam, establish that the design behaves as intended using the formal
semantics of occam (or in simple cases by experimental testing of the occam program), and finally compile
the occam source into correct silicon layout.

In order to simplify the construction of the compiler, many issues have been ignored. For example, the
synchronous communication system is only appropriate for local communication between devices sharing a
common clock. This problem can be overcome by using a different link implementation for 'long distance'
communication (for example, the link used in the transputer itself).

Expressing an application in a form which efficiently exploits silicon area involves careful consideration of the
relative costs of memory, processing and communication. Concurrent algorithms which perform 'redundant'
calculations can be faster and consume less area than sequential algorithms which store values. An important
use of a silicon compiler is to aid in the evaluation of 'silicon algorithms'.

5_18 References

occam Programming Manual, Prentice-Hall International 1984.

2 The Laws of occam Programming, A W Roscoe and CAR Hoare,
Programming Research Group, Oxford University 1986.

3 Formal Methods applied to a Floating Point Number System, G Barrett,
Programming Research Group, Oxford University 1986.

4 The Transputer Implementation of occam, INMOS Ltd, Technical Note 21.

5 Compiling Communicating Processes into delay insensitive VLSI Circuits, Alain J Martin,
Journal of Distributed Computing 1986.

6 Communicating Process Computers, INMOS Ltd, Technical Note 22.

60 1 Principles

Part 2 61

Practice

62 2 Practice

63

6 The development of occam 2

6.1 Introduction

The major reason for the design of the occam 2 [1] programming language was a desire to incorporate
floating-point arithmetic into occam. This had to be done without breaching the security of the language.
As a result occam 2 is well defined, many programming errors are detectable at compile time, and run-time
errors are reliably and cheaply detectable. This paper describes various aspects of the language design which
relate to security; some of these, such as 'channel protocols' overcome problems caused by the introduction
of new data types to the language, others, such as alias checking, tackle security problems which are present
in most other programming languages.

6.2 The data types of occam 2

The occam 1 programming language provided concurrency, message passing and a limited set of data
types; the word, the channel and vectors of words or of channels. Although this was sufficient for many
purposes, there were instances where a language which had a richer set of data types would offer significant
advantages. In particular:

1 We wanted to support numerical programming; for occam to become the FORTRAN of parallel
processing we would have to support floating-point arithmetic and multi-dimensional arrays.

2 We wanted to be able to pass messages of length greater than a single word. This is because much
of the cost of passing a message is due to process synchronisation rather than data transfer. A
language which would permit several words to be communicated in a single transfer would be more
efficient than one which could transfer only single words.

3 We wanted to program systems of processors which did not share a common wordlength. In such
systems communication would have to be in terms of some unit other than the word.

As a result occam 2 supports several primitive data types. There is a machine-dependent data type, INT,
which loosely corresponds to the VAR of occam 1. INT is the type of signed integer values most efficiently
provided by the machine. As this normally corresponds with the size of an address in the machine, values
of type INT are used for such purposes as replicator indices and array subscripts. Unlike occam 1, there
is a separate type BOOl, which represents boolean values, and a BYTE type, which represents unsigned
integers in the range 0 to 255. (Note that although occam 1 could pack and unpack values into bytes, the
byte was not a proper data type; all arithmetic and message passing was done in terms of words.)

There are occasions where the use of a machine-dependent type such as INT is not satisfactory; for example,
where a message is to be passed between two machines of differing wordlength, or where a calculation has
to be performed to a particular precision, regardless of the machine on which it is to be performed. To cope
with these situations, occam 2 has a further three integer types, INT16, INT32 and INT64, which represent
signed integers with a length of 16, 32 and 64 bits respectively.

There are two floating-point types called REAl32 and REAl64. These correspond to the single- and double­
length floating-point numbers of the IEEE Standard for Binary Floating Point. In fact occam does not support
the multiple error symbols of the standard as this would undermine the substitution semantics of the language;
for example, in full IEEE arithmetic, x = y does not imply that x op z = y op z.

In addition to the primitive types, occam has array types. The components of an array may be of any single
type. As an array may have components of an array type, occam 2 does provide mUlti-dimensional arrays.
An array may be subscripted (giving a component of the array), assigned, passed as a message and used
as a parameter to a procedure or a function.

64 2 Practice

6.3 Channel protocols

The presence of several different data types in occam 2 introduces the problem of how to extend the
communication model to handle them. The problem arises from the need to ensure that when a message
is passed, the type of data sent by the transmitter matches the type of data expected by the receiver. It is
desirable to provide some sort of checking of channel communication for two reasons. Firstly, it is very easy to
make mistakes in communication and anything which enables these mistakes to be detected at compile time
is helpful. Secondly, the effect of run-time errors in communication can be at least as devastating as subscript
errors; it can cause store to be overwritten arbitrarily, or can cause the breakdown of process synchonisation.

A number of different proposals were considered during the design of occam 2. Some, such as restricting a
channel to communicating a single type, were rejected due to lack of flexibility. Others, such as type-checking
all communication at run-time, were rejected as they carried too much run-time overhead.

The solution adopted in occam 2, the channel protocol, allows great freedom over what is communicated
on a channel, but ensures security. Whenever a channel is declared the structure of all communication
occurring on that channel must also be declared as a channel protocol. This enables most communication
to be checked at compile-time, and simplifies any remaining run-time checks.

The simplest protocol permits communication of a single type which may, of course, be an array type. For
example, if the channel greeting is being used to communicate strings which are to be displayed on a
12-character LCD display, it might be declared:

CHAN OF [12]BYTE greeting :

The compiler can subsequently check that all inputs and outputs correspond to this protocol. Thus the
compiler would accept:

greeting! "Hello world!"

but would reject:

greeting! "Goodbye world!"

as the string has too many characters.

Whilst this example is perfect for the application described it does raise the question of how to deal with arrays
whose size is determined at run-time. As this is a fairly general requirement occam has a protocol which
corresponds to a counted array. When a message is passed on a channel with a counted array protocol, the
length of the array is communicated and then the array is communicated. Suppose in the previous example,
the string was to be displayed, not on a 12-character LCD display, but as a line on a terminal. We might then
declare a channel terminal as:

CHAN OF INT:: []BYTE terminal

indicating that inputs would be of the form:

terminal? count::array

which first receives the number of elements to be input into the variable count and then inputs into the first
count elements of array. Similarly, outputs would be of the form:

terminal! count::array

which first outputs the value of count and then outputs the first count elements of the array array.

The development of occam 2 65

Where a channel has been declared with a counted array as its protocol, some checks can be made at
compile-time but others must wait until run-time. For example, with the channel terminal. declared above,
the compiler would reject the output:

terminal. ! "Hel.l.o worl.d!"

as it is not of the correct form. However, it would accept the following:

[4000)BYTE l.engthy :
SEQ

terminal. ! SIZE l.engthy::l.engthy

which would cause a run-time error when input by the following fragment of program:

[80)BYTE l.ine.buffer :
SEQ

terminal. ? count::l.ine.buffer

as the compiler inserts code to check the value of count against the length of the array l.ine . buffer.

In addition to the protocols described above, called simple protocols, which permit a single item to be com­
municated, occam 2 has sequential protocols which permit a specified number of items to be transmitted
by a single input or output. Suppose that we wanted to extend the previous example so that the message
passed along the channel terminal. specified the line on which the string was to be displayed. We want to
send messages which first send the line number and then the text to be displayed. We can name a suitable
protocol and then use it to declare the channel. (The previous examples have used simple protocols which
do not require naming.)

PROTOCOL l.ine IS INT; INT:: [)BYTE :
CHAN OF l.ine terminal. :

As a result of this declaration the compiler is able to check that all communications are of the correct form.
For example, the following would be detected as an error:

terminal. ! 12:: "Hel.l.o worl.d!"; l.ine. number

since the order of the line number and the line has been swapped.

Often a single channel is used to pass messages with different structures. For example, suppose we are
writing a program to control a pen plotter which has a number of simple operations of the form 'pen up' or
'pen down', and a single draw operation 'move pen' which requires a ~air of coordinates. We can indicate
that we wish to send messages of two different structures by using a variant protocol. In this case we would
declare a protocol pl.otter. control. consisting of two tagged protocols:.

PROTOCOL pl.otter.control.
CASE

simpl.e.command; INT
move.command; REAL32; REAL32

66 2 Practice

The compiler only permits outputs which first output one of the tags, followed by an output matching the
remainder of the tagged protocol. For example, the following output will cause the plotter to move to the
origin:

plotter ! move.command; O.O(REAL32); O.O(REAL32)

If we had made a mistake here such as omitting the move. command tag or sending the coordinates as
integers, the compiler would detect the error.

An input on a channel which has a variant protocol is necessarily more complex than an output. The actual
form the input will take depends on the tag received. To cope with this occam 2 has a 'case inpuf which
first inputs a tag and then selects a matching input and then executes an associated process. For example,
the program which actually drives the plotter would have an input such as:

plotter ? CASE
simple. command; command

execute. command (command)
move. command; x; y

move.pen.to(x, y)

When this is executed a tag is input from the channel plotter and used to select the matching input. For
example, if the tag input is move. command then an input to x and y will occur, followed by the execution
of the procedure move. pen. to.

It is not necessary to list all possible tags in a case input. When a case input receives a tag which does not
match any of the tagged inputs this is treated as an error. There are occasions where a program is expecting
a specific tag to be received; in these cases a special form of input can be used. For example, if tlie pen
plotter driver is expecting a simple. command then the program would look like:

SEQ

plotter ? CASE simple.command; command

This special case input is equivalent to:

plotter ? CASE
simple. command; command

SKIP

6.4 Numerical behaviour

The numerical behaviour of operations in occam 2 is well defined. Usually overflow, division by zero, et
cetera are treated as errors. However, it is recognised that sometimes it is necessary to perform calculations
where these events are not considered to be errors. To this end occam 2 provides the PLUS, MINUS and
TIMES operators which are unchecked.

The presence of the large number of concrete data types in the language raises the question of how constant
values should be represented. In occam 2, only INT literals expressed as undecorated decimal strings
(e.g. 123) or as hexadecimal strings (e.g. #FA77FE16), BYTE literals expressed as a quoted character
(e.g. 'Z') and the BOOl constants (TRUE and FALSE) take their types implicitly; all other constants are
explicit about their type. Whilst the requirement for explicit typing may seem unnecessary it does ensure that
arithmetic on constants is performed correctly. For example, the result of the calculation 16777216.0 + 1.0
depends on whether the numbers are interpreted as REAl32s (in which case the result is 16777216.0) or
as REAl64s (in which case the result is 16777217.0). It is for similar reasons that occam requires that all
conversions between types are stated explicitly.

The development of occam 2 67

A similar decision has been taken in deciding to perform arithmetic according to the type of data on which
it is being performed. All intermediate results are calculated as if they were of the same type as the result.
This is unusual; it is quite common for the intermediate results of floating-point calculations to be held in an
extended format. Whilst this may seem advantageous, it actually has two important drawbacks. The first is
that it can lead to 'double rounding' and thus a less accurate result than if the arithmetic were performed to
the correct precision. For example, in the program:

VAL REAL32 a IS 2-100(1 + 2-23) :

VAL REAL32 b IS 2-27(1 - 3 x 2-23)

r := a * b

a different result from that obtained by rounding straight into single-length format is obtained if the calculation is
first rounded to an extended precision and then into the correct precision. The second drawback is that storing
a result becomes an arithmetic operation which undermines the substitution semantics of the language. This
has important consequences as various common optimisations, such as common subexpression elimination,
would no longer be valid. For example, the two programs below would not be equivalent:

REAL32 dummy :
SEQ

dummy o- x * Y SEQ
a := dummy + a a 0- (x * y) + a
b := dummy +b b 0- (x * y) + b

605 Abbreviations

The occam 2 language defines procedure calling in terms of 'abbreviation' and textual substitution. An
abbreviation enables a name to be given to a variable or array element or to an expression. For example:

INT e1ement IS array[subscript] :

introduces the name e1ement to identify the array component array [subscript] and:

VAL INT twiceox IS 2 * x :

introduces twice 0 x as a name for the expression 2 * x.

In order to keep the semantics of abbreviation Simple, and the implementation of abbreviation and parameter
passing efficient, various rules concerning abbreviations are enforced. One such rule is that the abbreviation
of an expression is only valid if its scope contains no assignment to a variable in the expression. For example,
consider the following program:

VAL x IS y[i][j]
SEQ

z := x

The rule mentioned above ensures that there are (at least) three possible implementations of the abbreviation.
The first simply replaces the occurrence of x in z : = x with Y [i] [j]. The second assigns the value of
y[i] [j] to a new 'variable' x when the abbreviation is executed and uses. that variable in the assignment.
Finally, the third sets up a pOinter to y [i] [j] when the abbreviation occurs and de-references that pointer
when the assignments occurs.

One important consequence of defining parameter passing in terms of abbreviation is that VAL parameters
can be passed either by copying the value (suitable for single-word values), or by passing a pointer to the
value (suitable for arrays).

68 2 Practice

6.6 Alias checking

Aliasing occurs when, within a scope, there are two or more names which identify the same object. When
aliasing is present, the meaning of programs becomes obscure, because assignment to one name can affect
the value of another name.

For example, the following procedure clearly leaves the value of its parameter x unchanged (note that the
use of the PLUS and MINOS operators ensures that arithmetic overflow is not a problem):

PROC nonsense(INT x, VAL INT y)
SEQ

x -:= x PLUS y
x := x MINOS y

as is demonstrated by the following expansion of nonsense (n, 3):

INT x IS n :
VAL INT Y IS 3
SEQ

x := x PLUS y
x := x MINOS y

which is equivalent to:

SEQ
n := n PLUS 3
n : = n MINOS 3'

which can be shown to be equivalent to n : = n which is, in turn, equivalent to SKIP.

However, consider what would be the expansion of nonsense (n, n):

INT x IS n :
VAL INT Y IS n
SEQ

x := x PLUS y
x := x MINOS y

which would be equivalent to:

SEQ
n := n PLUS n
n := n MINOS n

-- invalid abbreviation

The value of n after this instance of nonsense, were it valid, would be O.
Similarly, the instance nonsense (i, v [i]), were it valid would be equivalent to:

SEQ
i := i PLUS v[i]
i := i MINOS v[i]

the effect of which is verY difficult to predict as in each of the assignments v [i] would probably reference
a different component of v.

The development of occam 2 69

It is now recognised that aliasing can be the source of particularly insidious program bugs and, to counter this,
aliasing is forbidden in some modern languages, for example, Euclid [2). In occam 2, aliasing is restricted,
not only for the reason outlined above but also to simplify checking the validity of parallel constructs. The
rules imposed in occam 2 forbid the use of an element which has been abbreviated within the scope of that
abbreviation. In the expansion of the instance of nonsense (n, n) given above, the abbreviation:

VAL INT Y IS n :

is invalid because the name n has occurred on the right-hand side of an abbreviation which is currently in
scope.

The majority of the anti-aliasing rules of occam 2 can be checked at compile-time, however, those which
permit an array to be used in a second abbreviation provided that the same element of the array is not
abbreviated can require run-time checking. For example, consider:

first IS order[l] :
second IS order[2] :

which can be checked at compile-time. However, the abbreviations:

first IS order[l] :
n.th IS order[n] :

cannot as the second abbreviation is only valid if n is not equal to 1. The compiler will insert code to check this
at run-time. (Although it may seem strange to perform this sort of check at run-time, rather than compile-time,
it is really no different from range checking subscripts at run-time!)

The imposition of rules forbidding aliasing does have a perhaps unexpected impact in the use of procedures.
The anti-aliasing rules require that when calling a procedure all non-VAL parameters are distinct, and are
distinct from any VAL-parameters. These rules can lead to some procedure instances being unexpectedly
rejected. For example, the procedure:

PROC factoria1(INT resu1t, VAL INT argument)
SEQ

resu1t := 1
SEQ i = 1 FOR argument

resu1t := resu1t * i

returns as its result the factorial of its argument. (Note that a negative argument will cause the replicated
sequence to behave like STOP.) The instance factoria1 (resu1t, 3) will set resu1t to 6. However,
consider factoria1 (n, n) which is supposed to set n to n factorial. This instance is, in fact, illegal
according to the anti-aliasing rules. The reason for this can be seen if the instance is expanded:

INT resu1t IS n :
VAL INT argument IS n : -- inva1id abbreviation
SEQ

resu1t := 1
SEQ i = 1 FOR argument

resu1t := resu1t * i

which, if it were legal, would be equivalent to:

SEQ
n := 1
SEQ i = 1 FOR n

n := n * :i

which, in turn, would be equivalent to n . - 1, not n factorial!

70

To get the effect originally desired we have to write:

INT temp :
SEQ

factoria1 (temp, n)
n := temp

2 Practice

The explicit introduction of temporary variables is undesirable and can be avoided in occam 2 because of
the presence of functions. These permit us to define:

INT FUNCTION factorial(VAL IN'.r argument)
!NT product :
VALOF

product := 1
SEQ i = 1 FOR argument

product : = product * i
RESOLT product

and to write n : = factorial (n) .

In occam 2 the functions are proper functions; they are side-effect free and deterministic. This is of great
practical importance as it means that the compiler can compile replicated alternatives. Consider, for example
the following alternative:

ALT i = 0 FOR n
f(i) & c ? a

P (i)

where n is a variable. The occam compiler will generate code which evaluates each function instance,
f (i), twice; once when enabling the guards, once when disabling. Similarly, a compiler which used a
polling implementation of alternative would also be correct.

6.7 Checking the validity of parallel constructs

The occam 2 language specifies that if a variable is assigned to or is used in an input then that variable
may not be used in any parallel process. Thus the compiler will reject a program such as:

PAR
x := 42
x := 69

However, consider the procedure parallel. assignment:

PROC parallel. assignment (INT x, y)
PAR

x := 42
y := 69

The validity of any instance of this procedure will depend on the parameters used in that instance. This
suggests that the compiler must check the validity of each procedure instance by substituting the parameters
into the body of the procedure. However, the fact that alias checking is performed means that the compiler
can check the validity in two stages.

The development of occam 2 71

During the first stage of checking each procedure is checked on the assumption that all parameters and free
variables are distinct. This will accept the procedure para11e1. assignment but, for example, would
reject:

PROC inva1id.para11e1.assignment(INT x, y)
PAR

x := 42
x := 69

The second stage of checking is performed by the alias check which occurs for each procedure instance.
For example:

para11e1.assignment(x, y)

would be accepted, but:

para11e1.assignment(x, x)

would be rejected.

It is important to notice that little more information is required about a procedure in order to perform parallel
disjointness checking than is required for simple type-checking of its parameters. This opens the possiblity
of constructing a completely secure system for the dynamic loading and execution of procedures.

6.8 Run-time error handling in occam 2

When a language such as occam 2 is used for the programming of secure or reliable systems, the behaviour
of that system when an error occurs is of great concern. There seems to be no single method of dealing with
errors which is universally applicable to all systems. For this reason, occam 2 specifies that run-time errors
are to be handled in one of three ways, each of which is suitable for use at different times.

The first mode is to ignore all run-time errors. This is potentially very dangerous and it is to be hoped that
this will, one day, be made illegal except for systems which have been proved to be correct. This mode will
most probably be used for benchmarking.

The other two modes detect run-time errors and prevent them from corrupting non-errant parts of the system.
The first of these respectable modes causes all run-time errors to be signalled and to bring the whole system
to a halt. This is known as 'halt' mode. In this mode the primitive process STOP is treated as if it caused an
error. This mode is extremely useful for program debugging and is suitable for any system where an error
is to be handled externally. For example, in at least one existing automobile engine management system, if
the processor signals an error then the system reverts to its default settings by external analogue circuitry.

The second of the respectable modes, 'stop' mode, allows more control and containment of errors than does
'halt'mode. In stop mode all errant processes are mapped on to the process STOP. This will have the effect
of gradually propagating the STOP process throughout the system. Although, at first Sight, this does not
seem very useful, it is possible for other parts of system to detect that one part has gone wrong, for example,
by use of 'watchdog' timers. This allows multiply redundant systems, or gracefully degrading systems to be
constructed.

72 2 Practice

6.9 Conclusions

The design of the occam 2 programming language has been influenced by the need to ensure that pro­
gramming errors are as difficult to make as possible and that when they are made they should be detectable.
The properties of the data types in the language have been carefully specified to ensure that they are con­
sistent with the semantics of occam. The use of channel protocols makes possible the detection of many
programming errors at compile-time and ensures that total security can be attained at run-time with little cost.
The insistence that names are not aliased detects some particularly obscure programming errors and greatly
simplifies checking the validity of parallel constructs.

6.10 References

occam 2 Language Definition, David May, INMOS Ltd 1987.

2 occam 2 Reference Manual, INMOS Ltd 1988.

3 Compile-Time Detection of Aliasing in Euclid Programs, James R Cordy,
Software - Practice and Experience, Vol. 14(8) pp. 755-768.

73

7 IMS TaOO architecture

7.1 Introduction

The INMOS transputer family is a range of system components each of which combines processing, memory
and interconnect in a single VLSI chip. The first member of the family, the IMS T414 32-bit transputer [1],
was introduced in September 1985, and has enabled concurrency to be applied in a wide variety of appli­
cations such as simulation, robot control, image synthesis, and digital signal processing. These numerically
intensive applications can exploit large arrays of transputers; the system performance depending on the num­
ber of transputers, the speed of inter-transputer communication and the floating-point performance of each
transputer.

The latest addition to the INMOS transputer family, the IMS T800, can increase the performance of such sys­
tems by offering greatly improved floating-point and communication performance. The IMS T800-20, available
in the second half of 1987, is capable of sustaining over one and a half million floating-point operations per
second; the IMS T800-30, available in the second half of 1988, is capable of sustaining over two and a quarter
million floating-point operations per second. The comparative figure for the IMS T414 transputer is somewhat
less than one hundred thousand floating-point operations per second.

The IMS T800 is pin-compatible with, and retains all the capabilities of, the established IMS T414 transputer.
In addition, the IMS T800 incorporates an on-chip floating-point unit, novel instructions to support graphics,
and twice the on-chip RAM of the IMS T414.

To minimise development time and risk, the design of the IMS T800 employs many of the component modules
used in the IMS T414. The design of the floating-point unit makes extensive use of formal techniques, to
ensure that each floating-point operation produces the correct result as specified by the IEEE 754 floating­
pOint standard [2].

The design of the IMS T800 forms part of the P1085 European ESPRIT parallel computer architecture
project [3]. The goal of this project is to develop a low-cost, high-performance super-computer, based on
reconfigurable nodes of transputers. The intention is that single nodes (typically of 20 or so transputers) would
be used as powerful workstations, and that up to 64 nodes could be connected together, offering a machine
with a performance greatly in excess of one giga-flop. Within the project, software is being developed for
applications in physics, engineering, CAD, CAM, and image processing.

7.2 The transputer: basic architecture and concepts

7.2.1 A programmable device

The transputer is a component designed to exploit the potential of VLSI. This technology allows large numbers
of identical devices to be manufactured cheaply. For this reason, it is attractive to implement a concurrent
system using a number of identical components, each of which is customised by an appropriate program.
The transputer is, therefore, a VLSI device with a processor, memory to store the program executed by the
processor, and communication links for direct connection to other transputers. Transputer systems can be
designed and programmed using occam (see section 7.11) which allows an application to be described as
a collection of processes which operate concurrently and communicate through channels. The transputer
can therefore be used as a building block for concurrent processing systems, with occam as the associated
design formalism.

7.2.2 Processor and memory on a single chip

One important property of VLSI technology is that communication between devices is very much slower than
communication within a device. In a computer, almost every operation that the processor performs involves
the use of memory. For this reason a transputer includes both processor and memory in the same integrated
circuit device.

74 2 Practice

7.2.3 Serial communication between transputers

In any system constructed from integrated circuit devices, much of the physical bulk arises from connections
between devices. The size of the package for an integrated circuit is determined more by the number of
connection pins than by the size of the device itself. In addition, connections between devices provided by
paths on a circuit board consume a considerable amount of space.

The speed of communication between electronic devices is optimised by the use of one-directiona1 signal
wires, each connecting two devices. If many devices are connected by a shared bus, electrical problems of
driving the bus require that the speed is reduced. Also, additional control logic and wiring are required to
control sharing of the bus.

To provide maximum speed with minimal wiring, the transputer uses point-to-point serial communication links
for direct connection to other transputers. The protocols used on the transputer links are discussed later.

7.2.4 Simplified processor with microcoded scheduler

The most effective implementation of simple programs by a programmable computer is provided by a
sequential processor. Consequently, the transputer has a fairly conventional microcoded processor. There
is a small core of about thirty-two instructions which are used to implement simple sequential programs. In
addition there are other, more specialised groups of instructions which provide facilities such as long arithmetic
and process scheduling.

As a process executed by a transputer may itself consist of a number of concurrent processes the transputer
has to support the occam programming model internally. The transputer, therefore, has a microcoded
scheduler which shares the processor time between the concurrent processes. The scheduler provides two
priority levels; any high-priority process which can run will do so in preference to any low-priority process.

7.2.5 Transputer products

The first transputer to become available was the INMOS IMS T414. This has a 32-bit processor, 2 Kbytes
of fast on-chip memory, a 32-bit external memory interface and four links for connection to other transputers.
The current fastest available version of this product, the IMS T414-20, has a 50 nS internal cycle time, and
achieves about 10 MIPS on sequential programs. The second transputer to become available was the IMS
T212; this is very similar to the IMS T414 but has a 16-bit processor and 16-bit external memory interface.
The remaining transputer in the family is the IMS M212 disk processor. This contains a 16-bit processor,
RAM, ROM, two inter-transputer links and special hardware to control both winchester and floppy disks.

In addition the transputer family includes a number of transputer link related products. There are the 'link
adaptors' which convert between handshaken 8-bit parallel data and INMOS link bit-serial data. These allow
transputers to be connected to conventional, bus-based systems, and also allow conventional microprocessors
to use transputer links as a system interconnect. In addition there is the IMS C004, which is a link exchange.

7.3 IMS T800 architecture

The IMS T800, with its on-Chip floating-point unit, is only 20% larger in area than the IMS T414. The small
size and high performance come from a design which takes careful note of silicon economics. This contrasts
starkly with conventional co-processors, where the floating-point unit typically occupies more area than a
complete micro-processor, and requires a second chip (or in the case of the Weitek 1167 floating-point
processor for the Intel 80386, second, third and fourth chips).

The architecture of the IMS T800 is similar to that of the IMS T414. However, in addition to the memory, links,
central processing unit (CPU), and external memory interface, there is a microcoded floating-point unit (FPU)
which operates concurrently with and under the control of the CPU. The block diagrams opposite indicate the
way in which the major blocks of the IMS T800 and IMS T414 are interconnected.

7 IMS T800 architecture 75

F P U

CPU CPU

RAM RAM

LINKS LINKS

MEMORY INTERFACE MEMORY INTERFACE

IMS T800 IMS T414

The CPU of the IMS T800, just like that of the IMS T 414, contains three registers (A, Band C) used for
integer and address arithmetic, which form a hardware stack. Loading a value into the stack pushes B into
C, and A into B, before loading A. Storing a value from A pops B into A and C into B. In addition there is an
o register which is used in the formation of instruction operands. Similarly, the FPU includes a three-register
floating-point evaluation stack, containing the AF, BF, and CF registers. When values are loaded on to, or
stored from the stack the AF, BF and CF registers push and pop in the same way as the A, Band C registers.

The addresses of floating-point values are formed on the CPU stack, and values are transferred between the
addressed memory locations and the FPU stack under the control of the CPU. As the CPU stack is used only
to hold the addresses of floating-point values, the wordlength of the CPU is independent of that of the FPU.
Consequently, it would be possible to use the same FPU together with, for example, a 16-bit CPU such as
that used on the IMS T212 transputer.

The IMS T800, like the IMS T414, operates at two priority levels. The FPU register stack is duplicated so that
when the IMS T800 switches from low to high priority none of the state in the floating-point unit is written to
memory. This results in a worst-case interrupt response of only 2.5 p.S (-30), or 3.7 p.S (-20). Furthermore,
the duplication of the register stack enables floating-point arithmetic to be used in an interrupt routine without
any performance penalty.

7.3.1 Instruction encoding

All transputers share the same basic instruction set. It contains a small number of instructions, all with the
same format, chosen to give a compact representation of the operations most frequently occuring in programs.
Each instruction consists of a Single byte divided into two 4-bit parts.

Function Data

7 4 3 o

The four most significant bits are a function code, and the four least significant bits are a data value. The
sixteen functions include loads, stores, jumps and calls and enable the most common instructions to be

76 2 Practice

represented in a single byte. As this encoding permits only 4 bits of operand per instruction two of the
function codes (prefix and negative prefix) are used to allow the data part of any instruction to be extended
in length. Another of the sixteen functions (operate) treats its data portion as an operation on values held in
the processor registers. This allows up to sixteen such operations to be encoded in a single byte instruction.

All instructions are executed by loading the four data bits into the least significant four bits of the 0 register,
which is then used as the the instruction's operand. All instructions except the prefix instructions end by
clearing the 0 register, ready for the next instruction.

Operand Register

The prefix instruction loads its four data bits into the 0 register, and then shifts the 0 register up four places.
The negative prefix instruction is similar, except that it complements the operand register before shifting it
up. Consequently operands can be extended to any length up to the length of the operand register by a
sequence of prefix instructions.

The prefix functions can be used to extend the operand of an operate instruction just like any other. The
instruction representation therefore provides for an indefinite number of operations. The encoding of opera­
tions is chosen so that the most common operations, such as add and greater than, are represented without
a prefix instruction.

The IMS T800 has additional instructions which load into, operate on, and store from, the floating-point
register stack. It also contains new instructions which support colour graphics, pattern recognition and the
implementation of error-correcting codes. These instructions have been added whilst retaining the existing
IMS T 414 instruction set. This has been possible because of the extensible instruction encoding used in
transputers.

7.3.2 Floating-point instructions

The core of the floating-point instruction set was established fairly early in the design of the IMS T800. This
core includes simple load, store and arithmetic instructions. Examination of statistics derived from FORTRAN
programs suggested that the addition of some more complex instructions would improve performance and
code density. Proposed changes to the instruction set were assesed by examining their effect on a number of
numerical programs. For each proposed instruction set, a compiler was constructed, the programs compiled
with it, and the resulting code then run on a simulator. The resulting instruction set is now described.

In the IMS T800, operands are transferred between the transputer's memory and the floating-point evaluation
stack by means of floating-point load and store instructions. There are two groups of such instructions, one
for single-length numbers, one for double-length. In the description of the load and store instructions, which
follow, only the double-length instructions are described. However, there are single-length instructions which
correspond with each of the double-length instructions.

The address of a floating-point operand is computed on the CPU's stack and the operand is then loaded, from
the addressed memory location, on to the FPU's stack. Two new addressing operations have been added to
the CPU to improve access to double-word (64-bit real and integer) values. The first of these, word subscript
double, is used to index double-word values. The second of these, duplicate, is used when the CPU has to
manipulate the addresses of both the more significant and less significant words of a double-word object.

Operands in the floating-point stack are tagged with their length. The operand's tag will be set when the
operand is loaded or is computed. The tags allow the number of instructions needed for floating-point

7 IMS T800 architecture 77

operations to be reduced; there is no need, for example, to have both floating add single and floating add
double instructions; a single floating add will suffice.

There are two instructions to load double-length floating-point numbers into the floating-point evaluation stack
from the transputer's memory. These are floating load non-local double and floating load indexed double.
The floating load non-local double instruction loads the value pointed to by the A register of the CPU's stack.
The floating load indexed double instruction has the same effect as the instruction word subscript double
followed by floating load non-local double. The value in the B register is used as a double-word offset from
the base pointer in the A register and the selected double-length value is loaded into the AF register. The
diagram below shows the effect of executing a floating load indexed double instruction.

Before execution

CF: undefined C: undefined

~
base + 16

BF: 3.0 B: 2 base + 8
AF: 1.5 A: .- base

After execution

CF: 3.0 C: undefined

~
base + 16

BF: 1.5 B: undefined base + 8
AF: 2.5 A: undefined base

The effect of the floating load indexed instructions can be achieved by a sequence of just two instructions.
However, their presence does decrease code size; the floating load indexed double instruction is encoded in
only two bytes, whereas the equivalent instruction sequence would require four bytes. This appears to be a
worthwhile optimisation as this instruction sequence would be compiled for every array access.

However, there are just two floating store instructions, floating store non-local single and floating store non­
local double. These both store the value in the AF register into the location pointed to by the A register.
There are no floating store indexed instructions. This may be surprising given that the floating load indexed
instructions exist; however, in any program there are less store operations than load operations and, therefore,
there is less to be gained by optimising store (write to memory) operations than optimising load (read from
memory) operations.

The common floating-point operations of addition, subtraction, multiplication and division are provided by
single instructions. These instructions operate on values in the AF and BF registers, storing the result of the
operation into the AF register and popping the CF register into the BF register. Similarly, the floating-point
comparison operations, floating-point greater than and floating-point equality, compare values stored in the
AF and BF registers; however, they load the result of the comparison into the A register of the CPU.

As an example, consider the following fragment of occam which sets a boolean variable converged to
indicate whether the value of the 32-bit floating-point variable absolute. error is less than the value of
the variable epsilon.

BOOL converged :
REAL32 absolute. error, epsilon :
SEQ

converged .- absolute.error < epsilon

78

The compiled code for this fragment would be:

10ad 10ca1 pointer epsi10n
f10ating 10ad non-10ca1 sing1e
10ad 10ca1 pointer abs01ute.error
f10ating 10ad non-10ca1 sing1e
f10ating greater than
store 10ca1 converged

address of epsi10n
load value into FPU

2 Practice

address of abs01ute . error
load value into FPU
result pushed on to CPU stack
store in converged

There are four instructions which combine loading and operating. These exist, as do the load indexed
instructions, to improve code compactness. The effect of the floating load and add single instruction is just
the same as the sequence floating load non-local single followed by floating add. The remaining instructions
complete the set needed to load and add or multiply single- and double-length values. The choice of optimising
only addition and multiplication in this way reflects the high usage of these operators in programs.

7.3.3 Optimising use of the stack

The depth of the register stacks in the CPU and FPU is carefully chosen. Floating-point expressions commonly
have embedded address calculations, as the operands of floating-point operators are often elements of one
dimensional or two-dimensional arrays. The CPU stack is deep enough to allow most integer calculations and
address calculations to be performed within it. Similarly, the depth of the FPU stack allows most floating-point
expressions to be evaluated within it, employing the CPU stack to form addresses for the operands.

No hardware is used to deal with stack overflow. A compiler can easily examine expressions and introduce
temporary variables in memory to avoid stack overflow. The number of such temporary variables can be
minimised by careful choice of the evaluation order; an algorithm to perform this optimisation is given in [4].
The algorithm, already used to optimise the use of the integer stack of the IMS T 414, is also used for the
main CPU of the IMS T800.

7.3.4 Concurrent operation of FPU and CPU

In the IMS T800 the FPU operates concurrently with the CPU. This means that it is possible to perform an
address calculation in the CPU whilst the FPU performs a floating-point calculation. This can lead to significant
performance improvements in real applications which access arrays heavily. This aspect of the IMS T800's
performance was carefully assessed, partly through examination of the 'Livermore Loops' (see section 7.12
and [5]). These are a collection of small kernels designed to represent the types of calculation performed
on super-computers. They are of interest because they contain constructs which occur in real programs
which are not represented in such programs as the Whetstone benchmark (see below). In particular, they
contain accesses to two- and three-dimensional arrays, operations where the concurrency within the IMS
T800 is used to good effect. In some cases the compiler is able to choose the order of performing address
calculations so as to maximise overlapping; this involves a modification of the algorithm mentioned earlier.

As a simple example of overlapping consider the implementation of Livermore Loop 7 (see section 7.12).
The IMS T800-30 achieves a speed of 2.25 Mflops on this benchmark; for comparison the IMS T800-20
achieves 1.5 Mflops, the T414-20 achieves 0.09 Mflops and a VAX 11/780 (with fpa) achieves 0.54 Mflops.
The occam program for loop 7 is as follows:

-- LIVERMORE LOOP 7
SEQ k = 0 FOR n

x[k]:= u[k] + «(r*(z[k] + (r*y[k]») +
(t*«u[k+3] + (r*(u[k+2] + (r*u[k+l]»»») +
(t*«u[k+6] + (r*(u[k+S] + (r*u[k+4]»»»)

The following explains how this program fragment is executed on the IMS T800. The explanation assumes
that the floating-point variable r and the floating-point arrays (x, y, z, and u) are located in a global data area
and must be accessed via a static link, but that the loop count k, is in the process workspace. A compiler
will generate code which first evaluates the subexpression z [k] + (r*y [k]) .

7 IMS TaOO architecture

The first stage in the computation of this is to load the value y [k]. The code to do this is:

~oad ~oca~
~oad ~oca~
~oad non-~oca~ pointer
f~oatin9 ~oad indexed sinq~e

k
static. ~ink

y

79

The first load pushes the subscript k on to the CPU stack. The next load pushes the static link on to the CPU
stack; the static link will contain a pointer to the base of the area of memory which contains the floating-point
variables and arrays. The load non-local pointer instruction generates a painter to the yth element of that
area of memory; this will be the base of the array y. The CPU stack now has its A register containing a
pointer to the base of the array y, and its B register containing the subscript, k. The floating load indexed
single instruction pushes the single-length floating-point number stored in y [k] on to the FPU stack.

The next segment of code pushes the value r on to the floating-point stack and multiplies the number r in
AF by y [k] in BF.

~oad ~oca~ static.~ink
~oad non-~oca~ pointer r
f~oatinq ~oad and mu~tip~y sinq~e

Although the floating-point multiplication takes several cycles to complete, the CPU is able to continue exe­
cuting instructions whilst the FPU performs the multiplication. Thus the whole of the next segment of code
can be executed whilst the multiplication is being performed.

~oad ~oca~
~oad ~oca~
~oad non-~oca~ pointer
word subscript

k
static. ~ink

z

This code is similar to the first section of code illustrated above. However, it explicitly executes a word
subscript to compute the address of z [k]; this allows the code following to use a floating load and add
single instruction which saves 2 bytes of code.

Finally, the value z [k] is pushed on to the floating-paint stack and added to the previously computed
subexpression r*y [k]. It is not until the value z [k] is loaded that the CPU needs to synchronise with the
FPU.

The computation of the remainder of the expression proceeds in the same way, and the FPU never has to
wait for the CPU to perform an address calculation.

The overlapping of address calculation with floating-point computation is effective even when access is being
made to multi-dimensional arrays. The IMS T800 retains the fast multiplication instruction (produc~ of the IMS
T414 which is used for the multiplication implicit in mUlti-dimensional array access. This instruction executes
in a time dependent on the highest bit set in its second operand.

80

For example, in the execution of the following fragment of occam:

[20] [20]REAL32 A
SEQ

B := A[I, J] + (C I D)

2 Practice

loading the element A [I, J] involves computing the offset of the element from the base of the array A.
The transputer compiler would generate the following code for this computation:

l.oad l.ocal.
l.oad constant
product
l.oad l.ocal.
add

I load I onto CPU stack
20 load 20 onto CPU stack

multiply I by 20
J load J onto CPU

add J to I * 20

In this case the product instruction will execute in only 8 cycles (267 nS (-30), or 400 nS (-20)) and the whole
address calculation will take 19 cycles which would be overlapped with the execution of the division C I D.
Effectively, the overlapping allows the array accessing to be performed in only one cycle.

7.4 Floating-point unit design

In designing a concurrent systems component such as the IMS T800, it is important to maximise the per­
formance obtained from a given area of silicon; many components can be used together to deliver more
performance. This contrasts with the design of a conventional coprocessor where the aim is to maximise
the performance of a single processor by the use of a large area of silicon. (Interestingly, however, the IMS
T800-20 achieves similar performance to the 80386 with its Weitek 1167 coprocessor Chip set.) As a result,
in designing the IMS T800, the performance benefits of Silicon-hungry devices such as barrel shifters and
flash multipliers were carefully examined.

A flash multiplier is too large to fit on chip together with the processor, and would therefore necessitate the
use of a separate coprocessor Chip. The introduction of a coprocessor interface to a separate chip slows
down the rate at which operands can be transferred to and from the floating-point unit. Higher performance
can, therefore, be obtained from a slow multiplier on the same chip as the processor than from a fast one on
a separate chip. This leads to an important conclusion: a separate coprocessor chip is not appropriate for
scalar floating-point arithmetic. A separate coprocessor would be effective where a large amount of work can
be handed to the coprocessor by transferring a small amount of information; for example a vector coprocessor
would require only the addresses of its vector operands to be transferred via the coprocessor interface.

It turns out that a flash multiplier also operates much more quickly than is necessary. Only a pipelined vector
processor can deliver operands at a rate consistent with the use of such devices. In fact, any useful floating­
point calculation involves more operand accesses than operations. As an example consider the assignment
y [i] : = y [i] + (t * x [i]) which constitutes the core of the UNPACK floating-point benchmark.
To perform this it is necessary to load three operands, perform two operations and to store a result. If we
assume that it takes twice as long to perform a floating-point operation as to load or store a floating-point
number then the execution time of this example would be evenly split between operand access time and
operation time. This means that there would be at most a factor of two available in performance improvement
from the use of an infinitely fast floating-point unit!

Unlike a flash multiplier, a fast normalising shifter is important for fast floating-point operation. When imple­
menting IEEE arithmetic it may be necessary to perform a long shift on every floating-point operation and
unless a fast shifter is incorporated into the floating-point unit the maximum operation time can become very
long. Fortunately, unlike a flash multiplier, it is possible to design a fast shifter in a reasonable area of silicon.
The shifter used in the IMS T800 is designed to perform a shift in a single cycle and to normalise in two
cycles.

Consequently, the floating-point unit of the IMS. T800 contains a fast normalising shifter but not a flash
multiplier. However, there is a certain amount of logic devoted to multiplication and division. Multiplication

7 IMS T800 architecture 81

is performed 3-bits per cycle, and division is performed 2-bits per cycle. This gives rise to a single-length
multiplication time of 13 cycles (367 nS (-30), or 550 nS (-20)) and a double-length divide time of 34 cycles
(1.07 J.LS (-30), or 1.6 J.LS (-20)).

One other aspect of floating-point arithmetic which was carefully examined was the implementation of stan­
dard scientific functions (sqrt, sin, etc). Trigonometric functions are generally implemented by algorithms
which make use of an approximation which is only accurate over a small part of the function's domain. This
is possible because mathematical identities enable the full function to be computed from the partial approxi­
mation. Algorithms differ in the way in which they compute the approximation; two methods of computing the
approximation were considered during the design of the IMS T800.

The first method is called CORDIC which was developed for hardware implementation and is used in some
floating-point coprocessor chips such as the i8087. This requires the addition of significant quantities of hard­
ware into the datapath and the storage of large look-up tables. Even with this hardware the best performance
which could be achieved would be to generate one bit of result every four cycles, resulting in a minimum
evaluation time for the reduced function of about 230 cycles (double length).

The second method is polynomial approximation. This requires no additional hardware in the FPU. The
evaluation time will vary from function to function, but for the sin function only about twice the number of
cycles required by CORDIC would be used since the implementation of multiplication generates three bits of
product everyone cycle.

In practice we are interested in the evaluation time for the function proper, not just the reduced function. Once
the time for argument reduction and function generation have been added to the time for the evaluation of
the partial function it is clear that there is no possibility of a CORDIC based implementation being even twice
as fast as polynomial-based implementation. For this reason the IMS T800 contains no special support for
trigonometric function evaluation.

This comparison can also be extended to show that if a processor with even faster trigonometric function
evaluation were required it should be achieved by increasing the speed of the processor's multiplication. This
would have the additional benefit that it would increase performance on virtually all applications, not just those
which make heavy use of trigonometric functions.

The situation is rather different with regard to the square-root function. Here the IEEE standard requires that
the result is produced correct to the last bit and this is not easy to achieve by simple polynomial evaluation.
Furthermore it only requires a small amount of additional hardware to perform square root in hardware and
this has been done in the IMS T800.

The block diagram below illustrates the physical layout of the floating-point unit.

ALU ALU

ROM Fraction Exponent ROM
datapath datapath

Normalising shifter

Interface

Block diagram of floating-point unit

The datapaths contain registers and shift paths. The fraction datapath is 59 bits wide, and the exponent
datapath is 13 bits wide. The normalising shifter interfaces to both the fraction datapath and the exponent
datapath. This is because the data to be shifted will come from the fraction datapath whilst the magnitude
of the shift is associated with the exponent datapath. One further interesting aspect of the design is the

82 2 Practice

microcode ROM. Although the diagram shows two ROMs, they are both part of the same logical ROM. This
has been split in two so that control signals do not need to be bussed through the datapaths.

7.5 Floating-point performance

The IMS T414 has microcode support for 32-bit floating-point arithmetiC which gives it performance compa­
rable with the current generation of floating-point coprocessors. It achieves an operation time of about 10
microseconds on single-length IEEE 754 floating-point numbers. The IMS T800-20 betters the floating-point
operation speed of the IMS T414 by more than an order of magnitude; its operation times are shown below

IMS TSOO-30 IMS TSOO-20 IMS T414-20
single double single double single double

operation
add 233 nS 233 nS 350 nS 350 nS 11.5 j.LS 28.3 j.LS
subtract 233 nS 233 nS 350 nS 350 nS 11.5 j.LS 28.3 j.LS
multiply 367 nS 667 nS 550 nS 1000 nS 10.0 j.LS 38.0 j.LS
divide 567 nS 1067 nS 850 nS 1600 nS 12.3 j.LS 55.75 j.LS

The operation time is not a reliable measure of performance on real numerical programs. For this reason,
floating-point performance is often measured by the Whetstone benchmark. The Whetstone benchmark
provides a good mix of floating-point operations, and also includes procedure calls, array indexing and
transcendental functions. It is, in some senses, a 'typical' scientific program.

The performance of the IMS T414 and IMS T800 compared with other processors as measured by the
Whetstone benchmark is shown below:

Processor

Intel 80286/80287
IMS T414-20
NS 32332-32081
MC 68020/68881
VAX 11/780 FPA
IMS T800-20
IMS T800-30

8 MHz
20 MHz
15 MHz
16/12 MHz SUN 3
UNIX 4.3 BSD
20 MHz
30 MHz

Whetstones/second
single length

300K
663K
728K
755K

1083K
4000K
6000K

ThiS table shows that although the IMS T414 has an operation time three times slower than the MC68881
coprocessor it performs only 25% worse than the MC68020 + MC68881 coprocessor (as measured by the
Whetstone benchmark). This is because the speed of evaluating a floating-point expression depends on two
factors; the speed at which operands are transferred to and from the floating-point unit and the speed of
the unit itself. By careful balancing of these the single chip IMS T800-20 achieves more than five times the
Whetstone performance of the MC68020/MC68881 combination.

Another important measure is the performance obtained from a given area of silicon. For example, four IMS
T800-30 chips occupy an area similar to the i80386 together with the Weitek 1167 chip set, and on single­
length floating-point will deliver six times the performance in any concurrent application. In terms of circuit
board area, the effect is even more dramatic; the IMS T800 requires negligible support circuitry and can even
be used without external memory.

7.6 Formal methods ensure correctness and quick design

One of the concerns of engineers designing microprocessors into life-critical systems is the correctness of the
implementation of those microprocessors. The complexity of a floating-point unit is such that it is impossible
to validate by exhaustive testing. The approach which INMOS has taken is to make use of the most advanced
formal methods to ensure the correct implementation of the IEEE 754 standard for floating-pOint arithmetic.
This work has been undertaken in cooperation with the Programming Research Group at Oxford University

7 IMS TaOO architecture 83

and has made use of the formal semantics of the occam programming language. INMOS has found that the
use of formal methods in complex designs greatly decreases design time as well as ensuring correctness.

The specification language Z (see section 7.13) was used extensively during the design of the IMS TaOO,
both to express the IEEE 754 standard mathematically and to specify instructions precisely. The first stage
of implementation was to write a software package in the occam language and to prove that it met the
specification. (This package is used to provide floating-point arithmetic for various occam implementations,
including that for the IMS T414.) Using an interactive program transformation system, the occam package
was then transformed into the microcode for the IMS T800.

This design process is illustrated using one instruction from the sequence of instructions executed by the
IMS T800 to perform floating-point to integer conversions. This instruction occurs in the middle of the
sequence, after the floating-point number has been rounded into an integer in floating-point format. The
instruction checks that the rounded value lies within the range of numbers representable as an integer and,
if not, sets the error flag.

7.6.1 Z specification

The precise specification of range checking is expressed in Z as:

Floating.Check..lnteger .Range __________ --,

Areg, Areg' : Floating.Point-Register
Error.Flag, Error.Flag' : boo I

tvEZ
Areg' = Areg
tv Areg E [Minlnt,Maxlnt] => Error .Flag' = Error .Flag
tv Areg ¢ [Minlnt,Maxlnt] => Error.Flag' = true

In this specification the primed variables Areg' and Error.Flag' denote the values of registers after the oper­
ation, and the unprimed variables denote the values before. Maxint and Minint are constants defined by the
integer format and tv is a function that returns the value of a floating-point register. The predicates state that
the operation is only defined when Areg contains an 'integer' value, that Areg is unchanged by the operation
and that Error.Flag is set if Areg lies outside the storable integer range and is unchanged otherwise.

7.6.2 High-level occam implementation

The high-level occam implementation is as shown below. Its correctness depends on proving two assertions.
Firstly, that there is an exponent, LargestINTExp, such that every floating-point register with a smaller
exponent lies in [Minlnt,Maxlnt], and secondly, that a register with a negative sign bit, an exponent equal to
LargestINTExp and a fraction with only the implied msb set, has an tv of Minlnt.

IF
Areg.Exp < LargestINTExp

SKIP
(Areg.Sign = NEGATIVE) AND (Areg.Exp = LargestINTExp) AND

(Areg.Frac = MSBit)
SKIP

TRUE
SetError (ErrorFlag)

In the above code, the occam variable Areg. Exp is used to represent the contents of the exponential part
of the FA register of the FPU. Similarly, Areg. Sign and Areg. Frac represent the sign bit and fraction
part. This code first checks to see if the exponent is smaller than LargestINTExp; if it is then the value in
the FA register is in range and no further action is to be performed. Otherwise, the code checks if the value
in the FA register has a negative sign bit, an exponent equal to LargestINTExp and a fraction with only
the most significant bit set; if it does then, again, no further action is performed. Otherwise, the value in the
FA register is out of range and the error flag is set.

84 2 Practice

7.6.3 Low-level occam implementation

The program above can be transformed using the laws of occam. First the condition on Areg. Sign is
pulled to the outside. Then the program is transformed into processes and variables defined in terms of
operations found in the floating-point microcode. This involves the use of register and bus operations to
perform the comparisons together with explicit tests of the resulting flags. At this stage the processes are
also grouped into the sequences of operations that form each microinstruction. For brevity the negative case
is omitted in this illustration:

SEQ
AregSignNEGATlVE : = (Areg. Sign = NEGATIVE)
ExpZbus := (Areg.Exp - LargestINTExp)
ExpZbusNeg := ExpZbus < 0
IF

AregSignNEGATlVE
... negative case

NOT AregSiqnNEGATlVE
IF

ExpZbusNeg
SKIP

NOT ExpZbusNeg
SetError(ErrorF1ag)

7.6.4 Flattened low-level implementation

The low·level occam implementation is then transformed into a 'flattened' form that makes explicit use
of a microinstruction pointer. This form uses a WHILE loop and explicit testing of the next instruction
register (Nextlnst) to simulate the sequencing of the microcode. If the resulting microcode involves
no loops it is possible to transform it back into the original form mechanically. In the program below the
SetError (ErrorF1ag) process has been moved into a separate microinstruction, OutOfRange.

INT Nextlnst :
SEQ

Nextlnst := F1oatingPointChecklntegerRange
WHILE Nextlnst <> NOWHERE

IF
Nextlnst = F1oatingPointChecklntegerRange

SEQ
AregSignNEGATlVE : = (Areg. Sign = NEGATIVE)
ExpZbus := (Areg.Exp - LargestINTExp)
ExpZbusNeg := ExpZbus < 0
IF

AregSignNEGATlVE
••. negative case

NOT AregSignNEGATlVE
IF

ExpZbusNeg
Nextlnst := NOWHERE

NOT ExpZbusNeg
Nextlnst := OutofRange

Nextlnst = OutofRange
SEQ

SetError(ErrorF1ag)
Nextlnst := NOWHERE

..• negative case micro instructions

7 IMS T800 architecture 85

7.6.5 Microcode

The flattened occam code is then transformed into microcode assembler. This is done by a pattern­
matching and textual substitution program. Without the use of mechanical assistance this is a very labo­
rious and error-prone task. The program below shows the microcode which results from translating the
Fl.oatingPointChecklntegerRange microinstruction of the previous example.

Fl.oatingPointChecklntegerRange:
ConstantLargestINTExp
ExpXbusFromAreg ExpYbusFromConstant
ExpZbusFromXbusMinusYbus

GOTO CondlFromAregSign ->
(CondOFromExpZbusNeg -> (... , ...),
CondOFromExpZbusNeg -> (NOWHERE, Outof Range»

7.6.6 Summary

The use of the high-level specification language Z provides short and precise specifications of instructions,
and, being mathematically based, avoids the problems of interpreting natural language specifications. This
specification can be implemented fairly naturally, at a high level, in occam. This implementation can be
proved correct, using occam's denotational semantics. The algebraic semantics of occam then allow the
occam to be transformed into a form that corresponds to the microcode.

Z specification
!1

high-level occam
!2

low-level occam 'tree code'
h

low-level occam 'flat code'
!4

microcode

Each of steps 1 to 3 can be proven correct using the formal semantics of occam. The translation and
compilation of step 4 could also be proved correct. In practice, both steps 1 and 2 were performed backwards;
that is, an implementation was written and then transformed back into the previous specification. This process
made use of an occam source transformation system, written in ML and implemented by the Programming
Research Group at Oxford University. Steps 3 and 4 are performed semimechanically by programs. Although
these have not been formally proved, their use is more reliable than doing the same work by hand; computers
do not mistakenly miss out lines of microcode due to boredom!

7.7 Communication links

A link between two transputers is implemented by connecting a link interface on one transputer to a link
interface on the other transputer by two one-directional signal wires, along which data is transmitted serially.
The two wires provide two occam channels, one in each direction. This requires a simple protocol to
multiplex data and control information. Messages are transmitted as a sequence of bytes, each of which
must be acknowledged before the next is transmitted. A byte of data is transmitted as a start bit followed by
a one bit followed by eight bits of data followed by a stop bit. An acknowledgement is transmitted as a start
bit followed by a stop bit. An acknowledgement indicates both that a process was able to receive the data
byte and that it is able to buffer another byte.

86 2 Practice

Data o

Data byte

Acknowledge message

The protocol permits an acknowledgement to be generated as soon as the receiver has identified a data
packet. In this way the acknowledgement can be received by the transmitter before all of the data packet
has been transmitted and the transmitter can transmit the next data packet immediately. The IMS T414
transputer does not implement this overlapping and achieves a data rate of 0.8 Mbytes per second using
a link to transfer data in one direction. However, by implementing the overlapping and including sufficient
buffering in the link hardware, the IMS TaOO more than doubles this data rate to 1.8 Mbytes per second in
one direction, and achieves 2.4 Mbytes per second when the link carries data in both directions. The diagram
below shows the signals that would be observed on the two link wires when a data packet is overlapped with
an acknowledgement.

Input link [!]o

Output link

time

7.8 Graphics capability

The 'bit-bit' operations of a conventional graphics processor no longer seem appropriate in these days of
byte (or greater) per pixel colour displays. The fast block move of the IMS T414 make it suitable for use in
graphics applications using byte-per-pixel colour displays. Indeed, the IMS B007 colour graphics evaluation
board uses it in such a manner.

The block move on the IMS T414 is designed to saturate the memory bandwidth, moving any number of bytes
from any byte boundary in memory to any other byte boundary using the smallest possible number of word
read and write operations. Using the transputer's internal memory the block move sustains a transfer rate of
60 Mbytes per second (-30), or 40 Mbytes per second (-20); using the fastest possible external memory the
block move sustains 20 Mbytes per second (-30) or 13.3 Mbytes per second (-20).

The IMS T800 extends this capability by incorporation of a two-dimensional version of the block move which
can move windows around a screen at full memory bandwidth, and conditional versions of the same block
move which can be used to place templates and text into windows. One of these operations copies bytes
from source to destination, writing only non-zero bytes to the destination. A new object of any shape can
therefore be drawn on top of the current image. All of these instructions achieve the speed of the simple IMS
T414 move instruction, enabling a 1 million pixel screen to be drawn thirteen times per second.

7.8.1 Instruction description

The three new instructions are concerned with moving a two-dimensional block of data from source to des­
tination. The instructions differ in how the source is used to modify the destination. Unlike the conventional
'bit-bit' instruction, it is never necessary to read the destination data.

7 IMS T800 architecture

The instructions are described in occam:

PROC Move2d ([] []BYTE Source, ax, ay,
[] []BYTE Dest, dx, dy,
width, length)

SEQ y = 0 FOR length
[Deat[y+dy] FROM dx FOR width] :=

[Source [y+ay] FROM ax FOR width]

87

This moves a block of size width x length which starts at byte Source [ay] [sx] to the block starting
at byte Dest [dy] [dx] .

PROC Draw2d([] []BYTE Source, sx, ay,
[] []BYTE Dest, dx, dy,
width, length)

BYTE temp:
SEQ line = 0 FOR length

SEQ point = 0 FOR width
SEQ

temp := Source [line+sy] [point+sx]
IF

temp = 0 (BYTE)
SKIP

TRUE
Dest[line+dy] [point+dx] := temp

This moves a block of size width x length which starts at byte Source [ay] [ax] to the block starting
at byte Dest [dy] [dx]. However for every byte transferred a check is made to see if it is zero. If this is
the case then the byte is not copied, and the destination remains unaltered.

PROC Clip2d([] []BYTE Source, ax, sy,
[] []BYTE Dest, dx, dy,
width, length)

BYTE temp:
SEQ line = 0 FOR length

SEQ point = 0 FOR width
SEQ

temp := Source [line+sy] [point+sx]
IF

temp = 0 (BYTE)
Dest[line+dy] [point+dx] .- temp

TRUE
SKIP

This moves a block of size width x length which starts at byte Source [sy] [ax] to the block starting
at byte Dest [dy] [dx]. However, for every byte transferred a check is made to see if it is zero. If this is
the case then that byte is copied.

Draw2d and Clip2d are complementary and are used for the copying of irregular shapes on to the screen
and the creation of templates.

Like the transputer's one-dimensional block move, the Move2d, Draw2d and Clip2d instructions move
data from any byte address in memory to any byte address using the smallest possible number of single-word
transfers. When executing a Draw2d operation, data is written in whole words, and hardware is used to
suppress the generation of individual byte write signals corresponding to zero bytes in the source. Further,
the write cycle is omitted completely if all bytes in the source word are found to be zero. Clip2d is similarly
implemented using the smallest number of word read and write operations. Consequently, Draw2d and
Clip2d normally operate faster than simple moves.

Move2d, Draw2d and Clip2d are not restricted to operations on single byte pixels. For example, 3 byte
(24 bit) pixels can be treated in exactly the same way as single byte pixels, with a zero pixel being represented

88 2 Practice

by three zero bytes, and non-zero pixels being represented by three non-zero pixels. Pixels less than a byte
can be implemented by omitting unnecessary bit planes from the video memory. By regarding an image as
a two-dimensional array of pixels, each of which is itself an array of bytes, it is possible to use the same
graphics software on systems with differing pixel sizes.

7.8.2 Drawing coloured text

Drawing proportional spaced text provides a simple example of the use of the IMS T800 instructions. The
font is stored in a two-dimensional array Font; the height of Font is the fixed character height, and the
start of each character is defined by an array start. The textures of the character and its background are
selected from an array of textures; the textures providing a range of colours or even stripes and tartans!

An occam procedure to perform such drawing is given below and the effect of each stage in the drawing
process is illustrated by the diagrams opposite. First, (1) the texture for the character is selected and copied
to a temporary area and (2) the character in the font is used to clip this texture to the appropriate shape.
Then (3) the background texture is selected and copied to the screen, and (4) the new character is drawn on
top of it.

-- Draw character ch in texture F on background texture B
PROC DrawChar(VAL INT Ch, F, B)

SEQ
IF

(x + width[ch]) > screenwidth
SEQ

x := 0
y := y + height

(x + width[ch]) <= screenwidth
SKIP

[height] [maxwidth] BYTE Temp :
SEQ

Move2d(Texture[F],O,O, Temp,O,O, width[ch],height)
C1ip2d(Font[ch],start[ch],O, Temp,O,O, width[ch],height)
Move2d(Texture[B],O,O, Screen,x,y, width[ch],height»
Draw2d(Temp,O,O, Screen,x,y, width[ch],height)
x := x + width[ch]

This procedure will fill a 1 million pixel screen with proportionally spaced characters in about 1/6 second.
Obviously, a simpler and faster version could be used if the character colour or background colour was
restricted. The operation of this procedure is illustrated on the next page.

7 IMS TaOO architecture 89

1)

Move2d
..

temp
texture #1

D
temp

2)

[g Clip2d ..
character temp

temp

3)

Move2d

texture #2

screen

4)

..
Draw2d

temp

screen

90 2 practice

7.9 Conclusions

The IMS T800 floating-point transputer provides a very high-performance building block for concurrent sys­
tems. The design of the IMS T800 demonstrates that it is not desirable to use coprocessors to achieve
high-performance floating-point capability. The careful consideration of silicon economics has enabled the
IMS T800 to incorporate a floating-point unit, a central processing unit, memory and a communication system
in a single device; it is a complete scientific computer on a single chip. For example, the 4 Kbytes of on-chip
memory allows the IMS T800 to be used, without external memory, in a number of signal processing appli­
cations. The fact that the floating-point performance of the IMS T800 exceeds its fixed-point performance on
multiply-accumulates removes the need to design algorithms which use fixed-point arithmetic.

The IMS T800 forms the basis of the most powerful super-computer in Europe, currently under construction at
Edinburgh University. This will contain 1000 transputers operating on one giga-byte of main store and should
be operational by April 1988. Whilst this may seem to be a very large machine, the continuing improvement in
VLSI technology means that such a machine will occupy only a few cubic feet in the early 1990s. Even today,
using conventional packaging and printed circuit board technology, machines built from the IMS T800-20 can
achieve a 'performance density' of 1.5 Gflop per cubic foot.

7.10 References

The Transputer Databook, INMOS Ltd 1989.

2 IEEE Standard for Binary Floating-Point Arithmetic, ANSI IEEE Std 754-1985.

3 Phase 1 of the development and application of a low cost, high performance multiprocessor machine,
J G Harp et ai, ESPRIT 1986: Results and Achievements, pp. 551-562,
Elsevier Science Publishers B V.

4 The Transputer Instruction Set - A Compiler Writers' Guide, INMOS Ltd, Prentice Hall 1988.

5 The Livermore Fortran Kernels: A Computer Test of the Numerical Performance Range,
Frank H McMahon, Lawrence Livermore National Laboratory, UCRL-53745.

7.11 Note on occam

It is not possible to give a comprehensive description of occam in the space available. However, the following
overview explains the basic concepts of the language and explains those details which are required in order
to understand the examples in the paper.

The occam programming language was developed to allow concurrent, distributed, systems to be pro­
grammed. The emphasis is placed on distributed because it was for this area that previous languages are
unsuited. The occam language enables a system to be described as a collection of concurrent processes,
which communicate with each other and with peripheral devices through channels. The concurrent processes
do not communicate via shared variables, and thus occam is a suitable language for programming systems
where there is no store which is shared between processors in the system.

occam programs are built from three primitive processes:

v : = e assign expression e to variable v
c e output expression e to channel c
c ? v input from channel c to variable v

The primitive processes are combined to form constructs:

SEQuential
PARallel
ALTernative

components executed one after another
components executed together
component first ready is executed

A construct is itself a process, and may be used as a component of another construct. The syntax of

7 IMS T800 architecture 91

occam uses indentation to indicate program structure, thus the occam program below consists of two
parallel processes. The first process inputs from the channel source into next. prob1.em. The second
process itself consists of two processes to be executed sequentially. The first is an instance of the procedure
compute. next. so1.ution, and the second, which is executed after the first has terminated, outputs
so1.ution on to channel resu1.t.

PAR
source? next.prob1.em
SEQ

compute.next.so1.ution(this.prob1.em, so1.ution)
resu1.t ! so1.ution

Conventional sequential programs can be expressed in occam with variables and assignments, combined
in sequential constructs. IF and WHILE constructs are also provided. The IF construct test a number of
conditions in sequence; when one is found to be true, the associated process is executed. The example
below shows how this might be used to compare two numbers, a and b, and to record their order.

IF
a >b

order .- gt
a<b

order .- lot
TRUE

order .- eq

Concurrent programs can be expressed with channels, inputs and outputs, which are combined in parallel
and alternative constructs.

Each occam channel provides a communication path between two concurrent processes. Communication
is synchronised and takes place when both the inputting process and the outputting process are ready. The
data to be output is then copied from the outputting process to the inputting process, and both processes
continue.

An alternative process may be ready for input from anyone of a number of channels. In this case, the input
is taken from the channel which is first used for output by another process.

Although the first version of occam (as described in the occam Programming Language) had only a single
data type and only one-dimenSional arrays, the version of the language used in this paper, occam 2, supports
several data types and multi-dimensional arrays. Arrays may be assigned, communicated between processes
and passed as parameters to procedures. occam permits a subarray of an array to be used as an array.
For example, the following program declares a 10 element array of integers, a, and then, in parallel inputs to
the first 5 elements of a from the channel c, and to the second 5 elements from the channel d. (Note that
in occam the first element of an array is element 0.)

[1.0] INT a :
PAR

c ? [a FROM 0 FOR 5]
d ? [a FROM 5 FOR 5]

92 2 Practice

One further feature of occam which requires explanation is the replicated constructor. The examples in the
paper are all of replicated SEQs which have a similar effect to a FOR loop in a conventional language. The
replicated SEQ:

SEQ i = base FOR count
a[i] := i

is implemented as a loop and is equivalent to the following:

SEQ
a[base]
a[base + 1]

:= base
:= base + 1

a[base + count - 1] := base + count - 1

7.12 Note on the 'Livermore Loops'

The Livermore Fortran Kernels [5) (commonly known as the Livermore Loops) are a set of 24 computation
kernels designed to measure realistic floating·point performance on FORTRAN applications. They differ from
a number of other standard benchmark programs in that they do not produce a single figure of merit, but
a set of figures, one for each kernel. They represent a useful source of information about the structure of
scientific programs, and as such, were studied during the design of the IMS T800.

Livermore Loop 7, mentioned in this paper, is an 'equation of state' fragment. The FORTRAN code for this
loop is:

DO 7 k= l,n
X(k)= U(k) + R*(Z(k) + R*Y(k » +

T*(U(k+3) + R*(U(k+2) + R*U(k+l» +
T*(U(k+6) + R*(U(k+S) + R*U(k+4»»

7 CONTINUE

The program in the paper is written in occam 2 and it is for this version that the code and performance figure
is given. The implementation of occam and FORTRAN will differ slightly as the two languages allocate store
differently.

7.13 Note on the formal specification language Z

The specification notation Z has been developed to tackle the problems of specify actual systems. Z originated
with Jean-Raymond Abrial and has been developed and used extensively by members of the Programming
Research Group, Oxford University.

A Z specification consists of a combination of a formal text and a natural language description. This formal
text provides the precise specification while the natural language text introduces and explains the formal parts.
The formal text has two parts: the schema language, which provides a means of structuring the specification,
and the mathematical language, which allows for the preciseness of the specification. The mathematical
language is based largely on set theory and enables an abstract mathematical view of the objects being
specified to be taken. The schema language enables specifications of large systems to be broken into more
manageable sections.

The combination of natural language for explanation, and the schema language produces specifications that
are more readable than pure mathematics. In addition, the mathematical nature of the specifications enables
implementors to use mathematical proofs to ensure the correspondence of their implementations with the
specification.

The formal part of a Z specification makes use of 'schemas·. The schema consists of two 'boxes'. The top
box contains the signature which introduces the variables of the specification. The lower box contains a list
of predicates which constrain the values that the variables may take.

7 IMS T800 architecture

The following is an example of a Z specification:

If the reset signal is set then the Count operation sets the register to 0, otherwise it incre­
ments the register.

Count
value,-v-a-Iu-e-'-:-N---------------'l

reset? : bool

reset? =>
..,reset? =>

value' = 0
value' = value + 1

93

This schema, named Count, introduces three variables; value, value' and reset. Conventionally, primed vari­
ables such as value' represent values of state variables after an operation, while their unprimed counterparts
represent the values before the operation. Variables with names ending in '?', such as reset, are convention­
ally inputs to an operation. The values are constrained by two predicates (conventionally these are and-ed
together, unless explicitly written otherwise). These predicates formally specify the behaviour of the operation
described in the informal text that precedes the schema. This schema gives a precise specification of the
operation; what it has not done is to dictate how the counter is implemented (number of bits etc.) as these
are implementation detailS.

94 2 Practice

95

a The role of occam in the design of the IMS TaDD

8.1 Introduction

Recent research has demonstrated the possibilities of producing hardware designs that have been verified
as opposed to tested. Examples of this approach include the proof of correctness of a simple microcoded
processor [1] and the verification of the design of various low-level hardware modules [2]. The tools that have
been used in this work are lCF_lSM [3], VERITAS [4] and HOl [5].

Most people would agree that it is desirable for a manufacturer's products to meet some form of specification.
This requirement becomes vital when the product is used in a life-critical situation - users must know what
the behaviour of the product will be. This has resulted in the emergence of a disciplined approach to design in
many engineering professions. An architect checks that a new building will not fall down, an aircraft designer
does detailed calculations to ensure that the wings produce enough lift. At each step of the construction
process checks are made to ensure that the components used meet their specifications in the design.

Now that computers are being used in life-critical applications, such as fly-by-wire aircraft or complex life
support systems, it is vital for the underlying hardware to be correct. It is impossible to exhaustively test
components as simple as a 32-bit multiplier - never mind an entire processor - so different techniques
must be used to verify designs. As E.w.Dijkstra has remarked [6]

(non-exhaustive) testing can be used to show the presence of bugs
but never to show their absence.

Starting from an agreed formal speCification a correct design can be produced if the implementation is pro­
duced by a sequence of provably correct steps. This will bring the standard of computer design to the levels
expected in other branches of engineering [7]. Use of verified design methods can produce savings in time
and expenditure. The need to redesign part of a VlSI device may cause a 2 or 3 month delay in its launch
and several such iterations can make a device obsolete before it comes to market.

This chapter details how a verified design approach was used on sections of the IMS T800 floating-point unit
microcode. The formal semantics of the occam language [8][9] and the use of program transformations
are described. Then a simple example is used to show how a high-level specification can be developed into
microcode using formal design methods that guarantee the correctness of the final deSign.

8.2 occam

The occam language [8] allows a system to be hierarchically decomposed into a collection of concurrent
processes communicating via channels. This allows it to be used to represent the behaviour of a VlSI device
in a very natural way - the various top-level modules can be mapped on to individual processes with their
interfacing handled by channel communication. In more traditional languages the inherent parallelism of a
VlSI device has to handled by explicit programming. occam has a very efficient implementation permitting
fast execution of such a behavioural description to allow for Simulation. Most importantly, for the purposes of
this paper, occam has rich formal semantics [9] which facilitate program transformation and proof.

8.2.1 occam transformations

The algebraic semantics of occam given in [9] consists of a set of laws which define the language constructs.
The algebraic semantics have been shown to be consistent with the denotational semantics establishing the
validity of these laws. These transformation laws enable a normal form for finite occam programs to be
defined.

96 2 Practice

A transformation law can be used to transform one program into another whose observable behaviour is
equivalent. Many transformation laws are 'obviously true' and are regularly used by programmers - for
example sequential composition of processes is associative:

SEQ
P
SEQ

Q
R

SEQ
SEQ

P
Q

R

This is the law SEQ binassoc. Others are more complex and include preconditions for validity but. with a bit
of effort. can be seen to be true.

If a sequence of transformations can be found to transform one program into another then the two programs
are known to be equivalent. If. in addition. one of these programs is known to be a correct implementation
of a specification then the correctness of the other can be inferred.

Using these techniques it is possible to demonstrate the correctness of implementations by transformation -
doing this by experimental testing takes far too long for problems like floating-point arithmetic.

An example transformation

As an example consider the following program fragment:

SEQ
X := A
'i := 'i + X

These two assignment statements can be merged into one multiple assignment statement.
First the law AS id is used to add an identity assignment to each statement:

AS id lL Y.. := .!l.. Y.. == K := .!l.

giving the program:

SEQ
X,'i := A,'i
'i,X := 'i + X,X

Next the law AS perm is applied to the second statement:

giving:

AS perm

SEQ

< xiii = 1 .. n >:=< eili = 1 .. n >

< x",p = 1 .. n >:=< e",1i = 1 .. n >
for any permutation 7r of {1..n}

X,'i := A,'i
X,'i := X,'i + X

Finally these two statements are merged by the law SEQ comb:

SEQ comb SEQ(K:= .!l.. K := f) == K := H.!l.IKJ

giving:

X,'i := A,'i + A

The role of occam in the design of the IMS T800 97

8.2.2 The occam transformation system

To aid the process of transforming programs a simple interactive transformation system has been implemented
in the language ML[10). A program can be parsed into this system and then manipulated by the user.
All the basic laws in [9) are implemented inside the system along with some extra ones - the system is
extensible and new laws (that have been proven correct) can be coded and added if required. Regularly
executed sequences of transformations can be coded as ML functions giving higher-level transformations.
The example transformation shown above has been coded up as the transformation law combas which itself
is used in more powerful transformations. The basic transformations often have only a small localised effect
but when suitably combined they can perform significant transformations which being constructed from correct
component transformations are known to be correct.

The transformation system user can select which transformation laws to apply and examine the effects of
these transformations. The fact that the transformation system is being used provides the verification of
the equivalence between the initial program and the transformed end result - but if necessary it would be
feasible to produce the list of transformations which constitute the proof.

8.3 Instruction development

The instruction development process consists of specifying the operation of the instruction in the Z specifica­
tion language [11). Since Z is a mathematically based language it allows precise unambiguous statements
about operations to be made concisely and - if used in a sympathetic manner - clearly.

Along with the specifications of the instructions there will be a set of specifications of system constants,
system state and other global features of the design. In the case of the IMS T800 floating-point unit this
consists of a formal specification of the IEEE floating-point standard - such as in [12). a specification of the
internal representation of floating-point numbers in registers, a specification of the floating-point unit state -
Le. the registers and flags. and definitions of various constants that are used. This corresponds to formally
describing the overall architecture.

Each instruction specification is refined into a high-level occam implementation. This can involve going via
a guarded command language using pre- and post-conditions as in [13). This high-level implementation is
often the sort of implementation that a competent programmer would produce from the specification but the
formal derivation ensures that no mistakes ar~ made.

The occam program is then transformed inside the transformation system into a form equivalent to the
microcode assembler source. The steps in this process are motivated by the functions available in the
microcode machine. This involves:

1 refining IF conditions into the conditions available on the microcode machine

2 refining the expressions so that they use the alu and bus operations available on the microcode
machine

3 refining the sequential control of the program into a form that simulates the micrOinstruction control
in the microcode machine

The various stages of simple development used as an example are shown in the next section.

8.4 An example instruction development

The following example demonstrates the methods that have been found to be useful in the IMS T800 design.
This example takes a high-level specification in the Z specification language [11) and refines it in a sequence of
steps into a microcoded implementation that will run on a microcode machine Similar to the IMS T800 floating­
point unit. For brevity certain simplifications have been made - notably that infinities. Not-a-Numbers and
denormalised numbers are ignored.

98 2 Practice

8.4.1 Preliminary definitions

Before any instructions are specified and implemented it is necessary to make a few preliminary definitions.
There is a need to specify the format of registers, various constants and methods for interpreting data. This
is a formalisation of the top level of architectural description of the device. Only the subset of definitions
relevant to this example will be given.

The definition of the real format will contain the specification of the number of bits in the fractional part of a
floating-point number and the exponent bias:

bitsinfrac, bias : N

Now the floating-point register format can be specified:

Floating_Point-Register _________ -.,

frac, exp : N
sign : { -1,+1}

(exp = 0 A frac = 0)
V

(2bitsinfrac- I ::;; frac < 2bitsinfrac)

This states that a Floating_Point_Registers has three fields. Two of which, trae and exp, are positive integers
and the third, sign, is either -1 or +1. The predicate states that both the exponent and fraction are 0 or that
trae is between 2bltslnfrac-l and 2bltslnfrac - this ensures that the fraction is normalised.

The valuation function on a floating-point register tv establishes the link between a Floating_Point_Register
and the value it 'holds':

tv : Floating_Point-Register -+ R

'Ix : Floating_Point-Register.
tv(x) = x.signx

(x.frac x 21 -bitsinfrac) x 2exp-bias

Two constants are used to represent the largest and smallest integers in the integer format. As the IMS T800
uses 32-bit 2s complement integers these are specified by:

Minlnt, Maxlnt : Z

Minlnt = _231
Maxlnt = 231 - 1

The role of occam in the design of the IMS T800 99

8.4.2 The instruction specification

The instruction under consideration here is a component of the real to integer conversion instruction sequence.
It checks that the value of Areg lies within integer range - if it doesn't then the error flag must be set to
indicate a conversion error.

The Z specification of this instruction is very simple:

Floating_CheckJnteger _Range ______ _

Areg, Areg' : Floating_Point-Register 1
Error _Flag, Error_Flag' : bool

fvAreg E Z
Areg' = Areg
fv Areg E [Minlnt, Maxlnt] ~

Error _Flag' = Error_Flag
tv Areg i [Minlnt, Maxlnt] ~ Error_Flag' = true

The first predicate is a precondition to this operation. If tv Areg is not an integer then the effect of this
operation will be undefined. In this way the precise conditions for the correct execution of an operation are
stated. This instruction is intended for use in a particular sequence of instructions and the previous instruction
will have established this precondition.

It is easy to see that this specification satisfies the requirements for the instruction. Once this has been
agreed to be 'correct' the development process will ensure that the final implementation will also satisfy the
requirements.

8.4.3 Refining to procedural form

A refinement of a specification can consist of either refining a data type or decomposing the procedural
form. As the major data type - reals - has already been refined into its machine representation, by using
F1oating_Point_Register and the abstraction function tv, the specification can be decomposed into procedural
form. The specification can be easily implemented by:

if

fi

fv(Areg) E [Minlnt, Maxlnt] --+ skip
o fv(Areg) i [Minlnt, Maxlnt] --+

Error _Flag := true

Using the pre/post-condition laws in [13] this can be shown to implement the Z specification.

8.4.4 Refining to occam

This has produced a procedural implementation but the conditionals used in the if .. fi construct are not
available in occam so they need to be refined into equivalent occam expressions.

To do this the lemmas about integer range shown below will be useful.

lemma 1 I- \/x, y : Floating_Point-Register.
(x.exp < y.exp v (xJrac < yJrac A x.exp = y.exp)) *> I fv(x) I < I fv(y) I

lemma 2 I- \/x : Floating_Point-Register.
tv(x) = Minlnt *> (x.sign = -1 A xJrac = MSBit A x.exp = LargestiNTExp)

lemma 3 I- Maxlnt = -(Minlnt + 1)
where MSBit = 2bitsinfrac-1

LargestiNTExp = 32 + bias

100 2 Practice

From lemmas 1 and 2 obtain:

f- "Ix : Floating_Point-Register.
x.exp < LargestiNTExp {} Itv(x) I < IMinlntl

The fact that MSBit ~ x.frac is part of the invariant of Floating_Point-Register is used to eliminate the disjunct
where x.exp = LargestlNTExp.

Now using lemma 3 and adding an extra condition obtain:

f- "Ix : Floating_Point-Register.
fv(x) E Z => x.exp < LargestlNTExp

{} I tv(x) I ~ Maxlnt

From these obtain:

f- "Ix : Floating_Point-Register.
fv(x) E Z => tv(x) E [Minlnt, Maxlntl

{} (x.exp < LargestiNTExp
vtv(x) = Minlnt)

8.4.5 High-level occam implementation

The previous section allows the high-level occam implementation below to be derived.

IF
(Areq.Exp < LarqestINTExp) OR

«Areq.Siqn = 1) AND
(Areq.Exp = LarqestINTExp) AND (Areq.Frac = MSBit»

SKIP
NOT «Areq.Exp < LarqestINTExp) OR

«Areg.Siqn = 1) AND
(Areg.Exp = LargestINTExp) AND (Areq.Frac = MSBit»)

ErrorF1aq := TRUE

Using two laws IF pri and IF or-dist:

IF pri IF(bl Pl , ... , bn Pn)
== IF(bi Pl , ... , b~ Pn)

where bi = -.bl 1\ . .. 1\ -.b;-l 1\ b;

IF or-dist IF(b l P, b2 P, Q.)
== IF(b l V b2 P,Q.)

this can be simplified to the program:

IF
(Areq.Exp < LarqestINTExp)

SKIP
(Areq.Sign = 1) AND

(Areq.Exp = LargestINTExp) AND (Areg.Frac = MSBit)
SKIP

TRUE
ErrorFlaq := TRUE

which is probably the implementation of the specification that a competent programmer would produce - but
the 'special' case of Minlnt is frequently omitted.

The role of occam in the design of the IMS T800 101

8.4.6 Transformations towards microcode

The previous sections have developed an occam program that correctly implements the specification. This
can now be transformed into an equivalent form that corresponds to microcode assembler source. Full details
of this process will not be given here.

Each step consists of transforming one aspect of the program towards the form used in the microcode
machine. Ideally this occam program would be transformed into the final program. As the transformation
system is still under development most of the laws that it contains are those that are 'general' - i.e. are
correct in all environments. This does not allow the required transformation to be performed in a forwards
manner. Instead at each step a proposed implementation was constructed and this was then verified by
transforming it back into the current 'correct' implementation.

Refining the conditionals

The occam program given contains a three-way IF statement with the conditionals:

(Areg.Exp < LargestXNTExp)

2 (Areg. S:i.gn = 1) AND
(Areg.Exp = LargastXNTExp)

AND (Areg.Frac = MSB:i.t)

3 'l'ROE

The structure of the program must be transformed to take account of the conditional Signals available on the
microcode machine - i.e. that conditionals are available to Signal that the result of an ALU operation is less
than 0 or that the result of an ALU subtraction is 0 etc.

This program for implementation with refined conditionals is shown below. The various laws for IF constructs
in [9] enable this to be verified:

IF
(Arag. S:i.gn = 1)

IF
«Areg.Exp - LargastINTExp) < 0)

SKIP
NOT «Arag.Exp - LargastINTExp) < 0)

IF
«Arag.Exp - LargestINTExp) = 0)

IF
«MSB:i.t - Areg.Frac) = 0)

SKIP
NOT «MSB:i.t - Areg.Frac) = 0)

ErrorFlag : = 'l'ROE
NOT «Areg.Exp - LargestINTExp) = 0)

ErrorFlag := 'l'ROE
NOT (Arag.Sign = 1)

IF
«Areg.Exp - LargestINTExp) < 0)

SKIP
NOT «Areg.Exp - LargestINTExp) < 0)

ErrorFlag .- TRUE

Refining the expressions

The previous section has produced conditionals that are available in the microcode machine. The next step
is to take account of how the expressions producing these conditionals are evaluated. This stage involves
introducing variables to represent the various buses and conditional flags. The conditional flags appear as
the IF conditionals and are evaluated in terms of the results of the ALU operations before the IF statement.

102 2 Practice

This program for implementation with refined expressions is shown below: The laws for SEQ, VAR and
assignment in [9] verify this step:

VAR AregNegative, ExpZbus, ExpZbusNeg, ExpZbusEqZ, FracZbusEqZ :
VAR FracZbus :
SEQ

AregNegative := (Areg.Sign = 1)
ExpZbus:= (Areg.Exp - LargestINTExp)
ExpZbusNeg := ExpZbus < 0
IF

AregNegative
IF

ExpZbusNeg
SKIP

NOT ExpZbusNeg
SEQ

ExpZbus:= (Areg.Exp - LargestINTExp)
FracZbus := (MSBit - Areg.Frac)
ExpZbusEqZ := ExpZbus = 0
IF

ExpZbusEqZ
SEQ

FracZbusEqZ .- FracZbus = 0
IF

FracZbusEqZ
SKIP

NOT FracZbusEqZ
ErrorF~ag := TRUE

NOT ExpZbusEqZ
ErrorF~ag .- TRUE

NOT AregNegative
IF

ExpZbusNeg
SKIP

NOT ExpZbusNeg
ErrorF~ag := TRUE

Introducing sequencing

The program now contains expressions and conditionals that can be formed in the microcode machine.
However, the program does not define microwords. The final step is to mimic the microsequencing in the
microcode machine by use of a variable as a microprogram counter and a WHILE loop containing an IF
microinstruction selector. Each branch of the IF statement contains the 'code' for one microinstruction - i.e.
it can have one fractional ALU operation, one exponential ALU operation and defines the next microinstruction
to execute - possibly with one or two conditionals.

The laws for WHILE and IF allow this program to be 'unwound' back into its previous form.

The role of occam In the design of the IMS TSOO

8.4.7 Translation to microcode

The final program for low level occam implemenation from the previous transformations is:

VAll NextInst :
VAll AregNegative, ExpZbusNeg, ExpZbusEqZ, FracZbusEqZ
VAll FracZbus, ExpZbus :
SEQ

NextInst := F10atingPointCheckIntegerRange
WHILE NextInst <> NOWHERE

IF
NextInst = F10atingPointCheckIntegerRange

SEQ
AregNegative := (Areg.Sign = 1)
ExpZbus : = (Areg. Exp - I.argestIN'l'Exp)
ExpZbusNeg : = ExpZbus < 0
IF

AregNegative
IF

ExpZbusNeg
NextInst := NOWHERE

NOT ExpZbusNeg
NextInst := CheckMinInt

NOT AregNegative
IF

ExpZbusNeg
NextInst := NOWHERE

NOT ExpZbusNeg
NextInst := OutofRange

NextInst = OutofRange
SEQ

ErrorF1ag := TRUE
NextInst := NOWHERE

negative case micro instructions

103

This corresponds in an almost one-to-one manner with the source format for the microcode assembler. A
pattern-matching program is used to translate the stylised occam of the above program into the source for
the microcode assembler. The microcode assembler then produces the definition of the microcode ROM
from this source.

104

8.4.8 Microcode assembler source

Finally the microcode can be derived:

FloatingPointChecklntegerRange:
ExpConstantFromlargestlNTExp
ExpXbusFromAreg
ExpZbusFromXbusMinusYbus
GOTO Cond1 FromAregSign - >

CheckMinlnt:
ExpConstantFromlargestiNTExp

Exp YbusFromConstant

(CondDFromExpZbusNeg - >
CondDFromExpZbusNeg - >

ExpXbusFromAreg ExpYbusFromConstant
ExpZbusFromXbusMinusYbus
FracXbusFromMSBit FracYbusFromAreg
FracZbusFromXbusMinusYbus
GOTO Cond1 FromExpZbusEqZ - > (CheckMinlnt2, OutofRange)

CheckMinlnt2:
GOTO Cond1 FromFracZbusEqZ - > (NOWHERE, OutofRange)

OutofRange:
SetErrorFlag
GOTO NOWHERE

2 Practice

(NOWHERE, CheckMinlnt),
(NOWHERE, OutofRange))

This process has ensured that the 'program' in the microcode ROM correctly implements the initial specifi­
cation. It might seem possible to do this informally in this simple case which only produces four microwords.
Other instructions contain up to ninety microwords where informal development can easily introduce subtle
bugs. The ability to verify an implementation using program transformations has proved invaluable.

8.5 Current and future work

Work on the IMS T8DO has shown how correct microcode can be derived from a high-level specification.
However, this has assumed that the hardware implementing the microcode machine is correct. To produce
a verified processor design it will be necessary to apply the same degree of rigour to the design of the
microcode machine. This necessitates refining the specifications of microfunctions into hardware description
language (HDl) implementations. The INMOS CAD system already ensures that silicon layout is equivalent
to its HDl specification.

This correctness of design can be achieved by defining axioms for the behaviour of low-level modules in the
HDl module library if necessary down to transistor level. larger modules and circuits can then be specified
in terms of compositions of these 'axiomatic' modules. Then a logic tool, such as HOl [51, can be used to
derive the behaviour of the design. Checking this against an original specification enables the correctness
- or otherwise - of the design to be established.

The role of occam in the design of the IMS T800 105

8.6 Conclusions

Work at INMOS using the transformation system and a formal design strategy has been seen to be of benefit.
The correctness of the microcode for the IMS T800 floating-point unit was established in far less time than
would be needed by an 'adequate' amount of testing. In addition, any amount of non-exhaustive testing
leaves the possibility that certain erroneous operations have not been exercised. This has enabled INMOS
to produce the IMS T800 well ahead of schedule with a high degree of confidence in the correctness of the
microcode - this would not have been possible by other design methods.

Work is now in progress to incorporate this formal design strategy into the other levels of the design process
to maintain the correctness of a complete design. It seems clear that the CAD system will need to incorporate
a theorem prover and work is progressing at INMOS to ensure that this is the case.

8.7 References

Proving a computer correct, M Gordon, University of Cambridge Computer Laboratory
Technical Report 42, 1983.

2 Specification and Verification using Higher-Order Logic, F KHanna, N Daeche, Proceedings of the
7th International Conference on Computer Hardware Design Languages, Tokyo, 1985.

3 LCELSM M Gordon, University of Cambridge Computer Laboratory, Technical Report 41, 1983.

4 The VERITAS theorem Prover, F KHanna, N Daeche, Electronics Laboratory,
University of Kent at Canturbury, 1984 onwards.

5 HOL: A machine orientated formulation of Higher-Order Logic, M Gordon,
University of Cambridge Computer Laboratory, Technical Report 68, 1985.

6 Dijkstra, E W, quotation taken from 7

7 Programming is an engineering profeSSion, CAR Hoare, Oxford University Computing PRG,
Technical Monograph PRG-27, 1982.

8 The occam Programming Manual, INMOS Ltd, Prentice Hall, 1984.

9 The laws of occam programming, A W Roscoe, CAR Hoare, Oxford University Computing PRG,
Technical Monograph PRG-53, 1986.

10 Edinburgh LCF - chapter 2, M Gordon, R Milner, C Wadsworth, LCNS 78, Springer Verlag, 1979.

11 The Z Handbook B A Sufrin (editor), Oxford University Computing PRG, 1986.

12 Formal methods applied to a floating point number system, G Barrett,
Oxford University Computing PRG, Technical Monograph, 1987.

13 The science of programming, D Dries, Springer-Verlag, 1981

106 2 Practice

107

9 Simpler real-time programming with the transputer

9.1 Introduction

INMOS manufactures a range of high performance microprocessors, called transputers, which combine all
the essential elements of a computer (processor, memory and i/o) in a single component. Transputers
provide support, in hardware and microcode, for concurrency and communication. This support includes
communication links for connecting transputers together and two hardware timers which can be used for
interval measurement or for real-time scheduling.

The occam language was designed for programming systems composed of concurrently executing, commu­
nicating processes and, as such, is especially suitable for transputer-based systems. An important application
of modern microprocessor systems is real-time control and occam provides many features for this purpose.
One of these is the timer, a means of measuring time periods and generating time delays.

This technical note describes some aspects of timers on the transputer, using occam. It introduces the
basics of the occam language and then goes on to show some simple ways in which timers can be used
in programs. The next section describes how the transputer implements timers. Finally there are some
examples taken from occam programs which illustrate various aspects of the use of timers.

9.2 The occam programming language

The occam language enables a system to be described as a collection of concurrent processes which
communicate with one another, and with the outside world, via communication channels.

9.2.1 occam programs

This section is a brief introduction to occam and, as such, can be overlooked by those familiar with the
language. occam programs are built from three primitive processes:

variable : = expression assign value of expression to variable
channel? variable input a value from channel to variable
channel! expression output the value of expression to channel

Each occam channel provides a one way communication path between two concurrent processes. Commu­
nication is synchronised and unbuffered. The primitive processes can be combined to form constructs which
are themselves processes and can be used as components of other constructs.

Conventional sequential programs can be expressed by combining processes with the sequential-constructs
SEQ, IF, CASE and WHILE. Concurrent programs are expressed using the parallel-construct PAR, the
alternative-construct ALT and channel communication. PAR is used to run any number of processes in
parallel and these can communicate with one another via communication channels. The alternative-construct
allows a process to wait for input from any number of input channels. Input is taken from the first of these
channels to become ready and the associated process is executed.

Sequence

A sequential-construct is represented by:

SEQ
Pi
P2
P3

The component processes Pi, P2, P3 ... are executed one after another. Each component process starts
after the previous one terminates and the construct terminates after the last component process terminates.

108 2 Practice

For example:

SEQ
cl? x
x .- x + 1
c2 x

inputs a value, adds one to it, and then outputs the result.

Sequential-constructs in occam are similar to programs written in conventional programming languages.

Parallel

A parallel-construct is represented by:

PAR
Pl
P2
P3

The component processes Pl, P2, P3 ... are executed together, and are called concurrent processes. The
construct terminates after all of the component processes have terminated, for example:

PAR
cl ? x
c2 ! y

allows the communications on channels cl and c2 to take place together.

The parallel-construct is unique to occam. It provides a straightforward way of writing programs which
directly reflects the concurrency inherent in real systems. Concurrent processes communicate only by using
channels, and communication is synchronized. If a channel is used for input in one process, and output in
another, communication takes place when both the inputting and the outputting processes are ready. The
value to be output is copied from the outputting process to the inputting process, and the processes then
proceed.

Conditional

A conditional-construct

IF
conditionl

Pl
condition2

P2

means that Pl is executed if conditionl is true, otherwise P2 is executed if condition2 is true, and
so on. Only one of the processes is executed, and then the construct terminates, for example:

IF
x = 0

y := y + 1
x <> 0

SKIP

increases y only if the value of x is O.

9 Simpler real·time programming with the transputer

Alternation

An alternative construct

ALT
input 1

Pl
input2

P2
input3

P3

109

waits until one of inputl, input2, input3 ... is ready. If inputl first becomes ready, inputl
is performed, and then process Pl is executed. Similarly, if input2 first becomes ready, input2 is
performed, and then process P2 is executed. Only one of the inputs is performed, then its corresponding
process is executed and then the construct terminates, for example:

ALT
count ? signal

counter := counter + 1
total ? signal

SEQ
out ! counter
counter := 0

either inputs a signal from the channel count, and increases the variable counter by 1, or alternatively
inputs from the channel total, outputs the current value of the counter, then resets it to zero. The ALT
construct provides a formal language method of handling external and internal events that must be handled
by assembly level interrupt programming in conventional languages.

Loop

WHILE condition
P

repeatedly executes the process P until the value of the condition is false, for example:

WHILE (x - 5) > 0
x := x - 5

leaves x holding the value of (x remainder 5) if x were positive.

Selection

A selection construct

CASE s
n

Pl
m,q

P2

means that Pl is executed if s has the same value as n, otherwise P2 is executed if s has the same value
as m or q, and so on.

110

For example:

CASE direction
up

x := x + 1
down

x := x - 1

2 Practice

increases the value of x if direction is equal to up, otherwise if direction is equal to down the value
of x is decreased.

Replication

A replicator is used with a SEQ, PAR, IF or ALT construction to replicate the component process a number
of times. For example, a replicator can be used with SEQ to provide a conventional loop:

SEQ i = 0 FOR n
P

causes the process P to be executed n times.

A replicator may be used with PAR to construct an array of concurrent processes:

PAR i = 0 FOR n
Pi

constructs an array of n similar processes PO, Pi, ... , Pn-l. The index i takes the values 0, 1, ... , n-1, in
PO, Pi, ... , Pn-l respectively.

This note contains some short program examples written in occam. These should be readily understandable
but, if necessary, a full definition of the occam language can be found in the occam reference manual [1].

9.2.2 Timers in occam

This section gives more detail of the TIMER in occam.

An occam timer provides a clock which can be read to provide a value representing the time. The timer is
read by an input statement similar to that used for receiving data from a channel. Unlike a communication
channel, a single timer can be shared by any number of concurrent processes. Timers are declared in an
occam program to be of type TIMER in the same way as channels and variables are declared. An example
of the use of timers is shown below:

TIMER clock
INT t :
SEQ

clock ? t -- read value of timer 'clock' into 't'

9.2.3 Timer values

The value input from a timer is of type INT. The value is derived from a clock which increments by a fixed
amount at regular intervals. The value of the clock is cyclic, that is when the time reaches the most positive
integer value then the next increment results in the most negative value. An analogy can be drawn here with
a real clock. We normally understand whether a particular time is before or after another from the context.
For example 11 o'clock would normally be considered to be before 12 o'clock, and 12 o'clock to be before
1 o'clock. This comparison only works for limited ranges of times. For example we may consider 6 pm to be
after 12 noon, but 7 am to be before noon (Le. 7 am is before 6 pm even though 6 is less than 7).

9 Simpler real-time programming with the transputer

9.2.4 Modulo operators

maxint

increasing
\ values

o

minint

Figure 9.1 Cyclic timer values

111

A special operator, AF'l'ER, can be used to compare times in occam. AF'l'ER is one of a set of modulo oper­
ators, these perform arithmetic with no overflow-checking and thus produce cyclic results. Two other modulo
operators useful with timer values are PLUS and MINUS which perform addition and subtraction respectively.
For example, if max:i.nt is the largest value of type :IN'l' that can be represented, then max:i.nt PLUS 1
wraps around and becomes the most-negative representable integer (m:i.n:i.nt), this is illustrated in Fig­
ure 9.1. a AF'l'ER b is defined to be equivalent to (b M:INUS a) > O. The value t2 AF'l'ER tl is
true if the value of t2 represents a later time than the value of tl. This comparison is only valid for times
within half a timer cycle of one another because (b MINUS a) must be positive.

The AF'l'ER operator can also be used in a timer input to create a delayed input. This specifies a time after
which the input terminates. For example:

'l'J:MER clock :
SEQ

clock ? AF'l'ER t

This example will wait until the value of the timer clock is later than the value of t.

112 2 Practice

9.3 Using timers

This section outlines the basic applications of timers in occam programs.

9.3.1 Measuring time intervals

Perhaps the most obvious use of a timer is for measuring time intervals. Different timers are not guarenteed
to have the same value so time intervals must be measured using a single timer.

For example, when benchmarking programs written in occam, the timer can be read before and after
executing the main body of the code:

TIMER cl.ock :
!NT tl, t2, time :
SEQ

cl.ock ? tl
run benchmark

cl.ock ? t2
time : = t2 MINUS tl

print time taken

read start time into tl

read end time into t2
cal.cul.ate el.apsed time

There are a few important points to note about this example.

• The use of the modulo' operator, MINUS, to calculate the time taken. If, at the start of the program,
the timer has a very large positive value then it may have 'wrapped-round' to a negative value the
second time it is read. Using a normal subtraction on these values would cause an arithmetic­
overflow error. The modulo operator gives the correct elapsed time.

• As explained in Section 9.2.4 the time interval measured in this way must be less than half the cycle
time of the timer.

• The time measured in this way is elapsed time, not processor time used by this process. This may
cause 'incorrect' results if there are other processes running in parallel.

9.3.2 Generating a known delay

The next application of timers is to use the delayed input to generate a known time delay. This is very simple
as shown below:

TIMER cl.ock :
INT now :
VAL del.ay IS 1000 -- del.ay time in cl.ock 'ticks'
SEQ

cl.ock ? now
cl.ock ? AFTER now PLUS del.ay

T-his example reads the current value of the timer, then the delayed input waits until the value of the timer is
later then the value of now PLUS del.ay. The process is descheduled while waiting so other processes
can be executed. An important practical point here is that there may be a delay before the process is
rescheduled. This latency may be due to a number of factors, e.g. the number of other processes executing
at the time, and may be variable. The transputer implements process scheduling in hardware and so the
latency can be very small (see Section 9.4.1).

Again, note the use of the modulo operator PLUS to calculate the time to wait until and the fact that the
greatest delay is half the timer's cycle time. A technique for generating delays of arbitrary length is given in
Section 9.5.5.

9 Simpler real-time programming with the transputer 113

9.3.3 Generating events at regular Intervals

A program which must perform a task at regular intervals cannot do so simply by means of a fixed delay
between processing, as in the previous example. If a simple delay were used then the time at which the task
happens will slip gradually because the delay does not account for the time taken by the task itself (which
may vary) and this error accumulates. This is illustrated in Figures 9.2 & 9.3.

To make this more explicit, assume the task must be scheduled every millisecond and will execute for 10j.ls.
The task executes and is then descheduled for 1 ms (piUS the time required to reschedule the process). The
interval between tasks is therefore at least 1.01 ms and this error will accumulate so, after 1 second the task
will have been executed only 990 times instead of 1000 times. It would be possible to adjust the delay to
take the processing time of the task into account, but this implies that the processing time is both known and
fixed. This is unlikely to be the case in a real system. Consider the following example:

TIMER clock :
INT time :
SEQ

WHILE active
SEQ

perform process P at intervals
-- wait for 'delay' clock ticks
clock ? time
clock ? AFTER time PLUS delay

The time taken to execute the loop is the delay time plus the execution time of process P. Any variation in
the processing required in P will vary the frequency at which it is executed.

Figure 9.2 Using timer to generate delays between processing

A far more accurate way to achieve the desired effect is shown below:

TIMER clock :
INT time:
SEQ

clock ? time
WHILE active

SEQ
perform process P at regular intervals

-- add interval to the time the process started
time := time PLUS interval
-- and wait until it is time to execute the process again
clock ? AFTER time

114 2 Practice

The important point to note here is that the value of the timer is only read once, before the loop is entered.
After that the time is updated by adding a constant increment to the current value. This ensures that the
delayed input always waits until the desired starting time, rather than for a fixed delay. This prevents any drift
in the timing of the processing.

add start add start. add
interval processing interval processing interval

J :f~~~;d J J dp~;d J . J Idf~~i"

start
processing

J
--w:-a-l·t--1t-------HII----'t- I 11--- -- --'t- - - - - - - -+-------i

wal process wal

Figure 9.3 Using timer to perform processing at fixed intervals

To take the previous example of a task being scheduled every millisecond, it can be seen that the task is
initiated at (or shortly after, because of scheduling latency) the time specified by the value of ti.me. When
the task has completed a constant amount is added to the value of ti.me to calculate the time the task should
next be scheduled. This time is independent of the time taken by the task. The possible variation in the time
taken to schedule a process may introduce some jitter into the timing of the task, but will not cause it to Slip.

9.3.4 Use in ALTs

Delayed timer inputs are often used in alternative constructs.

Interleaving-processing

An alternative may be used to interleave-processing at fixed times with processing performed when data is
received. As an example, a data logging process may need to record data received from a channel and, at
suitable intervals, insert a time stamp in the recorded data. This could be written with an ALT very simply:

TIMER clock :
INT ti.me, data
SEQ

clock ? ti.me
WHILE acti.ve

SEQ
ti.me := ti.me PLUS one. second
PRI ALT

clock ? AFTER ti.me
i.nsert ti.me stamp i.n fi.le

i.n ? data
store data i.n fi.le

Note that the delayed input is prioritised with respect to the channel input; this ensures that, even if the
channel i.n is always ready, the time stamping process will be selected when it becomes ready.

Timeouts on channels

Another use of delayed inputs in alternatives is to provide some sort of timeout on channel communication.
This may be to execute a process if no user command is received, or to detect an error condition. For
example, a disk controller may wish to 'park' the heads (Le. move them to a safe position on the disk) if no

9 Simpler real·tlme programming with the transputer

commands are received within a time limit:

WHILE active
SEQ '

cl.ock ? t:ime
ALT

(headsNotParked) , cl.ock ? AFTER t:ime PLUS t:imeout
move heads to shipping track

in ? command
. execute command from fil.e system

Multiple delayed inputs

115

An alternative may contain several delayed inputs with different delays. This may be useful if it is necessary to
handle a number of devices at different, fixed intervals. For example, if the processor needs to be scheduled
to service two peripherals at different periods then an ALT can be used to correctly interleave the handling
of these devices:

TIMER cl.ock :
INT timeA, timeB
VAL interval.A IS 96
VAL interval.B IS 42
SEQ

cl.ock ? timeA
cl.ock ? timeB
WHILE active

ALT
cl.ock ? AFTER t:imeA

SEQ
timeA := timeA PLUS interval.A

handl.e device A at fixed interval.s
cl.ock ? AFTER timeB

SEQ
timeB := timeB PLUS interval.B

handl.e device B at fixed interval.s

A interval A A A A A A r----------1 f f f f
----.-----------~------.-------I----------.--I-------------~-.-----------1------.

L---------------J t t t
B interval B B B B B

Figure 9.4 Scheduling two processes, A and B, at different intervals

Only times that are within half a timer-cycle can be compared by AFTER so, if several times are being
compared, they must all be within half a cycle of one another. If an ALT contains more than one delayed
input then all of the times involved (including the present timer value) must be within half a cycle of one
another. A simpler, but sometimes more restrictive, rule is to ensure that all times in the delayed inputs are
within a quarter of a cycle of the current timer value.

116 2 Practice

9.4 Transputer implementation of timers

The transputer [21 has hardware and microcode support for occam timers. This allows timer instructions
to be fast and, more importantly, delayed inputs to be non-busy (Le. to consume no processor time whilst
waiting). There are two timer clocks, with the same wordlength as the particular device, which tick periodically.
One timer is accessible only to high-priority processes and is incremented every microsecond. The other can
only be accessed by low-priority processes and ticks every 64J.1s, giving exactly 15,625 ticks per second. The
cycle time of these timers depends on the wordlength of the device. The approximate cycle times, for the
current range of 16 and 32 bit transputers, are shown in the table below.

Transputer type Priority
High Low

IMS TaOO & IMS T414 1.2 hours 76 hours
IMS T212 & IMS M212 65.5 ms 4.2 s

It is important to have a resolution of 1 J.lS for precise timing. However, on a 16 bit processor, this means a
cycle time of only 65ms - too short for many applications. To provide both high resolution and a long cycle
time, two timer rates were introduced. The same method was used on the 32 bit processors, so the timers
behave similarly on all transputer types.

Timers are local to each processor, so the absolute time values read by processes on different transputers in
a network will be different. However, the rates of the timers on each transputer will be the same, independent
of processor speed etc.

Although timers can be shared between parallel processes, this can appear rather odd if a timer is shared
between processes at different priorities. This would have the effect of a single timer producing different
values in each process. To make it clear which timer is being used within a process it is good practice to
declare timers local to each priority, for example:

PRJ: PAR
TJ:MER hiClock :
SEQ

high-priority process

TJ:MER loClock :
SEQ

low-priority process

9.4.1 Scheduling latency

The transputer has a microcoded scheduler which enables any number of concurrent processes to be exe­
cuted together, sharing processor time. Processes which are descheduled, waiting for a communication or
delayed input, do not consume any processor time. The scheduler supports two levels of priority.

The latency between the time a process becomes ready to execute and the time it begins processing depends
on the priority at which it is executing. Low priority processes are executed whenever there are no high-priority
processes which are ready to execute. A high-priority process runs until it has to wait for a communication
or timer input, or until it has completed processing.

Low-priority processes

Low-priority tasks are periodically timesliced to provide an even distribution of processor time between com­
putationally intensive processes. If there are n low-priority processes then the maximum latency is 2n - 2
timeslice periods. The latency will generally be much less than this as processes are usually descheduled
for communication or by a delayed input before the end of their times lice (see, for example, Section 9.5.2 on
polling). The timeslice period is approximately 1 ms.

9 Simpler real·time programming with the transputer 117

High.priority processes

High-priority processes run whenever they are able to, interrupting any currently executing low-priority process
if necessary. If a high-priority process is waiting on a timer input, and no other high-priority processes are
running, then the interrupt latency is typically 19 processor cycles (0.95J.1s with a 20Mhz processor clock).
The maximum latency depends on the processor type as shown in the following table.

Transputer type Maximum interrupt latency
processor cycles microseconds (at 20MHz)

IMS M212, IMS T212 53 2.65
IMS T414 58 2.9
IMS T800 (FPU in use) 78 3.9
IMS T800 (FPU not in use) 58 2.9

These times indicate that a transputer can handle many tens of thousands of interrupts per second, even
while engaged in computationally-intensive tasks involving floating-point calculations.

9.4.2 Timer instructions

The user programming in occam (or other high-level language) does not need to know how the timers are
implemented. However, the following description of their implementation in terms of the transputer instruction
set may be of interest. Further details of the implementation of occam for the transputer can be found in [3]
and a complete description of the transputer instruction set in [4].

The timers are initialised using the store timer instruction. This sets the timer to a known value and
starts it 'ticking'. This is normally done by the bootstrap or loader-code rather than by a user-program. The
value of a timer can be read at any time with the load timer instruction.

Delayed inputs

Delayed inputs are supported directly by the timer input instruction. The transputer maintains a linked
list of processes waiting on each timer, in order of increasing time. The process at the front of each queue
is pOinted to by a register in the CPU. Another register holds the time that this process is waiting for. A
comparator continuously performs the AFTER test between this 'alarm' time and the value of the clock,
causing the process to be rescheduled when the time is reached.

The tim..'r input instruction requires a time to be specified. If this time is in the 'past' then the instruction
does nothirl~. otherwise it deschedules the process and adds it to the list of processes waiting on the timer.
The instruction searches down the list of processes and inserts the current process and time value in the
appropriate place. If this time is earlier than the current value in the 'alarm' register then the new value will
be put in the register.

An important feature of the timer input instruction is that it is interruptable. Because there can be any
number of processes in a timer queue, it is important that searching the queue does not affect the interrupt
latency of the system. For this reason, unbounded instructions like this and the 2D block-moves of the
IMS T800 can be interrupted by a higher-priority process becoming ready.

9.5 Some application examples

This section is intended to show how some real problems can be solved efficiently. The traditional approaches
to handling these problems would either be through polling or interrupts. The disadvantages of these ap­
proaches are described as follows, together with the ways in which occam can provide simple solutions.

9.5.1 Interrupts

Interrupts are the usual way of handling devices that require infrequent but fast servicing. Interrupt handlers
are notoriously difficult to write and debug, they are usually only supported by programming in assembler
and this is often very difficult to integrate with ather code written in a high-level language. occam and

118 2 Practice

the transputer support both internal and external interrupts in a very simple and efficient way. An example
of an internal interrupt is a communication or delayed input; external interrupts can be generated from the
transputer's links or the event input. A transition on the EventReq pin behaves just like a channel com­
munication and can be used to synchronise with an occam process. It is, therefore, very easy to write an
occam process which handles events - it simply has to perform an input from the channel mapped on to
EventReq and, when both the event channel and the process are ready, the process is scheduled. The
following example shows how a UART1, which has its data received interrupt connected to the transputer's
event input, would be handled in occam.

{{{ event hand1er
CHAN OF BYTE error
PLACE event AT 8 :

BYTE sync :
WHILE acti.ve

SEQ

} }}

event ? sync
read. data (char)
to.buffer ! char

event channe1 contro1 word

wai.t for i.nput from EventReq
read data from UART
output to wai.ti.ng process

If this process is run at high-priority then it can interrupt a low-priority process:

PRI PAR
event hand1er

PAR

1ow-pri.ori.ty (background) processes

The performance of transputer interrupts was detailed in Section 9.4.1 .

Interrupts can have various disadvantages. With multiple sources of interrupts there is inevitably a cost in
determining which device generated the interrupt. This may be extra hardware to encode and prioritise the
interrupts, or software to poll the devices on receipt of an interrupt to see which are ready.

9.5.2 Polling

The main disadvantage of polling is that it is busy, i.e. it consumes processor time. In the transputer this can
have a wide impact on performance because it will affect the scheduling of processes. Low-priority processes
are timesliced to ensure that all processes get a fair share of processor time. However, in most real occam
programs, processes are frequently descheduled before the end of the timeslice period because they perform
some communication. A process which is continuously polling a memory-mapped device, for example, can
get a disproportionate amount of the processing resource simply because other processes are descheduled
more frequently for communication purposes. If a process in parallel with the polling process is transmitting
individual bytes down a link, then each communication may appear to take several milliseconds. This is
because the polling process will be scheduled between each byte- transfer and not be descheduled for one
or two timeslice periods.

If a peripheral device must be polled then it is much more efficient to use a delayed input to control exactly
when, and how often, polling takes place. In most cases this can be done with no degradation in the
performance of the device, as the maximum rate at which data can arrive is known. There is no point polling
the device more frequently than this as the data will not be there.

An example of this is polling a UART. The maximum rate at which characters arrive is baut~ate characters
per second (assuming 8 data bits, 1 start bit and 1 stop bit). In the following example the value i.nterva1

1 A peripheral device which controls a serial communications port, such as an RS232 interface.

9 Simpler real-time programming with the transputer

is set to be slightly less than the shortest possible time between received characters (Le. bau~~ate - A):

SEQ
clock ? time
WHILE active

SEQ
-- wait until a character might be ready
time := time PLUS interval
clock ? AFTER time
{{{ p01l and read data from UART
data. ready (ready) -- check UART status register
IF

ready
SEQ

read. data (char)
to.buffer ! char

TRUE
SKIP

}} }

119

This loop only consumes processor time whilst it is actually reading the UART registers. After a character
has been received and passed on, it is descheduled until just before the next character is ready, freeing the
processor for other work.

This example can be readily extended to allow mixing of data from the serial port and from an occam
channel:

SEQ
clock ? time
WHILE active

SEQ
time := time PLUS interval
PRI ALT

clock ? AFTER time
poll and read data from UART

source ? char
-- insert character from channel into buffer
to.buffer ! char

Another simple example is a program communicating with a transputer system, emulating a terminal, and
simultaneously checking the error flag of the system. The system-error flag only needs to be checked
occasionally, say 10 times a second, to give the impression of instant response to an error. The following
code shows how the two data sources and the error flag are all handled in a single loop:

SEQ
clock ? time
WHILE active

SEQ
ALT

clock ? AFTER time
SEQ

check error pin
time := time PLUS interval

keyboard ? char
send character to system

link ? char
display character on screen

120 2 Practice

This process is only scheduled when data arrives (from the keyboard or the transputer system) or it is time
to check the error-flag.

It is worth noting here why this code is structured as a single WHILE loop rather than three parallel processes:

PAR
check error-flag
copy data from keyboard to system

{{{ copy data from system to screen
WHILE active

SEQ
link ? char

display character on screen
} } }

Although this approach appears simpler, it introduces the problem of causing three concurrently-executing
loops to terminate correctly. The solution that would usually be adopted is for each process to have an extra
input channel and to terminate when a message arrives on that channel. This then means that each loop
requires an ALT and the initial simplicity of this approach disappears.

9.5.3 A real·time clock/calendar

This example is taken from a simple disk filing system for transputers. It is a process which uses the occam
timer to maintain the date and time. The program is organised as a number of communicating processes,
so the real-time clock can be interrogated by any of a number of processes which wish to know the current
time or date:

INT hours, minutes, seconds, date :

PROC update.time (INT now)
INT new.now, delta
SEQ

timer? new.now
delta := new.now MINUS now
now := new. now

use 'delta' to update hours, minutes, seconds, and date

VAL one.hour IS ticks.per.second * 3600
INT now :
SEQ

initialise
WHILE running

ALT
-- wait for a timeout
timer? AFTER now PLUS one.hour

SEQ
update.time (now)

-- or commands from users
ALT i = 0 FOR users

request[i] ? command
SEQ

update.time (now)
CASE command

read.time
output time to user i

handle other requests

9 Simpler real·time programming with the transputer 121

As the occam timer can only be used to measure relative times, the process keeps track of the current time
and date. Whenever a user requests the time or date the timer is read. This value is subtracted from the
previous timer value and this difference used to update the stored time and date values before the reply is
returned to the requestor.

The occam timer will eventually wrap-round, so it is important that the stored time and date values are
updated periodically. To ensure that this happens, even if no requests are received from the users, there is a
delayed input in the AL'l' which times out after one hour. When this happens the stored values are updated
and the AL'l' reentered to wait for another request or timeout.

9.5.4 A task scheduler

The use of multiple delayed-inputs can even be extended to use a replicated AL'l' where all the times and
intervals are stored in arrays. This could form the basis of a scheduler for handling a large number of
peripheral devices. For example:

WHILE act:ive
AL'l'

control. ? CASE
change time :interval. for a dev:ice
modify enable mask for a dev:ice
other commands

AL'l' :i = 0 FOR N
enabl.ed[:i] , clock? AF'l'ER t:ime[:i]

SEQ
handle dev:ice :i

t:ime[:i] := t:ime[:i] PLUS :interval.[:i]

ThiS loop schedules tasks to handle various peripheral devices at intervals. Each peripheral has associated
with it: a next time value; a boolean flag which enables its task; and a frequency at which it needs attention.
These are stored in the arrays t:ime, enabled and :interval. There is also a channel, control, for
modifying these parameters of the tasks associated with each device.

9.5.5 Very long delays

The example below is a procedure that can be used to generate arbitrarily long delays. As noted earlier, the
greatest delay that can be generated directly by a delayed input is half the timer-cycle time. This procedure
generates the desired delay as a number of shorter (in this case, one second) delays. This prevents the
duration of anyone delayed input being a problem and, on the transputer, is still very efficient. This process
will be scheduled once a second during the delay period to perform another delayed input - this will amount
to only about 2.51-'s of processor time per second:

PROC delay (VAL IN'l' seconds)
'l'IMER clock :
IN'l' t:ime :
SEQ

clock ? t:ime
SEQ :i = 0 FOR seconds

SEQ
t:ime := t:ime PLUS t:icks.per.second
clock ? AFTER t:ime

9.6 Conclusions

An important application of microprocessors is in real-time control. The occam language provides support
for programming real-time systems. An important aspect of this is the timer. This allows measurement of

122 2 practice

time intervals, creation of delays and scheduling of processes for given times. The timer operations are fully
integrated with the control structures of the language, providing many powerful facilities especially when used
with an alternative.

The transputer provides hardware and il"!struction level support for the timer operations. This allows them to
be fast (sub-microsecond process scheduling) and efficient (processes use no processor time whilst waiting
for a timer). Because the transputer has microcode and hardware support for occam timers, any language
executing on a transputer can be provided with the same facilities.

9.7 References

occam 2 reference manual, INMOS Limited, Prentice Hall 1988.

2 The Transputer Databook, INMOS Limited, 1989.

3 The transputer implementation of occam, Technical Note 21, INMOS Limited.

4 The transputer instruction set: a compiler writers guide, INMOS Limited, Prentice Hall 1988

123

10 Long arithmetic on the transputer

10.1 Introduction

This note describes how to use the facilities provided in the transputer and occam to implement long
arithmetic, i.e. arithmetic on arbitrarily large integers.

The transputer family naturally handles integers of the wordlength of the machine (16 bit on T2xx family, 32
bit on T 4xx and T8xx families). There is also particular support from a communications point of view for bytes
and messages of bytes, into ~hich all other types can be mapped. The T 4xx family has special instructions
to accelerate software implemention of floating point numbers, and the T8xx family has hardware floating
point facilities.

occam supports bytes, 16-bit integers, 32-bit integers, 64-bit integers, 32-bit floating point and 64-bit floating
point on all transputer types.

Floating point representation allows the expression and manipulation of very large values, but in so doing
trades precision for range. Thus for absolute integer precision with very large number range, floating point is
not appropriate.

Certain applications use long integers for other reasonS,such as generating Cyclic Redundancy Checks,
cryptography, spread-spectrum radio etc.

(Note that later members of the T4xx family, and all the T8xx family, include dedicated instructions for cyclic
redundancy checking.)

The INMOS occam compilers give direct access to the transputer instructions through predefined procedures
that compile into inline code, rather than a procedure call. This note demonstrates that the efficiency of these
is such that the performance cannot be significantly improved by using assembly language.

10.2 Requirements

The need is to be able to perform arithmetic on integers of any length, not limited by the wordsize of the cpu.
For simplicity, however, it is usual to implement an integer length that is a multiple of the cpu wordlength.

Clearly, arithmetic on such integers is going to be slower than on the machine's natural length, but it is
a requirement that the overhead in such operations is not excessive (exact figures would be application
dependent) .

Certain applications have indicated needs for up to 3200 bit integers for cryptography, and 5115 bits for
spread spectrum communications, so clearly the 64 bit facilities provided by occam need extension.

10.3 Facilities available on the transputer

The transputer instruction set has support for long arithmetic. These include instructions which perform
addition and subtraction, with carries and borrows to allow extension to arbitrary length operations. These
instructions are directly available in occam as predefined procedures, for which the compiler generates
in-line code, with no procedure call overhead.

124 2 Practice

Both signed and unsigned versions are available when appropriate, and the procedures are listed below.

occam predefines used for long arithmetic ________________ _

LONG ADD signed add with carry 1
LONGSUM unsigned add with carry
LONG SUB signed subtract with borrow
LONGDIFF unsigned subtract with borrow
LONG PROD unsigned multiply with carry-in
LONGDIV unsigned divide
SHIFTRIGHT double word shift right
SHIFTLEFT double word shift left
NORMALISE double word normalise
ASHIFTRIGHT single word arithmetic shiftright -instruction sequence
ASHIFTLEFT single word arithmetic shiftleft -instruction sequence

The add, sub and ashift predefines would be used for the most significant word of a long integer for signed
work, using unsigned for the body of the integer.

For unsigned operands, sum,diff and shifts would be used throughout.

The next section gives the occam interface for these routines. A detailed definition of their operation, in
occam, is given in section 10.10, taken from reference (1). Note that this is a definition; in general the
compiler inserts only parameter loads and the instruction itself.

10.4 Interface description for the Occam Predefines

10.4.1 The integer arithmetic functions

LONGADD performs the addition of signed quantities with a carry in. The function is invalid if arithmetic
overflow occurs.

INT FUNCTION LONGADD (VAL INT ~eft, right, carry. in)
-- Adds (Signed) ~eft word to right word with least significant bit of carry. in.

LONG SUM performs the addition of unsigned quantities with a carry in and a carry out. No overflow can occur.

INT, INT FUNCTION LONGSUM (VAL INT ~eft, right, carry. in)

-- Adds (unsigned) ~eft word to right word with the least significant bit of carry. in.
-- Returns two results, the first value is one if a carry occurs, zero otherwise,
-- the second result is the sum.

LONG SOB performs the subtraction of signed quantities with a borrow in. The function is invalid if arithmetic
overflow occurs.

INT FUNCTION LONGSOB (VAL INT ~eft, right, borrow. in)

-- Subtracts (signed) right word and borrow. in from ~eft word.

10 Long arithmetic on the transputer 125

LONGDIFF performs the subtraction of unsigned quantities with borrow in and borrow out. No overflow can
occur.

INT, INT FUNCTION LONGDIFF (VAL INT 1eft, right, borrow. in)

-- Subtracts (unsigned) right word and borrow. in from 1eft word.
-- Returns two results, the first is one if a borrow occurs, zero otherwise,
-- the second result is the difference.

LONGPROD performs the multiplication of two unsigned quantities, adding in an unsigned carry word. Pro­
duces a double length unsigned result. No overflow can occur.

INT, INT FUNCTION LONGPROD (VAL INT 1eft; right, carry.in)

-- Multiplies (unsigned) 1eft word by right word and adds carry. in.
-- Returns the result as two integers most significant word first.

LONGDIV divides an unsigned double length number by an unsigned single length number. The function
produces an unsigned single length quotient and an unsigned single length remainder. An overflow will occur
if the quotient is not representable as an unsigned single length number. The function becomes invalid if the
divisor is equal to zero.

INT, INT FUNCTION LONGDIV (VAL INT dividend. hi, dividend. 10, divisor)

-- Divides (unsigned) dividend.hi and dividend. 10 by divisor.
-- Returns two results the first is the quotient and the second is the remainder.

SHIFTRIGHT performs a right shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

i.e. 0 <= p1aces <= 2*bitsperword

INT, INT FUNCTION SHIFTRIGHT (VAL INT hi.in, 10.in, p1aces)

-- Shifts the value in hi. in and 10. in right by the given number of p1aces.
-- Bits Shifted in are set to zero.
-- Returns the result as two integers most significant word first.

SHIFTLEFT performs a left shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

i.e. 0 <= p1aces <= 2*bitsperword

INT, INT FUNCTION SHIFTLEFT (VAL INT hi.in, 10.in, p1aces)

-- Shifts the value in hi. in and 10. in left by the given number of p1aces.
-- Bits shifted In are set to zero.
-- Returns the result as two integers most significant word first.

126 2 Practice

NOBMALISE normalises a double length quantity. No overflow can occur.

INT, INT, !NT FUNCTION NORMALISE (VAL INT hi.in, l:o.in)

-- Shifts the value in hi. in and 10. in left until the highest bit is set.
-- The function returns three integer results
-- The first returns the number of places shifted.
-- The second and third return the result as two integers with the most significant word first;
-- If the input value was zero, the first result is 2*bitsperword.

10.4.2 Arithmetic shifts

ASHIFTRIGHT performs an arithmetic right shift, shifting in and maintaining the sign bit. The function must
be called with the number of places in range, otherwise the implementation can produce unexpected effects.

Le. 0 <= pl.aces <= bitsperword

No overflow can occur.

N.B the result of this function is NOT the same as division by a power of two.

-- Shifts the value in operand right by the given number of pl.aces.
-- The status of the high bit is maintained

INT FUNCTION ASHIFTRIGHT (VAL INT operand, pl.aces) IS

ASHIFTLEFT performs an arithmetic left shift, shifting out the most significant bits, and filling the least
significant bits with zeroes. The function is invalid if significant bits are shifted out, Le. if the most significant
bit changes value at any point in the shift operation, signalling an overflow. The function must be called with
the number of places in range, otherwise the implementation can produce unexpected effects.

Le. 0 <= pl.aces <= bitsperword

N.B the result of this function is the same as multiplication by a power of two.

INT FUNCTION ASHIFTLEFT (VAL INT argument, pl.aces)

-- Shifts the value in argument left by the given number of pl.aces.
-- Bits shifted in are set to zero.

10.5 Methodology

This section will show the code required to provide general purpose long arithmetic. At this point the code
will be written for algorithmic efficiency but occam clarity. For ultimate performance see the performance
section for optimisations.

For each operation, a procedure will be demonstrated that takes as input arrays of integers being the operands,
and returns an array of integers that is the result. All operands are arbitrarily sized integer arrays, so that if
fed arrays of 100 words, that is the size for which the operation will be performed. To be safe, such routines
should test for compatability of the sizes of the three arrays passed, which should be identical for add and
subtract, n,n and 2n for multiply and divide. The code for this is omitted from the examples below for clarity.

The first two, add and subtract, are trivial, and as the result has the same length as the operands, are shown
for the operation a : = a op b. Multiply is simple to program, but there are subtleties of the powerful
transputer operations to be noted to achieve algorithmic efficiency. Divide accentuates this even further, and
is more dependent on the algorithm, for which one is refered to ref(2). As the result has a different length

10 Long arithmetic on the transputer 127

from the operands, multiply and divide are illustrated for the operation a : = b op c.

All arrays are assumed to be stored little-endian, i.e. the element with the lowest index is the least significant.
The code could equally support big- endian arrays if required. Within a word, the bits MUST be stored little­
endian to match the transputer hardware.

10.5.1 Addition

As an example, the general adaition code will be derived from first double-length, then triple-length.

The following example adds two double length unsigned quantities explicitly. occam actually supports this
implicitly as type INT64.

PRoe add.doub1e.unsigned ([2]INT resu1t,VAL [2]INT rightop)
INT carry:
SEQ

carry, resu1t[O] := LONGSOM (resu1t[O],rightop[O],O)
carry, resu1t[1] := LONGSOM (resu1t[1],rightop[1],carry)

To make this a signed operation, the final operation, i.e. that on the most significant word, is performed using
the LONGADD predefine. This produces exactly the same result, but will raise the error flag if overflow should
occur.

PRoe add.doub1e.signed ([2]INT resu1t,VAL [2]INT rightop)
INT carry:
SEQ

carry, resu1t[O] := LONGSOM (resu1t[O],rightop[O],O)
resu1t[1] := LONGADD (resu1t[1],rightop[1],carry)

To extend beyond double length simply involves using the same operation again.

PROe add.trip1e.signed ([3]INT resu1t,VAL [3]INT rightop)
INT carry:
SEQ

carry, resu1t[O] := LONGSOM (resu1t[O],rightop[O],O)
carry, resu1t[1] := LONGSOM (resu1t[1],rightop[1],carry)
resu1t[2] := LONGADD (resu1t[2],rightop[2],carry)

To create the general purpose case, one uses a loop rather than in-line code, and controls the loop with
the length of the array passed in, which is accessible at runtime in occam. The following code performs a
long-add on compatible arrays of integers. This version operates on signed integers, clearly one could make
it slightly smaller for unsigned integers by looping one more time and omitting the last statement.

PRoe add.1ong.signed.int([]INT resu1t,VAL []INT rightop)

INT carry:
VAL 1ast.index IS (SIZE rightop) -1:

SEQ
carry := °
SEQ i = ° FOR 1ast.index

carry,resu1t[i] := LONGSOM (resu1t[i],rightop[i],carry)

resu1t[1ast.index] := LONGADD(resu1t[1ast.index],
rightop[1ast.index],carry)

128 2 Practice

10.5.2 Subtraction

Similarly for subtraction, using the appropriate pair of predefines in exactly the same harness, with the same
comments applying.

PROC subtract. 1ong. signed.int ([]INT resu1t,VAL []INT rightop)

INT borrow:
VAL 1ast.index IS (SIZE rightop) -1:

SEQ
borrow := 0

SEQ i = 0 FOR 1ast.index
borrow, resu1t [i] := LONGDIFF (resu1t[i],rightop[i],borrow)

resu1t[1ast.index] := LONGSUB(resu1t[1ast.index],
rightop[1ast.index],borrow)

10.5.3 Multiplication

Multiplication is more complex. The algorithm is best developed by mimicking a child doing long multiplication.
Imagine multiplying 12 by 34. First, one removes the sign from both operands, generating the result sign as
s1 XOR 82.

Then one takes the least significant digit of the multiplier(4) and multiplies all the digits of the multiplicand by
it, writing the answer down with no shift to the left. One then takes the next digit to the left(3) and multiplies
all digits of the multiplicand by it, writing the result down with a one digit shift to the left. This continues until
all digits have been multiplied, then all the partial results are added for a final result.

12
x 34

12
34

48

12
34

48
36

12
34

48
36 +

408

To analyse this operation, consider the position we write each result. Units times units we write in the units
column, tens times tens in the hundreds column, so clearly the destination column is 10 to the power (m +
n), where m and n are the powers of ten of the corresponding operand columns.

To implement this directly on a computer would require a large amount of memory. A 100 word integer would
require 100 rows of intermediate results, and each row would be around 100 words ... I.e. ten thousand words
of memory, or 40K bytes on a 32 bit machine. Also, the control and implementation of the final add would
use excessive cpu time.

10 Long arithmetic on the transputer 129

The solution on the transputer instruction set, mapped into occam via the predefined procedures, is to
incorporate the add operation into each multiply, so that only one intermediate result is maintained, and that
can clearly occupy the same space as the final result will occupy eventually. In order to achieve this, the
result array must be cleared before use. Remember this code is designed for clarity ... efficiency comes later.
Clearly (i+j) could be evaluated once in the inner loop, and clearly l.eftop [i] need only be accessed
once per outer loop.

PROC mul.tipl.y.l.onq.unsiqned.int([]INT resul.t,VAL []INT l.eftop,riqhtop)
SEQ

SEQ i = 0 FOR SIZE resul.t
resul.t[i] := 0

SEQ i = 0 FOR SIZE l.eftop

INT carry:
SEQ

carry := 0

SEQ j = 0 FOR SIZE riqhtop
INT temp:
SEQ

temp, resul.t[i+j] :=
LONGPROD(l.eftop[i], riqhtop[j], resul.t[i+j])

carry, resul.t[i+j+1] := LONGSUM(resul.t[i+j+1],temp,carry)

The reason this comes out so simply comes from the design of the instructions. Note that the multiply
operation performs an accumulation for us, as its carry input takes a full word width operand. We need a
double width accumulate however, so a long-sum is used to complete the operation for the upper word of the
result. Note that the carry from the long-sum is required TWO words further up the result. This is achieved by
holding it until the next iteration, when the index will be one higher, and storing it one higher than the index
as usual.

Note that this algorithm will actually multiply arrays of differing length, providing the length of the result array
is appropriate. Note also that as the loop counts start at zero, the highest loopcontrol value being n-l., the
final access of the final carry operation is to .imax+jmax+1. The result array is of size 2n, but the last
access is to index (n-1) + (n-1) + 1, i.e. 2n-1, the correct last address.

There is a more efficient way of dealing with signed multiply than mimicking the human. Deleting a minus
sign is easy, but negating a very long twos- complement integer may not be, as it could affect the bit pattern
of every word.

130 2 Practice

The solution is to perform a multiply assuming the operands are both positive, and then to correct the result
by subtraction if either of them was negative, as shown below :

PROC multiply.long.signed.int([]INT result,V1L []INT leftop,rightop)
SEQ '

multiply.long.unsigned.int(result,leftop,rightop)

result.top.half IS
[result FROM ,SIZE leftop FOR SIZE rightop]:

V1L leftop.top.word IS leftop[(SIZE leftop) -1]:
IF

leftop.top.word < 0
subtract.long.unsigned.int (result.top.half,rightop)

TRUE
SKIP

result.top.half IS
[result FROM SIZE rightop FOR SIZE leftop]:

VAL rightop.top.word IS rightop[(SIZE rightop) -1]:
IF

rightop.top.word < 0
subtract.long.unsigned.int (result.top.half,leftop)

TRUE
SKIP

Note that the above code handles differing length arrays, but assumes that the long subtract procedure can
also, which the example given thereof cannot.

10 Long arithmetic on the transputer 131

10.5.4 Division

Division is another order of magnitude more complex than multiplication. As with multiplication, one mimics
the human, extracting the sign operation first. To perform the division, a human makes a guess at a partial
result, multiplies back and subtracts to achieve a remainder. If the remainder is negative, the guess was too
large, so is repeated. If the remainder is greater than the divisor, the guess was too small.

The computer does exactly the same, but it can be 'helped' in making its initial guess appropriately.(Ref 2,
Knuth)

PRce divide.long.int([]XNT result, VAL []XNT leftop,rightop)
declarations

SEQ
extract signs from operands -> s.r, lett.u,right.u
norma1ise divisor (right.u)

higher.word.lett := 0
SEQ i = 0 FOR SXZE leftop

VAL i.l.rev XS (SXZE leftop)-l) - i:
VAL i.r.rev XS (SXZE rightop)-l) - i:
SEQ

XF
higher.word.left = right.u[i.r.rev]

temp. result := MAX XNT
TRUE

temp . result, remainder : = LONGDXV (higher. word . left ,
left.u[i.r.rev], right.u[i.l.rev])

XF
temp.result<>O

SEQ
multiply . long . unsigned. int (temp. vee,

[temp.result],right.u)
subtract.long.unsigned.int(left.u,temp.vec)

WBXLE (left.u[(SXZE left.u)-l] /\ signbit) <> 0
SEQ

TRUE
SKXP

temp.result := temp. result - 1
add.long.unsigned.int(left.u, right.u)

result [i.l.rev] := temp.result
higher.word.left := left.u[i.l.rev]

unnormalise wrt previous normalisation
replace sign of result.

The trial result temp. result can be either one or two units too large. To cover this poSSibility, the WBXLE
loop tests if the current remainder is negative, and adds back the divisor as many times as necessary to
remedy the situation, adjusting the estimated quotient each time.

There is also a marginally faster version in Knuth that adds an extra test to improve the guess, and thus
ouarantees to be accurate or one high, never two high.

132 2 Practice

10.6 Shift Operations

The shift operations are simple in that there is only a single primitive to be used per loop, but note should be
taken that the same performance enhancements as will be demonstrated on multiplication in section 10.7.1,
particularly opening out the loops and using abbreviations on blocks of sixteen words, should be used here,
as the actual shift operation is dwarfed in CPU time by the loop control around it otherwise.

Note that the examples given here assume a shift of less than the natural wordlength of the machine. In fact
for any shift of 16 bits or greater, it is more efficient to do a block move assignment to handle the byte offset,
and only tidy up the remaining bit-shift using this code.

It should also be noted that the shift left and rotate left operations should be performed from the 'top' of the
vector, which means reversing the loop index, whilst the shifVrotate right operations are done from the lowest
index.

PROC rotate.1ong.int.1eft([]INT buffer, VAL INT n)
INT highest, dump:
VAL 1ast IS (SIZE buffer) -1:
SEQ

highest := buffer[1ast]
SEQ ii = 0 FOR 1ast

VAL i IS 1ast - ii:
buffer[i],dump := SHIFTLEFT(buffer[i],buffer[i-1],n)

buffer[O],dump := SHIFTLEFT(buffer[Ol,highest,n) :

To make it an unsigned shift left, one simply omits the wrap around. Note that as a result, the last operation
can be done with a conventional single length shift.

PROC shift.1ong.int.1eft([]INT buffer,VAL INT n)
INT dump:
VAL 1ast IS (SIZE buffer) -1:
SEQ

SEQ ii = 0 FOR 1ast
VAL i IS 1ast - ii:
buffer[i],dump := SHIFTLEFT(buffer[i],buffer[i-1],n)

buffer [0] := buffer[O] « n :

For arithmetic shift, one simply handles the first (most significant) word separately. Because the arithmetic
shift on the transputer is single length, it is appropriate to use this for overflow checking only, and repeat the
operation with a logical shift. Thus one simple inserts the following line before the loop. (This does not apply
to rig ht shift, see later)

dump := ASHIFTLEFT(buffer[1ast],n)

Similarly, for right shifts, noting that we progress the other direction along the vector:

PROC rotate.1ong.int.right([]INT buffer,n)
INT first, dump:
VAL 1ast IS (SIZE buffer) -1:
SEQ

first := buffer[O]
SEQ i = 0 FOR 1ast

dump,buffer[i] := SHIFTRIGHT(buffer[i+1],buffer[i],n)
dump, buffer [1ast] := SHIFTRIGHT(first,buffer[1ast],n) :

Again, shift and arithmetic shift involve removing the wraparound, and using ASHIFTRIGHT for the last line,
respectively. Note that the arithmetic shift is done last, not first, with the right shift, as we progress up the
vector from least significant to most significant.

10 Long arithmetic on the transputer 133

10.6.1 Normalisation

Normalisation is similar to shifting, but is conditional on the data, so is split into five sections. Firstly, from the
most significant end, the first non-zero word is found. That word is then normalised, using a single application
of the normalise predefine, which also pulls in any bits needed from the next word down. The third operation
is to shift all the remaining words left by the number of places returned by the normalise routine, and then
the fourth is to move the active words, now correctly word aligned, to the top of the array. The final operation
is to clear the vacated words at the bottom of the array.

PROC normalise. long. integer ([]INT buffer)
INT pointer, trash :
INT places :
VAL len IS SIZE buffer :
SEQ

--find first non-zero word
IF

IF i = 1 FOR len
buffer[len MINUS i] <> 0

pointer := len MINUS i
TRUE

pointer := 0

--normalise that word, pulling in bits as
--needed from next word down
places,buffer[len],trash :=

NORMALISE(buffer[pointer],buffer[pointer-1])

VAL diff IS (len) MINUS (pointer) :
SEQ

--shift the rest of the buffer left by the
--same number of bits
shift.left ([buffer FROM 0 FOR pointer],places)

--block move up to the top of the buffer
SEQ i = 0 FOR (pointer PLUS 1)

VAL ii IS (pointer) MINUS (i) :
buffer[ii PLUS diff] := buffer[ii]

--fill the vacated words with zeros
SEQ ii = 0 FOR (diff MINUS 1)

buffer [ii] := 0

10.7 Performance

10.7.1 Optimisation, using multiplication as an example

Addition and subtraction are sufficiently Simple, and sufficiently directly built on the transputer instructions
that little algorithmic optimisation can be done. However, as the arithmetic operations are so fast, they suffer
greatly from the loop control overhead, so benefit greatly from opening out the loops.

However multiplication can be considerably optimised, in three steps. The first is to take invariant expressions
outside loops, saving both indexing and arithmetic. The second is to set up abbreviations (or pointers) to
frequently accessed arrays.

The third, and most beneficial, is to open out the inner loop by some factor, ideally sixteen. This both saves
loop control, but combined with the abbreviations means that many array accesses are reduced to constant
indices, which are very fast on the transputer. This does have the restriction that the arrays must be a multiple
of the opening factor, rather than truly variable size.

134 2 Practice

The second method is a stepping stone to the third, and the performance benefit of it is not seen until the
loop is opened.

The following sections show the inner two loops suitably modified:

Simple Code

SEQ i = 0 FOR SIZE 1eftop

SEQ
carry := 0
VAL 1eftop.i IS 1eftop[i]:

SEQ i = 0 FOR SIZE rightop --usua11y the same size

VAL ij IS i + j :
VAL ij1 IS ij + 1 :
SEQ

temp, resu1t[ij] :=
LONGPROD(1eftop.i, rightop[j], resu1t[ij])

carry, resu1t[ij1] .- LONGSUM(resu1t[ij1],temp,carry)

Using Array Abbreviations and opened loops

SEQ i = 0 FOR SIZE 1eftop

SEQ
carry := 0
VAL 1eftop.i IS 1eftop[i]:

SEQ j = 0 FOR (SIZE rightop)/opening.factor

VAL ij IS i + j
VAL ij1 IS ij + 1
VAL rightop.j IS [rightop FROM (J TIMES opening.factor

FOR opening.factor]:
resu1t.ij IS [resu1t FROM i+(j TIMES opening. factor)

FOR opening.factor + 1]:
SEQ

VAL k IS 0:
SEQ

temp, resu1t.ij[k] :=
LONGPROD(1eftop.i, rightop.j[k],
resu1t . i j [k])

carry, result.ij[k+l] :=
LONGSUM(resu1t.ij[k+1],temp,carry)

VAL k IS 1:
SEQ

VAL k IS opening.factor-1:
SEQ

10 Long arithmetic on the transputer 135

Points to note here are that now all access to the arrays are of the form k or k + constant. As k itself is a
constant, this will be folded at compile time, so all array accesses in the inner loop have constant indices and
are thus very fast, using instructions designed for that operation.

10.7.2 Performance Figures

The following table gives the performance of each of the algorithms mentioned above, and for the optimised
versions with open loops, and finally for the same operation in assembly language. These numbers are all
for a 20MHz 32 bit transputer.

Performance in microseconds for 3200 bit Integer

OPERATION SIMPLE OPTIMISED OCCAM ASSEMBLER
ADD/SUBTRACT 305 164 164
MULTIPLY 57700 43500 43485
DIVIDE 36-72ms -
SHIFT/ROTATE 1 bit 300 167 153
SHIFT/ROTATE 8 bit 336 202 187
SHIFT/ROTATE 15 bit 372 236 211
SHIFT/ROTATE 8*N (Block Move) 41 41 41
NORMALISE 384

Note that assembler coding gains very little, and also the spectacular performance of the shift 8*N version,
due to the block move hardware in the transputer.

Divide spends most of its time multiplying out the estimated results, so has little scope for optimising other
than in the multiply. Divide and Normalise have data-dependent execution times. The figures given are
mid-range, I.e. (max.time+min.time)/2.

10.8 Conclusions

The long arithmetic facilities in occam allow very efficient implementation of arbitrary length integers, meaning
that there is no benefit in using assembler.

The underlying instructions of the transputer are directly accessible as in-line procedures in occam, and are
themselves sophisticated primitives allowing maximum performance in such computationally intense applica­
tions.

The assistance of Roger Shepherd (INMOS, Architecture Group) is gratefully acknowledged, particularly for
help with the divide algorithms, and of Andy Hamilton and John Carey, INMOS Central Applications, for
benchmarking and verification work.

10.9 References

occam 2 Reference Manual, INMOS Limited, Prentice Hall 1988, ISBN 0-13-629312-3
(Particularly Appendix L,pp105-113.) ,

2 Seminumerical Algorithms, The Art of Computer Programming Vol 2, Donald Knuth,
Addison-Wesley 1969,1981, ISBN 0-201-03822-6(v.2) (Particularly Section 4.3)

136 2 Practice

10.10 The Occam Predefined Procedures

10.10.1 Definition of terms

For the purpose of explanation imagine a new type INTEGER, and the associated conversion. This imaginary
type is capable of representing the complete set of integers and is presumed to be represented as an infinite
bit two's complement number. With this one exception the following are occam descriptions of the various
arithmetic functions.

-- constants used in the following description
VAL bitsperword IS machine. wordsize (INTEGER)
VAL range IS storeab1e. va1ues (INTEGER)

range = 2bihperword

VAL maxint IS INTEGER (MOSTPOS INT)
maxint = (range/2 - 1)

VAL minint IS INTEGER (MOSTNEG INT)

-- INTEGER literals
VAL one
VAL two
-- mask
VAL wordmask

minint = -(range/2)

IS 1 (INTEGER) :
IS 2(1NTEGER) :

IS range - one

In occam, values are considered to be signed. However, in these functions the concern is with other
interpretations. In the construction of multiple length arithmetic the need is to interpret words as containing
both signed and unsigned integers. In the following the new INTEGER type is used to manipulate these
values, and other values which may require more than a single word to store.

The sign conversion of a value is defined in the functions un sign and sign. These are used in the
description following but they are NOT functions themselves.

10.10.2 The integer arithmetic functions

LONGADD performs the addition of signed quantities with a carry in. The function is invalid if arithmetic
overflow occurs.

The action of the function is defined as follows:

INT FUNCTION LONGADD (VAL INT 1eft, right, carry. in)
-- Adds (signed) 1eft word to right word with least significant bit of carry. in.

INTEGER sum.i, carry.i, 1eft.i, right.i
VALOF

SEQ
carry.i := INTEGER (carry.in /\ 1)
1eft • i : = INTEGER 1eft
right. i : = INTEGER right
sum.i .- (1eft.i + right.i) + carry.i

-- overflow may occur in the following conversion
-- resulting in an invalid process
RESULT INT sum. i

10 Long arithmetic on the transputer 137

LONG SUM performs the addition of unsigned quantities with a carry in and a carry out. No overflow can occur.

The action of the function is defined as follows:

INT, INT FUNCTION LONG SUM (VAL INT 1eft, right, carry. in)

-- Adds (unsigned) 1eft word to right word with the least significant bit of carry. in.
-- Returns two results, the first value is one if a carry occurs, zero otherwise,
-- the second result is the sum.

INT carry.out
INTEGER sum.i, 1eft.i, right.i
VALOF

SEQ
1eft.i .- unsign (1eft)
right.i := unsign (right)
sum.i := (1eft.i + right.i) + INTEGER (carry.in /\ 1)
IF -- assign carry

sum.i >= range
SEQ

TRUE

sum.i := sum.i - range
carry.out := 1

carry.out := 0
RESULT carry. out, sign (sum.i)

LONGSUB performs the subtraction of signed quantities with a borrow in. The function is invalid if arithmetic
overflow occurs.

The action of the function is defined as follows:

INT FUNCTION LONG SUB (VAL INT 1eft, right, borrow. in)

-- Subtracts (Signed) right word from 1eft word and subtracts borrow. in from the result.

INTEGER diff.i, borrow.i, 1eft.i, right.i :
VALOF

SEQ
borrow.i := INTEGER (borrow.in /\ 1)
1eft . i . - INTEGER 1e ft
right. i . - INTEGER right
diff.i := (1eft.i - right.i) - borrow.i

-- overflow may occur in the following conversion
-- resulting in an invalid process
RESULT INT diff.i

138 2 Practice

LONGDIFF performs the subtraction of unsigned quantities with borrow in and borrow out. No overflow can
occur.

The action of the function is defined as follows:

INT, INT FUNCTION LONGDIFF (VAL INT 1eft, right, borrow. in)

-- Subtracts (unsigned) right word from 1eft word and subtracts borrow. in from the result.
-- Returns two results, the first is one if a borrow occurs, zero otherwise,
-- the second result is the difference.

INTEGER diff.i, 1eft.i, right.i
VALOF

SEQ
1eft.i .- unsign (1eft)
right.i := unsign (right)
diff.i := (1eft.i - right.i) - INTEGER (borrow.in /\ 1)
IF -- assign borrow

diff.i < 0
SEQ

diff.i := diff.i + range
borrow.out := 1

TRUE
borrow.out := 0

RESULT borrow.out, sign (diff.i)

LONGPROD performs the multiplication of two unsigned quantities, adding in an unsigned carry word. Pro­
duces a double length unsigned result. No overflow can occur.

The action of the function is defined as follows:

INT, INT FUNCTION LONGPROD (VAL INT 1eft, right, carry. in)

-- Multiplies (unsigned) 1eft word by right word and adds carry. in.
-- Returns the result as two integers most significant word first.

INTEGER prod.i, prod.10.i, prod.hi.i, 1eft.i, right.i, carry.i
VALOF

SEQ
.- unsign (carry. in)
:= unsign (1eft)

carry.i
1eft.i
right.i
prod.i
prod.10.i
prod.hi.i

:= unsign (right)

RESULT sign

:= (1eft.i * right.i) + carry.i
:= prod.i REM range
:= prod.i / range
(prod.hi.i), sign (prod.10.i)

LONGDIV divides an unsigned double length number by an unsigned single length number. The function
produces an unsigned single length quotient and an unsigned single length remainder. An overflow will occur
if the quotient is not representable as an unsigned single length number. The function becomes invalid if the
divisor is equal to zero.

10 Long arithmetic on the transputer

The action of the function is defined as follows:

INT, INT FUNCTION LONGDIV (VAL INT dividend.hi, dividend. 10, divisor)

-- Divides (unsigned) dividend.hi and dividend. 10 by divisor.
-- Returns two results the first is the quotient and the second is the remainder.

INTEGER divisor.i, dividend.i, hi, 10, quot.i, rem.i :
VALOF

SEQ
hi := unsign (dividend.hi)
10 := unsign (dividend. 10)
divisor.i := unsign (divisor)
dividend.i := (hi * range) + 10
quot.i := dividend.i / divisor.i
rem. i := dividend.i REM divisor.i

-- overf10w may occur in the f0110wing conversion of quot.i
-- resu1ting in an inva1id process
RESULT sign (quot.i), sign (rem. i)

139

SHIFTRIGHT performs a right shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

i.e. 0 <= p1aces <= 2*bitsperword

The action of the function is defined as follows:

INT, INT FUNCTION SHIFTRIGHT (VAL INT hi. in, 10.in, p1aces)

-- Shifts the value in hi. in and 10. in right by the given number of p1aces.
-- Bits shifted in are set to zero.
-- Returns the result as two integers most significant word first.

INT hi.out, 10.out :
VALOF

IF
(p1aces < 0) OR (p1aces > (two*bitsperword»

SEQ
hi.out := 0
10.out := 0

TRUE
INTEGER operand, resu1t, hi, 10
SEQ

hi := unsign (hi.in)
10 := unsign (10.in)
operand := (hi «bitsperword) + 10
resu1t := operand » p1aces
10 := resu1t /\ wordmask
hi := resu1t » bitsperword
hi.out := sign (hi)
10.out := sign (10)

RESULT hi. out, 10.out

140 2 Practice

SHIFTLEFT performs a left shift on a double length quantity. The function must be called with the number
of places in range. otherwise the implementation can produce unexpected effects.

i.e. 0 <= pl.aces <= 2*bi.tsperword

The action of the function is defined as follows:

INT, INT FUNCTION SHIFTLEFT (VAL INT hi..i.n, l.o.i.n, pl.aces)

-- Shifts the value in hi. . i.n and l.o. i.n left by the given number of pl.aces.
-- Bits shifted in are set to zero.
-- Returns the result as two integers most significant word first.

VALOF
IF

(pl.aces < 0) OR (pl.aces> (two*bi.tsperword»
SEQ

hi..out .- 0
l.o.out .- 0

TRUE
INTEGER operand, resul.t, hi., l.o
SEQ

hi. := unsi.gn (hi..i.n)
l.o := unsi.gn (l.o.i.n)
operand := (hi. « bi.tsperword) + l.o
resul.t := operand « pl.aces
l.o := resul.t /\ wordmask
hi. := resul.t » bi.tsperword
hi..out := si.gn (hi.)
l.o.out := si.gn (l.o)

RESULT hi..out, l.o.out

10 Long arithmetic on the transputer

NORMALISE normalises a double length quantity. No overflow can occur.

The action of the function is defined as follows:

INT, INT, INT FUNCTION NORMALISE (VAL INT hi.in, 10.in)

-- Shifts the value in hi. in and 10. in left until the highest bit is set.
-- The function returns three integer results
-- The first returns the number of places shifted.
-- The second and third return the result as two integers with the most significant word first;
-- If the input value was zero, the first result is 2*bitsperword.

INT p1aces, hi.out, 10.out :
VALOF

IF
(hi.in = 0) AND (10.in = 0)

p1aces := INT (two*bitsperword)
TRUE

VAL msb IS one « «two*bitsperword) - one)
INTEGER operand, hi, 10
SEQ

10 := unsign (10.in)
hi := unsign (hi.in)
operand := (hi « bitsperword) + 10
p1aces := 0
WHILE (operand /\ msb) = 0

SEQ
operand := operand « one
p1aces := p1aces + 1

hi := operand / range
10 := operand REM range
hi.out := sign (hi)
10.out := sign (10)

RESULT p1aces, hi.out, 10.out

10.10.3 Arithmetic shifts

141

ASHIFTRIGHT performs an arithmetic right shift, shifting in and maintaining the sign bit. The function must
be called with the number of places in range, otherwise the implementation can produce unexpected effects.

i.e. 0 <= p1aces <= bitsperword

No overflow can occur.

N.B the result of this function is NOT the same as division by a power of two.

e.g. -1/2=0
ASHIFTRIGHT (-1, 1) =-1

The action of the function is defined as follows:

-- Shifts the value in operand right by the given number of p1aces.
-- The status of the high bit is maintained

INT FUNCTION ASHIFTRIGHT (VAL INT operand, p1aces) IS
INT(INTEGER (operand) »p1aces) :

142 2 Practice

ASBIF'l'LEI"l' performs an arithmetic left shift. The function is invalid if significant bits are shifted out,
signalling an overflow. The function must be called with the number of places in range, otherwise the
implementation can produce unexpected effects.

i.e. 0 <= p1aces <= bitsperword

N.B the result of this function is the same as multiplication by a power of two.

The action of the function is defined as follows:

IN'l' FUNC'l'ION ASBIFTLEF'l' (VAL IN'l' argument, p1aces)

-- Shifts the value in argument left by the given number of p1aces.
-- Bits shifted in are set to zero.

INTEGER resu1t.i :
VALOI'

resu1t. i : = INTEGER(argument) « p1aces
-- overf10w may occur in the f0110wing conversion
-- resu1ting in an inva1id process
RESUL'l' IN'l' resu1t.i

10.10.4 Word rotation

RO'l'A'l'ERIGB'l' rotates a word right. Bits shifted out of the word on the right, re-enter the word on the left.
The function must be called with the number of places in range, otherwise the implementation can produce
unexpected effects.

i.e. 0 <= p1aces <= bitsperword

No overflow can occur.

The action of the function is defined as follows:

IN'l' FUNC'l'ION RO'l'A'l'ERIGB'l' (VAL IN'l' argument, p1aces)

-- Rotates the value in argument by the given number of p1aces.

INTEGER high, 10w, argument.i :
VALOF

SEQ
argument.i := unsiqn(argument)
argument.i := (argument.i * range) »p1aces
high := argument.i I range
10w := argument.i REM range

RESUL'l' IN'l' (high \I 10w)

10 Long arithmetic on the transputer 143

RO'l'A'l'ELEF'l' rotates a word left. Bits shifted out of the word on the left, re-enter the word on the right.
The function must be called with the number of places in range, otherwise the implementation can produce
unexpected effects.

i.e. 0 <= p1aces < ... bitspezwozc!

The action of the function is defined as follows:

IN'l' FUNC'l'XON RO'l'A'l'ELEF'l' (VAL XN'l' azgument, p1aces)

-- Rotates the value in azgument by the given number of p1aces.

INTEGER high, 10w, azgument.i :
VALOF

SEQ
azgument.i := unsign(azgument)
azgument.i := azgument.i « p1aces
high := azgument.i I zange
10w : = azgument. i REM zange

RESUL'l' XN'l' (high \I 10w)

144

11 Exploiting concurrency: a ray tracing example

11.1 Introduction

The INMOS transputer [1] is a family of VLSI microcomputers with processor, memory and communication
links for direct connection to other transputers on a single chip, (Figure 11.1). Concurrent systems can be
constructed from a collection of transputers which operate concurrently and communicate through links. To
provide maximum speed with minimum hardware the transputer uses point-to-point serial communication
links.

Reset
Analyse
Error
BootFromROM
Clockln
VCC
GND

System
services

On-chip
RAM

Application-specific interface

Processor

Link
interface

•
•

Link
interface

Figure 11.1 Transputer architecture

Linkln
LinkOut

Linkln
LinkOut

The first transputer available was the IMS T414, a 32-bit microprocessor with a throughput of 10 MIPs (million
instructions per second). It has 2 kilobytes of fast (50ns cycle) on-chip static RAM and four INMOS serial
links. The 32-bit multiplexed address/data bus allows up to 4 gigabytes of external memory to be accessed.
The IMS T800 transputer is compatible with the T 414 but includes floating-point hardware and 4K of internal
RAM.

This chapter describes the implementation of a computer graphics program on an array of transputers. The
technique used to distribute the work among the transputers is known as a processor farm and is independent
of the application. The same approach is suitable for any algorithm which can be subdivided into independent
subproblems. For example, another graphics program, the Mandelbrot set, has been distributed in the same
way as well as a financial forecasting program and a simulation of metal deposition. The entire program
is written in occam [2], a language designed to simplify the programming of concurrent systems. Again,
however, the main part of the program could have been written in any suitable language such as C or
FORTRAN. Only those parts of the program which deal explicitly with concurrency and the distribution of

11 Exploiting concurrency: a ray tracing example 145

work are easier to describe in occam.

The graphics program described here was written to provide a demonstration of the performance obtainable
by using large numbers of transputers. We used a technique known as ray tracing which can generate very
realistic images but requires massive amounts of computer power. This is an ideal application for transputers
as the calculations for each pixel (picture element) on the screen are independent of one another and so can
be done in parallel on separate processors. In addition, the complexity of the task means that the time spent
calculating is much greater than that spent passing data between processors.

The completed program has two important properties. Firstly, processing speed is directly proportional to the
number of transputers used. Virtually any desired performance can be simply obtained by the addition of
more transputers. The second feature, which came about as a side-effect of the program structure, is that
the system is remarkably robust. Individual transputers can be removed from the system, while the program
is running, and the system will continue to function although with reduced performance and possibly some
loss of data.

11.2 Logical architecture

11.2.1 Ray tracing

The basic ray tracing algorithm used is that described by Turner Whitted in his classic paper [3). A brief
description of the technique is given here.

transm illed
ray

object 1

......... light sou rce

o
"-/ \"

object 2 ray

Figure 11.2 Ray tracing

The colour and intensity of each pixel on the screen is determined by calculating the path of a ray projected
from the screen through a pinhole, (see Figure 11.2). This ray is tested for intersection with each object in
the world model by solving the equation of the line and the surface of the object. This is the reason spheres
are so common in ray tracing programs; they are simple to intersect. When the closest point of intersection
is found the ray will be reflected and several new rays may be produced. If the object is transparent then a
ray is generated which passes through the object, its path modified by the laws of refraction. The effects of
shadow casting are handled by sending rays from the point of intersection towards each light source in turn.
If this ray intersects an object which is nearer than the light source then this will cast a shadow on the first
object. A recurring problem in computer graphics is aliasing, which appears as coarse steps in the image.
This is caused by undersampling of the image and can be reduced by increasing the sampling frequency, i.e.
tracing several rays for each point on the screen. The number of extra rays traced can be reduced by only
oversampling when aliasing is likely to be most objectionable, for instance where there is a sharp change in

146 2 Practice

intensity at the boundary of objects.

In this way a tree of rays, and the surfaces with which they hiwe intersected, is generated for each pixel.
The final colour of the image at this point is calculated by traversing the tree and applying a shading model
at each node. This model uses the intensity and positions of the various light sources and the coefficients of
reflection and transmission for the objects intersected to determine the intensity of the pixel.

Our implementation of this algorithm, in its simplest form, is not particularly efficient. The time taken to render
a scene increases exponentially with the number of objects and light sources as each ray has to be tested
for intersection with every object and then a ray fired at every light source to test for shadowing. This shadow
ray then has to be tested against every object. Also all calculations are done in floating-point for simplicity
which traditionally imposes a considerable performance penalty. It has been estimated that a straightforward
ray tracing program like this will spend over 75% of the time performing tests for intersection, so performance
is very dependent on the speed of floating-point operations. The T414 has some extra instructions to provide
microcode support for floating-point operations and the TBOO's on-Chip FPU enables floating-point operations
to be performed at about the same speed as integer operations.

There are many ways in which the basic ray tracing algorithm can be improved (e.g. by the use of space
subdivision or bounding volumes around objects) so many implementations could well be faster on a single
processor. However, a more sophisticated implementation would also benefit from the use of multiple trans­
puters.

11.2.2 Introducing concurrency

The calculations performed for each pixel on the screen are completely independent so they can be performed
in any order and on any number of processors. One way of distributing the work to a number of processors
is shown in Figure 11.3.

from host

calculators

Figure 11.3 Logical architecture

to display
hardware

This requires three different processes running concurrently on one, or more, processors: a controller which
interfaces with the user or host computer to provide a description of the scene being viewed and allocates
work to processors; an intersect and shading calculator, which can be replicated any number of times, to
render the pixels; and a display process which collects the results from each rendering process and drives
the graphic display. It can be seen that this structure is not related to the ray tracing algorithm and is, in fact,

11 Exploiting concurrency: a ray tracing example 147

suitable for any problem which can be broken into independent subproblems. A system like this in which a
controller farms out work to a number of application-specific processes has become known as a processor
farm.

Every calculating process is first given the description of the scene and then processing work can be allo­
cated by the controller which gives each calculator pixels to evaluate. When the the calculations have been
completed the results are passed out to the display process. The display process then informs the controller
that there is now a free processor and another pixel is sent out for evaluation. The amount of computation
required varies from pixel to pixel and this method automatically balances the load amongst the processors
and ensures they are all kept busy.

An interesting idea here is that the pixels do not need to be generated in sequence and, if they are generated
in some pseudo-random order, a good impression of the final picture can be obtained well before every pixel
has been evaluated. This could be particularly useful in a computer-aided design system where the user
wishes to generate different views of an object in rapid succession.

11.3 Physical architecture

11.3.1 General description

It appears, at first sight, that the above architecture cannot be mapped directly on to a network of transputers
because of the fixed number of links available. However, it is very simple to arrange for the controller to
communicate with any transputer in a network by passing messages through the intervening transputers. For
Simplicity, the ray tracing program was mapped on to a linear array of transputers as shown in Figure 11.4.
Each transputer link implements two occam channels, one in each direction, so this mapping only uses two
of the four links available on a T414 or T800.

patches
host

control/display calculator 1 calculator n

display

pixels

Figure 11.4 Physical architecture

Here the control and display processes are executed in parallel on one transputer and the rest of the transput­
ers do the intersection and shading calculations. In fact the first transputer also does these calculations and
the same, parameterised, program is loaded on to every transputer. However, it is simpler to view the system
as shown above. This method of mapping processes on to transputers requires that each transputer also
executes routing processes. These pass commands and data along the array from the controlling process
and pass results back for display. This implies some sort of command protocol for identifying the nature and
destination of data. This is simplified by using a linear connection of transputers; the routing process on
each transputer only needs to decide whether a message is to be accepted locally or passed on to be dealt
with elsewhere. A different array structure (e.g. a 2-D array or a hypercube) could reduce the distance that
messages have to pass and increase the bandwidth of data through the controller but at the cost of a slightly
more complex protocol and routing process.

A few important points need to be made. Firstly, the work involved in designing and implementing this
protocol is trivial compared to that required for the actual ray tracing algorithm and this will be true for any
realistic program. Secondly, although two extra processes are being executed in parallel with the main ray
tracing process, they actually consume very little processor time. Transputer processes are descheduled
whilst waiting for communications to take place and so do not use the processor. They are automatically
rescheduled, by the scheduling hardware, when the communication is complete. Also, external communication
is done by the autonomous link DMA engines which can transfer data independently of, and concurrently with,
the processor. This implies that the processing resource used by the communication depends more on the
number of communications than the amount of data transmitted in each message.

148 2 Practice

The occam description of this transputer configuration has a constant defining the number of transputers in
the network, which is all that needs to be changed if the size of the network is changed.

11.3.2 The control/display transputer

There are two processes executed by the control/display transputer, (see Figure 11.5). The first of these,
sendPatches, interfaces to the host computer to receive the description of the scene being modelled and
other commands. It passes the world model out to all the other transputers and then sends out requests for
pixels to be evaluated. Square areas of the screen, 'patches', rather than individual pixels, are given to each
transputer to enable 'slices' or blocks of data to be transmitted. A slice communication transmits an array
of data as a single operation. As there is the same processor overhead for setting up the links to transmit
a single byte as for a million bytes, this makes the most efficient use of the transputer link engines. It also
allows the processor to continue calculating at very nearly full speed while the communication takes place,
with only occasional interruptions to manage the routing processes.

host----+--t~ ,_---i----. patches

display.---+----------I ,.---~----- pixels

Figure 11.5 Processes running on control transputer

The other process, called ~oadBa~ance, coordinates the sending of data to the other transputers and the
display of the generated pixels. If there are n transputers then ~oadBa~ance initially passes on 2n pixel
patch requests from the process sendPatches. It then waits until a result is returned before handing
out another request. So this process acts like a valve, only allowing work to be passed out when there
are transputers able to accept it. Each of the n calculating transputers can accept two patch requests as
described below.

11.3.3 The calculating transputers

The work on each of these transputers is organised as three processes shown in Figure 11 .6. The most
important of these is render which is sent patches to evaluate via the throughput process. The render
process is a completely sequential piece of code and could be written in any standard programming language
which supports communication over occam channels. It does all the calculations to find intersections, build
the tree of rays and then traverse this tree to get the final pixel value. When all the pixels in the patch
are evaluated then the pixels are passed out to the feedback process and another patch is requested
from throughput. The feedback process multiplexes the local results and those received from other
transputers and passes them bqck towards the display transputer. This process is very Simple, using an
occam ALT construct to wait for an input from either of the two channels.

The task of the throughput processes is to route patch requests through the pipeline to a free processor,

11 Exploiting concurrency: a ray tracing example 149

from Previous toNext

tOPrevious from Next

Figure 11.6 Processes running on the calculating transputers

i.e. one that is able to accept a pixel patch for evaluation. Patches can be routed to the next processor;
routed to the local render process or buffered for local processing later. Initially each processor starts
in the state busy = FALSE (not currently processing a patch) and buffered = FALSE. Patches are
routed by throughput according to these state variables: if not busy then the patch is sent to the render
process; if not busy and not buffered the patch is saved for later processing; otherwise the patch is
passed on for processing elsewhere. Each processor therefore accepts two patches at startup, the first is
passed immediately to render for evaluation and the second is held until needed. Any further patches
received are passed on to be evaluated elsewhere until the processor becomes free again. After the first
patch has been completed by the render process it sends a request to throughput for another. This is
shown in the simplified piece of occam below:

BOOL busy, buffered, running
BYTE byte :
[3]INT patch, buffered.patch
SEQ

-- initia1ise state variab1es
busy := FALSE
buffered := FALSE
running := TRUE
WHILE runn.ing

ALT
-- a request for another patch from render
requestMore ? byte

IF
-- we have some work buffered, pass it on
buffered

SEQ
toLoca1 ! buffered.patch
buffered := FALSE

-- e1se indicate that the renderer is free
TRUE

busy := FALSE

150

a message from the pipeline
fromPrevious ? CASE

-- if it is a patch ...
rt.render; patch

IF
-- this processor not busy, pass to render
NOT busy

SEQ
toLocal ! patch
busy := TRUE

-- if can't handle it here, pass to next transputer
busy AND buffered

toNext ! patch
-- save patch for later processing
busy AND (NOT buffered)

SEQ
buffered. patch := patch
buffered := TRUE

the terminate message
rt.stop

running := FALSE

2 Practice

Provided that the time taken to render a pair of patches is greater than the time before throughput receives
a new patch, the render process is always kept busy. This provides distributed control of work allocation;
each processor simply passes on any work that it cannot handle to be done elsewhere. It doesn't need to
know where the work will be done or any other details of the system configuration. Because no more work
requests are sent out than can be handled, the last processor in the network will never find itself with work
to pass on to a non-existent processor.

11.4 Maximising performance

The processing speed of the system is directly related to the number of transputers used; ten transputers
perform ten times faster than one. A number of factors contribute to this aspect of the system.

The work is given to the transputers in large chunks which require only three words of data (the X and Y
coordinates and size of the patch) to specify the position of all the pixels in the patch. If the work were
distributed on a pixel-by-pixel basis then two words of data would be required for every pixel. This would
mean a much larger ratio of communication to processing.

Use of slice communication for data means there is less processor overhead per byte sent and allows a
greater amount of concurrency between the link engines and the processor. Allocating the work in chunks
made this even more important as entire patches of pixels were returned to the control/display transputer as
a single communication.

The message routing processes are run at high priority to ensure that an incoming message can be examined
and forwarded immediately it is received. The input guards of the ALT constructs in these processes are
also carefully- ordered in priority to ensure that patches are returned to the control processor as quickly as
possible.

As well as holding an item of work in throughput, software buffers were added to any channels which
communicate via a transputer link. These decouple the communication taking place via the link from the pro­
cesses using the channel, thus allowing more overlap between processing and link communication. Channel
buffers are frequently used, and easy to implement in occam.

These issues and others, such as efficient use of on-Chip RAM, are discussed in more detail in another
INMOS technical note [4].

The performance of the system has been measured with up to eighty IMS T 414-15 transputers and the results

11 Exploiting concurrency: a ray tracing example 151

are summarised below. These times were measured by the ray tracing system itself using the low-priority
transputer timer which has a resolution of 64 microseconds. The image generated consisted of a simple
scene containing four spheres and a single light source at a screen resolution of 256 x 256. The time taken
with each number of transputers was averaged over four runs. The processing speed in the table below is
the number of pixels generated per second, linearity was calculated as relative speed I transputers' 100.

transputers speed relative speed linearity %
1 164.0 1.00 100.0
2 327.6 2.00 99.9
4 654.0 3.99 99.7
8 1296.4 7.91 98.8

16 2601.6 15.87 99.2
32 5189.5 31.65 98.9
64 10300.0 63.15 98.7
80 12500.0 76.37 95.5

The ray tracer has also been run on T800 processors showing a factor of about 6 or 7 speed improvement
due to the on-chip floating-point unit.

11.5 Fault tolerance of the system

It should be possible to exploit the number of processors in a multi-transputer system to introduce a degree
of redundancy. The system described above is already remarkably robust. If a transputer fails then the
system will progressively deadlock only if the neighbour, on the controller side, attempts to communicate with
it. This is unlikely to occur, however, because results are passed back to the display by the shortest route,
and new pixel patches are not sent out until results are returned. If a transputer is stopped while it is actually
communicating, or between sending out results and being given its next patch of pixels then the system will
deadlock. Otherwise, apart from the loss of of the processing power of the transputers on the far side of the
fault, and the associated data, the system continues to operate.

In order to make the system more robust it must be possible to detect when a failure has occurred. This
can be done by using a timeout on all communications. Secondly it must be possible to ensure that, even
if a communication does fail, all the input and output processes will terminate. As this cannot be achieved
directly in occam, INMOS provide a number of predefined procedures which perform the desired functions.
These allow an input or output to be attempted within a time limit, and recovery from a failed communication.
They are described more fully in [5]. The use of these procedures means that failure of a transputer can be
detected by its neighbour. The controlling transputer could then be informed and so take action to recover or
regenerate the lost data.

Detection of the failure of a transputer implies that facilities could be added to allow the defective transputer
to be bypassed. This can be done with no extra hardware as shown in Figure 11.7. If a transputer decides
that its neighbour has failed then it switches to the other link to communicate with the next transputer along.
Alternatively, if boards with more than one transputer are used (for example the IMS 8003) it may be better
to arrange the link connections so that an entire board is bypassed if a failure is detected. Obviously, this will
not be sufficient if two adjacent transputers or boards were to fail, but this unlikely event could be catered for
with extra hardware to allow link connections to be switched externally thus allowing any number of devices
to be bypassed.

11.6 References

The Transputer Databook, INMOS Ltd, 1989.

2 occam Reference Manual, INMOS Ltd.

3 An Improved Illumination Model for Shaded Display, Turner Whitted,
Communications of the ACM, pp. 343-349, June 1980,23(6).

4 Performance Maximisation, INMOS Ltd, Technical note 17.

152 2 Practice

r link used to bypass transputer

transputer i-1 transputer transputer i+ 1

Figure 11.7 Bypassing a failed transputer

5 Extraordinary use of transputer links, INMOS Ltd, Technical note 1.

11.7 Note on the ray tracing program

The occam language enables a system to be described as a collection of concurrent processes which
communicate with one another, and with the outside world, via channels. occam programs are built from
three primitive processes: assignment (variable : = expression); input (channel ? variable);
and output (channel ! expression).

Each occam channel provides a one-way communication path between two concurrent processes. Com­
munication is synchronised and unbuffered. The primitive processes can be combined to form constructs
which are themselves processes and can be used as components of another construct. Conventional se­
quential programs can be expressed by combining processes with the sequential constructs SEQ, Il!' and
WHILE. Concurrent programs are expressed using channel communication, the parallel construct PAR and
the alternative construct ALT. An alternative process may be ready for input from a number of channels; input
is taken from the first of the channels to become ready.

Below is an outline of the occam program for each transputer, and the description of the entire transputer
system. The procedures all have several more parameters (such as screen size, maximum number of
reflections, etc.) but, for simplicity, only the essential outline is given here.

In order to pass the various types of message (e.g. object definitions, patch requests and pixel values) around
the system a variant protocol was used:

PROTOCOL trace.p
CASE

rt.stop
rt.done
rt.render;
rt.data;
rt.pixels;
rt.message;

[3] INT
INT; INT:: [] INT
INT; INT; INT:: []INT
INT: : [] INT

rt.render; x; y; patchSize
rt.data; type; data
rt.pixels; x; y; n::data
rt.message; n::chars

Each message then consists of: the message tag followed by the arguments. For example a 16 x 16 patch
is sent as: out ! c. render; [x; y; 16].

11 Exploiting concurrency: a ray tracing example

The code running on the control/display transputer is:

PROC contro~ (CHAN OF trace.p fromHost, toDisp~ay,
toCa~cu~ators, pixe~sIn)

definition of sendPatches procedure
definition of ~oadBa~ance procedure

CHAN OF trace.p data:
PAR

sendPatches (fromHost, data)
~oadBa~ance (data, toCa~cu~ators, pixe~sIn, toDisp~ay)

Each of the calculating transputers runs the following code:

PROC ca~cu~ate (CHAN OF trace.p fromPrev, toNext, fromNext, tOPrev)

throughput procedure
render
fee c:Ib ack

CHAN OF trace.p toLoca~, fromLoca~, requestMore
PRI PAR

PAR

run these at high priority for
fastest response to messages

throughput (fromPrev, toNext, toPrev, toLoca~, requestMore)
feec:lback (fromLoca~, fromNext, toPrev)

and this one at ~ow priority
render (toLoca~, fromLoca~, requestMore)

153

154

The system description is as follows:

define constants for the ~ink addresses

VAL number.transputers IS 42 :
VAL ~ast IS number.transputers - 1 :

CHAN OF trace.p host, disp~ay, ~oopback
[number.transputers]CBAN OF trace.p forward, return

PLACED PAR

processor 0 is the contro~/disp~ay processor
PROCESSOR 0 T4

PLACE host AT
PLACE disp~ay AT
PLACE forward[O] AT

~inkOin
~ink2out
~inklout

PLACE return[O] AT ~inklin

data from host
to disp~ay
patches out
pixe~ va~ues back

contro~ (host, disp~ay, forward [0] , return[O])

the main body of the pipe~ine of ca~cu~ators
PLACED PAR i = 1 FOR number.transputers - 2

PROCESSOR i T8
PLACE forward[i] AT
PLACE return[i] AT
PLACE forward[i+l] AT
PLACE return[i+l] AT

~inkOin
~inklout
~inklout
~inkOin

patches in
pixe~s out
patches out
pixe~s in

2 Practice

ca~cu~ate (forward[i], forward [i+l], return[i+l], return[i])

the ~ast transputer is a specia~ case as it
has no one e~se to ta~k to. The fact that the
channe~ '~oopback' is not p~aced means that
an interna~ (.. soft ..) channe~ wi~~ be created.
In fact this channe~ is never used but is
required as a parameter.

PROCESSOR ~ast T8
PLACE forward[~ast] AT ~inkOin
PLACE return[~ast] AT ~inkOout

ca~cu~ate (forward[~ast], ~oopback, ~oopback, return[~ast])

Further information on the program is available from the Central Applications Group at INMOS Ltd in Bristol.

155

12 High-performance graphics with the IMS T800'

12.1 Introduction

This chapter examines some applications of the IMS TaOO floating-point transputer in high-performance
graphics systems. Firstly there is a brief introduction to some of the the basic techniques and terminology
used in computer graphics. This includes comments on implementation and processing requirements.

Section 12.3 provides an overview of transputer, and specifically IMS TaOO, architecture. This concentrates
on the aspects of the device which make it particularly suitable for using in parallel graphics systems. There
is also a brief description of the occam language, designed for programming highly parallel systems. This
part concludes with a summary of how the IMS TaOO meets the requirements of a modern graphics system.

The next section describes in some detail how the computing performance of the floating-point processor
is obtained. It uses, as an example, a procedure which forms one of the key routines in all our graphics
demonstrations.

Finally two particular applications are described in detail. These are the INMOS distributed Z-buffer, a near
real-time multiprocessor solution to the hidden surface problem, and the INMOS multi-player flight simulator, a
real-time interactive combat simulator. Both programs have been implemented on standard INMOS transputer
evaluation boards with no custom hardware design and written entirely in a high-level programming language.

12.2 Computer graphics techniques

Computer-generated images, and in particular interactive graphics, is one of the fastest growing and most im­
portant application areas for high-performance computing systems. Some common applications are computer­
aided design (CAD), simulation and medical imaging. These allow the user rapidly to see the effects of, for
example, a design change on the appearance or behaviour of an object; or to view a large amount of data
(for example a three-dimensional scan of a human body) in an understandable form.

There are a number of common requirements for these systems. Firstly the system must be fast, both to
generate an image and to respond to input from the user. Secondly the displayed images must be realistic,
or at least readily comprehensible to the user. This will usually mean that objects can be viewed with correct
perspective, with natural shading and possibly shadowing, and that the way in which one part of the scene
obscures another (the 'hidden surface problem') is correctly represented. For interactive systems response
speed is an important factor to maintain realism and usability.

A brief introduction to some of the techniques and terminology used in this chapter is given below. A good
introduction to interactive computer graphics can be found in (1).

12.2.1 Modelling objects

In order to render or generate images of an object some way of modelling the object in the computer is
needed. A convenient primitive to use as the basis of modelling objects is the polyhedron. By increasing the
number of faces the shape of any solid object can be approximated, although at the cost of having more data
to manipulate. An arbitrary polyhedron can be modelled by defining its faces; each of these faces is then a
polygon which can be defined by an ordered list of vertex coordinates.

Each polygon will have other attributes associated with it, such as colour and orientation. The orientation is
represented by a line or vector perpendicular to the surface. This is called the surface normal and can be
calculated from the coordinates of three vertices. The surface normal is closely related to another attribute,
the plane equation of the face. A plane is represented by four numbers (a, b, c, d) so that ax + by + cz + d = 0
is true only if the point [x y z) lies in the plane. If a point does not lie in the plane then the sign of the
expression ax + by + cz + d indicates which side of the plane the point is located on. By convention, points in
front of the plane have positive values of ax + by + cz + d. The components of the normal vector are given by
the plane equation; the vector is [a be). The plane equation and normal vector are very important for
visibility and shading calculations.

156 2 Practice

12.2.2 Transformation

Geometric transformations play an important role in generating images of three-dimensional scenes. They
are used (a) to express the location and orientation of objects relative to one another and (b) to achieve the
effect of different viewing positions and directions. Finally a perspective transformation is used to project the
three-dimensional scene on to a two-dimensional display screen.

Transformations are implemented as matrices which are used to multiply a set of coordinates to give the
transformed coordinates. All rotations, translations and other transformations to be performed on data are
combined into a single matrix which can then be applied to each point being transformed. Transformations
may be nested, like subroutine calls, so that parts of a model can be moved independently but still take on
the global movement of the model or the viewpoint.

The homogeneous coordinate system

The coordinates of points are represented using what are known as homogeneous coordinates. Any point
in three-dimensional space can be mapped to a point in four-dimensional homogeneous space. The fourth
coordinate, w, is simply a scaling factor so a point with the homogeneous coordinates [z y 18 w] is rep­
resented in three-dimensional space as [z/w y/w z/w]. This representation simplifies many calculations
and, in particular, means that the division required by perspective transformation can be done after clipping
when there may be many fewer points to process.

The value of w is arbitrary as long as z, y, and 18 are scaled by the same amount. Generally when converting
from 3-~ to homogeneous coordinates it is simplest to make w = 1 so no multiplication of z, y and 18 is
necessary. After being transformed the value of w may have changed so at some point the z, y, and 18

coordinates must be divided by w. This can be done w.hen scaling to physical screen coordinates.

The transformation matrices used are 4 x 4 matrices for the transformation of homogeneous coordinates and
are designed to have the desired effect on the point in ordinary three-dimensional space. When implemented
on a computer, coordinates and transforms will generally use floating-point representation for maximum
accuracy and dynamic range.

Translation

Translation, or movement of a point in space, is simply achieved by adding the distance to be moved in each
axis to the corresponding coordinate:

Zl z+t.,

y' y+t"
18' z+t"

where tIll' tIl and t" are the distances moved in z, y and 18 respectively. This can be represented as a matrix
mu Itiplication:

[1 t
Oo1
" t~1" ~~ 1 [z' y' 18' w']=[z y 18 w] ~

t.,

12 High·performance graphics with the IMS T800 157

Rotation

Three-dimensional rotations can be quite complex. The simplest form is rotating a point about an axis which
passes through the origin of the coordinate system, and is aligned with a coordinate axis. For example,
rotation about the z axis by an angle of 9 is written as:

x/ x cos 9 + ySin 9
y/ -xsin9 +ycos9

This can be represented as a matrix multiplication as shown:

sin9 [

cos9

[x' y/ z/ w/]=[x Y z w] ~

-sin9 0 0 1
cos 9 0 0

o 1 0
o 0 1

To perform rotations about an arbitrary point it is necessary to translate the point to the origin, perform the
rotation and then translate the point back to its original position. Rotations about axes which are not aligned
with the coordinate system can be performed by concatenating a number of simpler rotations.

Concatenation

The successive application of any number of transforms can be achieved with a single transformation matrix,
the concatenation of the sequence. Suppose two transformations M1 and M2 are to be applied to successively
to the point v. First v is transformed into v/ by M1, this is then transformed into v" by M2:

v/

v"

Substituting Equation 12.1 into Equation 12.2 gives:

(12.1)
(12.2)

Therefore the concatenation of a sequence of transformations is simply the product of the individual trans­
form matrices. Note that, because matrix multiplication does not commute, the order of application of the
transformations must be preserved.

Perspective projection

The most realistic way of displaying three-dimensional objects on a two-dimensional screen is the perspective
projection. There is a simple transformation that distorts objects so that, when viewed with parallel projection
(orthographically), they appear in perspective. This defines a viewing volume, a truncated pyramid, within
which objects are visible (see Figure 12.1). This transformation preserves the flatness of planes and the
straightness of lines and simplifies the clipping process that follows. The perspective transform uses three
parameters: the size of the virtual screen on to which the image is projected; the distance from the viewing
position to this screen; and the distance to the furthest viSible point. The result of the perspective transform
is to normalise all coordinates so that values range between -1 and +1, the centre of the image is at point
(x, y) = (0,0). To display these on a real device the coordinates must be scaled by the screen resolution of
the display.

The perspective transform used in the programs discussed in this d()cument is based on that in Sutherland
and Hodgman [2].

158

x

viewpoint

12.2.3 Scan conversion

~ -.­
... -_ : " .. -_.. . ..

....
".

near clipping plane far clipping plane

Figure 12.1 Viewing objects in perspective

2 Practice

z

Raster displays are the most commonly used output device for computer graphics systems. They represent
an image as a rectangular array of dots or 'pixels'. The image to be displayed is stored in a 'frame buffer',
an area of memory where each location maps on to one pixel. The main advantages of raster displays are
low cost and their ability to display solid areas of colour as easily as text and lines.

In order to display objects which are represented as a number of polygons it is necessary to scan convert
the polygons. This involves finding all the pixels that lie inside the polygon boundaries and assigning them
the appropriate colour. A shading model is used to calculate the colour of each pixel.

A number of techniques have been developed for scan conversion. These generally take advantage of
'coherence'; the fact that the visibility and colour of adjacent pixels is usually very similar, and there are only
abrupt changes at polygon boundaries. This allows incremental methods using only integer arithmetic to be
used.

12.2.4 Shading

To generate realistic images it is necessary to assign the correct colours to the various parts of the model. This
means shading the objects to represent lighting conditions. The apparent colour of a surface is dependent on
the nature of the surface (its colour, texture, etc.), the direction of the light source and the viewing angle. A
realistic shading model may require a large amount of floating-point arithmetic to multiply together. the vectors
representing surface orientation (the surface normal), direction of the light source, etc.

Where objects are represented as a number of polygons, the faceted appearance can be reduced by using
a smooth shading model. There are two simple and reasonably effective techniques. Gouraud shading
simply interpolates the surface colour across each polygon. This can, however, introduce a number of
anomolies for example, in the s~ape of highlights and the way shading changes in moving sequences. Many
of these problems can be relieved by using a technique developed by Phong but at the expense of increased
calculation. Phong shading interpolates the surface normals across the polygons and re-applies the shading
model at each pixel.

12 High·performance graphics with the IMS T800 159

12.2.5 Clipping

Clipping is necessary to remove pOints which lie outside the viewing volume and to truncate lines which extend
beyond the boundaries. Clipping can be done more simply after the perspective transformation. However,
clipping in the z axis must be done before the division by depth which the full perspective projection requires
as this destroys the sign information that determines whether a point is in front of or behind the viewer. Points
with a negative value of z are behind the viewer.

Clipping to the :z; and y coordinates need only be performed to screen resolution. This has led to many clever,
although not always simple, techniques using fast integer arithmetic to clip lines quickly. The availability of
fast floating-point hardware means that more straightforward methods can be used.

The use of homogeneous coordinates and the perspective projection simplifies clipping. Because the pOints
can be viewed in parallel projection :z; and y values which are inside the viewing pyramid are in the range -1
to 1 and z values are in the range 0 to 1. The use of scaled, homogeneous coordinates means that the tests
that have to be applied are:

-w ~:z; ~ w

-w ~ y ~ w

O~z~w

These limits correspond to the six bounding planes of the truncated viewing pyramid. A fast polygon clipping
algorithm is described in [2).

12.2.6 Hidden surface removal

In order to generate realistic images it is important to remove from an image those parts of solid objects which
are hidden. In real life these would be obscured by the opaque material of the object. In computer graphics
the visibility of every point must be explicitly calculated.

Hidden surface algorithms are classified as either object-space or image-space. An object-space algorithm
uses the geometrical relationships between the objects to determine the visibility of the various parts and so
will normally require at least some floating-point arithmetic. An image-space method works at the resolution
of the display device and determines what is visible at each pixel. This can be done most efficiently using
integer arithmetic. The computation time of object-space techniques tends to grow with the total number of
objects in the scene whereas image-space computation will tend to grow with the complexity of the displayed
image.

There is also a trade-off between speed, complexity and memory usage. For example the Z-buffer technique
described in section 12.5 is a very simple, reasonably fast image-space algorithm but requires a large amount
of working memory. It uses an array of integers, the same size as the frame buffer, to store the depth at
each pixel.

The BSP-tree used in the INMOS flight simulator (section 12.6) is an object-space algorithm which is efficient
in memory usage, but uses floating-point arithmetic to determine the ordering of polygons. Its performance
depends on the availability of a fast floating-point processor. It is also not completely general: in its simplest
form it can only be applied to rigid objects constructed from non-intersecting polygons.

12.3 The IMS T800 transputer

The IMS T800 is the latest member of the INMOS transputer family [3). It integrates a 32-bit 10 MIP processor
(CPU), four serial communication links, 4 Kbytes of RAM and a floating-point unit (FPU) on a single Chip. An
external memory interface allows access to a total memory of 4 gigabytes.

The transputer family has been designed for the efficient implementation of high-level language compilers.
Transputers can be programmed in sequential languages such as C, PASCAL and FORTRAN (compilers for

160 2 Practice

which are available from INMOS). However, the occam language (see section 12.3.4) allows the programmer
to fully exploit the facilities for concurrency and communication provided by the transputer architecture.

ProcSpeed
SelectO·2

Reset
Analyse

Errorln
Error

BootFromROM
Clockln

VCC
GND

CapPlus

System
services

caPMinus_~====~

ProcClockOut
notMemSO·4

notMemWrBO·3
notMemRd
notMemRf

MemWait
MemConfig

MemReq
MemGranted

Timers

4 Kbytes
of

on-chip
RAM

External
memory
interface

Floating-point unit

32-bit
Processor

Link E LinkSpecial
services LinkOSpecial

;:::===::::; LIOk123Speciai

Link LinklnO
interface LinkOutO

Link
interface

Link
interface

Link
interface

Event 14-­
~~

Linkln1
LinkOut1

Linkln2
LinkOut2

Linkln3
LinkOut3

EventReq
EventAck

MemAD2·31
MemnotRfD1
MemnotWrDO

Figure 12.2 IMS T800 block diagram

The on-chip memory is not a cache, but part of the transputer's total address space. It can be thought of as
replacing the register set found on conventional processors, operating as a very fast access data area, but
can also act as program store for small pieces of code.

12.3.1 Serial links

The four serial links on the IMS T800 allow it to communicate with other transputers. Each serial link provides a
data rate of 1.7 Mbytes per second unidirectionally, or 2.35 Mbytes per second when operating bidirectionally.

Since the links are autonomous DMA engines, the processor is free to perform computation concurrently with
link communication. With all four links receiving simultaneously, the maximum data rate into an IMS T800 is
6.8 Mbytes per second. This allows a graphics card based round a single IMS T800 to act as an image sink,

12 High-performance graphics with the IMS T800 161

accepting byte-wide pixels down its serial links directly into video RAM. This is the architecture used in the
INMOS distributed Z-buffer (section 12.5) and in the INMOS flight simulator (section 12.6).

12.3.2 On-chip floating-point unit

The IMS T800 FPU is a coprocessor integrated on the same chip as the CPU, and can operate concurrently
with the CPU. The FPU performs floating-point arithmetic on single- and double-length (32- and 64-bit)
quantities to IEEE 754. The concurrent operation allows floating-point computation and address calculation
to fully overlap, giving a realistically achievable performance of 1.5 Mflops (4 million Whetstones[4] I second)
on the 20 MHz part; 2.25 Mflops (6 rnillion Whetstones I second) at 30 Mhz.

12.3.3 2-D block move instructions

Among the new instructions in the IMS T800 are those for graphics support. The IMS T800 has a set of
microcoded two-dimensional block move instructions which allow it to perform cut-and-paste operations on
irregularly shaped objects at full memory bandwidth. The three MOVE2D operations are:

MOVE2DALL which copies an entire area of memory
MOVE2DZERO which copies only zero bytes
MOVE2DNONZERO which copies only non-zero bytes

The use of these instructions is described more fully elsewhere [5].

12.3.4 The occam programming language

The occam language enables a system to be described as a collection of concurrent processes which
communicate with one another, and with the outside world, via communication channels. occam programs
are built from three primitive processes:

variab~e := expression
channe~ ? variab~e
channe~ ! expression

assignment
input
output

Each occam channel provides a one-way communication path between two concurrent processes. Commu­
nication is synchronised and unbuffered. The primitive processes can be combined to form constructs which
are themselves processes and can be used as components of another construct. Conventional sequential
programs can be expressed by combining processes with the sequential constructs SEQ, IF, CASE and
WHILE.

Concurrent programs are expressed using the parallel construct PAR, the alternative construct ALT and
channel communication. PAR is used to run any number of processes in parallel and these can communicate
with one another via communication channels. The alternative construct allows a process to wait for input
from any number of input channels. Input is taken from the first of these channels to become ready and the
associated process is executed.

This chapter contains some short program examples, including a few written in occam. These should be
readily understandable but, if necessary, a full definition of the occam language can be found in the occam
reference manual [6].

12.3.5 Meeting computer graphics requirements

Computer graphics have always required large amounts of computing power. As users become more
demanding in their requirements for higher resolution, more colours and faster response from graphics-based
systems, more and more processing speed and ilo bandwidth are required.

Graphics applications can require huge amounts of floating-point maths for performing transformations, spline
curve interpolation and evaluating complex shading models. Realistic images may contain many thousands
of primitives to be manipulated and displayed. Some of the most impressive computer images have been

162 2 Practice

produced using ray tracing, a very expensive computer graphics technique. The implementation of a multi­
processor ray tracing program using transputers is described in [7].

For desktop publishing, very high quality fonts are required, which must be manipulated at high speed if the
feeling of user interaction is to be maintained. For digital compositing and 'paintbox' type applications, large
irregular shapes must be moved around on screen at high speed, without annoying jerks and hops as the
processor strains to keep up with the user.

High-quality printed output may use a laser printer, a very high-resolution output device. Typical modern laser
printers produce images with 300 - 400 dots per inch on A3 or A4 size paper. A bitmap at this resolution
requires up to 4 Mbytes of data. As colour laser printers become available the memory requirements increase
dramatically.

Finally, real-time graphics work demands very high bandwidth to the display device - a modest 16 frames
per second on a 512 x 512 x 8 bit pixel display requires the transfer of 4 Mbytes of data to the display each
second. This is easily met by the four links on a single IMS T800. As frame rates and screen resolutions
continue to increase so does the performance required from a graphics system. Multiple IMS T800s could
be connected to a common frame store, using video RAMs, to provide even greater bandwidth to the display.
The hardware aspects of transputer-based graphics systems are discussed in [8].

The major requirements of the ideal graphics processor then are: high-speed floating-point performance;
high-speed text manipulation and 2-D cut/paste operations (actually the same operation but on different
scales); fast movement of large quantities of data; and high bandwidth in and out of the processor.

Although not specifically a graphics device, the IMS T800 transputer fulfils all the above requirements -
massive compute power, a large linear address space, high i/o bandwidth and instruction level support for
pixel graphics operations.

12.4 3·0 transformation on the IMS T800

One of the main uses for a floating-point processor in a computer graphics system is for calculating 3-~
transformations. This will include both generating a transformation matrix and applying this transformation to
sets of coordinates.

Here, a four-element vector is multiplied by a 4 x 4 matrix, to give a four-element result:

This can be expanded as:

I ~ y' r ~ 1=1. • • w t f ~ ! 1

x' = ax + ey + iz + mw

y' = bx + fy + jz + nw

z' = ex + gy + kz + ow

w' = dx + hy + lz + pw

12 High-performance graphics with the IMS T800 163

Hence to multiply the vector by the matrix requires 28 floating-point operations (16 multiplications, 12 additions)
which pipelines very efficiently on the IMS T800. The following occam procedure multiplies the vector by
the matrix, storing the result:

PROC veetorProdMatrix ([4)REAL32 resu1t,
VAL [4)REAL32 vee,
VAL [4) [4)REAL32 matrix)

VAL X IS 0
VAL Y IS 1
VAL Z IS 2
VAL W IS 3

SEQ
result [X)

resu1t[Y)

resu1t [Z)

resu1t[W)

:=

.-

.-

.-

(vee [X) *matrix [0) [X) + «vee[Y)*matrix[l)[X) +
«vee[Z)*matrix[2) [X) + «vee[W)*matrix[3) [X)))

(vee [X) *matrix [0) [Y)) + «vec[Y)*matrix[l) [Y) +
«vec[Z)*matrix[2) [Y) + «vec[W)*matrix[3) [Y)))

(vee [X) *matrix [0) [Z) + «vec[Y)*matrix[l) [Z) +
«vec[Z)*matrix[2) [Z) + «vec[W)*matrix[3) [Z)))

(vec[X)*matrix[O) [W) + «vec[Y)*matrix[l) [W) +
«vec[Z)*matrix[2) [W) + «vec[W) *matrix [3) [W)))

Analysing the statement:

resu1t[X) := (vec[X)*matrix[O) [X) + «vec[Y)*matrix[l) [X) +
«vec[Z)*matrix[2)[X) + «vec[W)*matrix[3) [X)))

it can be seen that all vector offsets are constant and will be folded out by the compiler into very short
instruction sequences. Furthermore all floating-point operations are fully overlapped with subsequent address
calculations.

The statement compiles into only 27 instructions, most of which are only a single byte. The details of the
transputer instruction set are given in [9] and the implementation of the FPU in [10].

The instruction sequence generated by this expression is:

(1)

(2)

(3)

1d1 2
1dn1p 2
1d1 3
1dn1p 8
fp1dn1sn

fp1dn1mu1sn

1d1 2
1dn1p 3
1d1 3
1dn1p 12

10ad 10ca1 variab1e 2 (address of vee)
compute address of vec[Z)
10ad address of matrix
compute address of matrix [2) [X)
transfer matrix[2) [X) to top of FPO stack

-- transfer vec[Z) to FPO and mu1tip1y

compute address of vec[W)

compute address of matrix[3) [X)

164

(4)

fpldnlsn
fpldnlmulsn
fpadd

ld1 2
ldnlp 1
ld1 3
ldnlp 4

fpldnlsn
fpldnlmulsn
fpadd

ldl
ld1

2
3

fpldnlsn
fpldnlmulsn
fpadd
ld1 1
fpstnlsn

2 Practice

transfer matrix [3] [W] to FPU
transfer vec[W] to FPU and multiply
add so top of FPU stack contains
(vec[Z]*matrix[2] [X]) + (vec[W]*matrix[3] [X])

calculate address of vec[Y]

and address of matrix [1] [X]

transfer matrix [1] [X] to top of FPU stack
transfer vec[Y] to top of stack and multiply
add product to previous intermediate result

calculate address of vec[X]
and address of matrix [0] [X]

transfer matrix [0] [X] to FPU
transfer vec[X] to FPU and multiply
final accumulate, followed by
final store to
result [X]

Most FPU operations pop the top two values off the stack to use as operands and then push the result back
on to the stack. The stack consists of three registers inside the FPU and nearly all expressions can be
compiled so that no temporary memory variables are needed.

The code between (1) and (2) calculates the address of the first two operands and transfers matrix [2] [Xl
to the top of the FPU stack. The code between points (2) and (3) loads vec [Z] on to the FPU stack and
initiates a floating-point multiply. The CPU then executes the code between (3) and (4) which calculates the
addresses of the next pair of operands. Meanwhile the FPU continues with its multiplication. Finally the
floating point load non local instruction at point (4) is executed and a hardware interlock causes the CPU and
FPU to synchronise. In this way, the computation of the operand addresses is entirely overlapped with the
floating-point multiplication. In the remainder of the expression the FPU is kept busy, never having to wait for
the CPU to perform an address calculation, and so achieving its quoted 1.5 MFLOP rating.

The entire vector matrix multiplication operation, including the call to the procedure, takes less than 19 J,LS

on the IMS T800-20, allowing a single transputer to perform 3-D transformation on over 50000 points per
second. This is important - the example is not a bizarre and meaningless benchmark designed to make the
IMS T800 look as fast as possible. It is a genuine piece of application code, and the inner loop of all 3-D
transformations.

The efficiency of this piece of code does not depend on it being written in occam. An effiCient compiler for
any other language can easily obtain similar performance. Neither does the performance depend on constant
array subscripts as in this example. The transputer's fast product instruction can be used to calculate the
address of an array element and this will still be fully overlapped with the FPU operation. This is true even for
two-dimensional arrays with code for range checking the array subscripts. The loops were expanded out in
this example to remove jump instructions, which are relatively slow and prevent full overlapping of FPU and
CPU operations.

12.5 The INMOS distributed Z·buffer

The Z-buffer is a general solution to the computer graphics hidden surface problem. When presented with
the primitives which constitute a scene, the Z-buffer will output the scene as viewed by the observer, with
hidden or partially hidden surfaces correctly obscured.

The core of the Z-buffer program is the distributed scan converter, which allows the processes of scan
conversion and Z-buffering to be distributed over a number of transputers.

12 High-performance graphics with the IMS T800 165

12.5.1 The Z-buffer algorithm

For each pixel on the screen a record is kept, in a depth- or Z-buffer, of the depth of the object at that pixel
which lies closest to the observer, and the colour of that pixel is kept in a separate frame buffer. As each
new object is scan·converted the depth of each pixel generated is compared with the value currently in the
Z-buffer; if this pixel is closer than the previous one at that position then the depth and frame buffers are
updated with the values for the pixel.

When all polygons (and other primitives) have been scan converted into the Z·buffer, the frame buffer contains
the correct visible surface solution.

In pseudo·code the Z-buffer algorithm is essentially:

for each po1yqon
{
for each (x,y) on the screen covered by this po1yqon

{

}

compute z and co1our at this (x,y)
if z < zbuffer[x,y] then

}

{
framebuffer[x,y] := co1our
zbuffer[x,y] .- z
}

So for each polygon, the z value and the co1our must be computed at each screen position covered by
that polygon. For maximum speed the value of z and co1our for each pixel is usually computed using only
simple integer arithmetic at each step.

12.5.2 Scan conversion

The scan converter discussed here is restricted to convex polygons (polygons with no acute angles and no
holes) and spheres.

Scan-converting polygons

The scan converter traverses each polygon from bottom to top, maintaining data for a pair of 'active edges'.
These active edges delimit the horizontal extent of the polygon, and this horizontal extent is scanned, to give
depth and colour for each pixel covered by the polygon. As it scans up, the polygon values of :1:, z and colour
are maintained along a left·active edge and a right·active edge. When the scan converter encounters a vertex
in one of the active edges, the appropriate set of edge data is updated.

Each active edge has associated slope values, ~, * and 4co,l;ur. The scan converter computes :1:, z and
colour for the next scanline (Le. at y + 1) b~ adding on these slope values to the current values of z and colour.
The scan converter computes 4!. and dc~ our for each horizontal extent, to allow horizontal interpolation of z
and colour for full Z-buffering. rinear interpolation of colour gives Gouraud shading, a simple and effective
smooth shading approximation (compare photographs A and C at the front of the book).

Scan-converting spheres

Polygons can be scanned easily since they are planar, and z can be interpolated linearly over planar surfaces.
Spheres are not so simple. There are two problems: first, scan-converting the sphere involves determining
the projected circular outline of the sphere on the screen; secondly, scanning the region inside the outline
to compute z and colour at each pixel covered by the sphere. In fact, a sphere in perspective does not
always project exactly into a circle, but in general this is a close enough approximation. The spheres code
was written to allow complex molecules to be rendered. When displaying molecules, the individual atoms are
generally small in relation to the complete image, so the distortion due to circular projection is acceptable.

The projected radius of the sphere is obtained from the perspective calculations. Bresenham's circle algo·

166 2 Practice

z

y

-......
a " / __ ~~._, .. b . _______ - - - __ - - .::.a....L_-I--I<~_--IL...:b=--.. X

/ '\
~----~ ___ ~_~x

projected circular outline
of sphere

,/
,

I

Scan in X-Y for projected outline

y

0\
~---'_x

I

/

Scan jn X-Z inside projected
outline for vjsible surface

Figure 12.3 Scan conversion of spheres via Bresenham's algorithm

rithm [11] is then used to scan the outline of the projected circle, and is also used at each scanline to scan
the sphere in z (Figure 12.3). Exact spherical shading is complex (and therefore slow), requiring lots of maths
at each pixel (including square roots), so an approximate shading technique is used as described by Fuchs
et a/. [12]. The visible hemisphere is shaded as though it were a paraboloid. The resulting shading is smooth
and very hard to distinguish from correct spherical shading.

Implementation details

Scan conversion with a DDA

Scan converters are generally implemented using a digital differential analyser (DDA), or a variant of Bre­
sen ham's line-drawing algorithm [1, Chapter 2]. The reasoning behind this is that divisions can be avoided,
and all addition operations are on integers, improving performance. Tracking an edge with a DDA involves
maintaining two items of information about the edge: the current position and the current error term. A step
is taken along the 'driving axis', the axis of greatest step. A fixed value is unconditionally added to the error
term. When the error term overflows (generally this means when the error becomes positive), a step is taken
along the 'driven axis', and a different fixed value is subtracted from the error term.

Here is an example of drawing a line using Bresenham's algorithm - it is assumed that the deltaX is
greater than deltaY, so x is the driving axis:

e = (2 * deltaY) - del taX;
for (i = 1; i == deltaX; i++)

{
plot (x, y);
e = e + (2 * deltaY);
if (e > 0)

{
y = y + 1;
e = e - (2 * deltaX);
}

x = x + 1;
}

12 High-performance graphics with the IMS T800 167

Note that a decision must be made at each pixel; the i~ statement means that the processor will execute a
conditional jump instruction. The break in instruction pipelining (and subsequent forced instruction fetch) this
causes will consume valuable processor cycles.

Scan conversion on transputers

There is an alternative solution for the transputer. Bresenham's algorithm removed division operations
because historically this was a prohibitively slow operation. The division was removed at the expense of
generality - the slope of the line must be between zero and one. This means that a scan converter, which
must have y as the driving axis, still requires at least one division operation and also requires greater com­
plexity in the inner loop.

As a division is now necessary, an alternative approach was looked for. The transputer's designers were
sufficiently far-sighted to include fast extended arithmetic operations in the instruction set. Instead of main­
taining an error term (which is scaled in terms of deltaX and deltaY, rather than machine precision) we
simply put a 32-bit fraction on the end of the 32-bit integer, and use longadd instructions to step along the
slope.

The value slope : = del taX / deltaY is computed as a signed 64-bit value (32 integer plus 32 fraction
bits), and the if at every pixel is avoided. Computing the slope to 64 bits consumes about 100 processor
cycles (5 loIS) per edge, but simplifying the code in the inner loop makes the fractional version run some
40% faster than the Bresenham version. The code also becomes more readable, as shown in the simplified
example below:

y := y + slope

is more obvious than:

SEQ
Y := Y + dyBydx
e = e + (2 * deltaY)
Il!'

-- slope is 64 bits (integer + fraction)

dyBydx is the integer part of the slope

e > 0 -- take care of ~ractional part of slope
SEQ

y := y + 1
e := e - (2 * deltaX)

TRUE
SKIP

This becomes even more apparent when several variables are being interpolated (i.e. z, z and colour). Note
that for z and colour, a 32-bit value for the slope (16 bits integer and 16 bits fraction) would provide sufficient
resolution and be faster to compute. However, the advantages of this are outweighed by having to extract
the upper 16 bits of the word which contain the desired z and colour values.

The scan conversion of spheres is also done using long arithmetic.

Distributing scan conversion over multiple transputers

A standard scan converter traverses each polygon one scanline at a time. The distributed scan converter
running on N transputers traverses each polygon N lines at a time. Each scan converter starts scanning
at a different scanline, i.e. at the lowest y-coordinate enclosed by the polygon which can contribute to its
subsection of the image.

In effect, each scan converter reconstructs a Slightly different 'squashed', but interleaved, copy of the scene.
When merged these subimages create the final picture, so the net effect is that the polygon is fully shaded
and Z-buffered (Figure 12.4).

This requires careful coding (and a little more computation) to initiate the scan conversion process and to
follow corners correctly, but the scan converter distributed on N machines runs (very nearly) N times as fast
as on one machine.

168 2 Practice

pixels scan-converted pixels scan-converted pixels scan-converted pixels scan-converted
by processor 0 by processor 1 by processor 2 by processor 3

Figure 12.4 Distributed scan conversion

12.5.3 Architecture

polygons through

pixels in

detail of Z-buffer process

polygons in

array of Z -buffers co 0 k Y clip x clip
&

scan converters

Figure 12.5 Distributed Z-buffer architecture

The architecture of the Z-buffer system (Figure 12.5) is simple, but is flexible and easily extended. An INMOS
IMS 8004 board (a) is used as a database, file interface and user interface. It sends transformation matrices,
polygons and spheres to the geometry system.

The geometry system consists of four transputers on a single IMS 8003-2 transputer evaluation board, which
has been modified by replacing one of the IMS T414-20s with an IMS T800-20. This transputer (b) performs all
the floating-point computation, performing 3-D transformation, z clipping and conversion to screen coordinates.
Two IMS T414s (c and d) then perform x and y clipping. A finallMS T414 (e) preprocesses ('cooks') polygons
and spheres into a form suitable for the scan converters: polygon vertex format is converted to edge format
and edge slopes are computed; coefficients are calculated for the sphere shading equation.

12 High-performance graphics with the IMS T800 169

The 'cooker' outputs its processed polygons and spheres to the Z-buffer array (f through m). Note the link
usage - polygons are passed through the emboldened vertical links, independently of the horizontal links
which pass pixels to the graphics card (n). This separation of polygon flow and pixel flow allows a finished
frame to be passed to the graphics card while the next frame is being computed, pipelining work efficiently
for animated sequences. This organisation also takes maximum advantage of the autonomous link engines
on each transputer. The graphics card used is an IMS 8007 evaluation board which has two banks of video
memory allowing the next frame to be read in without disturbing the currently displayed image. When the
complete frame has been received the two memory banks are swapped by writing to a control register. This
must be synchronised with the frame ilyback of the display to avoid distracting visual artefacts.

12.5.4 Performance

The Z-buffer is fully interactive, and on our existing models image generation speeds range from over 10
frames per second down to around 1 frame per second.

Performance of the system is sensitive to the number of polygons and to screen coverage per polygon. With
small numbers of large polygons, scan conversion time dominates, so a larger number of scan converters
gives a linear performance improvement.

The IMS TBOO in the geometry system is crucial for images with large numbers of small polygons. In this
case screen coverage and hence scan conversion time (per polygon) is low, and transformation time can
dominate unless a lot of floating-point performance is available. If the IMS TBOO is replaced by an IMS T 414,
refresh rates can drop by a factor of 15 for a complex model such as that of the IMS TBOO package.

Some screen photographs of the output generated by this system are included at the front of this book. The
bevelled cubes consist of 112 polygons, 128 pOints, and were computed at 6.3 frames per second using
8 scan converters. The molecule (54 spheres, 108 points) achieves 2.9 frames per second, but this drops
dramatically if the screen coverage is increased, since the computation per pixel is higher for spheres than
for polygons. Note that the individual atoms intersect correctly, and that the lighting conditions are locally
modelled - the highlight is in different positions on different atoms. The Starship (596 polygons, 943 points)
is displayed at 3.1 frames per second; no surface normal information is yet available for this model, so it is
flat shaded. The IMS T800 package (1254 polygons, 15B4 points) refreshes at between 1.B and 1.4 frames
per second.

12.6 The INMOS multi-player flight simulator

The INMOS flight simulator came from the need to demonstrate the real-time graphics capabilities of the
transputer family. Although the Z-buffer is much faster than any other yet implemented on microprocessors
(rather than custom hardware), it is still not fast enough to implement the vision system of a flight simulator,
even when running with thirty-two scan converters. This is due to the per pixel calculation involved in Z­
buffering - a 'greater than' comparison is required at every pixel covered by each polygon. An alternative
hidden surface algorithm without this overhead is required for the flight Simulator.

12.6.1 Requirements

The primary requirement of the flight simulator was that it be fast. It should be able to sustain 17 frames per
second, the bandwidth limit into the IMS B007 graphics card, when shading a reasonable number of polygons
- say 200 to 300. It should have low latency, i.e. the time from user input to visual feedback should be no
more than three, preferably only two frame times. It should also use only a small number of transputers to
implement a four-player system.

12.6.2 Implementation details

The distributed polygon shader

The core of the flight simulator is a distributed polygon shader, similar in design to the scan converter in the
Z-buffer. It is optimised for flat shading of polygons and does not include the Z-buffer. This reduces the
amount of computation and means that a fast block move operation can be used to shade the horizontal

170 2 Practice

regions between polygon edges. It can be arranged that the block move copies the value defining the colour
from on-chip memory so a 32-bit word can be copied (in other words, four pixels can be shaded) every n + 1
machine cycles, where n is the number of machine cycles required to access off-chip memory.

When coded in this way, a 20MHz transputer with single wait-state (4 cycle) external memory can shade
polygons at a rate of 16 million 8-bit pixels per second, or 62.5 nanoseconds per pixel. Four transputers can
therefore shade at up to 64 million pixels per second, only 15.6 nanoseconds per pixel. With this high polygon
shading speed it becomes possible to display a reasonable number (over 200 'average size') polygons at
17 frames per second, a very high number for a software implementation with no custom hardware. Using
four transputers allowed the use of the INMOS IMS B003-2 transputer evaluation board, so no new hardware
design was necessary.

Geometry system

From the previous figures quoted for transformation time, the IMS T800 has processing power to spare, it
can transform 200 quadrilaterals (800 points) in less than one sixtieth of a second. Three more transputers
are used in the geometry system - another IMS T800 for z clipping (often called hither-and-yon clipping)
and conversion to screen coordinates, and two IMS T414s for clipping in z and y. Clipping in z and y
are performed in screen space, so integer maths is sufficient. The geometry system now consists of four
transputers, so again an IMS B003-2 is used, but this time slightly modified (two IMS T414s replaced with
IMS T800s).

At this stage the importance of pin compatibility between the IMS T414 and IMS T800 cannot be over
emphasised - it allows high floating-point performance to be injected into a multiprocessor system just where
it is required, allowing performance tuning simply by removing one transputer from a socket and plugging in
another.

This is a very fast polygon shader and geometry system, all that is required is a hidden surface algorithm
which outputs its solution in polygon form to implement the entire vision system of the flight simulator.

eSP·trees

The BSP·tree [13] is a recursive data structure which implicitly holds all possible hidden surface solutions
for the object it represents. Each node of the BSP-tree contains a polygon and pointers to front and back
subtrees. The front subtree contains all polygons in front of the node polygon, the back subtree contains
those behind the node polygon. The notion of 'in front-ness' is determined by substitution of the current
viewing position into the plane equation of the polygon.

By traversing the BSP-tree in an order determined solely by the viewing position, the polygons are passed
to the distributed polygon shader in reverse z order, so that nearer surfaces are painted after (and hence
obscure) more distant surfaces, giving the correct hidden surface solution.

12 High-performance graphics with the IMS TaOO

The following algorithm is used to perform BSP-tree traversal:

traverseTree (tree)
{

}

~f (tree ~s empty)
return

else
{

}

~f (view point in front of rootPolygon)
{

traverseTree (tree->back)i
displayPolygon (tree->rootPolygon)i
traverseTree (tree->front)i

}
else
{

}

traverseTree (tree->front)i
displayPolygon (tree->rootPo1ygon)i
traverseTree (tree->back)i

171

In some applications this procedure can be optimised by not painting backfacing polygons. This is useful
if there are only closed objects in the model, for example a cube has six faces but only three of these are
visible at any time. In the flight simulator each polygon has a flag to indicate whether it should be painted
when the viewpoint is behind it. This allows rotor blades, for example, to be implemented as a single polygon
while allowing backface elimination on the body of the helicopter.

This process is recursive - our traverser is implemented in occam which does not allow recursive procedure
definitions, so a state machine is constructed. Further details of implementing recursive data structures and
procedures in occam programs can be found in another INMOS technical note [14]. The state machine
maintains two variables, the current node in the tree, and the current action being performed. These nodes
and actions are explicitly stacked as the tree is traversed. Here is an outline of the state machine in occam:

SEQ
-- init~a1~se
push (NIL, a.terminate)
action := a.testPos~tion
node : = rootNode
WHILE act~on <> a.terminate

CASE action

a.testPosition
-- test whether we are ~n front of
-- or behind the current polygon
IF

node = NIL
-- end of subtree
pop (node, action)

inFront (node, viewPoint)
-- in front of current polygon
SEQ

push (node, a.traverseFront)
node := tree[node + 'backSubTree]

TRUE
-- behind current polygon
SEQ

push (node, a.traverseBack)
node := tree[node + frontSubTree]

172 2 Practice

a.traverseFront
-- output current po1yqon
-- then traverse front subtree
SEQ

outputPo1y (node)
action := a.testPosition
node : = tree [node + front SubTree]

a.traverseBack
-- output current po1yqon
-- then traverse back subtree
SEQ

outputPo1y (node)
action := a.testPosition
node := tree[node + backSubTree]

Only half a dozen floating·point instructions are required to determine which subtree to traverse first at any
node, so the BSP-tree traverser was incorporated into the same transputer as the 3-0 transformation, leaving
run-time still dominated by polygon painting time.

BSP-trees are used to determine polygon visibility within each object in the simulator (e.g. aeroplanes,
helicopters, teapots, buildings), and a simple bounding box test in z is used to determine the relative z ordering
of objects. This means that the system will not correctly render objects when they intersect. However, if this
condition occurs in the flight simulator it implies that the objects have collided.

12.6.3 Architecture

The vision system of the flight simulator is as illustrated in Figure 12.6. A geometry system consisting of four
transputers performs: (a) BSP-tree traversal and 3-0 transformation; (b) z clipping and conversion to screen
coordinates; (c) II clipping; and (d) x clipping.

Y clip x clip

z clip

Figure 12.6 Flight simulator vision system

Four transputers (e, f, 9 and h) perform distributed polygon shading and a graphics card operates as a pixel
sink (I). The processor in the graphics card would normally be idle, the transputer simply waiting for images
to appear down its links. This is a waste of a good processor, so more functionality is added. The graphics

12 High-performance graphics with the IMS TaOO 173

card now implements a head-up display showing an artificial horizon, air speed, altitude, bearing, radar with
enemy positions and missile fuel readings. All of these make extensive use of the IMS TSOO's 2-D move
instructions.

The simulator itself runs on a single transputer with the vision system connected to one link, and has been
designed to allow many simulators to be connected in a ring (Figure 12.7). This allows a number of players
to take part in a combat simulation, each player seeing the others through his simulated cockpit window.

,'-------..
Vision

To vision system,
player 3

To vision system, ~---i
player 2

To vision system, +---1
player 1

o

Joystick interface,
player 3

1.--11-- Joystick interface,
player 2

I.-I~ Joystick interface,
player 1

1+-+- Joystick interface,

Ring of
simulators

player 0

Figure 12.7 Full four-player simulator

At SIGGRAPH 'S7 INMOS demonstrated a four-player combat simulator, and members of the public were
invited to try and shoot down INMOS application engineers. The whole system (Le. four entire flight simu­
lators) was housed in a pair of INMOS card cages; taking up only 13 double-extended eurocard slots and
less than five cubic feet. In the course of a 10 hour combat session more than a terabyte of data (Le. over
a thousand gigabytes) will flow through a four-player simulator.

The implementation of the flight simulator is described in greater detail in another INMOS technical note [15].

12.6.4 Performance

The flight simulator performs as well as anticipated - it conSistently achieves a refresh rate of 17 frames
per second. The main limiting factor is the need to synchronise the updates to the graphics display with
frame flyback. Frame rates approaching the theoretical maximum of 27 frames per second could be achieved
by having more buffering in the graphics display hardware. This would allow image data to be received
asynchronously with frame flyback. If desired even higher frame rates can be obtained by using more than
one transputer in the display system.

Looking at the flight simulator screen, the images only come to life when animated at 17 frames per second.
The impression of flight is uncanny, despite the simplistic polyhedral design of the aircraft.

174 2 practice

12.7 Conclusions

The IMS T800 offers all the features required for high-performance computer graphics. It is a very high­
performance microprocessor capable of being used in large numbers to form extremely powerful multipro­
cessor computers, with a few well-chosen instructions for computer graphics support.

The IMS T800s 2-D block manipulation instructions make it an ideal candidate for the next generation of high
resolution full-colour workstations, and for future generations of colour laser printer controllers.

The IMS T800 has sufficient floating-point performance for any application. If more than 1.5 Mflops are
required then use more transputers. Thirty-two IMS T800-20s offer the computational equivalent of current
vector super-computers (48 consistently achievable Mflops), and take up only 56 square inches of PCB area
(Le. they will fit on an IBM PC plug-in card).

12.8 References

Principles of interactive computer graphics, William M Newman and Robert F Sproull, McGraw Hill.

2 Reentrant polygon clipping, Ivan E Sutherland and Gary W Hodgman, CACM 17(1), January 1974.

3 The Transputer Databook, INMOS Ltd, 1989.

4 Lies, damned lies and benchmarks, INMOS Ltd, Technical Note 27.

5 Notes on graphics support and performance improvements on the IMS TBOO, INMOS Ltd,
Technical Note 26.

6 occam 2 Reference Manual, INMOS Ltd, Prentice Hall 1988.

7 Exploiting concurrency: a ray tracing example, INMOS Ltd, Technical Note 7.

8 A transputer based distributed graphics display, INMOS Ltd, Technical Note 46.

9 The transputer instruction set: a compiler writers guide, INMOS Ltd, Prentice Hall 1988.

10 IMS TBOO architecture, INMOS Ltd, Technical Note 6.

11 A linear algorithm for incremental digital display of circular arcs, J E Bresenham,
CACM 20(2):100-106, February 1977.

12 Fast spheres, shadows, textures, transparencies and image enhancements in Pixel-Planes,
Fuchs, Goldfeather, Hultquist, Spach, Austin, Brooks, Eyles and Poulton,
Computer Graphics 19(3), July 1985 (Proc. SIGGRAPH 85).

13 Near real-time shaded display of rigid objects, Fuchs, Abram and Grant,
Computer Graphics 17(3), July 1983 (Proc. SIGGRAPH 83).

14 Data structures and recursion in occam, INMOS Ltd, Technical Note 38.

15 The INMOS flight simulator, INMOS Ltd, Technical Note 36.

175

13 A transputer based multi-user flight simulator

13.1 Introduction

Recently, one of the most popular applications for computer graphics has surely been simulation systems,
for example flight simulators. The aim of these systems is to generate some scenario in sufficient detail, and
with enough realism to give the operator the impression that the exercise is happening in the real world, and
not in a simulated one.

Systems like these require huge amounts of computation, and very high-performance display systems to
achieve such realism. In fact, most current systems are implemented in hardware to get the super-computer
performance required. The major attraction with these systems is the interaction the user has with the envi­
ronment (flight simulators allow the pilots to push their aircraft to their limits, without endangering themselves
and others). The biggest setback is their inability to allow the environment to react with the user (the computer
can rotate radar dishes etc., but complex movements like other aircraft cannot be done without huge amounts
of extra processing).

This chapter describes the implementation of a multi-user flight simulator system using transputers and
occam. The design allows any number of single-user simulators, each a small supercomputer in its own
right, to be linked together to allow interaction between systems. By having a number of other pilots controlling
the other objects in the simulation, a trainee pilot can be subjected to more complex scenarios than those
that could be programmed into a computer.

The program described is written entirely in occam, and the hardware used in the implementation consists of
a number of transputer variants (T212, T 414, and TaOO), all running on standard INMOS transputer evaluation
boards. These boards are connected using the INMOS links, allowing complex systems like this to built with
relative ease (approximately 10 minutes to wire up a four-player implementation of the simulator).

More details of the transputer and occam can be found in [11, [21 The joystick module is the only custom
hardware used. This board is described in the user interface section of this note.

13.2 Flight simulators

Simulators (for aircraft, cars, etc.) are becoming increasingly popular applications for computer graphics.
Top-of-the-range flight simulators can be used to train pilots for any Situations that might occur (freak weather
conditions, instrumentation failure, surprise ambush from mischievous mountain ranges, slight reduction in
the number of wings, etc.), without endangering pilot, passengers, or crew.

A simulator system must be able to portray the outside world in sufficient detail (both graphically on the
windshield, and numerically using instruments), and possibly simulate the motion of the vehicle using a
motion platform, such that the pilot feels that he/she is really flying the aircraft. Such a system consists of a
number of very high-performance subsystems, such as a display system, motion controller, and a database
system that can maintain a model of the world (and any objects that may appear in it), and environment data
(rain, clouds, etc.) that must be accessed during the simulation. All this data must be displayed fast (and
realistically) enough to give the impression of real flight. To get a frame rate of 20 to 30 frames per second,
most of the work is currently done in hardware, which explains the high cost of this sort of system.

With a multi-user Simulator, each node must be able to access the data and display it in accordance to the
current position of the craft at that node. Also needed is a knowledge of where all other users in the system
are, so they can also be displayed (if visible).

This implementation of a flight Simulator allows any number of users, each with their own simulation engine,
to interact. Each user gets a view of the world as if lookin(} through the cockpit window. The world is made of
polygons, and these are displayed at a rate of approximately 17 frames per second (at about 200 polygons
per frame).

This frame rate is limited by the design of the graphics board used in the current system. To avoid visual
artifacts it is necessary to wait for frame fly-back before updating the display. As there are only two display
banks on the IMS B007 graphics board, this has the effect of holding up link communications with the shader

176 2 Practice

processors for up to one frame time (1/50th sec). If the wait for frame fly-back is removed, the frame
update rate is increased to approximately 22 frames/sec, as the buffered image can be displayed as soon
as it is received. An enhanced graphics board is currently being designed at INMOS, which has up to four
frame buffers, allowing higher frame rates (as the n+lth frame can be read whilst the nth frame is waiting to
be displayed) WITH frame fly-back.

All users are connected in a ring. Any part of the world that needs to be distributed is passed around to
each user in turn, who can read it, modify it, or ignore it, then pass it on to the next user. Objects can be
dynamically added to this network (such as missiles that have been fired), and taken out when finished with.
The ring architecture allows any number of users to be included in the system, and the software has been
written with this feature in mind.

13.3 Architecture

The architecture for a single-user system is shown in figure 13.1. The system has been subdivided into
the most logical processes that occur in a simulator, e.g. the core simulator, 3-D transformation, clipping,
etc. Note that this is the software model for such a system, and not the hardware implementation, which is
described in the hardware implementation section.

fromRing

Ring
Control

toRing

13.3.1 An overview

Display pipeline
~ ______________ ~)l~ ____________________ ~

("
3D transform Shader

Figure 13.1 Architecture for one player

Before explaining in detail the various processes that are used in the simulator, a brief overview of the system,
and some of the terminology used, is required.

The system has been designed to allow any number of flight simulators, such as the one shown on figure
13.1, to be connected in a ring. Messages are passed around the ring defining the position, and orientation
of objects in the simulation. Figure 13.2 shows an example of four such systems connected in a ring.

13 A transputer based multi-user flight simulator 177

o
o

Figure 13.2 The ring architecture

The ring Control process handles all ring communications, and interaction with the pilot controls. From
these information sources, a description of the next visible scene for this user can be derived.

Objects are described as a set of polygons, and these polygons are stored in a large database. To display
an object, these polygons must be output such that the near faces of the object obscure those further away.
The data base process takes care of this hidden surface algorithm.

The polygons described in the database are not suitable to be written directly to the screen. Each polygon
must undergo a transformation to convert it to a displayable form. In the following sections, reference will
be made to model, world, eye and screen coordinate systems. Figure 13.3 shows an example of how
these different coordinate systems relate. Converting between coordinate systems requires the coordinates
(of a polygon, for example) to be transformed using matrix multiplications [3]. [4]. The transformations can
be rotations about an axis, scaling, and translation along an axis. For example, the transform from model
to world space requires a 90-degree rotation about the V-model axis (see Figure 13.3).

178

'. Z_eye , . , .
'.

........

, . , . ,
.. ..
. , . r 1= : - - - - - - -

i .'
.... _---------

Figure 13.3 The coordinate systems

2 Practice

Matrices may be concatenated, allowing a single point to undergo a number of transformations with only a
single matrix multiplication. The order in which the transformations are applied to a point is determined by the
order in which the transformation matrices are concatenated. By reversing this order, a reverse transformation
(from screen to mode~ coordinate systems, for example) can be generated.

The conversion from mode~ to screen coordinate systems is performed by the transformation pro­
cess. Matrices that define the transformations to be performed are generated by the ring Contro~
process, and are used to transform the polygons that are output from the database.

Before shading a polygon, a clipping operation must be performed to remove any parts of that polygon that
may not be visible. As well as clipping to the screen boundaries, the polygons must also be clipped to the z
coordinate viewing boundaries (often referred to as the 'hither' and 'yon' clipping planes) to remove parts of
polygons that may be behind the viewer, or beyond the horizon. Before clipping to the screen boundaries, the
perspective calculations are performed. This effectively scales the 2-D polygons according to their distance
from the view point.

Many shading algorithms can be used to generate the final display. The simplest is flat shading, where
each polygon is filled with a designated colour. More complex shading algorithms take the position of light
sources into account, and so require more complex calculations to be performed at each pixel to determine
the colour and intensity at that point. Shadows, highlights and reflections could also be included, but require
vast amounts of extra processing.

In the following sections, an understanding of both occam and the transputer is assumed.

13 A transputer based multi-user flight simulator 179

13.4 Implementation

13.4.1 The ring Control process

The ring Control process controls the operations on all data on the ring. Figure 13.4 shows the internal
configuration of this process.

buffer buffer buffer buffer

toRing fromRing

from U serl nle rfaee

~

loDalaBase

Figure 13.4 The ring controller

The ring Controller

The interplayer communications are implemented as a ring-based architecture. This allows any number of
users to be incorporated into the system.

For a true multi-user system, each single-user simulator must have access to the same database. As shared
memory is not supported, the systems must communicate by passing messages over occam channal.s
(2). The database required for a simple flight simulator is quite large, al)d passing this as a message between
many small flight simulators would severely limit the performance of a system. One feature with such a
system that can be exploited is that a very small proportion of the database actually changes during the
operation of the simulator. The ground remains static, buildings tend not to move very often, and so the
communications can be reduced to passing information regarding dynamic objects within the system, i.e. the
aircraft controlled by the other users.

Messages passed around the ring are object descriptors (such as type, position, and other attributes). By
keeping the descriptor as a block, the transfers of the block around the ring can be done 'for free' by the
block move engines in the transputer links. Double-buffering techniques (described in (5)) increase system
performance by allowing the processing of the current descriptor whilst outputting the previous one and
inputting the next.

The ringControl.l.ar process (and associated buffers) handle all ring traffic. The buffers allow the number
of messages on the ring to change dynamically (deadlocks could occur if all links used in the ring were active
(busy transmitting or receiving), and a new object (such as a missile) was added).

180 2 Practice

A number of simple decisions are made on the objects as the ringControl.l.er receives them. These
are:

[bl.ockSize]INT inBl.ock, outBl.ock :
SEQ

.in ? inBl.ock
WHILE running

SEQ
IF

opponent aircraft
PAR - .

tOMain ! inBl.ock
outBl.ock := inBl.ock -- (1)

missil.e
SEQ

toMain ! inB10ck
fromMain ? outBl.ock -- (2)

owners aircraft

PAR

SEQ -
toMain ! inBl.ock
fromMain ? outBl.ock -- (3)

in ? .inBl.ock
out ! outBl.ock

The descriptor is sent to the main process, and can be also be passed on to the ring.

2 The result from the main process could be the missile attributes being altered to indicate the oppo­
nents missile has hit this (the testing process) aircraft, or the missile has been removed from the
ring (in which case, the output to the ring is not performed).

3 The result is the new owner descriptor (current position etc.).

The simulation process

The simulation process controls the interaction with the player (via a joystick interface), and adjusts the
position and rotation of objects belonging to that player (such as missiles and the aircraft the player is flying).
There are up to three objects to keep track of (one aircraft and two missiles), and any of these can be under
the control of the player. The others fly 'blind' (Le. along the course on which they were fired). When a
missile is under control, the aircraft continues flying in the direction it was moving before the missile was
taken under control.

SEQ

IF

IF

get data from user interface
decode to give any changes in direction etc

driving missil.e
al.ter missil.e course, move others (1)

'!'RUE
al.ter aircraft course, move others (1)

get status from main -- (2)

col.l.ision (2)

TRUE
SKIP

change state to expl.ode

PAR
output the pl.ayer descriptor
set up head-up displ.ay (HUD) -- (3)

send HUD (al.so marks end of frame)

13 A transputer based multi-user flight simulator 181

Each object is stored as current position and delta movement for the next frame. When controlling a
certain object via the joystick interface, the stored delta values are overwritten with those derived from
the joystick inputs. Here, any environment simulations, such as gravity and atmospheric conditions
such as wind, can also be included.

Transformation matrices are generated to describe the positions and orientation of these objects,
and the view point, and these matrices are passed to the main process.

2 The main process (see below) will, at this point, have completed the reading of data from the ring,
and will have a list of objects for output, together with information giving the result of the collision
detection, and an array of coordinates to be used in the map. This data is taken as being a request
for the object descriptor generated in (1).

The value of the collision tag is used to alter the object attributes to signal an explosion (which
selects an explosion database to be displayed). During the explosion cycle, inputs from the user are
ignored, and the aircraft is forced into a fixed sequence of moves before restarting. The coordinate
array passed is used in the head-up display.

3 The head-up display is sent as a set of high-level commands to the display engine. The attitude of
the aircraft (pitch, roll, yaw, etc.) is converted to a sequence of line draw commands (which build
up an artificial horizon display), the map is a set of plot pixel commands, and the instruments are
defined as circle commands. These commands are built into a display list, which is transfered as a
single block through the display pipeline to the display process.

Missile descriptors pass around the ring until the missile has hit something (either another aircraft or the
ground), or has run out of fuel. The 'hit' detection is done in the main process below, and that process will
request a particular missile be updated or removed from the ring. The current implementation allows for up to
two missiles per person to be active (flying) at any time. This is limited only by the available ring bandwidth.
Future topologies should allow for more objects to be present in the system.

The main process

The main process (the frame generator) takes its inputs from the ringController and simUlation
processes, and calculates which of the objects can be seen. The information from the simulation process
determines the location (in world space) of the player's screen, and this information is used to translate all
other objects to the eye_space of the player.

Any objects that can be seen are z-sorted to give a list of object descriptors, which are output (in reverse
depth order) to the pipeline to be converted into polygons and shaded. At this stage, only a description of
the object (e.g. type, location, rotation) is needed. It is expanded on in later stages of the pipe.

Within the z-sort routine, collision detection and trivial rejection are also p·erformed. As there is no master in
the system, all user processes do their own collision detection (i.e. they detect if they have been hit). If a
hit has occurred, messages are passed back around the ring to the owner of the other object in the collision,
who will take the appropriate action.

Both collision detection and trivial rejection are done using bounding boxes, which undergo a simple trans­
formation to put the bounding box in eye space. If the bounding box can be clipped from view, the object
is rejected (and is not inserted in the list). If two bounding boxes intersect, a collision has occurred, and the
other object owner is informed that a collision has taken place. Because all players do their own colliSion
detection, a test of all boxes interacting with all other boxes does not have to be performed. The test is Simply
sort each object as it arrives from the ring, and test the closest object with the bounding box of the player.
As the test is done when the descriptor is read from the ringController process, the hit flag can be
set in the object attributes before it is sent back to the ring.

The end of a frame is signalled by the main process reading the object descriptor of its owner from the ring
(this is sent out at the start of the frame, and its return signals that all other descriptors have passed through).
At this point, the list of descriptors is sent to the traverser process (in reverse z order) for the hidden surface
algorithm to be executed.

182 2 Practice

SEQ
PAR

PAR

get ring data, z-sort, co11ision detect (1)
output head-up disp1ay, ground (2)

output sorted descriptor 1ist (3)
get new p1ayer data from movement process (4)

For each item received from the ring, do a trivial reject and collision detect (if the object is closest
to the player), and set hit flag if collision has occurred. If the object belongs to this player (Le. a
missile), then request the new missile descriptor trom the simulation process. The descriptor is sent
back to the ringControlier to be inserted into the ring.

2 Whilst reading in the next frame data, we can keep the display pipeline busy by sending the head­
up display list to the graphics engine, followed by the end-ot-frame marker, and then getting the
traverser to output the ground details tor the next frame.

3 For each object in the list, three items must be passed to the display pipeline. First, the transfor­
mation matrix (from model to screen space, including perspective transform), is passed on to the
transform process. The viewpoint (which is transformed to be in the mode1 coordinate system)
is passed to the traverser process, as is the model type. The last two items are used to select
and output a particular portion of the database.

4 Pass the map data (and result of the collision detection) to the movement process, and receive the
descriptor for next frame.

13.4.2 The Data Base manager

The models that are used in the simulator are stored as a tree of polygons. A version ot the Binary Space
Partitioning (BSP) algorithm [6] is used to determine which polygons are visible (and in what order) from any
viewpoint.

The algorithm is quite simple. A polygon lies on a plane, defined by the equation:

Ax + By + Cz + D = 0

where A, B, C, D are constants (calculated from three coplanar vertices of the parent polygon). If a point
[x,y,z] satisfies the above equation, that point is said to lie on that plane. However, if the result is negative,
the point is said to lie behind the plane, and if the result is positive, the point lies in front of the plane.

BSP trees store the polygons in a recursive manner, with a polygon at each node of a binary tree. Each
node points to a subtree of polygons that lie in tront of the parent polygon, and a subtree of polygons that lie
behind the parent.

Building the BSP tree

Building the BSP tree is a recursive operation. Starting with a list of the polygons that make up a model,
we set the root node of the tree to be the first polygon in the list. The plane on which this root node lies is
calculated (the A, B, C, D constants are stored in the record for that node, for use during the tree traversal
at run-time), and all subsequent polygons in the list are tested to see whether they lie in front or behind the
root node.

After testing all polygons in the main list, the in front and behind pointers of the root then point to two
sublists of polygons. Each sublist is then recursively traversed, until a binary tree, with a Single polygon per
node, is created.

The test to derive whether a polygon lies in front or behind the plane involves entering each polygon vertex
into the plane equation. If all vertices lie in front of the plane, the polygon is in front of the plane, and it is
added to the end of the in_front sublist of the root. If the polygon lies behind, it is added to the behind

13 A transputer based multi-user flight simulator 183

sublist (when the plane and the polygon are coplanar, the polygon can be added to either list). Note that if
the polygon is split by the plane (some vertices are in front, some are behind), the polygon must be divided
into two subpolygons, which are inserted into either sublist.

A graphical example is shown in Figure 13.5 (we will work in two dimensions, but it is simple to extend the
principles to three dimensions). At the start (13.5a), the list contains five polygons a, b, c, d, e (the arrows
are used to show where in front is for each polygon). Polygon a is chosen to be the root, and Figure
13.5b shows the result of tne tests performed on the other four polygons. If the algorithm traverses the
in front sublist, then the behind sublist (as done by the combine routine in the description below),
Figures 13.5c shows the results as each sublist is traversed.

root _ a
b
c
d
e

Figure 13.5a Figure 13.5b Figure 13.5c

Figure 13.5 Building a binary-space partitioned tree

184

Here is a piece of pseudo-code describing the algorithm [6]:

PROC make tree (po1y 1ist)
returns (BSP_tree) ;

ir (po1y 1ist is EMPTY)
return-(NULL_tree)

e1se
{

}
END

root := se1ect (po1y_1ist) ;
back 1ist := NULL ;
front 1ist := NULL ;
foreach (po1ygon in po1y 1ist)

if (po1ygon is not the-root)
{

}

if (po1ygon in front of root)
Add1ist (po1ygon, front 1ist)

e1se if (po1ygon is behind root)
Add1ist (po1ygon, back 1ist)

e1se -
{

}

sp1it-po1y (po1ygon, root,
front-part, back-part)

Add1ist (front-part, front 1ist) ;
Add1ist (back-part, back_I'ist) ;

return (combine tree (make tree (front 1ist»,
root, (make:tree (back_I'ist »)

combine_tree 1inks the root to the sub trees.

2 Practice

This procedure will generate a BSP tree from a list of polygons. The node chosen for the root strongly
determines the order in which the polygons are stored in the tree. In the simulator, it was necessary to have
certain polygons at leaf nodes of the model tree, and so the tree was constructed manually. This is not an
easy task, but writing a routine to build the tree, following certain constraints as to the location of arbitrary
polygons, was not thought possible in the time allowed.

The BSP trees are static for all the models, and so can be constructed during the initialisation phase of the
the simulator.

13 A transputer based multi-user flight simulator

Traversing the BSP tree

Traversing the tree is a recursive operation. Here is a piece of pseudo-code describing the algorithm:

traverseTree (tree)
if (tree is empty) return
el.se

{ .
if (view point in front of root polygon)

{
traverseTree
displ.ayPol.ygon
traverseTree
}

el.se

}

{
traverseTree
displ.ayPolygon
traverseTree
}

tree -> back)
tree -> rootPolygon
tree -> front)

tree -> front)
tree -> rootPolygon
tree -> back)

185

The result of this operation is that the polygons in the tree are always displayed in a back-to-front order,
I.e. the furthest polygon from the viewpoint is output first. In this way, the correct hidden surface solution is
achieved for all possible viewpoints.

A state machine is required to simulate this recursive operation when using occam. The state machine has
two variables, the current node in the tree, and the current action being performed. Nodes and actions are
stacked as the state machine traverses the tree.

push (NIL, a.terminate)
action := a.testPosition
node := rootNode
WHILE action <> a.terminate

IF
action = a.testPosition

IF
node = NIL

pop (node, action)
inFront (node, viewPoint)

SEQ
push (node, a.traverseFront)
node := tree [node + backSubTree]

TRUE
SEQ

push (node, a.traverseBack)
node := tree [node + front SubTree]

action = a.traverseFront
SEQ

outputPoly (node)
action := a.testPosition
node := tree [node + front SubTree]

action = a.traverseBack
SEQ

outputPoly (node) -- (1)
action := a.testPosition
node := tree [node + backSubTree]

In some cases, it is not neccessary to draw this node, as the definition of being 'behind' a polygon
means that the polygon is facing away from the viewer, and so should be obscured by polygons

186 2 Practice

facing the viewer. For example, a cube has six faces, but it is only possible to see a maximum of
three. The other three are backfacing polygons. These backfacing polygons need not be drawn.

For space considerations, we have a boolean tag in the record for each polygon which enables
'backface rejection' on specific polygons. Wings of an aircraft can be described as a single polygon,
displayed no matter where the the viewpoint is, but the box defining the bulk of an aircraft body can
be forced to reject backfacing polygons.

To output a model, the traverser process reads a viewpoint and model type from the main process
(above). The model type selects the particular tree to be output, the viewpoint determining the order in which
the polygons are output.

13.4.3 The transformation process

The transformation process takes polygons (lists of points), and transforms these points from the model
coordinate system to the screen co-ordinates

Three-dimensional transformation (scaling, translation and rotation) is performed using matrix multiplication
(3). Matrix multiplication can be implemented very efficiently on the T800 (see (4) for a more detailed discus­
sion). Whilst the FPU is calculating the product (for example) of two matrix elements, the integer processor
can be calculating the address where the result must be stored. By overlapping the floating-point calculations
with the index calculations (done by the compiler, incidentally), a coordinate transform:

[4] REAL32 a, e :
[4][4] REAL32 transform :

SEQ
matrixMul.t (e, a, transform) -- does (e := a 1r transform)

can be done in approximately 19 microseconds. This gives a peak transform rate of over 52000 points per
second.

The transformation process accepts a transformation matrix from the pipeline. All subsequent polygons are
then tranformed with that matrix until a new matrix is received.

13.4.4 Clipping

Before the polygons can be displayed, they must be clipped to the viewing boundaries. Clipping in the z-plane
removes the parts of polygons that are behind the viewpoint, and also polygons that are beyond the horizon.
Perspective calculations are then performed (scaling the polygons with respect to their distance from the
viewpoint). Finally, the polygons are clipped to the screen boundaries.

Both the z-clip and perspective calculations require floating-point calculations. However, the screen is
addressed as an integer device, and so the x- and y-clip operations can be performed in integer form.
This eliminates the need for a more expensive floating-point unit in the later clipping stages.

Figure 13.6 shows the structure of the clipping processes. The output of the final y-clipper is a stream of
polygons ready to be drawn on the screen.

13 A transputer based multi-user flight simulator 187

Figure 13.6 The x,y,z clipping architecture

13.4.5 Shading

For the polygon filling, the screen is split into a number of subscreens, each handled by its own shader
(Figure 13.7 shows the internal structure of one such shader). In the current implementation, there are four
subscreens, each handled by a transputer. Each polygon that survives the clipping process is passed to all
shading processors, which shade their part of the polygon.

copy Polygons buffer

toNextShader

I-----t~ toGraphics

Figure 13.7 Internal structure of shader

Each polygon shading process shades every fourth line of the polygon. The operation starts at the bottom
vertex (smallest y-coordinate) of the polygon. Here, two vectors are set up, which define the rate of climb
along the two edges which meet at that vertex. This vector defines the step in x that will occur for every
step in y. The y step is four pixels (for four shading processors). After initialising these vectors, shading

188 2 Practice

is a matter of taking a step in y, calculating the new (x,Y) locations for along the edges, then joining those
points with a horizontal line (the colour of which is defined in the polygon descriptor). As each of the polygon
vertices is encountered, the vector defining the appropriate x step is recalculated.

Polygons are flat shaded (for simplicity). Shading the horizontal line is simply a matter of block moving data
from on-chip RAM into the buffer used to generate the subscreen. As the shading processor may see many
lines within one polygon, an array (stored in the on-chip RAM) is initialised to the polygon colour as the
polygon is read in, and this is used for every line fill until a new polygon is received.

When implemented on a T414-20 with single wait-state external memory (200 nanosecond cycle), a single
shader can fill polygons at a rate of 16 million pixels (8 bits per pixel) per second, or 62 nanoseconds per
pixel. Therefore, four shading processors can shade at a rate of 64 million pixels per second, only 15.6
nanoseconds per pixel. If more performance is required, more shading processors can be added.

At the end of each frame, the subscreen is transferred to the graphics process for display. Again, full use of
double buffering of the links and processor is used, to allow the last frame's worth of image to be transmitted
to the display engine, while the start of the next frame is being computed. The output format is simply the y
coordinate of each line, followed by the 512 bytes that make up that line. The 512 byte line is transferred as
a single block, increasing efficiency.

13.4.6 The display

The display card (Figure 13.8) accepts complete subscreens from the shader processes, and transfers them
(using the INMOS links) directly into screen RAM.

chanO chan1 chan2 chan3

interp_Head Up Di spl ay

read 0

screen RAM

Figure 13.8 The display process

The graphics card (IMS B007 transputer evaluation board) used has a single IMS T800, thus giving four
links into the display process. The four input channels chan 0 , 1, 2, 3 are mapped on to the hardware
links, allowing complete subscreen to be read directly into the screen RAM independent of the processor.
Hardware double buffering on the IMS B007 allows one screen of data to be read in while another screen is
being displayed, so screen update is invisible. At the end of frame mark, the screens are flipped over.

Also passed at the end of frame is extra information which is used to generate a head-up display (for the
next frame). This information can be processed while the next frame data is being read in.

13 A transputer based multi-user flight simulator

PLACE chanO AT linkOin
PLACE chan1 AT link1in
PLACE chan2 AT link2in
PLACE chan3 AT link3in

WHILE running
SEQ

in ? headUpDisplay
input bottom· 128 lines

PElI PAR - -
... input top 384 lines
interp HeadUpDI"splay ()

flipScreens ()

at high priority
using bottom 128 lines

The data from the polygon shaders is input from all four links simultaneously.

PElI PAR
{{{ input top 384 lines
PAR - -

read (chanO) -- read from linkO
read (chanl)
read (chan2)
read (chan3)

}} }
interp _ HeadUpDisplay ()

189

The read processes are started at highest priority, and will be descheduled as each link starts to oper·
ate. Once all high-priority processes have been descheduled, the processor, is free to run the low-priority
interp HeadUpDisplay process. These processes can be run in parallel, as there are effectively
operating-on two seperate arrays, i.e. the bottom 128 lines and the top 384 lines of the screen.

The head-up display information is written to the screen using the extra graphics instructions [7) of the IMS
T800. The move2Dnonzero command will transfer all ' non-zero' bytes of an array, giving the effect of
an overlay operation.

13.4.7 User interface

The interface to the user joysticks is implemented using IMS C011 link adaptors. These devices convert
byte-wide parallel data to the INMOS Link format, and vice versa.

The joysticks used simply present 6 bits of information to the link adaptor. This device is wired such that
a message byte, sent from the controlling transputer, will trigger the input half of the C011 to sample, and
transmit the current joystick value. This value is decoded to find which switches were active at that time. A
circuit diagram for the joystick interface is shown in Figure 13.9.

190

linkln

linkOut

fromJoystick

~
10-7

- t
lAck ..

IMS C011

-.:.......-:­
QO-7

QAck

t

• IValid

QValid

•

Figure 13.9 The joystick interface module

13.4.8 The hardware implementation

2 Practice

The hardware used in the demonstration system is shown in Figure 13.10, along with the mapping of the
processes described earlier.

fromRing

toRing

Data Base I
3-D transform

user_interface

T212

(All processors are IMS T800-20)

z clip I
perspective

x clip

joysticUnterface

Y clip

Shaders

Figure 13.10 Hardware implementation for a single-user system

The front end of the system (the ring controller and transforming processes) are floating-point intensive, and

13 A transputer based multi-user flight simulator 191

are PLACED on to IMS T800 processors. Other processes, such as the x- and y-clippers do not use the
FPU of the IMS T800, but take advantage of the higher link bandwidth available (all links are run at 20 Mbits
per second, and use overlapped acknowledge packets).

As well as interfacing to the joystick modules, the IMS T212 processors run an autopilot process, which cuts
in if the joysticks are not touched for a certain time.

The minimum hardware for a system is a single-user simulator as shown in Figure 13.10. Larger systems can
consist of a mixture of these full simulators, and a cut-down version with no display pipeline, connected in a
ring (see Figure 13.11). The cut-down simulator runs an aircraft under autopilot control, giving the interactive
users something to shoot at !

Ring
Control

Ring
Control

13.5 Conclusions

Display pipeline o-D

useUnterface / autopilot

Figure 13.11 A two-player, two-autopilot example

An implementation of a multi-user, interactive flight simulator, using occam and transputers has been de­
scribed. The system hardware is standard INMOS transputer evaluation boards, and all the software (written
using the INMOS transputer development system) was written in under three weeks. We believe this is a
record for such a system.

Future upgrades to the system include 3-D terrain mapping, better shading models, and more realistic flight
characteristics. As extra features are added, more transputers can be added into the system to cope with
the extra processing required.

192 2 practice

13.6 References

The Transputer Databook, INMOS Ltd, 1989.

2 occam 2 Reference Manual, INMOS Ltd, Prentice Hall 1988.

3 Principals of interactive computer graphics, William M Newman and Robert F Sproull, McGraw Hill.

4 High performance graphics with the IMS TBOO, Inmos ltd, Technical Note 37.

5 Performance Maximisation, INMOS Ltd, Technical Note 17.

6 Near Real-Time Shaded Display of Rigid Objects, Henry Fuchs, Gregory 0 Abram, Eric 0 Grant,
Computer Graphics (Vol 17, No 3) July 1983.

7 Notes on Graphics Support and Performance Improvements on the IMS TBOO, INMOS Ltd,
Technical Note 26.

193

14 Porting SPICE to the INMOS IMS TaOO transputer

14.1 Introduction

This document describes work carried out by INMOS Bristol to port the public-domain circuit simulator program
SPICE to the INMOS IMS TaOO transputer [1]. The document concentrates on the issues of porting the
application, but also includes some background information on the application, on transputers, and some
performance information. Methods of increasing the performance of SPICE are also outlined.

It is hoped that the experiences described in this document are of value to others attempting to port exist­
ing applications onto transputers. For additional information on the general subject of porting software to
transputers, the interested reader is directed to [2].

We chose to port SPICE as an example because it is in the public domain, is widely used within the elec­
tronic engineering community, and because it is a highly floating-point intensive application. It is written in
FORTRAN, and the results we have obtained show that a single transputer is a high-performance sequen-

'tial processor in its own right. As such it can be used to accelerate the performance of any conventional
application.

However, the transputer is specifically designed to allow multiple processors to be used for a single applica­
tion, and with a small amount of work many conventional applications can be modified to use a number of
processors. The availability of a FORTRAN 77 compiler' for the transputer allows most scientific applications
to be ported in this manner.

14.2 Background on SPICE

SPICE is a circuit simulator program, written in FORTRAN-77, which is widely used in the electronic design
community. It was written at the University of California, Berkeley, by L. Nagel, E. Cohen, and R. Newton
with contributions from many others [3, 4]. Berkeley have continually updated the program over the years,
and have released successive versions into the public-domain. This work is based on version SPICE 2G.6.

SPICE simulates the behaviour of electrical circuits, at the level of voltages and currents in the circuit, rather
than at the logical behaviour level. To execute the SPICE program, a data input file is supplied by the user.
This file contains a description of an electrical circuit to be simulated, as a node connection list for the circuit.
It also includes electronic device model parameters, and operating specifications for the simulation (e.g. time,
temporal resolution, required outputs, etc.).

The output from SPICE takes the form of tables of figures, or character-based graphical plots.

Partly because SPICE is so large and demanding, and partly because of it's early origins, it is generally run
on large main-frame or mini computer facilities.

SPICE is not an interactive application, so it is well suited to being run as a background task in a batch job.
However, as SPICE is very computationally intensive, especially in its usage of floating-point numbers and
matrix operations, it can consume a large proportion of a multi-user machines processing power, unless it is
run at a very low priority.

More recently SPICE has been run on workstations dedicated to supporting a single engineer, but the users
machine is again fully occupied whilst a SPICE job is in progress.

The FORTRAN compiler for the transputer allows SPICE to be easily run on a separate processor from
the users' other tasks. In particular, the TaOO has an on-Chip floating point processor which is rated at 1.5
MFLOPS on the 20 MHz part [5]. The transputer concept is discussed in the next section.

1 PC-hosted transputer FORTRAN compiler, version 1.1, Part IMS 0713C

194 2 Practice

14.3 Background on transputers

14.3.1 Transputers

The INMOS transputer consists of a high-performance processor, on-chip RAM, and inter-processor commu­
nication links, all on a single chip of silicon. Figure 14.1 shows an example of the transputer family, the IMS
T800 transputer.

Figure 14.1 Block diagram of an IMS T800 transputer

Serial i I 0

(4 full-duplex
INMOS links)

The IMS T800 integrates a 32-bit micro-processor, a 64-bit floating point unit, four standard 20M bits/sec
transputer communications links, 4 Kbytes of on-chip RAM, a memory interface and peripheral interfacing on
a single CMOS chip. The floating point unit performs floating point operations concurrently with the CPU,
and operates on single and double length (32 bit and 64 bit) items to the ANSI/IEEE 754-1985 floating point
arithmetic standard. The concurrent operation allows floating point computation and address calculation to
fully overlap, giving a realistically achievable performance of 1.5 MFlops (4 million Whetstones I second) on
the 20 MHz part [5].

The on-Chip RAM is part of the transputer's address space, and allows critical routines and data to be
accessed in a single machine cycle. The on-Chip RAM can be thought of as replacing the register set found
on conventional micro processors. The inter-processor links are controlled by autonomous DMA engines, and
permit any number of transputers to be connected together in arbitrary networks, allowing extra processing
power to be injected into a system very easily. The external memory interface allows linear access to a total
memory space of 4 gigabytes.

Transputers can be programmed in conventional sequential languages such as C, Pascal, and FORTRAN.
The occam language is supported to allow the development of complex parallel programs across muitiple
transputers. However, sequential sections of code written in C, Pascal or FORTRAN can be included in an
occam program.

For further information on the transputer family, the reader is directed to [1].

The T800 is especially relevant in connection with SPICE, because of it's floating point performance and the
ability to interface to large amounts of external memory.

14 Porting SPICE to the INMOS IMS T800 transputer 195

14.3.2 The transputer I host relationship

The transputer is normally employed as an addition to an existing computer, referred to as the host. Through
the host, the transputer application can receive the services of a file store, a screen, and a keyboard. Presently,
the host computer can be an IBM PC or compatible, a NEC PC, a DEC MicroVAX II, or a Sun-3. Also available
are software tools to allow VAX development for transputer systems. For a more thorough guide to product
availability, please refer to (6).

The transputer communicates with the host down a single INMOS link. A program, called a server, executes
on the host at the same time as the program on the transputer network is run. All communications between
the application running on the transputer and the host services (like screen, keyboard, and filing resources)
take the form of messages, which are always initiated by the transputer system.

from.server

to.server

To other transputers

Local Hard Disk

Figure 14.2 The transputer I host relationship

The transputer connected to the host by means of a link adapter is known as the root transputer. Figure 14.2
shows the root transputer of a transputer network. All other transputers in the network (if there are any) are
connected, using INMOS links, to the root transputer.

14.3.3 SPICE and the transputer

A single process, such as SPICE, is run on a single transputer in the same way that a single process would
be run on any other microprocessor. Using the development tools, the single conventional program is actually
run as a process within a standard harness, which is used to establish the correct workspaces and provide
access to the screen, keyboard, and filing facilities on the host. The communication channels defined in
the harness are then mapped directly onto the hardware links of the transputer, allowing the application to
execute.

14.3.4 Multiple tasks on one or many transputers

Using the tools supplied with the transputer FORTRAN compiler, it is possible to sub-divide a single conven­
tional program into a set of occam (7) processes. The occam mUlti-process model for transputers is defined
by the CSP model of communicating processes (8). A system can be described in terms of a collection of
concurrent processes which communicate with each other and with the outside world. Processes are con­
nected together using synchronized, un-buffered, point-to-point, uni-directional communication channels. An
example of this is shown in Figure 14.3, where each circle represents a process, and each arrow represents
a communications channel. At this stage, there is no implied or rigidly defined mapping between the software
processes and the actual hardware.

196 2 Practice

Figure 14.3 occam processes and their communication channels

Some ways in which conventional programs such as SPICE can be distributed across a number of transputers
are discussed in later sections of this document. The concepts of CSP and occam are only required to
distribute multiple processes onto one or more processors. Note that there is no need to be familiar with
occam in order to be able to directly port any conventional program, such as SPICE, to a single transputer.

14.4 The transputer implementation of FORTRAN

SPICE is written in FORTRAN-77. The transputer FORTRAN compiler is based on the ANSI FORTRAN-77
standard, as defined in ANSI X3.9-1978. Extensions to the language have been provided as a transition aid
from other FORTRAN dialects. A full description of this compiler can be found in [9).

The T800 transputer has 4 Kbytes of single-cycle on-Chip RAM (SOns access time on a 20 MHz part). The
on-Chip RAM is usually at least four times faster than the external memory provided with most transputer
boards. The fastest external memory supported by the transputer is three-cycle, with most boards using four­
or five-cycle memory, although using external RAM will not make programs run three to five times slower.

The next two sections describe how the FORTRAN compiler allows the on-chip RAM to be used, in terms of
stack and code storage. The discussions are appropriate to any of the INMOS scientific language compilers.

14.4.1 Placement of the run-time stack

The user can select to place the run-time stack either in on-chip RAM or in external memory.

If the whole of the stack for a program can be accommodated within 2 Kbytes, then it can be placed on-chip
on either the T414 or the T800. The general heap storage is then placed in external memory. This is the
default assumed by the standard occam harness.

If the size of the stack is expected to be larger than 2 Kbytes, then it must be placed off-chip, and the
application is therefore run with all workspace off-chip. This is the manner in which SPICE is run. The
parameter - : 0 1, supplied to the host server at run-time, specifies that all workspace is to go off-Chip. Note
that no action is required at compile-time to specify the location of the stack. This facility should be used
while developing a program, for which one is uncertain of the requirements in terms of stack size.

14 Porting SPICE to the INMOS IMS T800 transputer 197

14.4.2 Placement of the code

The other half of on-chip RAM on the T800 (2 Kbytes) is reserved for code storage. The ordering of the files
to link is critical for the performance of the program, because code placement on a processor is determined
by the linking order of the binary object files. On the T800, files specified at the beginning of the link operation
will be loaded into the 2 Kbytes of on-chip RAM that is not reserved for the variable stack. Programs will
therefore run faster if small, speed-critical routines are placed at the beginning of the list of files to be linked,
and the occam harness is placed at the end.

It is not possible to have the whole of on-chip memory on the T800 exclusively as a stack or code area. It is
also not possible to have part of the stack on-chip and part of it off-chip. This is due to the implementation of
the development tools. Note that on the T 414, there is no internal RAM available for code storage with the
scientific language compilers.

These restrictions on the specification of the scientific-language compilers were adopted for the following
reasons. Studies showed that in the event of a trade-off in the use of on-chip memory between code and data,
it is generally more efficient to permit some data to be placed on-chip (in the stack) rather than only having
application code on-chip. This is due to the high density of transputer machine code, and the transputer's
hardware instruction pre-fetch mechanism. Therefore, to provide a development system that could be used
on both the T800 and the T414 transputer, both transputers can have their internal RAM used as a variable
stack (2 Kbytes in each case), but only the T800 can additionally accommodate some code.

14.4.3 Use of stack space

Besides deciding whether to place the stack on or off-chip, the user can choose to place the local scalar
variables of active subroutines on the heap or on the stack. Placing them on the heap guarantees that
their values remain unchanged between calls to the same subroutines, but at a cost of a measured 20%
performance penalty for the SPICE application.

By default, local scalar variables are placed on the stack. They are placed on the heap by using the IS
compiler option. To the authors' knowledge, SPICE does not rely on local variables retaining their values
between subroutine calls, so they were placed on the stack.

In addition to local variables, the stack space of FORTRAN programs is also used for SUBROUTINE calls (5
words per level of calling), storing arguments, and run-time library workspace (about 40 words).

14.5 Porting SPICE

This chapter describes how to port SPICE to run on a single T800 transputer. Details of how to run compilers,
linkers, and other software tools are not included, as these are readily available in the appropriate software
documentation, and in [10).

There are around 130 source routines in SPICE, which fall into four categories with respect to porting to the
transputer :

14.5.1 Routines needing no modification

The following routines require no modification for use with the V1.1 transputer FORTRAN compiler:

ALFNUM ALIAS AVLM16 AVLM4
AVLM8 COIV CLRMEM CMEYER
CMULT COMPRS CRUNCH OMPMEM
ERRMEM EVTERM EXTMEM FETLIM
GETCJE GETLIN GETM16 GETM4
GETM8 GETMX KEYSRC LIMVDS
MAGPHS MEMADJ MEMORY MEMPTR
MOSEQl MOSEQ2 MOSEQ3 MOSQ2

198 /

MOSQ3
NXTMEM
RELMEM
SBLSRT

MQSPOF
NXTPWR
SCALE
UNDEFI

NXTCBR
PNJ'LIM
SLPMEM
XXOR

14.5.2 Routines that set the size of VALUE in a COMMON block

NXTEVN
PTRMEM
SIZMEM

2 Practice

In porting SPICE to any new machine it is necessary to choose a value for the size of the COMMON array
called VALUE, which is used to manage the dynamic data requirements of the program. On machines that
support virtual memory it is usual to set this to a very large size, and leave the memory management system
to page the data in and out of memory. However, the transputer does not support virtual memory, but a range
of transputer boards are available with different physical memory sizes. It is therefore convenient to be able
to easily change the size of VALUE in all the routines that reference it.

This would be most easily acheived by using an include mechanism, but unfortunatly version V1.1 of the
transputer FORTRAN compiler does not support included files. We used a simple DCl procedure and the
EDT editor on the VAX to overcome this problem and to automate these changes in a single batch file,
involving a search and replace operation for each of the listed files.

From the point of view of porting SPICE the following line:

COMMON /BLANK/ VALUE (......)

must be edited so that the array VALUE has a size suitable for the hardware to be used. For example, for a
2 MByte board, the array would consist of 150000 elements each of 8 bytes, which therefore occupies 1200
Kbytes of store. See section 14.5.5 for guidance in the calculation of appropriate sizes for this array.

Here are the routines requiring this treatment:

ACAN ACASOL ACDCMP ACLOAD
ACSOL ADDELTl ADDNAM1 ALTER
ASOL BJ'l' CARD CODGEN
COMCOF CPY'l'B4 CPY'l'B8 DCDCMP
DCOP DCSOL DC'l'RANl DINIT
DIODE DISTO DMPMAT ELPRNTl
ERRCBK EVPOLY EXTNAN FINDl
FNDNAN FOURAN' GETNODl INDXX
INTGR8 lTER8 .:JFET LNlCREF
LOAD MATLOC MATPTR MODCBK
MOSCAP MOSFET NAMTABl NEWNODl
NLCSRC NODSTRl NOISE NTRPL8
OOTDEFl OOTNAMl OVTPVT PLOT
POTNODl READINl REORDR RESERV
ROOTl RONCONl SENCAL SETMEM
SETPLT SETPRN SETUP SORSTP
SORUPDl SSTF SUBCKT SUBNAM
SWAPIJ TERR TITLE 1 TMPUPD
TOPCH.Kl TRONC UPDATE

14 Porting SPICE to the INMOS IMS T800 transputer 199

14.5.3 Routines often supplied In assembler

The following routines are often supplied in assembler. Equivalent FORTRAN routines are given in sec­
tion 14.10, and we have compiled these to obtain the performance information given in this document.

COPY16
ZER016
MOVE

COPY4
ZER04

COPY8
ZEROS

The block move instructions of the transputer could be used to write efficient assembler routine equivalents
- refer to section 14.13 for some suggestions.

14.5.4 Other routines to be modified

The following routines require modification, either due to machine dependency, unsupported language exten­
sions, or compiler limitations :

ROOT This is the entry routine to SPICE. It is machine dependent, with routines to handle date and times,
file opening and closing etc. Section 14.11 gives the list of changes made to ROOT, as found by
VAX DIFFERENCES.

TITLE VAX specific dates use LOGICAL*1, which is a FORTRAN extension not supported by the transputer
FORTRAN compiler. This has been removed from TITLE, as shown in section 14.12.

SECOND This routine calls machine specific system routines concerned with timing. We simply return zero,
although a full implementation could be provided using the transputer's TIMER faCility.

LOCF This is the only routine that the authors of SPICE intended to be machine dependent. It returns the
physical address of any variable passed to it. On the VAX, LOCF calls a system routine called LOC.
We have implemented an equivalent routine to LOC as an in-line transputer assembler insert in a C
routine:

int 10c(a>
int *a;
{

}

asm {
1d1 2; /* return first parameter, which is */

/* the address of the parameter (a> */
}

This is compiled using the transputer C compiler2. The source must be compiled separately for the
T 414 and the T800 transputers to satisfy the processor type requirements imposed by the linker.
The compiled code produced is compatible with that from the FORTRAN compiler, and is linked
without problem. This is because the INMOS scientific language compiler set permits different parts
of the same task (process) to be written in different languages, and to interact using the normal
mechanisms of procedure / function calling.

It is also possible to write multi-process, mixed-language applications (like the ones described in [10]),
in which each process is written in one of the supported scientific languages. These processes then
communicate with each other using occam channels.

ERRMEM uses an Octal output specifier which is an extension not supported in transputer FORTRAN V1.1.
We changed it to use a Hex output specifier, as it was only used in connection with an error message.

MOSFET exceeded a compiler implementation limit, giving a Dictionary Table Overflow error. We overcame
this problem by replacing some unused variables at the end of COMMON block declarations with
arrays containing the same number of variables. This reduced the number of declared variables to
a compilable size. This problem should be fixed on the next release of the compiler.

2PC-hosted transputer C compiler, version 1.3, Part IMS D711C

200 2 Practice

14.5.5 Calculating the FORTRAN VALUE array size

The FORTRAN VALUE array, mentioned previously, occupies the largest amount of workspace in SPICE.
The larger this array, the bigger the simulations that can be run. The size of this array is set to occupy about
300 Kbytes less than the amount of memory available on the board once the SPICE code has been loaded.

For example, an executable SPICE file takes about 500 Kbytes of memory, leaving 1500 Kbytes on a 2 Mbyte
board (such as an IMS 8004 with T800 [6]). Each element of the VALUE array occupies 8 bytes, so if the
array was sized at 150000 elements, this would occupy 1200 Kbytes of store. So, the FORTRAN sources
would all have the array dimensioned as 150000:

COMMON /BLANK/ VALUE(150000)

This is illustrated in Figure 14.4. The T800 internal on-Chip RAM and the first 500 Kbytes are used for the
SPICE executable code. The VALUE array occupies the next 1200 Kbytes of memory, with some additional
FORTRAN workspace shown. The standard occam harness will automatically reserve sufficient workspace
for SPICE, but if the user is intent on writing their own harness, then at least 1400 Kbytes of workspace must
be reserved for SPICE. If an application has insuffiCient workspace, it will fail to operate.

Figure 14.4 SPICE memory usage for a 2 Mbyte board

As another example, on an IMS 8405 TRAM board (8 Mbytes of RAM and a T800 transputer [6)), there is
7500 Kbytes of store available after SPICE has loaded. An array of 900000 floating point values occupies
7200 Kbytes of store (8 bytes per element). Therefore, the FORTRAN source code would have the array
dimensioned at 900000 :

COMMON /BLANK/ VALUE(900000)

14 Porting SPICE to the INMOS IMS T800 transputer 201

14.5.6 Problems with long or large simulations

SPICE uses the array VALUE to store all of its simulation data structures, and to store all the simulation
output during simulation. This means that large amounts of data can be accumulated during a simulation
and this is normally coped with by virtual memory. The requested user output is transfered to the output file
at the end of the simulation.

This can give problems for large circuits on machines not supporting virtual memory, where little space is left
in which to store simulation results.

The problem can be solved by making changes to the routine DCTRAN, to cause the required voltages
and currents to be dumped to a file rather than to the array VALUE. These changes require a detailed
understanding of the internal operation of SPICE, and are beyond the scope of this document.

14.6 Performance information

14.6.1 Performance comparisons

The following table gives an indication of the performance of some randomly selected SPICE input decks
when run on a variety of different machines. The first benchmark involves a simple resistor network, the
second simulates an inverter circuit. The third benchmark represents a clock distribution network, and the
fourth is a sense amplifier circuit. Comparisons were made between a Sun-3 (with and without a 68881
numerics co-processor), a VAX 11/785 with FPA3, and the T800 transputer.

The timings were obtained by averaging the time taken for the same job to be run several times on each
machine in an attempt to isolate non-computational factors such as fluctuations in speed of disk access, I/O
bandwidth, and CPU loading peaks. Note that the output files from all machines were identical. The timings
represent the actual CPU time used, and are given in seconds.

Machine Resist Invert Corclk SenseAmp
Sun-3/160C 0.20 19.40 356.90 1855.50
Sun-3 + 68881 0.30 4.60 44.20 266.70
VAX 11/785 + FPA 0.38 4.51 30.22 141.55
IMS T800 1.48 5.17 23.72 153.64

The transputer timings do not include the time taken to boot the transputer with SPICE - they are pure
execution times. The boot time for SPICE is around 15 seconds, depending on the host computer, but once
booted it can rerun instantly without any re-Ioad penalties.

The high useage of floating point arithmetic in SPICE lends itself much better to the TaOO transputer than
the T414. The T414 requires almost 75 Kbytes of floating point software support, and SPICE ran about ten
times slower than the T800 on the same jobs. Even without a floating point processor, the T414 is still faster
than a Sun-3 without a floating point processor.

Note that for extremely small simulations, the simulation time on the transputer is dominated by file transfer
times from the host PC.

14.6.2 Additional performance improvements to SPICE on a T800

The performance described in the previous section is typical of that which can be achieved using near-standard
INMOS products. However, it is possible to obtain higher performance using the following techniques:

Faster memory and shorter cycle times

The figures quoted above are for a T800-20 transputer with a 4-cycle memory interface. This compares with
the IMS 8004 evaluation board which is supplied with a T414 and a 5-cycle memory interface. The transputer
can support a 3-cycle memory interface, which would reduce the run-times quoted above by an order of 25%.

3 FPA - Floating Point Accelerator

202 2 Practice

Sample TSOO-25 components are now available, and using these with a shorter memory cycle time would
increase performance by a futher 25%.

Optimum linkage strategy

To make best use of the existing hardware without modifying the application cllde, software tools can be used
to ensure optimal utilization of the TSOO's on-chip RAM.

Code placement is determined by the linking order of the binary object files per processor. On the TSOO,
files specified at the beginning of the link operation will be loaded into the 2 Kbytes of on-chip RAM that is
not used for the variable stack. Programs will therefore run faster if small, :;peed-critical routines are placed
at the beginning of the link list, and the harness is placed at the end. One can use profiling techniques4 to
establish the routines which consume most CPU time, and place these in on-chip RAM.

Rewriting critical routines in assembler

As mentioned earlier, the SPICE routines to move, copy, and initialize blocks of memory are often coded in
assembler. The TSOO has special instructions for performing block operations of this type. By encoding the
move, copy and zero subroutine sets into C and then transputer assembler (to ensure the use of specific
transputer instructions), a 5% to 10% performance increase was observed. This is shown in more detail in
section 14.13

Program profiling can also be used to establish the relative benefits in converting specific routines into C or
transputer assembler code.

14.7 Multiple transputer SPICE

The work described so far in this technical note has demonstrated that a single transputer is a powerful
processor in its own right. However, the transputer was specifically designed to allow many of them to be
used to solve a single problem.

There are two ways in which multiple transputers can be applied to SPICE. The first is to increase the
performance of SPICE by modifying the program to run parts of it across multiple transputers. The second is
to increase the throughput of a series of SPICE tasks by means of a processor farm, in which many copies
of SPICE are run simultaneously, each on its own transputer.

14.7.1 Ways of running SPICE on multiple transputers

There are two compute intensive tasks performed by SPICE in a simulation. The first is to set up a matrix to
be solved, which involves calculating the current through every element in the circuit from the model equations
for the device. The second is to solve the matrix to obtain an improved estimate of the unknown voltages
and currents in the circuit. Both of these operations have to be performed many times at each timestep in
the simulation, and there are usually thousands of timesteps in each simulation.

For relatively small circuits, of less than around 100 nodes, the model evaluation dominates the simulation
time. For larger circuits the matrix evaluation dominates, because the solution of large sparse matrices takes
time of order O(n 1.2) to O(n 1.4), where n is the number of nodes in the circuit.

The distribution of the solution of matrix equations across multiple processors is currently a subject of much
research [11, 12, 13]. It appears that by using the latency present in most large circuits, and by applying
relaxation and partitioning techniques, it is possible to achieve significant performance increases by using
multiple processors to solve large circuit simulation problems.

In the remainder of this section we discuss a simple technique which can be applied to SPICE to allow many
transputers to be used to speed up the evaluation of the device models. This approach has already been
experimentally applied to INMOS's in-house circuit simulator.

4For example, as in the UNIX environmenl"s PROFIL command.

14 Porting SPICE to the INMOS IMS T800 transputer

SPICE maintains a list of the devices whose currents have to be evaluated, as shown in Figure 14.5.

List of devices

I I I I I I
t

Select devices I
one by one t

Evaluate device

+
Insert
in mat

results
rix

I I I

Nodal
admittance
matrix

Figure 14.5 SPICE's device evaluation mechanism

203

For each device its terminal voltages are passed as parameters to a routine which evaluates the current
through the device (together with terminal to terminal capacitances and current derivatives with respect to
terminal voltages). The calculated values are used to fill in the appropriate locations in the nodal admittance
matrix. When this has been completed lor all devices, the matrix is solved to obtain the next estimate of the
node voltages in the circuit.

From the point of view of the present discussion it is important to notice that all the model evaluations are
completely independant of each other. It does not matter in which order they are performed, or even if they
are performed in parallel on separate machines !

This fact can be used to distribute the model evaluations across a number of processors. Figure 14.6 shows
how the concurrent model evaluations are handled, with respect to data movements in the system, by forming
work packets for a farm of model evaluators. This figure can be usefully compared with Figure 14.5 shown
previously.

In hardware terms, one method of implementing this mechanism on a number of transputers is shown in
Figure 14.7.

The core of SPICE is run on a single transputer, and the model evaluation routines are placed on a number of
other transputers. SPICE is modified so that for each device to be evaluated it sends a message to the farm
of model evaluation processors, specifying which device is to be evaluated and what its terminal voltages
are. A free processor will accept the message, evaluate the model equations, and pass back a message
containg the required results to the core transputer.

However, the core transputer is programmed so that it does not wait for this message to return, but continues
to transmit requests for other devices to be evaluated. When a results message arrives back at the core
processor it inserts the results in the appropriate location in the nodal admittance matirx as before. Again,
once all devices have been evaluated the single central transputer must solve the matrix, and the model
evaluation processors will be idle during this period.

204

List of devices

I I I I I I
f f f

Select several
devices

Nodal

L'"
~

JJ

admittance
matrix

2 Practice

Form work packets

III~
Identity

V ds

V gs

V sb

Evaluate
device models
concurrently
in farm

Receive
results packets J ~

• Identity
Insert result s I ds From farm
in matrix

Figure 14.6 Data movements required to distribute the model evaluations

Host server processors

Figure 14.7 One way of farming the model evaluations

sent to
processors

For small circuits of less than 100 nodes the model evaluations typically take 75% of the simulation time [14].
Therefore, halving the time taken for model evaluations by adding two extra transputers, should theoretically

14 Porting SPICE to the INMOS IMS TSOO transputer 205

make the simulation run 38% faster. However, in practice another copy of the model evaluation process
would be run on the core transputer, which would, at best, allow the model evaluation time to be reduced by
a factor of three. Therefore we would expect to roughly halve the simulation time by using three transputers
instead of one. From a circuit designers point of view this is a very worthwhile improvement.

Note that using an infinite number of transputers just to solve the model equations can at best only cut the
simulation time by a factor of 4, as all the remainder to the simulation is still running on the single core machine.
This illustrates that it is important to identify those sections of the code where parallelism is available, and
to concentrate on applying the correct number of processors to exploiting this potential parallelism, without
getting to the point that the remaining sequential sections of code completely dominate the CPU time.

14.7.2 A multiple SPICE farm

Farming is a technique which can be applied to almost all existing applications, where the same program is
run on a farm of processors, each one working on an independant set of data.

Some additional processes, usually written in occam are used to control and regulate the distribution of work
within the farm. The techniques of farming are explained more fully elsewhere [15, 16, 17,18,2), though the
general composition of a processor farm is shown below in figure 14.8.

transputers

Figure 14.8 A general pipeline processor farm

Concurrent processes handle the tasks of work distribution, results collection, and performing the program
itself. A system control process on the root transputer acts as an overall manager. Referring to Figure 14.8,
the farm is controlled by the systemContro~ process, work is routed into the farm by the routeWork
process, and results are collected by the merge process. In this case, the SPICE application is inserted in
the place of the standardTask process.

206 2 Practice

Although the diagram shows a pipeline farm, the farm can have any connected topology. A pipeline is
particularly easy to implement on the INMOS TRAM motherboards [6], as a suitable pipe is hard-wired into
the motherboard, and requires no additional hardware or software configuration.

The list of tasks to be executed by the farm is made available to the systemControl. process, and the
transputers are fed with tasks until there are no more left. We used a small file on the host computer to specify
the tasks to be performed. Although this approach operates several identical concurrent SPICE applications,
the time taken by any given SPICE job is not reduced.

It would be possible to combine the techniques of this and the previous section, to arrive at a system where
each farm 'worker' was itself a number of transputers. In this case, each farm worker still executes identical
code to its' neighbours, but this code is distributed over a number of transputers.

14.7.3 A networked SPICE farm example

As an example of a SPICE farm, we have constructed a tree-like farm to relieve VAX CPU overhead, by
offloading SPICE jobs from a VAX to a PC-hosted server which returns SPICE output files to the VAX. The
server was written to communicate via DECnet, allowing the farm to become a remote processing engine for
a VAX network. This is shown in Figure 14.9.

Local Hard Disk

Figure 14.9 A four processor SPICE system

In this implementation, the PC server program was used to control the farm, receiving incoming task requests
over DECne!. An occam multiplexer was used to correctly interleave SPICE accesses to the host facilities.
Although a tree structure rather than a pipeline was used, the farming principle is the similar to that discussed
in the previous section. A full discussion of our implementation of this DEC net-hosted farm server, as shown
in Figure 14.9, can be found in [19].

14.8 Summary

This technical note has demonstrated that existing programs can be easily ported to run on the transputer.
Very little modification was required to SPICE, which is a large and demanding application, to allow it to
compile and run on the transputer.

The floating point performance of the IMS T800 allowed a pure FORTRAN version of SPICE to run more
than one and a half times faster than on a Sun-3 with 68881 coprocessor, and nearly as fast as a version
with assembler code routines running on a VAX 111785 with floating point accelerator. By coding the same

14 Porting SPICE to the INMOS IMS TSOO transputer 207

memory management routines in transputer assembler as those coded in assembler on the VAX, we obtained
a performance equal to that of the VAX 11/785.

We have discussed how a single conventional program can be distributed over a number of processors, and
illustrated some of the techniques that can be used to make use of potential parallelism in an application. We
have also shown how a farm of transputers can be used as a cost effective way of offloading CPU intensive
tasks from mainframe and mini-computers.

14.9 References

The Transputer Databook, INMOS Limited, 1989.

2 Issues in Application porting and farming, Technical Note 53, INMOS Limited.

3 SPICE2: A computer program to simulate semiconductor Circuits, L. W. Nagel,
Memorandum No. ERL-M520, University of California, Berkeley. May, 1975

4 Program Reference for SPICE2, E. Cohen,
Memorandum No. ERL-M592, University of California, Berkeley. June, 1976

5 Lies, damned lies, and benchmarks, Technical Note 27, INMOS Limited.

6 INMOS Spectrum, (Contains a brief description of INMOS products) INMOS Limited.

7 occam 2 Reference Manual, INMOS Limited, Prentice Hall.

8 Communicating Sequential Processes, C. A. R. Hoare, Prentice Hall 1985.

9 3L FORTRAN Reference Manual (compiler version 1.1), INMOS Limited

10 Using the occam toolset, Technical Note 55, INMOS Limited.

11 Relaxation techniques for the simulation of VLSI Circuits,
J. K. White and A. Sangiovanni-Vincentelli, Kluwer Academic Publishers, 1987

12 A Pipelined Event-driven Mixed-mode Simulator, Clive M. Dyson and Alan H. Gray,
IEEE Int. Conf on Computer-Aided DeSign, pp 488-491 Santa Clara, California, 1987

13 CINNAMON: Coupled integration and nodal analysis of MOS networks, L. M. Vidigal,
S. R. Nassif and S. W. Director, 23rd DeSign Automation Conference, pp 179-198,1986

14 The Simulation of Large-scale Integrated Circuits, A. Richard Newton,
Memorandum No. ERL-M78-52, University of California, Berkeley. July, 1978

15 Exploiting concurrency; A Ray tracing Example, Technical Note 7, INMOS Limited.

16 Program design for concurrent systems, Technical Note 5, INMOS Limited.

17 Performance Maximization, Technical Note 17, INMOS Limited.

18 Communicating Process Computers, Technical Note 22, INMOS Limited.

19 A transputer farm accelerator for networked computing facilities,
Technical Note 54, INMOS Limited.

20 Transputer instruction set: a compiler-writers guide, INMOS Limited, Prentice Hall

208

14.10 Routines for copy. zero and move

This section lists the FORTRAN equivalents for the copy, zero, and move routines.

C

SUBROUTINE COPY4(IFROM,ITO,NWORDS)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION IFROM(l),ITO(l)

2 Practice

C THIS ROUTINE COPIES A BLOCK OF ,NWORDS' WORDS (OF THE APPROPRIATE
C TYPE) FROM THE ARRAY 'FROM' TO THE ARRAY 'TO'. IT DETERMINES FROM
C WHICH END OF THE BLOCK TO TRANSFER FIRST, TO PREVENT OVER-STORES WHICH
C MIGHT OVER-WRITE THE DATA.
C

IF (NWORDS. EQ. 0) RETURN
IF (LOCF(IFROM(l».LT.LOCF(ITO(l») GO TO 20

C. .. LOCF () RETURNS AS ITS VALUE THE ADDRESS OF ITS ARGUMENT
DO 10 I=l,NWORDS

C

C

C

C

C

ITO(I)=IFROM(I)
10 CONTINUE

RETURN

20 CONTINUE
DO 40 I=NWORDS,l,-l
ITO(I)=IFROM(I)

40 CONTINUE
RETURN
END

SUBROUTINE COPY8(RFROM,RTO,NWORDS)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION RFROM(l),RTO(l)
IF (NWORDS.EQ.O) RETURN
IF (LOCF(RFROM(l».LT.LOCF(RTO(l») GO TO 120
DO 110 I=l,NWORDS
RTO (I) =RFROM (I)

110 CONTINUE
RETURN

120 CONTINUE
DO 140 I=NWORDS,l,-l
RTO(I)=RFROM(I)

140 CONTINUE
RETURN
END

SUBROUTINE COPY16(CFROM,CTO,NWORDS)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMPLEX CFROM(l),CTO(l)
IF (NWORDS . EQ. 0) RETURN
IF (LOCF(CFROM(l».LT.LOCF(CTO(l») GO TO 220
DO 210 I=l,NWORDS
CTO(I)=CFROM(I)

210 CONTINUE
RETURN

220 CONTINUE
DO 240 I=NWORDS,l,-l
CTO(I)=CFROM(I)

240 CONTINUE
RETURN
END

SUBROUTINE ZER04(IARRAY,LENGTH)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

14 Porti!lg SPICE to the INMOS IMS TaOO transputer

C
DIMENSION IARRAY(l)

C THIS ROUTINE ZEROES THE MEMORY LOCATIONS INDICATED BY ARRAY(l)
C THROUGH ARRAY(LENGTH).
C

C

IF (LENGTH.EQ.O) RETURN
DO 10 I=l,LENGTH
IARRAY(I)=O

10 CONTINUE
RETURN
END

SUBROUTINE ZER08(ARRAY,LENGTH)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION ARRAY (1)
C THIS ROUTINE ZEROES THE MEMORY LOCATIONS INDICATED BY ARRAY(l)
C THROUGH ARRAY (LENGTH) .
C

C

IF (LENGTH.EQ.O) RETURN
DO 10 I=l,LENGTH
ARRAY (I) =0. ODO

10 CONTINUE
RETURN
END

SUBROUTINE ZER016(CARRAY,LENGTH)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMPLEX CARRAY(l)

C THIS ROUTINE ZEROES THE MEMORY LOCATIONS INDICATED BY ARRAY(l)
C THROUGH ARRAY (LENGTH) .
C

C

IF (LENGTH.EQ.O) RETURN
DO 10 I=l,LENGTH
CARRAY(I)=CMPLX(O.OEO,O.OEO)

10 CONTINUE
RETURN
END

SUBROUTINE MOVE (A,I,B,J,N)
CHARACTER*l A(l),B(l)

C THIS ROUTINE MOVES N CHARACTERS FROM CHARACTER ARRAY B TO CHARAC-
C TER ARRAY A, BEGINNING WITH THE J*TH AND I*TH CHARACTER POSITIONS,
C RESPECTIVELY.
C

IF (N.EQ.O) RETURN
DO 10 K=l,N
A(I+K-1)=B(J+K-1)

10 CONTINUE
RETURN
END

209

210 2 Practice

14.11 Changes to ROOT found by V,,"X DIFFERENCES

This section is concerned with changes made to ROOT to allow compilation with the V1.1 transputer FOR­
TRAN compiler. The changes mostly concern the VAX-specific handling of files, dates, and times. The first
part of each result shows the source as used on the VAX, and the second part shows the source as used on
the transputer.

File [.VAX]ROOT.FOR;2

157 COMMON /VMSDAT/ BDATE
158 LOGICAL*l BDATE(9)
159 CHARACTER*64 FILNAM
160 C

File [.TX]ROOT.FOR;2
158 C COMMON /VMSDAT/ BDATE
159 C LOGICAL*l BDATE(9)
160 C CHARACTER*64 FILNAM
161 C

File [.VAX]ROOT.FOR;2

169 C ****~.**
File [.~lROOT.FOR;2

170 DATA AHDRCMD / 8HOO-00-00 /
171 C **

File [.VAX]ROOT.FOR;2

185 CALL TODALF(ATIME)
186 CALL DATE (BDATE)
187 BOLTZ=1.3806226D-23

File [.TX]ROOT.FOR;2
187 C CALL TODALF(ATIME)
188 ATIME=AHDRCMD
189 C CALL DATE(BDATE)
190 BOLTZ=1.3806226D-23

File [.VAX]ROOT.FOR;2

202 TYPE 1
203 1 FORMAT(' INPUT FILE: '$)
204 ACCEPT 2, FILNAM
205 2 FORMAT(A)
206 OPEN (UNIT=5,NAME=FILNAM,TYPE='OLD')
207 TYPE 3
208 3 FORMAT(' OUTPUT FILE: '$)
209 ACCEPT 2,FILNAM
210 OPEN (UNIT=6,NAME=FILNAM,TYPE='NEW')
211 C

File [.TX]ROOT.FOR;2
205 C TYPE 1
206 C 1 FORMAT(' INPUT FILE: '$)
207 C ACCEPT 2,FILNAM
208 C 2 FORMAT(A)
209 COPEN (UNIT=5,NAME=FILNAM,TYPE='OLD')
210 C TYPE 3
211 C 3 FORMAT(' OUTPUT FILE: '$)
212 C ACCEPT 2,FILNAM
213 COPEN (UNIT=6,NAME=FILNAM,TYPE='NEW')
214 OPEN (UNIT=5,FILE='SPICE.IN' ,STATUS='OLD')
215 OPEN (UNIT=6,FILE='SPICE.OUT' ,STATUS='NEW')
216 C

File [.VAX]ROOT.FOR;2

215 CALL TIMRB
216 CALL GETCJE

File [.TX]ROOT.FOR;2
220 C CALL TIMRB !CMD
221 CALL GETCJE

14 Porting SPICE to the INMOS IMS TSOO transputer 211

File [.VAX]ROOT.FOR;2

354 CALL TIMRE
355 ET=TIME2-TIMEl

File [.TX]ROOT.FOR;2
359 C CALL TIMRE !CMD
360 ET=TIME2-TIMEl

File [. VAX] ROOT. FOR; 2

368 900 IF «MAXTIM-ITIME).GE.LIMTIM) GO TO 10
369 WRITE (IOFILE,901)
370 901 FORMAT (' lWARNING: FURTHER ANALYSIS STOPPED DUE TO CPU TIME LIMIT'
371 1/)
372 1000 IF(NODATA.NE.O) WRITE(IOFILE,1001)

File [.TX]ROOT.FOR;2
373 C 900 IF «MAXTIM-ITIME).GE.LIMTIM) GO TO 10
374 C WRITE (IOFILE,901)
375 C 901 FORMAT('lWARNING: FURTHER ANALYSIS STOPPED DUE TO CPU TIME LIMIT'
376 C 1/)
377 1000 IF(NODATA.NE.O) WRITE(IOFILE,1001)

14.12 Changes to TITLE found by VAX DIFFERENCES

ThiS section is concerned with changes made to the TITLE routine to permit compilation with the V1.1
transputer FORTRAN compiler. The changes mostly concern the VAX-specific handling of dates and times.
The first part of each result shows the source as used on the VAX, and the second part shows the source as
used on the transputer.

File [.VAX]TITLE.FOR;2

33 COMMON /VMSDAT/ BDATE
34 LOGICAL*l BDATE (9)
35 C

File [.TX]TITLE.FOR;2
33 C COMMON /VMSDAT/ BDATE
34 C LOGICAL*l BDATE(9)
35 C

File [.VAX]TITLE.FOR;2

47 WRITE (IOFILE,31) BDATE,APROG,ATIME, (ATITLE(I),I=l,10)
48 31 FORMAT(lHl,15(lH*),9Al,lX,23(lH*),3A8,23(lH*),A8,15(lH*)//lHO,
49 1 15A8/)

File [.TX]TITLE.FOR;2
47 C WRITE (IOFILE,31) BDATE,APROG,ATIME, (ATITLE(I),I=l,10)
48 WRITE (IOFILE,31) APROG,ATIME, (ATITLE(I),I=l,10)
49 C 31 FORMAT(lHl,15(lH*),9Al,lX,23(lH*),3A8,23(lH*),A8,15(lH*)//lHO,
50 31 FORMAT(lHl,15(lH*),10(lH*),23(lH*),3A8,23(lH*),A8,15(lH*)//lHO,
51 1 15A8/)

File [.VAX]TITLE.FOR;2

58 100 WRITE (IOFILE,101) BDATE,APROG,ATIME, (ATITLE(I),I=l,10)
59 101 FORMAT(lHl,7(lH*),9A1,lX,7(lH*),3A8,7(lH*),A8,5(lH*)//lHO,10A8/)
60 IF (ICOM.EQ.O) GO TO 110

File [.TX]TITLE.FOR;2
60 C 100 WRITE (IOFILE,101) BDATE,APROG,ATIME, (ATITLE(I),I=l,10)
61 100 WRITE (IOFILE,101) APROG,ATIME, (ATITLE(I),I=l,10)
62 C 101 FORMAT(lHl,7(lH*),9Al,lX,7(lH*),3A8,7(lH*),A8,5(lH*)//lHO,10A8/)
63 101 FORMAT(lHl,7(lH*),10(lH*),7(lH*),3A8,7(lH*),A8,5(lH*)//1HO,10A8/)
64 IF (ICOM.EQ.O) GO TO 110

212 2 Practice

14.13 Rewriting routines in transputer assembler

As an example of re-writing a SPICE FORTRAN subroutine in transputer assembler, consider the move
subroutine.

The FORTRAN for this routine has already been shown in section 14.10. Since the transputer FORTRAN
compiler does not permit the inclusion of transputer assembler mnemonics, the first stage is to code and test
an equivalent routine written in C. This is shown below:

int move (a, i, b, j, n)
char *a, *b;
int *i, *j, *n;
{

int k;

if (*n == 0) return;
for (k=-l; k < (*n)-l; k ++)

a[(*i)+k] = b[(*j)+k];
}

A couple of points need explaining here. Firstly, the parameter passing mechanism implemented in the
transputer FORTRAN compiler is to call by reference. Secondly, arrays in FORTRAN (in SPICE) generally
start from subscript 1, and those in C start from subscript O. This accounts for the start and finish values of
the index variable k shown above.

The V1.3 transputer C compiler allows limited transputer assembler inserts, using the asm directive. So, the
loop construct in the C representation is replaced by an explicit transputer assembler instruction, the move
instruction. One way of doing this is shown below:

int move (a, i, b, j, n)
char *a, *b;
int *' 1, *' J, *n;
{

int source, dest, l.en;

source = b + (*j) - 1;
dest = a + (*i) - 1;
l.en = *n;

asm
l.dl. 0 /* source */
l.dl. 1 /* dest */
l.dl. 2 /* l.en */
move

The move instruction is more fully described in (20), but briefly it takes a source, destination, and byte
count, and performs a fast memory copy operation. The arguments are easily set up in C, and there is little
performance penalty as this is only done once. The C compiler allocates local integer automatic variables in
the order they are declared, starting from workspace location O. Therefore, the instruction l.dl. 0 will access
the data held in source, which is the address of the vector b.

By implementing the seven move, copy, and zero routines in C, a 5% to 7% performance increase over
the FORTRAN equivalents were observed. This can partly be explained by remembering that the FORTRAN
routines had to call C functions to obtain the addresses of the vectors being operated on - this overhead is
not incurred here. By implementing the move function in the assembler shown above, another 2% increase
was observed.

This technique can also be used in other areas.

213

15 A transputer farm accelerator for networked computing facilities

15.1 Introduction

This technical note describes the use of INMOS transputers as end-application accelerators to a larger
computing resource. As well as describing a specific implementation, some general ideas and arguments are
discussed.

15.1.1 A modern trend

In contrast to the prominence of centralized computing facilities traditionally associated with large companies
and institutions, nowadays the trend is towards desktop personal computers and networked diskless-node
workstations.

This trend has been brought about by the decreasing cost and increasing performance of personal computers
and networking options, which are being offered by a growing number of manufacturers.

By having desk-top processing power at one's finger tips, users have the response, flexibility and the control
they want over the software they use. In addition, they are not as dependent on the loading and reliability (or
otherwise) of a centralized machine and it's communications network.

As an example of this, it is not at all uncommon to see a centralized cluster of VAX machines, spanned by
networkS, with various satellite MicroVAXes and DECnet-DOS personal computers. This network is frequently
composed of several sub-nets, spanning the geographical distances between the sites of a company. A fairly
typical company network is shown below in figure 15.1. In the figure, the geographical dispersion of the
computers may extend across several buildings, towns, or countries.

Figure 15.1 A typical computer network

15.1.2 Resolving the loading problem

Despite the proliferation of networked workstations and localized personal-computer processing power, the
centralized resources are often overloaded with requests for large amounts of compute-power. Many tasks
are just too large for the workstations and personal computers to handle in a reasonable timescale. It only
takes a few such compilations and simulations to be concurrently executing on most machines to bring them
to a virtual halt. How can this be avoided?

One approach would be to use an organization's existing infrastructure of networks and remote workstations
to offload work from the centralized computers and MicroVAXes. This could be achieved by having, at any
physical location on a connected network, a PC- or MicroVAX-hosted server, connected to a transputer farm

214 2 Practice

capable of extensive number crunching. In the remainder of this document, the word 'farm' will be used to
signify a collection of transputers, all executing the same application but on different data sets.

Such a system could be totally transparent to users of the services that most incapacitate the computing
resources. They would invoke the application in exactly the normal way, except that the work would be
performed remotely, by transputers, and the results would be returned shortly afterwards. Transputers can
offer a previously impossible amount of compute-power in a small box.

A PC-hosted transputer server system can run existing applications, unmodified, and reduce loading from
overworked machines, in a manner that is attractive because of it's flexible and infinite expand ability. Further­
more, once the application has been ported to a transputer, it is independent of any of the other computer or
communications equipment owned.

If you're still interested, read on

15.2 The systems involved

This chapter will discuss the hardware and software systems involved in the implementation to be described,
with a view to placing the requirements and demands made of everything in some sort of perspective. The
discussion focusses on specific systems, although the arguments are appropriate in a more general sense
too.

The items that have to be discussed are the INMOS transputer, the transputer host, the centralized computing
resource, and the communications network. The arrangement is as shown below in figure 15.2.

transputers

Figure 15.2 From the VAX to the transputer

15.2.1 The INMOS transputer

The INMOS transputer is a high performance micro-processor, offering a CPU, RAM, fast serial links, and
various applications-specific facilities on a single chip of silicon. The IMS T800 transputer combines a 32-bit
10 MIPS integer CPU, a 1.5 MFlops 64-bit floating point processor (compliant to the ANSI/IEEE 754-1985
floating pOint arithmetic standard [1 n, four 20 MHz serial links, and four kilobytes of fast single-cycle RAM
(50ns access on the 20 MHz part). This technical note will make particular reference to the IMS T800, since
the applications described make good use of the in-built floating point processor.

15 A transputer farm accelerator for networked computing facilities 215

For a proper technical description of the INMOS transputer family, the reader is directed towards [2].

15.2.2 The transputer host

The transputer is normally employed as an addition to an existing computer, known as the host. In the
context of this discussion, the host is a personal computer - an IBM PC or compatible. Through the host,
the transputer application can receive the services of a file store, a screen, and keyboard.

The selection of the transputer host is important for two main reasons: firstly, it has to be able to accommodate
and communicate with transputer hardware; secondly, it has to be capable of appearing as a node on the
network to the centralized computing resource. It should also possess some local file store such as a 20
Mbyte Winchester, although our implementation used a virtual disk on the VAX.

The IBM PC and most of its clones fulfil the main requirements.

15.2.3 The existing computing resource

This will typically consist of a centralized or distributed cluster of large mini-computers or main-frame com­
puters, interconnected by one or more networks. The machines may all be of different type, manufacture,
and specification.

In this technical note, the existing computing resources are represented by a pair of DEC VAX 11/785 mini­
computers, a number of DEC MicroVAX II's, and an Ethernet LAN (Local Area Network). The network involved
is in fact more extensive than suggested here, but this document discusses the only relevant part of it.

15.2.4 The communications network

This section gives an overview of the network. In hardware terms, the relevent part of our network was an
Ethernet network. An Ethernet network is a finite capacity shared-channel LAN. Sites on the network, called
nodes, are connected by using vampire taps on a single co-ax cable.

In software terms, we used DECnet software to control the network activity.

DECnet Introduction

The term DECnet refers to a range of software that provides a network interface for Digital Equipment Corpo­
ration operating systems. A set of standards called the Digital Network Architecture defines the relationships
between the various network components.

DECnet allows multiple computer systems to communicate and share resources within a network. Each
computer system, called a node, is connected by some physical communications medium. Tasks that run
on different nodes and exchange data are connected by logical links. Logical links are temporary software
information paths established between two communicating tasks in a DECnet network.

DECnet-DOS is installed on a PC node in the network, on top of the existing MS-DOS operating system. It
is said to be a non-routing implementation of the Phase IV Digital Network Architecture.

DECnet concepts

A client task is the program that initiates a connect request with another task. The server task waits for and
accepts/rejects the pending connect request. Client and server' tasks communicate through sockets. These
tasks exchange data over logical links.

Sockets are the basic building blocks for DECnet-DOS task-to-task communication, and are created by tasks
for sending and receiving data. They contain information about the status of the logical link connection.

Each system in a DECnet network has a unique node name and address. When initiating a connect request

, The word server is used here in a different context from the rest of this document

216 2 Practice

with a remote node, the node is identified by its name or address.

DECnet-DOS allows C and assembly-language programs to use sockets to perform DECnet functions. This
allows a user application to communicate with another application running on a different node, using DECnet.

Refer to the DECnet-DOS programmer's reference manual [3] for further information.

15.2.5 How everything fits together

On local storage (or virtual disk) media, the PC will have copies of all the application code that may be required
(suitably prepared for execution on the transputer). The relevant piece of application code is initially booted
to the transputer network using a special PC file server 1 loader. The special server monitors DECnet instead
of the PC's keyboard. This means that it can accept tasks over the network from the VAX automatically, and
act as a completely un-attended autonomous system.

When the user wishes to send a task specification, the VAX software establishes a logical link by means of
a connect request procedure. The logical link allows the exchange of data between the VAX and the PC
server, because the PC has a unique node name and address on the network. The input data is forwarded
to the transputer by the server, and the results are collected afterwards and returned to the originator of the
task request.

Depending on the transputer hardware available in the system, several concurrent tasks can be underway at
once. It is possible for all these tasks to be different applications entirely. It's up to you, and is easily altered
to suit the demands made on the transputer workers.

15.3 A specific Implementation

This chapter describes a specific implementation of a DECnet hosted transputer server, undertaken at INMOS
in Bristol. The system is extendible, transparent to the user, and involved little change to the application code.
It is also simple to maintain from both a hardware and a software point of view.

Firstly, an overview of the system is given, then some design issues are discussed. Then, the PC, transputer,
and VAX support detail is explored, followed by an outline of how the system was operated.

15.3.1 Overview

INMOS Corporation (Colorado) used a version of SPICE, written in FORTRAN, for intensive circuit simulation
on a VAX. To relieve VAX CPU overhead, it was planned to offload SPICE jobs to a server which would simply
return the results to the VAX. The system is referred to as MultiSPICE.

The implementation consisted of three concurrently executing copies of SPICE each running on their own
T800 transputer, shown in figure 15.3.

This level of parallelism granularity is at the job-level, in that there was to be no attempt to alter the code
of SPICE itself to explicitly run parts of the application in parallel. Speedup can be achieved by means of
adding more processors, each running another completely independent version of the application code. The
transputer network was hosted by a PC, from which it obtained local filing facilities. For this application, each
SPICE worker packs about the same computation power as a VAX 11/785 with FPA support.

Each SPICE worker ran on a B405 TRAM module, offering an IMS T800-20 transputer with 8 Mbytes of RAM.
For smaller simulations, the B404 TRAMs, which have 2 Mbytes of RAM with an IMS T800 transputer, were
used. The connection to the IBM PC was by means of a single IMS B004 evaluation board with an IMS T414
transputer, which was used for the multiplexer.

15 A transputer farm accelerator for networked computing facilities 217

Local Hard Disk

Figure 15.3 A four processor SPICE system

15.3.2 System design notes

Requirements

The system had to be simple to operate and maintain, capable of operating with several transputers in a
processor 'farm', capable of integrating additional applications, it had to be extensible, and it had to offer a
useful service to the users. In the event of the application crashing, the system should endeavour to recover
itself automatically. This had a bearing on the network topologies permitted, and the distribution of support
processes in the farm network. The interface to DECnet would be through the PC server, which would be
modified to accommodate this requirement.

Some of these requirements are discussed below.

Overall system f100rplan and development strategy

Each SPICE program runs on a separate Taoo transputer, to obtain the maximum performance. In this and
the following discussions, the term 'worker transputer' will be used to indicate a transputer which executes
the target application.

Since the server would have to be modified anyway to communicate with DECnet, it was decided to delegate
to the server the allocation of tasks to each worker transputer. A multiplexer was written in occam to ensure
correct processor interleaving when communicating with the server.

Automated failure recovery and network topology implications
-

The occam multiplexer sits between all tasks on the worker transputers and the host server, as shown
in figure 15.3. As such, it is aware of every inter-communication between any worker and the server. In
addition to performing message interleaving between all the workers, it provides timeout facilities to identify
if any worker has been 'silent' for greater than some specified time interval. This information can be used by
the server to notify the VAX if any jobs fail to complete for some reason. This maintains the reliability and
throughput of the system in the event of a partial failure, and allows a graceful degradation of the system.
Individual jobs do not see any degradation.

The requirement for this capability arises from the fact that the SPICE program does occasionally crash while
performing a simulation (not just on transputer systems).

By placing each SPICE on a transputer which is separate from the multiplexer transputer used by other
worker transputers, it can be guaranteed that should any SPICE job crash a transputer, the multiplexer can

218 2 Practice

detect this and take action to complete current jobs and re-boot the network automatically. The guarantee
of automatic recovery from a crashed task arises from the fact that the multiplexer has a transputer to itself
(which excludes parasitic shared-memory problems with rogue processes on other transputers), is written
purely in occam and is significantly less complex than SPICE - it will not crash.

One consequence of the 'separate multiplexer per transputer' approach, as well as the cost, concerns the
maximum number of SPICE workers that can be connected without compromising the recovery capability of
the system. Because each transputer has four links, it can multiplex three inputs down to one output. So, up
to three SPICE processors can be run with one multiplexer. '

By cascading multiplexers, additional hardware links become available to accommodate more task processors.
As an example, up to three 'worker multiplexers' (denoted Wkr Mux in figure 15.4) may be controlled from
an 'intermediate multiplexer' (denoted Int Mux), and each worker multiplexer can of course accommodate
three SPICE tasks. The distinction between the multiplexer types is as follows: a worker multiplexer connects
directly to application workers and has the additional role of timeout monitoring to detect 'dead' workers; the
intermediate multiplexer connects only to occam worker multiplexers and does not require to perform timeout
detection.

This design of point-to-point communication allows for more T800s to be controlled if necessary, and also
serves to contain any 'failed' SPICE jobs, as discussed above. The multiplexers can be connected into quite
complex configurations, providing that no implementation limits of the host, it's operating system, or the server
are exceeded (for example, there may be a host operating system limit on the maximum number of files that
can be open at once). Some possibilities are outlined in figure 15.4.

Local Hard Disk Expansion

Figure 15.4 Multiplexer connectivity example

Had a pipeline-based topology been employed, this would have necessitated a multiplexer and SPICE to
reside on each transputer. While this is straight-forward to arrange, it is conceivable (although improbable)
that should a SPICE task fail, this sharing of hardware by a rogue process and a healthy one might prevent
the multiplexer from sending a failed signal to the host server, which would thereby prevent the network from
automatically rebooting.

In most practical systems, however, this requirement for failure recovery can be satisfied to an almost equiv­
alent level without the need for a transputer per multiplexer - this is useful in keeping the cost of the system
realistic. The method we adopted is only one of several options we could have chosen.

15 A transputer farm accelerator for networked computing facilities 219

15.3.3 PC support

The PC support is provided by modifications to the the standard file server I loader program, called AFserver.
These modifications allow the server to control bi-directional communciations between the PC and the VAX,
via DECnet.

An outline of the PC server

The PC server has two important functions to perform. Firstly, it must communicate with the transputer board,
which will send requests for work. Secondly, it must communicate with DECnet and transceive work requests
and results between the PC file-store and the VAX.

The original PC server, called AFserver, is written in C. It consists of a small collection of functions which
allow communication between the transputer system and the PC host. Normal server functions include file
access and stream management etc. This communication is implemented using an INMOS link-adaptor,
which interfaces a transputer link to the host PC's bus.

The small collection of routines provided by the server are grouped together in a flexible way, facilitating
'hooks' for adding additional commands into the body of the server. In different situations, where a lot of
application code has to remain on the PC host, the source of the AFserver could be built into the PC-part of
the application [4).

The transputer and the host conform to a master I slave relationship. The transputer is the master, implying
that that all commands, which form part of the so-called 'AFserver protocol', are initiated from the transputer
system. The function that decodes the command coming from the INMOS link-adaptor (connected to the
transputer system) is called read_link () . This is outlined below:

void read link ()
/* Read a-message coming down the link. */
{

if (read_integer ('command»
{

} ;

switch (command)
{

}

case TERMINATE CMD:
filer close ():
write-integer (F OK);
terminate server-(T TERMINATED);
break; - -

default:
terminate server (T_ILLEGAL_COMMANO);

It should be apparent how additional cases can be added to the AFserver protocol to accommodate the user's
specific requirements, by providing further alternatives in the switch statement.

The design of the server, in connection with the protocols involved in managing interactions with the transputer
on the one hand, and interactions with DECnet on the other hand, is now discussed.

220 2 Practice

Server extensions

It was decided to change the transputer's AFserver protocol as little as possible, and make the PC server
contain all the DEC net accessing software (although this has the effect of making the PC server less general­
purpose). Only two additional commands were added to the AFserver's protocol. These were:

• FinishedTask. Cmd : Sent to the server from a SPICE worker transputer to identify a completed
task and request more work. Parameters identify the current task completed, and the name of the
new task to be started is returned .

• Failed. Cmd: Sent to the server by the occam multiplexer, following an extended period of
inactivity by a SPICE worker. There are no parameters for this command.

The operation of the SPICE system, and it's use of these commands is now outlined.

System operation

The FinishedTask. Cmd is sent to the server from an IMS TaOO transputer running a SPICE task. When
idle, each SPICE sends a FinishedTask.Cmd command with a null filename every second. If a SPICE
has just completed a task, it sends the name of the completed task as a parameter to FinishedTask. Cmd.
When the server receives a FinishedTask. Cmd, it checks the filename parameter. If the filename was
a valid one, the server copies the output file to the VAX. Then, regardless of the filename parameter, the
server polls DECnet (on the listening socket) to see if any new connect requests have been received. If so,
the connect request is accepted, the logical link is attached to the data socket, and transfer can occur. The
new file name is read, the file is copied onto local disk, and the local file name is sent to the available SPICE
worker.

The server initially allocates a socket on which to listen for incoming connect requests (for task number 242
- see the implementation notes in the next section). It maintains a local list of file names, their corresponding
VAX destinations, and their data socket numbers. This is because SPICE tasks can originate from any of
several VAXes on the network, from different users, and from different directories, so the local filename is
insufficient information to allow the results to be returned to the sender.

The Failed. Cmd, is sent to the server when an occam multiplexer believes that a SPICE simulation has
failed. After receiving this command, the server does not accept any new connect requests. The server
doesn't know which SPICE task has failed until the other tasks finish or fail, because it does not maintain a
correspondance list of transputers executing specific tasks. When all current tasks complete, or fail, the server
reboots the transputer network and sends messages down the remaining logical links to explain the failure to
the VAX users. The whole network has to be rebooted because of the use of the standard SubSystem ports
on the evaluation boards - it is not easy to reboot individual transputers in the network.

The server only polls DECnet when there is a transputer available to do work. The main reason for doing this
was to improve the file server response for the transputer system, since polling DECnet is time consuming
and only needs to be done when a SPICE processor is waiting for a task filename.

15 A transputer farm accelerator for networked computing facilities 221

Implementation of the new server commands

This section discusses in some detail the C extensions written for the AFserver.

The read_~.ink 0 function is shown here with the two additional hooks to implement the extra AFserver
protocol tags, called FINISHEDTASICCMD and FAILED_CMD:

vo.id read ~.ink ()
/* Read a-message com.ing down the ~.ink. */
{

}

.if (read_.integer (&command»
{

} ;

sw.itch (command)
{

}

case TERMINATE CMD:
f.i~er c~ose ();
write-integer (F OK);
terminate server-(T TERMINATED);
break; - -

/* new AFserver protoco~ commands for SPICE farm */
case FINISHEDTASK CMD

finished task();
break; -

case FAILED CMD
faibd(f;
break;

defau1t:
terminate server (T_ILLEGAL_COMMANO);

Consider the FINISHEDTASK_CMD first.

222 2 Practice

Implementing the FINISHEDTASK_CMD command

The FINISHEDTASICCMD is sent by a SPICE application when it is available to do work. It is processed
by the set of functions shown in figure 15.5. This figure also shows the hierarchy of these functions.

Figure 15.5 The FINISHEDTASK_CMD function hierarchy

When the server receives the FINISHEDTASK_CMD, it knows that there could be an output file ready to
send to the VAX. If so, then it sends the file to the VAX using the return_file 0 function. Next, it polls
DECnet to see if there are any connection requests. This is outlined in the finished_task () function:

void finished task()
/* Just receIVed FINISHEDTASK CMD from worker multiplexer, */
/* so send output file back to the VAX and check for a new */
/* input file to be processed by the transputer farm. */

int block size;
char buffer [RECORD_LENGTH + 1];

if (read_record (&block_size, buffer»
{

}

buffer [block size] = '\0';
/* buffer is the name of the finished task */
if (block size > 0)

return file(buffer, block_size);
if (aborted) -
(

}
el.se
(

write record(O, nn);
write:inteqer(OPERATIONFAlLED_ERR);

strcpy(buffer, check dnet(»;
/* about to write filename info to transputer */
write record(strlen(buffer), buffer);
write:inteqer(F_OK);

Notice the use of the aborted flag in the above function, which is set as part of the FAILED_CMD handler.
If the aborted flag is set, then the network will shortly reboot so no further polling of DECnet is entertained.

15 A transputer farm accelerator for networked computing facilities

If the system is still allowed to poll DECnet, then it does so using the check_dnet 0 function:

char *check dnet()

{

}

/* Check DECNet for incoming connect requests, */
/* returns pointer to a fi1ename or NULL */

struct timeva1
{

} tim;

10ng
10ng

tv sec;
tv:usec;

unsigned 10ng read;
int nfds;
int i;
int ready_bits;

tim.tv sec = 0;

/* seconds */
/* and microseconds */

tim.tv-usec = 25; /* check for activity for 25 microsec */
read =-l«sock no;
nfds = sock_no-+ 1;

if (keyb input(»
net err(NULL, 0);

-/* check active sockets for input */
if (se1ect(nfds, &read, 0, 0, &tim) > 0)

conn accept () ;
-/* conn request received, wait for fnam*/

read = in use mask;
nfds = MAX SLAVES + 3;
ready bits-= se1ect(nfds, &read, 0, 0, &tim);
if (ready bits > 0)

return(read_vax_record(read»;

if (ready bits < 0)
net_err ("Cannot se1ect data sockets: \n", errno);

return (NULL);

223

The check_dnet () function polls DECnet and listens for connect requests. If it receives a connect request,
it uses low level DEC net socket interfacing commands in conn_accept to establish a data logical link over
a new data socket. The routine uses a number of global variables, most of which are concerned with
managing the available/used DECnet sockets. check_dnet () uses read_vax_record () to read one
of the sockets specified, display the record on the console, and return a pointer to valid local filename. This
is done using get_fi1ename () which performs NFT (Network File Transfer) commands to copy the input
file from the VAX to the PC.

Implementing the FAILED_CMD command

The FAILED_CMD is received by the server from an occam multiplexer, rather than from a SPICE application
- how could a SPICE application know it had failed if it was, itself, out of control? It is used to set a global
flag in the server called aborted to prevent any further polling of DECnet for new tasks.

void fai1edO
/* Just received a FAILED CMD from worker mu1tip1exer, */
/* so set aborted f1ag to-prevent further DECnet testing */

write integer(F OK);
aborted = TRUE;-
active task count--

224 2 Practice

Initializing and closing down

There is, of course, a lot of additional code required to initialize DECnet and to close things down in an orderly
manner.

For example, the following initialization sequence uses DECnet-DOS socket interface calls, and is called as
part of the booting sequence:

void decnet init()

{

}

/* Initia~ise the DECNet side of things, */
/* - return the socket number of the ~istening socket */

s~aves init () ;
if (system("NCP SET KNOWN LINKS STATE OFF"»

net err ("NCP Ca~~ fai~ed: \n" , errno) ;
printf("\n\t Inmos PC Server, Version 2.0\n\n");

/* open a DECnet socket */
if «sock no = socket (AF DECnet, SOC!C SEQPACKET, 0 » < 0)

net err("Socket a~~ocation fai~ed:\n" ,errno);
/* bind-an object num to the socket */
bzero('socket char, sizeof(socket char»;
socket char.sdD fami~y = AF DECnet;­
socket-char.sdn-Objnum = 242;
/* 242-is DECnet server task number */

if (bind(sock no, 'socket char, sizeof(socket char» < 0)
net err ("Bind to socket fai~ed: \n" , errno); -

/* ~isten for connect requests */
if (~isten(sock no, backlog) < 0)

net err ("Listen fai~ed: \n", errno);
return;-

The following function is used to close all active sockets before the transputer system is rebooted after
FAILED_CMD.

void remove socks ()

{

}

int
char
char

/* Shut down a~~ sockets sti~~ active, and
/* te~~ Vax user that his job has fai~ed

i;
msg[MAX BUF SIZE];
command:buff[MAX_BUF_SIZE];

*/
*/

for (i=l; i<MAX SOCK; i++)
if (file names[i] .fi~e name != NULL)
{- -

}

strcpy(msg,"Abnorma~ Comp~etion for fi~e ");
strcat(msg,fi~e names[i].fi~e name);
strcat (msg, "\n "T; -
swrite(i,msg,str~en(msg»;
sc~ose(i);
strcpy (command buff, "NFT COpy ");
strcat(command:buff, fi~e names[i]_fi~e_name);
strcat (command:buff, ". OOT ");
strcat(command-buff, fi~e names[i].fu~~ spec);
strcat (command-buff, ". OOT »NFT. LOG") ; -
system (command-buff);

15 A transputer farm accelerator for networked computing facilities 225

Hopefully, the above functions give some appreciation of the work involved in this part of the project - about
3Dk (source size) of specially-written C was required to interface to the DECnet-DOS software at the PC end.
This amounts to more than half of the source size of the original AFserver. [3] gives useful examples and
guidance for doing this type of work.

Once the appropriate network communications software exists for the environment, the stages to incorporate
it into the AFserver software are trivial.

15.3.4 Transputer support

In arranging for an application to be incorporated into an 'autonomous worker' environment, there are two
options concerning the amount of transputer support required. These are directly related to the mechanism
of how new tasks are allocated to workers within the farm .

• New work tasks can be explicitly requested in the non-Occam application code itself, and their
dispensement can be controlled from the server. This results in minimal transputer-resident support
software, because it removes the need for a transputer-resident farm controller (task allocator). A
simple server-protocol multiplexer is sufficient to interleave work requests to the server, and the
server is extended to cope with additional protocols to handle work assignment in the farm and
DECnet interfacing .

• A set of farm controller processes, written in occam, can be used to receive work tasks (from the
DECnet server) and allocate them amongst available worker processors. This approach is the more
general-purpose of the two, because it is completely host-independent, and it obviates the need to
modify the application code or the host server-transputer protocols. The application does not need
to know it is in an autonomous working environment, or that it may be one of several running on the
same transputer network.

In both cases, a process on a transputer is responsible for requesting more work from the server. In the
first instance, the application itself directly asks the server for work. In the second case, an available worker
application asks the transputer-resident farm controller for work, and the farm controller then asks the server.
In both cases, once the server receives a request for work, it would check DECnet for any pending requests.

In our implementation, the first of these two options was selected. The application was slightly modified to
'ask for work' from the server, and the server assumes the responsibility of dispensing tasks.

Modifications to the application

Like SPICE itself, the modifications were written in FORTRAN, and placed around the 'root' part of the
application. The modifications simply concerned the requesting for work (using the extended AFserver protocol
defined earlier), and the establishment of data input and output file names for each simulation to run. It is an
obvious requirement that since each SPICE worker is served from the same file store, the local file names
being processed concurrently must not clash with any others. This is handled by the server.

The message-passing routines provided by the run-time libraries supplied with all the scientific-language
compilers are used to communicate with the PC server, using the newly defined protocol. These proto­
cols handle the requests for new work, and have already been explained at the host server end. Here,
at the application end, the standard FORTRAN message passing routines called CHANINMESSAGE () ,
CHANOUTMESSAGE () , CHANOUTBYTE () , and CHANOUTWORD () are used [6], as shown overleaf in our
implementation for the SPICE farm.

226

C ***
C * Communication with DECnet file Server *
C ***

SUBROUTINE ReadInteger (N)
IN'l'EGER Tag
CALL CBANINMESSAGE (1, Tag, 1
CALL CBANINMESSAGE (1, N, 4)
RE'l'UmI

END

SUBROUTINE WriteInteger (N)
IN'l'EGER Int32Value
PARAMETER (Int32Va1ue = 4)
CALL CBANOO'l'BY'l'E (Int32Value, 1)
CALL CBANOO'l'WORD (N, 1)
RE'l'UmI

END

SUBROUTINE ReadRecord (Len, Record)
IN'l'EGER NilRecordVa1ue, Record32Value
IN'l'EGER Tag
PARAMETER (NilRecordValue = 8, Record32Value = 12)
DATA Tag / 0 /
CALL CBANINMESSAGE(1, Tag, 1)
IF ('1'ag.EQ.NilRecordValue) THEN

Len = 0
ELSE

CALL CBANINMESSAGE(1, Len, 4)
IF (Len.G'1'.O) CALL CBANINMESSAGE(1, Record, Len)

END IF
RE'l'UmI

END

SUBROUTINE WriteRecord (Len, Record)
IN'l'EGER Ni1RecordValue, Record32Value
PARAME'l'ER (NilRecordValue = 8, Record32Value = 12)
IF (Len.EQ.O) THEN

CALL CBANOU'l'BY'1'E (NilRecordVa1ue, 1)
ELSE

CALL CBANOU'l'BY'1'E (Record32Value, 1)
CALL CBANOU'l'WORD (Len, 1)
CALL CBANOU'l'MESSAGE (1, Record, Len)

END IF
RE'l'ORN

END

SUBROU'l'INE
1

Finished'l'ask(SizeOld'l'askName, 01d'l'askName,
SizeNew'l'askName, New'l'askName,

2 Result)
IN'l'EGER Finished'1'askCmd
PARAME'l'ER (Finished'l'askCmd = 127)
CALL WriteInteger (Finished'1'askCmd)
CALL WriteRecord(SizeOld'l'askName, 01d'1'askName)
CALL ReadRecord(SizeNew'l'askName, New'l'askName)
CALL ReadInteger (Result)
RE'l'UmI

END

2 Practice

15 A transputer farm accelerator for networked computing facilities 227

The subroutine FinishedTask () makes use of one of the additional tags to the AFserver protocol, called
FinishedTaskCmd. It is used in the main top-level part of the application as follows:

PROGRAM SPICE
IMPLICIT NONE

INTEGER MaxFi~eNameSize
INTEGER SizeO~dTaskName, SizeNewTaskName
INTEGER OneSecond
INTEGER Resu~t
PARAMETER (One Second = 120000, MaxFi~eNameSize = 20)
CHARACTER*(MaxFi~eNameSize) O~dTaskName, NewTaskName
CHARACTER*(MaxFi~eNameSize) SpiceIn, SpiceOut

5 CALL De~ay (OneSecond)

CALL FinishedTask(0, O~dTaskName,
1 SizeNewTaskName, NewTaskName,
2 Resu~t)

20 IF (SizeNewTaskName.EQ.O) GO TO 5

SpiceIn = NewTaskName(1: SizeNewTaskName
SpiceOut = NewTaskName(1: SizeNewTaskName
OPEN (UNIT=S,FILE= SpiceIn,STATUS='OLD')
OPEN (UNIT=6,FILE= SpiceOut,STATUS='NEW')

CALL SpicRoot ()

CLOSE (UNIT=S)
CLOSE (UNIT=6)
SizeO~dTaskName = SizeNewTaskName
O~dTaskName = NewTaskName

II ' .in'
II ' .out'

CALL FinishedTask(SizeO~dTaskN&me, O~dTaskName,
1 SizeNewTaskName, NewTaskName,
2 Resu~t)

GO TO 20
END

The line CALL SpicRoot () is the new call to the main SPICE application. Since the application has
been delegated the responsibility of requesting more work, it has been made into a non-terminating work
request loop. This means that once MultiSPICE is running, it will accept work continuously. Within this non­
terminating work request loop is a small delay, which is used to prevent an available worker from pestering
the server continuously in cases where there is no new work, but where other workers may be busy. In [4],
a general-purpose farming technique, which does not involve modifications to the application, is presented.

The occam harness

A SPICE worker is encapsulated by a small amount of occam, known as the harness. The harness is
required to ensure that the FORTRAN application receives access to the server for filing, screen, and keyboard
facilities. For a description of the occam language, developed to express and exploit the parallelism offered
by the INMOS transputer, the reader is directed towards [5]. For information concerning the content and
creation of an occam harness for non-Occam programs, please refer to [6].

Due to MultiSPICE being an autonomous computing engine, none of the software is written to self-terminate.
In this situation, either the application code or the harness must never terminate. Due to an earlier decision
to modify the application to request work, the application itself was made non-terminating. This allowed
the standard occam harness, as supplied with the scientific-language compilers and the D705A oCCam-2
toolset, to be used for each SPICE worker. All this work is still relevent in the context of the D7058 occam-
2 toolset. To stop MultiSPICE requires deliberate and specific user interaction on the host PC. Refer to
section 15.3.6 for operation details.

228 2 Practice

The occam multiplexers

Running several SPICE jobs concurrently requires that their accesses to the host PC be dynamically inter­
leaved. This is most easily done in occam by having a single transputer that talks down the single channel
to the AFserver on the PC.

A worker multiplexer sits between the IMS T800 transputers running the application code, and the server on
the PC. It provides message interleaving and time-out services for each application transputer. The timeout is
determined empirically. The multiplexer should sit on its own transputer, so as to preserve the crash-recovery
capability of the MultiSPICE system. It's general structure is illustrated below:

WHILE TRUE
BYTE Tag :
SEQ

ALT
(NOT WorkerFai1[0]) & FromWorkerO ? Tag

Act OnMe s age (FromWorkerO, ToWorkerO, 0, Tag)
(NOT WorkerFai1[0]) &
C10ck ? AFTER LastInput[O] PLUS InactiveDe1ay

ActOnTimeOut(0)

(NOT WorkerFai1[1]) & FromWorkerl ? Tag
ActOnMesage(FromWorkerl, ToWorkerl, 1, Tag)

(NOT WorkerFai1[1]) &
C10ck ? AFTER LastInput[l] PLUS InactiveDe1ay

ActOnTimeOut(1)

(NOT WorkerFai1[2]) & FromWorker2 ? Tag
ActOnMesage(FromWorker2, ToWorker2, 2, Tag)

(NOT WorkerFai1[2]) &
C10ck ? AFTER LastInput[2] PLUS InactiveDe1ay

ActOnTimeOut(2)

This code fragment has the effect of allowing the first SPICE worker requiring access to the server, exclusive
use of the server for a single AFserver protocol transaction. It also allows for inactivity timeout monitoring on
any worker, and prevents workers previously identified as 'dead' from further servicing by the system.

Not shown here is the use of occam's PRI ALTs, which can be used to ensure fairness of servicing worker
requests for all the participating workers.

The ActOnTimeOut () procedure is responsible for the origination of the Fai1ed. Cmd.
The ActOnMesage () procedure uses the InputOrFai1. t and OutputOrFai1. t communications
procedures [7], allowing controlled recovery from failure of transputer link input I output.

The parameter InactiveDe1ay is designed to trap a crashed simulation. The nature of SPICE is such that
it has a high computation to communication ratio. This means that relatively long periods of time can elapse
between communication bursts and any observable link activity to the host server. occam allows simple
handling of timeout issues in comparison to other high- and low-level languages. occam has constructs
to allow the reading of the transputer's timers, and to cause delays until certain periods have elapsed. The
transputer has two timers, one accessible during high priority execution, and the other accessible during low
priority execution. In high priority execution, the timer tick once every micro-second. In low priority, the timer
ticks once every 64 micro-seconds.

The InactiveDe1ay is set to correspond to a time interval of around an hour or so. It's value is specified
in the occam configuration description for the system, and passed in to each processor as parameter. This
allows its value to be changed easily without recompiling anything. The timeout period is calculated to be
larger than the longest time taken by the largest Simulation intended to run on MultiSPICE.

The simple design of the multiplexer software means that while a FinishedTask. Cmd request from a
SPICE processor is being serviced, the server blocks any of the other transputers from receiving or sending
data to I from the PC. While this avoids routing overheads within the SPICE array (because there is no

15 A transputer farm accelerator for networked computing facilities 229

need to pass source and destination information with the message and explicitly route it within the farm), it
also means that SPICE applications can remain unserviced for several minutes while file transfers over the
Ethernet are taking place. This is not as severe a problem as it might seem, because only one device can
have access to the file store at once anyway.

The multiplexer software can be compiled for execution on the 16-bit T212rr222 transputers, or for the 32-bit
T4141T425 transputers - there is no real need to use a TaOO here.

The afore-mentioned intermediate multiplexer connects only to occam worker multiplexers and does not
require to perform timeout detection. This is because the worker multiplexers, by virtue of their deSign, will
always be capable of identifying inactivity problems with any of their applications. Therefore the intermediate
multiplexer need only have the capability to through-route timeout messages to the server.

15.3.5 VAX support

The VAX is the main central computing resource in this system. The PC has a unique node name and
address on DECne!. When the user wishes to send a task specification, the VAX establishes a logical link
which allows the exchange of data between the VAX and the PC server.

Two DCL2 command files on the VAX were written to arrange for the SPICE input file on the VAX to be sent
to the PC node on DECne!. This input file is then sent to an available transputer by the server.

The first command file, called SPICE.COM, receives from the user the name of the SPICE input deck to send
to the PC server, the destination node, and the password. It then spawns a subprocess to do the actual data
exchanges. Our implementation of SPICE.COM is shown below.

$
$
$
$
$
$

Command file used to talk to IBM PC SPICE Server
P1 is node name o~ target PC
Prompts for users password and list of filenames (1 per line)
A subprocess is spawned for each ~ilename given.
All subprocess messages are d:i.sp1ayed on the screen.

$ set NoOn
$ on contro1 c then goto cleanup
$ II' P1 .EQs7 "" THEN Inquire P1 "Node"
$ Set ter/noecho
$ Inquire Password
$ Set ter/echo
$Loop:
$ inquire record "Fi1ename"
$ i~ record .EQS. "" then goto loop
$ File spec = F$Parse(record)
$ File-spec = File spec - " "
$ Node-= F$Logica1("SYS$NODE")
$ Colon = F$Locate(":",Node)
$ Node = F$Extract(O,Colon,Node) ,
$ Node = Node - " "
$ User = F$Getjpi("","USElWAME")
$ Space = F$Locate(" ",User)
$ User = F$Extract(O,Space,User)
$ spawn /nowait -
@subproc 'P1' 'Node' 'User' 'Password'
$ goto loop
$
$cleanup:
$ Del/sym Password
$Exit
$

2DCL - Digital Command Language

230 2 Practice

The subprocess spawned by SPICE.COM opens a logical link to the PC (a DECnet node) and specifies the
'task number' to run at the PC. The task number specified is 242. Since the PC can only run one task at a
time (the server), it has to be running this task before the VAX attempts to talk to it.

Here is the code for our implementation of the SUBPROC.COM DCl file:

$!Called by SPICE.CON to communicate with PC Server
$
$ set NoOn
$ open/read/write link 'Pl' ::"242="
$ write link .. , 'P2' "", 'P3' , 'P4' "": :' 'PS'"
$ read link record
$ Write sys$output ""f$getjpi("","PRCNAM")'"
$ write sys$output record
$ close li.nk

The SUBPROC.COM file operates at a much lower-level than the SPICE. COM file that spawns it. It uses
non-transparent DECnet commands. The choice of a task number of 242 was completely arbitrary, but
mainly because the first and ultimate choice, 42, was already in use by DEC. The selected identifier 242 must
correspond to the task number in the special PC server, otherwise communication between the PC server
and the VAX will not be possible.

15.3.6 Operating the system

MultiSPICE receives jobs over DECnet from the VAX. It is important to run the PC server to boot the transputer
network before any attempt at the VAX is made to send work, otherwise the system is likely to fail to establish
communication before a VAX timeout takes effect.

Running MultiSPICE at the PC end

On the PC, the special server was called SERVER.EXE. It understands the same command-line parameters
as the INMOS AFserver, so to boot the transputer system with the SPICE workers and multiplexer file, called
spi.cfarm.bt, the following MS-DOS command could be used:

server -:b spicfarm.bt

It may be necessary to perform some one-off set-up commands concerning the PC and DEC net, for example,
ensuring that there are sufficient 'file Iinks'3 available over the network.

MultiSPICE will now load, execute, and wait for incoming jobs. Our version was tested and operated with up
to three SPICE Applications executing concurrently. The system as it stands will not accept job assignments
from MS-DOS: only requests from DECnet are recognised.

Running MultiSPICE at the VAX end

The VAX is responsible for sending jobs to MultiSPICE, and retrieving the results. To run the VAX DCl
command file, called SPICE, one could invoke the command by typing @SPICE.

The command file prompts the user for the name of the node on DECnet that MultiSPICE can be found, a
password to allow access to the file on the VAX, and the filename of the job to be simulated. Everything else
happens in the background without the user being aware of anything exciting happening, until a message is
displayed on the terminal screen describing the final status of the job. The job is either successful or aborted.

As files are being transferred, the support software at both the VAX and the PC ends issues messages to
indicate the current activities. For example, the VAX shows the task completion status message, and the
PC shows file transfer messages. These are also written into a log file called NFT.lOG for post-mortem
debugging, by redirecting the output of the DEC net-DOS NFT command.

3This term is used in the DEenet context, rather than a transputer links context

15 A transputer farm accelerator for networked computing facilities 231

15.4 Other considerations

15.4.1 Implementation guidelines

Tools required

To reproduce any of the work described in this document, the occam-2 toolset is required to create and
manipulate the transputer components. A transputer compiler for the non-occam application will also be
required. To modify the AFserver, which is supplied in C source form on the PC, a (Microsoft) C compiler
for the host computer is needed. This will allow the compiled server module to be linked with the C library
supplied with DECnet-DOS.

Suitable applications

INMOS provide scientific language compilers for C, Pascal, and FORTRAN. The INMOS development systems
allow applications written in mixtures of these languages, including occam to be easily executed on a
transputer system. The range of INMOS' scientific language compilers is growing constantly - please refer
to [8] for current product availability.

The applications should preferably be batCh-like in nature, i.e. they take an input file, perform some compute­
intensive operations, and produce output files, without user interaction or screen access.

Especially appropriate are applications in which the ratio of 'computation to communication' is high. This
means that the overheads in sending the input data to the transputer, and receiving the results back over
the network, are low in comparison to the amount of computation that is to be performed on the said input
data. Typical applications that fall into the category include simulation packages (chemical, thermal, dynamic,
electrical), technical modelling packages, compilers, and text formatting packages (eg TEX, troff, PostScript
processors etc).

The more interactive an application, the less suitable it is for the type of implementation which is described
here. This is due to the latency and overheads in transporting the interactive commands and replies, between
the user at one end of the network, and the transputer server at the other end of the network. Network latency
is concerned with the delay before processing starts, between the user invoking the command on his I her
terminal, and the transputer worker starting on the job. It consists of the time taken to get the input data
sent from the VAX to the transputer host. There is an additional small delay due to the time taken by the
transputer to read the input work task from the local file store. The response times normally associated with
real-time interaction may be unacceptable given these overheads.

At times of heavy loading, the network latency will increase and the transfer rates will correspondingly drop.
This will depend on the nature of the network. In non-deterministic Local Area Network's (LAN's) like Ethernet,
one can observe almost order of magnitude fluctuations in response time, depending on the instantaneous
system loading. So remember, use only applications with a high ratio of compute-time to communicate-time.

Implementation strategy

To implement a remote transputer server of the form described in this document, the first stage is to get
a single un-modified version of the application running on a transputer board. This may involve making
small changes to the application in order to get it through the scientific language compilers that INMOS
provide. This is not because of any particular deficiency in the INMOS scientific-language compilers, but
rather because many applications tend to make use of non-standard language-extensions provided on their
native environment compilers.

The result of this is software that can be used to obtain performance measurements of the application running
on a transputer. [4] discusses some application porting issues.

The next stage would be to replicate the application over a number of transputer workers, using techniques
described previously or in [4]. Alternatively, one may wish to have only a single transputer worker in the
system.

Next, modify the server to communicate with the network, DECnet in this case. The DECnet-DOS program-

232 2 Practice

mers reference manual [3] is invaluable here, giving examples of how to establish two-way communication
between any two nodes on the network. If you are using a different network, there will be a corresponding
technical reference manual. Test the server with a small stub of occam or C (for example), on the transputer,
to be certain that something on the transputer network can request and receive the correct information over
the network.

Finally, combine the modified server with the real application, and everything should operate correctly. If this
is successful, then you can go live!

Timescales

Timescales for a project such as this are difficult to estimate. Many factors are involved. For example,
depending on the application's use of non-standard language features, there may be effort required to re­
implement these parts of the application in a standard manner before the INMOS scientific-language compilers
will accept the source input.

The time and effort to make a suitable server will depend on the available documentation describing the
interfacing and protocols between the PC server and your network. In the case of DECnet, the examples
given in this technical note should be of use.

15.4.2 Multiple task farms

If a farm is created which has several different tasks running, each on their own transputer, then it would be
necessary for each job request to be accompanied by some means of identifying the task. In such situations,
a need for additional hardware to allow individual transputers to be reseVloaded could be identified.

If the code for that task is not currently loaded onto the farm, then it must be fetched from local file store and
loaded into the appropriate transputer. A discussion of how to organize such a system, and how it might be
implemented, is given in [4].

15.4.3 Receiving work from DOS rather than DECnet

Work done in February 1988 by the INMOS Central Applications Group produced a version of MultiSPICE
which accepts jobs in a batch fashion from MS-DOS, and can run an arbitrary number of concurrent SPICEs
by using a pipeline of tasks run on 8404 TRAMs on a 8008 motherboard [8]. (8404's have an IMS T800
and 2 Mbytes of dynamic RAM on a size 2 TRAM module). The system was more general purpose than the
one described in this technical note, for two main reasons. Firstly, the SPICE application was not modified.
Secondly, the task allocation was controlled from processes executing on the transputer array rather than the
on the host, which makes the software more portable and more applicable in different host relationships. [4]
discusses this approach in detail.

15.4.4 Network monitoring software

Our network had a traffic-monitoring system program which could detect periods of inactivity on 'open con­
nections', and log-off users or applications that had not corresponded with the VAX for a certain time.

-One of the main reasons for choosing SPICE as a candidate for a dedicated remote application server is
it's good ratio of computation to communication. SPICE in particular produces all its output in one go at the
end of each simulation, and hence will tend to communicate over DECnet in bursts, separated by (possibly)
extended periods of inactivity, rather than in any continuous fashion.

This temporal distribution of activity (as far as the VAX is concerned) caused a few headaches initially, resulting
in the transputer workers getting logged off before the results were produced. Once the network monitor had
been instructed correctly, there were no more unintentional detachments.

15 A transputer farm accelerator for networked computing facilities 233

15.4.5 Other transputer hosts

More recently, a number of manufacturers have produced a range of transputer-based boards for use with a
DEC MicroVAX II. If your network includes MicroVAXes, this might be a preferable route to follow compared
to using a PC host for the transputer board(s). Factors of cost, available driving software, and network
performance would have to examined - as well as that of technical challenge!

The scope of this work would also be appropriate in connection with Sun's NFS4 environment.

15.4.6 Is it worth it? - Weighing up the pros and cons of using transputers

In an effort to establish the suitability of a hosted transputer server to reduce the loading on existing computer
facilities, the following discussion may be relevant.

To implement the system described requires a node on the network to host a transputer motherboard. Such
a node could take the form of a personal computer, with an Ethernet card. The personal computer can
accommodate several transputer modules, all of which can be performing the same or different tasks. As a
rough guide, a single 8404 transputer module [8], consisting of a 32-bit IMS T800 transputer [2] and 2 Mbytes
of dynamic RAM, can give the same performance as a VAX 11-785 with floating point accelerator hardware,
when executing non-modified non-Occam code [9].

If the application is written in a largely standard dialect of a supported-language, then it is unlikely that
there will be major problems in 'porting' the application onto a single transputer, in a timescale that could
be measured in days. Several such applications can then be run together in a farm. The best results will
come from applications that are highly compute-intensive, perform only limited file access and perform no
user-interaction.

The personal computer host can also be used as a normal PC at times when it is not used by the network
users. The effort of running your software on a transputer means that the software can now execute on any
machine hosting a transputer product; given a suitable server. This opens up useful portability opportunities
that were previously not feasable. The unparallelled inter-connectivity of the INMOS transputer means that
once the application is running on a single transputer, one can explore the possibilities for further performance
increases by re-structuring parts of the software and by using additional hardware. Not least of course is the
impressive performance one would obtain even when using only one transputer.

Everything reduces down to the question 'How much does CPU time cost me on my existing computing
facilities?'. This cost has to include factors for equipment maintenance contracts, spares, upgrades etc.
What could that time have been better spent on doing? Just think ... with a modest amount of effort, all the
benefits discussed previously become a reality. So, 'is it worth it?'. Yes.

15.5 Summary and conclusions

The transputer farm accelerator described in this document has proved to be a powerful, reliable and cost­
effective dedicated application accelerator. For example, in general, a single transputer is more than one and
a half times faster than the Sun with 68881 (especially on larger jobs), and on-par with VAX 11/785 (with
FPA) performance [9].

Another advantage of this system is that the node being used to host the transputer need not always be
used as a server in this way. It can still be used as a normal networked 1 standalone PC, running normal PC
software, and indeed, running non-networked transputer software on a demand basis.

As well as the cross-host application portability that the transputer offers, there is also great flexibility and
extensibility at the system design level. More and more power and capability can be added easily at any
stage, by interconnecting different combinations of transputers and memory. 8y using the INMOS module
motherboards and TRAM modules, one can 'pick and match' the appropriate performance and memory
requirements for each stage of a progressive and well defined upgrade path.

4NFS is a network file system developed by Sun Microsystems to allow machines of different types to share files.

234 2 practice

In addition, this work could be extended to cover different network communication software such as Suns'
NFS, by altering only the code that ran on the host - the transputer part wouldn't even require re-compilation.

It's this modular and flexible extensibility that promotes the transputer as a candidate for dedicated 'grow as
you do' transparent job-level application acceleration. This technical note has discussed only one scenario to
which transputers can be applied - that of using a network to offload work from over-used resources. There
are many other scenarios possible; limited only by imagination.

15.6 References

Transputer Instruction Set - A compiler writer's guide, INMOS Limited, Prentice Hall.

2 The Transputer Databook, INMOS Limited, 1989.

3 DEGnet-DOS V1.1 Programmer's Reference Manual, 'Example Socket Interface Calling Sequence',
Section 4.4.1, pp 4-6.

4 Issues in Application Porting and Farming, Technical Note 53, INMOS Limited.

5 occam 2 Reference Manual, INMOS Limited, Prentice Hall.

6 Using the occam toolsets with non-Occam applications, Technical Note 55, INMOS Limited.

7 Extraordinary use of transputer links, Technical Note 1, INMOS Limited.

8 IMMOS Spectrum, (contains a brief description of INMOS products), INMOS Limited.

9 Porting SPIGE to the INMOS IMS TBOO transputer, Technical Note 52, INMOS Limited.

