
2920 ASSEMBLY
LANGUAGE MANUAL

Manual Order Number 9800987-01

I
Copyright © 1979 Intel Corporation

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

i iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
Insite Megachassis RMX
Intel Micromap UPI
Intelevision Multibus I-IScope
Intellec

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

All mnemonics copyright © Intel Corporation 1979. A101/0879/10K FL

PREFACE I

The assembler translates 2920 mnemonics (such as ADD or L02 or IN3) into
machine code. At the same time, it produces an object file and a listing file showing
each source line and the generated code, plus any detected errors. Its object output
may be used by the PROM programmers and the 2920 Simulator.

The minimum hardware configuration to run the AS2920 Assembler is as follows:

• INTELLEC or INTELLEC-II with 32K random access memory (RAM)

• Teletypewriter, CRT, or equivalent for console input and output

• Single diskette drive unit

If a line printer is available, it can be used for large-volume or hard-copy output.

The AS2920 Assembler uses the ISIS-II keyboard and disk inputlouput functions.
You may wish to refer to other documents containing valuable information about
this supervisor, the Intellec system and the other software used on it. These include:

Intellec Operator's Manual

INTELLEC/DOS Diskette Operating System
Operator's Manual

ISIS-II System User's Guide

Reader's Guide

9800129

9800206

9800306

The tutorial and reference formats necessariiy require repetitive information. In
reading this manual for the first time, you might first skim Chapters 1 and 4. They
will familiarize you with the general setup of the language and the simpler applica­
tions of general interest. When you begin to have questions about particular instruc­
tions, you can look them up in Chapter 3.

Chapter 2 gives the detailed rules of this assembly language. Chapter 5 discusses the
controls you may use either when you invoke the Assembler or on control lines
embedded in your source file. The Appendices discuss other specialized issues
around the language or the part.

iii

· '~ n

CHAPTER 1
INTRODUCTIONS PAGE
Capabilities, Features, and Functional Elements 1-1

Basic 2920 Operation. .. 1-1
Clocks 1-1
Minimum Hardware Requirements ; 1-1
Overview of Functional Elements. 1-2
Basic 2920 Performance Parameters and Limits. . .. 1-3

What is a Program? An Assembler? Assembly
Language? .. 1-4

Overview of 2920 Assembly Language Keywords 1-4
A Closer Look at the 2920 Language 1-6

Opcodes, Labels, and Operands 1-6
Shift Codes. .. 1-7
Iocodes , 1-7
Basic Program Flow .. 1-9

Assembler Functions and Controls. 1-9
A Closer Look at the Functional Elements. 1-10

PROM Section. .. 1-10
PROM RUN Mode. .. 1-10

Arithmetic Unit and Memory 1-11.
The Storage and Constant Arrays. 1-12
Scaler 1-13
The ALU 1-14
Conditional Arithmetic Operations. 1-14

The Analog Section. .. 1-16

CHAPTER 2
2920 ASSEMBLY LANGUAGE
ELEMENTS
Introduction. .. 2-1
Characters .. 2-2
Delimiters. .. 2-2
Symbols. .. 2-3
Statements. .. 2-4

Label Field. • 2-5
Opcode Field .. 2-5
Operand Fields 2-5
Comment Field .. 2-5

CHAPTER 3
INSTRUCTION SET
How to Use This Chapter 3-1
Timing Information 3-1
ABA Absolute Value and Add. 3-1
ABS Absolute Value 3-2
ADD Addition................................. 3-2
AND Logical Conjunction. .. 3-3

iv

CONTENTS I

PAGE
CNDS,CND7,CND6,CND5,CND4,CND3,CND2,

CND1, CNDO 3-3
Add Conditional. .. 3-3
Load Conditional .. 3-4
Subtract Conditional 3-4

CVTS,CVT7 ,CVT6,CVT5,CVT4,CVT3,CVT2,CVT1,
CVTO 3-4

END Terminating Assembly. .. 3-5
EOP ; End of Execution Cycle, Restart at Zero. 3-5
EQU Equate................................... 3-6
INO, IN1, IN2, IN3 Input Iocodes 3-6
LDA Load Destination with Source. 3-6
LIM Load Destination With Limit. 3-7
NOP No-Operation, Instruction or Iocode. 3-7
OUTO, OUT1, ... OUT5, OUT6, OUT7 Output

Iocodes .. 3-7
SUB Subtraction 3-8
XOR Exclusive OR Instruction 3-8

CHAPTER 4
PROGRAMMING TECHNIQUES-SOME
SOLVED PROBLEMS
Elementary Arithmetic 4-1

Overflow Considerations and Scaling. 4-1
Two Methods. .. 4-1
Addition and Subtraction 4-1
Multiplication and Division. 4-2

Multiplication by a Constant , 4-2
Multiplication of the Form Y = C * Y 4-3
Multiplication by a Variable 4-4
Division by a Variable 4-5

Designing Filters with the 2920 4-6
Simulating Single Real Poles. 4-7

Design Example 1 ; ... 4-8
Further Optimization for Single Poles. 4-9

Simulating Complex Conjugate Pole Pairs 4-9
Design Example 2 " 4-11

Overflow Considerations 4-12
Simulation of Rectifiers , 4-12
Simulation of Limiters 4-12
Other Signal Processing and Logic Functions 4-13

CHAPTER 5
CONTROLS
Introduction 5-1

Semantic Description .. 5-2
Control Records 5-3

APPENDIX A
EXAMPLE OF LISTING FORMAT

APPENDIXB
KEYWORDS, INSTRUCTIONS,
IOCODES, AND DIRECTIVES

APPENDIXC
HEXADECIMAL OBJECT FILE FORMAT

APPENDIXD
POWERS OF TWO

APPENDIXE
TABLE OF ASCII CHARACTER CODES

CONTENTS (Continued) I

APPENDIXF
BIT PATTERNS OF THE 2920
ASSEMBL Y LANGUAGE MNEMONICS

APPENDIXG
ERROR HANDLING AND REPORTING

APPENDIXH
SYNTAX OF 2920 ASSEMBLY
LANGUAGE

APPENDIX I
TWO'S COMPLEMENT DATA
HANDLING IN THE 2920

APPENDIXJ
DISCUSSION OF CARRY
AND OVERFLOW CONDITIONS

v

CHAPTER 1
INTRODUCTION

Capabilities, Features, and Functional Elements

The 2920 can perform a variety of analog signal processing functions by using digital
techniques. Such 2920 programs may realize, by simulation, a collection of major
analog modules and their interconnections. A program is executed repeatedly and
continuously, thereby imitating the behavior of the analog system on a sampled
basis.

Examples of such functions include simple to complex filters, oscillators, limiters,
rectifiers, modulators, non-linear functions, correlations, and logical operations,
among many others. Several such functions can be achieved using a single 2920 chip,
and if additional capability is required for extremely complex designs, additional
2920s can be cascaded together.

The major elements of the chip include:

1. an arithmetic processor

2. a scratch-pad random-access memory (RAM)

3. a digital-to-analog and analog/digital conversion unit (DAC)

4. a user-programmable and erasable PROM

The chip is realized in an n-channel MaS technology, and is supplied in an 28-lead
dual-inline package.

The analog/digital conversion system provides four analog inputs and eight analog
outputs, with built-in sample-and-hold. Inputs and outputs may be used for logic
levels if desired.

Basic 2920 Operation

The 2920 implements the analog functions by simulating them in real time. Digital
processing guarantees stability, accuracy, and reproducibility of results. Amplitude
stability is determined by that of an external voltage reference, and frequency
stability is determined by that of the clock used to operate the device.

Clocks

Clock sources for the 2920 may be derived from an externally generated pulse train,
or by connecting an external crystal to the device. The crystal or clock frequency is
four times the instruction rate. An instruction rate clock is provided by the 2920-as a
TTL output. Other TTL inputs and outputs are available to you for greater flex­
ibility in applications using the 2920.

Minimum Hardware Requirements

In simple applications you may need only to provide power supplies (including the
reference voltage), a crystal, and a sample capacitor. Some applications may require
simple analog anti-aliasing filters at the inputs and/or outputs.

1-1

Introduction

1-2

2920 Assembly Language

Overview of Functional Elements

Figure 1-1 shows a block diagram of the 2920. In the figure, the 2920 has been
divided into three major sections: the PROM, the arithmetic unit with memory, and
an analog section.

The PROM section of the 2920 includes an instruction clock generator and program
sequence counter. Signals from the clock generator and PROM control the other
two sections.

The arithmetic section includes a 40 word by 25-bit random access memory (RAM)
with two ports, and an arithmetic and logic unit (ALU). One of the two inputs to the
ALU is passed through a scaler or barrel shifter. The arithmetic section executes
commands from PROM, thereby performing digital simulation of analog functions
in real time.

The analog section performs analog to digital (AID) and digital to analog (DI A)
conversions upon commands from the PROM section. The analog section includes:

• an input multiplexer ~4 inputs),

• an input sample-and-hold circuit,

• a digital to analog converter (DAC),

• a comparator, and

• an output multiplexer with 8 output sample-and-hold circuits.

The analog section also has a special register called the DAR (for digital! analog
register), which acts as a link between the arithmetic and analog sections.

SIGINO

SIGIN1

SIGIN2

SIGIN3

XlICLK X2 CCLK GRDD

CAP1 CAP2 VREF M1 M2

Figure 1-1. Block Diagram of 2920 Signal Processor

SIGOUTO
SIGOUT1
SIGOUT2
SIGOUT3
SIGOUT4
SIGOUT5
SIGOUT6
SIGOUT7

2920 Assembly Language

Figure 1-2 shows the labels used for pinouts while running a program in the 2920.
Several pins perform different functions during programming than during normal
operation.

SIGOUT3 SIGOUT2

SIGOUT4 SIGOUT1

SIGOUT5 SIGOUTO

GRDA M1

SIGOUT6 M2

SIGOUT7 VSP

CAP1 OF

VREF RSTIEOP

RUNIPROG

SIGINO CCLK

SIGIN3 11 VCC

VSS GRDD

SIGIN2 X2

SIGIN1 X11CLK

Figure 1-2. Run Mode Pin Configuration

The numeric conventions used in the 2920 are covered in more detail in Appendices I
and J.

Basic 2920 Performance Parameters and Limits

The limits to 2920 capabilities are established by the size of the on-chip PROM and
RAM, the speed and capability of the processor, and the resolution of the AID and
DI A converters.

A program for the 2920 consists of a series of basic 2920 instructions which are
executed sequentially at a fixed rate. The program allows no internal jumps, and is
therefore of fixed length and execution time.

A sample interval is the time between samples of the same input channel. Normally,
one pass through a program establishes a sample interval, i.e. input! output opera­
tions' usually take place once per program pass. Similarly, the functions
implemented by the sequence of instructions usually occur once per sample interval.
However, the signal on a given input channel may be sampled more than once dur­
ing a single pass through the program. In this case, sample interval is determined by
multiplying the instruction-clock-period by the number of instructions between
input samples.

The number of functions which can be realized with a single 2920 is established by
the amount of PROM provided and the number of RAM words on the chip. For
example, a typical digital filter requires at least one RAM word per pole or two per
complex conjugate pole pair. Thus the RAM limits the number of poles to less than
40, or less than 20 complex conjugate pairs. The number of PROM words needed to
realize a complex conjugate pole pair is variable, but has a typical value of approx­
imately 10. Therefore, PROM capacity also limits the number of conjugate pole
pairs to less than 20.

Introduction

1-3

Introduction

1-4

2920 Assembly Language

What is a Program? An Assembler?
Assembly Language?

A program is a sequence of instructions intended for execution by a particular com­
puter. In the beginning, computers speak only binary, that is, they obey instructions
coded as sequences of ones and zeros like 111 000000 000100 1101 00001. Humans
tend to find such "sentences" difficult to deal with and error-prone. We usually
prefer symbols more familiar, or at least easier to remember (more mnemonic).

An assembler is a program usually supplied by a manufacturer to create the needed
strings of ones and zeros from "words" you write in the special (assembly)
language. Such a program bridges the gap by translating the more human-like
languages into the computer's binary tongue. For example

LDA ZETA,GAMMA,LOl,INI

is an instruction you would code in the 2920 Assembly Language to produce the
binary string given above. Each separate abbreviation in the instruction is called a
"mnemonic" because it is easier to remember than its binary meaning. This instruc­
tion could be read as saying

"take whatever number is in the location named GAMMA, shift it left one bit
position, and then load the location named ZETA with the resulting number.
While you're at it, sample input-channel-I."

If the location named GAMMA contains the number 1/4, the location named ZETA
will be filled with the number 1/2. Shifting a binary number left one binary position
effectively mUltiplies by 2, just as shifting a decimal number left one decimal posi­
tion effectively multiplies by ten (decimal 1234 shifted one position becomes 12340).
This will all be covered in more detail later .

Thus most programs are written in a language different from the codes used directly
by the computer. Such a language requires translation into those codes. The
translator for an assembly language is called an assembler.

A program that needs translation before the computer can execute it is called a
source program. The assembler performs various functions on the source program
to create an "object program," the thing that the computer actually executes. The
assembler also creates several reports enabling you, as programmer, to evaluate,
modify, or use this object program.

Overview of 2920 Assembly Language Keywords

The assembly language for the 2920 is simple. Table 1-1 lists the symbols used in its
instructions. Naturally, a detailed discussion of the assembly language is the major
content of this whole manual. The next few paragraphs are merely a quick, con­
densed overview, which may facilitate your assimilation of the details given in later
sections.

2920 Assembly Language

Table 1-1. 2920 Keywords

Section 1: Arithmetic Operation Codes

ABA ABS ADD AND LDA LIM SU B XOR

Section 2: Analog Control Codes

CNDS CVTS EOP INO NOP OUTO
CND? CVT? IN1 OUT1

CND6 CVT6 IN2 OUT2
CND5 CVT5 IN3 OUT3
CND4 CVT4 OUT4
CND3 CVT3 OUT5
CND2 CVT2 OUT6
CND1 CVT1 OUT?
CNDO CVTO

Section 3: Constant Source Codes and the DAR

KM1 KM2 KM3 KM4 KM5 KM6 KM? KM8
KPO KP1 KP2 KP3 KP4 KP5 KP6 KP7
DAR

Section 4: Scaler Control Codes

ROO R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13
RO R1 R2 R3 R4 R5 R6 R7 R8 R9

L01 L02
L1 L2

Section 5: Assembler Commands and Modifiers

DEBUG
NODEBUG

PAGELENGTH()

EJECT

END
EQU

LIST
NOLIST

OBJECT()
NOOBJECT

PAGEWIDTH()

TITLE(' ... ')

PAGING
NOPAGING

PRINT
NOPRINT

SYMBOLS
NOSYMBOLS

PRINT()

As shown in Section 1 of Table 1-1, there are eight basic arithmetic and logic com­
mands. Section 2 shows the analog codes. "IN" is used for input, "OUT" for out­
put. "CVT" stands for converting a sampled analog input into a digital number,
one bit at a time. "CND" means conditional use of an arithmetic instruction,
depending on testing a specified bit. The 16 built-in constants shown in Section 3 run
from -S/S (KMS) to + 7/S (KP7).

There are 16 separate shift codes shown in Section 4, which permit scaling (multiply­
ing) by powers of 2. The codes run from R13, meaning 2-13 , up to L02, meaning 22 .
The Rand L stand for shifts to the right and left, respectively.

Introduction

1-5

Introduction

1-6

2920 Assembly Language

You would use the additional keywords named in Section 5 of the Table to direct
certain assembler operations, or to qualify certain of your instructions. Every sym­
bol in Table 1-1 is explained in this manual.

The portion of a 2920 program shown below illustrates where certain types of sym­
bols typically appear in the fields of an instruction:

SUB OSe,KP4,R12,IN3
ADD DAR,OSe,ROO,IN3
ADD ose,KP4,L01 ,eNDS

; ose exemplifies a
; user symbol for some
; variable

A Closer Look at the 2920 Language

The Assembly Language must be able to generate all the possible legal binary
strings, but still be easier to use than binary itself. To this end, instructions are
created out of a limited number of predefined symbols, strung together in a
predefined structure (instruction). User-defined symbols can be used to name loca­
tions containing variables (data, in RAM) or instructions (in ROM).

Each part of an instruction is called a field, and only certain symbols are permitted
in specific fields. Fields are separated by something called a delimiter, such as a
sequence of one or more blanks, a comma, a semicolon, or a colon.

A field can be (for example) an indicated operation like ADD or an operand like XX
or YY in the instruction

ADD XX,YY

which would add the contents of the location named YY into the contents of the
location named XX.

Opcodes, Labels,and Operands

A 2920 instruction can have up to seven fields. They are called, from left to right:
label, opcode, destination operand, source operand, shiftcode, iocode, and com­
ment fields.

ADD is an example of what is allowed in the opcode field. The field containing XX
is called the destination field; that containing YY is called the source field. There is
an optional label field, giving a name to the location of the instruction itself. If used,
a label always appears as the first field on the left, immediately followed by a colon.

Thus, if you wanted to code an add instruction to put the sum of V ARIABLEll and
V ARIABLE22 into V ARIABLE22, and name that instruction SUM, it would look
like this:

SUM: ADD V ARIABLE22, V ARIABLEll

This instruction has four fields: the label, opcode, destination, and source fields.
Note that since the 2920 instruction set contains no branch instructions, the label
SUM is only useful in debugging, when it can be accessed by the Simulator.

2920 Assembly Language

Shift Codes

The two remaining fields, before an optional comment, are called the shiftcode and
the iocode. If you omit coding them explicitly, the assembler supplies a default
automatically, as explained below. The shiftcode affects the source operand only,
shifting it left or right so many bits (or none) before the opcode is performed. As
mentioned above, this "scaling" has the effect of multiplying the source operand
(only) by 2 to the power of the shiftcode. Thus, to add half of VARIABLEll into
V ARIABLE22, you could write

SUM: ADD V ARIABLE22, V ARIABLEll ,ROI

locodes

The optional iocode can direct the 2920 to perform one of four functions:

1. sample an input channel

2. put a sample out to an output channel

3. convert from the input sample into the DAR

4. make the execution of an arithmetic opcode execution conditional on some
specified bit of the DAR.

These iocode operations occur simultaneously with the arithmetic operations, such
as ADD, because they use a different part of the 2920. Arithmetic instructions use
the ALU, arithmetic logic unit. Iocode operations use the analog control decoder
(see Figure 1.1).

Here are some examples of the four iocode possibilities:

1. To sample input-channel-3 at the same time as doing the ADD above, you
simply code its name into the iocode field, as follows:

SUM: ADD VARIABLE22,VARIABLE11 ,R01 ,IN3

If no arithmetic operation is currently needed or planned to go on simultaneous­
ly, you could simply code

IN3

and the assembler would automatically fill in the other fields with

LDA O,O,ROO

which is the ALU no-operation code (which also clears the carry flag), thus
creating the instruction

LDA O,O,ROO,IN3

which does nothing but sample input-channel-3 (and clear the carry).

2. To output to channel 5, you could append OUT5 to an arithmetic instruction,
e.g.

SUM: ADD VARIABLE22,VARIABLE11 ,R01 ,OUT5

or code it alone

OUT5

with the result in either case that the contents of the DAR are converted to an
output voltage applied to channel 5. (As in 1 above, the latter form will also
clear the carry due to the use of the default LDA instruction.)

Introduction

1-7

Introduction

1-8

2920 Assembly Language

3. Analog to digital conversions of input samples are performed one bit at a time
into the DAR using the 9 CVT codes:

LOA
eVTS
eVT7
eVT6
eVT5
eVT4
eVT3
eVT2
eVT1

DAR,KPO ; initialize DAR to zero.
; convert sign bit
; convert bit 7 (most-significant-bit)
; convert bit 6

eVTO ; convert bit 0 (Ieast-significant-bit)

In actual practice, each cycle of conversion must allow time for theDAC to
settle, which is achieved by inserting NOP (no-operation) iocodes after all but
the last CVT (or by putting the CVT iocodes only on every other sequential
instruction) .

LOA
eVTS
NOP
eVT7
NOP
eVT6
NOP
eVT5
NOP
eVT4
NOP
eVT3
NOP
eVT2
NOP
eVT1
NOP
eVTO

DAR,KPO ; initialize DAR to zero.

This sequence could also be used as the iocodes on any 18 arithmetic instruc­
tions in order, providing the DAR was not altered by any of them. (Since this
sequence changes the DAR, you should also not be relying on it to retain any
value from prior work.) The result will be a digital value in the DAR represent
ing the amplitude of the input signal as a fraction of the reference voltage.

4. The conditional iocode, CND, uses the result of testing a specified bit of the
DAR to allow, cancel or change the operation of its associated arithmetic
instruction (LDA, ADD, or SUB). The bit is specified by the fourth character of
the iocode, as it was in the CVT iocodes above (0 is least significant bit):

SUM: ADD VARIABLE22,VARIABLE11 ,R01 ,eNDS

In this example, if the sign bit of the DAR is 0, the add will not occur; if the sign
bit of the DAR is l, the add will occur. This is similarly true if the opcode were
LDA:

LOA VARIABLE22,VARIABLE11 ,R01 ,eNDS

This will fill variable22 with half the contents of variablell only if the sign bit of
the DAR is 1. If it is 0, the operation does not take place (though it does take
time). .

The case of SUB is slightly more complicated and will be dealt with in Chapter 3.

2920 Assembly Language

Basic Program Flow

Figure 1-3a shows the flow diagram for a typical 2920 application. The program has
no beginning or end, but repeatedly performs the same set of calculations at a con­
stant rate.

In Figure 1-3a, the input/calculate/output sequence is shown in series. However,
there may be some parallelism in actual programs because the input/ output opera­
tions may execute in parallel with some arithmetic. As an example of an extreme
case of parallelism, consider the 2920 programmed to perform two independent
operations, each of which takes less than half of the 2920 capacity. The flow chart
can be as shown in Figure 1-3b. In actuality, the two loops execute simultaneously
and in synchronism, with the 110 functions of one loop being executed while the se­
cond is performing computation.

t
SAMPLE INPUTS

A·D CONVERSION
(110 FIELD)

t
SIMULATE
INTERNAL

STRUCTURE
&

COMPUTE OUTPUTS
(ARITHMETIC FIELDS)

t
DELIVER
OUTPUTS

(110 FIELD)

I

a. BASIC PROGRAM FLOW

SIMULATE
FUNCTION 1

SIMULATE
FUNCTION 2

b. PARALLEL OPERATION OF ALU AND 1/0

Figure 1-3. 2920 Program Flow Diagrams

Assembler Functions and Controls

The assembler translates 2920 mnemonics (such as ADD or L02 or IN3) into
machine code. At the same time, it produces an object file and a listing file showing
each source line and the generated code, plus any detected errors. Its object output
may be used by the PROM programmers and the 2920 Simulator.

You can control the operations of the assembler with respect to most of its func­
tions. This control may be exercised in the command invoking the assembler, or in
control lines embedded in the source program.

The individual functions of this assembler are:

I. Symbol Table Management: keeping track of all symbols and their values and
automatically assigning RAM locations to variable names as they are
encountered.

2. Location Counter Management: keeping track of locations available for
instructions and assigning locations for each instruction assembled.

3. Instruction Assembly: translating mnemonic opcodes and operands into their
machine language equivalents.

Introduction

1-9

Introduction

1-10

2920 Assembly Language

4. Control and Directive Processing: noting and executing all controls, e.g.
assembly listing and object output control, and directives such as symbol defini­
tion. This includes controls given as part of the invocation command.

5. Assembler Output Generation: creating the assembly listing, object code file,
and error diagnostics.

The complete set of controls is given in Chapter 5. You may specify whether or not
you want an output listing printed, the length and width of listing pages, the desired
title on it, whether you want an object file generated, and whether or not you want
symbol table and/or debugging information (for use by the Simulator) generated
with it.

If you do not specify any options, then certain default assumptions· are used, as
follows:

that you DO want a listing, sent to a file with the same basic name as your
source file (called, say, PROG.SRC) but with "LST" as the qualifying
"extent", e.g. PROG.LST;

that the listing should be divided into numbered pages of 66 lines, each up to
120 characters long;

that you do want an object program created, and sent to a file named like the
source but with a qualifying extent of" .HEX", e.g. PROG.HEX ;

and that the symbol table should be put out to the listing but not to the object
file.

These defaults correspond in order to the following option choices:

LIST
PRINT(filename.LST)
PAGING
PAGELENGTH(66)
PAGEWIDTH(120)
OBJ ECT(filename. HEX)
SYMBOLS
NODE BUG

A Closer Look at the Functional Elements

PROM Section

The PROM Section contains 4608 bits of user programmable and erasable read-only
memory. In normal operation of the 2920, i.e., in RUN mode, it is arranged as 192
words of 24 bits each. Each word corresponds to one 2920 instruction. (During pro­
gramming, each 24-bit word is treated as six 4-bit nibbles; i.e., in PROGRAM mode
the PROM appears as 1152 ~ords of four bits each. Each six nibbles appear on a
separate line of the hexadecimal object-file-listing as shown in Appendix E.)

PROM RUN Mode

During RUN moae the PROM section acts as the system controller. Each 24-bit con­
trol word contains bit patterns that determine the operations to be performed by the
analog and arithmetic sections.

2920 Assembly Language

Ignoring labels and comments, the control word in RUN mode can be viewed as five
fields, of which one controls the analog section and the remaining four control the
arithmetic section. The four arithmetic section control fields include the two 6-bit
fields which identify RAM operands, plus a 4-bit scaler control field and a 3-bit
ALU control field (operation code or opcode).

In RUN mode, PROM word addresses are numbered from ° to 191. In normal
operation all locations are accessed in sequence and no program jumps are allowed.
The PROM returns to location ° upon completion of execution of the command in
word 191, or when an EOP instruction is encountered in the analog control instruc­
tion field. The EOP feature allows the program to be terminated at the end of a
user's program shorter than 192 words. Placement of the EOP is explained below.

The PROM may be thought of as a crystal- or clock-controlled cycle generator as it
determines the sampling frequency of the analog signals. If an input is sampled once
per program pass, the sampling frequency is liNT where N is the number of words
(instructions) in the program and T is the time required to execute one instruction.

The PROM fetch/execute cycle is pipelined four deep, meaning that the next four
instructions are being fetched while the previously fetched instructions are being
executed. Although otherwise invisible to the user, this technique makes it necessary
to require that the EOP instruction be inserted in a word with an address divisible by
four, e.g. 0, 4, ,188. The EOP does not take effect until the three following in­
structions are executed because those three are already fetched.

Arithmetic Unit and Memory

A block diagram of this subsystem is shown in Figure 1-4. This subsystem consists of
three major elements: a RAM storage array, a scaler, and an arithmetic and logic
unit (ALU).

"A" ADR "B" ADR

STORAGE
40 x 25

6

SHF ALU

A

CONSTANTS B

DAR

CY OUT
CND------------~

TEST Bri ------------------'

Figure 1-4. ALU Block Diagram

Data within this structure are processed using 25-bit two's complement arithmetic,
although at certain locations larger or smaller words may be found. (Two's comple­
ment representation of data is explained in Appendix I.) It is most convenient to
consider an imaginary binary point just to the right of the highest order (Le. sign) bit
of each word. Thus the normal range of any variable x is considered to be

-1.0~x<1.0

and the smallest resolvable change, delta, in any variable is given by

delta = 2-24=5.96*10-8

Introduction

1-11

Introduction

1-12

2920 Assembly Language

Each of the elements making up this portion of the 2920 receives command or
address information from the PROM. The storage array receives two 6-bit address
fields, the scaler receives a 4-bit control field, and the ALU receives a 3-bit control
field.

The Storage Array and the Constant Array

The storage array consists of a random access memory, with two ports, organized as
40 words of 25 bits each. Each port is independently controlled from the PROM by a
6-bit control field.

These 6 bits enable operand addresses from 0 up to 63, since 2 to the 6th allows for
64 possible addresses. However, only 40 of these refer to actual RAM locations. The
remaining possibilities are used to refer to an array of constants, and to an
input! output register (the DAR) which serves to link the arithmetic and
analog/digital conversion sections of the 2920.

The two ports are called" A" and "B." The A port is read-only. Data read from it
are passed, through the scaler, to one input of the ALU, as the source operand. The
B port passes data to the second ALU input, and receives the ALU results; as the
destination operand.

The constant array consists of 16 "pseudo-locations" in the RAM address field.
These constants should be accessed only from the A port, i.e., only as a source
operand. A warning is issued if they are referenced as destination operands, and
they remain unaffected. The least significant four bits of the "address" are directly
translated to the high-order four bits vf the data field, with the remaining data bits
equivalent to zeroes. Consequently, each unsealed constant is some number of
eighths, from -8/8, -7/8, ... , up to + 6/8, + 7/8. A much wider range of constants
is actually available, because the selected constant passes through the scaler, and can
thus be modified as explained below. Figure 1-5 shows the "address" mapping for
constants.

~"A" PORT DATA WORD

S I 2
2-' 2-3 I Z' I 2-5 I 2""

t t t
0 0 0

Figure 1-5. Address Mapping for Constants

2920 Assembly Language

Table 1-2. Constant Codes

CONSTANT UNSCAlED CONSTANT UNSCAlED
MNEMONIC VALUE MNEMONIC VALUE

KPO 0 KM1 - .125

KP1 + .125 KM2 - .250

KP2 + .250 KM3 - .375

KP3 + .375 KM4 - .500

KP4 + .500 KM5 - .625

KP5 + .625 KM6 - .750

KP6 + .750 KM7 - .875

KP7 +.875 KM8 -1.0

The DAR can be used as a source or a destination operand. It is a digital to analog
register and an analog to digital register. It is nine bits wide, occupying the nine most
significant bit positions of a word whose other bits are set to ones in order to correct
for A/D conversion offset.

The DAR output is also tied directly to the digital to analog converter (DAC) inputs.
The DAR is used as a successive-approximation register for analog to digital conver­
sion, under control of the analog function instruction fields (CVT iocodes)
explained above and in later chapters. Each bit position of the DAR can also be
tested by the ALU for conditional arithmetic operations using the CND iocodes.

Scaler

The scaler is an arithmetic barrel shifter located between the A port of.the RAM and
the ALU. Values read from the A port can be shifted left or right. The shifts can be a
maximum of two positions to the left and a maximum of thirteen positions right.
Left shifts fill with zeroes at the right; right shifts fill with the sign bit at the left.

Table 1-3. Scaler Codes and Operations

SCALER BIT EQUIVALENT SCALER BIT EQUIVALENT
CODE VALUES MULTIPLIER OPERATION CODE VALUES MULTIPLIER

L02 1110 22= 4.0 "A"x22 R06 0101 2-6= 0.015625

L01 1101 21= 2.0 "A"x21 R07 0110 2-7 = 0.0078125

ROO 1111 2°= 1.0 "A"x20 R08 0111 2-8= 0.00390625

R01 0000 2-1=0.5 "A"x2-1 R09 1000 2-9= 0.001953125

R02 0001 2-2= 0.25 R10 1001 2-1°= 0.0009765625

R03 0010 2-3= 0.125 R11 1010 2-11 = 0.00048828125

R04 0011 2-4= 0.0625 "A"x2-4 R12 1011 2-12=0.000244140625

R05 0100 2-5= 0.03125 R13 1100 2 -13=0.0001220703125

As explained above, these arithmetic shifts are equivalent to multiplication of the A
port value by a power of two, where the number of positions shifted is the power.

The scaler is controlled by a 4-bit wide control field from the PROM, as shown in
Table 1-3. Note that left shifts may produce numbers which are too large to fit
within a 25-bit field. The handling of such large numbers is described in the ALU
section below.

Introduction

1-13

In trod uction

1-14

2920 Assembly Language

TheALU

The Arithmetic Logic Unit calculates a 25-bit result from its A and B operands
(source and destination) based on an operation code from the PROM. The 25-bit
result is written back into the B (destination) memory location at the end of the
instruction cycle.

The ALU uses extended precision to allow calculation of the correct result even
when receiving left-shifted operands from the scaler. If the computed result YY
exceeds the bounds

-1.0~YY<1.0

an overflow condition is indicated. When overflow limiting is enabled, this condi­
tion causes the result to be replaced with the legal value closest to the desired result,
i.e. with -1 if the computed value was negative, and with + 1.0 if the result was
positive.

In binary these extreme values appear as

1000
0111

000 000
111 111

000 000 000 000 000 and
111 111 111 111 111 (=1.0*, or 1-2-24)

respectively. This overflow situation characteristic is useful for realizing certain non­
linear functions such as limiters, and is beneficial to the stability of filters. The OF
pin tells you that an overflow is occurring on the current operation (cycle). This out­
put is active low and open-drain. In the case where overflow is not enabled, each
binary number is extended to 28-bit precision by extending the sign bit to the left.
The calculation is done and the low 25 bits are written back to the destination.

The operations performed by the ALU are summarized in Table 1-4. Although most
of them are self-explanatory, you may find the following details useful at this point.

Absolute value (ABS) and absolute add (ABA) convert the "A" operand (source) to
its absolute value before performing any calculations. Load A (LDA) and ABS are
treated as arithmetic operations by the ALU, meaning that the source is added to
zero and then replaces the "B" operand (destination). This causes the correct han­
dling of those overflows caused by left shift operations.

The operation LIM sets the result to positive or negative full scale, based on the
"A" port sign bit, behaving much like a forced overflow. However, the overflow
flag will not indicate overflow for a LIM unless the given source operand and shift­
code would produce an overflow in an LDA operation.

The constant source codes allow you to select constants for arithmetic operations.
The procedure is described in the section on the storage array of the ALU and
memory. Table 1-2 above lists the mnemonics and corresponding unsealed value of
each constant. Eaeh value is passed through the scaler, and so may be multiplied by
a value 2k, where k runs from + 2 to -13. The scaler codes and equivalent multiplier
values are shown in Table 1-3.

Conditional Arithmetic Operations

In addition to the basic operations described in Table 1-4, some ALU functions may
execute conditionally. Certain codes in the analogi digital control field (iocode)
cause the execution of the arithmetic operation to be conditional on a selected bit,
usually of the DAR. The conditional instructions are tabulated in Table 1-4b.

2920 Assembly Language

As discussed above under IOCODES for ADD and LDA, the conditional field code
selects a bit of the DAR, using its value to determine how the instruction is to be
executed. For conditional subtract, the bit actually used is the carry from the
previous result. In this case the selected bit of the DAR is set equal to the carry from
the current instruction. This is discussed further in Chapter 4 and Appendices I and
J.

Conditional additions are used to multiply one variable by a second, as discussed in
Chapter 4. The multiplier is loaded into the DAR, and the multiplicand is added
conditionally to the partial product.

Conditional subtraction is used to divide one positive variable by another, using a
non-restoring division algorithm. The divisor is conditionally subtracted from the
dividend, and quotient bits are assembled in the DAR.

Conditional operations may also be useful for performing logic, also shown in
Chapter 4. Table 1-5 summarizes the properties of the arithmetic section.

Table 1-4. Memory-ALU Instruction Opcodes

a. Non-Conditional Arithmetic

ALU MNEM OPERATlON* DESCRIPTION/COMMENTS

2 1 0

000 XOR B+(A'2k)-B

o 0 1 AND BA(A' 2k) - B

o 1 0 LIM + 1 ** - B if A ~ 0 Sign of A saturates output

-1 - B if A< 0

o 1 1 ABS 0+ 1 A'2k 1- B Absolute Value

1 0 0 ABA B+ 1 A'2k 1- B Absolute Value and Add

1 0 1 SUB B- A'2k -B

1 1 0 ADD B+ A'2k -B

1 1 1 LDA 0+ A'2k -B

*Note-k is the value selected by the shift code, -13 ~ k ~ + 2
* * Note-the largest positive value (1-2-24) is stored.

b. Conditional Arithmetic Operations

ALU Functions made Conditional by selected codes in the Analog Control Field.

ALU FUNCTION BIT TESTED IF TESTED BIT = 0 IF TESTED BIT = 1

ADD (110) DAR (n) NO-OP(B + 0 - B) ADD (B+A'2k - B)

LDA (111) DAR (n) NO-OP(B + 0 - B) LDA (0+A'2k - B)

SUB (101) PREV cy ADD(B + A· 2k- B) SUB (B-A·2k - B)

cy- DAR(n) cy- DAR(n)

Note-DAR(n) represents a bit of the DAR, as selected by the conditional operand in the
analog control field. For ADD and LDA, the selected bit is tested. For SU B, the selected bit
is altered by being set to the carry output of the highest order position of the ALU; and the
conditional operation is based on a test of the carry resulting from the previous ALU
operation.

In trod uction

1-15

Introduction

1-16

Table 1-5. Memory-ALU Section Summary

ALU result bit width

Number System

Operand A

25 bits

2's complement

Read Only Memory Port A,
Scaled by shifter, 28 bits wide
Read Port 8, Unscaled, 25 bits
expanded to 28 bit equivalent

ALU instruction field width 3 bits

Scaler instruction field width 4 bits

"A" and "8" port address field width 6 bits each

2920 Assembly Language

Ancillary Instructions Conditional arithmetic, oP' codes are part of
analog control field

Available Storage Locations "A" port, AdrO-39, Read Only, 25 bits.
"8" port, AdrO-39, Read-Write 25 bits.

Digital-Analog-Register "A" port, Adr40, Read Only, 9 MS8s, 16 LS8's
are extended sign.
"8" port, same as "A" port but read-write.

Constant Register "A" port only, low 4 bits of adr. field placed in 4
MS8's of 25-bit width. Low 21 LS8's fill as O's.

Scaler Range 22 (left 2) to 2-13 (right, 13).

The Analog Section

Figure 1-6 shows a detailed block diagram of the 2920's analog section, which pro­
vides four analog input channels and eight analog output channels. It includes
circuitry for analog-to-digital conversion by successive approximation, and the
sample- and- holds for both input values and output values.

SIGINO

SIGIN1

SIGIN2

SIGIN3

FROM PROM
110

CAP1 CAP2 AGND

CND TEST BIT

VREF

Figure 1-6. Analog Section Block Diagram

SIGOUTO
SIGOUT1
SIGOUT2
SIGOUT3
SlGOUT4
SIGOUT5
SIGOUT6
SIGOUT7

2920 Assembly Language

All operations of this section are controlled by a five-bit control field, the iocode. It
can be conceptually divided into two subfields: a two-bit function selector and a
three-bit modifier field. Table 1-6 summarizes the analog section operations. Giving
the most-significant-bits first, the function select bits are designated ADFI and
ADFO; the modifier bits are ADK2, ADK1, and ADKO.

The basic analog functions are as follows:

Execution of one or more "IN" instructions provides a sample of one of the
input leads. You may have to execute several such instructions in sequence due
to the time constants of the sample capacitor charging circuit.

The sample is converted to its digital equivalent by a series of "CVT" instruc­
tions in descending order. The digital equivalent is produced in the DAR,
which may then be read by the arithmetic section.

Calculation results in the DAR may be delivered to an output pin via an
"OUT" instruction.

Input and output sample rates are determined by the frequency of execution of
input! conversion sequences and output instructions, respectively.

The input channel multiplexer consists of four analog switches which directly con­
nect a common external sampling capacitor to the input terminals. The size of this
capacitor affects both the time constant of the sampling circuit and also the offset
voltage, due to the charge coupled through the sampling switches. The value of sam­
ple capacitor is usually that value which will result in an offset voltage in the order of
1/2 least significant bit.

Note that the sample capacitor is shared among all inputs. Its selection must be
based on the most stringent combination of input parameters.

The analog to digital conversion system uses successive approximation via a binary
search routine under program control. Using the CVTS and CVT(K) iocodes in
descending sequence puts a 9-bit digital representation of an input sample into the
DAR.

The DAR is a two's-complement binary register, nine bits long. When DAR values
are delivered to the DAC, they are converted to sign magnitude format via a one's
complement operation (see Appendix I). This leads to a potential 1 least significant
bit offset during AID conversion, and a half least significant bit offset during DI A
conversion. To compensate for the AID offset, values read from the DAR have all
bits (save the high-order nine) set to ones.

Each CVT cycle sets the selected bit of the DAR to a value derived from the com­
parator, and also sets the next lower bit to a logic 1. Each cycle must allow the DAC
to settle, so at least one Nap iocode is needed between each pair of successive CYT
instructions.

Some applications, such as sampling of logic inputs, may not require a full conver­
sion sequence. You may use a partial conversion sequence, with the understanding
that the partially converted value undergoes the transformation meant to correct a
full9-bit conversion.

Each of the 2920's eight analog output channels includes an individual sample-and­
hold circuit demultiplexed from a common, buffered DAC output.

Introduction

1-17

Introduction

1-18

1920 Assembly Language

There are several factors which affect the nature of the output waveform. Writing to
the DAR, i.e. using the DAR as the destination, automatically activates anti­
crosstalk circuitry in the buffer amplifier. An "OUT" operation should not appear
in an instruction which writes to the DAR. For the most error-free output, the first
"OUT" instruction should appear only after the time needed for the amplifier to
settle; that is, it should be delayed by several instructions after the one which writes
into the DAR. Acquisition time of the output sample-and-hold is typically longer
than the instruction cycle, so that a sequence of several "OUT" instructions will
usually be necessary.

Table 1-6. Analog Instruction Opcodes

a. Basic Codes

CODE MNEM FUNCTION

ADF

1 0

o 0 IN (k), ADK= 0-3 Acquire input k

o 0 NOP , ADK=4 No operation

o 0 EOP ,ADK= 5 Return PROM to Location 0

o 0 CVTS ,ADK=6 Convert Sign Position (MSB)

o 0 CNDS ,ADK=7 Conditional Arith. of Sign Bit (MSB)

1 0 CVT (k), ADK=0-7 A to 0 convert bit k*

o 1 OUT (k), ADK=O-7 Output Channel k

1 1 CND (k), ADK= 0-7 Condo Artih., Test DAR bit k*

b. Code Assignment and Mnemonics

ADK ADF 1,0=

2 1 0 00 01 10 11

000 INO OUTO CVTO CNDO

o 0 1 IN1 OUT1 CVT1 CND1

o 1 0 IN2 OUT2 CVT2 CND2

011 IN3 OUT3 CVT3 CND3

1 0 0 NOP OUT4 CVT4 CND4

1 o 1 EOP OUT5 CVT5 CND5

1 1 0 CVTS OUT6 CVT6 CND6

1 1 1 CNDS OUT7 CVT7 CND7

*Note-The DAR bits are designated S, 7, 6, 0, where S is the sign bit, 7 the next most
significant bit, etc. Conversion of bit k consists of setting bit k to a value determined by the
comparator, a'nd bit k-1 equal to a logic 1.

Chapter 2
2920 ASSEMBLY LANGUAGE ELEMENTS

Introduction

You write 2920 programs in a symbolic language, using selected mnemonics to
represent the desired contents of the various control fields. Table 1-1 showed the
various mnemonic representations for commands, which will be further explained in
this chapter.

In addition to command mnemonics, you may assign symbolic names to locations in
the RAM, so long as the reserved words are not used. Table 2-1 and Appendix B list
the words reserved by the 2920 Assembler.

Symbolic names for RAM variables must start with a question mark (?), an at-sign
(@), an underline (-), or an alphabetic character (A-Z). Characters after the first
may be these or numerals. Names may have up to 31 alphanumeric characters. No
spaces, punctuation, or any other characters may be used within a name. After 31
contiguous legal characters in a name, additional characters are flagged as errors.

Except for comments and Assembler controls, explained below, each statement cor­
responds to one 2920 PROM word. Statements may be labeled, but the 2920 allows
no jumps except the EOP. Thus you normally label statements solely as a prospec­
tive aid during the simulation, debugging, testing, and optimization phases of pro­
gram development.

Chapter 1 provided examples of typical contents for each field that may appear in a
2920 statement:

• an optional label,

• an ALU operation,

• the destination address,

• the source address,

• an optional scaler control code (shiftcode),

• an optional analog control command (iocode),

in that order, left to right. The current chapter will provide the detailed rules for
constructing legal names and statements.

All PROM word statements and commands end in a carriage-return (CR) and
line feed (LF) pair, which delineates statements. The ISIS-II Editor automatically ap­
pends the LF when you hit CR. Comments, which must begin with a semicolon, may
be coded prior to this CR. They are useful in explaining the intended results of each
part of a program, and may appear alone on a line.

Here is an example of an instruction using all seven fields:

Label Opcode Dst,Src,Shift,Iocode Comment

LOAD: LDA YYY,XXX,R02,NOP; Move XXX/4 to YYY. (CR)

This statement means fetch the contents of the RAM location symbolically named
XXX, shift the value right two bit positions, and store the result in the RAM loca­
tion symbolically named YYY. NOP iocode means no 110 operation is done.

If XXX and YYY have not appeared earlier, then the Assembler reserves a RAM
location for each, and the names "XXX" and "YYY" are entered into the symbol
table with the value of their respective addresses.

2-1

2920 Assembly Language Elements 2920 Assembly Language

2-2

Characters

The alphabet and numerals are legal in assembly language source statements.

AaBbCcDdEeFfGgHhIiJjKkLIMmNnOoPpQqRrSsTtUuVvWwXx
YyZzOl23456789

Although the Assembler converts lower-case to upper case for internal processing,
the listing of your input shows the character as you typed it originally. Thus to the
Assembler Xyy is identical to XYY.

In addition, the following special characters are recognized as legal in certain
contexts:

CHARACTER

@

?

space

CR

LF

HT

$

COMMON NAME USAGE

comma. separates operands, shiftcode, and iocode

colon. must immediately follow last character of label

commercial at-sign. valid character of name

question mark. valid character of name

blank. separates label, opcode, and first operand
field

underscore. valid character of name

semicolon. must be first character of comment

carriage return. statement terminator

line feed. must appear only following a CR -otherwise
an error

horizontal tab. separator, same as space

dollar sign. for control options (e.g., LIST, TITLE, or
EJECT) when appearing within the source
lines of a program file, $ must be first
character on the line

in user-symbols, a non-first character used
to space words in a long name, the $ ignored
by the assembler, for example,
LASTDARSAVED

All null and RUBOUT characters are ignored upon input. All other characters, or
characters in an inappropriate place, are flagged as errors. However, in a comment
field, any ASCII character may be used.

Delimiters

Certain characters are used to define the end of a statement or a field or a compo­
nent of a field. These can be called "separating characters," "terminators," or
"delimiters". The six characters-space, comma, CR, HT, semicolon, and
colon-do this, as described above.

2920 Assembly Language 2920 Assembly Language Elements

Symbols

There are two kinds of symbols: reserved symbols and user symbols.

Reserved symbols, as mentioned in Chapter 1, cover the predefined opcodes, direc­
tives, registers, special field bit patterns, and special data memory locations. You
may not redefine any of these. They are repeated here from Chapter 1, and appear in
Appendix B for easy reference.

Table 2-1. Reserved Symbols

Section 1: Arithmetic Operation Codes

ABA ABS ADD AND LDA LIM SUB XOR

Section 2: Analog Control Codes

CNDS CVTS EOP INO NOP OUTO
CND7 CVT7 IN1 OUT1
CND6 CVT6 IN2 OUT2
CNDS CVTS IN3 OUT3
CND4 CVT4 OUT4
CND3 CVT3 OUTS
CND2 CVT2 OUT6
CND1 CVT1 OUT7
CNDO CVTO

Section 3: Constant Source Codes and the DAR

KM1 KM2 KM3 KM4 KMS KM6 KM7 KM8
KPO KP1 KP2 KP3 KP4 KPS KP6 KP7
DAR

Section 4: Scaler Control Codes

ROO R01 R02 R03 R04 ROS R06 R07 R08 R09 R10 R11 R12 R13
RO R1 R2 R3 R4 RS R6 R7 R8 R9

L01 L02
L1 L2

Section 5: Assembler Commands and Modifiers

DEBUG END OBJECT() PAGING
NODE BUG EQU NOOBJECT NOPAGING

PAGELENGTH() PAGEWIDTH() PRINT
NOPRINT

EJECT LIST TITLE(' ... ')
NOLIST

SYMBOLS
NOSYMBOLS

PRINT()

2-3

2920 Assembly Language Elements 2920 Assembly Language

2-4

User-created symbols refer to instruction locations or data locations by name. You
must refer to RAM variables symbolically. You may not specify absolute locations.
Instead, locations are automatically allocated. whenever variable names are first
encountered. No declaration of variables is needed or allowed. These symbols are
defined by the Assembler, i.e. given an address, the first time they appear, as
discussed in the following three cases:

1. in the label field of a statement (see below)

2. in the right-hand side of an EQU statement (see Chapter 3) or as a source or
destination

3. in the left-hand side of an EQU statement.

• In case (1) the value of the symbol is the address of the instruction, which is the
value of the location counter when the instruction is assembled. These symbols
can only be accessed with the 2920 Simulator.

• In case (2), if the symbol is not already defined, the Assembler automatically
allocates a RAM location and enters that address as the value of the symbol in
the symbol table. One previously unused location is reserved for each symbol so
defined.

The assembler keeps a RAM location counter incremented each time a symbol is
created in this manner. This counter starts with ° and is allowed to increment
indefinitely. A warning is issued, however, each time a user-symbol with
address- value greater than 39 is used, although the assignment is made and code
is generated anyway. Note that assignment of user symbols continues in se­
quence to 63, and then wraps around to 0, I ,2, etc. Warnings will continue to be
issued.

• In case (3), the symbol is given the value of an already created symbol, namely
the one on the right of the EQU. If the symbol on the right-hand side had not
yet been defined, it is defined first per case (2). This usage establishes an
equivalence of variables and can be used to conserve RAM space by reusing
"scratch" variables.

Reserved symbols cannot be used as user-created symbols. Attempts to do so will
cause a "multiply-defined symbol" error message. Attempts to recreate a user­
created symbol will also cause this error message, i.e. using the same symbol more
than once on the left side of an EQU.

Statements

A statement is composed of one or more fields, identified by their order of
appearance and by specific terminating characters. However, certain fields may not
appear alone, i.e. a shiftcode, a source, or a destination. The statement is free-form,
allowing any number of blanks and/or horizontal tabs to separate fields. A comma
must be used to separate the operands. No continuation lines are allowed: the entire
statement must appear before the CR.

Certain default constructions are supplied when specific fields are omitted or appear
alone:

1. If the shift code is omitted, then the Assembler inserts a shift code "ROO," i.e.
no shift.

2. If the iocode is omitted, then the Assembler inserts a NOP, i.e. no iocode
operation.

3. If only the iocode appears, then the Assembler inserts LDA O,O,ROO; in effect,
no ALU operation (0 means loco 0). (This also clears the carry flag.)

2920 Assembly Language 2920 Assembly Language Elements

Thus you need not explicitly code a no-shift and no-I/O-operation. Similarly, if you
need ONLY the iocode, you need not explicitly code a no-arithmetic-operation.

If an instruction is incorrectly formed for any reason, then no code is produced and
no location is reserved. An appropriate error message is placed in the list file.

Label Field

A label names a ROM location intended to contain an instruction. It is a user­
created symbol, and must be unique within the first 31 characters. (Characters after
31 are flagged as errors.) It is assigned the value of the ROM location counter, and
this address is entered into the symbol table as the value of the symbol. There is no
way to use these labels within the assembler, but they can be useful in testing and
debugging via the 2920 Simulator. A label may not have the same name as a
variable.

A label is optional. If used, it must be immediately followed by a colon and at least
one blank or HT. Once used, it can not be used again as a label or a variable in the
same program without causing an error.

Opcode Field

This field must contain the mnemonic ALU operation code for a machine instruc­
tion. It specifies the 2920 instruction to be generated by the Assembler and the ALU
action to be performed on the operands which appear in the operand field. A blank
or HT must be used to separate the opcode from the operands or a label.

Operand Fields

The dentination and source operands appear in these fields, in that order, separated
by a cc"ma. They must be symbolic names. They are followed by the (optional)
shiftcode and the io..:ode, also separated by commas when present.

The destination operand is intended to be written to, and should therefore corre­
spond to the DAR or to a RAM address not greater than 40. The source operand
may refer to any of the 64 RAM locations, including the DAR or the constant
registers. An error message is issued if you use a source address above 63.

Comment Field

This optional field may contain text descriptive of the statement or the program.
Comments are ignored by the Assembler but echoed to the assembly listing as part
of the source statement.

The comment field must begin with a semicolon, and is terminated by a carriage
return. Any ASCII character may appear in the comment field except a CR or LF.
The comment may appear alone on a source line.

2-5

CHAPTER 3
INSTRUCTION SET

How to Use This Chapter

This chapter is a dictionary of 2920 instructions. The instruction descriptions,
including opcodes and iocodes, are listed alphabetically for quick reference.
However, the Assembler controls are not listed here, but appear instead in Chapter 5.

This reference format necessarily requires repetitive information. If you are reading
this manual for the first time, you might skim this chapter or skip it at first, reading
instead Chapters 1 and 4. They will familiarize you with the general setup of the
language and the simpler applications of general interest. When you begin to have
questions about particular instructions, look them up in this chapter.

Timing Information

The instruction descriptions in this manual do not explicitly state execution timings.
The clock frequency used iIi your system will determine the operating speed of your
processor. The maximum sample rate for a full length program is found by dividing
the maximum clock rate by 768, which represents 192 instructions at four clock
cycles per instructions.

To realize higher sample rates, either shorter programs must be used, or multiple
copies of the appropriate program segments must be contained in the PROM.

The external clock or crystal frequency and the length of the program establishes the
system sample rate as explained in Chapter 1.

ABA Absolute Value and Add

The absolute value of the source, after any shifting, is added to the destination. The
CND iocode affects overflow limiting logic if used with this instruction.

Examples:

GAINER: ABA DEST _ 4,SOU RCE_1

This will take the absolute value of the contents of SOURCE_1 and add that to the
value in DEST_4, placing the result in DEST_4.

DOUBLER: ABA DEST _3,SOURCE_1 ,L01

This will double the value from SOURCE_1 by a left shift one position, then take
the absolute value of that result and add it into DEST _3.

ABA DEST_55,SOURCE_1,L02,CNDS

After shifting the value from SOURCE_1 left two positions, effectively multiplying
it by four, this command will add the absolute value of that result into DEST _55.

When a CND iocode is used on this instruction, the limiting effect of overflow detec­
tion is turned off. It will be turned on again when an XOR instruction with any CND
iocode is encountered, or when an EOP is encountered.

The normal standard carry and overflow apply to ABA, as explained in Appendix J.

3-1

Instruction Set 2920 Assembly Language

3-2

ABS Absolute Value

This instruction takes the absolute value of the source operand, after any shifting,
and stores it in the destination. If the source was positive, the destination becomes
identical to the source. If it was negative, the destination is the "negative" of
the source, that is, of same magnitude and opposite sign. The Assembler issues a
warning if this instruction is used with a "CND" iocode but there is no effect on
execution. .

Examples:

AMPLITUDE: ABS DEST_7,SOURCE_1

This instruction places the absolute value of SOURCE_I into DEST _7; If
SOURCE_I were 0.0000 0001, DEST_7 would become 0.0000 0001. If
SOURCE_I were LillI 1111, DEST_7 would become 0.0000 0001.

HALFAMP: ABS DEST _7 ,SOU RCE_1, R01

This command shifts the value from SOURCE_l to the right 1 position, effectively
halving that value, and then places the absolute value of this result into DEST _7.

NONO: ABS

A warning will be issued due to the use of the CND iocode on this command, but the
execution is unaffected.

ABS never has a carry; it clears the carry flag to zero. A left-shift could cause
overflow.

ADD Addition

After any shifting of the source operand, this instruction forms the sum of the
source and the destination operands. The result is stored in the destination. The
instruction will have no effect on the destination if the iocode CND(K) is specified
and the corresponding bit of the DAR, i.e. DAR(k), is zero.

Examples:

ADD DEST_5,SOURCE_1

The sum of the contents of SOURCE_I and DEST_5 will be placed in DEST_5.

ADD

The shiftcode ROI will shift the value from SOURCE_I right one position, effec­
tively halving it. This result will be added into the current contents of DEST _5.

SUMMA: ADD DEST_ZETA,SOURCE_XI,L02,CND4

The value from SOURCE_XI will be shifted left 2 positions, effectively multiplying
it by four. This result will be added to the value currently in DEST _ZET A, with the
final sum stored in DEST _ZETA. These operations will be performed only if bit
four of the DAR is I. If that bit is zero, no operation will take place.

The normal standard carry and overflow apply, as explained in Appendix J.

2920 Assembly Language Instruction Set

AN 0 Logical Conjunction

After any shifting of the source operand, this instruction performs the logical AND
of that shifted value with the value from the destination, and stores the result in the
destination. The Assembler issues a warning if this instruction is used with a CND
iocode, but there is no effect on execution.

Examples:

ANDER: AND DEST_1,SOURCE_2

The value from SOURCE_2 will be ANDed against the value from DEST _1, with
the result of this logical operation placed into DEST_l.

After shifting the value from SOURCE_2 to the right three positions, this instruc­
tion will AND the result against the value from DEST _1, storing the result of this
logical operation back into DEST _1. The effect depends on the sign bit of
SOURCE_2, since right shifting fills from the left with whatever the sign bit was, 1
if negative, 0 if positive.

ENDER: AND DEST _1 ,SOURCE_2,L2,CND7

A warning will be issued due to the use of a CND iocode on this instruction. The
value from SOURCE_2 would be shifted left two positions, filling the two vacated
bit positions with zeroes, and then that result would be ANDed against the value
from DEST _1. The AND result is stored back into DEST _1.

The normal standard carry and overflow apply, as explained in Appendix J.

CN OS,CN 07, CN 06., CN 05, CN 04, CN 03, CN 02, CN 01, CN DO
locodes for Conditional Operations

Each of these iocodes refers to a single bit, either a bit of the DAR or the carry bit.
CNDS means conditional on the sign bit; the others refer to specific bit positions in
the DAR. CNDO refers to the least significant bit.

If the tested bit is aI, the operation is performed as written. If the tested bit is a 0,
the operation is either not performed at all or is altered. Only three ALU ope odes
are affected: ADD, LDA, and SUB.

Add Conditional

ADD DEST_ONE,SOURCE_ONE,CNDS

If the sign bit of the DAR is 1, this instruction will add the contents of SOURCE_
ONE to the contents of DEST_ONE and store the result in DEST_ONE.

If the sign bit of the DAR is 0, then the sum of DEST_ONE with zero is placed into
DEST _ONE, i.e. no change except that the carry flag is cleared.

3-3

Instruction Set 2920 Assembly Language

3-4

Load Conditional

LOA OEST _ONE,SOURCE_ONE,R2,CN05

If bit five of the DAR is 1, this instruction will get the value of SOURCE_ONE,
shift it right two positions to create 1/4 the value, and put it into DEST_ONE,
writing over whatever value was formerly there.

If bit five is 0, the effect is the same as with the conditional add.

Subtract Conditional

SUB OEST_ONE,SOURCE_ONE,CNOO

Conditional subtract is a special operation, requiring information about the
previous carry situation.

If the carry resulting from the previous ALU operation is a 1, then the subtraction
indicated is performed, i.e., the value from SOURCE_ONE is subtracted from the value
in OEST _ONE, and the result is written into OEST _ONE.

If the carry resulting from the prior ALU operation is 0, then the operands are added
instead of being subtracted, i.e., the value from SOURCE_ONE is added to the value
from OEST_ONE, and the sum is written into OEST_ONE.

The above instruction will set the first ait of the DAR, DAR(O), to the carry output
of the highest order position of the ALU. Then, dependIng on the carry result­
ing from the previous ALU operation, it will perform either an addition or a
subtraction.

A detailed discussion of subtraction appears in Chapters 2 and 4.

IN ALL INSTRUCTIONS, THE ABSENCE OF A SHIFTCODE CAUSES THE
USE OF THE DEFAULT ROO; i.e., no shift. If a shiftcode is coded, it is performed
prior to the indicated operation. This means the source operand is shifted before it is
added to or loaded into or subtracted from the destination operand.

The normal standard carry and overflow apply, as explained in Appendix J. LDA,
however, never has a carry.

CVTS A CVT7, CVT6, CVT5, CVT 4, CVT3, CVT2, CVT1 ,CVTO
AID ~onversion locodes

In order to convert to a digital value from an input sample value in the sample-and­
hold for input, each of these iocodes will set the named bit of the DAR (e.g. bit 7 for
CVT7) to 1 or 0 based on that input value. Each CVT also sets the next lower bit
(e.g., bit 6 for CVT7) to 1 as part of the conversion process. The process uses the
comparator and the reference voltage (VREF) to decide the sign and the fraction of
VREF which represents the input sample. As mentioned briefly in Chapter 1, it is
necessary to allow the DAC to settle between each cycle of conversion. This is
achieved by inserting NOP iocodes after all but the last CVT, or placing CVT
iocodes only on every other ALU instruction.

2920 Assembly Language Instruction Set

CVTS or, say, ADD DET,SIC,CVTS
NOP ADD DET,NXT,NOP
CVT7 SUB DET,LST,R01,CVT7
NOP ADD DET,SIC,R04,NOP
CVT6 ADD DET,NXT,R07,CVT6
NOP ADD DET, NXT, R09, NOP
CVT5 LOA SIC,NXT,CVT5
NOP LOA NXT,LST,NOP
CVT4 ADD LST,LST,L02,CVT4
NOP SUB LST,LST,R05,NOP
CVT3 SUB LST,LST,R07,CVT3
NOP SUB LST,LST,L01,NOP
CVT2 ADD NXT,LST,CVT2
NOP SUB SIC,NXT,NOP
CVT1 LOA LST,SIC,CVT1
NOP ADD LST,LST,L01,NOP
CVTO SUB LST,NXT,CVTO
LOA SIC,DAR LOA SIC,DAR

Either column causes the conversion of an input sample into a digital value in the
DAR. If the left column is coded, the Assembler supplies the default arithmetic-no­
operation coding of

LOA O,O,ROO

The right column takes advantage of the parallel processing capability of the 2920 to
compute some arithmetic function of the values in locations named DET ,LST ,NXT,
and SIC while the conversion process is going on. It then stores the converted value
from the DAR into SIC for further processing. The DAR could then be used to out­
put the computed value in LST or NXT.

END Terminating Assembly
This command is properly termed a directive to the Assembler rather than an
instruction, since it does not cause code to be generated. When the Assembler sees
the first END in a source program/file, it terminates its scan of the source program
and proceeds to finish all Assembler functions and outputs. There should be only
one END per program and it should be the last source line of the program. It must
have no name, label, operands, or comment.

END

EOP End of Program (Iocode)
EOP signals the end-of-program condition, causing a transfer back to the instruc­
tion in location zero. This iocode must be on/in a location whose address is a multi­
ple of four, or a warning is issued. 1 The 2920 instruction words are pipelined in
groups of four. If any of the three locations following the EOP do not contain
assembled code, they are padded with NOP instructions, and a warning is issued.

The EOP does not terminate assembly. Only the END or an end-of-file condition
does this. The Assembler will continue to process statements after the EOP, but only
the next three will be executed by the 2920.

EOP ; begin fetching locations 0-3 while executing this and the next three
instructions.

or

LOA SRC,DAR,R01,EOP

Overflow limiting is turned on by the execution of an EOP and thus is enabled dur­
ing the last four instructions of the program.

I If a program with a misplaced EOP is executed, the results are unpredictable.

3-5

Instruction Set 2920 Assembly Language

3-6

EQU Equate-Creating a Synonym for a Single
Location (Address)

This command is properly termed a directive to the Assembler rather than an
instruction, since it does not cause code to be generated.

The general form of the EQU statement is

EOU

The symbol "name_I" is created and assigned the symbol table value (address) of
"name_2." It may appear on the left-hand side of an EQU only once.

If "name_2" has not been defined prior to this command, i.e. this is its first ap­
pearance also, then "name_2" is defined first. After "name_2" has a value, the
EQU creates "name_I" as a synonym for that value in the symbol table.

If "name_I" had been defined earlier, an error message would be issued for
attempting to use that symbol for more than one location.

EQU can be used to economize RAM space usage: "scratch" variables can be reus­
ed, although care must be taken to ensure that such variables are not changed to
serve one purpose while they are relied upon for another purpose.

INO, IN1, IN2, IN3 Input locodes

You use these iocodes to obtain an input sample from one of the four input chan­
nels. It is generally necessary to use a sequence of several INs in order to obtain a
reliable sample. The number of INs is a function of the capacitor.

As explained in Chapter 1, the sample capacitor is shared among all inputs and is
chosen as a compromise between rapid sampling and offset voltage. Suppose the
capacitor selected has been determined to adequate accuracy. The assembly
language instructions might appear as either of the examples below:

IN3
IN3
IN3
IN3

or, say, LDA NXT,LST,R01,IN3
ADD NXT,DET,IN3
ADD NXT,SIC,R02,IN3
SUB Nxr,LST,R03,IN3

As withall the iocodes, INs may appear alone or appended to instructions.

LOA Load Source to Destination

This instruction writes into the specified destination the value of the source operand
after any shifting. If a CND iocode was specified on the LDA instruction, then the
LDA will be executed only if the DAR bit specified by the CND iocode is 1. If the
specified DAR bit is 0, the LDA executes as an ADD of the source operand with
zero, effectively a NOP (no-operation) except that carry is cleared.

LDA DEST_TWO,SOURCE_TWO,R01

This instruction writes into DEST_TWO half the value from SOURCE_TWO
because that value is right-shifted one bit position before the LDA gets it.

2920 Assembly Language Instruction Set

LOA OEST _ TWO,SOURCE_ TWO,R3,CN04

This instruction will operate as a NOP if bit four of the DAR is O. If that bit is a one,
then DEST_TWO will be filled with one eighth the value from SOURCE_TWO,
due to the right shift three positions specified by the shiftcode R03.

LDA always clears the carry. A left-shift could cause overflow.

LIM Load Destination with Source Limit

This instruction loads one of two extreme values into the destination, based on the
sign of the source operand. If the source is positive or zero, the destination gets a
plus 1 (0.111111111111111111111111). If the source is negative, the destination gets
a minus 1 (1.000000000000000000000000).

The Assembler issues a warning if this instruction is used with a shiftcode or with a
CND iocode, but there is no effect on execution.

LIM OEST_ONE,SOURCE_ONE

The contents of DEST _ONE will be -1.0 or + 1.0 depending on whether
SOURCE_ONE is negative or not, respectively (zero being non-negative).

A warning will be issued due to the use of the iocode CNDS. Other iocodes would be
allowed. The LIM is unaffected by the CNDS.

LIM OEST _ONE,SOURCE_ONE,R12,IN2

A warning will be issued because a shiftcode has no effect on a LIM. Input-line-2
will be sampled. DEST _ONE will be written with -1.0 if SOURCE_ONE is
negative, + 1.0 if zero or positive.

The normal standard carry and overflow apply, as explained in Appendix J. LIM
sets the carry to 0, and can have an overflow only via a left shift.

NOP No-Operation, Instruction or locode

As an instruction, NOP means

LOA O,O,ROO,NOP; no effect but to clear the carry

As an iocode, NOP means no-operation for the analog section of the 2920 chip.

OUTO, OUT1, OUT2, OUT3, OUT4, OUTS, OUT6, OUT7
Output locodes
These iocodes cause the value in the DAR to be converted to analog and output to
the specified channel.

As explained briefly in Chapter 1, the acquisition time of the output sample-and­
hold is important in determining how many successive OUT iocodes should be used.
The technique is to divide the acquisition time by the time it takes to execute each in­
struction, i.e., by one-fourth the external clock rate.

An OUT iocode should be delayed after the DAR is written, because the amplifier
activated by a write to the DAR takes some time to settle. This usually represents

3-7

Instruction Set 2920 Assembly Language

3-8

several successive instructions. Writing to the DAR (using DAR as the destination)
automatically activates anti-crosstalk circuitry in the buffer amplifier, and then
activates the amplifier. An OUT iocode should not be coded onto such a write, but
delayed until the amplifier settles.

LDA DAR,DEST _TWO
SUB DEST_TWO,NXT,R01,NOP
SUB DEST _ TWO,NXT,R04,NOP
ADD DEST_TWO,SIC,R01,NOP
SUB DEST_TWO,SIC,R04,NOP
NOP
LDA LST,DEST ~ TWO,OUT1
OUT1
OUT1

Here the first instruction shown writes the value from DEST _TWO into the DAR.
The next five iocodes are NOP. In the last two source lines, coding only an iocode
causes the Assembler to supply a NOP for the ALU, namely LDA O,O,ROO. This is
also true of the 6th line.

SU B Subtraction
This instruction subtracts the value in the source operand (after any shifting), from
the value in the destination operand. Subtraction is done by adding the one's com­
plement of the source and forcing a carry input at the lowest-order bit. See Appen­
dix I.

If a conditional iocode is specified, then the previous carry is tested. If that carry
was a I, the SUB instruction operates as a subtraction. If it was a 0, the instruction
operates as an addition. Tr..e carry produced by the SUB operation is stored in the
DAR bit specified by the conditional iocode.

SUB DEST_TWO,SOURCE_ONE

Here the value from SOURCE_ONE is subtracted from the value in DEST _TWO,
writing the result into DEST_TWO. No test of a prior carry was done.

SUB DEST_TWO,SOURCE_ONE,CNDS

Here the DAR sign bit will get the carry from this operation. The prior carry will
determine whether this instruction is executed as a subtraction or an addition.

The normal standard carry and overflow apply, as explained in Appendix J.

XOR Exclusive OR Instruction
This instruction forms the exclusive OR of the source (after any shifting) with the
destination, and stores the result in the destination. A CND iocode will affect
overflow limiting logic if used with this instruction. Exclusive OR gives a I in each
bit position where only one of the two values has a I, and gives a ° in those bit posi­
tions where both have ones or both have zeroes.

XOR DEST_ONE,SOURCE_ONE

This will form the exclusive OR of the values in these two operands, and the result
will be written into DEST _ONE.

XOR DEST _ON E,SOU RCE~ON E,CN DS ; overflow affected

The exclusive OR will be formed as before, but the overflow limiting on overflow
detection will be turned on.

XOR is implemented as an ADD with no carries. See Appendix J for further discus­
sion of carry and overflow for XOR.

PROGRAMMING
CHAPTER 4

TECHNIQUES-SOME
SOLVED PROBLEMS

Elementary Arithmetic

Overflow Considerations and Scaling

Whenever doing arithmetic with the 2920, you should consider the impact of scaling
the variables. If variables are improperly scaled, either quantization noise will be
added to the signal or overflow saturation can result. These effects are similar to
those encountered in analog systems, where use of poorly chosen signal levels can
lead to poor signal-to-noise ratios or amplifier overload distortions.

During certain 2920 operations, such as multiplying by a constant, intermediate
values may be larger than the final result. If these intermediate values are large
enough to produce overflow saturation, undesirable non-linearities may result.

As a rule, you should estimate signal levels throughout your system, and scale so as
to maintain the largest levels without exciting overflow. Some calculation sequences
are less prone to overflows than others.

Two Methods

One way to achieve this is to order all instructions so that only the last step involves
values large enough to produce overflow. In some cases, there may be more than one
large term being summed, so that this method is not always possible. A second
method consists of computing a submultiple of the desired value, which is then
increased at the end of the sequence, possibly by loading or adding a shifted version
to itself. The most likely submultiples are 1/2, 1/3, 1/4, or 1/5, because the
multiplications necessary to restore the proper value are easily done in one
microins truction.

Addition and Subtraction

The basic arithmetic instructions of the 2920 allow you to add, subtract, or replace
one variable with another in a single instruction. For example,

ADD YYY,XXX

adds the value stored in the RAM location labeled XXX to the value in the RAM
location labeled YYY, storing the result in YYY. No scaler code is specified, thus
invoking the default of ROO, a right-shift of zero.

Similarly, the value to be added or subtracted can be scaled by a power of two in a
single instruction, e.g.,

SUB YYY,XXX,R02

causes one fourth of the value in XXX to be subtracted from the variable YYY. The
equivalent FORTRAN language statements for the two operations above would be

YYY = YYY + xxx
YYY = YYY - (0.25 * XXX)

4-1

Programming Techniques-Some Solved Problems 2920 Assembly Language

4-2

respectively. In general, the 2920 instruction set makes it easy to implement the
equivalent of the FORTRAN statement

YYY = YYY + (C * XXX)

where C is an arbitrary constant. The next section describes some general rules for
achieving this result.

Multiplication and Division

Multiplication by a Constant

The number of 2920 steps required to perform the above operation depends on the
value of C. Any value C can be expressed as an expression consisting of sums and
differences of powers of 2, using positive and negative powers. Once a constant is
expressed this way, the equivalent to YYY = YYY + C * XXX can be easily
converted to 2920 code.

Consider a value of C = 1.875. This value could be expressed in several different
ways, e.g.,

1.875 = 1.0 + 0.5 + 0.25 + 0.125 = 20 + 2-1 + 2-2 + 2-3

1.875 = 2.0 - 0.125 = 21 - 2-3

The first expression could be easily derived from the binary representation of 1.875,
i.e., 1.111. However, the second expression uses fewer terms, which will result in the
use of fewer 2920 PROM words.

Using the second form, a FORTRAN-like expression for YYY becomes

YYY = YYY + 2hXXX - 2-3*XXX

which could be written as two sequential FORTRAN-like Stdtements,

YYY = YYY + 21 * XXX
YYY = YYY - 2-3 * XXX

These statements are directly convertible to 2920 code:

ADD YYY ,XXX, L01
SUB YYY,XXX,R03

The sequence of operations can sometimes be found by inspecting a binary represen­
tation of the constant C. For example, consider

C=1.88184(=1.111 0000111 in binary)

C might be represented by

which would take seven steps, or more simply

which takes only four steps in 2920 coding, as follows:

ADD YYY,XXX,L01
SUB YYY,XXX,R03
ADD YYY,XXX,R07
SUB YYY,XXX,R10

2920 Assembly Language Programming Techniques-Some Solved Problems

An Algorithm for Multiplication by a Constant

Multiplication by a constant usually requires fewer 2920 instructions than
multiplication by a variable, which will be covered in a later section. A technique is
shown below for deriving the expression that represents the constant you want.

1. Let C be the value desired for the constant, and let V represent the result of estimating C
with a series of sums and differences of powers of 2. Initially V=O.

2. Define an error ERR=C-V, representing the difference between the desired value and
the current estimate.

3. Choose T, a power of 2, which is closest to ERR and minimizes the absolute difference,
i.e., with least IT-ERRI. .

4. Let V=V + T, and compute a new ERR as in step 2. If it is small enough, you're done, and
C is now expressed as powers of two, in V. If not, repeat steps 3 and 4 until it is.

For example, suppose you need a C=-0.65, within a tolerance of ± 0.01. The steps
of the algorithm are as follows:

Initially VO=O and ERRO=-0.65

Step 1: T1 = -2-1 or -0.5; V1 = -0.5 and ERR1 = -0.150

Step 2: T2 = -2-3 or -0.125 (the closest power of 2 to - .15);

so V2 = -0.625 and ERR2 = -0.025 (i.e.,O-O.65-(-O.625))

Step 3: T3 = -2-5 or -0.03125; V3 = -0.65625; ERR3 = +0.00625

At Step 3, the error value has fallen within the specified bounds. V may be expressed
as V = -2-1 - 2-3 - 2-5• Therefore YYY=YYY -C*XXX may be approximated by
the following 2920 code:

SUB YYY,XXX,R01

SUB YYY,XXX,R03

SUB YYY,XXX,R05

If the form YYY = C * XXX is desired (instead of YYY=YYY + C*XXX), then
YYY can be initialized to zero by either of these two instructions:

LOA YYY,KPO

SUB YYY,YYY

If there is an ADD later in a sequence beginning with a SUB, the order of operations
can sometimes be rearranged to place the ADD first, where it can be replaced by an
LDA. This can avoid the need for the initialization to zero.

Multiplication of the Form Y = C * Y

To achieve this form, the sequence

W=C*Y

Y=W

could be used, or the coefficient C may be factored into a sequence of terms T of the
form 2k or 1 + 2k or 1-2k. The factoring can follow an algorithm similar to the one
above, such that the value V is updated by B=V*T, with V set initially to 1.0. The Ts
are chosen to minimize the error at each step. Each factor (term) corresponds to one
2920 instruction.

4-3

Programming Techniques-Some Solved Problems 2920 Assembly Language

4-4

Example:

Generate YYY = C * YYY for C = -1.

Note that -1 = 1-21. Then the 2920 operation

SUB YYY,YYY,L01

performs the desired operation.

Generate YYY = C * YYY for C = 0.145 within 0.001

Initially VO = 1.0

Step1:T1 =2-3 =0.125;V1 =0.125; ERR1 =0.020

Step 2: T2 = 1 + 2-3=1.125; V2 = 0.140625; ERR2 = 0.004375

Step 3: T3 = 1 + 2-5=1.03125; V3 = 0.145020; ERR3=0.00002

Therefore, Y = C * Y for C = 0.145 within 0.001 can be generated by
the 2920 sequence

LDA YYY,YYY,R03

ADD YYY,YYY,R03

ADD YYY,YYY,R05

These algorithms may be implemented by computer, allowing you to painlessly
examine several approaches. Hybrid algorithms can produce the closest approxima­
tion in the fewest instructions.

Multiplication by a Variable

Multiplication of one variable by another can be done using the conditional ADD
instruction. Equivalents to the FORTRAN statements

y=w* X

Y=Y+W*X

Y = Y + W * X * 2n

may be derived, where Y, W, and X are variables and n (if used) is a fixed constant
integer. Multiplication is easiest if one of the variables, say W, is limited to nine bits
of precision.

Consider Y = W * X, where W is the multiplier, X the multiplicand, and Y the pro­
duct. Several steps are required. The intermediate values of Yare called partial
products.

You load W into the DAR and conditionally ADD X, suitably shifted, to the partial
product Y, the conditional add tests bits in the DAR. The following example may
help to clarify how this is done.

2920 Assembly Language Programming Techniques-Some Solved Problems

Consider multiplying the binary values W = 0.1011 and X = 0.1101. The sequence is
as follows:

0.00000
0.01101

0.01101
0.00000

multiplicand times 1 st multiplier bit

1st partial product = 0.1 * 0.1101
multiplicand times 2nd multiplier bit

0.01101
0.0001101

2nd partial product = 0.10 * 0.1101
multiplicand times 3rd multiplier bit

0.1000001
0.00001101

3rd partial product = 0.101 * 0.1101
multiplicand times 4th multiplier bit

0.10001111 final product = 0.1011 * 0.1101

If the multiplier's sign is negative, an additional step must be included, assigning the
weight -1 to the multiplier's sign by adding the negative of the multiplicand. Thus
the 2920 code to achieve Y=W*X for a 9-bit mUltiply is

SUB YYY ,YYY ,ROO

LDA DAR,WWW,ROO

ADD YYY,XXX,R01,CND7

ADD YYY,XXX,R02,CND6

ADD YYY,XXX,R03,CND5

ADD YYY,XXX,R04,CND4

ADD YYY,XXX,R05,CND3

ADD YYY,XXX,R06,CND2

ADD YYY,XXX,R07,CND1

ADD YYY,XXX,R08,CNDO

SUB XXX,XXX,L01

ADD YYY,XXX,ROO,CNDS

; multiplier to DAR

; multiply by 1st bit

; multiply by 2nd bit, etc.

; complement XXX

; test multiplier sign

If more bits of multiplier precision are required, the high order bits of the multiplier
may be masked off, and the remaining bits shifted left and loaded to the DAR. The
masking operation is necessary to prevent overflow saturation.

The last two steps above can be eliminated if the multiplier is known to be positive.
The first step must be eliminated if the operation is of the form

Y=Y+W*X

Division by a Variable

Division of a variable by a constant can be done by using the inverse of the constant
as a multiplier. However, to divide a variable by another variable you must use the
conditional subtract. If you use negative variables, you can compute the sign using
XOR, and do the division with the absolute magnitudes.

The sequence conditionally subtracts the divisor from the dividend, assembling the
quotient in the DAR. You should scale the source operand in the first instruction,
which is an unconditional subtraction, to produce a negative result.

4-5

Programming Techniques-Some Solved Problems 2920 Assembly Language

4-6

Consider dividing 0.100 by 0.111

0.1000000
-0.111 ; initial subtract

CY=O 1.1010000 ; first carry, partial remainder

+ .0111 ; 1 st conditional subtract (adds)

CY=1 0.00010000
- .00111

CY=O 1.11011
+ .000111

CY=O 1.111101

+ .0000111
CY=1 0.0000001

- .00000111
CY=O 1.11111011

The quotient so far = 0.10010

The full sequence for a four quadrant divide (Y=X/W) is shown below. This divi­
sion only works if the quotient is less than 1, i.e., if X < W . It is accurate to seven
binary places.

LDA TMP,W,R13
XOR TMP,X,R13
ABS X,X,ROO
ABS W,W,ROO
SUB X,W,ROO
SUB X,W,R01 ,CND7 ,
SUB X,W,R02,CND6
SUB X,W,R03,CND5
SUB X,W,R04,CND4
SUB X,W,R05,CND3
SUB X,W,R06,CND2
SUB X,W,R07,CND1

SUB X,W,R08,CNDO
XOR TMP,DAR,R13

Note that the first two and last operations are used to save and restore the sign of the
result. The quotient is available in the DAR.

If greater precision is needed, you can save the contents of the DAR before restoring
the sign, clear the DAR, and continue the conditional subtractions after restoring
the carry value. (The carry should always equal the complement of the sign of the
partial remainder.) Restoration of carry can be done by adding and then subtracting
the divisor, appropriately shifted, from the partial remainder.

Designing Filters With the 2920

Many analog signal processing applications involve filtering of the signals. This
filtering function can be simulated on a sampled basis using digital calculations.
Most analog filters can be characterized by the locations of their poles and zeroes.
They can be realized as a cascade of sections, each of which realizes a subset of the
poles and zeroes. Similarly, sampled filters can be characterized by their pole and
zero locations. Simple transformations exist for translating between a continuous
filter and its sampled counterpart. The behavior of the sampled counterpart will be
similar to the original continuous filter except for frequencies approaching or ex­
ceeding half the sample rate. Thus if your signal is band-limited to a frequency fmax '
then you need to sample at 2*fmax '

2920 Assembly Language Programming Techniques-Some Solved Problems

To design a filter using the 2920, you first determine the sample rate and the loca­
tions of the poles and zeroes of the filter. Given this list, you design one filter section
to realize each real pole, and one for each complex conjugate pole pair. Most zeroes
will be realized by adding them to one of the pole sections.

The gain of each section is determined, and inputs are scaled according to the needs
of the design. The two types of filter sections are described below. It is assumed that
the poles and zeroes location for the equivalent continuous analog filter have been
determined.

Much of the design of such sections consists of picking values for Band G (see
below) which best meet design goals yet which are easily realized in 2920 code. The
two following examples illustrate the procedures involved.

Simulating Single Real Poles

Figure 4-1 shows a circuit which realizes a single real pole. A buffer amplifier is
included to eliminate effects of loading. Proper choice of resistor, capacitor, and
buffer amplifier gain determine the pole frequency and the stage gain characteristic.

Figure 4-2 shows a block diagram of an equivalent sampled realization. The block
labeled Zl represents a unit delay, i.e., a delay equivalent to one sample interval or
one 2920 program pass. The blocks labeled X represent multiplications, in each case
by a constant. The block labeled ~ is an adder.

VOUT

!

Figure 4-1. Continuous Realization of a Single Real Pole

~
t
G

Figure 4-2. Sampled Realization of a Single Real Pole

The FORTRAN statements to implement Figure 4-2 would be as follows:

Y1 =YO

YO = B * Y1 + G * X

These would be converted to 2920 statements as shown above in the section on
arithmetic.

4-7

Programming Techniques-Some Solved Problems 2920 Assembly Language

4-8

For example, if you have determined the B = 0.9922 (=0.11111110 in binary) and G
= 0.0078125 (=0.0000010 in binary), the 2920 instructions could be generated as
follows:

LOA Y1,YO,ROO

LOA YO,Y1,ROO; YO = 1.0 * Y1

SUB YO,Y1,R07 ;YO=B*Y1

ADD YO, X,R07 ; YO = B * Y1 + G * X

The comments indicate how the new value of YO is being generated. However, in this
special case, the first two instructions are superfluous, and could in most cases be
omitted.

Design Example 1

For a sample interval of 76.8 microseconds, realize a single-pole filter with a time
constant (R *C) of 1.50 milliseconds ±1 0/0, a,nd DC gain of 1.00 ±1 %.

The limits on B can be found from evaluating B = e-T/RC for the range 1.485 to
1.515, i.e., within the 1 % tolerance (0.015) specified for RC: 1.485 ~ RC ~ 1.515.
Then -T /RC, using milliseconds for both, becomes -76.8/1485 to -76.8/1515, and
B is thus in the range 0.94960 to 0.95057. Expressed in binary,
0.1111001100011000~B~0.1111001101011000. The central value is B=0.95009 or
0.1111001100111001 in binary.

Any value in the specified range may be chosen and still meet the design criteria. If
you choose a value of B=0.1111001101, rounding up, this meets the criteria and can
be realized in five steps: B = 2° -2-4 + 2-6 - 2-8 + 2-10 • This can be seen as follows:

.1111 = 1.0 - 0.0001, or 20 - 2-4

and

0.00000011 = 0.0000 0100 - 0.0000 0001, or 2-6 - 2-8

(1.0000
(-0.0001
(= 0.1111

(0.00000100
(-0.00000001
(= 0.00000011

In decimal this value is 0.950195. The effective time constant for this value of B can
be derived as follows:

In B = -T/RC

RC =-T /lnB =-76.8/1n(0.950195) =-76.8/-0.05108805 =

1503.2869 microseconds, or 1.5033 milliseconds.

From the DC gain equation above,

DC Gain = G/(1-B)

note that G = (I-B) ±1 %. Given the value for B above, the range of accept­
able values for Gis 0.0504 to 0.04943, with a target value of 0.049805. Expressed in
binary,

0.000011001010< G < 0.0000 11001110, with a target of 0.000011001100.

This target value can be realized as easily as any of the others, in four steps:

2920 Assembly Language Programming Techniques-Some Solved Problems

With the two constants evaluated, the 2920 code is readily generated. Prior to
evaluating the final 2920 code, you should consider overflow possibilities. If the
input values are suitably limited, oveflow can be made impossible. In other cases, a
proper sequence of instructions can at least limit overflow to the last instruction, so
that saturation occurs only if the final value is too large. In the code generated
below, terms have been ordered to prevent overflow from occurring on any but the
last line.

The following sequence realizes the single pole section above. Comments show the
contribution of instruction sequences. .

LOA Y1,YO,ROO ; Y1 = YO

LOA YO,X,R04

SUB YO,X,R06

ADD YO,X,R08

SUB YO,X,R10 ; YO = G * X

ADD YO,Y1,R04

SUB YO,Y1,R08

ADD YO,Y1,R10

ADD YO,Y1,ROO ; YO = G * X + B * Y1

Further Optimization for Single Poles

Some single pole stages could eliminate the first two LDA operations above by com­
puting B * YO in place. If B can be expressed as a product of terms of the forml + 2k
or 1-2k , then B * YO can be computed using only the variable YO. As an example,
using the same problem statement and range for B from the example above, an
acceptable value for B may be expressed as follows:

The value for 0 computed above is still adequate, 0=2-4 - 2-6 + 2-8 - 2-10 • The 2920
code for this problem now becomes:

SUB YO,YO,R04

ADD YO,YO,R06

SUB YO,YO,R09 ; YO is now replaced with B*YO

ADD YO,X,R04

SUB YO,X,R06

ADD YO,X,R08

SUB YO,X,R10 ; YO now equals G*X + B*YO

One RAM location and three PROM words have been saved.

Simulating Complex Conjugate Pole Pairs

Figure 4-3 shows an RLC circuit which realizes a complex conjugate pole pair, while
Figure 4-5 shows a sampled realization of the type used with the 2920. Again the
blocks labeled X are multipliers, those labeled Z-l are unit (one sample interval)
delays, and the block labeled L is an adder. Coefficients Bl and B2 control the fre­
quency parameters and 0 adjusts the overall gain.

4-9

Programming Techniques-Some Solved Problems 2920 Assembly Language

4-10

Figure 4-4 shows the frequency response of this type of stage. The choice of
parameter values dete.rmines both the frequency at which the gain peaks, and the
height of sharpness of that peak.

Figure 4-3. Continuous Realization of Complex Conjugate Pole Pair

5.0

4.0

~ 3.0
~
(!)

2.0

le=1f2 RV ell I

1.0 ~-"::==~-""'--...
o 0.5 1.0 1.5 2.0

FREQUENCY/2 ny'TC

Figure 4-4. Gain of Complex Conjugate Pole Pair Section

~
1
G

182= -9 -2aT 1

Figure 4-5. Sampled Realization of Complex Conjugate Pole Pair

The FORTRAN equations for a complex conjugate pole pair section are:

Y2=Y1

Y1 =YO

YO = B1 *Y1 + B2*Y2 - G*X

2920 Assembly Language Pr"ogramming Techniques-Some Solved Problems

Once the coefficients of the third equation are found, the equations can be con­
verted to 2920 code using the procedures described above. Thus the major portion of
the design task still consists of finding values for the coefficients which meet the
design requirements, yet take the minimum number of 2920 steps to realize.

Design Example 2

For a sample interval of 76.8 microseconds, realize a resonance at 1000 Hz ±0.5OJo
with a Q in the range 75~Q~ 100. The peak gain should be 1.0 ±10%.

A complex conjugate pair of s plane poles at s=-a + jb and -a-jb has an impulse
response which rings at a frequency f=b/2pi, and a value for Q given by Q=b/2a.

Thus bT = 0.48255 ±0.0024 and, at bT = 0.48255, aT falls in the range
0.002412 (Q=100) ~aT~ 0.003217 (Q=75). Using B2= -e-2at , we can express the
negative of B2 inbinary as follows:

0.111111001011 ~-B2~0.111111101100

A value which falls in this range and can be expressed in only three powers of two is

-B2=0.111111101 =20 -2-7 + 2-9 =0.99414

Once B2 is established, B 1 may be found using the relationships e-aT = - B2, and
Bl = 2*cos(bT)*e-aT • In binary, 1.11000100 11 ~ Bl ~1.1100 001110. A suitable
value for Bl is given by BI = 1.110001 = 2-1 - 2-2 + 2-6 = 1.7656.

To test the values of BI and B2 chosen, the resonant frequency and Q may be
calculated: fr = 1001.8, Q = 82.

Maximum gain =Gm =1/«I-e-2at)* l-cos2(bT».

Substituting in the equations for maximum gain gives fm =1001.8, and maximum
gain Gm as

Gm = G 10.002724

To meet the problem gain constraints, a value of G given by

G = 2-8 - 2-10 = 0.00293

is adequate.

The corresponding 2920 code can be written from the evaluations of the coefficients:

LDA

LDA

LDA

SUB

ADD

SUB

ADD

SUB

ADD

SUB

Y2,Y1,ROO

Y1,YO,ROO

Y1,YO,L01

YO,Y1,R02

YO,Y1,R06

YO,Y2,ROO

YO,Y2,R07

YO,Y2,R09

YO,X,R03

YO,X,R10

; Y2 = Y1

; Y1 = YO

; YO= B1*Y1

; YO = B1 *Y1 + B2*Y2

; YO = B1 *Y1 + B2*Y2 + G*X

The comments show how the values are built up from the sequences of 2920
instructions.

4-11

Programming Techniques-Some Solved Problems 2920 Assembly Language

4-12

Overflow Considerations

If the inputs are scaled so that overflows in the calculation of YO are possible, a
reordering of the terms may be necessary. At the third step above, a value of
Yl > 0.5 would produce overflow. Reordering the steps to add the 2*Yl term last

might reduce overflow probability. An alternate step would be to reduce the gain at
the filter input and boost the filter output to compensate.

A variation on this method (gain reduction and boosting), is to generate a fraction
of YO then boost the value of YO when shifting it into Y 1. (The boost occurs on the
next program pass). The fraction will usually be 1/2 or 1/4, and is accomplished by
modifying the shift codes of all terms contributing to the YO calculation.

Simulation of Rectifiers

The absolute magnitude function, Y = I X I, can be realized with a single 2920
instruction (ABS). This function behaves as an idealized full-wave rectifier. The add
absolute function (ABA) is useful for combining full-wave rectification with input
to a filter.

Half-wave rectifiers can be realized using the equation y = (x + I x 1)/2. The cor­
responding 2920 code for this operation is:

LOA Y,X,R01 ; Y = X/2

ABA Y,X,R01 ; Y = X/2 + ABS(X)/2

Other rectification characteristics may be simulated using piece-wise linear approx­
imations, multiplication, or division.

Simulation of Limiters

Limiters may be realized in three ways using the 2920: via the LIM function, via
overflow, or by calculations using absolute magnitudes (ABS,ABA).

The LIM function produces an ideal threshold logic element. Even the smallest
signal forces a full positive or negative output.

In some systems, signals below some level should not be allowed to excite limiting.
These systems require a transfer characteristic similar to that shown in Figure 4-6,
where signals with amplitude below the threshold "a" do not produce full scale out­
put. This type of limiter characteristic can be realized using overflow saturation or
with the use of absolute magnitude functions.

OUTPUT

INPUT

Figure 4-6. Limiter Transfer Characteristic

2920 Assembly Language Programming Techniques-Some Solved Problems

To use overflow saturation to implement such a limiter, the value X is loaded to Y
with a left shift code, after which Y may be loaded or added to itself with additional
left shifts. Consider this sequence:

LOA Y,X,L02 ;Y=4*X
ADD Y,Y,L02 ;Y=5*4*X=20*X

The effect is to generate a value of Y which is 20 times X. If X exceeds a value of
0.05, Y will be held to + 1.0, or if X ~ -0.05, Y will take the value -1. Thus the
characteristic realized is that of Figure 4-6 with a=0.05, and L=1.0.

Another realization can be based on the equation

y = I x + a I-I x-a I
which realizes the same shape curve as that of Figure 4-6, with a value of L=2a. This
form generally takes more steps than the overflow saturation method, but allows
greater freedom in setting parameters. The 2920 code might appear as follows,
where A represents the limiter threshold and T is a location used only for
intermediate calculations:

LOA T,X,ROO

ADD T,A,ROO ;X+AinT

ABS Y,T,ROO ; Y = ABS(X+A)

SUB T,A,L01 ; X-A in T

ABS T,T,ROO ; ABS (X-A) in T

SUB Y,T,ROO ; Y = ABS(X+A) - ABS(X-A)

Other Signal Processing and Logic Functions

Many other signal processing functions can be performed by the 2920. Relaxation
and gain controlled oscillators, and adaptive filters, are discussed in a 2920 Applica­
tion Note.

Modulators can be realized using multiplication of a variable representing the carrier
by a variable representing the modulating waveform. Automatic Gain Control
(AGC) can be realized by dividing the signal by a level derived from signal
magnitude.

Correlation functions involve delays, products, and filtering. The delay achievable is
limited by the number of RAM words provided, but two or more samples may be
packed in a word to increase the achievable delay. The AND operation is used as a
mask to aid in unpacking such words.

Logical operations can be performed using the logical functions AND and XOR, by
conditional arithmetic, or by using threshold logic, i.e., summation combined with
the LIM function. In some cases, several logical variables can be stored in one RAM
word.

4-13

CHAPTER 5
CONTROLS

Introduction

Since this Assembler uses the ISIS keyboard and file capabilities, ISIS must be load­
ed before invoking the Assembler. The full procedure for this is given in the ISIS
manual named in the Preface. Once ISIS is present, you can enter the Editor to
key-in the source text of your Assembler program. After developing and editing
your program into a form ready to test, you can invoke the Assembler as described
below.

The 2920 Assembler may be resident on the ISIS system diskette or on a non- system
diskette. You load the assembler by entering a command that names the assembler
and specifies the source file. You may also name the list and object files, but you
don't have to. Control options may also be specified as part of the command.

After the assembler goes into execution, all assembler operations specified are per­
formed without further intervention. If the invocation line has an error, the error is
reported and you must retype the commands. You may use upper or lower case in­
discriminately. The assembler converts all to upper case except for echoing back
what you wrote.

Examples:

-AS2920 PROG.SRC

(After an ISIS prompt, shown here as a dash, you type the command to get the
assembler to assemble your source program, which is in a file here called
PROG.SRC. An assembly listing and object code file will be output to PROG.LST
and PROG.HEX respectively. In addition, a symbol table listing will be supplied,
and the symbol table debugging output to the object file is suppressed. These
defaults are automatic when you do not specify any controls. It is exactly as if you
had typed (on one line only)

-AS2920 PROG.SRC PRINT (PROG.LST) LIST OBJECT (PROG.HEX) SYMBOLS
NODEBUG PAGING PAGEWIDTH(120) PAGELENGTH(66)

All but the last two options have opposites beginning with NO, like NODEBUG,
whose opposite (however) is DEBUG. So you can say NOPRINT, NOLIST,
NOOBJECT, NOSYMBOLS, or NOP AGING. '

All such control options (except PRINT or NOPRINT) may be specified on the
invocation line or on control lines (described below). If any control option is
specified on the invocation line and also on a control line, the invocation specifica­
tion takes priority and remains in effect. When a control is specified in different
ways on the invocation line itself, the rightmost specification is used. (PRINT or
NOPRINT can only appear on the invocation line.)

After running the one assembler pass and completing assembly listing and object
output, the assembler outputs a sign-off message and summary:

ASSEMBLY COMPLETE
ERRORS = XXX X
WARNINGS = XXXX
RAMSIZE = XXXX
ROMSIZE =XXXX

5-1

Controls

5-2

2920 Assembly Language

Semantic Description

PRINT NOPRINT

You get a list-file named like your source
file, but with an extension of .LST, e.g.
PROG.LST The list-file is suppressed.

PRINT(filename.ext)

You get a listing, put out to the file you
name, using names that fit the ISIS rules,
e.g. :F1 :MYNEW.LST or :FO:TRYTWO.FIX
or :PR: or :TO:

LIST

You get a listing of the code generated for
each source line, sent to the list-file.

OBJECT(filename.ext)

You get executable code put to the file
you specify.

DEBUG

If OBJECT is specified, the symbol table is
output to the object file.

SYMBOLS

Symbol table is output to the list file.

PAGING

Assembler will break the listing into pages
with header lines on each.

EJECT

Spaces are skipped to the next top-of­
form if paging is specified.

TITLE(' .. .')

The character string specified (within the
required parentheses and single-quotes)
is printed on the second line of a page
header. Strings of more than 64 characters
are truncated to the first 64.

NOLIST

The list file will contain only error
messages and a summary of the
assembly. (Unless use of the NOPRINT
option has suppressed the list-file com­
pletely.)

NOOBJECT

No object code is created.

NODEBUG

Symbol table is not output to the object
file. This is the default.

NOSYMBOLS

Symbol table not listed.

NOPAGING

No page breaks and no header lines after
page 1.

2920 Assembly Language

PAGEWIDTH(number)

The number you supply specifies the max­
imum line width in characters, for listing
output. It must be between 72 and 132; the
default is 120. If you give a number outside
these limits, the nearest limit will be used.
If a listing line exceeds the pagewidth
specified and is less than 133, it will be
"wrapped around," with continuation
beginning in column 20. Characters
beyond column 132 will be truncated and
lost.

PAGELENGTH(number)

This specifies the total number of lines
per listing page. You have to count three
blank lines at both top and bottom, and
any header lines. The minimum
pagelength is 15. The default is 66.
Specified pagelengths are maintained by
issuing a form feed to reach the top of the
next page.

As implied by the discussion of the invocation line and defaults there, the following
are used if no specification of an option is made:

PRINT(filename. LST)
LIST
OBJECT(filename.HEX)
NODE BUG
SYMBOLS
PAGING
PAGEWIDTH(120)
PAGELENGTH(66)

Control Records

A control record is a line in the source file which specifies any number of control
options. Those contradicting a specification on the invocation line will cause an er­
ror message to be issued, and the new specification to be ignored, except for LIST,
NOLIST, EJECT, or TITLE. A control line must begin with a dollar sign ($) and
may have several options in it, separated by blanks. Commas are flagged as errors.
If a control line has an error in it, the erroneous control setting and those to its right
will be ignored. A control record containing PRINT or NOPRINT will be flagged as
an error and ignored. If an option is not specified on the invocation line or any con­
trolline,its default is used.

Control records specifying LIST, NQLIST, EJECT, or TITLE may appear
anywhere in the source file. The other control options allowed on control lines must
appear before any source lines.

Example:

$EJECT TITLE ('FIRST TRY FILTER') LIST

5-3

APPENDIXA
EXAMPLE OF LISTING FORMAT

The following example shows the format of the listing output from an assembly, in­
cluding error flags. The resulting hexadecimal object code is also shown. (These
program-sections were designed to exercise all the execution-conflict error messages.
They do not comprise a meaningful program.)

IS I S- II 2'20 ASSEftBLER Vl.0

.ASSEMBLER IN'iOKED BY: :FO:AS2c)20 EXECOH.SRC

LItlE LOC OBJECt SOURCE STATEMENT

TEST ALL KNOWN 2no ECECUTIOH CONFLICTS.
2
3 OLIT FOLLOWS DAR AS D8T.
4
5 0 4044EF LOA DAR, RAMO

E 6 SOOOEF OUTO
7 2 4000EF HOP
8
9 ; OUT FOLLOWS CHO SUB.

: 0
: 1 3 8300FB SUB RAfi 1) RAM2, CNDO

E . -, . .:. 4 9000EF OUTl
: 3 " '.' 4000EF HOP
: 4
::. i CVT FOLLOWS A C 'IT.
: I~.

~ 0100EF CVTO
E :8 11 OOE F CIIT1

: " 8 4000EF HOP
10
Ll l C't'T FOLLOWS DAR AS DST .
:22
~3 9 4044EF LOA DAR. RAMO

E 24 10 OlOOEF CYTO
25 11 4000EF HOP
'~6

.~ 7 j CVT FOLLOWS CHO SOB.
2:3
29 12 8300FB SUB RAft 1) RAMZ, CNDO

E ;0 13 1100 E F CV T 1
~1 14 4000EF NOP
32
.J..J ; C'iT FOLLOWS A CIIT.
::4
")5 15 0100EF CYTO

E 36 16 1100 E F C\lll
17 17 4000EF NOP
3B
39 j C'iT FOLLOf.4S IH.
~o

41 18 OOOOEF IHO
E .12 19 1100 E F CVT 1

43 20 4000EF NOP
44
45 i CHf) USEf) III I TH ANI), LIft, OR ABS.
46

E 47 21 F708E3 AND RA"2, RA"3, eNI>7
48 22 .. OOOEF HOP

E 49 23 E700F5 LIft RA"3, RA"2, CHD'
SO 24 4000EF HOP

E '51 25 1)I)00E7 ABS RA"2, RAMS, CHD5
52 2~ 4000EF HOP

A-I

Example of Listing Format 2920 Assembly Language

UHE LOC OBJECT SOURCE STATE/'IEHT

1 TEST ALL KHOWN 2no ECECUTION COHFLI CT S.
2
3 OUT FOLLOWS DAR AS DST.
4
5 0 4044EF LDA DAIL RAMO

E 6 1 SOOOEF OUTO
;- 2 4000EF HOP
e
9 ; OUT FOLLOWS CHD SUB.

10
: 1 3 8300FB SUB RA"!' RAI'I2, CHDO

E 12 4 <)OOOEF OUTI
:3 5 4000EF HOP
: 4
:5 ; CVT FOLLOWS A CVT.
~ 1; • . ., I> 0100 EF eYTO .,

E :8 1100EF CV T 1
:'$ 8 4000EF HOP
10
21 i CVT FOLLOWS DAR AS DS T .
22
23 ~ 4044EF LOA DAR. RAMO

E 24 10 OIOOEF CYTO
25 1 1 4000EF HOP
;26
17 ; CVT FOLLOWS CHD SUB.
2:3
1:9 12 8300FB SUB RAftL RAM2. CHDO

E 30 13 1100EF CVT1
31 14 4000EF HOP
32
33 ; CYT FOLLOWS A CYT.
34
">5 15 OlOOEF CYTO

E ·36 16 1100EF eVTI
37 17 4000EF HOP
38
39 i CYT FOLLOWS IH.
~o

41 18 OOOOEF IHO
E .12 19 1100EF CYTt

43 20 4000EF HOP
44
45 i CHD USED WITH AND. LIft. OR ASS.
46

E 47 21 F708E3 AND RAft2, RA/'I3. eND7
48 22 4000EF HOP

E 4~ 23 E700F5 LII'I RA"3, RAI'I2, CHD'
50 24 4000EF HOP

E '51 25 DI>00E7 ABS RA"2, RAI'I8, eli 05
52 26 4000EF HOP
53
54 J LIM WITH SHIFT CODE (OT HER THAN ROO)
55

E '56 27 460014 LIM RAI'I3, RAM2, ROI
57 28 4000EF HOP
58 2' 4600F5 L 11" RA"3. RAI'I2 .. ROO
59 30 4000EF NOP
60
16.1 ; CND SUB ANI) DAR AS DST.
62

E ~3 31 814CEB SUB DAR, RAM 1, CNI>O
64 32 4000EF HOP
65
66 ; CYT AND I>AR AS OST.
i.7

E 68 33 0144EF LDA DAR, RAMO. CVTO
t;.'3

B 7'0 34 5000EF EOP
71

P 72 35 4000EF HOP
P 73 36 4000EF HOP
P '74 37 4000EF NOP

'75 EHD

A-2

2920 Assembly Language Example of Listing Format

ISIS-II 2~20 ASSE"BLER Vl.O

Ll~E LOC OBJECT SOURCE STATEMEHT

RAMO 0
RAMI 1
RAH2 2
RAH3 3
RAMS 4

ASSEMBLY COMPLETE
ERRORS 0
WARNINGS 17
RAHstZE 5
ROI'fS IZE 38

: 18000000F4FOF4F4FEFFFSFOFOFOFEFFF4FOFOFOFEFFFSFJFOFOFFFBD4
:13001800F9FOFOFOFEFFF4FOFOFOFEFFFOFIFOFOFEFFFIFIFOFOFEFFee
:18003000F.FOFOFOFEFFF4FOF4F4FEFFFOFIFOFOFEFFF4FOFOFOFEFFAF
: 18004800F8F3FOFOFFFBFIFIFOFOFEFFF4FOFOFOFEFFFOFIFOFOFEFF9D
: lS006000FIFIFOFOFEFFF4FOFOFOFEFFFOFOFOFOFEFFFtFIFOFOFEFFee
: 18007800F4FOFOFOFEFFFFF7FOF8FEF3F.FOFOFOFEFFFEF7FOFOFFF556
: 18009000F4FOFOFOFEFFFDFDFOFOFEF7F.FOFOFOFEFFF4F6FOFOFtF458
: leOOA800F4FOFOFOFEFFF4F£FOFOFFF5F.FOFOFOFEFFF8FlF4FCFEF82E
: 1900COOOF4FOFOFOFEFfFOFIF4F4FEFFF5FOFOFOFEFFF4FOFOFOFEFFlE
:OCOOD800F4FOFOFOFEFFF4FOFOFO~EFF'A

:OOOOOOOIFF

A-3

APPENDIX B
KEYWORDS, INSTRUCTIONS,
IOCODES. AND DIRECTIVES

Section 1: Arithmetic Operation Codes

ABA ABS ADD AND LOA LIM SUB XOR

Section 2: Analog Control Codes and Digital/Analog Register

CNDS CVTS EOP INO NOP OUTO
CND7 CVT7 IN1 OUT1
CND6 CVT6 IN2 OUT2
CND5 CVT5 IN3 OUT3
CND4 CVT4 OUT4
CND3 CVT3 OUT5
CND2 CVT2 OUT6
CND1 CVT1 OUT7
CNDO CVTO

Section 3: Constant Source Codes

KM1 KM2 KM3 KM4 KM5 KM6 KM7 KM8
KPO KP1 KP2 KP3 KP4 KP5 KP6 KP7
DAR

Section 4: Scaler Control Codes

ROO 'R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13
RO r i I ?2 R3 R4 R5 R6 R7 R8 R9

L01 L02
L1 L2

Section 5: Assembler Commands and Modifiers

DEBUG
NODE BUG

END
EQU

PAGELENGTH()

EJECT LIST
NOLIST

OBJECT()

NOOBJECT

PAGEWIDTH()

TITLE(' .. .')

PAGING
NOPAGING

PRINT
'NOPRINT

SYMBOLS
NOSYMBOLS

PRINT()

B-1

APPENDIX C
HEXADECIMAL OBJECT

FILE FORMAT

All user programs loaded via the SM2920 module must conform to Intel's standard
for hexademical object files, partly because the language translators generate only
hexadecimal code. The hexadecimal object code file generated by the AS2920
assembler contains the contents of program memory which would result from
loading the assembled source program. The code is formatted in hexadecimal bytes
of data. The file contains the ASCII representation of the hexadecimal bytes of
data. The object code itself is preceded by a symbol table. These two parts may be
loaded or saved together or separately.

The symbol table is a series of records, terminated by a dollar sign. Each record con­
tains three fields separated by one or more ASCII spaces:

• a number field (not used by SM2920)

• a label field containing the ASCII representation of a source program symbol,
and

• an address field containing the hexadecimal address assigned to the symbol by
the language translator.

The symbol table is terminated by a record whose first nonblank character is a dollar
sign.

The object code generated by the language translator follows the symbol table. The
symbol table has records. Each of these records or physical lines is six logical fields
of varying length in characters or frames:

FIELD 0: RECORD MARK (FRAME 0 IS ALWAYS ':_')
FIELD 1: RECORD LENGTH (FRAMES 1 AND 2)
FIELD 2: LOAD ADDRESS FIELD (FRAMES 3,4,5 AND 6)
FIELD 3: RECORD TYPE (FRAMES 7 AND 8)
FIELD 4: DATA (FRAMES 9 TO 9+2*[RECORD LENGTH]-1)
FIELD 5: CHECKSUM (FRAMES 'DATA FIELD' + AND 'DATA FIELD' +2)

For an example of the object file format see the sample program in Appendix A.

Object Code Output Format

The format of the object code is a series of records, each containing its record
length, type, memory load address, checksum, and data. The figure following shows
a typical output file in hexdecimal format.

RECORD MARK

STARTING LOAD ADDRESS

[

RECORD LENGTH

r RECORD TYPE
DATA
CHECKSUM

-'- -
:10000007 A2F57782F5F1321 00003E1159D21282
:1000000000E3E1 F579174F7817477D176F7C176775
:OD002000F13DC20C00877C1 F577D1 F5FC96A
:00000001
(Because record length equals 0 and record type equals 01, this record specifies
end-of-file.)

C-l

APPENDIX D I
POWERS OF TWO

TABLE

POWERS OF TWO

1 o 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0,015 625

128 1 0.001 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 916 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 010 312 5

16 384 14 0.000 061 035 156 25
32 168 15 0.000 0:S0 517 518 125

65 536 16 0.000 015 258 189 062 5
131 012 11 0.000 001 629 394 531 25
262 144 18 0.000 003 814 691 265 625
524 288 19 0.000 001 901 348 632 812 5

1 048 516 20 0.000 000 953 614 316 406 25
2 091 152 21 0.000 000 416 831 158 203 125
4 194 304 22 0.000 000 238 418 519 101 562 5
8 388 608 23 0.000 000 119 209 289 550 181 25

16 111 216 24 0.000 000 059 604 644 115 390 625
33 554 432 25 0.000 000 029 802 322 381 695 312 5
61 108 864 26 0.000 000 014 901 161 193 841 65625

134 211 128 21 0.000 000 001 450 580 596 923 828 125

268 435 456 28 0.000 000 003 125 290 298 461 914 062 5
536 810 912 29 0.000 000 001 862 645 149 230 951 031 25

1 013 141 824 30 0.000 000 000 931 322 514 615 418 515 625
2 141 483 648 31 0.000 000 000 465 661 281 301 139 251 812 5

4 294 961 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

11 119 869 184 34 0.000 000 000 058 201 660 913 461 401 226 562 5
34 359 138 368 35 0.000 000 000 029 103 830 456 133 103 613 281 25

68 119 416 136 36 0.000 000 000 014 551 915 228 366 851 806 640 625
131 438 953 412 31 0.000 000 000 001 215 951 614 183 425 903 320 312 5
214 811 906 944 38 0.000 000 000 003 631 918 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 415 830 078 125

1 099 511 621 176 40 0.000 000 000 000 909 494 701 712 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 4~4 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 139 379 882 812 5

11 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 312 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 117 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 421 351 601 001 858 711 242 615 181 25

281 414 916 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 331 890 625
562 949 953 421 312 49 0.000 000 000 000 001 716 356 839 400 250 464 617 810 668 945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 118 419 700 125 232 338 905 334 472 656 25
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 j28 125

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0000 000 000 000 000 111 022· 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231257 827 021 181 583 404 541 015 625
36 028 797 018 963 968 55 0.000 000 000 000 000 021 755 575 615 628 913 510 590 791 702 270 507 812 5

72 051 594 031 921 936 56 0.000 000 000 000 000 013' 871 787 807 814 456 155 295 395 851 135 253 906 25
144 i15 188 015 855 812 57 0.000 000 000 000 000 006 938 893 903 901 228 311 647 697 925 567 676 950 125
288 230 316 151 111 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
516 460 152 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 ~21 504 606 846 916 60 0.000 000 000 000 000 000 861 361 137 988 403 541 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 113 602 981 120 347 976 684 570 312 5
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 lOa 886 801 490 560 173 988 342 285 156 25
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

D-I

APPENDIX E
TABLE OF ASCII CHARACTER CODES

ASCII CODES

The 2920 assembler uses the seven bit ASCII code, with the high-order eighth bit
(parity bit) always reset.

GRAPHIC OR ASCII GRAPHIC OR ASCII GRAPHIC OR ASCII
CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL)

NUL 00 + 2B V 56
SOH 01 2C W 57
STX 02 20 X 58
ETX 03 2E Y 59
EOT 04 2F Z 5A
ENG 05 0 30 [5B
ACK 06 31 \ 5C
BEL 07 2 32 1 5D
BS 08 3 33 A (t) 5E
HT 09 4 34 - (+-j 5F
LF OA 5 35 60
VT OB 6 36 a 61
FF OC 7 37 b 62
CR 00 8 38 c 63
SO OE 9 39 d 64
SI OF 3A e 65
OLE 10 3B 66
OC1 (X-ON) 11 < 3C 9 67
OC2 (TAPE) 12 3D h 68
OC3 (X-OFF) 13 > 3E 69
OC4(=FAP8 14 ? 3F j 6A
NAK 15 @ 40 k 6B
SYN 16 A 41 6C
ETB 17 B 42 m 60
CAN 18 C 43 n 6E
EM 19 0 44 0 6F
SUB 1A E 45 p 70
ESC 1B F 46 q 71
FS 1C G 47 72
GS 10 H 48 73
RS 1E I 49 74
US 1F J 4A u 75
SP 20 K 4B v 76

21 L 4C w 77
22 M 40 x 78

23 N 4E y 79
$ 24 0 4F z 7A
% 25 P 50 { 7B
& 26 G 51 I 7C

27 R 52 } (ALT MODE) 70
28 S 53 7E
29 T 54 DEL (RUB OUT) 7F
2A U 55

E-l

APPENDIX F
BIT PATTERNS OF THE 2920 ASSEMBLY

LANGUAGE MNEMONICS

Instruction Field Bit Assignments

The instruction word for the 2920 is 24 bits long and is divided into six four-bit
nibbles:

Nibble MSB LSB

0 ADFO ADK2 ADK1 ADKO
1 A2 B1 A1 ADF1
2 A4 B3 A3 ' B2
3 AO B5 A5 B4
4 S2 S1 SO BO
5 L2 L1 LO S3

where LO L2 is the opcode,
AO A5 is the source address,
BO B5 is the destination address,
SO S3 is the shiftcode,
ADF1- ADF2
ADK1- ADK3 is the iocode.

Opcode Field

L2 L1 LO Mnemonic

000 XOR
001 AND
010 LIM
011 ABS
100 ABA
101 SUB
110 ADD
111 LDA

Source and Destination Fields

The destination operand is a six-bit address pointing into RAM. Each address bit is
located as follows:

ADDR BIT O(LSB) BO
1 B1
2 B2
3 B3
4 B4
5(MSB) B5

F-l

Bit Patterns of the 2920 Assembly Language Mnemonics 2920 Assembly Language

F-2

The source operand is also a six-bit address pointing into RAM. Each address bit is
located as follows:

ADDR BIT o (LSB) AO
1 A1
2 A2
3 A3
4 A4
5(MSB) A5

Shift Code Field

so S1 S2 S3 Mnemonic

1100 R13
1011 R12
1010 R11
1001 R10
1000 R09
0111 ROB
0110 R07
0101 R06
0100 R05
0011 R04
0010 R03
0001 R02
0000 R01
1101 L01
1110 L02
1111 ROO

Input/Output Code Field

The iocode is located in bits 23-19 and is encoded in the following manner:

ADFO ADF1/ADKO ADK1 ADK2

00 000
00 001
00 010
00 011
00 100
00 101
00 110
00 111

10 000-111
01 000-111

t OD[least
I significant

most
significant
bit

bit

Mnemonic

INO
IN1
IN2
IN3
NOP
EOP
CVTS
CNDS

CVTO-CVT7
OUTO-OUT7
CNDO-CND7

APPENDIX G
ERROR HANDLING AND REPORTING

Command Language and Run-Time Errors

COMMAND SYNTAX ERROR

PREMATURE EOF

This message means one of the following
conditions has been directed: illegal syntax, miss­
ing or illegal delimiter use, or a missing required
parameter.

An end-of-file was encountered before an END
directive. This is an unrecoverable error condi­
tion, causing the Assembler to terminate
abnormally.

Syntax Errors, Control Record Errors, and Semantic Warnings

These errors are indicated by single letter codes which appear on the same line of the
listing as the source line in which they were found. When multiple errors are detected
in a single source line, only the first error is reported. A summary of syntax errors is
output to the console and list devices.

C An illegal control option or placement.

Illegal ASCII character; possibly a missing linefeed after a carriage-return.

M Multiple definition of symbols, which must be unique in the first 31 characters.

o Illegal operation code or operand.

S Invalid syntax, usually due to invalid or missing opcode.

Semantic Warning Flags:

B Boundary error. EOP does not fall on legal address, i.e., a multiple of four.

E Execution conflict: e.g., a CVT on or immediately after using the DAR as a
destination, or right after an input; or a conditional subtract with the DAR as a
destination; or an attempt to use a conditional iocode on an AND, LIM, or ABS,
or an attempt to use LIM with a shiftcode other than RD.

P Pad insertion, putting NOPs after the EOP.

V Illegal value specified for an operand with a limited range.

G-I

APPENDIX H
SYNTAXOF2920ASSEMBLY LANGUAGE

The following is a formal definition of the language accepted by the 2920
Assembler. Upper-case character strings in this description represent terminal
symbols used exactly as shown. Lower-case strings represent metalinguistic variables
which are either defined here or self-evident. Punctuation shown after the string:: =,
e.g. commas, must be used as and where shown. Blanks shown between variables or
terminals, e.g. in the EQU directive, are needed as separators.

program

stmt_list

stmt

nl

basic_stmt

optional_labe I

machine_inst

optional_sh iftcode

optional_iocode

assemb_directive

opcode

shiftcode

iocode

dest

src

name

special_char

comment

letter

decimal_digit

end_stmt

::= stmt_list end_stmt

::= stmt 1 stmt_list stmt

::= basic_stmt nl

::= CR 1 comment CR

::= optional_label machine_inst 1 assemb_directive 1 empty

::= name: 1 empty

::= opcode dest,src optional_shiftcode optional_iocode
1 iocode

::= ,shiftcode I empty

::= ,iocode 1 empty

::= name EQU name

::= XOR 1 AND 1 LIM 1 ABS 1 ABA 1 SUB 1 ADD 1 LOA

::= ROO 1 R01 1 R02 1 R03 ... 1 R13 1 L01 1 L02 1 R1 1 R2 1 R3 ... 1 R9
1 L 1 I L2

::= INO IIN1 IIN2 I NOP I EOP I CVTS I CVT? 1 CVT61 CVT5 ... 1
... 1 CVTO I CNDS I CND? I CND6 ... 1 CNDO

::= name

::= name

::= letter 1 special_char I name letter 1 name special_char
I name decimal_digit

::= @ I? ,_

::= ; 1 ; ascii_characters

::= A I B I C 1 DIE I FIG 1 HIlI J I K 1 LIM 1 N 1 0 1 P 1 Q 1
RIS/T/U/V/W/X/Y/Z

::= 0 11 1 2 I 3 1 4 1 5 1 6 1 ? 1 8 1 9

::=END

Notes: The slash means you may choose among the items separated. "Empty" means the en­
try can be omitted entirely. Terminal symbols shown in upper case are also accepted from the
keyboard in lower-case.

H-l

APPENDIX I
TWO'S COMPLEMENT DATA

HANDLING IN THE 2920

Data in the 2920 are stored using a two's complement binary form. Using this form,
the highest order bit indicates the sign of the value, with this bit being zero (0) for
positive and zero values, and one (1) for negative values. If the intended value is
positive, the remaining bits correspond to that value, independent of the sign bit. If
the intended value is negative, then the remaining bits correspond to the number
(one minus that value).

A convention used with the 2920 places an imaginary binary point just to the right of
the highest order (25th) bit, as shown below:

1.011010111001111110000100

Each bit to the right of the binary point has a positive fractional weight associated
with it, the first having the value 2-1 = Y2, the second 2-2 = Y4, and so on. If x is the
number represented by the bits to the right of the binary point, then O~ x <1.0. If
s represents the sign bit (0 for non-negative values, 1 for negative), then the full
25-bit number represents the value -s + x.

Two's complement arithmetic is used because it allows relatively simple hardware
realizations of arithmetic functions. Addition in two's complement follows normal
binary addition rules, and can be realized using standard adder building blocks. If
two numbers of like sign bit are added and the sign bit of the result differs from that
of the original operands, the result is too large in magnitude to be contained within
the allotted number of bits. In this case an "overflow" is said to have occurred.

Subtraction in two's complement arithmetic may be done by adding the two's com­
plement of the subtrahend. The two's complement of a number is formed by first
taking the one's complement and then adding a 1 in the lowest order position. The
one's complement is formed by complementing all bits in place, i.e., replacing all
original zeroes with ones, and all original ones with zeroes. (Note that the number
-1.0 has no valid two's complement in the 25-bit number system used.) In practice,
subtraction is accomplished by adding the one's complement, and forcing a carry
input into the lowest order adder stage-which is equivalent to adding a 1 in the
lowest order position.

Using two's complement arithmetic therefore simplifies addition and subtraction as
compared with sign/magnitude representation in that no sign bit testing of either
operand is necessary to set up for addition or subtraction. Only one set of adders is
needed because the conversion from one's complement to two's complement can be
achieved within the adder.

Multiplication and division by powers of two corresponds to shifts left or right
respectively. When shifting left, the low order bit is filled with zeroes and when
shifting right, the high order bit is filled with the sign bit. To extend precision to the
left, the sign bit is extended into each added position before any shift operations are
done. The sign bit behaves as if it extends to the left on to infinity. Overflow cor­
responds to the case where the recorded sign bit does not correspond to the sign bit
at infinity.

In the 2920, arithmetic is performed with a left extension to a total of 28 bits, ade­
quate to perform any 2920 operation without possibility of overflow. Thus the
highest order bit corresponds to the sign bit at infinity. If the storable portion of the
result (low 25-bits) does not correspond to the correct result, an overflow is

I-I

Two's Complement Data Handling in the 2920 2920 Assembly Language

1-2

indicated, and if overflow limiting is enabled, the 25-bit value stored is the positive
extremum (if the correct sign bit was 0) or the negative extremum (if the correct sign
bit was 1).

positive extremum = 0.111111111111111111111111 = approx. +1.0

negative extremum = 1.0000 0000 0000 0000 0000 0000 = -1.0

In two's complement arithmetic, multiplication can be performed in a manner
similar to that used for positive binary numbers. However, because the sign bit has a
negative rather than a positive weight, some additional corrections are needed.

Multiplication in the 2920 may be achieved using the conditional add, with the
mUltiplier being loaded into the DAR, and the multiplicand being conditionally
added to the (partial) product. Because adds in the 2920 provide for sign extension
during shifting, a positive multiplier can produce a correct product without any
further correction, shown in the examples below.

1111.11 (-114)
x 0000.11 (+ 3M

... 1111.111

... 1111.1111

... 11111.1101 = -1 + 13/16 = -3/16

Note that in each case, the sign bit was extended to the left in the partial products.
The example shown above is drawn in a manner different from that used in grade
school arithmetic classes. The somewhat different display results from noting that
each bit of the multiplier to the right of the binary point has a weight equal to some
negative power of 2, i.e., is equivalent to a right shift of one or more positions.

0.1100 (3/4)
x 0.1101 (13/16)

0000.01100
0000.001100
0000.0000000
0000.00001101

00000.10011101

Thus if the multiplication is done starting at the binary point of the multiplier, and
running through the multiplier from left to right, the binary point can be maintained
(and aligned) for each partial product. Each bit of the multiplier corresponds to a
possible addition of the multiplicand, shifted to the right by one or more positions,
to the product. If the mUltiplier bit is aI, the addition takes place, otherwise it does
not take place.

If the sign bit of the mUltiplier is non-zero, because this bit has a negative weight the
multiplicand should be subtracted from the product. In the 2920 this function is
achieved by complementing the multiplicand, and conditionally adding the resulting
complement to the product based on the sign bit of the multiplier.

Division tends to be complex in two's complement arithmetic, and so may be
simplified by extracting the signs of the operands, performing the division using
only the magnitudes of the dividend and divisor. The quotient is converted to the
proper sign based on the extracted signs.

Restoring binary division is performed using a series of test subtractions of the
divisor from the dividend, with the original value restored if the result becomes
negative. The sequence of test subtractions proceeds from left to right, with each
successful subtraction (one leaving a positive difference, thus not requiring restor a-

2920 Assembly Language Two's Complement Data Handling in the 2920

tion) reducing the magnitude of the dividend. The locations of the successful sub­
tractions are noted by ones, those unsuccessful by zeroes, in the DAR.

Restoration of the dividend corresponds to adding the divisor back to the dividend.
Because this operation is followed by a test subtraction with the divisor shifted one
position further right, the restoration/test subtraction sequence can be replaced by a
single addition of the divisor after it is shifted to the right. (As a right shift is
equivalent to a multiply by 1/2, the first sequence is + d-d/2 = d/2; the second
operation is + d/2.)

In the 2920, the conditional subtract operation is used to perform this non- restoring
divide algorithm. For any arithmetic operation, the high order carry from the
extended arithmetic is saved for possible testing by the conditional subtract instruc­
tion. This carry has the same value as the sign of the result generating it, i.e., I for
negative, 0 for non-negative numbers. The conditional subtract performs the addi­
tion or subtraction required by the previous result (i.e., carry), and then stores the
new result of the operation in a designated location (bit) of the DAR as selected by
the condition code used.

1-3

APPENDIX J
DISCUSSION OF CARRY

AND OVERFLOW CONDITIONS

The detailed ramifications of carry and overflow are discussed in this appendix. The
tables show the three major forms and the possible cases in each.

Overflow occurs when ALU operations produce numbers outside the legal range of
-1.0~X<+ 1.0.

Normal standard carry logic applies to the ALU instructions ADD, SUB, ABA,
LIM, AND. For the instructions XOR, ABS, and LDA, the carry logic includes
additional considerations.

Normal Carry and Overflow

The 2920 standard representation of data is a signed 25-bit binary fraction. Positive
data can be considered simply 24-bit fractions with a sign bit, e.g.,
0.100000000000000000000000 means + 1/2. Negative data have a sign bit of 1 with
the remaining 24 bits representing the two's complement of the value, i.e., one
minus that value. An example:

1.010000000000000000000000 means -3/4.

However, the capability to shift left two positions makes it necessary to allow for a
26th and 27th bit for the sign. A 28th bit is necessary to preserve the sign in the case
of carry information if two numbers are left-shifted and then added.

Therefore, the 2920 logic carries 28 bits, four bits to the left of the imaginary binary
point and 24 bits to its right:

ssss.bbbb bbbb bbbb bbbb bbbb bbbb

If the source operand is to be negated during an instruction, then before the
indicated operation is carried out, the one's complement of the source is formed by
complementing all its bits and setting the carry-in bit to one. This happens in three
circumstances: in taking the absolute value of a negative number, in an
unconditional subtraction, or in a conditional subtraction when the prior carry was
0.)

Standard carry, then, is propagated to the left, beginning at the least-significant
(right-most) bit and continuing into the sign bits if necessary. Carry into the sign bits
may mean an overflow condition, since in overflow the four sign bits become une­
qual. The leftmost bit of the source operand always retains the original sign even if
shifting occurs.

Normal practice is to keep the numbers scaled between -1.0 and + 1.0, such that the
arithmetic operations do not create values' outside this range. If out-of-range values
do result, this is an overflow situation.

Conditional iocodes do not affect carry and overflow for standard-carry instruc­
tions (except conditional subtract). The calculation acts as if a straight add were be­
ing done: if a carry into the sign bit occurs, then the carry flag is set. (Subtraction is
performed as an add after taking the two's complement of the source operand and
setting carry-in to 1.)

J-l

Discussion of Carry and Overflow Conditions 2920 Assembly Language

J-2

LIM produces a + 1.0 or a -1.0 using the sign of the source only, and sets the carry
to O. Overflow for LIM depends on whether a left-shift occurred. When overflow
limiting is enabled and an overflow condition occurs on an ADD, ABS, or ABA in­
struction, the result is limited, i.e., becomes -1.0 or + 1.0 (This never applies to
AND.)

Nonstandard Carry and Overflow

There are three instructions in this group: ABS, LDA, and XOR.

For ABS and LDA, carry is set to O. The implicit value of the destination is initially
forced to zero. Overflow limiting is on. There can be overflow only if the source was
left shifted, possibly making the four sign bits unequal.

A conditional iocode on an LDA can turn the instruction into a no-operation if the
bit tested in the DAR is O. Conditional iocodes on an ABS instruction get a warning
(only) from the Assembler.

The case of XOR is complicated by the potential of left shifts. The table shows these
extra cases. Use of a conditional iocode on an XOR causes overflow limiting to be
turned on. (So does an EOP. ABA with a conditional iocode turns it off.) Limiting
will occur if overflow limiting is enabled.

2920 Assembly Language Discussion of Carry and Overflow Conditions

Table of Carry and Overflow Cases

SIGN OF SIGN OF
DESTINATION SOURCE

OPER. CONTENTS CONTENTS CARRY BIT

ADD

ADD positive, positive 0

ADD negative, negative 1

ADD positive, negative ***

ADD negative, positive ***

SUB

SUB positive, positive ***

SUB negative, negative ***

SUB positive, negative ***

SUB negative, positive 1

ABA

ABA positive, positive 0

ABA negative, negative 1

ABA positive, negative 0

ABA negative, positive ***

XOR OVERFLOW BIT

XOR positive, positive 0 o unless 1 left-shifted
into sign bits

XOR negative, negative 1 1

XOR positive, negative 0 o unless shift

XOR negative, positive 0 o with no shift
1 o if shift only ones

1 1 all other cases

(*** means "if the result is positive, carry is set to 1; otherwise, 0")

1-3

ABA, 1-14; 1-15,3-1,4-12
ABS, 1-14, 1-15,3-2,4-12
absolute

locations, 2-4
value instruction, see ABS
value and add instruction, see ABA

AID, 1-2, 1-17
ADD, 1-15,3-2, 3-6, 3-8,4-1

conditional, 1-15, 3-3, 1-2
two's complement, Appendix I

addresses, 1-11, 1-12, 2-1, 2-4, 3-6
bit assignments, Appendix F
wraparound, 2-4

ADF bits, 1-17, 1-18, Appendix F
ADK bits, 1-17, 1-18, Appendix F
ALU, 1-2, 1-14
analog

control field, see iocode
inputs, 1-1, 1-5,3-6
outputs, 1-1, 3-7
section, 1-2, 1-16

AND, 1-15,3-3,4-13
anti-aliasing

filters, 1-1
applications, 1-1, Chapter 4
arithmetic

elementary, 4-1, Appendix I
) error tolerance, 4-3

logic unit, 1-14
section, 1-2, 1-11
terms into 2920 code, 4-2, 4-3,4-8,4-9

ASCII, Appendix E
see also ISIS manual

assembler
controls, 1-9, Chapter 5
defined, 1-4
files, 1-9
functions, 1-9
invocation, 5-1
reports, 1-4

assembly
language-defined, 1-4
language-elements, 1-6, Chapter 2
termination, see END

at-sign, 2-1

barrel shifter see scaler
binary, 1-4

fraction, Appendix I
patterns for mnemonics, Appendix F
point, 1-11, Appendix I
search, 1-13, 1-16, 1-17

blanks, 1-6,2-2,2-4, 5-3

capabilities, 1-1
capacitor

constraints, 1-17
effect on 110 sequences, 1-17,3-6

carriage-return, 2-1, 2-2

INDEX

carry
and overflow, Appendix J
effect on condo subtr., 1-15,3-8
flag, 1-7, 2-4, 3-6
out, 4-6, 1-3
tables, Appendix J

channels, 1-1, 3-6, 3-7
characters, 2-2

special, 2-2
clock, 1-1

frequency, 1-1, 3-1
instruction, 1-1, 3-7
sources, 1-1

CND iocodes, 1-18, 3-1 to 3-3,3-6
code

generated by assembler, Preface, 2-4
object, Preface
source, 2-2, 2-4, 2-5
used by computer, 1-4

colon, 1-6,2-2,2-5
comma, 1-6, 2-2, 2-4
comments

field,2-5
comparator, 1-2, 1-17
conditional

iocodes, 1-5, 1-7, 1-13,3-3
operations, 1-14, 1-15,3-2 to 3-4,1-2,1-3

configuration, Preface
constants, 1-5, 1-12 to 1-14, 1-16,2-5

converted to 2920 code, 4-2, 4-3
continuation lines, 2-4
control

lines, 1-9, 1-10, 5-3
options, 5-1, 5-3
word, 1-10

convert iocodes, see CVT
crosstalk, 1-18
CVT iocodes, 1-5, 1-7, 1-13, 1-17, 1-18,3-4
cycle, 1-14, 1-17

conversion, see CVT
generator, 1-11

DI A, 1-2, 1-17
DAC, 1-1, 1-2, 1-13, 1-17,3-4
DAR, 1-2, 1-12 to 1-18, 2-5, 3-2 to 3-8,

4-4 to 4-6, Appendix 1
DEBUG, 5-1, 5-2
debugging

labels, 2-5
symbol table, 5-1

default, 1-7, 2-4
ALU operation, 1-7,2-4,3-5
assembler controls, 5-1 to 5-3
iocode, 1-7, 2-4
shiftcode, 1-7, 2-4

delimiters, 1-6, 2-2
destination, 1-12, 2-4
digital/analog register, 1-2, (see DAR)

Index-1

Index-2

division, 4-5
by subtracting and restoring, 1-2
non-restoring, 1-15
two's complement, Appendix I

dollar sign, 2-2, 5-3

EJECT, 2-2, 5-1, 5-2
END,3-5
end-of -program

for assembler, see END
for 2920 program, see EOP

EOP, 1-11, 1-18,3-1,3-5
EQU, 2-4, 3-6
errors, Preface, 5-1

execution conflict examples, Appendix A
messages, 2-4, 2-5, Appendix G
tolerance in arithmetic, 4-3
to list file, 5-2

example, Appendix A
exclusive-or instruction, see XOR
execution-conflict errors

example, Appendix A
list, Appendix G

extension
filename, 1-10, 5-1, 5-2
of sign, Appendices I, J

features, 1-1
fetch, 1-11
fields, 1-6, 1-11, 2-2, 2-4, 2-5

(see also)
bit assignments, Appendix F
comment
destination
iocode
label
opcode
shiftcode
source

files, Preface, 1-9
listing, 1-10,2-5, Appendix A
object, Appendices A, C
source, 1-4, 5-1

filter
adaptive, 4-13
continuous, 4-6
designing, 4-6, 4-9
poles and zeroes, 4-6
sampled, 4-6
section, 4-7
stability, 1-14
time constant, 4-8
typical memory required, 1-3

FORTRAN
equivalent 2920 statements, 4-1 to 4-10

fraction
binary, Appendix I
-al weight per bit, Appendix I

function
analog, realized by 2920, 1-1, 1-14,4-13
-al elements, 1-1

overview, 1-2
closer look, 1-10

correlation, 4-13
implemented by program, 1-3
iocode, 1-7

limit on 2920 realizations, 1-3
performed by assembler, 1-9

gain, 4-7, 4-8
control, automatic, 4-13

HEX, 1-10
hexadecimal

object file format, Appendix C
horizontal tab, 2-2, 2-4

IN iocodes, 1-5, 1-17, 1-18,3-6
input

channels, 1-1
multiplexor, 1-2, 1-17
loutput operations, 1-3
sample, 1-3, 3-4

instruction, 1-6, Chapter 3
clock, 1-1, 1-2

-period, 1-3
detail on every, Chapter 3
example, 1-4
field bit assignments, Appendix F

invocation line, 5-1
iocode, 1-7, 1-17, 2-1, 2-4, Chapter 3,

Appendix F
ISIS, Preface, 2-1, 5-1

jumps, 1-3, 1-11,2-1
reEOP,3-5

keyword, 1-4,2-3, Appendix B
KM constants, .1-5
KP constants, 1-5

label, 1-6, 2-1, 2-4, 2-5
language

detailed rules, Chapter 2
general setup, 1-4, 1-6

LDA, 1-4, 1-14, 1-15,3-6
conditional, 1-15,3-4,3-6

LIM, 1-14, 1-15,3-7,4-12,4-13
limit instruction, see LIM
Limiters, 1-14,4-12
limiting, (see also overflow)

threshold, 4-12,4-13
line

continuation, 2-4
control, 5-1, 5-3
feed, 2-1, 2-2
input, 2-4
invocation, 5-1, 5-3

LIST, 1-10,2-2, Chapter 5
listing

example, Appendix A
file, Preface, 1-10, 2-5

load instruction, see LDA
location counter, 1-9,2-4
logic levels, 4-12
LST, 1-10,5-1 to 5-3

masking, 4-5, 4-13 (see also AND)
memory, 1-11
mnemonic, Preface, 1-4, 1-9,2-1

bit patterns, Appendix F

multiplexer
input, 1-2, 1-17
output, 1-2

multiplication, 1-15,4-2 to 4-4, Appendix I

name, 2-1, 3-6
nibbles, 1-10, Appendix F
NODEBUG, 1-10, Chapter 5
NOLIST, Chapter 5
NOOBJECT, Chapter 5
NOP, 1-8, 1-18,2-1,2-4,3-4 to 3-7
NOSYMBOLS, Chapter 5

OBJECT, 1-10, Chapter 5
object

code,
-example, Appendix A

file, Preface
output, Preface, Appendix C
program, 1-4

OF pin, 1-14
one's complement, 1-17, Appendix I
opcodes, 1-6, 1-9,2-5, Appendix F
operand, 1-6, 1-9,2-5

address, 1-12
destination, 1-6,2-5
source, 1-6, 2-5

operation
basic, 1-1
indicated, 1-6
simultaneous, 1-7
sequence, 4-1,4-2,4-3

options, assembler
control, 5-1
default, 5-1

oscillators, 4-13
OUTO, OUT1, ... OUT7, 1-5, 1-17, 1-18,3-7
overflow, Appendix J

ABA,3-1
ABS, 1-14
considerations, 4-1, 4-8, 4-12
detection, 1-13, Appendices I, J
EOP, 3-1, 3-5
LDA,I-14
LIM,I-14
limiting enabled/disabled, 1-14,3-1, J-2
scaling, 4-1
XOR, 3-1, 3-8

PAGELENGTH, 1-10, Chapter 5
PAGING, 1-10, Chapter 5
PAGEWIDTH, Chapter 5
parallelism, 1-7, 1-9,3-5
partial product, 4-4, 1-2
partial remainder, 4-6
performance

limits, 1-3
parameters, 1-3

pinouts, 1-3
pipeline, 1-11
pole

complex conjugate pair, 1-3,4-9
memory needed per, 1-3
single real, 1-3,4-6,4-7

ports'
input! output see channels
storage array, 1-2, 1-12, 1-16

PRINT, 1-10, Chapter 5
processing

digital
advantages, 1-1

further functions, 4-13
program, 1-3, 1-4

copies, 3-1
flow, 1-9
object, 1-4
pass, 1-3, 1-11,3-1,4-7
source, 1-4

PROM, 1-1, 1-2
RUN mode, 1-10
section, 1-1 °

quantization noise, 4-1
question mark, 2-1,2-2

RAM (random access memory), 1-1, 1-2,
1-6

Rectifiers, 4-12
reference voltage, 1-1, 1-16, 3-4
ROM (read-only memory), 1-6,2-5
Run shiftcodes, 1-5, 1-13
RUBOUT character, see ISIS manual

re editing

sample
frequency, 1-11,4-6
input, 1-4, 1-7, 3-4, 3-6
interval, 1-3, 4-7, 4-8
output, 1-7, 1-18
rates, 1-17,3-1,4-6,4-7

sample-and-hold, 1-2, 1-16 to 1-18, 3-7
scaler, 1-2, 1-12, 1-13
scaling, 1-5, 1 ~ 7
semicolon, 1-6, 2-2, 2-5
sequence, see operation
shift

code, 1-5, 1-7, 2-1, 2-4, Appendix F
ing, 1-4,3-3, 3-4, Appendix I

sign
bit, 1-11
extended, Appendices I, J
extraction via XOR, 4-5, 4-6, 1-2
interpretation in two's comp, Appendix I

Simulator, 1-6,2-1,2-4,2-5
simultaneous operation, 1-7, 1-9,3-5
source

be with you always
code, 2-2,2-4,2-5
file, 5-1
line, Preface, 2-5
operand, 2-4, 2-5
program, 1-4

special character, 2-2, (see also by name)
startup

requirements, 1-1
statements, 2-2, 2-4
storage array, 1-12
SUB (subtract), 1-15,3-8,4-1

conditional, 1-15,3-4,3-8, 1-2, 1-3
two's complement, Appendix I

successive approximation, 1-13, 1-16, 1-17
SYMBOLS, 1-10, Chapter 5

Index-3

Index-4

symbols, 1-6,2-3
generating
reserved, 2-3, 2-4
table, 1-9,2-1,2-4,2-5,3-6
user-created, 2-1,2-4, 2-5

synonyms
for RAM location names, see EQU

syntax
for individual instructions, Chapter 3
formal, Appendix H

terms see arithmetic
testing

bits, 3-3
programs, see Simulator

time constant for filter, 4-8
timing, 1-1, 1-3,3-1
TITLE, 2-2, 5-2, 5-3
translation, 1-4
TTL

inputs, 1-1
outputs, 1-1

clock, 1-1
two's complement, 1-11, 1-17, Appendix I

underline, 2-1

variable, 1-11,2-4,2-5
division by, 4-5
multiplying by, 4-4
range, 1-11
scaling, 4-1
scratch, 2-4, 3-6
smallest change in, 1-11

voltage
offset, 1-17
output, 1-7
reference, 1-1, 1-16, 3-4

wraparound, 2-4

XOR (exclusive or), 1-15,3-8,4-5,4-6,4-13

zeroes, 4-6, 4-7

2920 Assembly Language Manual
9800987-01

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME ___ DATE ___ _

TITLE __ _

COMPANYNAME/DEPARTMENT __ ___
ADDRESS ___ ___

CITY ___ _ STATE ______________________________ _ ZIP CODE ______ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS •.•

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 10~· SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

\I I
NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

