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PREFACE I 

The assembler translates 2920 mnemonics (such as ADD or L02 or IN3) into 
machine code. At the same time, it produces an object file and a listing file showing 
each source line and the generated code, plus any detected errors. Its object output 
may be used by the PROM programmers and the 2920 Simulator. 

The minimum hardware configuration to run the AS2920 Assembler is as follows: 

• INTELLEC or INTELLEC-II with 32K random access memory (RAM) 

• Teletypewriter, CRT, or equivalent for console input and output 

• Single diskette drive unit 

If a line printer is available, it can be used for large-volume or hard-copy output. 

The AS2920 Assembler uses the ISIS-II keyboard and disk inputlouput functions. 
You may wish to refer to other documents containing valuable information about 
this supervisor, the Intellec system and the other software used on it. These include: 

Intellec Operator's Manual 

INTELLEC/DOS Diskette Operating System 
Operator's Manual 

ISIS-II System User's Guide 

Reader's Guide 

9800129 

9800206 

9800306 

The tutorial and reference formats necessariiy require repetitive information. In 
reading this manual for the first time, you might first skim Chapters 1 and 4. They 
will familiarize you with the general setup of the language and the simpler applica­
tions of general interest. When you begin to have questions about particular instruc­
tions, you can look them up in Chapter 3. 

Chapter 2 gives the detailed rules of this assembly language. Chapter 5 discusses the 
controls you may use either when you invoke the Assembler or on control lines 
embedded in your source file. The Appendices discuss other specialized issues 
around the language or the part. 
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CHAPTER 1 
INTRODUCTION 

Capabilities, Features, and Functional Elements 

The 2920 can perform a variety of analog signal processing functions by using digital 
techniques. Such 2920 programs may realize, by simulation, a collection of major 
analog modules and their interconnections. A program is executed repeatedly and 
continuously, thereby imitating the behavior of the analog system on a sampled 
basis. 

Examples of such functions include simple to complex filters, oscillators, limiters, 
rectifiers, modulators, non-linear functions, correlations, and logical operations, 
among many others. Several such functions can be achieved using a single 2920 chip, 
and if additional capability is required for extremely complex designs, additional 
2920s can be cascaded together. 

The major elements of the chip include: 

1. an arithmetic processor 

2. a scratch-pad random-access memory (RAM) 

3. a digital-to-analog and analog/digital conversion unit (DAC) 

4. a user-programmable and erasable PROM 

The chip is realized in an n-channel MaS technology, and is supplied in an 28-lead 
dual-inline package. 

The analog/digital conversion system provides four analog inputs and eight analog 
outputs, with built-in sample-and-hold. Inputs and outputs may be used for logic 
levels if desired. 

Basic 2920 Operation 

The 2920 implements the analog functions by simulating them in real time. Digital 
processing guarantees stability, accuracy, and reproducibility of results. Amplitude 
stability is determined by that of an external voltage reference, and frequency 
stability is determined by that of the clock used to operate the device. 

Clocks 

Clock sources for the 2920 may be derived from an externally generated pulse train, 
or by connecting an external crystal to the device. The crystal or clock frequency is 
four times the instruction rate. An instruction rate clock is provided by the 2920-as a 
TTL output. Other TTL inputs and outputs are available to you for greater flex­
ibility in applications using the 2920. 

Minimum Hardware Requirements 

In simple applications you may need only to provide power supplies (including the 
reference voltage), a crystal, and a sample capacitor. Some applications may require 
simple analog anti-aliasing filters at the inputs and/or outputs. 

1-1 
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2920 Assembly Language 

Overview of Functional Elements 

Figure 1-1 shows a block diagram of the 2920. In the figure, the 2920 has been 
divided into three major sections: the PROM, the arithmetic unit with memory, and 
an analog section. 

The PROM section of the 2920 includes an instruction clock generator and program 
sequence counter. Signals from the clock generator and PROM control the other 
two sections. 

The arithmetic section includes a 40 word by 25-bit random access memory (RAM) 
with two ports, and an arithmetic and logic unit (ALU). One of the two inputs to the 
ALU is passed through a scaler or barrel shifter. The arithmetic section executes 
commands from PROM, thereby performing digital simulation of analog functions 
in real time. 

The analog section performs analog to digital (AID) and digital to analog (DI A) 
conversions upon commands from the PROM section. The analog section includes: 

• an input multiplexer ~4 inputs), 

• an input sample-and-hold circuit, 

• a digital to analog converter (DAC), 

• a comparator, and 

• an output multiplexer with 8 output sample-and-hold circuits. 

The analog section also has a special register called the DAR (for digital! analog 
register), which acts as a link between the arithmetic and analog sections. 

SIGINO 

SIGIN1 

SIGIN2 

SIGIN3 

XlICLK X2 CCLK GRDD 

CAP1 CAP2 VREF M1 M2 

Figure 1-1. Block Diagram of 2920 Signal Processor 

SIGOUTO 
SIGOUT1 
SIGOUT2 
SIGOUT3 
SIGOUT4 
SIGOUT5 
SIGOUT6 
SIGOUT7 



2920 Assembly Language 

Figure 1-2 shows the labels used for pinouts while running a program in the 2920. 
Several pins perform different functions during programming than during normal 
operation. 

SIGOUT3 SIGOUT2 

SIGOUT4 SIGOUT1 

SIGOUT5 SIGOUTO 

GRDA M1 

SIGOUT6 M2 

SIGOUT7 VSP 

CAP1 OF 

VREF RSTIEOP 

RUNIPROG 

SIGINO CCLK 

SIGIN3 11 VCC 

VSS GRDD 

SIGIN2 X2 

SIGIN1 X11CLK 

Figure 1-2. Run Mode Pin Configuration 

The numeric conventions used in the 2920 are covered in more detail in Appendices I 
and J. 

Basic 2920 Performance Parameters and Limits 

The limits to 2920 capabilities are established by the size of the on-chip PROM and 
RAM, the speed and capability of the processor, and the resolution of the AID and 
DI A converters. 

A program for the 2920 consists of a series of basic 2920 instructions which are 
executed sequentially at a fixed rate. The program allows no internal jumps, and is 
therefore of fixed length and execution time. 

A sample interval is the time between samples of the same input channel. Normally, 
one pass through a program establishes a sample interval, i.e. input! output opera­
tions' usually take place once per program pass. Similarly, the functions 
implemented by the sequence of instructions usually occur once per sample interval. 
However, the signal on a given input channel may be sampled more than once dur­
ing a single pass through the program. In this case, sample interval is determined by 
multiplying the instruction-clock-period by the number of instructions between 
input samples. 

The number of functions which can be realized with a single 2920 is established by 
the amount of PROM provided and the number of RAM words on the chip. For 
example, a typical digital filter requires at least one RAM word per pole or two per 
complex conjugate pole pair. Thus the RAM limits the number of poles to less than 
40, or less than 20 complex conjugate pairs. The number of PROM words needed to 
realize a complex conjugate pole pair is variable, but has a typical value of approx­
imately 10. Therefore, PROM capacity also limits the number of conjugate pole 
pairs to less than 20. 

Introduction 
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2920 Assembly Language 

What is a Program? An Assembler? 
Assembly Language? 

A program is a sequence of instructions intended for execution by a particular com­
puter. In the beginning, computers speak only binary, that is, they obey instructions 
coded as sequences of ones and zeros like 111 000000 000100 1101 00001. Humans 
tend to find such "sentences" difficult to deal with and error-prone. We usually 
prefer symbols more familiar, or at least easier to remember (more mnemonic). 

An assembler is a program usually supplied by a manufacturer to create the needed 
strings of ones and zeros from "words" you write in the special (assembly) 
language. Such a program bridges the gap by translating the more human-like 
languages into the computer's binary tongue. For example 

LDA ZETA,GAMMA,LOl,INI 

is an instruction you would code in the 2920 Assembly Language to produce the 
binary string given above. Each separate abbreviation in the instruction is called a 
"mnemonic" because it is easier to remember than its binary meaning. This instruc­
tion could be read as saying 

"take whatever number is in the location named GAMMA, shift it left one bit 
position, and then load the location named ZETA with the resulting number. 
While you're at it, sample input-channel-I." 

If the location named GAMMA contains the number 1/4, the location named ZETA 
will be filled with the number 1/2. Shifting a binary number left one binary position 
effectively mUltiplies by 2, just as shifting a decimal number left one decimal posi­
tion effectively multiplies by ten (decimal 1234 shifted one position becomes 12340). 
This will all be covered in more detail later . 

Thus most programs are written in a language different from the codes used directly 
by the computer. Such a language requires translation into those codes. The 
translator for an assembly language is called an assembler. 

A program that needs translation before the computer can execute it is called a 
source program. The assembler performs various functions on the source program 
to create an "object program," the thing that the computer actually executes. The 
assembler also creates several reports enabling you, as programmer, to evaluate, 
modify, or use this object program. 

Overview of 2920 Assembly Language Keywords 

The assembly language for the 2920 is simple. Table 1-1 lists the symbols used in its 
instructions. Naturally, a detailed discussion of the assembly language is the major 
content of this whole manual. The next few paragraphs are merely a quick, con­
densed overview, which may facilitate your assimilation of the details given in later 
sections. 



2920 Assembly Language 

Table 1-1. 2920 Keywords 

Section 1: Arithmetic Operation Codes 

ABA ABS ADD AND LDA LIM SU B XOR 

Section 2: Analog Control Codes 

CNDS CVTS EOP INO NOP OUTO 
CND? CVT? IN1 OUT1 

CND6 CVT6 IN2 OUT2 
CND5 CVT5 IN3 OUT3 
CND4 CVT4 OUT4 
CND3 CVT3 OUT5 
CND2 CVT2 OUT6 
CND1 CVT1 OUT? 
CNDO CVTO 

Section 3: Constant Source Codes and the DAR 

KM1 KM2 KM3 KM4 KM5 KM6 KM? KM8 
KPO KP1 KP2 KP3 KP4 KP5 KP6 KP7 
DAR 

Section 4: Scaler Control Codes 

ROO R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 
RO R1 R2 R3 R4 R5 R6 R7 R8 R9 

L01 L02 
L1 L2 

Section 5: Assembler Commands and Modifiers 

DEBUG 
NODEBUG 

PAGELENGTH( ) 

EJECT 

END 
EQU 

LIST 
NOLIST 

OBJECT( ) 
NOOBJECT 

PAGEWIDTH( ) 

TITLE(' ... ') 

PAGING 
NOPAGING 

PRINT 
NOPRINT 

SYMBOLS 
NOSYMBOLS 

PRINT( ) 

As shown in Section 1 of Table 1-1, there are eight basic arithmetic and logic com­
mands. Section 2 shows the analog codes. "IN" is used for input, "OUT" for out­
put. "CVT" stands for converting a sampled analog input into a digital number, 
one bit at a time. "CND" means conditional use of an arithmetic instruction, 
depending on testing a specified bit. The 16 built-in constants shown in Section 3 run 
from -S/S (KMS) to + 7/S (KP7). 

There are 16 separate shift codes shown in Section 4, which permit scaling (multiply­
ing) by powers of 2. The codes run from R13, meaning 2-13 , up to L02, meaning 22 . 
The Rand L stand for shifts to the right and left, respectively. 

Introduction 
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2920 Assembly Language 

You would use the additional keywords named in Section 5 of the Table to direct 
certain assembler operations, or to qualify certain of your instructions. Every sym­
bol in Table 1-1 is explained in this manual. 

The portion of a 2920 program shown below illustrates where certain types of sym­
bols typically appear in the fields of an instruction: 

SUB OSe,KP4,R12,IN3 
ADD DAR,OSe,ROO,IN3 
ADD ose,KP4,L01 ,eNDS 

; ose exemplifies a 
; user symbol for some 
; variable 

A Closer Look at the 2920 Language 

The Assembly Language must be able to generate all the possible legal binary 
strings, but still be easier to use than binary itself. To this end, instructions are 
created out of a limited number of predefined symbols, strung together in a 
predefined structure (instruction). User-defined symbols can be used to name loca­
tions containing variables (data, in RAM) or instructions (in ROM). 

Each part of an instruction is called a field, and only certain symbols are permitted 
in specific fields. Fields are separated by something called a delimiter, such as a 
sequence of one or more blanks, a comma, a semicolon, or a colon. 

A field can be (for example) an indicated operation like ADD or an operand like XX 
or YY in the instruction 

ADD XX,YY 

which would add the contents of the location named YY into the contents of the 
location named XX. 

Opcodes, Labels,and Operands 

A 2920 instruction can have up to seven fields. They are called, from left to right: 
label, opcode, destination operand, source operand, shiftcode, iocode, and com­
ment fields. 

ADD is an example of what is allowed in the opcode field. The field containing XX 
is called the destination field; that containing YY is called the source field. There is 
an optional label field, giving a name to the location of the instruction itself. If used, 
a label always appears as the first field on the left, immediately followed by a colon. 

Thus, if you wanted to code an add instruction to put the sum of V ARIABLEll and 
V ARIABLE22 into V ARIABLE22, and name that instruction SUM, it would look 
like this: 

SUM: ADD V ARIABLE22, V ARIABLEll 

This instruction has four fields: the label, opcode, destination, and source fields. 
Note that since the 2920 instruction set contains no branch instructions, the label 
SUM is only useful in debugging, when it can be accessed by the Simulator. 



2920 Assembly Language 

Shift Codes 

The two remaining fields, before an optional comment, are called the shiftcode and 
the iocode. If you omit coding them explicitly, the assembler supplies a default 
automatically, as explained below. The shiftcode affects the source operand only, 
shifting it left or right so many bits (or none) before the opcode is performed. As 
mentioned above, this "scaling" has the effect of multiplying the source operand 
(only) by 2 to the power of the shiftcode. Thus, to add half of VARIABLEll into 
V ARIABLE22, you could write 

SUM: ADD V ARIABLE22, V ARIABLEll ,ROI 

locodes 

The optional iocode can direct the 2920 to perform one of four functions: 

1. sample an input channel 

2. put a sample out to an output channel 

3. convert from the input sample into the DAR 

4. make the execution of an arithmetic opcode execution conditional on some 
specified bit of the DAR. 

These iocode operations occur simultaneously with the arithmetic operations, such 
as ADD, because they use a different part of the 2920. Arithmetic instructions use 
the ALU, arithmetic logic unit. Iocode operations use the analog control decoder 
(see Figure 1.1). 

Here are some examples of the four iocode possibilities: 

1. To sample input-channel-3 at the same time as doing the ADD above, you 
simply code its name into the iocode field, as follows: 

SUM: ADD VARIABLE22,VARIABLE11 ,R01 ,IN3 

If no arithmetic operation is currently needed or planned to go on simultaneous­
ly, you could simply code 

IN3 

and the assembler would automatically fill in the other fields with 

LDA O,O,ROO 

which is the ALU no-operation code (which also clears the carry flag), thus 
creating the instruction 

LDA O,O,ROO,IN3 

which does nothing but sample input-channel-3 (and clear the carry). 

2. To output to channel 5, you could append OUT5 to an arithmetic instruction, 
e.g. 

SUM: ADD VARIABLE22,VARIABLE11 ,R01 ,OUT5 

or code it alone 

OUT5 

with the result in either case that the contents of the DAR are converted to an 
output voltage applied to channel 5. (As in 1 above, the latter form will also 
clear the carry due to the use of the default LDA instruction.) 

Introduction 
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2920 Assembly Language 

3. Analog to digital conversions of input samples are performed one bit at a time 
into the DAR using the 9 CVT codes: 

LOA 
eVTS 
eVT7 
eVT6 
eVT5 
eVT4 
eVT3 
eVT2 
eVT1 

DAR,KPO ; initialize DAR to zero. 
; convert sign bit 
; convert bit 7 (most-significant-bit) 
; convert bit 6 

eVTO ; convert bit 0 (Ieast-significant-bit) 

In actual practice, each cycle of conversion must allow time for theDAC to 
settle, which is achieved by inserting NOP (no-operation) iocodes after all but 
the last CVT (or by putting the CVT iocodes only on every other sequential 
instruction) . 

LOA 
eVTS 
NOP 
eVT7 
NOP 
eVT6 
NOP 
eVT5 
NOP 
eVT4 
NOP 
eVT3 
NOP 
eVT2 
NOP 
eVT1 
NOP 
eVTO 

DAR,KPO ; initialize DAR to zero. 

This sequence could also be used as the iocodes on any 18 arithmetic instruc­
tions in order, providing the DAR was not altered by any of them. (Since this 
sequence changes the DAR, you should also not be relying on it to retain any 
value from prior work.) The result will be a digital value in the DAR represent 
ing the amplitude of the input signal as a fraction of the reference voltage. 

4. The conditional iocode, CND, uses the result of testing a specified bit of the 
DAR to allow, cancel or change the operation of its associated arithmetic 
instruction (LDA, ADD, or SUB). The bit is specified by the fourth character of 
the iocode, as it was in the CVT iocodes above (0 is least significant bit): 

SUM: ADD VARIABLE22,VARIABLE11 ,R01 ,eNDS 

In this example, if the sign bit of the DAR is 0, the add will not occur; if the sign 
bit of the DAR is l, the add will occur. This is similarly true if the opcode were 
LDA: 

LOA VARIABLE22,VARIABLE11 ,R01 ,eNDS 

This will fill variable22 with half the contents of variablell only if the sign bit of 
the DAR is 1. If it is 0, the operation does not take place (though it does take 
time). . 

The case of SUB is slightly more complicated and will be dealt with in Chapter 3. 
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Basic Program Flow 

Figure 1-3a shows the flow diagram for a typical 2920 application. The program has 
no beginning or end, but repeatedly performs the same set of calculations at a con­
stant rate. 

In Figure 1-3a, the input/calculate/output sequence is shown in series. However, 
there may be some parallelism in actual programs because the input/ output opera­
tions may execute in parallel with some arithmetic. As an example of an extreme 
case of parallelism, consider the 2920 programmed to perform two independent 
operations, each of which takes less than half of the 2920 capacity. The flow chart 
can be as shown in Figure 1-3b. In actuality, the two loops execute simultaneously 
and in synchronism, with the 110 functions of one loop being executed while the se­
cond is performing computation. 

t 
SAMPLE INPUTS 

A·D CONVERSION 
(110 FIELD) 

t 
SIMULATE 
INTERNAL 

STRUCTURE 
& 

COMPUTE OUTPUTS 
(ARITHMETIC FIELDS) 

t 
DELIVER 
OUTPUTS 

(110 FIELD) 

I 

a. BASIC PROGRAM FLOW 

SIMULATE 
FUNCTION 1 

SIMULATE 
FUNCTION 2 

b. PARALLEL OPERATION OF ALU AND 1/0 

Figure 1-3. 2920 Program Flow Diagrams 

Assembler Functions and Controls 

The assembler translates 2920 mnemonics (such as ADD or L02 or IN3) into 
machine code. At the same time, it produces an object file and a listing file showing 
each source line and the generated code, plus any detected errors. Its object output 
may be used by the PROM programmers and the 2920 Simulator. 

You can control the operations of the assembler with respect to most of its func­
tions. This control may be exercised in the command invoking the assembler, or in 
control lines embedded in the source program. 

The individual functions of this assembler are: 

I. Symbol Table Management: keeping track of all symbols and their values and 
automatically assigning RAM locations to variable names as they are 
encountered. 

2. Location Counter Management: keeping track of locations available for 
instructions and assigning locations for each instruction assembled. 

3. Instruction Assembly: translating mnemonic opcodes and operands into their 
machine language equivalents. 

Introduction 
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4. Control and Directive Processing: noting and executing all controls, e.g. 
assembly listing and object output control, and directives such as symbol defini­
tion. This includes controls given as part of the invocation command. 

5. Assembler Output Generation: creating the assembly listing, object code file, 
and error diagnostics. 

The complete set of controls is given in Chapter 5. You may specify whether or not 
you want an output listing printed, the length and width of listing pages, the desired 
title on it, whether you want an object file generated, and whether or not you want 
symbol table and/or debugging information (for use by the Simulator) generated 
with it. 

If you do not specify any options, then certain default assumptions· are used, as 
follows: 

that you DO want a listing, sent to a file with the same basic name as your 
source file (called, say, PROG.SRC) but with "LST" as the qualifying 
"extent", e.g. PROG.LST; 

that the listing should be divided into numbered pages of 66 lines, each up to 
120 characters long; 

that you do want an object program created, and sent to a file named like the 
source but with a qualifying extent of" .HEX", e.g. PROG.HEX ; 

and that the symbol table should be put out to the listing but not to the object 
file. 

These defaults correspond in order to the following option choices: 

LIST 
PRINT(filename.LST) 
PAGING 
PAGELENGTH(66) 
PAGEWIDTH(120) 
OBJ ECT(filename. HEX) 
SYMBOLS 
NODE BUG 

A Closer Look at the Functional Elements 

PROM Section 

The PROM Section contains 4608 bits of user programmable and erasable read-only 
memory. In normal operation of the 2920, i.e., in RUN mode, it is arranged as 192 
words of 24 bits each. Each word corresponds to one 2920 instruction. (During pro­
gramming, each 24-bit word is treated as six 4-bit nibbles; i.e., in PROGRAM mode 
the PROM appears as 1152 ~ords of four bits each. Each six nibbles appear on a 
separate line of the hexadecimal object-file-listing as shown in Appendix E.) 

PROM RUN Mode 

During RUN moae the PROM section acts as the system controller. Each 24-bit con­
trol word contains bit patterns that determine the operations to be performed by the 
analog and arithmetic sections. 
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Ignoring labels and comments, the control word in RUN mode can be viewed as five 
fields, of which one controls the analog section and the remaining four control the 
arithmetic section. The four arithmetic section control fields include the two 6-bit 
fields which identify RAM operands, plus a 4-bit scaler control field and a 3-bit 
ALU control field (operation code or opcode). 

In RUN mode, PROM word addresses are numbered from ° to 191. In normal 
operation all locations are accessed in sequence and no program jumps are allowed. 
The PROM returns to location ° upon completion of execution of the command in 
word 191, or when an EOP instruction is encountered in the analog control instruc­
tion field. The EOP feature allows the program to be terminated at the end of a 
user's program shorter than 192 words. Placement of the EOP is explained below. 

The PROM may be thought of as a crystal- or clock-controlled cycle generator as it 
determines the sampling frequency of the analog signals. If an input is sampled once 
per program pass, the sampling frequency is liNT where N is the number of words 
(instructions) in the program and T is the time required to execute one instruction. 

The PROM fetch/execute cycle is pipelined four deep, meaning that the next four 
instructions are being fetched while the previously fetched instructions are being 
executed. Although otherwise invisible to the user, this technique makes it necessary 
to require that the EOP instruction be inserted in a word with an address divisible by 
four, e.g. 0, 4, .... ,188. The EOP does not take effect until the three following in­
structions are executed because those three are already fetched. 

Arithmetic Unit and Memory 

A block diagram of this subsystem is shown in Figure 1-4. This subsystem consists of 
three major elements: a RAM storage array, a scaler, and an arithmetic and logic 
unit (ALU). 

"A" ADR "B" ADR 

STORAGE 
40 x 25 

6 

SHF ALU 

A 

CONSTANTS B 

DAR 

CY OUT 
CND------------~ 

TEST Bri ------------------' 

Figure 1-4. ALU Block Diagram 

Data within this structure are processed using 25-bit two's complement arithmetic, 
although at certain locations larger or smaller words may be found. (Two's comple­
ment representation of data is explained in Appendix I.) It is most convenient to 
consider an imaginary binary point just to the right of the highest order (Le. sign) bit 
of each word. Thus the normal range of any variable x is considered to be 

-1.0~x<1.0 

and the smallest resolvable change, delta, in any variable is given by 

delta = 2-24=5.96*10-8 
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Each of the elements making up this portion of the 2920 receives command or 
address information from the PROM. The storage array receives two 6-bit address 
fields, the scaler receives a 4-bit control field, and the ALU receives a 3-bit control 
field. 

The Storage Array and the Constant Array 

The storage array consists of a random access memory, with two ports, organized as 
40 words of 25 bits each. Each port is independently controlled from the PROM by a 
6-bit control field. 

These 6 bits enable operand addresses from 0 up to 63, since 2 to the 6th allows for 
64 possible addresses. However, only 40 of these refer to actual RAM locations. The 
remaining possibilities are used to refer to an array of constants, and to an 
input! output register (the DAR) which serves to link the arithmetic and 
analog/digital conversion sections of the 2920. 

The two ports are called" A" and "B." The A port is read-only. Data read from it 
are passed, through the scaler, to one input of the ALU, as the source operand. The 
B port passes data to the second ALU input, and receives the ALU results; as the 
destination operand. 

The constant array consists of 16 "pseudo-locations" in the RAM address field. 
These constants should be accessed only from the A port, i.e., only as a source 
operand. A warning is issued if they are referenced as destination operands, and 
they remain unaffected. The least significant four bits of the "address" are directly 
translated to the high-order four bits vf the data field, with the remaining data bits 
equivalent to zeroes. Consequently, each unsealed constant is some number of 
eighths, from -8/8, -7/8, ... , up to + 6/8, + 7/8. A much wider range of constants 
is actually available, because the selected constant passes through the scaler, and can 
thus be modified as explained below. Figure 1-5 shows the "address" mapping for 
constants. 

~"A" PORT DATA WORD 

S I 2 
2-' 2-3 I Z' I 2-5 I 2"" 

t t t 
0 0 0 

Figure 1-5. Address Mapping for Constants 



2920 Assembly Language 

Table 1-2. Constant Codes 

CONSTANT UNSCAlED CONSTANT UNSCAlED 
MNEMONIC VALUE MNEMONIC VALUE 

KPO 0 KM1 - .125 

KP1 + .125 KM2 - .250 

KP2 + .250 KM3 - .375 

KP3 + .375 KM4 - .500 

KP4 + .500 KM5 - .625 

KP5 + .625 KM6 - .750 

KP6 + .750 KM7 - .875 

KP7 +.875 KM8 -1.0 

The DAR can be used as a source or a destination operand. It is a digital to analog 
register and an analog to digital register. It is nine bits wide, occupying the nine most 
significant bit positions of a word whose other bits are set to ones in order to correct 
for A/D conversion offset. 

The DAR output is also tied directly to the digital to analog converter (DAC) inputs. 
The DAR is used as a successive-approximation register for analog to digital conver­
sion, under control of the analog function instruction fields (CVT iocodes) 
explained above and in later chapters. Each bit position of the DAR can also be 
tested by the ALU for conditional arithmetic operations using the CND iocodes. 

Scaler 

The scaler is an arithmetic barrel shifter located between the A port of.the RAM and 
the ALU. Values read from the A port can be shifted left or right. The shifts can be a 
maximum of two positions to the left and a maximum of thirteen positions right. 
Left shifts fill with zeroes at the right; right shifts fill with the sign bit at the left. 

Table 1-3. Scaler Codes and Operations 

SCALER BIT EQUIVALENT SCALER BIT EQUIVALENT 
CODE VALUES MULTIPLIER OPERATION CODE VALUES MULTIPLIER 

L02 1110 22= 4.0 "A"x22 R06 0101 2-6= 0.015625 

L01 1101 21= 2.0 "A"x21 R07 0110 2-7 = 0.0078125 

ROO 1111 2°= 1.0 "A"x20 R08 0111 2-8= 0.00390625 

R01 0000 2-1=0.5 "A"x2-1 R09 1000 2-9= 0.001953125 

R02 0001 2-2= 0.25 R10 1001 2-1°= 0.0009765625 

R03 0010 2-3= 0.125 R11 1010 2-11 = 0.00048828125 

R04 0011 2-4= 0.0625 "A"x2-4 R12 1011 2-12=0.000244140625 

R05 0100 2-5= 0.03125 R13 1100 2 -13=0.0001220703125 

As explained above, these arithmetic shifts are equivalent to multiplication of the A 
port value by a power of two, where the number of positions shifted is the power. 

The scaler is controlled by a 4-bit wide control field from the PROM, as shown in 
Table 1-3. Note that left shifts may produce numbers which are too large to fit 
within a 25-bit field. The handling of such large numbers is described in the ALU 
section below. 
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TheALU 

The Arithmetic Logic Unit calculates a 25-bit result from its A and B operands 
(source and destination) based on an operation code from the PROM. The 25-bit 
result is written back into the B (destination) memory location at the end of the 
instruction cycle. 

The ALU uses extended precision to allow calculation of the correct result even 
when receiving left-shifted operands from the scaler. If the computed result YY 
exceeds the bounds 

-1.0~YY<1.0 

an overflow condition is indicated. When overflow limiting is enabled, this condi­
tion causes the result to be replaced with the legal value closest to the desired result, 
i.e. with -1 if the computed value was negative, and with + 1.0 if the result was 
positive. 

In binary these extreme values appear as 

1000 
0111 

000 000 
111 111 

000 000 000 000 000 and 
111 111 111 111 111 (=1.0*, or 1-2-24) 

respectively. This overflow situation characteristic is useful for realizing certain non­
linear functions such as limiters, and is beneficial to the stability of filters. The OF 
pin tells you that an overflow is occurring on the current operation (cycle). This out­
put is active low and open-drain. In the case where overflow is not enabled, each 
binary number is extended to 28-bit precision by extending the sign bit to the left. 
The calculation is done and the low 25 bits are written back to the destination. 

The operations performed by the ALU are summarized in Table 1-4. Although most 
of them are self-explanatory, you may find the following details useful at this point. 

Absolute value (ABS) and absolute add (ABA) convert the "A" operand (source) to 
its absolute value before performing any calculations. Load A (LDA) and ABS are 
treated as arithmetic operations by the ALU, meaning that the source is added to 
zero and then replaces the "B" operand (destination). This causes the correct han­
dling of those overflows caused by left shift operations. 

The operation LIM sets the result to positive or negative full scale, based on the 
"A" port sign bit, behaving much like a forced overflow. However, the overflow 
flag will not indicate overflow for a LIM unless the given source operand and shift­
code would produce an overflow in an LDA operation. 

The constant source codes allow you to select constants for arithmetic operations. 
The procedure is described in the section on the storage array of the ALU and 
memory. Table 1-2 above lists the mnemonics and corresponding unsealed value of 
each constant. Eaeh value is passed through the scaler, and so may be multiplied by 
a value 2k, where k runs from + 2 to -13. The scaler codes and equivalent multiplier 
values are shown in Table 1-3. 

Conditional Arithmetic Operations 

In addition to the basic operations described in Table 1-4, some ALU functions may 
execute conditionally. Certain codes in the analogi digital control field (iocode) 
cause the execution of the arithmetic operation to be conditional on a selected bit, 
usually of the DAR. The conditional instructions are tabulated in Table 1-4b. 
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As discussed above under IOCODES for ADD and LDA, the conditional field code 
selects a bit of the DAR, using its value to determine how the instruction is to be 
executed. For conditional subtract, the bit actually used is the carry from the 
previous result. In this case the selected bit of the DAR is set equal to the carry from 
the current instruction. This is discussed further in Chapter 4 and Appendices I and 
J. 

Conditional additions are used to multiply one variable by a second, as discussed in 
Chapter 4. The multiplier is loaded into the DAR, and the multiplicand is added 
conditionally to the partial product. 

Conditional subtraction is used to divide one positive variable by another, using a 
non-restoring division algorithm. The divisor is conditionally subtracted from the 
dividend, and quotient bits are assembled in the DAR. 

Conditional operations may also be useful for performing logic, also shown in 
Chapter 4. Table 1-5 summarizes the properties of the arithmetic section. 

Table 1-4. Memory-ALU Instruction Opcodes 

a. Non-Conditional Arithmetic 

ALU MNEM OPERATlON* DESCRIPTION/COMMENTS 

2 1 0 

000 XOR B+(A'2k)-B 

o 0 1 AND BA(A' 2k) - B 

o 1 0 LIM + 1 ** - B if A ~ 0 Sign of A saturates output 

-1 - B if A< 0 

o 1 1 ABS 0+ 1 A'2k 1- B Absolute Value 

1 0 0 ABA B+ 1 A'2k 1- B Absolute Value and Add 

1 0 1 SUB B- A'2k -B 

1 1 0 ADD B+ A'2k -B 

1 1 1 LDA 0+ A'2k -B 

*Note-k is the value selected by the shift code, -13 ~ k ~ + 2 
* * Note-the largest positive value (1-2-24) is stored. 

b. Conditional Arithmetic Operations 

ALU Functions made Conditional by selected codes in the Analog Control Field. 

ALU FUNCTION BIT TESTED IF TESTED BIT = 0 IF TESTED BIT = 1 

ADD (110) DAR (n) NO-OP(B + 0 - B) ADD (B+A'2k - B) 

LDA (111) DAR (n) NO-OP(B + 0 - B) LDA (0+A'2k - B) 

SUB (101) PREV cy ADD(B + A· 2k- B) SUB (B-A·2k - B) 

cy- DAR(n) cy- DAR(n) 

Note-DAR(n) represents a bit of the DAR, as selected by the conditional operand in the 
analog control field. For ADD and LDA, the selected bit is tested. For SU B, the selected bit 
is altered by being set to the carry output of the highest order position of the ALU; and the 
conditional operation is based on a test of the carry resulting from the previous ALU 
operation. 
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Table 1-5. Memory-ALU Section Summary 

ALU result bit width 

Number System 

Operand A 

25 bits 

2's complement 

Read Only Memory Port A, 
Scaled by shifter, 28 bits wide 
Read Port 8, Unscaled, 25 bits 
expanded to 28 bit equivalent 

ALU instruction field width 3 bits 

Scaler instruction field width 4 bits 

"A" and "8" port address field width 6 bits each 

2920 Assembly Language 

Ancillary Instructions Conditional arithmetic, oP' codes are part of 
analog control field 

Available Storage Locations "A" port, AdrO-39, Read Only, 25 bits. 
"8" port, AdrO-39, Read-Write 25 bits. 

Digital-Analog-Register "A" port, Adr40, Read Only, 9 MS8s, 16 LS8's 
are extended sign. 
"8" port, same as "A" port but read-write. 

Constant Register "A" port only, low 4 bits of adr. field placed in 4 
MS8's of 25-bit width. Low 21 LS8's fill as O's. 

Scaler Range 22 (left 2) to 2-13 (right, 13). 

The Analog Section 

Figure 1-6 shows a detailed block diagram of the 2920's analog section, which pro­
vides four analog input channels and eight analog output channels. It includes 
circuitry for analog-to-digital conversion by successive approximation, and the 
sample- and- holds for both input values and output values. 

SIGINO 

SIGIN1 

SIGIN2 

SIGIN3 

FROM PROM 
110 

CAP1 CAP2 AGND 

CND TEST BIT 

VREF 

Figure 1-6. Analog Section Block Diagram 

SIGOUTO 
SIGOUT1 
SIGOUT2 
SIGOUT3 
SlGOUT4 
SIGOUT5 
SIGOUT6 
SIGOUT7 
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All operations of this section are controlled by a five-bit control field, the iocode. It 
can be conceptually divided into two subfields: a two-bit function selector and a 
three-bit modifier field. Table 1-6 summarizes the analog section operations. Giving 
the most-significant-bits first, the function select bits are designated ADFI and 
ADFO; the modifier bits are ADK2, ADK1, and ADKO. 

The basic analog functions are as follows: 

Execution of one or more "IN" instructions provides a sample of one of the 
input leads. You may have to execute several such instructions in sequence due 
to the time constants of the sample capacitor charging circuit. 

The sample is converted to its digital equivalent by a series of "CVT" instruc­
tions in descending order. The digital equivalent is produced in the DAR, 
which may then be read by the arithmetic section. 

Calculation results in the DAR may be delivered to an output pin via an 
"OUT" instruction. 

Input and output sample rates are determined by the frequency of execution of 
input! conversion sequences and output instructions, respectively. 

The input channel multiplexer consists of four analog switches which directly con­
nect a common external sampling capacitor to the input terminals. The size of this 
capacitor affects both the time constant of the sampling circuit and also the offset 
voltage, due to the charge coupled through the sampling switches. The value of sam­
ple capacitor is usually that value which will result in an offset voltage in the order of 
1/2 least significant bit. 

Note that the sample capacitor is shared among all inputs. Its selection must be 
based on the most stringent combination of input parameters. 

The analog to digital conversion system uses successive approximation via a binary 
search routine under program control. Using the CVTS and CVT(K) iocodes in 
descending sequence puts a 9-bit digital representation of an input sample into the 
DAR. 

The DAR is a two's-complement binary register, nine bits long. When DAR values 
are delivered to the DAC, they are converted to sign magnitude format via a one's 
complement operation (see Appendix I). This leads to a potential 1 least significant 
bit offset during AID conversion, and a half least significant bit offset during DI A 
conversion. To compensate for the AID offset, values read from the DAR have all 
bits (save the high-order nine) set to ones. 

Each CVT cycle sets the selected bit of the DAR to a value derived from the com­
parator, and also sets the next lower bit to a logic 1. Each cycle must allow the DAC 
to settle, so at least one Nap iocode is needed between each pair of successive CYT 
instructions. 

Some applications, such as sampling of logic inputs, may not require a full conver­
sion sequence. You may use a partial conversion sequence, with the understanding 
that the partially converted value undergoes the transformation meant to correct a 
full9-bit conversion. 

Each of the 2920's eight analog output channels includes an individual sample-and­
hold circuit demultiplexed from a common, buffered DAC output. 
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There are several factors which affect the nature of the output waveform. Writing to 
the DAR, i.e. using the DAR as the destination, automatically activates anti­
crosstalk circuitry in the buffer amplifier. An "OUT" operation should not appear 
in an instruction which writes to the DAR. For the most error-free output, the first 
"OUT" instruction should appear only after the time needed for the amplifier to 
settle; that is, it should be delayed by several instructions after the one which writes 
into the DAR. Acquisition time of the output sample-and-hold is typically longer 
than the instruction cycle, so that a sequence of several "OUT" instructions will 
usually be necessary. 

Table 1-6. Analog Instruction Opcodes 

a. Basic Codes 

CODE MNEM FUNCTION 

ADF 

1 0 

o 0 IN (k), ADK= 0-3 Acquire input k 

o 0 NOP , ADK=4 No operation 

o 0 EOP ,ADK= 5 Return PROM to Location 0 

o 0 CVTS ,ADK=6 Convert Sign Position (MSB) 

o 0 CNDS ,ADK=7 Conditional Arith. of Sign Bit (MSB) 

1 0 CVT (k), ADK=0-7 A to 0 convert bit k* 

o 1 OUT (k), ADK=O-7 Output Channel k 

1 1 CND (k), ADK= 0-7 Condo Artih., Test DAR bit k* 

b. Code Assignment and Mnemonics 

ADK ADF 1,0= 

2 1 0 00 01 10 11 

000 INO OUTO CVTO CNDO 

o 0 1 IN1 OUT1 CVT1 CND1 

o 1 0 IN2 OUT2 CVT2 CND2 

011 IN3 OUT3 CVT3 CND3 

1 0 0 NOP OUT4 CVT4 CND4 

1 o 1 EOP OUT5 CVT5 CND5 

1 1 0 CVTS OUT6 CVT6 CND6 

1 1 1 CNDS OUT7 CVT7 CND7 

*Note-The DAR bits are designated S, 7, 6, .... 0, where S is the sign bit, 7 the next most 
significant bit, etc. Conversion of bit k consists of setting bit k to a value determined by the 
comparator, a'nd bit k-1 equal to a logic 1. 
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2920 ASSEMBLY LANGUAGE ELEMENTS 

Introduction 

You write 2920 programs in a symbolic language, using selected mnemonics to 
represent the desired contents of the various control fields. Table 1-1 showed the 
various mnemonic representations for commands, which will be further explained in 
this chapter. 

In addition to command mnemonics, you may assign symbolic names to locations in 
the RAM, so long as the reserved words are not used. Table 2-1 and Appendix B list 
the words reserved by the 2920 Assembler. 

Symbolic names for RAM variables must start with a question mark (?), an at-sign 
(@), an underline (-), or an alphabetic character (A-Z). Characters after the first 
may be these or numerals. Names may have up to 31 alphanumeric characters. No 
spaces, punctuation, or any other characters may be used within a name. After 31 
contiguous legal characters in a name, additional characters are flagged as errors. 

Except for comments and Assembler controls, explained below, each statement cor­
responds to one 2920 PROM word. Statements may be labeled, but the 2920 allows 
no jumps except the EOP. Thus you normally label statements solely as a prospec­
tive aid during the simulation, debugging, testing, and optimization phases of pro­
gram development. 

Chapter 1 provided examples of typical contents for each field that may appear in a 
2920 statement: 

• an optional label, 

• an ALU operation, 

• the destination address, 

• the source address, 

• an optional scaler control code (shiftcode), 

• an optional analog control command (iocode), 

in that order, left to right. The current chapter will provide the detailed rules for 
constructing legal names and statements. 

All PROM word statements and commands end in a carriage-return (CR) and 
line feed (LF) pair, which delineates statements. The ISIS-II Editor automatically ap­
pends the LF when you hit CR. Comments, which must begin with a semicolon, may 
be coded prior to this CR. They are useful in explaining the intended results of each 
part of a program, and may appear alone on a line. 

Here is an example of an instruction using all seven fields: 

Label Opcode Dst,Src,Shift,Iocode Comment 

LOAD: LDA YYY,XXX,R02,NOP; Move XXX/4 to YYY. (CR) 

This statement means fetch the contents of the RAM location symbolically named 
XXX, shift the value right two bit positions, and store the result in the RAM loca­
tion symbolically named YYY. NOP iocode means no 110 operation is done. 

If XXX and YYY have not appeared earlier, then the Assembler reserves a RAM 
location for each, and the names "XXX" and "YYY" are entered into the symbol 
table with the value of their respective addresses. 

2-1 



2920 Assembly Language Elements 2920 Assembly Language 

2-2 

Characters 

The alphabet and numerals are legal in assembly language source statements. 

AaBbCcDdEeFfGgHhIiJjKkLIMmNnOoPpQqRrSsTtUuVvWwXx 
YyZzOl23456789 

Although the Assembler converts lower-case to upper case for internal processing, 
the listing of your input shows the character as you typed it originally. Thus to the 
Assembler Xyy is identical to XYY. 

In addition, the following special characters are recognized as legal in certain 
contexts: 

CHARACTER 

@ 

? 

space 

CR 

LF 

HT 

$ 

COMMON NAME USAGE 

comma. . . . . . . . . . . . . . . . . . .. separates operands, shiftcode, and iocode 

colon. . . . . . . . . . . . . . . . . . . .. must immediately follow last character of label 

commercial at-sign. . . . . . .. valid character of name 

question mark. . . . . . . . . . . .. valid character of name 

blank. . . . . . . . . . . . . . . . . . . .. separates label, opcode, and first operand 
field 

underscore. . . . . . . . . . . . . .. valid character of name 

semicolon. . . . . . . . . . . . . . . .. must be first character of comment 

carriage return. . . . . . . . . . .. statement terminator 

line feed. . . . . . . . . . . . . . . . .. must appear only following a CR -otherwise 
an error 

horizontal tab. . . . . . . . . . . . . . separator, same as space 

dollar sign. . . . . . . . . . . . . . . .. for control options (e.g., LIST, TITLE, or 
EJECT) when appearing within the source 
lines of a program file, $ must be first 
character on the line 

in user-symbols, a non-first character used 
to space words in a long name, the $ ignored 
by the assembler, for example, 
LAST$DAR$SAVED 

All null and RUBOUT characters are ignored upon input. All other characters, or 
characters in an inappropriate place, are flagged as errors. However, in a comment 
field, any ASCII character may be used. 

Delimiters 

Certain characters are used to define the end of a statement or a field or a compo­
nent of a field. These can be called "separating characters," "terminators," or 
"delimiters". The six characters-space, comma, CR, HT, semicolon, and 
colon-do this, as described above. 
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Symbols 

There are two kinds of symbols: reserved symbols and user symbols. 

Reserved symbols, as mentioned in Chapter 1, cover the predefined opcodes, direc­
tives, registers, special field bit patterns, and special data memory locations. You 
may not redefine any of these. They are repeated here from Chapter 1, and appear in 
Appendix B for easy reference. 

Table 2-1. Reserved Symbols 

Section 1: Arithmetic Operation Codes 

ABA ABS ADD AND LDA LIM SUB XOR 

Section 2: Analog Control Codes 

CNDS CVTS EOP INO NOP OUTO 
CND7 CVT7 IN1 OUT1 
CND6 CVT6 IN2 OUT2 
CNDS CVTS IN3 OUT3 
CND4 CVT4 OUT4 
CND3 CVT3 OUTS 
CND2 CVT2 OUT6 
CND1 CVT1 OUT7 
CNDO CVTO 

Section 3: Constant Source Codes and the DAR 

KM1 KM2 KM3 KM4 KMS KM6 KM7 KM8 
KPO KP1 KP2 KP3 KP4 KPS KP6 KP7 
DAR 

Section 4: Scaler Control Codes 

ROO R01 R02 R03 R04 ROS R06 R07 R08 R09 R10 R11 R12 R13 
RO R1 R2 R3 R4 RS R6 R7 R8 R9 

L01 L02 
L1 L2 

Section 5: Assembler Commands and Modifiers 

DEBUG END OBJECT( ) PAGING 
NODE BUG EQU NOOBJECT NOPAGING 

PAGELENGTH( ) PAGEWIDTH( ) PRINT 
NOPRINT 

EJECT LIST TITLE(' ... ') 
NOLIST 

SYMBOLS 
NOSYMBOLS 

PRINT( ) 
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User-created symbols refer to instruction locations or data locations by name. You 
must refer to RAM variables symbolically. You may not specify absolute locations. 
Instead, locations are automatically allocated. whenever variable names are first 
encountered. No declaration of variables is needed or allowed. These symbols are 
defined by the Assembler, i.e. given an address, the first time they appear, as 
discussed in the following three cases: 

1. in the label field of a statement (see below) 

2. in the right-hand side of an EQU statement (see Chapter 3) or as a source or 
destination 

3. in the left-hand side of an EQU statement. 

• In case (1) the value of the symbol is the address of the instruction, which is the 
value of the location counter when the instruction is assembled. These symbols 
can only be accessed with the 2920 Simulator. 

• In case (2), if the symbol is not already defined, the Assembler automatically 
allocates a RAM location and enters that address as the value of the symbol in 
the symbol table. One previously unused location is reserved for each symbol so 
defined. 

The assembler keeps a RAM location counter incremented each time a symbol is 
created in this manner. This counter starts with ° and is allowed to increment 
indefinitely. A warning is issued, however, each time a user-symbol with 
address- value greater than 39 is used, although the assignment is made and code 
is generated anyway. Note that assignment of user symbols continues in se­
quence to 63, and then wraps around to 0, I ,2, etc. Warnings will continue to be 
issued. 

• In case (3), the symbol is given the value of an already created symbol, namely 
the one on the right of the EQU. If the symbol on the right-hand side had not 
yet been defined, it is defined first per case (2). This usage establishes an 
equivalence of variables and can be used to conserve RAM space by reusing 
"scratch" variables. 

Reserved symbols cannot be used as user-created symbols. Attempts to do so will 
cause a "multiply-defined symbol" error message. Attempts to recreate a user­
created symbol will also cause this error message, i.e. using the same symbol more 
than once on the left side of an EQU. 

Statements 

A statement is composed of one or more fields, identified by their order of 
appearance and by specific terminating characters. However, certain fields may not 
appear alone, i.e. a shiftcode, a source, or a destination. The statement is free-form, 
allowing any number of blanks and/or horizontal tabs to separate fields. A comma 
must be used to separate the operands. No continuation lines are allowed: the entire 
statement must appear before the CR. 

Certain default constructions are supplied when specific fields are omitted or appear 
alone: 

1. If the shift code is omitted, then the Assembler inserts a shift code "ROO," i.e. 
no shift. 

2. If the iocode is omitted, then the Assembler inserts a NOP, i.e. no iocode 
operation. 

3. If only the iocode appears, then the Assembler inserts LDA O,O,ROO; in effect, 
no ALU operation (0 means loco 0). (This also clears the carry flag.) 
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Thus you need not explicitly code a no-shift and no-I/O-operation. Similarly, if you 
need ONLY the iocode, you need not explicitly code a no-arithmetic-operation. 

If an instruction is incorrectly formed for any reason, then no code is produced and 
no location is reserved. An appropriate error message is placed in the list file. 

Label Field 

A label names a ROM location intended to contain an instruction. It is a user­
created symbol, and must be unique within the first 31 characters. (Characters after 
31 are flagged as errors.) It is assigned the value of the ROM location counter, and 
this address is entered into the symbol table as the value of the symbol. There is no 
way to use these labels within the assembler, but they can be useful in testing and 
debugging via the 2920 Simulator. A label may not have the same name as a 
variable. 

A label is optional. If used, it must be immediately followed by a colon and at least 
one blank or HT. Once used, it can not be used again as a label or a variable in the 
same program without causing an error. 

Opcode Field 

This field must contain the mnemonic ALU operation code for a machine instruc­
tion. It specifies the 2920 instruction to be generated by the Assembler and the ALU 
action to be performed on the operands which appear in the operand field. A blank 
or HT must be used to separate the opcode from the operands or a label. 

Operand Fields 

The dentination and source operands appear in these fields, in that order, separated 
by a cc"ma. They must be symbolic names. They are followed by the (optional) 
shiftcode and the io..:ode, also separated by commas when present. 

The destination operand is intended to be written to, and should therefore corre­
spond to the DAR or to a RAM address not greater than 40. The source operand 
may refer to any of the 64 RAM locations, including the DAR or the constant 
registers. An error message is issued if you use a source address above 63. 

Comment Field 

This optional field may contain text descriptive of the statement or the program. 
Comments are ignored by the Assembler but echoed to the assembly listing as part 
of the source statement. 

The comment field must begin with a semicolon, and is terminated by a carriage 
return. Any ASCII character may appear in the comment field except a CR or LF. 
The comment may appear alone on a source line. 

2-5 





CHAPTER 3 
INSTRUCTION SET 

How to Use This Chapter 

This chapter is a dictionary of 2920 instructions. The instruction descriptions, 
including opcodes and iocodes, are listed alphabetically for quick reference. 
However, the Assembler controls are not listed here, but appear instead in Chapter 5. 

This reference format necessarily requires repetitive information. If you are reading 
this manual for the first time, you might skim this chapter or skip it at first, reading 
instead Chapters 1 and 4. They will familiarize you with the general setup of the 
language and the simpler applications of general interest. When you begin to have 
questions about particular instructions, look them up in this chapter. 

Timing Information 

The instruction descriptions in this manual do not explicitly state execution timings. 
The clock frequency used iIi your system will determine the operating speed of your 
processor. The maximum sample rate for a full length program is found by dividing 
the maximum clock rate by 768, which represents 192 instructions at four clock 
cycles per instructions. 

To realize higher sample rates, either shorter programs must be used, or multiple 
copies of the appropriate program segments must be contained in the PROM. 

The external clock or crystal frequency and the length of the program establishes the 
system sample rate as explained in Chapter 1. 

ABA Absolute Value and Add 

The absolute value of the source, after any shifting, is added to the destination. The 
CND iocode affects overflow limiting logic if used with this instruction. 

Examples: 

GAINER: ABA DEST _ 4,SOU RCE_1 

This will take the absolute value of the contents of SOURCE_1 and add that to the 
value in DEST_4, placing the result in DEST_4. 

DOUBLER: ABA DEST _3,SOURCE_1 ,L01 

This will double the value from SOURCE_1 by a left shift one position, then take 
the absolute value of that result and add it into DEST _3. 

ABA DEST_55,SOURCE_1,L02,CNDS 

After shifting the value from SOURCE_1 left two positions, effectively multiplying 
it by four, this command will add the absolute value of that result into DEST _55. 

When a CND iocode is used on this instruction, the limiting effect of overflow detec­
tion is turned off. It will be turned on again when an XOR instruction with any CND 
iocode is encountered, or when an EOP is encountered. 

The normal standard carry and overflow apply to ABA, as explained in Appendix J. 
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ABS Absolute Value 

This instruction takes the absolute value of the source operand, after any shifting, 
and stores it in the destination. If the source was positive, the destination becomes 
identical to the source. If it was negative, the destination is the "negative" of 
the source, that is, of same magnitude and opposite sign. The Assembler issues a 
warning if this instruction is used with a "CND" iocode but there is no effect on 
execution. . 

Examples: 

AMPLITUDE: ABS DEST_7,SOURCE_1 

This instruction places the absolute value of SOURCE_I into DEST _7; If 
SOURCE_I were 0.0000 0001, DEST_7 would become 0.0000 0001. If 
SOURCE_I were LillI 1111, DEST_7 would become 0.0000 0001. 

HALFAMP: ABS DEST _7 ,SOU RCE_1, R01 

This command shifts the value from SOURCE_l to the right 1 position, effectively 
halving that value, and then places the absolute value of this result into DEST _7. 

NONO: ABS 

A warning will be issued due to the use of the CND iocode on this command, but the 
execution is unaffected. 

ABS never has a carry; it clears the carry flag to zero. A left-shift could cause 
overflow. 

ADD Addition 

After any shifting of the source operand, this instruction forms the sum of the 
source and the destination operands. The result is stored in the destination. The 
instruction will have no effect on the destination if the iocode CND(K) is specified 
and the corresponding bit of the DAR, i.e. DAR(k), is zero. 

Examples: 

ADD DEST_5,SOURCE_1 

The sum of the contents of SOURCE_I and DEST_5 will be placed in DEST_5. 

ADD 

The shiftcode ROI will shift the value from SOURCE_I right one position, effec­
tively halving it. This result will be added into the current contents of DEST _5. 

SUMMA: ADD DEST_ZETA,SOURCE_XI,L02,CND4 

The value from SOURCE_XI will be shifted left 2 positions, effectively multiplying 
it by four. This result will be added to the value currently in DEST _ZET A, with the 
final sum stored in DEST _ZETA. These operations will be performed only if bit 
four of the DAR is I. If that bit is zero, no operation will take place. 

The normal standard carry and overflow apply, as explained in Appendix J. 
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AN 0 Logical Conjunction 

After any shifting of the source operand, this instruction performs the logical AND 
of that shifted value with the value from the destination, and stores the result in the 
destination. The Assembler issues a warning if this instruction is used with a CND 
iocode, but there is no effect on execution. 

Examples: 

ANDER: AND DEST_1,SOURCE_2 

The value from SOURCE_2 will be ANDed against the value from DEST _1, with 
the result of this logical operation placed into DEST_l. 

After shifting the value from SOURCE_2 to the right three positions, this instruc­
tion will AND the result against the value from DEST _1, storing the result of this 
logical operation back into DEST _1. The effect depends on the sign bit of 
SOURCE_2, since right shifting fills from the left with whatever the sign bit was, 1 
if negative, 0 if positive. 

ENDER: AND DEST _1 ,SOURCE_2,L2,CND7 

A warning will be issued due to the use of a CND iocode on this instruction. The 
value from SOURCE_2 would be shifted left two positions, filling the two vacated 
bit positions with zeroes, and then that result would be ANDed against the value 
from DEST _1. The AND result is stored back into DEST _1. 

The normal standard carry and overflow apply, as explained in Appendix J. 

CN OS,CN 07, CN 06., CN 05, CN 04, CN 03, CN 02, CN 01, CN DO 
locodes for Conditional Operations 

Each of these iocodes refers to a single bit, either a bit of the DAR or the carry bit. 
CNDS means conditional on the sign bit; the others refer to specific bit positions in 
the DAR. CNDO refers to the least significant bit. 

If the tested bit is aI, the operation is performed as written. If the tested bit is a 0, 
the operation is either not performed at all or is altered. Only three ALU ope odes 
are affected: ADD, LDA, and SUB. 

Add Conditional 

ADD DEST_ONE,SOURCE_ONE,CNDS 

If the sign bit of the DAR is 1, this instruction will add the contents of SOURCE_ 
ONE to the contents of DEST_ONE and store the result in DEST_ONE. 

If the sign bit of the DAR is 0, then the sum of DEST_ONE with zero is placed into 
DEST _ONE, i.e. no change except that the carry flag is cleared. 
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Load Conditional 

LOA OEST _ONE,SOURCE_ONE,R2,CN05 

If bit five of the DAR is 1, this instruction will get the value of SOURCE_ONE, 
shift it right two positions to create 1/4 the value, and put it into DEST_ONE, 
writing over whatever value was formerly there. 

If bit five is 0, the effect is the same as with the conditional add. 

Subtract Conditional 

SUB OEST_ONE,SOURCE_ONE,CNOO 

Conditional subtract is a special operation, requiring information about the 
previous carry situation. 

If the carry resulting from the previous ALU operation is a 1, then the subtraction 
indicated is performed, i.e., the value from SOURCE_ONE is subtracted from the value 
in OEST _ONE, and the result is written into OEST _ONE. 

If the carry resulting from the prior ALU operation is 0, then the operands are added 
instead of being subtracted, i.e., the value from SOURCE_ONE is added to the value 
from OEST_ONE, and the sum is written into OEST_ONE. 

The above instruction will set the first ait of the DAR, DAR(O), to the carry output 
of the highest order position of the ALU. Then, dependIng on the carry result­
ing from the previous ALU operation, it will perform either an addition or a 
subtraction. 

A detailed discussion of subtraction appears in Chapters 2 and 4. 

IN ALL INSTRUCTIONS, THE ABSENCE OF A SHIFTCODE CAUSES THE 
USE OF THE DEFAULT ROO; i.e., no shift. If a shiftcode is coded, it is performed 
prior to the indicated operation. This means the source operand is shifted before it is 
added to or loaded into or subtracted from the destination operand. 

The normal standard carry and overflow apply, as explained in Appendix J. LDA, 
however, never has a carry. 

CVTS A CVT7, CVT6, CVT5, CVT 4, CVT3, CVT2, CVT1 ,CVTO 
AID ~onversion locodes 

In order to convert to a digital value from an input sample value in the sample-and­
hold for input, each of these iocodes will set the named bit of the DAR (e.g. bit 7 for 
CVT7) to 1 or 0 based on that input value. Each CVT also sets the next lower bit 
(e.g., bit 6 for CVT7) to 1 as part of the conversion process. The process uses the 
comparator and the reference voltage (VREF) to decide the sign and the fraction of 
VREF which represents the input sample. As mentioned briefly in Chapter 1, it is 
necessary to allow the DAC to settle between each cycle of conversion. This is 
achieved by inserting NOP iocodes after all but the last CVT, or placing CVT 
iocodes only on every other ALU instruction. 
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CVTS or, say, ADD DET,SIC,CVTS 
NOP ADD DET,NXT,NOP 
CVT7 SUB DET,LST,R01,CVT7 
NOP ADD DET,SIC,R04,NOP 
CVT6 ADD DET,NXT,R07,CVT6 
NOP ADD DET, NXT, R09, NOP 
CVT5 LOA SIC,NXT,CVT5 
NOP LOA NXT,LST,NOP 
CVT4 ADD LST,LST,L02,CVT4 
NOP SUB LST,LST,R05,NOP 
CVT3 SUB LST,LST,R07,CVT3 
NOP SUB LST,LST,L01,NOP 
CVT2 ADD NXT,LST,CVT2 
NOP SUB SIC,NXT,NOP 
CVT1 LOA LST,SIC,CVT1 
NOP ADD LST,LST,L01,NOP 
CVTO SUB LST,NXT,CVTO 
LOA SIC,DAR LOA SIC,DAR 

Either column causes the conversion of an input sample into a digital value in the 
DAR. If the left column is coded, the Assembler supplies the default arithmetic-no­
operation coding of 

LOA O,O,ROO 

The right column takes advantage of the parallel processing capability of the 2920 to 
compute some arithmetic function of the values in locations named DET ,LST ,NXT, 
and SIC while the conversion process is going on. It then stores the converted value 
from the DAR into SIC for further processing. The DAR could then be used to out­
put the computed value in LST or NXT. 

END Terminating Assembly 
This command is properly termed a directive to the Assembler rather than an 
instruction, since it does not cause code to be generated. When the Assembler sees 
the first END in a source program/file, it terminates its scan of the source program 
and proceeds to finish all Assembler functions and outputs. There should be only 
one END per program and it should be the last source line of the program. It must 
have no name, label, operands, or comment. 

END 

EOP End of Program (Iocode) 
EOP signals the end-of-program condition, causing a transfer back to the instruc­
tion in location zero. This iocode must be on/in a location whose address is a multi­
ple of four, or a warning is issued. 1 The 2920 instruction words are pipelined in 
groups of four. If any of the three locations following the EOP do not contain 
assembled code, they are padded with NOP instructions, and a warning is issued. 

The EOP does not terminate assembly. Only the END or an end-of-file condition 
does this. The Assembler will continue to process statements after the EOP, but only 
the next three will be executed by the 2920. 

EOP ; begin fetching locations 0-3 while executing this and the next three 
instructions. 

or 

LOA SRC,DAR,R01,EOP 

Overflow limiting is turned on by the execution of an EOP and thus is enabled dur­
ing the last four instructions of the program. 

I If a program with a misplaced EOP is executed, the results are unpredictable. 
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EQU Equate-Creating a Synonym for a Single 
Location (Address) 

This command is properly termed a directive to the Assembler rather than an 
instruction, since it does not cause code to be generated. 

The general form of the EQU statement is 

EOU 

The symbol "name_I" is created and assigned the symbol table value (address) of 
"name_2." It may appear on the left-hand side of an EQU only once. 

If "name_2" has not been defined prior to this command, i.e. this is its first ap­
pearance also, then "name_2" is defined first. After "name_2" has a value, the 
EQU creates "name_I" as a synonym for that value in the symbol table. 

If "name_I" had been defined earlier, an error message would be issued for 
attempting to use that symbol for more than one location. 

EQU can be used to economize RAM space usage: "scratch" variables can be reus­
ed, although care must be taken to ensure that such variables are not changed to 
serve one purpose while they are relied upon for another purpose. 

INO, IN1, IN2, IN3 Input locodes 

You use these iocodes to obtain an input sample from one of the four input chan­
nels. It is generally necessary to use a sequence of several INs in order to obtain a 
reliable sample. The number of INs is a function of the capacitor. 

As explained in Chapter 1, the sample capacitor is shared among all inputs and is 
chosen as a compromise between rapid sampling and offset voltage. Suppose the 
capacitor selected has been determined to adequate accuracy. The assembly 
language instructions might appear as either of the examples below: 

IN3 
IN3 
IN3 
IN3 

or, say, LDA NXT,LST,R01,IN3 
ADD NXT,DET,IN3 
ADD NXT,SIC,R02,IN3 
SUB Nxr,LST,R03,IN3 

As withall the iocodes, INs may appear alone or appended to instructions. 

LOA Load Source to Destination 

This instruction writes into the specified destination the value of the source operand 
after any shifting. If a CND iocode was specified on the LDA instruction, then the 
LDA will be executed only if the DAR bit specified by the CND iocode is 1. If the 
specified DAR bit is 0, the LDA executes as an ADD of the source operand with 
zero, effectively a NOP (no-operation) except that carry is cleared. 

LDA DEST_TWO,SOURCE_TWO,R01 

This instruction writes into DEST_TWO half the value from SOURCE_TWO 
because that value is right-shifted one bit position before the LDA gets it. 
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LOA OEST _ TWO,SOURCE_ TWO,R3,CN04 

This instruction will operate as a NOP if bit four of the DAR is O. If that bit is a one, 
then DEST_TWO will be filled with one eighth the value from SOURCE_TWO, 
due to the right shift three positions specified by the shiftcode R03. 

LDA always clears the carry. A left-shift could cause overflow. 

LIM Load Destination with Source Limit 

This instruction loads one of two extreme values into the destination, based on the 
sign of the source operand. If the source is positive or zero, the destination gets a 
plus 1 (0.111111111111111111111111). If the source is negative, the destination gets 
a minus 1 (1.000000000000000000000000). 

The Assembler issues a warning if this instruction is used with a shiftcode or with a 
CND iocode, but there is no effect on execution. 

LIM OEST_ONE,SOURCE_ONE 

The contents of DEST _ONE will be -1.0 or + 1.0 depending on whether 
SOURCE_ONE is negative or not, respectively (zero being non-negative). 

A warning will be issued due to the use of the iocode CNDS. Other iocodes would be 
allowed. The LIM is unaffected by the CNDS. 

LIM OEST _ONE,SOURCE_ONE,R12,IN2 

A warning will be issued because a shiftcode has no effect on a LIM. Input-line-2 
will be sampled. DEST _ONE will be written with -1.0 if SOURCE_ONE is 
negative, + 1.0 if zero or positive. 

The normal standard carry and overflow apply, as explained in Appendix J. LIM 
sets the carry to 0, and can have an overflow only via a left shift. 

NOP No-Operation, Instruction or locode 

As an instruction, NOP means 

LOA O,O,ROO,NOP; no effect but to clear the carry 

As an iocode, NOP means no-operation for the analog section of the 2920 chip. 

OUTO, OUT1, OUT2, OUT3, OUT4, OUTS, OUT6, OUT7 
Output locodes 
These iocodes cause the value in the DAR to be converted to analog and output to 
the specified channel. 

As explained briefly in Chapter 1, the acquisition time of the output sample-and­
hold is important in determining how many successive OUT iocodes should be used. 
The technique is to divide the acquisition time by the time it takes to execute each in­
struction, i.e., by one-fourth the external clock rate. 

An OUT iocode should be delayed after the DAR is written, because the amplifier 
activated by a write to the DAR takes some time to settle. This usually represents 
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several successive instructions. Writing to the DAR (using DAR as the destination) 
automatically activates anti-crosstalk circuitry in the buffer amplifier, and then 
activates the amplifier. An OUT iocode should not be coded onto such a write, but 
delayed until the amplifier settles. 

LDA DAR,DEST _TWO 
SUB DEST_TWO,NXT,R01,NOP 
SUB DEST _ TWO,NXT,R04,NOP 
ADD DEST_TWO,SIC,R01,NOP 
SUB DEST_TWO,SIC,R04,NOP 
NOP 
LDA LST,DEST ~ TWO,OUT1 
OUT1 
OUT1 

Here the first instruction shown writes the value from DEST _TWO into the DAR. 
The next five iocodes are NOP. In the last two source lines, coding only an iocode 
causes the Assembler to supply a NOP for the ALU, namely LDA O,O,ROO. This is 
also true of the 6th line. 

SU B Subtraction 
This instruction subtracts the value in the source operand (after any shifting), from 
the value in the destination operand. Subtraction is done by adding the one's com­
plement of the source and forcing a carry input at the lowest-order bit. See Appen­
dix I. 

If a conditional iocode is specified, then the previous carry is tested. If that carry 
was a I, the SUB instruction operates as a subtraction. If it was a 0, the instruction 
operates as an addition. Tr..e carry produced by the SUB operation is stored in the 
DAR bit specified by the conditional iocode. 

SUB DEST_TWO,SOURCE_ONE 

Here the value from SOURCE_ONE is subtracted from the value in DEST _TWO, 
writing the result into DEST_TWO. No test of a prior carry was done. 

SUB DEST_TWO,SOURCE_ONE,CNDS 

Here the DAR sign bit will get the carry from this operation. The prior carry will 
determine whether this instruction is executed as a subtraction or an addition. 

The normal standard carry and overflow apply, as explained in Appendix J. 

XOR Exclusive OR Instruction 
This instruction forms the exclusive OR of the source (after any shifting) with the 
destination, and stores the result in the destination. A CND iocode will affect 
overflow limiting logic if used with this instruction. Exclusive OR gives a I in each 
bit position where only one of the two values has a I, and gives a ° in those bit posi­
tions where both have ones or both have zeroes. 

XOR DEST_ONE,SOURCE_ONE 

This will form the exclusive OR of the values in these two operands, and the result 
will be written into DEST _ONE. 

XOR DEST _ON E,SOU RCE~ON E,CN DS ; overflow affected 

The exclusive OR will be formed as before, but the overflow limiting on overflow 
detection will be turned on. 

XOR is implemented as an ADD with no carries. See Appendix J for further discus­
sion of carry and overflow for XOR. 



PROGRAMMING 
CHAPTER 4 

TECHNIQUES-SOME 
SOLVED PROBLEMS 

Elementary Arithmetic 

Overflow Considerations and Scaling 

Whenever doing arithmetic with the 2920, you should consider the impact of scaling 
the variables. If variables are improperly scaled, either quantization noise will be 
added to the signal or overflow saturation can result. These effects are similar to 
those encountered in analog systems, where use of poorly chosen signal levels can 
lead to poor signal-to-noise ratios or amplifier overload distortions. 

During certain 2920 operations, such as multiplying by a constant, intermediate 
values may be larger than the final result. If these intermediate values are large 
enough to produce overflow saturation, undesirable non-linearities may result. 

As a rule, you should estimate signal levels throughout your system, and scale so as 
to maintain the largest levels without exciting overflow. Some calculation sequences 
are less prone to overflows than others. 

Two Methods 

One way to achieve this is to order all instructions so that only the last step involves 
values large enough to produce overflow. In some cases, there may be more than one 
large term being summed, so that this method is not always possible. A second 
method consists of computing a submultiple of the desired value, which is then 
increased at the end of the sequence, possibly by loading or adding a shifted version 
to itself. The most likely submultiples are 1/2, 1/3, 1/4, or 1/5, because the 
multiplications necessary to restore the proper value are easily done in one 
microins truction. 

Addition and Subtraction 

The basic arithmetic instructions of the 2920 allow you to add, subtract, or replace 
one variable with another in a single instruction. For example, 

ADD YYY,XXX 

adds the value stored in the RAM location labeled XXX to the value in the RAM 
location labeled YYY, storing the result in YYY. No scaler code is specified, thus 
invoking the default of ROO, a right-shift of zero. 

Similarly, the value to be added or subtracted can be scaled by a power of two in a 
single instruction, e.g., 

SUB YYY,XXX,R02 

causes one fourth of the value in XXX to be subtracted from the variable YYY. The 
equivalent FORTRAN language statements for the two operations above would be 

YYY = YYY + xxx 
YYY = YYY - (0.25 * XXX) 
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respectively. In general, the 2920 instruction set makes it easy to implement the 
equivalent of the FORTRAN statement 

YYY = YYY + (C * XXX) 

where C is an arbitrary constant. The next section describes some general rules for 
achieving this result. 

Multiplication and Division 

Multiplication by a Constant 

The number of 2920 steps required to perform the above operation depends on the 
value of C. Any value C can be expressed as an expression consisting of sums and 
differences of powers of 2, using positive and negative powers. Once a constant is 
expressed this way, the equivalent to YYY = YYY + C * XXX can be easily 
converted to 2920 code. 

Consider a value of C = 1.875. This value could be expressed in several different 
ways, e.g., 

1.875 = 1.0 + 0.5 + 0.25 + 0.125 = 20 + 2-1 + 2-2 + 2-3 

1.875 = 2.0 - 0.125 = 21 - 2-3 

The first expression could be easily derived from the binary representation of 1.875, 
i.e., 1.111. However, the second expression uses fewer terms, which will result in the 
use of fewer 2920 PROM words. 

Using the second form, a FORTRAN-like expression for YYY becomes 

YYY = YYY + 2hXXX - 2-3*XXX 

which could be written as two sequential FORTRAN-like Stdtements, 

YYY = YYY + 21 * XXX 
YYY = YYY - 2-3 * XXX 

These statements are directly convertible to 2920 code: 

ADD YYY ,XXX, L01 
SUB YYY,XXX,R03 

The sequence of operations can sometimes be found by inspecting a binary represen­
tation of the constant C. For example, consider 

C=1.88184(=1.111 0000111 in binary) 

C might be represented by 

which would take seven steps, or more simply 

which takes only four steps in 2920 coding, as follows: 

ADD YYY,XXX,L01 
SUB YYY,XXX,R03 
ADD YYY,XXX,R07 
SUB YYY,XXX,R10 
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An Algorithm for Multiplication by a Constant 

Multiplication by a constant usually requires fewer 2920 instructions than 
multiplication by a variable, which will be covered in a later section. A technique is 
shown below for deriving the expression that represents the constant you want. 

1. Let C be the value desired for the constant, and let V represent the result of estimating C 
with a series of sums and differences of powers of 2. Initially V=O. 

2. Define an error ERR=C-V, representing the difference between the desired value and 
the current estimate. 

3. Choose T, a power of 2, which is closest to ERR and minimizes the absolute difference, 
i.e., with least IT-ERRI. . 

4. Let V=V + T, and compute a new ERR as in step 2. If it is small enough, you're done, and 
C is now expressed as powers of two, in V. If not, repeat steps 3 and 4 until it is. 

For example, suppose you need a C=-0.65, within a tolerance of ± 0.01. The steps 
of the algorithm are as follows: 

Initially VO=O and ERRO=-0.65 

Step 1: T1 = -2-1 or -0.5; V1 = -0.5 and ERR1 = -0.150 

Step 2: T2 = -2-3 or -0.125 (the closest power of 2 to - .15); 

so V2 = -0.625 and ERR2 = -0.025 (i.e.,O-O.65-(-O.625)) 

Step 3: T3 = -2-5 or -0.03125; V3 = -0.65625; ERR3 = +0.00625 

At Step 3, the error value has fallen within the specified bounds. V may be expressed 
as V = -2-1 - 2-3 - 2-5• Therefore YYY=YYY -C*XXX may be approximated by 
the following 2920 code: 

SUB YYY,XXX,R01 

SUB YYY,XXX,R03 

SUB YYY,XXX,R05 

If the form YYY = C * XXX is desired (instead of YYY=YYY + C*XXX), then 
YYY can be initialized to zero by either of these two instructions: 

LOA YYY,KPO 

SUB YYY,YYY 

If there is an ADD later in a sequence beginning with a SUB, the order of operations 
can sometimes be rearranged to place the ADD first, where it can be replaced by an 
LDA. This can avoid the need for the initialization to zero. 

Multiplication of the Form Y = C * Y 

To achieve this form, the sequence 

W=C*Y 

Y=W 

could be used, or the coefficient C may be factored into a sequence of terms T of the 
form 2k or 1 + 2k or 1-2k. The factoring can follow an algorithm similar to the one 
above, such that the value V is updated by B=V*T, with V set initially to 1.0. The Ts 
are chosen to minimize the error at each step. Each factor (term) corresponds to one 
2920 instruction. 
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Example: 

Generate YYY = C * YYY for C = -1. 

Note that -1 = 1-21. Then the 2920 operation 

SUB YYY,YYY,L01 

performs the desired operation. 

Generate YYY = C * YYY for C = 0.145 within 0.001 

Initially VO = 1.0 

Step1:T1 =2-3 =0.125;V1 =0.125; ERR1 =0.020 

Step 2: T2 = 1 + 2-3=1.125; V2 = 0.140625; ERR2 = 0.004375 

Step 3: T3 = 1 + 2-5=1.03125; V3 = 0.145020; ERR3=0.00002 

Therefore, Y = C * Y for C = 0.145 within 0.001 can be generated by 
the 2920 sequence 

LDA YYY,YYY,R03 

ADD YYY,YYY,R03 

ADD YYY,YYY,R05 

These algorithms may be implemented by computer, allowing you to painlessly 
examine several approaches. Hybrid algorithms can produce the closest approxima­
tion in the fewest instructions. 

Multiplication by a Variable 

Multiplication of one variable by another can be done using the conditional ADD 
instruction. Equivalents to the FORTRAN statements 

y=w* X 

Y=Y+W*X 

Y = Y + W * X * 2n 

may be derived, where Y, W, and X are variables and n (if used) is a fixed constant 
integer. Multiplication is easiest if one of the variables, say W, is limited to nine bits 
of precision. 

Consider Y = W * X, where W is the multiplier, X the multiplicand, and Y the pro­
duct. Several steps are required. The intermediate values of Yare called partial 
products. 

You load W into the DAR and conditionally ADD X, suitably shifted, to the partial 
product Y, the conditional add tests bits in the DAR. The following example may 
help to clarify how this is done. 
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Consider multiplying the binary values W = 0.1011 and X = 0.1101. The sequence is 
as follows: 

0.00000 
0.01101 

0.01101 
0.00000 

multiplicand times 1 st multiplier bit 

1st partial product = 0.1 * 0.1101 
multiplicand times 2nd multiplier bit 

0.01101 
0.0001101 

2nd partial product = 0.10 * 0.1101 
multiplicand times 3rd multiplier bit 

0.1000001 
0.00001101 

3rd partial product = 0.101 * 0.1101 
multiplicand times 4th multiplier bit 

0.10001111 final product = 0.1011 * 0.1101 

If the multiplier's sign is negative, an additional step must be included, assigning the 
weight -1 to the multiplier's sign by adding the negative of the multiplicand. Thus 
the 2920 code to achieve Y=W*X for a 9-bit mUltiply is 

SUB YYY ,YYY ,ROO 

LDA DAR,WWW,ROO 

ADD YYY,XXX,R01,CND7 

ADD YYY,XXX,R02,CND6 

ADD YYY,XXX,R03,CND5 

ADD YYY,XXX,R04,CND4 

ADD YYY,XXX,R05,CND3 

ADD YYY,XXX,R06,CND2 

ADD YYY,XXX,R07,CND1 

ADD YYY,XXX,R08,CNDO 

SUB XXX,XXX,L01 

ADD YYY,XXX,ROO,CNDS 

; multiplier to DAR 

; multiply by 1st bit 

; multiply by 2nd bit, etc. 

; complement XXX 

; test multiplier sign 

If more bits of multiplier precision are required, the high order bits of the multiplier 
may be masked off, and the remaining bits shifted left and loaded to the DAR. The 
masking operation is necessary to prevent overflow saturation. 

The last two steps above can be eliminated if the multiplier is known to be positive. 
The first step must be eliminated if the operation is of the form 

Y=Y+W*X 

Division by a Variable 

Division of a variable by a constant can be done by using the inverse of the constant 
as a multiplier. However, to divide a variable by another variable you must use the 
conditional subtract. If you use negative variables, you can compute the sign using 
XOR, and do the division with the absolute magnitudes. 

The sequence conditionally subtracts the divisor from the dividend, assembling the 
quotient in the DAR. You should scale the source operand in the first instruction, 
which is an unconditional subtraction, to produce a negative result. 
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Consider dividing 0.100 by 0.111 

0.1000000 
-0.111 ; initial subtract 

CY=O 1.1010000 ; first carry, partial remainder 

+ .0111 ; 1 st conditional subtract (adds) 

CY=1 0.00010000 
- .00111 

CY=O 1.11011 
+ .000111 

CY=O 1.111101 

+ .0000111 
CY=1 0.0000001 

- .00000111 
CY=O 1.11111011 

The quotient so far = 0.10010 

The full sequence for a four quadrant divide (Y=X/W) is shown below. This divi­
sion only works if the quotient is less than 1, i.e., if X < W . It is accurate to seven 
binary places. 

LDA TMP,W,R13 
XOR TMP,X,R13 
ABS X,X,ROO 
ABS W,W,ROO 
SUB X,W,ROO 
SUB X,W,R01 ,CND7 , 
SUB X,W,R02,CND6 
SUB X,W,R03,CND5 
SUB X,W,R04,CND4 
SUB X,W,R05,CND3 
SUB X,W,R06,CND2 
SUB X,W,R07,CND1 

SUB X,W,R08,CNDO 
XOR TMP,DAR,R13 

Note that the first two and last operations are used to save and restore the sign of the 
result. The quotient is available in the DAR. 

If greater precision is needed, you can save the contents of the DAR before restoring 
the sign, clear the DAR, and continue the conditional subtractions after restoring 
the carry value. (The carry should always equal the complement of the sign of the 
partial remainder.) Restoration of carry can be done by adding and then subtracting 
the divisor, appropriately shifted, from the partial remainder. 

Designing Filters With the 2920 

Many analog signal processing applications involve filtering of the signals. This 
filtering function can be simulated on a sampled basis using digital calculations. 
Most analog filters can be characterized by the locations of their poles and zeroes. 
They can be realized as a cascade of sections, each of which realizes a subset of the 
poles and zeroes. Similarly, sampled filters can be characterized by their pole and 
zero locations. Simple transformations exist for translating between a continuous 
filter and its sampled counterpart. The behavior of the sampled counterpart will be 
similar to the original continuous filter except for frequencies approaching or ex­
ceeding half the sample rate. Thus if your signal is band-limited to a frequency fmax ' 
then you need to sample at 2*fmax ' 
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To design a filter using the 2920, you first determine the sample rate and the loca­
tions of the poles and zeroes of the filter. Given this list, you design one filter section 
to realize each real pole, and one for each complex conjugate pole pair. Most zeroes 
will be realized by adding them to one of the pole sections. 

The gain of each section is determined, and inputs are scaled according to the needs 
of the design. The two types of filter sections are described below. It is assumed that 
the poles and zeroes location for the equivalent continuous analog filter have been 
determined. 

Much of the design of such sections consists of picking values for Band G (see 
below) which best meet design goals yet which are easily realized in 2920 code. The 
two following examples illustrate the procedures involved. 

Simulating Single Real Poles 

Figure 4-1 shows a circuit which realizes a single real pole. A buffer amplifier is 
included to eliminate effects of loading. Proper choice of resistor, capacitor, and 
buffer amplifier gain determine the pole frequency and the stage gain characteristic. 

Figure 4-2 shows a block diagram of an equivalent sampled realization. The block 
labeled Zl represents a unit delay, i.e., a delay equivalent to one sample interval or 
one 2920 program pass. The blocks labeled X represent multiplications, in each case 
by a constant. The block labeled ~ is an adder. 

VOUT 

! 

Figure 4-1. Continuous Realization of a Single Real Pole 

~ 
t 
G 

Figure 4-2. Sampled Realization of a Single Real Pole 

The FORTRAN statements to implement Figure 4-2 would be as follows: 

Y1 =YO 

YO = B * Y1 + G * X 

These would be converted to 2920 statements as shown above in the section on 
arithmetic. 
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For example, if you have determined the B = 0.9922 (=0.11111110 in binary) and G 
= 0.0078125 (=0.0000010 in binary), the 2920 instructions could be generated as 
follows: 

LOA Y1,YO,ROO 

LOA YO,Y1,ROO; YO = 1.0 * Y1 

SUB YO,Y1,R07 ;YO=B*Y1 

ADD YO, X,R07 ; YO = B * Y1 + G * X 

The comments indicate how the new value of YO is being generated. However, in this 
special case, the first two instructions are superfluous, and could in most cases be 
omitted. 

Design Example 1 

For a sample interval of 76.8 microseconds, realize a single-pole filter with a time 
constant (R *C) of 1.50 milliseconds ±1 0/0, a,nd DC gain of 1.00 ±1 %. 

The limits on B can be found from evaluating B = e-T/RC for the range 1.485 to 
1.515, i.e., within the 1 % tolerance (0.015) specified for RC: 1.485 ~ RC ~ 1.515. 
Then -T /RC, using milliseconds for both, becomes -76.8/1485 to -76.8/1515, and 
B is thus in the range 0.94960 to 0.95057. Expressed in binary, 
0.1111001100011000~B~0.1111001101011000. The central value is B=0.95009 or 
0.1111001100111001 in binary. 

Any value in the specified range may be chosen and still meet the design criteria. If 
you choose a value of B=0.1111001101, rounding up, this meets the criteria and can 
be realized in five steps: B = 2° -2-4 + 2-6 - 2-8 + 2-10 • This can be seen as follows: 

.1111 = 1.0 - 0.0001, or 20 - 2-4 

and 

0.00000011 = 0.0000 0100 - 0.0000 0001, or 2-6 - 2-8 

( 1.0000 
( -0.0001 
(= 0.1111 

( 0.00000100 
( -0.00000001 
(= 0.00000011 

In decimal this value is 0.950195. The effective time constant for this value of B can 
be derived as follows: 

In B = -T/RC 

RC =-T /lnB =-76.8/1n(0.950195) =-76.8/-0.05108805 = 

1503.2869 microseconds, or 1.5033 milliseconds. 

From the DC gain equation above, 

DC Gain = G/(1-B) 

note that G = (I-B) ±1 %. Given the value for B above, the range of accept­
able values for Gis 0.0504 to 0.04943, with a target value of 0.049805. Expressed in 
binary, 

0.000011001010< G < 0.0000 11001110, with a target of 0.000011001100. 

This target value can be realized as easily as any of the others, in four steps: 
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With the two constants evaluated, the 2920 code is readily generated. Prior to 
evaluating the final 2920 code, you should consider overflow possibilities. If the 
input values are suitably limited, oveflow can be made impossible. In other cases, a 
proper sequence of instructions can at least limit overflow to the last instruction, so 
that saturation occurs only if the final value is too large. In the code generated 
below, terms have been ordered to prevent overflow from occurring on any but the 
last line. 

The following sequence realizes the single pole section above. Comments show the 
contribution of instruction sequences. . 

LOA Y1,YO,ROO ; Y1 = YO 

LOA YO,X,R04 

SUB YO,X,R06 

ADD YO,X,R08 

SUB YO,X,R10 ; YO = G * X 

ADD YO,Y1,R04 

SUB YO,Y1,R08 

ADD YO,Y1,R10 

ADD YO,Y1,ROO ; YO = G * X + B * Y1 

Further Optimization for Single Poles 

Some single pole stages could eliminate the first two LDA operations above by com­
puting B * YO in place. If B can be expressed as a product of terms of the forml + 2k 
or 1-2k , then B * YO can be computed using only the variable YO. As an example, 
using the same problem statement and range for B from the example above, an 
acceptable value for B may be expressed as follows: 

The value for 0 computed above is still adequate, 0=2-4 - 2-6 + 2-8 - 2-10 • The 2920 
code for this problem now becomes: 

SUB YO,YO,R04 

ADD YO,YO,R06 

SUB YO,YO,R09 ; YO is now replaced with B*YO 

ADD YO,X,R04 

SUB YO,X,R06 

ADD YO,X,R08 

SUB YO,X,R10 ; YO now equals G*X + B*YO 

One RAM location and three PROM words have been saved. 

Simulating Complex Conjugate Pole Pairs 

Figure 4-3 shows an RLC circuit which realizes a complex conjugate pole pair, while 
Figure 4-5 shows a sampled realization of the type used with the 2920. Again the 
blocks labeled X are multipliers, those labeled Z-l are unit (one sample interval) 
delays, and the block labeled L is an adder. Coefficients Bl and B2 control the fre­
quency parameters and 0 adjusts the overall gain. 
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Figure 4-4 shows the frequency response of this type of stage. The choice of 
parameter values dete.rmines both the frequency at which the gain peaks, and the 
height of sharpness of that peak. 

Figure 4-3. Continuous Realization of Complex Conjugate Pole Pair 
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Figure 4-4. Gain of Complex Conjugate Pole Pair Section 
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Figure 4-5. Sampled Realization of Complex Conjugate Pole Pair 

The FORTRAN equations for a complex conjugate pole pair section are: 

Y2=Y1 

Y1 =YO 

YO = B1 *Y1 + B2*Y2 - G*X 



2920 Assembly Language Pr"ogramming Techniques-Some Solved Problems 

Once the coefficients of the third equation are found, the equations can be con­
verted to 2920 code using the procedures described above. Thus the major portion of 
the design task still consists of finding values for the coefficients which meet the 
design requirements, yet take the minimum number of 2920 steps to realize. 

Design Example 2 

For a sample interval of 76.8 microseconds, realize a resonance at 1000 Hz ±0.5OJo 
with a Q in the range 75~Q~ 100. The peak gain should be 1.0 ±10%. 

A complex conjugate pair of s plane poles at s=-a + jb and -a-jb has an impulse 
response which rings at a frequency f=b/2pi, and a value for Q given by Q=b/2a. 

Thus bT = 0.48255 ±0.0024 and, at bT = 0.48255, aT falls in the range 
0.002412 (Q=100) ~aT~ 0.003217 (Q=75). Using B2= -e-2at , we can express the 
negative of B2 inbinary as follows: 

0.111111001011 ~-B2~0.111111101100 

A value which falls in this range and can be expressed in only three powers of two is 

-B2=0.111111101 =20 -2-7 + 2-9 =0.99414 

Once B2 is established, B 1 may be found using the relationships e-aT = - B2, and 
Bl = 2*cos(bT)*e-aT • In binary, 1.11000100 11 ~ Bl ~1.1100 001110. A suitable 
value for Bl is given by BI = 1.110001 = 2-1 - 2-2 + 2-6 = 1.7656. 

To test the values of BI and B2 chosen, the resonant frequency and Q may be 
calculated: fr = 1001.8, Q = 82. 

Maximum gain =Gm =1/«I-e-2at)* l-cos2(bT». 

Substituting in the equations for maximum gain gives fm =1001.8, and maximum 
gain Gm as 

Gm = G 10.002724 

To meet the problem gain constraints, a value of G given by 

G = 2-8 - 2-10 = 0.00293 

is adequate. 

The corresponding 2920 code can be written from the evaluations of the coefficients: 

LDA 

LDA 

LDA 

SUB 

ADD 

SUB 

ADD 

SUB 

ADD 

SUB 

Y2,Y1,ROO 

Y1,YO,ROO 

Y1,YO,L01 

YO,Y1,R02 

YO,Y1,R06 

YO,Y2,ROO 

YO,Y2,R07 

YO,Y2,R09 

YO,X,R03 

YO,X,R10 

; Y2 = Y1 

; Y1 = YO 

; YO= B1*Y1 

; YO = B1 *Y1 + B2*Y2 

; YO = B1 *Y1 + B2*Y2 + G*X 

The comments show how the values are built up from the sequences of 2920 
instructions. 
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Overflow Considerations 

If the inputs are scaled so that overflows in the calculation of YO are possible, a 
reordering of the terms may be necessary. At the third step above, a value of 
Yl > 0.5 would produce overflow. Reordering the steps to add the 2*Yl term last 

might reduce overflow probability. An alternate step would be to reduce the gain at 
the filter input and boost the filter output to compensate. 

A variation on this method (gain reduction and boosting), is to generate a fraction 
of YO then boost the value of YO when shifting it into Y 1. (The boost occurs on the 
next program pass). The fraction will usually be 1/2 or 1/4, and is accomplished by 
modifying the shift codes of all terms contributing to the YO calculation. 

Simulation of Rectifiers 

The absolute magnitude function, Y = I X I, can be realized with a single 2920 
instruction (ABS). This function behaves as an idealized full-wave rectifier. The add 
absolute function (ABA) is useful for combining full-wave rectification with input 
to a filter. 

Half-wave rectifiers can be realized using the equation y = (x + I x 1)/2. The cor­
responding 2920 code for this operation is: 

LOA Y,X,R01 ; Y = X/2 

ABA Y,X,R01 ; Y = X/2 + ABS(X)/2 

Other rectification characteristics may be simulated using piece-wise linear approx­
imations, multiplication, or division. 

Simulation of Limiters 

Limiters may be realized in three ways using the 2920: via the LIM function, via 
overflow, or by calculations using absolute magnitudes (ABS,ABA). 

The LIM function produces an ideal threshold logic element. Even the smallest 
signal forces a full positive or negative output. 

In some systems, signals below some level should not be allowed to excite limiting. 
These systems require a transfer characteristic similar to that shown in Figure 4-6, 
where signals with amplitude below the threshold "a" do not produce full scale out­
put. This type of limiter characteristic can be realized using overflow saturation or 
with the use of absolute magnitude functions. 

OUTPUT 

INPUT 

Figure 4-6. Limiter Transfer Characteristic 
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To use overflow saturation to implement such a limiter, the value X is loaded to Y 
with a left shift code, after which Y may be loaded or added to itself with additional 
left shifts. Consider this sequence: 

LOA Y,X,L02 ;Y=4*X 
ADD Y,Y,L02 ;Y=5*4*X=20*X 

The effect is to generate a value of Y which is 20 times X. If X exceeds a value of 
0.05, Y will be held to + 1.0, or if X ~ -0.05, Y will take the value -1. Thus the 
characteristic realized is that of Figure 4-6 with a=0.05, and L=1.0. 

Another realization can be based on the equation 

y = I x + a I-I x-a I 
which realizes the same shape curve as that of Figure 4-6, with a value of L=2a. This 
form generally takes more steps than the overflow saturation method, but allows 
greater freedom in setting parameters. The 2920 code might appear as follows, 
where A represents the limiter threshold and T is a location used only for 
intermediate calculations: 

LOA T,X,ROO 

ADD T,A,ROO ;X+AinT 

ABS Y,T,ROO ; Y = ABS(X+A) 

SUB T,A,L01 ; X-A in T 

ABS T,T,ROO ; ABS (X-A) in T 

SUB Y,T,ROO ; Y = ABS(X+A) - ABS(X-A) 

Other Signal Processing and Logic Functions 

Many other signal processing functions can be performed by the 2920. Relaxation 
and gain controlled oscillators, and adaptive filters, are discussed in a 2920 Applica­
tion Note. 

Modulators can be realized using multiplication of a variable representing the carrier 
by a variable representing the modulating waveform. Automatic Gain Control 
(AGC) can be realized by dividing the signal by a level derived from signal 
magnitude. 

Correlation functions involve delays, products, and filtering. The delay achievable is 
limited by the number of RAM words provided, but two or more samples may be 
packed in a word to increase the achievable delay. The AND operation is used as a 
mask to aid in unpacking such words. 

Logical operations can be performed using the logical functions AND and XOR, by 
conditional arithmetic, or by using threshold logic, i.e., summation combined with 
the LIM function. In some cases, several logical variables can be stored in one RAM 
word. 
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CHAPTER 5 
CONTROLS 

Introduction 

Since this Assembler uses the ISIS keyboard and file capabilities, ISIS must be load­
ed before invoking the Assembler. The full procedure for this is given in the ISIS 
manual named in the Preface. Once ISIS is present, you can enter the Editor to 
key-in the source text of your Assembler program. After developing and editing 
your program into a form ready to test, you can invoke the Assembler as described 
below. 

The 2920 Assembler may be resident on the ISIS system diskette or on a non- system 
diskette. You load the assembler by entering a command that names the assembler 
and specifies the source file. You may also name the list and object files, but you 
don't have to. Control options may also be specified as part of the command. 

After the assembler goes into execution, all assembler operations specified are per­
formed without further intervention. If the invocation line has an error, the error is 
reported and you must retype the commands. You may use upper or lower case in­
discriminately. The assembler converts all to upper case except for echoing back 
what you wrote. 

Examples: 

-AS2920 PROG.SRC 

(After an ISIS prompt, shown here as a dash, you type the command to get the 
assembler to assemble your source program, which is in a file here called 
PROG.SRC. An assembly listing and object code file will be output to PROG.LST 
and PROG.HEX respectively. In addition, a symbol table listing will be supplied, 
and the symbol table debugging output to the object file is suppressed. These 
defaults are automatic when you do not specify any controls. It is exactly as if you 
had typed (on one line only) 

-AS2920 PROG.SRC PRINT (PROG.LST) LIST OBJECT (PROG.HEX) SYMBOLS 
NODEBUG PAGING PAGEWIDTH(120) PAGELENGTH(66) 

All but the last two options have opposites beginning with NO, like NODEBUG, 
whose opposite (however) is DEBUG. So you can say NOPRINT, NOLIST, 
NOOBJECT, NOSYMBOLS, or NOP AGING. ' 

All such control options (except PRINT or NOPRINT) may be specified on the 
invocation line or on control lines (described below). If any control option is 
specified on the invocation line and also on a control line, the invocation specifica­
tion takes priority and remains in effect. When a control is specified in different 
ways on the invocation line itself, the rightmost specification is used. (PRINT or 
NOPRINT can only appear on the invocation line.) 

After running the one assembler pass and completing assembly listing and object 
output, the assembler outputs a sign-off message and summary: 

ASSEMBLY COMPLETE 
ERRORS = XXX X 
WARNINGS = XXXX 
RAMSIZE = XXXX 
ROMSIZE =XXXX 
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2920 Assembly Language 

Semantic Description 

PRINT NOPRINT 

You get a list-file named like your source 
file, but with an extension of .LST, e.g. 
PROG.LST The list-file is suppressed. 

PRINT(filename.ext) 

You get a listing, put out to the file you 
name, using names that fit the ISIS rules, 
e.g. :F1 :MYNEW.LST or :FO:TRYTWO.FIX 
or :PR: or :TO: 

LIST 

You get a listing of the code generated for 
each source line, sent to the list-file. 

OBJECT(filename.ext) 

You get executable code put to the file 
you specify. 

DEBUG 

If OBJECT is specified, the symbol table is 
output to the object file. 

SYMBOLS 

Symbol table is output to the list file. 

PAGING 

Assembler will break the listing into pages 
with header lines on each. 

EJECT 

Spaces are skipped to the next top-of­
form if paging is specified. 

TITLE(' .. .') 

The character string specified (within the 
required parentheses and single-quotes) 
is printed on the second line of a page 
header. Strings of more than 64 characters 
are truncated to the first 64. 

NOLIST 

The list file will contain only error 
messages and a summary of the 
assembly. (Unless use of the NOPRINT 
option has suppressed the list-file com­
pletely.) 

NOOBJECT 

No object code is created. 

NODEBUG 

Symbol table is not output to the object 
file. This is the default. 

NOSYMBOLS 

Symbol table not listed. 

NOPAGING 

No page breaks and no header lines after 
page 1. 
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PAGEWIDTH(number) 

The number you supply specifies the max­
imum line width in characters, for listing 
output. It must be between 72 and 132; the 
default is 120. If you give a number outside 
these limits, the nearest limit will be used. 
If a listing line exceeds the pagewidth 
specified and is less than 133, it will be 
"wrapped around," with continuation 
beginning in column 20. Characters 
beyond column 132 will be truncated and 
lost. 

PAGELENGTH(number) 

This specifies the total number of lines 
per listing page. You have to count three 
blank lines at both top and bottom, and 
any header lines. The minimum 
pagelength is 15. The default is 66. 
Specified pagelengths are maintained by 
issuing a form feed to reach the top of the 
next page. 

As implied by the discussion of the invocation line and defaults there, the following 
are used if no specification of an option is made: 

PRINT(filename. LST) 
LIST 
OBJECT(filename.HEX) 
NODE BUG 
SYMBOLS 
PAGING 
PAGEWIDTH(120) 
PAGELENGTH(66) 

Control Records 

A control record is a line in the source file which specifies any number of control 
options. Those contradicting a specification on the invocation line will cause an er­
ror message to be issued, and the new specification to be ignored, except for LIST, 
NOLIST, EJECT, or TITLE. A control line must begin with a dollar sign ($) and 
may have several options in it, separated by blanks. Commas are flagged as errors. 
If a control line has an error in it, the erroneous control setting and those to its right 
will be ignored. A control record containing PRINT or NOPRINT will be flagged as 
an error and ignored. If an option is not specified on the invocation line or any con­
trolline,its default is used. 

Control records specifying LIST, NQLIST, EJECT, or TITLE may appear 
anywhere in the source file. The other control options allowed on control lines must 
appear before any source lines. 

Example: 

$EJECT TITLE ('FIRST TRY FILTER') LIST 
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APPENDIXA 
EXAMPLE OF LISTING FORMAT 

The following example shows the format of the listing output from an assembly, in­
cluding error flags. The resulting hexadecimal object code is also shown. (These 
program-sections were designed to exercise all the execution-conflict error messages. 
They do not comprise a meaningful program.) 

IS I S- II 2'20 ASSEftBLER Vl.0 

.ASSEMBLER IN'iOKED BY: :FO:AS2c)20 EXECOH.SRC 

LItlE LOC OBJECt SOURCE STATEMENT 

TEST ALL KNOWN 2no ECECUTIOH CONFLICTS. 
2 
3 OLIT FOLLOWS DAR AS D8T. 
4 
5 0 4044EF LOA DAR, RAMO 

E 6 SOOOEF OUTO 
7 2 4000EF HOP 
8 
9 ; OUT FOLLOWS CHO SUB. 

: 0 
: 1 3 8300FB SUB RAfi 1) RAM2, CNDO 

E . -, . .:. 4 9000EF OUTl 
: 3 " '.' 4000EF HOP 
: 4 
::. i CVT FOLLOWS A C 'IT. 
: I~. 

~ 0100EF CVTO 
E :8 11 OOE F CIIT1 

: " 8 4000EF HOP 
10 
Ll l C't'T FOLLOWS DAR AS DST . 
:22 
~3 9 4044EF LOA DAR. RAMO 

E 24 10 OlOOEF CYTO 
25 11 4000EF HOP 
'~6 

.~ 7 j CVT FOLLOWS CHO SOB. 
2:3 
29 12 8300FB SUB RAft 1) RAMZ, CNDO 

E ;0 13 1100 E F CV T 1 
~1 14 4000EF NOP 
32 
.J..J ; C'iT FOLLOWS A CIIT. 
::4 
")5 15 0100EF CYTO 

E 36 16 1100 E F C\lll 
17 17 4000EF NOP 
3B 
39 j C'iT FOLLOf.4S IH. 
~o 

41 18 OOOOEF IHO 
E .12 19 1100 E F CVT 1 

43 20 4000EF NOP 
44 
45 i CHf) USEf) III I TH ANI), LIft, OR ABS. 
46 

E 47 21 F708E3 AND RA"2, RA"3, eNI>7 
48 22 .. OOOEF HOP 

E 49 23 E700F5 LIft RA"3, RA"2, CHD' 
SO 24 4000EF HOP 

E '51 25 1)I)00E7 ABS RA"2, RAMS, CHD5 
52 2~ 4000EF HOP 
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UHE LOC OBJECT SOURCE STATE/'IEHT 

1 TEST ALL KHOWN 2no ECECUTION COHFLI CT S. 
2 
3 OUT FOLLOWS DAR AS DST. 
4 
5 0 4044EF LDA DAIL RAMO 

E 6 1 SOOOEF OUTO 
;- 2 4000EF HOP 
e 
9 ; OUT FOLLOWS CHD SUB. 

10 
: 1 3 8300FB SUB RA"!' RAI'I2, CHDO 

E 12 4 <)OOOEF OUTI 
:3 5 4000EF HOP 
: 4 
:5 ; CVT FOLLOWS A CVT. 
~ 1; • . ., I> 0100 EF eYTO ., 

E :8 1100EF CV T 1 
:'$ 8 4000EF HOP 
10 
21 i CVT FOLLOWS DAR AS DS T . 
22 
23 ~ 4044EF LOA DAR. RAMO 

E 24 10 OIOOEF CYTO 
25 1 1 4000EF HOP 
;26 
17 ; CVT FOLLOWS CHD SUB. 
2:3 
1:9 12 8300FB SUB RAftL RAM2. CHDO 

E 30 13 1100EF CVT1 
31 14 4000EF HOP 
32 
33 ; CYT FOLLOWS A CYT. 
34 
">5 15 OlOOEF CYTO 

E ·36 16 1100EF eVTI 
37 17 4000EF HOP 
38 
39 i CYT FOLLOWS IH. 
~o 

41 18 OOOOEF IHO 
E .12 19 1100EF CYTt 

43 20 4000EF HOP 
44 
45 i CHD USED WITH AND. LIft. OR ASS. 
46 

E 47 21 F708E3 AND RAft2, RA/'I3. eND7 
48 22 4000EF HOP 

E 4~ 23 E700F5 LII'I RA"3, RAI'I2, CHD' 
50 24 4000EF HOP 

E '51 25 DI>00E7 ABS RA"2, RAI'I8, eli 05 
52 26 4000EF HOP 
53 
54 J LIM WITH SHIFT CODE ( OT HER THAN ROO) 
55 

E '56 27 460014 LIM RAI'I3, RAM2, ROI 
57 28 4000EF HOP 
58 2' 4600F5 L 11" RA"3. RAI'I2 .. ROO 
59 30 4000EF NOP 
60 
16.1 ; CND SUB ANI) DAR AS DST. 
62 

E ~3 31 814CEB SUB DAR, RAM 1, CNI>O 
64 32 4000EF HOP 
65 
66 ; CYT AND I>AR AS OST. 
i.7 

E 68 33 0144EF LDA DAR, RAMO. CVTO 
t;.'3 

B 7'0 34 5000EF EOP 
71 

P 72 35 4000EF HOP 
P 73 36 4000EF HOP 
P '74 37 4000EF NOP 

'75 EHD 

A-2 



2920 Assembly Language Example of Listing Format 

ISIS-II 2~20 ASSE"BLER Vl.O 

Ll~E LOC OBJECT SOURCE STATEMEHT 

RAMO 0 
RAMI 1 
RAH2 2 
RAH3 3 
RAMS 4 

ASSEMBLY COMPLETE 
ERRORS 0 
WARNINGS 17 
RAHstZE 5 
ROI'fS IZE 38 

: 18000000F4FOF4F4FEFFFSFOFOFOFEFFF4FOFOFOFEFFFSFJFOFOFFFBD4 
:13001800F9FOFOFOFEFFF4FOFOFOFEFFFOFIFOFOFEFFFIFIFOFOFEFFee 
:18003000F.FOFOFOFEFFF4FOF4F4FEFFFOFIFOFOFEFFF4FOFOFOFEFFAF 
: 18004800F8F3FOFOFFFBFIFIFOFOFEFFF4FOFOFOFEFFFOFIFOFOFEFF9D 
: lS006000FIFIFOFOFEFFF4FOFOFOFEFFFOFOFOFOFEFFFtFIFOFOFEFFee 
: 18007800F4FOFOFOFEFFFFF7FOF8FEF3F.FOFOFOFEFFFEF7FOFOFFF556 
: 18009000F4FOFOFOFEFFFDFDFOFOFEF7F.FOFOFOFEFFF4F6FOFOFtF458 
: leOOA800F4FOFOFOFEFFF4F£FOFOFFF5F.FOFOFOFEFFF8FlF4FCFEF82E 
: 1900COOOF4FOFOFOFEFfFOFIF4F4FEFFF5FOFOFOFEFFF4FOFOFOFEFFlE 
:OCOOD800F4FOFOFOFEFFF4FOFOFO~EFF'A 

:OOOOOOOIFF 
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APPENDIX B 
KEYWORDS, INSTRUCTIONS, 
IOCODES. AND DIRECTIVES 

Section 1: Arithmetic Operation Codes 

ABA ABS ADD AND LOA LIM SUB XOR 

Section 2: Analog Control Codes and Digital/Analog Register 

CNDS CVTS EOP INO NOP OUTO 
CND7 CVT7 IN1 OUT1 
CND6 CVT6 IN2 OUT2 
CND5 CVT5 IN3 OUT3 
CND4 CVT4 OUT4 
CND3 CVT3 OUT5 
CND2 CVT2 OUT6 
CND1 CVT1 OUT7 
CNDO CVTO 

Section 3: Constant Source Codes 

KM1 KM2 KM3 KM4 KM5 KM6 KM7 KM8 
KPO KP1 KP2 KP3 KP4 KP5 KP6 KP7 
DAR 

Section 4: Scaler Control Codes 

ROO 'R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 
RO r i I ?2 R3 R4 R5 R6 R7 R8 R9 

L01 L02 
L1 L2 

Section 5: Assembler Commands and Modifiers 

DEBUG 
NODE BUG 

END 
EQU 

PAGELENGTH( ) 

EJECT LIST 
NOLIST 

OBJECT( ) 

NOOBJECT 

PAGEWIDTH( ) 

TITLE(' .. .') 

PAGING 
NOPAGING 

PRINT 
'NOPRINT 

SYMBOLS 
NOSYMBOLS 

PRINT( ) 
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APPENDIX C 
HEXADECIMAL OBJECT 

FILE FORMAT 

All user programs loaded via the SM2920 module must conform to Intel's standard 
for hexademical object files, partly because the language translators generate only 
hexadecimal code. The hexadecimal object code file generated by the AS2920 
assembler contains the contents of program memory which would result from 
loading the assembled source program. The code is formatted in hexadecimal bytes 
of data. The file contains the ASCII representation of the hexadecimal bytes of 
data. The object code itself is preceded by a symbol table. These two parts may be 
loaded or saved together or separately. 

The symbol table is a series of records, terminated by a dollar sign. Each record con­
tains three fields separated by one or more ASCII spaces: 

• a number field (not used by SM2920) 

• a label field containing the ASCII representation of a source program symbol, 
and 

• an address field containing the hexadecimal address assigned to the symbol by 
the language translator. 

The symbol table is terminated by a record whose first nonblank character is a dollar 
sign. 

The object code generated by the language translator follows the symbol table. The 
symbol table has records. Each of these records or physical lines is six logical fields 
of varying length in characters or frames: 

FIELD 0: RECORD MARK (FRAME 0 IS ALWAYS ':_') 
FIELD 1: RECORD LENGTH (FRAMES 1 AND 2) 
FIELD 2: LOAD ADDRESS FIELD (FRAMES 3,4,5 AND 6) 
FIELD 3: RECORD TYPE (FRAMES 7 AND 8) 
FIELD 4: DATA (FRAMES 9 TO 9+2*[RECORD LENGTH]-1) 
FIELD 5: CHECKSUM (FRAMES 'DATA FIELD' + AND 'DATA FIELD' +2) 

For an example of the object file format see the sample program in Appendix A. 

Object Code Output Format 

The format of the object code is a series of records, each containing its record 
length, type, memory load address, checksum, and data. The figure following shows 
a typical output file in hexdecimal format. 

RECORD MARK 

STARTING LOAD ADDRESS 

[

RECORD LENGTH 

r RECORD TYPE 
DATA 
CHECKSUM 

-'- -
:10000007 A2F57782F5F1321 00003E1159D21282 
:1000000000E3E1 F579174F7817477D176F7C176775 
:OD002000F13DC20C00877C1 F577D1 F5FC96A 
:00000001 
(Because record length equals 0 and record type equals 01, this record specifies 
end-of-file.) 
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APPENDIX D I 
POWERS OF TWO 

TABLE 

POWERS OF TWO 

1 o 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0,015 625 

128 1 0.001 812 5 

256 8 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 916 562 5 
2 048 11 0.000 488 281 25 

4 096 12 0.000 244 140 625 
8 192 13 0.000 122 010 312 5 

16 384 14 0.000 061 035 156 25 
32 168 15 0.000 0:S0 517 518 125 

65 536 16 0.000 015 258 189 062 5 
131 012 11 0.000 001 629 394 531 25 
262 144 18 0.000 003 814 691 265 625 
524 288 19 0.000 001 901 348 632 812 5 

1 048 516 20 0.000 000 953 614 316 406 25 
2 091 152 21 0.000 000 416 831 158 203 125 
4 194 304 22 0.000 000 238 418 519 101 562 5 
8 388 608 23 0.000 000 119 209 289 550 181 25 

16 111 216 24 0.000 000 059 604 644 115 390 625 
33 554 432 25 0.000 000 029 802 322 381 695 312 5 
61 108 864 26 0.000 000 014 901 161 193 841 65625 

134 211 128 21 0.000 000 001 450 580 596 923 828 125 

268 435 456 28 0.000 000 003 125 290 298 461 914 062 5 
536 810 912 29 0.000 000 001 862 645 149 230 951 031 25 

1 013 141 824 30 0.000 000 000 931 322 514 615 418 515 625 
2 141 483 648 31 0.000 000 000 465 661 281 301 139 251 812 5 

4 294 961 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 

11 119 869 184 34 0.000 000 000 058 201 660 913 461 401 226 562 5 
34 359 138 368 35 0.000 000 000 029 103 830 456 133 103 613 281 25 

68 119 416 136 36 0.000 000 000 014 551 915 228 366 851 806 640 625 
131 438 953 412 31 0.000 000 000 001 215 951 614 183 425 903 320 312 5 
214 811 906 944 38 0.000 000 000 003 631 918 807 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 415 830 078 125 

1 099 511 621 176 40 0.000 000 000 000 909 494 701 712 928 237 915 039 062 5 
2 199 023 255 552 41 0.000 000 000 000 4~4 747 350 886 464 118 957 519 531 25 
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 139 379 882 812 5 

11 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
35 184 312 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 117 422 485 351 562 5 

140 737 488 355 328 47 0.000 000 000 000 007 105 421 351 601 001 858 711 242 615 181 25 

281 414 916 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 331 890 625 
562 949 953 421 312 49 0.000 000 000 000 001 716 356 839 400 250 464 617 810 668 945 312 5 

1 125 899 906 842 624 50 0.000 000 000 000 000 888 118 419 700 125 232 338 905 334 472 656 25 
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 j28 125 

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
9 007 199 254 740 992 53 0000 000 000 000 000 111 022· 302 462 515 654 042 363 166 809 082 031 25 

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231257 827 021 181 583 404 541 015 625 
36 028 797 018 963 968 55 0.000 000 000 000 000 021 755 575 615 628 913 510 590 791 702 270 507 812 5 

72 051 594 031 921 936 56 0.000 000 000 000 000 013' 871 787 807 814 456 155 295 395 851 135 253 906 25 
144 i15 188 015 855 812 57 0.000 000 000 000 000 006 938 893 903 901 228 311 647 697 925 567 676 950 125 
288 230 316 151 111 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5 
516 460 152 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25 

1 152 ~21 504 606 846 916 60 0.000 000 000 000 000 000 861 361 137 988 403 541 205 962 240 695 953 369 140 625 
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 113 602 981 120 347 976 684 570 312 5 
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 lOa 886 801 490 560 173 988 342 285 156 25 
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125 
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APPENDIX E 
TABLE OF ASCII CHARACTER CODES 

ASCII CODES 

The 2920 assembler uses the seven bit ASCII code, with the high-order eighth bit 
(parity bit) always reset. 

GRAPHIC OR ASCII GRAPHIC OR ASCII GRAPHIC OR ASCII 
CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL) 

NUL 00 + 2B V 56 
SOH 01 2C W 57 
STX 02 20 X 58 
ETX 03 2E Y 59 
EOT 04 2F Z 5A 
ENG 05 0 30 [ 5B 
ACK 06 31 \ 5C 
BEL 07 2 32 1 5D 
BS 08 3 33 A (t) 5E 
HT 09 4 34 - (+-j 5F 
LF OA 5 35 60 
VT OB 6 36 a 61 
FF OC 7 37 b 62 
CR 00 8 38 c 63 
SO OE 9 39 d 64 
SI OF 3A e 65 
OLE 10 3B 66 
OC1 (X-ON) 11 < 3C 9 67 
OC2 (TAPE) 12 3D h 68 
OC3 (X-OFF) 13 > 3E 69 
OC4(=FAP8 14 ? 3F j 6A 
NAK 15 @ 40 k 6B 
SYN 16 A 41 6C 
ETB 17 B 42 m 60 
CAN 18 C 43 n 6E 
EM 19 0 44 0 6F 
SUB 1A E 45 p 70 
ESC 1B F 46 q 71 
FS 1C G 47 72 
GS 10 H 48 73 
RS 1E I 49 74 
US 1F J 4A u 75 
SP 20 K 4B v 76 

21 L 4C w 77 
22 M 40 x 78 

# 23 N 4E y 79 
$ 24 0 4F z 7A 
% 25 P 50 { 7B 
& 26 G 51 I 7C 

27 R 52 } (ALT MODE) 70 
28 S 53 7E 
29 T 54 DEL (RUB OUT) 7F 
2A U 55 
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APPENDIX F 
BIT PATTERNS OF THE 2920 ASSEMBLY 

LANGUAGE MNEMONICS 

Instruction Field Bit Assignments 

The instruction word for the 2920 is 24 bits long and is divided into six four-bit 
nibbles: 

Nibble MSB LSB 

0 ADFO ADK2 ADK1 ADKO 
1 A2 B1 A1 ADF1 
2 A4 B3 A3 ' B2 
3 AO B5 A5 B4 
4 S2 S1 SO BO 
5 L2 L1 LO S3 

where LO L2 is the opcode, 
AO A5 is the source address, 
BO B5 is the destination address, 
SO S3 is the shiftcode, 
ADF1- ADF2 
ADK1- ADK3 is the iocode. 

Opcode Field 

L2 L1 LO Mnemonic 

000 XOR 
001 AND 
010 LIM 
011 ABS 
100 ABA 
101 SUB 
110 ADD 
111 LDA 

Source and Destination Fields 

The destination operand is a six-bit address pointing into RAM. Each address bit is 
located as follows: 

ADDR BIT O(LSB) BO 
1 B1 
2 B2 
3 B3 
4 B4 
5(MSB) B5 
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The source operand is also a six-bit address pointing into RAM. Each address bit is 
located as follows: 

ADDR BIT o (LSB) AO 
1 A1 
2 A2 
3 A3 
4 A4 
5(MSB) A5 

Shift Code Field 

so S1 S2 S3 Mnemonic 

1100 R13 
1011 R12 
1010 R11 
1001 R10 
1000 R09 
0111 ROB 
0110 R07 
0101 R06 
0100 R05 
0011 R04 
0010 R03 
0001 R02 
0000 R01 
1101 L01 
1110 L02 
1111 ROO 

Input/Output Code Field 

The iocode is located in bits 23-19 and is encoded in the following manner: 

ADFO ADF1/ADKO ADK1 ADK2 

00 000 
00 001 
00 010 
00 011 
00 100 
00 101 
00 110 
00 111 

10 000-111 
01 000-111 

t OD[ least 
I significant 

most 
significant 
bit 

bit 

Mnemonic 

INO 
IN1 
IN2 
IN3 
NOP 
EOP 
CVTS 
CNDS 

CVTO-CVT7 
OUTO-OUT7 
CNDO-CND7 



APPENDIX G 
ERROR HANDLING AND REPORTING 

Command Language and Run-Time Errors 

COMMAND SYNTAX ERROR 

PREMATURE EOF 

This message means one of the following 
conditions has been directed: illegal syntax, miss­
ing or illegal delimiter use, or a missing required 
parameter. 

An end-of-file was encountered before an END 
directive. This is an unrecoverable error condi­
tion, causing the Assembler to terminate 
abnormally. 

Syntax Errors, Control Record Errors, and Semantic Warnings 

These errors are indicated by single letter codes which appear on the same line of the 
listing as the source line in which they were found. When multiple errors are detected 
in a single source line, only the first error is reported. A summary of syntax errors is 
output to the console and list devices. 

C An illegal control option or placement. 

Illegal ASCII character; possibly a missing linefeed after a carriage-return. 

M Multiple definition of symbols, which must be unique in the first 31 characters. 

o Illegal operation code or operand. 

S Invalid syntax, usually due to invalid or missing opcode. 

Semantic Warning Flags: 

B Boundary error. EOP does not fall on legal address, i.e., a multiple of four. 

E Execution conflict: e.g., a CVT on or immediately after using the DAR as a 
destination, or right after an input; or a conditional subtract with the DAR as a 
destination; or an attempt to use a conditional iocode on an AND, LIM, or ABS, 
or an attempt to use LIM with a shiftcode other than RD. 

P Pad insertion, putting NOPs after the EOP. 

V Illegal value specified for an operand with a limited range. 
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APPENDIX H 
SYNTAXOF2920ASSEMBLY LANGUAGE 

The following is a formal definition of the language accepted by the 2920 
Assembler. Upper-case character strings in this description represent terminal 
symbols used exactly as shown. Lower-case strings represent metalinguistic variables 
which are either defined here or self-evident. Punctuation shown after the string:: =, 
e.g. commas, must be used as and where shown. Blanks shown between variables or 
terminals, e.g. in the EQU directive, are needed as separators. 

program 

stmt_list 

stmt 

nl 

basic_stmt 

optional_labe I 

machine_inst 

optional_sh iftcode 

optional_iocode 

assemb_directive 

opcode 

shiftcode 

iocode 

dest 

src 

name 

special_char 

comment 

letter 

decimal_digit 

end_stmt 

::= stmt_list end_stmt 

::= stmt 1 stmt_list stmt 

::= basic_stmt nl 

::= CR 1 comment CR 

::= optional_label machine_inst 1 assemb_directive 1 empty 

::= name: 1 empty 

::= opcode dest,src optional_shiftcode optional_iocode 
1 iocode 

::= ,shiftcode I empty 

::= ,iocode 1 empty 

::= name EQU name 

::= XOR 1 AND 1 LIM 1 ABS 1 ABA 1 SUB 1 ADD 1 LOA 

::= ROO 1 R01 1 R02 1 R03 ... 1 R13 1 L01 1 L02 1 R1 1 R2 1 R3 ... 1 R9 
1 L 1 I L2 

::= INO IIN1 IIN2 I NOP I EOP I CVTS I CVT? 1 CVT61 CVT5 ... 1 
... 1 CVTO I CNDS I CND? I CND6 ... 1 CNDO 

::= name 

::= name 

::= letter 1 special_char I name letter 1 name special_char 
I name decimal_digit 

::= @ I? ,_ 

::= ; 1 ; ascii_characters 

::= A I B I C 1 DIE I FIG 1 HIlI J I K 1 LIM 1 N 1 0 1 P 1 Q 1 
RIS/T/U/V/W/X/Y/Z 

::= 0 11 1 2 I 3 1 4 1 5 1 6 1 ? 1 8 1 9 

::=END 

Notes: The slash means you may choose among the items separated. "Empty" means the en­
try can be omitted entirely. Terminal symbols shown in upper case are also accepted from the 
keyboard in lower-case. 
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APPENDIX I 
TWO'S COMPLEMENT DATA 

HANDLING IN THE 2920 

Data in the 2920 are stored using a two's complement binary form. Using this form, 
the highest order bit indicates the sign of the value, with this bit being zero (0) for 
positive and zero values, and one (1) for negative values. If the intended value is 
positive, the remaining bits correspond to that value, independent of the sign bit. If 
the intended value is negative, then the remaining bits correspond to the number 
(one minus that value). 

A convention used with the 2920 places an imaginary binary point just to the right of 
the highest order (25th) bit, as shown below: 

1.011010111001111110000100 

Each bit to the right of the binary point has a positive fractional weight associated 
with it, the first having the value 2-1 = Y2, the second 2-2 = Y4, and so on. If x is the 
number represented by the bits to the right of the binary point, then O~ x <1.0. If 
s represents the sign bit (0 for non-negative values, 1 for negative), then the full 
25-bit number represents the value -s + x. 

Two's complement arithmetic is used because it allows relatively simple hardware 
realizations of arithmetic functions. Addition in two's complement follows normal 
binary addition rules, and can be realized using standard adder building blocks. If 
two numbers of like sign bit are added and the sign bit of the result differs from that 
of the original operands, the result is too large in magnitude to be contained within 
the allotted number of bits. In this case an "overflow" is said to have occurred. 

Subtraction in two's complement arithmetic may be done by adding the two's com­
plement of the subtrahend. The two's complement of a number is formed by first 
taking the one's complement and then adding a 1 in the lowest order position. The 
one's complement is formed by complementing all bits in place, i.e., replacing all 
original zeroes with ones, and all original ones with zeroes. (Note that the number 
-1.0 has no valid two's complement in the 25-bit number system used.) In practice, 
subtraction is accomplished by adding the one's complement, and forcing a carry 
input into the lowest order adder stage-which is equivalent to adding a 1 in the 
lowest order position. 

Using two's complement arithmetic therefore simplifies addition and subtraction as 
compared with sign/magnitude representation in that no sign bit testing of either 
operand is necessary to set up for addition or subtraction. Only one set of adders is 
needed because the conversion from one's complement to two's complement can be 
achieved within the adder. 

Multiplication and division by powers of two corresponds to shifts left or right 
respectively. When shifting left, the low order bit is filled with zeroes and when 
shifting right, the high order bit is filled with the sign bit. To extend precision to the 
left, the sign bit is extended into each added position before any shift operations are 
done. The sign bit behaves as if it extends to the left on to infinity. Overflow cor­
responds to the case where the recorded sign bit does not correspond to the sign bit 
at infinity. 

In the 2920, arithmetic is performed with a left extension to a total of 28 bits, ade­
quate to perform any 2920 operation without possibility of overflow. Thus the 
highest order bit corresponds to the sign bit at infinity. If the storable portion of the 
result (low 25-bits) does not correspond to the correct result, an overflow is 
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indicated, and if overflow limiting is enabled, the 25-bit value stored is the positive 
extremum (if the correct sign bit was 0) or the negative extremum (if the correct sign 
bit was 1). 

positive extremum = 0.111111111111111111111111 = approx. +1.0 

negative extremum = 1.0000 0000 0000 0000 0000 0000 = -1.0 

In two's complement arithmetic, multiplication can be performed in a manner 
similar to that used for positive binary numbers. However, because the sign bit has a 
negative rather than a positive weight, some additional corrections are needed. 

Multiplication in the 2920 may be achieved using the conditional add, with the 
mUltiplier being loaded into the DAR, and the multiplicand being conditionally 
added to the (partial) product. Because adds in the 2920 provide for sign extension 
during shifting, a positive multiplier can produce a correct product without any 
further correction, shown in the examples below. 

1111.11 (-114) 
x 0000.11 (+ 3M 

... 1111.111 

... 1111.1111 

... 11111.1101 = -1 + 13/16 = -3/16 

Note that in each case, the sign bit was extended to the left in the partial products. 
The example shown above is drawn in a manner different from that used in grade 
school arithmetic classes. The somewhat different display results from noting that 
each bit of the multiplier to the right of the binary point has a weight equal to some 
negative power of 2, i.e., is equivalent to a right shift of one or more positions. 

0.1100 (3/4) 
x 0.1101 (13/16) 

0000.01100 
0000.001100 
0000.0000000 
0000.00001101 

00000.10011101 

Thus if the multiplication is done starting at the binary point of the multiplier, and 
running through the multiplier from left to right, the binary point can be maintained 
(and aligned) for each partial product. Each bit of the multiplier corresponds to a 
possible addition of the multiplicand, shifted to the right by one or more positions, 
to the product. If the mUltiplier bit is aI, the addition takes place, otherwise it does 
not take place. 

If the sign bit of the mUltiplier is non-zero, because this bit has a negative weight the 
multiplicand should be subtracted from the product. In the 2920 this function is 
achieved by complementing the multiplicand, and conditionally adding the resulting 
complement to the product based on the sign bit of the multiplier. 

Division tends to be complex in two's complement arithmetic, and so may be 
simplified by extracting the signs of the operands, performing the division using 
only the magnitudes of the dividend and divisor. The quotient is converted to the 
proper sign based on the extracted signs. 

Restoring binary division is performed using a series of test subtractions of the 
divisor from the dividend, with the original value restored if the result becomes 
negative. The sequence of test subtractions proceeds from left to right, with each 
successful subtraction (one leaving a positive difference, thus not requiring restor a-
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tion) reducing the magnitude of the dividend. The locations of the successful sub­
tractions are noted by ones, those unsuccessful by zeroes, in the DAR. 

Restoration of the dividend corresponds to adding the divisor back to the dividend. 
Because this operation is followed by a test subtraction with the divisor shifted one 
position further right, the restoration/test subtraction sequence can be replaced by a 
single addition of the divisor after it is shifted to the right. (As a right shift is 
equivalent to a multiply by 1/2, the first sequence is + d-d/2 = d/2; the second 
operation is + d/2.) 

In the 2920, the conditional subtract operation is used to perform this non- restoring 
divide algorithm. For any arithmetic operation, the high order carry from the 
extended arithmetic is saved for possible testing by the conditional subtract instruc­
tion. This carry has the same value as the sign of the result generating it, i.e., I for 
negative, 0 for non-negative numbers. The conditional subtract performs the addi­
tion or subtraction required by the previous result (i.e., carry), and then stores the 
new result of the operation in a designated location (bit) of the DAR as selected by 
the condition code used. 

1-3 





APPENDIX J 
DISCUSSION OF CARRY 

AND OVERFLOW CONDITIONS 

The detailed ramifications of carry and overflow are discussed in this appendix. The 
tables show the three major forms and the possible cases in each. 

Overflow occurs when ALU operations produce numbers outside the legal range of 
-1.0~X<+ 1.0. 

Normal standard carry logic applies to the ALU instructions ADD, SUB, ABA, 
LIM, AND. For the instructions XOR, ABS, and LDA, the carry logic includes 
additional considerations. 

Normal Carry and Overflow 

The 2920 standard representation of data is a signed 25-bit binary fraction. Positive 
data can be considered simply 24-bit fractions with a sign bit, e.g., 
0.100000000000000000000000 means + 1/2. Negative data have a sign bit of 1 with 
the remaining 24 bits representing the two's complement of the value, i.e., one 
minus that value. An example: 

1.010000000000000000000000 means -3/4. 

However, the capability to shift left two positions makes it necessary to allow for a 
26th and 27th bit for the sign. A 28th bit is necessary to preserve the sign in the case 
of carry information if two numbers are left-shifted and then added. 

Therefore, the 2920 logic carries 28 bits, four bits to the left of the imaginary binary 
point and 24 bits to its right: 

ssss.bbbb bbbb bbbb bbbb bbbb bbbb 

If the source operand is to be negated during an instruction, then before the 
indicated operation is carried out, the one's complement of the source is formed by 
complementing all its bits and setting the carry-in bit to one. This happens in three 
circumstances: in taking the absolute value of a negative number, in an 
unconditional subtraction, or in a conditional subtraction when the prior carry was 
0.) 

Standard carry, then, is propagated to the left, beginning at the least-significant 
(right-most) bit and continuing into the sign bits if necessary. Carry into the sign bits 
may mean an overflow condition, since in overflow the four sign bits become une­
qual. The leftmost bit of the source operand always retains the original sign even if 
shifting occurs. 

Normal practice is to keep the numbers scaled between -1.0 and + 1.0, such that the 
arithmetic operations do not create values' outside this range. If out-of-range values 
do result, this is an overflow situation. 

Conditional iocodes do not affect carry and overflow for standard-carry instruc­
tions (except conditional subtract). The calculation acts as if a straight add were be­
ing done: if a carry into the sign bit occurs, then the carry flag is set. (Subtraction is 
performed as an add after taking the two's complement of the source operand and 
setting carry-in to 1.) 
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LIM produces a + 1.0 or a -1.0 using the sign of the source only, and sets the carry 
to O. Overflow for LIM depends on whether a left-shift occurred. When overflow 
limiting is enabled and an overflow condition occurs on an ADD, ABS, or ABA in­
struction, the result is limited, i.e., becomes -1.0 or + 1.0 (This never applies to 
AND.) 

Nonstandard Carry and Overflow 

There are three instructions in this group: ABS, LDA, and XOR. 

For ABS and LDA, carry is set to O. The implicit value of the destination is initially 
forced to zero. Overflow limiting is on. There can be overflow only if the source was 
left shifted, possibly making the four sign bits unequal. 

A conditional iocode on an LDA can turn the instruction into a no-operation if the 
bit tested in the DAR is O. Conditional iocodes on an ABS instruction get a warning 
(only) from the Assembler. 

The case of XOR is complicated by the potential of left shifts. The table shows these 
extra cases. Use of a conditional iocode on an XOR causes overflow limiting to be 
turned on. (So does an EOP. ABA with a conditional iocode turns it off.) Limiting 
will occur if overflow limiting is enabled. 
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Table of Carry and Overflow Cases 

SIGN OF SIGN OF 
DESTINATION SOURCE 

OPER. CONTENTS CONTENTS CARRY BIT 

ADD 

ADD positive, positive 0 

ADD negative, negative 1 

ADD positive, negative *** 

ADD negative, positive *** 

SUB 

SUB positive, positive *** 

SUB negative, negative *** 

SUB positive, negative *** 

SUB negative, positive 1 

ABA 

ABA positive, positive 0 

ABA negative, negative 1 

ABA positive, negative 0 

ABA negative, positive *** 

XOR OVERFLOW BIT 

XOR positive, positive 0 o unless 1 left-shifted 
into sign bits 

XOR negative, negative 1 1 

XOR positive, negative 0 o unless shift 

XOR negative, positive 0 o with no shift 
1 o if shift only ones 

1 1 all other cases 

(*** means "if the result is positive, carry is set to 1; otherwise, 0") 
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ABA, 1-14; 1-15,3-1,4-12 
ABS, 1-14, 1-15,3-2,4-12 
absolute 

locations, 2-4 
value instruction, see ABS 
value and add instruction, see ABA 

AID, 1-2, 1-17 
ADD, 1-15,3-2, 3-6, 3-8,4-1 

conditional, 1-15, 3-3, 1-2 
two's complement, Appendix I 

addresses, 1-11, 1-12, 2-1, 2-4, 3-6 
bit assignments, Appendix F 
wraparound, 2-4 

ADF bits, 1-17, 1-18, Appendix F 
ADK bits, 1-17, 1-18, Appendix F 
ALU, 1-2, 1-14 
analog 

control field, see iocode 
inputs, 1-1, 1-5,3-6 
outputs, 1-1, 3-7 
section, 1-2, 1-16 

AND, 1-15,3-3,4-13 
anti-aliasing 

filters, 1-1 
applications, 1-1, Chapter 4 
arithmetic 

elementary, 4-1, Appendix I 
) error tolerance, 4-3 

logic unit, 1-14 
section, 1-2, 1-11 
terms into 2920 code, 4-2, 4-3,4-8,4-9 

ASCII, Appendix E 
see also ISIS manual 

assembler 
controls, 1-9, Chapter 5 
defined, 1-4 
files, 1-9 
functions, 1-9 
invocation, 5-1 
reports, 1-4 

assembly 
language-defined, 1-4 
language-elements, 1-6, Chapter 2 
termination, see END 

at-sign, 2-1 

barrel shifter see scaler 
binary, 1-4 

fraction, Appendix I 
patterns for mnemonics, Appendix F 
point, 1-11, Appendix I 
search, 1-13, 1-16, 1-17 

blanks, 1-6,2-2,2-4, 5-3 

capabilities, 1-1 
capacitor 

constraints, 1-17 
effect on 110 sequences, 1-17,3-6 

carriage-return, 2-1, 2-2 

INDEX 

carry 
and overflow, Appendix J 
effect on condo subtr., 1-15,3-8 
flag, 1-7, 2-4, 3-6 
out, 4-6, 1-3 
tables, Appendix J 

channels, 1-1, 3-6, 3-7 
characters, 2-2 

special, 2-2 
clock, 1-1 

frequency, 1-1, 3-1 
instruction, 1-1, 3-7 
sources, 1-1 

CND iocodes, 1-18, 3-1 to 3-3,3-6 
code 

generated by assembler, Preface, 2-4 
object, Preface 
source, 2-2, 2-4, 2-5 
used by computer, 1-4 

colon, 1-6,2-2,2-5 
comma, 1-6, 2-2, 2-4 
comments 

field,2-5 
comparator, 1-2, 1-17 
conditional 

iocodes, 1-5, 1-7, 1-13,3-3 
operations, 1-14, 1-15,3-2 to 3-4,1-2,1-3 

configuration, Preface 
constants, 1-5, 1-12 to 1-14, 1-16,2-5 

converted to 2920 code, 4-2, 4-3 
continuation lines, 2-4 
control 

lines, 1-9, 1-10, 5-3 
options, 5-1, 5-3 
word, 1-10 

convert iocodes, see CVT 
crosstalk, 1-18 
CVT iocodes, 1-5, 1-7, 1-13, 1-17, 1-18,3-4 
cycle, 1-14, 1-17 

conversion, see CVT 
generator, 1-11 

DI A, 1-2, 1-17 
DAC, 1-1, 1-2, 1-13, 1-17,3-4 
DAR, 1-2, 1-12 to 1-18, 2-5, 3-2 to 3-8, 

4-4 to 4-6, Appendix 1 
DEBUG, 5-1, 5-2 
debugging 

labels, 2-5 
symbol table, 5-1 

default, 1-7, 2-4 
ALU operation, 1-7,2-4,3-5 
assembler controls, 5-1 to 5-3 
iocode, 1-7, 2-4 
shiftcode, 1-7, 2-4 

delimiters, 1-6, 2-2 
destination, 1-12, 2-4 
digital/analog register, 1-2, (see DAR) 
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division, 4-5 
by subtracting and restoring, 1-2 
non-restoring, 1-15 
two's complement, Appendix I 

dollar sign, 2-2, 5-3 

EJECT, 2-2, 5-1, 5-2 
END,3-5 
end-of -program 

for assembler, see END 
for 2920 program, see EOP 

EOP, 1-11, 1-18,3-1,3-5 
EQU, 2-4, 3-6 
errors, Preface, 5-1 

execution conflict examples, Appendix A 
messages, 2-4, 2-5, Appendix G 
tolerance in arithmetic, 4-3 
to list file, 5-2 

example, Appendix A 
exclusive-or instruction, see XOR 
execution-conflict errors 

example, Appendix A 
list, Appendix G 

extension 
filename, 1-10, 5-1, 5-2 
of sign, Appendices I, J 

features, 1-1 
fetch, 1-11 
fields, 1-6, 1-11, 2-2, 2-4, 2-5 

(see also) 
bit assignments, Appendix F 
comment 
destination 
iocode 
label 
opcode 
shiftcode 
source 

files, Preface, 1-9 
listing, 1-10,2-5, Appendix A 
object, Appendices A, C 
source, 1-4, 5-1 

filter 
adaptive, 4-13 
continuous, 4-6 
designing, 4-6, 4-9 
poles and zeroes, 4-6 
sampled, 4-6 
section, 4-7 
stability, 1-14 
time constant, 4-8 
typical memory required, 1-3 

FORTRAN 
equivalent 2920 statements, 4-1 to 4-10 

fraction 
binary, Appendix I 
-al weight per bit, Appendix I 

function 
analog, realized by 2920, 1-1, 1-14,4-13 
-al elements, 1-1 

overview, 1-2 
closer look, 1-10 

correlation, 4-13 
implemented by program, 1-3 
iocode, 1-7 

limit on 2920 realizations, 1-3 
performed by assembler, 1-9 

gain, 4-7, 4-8 
control, automatic, 4-13 

HEX, 1-10 
hexadecimal 

object file format, Appendix C 
horizontal tab, 2-2, 2-4 

IN iocodes, 1-5, 1-17, 1-18,3-6 
input 

channels, 1-1 
multiplexor, 1-2, 1-17 
loutput operations, 1-3 
sample, 1-3, 3-4 

instruction, 1-6, Chapter 3 
clock, 1-1, 1-2 

-period, 1-3 
detail on every, Chapter 3 
example, 1-4 
field bit assignments, Appendix F 

invocation line, 5-1 
iocode, 1-7, 1-17, 2-1, 2-4, Chapter 3, 

Appendix F 
ISIS, Preface, 2-1, 5-1 

jumps, 1-3, 1-11,2-1 
reEOP,3-5 

keyword, 1-4,2-3, Appendix B 
KM constants, .1-5 
KP constants, 1-5 

label, 1-6, 2-1, 2-4, 2-5 
language 

detailed rules, Chapter 2 
general setup, 1-4, 1-6 

LDA, 1-4, 1-14, 1-15,3-6 
conditional, 1-15,3-4,3-6 

LIM, 1-14, 1-15,3-7,4-12,4-13 
limit instruction, see LIM 
Limiters, 1-14,4-12 
limiting, (see also overflow) 

threshold, 4-12,4-13 
line 

continuation, 2-4 
control, 5-1, 5-3 
feed, 2-1, 2-2 
input, 2-4 
invocation, 5-1, 5-3 

LIST, 1-10,2-2, Chapter 5 
listing 

example, Appendix A 
file, Preface, 1-10, 2-5 

load instruction, see LDA 
location counter, 1-9,2-4 
logic levels, 4-12 
LST, 1-10,5-1 to 5-3 

masking, 4-5, 4-13 (see also AND) 
memory, 1-11 
mnemonic, Preface, 1-4, 1-9,2-1 

bit patterns, Appendix F 



multiplexer 
input, 1-2, 1-17 
output, 1-2 

multiplication, 1-15,4-2 to 4-4, Appendix I 

name, 2-1, 3-6 
nibbles, 1-10, Appendix F 
NODEBUG, 1-10, Chapter 5 
NOLIST, Chapter 5 
NOOBJECT, Chapter 5 
NOP, 1-8, 1-18,2-1,2-4,3-4 to 3-7 
NOSYMBOLS, Chapter 5 

OBJECT, 1-10, Chapter 5 
object 

code, 
-example, Appendix A 

file, Preface 
output, Preface, Appendix C 
program, 1-4 

OF pin, 1-14 
one's complement, 1-17, Appendix I 
opcodes, 1-6, 1-9,2-5, Appendix F 
operand, 1-6, 1-9,2-5 

address, 1-12 
destination, 1-6,2-5 
source, 1-6, 2-5 

operation 
basic, 1-1 
indicated, 1-6 
simultaneous, 1-7 
sequence, 4-1,4-2,4-3 

options, assembler 
control, 5-1 
default, 5-1 

oscillators, 4-13 
OUTO, OUT1, ... OUT7, 1-5, 1-17, 1-18,3-7 
overflow, Appendix J 

ABA,3-1 
ABS, 1-14 
considerations, 4-1, 4-8, 4-12 
detection, 1-13, Appendices I, J 
EOP, 3-1, 3-5 
LDA,I-14 
LIM,I-14 
limiting enabled/disabled, 1-14,3-1, J-2 
scaling, 4-1 
XOR, 3-1, 3-8 

PAGELENGTH, 1-10, Chapter 5 
PAGING, 1-10, Chapter 5 
PAGEWIDTH, Chapter 5 
parallelism, 1-7, 1-9,3-5 
partial product, 4-4, 1-2 
partial remainder, 4-6 
performance 

limits, 1-3 
parameters, 1-3 

pinouts, 1-3 
pipeline, 1-11 
pole 

complex conjugate pair, 1-3,4-9 
memory needed per, 1-3 
single real, 1-3,4-6,4-7 

ports' 
input! output see channels 
storage array, 1-2, 1-12, 1-16 

PRINT, 1-10, Chapter 5 
processing 

digital 
advantages, 1-1 

further functions, 4-13 
program, 1-3, 1-4 

copies, 3-1 
flow, 1-9 
object, 1-4 
pass, 1-3, 1-11,3-1,4-7 
source, 1-4 

PROM, 1-1, 1-2 
RUN mode, 1-10 
section, 1-1 ° 

quantization noise, 4-1 
question mark, 2-1,2-2 

RAM (random access memory), 1-1, 1-2, 
1-6 

Rectifiers, 4-12 
reference voltage, 1-1, 1-16, 3-4 
ROM (read-only memory), 1-6,2-5 
Run shiftcodes, 1-5, 1-13 
RUBOUT character, see ISIS manual 

re editing 

sample 
frequency, 1-11,4-6 
input, 1-4, 1-7, 3-4, 3-6 
interval, 1-3, 4-7, 4-8 
output, 1-7, 1-18 
rates, 1-17,3-1,4-6,4-7 

sample-and-hold, 1-2, 1-16 to 1-18, 3-7 
scaler, 1-2, 1-12, 1-13 
scaling, 1-5, 1 ~ 7 
semicolon, 1-6, 2-2, 2-5 
sequence, see operation 
shift 

code, 1-5, 1-7, 2-1, 2-4, Appendix F 
ing, 1-4,3-3, 3-4, Appendix I 

sign 
bit, 1-11 
extended, Appendices I, J 
extraction via XOR, 4-5, 4-6, 1-2 
interpretation in two's comp, Appendix I 

Simulator, 1-6,2-1,2-4,2-5 
simultaneous operation, 1-7, 1-9,3-5 
source 

be with you always 
code, 2-2,2-4,2-5 
file, 5-1 
line, Preface, 2-5 
operand, 2-4, 2-5 
program, 1-4 

special character, 2-2, (see also by name) 
startup 

requirements, 1-1 
statements, 2-2, 2-4 
storage array, 1-12 
SUB (subtract), 1-15,3-8,4-1 

conditional, 1-15,3-4,3-8, 1-2, 1-3 
two's complement, Appendix I 

successive approximation, 1-13, 1-16, 1-17 
SYMBOLS, 1-10, Chapter 5 
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symbols, 1-6,2-3 
generating 
reserved, 2-3, 2-4 
table, 1-9,2-1,2-4,2-5,3-6 
user-created, 2-1,2-4, 2-5 

synonyms 
for RAM location names, see EQU 

syntax 
for individual instructions, Chapter 3 
formal, Appendix H 

terms see arithmetic 
testing 

bits, 3-3 
programs, see Simulator 

time constant for filter, 4-8 
timing, 1-1, 1-3,3-1 
TITLE, 2-2, 5-2, 5-3 
translation, 1-4 
TTL 

inputs, 1-1 
outputs, 1-1 

clock, 1-1 
two's complement, 1-11, 1-17, Appendix I 

underline, 2-1 

variable, 1-11,2-4,2-5 
division by, 4-5 
multiplying by, 4-4 
range, 1-11 
scaling, 4-1 
scratch, 2-4, 3-6 
smallest change in, 1-11 

voltage 
offset, 1-17 
output, 1-7 
reference, 1-1, 1-16, 3-4 

wraparound, 2-4 

XOR (exclusive or), 1-15,3-8,4-5,4-6,4-13 

zeroes, 4-6, 4-7 
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