
2920 SIGNAL PROCESSING
APPLICATIONS COMPILER

USER'S GUIDE

Manual Order No. 121529-001 Rev. A

Copyright © 1980 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation .assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied,

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7 -Ht4.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
Insite Megachassis RMX
Intel Micromap UPI
Intelevision Multibus IAScope
Intellec

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

A173/0280/7.5K FL

PREFACE AND READER'S GUIDE

The audience for this manual is engineers who design products for signal processing.

The purpose of this manual is to familiarize you with the features of this Compiler
such that with a few hours of reading and practice you can feel comfortable using it
to design electrical filters and other applications, and generate 2920 programs for
them.

The Compiler can be used to generate 2920 assembly language code for a wide
variety of signal processing applications. In the present manual, electrical filters
are a central focus of discussion. A brief review of digital and analog filter
design appears in Appendix H. The formulas used by the Compiler for computing
the frequency responses of the filter appear in Appendix I.

The primary purpose of this Compiler is to make it easy to specify the frequency
response of a desired digital filter and implement the filter in AS2920 assembly
language code. It enables you to

• specify and modify design parameters, e.g., set sampling rate (Chapter 3), place
poles and zeros at chosen S-plane or Z-plane coordinates (Chapter 4), and set
error bounds on gain (Chapter 5);

• see immediately on a graph or list the frequency or time response of existing
poles and zeros at specified frequencies, or display any design parameter
(Chapters 5, 6);

• generate, store, and review AS2920 assembly language code for each filter or
stage, subject to constraints you specify on error functions and program size,
after response appears appropriate to your design (Chapter 7);

• use diskette files as scratch pads to store, review, modify, and retrieve files of
parameters, code, or commentary (Chapter 8);

• create your own name for command sequences (macros) to facilitate your
interactive design sessions and unattended test sessions (Chapters 9 through 11).

This feature greatly multiplies the power of the Compiler because it enables you
to use additional transforms, constraints, and procedures in any of your subse­
quent design sessions, after defining them once.

The minimum hardware configuration for the SPAC20 Compiler is as follows:

• INTELLEC or INTELLEC-II with 64K bytes of random access memory
(RAM),

• Teletypewriter, CRT, or equivalent for console input and output,

• One diskette drive unit, single or double density.

If a line printer is available, it can be used for large-volume or hard-copy output,
including graphics. If the system includes an iSBC-310 math board the SPAC20
module will use it to speed computations significantly.

The SPAC20 Compiler is designed to be used in conjunction with other Intel
products, most clearly the AS2920 Assembler and SM2920 Simulator. Further, the
Compiler uses the ISIS-II keyboard and disk input/output functions. You may wish

iii

iv

to refer to other documents containing valuable information about the supervisor,
the Intellec system, and the other software (e.g., the Editor) used on it. These
include:

• INTELLEC Operator's Manual 9800129

• INTELLECIDOS Diskette
Operating System Operator's Manual 9800206

• ISIS-II System User's Guide 9800306

• 2920 Assembly Language Manual 9800987

• 2920 Simulator User's Guide 9800988

• ISIS-II CREDIT User's Guide
(CRT-Based Text Editor) 9800902

• InteJJec Microcomputer Development
System Hardware Reference Manual 9800132

• iSBC-310 High Speed Mathematics
Unit Hardware Reference Manual 9800410

Digital signal processing is an extensive subject. This manual assumes the reader has
at least a rudimentary knowledge of it, and does not attempt more than a review at
that level. A more detailed understanding can be obtained through the study of texts
written for that purpose, e.g.,

Digital Signal Processing
by A. V. Oppenheim and R. W. Schafer, Prentice Hall, Inc. 1975

Digital Signal Processing
by Abraham Peled and Bede Liu, John Wiley, 1976

Theory and Application of Digital Signal Processing
by L. R. Rabiner and B. Gold, Prentice Hall, Inc. 1975

After first scanning Chapter 1 of this manual, you might next scan areas of interest
among Chapters 3 through 8. Although Chapter 2 is necessary for a full definition
and understanding of the SP AC20 Compiler, its technical detail can perhaps be
better absorbed later, after you build some general familiarity with how you might
use the Compiler commands to achieve your purposes. It is placed second because its
contents are later taken for granted. This may not trouble you much if you've used
compilers before or if you use the index to fill in the gaps as you go. Appendices A,
B, and E also help tie things together by supplying explanations, tables, and charts
about the language.

Chapters 9 through 11 assume you have mastered the other chapters. Compound
commands are very powerful and useful, but they might be confusing in your first
pass through the book.

This Compiler differs from many others in that it is to be used in the process of
interactive design, rather than after the design is complete. In addition, it produces
partial rather than complete code. Further editing of its output code is required by
considerations of analog-to-digital conversion, signal scaling, and code compaction,
e.g., the merging of instructions for a pole with those for a zero (see Appendices G
and J).

There is a certain symmetry about the commands which may help you learn and
remember them. You can display nearly any object (e.g., one or all poles, gain,
bounds) by typing its name followed by a carriage return. You can change nearly
any object by typing its name followed by an equal sign and the new desired value.

The commands fall into functional categories, and their syntax is relatively uniform.
For example, nearly all the file commands use the same set of objects or modifiers.
Similarly, all the pole and zero commands use one set of objects or modifiers, and
all the graph commands use one such set. This is most clearly shown by the syntax
charts in Appendix E.

The syntax discussion in Chapter 2 is deliberately simplified and incomplete,
because the full range of expressions is rarely relevant until you have mastered the
simple commands, and moved on to learn the power of compound commands and
macros in Chapters 9 through 11.

The Compiler's matched-Z transform is not always the function of choice for map­
ping S-plane poles and zeros to the Z-plane, although one of its advantages is easy
movement from S to Z or Z to S-planes. Once macros are understood, it becomes a
simple matter to create alternate transform(s), such as bilinear, and thereafter use
them as desired. The discussions prior to Chapter 9 assume the use of the built-in
matched-Z transform without further comment. The review in Appendix H contains
a discussion of various other transforms.

Notation of this Manual

Most of the constructs and commands in this book are set forth using syntax charts,
a pictorial representation of how the building blocks of the SP AC20 commands are
legally combined.

These charts always begin at the left with an arrow that leads to an elliptical box or a
set of such boxes, indicating necessary or optional parts of the construct. The charts
always end with a single arrow off to the right. You create legal constructs by
following the arrows within these graphs, looping back to repeat some element only
if there is an arrowed line showing that you may do so. When a choice must be made
among several options, a single arrow will lead to a vertical bar, from which multiple
arrows permit you to go along the path containing the option you want. Here are
some examples:

unsigned decimal constant 121533-06

where digit means anyone of the set 0,1,2,3,4,5,6,7,8,9.

This says that to construct an unsigned decimal constant for use in some command,
you must start with either a digit or a decimal point. If you start with a digit, you
may continue to place digits after it (up to the limit of 31 digits), or you may choose
the other branch at any time, placing a decimal point next, or you may quit, exiting
the chart at the right. As you exit the chart you have the choice of appending a D
after your digits, explicitly indicating this is a decimal number rather than a binary
or hexadecimal number. This is optional because decimal is assumed: whenever no
suffix is present.

v

vi

If you chose to insert· a decimal point, you must now enter at least one digit before
exiting. You may add as many as 31 (less the number of digits already entered), but
you may not enter another· decimal point-the arrowed lines offer no path to it.

unsigned hexadecimal constant 121533-06

where hex-digit is anyone of the set O,I,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Dec-digit,
like digit above, includes only the first ten of these.

This chart shows. that to create a hexadecimal constant you may begin with a decimal
point or a hex-digit. If you start with a hex-digit, you may continue appending hex­
digits or place a decimal point next, after which you may again append hex-digits
until you choose to exit the chart on the right, where you are required to append the
H suffix labeling this a hexadecimal constant.

If your constant is a fraction only, i.e., has no digit to the left of the decimal point,
then the digit immediately after the decimal point must be a decimal digit, i.e., not a
letter. Once you have begun with "point dec-di"git", succeeding digits may be any
legal hex=-digit. Exiting the chart is· as above. The reasons for the restrictions em­
bodied in the chart are explained in Chapter 2.

Syntax charts often contain the names of other syntax charts, indicated by lower­
case words as opposed to the capitals used for keywords. The charts are combined
simply by substituting the full chart of the named item in place of the name. As an
e~ample, the chait for "numeric constant" includes by reference the two charts
above:

system constant r

unsigned bin-constant

numeric constant 121533-06

To give one command example, the remove command for poles and zeros has the
following chart:

E
C POLE r

..... (REMOVE r (ZERO).

() PZ • •

The REMOVE Command for Poles and Zeros 121533-18

indicating you must enter the word REMOVE and one of the three object words
POLE, ZERO, or PZ. With that, you're done unless you wish to use a partition,
which is indicated to be optional by being off the required exit line. (The chart for
partition appears in Chapter 2. This command is explained in Chapter 4.)

vii

CHAPTER 1
INTRODUCTION PAGE
Concepts of Filter Design 1-1
Introduction to the Compiler 1-1
The HELP Messages 1-2
Flowchart of Probable Sequence of Use 1-3
Defining a Filter 1-3
Displaying the Response 1-4
Generating Code 1-4
Filing and Retrieving Code or Paramters 1-4
Compound Commands 1-5
Simple Sample Session 1-5

CHAPTER 2
LANGUAGE ELEMENTS
Introduction
Character Set

Special Character Usage
Token
Identifiers
Strings
Keywords

Commands and Objects
Modifiers, Constants, Operators, and Functions .

2-1
2-2
2-2
2-3
2-3
2-3
2-4

User Names 2-6
Numeric Constants 2-7
Arithmetic Expressions 2-8
Operators 2-8
Operan~s 2-9
Partitions 2-10
Primaries

CHAPTER 3
INTRODUCTION TO SIMPLE
COMMANDS

2-10

Entering and Editing Commands at the Console 3-1
Setting or Changing Symbol Values:

Equal Sign, DEFINE, and REMOVE. 3-2
The Change Commands 3-2
DEFINE Command for Symbols 3-3
REMOVE Command for Symbols 3-4

Displaying Object Values 3-4
General Method
EV ALUATE Command 3-4

CHAPTER 4
POLE AND ZERO HANDLING
Planes and Coordinates for Poles and Zeros in

DEFINE, REMOVE, and MOVE Commands 4-1
Commands

DEFINE 4-2
REMOVE /...... 4-3
MOVE 4-4

viii

CONTENTS

CHAPTER 5
FUNCTIONS OF FILTER
RESPONSE PAGE
Key Filter Response Keywords 5-1
Response and Reference Gain: GAIN and GREF 5-1
Absolute and Maximum: AGAIN and MAGAIN ... 5-2
Upper and Lower Bounds: UBOUND,

LBOUND, BOUNDS 5-2
Error Values, Mean-Square and Maximum Errors:

GERROR, MSQE, MERROR 5-3
Phase and Group Delay: PHASE and GROUP 5-3
Response to Up-Step and Up-Impulse at Time Zero:

STEP and IMPULSE 5-4

CHAPTER 6
GRAPHICS CAP ABILITY
Scales .. 6-1

Frequency and Time Scales 6-1
Screen Size: XSIZE and YSIZE 6-2
Vertical Scale: YSCALE 6-2

GRAPH and OGRAPH Commands 6-3

CHAPTER 7
CODE GENERATION FOR THE
2920 PROCESSOR
The CODE Command and Constraints 7-1

Coding a Single Pole or Zero 7-2
Using MSQE 7-2
Using MERROR 7-2
Using PERROR 7-2

Minima and Error Constraints 7-4
Coding Equations: Y=C*X, Y=C*Y, Y=C*X+Y 7-4

CHAPTER 8
FILE HANDLING
Interface With the ISIS-II Operating System:

Names for Files and Devices 8-1
Terminating a Design Session: EXIT 8-2

Copy all Commands and Results to a File: LIST 8-3
Display Text String and Expression, and Copy to

List File: WRITE 8-3
Show Contents of a File: DISPLAY 8-4
Create or Add to the End of a File: APPEND 8-4
Create or Write Over a File: PUT 8-5
Execute Commands From a File: INCLUDE 8-6

CHAPTER 9
ADV ANCED (COMPOUND)
COMMAND SYNTAX
Macros .. ' 9-1

Defining and Invoking Macros 9-2
Formal and Actual Parameters 9-3

PAGE
Macro Expansion and Syntax Checking 9-7
Displaying or Removing Macros 9-7

Controlling a Loop: REPEAT, COUNT,
WHILE, and UNTIL 9-8

Execute Block of Commands Forever:
REPEAT 9-8

Execute Block of Commands a Specific
Number of Times: COUNT 9-8

Stop Execution of Command Block When
Condition Becomes True: UNTIL 9-9

Stop When Condition Specified
Becomes False: WHILE 9-9

Conditional Execution of Commands: the
IF Construction 9-11

Nesting Compound Commands 9-12

CHAPTER 10
ADVANCED TECHNIQUES: FILTER
DESIGN EXAMPLES
Introduction 10-1
Butterworth Filter Macro 10-2
Chebyshev Filter Macro 10-4
Bilinear Transform Macro 10-6
Macro to Code All-Pole Filter 10-9

Contents of Resultant File 10-14

CHAPTER 11
ADVANCED TECHNIQUES: OTHER
ROUTINES FOR SIGNAL PROCESSING
Introduction 11-1
Multiplication Macro Defined: MULVAR 11-1
Division Macro Defined: DIV 11-2
Sawtooth-Waveform Macro Defined: SAW 11-2
A-to-D Conversion Macro Defined: ADCONV 11-3
Triangular-Waveform Macro Defined: TRIANG ... 11-3
Sinusoid-From-Triangle Macro Defined: SINFIT ... 11-4
Sinusoidal-Waveform At-Frequency Macro

Defined: SINOSC 11-4
MULVAR Invocation 11-4
DIV Invocation 11-5
ADCONV Invocation 11-6
SAW Invocation 11-7
TRIANG Invocation , 11-8
SINFIT Invocation- 11-8
SINOSC Invocation 11-9

CONTENTS (Cont'd.) I

APPENDIX A
HELP MESSAGES

APPENDIXB
KEYWORDS: DEFINITIONS
AND DEFAULTS

APPENDIXC
NOTES AND CAUTIONS

APPENDIXD
BNF SYNTAX SUMMARY

APPENDIXE
SYNTAX CHARTS

APPENDIXF
SOFTW ARE INSTALLATION
PROCEDURE

APPENDIXG
CODE SUBMISSION TO THE
AS2920 ASSEMBLER

APPENDIXH
DESIGN OF COMPLEX DIGITAL
FILTERS USED IN THE 2920

APPENDIX I
FORMULAS USED BY THE SP AC20
COMPILER

APPENDIXJ
SCALING AND OTHER
CONSIDERATIONS

APPENDIXK
ERROR MESSAGES AND
CORRECTIVE ACTIONS

INDEX

ix

FIGURE TITLE PAGE

2-1
H-1

H-2
H-3

H-4
H-5

Example of a DEFINE Command 2-1
Digital Filter Module (Second

Order Section) H-4
Digital Filter Module (First Order Section) .. H-4
Comparison of Digital and Continuous

Frequency Response H-6
Transfer Function From Q to w H-9
Method for Preventing Intermediate

Overflow. .. H -11

. "

n

TABLE

2-1
5-1

H-1 !

x

TITLE PAGE

Token Functions in the Above Command ... 2-1
Keywords for Gain Reference, Gain

Boundaries, and Response Display. 5-1
Laplace Transforms , '" H-3

ILLUSTRATIONS

FIGURE TITLE PAGE

H-6
H-7
H-8a

H-8b

TABLE

H-2

Very Low Frequency Filter. H-13
Effects of Double Rate Input Sampling. .. H-15
Cascade Structure for Complex Filter

(Directly Derived from Matched Z or
Bilinear Transform) H-15

Parallel Structure for Complex Filters
(May Result From Impulse Invariant
Transform) .. H-16

TABLES

TITLE

Extended Precision Add Routine (48 Bit
Precision) Technique Uses Simulated
Carry at 2nd Bit From Left of Low

PAGE

Order Word H-12

Concepts of Filter Design

CHAPTER 1
INTRODUCTION

Designing a filter involves choosing operations to perform on input signals in order
to produce modified signals as output. These operations are usually linear. The
theory relating continuous analog filters to sampled digital filters is reviewed in
Appendix H. Digital filters are covered in great detail by the books on digital signal
theory in the bibliography.

Filters are usually designed to achieve certain gain and phase characteristics. These
can be viewed as implementing a mathematical transfer function, whose factors
relate directly to the desired attributes. Factors which represent complex frequencies
at which the gain is zero are called the zeros of this filter. Factors representing
frequencies at which the gain grows indeterminately large are called the poles of the
filter.

These poles and zeros are complex numbers of the form a + bj, where j = ~.
Thus a filter's poles and zeros can be specified on a complex-valued graph, such as
the S-plane or the Z-plane.

The desired output amplitude and phase can now be approached in an interactive
design session by placing poles and zeros in the S-plane (for continuous filters) or the
Z-plane (for sampled filters), and viewing the resultant output. Moving these poles
and zeros can then change that output to more closely approximate what is needed.
The compiler capabilities facilitate this interactive process of specification,
modification, and review by providing simple commands and graphs for these
functions.

Introduction to the Compiler

The SP AC20 Signal Processing Applications Compiler accepts high-level (English­
like) language input and produces 2920 Assembly language code. The Compiler is
also a filter design aid which permits substantial interactive manipulation of a wide
variety of parameters and constraints, both in design of filter stages and in opti­
mization of code size and/or error limits.

The two principal functions of the SP AC20 Compiler are:

1. to make it easy for you to specify, alter, and review design parameters for your
signal processing application, and

2. to save your writing all the detailed steps required to implement the necessary
functions in assembly language code.

One example is specifying the frequency response of a desired digital filter, checking
gain, phase, or other aspects and changing parameters as needed. You then
implement the filter by issuing one CODE command for each pole or zero, thus
generating the AS2920 code.

1-1

Introduction

1-2

NOTE

The specific functions and features of the Intel 2920 processor are described
in the data sheet for that device. The AS2920 Assembler converts the user­
edited output of this Compiler into object code that will directly run on an
Intel 2920 processor. The assembler is described in the manual entitled 2920
Assembly Language Manual, order number 9800987.

Once a program has been converted to object code, it can be tested using
another Intel product, called the SM2920 Simulator. This product is
described in the 2920 Simulator User's Guide, order number 9800988.
Many features of this Compiler show a family resemblance to the
Simulator, and to Intel's In-Circuit-Emulator-86 (lCE-86).

This resemblance includes the use of compound commands, which are
featured in the Intel product which handles multiple In-Circuit-Emulators,
called multi-ICE. It is described in manual number 9800762 entitled Mutli­
ICE Operating Instructions for ISIS-II Users.

The Help Messages

---.(HELP rr------------:--...

(36 help items are
displayed when HELP
is entered; see Appendix A)

(HELP r

(* r

SP AC20 Compiler

HELP Command 121533-27

The SPAC20 Compiler has a help message facility, which can inform or remind you
of the form, function, or interrelationships of compiler keywords, concepts, and
commands. These messages can be requested any time no other command is being
executed, i.e., whenever the compiler has issued its prompt character (asterisk):

*HELP

Typing in this word will cause an index of all help messages available to be displayed
on the console. If you enter the following sequence

*LIST:LP:
*HELP *

then all the messages will be printed out on the line printer. (They appear in
Appendix A in this form.)

You can get the help message for only specific items by typing the item name after
HELP, e.g.

* HELP DEFINE

will cause the help message on the define command to be displayed.

Requesting help on scales or normalization or bounds will get you a description of
certain system variables and how to access them, e.g., FSCALE, GREF, BOUNDS,
etc. Similarly, requesting help on change or display can remind you of how the
different forms or references can be used.

SP AC20 Compiler

Probable Sequence of Use

1. Define or include symbolic constants for easy use; define sample interval TS;

2. a. define poles and zeros, move or remove them as desired in TS plane, that is,
the sampled S-plane (see below); implement desired filter as if continuous;

b. define poles and zeros, move or remove as desired in Z-plane to implement
desired filter;

c. use a macro, e.g., Chebyshev or Bilinear, to locate poles and zeros for a
particular filter;

3. set bounds to be able to determine closeness to desired spec and to guide code
generation; look at MSQE , GERROR, etc. to see closeness;

4. graph filter response and other filter behavior;

5. if the filter is not yet "good enough", return to step 2;

6. save current poles and zeros in diskette file via put or append command;

7. code the (next) pole or zero with either gain bound constraint or other
constraint; examine resulting filter responses;

8. if not satisfactory, restore poles and zeros and return to step 7 to use a different
constraint, or return to step 1 to begin anew;

9. if satisfactory, put or append code;

10. if there is another pole or zero, return to step 7 for the next one;

11. if all poles and zeros are coded, you now have final filter;

12. determine scaling; for example, save coded poles and zeros; delete all but the
first n; MAGAIN reveals scale for (n + I)th stage; append comment for code
file; restore earlier poles and zeros; repeat. Alternatively, can delete poles or
zeros in reverse order one by one;

13. as needed, generate code for other functiQns, using code, macro, and compound
commands, e.g., sawtooth wave generator, and append to code file;

14. exit; edit code file to insert additional scaling if needed (per code comments),
add 110, end statement; assemble with AS2920; simulate with SM2920;
program the EPROM in the 2920 chip.

Defining a Filter

You can define a filter by specifying the location of poles and zeros in the S-plane or
the Z-plane corresponding to a sample rate which you supply. Complex poles always
occur as conjugate pole pairs so that the filter is realizable. Poles and zeros can be
created, moved, or removed. Continuous poles and zeros in the S-plane describe
portions of the total filter which will be implemented outside of the 2920 chip.

Poles and zeros can be specified in the S-plane and then designated as sampled.
During calculation, these poles and zeros are mapped to the Z-plane using the
matched-Z transform, i.e., a pole or zero at x+jy on the S-plane is transferred to a
pole or zero at e2nTS(x+jy) on the Z-plane, where TS represents the sample interval in
the sampled S-plane. In polar coordinates, this Z-plane location is (e2nTSx, 2nTSy)

This transform allows an analog design engineer who is not already familiar with
digital filter theory to work in more familiar territory. For low frequencies, relative
to the sample rate, it does offer a relatively faithful translation of analog filters to
digital. However, the matched-Z transform is not ideal in many cases, and therefore
some users prefer to work directly in the Z-plane.

Introduction

1-3

Introduction

1-4

SP AC20 Compiler

Displaying the Response

You can examine the frequency response of your filter as you manipulate the
position of poles and zeros. The gain, phase, group delay, and time responses can be
graphed or listed. You can specify the frequency range of interest for these outputs.
While emphasis is placed on the gain versus frequency response of the filter, you can
take advantage of the compound command capability described in Chapter 9 to use
the phase, impulse, or step responses.

The graphs do not require the console device to have any cursor controls; e.g., the
ability to move the beam directly by pressing a button for up, down, left, or right.
You specify the X-axis and the Y-axis ranges. The last curve plotted is always
available for redisplay upon entering the command GRAPH, regardless of the effect
of intervening commands. It is also possible to superimpose the last curve plotted
and a new curve, regardless of intervening scale changes. The graphs can be sent to a
diskette file, or hard copies can be produced on a line printer, since no special cursor
control characters are assumed.

Generating Code

Once the filter responses (e.g., gain, error, phase) look adequate to meet your design
specifications, you can generate the code for each pole or zero with a single com­
mand. The Compiler enables you to implement the filter as a cascaded series of first
and second order stages. You can also generate code to compute independent
variables of the form Y=C*X or Y=C*X+Y or Y=C*Y, where C is a constant, and
X and Yare variable names. These are useful for propagation and scaling of the
digital signal between stages.

These modules of assembly language code can be accumulated into a file to be used
as input to the 2920 Assembler. Prior to submitting the code to the Assembler, you
will need to do some editing to implement the analog-to-digital and digital-to-analog
functions, and also the above propagation and scaling. (See the ISIS-II or Editor
manuals for editing instructions.) During this editing it is also possible to compact
the program by merging the code for a pole with the code for a zero, as described in
Appendix J. The analog-to-digital and digital-to-analog code can be merged with the
arithmetic code which implements the filter by appending analog instructions to
arithmetic/logic instructions: see the AS2920 manual.

During code generation for one stage of a filter, you may wish to sacrifice numerical
accuracy in order to get a shorter program. Towards this end, code generation is
performed subject to constraints which you specify. One such constraint consists of
the "error" relative to piecewise linear bounds on the gain, in decibels, as a function
of (log of) frequency. The Compiler then strives to minimize the mean-square devia­
tion from these bounds.

Before saving the resulting code into a file, you may wish to interactively adjust the
number of instructions you have allowed the Compiler to generate, or to adjust the
error you are willing to tolerate, in order to achieve the shortest program which
meets your error requirements. You can then save this new code in a file.

Filing and Retrieving Code or Parameters

This process of filter specification, display, and adjustment is extremely interactive.
The file commands have been structured to facilitate the restart of an interrupted
design or test session. They also make it easy to accumulate, into one or many files,

SP AC20 Compiler

•
•

the partial results of specifying parameters or creating code. Parameter files saved
from an interrupted design session can then be INCLUDEd at a later date, to resume
that design session with all relevant variables restored to their condition at the time
the session was interrupted.

You also have the ability to display any ISIS-II diskette file on the console, or to add
arbitrary test or other data to the end of existing diskette files. This permits you to
use disk files as scratch pads, and also to perform simple, low-level editing of files.
The latter facility can be useful for building final 2920 assembly language files for
submission to the AS2920 Assembler. The procedure for such submission is
described briefly in Appendix G (see the Assembler manual for full details.)

Compound Commands

This Compiler contains macro and compound command facilities. They enable you
to extend the language itself by defining your own commands using sequences of the
simple commands described in Chapters 2 through 8.

Such macros make it possible, for example, to define an iterative process of moving
poles and zeros and graphing the resultant response, without having to type all the
commands during each iteration of that process, or to perform other design or test
experiments, including code generation and display. Such a macro is interruptible at
any time by hitting the console ESCape key. Macros can also be used as code
generators for functions other than filters. Examples of macros which may be useful
(and also used as models) appear in Chapters 10 and 11.

Simple Sample Session

This printout is a complete copy of an interactive session, produced by a LIST
command (see Chapter 8).

The macro used in this session is not intended for study at this point. It appears here
only to illustrate the facility for retrieving macros and the form in which they are
defined. Shown below is a macro to produce a Chebyshev filter. Macros and
compound commands are explained in Chapter 9, with numerous examples in
Chapters 10 and 11 .

• ; ISIS-II 2920 SIGNAL PROCESSING APPLICATIONS CO"PILER. V1.0

J WHEN IN DOUBT. ASK FOR HELP
••• Help is available to~ the following itens. T~p. HELP followed •••
••• b~ U'e it." nane. 1)0 not t':4pe U.e antle brackets. (For "ore •••
••• info,.ftation on the help connand. t~p. HELP HELP.) •••
Filters end Filt.r Respon.es:

DEFINE,(FILTER.RESPOHSE),GREF,HOLD,"OYE,(POLE.OR.ZERO.LOCATION),
<POlESIOR.ZEROES),RE"OVE

G~6phiCS:

FSCAlE,GRAPH,YSCAlE
Code Generationl

90UHDS.CODE,(HAtCOHSTRAJNT),(PZtCOHSTRAINT)
File/Display/Coftpound COft"ands:

<CO"POUHD.COH"ANI)S),EVALUATE,EXIT,(FILEtCOHHANOS),HELP,"ACRO,
<PATHINA"E),URITE

Hiscel16neous:
<800lEAN.EXPR),(CONSTANT),<£XPR),{FUNCTION),(IDENTIFIER),
<IHTEGERIEXPR),(HU"ERIC.COHSTAHT),(PRI"ARY),(PZ.REF>,(SPAt.REF),
<STRIHG),<SYHBOL),(SY"BOLICtREF)

Introduction

1-5

Introduction SP AC20 Compiler

1-6

<F1LTERfRESPOHSE> - One of the following filter responses:
GHIH Gain in deCibels as a function of frequency in Hertz.
AGAIN Absolute gain as a function of frequenc~ in H~rtz.
PHASE Phase del~y in radians as a function of frequency in Hertz.
CROUP Group del~y in seconds ~s ~ functjon of frequency in Hertz.
CERROR Signed deYi~tion of GAIN fro" the LBOUN~ ~nd UBOUHO

in decibels 45 4 function of frequency in Hertz.
See <BOUNflS>.

:MPULSE Il'Ipulse response ~s a function of til'le in seconds.
STEP Step response as a function of til'le in seconds.

E~ch (FILTER~RESPOHSE> c~n be used as Q cOl'Il'land to tabulate the values.
E~ch can be graphed. Each except IMPULSE and STEP can ·be used as a
f UriC t. ion in an ex pr es s ion, e. 'it. AG A I H (60) .
Se9 <FUNCTION), GRAPH, (PRIMARY).

* *DEFIHE POLE 1 = -20.1000 ; CREATE A POLE IH COHTINUOUS S-PLANE

* *PZ LIST ALL P~LES AND ZEROES
POLE • -20.000000.1000.00000,COHTIHUOUS

* *GREF ; GREF DETERMINES THE GAIN NORMALIZATIOH
GREF = 0.00000000 AT 0.00000000

* *; GREF DEfAULTS TO 0 DECIBELS AT 0 HERTZ.

* *YSCALE ; YSCALE DETERMINES THE YERTICAL GRAPHICS SCALE
YSCAlE • AUTO; 0.00000000,0.00000000

* *J AUTO MEANS THAT THE YERTICAL RANGE IS AUTOMATICALLY DETERMIHED

*
*
* *PSCAlE = 1 DO, 10000 J ESTABLISHES FREQUEHCY RANGE OF INTEREST

* *; WELL. LET'S SEE WHAT THE GAIN LOOKS LIKE FOR OUR ONE POLE FILTER.

* *GRAPH GAIN

CA:H
2:3
25
21
1$
15
12

A . , A A " !

~

5
:2

-1
-4
-8

-11
-14
-17
-21
-24
-27
-30
-33
-37
-"0

-'
••••••••••••••••• _____ '11

'-
, -

'-
, -

'-

'-

DB I HZ !..... A ••• " •••• A •••• A •••• A •••• A ••••• " !
100 150 200 300 400 500 700 1000 1400 2000 3000 5000 10000

SP AC20 Compiler

* *; THE UNITS USED IN GRAPHIHG GAIN ARE SHOYN IN THE LOWER LEFT.

* *; GAIN IN DECIBELS IS GRAPHED VERSUS FREQUENCY IN HERTZ.

* *; HOTE THAT THE GAIN PEAkS AT ~BOUT 1000 HZ.

* *CAIH ; CAN ALSO TABULATE GAIN VALUES
GAIH(100.000000) • 0.087190039
GAIH(107.006~9') : 0.099910137
GAIH(114.'047,O) • 0.114497473
GAIH(122.'27"2) • 0.1312308~9
GAIH(131.11340J) • 0.150431115
GAIH(140.300384) • 0.17246827
GAIH(150.131088) • 0.19777049
GAIH(160.'~0£19) • 0.22'8338'
GAIH(171.'0724) • 0.2'02318'
PROCESSING ABORTED

* .; TABULATION WAS INTERRUPTED WITH THE ESCAPE KEY.

* *J ESCAPE kEY CAM ALWAYS BE USED TO ABORT THE CO"PILER'S PROCESSING.

* *"OYE POLE 1 BY 0,-300 SHIFT GAIN PEAK DOWN TO 700 HZ
1 POLES/ZEROES "OYED

* *OGRAPH GAIN J OYERGRAPH HEW GAIH CURVE

GAIH
23
20
17
1.1
1"0

! A ••••• A ••• "' ••• ••• A ••••• "' ••••••• A ••••••••• ! A

7
1
I)

-3
-6

-1"0
-13
-16
-20
-23
-26
-30
-33
-3'
-40
-43
-46

- ,
___ , J

++++
+++++++++++++++++++++++++

-+
+ .

++

+

+ +

+

+
'" + +

'. +
, . ++

'-++
'-. +

, . +
, -

, . +
, -

, -
, . +

, -
, -

DB I HZ f .•••• A, •• ", •••• "',. ,A •. ,A, •• ,A, •• ,"" ••• ,A, .• ,A ••••• "' ••••••• " •••••••.• !

*
* •

100 150 200 300 400 500 700 1000 1400 2000 3000

*j PLUS SIGHS INDICATE OLD CURVE .
•
*; WE CAN ALSO EXA"INE THE PHASE RESPONSE.

*

5000 10000

Introduction

1-7

Introduction SPAC20 Compiler

1-8

.GRAPH PHASE

PHASE ! .. " " !
- 0 . 0 1 I J. , , I , # , , , , , , , , # , " , " I __ _

-0.16
-O.ll
-0.46
-0.60
-0 ?~
-O.~O
-1 .05
-1 20
-1 .3S
-1 . SO
-1. 65
-1 .80
-1 . 9~
-2.09
-2.24
-2.39
-2.54
-2.6'
-2.84
-2.'9
-3.14 ",,-------------------------------

R AI) J HZ ! " " " !
100 150 200 300 400 500 700 1000 1400 2000 300~ 5000 10000

•
* .; PHASE IS EXPRESSED IN RADIANS.

*
*l NOTE THAT THE VERTICAL SCALE RANGES FRO" ABOUT -PI TO O.

* .YSCALE ; DISPLAYS ACTUAL "IH AHO "AX VERTICAL VALUES
VSCALE ~ AUTO; -3.1375729.-0.0083262023

* *EYALUATE -PI DISPLAYS DECI"AL YALUE OF -PI FOR CO"PARISON
-3.1415'27.10**0

* *YSCALE • -P I. PI ; A "ORE APPROPRIATE VERTICAL SCALE FOR PHASE

* *CRA PHA ; CRAPH PHASE (ONLY FIRST THREE LETTERS ARE £YER HEEDED)

PH~S£

3 : ~
2 34
2.54
2 24
1 i4
1 6'5
1 35
1 0'5

, • • ._ •• A • • • A • •.• • • A • • ." • ,; • It.. • •• A • • •• tAo. • •• A. • •• A. • • . ." • • • • • • • A • • • • • • • • • ,

o 75
o 45
o 15

-0 15
-0.45
-0.75
-1 05
-1 35
-1 65
-1 94
-2 24
-2.54
-2 84
-3 14

*
*
*

RAI)JHZ

, " "--

",-----------------------------------
! " A •• ,A, •• A •••• A "', ••• A •••• ,A, •• 0" ,A !
100 150 200 300 400 500 700 1000 1400 2000 3000 5000 10000

*j RATHER THAN CREATING A FILTER BY "ANUALLY POSITIOHIH~ POLES AND ZEROES.

* .; LET'S USE A PREDEFINED "ACRO.

*

SP AC20 Compiler

.ltlCLUDE :Fl :CHEB."AC i DESIRED "ACRO IS DEFIHED IN THIS FILE

.I>EF "AC CHEB ; ••
. *i A CHEBYSHEY FILTER GEHERATOR FOR SPAC20 •• .. ;

.*: CALLING SEQUEHCE :CHEB ORDER. Fco. LABEL. R.F. • •

.• ; WHERE ORDER is the order of the filter ••

.• : Fco is the cutoff 'r.quenc'l in Hz ••

. *' LABEL is the starting pOint 'or pole nUftbering •• . *. R.F. is the deSired (or allowabl.) ripple factor in dB. ••

· '. · .: :CHE8 6.500,23.0.12
· "': .. ;

~ . ; this Will generate Q CHEBYSHEY filter of order *.
6, cuto"=500.and a peak-to-peak ripple of 0.12 ••
dB, producing J coftplex poles labeled 23,24.25 •• .. :

.*DEF .?CHEBYRIP=10 •• (A8S(~J)/I0)-1
· .DE F . 1S IMHP= 1
.*I>Ef .?COSHP.,t
. " 1 F . ?CHEBYR IP <> 0 THEH
· '" : TE"CHB .?S INHP, . ?COSHP •. ?CHEBYRJ p, ~O
· * EHD
· "'RE" . ?CHEBVR IP
. * DEFINE .?BUTSTART = (HPI) + (HPl/~O >
. * DEFIHE .?BUTDELTA (PI/%O
.• DEFINE .?BUTIHOEX 0
.* DEFIHE .?BUTAHGLE-O
.* REPEAT
.* .?BUTIHDEX = .?BUTIHDEX + 1
.• .?BUTAHGLE=.?BUTSTART - .?8UTIHOEX •. ?BUTDELTA
.• IF . ?BUTA.HGLE < . ?8UTDEl TA/4 THEH
.* .?BUTAHGLE=O
.* EHI>
.* DEF POL(.?BUTIHOEX+~2-1>= &
.•• -U •. ?SIHHP.COS(. ?BUTAHGLE), &
· * '" %1*. ?COSHP.S I H(. ?8UTAHGLE)
· • WH ILE . ?BUT I HOEK + 1 < = (~O + 1) I 2
· '" EHD
.• RE" . ?BUT IHDEX
.* RE" .?BUTDELTA
.* RE" .?8UTSTART
.• RE" .?8UTAHGLE
.• RE" .?SIHHP
.* RE" .?COSHP
.• PZ

i.
i.
i •
i.
; ..
; ..
; ..
i ••

;*.
i.
i.
;.
i.
;.
;.
;*
;.
;*
:*
; .

;.

; ..
;*.
;*.
i ••
i ••
: ..

BEGIH THE ••
CHEBYSHEY ••
BY SElT IHC ••
DEFAULT VALUES, ••

OR USE THE ••
SUB-"ACRO ••
TO GENERATE **
THE YARIABLES . * •

.*
A "ODIF lEO *.
BUTTERWORTH ••
MODULE IS ••
INCORPORATED ••
TO GENERATE ••
THE APPROPR I ATE ••
PATTERH OF *.
POLES FOR THE ••
FILTER. (the los **

allow g",llt." ••
"elldabillt~ of ••

the forl'lu 14 .) ••
REMOYE THE ••
YAR UBLES ••
INTRODUCED ••
IN THIS MACRO, .*
TO SAVE SPACE. **

••
.• £" i ••••••• EHD OF CHEBVSHEY "ACRO ••••••••

* *; TE"CHB GET YARIABLES FOR CHEBVSHEY FILTER •••••••••••••• , ••••••
*I>EF HAC TEMCHB
.*1 CALLIHG SEQUENCE •• THIS IS THE •••
.• ; : TE"CNB S IHHP, COSHP, E**2, N •• SUB-MACRO. II •
. "'OEF .?IHYSXTEMP.(1/SQR(t2»+(SQR«1/%2)+1»
.*I)£F .?IHYSXTE"PP=.?IHYSXTEMP *.<1/%3) J'"
.*I>EF .?IHYSXTE"PH-.?IHYSXTEMP •• (-1/~3)
· .=co-(. ?IHYSXTEMPP - . ?IHYSXTENPH)/2 ;11.
· -%1-(. ?IHYSXTEH·PP + . ?IHYSXTENPH)12
· .RE" . ?IHYSXTEHP J II •
.• RE" .?IHYSXTE"'P

Introduction

1-9

Introduction SP AC20 Compiler

1-10

.J AL.L. THE ABOYE "AeRO DEFIHITION CA"E FRO" THE INCLUDED FILE :Fl:CHE8."AC.
•
.RE"OYE PZ J DELETES ALL. OLD POLES AHO ZEROES
1 POLES/ZEROES RE"OVED
...
... ; tHl WIN 110 K E "A C ROC HE B T 0 B U I L I> A C HE BY SHE Y LOW PAS S F IL TE R .

* *;CHEB],1000.0.2 ; 7TH ORDER. 1000 HZ CUTOFF. 1ST LABEL 0.2 DB RIPPLE
.*: A CHEBVSHEV FILTER GENERATOR FOR SPAC20 **
." ;
.*: CALLlHG SEQUEHCE :CHEB ORDER. Fco. LABEL R.F. **
· "'; "'HERE ORI>ER is the order or the' i 1 ter ••
. *: Fco is the cuto'f frequenc~ in Hz ••
. *; LABEL is the stQrting pOint 'or pole nUftbering ••
. *: F.F. i5 the deSired (or 4l1Iow4lble) ripple fQctor in dB. * •
. *
· * .
· ..
"'.

· ... :
.'i' :

:CHEB 6.500,23.0.12
thiS Will generQte Q CHEBYSHEY filter of order *.
6, cuto'f=500,Qnd Q peQk-to-peQk ripple of 0.12 *.
dB, producing 3 co~plex poles 14lbeled 23.24,25 ••

.• f)£F .?CHEBVRIP=10"(ABS(2>110)-1 l. BEGIN THE .*

.*I>Ef' .?SIHHP=1 l* CHEBYSHEV * .•

. *I>EF .?COSHP=1 i* BY SETTIHG ••

. * IF .?CHEBVRIP <> 0 THEN l* DEFAULT VALUES. *.
:TEI'tCHB .?SIHHP,.?COSHP •. ?CHEBYRIP.7 ;*. OR USE THE ••

,..; CALLING SEQUENCE .. THIS IS THE t ..
'''' :TE"CHB SINHP,COSHP.E**2.H II SUB-"ACRO. ..I
*ClEF .?1 HYSXTE/'IP=(I/SQR(. ?CHEBYRI P))+(SQR((1/.?C HEBYR I P)+1»

.*ClEF .?IHYSXTE"PP=.?IHYSXTE"P •• (1/7) illl

.• DEF .?IHIISXTE"PH=.?IHVSXTE"P **(-1/7)
* ?SINHP=C .?IHVSXTEHPP - .?INYSXTE"PN)/2 i'"
*. ?COSHP=<. ?IHVSXTEHPP + . ?IN't'SXTEnPH)/2

. *REI'I . ?IH't'SXTE"P i'li
*REI'I .?IHIISXTE"PP

.*RE" .?IHIISXTE"PH i" EHD OF TE"CHB '"
*EI1

· . * END
· *~Ei1 . ';oCHEB'r'RIP
. '. (.£Flt.E .?BUrSTART HPI) + HPI/?)
.w L'iF!t~E .?BlITCtELTA PI/?)
• ~EFIHE ?BUTIHDEX 0

.* ('£FINE .?BUTAHGLE=O

." RHEAT
jl .?8UTIHDE)(= .?BUTIHDEX + 1
,. .?BUTAHGLE=.?BUTSTART - .?BUTIHOEX •. ?BUTDELTA

IF .?BUTAHGLE < :?8UTHLTA/4 THEN
* .?BUTAHGLE=O

EHD
DEF POL< .?8UTINDEX+0-1>= &

"'* -1000 •. ?SIHHP.COS<.?8UTAHGLE), &:

.* lOOO*.?COSHP*SIN(.?BUTAHGLE>
* WHILE .?8UTIHI>EX + 1 <= (7 + 1) I 2

.* END
.• REM .?8UTIHDEX
.• REM .?BUTDELTA
.• REM . ?BUTSTART
.• REM .?BUTAHGLE
. * REM .?SIHHP
.• REM . ?COSHP
· *P2

;** SUB-I'tACRO ••
i** TO CENERATE **

:.* THE VARIABLES. * •
; ** ** ;* A MODIFIED *.
;. BUTTERWORTH **
;. MODULE IS **
l. INCORPORATED **
;* TO CENERATE ••
;* THE APPROPRIATE ••
;. PATTERN OF ••
i. POLES FOR THE ••

;. FILTER. (the &:5 ••
;* 4l110W gr.Clter
;. re4ldQbi 1 it~ of

i* the forftulCl. > **
; .. REMOYE THE ••
;*. YARIABLES • •
;"'''' INTRODUCED "'* ;"'. IN TH I S "ACRO, * •
; .. TO SAVE SPA CE . • •
i •• "'.

.*EM ; ••••••• ENI> OF CHEBYSHEY "AeRO *
POLE 0 = -34.56634~/986.62048,CONTINUOUS
POLE 1 = -96.852775.7~1.20825,CONTINUOUS
POLE 2 = -13~.95'344.439.08737,CONTINUOUS
POLE 3 = -15533'813.0.00000000.CONTIHUOUS; REAL
•
.; ONE REAL POLE AND THREE COMPLEX PULE PAIRS WERE CREATED . ..
• .,.SC -5,1 SELECT A HEW YERTICAL SCALE FOR GAIN
•

"'*
"'*

SP AC20 Compiler Introduction

.c~ G ; GRAPH GAIN (MAHY KEVWORDS HAVE ONE OR TWO LETTER ABBREYIATIOHS)

GA!H •••• A, .•• A •.• ,A ••••• A •.•••• ,"" ••••••••• !
1 00
o 71
o 43
o 14

-0 14
-0 43
-0 71
-1 00
-1 29
-1 57'
-1 86
-2 14
- 2 43
-2 71
-3 00
-3 29
-3 57
-3 86
-4 14
-4 43
-4 71

, -
, --

-5 00 ••••••••••••••••••••••••••••••••••
f>B I HZ !. ••• "' ••••• A ••• " ••• "' •••• A •••• "' •••• A •••• A ••••• A. ••••••• "' ••••••••• !

100 150 200 300 400 500 700 1000 1400 2000 3000 5000 10000

•
.; ASTERISKS (ABOVE 1000 HZ HERE) INDICATE YERTICAL SATURATION .
...
• ; LET'S ZOOM IN ON THE REGION HEAR 1000 HZ.
•
.FSCALE :: 400,500,600,7'00,800,'00,1000.1100 NEW FREQUENCY RANGE

* ; GRAPH GA IN

GA:N I ! ! ! . .! ... " ! ... A ••••• ! " !
1 00
I) 71
o 43
o 14

-0 14
- 0 4 '3
-0 "'1
-1 00
-1 29
-1 57
-1 86
- 2 14
-2 43
-2 ? 1
-3 00
-3 29
-3 57
-3 86-
-4 14
-4 43
-4 ? 1
-5 00

, -

, -
, - -'

•••••••••
1)8 I HZ ! ! ... A •.••• ! ... " ! ! ! ... A ••••• ! A ••.• !

•
•
•

400 500 540 600 640 700 740 800 840 900 940 1000 1050 1100

.; WELL, LET'S HOW "OYE INTO THE WORLD OF SAMPLEO FILTERS .
...
*MOVE POLES TO TS ; CONYERT FILTER TO SA"PLED VIA KATCHED-2 TRANSFORM
ERR 73:SA~PLE RATE UNDEFINED
•
*) SAMPLE RATE MUST BE SPECIFIED FIRST .
...
• TS ~ 1/13020 ; REASONABLE RATE FOR FULL 192 INSTRUCTIOH 2~20 PROGRA"
TS = 7.6805004/10 •• 5
•

1-11

Introduction SP AC20 Compiler

1-12

.NOVE POLES TO TS ; TRY AGAIN
4 POLES/ZEROES "OVED
•
.PZ LET'S SEE WHAT WE HAVE
POLE 0 -34.56'349,986.62048,TS
POLE 1 = -96.852775.791.20825.TS
POLE 2 = -139.95'344.439.08737.T8
POLE 3 = -155.339813.0.00000000.TS; REAL

* .HOL£) ON ; THIS INTRODUCES COKPENSATION FOR SA"PLE AND HOLD DISTORTION
...
*OI~R G

GAIN
1 00
o 71
o 43
o 14

-0 ! 4
-0 43
-0 71
-1 00
-1 2~

-1 5?
-1 3",

-2 '.
-2. ·13
-2 71
-3 00
-3 29
-3 57
-3 at.
-4 14
-4 43
-4 71

+

GRAPH GAIN OF SAKPlED VERSION OF FILTER OYER ORIGINAL YERSION

........ ! ... A ••••• ! ! ! ... A ••••• ! !

--~ ~-

+'-
+' .

+-.
+-

-++++' . -++
.' + +.

-++
-+

.• +
+- . -++
++- -' +

+ +' , • + ++

++­
+-
+-

'+ +
.+

+' . . +
+ '-' +

+++++ +

+

.... !

-5 00 -....... .
DB I HZ ! ! ! ! ! ... A ••••• ! I !

400 500 540 900 940 1000 1050 1100
•
.; OBSERVE THAT THE SA"PLED FILTER CLOSELY RECREATES THE COHTINUOUS FILTER.
•
.; IF WE HAD CONVERTED TO SA"PLE~ USINC BILINEAR TRAHSFORK IHSTEAD OF
•
.; "ATCHED-Z, THE GAIH CURVES WOULD "ATCH EYEN "ORE CLOSELY.

* .; HOW THAT WE'RE SATISFIED WITH THIS FILTER. LET'S GEHERATE 2920 CODE FOR IT .
...

SAVE THE CURREHT POLES IH A DISK FILE BACKUP
...
*COI>E POLE 0 IHST<11 WILLING TO DEDICATE 10 INSTRUCTIONS TO POLE 0
81=1 7481516 B2=-0.96718828

I N$T =4
POLE 0 = 0.00000000.3255.0000.TS

9EST YET
POLE 0 = -718.1'894.1627.50000.TS

BEST YET

IHS1=5
POLE 0 = 0.00000000.1497.64807.T8

BEST YET
POLE 0 -32.894828.3255.0000.TS
POLE 0 = -32.894828.3255.0000.TS
POLE 0 -785.03710.1558.37561.T8

I H$T='
POLE 0 0.00000000.1047.20678.TS

BEST YET
POLE 0 = 0.OOOOOOOO,14'7.64801.TS
POLE 0 • 0.00000000.1047.20678,T8
POLE 0 = 231.19877.'60.7'947,TS
POLE 0 = -298.06701.1084.99975,TS
POLE 0 -34.920j30.3255.0000.TS
POLE 0 -34.985778.3255.0000.TS
POLE 0 = -820.16253,1520.12536,T8

SPAC20 Compiler

INST-7
POLE 0 .. 0.00000000.978.23999.T8

BEST VET
POLE 0 .. 0.00000000.1047.20678.TS
POLE 0 .. 0.00000000.1051.37915.TS
POLE 0 .. -32.894828.985.61517.T8

BEST VET
POLE 0 .. -32.894828.985.61517,TS
POLE 0 -298.06701.1084.99975.TS
POLE 0 -32.894828.985.61517.T8
POLE 0 204.96688.906.54724.TS
POLE 0 -276.70343.1121.26489.TS
POLE 0 -34.47'980.3255.0000,T8
POLE 0 -34.462657.3255.0000.TS
POLE 0 .. -820.16253.1520.12536.TS

IHST"8
POLE 0 0.00000000.987.1029'.TS
POLE 0 0.00000000.1051.37915.TS
POLE 0 .. 0.00000000.1051.18432.T8
POLE 0 .. -32.894828.986.73706.TS

BEST VET
POLE 0 -32.894828.986.73706.TS
POLE 0 .. -32.894828.985.61517.TS
POLE 0 .. -32.894828.990.09570.TS
POLE 0 .. -34.920330.981.67358.TS
POLE 0 .. -34.985778.981.54577.T8
POLE 0 .. -276.70343.1121.26489.TS
POLE 0 .. 191.59779.877.43200.TS
POLE 0 .. -34.549556.3255.0000.TS
POLE 0 -34.593387.3255.0000.TS

INST'"
POLE 0 .. 0.00000000.986.55126.T8
POLE 0 0.00000000.1051.18432.TS
POLE 0 .. 0.00000000.1051.18432.T8
POLE 0 z -32.894828.990.09570.T8
POLE 0 .. -32.894828.989.88684.TS
POLE 0 z -34.920330.986.17498.TS

BE8T VET
POLE 0 .. -34.985778.986.04791.TS
POLE 0 .. -34.985778.986.04791.T8
POLE 0 .. -34.47"80.982.53204.T8
POLE 0 z -34.4'2657,'82.56579.TS
POLE 0 .. -34.54 •• 34.3255.0000.T8

INST"10
POLE 0 .. 0.00000000.1051.18432.TS
POLE 0 0.00000000.1051.20874.T8
POLE 0 -32.894828.989.88684.T8
POLE 0 -32.894828.989.88684.T8
POLE 0 -34.920330.986.73651.TS

BEST VET
POLE 0 -34.985778.986.60949.TS
POLE 0 -34.985778.986.04791.TS
POLE 0 -34.985778.985.83789.TS
POLE 0 -34.479980.987.02893.TS
POLE 0 -34.462657.987.06262.T8
POLE 0 -34.72413',986.5556',TS

BEST VET
POLE 0 .. -34.549556,982.39642.TS
POLE 0 .. -34.593387,982.31103.TS
POLE 0 -34.550563,3255.0000.TS

IHST-l0
POLE 0 .. -34.724136,986.5556',TS

BEST
PERROR II 0.157787329, 0.064819335

Introduction

1-13

Introduction SP AC20 Compiler

1-14

; HOTE: "AKE SURE SIGNAL IS <0.57206704
LDA OUT2_PO,OUT1_PO,ROO

; OUT2_PO=1.OOOOOOOO*OUT1_PO
LDA OUT1_PO,OUTO_PO,ROO

; OUT1_PO=1.OOOOOOOO*OUTO_PO
SUB OUTO_PO,OUT1_PO,R02

: OUTO_PO=1.00000000*OUTO_PO-O.25000000*OUT1_PO
SUB OUTO_PO,OUT1_PO,R09

; OUTO_PO=1.OOOOOOOO*OUTO_PO-O.25t'5312*OUT1_PO
AD~ ~UTO_PO.OUT1_PO.ROO

OUTO_PO=1.00000000*OUTO_PO+O.74S046S7*OUT1_PO
AO~ OUTO_PO,OUT2_PO,R05

; OUTO_PO=t.OOOOOOOO*OUTO_PO+O.74804687*OUT1_PO+O.0312~OOOO*OUT2_PO

ADD OUTO_PO,OUT2_PO,R09
: OUTO_PO.I.00000000*OUTO~PO+0.74804687*OUT1_PO+O.033203125*OUT2_PO

SUB OUTO_PO,OUT2_PO,Rt2
J OUTO_PO=1.00000000*OUTO_PO+074804687*OUT1_PO+0.032958984*OUT2_PO

SUB OUTO_PO,OUT2_PO,ROO
; OUTO_PO=I.00000000*OUTO_PO+O.74804687*OUT1_PO-O.967041Ot*OUT2_PO

ADD OUTO_PO,INO_PO,ROO
; OUTO_PO=1.00000000*OUTO_PO+0.74804687*OUT1_PO-0.96704101*OUT2_PO+l .OOOOOOOO*INO_PO

* *1 THE DISPLAY S~OWS EVERY ATTE"PT TO GENERATE CODE FOR POLE 0, GIVING IN

* *; EACH CASE THE POLE POSITION CORRESPONDING TO THE CODE. THE "ESSAGES

* *1 "BEST YET- AND HBEST" INDICATE THE PROGRESS OF THE CODIHG ATTEMPTS.

* *; SINCE WE ~ID HOT SPECIFY AH ERROR CONSTR~IHT IN THE CODE COHHAND,

* *; ~lSTANCE IN THE S-PLANE FROM THE ORIGINAL POLE 0 WAS MINI"IZED.

*; POLE 0 15 NOW MOVED TO THE POSITION CORRESPONDING TO THE BEST CODE.

* *; THE CODING ALGORITHH SELECTED REQUIRES THAT THE OUTPUT SIGNAL NOT

* *; EXCEED 0.572 IN ORDER TO PREVENT INTERHEDIATE CALCULATIONS FRO"

* *; OYERFLOWING.

* *POT :Fl:CO~E.SRC '. 7TH ORDER CHEBVSHEV', CODE ; SAVE CODE IN NEW FILE

* *; INSERT IN GROWING CODE FILE CODE TO PASS SIGNAL FRO" FIRST STAGE TO SECOND.

* *APPEND IFl :CODE.SRC 'INO_Pl EQU OUTO_PO') INPUT TO SECOND IS OUTPUT FRO" FIRST

* *CODE POLE 1 INST(11) CODE POLE 1 NEKT IN 10 INSTRUCTIONS OR FEWER
81=1.7712245 82=-0.91075761

I NST:4
POLE 1 = 0.00000000.3255.0000,T5

BEST YET
POLE 1 :: -718.16894,1627.'0000,TS

BEST YET

INST=5
POLE 1 = -6'.868217,3255.0000,T5
POLE 1 z -66.868217,3255.0000,T8
POLE 1 = -1016.23577,1275.39575,T8

BEST YET

I NST =6
POLE 1 = 0.00000000,736.50292.TS

BEST YET
POLE 1 :: 0.00000000,1047.20678.TS
POLE 1 = 0.00000000,1047.20678,TS
POLE 1 = 122.034751,704.20874.T8
POLE 1 122.034751,704.20874.TS
POLE 1 -99.76306',3255.0000,TS
POLE 1 -101.99360',3255 .. 0000,TS
POLE 1 -1013.54125,1279.19873,TS

•
•
•

SP AC20 Compiler Introduction

IHST"10
POLE 1 .. O.00000000,1000.82678,TS
POLE 1 .. 0.OOOOOOOO,1000.81738,TS
POLE 1 .. -66.868217,7~1.33288,TS

POLE 1 .. -66. 868217, 7~1 .33288, TS
POLE 1 .. -66.868217,862.28106,TS
POLE 1 .. -~~.763069,788.89288,TS

BEST VET
POLE 1 -101.993606,791.89245,TS
POLE 1 .. -101.993606,774.4304LTS
PI)lE 1 -101.993606,778.24249,TS
POLE 1 = -~Z~511277.805.'9842,TS
POLE 1 -97.537277,805.69842,TS
POLE 1 -102.551963,793.35278,T5
POLE 1 .. -97.537277,794.43249,TS

BEST YE T
POLE 1 -96.83840',850.94~34,TS

POLE 1 .. -96.98155',850.62072,TS
POLE 1 .. -118.310440,799.93048,TS
POLE 1 II -118.310440,799.93048,TS
POLE 1 .. -96.83724',3255.0000,TS

BIST a 10
POLE 1 II -97.537277,794.43249.TS

BEST
PERROR = 0.68450166, -3.2242431

J HOTE: "AKE SURE SIGNAL IS (0.56512143
LDA OUT2_Pl.0UTl_Pl,ROO

; OUT2_Pl=1.00000000.0UTl_Pl
L~A OUT1_Pl,OUTO_Pl,ROO

; OUTl_Pl=1.00000000*OUTO_Pl
AD~ OUTO_PI,OUT1_PI,R02

; OUTO_Pl=I.00000000*OUTO_P1+0.25000000*OUT1_Pl
AD~ OUTO_Pl,OUTO_Pl,R06

; OUTO_Pl=1.01562500*OUTO_Pl+0.25390625*OUT1_Pl
ADD OUTO_PI,OUT1_PI,ROl

; OUTO_Pl=1.01562S00.0UTO_Pl+0.7S390625*OUT1_Pl
ADD OUTO_Pl,OUT2_Pl.R04

; OUTO_Pl=1.01562500*OUTO_Pl+0.75l90625*OUT1_Pl+0.062500000.OUT2_Pl
ADD OUTO_Pl,OUT2_Pl.R05

; OUTO_Pl=1.01S62500*OUTO_Pl+0.75390625*OUTl_Pl+0.093750000.OUT2_Pl
SUB OUTO_Pl,OUT2_Pl,R08

; OUTO_Pl=I.01S62500*OUTO_P1+0.75390625*OUT1_Pl+0.089843750.0UT2_Pl
SUB OUTO_Pl,OUT2_Pl,ROO

; OUTO_Pl=I.01562500*OUTO_Pl+0.753'0625*OUTl_Pl-0.~1015625*OUT2_P1
~D~ OUTO_Pl,INO_Pl.ROO

J OUTO_P1=1.01562500*OUTO_Pl+0.75l'0625*OUT1_Pl-0.'1015625*OUT2_Pl+1 .00000000*IHO_Pl

* *APPEND :Fl :CODE.SRC CODE ; SAVE CODE AT END OF GROWING FILE

* *APPEND :Fl :CODE.SRC 'IHO_P2 EQU OUTO_Pl'

* *CODE P 2 IHST{11 ; CODE POLE 2 NEXT
81=18275704 82=-0.87364599

IHST=4
POLE 2 ,. 0.00000000,3255.0000,T8

BEST YET

IH~T=5

POLE 2 = -138.351623,3255.0000,T8
BEST YET

POLE 2 = -138.351623,3255.0000,T5
POLE 2 ,. -1314.302'7,704.20874,T5

BEST YET

IHST=6'
POLE 2 = 0.00000000,366.79486,T$

BEST YET
POLE 2 0.OOOOOOOO,736.502'2,TS
POLE 2 0.OOOOOOOO.736.50292,TS
POLE 2 31.882S45,362.57061,TS
POLE 2 31.882545,362.5706LTS
POLE 2 -140.377334,3255.0000,TS
POLE 2 -139.508758,3255.0000,T8
PI)LE 2': -1285.91467,780.04730,TS

•
•
•

; INPUT TO THIRD IS OUTPUT FRO" SECOND

1-15

Introduction SP AC20 Compiler

1-16

1"$T"10
POLE 2 .. 0.00000000.8".71618.TS
POLE 2 = 0.00000000.86'.76428.TS
POLE 2 -138.351623.438.47937.TS
POLE 2 -138.351623.438.47937.TS
POLE 2 -138.351623.446.13854.TS
POLE 2 = -140.377334,434.17916,TS
POLE 2 -139.508758.438.24417.TS
POLE 2 -139.508758.438.24417.TS
POLE 2 -139.508758,441.13485,TS
POLE 2 -140.01536S.512.25738.TS
POLE 2 -140.087631.511.97113,TS
POLE 2 -156.432159,442.24893.TS
POLE 2 -139.3'3952,438.91845.TS

8EST YET
POLE 2 -89.232948.427.9299',TS
PULE 2 -S~.232'48,427.'29".TS
P~LE 2 39.337009,.02.4'118,TS
POLE 2 39.337009.402.49118.1S

I"ST=10
POLE 2 = -139.363952,438.91845.TS

8EST
PERROR = -0.592391", 0.16891479

; HOTE: "AKE SURE SIGNAL IS (0.5470085'
LD~ OUT2_P2.0UT1_P2.ROO

: OUT2_P2=1.00000000*OUT1_P2
LD~ OUT1_P2.0UTO_P2,ROO

; OUT1_P2=1.00000000*OUTO_P2
A&~ OUTO_P2,OU11_P2,ROI

; OUTO_P2-1.00000000*OUTO_P2+0.50000000*OUT1_P2
A~~ OUTO_P2,OU11_P2,R03

; OUTO_P2-1.00000000*OUTO_P2+0.62500000*OUT1_P2
ADO OUTO_P2,OUTO_P2,R03

; OUTO_P2=1.12500000*OUTO_P2+0.70312500*OUT1_P2
A~~ OUTO_P2,OUT2_P2,R03

; OUTO_P2=1.12500000*OUTO_P2+0.70312500*OUT1_P2+0.125000000-OUT2_P2
AD~ OUTO_P2,OUT2_P2,Rl0

; OUTO_P2=1. 12500000*OUTO_P2+0.70312500*OUT1_P2+0. 125976 562*OUT2_P2
SU8 OUTO_P2.0UT2_P2,RI3

; OUTO_P2=1. 12500000*OUTO_P2+0.70312500*OUT1_P2+0. 125854 492*OUT2_P2
SUB OUTO_P2,OUT2_P2.ROO

; OUTO_P2=1.12500000*OUTO_P2+0.70312500*OUT1_P2-0.87414550*OUT2_P2
ADD OUTO_P2,INO_P2,ROO

; OUTO_P2=1.12500000*OUTO_P2+0.70312500*OUT1_P2-0.874145SO*OUT2_P2+1.00000000*INO_P2

* *APPEND ;Fl:CO~E.SRC CODE ; SAVE CODE

* *APPEND :Fl:CO~E.SRC 'INO_P3 EQU OUTO_P2'
•
*CODE P 3 INST<11 ; CODE POLE 3 LAST
81-0.92777714 82aO.00000000

I 14ST =2
POLE 3 = O.oooooooo.O.OOOOOOOO,TS; REAL

BEST 'tET

INST"3
POLE 3 = O.OOOOOOOO.O.ooOOOOOO.TS; REAL
POLE 3 = O.oooooooo.O.OOOOOOOO.TS; REAL
POLE 3 = -133.73'541.0.00000000,TS; REAL

BEST YET

INST-4
POLE 3 = -133.73'541,0.00000000.1S REAL
POLE 3 = -133.73'541,0.000~0000,1S RIAL
POLE 3 = -151.077224.0.00000000.TS REAL

BEST 'tET

INST=5
POLE 3 = -151.077224.0.00000000.T8 REAL
POLE 3 = -151.077224,0.00000000,TS REAL
POLE 3 = -155.401062,0.00000000,TS REAL

8EST YET

INST-'
POLE 3 = -155.435150,0.00000000,TS REAL
POLE 3 = -15S.4010'2.0.00000000,TS REAL
POLE 3 = -155.35'887,O.00000000,TS REAL

BEST YET

INPUT TO FOURTH IS OUTPUT FRO" THIRD

SPAC20 Compiler

IH·n=?
POLE 3 = -15~.4351~0,0.00000000,TS
POLE 3 = ~155.3~'887.0.00000000,TS
POLE 3 = -15~.344894.0.00000000,TS

BEST VET

IH->I=8

REAL
REAL
REAL

POLE 3 = -155.4351~0.0.00000000,TS; REAL
POLE 3 = -155.344894.0.00000000.TS; REAL
POLE 3 = -15~.33703'.0.00000000,TS; REAL

BESI YET

I NS1,.,
POLE 3 :: -155.435150,0.00000000,TS; REAL
POLE 3 = -155.337036.0.00000000,1S; REAL
POLE 3 • -155.340'21,0.00000000,TS; REAL

BEST YET

IHS1=10
POLE 3 = -155.435150,0.00000000,TS; REAL
POLE 3 = -155.340'21.0.00000000.TS; REAL
POLE 3 = -155.340'21,0.00000000,1S; REAL

I HS1'"
PilLE 3 = -155.340621,0.00000000,TS; REAL

BEST
PERROR • 8.0871562/10**4, 0.00000000

LDA OUT1_P3.0UTO_P3,ROO
; OUT1_PJ=I.00000000*OUTO_P3

SUB OUTO_P3,OUT1_P3,R07
; OUTO_P3=1.00000000*OUTO_P3-0.0078125000*OUT1_P3

SUB OUTO_PJ,OUTO_PJ,R04
; OUTO_Pl=0.9J750000*OUTO_PJ-0.007J242187*OUT1_PJ

SUB OUTO_PJ,OUTl_P3,R07
: OUTO_P3=0.9J750000*OUTO_PJ-0.0151367187*OUT1_PJ

ADD OUTO_P3,OUTO_PJ,R09
; OUTO_PJ=0.9J9JJI05*OUTO_Pl-0.0151662826*OUTl_P3

ADD OUTO_P3.0UTl_P3,Rll
: OUTO_PJ=0.9J9JJI05*OUTO_P3-0.0146780014*OUT1_P3

ADD OUTO_P3,OUTO_P3,R08
; OUTO_PJ=0.94300029*OUTO_P3-0.0147353378*OUTl_Pl

SUB OUTO_P3,OUTl_P3,Rll
; OUTO_P3-0.94300029*OUTO_PJ-0.0152236190*OUTl_P3

ADD OUTO_PJ.IHO_PJ,ROO
; OUTO_PJ=0.94J00029*OUTO_PJ-0.0152236190*OUT1_P3+1.00000000.IHO_P3

* *APPEND :Ft :CODE.SRC CODE ; SAYE CODE

* *; NOW ALL OUR POLES ARE CODED.

* *; LET'S SEE WHAT THE CAIN RESPONSE LOOKS LIKE FOR OUR FILTER AS CODED .

•
• ; RECALL THAT THE LAST ITE" CRAPHED WAS THE GAIN FOR THE SA"PlED UHCODED FILTER.

GAIM
100
O. 71
0 43
O. 14

-0 14
-0 .43
-0 .71
-1 01)

1 :"
-1 S?
-1 .8'
-2 14
-2 .43
-2 71
-3 .00
-J 2~
-3 57
-J S,
-4 14
-4 .4J
-4 71
-5 .00

1>8 I HZ

; GRAPH GAIN AS CODED OYER ORIGIHAL SAftPLED CAIN

! ! ! ! ! ... A ••••• ! !.... !

__ .I ~_

-+
'-+

I. +
'-.+ ++.-

1 ____ ,

+.

.+­
+ '

+.-

+­
+'-

+++

+

++

+

'
! ! ... A. ••••• ! ... A ••••• ! ... A. •••• ! ... A. ••••• ! ... A. ••••• ! !
400 500 540 600 640 700 740 800 840 900 '40 1000 1050 1100

Introduction

1-17

Introduction SP AC20 Compiler

1-18

* .; CLOSE ENOUGH FOR OUR PURPOSES.

* *' WE MUST NOW SELECT APPROPRIATE SCALING FACTORS FOR OUR GENERATED CODE.

* *PUT :Fl:AFTER.TftP PZ , SAVE IN A FILE THE CURRENT POLE POSITIONS

* *REMOYE POLES 1 THRU 3 i LEAVE OHLY FIRST POLE
3 POLES/ZEROES RE"OYED

* *HOLD OFF SA"PLE AH& HOLD CO"PEHSATIOHNOT HEEDED DURING SCALING
...
• VSCALE = AUTO ; SO WE CAN FREELV GRAPH ABSOLUTE GAINS
•
.GR AGAIN GRAPH THE ABSOLUTE (MULTILPICATIYE)' GAIN FOR POLE 0

AGAIN I ! ! ! ! ... "' ! ! !
65.~
63 I)

60
57 2
54 4
51 . '5
48 I,)

45 ?
42 ~

40.0
37 1
34 2
31 4
28 5
25 ,;
22 7'
19"~
17 0 -'
14 1 -- ,
11 2 -"

8 '* ---' , , 5 5 , ___________ I"""I-~

A MP I HZ ! !" ! ! ! ! ... A ••••• ! A •••• !

•
•
*

400 500 540 600 640 700 740 800 840 900 940 1000 1050 1100

*; THE MAXI"U" AGAIN IS A GOOD GUIOLINE FOR THE NECESSARY SCALING.
•
*; WE MUST ALSO TAKE INTO ACCOUNT THE CODE BUFFER CO""EHTS WHICH

* *; INSTRUCTED US TO LI"IT SIGNALS TO PREYENT INTERMEDIATE

* *; CALCULATIONS OVERFLOY.

*; TO BE VERY SAFE, WE SHOULD ACTUALLY MAKE SURE THE SIGNAL COMING

* *; OUT OF EACH STAGE IS LESS THAN ONE FOURTH .
...
*EVALUATE "AGAIN
6.5861554*10** 1

, THE "AXI"U" AGAIN CAM ALSO BE ACCESSED THIS WAY

* *EVALUATE LOG("AGAIH)/~OG(2)
6.0413646*10**0

*

I.E. LOG BASE 2 OF KAXI"U" AGAIN

*; THIS SIGNAL "UST BE SCALED BY AT LEAST THIS ~UCH BEFORE ENTERING FIRST POLE.

* *; THIS SCALING "UST BE EDITED IHTn THE CODE FILE LATER BY HAND.
•
*i BUT WE'LL APPEND HOTES TO THE CODE FILE HOW TO RE"IND US.

* *APPEHD :Fl:CODE.SRC 'i SCALE INPUT TO POLE 0 WITH RIGHT 8 SHIFT'

* *REM POLES ; REKOYE POLES
1 POLES/ZEROES RE"OYED

*
"'~HCLUDE :Fl:AFTER.T"P I GET OUR FILTER AS CODED BACK AGAIN
*D£FIHE POLE 0 -34.724136,986.55566,TS
*D£FIHE POLE 1 -97.537277,794.43249,TS
*DEFINE POLE 2 -139.363952.438.91845.TS
*DEFINE POLE 3 -15~.340'21.0.00000000,TS; REAL

*

SF AC20 Compiler

* .REM P 2 THRU 3 ; "US1 LOOK AT FIRST TWO STACES NEXT
2 POLES/ZEROES REMOYED
•
.EVALUATE lOC("ACAIH)/LOC(2) SCALING FACTOR HEEDED BEFORE SECOHD STAGE
9. ,,66240'HO**0
•
.; WE HAYE ALREADY SCALED BY 2 •• 8 SO AHOTHER 2 •• 4 WILL SUFFICE .
• APPEHD :Ft :CODE.SRC '; SCALE IHPUT TO POLE 1 WITH RIGHT 4 SHIFT'
•
*REM P i RE"OYE POLES
2 POLES/ZEROES REMOYED

* *INCLUDE :Fl:AFTER.TflP l GET OUR FILTER AS CODED BACI(AGAIH
.DEFIHE POLE 0 -34.724136,986.55566,TS
.DEFINE POLE 1 -97.537277,794.43249,TS
*DEFINE POLE 2 -139.363952.438.91845.TS
*DEFINE POLE 3 -155.340621.0.00000000.TS; REAL

*
* *REM P l ; "UST LOOK AT FIRST THREE STACES NEXT
1 POLES/ZEROES REMOYED

*

MAKE HOTE

*EVALUATE lOG(MAGAIH)/LOG(2) SCALIHG FACTOR NEEDED BEFORE THIRD STAGE
1.22287941*10**1
...
*; WE HAYE ALREADY SCALED BY 2**12 SO ANOTHER 2 •• 3 WILL SUFFICE.

* *APPEND :F1:CODE.SRC '; SCALE INPUT TO POLE 2 WITH RIGHT 3 SHIFT'

* *REM P ; REI'IOYE POLES
3 POLES/ZEROES REMOYED

* .INCLUDE :Fl:AFTER.THP 1 GET OUR FILTER AS COOED BACK ACAIN
*D£FlHE POLE 0 -34.72413',986.55566,1S
*DEF:HE POLE -97.537277,794.43249.T8
.OEFINE POLE 2 -139.363952.438.91845.TS
*DEFINE POLE 3 = -155.340621.0.00000000.TS1 REAL

*
* *EVALUATE LOG(MAGAIH)/LOC(2) SCALINC FACTOR NEE~ED BEFORE FOURTH STACE
l.l35C)604hl0**1

* *; WE HAYE ALREADY SCALED BY 2**15 SO NO FURTHER SCALING IS HEEDED.

* .APPEND :Fl:CODE.SRC '; HUDH"T SCALE IHPUT TO POLE 3'

* *; THE FILE :Fl:CODE.SRC HOY CONTAIHS THE FINAL CODE FOR OUR FILTER EXCEPT

*; FOR THE SCALING (WHICH IS INDICATED ONLY BV CO""ENTS) AND THE INPUT

*; A~~ OUTPUT ANALOC SECTIONS. THESE CAN BE ADDED BV EDITING THE FILE

* *; MANUALLY. WITH CARE IT IS POSSIBLE TO AYOID THIS EDITING STEP AND CREATE

*; THE FIHAL SOURCE CODE FILE HERE.
•

Introduction

1-19

Introduction SPAC20 Compiler

1-20

*GRAPH STEP ; JUST OUT OF CURIOSITY LET'S LOOK AT THE STEP RESPONSE

STEP ! "-................ " "' A ,

1 Ol~S
'~O(t
'40'5
S~10

8415
7no
7425
6no
6435
S~4(1

5445
4'50
4455
3%1
346i-
2'71
24:'6
1'81
1486
9~1

496

-' .

---'

, -- --" -- --'

, __ ,

AI1PISEC ! " " " " A ••••• " !

*
'" •

0.0000 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.0052

.; RISE TI"E IS ABOUT A "ILLISECOND AND FINAL A"PLITUDE IS ABOUT ONE THIRD.
•
.; OF OUR TOTAL SCALE FACTOR 2**15 (ABOUT 32K).

•
.EYALUATE 2*.15 J ABOUT 32K
3.2767984*10 .. 4

; THAT'S ALL FOR TODAY

Introduction

CHAPTER 2
LANGUAGE ELEMENTS

The SP AC20 software provides you with an easy-to-use English language command
set for controlling SPAC20 execution in a variety of interactive functions.
Commands are keyed in one line at a time,' each ending with a carriage-return, and
are more fully discussed in Chapter 3. The current chapter deals with the more
elemental components of the Compiler language, the building blocks out of which
expressions and commands are later created.

An example of one complete SP AC20 command is shown in Figure 2-1. This
command is made up of separate tokens or mnemonic codes (character
strings): DEFINE, POLE, etc. Each of these tokens provides a particular element
of information necessary to inform the SP AC20 Compiler of the specific action to
be taken. Table 2-1 defines the function of each of these tokens. Every SP AC20
command is composed of one or more such tokens.

DEFINE POLE12=-10, 250, TS

Figure 2-1. Example of a DEFINE Command 121533-44

Table 2-1. Token Functions in the Above Command

Token Number

1

2

3

4

5,6

7

8

9

10

Name

DEFINE

POLE

12

=

-10

,

250

,

TS

Function

Command keyword; causes definition of some
object, in this case a pole

Object keyword; names a type of object to be dealt
with in this command

Constant token; used here as the label of the pole
being defined

Operator token; indicates creation or replacement
of the object to its left using the values given to its
right

Unary operator and constant token; denotes
decimal negative ten

Punctuation token; separates other tokens, here
-10 and 250 and TS

Constant token; denotes decimal two hundred fifty

Punctuation token as above

Modifier token; indicates which plane (of three) is to
contain the pole or zero (Le., sampled S-plane TS as
opposed to either CONTINUOUS or sampled
Z-plane Z.)

2-1

Language Elements SP AC20 Compiler

2-2

This command defines a sampled pole, labeled 12, atX-Y coordinates (-10), (250)
in TS (the sampled S-plane whose sample rate you would have set earlier in a
separate command).

Thus, theSP AC20 command language is composed of a character set and
vocabulary of mnemonic tokens. The character set is used to construct mnemonics
and, in turn, the mnemonic tokens are used to construct SP AC20 commands.

Character Set

The valid characters in the SP AC20 command language include upper- and lower­
case alphabetic characters A through Z and the set of digits 0 through 9. The space
serves to indicate the end of a token, and carriage-returns or line-feeds are used for
delimiting (ending) command input lines. The question mark [?], at-sign [@],
underline [_], and dollar sign [$] are also valid in user-defined names.

Other valid characters are the ASCII (American Standard Characters for
Information Interchange) algebraic operators [+] and [-] (binary and unary),
asterisk [*], slash [I], relational operators [=,<,>,]' ampersand [&], semicolon [;],
period [.], parentheses [(,)] and comma [,]. Special characters listed below are valid
in certain contexts. All other characters are ignored unless occurring within
comments or strings, as discussed below. ESCape interrupts processing and is not
legal within a command.

Alphabetic characters are:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

Numeric characters are:

01 23456789 ABC D E F (l a s t six 0 n l y allowed ash e x ad e c i ma l dig its)

Special characters are:

+ - > = < $ 1&) • (, I ; ? * _@ : %

This character set is used to construct the vocabulary that constitutes the command
language. The special characters, explained briefly below, are discussed more exten­
sively where they are directly relevant, e.g~, in user names or expressions.

Special Character Usage

A semicolon that is not included in a string (defined below) causes the semicolon and
the rest of the current input line to be treated as a comment. Blank lines are allowed
and ignored, i.e., lines containing only a carriage-return (CR), a line-feed (LF), or
both (CRLF). Ampersands outside of comments or strings permit input command
lines (Chapter 3) to be continued on the next input line. The other special characters
above have meaning in numeric expressions, discussed later in this chapter and in
Chapter 9. An example of a comment is

DEFINE POLE 8 = 0,100; at 100 Hz

The special characters [@, _, and?] are allowed in user names (Chapter 3), as in
@POLE_12 or ?WHICH_INCREMENT. Dollar signs embedded within user­
names or constants are ignored but echoed as input, providing visual separation as
in the name FIL TERONEGAIN.

SP AC20 Compiler Language Elements

Tokens

A token in SPAC20 command language is roughly equivalent to a "word" in the
English language. It consists of a string of alphanumeric or special characters,
sometimes augmented by the one-character prefix (period) that serVes to identify
user-symbols. -

All SPAC20 mnemonics are referred to as tokens or special tokens. Tokens
encompass identifiers, strings, keywords, and numeric constants (integer and
floating point). Special tokens include relational operators, arithmetic operators,
logic operators, and punctuation.

The following special-character sequences are tokens in the SP AC20 command
language:

+ - = > • < ,) * (/ <= >= <> **

Example:

.A+.B PI>= <'X+ .Y/HPI) (SIN(2*PI*.FREQ»**2

Their uses as operators and punctuation are discussed further in later sections on
arithmetic and logical expressions.

Identifiers

You create an identifier as a sequence of alphanumeric characters, at-signs, question
marks, and underlines. The first character of an identifier must not be a digit. (or
dollar sign). Only the first 31 characters of an identifier or constant are significant,
and additional characters are ignored.

Strings

A string is a sequence of characters preceded by an apostrophe (') and extending to
the next apostrophe. Any character, printing or non-printing, is allowed in a string.
A doubled apostrophe embedded in a string denotes the use of one apostrophe as
part of that string, rather than the end of the string itself.

Examples:

I Thi sis a st ri ng of 33 characters'

W R IT E 'T his s t r i n 9 0 f 54 c h a r act e r s get sse n t tot he con sol e . I

, T his 56- c h a r act e r s t r i n 9 i s n ' I t c omp lex, don' I t you a 9 r e e? '

(When a macro is invoked (called) with an actual-parameter that includes a comma
or a quote, the entire parameter must be sent as a string, i.e. preceded and followed
by a quote, and the quotes within must be doubled [see Chapter 9])

2-3

Language Elements SP AC20 Compiler

2-4

Keywords

The SP AC20 Compiler recognizes a fixed list of predefined tokens called keywords,
divided loosely into four classes: commands, objects, modifiers, and
constants/operators/functions. Most of these have short abbreviations, and none
are checked for spelling beyond the first 3 characters. Here is a partial list of
keywords:

Commands Objects Modifiers Constants, Operators, Functions
(Note 1)

APPend AGAin *MSQe AT HPI MASK COS ACOS
CODe *BOUnds PERror AUTo PI SIN ASIN
COUnt *ERRor PHAse BY TPI TAN ATAN
DEFine FSCale POLe THRough EXP LOG
DISplay GAin PZ TO + SQR
EVAluate GERror STEp ON ABS
EXit GREf SYMbol OFF MOD
GRAph GROup TS Z
HELp IMPulse UBOund
HOLd *INSt XSlze
INClude LBOund YSCale
LiSt MACro YSlze
MOVe *MAGain ZERo
OGRaph *MERror
PUT
REMove
WRite

(The complete list, including definitions, appears in Appendix B.)

Note 1: If you enter any object name as a command,. the current value(s) will be
displayed. The underlined words may be read or written (changed); the other objects
either require additional keywords (discussed in later chapters) to manipulate them,
or are functions computed by SP AC20, or are read-only (indicated by a single
asterisk to their left).

* read-only.

The table below shows a different view of these keywords.

Scalars Non-Scalars

XSIZE LBOUND

Changeable
YSIZE UBOUND
TS FSCALE

GREF

ERROR AGAIN
INST GAIN
MAGAIN GERROR

Non- MSQE PHASE
Changeable MERROR GROUP

STEP
IMPULSE

SP AC20 Compiler Language Elements
J

Scalars have single numeric values. Non-scalars have either multiple numeric values,
like GAIN and PHASE, or non-numeric values, like GREF and LBOUND. The
scalars comprise a category of keywords usable in expressions as well as in display
commands: keyword references. This category is discussed further later in this
chapter, and used in the examples of Chapter 10 and 11.

Examples:

TS=1/13020
GREF = 1 AT 450; reference gal n; s 1 dB at 450 Hz
lBOUND = 10 AT 500,20 AT 1500; lower bound on ga;n;s 10 dB at 500 Hz
; rising l;nearly;ndBaga;nsta logfscaleto20dBat1500Hz (see
; Chapter 5)

In the command

MOVE POLE 12 BY .DELTA_REAl, .DElTA_IMAG

MOVE is the command keyword, POLE is an object keyword, and BY is a modifier
keyword. The token" 12", a constant, is seen by context as a label identifying which
pole is to be moved. The tokens .DEL T A_REAL and .DEL T A_IMAG are
recognized as user-defined symbols by the presence of the leading period.

The scalar keywords are called keyword references. They are used to display, or
access in expressions, all of the scalar numeric-valued system variables. They are
used in three ways in SP AC20 Compiler commands:

• When one appears in an expression, the value used or displayed is the contents
of the referenced object at the time the expression is evaluated.

• When one appears alone for display, its current contents are displayed.

• When one appears on the left side of "=", indicating a change, the contents of
the referenced object are set to the current value of the expression on the right
side of the "=". If the value on the right represents an illegal value for the
referenced object, an error is reported instead. For example, TS=-3 would
result in an error because a negative sampling-interval is meaningless.

Keyword Brief Description
Reference

TS Sample time (in seconds) for
poles and zeros in TS plane

XSIZE Width of console display
screen

YSIZE Height of console display
screen

MAGAIN Maximum AGAIN (absolute
gain) considered over the
frequencies on FSCALE

MSQE Mean square error in gain as
compared to gain bounds,
considered over the frequen­
cies on FSCALE

MERROR Maximum absolute error in
gain as compared to gain
bounds, considered over the
frequencies on FSCALE

INST Number of AS2920
instructions generated by
most recently entered CODE
command

ERROR Signed error in multiplier
from last CODE command

Read/Write Status Integer/Floating Point

Both Positive floating point

Both 12 <= integer <= 79

Both 4 <= integer <= 25

Read-only Positive floating point

Read-only Positive floating point

Read-only Positive floating point

• Read-only Positive integer

Read-only Floating pOint

2-5

Language Elements SP AC20 Compiler

2-6

TS has initial value o. This value cannot be legally entered from the keyboard, and
thus indicates that you have not yet specified an actual value. TS must be assigned a
value before it is used, that is before any sampled (in TS or Z- planes) poles or zeros
are created. An error will also be issued if it has not been assigned a value when it is
needed in any other context, e.g., in calculating a filter response like IMPULSE or
STEP, or when turning HOLD ON (see Chapter 5).

User Names
--..0----.-< identifier}-----..

Symbolic Reference Chart 121533-08

The command language permits you to use symbolic (as opposed to numeric)
references to variables and constants through the use of these names.

Symbols you create are stored in a symbol table. One way you can create a symbol is
by using the DEFINE command, e.g.,

DEF INE • THETA_4 = 2.718281 *4*PI

(The full syntax for DEFINE appears later in this chapter.) Other methods will be
covered in later chapters. Symbols can be DEFINEd or REMOVEd from the symbol
table.

A user symbol preceded by a period is called a symbolic reference. When a symbolic
reference appears as part of a command, its value is taken from the symbol table. It
may be used anywhere such a value is valid, e.g., a floating point value may not be
used where an integer is required.

There may be intervening spaces between a period and the identifier following, but
they are not part of the symbol.

When you initialize the Intellec system with the SPAC20 module, you can restart a
prior design session. You do this by INCLUDing the file of commands and
parameters you earlier created using a PUT or APPEND command (see Chapter 8).
By typing such an INCLUDE, you can get back the symbol table used in that earlier
session (as well as certain other parameters you also sent to that file, by name or by
default as described in Chapter 8).

You can add symbols to the symbol table, or remove any or all symbols currently
stored there. The SPAC20 symbol table therefore contains symbols INCLUDEd or
DEFINEd but not yet REMOVEd.

Examples of user-defined identifiers (user-names):

.VAR123 .GAN1 .FAZ23 .VAR66 • E RR@ INS T3

.F_OF T @ P1 .FT@ZER$3 .@MYFLAG

SP AC20 Compiler Language Elements

Numeric Constants

unsigned hexadecimal constant
numeric constant 121533-06

A constant is a token that represents a fixed numeric value. The SP AC20 compiler
recognizes numeric constants, including floating point constants, as well as the
system constants named above. A numeric constant is assumed decimal unless it
carries an explicit suffix of H (for hexadecimal) or B (for binary). An explicit suffix
of D means decimal. If a constant contains characters invalid in the designated
number base, it will be flagged as an error.

Examples of valid numeric constants:

12AH
120
1011011B
0.1111$1111$1111B

'12A' is valid in hexadecimal
'12' is valid in decimal
'1011011' is valid in binary
dollar signs are ignored

Examples of invalid numeric constants:

12AF Hexadecimal digits used
without an H suffix, hence
invalid in the default (decimal)
interpretation.

2.71828
31.4159
A.2CFH
.001B

121533-06

12AO Here the final 0 could be a
suffix but the A is not a decimal
digit. If hexadecimal is intend­
ed, a final H is necessary.

unsigned decimal constant 121533-06

101A2B

2AOGH

1 • B
13.

'A' and '2' are not valid binary
digits. If hexadecimal is intend­
ed, a final H is necessary.

'G' is not a valid hexadecimal
digit.

[~~I
o-r[&

E.4C

Needs to be 1.0B or 1. BH
May not end with point
Needs suffix H

unsigned binary constant 121533-06

All numeric values are stored internally as Intel-standard-format single precision
floating point numbers, positive or negative, ranging in magnitude from
1.2* 10**-38 to 3.4* 10**+38. They have mantissas with 24-bit precision. Manual
number 9800452, entitled 808018085 Floating Point Library, discusses this standard
format.

A numeric constant may appear as (or contain) a point followed by a fractional part.
(It may not end with a point only.) However, a leading zero is needed in the case of a
hexadecimal constant like .FFH, which would otherwise be interpreted as a symbolic
reference whose value is to be taken from the symbol table. Constants like O.FFH or
.2FFH will not be interpreted as symbols.

Dollar signs ($) are allowed within numbers and are ignored.

2-7

Language Elements SP AC20 Compiler

2-8

Arithmetic Expressions

1 [g=j
•

..

..

(primary ~

(**) ~(*

~(I

~(MOD

..

An integer-expression is an arithmetic-expression which
evaluates to an integer.

Arithmetic Expression

)-. (MASK)

)-.

)-.

121533-07

An arithmetic expression is a construct of numeric-valued operands and operators
that evaluates to a numeric-value. (The fully general definition of expressions is not
needed until Chapter 9, where it appears.)

The SP AC20 Compiler evaluates expressions in a left-to-right scan modified by
operator precedence, following an algebraic sequence in the form:

operand [operat.or operand] ...

Operators and operands are explained below. Examples of arithmetic expressions
include

5+7 .AVAR1*.AVAR2 (.BVAR1+.CVAR5)/(.AVAR1+.AVAR2~7)

Primaries are a restricted set of expressions, whose charts appear later in this
chapter.

Operators

Operators are used in expressions and in commands. A summary of SP AC20
operators is shown below. The binary (arithmetic) operators are listed in their group
order of precedence from highest precedence to lowest, i.e., ** has highest
precedence, MOD, *, and / have equal precedence higher than + or -, which have
equal precedence. MASK, which gives bitwise conjunction of two quantities, has
lowest precedence. When several operators of the same precedence appear in an
expression, they are evaluated left to right. Expressions in parentheses are evaluated
first, before any external operators are applied.

SP AC20 Compiler Language Elements

Type Operator Interpretation

Precedence () Controls order of evaluation
Binary (arithmetic)

, MOD

same precedence ~

"

same precedence { :

MASK

Unary-op +

Operands

Exponentiation

Remainder

EXAMPLES: 5 MOD 3 = 2;
10 MOD 3 = 1;
15 MOD3 = 0

Multiplication

Division

Addition

Subtraction

Bitwise AND

EXAMPLES: 1.011B MASK .1B = O.OB
1.011B MASK .111B = 0.011B

single positive quantity

single negative quantity

Operands are numeric values, and have the general forms shown below. These are
the "primaries," which are allowed as restricted expressions in later discussions of
SPAC20 commands.

[unary-op] numeric constant

symbolic reference

keyword reference

function(expression)

Examples

+4, -PI, HPI, 2.71

.ALPHA, .BETA_1

TS, XSIZE

SIN(45/PI), SOR(.XVAR)

(expressions) (EXP(-.A* .TIME)*SIN(2*PI* .FRE01)

frequency response function GAIN(60), PHASE(.25ITS)

coordinate (p/z-expression) REAL (POLE 12), IMAG (ZERO 9)

The functions referred to above are a familiar group: sine, cosine, tangent, arcsine,
arccosine, arctangent, square root, absolute value, and the natural powers and logs
(to the base e = 2.718281. ..). They may appear anywhere a floating point value is
appropriate. They are evaluated, in a left to right scan of the complete expression,
subject to the precedence hierarchy explained above. Their arguments, within
parentheses, are of course evaluated before the function is computed.

The last operand in the list above, "coordinate (p/z expression)," represents a set of
four functions: REAL, IMAG, RADIUS, ANGLE. These return the real or
imaginary coordinate of a pole or zero defined in the S-plane, or the radius or angle
of a pole or zero defined in the Z-plane. The angle is always assumed in radians.

2-9

Language Elements SP AC20 Compiler

2-10

Partitions

(
integer)

------~.~ , ____ e_x_pr_es_s_io_n ____ J~--'L----------~·~---------.t----~·
C~--T-H-R-O-UG-H-i-nt--e-x-p--'~

Partition 121533-05

Partition refers to a range of poles or zeros. It is specified in the form

arith m etic-expression

or

arithmetic-expression [THROUGH arithmetic-expression]

which will cause a co.mmand to affect all poles or zeros (whichever is specified) that
fall in the range. Each expression is evaluated to a number, and the two numbers
designate the range.

Example:

REMOVEPOLE1THROUGH13
This command will remove all poles numbered from 1 to 13 (inclusive) from the table of
currently-defined 'poles (see Chapter 4).

Charts for Primaries

The charts below show the names and forms of all items usable as primaries, i.e., the
set of restricted expressions permitted where the word "primaries" appears in a
syntax chart.

(numeric constant) *2 •

(symbolic reference) *3 •

(keyword reference) *3 .,

• (function (expression)) *2,5 •

(filter response (expression)) *5 •

((expression)) *2,9 •

(coordinate (pole/zero-expression)) *9 •

* chapter where discussed

Primaries 121533-04

SP AC20 Compiler Language Elements

< TS J---.

(XSIZE J---.
(YSIZE)---.

(MAGAIN)---.

~

(MSOE)---.

(MERROR)---.

(INST)---.

(ERROR)---.

Keyword Reference 121533-08

--..0----..< identifier "}----.

Symbolic Reference 121533-08

~(SIN J---.
(ASIN J---.
(COS J------.
(ACOS J------.
(TAN J------.

~

(ATAN J---.
(EXP J------.
(LOG J---.
(ABS J---.

~(SOR J---.
EXPonentiation and LOGarithms
to the base e ~ 2.718281

Functions 121533-28

2-11

Language Elements

(ANGLE)-----.

(RADIUS }----.

2-12

frequency~
response

(GAIN)----..

(AGAIN }----.

(PHASE }----.

----. (GROUP)----..

Filter Responses

[
0-
0-

Expression

Coordinate (Pole/Zero Expression)

SPAC20 Compiler

121533-09

121533-26

121533-43

SP AC20 Compiler Language Elements

numeric constant

system constant
unsigned decimal constant

unsigned hexadecimal constant

unsigned binary constant 121533-06

2-13

CHAPTER 3
INTRODUCTION TO SIMPLE

COMMANDS

The SP AC20 capabilities described in the Preface are reflected in the Compiler
commands, constructed from the elemental units discussed in Chapter 2. The
SPAC20 Compiler accepts as input both simple and compound commands. Simple
commands are discussed in Chapters 3 through 8. Compound commands use
sequences of simple commands, combined with control commands which determine
the flow of control, i.e., branching and looping. Compound commands are
discussed in Chapter 9.

This chapter describes the structure of commands and the procedure for typing them
in for execution. It then introduces the simplest commands: those which define,
change, or display the values of symbolic objects.

Entering and Editing Command Lines at the Console

The SP AC20 Compiler displays an asterisk prompt (*) at the left margin when it is
ready to accept a command from the console.

You enter commands (one or more tokens) through the keyboard, terminating each
with a carriage return [CR] (or a line feed [LF]). The system then executes the
command.

Tokens in the command are separated by blanks unless the construct requires
another form of separator. For example, tokens in a list are separated by commas;
in this case, blanks may be inserted for clarity but are not required.

An input line may include comments. A semicolon (;) must precede the comments.
If the input line contains any portion of a command, this must precede the
semicolon, for characters in a comment are not interpreted by the Compiler and are
not stored internally. The main use of comments is to document a design or code
session while it is in progress. This is particularly useful when executing compound
commands or running the Compiler under the ISIS-II SUBMIT facility.

ISIS-II limits input lines to 120 characters maximum. Commands longer than this
can be broken up into more than one input line by entering an ampersand (&) just
prior to the line terminator. (The & must not be contained in a comment or string.)
The system acknowledges continued lines by prompting with two asterisks (**).
Characters between the ampersand and the line terminator are ignored, and the
ampersand is treated as a space.

You can use ISIS-II editing capabilities to correct errors in the current input line.
Once a line terminator (carriage return or line feed) has been entered, that line can
no longer be edited.

The line-editing characters are as follows:

Characters

RUBOUT

Results

Deletes last character entered in current input line·. The deleted
character is echoed immediately. (However, in the latest versions
of ISIS-II the cursor backs up over the offending character, deleting
it from view.) The RUBOUT function can be repeated, deleting one
character each time it is pressed.

3-1

Introduction to Simple Commands SP AC20 Compiler

•

3-2

CTRL X Deletes entire current input line.

CTRL R Displays entire input line as entered so far. This is useful after a
RUBOUT, to review which characters have been deleted.

ESC Cancels entire command being entered or executed.

CTRL P Inputs next character literally.

CTRL S Stops display temporarily.

CTRL Q Continues display interrupted by CTRL S.

Carriage Terminates input line or command line; if command, begins
Return processing.

line Feed Terminates input line or command line; if command, begins
processing.

Setting or Changing Symbol Values: Equal Sign,
DEFINE, REMOVE

The Change Commands

(TS =) '4 ..

(XSIZE =) '6 •
~(expression) •

() '6
YSIZE =

(symbolic reference =) '3 •

Lc ,expression

C ___ FS_C_A_LE_= ___) ... --'6"-----.~IC expression, expression)}--r--------->-!-~-+_--~

t '---_/

C
·(expression, expression

(YSCALE =)1-__ '6::..--...

------- C AUTO r--t •

C __ G_R_E_F _= ___) ... -....;'5'-----. C expression AT expression) ... ------------..... 1

~I
[

C_UBO_UND_= --r~c("p""~"ATe.p""~") I
('BOUND =)-- • Lo-J--G------J

, chapter where discussed

The Change Commands

•

121533-02

When' a user-name preceded by a period appears in a command, it is called a
symbolic reference, The value of any symbolic reference or any writeable keyword
reference may be changed by entering the reference to be changed on the left side of
an equal sign (=), followed by the new value on the right side. If the keyword
reference i~ read-only, as mentioned in Chapter 2, you get an error.

•

SP AC20 Compiler Introduction to Simple Commands

Examples:

TS=1/13020
.ALPHA=4.4

• BET A_1 = EX P (• ALP HAl T S) i = 2. 718281 * * (4.4/13020)

• BET A 2 = - • BET A_1 * EX P (2 * • ALP H A)

• ERR$SAVE = 0.5

.ORIG POLE 1 REAL = 0

.ORIG POLE_1_IMAG=100

(The examples above assume that the symbolic references used (e.g., .ALPHA) are
already defined, as discussed in the next section. Otherwise these change commands
would be rejected by the Compiler as errors.)

x S I Z E = 55 i 9 rap h col urnn 5 i 5 e e C hap t e r 6

YSIZE=22 irows

UBOUND = 500 AT 1500 idB at Hz (Chapter 5)

FSCALE=100,500,1500,4500 iinHertz (Chapter6)

The DEFINE Command for Symbols

--'C DEFINE rOC identifier J-.&CexpreSSionr

The DEFINE Command for Symbols 121533-11

The DEFINE command places the symbol you supply into the SPAC20 Compiler's
symbol table, and associates with it the floating point value of the expression you
give with it. This symbol table value remains fixed until you issue a change
command. Symbolic integers are recognized when used where needed (e.g., as pole
labels) despite being stored as floating point values. If the symbol already exists, you
get an error. (However, you may change the value of an existing symbol by the
change command, as above.)

Examples:

DEFINE .GAIN POLE_ONE=GAIN(60)

DEFINE .POLE_TWO GAIN=2.34

.GAIN POLE_ONE=0.78

DEFINE .RADIUS POLE 8=RADIUS (P 8)

DEFINE .ANGLE_POLE 8=TPI * .FREQ*TS
for l ate r use a 5 t ernp 0 r a r y 5 tor age for
pole8coordinates, zplane.

3-3

Introduction to Simple Commands SP AC20 Compiler

3-4

The REMOVE Command for Symbols

0-< ;dentltl.,) l
t 0

The REMOVE Command for Symbols 121533-12

The REMOVE command keyword followed by a symbol in the table causes that
symbol to be deleted from the table. REMOVE may also be followed by a list of
symbols, separated by commas, or the object keyword SYMBOLS, which causes all
symbols to be deleted from the table. This does not, of course, affect system-defined
keywords.

REMOVE .GAIN POLE_ONE

REMOVE .POlE_TWO_GAIN

REMOVE .RADIUS_POLE_8, .ANGLE_POLE_8

REMOVE SYMBOLS

Displaying Object Values

The current value defined for keyword and symbolic references may be displayed by
entering the reference as a command; i.e., followed immediately by a line
terminator. Its value will be shown on the next line.

Entering the keyword SYMBOLS as a command causes every symbol in the symbol
table to be displayed with its associated numeric value.

The EVALUATE command displays the decimal value of the expression you enter.
This command can be used as a keyboard calculator to compute the value of any
arbitrary expression. For example,

EVALUATE TPI

will display the value 6.2831852.

SP AC20 Compiler Introduction to Simple Commands

(keyword reference) '2

(symbolic reference) "
'3 ..

(SYMBOLS)
*3

" "

(FREQ-response)

r((expression)

~
" *5

(TIME-response)
'5

lIE

~[
(POLE r
(ZERO r

r(partition

~
I

II
*4

~ PZ :> *4
II

(GREF)
*5 ..

.. ~

(FSCALE)
*6

lIE

(YSCALE)
'6

II

(LBOUND)
*5

II

(UBOUND)
*5 ..

(BOUNDS)
*5 ..

(CODE)
*7 ..

~ EVALUATE expression) *3

~ DISPLAY filename) lIE
*8

II

(DIR MACRO) *9

(MACRO) II:
*9

II

~c,--_ma_cronam_e ---,r!
~---------~~~.~----------

* chapter where discussed

Display Commands 121533-03

3-5

CHAPTER 4
POLE AND ZERO HANDLING

Planes and Coordinates For Poles and Zeros in
DEFINE, MOVE, REMOVE Commands

When you define the location of a pole or zero, you may do so in one of three ways:

• in the Z-plane, giving its radius and angle (in radians),

• in the S-plane,

• or as a Z-plane pole or zero which is defined by an equivalent S-plane location
using the matched Z transform. The sampled S-plane specification is TS, as
described in the next section.

The Compiler maintains a table of all poles or zeros currently defined. Continuous
filter sections are presumed to be implemented outside the 2920 processor, and if no
plane is specified, CONTINUOUS is assumed. Being able to combine sampled and
continuous sections allows you to evaluate the effect of external anti-aliasing filters.

Sampled poles and zeros are created or moved in the S- or Z-plane, using the
predefined units and coordinates specific to that plane. This means if the plane
specified is Z, the coordinates you give are used as the radius and angle (in radians)
which locate that pole or zero in p'olar coordinates.

If the plane specified is not Z, then the Cartesian coordinates you give are used as
the real and imaginary part of that pole or zero. S-plane units correspond to Hertz.

Sampled S-plane poles or zeros are actually mapped to the Z-plane during calcula­
tion, using the matched Z-transform, i.e., a pole or zero at x + jy on the S-plane is
transferred to a pole or zero at e2rrTS(x + jy) on the Z-plane, where TS represents the
sample interval in seconds. In polar coordinates, this Z:.plane location is (e2rrTSx,
21lTSy).

NOTE

One consequence of choosing the TS plane is that the frequency at which a
pole or zero is defined is fixed and independent of the sampling interval.
Doubling the sample rate has no effect on the frequency. Different
sampling rates will, however, cause different geometric coordinates when
such a pole or zero is mapped to the Z-plane, and different 2920 code to im­
plement the filter.

Conversely, defining a pole or zero in the Z-plane fixes the geometry, i.e.,
the radius and angle. The frequency, however, depends on the sample rate.
Doubling the rate (halving the interval) doubles the frequency represented
by the fixed polar coordinates.

For example, suppose POLE 1 in Z has polar coordinates 1.00, PII4, with
the sample interval set at 115000 seconds. ·This implies a frequency for
POLE 1 of 5000/8, or 625 Hz. If the sample interval is halved to 1110000,
the geometry of the pole in the Z-plane is unchanged, but its frequency
doubles to 1250 Hz. An equivalent pole specified in the TS plane keeps the
same frequency regardless of sample interval.

4-1

Pole and Zero Handling SP AC20 Compiler

4-2

Thus the three possible terms used for specifying the plane in a DEFINE (or MOVE)
command are CONTINUOUS, TS, and Z. If no plane is given, then the default (or,
for MOVE, a prior specification of plane) is used. Further, the pair of expressions
used in DEFINE (or MOVE) indicate the coordinates of (or increment for) the pole
or zero. These expressions will be taken to mean either real part and imaginary part
(for S-plane), or radius part and angle part (Z-plane). The charts and discussions
below will show all of these forms.

The DEFINE Command For Poles and Zeros

.... (DEFINE r[c _P

_

O

_

L

_

E -~(Int ".)-.(- ., •• ,.) • •

(ZERO)--1 ------- - .' ~@J

The DEFINE Command for Poles and Zeros 121533-13

As shown in the syntax chart above, defining a pole or zero begins with the
command keyword DEFINE and the appropriate object, POLE or ZERO. The next
token is usually the number to be used as the label for this pole or zero. However,
the token may in fact be any valid arithmetic expression as discussed in Chapter 2.
(For this use as a label, the expression must evaluate to an integer.)

Following this "label", an equal sign is required, leading to the two expressions
which define the location of the pole or zero, separated by a comma. Usually these
will simply be numbers, i.e., the real/imaginary or radius/angle coordinates specify­
ing the desired location. However, any legal expression may be entered (see Chapters
2 and 9). As mentioned above, angles are always taken as being in radians. They
must be greater than -PI and not greater than +PI. Radii must be non-negative.

The syntax chart next indicates that no further tokens are required, but you have the
option of specifying the plane. To do so, you must enter a comma after the second
coordinate-expression, and then pick one of the three choices shown.

Up to 20 poles or zeros can exist at one time, e.g., 12 poles and 8 zeros or 5 poles and
15 zeros, etc. Their numeric labels are arbitrary, that is, you may define them using
whatever numbers you choose, in any order, e.g., 1,5,88, 13,46,22. The number­
ing scheme has no effect on later calculations, but you may wish to assign mean­
ingful labels, particularly if you wish to manipulate them later with compound
commands.

NOTE

The only effects of a chosen numbering scheme will appear when a partition
is used, as discussed in Chapter 2, or if you need to see the individual effect
of each pole or zero, which will be discussed in Chapter 5. (As a brief parti­
tion example, if you defined poles in the above order and later displayed the
first few by typing POLES 1 THROUGH 20, only poles 1,5, and 13 would
be printed out.)

SPAC20 Compiler Pole and Zero Handling

Each complex pole or zero represents a conjugate pair so that the filter can be
realized. That is, during calculation a conjugate pole or zero is assumed to exist for
each pole or zero with a nonzero imaginary part.

Conversely, a continuous pole or zero is considered real if its imaginary coordinate
is zero. A sampled pole or zero is considered real if, after mapping to the Z-plane, its
imaginary coordinate is zero. Thus a pole at -5,O.5/TS,TS is considered real
because, at half the sample rate, it maps onto the real axis in the Z-plane.

Poles and zeros are numbered independently and uniquely. You may not DEFINE a
new pole or zero numbered the same as an existing object of the same type. That is,
if POLE 1 exists and ZERO 1 does not, you may say DEFINE ZERO I but not
DEFINE POLE 1. (However, you can MOVE or REMOVE it as shown below.)

Examples:

DEFINE POLE 1 = 0,100, TS

DEFINEZER01 =-3, 5, TS

DEFINEPOLE2=-10,450

DEFINEZER02=-16,0

DEFINEPOLE .GAMMA=0.67, PI/6, Z
; the s e 2 e x amp L e s ass ume t hat • GAM M A has bee n pre vi 0 us L y de fin e d
; as an integer va Lue.
DEFINEZERO .GAMMA=0.55, PI, Z

(Poles and zeros defined in the Z-plane must have radius >= 0 and an angle which
conforms to -PI < angle <= PI)

The REMOVE Command For Poles and Zeros

........ (REMOVE r-[((..... -:E-O:-~-:: L ., "~.,,
• • [.)--' (p"lilioo r-

Remove Command for Poles and Zeros 121533-14

To remove one or more poles or zeros from the table, you must enter REMOVE
followed by one of three object keywords. PZ means all poles and all zeros are to be
removed, and no further tokens are needed for this command. If POLE or ZERO is
entered with no further tokens, then all poles (or zeros) are removed. If there is a
next token, it represents the first pole or zero to be removed. If the command is
terminated here, only that pole or zero is removed.

It is also possible to remove a range of poles and zeros by using a partition, i.e., by
following the first pole or zero with the token THROUGH and the label of the last
pole or zero to be expunged. Usually the token identifying the intended pole or zero
is simply an integer, but it is valid to use any legal arithmetic expression to specify
which one is meant. (In this context, however, the expressions must evaluate to an
integer. The terms partition and arithmetic expression are discussed in Chapter 2.)

4-3

Pole and Zero Handling SP AC20 Compiler

Each time REMOVE is used, a message is displayed giving the number of poles or
zeros actually deleted. Once a pole or zero has been removed, its numeric label can
be reused in defining a new pole or zero.

REMOVE POLE 1

REMOVE ZERO 1

REMOVE POLE 2 THROUGH 10

REMOVE ZERO 2 THROUGH 5

REMOVE PZ

REMOVE POLES; spe II i ng is not checked beyond 3 characters

REM ZERoes

The MOVE Command

(BY r ''___.."t-----+----------.

-{ MOVE r['"---' (partition r1
[(PZ)t--------+ ..

6
(--ex-p,-ex-p~)~-+~----------------~

4-4

The MOVE Command 121533-15

The MOVE command contains similarities to both the DEFINE and REMOVE
commands. Its objects are the same as those for REMOVE, and its modifying
phrases are similar in form to those for DEFINE.

After entering the command keyword MOVE, you must choose one of the three
object keywords shown. PZ means all poles and zeros are to be moved using the
modifying phrases which follow. The object POLE (or ZERO) allows you to specify
one or a range of poles or zeros to be moved, using a partition. If POLE (or ZERO)
is entered with no further tokens, then all poles (or zeros) are moved as directed.

The modifying phrase

BY expression, expression

specifies an increment for each of the coordinates originally defined for this pole or
zero, in the units appropriate to that plane. That is, if this pole or zero is continuous
or sampled in TS, these increments are to the real and imaginary parts respectively.
If the original pole or zero specification was in Z, then these increments are to the
radius and angle, respectively. The new Z-plane position must satisfy RADIUS >=
0, and -PI< angle <= PI.

A cautionary note is needed here, because some moves could create unexpected
conditions. If the coordinates of a complex pole or zero are moved in such a way as
to make the imaginary component zero, then what were two poles (or zeros) have
become one. (If two real poles are desired at the new coordinates, you must then
define one new real pole there.) Similarly, if a move causes the imaginary part of a
real pole or zero to become non-zero, what was one pole or zero has become two.

SP AC20 Compiler Pole and Zero Handling

The use of the modifier TO permits two broad possibilities. It can cause a change of
plane, directly, for one or more poles or zeros, e.g.,

TO TS

TO Z

It also can specify a new position, with or without a change of plane, for one or
more poles or zeros. In the latter case, the expressions used designate final location
(not increments as they do in the BY modifier), e.g.,

TO 20,450, TS

TO 0.75, PI/4, Z

TO -15,0

(In this last case, please note that when you don't specify a plane for the move
command, the original plane of definition is used. This differs from the define
command for poles and zeros in that omitting a plane there makes the default
CONTINUOUS.) Each time MOVE is used, a message is displayed giving the
number of poles or zeros actually moved.

Examples:

MOVE POLES 1 THROUGH 3 TO TS

MOVEZER02BYO.875,0.125

MOVEPZTOZ

MOVEPOlE5toO.625, PI/2, Z

Changing from a Z-plane to any other involves an application of the matched-Z
transform or its inverse. This transform is not one-to-one. When its inverse is used,
the value with imaginary part closest to zero is selected from the set of possible
inverses. This in effect selects the lowest frequency that could be aliased by the filter.

4-5

CHAPTER 5
FUNCTIONS OF FILTER RESPONSE

The behavior of the filter defined by the existing poles and zeros can be investigated
with respect to its gain, phase, and deviation from gain bounds. Group delay and
time response can also be calculated and listed or graphed. The keywords used to
specify reference and boundary levels and those for displaying the response are listed
in Table 5-1.

Table 5-1. Keywords for Gain Reference, Gain Boundaries, and
Response Display

AGAIN G F

BOUNDS

GAIN G F

GERROR G F

GREF (initial value 0 AT 0, i.e., 0 dB at DC)

GROUP G F

IMPULSE G

LBOUND G (initially -1000000 AT 1)

MAGAIN

MERROR

MSQE

PHASE G F

STEP G

UBOUND G (initially +1000000 AT 1)

When one of the above keywords is entered as a command, its current value is
displayed. If it is a multivalued object, e.g., GAIN, a list is displayed. Those marked
with a G are graphable (all but BOUNDS, GREF, MAGAIN, MSQE, and
MERROR. Those marked with an F can act as functions with frequency arguments,
e.g., GAIN(145) will display the gain at 145 Hz due to all currently defined poles and
zeros.

The filter responses GAIN, AGAIN, GERROR, PHASE, and GROUP are
functions of frequency. STEP and IMPULSE are functions of time. The response is
calculated only for a specific range of frequencies or time. This range is determined
by the setting of FSCALE, for frequency responses. XSIZE and TS determine the
range for time responses (see Chapter 6).

GAIN and GREF

GAIN refers· to a normalized-gain in decibels due to all existing poles and zeros. The
normalization factor is the current GREF setting, namely a specified gain at a
specified frequency. You set GREF by typing

GREF =expression ATexpression

in which the first expression is the reference gain at the frequency given by the
second expression. The frequency specified by the second expression need not be
contained in the range of frequencies you set up as FSCALE. The initial GREF
setting is 0 AT 0, which is to say, the gain at DC is 0 dB.

5-1

Functions of Filter Response SP AC20 Compiler

5-2

The GREF frequency must have nonzero absolute gain in order to compute the
decibel GAIN. If AGAIN is zero at the reference frequency, an error message will be
issued.

When multiple poles exist, to see the gain for each individual pole you must remove
them one at a time and compare the resulting filter responses with the earlier values.
You can achieve this comparison by graphs or lists, or by defining symbols for
storing each intermediate value.

AGAIN and MAGAIN

AGAIN refers to the absolute-gain, expressed as a mUltiplier, again due to all
existing poles and zeros. This absolute gain can only be meaningfully determined for
sampled poles and zeros. If nonsampled poles and zeros exist, the AGAIN will
include a contribution for each such pole or zero, which is arbitrarily scaled.
AGAIN is useful only when all currently-defined poles and zeros are sampled. For
the case of continuous poles and zeros, GAIN is much more meaningful than
AGAIN.

The maximum absolute gain, MAGAIN, taken over the 64 or so frequencies
contained in FSCALE, is accessible as a read-only keyword reference. This quantity
can be displayed by name or used in expressions, and is useful in determining the
scaling factors necessary between successive stages of the filter.

NOTE
MAGAIN is only the maximum AGAIN over the frequencies in FSCALE,
and not the true maximum AGAIN. The true maximum AGAIN may occur
between points in FSCALE or outside the FSCALE range entirely. It is
therefore necessary to choose FSCALE appropriately to capture the
frequency range of interest, or manipulate FSCALE to focus in on that
range, such that seeing a smooth curve will correctly imply there are no
hidden spikes.

Upper and Lower Bounds

The bounds are piecewise linear functions of frequency, with possible regions of
"don't care," meaning any gain is acceptable therein. The region boundaries are
specified as

expressionAT expression

meaning a gain of the first expression at the frequency determined by the second
expression. Up to 10 lower bounds and 10 upper bounds may be specified.

The initial lower bound, LBOUND, is -1000000 AT 1; the initial upper bound,
UBOUND, is 1000000 AT 1. For all practical purposes these bounds amount to a
"don't care" condition. You can use similar settings to obtain this condition at any
frequency.

You set the bounds by typing one or more frequencies, separated by commas, after
the word LBOUJ'lD or UBOUND and an equal sign, e.g.,

lBOUND = 1 AT5000,1.50AT6500,3.30AT13000

SP AC20 Compiler Functions of Filter Response

This means the minimum acceptable gain at 5000 Hz is 1 decibel, rising to 1.50
decibels at 6500 Hz, rising to 3.30 decibels at 13000 Hz. The frequency scale is
logarithmic. The gain between these frequencies is a straight line, viewed on this log
scale, connecting the specified gains at each point. The frequencies must be greater
than 0 and given in increasing order, e.g., specifying

UBO=1 ATO

or

lBO=1 ATSOOO, SAT4000

is illegal.

If the bounds are separated by two commas instead of one, this specifies a don't care
region, in which any gain is acceptable, between the two given frequencies. (That is,
the deviation of the gain is zero regardless of how high or low the gain is.) Similarly,
the regions below the first frequency specified and above the last frequency are don't
cares. If LBOUND and UBOUND are both specified, LBOUND must be less than
UBOUND (or you get an error message). Bounds frequencies need not lie within the
range of frequencies determined by FSCALE.

NOTE

"Don't care" conditions permit the CO D E command (discussed in Chapter 7)
complete latitude in frequency responses and pole/zero repositioning.

Other Filter Responses and Keywords:
GERROR, MSQE, MERROR, PHASE, STEP, IMPULSE

GERROR refers to the deviation of the gain response from the bounds you set. A
positive GERROR indicates a gain exceeding the upper bound set for that
frequency. A negative value of GERROR means a gain less than the lower bound for
that frequency.

The mean square error, MSQE, and the maximum absolute error, MERROR, are
accessible as keyword references. The former is the mean square deviation from the
bounds taken over the frequencies in FSCALE. The latter is the maximum absolute
deviation from the bounds, taken over the same frequencies. (In order to see the
exact frequency at which this maximum occurred, you must graph the error as
described in Chapter 6.)

As with MAGAIN, note that MERROR is only the maximum error over the
frequencies in FSCALE, and not the true maximum error. The true maximum error
may occur between points in FSCALE or outside the FSCALE range entirely. It is
therefore necessary to choose FSCALE appropriately to capture the frequency range
of interest, or manipulate FSCALE to focus in on that range, such that seeing a
smooth curve will correctly imply there are no hidden spikes.

Thus MSQE and MERROR are functions of the existing poles and zeros, the
bounds, and FSCALE. MAGAIN is a function of the existing poles and zeros and
FSCALE.

PHASE refers to the phase delay response of the filter, in units of radians. GROUP
refers to the group delay of the filter in seconds, i.e., the negative of the derivative of
the phase with respect to the frequency. (See Appendices H and I for formulas,
graphs, and a brief review of these functions.)

5-3

Functions of Filter Response SP AC20 Compiler

5-4

STEP refers to the filter output in response to a unit up-step at time zero.

IMPULSE refers to the filter output in response to a unit up-impulse at time zero.

Since continuous convolutions are implemented by approximating them with
discrete convolutions, the accuracy of these time responses is dependent on the
setting of TS and the location of continuous poles and zeros.

In particular, those defined at high frequencies (relative to TS) will contribute
noticeably to this inaccuracy. If there are any continuous poles or zeros, then the
magnitude of the impulse functions is defined as lITS. Otherwise, the impulse is 1.
All time responses for continuous poles and zeros are normalized so that the final
output level to a step input matches the gain at DC. However, for sampled poles and
zeros, these responses are not normalized.

Except for STEP and IMPULSE, these filter responses may also be used as func­
tions, computing the indicated response at a frequency specified as an expression in­
side parentheses following the filter response keyword. The value of this expression
need not lie within the range of the FSCALE (or the time scale determined by TS and
XSIZE). These functions can be displayed or used in expressions, interactively or in
compound commands (Chapter 9.)

Response Keyword Computation Uses

GREF FSCALE State of HOLD BOUNDS Time Scale

GAIN X X X

AGAIN X X

GERROR X X X X

PHASE X X

GROUP X X

STEP X

IMPULSE X

HOLD

In typical 2920 applications, after a signal is sampled and filtered, it is usually kept
in a sample-and-hold buffer until digital-to-analog conversion and output takes
place. There is an implicit distortion due to this sampling, holding, and converting
which amounts to a high-frequency droop cut off at lITS. GAIN attenuates by
about 4 dB at half the sample rate. Below half the sample rate this distortion
approaches zero. The attenuation increases above half the sample rate.

The correction for this distortion is to multiply AGAIN by Isin(x)/xl, where x is half
the digital frequency, i.e.,

ISIN(X)/XI where X=TS*FREQ*PI

The effect of this on GAIN is to add 20*loglsin(x)/xl (to the base 10). PHASE is
corrected by adding X. GROUP is corrected by subtracting TS/2. No other filter
responses are affected.

The command HOLD OFF removes these corrective contributions.

HOLD is initially OFF, and in this state the SPAC20 Compiler accurately describes
analog filters. Most 2920 filter designers should have HOLD ON when examining
the responses of the filter as a whole, and HOLD OFF when examining AGAIN to
determine inter-stage signal scaling (see Appendix J).

SCALES

CHAPTER 6
GRAPHICS CAPABILITY

All of the graphs and most of the calculations performed by the SP AC20 Compiler
depend on a few key independent variables that you set early in any interactive
session. The frequency and time scales are two of these. The former is FSCALE.
The time scale depends on the values of TS and XSIZE, as explained below.
YSCALE controls the values on the vertical scale of each graph. XSIZE and YSIZE
specify the size of the CRT screen.

Frequency and Time Scales

The frequency scale (FSCALE) serves to format the graphic display and to restrict
the domain of interest, i.e., the frequency range for which filter responses are
computed and graphed.

The frequency response of the filter is only calculated for the approximately 64
frequencies in FSCALE, as are GERROR, MERROR, MAGAIN, and MSQE. The
automatic initial FSCALE setting is

FSCALE = 10,10000

meaning 10 to 10,000 Hz. New settings are in the form

FSCALE = expression, expression, ...

permitting N expressions, (up to 10) of increasing positive values, separated by
commas.

The effect of these is to divide the graphics area of the screen (determined by XSIZE
and YSIZE) as evenly as possible into N-l partitions, with the N equally spaced
points given the indicated expression values. Then, within each partition, the
frequency scale (in Hertz) is filled in logarithmically. This enables you to achieve a
nearly linear scale or to emphasize certain frequency regions of interest. Note,
however, that zero is not allowed on FSCALE, and the frequencies must be in
ascending order.

Examples:

FSCALE = 500,5000

FSCALE = 500,1500,2500,5000

FSCALE=500,1000,1S00,2000,2S00,3000,3S00,4000,4S00,SOO0

In the case of the time scale, the domain you create via TS and XSIZE impacts the
amount of computation time needed to calculate the STEP or IMPULSE response.
Time responses are computed for a number of sample intervals. The initial default
value is 69. The number depends on XSIZE, e.g., if XSIZE>= 79, then 69 sample
intervals are used, from 0 to 68*TS.

6-1

Graphics Capability SP AC20 Compiler

6-2

The time scale is in units of seconds, and its automatic setting is from 0 to the
product of TS and the plot size, i.e., XSIZE-I0 up to a maximum of 69. Thus if the
screen width XSIZE has been set to 60, and the TS sample interval is set at 1110000,
then the time scale will run from 0 to (60-10)/10000, or from 0 to .005 seconds. TS
must be nonzero, i.e., you must set it to a sampling rate meaningful to your
problem.

XSIZE, YSIZE, and YSCALE

You set the system variables XSIZE and YSIZE to determine the size of the graphics
area. Since three horizontal rows are dedicated to labeling the graph's X (horizontal)
axis, YSIZE-3 rows are left for graphics (a minimum of 1 up to a maximum of 22).
Ten columns are needed for labeling the Y (vertical) axis, leaving XSIZE-I0 columns
for graphics (from 2 up to 69 maximum).

XSIZE also determines the number of frequencies for which the gain of the filter is
calculated, and thus also affects the calculation of GERROR, MERROR,
MAGAIN, and MSQE.

The last remaining scale you set is named YSCALE, referring to the vertical scale
(dependent variables). It serves to format the graphic displays obtained with the
GRAPH or OGRAPH commands explained later in this chapter. If you specify
YSCALE = AUTO, this means each curve plotted by the SP AC20 Compiler should
entirely fill the screen, using a vertical scale selected by the Compiler to achieve this
purpose.

If the numbers necessary to represent the range in YSCALE require more than 10
columns, the scale will appear as percentages instead of the actual YSCALE
numbers. If this appears on your graphs, you can display the actual range used by
typing YSCALE as a command, i.e., followed by a carriage-return. If the original
specification was AUTO, then this will display the word AUTO followed by the
actual numbers used. This situation can occur also if you specify more than 10 digits
in a range for YSCALE, or if the range is so narrow as to require more than 10
columns, e.g., '10 TO 10.000001'.

If you specify two expressions, as in setting FSCALE, this means the bottom of tht;!
display should correspond to the value of the first expression, and the top of the
display should correspond to the value of the second expression. These numbers
need not be in increasing order. Thus if you specify

YSCALE=O,-40

the GAIN graph will look upside down, like an attenuation graph.

Values exceeding the range specified by YSCALE are explicitly indicated on the
graph by an asterisk, denoting saturation. The vertical resolution is actually the
vertical range divided by 3*(YSIZE-3), since three different characters are used to
represent three different levels on each console line.

SP AC20 Compiler Graphics Capability

GRAPH and OGRAPH

(LBOUND r-
(UBOUND r-

GRAPH and OGRAPH Commands 121533-25

When used with a valid object, e.g., GRAPH GAIN, the commands GRAPH and
OGRAPH fill a buffer area with characters whose positions represent the values of
the object. The proper positions are selected within the graphics area you have
defined using XSIZE and YSIZE (or the default area, which is the full screen).

The characters used for the latest curve are the period, dash, and apostrophe (. - '),
so that effective vertical resolution is three times that of a single letter. When
OGRAPH is used, the plot also contains the previous curve graphed, but with the
characters all replaced with the character "+", to distinguish the older curve. The
scale appropriate to the newer curve is displayed, but the physical positions of the
old graph on the screen remain unchanged.

If GRAPH is used alone, with no object, the latest graph displayed is redisplayed
regardless of intervening changes in any state variables. This can be used to recover a
display which has scrolled off the console screen.

Hard-copies of the graphics output and all other console activity can be obtained by
defining a list file or device using the LIST command (see Chapter 8). No special
graphics capabilities are required of the device.

6-3

CHAPTER 7
CODE GENERATION FOR THE

INTEL 2920 PROCESSOR

The Code Command and Constraints

After manipulating the pole and zero positions to get the frequency and time
responses of the filter to match the characteristics you want, you may create AS2920
assembly language code for each pole or zero (or conjugate pair) with one CODE
command per object.

These commands perform compilation, generating as many AS2920 instructions as
are needed to correspond either to a pole or zero orto an equation. (Such equations
are useful in propagating and scaling the signal passed between filter stages.) The
code generated by the most recent CODE command is maintained in a code buffer
which can be displayed (by simply entering CODE), or sent to a file (Chapter 8).

The code will automatically contain comments to identify the location and label of
the pole or zero, or to specify the value of the multiplier in the case of an equation.
Comments usually show the current contents of the destination operand in each
instruction, in terms of the constant and variable names supplied in the CODE
command. The AS2920 Assembler ignores these comments.

In general, the code generated will not implement the requested object exactly.
Instead, the code is generated with respect to the constraints explained in this
chapter: INST, ERROR, MSQE, MERROR, and PERROR. The keyword INST
shows the number of instructions compiled. For an equation, the accuracy of the
resultant compilation is reflected in the value of the keyword ERROR.

For a pole or zero, the accuracy of the code is reflected in the values of MSQE and
MERROR, if referenced immediately thereafter. If there are intervening commands,
MSQE and MERROR may be rewritten to reflect them. The imprecision of compila­
tion for a pole or zero, i.e., the object's "movement," is explained below under
PERROR. The "error", therefore, is also reflected in how far the actual object (as
compiled) differs from its original position.

If the constraint is too severe and cannot be achieved in the number of 2920 instruc­
tions requested, then the Compiler selects that set of generated code which
minimizes the constraint you gave, within that number of instructions. If the code
object is a multiplication when this happens,ERROR is given the minimum error
(signed) achievable in the number of instructions given by the value of INST.
Interrupting the Compiler with an ESCape key while it is generating code causes the
best yet code to be entered into the CODE buffer, and then halting generation.

The elements of the chart below are discussed in subsequent paragraphs.

exp)J--+l--------II.,~I

~dent = prim *ident)

0-r<'NST<"P~t ·
Code Command 121533-16

7-1

Code Generation for the 2920 Processor SP AC20 Compiler

7-2

Coding a Single Pole or Zero

As the chart above indicates, there are four constraints for use on coding poles or
zeros. Each is explained below. The command begins with the word CODE,
followed by the desired object and its label, leading to one of th~ four constraints, as
follows:

MSQE < expressi on

or

MERROR < express i on

or

PERROR < expressi on_1, expressi on_2

Of these three, at most one may be chosen for any given CODE command. If none
appears, the default PERROR<O,O is used, resulting in minimum movement from
the original coordinates of the pole or zero (see below). If one .of these three
constraints does appear, it may optionally be followed by a comma and the program
size constraint, as follows,

, INST < expressi on

which restricts the number of instructions generated to fewer than the value of the
expression given. The INST phrase may appear alone, i.e., without a comma and
without any other constraint. If it is not supplied, a default limit of 20 is
automatically used.

Using the constraint

MSQE <expression

means that the gain of the coded filter is to deviate from the bounds by less than the
value of the expression given. Further, this must be achieved in fewer than 20
instructions (or the number you supply in the INST phrase).

Examples:

CODE POLE 1 MSQE < 0.2

CODE ZER09MSQE <0.02, INST <6

U sing the constraint

MERROR < express ion

means that the maximum absolute error of the coded filter's gain is to be kept below
the value of the expression given, also within the instruction limit supplied.
("Error" means deviation from the gain bounds you supplied in earlier commands.)

Examples:

CODE POLE 1 MERROR < 0.2

CODEZER09MERROR<0.02,INST<17

U sing the constraint

PERROR < expressi on_1, expressi on_2

SP AC20 Compiler Code Generation for the 2920 Processor

means that there is a limit on the movement (explained below) of the coded pole or
zero from the original position of the defined pole or zero. That is, the difference of
their first coordinates must be less than expression_I, and the difference of their
second coordinates must be less than expression_2. Once again, this must be
achieved within the INST constraint, i.e., in fewer instructions than the limit
supplied.

This constraint requires some further explanation. PERROR is needed because the
assembly language program generated by the CODE command implements a filter
stage corresponding to a pole or zero at a slightly different location than the
specified original pole or zero. After the compilation has been performed, the pole
or zero is moved to the location matching the code generated. (However, this move
will never change' a complex conjugate pole [or zero] pair to a single real pole [or
zero], nor a real into a complex conjugate pair.)

PERROR constrains the amount of that movement, in each coordinate, in the home
plane (TS or Z) of the pole or zero. For poles or zeros defined in TS, these
coordinate increments will be <real,imaginary> in Hertz. For those in Z, the
increments will be <radius, angle (in radians».

MSQE and MERROR will always contain values which reflect the actual position of
currently existing poles and zeros, i.e., including this implicit move. PERROR
cannot be displayed. The original position of the coded pole or zero is lost. Thus you
may wish to save it using a PUT or APPEND command (des,cribed in Chapter 8) or
by saving its coordinates in the symbol table, e.g.,

.ORIG POLE 3 REAL = REAL (POLE 3)

.ORIG POLE_3_IMAG = IMAG (POLE 3)

Examples:

CODEPOLE1 PERROR<4.2, 2

CODEZER09PERROR<4.02, 0.06, INST<9

In any case if the MSQE, MERROR, or PERROR constraint cannot be met within
the INST constraint, the Compiler selects that set of code which minimizes the
specified constraint in the given number of instructions. In the case of PERROR,
what is minimized is the variance from your specified constraints on coordinate
changes, as follows:

Suppose, for POLE 1 at XORIG, YORIG, you give constraints XCON and
YCON, as in

CODE POLE 1 PERROR < XCON, YCON

then call the actual pole position XTR Y, YTR Y (for each set of code attempted
by the Compiler).

This represents a movement of XMOV, YMOV, i.e.,

I XTRY - XORIG 1= XMOV
I YTRY - YORIG 1= YMOV

Using these definitions, then, the Compiler selects that set of code which
minimizes

(XMOV-XCON)**2 + (YMOV-YCON)**2

7-3

Code Generation for the 2920 Processor SP AC20 Compiler

7-4

Minima and Error Constraints

None of the minimizations above are necessarily true minima. True minima would
require trying every possible code sequence, because the constraints MSQE and
MERROR, which depend on the bounds you supply, can in fact behave quite non­
linearly. The SPAC20 Compiler's algorithms for selecting the approximate
minimum work best when the error bounds are "reasonable". Therefore, it is
required that before coding is begun, the MSQE or MERROR for the gain curve
must already meet your intended constraint. Thus if the code generated corresponds
exactly to the specified pole or zero, the MSQE or MERROR constraint will be
satisfied.

Coding Equations

The second form of the CODE command generates AS2920 code for calculations of
the form YY=C*XX or YY=C*YY or YY=C*XX+YY, where C is a constant and
XX, YY are variable names. The INST constraint can be used as above. Code is
produced which minimizes the error in the multiplier (C) as much as possible in the
number of instructions specified (or in 20, the default).

The other constraint allowed (besides INST) is

ERROR < expression

(which may be followed by a comma and an INST constraint). This specifies that the
error in approximating C must be less than the value of the given expression, within
the number of instructions desired. After the coding is completed, the value of
ERROR shows the absolute value of error in the multiplier. The variable names used
to request this coding will appear in the generated code.

In the absence of an explicit ERROR constraint, the default is
ERROR«multiplier/2**16), i.e., create the least ERROR possible (out to 16 binary
places) within the INST constraint. If the given error constraint cannot be met,
ERROR is minimized.

Examples:

CODE YVAR = 1.58 *XVAR

COD E Z V A R = 0 .692475 * AV A R INS T < 6

CODE XVAR = 2.3975 * YVAR ERROR < 0.0025

CODE YVAR = 0.11825 * XVAR + YVAR ERROR<O. 00125, INST < 5

Note

YY = YY + C*XX is not acceptable. The equation must be requested in the
form YY = C*XX + YY

In general, it takes no more than one 2920 instruction per 2 significant bits in the
specified constant. Thus 24-bit accuracy could be theoretically obtained in at most
12 instructions. However, the SP AC20 algorithms are not substantially effective
beyond 16 bits, so that in most cases an INST constraint of less than 8 is sufficient.
Greater accuracies can be obtained through techniques explained in Appendices H
and J. Code generated for equations of the form YY=C*XX is the most efficient,
achieving approximately 3 significant bits in the constant per instruction generated.

The code generated for a multiplication by a constant C will not overflow as long as
the multiplicand is less than I/C in absolute value. If the multiplicand is greater
than I/C in absolute value, an overflow will occur on the last instruction (and
possibly earlier), yielding a result of ± I.

CHAPTER 8
FILE HANDLING

This chapter covers the commands EXIT, LIST, WRITE, DISPLAY, APPEND,
PUT, and INCLUDE. Certain features of the operating system on INTELLEC
computers are used by these commands.

(DISPLAYr~
(LIST r (
(INCLUDE r

) pathname •

(PUT r
~ (Pathname .)

~(r PZ

---+- (BOUNDS r --..

(SYMBOLS r
~(CODE r
~(MACROSr

• 0
(string r '-·1

(WRITE)t------------, ... [I t
. (<< OO"rr

File Commands 121533-24

Interface with ISIS-II

The Intel Systems Implementation Supervisor (ISIS-II) is the diskette operating
system for the Intellec Microcomputer Development System. The Signal Processing
Applications Compiler runs under ISIS-II control, and can call upon ISIS-II for file
management functions. To execute the SPAC20 Compiler, you enter the characters
SPAC20 (possibly preceded by a drivename, e.g., :Fl :SPAC20) after an ISIS-II
prompt character (hyphen "-" or angle bracket ">").

The Compiler signs on with a message

ISIS-II 2920 SIGNAL PROCESSING APPLICATIONS COMPILER, V1.0 - MATH BOARD VERSION

*

indicating by the asterisk prompt that it is ready to receive commands.

8-1

File Handling

8-2

SPAC20 Compiler

With the exception of EXIT and WRITE, the commands in this chapter are used to
reference files or devices via ISIS-II pathnames. For diskette files, the format of
pathname is as follows (a path name may not contain blanks):

: d r i ve : f i len arne

e.g., :F1:MYFILE,

:FO:YOFILE,

FILE79

The entry :drive: stands for one of the references to INTELLEC system diskette
drives. FO is assumed when drive is omitted. See the ISIS-II User's Guide for further
detailed data.

The entry filename must follow the colon after drive without any intervening spaces.
A filename has the following components:

identifier[.extension]

The above identifier is a name you assign, and is one to six alphanumeric characters.
The extension is an optional part of the filename, consisting of one to three
alphanumeric characters preceded by a single period. The extension must be used if
it is present in the directory listing of the file on the diskette.

If used, the extension follows the identifier without any spaces. Some extensions
(e.g., .BAK, .LST) are assigned by system processors; others can be assigned as you
like. An extension provides a second level of file identification; it can be used to
distinguish different versions of the same program, or to give supplemental infor­
mation about the file (e.g., author, date, version).

For devices other than diskette files, the format of path name is as follows:

:device:

The following devices are commonly accessed in SPAC20 Compiler commands:

:DEVICE:

:LP:
:HP:
:TO:
:CO:
:CI:
:HR:

OUTPUT DEVICE

Line Printer
High-speed tape punch
Teletypewriter printer
Console display
Console Input
Paper tape reader

For more information on ISIS-II filenames and device codes, refer to the ISIS-II
User's Guide.

EXIT

The EXIT command keyword returns control from the SP AC20 Compiler to ISIS­
II. It is as simple as it looks. Any files opened during the session are closed. After the
line terminator has been entered following the command EXIT, access is no longer
possible to any prior commands, parameters, macros, calculations, and graphs or
lists which have not been saved into diskette files or onto hard-copy listings.

SP AC20 Compiler

LIST

All output is normally sent to the console device (:CO:). The LIST command saves a
duplicate record of the console input and output during a SPAC20 Compiler
session, induding high-volume data such as graphs or listings, on a hard-copy device
or on a diskette file.

Only one LIST device or file other than the console can be specified (active) at a
given time. Devices that can be specified, if present, are a line printer (:LP:), high­
speed"paper tape punch (:HP:) or a teletypewriter printer (:TO:).

Instead of a hard-copy device, a diskette file can be specified. If so specified, the file
is opened when the LIST command is invoked. If a file of that name already exists,
its directory entry is deleted and the name will thereafter refer to the list file being
generated.

When LIST is in effect (with a device or file other than :CO:), all commands input
(induding comments) and all output from the SP AC20 Compiler (induding system
prompts, commands, graphs, and error messages) are sent both to the named device
or file and to the console display.

To restore output to the console only (no other device), use the command LIST
:CO:.

Examples:

LIST :LP:
LIST :CO:

LIST :F1:DESIGN.930
LIST :TO:

WRITE

· 0
1 [C string r-~

~C WRITE)t-----------,7~ C eXpreSSiOn~

Write Command 121533-45

The command WRITE puts out a single line of output to the LIST file and the
console. It evaluates any expression you supply prior to output. In interactive
sessions you would rarely use it, since the EVALUATE command provides the same
function without the file output effect. WRITE is normally used within compound
commands to provide periodic reporting on an automatic iterative process you have
designed to test or generate special capabilities (see Chapters 9 through 11).

Examples:

WRITE 'Process now beginning step', .STEPNO, 'of section', .SECTNO

WRITE 'Stage number 3 of filter number 1, device MOM'

File Handling

8-3

File Handling

8-4

SP AC20 Compiler

Display Command

The DISPLAY command copies the contents of the named file to the console. It
enables you to examine the results of an earlier PUT or APPEND command without
invoking execution of the results. The INCLUDE command, explained later in this
chapter, does invoke execution.

Examples:

DISPLAY:F3:PARAM.FIL

DISPLAY CODFIL.POL

DIS MYMACR.OS1

DIS PUT30K

Here, as in general, ESCape can be used to abort the command, terminating the
display and returning you to the command level (asterisk prompt) of the Compiler.

One scenario for the use of this command is this: after saving all poles and zeros
(using a put or append command as discussed below) and altering some of them,
possibly via CODE commands, the display command permits a review of the earlier
positions without disturbing the current conditions. The display can be interrupted
with control-S (holding down the control key while pressing S), and restarted using
control-Q. However, it is not possible to display a file that is currently open, e.g., a
LIST file in use recording this session, or the current MAC.TMP (see Chapter 9).

APPEN D Command

APPEND adds the specified (or default) objects described below to the end of the
named file, if it exists. If it does not, the command creates it. Most file objects (other
than CODE, strings, or expressions) cause SPAC20 commands to be output to the
file. These commands will recreate the stated objects when invoked (executed) by a
subsequent INCLUDE command. PZ, BOUNDS, SYMBOLS, and MACROS will
cause the restoration, respectively, of all poles and zeros, bounds, user symbols, and
macros.

If no file object is supplied, commands are generated to permit restoring as much as
possible of the state of this session. In particular, if you re-invoke the Compiler and
include the file that you just PUT, your state will be restored exactly. This means, in
addition to PZ, BOUNDS, SYMBOLS, and MACROS, commands to restore TS,
XSIZE, YSIZE, GREF, HOLD, FSCALE, and YSCALE.

The file object CODE refers to the current contents of the code buffer, i.e., the
results of the last CODE command. By APPENDing the results of successive such
commands, the user can build up a file containing the assembly language code
implementing the successive stages of a filter.

A list of expressions and strings can be used as a file object, resulting in the ASCII
text of the strings and the decimal values of the evaluated expressions to be output
on one line to the file. This can be used to insert comments in the growing assembly
language file, or to insert assembly language code to perform scaling and propaga­
tion between filter stages.

SP AC20 Compiler

Examples:

APPEND :F2:PZALL PZ

APPEND POLE9.COD CODE

APPEND NEW.MAC MACROS

APPEND :F1:PARAMS.ALL

APPEND FILTER.CUR PZ, SYM

APPLATEST.COD CODE, '; aboveisforstage3, fiLter2, 11/15/79'

[
C PUT r

- (APPENDr~ (pathname J
~C r PZ

~(BOUNDS r --..

(SYMBOLS r
~(CODE r
--..(MACROS r

.. 0
(string)-.

""""·1

Put! Append Command 121533-46

PUT Command

PUT operates identically to APPEND with a single difference: if the file named in
the command already exists, PUT overwrites it with the supplied (or default) file
objects. (A message is sent to the console if such an overwrite occurs.) In general,
APPEND should be used in all cases save where you are absolutely sure you will not
regret destroying any possible earlier file of the same name. When in doubt, you can
use the DISPLAY command to check if the file exists, and if so, what's in it.

Examples:

PUT :F2:PZALL PZ

PUT POLE9.COD CdDE

PUT NEW.MAC MACROS

PUT :F1:PARAMS.ALL

PUT : F 1 : 0 L 0 F I L ' , ; t his 0 v e r w r i t e san d emp tie sou t 0 L 0 F I L

PUT FILT07.COD CODE ';above ',INST,' instructions impLement
stage', .STAGE, " fi Lter 7'

; (assuming .STAGE was earLier defined to LabeL the stage
current ly coded)

File Handling

8-5

File Handling

8-6

SP AC20 Compiler

INCLUDE Command

This command enables you to restore some or all of the key parameters/states/tools
from a prior interactive session for use during this one. When you issue the
command

INC L U 0 Epa t h n arne

(where pathname is usually a diskette filename, e.g., CODFIL.922 or
:Fl :MACROS.921) the commands stored in that file are executed as if you had
typed them directly from the console. Thus, if in your earlier session you had issued
the command

APPENDNEWFIL.921 PZ

then when you INCLUDE NEWFIL.921 in this session, all poles and zeros defined
at the time of the earlier command will be reestablished by DEFINE POLE
commands for this session. This is true for any of the parameter-related file-objects
for APPEND or PUT (i.e., INCLUDE should not be used for files of CODE,
strings, or expressions). If the earlier PUT or APPEND had no specified file object,
then all relevant parameters would h~ve been saved. Your current INCLUDE
command would then cause the restoration of all poles, zeros, bounds, scales,
symbols, macros, sample rate, reference gain, hold state, and screen-size parameters
to their earlier values, effectively restarting that session.

The INCLUDE command is particularly useful when building a library of macros
(Chapter 9). Macros can be created but not edited interactively. If your macros
contain more than two or three commands, you may wish to create the macros using
an editor (e.g., CREDIT) in the form of an INCLUDE-able file.

The SP AC20 Signal Processing Applications Compiler can also be run under
SUBMIT (see ISIS manual for detailed instructions). However, macros to be used
under SUBMIT should be INCLUDEd rather than defined in-line in the submit-file.
This preserves the distinction between the formal parameters of the submit
command and the formal parameters for macro definition.

CHAPTER 9
ADVANCED (COMPOUND)

COMMAND SYNTAX

This chapter discusses macros and the other compound commands: IF, REPEAT,
and COUNT. Compound commands consist of sequences of simple commands to
be executed in order as described below.

When commands are being input as part of compound commands, the normal
asterisk prompt character is preceded by a period, to indicate the compound
construction. If the compound command is itself embedded within another
compound command, then the commands in its subordinate command block will
have two periods before the prompt, and so on for deeper levels of nested compound
commands.

Some typing or syntax errors cause only the current line to be rejected. This is
indicated by the Compiler repeating the same sequence of prompt-characters that
began the last line, e.g., " .. *". However, more serious errors cause rejection of the
entire compound command, forcing you to retype the command from the very
beginning. This is indicated by a single asterisk (*).

Macros

A macro is a named block of commands, executed in sequence (or containing
branches, if you so specify) when the macro name is typed as a command (invoked).
The block of commands is also called the macro body.

The sequence is stored as you define it. This saves you repetitive entry of every
command in the sequence, and also permits you to capture conditional logic
(instruction branches or loops) only once, for potentially frequent use in future
sessions. The macros you define are saved on a temporary file on diskette, but this
file is not saved when you exit. If you use the commands

PUT fi Lename MACROS

or

APPEND fi Lename MACROS

prior to exiting, then the macros may be INCLUDEd for use during any future
session.

The macro commands described in this chapter allow you to perform the following
functions:

• Define a macro, specifying the macro name, the command block, and any
formal parameters (points in the macro definition where text can be replaced by
actual parameters when the macro is invoked)

• Invoke (call) a macro by name, giving actual parameters to substitute for chosen
formals (if any), beginning the execution of the defined command block

• Display the text of any macro as it was defined

• Display the names of all macros currently defined

• Remove one or more macros from those currently defined

9-1

Advanced (Compound) Command Syntax SP AC20 Compiler

9-2

Defining and Invoking Macros

---'(OEFINE MACRO)--.~dentifier cr)J---r---...... ----r-........ Er

Define Command for Macros 121533-19

[
I limited token ~I-----L...----I

I string ~

Invoking Macros 121533-20

Each macro used in any design/test session must be defined during that session.
Once defined, it may be invoked as often as desired, even within other macros.

The definition can occur either by typing it or by bringing it in from a file via the
INCLUDE command (see Chapter 8). The macro name must be an identifier as
described in Chapter 2, and must not duplicate any other macro name used in this
session. (Thus you may not redefine a macro name, nor include it from a file, unless
it is first removed from the macro table (directory) as described later in this chapter.)
It may, however, duplicate symbol or keyword identifiers.

The DEFINE MACRO command causes the macro name (and the block of
commands you supply) to be stored in a table of macro definitions in a temporary
ISIS-II file named MAC.TMP (on the same disk drive containing SPAC20). Upon
exit, they will not be retained. If you create new macros during this session, in
addition to any you may have INCLUDEd, then to save them for future use you
must save them as described above. Since macros cannot be edited within SPAC20,
you may wish to use the Editor to create INCLUDE files for long or complex
macros, making it easier to correct errors in typing or command constructs.

A macro definition (or removal) may not appear within any other command. This
means you may not define a macro within another macro definition sequence, nor
within any other compound command. Any other command may appear in any
compound command.

When you attempt to invoke a macro, the macro name you supply must be already
defined.

Here is a simple macro definition:

DEF INE MACRO GRAPHER
REPEAT

END
EM

MOVEPOLE1 BYO,S
OGRAPH GAIN

SP AC20 Compiler Advanced (Compound) Command Syntax

To invoke this macro and cause its command block to begin executing, you enter the
macro name preceded by a colon(:), as follows:

:GRAPHER

This will continue to move the pole by the indicated increment, and overgraph the
new gain, until you hit ESCape.

A macro definition can include commands that define user symbols and other
identifiers, such as poles or zeros, sample rates, etc. Macros that include such defini­
tions can be used to set certain initial conditions for many of your interactive
sessions. INCLUDE files can also be used for this.

A macro definition can include calls to other macros, but not to itself. If you
inadvertently create one that tries to call itself, it will expand indefinitely when it is
first invoked, without ever executing any later commands. (Press ESCape to
terminate such an infinite expansion.)

Macro calls can be nested, i.e., one macro calls another, which in turn calls another,
and so on. The level of nesting is limited only by the memory space required to
contain the macro expansions and to stack the macro calls.

When a macro is invoked, the following operations occur:

• The text of each actual parameter in the call is substituted for the corresponding
formal parameter in the definition

• The expanded command block is executed if all commands are valid as
expanded

• The macro exits. Control returns to the console (asterisk prompt), or to the next
command in sequence if the macro was invoked inside a compound command.

It is usually more efficacious to define several small macros rather than one large
one incorporating all their features. They are eaiser to type in and more likely to fit
in memory. The Chebyshev macro shown in Chapter lOis a good example of a
maxim um -sized macro.

Formal and Actual Parameters

A formal parameter marks a place in a macro definition, where text will be replaced
when the macro is invoked. A formal parameter can represent part of a token or a
field of one or more tokens. When you invoke the macro, you supply the actual text
which is to replace the formal parameter as the macro is expanded. A macro defini­
tion can contain up to ten formal parameters, each having the form:

%N

where N is a decimal digit, 0 through 9. For example, if you modify the macro
GRAPHER above to read

DEFINEMACROGRAPHER2222
REPEAT

END
EM

MOVEPOLE1 by%O, %1
OGRAPH GAIN

9-3

Advanced (Compound) Command Syntax SP AC20 Compiler

9-4

then each call to GRAPHER2222 can specify different increments for the MOVE,
e.g.,

: G RAP HER 2 2 2 2" 0, 5

:GRAPHER2222 0.5,12

and so forth.

; (then ESCape to stop execution)

; (ESC to stop)

Formal parameters can appear in the body of the macro definition in any order, and
each one can appear any number of times. This means that 0703 can be used in a
command before % 1 is used, and either can appear often or not at all. The number
implies the order in which the actual parameters will appear in the call, i.e., %0
means use the first actual parameter supplied, % 1 means use the second, %4 means
use the fifth, etc.

A string can be supplied as an actual parameter to a macro. In fact, if the parameter
contains a quote mark, a carriage-return, or a comma, the parameter must be sent as
a string, or errors will occur. (Of course, this means any embedded quote marks
must be doubled to avoid looking like the end of the string.)

The quote marks surrounding the string in the macro call (invocation) are stripped
off before the macro uses the string. If the command that uses this string, within the
macro, requires the string to have quote marks around it, then either the macro
definition must supply them or the string used in the call must have an extra set of
quotes surrounding it. This will be shown in examples below.

If an actual parameter is omitted in some call, the comma which normally would
follow that parameter must be typed anyway to retain the necessary positional order
of supplied parameters. This naturally does not apply to the actual parameter
corresponding to the last formal, which would have no comma after it. In fact, if the
omitted parameters are all at the end of the list, no extra commas are required.

Omitted parameters result in the corresponding % N being replaced by the null
string. If you supply, in the call, more actual parameters than there are defined
formals in the definition, the extra actuals are ignored.

As an example, suppose you had defined this macro:

DEF MAC BATCH
%0
%1
%2
%3

EM

This would permit you to string out, on one line,up to four commands. You could
type, for example,

:BATCH GRAPH GAIN, OGRAPH PHASE, GRAPH IMPULSE, OGRAPH STEP

If you supplied only 3 or 2 commands, the last formals would expand to the null
character and this macro will exit normally.

However, if there are any actual parameters being supplied after an omitted actual,
the extra comma mentioned above must be supplied. The examples below will
illustrate this.

SP AC20 Compiler Advanced (Compound) Command Syntax

If a formal parameter does not appear in the macro's command block, then
anything supplied in that position in the call will be ignored. For example, if your
command block never referred to 0/02, then the third parameter in the call would
always be ignored. Conversely, if the block does refer to %2 but the call does not
supply a third parameter, the null (empty) string will be supplied. The command
containing that reference to %2 must be a valid command even in the absence of an
actual parameter, or the macro will abort when that command is encountered during
expansion of the macro.

One example of such a possibility is the APPEND command:

DEF MAC SAVER
APPEND %0 %1 %2
APPEND %3 %4 %5

EM

Note that if you supply only %0 and %3, the filenames, the APPEND commands
are still valid because no object is required-the default will be used.

U sing the macro SAVER, you can now type a single line to establish (or add to) one
or two files, old or new, using the APPEND command with any combination of its
possible file-objects: PZ, BOUNDS, SYMBOLS, MACROS, CODE, strings,
and/ or expressions. One advantage to this hypothetical macro is being able to
specify two separate files.

For example, one call to SAVER could add new macros to the accumulated set of
macros, and in the same invocation put out the latest CODE to the growing file of
coded filter-stages:

:SAVER MAC.NOW, MACROS, ,CODE.NOW, CODE

Or, with parameter %4 being CODE, parameter %5 could create a comment line
identifying the filter stage or other data pertinent to this code block:

:SAVER MAC,MACROS"COD, 'CODE,', "'STAGE4of FILTER2'"
:SAVER MAC,MACROS"COD,CODE,',' 'STAGE4of FILTER2'"

The outer apostrophes around 'CODE,' are required due to the embedded comma,
which in turn is needed to separate the objects of the second APPEND. (Note also
that in order to supply the APPEND with a string in quotes, it is necessary in the
macro-call to surround the quoted string with another pair of quotes. An actual
macro parameter given with quotes has the outermost pair, i.e., the first quote and
the last, stripped off during the process of being substituted for the formal
parameter in the macro body. Also, quotes appearing within a string must be
doubled.) .

Possibly you might wish to have one file for poles and zeros and bounds
(PZ, BOUNDS) and one for SYMBOLS, MACROS:

:SAVER PZBOUN, 'PZ,', BOUND, MACSYM, MACROS, , SYMBOLS'
o 234 5

Here each actual parameter is flagged with the formal it replaces. Again, the
embedded commas are needed for valid APPEND commands, and so are put inside
quotes, to be sent as part of a string. The other commas simply separate the actual­
parameters in the macro-call.

9-5

Advanced (Compound) Command Syntax SP AC20 Compiler

9-6

More Examples:

:SAVER PZ.9, PZ, ,COO.9, '" ;thi s was for stage 4 of fi lter 5. I I I

The above macro call appends to PZ.9 all commands necessary to duplicate the
current pole/zero configuration. These commands will be executed when an
INCLUDE PZ.9 command is input. The comment '; this was for stage 4 of filter 5'
is appended to the file COD.9 by this same SAVER invocation. The two commas
after PZ reflect the absence of 0702.

If we define a new macro

DEFINE MACRO SAVCOO
APPEND %0 COD, '; thi s was for stage I, %1, 'of fi lter', %2

EM

then the following call would add the current contents of the code buffer, followed
by the same comment used in the last example:

:SAVCOOCOD.9,4,5

: S A V COD F I L E 1 , 7 ; T his per forms jus t as the e x amp l e
; abo v e but om its the f i L t ern umb e r from the C orrme nt, w hie h
; bee ome s I I t his was for s tag e 7 0 f f i l t e r I I

: S A V COD F I L E 1 , , 7; The s e bot hop era t e s i miL a r l y tot he e x amp l e s
; abo v e, but the fir s t om its the s tag e numb e r
: S A V COD F I L E 1 ; and the sec 0 n d om its bot h s tag e and f i l t e r
; numbe r s-.

Thus the comment arising from the first of the pair above will be

" ; this was for stage of filter 7"

and the comment from the last command above will be

" ; this was for stage of filter"

The comment embedded in the APPEND command (in the macro body) is used with
no identifying numbers.

The last two calls to this macro differ in omitting parameter % 1 or %2. The commas
delimiting the parameters must be typed even when a parameter will be omitted, if
there are additional desired or required parameters coming after the omitted ones.
When no such parameters are required or wanted, as in the last case, the extra
commas are not needed.

:SAVER FILE1 ,PZ, ,FILE2,COOE ;This saves poles and zeros inone
; f i lea n d cod e ina not her wit h no C orrme n t •

When you invoke the SAVER macro, you must supply the first and fourth
parameter, %0 and %3, or the APPEND commands will have no file to append to,
and this will cause the invocation to abort. If you suppy neither % 1 nor %2, the
default file-objects for the APPEND command will be assumed, which means all the

SP AC20 Compiler Advanced (Compound) Command Syntax

objects denoted by the five keywords will be saved as commands added to the end of
the file whose name you supplied as 0700. The command for this could have been
simply APPEND filename. Using SAVER, you have the option of also filing the
code, e.g.,

:SAVERPARAMS.ALL",CODFIL,CODE

Macro Expansion and Syntax Checking

The syntax and semantics of the commands in a macro block are ignored at the point
of definition; they are not determined until invocation, and may be different on each
invocation through the use of formal parameters.

When a macro is called, its definition is expanded by replacing the formal
parameters in the definition, using the text of the actual parameters in the call. If the
expanded macro contains any calls to other macros, the text of any such macro is
also expanded, forming in effect one overall block of commands. The results of
expansion are displayed at the console. Expansion continues until the last EM is
reached. If the expansion results in a set of complete, valid commands, the
commands are executed. An error results if any command is incomplete or invalid
after expansion. Examples of macro expansion and syntax checking appear in
Chapters 10 and 11.

Displaying or Removing Macros

--'~IR MACROr

Macro Directory

....... [(REMOVE MACRO)..t---1r--_____ -----.-..

(MACRO)---.

macroname:: = an identifier appearing as above in a legal
define-macro command

Remove or Dispaly Macros 121533-21

The DIR MACRO command lists the names (but not the bodies) of all macros
currently defined. Macro bodies may be displayed by typing a list of one or more
macro-names after the keyword MACRO, followed by the usual carriage-return.
Similarly, macros may be removed by typing a list of one or more macro-names
after the keywords REMOVE MACROS. If no list follows MACRO or REMOVE
MACRO, then all current macros are displayed or removed, respectively.

Examples of these commands appear in Chapters 10 and 11.

9-7

Advanced (Compound) Command Syntax SP AC20 Compiler

9-8

Controlling a Loop: REPEAT, COUNT,
WHILE, and UNTIL

[
C REPEAT)

~ (COUNT int exp

REPEAT, COUNT, WHILE, and UNTIL 121533-23

These compound commands permit the blocks of contained commands to be
executed indefinitely, a specific number of times, or conditionally. REPEAT or
COUNT commands may contain any number of conditional exits using the keyword
phrases WHILE condition-expression or UNTIL condition-expression. The
paragraphs that follow give explanations and examples of the use of these
commands and modifying phrases.

As the charts above indicate, these loop control commands begin with the word
REPEAT or the phrase COUNT integer-expression, meaning any expression which
evaluates to a positive integer quantity. This quantity is evaluated immediately and
used as the number of iterations (maximum) for the commands contained in the
command block that follows. REPEAT has no such limit. (You can use the ESCape
key to abort command processing, returning you to the Compiler.)

The command block may have in it any number of any commands except DEFINE
MACRO or REMOVE MACRO. The Compiler's awareness that you are entering
commands within a compound command is shown by the period it types at the
beginning of each such line. If a new compound command is begun as part of defin­
ing a prior compound command, a second period (and third, etc., as needed) is
typed by the Compiler to indicate the nesting. Each REPEAT or COUNT ends with
an END statement.

A macro invoked in a REPEAT or COUNT command is expanded immediately
after the macro call command is entered. Thus, a macro called· in a REPEAT or
COUNT command is expanded only once, though perhaps used repeatedly
thereafter.

If the block of commands within a compound command is to continue executing
only under certain conditions, you can use the WHILE or UNTIL clause to specify
them. This can involve a wider class of expressions than the arithmetic ones
explained in Chapter 2. The full range of legal expressions is discussed in the next
section, after which the discussion of compound commands is continued.

Relational and Boolean Expressions

Relational expressions involve a comparison of the values of two objects, using these
relational operators:

< Less than
Equal to

> Greater than
<= Less or equal
<> Not equal
>= Greater or equal

SP AC20 Compiler Advanced (Compound) Command Syntax

Relational expressions are evaluated to a FALSE or TRUE value, meaning the least
significant bit of the values is ° or 1, respectively.

Examples:

GAIN(60) < .GAIN LAST_POLE

ANGLE(POLE 1) > ANGLE(POLE 4)

.FIRST_VALUE<= .NEXT_VALUE

Boolean expressions represent combinations of TRUE and FALSE values using con­
junction (AND), disjunction (OR), negation (NOT), and exclusive-disjunction
(XOR). As an example,

X<PI AND NOT X<O

is either true or false for any given value of X. The operands for the boolean
operators can be any integer or relational expression.

Examples:

AGAIN (250) < .AGAIN LAST AND MAGAIN <300

INST<90RMSQE<147

cg:

Expression

WHILE and UNTIL (Continued)

121533-26

After the WHILE or UNTIL you place a boolean or relational-expression, which is
evaluated to a FALSE or TRUE value. (Actually, any integer-valued expression is
legal. FALSE means the lowest-order bit was a 0, TRUE, a 1.)

The WHILE clause terminates execution of the loop upon a value of FALSE; the
UNTIL clause does so upon a value of TRUE. The commands in a block continue to
b,e executed until one of these clauses causes a halt or until the count limit is reached.
Execution then continues after the END for that block.

9-9

Advanced (Compound) Command Syntax SP AC20 Compiler

9-10

In both the WHILE and UNTIL clauses, the relational-expression is evaluated each
time the clause is encountered, i.e., once per iteration. Evaluation at each iteration
involves looking up the values of any references in the expression. Thus, the result
can change with each evaluation.

This is different from the expression that follows an exterior COUNT, which is
evaluated once, the first time it is encountered. (A COUNT embedded within a
WHILE or UNTIL clause could use an expression dependent on varying variable
references. Its value would nevertheless be fixed for the block of commands under
its control.)

The use of WHILE or UNTIL is usually a matter of style or preference, since there is
always a way to convert one into the other: WHILE expression_l is equivalent to
UNTIL NOT expression_I. If the expression_l used in this "escape" clause is
false, the loop is exited as soon as this is evaluted. If the clause comes at the end of
the command block it affects, the prior commands in the block will be done once
even when the expression is false. If the clause comes first, no commands in the
block are done.

Examples:

REPEAT

GRAPH GAIN

MOVE PZ BY 0.005,0.005

END

COUNT 5

END

CODE POLE. NEXT PERROR < 1,1

APPEND FILCOD.819 CODE

APPEND FILCOD.819 1; THE ABOVE CODE WAS FOR POLE 1, .NEXT

.NEXT= .NEXT+1

(• N EXT i s ass ume d to be i nit i ali zed p rio r tot he abo vee omma n d s •)

REPEAT

GRAPH GAIN

UNTILGAIN(655) <=80

MOVEPZBY5,5

END

COUNT 5

END

WHILE .NEXT<16

CODE POLE. NEXT PERROR < 1 ,1

APPEND F I LCOD. 819 CODE

APPEND FILCOD.819 1; THE ABOVE CODE WAS FOR POLE 1, .NEXT

.NEXT= .NEXT+1

SP AC20 Compiler Advanced (Compound) Command Syntax

~(IFexp

The IF Command

) LC-TH-EN rll 0-r ,.mm,.d"

.. (?RIF expreSSion) (ELSE cr

The IF Command 121533-22

This compound command permits you to specify blocks of commands whose execu­
tion is contingent upon tests of certain values or relationships. It is a powerful
capability, making it possible to specify in advance the consequences you wish to
invoke under varying circumstances, e.g., error variances.

This command must have the IF clause and the final END. The word THEN is
optional. There may be any number of OR IF clauses, or none, and one ELSE
clause, or none. The expression following IF is evaluated to FALSE or TRUE. If it
is TRUE, the command block immediately following is executed, and subsequent
ORIF or ELSE expressions are ignored along with their associated command blocks.

If the IF expression evaluates to FALSE, the next sequential ORIF or ELSE expres­
sion is evaluated, with similar consequences: if this expression evaluates TRUE, only
its command block is executed and all other parts of the IF command are skipped. A
macro called in an IF command is expanded whether the condition in the IF or ORIF
clause that contains that call is TRUE or FALSE. Here is a simple example of an IF
command:

.VAR8=1.4142

.LIMT=1

IF. VAR8 < • LIMT THEN

EVALUATE .VAR8/PI; PI =3.1415926

ORIF .VAR8<2

EVALUATE. VAR8/HPI ; HPI = 1.707963

ORIF .VAR8<3

EVALUATE .VAR8/TPI; TPI =6.2831852

E LS E

EVALUATE .VAR8/(PI * PI)

END

This example would display the result of EVALUATE .VARS/HPI and then
terminate. The first condition is FALSE so the first potential consequence is
skipped. The second condition is true, so the second command block is executed and
the IF command terminates. The third condition is not tested, so its associated
command block is not executed despite the condition being true.

9-11

Advanced (Compound) Command Syntax SP AC20 Compiler

9-12

Another Example:

*DEF INE MACRO COMPARE

* IF%O<%1THEN

* WRITE' LESS'

* ORIF%O=%1 THEN

* WRITE 'EQUAL'

* ELSE

* WRITE 'GREATER'

* END
.*EM

This macro can later be invoked with any two actual parameters, e.g.,

* : COMPARE. VARB, • LIMT
* IF.VARB<.LIMTTHEN
* WRITE'LESS'
* ORIF.VARB=.LIMTTHEN
* WRITE'EQUAL'
* E LS E
* WRITE 'GREATER'

GREATER
* : COMPARE. LIMT, • VARB

* IF.LIMT<.VARBTHEN
* WRITE' LESS'
* ORIF.LIMT=.VARBTHEN
* WRITE 'EQUAL'
* E LS E
* WRITE 'GREATER'

LESS
* :COMPARE PI, TPI/2

* IFPI<TPI/2THEN
* WRITE' LESS'
* ORIFPI=TPI/2THEN
* WRITE 'EQUAL'
* E LS E
* WRITE 'GREATER'

EQUAL

This example displays the expansion of the macro each time, and the result of
comparing the two actual parameters. The IF IORIF IELSE blocks cause execution
of only one block, so that the output of COMPARE can only be 'LESS', 'EQUAL',
or 'GREATER'.

Nesting Compound Commands

The REPEAT, COUNT, and IF commands can be nested to provide a variety of
control structures.

Each nested compound command must have its own END. When entering a nested
command sequence, you may wish to use the keywords ENDR, ENDC, and ENDIF
to help you keep straight which command you intend to close off at that point.
Nesting levels are not checked when the command is being entered, and if an END is
omitted, the resulting error makes it necessary to enter the entire command again.
Further, even if the correct number of ENDs is supplied, their position in the
command sequence is critical to achieving your intended flow of control.

SP AC20 Compiler Advanced (Compound) Command Syntax

When entering a compound command, some syntax errors allow recovery to the
state at the last prompt. You can recognize such recovery by the ... * prompt,
indicating you are still within the definition phase of entry. Other syntax errors are
fatal, requiring you to retype the entire command. This you can recognize by the *
prompt.

Each nested REPEAT or COUNT command can contain its own exit clauses
(WHILE or UNTIL). Each such exit clause can terminate the loop that contains it,
but has no effect on any outer loops or commands.

Examples of nesting appear in Chapters 10 and 11.

9-13

CHAPTER 10
ADVANCED TECHNIQUES: FILTER

DESIGN EXAMPLES

Introduction

As Chapter 9 has illustrated, the macro capability is a powerful tool, enabling you to
define command sequences under a single name and then use that name as a new
command. There are few restrictions on these sequences, allowing very general
routines to be created. Parameters you may wish to vary from one use to the next
can be built into the sequence as formals, to be supplied at the time of use, i.e.,
macro invocation. This permits tailored sequences to be produced from the general
pattern you developed.

As with any general-purpose computer feature, the ingenuity of user-developed
applications for this macro capability cannot be fully defined or predicted. It greatly
extends the range of the signal processing Compiler language.

Examples of useful macros directly relevant to filter design comprise the main body
of this chapter. More general examples, applicable to a wider range of signal
processing requirements, appear in Chapter 11. All of these examples can be
replicated for other filters or other operations once you see the process for defining
and generating them. Their use as models is one of the main motivations for supply­
ing them, in addition to their intrinsic utility. The ones you want for immediate use
shoulde be edited from the supplied file SPAC20.MAC into a separate file to
conserve space when they are later INCLUDEd.

The first two macros' given in this chapter produce Butterworth and Chebyshev
filters based on user-supplied parameters for cut-off frequency, ripple, etc. The
Bilinear transform macro performs S to Z transformation. The last macro produces
code for the current state of an entire filter: each pole and zero, plus A to D and D to
A conversion.

These are Intel-supplied macros, and appear in the file SPAC20.MAC. They have
been checked for correct functionality, i.e., that given the right input in the correct
order, they will produce the described output.

They are, however, macros as opposed to commands. As such, the degree of error
checking is not (and cannot be) as extensive as for the basic set of built-in
commands. If the parameters supplied are not of the correct type or not in the
proper order, the results cannot be fully predicted or guaranteed; it is conceivable
that prior work could be altered or erased.

It is therefore extremely important, before using any macro, to understand its
expectations, as reflected in the nature and order of the parameters to be supplied.

10-1

Advanced Techniques: Filter Design Examples

10-2

*:~.t** BUTTERWORTH FILTER MAC'O *****
*i:iC :Fl:BUTTER.I1AC

*
*DEFINE MACRO BUTTER ;***
.• : ThiS is a BUTTERWORTH FILTER GEHERATOR for SPAC20; ***
.*
.*
*

C~lling sequence :BUTTER ORDER. Fco. LABEL where
:BUTTER CQl1s the "ACRO.

ORDER is the order of the filter
Fco is the cut-off frequenc~ in Hz

>ft.

*
>j:' LABEL is stQrting pOint for POLE nu~berjng.

*
.~ .

t. ;

· ·t

· * .
.* ['£FINE
· * C·EF I HE
* C·£FIHE

':* ['EFINE
* REPEAT

EXAMPLE

.?BUTSTART

.?BUTDElTA
?8UTIHDEX

. "BUTAHGLE

:8UTTER ',500.234
this Will genernte a BUTTERWORTH filter
of order 6. cuioff=500 Hz • producing
3 co~plex poles labeled 234.235.236

HPI) + (HPI/=<;O)
(PI/>;O
o
o

J** BEGIH THE
J** BUTTERWORTH J
;** IHITIALIZE
:** VARIABLES;

* .?8UTIHDEX = .?8UTIHDEX + 1
;** BEGIH LOOP;
:** CORRECT FOR

.* .?BUTAHGlE = .?BUTSTART - .?BUTIHDEX *
* IF .?8UTANGlE < .?8UTDELTA/4 THEN
'" .?BUTAHGlE=O

.?BUTDELTA ;* SHALL
:** .ANGLE ERROR;
i**

* ENI) J** HOW CREATE
* DEF POl(.?BUTINI)EX+~2-1) -%1*COSC?8UTAtiGLE).& THE

.*- %l*SIH(.?BUTANGLE) ;** HEXT POLE:
'" WHILE .?BUTIHDEX + 1 <= (:,0 + 1) l 2 i** COHTINUE?
* EliO 1** END OF LOOP;
* REM .?BUTAHGLE :** REMOVE ALL
* REM .?BUTIHDEX J*'" VARIABLES

.* REM .?BUTDELTA :** OF THIS MACRO;
.. 'REI1 ?8UTSTART ; **0 I SPLA'r' POLES;

.*?2 ;**EHD BUTTERWORTH

.**

.

.**

.**

** *

**.

.-EM J**"'****"'********* ..
*; \ This ~o.cro g.enerQtes a Butterworth filteor with the cutoff frequenclJ
*;~nd the order speCified. Poles Qnd zeroes Qre placed in the S plane in Q
.. ; ':'\ r c 1 e c e n t ere d Q r 0 un d th e 0 rig in. The f 0 11 0 II i n 9 ex \11'1 p lei I 1 u s t r 0. t e s how
*; I·t is invoked .. : .
* : BUT T E R 7.. 1 00 O. 0 ; c r. ate s a 7 tho r de r f i 1 t ~ r .' cut 0 f f = 1 00 0 h z

(The expans; on has b,een de leted.)

SP AC20 Compiler

SP AC20 Compiler Advanced Techniques: Filter Design Examples

PO~E 0 -222.52087,974.927'l,COHTIHUOUS
POLE 1 -623.48980.781.83148,COHTIHUOUS
POLE 2 -900.9689l.43l.883'6,CONTIHUOUS
POLE 3 m -lOOO.OOOOO,O.ooOOOOOO.COHTIHUOUS; REAL
.; ;th~ "aero expans Ion has been suppreossed here
*;the ~acro outputs the PZ< poles and zeroes) it has generated
*;Let's look at the response
.FSC=10 .. 200.400.600.800,1000,1200.1400
*Y·3C=-25.1
*GRA GAIH

Iset new frequenc~ range
;set new vertical scale

GAIN I. ! . .. ! !. .! ! ! !
1 0

- !)

- ~ :;
-1
-4 ,)
-') ~

-..;

-~ '='

- 1 :J
- 11 4
-1:2 1£.
-11 ?-
-1')

-1 (' i.
-l~.S

- 20. :)
- 21 3
-22 '3
-23 S
-25 0

L.B I HZ I. ! . .. ! .

, , '-- ,_
-.

... ! . .!! ! !
10 30 200 lOa 400 500 600 700 800 890 1000 1110 1200 1310 1400

*;The filter exhibits a "QXi"Qll~ flat response characteristic in the pass band
*; 'lS expected

*
*
01<

*
*
*

10-3

Advanced Techniques: Filter Design Examples

10-4

*
'"
'"
'"
'" '"
*r~1'I '~(lcro

*REf1 PZ
4 POLES/ZEROES RE"OVED
"'; "'''''** CHEBYSHEY F IL TE~ "AeRO "' '"

.• : A CHEBVSHEV FILTER GENERATOR FOR SPAC20 .,. ;
**

>fe: C:ALLIHG SEQUENCE :CHEB ORDER, Fco, LABEL R.F. **
*: WHERE ORDER is the order of the filter **

· "'; Fco is the cutoff' frequency in Hz **
.*; LABEL is the starting pOint for pole nUftbering **
.*: R.F. is the deSired (or o.llovo.ble) ripple f'o.ctor in dB. **
.*
· '" : :CHE8 6.500,23,0.12
· '" ,
· * j
· "': .'" .

thiS Will generate 0. CHEBYSHEV fi Iter of order **
6, cutoff=500,o.nd a peQk-to-peak ripple of' 0.12 **
dB, producing 3 coftplex poles lo.beled 23.24,25 **

.• OEF .?CHEBYRIP=lO •• (ABS(~3)/I0>-1

.*I>H .?SINHP=l
· *ClEF . ?COSHP= 1
.* IF .?CHEBYRIP <> 0 THEN
.* :TEI'ICHB .?SINHP,.?COSHP,.?CHEBYRIP,~O

* EHI)
.*REM .. ?CHEBYRIP
.* DEFINE .?BUTSTART (HPI > + (HPI/~O)
.* DEFINE .?BUTOELTA (PI/tO
· * C·EF INE . ?BUTINDEX = 0
.* DEFINE .?BUTAHGLE=O
· * REPEAT
.* .?BUTINI>EX = .78UTINOEX + 1
.* .?8UTANGLE=.?BUTSTART - .?BUTIHDEX •. ?BUTDELTA
· * IF . ?BUTAHGLE < . ?BUTI>EL TA/4 THEN
.* .?BUTAHGLE=O

EHD
[)EF POL<. ?BUTI NDEX+U-l)=

-:O*.?SINHP*COS(.?BUTANGLE),

... WHILE
tl*.?COSHPtl:SIN(.?BUTANGLE>

.?8UTIHDEX + 1 <= (},;O + 1) 1 2
, . * EHD

... REM
.• REM
* REM

.* REM
* REM

.* REH

.*PZ

... EM

*

.?BUTIHDEX

.?BUTDELTA

.?BUTSTART

.?BUTAHGLE

.7SIHHP

.?COSHP

8. ..

i* BEGIH THE
it!: CHEBVSHEY
It!: BV SETTING

.*

.*
**

i* DEFAULT VALUES, **
OR USE THE
SUB-MACRO

**
.*

i**
J**

TO GENERATE ••
THE VARIABLES. **

; t!: A 1'101> IF lEI>
i* BUTTERWORTH
;t!: MODULE IS
i* IHCORPORATED
;* TO GENERATE

**
**
**
**
** ••

i* THE APPROPRIATE **
;. PATTERN OF
;t!: POLES FOR THE **

**
i* FILTER. (the &s **
;* allow greater
;. reQdQbility of

i* t.he forl'luh.)

*.
**

**
REMOVE THE
YARIABLES
INTRODUCED **
IN THIS "ACRO, **
TO SAVE SPACE. **

**
**

**

*; TEMCH8 GET VARIABLES FOR CHEBYSHEY FILTER ••••• 1 •••••••••••••••
*\)EF MAC TEI'ICHB
.*: CALLING SEQUENCE II THIS IS THE II •
. *' :TEMCHB SIHHP,COSHP,E**2,H .. SUB-MACRO. II.
· *DEF . ?IHYSXTEMP=(I/SQR(%2 »+(SQR« 1/%2)+1) >
.*I)H .?IH't'SXTEHPP=.?IHVSXTEMP **(1/%3) JU,
.*C>EF .?INYSXTEMPH=.?INYSXTEHP **(-1/~3)
· *:';0=(. ?IHYSXTEMPP - . ?IHVSXTEHPN)/2 ;11.
• 01; ~~ 1 = (. ? I H V S X T E H P P + .? I HilS X T E H PH) 2
.*REM .?IHYSXTEI1P i'"
... REM .?IHYSXTEMPP
.*REM .?IHYSXTEMPH ; •• END OF TE"CHB •••
· .. Eli

*
*
*;ThiS ~Qcro generQtes 4 Cheb~shev filter with the order,cutoff f'requenc~
*;~nd peQk-to-peak ripple 4S speCified. The follOWing is 4n exal'lple of
*;ho~ the ftQcro l'Io.~ be invoked:
*:CHES 7dOOO,O,3 i7t.h order 1000 Hz filter, p-'p ripple=3

(The expans; on has been de Leted.)

SP AC20 Compiler

SP AC20 Compiler Advanced Techniques: Filter Design Examples

POLE 0 a -28.145'43.982.'9~61,COHTIHUOUS
POLE 1 m -78.8'23~8.788.0'072.COHTIHUOUS
POLE 2 = -113.959419.437.34060,COHTIHUOUS
POLE 3 a -126.48S404.0.00000000.COHTIHUOUSJ REAL
*JTh~ ~Gcro eXpGnsion hGS been suppr.ssed
*;
.;L~t·S look Qt the response
*OGR GAIH

GAIN I ! ! ! . . ! !
:) .. ++++++++++++++++ ... ++++++++++++++ ..

- .J ~ . -' . - -.++++ -
. + t·

? -+

-~ (t

-5. 4:
-IE. 4

- .. 7 :

-a ~

- 1 t). 1
- 1 1 4
-12.6-
-13.9
-15
-11) . .:.

-1':' €,

-1 J S
-20.0
- 2; !.

-22 ';
- 2 3 S

++
+

+
++

+

.!

+
+

++

+

. !

++
+

+
++

-2'5 I) *** •• ** •••••••
CtB I HZ !. ! . ! !!.. .!.... ... ! !

10 30 200 300 400 500 600 700 800 890 1000 1110 1200 1310 1400
.... :
"';Th~ plus signs represent the old gOin curve of the Butterworth fi Iter.
*:H,. peQk-to-peGk ripple is 3dB 0.5 specified o.nd the dropoff is fo.ster t.hGn
*;the Butterworth filter
...
...
• ...
...
•

10-5

Advanced Techniques: Filter Design Examples SP AC20 Compiler

10-6

*
*

*
*~~**** BILINEAR TRANSFOR" MACRO
*!,~C :Fl:BITRAH.MAC

*
* *I>EF MAC.RO STP
.*;ThiS ~dcro generdtes d Bil inedr trdnsfor~ of d given pole
... ;Cdlling sequence :BTP POLE. IN S, POLE. IN Z
.* ;EXAMPLE :BTP 3,'0 ..
.*
* . ,~

.*:BLTCOM %0, ~1, POLE. ZERO

. * Eli
*I>EF MACRO BTZ

thiS ..,ill tClke n pole in the S plllne,(P 3)
Clnd produce 11 pole in the Z pldne <P '0>
Clnd 1 or 2 extrQ zeroes (2 90 / Z 91)
depending on whether P 3 is d reClI pole or coftplex

.* ThiS Adcro generdtes d bil inedr trdnsforft of d given zero
;Cdlling sequence :BT2 ZERO. IN S, ZERO. IN Z

.* ;EXAMPLE :BTZ 3,90

.* thiS Will take Q zero in the S plnne. (2 3)
* dnd produce n zero in the 2 plClne (2 '0>

.* Clnd lor 2 extrCl poles (P 90 I P 91>

.* depending on whether Z J is reCll or conplex
· * :BLTCOI'I ;'~O., ~L ZERO, POLE
· *£11
* *DEF MACRO CKREAL
.*; SUB MACRO used in another SUb-AQCrO BLTCO" to check for reQI pole/zero Clnd Qdjust
.*: dngle etc
.*IF ABS(COS(TPl*IMAG(42 ~O»>=l THEN
· '" REM %3 %1+1 ;REMOVE EXTRA PZ
.* %5=SQR(%5> JADJUST SCALE FACTOR
.* IF REAL(~2 ~O)<%4 THEN JADJUST ANGLE
.*MOV %2 %1 TO RAD(%2 %1),0
.. ELSE
.*~OV %2 %1 TO RAI>(%2 %l),PI
.. EHD

.*EMf;
· *£11 ... :
*: ..
*D£F MACRO BlTCO"

*. ThiS AClcro is called 'ro~ STP/BTZ, which supply pole/zero
*. I~bels ,Qnd the proper 'pole'/'zero'

· .~
,.,' THE TRANSFOR" EQUATIOH HERE IS

. !it :

.*

."
S = (C:' * (1-2**-1) 1(1 ... 2**-1>

.*DEF .?QC 2/TS;ThiS is the constllnt C used In thiS ~Qcro

.*DEF .?QA - REAL (%2 %0)
· * f>EF . ?QB I1'IAG (=<2 ";0 >
.*OEf .?QAO (.1QC + .?QA>**2 7QB '''*2
.>IIOEf .?QAl = 2H.?QA**2 + .?08**2 - .?I1C**2)
.*C·EF .7QA2 = <.?QC-.?QA>**2 ?Q8**2
.*DEF .?QRAD1US = SQR (.?QA2/.?QAO)
.>IIDEF .?QAHGLE = ACOS (-.?QA11 (.?QAO*2*.?QRADIUS»
.*C>EF 42 tl = .?QRADIUS ... ?I1AHGLE. i
· *i>Ef 43 tl = 1, PI, 2
· * OE F /. 3 (:.; 1 + 1) = 1, PI, Z
*~

.*.HVJUST FOR REAL IF NECESSARY

.*'CKREAL /.O,~t.:(2,t3. .?QC, .?tlAO ..

. *..JRlTE 'SCALE FACTOR = " 1I.?QAO

SP AC20 Compiler Advanced Techniques: Filter Design Examples

· "' .
. *REI1 .?QC
· *REM . ?QA
.*REM .?QB
· *REM . ?QAO
· *REM . ?QAl
.>IoREN .?QA2
.*REM .?QRAI>IUS
· *RE11 . '?QAHGLE
.*EM
*
*.:1hiS Plo.cro perforPls 0. Bilineo.r t.ro.nsfor", o.nd t.o.kes 0. pole/zero in
*;~he S plnne dnd genero.tes 0. pole/zero in the Z pla.ne. Additiono.l poles
*;~r zeroes PIny be o.dded to the paint l.PI in the 2 plone. The user
*;'~I II ho.y. to co.ncel poles o.nd zeroes tho.t lie on top of eo.ch other (o.t the
*;l,.PI pOint on the Z plo.ne)I'Io.nuo.lly.
*; Lt't us try to gt'nero.te 0. 1000 Hz Chebyshev filter in the 2 phne
*Jtirst, we ho.ye to wo.rp the frequency. o.nd obto.in on o.n0.109 filter
*;t.hton we co.n proceed to deSign 0. digito.l filter by 0. Bilineo.r tro.nsf'orl'l.
*.:Let·s deSign 0. digit.a.1 Chebyshell 7th order filtet' ~ith 'l cytoff frequency
*;of 1000 hz o.nd JdB ripple
*JF,rst we obto.in 0. prewo.rped o.n0.109 filter
"'R!:!1 rz
4 POLES/ZEROES REMOYE~
*T,=1/8000
TS = 1. 2499'~75/1 0**4
*:CHEB 7.2/TS*TANCPI*TS*1000).O.3

(The e X p.a n s ion has bee n deL e ted.)

POLE 0 -186.53292,6512.7338.COHTIHUOUS
POLE 1 -522.65J80,~222.8076,COHTIHUOUS

POLE 2 = -755.25665,2898.438',COHTIHUOUS
POLE 3 ~ -838.27160.0.00000000.COHTIHUOUS; REAL
*; IHIJOKE THE BILIHEAR TRAHSFOU "ACRO
.:BTP 0,1000

(The expans i on has been de L eted.)

SCALE FACTOR. 3.3302805/10*.9
*:8TP 2,1200

(The expansi on has been de Leted.)

SCALE FACTOR = 3.2849423/10 •• 9
*:BTP 1.1100

(The expansi on has been de Leted.)

SCALE FACTOR = 3.3302805/10 •• '
*:8TP 2.1200

(The expans; on has been de Leted.)

SCALE FACTOR = 3.4585420/10 •• 9
*:STP 3,.1300

(The expansion has beendeLeted.)

10-7

Advanced Techniques: Filter Design Examples SPAC20 Compiler

10-8

1 POLES/ZEROES RE"OYED
1 POLES/ZEROES "OYED
SCA~E FACTOR • 5.9388589/10 •• 5
* ;
.PZ
POLE 0 • -18'.53292.'512.7338,COHTIHUOUS
POLE 1 = -522.'5380,5222.807'.COHTIHUOUS
POLE 2 = -755.25665,2898.438'.COHTIHUOUS
POLE 3 = -838.27160,0.ooooOOOO,COHTIHUOUS; REAL
POLE 1000 • 0.9801'560,0.77321420,Z
POLE 1100 • 0.94265810,O.63161171,Z
POLE 1200 = 0.91259267,O.35917749,Z
POLE 1300 = O. '00-43251,0.00000000, Z; REAL
ZERO 1000 • 1.00000000,3.1415927,Z; REAL
ZERO 1001 • 1.00000000.3.1415927,Z: REAL
ZERO 1100 • 1.00000000,3.1415927,Z; REAL
ZERO 1101 1.00000000,3.1415927,Z; REAL
ZERO 1200 1.00000000,3.1415927,ZI REAL
ZERO 1201 1.00000000,3.1415927,Z; REAL
ZERO 1300 1.00000000,3.1415927,Z; REAL
*lth. poles lobeled 0 to 3hQve b •• n tronsforfted to those PZ lob.ted 1000-1302
*;Let's cORpore with the onolog Chebwshev fi Iter

.;Let's coftpore the gOin with the onolog Chebyshev filter
*REM P 0 THR 3
4 POLES/ZEROES RE"OYED
.OCR Cj:tIH

CAIN ! !. ! ! ! ! ! !
. \)

-0.2
-1 5
-2. ?
-40
-5.2
-.; 4
- ":". '7
-3 9

- 1:) 1
- 1 1 4
-1.2. .;
-1) . 9
-1'5
-1'; 3
- 1 7' 6
-1 e. s
-20 0
-21. :.
-22. 5
-23.S
-25.0

I)B I HZ

* J

-+ •.•
, , - +. " +'- .

+. -' +'
+,.,. '"

+.
+-' '­

+. I

+' I

+

+

+

+

, +

-..........•...
! ... "' ! A •••• ! "' ! ... "' ! ... "' ! A •••• I A •••• !
10 30 200 300 400 500 600 700 800 8'0 1000 1110 1200 1310 1400

.;Th. plus sign r.presents the pOints where the old curve differs

* • •

SP AC20 Compiler Advanced Techniques: Filter Design Examples

• J · ; .; ••••• "AeRO TO CODE AH ALL-POLE FILTER
•
.INC :Fl:CODFIL.ftAC

.DEFINE "AC~O COOFIL ... :
.• ;I1ACRO to code 4n ~ll-pole filter, with all pole •
.• : labeled con.ecutiY.l~ starting at O .
. *; Scal. factors will be approxift~ted froft "AGAIN .
.• ; The coftftent generated as.uft.d that the PZ 4re in the TS plane •
.• ; and therefore output the PZ position in cart.sian coordinates .' .• ;WARHIHG THERE IS A (RE" PZ) COftftAND WHICH WILL REftOYE ALL YOUR .. ; .. ;
•• j

PZ FROft THIS SESSION. THE PZ AFTER CODINC WILL HAYE BEEN SAYED
IN A NEWLY CREATED FILE TEftPXX.TftP .. ;

.• :CALLIHG SEQUENCE
; :CODFIL FILENAftE, NO. OF POLES, CONSTRAINT

.• ;EX. :CODFIL LOPAS.SRC, 10. IHST<10
· *; ..) .. : .. : .. : .:
.• APP ~O ')

thiS Will code all pol •• labeled 0 through 9. and all cod.
gener4ted Will b. app.nded to the file LOPAS.SRC. Each pole
is coded with the constraint IN5T<10. In addition, .caling
factors reqUired b.tw.en st.,e. ar. also approKiftated froft
ftAGAIN , 4nd docuft.nted in the output file .

.•• ;$TAIT OF CODE GENERATED BY "ACID COOFIL : ... ; ,

.• :FHEAO ~O

· .I>EF .?Q 1"0 .. ; .. :
.-COUHT ~1;START LOOP FOR CODE GENERATION
.• APPEND ~O ';'
.• APPEND ~O ';CODE fOR POLE ' •. ?QI,' AT '.ltEAL<P .?QI>,'. ',UAG(P .?QJ)
.-CODE POLE :?Ql %2
· .APPEND ~O' CODE
.• APPEND ~O '; ABOYE CODE "OYED POLE ',.?QI,' TO ',REAL<P .?QI),' , ',I"AG(P .?QI)
· .APPEND ~O ';'
.•. ?QI=.?QI + 1
.• EHDIEHO OF LOOP FOR CODE GEHERATION .. :
•• i

.• APPEND "0 'I

.•• ;8E SURE TO DO THE FOLLOWING SCALIHG FOR EACH STAGE

.•• ;PLYS ANY OTHER SCALING CO""ENTED IN THE GENERATEO COOE
· ... : '
.• PUT TEt1PXX.Tt1P PZ;SAYE ALL PZ
.• YRITE 'PZ SAYED IN TE"PORARY FILE'
." :
.":QSFAC ~O,U ;CET SCALE FACTORS .. ;
· "APP ~O ' I END OF CODE GENERATED BY "AeRO CODF IL'
· .RE" .?Q I .. :
.*WRITE' THIS "ACRD HAS REt10YEO ALL ~Z.
.•• THE PZ ARE SAYED IN THE FILE TEftPXX.QQQ.
.•• TO RESTORE ALL PZ FRO" THAT STAGE, TYPE ...
.•• INC TEftPXX.T"P
· .. '
.• EM

10-9

Advanced Techniques: Filter Design Examples

10-10

* J
*DEFIHE "ACRO OSFAC
.• ; SUB-"ACRO TO CET SCALE FACTOR

YARNING IF USED IHl>EPEHl>EHTL'f, THIS WILL RE"OYE ALL YOUR PZ
.. ; .. ; .. ; .. ;
.*I)EF
.• I)EF
.*I)EF
.*OEF
.• I>EF
· *I>EF
." :

CALLING SEQUENCE :QSFAC FILE-NA"E •• OF POLES
.1QSI=1
.?QS1=LOG("AGAIH)/LOG(2)JSTART APPROXI"ATIHC SCALE FACTOR
.7QFS1=O
.7QFS2=O
.7QS2=0
.7QSO=0 .. ;

.*COUHT ~l;GET SCALE FACTOR

.*IE" POLE ~l-.?QSI

.*?QFSl=.?QSl "ASK O.FFFFFFH

.• IF .?QFSI <> 0 THEHJROUNI> UP

.* .70S1= .?QSl - .?OFSI +

.• EHO

.*.?QS2-LOC("AGAIH)/LOG(2)

.•. ?QFS2=.?QS2 "ASK O.FFFFFFH

.• IF .?QFS2 (> 0 THEN;ROUND UP
· * . ?QS2= . ?QS2 - . ?QFS2 +
.*EHI>
.• ?QSO-.7QSl-.?QS2
.• APPEND ~O ' ;SHIFT RIGHT INPUT OF POLE. ',%I-.?QSI.' BY ',.7QSO,' BITS
.*.7Q51:O.7QS2
.*.?QSI=.?QSI + 1
.*EHD
,* ;
· *;
.*RE" .7QSI
· *REH . ?OSI
· *IE" ,?QS2
.*REH .70S0
.*RE" .70FSl
· .RE" . ?QFS2

•
.IHC :Fl:FHEAO,"AC
.I>EFIHE "AeRO ~HEAO
.*;"AeRO TO GIYE EQU HEADINGS TO FILE
,.;ThiS ~~cro onl~ gener~tes propagation for 11 stages,
,.;for ~ore stQges,~dd in the necessary APPEHD'S uSing the Editor
." ;
.*'CALLIHG
· *.:
.• APP ~O •
· .APP ~O '
· *APP ~O I

.*APP ~O '

.*APP ~O '

.*APP ~O •

.• APP ~O '

.*APP ~O '

.*APP ~O '
· *APP ~O •

•
* i

SEQUENCE
:FHEAO FILENA"E
IHO_PI EQU OUTO_PO'
IHO_P2 EGU OUTO_Pl'
INO_P3 EOU OUTO_P2'
IHO_P4 EGU OUTO_Pl'
IHO_P5 EGU OUTO_P4'
IHO_P' EGU OUTO_P5'
IHO_P7 EGU OUTO_P6'
IHO_P8 EGU OUTO_P7'
IHO_P' EGU OUTO_P8'
IHO_P10 EGU OUTO_P9'

*,Code _II the pot •• of a 'tIter
*iFirst define the poles of this filter
*TS=1I8000
TS = 1.24""75/10.*4
*DEFINE POLE O=-100.1000.TS
*OEFIHE POLE 1=-700,1000.TS
*:ADCONY :Fl:FIL.SRC,IH2.INO_PO

(T h e ex pan s ion has be eon del e ted'.)

(This macro is explained in Chapter 11.)

SP AC20 Compiler

SP AC20 Compiler

FILE CREATE!>
*:GOi>FLL :Fl:FIL.SRC,2,IHST<10

(The expans; on has been de leted.)

Bl:i 3073~128 82=-0.854i3~~3

I H'3T =4
paLE 0 = 0.00000000,1'99.9998.18

8E·:' T 1'E T
PI)LE 0 = -441.27120,99'.99993 .. 18
8E~;T VET

Ilf';:-; :: 5
POLE 0 = 0.00000000,1333.33325.TS
POLE 0 = -441.27120,999.99993,T8
POLE 0 = 0.00000000,1140.39587,18

BEST YE1
POLE 0 -85.008674,1999.9998.18
POLE 0 -85.008674.1999.9998.18
POLE 0 -299.21356,1128.18835.IS

IKS:::6
POLE 0 = 0.00000000.920.21374.18

BEST YET
POLE 0 0.00000000,1140.39587,1S
POLE 0 0.00000000.1088.56665.IS
POLE 0 -85.008674,1281.96582.18
POLE 0 -85.008£74,1281.'6582.15
POLE 0 -299.21356.1128.18835.1S
POLE 0 -85.008674,10£8.34033.TS

gE ST YE 1
POLE 0 -96.479698.1999.9998,TS
POLE 0 -96.479£98,1999.9998,T5
POLE 0 -238.53721.1175.85119,1S

I HSi::;'
POLE 0 O.00000000.~78.85827.T8

POLE 0 0.OOOOOOOO,1088.56665~TS

POLE 0 0.00000000.1092.88586,TS
POLE 0 -85.008674,1068.34033,IS
POLE 0 -85.008674.1068.34033.IS
POLE ~ -85.008674,1068.34033.1S
POLE 0 -85.008674.1009.94763.TS

BE'ST 'r'E T
POLE 0 -96.47'698,1274."479,TS
POLE 0 -~'.47~'98.127 •. "47',TS
POLE 0 -238.53721,1175.8511~>IS

POLE 0 -132.187332,1024.4'H33,TS
POLE 0 -100.027595,1~9'.'~98,TS
POLE 0 -~~.37~95',1~9~.9~98,T5

POLE 0 -245.81303.1170.32641.TS

IH$T=8
POLE 0 O.OOOOOOOO,9~3.08331.TS

POLE 0 0.00000000,1092.88586.TS
POLE 0 0.00000000,10'2.88586.18
POLE 0 -85.008674,1009.94763,TS
POLE 0 -85.008674,1009.94763.T8
POLE 0 -85.00867.,1009.94763.TS
POLE 0 -85.008674,1014.83471.TS
POLE 0 -96.479698,1057.'5434,TS
POLE 0 -96.47"98.1057.95434.TS
POLE 0 = -132.187332,1024.49133,TS
POLE 0 -96.479698,998.55297,T8

BEST YET
POLE 0 -100.02759'.1272.38793.IS
POLE 0 -99.379959.1272.8041',TS
POLE 0 = -245.81l0J.1170.J2641.TS
POLE 0 -129.134002,1027.42260.IS
POLE 0 -100.004852.1"9.9998.1S
P~LE 0 a -100.107147, 1"'.,"8,T5
PGL~ 0 -247.644'5,1168.92749,TS

Advanced Techniques: Filter Design Examples

10-11

Advanced Techniques: Filter Design Examples SP AC20 Compiler

10~12

I I~ .:: ~ "'3
P(IL£ 0 o 00000000,1000 13574 .. T8
POLE 0 0.00000000,10'2.88586 .. T8
P .) LEO - 8 5 . 00 8 f, 7 4, 1 0 I) 2 . 4 64 5' , T S
P :) L f. 0 - 8 5 . 00 8 t. 7 4, 1 00 2 . H 4 51}, T S
F'QL£ 0 -85008£74:1014.83471.TS
P :) L::: 0 - 8 5 . 00 8 6 7 4, 1 0 1 4 . 8 34 7 L T 5
POLE 0 -'6.47"'8."8.552'7,TS
POLE 0 -9'.47"98,"8.55297.T8
POLE 0 -".47"98."8.55297.T8
POLE 0 -96.479'98,1003.52844.TS
POLE 0 -100.027595,1054.70727,T5
POLE 0 -'9.379959,1055.30126,T5
POLE 0 -129.134002,1027.42260.T5
POLE 0 -97.203498,"7.82714.TS

BE .:. T 'r'E T
POLE 0 -100.004852,1272.40246.TS
po)LE 0 -100.107147,1272 . .33679,TS
POLE 0 -247.64495,1168.92749,T5
POLE 0 -127.612823,1028.87805,T5
POLE 0 -100.008880,1"9.,'98.T5
POLE 0 -100.016181.1'''.'''8,T8
P')LE 0 -248.10377.1168.57666 .. TS

IHS":9
POLE 0 = -97.203498,9'7 82714,TS
8£~· T

PERROR = -2.7965011,2.1728515

; HO"'E: P'lAH SlIRE SIGHAL IS (0.7f.190478
LDA OUT2_PO,OllT1_PO,ROO

OllT2_PO=1.00000000*OUT1_PO
LDA OUTi_PO,OUTO_PO,ROO

OUTl_PO=1.00000000*OUTO_PO
ADD OUTO_PO,OUT1_PO,R02

OUTO_PO=1.00000000*OUTO_PO+0.25000000*OUT1_PO
ADD OUTO_PO,OUT1_PO,R04

: OUTO_PO=1.00000000*OUTO_PO+O.31250000*OUTl_PO
A~D OUTO_PO,OUT2_PO,R03

; OUTO_PO-l.00000000*OUTO_PO+O.31250000.0UTl_PO+0.125000OOO-OUT2_PO
ADD OUTO_PO.OUT2_PO.R06

OUTO_PO=1.00000000*OUTO_PO+O.31250000*OUTI_PO+0.140625OOO-OUT2_PO
ADD OUTO_PO.OUT2_PO,R10

OUTO_PO=1.00000000*OUTO_PO+O.31250000*OUTl_PO+0.141'Ol562*OUT2_PO
SUB OUTO_PO,OUT2_PO,ROO

OUTO_PO=I.000ooobo*OUTO_PO+0.31250000*OUT1_PO-0.85839S43*OUT2_PO
ADD OUTO_PO.INO_PO.ROO

. OUTO_PO=I.00000000*OUTO_PO+0.31250000*OUTl_PO-O.85839S43*OUT2_PO+l .OOOOOOOO*IHO_PO
81-0 81611074 82=-0.33301838

I liST =4
POLE 1 :: -882.54235.19".'9'8,TS

BEST VET
POLE 1 = -441.27120,'99.'9993,TS

BEST VET

I NST =5
POLE 1 -882.54235.1333.33325.T5
POLE 1 = -441.27120,9".'9"3.TS
POLE 1 -882.54235,643.44500,TS
POLE 1 -624.41516.19'9."'8.1S
POLE 1 -740.48474.1'99.9998.T5
POLE 1 -526.27990,'08.74194.T5

8EST VET

IHST:6
POLE 1 -882.54235.'20.21374,T5
POLE -882.54235.643.44500,TS
POLE -882.54235,792.42419,T5
POLE -'24.41516,783.'531'"T~
POLE = -740.48474.5'0.33453.T8
POLE -526.27"0.908.74194.TS
POLE 1 = -624.41516,986.13602.TS

SE ~n 'T'E T
POLE 1 -709.42401.1'9'.'998,TS
POLE 1 -709.42401,19".9998,TS
POLE 1 = -549.43231.881.42303,TS

SP AC20 Compiler

I H':H "7
P~LE 1 z -882.5423~,'78.8~827,TS

POLE 1 -882.54235,792.42419,15
POLE 1 -882.54235,784.39038,T8
POLE 1 -624.41516,'86.73602.15
POLE 1 -740.48474,1063.76843,18

8EST 'fET
palE 1 = -624.41516,986.73602.18
POLE 1 = -740.48474,964.17120,T8

BE S T 'r'E T
POLE 1 -709.42401.649.02075.T8
POLE 1 -709.42401,649.02075,IS
PI)LE 1 = -549.43231,881.42303,TS
PI)lE 1 -651.50946.958.45196,18
POLE 1 -700.02026,1"9.9998,IS
PI)lE 1 -701.88989,1999.9998,T8
POLE 1 -555.35443,874.23944,IS

IHST=8
POLE 1 -882.54235,993.08331.T8
palE 1 -882.54235,783.85223,T8
POLE 1 -882.54235,784.53430,TS
POLE 1 -624.41516,998.29034,T8
POLE 1 -740.48474,1014.92211,TS

BEST YET
POLE 1 -740.48474,964.17120.T8
POLE 1 -740.48474,958.08459.TS
POLE 1 -709.42.401.1091.25781-TS
POLE -709.42401,1091.25781.,15
POLE -651.50946,958.451'6,T8
POLE -709.42401,"6.21044.T8

BE ST YE T
POLE 1 -700.02026,665.58825,T8
POLE 1 -701.88989,66.2.33392,T8
POLE 1 = -555.35443,874.23944,T8
POLE 1 -6.53.24188,956.59'79,T8
POLE 1 -699.94'52,1"9.9'98,T8
POLE 1 -700.02026,1"9."'8,T8
POLE 1 -556.84350,872.42010,T8

IH~T=9

POLE 1
POLE 1
POLE 1
POLE 1
POLE 1
POLE
POLE
POLE
POLE
PI)l E

-882.54235,1000.13574, IS
-882.54235.784.53314,18
-882.54235,784.53375,18
-624.41516,"'.72717,T8
-740.48474,1002.42456,T8
-740.48474,'57.67767,TS
-740.48474,958.19348,T8
-709.42401,996.21044,T8
-70'.42401.'96~21044,TS

-709.4240t,9~6.21044,TS

rlLt -7D'.42401,"0.42437,IS
POLE -700.02026/~04.42840.TS

POLE -701 .88'8', '02.2510'.' TS
POLE -653.24188,'56.5"7'.T8
PI)LE 1 -701.88'89,1003.74481.T8

BEST YET
POLE 1 -6".'4952,665.71081,T8
POLE 1 = -700.02026,665.58825,TS
POLE 1 -556.84350,872.42010,TS
POLE -654.10'68,'55.""8,TS
POLE -700.0202',1'9'."'8,TS
POLE 1 '" -557.58941,871.50683,TS

Advanced Techniques: Filter Design Examples

10-13

Advanced Techniques: Filter Design Examples SP AC20 Compiler

10-14

I N'ST =C}

POLE 1 = -701.88'8'.1003.74481.TS
BEST

PERROR = 18898925. -3.7448120

LD~ OUT2_Pl.OUTl_Pl.ROO
: OUT2_Pl=1.OOOOOOOO.OUT1_Pl

LDA OUTI_Pl.0UTO_Pl.ROO
; OUT1_Pl=I.00000000*OUTO_Pl

SUB OUTO_Pl.OUT1_Pl.R03
, OUTO_Pl=1.OOOOOOOO*OUTO_PI-0.125000000*OUTl_Pl

SUB OUTO_Pl.OUT1_Pl.R04
: OUTO_Pl=1.OOOOOOOO*OUTO_PI-0.18750000*OUTl_Pl

SUB OUTO_Pl.OUT2_Pl.R02
; OUTO_Pl=1.OOOOOOOO*OUTO_PI-0.18750000*OUll_Pl-0.25000000-OU12_P1

SUB OUTO_Pl.0UT2_Pl.R04
OUTO_Pl=I.00000000*OUTO_Pl-0.18750000-0UT1_Pl-O.31250000.OUl2_Pl

SUB OUTO_Pl.OUT2_Pl.ROG
: OUTO_Pl=I.00000000*OUTO_PI-0.18750000*OUT1_PI-0.32812500*OUI2_P1

SUB OUTO_Pl.0UT2_Pl.R08
OUTO_Pl=I.00000000*OUTO_Pl-0.18750000*OUT1_Pl-O.JJ203125*OUT2_P1

ADD CUTO_Pl. INO_PI.ROO
OUTO_Pl=I.00000000*OUTO_PI-0.18750000*OUTI_Pl-0.3J203125*OUT2_Pl+1.0000000

FILE ()ELETEI>
PZ SAYED 1M TE"PORARV FILE
1 POLES/ZEROES RE"OYEI>
1 POLES/ZEROES RE"OYED
T~IS "ACRO HAS RE"OYED ALL PZ.

THE PZ ARE SAYEI> 1M THE FILE TE"PXX.QQQ.
TO RESTORE ALL PZ FRO" THAT STAGE. TYPE

Following is the contents of the file created by the CODFIL macro.

IA~D CONVERSION ROUTINE ADDED BY "ACRO AOCOHV
IH2
IN2
IN2
HOt'
HOP
CV:-S
ADD DAR.K"2.ROO.CND,
HOP
HOP
cv-:- ..
HOP
HOP
CVTb
HOP
HOF'
c'rs
HOP
HOP
C'l'H
HOP
HOP
CYB
HOP
HOP
CY":"2
HOP
HO~

c'r:
HOP
HOP
CV~O

HOP
HOP
LDk rHO_PO,~AR ISCALE IHPUT HERE
IE"D OF "AeRO ADCONV

SP AC20 Compiler Advanced Techniques: Filter Design Examples

;S7ART OF CO~E GENERATED BY HACRO CODFIL

>IILPI EQU OUTO_PO
INILP2 EQU OUTO_Pl
ItllLP3 EQU OUTO_P2
IrW_P4 EQU OUTO_P3
: 'fO .• P5 EQU OUTO_P4
!I'IILP6 EQU OUTO_PS
HIILP7 EQU OUTO_PE.
lriO_P8 EQU OUTO_P7
! ltlLP~ EuU OUTO_PS
IrIO_PIO EGU OUTO_P<J

;'(:.)[0£ FOR POLE 0.00000000 AT -100.000000 .. 1000.00000
) ~O-E: HAKE SURE SIGNAL IS <0.76190478
LDA OUT2_PO,OUT1_PO,ROO

OUT2_PO=I.00000000*OUTl_PO
UO~ OUTI_PO,OUTO_PO.ROO

OUTl_PO=l.OOOOOOOO*OUTO_PO
~DD ~UTO_PO,OUTl_PO,R02

OUTO_PO=I.00000000*OUTO_PO+O.25000000*OUTl_PO
~D~ OUTO_PO,OUTl_PO.R04

OUTO_PO=1.OOOOOOOO*OUTO_PO+O.JI250000*OUT1_PO
ADD QUTO_PO,OUT2_PO.ROl

OUTO_PO=1.OOOOOOOO*OUTO_PO+O.31250000*OUTI_PO+O.12S000OOO*OUT2_PO
ADO)UTO_PO.OUT2_PO.RO~

OUTO_PO=1.000000DO~GUTO_PO+O.31250000*OUT1_PO+O.140625OOO*OUT2_PO
ADD ~UTO_PG,OUT2_PO.RIO

OUTO_PO=I.00000000*OUTO_YO+0.31250000*OUT1_PO+O. 141601562*OUT2_PO
sue OUTO_PO,OUT2_PO.ROO

OUTO_PO=1.OOOOOOOO*OUTO_PO+0.JI250000*OUTl_PO-0.8583'S43*OUT2_PO
A~D DUTO_PO,IHO_PQ,ROO

; OUTO_PO=1.OOOOOOOO*OUTO_PO+0312S0000*OUTl_PO-0.8583'S4J*OUT2_PO+l.OOOOOOOO*IHO_PO
; ~80YE CODE "OYE~ POLE 0.00000000 TO -'7.203498 , '97.82714

.: Cl)()E FOR POLE 1.00000000 AT -700; 00000, t 000.00000
LDA OUT2_Pl,OUTl_Pl,ROO

OUT2_Pl=1.00000000*OUT1_Pl
lDA GUT1_Pl.OUTO_Pl.ROO

OUTl_Pl=1.00000000*OUTO_Pl
SUB OUTO_Pl.OUTl_Pl,R03

OUTO_Pl=I.00000000*OUTO_PI-0.125000000*OUT1_Pl
SUB OUTO_Pl,OUTl_Pl,R04

OUTO_Pl=I.00000000*OUTO_PI-0.18750000*OUTl_Pl
SUB uUTO_Pl,OUT2_Pl.R02

· OUTO_Pl=1.00000000*OUTO_PI-0.187S0000*OUTl_Pl-0.25000000*OUT2_Pl
SUB OUTO_Pl.0UT2_Pl,R04

· OUTO_Pl=I.00000000*OUTO_Pl-0.18750000*OU~1_PI-0.31250000*OUT2_Pl
SUB OUTO_Pl,OUT2_Pl,RO'

· OUTO_Pl=I.00000000*OUTO_PI-0.18750000*OUTl_Pl-0.32812500*OUT2_Pl
SUB OUTO_Pl,OUT2_Pl,R08

: OUTO_Pl=1.00000000*OUTO_Pl-018750000*OUTl_Pl-0.l320312S*OUT2_Pl
AO& OUTO_Pl.INO_Pl.ROO

: OUTO_Pl-1.00000000*OUTO_Pl-O.18750000*OUT1_Pl-0.l320l125*OUT2_Pl+1.00000000*INO_Pl
14BQYE CODE "OYED POLE 1.00000000 TO -701.88'89 • 100l.74481

BE SURE TO DO THE FOlLOUIKG SCALING FOR EACH STAGE
PLUS ANY OTHER SCALING CO""EHTED IN THE CENERATED CODE

SHIFT RIGHT INPUT OF POLE. 1.00000000 BY 1.00000000 BITS
SHIFT RIGHT INPUT OF POLE. 0.00000000 BY 4.0000000 BITS
EN~ OF CODE GENERATED BY "ACRO CODFIl

10-15

• i<

n
CHAPTER 11

ADVANCED TECHNIQUES: OTHER
ROUTINES FOR SIGNAL PROCESSING

Introduction

The macros given as examples in this chapter go beyond filter design into more
general routines such as multiplication and division of variables, input/output
coding, and oscillators. They too are supplied in the file SPAC20.MAC. As
mentioned in Chapter 10, the intention in supplying these macros (in addition to
their immediate utility) includes their role as models for your own development of
macros, routines pertinent to signal processing and other functions important to
your 2920-based product development. As with all macros, particular attention must
be paid to supplying correct parameters in the appropriate order, to avoid erroneous
operation or output.

.,. :
*. ThiS ftdCrO generdtes code for

.*; d four qUddrdnt. 9-bit ftUltiplicdtion or two vdridbles .

.• : edlling sequence :I1ULYAR OUTFILE.PRODUCT."UlTIPlICAND.MUlTIPlIER
:+:

.*

.'<'

.>f:

...
.*
.*

'" . *
. *
. *
. *
.*
.*

:~

APPEND %0
APPEN!) }:O

APPEND %0
APPEND %0
APPEND ~" 0
f=lPPEND %0
APPEND %0
HPPEND %0
MPEHD %0
APPEND %0
APPEND %0
APPEND %0

EXAMPlE

· SUB ~ 1 • · lDA DAR. · ADD ~L · ADD ~~ 1 I · AD!> % 1. · ADD ~ 1. · ADD ~~ 1 I

ADD :,1.

· ADD :,1.
ADD :,1.
SUB !~ 2 ..

:MUlYAR F.MUl.W.X.V
this w ill put in the f'i Ie F.MUl the code
if'lpleftent the equdtion !oI= X *'t'

; BE Gl H MACRO I1ULYAR *****'
%1. ROO ; elenr the product * .'
%3., ROO ; Multiplier· to DAR *'
%2. ROt. CHD7 • Thi S
':;2, R02. CHIH. * is the
:~2 • R03. CNDS ... l'Iultiply ..
%2, R04. C HD4 ... process •
%2, RO 5. CHD3 ... b i tw i se
%2. R06. C HD2 ... d dd i ng dnd
%2. RO 7. CHD1 ,. shifting
:-~2 • ROa. CHDO ,. '" .
%2. LOl These two supply * .

. *

.*

.*

APPEND %0 , ADD ~ 1. %2. ROO. CHDS the correct sign
APPEHD %0 EHD "ACRO I'IU LYAR *******'

.*: ThiS perf'or",s d 9-bit ... ultiply. If ftore bits of' ftultiplier

.~: preCision nre required, the high order bits of' the ftUltipl ier

.*: ~(ly be "'dsked off, dnd the reftdining bitS shifted left dnd

. "': tonded to the DAR. Th~ 1'I00sl< i ng operClt ion is neceSSQrlJ to
*' o/'eyent c,yerflow SCltUI"dtiOYl. (See AS2920 .unuo.l for I'Iore info

.'iC; ThE< Idst. two steps o.boye Cdn be eliMindted if the PlUltiplier

.*; ;s known to be pOSitive. The first step I'Iust be elil'lindted

.*; .f the operdtion is to be of the forft: V = W*K + Y

to

11-1

Advanced Techniques: Other Routines for Signal Processing

.DEFINE "AeRO DIY
. *;
.*: ThiS ~ocro g~n.rotes code ror a four quadrant division
.*: or 2 voriobles
*: C411ing sequence :DIV FILE, DIYIDEND. DIVIDEND$SCALE. DIYISOR. QUOTIENT.
*: EXA"PlE :DIY F.OIY,K.R02,Y,W
*. thiS will put in the fi \e F.DIY code to iftpleftent

.*; the equation W = < K ... 2 •• -2)/ <Y>

*
.*
.*
.*
.11<

.*

'"
• If<

.*

.*

'" .*
.*

...
*

':'PPEND
.... PPEND
APPEND
itPPENI>

APPEND
APPEND
APPEND
RPPENI>
APPEND
liPPENI>
APPEND
APPEND
APPEND

",PPEHD
HPPEtH>
HPPENI)

~O
,

~O
,

~O
,

~O
,

~O
,

%0 ,
~O .
%0 ,
%0
%0 ,
%0
~'O
~O

,

~(I

:~O

%0 .-

ABS DY1. :>; 1 , ~2

ABS DV2, ~3. ROO
SUB DAR. DAR. ROO

SUB DYI. 0'12, ROO.
SUB DYI. OY2. ROt.
SUB DVL 0..,,2, R02.
SUB DYL 0'12, R03,
SUB I>Y1. 0Y2, R04,
SUB 1>\1 1, 0..,,2, R05.
SUB I>V1. DV2 .. ROG.
SUB 1>"11. D'I2 I R07.
SUB OVL 0'12, R08.

ADD DAR. J<P4 I LOt
LDA :;4, ~~ 1) R13
XOR ~A. .. ~~ .) R13

BEGIN "ACRO DIY•..•..... '
These two extroct the

ft4gn i tudes.
Th is cl eu's the DAR.

CHDS ThiS is ... '
CHD7' • CHD' th~ d i v ide, ... I

CHDS'
CHD4 progressing
CND3'
CNI>2 one bit ... I

CNI)! •
CHDO Oot a tifte. .'

JThiS forc.s overflow (t) .'

These t~o est4blish .'
the correct Sign. .' . *

.*

.*
APPEND
APPEND

%0
%0

XOR ". , DAR Xfer result to output. .'
; END "ACRO DIY •••••••• * ••••••

*:
*,

.*: Hote th~t the first two oper~tions extroct the ftGgnitudes for the
.... diViSion. The DAR is cleored ond the carry set by the third instruction.
*: After the diVision sequence, on oyerflow (I) Will be forced by the 'ADD'

_*: ;nstruction fourth fro" the end, i' the dividend exceeded the diYiSOr
*. I note thOot SUB _ ... eNDS beh~yes differently "'01'1 the other CHD inst) .

. *; The last three instructions serve to establish the Sign of the result.
*: ~nd transfer the result to the output. As the diYiSiOn is c4rried only

.• ; to nine bits. the Sign correction routine is allowed to leo"e softe

.*: error in positions beyond the thirteenth .

. *EI1

.DEFINE "ACRO SAW
.*;THIS "ACRO GENERATES A SAWTOOTH WAVEFOR"
.*·YkRNIHG: TS "UST BE ASSIGNED AN APPROPRIATE YALUE BEFORE CALLIHG THIS "ACRO .
. *·CAlLING SEQUENCE: :SAW CO~EF!LEHA"E.EXT, FREQUEHCVCHZ), ERRORCHZ). OUTPUTYAR
.*:EXA"PLE: TO CODE A SAWTOOTH FOR 257 HERTZ WITH AH ERROR OF LESS THAN 0.5HZ
.*:AHD SAYE THE RESULTING CODE "ODULE IN A FILE HAKED SAW257.ALS VITH THE
.*:OUTPUT VARIABLE HA"ED SAWOS£. YOU ENTER:
· *. : SAW SAW257. ALS. 257. 0.5. SAWOSe
.«<IF TS=O THEN
.*GRAPH I"PULSE FORCE ·SA"PLE RATE UNDEFINED- ERROR EKIT
· *£L ·~E
.~CO~E ~3 = (~l ... TS * 4) • K"2 + ~3 ERROR < %2 ... TS ... 4;DECRE"EHT THE SAWTOOTH
· >It,.lP.! TE '
.*~CODING COnPLETED - NOY APPENDING TO FILE
· * to·-

.*APPEND ~O CODElBV FRED X SA"PLETI"E

.*APPEND ~~ 'LDA DAR.~l·;

.*~PPEND ~O 'ADD %3.KP2.L02.CHDS·;IF RESULT<O. AD~ 1
· *EH[>
· :t:Ef1

11-2

SP AC20 Compiler

SP AC20 Compiler Advanced Techniques: Other Routines for Signal Processing

.~EF!HE "ACRO ADCOHV ...
. " .
. *:~uCOHY MACRO to ~pp.nd to ~ file the AID conversion
.: routines

'" WARHING The user should be ~w~r. that the correct AID conversion
.*' routine (the n"'I'Iber of IN instructions, HOP's)is dependent
.* on the extern~l environl'lent of the systel'l (clock r~te,

input sal'lple o.nd hold cap~citor etc.) ~nd thiS ,ucro sh.ould
.~ be ~dJusted ~ccordingly.

· .~
* CHLLING SEQUEHCE ADCOHV FILENA"E,IHPUT STATEHEHT. IHPUT_HA"E

.* EX. :ADCOHY FILTER.FIL .INO, STAGElIH

." thiS will put in the file F·ILTER.FIL the code

.~ to s~ftple input port O,do ~ 9 bit AID con~ersion

',' ~nd put the result inSTAGElIH
. .;.

· >triPP ~O
.• ~:~!D CONYERSIOH ROUTINE ADDED BY "ACRO ADCOHV
• ."t: • ~~ 1

· '+: «~~ 1

· * <t~(lP
."'~HOP
• '4= .,:;vTS
.~.~~D DAR.KM2,ROO,CHD6
.• -HOP
· .·HIOP··
· ",~pp >';0 'CIIT7
· **Ht)P
· '" *HOP
.•• C":-'T6
.• <=HOP
· '" ~t~I:IP
.*t<C·.'T5
.... HOP
· *t:iEtp
.*.(:··:'T4
· *"H(IP
.'" "H,;lP
· '" «,:;'.'T3
.*cH(!P
· '" <=i~OP
.*«C·'lT2
."'«HOP
· '" ~IHIP
.~·(;~Tl

· * "ti')P
· '" ,,!t:)P

.... H(IP

• Of t:HOP
.•• L~A t2,DAR ;SCALE IHPUT HERE
'~"cEHD OF "ACRO ADCOHV
· '" t:' •

.• EM · ;

.DEF:HE MACRO TRIANG
.•. THIS MACRO TR~HSFOR"S ~ SAWTOOTH IH10 A TRIAHGUl~R WAVEFORM
.$:CALLIHG SEQUEHCE:TRIAHG CO~EFILEHA"E.EXT. OUTPUTYAR, IHPUTYAR
.$APPEHD ~O 'l~A ~1,~2'

.*APPEHD ~O 'ADD ~1.K"4>; SUBTRACT 1/2

.*MPPEH~ ~O 'ABS ~1,%1,L01'; TAKE ABSOLUTE YALUE , ~OUBLE IT

.*~PPEH~ %0 'ADD ~1,K"4>; SUBTRACT 1/2

. *£11

11-3

Advanced Techniques: Other Routines for Signal Processing SP AC20 Compiler

*~EFiNE MACRO SINFIT
.*:THIS MACRO TRANSFOR"S A TRIANGULAR WAVEFORM OF AMPLITUDE 1/2
.*:IHTO A SINUSOIDAL WAVEFORM OF AMPLITUDE 1
.*:CALLINC SEQUEHCE:SINFIT CODEFILENA"E.E~T, OUTPUTVAR, IHPUTVAR
.*~PPEHI> ~O 'LDA tL~2,L02'; THIS TRANSFORMATION USES
.*APPEND ~o 'SUB ~1,%l,R02'; A PIECEWISE LIHEAR APPROXIMATION
.*APPEND ~o 'SUB ~l,%l,ROl'; TO SIH(Pl*IHPUTYAR)
· "'APPEND ~o 'SUB ~1, ~2, RD4'; ltIH I CH I S II'IPLEMENTED US ING
.*riPPEND :"0 'ADD %L~2,R01'; OYERFLOIJ SATURATION, THEREFORE
.*~PPENI> :"0 'ADD ~1,~2'; LI"ITING "UST NOT 8E DISABLED.
· '" £t1

'" ;
*DEFINE "ACRO SINOSt
.• ;THIS MACRO GENERATES A SINUSOIDAL WAVEFORM AT A USER-SPECIFIED FREQUENCV
.• ·CALLING SEQUENCE:
.* :';II~OSC CODEFILEHAt'lE.EXT, FREQUEHCY(HZ), FREQERROR(HZ), OUTPUTYARNAME
.*;EXAt'lPLE: TO GENERATE CODE FOR A SINUSOIDAL OSCILLATOR WHICH HAS A FREQUENCY
.*;OF 245 HERTZ. PLUS OR MIHUS AT "OST 0.1 HERTZ. WITH AN OUTPUT HAMEl> OSC245
.*;AHD APPEND THIS CODE TO DISK FILE "YCOOE.ALS. YOU EHTER:
.*:SIHOSC MYCODE.ALS, 245,0.1. OSC245
.*:SAW ~O,%1,~2,SAWTOOTH
· ~ .TRIANG %O,TRIAHGULAR,SAWTOOTH
.* SINFIT %O,%3,TRIAHGUlAR
· *'::t'1

The following are examples of invoking these macros. The invocation line calls the
macro by "colon name", e.g., :MULVAR, followed by the actual parameters to
replace the formals in the macro definition. The expansion of the macro then
follows, with execution delayed until every command has been verified as
conforming with the SPAC20 Compiler language. (It is possible for a valid macro to
expand into invalid commands due to the substitution of'actuals for formals.)

* *TS=:/10000

After this test is passed, execution of the macro proceeds from the first executable
command to the last, with the results displayed at the console (and on this listing
file). Thus the macro commands, with formals replaced, are seen twice. The first
two macros below illustrate this, and enable you to see fully the substitutions
performed. This double display has been suppressed in the later examples.

TS :: O.~99~9~80/10**4
...
'" : MIJ L I,' A R : F 1 : C HA P 11 0 U T , PR 0 C'U CT., MU L T I PL I C A HD , 11 U L T I PL IE R
• of:

.* ThiS ~Qcro g~nerQtes code for
* Q four qUQdrQnt, 9-bit Multiplication of two variables .

.• Calling sequence :MULYAR OUTFILE,PROCUCT,MULTIPLICAHD.MUlTIPLIER .

. *:

.* EXAMPLE :MUL¥AR F.I'IUL,W,X,Y

.*

'"
.*

thiS Will put in the file F.MUL the code. to
i~ple~ent the equation W=X"'V

iiPPENI> :Fl :CHAP11.0UT j BEGIH MACRO MUL VAR **.**'
* kPPEHI> :Fl :CHAP11.0UT , SUB PRODUCT. PRODUCT, ROO ; CleQr the product

AP PEND : F 1 : CHAP 11 . OU T LDA DAR, MULTIPLIER, ROO ; l'Iultiplier to CAR .*

'" APPEHI> :Fl :CHAPl1.0UT AI>l> PRODUCT, I'IUL T I PLI CA t'it> , R 01, CHD? '" ThiS
HPPEND : F 1 : CHAP 11 . OU T AD I> PRODUCT, MUl TIPLICAHC, R02, CHD6 ... is th e

'" I

. *
'" I'IPPEND : F 1 : C H·AP 11 . OU T . AD I> PRODUCT. MUL TIPLlCAHI), R03, CHDS * Plultipl~

.* kPPEHO :Fl :CHAPll. OUT ADD PRODUCT. MUl TIPLlCAHC. R04. CHD4 ... process,
iiPPEHC :Fl :CHAPll. OUT AD C' PRODUCT, M Ul TIP Ll CA H C., ROS, CHI>3 ... bitwise

* '

. *

.* ':'PPEND :Fl :CHAP11.0UT . AD!> PRODUCT. l'ILIl T I PL 1 CAN!>. ROb. CN02 '" Q dd i rog and

*
=1:

sF'PUI!)
iiPPEND

: F i : CHAP 11 . Oll T
; F 1 : CHAP 11 . OU T

, AO C· PRODUCT,
ADD PRODUCT.

MULTIPLICAND, R07, eND! '" shifting
MUL TIPLICAND, ROB, CHDO :I:

* '
* '
* •
* '
'" ' '
*'
'" .

* iiPPEHI> : F 1 : CHAP 11 . OU T SUB MULTIPLICAND, MUL Tl PLI CAND, L01 These two su pp 1 ~
HPPEHI> : F 1 : CHAP 11 . 00 T ADD PRODUCT, "ULTIPLlCAND, ROO. CNOS
liF'PEHD : F 1 : CHAP 11 . OU T ; EHD MACRO

'"
*: ThiS pertor~s Q ~-bit ~ultipl~. If ~ore bits of ftUltiplier

.*: pt'eCis,on Qre reqUired, the high order bits of the "ultiplier
.: ~ay be PI~sked off, ~nd the re"Qining bits shifted left ~nd

.* IOClded to the DAR. The f'lQSking oper~tion is necessdry to
. >It: t:<I'event overflow s~tur~t·ion. (See AS2920 PlQnudl for ~ore into)
"'. The hst two steps Ilbove Coln be eli~inQted if the I'lultiplier

.*: .s known to be pOSitive. The first step Plust be eliMinated

.* :f ~he operdtion is to be of the for": V = W*X + Y

'" .*£11

11-4

I1ULVAR
the correct Sign. * '

*** ... ***'

SP AC20 Compiler Advanced Techniques: Other Routines for Signal Processing

; BEGIN MACRO MUL~AR *****
S rJ B PRO [I U C T, PRO D U C 1, ROO ; C 1 e 0. r the pro duct *
L ~I H t) Ii R , 1'1 U L TIP LI E R , ROO ; 1'11.1 1 tip 1 i e r t 0 DAR *
ADD PRO~UCT, MULTIPLICAHD, ROl, CND7 ... ThiS '"
ADD PRODUCT, MULTIPLICAND, R02, CND£ ... is the ...
AOD PRODUCT, MULTIPLICAND, R03, CND5 ... "Ultipl~ *
A~D PRODUCT, MULTIPLICAND, R04, CND4 ... process, ...
ADD PRODUCT, MULTIPLICAND, R05, CND3 ... bitWise *
ADD PRO~UCT, MULTIPLICAND, R06, CHD2 ... o.dding o.nd *
ADD PRODUCT, MULTIPLICAND, R07. CHD1 * shifting '"
AN' PRODLICT. MULTIPLICAND, ROS, CHOO * '"
SJS MULTIPLICAHD, MULTIPLICAND, LOt These two supply *
tiDe· PRODUCT, MULT1PLICAI~I>, ROO, CHDS the corr'ect Sign. *

* ;
*­
* .:

; END MACRO MUL~AR *******

*:CI!I{ :Fl :CHAP11.0ULDJlIIOENI),R03,DIYIDSOR,QUOTIEHT
· * .
. If<' ThiS ~ocro genero.tes code for 0 four ql.lo.dro.nt diVision
.*. of 2 vo.riobles
." ':'l 1 1 i n 9 seq u e rl c e : D I I,' F lL LeI VIP END, D III IDE N D $ S CAL E, DIY I S OR, QUO TIE I-IT .
. ~: EXAI'IPLE :C'lII F.DP/,X,R02,Y,la/
. of: thiS Will put in the file F.DI~ code to iltplel"lent
.>j:. the eqUo.tion W::r (X ... 2**-2)1 ('()

.* HPPEND : F t : CHAP 11 . OU T BEGIH MACRO DIY ****** ••• *.",*'

.* i-IPPEHD : F 1 : CHAP 11 . Oll T ASS DY L DIIIIDEND, R03 These two extro.ct the

'" HPPEHD : F t : CHAP 11 . OU T ASS D V2. DIIIIDSOR, ROO Plo.gnitudes.
.* ';'PPEHD :Fl :CHAPl1.0UT SUB DAR. DAIL ROO ThiS cleClrs the DAR. *'

'" .* iiPPEHD :Fl :CHAPl1.0UT SUB D VI. DV2, ROO, CH!>S ThiS is .' * APPEND :Fl :CHAPl1.0UT SUB DY 1, D1I2, R 01, eHD?'
.* APPEND : F 1 : CHAP 11 . OU T SUB D VI, D II 2, R02, CHD6 the dill ide, * '
.* i-iPPEHD :Fl :CHAP11.0UT SUB DVL D1I2, R03, eHD5'
.* f.!PPEND : F 1 : CHAP 11 . OU T SUB D VI, D"'2, R04. CHI)4 progro?ss i ng . '
.* kPPEND : F 1 : CHAP 11 . au T

,
SUB DVL DII2, ROS, CH03'

• APPEND :Fl :CHAPlt.OUT
,

SUB DV 1. DV2 • ROb, CHI)2 on e bit .' .* APPEND :Fl :CHAP11.0UT
,

SUB D V 1 , DV2, R07- CHOI '
.>1: APPEND : F 1 : CHAP 11 . au T SUB 0 ... 1. D ... 2, Roa, CHOO ot 0. t i ''''' . '" ' ..
.* HPPEMC' : F 1 : CHAP 11 . (lU T ADD DAR, Kp·4, L 01 ; Th is f 0 r-c es overflow <t) . '

* '
* '

.* HPPEtH> : F 1 : CHAP 11 . Oll T LDA QUOTIENT, I>1VlI>£HI), R13 These t 1&10 estobliSh

. * iiPPEHD : F 1 : CHAP 11 . Oll T XOR QUOTIENT, DIIIIDSOR, R13 the correct Sign .
>I: APPEt~D :Fl :CHAPll. OliT XOR QUOTIENT, I>AR Xfer result t·o output .. * '

APPEND : F 1 : CHAP 11 . au T END !'IACRO DIll **.*** ••• *****'
• >I: •

· '" .
. *: Hote tho.t the first two Opero.tions extro.ct the ftClgnitudes for the
.• ' diVISion. The DAR is cleo.red o.nd the CClr-ry set by the third instruction .
• >1:: i-It'ter the diViSion sequence. on over-flow (I) Will be forced b~ the 'ADD'
.>f; instruction fourth frol'l the end, if the diVidend exceedt'd the diVisor
.*' , note thot SUB CNDS behoves differently frol'l the other CHO inst) .
• oj<. The last three instructions ser to estobl ish the Sign of the result,
*: 'lnd transfer the result to the output. As the diviSion is corried only

.>t<: ~o nine bitS. the Sign correction routine is ollowed to lenve sOJlle

.*; ",rr'or in POSitions beyond the thirteenth .

. " Et1
BEGIH "ACRO DIY *************

ASS DilL D I II I DENt>, R03 These two extroct the '"
ASS D1I2, DIIIII>SOR, ROO ,,0.9n i tudes. *
S:JB DAR, DAR, ROO ThiS clenrs the DAR. *
S'JB [)V I .. D1I2, ROO, eHDS ThiS is *
SIJB DII 1, D1I2, ROt, eND?
SrJS /)111 .. D1I2, R02. CHD6 th e diVide, *
SrJ8 I)I,'L I>V2. R03, eNDS
S.iJB I>IIL 1>112, R04, CHD4 progressing •
SiJS /)111 .. D1I2, R05, CHD3

. S'JB 1>111 .. DY2, R06, eHD:? one bit *
S'J8 1>111, D1I2, R07, (:ND1
S:JS 1>111 .. DII2, ROa, CNDO nt 0 ti"e. *
AI>L) DAR, KP4, L 01 ;ThiS forces overflow (t) *

• LC>A QUOTIENT, DIYIDEHD, R13 These two estQbliSh *
XOR QUOTIENT, r>IYICSOR, R13 the correct Sign. *
XOR QUOTIENT, DAR Xfer result to output. *

ENI> "ACRO DIY .*~***********
* ; ..
*
*

*'
* '

11-5

Advanced Techniques: Other Routines for Signal Processing

>I< .;
>I< :rl~l(:Ot~Y :Fl :CHAPll.0UL IN2,INPUTlST
· '" ; ... :

.>I<:j.:j[>COHY
• >It

.*

.*·i~HRNING

.*

.*

MACRO to ~pp~nd t~ Q file the AID converSion
routines

The user should be dYQre thQt the correct AID conversion
routine (the nUl'lber of IN instructions. NOP's)i5 dependent.
on the externQI environ~ent of the syste~ (clock rQte,
input sQl'lple Qnd hold CQPQCitor etc.) Qnd thiS I'IdCrO should
be ~djusted QCCOrdi~91y .

. "'CALLING SEQUENCE AI)CON't' FILEHAI'tE,INPUT STATEMENT. INPUT_NAME
:AOCOHV FILTER.FIL ,INO. STAGEIIN .* EX.

.* thiS Will put in the file FILTER.FIL the code

.t to sQ~ple input port O,do Q ~ bit AID conversion
and put the result in STAGEIIN

."·,.jFF' Fi:(.HAP11.0UT

.•• ~!D CONVERSION ROUTINE ADDED BY "ACRO ADCONV
· ·f « ! ri2
· • ~ : ~~ 2

.'..-I!t2
· "'-N')P
.>\C'l<HOP
· ~*C·,·TS
.*~A~D DAR,KM2,ROO.CHD6
· '" ·\<t~ 01'
. "'*H(lP'
."'HPP ;Fl :CHAPl1.0UT 'CllT?
."'-NOP
· *j<I-!OP
· '~*C··/T6
· *tolHlp

· '" +<H(IP
· ",«C··1T5
· '" ~HI)P
." f.HOP
.*·CIIT4
. ",,,t·WP
· ."HI)!'
.•• C·lT3
· "'-iil)P
· • "'HI)P
· **C;lT2
· "'-..H(IP
· ,. ~H::iP
· ",.C itT 1
. ",ol<r-WP
· *l't-/(lP
.>I<1<C;lTO

· * ""HOP
· .HI!)P
.**LDA IHPUTlST.DAR ;SCAlE INPUT HERE
.**:EHD OF MACRO ADCOHY
· *." ..
· *£1'1

11-6

SP AC20 Compiler

SP AC20 Compiler Advanced Techniques: Other Routines for Signal Processing

JA/D CONVERSIOH ROUTINE ADDEO BY MACRO AOCONY
IH2
1HZ
I H2
HOP
HOP
C\lTS
ADD DAR.KM2.ROO,CHD6
HOP
HOi='
CI/T?
HOP
HOP

HOP
HOP
CIIT,)
HOP
HOP
C','7'4

HOP
HOP
c..,r3
HOP
HOP
CY'!"2
HOP
HOP
CV Tl
HOP
HOP
cno
HOP
HOP
L~A IHPUTIST,OAR ;SCALE IHPUT HERE
lEND OF "ACRO AOCOHV

*
*
*
*
*
*
*
*
*
*
*
*
*
* * ;
*:SA~ :Fl:CHAP11.0UT,257,O.5,SAWOSC
.*·THIS "ACRO GEHERATES A SAWTOOTH WAVEFOR"
.*:WRRHIHC: TS MUST BE ASSIGNED AN APPROPRIATE VALUE BEFORE CALLING THIS "ACRO .
. *;CALLIHG SEQUENCE: :SAW COOEFILEHAKE.EXT, FREQUENCY(HZ), ERROR(HZ), OUTPUTYAR
.*:EXAMPLE: TO CODE A SAWTOOTH FOR 257 HERTZ WITH AN ERROR OF LESS THAN 0.5HZ
.*:AHD SAVE THE RESULTING CODE "OOULE IN A FILE NA"ED SAW257.ALS WITH THE
.*=OUTPUT VARIABLE HAMED SAYOSe, YOU EHTER:
.*.' :SAW SAW257.ALS, 257, 0.5, SAltIOSe
.*IF TS=O THEH
· .~GRAPH IMPULSE FORCE ·SAMPLE RATE UNDEFINED- ERROR EXIT
· . f:ELSE

. ~COOE SAYOSe = (257 * TS * 4) * KM2 + SAWOSC ERROR < 0.5 * TS • 4;DECREMENT THE SAWTOOTH
· . ",WRI TE '
.f:*CODIHG CO"PLETED - HOW APPENDIHG TO FILE

· .~APPEHD :Fl:CHAP11.0UT CODE;BY FREQ X SA"PLETI"E
· .*APPEHD :Fl:CHAPll.0UT 'LOA OAR;SAYOSC';
.• APPEHO :Fl:CHAPll.0UT 'ADD SAWOSC,KP2.L02,CHDS'; IF RESUlT<O, ADO 1
· . *Ern>

11-7

Advanced Techniques: Other Routines for Signal Processing

ADO SAWOSC,KM2,R03
SAYOSC=1 .OOOOOOOO*SAYO~CtO.125000000*K"2

SUB SAWOSC,KM2,R06
SAYOSC=l .OOOOOOOO*SA~OSCtO.l09375000*KM2

A~C SAWOSC,KM2,RI0
SAYOSC=1.00000000*SAWOSCtO.110351562*KM2

ADO SAWOSC,KM2,R12
; SAYOSC=1.00000000*SAWOSC+O.II0595703*KM2

SUB SAWOSC,KM2,R07
: SAWOSC=1.00000000*SAWOSCtO.l02783203*KM2

CODING COMPLETED - NOW APPEHDING TO FILE
ADD SAWOSC,KM2,R03

: SAYGSC=I.OOOOOOOO*SAWOSC+O.125000000*KM2
SUB SAWOSC,KM2,R06

SRYOSC=1 .OOOOOOOO*SAWOSCtO .109375000*KM2
AD~ SAWDSC,KM2,RI0

SAWOSC=1.00000000*SAWOSC+O.I10351562*KM2
ADD :HWOSC KM2.RI2

SAWOSC=1.00000000*SAWOSC.O.I10595703*KM2
SUB SAWOSC,KM2,R07

SAWOSC=1.00000000*SAWOSCtO.l02783203*KM2
LDA C>AR,SAWOSC
ADO SAWOSC,KP2,L02,CNDS

'" *
'" '"
*
'"
'"
*
*
'" '"
'"
'" '" *:TRU1BG :F1:CHAPt1.0UT,OUT1.INl
.*;THIS MACRO TRANSFORMS A SAWTOOTH INTO A TRIANGULAR WAYEFORM
.• ·CALLIHG SEQUENCE:TRIAHG CODEFILENA"E.EXT, OUTPUTVAR, IHPUTYAR
· *APPEHI> :Fl :CHAPl1.0UT 'LDA OUTl, INt'
.*tlPPENI> :F1:CHAP11.0UT 'ADD OUTt,KI'I4'; SUBTRACT 112
.*APPEHI> :Fl:CHAP11.0UT 'ABS OUT1,OUTl,LOl'; TAKE ABSOLUTE YALUE & DOUBLE IT
.*l'iPPENI> :Fl:CHAPll.0UT 'ADD OUT1,KI'I4'; SUBTRACT 1/2
· *EM
l()A OUTl, IN1
AD!> OUT1.K/14
ABS QUT1,OUTl,LOI
AD!> OUTLKM4

* '" : .;; r !~ FIT : F 1 : C HAP 1 1 . 0 U T , 0 U T , I N
.*:THIS MACRO TRANSFORMS A TRIANGULAR WAYEFORM OF AMPLITUDE 1/2
.*,IHTO A SINUSOIDAL WAYEFORM OF AMPLITUDE 1
.*;CALLING SEQUEHCE:SINFIT CODEFILENA"E.EXT, OUTPUTYAR, INPUTVAR
.*APPENI> :Ft:CHAP11.0UT 'LDA OULIN,L02'; THIS TRANSFORMATION USES
.~r'lF'PEtH> :Fl:CHAPll.OUT 'SUB OUT,OULR02'; A PIECEWISE LIHEAR APPROXIMATION
.*~F'PEtH> :F1:CHAPl1.0UT 'SUB OUT,OUT,ROI'; TO SIH(PI*INPUTYAR>
.*04PPEIH) :Fl:CHAPl1.0UT 'SUB OULIH,R04'; WHICH IS I"PLEI'!EHTED USIHG
.*HPPEIH> :Fl :CHAP11.0UT 'ADD QULIH,ROl'; OVERFLOW SATURATION, THEREFORE
,*HPPEHD :F1 :CHAP11 .OUT 'AD!> OUT, IN'; LIMITING "UST HOT BE DISABLED.
· * £t1
U.·~ OUT, IN .. L02
SUB OUT,OUT,R02
SUB (JU T ,OUT, RO 1
SUS OUT, IN. R04
AI>l> I)ULIH,ROI
AC>C> OUT.IN

'" '"

11-8

SP AC20 Compiler

SP AC20 Compiler Advanced Techniques: Other Routines for Signal Processing

* .:; 1 NO S C : F 1 : C HAP 11 .0 1I T, 245,0 . LOS C
.*:THIS ~ACRO GENER~TES A SINUSOIDAL WAYEFOR~ AT A USER-SPECIFIED FREQUENCV
.• :CALLING SEQUENCE:
.of: :SIHOSC CODEFILENAME.EXT, FREQUENCV(HZ), FREQERROR(HZ), OUTPUTYARHAI1E
.*:EXAMPLE: TO GENERATE CODE FOR A SINUSOIDAL OSCILLATOR WHICH HAS A FREQUEHCY
.~.OF 245 HERTZ, PLUS OR "IHUS AT MST 0.1 HERTZ, WITH AN OUTPUT NAMED OSC245
.of:AHD APPEND THIS CODE TO DISK FILE ~YCODE.ALS, YOU EHTER:
.of·S!NOSC I'IYCODE.ALS, 245, 0.1, OSC245
.*::H.W :Fl:CHAP11.0UT.245,O.l.SAIaITOOTH
· ,~;THIS MACRO GEHERATES A SAWTOOTH YA~EFOR~

· .:~ARHIHG: TS MUST BE ASSIGHED AN APPROPRIATE YALUE BEFORE CALLING THIS ~ACRO.

· .' •. :CALLING SEQUEHCE: :SAW COOEFILEHA"E.EXT, FREQUENCV(HZ), ERRORCHZ), OUTPUTVAR
· ,.;EXAHPLE: TO CODE A SAWTOOTH FOR 257 HERTZ WITH AH ERROR OF LESS THAN 0.5HZ
· .~AND SAVE THE RESULTING CODE MODULE IN A FILE NAMED SAIaI257.ALS WITH THE

,.;OUTPUT VARIABLE HAMED SAWOSC, VOU EHTER:
.·f: :SAW SAW257.ALS, 257, 0.5, SAWOSC
~IF TS=O THEN
*GRAPH IMPULSE ; FORCE ·SAMPLE RATE UNDEFINED- ERROR EXIT
...,USE
*CODE SAWTOOTH (245 '" TS '" 4) '" KMZ + SAWTOOTH ERROR < 0.1 * TS '" 4;OECREHENT THE SAWTOOTH
* iJR I TE '
**CODIHG COMPLETED - HOW APPENDING TO FILE

'HiPPENI> :Fl :CHAP11.0UT COOE;BY FREIl X SAMPLETIME
.r.PPEND :Fl:CHAP11.0UT 'LDA DAR,SAWTOOTH';
*APPEHI> :Fl:CHAP11.0UT 'AOD SAWTOOTH,KP2,L02,CNDS';IF RESULT<O, ADO 1

'E N
.*iTRIAHG :Fl:CHAP11.0UT,TRIANGULAR,SAWTOOTH
,~'THIS MACRO TRANSFORMS A SAWTOOTH INTO A TRIANGULAR WAVEFORM

· ,.·CALLING SEIlUEHCE:TRIAHG CODEFILENAI1E.EXT, OUTPUTVAR, INPUTVAR
~APPEHD :F1:CHAP11.0UT 'LDA TRIANGULAR,SAWTOOTH'

.. HlPPEHD :Fl:CHAP11.0UT 'ADD TRIAHGULAR,KM4'; SUBTRACT 1/2
"'HPPEI'IO ;F1:CHAP11.0UT 'ABS TRIAtfGULAR,TRIANGULAR,L01'; TAKE ABSOLUTE VALUE & DOUBLE IT

· ,-APPEND :Fl:CHAP11.0UT 'ADD TRIAHGULAR,KfH'; SUBTRACT 1/2
· , *EN
.*'S!HFIT :F1:CHAP11.0UT,OSC .. TRIAHGULAR
,,~,' THIS MACRO TRANSFORMS A TRIAHGULAR WAYEFORM OF AMPLITUDE 1/2

. '1',: :NTO A SINUSOIDAL WAVEFORM OF AI'IPll TUDE 1
· ,~;CALLIHG SEQUEHCE:SINFIT CODEFILEHAI1E.EXT, OUTPUTYAR, INPUTYAR
.~APPEHO :F1:CHAP11.0UT 'LOA OSC,TRIANGULAR.L02'; THIS TRANSFOR"ATION USES
· ,~APPEHO :Fl:CHAP11.DUT 'SU8 OSC,OSC,R02'; A PIECEWISE LINEAR APPROXIMATION
· ,"'APPEND :F1:CHAP11.0UT 'SUB OSC,OSC,ROl') TO SIH(PhIHPUTYAR)

.APPEND :Fl:CHAP11.0UT 'SUB OSC,TRIANGULAR,RO.'; WHICH IS II1PLEKEHTED USING
· .• APPEHD :F1:CHAP11.0UT 'ADD OSC,TRIANGULAR,R01'; OVERFLOW SATURATIOH, THEREFORE
· .• APPEHD :Fl:CHAP11.0UT 'ADD OSC,TRIAHGULAR'; LIMITING HUST HOT BE DISABLED.
· . '~E!l
· .E11

11-9

Advanced Techniques: Other Routines for Signal Processing

A~D SAijTOOTH,K~2,R03

SAWTOOTH=1.00000000*SAWTOOTH+O.125000000*KI12
ADO SAijTOOTH,K~2,R08

S~WTOOTH=l . OOOOOOOO*SAWTOOTH+O. 12S906250*K112
ADO SAijTOOTH,KM2.R12

SAWTOOTH=l . OOOOOO(IO*SAWTOOTH+O. 12'1I503'10"'KI12
AD~ SAWTOOTH,KM2,R13

SAWTOOTH=I . OOOOOOOO*SAWTOOTH+O. 12CJ272460*KI12
SUB SAWTOOTH,K"2,ROS

, SAWTOOTH=1.00000000*SAWTOOTH+O.09S022460*KI12

CODING COMPLETED - NOW APP£NDIHG TO FILE
ADD SAWTOOTH,KM2,R03

SAWTOOTH=1 . OOOOOOOO*SAWTOOTH+O. 125000000*K112
A~D SAWTOOTH,K~2.R08

; SAWTOOTH=1 .OOOOOOOO*SAWTOOTH+O. 12S906250.K112
ADD SAWTOOTH.K"2.R12

: SAWTOOTH=1 .OOOOOOOO*SAWTOOTH+O. t29150390.~"2
AD~ SAWTOOTH.KM2.R13

. SAWTOOTH=1. OOOOOOOO*SAIHOOTH+O. 12CJ272460*KI12
SUB SAWTOOTH,KI12,ROS

SAWTOOTH=1.00000000.SAWTOOTH+O.098022460*KI12
LDA t-AR,SAWTOOTH
ADD SAWTOOTH,KP2,L02.CHDS
LOA TRIAHGULAR,SAWTOOTH
ADD TRIAHGULAR,KI14
AB~ TRIAHGULAR,TRIANGULAR,LOI
AO~ TRIAHGULAR,K"4
LOA OSC,TRIANGULAR.L02
SUB OSC,OSC,R02
SUB OSC,OSC.ROI
SUB OSCJTRIAHGULAR.R04
A~~ OSCJTRJAHGULAR.ROI
ADD OSCJTRIAHGULA~

'"
'" •
•
•
•
'" •
'" '" E:-< I;

11-10

SP AC20 Compiler

. " APPENDIX A
HELP MESSAGES n

.HELP
•• - H~lp is ~Y~II~bl. for th~ following it~fts. TVp. HELP followed •••
••• b~ the ite .. n~".. 00 not t~pe the ~nCJle bro.ckets. (For ftore •••
••• infor .. ~tion on the help co and. tvP. HELP HELP.) •••
Filters ~nd Fi lte,. Responses:

DEFIHE,(FILTER$RESPOHSE),GREF,HOLD,"OYE,(POLE$OR'ZERO'LOCATION),
<POLES$OR.ZEROES),RE"OYE

Gr'lphics:
FSCALE,GRAPH,YSCALE

Code Genero.tion:
BOUHOS.COOE,("A.COHSTRAIHT),<PZ$COHSTRAIHT)

F j te.'D i5pl~y/Coftpound Co""ands:
<COMPOUHD$CO""AHDS),EYALUATE,EXIT,(FILE$CO""AHDS),HElP,"ACRO,
(PATHfHAME),WRITE

"iscellOoneous:
<BOOLEAH.EXPR),<COHSTAHT),(EXPR),<FUHCTIOH).(IDEHTIFIER>.
<!NTEGER'EXPR),<HU"ERIC$CONSTANT),<PRI"ARY),<PZ$REF),<SPAC$REF),
(STRIHG),(SY"BOL),<SY"80LIC.REF)

•
• HELP •
(BOOLEAHfEXPR) - A 8001ea.n Y~lued (TRUE or FALSE) expression:

<BOOLEAN$PRI"ARV) [(BOOLEAN.OPERATOR> <800LEAHtPRI"ARV)].
Boolea.n pri .. ~ries connected with 10giCOol oper~tors.

Ex: (. I < 10) AHD (. I) 5 >
<BOOLEAN$OPERATOR>:

Aio/I> OR XOR
<BOOLEAN$PRIMARV) - Either ~ co .. po.rison of two (Q.rith"etic) expressions
or Q. pQ.renthesized Boole~n expression:

[HOTJ CEXPR> <CO"PARISOH> <EXPR)
Ex: SIH<'X+l/.)(».5

(<BOOlEAH.EXPR>)
Ex: «.1 <> 0> OR (.101»

(COI1PAR ISOH >:
)= <>

<BOU~DS) - Piecewise linear upper Q.nd lower bounds on the gain.
Us.d during coding to constrain the gain of the coded fi Iter.

LBOUHD/UBOUHD
Displ~y the current lower or upper bound setting.

Ex: LBO
LBOUHD/UBOUHO .. <EXPR) AT <EXPR) [, [,] <EXPR) AT <EKPR)h

EQ.ch <EXPR) AT <EXPR) estdbl ish.s II. vertex or the piecewise
lineQ.r bound. Two CO ... ftd5 in a row indiCo.te a don't c~re region.

Ex: USO" 0 AT 10,0 AT 5', -20 AT bO, 0 AT 61.0 AT 1000
LBO" -1 AT 10, -1 AT 59, , -1 AT bt, -1 AT 1000

Th .. deYi~t.on of the gain froft th~5e bounds is revealed b~ the
(SPAC$REF)s MSQE. a.nd MERROR. and the <FILTER$RESPONSE> GERROR.
Sol'';' <FILTER$RESPOHSE>, <GRAPH), <PZ$COHSTRAIHT), <SPAC.REF>.

CO~E - Co~ftQnd to gener~te 2'20 ass.~bl~ code into code buffer or
di~plOo~ current code buffer contents:

cor, E
DisplQ.~ current code buffer contents.

CODE POLE/ZERO <IHTECER.EXPR) [(PZtCOHSTRAINT)]
G~nerQ.te code ror speCified pole or zero subject to the speCified
constrOoints. The default con.tr~int is PERROR<O.O, IHST(20
(•. e. rlinil'liZe positionQ.I error in fewer thQ.n 20 instructions>.

Ex: CODE POLE 1
CODE ZERO 3 I'ISQE<.01, INST(11

CODE <IDENTIFIER) = <PRl"ARV> * <IDENTIFIER) [+ <IDENTIFIER)]
[;HAfCONSTRAIHT)]

Generate code 'or ftUltiplication of one variOoble and II.

constQ.nt. le~Ying result in another (or 54",e) YQrio.ble.
If the third nOEMTlfIER) i~ p:-esent, it ntl~!; !:I~ ~U!~ ~s first)
code generated adds the resu It of the ~ul t.1 pI i cat i orr to t.he
fjrst YQri~bl.. The defQ.ult constraint is
ERROR< <PRI"ARV)I2**16. IHST<20.

Ex: CODE V = (113)*X+Y
CODE INO_P1 = .OHDAR IHSTC5
COl) Xl = .9'5*X1 ERROR(.002

A-I

HELP Messages

A-2

(CO POUHO.CO""AHOS) - Sever~l coftpound coftftQnds exist:
F <BOOLEAHfEXPR) [THEN] <CR} [ORIF <BOOLEAHHKPR) [THEN]
CR). . .l* [ELSE <CR) 1 EHD

Here indlc~t.e5 ~n~ nUPlber of cOPlI't~nds (possiblll cOPlpound>.
<CR) is CQrriage-return.

Ex: IF "AGAIN)1 THEN
WRITE 'SCALE BY' LOC("AGAIH)/LOG(2)

EHD
T~~ other cOPlpound coftftands allow looping:

REPEAT (CR) [..... [WHILE/UHTIL <BOOLEAHtEKPID (CR)lH END
The coft .. llnds are repe.ted until the WHILE or UHTIL clause
p.rPlits terPlinGtion or until the Escape keV Is pressed.

COUNT <INTEGERrEl<PR> [..... [WHILE/UHTIL <BOOLEAHrEKPR) <CR}ll*
EI4D

As in REPEAT, but loop terPlinate. Ilfter a specified nUPlber
of' passes.

Ex: COUHT 20
EYALUATE SIH(. H*TPI/360)
.H a .H+l

EHD

<COHSTANT) - A ke~word ·whlCh hdS ~ fixed nUPleriC vlllue.
PI 3.1415927
TPI Twi ce PI
HPI HQlf of PI

DEFINE - COl'll'lo.nd to define 0. pole or zero, o.sIJ"bol, or 0. ..,o.ero:
D£FIHE POLE/ZERO (INTEGERtEKPR) = <POLE.OR.ZEROtLOCATIOH>

CreQte a pole or zero at the specified location.
Ex: DEFINE POLE 0 = -200,0,TS

[) E FI HE Z 10 Q 0 = 1.01, PIli 0, Z
DEFINE .<SY"BOLtHA"E) s <EXPR>

Add (SY"BOl.HA"E) to end of sy",bol table o.nd o.ssign it 0. value.
Ex: DEFINE .LABEL = 100

DEFINE "ACRO <"ACtHA"E) <CR) (CR) EI'I
Define Q l'Iecro to conSist of , Q sequence 0' co..,~ands.

For~cd pClrel'leters :CO, :n. ., =<9 w j II be substi tuted when lucro
is invoked. (CR) is cerriClge-return.

5e. MACRO. SY"BOL.

EYALUATE - CO..,..,Qnd to evaludte o.n expression. The vQlue is diSplo.~ed
in decil'lal scientific notQtion.

£"'ALUATE <EXPR>
Ex: EYAL (LOC("ACAIN)/LOG(2» "ASK 255

EXlT - COI'II'lClnd to eXit the debugging session dnd return control to
IS r $- I I .

E.\(IT

(EXPR) - A nul'teric value expressed as an algebraiC sequence of
op.rQnd<s) o.nd operCltor(s). It has the folloving for~:

<DPERAND) [(OPERATOR) (OPERAND)].
< OPERAND):

«UHARVtOP)l <PRI"ARY>
(UHARUOP) :

(PRII1ARY):
(HUI'IERIC$COHSTANT)
. H MBOLl CUEF)
<SPAC.REF)
<CONSTANT}
<FUNCTION> «EXPR»
<PZ$REF>
(<EXPR})
(-;BOOLEAH$EXPR»

<OF'ERATOR}:

* I' +

(Ex: 1979, 0.1011B. O.FFF3H, 3.14159D)
(Ex! ."AXUGAIH, .STAGH2)
(Ex: TS, INST, I'ISQE>
(Ex: PI, HPI, TPI>
(Ex: SIH(TPI*Th'O). GAIH(60»
(Ex: REAL<POLE 1), AHGLE(Z 99»
(Ex: (LOG(AGAIN)/LOG(2», <.FRED+14D»
(TRUE=1, FAlSE=O; Ex: <')«100»

SP AC20 Compiler

SP AC20 Compiler

(FILE$CO""ANDS) - SevereLl coftftQnds ftCLnipulate ISIS files or devicesl
L!ST <PATH'HA"E)

Send eL cop~ of eLll console input Qnd output to specified
log file or device. To ter"ineLte copying, tt,lpe LIST leO:.

DISPLAY (PATH'HA"E)
A coftfteLnd to diSp14!1 Qn ISIS file. The displQy CQn be
interrupted With the EsceLpe key.

Ex: DISPLAY :Fl:PZ.UIP
PUT/APPEND <PATH'HA"E) [CFILE$OBJECT> [, <FllE$OBJECT)l*l

ijrlt. the specified objects to Qn.ISIS file or device. PUT
indicCLtes the file should be deleted first if it CLlreCLdt,l
exists. APPEND indiCQtes the obJects should be QPpended to
the end of the file which wi 11 be created if it does not
~et exist. If no obJects are speCified, coftftQnds are output
whiCh when INCLUDED Will recreQte the current state.

Ex: PUT: F 1 : P 2 . T"P P 2
APPEND :F1:FILTER.SRC 'i STACE' .1. CODE

INCLUDE (PATH'HA"E)
TQke cO CLnds fro .. speCified fi le.

(F~LE$OBJECT>:

CODE PZ "ACRO SY"BOLS BOUHDS (STRING) (E)(PR)

(F1LTERfRESPOHSE) - On~ of the fol10win~ filter responses:
GAIN GeLin in d~cibels eLS eL function of frequency in Hertz.
AGAIN Absolute gain QS a function of frequ~nc~ in Hertz.
PHASE PhQse delQy in rQdiQnS QS Q function of frequency in Hertz.
GROUP Group delQ~ in seconds QS Q function of frequency in Hertz.
GERROR Signed deViQtion of GAIN fro~ the LBOUND Qnd UBOUND

in deCibels as a function of frequency in Hertz.
See <BOUNDS) ..

IMPULSE I~pulse response as a function of ti"e in seconds.
SJEP Step response as Q function of ti~e in seconds.

Each (FILTER$RESPONSE) can be us~d QS a coft~and to tabuleLte the values.
Each can be 9raph~d. Each ~xcept IMPULSE CLnd STEP CeLn be used CLS Q
function in an expr~ssion, ~.9. AGAIH(60).
Se-? <FUNCTION), GRAPH, <PRIMARY>.

FSCALE - A coft~and to diSplQ~ or speCify the frequency range of int.rest
dU~lng calculation and graphing 0' filter responses:

FSCALE
Display current frequency scale.

FSCALE :a <EXPR) , <EXPR) [, (EXPR)].
Break the horizontal range of the graph into a nuftber of piec."is.
logarithftiC s.gftents. A nearly linear frequency scale CQn be
creQted thiS wa~. At .. ost 10 v4lues are allowed.

Ex: FSC" 10,10000 (inltieLI condition)
FSCALE = 1000,1500,2000,2500,3000,3500 (nearly 1 inear)

(FUNCTIOH) - A ke\dword which invokes a predefined function of its
ar9u~.nt when QPpearing in a (PRI"ARV> or (EXPR).

SIH Sine function
COS COSine function
TAN Tangent function
ASIN Inverse sine function
ACOS Inverse COSine function
ATAH Inverse ~Qngen~ function
EXP Exponentiation of e (2.7182817)
LOG NQtura\ logarlthft (inverse of EXP)
SQR Square root
ABS Absolute value
0"1 L TER.RESPOHSE > Any frequency dependent f i 1 t er response CQn be

invoked QS a function: Ex: PHASE(60)
Se. <EXPR), <FILTERfRESPOHSE). <PRI"ARV>.

GRAPH - A coftftCLnd to graph Q filter response or bound:
GRAPH

Redisplay the preVIOUS graph.
GRAPH (FILTER$RESPOHSE)/LBOUHD/UBOUHD

Graph the speCified filter response or bound.
Ex: . GRAPH GAIN

OGRAPH <FILTER.RESPOHSE)/LBOUND/UBOUHD
Groph the speCified filter response or bound on top of
the lQst curve gr4phed. Old curve is indicated w.th plus Signs
in dlspla

Ex: OGR LBOUHD
S.e <BOUHDS}, (FILTER'RESPOHSE).

HELP Messages

A-3

HELP Messages

A-4

GREF - Set o~ displ~y the reference frequency and deCibel gain used
in c~lculating gain:

GREF
Display current gain reference.

GREF = <EXPR> AT <EXPR)
SpeCify the gQin to be a certain yalwe at a certain frequency.

Ex: GREF. 0 AT 440 (0 deCibels at 440 Hz)
Th. absolute gain (AGAIN) at the reference frequency Rust be nonzero.

HELP - CO"l'Iand to displa~ a su","ary of the s~ntQx of Q co","and
or c~"ponent of a coft"and.

HELP
Display a list of Q11 iteRs for vhich there is help.

~ It-e",s appear·ing in thiS list without angle brackets are
co","and keywords. Ite"s with angle brockets are co""ond
cOl'lponents.

HELP <IDEHTIFIER>
Display sU"l'Iary of speCified iteR. (IDEHTIFIER) "ay contain
dollar Signs> but not angle brackets.

Ex: HELP POLESORZEROES
HELP *

Display the sUl'll'laries of all it ... s.
Th. fol lOWing notation is used in the help sU"'l'Iaries:

[AJ Reans A is optional.
CAl. "eons A is optional and "oy be repeated any nUl'lber of tiftes.
4/B Pleans either A or B l'Iay be used.
<A> Me~ns there is 0150 a help sU"l'Ia~y for the coftl'land

cOl'lponent A.

HOLD - COI'Il'land to turn on or off sal'lple and hold cOl'lpensation> or to
diSp\Qy the current state:

HOLD
Display hold on O~ o'f.

Hill D OH
Turn coftp~nsation on. This should be used when exaftining the
characteristics of ~ntire 2920 filter i~plel'lento.tion.

HOLD OFF
Turn cOftpensation off. ThiS should b~ used when co.lculatin9
sCG-l ing factors between fi \t.er st.Clge5 or when USing t.he SPAC20
coftpiler t~ desi9n ano.log CirCUits.

<I~EHTIFIER> - A sequence of one or ftore of the follOWing characters I
ABCDEFGHJJKL"HOPQRSTUVWXY20123456789@?_

Th~ fjrst character con not b~ a deCi~Qt digit and onl~ the first 31
ch'r~ct~~s are Significant. Dollar Signs ore ollowed but ore ~gnored.

Ex: SCALESFACTOR ?TE"P$1 INO_P12

<IHTEGERfEXPR> - An expreSSion <EXPR> With an integer yatu~:
Ex: PI - (PI "00 1)

15.000
<LOG("ACAIN)/LOC(2» "ASK 23~

SUt <EXPR).

<"A$CONSTRAIHT> - In a CODE .""ltipliCo.tion co,,"and, specifies the
constraint gUiding the code generation l

ERROR < <EXPR) [, INST < <EXPR»
Generate fewer than a speCified nuftber of instructions which
effect a l'Iultiplication b~ a constant which differs b~ less
than a speCified vatue frOR the desired constant.
The default IHST constraint Is IMST<20.

Ex: ERROR<.OOOI
ERROR(O> IN8T(10 (ftinil'llZe ERROR with' instructions)

INST < <EXPR)
Generate fewer than a speCified nUl'lber of instructions which
"ultipl~ b~ a constant differing by less than on~ part in 2 •• 16.

EX: INST < 10
After codi~g has been cORpteted> the <SPAC.REF> ERROR gives the
Signed difference between the requested ftUltiplier and the actual
",ultipti.~. s .. CODE. (SPACfREF>.

SP AC20 Compiler

SP AC20 Compiler

"AeRO - l'I~cros ~re user-cre~ted, naRed, coftR~nd sequences. P~rafteter.

are subst ituted "hen ft~cro. ~re inyoked. "acros ~re ~n~ IClgous to
th~ ISIS SUBI'I~T facilit~:

t1liCRO [<I1AC$HAI'IE) [, (IUCfHAI'IE) 1*1
Djsp1a~ all, or only the specified ftClCrO definitions

D JP. "ACP-O
Display ftacro director~. i.e. the 1 ist of defined ftClCrO n~ftes.

REMOVE MACRO [(I1ACtHAI'IE> [, OIAC$HAI'IE> 1*1
R~ftove all. or only the speCified Racro definitions.

DEFINE I'IACRO (I'IAC.HAI'IE) <CR) . <CR) EI'I
Define Cl ftacro to conSist of• Cl sequence of cORftands.
ForRa1 p~rClRet.rs %0, %1. ~~ Will be substituted when ~acro
is invoked. <CR) i. CQrriage-return.

OH.CtHAI'IE) [(PARAI'IETER) [, [(PARAMETER)]].)
Invoke Cl RClcro With speCified parClfteters.

Ex: :I'IOC POLE 1 •. 001
<PAR~METER) - Any sequence of tokens not containing Cl CORRa or <CR),
o~ Q quoted string (STRING) pOSSibly containing n Coftfta or (CR).

Ex: POLE .1+1
'A, B, C'

(MAC$HAI'IE> - Any <IDENTIFIER).

"OyE - COftftand to ftove the locations of existin9 poles Clnd zeroe •.
MOYE <POLESIORtZEROES> TO COHTIHUOUS/TS/Z

Move SORe pole. or zeroes to a different plane. "oveftent froft
CONTINUOUS/TS to Z involves the ftatched-Z trQnsforft. and in
the other direction, the inver •• ",o.tched-Z t.ro.nsforft.

E): MOYE PZ TO TS (convert to sn~pl.d filter).
MOVE <POLES$ORtZEROES> TO <POLE$O~tZEROILOCATIOH>

R.d~fin. the POSition o.nd possjbl~ the plnne of the speCified
pol es or zeroes.

Ex: MOYE POLE 1 TO -20.1010 (So.l'It' plClne>
HOYE ZEROES TO o.o,rs (new pIllne)

MOVE <POLEStOR.ZEROES> BY <EXPR> , <EXPR>
Chnnge the cOOrdinQtes of the speCified poles
t~o expreSSion vo.lues.

Ea: HOYE P 10 BY .01.0
HOYE POLES BY 0.10

(cho.nge radiUS if Z-plQne pole)
(cho.nge frequency if S-pillne pole>

(HUMERICtCOHSTAHT> - A sequence of nUl'leric cho.ro.cters (digitS)
op~ ~~u:l~ including d period (".") Followed by Qn optional suffiX to
sp~c,f~ the constant's base. If no suffiX is speCified. then the
consto.nt is evaludted with default deciRClI suffix. Dollar
s'~ns !'Illy be used to il'lprove reo.dability. but Qre ignored.

Ex: 0.1001$10119 (binary)
. ~ 9 90 (de C i IH 1)
IFA9H (h.xadeci~ill)
1.5 (defo.ult deCi",o.l)

(P~T~HA"E> - The n~l'Ie of Qn ISIS-II file or deVice:
Ex: :Fl:I'IVPROG

:F2:TEST.OOl
: LP:

<PQLEORZEROtlOCATIOH> - The IOCo.tion of _ pole or zero on one of the
thro?e p to.nes:

/EXPR) , <EXPR> (, COHTINUOUSlTS/Z]
SpeCifies coOrdino.tes in 0. pIo.ne. If CONTINUOUS (S-plClne> or
TS (so.l'Ipled S-plo.ne), coordinClte. refer to real Qnd iftaginQry
cOl'lponents expresseod in Hertz. If Z (sal'lp1ed Z-plane),
cOOrdinQtes o.re polClr: the first is the rCldius Clnd the second
is the Clngl. in ro.diClns. If no plQn. is specified when
defining a pole or zero, the defClu1t is CONTINUOUS. If no
plane is speCified "hen ROYing • pole or zero. the plane reftAins
unchClnged.

Ex: -5, '0 (iO Hz)
-5. 60, TS (60 Hz .a .. pled)
.". TPI/S. Z (One fifth the sClftple rnte)

HELP Messages

A-5

HELP Messages SP AC20 Compiler

A-6

<POLESORZEROES> - A speCification of a range of poles, a range of
zeroes, all poles, all zeroes, or all poles Gnd zeroes:

POLE <INTEGERSEXPR) [THROUGH <IHTEGER$EXPR)l
One or ftore poles specified b~ integer labels.

Ex: PO 7
POLES 10 THRU 19

POLE
All poles.

ZERO <IHTEGER$EXPR> [THROUGH <IHTECER$EXPR)l
One or ftore zeroes specified b~ integer labels.

Ex: ZERO 32
ZEROES 10 THRU 19

ZERO
All zeroes.

PZ
All poles and all zeroes.

<PRI"ARY) - A nu"erlc
<NU"ERICfCOHSTAHT)
<SV"BOLICUEF)
<SPAC$REF)
<COHSTANT)
<FUHCTIOH) «E)cPR»
<PZ$REF)

value. It ha. the following forfts'
(Ex: 1979,0.10118, O.FFFSH, 3.141591»
(Ex: ."AX$AGAIN, .STAGES2)
(Ex: TS, I"ST, "SQE)
(Ex : PI, HP I, TP I)
(Ex: SIN<TPI*TS.60), GAIH(60»
(Ex: REAl(POLE 1), AHClE(Z ,,»

«EXPR»
«BOOLEANUXPR»

(Ex: (LOC(AGAIN)/LOG(2», (.FREI)+14I»)
(TRUE=I, FALSE-OJ Ex: (.X<100»

<PZ$COHSTRAIHT) - In a CODE pole/zero coftftand, speCifies the
constr4int gUiding the code generation:

PERROR < <EXPR> , <EXPR> [, IHST < <EXPR)]
Generate fewer than a speCified nuftber of instructions
which Iftpte"ent a pole or zero whose coordinates differ froft
the original coordinates b~ le.s than the two specified values.
The default IH8T constraint Is INST < 20.

Ex: PER < 5,10, IHST < 14
PERROR < 0,0 <"iniftiZe POSitional error)

"SQE < (EXPR) [, IHST < <EXPR)]
Gen.r~te code so that the ftean squared deViation of the gain
fro" the gain bounds (i .e. "SQE) is less thGn a speCified Yalue.

Ex: "SQE < .1
"5QE<0. IH5T<10 (ftini"iZe "SQE with' instructions)

"ERROR < <EXPR> [, IHST < <EXPR»
GenerGte code .0 that the "~Xiftu" absolute deViation of the gain
fro" the gain bounds (I.e. "ERROR) is less than a speCified v~i1ue.

Ex: URROR < .1
"ER(O, IHST(10 <"inl"iZ. "ERROR)

1HST < (EXPR)
"ini"ize POSitional error. h". as PERROR(O.O, IHST< <EXPR).

See <BOUHDS), CODE, <SPAC.REF).

<PZ$REF> - A reference to a coordinate 0' a pole or zero location,
uS9d GS a (PRI"ARY) in an expreSSion <EXP~>:

REAL < POLE/ZERO <IHTECERtEXPR))
X coordinate ot speCified pote or zero in C~rtesian coordinates.

Ex: REAL (POLE J)
l"AGIHARV (POLE/ZERO <IHTEGER.EXPR)

Y coordinate of speCified pole Or zero in Cartesian coordinates.
RADIUS (POLE/ZERO <JHTEGERtEXPR))

RadiUS of speCified pole or zero in polar coordinates.
ANGLE (POLE/ZERO <IHTECERfEXPR>)

Angle in radiansot speCified pole or zero in polar coordinates.
For ~ pole or zero In an S-plane the X and Y coordinates are the s~"e
as the <POLEtOR.ZERO.LOCATIOH> and the radius and angle are the result
of converting the.e to polar coordinates. For a pol. or zero in the
Z-p14ne the radius and angle are the sa"e as the <POlE.OR'ZEROfLOCATIOH>
and the X and Y coordinate. are the_ result of converting the.e to
rectangular coordinates.

SP AC20 Compiler

REHOVE - Coft~Qnd to delete a pole or zero, Q s~"bol, or a ftacro.
REMOYE <POLESORZEROES>

Reftoye poles or zeroes specified b~ integer labels.
Ex: RE"OYE POLE 1

RE" Z .BLOCK$l THRU .BLOCK$1+10
RE"OYE POLES
RE" PZ

REHOYE (SY"BOLIC$REF) [, <SY"BOLIC$REF)]*
Reftove one or "ore sVftbols froft the s~~bol table.

Ex: RE"OYE .LABELX
REMOYE S'iI'IBOLS

Reftoye all syftbols fro" the s~"bol table.
REHOYE "AeRO <"ACfHA"E) C, <"AC$HA"E>l­

Re"ove one or "ore "acro definitions.
Ex: RE"OYE "ACRO CHEB

REMOYE "ACROS
RePloye 0.11 "acros.

Se~ MACRO. SY"BOL.

<SPAC$REF) - A ke~word reference to o.n SPAC20 s~st.ft variable. Each "o.~

be dispta~ed b~ slftpl~ t~plng the ke~word. Those which are not read
only fta~ be changed b~ t~ping the kevword rollowed b~ "." and an <EXPR>.
Each I'IOo~ be used o.s 0. <PRI"ARY) in o.n expreSSion <El<PR).

ERROR Signed error in "ultiplier fro" last code "Ultiplico.tion

! HS T

I1AGA 1 H

MERROR

IiSH

TS
;{,::I ZE

Y~IZE

coftfto.nd (reo.d onl~).

HUftber of instructions in code buffer generated b~ lo.st
code coftfto.nd (reo.d onl~).
"o.xi"Uft o.bsolut.e gain over frequencies in the
frequenc~ scale (reo.d onl~).
"o.X;ft"'PI o.bsolute deViOotion of gain fro" lower and upper
bounds (se. BOUNDS> (read onl~).
"eon square deViation of gain froft lower o.nd upper bounds
(see BOUNDS) (reo.d only>.
SQPlple tiPle in seconds (positive nonzer.o).
CRT $creen width. Also deterPlines frequency sco.le o.nd ti~e

s;$G--1E' ;,:ieltn$ (12<=XSIZE\=7~).
CRT screen height (S<=VSIZE<=25).

(STRING> - A quoted string of ch~ro.cters used in a WRITE, PUT, or
APPEHD coft"o.nd, or used 45 Q "o.cro p4r4P1eter.

E ,; : ' H ELL 0 I

'POLE 1) AHYTHING' 'S ALLOWED IN A STRING'

S'fl"lBOL - Refers to a SIjJllbol in the s~Plbol to.ble:
<SYMBOLICUEF)

DiSplo.y the v4lue of a s~ .. bol.

SYMBOL

Ex: . STACEU
.SUI1

DlSp\o.y the entire S~ftbol to.ble.
DEFINE .<SY"BOLfHA"E) = <EXPR)

Add (SY"BOltHA"E) to end of sy .. bol t4ble o.nd o.ssign it 0. v4lue.
Ex: DEFINE .FACTOR = .13FH

<SVI1BOLICfREF) = <EXPR)
Cho.nge the vo.lue of 0. syftbol.

Ex: .LABELl< = 5
.FACTOR = .OHE/16

REHOYE <SYI'IBOLICtREF) [,(SYI'IBOLIC$REF) 1.
Re"ove one or "ore s~Plbols fro" the s~"bol to.ble.

Ex: RE"OVE .SAVEIT
REMOYE SY"BOL

Re"ove 0.11 sy .. bols froft the s~"bol tQble_
(SIMBOLSNAI1E) - An (IDENTIFIER).

<S·"'1BOLIC$REF) - A ref.rltnce to Q s~Jllbol in the sy"bol to.ble.
Se~ SYMBOL for relo.ted coft"Oonds .

. ~SYI'IBOL$HA"E>
Access sYl'lbol in to.bt. With speCified sYl'lbot na"e.

Ex: .LOOP$INDEX

WR!TE - A cOPl"o.nd to display to the console (and list deVice) strings
o.noj/crr expre$Sion v_lues. "ost us.'ul in coftpound cOPlft4nds o.nd ftOocros:

I~RlTE <WRlTEtOBJECT> [, <WRlTESOBJECT>h
Ex: WRITE 'CODING POLE HUI1BER', .1. I HOW'

<WRlTEfOBJECT>:
<STRING) <EXPR)

HELP Messages

A-7

HELP Messages

YSCALE - A coftftand to displa~ or set the vertical graphics scal.:

A-8

Y~3CALE

Di5pla~ the current VSCALE setting. If the setting is AUTO,
the current ftiniftuft and RaxiRUR are also displayed.

'(SCALE = AUTO
Specify thQt the vertical seQl.'/s to adjust to fit the
ftiniftUft and RaXiftUft of the curve being graphed.

'(SCALE = <EXPR> , <EXPR>
Specify a fixed vertical scale.

Ex: VSCALE = -PI,PI

SP AC20 Compiler

· ' n . APPENDIX B
KEYWORDS: DEFINITIONS

AND DEFAULTS

Constants, Operators, Functions

ASS

ACOs
AND

ANGie

ASln

ATAn

COS

EXP

HPI

IMAg

LOG

MASk

MOD

NOT

OR

PI

RADius

REAl

SIN

SQR

TAN

Operator, used in expressions, gives absolute value of the argument
appearing to its right, e.g., ABS (Y), ABS (X-Y)

Function used in expressions, giving the arc cosine of the argument

Operator, used in logical expressions, gives bitwise conjunction of
the argument appearing to its right with the argument to its left;
both must be boolean expressions or integer expressions

Function used with a Z-plane pole or zero argument; returns the
angle of the object; e.g., ANG (POL 2)

Function used in expressions, giving the arc sine of the argument

Function used in expressions, giving the arc tangent of the
argument

Function used in arithmetic expressions, gives cosine of the
argument appearing to its right

Function used in arithmetic expressions, gives powers of
e (=2.718281)

Constant, value 3.1415926/2 = 1.57079633

Function used with a S-plane pole or zero argument; returns the
imaginary part of the object; e.g., IMA (ZER 12)

Function used in arithmetic expressions, gives natural log to the
base e (2.718728)

Operator, used in arithmetic expressions, gives bitwise conjunction
of the argument appearing to its right with the argument to its left;
unrestricted e.g. PI MASK O.FFFFH = .14159, PI MASK 2 = 2.00

Function used in arithmetic expressions, gives the remainder from
dividing the argument to its left with the argument appearing to its
right

Operator, used in logical expressions, gives the negation of the
argument appearing to its right

Operator, used in logical expressions, gives the inclusive or
(disjunction) of the argument appearing to its right with the argu­
ment to its left. Each must be a boolean or an integer expression

Constant, value 3.141592653

Function used with a Z-plane pole or zero argument; returns the
magnitude @f the object; e.g., RAD (POL 217)

Function used with a S-plane pole or zero argument; returns the
real part of the object; e.g., REAL (ZER 6)

Function used in arithmetic expressions, gives sine of the argument
appearing to its right

Function used in arithmetic expressions, gives square root of the
argument appearing to its right

Function used in arithmetic expressions, gives tangent of argument
appearing to its right

B-1

Keywords: Definitions and Defaults SP AC20 Compiler

B-2

TPI

XOR

Constant, value 3.14159265*2 = 6.2831852

Operator used in logical expressions, gives exclusive or
(disjunction) of the argument appearing to its right with the argu­
menUo its left. Each must be a boolean or an integer expression

Commands

APPend

CODe

COUnt

DEFine

DIR

DISplay

EVAluate

EXit

GRAph

HELp

HOLd

IF

INClude

LISt

MOVe

OGRaph

File command, writes out the specified (or default) objects to the
specified file, either creating a new file or adding to the end of an
existing file (Chapter 7)

Creates AS2920 assembly language code for the current poles and
zeros or for equations; also abbreviated C, CO

Compound command, establishes maximum number of times
command block is to be executed

For symbols, creates an entry in a table and attaches a numeric
value to it;

for poles or zeros, the value is the coordinates and plane of that
object;

for macros, it is a pointer to the macro's block of commands

Used only in DIR MACRO command; lists all the names of
macros currently available

File command; copies the named file to the console

Gives the decimal numeric value of the argument appearing to its
right

Terminates the current SPAC20 Compiler session

Entered alone, this displays the last curve plotted; if a filter
response is supplied as an object, e.g. GRAPH PHASE, this
displays the graph of the values of the object specified, using the
latest appropriate scales; also abbreviated GR

If the object is LBO or UBO, the lower or upper bounds are
graphed

Types explanatory message about the argument appearing to its
right; if the item is *, types all such messages

Command to correct attenuation due to sample-and-hold
distortion: if ON, corrects AGAIN by multiplying by I sin(X)/X I,
where X = TS*FREQ*PI, and corrects PHASE by adding X, and
GROUP by subtracting PI*TS; also abbreviated H, HO

Compound command, often used in macros, establishes
conditional flow of control within a command block

File command, executes contents of specified file as if typed as
commands at the console

File command, establishes file copy of all console interactions

Command to change location or plane (or both) for one or more
poles or zeros by specifying an increment or final value for each
coordinate; also abbreviated M, MO

Displays the graph of the values for the filter response entered as its
argument, simultaneously superimposing the last curve plotted;
also abbreviated OG

If the object is LBO or UBO, the lower or upper bounds are
graphed

SP AC20 Compiler

PUT

REMove

REPeat

WRite

Objects

AGAin

BOUnds

ERRor

FSCale

GAin

GERror

GREf

GROup

IMPulse

INSt

LBOund

MACro

'MAGain

MERror

Keywords: Definitions and Defaults

File command, writes out the specified (or default) objects to the
specified file, either creating a new file or writing over an existing
file of the same name (Chapter 8)

Deletes from a table one, several, or all entries: poles, zeros,
macros, symbols (Chapters 2, 3, 9)

Compound command, establishes unlimited repetItIOn of
commands block (subject to optional WHILE or UNTIL clauses)
(Chapter 9)

File command, puts out one line to the LIST file and console;
usually used in compound commands

Absolute gain, expressed as a multiplier, due to all existing poles
and zeros; also used as a function with an expression (as its
argument), giving the absolute gain at that (expression's)
frequency; also abbreviated AG

Represents the piecewise linear bounds, in PUT or APPEND
commands, or for display of LBO and UBO

Absolute error in multiplier from last CODE command

Frequency scale for computing and graphing filter responses,
initially 10, 10000; establishes the range for the specific points (up
to 69) of evaluation

Gain in decibels due to all existing poles and zeros, normalized by
the current setting of GREF; also used as a function with an
expression (as its argument), giving the gain at that (expression's)
frequency; also abbreviated G, GA

Deviation of the gain response from the bounds; also u~ed as a
function with an expression (as its argument), giving the gain error
at that (expression's) frequency

Reference gain, expression AT expression, meaning a gain of
expression 1 AT frequency expression2

Group delay of the filter (= the negative of derivative of the phase
with respect to the frequency); also used as a function with an
expression (as its argument), giving the group response at that
(expression's) frequency

Filter output in reaction to a unit up-impulse at time zero (i.e. an
instantaneous jump from 0 to 1 and return to zero)

Number of AS2920 assembly language instructions created by
latest CODE command

The lower of the bounds on gain, defined as piece-wise linear
regions; intially -1000000 AT 1; also abbreviated LB

Entered alone, an object keyword to display all macro command
blocks; when one or more macro names follow it, only the named
macros command blocks are displayed; this word can also be a
modifier keyword to qualify the effect of DEFINe or REMOVE,
and it appears as a necessary part of the DIR MACRO command.

Object keyword giving the maximum absolute gain taken over the
frequencies in FSCALE

Maximum absolute error in gain relative to the bo~nds, considered
over the frequencies in FSCALE

B-3

Keywords: Definitions and Defaults SP AC20 Compiler

B-4

MSQe

PERror

PHAse

POLe

PZ

STEp

SYMbol

TS

UBOund

XSlze

YSCale

YSlze

ZERo

Modifiers

Mean square error in gain as compared to bounds, considered over
the frequencies in FSCALE

Object keyword giving the allowable change in coordinates of the
pole or zero to be CODEd; used only in CODE command, to
specify a limit (constraint) on this movement, as in CODE POLE
12 PERROR < 3,4

Object keyword giving the phase delay response of the filter; also
used as a function with an expression (as its argument), giving the
phase delay response at that (expression's) frequency; also
abbreviated PH

Used to display the pole whose number-label is the argument
appearing to its right; also used as modifier to DEFINE or
REMOVE to add or delete POLE entries (one, several, or all) in the
table of poles and zeros; also abbreviated P, PO

Designates the entire set of poles and zeros, for display or as object
to REMOVE, PUT, or APPEND

Filter output in reaction to a unit up-step at time zero (i.e. an
instantaneous jump from 0 to 1)

Designates entire set of numeric-valued user-symbols in that
symbol table, for display or as modifier to REMOVE, PUT or
APPEND

Sample interval for sampled S-plane

The upper of the bounds on gain, defined as piece-wise linear
regions; initially 1000000 AT 1; also abbreviated UB

Number of vertical columns defini"ng entire graphics screen area,
up to 79; i.e., maximum number of characters displayable per
horizontal line; the area for curves being plotted is 10 less to allow
for labeling the axis

Specific range for vertical scale on graphs, by giving minimum and
maximum values; if AUTO is specified, the min and max values of
the curve being plotted are used

Number of horizontal rows defining graphics screen area, up to 25;
i.e., maximum number of characters displayable per vertical
column is 25; the area for curves being plotted is 3 less to allow for
labels

Used to display the zero whose number-label is the argument
appearing to its right; also used as modifier to DEFINE or
REMOVE to add or delete ZERO entries (one, several, or all) in the
table of poles and zeros; also abbreviated Z, ZE

AT Used in setting GREF, LBOUND, and UBOUND to specify
frequencies, e.g. AT 0 meaning DC, or AT 249 meaning Hertz

AUTo Used in setting YSCALE, indicating full screen vertical scale for
the actual range of the object being graphed

BY In MOVE commands, tells the increments (in a coordinate pair) for
the movement of one or more poles or zeros in the original plane of
definition

CONtinuous Designates continuous S-plane for pole or zero definition or
movement

SP AC20 Compiler

ELSe

EM

END

OFF

ON

ORlf

THEn

THRough

TO

UNTil

WHILe

z

ABS
ACOS
AGAIN
AND
ANGLE
APPEND
ASIN

AT
ATAN
AUTO
BOUNDS
BY
CODE
COS
COUNT
DEFINE
DIR
DISPLAY

ELSE
EM
END

Keywords: Definitions and Defaults

Identifies that block of commands (in an IF statement) which is to
be executed if all earlier if-expressions proved FALSE

Required end-statement for a macro definition

Required to end compound commands, i.e. REPEAT, COUNT, IF

Indicates there is to be no correction for sample-and-hold
distortion; see HOLD

Turns on correction for sample-and-hold distortion; see HOLD

Identifies an alternate test expression and block of commands in an
IF statement

Optional entry after the first test expression of an IF statement (and
before the first block of commands)

Identifies the range of a partition, as in POLE 1 THROUGH 9

In MOVE, tells the desired location of the object(s) being MOVEd,
in (to) any plane

A loop-exit in a compound command, causing execution to skip all
commands between it and the next END statement when the
expression after the UNTIL is TRUE.

A loop-exit; when the expression following is FALSE, execution
skips to the next END statement in the compound command

Designates sampled Z-plane for pole or zero definition or
movement

List of all Keywords

ERROR MACRO REMOVE
EVALUATE MAGAIN REPEAT
EXIT MASK SIN
EXP MERROR SQR
FSCALE MOD STEP
GAIN MOVE SYMBOL
GERROR MSQE TAN
GRAPH NOT THEN
GREF OFF THROUGH
GROUP OGRAPH TO
HELP ON TPI
HOLD OR TS
HPI ORIF UBOUND
IF PERROR UNTIL
IMAG PHASE WHILE
IMPULSE PI WRITE
INCLUDE POLE XOR
INST PUT XSIZE
LBOUND PZ YSCALE
LIST RADIUS YSIZE
LOG REAL Z

ZERO

B-5

· " APPENDIX C
NOTES AND CAUTIONS n

While the following do not seriously affect the usability of the SPAC20 Compiler,
they should be noted as areas for possible macro development by those users who
find them inconvenient:

There is no direct command for specifying an S-plane to Z-plane transform
different from the matched-Z transform. Other transforms, if desired, must be
implemented via macros. (See, for example, Chapter 10.)

The SP AC20 Compiler produces IIR (infinite impulse response) digital filters.
There is no facility to interactively design FIR (finite impulse response) filters.

Step and impulse time responses are available but only over 64 or so equal time
intervals, starting at zero. Ideally, the time response to a larger variety of inputs,
over a larger variety of time scales, should be available. The computational
complexity involved inhibits this for the present.

In any digital filter implementation, anomalous behavior will occur when the
input signal is small compared to the digital precision. Analysis of this dead
band (i.e. region of signal amplitude causing misbehavior) and limit cycles (i.e.
self-sustaining low amplitude oscillation) is in general difficult and is not
undertaken in this product.

Some calculations performed by the Compiler may press or exceed the limits of its
floating point package. One such limit is the 24 bit precision of the numbers. If a
pole and zero are superimposed, for example, the gain is almost, but not exactly,
zero. Graphing this gain with YSCALE = AUTO can yield unexpected curves.
Another limit is the 7 bit exponent. If many more poles than zeroes are defined, for
example, underflow or overflow may occur and may distort the expected filter
response. Alternately defining poles and then zeroes may ameliorate this problem.

Because of the interactive nature of the SPAC20 Compiler, and because of the
extensive floating point calculations, a high-speed math-board (iSBC-310) is highly
recommended.

C-l

· " APPENDIX D
BNF SYNTAX SUMMARY n

This appendix summarizes the syntax for the SPAC20 Compiler using Backus Naur
Form (BNF). The vertical bar means a, choice among alternatives. Asterisk means
the optional item (in square brackets) may be repeated any number of times.

Command Summary

<top-level comnd> ::= <define macro comnd>

I <remove macro comnd>
I <comnd>

<comnd> ::= <compound comnd> I <simple comnd>

<compound comnd> ::= <if comnd>

I <repeat comnd>

I <count comnd>

<simple comnd> ::= <display pole/zero comnd>

I <define pole/zero comnd>

I <move pole/zero comnd>

I <remove pole/zero comnd>

I <list filter response comnd>

I <graph filter response comnd>

I <display gref comnd>

<change gref comnd>

<display bounds comnd>

<set bounds comnd>

<display filter response function comnd>

<display scale comnd>

<set scale comnd>

<display code comnd>

<code comnd>

<display comnd>

<change comnd>

<define symbol comnd>

<display symbols comnd>

<remove symbols comnd>

<evalua"te comnd>

<display file comnd>

<put file comnd>

<append file comnd>

<include comnd>

<list comnd>

<write comnd>

<help comnd>

<exit comnd>

0-1

BNF Syntax Summary

0-2

I <macro invocation comnd>

I <display macro comnd>

I <dir macro comnd>

Expressions

<exp> ::= <boolean term> [<or op> <boolean term>]*

<or op> ::= OR I XOR

<boolean term> ::= <boolean factor> [AND <boolean factor>]*

<boolean factor> ::= [NOT] <boolean primary>

<boolean primary> ::= <arith exp> [<reI op> <arith exp>]

<reI op> ::= < I > I <= I >= I = I <>

<arith exp> ::= <arith term> [MASK <arith term>]*

<arith term> ::= <term> [<plus op> <term>]*

<plus op> ::= + I -

<term> ::= <factor> [<mult op> <factor>]*

<mult op> ::= * I / I MOD

<factor> ::= [<plus op>] <secondary>

<secondary> ::= <primary> [** <primary>]

<primary> ::= (<exp>)

I <function> «exp»

I PI I TPI I HPI

I <numeric constant>

I <symbolic ref>

I <keyword reference>

I <filter r.esponse function>

I <pole/zero reference>

<function> ::=SIN I COS I EXP I LOG I SOR I ABS I TAN I ASIN I ACOS I ATAN

<numeric constant> ::= <digit> [<digit>]* [<radix>]

I [<digit>]* . <digit> [<digit>]* [<radix>]

<digit> ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
I A I B I C I DIE I F

<radix> ::= BID I H

<symbolic ref> ::= <symbol>

<symbol> ::= . <identifier>

<partition> ::= <arith exp> [THROUGH <arith exp>]

Keyword References

<keyword reference> ::= TS I XSIZE I YSIZE I MAGAIN I MSOE I MERROR I INST
I ERROR

Filter Design Commands

<display pole/zero comnd> ::= <poles and zeroes>

<poles and zeroes> ::= <pole/zero> [<partition>]

I PZ

<pole/zero> ::= POLE I ZERO

SP AC20 Compiler

SP AC20 Compiler BNF Syntax Summary

<define pole/zero comnd> ::= DEFINE <pole/zero> <arith exp> = <exp> , <exp> [, <plane>]

<plane> = CONTINUOUS I TS I z
<move pole/zero comnd> ::= MOVE <poles and zeroes> <movement>

<movement> ::= TO <exp> , <exp> [, <plane>]

I TO <plane>

I BY <exp> , <exp>

<remove pole/zero comnd> ::= REMOVE <poles and zeroes>

<pole/zero reference> ::= REAL (<pole/zero> <arith exp>) I IMAG (<pole/zero> <arith
exp» I RADIUS «pole/zero> <arith exp» I ANGLE «pole/zero> <arith exp»

<list filter response comnd> ::= <filter response>

<graph filter response comnd> ::= <graph/ograph> <filter response>

I GRAPH

<graph/ograph> ::= GRAPH I OGRAPH

<graph/ograph bounds comnd> ::= <graph/ograph> LBOUND I <graph/ograph> UBOUND

<filter response> ::= GAIN

AGAIN

I GERROR

I PHASE

I GROUP

I STEP

I IMPULSE

<display gref command> ::= GREF

<change gref command> ::= GREF = <exp> AT <exp>

<display hold comnd> ::= HOLD

<change hold comnd> ::= HOLD ON I HOLD OFF

<display bounds comnd> ::= LBOUND I UBOUND I BOUNDS

<set bounds comnd> ::= LBOUND = <piecewise linear bound>

I UBOUND = <piecewise linear bound>

<piecewise linear bound> ::= <bound> [, <piecewise linear bound>]

I <bound>" <piecewise linear bound>

<bound> ::= <exp> AT <exp>

<display filter response function comnd> ::= <filter response function>

<filter response function> ::= GAIN «exp»

I AGAIN «exp»

I GERROR «exp»

I PHASE (<exp>)

I GROUP·(<exp»

<display scale comnd> ::= FSCALE I YSCALE

<set scale comnd> ::= FSCALE = <exp> , <exp> [, <exp>]*

I YSCALE = <yscale setting>

<yscale setting> ::= <exp> ,<exp> I AUTO

<display code comnd> ::= CODE

<code comnd> ::= CODE <pole/zero> <arith exp> <pz constraint>

I CODE <multiplication> <multiplication constraint>

<multiplication> ::= <y identifier> = <primary> * <x identifier> [+ <y identifier>]

D-3

BNF Syntax Summary SP AC20 Compiler

0-4

<x identifier> ::= <identifier>

<y identifier> ::= <identifier>

<pz contraint> ::= [INST < <exp>] I MSQE < <exp> [, INST < <exp>]

I MERROR < <exp> [, INST < <exp>]

I PERROR < <exp>, <exp> [, INST < <exp>]

<multiplication constraint> ::= [INST < <exp>]

I ERROR < <exp> [, INST < <exp>]

Interrogation and Utility Commands

<display comnd> ::= <keyword reference>

I <symbolic reference>

<change comnd> ::= <keyword reference> = <exp>

I <symbolic reference> = <exp>

<define symbol comnd> ::= DEFINE <symbol> = <exp>

<display symbols comnd> ::= SYMBOL

<remove symbols comnd> ::= REMOVE <symbolic ref list>

I REMOVE SYMBOL

<symbolic ref list> ::= <symbolic ref> [, <symbolic ref>]*

<evaluate comnd> ::= EVALUATE <exp>

<display file comnd> ::= DISPLAY <path name>

<put file comnd> ::= PUT <path name> [<file object>] [,<file object>]*

<append file comnd> ::= APPEND <path name> [<file object>] [,<file object>]*

<file object> ::= PZ I BOUNDS I SYMBOLS I MACROS I CODE

I <strings and exps>

<strings and exps> ::= <string or expression> [, <string or expression>]*

<string or expression> ::= <string> I <exp>

<include comnd> ::= INCLUDE <path name>

<list comnd> ::= LIST <path name>

<write comnd> ::= WRITE <strings and exps>

<help comnd> ::= HELP [<help request>]

<help request> ::= <help item>

I *

<help item> ::= <identifier>

<exit comnd> ::= EXIT

Compound Commands and Macros

<if comnd> ::= IF <exp> [THEN] <cr> <true list> [ORIF <exp> <cr> <true list>]* [ELSE <cr>
<false list>] END

<true list> ::= [<command> <cr>]*

<false list> ::= [<command> <cr>]*

<cr> ::= carriage-return I line-feed

<repeat comnd> ::= REPEAT <cr> <loop list> END

<count comnd> ::= COUNT <exp> <cr> <loop list> END

<loop list> ::= [<loop element> <cr>]*

SP AC20 Compiler

<loop element> ::= <command> f <loop exit>

<loop exit> ::= WHILE <exp> I UNTIL <exp>

<define macro comnd> ::= DEFINE MACRO <macro name> <cr> <macro body> EM

<macro name> ::= <identifier>

<macro body> ::= [<command> <cr<]*

<macro invocation comnd> ::= :: <macro name> [<actual parameter list>]

<actual parameter list> ::= <actual parameter> [, <actual parameter>]*

<actual parameter> ::= <limited token> * I <string>

<limited token> ::= any token except <cr>, <string>, or ","

<remove macro comnd> ::= REMOVE MACRO [<macro list>]

<macro list> ::= <macro name> [, <macro name>]*

<display macro comnd> ::= MACRO [<macro list>]

<dir macro comnd> ::= DIR MACRO

BNF Syntax Summary

D-5

· ., n

One Symbol

One pole
or zeros

One Macro

Several Symbols

Several poles
or zeros

Several Macros

ALL Symbols

ALL poles

ALL zeros

ALL poles
and zeros

All Macro Names

ALL Macros

APPENDIX E
SYNTAX CHARTS

Table of Sample Commands to Define, Display, or Remove Objects from
Compiler Tables

Defining an Object into a Table Displaying Part or Removing an Object from a Table
All of a Table

DEFINE .NAME_1 = 3 .NAME_1 REMOVE .NAME_1
DEFINE .NAME_2= .NAME_1 +1 .NAME_2 REMOVE .NAME_2
DEF .NAME_3=.NAME_1* .NAME_2

DEF POLE 2 = -5, 450, TS POLE2 REMOVE POLE 2
DEF ZERO 2 = 1/2, 100, Z ZER02 REM ZERO 2

DEFINE MACRO JP MACROJP REM MACRO JP
xoxoxoxox

xoxox
EM

Requires multiple commands Requires multiple REM .NAME_1 ,.NAME __ 2, .NAME_3
commands

Requires multiple commands POLE 1 THROUGH 5 REM POLE 1 THROUGH 3

Requires multiple commands MACROS JP, RQ, TEN REM MAC RQ, TEN, FEEDER

---- SYMBOLS REMOVE SYMBOLS

---- POL REM P

---- lER REMl

---- Pl REMOVE Pl

---- DIR MACROS ----
---- MACROS REMOVE MACROS

E-l

Syntax Charts SP AC20 Compiler

() *1
HELP command •

DEFINE or REMOVE *3,4
symbols, poles, or zeros

(change or set commands) *3 •

(MOVE command) *4 •

(display commands) *3 •
•

(GRAPH commands) *6 •

(file commands) *S •

(CODE command) *7 •

(IF and loop control commands) *9 •

(MACRO commands) *9 •
-

*S EXIT command • ()

* chapter where discussed

Commands 121533-01

---.(HELP rr----------:------.

lt~ h.~:::m ::
(36 help items are
displayed when HELP (* '---
is entered; see Appendix A) J ~

HELP Command 121533-27

E-2

SP AC20 Compiler Syntax Charts

Numeric Constant

-[~
[G!:)-l

System Constant
Unsigned Decimal Constant

Unsigned Hexadecimal Constant

Unsigned Binary Constant 121533-06

E-3

Syntax Charts

E-4

(TS J---. ~(, SIN)---.

(ASIN J---.
(XSIZE J---.)---. (COS

(YSIZE)--.)---. (ACOS

(MAGAIN)--. < TAN)---.
~

(MSOE)--. < ATAN J---.
(MERROR)----. < EXP J---.

)----.
(LOG J---. (INST

< ABS J---.
< ERROR)-----.

J---. ~(SOR

Keyword References
EXPonentiation and LOGarithms
to the base e = 2.718281

--.0--.< identifier }-----.

Symbolic References

frequency ---..
response

121533-08

~< GAIN ~

(AGAIN J---.

(PHASE J---.

--'(GROUP ~

Functions

time t~< STEP ~~
response ~ t~

~(IMPULSE J---.

. Frequency Responses, Time Responses

SP AC20 Compiler

121533-28

121533-09

SP AC20 Compiler Syntax Charts

(REAL ~

(IMAG ~

(ANGLE ~

(RADIUS ~

"'-----(CC,--Po---,LE)---.~ ~
~ ~ntegereXpressio~~

(ZERO)---.

Coordinate (Pole/Zero Expression) 121533-43

j [c:r
--,-....----___ ----;---:--..L[---0-----'--CPRIMARY}-.L--,r-r-----,--___ --.---.----------r---.------r-
L~

T
[0-
0-

c==r
c==r
c=>­
c::::r
c=r
c=>-

1.. ____________________________ -----------'----------------

1 ~[g:l
•

..

Expression

•

(primary ~

(**) ~(* .
~(/

~(MOD

•

An integer-expression is an arithmetic-expression which
evaluates to an integer.

Arithmetic Expression

121533-26

r- (MASK)

r-
)-.

121533-07

E-5

Syntax Charts SP AC20 Compiler

(numeric constant) *2 ..

(symbolic reference) *3 ..

(keyword reference) *3 ..

.. (function (expression)) *2,5
II

(filter response (expression)) *5
II

((expression)) *2,9
II

(coordinate (pole/zero-expression)) *9 ..

* chapter where discussed

Primaries 121533-04

.. (integer) expression

Lc }-t THROUGH int-exp

Partition 121533-05

(TS =) *4 ..

(XSIZE =) *6
II

r----() expression ..
() *6

YSIZE =

(symbolic reference =) *3 ..

..

(FSCALE =) *6 ~r expression, expression)
\. ! >-i r(,expression

..

'C
C expression, expression

(YSCALE =) *6 ..
rJ (AUTO

..

(GREF =) *5
.. (expression AT expression)

"-----I [
C __ UB_OUND_= _)--f-c(e,p'~';.'AT"P''''~') I
(L80UNO = r · t -;- 1-0-----l

* chapter where discussed ~

The Change Commands 121533-02

E-6

SP AC20 Compiler Syntax Charts

(POLE

(= expo exp)I---.------... ~ L
Lc ,pl.ne r

0--.1 identifier ~(= exp) ~ 1
(MACRO r~dentifier cr)I--r-----~,..-I.~e__...

~~omm.n0-

(ZERO

....... (REMOVE)-...

(MACRO)I-----,---.----I~~I

(SYMBOLS))---------....... ~~I

•

Full DEFINE and REMOVE 121533-10

(BY ~ '-__ 1------+--------.

--.(MOVE

(expo exp)1-..1...--____J1

(partition rl
PZ) ... ------~~

MOVE Command 121533-15

E-7

Syntax Charts SP AC20 Compiler

(keyword reference) '2

(symbolic reference) '3 .- .-

(SYMBOLS)
'3

(FREQ-re.sponse)

r((expression)

~ ..
'S

(TIME-response)
'S ..

r--.[(POLE r
(ZERO r

r(partition

~
I

..
'4

(PZ)
'4 ..

(GREF)
'5 ..

.. ------....
(FSCALE)

'6 ..

(YSCALE :> '6 ..

(LBOUND)
'S ..

(UBOUND)
'5 ..

(BOUNDS :> 'S ..

(CODE :> '7 ..

(EVALUATE expression :>
'3

(DISPLAY filename :> .. 'S ..

(DIR MACRO :>
-'9

(MACRO) .. '9 ..

~C","""-_macro_name ~rl
-~------~~~.~---------

, chapter where discussed

Display Commands 121533-03

E-8

SP AC20 Compiler

(LBOUND r
(UBOUND r-

(freq-resp r-

GRAPH/OGRAPH

(DISPLAY r~
(LIST r (--........) pathname

(INCLUDE r
(PUT rl_
(APPEND)-.1

(pathname J

..

-.(PZ r
~(BOUNDS r

(SYMBOLS r
~(CODE r

(MACROS r
(string)-.

•

-

0
(WRITE) _______ •• [I t

(.,'',,,;0")-..r ~+

File Commands

Syntax Charts

121533-25

~

121533-24

E-9

Syntax Charts SP AC20 Compiler

~~ intexp

~

,-_e_xp __ ~)~-;l--------------~·~I

[("---~ id_ent C:YtNST<e"~A
~dent = prim*ident)t-..J-.------!.-..L.------...... ---~----..J-.-------+--....

CODE Command 121533-16

-.(IF exp)t--r-[-(T-HEN --:-0---,-----11

...... I------t(ORIF expreSSion) (ELSEcr

IF Command 121533-22

elf ,ammon' [C REPEAT)

.~ " C ~ (COUNT int exp

WHILE

~)-. (END)
(UNTIL r-

REPEAT/COUNT 121533-23

E-1O

SP AC20 Compiler

~ (DEFINE MACRO)--.~dentifier cr)J--r--------, -----:----l ... &

DEFINE Command for Macros

[

'limited token ~I----L_......I

I string ~

Invoking Macros

Macro Directory

~[(REMOVEMACRO)H..~.--------+--------~ ..
(MACRO "}---.-

macroname = an identifier appearing as above in a legal
define-macro command

Remove or Display Macros

Syntax Charts

121533-19

121533-20

121533-21

121533-21

E-ll

APPENDIX F
SOFTWARE INSTALLATION

PROCEDURE

Software Installation Procedure

The two modules of system software that support interactive development of signal
processing programs for the Intel 2920 chip are the Intel Systems Implementation
Supervisor (ISIS-II) and the SPAC20 software module. If the iSBC 310 math board
is to be used, it should be installed as if to run FORT AN. (See the manuals listed in
the Preface.)

SPAC20 Compiler Files

The SPAC20 Compiler consists of ten files, SP AC20.SFT, SPAC20.HRD,
SPAC20.0YH, SPAC20.0YO through SPAC20.0Y5, and SPAC20.0YE. The first
two represent different versions of the Compiler: SPAC20.HRD provides faster
computations by taking advantage of the iSBC-310 math board, which must be
present if this version is used. SP AC20 .SFT performs the math functions in soft­
ware. One of these two files should be renamed to SPAC20, using ISIS-II, e.g.

RENAME :F1 :SPAC20.SFT to :F1 :SPAC20

The file SPAC20.0YH contains the help messages, which allows the Compiler to
interactively give information about individual command syntax and options
interactively, complementing the data in this manual. The help messages are
described below and are reproduced in full in Appendix A. This file should be
accessed only by the Compiler.

The file SPAC20.0YE contains the error messages. SPAC20.0YO through
SPAC20.0Y5 are overlays called by SPAC20 (SFT or HRD). There is also a macro
file on the disk, SPAC20.MAC, containing the example macros shown in Chapters
10 and 11. If you wish to copy all the files to a backup diskette, you can use the term
SPAC20. * (see ISIS manual). Specific macros can be edited into separate files for
later INCLUDE commands.

The Compiler can be invoked by typing the drive and file name after the ISIS
prompt. For example:

-: F1 : SPAC20

The Compiler will sign on with the message:

I SIS - I I 2920 S i 9 n alP roc e s sin gAp p lie at ion s C omp i l e r, V 1 • 0

*

You enter your commands to the Compiler one per line, and terminate each with a
carriage-return. You may include comments by preceding them with a semicolon.
Commands may be continued by typing an ampersand prior to both the carriage­
return and the comment field (if any) of the line to be continued. Characters
between the ampersand and the line terminator (carriage-return or line-feed) are
ignored, and the ampersand is treated as a space. Each input line may contain no
more than 120 characters before the line terminator.

The ESCape key cancels the current activity and returns control of the Compiler to
you. This applies to partially typed commands or commands in progress, including a
macro or compound command.

F-l

Software Installation Procedure SP AC20 Compiler

F-2

All command keywords can be abbreviated to their first three characters, e.g., APP
for append, or DEF for define. Many frequently used command keywords have
single character abbreviations, such as P for pole, or Z for zero. Appendix B shows
all keywords and their legal abbreviations.

The EXIT command returns control to ISIS, ending the present use of the SPAC20
module:

*EXIT

ISIS-II and SPAC20 Diskette

The Intellec system uses the diskette hardware and ISIS to provide a powerful,
convenient microcomputer development tool. ISIS interfaces to the diskette hard­
ware and to any other standard pe(ipheral device. You communicate with ISIS-II by
entering commands on the system console or by embedding system calls in programs
that will run in an ISIS environment. ISIS enables rapid storage and retrieval of files
on diskette.

Diskette files containing SP AC20 parameters or 2920 assembly language source
code can be read or written during a SPAC20 design session. The main purpose of
ISIS during setup and interactive development is to provide the 110 interface to the
console and files on diskette. To begin a SPAC20 session, you must first boot ISIS
and then load the SPAC20 software module. The process for booting ISIS is fully
described in the ISIS-II System User's Guide and summarized below.

Loading ISIS and the SPAC20 Software Module

After installing all hardware and turning on power to the console, disk drives, and
Intellec Series I, the following steps will load ISIS and SPAC20 (the full procedure
and notes are in Chapter 2 of the ISIS-II User's Guide:

a. Place system diskette in drive 0 and close drive door.

b. Press top half of boot switch on Intellec front panel.

c. Press top half of reset switch on that panel.

d. After interrupt light 2 goes on, press space bar.

e. After the light goes off, press bottom half of boot switch.

f. After receiving the ISIS sign-on message and prompt

-ISIS-IIVn.n

you type:

-SPAC20

If the diskette containing the SPAC20 module is not a system diskette, mount it
in drive 1 instead of drive 0 and boot ISIS from a separate system diskette in
drive O. Then, at this point, type :Fl :SPAC20 (to load the SPAC20 module
from drive 1) followed by a carriage return. The SPAC20 module will sign on
and you are ready to continue.

If ISIS fails to sign on, recheck that all boards and cables are correctly installed and
firmly seated, then perform the above procedure again.

SP AC20 Compiler Software Installation Procedure

If you have an Intellec Series II, there are slight variations in the above procedure.
This is what you must do:

a. Turn on power to Intellec Series II and to disk drives. Press square white on/ off
button in the lower right-hand corner of front panel. It is a two-position switch;
it lights up if you hav~ pressed it correctly.

b. Note that this message appears:

SERIES II, MONITOR, Vn.n

c. Place system diskette in drive 0 and close door.

d. Press reset button that is to left of the on/off button. Note that drive light is on
to indicate that information is being accessed.

e. After receiving the ISIS sign-on message and prompt

-ISIS-II Vn.n

you type:

-SPAC20

If the diskette containing the SPAC20 module is not a system diskette, mount it
in drive 1 instead of drive 0 and boot ISIS from a separate system diskette in
drive o. Then, at this point, type :Fl :SPAC20 (to load the SPAC20 module
from drive 1) followed by a carriage return. The SPAC20 module will sign on
and you are ready to continue.

If ISIS fails to sign on, recheck that all boards and cables are correctly installed
and firmly seated, then perform the above procedure again.

F-3

APPENDIX G
CODE SUBMISSION TO THE

AS2920 ASSEMBLER

Since the Assembler uses the ISIS-II keyboard and file capabilities, ISIS-II must be
loaded before invoking the Assembler. The full procedure for this is given in the
ISIS manual named in the Preface. Once ISIS-II is present, you can enter the Editor
to key-in or modify the source text of your Assembler program.

You need to finish five tasks before invoking the assembler:

1. create the front-end analog-to-digital signal acquisition code, using the Editor.
For this you need to learn the commands and rules for editing and file
manipulation under ISIS-II, and the analog instructions of the AS2920
Assembler.

2. scale the signals entering each stage of the filter. For this you need to have a
fairly clear idea of the expected original input signal, and to understand the
techniques and warnings in Appendix J on scaling. Again you use the Editor (or
APPEND commands) judiciously to create the required code (usually simply
right shifts of already coded instructions) to precede successive stages.

3. create the digital-to-analog code to output the results of the filter's
manipulations, again via the Editor and appropriate Assembler commands.

4. review the code files you now have. You may see an opportunity to combine
analog instructions with arithmetic operations, as described in the Assembler
manual.

5. create a single program file for submission to the assembler, by copying each
existing file in order to the new master. If there were nine such code files, this
step might use two ISIS-II COPY commands to effect its purpose:

COpy A_TO_D. INP, SCALED.ST1, STAGE2.SCA, ST3SCA. LED, &
S T A GE 4 • COD TO TEMP

COPYTEMP, ST5.COD, ST6.SCA,STAGE7,D_TO_A.OUTTOMASTER

(see ISIS-II manual for complete discussion of the COPY command.)

After developing and editing the program into a form ready to test, you can invoke
the Assembler as described below.

The AS2920 Assembler may reside on the ISIS-II system diskette or on a non-system
diskette. You load the assembler by entering a command that names the Assembler
and specifies the source file. You may also name the list and object files, but you
don't have to. Control options may also be specified as part of the command.

After the assembler goes into execution, all assembler operations specified are
performed without further intervention. If the invocation line has an error, the error
is reported and you must retype the commands. You may use upper or lower case
indiscriminately. The assembler converts all to upper case for its own use, except for
echoing back what you typed exactly as it was.

Example:

-AS2920 F I L TER. COD

(After an ISIS-II prompt, shown here as a dash, you type the command as shown to
assemble your source program, which is here assumed to be in the file named
FIL TER.COD. Assembly listing and object code files will be output to

G-I

Code Submission to the AS2920 Assembler SP AC20 Compiler

G-2

FILTER.LST and FILTER.HEX, respectively. In addition, a symbol table listing
will be suppled, and the symbol table debugging output to the object file is sup­
pressed. These defaults are automatic when you do not specify any controls. It is
exactly as if you had typed (on one line only)

-AS2920 FILTER.CODPRINT (FILTER.LST) LISTOBJECT (FILTER.HEX) SYMBOLS
NODEBUG PAGING PAGEWIDTH(120) PAGELENGTH(66)

All but the last two options have opposites beginning with NO, like NODEBUG,
whose opposite (however) is DEBUG. So you can say NOPRINT, NOLIST,
NOOBJECT, NOSYMBOLS, or NOPAGING.

All options are discussed in the AS2920 Assembler manual. Briefly, options
beginning with NO suppress the indicated action. PRINT establishes a file for the
listing of your program. LIST creates that listing. OBJECT creates the 2920

- machine code for your program and stores it in a file. SYMBOLS lists the names you
used and their established RAM locations. DEBUG puts the symbol table out to the
object file for your use in debugging via the Simulator. The page-related options
specify how you'd like to see the listing output. Pages of 66 lines of 120 characters
are the default format.

After running the one assembler pass and completing assembly listing and object
output, the assembler outputs a sign-off message and summary:

ASSEMBLY COMPLETE
ERRORS = XXXX
WARNINGS =XXXX
RAMSIZE =XXXX
ROMS IZE = XXXX

APPENDIX H
DESIGN OF COMPLEX DIGITAL

FILTERS USED IN THE 2920

Review of Continuous Analog Filters

Analog filters have been in use for many years for a variety of signal conditioning
and modifying operations. Originally, most filters were realized with resistors,
inductors, and capacitors. More recently active circuit techniques have allowed
elimination of most inductors, which tend to be large and may have linearity and
coupling problems. Digital filters, such as realized with the 2920, have
characteristics which resemble their analog counterparts. As a result a review of
analog filter design and analysis may be of assistance to the reader.

Complex networks of R-L-C (resistor-inductor-capacitor) elements are usually
analyzed using complex variable techniques. A complex variable S is used to
describe frequency, with a pure sinusoidal waveform of frequency f corresponding
to

s = j * 2 * n * f , w her e j =J="1

Each of the elementary RLCcomponents has a voltage-current relationship which
can be described by a simple equation:

v = Ri ; for a resi stor of resi stance R
v = sLi ; for an inductor of inductance L
v = (1 /sC) i ; for a capacitor of capacitance C

The complex network is analyzed by using these relationships and the fact that the
sum of all currents into a node must be zero, and the sum of voltages around any
loop must add to zero. A set of equations is derived from the network topology, and
solved to relate output voltage to input voltage, or some other relationship of
interest. When such equations are solved for networks with finite numbers of
elements, the result will take the form of the ratio of two polynomials in complex
frequency s:
Vout Z(s) (S-z1) (S-z2) (S-z3) ---- (s-zm)

= H(s) = ---- = A -------------------------------- EQ.1
Vin P(s)

The transfer characteristic H(s) is the ratio of network output voltage Vout to input
voltage Vin, and the two polynomials are designated Z(s) and P(s) respectively. Once
the transfer characteristic has been found as the ratio of these two polynomials, they
may be factored into the form above. In Equation 1, the coefficients designatged ZI,
Z2,"" Zm are called the zeros of the transfer characteristic and the coefficients PI,
P2,"" Pn are known as the poles of the transfer characteristic. The letter m literally
designates the number of zeros, and n designates the number of poles, or,
equivalently, m represents the order of the polynomial Z(s) and n represents the
order of polynomial P(s).

The coefficients of the original unfactored polynomials Z and P must be real if the
filter is to be made from "real" components. This also means that if any of the zeros
Zi or poles Pi is complex, then there will be another zero or pole present, representing
the complex conjugate of Zi or Pi' Each pair of factors corresponding to a complex
conjugate pair of poles or zeros may be combined to result in a quadratic term with
real coefficients. The frequency response of such a filter may be found by
substituting the value j2nf (where j is the square root of -1) for the value of s. The
complex value of the gain expression contains both amplitude and phase
information.

H-l

Design of Complex Digital Filters Used in the 2920 SP AC20 Compiler

H-2

The development of operational amplifiers has made possible filter realizations
which use only resistors and capacitors. These filters usually consist of a cascade of
stages, with each stage realizing a single real pole or a complex conjugate pole pair.
Zeros are realized by interconnections between the stages realizing the poles. Such a
network may be designed by factoring the polynomials describing the desired
transfer characteristic, and then putting the poles into an order that groups the
complex conjugate pairs separately from the real poles. Each complex conjugate
pair is realized by a separate stage. Real poles mayor may not need to use a separate
stage.

Impulse Response Analysis

The description above mentioned how the frequency response of a filter may be
determined by solving for the polynomials in complex frequency s. However, an
alternate description of a filter is its impulse response, i.e. its response to a single
impulse stimulation.

The impulse response of a filter may be used to determine the response to a more
complicated wave form by treating that wave form as a sequence of impulses of
varying amplitude. The individual responses are accumulated, a process known as
convolution, which is described by the equation:

t
y(t) =£ h(T) X(t-T) dT EQ.2

o

where h(T) is the impulse response of the filter, x(t) is the input, and y(t) the output
of the filter at time t.

The impulse response of a filter may be found from the complex frequency
polynomial ratio using Laplace transforms.

Using Partial Fractions

One convenient method for finding impulse response consist~ of first expanding the
polynomials as a series of partial fractions, P(s) is first factored into quadratic
terms, corresponding to complex conjugate pole pairs, and first order terms,
corresponding to real poles. The expansion is then developed using the factors, i.e.

P(s) = (s2+a1 s+b 1) (s2+a2s+b2) (••• >. .. (s+A 1) (s+A 2) ••• <. ..) EQ.3

Z(s) A1s+B 1 A2s+B 2 R1 R2
= Ao + -------- + -------- + + ----- + EQ.4

P(s) s2+a2s+b 1 s2+a2s+b 2 s+r1 s+r2

NOTE

Multiple poles with the same value require a somewhat different form of
expansion.

SP AC20 Compiler Design of Complex Digital Filters Used in the 2920

Each term in equation 4 is then replaced by its transform, often drawn from a table
such as Table I:

Frequency domain term
F(s)

A

A

R
s+r

As+B
s2+as+b

Table H-l. Laplace Transforms

Time (impulse) domain term
f(t)

Impulse of weight A

Step of amplitude A

.-.<12 { Aoos ~ t) B-aA/2
+---

~4

The overall impulse response of the filter is the sum of the impulse responses
represented by each of the individual terms in equation 4. As a result, the impulse
response of any filter consisting of a finite number of RLC components will
normally consist of a sum of exponentials and exponentially decaying sinusoids.

Canonical Forms of Digital Filters

A band-limited signal may be completely reconstructed from discrete samples of its
values. As long as a signal is maintained in a band-limited form, it is possible to
perform arithmetic operations on samples of the signal yielding results equivalent to
arithmetic operations performed on the continuous signal.

The processed samples may then be used to reconstruct the equivalent modified
continuous signal. As long as the operations performed are linear, i.e.

F (x+y) = F (x) + F (y) ; where F is the operat ion

then a band-limited signal will retain its band-limited nature throughout the pro­
cessing. Digital filtering consists of processing digitized samples of signals in a
manner similar to the methods for realizing continuous analog filters.

Figure 1 is a block diagram of a digital filter module. Each block labeled z-I is a unit
delay, i.e. a delay of one inter-sample interval. The other blocks are multipliers (X)
and adders (I). The values Ao, AI, A2, BI, and B2 are coefficients which determine
the behavior of the module.

H-3

Design of Complex Digital Filters Used in the 2920 SP AC20 Compiler

H-4

Y2

I •• ____________ ~()

t 82

Figure H~l. Digital Filter Module (Second Order Section) 121533-34

The stage shown in Figure 1 behaves in a manner analogous to a continuous analog
stage which realizes a complex conjugate pair of poles. For example, if the structure
initially has values Yl and Y2 equal to zero and is excited by a single impulse (i.e.
one sample of unit value followed by zero-valued samples), the output may take the
form of samples of an exponentially decaying sinusoid. The impulse response of the
stage may be expressed as:

h (0) = D+A

h (iT) = e -ai T Acos «(3iT) +Bsin «(3iT) fori>O

when B1 2 e -aT cos (3T

B2 -e- 2aT

AO = D+A

A1 - (2 D + A) e -aT cos (3T + Be-aT sin (3T

A2 = De -2aT

+ Ao

.------..() .
0)

~

t 81

Figure H-2. Digital Filter Module (First Order Section) 121533-35

SP AC20 Compiler Design of Complex Digital Filters Used in the 2920

The diagram of Figure 2 corresponds to a stage realizing a single real pole. Its
impulse response takes the form:

h (0) = D+A

h (iT) Ae- aiT

when

81 = e -aT

AO = D+A

A1 = - De-aT

From the equations, it can be seen the impulse responses consist of (optional) initial
delta functions, followed by a series of samples which are equivalent to having
sampled an exponential decay, or an exponentially decaying sinusoid.

Therefore, if we have a continuous filter FI that has an impulse response which
consists of a sum of decaying exponentials or esponentially decaying sinusoids, we
can realize a digital filter F2 that has an impulse response whose values at each
sample time are identical to those we would expect from Fl. This impulse response
may be achieved by building a network of the structures shown in Figures I and 2,
and summing their outputs.

This procedure defines a type of transform from the continuous domain to the
sampled domain, that is, the sampled domain structure implements an impulse
response equivalent to having sampled the impulse response of the corresponding
continuous filter. This transform is known as the "impulse invariant" transform,
and is one of several which may be used to relate the sampled world and the
continuous world.

Because of the nature of the sampling process and the corresponding frequency
folding about the sample rate, it is not possible for a digital filter to duplicate exactly
the characteristics of a continuous analog filter. As the frequencies of interest
approach and exceed half the sample rate, the frequency characteristics of the digital
filter differ radically from those of its continuous counterpart. These differences
may be shown by solving for the frequency response of the second order digital filter
section as shown below:

Ao+A1 (cos wT-j sin wT) +A2 (cos 2wT-j sin 2wT)
F(jw) = 1 ((2· 2) -8 1 cos wT-j sin wT) -8 2 cos wT-J sin wT

Note that a periodic function of frequency results, unlike the continuous case.

Sampled systems can be described as functions of a complex variable z, where z=esT

and T is the inter-sample interval. In Figure 1, each of the blocks labeled z-l
corresponds to a unit delay of time T. It is possible to describe the characteristics of
the block diagram of Figure 1 as a ratio of polynomials in z or z-l.

Consider the case of a continuous analog filter where one stage realizes a single
exponentially decaying sinusoid. Just as such, a structure corresponds to a single pair
of complex conjugate poles, the diagram shown in Figure 1 is capable of realizing a
single exponentially decaying sinusoid and corresponds to a single complex
conjugate pair of poles in the complex z plane. Figure 3 shows a plot of the
frequency response of the typical second order continuous section, and, for com­
parison, that of a second order sampled section, for the case where the impulse
invariant transform described above was used.

H-5

Design of Complex Digital Filters Used in the 2920 SP AC20 Compiler

H-6

c: 0;;
C>

CONTINUOUS /'
CASE

oL-__________________ ~==~========================.
o frequency

Figure H-3. Comparison of Digital and Continuous Frequency Response

Matched Z Transform

Another method for converting from the s-plane to the z-plane is known as the
matched z transform. This method is simply a technique for mapping each pole or
zero of the s-plane to a corresponding pole or zero in the z-plane. A pole or zero at
a + jb onthe s-plane is transferred to a pole or zero at e(a + jb)T on the z-plane, where
T represents the sample interval in seconds. In polar coordinates, this z-plane
location is (eaT, bT). The equations for the coefficients are shown below:

Second order sections for a continuous pole pair -a±jb in the s-plane

B1 = 2 e- aT cos bT

B2 = -e- 2aT

for a continuous zero pair at -a±jb

A1 =2Aoe-aTcos bT

A2=Aoe-2aT

First order section

for a real pole at -a

B1 = e- aT

for a real zero at -a

A1 = -Aoe- aT

This transform is not guaranteed equivalence in either frequency or time domains,
although pole positions correspond to the impulse invariant transform. The
transform is sometimes useful for concep"tually estimating the influence, on the
resulting filter characteristic, of moving the poles or zeros. In general, it is easier to
predict the impact on frequency response of moving a pole or zero in the s-plane
than in the z-plane, because the s-plane axes are more directly related to frequency.

121533-36

SP AC20 Compiler Design of Complex Digital Filters Used in the 2920

The matched z transform allows a one-to-one correspondence of poles and zeros in
the s-plane to poles and zeros in the z-plane. One use of this transform is therefore to
aid manipulation of the positions of poles and zeros in the z-plane in order to
achieve some desired frequency response.

Rather than attempt to do the complete design on the s-plane and then transform to
the z-plane to achieve the desired filter, the designer manipulates the poles and zeros
in the s-plane while observing the frequency response of the digital filter resulting
from the matched z transform. Once the desired characteristic is obtained, the
coefficients of the filter are determined by using the transform. This technique has
been implemented in the SPAC20 Compiler, and aids the empirical design of filters
when mixtures of continuous and digital filters are used.

NOTE

When dealing with complex frequencies in the s-plane or "TS" plane, the
SPAC20 Compiler accepts and displays values in Hertz, rather than the
traditional radians/sec of the s-plane. The equations shown here utilize the
radian/ sec representation of frequency. If the frequencies are given in
Hertz, they must be multiplied by 2n to connect them to the radian/sec form
before use in the equations above

Bilinear Transform

This transform is a method for mapping the s-plane Ow) frequency axis into the
z-plane unit circle, such that the continuous s-plane frequency scale from DC to
infinity is mapped into a corresponding frequency range of DC to one-half of the
sample rate. Therefore, this transform distorts the frequency axis or the frequency
characteristics of the filter.

However, the transform does have the property that the shape of the frequency
characteristics of the analog filter is preserved with the exception of the frequency
distortion. It is common to pre-distort the characteristics of a continuous filter to
compensate for the transform's distortions, and thereby implement a sampled filter
with a frequency response very closely resembling that of its continuous counter­
part. The equations for the bilinear transform are shown below. (A macro
implementing this transform, is available for use with the SP AC20 Compiler. It
appears in Chapter 10.)

Bilinear Transform Equations

The equations for the Bilinear Transform are:

2 (1-Z-1>
S -+ T (1+Z-1>

where T is the sampling interval.

(2/T + S)
Z -+ (2/T-S)

H-7

Design of Complex Digital Filters Used in the 2920 SP AC20 Compiler

H-8

That is, given a polynomial expression (in s) for the transfer characteristic of a
continuous filter, a corresponding digital filter may be found by substituting

2 (1-Z- 1)

T (1+Z- 1)

for each occurrence of s, and then converting the resulting expression to a ratio to
two polynomials in z.

These functions map the jw axis of the s-plane onto the unit circle of the z-plane.

i.e. when

S = j Q

where Q is the analog frequency (in radians/sec)

(2/T+jQ) 1-
Z = (2/T-jQ) or Iz - 1

The Bilinear Transform maps the point

Q = 0 to Z =
Q 00 to Z -1

and the entire left half plane into the unit circle.

A nonlinear distortion is produced by the mapping of the analog jQ axis onto the
z- plane unit circle. This distortion is given by the mapping

Q = 2/T tan WT/2 W = 1.. tan- 1 (QT/2)
T

where Q is an analog frequency and W is a corresponding digital frequency in
radians/ sec

As an example of using the Bilinear Transform, consider the design of a lowpass
digital filter with a cutoff frequency of fc (in Hz):

1) Convert fc to radians/sec and find the proper prewarping for the equivalent
analog filter:

2) Design an analog filter that will satisfy the given specification with a lowpass
cutoff frequency of Qc in radians/sec or Qc/2n Hz. Express the transfer func­
tion as a ratio of polynomials in s.

3) Use the bilinear transform on the transfer function in s (obtained in step 2) to
obtain a transfer function in z, i.e., replace each occurrence of s with

2 (1-z-1)

T (1+z- 1)

The digital filter which corresponds to the z-plane expression from step 3 (figure 4)
will now have the desired cutoff characteristic.

SP AC20 Compiler Design of Complex Digital Filters Used in the 2920

(l,T ",T

DIGITAL
FILTER

" T 21an- 1 ~!T
RESPONSE

(AlC T

H(t,,)

H(Q)

ANALOG FILTER RESPONSE

Figure H-4. Transfer Function From Q to w 121533-37

Note that this transform may alter the number of poles and zeros involved. If poles
and zeros are independently transformed, redundant poles or zeros may occur.
Using this transform requires careful elimination of such redundancies.

Implementing Filters with the 2920

Once you have determined the locations of your filter's poles and zeros in the
z-plane, converting this structure into 2920 code is relatively straightforward. In the
blocks of Figures I and 2, there are three basic operations performed to achieve
digital filtering action: a unit delay represented by the symbol z-l, and addition and
mUltiplication.

For time invariant filters, i.e. those for which the R's, L's, and C's used are fixed
and stable with time, the multiplications performed will be of some variable Yi by a
constant represented by the values Ao, Ab A2, Bb or B2. The goal of the 2920
programmer is to implement these functions in a minimum of 2920 instructions.

The blocks labeled z-l correspond to unit delays, i.tl. delays of one sample interval.
The sample interval is the time it takes for the 2920 to make one pass through its
program. The value on the output side of a delay block represents the value
computed at the block's input on the previous pass through the program.

H-9

Design of Complex Digital Filters Used in the 2920 SP AC20 Compiler

H-lO

The delay can be realized by a RAM location which retains the data from the
previous pass until it is needed. A single LOA instruction of the 2920 is sufficient to
implement a unit delay block. Figure 1 shows two delay blocks; thus'two LOA
instructions and two RAM locations are required. These instruction have the form
shown below:

LOA Y2, Y1, ROO
LOA Y1, YO, ROO

After executing these two instructions, the RAM location designated Y2 contains the
value of Y 1 from the previous pass, and Y I contains the value of YO from the
previous pass. To complete the filter realization, it is sufficient to complete the
calculations of the new value of YO from the current values of input, Yl, and Y2,
and then compute the output from YO, Y 1, and Y2. The new value of YO involves
multiplication of Yl and Y2 by the constants Bl and B2. The instruction set of the
2920 permits implementing these multiplications-by-constants as a series of addition
and subtraction steps.

In general, the coefficients are not realized exactly, but rather are approximated as
closely as necessary to meet the filtr specifications. This permits minimizing the
number of 2920 program steps required to realize the multiplications.

Each ADD or SUB instruction of the 2920 can be thought of as adding a value to (or
subtracting it from) the destination operand (e.g. Yl in the last instruction above).
The value used in that operation is the product of some power of two and the source
operand (e.g. YO in the last instruction above). There is a simple algorithm for
converting a multiplication by a constant into a series of additions and subtractions.
It consists of choosing, at each step, the particular power of two and the specific
addition or subtraction operation which will minimize the error, i.e. produce the
closest approximation to the desired value.

For example, consider the coefficient Bl = 1.8. The power of two that would most
closely approximate this value would be21, or 2. This value may be realized with a
single 2920 instruction:

ADD YO, Y1, L01

The error in realizing BI, after this step, would be 2-1.8=+0.2. If such an error is
too large, another 2920 instruction step is added. To reduce an error of +0.2, the
programmer subtracts the value 2-2 or 0.25 from the approximation, giving a net
approximation of 1.75 and an error of -0.05. If -0.05 is still too large an error, an
additional 2920 step equivalent to adding the source operand multiplied by 2-4 =
0.0625 can be added. A net approximation of 1.8125 results, with an error of
+0.0125. This process can be repeated until the coefficient is realized with adequate
accuracy for the filter requirements. A more powerful version of thi~ algorithm is
used in the 2920 Signal Processing Applications Compiler's CODE generation
command.

Because there are two coefficients in the filter, two sequences of operations must be
defined as described above. As the ptocedure described performs an addition to the
destination location, it is necessary to initialize the destination location. This can be
done by clearing the location (e.g. by subtracting the location from itself) or by
converting an addition operation to an LDA and placing it as the first step of the
sequence. The last steps to realize the filter involve adding the weighted input
variable and computing the output. Procedures similar to those above are used for
the multiplications and additions needed for these operations.

SP AC20 Compiler Design of Complex Digital Filters Used in the 2920

Some Practical Considerations

The procedures described above show how second order filter sections can be
realized. In selecting the gain for the filter, the user should consider the scaling of
the variables within the filter. Improper scaling can result.in a number of problems.

If the variables are very small, it is possible that the 25-bit word width will not
provide enough resolution, and significant truncation noise will be introduced.
Because a second order filter of this type may perform the equivalent of integrations
in which results are obtained by summing many small values, roundoff error can
occur in unexpected ways.

If the variables are scaled too large, overflow saturation may result, with behavior
very similar to that occurring in an analog circuit when the signals exceed the
dynamic range of the amplifiers. However, an additional consideration may be
important in 2920 realizations of second order sections. As coefficient products are
developed by series of additions and subtractions, intermediate values may be larger
than those finally obtained.

In general, it is necessary to provide sufficient margins when scaling input variables
to ensure that overflow saturation does not occur for intermediate values.
Sometimes the sequence of calculations can be ordered to minimize potential
overflow saturation.

A third method to prevent intermediate overflow saturation is to compute some
fraction of YO, restoring it to full value when it is transferred to Y 1, such as shown
in Figure 5. This of course adds some noise to the final output, lowering the
accuracy somewhat.

The coding generated by the SPAC20 Compiler is already ordered and scaled in this
manner to minimize overflow. The user must still address the issue of scaling for
input and for signals propagated from earlier stages.

r----0-
4A,_ x, A,-0 A'-cb

-----------~~------------~

t
62/ 4

Figure H-S. Method for Preventing Intermediate Overflow 121533-38

H-ll

Design of Complex Digital Filters Used in the 2920 SP AC20 Compiler

H-12

(If overflow occurs, it will be when YO is increased and loaded to Yl.)

No additional instructions are necessary in general, because the extra multiplications
shown in Figure 5 can be performed by modifying the instructions of the original
realization.

When a filter consists of a cascade of second order sections, code can be saved by
performing any gain trimming calculations at just one point ih the cascade.
However, to maintain properly scaled variables, the gain for the inputs to each stage
should be adjusted by the appropriate power of two. The proper scaling factor can
be determined by evaluating the maximum gain from the input to each point in the
cascade, starting with the first stage. The gain for the input to that stage is adjusted
to ensure that the overall gain does not exceed unity at any frequency. After each
stage is adjusted, the process is repeated for the next stage. See Appendix J for more
details.

Very Low Frequency Fitters

As mentioned above, the processes occurring in the recursive second order section
are equivalent to integration. When very low frequency filters or filters with very
high Q's must be realized, even the 25-bit word width of the 2920 may not provide
adequate protection from truncation error. In some cases it may be possible to
reduce the clock rate (and therefore sample rate) which will reduce coefficient
precision requirements.

When other functions prevent reduction of the sample rate, or when the predicted
. value of clock rate must be lower than the minimum permitted by the 2920, alternate
programming techniques must be used. (The 2920 word size and the dynamic range
of the variables being processed establish a maximum ratio of sample rate to
frequencies of interest.)

For very low frequency filters, the effective sampling rate must be reduced or the
effective precision of the processor must be increased. One approach, extended
precision arithmetic, appears possible but cumbersome. When very low frequencies
are being used, the coefficients Bl and B2 approach very closely to the values +2 and
-1 respectively. By realizing t:he filter as shown in Figure 6, the small terms BI-2
and B2+ 1 are isolated from the large terms and scaled upwards by some power of
two. The equivalent multiplications may then be done using single precision, which
is converted back to extended precision by a 2-n scaling.

Extended precision arithmetic may be executed using masks derived from the
constants, or by conditional additions. In either case, carries generated by the low
order word are added to the high order word to maintain carry propagation., The
carries may be simulated in one of the high order bits of the low order word, tested
via conditional operations or masking, and then removed by masking or conditional
addition of a negative constant. Table II shows an extended precision add routine.

Table H-2. Extended Precision Add Routine (48 Bit Precision) Technique
Uses Simulated Carry at 2nd Bit From Left of Low Order Word

ADD YL, XL, ROO ; add low order word (25 bits + carry)

LDA TMP, YL, ROO ; copy word to temporary location

AND TMP, KP4, ROO ; mask off simulated carry bit

SUB YL, TMP, ROO ; clear carry from low order word

ADD YH, XH, ROO ; add high order words

LDA TMP, TMP, R13 ; move carry to right .

ADD YH, TMP, R10 ; add carry to high order word

SP AC20 Compiler Design of Complex Digital Filters Used in the 2920

'~.~-------CZ)~------------~
t

--1

Figure H-6. Very Low Frequency Filter 121533-39

When low frequency filters must be realized, it is in general more convenient to
reduce the sample rate rather than attempt to extend the precision of the variables.
The sample rate may effectively be reduced by using the conditional load operation
triggered by an oscillator run at a submultiple of the sample rate. The filter calcula­
tions go to completion every nth cycle. Such an oscillator can be realized by the
program shown in Table III.

; Oscillator

SUB OSC, K P1 , R05

LOA DAR, OSC, ROO

LOA OSC, KP3, ROO, CNOS

ADD OSC, KP3, R05, CNOS

; conditional filter implementation

LOA Y2, Y 1 , ROO, CNOS

LOA Y 1 , YO, ROO, CNOS

Table H-3

5 U b t r act con 5 tan t K P 1 from as C

mo vet 0 0 A R for s i g n t est

re-initiaLize if negative to

99 time 5 K P 1

de Lay occurs on lyon cyc ling

of osc i L Lator

; remainder of filter calculations are done unconditionally - result is valid
; only on cycling of oscillator

The filter code generation may be done with the SP AC20 Compiler by using the
effective sample rate. To use this filter at the normal sample rate, the output code
must be edited to add the CNDS operations to the delay realization.

,
A constant value is subtracted from a RAM location on each pass through the
program. If (and only if) that operation causes the result to be negative, the condi­
tion for re-initializing ~he oscillator is met. A conditional load operation restores the
oscillator to a positive value. Thus the oscillator cycles at a SUbmUltiple of a sample
rate (at 1/100 in the Table III example.)

H-13

Design of Complex Digital Filters Used in the 2920 SP AC20 Compiler

H-14

The filter itself is realized using the same equations as are used in any second order
section, with the exception that the delay realization operations i.e. loading YI to Y2
and YO and Y I, are performed only on those program passes which re-initialize the
oscillator. Because the oscillator calculations only produce re-initialization every nth
cycle, a sample rate has been achieved equal to the 2920 sample rate divided by n.

On occasion, it may be desirable to operate one or more stages of the filter at a
higher sample rate than that of the 2920. For example, it may be possible to use a
lower cost external anti-aliasing filter by sampling the inputs at a higher than normal
rate, and performing some of the anti-aliasing using a digital filter stage operating at
this higher rate. Subsequent processing of the data is performed at the nominal rate
of the 2920.

One means for achieving the higher sample rate it to use two copies each of the
sampling routine and the anti-alias digital filter section. Figure 7 shows the impact
on the external anti-alias requirements obtained by using the double sample rate
technique. External anti-alias requirements may also be reduced for 2920 outputs by
the use of interpolating digital filters, i.e. filters which compute values between
successive samples.

Interpolating filters may also be realized by operating a filter stage at twice the
sample rate by using two copies of the program withinin the 2920. There are two
options for the input of such a filter operating at twice the sample rate. The same
input sample may be used for both copies of the program, or one copy may use a
zero-valued input. The latter case resembles using an impulse source where the
former case is more like a sampled and held source. The methods produce somewhat
different frequency responses.

The SP AC20 Compiler can be coerced to produce code for this mixed sample rate
implementation. To accomplish this, set the TS to the faster rate (say 3 times the
2920 program loop rate) and, using the CODE command, generate code for the anti­
alias (low-pass) stages of the filter. Three copies of this code must appear in the final
program.

Then set the TS down to the 2920 program loop rate, and generate code for the
remaining stages of the filter. One copy of this code must appear in the final
program.

At this point, the filter responses which can be graphed and otherwise examined are
relatively accurate reflections of the true behavior, at least below half the slower
sample frequency. This assumes that the signals are transformed between the stages
using the impulse method (either true input or zero) as opposed to the hold method
(either true input or held true input).

In mo~t of the examples described above, a cascade of filter stages has been
assumed. However, when the impulse invariant transform is used, an alternate
realization could be found by expanding into a .sum of partial fractions, evaluating
the impulse response associated with each fraction, and realizing the output of the
filter as the sum of the section outputs. The resulting realization is shown in Figure
8b as opposed to the cascade structure of Figure 8a. In some cases, the parallel
structure may be less sensitive to variable scaling than the cascade structure.

SP AC20 Compiler Design of Complex Digital Filters Used in the 2920

EXTERNAL ANTI·ALlAS

t
r<JTER 1

BW fs·BW

a. Original spectrum showing bandwidth of digital processing.
External anti-alias filter must pass below BW, stop beyond fs-BW

t

EXTERNAL ANTI·ALIAS

~l_T_ER __ ~ ____ ~

Br~~t;=kht
INTERNAL
DIGITAL
FIL TER

b. Spectrum using double rate sampling.

t

External filter passes BW, stops beyond 2fs-BW, internal digital filter performs
rest of anti-alias function.

Figure H-7. Effects of Double Rate Input Sampling

Figure H-8a. Cascade Structure for Complex Filter
(Directly Derived From Matched Z or Bilinear Transform)

121533-40

121533-41

H-15

Design of Complex Digital Filters Used in the 2920 SP AC20 Compiler

~------------~~~-------------------.,

~I------"'I

x ..

'--------4 X ... ------,

Figure H-8b. Parallel Structure for Complex Filters
(May Result From Impulse Invariant Transform) 121533-42

H-16

I

• l APPENDIX I
FORMULAS USED BY THE

SPAC20 COMPILER
n

The formulas by which the filter response keywords are calculated are given below.
They depend upon s-plane or z-plane representation of the locations for poles and
·zeros. Three distinct graphs are used to indicate the quantities named in the
formulas for AGAIN, and four additional graphs are referred to by the formulas for
PHASE. Poles are indicated by the character X, zeros by O. The character a shows
the object's real part (or projection), b shows its imaginary part, and f indicates the
varying frequency of interest. These letters then appear in the formulas. For z-plane
graphs, R indicates the length of the vector from the origin to the pole or zero, and
theta (0) the vector's angle.

GAIN, MAGAIN, GERROR, and MSQE are defined in terms of AGAIN. GROUP
is the negative of derivative of PHASE with respect to frequency. The formulas are
shown in the simplest relation to the graphs. Simplification, grouping, and recom-·
bination of terms would in some cases produce more compact formulas, but their
meaning and relation to the positions of poles and zeros would be obscure. In some
cases, the result of such manipulations is in fact much more complex than the
original formulation, though it can have computational benefits for the efficiency of
a tool such as the 2920 Signal Processing Applications Compiler.

AGAIN

AGAIN

IT DIST;
z;

IT DIST;
p;

AGAIN is the ratio of two products: the product of all the distances of the zeros of
the filter divided by the product of all the distances of the poles of the filter, where
distance means the vector distance from the frequency in question (on the vertical"j
axis) to the position of the zero or pole (or complex conjugate of a pole).

S-PLANE
REAL POLE OR ZERO at -a

DIST(f)= -Jf2+a 2 where N
N

normalization factor
(1 + a)

121533-29 COM P L EX PO LEO R Z E R 0 a t (-a + j b), (-a - j b)

(,Ja 2 + (f - b) 2) (,Ja 2 + (f + b) 2)
DIST(f) = N

w her e the norma liz a t ion fa c tor N = (1 +~) 2

121533-30

1-1

Formulas Used by the SPAC20 Compiler SP AC20 Compiler

1-2

SAMPLED S-PLANE (sampled at T)

b
I

t

b
I

J

REAL POLE OR ZERO at -a

DIST(f) = 11-e-2rraT *e-j2rrfT I

121533-29 COMPLEX POLE OR ZERO at (-a + jb),(-a-jb)

DIST(f) = 11-(2e-2rraTcos2rrbT) e- 2rr jfT + e-4rraT*e-4rrjfTl

121533-31

Z PLAN E (sampled at T)

....... 1
R

REAL POLE OR ZERO at R, 0

DIS T (f) = I 1 - R e - j 2rrfT I

121533-32

COMPLEX POLE OR ZERO at R,0

DIST(f) = I (1-Re-j 0 e-j2rrfT) (1-Re+j 0 e-j2rrfT) I

121533-33

SP AC20 Compiler

GAIN (f) =

MAGAIN =

GERROR(f)

MSQE =

PHASE

Formulas Used by the SPAC20 Compiler

J AGAIN (f) I
20 LOG1Q \ GREF

unitsindB

GREF = gainat reference frequency
speci f i ed by use r

rna x { A G A I N (f ;)

f; in FSCALE

GAIN(f) - UBOUNO(f)

ifGAIN(f) > UBOUNO(f)

= GAIN(f) - LBOUNO(f)

ifGAIN(f) < LBOUNO(f)

= o otherwise

.... /1 N (GERROR(f,.»2
, N 2:

i =1

N = numb e r 0 f poi n t sin F S CAL E

f; in FSCALE

_ Lei - Lei (units are radians)
Zj Pj

S-PLANE

REAL

e = t a n- 1 f
a

COMPLEX

1-3

Formulas Used by the SPAC20 Compiler SP AC20 Compiler

1-4

SAMPLED S-PLANE (sampled at T)

REAL

e = ang le of (1-e- 2rraT . e-j2rrfT)

EeOfa+ib = tan- 1 ~I

COMPLEX

e = angle of 1-.2e-2rraT cos 2rrbT e- 2rr jfT + e- 4rraT.e-j4rrfT

Z PLANE (sampled at T)

REAL

(R.G)

e = ang L e of 1-Re-2jrrfT

121533-32

COMPLEX

e = ang Le of (1-Re- jEl e-j2rrfT) (1-Re+jEle-j2rrfT)

121533-33

GROUP DELAY:

I GROU.P(f~ = -1 dphase
. 2n' d f

With HOLD ON, AGAIN is multiplied by 1 sin(x)/x I, where x=TS*FREQ*PI
which causes GAIN to be corrected by adding 20 10glO 1 sin(x)/x 1 and PHASE to be
corrected by adding x. GROUP is corrected by subtracting TS/2.

With HOLD OFF, the above corrections are omitted.

APPENDIX J
SCALING AND OTHER

C'ONSIDERATIONS

Scaling

Each stage of a filter performs various arithmetic operations, which have the poten­
tial for causing overflow saturation if the numbers coming in are too large. Thus the
issue arises of scaling down such input to avoid inadvertent overflow. If the signal
input to the filter were a pure sine wave, then the peak AGAIN for each stage would
indicate how incoming signals needed to be scaled in order to avoid saturation or
overflow within that stage. That is, if the peak AGAIN under these circumstances
were 50 for stage 1, the next higher power of two should be used to scale the input.
Thus a right shift of six, equivalent to dividing by 64, would be the correct scaling,
e.g.,

LOA INPUT, OAR, R06

If the first two stages taken together indicated an AGAIN peak of 250, the input to
the second stage needs only an additional reduction factor of 4, i.e., rightshift 2, as
part of the scaling has already been done at the input to the first stage. Successive
stages repeat this reasoning, using the cumulative effect (product) of all earlier scal­
ing factors to determine what, if any, additional scaling is needed. (Note: set HOLD
OFF when using AGAIN to determine scale factors, since the HOLD compensation
really does not affect the signal until it leaves the 2920 chip.)

Because inputs are limited to the range plus-or-minus 1.0, the largest possible
instantaneous output of a filter may be found by integrating the absolute area over
the impulse response of the filter. In general this value is unnecessarily conservative,
and may result in excessive truncation error.

Even assuming this input scaling has been performed, it is possible that intermediate
calculations within a filter stage will cause overflow. For example, warning messages
produced by the Compiler in the code may say, e.g.,

II ;NOTE: MAKE SURE SIGNAL IS <0.547 11

indicating such intermediate overflow will occur unless the expected maximum out­
put signal amplitude is less than 0.547.

If the input to a stage is scaled so that the expected maximum output signal is less
than 0.25, such intermediate overflow cannot occur (for poles and zeros within the
unit circle on the z-plane).

As a rule of thumb, it should be sufficient to use four times the MAGAIN (rounded
up to the next power of 2) as the scaling needed for each stage. That is, the user
should ensure that the scaling before any stage is at least four times the MAGAIN
due to the combination of all previous stages and the present stage under
consideration.

During the coding process, if ~l is implemented first in the coding, a warning
message will appear, advising the user to keep the signal below a certain level. If the
above scaling factor of four times MAGAIN has already been performed, then the
purpose of these messages has already been accomplished.

1-1

Scaling and Other Considerations SP AC20 Compiler

J-2

Signal Propagation

In the code output from the SPAC20 Compiler, you will find, usually once per
module, an ADD or LDA instruction using names like INO, INl, followed by the
stage label, e.g., INO_Zl for zero 1. These are the instructions which must be
replaced using the correct scaling and appropriate input source, which depends on
the sequence and combination of poles and zeros, as follows:

The table below indicates the number of inputs and outputs for the four kinds of
poles and zeros. A complex pole takes in one signal and produces three output
signals, whereas a complex zero uses three inputs and produces one output. A real
pole has one input and two outputs, while a real zero takes in two signals and
outputs one.

(using hypothetical poles and zeros labeled 3 (for complex) and 2 (for real).

Input Signal Output Signal
Signals Delay Signals Delay

Complex Pole INO_P3 Signal Input, OUTO_P3 Signal Input,
not delayed not delayed

OUT1_P3 Delayed 1 sample
interval

OUT2_P3 Delayed 2 sample
intervals

Real Pole INO_P2 Signal Input, OUTO __ P2 Signal Input,
not delayed not delayed

OUT1_P2 Delayed 1 sample
interval

Complex Zero INO_Z3 Signal Input, OUTO_Z3 Signal Input,
not delayed not delayed

IN1_Z3 Delayed 1 sample
interval

IN2_Z3 Delayed 2 sample
intervals

Real Zero INO_Z2 Signal Input, OUTO_Z2 Signal Input,
not delayed not delayed

IN1_Z2 Delayed 1 sample
interval

Merging Code for Poles and Zeros

From the table it is easy to perceive the proper meshing of the code for a complex
pole followed by that for a complex zero:

I N 0_ Z 3 E QUO U TO _P 3

IN1_Z3 EQU OUT1_P3

IN2_Z3 EQU OUT2_P3

This provides the correct, suitably delayed pole output signals to the appropriate
zero inputs. Similarly, to merge the code for a real pole followed by a real zero, you
can use

INO_Z2EQU OUTO_P2

IN1_Z2 EQU OUT1_P2

SP AC20 Compiler Scaling and Other Considerations

If, however, a complex pole is followed by a real zero, then as the table indicates you
must select the pole output with the correct delay, i.e.,

INO_Z2 EQU OUTO_P3; no de lay

IN1_Z2 EQU OUT1_P3; delay

A complex pole followed by two real zeros cannot be directly merged. The first zero
can be merged with the pole as above. Then the signal needs to be propagated to the
second real zero (here labeled Z22). For example, the code below

INO_Z22 EQU OUTO_P3

LOA IN1_Z22, INO_Z22

will accomplish this for a real zero. An equivalent method in the real case is to create
a pole at O,O,Z and then merge it with the zero. For a complex zero, the code below
should be used:

INO_Z3 EQU OUTO_P3

LOA IN2_Z3, IN1_Z3

LOA IN1_Z3, INO_Z3

Use of Temporary RAM Locations

The coding for equations of the form YY = C*YY is only optimal assuming no
scratch RAM locations are to be used. You can often improve it by the simple expe­
dient of coding in two steps, first saying

COOEXX=1.*YY

and then, after saving that code, enter CODE YY = C * XX. Using XX as a scratch
variable in this way can.be a useful technique.

If more than 16 bits of precision is needed in constants, say in PERROR or ERROR
constraints, the code produced with the standard SPAC20 algorithms may suffer.

COOEYY= (1 +1/2**17) *XXERR<O

is an example. Five instructions are generated where 3 could suffice. One way
around this is to code in several steps, e.g.,

CODE YY = C*XX ERR< (1/2**13)

DE FINE • ERR 0 R $ $ S A V E R = ERR

CODE XTMP = (1/2**13) * XX

CODE Y Y = (• ERR 0 R $ $ S A V E R * 2 * * 13) * X T M P + yy ERR < (1 /2 * * 1 0)

This effectively combines coding for the top 13 bits and for the least significant 13
bits.

J-3

APPENDIX K
ERROR MESSAGES AND

CORRECTIVE ACTIONS

Error conditions encountered by the SPAC20 module cause a numbered error
message to print on your console.

Since commands are read on a line-by-line basis, the Compiler will not flag any error
until after an entire line has been entered. When the first command error is found,
command processing stops and the offending line has no further effect on any
internal variables.

If a syntax error is encountered by the Compiler during a multi-line compound
command, the error is reported and the line is ignored. Whenever possible, the lines
already successfully entered in the compound command are kept and input may
resume. Sometimes the compiler finds it impossible to do so and in this case the
entire compound command is lost. The prompt for the next input line indicates
which of these options was selected: " *" indicates continued compound
command input; "*,, indicates new command input.

Errors during compound command execution will terminate processing, leaving the
compile-state intact as of the last successfully completed command.

Error numbers CO to CF are warnings of conditions which are probably undesired.
These warnings do not terminate compound command processing.

The following list of error messages does not include those which can come directly
from ISIS-II. These appear in a separate list after the Compiler's messages.

In some rare cases, the error number may be printed without its associated message,
asin

ERR80: ?

This means an Error 80 was detected but some other (probably unrelated) problem
prevented the Compiler from printing the message, e.g., error message file
SPAC20.0VE is missing.

ERR 71:

ERR 72:

ERR 73:

ERR 74:

ERR 75:

ILLEGIBLE NUMBER

HELP FILE MISSING

SAMPLE RATE UNDEFINED

GREF AGAIN ZERO

NEGATIVE RADIUS

A floating point number input cannot
be deciphered.

The help file SPAC20.0VH is missing.

TS has not yet been assigned. TS
must be assigned a nonzero postive
value before sampled poles and
zeros can be created or before IM­
PULSE or STEP responses are ex­
amined.

The frequency specified in the GREF
has absolute gain zero and this can­
not be used as a reference level.
Select a different GREF frequency.

Poles or zeros defined in the Z-plane
must have positive radius. A negative
radius is equivalent to a positive
radius with an angle offset of 180 0 =rr

radians.

K-l

Error Messages and Corrective Actions

ERR 76: POLE/ZERO NOT SAMPLED

ERR 77: CONSTRAINT TOO SEVERE

ERR 78: ANGLE> PI OR <= -PI

ERR 79: EXTRA CONTIN UOUS ZEROS

ERR 7A: ILLEGAL CODE COMMAND

ERR 7B: INTEGER NEEDED

ERR 80: SYNTAX ERROR

ERR 81: ~ INVALID TOKEN

ERR 83: INAPPROPRIATE NUMBER

ERR 84: PARTITION BOUNDS ERRQR

ERR 85: ITEM ALREADY EXISTS

ERR 86: ITEM DOES NOT EXIST

K-2

SP AC20 Compiler

A pole or zero must be sampled
before code can be generated. Move
it to the TS or Z planes.

The pole or zero or multiplication
cannot be coded within the instruc­
tion constraint specified. Try relaxing
the INST constraint.

Poles or zeros in the Z-plane must
have angle between ±rr. Take the
desired angle mod 2rr to obtain this.

The STEP or IMPULSE time
responses cannot be calculated
because there are more continuous
zeros than continuous poles. Such a
combination cannot be physically
manifested.

The code command issued does not
exist, e.g., CODE Y = 1 *X + Z.

An integer valued expression is
needed in context e.g., POLE 1.5.

The token flagged is not one that is
allowed in the current context.

The token flagged is illegal because it
does not follow the rules for a well­
formed token. The line is ignored and
you must re-enter your intended
command. Check the correctness of
the syntax and variable-names used.
A string longer than 255 characters
can result in this error.

The value printed on the preceding
line is not appropriate in the current
context. Some contexts allow only
certain numbers, e.g., TS must be
positive.

The partition values entered in a
command are not correct. Either the
left part of the partition is greater than
the right part, or the values of the
partition extremes are out of range in
the current context. For example,
Poles 3 thru 2.

The symbol or macro entered in a
define command is currently defined
in the symbol or macro table. You
may need to validate the curr~t

usage of this symbol or macro, or
perhaps merely use a different spell­
ing to maintain the distinction.

The item printed on the preceding
line does not reside in the symbol
or macro table. It may have been
removed in an earlier test session,
or it may be in a change you haven't
inserted yet.

SP AC20 Compiler

ERR 90: MEMORY OVERFLOW

ERR 91: STACK OVERFLOW

ERR 92: COMMAND TOO LONG

ERR 94: NON-CHANGEABLE ITEM

ERR 90; LINE TOO LONG

ERR AO: TOO MANY PARTITIONS

ERR B9: NO HELP AVAILABLE

WARN C8: F.P.INVALID OPERAND

WARN C9: F.P. OVERFLOW

WARN CA: F.P. UNDERFLOW

WAR CB: F.P. ZERO-DIVIDE

WARN CC: F.P. DOMAIN ERROR

Error Messages and Corrective Actions

Either too many poles and zeros have
been defined (more than 20), or too
many macros or symbols have been
defined or some other internal buffer
size has been exceeded. If the
message

MEMORY RECLAIMED

appears on the next line, success
may be obtained by simply reissuing
the command which caused the
original overflow. Before doing so it is
recommended to delete any unused
symbols or macros first.

The capacity of a statically allocated
internal stack has been exceeded.
This is probably due to an exces­
sively complicated command, e.g.,
one with 20 parenthesis pairs. An
example would be

DEFINE .DAR$SAVED =
(((((((((((((((((DAR)))))))))))))))))

Too complicated a command due to
number of operators, most probably,
asin

DEFINE .TEMPFUNC =

1+8*9-7/44*

out to many operators. Break it up in
several smaller commands.

An attempt to alter a read-only item,
e.g.,INST.

Command line was longer than 122
characters.

An fscale or Ibound or ubound has
been specified with more than the
maximum number 10 of piecewise
linear segments.

Help has been requested for a help
item which has no help message.

The program tried to use a value
resulting from an underflow or
overflow condition. If this message
persists, try flushing the Compiler's
internal storage with the command
XSIZE = XSIZE.

A value larger than 10 times the
largest allowable number occurred in
some expression.

A value smaller than the smallest
allowable number occurred. One
example is 1/Iargest#.

Dividing by zero was attempted.

One example would be the square
root of a negative number.

K-3

Error Messages and Corrective Actions SP AC20 Compiler

K-4

The last five warnings are flagged during command execution due to an
inappropriate action or result for a floating point operation. See the documentation
for the FORTRAN floating point libraries for further details.

ERR E7:

ERR E8:

ERR E9:

ERR EF:

ERR FO:

ERR F1:

ERR F3:

ERR F6:

ERR F9:

ERR FA:

ERR FH:

ILLEGAL FILENAME

ILLEGAL DEVICE

FILE OPEN FOR INPUT

FILE ALREADY OPEN

NO SUCH FILE

WRITE-PROTECTED FILE

CHECKSUM ERROR

DISKETTE FILE REOU IRED

ILLEGAL ACCESS

NO FILE NAME

NULL FILE EXTENSION

The filename specified does not
conform to a well-formed ISIS
filename. See ISIS Manual for valid
formulation and device labels.

Illegal or unrecognized device in
filename. An invalid device label was
used, e.g., :DO: instead of :CO, or
something unrelated such as :PO:.
See ISIS Manual for valid list.

Attempt to write to a file open for
input, e.g., PUT :CI:, a file predefined
as console input.

Attempt to open a file that was
already open.

The file specified does not exist.
Possibly a wrong or missing device
label, as in typing :F2:FILE when you
meant :F3:FILE, or a file missing due
to forgetting to copy it onto a new
disk.

The file named for output is
write-protected and cannot be over­
written.

An overlay file cannot be loaded
because it has become trashed.

A file was referenced which needs a
diskette.

Attempt to open a read-only file for
the purpose of storing data (e.g.,
specifying :CI: as the list device) or to
open a write-only file as a source of
data (e.g., :LP: in an include
command).

No filename specified for a diskette
file (e.g., no filename following :F2:).

An expected filename extension was
not found (e.g., :F2:FILT.).

abbreviations, 2-4, F-2, Appendix B
ABS, B-1
accuracy of code, 7-4

see also precision
ACOS, B-1
actual parameters, 9-3
add to a file, see APPEND
adders, H-3
advanced techniques

pertinent to filters, Chapter to
re other signal processing, Chapter 11

AGAIN,I-18, 2-5,5-1,5-2,5-4, B-3,
I-I, J-l

alias, 4-5
All-pole filter coding

example macro, to-9
resulting file, to-14

ampersand, 2-2, 3-1, F-l
amplitude

desired output 1-1
and phase information in complex gain,

H-l
analog filters, H-l
analog-to-digital, 1-4, G-l

see A-to-D
AND, 9-9, B-1
ANGLE, 2-9, B-1
apostrophe, 2-3, 6-3, 9-4, 9-5
APPEND, 1-3,2-6,7-3,8-4,8-6,9-1, B-2

default objects, 8-4
arithmetic expression, 2-8, 4-2, E-5
ASCII,2-2
ASIN, B-1
Assembler, 1-2,7-1

code submission to, Appendix G
options, G-2
tasks before invoking, G-l

asterisk, 1-2,2-2,2-8,2-9,3-1,6-2,8-1,9-1
see also double-asterisk,

AT, 5-1, 5-2, B-4
at-sign, 2-2
ATAN, B-1
A-to-D conversion macro,

definition, 11-3
invocation, to-tO, 11-6

attenuation, 6-2
AUTO, 6-2, B-4, C-l
avis, second-stage ariel evolution,

band-limited signal reconstruction, H-3
best yet code, 7-1
bibliography, Preface-iv, 1-2,2-7, F-l
Bilinear transform

equations, Appendix H-7
example use in design, H-8
macro, to-6

binary constant, 2-7, E-3
BNF (Backus Naur Form), Appendix D

INDEX

boolean
expressions, 9-9
operators, 9-9

BOUNDS, 5-2, B-3
bounds

on error,
maximum re gain, 7-1 to 7-3
mean square re gain, 7-1 to 7-3
movement re poleizero, 7-3

on gain, 1-3
invalid specifications, 5-3
lower, 5-2, 5-3
upper, 5-2, 5 .. :3

buffer
for code, 7-1,8-4,9-6
for graphics, 6-3

Butterworth filter macro, to-2
BY, 4-4, B-4

canonical forms of digital filters, H-3
carriage-return, 2-2, 3-1, 9-4, F-l
cascaded stages, 1-4, H-2, H-12, H-14,

H-15
change

commands, 3-2, E-6
of plane via MOVE, 4-5
see also 1-5ff

changeable scalars, 2-4, 2-5
character

set, 2-2
strings', 2-3

charts, Appendix E
Chebyshev filter

macro, 1-9, to-4
used, 1-10

CODE, 1-1,2-5,7-1, B-2, E-9
code

accuracy, 7-4
and ESC, 7-1
buffer, 7-1,9-6
compaction, 1-4, Appendix J
constraints, 1-4, 7-1
editing, 1-4, G-l
for equations, 7-4
for poleizero~ 1-3, 7-2
general signal processing, 1-3, Chapter 11
generation, 1-1,1-4, 1-5,7-1
merging, Appendix J
object, 1-2
review, 1-4, 7-1
revision, 1-4, G-l
submission to 2920 Assembler,

Appendix G
using temporary RAM locations,

Appendix J
coefficients determine filter behavior,

H- 3ff
closely approximated in 2920, H-tO

Index-l

Index

Index-2

colon
in device names, 8-2
to invoke macros, 9-2, 9-3

comma, 2-1, 2-3, 3-1,4-2,5-2,7-1,9-4,9-5
commands, D-l, E-2

and tokens, 2-1
block, 9-1
code, 7-1, E-9
change, 3-2, E-6
compound, 1-5,9-1 ff
display, 3-5, E-8
entry, 3-1
file, 8-1, E-9
graph, 6-3, E-9
line continuation, 2-2, 3-1
poleizero, 4-1 to 4-5, E-7
sequences, 9-1 ff
simple, 2-4, 3-1
symmetry, Preface-iv

comments, 3-1
in code, 7-1
into file, 8-4, 9-6

compaction of code/program, see code
Compiler

differences, Preface-iv
interaction with other products,

Preface-ii
introduction, 1-1
uses and purposes, Preface-iii, 1-1,7-1

complex
frequency, 1-1
network, H-l
numbers, 1-1
pole/zero

defined, 1-3,4-3,4-4
input/output signal delays, 1-2
realization diagram, H-4

valued graph, 1-1
variables, H-l, H-5

compound commands, 1-5,9-1 to 9-13, D-4
conditional, 9-11, 9-12
iteration control, 9-8 to 9-10
macros, 9-1 to 9-7

Concepts of filter design, 1-1
conditional

execution, 9-11
expression, 9-8 to 9-10

configuration, Preface-iii
conjugate

complex numbers, H-l
pole pairs, 1-3,4-3, H-l

conjunction
bit-wise integer, see MASK
logical, see AND

console, 1-4, 1-5,2-5,6-2,8-2,8-3,9-7
constant

binary, 2-7, 2-13
decimal, Preface-v, 2-7, 2-13
hexadecimal, Preface-vi, 2-7, 2-13
in coding equations, 1-4, 7-1, 7-4
keywords, B-1
numeric, Preface-vi, 2-7, 2-11, E-3
suffix, 2-7
symbolic, 1-3, 1-4,2-6
system, 2-4, 2-11, E-3

constraints
default, 7-2
on coding, 1-3, 7-lff
too severe, 7-1, 7-3

CONTINUOUS, 4-1, 4-2, 4-4, 4-5, B-4
continuous

filters, 1-1,4-1, H-5
compared to digital, H-6

poles/zeros, 1-3,4-3,5-2
contribution to inaccuracy of time

responses, 5-4

SP AC20 Compiler

s-plane, 1-1, 1-3,2-4,4-1, H-6
controlling a loop, see REPEAT, COUNT
convolution, H-2

approximation, 5-4
coordinates

as primaries, 2-9, 2-12, E-5
polar (z-plane), 1-3,4-1,4-2
rectangular (S, TS planes), 1-3,4-1,4-2

copy
allIlO to a file, see LIST
files, F-l
state or macros from a file, see

INCLUDE
corrective actions for error messages,

Appendix K
COS, B-1
COUNT, 9-8, E-lO
CR, carriage return
create,

a file, see PUT or APPEND
objects or symbols, see DEFINE

cursor controls, 1-4

dash,6-3
dB, decibels, as in G REF
DC, direct current, as in GREF
dead band, C-l
decimal

constant, 2-7, E-3
point, Preface-v

DEFINE command, B-2, E-7
complete form, E-7
for macros, 9-2, E-ll
for polesizeros, 4-2
for symbols, 3-3
see also sample session, 1-5ff

Defining
a filter, 1-3
macros, 9-1, 9-2, E-ll
poles or zeros, 1-3,4-2
summary chart, E-l
symbols, 2-6, 3-3
your own commands, 1-5, 10-1

definitions for keywords, Appendix B
delimiter, 2-2
design,

filter, 1-1
review, Appendix H

device names, 8-2
digit, Preface-v, 2-2, see constant
digital

filtering, H-3

SP AC20 Compiler

filters, canonical forms, H-3
diagrams, H-4

signal
processing, Preface-iv, Appendix H

digital-to-analog, 1-4, G-l
DIR MACRO, 9-7, B-2, E-ll
disjunction

exclusive, see XOR
inclusive, see OR

diskette
drive, 8-2
file, 8-2, 8-3, 8-6

DISPLAY, 8-4, 8-5, B-2
display

commands, 3-5, E-8
from any table, summary chart, E-l
macros, 9-7, E-ll
of code, 7-1
of file, 1-5,8-4
of filter responses, 1-4
of object values, 2-4, 3-4
see also simple sample session, 1-5ff

display text string/expression, with copy to
List file, see WRITE

distortion
correction via HOLD, 5-4
from output Sand H, 5-4

division
macro

definition, 11-2
invocation, 11-5

operator, 2-8, 2-9
documenting a session using

comments, 3-1, and
LIST, 8-3

dollar-sign, 2-2, 2-7
don't care conditions

effect on CODE, 5-3
in bounds, 5-2, 5-3

double-asterisk
showing continued input line, 3-1
("to the power"), 2-8

doubling the sample rate, 4-1, H-14, H-15
drivename, 8-1, 8-2

e,2-9
editing

code after generation, for assembler
submission, 1-4, G-l

commands at console, 3-1
macros, 9-2

ELSE, 9-11
EM, 9-2, 9-7
END, 9-8, 9-11, 9-12
Entering commands, 3-1
equal sign, 2-5, 3-2, 3-3,4-2
Equations, coding, 7-4
ERROR, 2-5, 7-1, 7-4, B-3, 1-3

default, 7-4
error

bounds on gain, 1-4, 7-2
constraints, 7-1 ff

ERROR
MERROR
MSQE
PERROR

messages and corrective actions,
Appendix K

on read-only, 3-2
on undefined or already defined symbol,

3-3
Escape key, 1-5, 1-7,2-2,7-1,8-4,9-4,9-8,

F-l
EVALUATE, 1-8,3-4, B-2
execute

command block
conditionally, see IF, WHILE, UNTIL
forever, see REPEAT
number of times, see COUNT

commands from a file, see INCLUDE
EXIT, 1-3, 1-20,8-2, B-2, F-2
exit clauses, 9-8 to 9-11, 9-13
EXP, 2-9, B-1
exp, expression
expansion of macro, 9-7

valid commands in, 9-5
exponentiation

limitation, C-I
number raised to a power, **,2-8,2-9
of natural base e, EXP, 2-9

expressions, 2-12,4-2,4-4, 5-1, 6-1, 6-2,
7-1,8-3,9-9,9-10, E-5
arithmetic, 2-8, E-5
boolean, 9-9
evaluation, 2-8, 2-9
integer, 2-8, 4-2, E-5
logical, 9-9
relational, 9-8

extending
precision, H-12, 1-3
the language, 1-5, 10-1

extension to filename, 8-2

FALSE, 9-9, 9-11
features of the Compiler, Preface-i
file

commands, 8-1, E-9
handling, 8-1 to 8-6
names, 8-2
temporary macro, 9-1

filing and retrieving 1-4, 8-4 to 8-6
filter

analog, 5-4, H-l
continuous, 1-1
design, 1-1

commands, 0-2
review, Appendix H

digital; 1-1, H-l
examples of advanced techniques,

Chapter 10
implementing, 1-1, H-9
low frequency, H-12
response functions, 5-4
response keywords, 5-1

factors used, 5-4
responses, 2-12
sampled, 1-1, 1-11, H-5, H-7

FIR filters, C-l
first -order, see stages
fixed frequency vs. geometry, 4-1

interaction with sample-rate and
implementation, 4-1

Index

Index-3

Index

Index-4

floating point, 2-3, 2-5, 2-7, 2-9,3-3
limitations, C-l

flow of control, 3-1; see compound
commands

formal and actual parameters, 9-3, 9-7,
10-1

formulas, Appendix I
fraction, Preface-vi, 2-7
frequency

and plane and sample-rate, 4-1
for BOUNDS, 5-2
for·GREF,5-1
in FSCALE, 6-1
range of interest, 1-4, 6-1, 6-2
response, 1-4, E-4, Chapter 5

functions, 2-9
keywords, 5-1

scale, 5-3, 6-1
FSCALE, 1-6, 2-5, 3-3, 5-1 to 5-4, 6-1, 8-4,

B-3
full DEFINE and REMOVE, E-7
functional categories, Preface-iv
Functions, 2-4, 2-11, B-1, E-4

of filter response, 5-1

GAIN, 1-6, 1-7,5-1,5-4, B-3, 1-3
gain

absolute, 5-2
maximum, 5-2

characteristic, 1-1
deviation from bounds when coded, 7-2
from individual pole, 5-2
reference, 5-1

generation
of code, 1-4,7-1 to 7-4
of graphs, 6-1 to 6-3
of listings, 8-3

geometry
re frequency, sample rate, and choice of

plane, 4-1
GERROR, 5-1, 5-3, 6-2, B-3, 1-3
GRAPH, 1-4,6-2,6-3, B-2, E-9
graphable keywords, 5-1
graph commands, 6-3, E-9
graphics

area, 6-2
buffer, 6-3
capability, 6-1
characters, 6-3
resolution, 6-2, 6-3

graphs, 1-3, Chapter 6
see also simple sample session, 1-5ff

GREF, 1-6,5-1,8-4, B-3, 1-3
restriction, 5-2

GROUP, 5-1, 5-3,5-4, B-3, 1-4

hard-copy, Preface-i, 1-4,6-3
hardware configuration for SPAC20,

Pref~ce-ii
HELP

messages, 1-2, 1-5, Appendix A, B-2,
E-2, F-l

hertz, 4-1, H-7

hexadecimal
fraction with leading zero, 2-7
number, Preface-vi, 2-7, E-3

hidden spikes, 5-2, 5-3
high-frequency

SP AC20 Compiler

continuous pole/zero inaccuracies, 5-4
droop from sample-and-hold, 5-4

HOLD, 1-18,2-6,5-4,8-4, B-2, 1-4, J-l
HPI, 2-4, 2-9, B-1
Hz, hertz, revolutions/cycles per second,

see also H-7

identifier, 2-3, 7-1
filename, 8-2

IF, 9-11, B-2, E-1O
lIR filters, C-l
IMAG, 2-9, B-1
implementing filters with the 2920, 1-4, H-9
IMPULSE, 2-6, 5-1, 5-4, B-3
Impulse response

achieved by network, H-5
analysis, H-2, H-3

INCLUDE, 1-5, 1-9,2-6,8-6,9-1,9-2, B-2
input line

continuation, 3-1
length, 3-1, F-l

input/output names for poles/zeros, J-2
input to assembler, 1-4, Appendix G
INST, 1-12,2-5,7-1, B-3

default, 7-2
installation procedure, Appendix F
integer, 2-5

expression 2-8,4-2,4-3, 9-8, 9-9, E-5
interactive

design sessions, 1-1
manipulation, 1-1
sample session, 1-5 to 1-20

interface
with ISIS- II 8-1, 8-6, Appendix F

interrogation commands, 0-4
interrupted session restart, 1-4, 8-6
interrupting any command, see ESCape
invalid numeric constants, 2-7
invoking macros, 9-2, E-ll
iSBC-31O, Preface-iii, iv, F-l, C-l
ISIS-II, Preface-iii

installing SPAC20 under, Appendix F
interface, 8-1
loading, F-2 .

iterative processes, 1-5

keyboard calculator, 3A
Keywords, 2-3, 2-4, Appendix B

commands, B-2, E-2
constants, operators, and functions,

B-1, E-3, E-4
gain-related, 5-1
filter response, 5-1
modifiers, B-4
objects, B-3

keyword references, 2-5, 2-6, 2-11, D-2, E-4

label of pole/zero, 4-2
language elements, 2-1

SP AC20 Compiler

Laplace transforms
used in impulse response analysis, H-3

LBOUND, 5-1 to 5-3, B-3
leading zero, 2-7
limit

on characters in identifier, 2-3
on partitions in

BOUNDS, B-3
FSCALE, 6-1

limit cycles, C-l
linear, 1-1, H-3
line-editing characters, 3-1, 3-2
line-feed,3-1
line printer, Preface-ii, 1-2
LIST, 1-2, 1-5,6-3,8-3, B-2
listing

all input/ output, 8-3
help messages, 1-2
to file, console, printer, 8-2, 8-3

locating poles and zeros, 4-1
LOG, 2-4,2-9, B-1
logic

conditional control, 9-1, 9-11, 9-12
of iterations, 9-8 to 9-10

operators, 2-3, 9-9
loop, 9-8

in macro invocation, 9-3
using compound commands, 9-8 to 9-10,

9-13, E-I0
low frequencies, 1-3, H-12
:LP:, 1-2,8-2

MACRO, 8-4, 9-7, B-3, E-II
macro

body, 9-1
command functions, 9-1
defining, 9-2
directory, 9-7
displaying, 9-7
editing, 8-6, 9-2
error checking, 10-1
expansion, 9-7, 9-8, 11-4
file, 9-1
in loop, 9-8
invoking, 2-3, 9-1, 9-2,11-4
library, 8-6
models, 9-2 to 9-6, Chapters 10 and II
names, 9-2, 9-7
parameters, 2-3, 9-1, 9-3
removing, 9-7
strings in, 9-4
syntax checking, 9-1, 9-7
usage, 1-3, Chapters 10, II
used under SUBMIT, 8-6

macros, Preface-iii, 9-1, Chapters 9-11,
0-5, E-II
filter, see

All-pole coding
Bilinear
Butterworth
Chebyshev

other signal processing, see
A-to-D conversion
division

multiplication
sawtooth
sinusoid
traingular

supplied-file, F-I
MAGAIN, 2-5,5-1,5-2,6-2, B-3, 1-3, J-I

hidden spikes, 5-2
manuals

reference, Preface-iv, 1-2,2-7, F-I
mapping to Z plane, 1-3, H-6, H-7
MASK, 2-8, 2-9, B-1
matched-z transform, 4-1,4-5, H-6
math board, see iSBC
maximum

absolute gain, 5-2
gain error, 5-3

mean-square-error, 1-4,5-3,7-1 to 7-3
merging code for poles and zeros,

Appendix J
MERROR, 2-5, 5-1,5-3,6-2,7-1 to 7-3,

B-3
minima and error constraints, 7-1,7-4
minus, 2-3, 2-8, 2-9
MOD, 2-8, 2-9, B-1
modifiers, 2-4, B-4
modules of code, 1-4
MOVE, 4-4, B-2, E-7

see also 1-5ff
movement of poles or zeros

as a constraint on coding, 7-1, 7-3
by command, 1-3,4-4
due to approximate coding, 7-1, 7-3

MSQE, 2-5, 5-1, 5-3,6-2, 7-1 to 7-3, B-4,
1-3

multiplication
conversion into 2920 ADDs and SUBs,

H-1O
macro

definition, 11-1
invocation, "11-4

operator, 2-8, 2-9
multiplier, 7-1, 7-4, see also constant

in digital filter block diagram, H-3ff

Names
device, 8-2
file, 8-2
ISIS-II, 8-2, F-I
of signal values in code, 1-14,7-1,10-12,

10-14, 10-15, 11-8, 11-10
see also keywords, Appendix B
symbolic, 1-4,2-3,2-6, 7-1
system constants, E-3
user, 2-2, 2-6

natural base e, 2-9
nesting compound commands, 9-12
non-scalars, 2-5
non-changeable scalars, 2-4
normalization, 1-2,5-1,5-4, I-I
NOT, 9-9, B-1
Notation, Pref'ace-v
Notes and Cautions, Appendix C
number, 2-7

complex, I-I, H-lff
numeric constant, 2-7, E-3

Index

Index-5

Index

Index-6

object
keywords, Preface-vii, Appendix B-3

object code, 1-2, G-l
OFF, 5-4, B-5
OGRAPH, 1-7,6-2,6-3, B-2, E-9
omitted parameters

in macro body (formal), 9-5
in macro call (actual), 9-4, 9-6

ON, 2-6, 5-4, B-5
operands, 2-9
operational amplifier, H-2
operators, 2-8, B-1
OR, 9-9, B-1
ORIF, 9-11, B-5
overflow, 7-4, C-l, H-l1, J-l
overwrite, 8-5

parallel-structured filter stages, H-14, H-15
parameters

design, 1-1,7-1
file, 1-5
macro: formal, actual, 8-6,9-3

parentheses, 2-2, 2-8 to 2-10
partial fractions in impulse response, H-2
partial results, 1-5
partition

of poles/zeros, 2-10, 4-3, 4-4, E-6
interpreted sequentially, 4-2

on scales for graphs, 6-1 ff
path name, 8-2, 8-6
percent

sign use in macros, 9-3
used on YSCALE, 6-2

period, 2-2, 2-3, 2-6, 3-2, 6-3, 9-1, 9-8
PERROR, 1-13,7-1,7-2, B-4, J-3
PHASE, 1-8,5-1,5-3,5-4, B-4, 1-3
phase

and group delay, 5-3
desired output, 1-1

PI, 1-8,2-4,2-9,4-2, B-1
piecewise linear, 1-4
Planes

and coordinates, 4-1, 4-2
changing via MOVE, 4-5

plot
last curve again, GRAPH
new curve over last, OGRAPH
screen size, see XSIZE

plus signs, 2-2, 2-8,2-9
in graphs, 1-7, 6-3

POLE, 3-5,4-2 to 4-4,7-1, B-4
pole

coordinates, 4-1
creation or destruction via MOVE, 4-4
definition, 1-1,4-2
duplication, 4-4
error, 7-2, 7-3
location, 1-1
maximum number of, 4-2
moving, 4-4
numbering, 4-3
of transfer characteristic, H-l
real, 4-3
removing, 4-3

practical consideration, H-ll

precision,
extended, H-12, J-3
single, 2-7

precedence of operators, 2-8, 2-9
primaries, 2-8 to 2-10, 7-1, E-6
printer, Preface-i, 1-4, 8-2
prompt character

ISIS-II, 8-1
SPAC20,1-2

SP AC20 Compiler

within macros or compound commands,
9-1

propagation, 1-3, 1-4,7-1, Appendix J
of carry, H-12

PUT, 1-3, 1-12,2-6,7-3,8-5,8-6,9-1, B-3
default objects, 8-4

PZ, 1-6,4-3,4-4, B-4

quadratic terms, H-l
correspond to complex conjugate pole

pairs, H-2
question mark, 2-2
quote, 2-2, 2-3, 9-4, 9-5

radians, 2-9, 4-1, 4-2,5-3
RADIUS, 2-9, B-1

non-negative only, 4-2
range

of frequencies or time, see scales
of polelzeros, see partition

read-only, 2-4, 2-5, 3-2, 5-2
REAL 2-9, B-1
real polelzero

defined, 4-3
input/ output signal delays, J-2
permit "real" components, H-l
realization diagram, H-4

redisplay, 1-4,6-3
relational

expressions 9-8, 9-9
symbols 2-2,2-3,9-8

remainder, see MOD
REMOVE command, B-3, E-7

complete form, E-7
for macros, 9-7, E-ll
for poles/zeros, Preface-v, 1-3,4-3
for symbols 3-4
message. 4-3
see also simple sample session, 1-5ff

removing objects
summary chart, E-l

RENAME, F-l
REPEAT, 9-8, B-3, E-I0
resolution, 6-2, 6-3
restart of session, 1-5, 2-6
Retrieving

files of code or parametes, see
INCLUDE

review of analog filters, Appendix H

S, H-l
S & H, sample-and-hold
sampled

filters, 1-11, H-5, H-7
polelzero, 2-6, 4-1
signals, H-3

SP AC20 Compiler

sampling
interval TS, 1-3,2-5,6-1, H-8
limitations, H-5
rate, 1-3, I-II, 4-1,5-4, H-12, H-14,

saturation. H-Il
shown by asterisk, 6-2

saving partial results. 1-3, 1-4
sawtooth waveform macro

definition. 11-2
invocation, 11-7

scalar keywords, 2-4. 2-5
Scales, 5-1, 6-1

changes, 6-3
frequency, 6-1
time, 6-1
vertical, 6-2

scaling, 1-3, 1-4,5-2,5-4,7-1
and other considerations, H -11,

Appendix J.
screen

size, 6-1 ff
second-order (quadratic), H-l, H-2,

H-5, see also stages
semicolon, 2-2,3-1, F-l
separator, 3-1
sequence of use, 1-3
set commands, 3-2, E-6
show contents of a file, see DISPLA Y
signal propagation, Appendix J
sign-on messages, 8-1, F-l
simple sample session, 1-5 to 1-20
Simulator, 1-2, G-I
SIN, 2-9, B-1
single precision, 2-7
sinusoid waveform

in complex network analysis, H-l,
H-4, H-5

macros
at user-specified frequency

definition, 11-4
invocation, 11-9

from triangular waveform
definition, 11-4
invocation, 11-8

slash. 2-2, 2-8, 2-9
software installation, Appendix F
SPAC20 files, F-l
space, 2-2, 2-6, 3-1
special-character usage, 2-2

sequences as tokens, 2-3
S-plane, I-I, 1-3,2-9,4-1, H-6
SQR, 2-9, B-1
stages, 1-3,5-4,7-1, J-l

first and second order cascaded, 1-4,
H-2, H-14, H-15

in parallel, H-16
STEP, 2-6, 5-1, 5-4, B-4
strings, 2-2, 2-3, 8-3, 8-4,9-4
submission

of code to Assembler, 1-5,
Appendix G

of command to Compiler, 3-1
SUBMIT, 3-1, 8-6
suffix see constant, Preface-v, 2-7
superimpose graphs, 1-4, 6-3

symbolic
constants, 1-3
names, 1-4,2-3,2-6,7-1
references, 2-6, 2-11, 3-2, E-4
variables, 1-4, 2-6

SYMBOLS, 3-4, 8-4, B-4
symbol table, 2-6, 3-3
symmetry of command syntax,

Preface-iv
syntax

charts, Preface-v, Appendix E
checking in macros, 9-7
description in BNF, Appendix 0
errors, 9-1, 9-13, K-l

system constant, E-3

tables
macros, 9-2
poleizero, 4-1
symbols, 2-6, 3-3

TAN, B-1
temporary RAM used in coding equations,

Appendix J
terminating

a command, 3-1
a line, 3-2
a macro, 9-2, 9-4, 9-8
an interactive session, 8-2

THEN, 9-11, B-5
THROUGH, 2-10,4-3, B-5
time

response, 5-4, 6-1, E-4
scale, 6-1, 6-2

TO, 4-4, 4-5, B-5
Token, 2-1, 2-3, 3-1

partial, 9-3
predefined, 2-4

TPI, 3-4, B-2
transfer

function, 1-1
factors, 1-1

characteristic, H-l
transforms, Preface-v, Appendix H

Bilinear, 10-6, H-7 to H-9
impulse invariant, H-5, H-6
matched-Z, H-6

triangular waveform macro
definition, 11-3
invocation, 11-8

TRUE, 9-9, 9-11
TS, 1-3, 1-11,2-1,2-2,2-5,2-6,4-1,4-4,

5-1, 5-4,6-1, 6-2, B-4, H-14
consequences, 4-1

UBOUND, 3-3,5-1 to 5-3, B-4
underflow, C-l, H-l1
underline, 2-2
upper and lower bounds, 5-2
unit delay, H-9

realization in 2920, H-lO
UNTIL, 9-8 to 9-10, B-5, E-lO

Index

Index-7

Index

Index-8

Up
impulse, 5-4
step, 5-4

user names, 2-2, 2-6, 3-2
utility commands, 0-4

variable
independent, computing of, 1-4
names, 1-4,2-6,7-1

WHILE, 9-8 to 9-10, B-5, E-lO
WRITE, 8-3, B-3
write over a file, see PUT

XOR, 9-9, B-2
XSIZE, 2-5, 3-3, 5-1,5-4,6-1 to 6-3,8-4,

B-4

YSCALE, 1-8, 6-2, 8-4, B-4, C-l
YSIZE, 2-5, 3-3, 6-2, 6-3, 8-4, B-4

Z, 4-2, 4-4, B-5
ZERO, 3-5,4-2 to 4-4, 7-1, B-4
zero

coordinates, 4-1

SP AC20 Compiler

creation or destruction via MOVE, 4-4
definition, 1-1, 4-2
duplication, 4-4
error, 7-2, 7-3
location, 1-1
maximum number of, 4-2
moving, 4-.:1
numbering, 4-3
of transfer characteristic, H-l
real,4-3
realization, H-2
removing, 4-3

Z plane, 1-1, 1-3,2-6,2-9,4-1, H-6

infel® 2920 Signal Processing Applications
Compiler User's Guide

121529-001

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME __ __ DATE __________________ __

TITLE __ _

COMPANYNAME/DEPARTMENT __ __
ADDRESS __ ___

CITY _________________________ __ STATE ___________ _ ZIP CODE ______________ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U_S_A_

