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Preface

The Transputer Applications Notebook — Architecture and Software is a compilation of technical notes written
by INMOS technologists to explain the architectural foundation of occam and the INMOS transputer. The
collection is divided into two sections which describe an approach to VLS| computer architecture based on
communicating processes.

The papers were originally written as a series of individual technical notes with the intention of investigating
and developing specific areas of interest or application. The publication will be of particular interest to
the computer scientist, electronic engineer, mathematician and system designer. It has been published in
response to the growing interest and requests for information about 0CcCam and the transputer.

The INMOS transputer is a VLSI building block for concurrent processing systems with occam as the
associated design formalism. 0Ccam is an easy and natural language for the programming and specification
of concurrent systems.

Information concerning the use of transputer products is available in a companion publication of technical
notes, ie The Transputer Applications Databook — Systems and Performance.

In addition to transputer products, the INMOS product range includes graphics devices, digital signal pro-
cessing devices and fast static RAMs. For further information concerning INMOS products please contact
your local INMOS sales outlet.

The role of OCCaM in the design of the T800, presented at the 20th Workshop on Microprogramming, December 1-4, 1987, Colorado
Springs, CO. To appear in ACM SIGMICRO Newsletter, Vol. 18, No. 4, 1987.

A transputer based multi-user flight simulator, parts of this chapter are published by The International Supercomputing Institute, Inc.
(ISl, Inc.) in the proceedings of the 3rd International Conference of Supercomputing and, as such, are copyright of IS, Inc.
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Chapter 1

INMOS



1.1 Introduction

INMOS is a recognised leader in the development and design of high-performance integrated circuits and is
a pioneer in the field of parallel processing. The company manufactures components designed to satisfy the
most demanding of current processing applications and also provide an upgrade path for future applications.
Current designs and development will meet the requirements of systems in the next decade. Computing
requirements essentially include high-performance, flexibility and simplicity of use. These characteristics are
central to the design of all INMOS products.

INMOS has a consistent record of innovation over a wide product range and supplies components to system
manufacturing companies in the United States, Europe, Japan and the Far East. As developers of the
Transputer, a unique microprocessor concept with a revolutionary architecture, and the occam parallel
processing language, INMOS has established the standards for the future exploitation of the power of parallel
processing. INMOS products include a range of transputer products in addition to a highly successful range
of high-performance graphics devices, an innovative and successful range of high-performance digital signal
processing (DSP) devices and a broad range of fast static RAMs, an area in which it has achieved a greater
than 10% market share.

The corporate headquarters, product design team and worldwide sales and marketing management are based
at Bristol, UK.

INMOS is constantly upgrading, improving and developing its product range and is committed to maintaining
a global position of innovation and leadership.

1.2 Manufacturing

INMOS products are manufactured at the INMOS Newport, Duffryn facility which began operations in 1983.
This is an 8000 square metre building with a 3000 square metre cleanroom operating to Class 10 environment
in the work areas.

To produce high performance products, where each microchip may consist of up to 300,000 transistors,
INMOS uses advanced manufacturing equipment. Wafer steppers, plasma etchers and ion implanters form
the basis of fabrication.

13 Assembly

Sub-contractors in Korea, Taiwan, Hong Kong and the UK are used to assemble devices.

14 Test

The final testing of commercial products is carried out at the INMOS Newport, Coed Rhedyn facility. Military
final testing takes place at Colorado Springs.

1.5 Quality and Reliability

Stringent controls of quality and reliability provide the customer with early failure rates of less than 1000
ppm and long term reliability rates of better than 100 FITs (one FIT is one failure per 1000 million hours).
Requirements for military products are even more stringent.

1.6 Military

Various INMOS products are already available in military versions processed in full compliance with MIL-STD-
883C. Further military programmes are currently in progress.
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1.7 Future Developments
1.741 Research and Development
INMOS has achieved technical success based on a position of innovation and leadership in products and

process technology in conjunction with substantial research and development investment. This investment
has averaged 18% of revenues since inception and it is anticipated that future investment will be increased.

1.7.2 Process Developments

One aspect of the work of the Technology Development Group at Newport is to scale the present 1.2 micron
technology to 1.0 micron for products to be manufactured in 1988/89. In addition, work is in progress on the
development of 0.8 micron CMOS technology.
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2 Communicating processes and occam
21 Introduction

The occam programming language [1] enables an application to be described as a collection of processes
which operate concurrently and communicate through channels. In such a description, each 0ccam process
describes the behaviour of one component of the implementation, and each channel describes a connection
between components.

The design of occam allows the components and their connections to be implemented in many different
ways. This allows the choice of implementation technique to be chosen to suit available technology, to
optimise performance, or to minimise cost.

occam has proved useful in many application areas. It can be efficiently implemented on almost any com-
puter and is being used for many purposes — real-time systems, compilers and editors, hardware specification
and simulation.

2.2 Architecture

Many programming languages and algorithms depend on the existence of the uniformly accessible memory
provided by a conventional computer. Within the computer, memory addressing is implemented by a global
communications system, such as a bus. The major disadvantage of such an approach is that speed of
operation is reduced as the system size increases. The reduction in speed arises both from the increased
capacitance of the bus which slows down every bus cycle, and from bus contention.

The aim of occam is to remove this difficulty; to allow arbitrarily large systems to be expressed in terms of
localised processing and communication. The effective use of concurrency requires new algorithms designed
to exploit this locality.

The main design objective of 0ccam was therefore to provide a language which could be directly implemented
by a network of processing elements, and could directly express concurrent algorithms. In many respects,
occam is intended as an assembly language for such systems; there is a one-to-one relationship between
occam processes and processing elements, and between occam channels and links between processing
elements.

2.21 Locality

Almost every operation performed by a process involves access to a variable, and so it is desirable to provide
each processing element with local memory in the same VLSI device.

The speed of communication between electronic devices is optimised by the use of one directional signal
wires, each connecting only two devices. This provides local communication between pairs of devices.

occam can express the locality of processing, in that each process has local variables; it can express locality
of communication in that each channel connects only two processes.

222 Simulated and real concurrency

Many concurrent languages have been designed to provide simulated concurrency. This is not surprising,
since until recently it has not been economically feasible to build systems with a lot of real concurrency.

Unfortunately, almost anything can be simulated by a sequential computer, and there is no guarantee that a
language designed in this way will be relevant to the needs of systems with real concurrency. The choice of
features in such languages has been motivated largely by the need to share one computer between many
independent tasks. In contrast, the choice of features in 0Cccam has been motivated by the need to use
many communicating computers to perform one single task.
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An important objective in the design of occam was to use the same concurrrent programming techniques
both for a single computer and for a network of computers. In practice, this meant that the choice of features
in occam was partly determined by the need for an efficient distributed implementation. Once this had been
achieved, only simple modifications were needed to ensure an efficient implementation of concurrency on a
single sequential computer. This approach to the design of 0ccam perhaps explains some of the differences
between occam and other ‘concurrent’ languages.

2.3 The occam primitives
occam programs are built from three primitive processes:

=€ assign expression e to variable v
c! e output expression e to channel ¢
¢ ? v input variable v from channel ¢

The primitive processes are combined to form constructs:

SEQ sequence
IF conditional

PAR parallel
ALT  alternative

A construct is itself a process, and may be used as a component of another construct.

Conventional sequential programs can be expressed with variables and assignments, combined in sequential
and conditional constructs. The order of expression evaluation is unimportant, as there are no side effects
and operators always yield a value.

Conventional iterative programs can be written using a while loop. The absence of explicit transfers of control
perhaps needs no justification in a modern programming language; in 0ccam it also removes the need to
prohibit, or define the effect of, transferring control out of a parallel component or procedure.

Concurrent programs make use of channels, inputs and outputs, combined using parallel and alternative
constructs.

The definition and use of occam procedures follows ALGOL-like scope rules, with channel, variable and
value parameters. The body of an 0ccam procedure may be any process, sequential or parallel. To ensure
that expression evaluation has no side effects and always terminates, 0ccam does not include functions.

A very simple example of an occam program is the buffer process below:

WHILE TRUE
VAR ch: in—p ch —-out
SEQ

in ? ch
out ! ch

Indentation is used to indicate program structure. The buffer consists of an endless loop, first setting the
variable ch to a value from the channel in, and then outputting the value of ch to the channel out. The
variable ch is declared by VAR ch. The direct correspondence between the program text and the pictorial
representation is important, as a picture of the processes (processors) and their connections is often a useful
starting point in the design of an efficiently implementable concurrent algorithm.
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2.4 The parallel construct

The components of a parallel construct may not share access to variables, and communicate only through
channels. Each channel provides one-way communication between two components; one component may
only output to the channel and the other may only input from it. These rules are checked by the compiler.

The parallel construct specifies that the component processes are ‘executed together’. This means that the
primitive components may be interleaved in any order. More formally:

PAR SEQ
SEQ = x = e
x = e PAR
P P
Q Q

so that the initial assignments of two concurrent processes may be executed in sequence until both processes
start with an input or output. If one process starts with an input on channel ¢, and the other an output on the
same channel ¢, communication takes place:

PAR SEQ
SEQ = x :=e
c!tle PAR
P P
SEQ Q
c ? x
Q

The above rule states that communication can be thought of as a distributed assignment.

Two examples of the parallel construct are shown below:

CHAN c: i VAR chl:
PAR in VAR ch2: .
WHILE TRUE v SEQ in
VAR ch: in ? chl *
SEQ ch WHILE TRUE
in ? ch SEQ
c ! ch v PAR i ch2
WHILE TRUE h in ? ch2
VAR ch: ¢ out ! chl
SEQ PAR
c ?ch v in ? chl v
out ! ch out out ! ch2 out

The first consists of two concurrent versions of the previous example, joined by a channel to form a ‘double
buffer. The second is perhaps a more conventional version. As ‘black boxes’, each with an input and an
output channel, the behaviour of these two programs is identical; only their internals differ.

241 Synchronised communication

Synchronised, zero-buffered, communication greatly simplifies programming, and can be efficiently imple-
mented. In fact, it corresponds directly to the conventions of self timed signalling[2]. Zero-buffered communi-
cation eliminates the need for message buffers and queues. Synchronised communication prevents accidental
loss of data arising from programming errors. In an unsynchronised scheme, failure to acknowledge data
often results in a program which is sensitive to scheduling and timing effects.
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Synchronised communication requires that one process must wait for the other. However, a process which
requires to continue processing whilst communicating can easily be written:

25 The alternative construct

In occam programs, it is sometimes necessary for a process to input from any one of several other concurrent
processes. This could have been provided by a channel ‘test, which is true if the channel is ready, false
otherwise. However, this is unsatisfactory because it requires a process to poll its inputs ‘busily’; in some
(but by no means all) cases this is inefficient.

Consequently, occam includes an alternative construct similar to that of CSP [3]. As in CSP, each component
of the alternative starts with a guard — an input, possibly accompanied by a boolean expression. From an
implementation point of view, the alternative has the advantage that it can be implemented either ‘busily’ by a
channel test or by a ‘non-busy’ scheme. The alternative enjoys a number of useful semantic properties more
fully discussed in [4,5]; in particular, the formal relationship between parallel and alternative is shown below:

ALT
c ? x
PAR
PAR P
SEQ SEQ
c ?x d?y
P = o)
SEQ d?y
d?y PAR
Q Q
SEQ
c ? x
P

This equivalence states that if two concurrent processes are both ready to input (communicate) on different
channels, then either input (communication) may be performed first.

One feature of CSP omitted from occam is the automatic failure of a guard when the process connected to
the other end of the channel terminates. Although this is a convenient programming feature, it complicates
the channel communication protocol, introducing the need for further kinds of message. In addition, it can be
argued that many programs are clearer if termination is expressed explicitly.

A simple example of the alternative is shown below; this is a ‘stoppable’ buffer program:

WHILE going
ALT

in —» ch ——-out
in ? ch

out ! ch
stop ? ANY
going := FALSE

stop

in which stop ? ANY inputs any value from the channel stop, and as a result causes the loop to terminate.
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251 Output guards

Output guards are a very convenient programming tool. In particular, they allow programs such as the
following buffer process to be written in a natural way:

WHILE TRUE
ALT
count>0 & output ! buff [ outpointer ]
SEQ
outpointer := (outpointer + 1) REM max
count := count - 1
count<max & input ? buff [ inpointer ]
SEQ
inpointer := (inpointer + 1) REM max
count := count + 1

It is very tempting to include output guards in a communicating process language, and attempts have been
made to include output guards in occam. The major difficulty is in the distributed implementation; in a

program such as:

PAR
ALT
c ! x1
d ? x2
ALT
c ?yl
d ! y2

what is expected to happen in the event that two identical processors both enter their alternative at exactly
the same time? Clearly some asymmetry must be introduced; the easiest way to do this is to give each
processor in a system a unique number. Even so, the provision of output guards greatly complicates the
communications protocol. For this reason, output guards are omitted from occam, and the above buffer

must be written as shown below:

PAR
WHILE TRUE
ALT
count>0 & req ? ANY
SEQ
reply ! buff [ outpointer ]
outpointer := (outpointer + 1) REM max
count := count - 1
count<max & input ? buff [ inpointer ]
SEQ
inpointer := (inpointer + 1) REM max
count := count + 1
WHILE TRUE
SEQ
req ! ANY
reply ? ch

output ! ch

On the other hand, an 0occam implementation with only input guards can be used to write the communications
kernel for a ‘higher level’ version of 0ccam with output guards. An example of an algorithm to implement
output guards in CSP is given in [6]; and one for occam is given in [7].
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2.6 Channels and hierarchical decomposition

An important feature of 0ccam is the ability to successively decompose a process into concurrent component
processes. This is the main reason for the use of named communication channels in occam. Once a
named channel is established between two processes, neither process need have any knowledge of the
internal details of the other. Indeed, the internal structure of each process can change during execution of
the program.

The parallel construct, together with named channels provides for decomposition of an application into a
hierarchy of communicating processes, enabling occam to be applied to large-scale applications. This
technique cannot be used in languages which use process (or ‘entry’) names, rather than channels, for
communication.

In specifying the behaviour of a process, it is important that a specification of the protocol used on the channel
exists, and the best way to do this varies from program to program (or even from channel to channel!). For
example, Backus-Naur Form is often suitable for describing the messages which pass between the individ-
ual processes of a linear pipeline of processes. On the other hand, for more complex interactions between
processes, it is often useful to describe the interactions by an occam ‘program’ in which all unnecessary
features are omitted. This often enables the interactions between processes to be studied independently of
the data values manipulated. For example:

SEQ
request °?
WHILE TRUE
PAR
reply !
request ?

describes a process which inputs a request, and then endlessly inputs a new request and outputs a reply, in
either order. Such a process would be compatible, in some sense, with any of the following processes:

WHILE TRUE SEQ SEQ
SEQ request ! request !
request ! WHILE TRUE WHILE TRUE
reply ? SEQ PAR
request ! request !
reply ? reply ?

More design aids are needed to assist in the specification and checking of channel protocols.

2.7 Arrays and replicators

The representation of arrays and ‘for’ loops in 0occam is unconventional. Although this has nothing to do
with the concurrency features of occam, it seems to have significant advantages over alternative schemes.

To eliminate trivial programming errors, it is desirable that there is a simple relationship between an array
declaration and a loop which performs some operation for every element of an array. This might lead a
language designer to a choice of:

ARRAY a [base TO limit] ...
FOR i IN [base TO limit]

It is also useful if the number of elements in an array, or the number of iterations of a loop, is easily visible.
For this reason, a better choice might be:

ARRAY a [base FOR count] ...

FOR i IN [base FOR count] ...
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For the loop, this gives a further advantage: the ‘empty’ loop corresponds to count=0 instead of limitjbase.
This removes the need for the unsatisfactory ‘loop’:

FOR i IN [0 TO -1}
Implementation can be simplified by insisting that all arrays start from 0. Finally, in occam the FOR loop is

generalised, and its semantics simplified. An occam ’replicator’ can be used with any of SEQ, PAR, ALT
and IF; its meaning is defined by:

Xn=bFORc = X
P (n) P (b)
P (b+1)
P (b+c-1)

where X is one of SEQ, PAR, ALT and IF, nis a name and b, ¢ expressions. This definition implicitly defines
the ‘control variable’ n, and prevents it being changed by assignments within P.

The introduction of arrays of variables and channels does complicate the rules governing the correct use of
channels and variables. Simple compile-time checks which are not too restrictive are:

No array changed by assignment (to one of its components) in any of the components of a parallel
may be used in any other component

No two components of a parallel may select channels from the same array using variable subscripts

A component of a parallel which uses an array for both input and output may not select channels
from the array using variable subscripts

where a variable subscript is a subscript which cannot be evaluated by the compiler.

2.8 Time
The treatment of time in 0ccam directly matches the behaviour of a conventional alarm clock.
Time itself is represented in 0ccam by values which cycle through all possible integer values. Of course,
it would have been possible to represent time by a value large enough (say 64 bits) to remove the cyclic
behaviour, but this requires the use of multiple-length arithmetic to maintain the clock and is probably not
justified.
Using an alarm clock, it is possible at any time to observe the current time, or to wait until the alarm goes
off. Similarly, a process must be able to read the clock at any time, or wait until a particular time. If it were
possible only to read the clock, a program could only wait until a particular time ‘busily’. Like the alternative
construct, the ‘wait until a time’ operation has the advantage that it can be implemented ‘busily’ or ‘non-busily’.
A timer is declared in the same way as a channel or variable. This gives rise to a relativistic concept of time,
with different timers being used in different parts of a program. A localised timer is much easier to implement
than a global timer.
A timer is read by a special ‘input’:

time ? v
which is always ready, and sets the variable v to the time. Similarly, the ‘input’:

time ? AFTER t

waits until time t.
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The use of an absolute time in 0ccam instead of a delay is to simplify the construction of programs such as:

WHILE TRUE
SEQ
time ? AFTER t
t :=t + interval
output ! bell

in which n rings of the bell will always take between (n*interval) and n* (interval+1l) ticks. This
would not be true of a program such as:

WHILE TRUE
SEQ
DELAY interval
output ! bell

because of the time taken to ring the bell.

It is not possible, in 0ccam, for a process to implement a timer. This would require a ‘timer output’ such as:
timer ! PLUS n

which advances the timer by n ticks. There is no obvious reason why this could not be included in occam.

It would be particularly useful in constructing timers of different rates, or in writing a process to provide
‘simulated time’.

29 Types and data structures

The occam described so far makes few assumptions about data types. Any data type could be used —
provided that values of that type can be assigned, input and output according to the rule:

PAR
c ! x
c?y

y 1= x

To preserve this rule, and keep the implementation of communication simple, it is best for assignment not to
make type conversions.

The initial version of 0occam provides untyped variables and one-dimensional arrays. No addressing opera-
tions are provided, as this would make it impossible for the compiler to check that variables are not shared
between concurrent processes.

occam has been extended to include data types. The simple variable is replaced with boolean, byte and
integer types, and multi-dimensional arrays are provided. Communication and assignment operate on vari-
ables of any data type, allowing arrays to be communicated and assigned.

A detailed description can be found in [8].

2.10 Implementation of occam

The implementation of concurrent processes and process interaction in occam is straightforward. This
results from the need to implement occam on the transputer using simple hardware and a small number of
microcoded instructions. Conveniently, the transputer instructions used to implement 0cCam can be used as
definitions of the ‘kernel primitives’ in other implementations of occam. A discussion of the implementation of
occam can be found in [9]. However, some measure of the efficiency of the occam primitives is provided by
the performance of the INMOS transputer: about 1 microsecond/component of PAR, and 1.5 microseconds
for a process communication.

Another interesting feature of 0CCam is that the process interactions directly represent hardware mechanisms,
which is one reason why 0ccam is being used as a hardware description language.
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2.10.1 Compile-time allocation

For run-time efficiency, the advantages of allocating processors and memory at compile-time are clear. To
allow the compiler to allocate memory, some implementation restrictions are imposed. Firstly, the number of
components of an array, and the number of concurrent processes created by a parallel replicator, must be
known at compile-time. Secondly, no recursive procedures are allowed. The effect of these restrictions is that
the compiler can establish the amount of space needed for the execution of each component of a parallel
construct, and this makes the run-time overhead of the parallel construct very small.

On the other hand, there is nothing in occam itself to prevent an implementation without these restrictions,
and this would be fairly straightforward for a single computer with dynamic memory allocation.

A distributed implementation of ‘recursive occam’ might allow a tree of processors to be described by:

PROC tree (VALUE n, CHAN down, CHAN up)
IF

n=0
leaf ( down, up )

n>0
CHAN left.down, left.up
CHAN right.down, right.up
PAR

tree (n-1, left.down, left.up)
tree (n-1, right.down, right.up)
node ( down, up,
left.down, left.up,
right.down, right.up )

If the depth of the tree is known at compile-time (as it normally would be if the program is to be executed on
a fixed-size processor array), the same effect can be achieved by a non-recursive program such as:

DEF p = TABLE [1, 2, 4, 8, 16, 32, 64, 128] :

—-- depth of tree = n
CHAN down [n*(n-1)] :
CHAN up [n*(n-1)] :

PAR
PAR i = [0 FOR n - 1]
PAR j = [0 FOR pl[i]]
branch ( down [p[i] + j1, up [p[i] + 3jI1,
down [p[i+1]+(3*2)1, up [p[i+11+(3*2)],
down [p[i+1]+(j*2)+1], up [p[i+1]+(j*2)+1] )
PAR i = [0 FOR p[n]]
leaf ( down [pIn]+i], up [pIn]l+i] )

Obviously, a preprocessor could be used to provide a correctness preserving transformation between these
two programs.

If the depth of the tree above were not known, it is not clear how such a program could be mapped on to
a processor array, either explicitly by the programmer or implicitly by the implementation. Fortunately, this
problem can be left for the future; many applications require only simple compile time allocation of processors
and memory space.

2.11 Program development

The development of programs for multiple processor systems is not trivial. One problem is that the most
effective configuration is not always clear until a substantial amount of work has been done. For this reason,
it is very desirable that most of the design and programming can be completed before hardware construction
is started.
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This problem is greatly reduced by the property of 0cCam mentioned above: the use of the same concurrent
programming techniques for both a network and a single computer. A direct consequence of this is that a
program ultimately intended for a network of computers can be compiled and executed efflcxently by a single
computer used for program development.

Another important property of occam in this context is that occam provides a clear notion of ‘logical be-
haviour’; this relates to those aspects of a program not affected by real-time effects. It is guaranteed that the
logical behaviour of a program is not altered by the way in which processes are mapped on to processors,
or by the speed of processing and communication.

This notion of ‘logical behaviour’ results from the relatively abstract specification of parallel and alternative;
it allows almost any scheduling system to be used to simulate concurrency. For the parallel construct, an
implementation may choose the order in which the individual actions of the components are executed. If
several components are ready (not waiting to communicate), the implementation may execute an arbitrary
subset of them and temporarily ignore the rest. For the alternative, an implementation may select any ready
component; there is no requirement to select the ‘earliest’, or to select randomly.

2.11.1  Configuration

The configuration of a program to meet real-time constraints is provided by annotations to the parallel and
alternative constructs. For the parallel construct, the components may be placed on different processors, or
may be prioritised. For the alternative construct, the components may be prioritised. A better version of the
‘stoppable’ buffer shown earlier would therefore be:

WHILE going
PRI ALT
stop ? ANY
going := FALSE
in ? ch
out ! ch

A prioritised alternative can easily be used to provide either a prioritised or a ‘fair’ multiplexor:

WHILE TRUE -- prioritised
PRI ALT i = 0 FOR 10
in [i] ? ch
out ! ch

WHILE TR -- ‘fair’
PRI ALT i = 0 FOR 10
in [(i+last) REM 10] ? ch
SEQ
out ! ch
last := (i+l) REM 10

In practice, only limited use is made of prioritisation. For most applications, the scheduling of concurrent
processes and the method of selecting alternatives is unimportant. This is because, assuming that the
system is executing one program, the processes which are consuming all of the processing resources must
eventually stop, and wait for the other processes to do something. If this is not the case, the other processes
are redundant, and can be removed from the program. An implementation should not, of course, allow a
processor to idle if there is something for it to do. But this property is true of any programming language!

Scheduling is important where a system executes two disjoint processes, or has to meet some externally
imposed constraint. Both of these occur, for example, in an operating system which deals with disjoint users,
and needs to take data from a disk at an externally imposed rate.
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2.12 occam programs

Despite being a fairly small language, 0ccam supports a very wide variety of programming techniques. Most
important, the programmer may choose between a concurrent algorithm or an equivalent sequential one. A
final program often consists of a mixture of the two, in which the concurrent algorithm describes a network of
transputers, each of which executes the sequential algorithm.

In practice, it is often best to write the concurrent algorithm first. The reason for this is that only the concurrent
program provides freedom in the implemention. A pipeline of ten processes could be executed by a pipeline
constructed from up to ten transputers; the number being chosen according to the performance required. It is
very unlikely that a sequential program can easily be adapted to produce a concurrent program, never mind
one suitable for execution by a network of transputers with no shared memory.

The following example is a concurrent searching algorithm. It uses the tree program shown earlier. The data
to be searched is held in the leaf processors; the node processors are used to disperse the data to the leaves
and collect the replies:

PROC leaf (CHAN down, up) =
VAR data, enq:
SEQ
... =—— load data
WHILE TRUE
SEQ
down ? eng
up ! (enq = data)

PROC node (CHAN down, up,
CHAN left.down, left.up,
CHAN right.down, right.up) =
WHILE TRUE
VAR enqg, left.found, right.found :
SEQ
down ? eng
PAR
left.down ! eng
right.down ! eng
PAR
left.up ? left.found
right.up ? right.found
up ! left.found OR right.found

However, it is unlikely to be economic to store only one data item in each leaf. Although each leaf could itself
execute the above algorithm using a tree of processes, this would not be very efficient. What is needed in
each leaf is a conventional sequential searching algorithm operating on an array of data:

PROC leaf (CHAN down, up) =
VAR enq, data [length], found:
SEQ
... == initialise data
WHILE TRUE
SEQ
found := FALSE
down ? enq
SEQ i = [0 FOR length]
found := (data [i] = eng ) OR found
up ! found :

It now remains to choose the number of items held in each leaf so that the time taken to disperse the enquiry
and collect the response is small relative to the time taken for the search at each leaf. For example, if the
time taken for a single communication is 5 microseconds, and the tree is of depth 7 (128 leaves) only 70
microseconds are spent on communication, about one-tenth of the time taken to search 1000 items.
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2.12.1 Example: systolic arrays

A very large number of concurrent algorithms require only the simplest concurrency mechanisms: the parallel
construct and the communication channel. These include the ‘systolic array’ algorithms described by Kung
[10]. In fact, o0cCam enables a systolic algorithm to be written in one of two ways, illustrated by the following
two versions of a simple pipeline, each element of which performs a ‘compute’ step. First, the traditional
version:

VAR master [ n ]:
VAR slave [ n ] :
WHILE TRUE
SEQ
PAR i = 0 FOR n
compute ( master [ i ], slave [ i ] )
PAR
input ? master [ 0 ]
PAR i = 0 FOR n-1
master [ i + 1 ] := slave [ i ]
output ! slave [ n ]

This pipeline describes a conventional synchronous array processor. The compute operations are performed
in parallel, each taking data from a master register and leaving its result in a slave register. The array
processor is globally synchronised; in each iteration all compute operations start and terminate together, then
the data is moved along the pipeline. The initialisation of the pipeline is omitted, so the first n outputs will be
rubbish.

The main problem with the above program is the use of global synchronisation, which gives rise to the same
implementation difficulties as global communication; it requires that the speed of operation must be reduced
as the array size increases. A more natural program in occam would be:

CHAN ¢ [ n + 1 ]
PAR i = 0 FOR n
WHILE TRUE

VAR d:

VAR r:

SEQ

c[n]2?24d

compute ( d, r)

c[n+1]!'rx

In this program, c[0] is the input channel, c[n+1] the output channel. Once again, all of the compute operations
are performed together. This time there is no need for initialisation, as no output can be produced until the
first input has passed right through the pipeline. More important, the pipeline is self-synchronising; adjacent
elements synchronise only as needed to communicate data. It seems likely that many systolic array algorithms
could usefully be re-expressed and implemented in this form.

2,122 Example: occam compiler

The structure of the 0ccam compiler is shown opposite. It demonstrates an important feature of the occam
support system; the ability to ‘fold’ sections of program away, leaving only a comment visible. This enables
a program, or part of a program, to be viewed at the appropriate level of detail.
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-—- occam compiler
CHAN lexed.program:
CHAN parsed.program:
CHAN scoped.program:
PAR
-- lexer
CHAN name.text:
CHAN name.code:
PAR
-- scanner
-- nametable

kK

-- parser
CHAN parsed.lines
PAR

-- line parser

-- construct parser

-- scoper

-- generator

CHAN generated.constructs
CHAN generated.program :
PAR

- construct generator
-- line generator
-- space allocator

The compiler also illustrates an important programming technique. The nametable process contains data
structures which are hidden from the rest of the program. These structures are modified only as a result of
messages from the lexical analyser. They are initialised prior to receipt of the first message:

-- nametable
SEQ
-- initialise
WHILE going
—-- input text of name
-- look up name
-—- output corresponding code
-- terminate

From the outside, the compiler appears to be a single-pass compiler. Internally, it is more like a multiple-pass
compiler; each process performs a simple transformation on the data which flows through it. The effect of
decomposing the compiler in this way was that each component process was relatively easy to write, specify
and test; this meant that the component processes could be written concurrently!
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2.13 Conclusions

In many application areas, concurrency can be used to provide considerable gains in performance provided
that programs are structured to exploit available technology. For many application areas (especially sig-
nal processing and scientific computation) suitable algorithms already exist, but many areas remain to be
explored.

Writing programs in terms of communicating processes tends to produce programs with a large number of
concurrent processes, ranging in size from 1 to 1000 lines. Consequently, it is particularly important that the
concurrent processing features in the language are efficiently implementable. occam demonstrates that this
efficiency can be achieved for a widely applicable language.

In occam programs, the process/channel structure tends to be used as a major program structuring tool,
procedures being used in the normal way within the larger concurrent processes. The process/channel
structure seems to be effective for managing the construction of large programs, although more experience
is needed in this area.
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3 The transputer implementation of occam
3.1 Introduction

VLSI technology allows a large number of identical devices to be manufactured cheaply. For this reason, it is
attractive to implement an occam [1] program using a number of identical components, each programmed
with the appropriate 0ccam process. A transputer [2] is such a component.

A transputer is a single VLSI device with memory, processor and communications links for direct connection
to other transputers. Concurrent systems can be constructed from a collection of transputers which operate
concurrently and communicate through links.

The transputer can therefore be used as a building block for concurrent processing systems, with occam
as the associated design formalism.

3.2 Architecture

An important property of VLSI technology is that communication between devices is very much slower than
communication on the same device. In a computer, almost every operation that the processor performs in-
volves the use of memory. A transputer therefore includes both processor and memory in the same integrated
circuit device.

In any system constructed from integrated circuit devices, much of the physical bulk arises from connections
between devices. The size of the package for an integrated circuit is determined more by the number of
connection pins than by the size of the device itself. In addition, connections between devices provided by
paths on a circuit board consume a considerable amount of space.

The speed of communication between electronic devices is optimised by the use of one-directional signal
wires, each connecting two devices. |f many devices are connected by a shared bus, electrical problems
of driving the bus require that the speed is reduced. Also, additional control logic and wiring is required to
control sharing of the bus.

To provide maximum speed with minimal wiring, the transputer uses point-to-point serial communication links
for direct connection to other transputers.

3.3 occam

occam enables a system to be described as a collection of concurrent processes, which communicate with
each other and with peripheral devices through channels. occam programs are built from three primitive
processes:

v :=e assign expression e to variable v
c! e output expression e to channel ¢
¢ ? v input from channel ¢ to variable v

The primitive processes are combined to form constructs:

SEQuential components executed one after another
PARallel components executed together
AlLTernative component first ready is executed

A construct is itself a process, and may be used as a component of another construct.

Conventional sequential programs can be expressed with variables and assignments, combined in sequential
constructs. |IF and WHILE constructs are also provided.

Concurrent programs can be expressed with channels, inputs and outputs, which are combined in parallel
and alternative constructs.
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Each occam channel provides a communication path between two concurrent processes. Communication
is synchronised and takes place when both the inputting process and the outputting process are ready. The
data to be output is then copied from the outputting process to the inputting process, and both processes
continue.

An alternative process may be ready for input from any one of a number of channels. In this case, the input
is taken from the channel which is first used for output by another process.

3.4 The transputer

A transputer system consists of a number of interconnected transputers, each executing an 0ccam process
and communicating with other transputers. As a process executed by a transputer may itself consist of a num-
ber of concurrent processes the transputer has to support the occam programming model internally. Within
a transputer concurrent processing is implemented by sharing the processor time between the concurrent
processes.

The most effective implementation of simple programs by a programmable computer is provided by a sequen-

tial processor. Consequently, the transputer processor is fairly conventional, except that additional hardware
and microcode support the occam model of concurrent processing.

3.4.1 Sequential processing
The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of

registers, together with the simplicity of the instruction set enables the processor to have relatively simple
(and fast) data paths and control logic.

The six registers are:
The workspace pointer which points to an area of store where local variables are kept.
The instruction pointer which points to the next instruction to be executed.
The operand register which is used in the formation of instruction operands.
The A, B and C registers which form an evaluation stack, and are the sources and destinations for

most arithmetic and logical operations. Loading a value into the stack pushes B into C, and A into
B, before loading A. Storing a value from A, pops B into A and C into B.

Registers Locals Program

A

B

C
Workspace S—
Next inst >

Operand
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Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the "add’ instruction adds the top two values in the stack and places the result on the top of the stack.
The use of a stack removes the need for instructions to respecify the location of their operands. Statistics
gathered from a large number of programs show that three registers provide an effective balance between
code compactness and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded on to the stack.
It is easy for the compiler to ensure that this never happens.

3.4.2 Instructions

It was a design decision that the transputer should be programmed in a high-level language. The instruction
set has, therefore, been designed for simple and efficient compilation. It contains a relatively small number
of instructions, all with the same format, chosen to give a compact representation of the operations most
frequently occurring in programs. The instruction set is independent of the processor wordlength, allowing
the same microcode to be used for transputers with different wordlengths. Each instruction consists of a
single byte divided into two 4-bit parts. The four most significant bits of the byte are a function code, and the
four least significant bits are a data value.

[Function l Data J
7 43 0

Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of
these are used to encode the most important functions performed by any computer. These include:

load constant
add constant

load local
store local
load local pointer

load non-local
store non-local

jump
conditional jump

call

The most common operations in a program are the loading of small literal values, and the loading and storing
of one of a small number of variables. The ’load constant’ instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The ’load local’ and 'store local’ instructions access locations in memory
relative to the workspace pointer. The first sixteen locations can be accessed using a single byte instruction.

The 'load non-local’ and ’store non-local’ instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of block-structured programming languages such as occam.
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Prefix functions

Two more of the function codes are used to allow the operand of any instruction to be extended in length.
These are:

prefix
negative prefix

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction’s operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

IFunction ] Data ]
7 43 ‘ 0

[ Operand Register | I

The ’prefix’ instruction loads its four data bits into the operand register, and then shifts the operand register up
four places. The 'negative prefix’ instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range —256 to 255 can be represented
using one prefix instruction.

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation, by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

Indirect functions

The remaining function code, 'operate’, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to sixteen such operations to be encoded in a single byte
instruction. However, the prefix instructions can be used to extend the operand of an "operate’ instruction just
like any other. The instruction representation therefore provides for an indefinite number of operations.

The encoding of the indirect functions is chosen so that the most frequently occurring operations are repre-
sented without the use of a prefix instruction. These include arithmetic, logical and comparison operations
such as

add
exclusive or
greater than

Less frequently occurring operations have encodings which require a single prefix operation (the transputer
instruction set is not large enough to require more than 512 operations to be encoded}).
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3.43 Expression evaluation

Evaluation of expressions may require the use of temporary variables in the process workspace, but the
number of these can be minimised by careful choice of the evaluation order.

Let depth(e) be the number of stack locations needed for the evaluation of expression e, defined by:

depth(constant) = 1
depth(variable) = 1
depth(e1 op e2) = IF depth(e1)>depth(e2) THEN
depth(e1)
ELSE IF depth(e1)<depth(e2) THEN
depth(e2)

ELSE depth(e1) + 1
Let commutes(operator) be true if the operator commutes, false otherwise.
Let e7 and e2 be expressions. The expression of (e1 op e2) is compiled for the three-register stack by:

compile(e1 op e2) =
IF depth(e2) > depth(e1)
THEN
IF depth(e1)>2
THEN (compile(e2); store temp; compile(e1); load temp; op)
ELSE IF commutes(op)
THEN (compile(e2); compile(e1); op)
ELSE (compile(e2); compile(e1); reverse; op)
ELSE
IF depth(e2)<3
THEN (compile(e1); compile(e2); op)
ELSE (compile(e2); store temp; compile(e1); load temp; op)

where (11, 12; ... In) represents a sequence of instructions.
Efficiency of encoding

Measurements show that about 80% of executed instructions are encoded in a single byte (i.e. without the
use of prefix instructions). Many of these instructions, such as ’load constant’ and 'add’ require just one
processor cycle.

The instruction representation gives a more compact representation of high-level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive several instructions for every fetch.

Short instructions also improve the effectiveness of instruction prefetch, which in turn improves processor
performance. There is an extra word of prefetch buffer so that the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

3.44 Support for concurrency

The processor provides efficient support for the occam model of concurrency and communication. It has a
microcoded scheduler which enables any number of concurrent processes to be executed together, sharing
the processor time. This removes the need for a software kernel. The processor does not need to support the
dynamic allocation of storage as the occam compiler is able to perform the allocation of space to concurrent
processes.
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At any time, a concurrent process may be:

active - being executed
— on a list waiting to be executed
ready to input
— ready to output
— waiting until a specified time

inactive

The scheduler operates in such a way that inactive processes do not consume any processor time.

The active processes waiting to be executed are held on a list. This is a linked list of process workspaces,
implemented using two registers, one of which points to the first process on the list, the other to the last.

In this illustration, S is executing, and P, Q and R are active, awaiting execution:

Registers Locals Program
Front —— L
P
Back —
>
Q ¢
A
—> R ¢
B
c e s
Workspace B
Next Inst >
Operand

A process is executed until it is unable to proceed because it is waiting to input or output, or waiting for the
timer. Whenever a process is unable to proceed, its instruction pointer is saved in its workspace and the next
process is taken from the list. Actual process switch times are very small as little state needs to be saved; it
is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model. These include:

start process
end process

When a parallel construct is executed, ’start process’ instructions are used to create the necessary concurrent
processes. A 'start process’ instruction creates a new process by adding a new workspace to the end of the
scheduling list, enabling the new concurrent process to be executed together with the ones already being
executed.

The correct termination of a parallel construct is assured by use of the end process’ instruction. This uses a
workspace location as a counter of the components of the parallel construct which have still to terminate. The
counter is initialised to the number of components before the processes are 'started’. Each component ends
with an ’end process’ instruction which decrements and tests the counter. For all but the last component, the
counter is non-zero and the component is descheduled. For the last component, the counter is zero and the
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component continues.
Communications

Communication between processes is achieved by means of channels. occam communication is point-to-
point, synchronised and unbuffered. As a result, a channel needs no process queue, ho message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being:

input message
output message

The ‘input message’ and ‘output message’ instructions use the address of the channel to determine whether
the channel is internal or external. This means that the same instruction sequence can be used for both hard
and soft channels, allowing a process to be written and compiled without knowledge of where its channels
are connected.

As in the occam model, communication takes place when both the inputting and outputting processes are
ready. Consequently, the process which first becomes ready must wait until the second one is also ready.

A process performs an input or output by loading the evaluation stack with a pointer to a message, the
address of a channel, and a count of the number of bytes to be transferred, and then executing an ‘input
message’ or an ‘output message’ instruction.

Internal channel communication

At any time, an internal channel (a single word in memory) either holds the identity of a process, or holds the
special value ‘empty’. The channel is initialised to ‘empty’ before it is used.

When a message is passed using the channel, the identity of the first process to become ready is stored
in the channel, and the processor starts to execute the next process from the scheduling list. When the
second process to use the channel becomes ready, the message is copied, the waiting process is added to
the scheduling list, and the channel reset to its initial state. It does not matter whether the inputting or the
outputting process becomes ready first.

In the following illustration, a process P is about to execute an output instruction on an ‘empty’ channel C.
The evaluation stack holds a pointer to a message, the address of channel C, and a count of the number of
bytes in the message.

P c
Registers

A: Count

B: Channel ——» Empty

C: Pointer
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After executing the output instruction, the channel C holds the address of the workspace of P, and the address
of the message to be transferred is stored in the workspace of P. P is descheduled, and the process starts
to execute the next process from the scheduling list.

P C
Workspace

Next Inst |—— P

Pointer

The channel C and the process P remain in this state until a second process, Q executes an output instruction
on the channel.

P C Q

Workspace

A: Count

Next Inst |— P <@¢— B: Channel

Pointer C: Pointer

The message is copied, the waiting process P is added to the scheduling list, and the channel C is reset to
its initial ‘empty’ state.

P c

Workspace

Next Inst Empty

— List —
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External channel communication

When a message is passed via an external channel the processor delegates to an autonomous link interface
the job of transferring the message and deschedules the process. When the message has been transferred
the link interface causes the processor to reschedule the waiting process. This allows the processor to
continue the execution of other processes whilst the external message transfer is taking place.

Each link interface uses three registers:

a pointer to a process workspace
a pointer to a message
a count of bytes in the message

In the following illustration, processes P and Q executed by different transputers communicate using a channel
C implemented by a link connecting two transputers: P outputs, and Q inputs.

P C Q
Registers Registers
Count Count
Channel > | Channel
Pointer Pointer

When P executes its output instruction, the registers in the link interface of the transputer executing P are
initialised, and P is descheduled. Similarly, when Q executes its input instruction, the registers in the link
interface of the process executing Q are initialised, and Q is descheduled.

P C Q
Workspace Workspace
Next Inst |g¢——i P Q ———» Next Inst

Pointer | —o———0— Pointer

Count Count
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The message is now copied through the link, after which the workspaces of P and Q are returned to the
corresponding scheduling lists. The protocol used on P and Q ensures that it does not matter which of P and
Q first becomes ready.

P C Q
Workspace Workspace
Next Inst Next Inst

—» Llist Lp —O0———0—] —p List L p

Timer

The transputer has a clock which ‘ticks’ every microsecond. The current value of the processor clock can be
read by executing a ‘Read timer’ instruction.

A process can arrange to perform a ‘timer input’, in which case it will become ready to execute after a
specified time has been reached.

The timer input instruction requires a time to be specified. If this time is in the ‘past’ (i.e. ClockReg AFTER
SpecifiedTime) then the instruction has no effect. If the time is in the ‘future’ (i.e. SpecifiedTime AFTER
Clockreg or SpecifiedTime = ClockReg) then the process is descheduled. When the specified time is reached
the process is scheduled again.

Alternative

The occam alternative construct enables a process to wait for input from any one of a number of channels,
or until a specific time occurs. This requires special instructions, as the normal ‘input’ instruction deschedules
a process until a specific channel becomes ready, or until a specific time is reached. The instructions used
are:

enable channel enable timer
disable channel disable timer
alternative wait

The alternative is implemented by ‘enabling’ the channel input or timer input specified in each of its compo-
nents. The ‘alternative wait’ is then used to deschedule the process if none of the channel or timer inputs is
ready; the process will be rescheduled when any one of them becomes ready. The channel and timer inputs
are then 'disabled’. The 'disable’ instructions are also designed to select the component of the alternative to
be executed; the first component found to be ready is executed.

3.45 Inter-transputer links

To provide synchronised communication, each message must be acknowledged. Consequently, a link requires
at least one signal wire in each direction.

A link between two transputers is implemented by connecting a link interface on one transputer to a link
interface on the other transputer by two one-directional signal lines, along which data is transmitted serially.

The two signal wires of the link can be used to provide two 0ccam channels, one in each direction. This
requires a simple protocol. Each signal line carries data and control information.
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The link protocol provides the synchronised communication of occam. The use of a protocol providing for
the transmission of an arbitrary sequence of bytes allows transputers of different wordiength to be connected.

Each message is transmitted as a sequence of single byte communications, requiring only the presence of
a single byte buffer in the receiving transputer to ensure that no information is lost. Each byte is transmitted
as a start bit followed by a one bit followed by the eight data bits followed by a stop bit. After transmitting a
data byte, the sender waits until an acknowledge is received; this consists of a start bit followed by a zero
bit. The acknowledge signifies both that a process was able to receive the acknowledged byte, and that the
receiving link is able to receive another byte. The sending link reschedules the sending process only after
the acknowledge for the final byte of the message has been received.

1 1 Data 0
Data byte
1 0

Acknowledge message

Data bytes and acknowledges are multiplexed down each signal line. An acknowledge is transmitted as soon
as reception of a data byte starts (if there is room to buffer another one). Consequently transmission may be
continuous, with no delays between data bytes.

3.5 Summary

Experience with occam has shown that many applications naturally decompose into a large number of
fairly simple processes. Once an application has been described in occam, a variety of implementations
are possible. In particular, the use of occam together with the transputer enables the designer to exploit
the peformance and economics of VLSI technnolgy. The concurrent processing features of occam can be
efficiently implemented by a small, simple and fast processor.

The transputer therefore has two important uses. Firstly it provides a new system ’building block’ which
enables 0Ccam to be used as a design formalism. In this role, 0ccam serves both as a system description
language and a programming language. Secondly, 0occam and the transputer can be used for prototyping
highly concurrent systems in which the individual processes are ultimately intended to be implemented by
dedicated hardware.

3.6 References
1 occam Programming Manual, Prentice-Hall International 1984.
2 The Transputer Databook, INMOS Ltd 1989.
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4 Communicating process computers
4.1 Introduction

This paper is concerned with the construction of computers based on communicating process architecture.
We wish to establish that this architecture is practical and that it is feasible to build a general-purpose computer
based on this architecture. We shall start by looking briefly at the technological background and the questions
that this raises, then look at a number of real applications, and finally we will discuss the possible structure
of a general-purpose parallel computer.

At the present level of VLSI technology we can implement in the same area of silicon the following components
of a computer:

a 10 MIPS processor
2 Kbytes of memory
a 10 Mbyte/second communications system

Consequently, using the same silicon area, we can construct a single 10 MIPS processor with 4 Mbytes of
memory (a conventional sequential computer) or a 10000 MIPS computer with 2 Mbytes of memory. Both
machines would require about 1000 VLSI devices, and so are quite small computers.

The problems are now to decide on the correct ratio of memory to processors and how to construct a system
with many processing elements with small amounts of memory dispersed through the system, in such a way
that it can be applied to practical problems. Obviously, a collection of 1000 or more processing elements
must be arranged in a regular structure, and a number of different structures have been proposed. Examples
are:

pipeline

array (1D, 2D, 3D ...)
hypercube

toroidal surface
shuffle

These structures vary in three important respects:

ability to extend
ability to implement on silicon (in two dimensions)
cost of non-local communication

We will return to these matters when we consider the implemention of applications on general-purpose com-
municating process computers. But first we will look at some applications.

4.2 Applications with special configurations

We now look at a number of applications where the concurrent implementation seems to dictate a specific
processor structure. All these applications have been developed and actually run on multi-transputer systems.
The examples are divided into three groups. The first group contains applications where the parallelism has
been obtained by decomposing the algorithm into a number of smaller, simpler components which can be
executed in parallel. The second group contains applications where the parallelism has been obtained by
distributing the data to be processed between a number of processors in such a way that the geometrical
structure of the data is preserved. The final group contains applications where a number of processors
are used to process data farmed out by a controlling processor. Of course, these groups are not mutually
exclusive, and our solid modelling application shows aspects of both algorithmic and geometric decomposition.
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4.2.1 Algorithmic parallelism or dataflow decomposition

In the following two examples the algorithm used follows from a dataflow analysis of the application and the
parallelism arises directly from that algorithm.

Example: occam compiler

The first example is the occam-in-occam compiler. One of the reasons for the choice of this example is to
illustrate that concurrency can arise where it might not be expected. In order to write this compiler concurrently
(deliberate ambiguity!) a dataflow approach was taken; the parallel decomposition of the algorithm then follows
straightforwardly. The diagram below shows the structure of the compiler.

—\ - _/"L Line |- Construct } Scoper
canner

Lexer Parser

{ Construct | Line  |»{ Space } > Code cruncher —

Generator

From the outside, the compiler appears to be a single-pass compiler. Internally, it is more like a multiple-pass
compiler; each process performs a simple transformation on the data which flows through it. For example,
the lexer process inputs a sequence of characters and outputs a sequence of tokenised lexemes. It is able to
do this continuously; as soon as it has recognised a sequence of characters as a lexeme it is able to output
the appropriate token.

The effect of decomposing the compiler in this way was that each component process was relatively easy
to write, specify and test; this meant that the component processes could be written concurrently! Also, as
the machine dependencies were restricted to the final stages of the compiler, it was possible to develop the
compiler for different targets concurrently.
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The occam program for the compiler is outlined below:

-- occam compiler
CHAN lexed.program:
CHAN parsed.program:
CHAN scoped.program:
CHAN coded.program:
PAR
-- lexer
CHAN name.text:
CHAN name.code:
PAR
... Scanner
... nametable

-- parser
CHAN parsed.lines
PAR

... line parser

... construct parser

... scoper

-- generator
CHAN generated.constructs :
CHAN generated.program :
PAR
construct generator
... 1line generator
... 8space allocator

... code cruncher

The program, as shown, could be executed on a pipeline of processors. However, it is unlikely that it will
offer an increase in speed which is proportional the number of processors used.

There are two important reasons for this. The first is that the throughput of a pipeline is limited by the
throughput of the slowest element of the pipeline. This means that in order to have the potential for maximum
multi-processor speed-up a pipeline must be ‘balanced’; that is each component of the pipeline must process
data at the same rate. The compiler pipeline is not balanced; measurements show that the code cruncher
accounts for about 40% of the processing resource used. The second reason is that the pipeline does not
contain sufficent buffering to allow each individual stage to operate as fast as possible. For example, the line
parser operates on a line of lexemes at a time, whereas the lexer operates on only a lexeme at a time. This
means that without a buffer inserted between the lexer and the line parser, the lexer will halt whilst the line
parser transforms a line.

Example: solid modelling

Another example of an application for which the algorithm decomposes easily is solid modelling. This involves
the generation of shaded images of polygonal objects in real time. This has application in the areas of
computer-aided design and computer animation.

For each object the following steps are performed. First the object is translated into the ‘world space’ (the world
space defines the spacial relationships between the objects to be modelled). The object is then transformed
into the ‘image space’, this involves rotating and projecting the object so that it will appear in proper perspective
as seen by an observer at the chosen ‘viewpoint’. The image of each object must be ‘clipped’ to the screen
and then ‘drawn’ into a Z-buffer which is used to resolve depth. The algorithm can be extended to provide
animation by allowing the objects, the world, and the viewpoint to change for each frame.

At the top level we choose to implement the algorithm as shown in the next diagram.
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Transform

Object
Store

Here each object is passed to a transformer which passes the transformed object to the drawing process.
We use several transformers to increase the rate at which we can draw objects. As a transformer becomes
free, the object store can send it another object to transform. In this way we obtain a linear multiprocessor
speed-up; n-transformers can process data at n-times the rate that one transformer can. This speed-up is
predicated on the object store being able to supply objects at a great enough rate and on the drawing process
being able to draw objects fast enough.

We can now turn to the implementation of the transformation process. The sequential implementation of this
process could be written as:

WHILE active
SEQ
from.object.store ? object
world(object)
viewpoint (object)
clip (object)
to.drawing.process ! object

This process can be distributed over a pipeline:
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Transform process

Viewpoint

the program becoming:

CHAN world.to.viewpoint
CHAN viewpoint.to.clip
PAR
.. world
viewpoint
clip

The parallel processes would all have the same general form; for example, the viewpoint process would be:

WHILE active
SEQ
world.to.viewpoint ? object
viewpoint (ocbject)
viewpoint.to.clip ! object

In practice these processes would be probably be more complex than the program above suggests, we would
want to introduce buffering so that the whole of the transformation pipeline could be kept busy.

4.2.2 Geometric parallelism or data structure decomposition

In the example below use is made of the geometric structure of the data to distribute the application on to a
number of processors.

Statistical mechanics

Statistical mechanics is the study of mechanical systems where the behaviour of the components is described
statistically and cannot be resolved analytically. A familiar example of a statistical mechanical system is
provided by the magnetic properties of iron. For this purpose iron can be modelled as a cubic lattice of small
magnets.
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The orientation of these magnets is known as a spin because the magnetism is related to the spins of the
electrons in the iron. This model is thus called a three-dimensional spin system.

We can simulate the behaviour of iron on heating by examining what happens to the lattices over successive
time steps as it is heated. During each time step there are two important influences on each small magnet.
Firstly, there are thermal vibrations which will tend to move the magnet away from its current orientation.
The thermal effects are described statistically, with the distribution being dependent on the temperature of
the iron. The second influence will be the magnetic forces applied by the neighbours of the magnet under
consideration. If we start with a magnetised lattice and raise the temperature the thermal effects will eventually
overcome the magnetic forces and the lattice will become disordered and thus demagnetised.

It is easy to see that a statistical mechanical system can be decomposed in terms of its natural geometrical
structure. For example, the cubic lattice of iron could be split between a number of transputers, each dealing
with a small portion of the problem. Each transputer can then update that part of the lattice for which it contains
the data. Communication will be needed with neighbouring transputers so as to exchange information about
adjacent lattice sites which are placed on different transputers.
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We will now look at a practical example of a statistical mechanical simulation. This is a simulation of a
generalised planar spin model (i.e. a 2-D spin system) with both ‘Exchange’ and ‘Nematic interactions [1]
which has actually been implemented on a number of transputers. The system can be interpreted in terms
of liquid crystal films; however, the major interest in the system is theoretical in that it exhibits an unusual
phase structure.

The program operates on an L x L square lattice of spins with periodic boundary conditions. The spins are
represented by angles which are discretised to lower the storage requirements and to allow a table look-up
for fast cosine generation.

The original aim of the design was for the system to be implemented on an array of transputers without any
external memory. This imposed a large constraint because the straightforward geometric decomposition of the
updating process gave rise to a collection of processes each of which was too large to reside in the memory
of a single transputer. The solution was to split the updating work into two parallel processes, ‘random’ and
‘updata’ each of which could fit on a transputer.
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Controller—] Random }—{ Random L — ——v Random

Updata — Updata }— — ——— Updata

Periodic boundary conditions

The random process generates uniformly distributed and exponentially distributed random numbers and com-
municates with the controller process. The updata process performs the rest of the updating algorithm, stores
data (512 spins) and computes correlations. Each random/updata pair of processes implements a vertical
‘strip’ of the lattice. Horizontal communication is required for the interaction of the spins on the vertical edges
of the strips.

In practice the ‘no-external memory’ requirement was relaxed. The program was run at INMOS on seventeen
transputer evaluation boards (each board having an 80 nS cycle time transputer with external memory). The
extra memory permitted the random and updata processes to be implemented on a single transputer, the
lattice to be decomposed into sixteen 4 x 64 strips, and the discretisation of the spins to be increased to 128
states as the size of the cosine table could be enlarged.

The efficiency of the simulation was:

time of program on 1 processor

0,
17 x ime for program on 17 processors 80%

The simulation, which took about 60 hours to run, would have taken about 3 months on a VAX 11/780.

4.2.3 Farming out processing

Example: Graphical representation of the Mandelbrot Set

The Mandelbrot set, M, is the set of complex numbers:
M={c:|Mnlc)| <00 VneN}

where:

0
M. () +¢

Mo(c)
M;44 (C)

It can be shown that if 3n:| Mu(c) | >2thenc gM.

The edges of the Mandelbrot set are intricate, and, because complex numbers can be represented on a
two-dimensional plane, the set can be plotted on a graphics screen with impressive results. In practice, the
colour of each pixel on the screen represents whether or not the corresponding point of the complex plane is
in the Mandelbrot set. If a point is not in the Mandelbrot set then the colour plotted at that point represents
the number of applications of the recurrence required to determine that it is not in the set. A point will be
considered to be in the set if the recurrence has been applied more than a fixed number of times (for example
1000) without the modulus becoming greater than 2.
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For a given point (z, y) the following process applies the recurrence until a colour can be chosen:

iterations := 0
z := COMPLEX(0.0, 0.0)
WHILE (iteration < 1000) AND ((MOD z) < 2)
SEQ
z := (z*z) + COMPLEX(x, y)
iteration := iteration + 1

To plot a picture of the Mandelbrot set requires that we perform the above process for every pixel on the
screen. However, as the computation for each pixel is independent we may perform it for many pixels in
parallel. The implementation we have chosen is shown in the diagram below:

Controller Mandelbrot . Mandelbrot
- -

!

Graphics
Engine

—>
<

The basic idea used in this implementation is that the controller process hands out a point to each Mandelbrot
process. When a Mandelbrot process has computed the colour to be displayed at that pixel it sends the
information to the controller which passes the pixel to the graphics engine and hands the Mandelbrot process
another pixel. This approach is very attractive because the amount of computation required varies from pixel
to pixel and this implementation automatically balances the load.

As can be seen from the previous diagram, Mandelbrot processes not only compute the colour for a pixel

but they also provide a means for the controller to communicate with Mandelbrot processes to which it is not
directly connected. The structure of the Mandelbrot process is as shown below:

/—\ R

Coordinates

<< <
Pixels \_/

This implementation turns out to be quite effective. If there are N processors available to execute Mandelbrot
processes then an upper bound on the amount of communication required for each pixel will be 10 x N bytes.
This is not a large amount considering that the computation for each pixel may require up to 2000 operations
on floating-point complex numbers.

It turns out that in order to keep the processors busy the Mandelbrot process has to buffer an extra item of
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work so that when it completes the computation for a pixel it can start on its next pixel at once rather than
having to wait for the controller to send it the next item of work. In the diagram above the extra work is buffered
in the router, and when the Mandelbrot computer process finishes its computation it sends a message to the
router requesting more work.

The algorithm sketched above can be improved upon so as to decrease the number of interactions between
the controller and the Mandelbrot processes by handing each Mandelbrot process more than a single pixel
as its item of work. In practice we have chosen to use a quarter of a scan line as the unit of work. We have
found that the communication cost with this approach is insignificant even with tens of processors connected
in the manner shown.

Example: ray tracing

Whilst the previous example of a computer graphics application may seem a little artificial and especially
suited to parallel implementation this example is very real. A large amount of super-computer time is spent
on this application by people such as film-makers.

The application is ‘ray tracing’. This is a means of producing very high-quality, life-like computer graphics. It
is capable of correctly representing reflective and refractive objects (mirrors and lenses) and light sources.
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The way in which the technique works is to take a point on the screen and to produce the ray that would
arrive at that point from a pinhole sitting between the screen and the objects to be drawn. The ray is then
extended into the object space and intersected with each object in the space. The first object with which
the ray intersects is determined. In the simplest case this object will be matt and the colour of the object is
plotted at that point on the screen. If the object is reflective, the path that the ray would take after reflection
is computed and the process repeated. The same general principal allows the pinhole to be replaced by a
lens, giving depth-of-field effects.

It may now be seen that the basic structure of the problem is essentially the same as plotting the Mandelbrot
set. For each point on the screen a colour has to be generated. The computation for each point is indepen-
dent and computationally intensive. Ray tracing, can, therefore, be implementated on exactly the processor
structure as was used for drawing the Mandelbrot set.
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Some comments about the previous two examples

It is quite interesting that the previous two examples are implementable on exactly the same configuration
of processors. It is also interesting that these configurations actually seem to have nothing to do with the
application in hand.

In fact further consideration of both these algorithms will show that almost any configuration of processors will
do, subject to it providing sufficient communication capability. Both these applications have two distinct parts;
the first farms out work to a of number application-specific processes, the second is the application-specific
process. We call this type of arrangement a processor farm.

4.3 General-purpose structures

From the last two examples we have seen that there are applications which are basically insensitive to the
arrangement of processors on which they are run. Of course, there is the proviso that the arrangement
of processors must provide sufficient communication capability. As we now have evidence that it might be
reasonable to try and construct a general purpose structure of processors we can return the issues raised in
the introduction.

Pipelines and simple (two-dimensional) arrays can be easily implemented or extended. Arrays (and hyper-
cubes) become progressively more difficult to implement as the dimension increases, with much space taken
by connections which need to cross over. However, 1000 or so processmg elements can be connected in
this way.

One difficulty with the hypercube structure is that the number of links provided at each node must be at least
the dimension of the hypercube. This means that a standard component (which has a fixed number of links)
cannot be used to implement an arbitrarily extensible array. An alternative structure which avoids this problem
is obtained by implementing each node of the hypercube with a ring of transputers — this structure is known
as ‘cube-connected cycles’.

The cost of non-local communication, which arises when two nodes need to communicate via intermediate
nodes, varies widely. A one-dimensional array is obviously the worst. It is clearly desirable that the worst
case path between two points (the ‘diameter’) of the network is small in relation to the number of nodes, and
several structures have this property:

structure diameter size
hypercube ~n-—1 2n
cube-connected cycle ~ (nx5)/2 nx2"
folded tree ~n nx 2n-1

If such a structure is being used, for example to implement a processor farm, it may be necessary to implement
a routing algorithm. It is quite easy to design a general-purpose algorithm for this purpose but for many
applications an application-specific router may be better.
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4.31 Routing and the communication/computation trade-off

An example of a routing process is shown below:

... declarations
SEQ
... initialisation
WHILE active
SEQ
ALT
ALT 1 = 0 FOR 4
link.in[l] ? message
SKIP
internal.in ? message
SKIP
dest := route.table[message[0]]
IF
dest = internal
internal.out ! message
TRUE
link.out[dest] ! message
check for termination

The above routing process inputs a message from a link or from the process coresident on the transputer. The
process examines the first word of the message to determine the destination, and looks up that destination
in a route table which identifies whether it should be sent to the local process or retransmitted down a link.

More complex versions of the routing process would enable the transputer’s links to operate concurrently.
However, they would almost certainly impose a larger overhead on the processor’s computing power, and
thus might be suitable for algorithms where the required communication bandwidth is relatively high.

Normally the routing process in a transputer would be prioritised over other processes. This ensures that
when a message arrives at the routing process it is inspected (and forwarded if necessary) immediately it
is received. If a high-priority process were not used the message would not be examined until the routing
process was executed on the round-robin.

Although a routing process has an impact on the computing power available at each node, once a data transfer
has been initiatated the transputer’s autonomous links will transfer the data without the further intervention
of the processor. This means that the processor resource used by a routing process is dependent on the
number of communications rather than the quantity of data transmitted in each communication. This in turn
suggests that the correct strategy is to maximise the length of message passed at one time.

On the other hand, where the length of time it takes for a message to reach its destination is critical, there
are advantages in breaking data into small messages. This enables several processors to transfer the data
concurrently. This is also true where it is necessary to broadcast data throughout an array. These matters
have been investigated elsewhere in the literature [2].

For a given problem, it is usually possible to adjust the processing time per communication by use of a
combination of parallel and sequential algorithms. At one end of the spectrum is the ‘dataflow’ program
with many simple processes each of which inputs a message, performs a single operation and outputs it; at
the other end is a sequential program which inputs a message, performs many operations, and outputs the
result. One of the advantages of a communicating process language is that it combines both sequential and
parallel programming techniques, and one of the uses of program transformations is to perform this kind of
optimisation.

It is possible to write programs in @ manner whereby the granularity of the computation is easy to adjust.
For example, in the Mandelbrot set drawing program it is easy to alter the granularity from a single pixel
(large potential for parallelism) to a whole screen (small amount of communication). This is useful because
the communication-to-computation ratio can vary as hardware changes. For example, the introduction of
the floating-point transputer will drastically reduce the computation load of a transputer which is drawing the
Mandelbrot set. As a result of this, the program should be altered to increase the number of pixels computed
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at a time.

Experience suggests that many numerical problems can be organised so that communication times are
dominated by computing time. For example, a process which inputs two n x n arrays, and outputs the
products involves 3 x n? communications but the multiplication involves »2 operations.

4.3.2 Comparison of pipelines and processor farms

Given a general-purpose structure. such as a two-dimensional array, it is obviously possible to use a number
of different techniques to implement an application. For example, a number of applications could suit either
a pipeline or processor farm implementation.

The question then arises as to which implementation is preferrable. There are a number of considerations
here:

1 The throughput of a pipeline is limited by the throughput of the slowest part of the pipeline. This
means that the processing time for an n-stage pipeline is n x max(¢(1),-- -, t(n)) where ¢(z) is the
time taken for stage : of the pipeline, whereas the processing time for the equivalent sequential
implementation (as would be used on a farm), is 31, ¢(z), which is smaller. In addition the pipeline
implementation will use some processor time passing messages from one stage to the next.

2 The amount of code required in each stage of the pipeline will be smaller than the amount of
code needed in each processor in a farm. This could be important where memory capacity is
limited. The smaller code might also run faster due to better utilisation of the transputer’s on-chip
memory. However, the code size consideration will only apply to heterogeneous pipelines; the code
to implement all stages of a homogeneous pipeline on a single farm processor will be essentially
the same size as the code to implement one stage of the pipeline.

3 There may be sequential dependencies in the data which would be difficult to deal with using a
processor farm. For example, in a compiler, it is necessary to know which procedures have already
been compiled in order to enforce scope roles. This would seem to make it difficult to transform the
implementation to a farm.

We would like to give one final example of a processor farm implementation. The application we have chosen
is producing the sum of all prime numbers less than a specified number. We calculate this by producing all
prime numbers less than the specified number and summing them. The prime numbers are produced by
successively testing the primality of odd integers. We test the primality of an integer n by dividing by primes

up to /n.

This problem is of interest because it contains the sequential dependency that an number »n cannot be tested
for primality until we have tested all numbers up to y/n. We have chosen a very simple solution to this problem
for the sake of exposition.

We distribute the problem by having a number of processors running primality testers and a single controller
processor. Each primality tester maintains a list of prime numbers, supplied to it by the controller process. It
uses this list to determine the primality of candidates passed to it by the controller. The controller ensures
that when a primality tester tests a candidate » the tester contains all primes up to y/n.
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The program for the primality tester is:

... dnitialisation
WHILE active
SEQ
from.controller ? object.type; object.value
IF
object.type = candidate
VAR candidate.is.prime
SEQ
IF
IF i = 0 FOR primes.stored
(object.value \ primes[i]) = 0
candidate.is.prime := FALSE
TRUE
candidate.is.prime := TRUE
to.controller ! object.value; candidate.is.prime
object.type = prime
... add to list of primes
object.type = halt
active := FALSE

The program for the controller is:

initialisation
problem ? upper.bound; root.upper.bound
generate primes until prime > root.upper.bound

WHILE next.candidate < upper.bound
VAR nactive :
SEQ
.. hand out next batch of primes
start primality testers
nactive := ntesters
WHILE nactive > 0
ALT i = [0 FOR number.testers]
from.prime.test[i] ? resolved.candidate; is.a.prime
SEQ
... add into prime sum if is.a.prime
IF
more.candidates
send next candidate
TRUE
nactive := nactive - 1
. terminate primality testers
result ! prime.sum

The inner WHILE loop hands out a new candidate to a tester in response to the tester returning the result
of its previous test. The loop terminates when there are no more candidates which can be tested using only
the primes currently stored by the testers.

The outer WHILE loop will then cause another prime to be supplied to all the testers and the testers to be
restarted. This continues until all candidates less than the upper bound have been tested.

Although this solution requires a certain number of primes to be generated sequentially the program could
be altered so that just sufficient primes were generated to ensure that the testers could start operating; that
is, in order to sum primes up to n, primes up to 1/4/n would be generated. At this stage the testers can
start working and a further concurrent process could start generating the primes which become needed by
the testers as testing continues.

It is also possible to make the controller maintain an ordered list of primes produced by the testers. The early
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primes produced can than be used in the testing of larger primes.
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5 Compiling occam into silicon
5.1 Introduction

The occam language [1] allows a system to be hierarchically decomposed into a collection of concurrent
processes communicating via channels. An 0occam program can be implemented by a single programmable
microcomputer, or by a collection of programmable computers each executing an occam process. An
occam process can also be implemented directly in hardware. This paper describes a compiler which
translates occam programs into silicon layout.

5.2 VLSI design

In designing a VLSI device, it is useful to have a behavioural description of what the device does, and a
hardware description of the components of the device and the way in which they are interconnected.

Hardware description languages are used in many computer-aided design systems. The hardware description
of a device can be checked against the silicon layout supplied by the designer and can be used as input to
simulators. The hardware description language used by INMOS allows libraries of standard checked modules
to be assembled. All of these techniques combine to remove much of the risk from silicon design once the
hardware description of a device has been constructed.

Behavioural description languages have been used to design sequential processors for many years. As the
process of interpreting instructions in a sequential computer is (nearly) sequential, a conventional sequential
programming language can be used to write the behavioural description of a processor. An advantage of
using a programming language for this purpose is that the description of the device can be compiled into an
efficient simulator of the device.

The behaviour of VLSI devices with many interacting components can only be expressed in a language which
can express parallelism and communication. Communicating process languages are therefore beginning to
be used to describe the behaviour of such devices. For example, 0cCam has been used extensively for this
purpose in the design of the INMOS transputer.

occam has several advantages as a behavioural description language. Firstly, the concepts of concurrency
and communication in occam correspond closely to the behaviour of hardware devices. Secondly, as a
programming language, occam has a very efficient implementation, and this enables fast execution of a
system description as a simulation. Thirdly, occam has rich formal semantics [2] which facilitate program
transformation and proof, and a simple interactive transformation system has been constructed. These
techniques have been used to formally establish the correctness of an occam implementation of IEEE
standard 754 floating-point arithmetic [3], a task which takes too long to be performed by experimental
testing. The transformation system can also be used to optimise programs and can, for example, transform
certain kinds of sequential program into an equivalent parallel program, and conversely.

The problem of ensuring that the hardware description of a device indeed implements the behavioural de-

scription in 0ccam is a significant one. One possible approach is to write a compiler to compile an occam
program into a hardware description.

5.3 occam
occam programs are built from three primitive processes:

v:=e assign expression e to variable v
cle output expression e to channel ¢
c? v input variable v from channel ¢
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The primitive processes are combined to form constructs:

SEQ sequence
IF conditional

PAR parallel
ALT  alternative

A construct is itself a process, and may be used as a component of another construct.

Conventional sequential programs can be expressed with variables and assignments, combined in sequential
and conditional constructs. Conventional iterative programs can be written using a WHILE loop.

Concurrent programs make use of channels, inputs and outputs, combined using parallel and alternative
constructs.

In hardware terms, it is useful to think of a variable as a storage register and a channel as a communication
path with no storage.

Each occam channel provides a communication path between two concurrent processes. Communication
is synchronised and takes place when both the inputting and the outputting process are ready. The data to
be output is then copied from the outputting process to the inputting process, and both processes continue.

An alternative process may be ready to input from any one of a number of channels. In this case, the input
is taken from the channel which is first used for output by another process.

54 Implementation of occam

The concepts of sequence and concurrency in 0CCam are abstract, and allow a wide variety of implementa-
tions. An 0occam process can be implemented:

1 by compilation into a program for execution by a general-purpose computer such as a transputer
2 (1) with a fixed program held in ROM

3 by compilation into a special-purpose computer, with just sufficient registers, ALU operations, mem-
ory and microcode to implement the process

4 by compilation into ‘random’ logic
Similarly, the concept of communication is abstract, and allows a channel to be implemented in various ways:
1 store location(s) and program
2 (1) with microprogram instead of program
3 a parallel path with handshaking signals
4 a (more) serial version of (3), the communicating processes breaking the data into several pieces
5 a completely serial path
Any of the above can be implemented using any clocking scheme, ranging from a globally synchronous
system to a fully self-timed system. It should be possible to mix the implementation techniques within a
system, though this requires a range of different channel implementations which operate as ‘adaptors’ to
provide communication between processes implemented in different ways.
Implementation of 0Cccam processes using programmable computers and transputers has been described

elsewhere [4]. Implementation of processes using self-timed circuit elements is the subject of current research
e.g.[5]. This paper concentrates on the compilation of a process into a tailored datapath controlled by compiled
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microcode. A set of concurrent processes may be compiled into a corresponding set of such machines, with
each communication channel implemented by a simple synchronous connection between two machines.

5.5 The abstract micro-machine

Each process is compiled into a datapath controlled by horizontal microcode. The datapath contains a set of
registers connected to an arithmetic logic unit by three buses. These are called the Xbus, Ybus and Zbus.
Each cycle of the machine involves transferring the contents of two selected registers via the Xbus and Ybus
to the arithmetic logic unit for use as operands, and transferring the result from the logic unit back to a
selected register via the Zbus.

DATAPATH ROM

’4——— X SELECT

< ———— Y SELECT

REGISTERS
Xy z Y| |@———2Z SELECT
[
v ) ALU OP
ALU
NEXT
UWPOINTER

4

The selection of the registers and the operation to be performed by the logic unit is determined by four
components of a microinstruction held in the read-only memory (ROM). The registers in the datapath are
designed so that a single microinstruction can use the same register as both an operand and as the result,
but this is not essential (a compiler can easily allocate registers to avoid the need for it). The microinstruction
ROM is addressed by a microinstruction pointer register.

A further 'next address’ component of each microinstruction gives the next value of the microinstruction
register. The microinstruction pointer register is loaded from this field as each microinstruction is executed.
The 'next address’ field can be omitted and the microinstruction pointer register replaced by an incrementer
if the process to be implemented consists only of a simple loop with no conditional behaviour.

A number of other components of the microinstruction may be needed, depending on the program being
compiled. These will be described below.

5.6 The compiler output

The compiler makes extensive use of the module library used in the INMOS transputer itself. This library
contains all of the hardware modules needed to construct ALUs and registers, together with special control
logic for fast multiplication, division, shifts etc. It also provides for microinstruction pointer registers, control
line drivers and clock generators. The microcode ROM itself can be generated and optimised automatically
from the textual form of the microinstructions. The output of the compiler is therefore:

1 a microprogram ready for input to the ROM generator

2 an HDL (INMOS hardware description language) description of the datapath including the minimum
number of registers and the simplest ALU which are sufficient to implement the process
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3 an ‘array’ file containing information about the physical placement of the modules comprising the
datapath

The output can be ‘input’ to the INMOS CAD system, enabling logic and circuit simulations to be performed,
allowing the layout to be inspected, and ultimately enabling masks to be produced. It is, however, envisaged
that the design process would be interactive, and that having inspected the result of a compilation the designer
would modify the 0ccam specification (probably using correctness preserving transformations) and try again.

5.7 Variables, expressions, assignment and SEQ

Values of variables are held in registers, and expressions are evaluated as a sequence of microinstructions
of the form described above.

Expressions also involve ‘literal’ operands. These are derived directly from a ‘literal’ component of the mi-
croinstruction. This need only be able to supply a single operand of each microinstruction, as any operation
involving two literal operands can be performed by the compiler.

The compilation of:

WHILE TRUE
P

where Pis a sequence of assignments therefore proceeds as follows:

1) Identify the number of registers needed. At any point in the program, a number V of variables is in
scope, and each of these must have a register allocated to it. Also, a number T of temporary registers may
be needed to hold temporary values arising during the evaluation of complex expressions. The number of
registers needed for P is the largest value taken by V+T in P. This is a conventional compiling technique.

2) ldentify the operations needed in the arithmetic logic unit. This depends on the expression operators
used in the program being compiled. If only bit operators are used, the carry path can be omitted, and it is
worthwhile only including:

the carry path (adder)

the shifter

the multiply divide step control logic
the conditional logic

if they are needed. The multiply and divide control logic require conditional selection of the next microinstruc-
tion to be executed, and this is described below.

3) Break all expressions and assignments into a sequence of operations of the form:

Z=XopY
For example:
VAR a, b, result:
SEQ
a := 10

reéult := (a+b) -5

generates microcode field definitions to control the registers, ‘constants box’, and ALU, in addition to the 'next’
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field. The following example is the definition of the register control field:
FIELD "Regfield" Microword[22, 23, 24, 25, 26, 27]

XbusFromRO = #B100000
XbusFromR2 = #B010000
YbusFromR1 = #B001000
ROFromZbus = #B000100
R1FromZbus = #B000010
R2FromZbus = #B000001;

The register RO is used for a, R1 for b and R2 for result. R0 and R2 can supply data to the Xbus, R1 to
the Ybus. All three registers can be loaded from the Zbus.

A microinstruction is constructed by combining values from each of a number of fields; for example:

LABl: XbusFromRO YbusFromR1
ZbusFromXbusPlusYbus R2FromZbus LAB2;

selects RO and R1 as the sources for the Xbus and Ybus respectively, selects the ALU operation as Plus
(ZbusFromXbusPlusYbus) and selects the R2 as the destination for the result. LAB2 indicates the next
microinstruction to be executed.

The microcode for the above program is:

START: XbusFromlO ZbusFromXbus
ROFromZbus LABO;
LABO: XbusFrom20 ZbusFromXbus
R1FromZbus LAB1;
LABl: XbusFromRO YbusFromR1l
ZbusFromXbusPlusYbus R2FromZbus LAB2;
LAB2: XbusFromR2 YbusFrom5
ZbusFromXbusMinusYbus R2FromZbus END;

An example of the HDL generated is the registers a, b, result:

MODULE Registers (IN Clocks[4:1], ROMoutputs[27:22],
Zbus[31:0],
OUT Xbus[31:0], Ybus[31:0])
Xreg32 RO(IN Clocks[4:1], ROMoutputs[22],
ROMoutputs[25], Zbus[31:0],
OUT Xbus[31:0])
Yreg32 R1(IN Clocks[4:1], ROMoutputs[24],
ROMoutputs[26], Zbus[31:0],-
OUT Ybus[31:0])
Xreg32 R2(IN Clocks[4:1], ROMoutputs[23],
ROMoutputs[27], Zbus[31:0],
OUT Xbus[31:0])
END REGISTERS

which defines the collection of the three registers and their control signals and bus connections. XReg32 is
itself the name of a module which defines a 32-bit register with outputs to the Xbus; YReg32 similarly defines
a register with outputs to the Ybus.

5.8 IF and WHILE

The occam IF and WHILE constructs can both be implemented by allowing the address of the next microin-
struction to be determined by a selected condition.

Conditional behaviour is provided by arranging for the least significant bit of the microinstruction pointer to
be loaded from a selected conditional input; the selection being made by a further microinstruction field
connected to a multiplexor. To allow unconditional branching, one input from the multiplexor is derived from
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the least significant bit in the ‘next address’ field.

NEXT
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An example is the following process which computes the greatest common divisor of two numbers:

VAR m, n, result:

SEQ
m := 100
n := 35
WHILE (m <> n)
IF
(m > n)
m :=m-n
(m < n)
n :=n-mn
TRUE
SKIP
result :=m

which generates the following microcode, and requires three registers for m, n and result:

START: XbusFroml00 ZbusFromXbus
ROFromZbus LABO;

LABO: XbusFrom35 ZbusFromXbus
Rl1FromZbus LBLO;

LBLO: XbusFromRO YbusFromR1l ZbusFromXbusMinusYbus
(CondFromNotZbusEq0 -> LAB1l, LBL1l);

LABl: XbusFromR1l YbusFromR0 ZbusFromXbusMinusYbus
(CondFromZbusGr0 -> LBL2, LAB2);

LAB2: XbusFromRO YbusFromRl ZbusFromXbusMinusYbus
ROFromZbus LBLO;

LBL2: XbusFromRO YbusFromR1l 2ZbusFromXbusMinusYbus
(CondFromZbusGr0 -> LBLO, LAB3)

LAB3: XbusFromR1l YbusFromR0O 2ZbusFromXbusMinusYbus
Rl1FromZbus LBLO;

LBLl1: XbusFromRO ZbusFromXbus
R2FromZbus END;

5.9 Arrays

Arrays are implemented by including a random access memory. Indexing operations are provided by con-
structing the bitwise OR of the base address and the subscript (the base being a literal and the subscript
being held in a register), eliminating the need for address arithmetic and enabling a selected component of an
array to be transferred to or from a register in a single cycle. The base address of each array in the process
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is chosen to make this possible, and unused rows are omitted from the memory array.

5.10 Procedures

occam procedures can be implemented either by substitution of the procedure body prior to compilation or
by a conventional closed procedure call.

As no recursion is permitted, the maximum depth of calling is known to the compiler, and it is possible to
compile a stack of microinstruetion pointer registers of the appropriate depth. Dedicated registers can be
allocated for the variables in each procedure; temporaries can be shared by all procedures as 0ccam does
not contain functions.

5.11 PAR

The easiest way to implement concurrent processes is to use one processing element for each process, and
the present compiler does this.

5.12 Channels and communication

Synchronisation of input and output requires that the processor idles as the first process waits for the second.
This is achieved by a microprogram polling loop.

It is clearly desirable to minimise the amount of hardware associated with each channel, and to minimise the
number of connections needed to implement a channel.

For any process which includes channel communication, the compiler generates a shift register, two control
signals, sync and shift, and an input to the condition multiplexor, ready.

shift

_44—in

ready «__

i } » out
sync —t—l— J/ o

For each pair of devices which communicate, two connections are used to form a link. Each link is connected
to a device as shown; only one additional control signal is needed for each link on a device; this is used to
select which link is in use.

shift link shift

ready<_g 1_r¥ready

sync sync

link select link select
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An input or output is performed by asserting the sync signal together with the appropriate link select signal,
and polling the ready signal. When a ready signal is detected, this indicates that both devices are ready to
communicate. At this point the process at the other end of the link will also have detected a ready signal.
Both devices now release their sync signals, and clock their shift registers using the shift signals. With only
the link select signals asserted, the two shift registers at either end of the channel effectively form one long
cyclic shift register, so the data in the two shift registers is exchanged. After the data has been exchanged,
the link select signals are released.

Clearly, this operation is completely symmetrical. Each link between two devices can be used for both input
and output; it is not necessary for these to be performed concurrently as each device implements only one
process.

An example of a simple process which inputs a value, adds 1, and outputs the result is:

CHAN ¢, d:
VAR x:
SEQ

c ? x

d! (x + 1)

The microcode is as follows:

SETUPO: YbusFrom32 2ZbusFromYbus TOFromZbus
SelectChO SYNC
(CondFromReady -> TRANSFERO, SETUPO) ;
TRANSFERO: XbusFromT0 YbusFroml ZbusFromXbusMinusYbus
TOFromZbus
SelectChO ShiftChan
(CondFromNotZbusEq0 -> TRANSFERO, DONEO) ;

DONEO: XbusFromChan ZbusFromXbus
ROFromZbus LABO ;

LABO: XbusFromR0 YbusFroml ZbusFromXbusPlusYbus
ChanFromZbus SETUP1 ;

SETUP1: YbusFrom32 ZbusFromYbus TOFromZbus

SelectChl SYNC

(CondFromReady -> TRANSFER1l, SETUP1)
TRANSFER1: XbusFromT0 YbusFroml ZbusFromXbusMinusYbus

TOFromZbus

SelectChl ShiftChan

(CondFromNotZbusEq0 -> TRANSFER1l, END) ;

A temporary register (T0) is introduced to count the number of bits to be transferred to or from the channel
register (CHAN). The value of x is held in a further register (R0). The ALU is used to decrement the count
register and test for zero at the same time that each bit is shifted through the link.

5.13 ALT

Alternative input requires that the inputting processor can poll a number of channels in turn until one is found
to be ready for input. The link implementation described above can be used for this purpose; an example is
shown below:

ALT
inl ? x
count
in2 ? x
count

count + 1

count - 1
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The microcode for polling the channels is:

LBL1: SelectCh0 SYNC

(CondFromReady -> TRANSFER1l, LBL2)
TRANSFER1: ..
LBL2: SelectCh0 SYNC

(CondFromReady -> TRANSFER2, LBL1l)
TRANSFER2 : ..

The microcode loop attempts to synchronise with each of the two links until it succeeds, in which case it
continues with the input.

5.14 Example: the prime farm

Prime numbers can be generated concurrently using a ‘processor farm’. A program is given in [6]. It uses a
controller which farms out successive numbers to an arbitrary number of primality testers. Each tester stores
all of the primes up to the square root of the number to be tested; it uses these to test whether or not the
number is prime, and responds to the controller accordingly.

Here we use an even simpler program. Each tester divides its new number by all numbers up to the square
root of the new number. This removes the need for an array to store the prime numbers up to the square
root.

This is entirely justified because we are trying to optimise the use of silicon area; the area taken for one tester
with memory can be better used for many testers without. This is certainly true for generating primes up to
2**32.

PROC primetest (CHAN from.controller, to.controller)
DEF isprime = 0, notprime = 1:
VAR mextest, candidate, active:

SEQ
active := true
WHILE TRUE
SEQ
from.controller ? maxtest; candidate
IF
maxtest = 0

active := FALSE
maxtest <> 0
VAR nexttest:
SEQ
nexttest := 3
WHILE ((candidate REM nexttest) <> 0) AND
(nexttest < maxtest)
nexttest := nexttest + 2
IF
nexttest < maxtest
to.controller ! not.prime
TRUE
to.controller ! is.prime

The controller is about 1.5 mm x 2.5mm in area; each tester is about 1.2mm x 2.3 mm. The space occupied
by a controller with sixteen testers is about 50 mm2, and can easily be implemented on a single chip using a
current manufacturing process. Such a chip would require very few external connections; a single link, clock
and reset inputs, and power. There is a great deal of freedom in configuring the devices on the chip, as they
communicate only by two-wire links. It seems likely that *process farms’ are an effective way of organising
specialised VLSI systems.
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5.15 Example: signal processing

The following example is a second-order filter which filters a stream of values. It would normally be used as
a component in a pipeline in which each component filter has different parameters.

PROC Filter (Chan In, Out)
VAR x, y, tl, t2, t3, zl, z2:

SEQ

zl := 3

z2 :=

WHILE TRUE

SEQ

in ? x
tl :=x - (b2 * z2)
t2 = a2 * z2
z2 :=tl1 - (bl * zl1)
t3 = t2 + (al * zl)
out ! t3 + (a0 * z2)
in ? x
tl := x - (b2 * z1)
t2 := a2 * z1
z2 := tl1l - (bl * z2)
t3 = t2 + (al * z2)
out ! t3 + (a0 * zl1)

This requires 9 registers and 93 microinstructions; the relatively large number of microinstructions arises
because each muiltiplication requires a short sequence of microinstructions including a loop. This could be
improved by providing microcode subroutines (using an additional microinstruction pointer register). Multipli-
cation speed could also be improved (at the expense of area) by use of a parallel multiplier.

The filter occupies 3 mm?2; so a pipeline of 20 filters could be fitted on a single VLSI device.

5.16 Example: simple processor

Our final example is a simple programmable processor with a (very) reduced instruction set. Despite its tiny
instruction set, it provides all of the functions needed to implement a sequential occam process; in fact it is
very easy to compile an 0ccam process into the instruction set of this processor. The processor has four
input and four output links, and 256 bytes of random-access memory.

PROC Processor (CHAN In0O, Inl, In2, In3,
CHAN Out0O, Outl, Out2, Out3)
VAR Iptr, Wptr:
VAR Areg, Breg:
VAR Instruction, Function, Operand:
VAR Memozxy[256] :
SEQ
Memory[0] := Boot
Iptr := 0
Operand := 0

WHILE TRUE
SEQ
Instruction := Memory [ Iptr ]
Iptr := Iptr + 1
Function := Instruction /\ #FO
Operand := (Instruction /\ #0F) \/ Operand

IF
Function=Prefix
Operand := Operand << 4
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TRUE
SEQ
IF
Function=Loadavar
Areg := Memory[Wptr+Operand]

Function=Loadbvar
Breg := Memory[Wptr+Operand]

Function=Loadalit
Areg := Operabd

Function=Loadblit
Breg := Operand

Function=Storeavar
Memory [Wptr+Operand] := Areg

Function=Loadaind
Areg := Memory[Areg+Operand]

Function=Storebind
Memory [Areg+Operand] := Breg

Function=Jump
Iptr := Iptr + Operand

Function=Jumpfalse
IF
Areg = 0
Iptr := Iptr + Operand
TRUE
SKIP

Function=Equalalit
Areg := Areg = Operand

Function=Addalit
Areg := Areg + Operand

Function=Adjust
Wptr := Wptr + Operand

Function=Call
SEQ
Areg := Iptr
Iptr := Iptr + Operand

Function=Operate
IF
Operand=input
IF
Areg=0
In0 ? Areg
Areg=1l
Inl ? Areg
Areg=2
In2 ? Areg
Areg=3
In3 ? Areg
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Operand=output
IF

Areg=1

Out0 ! Breg
Areg=2

Outl ! Breg
Areg=4

Out2 ! Breg
Areg=8

Out3 ! Breg

Operand=Alternative

ALT

((Areg /\ 1) <> 0) & In0 ? Areg
Iptr := Iptr + 0

((Areg /\ 2) <> 0) & Inl ? Areg
Iptr = Iptr + 1

((Areg /\ 4) <> 0) & In2 ? Areg
Iptr := Iptr + 2

((Areg /\ 8) <> 0) & In3 ? Areg
Iptr := Iptr + 3

Operand=Greater

Areg := Areg > Breg

Operand=Shiftleft
Areg := Areg << Breg

Operand=Shiftright
Areg := Areg >> Breg

Operand=Xorbits
Areg := Areg >< Breg

Operand=Andbits
Areg := Areg /\ Breg

Operand=Add
Areg := Areg + Breg

Operand=Subtract
Areg := Areg - Breg

Operand= Boot
SEQ
In0 ? Wptr
Iptr := 0
WHILE Iptr < Wptr
SEQ
In0 ? Memory [ Iptr ]
Iptr := Iptr + 1
Iptr := 0
Operand := 0

On reset, the processor waits for a program to be supplied via link 0. It then loads a program, and executes
it until a ‘boot’ instruction is executed.

There is obviously considerable scope for better optimisation in this case; in particular it would be desirable
to implement the instruction decoding ’IF’ construct with a mechanism which replaces the microinstruction
pointer register with a value held in a register.
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The processor requires 11 registers and has 140 microinstructions. The whole device including the memory
occupies about 6.25 mm?2; 10 such devices with their interconnections would take less area than a typical
32-bit microprocessor.

5.17 Conclusions

A communicating process language such as occam can be used to design VLSI devices, and can be
compiled into silicon layout. Some parts of the design process are still performed by hand (such as the
final placement of the functional blocks), but this cannot introduce errors. It is therefore possible to design
concurrent VLSI systems using occam, establish that the design behaves as intended using the formal
semantics of occam (or in simple cases by experimental testing of the occam program), and finally compile
the occam source into correct silicon layout.

In order to simplify the construction of the compiler, many issues have been ignored. For example, the
synchronous communication system is only appropriate for local communication between devices sharing a
common clock. This problem can be overcome by using a different link implementation for ’long distance’
communication (for example, the link used in the transputer itself).

Expressing an application in a form which efficiently exploits silicon area involves careful consideration of the
relative costs of memory, processing and communication. Concurrent algorithms which perform ‘redundant’
calculations can be faster and consume less area than sequential algorithms which store values. An important
use of a silicon compiler is to aid in the evaluation of ’silicon algorithms’.
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6 The development of 0OcCam 2
6.1 Introduction

The major reason for the design of the occam 2 [1] programming language was a desire to incorporate
floating-point arithmetic into 0ccam. This had to be done without breaching the security of the language.
As a result occam 2 is well defined, many programming errors are detectable at compile time, and run-time
errors are reliably and cheaply detectable. This paper describes various aspects of the language design which
relate to security; some of these, such as ‘channel protocols’ overcome problems caused by the introduction
of new data types to the language, others, such as alias checking, tackle security problems which are present
in most other programming languages.

6.2 The data types of occam 2

The occam 1 programming language provided concurrency, message passing and a limited set of data
types; the word, the channel and vectors of words or of channels. Although this was sufficient for many
purposes, there were instances where a language which had a richer set of data types would offer significant
advantages. In particular:

1 We wanted to support numerical programming; for occam to become the FORTRAN of parallel
processing we would have to support floating-point arithmetic and multi-dimensional arrays.

2 We wanted to be able to pass messages of length greater than a single word. This is because much
of the cost of passing a message is due to process synchronisation rather than data transfer. A
language which would permit several words to be communicated in a single transfer would be more
efficient than one which could transfer only single words.

3 We wanted to program systems of processors which did not share a common wordlength. In such
systems communication would have to be in terms of some unit other than the word.

As a result 0ccam 2 supports several primitive data types. There is a machine-dependent data type, INT,
which loosely corresponds to the VAR of occam 1. INT is the type of signed integer values most efficiently
provided by the machine. As this normally corresponds with the size of an address in the machine, values
of type INT are used for such purposes as replicator indices and array subscripts. Unlike occam 1, there
is a separate type BOOL, which represents boolean values, and a BYTE type, which represents unsigned
integers in the range 0 to 255. (Note that although occam 1 could pack and unpack values into bytes, the
byte was not a proper data type; all arithmetic and message passing was done in terms of words.)

There are occasions where the use of a machine-dependent type such as INT is not satisfactory; for example,
where a message is to be passed between two machines of differing wordlength, or where a calculation has
to be performed to a particular precision, regardless of the machine on which it is to be performed. To cope
with these situations, 0ccam 2 has a further three integer types, INT16, INT32 and INT64, which represent
signed integers with a length of 16, 32 and 64 bits respectively.

There are two floating-point types called REAL32 and REAL64. These correspond to the single- and double-
length floating-point numbers of the IEEE Standard for Binary Floating Point. In fact occam does not support
the multiple error symbols of the standard as this would undermine the substitution semantics of the language;
for example, in full IEEE arithmetic, x = y does not imply that x op z =y op z.

In addition to the primitive types, 0CCam has array types. The components of an array may be of any single
type. As an array may have components of an array type, ocCam 2 does provide multi-dimensional arrays.
An array may be subscripted (giving a component of the array), assigned, passed as a message and used
as a parameter to a procedure or a function.
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6.3 Channel protocols

The presence of several different data types in occam 2 introduces the problem of how to extend the
communication model to handle them. The problem arises from the need to ensure that when a message
is passed, the type of data sent by the transmitter matches the type of data expected by the receiver. It is
desirable to provide some sort of checking of channel communication for two reasons. Firstly, it is very easy to
make mistakes in communication and anything which enables these mistakes to be detected at compile time
is helpful. Secondly, the effect of run-time errors in communication can be at least as devastating as subscript
errors; it can cause store to be overwritten arbitrarily, or can cause the breakdown of process synchonisation.

A number of different proposals were considered during the design of occam 2. Some, such as restricting a
channel to communicating a single type, were rejected due to lack of flexibility. Others, such as type-checking
all communication at run-time, were rejected as they carried too much run-time overhead.

The solution adopted in 0ccam 2, the channel protocol, allows great freedom over what is communicated
on a channel, but ensures security. Whenever a channel is declared the structure of all communication
occurring on that channel must also be declared as a channel protocol. This enables most communication
to be checked at compile-time, and simplifies any remaining run-time checks.

The simplest protocol permits communication of a single type which may, of course, be an array type. For

example, if the channel greeting is being used to communicate strings which are to be displayed on a
12-character LCD display, it might be declared:

CHAN OF [12]BYTE greeting :

The compiler can subsequently check that all inputs and outputs correspond to this protocol. Thus the
compiler would accept:

greeting ! "Hello world!"

but would reject:

greeting ! "Goodbye world!"
as the string has too many characters.
Whilst this example is perfect for the application described it does raise the question of how to deal with arrays
whose size is determined at run-time. As this is a fairly general requirement 0CCam has a protocol which
corresponds to a counted array. When a message is passed on a channel with a counted array protocol, the
length of the array is communicated and then the array is communicated. Suppose in the previous example,

the string was to be displayed, not on a 12-character LCD display, but as a line on a terminal. We might then
declare a channel terminal as:

CHAN OF INT::[]BYTE terminal :
indicating that inputs would be of the form:
terminal ? count::array

which first receives the number of elements to be input into the variable count and then inputs into the first
count elements of array. Similarly, outputs would be of the form:

terminal ! count::array

which first outputs the value of count and then outputs the first count elements of the array array.
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Where a channel has been declared with a counted array as its protocol, some checks can be made at
compile-time but others must wait until run-time. For example, with the channel terminal declared above,
the compiler would reject the output:

terminal ! "Hello world!"

as it is not of the correct form. However, it would accept the following:

[4000]1BYTE lengthy :
SEQ

t.:éx':minal ! SIZE lengthy::lengthy
which would cause a run-time error when input by the following fragment of program:

[80]BYTE line.buffer :
SEQ

t.:érminal ? count::line.buffer
as the compiler inserts code to check the value of count against the length of the array 1ine .buffer.

In addition to the protocols described above, called simple protocols, which permit a single item to be com-
municated, 0ccam 2 has sequential protocols which permit a specified number of items to be transmitted
by a single input or output. Suppose that we wanted to extend the previous example so that the message
passed along the channel terminal specified the line on which the string was to be displayed. We want to
send messages which first send the line number and then the text to be displayed. We can name a suitable
protocol and then use it to declare the channel. (The previous examples have used simple protocols which
do not require naming.)

PROTOCOL line IS INT; INT::[]BYTE :
CHAN OF line terminal

As a result of this declaration the compiler is able to check that all communications are of the correct form.
For example, the following would be detected as an error:

terminal ! 12::"Hello world!"; line.number
since the order of the line number and the line has been swapped.

Often a single channel is used to pass messages with different structures. For example, suppose we are
writing a program to control a pen plotter which has a number of simple operations of the form ‘pen up’ or
‘pen down’, and a single draw operation ‘move pen’ which requires a pair of coordinates. We can indicate
that we wish to send messages of two different structures by using a variant protocol. In this case we would
declare a protocol plotter.control consisting of two tagged protocols:.

PROTOCOL plotter.control
CASE
simple.command; INT
move.command; REAL32; REAL32
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The compiler only permits outputs which first output one of the tags, followed by an output matching the
remainder of the tagged protocol. For example, the following output will cause the plotter to move to the
origin:

plotter ! move.command; 0.0 (REAL32); 0.0 (REAL32)

If we had made a mistake here such as omitting the move.command tag or sending the coordinates as
integers, the compiler would detect the error.

An input on a channel which has a variant protocol is necessarily more complex than an output. The actual
form the input will take depends on the tag received. To cope with this 0ccam 2 has a ‘case input’ which
first inputs a tag and then selects a matching input and then executes an associated process. For example,
the program which actually drives the plotter would have an input such as:

plotter ? CASE
simple.command; command
execute.command (command)
move.command; x; y
move.pen.to(x, y)

When this is executed a tag is input from the channel plottex and used to select the matching input. For
example, if the tag input is move . command then an input to x and y will occur, followed by the execution
of the procedure move.pen.to.

It is not necessary to list all possible tags in a case input. When a case input receives a tag which does not
match any of the tagged inputs this is treated as an error. There are occasions where a program is expecting
a specific tag to be received; in these cases a special form of input can be used. For example, if the pen
plotter driver is expecting a simple.command then the program would look like:

SEQ

plotter ? CASE simple.command; command

This special case input is equivalent to:

plotter ? CASE
simple.command; command
SKIP

6.4 Numerical behaviour

The numerical behaviour of operations in occam 2 is well defined. Usually overflow, division by zero, et
cetera are treated as errors. However, it is recognised that sometimes it is necessary to perform calculations
where these events are not considered to be errors. To this end occam 2 provides the PLUS, MINUS and
TIMES operators which are unchecked.

The presence of the large number of concrete data types in the language raises the question of how constant
values should be represented. In occam 2, only INT literals expressed as undecorated decimal strings
(e.g. 123) or as hexadecimal strings (e.g. #FA77FE16), BYTE literals expressed as a quoted character
(e.g. *Z’) and the BOOL constants (TRUE and FALSE) take their types implicitly; all other constants are
explicit about their type. Whilst the requirement for explicit typing may seem unnecessary it does ensure that
arithmetic on constants is performed correctly. For example, the result of the calculation 16777216.0 + 1.0
depends on whether the numbers are interpreted as REAL32s (in which case the result is 16777216.0) or
as REAL®&4s (in which case the result is 16777217.0). It is for similar reasons that 0ccam requires that all
conversions between types are stated explicitly.
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A similar decision has been taken in deciding to perform arithmetic according to the type of data on which
it is being performed. All intermediate results are calculated as if they were of the same type as the result.
This is unusual; it is quite common for the intermediate results of floating-point calculations to be held in an
extended format. Whilst this may seem advantageous, it actually has two important drawbacks. The first is
that it can lead to ‘double rounding’ and thus a less accurate result than if the arithmetic were performed to
the correct precision. For example, in the program:

VAL REAL32 a IS 2-'00(14+2-2%) .
VAL REAL32 b IS 2-27(1 -3 x2-%) .
r :=a*b

a different result from that obtained by rounding straight into single-length format is obtained if the calculation is
first rounded to an extended precision and then into the correct precision. The second drawback is that storing
a result becomes an arithmetic operation which undermines the substitution semantics of the language. This
has important consequences as various common optimisations, such as common subexpression elimination,
would no longer be valid. For example, the two programs below would not be equivalent:

SEQ

dummy := x * y SEQ

a := dummy + a a = (x *y) +a
b := dummy + b b :=(x*y) +Db

6.5 Abbreviations

The occam 2 language defines procedure calling in terms of ‘abbreviation’ and textual substitution. An
abbreviation enables a name to be given to a variable or array element or to an expression. For example:

INT element IS array[subscript] :

introduces the name element to identify the array component array [subscript] and:

VAL INT twice.x IS 2 * x :
introduces twice.x as a name for the expression 2 * x.

In order to keep the semantics of abbreviation simple, and the implementation of abbreviation and parameter
passing efficient, various rules concerning abbreviations are enforced. One such rule is that the abbreviation
of an expression is only valid if its scope contains no assignment to a variable in the expression. For example,
consider the following program:

VAL x IS y[il[]j]
SEQ

z = X

The rule mentioned above ensures that there are (at least) three possible implementations of the abbreviation.
The first simply replaces the occurrence of x in z := x with y[i] [§]. The second assigns the value of
y[i] [3] to a new ‘variable’ x when the abbreviation is executed and uses.that variable in the assignment.
Finally, the third sets up a pointer to y [i] [ §] when the abbreviation occurs and de-references that pointer
when the assignments occurs.

One important consequence of defining parameter passing in terms of abbreviation is that VAL parameters
can be passed either by copying the value (suitable for single-word values), or by passing a pointer to the
value (suitable for arrays).
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6.6 Alias checking

Aliasing occurs when, within a scope, there are two or more names which identify the same object. When
aliasing is present, the meaning of programs becomes obscure, because assignment to one name can affect
the value of another name.

For example, the following procedure clearly leaves the value of its parameter x unchanged (note that the
use of the PLUS and MINUS operators ensures that arithmetic overflow is not a problem):

PROC nonsense (INT x, VAL INT y)

SEQ
x = x PLUS vy
X := x MINUS y

as is demonstrated by the following expansion of nonsense (n, 3):

INT x IS n :
VAL INT y IS 3

SEQ
x := x PLUS y
X := x MINUS y

which is equivalent to:

SEQ
n :=n PLUS 3
n := n MINUS 3

which can be shown to be equivalentto n := n which is, in turn, equivalent to SKIP.

However, consider what would be the expansion of nonsense (n, n):

INT x IS n :

VAL INT y IS n : -- invalid abbreviation
SEQ

:= x PLUS y

:= x MINUS y

which would be equivalent to:

SEQ
n :=n PLUS n
n := n MINUS n

The value of n after this instance of nonsense, were it valid, would be 0.
Similarly, the instance nonsense (i, wv[i]), were it valid would be equivalent to:

SEQ
i := i PLUS v[i]
i := i MINUS v[i]

the effect of which is very difficult to predict as in each of the assignments v [i] would probably reference
a different component of v.
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It is now recognised that aliasing can be the source of particularly insidious program bugs and, to counter this,
aliasing is forbidden in some modern languages, for example, Euclid [2]. In occam 2, aliasing is restricted,
not only for the reason outlined above but also to simplify checking the validity of parallel constructs. The
rules imposed in 0occam 2 forbid the use of an element which has been abbreviated within the scope of that
abbreviation. In the expansion of the instance of nonsense (n, n) given above, the abbreviation:

VAL INT y IS n :

is invalid because the name n has occurred on the right-hand side of an abbreviation which is currently in
scope.

The majority of the anti-aliasing rules of occam 2 can be checked at compile-time, however, those which
permit an array to be used in a second abbreviation provided that the same element of the array is not
abbreviated can require run-time checking. For example, consider:

first IS order[1l]
second IS order[2]

which can be checked at compile-time. However, the abbreviations:

first IS order[l]
n.th IS oxder[n]

cannot as the second abbreviation is only valid if n is not equal to 1. The compiler will insert code to check this
at run-time. (Although it may seem strange to perform this sort of check at run-time, rather than compile-time,
it is really no different from range checking subscripts at run-time!)

The imposition of rules forbidding aliasing does have a perhaps unexpected impact in the use of procedures.
The anti-aliasing rules require that when calling a procedure all non-VAL parameters are distinct, and are
distinct from any VAL-parameters. These rules can lead to some procedure instances being unexpectedly
rejected. For example, the procedure:

PROC factorial (INT result, VAL INT argument)
SEQ
result :=1
SEQ i = 1 FOR argument
result := result * i

.
.

returns as its result the factorial of its argument. (Note that a negative argument will cause the replicated
sequence to behave like STOP.) The instance factorial (result, 3) will set result to 6. However,
consider factorial (n, n) which is supposed to set n to n factorial. This instance is, in fact, illegal
according to the anti-aliasing rules. The reason for this can be seen if the instance is expanded:

INT result IS n :
VAL INT argument IS n : -- invalid abbreviation
SEQ
result :=1
SEQ i = 1 FOR argument
result := result * i

which, if it were legal, would be equivalent to:

SEQ
n :=1
SEQ i =1 FOR n
n :=n * i

which, in turn, would be equivalentton := 1, not n factorial!
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To get the effect originally desired we have to write:

INT temp :

SEQ
factorial (temp, n)
n := temp

The explicit introduction of temporary variables is undesirable and can be avoided in occam 2 because of
the presence of functions. These permit us to define:

INT FUNCTION factorial (VAL INT argument)
INT product :
VALOF
product :=1
SEQ i = 1 FOR argument
product := product * i
RESULT product

and to write n := factorial(n).

In occam 2 the functions are proper functions; they are side-effect free and deterministic. This is of great
practical importance as it means that the compiler can compile replicated alternatives. Consider, for example
the following alternative:

ALT i = 0 FOR n
£(i) €& c ? a
P (i)

where n is a variable. The occam compiler will generate code which evaluates each function instance,
£(41), twice; once when enabling the guards, once when disabling. Similarly, a compiler which used a
polling implementation of alternative would also be correct.

6.7 Checking the validity of parallel constructs

The occam 2 language specifies that if a variable is assigned to or is used in an input then that variable
may not be used in any parallel process. Thus the compiler will reject a program such as:

PAR
x = 42
x := 69

However, consider the procedure parallel. assignment:

PROC parallel.assignment (INT x, y)
PAR

42

69

]

X

y :
The validity of any instance of this procedure will depend on the parameters used in that instance. This
suggests that the compiler must check the validity of each procedure instance by substituting the parameters
into the body of the procedure. However, the fact that alias checking is performed means that the compiler
can check the validity in two stages.
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During the first stage of checking each procedure is checked on the assumption that all parameters and free
variables are distinct. This will accept the procedure parallel.assignment but, for example, would
reject:

PROC invalid.parallel.assignment (INT x, y)

PAR
x = 42
x := 69

The second stage of checking is performed by the alias check which occurs for each procedure instance.
For example:

parallel.assignment (x, y)
would be accepted, but:

parallel.assignment (x, x)
would be rejected.

It is important to notice that little more information is required about a procedure in order to perform parallel
disjointness checking than is required for simple type-checking of its parameters. This opens the possiblity
of constructing a completely secure system for the dynamic loading and execution of procedures.

6.8 Run-time error handling in 0ccam 2

When a language such as occam 2 is used for the programming of secure or reliable systems, the behaviour
of that system when an error occurs is of great concern. There seems to be no single method of dealing with
errors which is universally applicable to all systems. For this reason, 0ccam 2 specifies that run-time errors
are to be handled in one of three ways, each of which is suitable for use at different times.

The first mode is to ignore all run-time errors. This is potentially very dangerous and it is to be hoped that
this will, one day, be made illegal except for systems which have been proved to be correct. This mode will
most probably be used for benchmarking.

The other two modes detect run-time errors and prevent them from corrupting non-errant parts of the system.
The first of these respectable modes causes all run-time errors to be signalled and to bring the whole system
to a halt. This is known as ‘halt’ mode. In this mode the primitive process STOP is treated as if it caused an
error. This mode is extremely useful for program debugging and is suitable for any system where an error
is to be handled externally. For example, in at least one existing automobile engine management system, if
the processor signals an error then the system reverts to its default settings by external analogue circuitry.

The second of the respectable modes, ‘stop’ mode, allows more control and containment of errors than does
‘halt’ mode. In stop mode all errant processes are mapped on to the process STOP. This will have the effect
of gradually propagating the STOP process throughout the system. Although, at first sight, this does not
seem very useful, it is possible for other parts of system to detect that one part has gone wrong, for example,
by use of ‘watchdog’ timers. This allows multiply redundant systems, or gracefully degrading systems to be
constructed.
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6.9 Conclusions

The design of the occam 2 programming language has been influenced by the need to ensure that pro-
gramming errors are as difficult to make as possible and that when they are made they should be detectable.
The properties of the data types in the language have been carefully specified to ensure that they are con-
sistent with the semantics of occam. The use of channel protocols makes possible the detection of many
programming errors at compile-time and ensures that total security can be attained at run-time with little cost.
The insistence that names are not aliased detects some particularly obscure programming errors and greatly
simplifies checking the validity of parallel constructs.
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7 IMS T800 architecture
71 Introduction

The INMOS transputer family is a range of system components each of which combines processing, memory
and interconnect in a single VLSI chip. The first member of the family, the IMS T414 32-bit transputer [1],
was introduced in September 1985, and has enabled concurrency to be applied in a wide variety of appli-
cations such as simulation, robot control, image synthesis, and digital signal processing. These numerically
intensive applications can exploit large arrays of transputers; the system performance depending on the num-
ber of transputers, the speed of inter-transputer communication and the floating-point performance of each
transputer.

The latest addition to the INMOS transputer family, the IMS T800, can increase the performance of such sys-
tems by offering greatly improved floating-point and communication performance. The IMS T800-20, available
in the second half of 1987, is capable of sustaining over one and a half million floating-point operations per
second; the IMS T800-30, available in the second half of 1988, is capable of sustaining over two and a quarter
million floating-point operations per second. The comparative figure for the IMS T414 transputer is somewhat
less than one hundred thousand floating-point operations per second.

The IMS T800 is pin-compatible with, and retains all the capabilities of, the established IMS T414 transputer.
In addition, the IMS T800 incorporates an on-chip floating-point unit, novel instructions to support graphics,
and twice the on-chip RAM of the IMS T414,

To minimise development time and risk, the design of the IMS T800 employs many of the component modules
used in the IMS T414. The design of the floating-point unit makes extensive use of formal techniques, to
ensure that each floating-point operation produces the correct result as specified by the IEEE 754 floating-
point standard [2].

The design of the IMS T800 forms part of the P1085 European ESPRIT parallel computer architecture
project [3]. The goal of this project is to develop a low-cost, high-performance super-computer, based on
reconfigurable nodes of transputers. The intention is that single nodes (typically of 20 or so transputers) would
be used as powerful workstations, and that up to 64 nodes could be connected together, offering a machine
with a performance greatly in excess of one giga-flop. Within the project, software is being developed for
applications in physics, engineering, CAD, CAM, and image processing.

7.2 The transputer: basic architecture and concepts
7.241 A programmable device

The transputer is a component designed to exploit the potential of VLSI. This technology allows large numbers
of identical devices to be manufactured cheaply. For this reason, it is attractive to implement a concurrent
system using a number of identical components, each of which is customised by an appropriate program.
The transputer is, therefore, a VLSI device with a processor, memory to store the program executed by the
processor, and communication links for direct connection to other transputers. Transputer systems can be
designed and programmed using OCCam (see section 7.11) which allows an application to be described as
a collection of processes which operate concurrently and communicate through channels. The transputer
can therefore be used as a building block for concurrent processing systems, with occam as the associated
design formalism.

7.2.2 Processor and memory on a single chip

One important property of VLSI technology is that communication between devices is very much slower than
communication within a device. In a computer, almost every operation that the processor performs involves
the use of memory. For this reason a transputer includes both processor and memory in the same integrated
circuit device. ‘
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7.23 Serial communication between transputers

In any system constructed from integrated circuit devices, much of the physical bulk arises from connections
between devices. The size of the package for an integrated circuit is determined more by the number of
connection pins than by the size of the device itself. In addition, connections between devices provided by
paths on a circuit board consume a considerable amount of space.

The speed of communication between electronic devices is optimised by the use of one-directional signal
wires, each connecting two devices. If many devices are connected by a shared bus, electrical problems of
driving the bus require that the speed is reduced. Also, additional control logic and wiring are required to
control sharing of the bus.

To provide maximum speed with minimal wiring, the transputer uses point-to-point serial communication links
for direct connection to other transputers. The protocols used on the transputer links are discussed later.

7.2.4 Simplified processor with microcoded scheduler

The most effective implementation of simple programs by a programmable computer is provided by a
sequential processor. Consequently, the transputer has a fairly conventional microcoded processor. There
is a small core of about thirty-two instructions which are used to implement simple sequential programs. In
addition there are other, more specialised groups of instructions which provide facilities such as long arithmetic
and process scheduling.

As a process executed by a transputer may itself consist of a number of concurrent processes the transputer
has to support the occam programming model internally. The transputer, therefore, has a microcoded
scheduler which shares the processor time between the concurrent processes. The scheduler provides two
priority levels; any high-priority process which can run will do so in preference to any low-priority process.

7.25 Transputer products

The first transputer to become available was the INMOS IMS T414. This has a 32-bit processor, 2 Kbytes
of fast on-chip memory, a 32-bit external memory interface and four links for connection to other transputers.
The current fastest available version of this product, the IMS T414-20, has a 50 nS internal cycle time, and
achieves about 10 MIPS on sequential programs. The second transputer to become available was the IMS
T212; this is very similar to the IMS T414 but has a 16-bit processor and 16-bit external memory interface.
The remaining transputer in the family is the IMS M212 disk processor. This contains a 16-bit processor,
RAM, ROM, two inter-transputer links and special hardware to control both winchester and floppy disks.

In addition the transputer family includes a number of transputer link related products. There are the ‘link
adaptors’ which convert between handshaken 8-bit parallel data and INMOS link bit-serial data. These allow
transputers to be connected to conventional, bus-based systems, and also allow conventional microprocessors
to use transputer links as a system interconnect. In addition there is the IMS C004, which is a link exchange.

7.3 IMS T800 architecture

The IMS T800, with its on-chip floating-point unit, is only 20% larger in area than the IMS T414. The small
size and high performance come from a design which takes careful note of silicon economics. This contrasts
starkly with conventional co-processors, where the floating-point unit typically occupies more area than a
complete micro-processor, and requires a second chip (or in the case of the Weitek 1167 floating-point
processor for the Intel 80386, second, third and fourth chips).

The architecture of the IMS T800 is similar to that of the IMS T414. However, in addition to the memory, links,
central processing unit (CPU), and external memory interface, there is a microcoded floating-point unit (FPU)
which operates concurrently with and under the control of the CPU. The block diagrams opposite indicate the
way in which the major blocks of the IMS T800 and IMS T414 are interconnected.
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The CPU of the IMS T800, just like that of the IMS T414, contains three registers (A, B and C) used for
integer and address arithmetic, which form a hardware stack. Loading a value into the stack pushes B into
C, and A into B, before loading A. Storing a value from A pops B into A and C into B. In addition there is an
O register which is used in the formation of instruction operands. Similarly, the FPU includes a three-register
floating-point evaluation stack, containing the AF, BF, and CF registers. When values are loaded on to, or
stored from the stack the AF, BF and CF registers push and pop in the same way as the A, B and C registers.

The addresses of floating-point values are formed on the CPU stack, and values are transferred between the
addressed memory locations and the FPU stack under the control of the CPU. As the CPU stack is used only
to hold the addresses of floating-point values, the wordlength of the CPU is independent of that of the FPU.
Consequently, it would be possible to use the same FPU together with, for example, a 16-bit CPU such as
that used on the IMS T212 transputer.

The IMS T800, like the IMS T414, operates at two priority levels. The FPU register stack is duplicated so that
when the IMS T800 switches from low to high priority none of the state in the floating-point unit is written to
memory. This results in a worst-case interrupt response of only 2.5 uS (-30), or 3.7 uS (-20). Furthermore,
the duplication of the register stack enables floating-point arithmetic to be used in an interrupt routine without
any performance penalty.

7.31 Instruction encoding

All transputers share the same basic instruction set. It contains a small number of instructions, all with the
same format, chosen to give a compact representation of the operations most frequently occuring in programs.
Each instruction consists of a single byte divided into two 4-bit parts.

Function Data

7 43 0

The four most significant bits are a function code, and the four least significant bits are a data value. The
sixteen functions include loads, stores, jumps and calls and enable the most common instructions to be
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represented in a single byte. As this encoding permits only 4 bits of operand per instruction two of the
function codes (prefix and negative prefix) are used to allow the data part of any instruction to be extended
in length. Another of the sixteen functions (operate) treats its data portion as an operation on values held in
the processor registers. This allows up to sixteen such operations to be encoded in a single byte instruction.

All instructions are executed by loading the four data bits into the least significant four bits of the O register,
which is then used as the the instruction’s operand. All instructions except the prefix instructions end by
clearing the O register, ready for the next instruction.

Function Data

7 43 L 0

Operand Register

The prefix instruction loads its four data bits into the O register, and then shifts the O register up four places.
The negative prefix instruction is similar, except that it complements the operand register before shifting it
up. Consequently operands can be extended to any length up to the length of the operand register by a
sequence of prefix instructions.

The prefix functions can be used to extend the operand of an operate instruction just like any other. The
instruction representation therefore provides for an indefinite number of operations. The encoding of opera-
tions is chosen so that the most common operations, such as add and greater than, are represented without
a prefix instruction.

The IMS T800 has additional instructions which load into, operate on, and store from, the floating-point
register stack. It also contains new instructions which support colour graphics, pattern recognition and the
implementation of error-correcting codes. These instructions have been added whilst retaining the existing
IMS T414 instruction set. This has been possible because of the extensible instruction encoding used in
transputers.

7.3.2 Floating-point instructions

The core of the floating-point instruction set was established fairly early in the design of the IMS T800. This
core includes simple load, store and arithmetic instructions. Examination of statistics derived from FORTRAN
programs suggested that the addition of some more complex instructions would improve performance and
code density. Proposed changes to the instruction set were assesed by examining their effect on a number of
numerical programs. For each proposed instruction set, a compiler was constructed, the programs compiled
with it, and the resulting code then run on a simulator. The resulting instruction set is now described.

In the IMS T800, operands are transferred between the transputer’s memory and the floating-point evaluation
stack by means of floating-point load and store instructions. There are two groups of such instructions, one
for single-length numbers, one for double-length. In the description of the load and store instructions, which
follow, only the double-length instructions are described. However, there are single-length instructions which
correspond with each of the double-length instructions.

The address of a floating-point operand is computed on the CPU’s stack and the operand is then loaded, from
the addressed memory location, on to the FPU’s stack. Two new addressing operations have been added to
the CPU to improve access to double-word (64-bit real and integer) values. The first of these, word subscript
double, is used to index double-word values. The second of these, duplicate, is used when the CPU has to
manipulate the addresses of both the more significant and less significant words of a double-word object.

Operands in the floating-point stack are tagged with their length. The operand’s tag will be set when the
operand is loaded or is computed. The tags allow the number of instructions needed for floating-point
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operations to be reduced; there is no need, for example, to have both floating add single and floating add
double instructions; a single floating add will suffice.

There are two instructions to load double-length floating-point numbers into the floating-point evaluation stack
from the transputer’s memory. These are floating load non-local double and floating load indexed double.
The floating load non-local double instruction loads the value pointed to by the A register of the CPU’s stack.
The floating load indexed double instruction has the same effect as the instruction word subscript double
followed by floating load non-local double. The value in the B register is used as a double-word offset from
the base pointer in the A register and the selected double-length value is loaded into the AF register. The
diagram below shows the effect of executing a floating load indexed double instruction.

Before execution

CF:  undefined C: undefined 2.5 base + 16
BF: 3.0 B: 2 base + 8
AF: 1.5 A: ——p base
After execution

CF: 3.0 C: undefined 2.5 base + 16
BF: 1.5 B: undefined base + 8
AF: 2.5 A: undefined base

The effect of the floating load indexed instructions can be achieved by a sequence of just two instructions.
However, their presence does decrease code size; the floating load indexed double instruction is encoded in
only two bytes, whereas the equivalent instruction sequence would require four bytes. This appears to be a
worthwhile optimisation as this instruction sequence would be compiled for every array access.

However, there are just two floating store instructions, floating store non-local single and floating store non-
local double. These both store the value in the AF register into the location pointed to by the A register.
There are no floating store indexed instructions. This may be surprising given that the floating load indexed
instructions exist; however, in any program there are less store operations than load operations and, therefore,
there is less to be gained by optimising store (write to memory) operations than optimising load (read from
memory) operations.

The common floating-point operations of addition, subtraction, multiplication and division are provided by
single instructions. These instructions operate on values in the AF and BF registers, storing the result of the
operation into the AF register and popping the CF register into the BF register. Similarly, the floating-point
comparison operations, floating-point greater than and floating-point equality, compare values stored in the
AF and BF registers; however, they load the result of the comparison into the A register of the CPU.

As an example, consider the following fragment of occam which sets a boolean variable converged to
indicate whether the value of the 32-bit floating-point variable absolute.error is less than the value of
the variable epsilon.

BOOL converged :
REAL32 absolute.error, epsilon :
SEQ

converged := absolute.error < epsilon
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The compiled code for this fragment would be:

load local pointer epsilon address of epsilon
floating load non-local single load value into FPU

load local pointer absolute.error address of absolute.error
floating load non-local single load value into FPU
floating greater than result pushed on to CPU stack
store local converged store in converged

There are four instructions which combine loading and operating. These exist, as do the load indexed
instructions, to improve code compactness. The effect of the floating load and add single instruction is just
the same as the sequence floating load non-local single followed by floating add. The remaining instructions
complete the set needed to load and add or multiply single- and double-length values. The choice of optimising
only addition and multiplication in this way reflects the high usage of these operators in programs.

7.33 Optimising use of the stack

The depth of the register stacks in the CPU and FPU is carefully chosen. Floating-point expressions commonly
have embedded address calculations, as the operands of floating-point operators are often elements of one
dimensional or two-dimensional arrays. The CPU stack is deep enough to allow most integer calculations and
address calculations to be performed within it. Similarly, the depth of the FPU stack allows most floating-point
expressions to be evaluated within it, employing the CPU stack to form addresses for the operands.

No hardware is used to deal with stack overflow. A compiler can easily examine expressions and introduce
temporary variables in memory to avoid stack overflow. The number of such temporary variables can be
minimised by careful choice of the evaluation order; an algorithm to perform this optimisation is given in [4].
The algorithm, already used to optimise the use of the integer stack of the IMS T414, is also used for the
main CPU of the IMS T800.

7.3.4 Concurrent operation of FPU and CPU

In the IMS T800 the FPU operates concurrently with the CPU. This means that it is possible to perform an
address calculation in the CPU whilst the FPU performs a floating-point calculation. This can lead to significant
performance improvements in real applications which access arrays heavily. This aspect of the IMS T800's
performance was carefully assessed, partly through examination of the ‘Livermore Loops’ (see section 7.12
and [5]). These are a collection of small kernels designed to represent the types of calculation performed
on super-computers. They are of interest because they contain constructs which occur in real programs
which are not represented in such programs as the Whetstone benchmark (see below). In particular, they
contain accesses to two- and three-dimensional arrays, operations where the concurrency within the IMS
T800 is used to good effect. In some cases the compiler is able to choose the order of performing address
calculations so as to maximise overlapping; this involves a modification of the algorithm mentioned earlier.

As a simple example of overlapping consider the implementation of Livermore Loop 7 (see section 7.12).
The IMS T800-30 achieves a speed of 2.25 Mflops on this benchmark; for comparison the IMS T800-20
achieves 1.5 Mflops, the T414-20 achieves 0.09 Mflops and a VAX 11/780 (with fpa) achieves 0.54 Mflops.
The occam program for loop 7 is as follows:

-- LIVERMORE LOOP 7
SEQ k = 0 FOR n
x[k] = ul[k] + ((( r*(z[k] + (r*yl[k]))) +
(t* ((u[k+3] + (r*(u[k+2] + (r*ul[k+1]))))))) +
(t* ((u[k+6] + (r*(u[k+5] + (r*u[k+4])))))))

The following explains how this program fragment is executed on the IMS T800. The explanation assumes
that the floating-point variable r and the floating-point arrays (x, y, z, and u) are located in a global data area
and must be accessed via a static link, but that the loop count k, is in the process workspace. A compiler
will generate code which first evaluates the subexpression z[k] + (r*yl[k]).
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The first stage in the computation of this is to load the value y [k]. The code to do this is:

load local k
load local static.link
load non-local pointer y

floating load indexed single

The first load pushes the subscript k on to the CPU stack. The next load pushes the static link on to the CPU
stack; the static link will contain a pointer to the base of the area of memory which contains the floating-point
variables and arrays. The load non-local pointer instruction generates a pointer to the yth element of that
area of memory; this will be the base of the array y. The CPU stack now has its A register containing a
pointer to the base of the array y, and its B register containing the subscript, k. The floating load indexed
single instruction pushes the single-length floating-point number stored in y [k] on to the FPU stack.

The next segment of code pushes the value x on to the floating-point stack and multiplies the number x in
AF by y[k] in BF.

load local static.link
load non-local pointer r
floating load and multiply single

Although the floating-point multiplication takes several cycles to complete, the CPU is able to continue exe-
cuting instructions whilst the FPU performs the multiplication. Thus the whole of the next segment of code
can be executed whilst the multiplication is being performed.

load local k
load local static.link
load non-local pointer z

word subscript

This code is similar to the first section of code illustrated above. However, it explicitly executes a word
subscript to compute the address of z[k]; this allows the code following to use a floating load and add
single instruction which saves 2 bytes of code.

Finally, the value z[k] is pushed on to the floating-point stack and added to the previously computed
subexpression r*y [k]. It is not until the value z [k] is loaded that the CPU needs to synchronise with the
FPU.

The computation of the remainder of the expression proceeds in the same way, and the FPU never has to
wait for the CPU to perform an address calculation.

The overlapping of address calculation with floating-point computation is effective even when access is being
made to multi-dimensional arrays. The IMS T800 retains the fast multiplication instruction (product) of the IMS
T414 which is used for the multiplication implicit in multi-dimensional array access. This instruction executes
in a time dependent on the highest bit set in its second operand.
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For example, in the execution of the following fragment of occam:

[20] [20]REAL32 A :
SEQ

B :=A[I, J] + (C / D)

loading the element A[I, J] involves computing the offset of the element from the base of the array A.
The transputer compiler would generate the following code for this computation:

load local I Joad I onto CPU stack
load constant 20 Joad 20 onto CPU stack
product multiply T by 20

load local J Joad J onto CPU

add addJtoI * 20

In this case the product instruction will execute in only 8 cycles (267 nS (-30), or 400 nS (-20)) and the whole
address calculation will take 19 cycles which would be overlapped with the execution of the division C / D.
Effectively, the overlapping allows the array accessing to be performed in only one cycle.

74 Floating-point unit design

In designing a concurrent systems component such as the IMS T800, it is important to maximise the per-
formance obtained from a given area of silicon; many components can be used together to deliver more
performance. This contrasts with the design of a conventional coprocessor where the aim is to maximise
the performance of a single processor by the use of a large area of silicon. (Interestingly, however, the IMS
T800-20 achieves similar performance to the 80386 with its Weitek 1167 coprocessor chip set.) As a result,
in designing the IMS T800, the performance benefits of silicon-hungry devices such as barrel shifters and
flash multipliers were carefully examined.

A flash multiplier is too large to fit on chip together with the processor, and would therefore necessitate the
use of a separate coprocessor chip. The introduction of a coprocessor interface to a separate chip slows
down the rate at which operands can be transferred to and from the floating-point unit. Higher performance
can, therefore, be obtained from a slow multiplier on the same chip as the processor than from a fast one on
a separate chip. This leads to an important conclusion: a separate coprocessor chip is not appropriate for
scalar floating-point arithmetic. A separate coprocessor would be effective where a large amount of work can
be handed to the coprocessor by transferring a small amount of information; for example a vector coprocessor
would require only the addresses of its vector operands to be transferred via the coprocessor interface.

It turns out that a flash multiplier also operates much more quickly than is necessary. Only a pipelined vector
processor can deliver operands at a rate consistent with the use of such devices. In fact, any useful floating-
point calculation involves more operand accesses than operations. As an example consider the assignment
y[i] := y[i] + (t * x[i]) which constitutes the core of the LINPACK floating-point benchmark.
To perform this it is necessary to load three operands, perform two operations and to store a result. If we
assume that it takes twice as long to perform a floating-point operation as to load or store a floating-point
number then the execution time of this example would be evenly split between operand access time and
operation time. This means that there would be at most a factor of two available in performance improvement
from the use of an infinitely fast floating-point unit!

Unlike a flash multiplier, a fast normalising shifter is important for fast floating-point operation. When imple-
menting IEEE arithmetic it may be necessary to perform a long shift on every floating-point operation and
unless a fast shifter is incorporated into the floating-point unit the maximum operation time can become very
long. Fortunately, unlike a flash multiplier, it is possible to design a fast shifter in a reasonable area of silicon.
The shifter used in the IMS T800 is designed to perform a shift in a single cycle and to normalise in two
cycles.

Consequently, the floating-point unit of the IMS T800 contains a fast normalising shifter but not a flash
multiplier. However, there is a certain amount of logic devoted to multiplication and division. Multiplication
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is performed 3-bits per cycle, and division is performed 2-bits per cycle. This gives rise to a single-length
multiplication time of 13 cycles (367 nS (-30), or 550 nS (-20)) and a double-length divide time of 34 cycles
(1.07 uS (-30), or 1.6 uS (-20)).

One other aspect of floating-point arithmetic which was carefully examined was the implementation of stan-
dard scientific functions (sqrt, sin, etc). Trigonometric functions are generally implemented by algorithms
which make use of an approximation which is only accurate over a small part of the function’s domain. This
is possible because mathematical identities enable the full function to be computed from the partial approxi-
mation. Algorithms differ in the way in which they compute the approximation; two methods of computing the
approximation were considered during the design of the IMS T800.

The first method is called CORDIC which was developed for hardware implementation and is used in some
floating-point coprocessor chips such as the i8087. This requires the addition of significant quantities of hard-
ware into the datapath and the storage of large look-up tables. Even with this hardware the best performance
which could be achieved would be to generate one bit of result every four cycles, resulting in a minimum
evaluation time for the reduced function of about 230 cycles (double length).

The second method is polynomial approximation. This requires no additional hardware in the FPU. The
evaluation time will vary from function to function, but for the sin function only about twice the number of
cycles required by CORDIC would be used since the implementation of multiplication generates three bits of
product every one cycle.

In practice we are interested in the evaluation time for the function proper, not just the reduced function. Once
the time for argument reduction and function generation have been added to the time for the evaluation of
the partial function it is clear that there is no possibility of a CORDIC based implementation being even twice
as fast as polynomial-based implementation. For this reason the IMS T800 contains no special support for
trigonometric function evaluation.

This comparison can also be extended to show that if a processor with even faster trigonometric function
evaluation were required it should be achieved by increasing the speed of the processor’'s multiplication. This
would have the additional benefit that it would increase performance on virtually all applications, not just those
which make heavy use of trigonometric functions.

The situation is rather different with regard to the square-root function. Here the IEEE standard requires that
the result is produced correct to the last bit and this is not easy to achieve by simple polynomial evaluation.
Furthermore it only requires a small amount of additional hardware to perform square root in hardware and
this has been done in the IMS T800.

The block diagram below illustrates the physical layout of the floating-point unit.

ALU ALU
ROM Fraction Exponent ROM
datapath datapath

Normalising  shifter

Interface

Block diagram of floating-point unit

The datapaths contain registers and shift paths. The fraction datapath is 59 bits wide, and the exponent
datapath is 13 bits wide. The normalising shifter interfaces to both the fraction datapath and the exponent
datapath. This is because the data to be shifted will come from the fraction datapath whilst the magnitude
of the shift is associated with the exponent datapath. One further interesting aspect of the design is the
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microcode ROM. Although the diagram shows two ROMs, they are both part of the same logical ROM. This
has been split in two so that control signals do not need to be bussed through the datapaths.

7.5 Floating-point performance

The IMS T414 has microcode support for 32-bit floating-point arithmetic which gives it performance compa-
rable with the current generation of floating-point coprocessors. It achieves an operation time of about 10
microseconds on single-length IEEE 754 floating-point numbers. The IMS T800-20 betters the floating-point
operation speed of the IMS T414 by more than an order of magnitude; its operation times are shown below

IMS T800-30 IMS T800-20 IMS T414-20
single double single double single double

operation

add 233nS 233nS 350nS 350nS 115uS 283 uS
subtract 233nS 233nS 350nS 350nS 115uS 283 uS
multiply 367nS 667nS 550nS 1000nS 10.0uS 38.0 uS
divide 567 nS 1067 nS 850nS 1600nS 123 uS 55.75uS

The operation time is not a reliable measure of performance on real numerical programs. For this reason,
floating-point performance is often measured by the Whetstone benchmark. The Whetstone benchmark
provides a good mix of floating-point operations, and also includes procedure calls, array indexing and
transcendental functions. It is, in some senses, a ‘typical’ scientific program.

The performance of the IMS T414 and IMS T800 compared with other processors as measured by the
Whetstone benchmark is shown below:

Processor Whetstones/second
single length
Intel 80286/80287 8 MHz 300K
IMS T414-20 20 MHz 663K
NS 32332-32081 15 MHz 728K
MC 68020/68881 16/12 MHz SUN 3 755K
VAX 11/780 FPA  UNIX 4.3 BSD 1083K
IMS T800-20 20 MHz 4000K
IMS T800-30 30 MHz 6000K

This table shows that although the IMS T414 has an operation time three times slower than the MC68881
coprocessor it performs only 25% worse than the MC68020 + MC68881 coprocessor (as measured by the
Whetstone benchmark). This is because the speed of evaluating a floating-point expression depends on two
factors; the speed at which operands are transferred to and from the floating-point unit and the speed of
the unit itself. By careful balancing of these the single chip IMS T800-20 achieves more than five times the
Whetstone performance of the MC68020/MC68881 combination.

Another important measure is the performance obtained from a given area of silicon. For example, four IMS
T800-30 chips occupy an area similar to the i80386 together with the Weitek 1167 chip set, and on single-
length floating-point will deliver six times the performance in any concurrent application. In terms of circuit
board area, the effect is even more dramatic; the IMS T800 requires negligible support circuitry and can even
be used without external memory.

7.6 Formal methods ensure correctness and quick design

One of the concerns of engineers designing microprocessors into life-critical systems is the correctness of the
implementation of those microprocessors. The complexity of a floating-point unit is such that it is impossible
to validate by exhaustive testing. The approach which INMOS has taken is to make use of the most advanced
formal methods to ensure the correct implementation of the IEEE 754 standard for floating-point arithmetic.
This work has been undertaken in cooperation with the Programming Research Group at Oxford University
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and has made use of the formal semantics of the cccam programming language. INMOS has found that the
use of formal methods in complex designs greatly decreases design time as well as ensuring correctness.

The specification language Z (see section 7.13) was used extensively during the design of the IMS T800,
both to express the IEEE 754 standard mathematically and to specify instructions precisely. The first stage
of implementation was to write a software package in the occam language and to prove that it met the
specification. (This package is used to provide floating-point arithmetic for various occam implementations,
including that for the IMS T414.) Using an interactive program transformation system, the occam package
was then transformed into the microcode for the IMS T800.

This design process is illustrated using one instruction from the sequence of instructions executed by the
IMS T800 to perform floating-point to integer conversions. This instruction occurs in the middle of the
sequence, after the floating-point number has been rounded into an integer in floating-point format. The

instruction checks that the rounded value lies within the range of numbers representable as an integer and,
if not, sets the error flag.

7.6.1 Z specification
The precise specification of range checking is expressed in Z as:

Floating_-Check_Integer_Range

Areg, Areg’ : Floating_Point_Register
Error_Flag, Error_Flag’ : bool

fvrel

Areg’ = Areg

fv Areg € [MinInt,MaxInt] = Error_Flag’ = Error_Flag
fv Areg ¢ [Minint,MaxInt] => Error_Flag’ = true

In this specification the primed variables Areg’ and Error_Flag’ denote the values of registers after the oper-
ation, and the unprimed variables denote the values before. Maxint and Minint are constants defined by the
integer format and fv is a function that returns the value of a floating-point register. The predicates state that
the operation is only defined when Areg contains an ‘integer’ value, that Areg is unchanged by the operation
and that Error_Flag is set if Areg lies outside the storable integer range and is unchanged otherwise.

7.6.2 High-level occam implementation

The high-level occam implementation is as shown below. Its correctness depends on proving two assertions.
Firstly, that there is an exponent, Largest INTExp, such that every floating-point register with a smaller
exponent lies in [Minint,MaxInt], and secondly, that a register with a negative sign bit, an exponent equal to
Largest INTExp and a fraction with only the implied msb set, has an fv of Minint.

IF

Areg.Exp < LargestINTExp
SKIP

(Areg.Sign = NEGATIVE) AND (Areg.Exp = LargestINTExp) AND

(Areg.Frac = MSBit)

SKIP

TRUE
SetError (ErrorFlag)

In the above code, the 0ccam variable Areg.Exp is used to represent the contents of the exponential part
of the FA register of the FPU. Similarly, Areg.Sign and Areg.Frac represent the sign bit and fraction
part. This code first checks to see if the exponent is smaller than Largest INTExp; if it is then the value in
the FA register is in range and no further action is to be performed. Otherwise, the code checks if the value
in the FA register has a negative sign bit, an exponent equal to Largest INTExp and a fraction with only
the most significant bit set; if it does then, again, no further action is performed. Otherwise, the value in the
FA register is out of range and the error flag is set.
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7.6.3 Low-level occam implementation

The program above can be transformed using the laws of occam. First the condition on Areg.Sign is
pulled to the outside. Then the program is transformed into processes and variables defined in terms of
operations found in the floating-point microcode. This involves the use of register and bus operations to
perform the comparisons together with explicit tests of the resulting flags. At this stage the processes are
also grouped into the sequences of operations that form each microinstruction. For brevity the negative case
is omitted in this illustration:

SEQ
AregSignNEGATIVE := (Areg.Sign = NEGATIVE)
ExpZbus := (Areg.Exp - LargestINTExp)
ExpZbusNeg := ExpZbus < 0
IF
AregSignNEGATIVE
... negative case
NOT AregSignNEGATIVE
IF

ExpZbusNeg
SKIP

NOT ExpZbusNeg
SetError (ExrrorFlag)

7.6.4 Flattened low-level implementation

The low-level occam implementation is then transformed into a ‘flattened’ form that makes explicit use
of a microinstruction pointer. This form uses a WHILE loop and explicit testing of the next instruction
register (NextInst) to simulate the sequencing of the microcode. If the resulting microcode involves
no loops it is possible to transform it back into the original form mechanically. In the program below the
SetError (ErrorFlag) process has been moved into a separate microinstruction, OutOfRange.

INT NextInst :

SEQ
NextInst := FloatingPointCheckIntegerRange
WHILE NextInst <> NOWHERE
IF
NextInst = FloatingPointCheckIntegerRange
SEQ
AregSignNEGATIVE := (Areg.Sign = NEGATIVE)
ExpZbus := (Areg.Exp - LargestINTExp)
ExpZbusNeg := ExpZbus < 0
IF
AregSignNEGATIVE
.. negative case
NOT AregSignNEGATIVE
IF
ExpZbusNeg

NextInst := NOWHERE
NOT ExpZbusNeg
NextInst := OutofRange
NextInst = OutofRange

SEQ
SetError (ErrorFlag)
NextInst := NOWHERE

negative case micro instructions
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7.6.5 Microcode

The flattened occam code is then transformed into microcode assembler. This is done by a pattern-
matching and textual substitution program. Without the use of mechanical assistance this is a very labo-
rious and error-prone task. The program below shows the microcode which results from transliating the
FloatingPointCheckIntegerRange microinstruction of the previous example.

FloatingPointCheckIntegerRange:
ConstantLargestINTExp

ExpXbusFromAreg ExpYbusFromConstant
ExpZbusFromXbusMinusYbus

GOTO CondlFromAregSign ->
(CondOFromExpZbusNeg -> (... , ...),
CondOFromExpZbusNeg -> (NOWHERE, OutofRange))

7.6.6 Summary

The use of the high-level specification language Z provides short and precise specifications of instructions,
and, being mathematically based, avoids the problems of interpreting natural language specifications. This
specification can be implemented fairly naturally, at a high level, in occam. This implementation can be
proved correct, using 0ccam’s denotational semantics. The algebraic semantics of occam then allow the
occam to be transformed into a form that corresponds to the microcode.

Z specification

1
high-level occam

l2
low-level occam ‘tree code’

ls
low-level occam ‘flat code’

la
microcode

Each of steps 1 to 3 can be proven correct using the formal semantics of occam. The translation and
compilation of step 4 could also be proved correct. In practice, both steps 1 and 2 were performed backwards;
that is, an implementation was written and then transformed back into the previous specification. This process
made use of an occam source transformation system, written in ML and implemented by the Programming
Research Group at Oxford University. Steps 3 and 4 are performed semimechanically by programs. Although
these have not been formally proved, their use is more reliable than doing the same work by hand; computers
do not mistakenly miss out lines of microcode due to boredom!

7.7 Communication links

A link between two transputers is implemented by connecting a link interface on one transputer to a link
interface on the other transputer by two one-directional signal wires, along which data is transmitted serially.
The two wires provide two Occam channels, one in each direction. This requires a simple protocol to
multiplex data and control information. Messages are transmitted as a sequence of bytes, each of which
must be acknowledged before the next is transmitted. A byte of data is transmitted as a start bit followed by
a one bit followed by eight bits of data followed by a stop bit. An acknowledgement is transmitted as a start
bit followed by a stop bit. An acknowledgement indicates both that a process was able to receive the data
byte and that it is able to buffer another byte.
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1 1 Data 0
Data byte
1 0

Acknowledge message

The protocol permits an acknowledgement to be generated as soon as the receiver has identified a data
packet. In this way the acknowledgement can be received by the transmitter before all of the data packet
has been transmitted and the transmitter can transmit the next data packet immediately. The IMS T414
transputer does not implement this overlapping and achieves a data rate of 0.8 Mbytes per second using
a link to transfer data in one direction. However, by implementing the overlapping and including sufficient
buffering in the link hardware, the IMS T800 more than doubles this data rate to 1.8 Mbytes per second in
one direction, and achieves 2.4 Mbytes per second when the link carries data in both directions. The diagram
below shows the signals that would be observed on the two link wires when a data packet is overlapped with
an acknowledgement.

Input link q 0

T T T T
Output link 1 1 < DATA > 0

time

7.8 Graphics capability

The bit-blt’ operations of a conventional graphics processor no longer seem appropriate in these days of
byte (or greater) per pixel colour displays. The fast block move of the IMS T414 make it suitable for use in
graphics applications using byte-per-pixel colour displays. Indeed, the IMS B007 colour graphics evaluation
board uses it in such a manner.

The block move on the IMS T414 is designed to saturate the memory bandwidth, moving any number of bytes
from any byte boundary in memory to any other byte boundary using the smallest possible number of word
read and write operations. Using the transputer’s internal memory the block move sustains a transfer rate of
60 Mbytes per second (-30), or 40 Mbytes per second (-20); using the fastest possible external memory the
block move sustains 20 Mbytes per second (-30) or 13.3 Mbytes per second (-20).

The IMS T800 extends this capability by incorporation of a two-dimensional version of the block move which
can move windows around a screen at full memory bandwidth, and conditional versions of the same block
move which can be used to place templates and text into windows. One of these operations copies bytes
from source to destination, writing only non-zero bytes to the destination. A new object of any shape can
therefore be drawn on top of the current image. All of these instructions achieve the speed of the simple IMS
T414 move instruction, enabling a 1 million pixel screen to be drawn thirteen times per second.

7.8.1 Instruction description

The three new instructions are concerned with moving a two-dimensional block of data from source to des-
tination. The instructions differ in how the source is used to modify the destination. Unlike the conventional
‘bit-blt’ instruction, it is never necessary to read the destination data.
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The instructions are described in occam:

PROC Move2d ([][]BYTE Source, sx, sy,
[I[1BYTE Dest, dx, dy,
width, length)

SEQ y = 0 FOR length
[Dest [y+dy] FROM dx FOR width] :=
[Source[y+sy] FROM sx FOR width]

This moves a block of size width x length which starts at byte Source [sy] [sx] to the block starting
at byte Dest [dy] [dx].

PROC Draw2d([] [IBYTE Source, sx, sy,
[1[1BYTE Dest, dx, dy,
width, length)

BYTE temp:
SEQ line = 0 FOR length
SEQ point = 0 FOR width

SEQ
temp := Source[line+sy] [point+sx]
IF
temp = 0 (BYTE)
SKIP
TRUE

Dest [line+dy] [point+dx] := temp

This moves a block of size width x length which starts at byte Source [sy] [sx] to the block starting
at byte Dest [dy] [dx]. However for every byte transferred a check is made to see if it is zero. If this is
the case then the byte is not copied, and the destination remains unaltered.

PROC Clip2d([] [1BYTE Source, sx, sy,
[1[1BYTE Dest, dx, dy,
width, length)
BYTE temp:
SEQ line = 0 FOR length
SEQ point = 0 FOR width
SEQ
temp := Sourcel[line+sy] [point+sx]
IF
temp = 0 (BYTE)
Dest[line+dy] [point+dx] := temp
TRUE
SKIP

This moves a block of size width x length which starts at byte Source[sy] [sx] to the block starting
at byte Dest [dy] [dx]. However, for every byte transferred a check is made to see if it is zero. If this is
the case then that byte is copied.

Draw2d and Clip2d are complementary and are used for the copying of irregular shapes on to the screen
and the creation of templates.

Like the transputer's one-dimensional block move, the Move2d, Draw2d and Clip2d instructions move
data from any byte address in memory to any byte address using the smallest possible number of single-word
transfers. When executing a Draw2d operation, data is written in whole words, and hardware is used to
suppress the generation of individual byte write signals corresponding to zero bytes in the source. Further,
the write cycle is omitted completely if all bytes in the source word are found to be zero. C1ip2d is similarly
implemented using the smallest number of word read and write operations. Consequently, Draw2d and
Clip2d normally operate faster than simple moves.

Move2d, Draw2d and Clip2d are not restricted to operations on single byte pixels. For example, 3 byte
(24 bit) pixels can be treated in exactly the same way as single byte pixels, with a zero pixel being represented
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by three zero bytes, and non-zero pixels being represented by three non-zero pixels. Pixels less than a byte
can be implemented by omitting unnecessary bit planes from the video memory. By regarding an image as
a two-dimensional array of pixels, each of which is itself an array of bytes, it is possible to use the same
graphics software on systems with differing pixel sizes.

7.8.2 Drawing coloured text

Drawing proportional spaced text provides a simple example of the use of the IMS T800 instructions. The
font is stored in a two-dimensional array Font; the height of Font is the fixed character height, and the
start of each character is defined by an array start. The textures of the character and its background are
selected from an array of textures; the textures providing a range of colours or even stripes and tartans!

An occam procedure to perform such drawing is given below and the effect of each stage in the drawing
process is illustrated by the diagrams opposite. First, (1) the texture for the character is selected and copied
to a temporary area and (2) the character in the font is used to clip this texture to the appropriate shape.
Then (3) the background texture is selected and copied to the screen, and (4) the new character is drawn on
top of it.

-- Draw character ch in texture F on background texture B
PROC DrawChar (VAL INT Ch, F, B)
SEQ
IF
(x + width[ch]) > screenwidth
SEQ
x :=0
y :=y + height
(x + width[ch]) <= screenwidth
SKIP
[height] [maxwidth]BYTE Temp :
SEQ
Move2d (Texture[F], 0,0, Temp, 0,0, width[ch], height)
Clip2d(Font[ch],start[ch],0, Temp,0,0, width[ch],6 height)
Move2d (Texture[B],0,0, Screen,x,y, width[ch],6 height))
Draw2d (Temp, 0,0, Screen,x,y, width[ch], height)
x := x + width[ch]

This procedure will fill a 1 million pixel screen with proportionally spaced characters in about 1/6 second.
Obviously, a simpler and faster version could be used if the character colour or background colour was
restricted. The operation of this procedure is illustrated on the next page.
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7.9 Conclusions

The IMS T800 floating-point transputer provides a very high-performance building block for concurrent sys-
tems. The design of the IMS T800 demonstrates that it is not desirable to use coprocessors to achieve
high-performance floating-point capability. The careful consideration of silicon economics has enabled the
IMS T800 to incorporate a floating-point unit, a central processing unit, memory and a communication system
in a single device; it is a complete scientific computer on a single chip. For example, the 4 Kbytes of on-chip
memory allows the IMS T800 to be used, without external memory, in a number of signal processing appli-
cations. The fact that the floating-point performance of the IMS T800 exceeds its fixed-point performance on
multiply-accumulates removes the need to design algorithms which use fixed-point arithmetic.

The IMS T800 forms the basis of the most powerful super-computer in Europe, currently under construction at
Edinburgh University. This will contain 1000 transputers operating on one giga-byte of main store and should
be operational by April 1988. Whilst this may seem to be a very large machine, the continuing improvement in
VLSI technology means that such a machine will occupy only a few cubic feet in the early 1990s. Even today,
using conventional packaging and printed circuit board technology, machines built from the IMS T800-20 can
achieve a ‘performance density’ of 1.5 Gflop per cubic foot.
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7.11 Note on occam

It is not possible to give a comprehensive description of 0ccam in the space available. However, the following
overview explains the basic concepts of the language and explains those details which are required in order
to understand the examples in the paper.

The occam programming language was developed to allow concurrent, distributed, systems to be pro-
grammed. The emphasis is placed on distributed because it was for this area that previous languages are
unsuited. The 0ccam language enables a system to be described as a collection of concurrent processes,
which communicate with each other and with peripheral devices through channels. The concurrent processes
do not communicate via shared variables, and thus 0ccam is a suitable language for programming systems
where there is no store which is shared between processors in the system.

occam programs are built from three primitive processes:

:= e assign expression e to variable v
! e output expression e to channel ¢
? v input from channel ¢ to variable v

The primitive processes are combined to form constructs:

SEQuential components executed one after another
PARallel components executed together
ALTernative component first ready is executed

A construct is itself a process, and may be used as a component of another construct. The syntax of



7 IMS T800 architecture 91

occam uses indentation to indicate program structure, thus the occam program below consists of two
parallel processes. The first process inputs from the channel source into next .problem. The second
process itself consists of two processes to be executed sequentially. The first is an instance of the procedure
compute.next .solution, and the second, which is executed after the first has terminated, outputs
solution on to channel result.

PAR
source ? next.problem
SEQ
compute.next.solution (this.problem, solution)
result ! solution

Conventional sequential programs can be expressed in 0ccam with variables and assignments, combined
in sequential constructs. IF and WHILE constructs are also provided. The IF construct test a number of
conditions in sequence; when one is found to be true, the associated process is executed. The example
below shows how this might be used to compare two numbers, a and b, and to record their order.

IF
a>b
order := gt
a<b
order := 1t
TRUE

oxder := eq

Concurrent programs can be expressed with channels, inputs and outputs, which are combined in parallel
and alternative constructs.

Each occam channel provides a communication path between two concurrent processes. Communication
is synchronised and takes place when both the inputting process and the outputting process are ready. The
data to be output is then copied from the outputting process to the inputting process, and both processes
continue.

An alternative process may be ready for input from any one of a number of channels. In this case, the input
is taken from the channel which is first used for output by another process.

Although the first version of occam (as described in the 0ccam Programming Language) had only a single
data type and only one-dimensional arrays, the version of the language used in this paper, 0ccam 2, supports
several data types and multi-dimensional arrays. Arrays may be assigned, communicated between processes
and passed as parameters to procedures. 0OCccam permits a subarray of an array to be used as an array.
For example, the following program declares a 10 element array of integers, a, and then, in parallel inputs to
the first 5 elements of a from the channel ¢, and to the second 5§ elements from the channel d. (Note that
in occam the first element of an array is element 0.)

[10] INT a :

PAR
c ? [a FROM 0 FOR 5]
d ? [a FROM 5 FOR 5]
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One further feature of 0cCam which requires explanation is the replicated constructor. The examples in the
paper are all of replicated SEQs which have a similar effect to a FOR loop in a conventional language. The
replicated SEQ:

SEQ i = base FOR count
afi] = i

is implemented as a loop and is equivalent to the following:

SEQ
a[base] := base
a[base + 1] := base + 1

.....................

a[base + count - 1]

base + count - 1

7.12 Note on the ‘Livermore Loops’

The Livermore Fortran Kernels [5] (commonly known as the Livermore Loops) are a set of 24 computation
kernels designed to measure realistic floating-point performance on FORTRAN applications. They differ from
a number of other standard benchmark programs in that they do not produce a single figure of merit, but
a set of figures, one for each kernel. They represent a useful source of information about the structure of
scientific programs, and as such, were studied during the design of the IMS T800.

Livermore Loop 7, mentioned in this paper, is an ‘equation of state’ fragment. The FORTRAN code for this
loop is:

DO 7 k= 1,n

X(k)= Uk ) +R*¥( Z(k ) + R*Y(k )) +
. T*( U(k+3) + R*( U(k+2) + R*U(k+1l)) +
. T*( U(k+6) + R*( U(k+5) + R*U(k+4))))
7 CONTINUE

The program in the paper is written in 0CCam 2 and it is for this version that the code and performance figure
is given. The implementation of occam and FORTRAN will differ slightly as the two languages allocate store
differently.

7.13 Note on the formal specification language Z

The specification notation Z has been developed to tackle the problems of specify actual systems. Z originated
with Jean-Raymond Abrial and has been developed and used extensively by members of the Programming
Research Group, Oxford University.

A Z specification consists of a combination of a formal text and a natural language description. This formal
text provides the precise specification while the natural language text introduces and explains the formal parts.
The formal text has two parts: the schema language, which provides a means of structuring the specification,
and the mathematical language, which allows for the preciseness of the specification. The mathematical
language is based largely on set theory and enables an abstract mathematical view of the objects being
specified to be taken. The schema language enables specifications of large systems to be broken into more
manageable sections.

The combination of natural language for explanation, and the schema language produces specifications that
are more readable than pure mathematics. In addition, the mathematical nature of the specifications enables
implementors to use mathematical proofs to ensure the correspondence of their implementations with the
specification.

The formal part of a Z specification makes use of ‘schemas’. The schema consists of two ‘boxes’. The top
box contains the signature which introduces the variables of the specification. The lower box contains a list
of predicates which constrain the values that the variables may take.
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The following is an example of a Z specification:

If the reset signal is set then the Count operation sets the register to 0, otherwise it incre-
ments the register.

Count
value, value’ : N ]
reset? : bool

reset? = value’ =0
-reset? = value' = value + 1

This schema, named Count, introduces three variables; value, value’ and reset. Conventionally, primed vari-
ables such as value' represent values of state variables after an operation, while their unprimed counterparts
represent the values before the operation. Variables with names ending in ‘?*, such as reset, are convention-
ally inputs to an operation. The values are constrained by two predicates (conventionally these are and-ed
together, unless explicitly written otherwise). These predicates formally specify the behaviour of the operation
described in the informal text that precedes the schema. This schema gives a precise specification of the
operation; what it has not done is to dictate how the counter is implemented (number of bits etc.) as these
are implementation details.
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8 The role of occam in the design of the IMS T800
8.1 Introduction

Recent research has demonstrated the possibilities of producing hardware designs that have been verified
as opposed to tested. Examples of this approach include the proof of correctness of a simple microcoded
processor [1] and the verification of the design of various low-level hardware modules [2]. The tools that have
been used in this work are LCF_LSM [3], VERITAS [4] and HOL [5].

Most people would agree that it is desirable for a manufacturer's products to meet some form of specification.
This requirement becomes vital when the product is used in a life-critical situation — users must know what
the behaviour of the product will be. This has resulted in the emergence of a disciplined approach to design in
many engineering professions. An architect checks that a new building will not fall down, an aircraft designer
does detailed calculations to ensure that the wings produce enough lift. At each step of the construction
process checks are made to ensure that the components used meet their specifications in the design.

Now that computers are being used in life-critical applications, such as fly-by-wire aircraft or complex life
support systems, it is vital for the underlying hardware to be correct. It is impossible to exhaustively test
components as simple as a 32-bit multiplier — never mind an entire processor — so different techniques
must be used to verify designs. As E.W.Dijkstra has remarked [6]

(non-exhaustive) testing can be used to show the presence of bugs
but never to show their absence.

Starting from an agreed formal specification a correct design can be produced if the implementation is pro-
duced by a sequence of provably correct steps. This will bring the standard of computer design to the levels
expected in other branches of engineering [7]. Use of verified design methods can produce savings in time
and expenditure. The need to redesign part of a VLSI device may cause a 2 or 3 month delay in its launch
and several such iterations can make a device obsolete before it comes to market.

This chapter details how a verified design approach was used on sections of the IMS T800 floating-point unit
microcode. The formal semantics of the ocCam language [8][9] and the use of program transformations
are described. Then a simple example is used to show how a high-level specification can be developed into
microcode using formal design methods that guarantee the correctness of the final design.

8.2 occam

The occam language [8] allows a system to be hierarchically decomposed into a collection of concurrent
processes communicating via channels. This allows it to be used to represent the behaviour of a VLSI device
in a very natural way — the various top-level modules can be mapped on to individual processes with their
interfacing handled by channel communication. In more traditional languages the inherent parallielism of a
VLSI device has to handled by explicit programming. 0CcCam has a very efficient implementation permitting
fast execution of such a behavioural description to allow for simulation. Most importantly, for the purposes of
this paper, occam has rich formal semantics [9] which facilitate program transformation and proof.

8.2.1 occam transformations

The algebraic semantics of 0ccam given in [39] consists of a set of laws which define the language constructs.
The algebraic semantics have been shown to be consistent with the denotational semantics establishing the
validity of these laws. These transformation laws enable a normal form for finite 0CCam programs to be
defined.
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A transformation law can be used to transform one program into another whose observable behaviour is
equivalent. Many transformation laws are ‘obviously true’ and are regularly used by programmers — for
example sequential composition of processes is associative:

SEQ SEQ
P SEQ
SEQ = P
Q Q

R R

This is the law SEQ binassoc. Others are more complex and include preconditions for validity but, with a bit
of effort, can be seen to be true.

If a sequence of transformations can be found to transform one program into another then the two programs
are known to be equivalent. If, in addition, one of these programs is known to be a correct implementation
of a specification then the correctness of the other can be inferred.

Using these techniques it is possible to demonstrate the correctness of implementations by transformation —
doing this by experimental testing takes far too long for problems like floating-point arithmetic.

An example transformation

As an example consider the following program fragment:

SEQ
X :=A
Y ;=Y + X

These two assignment statements can be merged into one multiple assignment statement.
First the law AS id is used to add an identity assignment to each statement:

ASid xy=gy=x=¢g
giving the program:
SEQ
X,Y := A, Y
¥, X :=Y + X,X

Next the law AS perm is applied to the second statement:

AS perm <zi=ln>=<egl=1.n>

<Xgpli=1.n >i=< enli=1.n>
for any permutation = of {1..n}

giving:
SEQ
X, Y :=A4,Y
X,Y :=X,Y + X

Finally these two statements are merged by the law SEQ comb:
SEQcomb SEQ(x =g, x :=f)=x:=f[e/x]
giving:

X, Y :=A,Y + A
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8.2.2 The occam transformation system

To aid the process of transforming programs a simple interactive transformation system has been implemented
in the language ML[10]. A program can be parsed into this system and then manipulated by the user.
All the basic laws in [9] are implemented inside the system along with some extra ones — the system is
extensible and new laws (that have been proven correct) can be coded and added if required. Regularly
executed sequences of transformations can be coded as ML functions giving higher-level transformations.
The example transformation shown above has been coded up as the transformation law combas which itself
is used in more powerful transformations. The basic transformations often have only a small localised effect
but when suitably combined they can perform significant transformations which being constructed from correct
component transformations are known to be correct.

The transformation system user can select which transformation laws to apply and examine the effects of
these transformations. The fact that the transformation system is being used provides the verification of
the equivalence between the initial program and the transformed end result — but if necessary it would be
feasible to produce the list of transformations which constitute the proof.

8.3 Instruction development

The instruction development process consists of specifying the operation of the instruction in the Z specifica-
tion language [11]. Since Z is a mathematically based language it allows precise unambiguous statements
about operations to be made concisely and — if used in a sympathetic manner — clearly.

Along with the specifications of the instructions there will be a set of specifications of system constants,
system state and other global features of the design. In the case of the IMS T800 floating-point unit this
consists of a formal specification of the IEEE floating-point standard — such as in [12], a specification of the
internal representation of floating-point numbers in registers, a specification of the floating-point unit state —
i.e. the registers and flags, and definitions of various constants that are used. This corresponds to formally
describing the overall architecture.

Each instruction specification is refined into a high-level o0ccam implementation. This can involve going via
a guarded command language using pre- and post-conditions as in [13]. This high-level implementation is
often the sort of implementation that a competent programmer would produce from the specification but the
formal derivation ensures that no mistakes are made.

The occam program is then transformed inside the transformation system into a form equivalent to the
microcode assembler source. The steps in this process are motivated by the functions available in the
microcode machine. This involves:

1 refining IF conditions into the conditions available on the microcode machine

2 refining the expressions so that they use the alu and bus operations available on the microcode
machine

3 refining the sequential control of the program into a form that simulates the microinstruction control
in the microcode machine

The various stages of simple development used as an example are shown in the next section.

8.4 An example instruction development

The following example demonstrates the methods that have been found to be useful in the IMS T800 design.
This example takes a high-level specification in the Z specification language [11] and refines it in a sequence of
steps into a microcoded implementation that will run on a microcode machine similar to the IMS T800 floating-
point unit. For brevity certain simplifications have been made — notably that infinities, Not-a-Numbers and
denormalised numbers are ignored.
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8.4.1 Preliminary definitions

Before any instructions are specified and implemented it is necessary to make a few preliminary definitions.
There is a need to specify the format of registers, various constants and methods for interpreting data. This
is a formalisation of the top level of architectural description of the device. Only the subset of definitions
relevant to this example will be given.

The definition of the real format will contain the specification of the number of bits in the fractional part of a
floating-point number and the exponent bias:

bitsinfrac, bias : N l

Now the floating-point register format can be specified:

Floating_Point_Register

frac,exp : N
sign t{-1,+1}

(exp=0Afrac=0)
\%
(2bilsinfrac—1 < frac < 2bitsinfraC)

This states that a Floating_Point_Registers has three fields. Two of which, frac and exp, are positive integers
and the third, sign, is either —1 or +1. The predicate states that both the exponent and fraction are 0 or that
frac is between 2P1sinfrac—1 ang pbitsinfrac __ thig ensures that the fraction is normalised.

The valuation function on a floating-point register fv establishes the link between a Floating.Point.Register
and the value it ‘holds’:

fv  : Floating-Point_Register — R !

Vx : Floating_Point_Register.
fr(x) = x.signx
(x'frac X 21—bitsinfrac> x pexp—bias

Two constants are used to represent the largest and smallest integers in the integer format. As the IMS T800
uses 32-bit 2s complement integers these are specified by:

Minint, Maxint 4 !

Minint = —23
Maxint =23 — 1
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8.4.2 The instruction specification

The instruction under consideration here is a component of the real to integer conversion instruction sequence.
It checks that the value of Areg lies within integer range — if it doesn’t then the error flag must be set to
indicate a conversion error.

The Z specification of this instruction is very simple:

Floating-Check_Integer-Range

Areg, Areg’ : Floating_Point_Register 1
Error_Flag, Error_Flag’ : bool

fvArege Z

Areg’ = Areg

fv Areg € [Minint, Maxint] =
Error_Flag’ = Error_Flag
fv Areg ¢ [Minint, MaxInt] = Error_Flag’ = true

The first predicate is a precondition to this operation. If fvAreg is not an integer then the effect of this
operation will be undefined. In this way the precise conditions for the correct execution of an operation are
stated. This instruction is intended for use in a particular sequence of instructions and the previous instruction
will have established this precondition.

It is easy to see that this specification satisfies the requirements for the instruction. Once this has been
agreed to be ‘correct’ the development process will ensure that the final implementation will also satisfy the
requirements.

8.4.3 Refining to procedural form

A refinement of a specification can consist of either refining a data type or decomposing the procedural
form. As the major data type — reals — has already been refined into its machine representation, by using
Floating_Point_Register and the abstraction function fv, the specification can be decomposed into procedural
form. The specification can be easily implemented by:

if
fv(Areg) € [Minint, Maxint] — skip
[ fv(Areg) ¢ [Minint, Maxint] —

Error_Flag := true
fi

Using the pre/post-condition laws in [13] this can be shown to implement the Z specification.

8.44 Refining to occam

This has produced a procedural implementation but the conditionals used in the if .. fi construct are not
available in occam so they need to be refined into equivalent 0ccam expressions.

To do this the lemmas about integer range shown below will be useful.

lemma 1 | Vx,y : Floating_Point_Register.
(x.exp < y.exp Vv (x.frac < y.frac A x.exp = y.exp)) « |fv(x)| < |fv(y)|
lemma 2 I Vx : Floating_Point_Register.
fv(x) = Minint & (x.sign = —1 A x.frac = MSBit A x.exp = LargestINTExp)
lemma 3 F Maxint=—(Minint+ 1)
where MSBit = 2bitsinfrac—1
LargestINTExp = 32 + bias
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From lemmas 1 and 2 obtain:

I Vx : Floating_Point_Register .
x.exp < LargestINTExp « |fv(x)| < [Minint|

The fact that MSBit < x.frac is part of the invariant of Floating_Point_Register is used to eliminate the disjunct
where x.exp = LargestINTExp.

Now using lemma 3 and adding an extra condition obtain:

I Vx : Floating_Point_Register.
fv(x) € Z = x.exp < LargestINTExp
& |fv(x)| < Maxint

From these obtain:

F Vx : Floating_Point_Register.
fv(x) € Z = fv(x) € [Minint, MaxInt]
& (x.exp < LargestINTExp
viv(x) = Minint)

8.4.5 High-level occam implementation

The previous section allows the high-level 0ccam implementation below to be derived.

IF
(Areg.Exp < LargestINTExp) OR
((Areg.Sign = 1) AND
(Areg.Exp = LargestINTExp) AND (Areg.Frac = MSBit))
SKIP
NOT ((Areg.Exp < LargestINTExp) OR
((Areg.Sign = 1) AND
(Areg.Exp = LargestINTExp) AND (Areg.Frac = MSBit)))
ErrorFlag := TRUE

Using two laws IF pri and IF or-dist:

IF pri IF (b1 Py,...,bnPn)
= IF(by P4,...,b} Pn)
where bf =-b1A...A-b_{ADb;

IF or-dist IF(by P,bP,C)
= IF(by vb2 P,C)

this can be simplified to the program:

IF

(Areg.Exp < LargestINTExp)
SKIP

(Areg.Sign = 1) AND

(Areg.Exp = LargestINTExp) AND (Areg.Frac = MSBit)

SKIP

TRUE
ErrorFlag := TRUE

which is probably the implementation of the specification that a competent programmer would produce — but
the ‘special’ case of Minint is frequently omitted.
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8.4.6 Transformations towards microcode

The previous sections have developed an occam program that correctly implements the specification. This
can now be transformed into an equivalent form that corresponds to microcode assembler source. Full details
of this process will not be given here.

Each step consists of transforming one aspect of the program towards the form used in the microcode
machine. ldeally this occam program would be transformed into the final program. As the transformation
system is still under development most of the laws that it contains are those that are ‘general’ — i.e. are
correct in all environments. This does not allow the required transformation to be performed in a forwards
manner. Instead at each step a proposed implementation was constructed and this was then verified by
transforming it back into the current ‘correct’ implementation.

Refining the conditionals

The occam program given contains a three-way /F statement with the conditionals:
1 (Areg.Exp < LargestINTExp)

2 (Areg.Sign = 1) AND
(Areg.Exp = LargestINTExp)
AND (Areg.Frac = MSBit)

3 TRUE

The structure of the program must be transformed to take account of the conditional signals available on the
microcode machine — i.e. that conditionals are available to signal that the result of an ALU operation is less
than 0 or that the result of an ALU subtraction is 0 etc.

This program for implementation with refined conditionals is shown below. The various laws for /F constructs
in [9] enable this to be verified:

IF
(Areg.Sign = 1)
IF

((Areg.Exp - LargestINTExp) < 0)
SKIP

NOT ((Areg.Exp - LargestINTExp) < 0)
IF

((Areg.Exp - LargestINTExp) = 0)
IF

((MSBit - Areg.Frac) = 0)
SKIP
NOT ((MSBit - Areg.Frac) = 0)
ErrorFlag := TRUE
NOT ((Areg.Exp - LargestINTExp) = 0)
ErrorFlag := TRUE
NOT (Areg.Sign = 1)
IF
((Areg.Exp - LargestINTExp) < 0)
SKIP
NOT ((Areg.Exp - LargestINTExp) < 0)
ErrorFlag := TRUE

Refining the expressions

The previous section has produced conditionals that are available in the microcode machine. The next step
is to take account of how the expressions producing these conditionals are evaluated. This stage involves
introducing variables to represent the various buses and conditional flags. The conditional flags appear as
the IF conditionals and are evaluated in terms of the results of the ALU operations before the /F statement.
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This program for implementation with refined expressions is shown below: The laws for SEQ, VAR and
assignment in [9] verify this step:

VAR AregNegative, ExpZbus, ExpZbusNeg, ExpZbusEqZ, FracZbusEqZ :
VAR FracZbus :
SEQ

AregNegative := (Areg.Sign = 1)

ExpZbus := (Areg.Exp - LargestINTExp)

ExpZbusNeg := ExpZbus < 0

IF
AregNegative
IF
ExpZbusNeg
SKIP
NOT ExpZbusNeg
SEQ
ExpZbus := (Areg.Exp - LargestINTExp)
FracZbus := (MSBit - Areg.Frac)
ExpZbusiqZ := ExpZbus = 0
IF
ExpZbusEqZ
SEQ
FracZbusEqZ := FracZbus = 0
IF
FracZbusEqZ
SKIP
NOT FracZbusEQZ
ErrorFlag := TRUE
NOT ExpZbusEqQZ
ErrorFlag := TRUE
NOT AregNegative
IF
ExpZbusNeg

SKIP
NOT ExpZbusNeg
ErrorFlag := TRUE

Introducing sequencing

The program now contains expressions and conditionals that can be formed in the microcode machine.
However, the program does not define microwords. The final step is to mimic the microsequencing in the
microcode machine by use of a variable as a microprogram counter and a WHILE loop containing an /F
microinstruction selector. Each branch of the IF statement contains the ‘code’ for one microinstruction — i.e.
it can have one fractional ALU operation, one exponential ALU operation and defines the next microinstruction
to execute — possibly with one or two conditionals.

The laws for WHILE and IF allow this program to be ‘unwound’ back into its previous form.
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8.4.7 Translation to microcode

The final program for low level 0ccam implemenation from the previous transformations is:

VAR NextInst :
VAR AregNegative, ExpZbusNeg, ExpZbusEqZ, FracZbusEqZ :
VAR FracZbus, ExpZbus
SEQ
NextInst := FloatingPointCheckIntegerRange
WHILE NextInst <> NOWHERE

IF
NextInst = FloatingPointCheckIntegerRange
SEQ
AregNegative := (Areg.Sign = 1)
ExpZbus := (Areg.Exp - LargestINTExp)
ExpZbusNeg := ExpZbus < 0
IF
AregNegative
IF
ExpZbusNeg

NextInst := NOWHERE
NOT ExpZbusNeg
NextInst := CheckMinInt
NOT AregNegative
IF

ExpZbusNeg
NextInst := NOWHERE
NOT ExpZbusNeg
NextInst := OutofRange
NextInst = OutofRange
SEQ '
ErrorFlag := TRUE
NextInst := NOWHERE
... negative case micro instructions

This corresponds in an almost one-to-one manner with the source format for the microcode assembler. A
pattern-matching program is used to translate the stylised occam of the above program into the source for
the microcode assembler. The microcode assembler then produces the definition of the microcode ROM
from this source.
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8.4.8 Microcode assembler source
Finally the microcode can be derived:

FloatingPointCheckintegerRange:
ExpConstantFromLargestINTExp

ExpXbusFromAreg ExpYbusFromConstant

ExpZbusFromXbusMinusYbus

GOTO Cond1FromAregSign — > (CondOFromExpZbusNeg — > (NOWHERE, CheckMinlnt),
CondOFromExpZbusNeg — > (NOWHERE, OutofRange))

CheckMinint:

ExpConstantFromLargestINTExp

ExpXbusFromAreg ExpYbusFromConstant

ExpZbusFromXbusMinusYbus

FracXbusFromMSBit FracYbusFromAreg

FracZbusFromXbusMinusYbus
GOTO Cond1FromExpZbusEqZ — > (CheckMinInt2, OutofRange)

CheckMinint2:
GOTO Cond1FromFracZbuseqZ — > (NOWHERE, OutofRange)

OutofRange:
SetErrorFlag
GOTO NOWHERE

This process has ensured that the ‘program’ in the microcode ROM correctly implements the initial specifi-
cation. It might seem possible to do this informally in this simple case which only produces four microwords.
Other instructions contain up to ninety microwords where informal development can easily introduce subtle
bugs. The ability to verify an implementation using program transformations has proved invaluable.

8.5 Current and future work

Work on the IMS T800 has shown how correct microcode can be derived from a high-level specification.
However, this has assumed that the hardware implementing the microcode machine is correct. To produce
a verified processor design it will be necessary to apply the same degree of rigour to the design of the
microcode machine. This necessitates refining the specifications of microfunctions into hardware description
language (HDL) implementations. The INMOS CAD system already ensures that silicon layout is equivalent
to its HDL specification.

This correctness of design can be achieved by defining axioms for the behaviour of low-level modules in the
HDL module library if necessary down to transistor level. Larger modules and circuits can then be specified
in terms of compositions of these ‘axiomatic’ modules. Then a logic tool, such as HOL [5], can be used to
derive the behaviour of the design. Checking this against an original specification enables the correctness
— or otherwise — of the design to be established.
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8.6 Conclusions

Work at INMOS using the transformation system and a formal design strategy has been seen to be of benefit.
The correctness of the microcode for the IMS T800 floating-point unit was established in far less time than
would be needed by an ‘adequate’ amount of testing. In addition, any amount of non-exhaustive testing
leaves the possibility that certain erroneous operations have not been exercised. This has enabled INMOS
to produce the IMS T800 well ahead of schedule with a high degree of confidence in the correctness of the
microcode — this would not have been possible by other design methods.

Work is now in progress to incorporate this formal design strategy into the other levels of the design process

to maintain the correctness of a complete design. It seems clear that the CAD system will need to incorporate
a theorem prover and work is progressing at INMOS to ensure that this is the case.
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9 Simpler real-time programming with the transputer
9.1 Introduction

INMOS manufactures a range of high performance microprocessors, called transputers, which combine all
the essential elements of a computer (processor, memory and i/0) in a single component. Transputers
provide support, in hardware and microcode, for concurrency and communication. This support includes
communication links for connecting transputers together and two hardware timers which can be used for
interval measurement or for real-time scheduling.

The occam language was designed for programming systems composed of concurrently executing, commu-
nicating processes and, as such, is especially suitable for transputer-based systems. An important application
of modern microprocessor systems is real-time control and 0ccam provides many features for this purpose.
One of these is the timer, a means of measuring time periods and generating time delays.

This technical note describes some aspects of timers on the transputer, using occam. It introduces the
basics of the 0ccam language and then goes on to show some simple ways in which timers can be used
in programs. The next section describes how the transputer implements timers. Finally there are some
examples taken from occam programs which illustrate various aspects of the use of timers.

9.2 The occam programming language

The occam language enables a system to be described as a collection of concurrent processes which
communicate with one another, and with the outside world, via communication channels.

9.2.1 occam programs

This section is a brief introduction to 0cCam and, as such, can be overlooked by those familiar with the
language. occam programs are built from three primitive processes:

variable := expression assign value of expression to variable
channel ? variable input a value from channel to variable
channel ! expression  output the value of expression to channel

Each occam channel provides a one way communication path between two concurrent processes. Commu-
nication is synchronised and unbuffered. The primitive processes can be combined to form constructs which
are themselves processes and can be used as components of other constructs.

Conventional sequential programs can be expressed by combining processes with the sequential-constructs
SEQ, IF, CASE and WHILE. Concurrent programs are expressed using the parallel-construct PAR, the
alternative-construct ALT and channel communication. PAR is used to run any number of processes in
parallel and these can communicate with one another via communication channels. The alternative-construct
allows a process to wait for input from any number of input channels. Input is taken from the first of these
channels to become ready and the associated process is executed.

Sequence

A sequential-construct is represented by:

SEQ
P1
P2
P3

DTS

The component processes P1, P2, P3 ... are executed one after another. Each component process starts
after the previous one terminates and the construct terminates after the last component process terminates.
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For example:

SEQ

cl ? x
x :=x+1
c2 ! x

inputs a value, adds one to it, and then outputs the result.
Sequential-constructs in 0occam are similar to programs written in conventional programming languages.
Parallel

A parallel-construct is represented by:
PAR

The component processes P1, P2, P3 ... are executed together, and are called concurrent processes. The
construct terminates after all of the component processes have terminated, for example:

PAR
cl ? x
c2 !y

allows the communications on channels ¢1 and c2 to take place together.

The parallel-construct is unique to occam. It provides a straightforward way of writing programs which
directly reflects the concurrency inherent in real systems. Concurrent processes communicate only by using
channels, and communication is synchronized. If a channel is used for input in one process, and output in
another, communication takes place when both the inputting and the outputting processes are ready. The
value to be output is copied from the outputting process to the inputting process, and the processes then
proceed.

Conditional

A conditional-construct

IF
conditionl
Pl
condition2
P2

means that P1 is executed if conditionl is true, otherwise P2 is executed if condition2 is true, and
so on. Only one of the processes is executed, and then the construct terminates, for example:

IF
x=0
y :=y +1
x <> 0
SKIP

increases y only if the value of x is 0.
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Alternation

An alternative construct

ALT
inputl

waits until one of inputl, input2, input3 ... is ready. |f inputl first becomes ready, inputl
is performed, and then process P1 is executed. Similarly, if input2 first becomes ready, input2 is
performed, and then process P2 is executed. Only one of the inputs is performed, then its corresponding
process is executed and then the construct terminates, for example:

ALT
count ? signal
counter := counter + 1
total ? signal
SEQ
out ! counter
counter := 0

either inputs a signal from the channel count, and increases the variable countexr by 1, or alternatively
inputs from the channel total, outputs the current value of the counter, then resets it to zero. The ALT
construct provides a formal language method of handling external and internal events that must be handled
by assembly level interrupt programming in conventional languages.

Loop
WHILE condition
P

repeatedly executes the process P until the value of the condition is false, for example:

WHILE (x - 5) > 0
x :=x -5

leaves x holding the value of (x remainder 5) if x were positive.
Selection

A selection construct

CASE s
n
Pl

m,q
P2

means that P1 is executed if s has the same value as n, otherwise P2 is executed if 8 has the same value
as m or q, and so on.
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For example:
CASE direction
up
x :=x + 1
down
x :=x -1

increases the value of x if direction is equal to up, otherwise if direction is equal to down the value
of x is decreased.

Replication

A replicator is used with a SEQ, PAR, IF or ALT construction to replicate the component process a number
of times. For example, a replicator can be used with SEQ to provide a conventional loop:

SEQ i = 0 FOR n
P

causes the process P to be executed n times.
A replicator may be used with PAR to construct an array of concurrent processes:

PAR i = 0 FOR n
Pi

constructs an array of n similar processes PO, P1, ..., Pn-1. The index i takes the values 0, 1, ..., n-1, in
PO, P1, ..., Pn-1 respectively.

This note contains some short program examples written in 0ccam. These should be readily understandable
but, if necessary, a full definition of the occam language can be found in the occam reference manual [1].

9.2.2 Timers in occam
This section gives more detail of the TIMER in 0Occam.

An occam timer provides a clock which can be read to provide a value representing the time. The timer is
read by an input statement similar to that used for receiving data from a channel. Unlike a communication
channel, a single timer can be shared by any number of concurrent processes. Timers are declared in an
occam program to be of type TIMER in the same way as channels and variables are declared. An example
of the use of timers is shown below:

TIMER clock :
INT t :
SEQ

clock ? t -- read value of timer ‘clock’ into ‘t’

9.23 Timer values

The value input from a timer is of type INT. The value is derived from a clock which increments by a fixed
amount at regular intervals. The value of the clock is cyclic, that is when the time reaches the most positive
integer value then the next increment results in the most negative value. An analogy can be drawn here with
a real clock. We normally understand whether a particular time is before or after another from the context.
For example 11 o’clock would normally be considered to be before 12 o’clock, and 12 o'clock to be before
1 o’clock. This comparison only works for limited ranges of times. For example we may consider 6 pm to be
after 12 noon, but 7 am to be before noon (i.e. 7 am is before 6 pm even though 6 is less than 7).
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Figure 9.1 Cyclic timer values

9.2.4 Modulo operators

A special operator, AFTER, can be used to compare times in 0CCam. AFTER is one of a set of modulo oper-
ators, these perform arithmetic with no overflow-checking and thus produce cyclic results. Two other modulo
operators useful with timer values are PLUS and MINUS which perform addition and subtraction respectively.
For example, if maxint is the largest value of type INT that can be represented, then maxint PLUS 1
wraps around and becomes the most-negative representable integer (minint), this is illustrated in Fig-
ure 9.1. a AFTER b is defined to be equivalent to (b MINUS a) > 0. The value t2 AFTER tlis
true if the value of £2 represents a later time than the value of t1. This comparison is only valid for times
within half a timer cycle of one another because (b MINUS a) must be positive.

The AFTER operator can also be used in a timer input to create a delayed input. This specifies a time after
which the input terminates. For example:

TIMER clock :
SEQ

clock ? AFTER t

This example will wait until the value of the timer clock is later than the value of t.
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9.3 Using timers

This section outlines the basic applications of timers in 0occam programs.

9.3.1 Measuring time intervals

Perhaps the most obvious use of a timer is for measuring time intervals. Different timers are not guarenteed
to have the same value so time intervals must be measured using a single timer.

For example, when benchmarking programs written in occam, the timer can be read before and after
executing the main body of the code:

TIMER clock :
INT t1, t2, time :

SEQ
clock ? tl1 -- read start time into tl1
. run benchmark
clock ? t2 ~- read end time into t2
time := t2 MINUS tl -- calculate elapsed time

print time taken

There are a few important points to note about this example.

o The use of the modulo-operator, MINUS, to calculate the time taken. If, at the start of the program,
the timer has a very large positive value then it may have ‘wrapped-round’ to a negative value the
second time it is read. Using a normal subtraction on these values would cause an arithmetic-
overflow error. The modulo operator gives the correct elapsed time.

o As explained in Section 9.2.4 the time interval measured in this way must be less than half the cycle
time of the timer.

e The time measured in this way is elapsed time, not processor time used by this process. This may
cause ‘incorrect’ results if there are other processes running in parallel.

9.3.2 Generating a known delay

The next application of timers is to use the delayed input to generate a known time delay. This is very simple
as shown below:

TIMER clock :
INT now :
VAL delay IS 1000 : -- delay time in clock ‘ticks’
SEQ
clock ? now
clock ? AFTER now PLUS delay

This example reads the current value of the timer, then the delayed input waits until the value of the timer is
later then the value of now PLUS delay. The process is descheduled while waiting so other processes
can be executed. An important practical point here is that there may be a delay before the process is
rescheduled. This /atency may be due to a number of factors, e.g. the number of other processes executing
at the time, and may be variable. The transputer implements process scheduling in hardware and so the
latency can be very small (see Section 9.4.1).

Again, note the use of the modulo operator PLUS to calculate the time to wait until and the fact that the
greatest delay is half the timer's cycle time. A technique for generating delays of arbitrary length is given in
Section 9.5.5.
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9.3.3 Generating events at regular intervals

A program which must perform a task at regular intervals cannot do so simply by means of a fixed delay
between processing, as in the previous example. If a simple delay were used then the time at which the task
happens will slip gradually because the delay does not account for the time taken by the task itself (which
may vary) and this error accumulates. This is illustrated in Figures 9.2 & 9.3.

To make this more explicit, assume the task must be scheduled every millisecond and will execute for 10us.
The task executes and is then descheduled for 1ms (plus the time required to reschedule the process). The
interval between tasks is therefore at least 1.01ms and this error will accumulate so, after 1 second the task
will have been executed only 990 times instead of 1000 times. It would be possible to adjust the delay to
take the processing time of the task into account, but this implies that the processing time is both known and
fixed. This is unlikely to be the case in a real system. Consider the following example:

TIMER clock :

INT time :
SEQ
WHILE active
SEQ
... perform process P at intervals

-- wait for ‘delay’ clock ticks
clock ? time
clock ? AFTER time PLUS delay

The time taken to execute the loop is the delay time plus the execution time of process P. Any variation in
the processing required in P will vary the frequency at which it is executed.

read read read
timer timer timer
add start add start add start.
delay processing delay processing | delay processing
delayed delayed delayed
+ input + input + input
- | e o L1 I
wait process wait ___process wait
IlIIIIIII|IlIIIIlIIIIIllJIIlJ4I!IlJIIIllllllllllllllllllll
AN

Figure 9.2 Using timer to generate delays between processing

A far more accurate way to achieve the desired effect is shown below:

TIMER clock :
INT time :
SEQ
clock ? time
WHILE active
SEQ
. perform process P at regular intervals
-- add interval to the time the process started
time := time PLUS interval
-- and wait until it is time to execute the process again
clock ? AFTER time
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The important point to note here is that the value of the timer is only read once, before the loop is entered.
After that the time is updated by adding a constant increment to the current value. This ensures that the
delayed input always waits until the desired starting time, rather than for a fixed delay. This prevents any drift
in the timing of the processing.

start start start
inerval  Processing intorval P1OCessing 00 processing
delayed delayed delayed
+ input +input + input
___}* ______ | | I (. 1 | I 1
P | LIL | LI . 1
wait process wait ~  process wait
IllllllIIlIlIlIll[lllll|11||llIIIIIII|IIIIII|ll|llllllIIIJ_L
AN AN AN

Figure 9.3 Using timer to perform processing at fixed intervals

To take the previous example of a task being scheduled every millisecond, it can be seen that the task is
initiated at (or shortly after, because of scheduling latency) the time specified by the value of time. When
the task has completed a constant amount is added to the value of time to calculate the time the task should
next be scheduled. This time is independent of the time taken by the task. The possible variation in the time
taken to schedule a process may introduce some jitter into the timing of the task, but will not cause it to slip.

9.34 Use in ALTS
Delayed timer inputs are often used in alternative constructs.
Interleaving-processing

An alternative may be used to interleave-processing at fixed times with processing performed when data is
received. As an example, a data logging process may need to record data received from a channel and, at
suitable intervals, insert a time stamp in the recorded data. This could be written with an ALT very simply:

TIMER clock :
INT time, data :
SEQ
clock ? time
WHILE active

SEQ
time := time PLUS one.second
PRI ALT

clock ? AFTER time

. insert time stamp in file

in ? data
store data in file

Note that the delayed input is prioritised with respect to the channel input; this ensures that, even if the
channel in is always ready, the time stamping process will be selected when it becomes ready.

Timeouts on channels

Another use of delayed inputs in alternatives is to provide some sort of timeout on channel communication.

This may be to execute a process if no user command is received, or to detect an error condition. For
example, a disk controller may wish to ‘park’ the heads (i.e. move them to a safe position on the disk) if no
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commands are received within a time limit:

WHILE active
SEQ
clock ? time
ALT
(headsNotParked) & clock ? AFTER time PLUS timeout
. move heads to shipping track
in ? command
‘execute command from file system

Multiple delayed inputs

An alternative may contain several delayed inputs with different delays. This may be useful if it is necessary to
handle a number of devices at different, fixed intervals. For example, if the processor needs to be scheduled
to service two peripherals at different periods then an ALT can be used to correctly interleave the handling

of these devices:

TIMER clock :
INT timeA, timeB :
VAL intervalA IS 96 :
VAL intervalB IS 42
SEQ
clock ? timeA
clock ? timeB
WHILE active
ALT
clock ? AFTER timeA
SEQ
timeA := timeA PLUS intervalA
.. handle device A at fixed intervals
clock ? AFTER timeB
SEQ
timeB := timeB PLUS intervalB
handle device B at fixed intervals

A intervalA A

B interval B B

Figure 9.4 Scheduling two processes, A and B, at different intervals

Only times that are within half a timer-cycle can be compared by AFTER so, if several times are being
compared, they must all be within half a cycle of one another. If an ALT contains more than one delayed
input then all of the times involved (including the present timer value) must be within half a cycle of one
another. A simpler, but sometimes more restrictive, rule is to ensure that all times in the delayed inputs are

within a quarter of a cycle of the current timer value.
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9.4 Transputer implementation of timers

The transputer [2] has hardware and microcode support for occam timers. This allows timer instructions
to be fast and, more importantly, delayed inputs to be non-busy (i.e. to consume no processor time whilst
waiting). There are two timer clocks, with the same wordlength as the particular device, which tick periodically.
One timer is accessible only to high-priority processes and is incremented every microsecond. The other can
only be accessed by low-priority processes and ticks every 64us, giving exactly 15,625 ticks per second. The
cycle time of these timers depends on the wordlength of the device. The approximate cycle times, for the
current range of 16 and 32 bit transputers, are shown in the table below.

Transputer type Priority

High Low
IMS T800 & IMS T414 | 1.2 hours | 76 hours
IMS T212 & IMS M212 | 655 ms | 42 s

It is important to have a resolution of 1us for precise timing. However, on a 16 bit processor, this means a
cycle time of only 65ms — too short for many applications. To provide both high resolution and a long cycle
time, two timer rates were introduced. The same method was used on the 32 bit processors, so the timers
behave similarly on all transputer types.

Timers are local to each processor, so the absolute time values read by processes on different transputers in
a network will be different. However, the rates of the timers on each transputer will be the same, independent
of processor speed etc.

Although timers can be shared between parallel processes, this can appear rather odd if a timer is shared
between processes at different priorities. This would have the effect of a single timer producing different
values in each process. To make it clear which timer is being used within a process it is good practice to
declare timers local to each priority, for example:

PRI PAR
TIMER hiClock :
SEQ
high-priority process

TIMER loClock :
SEQ
low-priority process

9.4.1 Scheduling latency

The transputer has a microcoded scheduler which enables any number of concurrent processes to be exe-
cuted together, sharing processor time. Processes which are descheduled, waiting for a communication or
delayed input, do not consume any processor time. The scheduler supports two levels of priority.

The latency between the time a process becomes ready to execute and the time it begins processing depends
on the priority at which it is executing. Low priority processes are executed whenever there are no high-priority
processes which are ready to execute. A high-priority process runs until it has to wait for a communication
or timer input, or until it has completed processing.

Low-priority processes

Low-priority tasks are periodically timesliced to provide an even distribution of processor time between com-
putationally intensive processes. If there are n low-priority processes then the maximum latency is 2n — 2
timeslice periods. The latency will generally be much less than this as processes are usually descheduled
for communication or by a delayed input before the end of their timeslice (see, for example, Section 9.5.2 on
polling). The timeslice period is approximately 1ms.
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High-priority processes

High-priority processes run whenever they are able to, interrupting any currently executing low-priority process
if necessary. If a high-priority process is waiting on a timer input, and no other high-priority processes are
running, then the interrupt latency is typically 19 processor cycles (0.95us with a 20Mhz processor clock).
The maximum latency depends on the processor type as shown in the following table.

Transputer type Maximum interrupt latency
processor cycles | microseconds (at 20MHz)

IMS M212, IMS T212 53 2.65

IMS T414 58 29

IMS T800 (FPU in use) 78 3.9

IMS T800 (FPU not in use) | 58 2.9

These times indicate that a transputer can handle many tens of thousands of interrupts per second, even
while engaged in computationally-intensive tasks involving floating-point calculations.

9.4.2 Timer instructions

The user programming in 0ccam (or other high-level language) does not need to know how the timers are
implemented. However, the following description of their implementation in terms of the transputer instruction
set may be of interest. Further details of the implementation of 0ccam for the transputer can be found in [3]
and a complete description of the transputer instruction set in [4].

The timers are initialised using the store timer instruction. This sets the timer to a known value and
starts it ‘ticking’. This is normally done by the bootstrap or loader-code rather than by a user-program. The
value of a timer can be read at any time with the load timer instruction.

Delayed inputs

Delayed inputs are supported directly by the timer input instruction. The transputer maintains a linked
list of processes waiting on each timer, in order of increasing time. The process at the front of each queue
is pointed to by a register in the CPU. Another register holds the time that this process is waiting for. A
comparator continuously performs the AFTER test between this ‘alarm’ time and the value of the clock,
causing the process to be rescheduled when the time is reached.

The timoxr input instruction requires a time to be specified. If this time is in the ‘past’ then the instruction
does nothin. otherwise it deschedules the process and adds it to the list of processes waiting on the timer.
The instruction searches down the list of processes and inserts the current process and time value in the
appropriate place. If this time is earlier than the current value in the ‘alarm’ register then the new value will
be put in the register.

An important feature of the timexr input instruction is that it is interruptable. Because there can be any
number of processes in a timer queue, it is important that searching the queue does not affect the interrupt
latency of the system. For this reason, unbounded instructions like this and the 2D block-moves of the
IMS T800 can be interrupted by a higher-priority process becoming ready.

9.5 Some application examples
This section is intended to show how some real problems can be solved efficiently. The traditional approaches

to handling these problems would either be through polling or interrupts. The disadvantages of these ap-
proaches are described as follows, together with the ways in which occam can provide simple solutions.

9.5.1 Interrupts

Interrupts are the usual way of handling devices that require infrequent but fast servicing. Interrupt handlers
are notoriously difficult to write and debug, they are usually only supported by programming in assembler
and this is often very difficult to integrate with ather code written in a high-level language. occam and
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the transputer support both internal and external interrupts in a very simple and efficient way. An example
of an internal interrupt is a communication or delayed input; external interrupts can be generated from the
transputer’s links or the event input. A transition on the EventReq pin behaves just like a channel com-
munication and can be used to synchronise with an occam process. It is, therefore, very easy to write an
occam process which handles events — it simply has to perform an input from the channel mapped on to
EventReq and, when both the event channel and the process are ready, the process is scheduled. The
following example shows how a UART', which has its data received interrupt connected to the transputer’s
event input, would be handled in occam.

{{{ event handler
CHAN OF BYTE error

PLACE event AT 8 : -- event channel control word
BYTE sync :
WHILE active
SEQ
event ? sync -- wait for input from EventReq
read.data (char) -- read data from UART
to.buffer ! char -- output to waiting process
11}

If this process is run at high-priority then it can interrupt a low-priority process:

PRI PAR
... event handler
PAR

low-priority (background) processes

The performance of transputer interrupts was detailed in Section 9.4.1.

Interrupts can have various disadvantages. With multiple sources of interrupts there is inevitably a cost in
determining which device generated the interrupt. This may be extra hardware to encode and prioritise the
interrupts, or software to poll the devices on receipt of an interrupt to see which are ready.

9.5.2 Polling

The main disadvantage of polling is that it is busy, i.e. it consumes processor time. In the transputer this can
have a wide impact on performance because it will affect the scheduling of processes. Low-priority processes
are timesliced to ensure that all processes get a fair share of processor time. However, in most real 0ccam
programs, processes are frequently descheduled before the end of the timeslice period because they perform
some communication. A process which is continuously polling a memory-mapped device, for example, can
get a disproportionate amount of the processing resource simply because other processes are descheduled
more frequently for communication purposes. If a process in parallel with the polling process is transmitting
individual bytes down a link, then each communication may appear to take several milliseconds. This is
because the polling process will be scheduled between each byte- transfer and not be descheduled for one
or two timeslice periods.

If a peripheral device must be polled then it is much more efficient to use a delayed input to control exactly
when, and how often, polling takes place. In most cases this can be done with no degradation in the
performance of the device, as the maximum rate at which data can arrive is known. There is no point polling
the device more frequently than this as the data will not be there.

An example of this is poliing a UART. The maximum rate at which characters arrive is 2eudrate characters
per second (assuming 8 data bits, 1 start bit and 1 stop bit). In the following example the value interval

1A peripheral device which controls a serial communications port, such as an RS232 interface.



9 Simpler real-time programming with the transputer 119

is set to be slightly less than the shortest possible time between received characters (i.e. gz — A):

SEQ
clock ? time
WHILE active
SEQ

-- wait until a character might be ready
time := time PLUS interval
clock ? AFTER time
{{{ poill and read data from UART
data.ready (ready) -- check UART status register
IF

ready
SEQ
read.data (char)
to.buffer ! char
TRUE
SKIP
11}

This loop only consumes processor time whilst it is actually reading the UART registers. After a character
has been received and passed on, it is descheduled until just before the next character is ready, freeing the
processor for other work.

This example can be readily extended to allow mixing of data from the serial port and from an occam
channel:

SEQ
clock ? time
WHILE active
SEQ
time := time PLUS interval
PRI ALT
clock ? AFTER time
poll and read data from UART
source ? char
-- insert character from channel into buffer
to.buffer ! char

Another simple example is a program communicating with a transputer system, emulating a terminal, and
simultaneously checking the error flag of the system. The system-error flag only needs to be checked
occasionally, say 10 times a second, to give the impression of instant response to an error. The following
code shows how the two data sources and the error flag are all handled in a single loop:

SEQ
clock ? time
WHILE active
SEQ
ALT
clock ? AFTER time
SEQ
check error pin
time := time PLUS interval
keyboard ? char
. send character to system
link ? char
display character on screen
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This process is only scheduled when data arrives (from the keyboard or the transputer system) or it is time
to check the error-flag.

It is worth noting here why this code is structured as a single WHILE loop rather than three parallel processes:

PAR

.. check error-flag
... copy data from keyboard to system
{{{ copy data from system to screen
WHILE active

SEQ

link ? char
display character on screen

11}

Although this approach appears simpler, it introduces the problem of causing three concurrently-executing
loops to terminate correctly. The solution that would usually be adopted is for each process to have an extra
input channel and to terminate when a message arrives on that channel. This then means that each loop
requires an ALT and the initial simplicity of this approach disappears.

9.5.3 A real-time clock/calendar

This example is taken from a simple disk filing system for transputers. It is a process which uses the occam
timer to maintain the date and time. The program is organised as a number of communicating processes,
so the real-time clock can be interrogated by any of a number of processes which wish to know the current
time or date:

INT hours, minutes, seconds, date

PROC update.time (INT now)
INT new.now, delta :

SEQ
timer ? new.now
delta := new.now MINUS now
now := new.now

use ‘delta’ to update hours, minutes, seconds, and date

VAL one.hour IS ticks.per.second * 3600
INT now :
SEQ
.. dnitialise
WHILE running
ALT
-- wait for a timeout
timer ? AFTER now PLUS one.hour
SEQ
update.time (now)

-- or commands from users
ALT i = 0 FOR users
request[i] ? command
SEQ
update.time (now)
CASE command
read.time
output time to user i
handle other requests
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As the occam timer can only be used to measure relative times, the process keeps track of the current time
and date. Whenever a user requests the time or date the timer is read. This value is subtracted from the
previous timer value and this difference used to update the stored time and date values before the reply is
returned to the requestor.

The occam timer will eventually wrap-round, so it is important that the stored time and date values are
updated periodically. To ensure that this happens, even if no requests are received from the users, there is a
delayed input in the ALT which times out after one hour. When this happens the stored values are updated
and the ALT reentered to wait for another request or timeout.

9.5.4 A task scheduler

The use of multiple delayed-inputs can even be extended to use a replicated ALT where all the times and
intervals are stored in arrays. This could form the basis of a scheduler for handling a large number of
peripheral devices. For example:

WHILE active
ALT
control ? CASE
change time interval for a device
modify enable mask for a device
... other commands
ALT i = 0 FOR N
enabled[i] & clock ? AFTER time[i]
SEQ
... handle device i
time[i] := time[i] PLUS interval[i]

This loop schedules tasks to handle various peripheral devices at intervals. Each peripheral has associated
with it: a next time value; a boolean flag which enables its task; and a frequency at which it needs attention.
These are stored in the arrays time, enabled and interval. There is also a channel, control, for
modifying these parameters of the tasks associated with each device.

9.5.5 Very long delays

The example below is a procedure that can be used to generate arbitrarily long delays. As noted earlier, the
greatest delay that can be generated directly by a delayed input is half the timer-cycle time. This procedure
generates the desired delay as a number of shorter (in this case, one second) delays. This prevents the
duration of any one delayed input being a problem and, on the transputer, is still very efficient. This process
will be scheduled once a second during the delay period to perform another delayed input — this will amount
to only about 2.5us of processor time per second:

PROC delay (VAL INT seconds)
TIMER clock
INT time
SEQ
clock ? time
SEQ i = 0 FOR seconds
SEQ
time := time PLUS ticks.per.second
clock ? AFTER time

9.6 Conclusions

An important application of microprocessors is in real-time control. The 0ccam language provides support
for programming real-time systems. An important aspect of this is the timer. This allows measurement of
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time intervals, creation of delays and scheduling of processes for given times. The timer operations are fully
integrated with the control structures of the language, providing many powerful facilities especially when used
with an alternative.

The transputer provides hardware and instruction level support for the timer operations. This allows them to
be fast (sub-microsecond process scheduling) and efficient (processes use no processor time whilst waiting

for a timer). Because the transputer has microcode and hardware support for occam timers, any language
executing on a transputer can be provided with the same facilities.

9.7 References
1 occam 2 reference manual, INMOS Limited, Prentice Hall 1988.
2 The Transputer Databook, INMOS Limited, 1989.
3 The transputer implementation of occam, Technical Note 21, INMOS Limited.

4 The transputer instruction set: a compiler writers guide, INMOS Limited, Prentice Hall 1988
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10 Long arithmetic on the transputer
10.1 Introduction

This note describes how to use the facilities provided in the transputer and occam to implement long
arithmetic, i.e. arithmetic on arbitrarily large integers.

The transputer family naturally handles integers of the wordlength of the machine (16 bit on T2xx family, 32
bit on T4xx and T8xx families). There is also particular support from a communications point of view for bytes
and messages of bytes, into which all other types can be mapped. The T4xx family has special instructions
to accelerate software implemention of floating point numbers, and the T8xx family has hardware floating
point facilities.

occam supports bytes, 16-bit integers, 32-bit integers, 64-bit integers, 32-bit floating point and 64-bit floating
point on all transputer types.

Floating point representation allows the expression and manipulation of very large values, but in so doing
trades precision for range. Thus for absolute integer precision with very large number range, floating point is
not appropriate.

Certain applications use long integers for other reasons,such as generating Cyclic Redundancy Checks,
cryptography, spread-spectrum radio etc.

(Note that later members of the T4xx family, and all the T8xx family, include dedicated instructions for cyclic
redundancy checking.)

The INMOS occam compilers give direct access to the transputer instructions through predefined procedures
that compile into inline code, rather than a procedure call. This note demonstrates that the efficiency of these
is such that the performance cannot be significantly improved by using assembly language.

10.2 Requirements

The need is to be able to perform arithmetic on integers of any length, not limited by the wordsize of the cpu.
For simplicity, however, it is usual to implement an integer length that is a multiple of the cpu wordlength.

Clearly, arithmetic on such integers is going to be slower than on the machine’s natural length, but it is
a requirement that the overhead in such operations is not excessive (exact figures would be application
dependent).

Certain applications have indicated needs for up to 3200 bit integers for cryptography, and 5115 bits for
spread spectrum communications, so clearly the 64 bit facilities provided by occam need extension.

10.3 Facilities available on the transputer

The transputer instruction set has support for long arithmetic. These include instructions which perform
addition and subtraction, with carries and borrows to allow extension to arbitrary length operations. These
instructions are directly available in occam as predefined procedures, for which the compiler generates
in-line code, with no procedure call overhead.
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Both signed and unsigned versions are available when appropriate, and the procedures are listed below.

occam predefines used for long arithmetic

LONGADD signed add with carry 1
LONGSUM unsigned add with carry

LONGSUB signed subtract with borrow

LONGDIFF unsigned subtract with borrow

LONGPROD unsigned multiply with carry-in

LONGDIV unsigned divide

SHIFTRIGHT  double word shift right

SHIFTLEFT double word shift left

NORMALISE  double word normalise

ASHIFTRIGHT single word arithmetic shiftright —instruction sequence
ASHIFTLEFT  single word arithmetic shiftleft —instruction sequence

The add, sub and ashift predefines would be used for the most significant word of a long integer for signed
work, using unsigned for the body of the integer.

For unsigned operands, sum,diff and shifts would be used throughout.
The next section gives the occam interface for these routines. A detailed definition of their operation, in

occam, is given in section 10.10, taken from reference (1). Note that this is a definition; in general the
compiler inserts only parameter loads and the instruction itself.

10.4 Interface description for the Occam Predefines

10.4.1  The integer arithmetic functions

LONGADD performs the addition of signed quantities with a carry in. The function is invalid if arithmetic
overflow occurs.

INT FUNCTION LONGADD (VAL INT left, right, carry.in)
-- Adds (signed) 1left word to xight word with least significant bit of carry.in.

LONGSUM performs the addition of unsigned quantities with a carry in and a carry out. No overflow can occur.
INT, INT FUNCTION LONGSUM (VAL INT left, right, carry.in)

-- Adds (unsigned) left word to right word with the least significant bit of carry.in.
-- Returns two results, the first value is one if a carry occurs, zero otherwise,
-- the second result is the sum.

LONGSUB performs the subtraction of signed quantities with a borrow in. The function is invalid if arithmetic
overflow occurs.

INT FUNCTION LONGSUB (VAL INT left, right, borrow.in)

-- Subtracts (signed) right word and borrow. in from left word.
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LONGDIFF performs the subtraction of unsigned quantities with borrow in and borrow out. No overflow can
occeur.

INT, INT FUNCTION LONGDIFF (VAL INT left, right, borrow.in)

-- Subtracts (unsigned) right word and borrow. in from left word.
—- Returns two results, the first is one if a borrow occurs, zero otherwise,
-~ the second result is the difference.

LONGPROD performs the multiplication of two unsigned quantities, adding in an unsigned carry word. Pro-
duces a double length unsigned result. No overflow can occur.

INT, INT FUNCTION LONGPROD (VAL INT left, right, carry.in)

—-— Multiplies (unsigned) 1e£t word by right word and adds carry.in.
-- Returns the result as two integers most significant word first.

LONGDIV divides an unsigned double length number by an unsigned single length number. The function
produces an unsigned single length quotient and an unsigned single length remainder. An overflow will occur
if the quotient is not representable as an unsigned single length number. The function becomes invalid if the
divisor is equal to zero.

INT, INT FUNCTION LONGDIV (VAL INT dividend.hi, dividend.lo, divisor)

-- Divides (unsigned) dividend.hi and dividend.lo by divisozr.
-- Returns two results the first is the quotient and the second is the remainder.

SHIFTRIGHT performs a right shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

i.,e. 0 <= places <=2ibitsperword

INT, INT FUNCTION SHIFTRIGHT (VAL INT hi.in, lo.in, places)

—=- Shifts the value in hi.in and lo. in right by the given number of places.
-- Bits shifted in are set to zero.
-- Returns the result as two integers most significant word first.

SHIFTLEFT performs a left shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

i.e. 0 <= places <=2s«bitsperword

INT, INT FUNCTION SHIFTLEFT (VAL INT hi.in, lo.in, places)

-- Shifts the value in hi.in and lo. in left by the given number of places.
-- Bits shifted in are set to zero.
-- Returns the result as two integers most significant word first.
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NORMALISE normalises a double length quantity. No overflow can occur.

INT, INT, INT FUNCTION NORMALISE (VAL INT hi.in, lo.in)

—- Shifts the value in hi.in and lo.in left until the highest bit is set.
—- The function returns three integer results ‘

—- The first returns the number of places shifted.

—- The second and third return the result as two integers with the most significant word first;
—-- If the input value was zero, the first result is 2+sbitsperword.

10.4.2 Arithmetic shifts

ASHIFTRIGHT performs an arithmetic right shift, shifting in and maintaining the sign bit. The function must
be called with the number of places in range, otherwise the implementation can produce unexpected effects.

i.e. 0 <= places <= bitsperword
No overflow can occur.
N.B the result of this function is NOT the same as division by a power of two.

—- Shifts the value in operand right by the given number of places.
—— The status of the high bit is maintained

INT FUNCTION ASHIFTRIGHT ~(VAM. INT operand, places) IS

ASHIFTLEFT performs an arithmetic left shift, shifting out the most significant bits, and filling the least
significant bits with zeroes. The function is invalid if significant bits are shifted out, i.e. if the most significant
bit changes value at any point in the shift operation, signalling an overflow. The function must be called with
the number of places in range, otherwise the implementation can produce unexpected effects.

i,e. 0 <= places <= bitsperword
N.B the result of this function is the same as multiplication by a power of two.

INT FUNCTION ASHIFTLEFT (VAL INT argument, places)

-- Shifts the value in argument left by the given number of places.
-~ Bits shifted in are set to zero.

10.5 Methodology

This section will show the code required to provide general purpose long arithmetic. At this point the code
will be written for algorithmic efficiency but occam clarity. For ultimate performance see the performance
section for optimisations.

For each operation, a procedure will be demonstrated that takes as input arrays of integers being the operands,
and returns an array of integers that is the result. All operands are arbitrarily sized integer arrays, so that if
fed arrays of 100 words, that is the size for which the operation will be performed. To be safe, such routines
should test for compatability of the sizes of the three arrays passed, which should be identical for add and
subtract, n,n and 2n for multiply and divide. The code for this is omitted from the examples below for clarity.

The first two, add and subtract, are trivial, and as the result has the same length as the operands, are shown
for the operation a := a op b. Multiply is simple to program, but there are subtleties of the powerful
transputer operations to be noted to achieve algorithmic efficiency. Divide accentuates this even further, and
is more dependent on the algorithm, for which one is refered to ref(2). As the result has a different length
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from the operands, multiply and divide are illustrated for the operationa := b op c.

All arrays are assumed to be stored little-endian, i.e. the element with the lowest index is the least significant.
The code could equally support big- endian arrays if required. Within a word, the bits MUST be stored little-
endian to match the transputer hardware.

10.5.1  Addition
As an example, the general addition code will be derived from first double-length, then triple-length.

The following example adds two double length unsigned quantities explicitly. occam actually supports this
implicitly as type INT64.

PROC add.double.unsigned ([2]INT result,VAL [2]INT rightop)
INT carry:
SEQ
carry , result[0] := LONGSUM (result[0],rightop[0],0)
carry , result[l] := LONGSUM (result[l],rightop[l], carry)

To make this a signed operation, the final operation, i.e. that on the most significant word, is performed using
the LONGADD predefine. This produces exactly the same result, but will raise the error flag if overflow should
occeur.

PROC add.double.signed ([2]INT result,VAL [2]INT rightop)
INT carry:
SEQ
carry , result[0] := LONGSUM (result[0],rightop[0],0)
result[l] := LONGADD (result[l],rightop[l],carry)

To extend beyond double length simply involves using the same operation again.

PROC add.triple.signed ([3]INT result,VAL [3]INT rightop)
INT carry:
SEQ
carry , result[0] := LONGSUM (result[0],xightop[0],0)
carry , result[l] := LONGSUM (result[l],rightop[l],carry)
result[2] := LONGADD (result[2],rightop[2],carry)

.

To create the general purpose case, one uses a loop rather than in-line code, and controls the loop with
the length of the array passed in, which is accessible at runtime in occam. The following code performs a
long-add on compatible arrays of integers. This version operates on signed integers, clearly one could make
it slightly smaller for unsigned integers by looping one more time and omitting the last statement.

PROC add.long.signed.int ([]INT result,VAL []INT rightop)

INT carry:
VAL last.index IS (SIZE rightop) -1:

SEQ
carry := 0

SEQ i = 0 FOR last.index
carry,result[i] := LONGSUM (result[i],rightop[i], carry)

result[last.index] := LONGADD (result[last.index],
rightop[last.index], carry)
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10.5.2 Subtraction

Similarly for subtraction, using the appropriate pair of predefines in exactly the same harness, with the same
comments applying.

PROC subtract.long.signed.int ([]INT result,VAL []INT rightop)

INT borrow:
VAL last.index IS (SIZE rightop) -1:
SEQ

borrow := 0

SEQ i = 0 FOR last.index
borrow, result[i] := LONGDIFF (result[i],rightop[i],borrow)

result[last.index] := LONGSUB (result[last.index],
rightop[last.index], borrow)

10.53  Muiltiplication

Multiplication is more complex. The algorithm is best developed by mimicking a child doing long multiplication.
Imagine multiplying 12 by 34. First, one removes the sign from both operands, generating the result sign as
s1 XOR s2.

Then one takes the least significant digit of the multiplier(4) and multiplies all the digits of the multiplicand by
it, writing the answer down with no shift to the left. One then takes the next digit to the left(3) and multiplies
all digits of the multiplicand by it, writing the result down with a one digit shift to the left. This continues until
all digits have been multiplied, then all the partial results are added for a final result.

12 12 12 12
x 34 34 34 34
48 48 48
36 36 +
408

To analyse this operation, consider the position we write each result. Units times units we write in the units
column, tens times tens in the hundreds column, so clearly the destination column is 10 to the power (m +
n), where m and n are the powers of ten of the corresponding operand columns.

To implement this directly on a computer would require a large amount of memory. A 100 word integer would
require 100 rows of intermediate results, and each row would be around 100 words... i.e. ten thousand words
of memory, or 40K bytes on a 32 bit machine. Also, the control and implementation of the final add would
use excessive cpu time.
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The solution on the transputer instruction set, mapped into occam via the predefined procedures, is to
incorporate the add operation into each multiply, so that only one intermediate result is maintained, and that
can clearly occupy the same space as the final result will occupy eventually. In order to achieve this, the
result array must be cleared before use. Remember this code is designed for clarity... efficiency comes later.
Clearly (i+3j) could be evaluated once in the inner loop, and clearly 1eftop[i] need only be accessed
once per outer loop.

PROC multiply.long.unsigned.int ([]INT result,VAL []INT leftop,rightop)
SEQ

SEQ i = 0 FOR SIZE result
result[i] := 0

SEQ i = 0 FOR SIZE leftop

INT carry:
SEQ
carry := 0

SEQ j = 0 FOR SIZE rightop
INT temp:
SEQ

temp, result[ i+j ] :=
LONGPROD (leftop[i], rightop[j], result[i+j])

carry, result[ i+j+1] := LONGSUM(result[i+j+1],temp, carry)

The reason this comes out so simply comes from the design of the instructions. Note that the multiply
operation performs an accumulation for us, as its carry input takes a full word width operand. We need a
double width accumulate however, so a long-sum is used to complete the operation for the upper word of the
result. Note that the carry from the long-sum is required TWO words further up the result. This is achieved by
holding it until the next iteration, when the index will be one higher, and storing it one higher than the index
as usual.

Note that this algorithm will actually multiply arrays of differing length, providing the length of the result array
is appropriate. Note also that as the loop counts start at zero, the highest loopcontrol value being n-1, the
final access of the final carry operation is to imax+jmax+1. The result array is of size 2n, but the last
access is to index (n-1) + (n-1) + 1,i.e. 2n-1, the correct last address.

There is a more efficient way of dealing with signed multiply than mimicking the human. Deleting a minus
sign is easy, but negating a very long twos- complement integer may not be, as it could affect the bit pattern
of every word.
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The solution is to perform a multiply assuming the operands are both positive, and then to correct the result
by subtraction if either of them was negative, as shown below :

PROC multiply.long.signed.int ([]INT result,VAL []INT leftop,rightop)
SEQ '

multiply.long.unsigned.int (result,leftop,rightop)

result.top.half IS
[result FROM SIZE leftop FOR SIZE rightop]:

VAL leftop.top.word IS leftop[(SIZE leftop) -1]:
IF

leftop.top.word < 0

subtract.long.unsigned.int ( result.top.half,rightop)
TRUE

SKIP

result.top.half IS
[result FROM SIZE rightop FOR SIZE leftop]:
VAL rightop.top.word IS rightop[ (SIZE rightop) -1]:
IF
rightop.top.word < 0
subtract.long.unsigned.int ( result.top.half,leftop)
TRUE
SKIP

Note that the above code handles différing length arrays, but assumes that the long subtract procedure can
also, which the example given thereof cannot.
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10.5.4 Division

Division is another order of magnitude more complex than multiplication. As with multiplication, one mimics
the human, extracting the sign operation first. To perform the division, a human makes a guess at a partial
result, multiplies back and subtracts to achieve a remainder. If the remainder is negative, the guess was too
large, so is repeated. If the remainder is greater than the divisor, the guess was too small.

The computer does exactly the same, but it can be ‘helped’ in making its initial guess appropriately.(Ref 2,
Knuth)

PROC divide.long.int ([]INT result, VAL []INT leftop, rightop)
... declarations
SEQ
.. extract signs from operands -> s.r, left.u,right.u
... normalise divisor (right.u)
higher.word.left := 0
SEQ i = 0 FOR SIZE leftop
VAL i.l.rev IS (SIZE leftop)-1l) - i:
VAL i.r.rev IS (SIZE rightop)-1) - i:
SEQ
IF
higher.word.left = right.u[i.r.rev]
temp.result := MAX INT
TRUE
temp.result, remainder := LONGDIV ( higher.word.left,
left.u[i.r.rev], right.u[i.l.rev])

IF
temp.result<>0
SEQ
multiply.long.unsigned.int ( temp.vec,
[temp.result], right.u)
subtract.long.unsigned.int (left.u, temp.vec)

WHILE (left.u[ (SIZE left.u)-1] /\ signbit) <> 0
SEQ
temp.result := temp.result - 1
add.long.unsigned.int( left.u, right.u)

TRUE
SKIP

result[i.l.rev] := temp.result
higher.word.left := left.u[i.l.rev]

... unnormalise wrt previous normalisation
... replace sign of result.

The trial result temp . result can be either one or two units too large. To cover this possibility, the WHILE
loop tests if the current remainder is negative, and adds back the divisor as many times as necessary to
remedy the situation, adjusting the estimated quotient each time.

There is also a marginally faster version in Knuth that adds an extra test to improve the guess, and thus
auarantees to be accurate or one high, never two high.
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10.6 Shift Operations

The shift operations are simple in that there is only a single primitive to be used per loop, but note should be
taken that the same performance enhancements as will be demonstrated on multiplication in section 10.7.1,
particularly opening out the loops and using abbreviations on blocks of sixteen words, should be used here,
as the actual shift operation is dwarfed in CPU time by the loop control around it otherwise.

Note that the examples given here assume a shift of less than the natural wordlength of the machine. In fact
for any shift of 16 bits or greater, it is more efficient to do a block move assignment to handle the byte offset,
and only tidy up the remaining bit-shift using this code.

It should also be noted that the shift left and rotate left operations should be performed from the ‘top’ of the
vector, which means reversing the loop index, whilst the shift/rotate right operations are done from the lowest
index.

PROC rotate.long.int.left ([]INT buffer, VAL INT n)
INT highest,dump:
VAL last IS (SIZE buffer) -1:
SEQ
highest := buffer[last]
SEQ ii = 0 FOR last
VAL i IS last - ii:
buffer[i] ,dump := SHIFTLEFT (buffer[i], buffer[i-1],n)
buffer[0],dump SHIFTLEFT (buffer[0] ,highest,n)

To make it an unsigned shift left, one simply omits the wrap around. Note that as a result, the last operation
can be done with a conventional single length shift.

PROC shift.long.int.left ([]INT buffer,VAL INT n)
INT dump:
VAL last IS (SIZE buffer) -1:
SEQ
SEQ ii = 0 FOR last
VAL i IS last - ii:
buffer[i] ,dump := SHIFTLEFT (buffer[i], buffer[i-1],n)
buffer[0] := buffer[0] << n

For arithmetic shift, one simply handles the first (most significant) word separately. Because the arithmetic
shift on the transputer is single length, it is appropriate to use this for overflow checking only, and repeat the
operation with a logical shift. Thus one simple inserts the following line before the loop. (This does not apply
to right shift, see later)

dump := ASHIFTLEFT (buffer[last],n)
Similarly, for right shifts, noting that we progress the other direction along the vector:

PROC rotate.long.int.right ([]INT buffer,n)

INT first,dump:

VAL last IS (SIZE buffer) -1:

SEQ
first := buffer[0]
SEQ i = 0 FOR last

dump,buffer[i] := SHIFTRIGHT (buffer[i+l],buffer[i], n)

dump,buffer[last] := SHIFTRIGHT (first, buffer[last],n)

Again, shift and arithmetic shift involve removing the wraparound, and using ASHIFTRIGHT for the last line,
respectively. Note that the arithmetic shift is done last, not first, with the right shift, as we progress up the
vector from least significant to most significant.
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10.6.1 Normalisation

Normalisation is similar to shifting, but is conditional on the data, so is split into five sections. Firstly, from the
most significant end, the first non-zero word is found. That word is then normalised, using a single application
of the normalise predefine, which also pulls in any bits needed from the next word down. The third operation
is to shift all the remaining words left by the number of places returned by the normalise routine, and then
the fourth is to move the active words, now correctly word aligned, to the top of the array. The final operation
is to clear the vacated words at the bottom of the array.

PROC normalise.long.integer ([]INT buffer)
INT pointer, trash :

INT places :

VAL len IS SIZE buffer

SEQ
--find first non-zero word
IF

IF i = 1 FOR len
buffer[len MINUS i] <> 0
pointer := len MINUS i
TRUE
pointer := 0

--normalise that word, pulling in bits as
--needed from next word down
places,buffer[len],trash :=

NORMALISE (buffer[pointer],buffer[pointer-1])

VAL diff IS (len) MINUS (pointer)

SEQ
--shift the rest of the buffer left by the
--same number of bits
shift.left ([buffer FROM 0 FOR pointer],places)

--block move up to the top of the buffer
SEQ i = 0 FOR (pointer PLUS 1)
VAL ii IS (pointer) MINUS (i) :
buffer[ii PLUS diff] := buffer[ii]

--£fill the vacated words with zeros
SEQ ii = 0 FOR (diff MINUS 1 )
buffer [ii] := 0

10.7 Performance
10.7.1  Optimisation, using multiplication as an example

Addition and subtraction are sufficiently simple, and sufficiently directly built on the transputer instructions
that little algorithmic optimisation can be done. However, as the arithmetic operations are so fast, they suffer
greatly from the loop control overhead, so benefit greatly from opening out the loops.

However multiplication can be considerably optimised, in three steps. The first is to take invariant expressions
outside loops, saving both indexing and arithmetic. The second is to set up abbreviations (or pointers) to
frequently accessed arrays.

The third, and most beneficial, is to open out the inner loop by some factor, ideally sixteen. This both saves
loop control, but combined with the abbreviations means that many array accesses are reduced to constant
indices, which are very fast on the transputer. This does have the restriction that the arrays must be a multiple
of the opening factor, rather than truly variable size.
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The second method is a stepping stone to the third, and the performance benefit of it is not seen until the
loop is opened.

The following sections show the inner two loops suitably modified:
Simple Code
SEQ i = 0 FOR SIZE leftop

SEQ
carry := 0
VAL leftop.i IS leftopl[i]:

SEQ 3 = 0 FOR SIZE xightop --usually the same size

VAL ij IS i + j :
VAL ijl IS ij + 1
SEQ
temp, result[ij] :=
LONGPROD (leftop.i, rightop[j]l, result[ij])

carry, result[ ijl ] := LONGSUM(result[ijl], temp, carry)
Using Array Abbreviations and opened loops
SEQ i = 0 FOR SIZE leftop

SEQ
carry := 0
VAL leftop.i IS leftopl[i]:

SEQ j = 0 FOR (SIZE rightop)/opening.factor

VAL ij IS i + j :

VAL ijl IS ij + 1 :

VAL rightop.j IS [rightop FROM (J TIMES opening.factor )
FOR opening.factor]:

result.ij IS [result FROM i+ (3j TIMES opening. factor)
FOR opening.factor + 1]:

SEQ

VAL k IS O:
SEQ
temp, result.ij[k] :=
LONGPROD (leftop.i, rightop.jlkl],
result.ij[k])

carry, result.ij[k+1l] :=
LONGSUM (result.ij[k+1], temp, carry)

VAL k IS 1:
SEQ

VAL k IS opening.factor-1l:
SEQ
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Points to note here are that now all access to the arrays are of the form k or k + constant. As k itself is a
constant, this will be folded at compile time, so all array accesses in the inner loop have constant indices and
are thus very fast, using instructions designed for that operation.

10.7.2 Performance Figures

The following table gives the performance of each of the algorithms mentioned above, and for the optimised
versions with open loops, and finally for the same operation in assembly language. These numbers are all
for a 20MHz 32 bit transputer.

Performance in microseconds for 3200 bit integer

OPERATION SIMPLE OPTIMISED OCCAM ASSEMBLER
ADD/SUBTRACT 305 164 164
MULTIPLY 57700 43500 43485
DIVIDE 36-72ms - -
SHIFT/ROTATE 1 bit 300 167 153
SHIFT/ROTATE 8 bit 336 202 187
SHIFT/ROTATE 15 bit 372 236 211
SHIFT/ROTATE 8*N (Block Move) 41 41 41
NORMALISE 384 - -

Note that assembler coding gains very little, and also the spectacular performance of the shift 8*N version,
due to the block move hardware in the transputer.

Divide spends most of its time multiplying out the estimated results, so has little scope for optimising other
than in the multiply. Divide and Normalise have data-dependent execution times. The figures given are
mid-range, i.e. (max.time+min.time)/2.

10.8 Conclusions

The long arithmetic facilities in occam allow very efficient implementation of arbitrary length integers, meaning
that there is no benefit in using assembler.

The underlying instructions of the transputer are directly accessible as in-line procedures in occam, and are
themselves sophisticated primitives allowing maximum performance in such computationally intense applica-
tions.

The assistance of Roger Shepherd (INMOS, Architecture Group) is gratefully acknowledged, particularly for

help with the divide algorithms, and of Andy Hamilton and John Carey, INMOS Central Applications, for
benchmarking and verification work.
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10.10 The Occam Predefined Procedures
10.10.1 Definition of terms

For the purpose of explanation imagine a new type INTEGER, and the associated conversion. This imaginary
type is capable of representing the complete set of integers and is presumed to be represented as an infinite
bit two’s complement number. With this one exception the following are 0ccam descriptions of the various
arithmetic functions.

-- constants used in the following description
VAL bitsperword IS machine.wordsize (INTEGER) :

VAL range IS storeable.values (INTEGER)
-- range =2bitaperword

VAL maxint IS INTEGER (MOSTPOS INT) :
-- maxint =(range/2-1)

VAL minint IS INTEGER (MOSTNEG INT) :
-- minint =—(range/2)

-— INTEGER literals

VAL one IS 1(INTEGER) :

VAL two IS 2(INTEGER) :

-=- mask

VAL wordmask IS range - one :

In occam, values are considered to be signed. However, in these functions the concern is with other
interpretations. In the construction of multiple length arithmetic the need is to interpret words as containing
both signed and unsigned integers. In the following the new INTEGER type is used to manipulate these
values, and other values which may require more than a single word to store.

The sign conversion of a value is defined in the functions unsign and sign. These are used in the
description following but they are NOT functions themselves.

10.10.2 The integer arithmetic functions

LONGADD performs the addition of signed quantities with a carry in. The function is invalid if arithmetic
overflow occurs.

The action of the function is defined as follows:

INT FUNCTION LONGADD (VAL INT left, right, carry.in)
-- Adds (signed) 1eft word to right word with least significant bit of caxrry.in.

INTEGER sum.i, carry.i, left.i, right.i :

VALOF
SEQ
carry.i := INTEGER (carry.in /\ 1)
left.i = INTEGER left
right.i := INTEGER right
sum. i := (left.i + right.i) + carry.i

-- overflow may occur in the following conversion
-- resulting in an invalid process
RESULT INT sum.i
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LONGSUM performs the addition of unsigned quantities with a carry in and a carry out. No overflow can occur.

The action of the function is defined as follows:

INT, INT FUNCTION LONGSUM (VAL INT left, right, carry.in)

-- Adds (unsigned) left word to right word with the least significant bit of carxy.in.
-~ Returns two results, the first value is one if a carry occurs, zero otherwise,
-- the second result is the sum.

INT carry.out :
INTEGER sum.i, left.i, right.i :
VALOF
SEQ
left.i := unsign (left)
right.i := unsign (right)
sum.i := (left.i + right.i) + INTEGER (carry.in /\ 1)

IF -- assign carry
sum.i >= range
SEQ
sum.i := sum.i - range
carry.out :=1
TRUE
carry.out := 0

RESULT carry.out, sign (sum.i)

LONGSUB performs the subtraction of signed quantities with a borrow in. The function is invalid if arithmetic
overflow occurs.

The action of the function is defined as follows:

INT FUNCTION LONGSUB (VAL INT left, right, borrow.in)
-- Subtracts (signed) right word from 1left word and subtracts borrow.in from the result.

INTEGER diff.i, borrow.i, left.i, right.i

VALOF
SEQ
borrow.i := INTEGER (borrow.in /\ 1)
left.i := INTEGER left
right.i := INTEGER right

diff.i := (left.i - right.i) - borrow.i
—-- overflow may occur in the following conversion
-- resulting in an invalid process
RESULT INT diff.i
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LONGDIFF performs the subtraction of unsigned quantities with borrow in and borrow out. No overflow can
occur.

The action of the function is defined as follows:

INT, INT FUNCTION LONGDIFF (VAL INT left, right, borrow.in)

-~ Subtracts (unsigned) xight word from left word and subtracts borrow.in from the result.
-- Returns two results, the first is one if a borrow occurs, zero otherwise,
-~ the second result is the difference.

INTEGER diff.i, left.i, right.i :
VALOF
SEQ
left.i := unsign (left)
right.i := unsign (right)
diff.i := (left.i - xright.i) - INTEGER (borrow.in /\ 1)
IF —- assign borrow
diff.i < 0
SEQ
diff.i := diff.i + range
borrow.out :=1
TRUE
borrow.out := 0
RESULT borrow.out, sign (diff.i)

LONGPROD performs the multiplication of two unsigned quantities, adding in an unsigned carry word. Pro-
duces a double length unsigned result. No overflow can occur.

The action of the function is defined as follows:

INT, INT FUNCTION LONGPROD (VAL INT left, right, carry.in)

-- Multiplies (unsigned) 1eft word by right word and adds carry.in.
-- Returns the result as two integers most significant word first.

INTEGER prod.i, prod.lo.i, prod.hi.i, left.i, right.i, carry.i :
VALOF
SEQ
carry.i := unsign (carry.in)
left.i := unsign (left)
right.i := unsign (right)
prod.i := (left.i * right.i) + carry.i
prod.lo.i := prod.i REM range
prod.hi.i := prod.i / range
RESULT sign (prod.hi.i), sign (prod.lo.i)

LONGDIV divides an unsigned double length number by an unsigned single length number. The function
produces an unsigned single length quotient and an unsigned single length remainder. An overflow will occur
if the quotient is not representable as an unsigned single length number. The function becomes invalid if the
divisor is equal to zero.
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The action of the function is defined as follows:

INT, INT FUNCTION LONGDIV (VAL INT dividend.hi, dividend.lo, divisor)

-- Divides (unsigned) dividend.hi and dividend.lo by divisor.
-— Returns two results the first is the quotient and the second is the remainder.

INTEGER divisor.i, dividend.i, hi, lo, quot.i, rem.i
VALOF
SEQ
hi := unsign (dividend.hi)
lo := unsign (dividend.lo)
divisor.i := unsign (divisor)
dividend.i := (hi * range) + lo
quot.i := dividend.i / divisor.i
rem.i := dividend.i REM divisor.i
-- overflow may occur in the following conversion of quot.i
-- resulting in an invalid process
RESULT sign (quot.i), sign (rem.i)

SHIFTRIGHT performs a right shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

i.e. 0 <= places <=2sbitsperword
The action of the function is defined as follows:

INT, INT FUNCTION SHIFTRIGHT (VAL INT hi.in, lo.in, places)

-- Shifts the value in hi.in and lo.in right by the given number of places.
—- Bits shifted in are set to zero.
—- Returns the result as two integers most significant word first.

INT hi.out, lo.out

VALOF
IF
(places < 0) OR (places > (two*bitsperword))
SEQ
hi.out := 0
lo.out := 0
TRUE
INTEGER operand, result, hi, lo :
SEQ
hi := unsign (hi.in)
lo := unsign (lo.in)
operand := (hi << bitsperword) + lo

result := operand >> places
lo := result /\ wordmask

hi := result >> bitsperword
hi.out := sign (hi)
lo.out := sign (lo)

RESULT hi.out, lo.out
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SHIFTLEFT performs a left shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

i.e. 0 <= places <=2s+bitsperword
The action of the function is defined as follows:

INT, INT FUNCTION SHIFTLEFT (VAL INT hi.in, lo.in, places)

—- Shifts the value in hi.in and lo.in left by the given number of places.
—- Bits shifted in are set to zero.
—- Returns the result as two integers most significant word first.

VALOF
IF
(places < 0) OR (places > (two*bitsperword))
SEQ
hi.out := 0
lo.out := 0
TRUE
INTEGER operand, result, hi, lo
SEQ
hi := unsign (hi.in)
lo := unsign (lo.in)
operand := (hi << bitsperword) + lo
result := operand << places
lo := result /\ wordmask
hi := result >> bitsperword
hi.out := sign (hi)
lo.out := sign (lo)

RESULT hi.out, lo.out
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NORMALISE normalises a double length quantity. No overflow can occur.

The action of the function is defined as follows :

INT, INT, INT FUNCTION NORMALISE (VAL INT hi.in, lo.in)

—- Shifts the value in hi.in and lo.4in left until the highest bit is set.

—- The function returns three integer results

-- The first returns the number of places shifted.

-~ The second and third return the result as two integers with the most significant word first;
-- If the input value was zero, the first result is 2«sbitsperword.

INT places, hi.out, lo.out
VALOF
IF
(hi.in = 0) AND (lo.in = 0)
places := INT (two*bitsperword)
TRUE
VAL msb IS one << ((two*bitsperword) - one)
INTEGER operand, hi, 1lo

SEQ
lo := unsign (lo.in)
hi := unsign (hi.in)
operand := (hi << bitsperwoxrd) + lo
places := 0
WHILE (operand /\ msb) = 0
SEQ

operand := operand << one
places := places + 1
hi := operand / range
lo := operand REM range
hi.out := sign (hi)
lo.out := sign (lo)
RESULT places, hi.out, lo.out

10.10.3 Arithmetic shifts

ASHIFTRIGHT performs an arithmetic right shift, shifting in and maintaining the sign bit. The function must
be called with the number of places in range, otherwise the implementation can produce unexpected effects.

i.e. 0 <= places <= bitsperword
No overflow can occur.
N.B the result of this function is NOT the same as division by a power of two.

eg. —-1/2=0
ASHIFTRIGHT (-1,1) =-1

The action of the function is defined as follows:

-~ Shifts the value in operand right by the given number of places.
-- The status of the high bit is maintained

INT FUNCTION ASHIFTRIGHT (VAL INT operand, places) IS
INT( INTEGER (operand) >> places )
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ASHIFTLEFT performs an arithmetic left shift. The function is invalid if significant bits are shifted out,
signalling an overflow. The function must be called with the number of places in range, otherwise the
implementation can produce unexpected effects.

i.e. 0 <= places <= bitsperword
N.B the result of this function is the same as multiplication by a power of two.
The action of the function is defined as follows:

INT FUNCTION ASHIFTLEFT (VAL INT argument, places)

-- Shifts the value in argument left by the given number of places.
-~- Bits shifted in are set to zero.

INTEGER result.i :
VALOF
result.i := INTEGER(argument) << places
-- overflow may occur in the following conversion
-- resulting in an invalid process
RESULT INT result.i

10.10.4 Word rotation

ROTATERIGHT rotates a word right. Bits shifted out of the word on the right, re-enter the word on the left.
The function must be called with the number of places in range, otherwise the implementation can produce
unexpected effects.

i.e. 0 <= places <= bitsperword
No overflow can occur.
The action of the function is defined as follows:

INT FUNCTION ROTATERIGHT (VAL INT argument, places)
-- Rotates the value in argument by the given number of places.

INTEGER high, low, argument.i :
VALOF
SEQ
argument.i := unsign(argument)
argument.i := (argument.i * range) >> places
high := argument.i / range
low := argument.i REM range
RESULT INT (high \/ low)
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ROTATELEFT rotates a word left. Bits shifted out of the word on the left, re-enter the word on the right.
The function must be called with the number of places in range, otherwise the implementation can produce
unexpected effects.

i.e. 0 <= places <= bitsperword
The action of the function is defined as follows:

INT FUNCTION ROTATELEFT (VAL INT argument, places)
—-- Rotates the value in axrgument by the given number of places.

INTEGER high, low, argument.i :
VALCF
SEQ
argument.i := unsign(argument)
argument.i := argument.i << places
high := argument.i / range
low := argument.i REM range
RESULT INT (high \/ low)
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11 Exploiting concurrency: a ray tracing example
111 Introduction

The INMOS transputer [1] is a family of VLSI microcomputers with processor, memory and communication
links for direct connection to other transputers on a single chip, (Figure 11.1). Concurrent systems can be
constructed from a collection of transputers which operate concurrently and communicate through links. To
provide maximum speed with minimum hardware the transputer uses point-to-point serial communication
links. \
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N—U interface | ——p» LinkOut
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Figure 11.1 Transputer architecture

The first transputer available was the IMS T414, a 32-bit microprocessor with a throughput of 10 MIPs (million
instructions per second). It has 2 kilobytes of fast (50ns cycle) on-chip static RAM and four INMOS serial
links. The 32-bit multiplexed address/data bus allows up to 4 gigabytes of external memory to be accessed.
The IMS T800 transputer is compatible with the T414 but includes floating-point hardware and 4K of internal
RAM.

This chapter describes the implementation of a computer graphics program on an array of transputers. The
technique used to distribute the work among the transputers is known as a processor farm and is independent
of the application. The same approach is suitable for any algorithm which can be subdivided into independent
subproblems. For example, another graphics program, the Mandelbrot set, has been distributed in the same
way as well as a financial forecasting program and a simulation of metal deposition. The entire program
is written in occam [2], a language designed to simplify the programming of concurrent systems. Again,
however, the main part of the program could have been written in any suitable language such as C or
FORTRAN. Only those parts of the program which deal explicitly with concurrency and the distribution of
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work are easier to describe in occam.

The graphics program described here was written to provide a demonstration of the performance obtainable
by using large numbers of transputers. We used a technique known as ray tracing which can generate very
realistic images but requires massive amounts of computer power. This is an ideal application for transputers
as the calculations for each pixel (picture element) on the screen are independent of one another and so can
be done in parallel on separate processors. In addition, the complexity of the task means that the time spent
calculating is much greater than that spent passing data between processors.

The completed program has two important properties. Firstly, processing speed is directly proportional to the
number of transputers used. Virtually any desired performance can be simply obtained by the addition of
more transputers. The second feature, which came about as a side-effect of the program structure, is that
the system is remarkably robust. Individual transputers can be removed from the system, while the program
is running, and the system will continue to function although with reduced performance and possibly some
loss of data.

11.2 Logical architecture

11.2.1  Ray tracing

The basic ray tracing algorithm used is that described by Turner Whitted in his classic paper [3]. A brief
description of the technique is given here.

light source

object 1

initial ray

transmitted
ray

screen
reflected

object 2 ray

Figure 11.2 Ray tracing

The colour and intensity of each pixel on the screen is determined by calculating the path of a ray projected
from the screen through a pinhole, (see Figure 11.2). This ray is tested for intersection with each object in
the world model by solving the equation of the line and the surface of the object. This is the reason spheres
are so common in ray tracing programs; they are simple to intersect. When the closest point of intersection
is found the ray will be reflected and several new rays may be produced. If the object is transparent then a
ray is generated which passes through the object, its path modified by the laws of refraction. The effects of
shadow casting are handled by sending rays from the point of intersection towards each light source in turn.
If this ray intersects an object which is nearer than the light source then this will cast a shadow on the first
object. A recurring problem in computer graphics is aliasing, which appears as coarse steps in the image.
This is caused by undersampling of the image and can be reduced by increasing the sampling frequency, i.e.
tracing several rays for each point on the screen. The number of extra rays traced can be reduced by only
oversampling when aliasing is likely to be most objectionable, for instance where there is a sharp change in
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intensity at the boundary of objects.

In this way a tree of rays, and the surfaces with which they have intersected, is generated for each pixel.
The final colour of the image at this point is calculated by traversing the tree and applying a shading model
at each node. This model uses the intensity and positions of the various light sources and the coefficients of
reflection and transmission for the objects intersected to determine the intensity of the pixel.

Our implementation of this algorithm, in its simplest form, is not particularly efficient. The time taken to render
a scene increases exponentially with the number of objects and light sources as each ray has to be tested
for intersection with every object and then a ray fired at every light source to test for shadowing. This shadow
ray then has to be tested against every object. Also all calculations are done in floating-point for simplicity
which traditionally imposes a considerable performance penalty. It has been estimated that a straightforward
ray tracing program like this will spend over 75% of the time performing tests for intersection, so performance
is very dependent on the speed of floating-point operations. The T414 has some extra instructions to provide
microcode support for floating-point operations and the T800’s on-chip FPU enables floating-point operations
to be performed at about the same speed as integer operations.

There are many ways in which the basic ray tracing algorithm can be improved (e.g. by the use of space
subdivision or bounding volumes around objects) so many implementations could well be faster on a single
processor. However, a more sophisticated implementation would also benefit from the use of multiple trans-
puters.

11.22 Introducing concurrency

The calculations performed for each pixel on the screen are completely independent so they can be performed
in any order and on any number of processors. One way of distributing the work to a number of processors
is shown in Figure 11.3.

from host display Loargﬁgrag

calculators

Figure 11.3 Logical architecture

This requires three different processes running concurrently on one, or more, processors: a controller which
interfaces with the user or host computer to provide a description of the scene being viewed and allocates
work to processors; an intersect and shading calculator, which can be replicated any number of times, to
render the pixels; and a display process which collects the results from each rendering process and drives
the graphic display. It can be seen that this structure is not related to the ray tracing algorithm and is, in fact,



11 Exploiting concurrency: a ray tracing example 147

suitable for any problem which can be broken into independent subproblems. A system like this in which a
controller farms out work to a number of application-specific processes has become known as a processor
farm.

Every calculating process is first given the description of the scene and then processing work can be allo-
cated by the controlier which gives each calculator pixels to evaluate. When the the calculations have been
completed the results are passed out to the display process. The display process then informs the controller
that there is now a free processor and another pixel is sent out for evaluation. The amount of computation
required varies from pixel to pixel and this method automatically balances the load amongst the processors
and ensures they are all kept busy.

An interesting idea here is that the pixels do not need to be generated in sequence and, if they are generated
in some pseudo-random order, a good impression of the final picture can be obtained well before every pixel
has been evaluated. This could be particularly useful in a computer-aided design system where the user
wishes to generate different views of an object in rapid succession.

11.3 Physical architecture
11.3.1  General description

It appears, at first sight, that the above architecture cannot be mapped directly on to a network of transputers
because of the fixed number of links available. However, it is very simple to arrange for the controller to
communicate with any transputer in a network by passing messages through the intervening transputers. For
simplicity, the ray tracing program was mapped on to a linear array of transputers as shown in Figure 11.4.
Each transputer link implements two 0ccam channels, one in each direction, so this mapping only uses two
of the four links available on a T414 or T800.
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host — —» - —P
control / display calculator 1 calculator n |

display <¢— — —
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Figure 11.4 Physical architecture

Here the control and display processes are executed in parallel on one transputer and the rest of the transput-
ers do the intersection and shading calculations. In fact the first transputer also does these calculations and
the same, parameterised, program is loaded on to every transputer. However, it is simpler to view the system
as shown above. This method of mapping processes on to transputers requires that each transputer also
executes routing processes. These pass commands and data along the array from the controlling process
and pass results back for display. This implies some sort of command protocol for identifying the nature and
destination of data. This is simplified by using a linear connection of transputers; the routing process on
each transputer only needs to decide whether a message is to be accepted locally or passed on to be dealt
with elsewhere. A different array structure (e.g. a 2-D array or a hypercube) could reduce the distance that
messages have to pass and increase the bandwidth of data through the controller but at the cost of a slightly
more complex protocol and routing process.

A few important points need to be made. Firstly, the work involved in designing and implementing this
protocol is trivial compared to that required for the actual ray tracing algorithm and this will be true for any
realistic program. Secondly, although two extra processes are being executed in parallel with the main ray
tracing process, they actually consume very little processor time. Transputer processes are descheduled
whilst waiting for communications to take place and so do not use the processor. They are automatically
rescheduled, by the scheduling hardware, when the communication is complete. Also, external communication
is done by the autonomous link DMA engines which can transfer data independently of, and concurrently with,
the processor. This implies that the processing resource used by the communication depends more on the
number of communications than the amount of data transmitted in each message.
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The occam description of this transputer configuration has a constant defining the number of transputers in
the network, which is all that needs to be changed if the size of the network is changed.

11.3.2 The control/display transputer

There are two processes executed by the control/display transputer, (see Figure 11.5). The first of these,
sendPatches, interfaces to the host computer to receive the description of the scene being modelled and
other commands. It passes the world model out to all the other transputers and then sends out requests for
pixels to be evaluated. Square areas of the screen, ‘patches’, rather than individual pixels, are given to each
transputer to enable ‘slices’ or blocks of data to be transmitted. A slice communication transmits an array
of data as a single operation. As there is the same processor overhead for setting up the links to transmit
a single byte as for a million bytes, this makes the most efficient use of the transputer link engines. It also
allows the processor to continue calculating at very nearly full speed while the communication takes place,
with only occasional interruptions to manage the routing processes.

ho st ——— sendPatches > patches

display <@ loadBalance pixels

Figure 11.5 Processes running on control transputer

The other process, called loadBalance, coordinates the sending of data to the other transputers and the
display of the generated pixels. If there are n transputers then LoadBalance initially passes on 2n pixel
patch requests from the process sendPatches. It then waits until a result is returned before handing
out another request. So this process acts like a valve, only allowing work to be passed out when there
are transputers able to accept it. Each of the n calculating transputers can accept two patch requests as
described below.

11.3.3 The calculating transputers

The work on each of these transputers is organised as three processes shown in Figure 11.6. The most
important of these is render which is sent patches to evaluate via the throughput process. The render
process is a completely sequential piece of code and could be written in any standard programming language
which supports communication over 0CCam channels. It does all the calculations to find intersections, build
the tree of rays and then traverse this tree to get the final pixel value. When all the pixels in the patch
are evaluated then the pixels are passed out to the feedback process and another patch is requested
from throughput. The feedback process multiplexes the local results and those received from other
transputers and passes them back towards the display transputer. This process is very simple, using an
occam ALT construct to wait for an input from either of the two channels.

The task of the throughput processes is to route patch requests through the pipeline to a free processor,
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Figure 11.6 Processes running on the calculating transputers

i.e. one that is able to accept a pixel patch for evaluation. Patches can be routed to the next processor;
routed to the local xrendexr process or buffered for local processing later. Initially each processor starts
in the state busy = FALSE (not currently processing a patch) and buffered = FALSE. Patches are
routed by throughput according to these state variables: if not busy then the patch is sent to the render
process; if not busy and not buffered the patch is saved for later processing; otherwise the patch is
passed on for processing elsewhere. Each processor therefore accepts two patches at startup, the first is
passed immediately to rendex for evaluation and the second is held until needed. Any further patches
received are passed on to be evaluated elsewhere until the processor becomes free again. After the first
patch has been completed by the render process it sends a request to throughput for another. This is
shown in the simplified piece of occam below:

BOOL busy, buffered, running :

BYTE byte

[3]1INT patéh, buffered.patch :

SEQ

—-— initialise state variables

busy := FALSE

buffered := FALSE

running := TRUE
WHILE running
ALT

-- a request for another patch from render
requestMore ? byte

IF

-- we have some work buffered, pass it on
buffered

SEQ

toLocal ! buffered.patch

buffered
-- else indicate that the renderer is free

TRUE
busy :

:= FALSE
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-- a message from the pipeline
fromPrevious ? CASE
-- if it is a patch...
rt.render; patch
IF
-- this processor not busy, pass to render
NOT busy
SEQ
toLocal ! patch
busy := TRUE
-- if can’t handle it here, pass to next transputer
busy AND buffered
toNext ! patch
-- save patch for later processing
busy AND (NOT buffered)
SEQ
buffered.patch := patch
buffered := TRUE
-- the terminate message
rt.stop
running := FALSE

Provided that the time taken to render a pair of patches is greater than the time before throughput receives
a new patch, the render process is always kept busy. This provides distributed control of work allocation;
each processor simply passes on any work that it cannot handle to be done elsewhere. It doesn’t need to
know where the work will be done or any other details of the system configuration. Because no more work
requests are sent out than can be handled, the last processor in the network will never find itself with work
to pass on to a non-existent processor.

1.4 Maximising performance

The processing speed of the system is directly related to the number of transputers used; ten transputers
perform ten times faster than one. A number of factors contribute to this aspect of the system.

The work is given to the transputers in large chunks which require only three words of data (the X and Y
coordinates and size of the patch) to specify the position of all the pixels in the patch. If the work were
distributed on a pixel-by-pixel basis then two words of data would be required for every pixel. This would
mean a much larger ratio of communication to processing.

Use of slice communication for data means there is less processor overhead per byte sent and allows a
greater amount of concurrency between the link engines and the processor. Allocating the work in chunks
made this even more important as entire patches of pixels were returned to the control/display transputer as
a single communication.

The message routing processes are run at high priority to ensure that an incoming message can be examined
and forwarded immediately it is received. The input guards of the ALT constructs in these processes are
also carefully- ordered in priority to ensure that patches are returned to the control processor as quickly as
possible.

As well as holding an item of work in throughput, software buffers were added to any channels which
communicate via a transputer link. These decouple the communication taking place via the link from the pro-
cesses using the channel, thus allowing more overlap between processing and link communication. Channel
buffers are frequently used, and easy to implement in occam.

These issues and others, such as efficient use of on-chip RAM, are discussed in more detail in another
INMOS technical note [4].

The performance of the system has been measured with up to eighty IMS T414-15 transputers and the results
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are summarised below. These times were measured by the ray tracing system itself using the low-priority
transputer timer which has a resolution of 64 microseconds. The image generated consisted of a simple
scene containing four spheres and a single light source at a screen resolution of 256 x 256. The time taken
with each number of transputers was averaged over four runs. The processing speed in the table below is
the number of pixels generated per second, linearity was calculated as relative speed / transputers * 100.

transputers  speed relative speed linearity %

1 164.0 1.00 100.0
2 327.6 2.00 99.9
4 654.0 3.99 99.7
8 1296.4 791 98.8
16 2601.6 15.87 99.2
32 51895 31.65 98.9
64 10300.0 63.15 98.7
80 12500.0 76.37 95.5

The ray tracer has also been run on T800 processors showing a factor of about 6 or 7 speed improvement
due to the on-chip floating-point unit.

115 Fault tolerance of the system

It should be possible to exploit the number of processors in a multi-transputer system to introduce a degree
of redundancy. The system described above is already remarkably robust. If a transputer fails then the
system will progressively deadlock only if the neighbour, on the controller side, attempts to communicate with
it. This is unlikely to occur, however, because results are passed back to the display by the shortest route,
and new pixel patches are not sent out until results are returned. If a transputer is stopped while it is actually
communicating, or between sending out results and being given its next patch of pixels then the system will
deadlock. Otherwise, apart from the loss of of the processing power of the transputers on the far side of the
fault, and the associated data, the system continues to operate.

In order to make the system more robust it must be possible to detect when a failure has occurred. This
can be done by using a timeout on all communications. Secondly it must be possible to ensure that, even
if a communication does fail, all the input and output processes will terminate. As this cannot be achieved
directly in occam, INMOS provide a number of predefined procedures which perform the desired functions.
These allow an input or output to be attempted within a time limit, and recovery from a failed communication.
They are described more fully in [5]. The use of these procedures means that failure of a transputer can be
detected by its neighbour. The controlling transputer could then be informed and so take action to recover or
regenerate the lost data.

Detection of the failure of a transputer implies that facilities could be added to allow the defective transputer
to be bypassed. This can be done with no extra hardware as shown in Figure 11.7. If a transputer decides
that its neighbour has failed then it switches to the other link to communicate with the next transputer along.
Alternatively, if boards with more than one transputer are used (for example the IMS B003) it may be better
to arrange the link connections so that an entire board is bypassed if a failure is detected. Obviously, this will
not be sufficient if two adjacent transputers or boards were to fail, but this unlikely event could be catered for
with extra hardware to allow link connections to be switched externally thus allowing any number of devices
to be bypassed.

11.6 References
1 The Transputer Databook, INMOS Ltd, 1989.
2 occam Reference Manual, INMOS Ltd.

3 An Improved lllumination Model for Shaded Display, Turner Whitted,
Communications of the ACM, pp. 343-349, June 1980, 23(6).

4 Performance Maximisation, INMOS Ltd, Technical note 17.
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Figure 11.7 Bypassing a failed transputer

5 Extraordinary use of transputer links, INMOS Ltd, Technical note 1.

11.7 Note on the ray tracing program

The occam language enables a system to be described as a collection of concurrent processes which
communicate with one another, and with the outside world, via channels. occam programs are built from
three primitive processes: assignment (variable := expression); input (channel ? variable);
and output (channel ! expression).

Each occam channel provides a one-way communication path between two concurrent processes. Com-
munication is synchronised and unbuffered. The primitive processes can be combined to form constructs
which are themselves processes and can be used as components of another construct. Conventional se-
quential programs can be expressed by combining processes with the sequential constructs SEQ, IF and
WHILE. Concurrent programs are expressed using channel communication, the parallel construct PAR and
the alternative construct ALT. An alternative process may be ready for input from a number of channels; input
is taken from the first of the channels to become ready.

Below is an outline of the occam program for each transputer, and the description of the entire transputer
system. The procedures all have several more parameters (such as screen size, maximum number of
reflections, etc.) but, for simplicity, only the essential outline is given here.

In order to pass the various types of message (e.g. object definitions, patch requests and pixel values) around
the system a variant protocol was used:

PROTOCOL trace.p

CASE
rt.stop
rt.done
rt.render:; [3]1INT -- rt.render; x; y; patchSize
rt.data; INT; INT::[]INT -- rt.data; type; data
rt.pixels; INT; INT; INT::[]INT -- rt.pixels; x; y; n::data
rt.message; INT: :[]INT -- rt.message; n::chars

Each message then consists of: the message tag followed by the arguments. For example a 16 x 16 patch
issentas: out ! c.render; [x; y; 16].
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The code running on the control/display transputer is:

PROC control (CHAN OF trace.p fromHost, toDisplay,
toCalculators, pixelsIn)

... definition of sendPatches procedure
definition of loadBalance procedure

CHAN OF trace.p data
PAR

sendPatches (fromHost, data)
loadBalance (data, toCalculators, pixelsIn, toDisplay)

Each of the calculating transputers runs the following code:

PROC calculate (CHAN OF trace.p fromPrev, toNext, fromNext, toPrev)

... throughput procedure
... render
feedback

CHAN OF trace.p tolocal, fromLocal, requestMore
PRI PAR

-- run these at high priority for
-- fastest response to messages
PAR

throughput (fromPrev, toNext, toPrev, tolocal, requestMore)
feedback (fromLocal, fromNext, toPrev)

-- and this one at low priority
render (tolLocal, fromLocal, requestMore)
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The system description is as follows:
... define constants for the link addresses

VAL number.transputers IS 42 :
VAL last IS number.transputers - 1

CHAN OF trace.p host, display, loopback :
[number.transputers]CHAN OF trace.p forward, return

PLACED PAR

-- processor 0 is the control/display processor
PROCESSOR 0 T4

PLACE host AT l1linkOin : -- data from host
PLACE display AT link2out : -- to display

PLACE forward[0] AT linklout : -- patches out

PLACE return[0] AT linklin : -- pixel values back

control (host, display, forward[0], return[0])

-- the main body of the pipeline of calculators
PLACED PAR i = 1 FOR number.transputers - 2
PROCESSOR i T8

PLACE forward[i] AT link0in : -- patches in
PLACE return[i] AT linklout : -- pixels out
PLACE forward[i+l] AT linklout : -- patches out
PLACE return[i+l] AT link0in : -- pixels in

calculate (forward[i],; forward[i+l], return[i+l], return[i])

-- the last transputer is a special case as it

-- has no one else to talk to. The fact that the
-- channel ‘loopback’ is not placed means that

-- an internal ("soft") channel will be created.
-- In fact this channel is never used but is

-- required as a parameter.

PROCESSOR last T8
PLACE forward[last] AT linkOin
PLACE return[last] AT linkOout
calculate (forward[last], loopback, loopback, return[last])

Further information on the program is available from the Central Applications Group at INMOS Ltd in Bristol.
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12 High-performance graphics with the IMS T800
121 Introduction

This chapter examines some applications of the IMS T800 floating-point transputer in high-performance
graphics systems. Firstly there is a brief introduction to some of the the basic techniques and terminology
used in computer graphics. This includes comments on implementation and processing requirements.

Section 12.3 provides an overview of transputer, and specifically IMS T800, architecture. This concentrates
on the aspects of the device which make it particularly suitable for using in parallel graphics systems. There
is also a brief description of the 0cCam language, designed for programming highly parallel systems. This
part concludes with a summary of how the IMS T800 meets the requirements of a modern graphics system.

The next section describes in some detail how the computing performance of the floating-point processor
is obtained. It uses, as an example, a procedure which forms one of the key routines in all our graphics
demonstrations.

Finally two particular applications are described in detail. These are the INMOS distributed Z-buffer, a near
real-time multiprocessor solution to the hidden surface problem, and the INMOS multi-player flight simulator, a
real-time interactive combat simulator. Both programs have been implemented on standard INMOS transputer
evaluation boards with no custom hardware design and written entirely in a high-level programming language.

12.2 Computer graphics techniques

Computer-generated images, and in particular interactive graphics, is one of the fastest growing and most im-
portant application areas for high-performance computing systems. Some common applications are computer-
aided design (CAD), simulation and medical imaging. These allow the user rapidly to see the effects of, for
example, a design change on the appearance or behaviour of an object; or to view a large amount of data
(for example a three-dimensional scan of a human body) in an understandable form.

There are a number of common requirements for these systems. Firstly the system must be fast, both to
generate an image and to respond to input from the user. Secondly the displayed images must be realistic,
or at least readily comprehensible to the user. This will usually mean that objects can be viewed with correct
perspective, with natural shading and possibly shadowing, and that the way in which one part of the scene
obscures another (the ‘hidden surface problem’) is correctly represented. For interactive systems response
speed is an important factor to maintain realism and usability.

A brief introduction to some of the techniques and terminology used in this chapter is given below. A good
introduction to interactive computer graphics can be found in [1].

12.2.1  Modelling objects

In order to render or generate images of an object some way of modelling the object in the computer is
needed. A convenient primitive to use as the basis of modelling objects is the polyhedron. By increasing the
number of faces the shape of any solid object can be approximated, although at the cost of having more data
to manipulate. An arbitrary polyhedron can be modelled by defining its faces; each of these faces is then a
polygon which can be defined by an ordered list of vertex coordinates.

Each polygon will have other attributes associated with it, such as colour and orientation. The orientation is
represented by a line or vector perpendicular to the surface. This is called the surface normal and can be
calculated from the coordinates of three vertices. The surface normal is closely related to another attribute,
the plane equation of the face. A plane is represented by four numbers (a, b, ¢, d) so that az +by +cz+d =0
is true only if the point[ z y =z ] lies in the plane. If a point does not lie in the plane then the sign of the
expression az + by + cz + d indicates which side of the plane the point is located on. By convention, points in
front of the plane have positive values of az + by + cz + d. The components of the normal vector are given by
the plane equation; the vectoris [ a & ¢ ]. The plane equation and normal vector are very important for
visibility and shading calculations.
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12.22 Transformation

Geometric transformations play an important role in generating images of three-dimensional scenes. They
are used (a) to express the location and orientation of objects relative to one another and (b) to achieve the
effect of different viewing positions and directions. Finally a perspective transformation is used to project the
three-dimensional scene on to a two-dimensional display screen.

Transformations are implemented as matrices which are used to multiply a set of coordinates to give the
transformed coordinates. All rotations, translations and other transformations to be performed on data are
combined into a single matrix which can then be applied to each point being transformed. Transformations
may be nested, like subroutine calls, so that parts of a model can be moved independently but still take on
the global movement of the model or the viewpoint.

The homogeneous coordinate system

The coordinates of points are represented using what are known as homogeneous coordinates. Any point
in three-dimensional space can be mapped to a point in four-dimensional homogeneous space. The fourth
coordinate, w, is simply a scaling factor so a point with the homogeneous coordinates[ z y z w ]is rep-
resented in three-dimensional space as[ z/w y/w z/w ]. This representation simplifies many calculations
and, in particular, means that the division required by perspective transformation can be done after clipping
when there may be many fewer points to process.

The value of w is arbitrary as long as z, y, and z are scaled by the same amount. Generally when converting
from 3-D to homogeneous coordinates it is simplest to make w = 1 so no multiplication of z, y and z is
necessary. After being transformed the value of w may have changed so at some point the z, y, and z
coordinates must be divided by w. This can be done when scaling to physical screen coordinates.

The transformation matrices used are 4 x 4 matrices for the transformation of homogeneous coordinates and
are designed to have the desired effect on the point in ordinary three-dimensional space. When implemented
on a computer, coordinates and transforms will generally use floating-point representation for maximum
accuracy and dynamic range.

Translation

Translation, or movement of a point in space, is simply achieved by adding the distance to be moved in each
axis to the corresponding coordinate:

' = z+t,
y = y+t,
2 = z+t,

where t,, t, and t, are the distances moved in z, y and z respectively. This can be represented as a matrix
multiplication:

r

[z ¢ 2 w]=[z y z w]

- OO0 O
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Rotation

Three-dimensional rotations can be quite complex. The simplest form is rotating a point about an axis which
passes through the origin of the coordinate system, and is aligned with a coordinate axis. For example,
rotation about the 2z axis by an angle of ¢ is written as:

! zCOSf +ysing
—zSinfd +ycosé

]
]

<
]

This can be represented as a matrix multiplication as shown:

cosfd —sing 0 O
[ ¢ 2 wl]l=[z y z w] Slgﬂ 00059 ? 8
0 0 0 1

To perform rotations about an arbitrary point it is necessary to translate the point to the origin, perform the
rotation and then translate the point back to its original position. Rotations about axes which are not aligned
with the coordinate system can be performed by concatenating a number of simpler rotations.

Concatenation

The successive application of any number of transforms can be achieved with a single transformation matrix,
the concatenation of the sequence. Suppose two transformations M, and M, are to be applied to successively
to the point v. First v is transformed into +' by Mj, this is then transformed into v’ by Ma:

o o= oM, (12.1)
o= WM, (12.2)

Substituting Equation 12.1 into Equation 12.2 gives:

v = (vM1) M2 = v(M1 Mp)

Therefore the concatenation of a sequence of transformations is simply the product of the individual trans-
form matrices. Note that, because matrix multiplication does not commute, the order of application of the
transformations must be preserved.

Perspective projection

The most realistic way of displaying three-dimensional objects on a two-dimensional screen is the perspective
projection. There is a simple transformation that distorts objects so that, when viewed with parallel projection
(orthographically), they appear in perspective. This defines a viewing volume, a truncated pyramid, within
which objects are visible (see Figure 12.1). This transformation preserves the flatness of planes and the
straightness of lines and simplifies the clipping process that follows. The perspective transform uses three
parameters: the size of the virtual screen on to which the image is projected; the distance from the viewing
position to this screen; and the distance to the furthest visible point. The result of the perspective transform
is to normalise all coordinates so that values range between —1 and +1, the centre of the image is at point
(z,y) = (0,0). To display these on a real device the coordinates must be scaled by the screen resolution of
the display.

The perspective transform used in the programs discussed in this document is based on that in Sutherland
and Hodgman [2].
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Figure 12.1 Viewing objects in perspective

12.23 Scan conversion

Raster displays are the most commonly used output device for computer graphics systems. They represent
an image as a rectangular array of dots or ‘pixels’. The image to be displayed is stored in a ‘frame buffer’,
an area of memory where each location maps on to one pixel. The main advantages of raster displays are
low cost and their ability to display solid areas of colour as easily as text and lines.

In order to display objects which are represented as a number of polygons it is necessary to scan convert
the polygons. This involves finding all the pixels that lie inside the polygon boundaries and assigning them
the appropriate colour. A shading model is used to calculate the colour of each pixel.

A number of techniques have been developed for scan conversion. These generally take advantage of
‘coherence’; the fact that the visibility and colour of adjacent pixels is usually very similar, and there are only
abrupt changes at polygon boundaries. This allows incremental methods using only integer arithmetic to be
used.

12.2.4 Shading

To generate realistic images it is necessary to assign the correct colours to the various parts of the model. This
means shading the objects to represent lighting conditions. The apparent colour of a surface is dependent on
the nature of the surface (its colour, texture, etc.), the direction of the light source and the viewing angle. A
realistic shading model may require a large amount of floating-point arithmetic to multiply together the vectors
representing surface orientation (the surface normal), direction of the light source, etc.

Where objects are represented as a number of polygons, the faceted appearance can be reduced by using
a smooth shading model. There are two simple and reasonably effective techniques. Gouraud shading
simply interpolates the surface colour across each polygon. This can, however, introduce a number of
anomolies for example, in the shape of highlights and the way shading changes in moving sequences. Many
of these problems can be relieved by using a technique developed by Phong but at the expense of increased
calculation. Phong shading interpolates the surface normals across the polygons and re-applies the shading
model at each pixel.
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12.25 Clipping

Clipping is necessary to remove points which lie outside the viewing volume and to truncate lines which extend
beyond the boundaries. Clipping can be done more simply after the perspective transformation. However,
clipping in the z axis must be done before the division by depth which the full perspective projection requires
as this destroys the sign information that determines whether a point is in front of or behind the viewer. Points
with a negative value of z are behind the viewer.

Clipping to the z and y coordinates need only be performed to screen resolution. This has led to many clever,
although not always simple, techniques using fast integer arithmetic to clip lines quickly. The availability of
fast floating-point hardware means that more straightforward methods can be used.

The use of homogeneous coordinates and the perspective projection simplifies clipping. Because the points
can be viewed in parallel projection z and y values which are inside the viewing pyramid are in the range —1
to 1 and z values are in the range 0 to 1. The use of scaled, homogeneous coordinates means that the tests
that have to be applied are:

These limits correspond to the six bounding planes of the truncated viewing pyramid. A fast polygon clipping
algorithm is described in [2].

12.2.6 Hidden surface removal

In order to generate realistic images it is important to remove from an image those parts of solid objects which
are hidden. In real life these would be obscured by the opaque material of the object. In computer graphics
the visibility of every point must be explicitly calculated.

Hidden surface algorithms are classified as either object-space or image-space. An object-space algorithm
uses the geometrical relationships between the objects to determine the visibility of the various parts and so
will normally require at least some floating-point arithmetic. An image-space method works at the resolution
of the display device and determines what is visible at each pixel. This can be done most efficiently using
integer arithmetic. The computation time of object-space techniques tends to grow with the total number of
objects in the scene whereas image-space computation will tend to grow with the complexity of the displayed
image.

There is also a trade-off between speed, complexity and memory usage. For example the Z-buffer technique
described in section 12.5 is a very simple, reasonably fast image-space algorithm but requires a large amount
of working memory. It uses an array of integers, the same size as the frame buffer, to store the depth at
each pixel.

The BSP-tree used in the INMOS flight simulator (section 12.6) is an object-space algorithm which is efficient
in memory usage, but uses floating-point arithmetic to determine the ordering of polygons. Its performance
depends on the availability of a fast floating-point processor. It is also not completely general: in its simplest
form it can only be applied to rigid objects constructed from non-intersecting polygons.

12.3 The IMS T800 transputer
The IMS T800 is the latest member of the INMOS transputer family [3]. It integrates a 32-bit 10 MIP processor
(CPU), four serial communication links, 4 Kbytes of RAM and a floating-point unit (FPU) on a single chip. An

external memory interface allows access to a total memory of 4 gigabytes.

The transputer family has been designed for the efficient implementation of high-level language compilers.
Transputers can be programmed in sequential languages such as C, PASCAL and FORTRAN (compilers for
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which are available from INMOS). However, the 0cCam language (see section 12.3.4) allows the programmer
to fully exploit the facilities for concurrency and communication provided by the transputer architecture.
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Figure 12.2 IMS T800 block diagram

The on-chip memory is not a cache, but part of the transputer’s total address space. It can be thought of as
replacing the register set found on conventional processors, operating as a very fast access data area, but
can also act as program store for small pieces of code.

12.3.1  Serial links

The four serial links on the IMS T800 allow it to communicate with other transputers. Each serial link provides a
data rate of 1.7 Mbytes per second unidirectionally, or 2.35 Mbytes per second when operating bidirectionally.

Since the links are autonomous DMA engines, the processor is free to perform computation concurrently with
link communication. With all four links receiving simultaneously, the maximum data rate into an IMS T800 is
6.8 Mbytes per second. This allows a graphics card based round a single IMS T800 to act as an image sink,
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accepting byte-wide pixels down its serial links directly into video RAM. This is the architecture used in the
INMOS distributed Z-buffer (section 12.5) and in the INMOS flight simulator (section 12.6).

12.3.2 On-chip floating-point unit

The IMS T800 FPU is a coprocessor integrated on the same chip as the CPU, and can operate concurrently
with the CPU. The FPU performs floating-point arithmetic on single- and double-length (32- and 64-bit)
quantities to IEEE 754. The concurrent operation allows floating-point computation and address calculation
to fully overlap, giving a realistically achievable performance of 1.5 Mflops (4 million Whetstones[4] / second)
on the 20 MHz part; 2.25 Mflops (6 million Whetstones / second) at 30 Mhz.

12.3.3 2-D block move instructions

Among the new instructions in the IMS T800 are those for graphics support. The IMS T800 has a set of
microcoded two-dimensional block move instructions which allow it to perform cut-and-paste operations on
irregularly shaped objects at full memory bandwidth. The three MOVE2D operations are:

MOVE2DALL which copies an entire area of memory
MOVE2DZERO which copies only zero bytes
MOVE2DNONZERO which copies only non-zero bytes

The use of these instructions is described more fully elsewhere [5].

12.3.4 The occam programming language

The occam language enables a system to be described as a collection of concurrent processes which
communicate with one another, and with the outside world, via communication channels. 0ccam programs
are built from three primitive processes:

variable := expression assignment
channel ? variable input
channel ! expression output

Each occam channel provides a one-way communication path between two concurrent processes. Commu-
nication is synchronised and unbuffered. The primitive processes can be combined to form constructs which
are themselves processes and can be used as components of another construct. Conventional sequential
programs can be expressed by combining processes with the sequential constructs SEQ, IF, CASE and
WHILE.

Concurrent programs are expressed using the parallel construct PAR, the alternative construct ALT and
channel communication. PAR is used to run any number of processes in parallel and these can communicate
with one another via communication channels. The alternative construct allows a process to wait for input
from any number of input channels. Input is taken from the first of these channels to become ready and the
associated process is executed.

This chapter contains some short program examples, including a few written in occam. These should be
readily understandable but, if necessary, a full definition of the occam language can be found in the occam
reference manual [6].

12.3.5 Meeting computer graphics requirements

Computer graphics have always required large amounts of computing power. As users become more
demanding in their requirements for higher resolution, more colours and faster response from graphics-based
systems, more and more processing speed and i/o bandwidth are required.

Graphics applications can require huge amounts of floating-point maths for performing transformations, spline
curve interpolation and evaluating complex shading models. Realistic images may contain many thousands
of primitives to be manipulated and displayed. Some of the most impressive computer images have been
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produced using ray tracing, a very expensive computer graphics technique. The implementation of a multi-
processor ray tracing program using transputers is described in [7].

For desktop publishing, very high quality fonts are required, which must be manipulated at high speed if the
feeling of user interaction is to be maintained. For digital compositing and ‘paintbox’ type applications, large
irregular shapes must be moved around on screen at high speed, without annoying jerks and hops as the
processor strains to keep up with the user.

High-quality printed output may use a laser printer, a very high-resolution output device. Typical modern laser
printers produce images with 300 — 400 dots per inch on A3 or A4 size paper. A bitmap at this resolution
requires up to 4 Mbytes of data. As colour laser printers become available the memory requirements increase
dramatically.

Finally, real-time graphics work demands very high bandwidth to the display device — a modest 16 frames
per second on a 512 x 512 x 8 bit pixel display requires the transfer of 4 Mbytes of data to the display each
second. This is easily met by the four links on a single IMS T800. As frame rates and screen resolutions
continue to increase so does the performance required from a graphics system. Multiple IMS T800s could
be connected to a common frame store, using video RAMS, to provide even greater bandwidth to the display.
The hardware aspects of transputer-based graphics systems are discussed in [8].

The major requirements of the ideal graphics processor then are: high-speed floating-point performance;
high-speed text manipulation and 2-D cut/paste operations (actually the same operation but on different
scales); fast movement of large quantities of data; and high bandwidth in and out of the processor.

Although not specifically a graphics device, the IMS T800 transputer fulfils all the above requirements —
massive compute power, a large linear address space, high i/o bandwidth and instruction level support for
pixel graphics operations.

12.4 3-D transformation on the IMS T800

One of the main uses for a floating-point processor in a computer graphics system is for calculating 3-D
transformations. This will include both generating a transformation matrix and applying this transformation to
sets of coordinates.

Here, a four-element vector is multiplied by a 4 x 4 matrix, to give a four-element resuit:

[z ¢ 2 w]=[z y 2z w]

3 o, 0 0
3 S
o IFQ O

T o~ > A

This can be expanded as:

z' =az+ey +iz+muw
y =bz+ fy+jz+nw
2 =cz+gy+kz+ow

w =dz+hy+lz+pw
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Hence to multiply the vector by the matrix requires 28 floating-point operations (16 multiplications, 12 additions)
which pipelines very efficiently on the IMS T800. The following occam procedure multiplies the vector by
the matrix, storing the result:

PROC vectorProdMatrix ([4]REAL32 result,
VAL [4]REAL32 vec,
VAL [4] [4]REAL32 matrix)

VAL X IS O
VAL Y IS 1
VAL Z IS 2
VAL W IS 3

es oo s oo

SEQ
result[X] := (vec[X]*matrix[0][X])
((vec[Z]*matrix[2] [X])

((vec[Y]*matrix[1] [X]) +
((vec[W] *matrix[3] [X]))))

+ 4+

result[Y] := (vec[X]*matrix[0][Y])
((vec[Z]*matrix[2][Y])

((vec[Y]*matrix[1][Y]) +
((vec[W] *matrix[3][¥]))))

++

result[Z] := (vec[X]*matrix[0][Z]) + ((vec[Y]*matrix[1l][Z]) +
((vec[Z]*matrix[2] [Z]) + ((vec[W]*matrix[3][Z]))))

result[W] := (vec[X]*matrix[0][W]) + ((vec[Y]*matrix[1l][W]) +
((vec[Z]*matrix[2] [W]) + ((vec[W]*matrix[3]([W]))))
Analysing the statement:

result[X] := (vec[X]*matrix[0][X]) + ((vec[Y]*matrix[1l][X]) +
((vec[Z]*matrix[2] [X]) + ((vec[W]*matrix[3]([X]))))

it can be seen that all vector offsets are constant and will be folded out by the compiler into very short
instruction sequences. Furthermore all floating-point operations are fully overlapped with subsequent address
calculations.

The statement compiles into only 27 instructions, most of which are only a single byte. The details of the
transputer instruction set are given in [9] and the implementation of the FPU in [10].

The instruction sequence generated by this expression is:

M

1d1 2 -- load local variable 2 (address of vec)

1ldnlp 2 -- compute address of vec[Z]

1d1 3 -- load address of matrix

ldnlp 8 -- compute address of matrix[2] [X]

fpldnlsn -- transfer matrix[2] [X] to top of FPU stack
e

fpldnlmulsn -- transfer vec[Z] to FPU and multiply
3

1dl 2

ldnlp 3 -- compute address of vec[W]

1ld1i 3

ldnlp 12 -- compute address of matrix[3] [X]
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(4)

fpldnlsn -- transfer matrix[3] [W] to FPU
fpldnlmulsn -- transfer vec[W] to FPU and multiply
fpadd -- add so top of FPU stack contains
-—- (vec[Z]*matrix[2] [X]) + (vec[W]*matrix[3][X])
1d1 2 -- calculate address of vec|Y]
ldnlp 1
1d1 3 -- and address of matrix[1] [X]
ldnlp 4
fpldnlsn —- transfer matrix[1l] [X] to top of FPU stack
fpldnlmulsn —-- transfer vec[Y] to top of stack and multiply
fpadd -- add product to previous intermediate result
1d1 2 -- calculate address of vec[X]
1dl 3 -- and address of matrix[0] [X]
fpldnlsn -- transfer matrix[0] [X] to FPU
fpldnlmulsn —- transfer vec[X] to FPU and multiply
fpadd -- final accumulate, followed by
1d1 1 -- final store to
fpstnlsn —-— result [X]

Most FPU operations pop the top two values off the stack to use as operands and then push the result back
on to the stack. The stack consists of three registers inside the FPU and nearly all expressions can be
compiled so that no temporary memory variables are needed.

The code between (1) and (2) calculates the address of the first two operands and transfers matrix[2] [X]
to the top of the FPU stack. The code between points (2) and (3) loads vec[Z] on to the FPU stack and
initiates a floating-point multiply. The CPU then executes the code between (3) and (4) which calculates the
addresses of the next pair of operands. Meanwhile the FPU continues with its multiplication. Finally the
floating point load non local instruction at point (4) is executed and a hardware interlock causes the CPU and
FPU to synchronise. In this way, the computation of the operand addresses is entirely overlapped with the
floating-point multiplication. In the remainder of the expression the FPU is kept busy, never having to wait for
the CPU to perform an address calculation, and so achieving its quoted 1.5 MFLOP rating.

The entire vector matrix multiplication operation, including the call to the procedure, takes less than 19 us
on the IMS T800-20, allowing a single transputer to perform 3-D transformation on over 50 000 points per
second. This is important — the example is not a bizarre and meaningless benchmark designed to make the
IMS T800 look as fast as possible. It is a genuine piece of application code, and the inner loop of all 3-D
transformations.

The efficiency of this piece of code does not depend on it being written in occam. An efficient compiler for
any other language can easily obtain similar performance. Neither does the performance depend on constant
array subscripts as in this example. The transputer’s fast product instruction can be used to calculate the
address of an array element and this will still be fully overlapped with the FPU operation. This is true even for
two-dimensional arrays with code for range checking the array subscripts. The loops were expanded out in
this example to remove jump instructions, which are relatively slow and prevent full overlapping of FPU and
CPU operations.

12,5 The INMOS distributed Z-buffer
The Z-buffer is a general solution to the computer graphics hidden surface problem. When presented with
the primitives which constitute a scene, the Z-buffer will output the scene as viewed by the observer, with

hidden or partially hidden surfaces correctly obscured.

The core of the Z-buffer program is the distributed scan converter, which allows the processes of scan
conversion and Z-buffering to be distributed over a number of transputers.
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12.5.1 The Z-buffer algorithm

For each pixel on the screen a record is kept, in a depth- or Z-buffer, of the depth of the object at that pixel
which lies closest to the observer, and the colour of that pixel is kept in a separate frame buffer. As each
new object is scan-converted the depth of each pixel generated is compared with the value currently in the
Z-buffer; if this pixel is closer than the previous one at that position then the depth and frame buffers are
updated with the values for the pixel.

When all polygons (and other primitives) have been scan converted into the Z-buffer, the frame buffer contains
the correct visible surface solution.

In pseudo-code the Z-buffer algorithm is essentially:

for each polygon

{
for each (x,y) on the screen covered by this polygon
{
compute z and colour at this (x,y)
if z < zbuffer([x,y] then
{
framebuffer[x,y] := colour
zbuffer([x,y] := z
}
}
}

So for each polygon, the z value and the colour must be computed at each screen position covered by
that polygon. For maximum speed the value of z and colour for each pixel is usually computed using only
simple integer arithmetic at each step.

12.5.2 Scan conversion

The scan converter discussed here is restricted to convex polygons (polygons with no acute angles and no
holes) and spheres.

Scan-converting polygons

The scan converter traverses each polygon from bottom to top, maintaining data for a pair of ‘active edges’.
These active edges delimit the horizontal extent of the polygon, and this horizontal extent is scanned, to give
depth and colour for each pixel covered by the polygon. As it scans up, the polygon values of z, z and colour
are maintained along a left-active edge and a right-active edge. When the scan converter encounters a vertex
in one of the active edges, the appropriate set of edge data is updated.

Each active edge has associated slope values, 4z, 4= and degeur. The scan converter computes z, 2 and
colour for the next scanline (i.e. at y+1) by adding on these slope values to the current values of z and colour.
The scan converter computes 42 and deoiour %our for each horizontal extent, to allow horizontal interpolation of z
and colour for full Z-buffering. 'fmear mterpolatnon of colour gives Gouraud shading, a simple and effective
smooth shading approximation (compare photographs A and C at the front of the book ).

Scan-converting spheres

Polygons can be scanned easily since they are planar, and z can be interpolated linearly over planar surfaces.
Spheres are not so simple. There are two problems: first, scan-converting the sphere involves determining
the projected circular outline of the sphere on the screen; secondly, scanning the region inside the outline
to compute z and colour at each pixel covered by the sphere. In fact, a sphere in perspective does not
always project exactly into a circle, but in general this is a close enough approximation. The spheres code
was written to allow complex molecules to be rendered. When displaying molecules, the individual atoms are
generally small in relation to the complete image, so the distortion due to circular projection is acceptable.

The projected radius of the sphere is obtained from the perspective calculations. Bresenham’s circle algo-
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Figure 12.3 Scan conversion of spheres via Bresenham’s algorithm

rithm [11] is then used to scan the outline of the projected circle, and is also used at each scanline to scan
the sphere in z (Figure 12.3). Exact spherical shading is complex (and therefore slow), requiring lots of maths
at each pixel (including square roots), so an approximate shading technique is used as described by Fuchs
et al. [12]. The visible hemisphere is shaded as though it were a paraboloid. The resulting shading is smooth
and very hard to distinguish from correct spherical shading.

Implementation details
Scan conversion with a DDA

Scan converters are generally implemented using a digital differential analyser (DDA), or a variant of Bre-
senham’s line-drawing algorithm [1, Chapter 2]. The reasoning behind this is that divisions can be avoided,
and all addition operations are on integers, improving performance. Tracking an edge with a DDA involves
maintaining two items of information about the edge: the current position and the current error term. A step
is taken along the ‘driving axis’, the axis of greatest step. A fixed value is unconditionally added to the error
term. When the error term overflows (generally this means when the error becomes positive), a step is taken
along the ‘driven axis’, and a different fixed value is subtracted from the error term.

Here is an example of drawing a line using Bresenham’s algorithm — it is assumed that the deltaX is
greater than deltay, so x is the driving axis:

e = (2 * deltaY) - deltaX:
for (i = 1; i == deltaX; i++)

{

plot (x, y):

e =e + (2 * deltaY):
if (e > 0)

=y + 1;
=e - (2 * deltaX):

N~~~

x + 1;

- X
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Note that a decision must be made at each pixel; the i £ statement means that the processor will execute a
conditional jump instruction. The break in instruction pipelining (and subsequent forced instruction fetch) this
causes will consume valuable processor cycles.

Scan conversion on transputers

There is an alternative solution for the transputer. Bresenham’s algorithm removed division operations
because historically this was a prohibitively slow operation. The division was removed at the expense of
generality — the slope of the line must be between zero and one. This means that a scan converter, which
must have y as the driving axis, still requires at least one division operation and also requires greater com-
plexity in the inner loop.

As a division is now necessary, an alternative approach was looked for. The transputer’s designers were
sufficiently far-sighted to include fast extended arithmetic operations in the instruction set. Instead of main-
taining an error term (which is scaled in terms of deltaX and deltaY, rather than machine precision) we
simply put a 32-bit fraction on the end of the 32-bit integer, and use 1ongadd instructions to step along the
slope.

The value slope := deltaX / deltaY is computed as a signed 64-bit value (32 integer plus 32 fraction
bits), and the i £ at every pixel is avoided. Computing the slope to 64 bits consumes about 100 processor
cycles (5 us) per edge, but simplifying the code in the inner loop makes the fractional version run some
40% faster than the Bresenham version. The code also becomes more readable, as shown in the simplified
example below:

y :=y + slope -- slope is 64 bits (integer + fraction)
is more obvious than:
SEQ
y :=y + dyBydx -- dyBydx is the integer part of the slope
e =e + (2 * deltaYy)
IF
e >0 -- take care of fractional part of slope
SEQ
y :=y +1
e := e - (2 * deltaX)
TRUE
SKIP

This becomes even more apparent when several variables are being interpolated (i.e. z, z and colour). Note
that for z and colour, a 32-bit value for the slope (16 bits integer and 16 bits fraction) would provide sufficient
resolution and be faster to compute. However, the advantages of this are outweighed by having to extract
the upper 16 bits of the word which contain the desired z and colour values.

The scan conversion of spheres is also done using long arithmetic.
Distributing scan conversion over multiple transputers

A standard scan converter traverses each polygon one scanline at a time. The distributed scan converter
running on N transputers traverses each polygon N lines at a time. Each scan converter starts scanning
at a different scanline, i.e. at the lowest y-coordinate enclosed by the polygon which can contribute to its
subsection of the image.

In effect, each scan converter reconstructs a slightly different ‘squashed’, but interleaved, copy of the scene.
When merged these subimages create the final picture, so the net effect is that the polygon is fully shaded
and Z-buffered (Figure 12.4).

This requires careful coding (and a little more computation) to initiate the scan conversion process and to
follow corners correctly, but the scan converter distributed on N machines runs (very nearly) N times as fast
as on one machine.
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Figure 12.5 Distributed Z-buffer architecture

The architecture of the Z-buffer system (Figure 12.5) is simple, but is flexible and easily extended. An INMOS
IMS B004 board (a) is used as a database, file interface and user interface. It sends transformation matrices,
polygons and spheres to the geometry system.

The geometry system consists of four transputers on a single IMS B003-2 transputer evaluation board, which
has been modified by replacing one of the IMS T414-20s with an IMS T800-20. This transputer (b) performs all
the floating-point computation, performing 3-D transformation, z clipping and conversion to screen coordinates.
Two IMS T414s (c and d) then perform z and y clipping. A final IMS T414 (e) preprocesses (‘cooks’) polygons
and spheres into a form suitable for the scan converters: polygon vertex format is converted to edge format
and edge slopes are computed; coefficients are calculated for the sphere shading equation.
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The ‘cooker’ outputs its processed polygons and spheres to the Z-buffer array (f through m). Note the link
usage — polygons are passed through the emboldened vertical links, independently of the horizontal links
which pass pixels to the graphics card (n). This separation of polygon flow and pixel flow allows a finished
frame to be passed to the graphics card while the next frame is being computed, pipelining work efficiently
for animated sequences. This organisation also takes maximum advantage of the autonomous link engines
on each transputer. The graphics card used is an IMS B007 evaluation board which has two banks of video
memory allowing the next frame to be read in without disturbing the currently displayed image. When the
complete frame has been received the two memory banks are swapped by writing to a control register. This
must be synchronised with the frame ilyback of the display to avoid distracting visual artefacts.

12.5.4 Performance

The Z-buffer is fully interactive, and on our existing models image generation speeds range from over 10
frames per second down to around 1 frame per second.

Performance of the system is sensitive to the number of polygons and to screen coverage per polygon. With
small numbers of large polygons, scan conversion time dominates, so a larger number of scan converters
gives a linear performance improvement.

The IMS T800 in the geometry system is crucial for images with large numbers of small polygons. In this
case screen coverage and hence scan conversion time (per polygon) is low, and transformation time can
dominate unless a lot of floating-point performance is available. If the IMS T800 is replaced by an IMS T414,
refresh rates can drop by a factor of 15 for a complex model such as that of the IMS T800 package.

Some screen photographs of the output generated by this system are included at the front of this book . The
bevelled cubes consist of 112 polygons, 128 points, and were computed at 6.3 frames per second using
8 scan converters. The molecule (54 spheres, 108 points) achieves 2.9 frames per second, but this drops
dramatically if the screen coverage is increased, since the computation per pixel is higher for spheres than
for polygons. Note that the individual atoms intersect correctly, and that the lighting conditions are locally
modelled — the highlight is in different positions on different atoms. The Starship (596 polygons, 943 points)
is displayed at 3.1 frames per second; no surface normal information is yet available for this model, so it is
flat shaded. The IMS T800 package (1254 polygons, 1584 points) refreshes at between 1.8 and 1.4 frames
per second.

12.6 The INMOS multi-player flight simulator

The INMOS flight simulator came from the need to demonstrate the real-time graphics capabilities of the
transputer family. Although the Z-buffer is much faster than any other yet implemented on microprocessors
(rather than custom hardware), it is still not fast enough to implement the vision system of a flight simulator,
even when running with thirty-two scan converters. This is due to the per pixel calculation involved in Z-
buffering — a ‘greater than’ comparison is required at every pixel covered by each polygon. An alternative
hidden surface algorithm without this overhead is required for the flight simulator.

12.6.1 Requirements

The primary requirement of the flight simulator was that it be fast. It should be able to sustain 17 frames per
second, the bandwidth limit into the IMS B007 graphics card, when shading a reasonable number of polygons
— say 200 to 300. It should have low latency, i.e. the time from user input to visual feedback should be no
more than three, preferably only two frame times. It should also use only a small number of transputers to
implement a four-player system.

12.6.2 Implementation details
The distributed polygon shader
The core of the flight simulator is a distributed polygon shader, similar in design to the scan converter in the

Z-buffer. It is optimised for flat shading of polygons and does not include the Z-buffer. This reduces the
amount of computation and means that a fast block move operation can be used to shade the horizontal
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regions between polygon edges. It can be arranged that the block move copies the value defining the colour
from on-chip memory so a 32-bit word can be copied (in other words, four pixels can be shaded) every n +1
machine cycles, where n is the number of machine cycles required to access off-chip memory.

When coded in this way, a 20MHz transputer with single wait-state (4 cycle) external memory can shade
polygons at a rate of 16 million 8-bit pixels per second, or 62.5 nanoseconds per pixel. Four transputers can
therefore shade at up to 64 million pixels per second, only 15.6 nanoseconds per pixel. With this high polygon
shading speed it becomes possible to display a reasonable number (over 200 ‘average size’) polygons at
17 frames per second, a very high number for a software implementation with no custom hardware. Using
four transputers allowed the use of the INMOS IMS B003-2 transputer evaluation board, so no new hardware
design was necessary.

Geometry system

From the previous figures quoted for transformation time, the IMS T800 has processing power to spare, it
can transform 200 quadrilaterals (800 points) in less than one sixtieth of a second. Three more transputers
are used in the geometry system — another IMS T800 for z clipping (often called hither-and-yon clipping)
and conversion to screen coordinates, and two IMS T414s for clipping in =z and y. Clipping in z and y
are performed in screen space, so integer maths is sufficient. The geometry system now consists of four
transputers, so again an IMS B003-2 is used, but this time slightly modified (two IMS T414s replaced with
IMS T800s).

At this stage the importance of pin compatibility between the IMS T414 and IMS T800 cannot be over
emphasised — it allows high floating-point performance to be injected into a multiprocessor system just where
it is required, allowing performance tuning simply by removing one transputer from a socket and plugging in
another.

This is a very fast polygon shader and geometry system, all that is required is a hidden surface algorithm
which outputs its solution in polygon form to implement the entire vision system of the flight simulator.

BSP-trees

The BSP-tree [13] is a recursive data structure which implicitly holds all possible hidden surface solutions
for the object it represents. Each node of the BSP-tree contains a polygon and pointers to front and back
subtrees. The front subtree contains all polygons in front of the node polygon, the back subtree contains
those behind the node polygon. The notion of ‘in front-ness’ is determined by substitution of the current
viewing position into the plane equation of the polygon.

By traversing the BSP-tree in an order determined solely by the viewing position, the polygons are passed
to the distributed polygon shader in reverse z order, so that nearer surfaces are painted after (and hence
obscure) more distant surfaces, giving the correct hidden surface solution.
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The following algorithm is used to perform BSP-tree traversal:

traverseTree (tree)
{
if (tree is empty)
return
else

{

if (view point in front of rootPolygon)

traverseTree (tree->back);
displayPolygon (tree->rootPolygon);
traverseTree (tree->front):;

}

else

{
traverseTree (tree->front):;
displayPolygon (tree->rootPolygon);
traverseTree (tree->back):;

}

}
}

In some applications this procedure can be optimised by not painting backfacing polygons. This is useful
if there are only closed objects in the model, for example a cube has six faces but only three of these are
visible at any time. In the flight simulator each polygon has a flag to indicate whether it should be painted
when the viewpoint is behind it. This allows rotor blades, for example, to be implemented as a single polygon
while allowing backface elimination on the body of the helicopter.

This process is recursive — our traverser is implemented in occam which does not allow recursive procedure
definitions, so a state machine is constructed. Further details of implementing recursive data structures and
procedures in occam programs can be found in another INMOS technical note [14]. The state machine
maintains two variables, the current node in the tree, and the current action being performed. These nodes
and actions are explicitly stacked as the tree is traversed. Here is an outline of the state machine in occam:

SEQ
-—- initialise
push (NIL, a.terminate)
action := a.testPosition
node := rootNode
WHILE action <> a.terminate
CASE action

a.testPosition
-- test whether we are in front of
-- or behind the current polygon
IF
node = NIL
-- end of subtree
pop (node, action)
inFront (node, viewPoint)
-- in front of current polygon
SEQ
push (node, a.traverseFront)
node := tree[node + backSubTree]
TRUE
-- behind current polygon
SEQ
push (node, a.traverseBack)
node := tree[node + frontSubTree]
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a.traverseFront
-- output current polygon
-- then traverse front subtree
SEQ
outputPoly (node)
action := a.testPosition
node := tree[node + frontSubTree]

a.traverseBack
-- output current polygon
-- then traverse back subtree

SEQ
outputPoly (node)
action := a.testPosition

node := tree[node + backSubTree]

Only half a dozen floating-point instructions are required to determine which subtree to traverse first at any
node, so the BSP-tree traverser was incorporated into the same transputer as the 3-D transformation, leaving
run-time still dominated by polygon painting time.

BSP-trees are used to determine polygon visibility within each object in the simulator (e.g. aeroplanes,
helicopters, teapots, buildings), and a simple bounding box test in z is used to determine the relative z ordering
of objects. This means that the system will not correctly render objects when they intersect. However, if this
condition occurs in the flight simulator it implies that the objects have collided.

12.6.3 Architecture

The vision system of the flight simulator is as illustrated in Figure 12.6. A geometry system consisting of four
transputers performs: (a) BSP-tree traversal and 3-D transformation; (b) =z clipping and conversion to screen
coordinates; (c) y clipping; and (d) z clipping.
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Figure 12.6 Flight simulator vision system

Four transputers (e, f, g and h) perform distributed polygon shading and a graphics card operates as a pixel
sink (i). The processor in the graphics card would normally be idle, the transputer simply waiting for images
to appear down its links. This is a waste of a good processor, so more functionality is added. The graphics
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card now implements a head-up display showing an artificial horizon, air speed, altitude, bearing, radar with
enemy positions and missile fuel readings. All of these make extensive use of the IMS T800’s 2-D move
instructions.

The simulator itself runs on a single transputer with the vision system connected to one link, and has been

designed to allow many simulators to be connected in a ring (Figure 12.7). This allows a number of players
to take part in a combat simulation, each player seeing the others through his simulated cockpit window.
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Figure 12.7 Full four-player simulator

At SIGGRAPH ’87 INMOS demonstrated a four-player combat simulator, and members of the public were
invited to try and shoot down INMOS application engineers. The whole system (i.e. four entire flight simu-
lators) was housed in a pair of INMOS card cages; taking up only 13 double-extended eurocard slots and
less than five cubic feet. In the course of a 10 hour combat session more than a terabyte of data (i.e. over
a thousand gigabytes) will flow through a four-player simulator.

The implementation of the flight simulator is described in greater detail in another INMOS technical note [15).

12.6.4 Performance

The flight simulator performs as well as anticipated — it consistently achieves a refresh rate of 17 frames
per second. The main limiting factor is the need to synchronise the updates to the graphics display with
frame flyback. Frame rates approaching the theoretical maximum of 27 frames per second could be achieved
by having more buffering in the graphics display hardware. This would allow image data to be received
asynchronously with frame flyback. If desired even higher frame rates can be obtained by using more than
one transputer in the display system.

Looking at the flight simulator screen, the images only come to life when animat