2920 SIGNAL PROCESSING
APPLICATIONS COMPILER
USER’S GUIDE

Manual Order No. 121529-001 Rev. A

Copyright © 1980 Intel Corporation

] Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 |

ii

Additional copies of this manual or other Intel literature méy be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

i iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
Insite Megachassis RMX

Intel Micromap UPI
Intelevision Multibus uScope

Intellec

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

[A173/0280/7.5K FL

PREFACE AND READER’S GUIDE

The audience for this manual is engineers who design products for signal processing.

The purpose of this manual is to familiarize you with the features of this Compiler
such that with a few hours of reading and practice you can feel comfortable using it
to design electrical filters and other applications, and generate 2920 programs for
them.

The Compiler can be used to generate 2920 assembly language code for a wide
variety of signal processing applications. In the present manual, electrical filters
are a central focus of discussion. A brief review of digital and analog filter
design appears in Appendix H. The formulas used by the Compiler for computing
the frequency responses of the filter appear in Appendix I.

The primary purpose of this Compiler is to make it easy to specify the frequency
response of a desired digital filter and implement the filter in AS2920 assembly
language code. It enables you to

* specify and modify design parameters, e.g., set sampling rate (Chapter 3), place
poles and zeros at chosen S-plane or Z-plane coordinates (Chapter 4), and set
error bounds on gain (Chapter 5);

* see immediately on a graph or list the frequency or time response of existing
poles and zeros at specified frequencies, or display any design parameter
(Chapters 5, 6);

® generate, store, and review AS2920 assembly language code for each filter or
stage, subject to constraints you specify on error functions and program size,
after response appears appropriate to your design (Chapter 7);

* use diskette files as scratchpads to store, review, modify, and retrieve files of
parameters, code, or commentary (Chapter 8);

® create your own name for command sequences (macros) to facilitate your
interactive design sessions and unattended test sessions (Chapters 9 through 11).

This feature greatly multiplies the power of the Compiler because it enables you
to use additional transforms, constraints, and procedures in any of your subse-
quent design sessions, after defining them once.

The minimum hardware configuration for the SPAC20 Compiler is as follows:

e INTELLEC or INTELLEC-II with 64K bytes of random access memory
(RAM),
® Teletypewriter, CRT, or equivalent for console input and output,

® One diskette drive unit, single or double density.

If a line printer is available, it can be used for large-volume or hard-copy output,
including graphics. If the system includes an iSBC-310 math board the SPAC20
module will use it to speed computations significantly.

The SPAC20 Compiler is designed to be used in conjunction with other Intel
products, most clearly the AS2920 Assembler and SM2920 Simulator. Further, the
Compiler uses the ISIS-11 keyboard and disk input/output functions. You may wish

iii

iv

to refer to other documents containing valuable information about the supervisor,
the Intellec system, and the other software (e.g., the Editor) used on it. These
include:

e INTELLEC Operator’s Manual 9800129
e INTELLEC/DOS Diskette

Operating System Operator’s Manual 9800206
e JSIS-II System User’s Guide 9800306
® 2920 Assembly Language Manual 9800987
e 2920 Simulator User’s Guide " 9800988
e [SIS-1I CREDIT User’s Guide

(CRT-Based Text Editor) 9800902
e Intellec Microcomputer Development

System Hardware Reference Manual 9800132
® iSBC-310 High Speed Mathematics

Unit Hardware Reference Manual) 9800410

Digital signal processing is an extensive subject. This manual assumes the reader has
at least a rudimentary knowledge of it, and does not attempt more than a review at
that level. A more detailed understanding can be obtained through the study of texts
written for that purpose, e.g.,

Digital Signal Processing
by A. V. Oppenheim and R. W. Schafer, Prentice Hall, Inc. 1975

Digital Signal Processing
by Abraham Peled and Bede Liu, John Wiley, 1976

Theory and Application of Digital Signal Processing
by L. R. Rabiner and B. Gold, Prentice Hall, Inc. 1975

After first scanning Chapter 1 of this manual, you might next scan areas of interest
among Chapters 3 through 8. Although Chapter 2 is necessary for a full definition
and understanding of the SPAC20 Compiler, its technical detail can perhaps be
better absorbed later, after you build some general familiarity with how you might
use the Compiler commands to achieve your purposes. It is placed second because its
contents are later taken for granted. This may not trouble you much if you’ve used
compilers before or if you use the index to fill in the gaps as you go. Appendices A,
B, and E also help tie things together by supplying explanations, tables, and charts
about the language.

Chapters 9 through 11 assume you have mastered the other chapters. Compound
commands are very powerful and useful, but they might be confusing in your first
pass through the book.

This Compiler differs from many others in that it is to be used in the process of
interactive design, rather than after the design is complete. In addition, it produces
partial rather than complete code. Further editing of its output code is required by
considerations of analog-to-digital conversion, signal scaling, and code compaction,
e.g., the merging of instructions for a pole with those for a zero (see Appendices G
and J). '

There is a certain symmetry about the commands which may help you learn and
remember them. You can display nearly any object (e.g., one or all poles, gain,
bounds) by typing its name followed by a carriage return. You can change nearly
any object by typing its name followed by an equal sign and the new desired value.

The commands fall into functional categories, and their syntax is relatively uniform.
For example, nearly all the file commands use the same set of objects or modifiers.
Similarly, all the pole and zero commands use one set of objects or modifiers, and
all the graph commands use one such set. This is most clearly shown by the syntax
charts in Appendix E.

The syntax discussion in Chapter 2 is deliberately simplified and incomplete,
because the full range of expressions is rarely relevant until you have mastered the
simple commands, and moved on to learn the power of compound commands and
macros in Chapters 9 through 11.

The Compiler’s matched-Z transform is not always the function of choice for map-
ping S-plane poles and zeros to the Z-plane, although one of its advantages is easy
movement from S to Z or Z to S-planes. Once macros are understood, it becomes a
simple matter to create alternate transform(s), such as bilinear, and thereafter use
them as desired. The discussions prior to Chapter 9 assume the use of the built-in
matched-Z transform without further comment. The review in Appendix H contains
a discussion of various other transforms.

Notation of this Manual

Most of the constructs and commands in this book are set forth using syntax charts,
a pictorial representation of how the building blocks of the SPAC20 commands are
legally combined.

These charts always begin at the left with an arrow that leads to an elliptical box or a
set of such boxes, indicating necessary or optional parts of the construct. The charts
always end with a single arrow off to the right. You create legal constructs by
following the arrows within these graphs, looping back to repeat some element only
if there is an arrowed line showing that you may do so. When a choice must be made
among several options, a single arrow will lead to a vertical bar, from which multiple
arrows permit you to go along the path containing the option you want. Here are
some examples:

Lora ! e

unsigned decimal constant 121533-06

where digit means any one of the set 0,1,2,3,4,5,6,7,8,9.

This says that to construct an unsigned decimal constant for use in some command,
you must start with either a digit or a decimal point. If you start with a digit, you
may continue to place digits after it (up to the limit of 31 digits), or you may choose
the other branch at any time, placing a decimal point next, or you may quit, exiting
the chart at the right. As you exit the chart you have the choice of appending a D
after your digits, explicitly indicating this is a decimal number rather than a binary
or hexadecimal number. This is optional because decimal is assumed whenever no
suffix is present.

vi

If you chose to insert a decimal point, you must now enter at least one digit before
exiting. You may add as many as 31 (less the number of digits already entered), but
you may not enter another decimal point—the arrowed lines offer no path to it.

G -

unsigned hexadecimal constant 121533-06

where hex-digit is any one of the set 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Dec-digit,
like digit above, includes only the first ten of these.

This chart shows that to create a hexadecimal constant you may begin with a decimal
point or a hex-digit. If you start with a hex-digit, you may continue appending hex-
digits or place a decimal point next, after which you may again append hex-digits
until you choose to exit the chart on the right, where you are required to append the
H suffix labeling this a hexadecimal constant.

If your constant is a fraction only, i.e., has no digit to the left of the decimal point,
then the digit immediately after the decimal point must be a decimal digit, i.e., not a
letter. Once you have begun with ‘“‘point dec-digit’’, succeeding digits may be any
legal hex-digit. Exiting the chart is-as above. The reasons for the restrictions em-
bodied in the chart are explained in Chapter 2.

Syntax charts often contain the names of other syntax charts, indicated by lower-
case words as opposed to the capitals used for keywords. The charts are combined
simply by substituting the full chart of the named item in place of the name. As an
example, the chart for ‘“‘numeric constant” includes by reference the two charts
above:

- system constant
H»{ unsigned dec-constant

-»-{ unsigned hex-constant

L»{ unsigned bin-constant

. numeric constant 121533-06

To give one command example, the remove command for poles and zeros has the
following chart:

G
'L‘
_’

The REMOVE Command for Poles and Zeros 121533-18

indicating you must enter the word REMOVE and one of the three object words
POLE, ZERO, or PZ. With that, you’re done unless you wish to use a partition,
which is indicated to be optional by being off the required exit line. (The chart for
partition appears in Chapter 2. This command is explained in Chapter 4.)

vii

CONTENTS

CHAPTER 1
INTRODUCTION PAGE
Concepts of Filter Designccouuunn.. 1-1
Introduction to the Compiler -1
The HELP Messagescocvuveenennnn.. Lo 122
Flowchart of Probable Sequenceof Use 1-3
DefiningaFilterl 1-3
Displaying the Responseccevvvn.... 1-4
GeneratingCodecovviiiviviiinnnnn.. 14
Filing and Retrieving Code or Paramters 1-4
Compound Commandsccoveuiuueennn. 1-5
Simple Sample Session0ooeil 1-5
CHAPTER 2
LANGUAGE ELEMENTS
Introductioncooiiiiiiiiiiii, 2-1
Character Setiieiiiiiiiiiinnnnn... 2-2
Special Character Usagecccvvviinnnn. 2-2
Token ...t 2-3
Identifiersc.ooiiiiii i 2-3
Strngs ...ovvii e 2-3
Keywords ... 2-4
Commandsand Objects
Modifiers, Constants, Operators, and Functions .
User Namesovuiiiiniiniiiiieineennnnn 2-6
Numeric Constantsccovvieveveennn. 2-7
Arithmetic Expressionsccovvvivi... 2-8
OPeratorsS «.vver ettt 2-8
Operandsc.oiiiiiiiiiiiiniiiennnn.. 2-9
Partitions it 2-10
Primarieso 2-10
CHAPTER 3
INTRODUCTION TO SIMPLE
COMMANDS
Entering and Editing Commands at the Console 3-1
Setting or Changing Symbol Values:

Equal Sign, DEFINE, and REMOVE........... 3-2
The Change Commands 3-2
DEFINE Command for Symbols 3-3
REMOVE Command for Symbols 34

Displaying Object Valuesooun... 34
GeneralMethod
EVALUATE Command 3-4

CHAPTER 4

POLE AND ZERO HANDLING

Planes and Coordinates for Poles-and Zeros in
DEFINE, REMOVE, and MOVE Commands - .. 4-1
Commandscoiiiiiiniiniiiieernnnnn

1)) 31 4-2
REMOVEooiiiiiiiiiiiiiiin, YA 4-3

MOVE ..ot iaein SN 4-4

viii

CHAPTER 5

FUNCTIONS OF FILTER

RESPONSE PAGE
Key Filter Response Keywords L 5-1
Response and Reference Gain: GAIN and GREF ... 5-1

Absolute and Maximum: AGAIN and MAGAIN ... 5-2
Upper and Lower Bounds: UBOUND,

LBOUND,BOUNDScovin... 5-2
Error Values, Mean-Square and Maximum Errors:
GERROR, MSQE, MERROR 5-3
Phase and Group Delay: PHASE and GROUP 5-3
Response to Up-Step and Up-Impulse at Time Zero:
STEPand IMPULSE 5-4
CHAPTER 6
GRAPHICS CAPABILITY
Scales ... e 6-1
Frequency and Time Scales 6-1
Screen Size: XSIZEand YSIZE 6-2
Vertical Scale: YSCALE 6-2
GRAPH and OGRAPH Commands 6-3
CHAPTER 7
CODE GENERATION FOR THE
2920 PROCESSOR
The CODE Command and Constraints 7-1
Coding a Single Poleor Zero 7-2
UsingMSQE ... i, 7-2
UsingMERROR, 7-2
UsingPERROR, 7-2
Minima and Error Constraints 7-4

Coding Equations: Y=C*X, Y=C*Y, Y=C*X+Y ... 74

CHAPTER 8
FILE HANDLING
Interface With the ISIS-II Operating System:
Names for Files and Devices 8-1
Terminating a Design Session: EXIT 8-2
Copy all Commands and Results to a File: LIST 8-3
Display Text String and Expression, and Copy to
ListFile: WRITE 8-3
Show Contents of a File: DISPLAY 8-4
Create or Add to the End of a File: APPEND 8-4
Create or Write Overa File: PUT 8-5
Execute Commands From a File: INCLUDE 8-6
CHAPTER 9
ADVANCED (COMPOUND)
COMMAND SYNTAX
MaCTOS oottt i e e 9-1
Defining and Invoking Macros 9-2
Formal and Actual Parameters 9-3

CONTENTS (Cont’d.)

PAGE
Macro Expansion and Syntax Checking 9-7
Displaying or Removing Macros 9-7
Controlling a Loop: REPEAT, COUNT,
WHILE,and UNTILcc0oveuen. 9-8
Execute Block of Commands Forever:
REPEAT ... it iiiiiiinenann 9-8
Execute Block of Commands a Specific
Number of Times: COUNT 9-8
Stop Execution of Command Block When
Condition Becomes True: UNTIL 9-9
Stop When Condition Specified
Becomes False: WHILE 9-9
Conditional Execution of Commands: the
IF Constructioncvveevinvenneninnns 9-11
Nesting Compound Commands 9-12
CHAPTER 10
ADVANCED TECHNIQUES: FILTER
DESIGN EXAMPLES
Introduction ,.........c.coviiiiiiiii 10-1
Butterworth FilterMacroccovvvnivnnn. 10-2
Chebyshev FilterMacrocooovvvne.. 10-4
Bilinear Transform Macro 10-6
Macro to Code All-Pole Filter 10-9
Contents of Resultant File 10-14
CHAPTER 11

ADVANCED TECHNIQUES: OTHER
ROUTINES FOR SIGNAL PROCESSING

Introductionc.coveiiiiiin ittt 11-1
Multiplication Macro Defined: MULVAR 11-1
Division Macro Defined: DIV 11-2
Sawtooth-Waveform Macro Defined: SAW 11-2
A-to-D Conversion Macro Defined: ADCONV 11-3

Triangular-Waveform Macro Defined: TRIANG ...11-3
Sinusoid-From-Triangle Macro Defined: SINFIT ...11-4
Sinusoidal-Waveform At-Frequency Macro

Defined: SINOSCo, 11-4
MULVAR Invocationc.ovvuieennennnnn. 11-4
DIVInvocationccovviiniiininnennnnn.. 11-5
ADCONVInvocationcoeuiiviinuneenn. 11-6
SAW Invocationciiiiiiiiinennnenn.. 11-7
TRIANG Invocationcoviviinennvenn.. 11-8
SINFIT Invocationcoviiiiniinnennennns 11-8
SINOSCInvocationccovievnnvnnnnnnn. 11-9

APPENDIX A
HELP MESSAGES

APPENDIX B
KEYWORDS: DEFINITIONS
AND DEFAULTS

APPENDIX C
NOTES AND CAUTIONS

APPENDIX D
BNF SYNTAX SUMMARY

APPENDIX E
SYNTAX CHARTS

APPENDIX F
SOFTWARE INSTALLATION
PROCEDURE

APPENDIX G
CODE SUBMISSION TO THE
AS2920 ASSEMBLER

APPENDIX H
DESIGN OF COMPLEX DIGITAL
FILTERS USED IN THE 2920

APPENDIX 1
FORMULAS USED BY THE SPAC20
COMPILER

APPENDIX J
SCALING AND OTHER
CONSIDERATIONS

APPENDIX K
ERROR MESSAGES AND
CORRECTIVE ACTIONS

INDEX

ix

ILLUSTRATIONS

FIGURE TITLE PAGE
2-1 Example of a DEFINE Command 2-1
H-1 Digital Filter Module (Second

Order Section)cooovvvvevennn.. H-4
H-2 Digital Filter Module (First Order Section).. H-4
H-3 Comparison of Digital and Continuous

Frequency Response H-6
H-4 Transfer Function From Qtow........... H-9
H-5 Method for Preventing Intermediate

Overflow.........ooviiiiienion... H-11

FIGURE TITLE
H-6 Very Low Frequency Filter.............. H-13
H-7 Effects of Double Rate Input Sampling ... H-15
H-8a Cascade Structure for Complex Filter

(Directly Derived from Matched Z or

Bilinear Transform).................. H-15
H-8b Parallel Structure for Complex Filters -

(May Result From Impulse Invariant

Transform)...............coevieaa.. H-16

TABLES

TABLE TITLE PAGE
2-1 Token Functions in the Above Command ... 2-1
5-1 Keywords for Gain Reference, Gain

Boundaries, and Response Display 5-1
H-1- Laplace Transforms. H-3

TABLE TITLE PAGE
H-2 Extended Precision Add Routine (48 Bit
Precision) Technique Uses Simulated
Carry at 2nd Bit From Left of Low
OrderWordcoiiiviiii e H-12

CHAPTER 1
INTRODUCTION

Concepts of Filter Design

Designing a filter involves choosing operations to perform on input signals in order
to produce modified signals as output. These operations are usually linear. The
theory relating continuous analog filters to sampled digital filters is reviewed in
Appendix H. Digital filters are covered in great detail by the books on digital signal
theory in the bibliography.

Filters are usually designed to achieve certain gain and phase characteristics. These
can be viewed as implementing a mathematical transfer function, whose factors
relate directly to the desired attributes. Factors which represent complex frequencies
at which the gain is zero are called the zeros of this filter. Factors representing
frequencies at which the gain grows indeterminately large are called the poles of the
filter.

These poles and zeros are complex numbers of the form a + bj, where j =~/ —1.
Thus a filter’s poles and zeros can be specified on a complex-valued graph, such as
the S-plane or the Z-plane.

The desired output amplitude and phase can now be approached in an interactive
design session by placing poles and zeros in the S-plane (for continuous filters) or the
Z-plane (for sampled filters), and viewing the resultant output. Moving these poles
and zeros can then change that output to more closely approximate what is needed.
The compiler capabilities facilitate this interactive process of specification,
modification, and review by providing simple commands and graphs for these
functions.

Introduction to the Compiler

The SPAC20 Signal Processing Applications Compiler accepts high-level (English-
like) language input and produces 2920 Assembly language code. The Compiler is
also a filter design aid which permits substantial interactive manipulation of a wide
variety of parameters and constraints, both in design of filter stages and in opti-
mization of code size and/or error limits.

The two principal functions of the SPAC20 Compiler are:

1. to make it easy for you to specify, alter, and review design parameters for your
signal processing application, and

2. to save your writing all the detailed steps required to implement the necessary
functions in assembly language code.

One example is specifying the frequency response of a desired digital filter, checking
gain, phase, or other aspects and changing parameters as needed. You then
implement the filter by issuing one CODE command for each pole or zero, thus
generating the AS2920 code.

1-1

Introduction SPAC20 Compiler

NOTE

The specific functions and features of the Intel 2920 processor are described
in the data sheet for that device. The AS2920 Assembler converts the user-
edited output of this Compiler into object code that will directly run on an
Intel 2920 processor. The assembler is described in the manual entitled 2920
Assembly Language Manual, order number 9800987.

Once a program has been converted to object code, it can be tested using
another Intel product, called the SM2920 Simulator. This product is
described in the 2920 Simulator User’s Guide, order number 9800988.
Many features of this Compiler show a family resemblance to the
Simulator, and to Intel’s In-Circuit-Emulator-86 (ICE-86).

This resemblance includes the use of compound commands, which are
featured in the Intel product which handles multiple In-Circuit-Emulators,
called multi-ICE. It is described in manual number 9800762 entitled Mutli-
ICE Operating Instructions for ISIS-1I Users.

The Help Messages

—GED— .
|

J ~“ help item ,‘ >

&3.6 hlelp i(}enr\‘s are
deplyedwhenteLr (x>

HELP Command 121533-27

The SPAC20 Compiler has a help message facility, which can inform or remind you
of the form, function, or interrelationships of compiler keywords, concepts, and

commands. These messages can be requested any time no other command is being
executed, i.e., whenever the compiler has issued its prompt character (asterisk):

*HELP

Typing in this word will cause an index of all hélp messages available to be displayed
on the console. If you enter the following sequence

*LIST:LP:
*HELP * -

then all the messages will be printed out on the line printer. (They appear in
Appendix A in this form.)

You can get the help message for only specific items by typing the item name after
HELP, e.g.

* HELP DEFINE
will cause the help message on the define command to be displayed.
Requesting help on scales or normalization or bounds will get you a description of
certain system variables and how to access them, e.g., FSCALE, GREF, BOUNDS,

etc. Similarly, requesting help on change or display can remind you of how the
different forms or references can be used.

SPAC20 Compiler

Probable Sequence of Use

1. Define or include symbolic constants for easy use; define sample interval TS;

2. a. define poles and zeros, move or remove them as desired in TS plane, that is,
the sampled S-plane (see below); implement desired filter as if continuous;

b. define poles and zeros, move or remove as desired in Z-plane to implement
desired filter;

¢. use a macro, e.g., Chebyshev or Bilinear, to locate poles and zeros for a
particular filter;

3. set bounds to be able to determine closeness to desired spec and to guide code
generation; look at MSQE , GERROR, etc. to see closeness;

. graph filter response and other filter behavior;
. if the filter is not yet ‘“‘good enough’’, return to step 2;
save current poles and zeros in diskette file via put or append command,;

~N N v b

code the (next) pole or zero with either gain bound constraint or other
constraint; examine resulting filter responses;

8. if not satisfactory, restore poles and zeros and return to step 7 to use a different
constraint, or return to step 1 to begin anew;

9. if satisfactory, put or append code;
10. if there is another pole or zero, return to step 7 for the next one;
11. if all poles and zeros are coded, you now have final filter;

12. determine scaling; for example, save coded poles and zeros; delete all but the
first n; MAGAIN reveals scale for (n+ 1)th stage; append comment for code
file; restore earlier poles and zeros; repeat. Alternatively, can delete poles or
zeros in reverse order one by one;

13. as needed, generate code for other functions, using code, macro, and compound
commands, €.g., sawtooth wave generator, and append to code file;

14. exit; edit code file to insert additional scaling if needed (per code comments),
add I/0, end statement; assemble with AS2920; simulate with SM2920;
program the EPROM in the 2920 chip.

Defining a Filter

You can define a filter by specifying the location of poles and zeros in the S-plane or
the Z-plane corresponding to a sample rate which you supply. Complex poles always
occur as conjugate pole pairs so that the filter is realizable. Poles and zeros can be
created, moved, or removed. Continuous poles and zeros in the S-plane describe
portions of the total filter which will be implemented outside of the 2920 chip.

Poles and zeros can be specified in the S-plane and then designated as sampled.
During calculation, these poles and zeros are mapped to the Z-plane using the
matched-Z transform, i.e., a pole or zero at x+jy on the S-plane is transferred to a
pole or zero at e2nTS(x+jy) on the Z-plane, where TS represents the sample interval in
the sampled S-plane. In polar coordinates, this Z-plane location is (€27TSx, 2rnTSy)

This transform allows an analog design engineer who is not already familiar with
digital filter theory to work in more familiar territory. For low frequencies, relative
to the sample rate, it does offer a relatively faithful translation of analog filters to
digital. However, the matched-Z transform is not ideal in many cases, and therefore
some users prefer to work directly in the Z-plane.

Introduction

Introduction SPAC20 Compiler

Displaying the Response

You can examine the frequency response of your filter as you manipulate the
position of poles and zeros. The gain, phase, group delay, and time responses can be
graphed or listed. You can specify the frequency range of interest for these outputs.
While emphasis is placed on the gain versus frequency response of the filter, you can
take advantage of the compound command capability described in Chapter 9 to use
the phase, impulse, or step responses.

The graphs do not require the console device to have any cursor controls; €.g., the
ability to move the beam directly by pressing a button for up, down, left, or right.
You specify the X-axis and the Y-axis ranges. The last curve plotted is always
available for redisplay upon entering the command GRAPH, regardless of the effect
of intervening commands. It is also possible to superimpose the last curve plotted
and a new curve, regardless of intervening scale changes. The graphs can be sent to a
diskette file, or hard copies can be produced on a line printer, since no special cursor
control characters are assumed.

Generating Code

Once the filter responses (e.g., gain, error, phase) look adequate to meet your design
specifications, you can generate the code for each pole or zero with a single com-
mand. The Compiler enables you to implement the filter as a cascaded series of first
and second order stages. You can also generate code to compute independent
variables of the form Y=C*X or Y=C*X+Y or Y=C*Y, where C is a constant, and
X and Y are variable names. These are useful for propagation and scaling of the
digital signal between stages.

These modules of assembly language code can be accumulated into a file to be used
as input to the 2920 Assembler. Prior to submitting the code to the Assembler, you
will need to do some editing to implement the analog-to-digital and digital-to-analog
functions, and also the above propagation and scaling. (See the ISIS-II or Editor
manuals for editing instructions.) During this editing it is also possible to compact
the program by merging the code for a pole with the code for a zero, as described in
Appendix J. The analog-to-digital and digital-to-analog code can be merged with the
arithmetic code which implements the filter by appending analog instructions to
arithmetic/logic instructions: see the AS2920 manual.

During code generation for one stage of a filter, you may wish to sacrifice numerical
accuracy in order to get a shorter program. Towards this end, code generation is.
performed subject to constraints which you specify. One such constraint consists of
the “‘error’’ relative to piecewise linear bounds on the gain, in decibels, as a function
of (log of) frequency. The Compiler then strives to minimize the mean-square devia-
tion from these bounds.

Before saving the resulting code into a file, you may wish to interactively adjust the
number of instructions you have allowed the Compiler to generate, or to adjust the
error you are willing to tolerate, in order to achieve the shortest program which
meets your error requirements. You can then save this new code in a file.

Filing and Retrieving Code or Parameters
This process of filter specification, display, and adjustment is extremely interactive.

The file commands have been structured to facilitate the restart of an interrupted
design or test session. They also make it easy to accumulate, into one or many files,

1-4

SPAC20 Compiler Introduction

the partial results of specifying parameters or creating code. Parameter files saved
from an interrupted design session can then be INCLUDEA at a later date, to resume
that design session with all relevant variables restored to their condition at the time
the session was interrupted.

You also have the ability to display any ISIS-II diskette file on the console, or to add
arbitrary test or other data to the end of existing diskette files. This permits you to
use disk files as scratch pads, and also to perform simple, low-level editing of files.
The latter facility can be useful for building final 2920 assembly language files for
submission to the AS2920 Assembler. The procedure for such submission is
described briefly in Appendix G (see the Assembler manual for full details.)

Compound Commands

This Compiler contains macro and compound command facilities. They enable you
to extend the language itself by defining your own commands using sequences of the
simple commands described in Chapters 2 through 8.

Such macros make it possible, for example, to define an iterative process of moving
poles and zeros and graphing the resultant response, without having to type all the
commands during each iteration of that process, or to perform other design or test
experiments, including code generation and display. Such a macro is interruptible at
any time by hitting the console ESCape key. Macros can also be used as code
generators for functions other than filters. Examples of macros which may be useful
(and also used as models) appear in Chapters 10 and 11.

Simple Sample Session

This printout is a complete copy of an interactive session, produced by a LIST
command (see Chapter 8).

The macro used in this session is not intended for study at this point. It appears here
only to illustrate the facility for retrieving macros and the form in which they are
defined. Shown below is a macro to produce a Chebyshev filter. Macros and
compound commands are explained in Chapter 9, with numerous examples in
Chapters 10 and 11.

*

*; 13 DEC 79

. N

#; ISIS~-I1 2920 SIGNAL PROCESSING APPLICATIONS COMPILER. Vv1.0

®

*HELP i WHEN IN DOUBT., ASK FOR HELP

s+ Help is available for the following items. Type HELP folloued #*»

er+s by the iten name. Do not type the angle brackets. (For nore L1

+ infornetion on the help conmand, type HELP HELP.) : L 1]

Filters and Filter Responses:
DEFIRE,(FILTERSRESPONSE) . GREF,HOLD,MOVE ,(POLESORSZEROSLOCATION),
{POLESSORSZERCES)>,RENOVE

Graphics:

FSCALE.GRAPH, YSCALE

Code Generation:
BOUNDS,CODE,KHASCONSTRAINT >, KPZSCONSTRAINT)

File/Display/Conpound Commands:
{COMPOUNDSCONNANDS)> .EVALUATE . EXIT,{FILESCOMMANDS >, HELP ,NACRO,
(PATHSNANE) ,URITE

Niscellaneous:

{BOOCLEANSEXPR>.{CONSTANT>, CEXPR)>,<FUNCTION)>,<IDENTIFIER),
CINTEGERSEXPR) . {NUMERICSCONSTANT) . {PRIMARY)>,(PZ$REF>,<SPRCEREF),
<STRING>.<{SYNBOL)>,<SYMBOLICSREF)

1-5

Introduction

{FILTERSRESPONSEY> - One of the fcollowing filter responses!
GaIN Gein in decibels as o function of frequency in Hertz.
AGATR Absolute gain as & function of freguency in Hertz.
PHASE Phaese delay in rodians as a function of frequency in Hertz.
GROUP Group delay in seconds as a function of frequency in Hertz.
GERRGR Signed deviation of GAIN from the LBOUND and UBOUND
in decibels as a function of frequency in Hertz.
See {BOUNDS>.
iMPULSE Impulse response as a function of time in seconds.
STEP Step response as o function of time in seconds.
Eazh (FILTERS$RESPONSE> can be used as a command to tabulate the values.
Euczh can be graophed. Each except IMPULSE and STEP can be used as a
function in an expression, ©.g. AGAINC(6Q).
Se> <FUNCTIORY>., GRAPH, <PRIMARY)>.
*
*DEFINE POLE 1 = -20,1000 5 CREATE A POLE IN CONTIHUOUS S-PLANE
*
*p2 5 LIST ALL POLES AND ZEROES
POLE t = -20.000000,1000.00000,CONTINUOUS
*
*GREF ; GREF DETERMINES THE GAIN NORMALIZATION
GREF = 0.00000000 AT 0.00000000
*
*; GREF DEFARULTS TO O DECIBELS AT 0 HERTZ.
»
*YSCALE 5 YSCALE DETERMINES THE VERTICAL GRAPHICS SCALE
YSCALE = AUTO ; 0.00000000,0.00000000
*
*3 AUTO MEANS THAT THE VERTICAL RANGE IS AUTOMATICALLY DETERMINED
*
*; BY THE MININUM AND MAXINUM YALUES OF THE CURVE BEING PLOTTED.
*
#; CURRENTLY THE MININUM AND MAXINUM ARE BOTH 0.
*
*FSCALE = 100, 10000 3 ESTABLISHES FREQUEMCY RANGE OF INTEREST
*
*; WELL, LET’S SEE WHAT THE GAIN LOOKS LIKE FOR OUR ONE POLE FILTER.
*
*GRAPH GAIN
GacH oo ALt o T N P DU A A f
23 '
25
21
18 ’
13
12 .
2 .-
s . ._l :
2 e —-———tr - '
...1 -
-4 '
-3 -
-11 -
-14 ',
-17 i '-
~-21 ‘-
_2‘ L
-27 t-.
-30 -
-33 -.
-37 ‘ LN
~40 ’.
DPBIHZ t. ALt L T R A LN !
100 150 200 300 400 500 700 1000 1400 2000 3000 5000 10000

SPAC20 Compiler

SPAC20 Compiler Introduction

:: THE UNITS USED IN GRAPHING GAIN ARE SHOUN IN THE LOWER LEFT.
:: GAIN IN DECIBELS IS GRAPHED VERSUS FREQUENCY IN HERTZ.

:1 NOTE THAT THE GAIN PERKS AT ABOUT 1000 HZ.

:GQIN 5 CAN ALSO TABULATE GAIN VALUES

GAIN(100.000000> = 0.087190039
GRIN(107.006896> = 0.099910137
GAINC114.504760) = 0.114497473
GAIN(C122.527992) = 0.1312308%9
GAINC131.113403)> = 0.1504311{15
GAINC140.300384> = 0.17246827
GAIN(150.131088) = 0.197727049
GAIN(160.650619)> = 0.22683386

GAINC171.90724) = 0.2602318¢

PROCESSING ABORTED

*

*; TRBULATION WAS INTERRUPTED WITH THE ESCAPE KEY.

*

#; ESCAPE KEY CAMN ALUAYS BE USED TO ABORT THE COMPILER’S PROCESSING.
»

*MOVE POLE 1 BY 0,-300 5 SHIFT GRIN PEAK DOWN TO 700 HZ
1 POLES/ZEROES MOVED

*

*0GRAPH GAIN i OYERGRAPH NEW GAIN CURVE

GAIN 1 a a A A a ~ A a a A A]

23 !
20 ’
17 .
13 ' + +
10 ! -
? i +. +
2 ——— e -
1] PP I R A A PRy - +
-3 LR LRI R IR R RS R RS RS RS L X] [X
-4 L
-1 fot+
-13 Pt
-16 I
-20 [)
-23 »
-26 A
~-30 ‘-,
~-33 r-.
-36)
~49 -
-43 : -
~44 ‘.
DS‘"Z ! . - ~ A ~ A A A A -~ A~ A]

100 iéo.ééo

PLUS SIGNS INDICATE OLD CURVE.

5 WE CAN ALSO EXAMINE THE PHASE RESPONSE.

* * B K R E %
-

1-7

Introduction

1-8

*GRAPH PHASE

PHASE | T L T N el

*
*
*
*
*
*

0.
0.
0.
0.
0.

0.

1
1
1
1
1
1
1
2

;

s
:

Dl ""l""")l.""JJ);;——..
16 -
31

46 -
60

?s

90

.08

29

.38
.30
.68
.80
.98
.09 -
2.
2.
2.
2.
2.
2.
3.

24

39

54

69

84 -
29 -.

SPAC20 Compiler

14 203 e cmcn———- - = - .

RADIHZ~ . .~ ... ~ - ol -~ - “ A A RN
100 150 200

PHASE IS EXPRESSED IN RADIANS.

NHOTE THAT THE VERTICAL SCALE RANGES FROM ABOUT -PI T0 O.

*YSCALE ; DISPLAYS ACTUAL MIN AND MAX VERTICAL VALUES
YSCALE = AUTO ; -3.1375729.-0.0083262023

*

*EVALUATE -PI i DISPLAYS DECIMAL YALUE OF -Pl FOR COMPARISOR
~3.1415927+10%+0

*

*¥YSCALE = -PI.,P1 5 A& MORE APPROPRIATE VERTICAL SCALE FOR PHASE

*

*GRA PHA ; GRAPH PHASE (ONLY FIRST THREE LETTERS ARE EYER NEEDED?

P

wWNoN

* % B X X B *

0

OO e pa s DN W T

b e e OO

AsSEe 1 a a A A A A A A A a A

14 227 e ed e mmeemm e mm——————————

RADIHZ V... .. % . .~ - ~ - ~ “ ~ . A .
100 150 200

RATHER THAN CREATING A FILTER BY MANUALLY POSITIONINGE POLES AND ZEROES,

LET’S USE R PREDEFINED MACRO.

SPAC20 Compiler Introduction

*INCLUDE :F1:CHEB.NAC ; DESIRED MACRO IS DEFINED IN THIS FILE

SDEF MAC CHEB ;#9242 220502340 XXB4 X0 RXRSE XA ER SR XA ERXRRERARE SRR EN SR
L% A CHEBYSHEY FILTER GENERATOR FOR SPaAC20 **
L

.*: CALLING SEQUENCE :CHEB ORDER, Fco, LABEL. R.F. *x
.%: WHERE ORDER is the order of the filter **
L* Fco is the cutoff frequency in Hz *%
R LABEL is the starting point for pole numbering ** .
L R.F. is the desired (or allovweble) ripple factor in dB. *x
) .

L EXANPLE tCHEB 6.500.,23,0.12

> this will generate &« CHEBYSHEV filter of order *x
X 6, cutoff=500,and a peak-to-peck ripple of 0.12 #*=
.*; dB, producing 3 complex poles labeled 23,24.25 =x
L

.#DEF . YCHEBYRIP=10*=(ARS(%X3)/10)-1 i* BEGIN THE **
.#DEF _?SINHP=1 i# CHEBYSHEY *%
.#DEF .?7COSHP=1 - is BY SETTING **®
.* IF .?CHEBYRIP <> 0 THEN i DEFAULT VALUES, ==
) tTEMCHB .?SINHP, .?COSHP, . ?CHEBYRIP, X0 ;#s OR USE THE *:
. % EHD ;% SUB-MACRO *%
.*REN . ?CHEBYRIP %% TO GENERATE %
.* DEFINE .?BUTSTART = ¢ HPI > + C HPI/%0 » is* THE VARIABLES. x*%
.*% DEFINE .?BUTDELTAR = ¢ Pl1/%0 R1d **
.* DEFINE _?BUTINDEX = 0 i* R MODIFIED **
.* DEFINE .?BUTANGLE=O i* BUTTERUWORTH *t
.* REPEAT ;% MODULE 1§ **
R .?BUTINDEX = .?BUTINDEX + 1 i* INCORPORARTED **
L .?7BUTANGLE=_?BUYSTART - .?2BUTINDEX=*. ?BUTDELTA ;% TO GENERATE .
. IF .7?BUTANGLE < .?BUTDELTA/4 THEHN i® THE APPROPRIATE »=x
o .?BUTRANGLE=0 i* PATTERN OF **
L END i* POLES FOR THE *®
L% DEF POLC.?BUTINDEX+%2-1)= & 3* FILTER. (the &s *»»
%% -%1% ?SINHP#C0OSC .?BUTANGLE)., & i* allov greater **
L% . %X1= 2COSHP*SINC . ?BUTANGLE) i* readability of =
.® UHILE . 7BUTINDEX + 1 <= ¢ %0 + 1) /7 2 is the formulae.? %
.x END

.*% REM _.?BUTINDEX i*® REMOVE THE L 1]
.* REM .?BUTDELTA i** YARIABLES L L
.* REM .?BUTSTART ;«+ INTRODUCED s
.*% REM .?BUTANGLE i#% IN THIS MACRO, =»x
.* REM .?SINHP ;** T0O SAVE SPACE. =*=»
.% REM .?COSHP i%* ®%
.#pP2

.#EN jexsssxs END OF CHEBYSHEY MACRO ssssexzx
*

*; TEMCHB GET YARIABLES FOR CHEBYSHEY FILTER #E304553S800808000000
*DEF MAC TENMCHB

.*; CALLING SEQUENCE #& THIS IS THE (1]
L% tTEMCHB SINHP,COSHP,E**2,H 4% SUB-MACROD. [11]
.#DEF . ?INVSXTEMP=(1/SOR(2Z2))>+(SQR((1/%2)+1))

.#DEF . 7INVSXTEMPP=_7INVSXTENP **(1/%3) iX 11
.#DEF . 2INVSXTEMPHN= YINVSKTENP *%(-1/%3)

.#%0=(PINVSRVEMPP - . ?2IHVSXTEMNPH)/2 X111
.A%1=C 2INVSXTENPP + _2INVSXTENPN)/2

.SREH . 2INVSXTEMP i 13

.#REM . 27INVSXTEMPP

Introduction

1-10

#; ALL THE ABOYE MACRO DEFINITION CAME FROM THE IﬁCLUDED FILE :F1:CHEB.MAC.

»
»
1
*
*
*

REMOVE P2 3 DELETES ALL OLD POLES AND 2EROES
POLES/ZERGES REMOVED

; HOW INYOKE MARCRO CHEB TO BUILD A CHEBYSHEY LOW PASS FILTER.

SPAC20 Compiler

* i CHEB 7.,10006,0,2 5 ?TH ORDER, 1000 HZ CUTOFF, 1ST LABEL 0, 2 DB RIPPLE
N A CHEBYSHEY FILTER GENERATOR FOR SPAC20 **
L% .
.%: CALLING SEQUENCE :CHEB ORDER., Fco, LABEL. R.F. *n
.%x, WHERE ORDER is the order of the filter *
R Fco i5 the cutoff frequency in Hz ®%
S LABEL is the starting point for pole numbering * %
R R.F. is the desired (or cllowable) ripple factor in dB. *
L *
L EXAMPLE tCHEB 6,500,23,0.12
E this will generate a CHEBYSHEY filter of order **
.w 6, cutoff=500.and a peak-to-peck ripple of 0.12 »»
S dB8, producing 3 complex poles labeled 23,24.,25 =*»
e
.#DEF 7CHEBYRIP=10#=(ABS(2)>/10)-1 ;= BEGIN THE *x
.*DEF . ?SINHP=1 ;% CHEBYSHEV **
. #DEF _7COSHP=1 i* BY SETTING **
L% IF _7CHEBYRIP <> 0 THEN i* DEFAULT YALUES, =*=
* TEMCHB . ?SINHP, . ?COSHP, . 7CHEBYRIP.? i®x OR USE THE *%
#: CALLING SEQUENCE #% THIS 1S THE (211
Lk ‘TEMCHB SINHP,COSHP,E**2, N #% SUB-MACRO. (21
. *DEF _7INYSHTEMP=(1/SQR(7CHEBYRIPII+(SQRC((1/. ?2CHEBYRIP)+1))
..*DEF 7INVSXTEMPP= TINWSKTEMP *#(1/7) R3]
#DEF ?7THYSXTEMPN=. 7INVYSXTENP **(-1/7)
?SINHP=C . 7INVSXTENPP - .7INYSXTEMPN)/2 K2 X
. * . 2COSHP=C . ?INVSXTENPP + . 2INYSKXTENPN)/2
..#REM _?INYSXTENP IR 21
. #REM _7INVSXTENPP
CHAREM L TINYSXTENPN ;%% END OF TEMCHB #4##
.. *EH
.* END i*x SUB-MACRO %
L HAZEW 7CHEBYRIP i*% T0 GENERATE *x
.# BEFIHE . 7BUTSTART = (¢ HPI > + ¢ HPI/? ;#% THE VARIABLES. x*»
L4 DEFIHE ?BUTDELTA = ¢ PIS7) R **
v DEFINE 7?BUTINDEX = 0 ;% A MODIFIED * %
% DEFINE . ?BUTANGLE=0 i* BUTTERWORTH **
. % REPEAT ;% MODULE IS * %
Lo .7BUTINDEX = _?2BUTINDEX + 1 ;% INCORPORATED x%
Lox .?BUTANGLE= ?BUTSTART - .?BUTINDEX*=.7BUTDELTA ;% TO GENERATE *%
. * IF . ?BUTANGLE < :?BUTDELTA/4 THEN i* THE APPROPRIATE #*x
* .?BUTANGLE=0 i* PRTTERN OF %
.o END i* POLES FOR THE *%
¥ DEF POLC .?BUTINDEX+0-1)= & i* FILTER. (the &s =*%
L ~1000». ?SINHP*COS(. ?BUTANGLE), |3 i* allow greater * ok
. L 1000* 2COSHP*SINC ?BUTANGLE) i* readebility of *=
* WHILE .?BUTINDEX + t <= (C 7 + 1)/ 2 i» the formula.? **
..ox END
. % REM .?BUTINDEX i®x REMOYE THE %
.% REM .?BUTDELTA ;%% YARIABLES **
% REM .?BUTSTART i*% INTRODUCED ¥
.*» REWM . 7BUTANGLE ;#% IN THIS MACRO, »=
.* REM _7SINHP i#x TO SAVE SPACE. »»
.* REM .7?COSHP L) %
L xP2
CkEM sexxxssx END OF CHEBYSHEY MACRO ***ssxux
POLE 0 = ~34.566349,986.62048,CONTINUOUS
POLE | = -96.852775,791.20825,.CONTINUOUS
POLE 2 = -139.956344,439.08737,CONTINUDUS
POLE 3 = -155.339813,0.00000000.CONTINUGUS: REAL
*
*; OHE REAL POLE AND THREE COMPLEX POLE PAIRS MERE CREATED.
*
*¥YSC = -5,1 i SELECT A NEW VERTICAL SCALE FOR GRIN

*

SPAC20 Compiler

*GR G 5 GRAPH GRIN (MANY KEYUWORDS HRYE ONE OR TWO LETTER ABEREVIATIONS)

GAIN ! ot S T A A ~ “ !

AEEBEEEREFERERASRAE AR RSN BE R KEER R R
pBINHZ !} ~ A A a ~ A A A A A a 1

1066 150 200 300 400 500 700 1000 1400 2000 3000 5000 10000

*; RSTERISKS (ABOYE §000 HZ HERE> INDICATE VERTICAL SATURATION.
*
*
*
*FSCALE =
*

*GR G 3

LET’S 200M IN ON THE REGION NEAR 1000 HZ.

400,500,600,700.800.900,1000.,1100 ; NEW FREQUENCY RANGE

GRAPH GAIN

Gald L oo L e T T | R A |
100

0.7t

0 43

g 14 A L

-0 14 ’ '- - -

-0
-0 7 ‘. -

-1 0g -. -

-1 z9 - ! . -
-1 57 ‘- - - -
-1 86 I el

-2 14

-2 43

21

43 . ! ’. ’

-z
-3 .00
-3.29
-2 57
-2 36
-4 14
-4 .42
-4 71
-5 00
DEIHZ '
400

EERERRAER
1 - | ~ 1 - 1 A | A] A 1

566'540

600 640

5 WELL, LET’S NOW MOVYE INTO THE WORLD OF SAMPLED FILTERS.

* ®# F ¥ %

*MOYE POLES TO TS ; CONYERT FILYER TO SAMPLED VYIA MATCHED-Z TRANSFORM
ERR 73:SAMPLE RATE UNDEFINED
*

*; SAMPLE RATE MUSY BE SPECIFIED FIRST.

*

*T§ = 1/1302¢0 ; REASONRBLE RATE FOR FULL 192 INSTRUCTION 2920 PROGRAN
TS = 7.6805004/710%%53

*

Introduction

Introduction

*NOYE POLES TO TS 3 TRY AGAIN

4 POLES/ZERGES MOVED

*

*P2 5 LET’S SEE WHAT WE HAVE

POLE 0 = -34.566349,986.62048.7S

POLE 1 = -96.852775.,791.20825.,78

POLE 2 = -139.956344,439.08737.7TS

POLE 3 = -155.339813,0.00000000.7TS; REAL
*

SPAC20 Compiler

*HOLD ON 5 THIS INTRODUCES COMPENSATION FOR SAMPLE AND HOLD DISTORTION

*

*0O3R G 5 GRAPH GAIN OF SAMPLED VERSION OF FILTER OVER ORIGINAL VERSION

GAlN L I | [

-1 29 +- -t
-1 8?2 L N
-1 8¢ +42 0 014

-2 43

OBIHZ ! .. ! N ! . oo
700 740 800

<00’ 500 540 600 640

~E2RBERRR
A 1 A) a 1

*; OBSERYE THAT THE SAMPLED FILTER CLOSELY RECREARTES THE CONTINUOUS FILTER.

*

*; IF WE HAD CONHVERTED TO SAMPLED USING BILINEAR TRANSFORM INSTERD OF

*®

*; MATCHED-2., THE GAIN CURVES UNULD WATCH EVEN MORE CLOSELY.

*
*; NOW THAT ME’RE SATISFIED WITH THIS FILTER,
*

LET’S GENERATE 2920 CODE FOR IT.

*PUT :F1:BEFORE.TNP P2 ;i SAVE THE CURRERTY POLES IN A DISK FILE BACKUP
* .
*CODE POLE O INST(11 i WILLING TO DEDICATE 10 INSTRUCTIONS TO POLE O
Bi=1.7481516 B2=-0.96718828
INST=4

POLE 0 = 0.00000000,3253.0000.,7TS

BEST YET

POLE 0 = -718.16894,1627.350000.7TS
BEST YET

INST=S

POLE 0 = 0.00000000,1492.64807.7TS
BEST YET

POLE 0 = -32.894828,3255.0000.7TS

POLE 0 = ~-32.894828,3255.0000.7TS
POLE 0 = -785.03710,1558.37561.7TS

INST=6 R
POLE 0 = 0.00000000,1047.20678,T5
BEST YET

POLE 0 = 0.00000000,1497.64802,TS
POLE 0 = 0.00000000,1047.20678,TS
POLE 0 = 231.19877,960.76947.T5

POLE 0 = -298.06701,1084.99975,TS
POLE 0 = -34.920330,3255.0000,TS
POLE 0 = -34.985778,3255.0000,TS
POLE 0 = -820.16253,1520.12536, T8

SPAC20 Compiler

INST=a?

POLE O = 0.00000000,978.23999,7TS

BEST YET

POLE 0 = 0.00000000,1047.20678,7S
POLE 0 = 0.00000000,1051.37%15.7TS
POLE 0 = -32.894828,985.61317,7TS

BEST YET
POLE
POLE
POLE
POLE
POLE
POLE
PULE
POLE

ooOoOoO0O®

INST=8
POLE O
POLE ©
POLE O
POLE 0O

BEST ¥
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE

T

o H N NHH KM RN

[~ - NN NN

INST=2
POLE
POLE
POLE
POLE
POLE
POLE

BEST YET

co0oooO0

POLE 0 = -34.
POLE 0 = -34.

POLE 0 = -34.
POLE 0 = -34.
POLE 0 = -34
INST=10
POLE O =
POLE 0 =
POLE 0 = -32.
POLE 0 = -32.
POLE 0 = -34.
BEST YET
POLE 0 = -34.
POLE 0 = -34.
POLE 0 = -34.
POLE 0 = -34.
POLE 0 = -34.
POLE 0 = -34.
BEST YET
POLE 0 = -34.
POLE 0 = -34.
POLE 0 = -34.
INST=10

-32.

-32.
-32.
-32.
-34.
-34.
~276.70343,1121.26489%,7S
191.59279.877.43200.7S
-34.549556,3255.0000.78
~-34.393387,3253.0000.,7S

894828, 986 .

894828, 985
894828,990
920330, 981
983778, 981

894828, 990

894828,989.
920330.986.

983778, 986
985778,986
479980, 982
462637,982

894828,989
894828, 989

920330, 986 .

983778.,986
985778,986
983778, 983
479980, 987
462657, 987
724136,986

549356, 982
593387, 982

= -32.894828,985.61517.7S
-298.06701,1084.9%975,7S
-32.894828,985.61517.7TS
204.96688,906.34724,TS

-276.70343,1121.26489.7TS
-34.479980,3253.0000, 7S
~-34.462657,3255.0000,7TS
-820.16253,1520.12536. TS

0.00000000, 28?7 .102%96, TS
0.00000000,1051.37915.,7S
0.00000000,1051.18432, 7S
894828,986.

73706, 7S

73706.7TS
.61512,7s
.095?0., 7S
.67358,7S
.54577,78

0.00000000,986.53126.TS
0.00000000,1051.18432, TS
0.00000000,1051.18432,78
-32.
-32.
= -34.

.09570. TS
88684.7TS
17498, TS

.04791,78
.04791,78
.53204.7S
.56529.78

-549934,3255.0000, TS

0.00000000,1031.18432.7S
0.00000000,1051.20874.7TS
.88684.TS
.88684.7S

?73651.7S

.60949%,7S
.04791,78
.83789,71S
.028%3, 7S
.06262,7S
.58566.,TS

.39642, 7S
.31103,TS

550563,3255.0000. 7S

POLE 0 = -34.724136.,986.53566,7TS

8EST

PERROR = 0.157787329,

0.064819335

Introduction

Introduction

1-14

5 NOTE: MAKE SURE SIGNAL IS <0.5720
LDA OUTZ2_PO.CUTI_PO,ROC
QUT2.P0=1.00000000%00UT1 PO
LOR OUT!.PO.CUTO.PO,ROO
; OUT1.P0O=1.00000000+0UTO.PD
SUB OUTO.PO.OUTI_PO,RO2
OUTO.PO=1.00000000*0UTO_PC-0
SUB OUTO_PO,OGUTI_PO.ROS
OUTO_PC=1.00000000*0UTO_PC-0
ADD NUTO.PO.OUTI_PO,ROC
QUTO.FQ=1.00000000*0UTO_PO+0
ADD QUTO_PO.OUT2.PO,ROS
; OUTO.PO=1.00000000%0UTO_PO+0
ADD GUTO_POD.,OUT2_PO,RO9
OUTO_PO=1.00000000%0UTO_PO+0
SUB QUTO.PO.,OUT2.PO,R12
OUTO_PO=1.00000000%0UTO_PCG+0 .
SUB8 OUTO.PO,0UT2_PO.ROO
5 OUTO.PO=1.00000000*0UTO_PO+0
ADD OUTO_PO.,INO_PO.ROC
; OQUTO_PO=1.00000000=0UTO.PO+O

THE DISPLAY SHOMS EVYERY ATTEMPT

EACH CASE THE POLE POSITION CORR

~

“BEST YET® AND “BEST"™ INDICATE T

.

SINCE WE DID NOT SPECIFY AN ERRO

DISTANCE IN THE S-PLANE FROM THE

POLE O IS NOU MOVED TO THE POSIT

THE CODING ALGORITHM SELECTED RE

EACEED 0.572 IN ORDER TO PREVENT

OYERFLOWING .

PUT :F1:CODE.SRC *; ?TH ORDER CHES

* B X R R R RN KK EERE R ER RN

*APPEND :F1:CODE.SRC °INO.P1 EQU OU
*
*CODE POLE 1 INST(11t i CODE POLE
Bi=1.7712245 B2=-0.91075761
INST=4
POLE 1 = 0.00000000,3255.0000,7TS
BEST YET

POLE 1 = -718.16894,1627.30000.,7TS
BEST YET

INST=5

POLE 1 = -66.868217,3255.0000.TS
POLE 1 = -66.868217,3255.0000,7S
POLE 1 = ~-1016.23577,1275.39575.,718
BEST YET

INST=6
POLE 1 = 0.00000000.736.50292,7TS
BEST YET

POLE | = 0.00000000,1047.20678., 7S
POLE | = 0.00000000,1047.20678, 7S
POLE 1 = 122.034751,704.20874.78
POLE 1 = 122.034751,704.20874.7S
PILE 1 = ~99.763069,3255.0000.7S
POLE 1 = -1031.993606,3255.0000.7TS
POLE | = -1013.54125,1279.19873,7§

6704

.25000000%0UTL. PO
.25195312%0UT1.PO
.74804687*0UT1_PO
. 74804687*0UT1_P0O+0.031250000%0UT2_PO

.74804687*%0UT1.P0+0,.033203125%0UT2_.P0

74804687+0UT1_P0+0.032958984%0UT2_P0

.748B04687*0UT1_P0-0.96704101%0UT2_PO

TO GENERATE CODE FOR POLE O, GIVING IN

ESPONDING TO THE CODE. THE MESSAGES

HE PROGRESS OF THE CODING ATTEMPTS.

R CONSTRAINT IN THE CODE COMMAND,
ORIGINAL POLE O WAS MINIMIZED.

ION CORREGPONDING TO THE BEST CODE.
QUIRES THAT THE OUTPUT SIGHNAL NOT

INTERNEDIATE CALCULATIONS FROM

YSHEV’, CODE 3 SAYE CODE IN NEW FILE

T0.PO’ 3

1 NEXT IN 10 INSTRUCTIONS OR FEMER

SPAC20 Compiler

.74804687*0UT1_P0-0.96704101+0UT2_P0+1.00000000#1NO_PO

;5 INSERT IN GROWING CODE FILE CODE 70 PASS SIGNAL FROM FIRST STAGE TO SECOWD.

INPUT TO SECOND IS OUTPUT FROM FIRST

SPAC20 Compiler Introduction

INST=10
POLE { = 0.00000000,1000.82678,7S
POLE t = 0.00000000,1000.81?738., TS
POLE | = -66.868217,791.33288,7TS
POLE § = -66.868217,791.33288,7S
POLE | = -66.868217,862.28106,7TS
POLE { = -99.763069,788.89288,7TS
BEST YET
POLE 1| = -101.993606,721.89245,7S
POLE 1 = -101.993606.,774.43041.,7TS
P3LE § = ~101.993606.778.24249.7TS
POLE 1 = -97.537277.805.69842,78
P3LE 1 = -97.537277.805.69842.7¢
POLE | = -102.581963.,793.35278.718
POLE 1 = -97.537277,794 .43249%,7S
BEST YET :
POLE 1| = -96.838409.,850.94234.7S
POLE 1 = -96.981559,850.62072, 7§
POLE 1| = -118.310440,799.93048,7TS
POLE 1 = -118.310440,799.93048,7S
POLE 1 = ~96.8372249,3255.0000,7S
INST=10
POLE 1 = -97.537277,794 .43249%.,7S
BEST

PERROR = 0.68450166, -3.22424231

i NOTE: MAKE SURE SIGNAL 1S (0.56512143
LDa DUT2_P1.0OUTI_P1,ROD

; OGUT2_P1=1.00000000*0UTL_P1{
LDa OUTLI.P1,0UTO_P1,.ROO

i OUTI_P1=1.00000000*0UTQ_P1
ADD QUTO.P1.OUTI.P1,RO2

OUTO_P1=1.00000000+0UTO.P1+0 .25000000*CGUTI_P1

ADD GUTO.P1,0UTD.P1,RO6

; OUTO.P1=1.01562500#0UTO0_P1+0.25390625*0UT1_P1
ADD OUTO.P1,0UT1.P1,ROL

QUTO.P1=1.81562500+0UT0_P1+0.75390625*0UTL_P1

ADDO OUTO-P1.0UT2_P1.RO4

; OUTO.P1=1.01562500%0UTO_P1+40.753%90625*0UT1_P1+0.062500000=0UT2_P1
ADD OUTO.P1,0UT2.P1,ROS

; OUTO_P1=1.01562S00*0UTO_P1+0.75390625*0UT1.P1+0.093750000%00UT2._P1}
SUB DUTO.PI1,0UT2.P1,R08

i OUTO.P1=1.0156250020UTO0_P1+0.75390625*0UT1_P1+0.089843750*0UT2_P1
SUB GUTO.P1,0UT2.P1,RO0

i OUTO.P1=1.01562500*0UTO_P1+0.75390625%0UT1_P1-0.91015625*0UT2.P1
RDD OUTO_P1,ING_P1,ROO

; OUTO.P1=1.01562500»0UTO_P1+0 . 75320623*0UT1_P1-0.91015625+0UT2..P1+1.0000000041INO..P1
*

*APPEND (F1:CODE.SRC CODE 5 SAYE CODE AT END OF GROWING FILE
*
*APPEND (F1:CODE.SRC °'INO.P2 EQU 0UTO.PI’ ; INPUT TO THIRD IS OGUTPUT FROM SECOND
*
*CJIDE P 2 INST<11} 3 CODE POLE 2 NEXT
B1=1 8275704 B2=-0.87364599
INST=4
P3LE 2 = 0.00000000,3253.0000,7S
BEST YET
IN3T=5
POLE 2 = -138.351623,3255.0000.7TS
BEST YET
POLE 2 = ~-138.351623.,3255.0000.7S
POLE 2 = ~-1314.30297,704.20874.,7S
BEST YET
INST=¢
POLE 2 = 0.00000000,366.79486.,75
BEST YET
POLE 2 = 0.00000000,736.5029%92.7¢
POLE 2 = 0.00000000,736.5029%2,7S
POLE 2 = 31.882545.362.37061.,78S
POLE 2 = 31.882545,362.570612.78
POLE 2 = -140.377334,3255.0000,78
POLE 2 = ~139.508758,3235.0000.7TS
PILE 2 = -1285.91467,780.04730.,7S
[}
°
L]

Introduction

1-16

INST=10

POLE 2 = 0.00000000.866.71618,7S
POLE 2 = 0.00000000,866.76428.7TS
POLE 2 = -138.351623,438.47937.7TS
POLE 2 = -138.351623,438.47937,78
POLE 2 = -138.351623,446.13854.,78
POLE 2 = -140.377334,434.17916.7S
POLE 2 = -139.508738,438.24417,7TS
POLE 2 = ~-139.508758.,438.24417,7T8
PILE 2 = -139.5087958,441.13485,78
POLE 2 = -140.013363.,512.25738., 78
POLE 2 = -140.087631,511.97113.,718
POLE 2 = -156.432159,442.24893.,71S
POLE 2 = -139.363952,438.21845.,7TS
BEST YET

POLE 2 = -89.232948.,427.92999.7TS
POLE 2 = -89.232948,427 .92%99.78
PALE 2 = 39.337009.402.49118,78§
POLE 2 = 39.337009.,402.4%3118.,7S
INST=10

PILE 2 = -139.363952,438.91845.71S8

BEST

PERROR = -0.59239199, 0.1689%91479

3 NOTE: MAKE SURE SIGHAL IS <0.547008359

LDa OUT2_P2,0UT1_P2,.R0OD

LDa

AbD

ADD

ADD

RDD

RDD

sus

sus

AdD

0UT2.P2=1.00000000200T1_P2

OUT1.P2,0UTO_P2,R00

3 QUTE.P2=1.00000000=0UTO.P2

QUTO.P2,0UT1_P2,RO1

i DUTO.P2=1.00000000*0UTO_P2+0

QUTO_P2,0UT1.P2,R03

OUTO.P2=1.00000000*0UT0O_P2+0

QUTO.P2,00TO.P2,R0O3

OUTO.P2=1.12500000*0UT0_P2+0

QUTO.P2,0UT2._P2,R03

: 0UTO.P2=1.12500000+0UTO_P2+0

QUTO_P2,0UT2_P2,R10

0UTO.P2=1.12500000*0UTO_P2+0.

QUTO.P2,0UT2_P2,R13

5 QUTO_P2=1.125000000UT0_P2+0.

QUTO.P2.0UT2.P2.R0OC

; OUTO_P2=1.12500000%0UT0..P2+0.

QUTO_P2, INO_P2,R00

: ouT
*
*APPEND
»*
*APPEND
*
*CODE P 3
B1=0.9277

INST=2

POLE 3 = 0.00000000,0.00000000,7S;

BEST YE

INST=3

POLE 3 = 0.00000000,0.00000000.7S;
POLE 3 = 0.00000000,0.00000000.,7S;

0.P2=1.12500000*0UT0..P2+0.

F1:CODE.SRC CODE H

tF1:CODE.SRC ’INO.P3 EQU OUTO.P2’ H

INST<11 H
7714

CODE POLE 3
82=0.00000000

T

.50000000*0UT1. P2
.62500000*0UT1_ P2
.70312500=0UT1_P2
.70312500%0UT1_P2+0.
70312500=0UT1_P2+0.
70312500*0UT1_P2+0.
70312500*0UT1.P2-0C.
70312500=0UT1..P2-0.

SAYE CODE

LAST

REAL

REAL
REAL

POLE 3 = -133.736541,0.00000000,7S; REAL
BEST YET
INST=4
POLE 3 = -133.736541,0.00000000,7S; REAL
POLE 3 = -133.736541,0.00000000,7S; REAL
POLE 3 = -151.077224,0.00000000.7S; REAL
BEST YET
INST=5 .
POLE 3 = -151.077224.,0.00000000.,7S; REAL
POLE 3 = -151.077224.,0.00000000.7S; REAL
POLE 3 = -155.401062,0.00000000.7S; REAL
BEST YET
INST=e
PILE 3 = -155.435150,0.00000000,7S; REAL
PILE 3 = -155.401062.0.00000000.,7S; REAL
PILE 3 = ~1535.336887,0.00000000,7S; REAL
BEST YET

SPAC20 Compiler

125000000800 T2_P2
125976562+00T2_P2
125854492900 T2_P2
87414550+0UT2_P2

8741455020UT2.P2+1.00000000INO_P2

INPUT TO FOURTH 1S OUTPUT FROM THIRD

SPAC20 Compiler

IN3T=7

POLE 3 = -1535.435130,0.00000000.7S; REAL
POLE 3 = -155.356887.,0.00000000.7TS; REAL
POLE 3 = -155.344894,0.00000000.7S; REAL
BEST YET

INST=8

POLE 3 = -155.435130,0.00000000.,7S; REAL
POLE 3 = ~-155.344894.0.00000000,7S; REAL
POLE 3 = -153.337036.0.00000000.7S; REAL
BEST YET

INST=9

POLE 3 = -155.435150.0.00000000,7S; REaL
POLE 3 = -155.337036.,0.00000000,7S; REAL
POLE 3 = ~155.340621,0.00000000.7S; REAL
BEST YET

INST=10

POLE 3 = -155.435150.0.00000000.,7S; REAL
POLE 3 = ~-155.340621.0.00000000.,7S; REAL
POLE 3 = ~155.340621.0.000000600,7S; REAL

INST=9

POLE 3 = -155.340621,0.00000000,7S; REAL
BEST

PERROR = 8.0821562/10+>4, 0.00000000

LDPA OUTI_P3,0UTO-P3.ROD

: OUTI_P3=1.00000000*0UTO.P3

QUTO.P3.0UT1.P3.RO?

; OUTO_P3<=1.00000000»0UTO_P3-0

QUTO_P3,0UTO..P3.RO4
OUTO.P3=0.937S0000+0UTO_P3-0.

QUTO-P3.0UT1.P3,RO7
OUTO0.P3=0.93750000+0UT0_.P3-0

QUTO.P3,0UTO.P3,R0OS

; OUTO_P3=0.93933105+0UTO.P3-0

QUTO_P3.0UTI. P3.R11L
QUTO.P3=0.93233105+0UTO_P3~0

QUTO.P3.0UTD-P3,R08

; QUTO.P3=0.94300029+0UT0.P3-0

QUTO.P3,0UT1_.P3,R11
QUTO_P3=0.94300029+0UTO_P3-0

suB
.0078125000%0UT1_P3
sus
00?32421872+0UT1.P3
sus
.0151367187=0UT1.P3
ADD
.0131662826%0UT1_P3
ADD
.0146780014=0UT1_P2
ADD
.0147353378*0UT1..P3
sug
.0152236190%0UT1_P3

ADD OUTO_P3.,INO_P3,RO0

; OUTO.P3=0.94300029+0UTO_.P3-0.0152236190*0UT1_P3+1.00000000%INOC.P3
»
*APPEND :F1:CODE.SRC CODE 5 SAYE CODE

*
*;
»
*;
L]
*;
*
*0GR G H

NOW ALL OUR POLES ARE CODED.

LET*S SEE WHAT THE GAIN RESPONSE LOOKS LIKE FOR OUR FILTER AS CODED.

RECALL THAT THE LAST ITEM GRAPHED WAS THE GARIN FOR THE SAMPLED URCODED FILTER.
GRAPH GAIN AS CODED OVER ORIGINAL SAMPLED GAIN

GATH T T I
1.00
0.71
0 43
0.14

-0 14 .

-0.43

-0.71

-1 .00

P T+

-1 57 . R

-1.86 ’

-2 14

-2.43

-2.71

-3.00

-3 29

-3 57

-3 86

-4 14

-4.43

-4.71

-5.00

DBIHZ t........ booh o

500 540 600 640

++ -

‘e
~]

-~]

700 740

~]

1000 1050 1100

-] a 1

"800 @40 900 940

Introduction

Introduction

1-18

:; CLOSE ENOUGH FOR OUR PURPOSES.

:; WE MUST NOW SELECT APPROPRIATE SCALING FACTORS FOR OUR GENERATED CODE.
:PUY tF1:AFTER .THP PZ 5 SAVYE IN A& FILE THE CURRERT POLE POSITIONS
:REMOVE POLES 1 THRU 3 5 LEAYE ONLY FIRST POLE

3 POLES/ZERCES REMOVED

:HGLD OFF ; SAMPLE AND HOLD COMPENSATION NOT HEEDED DURING SCALING
:YSCQLE = RUTO ; 80 WE CAN FREELY GRAPH ABSOLUTE GAINS

:GR AGAIN ; GRAPH THE ABSOLUTE (MULTILPICATIVE) GRIN FOR POLE 0

AGATH | L T e IR [
65 .
63
60
87
54
S5t
48
45
42
40.
37
34
31
28
25
22
19.
17
14
11

8

5.

nPiWZ | | B AR R | !'.‘.Q....
400 500 S40 600 640 700 740 800 840 900 940 1000 1050 1100

T Ul OO 40 R OO BN O

THE WAXIMUM AGAIN IS A GOOD GUIDLIME FOR THE NECESSARY SCALING.

-

WE MUST ALSO TAKE INTO ACCOUNT THE CODE BUFFER COMMENTS WHICH

INSTRUCTED US TO LIMIT SIGNALS TO PREYEHT INTERMEDIATE

CALCULATIONS OYVERFLOW.

TG BE YERY SAFE, WE SHOULD ACTUALLY MAKE SURE THE SIGNAL COMING

OUT OF EARCH STAGE IS LESS THAN ONE FOURTH.

* % B ® R K ® X K X KX XX K

*EYALUATE MAGAIN 5 THE MAXINUM AGAIN CAMN ALSO BE ACCESSED THIS WaY
6.5861534%10%*1

*

*EYRLUATE LOG(MAGRINYZLOG(2) ; 1.E. LOG BASE 2 OF MAXIMUNM AGAIN
6.0413646%10*%0

*

*; THIS SIGMNAL MUST BE SCALED BY AT LEAST THIS MUCH BEFORE ENTERING FIRST POLE.
*

*; THIS SCALING MUST BE EDITED INTO THE CODE FILE LATER BY HAND,

*

*; BUYT WE’LL APPEND NOTES TO THE CODE FILE NOV 70 RENIND US.

»*

*APPEND :F1:CODE.SRC *; SCALE INPUT 70 POLE O WITH RIGHT 8 SHIFT’ i MAKE NOTE

*

*REN POLES ; REMOVE POLES

1 POLES/ZEROES RENMOVED

*

*INCLUDE :F1:AFTER.TNMP i GET OUR FILTER AS CODED BRCK AGAIN
*DEF INE POLE 0 ~34.724136.,986.55566.,7S

*DEFINE POLE 1 -97.537277,794 .43249,718

*DEF INE POLE 2 ~139.363952,438.916439, 78

*DEFINE POLE 3 -13%5.340621.,0.00000000.7TS; REAL

*

SPAC20 Compiler

SPAC20 Compiler Introduction

*

*REM P 2 THRU 3 i MUST LOOK AT FIRST TWO STRGES NEXT

2 POLES/ZEROES REMOVED

*

*EVALUATE LOG(MAGAIN)/LOG(2) ; SCALING FACTOR NEEDED BEFORE SECOND STAGE
9.6666240%10%%0

*

*; WE HAYE ALREADY SCALED BY 2#%8 S0 ANOTHER 2==4 YILL SUFFICE.

*APPEND :F1:CODE.SRC ’; SCALE INPUT TO POLE 1 WITH RIGHT 4 SHIFT’ 5 MAKE KNOTE
*

*REM P ; REMOVE POLES

2 POLES/ZEROES REMOVED

*

*INCLUDE :F1:AFTER.THNP ; GET OUR FILTER AS CODED BACK AGRIN

*DEFINE POLE O = -34.724136.,986.55366.7S

*DEF INE POLE 1 -97.537277.,794.43249.,7S

*DEFINE POLE 2 ~139.363952,438.91845, 78

*DEFINE POLE 3 -155.340621.0.00000000.,7S: REAL

*

*

*REM P 3 ; MUST LOOK AT FIRST THREE STAGES NEXT

1 POLES/ZEROES REMOVED

*

*EYALUATE LOG(MAGAINY/LOGC(2) 5 SCALING FACTOR NEEDED BEFORE THIRD STAGE
1.222879%41»10%%1

*

*; WE HAYE ALREADY SCALED BY 2#%12 SO ANOTHER 2=#3 WILL SUFFICE.

*

*APPEND (F1:CODE.SRC °; SCALE INPUT TO POLE 2 WITH RIGHT 3 SHIFT’ 5 MAKE NOTE
*

*REN P ; REMOYE POLES

3 POLES/ZEROES REMOVED

*

*THCLUDE :F1:
*DEF INE POLE
*DEFINE POLE
*DEFINE POLE
*DEFINE POLE
*

*

*EYALUATE LOG(MAGAIN)/LOG(2) ; SCALING FACTOR NEEDED BEFORE FOURTH STAGE
1.33596049%10%%1

Y

*; WE HAYE ALREADY SCALED BY 2#*15 S0 NO FURTHER SCALING IS NEEDED.

*®

*APPEND :F1:CODE.SRC *; NEEDN’’T SCALE INPUT TO POLE 3’ i MAKE NOTE

*

*; THE FILE :F1:CODE.SRC NOW CONTAINS THE FINAL CODE FOR OUR FILTER EXCEPT
*

*; FOR THE SCALING C(WHICH 1S INDICATED ONLY BY COMMENYS) AND THE INPOUT

»*

*; AND OUTPUT ANALOG SECTIONS. THESE CAN BE ADDED BY EDITING THE FILE

*»

*; MaNUALLY. WITH CARE IT 18 POSSIBLE TO AVYOID THIS EDITING STEP AND CREATE
*

*; THE FINAL SOURCE CODE FILE HERE.

*

FTER.THP : GET OUR FILTER AS CODED BACK AGAIN
~34.724136,986.35566.78
-97.537277,724.43249,78
-139.363952,438.91645, 7S
~153.340621,0.00000000.7S; REAL

NN - O D

oo on

119

Introduction SPAC20 Compiler

*GRAPH STEP 3 JUST OUT OF CURIOQSITY LET’S LOOK AT THE STEP RESPONSE

STEFP Lo e PP S T . S T A !
10395 - L--
9300 - ! . Tem et --
9405 ! L= -
8310 ’ - . -
8418S - - ’
7920 4 Pt
7425
693340
6435
§944
S445 -
49350
4455
3961
3486
2971 ’
2476
1931 ’
1486
991
496
1 ——

ﬁhélSEC N A ~ ~ A A ol A A !
0

i RISE TIME 1S ABOUT A MILLISECOND AND FINAL AMPLITUDE IS ABOUT ONE THIRD.

3 OF OUR TOTAL SCALE FACTOR 2*»15 (ABOUT 32K).

L IR 3R IR B N A

*EVYALUARTE 2%*15 i ABOUT 32K
3.2767984*10%%4
*

*EXIT 3 THAT’S ALL FOR TODAY

1-20

CHAPTER 2
LANGUAGE ELEMENTS

Introduction

The SPAC20 software provides you with an easy-to-use English language command
set for controlling SPAC20 execution in a variety of interactive functions.
Commands are keyed in one line at a time, each ending with a carriage-return, and
are more fully discussed in Chapter 3. The current chapter deals with the more
elemental components of the Compiler language, the building blocks out of which
expressions and commands are later created.

An example of one complete SPAC20 command is shown in Figure 2-1. This
command is made up of separate tokens or mnemonic codes (character
strings): DEFINE, POLE, etc. Each of these tokens provides a particular element
of information necessary to inform the SPAC20 Compiler of the specific action to
be taken. Table 2-1 defines the function of each of these tokens. Every SPAC20
command is composed of one or more such tokens.

DEFINE POLE12=-10, 250, TS

Figure 2-1. Example of a DEFINE Command 121533-44

Table 2-1. Token Functions in the Above Command

Token Number Name Function

1 DEFINE Command keyword; causes definition of some
object, in this case a pole

2 POLE Object keyword; names a type of object to be dealt
with in this command

3 12 Constant token; used here as the label of the pole
being defined

4 = Operator token; indicates creation or replacement
of the object to its left using the values given to its
right

5,6 -10 Unary operator and constant token; denotes

decimal negative ten

7 , Punctuation token; separates other tokens, here
-10and 250 and TS

8 250 Constant token; denotes decimal two hundred fifty

s Punctuation token as above

10 TS Modifier token; indicates which plane (of three) is to
contain the pole or zero (i.e., sampled S-plane TS as
opposed to either CONTINUOUS or sampled .
Z-plane Z.)

Language Elements SPAC20 Compiler

This command defines a sampled pole, labeled 12, at X-Y coordinates (—10), (250)
in TS (the sampled S-plane whose sample rate you would have set earlier in a
separate command).

Thus, the SPAC20 command language is composed of a character set and
vocabulary of mnemonic tokens. The character set is used to construct mnemonics
and, in turn, the mnemonic tokens are used to construct SPAC20 commands.

Character Set

The valid characters in the SPAC20 command language include upper- and lower-
case alphabetic characters A through Z and the set of digits 0 through 9. The space
serves to indicate the end of a token, and carriage-returns or line-feeds are used for
delimiting (ending) command input lines. The question mark [?], at-sign [@],
underline [__], and dollar sign [$] are also valid in user-defined names.

Other valid characters are the ASCII (American Standard Characters for
Information Interchange) algebraic operators [+] and [~] (binary and unary),
asterisk [*], slash [/], relational operators [=,<,>,], ampersand [&], semicolon [;],
period [.], parentheses [(,)] and comma [,]. Special characters listed below are valid
in certain contexts. All other characters are ignored unless occurring within
comments or strings, as discussed below. ESCape interrupts processing and is not
legal within a command.

Alphabetic characters are:
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnoparstuvwxyz
Numeric characters are:
0123456789ABCDEF (lastsixonlyallowedashexadecimaldigits)
Special characters are:
+->=<$'8&8).(C,/;7%_d:%
This character set is used to construct the vocabulary that constitutes the command

language. The special characters, explained briefly below, are discussed more exten-
sively where they are directly relevant, e.g., in user names or expressions.

Special Character Usage

A semicolon that is not included in a string (defined below) causes the semicolon and
the rest of the current input line to be treated as a comment. Blank lines are allowed
and ignored, i.e., lines containing only a carriage-return (CR), a line-feed (LF), or
both (CRLF). Ampersands outside of comments or strings permit input command
lines (Chapter 3) to be continued on the next input line. The other special characters
above have meaning in numeric expressions, discussed later in this chapter and in
Chapter 9. An example of a comment is

DEFINEPOLE8=0,100; at 100 Hz
The special characters [@, __, and ?] are allowed in user names (Chapter 3), as in
@POLE__12 or YWHICH__INCREMENT. Doliar signs embedded within user-

names or constants are ignored but echoed as input, providing visual separation as
in the name FILTER§ONES$GAIN.

2-2

SPAC20 Compiler Language Elements

Tokens

A token in SPAC20 command language is roughly equivalent to a ‘“‘word’’ in the
English language. It consists of a string of alphanumeric or special characters,
sometimes augmented by the one-character prefix (period) that serves to identify
user-symbols. ’

All SPAC20 mnemonics are referred to as tokens or special tokens. Tokens
encompass identifiers, strings, keywords, and numeric constants (integer and
floating point). Special tokens include relational operators, arithmetic operators,
logic operators, and punctuation.

The following special-character sequences are tokens in the SPAC20 command
language:

+ == > <,) % (/] <= >= <O xx

Example:

LA+ B PI>=(.X+ . Y/HPI) (SIN(2%xPI*.FREQ))*%x2

Their uses as operators and punctuation are discussed further in later sections on
arithmetic and logical expressions.

Identifiers

You create an identifier as a sequence of alphanumeric characters, at-signs, question
marks, and underlines. The first character of an identifier must not be a digit.(or
dollar sign). Only the first 31 characters of an identifier or constant are significant,
and additional characters are ignored.

Strings

A string is a sequence of characters preceded by an apostrophe (’) and extending to
the next apostrophe. Any character, printing or non-printing, is allowed in a string.
A doubled apostrophe embedded in a string denotes the use of one apostrophe as
part of that string, rather than the end of the string itself.

Examples:

'Thisisastringof33characters'
WRITE 'Thisstringof54charactersgetssenttotheconsole.’

‘This56-characterstringisn''tcomplex,don''t youagree?*

(When a macro is invoked (called) with an actual-parameter that includes a comma
or a quote, the entire parameter must be sent as a string, i.e. preceded and followed
by a quote, and the quotes within must be doubled [see Chapter 9])

2-3

Language Elements SPAC20 Compiler

Keywords

The SPAC20 Compiler recognizes a fixed list of predefined tokens called keywords,
divided loosely ‘into four classes: commands, objects, modifiers, and
constants/operators/functions. Most of these have short abbreviations, and none
are checked for spelling beyond the first 3 characters. Here is a partial list of

keywords:
Commands Objects Modifiers Constants, Operators, Functions
(Note 1)
APPend AGAiIin *MSQe AT HPI . MASK COS ACOS
CODe *BOUnds PERror AUTo PI b SIN ASIN
COUnt *ERRor PHAse BY TPI * TAN ATAN
DEFine FSCale POLe THRough / EXP LOG
DiSplay GAIn Pz TO + SQR
EVAluate GERror STEp ON - ABS
EXit GREf SYMbol OFF MOD
GRAph GROup TS z
HELp IMPulse UBOund
HOLd *INSt XSlze
INClude LBOund YSCale
LISt MACro YSize
MOVe *MAGain ZERo
OGRaph *MERror
PUT
REMove
WRite

(The complete list, including definitionsA, appears in Appendix B.)

Note 1: If you enter any object name as a command, the current value(s) will be
displayed. The underlined words may be read or written (changed); the other objects
either require additional keywords (discussed in later chapters) to manipulate them,
or are functions computed by SPAC20, or are read-only (indicated by a single
asterisk to their left).

* read-only.

The table below shows a different view of these keywords.

Scalars Non-Scalars
XSIZE LBOUND
YSIZE UBOUND
Changeable Ts FSCALE
GREF
ERROR AGAIN
INST GAIN
i MAGAIN GERROR
Non- MSQE PHASE
Changeable MERROR GROUP
' STEP
IMPULSE

24

SPAC20 Compiler

Scalars have single numeric values. Non-scalars have either multiple numeric values,
like GAIN and PHASE, or non-numeric values, like GREF and LBOUND. The
scalars comprise a category of keywords usable in expressions as well as in display
commands: keyword references. This category is discussed further later in this
chapter, and used in the examples of Chapter 10 and 11.

Examples:

TS=1/13020

GREF=1AT450; referencegainis1dBat 450Hz

LBOUND =10 AT 500, 20 AT1500; Ltower boundongainis10dBat 500Hz
;risinglinearly indBagainstalogfscaleto20dBat1500Hz (see
; Chapter5)

In the command

MOVE POLE 12 BY .DELTA_REAL, .DELTA_IMAG

MOVE is the command keyword, POLE is an object keyword, and BY is a modifier
keyword. The token ‘“12’’, a constant, is seen by context as a label identifying which
pole is to be moved. The tokens .DELTA__REAL and .DELTA__IMAG are
recognized as user-defined symbols by the presence of the leading period.

The scalar keywords are called keyword references. They are used to display, or
access in expressions, all of the scalar numeric-valued system variables. They are
used in three ways in SPAC20 Compiler commands:

* When one appears in an expression, the value used or displayed is the contents
of the referenced object at the time the expression is evaluated.

* When one appears alone for display, its current contents are displayed.

®* When one appears on the left side of ‘‘="’, indicating a change, the contents of
the referenced object are set to the current value of the expression on the right
side of the ““‘="". If the value on the right represents an illegal value for the
referenced object, an error is reported instead. For example, TS=—3 would
result in an error because a negative sampling-interval is meaningless.

Keyword Brief Description Read/Write Status Integer/Floating Point

Reference

TS Sample time (in seconds) for Both Positive floating point
poles and zeros in TS plane

XSIZE Width of console display Both 12<=integer<=79
screen :

YSIZE Height of console display Both 4<=integer<=125
screen

MAGAIN Maximum AGAIN (absolute Read-only Positive floating point

gain) considered over the
frequencies on FSCALE

MSQE Mean square errorin gain as Read-only Positive floating point
compared to gain bounds,
considered over the frequen-
cieson FSCALE

MERROR Maximum absolute errorin Read-only Positive floating point
gain as compared to gain :
bounds, considered over the
frequencies on FSCALE ;
INST Number of AS2920 Read-only Positive integer
instructions generated by
most recently entered CODE
command
ERROR Signed error in multiplier Read-only Floating point
from last CODE command :

Language Elements

2-5

Language Elements SPAC20 Compiler

TS has initial value 0. This value cannot be legally entered from the keyboard, and
thus indicates that you have not yet specified an actual value. TS must be assigned a
value before it is used, that is before any sampled (in TS or Z- planes) poles or zeros
are created. An error will also be issued if it has not been assigned a value when it is
needed in any other context, e.g., in calculating a filter response like IMPULSE or
STEP, or when turning HOLD ON (see Chapter 5).

User Names

—O—GED—

Symbolic Reference Chart 12153308

The command language permits you to use symbolic (as opposed to numeric)
references to variables and constants through the use of these names.

Symbols you create are stored in a symbol table. One way you can create a symbol is
by using the DEFINE command, e.g.,

DEFINE .THETA_4=2.718281%4*P1

(The full syntax for DEFINE appears later in this chapter.) Other methods will be
covered in later chapters. Symbols can be DEFINEd or REMOVEd from the symbol
table.

A user symbol preceded by a period is called a symbolic reference. When a symbolic
reference appears as part of a command, its value is taken from the symbol table. It
may be used anywhere such a value is valid, e.g., a floating point value may not be
used where an integer is required.

There may be intervening spaces between a period and the identifier following, but
they are not part of the symbol.

When you initialize the Intellec system with the SPAC20 module, you can restart a
prior design session. You do this by INCLUDing the file of commands and
parameters you earlier created using a PUT or APPEND command (see Chapter 8).
By typing such an INCLUDE;, you can get back the symbol table used in that earlier
session (as well as certain other parameters you also sent to that file, by name or by
default as described in Chapter 8).

You can add symbols to the symbol table, or remove any or all symbols currently
stored there. The SPAC20 symbol table therefore contains symbols INCLUDEd or
DEFINEd but not yet REMOVEd.

Examples of user-defined identifiers (user-names):

.VAR123 .GAN1 .FAZ23 .VAR66 .ERRQINST3
.F_OF_T_a_P1 .F$TSAZER$S3 .AMYFLAG

SPAC20 Compiler Language Elements

Numeric Constants

—{ system constant l

hex-digit T + >
unsigned \
e decimal ‘ . ’
constant
V| unsigned . L
ot & e
unsigned -
3 binary .
sonsten unsigned hexadecimal constant 12153306
numeric constant 121533-06
A constant is a token that represents a fixed numeric value. The SPAC20 compiler
recognizes numeric constants, including floating point constants, as well as the
system constants named above. A numeric constant is assumed decimal unless it
carries an explicit suffix of H (for hexadecimal) or B (for binary). An explicit suffix
of D means decimal. If a constant contains characters invalid in the designated
number base, it will be flagged as an error.
Examples of valid numeric constants:
12AH ‘12A’ is valid in hexadecimal 2.71828
120 ‘12’ is valid in decimal 31.4159
10110118 1011011’ is valid in binary A.2CFH
0.1111$1111%$11118 dollar signs are ignored .0018
Examples of invalid numeric constants: l
y
12AF Hexadecimal digits used R
without an H suffix, hence 0,_. l:(: >-—1
invalid in the default (decimal) t
interpretation.
unsigned decimal constant 121533-06
12AD Here the final D could be a]
suffix but the A is not a decimal
digit. If hexadecimal is intend- *@"
ed, afinal His necessary.
101A28 ‘A’ and ‘2’ are not valid binary L’@’
digits. If hexadecimal is intend- : _v, '_.
ed, afinal H is necessary.
¢@.
2ADGH ‘G’ is not a valid hexadecimal O__,
digit.
1.8 Needs to be 1.0Bor1.BH -’@"
13. May not end with point
E.4C Needs suffix H . K
unsigned binary constant 121533-06

All numeric values are stored internally as Intel-standard-format single precision
floating point numbers, positive or negative, ranging in magnitude from
1.2¥10**-38 to 3.4*10**+38. They have mantissas with 24-bit precision. Manual
number 9800452, entitled 8080/8085 Floating Point Library, discusses this standard
format.

A numeric constant may appear as (or contain) a point followed by a fractional part.
(It may not end with a point only.) However, a leading zero is needed in the case of a
hexadecimal constant like .FFH, which would otherwise be interpreted as a symbolic
reference whose value is to be taken from the symbol table. Constants like 0.FFH or
.2FFH will not be interpreted as symbols.

Dollar signs ($) are allowed within numbers and are ignored.

Language Elements SPAC20 Compiler

Arithmetic Expressions

—O—

/ A‘ primary ’ . - >

An integer-expression is an arithmetic-expression which
evaluates to an integer.

Arithmetic Expression 12153307

An arithmetic expression is a construct of numeric-valued operands and operators
that evaluates to a numeric-value. (The fully general definition of expressions is not
needed until Chapter 9, where it appears.)

The SPAC20 Compiler evaluates expressions in a left-to-right scan modified by
operator precedence, following an algebraic sequence in the form:

operand|operatoroperand]. . .

Operators and operands are explained below. Examples of arithmetic expressions
include

5+7 .AVAR1*.AVAR2 (.BVART+.CVAR5)/(.AVART+.AVAR2*7)

Primaries are a restricted set of expressions, whose charts appear later in this
chapter.

Operators

Operators are used in expressions and in commands. A summary of SPAC20
operators is shown below. The binary (arithmetic) operators are listed in their group
order of precedence from highest precedence to lowest, i.e.,** has highest
precedence, MOD, *, and / have equal precedence higher than + or —, which have
equal precedence. MASK, which gives bitwise conjunction of two quantities, has
lowest precedence. When several operators of the same precedence appear in an
expression, they are evaluated left to right. Expressions in parentheses are evaluated
first, before any external operators are applied.

2-8

SPAC20 Compiler

Language Elements

Type Operator Interpretation
Precedence () Controls order of evaluation
Binary (arithmetic) ’
b Exponentiation
MOD Remainder
EXAMPLES: 5MOD3=2;
10MOD3=1;
same precedence 15MOD3=0
* Multiplication
/ Division
+ Addition
same precedence - Subtraction
MASK Bitwise AND
EXAMPLES: 1.011BMASK .1B=10.0B
1.011B MASK .111B =0.011B
Unary-op + single positive quantity
- single negative quantity

Operands

Operands are numeric values, and have the general forms shown below. These are
the ““primaries,”” which are allowed as restricted expressions in later discussions of

SPAC20 commands.

[unary-op] numeric constant
symbolic reference
keyword reference
function(expression)
(expressions)

frequency response function
coordinate (p/z-expression)

Examples

+4, -Pl, HPI, 2.7
.ALPHA, .BETA_1
TS, XSIZE

SIN(45/P1), SQR(.XVAR)
(EXP(-.A*.TIME)*SIN(2*PI*.FREQ1)
GAIN(60), PHASE(.25/TS)

REAL (POLE 12), IMAG (ZERO 9)

The functions referred to above are a familiar group: sine, cosine, tangent, arcsine,
arccosine, arctangent, square root, absolute value, and the natural powers and logs
(to the base e = 2.718281...). They may appear anywhere a floating point value is
appropriate. They are evaluated, in a left to right scan of the complete expression,
subject to the precedence hierarchy explained above. Their arguments, within

parentheses, are of course evaluated before the function is computed.

The last operand in the list above, ‘‘coordinate (p/z expression),’’ represents a set of
four functions: REAL, IMAG, RADIUS, ANGLE. These return the real or
imaginary coordinate of a pole or zero defined in the S-plane, or the radius or angle

of a pole or zero defined in the Z-plane. The angle is always assumed in radians.

2-9

Language Elements . v SPAC20 Compiler

. Partitions

integer N\
expression j

L(THROUGH int-exp)—»T

Partition 12153305

Partition refers to a range of poles or zeros. It is specified in the form
arithmetic-expression

or
arithmetic-expression {THROUGH arithmetic-expression]

which will cause a command to affect all poles or zeros (whichever is specified) that
fall in the range. Each expression is evaluated to a number, and the two numbers
designate the range.

Example:
REMOVE POLE 1 THROUGH 13

This command will remove all poles numbered frdm 1 to 13 (inclusive) from the table of
currently-defined-poles (see Chapter 4).

Charts for Primaries

The charts below show the names and forms of all items usable as primaries, i.e., the
set of restricted expressions permitted where the word ‘‘primaries’” appears in a
syntax chart.

- ‘ numeric constant) } 2
- f symbolic reference Y -3 -
A\ J
(Y '3
-3 keyword reference >
A J
I'd)) N *2,5
> f tion (expression -
. prossiom _J
. *5
filter resp (expr) \ —
(J
| N\ *2,9
(expression) >
C : D,
. Gino 9
——— coordinate (pole/zero-expr) \ >
C)
* chapter where discussed
Primaries 121533-04

2-10

SPAC20 Compiler Language Elements

— D

—CGE—
— G —
— e)—
— G —
— G —
—CE—
—GD—

Keyword Reference 121533-08

—O—GED—

Symbolic Reference 121533-08

—— TAN
\
4
S ATAN
T EXP
[LOG

EXPonentiation and LOGarithms
to the base e = 2.718281

Functions 121533-28

2-11

Language Elements SPAC20 Compiler

frequenc l'

,esponsey —»|—»(GERROR L
— Conse —
-

e) |
resp;in"s‘g 1""—>
e Gr—!
Filter Responses 121533-09
O
L.
EAR)— i : ! f
L> GO~ Cumask) —~C <)= (Cann) orR) (Lxor)
[6: -
G5 =
(=)
Na=»
Expression 121533-26

o G
| Ol

——>{integer expression ®—>

Coordinate (Pole/Zero Expression) 121533-43

2-12

SPAC20 Compiler

9

——{ system constant

unsigned
decimal
constant

—

=

unsigned
> hexadecimal
constant

unsigned
binary
constant

L

numeric constant

A

[

TP

system constant

-———-b‘ digit >

Language Elements

O

sy

unsigned decimal constant

unsigned hexadecimal constant

__Lr :g "_.
O._>

-O-

- unsigned binary constant

0

121533-06

2-13

CHAPTER 3
INTRODUCTION TO SIMPLE
COMMANDS

The SPAC20 capabilities described in the Preface are reflected in the Compiler
commands, constructed from the elemental units discussed in Chapter 2. The
SPAC20 Compiler accepts as input both simple and compound commands. Simple
commands are discussed in Chapters 3 through 8. Compound commands use
sequences of simple commands, combined with control commands which determine
the flow of control, i.e., branching and looping. Compound commands are
discussed in Chapter 9.

This chapter describes the structure of commands and the procedure for typing them
in for execution. It then introduces the simplest commands: those which define,
change, or display the values of symbolic objects.

Entering and Editing Command Lines at the Console

The SPAC20 Compiler displays an asterisk prompt (*) at the left margin when it is
ready to accept a command from the console.

You enter commands (one or more tokens) through the keyboard, terminating each
with a carriage return [CR] (or a line feed [LF]). The system then executes the
command.

Tokens in the command are separated by blanks unless the construct requires
another form of separator. For example, tokens in a list are separated by commas;
in this case, blanks may be inserted for clarity but are not required.

An input line may include comments. A semicolon (;) must precede the comments.
If the input line contains any portion of a command, this must precede the
semicolon, for characters in a comment are not interpreted by the Compiler and are
not stored internally. The main use of comments is to document a design or code
session while it is in progress. This is particularly useful when executing compound
commands or running the Compiler under the ISIS-II SUBMIT facility.

ISIS-II limits input lines to 120 characters maximum. Commands longer than this
can be broken up into more than one input line by entering an ampersand (&) just
prior to the line terminator. (The & must not be contained in a comment or string.)
The system acknowledges continued lines by prompting with two asterisks (**).
Characters between the ampersand and the line terminator are ignored, and the
ampersand is treated as a space.

You can use ISIS-II editing capabilities to correct errors in the current input line.
Once a line terminator (carriage return or line feed) has been entered, that line can
no longer be edited.

The line-editing characters are as follows:
Characters Results

RUBOUT Deletes last character entered in current input line. The deleted
character is echoed immediately. (However, in the latest versions
of ISIS-Il the cursor backs up over the offending character, deleting
it from view.) The RUBOUT function can be repeated, deleting one
character each time it is pressed.

3-1

Introduction to Simple Commands

3-2

CTRL X
CTRLR

ESC

CTRLP
CTRLS
CTRLQ

Carriage

Return

Line Feed

SPAC20 Compiler

Deletes entire current input line.

Displays entire input line as entered so far. This is useful after a
RUBOUT, to review which characters have been deleted.

Cancels entire command being entered or executed.
Inputs next character literally.

Stops display temporarily.

Continues display interrupted by CTRL S.

Terminates input line or command line; if command, begins
processing.

Terminates input line or command line; if command, begins
processing.

Setting or Changing Symbol Values: Equal Sign,
DEFINE, REMOVE

The Change Commands

XSIZE =

—-——-b(expression) >

—(C

YSIZE =

P

——»(symbolic reference 3;3»

FSCALE =

) ‘6 ;(expression, expression }

(,expression)—

——»‘ expression, expression

YSCALE = 4}—6—>

:r’#

L.

GREF =

/

AT expression

L (AUTO
(
—

S

UBOUND =

/
y

)" > (expression AT expression
‘ 5 .

LBOUND = J—» -« y

© L

o

* chapter where discussed

The Change Commands 121533-02

When' a user-name preceded by a period appears in a command, it is called a
symbolic reference. The value of any symbolic reference or any writeable keyword
reference may be changed by entering the reference to be changed on the left side of
an equal sign (=), followed by the new value on the right side. If the keyword
reference is read-only, as mentioned in Chapter 2, you get an error.

SPAC20 Compiler Introduction to Simple Commands

Examples:

T§=1/13020
.ALPHA=4.4

.BETA_1=EXP (.ALPHA/TS) ;=2.718281 ** (4.4/13020)
.BETA_2=-.BETA_1* EXP (2*.ALPHA)

.ERR$SAVE=0.5

.ORIG_POLE_1_REAL=0

.ORIG_POLE_1_IMAG=100

(The examples above assume that the symbolic references used (e.g., .ALPHA) are
already defined, as discussed in the next section. Otherwise these change commands
would be rejected by the Compiler as errors.)

XSIZE=55 ;graphcolumns; seeChapteré
YSIZE=22 ;rows

UBOUND =500AT 1500 ;dBatHz (Chapter5)
FSCALE=100,500,1500,4500 ;inHertz (Chapter 6)

The DEFINE Command for Symbols

~@ED~O-GED-O- D

The DEFINE Command for Symbols S

The DEFINE command places the symbol you supply into the SPAC20 Compiler’s
symbol table, and associates with it the floating point value of the expression you
give with it. This symbol table value remains fixed until you issue a change
command. Symbolic integers are recognized when used where needed (e.g., as pole
labels) despite being stored as floating point values. If the symbol already exists, you
get an error. (However, you may change the value of an existing symbol by the
change command, as above.) '

Examples:

DEFINE .GAIN_POLE_ONE =GAIN(60)
DEFINE .POLE_TWO_GAIN=2.34
.GAIN_POLE_ONE=0.78

DEFINE .RADIUS_POLE_8 =RADIUS (P 8)

DEFINE .ANGLE_POLE_8=TPI* .FREQ*TS
; for lateruseas temporarystorage for
pole8 coordinates, zplane.

33

Introduction to Simple Commands SPAC20 Compiler

The REMOVE Command for Symbols

—>‘ REMOVE ‘F ‘7 @—»7
O
D) —

The REMOVE Command for Symbols 121533-12

The REMOVE command keyword followed by a symbol in the table causes that
symbol to be deleted from the table. REMOVE mady also be followed by a list of
symbols, separated by commas, or the object keyword SYMBOLS, which causes all
symbols to be deleted from the table. This does not, of course, affect system-defined
keywords.

REMOVE .GAIN_POLE_ONE

REMOVE .POLE_TWO_GAIN

REMOVE .RADIUS_POLE_8, .ANGLE_POLE_8
REMOVE SYMBOLS

Displaying Object Values

The current value defined for keyword and symbolic references may be displayed by
entering the reference as a command; i.e., followed immediately by a line
terminator. Its value will be shown on the next line.

Entering the keyword SYMBOLS as a command causes every symbol in the symbol
table to be displayed with its associated numeric value.

The EVALUATE command displays the decimal value of the expression you enter.
This command can be used as a keyboard calculator to compute the value of any
arbitrary expression. For example,

EVALUATETPI

will display the value 6.2831852.

SPAC20 Compiler

Introduction to Simple Commands

————D—(keywaord reference

_>(symbolic reference

> (SYMBOLS

(expression)

—
A

‘2
3
3

——— (FREQ-response

*5

‘5

./ \V \/ T/ \./

———>C TIME-resp

(POLE

partition }l

‘ ZERO

»
w

—*(GREF

FSCALE

|
i

YSCALE

*4

LBOUND

]

—'>(UBOUND

BOUNDS

—"‘ CODE

I

pee—— (EVALUATE expression

——-—-—»(DISPLAY fil

——b‘ DIR MACRO

I
T LRV P L) o

——P-‘ MACRO

* chapter where discussed

P

“ N

. '8 -
T .9 .-

- 9 -

‘_’(macroname }——»
< ’ "
Display Commands 121533-03

CHAPTER 4
POLE AND ZERO HANDLING

Planes and Coordinates For Poles and Zeros in
DEFINE, MOVE, REMOVE Commands

When you define the location of a pole or zero, you may do so in one of three ways:
* inthe Z-plane, giving its radius and angle (in radians),
* inthe S-plane,

® or as a Z-plane pole or zero which is defined by an equivalent S-plane location
using the matched Z transform. The sampled S-plane specification is TS, as
described in the next section.

The Compiler maintains a table of all poles or zeros currently defined. Continuous
filter sections are presumed to be implemented outside the 2920 processor, and if no
plane is specified, CONTINUOUS is assumed. Being able to combine sampled and
continuous sections allows you to evaluate the effect of external anti-aliasing filters.

Sampled poles and zeros are created or moved in the S- or Z-plane, using the
predefined units and coordinates specific to that plane. This means if the plane
specified is Z, the coordinates you give are used as the radius and angle (in radians)
which locate that pole or zero in polar coordinates.

If the plane specified is not Z, then the Cartesian coordinates you give are used as
the real and imaginary part of that pole or zero. S-plane units correspond to Hertz.

Sampled S-plane poles or zeros are actually mapped to the Z-plane during calcula-
tion, using the matched Z-transform, i.e., a pole or zero at x+jy on the S-plane is
transferred to a pole or zero at e2nTSx+}y) on the Z-plane, where TS represents the
sample interval in seconds. In polar coordinates, this Z-plane location is (e2rTSx,
2nTSy).

NOTE

One consequence of choosing the TS plane is that the frequency at which a
pole or zero is defined is fixed and independent of the sampling interval.
Doubling the sample rate has no effect on the frequency. Different
sampling rates will, however, cause different geometric coordinates when
such a pole or zero is mapped to the Z-plane, and different 2920 code to im-
plement the filter.

Conversely, defining a pole or zero in the Z-plane fixes the geometry, i.e.,
the radius and angle. The frequency, however, depends on the sample rate.
Doubling the rate (halving the interval) doubles the frequency represented
by the fixed polar coordinates.

For example, suppose POLE 1 in Z has polar coordinates 1.00, P1/4, with
the sample interval set at 1/5000 seconds. This implies a frequency for
POLE 1 of 5000/8, or 625 Hz. If the sample interval is halved to 1/10000,
the geometry of the pole in the Z-plane is unchanged, but its frequency
doubles to 1250 Hz. An equivalent pole specified in the TS plane keeps the
same frequency regardless of sample interval.

4-1

Pole and Zero Handling

4-2

Thus the three possible terms used for specifying the plane in a DEFINE (or MOVE)
command are CONTINUOUS, TS, and Z. If no plane is given, then the default (or,
for MOVE, a prior specification of plane) is used. Further, the pair of expressions
used in DEFINE (or MOVE) indicate the coordinates of (or increment for) the pole
or zero. These expressions will be taken to mean either real part and imaginary part
(for S-plane), or radius part and angle part (Z-plane). The charts and discussions
below will show all of these forms.

The DEFINE Command For Poles and Zeros

SPAC20 Compiler

+-{ o Y- (Coron) - ~
ZERO
(P

CONTINUOUS

The DEFINE Command for Poles and Zeros 12153313

As shown in the syntax chart above, defining a pole or zero begins with the
command keyword DEFINE and the appropriate object, POLE or ZERO. The next
token is usually the number to be used as the label for this pole or zero. However,
the token may in fact be any valid arithmetic expression as discussed in Chapter 2.
(For this use as a label, the expression must evaluate to an integer.)

Following this ‘‘label’’, an equal sign is required, leading to the two expressions
which define the location of the pole or zero, separated by a comma. Usually these
will simply be numbers, i.e., the real/imaginary or radius/angle coordinates specify-
ing the desired location. However, any legal expression may be entered (see Chapters
2 and 9). As mentioned above, angles are always taken as being in radians. They
must be greater than —PI and not greater than +P1. Radii must be non-negative.

The syntax chart next indicates that no further tokens are required, but you have the
option of specifying the plane. To do so, you must enter a comma after the second
coordinate-expression, and then pick one of the three choices shown.

Up to 20 poles or zeros can exist at one time, e.g., 12 poles and 8 zeros or 5 poles and
15 zeros, etc. Their numeric labels are arbitrary, that is, you may define them using
whatever numbers you choose, in any order, e.g., 1, 5, 88, 13, 46, 22. The number-
ing scheme has no effect on later calculations, but you may wish to assign mean-
ingful labels, particularly if you wish to manipulate them later with compound
commands.

NOTE

The only effects of a chosen numbering scheme will appear when a partition
is used, as discussed in Chapter 2, or if you need to see the individual effect
of each pole or zero, which will be discussed in Chapter 5. (As a brief parti-
tion example, if you defined poles in the above order and later displayed the
first few by typing POLES 1 THROUGH 20, only poles 1, 5, and 13 would
be printed out.)

SPAC20 Compiler

Each complex pole or zero represents a conjugate pair so that the filter can be
realized. That is, during calculation a conjugate pole or zero is assumed to exist for
each pole or zero with a nonzero imaginary part.

Conversely, a continuous pole or zero is considered real if its imaginary coordinate
is zero. A sampled pole or zero is considered real if, after mapping to the Z-plane, its
imaginary coordinate is zero. Thus a pole at —5,0.5/TS,TS is considered real
because, at half the sample rate, it maps onto the real axis in the Z-plane.

Poles and zeros are numbered independently and uniquely. You may not DEFINE a
new pole or zero numbered the same as an existing object of the same type. That is,
if POLE 1 exists and ZERO 1 does not, you may say DEFINE ZERO 1 but not
DEFINE POLE 1. (However, you can MOVE or REMOVE it as shown below.)

Examples:

DEFINEPOLE1=0,100, TS
DEFINE ZERO1=-3,5, TS

DEFINEPOLE2=-10, 450

DEFINEZERO2=-16,0

DEFINE POLE .GAMMA=0.67,P1/6,12

; these2examples assume that .GAMMA has beenpreviouslydefined
;asanintegervalue.

DEFINE ZERO .GAMMA=0.55, PI, Z

(Poles and zeros defined in the Z-plane must have radius >= 0 and an angle which
conforms to —PI < angle <= PI])

The REMOVE Command For Poles and Zeros

‘
—>((RemovE }>»((zERO)—J L
D

Remove Command for Poles and Zeros 121533-14

To remove one or more poles or zeros from the table, you must enter REMOVE
followed by one of three object keywords. PZ means all poles and all zeros are to be
removed, and no further tokens are needed for this command. If POLE or ZERO is
entered with no further tokens, then all poles (or zeros) are removed. If there is a
next token, it represents the first pole or zero to be removed. If the command is
terminated here, only that pole or zero is removed.

It is also possible to remove a range of poles and zeros by using a partition, i.e., by
following the first pole or zero with the token THROUGH and the label of the last
pole or zero to be expunged. Usually the token identifying the intended pole or zero
is simply an integer, but it is valid to use any legal arithmetic expression to specify
which one is meant. (In this context, however, the expressions must evaluate to an
integer. The terms partition and arithmetic expression are discussed in Chapter 2.)

Pole and Zero Handling

4-3

Pole and Zero Handling

> (o)
—(move Y»p=(zeno)—-l Lk - é

4-4

Each time REMOVE is used, a message is displayed giving the number of poles or
zeros actually deleted. Once a pole or zero has been removed, its numeric label can
be reused in defining a new pole or zero.

REMOVE POLE1

REMOVE ZERO 1

REMOVE POLE 2 THROUGH 10

REMOVE ZERO 2 THROUGH 5

REMOVE PZ

REMOVE POLES ; spellingisnotcheckedbeyond3 characters
REM ZERoes

The MOVE Command

SPAC20 Compiler

- 10) -

(Pz) » Cexp, ex:p:) 4

The MOVE Command 121533-15

The MOVE command contains similarities to both the DEFINE and REMOVE
commands. Its objects are the same as those for REMOVE, and its modifying
phrases are similar in form to those for DEFINE.

After entering the command keyword MOVE, you must choose one of the three
object keywords shown. PZ means all poles and zeros are to be moved using the
modifying phrases which follow. The object POLE (or ZERO) allows you to specify
one or a range of poles or zeros to be moved, using a partition. If POLE (or ZERO)
is entered with no further tokens, then all poles (or zeros) are moved as directed.

The modifying phrase
BY expression, expression

specifies an increment for each of the coordinates originally defined for this pole or
zero, in the units appropriate to that plane. That is, if this pole or zero is continuous
or sampled in TS, these increments are to the real and imaginary parts respectively.
If the original pole or zero specification was in Z, then these increments are to the
radius and angle, respectively. The new Z-plane position must satisfy RADIUS >=
0, and —PI< angle <= PI.

A cautionary note is needed here, because some moves could create unexpected
conditions. If the coordinates of a complex pole or zero are moved in such a way as
to make the imaginary component zero, then what were two poles (or zeros) have
become one. (If two real poles are desired at the new coordinates, you must then
define one new real pole there.) Similarly, if a move causes the imaginary part of a
real pole or zero to become non-zero, what was one pole or zero has become two.

SPAC20 Compiler

The use of the modifier TO permits two broad possibilities. It can cause a change of
plane, directly, for one or more poles or zeros, e.g.,

TO0 TS
T0 Z

It also can specify a new position, with or without a change of plane, for one or
more poles or zeros. In the latter case, the expressions used designate final location
(not increments as they do in the BY modifier), e.g.,

T0o 20, 450, TS
TO 0.75,P1/4,12
T0 -15,0

(In this last case, please note that when you don’t specify a plane for the move
command, the original plane of definition is used. This differs from the define
command for poles and zeros in that omitting a plane there makes the default
CONTINUOUS.) Each time MOVE is used, a message is displayed giving the
number of poles or zeros actually moved.

Examples:

MOVE POLES 1 THROUGH3 TO TS
MOVE ZER0O2BY 0.875, 0.125
MOVEPZTOZ
MOVEPOLES5to0.625, PI/2,2

Changing from a Z-plane to any other involves an application of the matched-Z
transform or its inverse. This transform is not one-to-one. When its inverse is used,
the value with imaginary part closest to zero is selected from the set of possible
inverses. This in effect selects the lowest frequency that could be aliased by the filter.

Pole and Zero Handling

CHAPTER 5
FUNCTIONS OF FILTER RESPONSE

The behavior of the filter defined by the existing poles and zeros can be investigated
with respect to its gain, phase, and deviation from gain bounds. Group delay and
time response can also be calculated and listed or graphed. The keywords used to
specify reference and boundary levels and those for displaying the response are listed

in Table 5-1.
Table 5-1. Keywords for Gain Reference, Gain Boundaries, and
Response Display
AGAIN G F
BOUNDS
GAIN G
GERROR G F
GREF (initial value 0 AT 0, i.e., 0dB at DC)
GROUP G F
IMPULSE G
LBOUND G (initially —1000000 AT 1)
MAGAIN
MERROR
MSQE
PHASE G F
STEP G
UBOUND G (initially +1000000 AT 1)

When one of the above keywords is entered as a command, its current value is
displayed. If it is a multivalued object, e.g., GAIN, a list is displayed. Those marked
with a G are graphable (all but BOUNDS, GREF, MAGAIN, MSQE, and
MERROR. Those marked with an F can act as functions with frequency arguments,
e.g., GAIN(145) will display the gain at 145 Hz due to all currently defined poles and
ZEros.

The filter responses GAIN, AGAIN, GERROR, PHASE, and GROUP are
functions of frequency. STEP and IMPULSE are functions of time. The response is
calculated only for a specific range of frequencies or time. This range is determined
by the setting of FSCALE, for frequency responses. XSIZE and TS determine the
range for time responses (see Chapter 6).

GAIN and GREF

GAIN refers'to a normalized-gain in decibels due to all existing poles and zeros. The
normalization factor is the current GREF setting, namely a specified gain at a
specified frequency. You set GREF by typing

GREF =expressionAT expression

in which the first expression is the reference gain at the frequency given by the
second expression. The frequency specified by the second expression need not be
contained in the range of frequencies you set up as FSCALE. The initial GREF
setting is 0 AT 0, which is to say, the gain at DC is 0 dB.

Functions of Filter Response SPAC20 Compiler

The GREF frequency must have nonzero absolute gain in order to compute the
decibel GAIN. If AGAIN is zero at the reference frequency, an error message will be
issued.

When multiple poles exist, to see the gain for each individual pole you must remove
them one at a time and compare the resulting filter responses with the earlier values.
You can achieve this comparison by graphs or lists, or by defining symbols for
storing each intermediate value.

AGAIN and MAGAIN

AGAIN refers to the absolute-gain, expressed as a multiplier, again due to all
existing poles and zeros. This absolute gain can only be meaningfully determined for
sampled poles and zeros. If nonsampled poles and zeros exist, the AGAIN will
include a contribution for each such pole or zero, which is arbitrarily scaled.
AGAIN is useful only when all currently-defined poles and zeros are sampled. For
the case of continuous poles and zeros, GAIN is much more meaningful than
AGAIN.

The maximum absolute gain, MAGAIN, taken over the 64 or so frequencies

- contained in FSCALE, is accessible as a read-only keyword reference. This quantity
can be displayed by name or used in expressions, and is useful in determining the
scaling factors necessary between successive stages of the filter.

NOTE

MAGAIN is only the maximum AGAIN over the frequencies in FSCALE,
and not the true maximum AGAIN. The true maximum AGAIN may occur
between points in FSCALE or outside the FSCALE range entirely. It is
therefore necessary to choose FSCALE appropriately to capture the
frequency range of interest, or manipulate FSCALE to focus in on that
range, such that seeing a smooth curve will correctly imply there are no
hidden spikes.

Upper and Lower Bounds

The bounds are piecewise linear functions of frequency, with possible regions of
““don’t care,”’ meaning any gain is acceptable therein. The region boundaries are
specified as

expressionAT expression

meaning a gain of the first expression at the frequency determined by the second
expression. Up to 10 lower bounds and 10 upper bounds may be specified.

The initial lower bound, LBOUND, is —1000000 AT 1; the initial upper bound,
UBOUND, is 1000000 AT 1. For all practical purposes these bounds amount t0 a
““/don’t care’’ condition. You can use similar settings to obtain this condition at any
frequency.

You set the bounds by typing one or more frequencies, separated by commas, after
the word LBOUND or UBOUND and an equal sign, e.g.,

LBOUND = 1ATS5000,1.50AT 6500,3.30AT13000

SPAC20 Compiler

This means the minimum acceptable gain at 5000 Hz is 1 decibel, rising to 1.50
decibels at 6500 Hz, rising to 3.30 decibels at 13000 Hz. The frequency scale is
logarithmic. The gain between these frequencies is a straight line, viewed on this log
scale, connecting the specified gains at each point. The frequencies must be greater
than 0 and given in increasing order, e.g., specifying

UBO=1ATO
or

LBO=1AT5000, 5AT 4000
is illegal.

If the bounds are separated by two commas instead of one, this specifies a don’t care
region, in which any gain is acceptable, between the two given frequencies. (That is,
the deviation of the gain is zero regardless of how high or low the gain is.) Similarly,
the regions below the first frequency specified and above the last frequency are don’t
cares. If LBOUND and UBOUND are both specified, LBOUND must be less than
UBOUND (or you get an error message). Bounds frequencies need not lie within the
range of frequencies determined by FSCALE.

NOTE

““Don’t care’’ conditions permit the CODE command (discussed in Chapter 7)
complete latitude in frequency responses and pole/zero repositioning.

Other Filter Responses and Keywords:
GERROR, MSQE, MERROR, PHASE, STEP, IMPULSE

GERROR refers to the deviation of the gain response from the bounds you set. A
positive GERROR indicates a gain exceeding the upper bound set for that
frequency. A negative value of GERROR means a gain less than the lower bound for
that frequency.

The mean square error, MSQE, and the maximum absolute error, MERROR, are
accessible as keyword references. The former is the mean square deviation from the
bounds taken over the frequencies in FSCALE. The latter is the maximum absolute
deviation from the bounds, taken over the same frequencies. (In order to see the
exact frequency at which this maximum occurred, you must graph the error as
described in Chapter 6.)

As with MAGAIN, note that MERROR is only the maximum error over the
frequencies in FSCALE, and not the true maximum error. The true maximum error
may occur between points in FSCALE or outside the FSCALE range entirely. It is
therefore necessary to choose FSCALE appropriately to capture the frequency range
of interest, or manipulate FSCALE to focus in on that range, such that seeing a
smooth curve will correctly imply there are no hidden spikes.

Thus MSQE and MERROR are functions of the existing poles and zeros, the
bounds, and FSCALE. MAGAIN is a function of the existing poles and zeros and
FSCALE.

PHASE refers to the phase delay response of the filter, in units of radians. GROUP
refers to the group delay of the filter in seconds, i.e., the negative of the derivative of
the phase with respect to the frequency. (See Appendices H and I for formulas,
graphs, and a brief review of these functions.)

Functions of Filter Response

Functions of Filter Response SPAC20 Compiler

STEP refers to the filter output in response to a unit up-step at time zero.
IMPULSE refers to the filter output in response to a unit up-impulse at time zero.

Since continuous convolutions are implemented by approximating them with
discrete convolutions, the accuracy of these time responses is dependent on the
setting of TS and the location of continuous poles and zeros.

In particular, those defined at high frequencies (relative to TS) will contribute
noticeably to this inaccuracy. If there are any continuous poles or zeros, then the
magnitude of the impulse functions is defined as 1/TS. Otherwise, the impulse is 1.
All time responses for continuous poles and zeros are normalized so that the final
output level to a step input matches the gain at DC. However, for sampled poles and
zeros, these responses are not normalized.

Except for STEP and IMPULSE, these filter responses may also be used as func-
tions, computing the indicated response at a frequency specified as an expression in-
side parentheses following the filter response keyword. The value of this expression
need not lie within the range of the FSCALE (or the time scale determined by TS and
XSIZE). These functions can be displayed or used in expressions, interactively or in
compound commands (Chapter 9.)

Response Keyword Computation Uses
GREF FSCALE Stateof HOLD BOUNDS Time Scale

GAIN X
AGAIN
GERROR X
PHASE
GROUP
STEP
IMPULSE

X X X X X
xX X X X X
>

HOLD

In typical 2920 applications, after a signal is sampled and filtered, it is usually kept
in a sample-and-hold buffer until digital-to-analog conversion and output takes
place. There is an implicit distortion due to this sampling, holding, and converting
which amounts to a high-frequency droop cut off at 1/TS. GAIN attenuates by
about 4 dB at half the sample rate. Below half the sample rate this distortion
approaches zero. The attenuation increases above half the sample rate.

The correction for this distortion is to multiply AGAIN by Isin(x)/x|, where x is half
the digital frequency, i.e.,

ISIN(X)/X| where X=TS*FREQ*PI

The effect of this on GAIN is to add 20*loglsin(x)/x| (to the base 10). PHASE is
corrected by adding X. GROUP is corrected by subtracting TS/2. No other filter
responses are affected.

The command HOLD OFF removes these corrective contributions.

HOLD is initially OFF, and in this state the SPAC20 Compiler accurately describes
analog filters. Most 2920 filter designers should have HOLD ON when examining
the responses of the filter as a whole, and HOLD OFF when examining AGAIN to
determine inter-stage signal scaling (see Appendix J).

CHAPTER 6
GRAPHICS CAPABILITY

SCALES

All of the graphs and most of the calculations performed by the SPAC20 Compiler
depend on a few key independent variables that you set early in any interactive
session. The frequency and time scales are two of these. The former is FSCALE.
The time scale depends on the values of TS and XSIZE, as explained below.
YSCALE controls the values on the vertical scale of each graph. XSIZE and YSIZE
specify the size of the CRT screen.

Frequency and Time Scales

The frequency scale (FSCALE) serves to format the graphic display and to restrict
the domain of interest, i.e., the frequency range for which filter responses are
computed and graphed.

The freduency response of the filter is only calculated for the approximately 64
frequencies in FSCALE, as are GERROR, MERROR, MAGAIN, and MSQE. The
automatic initial FSCALE setting is

FSCALE =10,10000

meaning 10 to 10,000 Hz. New settings are in the form

FSCALE = expression, expression, ...

permitting N expressions, (up to 10) of increasing positive values, separated by
commas.

The effect of these is to divide the graphics area of the screen (determined by XSIZE
and YSIZE) as evenly as possible into N-1 partitions, with the N equally spaced
points given the indicated expression values. Then, within each partition, the
frequency scale (in Hertz) is filled in logarithmically. This enables you to achieve a
nearly linear scale or to emphasize certain frequency regions of interest. Note,
however, that zero is not allowed on FSCALE, and the frequencies must be in
ascending order.

Examples:

FSCALE=500,5000
FSCALE=500,1500,2500,5000
FSCALE=500,1000,1500,2000,2500,3000,3500,4000,4500,5000

In the case of the time scale, the domain you create via TS and XSIZE impacts the
amount of computation time needed to calculate the STEP or IMPULSE response.
Time responses are computed for a number of sample intervals. The initial default
value is 69. The number depends on XSIZE, e.g., if XSIZE>= 79, then 69 sample
intervals are used, from 0 to 68*TS.

Graphics Capability

6-2

The time scale is in units of seconds, and its automatic setting is from 0 to the
product of TS and the plot size, i.e., XSIZE-10 up to a maximum of 69. Thus if the
screen width XSIZE has been set to 60, and the TS sample interval is set at 1/10000,
then the time scale will run from 0 to (60-10)/10000, or from 0 to .005 seconds. TS
must be nonzero, i.e., you must set it to a sampling rate meaningful to your
problem.

XSIZE, YSIZE, and YSCALE

You set the system variables XSIZE and YSIZE to determine the size of the graphics
area. Since three horizontal rows are dedicated to labeling the graph’s X (horizontal)
axis, YSIZE-3 rows are left for graphics (a minimum of 1 up to a maximum of 22).
Ten columns are needed for labeling the Y (vertical) axis, leaving XSIZE-10 columns
for graphics (from 2 up to 69 maximum).

XSIZE also determines the number of frequencies for which the gain of the filter is
calculated, and thus also affects the calculation of GERROR, MERROR,
MAGAIN, and MSQE. ‘

The last remaining scale you set is named YSCALE, referring to the vertical scale
(dependent variables). It serves to format the graphic displays obtained with the
GRAPH or OGRAPH commands explained later in this chapter. If you specify
YSCALE = AUTO, this means each curve plotted by the SPAC20 Compiler should
entirely fill the screen, using a vertical scale selected by the Compiler to achieve this
purpose.

If the numbers necessary to represent the range in YSCALE require more than 10
columns, the scale will appear as percentages instead of the actual YSCALE
numbers. If this appears on your graphs, you can display the actual range used by
typing YSCALE as a command, i.e., followed by a carriage-return. If the original
specification was AUTO, then this will display the word AUTO followed by the
actual numbers used. This situation can occur also if you specify more than 10 digits
in a range for YSCALE, or if the range is so narrow as to require more than 10
columns, e.g., ‘10 TO 10.000001°.

If you specify two expressions, as in setting FSCALE, this means the bottom of the
display should correspond to the value of the first expression, and the top of the
display should correspond to the value of the second expression. These numbers
need not be in increasing order. Thus if you specify

YSCALE=0,-40

the GAIN graph will look upside down, like an attenuation graph.

Values exceeding the range specified by YSCALE are explicitly indicated on the
graph by an asterisk, denoting saturation. The vertical resolution is actually the
vertical range divided by 3*(YSIZE-3), since three different characters are used to
represent three different levels on each console line.

SPAC20 Compiler

SPAC20 Compiler

GRAPH and OGRAPH

—»(LBOUND
—»(UBOUND
-G~

> (e)~
‘ GRAPH 'L >

GRAPH and OGRAPH Commands 121533-25

OGRAPH r»

When used with a valid object, e.g., GRAPH GAIN, the commands GRAPH and
OGRAPH fill a buffer area with characters whose positions represent the values of
the object. The proper positions are selected within the graphics area you have
defined using XSIZE and YSIZE (or the default area, which is the full screen).

The characters used for the latest curve are the period, dash, and apostrophe (. - °),
so that effective vertical resolution is three times that of a single letter. When
OGRAPH is used, the plot also contains the previous curve graphed, but with the
characters all replaced with the character ‘‘+’’, to distinguish the older curve. The
scale appropriate to the newer curve is displayed, but the physical positions of the
old graph on the screen remain unchanged.

If GRAPH is used alone, with no object, the latest graph displayed is redisplayed
regardless of intervening changes in any state variables. This can be used to recover a
display which has scrolled off the console screen.

Hard-copies of the graphics output and all other console activity can be obtained by
defining a list file or device using the LIST command (see Chapter 8). No special
graphics capabilities are required of the device.

Graphics Capability

CHAPTER 7
CODE GENERATION FOR THE
INTEL 2920 PROCESSOR

The Code Command and Constraints

After manipulating the pole and zero positions to get the frequency and time
responses of the filter to match the characteristics you want, you may create AS2920
assembly language code for each pole or zero (or conjugate pair) with one CODE
command per object.

These commands perform compilation, generating as many AS2920 instructions as
are needed to correspond either to a pole or zero or to an equation. (Such equations
are useful in propagating and scaling the signal passed between filter stages.) The
code generated by the most recent CODE command is maintained in a code buffer
which can be displayed (by simply entering CODE), or sent to a file (Chapter 8).

The code will automatically contain comments to identify the location and label of
the pole or zero, or to specify the value of the multiplier in the case of an equation.
Comments usually show the current contents of the destination operand in each
instruction, in terms of the constant and variable names supplied in the CODE
command. The AS2920 Assembler ignores these comments.

In general, the code generated will not implement the requested object exactly.
Instead, the code is generated with respect to the constraints explained in this
chapter: INST, ERROR, MSQE, MERROR, and PERROR. The keyword INST
shows the number of instructions compiled. For an equation, the accuracy of the
resultant compilation is reflected in the value of the keyword ERROR.

For a pole or zero, the accuracy of the code is reflected in the values of MSQE and
MERROR, if referenced immediately thereafter. If there are intervening commands,
MSQE and MERROR may be rewritten to reflect them. The imprecision of compila-
tion for a pole or zero, i.e., the object’s ‘‘movement,’” is explained below under
PERROR. The “‘error’’, therefore, is also reflected in how far the actual object (as
compiled) differs from its original position.

If the constraint is too severe and cannot be achieved in the number of 2920 instruc-
tions requested, then the Compiler selects that set of generated code which
minimizes the constraint you gave, within that number of instructions. If the code
object is a multiplication when this happens, ERROR is given the minimum error
(signed) achievable in the number of instructions given by the value of INST.
Interrupting the Compiler with an ESCape key while it is generating code causes the
best yet code to be entered into the CODE buffer, and then halting generation.

The elements of the chart below are discussed in subsequent paragraphs.

-G

int exp » >
-G) (= L
—»(PERROR < exp. exp
MERROR <

—CGa)

MSQE <

—(2 =
D & O -

; >

LP(ident = prim*ident ‘r

Code Command 121533-16

7-1

Code Generation for the 2920 Processor SPAC20 Compiler

Coding a Single Pole or Zero
As the chart above indicates, there are four constraints for use on coding poles or
zeros. Each is explained below. The command begins with the word CODE,
followed by the desired object and its label, leading to one of the four constraints, as
follows:

MSQE <expression
or

MERROR < expression
or

PERROR <expression_1, expression_2
Of these three, at most one may be chosen for any given CODE command. If none
appears, the default PERROR<O0,0 is used, resulting in minimum movement from
the original coordinates of the pole or zero (see below). If one of these three
constraints does appear, it may optionally be followed by a comma and the program
size constraint, as follows,

, INST<expression
which restricts the number of instructions generated to fewer than the value of the
expression given. The INST phrase may appear alone, i.e., without a comma and
without any other constraint. If it is not supplied, a default limit of 20 is
automatically used.
Using the constraint

MSQE <expression
means that the gain of the coded filter is to deviate from the bounds by less than the
value of the expression given. Further, this must be achieved in fewer than 20
instructions (or the number you supply in the INST phrase).
Examples:

CODE POLE1MSQE<0.2
CODE ZERO9MSQE<0.02, INST<6

Using the constraint

MERROR <expression
means that the maximum absolute error of the coded filter’s gain is to be kept below
the value of the expression given, also within the instruction limit supplied.
(““Error’’ means deviation from the gain bounds you supplied in earlier commands.)

Examples:

CODE POLE 1 MERROR <0.2
CODE ZERO 9 MERROR <0.02, INST<17

Using the constraint

PERROR <expression_1, expression_2

7-2

SPAC20 Compiler

means that there is a limit on the movement (explained below) of the coded pole or

zero from the original position of the defined pole or zero. That is, the difference of

their first coordinates must be less than expression__1, and the difference of their

second coordinates must be less than expression_2. Once again, this must be

achieved within the INST constraint, i.e., in fewer instructions than the limit
- supplied.

This constraint requires some further explanation. PERROR is needed because the
assembly language program generated by the CODE command implements a filter
stage corresponding to a pole or zero at a slightly different location than the
specified original pole or zero. After the compilation has been performed, the pole
or zero is moved to the location matching the code generated. (However, this move
will never change a complex conjugate pole [or zero] pair to a single real pole [or
zero], nor a real into a complex conjugate pair.)

PERROR constrains the amount of that movement, in each coordinate, in the home
plane (TS or Z) of the pole or zero. For poles or zeros defined in TS, these
coordinate increments will be <real,imaginary> in Hertz. For those in Z, the
increments will be <radius, angle (in radians)>.

MSQE and MERROR will always contain values which reflect the actual position of
currently existing poles and zeros, i.e., including this implicit move. PERROR
cannot be displayed. The original position of the coded pole or zero is lost. Thus you
may wish to save it using a PUT or APPEND command (described in Chapter 8) or
by saving its coordinates in the symbol table, e.g.,

.ORIG_POLE_3 REAL=REAL (POLE3)

.ORIG_POLE_3_IMAG=IMAG (POLE3)
Examples:

CODE POLE 1 PERROR<4.2, 2

CODE ZERO 9 PERROR <4.02, 0.06, INST <9

In any case if the MSQE, MERROR, or PERROR constraint cannot be met within
the INST constraint, the Compiler selects that set of code which minimizes the
specified constraint in the given number of instructions. In the case of PERROR,
what is minimized is the variance from your specified constraints on coordinate
changes, as follows:

Suppose, for POLE 1 at XORIG, YORIG, you give constraints XCON and
YCON, asin

CODE POLE 1 PERROR < XCON, YCON

then call the actual pole position XTRY, YTRY (for each set of code attempted
by the Compiler).

This represents a movement of XMOV, YMOV, i.e.,

| XTRY - XORIG | = XMOV
] YTRY - YORIG]| = YMOV

Using these definitions, then, the Compiler selects that set of code which
minimizes

(XMOV-XCON) **2 + (YMOV-YCON) **2

Code Generation for the 2920 Processor

7-3

Code Generation for the 2920 Processor SPAC20 Compiler

Minima and Error Constraints

None of the minimizations above are necessarily true minima. True minima would
require trying every possible code sequence, because the constraints MSQE and
MERROR, which depend on the bounds you supply, can in fact behave quite non-
linearly. The SPAC20 Compiler’s algorithms for selecting the approximate
minimum work best when the error bounds are ‘‘reasonable’’. Therefore, it is
required that before coding is begun, the MSQE or MERROR for the gain curve
must already meet your intended constraint. Thus if the code generated corresponds
exactly to the specified pole or zero, the MSQE or MERROR constraint will be
satisfied.

Coding Equations

The second form of the CODE command generates AS2920 code for calculations of
the form YY=C*XX or YY=C*YY or YY=C*XX+YY, where C is a constant and
XX, YY are variable names. The INST constraint can be used as above. Code is
produced which minimizes the error in the multiplier (C) as much as possible in the
number of instructions specified (or in 20, the default).

The other constraint allowed (besides INST) is
ERROR < expression

(which may be followed by a comma and an INST constraint). This specifies that the -
error in approximating C must be less than the value of the given expression, within
the number of instructions desired. After the coding is completed, the value of
ERROR shows the absolute value of error in the multiplier. The variable names used
to request this coding will appear in the generated code.

In the absence of an explicit ERROR constraint, the default is
ERROR<(multiplier/2**16), i.e., create the least ERROR possible (out to 16 binary
places) within the INST constraint. If the given error constraint cannot be met,
ERROR is minimized.

Examples:

CODE YVAR=1.58 *XVAR

CODE ZVAR=0.692475 * AVAR INST <6

CODE XVAR=2.3975 * YVAR ERROR<0.0025
CODEYVAR=0.11825* XVAR+ YVARERROR<0.00125, INST <S5

Note

YY =YY + C*¥XX is not acceptable. The equation must be requested in the
formYY =C*XX + YY

In general, it takes no more than one 2920 instruction per 2 significant bits in the
specified constant. Thus 24-bit accuracy could be theoretically obtained in at most
12 instructions. However, the SPAC20 algorithms are not substantially effective
beyond 16 bits, so that in most cases an INST constraint of less than 8 is sufficient.
Greater accuracies can be obtained through techniques explained in Appendices H
and J. Code generated for equations of the form YY=C*XX is the most efficient,
achieving approximately 3 significant bits in the constant per instruction generated.

The code generated for a multiplication by a constant C will not overflow as long as
the multiplicand is less than 1/C in absolute value. If the multiplicand is greater
than 1/C in absolute value, an overflow will occur on the last instruction (and
possibly earlier), yielding a result of +1.

7-4

CHAPTER 8
FILE HANDLING

This chapter covers the commands EXIT, LIST, WRITE, DISPLAY, APPEND,
PUT, and INCLUDE. Certain features of the operating system on INTELLEC
computers are used by these commands.

-G~
->(LIST)—»-»CL } >
- G-~

e PUT

/

—»(,v.u?“ } >
—»({ APPEND
(o ~C

- G- [
“ ‘(SYMBOLS %
- G-
- G |
—0O
~ G |
—>¢ expression ’—»'

File Commands 121533-24

-»(WRITE)

Interface with ISIS-II

The Intel Systems Implementation Supervisor (ISIS-II) is the diskette operating
system for the Intellec Microcomputer Development System. The Signal Processing
Applications Compiler runs under ISIS-II control, and can call upon ISIS-II for file
management functions. To execute the SPAC20 Compiler, you enter the characters
SPAC20 (possibly preceded by a drivename, e.g., :F1:SPAC20) after an ISIS-II
prompt character (hyphen ‘‘-”’ or angle bracket ‘>*’).

The Compiler signs on with a message

ISIS-112920 SIGNAL PROCESSINGAPPLICATIONS COMPILER, V1.0 - MATHBOARD VERSION
*

indicating by the asterisk prompt that it is ready to receive commands.

File Handling SPAC20 Compiler

With the exception of EXIT and WRITE, the commands in this chapter are used to
reference files or devices via ISIS-II pathnames. For diskette files, the format of
pathname is as follows (a pathname may not contain blanks):

tdrive:filename
e.g., :F1:MYFILE,
:FO:YOFILE,
FILE79

The entry :drive: stands for one of the references to INTELLEC system diskette
drives. FO is assumed when drive is omitted. See the ISIS-II User’s Guide for further
detailed data.

The entry filename must follow the colon after drive without any intervening spaces.
A filename has the following components:

identifier[.extensionl

The above identifier is a name you assign, and is one to six alphanumeric characters.
The extension is an optional part of the filename, consisting of one to three
alphanumeric characters preceded by a single period. The extension must be used if
it is present in the directory listing of the file on the diskette.

If used, the extension follows the identifier without any spaces. Some extensions
(e.g., .BAK, .LST) are assigned by system processors; others can be assigned as you
like. An extension provides a second level of file identification; it can be used to
distinguish different versions of the same program, or to give supplemental infor-
mation about the file (e.g., author, date, version).

For devices other than diskette files, the format of pathname is as follows:

:device:

The following devices are commonly accessed in SPAC20 Compiler commands:

:DEVICE: OUTPUT DEVICE
:LP: Line Printer

‘HP: High-speed tape punch
TO: Teletypewriter printer
:CO: Console display

:Cl: Console Input

‘HR: Paper tape reader

For more information on ISIS-II filenames and device codes, refer to the ISIS-II
User’s Guide.

EXIT

The EXIT command keyword returns control from the SPAC20 Compiler to ISIS-
I1. It is as simple as it looks. Any files opened during the session are closed. After the
line terminator has been entered following the command EXIT, access is no longer
possible to any prior commands, parameters, macros, calculations, and graphs or
lists which have not been saved into diskette files or onto hard-copy listings.

8-2

SPAC20 Compiler

LIST

All output is normally sent to the console device (:CO:). The LIST command saves a
duplicate record of the console input and output during a SPAC20 Compiler
session, including high-volume data such as graphs or listings, on a hard-copy device
or on a diskette file.

Only one LIST device or file other than the console can be specified (active) at a
given time. Devices that can be specified, if present, are a line printer (:LP:), high-
speed-paper tape punch (:HP:) or a teletypewriter printer (:TO:).

Instead of a hard-copy device, a diskette file can be specified. If so specified, the file
is opened when the LIST command is invoked. If a file of that name already exists,
its directory entry is deleted and the name will thereafter refer to the list file being
generated.

When LIST is in effect (with a device or file other than :CO:), all commands input
(including comments) and all output from the SPAC20 Compiler (including system
prompts, commands, graphs, and error messages) are sent both to the named device
or file and to the console display.

To restore output to the console only (no other device), use the command LIST
:CO:.

Examples:

LIST :LP:
LIST :CO:

LIST :F1:DESIGN.930
LIST :70:

WRITE

- O
L
—>< WRITE } >
< expression >—>

Write Command 121533-45

The command WRITE puts out a single line of output to the LIST file and the
console. It evaluates any expression you supply prior to output. In interactive
sessions you would rarely use it, since the EVALUATE command provides the same
function without the file output effect. WRITE is normally used within compound
commands to provide periodic reporting on an automatic iterative process you have
designed to test or generate special capabilities (see Chapters 9 through 11).

Examples:

WRITE ‘Process now beginning step’, .STEPNO, ‘of section’, .SECTNO
WRITE ‘Stage number 3 of filter number 1, device MDM’

File Handling

8-3

File Handling

SPAC20 Compiler

Display Command

The DISPLAY command copies the contents of the named file to the console. It
enables you to examine the results of an earlier PUT or APPEND command without
invoking execution of the results. The INCLUDE command, explained later in this
chapter, does invoke execution.

Examples:

DISPLAY :F3:PARAM.FIL
DISPLAY CODFIL.POL
DIS MYMACR.OS1

DIS PUT30K

Here, as in general, ESCape can be used to abort the command, terminating the
display and returning you to the command level (asterisk prompt) of the Compiler.

One scenario for the use of this command is this: after saving all poles and zeros
(using a put or append command as discussed below) and altering some of them,
possibly via CODE commands, the display command permits a review of the earlier
positions without disturbing the current conditions. The display can be interrupted
with control-S (holding down the control key while pressing S), and restarted using
control-Q. However, it is not possible to display a file that is currently open, e.g., a
LIST file in use recording this session, or the current MAC.TMP (see Chapter 9).

APPEND Command

APPEND adds the specified (or default) objects described below to the end of the
named file, if it exists. If it does not, the command creates it. Most file objects (other
than CODE, strings, or expressions) cause SPAC20 commands to be output to the
file. These commands will recreate the stated objects when invoked (executed) by a
subsequent INCLUDE command. PZ, BOUNDS, SYMBOLS, and MACROS will
cause the restoration, respectively, of all poles and zeros, bounds, user symbols, and
macros.

If no file object is supplied, commands are generated to permit restoring as much as
possible of the state of this session. In particular, if you re-invoke the Compiler and
include the file that you just PUT, your state will be restored exactly. This means, in
addition to PZ, BOUNDS, SYMBOLS, and MACROS, commands to restore TS,
XSIZE, YSIZE, GREF, HOLD, FSCALE, and YSCALE.

The file object CODE refers to the current contents of the code buffer, i.e., the
results of the last CODE command. By APPENDing the results of successive such
commands, the user can build up a file containing the assembly language code
implementing the successive stages of a filter.

A list of expressions and strings can be used as a file object, resulting in the ASCII
text of the strings and the decimal values of the evaluated expressions to be output
on one line to the file. This can be used to insert comments in the growing assembly
language file, or to insert assembly language code to perform scaling and propaga-
tion between filter stages.

SPAC20 Compiler File Handling

Examples:

APPEND :F2:PZALL PZ

APPEND POLE9.COD CODE

APPEND NEW.MAC MACROS

APPEND :F1:PARAMS.ALL

APPEND FILTER.CUR PZ, SYM

APP LATEST.COD CODE, '; aboveis forstage3, filter2,11/15/79"

‘ PUT ’-»
Y >
—>|: |->G)athname }
APPEND
(apreno) ~(7)~

. —
“ “ SYMBOLS }——A :
— CODE

@D |
— 0

expression I

Put/Append Command 121533-46

PUT Command

PUT operates identically to APPEND with a single difference: if the file named in
the command already exists, PUT overwrites it with the supplied (or default) file
objects. (A message is sent to the console if such an overwrite occurs.) In general,
APPEND should be used in all cases save where you are absolutely sure you will not
regret destroying any possible earlier file of the same name. When in doubt, you can
use the DISPLAY command to check if the file exists, and if so, what’s in it.

Examples:

PUT :F2:PZALL PZ

PUT POLE9.COD CODE

PUT NEW.MAC MACROS

PUT :F1:PARAMS.ALL

PUT :F1:0LDFIL"''; thisoverwritesandemptiesoutOLDFIL

PUT FILTO07.COD CODE ';above ',INST,' instructions implement
stage ', .STAGE, ', filter 7'

; Cassuming .STAGE was earlier defined to Llabel the stage
currently coded)

8-5

File Handling SPAC20 Compiler

INCLUDE Command

This command enables you to restore some or all of the key parameters/states/tools
from a prior interactive session for use during this one. When you issue the
command

INCLUDE pathname

(where pathname is usually a diskette filename, e.g., CODFIL.922 or
:FI:MACROS.921) the commands stored in that file are executed as if you had
typed them directly from the console. Thus, if in your earlier session you had issued
the command

APPEND NEWFIL.921 PZ

then when you INCLUDE NEWFIL.921 in this session, all poles and zeros defined
at the time of the earlier command will be reestablished by DEFINE POLE
commands for this session. This is true for any of the parameter-related file-objects
for APPEND or PUT (i.e., INCLUDE should not be used for files of CODE,
strings, or expressions). If the earlier PUT or APPEND had no specified file object,
then all relevant parameters would have been saved. Your current INCLUDE
command would then cause the restoration of all poles, zeros, bounds, scales,
symbols, macros, sample rate, reference gain, hold state, and screen-size parameters
to their earlier values, effectively restarting that session.

The INCLUDE command is particularly useful when building a library of macros
(Chapter 9). Macros can be created but not edited interactively. If your macros
contain more than two or three commands, you may wish to create the macros using
an editor (e.g., CREDIT) in the form of an INCLUDE-able file.

The SPAC20 Signal Processing Applications Compiler can also be run under
SUBMIT (see ISIS manual for detailed instructions). However, macros to be used
under SUBMIT should be INCLUDEGJ rather than defined in-line in the submit-file.
This preserves the distinction between the formal parameters of the submit
command and the formal parameters for macro definition.

| CHAPTER 9
ADVANCED (COMPOUND)
COMMAND SYNTAX

This chapter discusses macros and the other compound commands: IF, REPEAT,
and COUNT. Compound commands consist of sequences of simple commands to
be executed in order as described below.

When commands are being input as part of compound commands, the normal
asterisk prompt character is preceded by a period, to indicate the compound
construction. If the compound command is itself embedded within another
compound command, then the commands in its subordinate command block will
have two periods before the prompt, and so on for deeper levels of nested compound
commands.

Some typing or syntax errors cause only the current line to be rejected. This is
indicated by the Compiler repeating the same sequence of prompt-characters that
began the last line, e.g., ‘“..*”’. However, more serious errors cause rejection of the
entire compound command, forcing you to retype the command from the very
beginning. This is indicated by a single asterisk (*).

Macros

A macro is a named block of commands, executed in sequence (or containing
branches, if you so specify) when the macro name is typed as a command (invoked).
The block of commands is also called the macro body.

The sequence is stored as you define it. This saves you repetitive entry of every
command in the sequence, and also permits you to capture conditional logic
(instruction branches or loops) only once, for potentially frequent use in future
sessions. The macros you define are saved on a temporary file on diskette, but this
file is not saved when you exit. If you use the commands

PUT filename MACROS:
or
APPEND filename MACROS

prior to exiting, then the macros may be INCLUDEd for use during any future
session.

The macro commands described in this chapter allow you to perform the following
functions:

* Define a macro, specifying the macro name, the command block, and any
- formal parameters (points in the macro definition where text can be replaced by
actual parameters when the macro is invoked)

* Invoke (call) a macro by name, giving actual parameters to substitute for chosen
formals (if any), beginning the execution of the defined command block

* Display the text of any macro as it was defined
* Display the names of all macros currently defined
®* Remove one or more macros from those currently defined

9-1

Advanced (Compound) Command Syntax

9-2

Defining and Invoking Macros

— (DEFINE MACRO)—>(identitier cr) > y s@—»
. < command cr >

Define Command for Macros 12153319

__>| macroname l - >
3
r limited token é

=1

Invoking Macros 121533-20

/

Each macro used in any design/test session must be defined during that session.
Once defined, it may be invoked as often as desired, even within other macros.

The definition can occur either by typing it or by bringing it in from a file via the
INCLUDE command (see Chapter 8). The macro name must be an identifier as
described in Chapter 2, and must not duplicate any other macro name used in this
session. (Thus you may not redefine a macro name, nor include it from a file, unless
it is first removed from the macro table (directory) as described later in this chapter.)
It may, however, duplicate symbol or keyword identifiers.

The DEFINE MACRO command causes the macro name (and the block of
commands you supply) to be stored in a table of macro definitions in a temporary
ISIS-II file named MAC.TMP (on the same disk drive containing SPAC20). Upon

‘exit, they will not be retained. If you create new macros during this session, in

addition to any you may have INCLUDEd, then to save them for future use you
must save them as described above. Since macros cannot be edited within SPAC20,
you may wish to use the Editor to create INCLUDE files for long or complex
macros, making it easier to correct errors in typing or command constructs.

A macro definition (or removal) may not appear within any other command. This
means you may not define a macro within another macro definition sequence, nor
within any other compound command. Any other command may appear in any
compound command.

When you attempt to invoke a macro, the macro name you supply must be already
defined.

Here is a simple macro definition:

DEFINEMACRO GRAPHER
REPEAT
MOVE POLE1BYO0,5
OGRAPHGAIN
END
EM

SPAC20 Compiler

SPAC20 Compiler Advanced (Compound) Command Syntax

To invoke this macro and cause its command block to begin executing, you enter the
macro name preceded by a colon(:), as follows:

:GRAPHER

This will continue to move the pole by the indicated increment, and overgraph the
new gain, until you hit ESCape.

A macro definition can include commands that define user symbols and other
identifiers, such as poles or zeros, sample rates, etc. Macros that include such defini-
tions can be used to set certain initial conditions for many of your interactive
sessions. INCLUDE files can also be used for this.

A macro definition can include calls to other macros, but not to itself. If you
inadvertently create one that tries to call itself, it will expand indefinitely when it is
first invoked, without ever executing any later commands. (Press ESCape to
terminate such an infinite expansion.)

Macro calls can be nested, i.e., one macro calls another, which in turn calls another,
and so on. The level of nesting is limited only by the memory space required to
contain the macro expansions and to stack the macro calls.

When a macro is invoked, the following operations occur:

* The text of each actual parameter in the call is substituted for the corresponding
formal parameter in the definition

®* The expanded command block is executed if all commands are valid as
expanded

¢ The macro exits. Control returns to the console (asterisk prompt), or to the next
command in sequence if the macro was invoked inside a compound command.

It is usually more efficacious to define several small macros rather than one large
one incorporating all their features. They are eaiser to type in and more likely to fit
in memory. The Chebyshev macro shown in Chapter 10 is a good example of a
maximum-sized macro.

Formal and Actual Parameters

A formal parameter marks a place in a macro definition, where text will be replaced
when the macro is invoked. A formal parameter can represent part of a token or a
field of one or more tokens. When you invoke the macro, you supply the actual text
which is to replace the formal parameter as the macro is expanded. A macro defini-
tion can contain up to ten formal parameters, each having the form:

AN

where N is a decimal digit, 0 through 9. For example, if you modify the macro
GRAPHER above to read

DEFINE MACRO GRAPHER2222
REPEAT
MOVE POLE 1 by %0, %1
OGRAPH GAIN
END
EM

9-3

Advanced (Compound) Command Syntax

then each call to GRAPHER2222 can specify different increments for the MOVE,
e.g.,

:GRAPHER2222 0,5 ; (thenESCapetostopexecution)
:GRAPHER2222 0.5,12 ; (ESCtostop)

and so forth.

Formal parameters can appear in the body of the macro definition in any order, and
each one can appear any number of times. This means that %3 can be used in a
command before %1 is used, and either can appear often or not at all. The number
implies the order in which the actual parameters will appear in the call, i.e., %0
means use the first actual parameter supplied, % 1 means use the second, %4 means
use the fifth, etc.

A string can be supplied as an actual parameter to a macro. In fact, if the parameter
contains a quote mark, a carriage-return, or a comma, the parameter must be sent as
a string, or errors will occur. (Of course, this means any embedded quote marks
must be doubled to avoid looking like the end of the string.)

The quote marks surrounding the string in the macro call (invocation) are stripped
off before the macro uses the string. If the command that uses this string, within the
macro, requires the string to have quote marks around it, then either the macro
definition must supply them or the string used in the call must have an extra set of
quotes surrounding it. This will be shown in examples below.

If an actual parameter is omitted in some call, the comma which normally would
follow that parameter must be typed anyway to retain the necessary positional order
of supplied parameters. This naturally does not apply to the actual parameter
corresponding to the last formal, which would have no comma after it. In fact, if the
omitted parameters are all at the end of the list, no extra commas are required.

Omitted parameters result in the corresponding %N being replaced by the null
string. If you supply, in the call, more actual parameters than there are defined
formals in the definition, the extra actuals are ignored.

As an example, suppose you had defined this macro:

DEFMACBATCH
%0
%1
%2
%3
EM

This would permit you to string out, on one line, up to four commands. You could
type, for example,

:BATCHGRAPHGAIN, OGRAPHPHASE, GRAPH IMPULSE, OGRAPHSTEP

If you supplied only 3 or 2 commands, the last formals would expand to the null
character and this macro will exit normally.

However, if there are any actual parameters being supplied after an omitted actual,
the extra comma mentioned above must be supplied. The examples below will
illustrate this.

SPAC20 Compiler

SPAC20 Compiler

If a formal parameter does not appear in the macro’s command block, then
anything supplied in that position in the call will be ignored. For example, if your
command block never referred to %2, then the third parameter in the call would
always be ignored. Conversely, if the block does refer to %2 but the call does not
supply a third parameter, the null (empty) string will be supplied. The command
containing that reference to %2 must be a valid command even in the absence of an
actual parameter, or the macro will abort when that command is encountered during
expansion of the macro.

One example of such a possibility is the APPEND command:

DEF MAC SAVER
APPEND %0 %1 %2
APPEND %3 %4 %5

EM

Note that if you supply only %0 and %3, the filenames, the APPEND commands
are still valid because no object is required—the default will be used.

Using the macro SAVER, you can now type a single line to establish (or add to) one
or two files, old or new, using the APPEND command with any combination of its
possible file-objects: PZ, BOUNDS, SYMBOLS, MACROS, CODE, strings,
and/or expressions. One advantage to this hypothetical macro is being able to
specify two separate files.

For example, one call to SAVER could add new macros to the accumulated set of
macros, and in the same invocation put out the latest CODE to the growing file of
coded filter-stages:

:SAVER MAC.NOW, MACROS, ,CODE.NOW, CODE

Or, with parameter %4 being CODE, parameter %35 could create a comment line
identifying the filter stage or other data pertinent to this code block:

tSAVER MAC,MACROS,,COD., ‘CODE,', ''"'STAGE4of FILTERZ2'"!
:SAVER MAC,MACROS,,COD,CODE,"',"''STAGE4of FILTER2"'""

The outer apostrophes around ‘CODE,’ are required due to the embedded comma,
which in turn is needed to separate the objects of the second APPEND. (Note also
that in order to supply the APPEND with a string in quotes, it is necessary in the
macro-call to surround the quoted string with another pair of quotes. An actual
macro parameter given with quotes has the outermost pair, i.e., the first quote and
the last, stripped off during the process of being substituted for the formal
parameter in the macro body. Also, quotes appearing within a string must be
doubled.)

Possibly you might wish to have one file for poles and zeros and bounds
(PZ, BOUNDS) and one for SYMBOLS, MACROS:

:SAVER PZBOUN, 'PZ,', BOUND, MACSYM, MACROS, ', SYMBOLS'
0 1 2 3 4 5

Here each actual parameter is flagged with the formal it replaces. Again, the
embedded commas are needed for valid APPEND commands, and so are put inside
quotes, to be sent as part of a string. The other commas simply separate the actual-
parameters in the macro-call.

Advanced (Compound) Command Syntax

Advanced (Compound) Command Syntax

More Examples:

:SAVER PZ.9,PZ,,C00.9, ''';thiswas forstage4of filterS5.'""

The above macro call appends to PZ.9 all commands necessary to duplicate the
current pole/zero configuration. These commands will be executed when an
INCLUDE PZ.9 command is input. The comment ¢; this was for stage 4 of filter 5’
is appended to the file COD.9 by this same SAVER invocation. The two commas
after PZ reflect the absence of %2.

If we define a new macro

DEFINEMACRO SAVCOD

APPEND %0 COD, '; thiswas forstage', %1, 'of filter', %2
EM

then the following call would add the current contents of the code buffer, followed
by the same comment used in the last example:

:SAVCODCO0D.9, 4,5

:SAVCODFILE1, 7 ;Thisperforms justastheexample
; abovebutomitsthefilter number fromthe comment, which
; becomes '' thiswas forstage7of filter''

:SAVCOD FILE1,,7; Thesebothoperatesimilarlytotheexamples
; above, but thefirstomitsthe stage number

:SAVCODFILE1; andthesecondomitsbothstageandfilter

; numbers.

Thus the comment arising from the first of the pair above will be

‘; this was for stage of filter 7’

and the comment from the last command above will be

‘*; this was for stage of filter’”’

The comment embedded in the APPEND command (in the macro body) is used with
no identifying numbers.

The last two calls to this macro differ in omitting parameter %1 or %2. The commas
delimiting the parameters must be typed even when a parameter will be omitted, if
there are additional desired or required parameters coming after the omitted ones.
When no such parameters are required or wanted, as in the last case, the extra
commas are not needed.

:SAVERFILE1,PZ,,FILE2,CODE ;Thissavespolesandzerosinone
; fileandcodeinanotherwithnocomment.

When you invoke the SAVER macro, you must supply the first and fourth
parameter, %0 and %3, or the APPEND commands will have no file to append to,
and this will cause the invocation to abort. If you suppy neither %1 nor %2, the
default file-objects for the APPEND command will be assumed, which means all the

SPAC20 Compiler

SPAC20 Compiler

objects denoted by the five keywords will be saved as commands added to the end of
the file whose name you supplied as %0. The command for this could have been
simply APPEND filename. Using SAVER, you have the option of also filing the
code, e.g.,

:SAVERPARAMS.ALL,,,CODFIL,CODE

Macro Expansion and Syntax Checking

The syntax and semantics of the commands in a macro block are ignored at the point
of definition; they are not determined until invocation, and may be different on each
invocation through the use of formal parameters.

When a macro is called, its definition is expanded by replacing the formal
parameters in the definition, using the text of the actual parameters in the call. If the
expanded macro contains any calls to other macros, the text of any such macro is
also expanded, forming in effect one overall block of commands. The results of
expansion are displayed at the console. Expansion continues until the last EM is
reached. If the expansion results in a set of complete, valid commands, the
commands are executed. An error results if any command is incomplete or invalid
after expansion. Examples of macro expansion and syntax checking appear in
Chapters 10 and 11.

Displaying or Removing Macros

—»(DIR MACRO

Macro Directory

REMOVE MACRO
[
Y ‘...au 'L

macroname::= an identifier appearing as above in a legal
define-macro command

Remove or Dispaly Macros 121533-21

The DIR MACRO command lists the names (but not the bodies) of all macros
currently defined. Macro bodies may be displayed by typing a list of one or more
macro-names after the keyword MACRO, followed by the usual carriage-return.
Similarly, macros may be removed by typing a list of one or more macro-names
after the keywords REMOVE MACROS. If no list follows MACRO or REMOVE
MACRO, then all current macros are displayed or removed, respectively.

Examples of these commands appear in Chapters 10 and 11.

Advanced (Compound) Command Syntax

9-7

Advanced (Compound) Command Syntax SPAC20 Compiler

Controlling a Loop: REPEAT, COUNT,
WHILE, and UNTIL

REPEAT
*[: }—»@— WHILE
COUNT int exp ’—»‘ expression)———»@—-»

UNTIL

REPEAT, COUNT, WHILE, and UNTIL ; 121533-23

These compound commands permit the blocks of contained commands to be
executed indefinitely, a specific number of times, or conditionally. REPEAT or
COUNT commands may contain any number of conditional exits using the keyword
phrases WHILE condition-expression or UNTIL condition-expression. The
paragraphs that follow give explanations and examples of the use of these
commands and modifying phrases.

As the charts above indicate, these loop control commands begin with the word
REPEAT or the phrase COUNT integer-expression, meaning any expression which
evaluates to a positive integer quantity. This quantity is evaluated immediately and
used as the number of iterations (maximum) for the commands contained in the
command block that follows. REPEAT has no such limit. (You can use the ESCape
key to abort command processing, returning you to the Compiler.)

The command block may have in it any number of any commands except DEFINE
MACRO or REMOVE MACRO. The Compiler’s awareness that you are entering
commands within a compound command is shown by the period it types at the
beginning of each such line. If a new compound command is begun as part of defin-
ing a prior compound command, a second period (and third, etc., as needed) is
typed by the Compiler to indicate the nesting. Each REPEAT or COUNT ends with
an END statement.

A macro invoked in a REPEAT or COUNT command is expanded immediately
after the macro call command is entered. Thus, a macro called in a REPEAT or

COUNT command is expanded only once, though perhaps used repeatedly
thereafter.

If the block of commands within a compound command is to continue executing
only under certain conditions, you can use the WHILE or UNTIL clause to specify
them. This can involve a wider class of expressions than the arithmetic ones
explained in Chapter 2. The full range of legal expressions is discussed in the next
section, after which the discussion of compound commands is continued.

Relational and Boolean Expressions

Relational expressions involve a comparison of the values of two objects, using these
relational operators:

< Lessthan
= Equalto
> Greater than
<= Lessorequal
<> Notequal
= Greater or equal

9-8

SPAC20 Compiler Advanced (Compound) Command Syntax

Relational expressions are evaluated to a FALSE or TRUE value, meaning the least
significant bit of the values is O or 1, respectively.

Examples:

GAIN(60) < .GAIN_LAST_POLE
ANGLE(POLE 1) > ANGLE(POLE 4)
.FIRST_VALUE <= .NEXT_VALUE

Boolean expressions represent combinations of TRUE and FALSE values using con-
junction (AND), disjunction (OR), negation (NOT), and exclusive-disjunction
(XOR). As an example,

X<PI ANDNOT X<0

is either true or false for any given value of X. The operands for the boolean
operators can be any integer or relational expression.

Examples:

AGAIN (250) < .AGAIN_LAST ANDMAGAIN <300
INST <9 ORMSQE <147

L Ewan)) ¥ — ¥
@D +CO- GO CGD GO

oN ~C O~
K -~
GD O -
N
Neaan S

Expression 121533-26

WHILE and UNTIL (Continued)

After the WHILE or UNTIL you place a boolean or relational-expression, which is
evaluated to a FALSE or TRUE value. (Actually, any integer-valued expression is
legal. FALSE means the lowest-order bit was a 0, TRUE, a 1.)

The WHILE clause terminates execution of the loop upon a value of FALSE; the
UNTIL clause does so upon a value of TRUE. The commands in a block continue to
be executed until one of these clauses causes a halt or until the count limit is reached.
Execution then continues after the END for that block.

Advanced (Compound) Command Syntax SPAC20 Compiler

In both the WHILE and UNTIL clauses, the relational-expression is evaluated each
time the clause is encountered, i.e., once per iteration. Evaluation at each iteration
involves looking up the values of any references in the expression. Thus, the result
can change with each evaluation.

This is different from the expression that follows an exterior COUNT, which is
evaluated once, the first time it is encountered. (A COUNT embedded within a
WHILE or UNTIL clause could use an expression dependent on varying variable
references. Its value would nevertheless be fixed for the block of commands under
its control.)

The use of WHILE or UNTIL is usually a matter of style or preference, since there is
always a way to convert one into the other: WHILE expression__1 is equivalent to
UNTIL NOT expression__1. If the expression__1 used in this ‘‘escape’’ clause is
false, the loop is exited as soon as this is evaluted. If the clause comes at the end of
the command block it affects, the prior commands in the block will be done once
even when the expression is false. If the clause comes first, no commands in the
block are done.

Examples:

REPEAT
GRAPHGAIN
MOVEPZBY0.005,0.005
END

COUNTS
CODE POLE .NEXTPERROR<1,1
APPENDFILCOD.819 CODE
APPENDFILCOD.819 '; THE ABOVE CODEWAS FORPOLE ', .NEXT
NEXT = .NEXT +1

END

(.NEXT isassumedtobeinitializedpriortotheabove commands.)

REPEAT
GRAPH GAIN

UNTILGAINC655) <=80
MOVE PZBYS,5

END

COUNTS
WHILE .NEXT <16
CODE POLE .NEXTPERROR<1,1
APPENDFILCOD.819CODE
APPENDFILCOD.819 '; THE ABOVE CODE WAS FORPOLE ', .NEXT
.NEXT = .NEXT +1

END

SPAC20 Compiler i Advanced (Compound) Command Syntax

The IF Command

—>‘ IF exp } y @—-b der > 1 END
L THEN

N / N\

pn—— (ELsecr ’——»' command cr }

The IF Command 121533-22

This compound command permits you to specify blocks of commands whose execu-
tion is contingent upon tests of certain values or relationships. It is a powerful
capability, making it possible to specify in advance the consequences you wish to
invoke under varying circumstances, e.g., error variances.

This command must have the IF clause and the final END. The word THEN is
optional. There may be any number of ORIF clauses, or none, and one ELSE
clause, or none. The expression following IF is evaluated to FALSE or TRUE. If it
is TRUE, the command block immediately following is executed, and subsequent
ORIF or ELSE expressions are ignored along with their associated command blocks.

If the IF expression evaluates to FALSE, the next sequential ORIF or ELSE expres-
sion is evaluated, with similar consequences: if this expression evaluates TRUE, only
its command block is executed and all other parts of the IF command are skipped. A
macro called in an IF command is expanded whether the condition in the IF or ORIF

clause that contains that call is TRUE or FALSE. Here is a simple example of an IF
command:

.VAR8=1.4142
LLIMT =1
IF .VAR8 < .LIMT THEN
EVALUATE .VAR8/PI ; P1.=3.1415926
ORIF .VAR8<?2
EVALUATE .VAR8/HPI ; HPI =1.707963
ORIF .VAR8<K3
EVALUATE .VAR8/TPI ; TP1=6.2831852
ELSE
EVALUATE .VAR8/(PI *PI)
END
This example would display the result of EVALUATE .VAR8/HPI and then
terminate. The first condition is FALSE so the first potential consequence is
skipped. The second condition is true, so the second command block is executed and

the IF command terminates. The third condition is not tested, so its associated
command block is not executed despite the condition being true.

Advanced (Compound) Command Syntax SPAC20 Compiler

Another Example:

*DEFINEMACRO COMPARE
.* IFZ%Z0<%1THEN

. * WRITE 'LESS'

.* ORIF%0=7%1THEN

. x WRITE 'EQUAL"’
.* ELSE

L * WRITE 'GREATER'
.x END

.*EM

This macro can later be invoked with any two actual parameters, €.g.,

* :COMPARE .VAR8, .LIMT

IF _.VAR8 < .LIMT THEN
WRITE *LESS’

ORIF .VAR8 =_.LIMT THEN
WRITE 'EQUAL"

ELSE

- WRITE 'GREATER'

GREATER

* :COMPARE .LIMT, .VARS

IF.LIMT <.VARB THEN
WRITE 'LESS"'

ORIF .LIMT =_.VARB THEN
WRITE 'EQUAL"

ELSE

WRITE 'GREATER"'

. . e e
* % ¥ * *

*

* ok ¥ * Ok

*

LESS
* :COMPAREPI, TPI/2

.* IFPIKTPI/2 THEN

* WRITE 'LESS'

.* ORIFPI=TPI/2THEN
.* WRITE 'EQUAL"’

* ELSE

* WRITE 'GREATER'
Q

EQUAL

This example displays the expansion of the macro each time, and the result of
comparing the two actual parameters. The IF/ORIF/ELSE blocks cause execution
of only one block, so that the output of COMPARE can only be ‘LESS’, ‘EQUAL’,
or ‘GREATER’.

Nesting Compound Commands

The REPEAT, COUNT, and IF commands can be nested to provide a variety of
control structures.

Each nested compound command must have its own END. When entering a nested
command sequence, you may wish to use the keywords ENDR, ENDC, and ENDIF
to help you keep straight which command you intend to close off at that point.
Nesting levels are not checked when the comimand is being entered, and if an END is
omitted, the resulting error makes it necessary to enter the entire command again.
Further, even if the correct number of ENDs is supplied, their position in the
command sequence is critical to achieving your intended flow of control.

9-12

SPAC20 Compiler Advanced (Compound) Command Syntax

When entering a compound command, some syntax errors allow recovery to the
state at the last prompt. You can recognize such recovery by the ...* prompt,
indicating you are still within the definition phase of entry. Other syntax errors are
fatal, requiring you to retype the entire command. This you can recognize by the *
prompt.

Each nested REPEAT or COUNT command can contain its own exit clauses
(WHILE or UNTIL). Each such exit clause can terminate the loop that contains it,
but has no effect on any outer loops or commands.

fExamples of nesting appear in Chapters 10 and 11.

CHAPTER 10
ADVANCED TECHNIQUES: FILTER
DESIGN EXAMPLES

Introduction

As Chapter 9 has illustrated, the macro capability is a powerful tool, enabling you to
define command sequences under a single name and then use that name as a new
command. There are few restrictions on these sequences, allowing very general
routines to be created. Parameters you may wish to vary from one use to the next
can be built into the sequence as formals, to be supplied at the time of use, i.e.,
macro invocation. This permits tailored sequences to be produced from the general
pattern you developed.

As with any general-purpose computer feature, the ingenuity of user-developed
applications for this macro capability cannot be fully defined or predicted. It greatly
extends the range of the signal processing Compiler language.

Examples of useful macros directly relevant to filter design comprise the main body
of this chapter. More general examples, applicable to a wider range of signal
processing requirements, appear in Chapter 11. All of these examples can be
replicated for other filters or other operations once you see the process for defining
and generating them. Their use as models is one of the main motivations for supply-
ing them, in addition to their intrinsic utility. The ones you want for immediate use
shoulde be edited from the supplied file SPAC20.MAC into a separate file to
conserve space when they are later INCLUDEd.

The first two macros given in this chapter produce Butterworth and Chebyshev
filters based on user-supplied parameters for cut-off frequency, ripple, etc. The
Bilinear transform macro performs S to Z transformation. The last macro produces
code for the current state of an entire filter: each pole and zero, plus A to D and D to
A conversion.

These are Intel-supplied macros, and appear in the file SPAC20.MAC. They have
been checked for correct functionality, i.e., that given the right input in the correct
order, they will produce the described output.

They are, however, macros as opposed to commands. As such, the degree of error
checking is not (and cannot be) as extensive as for the basic set of built-in
commands. If the parameters supplied are not of the correct type or not in the
proper order, the results cannot be fully predicted or guaranteed; it is conceivable
that prior work could be altered or erased.

It is therefore extremely important, before using any macro, to understand its
expectations, as reflected in the nature and order of the parameters to be supplied.

10-1

Advanced Techniques: Filter Design Examples SPAC20 Compiler

#<kekr BUTTERWORTH FILTER MACRN #xwwa

*idC (FIIBUTTER.MAC
*
*DEF INE MACRG BUTTER %k tk sk rdxx s xR K kKA XL R L KR KRR X RS KR ER XK E XK AR H &
.%: This is o BUTTERUORTH FILTER GENERATOR for SPAC20; **%
. ¥
.*. Talling sequence :BUTTER ORDER., Fco., LARBEL where *kx
Lk PBUTTER calls the NACRO, LA
Lk ORDER is the order of the filter * X%
Lk Fco is the cut-off frequency in Hz *k*
LE LABEL is starting point for POLE numbering. *xx
¥
L EXAMPLE tRUTTER 6.500,234 *E%
EE this will generate o BUTTERVORTH filter L L L]
St of order 6, cutoff=500 Hz ., producing » k¥
% 3 complex poles labeled 234,235,236 %
LK
% DEFINE _?RUTSTARTY = (HPI >» + ¢ HPI/%0 > Jx* BEGIN THE xx
% DEFINE .2BUTDELTA = ¢ PIZXO ' ix* BUTTERUWORTH rxa
% DEFINE ?BUTINDEX = O Ik¥ INITIALIZE L0
% DEFINE _?BUTANGLE = 0 Pk YARIABLES; Lhbd
.+ REPEAT i%* BEGIN LOOP: *k ok
L¥ C?BUTINDEX = . ?BUTINDEX + 1 ix% CORRECT FOR *%k%k
LR .?BUTANGLE = .?BUTSTART - _7BUTINDEX *» .?BUTDELTA ;* SMALL X%
L * 1F .?BUTANGLE < .7BUTDELTA-/4 THER sx% ANGLE ERROR: LEES
¥ .?BUTANGLE=0 PRk * 4k
L% END ;j#% NOW CREARTE ko
R DEF POLC . ?BUTINDEX+%2-1) = -%1%COSC.?BUTANGLE, & THE LR
L re Z1*STIHC. ?BUTANGLE 3% NEXT POLE: * %k
¥ WHILE _?BUTINDEX + 1 <= (X0 + 1 > ¢/ 2 ;% CONTINUE ? Rk
L* ERND ;% END OF LOOP; L
% REM _?BUTANGLE s*x*% REMOVE ALL *k %
.* REM _2BUTINDEX ;%% VARIABLES skt
% REM _?BUTDELTA i#% 0F THIS MACRO: *k ok
% 'REM 7BUTSTART 1**DISPLAY POLES: *xk
LAFZ Jx*END BUTTERWORTH * %
C*ENM LA E R R R R A R R ST R R R S R S E R R R T E I R T)
*
¥ This macro generates o Butterworth filter with the cutoff frequency
*.,and the order specified. Foles and zeroes are placed in the S plane in o
*;<ircle centered around the origin. The following exanmple illustrates how
*;+t is invoked
®5

*1BUTTER 7.1000.0:creates a 7th order filt2r .cutoff=1000 hz

(The expansionhas b“een deleted.)

10-2

SPAC20 Compiler
POLE 0 = -222.%2087,974.92791,.CONTINUCUS
POLE 1| = -623.48980,781.83148,CONTINUOQUS
POLE 2 = -900.96893,433.88366,CONTINUGUS
POLE 3 = -1000.00000,0.00000000.CONTINUOUS; REARL
*;ithe macro expansion has been suppressed here

*:the macro outputs the PZ(poles and zeroces)

Advanced Techniques: Filter Design Examples

it has generated

*;Let's look at the respanse
*F3C=10,200,400,600,800,1000,1200. 1400
*Y3C=-29,1

*GRA GAIN

iset new frequency range
iset new vertical scale

GAIN
1
-9
-2

-4

-3
-~

-3

0O W G G0 e el ~a A A da s 0O

PR Y

BT

I

B 1H2

i “] ~ 1 ~ 1 ~

10 30

€00 700

200 300

400 S00

*;as expected

*

* X K X %

800 894¢
*:The filter exhibits a maximelly flat response characteristic

~] ~ 1 ~ 1

in the pass band

10-3

Advanced Techniques: Filter Design Examples

10-4

F R K KKK ® R EERREEDERFE R E X

%
. *DEF
.*xDEF
.*xDEF
% 1F
L*

.»x END
. *REN

LN R 2N K R R R K R R N R R R R A R
"

rem macro

RENM PZ

POLES/Z2EROES REMOVYED

pecxxx CHEBYSHEY FILTER MACRQ #xewx

A CHEBYSHEY FILTER GENERATOR FOR SPAC20

CALLING SEQUENCE :CHEB ORDER., Fco, LABEL., R.F.
WHERE ORDER is the order of the filter

Fco is the cutoff frequency in Hz

LABEL is the starting point for pole numbering
R.F. is the desired (or allovable) ripple factor in dB.

EXAMPLE ‘CHEB 6.500,23,0.12

this will generate o CHEBYSHEY filter of order

6, cutoff=500,and a peak-to-peak ripple of 0.12

dB, producing 3 complex poles labeled 23,24,25

.TCHEBYRIP=10*#(ABS(X3>/10)-1
.?SINHP=1

.?COSHP=1

.?CHEBYRIP <> 0 THEN

{TEMCHB .?SINHP, .2COSHP, 7?CHEBYRIP,XO

.?CHEBYRIP
.* DEFINE .?BUTSTART

¢ HPI > + ¢ HP1/%0

DEFINE .7BUTDELTA = ¢ PI/%0 >
DEFINE .?BUTIHPEX = 0
DEFIRE .?BUTANGLE=D
REPEAT
.?BUTINDEX = . 7?BUTINDEX + 1
. ?BUTANGLE=_ 7BUTSTART - . ?BUTINDEX*. ?BUTDELTA

IF . ?BUTAMGLE < .7BUTDELTA/4 THEN
.7BUTANGLE=C

]
IR
%
i
P®x
JE%
IE XY
2
Y]
%
i*
Y
i %
%
3%
;%
]
i
%
%
i

IET)
HE 12
FE T
L
T
T

BEGIN THE
CHEBYSHEV
BY SETTING
DEFAULT YALUES,
OR USE THE
SUB-MACRO
TO GENERATE
THE ¥ARIABLES.

A MODIFIED
BUTTERUWORTH
MODULE IS
INCORPORATED

TG GENERATE

THE APPROPRIATE
PATTERH OF
POLES FOR THE
FILTER. C(the &s
allow greater
readability of
the formula.?

REMOVE THE
YARIABLES
INTRODUCED
IN THIS MWACRO.
TG SAVE SPACE.

* %
*%
* %
* %
**

* %
* %
*%

* %k
*%
**
* %
*%
%%
* %
%
*%
%
* %
* %
* %
*%
'
'
* %
* ¥
*%
*%
* %

* %
* ¥
%
*%
*¥
* %

jekxkexx END OF CHEBYSHEY MACRO *xxexsxx

END
DEF POLC. PBUTINDER+X2-1)= &
~%X1% ?SINHP¥COS(?BUTANGLE >, 13
* %1% ?COSHP*SINC . ?BUTANGLE)
WHILE .7BUTINDEX + I <= ¢ %0 + 1 > / 2
EHD
REM . ?BUTINDEX
REM .?BUTDELTA
REM .?BUTSTART
REM .?BUTANGLE
REM .7?SINNP
REM .?COSHP
L*PZ
C#EN
*
*; TEMCHB

*DEF MAC TEMCHB
.#: CALLING SEQUENCE

X

. *DEF
.*DEF
. *DEF
L %%0=C .
LAl =C
L *REN
. *REH
C*REN
CxEH

*

*

TEMCHB SINHP,COSHP ,E**2, N

C?INYSKTENP=C1/8QRRCX2) +(SRRCC1/%2341))
C?7INVSRTEMPP= 2 INVSKTENP #%(1/%3)
.7INVSXTEMPN= . 2INYSKTEMP *#(-1/%3)

TINYVSEXTEMPP - . 7INVSHETEMPN)/2
. P7IRYSKTEMPP + . ?INYSXTEMPN)-2
.TINYSKTENP

. TINVSXTEMPP

.?INVSXTEMPN

GET VARIABLES FOR CHEBYSHEY FILTER #4SSRUNAGESSISE042080

% THIS IS THE e
44 SUB-MACRO. 122]
IR 2 2]
IR 12
213

;%% END OF TEMCHE ##%

*:This macro generates a Chebuyshev filter with the order,cutoff frequency

*:and peak-to-peak ripple as specified,

*;hou the macro may be invoked:
7,1000,0.,3 :7th order 1000 Hz filter., p-p ripple=3

*: CHEB

(Theexpansionhasbeendeleted.)

‘The following is an example of

SPAC20 Compiler

SPAC20 Compiler

POLE
POLE
POLE
POLE

[N SEE -

~28.145643,982.69361,CONTINUOUS
~-78.862358.,788.06072,CONTINUOUS
-113.959419,437 34060.CONTINUOUS
-126.4835404,0.00000000,CONTINUOUS:

*:The macro expansion hes been suppressed
*

*;1e%'s look at the response

*0GR GAIN

GAIN L T T O I T
s e,

X} AN LR AL AL A RS AL R R L U A A A 22
’ ’ ’

= . s

._,.
v

1raan R IRV

1
4

-13.

~“.‘
-13
-210.
-2
~22
_43
-25

)
-
G
L= ST e I TRDY IR SR SN i IR S Ve

BIKHZ .. .~ .t ! AR
10 30 200
*

RERL

Advanced Techniques: Filter Design Examples

- s
Iy -t
+4
+
+
+4
+
+
4 +
+4
+
+
++
- +
+
++
. ISR]
A 1 ~ | " 1

*;The plus signs represent the old gein curve of the Butterworth filter.

*;The peak-toa-peak ripple
*;the Butterworth filter

* X X X X X

is 3dB as specified and the dropoff

is faster than

10-5

Advanced Techniques: Filter Design Examples SPAC20 Compiler

10-6

* ® ¥

*lexkxx BILINEAR TRANSFORM MACRO

*InNC 'FL:BITRAN.MAC

*

*

*DEF MACRQ BTP

.*%:This macrec generates a Bi

o iCalling sequence
o* iEXANPLE

) f

L% ;

L* i

L& H

.%:BLTCOM X0, %1, POLE, ZERC
CRENM

*

*

*

*DEF MACRO BT2
.*:This macre Qenerates a b

Lk ;Calling sequence
% JEXAMPLE

L% H

& ;

. i

¥ H

.4 BLTCOM %0. X1. ZERO, POLE
L*EN

*

*

*

*DEF MACRO CKREAL

linear transform of o given pale
tBTP POLE # IN S, POLE & IN 2
teTP 3,90
this will toake o pole in the S plane.(P 3
end produce a pole in the Z plane (P 90
sand 1 or 2 extra zeroes (2 90 / 2 91
depending on whether P 3 is a real pole or conplex

ilinear transform of o given zero

tBTZ ZERO & IN S, ZERO & IN 2

iBTZ 3,90

this will take o zero in the S plaene., (2 3}
and produce a zero in the Z plane (Z 90>
and { or 2 extra poles (P 90 ¢/ P 91}
depending on whether Z 3 is real or conplex

.%, SUB MACRQ used in another sub-mecro BLTCOM to check for real poledzero and adjust

L angle etc

% IF ABS(COSCTPI*IMAGCZ2 X%X0?>)>r=1 THEN

L% REM %3 %1+1% JREMOYE EXTRA P2Z

L %3=SQRC%LS) JADJUST SCALE FACTOR
o IF REARL(%X2Z X0><{%4 THEN JADJUST RNGLE
*MO0Y %2 X1 TO RAD(XZ %1).0

o ELSE

CxMOY X2 %1 TO RAD(ZZ %1),P1

L ERD

C*END

LKEN

*

*

*

*DEF MACRO BLTCONM

.*: This mecro is called from BTP/BT2, which supply pole/zero
.%. labels .and the proper ’‘pole’/’zero’

*

%1 THE TRANSFORM EQUATION HERE IS

L%

o * S = (€ % (1-Z%%-1) / (1 + Z#x%-1)
.

C*DEF . 7QC = 2/7S3This is the constant € used :n thiszs macro
. #DEF . 7884 = - REAL (%2 %0)

#DEF 708 = IMAG (X2 %0>

LADEF U TRARD = C.T@C ¢+ 7QAIXXZ + 7QB **2

CHDEF . 7QR1 = 2%(7QR%*%2 + . 7QB¥%x2 - 7QCH*2)

LADEF . 7GR2

C.?2QC- . ?QRX%*2 + 70B%=%x2

.*DEF . 7QRADIUS = SQR (.7QA2/ .70A0>
.#0EF _7QANGLE = ACO0S (- .?QA1/ (. 7QA0%2x 7QRADIUS)
CxDEF %2 %1 = ?2@RADIUS. . ?7QANGLE, Z

4

3 %1 =1, PI, 2
C*DEF X3 (X141 = 1, PI, Z
N 2

.*» . ADJUST FOR REAL IF NECESSARY

L% DKREAL %0.,%1,%2.%3,.70¢C,
]
.*WRITE “SCALE FACTOR = ’,

L7840

1/ .20A40

SPAC20 Compiler Advanced Techniques: Filter Design Examples

i

C*REN . 7QC

*REN . 7QA
.*REM 7GB
LAREN . 70A0
L*REM 7QA1
CRRER L 7QR2

. *REN . 7QRADIUS

.¥REM . ?7QANGLE

L *EH

*

*:This macro performs a Bilinear transform and takes a poledzero in

*;rthe S plane and generates o pole/zero in the Z plene. Additional poles
*,ar zeroes meoy be added to the point 1,P1 in the 2 plane. The user

*iw:il have to cancel poles and zeroes that lie on top of each other (at the
*,1.,Fl point on the Z plane J)manually.

*] Let us try to generate a 1000 Hz Chebyshev filter in the 2 plane
*;First, we have to warp the frequency , end obtain an analog filter

*;then we can proceed to design a digital filter by a Bilinear transfeorm.
*:Let’s design a digital Chebyshev 7th order filter with a cutoff frequency
*;9f 1000 hz and 3dB ripple

*;First we obtain a prevarped anclog filter

®REH £2

4 POLES/ZEROES REMOVYVED

*T3=1/8000

TS = 1 . 24999975/10%%4

PCHER 7.2/7TS*TANCPI*TS*1000),0.3

(Theexpansionhasbeendeleted.)

POLE O = -186.53292,6512.7338,CONTINUOUS
POLE 1 = -522.65380.,35222.8076,CONTINUOUS
POLE 2 = -755.25665,2898 .4389,CORTINUCUS
POLE 3 = -838.27160.,0.00000000,CONTINUOUS; REAL

*; INVOKE THE BILINEAR TRANSFORM MACRO
*:8TP 0,1000

(Theexpansionhasbeendeleted.)

SCALE FACTOR = 3.3302805/10»%9
*:BTP 2,1200

(Theexpansionhasbeendeleted.)

SCALE FACTOR = 3.2849423/10%%9
*I8TP 1,1100

(Theexpansionhasbeendeleted.)

SCALE FACTOR = 3.3302805/10%%9
*:BTP 22,1200

(The expansionhas beendeleted.)

SCALE FACTOR = 3.4583420/10%%9
*!1BTP 3,1300

(Theexpansionhasbeendeleted.)

10-7

Advanced Techniques: Filter Design Examples

1 POLES/ZEROES REMOVED
1 POLES/ZEROES MOVED

SPAC20 Compiler

SCALE FACTOR = 5.9388589/10%»5

* 3

*P2

POLE 0 = ~-186.5329%92.,6512.
POLE 1 = -522.65380,5222.
POLE 2 = -755.25665,2898.
POLE 3 = -838.

POLE 1000 = 0.98019560.,0.
POLE 1100 = 0.94265810,0.
POLE 1200 = 0.91259267.,0.
POLE 1300 = (0.90043251,0.
ZERO 1000 = 1.00000000,3.
ZERO 1001 = 1.00000000,3.
ZERO 1100 = 1.00000000.3.
ZERO 1101 = 1.00000000,3.
ZERO 1200 = 1.00000000,3.
ZERO 1201 = 1.00000000,3.
ZERD 1300 = 1.00000000,3.

*lthe pcles labeled 0 to

*;fLet’s conpare with the

*

*;Let’s compare the gein

*REN P O THR 3

4 POLES/ZEROES REMOVED

*0GR GAIN

GALIN to.
1.

~3.

-1

-2.

-4

-3,

-5

>

@

~3
-3
-1t
-12.
-13.
~1%3.
~15.
~-{7
-1%.
-21
-21.
-22.
-23.
-23.

LK =20% JE7 IR~ - B DY IS X LA SR Bt I = BV IS oV)

8 1HZ

oo,
10 30

R
200 300
*;
*;The plus sign represent
*
*

L]

10-8

27160.0.00000000,CONTINUOUS

7338,.CONTINUOUS
8076,CONTINUOUS
4389,CONTIRUGUS

REAL
77321420,2
63161171.,2
33917749.,2
00000000, 2;
1415927.,2;
1415927.2;
1415927.2;
1415927,2;
1415927.2;
1415927,2; REAL

14158927.,2; RERAL

3 have been transformed to those PZ lobeled 1000-1302
analog Chebyshev filter

REAL
RERL
REAL
REAL
REAL
RERL

with the analog Chebyshev filter

+
‘4

N TIIITIT TSI T
!

1 ~ i A a

A A

s the points where the old curve differs

SPAC20 Compiler Advanced Techniques: Filter Design Examples

LY

:;#**** MACRO TO CODE AN ALL-POLE FILTER

:lNC ‘F1:CODFIL.MAC

:6EFINE MACRO COOFIL

::ZHQCRO to code an all-pole filter, with ell poles

Lx labeled consecutively starting at 0.

L) Scale faectors will be approximated from MAGRIN.

L The connent generated assuned thet the PZ are in the TS plane.
L. and therefore ocoutput the PZ position in cartesian coordinates

Lk
.*;WARNING : THERE 1S R (REM PZ > COMMAND WMICH WILL REMOVE ALL YOUR

L% PZ FROM THIS SESSION. THE P2 AFTER CODING WILL HAVE BEEN SRVED
Ly IN A NEWLY CREATED FILE TENPXX.THP

Y

Y

.#;CALLING SEQUENCE
3 1CODFIL FILENAME, NO. OF POLES., CONSTRAINT

L%

L% EX. :CODFIL LOPAS.SRC, 10, INST<C10

Lx this will code all poles lebeled 0 through 9, and all code
L*; generated vwill be appended to the file LOPAS . SRC. Each pole
L is coded with the constreint INST(10. In addition, scealing
3 fectors required between stages are also approxineted frona
L MAGAIK , and documented in the output file.

X

.%APP X0 ’;

.#*:START OF CODE GENERATED BY MACRO CODFIL

T

2

. :FHERD %0

.*DEF .7Q1I=0

L%

i

.%COUNT %X1:START LOOP FOR CODE GENERARTION

.*QPPEND X0 '’

.*APPEND X0 ’;CODE FOR POLE ’,.?QI.’ AT ’,REALCP .?72Q@1),°., ’,INAGCP .7Q@1)
.%CODPE POLE .?7Q1 %2

.®APPEND X0 CODE

.*APPEND X0 ’'; ABOVE CODE MNOVED POLE ‘', .?QI.’ TO ', REALCP .?2Q@L>,' , ’,INRGCP .?Q1)
.*APPEND X0 ’';°’

.* ?281=.201 + 1

.#END:END OF LOOP FOR CODE GENERATION

RN

RE

.®APPEND X0 '

.*#x:BE SURE TO DO THE FOLLOWING SCALIMG FOR ERCH STRGE
% PLUS ANY OTHER SCALING COMMENTED IN THE GENERATED CODE
Lwx

. #PUT TENPXX.TMP PZi:SAVE ALL PZ

.#HRITE *PZ SAYED IN TEMPORARY FILE’

e

.%:QSFAC X0, %1 JGET SCALE FACTORS
E¥

.#%APP %0 ' ERD OF CODE GENERATED BY NACRO CODFIL'
.*RENM .7Q1I

Ky

.#HRITE’ THIS MACRD HAS REMOVED ALL P2.

) THE PZ ARE SAVED IN THE FILE TEWPXX.QQQ.

L%% T0 RESTORE ALL P2 FROM THAT STAGE, TYPE

L%

e INC TENPXX.THP

L%

e’

.eEN

10-9

Advanced Techniques: Filter Design Examples : SPAC20 Compiler

10-10

*;

LR

*DEFINE MACRO QSFACL

L% SUB-MACRO 7O GET SCALE FACTOR

R

L WARNING : IF USED INDEPENDENTLY, THIS MILL REMOVE ALL YOUR P2
Lk

L* CALLING SEQUENCE t@SFAC FILE-NAKE. & OF POLES

.*DEF . 7Q81=1

.%DEF . 7QS1=LOG(MAGAIN)/LOGC2>;START APPROXIMATING SCALE FACTOR
. *DEF . ?QFS1=0

.*DEF .?7QFS2=0

.#DEF .7?082=¢

.#DEF .7?7QS0=0

EH

R

.ACOUNT %X1,GEY SCALE FACTOR

.%REM POLE %i-.?7Q@S1

.% ?QFS1=.720S1 MASK O.FFFFFFH

.#1F .?QFS1 <> 0 THENK:;ROUND UP

L% .?@81= .?2QS1 - .?7QFS1 + 1

. #END

L% ?@52=LOGCNAGAIN)/LOG(2)

.* ?2QFS2=.7QS2 MASK O FFFFFFH

.#IF .?2QFS2 <> O THEMW;ROUND UP

.® .?@82= .?7QS82 - .?7QFS82 + 1

.%END -

.% ?GS0=.7QS1-.7@S82 -
.®APPEND %0 ’ ;SHIFT RIGHT INPUT OF POLE & *,%1-.7aSI,* BY *,.?QS80.,’ BITS
.%.2Q51= 7Q82

L% 2@51I=.7@S1 + 1

. *END

N

L

.%*REM . ?QS1

.#REM .7QS1

.®REN .7QS2

.*REH . 7QS0

.*REMN .7?7QFS1
.*REM .7?QFS2
.»EN

*

*IHC :F1:FHEAD .MAC

*DEFINE MACRC FHEAD

.%:MACRO TO GIVE EQU HEADINGS TO FILE

.*;This macro only generates propagation for 1! stages.

.#:for more staeges,add in the necessary APPEND’S using the Editor

o
.%:CAaLLING SEQUENCE

X tFHEARD FILENARNME
.*APP X0 * INO_P1 EQU OUTO_PO’
.#APP X0 ’ INO.P2 EQU OUTO_P1’
.%QPP %0 ’ INO_P3 EQU OUTO._P2’
.%APP X0 ’ INO_P4 EQU OUTO.P3’
.%APP X0 * INO_PS EQU OUTO.P4’
.*aPP X0 * INO.P6 EQU OUTO_PS’
.*APP X0 ’ INO.P? EQU OUTO_P6’
.*APP X0 ’* INO_P8 EQU OUTO_P?’
.*APP X0 ° ING_P9 EQU OUTO.PS8’
.*#APP X0 ' INO_P10 EQU OUTO_P9’
.*EN

™

*;

*;.Code all the poles of e filter
*;First define the poles of this filter
*75=1/8000

TS = 1.24999975/10%%4

*DEFINE POLE 0=-100.1000.7S

*DEFINE POLE 1=-700,1000.7S

*:ADCONY :F1:FIL.SRC.,IN2,INO_PO

(Theexpansionhasbeen deleted.)

(This macro is explained in Chapter 11.)

SPAC20 Cdmpiler Advanced Techniques: Filter Design Examples

FILE CREARTED
*ICODFIL F1:FIL.SRC,2,INSTLIQ

(Theexpansionhasbeendeleted.)

Bt=i 30739128 B2=-0.8546339%3

INST=4
PILE O = 0.00000000,1939 9998,TS
BEST VET
PULE O = -441.27120,999 99993, TS
BEST YET
IHsT=
POLE O = 0.00000000,1333.33325.7TS
POLE O = -441.27120,999.99993, 7S
PILE 0 = 0.00000000,1140.39587, T8
BEST YET
POLE 0 = -85.008674,1999 9998, 7§
POLE 0 = -85.008674,1999.9998.7T¢
POLE 0 = -299.21356,1128.18835.75
IN5T=26
PILE 0 = 0.00000000,920.21374.T8
BEST YET
POLE © = 0.00000000,1140.39587.T$
PALE 0 = 0.00000000,1088.56665.TS
POLE O = -85.008674.1281.96582.7S
PALE 0 = -85.008674,1281.96582. TS
POLE 0 = -299.21356.1128. 18835,T5
POLE 0 = -85.008674,1068.34033.TS
BEST YET
PALE 0 = -96.479698,1999.9998, 7S
POLE 0 = -96.479698,1999.9998, TS
POLE 0 = -238.53721,1175.85119, 7S
IHST=7
PALE 0 = 0.00000000,978.85827, T8
POLE 0 = 0.00000000,1088.56665,7S
POLE 0 = 0.00000000,1092.88586,TS
POLE 0 = -85.008674,1068.34033,7S
PILE 0 = -85.008674.1068.34033.75
POLE 0 = -85.008674.1068.34033,7S
PILE O = -85.008674,1009.94763.T8
BEST YET
POLE 0 = -96.479698,1274.66479,TS
POLE 0 = -96.479698,1274.66479.7S
POLE 0 = -238.53721,1175.85119,78
POLE 0 = -132.187332,1024.49133.7T§
POLE 0 = -100.027595,1999_ 9998, TS
POLE 0 = ~99.279959.1999.9998.7%
POLE 0 = -245.81303,1170.32641,75
INST=
POLE © = 0.00000000,9393.08331,TS
PULE © = 0.00000000,1092.88586, TS
POLE 0 = 0.00000000,1092.82586.TS
PILE 0 = -85.008674,1009 94763,T5
POLE O = -85.008674,1009.94763,TS
POLE 0 = -85.008674,1009.94763,78
POLE 0 = -85.008674,1014.83471,7TS
POLE O = -96.479698,1057.95434. T8
POLE 0 = -96.479698,1057.95434, 7S
POLE 0 = -132.187332,1024.49133,T§
POLE 0 = -96.479698,998.55297, 7S
BEST YET _
POLE 0 = -100.027595,1272.38793,75
POLE 0 = -99.379959,1272.80419,TS
POLE 0 = -245.81303,1170.32641,TS
POLE O = -129.134002.1027.42260,7S
POLE 0 = -100.004852,1999.9998.75
POLE @ = -100.107147,1999. 9998, 15
P3LE 0 = -247.64495,1168.92749,75

10-11

Advanced Techniques: Filter Design Examples

10-12

REEREY

POLE 0 = 0. 00000G00, 1000 13574.73
FOLE 0 = 0.00000000,1G92.88586.78§
FILE 0 = ~-83.008674,1002.46459.78
PYLE 0 = -85.008674,1002. 4¢459.78
FILE 0 = -85.008674,1014 83471,7S
PaLE 0 = -2%.008674.1014.83471.78
POLE O = -96.479%9698,99%8.55297,7¢
FOLE 0 = -96.47969%98,998.55297,7T%
PILE 0 = -96.479698,998.55297.,7%
PHLE 0 = -96.479698,1003.52844.78
POLE 0 = ~100.027595,1054.70727,73
PALE @ = -99.379959,10595.30126.7S
POLE 0 = ~129.134002,1027 .42260.7S
PILE @0 = -97.203498,997 .82714.7¢
BEST YET

PILE 0 = -100.004852,1272 4024¢.7TS
PILE 0 = -100.107147,1272.33679,7S
POLE 0 = -247 .64495,1168.92749.,7TS
POLE @ = -127.612823,1028.87805,7S
POLE O = -100.008880,1999.2998, 7S
PILE 0 = -100.016181.1999.9998. 78
PILE 0 = -248 10377.1168.57666.7TS
IRS™=

PILE O = ~97.203498,997 82714,7T¢
BEST '

PERROR = -2 7965011, 2.172851§

i NDTE: MARKE SURE SIGNAL 1S <0.76190478

LDA DUT2.PD.0UT1.PO,.ROC

0UT2.FC=1.00000000%00UT:_PO

QUTI.PO, U

T0-.PO.ROC

QUT1.FP0=1.00000000*0UTO_PD

QUTO_PO, QU

Ti_PO,ROZ

GuUTO0.P0O=1.00000000+0UTO_PO+0

QUTO.PO. QU

T1.PO.,RO4

QUTO.P0O=1.00000000*0UTO_PC+0

GUTG.PO. QU

T2_P0.RO3

CGUTO.PO=1.00000000*0UTO_PO+0

QUTO.PO. QU

T2.P0.ROG

OUTO.P0O=1.00000000+0UTO_PO+0

fUTQ.PO. OV

T2_PO.R10

QUTO.PO=1.00000000%0UTO_PO+0

BUTG.PO., QU

T2_P0,R00

QUTO.P0O=1.0000000040UTO_PO+0

ADD CGUTO.PO.IN

0_PO,ROO

QUTO.PO=1.00000000+0UTO.PO+0
B2=-0.33301838

Bi=0 81611074

INST =4
POLE | = -882.54235,1999.9998,7§
BEST YET
POLE 1 = -441.27120,999.99993,78
BEST YET .
INST=5
POLE 1t = -882.54235,1333.33325.,7TS
POLE 1 = -441.27120,999.9999%93.7Ts
POLE 1| = -882.54235,643 .44508,7S
POLE 1 = ~624.41316,199%.9998,7TS
POLE 1 = ~740.48474,1999.9998,7TS
POLE 1 = -526.27990.908.74194,7TsS
BEST YET
IN3T=6
POLE | = -882.54235,920.21374.78
POLE 1 = -882.54235,643.44500.7¢
POLE 1 = -882.54235,792.42419,78
POLE 1| = -624.41516,783.65319,TS
POLE 1 = -740.48474,590.33453,7¢
POLE 1 = -526.27990,908.74194,78
POLE 1 = -624 .41516,986.73602.7S
BE3T YET
POLE 1 = -709.42401,1999.9998,7%
PILE 1 = -709.42401,1999.9998.78
POLE 1 = -549.43231,881.42303,7¢

.25000000*CUT1_PO

.31250000*0UT1_PO

.31250000s0UT1.PO+0.
.31250000%0UT1_PO+0.
.31250000%0UT1_PO+0.
.31250000+0UT1.P0O-0.

.31250000*CUTI.PO-0.

125000000+0UT2_PO

14062500080UT2.P0

141601562*0UT2_PO

85839843+0UT2_PO

SPAC20 Compiler

85839843+0UT2.P0+1.00000000*INO_PO

SPAC20 Compiler

54233%,978

.54235,792
.54235,784
.41516,986

.83827, TS
.42419.78
.39038, TS
.73602.,7S

48474,1063.76843. TS

.41516,986.73602.7S
.48474,964.17120,7¢

42401,649

.42401,649.

43231,881

.509%46,958.

.02075.7¢
02075.78
.42303,78
435196¢,7¢S

02026,1999.9998, 7S

.88989,1999.9998, TS

35443,874.23944.,78

54235,993

.54235,783
.94235,784
.41516,998
48474,1014.92211,78

.48474,9%64

48474,958

42401,1091.25781,78
.42401,1091.25781.78
.909%46,958.

42401,9%9%6

02026,665.
.8898%,662.

35443,874

24188,956.

.08331.1¢
.85223.,7¢
.53430.,7¢
.29034.7¢

.17120.7s
.08459.7¢

45196.7S
.21044, 7S

§8825.,7S
33392, 7S
.23944.,7%
59979,1¢S

.94952,1999.9998, 7S

02026,1999.9998,71¢

.84350,872.42010.7S

54235,1000.13574, 78

.54235,784 53314, TS
.54235,784 .53375,T¢
.41516,999.72717, T8
.48474,1002.42456.7S

.48474,957
.48474,958
.42401,99%6
.42401,99%e6
.42401,99%6

42401,990

.02026.,904
.88989, 202
.24188, 956 .

.67767.,TS
.19348,.7¢
.21044,78
21044, TS
.21044,7S
.42437.7%
.42840, 753
.25109.78
59979.78

INSTa?
POLE | = -882.
POLE 1 = -882
PILE 1 = -882
POLE 1 = -624
POLE 1 = -740.
BEST YET
POLE 1 = -624
POLE t = -740
8EST YET
POLE 1 = -709.
POLE 1 = -709
PILE 1| = ~549.
POLE 1 = -651
POLE 1 = -700.
FPOLE | = -701
POLE 1 = -$555.
INST=8
PJLE 1 = -882.
PILE 1 = -882
POLE 1| = -882
POLE 1 = -624
POLE 1 = -740.
BEST YET
POLE 1 = -740
POLE 1| = -740.
POLE 1 = -709.
POLE 1 = -709
POLE 1 = -651
PALE 1 = -709.
BEST YET
PILE | = -700.
POLE | = -701
PILE 1| = ~S585S5.
POLE 1 = -683.
POLE 1 = -699
P3LE 1 = -700.
POLE 1 = ~556
INST=9
PJLE 1| = -882.
POLE 1 = ~-882
POLE 1 = -882
POLE 1 = -624
POLE 1 = -740
POLE 1 = -740
FOLE 1 = -740
POLE 1 = -709
PALE 1 = -709
P3LE 1 = -709
F3LE 1 = -73%.
PILE 1 = -700
POLE § = -701
PJLE 1 = -683
PJLE 1 = -7014
BEST YET
POLE | = -699
PILE 1 = -700
POLE 1| = ~556
POLE 1 = -654.
POLE 1 = -700
POGLE 1 = -557

.88989,1003.74481.,7T8

.94952,665.71081,7S
.02026,665.58825. 7S
.84350,872.42010.78

10968,955.66998,7S

.02026,1999.99%98, 7S
.58941,871.50683,7S

Advanced Techniques: Filter Design Examples

10-13

Advanced Techniques: Filter Design Examples SPAC20 Compiler

INST=9

POLE 1 = -701.88989,1003.74481,7S
BEST

PERROR = 1 88989235, -3.7448120

LDA QUT2_P1.0UT1.FP1,R00
OUT2_P1=1.00000000*0UT1_P1
LOA OUT1.P1,0UTO.P1.ROO
OUT1_P1=1.00000000*0UTO_P1
SUR QUTO.P1.QUT1_P1,ROZ
0UTO_P1=1.00000000=0UTO_P1-0.125000000*0UT1_P1
SUB QGUTO.P1.OUT1I_P1,RO4
© OUTO_P1=1.00000000=0UTO_P1-0.18750000*0UT1_P1
SUR UUTO.P1.,0UT2.P1,RO2
QUTO_P1=1.0000000020UTO_P1~0.18730000%0UT1_P1-0.25000000*0UT2_P1
SUB GUTO.P1.,0UT2.P1,RO¢
- QUTO_P1=1.00000000*0UTO_P1-0.18750000+0UT1_P1-0.31250000»0UT2_P1
SUB OUTO_P1,0UT2.P1,R06
QUTO.P1=1.00000000*0UTO_P1-0.18750000*0UT1_P1-0.32812500*0U72_P1
SUE CUTO_P1.0UT2.P1,RO8
QUTO_P1=1.00C000000*0UTO_P1-0.18750000*0UT1_P1-0.33203125+00UT2_P1
ARDD OQUTO_PI1.INO.P1,ROO
© OUTO_P1=1.00000000%0UTO_P1-0.18750000«0UT1_P1-0.33203125*00T2_P1+1.0000000
FILE DELETED .
PZ SAYED IN TENPORARY FILE
1 POLES/ZEROES RENMOVED
1 POLES/ZEROES REWOVED
THIS MACRO HAS REMOVED ALL PZ.
THE PZ ARE SAVED IN THE FILE TENPXX.0QQ.
TO RESTORE ALL PZ FROM THAT STAGE, TYPE

INC TEMPRX.THP

*ERIT

Following is the contents of the file created by the CODFIL macro.

;A0 CONVERSION ROUTINE ADDED BY MACRO ADCONY
IN2 .
IN2

IN2

NGP

NQP

cyrs

ADD TAR,.KM2.RO0,CHD&
NOP

HOP

cyT?

NOF *

NOP

cVTe

HOF

HG#

cY~s

NOP

NOP

CYT4

NOP

NGOP

cyT3

no?

NOP

cv-2

NQ#®

Na#

VT

HaP

Na®

cyTa

NOF

NP

LOa ING.PO.DAR ;SCALE INPUT HERE
SEHD OF MACRO ADCONY

10-14

SPAC20 Compiler

:

INQO_F1 EQU QUTOL.PO
IND_P2 EQU QUTO.P1
INQ_.PZ EQU OUTO.PZ
A P4 EQU OUTOLPZ
IND.P3 EQU QUTO_P4
IND_P6 EQU QUTO_PS
INJLP7 EQU QUTO_P&
INd.P8 EQU QUTO.P7
I P9 E@U OUTO_PS
Ia0.P10 EQU QUTO.PQ

Advanced Techniques: Filter Design Examples

JSTRRT OF CODE GENERATED BY MACRG CODFIL

bCQOE FOR FOLE 0.00000000 AT -100.000600. 1000.G0GOQ

.25000000%0UTI_ PO
.31250000%CUT{_PO
.31250000*0UT1.P0+0.125000000%CUT2_PO
.11230000+0UTE_PO+0. 14062500G*QUTZ PO
.31250000+0UT1_PO+0_ 141601562+0UT2_P0O

.31250000%GUT1.P0-0.85839843*04T2_PC

5 NOTE: MAKE SURE SIGNAL IS <0.76130478
Lda QUT2.PO.QUT1.PO.ROQ
QUT2.P0=1.00000000*0UTI_PO
LDa JWTL_PO.QUTO_PO.ROG
0UT1I.PC=1.00000000%0UTQ_PO
ADD JUTG_PO.QUTI_FO.ROZ2
. 0UTO_PQO=1.00000000%0UTO_PD+0
ADD BUTO_PO.OUT1.PO.RO4
QUTO_PO=1.00000000*0UTO_PO+Q
ADD QUTO_PO-QUT2_PO.RO3
OUTO_PC=1.0000000C0*0UTO_PO+0
ADD JUTO_PO.QUT2_.PO.ROG
. QUTQ.FO=1. QGOQQOQOSCUTO_FO+0
ADL JUTO_PG.QUT2_FO.R1G
QUTO_PC=1 . 00000000*0UTO_FO+0
sSue SUTO_PO.QUT2.P0.ROCQ
s . QUTQ.PO=1.000000QGO*0UTO_PO+0
RDL GUTO_FPO. ING_PO,ROO

; GUTO_PCQ=1.00000000%0UTO_PO+0 .

: aBOYE CODE MOVED POLE 0.000Q0QGQO

i

31250000%0UT1_P0-0.85839843+0UT2_P0+1.00000000*INC_PG
TO -%7.2034%8 , 997.82714

;CQDE FOR POLE 1.00000000 AT -700.00000, 100C.00000

Lba
Ltba
sug
sug
suge
Sug
sug
sug

ADL

GUT2_P1.0QUT1.P1,.RCO
QUT2_Pi=1_00Q000000*0UTI_P1

SUTI.P1.QUTO.P1.ROQ

© OUT1I.P1=1.00000000*0UTQ_P1

SUTO.P1.QUT1_P1.ROZ
OUTO._F1=1.00000000*0UTO_P1-0

QUTO_P1.QUT1.P1.RO4
CUTO_P1=1.00000000*0UTO_P1-0

QUTO.P1.0UT2_P1.,RO2

QUTO.P1=1.00000000*0UTO_P1-0.

JUTO_P1.0UT2_.P1.RO4

QUTO.P1=1.00000000*0UTO_P1-0.

JUTO_P1.0UT2_P1.,R0O6

OUTO_P1=1.00000000%0UTO_P1-0.

QUTO_P1.0UT2_P1.ROB
: OUTO.P1=1.00000000%«0UTO_P1-0
QUTO_P1.INO_P1.ROO

OUTO_P1i=1.00000000*0UTO_P1-0.
HBOYE CODE MOVED POLE 1.00000000

.123000000*0UT1_P1

.18750000*0UT1_P1

18750000+0UT1_P1-0.25000000*0UT2_P1
18750000+«0UT1_P1-0.31250000+0UT2_P1

18750000*0UTI_P1-0.32812500+0UT2_P1

.18750000%0UT1_P1-0.33203125+0UT2_P1

18750000+0UT1_P1-0.33203125+0UT2_P1+1.000000G0«INO_P1
T0 -701.88989 , 1003.74481

sBE SURE TO DO THE FOLLOWING SCALING FOR EACH STAGE
SPLUS ANY OTHER SCALING COMMENTED IN THE GENERATED CODE

iSHIFT RIGHT INPUT OF POLE & 1.00000000 BY 1.00000000 BITS
ISHIFT RIGHT INPUT OF POLE & 0.00000000 BY 4.0000000 BITS
JEND OF CODE GENERATED BY MACRO CODFIL

10-15

CHAPTER 11
-~ ADVANCED TECHNIQUES: OTHER
ROUTINES FOR SIGNAL PROCESSING

Introduction

The macros given as examples in this chapter go beyond filter design into more
general routines such as multiplication and division of variables, input/output
coding, and oscillators. They too are supplied in the file SPAC20.MAC. As
mentioned in Chapter 10, the intention in supplying these macros (in addition to
their immediate utility) includes their role as models for your own development of
macros, routines pertinent to signal processing and other functions important to
your 2920-based product development. As with all macros, particular attention must
be paid to supplying correct parameters in the appropriate order, to avoid erroneous
operation or output.

*DEFINE MACRO MULVYAR
Lxy

*

This mecro generaetes code for
¢ four quedrant, 9-bit multiplication of two variables.
Calling sequence :MULYAR OUTFILE,PRODUCT,NULTIPLICAND,MULTIPLIER.

EXAMPLE :MULYAR F . HUL.W.Z,Y
this will put in the file F.MUL the code to
inplement the equation W=Xx*xY

RPPEND %O 7 5 BEGIN MACRC MULVAR **esx’
AFPEND %0 * SUB %1, %1, kOO ; Cleer the product * !
APPEND %0 ’ LDA DAR., %3, ROO ; Multiplier to DAR * 7
APPEND %0 °’ ADD %1, %2, RO1. CRD?7 H * This *
APPEND X0 ' ADD %t %2, RO2, CNDe i * is the *’
aPPEND %0 * ADD %i, %2, RO03, CNDS ; * nultiply *
RPPEND %0 * ADD %1, %2, RD4, CND4 ; * process, *
HFFEND %0 * ADD L3 %2, RO0OS5, CND3 H * bitwise *’
APPEND X0 ° ADD %1, %2, ROG . CHD2 H * adding and * 7
APFEND %0 ’ ADD %1, %2, RO7, CHDI ; * shifting L
APPEND %3 ° ADD %t %2, R08, CHDO H * *7
APPERD %0 * Ssue %2, %2, Lot i These two supply *
APPEND %0 * ADD %1, %2, ROO, CNDS ; the correct sign. *’
RPPEND %0 ; END MACRO MULYAR *xdxsxx’

This performs o 9-bit multiply. If more bits of multiplier
precision are required, the high order bits of the nultiplier
mey be masked off, and the remaining bits shifted left and
loaded to the DAR. The masking operetion is necessaery to
prevent overflow saturetion. ¢ See RS52920 manual for more info)

The last twuo steps above can be eliminated if the nultiplier
is knoun to be positive. The first step must be elininated
.f the operation is to be of the fornm: ¥ .= Wx¥X + Y

F AR K KK KR K KX KK R RFEE KR K RE KRB LR R KRNF

Advanced Techniques: Other Routines for Signal Processing SPAC20 Compiler

*DEFINE MACRG DIV

*

* This macro generates code for ¢ four quedrant division

* of 2 veriables

#: Lelling sequence DIV FILE, DIVIDEND, DIVIDENDS$SCALE. DIVISOR. QUOTIENT.
* EXAMPLE tDI¥Y O F.DIV,XK.ROZ2.Y.4

* this will put in the file F.DIVY code to inplenent
* ; the equation W= C X * 2%2-2)/ (Y}

&

* #APPEND %0 ° i BEGIN MACRO DIV #sesxxxsdrxix’
* QpPFERD X0 ~’ ABS bvt, ®i., X2 i These two extract the *
* #PPEND %0 ' ABS Dv¥2, %3. ROO H nagnitudes. *°
* APPEND X0 ’ SUB DaR, DAR, RGO i This clears the DAR. L
*

* RPPEND X0 ° SUB D¥l, DV2, ROO, CNDS H This is L
* RPPEND Z0 * SUB D¥1, D¥2, ROt, CND?7’ L]

* APPEND X0 * SUB Dv¥L., D¥2, RO2., CHNDe H the divide. *’
.+ @PPEND X0 * SUB D¥i., D¥2, ROI, CHDS®

.x APPEND %0 * Sue b¥1, D¥2, RO4, CHD4 H progressing **
* aPPEND %0 ° SUB D¥1. Bv2, RO5, CKD3*

* QPPEND X0 ' SUB DVi. DV¥2, RO6, CND2 H ane bit *
* QRFPEND X0 ° SUB DVE, bY¥2, RO?. CHDPL®

+ QPPEND X0 ' SUB pvi, D¥2, ROB. CHNDO H et a time. * !
"

« wPPEND X0 ° adDD DaR. Kr4, Lot iThis forces overflow (#) *’
SFPEND X0 ¢ LDa 4, %i, Ri3 H These tua establish *’
* KPPEND X0 ° XOR x4, %3, R13 H the correct sign. *7
* APPEND %0 * XOR %4, DAR H %fer result te output. =’
* APPEND X0 * i END NACRO DIV ssssxsssansats’
*

*

* Hote thaet the first two operations extract the magnitudes for the

*: division. The DAR is cleared and the carry set by the third instruction.
*: After the division sequence. an overflow (#) will be forced by the 'abD’
#: instruction fourth from the end, if the dividend exceeded the divisor
#: ¢ note that SUB ... CNDS behaves differently from the other CHND inst).
*: The last three instructions serve to establish the sign of the result,
*: and transfer the result to the output. As the division is carried only
*, to nine hits, the sign correction routine is alloved to leave some

%: error in positions beyond the thirteenth.

*EN

»

DEFINE MACRQ SAW ’

+:THIS MACRO GEMERATES & SAWTOOTH WAYVEFORN

% "WRRNING: TS MUST BE ASSIGNED AN APPROPRIATE VALUE BEFORE CALLING THIS MACRGO.
.* "CALLING SEQUENCE: :SAN CODEFILENAME EXT. FREQUENCY(HZ>, ERROR(HZ), OUTPUTVYAR
*EXAMPLE: TO CODE A SAUTOOTH FOR 257 HERTZ HITH AN ERROR OF LESS THAN 0.S5H2
*:AND SAVE THE RESULTING COPE MODULE IN A FILE HANED SAN257 .ALS WITH THE

% :OUTPUT VARIABLE NAWMED SAWOSC , YOU ENTER:

.%. 'SAW SAM2S7 .ALS, 257. 0.5, SAWOSC

.«1F 1S=0 THEN ’

.2GRAPH INPULSE ; FORCE “SAMPLE RATE UNDEFIMNED* ERROR EXIT

. *ELS3E -

C«CODPE %3 = (%1 % TS * 4) % KM2 + %3 ERROR < %2 * TS % 4;DECREMENT THE SAWTOOTH
. *WRITE

.*«CODING COMPLETED - HNOW APPENDING TO FILE

Lkt

.*=4PPEND X0 CODE;BY FREQ X SAMPLETIME

.*AFPEND X0 ’'LDA DAR, X3’

.xAPPEND X0 ’ADD %3.KP2.L02.CNDS’:1F RESULT<CO. abDD 1

. ®END

.xEH

11-2

SPAC20 Compiler

*DEF INE MACRO ADCONYV
L

RDCONY MACRO to append to a file the A/D conversion
: rout ines

be adjusted eccerdingly.
EX. :(ADCONY FILTER.FIL ,ING, STAGEIIN

and put the result in STAGE{IN

X G OF R K K A E K K K A N KK

C*afP X0

%« A0 CONYVERSION ROUTINE ADDED BY MACRO ADCONY
XS

RS

N 5dh

e AP

Cx e HOIP

. &xCHTS

.= *pl0 DAR,.KM2,R00,CHNDe
R T

CEXHOR

.*3PFP %0 ‘CYT?

REX IR

R ENQPR

. ®alTe

L¥ NP

Y T 2 "
. ®s(¥TS

Lk e OP

L ®«NOP

w0 T 4

CEEHQP

Cx eNOQP

e elNT2

Lk eNQP

LR <P

_xepNT2

L «NAP

Lk eHOR

LxeleT g

.+l %2,0AR SSCALE INPUT HERE
.*¢. END OF MACRO ADCOKY

X

LxEH

*;

*DEFINE MACRO TRIANG

.*.THIS MACRO TRANSFORMS A SAWTOOTH INTO A TRIARNGULAR UWAYEFORM
.®:CALLING SEQUENCE:TRIANG CODEFILENAME EXT. OUTPUTYAR., INPUTVYAR
_*RPPEND %0 ‘LDAR %1.,%2°

.*APFEND X0 ‘ADD %1.KM4’'; SUBTRACT 172

.*APPEND %0 ‘ABS X1.,%1.L01’; TAKE ABSOLUTE VYALUE & DOUBLE 1T

. *AFPEND X0 ‘ADD %1.KM4'; SUBTRACT 1/2

C*EN

WRARNING The user shouild be aware thet the correct A/D conversion

: routine (the number of IN instructions, HOP'’s)is dependent
on the external environment of the system (clock rete,
input sample and hold capacitor etc.) and this macro should

"CALLING SEQUENCE ADCONY FILENANE, IKPUT STATEMENT. INPUT_NAME

this will put in the file FILTER.FIL the code
to sanple input port 0.,do a 9 bit A4/D conversion

Advanced Techniques: Other Routines for Signal Processing

11-3

Advanced Techniques: Other Routines for Signal Processing SPAC20 Compiler

*DEFINE MACRO SINFIT

.%:THIS MACRO TRANSFORMS A TRIANGULAR WAVEFORM OF AMPLITUDE 1/2
% INT0 & SINUSOIDAL WAYEFORM OF AMPLITUDE 1

% :CALLING SEQUENCE:SIKFIT CODEFILENAME EXT, OUTPUTYAR, INPUTVYAR
.*#aPPEND %0 ‘LDA X1.%2,L02°; THIS TRAHSFORMATIOM USES

.*APPEND %0 ‘SUB %1.%1,R02’; A PIECEWISE LINEAR APPROXIMATION
C*APPENRD X0 “SUB X%X1.%1,R01°; TO SINCPI*INPUTYAR)

. APPEND X0 ‘SUB %1.%2,R04°; WHICH 1S IMPLEMENTED USING
.*APPEND %0 ‘ADD %1.,%2,R01°; OVERFLOW SATURATIUN, THEREFORE
.*APPEND %0 *ADD X%X1.%2’'; LIMITING MUST NOT BE DISABLED.

C*EN

*;
*DEFINE MACRO SINOSC
.%;THIS MACRO GENERATES & SINUSOIDAL WAYEFORM AT A USER-SPECIFIED FREGQUENCY
.# CALLING SEQUENCE:
*:1SINOSC CODEFILENAME EXT, FREQUENCY(HZ), FREQERROR(HZI), OUTPUTYARNANE
% EXAMPLE: TO GENERATE CODE FOR A SINUSOIDAL OSCILLATOR WHICH HAS A FREQUENCY
.*%;0F 245 HERTZ, PLUS OR MINUS AT MOST 0.1 HERTZ., WITH AN OUTPUY NAMED 05C245S
. % ;AND APPEND THIS CODE TO DISK FILE MYCODE.ALS, YOU ENTER:
.t:SlHOSC HYtDDE.QLS, 245, G.1, 08C24S
SAV %0.%1,%2,SANWTOOTH
'RIQNG %0, TRIANGULAR, SAUTOQRTH
’*‘NFIT %0,%3, TRIANGULAR

The following are examples of invoking these macros. The invocation line calls the
macro by ‘‘colon name’’, e.g., :MULVAR, followed by the actual parameters to
replace the formals in the macro definition. The expansion of the macro then
follows, with execution delayed until every command has been verified as
conforming with the SPAC20 Compiler language. (It is possible for a valid macro to
expand into invalid commands due to the substitution of-actuals for formals.)

After this test is passed, execution of the macro proceeds from the first executable
command to the last, with the results displayed at the console (and on this listing
file). Thus the macro commands, with formals replaced, are seen twice. The first
two macros below illustrate this, and enable you to see fully the substitutions
performed. This double display has been suppressed in the later examples.

/10000
0.99999980/ 10+ %4

* I MULYAR F1iCHAP11 QUT.PRODUCT.MULTIFLICAND,.MULTIPLIER

This macro generates coude for
2 four quadrant, 9-bit multiplication of two variaebles.
Celling sequence (MULYAR OQUTFILE.PRODUCT.HMULTIPLICAND.MULTIPLIER.

EXAMPLE :MULYRR F.NUL.W.¥%,Y
this will put in the file F.MUL the ceode. to
implement the egquation W=X=*Y

APPEND :F1iCHAPIL QUT ; BEGIN MACRO MULYAR *##xxx’

#PPEND :F1:CHAPI11 . OQUT ' SUB PRODUCT, PRODUCTY, RGO i Clear the product *’
RPPEND (F1:CHAP11 .0UT ' LDA DAR, MULTIFLIER, ROC 3 Multiplier to DAR *?

APPEND :F1:CHAPIY . OUT ’ ADD PRODUCT. MULTIPLICAND, RO1, CND? J * This *?
#PPEND tF1:iCHAPI1 . OUT ADD PRODUCT, HULTIPLICAKD, RO2, CHDE 3 * is the *’
#wPPEND F1:CHAPLI1 . OUT ’ ADD PRODUCT, MULTIPLICANRL, RG3., CNDS § * multiply *!
HPPEND (F1:iCHAPIL OUT * ADD PRODUCT, MULTIFLICAND. RG4., CKD4 i * process. **
#PFPEND (F1:CHAP1L . OUT ° ADD PRODUCT. MULTIPLICAND. RGOS, CNDZ 3 * bituwise L
MEPEND (F1:CHAPIL . QUT ¢ ADD PRODUCT, HMULTIPLICAND. RGO6., CHD2 : * adding and **
SPPEND R MRS LR A 4 2 PRODUCT, WULTIFLICAND, RO7. CHD! i * shifting L
4PPEND (F1:CHAPIL . QGUT ' @DD PRODUCT, MULTIFLICAND, ROE, CNDO H * **
“PPEND (F1:CHAP11.0UT ' SUB HULTIPLICAND, MULTIPLICAND, LO% i These two supply
HPPEND :F1:CHAP11.0QUT * ADD PRODUCT, MULTIPLICAND, ROO, CNDS i the correct sign. *?
HPPEND :F1:CHAPLL OUT i END MACRO MULYAR **kwxsx’

‘

This perforns a %-bit multiply. If more bits of multiplier
precis:on are required, the high order bits of the multiplier
may be masked off. and the remeaining bits shifted left and
leeded to the DAR. The wmasking operation is necessary to
srevent overflow saturation. (See AS2920 nanuael for more info

The lest tuo steps above can be elimninated if the multiplier
:5 known to be positive. The first step must be sliminated
it the operaetion is to bhe of the fornm: ¥ = H*X + Y

¥ X K R K K X K B KK EKRHE K KKK E KR KX A E XK EEEE

i
=

11-4

SPAC20 Compiler Advanced Techniques: Other Routines for Signal Processing

24E
Lo
A00
ADLD
RO
ADD
RDD
ADLD
Abl
AdDL
SYB
ROL

4"

0l

* K OE K KB K X K F K F K W K K K R K X F K K KN F AKX kR KKK KN F RN KKK

ABL
ABS
S48
§4g
3ug
Sus
Susg
S
SUE
1]
S8
SuUB
ADD
LDA
RO
RQR

; BEGIN MACRO MULVAR ###xx

PRODUCT, PRODUCT, KGO i Clear the product *

DAk, MULTIPLIER, ROO ; Multiplier to DAR *
PRODUCT, MULTIPLICAND, RO, CND7 ; * This *
PRODUCT ., MULTIPLICAND, RO2, CNDe H * is the *
PRODUCT, MULTIPLICAND, RO3, CHNDS ; * multiply *
FRODUCT, MULTIPLICAND. kG4, CND4 H * process. *
FRODUCT . MULTIPLICAND, ROS., CHD3 5 * bitwise *
PRODUCT, MULTIFLICAND, RO6., CHDZ * adding and *
PRODUCT, MULTIPLICAND., RO7. CHND1 : * shifting *
PRODUCT, MULTIPLICAND, RO8, CHDOG 5 * *
MULTIPLICAND. MULTIPLICAND, LOI ;i Thece twe supply *
PRODUCT MULTIPLICAND, ROO., CNDS i the correct sign. *

5 END MACRO MULVAR *#xxxxx

v {F1:CHAP11 . OUT.DIVIDEND,RO3,DIVIDSOR,QUOTIENT

This macro generctes code for ¢ four quaedrant division
of 2 variables
falling sequence :D1% FILE, DIVIDEND, DIVIDENDS$SCALE., DIYISOR, QUOTIENT.
EXAMPLE tDIY F.DIY,X,RO02.Y.4
this will put in the file F.DIVY code to inplement
the equation W= C X » 2%x-2)/ (¥)

#PPEND t(F1:CHAPLIL . OUT . i BEGIN MACRO DIV #xsxskaxshnns’

AP PEND (F1:CHAPI1L . OUT * ABS Dvt, DIVYIDEND, RO3 5 These tuwo extract the *’
APPEND (F1:CHAP11.QUT * ABS bv2, DIYIDSOR, ROO H naghitudes. *’
#PPEND (F1iCHAP11.0UT ' SUB DAR. DAR., ROO 5 This clears the DAR. *

#PPEND (F1:CHAP1Y . OUT ° SUB D¥il, DYZ, ROO, CHDS H This is *

#PPEND iF1:CHAPt1 OUT * SUB bv1, D¥Z, RO1. CHND?7°

4PPEND :F1:CHAPIL . OUT * SUB D¥i, DV¥2, RO2, CHDe ; the divide, *

APPEND :F1:CHAPI1 QUT ° SUB bvi, DV2, RO3. CHDS’®

84PPEND ‘F1:CHAP11.0UT * SUB D¥t, Dv2, RO4, CHND4 5 progressing *?

#PPEND :F1:CHAP11.0UT ' SUB DV¥t, D¥Z, ROS, CND3*

APPEND :F1:CHAP11 . 0OUT °* SUB D¥1, D¥2, RO6., CHND2 3 cne bit *

PPEND :F1:CHAP11.0UT * SUB D¥t, D¥2, RO?, CHD1’>

APPEND :(F1:CHAPI1 . OUT ° SUB Dvt, D¥2, RO8, CNDO 5 at a4 time. *

GPPEND (FI:CHAP11.0OUT ' ADD DAR. KP4, LOt iThis forces overflouw (%) =’

SPPEND (F1:CHAP11 . OUT ’ LDA QUOTIENT, DIVIDEND. RI1Z i These two establish
#PPEND :(F1:iCHAP11.0UT ' XOR QUOTIENT, DIVYIDSOR. R13 H the correct sign.
APPEND :F1:CHAP11 . 0OUT ° XOR QUOTIENT. DAR s Xfer result to ocutput. =’
AFPPEND :(F1:CHAP1Y QUT i END MACRO DIV sexskrxtssxsss’

Note that the first tvo cperations extract the magnitudes for the
division. The DAR is cleared and the carry set by the third instruction.
#fter the division sequence, an overflow (#) will be forced by the ’ADD’
instruction fourth from the end, if the dividend exceeded the divisor
¢+ note that SUB... CNDS behaves differently from the other CHD inst .
The last three instructions serve to establish the sign of the result,
and transfer the result to the output. As the division is cerried only
%o nine bits, the sign correction routine is alloved to leeve sonmne
arror in positions beyond the thirteenth.

3 BEGIN MACRO DIV *ssssxxxtxiux

D¥1. OIVIDEND, RO3 i These twe extract the *

b¥2. DIVIDSOR, ROO H nagnitudes. *

DAK. DAR, ROO i This clears the DAR. *

bvt., D¥2, RO0, CNDS ; This is *

b¥i. D¥2, RO1., CHD?
o¥i. D¥2, RO2, CHD6 H the divide, *

b¥i., DYZ, RO3., CHNDS3

b¥i. D¥2, RO4., CHD4 5 pregressing *

b¥1. D¥2, ROS. CHD3Z

O¥1. D¥2Z, RO6, CNDZ 5 one bit *

D¥1. D¥2, RO7. CHDI ,
b¥1. Dv2, ROB, CHDO H at o time. *

DAR, KP4, LO1 ;This forces overflow (#) »*

QUOTIENT., DIVIDEND, RI1IZ H These two establish *
QUOTIENY. DIVIDSOR, R13 E H the correct sign. *
QUOTIENT., DAR H Xfer result to cutput. =

3 ERD MACRD DIV #¥dsthskarxdkx

*?
*?

Advanced Techniques: Other Routines for Signal Processing SPAC20 Compiler

* 3
*:ADCONY (F1:CHAPLY OUT.IN2,INPUTISY

CRDCONY MACRO to eppend ta a file the A/D conversion
rout ines .

"WHRNING The user should be svare that the cerrect A°D conversion
routine (the number of IN instructions, NHOP’s)is dependent
on the external environment of the system (clock rete. ;
input sample and hold capecitor etc.) and this macro should
be adjusted accordingly.

"CALLING SEQUEKCE ADCONY FILENAME,INPUT STATEMERT, INFUT_NAME

EX. :ADCORNY FILTER.FIL ,INO, STAGEIIN
thic will put in the file FILTER.FIL the code
to senple input port O0.,do @ 9 bit A/D conversion
end put the result in STAGELIN

TR S T I S A 2 A

N

:*HFP FliLHaF11 . OUT
4% /D CONYERSION ROUTIHE ADDED BY MACRO ADCONY

RS S

LRy NP
EEI DI
L ARCHTS

. ralD DAR.KM2,R00.CHDS
e OP

i ap e

.#aFP (F1iCHAPI1 . QUT ’C¥T?
LxeNOP

¥ s NP

L DR Y

RS

C*xeNOP

. 4«04 TS

. * 2P

Cx e iap

LeEiYT 4

LR NP

eI

x4 T3

L # S HOP

L& Op

CERCHT 2

Ceepap

&k NGP

RSB

o ENQP

CH AP

REEDA AN

LR EHOR

X

. kxLDA INPUTIST,DAR :SCALE INPUT HERE
-r+ END OF MACRO ADCONY
N

L xEY

11-6

SPAC20 Compiler Advanced Techniques: Other Routines for Signal Processing

;A CONYERSION ROUTINE ADDED BY MACRO ADCONY
INZ

INZ

INZ

NOFP

NP

C¥Ts

RDO DPAR.KM2,RO00,CHDE
NaFP

NOP

CyT?

NOP

NOF

CY¥7Ts

NOP

NOP

CYTs

NOF

NGF

C4T4

NOP

NOf

C¥T3

NaF

Ng#

cyr2

NGP

NaF

CvTi

NOFP

NOF

[a)]

NOP

NQF

LDA INPUTIST.DAR ;SCALE INPUT HERE
JEND OF WMACRO ADCONY

H

H

iSRW F1:CHAP11.0UT,257,0.3, SRUASC

* THIS MACRO GENERATES A SAVTOOTH WAVEFORN

WARNING: TS MUST BE ASSIGNED AN APPROPRIATE VALUE BEFORE CALLING THIS HACRO.

.#:CALLING SEQUENCE: :SAW CODEFILENAME EXT, FREQUENCYCHZ), ERROR(HZ), QUTPUTVAR
.* EXAMPLE: 7O CODE A SAVWTOOTH FOR 257 HERTZ WITH AN ERROGR OF LESS THAN 0.5HZ
E'Y
*
¥

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

‘4HD SAYE THE RESULTING CODE NOGDULE IN A FILE NHAMED SAW257.ALS WITH THE
‘OUTPUT YARIABLE NAMED SAWOSC , YOU ENTER:

L%, tSAW SAW257 .ALS, 257, 0.5, SAWOSC

.#IF TS=0 THEN

.#GRAPH IMPULSE i FORCE “SAMFLE RATE UNDEFINED"™ ERROR EXIT
.. *ELSE 4
.. «CODE SAWOSC = (257 * 1§ * 4) % KM2 + SAVOSC ERROR ¢ 0.5 * TS *» 4;DECREMENT THE SARWTOOTH
.=YRITE °

.«xCODING COMPLETED - NOW APPENDING TO FILE

R 2

.. #APPEND 'F1:CHAP11.0UT CODE:BY FREQ@ X SARPLETIME

.. *APPEND 'F1:CHAP11.0UT 'LDPA DAR;SAUQSC’:

.. *AFPEND :F1:CHAP11.0UT ’*ADD SABOSC.KP2,L02,CNDS’*;IF RESULTCO, ADD 1
. ¥ERD

. *xEH

Advanced Techniques: Other Routines for Signal Processing

ADD SRWOSC.KM2,R03
© SAW0SC=1.000000C0*SAWOSC+0.125000000+KN2
SUB SAWOSC,KM2,RO06 .
SAWOSC=1.00000000+SANOSC+0.109375000%KN2
ADD 3AUOSC,KM2,RI0
SAWDOSC=1 . 00000000*SAWOSC+0 . 110381562%KN2
ADD SAWOSC,KM2.,R12
SAWOSC=1.00000000*SAUWOSC+0.110895703*KN2
SUE SAWOSC.KM2.RO7
SAWOSC=1.00000000*SALOSC+0.102753203%KM2

CODIMG COMPLETED - HOW APPENDING TO FILE
ADD ZAWOSC,KM2,R03
SAWOSC=1 . 00000000C*SAWABC+0 . 1250000002KN2
SUB ZAWOSC,KM2,R06
. SAWOSC=1.00000000G+SAWOSC+0 . 109373000#KNH2
ADD SAWDSC.KM2.R1C
- SANOEC=1 . 00Q00000*SAWUSC+0 110351562+KN2
ADL IAWUSC o ERMEZ.RiZ
SAWOSC=1 00000N000*SAWNSC+0 110595703%KN2
SU8 SAWOGSC, KMZ2,RO7
SAWOSC=1.00000000*SAV0SC+0.102783203%KN2
LA DAR.SAWOSC
ADD 3SAUWOSC,KF2,L02Z,CNDS

*

* K E K R ®E X B X X F ¥ ¥

tTRIANG :F1:CHAPIL . QUT.OUTL, INT

.#%;THIS MACRO TRANSFORMS A SAWTOOTH IKNTO A TRIANGULAR WAYEFORHM

.% CALLING SEQUENCE:TRIANG CODEFILENAME EXT, OUTPUTYAR, INPUTVYAR
CHRAPPEND (F1:CHAPILL . OUT ’LDA OQUTI, IHT'

.*APPEND 1F1:CHAP11 . OUT °ADD OUT1.KM4’; SUBTRACT 1/2

_*APPEND (F1:CHAP131 . OUT ‘ABS QUTI1,0UT1,LO01’';: TAKE ABSOLUTE VYALUE & DOUBLE 1I7
. *#aPPEND :F1:CHAP1Y .0UT ’ADD OUTI1,.KM4’; SUBTRACT 1/2

L #EN

LDda QUTL, INY

ADD GUTL, KN4

ABS QUTL,0UTL,LO2

ADD VUTE,KHM4

*

*:3IHF1T F1:CHAPLIL1 OUT.OUT.IN

.#:THIS MACRO TRANSFORMS & TRIANGULAR WAVYEFORM OF AMPLITUDE /2

.#, INTO A SINUSOIDAL WAVEFORM OF AMPLITUDE 1

. #CALLING SEQUENCE:SINFIT CODEFILENAME EXT, OUTPUTVAR, INPUTYAR
.*QPPEND (F1:CHAP11 . QUT ’LDA OGUT.IN,LO2’; THIS TRANSFORMATION USES
_*AFPEND :(F1:CHAP11.0UT ’SUB GUT,QUT.RO02’; A PIECEWISE LINEAR APPROXINATION
. #AFPPEND (F1:CHAPI11 QUT *SUE BUT,.QUT.RD1’; TO SINCPI®IKPUTYAR)

%3P PEND :(F1:CHAP11.0UT *SUB OUT.IN,RO4’; MHICH IS IMPLEMENTED USING
.*aPPEND (F1:CHAP11.0UT ’ADD OGUT,IN,RO1’; OYERFLOW SATURATION., THEREFORE
L AnPFEND (F1:CHAP11 . 0UT ‘ADD OUT,IN’; LIMITING MUST NOY BE DISABLED.
L%EH

LR GUT.IN.LO2

SUe QUT.0UT,ROZ2

SUB GUT.O0UT.RO1

SuB OUT.IN,RO4

ADD QUT,IN,RO1

RDD GUTLIN

*

*

SPAC20 Compiler

SPAC20 Compiler Advanced Techniques: Other Routines for Signal Processing

*

L R IR R R R 1

SINGSC (F1:CHAPLY . OUT,245.,0.1.08C

THIS NACRQ GENRERATES A SINUSOIDAL UWAVEFORM AT A USER-SFECIFIED FREQUENCY
‘CALLING SEQUENCE:

:1XINOSC CODEFILENAME EXT, FREQUENCYC(HZ), FREQERROR(HZ), OUTPUTVARHAME
TEXAMPLE: TO GENERATE CODE FOR A SINUSOIDAL OSCILLATOR WHICH HAS A FREQUENCY
.O0F 245 HERTZ, PLUS OR MINUS AT NOST 0.1 HERTZ, WITH AN OUTPUT NAMED 0SC245
AHD APPEND THIS CODE TO0 DISK FILE NYCODE.ALS, YOU ENTER:

'3INOSC MYCODE.ALS, 2435, 0.1, 0SC24S

:Sal SF1:CHAP11.0UY,245,0.1,8R6TO00TH

CTHIS MACRO GENERATES A SAWTOORTH WAYEFORNM

CHARNING: TS MUST BE ASSIGNED AN APPROPRIATE VALUE BEFORE CALLING THIS MACRO.
«;CALLING SEQUENCE: tSAY CODEFILENAME EXT, FREGQUENCY(HZ), ERRORCHZ), OUTPUTVAR

‘AND SAYE THE RESULTIHG CODE MNODULE IN & FILE NAMED SAW257 ALS WITH THE
POUTPUT YARIABLE NAMED SAWOSC , YOU ENTER:

>‘J=SAH SRW257 . ALS, 257, 0.5, SAWOSC

»

&

L
.*EXANPLE: YO CODE A SAUTOOTH FOR 257 HERTZ WITH AN ERROR OF LESS THAN 0.5HZ

x

*

«

«IF T$=0 THEW

*GRAPH IMPULSE 3 FORCE “SAMPLE RATE UNDEFINED® ERROR EXRIT
. *ELSE
#CODE SAHTOOTH = (245 » TS % 4) * KMZ + SAWTOOTH ERROR < 0.1 * TS » 4;DECREMENT THE SAWTOOTH
*URITE °
+*CODING COMPLETED - NOW APPENDINKG TO FILE
ER

#MPPEND (F1:CHAPI11 0UT CODE:BY FREG X SANPLETIME

*APPEND (F1:CHAPIL1 . GUT ’LDA DAR.SANTOOTH’;

*APPEND (F1:CHAPIL1 . QUT ‘a0D SAWTOOTH.KP2.1L02,CNDS’;1F RESULTCG, ADD 1
*END

egn

L&

(TRIANG :F1:CHAPLL OUT.TRIANGULAR, SANTOOTH
4+ THIS MACRO TRANSFORMS A SAWTOOTH INTO & TRIANGULAR WAVYEFORM
+ CALLING SEQUENCE:TRIANG CODEFILEMNANE EXT, OUTPUTYAR, INPUTVAR

. *APPEND (F1:CHAP11.0UT ‘LDA TRIANGULAR.SAWTOOTH’
EHFPEND (F1:CHAP11 . OUT *ADD TRIANGULAR,KN4‘; SUBTRACT 1/2

*HPPEND F1:CHAP1Y . OUT “ABS TRIANGULAR, TRIANGULAR,LO1’: TAKE ABSOLUTE YALUE & DOUBLE 1I7

:AﬁﬁPPEND iF1iCHAPI1.0UT ADD TRIANGULAR,KM4’; SUBTRACT 1./2
C*EM

. *

CSINFIT 'FL1:CHAPI1 . QUT,0S8C.TRIANGULAR

«:THIS MACRO TRANSFORMS A TRIANGULAR WAYEFORN OF AMPLITUDE 1/2
«:INTO R SINUSOIDAL WAYEFORM OF AMPLITUDE 1

CALLING SEQUENCE:SINFIT CODEFILENAMNE EXT, OUTPUTV¥AR. INPUTYAR

.. *APPEND (F1:CHAP11.0UT ’*LDA OSC.TRIANGULAR,LO02’; THIS TRANSFORMATION USES
.. *AFPENMD :F1:CHAF!11.0UT ’SUB O0SC,O0SC.R02’; A PIECEWISE LINEARR APPROXIMATIGCN
C+APPEND (F1iCHAPI1.0UT *SUB OSC.OSC.RO1’; TO SINCPI*INPUTYAR}

*APPEND :F1:iCHAP11.0UT *SUB OSC, TRIANGULAR,RG4’; WHICH 1S INPLEMENTED USING

:.*APPEND iF1:CHAP11.0BT *ADD OSC., TRIANGULAR,.RO1’; OVERFLOW SATURATION., THEREFORE
.. #AFPPEND :F1:iCHAP11.0UT “ADD OSC, TRIANGULAR’: LIMITING MUST NGT BE DISABLED.
C*EH

. ®

£

11-9

Advanced Techniques: Other Routines for Signal Processing

ADO

ADD

abd

AdDD

SUB

Co0t

AbD

ADD

RDD

sus

Lba

ADD

* X ® K K ¥ X F %

11-10

SHWTOOTH,.KN2,

SAWTOOTH=1.
SAWTOOTH,KNM2,

SRYTCOTH=1 .
SAWTOOTH,KN2,
! SAWTOOTH=1.
SAWTOOTH,KN2,
.00000000*SAUTOOTH40 . 129272460%KN2

SAWTOOTH=1

SABTOOTH,.KM2,
SAWTOOTH=1.

HG COMPLETED

SAWTOOTH.KN2,

SAWTOOTH=1.
SAUWTOOTH,.KNM2,
.00000000#SAKWTOOTH+0 . 128906250*KNH2

SAVTOOTH=1

SAWTOOTH,KM2,
.00000000#SAWTOOTH+0, 129150390»KM2Z

SARUTOOTH=1

RO3
00000000*SAWTOOTH+0.125000000%KH2
RO8
G0000000«SABTOOTH+0 . 128906250=KN2
R12
GO000000*SARUYTOOTH+0 . 1291503%0+KN2Z
R13

ROS
00000000*SAUTOOTH+0 . 098022460%KN2Z

- NOW APPENDING TO FILE

RO3
00000000*SAWTOOTH+0.125000000*KH2
ROB

R12

SAUTOOTH,KM2,R1Z

SAWTOOTH=1

SAYTOOTH.KN2,
.00000000*SAUTOQTH+0 . 098022460%KNZ

SAWTOOTH=1
UAR,SAUTOOTH

.00000000*SAUTOOTH+0 . 1292724604KN2

ROS

SAWTOOTH,KP2,L02,CNDS
TRIANGULAR,SARUWTOOTH
TRIANGULAR, KN4
TRIANGULAR, TRIANGULAR,LOL
TRIANGUL AR, KN4
0SC,TRIANGULAR,LO2

0SC.0SC.RO2
0SC.0SC,RO!L

OSC, TRIANGULAR, RO4
OSC,TRIANGULAR, RO
OSC,TRIANGULAR

SPAC20 Compiler

APPENDIX A
HELP MESSAGES

*HELP
2s% Help is available for the following items. Type HELP followed #*»
#*+ by the iten name. Do not type the angle brackets. <(For nmore LE L
##*+ informetion on the help command, type HELP HELP.) o
Filters and Filter Responses!
CEFINE,CFILTERSRESPONSE) ,GREF ,HOLD ,NOYE.<POLESORSZEROSLOCATION) .,
{POLESORZEROES)>, RENCGVE
Graphics:
FSCALE.GRAPH, YSCALE
Code Generation:
BOUNDS.CODE.,(MASCONSTRAINT >, KPZSCONSTRAINT>
File’Display/Conpound Coanends:
SCOMPOUNDSCOMMANDS) L EVALUATE ,EXIT,.KFILESCOMMANDS >, HELP ,NACRO,
{PATHSNAMEY ,URITE
Miscellaneous:
<BOOLEANSEXPRY, {CONSTAKT >, CEXPRY, (FUNCTIOR),<IDENTIFIERY,
{CINTEGERSEXPR> CNUMERICSCONSTANT) , (PRIMARY>, (P2$REF>, {SPACSREF),
{STRINGY, {SYHBOL >, <SYNBOLICSREF>
»*
*HELP *
(BOOLEANSEXPRY> - R Boolean valued (TRUE or FALSE) expression:
{BOOLEANSPRIMARY> L(BOOLEANSOPERATOR> {BOCLEANSPRINARY)>1»
Boolean primaries connected with logical operators.
Ex C.T < 10> AND C. 1 > 5
(BOOLEANSOPERATOR>!
“ND [a]3 XOR
(BIOLEANSPRINARY) - Either a comparison of two (arithmetic) expressions
or ¢ parenthesized Boolean expression!
fHOT1 <EXPR> {CONMPARISON> (EXPR>
Ex! SINC.X¢1/. %> > .8
((BOOLEANSEXPR>)
Ex: CC.T <> 08) OR C . ILH1)
CCOMPARISOND:
{ {= = >= > <)

<BQUNDS> - Piecevise linear upper and lover bounds on the gain.
Used during coding to constrein the gain of the coded filter.
LBOUND/UBOUND
Display the current lower or upper bound setting.
Ex: LBG
LBOUNDZUBOUND = CEXPR> AT <EXPR> [, [,1 <EXPR> AT <EXPR)I»
Each <EXPR> AT (EXPR)> establishes o vertex of the piecevise

linear bound. Two commas in a row indicate a don’t care region.
Ext UBG = 0 AT 10, 0 AT 59, -20 AT €0, 0 AT 61, 0 AT 1000
LBG = -{ AT 10, -1 AT 59, , -1 AT 61, -1 AT 1000

The deviation of the gain from these bounds is revealed by the
(SPACSREFYs MSQE., and MERROR, aond the <FILTER$RESPONSE)> GERROR.
S2¢ {FILTERSRESPONSE), <GRAPH>, <(PZ$CONSTRAINT)>, <SPACSREF>.

CODE - Command to generate 2920 assenbly code into code buffer or
display current code buffer contents:
COLE
Display current code buffer contents.
CODE POLE/ZERO <(INTEGERSEXPR) [(PZS$CONSTRAINT>]
Generate code for specified pole or zero subject to the specified
constraints. The default constraint is PERROR(O0.0, INST<20
{(1.e. minimize positional error in fewer than 20 instructions).
Ex CODE POLE 1t
CODE 2ERO 3 MSQE< .01, INST(Hit
CODE <IDENTIFIER> = <PRIMARY) *» (IDENTIFIER> [+ <IDERTIFIER>]
[HASCONSTRAINT)>]}
Generate code for multiplication of one variable and a
constant, leaving result in enother (or same) variable.
17 the third {IDENTIFIER) iz present, it nust be same as first;
code generated adds the result of the multiplication to the
first variable. The default constraint is
ERRORS (PRIMARY>/2#%%16, INST(20.
Ex: CODE ¥ = (1/3)#X+Y
CODE INO.P1 = .03*DAR INST(S
COD X1 = .965*X1 ERROR<.002

A-1

HELP Messages

CCINPOUNDSCOMMANDS) - Several compound commands exist!
IF {BOOLEARNSEXPR)> [THEN] <CR> CORIF <(BUOLERNSEXPR> [THENI
ZCRY ...)% CELSE <CR>] END
Here indicates any number of commends (possibly compound).
{CR> is carriage-return.
Ex: IF MAGAIN>1 THEN
MRITE ’SCALE BY ’, LOG(MAGAIN)>/LOG(2)
END
Two other compound conmends allow looping!
REPEAT C(CR> [..... [MHILE/UNTIL <{BOODLEANSEXPR> (CR>1})s END
The conmands are repeated until the WHILE or UNTIL claouse
permits termination or until the Escape key is pressed.
COUNT <INTEGERSEXPR> [..... [WHILE/UNTIL <BOOLEANSEXPR> <CR>1I1x»
ENnD
As in REPEAT, but loop terminates after o specified nunber
of passes. .
Ex! COUNT 20
EVALUATE SINC . N*TPI/360)

N o= N+l
END
(CONSTANT> - R keyword which has o fixed numeric value.
[3.1418927?
TPL Twice PI
HPl Haolf of PI1
DEFINE - Command to define a pole or zero., a symbol, or a macro:

OEFINE POLE/ZERD C(INTEGERSEXPR> = (POLESORSZEROSLOCATION)
Create a pole or zero at the specified locetion.
Ex: DEFINE POLE O = -200.0.7TS
DEFINE 2 1000 = 1.01,PI1/10.,2
DEFINE . <SYMBOLS$NAME> = <EXPR>
Add <SYMBOLSNANE> to end of symbol table and assign it a value.
Ext DEFINE .LABEL = 100

DEFINE MACRO <MACSNAME) <CR> {CR)> EM
Define o macro te consist of » a sequence of commands.
Formal paremeters %0, %1, ..., X9 will be substituted when macro
is invoked. <(CR) is cerriage-return.

See MACRO, SYMBOL.

EVALURTE - Comnmand to evaluate an expression. The value is displayed
in decimal scientific notation.
EVALUATE <EXPR>
Ex: E¥YAL C(LOG(MAGRIN)ZLOGC(2)) MASK 255

EX!T - Command to exit the debugging session and return control to

ISIS-IT.
EXIT
CEXZPR> - R numeric value expressed as en algebraic sequence of
operand{s) and operator(s). It haes the following fornm:
(OPERAND> [COPERATOR> <(OPERAND)> I*
COPERAND !

[<UNARY$OP)>] (PRIMARY)
CUHRRYSOP >

+ -

(PRINMARY)>:
CHUMERICS$CONSTANT) CEx! 1979, 0.10118. O.FFFS5H, 3.14159D)
< 3YMBOLICSREF) CEx:? .MAXSAGRIN, .STRGES$2)
{SPRACSREF > CEx: TS, INST, MSGE»
CCONSTRHT > CEx! PI, HPI, TPID
{FUNCTIDN> (<EXPR>) (Ex: SINCTPI*TS*60), GAINCED)?
{PZ$REF)> CEx: RERLSKPOLE 1), ANGLEC(Z 99
CCEXPRY>) (Ex! CLOGCAGAINI/LOG(2)), C(.FRED+14D))
({BOOLEANSEXPR>) (TRUE=1, FALSE=0; Ex: €. %<100)
COPERATOR):
* % * / + - nop HASK

A-2

SPAC20 Compiler

SPAC20 Compiler HELP Messages

CFILESCOMMANDS> - Several commands manipulate ISIS files or devices:

LIST <PATHSNANE>
Send o copy of all conscle input and output to specified
log file or device. To terminate copying, type LIST :CO:.

DISPLAY <PATHSNAME)
AR command to display an ISIS file. The display can be
interrupted with the Escape key.

Ex! ODISPLAY :F1:P2 THP

PUT/APPEND <PATHSNANME> ([(FILESOBJECT> [, <FILESOBJECT)> s}
Write the specified objects to an ISIS file or device. PUT
indicates the file should be deleted first if it already
exists. RAPPEND indicates the objects should be appended to
the end of the file which will be created if it does not
yet exist. If no objects are specified, commands are output -
which when INCLUDED will recreate the current state.

Ex: PUT :F1:P2.THP P2
APPEND :F1:FILTER.SRC ’'; STAGE *, .1, CODE

INCLUDE <PATH$NAME)>

Take commands from specified file.
CFILESOBJECT>!
CODE P2 MACRO SYNMBOLS BOUNDS (STRING> CEXPR>

(FILTERSRESPONSE> -~ One of the following filter responses:

GAIN Gain in decibels as o function of frequency in Hertz.

RGAIN Absolute gain as a function of frequency in Hertz.

PHASE Phese delay in radians as a function of frequency in Hertz.
GROUP Group delay in seconds as a function of frequency in Hertz.
GERROR Signed deviation of GAIN from the LBOUND and UBOUND

in decibels as a function of frequency in Hertz.
See <BOUNDS>. -
IMPULSE Inpulse response as a function of time in seconds.
STEP Step response oas a function of time in seconds.
Each <(FILTER$SRESPONSE)> can be used as a command tc tabulate the values.
Each can be graphed. Each except INPULSE and STEP cen be used as a
function in an expression, e.g. AGAIN(6D)
Ses “FUNCTIOR>, GRAPH., <PRIMARY)>.

FSCALE ~ A command to display or specify the frequency range of interest
during calcutation and grephing of filter responses:
FSCALE
Disptay current frequency scale.
FSCALE = <EXPR)> , <EXPR)> [, <EXPR>1»
Breok the horizontal range of the graph into o nunber of piecevise
logarithmic segments. A nearly linear frequency scele can be
created this way. At most 10 values are allowed.
Ext FSC = 10, 10000 (initial condition)
FSCALE = 1000,1500,2000,2500,3000,3500 (nearily linear?

C(FUNCTION> - A keyword vwhich invokes a predefined function of its
argument when aeppearing in a <PRIMARY)> or (EXPR)>.

SIN Sine function

Cos Cosine function

TAaN Tangent function

ASIN Inverse sine function

ACOS Inverse cosine function

RTAN Inverse tangent function

EAP Exponentiation of e (2.7182817)

LOG Natural logarithms (inverse of EXP)

SaR Squere root

ABS Absolute vatlue

{FILTERSRESPONSE) Any frequency dependent filter response can be
invoked as o function: Ext PHASEC(6()

See {EXPR)>, (FILTERSRESPONSE)>. <(PRIMARY>

GRAPH -~ A conmmand to graph a filter response or bound:
GRAPH
Redisplay the previous graph.
GRAPH <FILTERSRESPONSE>/LBOUND/UBOUND
Graph the specified filter response or bound.
Ex: . GRAPH GAIN
OGRAPH C(FILTERSRESPONSE)>/LBOUND/UBOUND
Greph the specified filter response or bound on top of
the last curve graphed. 01ld cutve is indicated with plus signs
in displey.
Ex: OGR LBOUND
See (BOUNDS>, <FILTERSRESPONSE).

A-3

HELP Messages SPAC20 Compiler

GREF - Set or display the reference frequency and decibel gain used
in calculating gain:
GREF

Display current gain reference.
GREF = (EXPR> AT <EXPR)
Specify the gain to be a certain velue at a certein frequency.
Ex!: GREF = 0 AT 440 (0 decibels at 440 Hz)
The absolute gain (AGAIN) at the reference frequency must be nonzero.

HELP - Commnand to display a summary of the syntax of a command
or conponent of o comamand.
HELP

Display o list of all items for which there is help.

- Items appearing in this list without angle brackets are
conmand keywords. ltems with angle brackets ere command
components .

HELP CIDENTIFIER)
Displeu summary of specified item. <(IDENTIFIER) may contein
dollar signs, but not angle brackets.
Ex: HELP POLESSSORZERNQES
HELP =
Display the sunmaries of all items.
The following notation is used in the help summaries:

£al means A is optional

(Als means A is optional and may be repeated any number of times.
4/8 means either A or B may be used.

<A meons there is also o help sunmary for the command

component A.

HOLD - Command to turn on or off semple and hold conpensation, or te
display the current state:
HOLD
Displauy hold on or off.
HOLD ON
Turn compensation on. This should be used when examining the
charaecteristics of entire 2920 filter implementation.
HOLD OFF

Turn conpensation off. This should be used when calculating
scaling factors between filter stages or when using the SPAC20
compiler to design analog circuits.

CIDENTIFIER> - A sequence of one or more of the following characters:t
ABCDEFGHIJKLMNOPQRSTUVNRY2012345678907_
The first choeracter con not be ¢ decimal digit and only the first 31
charucters ere significant. Dollar signs ere alloved but are ignored.
Ex: SCALESFACTOR TTENP S iNO.P12

CINTEGERSEXPRY - An expression <EXPR> with an integer value:
Ex: PI - (PI MOD 1)
15.000
CLOGCNAGAIN)/LOG(2)) MASK 233
See <(EXPR>.

(MASCONSTRAINT> - In o CODE multiplication command, specifies the
constraint guiding the code generation:t
ERROR < CEXPR> [, INST < <CEXPR>1
Generate fewer than a specified nunber of instructiens which
effect o nultiplication by o constant which differs by less
than a specified value from the desired constant.
The default INST constraint is INST<C20.
Ex: ERRORC .0001
ERRORCD, INST<10 {mininize ERROR with 9 instructions)

INST < <EXPR)
Generate fewer than o specified number of instructions which
nultiply by a constent differing by less than one part in 2%+16.
Ex: INST < 10
After coding has been completed. the (SPACS$REF> ERROR gives the
signed difference betveen the requested nultiplier and the actual
nultiplier. See CODE, <SPACSREF>.

A)

SPAC20 Compiler HELP Messages

HACRO - Macros are user-created, naned, command sequences. Parameters
are substituted when macros are invoked. HBacros ere analagous to
the ISIS SUBMIT facility:
MACRO (<MACSNAMEY> [, <MACSHANE) I+)
Display all, or only the specified macro definitions
DIR MACPRO
Display macro directory, i.e. the list of defined macro names.
REMNOYE MACRO C<MACSNAME)> [, <MACSNAME)> 1I*]
Remove all., or only the specified macro definitions.

DEFINE MACRO <BACSNAME)> <CR> <CR> EN
Define a macro to consist of, ¢ sequence of commands.
Formal paroameters %0, %1, ..., X9 will be substituted when nmacro
is invoked. {CR> is carriage-return.

CMACSNAME> L<PARAMETER)> [, [<PARAMETER)> 11#]
Invoke a macro with specified paraneters.

Ex tH0G POLE 1, .001
{PARAMETER) - Any sequence of tokens not conteining a comma or <CR>,
or a quoted string (STRING) possibly containing ¢ comma or <(CR>

Ex: POLE .1+1

‘h,B,C’

(MaC$NANE> - Aany <IDENTIFIER).

BOYE ~ Command to move the locations of existing poles and zeroces.
MOYE <(POLESSORS$ZEROES)> TG CONTINUOUS/TS/Z
Nove some poles or zeroces to a different plene. MNovement from *

CONTINUOUS/TS to 2 involves the metched-Z transformn, and in
the other direction, the inverse matched-2Z transforns.
Ex: MOYE P2 TO T3 (convert to sanpled filter)
MOVE (POLESSOR$ZEROES> TO {(POLESORSZEROSLOCATION>
Redef ine the position and possibly the plane of the specified
poles or zeroes.
Ex: MOYE POLE & TO -20,1010 (same plane)
MO¥YE ZEROES 70 0.0,78 (new plane?
MOYE <POLES$ORSZEROESY> BY <EXPR> ., <EXPR>
Change the coordinates of the specified poles or zerces by the
two expression values.
Ex! MOYE P 10 BY .01.0 (change radius if Z-plane pole)
MOYE POLES BY 0.10 (change frequency if S-plane pcle)

(NUNERICSCONSTANTY - A sequence of numeric choracters (digits)

0pr snaily including o pericd (".") followed by an optional suffix to
spec.fy the constant’'s base. If no suffix is specified, then the
constant is eveluated with default decimal suffix. Dollar

signs may be used to improve readability, but are ignored.

Ex: 0.1001$101148B (binary)

.999%D (decinal)

1FA%H {hexadecinal)

1.5 (default decimal?

(PATHNAME> -~ The name of an ISIS~I11 file or device:
Ex: tF1:BYPROG .

tF2:TEST.001
LP:

CPOLESOR$ZERC$SLOCATION> - The location of e pole or zero on one of the
three planes:
CEXPRY , <EXPRY [, CONTINUGUS/TS/2}

Specifies coordinates in a plane. If CONTINUOUS (S-plane) or
7S (sampled S-plane), coordinates refer te real and imaginary
conponents expressed in Hertz. If 2 (sampled Z-plane),
coordinates are polar; the first is the radius and the second
is the angle in radians. If no plane is specified when
defining a pole or zero, the default is CONTINUOUS. If no
plane is specified when moving a pole or zero, the plene remains

unchanged.
Ex: -5, 60 <60 Hz)»
-5, 60, TS (60 Hz sanpled)
.99, TP1/S., 2 (One fifth the sample rate)

HELP Messages SPAC20 Compiler

{POLES$ORSZEROESY> - A specification af o range of poles, & range of
zeroes., all poles, all zeroces., or all poles and zeroes:
POALE <INTEGERS$EXPR)Y [THROUGH <{INTEGERSEXPR>)
One or more poles specified by integer labels.
Ex: PO 7
POLES 10 THRU 19
POLE
All poles.
ZERO (INTEGERSEXPR> [THROUGH <INTEGERSEXPR>]
One or more zeroes specified by integer labels.
Ex: ZERO 32
ZERGES 10 THRU 19
2ERO
All zeroes.
P2
All poles and all zeroes.

CPRINARY> -~ A numeric value. It has the following foras!
{NUNMERICSCONSTANT)> CEx: 1979, 0.1011B, O.FFF3H, 3.141359D)
(SYNBOLICS$REF) CEx: .HAXSAGRIN, .STAGES$2)

(SPACSREF> CEx: TS, INST, MSQ@E)

{CONSTANT> CEx! PI, WPI, TPI)

{FUNCTION> (CEXPR>) CEx! SINCTPI+TS*60)>, GAINCE0))
<PZS$REF) CEx: REALCPOLE 1), ANGLE(Z 99))
C<EXPR>») ’ CEx! C(LOGCRGAINI/LOGC2)), (. FRED+14D))
({BOOLEANSEXPR)) CTRUE=1, FALSE=0: Ext C.X<100))>

CPZ$CONSTRAINTY -~ In a CODE pole’/zero comnmend. specifies the
constraint guiding the code generation:
PERROR < <EXPR> ., <EXPR> [, INST ¢ <EKPR>]
Generate fever than a specified numnber of instructions
which inplement a pole or zero whose coordinates differ fron
the original coordinates by less than the two specified velues.
The default INST constreint is INST < 20.
Ex: PER < 5,10, INST < 14
PERROR < 0.0 (mininize positional error)
MSBE < CEXPRY [, INST ¢ <EXPR>]
Generate code so that the mean squared deviation of the gain
from the gain bounds (i.e. MSQE) is less than a specified value.
Ex: HSQE < .1
MSQECO, INST!10 (ninimize MSQE with 9 instructions)
MERROR ¢ <EXPR> [, INST < <EXPR)>]
Generate code so that the maxinum cbsolute deviation of the gain
from the gain bounds ¢(i.e. MERROR) is less than a specified value.
Ex: MERROR < .1
MERCO, IHST<10 (minimize MERROR)
INST < CEXPRD
Mininize positional error. Sane as PERRORCO.0, INSTC CEXPR).
See <(BOUNDS>, CODE., {SPACSREF)>.

(PZ$REF> - A reference to a coordinate of ¢ pole or zero location,
used as a (PRINARRY> in an expression (EXPR>:
REAL ¢ POLE/ZERO C(INTEGCERSEXPR)> 3
X coordinate of specified pole or zero in Certesiaon coordinates.
Ex: REAL (POLE 3>
IMAGINARY ¢ POLE/ZERD (INTEGERSEXPRY)
Y coordinate of specified pole or zero in Cortesiaon coordinates.
RADIUS (POLE/ZERDO C(INTEGERSEXPR>)
Radius of specified pole or zero in polar coordinates.
ANGLE ¢ POLE/ZERO {INTEGERSEXPR))
Angle in radians of specified pole or zero in polar ccordinates.
For o pole or zero in an S-plane the X and Y coordinates are the sane
as the (POLESORSZEROSLOCATION)> and the radius and angle ere the resuilt
of converting these to polar coordinates. For a pole or zero in the
2-plane the raedius end angle are the same os the (POLESORSZEROSLOCATION)
and the X and Y coordinates are the result of converting these to
rectanguler coordinates.

A-6

SPAC20 Compiler HELP Messages

REMOYE ~ Command to delete a pole or zero. a symsbol., or a mecro.
REMOVE (POLESORSZ2EROES>
Remove poles or zeroes specified by integer labels.
Ex! REMOVYE POLE 1
REM 2 .BLOCK#1 THRU .BLOCKS$1+10
REMOVE POLES
REN P2
REMOYE C(SYMBOLICSREF> ([, (SYMBOLICSREF)> I«
Remove one or nore symbols from the synmbol table.
Ex: REMOVE .LaBELX
REMOVE SYMBOLS
Remove all synmnbols from the symbol table.
REMOVE MACRO <(MACSNAME) [, <MACSHANE)=
Remove one or more macroc definitions.
Ex: REMOVE MACRO CHEB
REMOVE MACROS
Remove all macros.
Se= MACRO. SYNMBOL.

C(SPACSREF> - A keyword reference to an SPAC20 system variable. Each may
be displayed bu sinply typing the keyuvord. Those which are not read
only may be changed by typing the keyword followed by *“=* and en <EXPR).
Each may be used as a (PRINARY)> in an expression <EXPR>

ERROR Signed error in nultiplier from laoast code nultiplication
conmand (read onty).

INST Nunber of instructions in code buffer generated by last
code command (read only).

MAGAIN Meximum obsolute gein over frequencies in the
frequency scale (read only).

MERROR Mex imum absolute deviation of gein from lovwer and upper
bounds (see BOUNDS) (read only)

MSRE Mean square deviation of gain from lower and upper bounds
(see BOUNDS)> (read only).

TS Samnple time in seconds (positive nonzero)

R2IZE CRT screen width. Also determines frequency scale and tine
szale widths (12{=R512E(=79).

f312E CRT screen height (S{(=YSIZE<=25)

{STRING> - A quoted string of characters used in o WRITE, PUT, or
APPEND command, or used as e macro parameter.
Eat HELLO?
‘POLE 1 i ANYTHING’’S ALLOMED IN A STRING’

SYMBUL - Refers to a symbol in the symbol table:
{3YMBOLICSREF)
Display the value of o synbol.
Ex: .STAGES!
.SuM
SYMBOL
Display the entire synbol table.
GEFINE . <SYMBOLSNAME)> = <EXPR>
Add <SYMBOLSHAME> to end of symbol taeble and assign it a velue.
Ex ! DEFINE .FACTOR = _13FH
(SYMBOLIC$REF)> = <EXPR)
Chaenge the vatue of a symbol.
Ex: .LABELX = §
.FACTOR = .ONE/16
REMOVE <SYMBOLICSREF> [;<SYRBOLICSREF) 1»
Remove one or nore symbols from the symbol table.
Ex! REMOYE .SAVEIT
REMOVE SYNBOL
Remove all symbols from the synbol teble.
(STMBOLSNAME> - An <KIDENTIFIER).

{S’MBOLICSREF> - A reference to a synmbol in the symbol taeble.
See IYMBOL for related commands.

. {SYMBOLS$NAME>
Access symbol In table with specified symbol nawne.
Ex: .LOOPSINDEX

WRITE - A command to displau to the console Cand list device) strings
and/ar expression values, Most useful in compound commands and macros!
WRITE (WRITESOBJECT> [, <WRITESOBJECT>1#
Ex: WRITE ’CODING POLE NUMBER’, .I, ' NOW’
{URITESOBJIECT>:
{STRING> <EXPR)

A-7

HELP Messages

YSCALE -~ A command to display or set the vertical grophics scele!
Y3CALE
Display the current YSCALE setting. 1If the setting is ARUTO,
the current minimum and maximum are elso displayed.
YSCALE = AUTO
Specify thet the vertical scale ' is to adjust to fit the
mininum and moximuw of the curve being graephed.
YSCALE = (EXPR> , <EXPR)
Specify o fixed vertical scale.
Ex: YSCALE = -PI.PI

*ERIT

A-8

SPAC20 Compiler

APPENDIX B
KEYWORDS: DEFINITIONS
AND DEFAULTS

Constants, Operators, Functions

ABS
ACOs
AND
ANGle

ASIn
ATAN

COos
EXP

HPI
IMAg

LOG

MASK

MOD

NOT
OR

Pl
RADius
REAI
SIN
SQR

TAN

Operator, used in expressions, gives absolute value of the argument
appearing to its right, e.g., ABS (Y), ABS (X-Y)

Function used in expressions, giving the arc cosine of the argument

Operator, used in logical expressions, gives bitwise conjunction of
the argument appearing to its right with the argument to its left;
both must be boolean expressions or integer expressions

Function used with a Z-plane pole or zero argument; returns the
angle of the object; ¢.g., ANG (POL 2)

Function used in expressions, giving the arc sine of the argument

Function used in expressions, giving the arc tangent of the
argument

Function used in arithmetic expressions, gives cosine of the
argument appearing to its right

Function wused in arithmetic expressions, gives powers of
e (=2.718281)

Constant, value 3.1415926/2 = 1.57079633

Function used with a S-plane pole or zero argument; returns the
imaginary part of the object; e.g., IMA (ZER 12)

Function used in arithmetic expressions, gives natural log to the
base e (2.718728)

Operator, used in arithmetic expressions, gives bitwise conjunction
of the argument appearing to its right with the argument to its left;
unrestricted e.g. PIMASK 0.FFFFH = .14159, PI MASK 2 = 2.00

Function used in arithmetic expressions, gives the remainder from
dividing the argument to its left with the argument appearing to its
right

Operator, used in logical expressions, gives the negation of the
argument appearing to its right

Operator, used in logical expressions, gives the inclusive or
(disjunction) of the argument appearing to its right with the argu-
ment to its left. Each must be a boolean or an integer expression
Constant, value 3.141592653

Function used with a Z-plane pole or zero argument; returns the
magnitude of the object; e.g., RAD (POL 217)

Function used with a S-plane pole or zero argument; returns the
real part of the object; e.g., REAL (ZER 6)

Function used in arithmetic expressions, gives sine of the argument
appearing to its right

Function used in arithmetic expressions, gives square root of the
argument appearing to its right

Function used in arithmetic expressions, gives tangent of argument
appearing to its right

B-1

Keywords: Definitions and Defaults . SPAC20 Compiler

TPI Constant, value 3.14159265%2 = 6.2831852

XOR Operator used in logical expressions, gives exclusive or
(disjunction) of the argument appearing to its right with the argu-
ment to its left. Each must be a boolean or an integer expression

Commands

APPend File command, writes out the specified (or default) objects to the
specified file, either creating a new file or adding to the end of an
existing file (Chapter 7)
CODe Creates AS2920 assembly language code for the current poles and
. zeros or for equations; also abbreviated C, CO

COUnt Compound command, establishes maximum number of times
command block is to be executed

DEFine For symbols, creates an entry in a table and attaches a numeric
value to it;

for poles or zeros, the value is the coordinates and plane of that
object;
for macros, it is a pointer to the macro’s block of commands

DIR Used only in DIR MACRO command; lists all the names of
macros currently available

DISplay File command; copies the named file to the console

EVAluate Gives the decimal numeric value of the argument appearing to its
right

EXIt Terminates the current SPAC20 Compiler session

GRAph Entered alone, this displays the last curve plotted; if a filter

response is supplied as an object, e.g. GRAPH PHASE, this
displays the graph of the values of the object specified, using the
latest appropriate scales; also abbreviated GR

If the object is LBO or UBO, the lower or upper bounds are
graphed

HELp Types explanatory message about the argument appearing to its
right; if the item is *, types all such messages

HOLd Command to correct attenuation due to sample-and-hold
distortion: if ON, corrects AGAIN by multiplying by | sin(X)/X |,
where X = TS*FREQ*PI, and corrects PHASE by adding X, and
GROUP by subtracting PI*TS; also abbreviated H, HO

IF Compound command, often wused in macros, establishes
conditional flow of control within a command block

INClude File command, executes contents of specified file as if typed as
commands at the console p

LISt File command, establishes file copy of all console interactions

MOVe Command to change location or plane (or both) for one or more

poles or zeros by specifying an increment or final value for each
coordinate; also abbreviated M, MO

OGRaph Displays the graph of the values for the filter response entered as its
argument, simultaneously superimposing the last curve plotted;
also abbreviated OG

If the object is LBO or UBO, the lower or upper bounds are
graphed

SPAC20 Compiler
PUT

REMove

REPeat

WRilte

Objects
AGAIn

BOUnds
ERRor
FSCale

GAIn

GERror

GREf

GROup

IMPulse
INSt
LBOund

MACro

‘MAGain

MERror

Keywords: Definitions and Defaults

File command, writes out the specified (or default) objects to the
specified file, either creating a new file or writing over an existing
file of the same name (Chapter 8)

Deletes from a table one, several, or all entries: poles, zeros,
macros, symbols (Chapters 2, 3, 9)

Compound command, establishes unlimited repetition of
commands block (subject to optional WHILE or UNTIL clauses)
(Chapter 9)

File command, puts out one line to the LIST file and console;
usually used in compound commands

Absolute gain, expressed as a multiplier, due to all existing poles
and zeros; also used as a function with an expression (as its
argument), giving the absolute gain at that (expression’s)
frequency; also abbreviated AG

Represents the piecewise linear bounds, in PUT or APPEND
commands, or for display of LBO and UBO

Absolute error in multiplier from last CODE command

Frequency scale for computing and graphing filter responses,
initially 10, 10000; establishes the range for the specific points (up
to 69) of evaludtion

Gain in decibels due to all existing poles and zeros, normalized by
the current setting of GREF; also used as a function with an
expression (as its argument), giving the gain at that (expression’s)
frequency; also abbreviated G, GA

Deviation of the gain response from the bounds; also used as a
function with an expression (as its argument), giving the gain error
at that (expression’s) frequency

Reference gain, expression AT expression, meaning a gain of
expressionl AT frequency expression2

Group delay of the filter (= the negative of derivative of the phase
with respect to the frequency); also used as a function with an
expression (as its argument), giving the group response at that
(expression’s) frequency

Filter output in reaction to a unit up-impulse at time zero (i.e. an
instantaneous jump from 0 to 1 and return to zero)

Number of AS2920 assembly language instructions created by

latest CODE command

The lower of the bounds on gain, defined as piece-wise linear
regions; intially —1000000 AT 1; also abbreviated LB

Entered alone, an object keyword to display all macro command
blocks; when one or more macro names follow it, only the named
macros command blocks are displayed; this word can also be a
modifier keyword to qualify the effect of DEFINe or REMOVE,
and it appears as a necessary part of the DIR MACRO command.

Object keyword giving the maximum absolute gain taken over the
frequencies in FSCALE

Maximum absolute error in gain relative to the bounds, considered
over the frequencies in FSCALE

B-3

Keywords: Definitions and Defaults SPAC20 Compiler

MSQe Mean square error in gain as compared to bounds, considered over
. the frequencies in FSCALE
PERror Object keyword giving the allowable change in coordinates of the

pole or zero to be CODEd; used only in CODE command, to -
specify a limit (constraint) on this movement, as in CODE POLE
12 PERROR < 3,4

PHAse Object keyword giving the phase delay response of the filter; also
used as a function with an expression (as its argument), giving the
phase delay response at that (expression’s) frequency; also
abbreviated PH

POLe Used to display the pole whose number-label is the argument
appearing to its right; also used as modifier to DEFINE or
REMOVE to add or delete POLE entries (one, several, or all) in the
table of poles and zeros; also abbreviated P, PO

PZ Designates the entire set of poles and zeros, for display or as object
to REMOVE, PUT, or APPEND

STEp Filter output in reaction to a unit up-step at time zero (i.e. an
instantaneous jump from O to 1)

SYMbol Designates entire set of numeric-valued user-symbols in that
symbol table, for display or as modifier to REMOVE, PUT or
APPEND

TS Sample interval for sampled S-plane

UBOund The upper of the bounds on gain, defined as piece-wise linear
regions; initially 1000000 AT 1; also abbreviated UB

XSlze Number of vertical columns defining entire graphics screen area,

up to 79; i.e., maximum number of characters displayable per
horizontal line; the area for curves being plotted is 10 less to allow
for labeling the axis

YSCale Specific range for vertical scale on graphs, by giving minimum and
maximum values; if AUTO is specified, the min and max values of
the curve being plotted are used

YSlze Number of horizontal rows defining graphics screen area, up to 25;
i.e., maximum number of characters displayable per vertical
column is 25; the area for curves being plotted is 3 less to allow for
labels

ZERo Used to display the zero whose number-label is the argument
appearing to its right; also used as modifier to DEFINE or
REMOVE to add or delete ZERO entries (one, several, or all) in the
table of poles and zeros; also abbreviated Z, ZE

Modifiers

AT Used in setting GREF, LBOUND, and UBOUND to specify
frequencies, e.g. AT 0 meaning DC, or AT 249 meaning Hertz

AUTo Used in setting YSCALE, indicating full screen vertical scale for
the actual range of the object being graphed

BY In MOVE commands, tells the increments (in a coordinate pair) for
the movement of one or more poles or zeros in the original plane of
definition

CONtinuous Designates continuous S-plane for pole or zero definition or

: movement

B-4

Keywords: Definitions and Defaults

SPAC20 Compiler
ELSe Identifies that block of commands (in an IF statement) which is to
be executed if all earlier if-expressions proved FALSE
EM Required end-statement for a macro definition
END Required to end compound commands, i.e. REPEAT, COUNT, IF
OFF Indicates there is to be no correction for sample-and-hold
distortion; see HOLD
ON Turns on correction for sample-and-hold distortion; see HOLD
ORIf Identifies an alternate test expression and block of commands in an
IF statement
THEN Optional entry after the first test expression of an IF statement (and
before the first block of commands)
THRough Identifies the range of a partition, as in POLE | THROUGH 9
TO In MOVE, tells the desired location of the object(s) being MOVE(,
in(to) any plane
UNTIl A loop-exit in a compound command, causing execution to skip all
commands between it and the next END statement when the
expression after the UNTIL is TRUE.
WHiLe A loop-exit; when the expression following is FALSE, execution
skips to the next END statement in the compound command
VA Designates sampled Z-plane for pole or zero definition or
movement
- List of all Keywords
ABS ERROR MACRO REMOVE
ACOS EVALUATE MAGAIN REPEAT
AGAIN EXIT MASK SIN
AND EXP MERROR SQR
ANGLE FSCALE MOD STEP
APPEND GAIN MOVE SYMBOL
ASIN GERROR MSQE TAN
AT GRAPH NOT THEN
ATAN GREF OFF THROUGH
AUTO GROUP OGRAPH TO
BOUNDS HELP ON TPI
BY HOLD OR TS
CODE HPI ORIF UBOUND
CcOos IF PERROR UNTIL
COUNT IMAG PHASE WHILE
DEFINE IMPULSE Pi WRITE
DIR INCLUDE POLE XOR
DISPLAY INST PUT XSIZE
ELSE LBOUND PZ YSCALE
EM LIST RADIUS YSIZE
END LOG REAL Z
ZERO

B-5

APPENDIX C
NOTES AND CAUTIONS

While the following do not seriously affect the usability of the SPAC20 Compiler,
they should be noted as areas for possible macro development by those users who
find them inconvenient:

There is no direct command for specifying an S-plane to Z-plane transform
different from the matched-Z transform. Other transforms, if desired, must be
implemented via macros. (See, for example, Chapter 10.)

The SPAC20 Compiler produces IIR (infinite impulse response) digital filters.
There is no facility to interactively design FIR (finite impulse response) filters.

Step and impulse time responses are available but only over 64 or so equal time
intervals, starting at zero. Ideally, the time response to a larger variety of inputs,
over a larger variety of time scales, should be available. The computational
complexity involved inhibits this for the present.

In any digital filter implementation, anomalous behavior will occur when the
input signal is small compared to the digital precision. Analysis of this dead
band (i.e. region of signal amplitude causing misbehavior) and limit cycles (i.e.
self-sustaining low amplitude oscillation) is in general difficult and is not
undertaken in this product.

Some calculations performed by the Compiler may press or exceed the limits of its
floating point package. One such limit is the 24 bit precision of the numbers. If a
pole and zero are superimposed, for example, the gain is almost, but not exactly,
zero. Graphing this gain with YSCALE = AUTO can yield unexpected curves.
Another limit is the 7 bit exponent. If many more poles than zeroes are defined, for
example, underflow or overflow may occur and may distort the expected filter
response. Alternately defining poles and then zeroes may ameliorate this problem.

Because of the interactive nature of the SPAC20 Compiler, and because of the

extensive floating point calculations, a high-speed math-board (iSBC-310) is highly
recommended.

C-1

APPENDIX D
BNF SYNTAX SUMMARY

This appendix summarizes the syntax for the SPAC20 Compiler using Backus Naur
Form (BNF). The vertical bar means a choice among alternatives. Asterisk means
the optional item (in square brackets) may be repeated any number of times.

Command Summary

<top-level comnd> ::= <define macro comnd>

| <remove macro comnd>
| <comnd>

<comnd> ::= <compound comnd> | <simple comnd>
<compound comnd> ::=<if comnd>
| <repeatcomnd>
| <countcomnd>
<simple comnd> ::= <display pole/zero comnd>
| <define pole/zero comnd>
| <move pole/zero comnd>
| <remove pole/zero comnd>
| <list filter response comnd>
| <graph filter response comnd>
| <display gref comnd>
I<change gref comnd>
| <display bounds comnd>
| <setbounds comnd>
| <display filter response function comnd>
| <display scale comnd>
| <setscale comnd>
| <display code comnd>
| <code comnd>
| <display comnd>
| <change comnd>
| <define symbol comnd>
| <display symbols comnd>
| <remove symbols comnd>
| <evaluate comnd>
| <display file comnd>
| <putfile comnd>
| <append file comnd>
| <inciude comnd>
| <listcomnd>
| <write comnd>
| <help comnd>
| <exitcomnd>

D-1

BNF Syntax Summary SPAC20 Compiler

| <macro invocation comnd>
| <display macro comnd>

| <dir macro comnd>

Expressions

<exp> ::=<boolean term> [<or op><boolean term>]*
<orop>::=0R | XOR
<boolean term> ::= <boolean factor> [AND <boolean factor>]*
<boolean factor> ::= {[NOT] <boolean primary>
<boolean primary> ::= <arith exp> [<ref op> <arith exp>]
<relop>:=< | > | <=]>=1=]<
<arith exp> ::= <arith term> [MASK <arith term>}*
<arith term> ::= <term> [<plus op> <term>]*
<plusop>u=+ | -
<term> ::=<factor> [<mult op> <factor>]*
<multop>:=* | / | MOD
<factor> ::= [<plus op>] <secondary>
<secondary> ::= <primary> [** <primary>]
<primary> ;= (<exp>)

| <function> (<exp>)

| Pt | TPI | HPI

| <numeric constant>

| <symbolic ref>

| <keyword reference>

| <filter response function>

| <pole/zero reference>
<function> ::=SIN | COS | EXP | LOG | SQR | ABS | TAN | ASIN | ACOS | ATAN
<numeric constant> ::= <digit> [<digit>]* [<radix>]

| [<digit>]* . <digit> [<digit>]* [<radix>]

<digitbz=0]1]21314151617181°9
lalB|ICIDIEIF

<radix>:=B | D | H

<symbolic ref> ::= <symboi>

<symbol> ::=.<identifier>

<partition> ::=<arith exp> [THROUGH <arith exp>]

Keyword References

<key\ivord reference> ::=TS | XSIZE | YSIZE | MAGAIN | MSQE | MERROR | INST
ERROR

Filter Design Commands

<display pole/zero comnd> ::= <poles and zeroes>
<poles and zeroes> ::= <pole/zero> [<partition>]

| Pz
<pole/zero> ::= POLE | ZERO

D-2

SPAC20 Compiler BNF Syntax Summary

<define pole/zero comnd> ::= DEFINE <pole/zero> <arith exp> = <exp>, <exp> [, <plane>]
<plane>=CONTINUOUS | TS | Z
<move pole/zero comnd> ::= MOVE <poles and zeroes> <movement>
<movement> ::= TO <exp>, <exp> [, <plane>]
| TO<plane>
| BY <exp>, <exp>
<remove pole/zero comnd> ::= REMOVE <poles and zeroes>

<pole/zero reference> ::= REAL (<pole/zero> <arith exp>) | IMAG (<pole/zero> <arith
exp>) | RADIUS (<pole/zero> <arith exp>) | ANGLE (<pole/zero> <arith exp>)

<list filter response comnd> ::= <filter response>
<graph filter response comnd> ::= <graph/ograph> <filter response>
| GRAPH
<graph/ograph> ::= GRAPH | OGRAPH
<graph/ograph bounds comnd> ::= <graph/ograph> LBOUND | <graph/ograph>UBOUND
<filter response> ::= GAIN
| AGAIN
| GERROR
| PHASE
| GROUP
| STEP
| IMPULSE
<display gref command> ::= GREF
<change gref command> ::= GREF = <exp> AT <exp>
<display hold comnd>::= HOLD
<change hold comnd> ::= HOLD ON | HOLD OFF
<display bounds comnd> ::= LBOUND | UBOUND | BOUNDS
<set bounds comnd> ::= LBOUND = <piecewise linear bound>
| UBOUND = <piecewise linear bound>
<piecewise linear bound> ::= <bound> [, <piecewise linear bound>]
| <bound>,, <piecewise linear bound>
<bound> ::=<exp> AT <exp>
<display filter response function comnd> ::= <filter response function>
<filter response function> ::= GAIN (<exp>)
| AGAIN (<exp>)
| GERROR (<exp>)
| PHASE (<exp>)
| GROUP-{<exp>)
<display scale comnd> ::= FSCALE | YSCALE
<set scale comnd> ::= FSCALE = <exp>, <exp> [, <exp>}*
| YSCALE =<yscale setting>
<yscale setting> ::= <exp>, <exp> | AUTO
<display code comnd> ::= CODE
<code comnd> ::= CODE <pole/zero> <arith exp> <pz constraint>
| CODE <multiplication> <muitiplication constraint>
<multiplication> ::= <y identifier> = <primary> * <x identifier> [+ <y identifier>]

D-3

BNF Syntax Summary

D-4

<x identifier> ::= <identifier>

<y identifier> ::= <identifier>

<pz contraint> ::= [INST < <exp>] | MSQE < <exp> [, INST < <exp>]
| MERROR < <exp> [, INST < <exp>]
| PERROR < <exp>, <exp> [, INST < <exp>]

<multiplication constraint> ::= [INST < <exp>]
| ERROR < <exp> [, INST < <exp>]

Interrogation and Utility Commands

<display comnd> ::= <keyword reference>
| <symbolic reference>
<change comnd> ::= <keyword reference> = <exp>
| <symbolic reference> = <exp>
<define symbol comnd> ::= DEFINE <symbol> = <exp>
<display symbols comnd> ::= SYMBOL
<remove symbols comnd> ::= REMOVE <symbolic ref list>
| REMOVE SYMBOL
<symbolic ref list> ::= <symbolic ref> [, <symbolic ref>}*
<evaluate comnd> ::= EVALUATE <exp>
<display file comnd> ::= DISPLAY <path name>
<put file comnd> ::= PUT <path name> [<file object>] [,<file object>]*

<append file comnd> ::= APPEND <path name> [<file object>] [,<file object>]*

<file object> ;= PZ | BOUNDS | SYMBOLS | MACROS | CODE
| <strings and exps>

<strings and exps> ::= <string or expression> [, <string or expression>]*

<string or expression> 1= <string> | <exp>
<include comnd> ::= INCLUDE <path name>
<listcomnd> ::= LIST <path name>
<write comnd> ::= WRITE <strings and exps>
<help comnd> ::= HELP [<help request>]
<help request> ::=<help item>

|+
<help item> ::= <identifier>
<exitcomnd> ::= EXIT

Compound Commands and Macros

SPAC20 Compiler

<if comnd> ::= IF <exp> [THEN] <cr> <true list> [ORIF <exp> <cr> <true list>]* [ELSE <cr>

<false list>] END

<true list> ::= [<command> <cr>]*

<false list> ::= [<command> <cr>]*

<cr> = carriage-return | line-feed

<repeat comnd> ::= REPEAT <cr> <loop list> END
<count comnd> ::= COUNT <exp> <cr><loop list> END
<loop list> ::= [<loop element> <cr>}*

SPAC20 Compiler

<loop element> ::= <command> [<loop exit>

<loop exit> ::= WHILE <exp> | UNTIL <exp>

<define macro comnd> ::= DEFINE MACRO <macro name> <cr> <macro body> EM
<macro name> ::= <identifier>

<macro body> ::= [<command> <cr<]*

<macro invocation comnd> ::= :: <macro name> [<actual parameter list>]
<actual parameter list> ::= <actual parameter> [, <actual parameter>]*
<actual parameter> ::= <limited token> * | <string>

<limited token> ::= any token except <cr>, <string>, or *‘,”’

<remove macro comnd> ::= REMOVE MACRO [<macro list>]

<macro list> ::= <macro name> [, <macro name>]*

<display macro comnd> ::= MACRO‘[<macro list>]

<dir macro comnd> ::= DIR MACRO

BNF Syntax Summary

SYNTAX CHARTS

APPENDIX E

Table of Sample Commands to Define, Display, or Remove Objects from
Compiler Tables

One Symbol

One pole
or zeros

One Macro

Several Symbols

Several poles
or zeros

Several Macros

ALL Symbols
ALL poles
ALL zeros

ALL poies
and zeros

Ali Macro Names
ALL Macros

Defining an Object into a Table

Displaying Part or

Removing an Object from a Table

All of a Table
DEFINE .NAME__1=3 NAME_1 REMOVE .NAME__1
DEFINE .NAME__2= .NAME__1+1 .NAME__2 REMOVE .NAME__2
DEF .NAME__3=.NAME__1*.NAME__2
DEF POLE 2= -5, 450, TS POLE 2 REMOVE POLE 2
DEFZERO2=1/2,100,2Z ZERO 2 REM ZERO 2
DEFINE MACRO JP MACRO JP REM MACRO JP

XOXOX0XO0X
XOXO0X
EM

Requires multiple commands

Requires multiple commands

Requires multiple commands

Requires multiple
commands

POLE 1 THROUGH 5

MACROS JP, RQ, TEN

SYMBOLS
POL

ZER

Pz

DIR MACROS
MACROS

REM .NAME__1,.NAME __2, NAME__3

REM POLE 1 THROUGH 3

REM MAC RQ, TEN, FEEDER

REMOVE SYMBOLS
REM P

REM Z

REMOVE PZ

REMOVE MACROS

Syntax Charts

SPAC20 Compiler
(HELP command j—\ ! >
» D%FllNE orI REMOVE) *3,4
< symbols, poles, or zeros >
~(h or set ¢¢ d) '3 -
. N J
(MOVE command) 4 -
(disptay commands) :3 >
——
(GRAPH commands) 26 >
———-P‘ file commands)——— 8 -
(CODE command j—\ 7 -
q *9
e IF and loop control cc)
L J
——-—-—->C MACRO d j\ 2 >
(EXIT command \F ‘8 o
* chapter where di d
Commands 121533-01
— G
—
(36 help items are
displayed when HELP _>®——>
is entered; see Appendix A)
HELP Command 121533-27

SPAC20 Compiler

unsigned
> decimal
constant

unsigned
hexadecimal

constant

unsigned

binary
constant

Numeric Constant

System Constant

Syntax Charts

A

BT,

Unsigned Hexadecimal Constant

v

?
l

-0

Unsigned Binary Constant

o

Unsigned Decimal Constant

121533-06

E-3

Syntax Charts

L > (xsize
(" vsizE
L MaGAIN

i
— oz)—
(" MERROR
—
L (ErrOR

Keyword References

Symbolic References

frequency
response

time
response

—
w
—(ImPULSE r

SPAC20 Compiler

4——> © SIN
D
> cos
G
—> TAN }
. .

EXPonentiation and LOGarithms
1o the base e = 2.718281

’ () > Functions 121533-28

1215633-08

—CED—
G

y
3 |——3(GERROR “——->

-G
—Conove)—

>

—CG—,

~Frequency Responses, Time Responses 121533-09

SPAC20 Compiler Syntax Charts

—CED—
D — G

— —()— — @ewremese)— ()~
i ZERO

Coordinate (Pole/Zero Expression) 121533-43
O
O~
N @ @D OO @D D @D
O ~C O~
i LD
D O~ -
—~C)
LD~
Expression 121533-26

—O—

‘“ ~‘ primary , > T, »

GO GO @D

An integer-expression is an arithmetic-expression which
evaluates to aninteger.

Arithmetic Expression 121533-07

E-5

Syntax Charts SPAC20 Compiler
——»C numeric constant \r 2 -
(symbolic reference) '3 -
(keyword reference } -3 >
= > C function (expression)) 25 >
‘ filter response (expression) \' 'S -
*2,9
((expression) \' 2 >
—»(coordinate (pole/zero-expr n)) ‘9 .
* chapter where discussed
Primaries 121533-04
integer \ o
. expression /] T
LC THROUGH int-exp)_,
Partition 121533-05
_.__.(Ts =)_4-
—>C expression } - -
——>(YSIZE =)——'5—>
h £ *3
> =
e)
———>(FSCALE =) ‘6 | Qs expressi)
—>(.expression)——
4
(opresson errssion)—
-—»(YSCALE =)__i_, -
—»(AUTO)—1
———>C GREF =)—:5————>(expression AT exp!)
(UBOUND = }’ (p ion AT exp } > >
e I.S—y
—) Y
\J

(LBOUND = >—> - l‘
* chapter where discussed « < _)

The Change Commands

E-6

121533-02

SPAC20 Compiler Syntax Charts

T

exp
G ==
—»{ DEFINE

-»@—-»I identifier 1—»(=exp) >

L (macro)—»Qdeniifiercr) - @—>
- @)

- \

> POLE
integer _,(= exp, exp }]

gh

——b-‘ PZ >

{ i
L

——»‘ MACRO }— > »
—»{ REMOVE \
r>‘ macr } >

\
—O-
> (SYMBOLS >

r“ » identifier ,‘ T

(!
N\

Full DEFINE and REMOVE 121533-10

A
=<
:
\

~CGE- -G LG
‘ Pz rL > (exp, exp >

MOVE Command 12153315

Syntax Charts

—-»(keyword reference }
—>.(symbolic reference \
J
i C SYMBOLS)
J
———-—-»(FREQ-response }
J
—»(TIME-response)
J

SPAC20 Compiler

*3

l—»((expression))_l

*5

‘5

= (=

)

C =~

——»(PZ

*
&

*
w

-——-—————»(GREF

FSCALE

|
i

—-»(YSCALE

LBOUND

UBOUND

|

BOUNDS

——" CODE

|

E— (EVALUATE expression

-——P(DISPLAY filename

——-——-—-‘b(DIR MACRO

————F(MACRO

|
haRRR53293%

* chapter where discussed

Display Commands

p—
*6
7
L .3
- 9 -
C macroname b—»
O-
121533-03

SPAC20 Compiler

OGRAPH -

—»{ LBOUND
—>{ UBOUND
D

 CEED o

‘ GRAPH >

GRAPH/OGRAPH

—»(DISPLAY

> ust)—»-»(pathname)—
- o)
> PUT
—b—‘ path)
-»{ APPEND
) ~(=
y
~ - G-
N D
N
Y
L G-
- { ’ ’
\ ‘ string }-»
\—b‘ WRITE } >
‘ expression >—>
File Commands

Syntax Charts

121533-25

121533-24

E-9

Syntax Charts

> POLE
> ZERO

~GE

-G
L‘ ident = prim*ident ;

SPAC20 Compiler

>

‘ int exp 'l

~
¥

—>< PERROR < exp, erxp;

MERROR <

L>(|wsms<

La{ INST <exp

—»{ ERROR<

@— INST < exp '—b

—>‘ IF exp }
L THEN

REPEAT

COUNT int exp

E-10

CODE Command 121533-16
> der > y END
= L=
IF Command 121533-22

B]
command
I-b@—— WHILE
&0
UNTIL
REPEAT/COUNT

~Cae D

121533-23

SPAC20 Compiler

— (OEFINE MACRO) (identifier cr }- >

Syntax Charts

1 “ command cr>

DEFINE Command for Macros

121533-19

—>| macroname I =
limited token
A |

=

Invoking Macros

—»(DIR MACRO

Macro Directory

REMOVE MACRO

— P

121533-20

121533-21

» { macroname
3
-__®<_—

macroname .= an identifier appearing as above in a legal
define-macro command

Remove or Display Macros

121533-21

APPENDIX F
SOFTWARE INSTALLATION
PROCEDURE

Software Installation Procedure

The two modules of system software that support interactive development of signal
processing programs for the Intel 2920 chip are the Intel Systems Implementation
Supervisor (ISIS-1I) and the SPAC20 software module. If the iSBC 310 math board
is to be used, it should be installed as if to run FORTAN. (See the manuals listed in
the Preface.)

SPAC20 Compiler Files

The SPAC20 Compiler consists of ten files, SPAC20.SFT, SPAC20.HRD,
SPAC20.0VH, SPAC20.0V0 through SPAC20.0V5, and SPAC20.0VE. The first
two represent different versions of the Compiler: SPAC20.HRD provides faster
computations by taking advantage of the iSBC-310 math board, which must be
present if this version is used. SPAC20.SFT performs the math functions in soft-
ware. One of these two files should be renamed to SPAC20, using ISIS-II, e.g.

RENAME : F1:SPAC20.SFTto :F1:SPAC20

The file SPAC20.0VH contains the help messages, which allows the Compiler to
interactively give information about individual command syntax and options
interactively, complementing the data in this manual. The help messages are
described below and are reproduced in full in Appendix A. This file should be
accessed only by the Compiler.

The file SPAC20.0OVE contains the error messages. SPAC20.0V0 through
SPAC20.0VS5 are overlays called by SPAC20 (SFT or HRD). There is also a macro
file on the disk, SPAC20.MAC, containing the example macros shown in Chapters
10 and 11. If you wish to copy all the files to a backup diskette, you can use the term
SPAC20.* (see ISIS manual). Specific macros can be edited into separate files for
later INCLUDE commands.

The Compiler can be invoked by typing the drive and file name after the ISIS
prompt. For example:

-:F1:SPAC20
The Compiler will sign on with the message:

ISIS-112920Signal ProcessingApplicationsCompiler, V1.0
*

You enter your commands to the Compiler one per line, and terminate each with a
carriage-return. You may include comments by preceding them with a semicolon.
Commands may be continued by typing an ampersand prior to both the carriage-
return and the comment field (if any) of the line to be continued. Characters
between the ampersand and the line terminator (carriage-return or line-feed) are
ignored, and the ampersand is treated as a space. Each input line may contain no
more than 120 characters before the line terminator.

The ESCape key cancels the current activity and returns control of the Compiler to
you. This applies to partially typed commands or commands in progress, including a
macro or compound command.

F-1

Software Installation Procedure SPAC20 Compiler

All command keywords can be abbreviated to their first three characters, e.g., APP
for append, or DEF for define. Many frequently used command keywords have
single character abbreviations, such as P for pole, or Z for zero. Appendix B shows
all keywords and their legal abbreviations.

The EXIT command returns control to ISIS, ending the present use of the SPAC20
module:

*EXIT

ISIS-1l and SPAC20 Diskette

The Intellec system uses the diskette hardware and ISIS to provide a powerful,
convenient microcomputer development tool. ISIS interfaces to the diskette hard-
ware and to any other standard peripheral device. You communicate with ISIS-II by
entering commands on the system console or by embedding system calls in programs
that will run in an ISIS environment. ISIS enables rapid storage and retrieval of files
on diskette.

Diskette files containing SPAC20 parameters or 2920 assembly language source
code can be read or written during a SPAC20 design session. The main purpose of
ISIS during setup and interactive development is to provide the 1/0 interface to the
console and files on diskette. To begin a SPAC20 session, you must first boot ISIS
and then load the SPAC20 software module. The process for booting ISIS is fully
described in the ISIS-II System User’s Guide and summarized below.

Loading ISIS and the SPAC20 Software Module

After installing all hardware and turning on power to the console, disk drives, and
Intellec Series I, the following steps will load ISIS and SPAC20 (the full procedure
and notes are in Chapter 2 of the ISIS-II User’s Guide:

Place system diskette in drive 0 and close drive door.
Press top half of boot switch on Intellec front panel.
Press top half of reset switch on that panel.
After interrupt light 2 goes on, press space bar.
After the light goes off, press bottom half of boot switch.
After receiving the ISIS sign-on message and prompt
—ISIS-IIVn.n
you type:
—SPAC20

—- 0 a0 o

If the diskette containing the SPAC20 module is not a system diskette, mount it
in drive 1 instead of drive 0 and boot ISIS from a separate system diskette in
drive 0. Then, at this point, type :F1:SPAC20 (to load the SPAC20 module
from drive 1) followed by a carriage return. The SPAC20 module will sign on
and you are ready to continue.

If ISIS fails to sign on, recheck that all boards and cables are correctly installed and
firmly seated, then perform the above procedure again.

SPAC20 Compiler

Software Installation Procedure

If you have an Intellec Series 11, there are slight variations in the above procedure.
This is what you must do:

a.

Turn on power to Intellec Series II and to disk drives. Press square white on/off
button in the lower right-hand corner of front panel. It is a two-position switch;
it lights up if you have pressed it correctly.

Note that this message appears:
SERIESII, MONITOR, Vn.n
Place system diskette in drive 0 and close door.

Press reset button that is to left of the on/off button. Note that drive light is on
to indicate that information is being accessed.

After receiving the ISIS sign-on message and prompt
—ISIS-IIVn.n

you type:
—SPAC20

If the diskette containing the SPAC20 module is not a system diskette, mount it
in drive 1 instead of drive 0 and boot ISIS from a separate system diskette in
drive 0. Then, at this point, type :F1:SPAC20 (to load the SPAC20 module
from drive 1) followed by a carriage return. The SPAC20 module will sign on
and you are ready to continue.

If ISIS fails to sign on, recheck that all boards and cables are correctly installed
and firmly seated, then perform the above procedure again.

F-3

APPENDIX G
CODE SUBMISSION TO THE
AS2920 ASSEMBLER

Since the Assembler uses the ISIS-II keyboard and file capabilities, ISIS-II must be
loaded before invoking the Assembier. The full procedure for this is given in the
ISIS manual named in the Preface. Once ISIS-II is present, you can enter the Editor
to key-in or modify the source text of your Assembler program.

You need to finish five tasks before invoking the assembler:

1. create the front-end analog-to-digital signal acquisition code, using the Editor.
For this you need to learn the commands and rules for editing and file
manipulation under ISIS-II, and the analog instructions of the AS2920
Assembler.

2. scale the signals entering each stage of the filter. For this you need to have a
fairly clear idea of the expected original input signal, and to understand the
techniques and warnings in Appendix J on scaling. Again you use the Editor (or
APPEND commands) judiciously to create the required code (usually simply
right shifts of already coded instructions) to precede successive stages.

3. create the digital-to-analog code to output the results of the filter’s
manipulations, again via the Editor and appropriate Assembler commands.

4. review the code files you now have. You may see an opportunity to combine
analog instructions with arithmetic operations, as described in the Assembler
manual.

S. create a single program file for submission to the assembler, by copying each
existing file in order to the new master. If there were nine such code files, this
step might use two ISIS-II COPY commands to effect its purpose:

COPYA_TO_D.INP, SCALED.ST1, STAGE2.SCA, ST3SCA.LED, &
STAGE4.CODTO TEMP

COPY TEMP, ST5.C0D, ST6.SCA,STAGE7,D_TO_A.OUT TOMASTER

(see ISIS-Il manua! for complete discussion of the COPY command.)

After developing and editing the program into a form ready to test, you can invoke
the Assembiler as described below.

The AS2920 Assembler may reside on the ISIS-II system diskette or on a non-system
diskette. You load the assembler by entering a command that names the Assembler
and specifies the source file. You may also name the list and object files, but you
don’t have to. Control options may also be specified as part of the command.

After the assembler goes into execution, all assembler operations specified are
performed without further intervention. If the invocation line has an error, the error
is reported and you must retype the commands. You may use upper or lower case
indiscriminately. The assembler converts all to upper case for its own use, except for
echoing back what you typed exactly as it was.

Example:

-AS2920 FILTER.COD

(After an ISIS-II prompt, shown here as a dash, you type the command as shown to
assemble your source program, which is here assumed to be in the file named
FILTER.COD. Assembly listing and object code files will be output to

Code Submission to the AS2920 Assembler SPAC20 Compiler

G-2

FILTER.LST and FILTER.HEX, respectively. In addition, a symbol table listing
will be suppled, and the symbol table debugging output to the object file is sup-
pressed. These defaults are automatic when you do not specify any controls. It is
exactly as if you had typed (on one line only)

-AS2920 FILTER.CODPRINT (FILTER.LST) LISTOBJECT (FILTER.HEX) SYMBOLS
NODEBUG PAGING PAGEWIDTH(120) PAGELENGTH(66)

All but the last two options have opposites beginning with NO, like NODEBUG,
whose opposite (however) is DEBUG. So you can say NOPRINT, NOLIST,
NOOBJECT, NOSYMBOLS, or NOPAGING.

All options are discussed in the AS2920 Assembler manual. Briefly, options
beginning with NO suppress the indicated action. PRINT establishes a file for the
listing of your program. LIST creates that listing. OBJECT creates the 2920

. machine code for your program and stores it in a file. SYMBOLS lists the names you

used and their established RAM locations. DEBUG puts the symbol table out to the
object file for your use in debugging via the Simulator. The page-related options
specify how you’d like to see the listing output. Pages of 66 lines of 120 characters
are the default format.

After running the one assembler pass and completing assembly listing and object
output, the assembler outputs a sign-off message and summary:

ASSEMBLY COMPLETE
ERRORS = XXXX
WARNINGS =XXXX
RAMSIZE =XXXX
ROMSIZE =XXXX

APPENDIX H
DESIGN OF COMPLEX DIGITAL
FILTERS USED IN THE 2920

Review of Continuous Analog Filters

Analog filters have been in use for many years for a variety of signal conditioning
and modifying operations. Originally, most filters were realized with resistors,
inductors, and capacitors. More recently active circuit techniques have allowed
elimination of most inductors, which tend to be large and may have linearity and
coupling problems. Digital filters, such as realized with the 2920, have
characteristics which resemble their analog counterparts. As a result a review of
analog filter design and analysis may be of assistance to the reader.

Complex networks of R-L-C (resistor-inductor-capacitor) elements are usually
analyzed using complex variable techniques. A complex variable S is used to
describe frequency, with a pure sinusoidal waveform of frequency f corresponding
to

s=j*2xnxf, where = /-1

Each of the elementary RLC components has a voltage-current relationship which
can be described by a simple equation:

v=Ri; foraresistorofresistanceR
v=sLi; foraninductorof inductancel
v=(1/sC)i; foracapacitorofcapacitanceC

The complex network is analyzed by using these relationships and the fact that the
sum of all currents into a node must be zero, and the sum of voltages around any
loop must add to zero. A set of equations is derived from the network topology, and
solved to relate output voltage to input voltage, or some other relationship of
interest. When such equations are solved for networks with finite numbers of
elements, the result will take the form of the ratio of two polynomials in complex
frequency s: ;

Vout Z(s) (s=z9) (s-2z,) (s-23) ---- (s-z,)

P(s) (s-py) (s-py) (s-p3) ---- (s-p,)

The transfer characteristic H(s) is the ratio of network output voltage vy to input
voltage vi,, and the two polynomials are designated Z(s) and P(s) respectively. Once
the transfer characteristic has been found as the ratio of these two polynomials, they
may be factored into the form above. In Equation 1, the coefficients designatged z;,
7,..., Zy are called the zeros of the transfer characteristic and the coefficients py,
D2s..., Pn are known as the poles of the transfer characteristic. The letter m literally
designates the number of zeros, and n designates the number of poles, or,
equivalently, m represents the order of the polynomial Z(s) and n represents the
order of polynomial P(s).

The coefficients of the original unfactored polynomials Z and P must be real if the
filter is to be made from ‘‘real’’ components. This also means that if any of the zeros
z; or poles p; is complex, then there will be another zero or pole present, representing
the complex conjugate of z; or p;. Each pair of factors corresponding to a complex
conjugate pair of poles or zeros may be combined to result in a quadratic term with
real coefficients. The frequency response of such a filter may be found by
substituting the value j2nf (where j is the square root of —1) for the value of s. The
complex value of the gain expression contains both amplitude and phase
information.

Design of Complex Digital Filters Used in the 2920

H-2

The development of operational amplifiers has made possible filter realizations
which use only resistors and capacitors. These filters usually consist of a cascade of
stages, with each stage realizing a single real pole or a complex conjugate pole pair.
Zeros are realized by interconnections between the stages realizing the poles. Such a
network may be designed by factoring the polynomials describing the desired
transfer characteristic, and then putting the poles into an order that groups the
complex conjugate pairs separately from the real poles. Each complex conjugate
pair is realized by a separate stage. Real poles may or may not need to use a separate
stage. :

Impulse Response Analysis

The description above mentioned how the frequency response of a filter may be
determined by solving for the polynomials in complex frequency s. However, an
alternate description of a filter is its impulse response, i.e. its response to a single
impulse stimulation.

The impulse response of a filter may be used to determine the response to a more
complicated wave form by treating that wave form as a sequence of impulses of
varying amplitude. The individual responses are accumulated, a process known as
convolution, which is described by the equation:

t
y(t) f/ h(1) x(t—7) dr EQ.2
0

where h(1) is the impulse response of the filter, x(t) is the input, and y(t) the output
of the filter at time t.

The impulse response of a filter may be found from the complex frequency
polynomial ratio using Laplace transforms.

Using Partial Fractions

One convenient method for finding impulse response consists of first expanding the
polynomials as a series of partial fractions, P(s) is first factored into quadratic
terms, corresponding to complex conjugate pole pairs, and first order terms,
corresponding to real poles. The expansion is then developed using the factors, i.e.

P(s) = (52+a1 S+b1) (Sz"’az S+b2) (--.)...(S+A1) (S"’Az)...(-..) EQ.3

Z(s) A1S+B1 A2$+32 “ e R1 R2
=--= = Ay ¥ —------- + ——————— + + === + ————— EQ.4
P(s) s2+a,s+by s2+a,s+b, s+ry s+r,
NOTE
Multiple poles with the same value require a somewhat different form of
expansion.

SPAC20 Compiler

SPAC20 Compiler Design of Complex Digital Filters Used in the 2920

Each term in equation 4 is then replaced by its transform, often drawn from a table
such as Table I:

Table H-1. Laplace Transforms

Frequency domain term Time (impulse) domain term

F(s) f(t)

A Impulse of weight A

A Step of amplitude A
s
R Re-rt

s+r

B-aA/2
As+B e 2t/2 I pcos/b-a2/4 t) + ————— sin@hb?2-a?/b4 t)
s2+as+b b2-a2/4

The overall impulse response of the filter is the sum of the impulse responses
represented by each of the individual terms in equation 4. As a result, the impulse
response of any filter consisting of a finite number of RLC components will
normally consist of a sum of exponentials and exponentially decaying sinusoids.

Canonical Forms of Digital Filters

A band-limited signal may be completely reconstructed from discrete samples of its
values. As long as a signal is maintained in a band-limited form, it is possible to
perform arithmetic operations on samples of the signal yielding results equnvalent to
arithmetic operations performed on the continuous signal.

The processed samples may then be used to reconstruct the equivalent modified
continuous signal. As long as the operations performed are linear, i.e.

F(x+y) =F(x) +F(y) ; whereFistheoperation

then a band-limited signal will retain its band-limited nature throughout the pro-
cessing. Digital filtering consists of processing digitized samples of signals in a
manner similar to the methods for realizing continuous analog filters.

Figure 1 is a block diagram of a digital filter module. Each block labeled z~! is a unit
delay, i.e. a delay of one inter-sample interval. The other blocks are multipliers (X)
and adders (Z). The values Ay, Aj, A,, B, and B, are coefficients which determine
the behavior of the module.

H-3

Design of Complex Digital Filters Used in the 2920

SPAC20 Compiler

Figure H-1. Digital Filter Module (Second Order Section)

¥

T

Ag——»‘ X ’ Aq—»é AQ-)@——f
[1\
X .1 N ; Yo 21 Al z-1 —— y2

121533-34

The stage shown in Figure 1 behaves in a manner analogous to a continuous analog
stage which realizes a complex conjugate pair of poles. For example, if the structure
initially has values Y1 and Y2 equal to zero and is excited by a single impulse (i.e.
one sample of unit value followed by zero-valued samples), the output may take the
form of samples of an exponentially decaying sinusoid. The impulse response of the
stage may be expressed as:

h(0) = D+A

h(iT) = e-eiT Acos (BiT) +Bsin (BiT) fori>0
when By = 2e72T cos BT

52 = -g-2aT

Ay = D+A

A, = -(2D+A)e ?Tcos T+ Be @ TsinfT

A2 = De -2aT

LAO

¥
©)

te,

Figure H-2. Digital Filter Module (First Order Section)

1215633-35

SPAC20 Compiler Design of Complex Digital Filters Used in the 2920

The diagram of Figure 2 corresponds to a stage realizing a single real pole. Its
impulse response takes the form:

h(0) = D+A

h(iT) = Ae-eil
when

B4 = e-aT

Ay = D+A

Ay = -pe-aT

From the equations, it can be seen the impulse responses consist of (optional) initial
delta functions, followed by a series of samples which are equivalent to having
sampled an exponential decay, or an exponentially decaying sinusoid.

Therefore, if we have a continuous filter F1 that has an impulse response which
consists of a sum of decaying exponentials or esponentially decaying sinusoids, we
can realize a digital filter F2 that has an impulse response whose values at each
sample time are identical to those we would expeci from F1. This impulse response
may be achieved by building a network of the structures shown in Figures 1 and 2,
and summing their outputs.

This procedure defines a type of transform from the continuous domain to the
sampled domain, that is, the sampled domain structure implements an impulse
response equivalent to having sampled the impulse response of the corresponding
continuous filter. This transform is known as the “‘impulse invariant’’ transform,
and is one of several which may be used to relate the sampled world and the
continuous world.

Because of the nature of the sampling process and the corresponding frequency
folding about the sample rate, it is not possible for a digital filter to duplicate exactly
the characteristics of a continuous analog filter. As the frequencies of interest
approach and exceed half the sample rate, the frequency characteristics of the digital
filter differ radically from those of its continuous counterpart. These differences
may be shown by solving for the frequency response of the second order digital filter
section as shown below:

Ag+ Ay (cos wT-j sin wT) +A, (cos 2wT-j sin 2wT)

FGjw) =
v 1-B, (cos wT-j sin WwT) -B, (cos 2wT-j sin 2wT)

Note that a periodic function of frequency results, unlike the continuous case.

Sampled systems can be described as functions of a complex variable z, where z=esT
and T is the inter-sample interval. In Figure 1, each of the blocks labeled z-1
corresponds to a unit delay of time T. It is possible to describe the characteristics of
the block diagram of Figure 1 as a ratio of polynomials in z or z-1.

Consider the case of a continuous analog filter where one stage realizes a single
exponentially decaying sinusoid. Just as such a structure corresponds to a single pair
of complex conjugate poles, the diagram shown in Figure 1 is capable of realizing a
single exponentially decaying sinusoid and corresponds to a single complex
conjugate pair of poles in the complex z plane. Figure 3 shows a plot of the
frequency response of the typical second order continuous section, and, for com-
parison, that of a second order sampled section, for the case where the impulse
invariant transform described above was used.

H-5

Design of Complex Digital Filters Used in the 2920 SPAC20 Compiler

SAMPLED
DIGITAL
CASE

gain

CONTINUOUS
CASE

0) ’ ts/2 frequency

Figure H-3. Comparison of Digital and Continuous Frequency Response 121533-36

Matched Z Transform

Another method for converting from the s-plane to the z-plane is known as the
matched z transform. This method is simply a technique for mapping each pole or
zero of the s-plane to a corresponding pole or zero in the z-plane. A pole or zero at
a+ jb on the s-plane is transferred to a pole or zero at e(2+ib)T on the z-plane, where
T represents the sample interval in seconds. In polar coordinates, this z-plane
location is (eaT, bT). The equations for the coefficients are shown below:

Second order sections for a continuous pole pair —axjb in the s-plane

By=2e"2Tcos bT

BZ = -g-2aT
for a continuous zero pair at —a+jb

Aj=2Age"aTcos bT

A, = Aoe-ZaT
First order section

forareal poleat-a
81 = e'aT
forareal zeroat-a

A1 = "Aoe'aT

This transform is not guaranteed equivalence in either frequency or time domains,
although pole positions correspond to the impulse invariant transform. The
transform is sometimes useful for conceptually estimating the influence, on the
resulting filter characteristic, of moving the poles or zeros. In general, it is easier to
predict the impact on frequency response of moving a pole or zero in the s-plane
than in the z-plane, because the s-plane axes are more directly related to frequency.

H-6

SPAC20 Compiler

The matched z transform allows a one-to-one correspondence of poles and zeros in
the s-plane to poles and zeros in the z-plane. One use of this transform is therefore to
aid manipulation of the positions of poles and zeros in the z-plane in order to
achieve some desired frequency response.

Rather than attempt to do the complete design on the s-plane and then transform to
the z-plane to achieve the desired filter, the designer manipulates the poles and zeros
in the s-plane while observing the frequency response of the digital filter resulting
from the matched z transform. Once the desired characteristic is obtained, the
coefficients of the filter are determined by using the transform. This technique has
been implemented in the SPAC20 Compiler, and aids the empirical design of filters
when mixtures of continuous and digital filters are used.

NOTE

When dealing with complex frequencies in the s-plane or “TS”’ plane, the
SPAC20 Compiler accepts and displays values in Hertz, rather than the
traditional radians/sec of the s-plane. The equations shown here utilize the
radian/sec representation of frequency. If the frequencies are given in
Hertz, they must be multiplied by 2n to connect them to the radian/sec form
before use in the equations above

Bilinear Transform

This transform is a method for mapping the s-plane (jw) frequency axis into the
z-plane unit circle, such that the continuous s-plane frequency scale from DC to
infinity is mapped into a corresponding frequency range of DC to one-half of the
sample rate. Therefore, this transform distorts the frequency axis or the frequency
characteristics of the filter.

However, the transform does have the property that the shape of the frequency
characteristics of the analog filter is preserved with the exception of the frequency
distortion. It is common to pre-distort the characteristics of a continuous filter to
compensate for the transform’s distortions, and thereby implement a sampled filter
with a frequency response very closely resembling that of its continuous counter-
part. The equations for the bilinear transform are shown below. (A macro
implementing this transform, is available for use with the SPAC20 Compiler. It
appears in Chapter 10.)

Bilinear Transform Equations

The equations for the Bilinear Transform are:

S - 2 (1-z2-1 7 5 (2/T+8)
T (1+#2°D (2/17-8)

where T is the sampling interval.

Design of Complex Digital Filters Used in the 2920

H-7

Design of Complex Digita’l Filters Used in the 2920

H-8

That is, given a polynomial expression (in s) for the transfer characteristic of a
continuous filter, a corresponding digital filter may be found by substituting

2 (1-z-M
T G+ D

for each occurrence of s, and then converting the resulting expression to a ratio to
two polynomials in z.

These functions map the jw axis of the s-plane onto the unit circle of the z-plane.
i.e. when

S = jQ
where Q is the analog frequency (in radians/sec)

_ . (2/T+jQ)

2= e or lilh =

The Bilinear Transform maps the point

Q
Q

0 to Z
© to Z

-1
and the entire left half plane into the unit circle.

A nonlinear distortion is produced by the mapping of the analog jQ axis onto the
z- plane unit circle. This distortion is given by the mapping

-1
Q = 2/T tan WT/2 W =—$ tan1(eT/2)

where @ is an analog frequency and W is a corresponding digital frequency in
radians/sec

As an example of using the Bilinear Transform, consider the design of a lowpass
digital filter with a cutoff frequency of f. (in Hz):

1) Convert f. to radians/sec and find the proper prewarping for the equivalent
analog filter:

Q. =_2 tan MeT

T 2

W, = 2nf,

2) Design an analog filter that will satisfy the given specification with a lowpass
cutoff frequency of Q. in radians/sec or Q./2n Hz. Express the transfer func-
tion as a ratio of polynomials in s.

3) Use the bilinear transform on the transfer function in s (obtained in step 2) to
obtain a transfer function in z, i.e., replace each occurrence of s with

2 (1-z7M
T (1+2°1)

The digital filter which corresponds to the z-plane expression from step 3 (figure 4)
will now have the desired cutoff characteristic.

SPAC20 Compiler

SPAC20 Compiler

wT i
DIGITAL T T o2tan 57
FILTER
RESPONSE
weT
| |
Hiw) I |
P S 1 1
| i ! T —Vg)
| I
I [
| H(R) |
{ : ANALOG FILTER RESPONSE
|
|
|
|
Qc Q
Figure H-4. Transfer Function From Q to w 121533-37

Note that this transform may alter the number of poles and zeros involved. If poles
and zeros are independently transformed, redundant poles or zeros may occur.
Using this transform requires careful elimination of such redundancies.

Implementing Filters with the 2920

Once you have determined the locations of your filter’s poles and zeros in the
z-plane, converting this structure into 2920 code is relatively straightforward. In the
blocks of Figures 1 and 2, there are three basic operations performed to achieve
digital filtering action: a unit delay represented by the symbol z-1, and addition and
multiplication.

For time invariant filters, i.e. those for which the R’s, L’s, and C’s used are fixed
and stable with time, the multiplications performed will be of some variable Yi by a
constant represented by the values Ay, Aj, A,, By, or B;. The goal of the 2920
programmer is to implement these functions in a minimum of 2920 instructions.

The blocks labeled z-! correspond to unit delays, i.e. delays of one sample interval.
The sample interval is the time it takes for the 2920 to make one pass through its
program. The value on the output side of a delay block represents the value
computed at the block’s input on the previous pass through the program.

Design of Complex Digital Filters Used in the 2920

H-9

Design of Complex Digital Filters Used in the 2920 SPAC20 Compiler

The delay can be realized by a RAM location which retains the data from the
previous pass until it is needed. A single LDA instruction of the 2920 is sufficient to
implement a unit delay block. Figure 1 shows two delay blocks; thus two LDA
instructions and two RAM locations are required. These instruction have the form
shown below:

LDA Y2, Y1, ROO
LDA Y1, Y0, ROO

After executing these two instructions, the RAM location designated Y2 contains the
value of Y1 from the previous pass, and Y1 contains the value of YO from the
previous pass. To complete the filter realization, it is sufficient to complete the
calculations of the new value of YO from the current values of input, Y1, and Y2,
and then compute the output from YO, Y1, and Y2. The new value of YO involves
multiplication of Y1 and Y2 by the constants Bl and B2. The instruction set of the
2920 permits implementing these multiplications-by-constants as a series of addition
and subtraction steps.

In general, the coefficients are not realized exactly, but rather are approximated as
closely as necessary to meet the filtr specifications. This permits minimizing the
number of 2920 program steps required to realize the multiplications. :

Each ADD or SUB instruction of the 2920 can be thought of as adding a value to (or
subtracting it from) the destination operand (e.g. Y1 in the last instruction above).
The value used in that operation is the product of some power of two and the source
operand (e.g. YO in the last instruction above). There is a simple algorithm for
converting a multiplication by a constant into a series of additions and subtractions.
It consists of choosing, at each step, the particular power of two and the specific
addition or subtraction operation which will minimize the error, i.e. produce the
closest approximation to the desired value.

For example, consider the coefficient Bl = 1.8. The power of two that would most
closely approximate this value would be 21, or 2. This value may be realized with a
single 2920 instruction:

ADD YO, Y1, LO1

The error in realizing B1, after this step, would be 2—1.8=+0.2. If such an error is
too large, another 2920 instruction step is added. To reduce an error of +0.2, the
programmer subtracts the value 2-2 or 0.25 from the approximation, giving a net
approximation of 1.75 and an error of —0.05. If —0.05 is still too large an error, an
additional 2920 step equivalent to adding the source operand multiplied by 24 =
0.0625 can be added. A net approximation of 1.8125 results, with an error of
+0.0125. This process can be repeated until the coefficient is realized with adequate
accuracy for the filter requirements. A more powerful version of thig algorithm is
used in the 2920 Signal Processing Applications Compiler’s CODE generation
command.

Because there are two coefficients in the filter, two sequences of operations must be
defined as described above. As the procedure described performs an addition to the
destination location, it is necessary to initialize the destination location. This can be
done by clearing the location (e.g. by subtracting the location from itself) or by
converting an addition operation to an LDA and placing it as the first step of the
sequence. The last steps to realize the filter involve adding the weighted input
variable and computing the output. Procedures similar to those above are used for
the multiplications and additions needed for these operations.

SPAC20 Compiler Design of Complex Digital Filters Used in the 2920

Some Practical Considerations

The procedures described above show how second order filter sections can be
realized. In selecting the gain for the filter, the user should consider the scaling of
the variables within the filter. Improper scaling can result in a number of problems.

If the variables are very small, it is possible that the 25-bit word width will not
provide enough resolution, and significant truncation noise will be introduced.
Because a second order filter of this type may perform the equivalent of integrations
in which results are obtained by summing many small values, roundoff error can
occur in unexpected ways.

If the variables are scaled too large, overflow saturation may result, with behavior
very similar to that occurring in an analog circuit when the signals exceed the
dynamic range of the amplifiers. However, an additional consideration may be
important in 2920 realizations of second order sections. As coefficient products are
developed by series of additions and subtractions, intermediate values may be larger
than those finally obtained. ‘

In general, it is necessary to provide sufficient margins when scaling input variables
to ensure that overflow saturation does not occur for intermediate values.
Sometimes the sequence of calculations can be ordered to minimize potential
overflow saturation.

A third method to prevent intermediate overflow saturation is to compute some
fraction of YO, restoring it to full value when it is transferred to Y1, such as shown
in Figure 5. This of course adds some noise to the final output, lowering the
accuracy somewhat.

The coding generated by the SPAC20 Compiler is already ordered and scaled in this
manner to minimize overflow. The user must still address the issue of scaling for
input and for signals propagated from earlier stages.

By/4

®\
(? -

By/4

Figure H-5. Method for Preventing Intermediate Overflow 121533-38

Design of Complex Digital Filters Used in the 2920 SPAC20 Compiler

(If overflow occurs, it will be when YO0 is increased and loaded to Y1.)

No additional instructions are necessary in general, because the extra multiplications
shown in Figure 5 can be performed by modifying the instructions of the original
realization.

When a filter consists of a cascade of second order sections, code can be saved by
performing any gain trimming calculations at just one point in the cascade.
However, to maintain properly scaled variables, the gain for the inputs to each stage
should be adjusted by the appropriate power of two. The proper scaling factor can
be determined by evaluating the maximum gain from the input to each point in the
cascade, starting with the first stage. The gain for the input to that stage is adjusted
to ensure that the overall gain does not exceed unity at any frequency. After each
stage is adjusted, the process is repeated for the next stage. See Appendix J for more
details.

Very Low Frequency Filters

As mentioned above, the processes occurring in the recursive second order section
are equivalent to integration. When very low frequency filters or filters with very
high Q’s must be realized, even the 25-bit word width of the 2920 may not provide
adequate protection from truncation error. In some cases it may be possible to
reduce the clock rate (and therefore sample rate) which will reduce coéfficient
precision requirements.

When other functions prevent reduction of the sample rate, or when the predicted

-value of clock rate must be lower than the minimum permitted by the 2920, alternate
programming techniques must be used. (The 2920 word size and the dynamic range
of the variables being processed establish a maximum ratio of sample rate to
frequencies of interest.)

For very low frequency filters, the effective sampling rate must be reduced or the
effective precision of the processor must be increased. One approach, extended
precision arithmetic, appears possible but cumbersome. When very low frequencies
are being used, the coefficients By and B, approach very closely to the values +2 and
—1 respectively. By realizing the filter as shown in Figure 6, the small terms B{—2
and B,+1 are isolated from the large terms and scaled upwards by some power of
two. The equivalent multiplications may then be done using single precision, which
is converted back to extended precision by a 2-n scaling.

Extended precision arithmetic may be executed using masks derived from the
constants, or by conditional additions. In either case, carries generated by the low
order word are added to the high order word to maintain carry propagation., The
carries may be simulated in one of the high order bits of the low order word, tested
via conditional operations or masking, and then removed by masking or conditional
addition of a negative constant. Table II shows an extended precision add routine.

Table H-2. Extended Precision Add Routine (48 Bit Precision) Technique
Uses Simulated Carry at 2nd Bit From Left of Low Order Word

ADD YL, XL, R0OO ; add low order word (25 bits + carry)
LDA TMP, YL, R0OO
AND TMP, KP4, ROO
sSuB YL, TMP, RO00
ADD YH, XH, R00
LDA TMP, TMP, Ri13
ADD YH, TMP, R10

copy word to temporary location

mask off simulated carry bit

clear carry from low order word

add high order words

move carry to right - -

add carry to high order word

SPAC20 Compiler

Ve

]

@,. .
/Cg ,
s (By-2)20
N4
<—.®<—

(Bp+1)2n
Ve
X)
1

M)
U/
)

O
!

Figure H-6. Very Low Frequency Filter 121533-39

When low frequency filters must be realized, it is in general more convenient to
reduce the sample rate rather than attempt to extend the precision of the variables.
The sample rate may effectively be reduced by using the conditional load operation
triggered by an oscillator run at a submultiple of the sample rate. The filter calcula-
tions go to completion every nth cycle. Such an oscillator can be realized by the
program shown in Table III.

Table H-3
; Oscillator
SUB 0SC, KP1, ROS ; subtractconstant KP1 from0SC
LDA DAR, 0SC, ROO ; movetoDAR forsigntest

LDA 0SC, KP3, ROO, CNDS ; re-initializeifnegativeto
ADD 0SC, KP3, ROS, CNDS ; 99 times KP1

; conditional filter implementation

LDA Y2, Y1, ROO, CNDS ; delayoccursonlyoncycling
LDA Y1, YO, ROO, CNDS ; ofoscillator

; remainder of filter calculations are done unconditionally - result is valid

; only on cycling of oscillator

The filter code generaiion may be done with the SPAC20 Compiler by using the
effective sample rate. To use this filter at the normal sample rate, the output code
must be edited to add the CNDS operations to the delay realization.

A constant value is subtracted from a RAM location on each pass through the
program. If (and only if) that operation causes the result to be negative, the condi-
tion for re-initializing the oscillator is met. A conditional load operation restores the
oscillator to a positive value. Thus the oscillator cycles at a submultiple of a sample
rate (at 1/100 in the Table 111 example.)

Design of Complex Digital Filters Used in the 2920

Design of Complex Digital Filters Used in the 2920

H-14

The filter itself is realized using the same equations as are used in any second order
section, with the exception that the delay realization operations i.e. loading Y1 to Y2
and YO and Y1, are performed only on those program passes which re-initialize the
oscillator. Because the oscillator calculations only produce re-initialization every nth
cycle, a sample rate has been achieved equal to the 2920 sample rate divided by n.

On occasion, it may be desirable to operate one or more stages of the filter at a
higher sample rate than that of the 2920. For example, it may be possible to use a
lower cost external anti-aliasing filter by sampling the inputs at a higher than normal
rate, and performing some of the anti-aliasing using a digital filter stage operating at
this higher rate. Subsequent processing of the data is performed at the nominal rate
of the 2920.

One means for achieving the higher sample rate it to use two copies each of the
sampling routine and the anti-alias digital filter section. Figure 7 shows the impact
on the external anti-alias requirements obtained by using the double sample rate
technique. External anti-alias requirements may also be reduced for 2920 outputs by
the use of interpolating digital filters, i.e. filters which compute values between
successive samples.

Interpolating filters may also be realized by operating a filter stage at twice the
sample rate by using two copies of the program withinin the 2920. There are two
options for the input of such a filter operating at twice the sample rate. The same
input sample may be used for both copies of the program, or one copy may use a
zero-valued input. The latter case resembles using an impulse source where the
former case is more like a sampled and held source. The methods produce somewhat
different frequency responses.

The SPAC20 Compiler can be coerced to produce code for this mixed sample rate
implementation. To accomplish this, set the TS to the faster rate (say 3 times the
2920 program loop rate) and, using the CODE command, generate code for the anti-
alias (low-pass) stages of the filter. Three copies of this code must appear in the final
program.

Then set the TS down to the 2920 program loop rate, and generate code for the
remaining stages of the filter. One copy of this code must appear in the final
program.

At this point, the filter responses which can be graphed and otherwise examined are
relatively accurate reflections of the true behavior, at least below half the slower
sample frequency. This assumes that the signals are transformed between the stages
using the impulse method (either true input or zero) as opposed to the hold method
(either true input or held true input).

In most of the examples described above, a cascade of filter stages has been
assumed. However, when the impulse invariant transform is used, an alternate
realization could be found by expanding into a.sum of partial fractions, evaluating
the impulse response associated with each fraction, and realizing the output of the
filter as the sum of the section outputs. The resulting realization is shown in Figure
8b as opposed to the cascade structure of Figure 8a. In some cases, the parallel
structure may be less sensitive to variable scaling than the cascade structure.

SPAC20 Compiler

SPAC20 Compiler Design of Complex Digital Filters Used in the 2920

EXTERNAL ANTI-ALIAS
FILTER

BW fs-BW fs

a. Original spectrum showing bandwidth of digital processing.
External anti-alias filter must pass below BW, stop beyond f;—BW

EXTERNAL ANTI-ALIAS
FILTER

-__4
P4
BW fs-BW s fs- BW 215-BW 215
INTERNAL
DIGITAL
FILTER

b. Spectrum using double rate sampling.

External filter passes BW, stops beyond 2f,—BW, internal digital filter performs
rest of anti-alias function.

Figure H-7. Effects of Double Rate Input Sampling 121533-40

O

—»‘ T " - 21 z-1 @——»

z1

= |
100

Nt
\r
'
F

Figure H-8a. Cascade Structure for Complex Filter

(Directly Derived From Matched Z or Bilinear Transform) 121533-41

Design of Complex Digital Filters Used in the 2920 SPAC20 Compiler

ouT

~0 @/J

Figure H-8b. Parallel Structure for Complex Filters
(May Result From Impulse Invariant Transform) 121533-42

APPENDIX |
FORMULAS USED BY THE
SPAC20 COMPILER

The formulas by which the filter response keywords are calculated are given below.
They depend upon s-plane or z-plane representation of the locations for poles and
zeros. Three distinct graphs are used to indicate the quantities named in the
formulas for AGAIN, and four additional graphs are referred to by the formulas for
PHASE. Poles are indicated by the character X, zeros by 0. The character a shows
the object’s real part (or projection), b shows its imaginary part, and f indicates the
varying frequency of interest. These letters then appear in the formulas. For z-plane
graphs, R indicates the length of the vector from the origin to the pole or zero, and
theta (©) the vector’s angle.

GAIN, MAGAIN, GERROR, and MSQE are defined in terms of AGAIN. GROUP
is the negative of derivative of PHASE with respect to frequency. The formulas are
shown in the simplest relation to the graphs. Simplification, grouping, and recom--
bination of terms would in some cases produce more compact formulas, but their
meaning and relation to the positions of poles and zeros would be obscure. In some
cases, the result of such manipulations is in fact much more complex than the
original formulation, though it can have computational benefits for the efficiency of
a tool such as the 2920 Signal Processing Applications Compiler.

AGAIN

Toist,

AGAIN = ———
T oIST,
P

AGAIN is the ratio of two products: the product of all the distances of the zeros of
the filter divided by the product of all the distances of the poles of the filter, where
distance means the vector distance from the frequency in question (on the vertical’j
axis) to the position of the zero or pole (or complex conjugate of a pole).

S-PLANE

{

REAL POLE ORZERO at-a

t
/] ‘DIST(f)= \/f2;a2 whereN = normalization factor

A | (1+a)

* 2+ (f-b)2 2 2
-/ DIST(fy = @az+(f-b))N(\/a +(f+b)2)

s COMPLEX POLE OR ZERO at (—a+jb), (—a—jb)

t

/ wherethenormalizationfactor N = (1+4/a2+b2)2
X

1215633-30

I-1

Formulas Used by the SPAC20 Compiler SPAC20 Compiler

SAMPLED S-PLANE (sampled at T)

REAL POLE OR ZERO at —a

f
DIST(f) = |1-e-2maT we-j2niT |

COMPLEX POLE OR ZERO at (-a+jb),(—a—jb)

DIST(f) = |1-(2e-2maTcos2rbT) e-2nifT + e-braTxe-4rifT|

3<-—c' B o B e]
>

|-a =
121533-31
Z PLANE (sampled at T)
REAL POLE ORZERO atR, 0
(R,0)

f
DIST(f) = | 1-Re-ianfT |

(1,0)

o
121533-32
COMPLEX POLE ORZERO atR,0
R/ ' DIST(f) = | (1-Re-i%-i2nfT) (1-Re*ive-i2efT) |
»o
/ (1.0

121533-33

I-2

SPAC20 Compiler Formulas Used by the SPAC20 Compiler

GREF

AGAIN (f)
GAIN (f) = 20 L0Gq,

units indB

GREF = gainatreference frequency
specifiedbyuser

MAGAIN = max { AGAIN(F;) }
f; in FSCALE
GERROR(f) = GAINCf) - UBOUND(f)

if GAINCf) > UBOUNDC(T)

= GAINC(f) - LBOUNDC(S)
if GAINCf) < LBOUND(T)

= 0 otherwise

MSQE = ‘/1_ N (GERROR(f;))?2
>
i=1

N = numberofpointsinFSCALE
f;in FSCALE

PHASE = >0j - 20j (units are radians)
Z i

S-PLANE

REAL

© = tan-' {

COMPLEX

0 = tan‘1(f-b) + tan‘1(f+b)
a a

I-3

Formulas Used by the SPAC20 Compiler SPAC20 Compiler

SAMPLED S-PLANE (sampled at T)

REAL

® = angleof (1-e-2naT. g-j2nfT)

angleofa+jb = tan1pb

a

COMPLEX

0 = ang’[e of 1-2e-2naT cos 2rnbT e-2njifT + e-4naT, @=jbnfT

i

Z PLANE (sampled at T)
REAL
(R.Q)
{ © = angleof 1-Re-2infT
1.0
%!
121533-32
COMPLEX
R) ; © = angleof (1-Re-i®e-j2nfT) (1-Ret*i0g~j2rfT)
\o
/ (1.0)

121533-33

GROUP DELAY:

GROUP(f) = =1 . dphase
. 2n df

With HOLD ON, AGAIN is multiplied by | sin(x)/x |, where x=TS*FREQ*PI
which causes GAIN to be corrected by adding 20 log;g | sin(x)/x | and PHASE to be
corrected by adding x. GROUP is corrected by subtracting TS/2.

With HOLD OFF, the above corrections are omitted.

1-4

APPENDIX J
SCALING AND OTHER
CONSIDERATIONS

Scaling

Each stage of a filter performs various arithmetic operations, which have the poten-
tial for causing overflow saturation if the numbers coming in are too large. Thus the
issue arises of scaling down such input to avoid inadvertent overflow. If the signal
input to the filter were a pure sine wave, then the peak AGAIN for each stage would
indicate how incoming signals needed to be scaled in order to avoid saturation or
overflow within that stage. That is, if the peak AGAIN under these circumstances
were 50 for stage 1, the next higher power of two should be used to scale the input.
Thus a right shift of six, equivalent to dividing by 64, would be the correct scaling,
e.g.,

LDA INPUT, DAR, RO6

If the first two stages taken together indicated an AGAIN peak of 250, the input to
the second stage needs only an additional reduction factor of 4, i.e., rightshift 2, as
part of the scaling has already been done at the input to the first stage. Successive
stages repeat this reasoning, using the cumulative effect (product) of all earlier scal-
ing factors to determine what, if any, additional scaling is needed. (Note: set HOLD
OFF when using AGAIN to determine scale factors, since the HOLD compensation
really does not affect the signal until it leaves the 2920 chip.)

Because inputs are limited to the range plus-or-minus 1.0, the largest possible
instantaneous output of a filter may be found by integrating the absolute area over
the impulse response of the filter. In general this value is unnecessarily conservative,
and may result in excessive truncation error.

Even assuming this input scaling has been performed, it is possible that intermediate
calculations within a filter stage will cause overflow. For example, warning messages
produced by the Compiler in the code may say, e.g.,

"';NOTE: MAKE SURE SIGNALIS<0.547'"’

indicating such intermediate overflow will occur unless the expected maximum out-
put signal amplitude is less than 0.547.

If the input to a stage is scaled so that the expected maximum output signal is less
than 0.25, such intermediate overflow cannot occur (for poles and zeros within the
unit circle on the z-plane).

As a rule of thumb, it should be sufficient to use four times the MAGAIN (rounded
up to the next power of 2) as the scaling needed for each stage. That is, the user
. should ensure that the scaling before any stage is at least four times the MAGAIN
due to the combination of all previous stages and the present stage under
consideration.

During the coding process, if f; is implemented first in the coding, a warning
message will appear, advising the user to keep the signal below a certain level. If the
above scaling factor of four times MAGAIN has already been performed, then the
purpose of these messages has already been accomplished.

Scaling and Other Considerations

J-2

Signal Propagation

SPAC20 Compiler

In the code output from the SPAC20 Compiler, you will find, usually once per
module, an ADD or LDA instruction using names like INO, IN1, followed by the
stage label, e.g., INO__Z1 for zero 1. These are the instructions which must be
replaced using the correct scaling and appropriate input source, which depends on
the sequence and combination of poles and zeros, as follows:

The table below indicates the number of inputs and outputs for the four kinds of
poles and zeros. A complex pole takes in one signal and produces three output
signals, whereas a complex zero uses three inputs and produces one output. A real
pole has one input and two outputs, while a real zero takes in two signals and

outputs one.

(using hypothetical poles and zeros labeled 3 (for complex) and 2 (for real).

interval

Input Signal Output Signal
Signals Delay Signals Delay
Complex Pole INO_P3 Signal Input, OUTO0__P3 Signal Input,
not delayed not delayed
OUT1_P3 Delayed 1 sample
interval
ouT2__P3 Delayed 2 sample
intervals
Real Pole INO_P2 Signal Input, OuUTO__P2 Signal Input,
not delayed not delayed
OUT1__P2 Delayed 1 sample
interval
Complex Zero INO_2Z3 Signal Input, ouT0__Z3 Signal Input,
not delayed not delayed
IN1_Z3 Delayed 1 sample
interval
IN2__Z3 Delayed 2 sample
intervals
Real Zero INO__Z2 Signal Input, ouT0__Z2 Signal Input,
not delayed not delayed
IN1_Z2 Delayed 1 sample

Merging Code for Poles and Zeros

From the table it is easy to perceive the proper meshing of the code for a complex
pole followed by that for a complex zero:

INO_23 EQU OUTO_P3
IN1_Z3 EQU OUT1_P3
IN2_Z3 EQU 0UT2_P3

This provides the correct, suitably delayed pole output signals to the appropriate
zero inputs. Similarly, to merge the code for a real pole followed by a real zero, you

can use

INO_Z2 EQU OUTO_P2
INT_Z2 EQU OUT1_P2

SPAC20 Compiler

If, however, a complex pole is followed by a real zero, then as the table indicates you
must select the pole output with the correct delay, i.e.,

INO_Z2 EQU OUTO_P3; nodelay
IN1_22EQU OUT1_P3; delay

A complex pole followed by two real zeros cannot be directly merged. The first zero
can be merged with the pole as above. Then the signal needs to be propagated to the
second real zero (here labeled Z22). For example, the code below

INO_222 EQU OUTO_P3
LDA IN1_Z22, INO_222

will accomplish this for a real zero. An equivalent method in the real case is to create
a pole at 0,0,Z and then merge it with the zero. For a complex zero, the code below
should be used:

INO_Z3 EQU OUTO_P3
LDA IN2_2Z3, IN1_2Z3
LDA IN1_23, INO_Z3

Use of Temporary RAM Locations

The coding for equations of the form YY = C*YY is only optimal assuming no
scratch RAM locations are to be used. You can often improve it by the simple expe-
dient of coding in two steps, first saying

CODEXX=1.*YY

and then, after saving that code, enter CODE YY = C * XX. Using XX as a scratch
variable in this way can be a useful technique.

If more than 16 bits of precision is needed in constants, say in PERROR or ERROR

constraints, the code produced with the standard SPAC20 algorithms may suffer.
CODEYY=(1+1/2%*%x17) *x XX ERR <O

is an example. Five instructions are generated where 3 could suffice. One way
around this is to code in several steps, e.g.,

CODEYY=CxXXERR<S (1/2%x%13)

DEFINE .ERRORSSSAVER = ERR

CODE XTMP = (1/2*%13) * XX

CODEYY=(.ERRORSSSAVER * 2**13) * XTMP +YY ERR<(1/2%%10)

This effectively combines coding for the top 13 bits and for the least significant 13
bits.

Scaling and Other Considerations

J-3

APPENDIX K
ERROR MESSAGES AND
CORRECTIVE ACTIONS

Error conditions encountered by the SPAC20 module cause a numbered error
message to print on your console.

Since commands are read on a line-by-line basis, the Compiler will not flag any error
until after an entire line has been entered. When the first command error is found,
command processing stops and the offending line has no further effect on any
internal variables.

If a syntax error is encountered by the Compiler during a multi-line compound
command, the error is reported and the line is ignored. Whenever possible, the lines
already successfully entered in the compound command are kept and input may
resume. Sometimes the compiler finds it impossible to do so and in this case the
entire compound command is lost. The prompt for the next input line indicates
which of these options was selected: ‘“....*’’ indicates continued compound
command input; ““*’’ indicates new command input.

Errors during compound command execution will terminate processing, leaving the
compile-state intact as of the last successfully completed command.

Error numbers CO to CF are warnings of conditions which are probably undesired.
These warnings do not terminate compound command processing.

The following list of error messages does not include those which can come directly
from ISIS-11. These appear in a separate list after the Compiler’s messages.

In some rare cases, the error number may be printed without its associated message,
asin

ERR80: ?
This means an Error 80 was detected but some other (probably unrelated) problem

prevented the Compiler from printing the message, e.g., error message file
SPAC20.0VE is missing.

ERR71: ILLEGIBLE NUMBER A floating point number input cannot
be deciphered.

ERR 72: HELP FILE MISSING The help file SPAC20.0VH is missing.

ERR73: SAMPLE RATE UNDEFINED TS has not yet been assigned. TS

must be assigned a nonzero postive
value before sampled poles and
zeros can be created or before IM-
PULSE or STEP responses are ex-
amined.

ERR 74: GREF AGAIN ZERO The frequency specified in the GREF
has absolute gain zero and this can-
not be used as a reference level.
Select a different GREF frequency.

ERR75: NEGATIVE RADIUS Poles or zeros defined in the Z-plane
must have positive radius. A negative
radius is equivalent to a positive
radius with an angle offset of 180° =n
radians.

K-1

Error Messages and Corrective Actions

ERR 76:

ERR 77:

ERR 78:

ERR 79:

ERR7A:

ERR7B:-

ERR 80:

ERR 81:

ERR 83:

ERR 84:

ERR 85:

ERR 86:

-

POLE/ZERO NOT SAMPLED

CONSTRAINT TOO SEVERE

ANGLE > PIOR <= —PI

EXTRA CONTINUOUS ZEROS

ILLEGAL CODE COMMAND

INTEGER NEEDED

SYNTAX ERROR

INVALID TOKEN

INAPPROPRIATE NUMBER

PARTITION BOUNDS ERROR

ITEM ALREADY EXISTS

iTEM DOES NOT EXIST

SPAC20 Compiler

A pole or zero must be sampled
before code can be generated. Move
ittothe TS or Z planes.

The pole or zero or multiplication
cannot be coded within the instruc-
tion constraint specified. Try relaxing
the INST constraint.

Poles or zeros in the Z-plane must
have angle between =n. Take the
desired angle mod 2r to obtain this.

The STEP or IMPULSE time
responses cannot be calculated
because there are more continuous
zeros than continuous poles. Such a
combination cannot be physically
manifested.

The code command issued does not
exist,e.g., CODEY =1*X + Z.

An integer valued expression is
needed in contexte.g., POLE1.5.

The token flagged is not one that is
a/llowed in the current context.

The token flagged is illegal because it
does not follow the rules for a well-
formed token. The line is ignored and
you must re-enter your intended
command. Check the correctness of
the syntax and variable-names used.
A string longer than 255 characters
can resultin this error.

The value printed on the preceding
line is not appropriate in the current
context. Some contexts allow only
certain numbers, e.g., TS must be
positive.

The partition values entered in a
command are not correct. Either the
left part of the partition is greater than.
the right part, or the values of the
partition extremes are out of range in
the current context. For example,
Poles 3 thru 2.

The symbol or macro entered in a
define command is currently defined
in the symbol or macro table. You
may need to validate the currgnt
usage of this symbol or macro, or
perhaps merely use a different spell-
ing to maintain the distinction.

The item printed on the preceding
line does not reside in the symbol
or macro table. It may have been
removed in an earlier test session,
or it may be in a change you haven’t
inserted yet.

SPAC20 Compiler

ERR 90:

ERR91:

ERR 92:

ERR 94:

ERR9D;

ERR AQ:

ERR B9:

WARN C8:

WARN C9:

WARN CA:

WARCB:

WARN CC:

MEMORY OVERFLOW

STACK OVERFLOW

COMMAND TOO LONG

NON-CHANGEABLE ITEM

LINETOO LONG

TOO MANY PARTITIONS

NO HELP AVAILABLE

F.P.INVALID OPERAND

F.P. OVERFLOW

F.P. UNDERFLOW

F.P.ZERO-DIVIDE
F.P. DOMAIN ERROR

Error Messages and Corrective Actions

Either too many poles and zeros have
been defined (more than 20), or too
many macros or symbols have been
defined or some other internal buffer
size has been exceeded. If the
message

MEMORY RECLAIMED

appears on the next line, success
may be obtained by simply reissuing
the command which caused the
original overflow. Before doing so it is
recommended to delete any unused
symbols or macros first.

The capacity of a statically allocated
internal stack has been exceeded.
This is probably due to an exces-
sively complicated command, e.g.,
one with 20 parenthesis pairs. An
example would be

DEFINE .DAR$SAVED =
(CCCLACCCCOARDMMMIMMNN

Too complicated a command due to
number of operators, most probably,
asin
DEFINE .TEMPFUNC =
1+8*9-7/44~....
out to many operators. Break it up in
several smaller commands.

An attempt to alter a read-only item,
e.g., INST.

Command line was longer than 122
characters.

An fscale or Ibound or ubound has
been specified with more than the
maximum number 10 of piecewise
linear segments.

Help has been requested for a heip
item which has no help message.

The program tried to use a value
resulting from an underflow or
overflow condition. If this message
persists, try flushing the Compiler’s
internal storage with the command
XSIZE = XSIZE.

A value larger than 10 times the
largest allowable number occurred in
some expression.

A value smaller than the smallest
allowable number occurred. One
exampleis 1/largest#.

Dividing by zero was attempted.

One example would be the square
root of a negative number.

Error Messages and Corrective Actions SPAC20 Compiler

The last five warnings are flagged during command execution due to an
inappropriate action or result for a floating point operation. See the documentation
for the FORTRAN floating point libraries for further details.

ERRE7: ILLEGAL FILENAME The filename specified does not
conform to a well-formed ISIS
filename. See /SIS Manual for valid
formulation and device labels.

ERRES: ILLEGAL DEVICE lllegal or unrecognized device in
filename. An invalid device label was
used, e.g., :D0: instead of :CO, or
something unrelated such as :PQ:.
See ISIS Manual for valid list.

ERR E9: FILE OPEN FOR INPUT Attempt to write to a file open for
input, e.g., PUT :Cl:, a file predefined
as console input.

ERREF: FILE ALREADY OPEN Attempt to open a file that was
already open.
ERR FO: NO SUCH FILE The file specified does not exist.

Possibly a wrong or missing device
label, as in typing :F2:FILE when you
meant :F3:FILE, or a file missing due
to forgetting to copy it onto a new

disk.

ERR F1: WRITE-PROTECTED FILE The file named for output is
write-protected and cannot be over-
written.

ERR F3: CHECKSUM ERROR An overlay file cannot be loaded
because it has become trashed.

ERR F6: DISKETTE FILE REQUIRED A file was referenced which needs a
diskette.

ERR F9: ILLEGAL ACCESS Attempt to open a read-only file for

the purpose of storing data (e.g.,
specifying :Cl: as the list device) or to
open a write-only file as a source of
data (e.g., :LP: in an include

command).
ERRFA: NO FILE NAME No filename specified for a diskette
file (e.g., no filename following :F2:).
ERR FH: NULL FILE EXTENSION An expected filename extension was

not found (e.g., :F2:FILT.).

K-4

INDEX

abbreviations, 2-4, F-2, Appendix B
ABS, B-1
accuracy of code, 7-4
see also precision
ACOS, B-1
actual parameters, 9-3
add to a file, see APPEND
adders, H-3
advanced techniques
pertinent to filters, Chapter 10
re other signal processing, Chapter 11
AGAIN, 1-18, 2-5, 5-1, 5-2, 5-4, B-3,
I-1, J-1
alias, 4-5
All-pole filter coding
example macro, 10-9
resulting file, 10-14
ampersand, 2-2, 3-1, F-1
amplitude
desired output 1-1
and phase information in complex gain,
H-1
analog filters, H-1
analog-to-digital, 1-4, G-1
see A-to-D
AND, 9-9, B-1
ANGLE, 29, B-1
apostrophe, 2-3, 6-3, 9-4, 9-5
APPEND, 1-3, 2-6, 7-3, 8-4, 8-6, 9-1, B-2
default objects, 8-4
arithmetic expression, 2-8, 4-2, E-5
ASClI, 2-2
ASIN, B-1
Assembler, 1-2, 7-1
code submission to, Appendix G
options, G-2
tasks before invoking, G-1
asterisk, 1-2, 2-2, 2-8, 2-9, 3-1, 6-2, 8-1, 9-1
see also double-asterisk,
AT, 5-1, 5-2, B4
at-sign, 2-2
ATAN, B-1
A-to-D conversion macro,
definition, 11-3
invocation, 10-10, 11-6
attenuation, 6-2
AUTO, 6-2, B-4, C-1
avis, second-stage ariel evolution,

band-limited signal reconstruction, H-3
best yet code, 7-1
bibliography, Preface-iv, 1-2, 2-7, F-1
Bilinear transform

equations, Appendix H-7

example use in design, H-8

macro, 10-6
binary constant, 2-7, E-3
BNF (Backus Naur Form), Appendix D

boolean
expressions, 9-9
operators, 9-9
BOUNDS, 5-2, B-3
bounds
on error,
maximum re gain, 7-1 to 7-3
mean square re gain, 7-1 to 7-3
movement re pole/zero, 7-3
_on gain, 1-3
invalid specifications, 5-3
lower, 5-2, 5-3
upper, 5-2, 5-3
buffer
for code, 7-1, 8-4, 9-6
for graphics, 6-3
Butterworth filter macro, 10-2
BY, 4-4, B-4

canonical forms of digital filters, H-3
carriage-return, 2-2, 3-1, 9-4, F-1
cascaded stages, 1-4, H-2, H-12, H-14,
H-15
change
commands, 3-2, E-6
of plane via MOVE, 4-5
see also 1-5ff
changeable scalars, 2-4, 2-5
character
set, 2-2
strings, 2-3
charts, Appendix E
Chebyshev filter
macro, 1-9, 10-4
used, 1-10
CODE, 1-1, 2-5, 7-1, B-2, E-9
code
accuracy, 7-4
and ESC, 7-1
buffer, 7-1, 9-6
compaction, 1-4, Appendix J
constraints, 1-4, 7-1
editing, 1-4, G-1
for equations, 7-4
for pole/zero, 1-3, 7-2 _
general signal processing, 1-3, Chapter 11
generation, 1-1, 1-4, 1-5, 7-1
merging, Appendix J
object, 1-2
review, 1-4, 7-1
revision, 1-4, G-1
submission to 2920 Assembler,
Appendix G
using temporary RAM locations,
Appendix J
coefficients determine filter behavior,
H- 3ff
closely approximated in 2920, H-10

Index-1

Index

Index-2

colon
in device names, 8-2)
to invoke macros, 9-2, 9-3
comma, 2-1, 2-3, 3-1, 4-2, 5-2, 7-1, 9-4, 9-5
commands, D-1, E-2
and tokens, 2-1
block, 9-1
code, 7-1, E-9
change, 3-2, E-6
compound, 1-5, 9-1ff
display, 3-5, E-8
entry, 3-1
file, 8-1, E-9
graph, 6-3, E-9
line continuation, 2-2, 3-1
pole/zero, 4-1 to 4-5, E-7
sequences, 9-1ff
simple, 2-4, 3-1
symmetry, Preface-iv
comments, 3-1
in code, 7-1
into file, 8-4, 9-6
compaction of code/program, see code
Compiler
differences, Preface-iv
interaction with other products,
Preface-ii
introduction, 1-1
uses and purposes, Preface-iii, 1-1, 7-1
complex
frequency, 1-1
network, H-1
numbers, 1-1
pole/zero
defined, 1-3, 4-3, 4-4
input/output signal delays, J-2
realization diagram, H-4
valued graph, 1-1
variables, H-1, H-5
compound commands, 1-5, 9-1 t0 9-13, D-4
conditional, 9-11, 9-12
iteration control, 9-8 to 9-10
macros, 9-1 to 9-7
Concepts of filter design, 1-1
conditional
execution, 9-11
expression, 9-8 to 9-10
configuration, Preface-iii
conjugate
complex numbers, H-1
pole pairs, 1-3, 4-3, H-1
conjunction
bit-wise integer, see MASK
logical, see AND
console, 1-4, 1-5, 2-5, 6-2, 8-2, 8-3, 9-7
constant
binary, 2-7, 2-13
decimal, Preface-v, 2-7, 2-13
hexadecimal, Preface-vi, 2-7, 2-13
in coding equations, 1-4, 7-1, 7-4
keywords, B-1
numeric, Preface-vi, 2-7, 2-11, E-3
suffix, 2-7
symbolic, 1-3, 1-4, 2-6
system, 2-4, 2-11, E-3

SPAC20 Compiler

constraints
default, 7-2
on coding, 1-
too severe, 7-
CONTINUOUS,
continuous
filters, 1-1, 4-1, H-5
compared to digital, H-6
poles/zeros, 1-3, 4-3, 5-2
contribution to inaccuracy of time
responses, 5-4
s-plane, 1-1, 1-3, 2-4, 4-1, H-6
controlling a loop, see REPEAT, COUNT
convolution, H-2
approximation, 5-4
coordinates :
as primaries, 2-9, 2-12, E-5
polar (z-plane), 1-3, 4-1, 4-2
rectangular (S, TS planes), 1-3, 4-1, 4-2
copy
all 170 to a file, see LIST
files, F-1
state or macros from a file, see
INCLUDE
corrective actions for error messages,
Appendix K
COS, B-1
COUNT, 9-8, E-10
CR, carriage return
create,
a file, see PUT or APPEND
objects or symbols, see DEFINE
cursor controls, 1-4

3, 7-1ff
1,73
4-1,4-2, 4-4, 4-5, B-4

dash, 6-3
dB, decibels, as in GREF
DC, direct current, as in GREF
dead band, C-1
decimal

constant, 2-7, E-3

point, Preface-v
DEFINE command, B-2, E-7

complete form, E-7

for macros, 9-2, E-11

for poles/zeros, 4-2

for symbals, 3-3

see also sample session, 1-5ff
Defining

a filter, 1-3

macros, 9-1, 9-2, E-11

poles or zeros, 1-3, 4-2

summary chart, E-1

symbols, 2-6, 3-3

your own commands, 1-5, 10-1
definitions for keywords, Appendix B
delimiter, 2-2
design,

filter, 1-1

review, Appendix H

device names, 8-2
digit, Preface-v, 2-2, see constant
digital

filtering, H-3

SPAC20 Compiler

filters, canonical forms, H-3
diagrams, H-4
signal
processing, Preface-iv, Appendix H
digital-to-analog, 1-4, G-1
DIR MACRO, 9-7, B-2, E-11
disjunction
exclusive, see XOR
inclusive, see OR
diskette
drive, 8-2
file, 8-2, 8-3, 8-6
DISPLAY, 8-4, 8-5, B-2
display
commands, 3-5, E-8
from any table, summary chart, E-1
macros, 9-7, E-11
of code, 7-1
of file, 1-5, 8-4
of filter responses, 1-4
of object values, 2-4, 3-4
see also simple sample session, 1-5ff
display text string/expression, with copy to
List file, see WRITE
distortion
correction via HOLD, 5-4
from output S and H, 5-4
division
macro
definition, 11-2
invocation, 11-5
operator, 2-8, 2-9
documenting a session using
comments, 3-1, and
LIST, 8-3
dollar-sign, 2-2, 2-7
don’t care conditions
effect on CODE, 5-3
in bounds, 5-2, 5-3
double-asterisk
showing continued input line, 3-1
(‘‘to the power”’), 2-8
doubling the sample rate, 4-1, H-14, H-15
drivename, 8-1, 8-2

e, 2-9
editing
code after generation, for assembler
submission, 1-4, G-1
commands at console, 3-1
macros, 9-2
ELSE, 9-11
EM, 9-2, 9-7
END, 9-8, 9-11, 9-12
Entering commands, 3-1
equal sign, 2-5, 3-2, 3-3, 4-2
Equations, coding, 7-4
ERROR, 2-5, 7-1, 7-4, B-3, J-3
defauit, 7-4
error
bounds on gain, 1-4, 7-2
constraints, 7-1ff
ERROR
MERROR
MSQE
PERROR

Index

messages and corrective actions,
Appendix K
on read-only, 3-2
on undefined or already defined symbol,
33
Escape key, 1-5, 1-7, 2-2, 7-1, 8-4, 9-4, 9-8,
F-1
EVALUATE, -8, 3-4, B-2
execute
command block
conditionally, see IF, WHILE, UNTIL
forever, see REPEAT
number of times, see COUNT
commands from a file, see INCLUDE
EXIT, 1-3, 1-20, 8-2, B-2, F-2
exit clauses, 9-8to 9-11, 9-13
EXP, 29, B-1
exp, expression
expansion of macro, 9-7
valid commands in, 9-5
exponentiation
limitation, C-1
number raised to a power, **, 2-8, 2-9
of natural base e, EXP, 2-9
expressions, 2-12, 4-2, 4-4, 5-1, 6-1, 6-2,
7-1, 8-3,9-9, 9-10, E-§
arithmetic, 2-8, E-5
boolean, 9-9
evaluation, 2-8, 2-9
integer, 2-8, 4-2, E-5
logical, 9-9
relational, 9-8
extending
precision, H-12, J-3
the language, 1-5, 10-1
extension to filename, 8-2

FALSE, 99, 9-11
features of the Compiler, Preface-i
file
commands, 8-1, E-9
handling, 8-1to 8-6
names, 8-2
temporary macro, 9-1
filing and retrieving 1-4, 8-4 to 8-6
filter
analog, 5-4, H-1
continuous, 1-1
design, 1-1
commands, D-2
review, Appendix H
digital; 1-1, H-1
examples of advanced techniques,
Chapter 10
implementing, 1-1, H-9
low frequency, H-12
response functions, 5-4
response keywords, 5-1
factors used, 5-4
responses, 2-12
sampled, 1-1, 1-11, H-5, H-7
FIR filters, C-1
first-order, see stages
fixed frequency vs. geometry, 4-1
interaction with sample-rate and
implementation, 4-1

Index-3

Index

Index-4

floating point, 2-3, 2-5, 2-7, 2-9, 3-3
limitations, C-1
flow of control, 3-1; see compound !
commands
formal and actual parameters, 9-3, 9-7,
10-1
formulas, Appendix 1
fraction, Preface-vi, 2-7
frequency
and plane and sample-rate, 4-1
for BOUNDS, 5-2
for GREF, 5-1
in FSCALE, 6-1
range of interest, 1-4, 6-1, 6-2
response, 1-4, E-4, Chapter 5
functions, 2-9
keywords, 5-1
scale, 5-3, 6-1
FSCALE, 1-6, 2-5, 3-3, 5-1 to 5-4, 6-1, 8-4,
B-3
full DEFINE and REMOVE, E-7
functional categories, Preface-iv
Functions, 2-4, 2-11, B-1, E-4
of filter response, 5-1

GAIN, 1-6, 1-7, 5-1, 5-4, B-3, 1-3
gain
absolute, 5-2
maximum, 5-2
characteristic, 1-1
deviation from bounds when coded, 7-2
from individual pole, 5-2
reference, 5-1
generation
of code, 1-4, 7-1to 7-4
of graphs, 6-1 to 6-3
of listings, 8-3
geometry
re frequency, sample rate, and choice of
plane, 4-1
GERROR, 5-1, 5-3, 6-2, B-3, I-3
GRAPH, 1-4, 6-2, 6-3, B-2, E-9
graphable keywords, 5-1
graph commands, 6-3, E-9
graphics
area, 6-2
buffer, 6-3
capability, 6-1
characters, 6-3
resolution, 6-2, 6-3
graphs, 1-3, Chapter 6
see also simple sample session, -5ff
GRELEF, 1-6, 5-1, 8-4, B-3, 1-3
restriction, 5-2
GROUP, 5-1, 5-3, 5-4, B-3, 1-4

hard-copy, Preface-i, 1-4, 6-3
hardware configuration for SPAC20,
Preface-ii
HELP
messages, 1-2, 1-5, Appendix A, B-2,
E-2, F-1
hertz, 4-1, H-7

SPAC20 Compiler

hexadecimal
fraction with leading zero, 2-7
number, Preface-vi, 2-7, E-3
hidden spikes, 5-2, 5-3
high-frequency
continuous pole/zero inaccuracies, 5-4
droop from sample-and-hold, 5-4
HOLD, 1-18, 2-6, 5-4, 8-4, B-2, 1-4, J-1
HPI, 2-4, 2-9, B-1

"Hz, hertz, revolutions/cycles per second,

see also H-7

identifier, 2-3, 7-1

filename, 8-2
IF, 9-11, B-2, E-10
1IR filters, C-1
IMAG, 2-9, B-1
implementing filters with the 2920, 1-4, H-9
IMPULSE, 2-6, 5-1, 5-4, B-3
Impulse response

achieved by network, H-5

analysis, H-2, H-3
INCLUDE, 1-5, 1-9, 2-6, 8-6, 9-1, 9-2, B-2
input line

continuation, 3-1

length, 3-1, F-1
input/output names for poles/zeros, J-2
input to assembler, 1-4, Appendix G
INST, 1-12, 2-5, 7-1, B-3

default, 7-2
installation procedure, Appendix F
integer, 2-5

expression 2-8, 4-2, 4-3, 9-8, 9-9, E-5
interactive

design sessions, 1-1

manipulation, 1-1

sample session, 1-5 to 1-20
interface

with ISIS-11 8-1, 8-6, Appendix F
interrogation commands, D-4
interrupted session restart, 1-4, 8-6
interrupting any command, see ESCape
invalid numeric constants, 2-7
invoking macros, 9-2, E-11
iSBC-310, Preface-iii, iv, F-1, C-1
ISIS-11, Preface-iii

installing SPAC20 under, Appendix F

interface, 8-1)

loading, F-2
iterative processes, 1-5

keyboard calculator, 3-4
Keywords, 2-3, 2-4, Appendix B
commands, B-2, E-2
constants, operators, and functions,
B-1, E-3, E-4
gain-related, 5-1
filter response, 5-1
modifiers, B-4
objects, B-3
keyword references, 2-5, 2-6, 2-11, D-2, E-4

label of pole/zero, 4-2
language elements, 2-1

SPAC20 Compiler

Laplace transforms
used in impulse response analysis, H-3
LBOUND, 5-1to 5-3, B-3
leading zero, 2-7
limit
on characters in identifier, 2-3
on partitions in
BOUNDS, B-3
FSCALE, 6-1
limit cycles, C-1
linear, 1-1, H-3
line-editing characters, 3-1, 3-2
line-feed, 3-1
line printer, Preface-ii, 1-2
LIST, 1-2, 1-5, 6-3, 8-3, B-2
listing
all input/output, 8-3
help messages, 1-2
to file, console, printer, 8-2, 8-3
locating poles and zeros, 4-1
LOG, 2-4, 2-9, B-1
logic
conditional control, 9-1, 9-11, 9-12
of iterations, 9-8 to 9-10
operators, 2-3, 9-9
loop, 9-8
in macro invocation, 9-3
using compound commands, 9-8 to 9-10,
9-13, E-10
low frequencies, 1-3, H-12
:LP:, 1-2, 8-2

MACRO, 8-4, 9-7, B-3, E-11
macro
body, 9-1
command functions, 9-1
defining, 9-2
directory, 9-7
displaying, 9-7
editing, 8-6, 9-2
error checking, 10-1
expansion, 9-7, 9-8, 11-4
file, 9-1
in loop, 9-8
invoking, 2-3, 9-1,9-2, 114
library, 8-6
models, 9-2 t0 9-6, Chapters 10 and 11
names, 9-2, 9-7
parameters, 2-3, 9-1, 9-3
removing, 9-7
strings in, 9-4
syntax checking, 9-1, 9-7
usage, 1-3, Chapters 10, 11 ~
used under SUBMIT, 8-6
macros, Preface-iii, 9-1, Chapters 9-11,
D-5, E-11
filter, see
All-pole coding
Bilinear
Butterworth
Chebyshev
other signal processing, see
A-to-D conversion
division

multiplication
sawtooth
sinusoid
traingular
supplied-file, F-1
MAGAIN, 2-5, 5-1, 5-2, 6-2, B-3, 1-3, J-1
hidden spikes, 5-2
manuals
reference, Preface-iv, 1-2, 2-7, F-1
mapping to Z plane, 1-3, H-6, H-7
MASK, 2-8, 2-9, B-1
matched-z transform, 4-1, 4-5, H-6
math board, see iISBC
maximum
absolute gain, 5-2
gain error, 5-3
mean-square-error, 1-4, 5-3, 7-1 to 7-3
merging code for poles and zeros,
Appendix J
MERROR, 2-5, 5-1, 5-3, 6-2, 7-1 to 7-3,
B-3
minima and error constraints, 7-1, 7-4
minus, 2-3, 2-8, 2-9
MOD, 2-8, 2-9, B-1
modifiers, 2-4, B-4
modules of code, 1-4
MOVE, 44, B-2, E-7
see also 1-5ff
movement of poles or zeros
as a constraint on coding, 7-1, 7-3
by command, 1-3, 4-4
due to approximate coding, 7-1, 7-3
MSQE, 2-5, 5-1, 5-3, 6-2, 7-1 to 7-3, B-4,
I-3
multiplication
conversion into 2920 ADDs and SUBs,
H-10 :
macro
definition, 11-1
invocation, 11-4
operator, 2-8, 2-9
multiplier, 7-1, 7-4, see also constant
in digital fiiter block diagram, H-3ff

Names
device, 8-2
file, 8-2
ISIS-11, 8-2, F-1
of signal values in code, 1-14, 7-1, 10-12,
10-14, 10-15, 11-8, 11-10
see also keywords, Appendix B
symbolic, 1-4, 2-3, 2-6, 7-1
system constants, E-3
user, 2-2, 2-6
natural base e, 2-9
nesting compound commands, 9-12
non-scalars, 2-5
non-changeable scalars, 2-4
normalization, 1-2, 5-1, 5-4, I-1
NOT, 9-9, B-1
Notation, Preface-v
Notes and Cautions, Appendix C
number, 2-7
complex, 1-1, H-1ff
numeric constant, 2-7, E-3

Index

Index-5

Index

object

keywords, Preface-vii, Appendix B-3
object code, 1-2, G-1
OFF, 5-4, B-5
OGRAPH, 1-7, 6-2, 6-3, B-2, E-9
omitted parameters

in macro body (formal), 9-5

in macro call (actual), 9-4, 9-6
ON, 2-6, 5-4, B-5 ‘
operands, 2-9
operational amplifier, H-2
operators, 2-8, B-1
OR, 9-9, B-1
ORIF, 9-11, B-5
overflow, 7-4, C-1, H-11, J-1
overwrite, 8-5

parallel-structured filter stages, H-14, H-15
parameters
design, 1-1, 7-1
file, 1-5
macro: formal, actual, 8-6, 9-3
parentheses, 2-2, 2-8 to 2-10
partial fractions in impulse response, H-2
partial results, 1-5
partition
of poles/zeros, 2-10, 4-3, 4-4, E-6
interpreted sequentially, 4-2
on scales for graphs, 6-1ff
pathname, 8-2, 8-6
percent
sign use in macros, 9-3
used on YSCALE, 6-2
period, 2-2, 2-3, 2-6, 3-2, 6-3, 9-1, 9-8
PERROR, 1-13, 7-1, 7-2, B-4, J-3
PHASE, 1-8, 5-1, 5-3, 5-4, B-4, I-3
phase .
and group delay, 5-3
desired output, 1-1
Pl, 1-8, 2-4, 2-9, 4-2, B-1
piecewise linear, 1-4
Planes
and coordinates, 4-1, 4-2
changing via MOVE, 4-5
plot
last curve again, GRAPH
new curve over last, OGRAPH
screen size, see XSIZE
plus signs, 2-2, 2-8, 2-9
in graphs, 1-7, 6-3
POLE, 3-5,4-2t04-4, 7-1, B4
pole
coordinates, 4-1 ,
creation or destruction via MOVE, 4-4
definition, 1-1, 4-2
duplication, 4-4
error, 7-2, 7-3
location, 1-1
maximum number of, 4-2
moving, 4-4
numbering, 4-3
of transfer characteristic, H-1
real, 4-3
removing, 4-3
practical consideration, H-11

Index-6

SPAC20 Compiler

precision,

extended, H-12, J-3

single, 2-7
precedence of operators, 2-8, 2-9
primaries, 2-8 to 2-10, 7-1, E-6
printer, Preface-i, 1-4, 8-2
prompt character

ISIS-1I, 8-1

SPAC20, 1-2

within macros or compound commands,

9-1

propagation, 1-3, 1-4, 7-1, Appendix J
of carry, H-12

PUT, 1-3, 1-12, 2-6, 7-3, 8-5, 8-6, 9-1, B-3
default objects, 8-4

PZ, 1-6, 4-3, 4-4, B4

quadratic terms, H-1
correspond to complex conjugate pole
pairs, H-2
question mark, 2-2
quote, 2-2, 2-3, 9-4, 9-5

radians, 2-9, 4-1, 4-2, 5-3
RADIUS, 2-9, B-1
non-negative only, 4-2
range
of frequencies or time, see scales
of pole/zeros, see partition
read-only, 2-4, 2-5, 3-2, 5-2
REAL 2-9, B-1
real pole/zero
defined, 4-3
input/output signal delays, J-2
permit ‘‘real’”’ components, H-1
realization diagram, H-4
redisplay, 1-4, 6-3
relational
expressions 9-8, 9-9
symbols 2-2, 2-3, 9-8
remainder, see MOD
REMOVE command, B-3, E-7
complete form, E-7
for macros, 9-7, E-11
for poles/zeros, Preface-v, 1-3, 4-3
for symbols 3-4
message, 4-3
see also simple sample session, 1-5ff
removing objects
summary chart, E-1
RENAME, F-1
REPEAT, 9-8, B-3, E-10
resolution, 6-2, 6-3
restart of session, 1-5, 2-6
Retrieving
files of code or parametes, see
INCLUDE
review of analog filters, Appendix H

S, H-1

S & H, sample-and-hold

sampled
filters, 1-11, H-5, H-7
pole/zero, 2-6, 4-1
signals, H-3

SPAC20 Compiler

sampling
interval TS, 1-3, 2-5, 6-1, H-8
limitations, H-5
rate, 1-3, 1-11, 4-1, 5-4, H-12, H-14,
saturation, H-11
shown by asterisk, 6-2
saving partial results, 1-3, 1-4
sawtooth waveform macro
definition, 11-2
invocation, 11-7
scalar keywords, 2-4, 2-5
Scales, 5-1, 6-1
changes, 6-3
frequency, 6-1
time, 6-1
vertical, 6-2
scaling, 1-3, 1-4, 5-2, 5-4, 7-1
and other considerations, H-11,
Appendix J.
screen
size, 6-1ff
second-order (quadratic), H-1, H-2,
H-5, see also stages
semicolon, 2-2, 3-1, F-1
separator, 3-1
sequence of use, 1-3
set commands, 3-2, E-6
show contents of a file, see DISPLAY
signal propagation, Appendix J
sign-on messages, 8-1, F-1
simple sample session, 1-5 to 1-20
Simulator, 1-2, G-1
SIN, 2-9, B-1
single precision, 2-7
sinusoid waveform
in complex network analysis, H-1,
H-4, H-5
macros
at user-specified frequency
definition, 11-4
invocation, 11-9
from triangular waveform
definition, 11-4
invocation, 11-8
slash, 2-2, 2-8, 2-9
software installation, Appendix F
SPAC20 files, F-1
space, 2-2, 2-6, 3-1
special-character usage, 2-2
sequences as tokens, 2-3
S-plane, 1-1, 1-3, 2-9, 4-1, H-6
SQR, 2-9, B-1
stages, 1-3, 5-4, 7-1, J-1
first and second order cascaded, 1-4,
H-2, H-14, H-15
in parallel, H-16
STEP, 2-6, 5-1, 5-4, B-4
strings, 2-2, 2-3, 8-3, 8-4,9-4
submission
of code to Assembler, 1-5,
Appendix G
of command to Compiler, 3-1
SUBMIT, 3-1, 8-6
suffix see constant, Preface-v, 2-7
superimpose graphs, 1-4, 6-3

Index

symbolic
constants, 1-3
names, 1-4, 2-3, 2-6, 7-1
references, 2-6, 2-11, 3-2, E-4
variables, 1-4, 2-6

SYMBOLS, 3-4, 8-4, B-4

symbol table, 2-6, 3-3

symmetry of command syntax,
Preface-iv

syntax
charts, Preface-v, Appendix E
checking in macros, 9-7
description in BNF, Appendix D
errors, 9-1, 9-13, K-1

system constant, E-3

tables
macros, 9-2
pole/zero, 4-1
symbols, 2-6, 3-3
TAN, B-1
temporary RAM used in coding equations,
Appendix J
terminating
a command, 3-1
aline, 3-2
a macro, 9-2, 9-4, 9-8
an interactive session, 8-2
THEN, 9-11, B-§
THROUGH, 2-10, 4-3, B-5
time
response, 5-4, 6-1, E-4
scale, 6-1, 6-2
TO, 4-4, 4-5, B-5
Token, 2-1, 2-3, 3-1
partial, 9-3
predefined, 2-4
TPI, 3-4, B-2
transfer
function, 1-1
factors, 1-1
characteristic, H-1
transforms, Preface-v, Appendix H
Bilinear, 10-6, H-7 to H-9
impulse invariant, H-5, H-6
matched-Z, H-6
triangular waveform macro
definition, 11-3
invocation, 11-8
TRUE, 9-9, 9-11
TS, 1-3, 1-11, 2-1, 2-2, 2-5, 2-6, 4-1, 4-4,
5-1, 5-4,6-1, 6-2, B-4, H-14
consequences, 4-1

UBOUND, 3-3, 5-1to0 5-3, B4
underflow, C-1, H-11
underline, 2-2
upper and lower bounds, 5-2
unit delay, H-9

realization in 2920, H-10
UNTIL, 9-8 to 9-10, B-5, E-10

Index-7

Index

Index-8

Up

impulse, 5-4

step, 5-4
user names, 2-2, 2-6, 3-2
utility commands, D-4

variable
independent, computing of, 1-4
names, 1-4, 2-6, 7-1

WHILE, 9-8 t0 9-10, B-5, E-10

- WRITE, 8-3, B-3

write over a file, see PUT

XOR, 9-9, B-2
XSIZE, 2-5, 3-3, 5-1, 5-4, 6-1 10 6-3, 8-4,
B-4

YSCALE, 1-8, 6-2, 8-4, B-4, C-1
YSIZE, 2-5, 3-3, 6-2, 6-3, 8-4, B-4

SPAC20 Compiler

Z,4-2,4-4, B-5
ZERO, 3-5,4-2t04-4,7-1, B4
zero
coordinates, 4-1
creation or destruction via MOVE, 4-4
definition, 1-1, 4-2
duplication, 4-4
error, 7-2, 7-3
location, 1-1
maximum number of, 4-2
moving, 4-4
numbering, 4-3
of transfer characteristic, H-1
real, 4-3
realization, H-2
removing, 4-3
Z plane, 1-1, 1-3, 2-6, 2-9, 4-1, H-6

- ® 2920 Signal Processing Applications

I“U Compiler User’s Guide

: 121529-001
REQUEST FOR READER’S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

cITy STATE ZIP CODE

Please check here if you require a written reply. [

WE’D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form wil
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

| II II I NO POSTAGE

NECESSARY
IF MAILED
INU.S.A.

BUSINESS REPLY MAIL

FIRSTCLASS PERMIT NO. 1040 SANTACLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

-ntel ®
INTEL CORPORATION, 3065 Bowers Avenue, Santa_ Clara, CA 95051 (408) 987-8080
Printed in U.S.A.

