

i I IO
Series 3000 Family Of

Computing Elements —
The Total System Solution.

Since its introduction in September, 1974, the Series 3000 family of computing
elements has found acceptance in a wide range of high performance
applications from disk controllers to airborne CPU'’s.

The Series 3000 family represents more than a simple collection of bipolar
components, it is a complete family of computing elements and hardware/software
support that greatly simplifies the task of transforming a design from concept

to production.

The Series 3000 Component Family

A complete set of computing elements that are designed as a system requiring
a minimum amount of ancillary circuitry.

3001 Microprogram Control Unit.

3002 Central Processing Element.

3003 - Look-Ahead Carry Generator.

3212 Multi-Mode Latch Buffer.

3214 Interrupt Control Unit.

3216/26 Parallel Bi-directional Bus Driver.
ROMs/PROMs A complete set of bipolar ROMs and PROMs.
RAMs A Complete family of MOS and bipolar RAMs.

The Series 3000 Support

A comprehensive support system that assists the designer in writing
microprograms, debugging hardware and microcode, and programming
prototype and production PROMs.

CROMIS Cross microprogram assembler.

MDS-800 Microcomputer development system with TTY/CRT,
line printer, diskette, PROM programmer and high
speed paper tape reader facilities.

ICE-30 In-circuit emulation for the 3001 MCU.
ROM-SIM ROM simulation for all of Intel's Bipolar ROMs

and PROMs.
Application Central processor and disk controller designs and
Notes system timing considerations.
Customer Comprehensive 3 day course covering the component
Course family, CPU and controller designs, microprogramming

and the MDS-800, ICE-30 and ROM-SIM operation.

The Series 3000 family is designed to provide a Total System Solution: high
performance, minimum package count and total commitment to support.

Series 3000
Reference
Manual

Contents

INTRODUCTIONciiiiiiiiinnnnnn, 1-1
COMPONENT FAMILY 2-1
3001 Microprogram Control Unit 2-1
3002 Central Processing Element 2-15
3003 Look-Ahead Carry Generator 2-31
3212 Multi-Mode Latch Buffer 2-39
3214 Interrupt Control Unit 2-49
3216/3226 Parallel Bi-Directional
BusDriver........ccooviiiiiiia... 2-61
APPLICATIONS 3-1
3000 Family System Timing 3-1
Disk Controller Designed With Series 3000
Computing Elements.................. 3-9

Central Processor Designs Using The
Intel® Series 3000 Computing

Elementsc.ciiiiiiiiiinnnn.. 3-19
ORDERING AND PACKAGING

INFORMATION ... i, 4-1

Ordering Information 4-1

Package Outlines 4-2

Series 3000 Family

INTRODUCTION

A tamily architecture

To reduce component count as far as practical, a
multi-chip LsI microcomputer set must be designed as a
complete, compatible family of devices. The omission of
a bus or a latch or the lack of drive current can multiply
the number of miscellaneous ssI and MsI packages to a
dismaying extent—witness the reputedly LSI mini-
computers now being offered which need over a hun-
dred extra TTL packages on their processor boards to
support one or two custom LSI devices. Successful inte-
gration should result in a minimum of extra packages,
and that includes the interrupt and the input/output
systems.

With this objective in mind, the Intel Schottky bipo-
lar LsI microcomputer chip set was developed. Its two
major components, the 3001 Microprogram Control
Unit (MCU) and the 3002 Central Processing Element
(CPE), may be combined by the digital designer with

busses to be formed simply by connecting inputs and
outputs together.

Each CPE represents a complete two-bit slice through
the data-processing section of a computer. Several CPEs
may be arrayed in parallel to form a processor of any
desired word length. The MCU, which together with the
microprogram memory, controls the step-by-step oper-
ation of the processor, is itself a powerful micro-
programed state sequencer. ‘

Enhancing the performance and capabilities of these
two components are a number of compatible computing
elements. These include a fast look-ahead carry gener-
ator, a priority interrupt unit, and a multimode latch
buffer. A complete summary of the first available mem-
bers of this family of LSI computing elements and mem-
ories is given in the table on this page.

standard bipolar LSI memory to construct high-per- 3001 Microprogram control unit
formance controller-processors (Fig. 1) with a minimum 3002 Central processing element
of ancillary logic. 3003 Look-ahead carry generator
Among the features that minimize package count and ;;:i 'F“"‘,‘“'_m°f’° latch buffer
improve performance are: the multiple independent riority interrupt unit .
L. . . 3216 Noninverting bidirectional bus driver
data and address busses that eliminate time multiplex- N A
. d th d f | latches: the th 3226 Inverting bidirectional bus driver
ing and the need for external latches; the three-state 3601 256-by-4-bit programable read-only memory
output buffers Wllh.hlgh fanout that make bus drivers 3604 512-by-8-bit programable read-only memory
unnecessary except in the largest systems, and the sepa- 3301A 256-by-4-bit read-only memory
rate output-enable logic that permits bidirectional 3304A 512-by-8-bit read-only memory
CONTROL TO MEMORY DATA BUS
MEMQRY 1/0 ADDRESS BUS T0 MEMORY
ﬂ 16 BITS 16 BITS
A QUTPUTS 0 OUTPUTS
E PIPELINE o CPARRAY
% REGISTER \ L B!15 3002's
oz (OPTIONAL)
MICRO. =7] X R0
2
'A‘\S’&Ess P,,??,?SN = TO \ INPUTS 1 INPUTS M INPUTS C
CONTROL A\
1 S\
ADDRESS (N MASK BUS o) &
P 2 <
cLOCK E el N
98ITS % » - ONS
187 2, <, < ZANE
MICROPROGRAM > ey 2 DN
ADDRESS BUS ACO6 4%) 2
R
001 FO \ Ve \)
AR 2\
1 ARV 1817 —\
v
-
FLAG CONTROL INPUTS
SECONDARY INSTRUCTION BUS 8BITS \
FROM EXTERNAL DATA IN FROM
1/0 DEVICES MEMORY

1. Bipolar microcomputer. Block diagram shows how to implement a typical 16-bit controller-processor with new family of
bipolar computer elements. An array of eight central processing elements (CPEs) is governed by a microprogram control unit
(MCU) through a separate read-only memory that carries the microinstructions for the various processing elements. This ROM

may be a fast, off-the-shelf unit.

Intel Corporation assumes no responsibility for the use of any circuitry or microprogram other than circuitry or microprograms embodied in an Intel product. No other circuit patent licenses are implied.

1-1

Series 3000 Family

CPEs form a processor

Each cPE (Fig. 2) carries two bits of five independent
busses. The three input busses can be used in several
different ways. Typically, the K-bus is used for micro-
program mask or literal (constant) value input, while
the other two input busses, M and I, carry data from ex-
ternal memory or input/output devices. D-bus outputs
are connected to the CPE accumulator; A-bus outputs
are connected to the CPE memory address register. As
the CPEs are wired together, all the data paths, registers,
and busses expand accordingly.

Certain data operations can be performed simply by
connecting the busses in a particular fashion. For ex-
ample, a byte exchange operation, often used in data-
communications processors, may be carried out by wir-
ing the D-bus outputs back to the I-bus inputs, ex-
changing the high-order outputs and low-order inputs.
Several other discretionary shifts and rotates can be
accomplished in this manner.

A sixth CPE bus, the seven-line microfunction bus,
controls the internal operation of the CPE by selecting
the operands and the operation to be performed. The
arithmetic function section, under control of the micro-
function bus decoder, performs over 40 Boolean and
binary functions, including 2’s complement arithmetic
and logical AND, OR, NOT, and exclusive-NOR. It incre-
ments, decrements, shifts left or right, and tests for zero.

Unlike earlier MsI arithmetic-logic units, which con-
tain many functions that are rarely used, the micro-
function decoder selects only useful CPE operations.
Standard carry look-ahead outputs, X and Y, are gener-
ated by the CPE for use with available look-ahead de-
vices or the Intel 3003 Look-ahead Carry Generator. In-
dependent carry input, carry output, shift input, and
shift output lines are also available. .

What's more, since the K-bus inputs are always
ANDed with the B-multiplexer outputs into the arith-
metic function section, a number of useful functions
that in conventional MsI ALUs would require several
cycles are generated in a single CPE microcycle. The
type of bit masking frequently done in computer control
systems can be performed with the mask supplied to the
K-bus directly from the microinstruction.

Placing the K-bus in either the all-one or all-zero
state will, in most cases, select or deselect the accumula-
tor in the operation, respectively. This toggling effect of
the K-bus on the accumulator nearly doubles the CPE’s
repertoire of microfunctions. For instance, with the
K-bus in the all-zero state, the data on the M-bus may
be complemented and loaded into the CPE’s accumula-
tor. The same function selected with the K-bus in the
all-one state will exclusive-NOR the data on the M-bus
with the accumulator contents.

MEMORY ADDRESS BUS QUTPUTS

MEMORY DATA 8US
———
0, D

L

MEMORY OUTPUT . MEMORY DATA
ADDRESS | BUFFER Ir I 0 ENABLE
| ALicTen AC REGISTER I
L L
CARRY « ! ol .
I(.]?j?;ul}gEAD v Amggmgnc O— CARRY INPUT
e coj SECTION SHIFT RIGHT
g‘tﬁé&rcmm u T) QuTPUT
SHIFT RIGHT “"j MULTIPLEXER MULTIPLEXER |
INPUT Vee A 8
snu—l |
—— T }
‘5
MICRO: o t] |
MICRO
FuNCTION o FUNCTION SCRATCHPAD
INPUTS ?EE DECODER Ro-Ro. T I
— |

r

M, Mo

[—
MEMORY DATA
BUS INPUTS

— v v

1 1o K, Ko
—_— ———
EXTERNAL MASK BUS
BUSINPUTS INPUTS

2. Central processing element. This element contains all the circuits representing a two-bit-wide slice through a small com-
puter’s central processor. To build a processor of word width N, all that’s necessary is to connect an array of N/2 CPEs together.

Series 3000 Family

Three innovations

The power and versatility of the CPE are increased by
three rather novel techniques. The first of these is the
use of the carry lines and logic during non-arithmetic
operations for bit testing and zero detection. The carry
circuits during these operations perform a word-wide
logical OR (ORing adjacent bits) of a selected result from
the arithmetic section. The value of the OR, called the
carry OR, is passed along the carry lines to be ORed with
the result of an identical operation taking place simulta-
neously in the adjacent higher-order CPE.

Obviously, the presence of at least one bit in the logi-
cal 1 state will result in a true carry output from the
highest-order CPE. This output, as explained later, can
be used by the MCU to determine which microprogram
sequence to follow. With the ability to mask any desired
bit, or set of bits, via the K-bus inputs included in the
carry OR, a powerful bit-testing and zero-detection facil-
ity is realized.

The second novel CPE feature is the use of three-state
outputs on the shift right output (RO) and carry output
(CO) lines. During a right shift operation, the CO line is
placed in the high-impedance (Z) state, and the shift
data is active on the RO line. In all other CPE operations,
the RO line is placed in the Z state, and the carry data is
active on the CO line. This permits the CO and RO lines
to be tied together and sent as a single rail input to the
MCU for testing and branching. Left shift operations uti-
lize the carry lines, rather than the shift lines, to propa-
gate data.

The third novel CPE capability, called conditional
clocking, saves microcode and microcycles by reducing
the number of microinstructions required to perform a
given test. One extra bit is used in the microinstruction
to selectively control the gating of the clock pulse to the
central processor (CP) array. Momentarily freezing the
clock (Fig. 3) permits the CPE microfunction to be per-
formed, but stops the results from being clocked into
the specified registers. The carry or shift data that re-
sults from the operation is available because the arith-
metic section is combinatorial, rather than sequential.
The data can be used as a jump condition by the MCU
and in this way permits a variety of nondestructive tests
to be performed on register data.

Microprogram control

The classic form of microprogram control incorpo-
rates a next-address field in each microinstruction—any

MICROINSTRUCTION WORD

CONDITIONAL CLOCKING
CONTROL BIT

CYCLE TIME

CP ARRAY
NORMAL CLOCKING

N/

CONDITIONAL CLOCKING

CLock
INPUT

FROM
cLock

3. Conditional clock. This feature permits an extra bit in
microinstruction to selectively control gating of clock pulse
to CP array. Carry or shift data thus made available permits
tests to be performed on data with fewer microinstructions.

other approach would require some type of program
counter. To simplify its logic, the MCU (Fig. 4) uses the
classic approach and requires address control informa-
tion from each microinstruction. This information is
not, however, simply the next microprogram address.
Rather, it is a highly encoded specification of the next
address and one of a set of conditional tests on the MCU
bus inputs and registers.

The next-address logic and address control functions
of the MCU are based on a unique scheme of memory
addressing. Microprogram addresses are organized as a
two-dimensional array or matrix. Unlike in ordinary
memory, which has linearly sequenced addresses, each
microinstruction is pinpointed by its row and column
address in the matrix. The 9-bit microprogram address
specifies the row address in the upper 5 bits and the
column address in the lower 4 bits. The matrix can
therefore contain up to 32 row addresses and 16 col-
umn addresses for a total of 512 microinstruction
addresses.

The next-address logic of the MCU makes extensive
use of this addressing scheme. For example, from a par-
ticular row or column address, it is possible to jump ei-
ther unconditionally to any other location in that row or
column or conditionally to other specified locations, all
in one operation. For a given location in the matrix
there is a fixed subset of microprogram addresses that
may be selected as the next address. These are referred
to as a jump set, and each type of MCU address control
jump function has a jump set associated with it.

Incorporating a jump operation in every micro-
instruction improves performance by allowing process-
ing functions to be executed in parallel with program
branches. Reductions in microcode are also obtained
because common microprogram sequences can be
shared without the time-space penalty usually incurred
by conditional branching.

Independently controlled flag logic in the MCU is
available for latching and controlling the value of the
carry and shift inputs to the CP array. Two flags, called
C and Z, are used to save the state of the flag input line.
Under microprogram control, the flag logic simulta-
neously sets the state of the flag output line, forcing the
line to logical 0, logical 1, or the value of the C or Z flag.

The jump decisions are made by the next-address
logic on the basis of: the MCU’s current microprogram
address; the address control function on the accumula-
tor inputs; and the data that’s on the macroinstruction
(X) bus or in the program latch or in the flags. Jump de-
cisions may also be based on the instantaneous state of
the flag input line without loading the value in one of
the fags. This feature eliminates many extra micro-
instructions that would be required if only the flag flip-
flop could be tested.

Microinstruction sequences are normally selected by
the operation codes (op codes) supplied by the micro-
instructions, such as control commands or user instruc-
tions in main memory. The MCU decodes these com-
mands by using their bit patterns to determine which is
to be the next microprogram address. Each decoding re-
sults in a 16-way program branch to the desired micro-
instruction sequence.

Series 3000 Family

MICROPROGRAM

ROWADDRESS COLUMN ADDRESS
ENABLE ROW ADDRESS \ (
INTERRUPT STROBE ENABLE ~ MAg - MA, MA; - MAg
I__ — — — — — — — — —| —— — — «—l
ac. 0UTPUT ouTPUT
*—1 BUFFER BUFFER
NEXT ACs
ADDRESS | AC
CONTROL { AC, ENABLE
FUNCTION | ac, INPUT
INPUTS PSSR I O B O A A R o m e B g o P
J RNSNSIE R R IS RS
A%q: =239

MICROPROGRAM |
ADDRESS LOAD I

MICROPROGRAM
ADDRESS REGISTER

(11T

il

CLK :! e
GND NEXT-ADDRESS LOGIC
Vee
Y
PROGRAM
| b SuEeE LATCH
I _l QUTPUTS
C.Z FLAGS QUTPUT PROGRAM
l o BUFFER LATCH
I “F* LATCH
FCo FC, Ft Fo FC,FCy PX; -ooooee PX4 SXg--oee- SXo
INPUT OUTPUT —y—rt o —— —
ONTR ! UCTH | UCTIONS
CONTROL FLAG LOGIC i i«

4. Microprogram control unit. The MCU’s two major control functions include controlling the sequence of microprograms
fetched from the microprogram memory, and keeping track of the carry inputs and outputs of the CP array by means of the

flag logic control.

Cracking the op codes

For instance, the MCU can be microprogramed to di-
rectly decode conventional 8-bit op codes. In these op
codes the upper 4 bits specify one of up to 16 instruction
classes or address modes, such as register, indirect, or
indexed. The remaining bits specify the particular sub-
class such as ADD, SKIP IF ZERO, and so on. If a set of op
codes is required to be in a different format, as may oc-
cur in a full emulation, an external pre-decoder, such as
ROM, can be used in series with the X-bus to reformat
the data for the MCU.

In rigorous decoding situations where speed or space
is critical, the fu]l 8-bit macroinstruction bus can be
used for a single 256-way branch. Pulling down the load
line of the MCU forces the 8 bits of data on the X-bus
(typically generated by a predecoder) directly into the
microprogram address register.

The data thus directly determines the next micro-
program address which should be the start of the de-
sired microprogram sequence. The load line may also
be used by external logic to force the MCU, at power-up,
into the system re-initialization sequence.

From time to time, a microprocessor must examine
the state of its interrupt system to determine whether an
interrupt is pending. If one is, the processor must sus-
pend its normal execution sequence and enter an inter-
rupt sequence in the microprogram. This requirement is
handled by #he MCU in a simple but elegant manner.

When the microprogram flows through address row 0
and column 15, the interrupt strobe enable line of the
MCU is raised. The interrupt system, an Intel 3214 Inter-
rupt Control Unit, responds by disabling the row ad-
dress outputs of the MCU via the enable row address
line, and by forcing the row entry address of the micro-
program interrupt sequence onto the row address bus.
The operation is normally performed just before the
macroinstruction fetch cycle, so that a macroprogram is
interrupted between, not during, macroinstructions.

The 9-bit microprogram address register and address
bus of the MCU directly address 512 microinstructions.
This is about twice as many as required by the typical
16-bit disk-controller or central processor.

Series 3000 Family

STANDARD FUNCTION FIELDS

USER-DEFINABLE FUNCTION FIELDS

A A
e N —\
CP ARRAY FLAG LOGIC Jume MASK | oprionaL processoR
FUNCTION FUNCTION FUNCTION FIELD | FUNCTIONS |
S [& SR |
T8IT 48ITS 78ITS NBITS -| BIT l

5. Microinstruction format. Only a generalized microinstruction format can be shown since allocation of bits for the mask
field and optional processor functions depends on the wishes of the designer and the tradeoffs he decides to make.

Moreover, multiple 512 microinstruction memory
planes can easily be implemented simply by adding an
extra address bit to the microinstruction each time the
number of extra planes is doubled. Incidentally, as the
number of bits in the microinstruction is increased.
speed is not reduced. The additional planes also permit
program jumps to take place in three address dimen-
sions instead of two.

Because of the tremendous design flexibility offered
by the Intel computing elements, it is impossible to de-
scribe every microinstruction format exactly. But gener-
ally speaking, the formats all derive from the one in Fig.
5. The minimum width is 18 bits: 7 bits for the address
control functions, plus 4 bits for the flag logic control:
plus 7 bits for the CPE microfunction control.

More bits can be added to the microinstruction for-
mat to provide such functions as mask field input to the
CP array, external memory control, conditional clocking,
and so on. Allocation of these bits is left to the designer
who organizes the system. He is free to trade off
memory costs, support logic, and microinstruction
cycles to meet his cost/performance objectives.

Microprograming technology

® Microprogram: A type of program that directly
controls the operation of each functional element in a
miCroprocessor.

® Microinstruction: A bit pattern that is stored in a
microprogram memory word and specifies the oper-
ation of the individual LSI computing elements and re-
lated subunits, such as main memory and in-
put/output interfaces.

® Microinstruction sequence: The series of micro-
instructions that the microprogram control unit (MCU)
selects from the microprogram to execute a single
macroinstruction or control command. Micro-
instruction sequences can be shared by several mac-
roinstructions.

= Macrolinstruction: Either a conventional computer
instruction (e.g. ADD MEMORY TO REGISTER, IN-
CREMENT, and SKIP, etc.) or device controlier com-
mand (e.g., SEEK, READ, etc.).

The cost/performance spectrum

The total flexibility of the Intel LSI computing ele-
ments is demonstrated by the broad cost/performance
spectrum of the controllers and processors that can be
constructed with them. These include:
® High-speed controllers, built with a stand-alone ROM-
MCU combination that sequences at up to 10 mega-
hertz; it can be used without any CPEs as a system state
controller.)
® Pipelined look-ahead carry controller-processors,
where the overlapped microinstruction fetch/execute
cycles and fast-carry logic reduce the 16-bit add time to
less than 125 nanoseconds.
® Ripple-carry controller processors (a 16-bit design
adds the contents of two registers in 300 nanoseconds).
® Multiprocessots, or networks of any of the above con-
trollers and processors, to provide computation, inter-
rupt supervision, and peripheral control.

These configurations represent a range of micro-
instruction execution rates of from 3 million to 10 mil-
lion instructions per second, or up to two orders of
magnitude faster, for example, than p-channel micro-
processors. Moreover, the increases in processor per-
formance are achieved with relative simplicity. A
ripple-carry 16-bit processor uses one MCU, eight CPEs,
plus microprogram memory. One extra computing ele-
ment, the 3003 Look-ahead Carry Generator, enhances

“the processor with fast carry. Increasing speed further

by pipelining, the overlap of microinstruction fetch and
execute cycles, requires a few D-type Msl flip-flops.

At the multiprocessor level, the microprogram
memory, MCU, or CPE devices can be shared. A 16-bit
processor, complete with bus control and microprogram
memory, requires some 20 bipolar LsI packages and
half that many small-scale ICs. In this configuration, it
replaces an equivalent MSI TTL system having more
than 200 packages.

Furthermore, systems built with this large-scale inte-
grated circuitry are much smaller and less costly and
consume less energy than equivalent designs using
lower levels of transistor-transistor-logic integration.
Even allowing for ancillary logic circuits, the new bipo-
lar computing elements cut 60% to 80% off the package
count in realizing most of today’s designs made with
small- or medium-scale-integrated TTL.

intal

The INTEL® 3001 Microprogram Con-
trol Unit (MCU) controls the sequence in
which microinstructions are fetched
from the microprogram memory. Its
functions include the following:

Maintenance of the microprogram
address register.

Selection of the next microinstruction
based on the contents of the micro-
program address register.

Decoding and testing of data supplied
via several input busses to determine
the microinstruction execution
sequence.

Saving and testing of carry output data
from the central processor (CP) array.

Control of carry/shift input data to
the CP array.

Control of microprogram interrupts.

SCHOTTKY
BIPOLAR LSI
MICROCOMPUTER
SET

High Performance — 85 ns Cycle
Time
TTL and DTL Compatible
Fully Buffered Three-State and Open
Collector Outputs
Direct Addressing of Standard Bipolar
PROM or ROM
512 Microinstruction Addressability
Advanced Organization
9-Bit Microprogram Address Register
and Bus
4-Bit Program Latch
Two Flag Registers
Eleven Address Control Functions
Three Jump and Test Latch
Functions
16-way Jump and Test Instruction
Bus Function

Eight Flag Control Functions
Four Flag Input Functions
Four Flag Output Functions

40 Pin DIP

3001

MICROPROGRAM
CONTROL UNIT

PACKAGE CONFIGURATION

PX4—|
PX; |
PXg |
PXg5—f
S$X3
$X3—
PR, —
S$X;—|
PR;—
S$Xg—o|
PRo —
FC3—
FC;—
FO —f
FCo —
FC,q
Fl —f
ISE
CLK—

GND —

CONDOHW

-
o

L
12
13

15
16

18
19
20

INTEL®
3001

N =
L]
w S
=X

www
o N ©

35

33
32
31
30

28
27
26
25
24
23
22
21

3001

PIN DESCRIPTION

PIN SYMBOL NAME AND FUNCTION Type(
1-4 PX4-PX7 Primary Instruction Bus Inputs active LOW
Data on the primary instruction bus is tested by the JPX function to
determine the next microprogram address.
5,6,8,10 SXp-SX3 Secondary Instruction Bus Inputs active LOW
Data on the secondary instruction bus is synchronously loaded into the
PR-latch while the data on the PX-bus is being tested (JPX). During a
subsequent cycle, the contents of the PR-latch may be tested by the
JPR, JLL, or JRL functions to determine the next microprogram address.
7,9, 11 PRg-PR2 PR-Latch Qutputs open collector
The PR-latch outputs are asynchronously enabled by the JCE function.
They can be used to modify microinstructions at the outputs of the
microprogram memory or to provide additional control lines.
12,13, 15, FCp-FC3 Flag Logic Control Inputs
16 The flag logic control inputs are used to cross-switch the flags (C and Z)
with the flag logic input (F!) and the flag logic output (FO).
14 FO Flag Logic Output active LOW
The outputs of the flags (C and Z) are multiplexed internally to form the three-state
common flag logic output. The output may also be forced to a logical 0
or logical 1.
17 Fl Flag Logic Input active LOW
The flag logic input is demultiplexed internally and applied to the inputs
of the flags (C and Z). Note: the flag input data is saved in the F-latch
when the clock input (CLK) is low.
18 ISE Interrupt Strobe Enable Output
The interrupt strobe enable output goes to logical 1 when one of the JZR
functions are selected (see Functional Description, page 6). It can be used
to provide the strobe signal required by the INTEL 3214 Priority Interrupt
Control Unit or other interrupt circuits.
19 CLK Clock Input
20 GND Ground
21-24 ACo-ACg Next Address Control Function Inputs
37-39 All jump functions are selected by these control lines.
25 EN Enable Input
When in the HIGH state, the enable input enables the microprogram
address, PR-latch and flag outputs.
26-29 MAg-MA3 Microprogram Column Address Outputs three-state
30-34 MA4-MAg Microprogram Row Address Outputs three-state
35 ERA Enable Row Address Input
When in the LOW state, the enable row address input independently
disables the microprogram row address outputs. It can be used with the
INTEL 3214 Priority Interrupt Control Unit or other interrupt circuits
to facilitate the implementation of priority interrupt systems.
36 LD Microprogram Address Load Input
When in the active HIGH state, the microprogram address load input
inhibits all jump functions and synchronously loads the data on the
instruction busses into the microprogram register. However, it does not
inhibit the operation of the PR-latch or the generation of the interrupt
strobe enable.
40 vCC +5 Volt Supply
NOTE:

(1) Active HIGH unless otherwise specified.

22

3001

LOGICAL DESCRIPTION

The MCU performs two major control
functions. First, it controls the sequence
in which microinstructions are fetched
from the microprogram memory. For
this purpose, the MCU contains a micro-
program address register and the
associated logic for selecting the next
microinstruction address. The second
function of the MCU is the control of
the two flag flip-flops that are included
for interaction with the carry input and
carry output logic of the CP array.
The logical organization of the MCU
is shown in Figure 2.

'NEXT ADDRESS LOGIC

The next address logic of the MCU pro-
vides a set of conditional and uncondi-
tional address control functions. These
address control functions are used to
implement a jump or jump/test opera-
tion as part of every microinstruction.
That is to say, each microinstruction
typically contains a jump operation field
that specifies the address control
function, and hence, the next micro-
program address.

In order to minimize the pin count of
the MCU, and reduce the complexity of
the next address logic, the microprogram
address space is organized as a two
dimensional array or matrix. Each
microprogram address corresponds to
a unit of the matrix at a particular
row and column location. Thus, the 9-
bit microprogram address is treated as
specifying not one, but two addresses —
the row address in the upper five bits
and the column address in the lower
four bits. The address matrix can there-
fore contain, at most, 32 row addresses
and 16 column addresses for a total of
512 microinstructions.

The next address logic of the MCU
makes extensive use of this two com-
ponent addressing scheme. For example,
from a particular row or column
address, it is possible to jump uncon-
ditionally in one operation anywhere in
that row or column. It is not possible,
however, to jump anywhere in the
address matrix. In fact, for a given loca-
tion in the matrix, there is a fixed sub-
set of microprogram addresses that may
be selected as the next address. These

possible jump target addresses are referred
to as a jump set. Each type of MCU
address control (jump) function has a
jump set associated with it. Appendix

C illustrates the jump set for each
function.

FLAG LOGIC

The flag logic of the MCU provides a
set of functions for saving the current
value of the carry output of the CP
array and for controlling the value of
the carry input to the CP array. These
two distinct flag control functions are
called flag input functions and flag
output functions.

The flag logic is comprised of two
flip-flops, designated the C-flag and the
Z-flag, along with a simple latch, called
the F-latch, that indicates the current
state of the carry output line of the
CP array. The flag logic is used in con-
junction with the carry and shift logic
of the CP array to implement a variety
of shift/rotate and arithmetic functions.

ENABLE
ROW MICROPROGRAM MEMORY
ADDRESS ADDRESS
ERA MAg — — - MA, MA; - — MAg
INTERRUPT
STROBE 1SE I ouTPUT ouTPUT |
ENABLE I BUFFER BUFFER I
. en McuouTPUT
ACe ENABLE
— . I
ACs ———-FFFF =3
] ZZFEFEF =3 |
aopReEss AC —FFFFEF =3
CONTROL AC;—'——— l
FUNCTION
AC;
AC, I MICROPROGRAM I
ADDRESS REGISTER
ACo |
R ! HJ] HH I
cLK —{ NEXT ADDRESS LOGIC I
GND
Vocj [PRz PROGRAM
1] ourteut PRy LATCH
I 1 ——l BUFFER PRy OUTPUTS
I ouTPUT I
BUFFER “PR" LATCH
! !
— _— — T o — — — —Jr;—l———'——l
FCo FC, [Fo FC; FC3 PX; ~ = PX4 SX3 — - S$Xo
FLAG FLAG FLAG FLAG PRIMARY SECONDARY
LOGIC INPUT OUTPUT LOGIC INSTRUCTION INSTRUCTION
CONTROL CONTROL 8US BUS

Figure 2. 3001 Block Diagram

23

3001

FUNCTIONAL DESCRIPTION

ADDRESS CONTROL FUNCTIONS

The address control functions of the
MCU are selected by the seven input
lines designated ACp-ACg. On the
rising edge of the clock, the 9-bit micro-
program address generated by the next
address logic is loaded into the micro-
program address register. The next
microprogram address is delivered to the
microprogram memory via the nine
output lines designated MAg-MAg. The
microprogram address outputs are or-
ganized into row and column addresses
as:

MAg MA; MAg MAs MA,4

row address

MA3 MA; MA; MAg

column address

Each address control function is speci-
fied by a unique encoding of the data on
the function input lines. From three to
five bits of the data specify the par-
ticular function while the remaining bits
are used to select part of either the row
or column address desired. Function
code formats are given in Appendix A,
“Address Control Function Summary.”

The following is a detailed description
of each of the eleven address control
functions. The symbols shown below
are used throughout the description to
specify row and column addresses.

Symbol Meaning

rowp b-bit next row address
where n is the decimal row
address.

colp, 4-bit next column address

where n is the decimal
column address.

UNCONDITIONAL ADDRESS CON-
TROL (JUMP) FUNCTIONS

The jump functions use the current
microprogram address (i.e., the contents
of the microprogram address register
prior to the rising edge of the clock) and
several bits from the address control in-
puts to generate the next microprogram
address.

Mnemonic Function Description

Jcc Jump in current column.
ACp-ACy4 are used to
select 1 of 32 row ad-
dresses in the current
column, specified by

MAg-MAg, as the next
address

JZR Jump to zero row.
ACq-ACj3 are used to
select 1 of 16 column
addresses in rowg, as the
next address.

JCR Jump in current row.
AC-ACj3 are used to
select 1 of 16 addresses
in the current row, speci-
fied by MA4-MAg, as
the next address.

JCE Jump in current column/
row group and enable
PR-latch outputs. ACq-
AC, are used to select 1
of 8 row addresses in the
current row group, speci-
fied by MA7-MAg, as
the next row address. The
current column is speci-
fied by MAg-MA3. The
PR-latch outputs are
asynchronously enabled.

FLAG CONDITIONAL ADDRESS
CONTROL (JUMP/TEST)
FUNCTIONS

The jump/test flag functions use the
current microprogram address, the con-
tents of the selected flag or latch, and
several bits from the address control
function to generate the next micro-
program address.

Mnemonic Function Description

JFL Jump/test F-Latch.
ACg-AC3 are used to
select 1 of 16 row ad-
dresses in the current
row group, specified by
MAg, as the next row
address. If the current
column group, specified
by MAg, is colg-coly,
the F-latch is used to
select coly or colz as the
next column address. If
MAg specifies column
group colg-colqs, the
F-latch is used to select
colqg or colqq as the
next column address.

JCF Jump/test C-flag.
ACp-AC; are used to
select 1 of 8 row ad-
dresses in the current

row group, specified by
MA7 and MAg, as the
next row address. |f the
current column group
specified by MA3 is
colg-coly, the C-flag is
used to select coly or
col3 as the next column
address. If MAg3 specifies
column group colg-colys,
the C-flag is used to select
colqg or colqq as the next
column address.

JZF Jump/test Z-flag. Identical
to the JCF function de-
scribed above, except
that the Z-flag, rather
than the C-flag, is used to
select the next column
address.

PX-BUS AND PR-LATCH CONDI-
TIONAL ADDRESS CONTROL
(JUMP/TEST) FUNCTIONS

The PX-bus jump/test function uses the
data on the primary instruction bus
(PX4-PX7), the current mircoprogram
address, and several selection bits from
the address control function to generate
the next microprogram address. The
PR-latch jump/test functions use the
data held in the PR-latch, the current
microprogram address, and several selec-
tion bits from the address control
function to generate the next micro-
program address.

Mnemonic Function Description

JPR Jump/test PR-latch.
ACo-AC; are used to
select 1 of 8 row ad-
dresses in the current
row group, specified by
MA7 and MAg, as the
next row address. The
four PR-latch bits are
used to select 1 of 16
possible column ad-
dresses as the next
column address.

Mnemonic Function Description

JLL Jump/test leftmost PR-
latch bits. ACo-AC5 are
used to select 1 of 8 row
addresses in the current
row group, specified by
MA37 and MAg, as the
next row address. PR3
and PR3 are used to

2-4

3001

FUNCTIONAL DESCRIPTION (con't)

JRL

JPX

select 1 of 4 possible
column addresses in colg
through coly as the next
column address.

Jump/test rightmost PR-
latch bits. ACq and AC4
are used to select 1 of 4
high-order row addresses
in the current row group,
specified by MA; and
MAg, as the next row
address. PRg and PR are
used to select 1 of 4 pos-
sible column addresses in
colq2 through colyg as the
next column address.

Jump/test PX-bus and
load PR-latch. ACqg and
ACj are used to select 1
of 4 row addresses in the
current row group, speci-
fied by MAg-MAg, as the
next row address. PX4-
PX7 are used to select 1
of 16 possible column
addresses as the next
column address. SXg-

'SX3 data is locked in the

PR-latch at the rising
edge of the clock.

FLAG CONTROL FUNCTIONS

The flag control functions of the MCU
are selected .by the four input lines
designated FCo~-FC3. Function code
formats are given in Appendix B, ’Flag
Control Function Summary.’

The following is a detailed description
of each of the eight flag control
functions.

FLAG INPUT CONTROL FUNCTIONS

The flag input control functions select
which flag or fiags will be set to the cur-
rent value of the flag input (FI) line.
Data on Fl is stored in the F-latch when
the clock is low. The content of the F-
latch is loaded into the C and/or Z flag
on the rising edge of the clock.

Mnemonic Function Description

SCZ Set C-flag and Z-flag to

Fl. The C-flag and the Z-

flag are both set to the
value of Fl.

sTZ Set Z-flag to FI. The 2-
flag is set to the value of
Fl. The C-flag is
unaffected.

STC Set C-flag to FI. The C-
flag is set to the value of
Fl. The Z flag is
unaffected.

HCZ Hold C-flag and Z-flag.
The values in the C-flag

and Z-flag are unaffected.

FLAG OUTPUT CONTROL
FUNCTIONS

The flag output control functions
select the value to which the flag out-
put (FO) line will be forced.

Mnemonic

FFO Force FOto 0. FO is
forced to the value of
logical 0.

FFC Force FOto C. FO is
forced to the value of
the C-flag.

FFZ Force FOto Z. FO is
forced to the value of
the Z-flag.

FF1 Force FOto 1. FO is
forced to the value of
logical 1.

Function Description

LOAD AND INTERRUPT
STROBE FUNCTIONS

The load function of the MCU is con-
trolled by the input line designated LD.
If the LD line is active HIGH at the
rising edge of the clock, the data on
the primary and secondary instruction
busses, PX4-PX7 and SXg-SX3, is
loaded into the microprogram address
register. PX4-PX7 are loaded into
MAg-MA3 and SXo-SX3 are loaded
into MA4-MA7. The high-order bit of
the microprogram address register MAg
is set to a logical 0. The bits from the
primary instruction bus select 1 of 16
possible column addresses. Likewise,
the bits from the secondary instruction
bus select 1 of the first 16 row addresses.

The interrupt strobe enable of the MCU
is available on the output line designated
ISE. The line is placed in the active high
state whenever a JZR to colyg is selected
as the address control function. Cus-
tomarily, the start of a macroinstruction
fetch sequence is situated at rowg and
colqg so that the INTEL 3214 Priority
Interrupt Control Unit may be enabled
at the beginning of the fetch/execute
cycle. The priority interrupt control
unit may respond to the interrupt by
pulling the enable row address (ERA)
input line down to override the selected
next row address from the MCU. Then
by gating an alternative next row address
on to the row address lines of the micro-
program memory, the microprogram
may be forced to enter an interrupt
handling routine. The alternative row
address placed on the microprogram
memory address lines does not alter
the contents of the microprogram
address register. Therefore, subsequent
jump functions will utilize the row
address in the register, and not the
alternative row address, to determine
the next microprogram address.

Note, the load function always overrides
the address control function on ACq-
ACg. It does not, however, override the
latch enable or load sub-functions of the
JCE or JPX instruction, respectively. In
addition, it does not inhibit the interrupt
strobe enable or any of the flag control
functions.

25

3001

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature UNder Biaso vttt ettt e e e e e e 0°C to 70°C
SOrage TEMPEIAtUIE . . . o oot v et et e e e e e e e e e e e -65°C t0 +160°C
All Output and SUPPlY VOItagES o ottt et it e et it et e e e e e 0.5V to +7V
Al INpUt Voltagesottt e e e e e e e e e -1.0V to +5.5V
OULPUL CUITENTS . . . oottt et et et e e e e et e e e e et e e e 100 mA

COMMENT: Stresses above those listed under ‘‘Absolute Maximum Ratings’ may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Ta = 0°C to 70°C V. = 5.0V 5%

SYMBOL PARAMETER min - TYP? MAX uNIT CONDITIONS
Ve Input Clamp Voltage (All -0.8 -1.0 \% Ic =-5mA
Input Pins)
Ig Input Load Current:
CLK Input —0.075 -0.75 mA Vg =045V
EN Input -0.05 —0.50 mA
All Other Inputs —0.025 —0.25 mA
Ir Input Leakage Current:
CLK 120 MA Vg = 5.25V
EN Input 80 MA
All Other Inputs 40 uA
ViL Input Low Voltage 0.8 \ Vce = 5.0V
ViH Input High Voltage 20 \
lcc Power Supply Current (2) 170 240 mA
VoL Output Low Voltage 0.35 0.45 \" loL = 10 mA
(All Output Pins)
VoH Output High Voltage 24 3.0 v loH =—1 mA
(MAg-MAg, ISE, FO)
los Output Short Circuit Current -15 —28 —60 mA Vce = 5.0V
(MAg-MAg, ISE, FO)
10 (off) Oft-State Output Current:
MAg—MAg, FO -100 uA Vo =0.45V
MAg—MAg, FO, PRg—PR; 100 uA Vo =5.25V
NOTES:

(1) Typical values are for Tp = 25°C and nominal supply voltage,
(2) EN input grounded, all other inputs and outputs open.

2-6

3001

A.C. CHARACTERISTICS AND WAVEFORMS T, = 0°C to 70°C, V¢ = 5.0V 5%

SYMBOL PARAMETER min - TYP! MAX UNIT
tey Cycle Time (2 85 60 ns
twp Clock Pulse Width 30 20 ns
Control and Data Input Set-Up Times:

tsF LD, ACp-ACg 10 0 ns

tsk FCo, FCy 0 ns

tsx SXp-SX3, PX4-PX7 35 25 ns

tsi Fl 15 5 ns
Control and Data Input Hold Times:

tHE LD, ACo-ACg 5 0 ns

tHk FCo, FCy 0 ns

tHX SXo-SX3, PX4-PX7 20 5 ns

tHI Fi 20 8 ns

tco Propagation Delay from Clock Input (CLK) to Outputs 10 30 45 ns
(MAp-MAg, FO)

tko Propagation Delay from Control Inputs FC5 and FC3 to Flag 16 30 ns
Out (FO)

tFo Propagation Delay from Control Inputs ACo-ACg to Latch 26 40 ns
Outputs (PRg-PR2)

teo Propagation Delay from Enable Inputs EN and ERA to Outputs 21 32 ns
(MAg-MAg, FO, PRg-PR3)

tF Propagation Delay from Contro! Inputs ACo-ACg to Interrupt 24 40 ns
Strobe Enable Output (ISE)

NOTE:

(1) Typical values are for T o = 25°C and nominal supply voltage.

(2) toy = twp +tge +tco

TEST CONDITIONS: TEST LOAD CIRCUIT:

X Vv

Input pulse amplitude of 2.5 volts. e

Input rise and fall times of 5 ns between 1 volt and 2 volts.

Output load of 10 mA and 50 pF. 50092

Speed measurements are taken at the 1.5 volt level.

out
50 pF 1 KQ

CAPACITANCE®? T, = 25°C

SYMBOL PARAMETER MIN TYP MAX UNIT
Cin Input Capacitance:

CLK, EN 1" 16 pF
All Other Inputs 5 10 pF
Cout Output Capacitance 6 12 pF
NOTE:
(2) This p is periodically led and is not 100% tested. Condition of measurement is f = 1 MHz, Vg|as = 2.6V, V¢ = 5V and
Ta =25°C.

27

3001

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Biasottt et et e e e e —55°C to +125°C
Storage TeMPEratUureo v ittt e e e e e e e e e e e e —65°C to +160°C
All Output and Supply Voltageso e —0.5V to +7V
AlLINPUt Voltages e e e e -1.0V to +5.5V
OULPUL CUITBNTS . o o o ottt et e et e e e e e e e e e e e et e e e e e e 100 mA

*COMMENT: Stresses above those listed under “‘Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Ta = -55°C to +125°C, V¢ = 5.0V £10%

SYMBOL PARAMETER MIN TYPV MAX UNIT CONDITIONS
Ve Input Clamp Voltage (All —0.8 -1.2 \) Ilc=-5mA
Input Pins)
Ie Input Load Current:
CLK Input -75 -750 uA Vg =0.45V
EN Input -50 -500 uA
All Other Inputs -25 -250 MHA
Ir Input Leakage Current:
CLK 120 HA Vg =5.5V
EN Input 80 uA
All Other Inputs 40 MA
ViL Input Low Voltage 0.8 \" Vce = 5.0V
ViH Input High Voltage 2.0 \Y
lcc Power Supply Current (2} 170 250 mA
VoL Output Low Voltage 0.35 0.45 \ loL =10 mA
(All Output Pins)
VoH Output High Voltage 24 3.0 \ loH =—1TmA
(MAg-MAg, ISE, FO)
los Output Short Circuit Current -156 —28 —60 mA Vcc = 5.0V
(MAg-MAg, ISE, FO)
10 (off) Off-State Qutput Current:
MAg—MAg, FO -100 HA Vo =0.45Vv
MAp—MAg, FO, PRo—PR; 100 MA Vo =5.5V
NOTES:

(1) Typical values are for Ta = 25°C and nominal supply voltage.
(2) EN input grounded, all other inputs and outputs open.

A.C. CHARACTERISTICS AND WAVEFORMS T, = -55°C to +125°C, V¢ = 5.0V £10%

SYMBOL PARAMETER min - TYP? MAX UNIT "
tcy Cycle Time (2 95 60 ns
twp Clock Pulse Width 40 20 ns
Control and Data Input Set-Up Times:

tsF LD, ACy-ACg 10 0 ns

tsk FCo. FC4 0 ns

tsx SXo-SX3, PX4-PX5 35 25 ns

tsi Fl 15 5 ns
Control and Data Input Hold Times:

tHF LD, ACo-ACg . 5 0 ns

tHK FCq, FCy 0 ns

tHX SX-SX3, PX4-PX7 25 5 ns

tHi F1 22 8 ns

tco Propagation Delay from Clock Input (CLK) to Outputs 10 30 45 ns
(MAg-MAg, FO)

tko Propagation Delay from Control Inputs FC; and FC3 to Flag 16 50 ns
Out (FO)

tro Propagation Delay from Control Inputs ACg-ACg to Latch 26 50 ns
Outputs (PRg-PR2)

teo Propagation Delay from Enable Inputs EN and ERA to Outputs 21 35 ns
(MAp-MAg, FO, PRo-PR3)

try Propagation Delay from Control Inputs ACg-ACg to Interrupt 24 40 ns

Strobe Enable Output (ISE)

NOTE:
(1) Typical values are for Tp = 25°C and nominal supply voltage.

(2) toy =twp + tgF +tco

TEST CONDITIONS: TEST LOAD CIRCUIT:
5 Vee
Input pulse amplitude of 2.5 volts.

Input rise and fall times of 5 ns between 1 volt and 2 volts.
Output load of 10 mA and 50 pF. 50092
Speed measurements are taken at the 1.5 volt level.

out
50 pF 1K
CAPACITANCE®? T, = 25°C
SYMBOL PARAMETER MIN TYP MAX UNIT
Cin Input Capacitance:
CLK, EN 1" 16 pF
All Other Inputs 5 10 pF
Cout Output Capacitance 6 12 pF
NOTE:

(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, Vgjas = 2.5V, V¢c = 5V and
Ta =25°C.

3001

3001 WAVEFORMS

CLK \ /
CLOCK INPUT /

K— twp—>

tcy

EN, ERA
ENABLE INPUTS

[<tcoT

MAg-MAg
CONTROL MEMORY
ADDRESS OUTPUTS

tgp——>

ACq-ACg, LD
ADDRESS CONTROL
INPUTS

tro

PRo-PR2
“PR” LATCH OUTPUTS

[tk sk

FCo-FC3
FLAG CONTROL
INPUTS

thH

ts)

Fl
FLAG INPUT

K—tkoT

—teo

[<=tco

FO
FLAG OUTPUT

<—1tR)

ISE
INTERRUPT STROBE
ENABLE QUTPUT

tHx

Isx

SXo-PXy
INSTRUCTION
BUS INPUTS

2-10

3001

TYPICAL AC AND DC CHARACTERISTICS

Tco (ns) Twep — CLOEK PULSE WIDTH (ns)

CLOCK TO MA OUTPUTS (ns)

CLOCK PULSE WIDTH VS. Vcc AND TEMPERATURE

40
30
» 126°C
-——"“'T‘—"——'—_
10 %'c
0
45 475 5.0 5.25 5.50
Vee
CLOCK TO mA OUTPUTS VS. LOAD CAPACITANCE
30 [-65°C
126°C
P —_—
—
“a5 475 5.0 525 . 55 5.75
Vee
CLOCK TO MA OUTPUTS VS. LOAD CAPACITANCE
T
WC = MAy "
40— Vec = 5.0V
Ta = 25°C —
A
30
20
10
[

[50 100 150 200 250 300 350
LOAD CAPACITANCE (pF)

Icc VS. TEMPERATURE

190
Vee = 5.0V

180 —]
E \
i
8 \

170

160 '

-65°C o°Cc 25°C 70°C 126°C
TEMPERATURE (°C)
OUTPUT CURRENT VS. OUTPUT LOW VOLTAGE
80
Vege = 5.0V
60

OUTPUT CURRENT (mA)
8

70°C
125°C

-55°C
1

0 0.2 04 0.6 0.8

OUTPUT VOLTAGE (VOLTS)

OUTPUT CURRENT VS. OUTPUT HIGH VOLTAGE

T 56°C
Vg =50V 4 N
. e LN 125°C
70°C
/ %°c
_ -0
a4
E
- 15
F4
w
€ 2
g -
(3]
-
2 -2
3
-30
-3
40
] 10 20 30 40 5.0

OUTPUT VOLTAGE (VOLTS)

-1

3001

APPENDIX A ADDRESS CONTROL FUNCTION SUMMARY

FUNCTION NEXT ROW NEXT cOL
MNEMONIC DESCRIPTION
ACg s a4 3 2 1 o MAg; 6 5 a4 MA3 2 ;1 o
Jcc Jump in current column 0 0 dg d3 dy dy dg d4 d3 dy dy dg m3 my mp mg
JZR Jump to zero row 0o 1 0 d3 dy dy dg 0o o0 0 0 0 d3 dp dy dg
JCR Jump in current row 0 1 1 d3 dp dy do mg m; mg mg my d3 dp dy dg
JCE Jump in column/enable 11 1 0 d dy dg mg my d; dy dg m3 my m; mg
JFL Jump/test F-latch 1 0 d3 d dy dg mg d3 dp dy dg m3 1 f
JCF Jump/test C-flag 1 1 0 dp dy dg mg my dp dy dg m3 1 c
JZF Jump/test Z-flag 1 1 1 dp dy dgp mg my dy dy dg m3 1 z
JPR Jump/test PR-latches 11 0 dp dy d9 mg my dp dy dp P3 P2 P1 Po
JLL Jump/test left PR bits 11 1 dy dy dg mg my dp dy dg 0 1 pP3 P2
JRL Jump/test right PR bits 11 1 1 1 dy dg9 mg my 1 dy dg 1 1 Py PO
JPX Jump/test PX-bus 11 1 1 0 dqy dgo mg my mg dy dg X7 X X5 X4
SYMBOL MEANING
dn Data on address control line n
mp Data in microprogram address register bit n
Pn Data in PR-latch bitn
Xn Data on PX-bus line n (active LOW)
f.c z Contents of F-latch, C-flag, or Z-flag, respectively
APPENDIX B FLAG CONTROL FUNCTION SUMMARY
TYPE MNEMONIC DESCRIPTION FC4q 0
SCcz Set C-flag and Z-flag to f 0 0
Flag STZ Set Z-flag to f 0 1
Input STC Set C-flag to f 1 0
HCZ Hold C-flag and Z-flag 1 1
TYPE MNEMONIC DESCRIPTION FC3 2
FFO Force FOto 0 0 0
Flag FFC Force FO to C-flag 0 1
Output FFZ Force FO to Z-flag 1 0
FF1 Force FO to 1 1 1
LOAD
FUNCTION NEXT ROW NEXT COL
LD MAg 7 6 s a4 MA3 o> 1 o
0 see Appendix A see Appendix A
1 0 x3 X2 X1 Xo X7 X X5 X4
SYMBOL MEANING
f Contents of the F-latch
Xn Data on PX- or SX-bus line n (active LOW)

2-12

APPENDIX C JUMP SET DIAGRAMS

The following ten diagrams illustrate
the jump set for each of the eleven
jump and jump/test functions of the
MCU. Location 341, indicated by the
black square, represents one current
row (rows) and current column (colg)
address. The grey boxes indicate the
microprogram locations that may be
selected by the particular function as
the next address.

JCR
Jump in Current Row
rowg —>
current —
row
current goup
87
row 10
rowszq —9T T
colg colig
JPR
Jump/Test PR-Latch
rowg —>
current ~ ERSEREEERRanins current
A row
group HESEEESREEDWE R D group
? SRssamEiiiasatit Ms
10 S@EmEuREERER s 10
rowgy—> 1‘
colg colqg

JCE
Jump Column/Enable

T

current column

JLL
Jump/Test Left Latch

V8 4 B B R

00000000C

colg

rowg —> 00000:#C

rowzy—>

current
row
group
Mg

1

Jcc

Jump in Current Column

colg current

JFL

Jump/Test F-Latch

current
column
group

M3 =0

&
IC

)/

[n/u/u/ulalnlals/a]s/a/a]s/u/uls
0ooo000000

—>ERRGERREERNRTS
—> EERRERRRRETE R

colz (f=0)

JRL

colz (f=1)

Jump/Test Right Latch

VT
)i 5 4

colys
colyz

JZR

Jump to Zero Row
58 AR

a]
3ac

JCF, JZF
Jump/Test C-Flag
Jump/Test Z-Flag
current
column
group
M3=0

current
ow

r
group

D e
= Sr__

00000000C

7
10

JPX
Jump/Test PX-Bus

::g;:!ﬂt L

000000C 000 0

GERE T EURERE R

group HesasleEERaReEEE

EEREENETERRSUGEE

Mgs¢ Brilassasgsnenng
101

213

3001

TYPICAL CONFIGURATIONS

5V
ERA MAg- J
EN
3001
Mcu PRy —
i PRI —
ACo PRo[—
cL
FCQFCy Fi FO FCFC3 PXy--PX4SX3- SXg
———
CLK TO MEMORY DATA BUS
TO 3002 CP ARRAY
Non-Pipelined Configuration with
512 Microinstruction Addressability
1 T
11 1T T 1T
il il i i
05 - 05 Og — 07 Og - 01 05 - 04
3604 3604 3604
PROM PROM PROM PROM
5V
? CS1-CSq Ag-- CSy-CSg A A €S1-CSq A A sv
O T
L T

A CS4-CS1

3604
PROM

5V

ERA

3001
MCuU

cLK
FCoFCy FI FO FCy FC3 PXy-PXgSX3SXg

L

TTTT TTTT

—_—
TO MEMORY DATA BUS

TO 3002 CP ARRAY

Two D-type flip-flops of the 'S174 pipeline register are used as the
microprogram address register extension.

NOTE:

Pipelined Configuration with
2048 Microinstruction Addressability

CLK——{CLK

5V O—{CLR

PIPELINE
REGISTER

214

intal

The INTEL®3002 Central Processing
Element contains all of the circuits that
represent a 2-bit wide slice through the
data processing section of a digital com-
puter. To construct a complete central
processor for a given word width N, it
is simply necessary to connect an array
of N/2 CPE’s together. When wired
together in such an array, a set of CPE’s
provide the following capabilities:

2's complement arithmetic

Logical AND, OR, NOT and
exclusive-OR

Incrementing and decrementing
Shifting left or right

Bit testing and zero detection
Carry look-ahead generation
Multiple data and address busses

SCHOTTKY
BIPOLAR LSI
MICROCOMPUTER
SET

High Performance — 100 ns Cycle Time
TTL and DTL Compatible

N-Bit Word Expandable Multi-Bus
Organization
3 Input Data Busses
2 Three-State Fully Buffered Output
Data Busses

11 General Purpose Registers
Full Function Accumulator
Independent Memory Address Register

Cascade Outputs for Full Carry
Look-Ahead

Versatile Functional Capability
8 Function Groups
Over 40 Useful Functions
Zero Detect and Bit Test

Single Clock
28 Pin DIP

T ANPUTS \ \WPUTS

2-15

3002
CENTRAL
PROCESSING
ELEMENT

PACKAGE CONFIGURATION

lg—[1 o 28— Vec
1,2 271F,
Ko—{3 26— F4
K,—a 25Fp
X—5 24—F3
Yy—§6 23— ED
co—7 INTEL® 22f~Mq
RO—{8 3002 21f-M,
Li—{9 20p-D;
c1—10 19[-Dg
EA—11 18—CLK
Ay 12 17[—F,
Ag—{13 16—Fs
GND—{14 15\—Fg

3002

PIN DESCRIPTION

PIN SYMBOL NAME AND FUNCTION TYPE!

1,2 lo-14 External Bus Inputs Active LOW
The external bus inputs provide a separate input port for external input
devices.

3,4 Ko-K1 Mask Bus Inputs Active LOW
The mask bus inputs provide a separate input port for the microprogram
memory, to allow mask or constant entry.

5,6 X, Y Standard Carry Look-Ahead Cascade Outputs
The cascade outputs allow high speed arithmetic operations to be
performed when they are used in conjunction with the INTEL 3003
Look-Ahead Carry Generator.

7 Cco Ripple Carry Output Active LOW
The ripple carry output is only disabled during shift right operations. Three-state

8 RO Shift Right Output Active LOW
The shift right output is only enabled during shift right operations. Three-state

9] Shift Right Input Active LOW

10 Cl Carry Input Active LOW

n EA Memory Address Enable Input Active LOW
When in the LOW state, the memory address enable input enables the
memory address outputs (Ag-Aq).

12-13 Ag-Aq Memory Address Bus Outputs Active LOW
The memory address bus outputs are the buffered outputs of the Three-state
memory address register (MAR).

14 GND Ground

15-17, Fo-Fg Micro-Function Bus Inputs

24-27, The micro-function bus inputs control ALU function and register
selection.

18 CLK Clock Input

19-20 Do-D1 Memory Data Bus Outputs Active LOW
The memory data bus outputs are the buffered outputs of the full Three-state
function accumulator register (AC).

21-22 Mo-M4 Memory Data Bus Inputs Active LOW
The memory data bus inputs provide a separate input port for
memory data.

23 ED Memory Data Enable Input Active LOW
When in the LOW state, the memory data enable input enables the
memory data outputs (Dg-D1)

28 Vee +5 Volt Supply

NOTE:

1. Active HIGH, unless otherwise specified.

2-16

3002

LOGICAL DESCRIPTION

The CPE provides the arithmetic, logic
and register functions of a 2-bit wide
slice through a microprogrammed central
processor. Data from external sources
such as main memory, is brought into
the CPE on one of the three separate in-
put busses. Data being sent out of the
CPE to external devices is carried on
either of the two output busses. Within
the CPE, data is stored in one of eleven
scratchpad registers or in the accumula-
tor. Data from the input busses, the
registers, or the accumulator is available
to the arithmetic/logic section (ALS)
under the control of two internal multi-
plexers. Additional inputs and outputs
are included for carry propagation,
shifting, and micro-function selection.
The complete logical organization of the
CPE is shown below.

MICRO-FUNCTION BUS AND
DECODER

The seven micro-function bus input
lines of the CPE, designated Fo-Fg,
are decoded internally to select the
ALS function, generate the scratchpad
address, and control the A and B
multiplexers.

M-BUS AND I-BUS INPUTS

The M-bus inputs are arranged to bring
data from an external main memory
into the CPE. Data on the M-bus is
multiplexed internally for input to

the ALS.

The I-bus inputs are arranged to bring
data from an external 1/0 system into
the CPE. Data on the I-bus is also mul-
tiplexed internally, although indepen-
dently of the M-bus, for input to the
ALS Separation of the two busses per-
mits a relatively lightly loaded memory
bus even though a large number of 1/0
devices are connected to the I-bus.
Alternatively, the I-bus may be wired
to perform a multiple bit shift (e.g., a
byte exchange) by connecting it to one
of the output busses. In this case, 1/0
device data is gated externally onto the
M-bus.

SCRATCHPAD

The scratchpad contains eleven registers
designated Rg through Rg and T. The
output of the scratchpad is multiplexed
intermally for input to ALS. The ALS
output is returned for input into the
scratchpad.

ACCUMULATOR AND D-BUS

An independent register called the
accumulator (AC) is available for storing
the result of an ALS operation. The
output of the accumulator is multi-
plexed internally for input back to the

ALS and is also available vid a three-
state output buffer on the D-bus
outputs. Conventional usage of the
D-bus is for data being sent to the
external main memory or to external
1/0 devices.

A AND B MULTIPLEXERS

The A and B multiplexers select the two
inputs to the ALS specified on the
micro-function bus. Inputs to the A-
multiplexer include the M-bus, the
scratchpad, and the accumulator. The
B-multiplexer selects either the |-bus,
the accumulator, or the K-bus. The
selected B-multiplexer input is always
logically ANDed with the data on the
K-bus (see below) to provide a flexible
masking and bit testing capability.

ALS AND K-BUS

The ALS is capable of a variety of
arithmetic and logic operations, in-
cluding 2's complement addition, in-
crementing, and decrementing, plus
logical AND, inclusive-OR, exclusive-
NOR, and logical complement. The
result of an ALS operation may be
stored in the accumulator or one of the
scratchpad registers. Separate left input
and right output lines, designated LI
and RO, are available for use in right
shift operations. Carry input and carry
output lines, designated Cl and CO are
provided for normal ripple carry propaga-

tion. CO and RO data are brought out via
two alternately enabled tri-state buffers.
In addition, standard look ahead carry
outputs, designated X and Y, are available
for full carry look ahead across any word
length.

The ability of the K-bus to mask inputs
to the ALS greatly increases the versa-
tility of the CPE. During non-arithmetic
operations in which carry propagation
has no meaning, the carry circuits are
used to perform a word-wise inclusive-
OR of the bits, masked by the K-bus,
from the register or bus selected by the
function decoder. Thus, the CPE pro-
vides a flexible bit testing capability.
The K-bus is also used during arithmetic
operations to mask portions of the field
being operated upon. An additional.
function of the K-bus is that of supply-
ing constants to the CPE from the
microprogram.

MEMORY ADDRESS REGISTER
AND A-BUS

A separate ALS output is also avail-
able to the memory address register
(MAR) and to the A-bus via a three-
state output buffer. Conventional usage
of the MAR and A-bus is for sending ad-
dresses to an external main memory.
The MAR and A-bus may also be used
to select an external device when
executing 1/0 operations.

MAIN MEMORY
'ADDRESS DATA OUT
Ay Ao Dy Do
r JR— —— e ——
ENABLE ¢, ouTPUT ouTPUT £p ENABLE
ADDRESS I BUFFER BUFFER] DATA
| —| |
MEMORY
I ADDRESS AC REGISTER I
I REGISTER |
LOOK AHEAD {x ——l————]‘ CI CARRY IN
CARRY OUTPUTS
A4 +—— ARITHMETIC/LOGIC I
LEFTIN L1 RO RIGHT OUT
cLk —{ |
o] i | |
GND
MULTIPLEXER MULTIPLEXER
Fe A I B l
w1 i I
Fa MICRO- 1
MICRO-FUNCTION ;,_,’_ FUNCTION |
8US . DECODER SCRATCHPAD
2:] REGISTERS |
Fy Ro—Rg. T
Fo —— T |
| I _____.___I_T._.T_,.__..J
My Mg "ol Ky Ko
MEMORY EXT MASK
DATA IN DEVICE IN N

Figure 2. 3002 Block Diagram

2-17

3002

FUNCTIONAL DESCRIPTION

During each micro-cycle, a micro-
function is applied to F-bus inputs of
the CPE. The micro-function is decoded,
the operands are selected by the multi-
plexers, and the specified operation is
performed by ALS. If a negative going
clock edge is applied, the result of the
ALS operation is either deposited in

the accumulator or written into the
selected scratchpad register. In addition,
certain operations permit related ad-
dress data to be deposited in the MAR.
A new micro-function should only be
applied following the rising edge of the
clock.

By externally gating the clock input to
CPE, referred to as conditional clocking,
the clock pulse may be selectively
omitted during a micro-cycle. Since the
carry, shift, and look-ahead circuits are
not clocked, their outputs may be used
to perform a variety of non-destructive
tests on data in the accumulator or in
the scratchpad. No register contents are
modified by the operation due to the
absence of the clock pulse.

The micro-function to be performed is
determined from the function group
(F-Group) and register group (R-Group)
selected by the data on the F-bus. The
F-Group is specified by the upper three
bits of data, F4-Fg. The R-Group is
specified by the lower four bits of data,
Fo-F3. R-Group | contains Rg through
Rg, T, and AC and is denoted by the
symbol R,,. R-Group Il and R-Group Il
contain only T and AC. F-Group and
R-Group formats are summarized in
Appendix A.

The following is a detailed explanation
of each of the CPE micro-functions.

A general functional description of each
operation is given followed by two
additional descriptions which explain
the result of the micro-function with
both K-bus inputs at logical 0 or both at
logical 1. In most cases, the effect of
placing the K-bus in the all-one or the
all-zero state is to either select or de-
select the accumulator in the operation,
respectively. A micro-function
mnemonic is included with each descrip-
tion for reference purposes and to assist
in the design of micro-assembly
languages. The micro-functions are sum-
marized in Appendix A. The effective
micro-functions for the all-zero and the
all-one K-bus states are summarized in
Appendix B.

F-GROUP O R-GROUP |
Logically AND the contents of AC with
the data on the K-bus. Add the result to
the contents of R, and the value of the
carry input (Cl). Deposit the sum in AC
and R,

ILR K-BUS = 00
Conditionally increment R,, and load
the result in AC. Used to load AC from
R, or to increment R, and load a copy
of the resultin AC.

ALR K-BUS= 11

Add AC and CI to R, and load the re-
sultin AC. Used to add AC to a register.
If Ry, is AC, then AC is shifted left one
bit position.

F-GROUP O R-GROUP 11
Logically AND the contents of AC with
the data on the K-bus. Add the result to
Cl and the data on the M-bus. Deposit
the sum in AC or T, as specified.

ACM K-BUS = 00
Add Cl to the data on the M-bus. Load
the result in AC or T, as specified. Used
to load memory data in the specified
register, or to load incremented mem-
ory data in the specified register.

AMA K-BUS = 11
Add the data on the M-bus to AC and
Cl, and load the result in AC or T, as
specified. Used to add memory data

or incremented memory data to AC

and store the sum in the specified
register.

F-GROUP O R-GROUP 111
(General description omitted, see Ap-
pendix A.)

SRA K-BUS =00
Shift the contents of AC or T, as speci-
fied, right one bit position. Place the
previous low order bit value on RO and
fill the high order bit from the data on
LI. Used to shift or rotate ACor T
right one bit.

(K-bus = 11 description omitted, see
Appendix B.)

F-GROUP 1 R-GROUP |
Logically OR the contents of R, with
the data on the K-bus. Deposit the re-
sult in MAR. Add the data on the K-bus
to contents of R,, and Cl. Deposit the
resultin Ry,.

Ml K-BUS = 00
Load MAR from Rj,. Conditionally
increment R, . Used to maintain a
macro-instruction program counter.
DSM K-BUS = 11
Set MAR to all one’s. Conditionally
decrement R, by one. Used to force
MAR to its highest address and to
decrement Rp,.

F-GROUP 1 R-GROUP |1
Logically OR the data on the M-bus with
the data on the K-bus. Deposit the re-
sult in MAR. Add the data on the K-bus
to the data on the M-bus and Cl. De-
posit the sum in AC or T, as specified.
LMM K-BUS = 00
Load MAR from the M-bus. Add CI to
the data on the M-bus. Deposit the re-
sultin AC or T. Used to load the
address register with memory data for
macro-instructions using indirect
addressing.

LDM K-BUS = 11

Set MAR to all ones. Subtract one
from the data on the M-bus. Add CI

to the difference and deposit the result
in AC or T, as specified. Used to load
decremented memory datain AC or T.

F-GROUP 1 R-GROUP 111
Logically OR the data on the K-bus with
the complement of the contents of AC
or T, as specified. Add the result to the
logical AND of the contents of specified
register with the data on the K-bus. Add
the sum to Cl. Deposit the result in the
specified register.

CIA K-BUS = 00
Add ClI to the complement of the con-
tents of AC or T, as specified. Deposit
the result in the specified register. Used
to form the 1’s or 2's complement of
ACorT.

DCA K-BUS = 11
Subtract one from the contents of AC
or T, as specified. Add Cl to the dif-
ference and deposit the sum in the
specified register. Used to decrement
ACorT.

218

3002

FUNCTIONAL DESCRIPTION (con't)

F-GROUP 2 R-GROUP |
Logically AND the data on the K-bus
with the contents of AC. Subtract one
from the result and add the difference
to Cl. Deposit the sum in R,,.

CSR K-BUS = 00
Subtract one from Cl and deposit the
difference in R,. Used to conditionally
clear or set R, to all O's or 1's,
respectively.

SDR K-BUS = 11
Subtract one from AC and add the
difference to Cl. Deposit the sum in
R,. Used to store AC in R, or to store
the decremented value of AC in R,.

F-GROUP 3 R-GROUP |
Logically AND the contents of AC with
the data on the K-bus. Add the con-
tents of R, and ClI to the result. Deposit
the sum in Ry,.

INR K-BUS = 00
Add Cl to the contents of R, and
deposit the sum in R,. Used to in-
crement Ry,.

ADR K-BUS = 11
Add the contents of AC to R,. Add the
result to Cl and deposit the sum in Rj,.
Used to add the accumulator to a register
or to add the incremented value of the
accumulator to a register.

F-GROUP 2 R-GROUP I
Logically AND the data on the K-bus
with the contents of AC. Subtract one
from the result and add the difference
to Cl. Deposit the sum in ACor T,

as specified.

CSA K-BUS = 00
Subtract one from Cl and deposit the
difference in AC or T, as specified. Used
to conditionally clear or set ACor T.
SDA K-BUS = 11
Subtract one from AC and add the
difference to Cl. Deposit the sum in
AC or T, as specified. Used to store
ACin T, or decrement AC, or store
the decremented value of ACin T.

F-GROUP 2 R-GROUP 111
Logically AND the data of the K-bus
with the data on the |-bus. Subtract one
from the result and add the difference
to Cl. Deposit the sumin ACor T, as
specified.

(K-bus = 00 description omitted, see
CSA above.)

LDI K-BUS = 11
Subtract one from the data on the I-bus
and add the difference to Cl. Deposit
the sum in AC or T, as specified.

Used to load input bus data or decre-
mented input bus data in the specified
register.

F-GROUP 3 R-GROUP 11
(All descriptions omitted, identical to
F-Group O/R-Group |1 described above.)

F-GROUP 3 R-GROUP 111
Logically AND the data on the K-bus
with the data on the I-bus. Add CI

and the contents of AC or T, as speci-
fied, to the result. Deposit the sum in
the specified register.

INA K-BUS = 00
Conditionally increment the contents of
AC or T, as specified. Used to incre-
ment ACor T.

AlA K-BUS = 11
Add the data on the |-bus to the con-
tents of AC or T, as specified. Add Cl
to the result and deposit the sum in the
specified register. Used to add input
data or incremented input data to the
specified register.

F-GROUP 4 R-GROUP |

Logically AND the data on the K-bus
with the contents of AC. Logically
AND the result with the contents of
Ry. Deposit the final result in R,,.
Logically OR the value of Cl with the
word-wise OR of the bits of the final
result. Place the value of the carry OR
on the carry output (CO) line.

CLR K-BUS = 00

Clear R, to all 0's. Force CO to Cl.
Used to clear a register and force CO

to Cl.

ANR K-BUS = 11
Logically AND AC with R,,. Deposit the
resultin R,,. Force CO to one if the
result is non-zero. Used to AND the
accumulator with a register and test for
a zero result.

F-GROUP 4 R-GROUP II
Logically AND the data on the K-bus
with the contents of AC. Logically
AND the result with the data on the
M-bus. Deposit the final result in AC
or T, as specified. Logically OR the
value of Cl with the word-wise OR of
the bits of the final result. Place the
value of the carry OR on CO.

CLA K-BUS = 00
Clear AC or T, as specified, to all 0's.
Force CO to Cl. Used to clear the
specified register and force CO to Ci.
ANM K-BUS = 11
Logically AND the data on the M-bus
with the contents of AC. Deposit the
result in AC or T, as specified. Force
CO to one if the result is non-zero. Used
to AND M-bus data to the accumulator
and test for a zero result.

F-GROUP 4 R-GROUP 111
Logically AND the data on I-bus with
the data on the K-bus. Logically AND
the result with the contents of AC or T,
as specified. Deposit the final result in
the specified register. Logically OR Cl
with the word-wise OR of the bits of
the final result. Place the value of the
carry OR on CO.

(K-bus = 00 description omitted, see
CLA above.)

ANI K-BUS = 11
Logically AND the data on the |-bus
with the contents of AC or T, as speci-
fied. Deposit the result in the specified
register. Force CO to one if the result
is non-zero. Used to AND the |-bus to
‘the accumulator and test for a zero
resuit.

F-GROUP 5 R-GROUP |
Logically AND the data on the K-bus
with the contents of R,. Deposit the
resultin R,. Logically OR Cl with the
word-wise OR of the result. Place the
value of the carry OR on CO.

(K-bus = 00 description omitted, see
CLR above.)

TZR K-BUS =11
Force CO to one if R, is non-zero. Used
to test a register for zero. Also used to
AND K-bus data with a register (see
general description) for masking and,
optionally, testing for a zero result.

2-19

3002

FUNCTIONAL DESCRIPTION (con't)

F-GROUP 5 R-GROUP 11
Logically AND the data on the K-bus
with the data on the M-bus. Deposit the
result in AC or T, as specified. Logically
OR CI with the word-wise OR of the
result. Place the value of the carry OR
on CO.

(K-bus = 00 description omitted, see
CLA above.)

LTM K-BUS = 11
Load AC or T, as specified, with data
from the M-bus. Force CO to one if the
result is non-zero. Used to load the
specified register from memory and test
for a zero result. Also used to AND
K-bus data with M-bus data (see general
description) for masking and, optionally,
testing for a zero result.

F-GROUP 5 R-GROUP 11
Logically AND the data on K-bus with
contents of AC or T, as specified. De-
posit the result in the specified register.
Logically OR ClI with the word-wise OR
of the result. Place the value of the
carry OR on CO.

(K-bus = 00 description omitted, see
CLA above.)

TZA K-BUS = 11
Force CO to one if AC or T, as specified,
is non-zero. Used to test the specified
register for zero. Also used to AND
K-bus data to the specified register (see
general description) for masking and,
optionally, testing for a zero result.

F-GROUP 6 R-GROUP |
Logically OR CI with the word-wise
OR of the logical AND of AC and the
data on the K-bus. Place the result of
the carry OR on CO. Logically OR the
contents of R,, with the logical AND
of AC and the data on the K-bus.
Deposit the resultin Ry,.

NOP K-BUS = 00
Force CO to Cl. Used as a null opera-
tion or to force CO to CI.

ORR K-BUS = 11
Force CO to one if AC is non-zero.
Logically OR the contents of the ac-
cumulator to the contents of R,,. De-
posit the resultin R,,. Used to OR the
accumulator to aregister and,
optionally, test the previous accumula-
tor value for zero.

F-GROUP 6 R-GROUP |1
Logically OR CI with the word-wise
OR of the logical AND of AC and the
data on the K-bus. Place the value of
the carry OR on CO. Logically OR the
data on the M-bus, with the logical
AND of AC and the data on the K-bus.
Deposit the final resultin ACor T,

as specified.

LMF K-BUS =00
Load AC or T, as specified, from the
M-bus. Force CO to Cl. Used to load
the specified register with memory data
and force CO to ClI.

ORM K-BUS = 11
Force CO to one if AC is non-zero.
Logically OR the data on the M-bus with
the contents of AC. Deposit the result
in AC or T, as specified. Used to OR
memory data with the accumulator and,
optionally, test the previous value of
the accumulator for zero.

F-GROUP 6 R-GROUP 11|
Logically OR CI with the word-wise OR
of the logical AND of the data on the
I-bus and the data on the K-bus. Place

the value of the carry OR on CO. Logi-

cally AND the data on the K-bus with
the data on the I-bus. Logically OR the
result with the contents of ACor T,

as specified. Deposit the final result

in the specified register.

(K-bus = 00 description omitted, see
NOP above.)

ORI K-BUS = 11

Force CO to one if the data on the
I-bus is non-zero. Logically OR the
data on the I-bus to the contents of
AC or T, as specified. Deposit the
result in the specified register. Used to
OR I-bus data with the specified
register and, optionally, test the |-bus
data for zero.

F-GROUP 7 R-GROUP |
Logically OR ClI with the word-wise OR
of the logical AND of the contents of
Rp, and AC and the data on the K-bus.
Place the value of the carry OR on CO.
Logically AND the data on the K-bus
with the contents of AC. Exclusive-
NOR the result with the contents of
Rp. Deposit the final result in Ry,.
CMR K-BUS = 00
Complement the contents of R,,. Force
CO to Cl.

XNR K-BUS = 11
Force CO to one if the logical AND of
AC and Ry, is non-zero. Exclusive-NOR
the contents of AC with the contents of
R,,. Deposit the result in R,. Used to
exclusive-NOR the accumulator with

a register.

F-GROUP 7 R-GROUP Il
Logically OR CI with the word-wise
OR of the logical AND of the contents
of AC and the data on the K-bus and
M-bus. Place the value of the carry OR
on CO. Logically AND the data on the
K-bus with the contents of AC. Exclu-
sive-NOR the result with the data on
the M-bus. Deposit the final result in
AC or T, as specified.

LCM K—-BUS = 00
Load the complement of the data on
the M-bus into AC or T, as specified.
Force CO to CI.

XNM K-BUS = 11
Force CO to one if the logical AND of
AC and the M-bus data is non-zero.
Exclusive-NOR the contents of AC with
the data on the M-bus. Deposit the
result in AC or T, as specified. Used to
exclusive—NOR memory data with

the accumulator.

F-GROUP 7 R-GROUP 111
Logically OR CI with the word-wise

OR of the logical AND of the contents
of the specified register and the data on
the I-bus and K-bus. Place the value of
the carry OR on CO. Logically AND
the data on the K-bus with the data

on the |-bus. Exclusive-NOR the

result with the contents of ACor T, as
specified. Deposit the final result in
the specified register.

CMA K-BUS = 00
Complement AC or T, as specified. Force
CO to Cl.

XNI K-BUS = 11
Force CO to one if the logical AND of
the contents of AC or T, as specified, and
the I-bus data is non-zero. Exclusive-
NOR the contents of the specified regis-
ter with the data on the I-bus. Deposit
the result in AC or T, as specified. Used
to exclusive-NOR input data with the
accumulator.

2-20

3002

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias e e 0°C to 70°C
Storage TeMPErature oottt ittt e e e e e e e e e e e e —6560 to +160°C
All Qutput and Supply Voltagesot i i i e e e e —0.5V to +7V
ALLINPUE VOITages ot e e -1.0V to +5.5V
[0 TUR < TU) G O£) 100 mA

*COMMENT: Stresses above those listed under “Absolute Maximum Ratings’ may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.

Ta =0°C to +70°C, V¢ = 5.0V 5%

LIMITS
SYMBOL PARAMETER MIN Typ? MAX UNIT CONDITIONS
Ve Input Clamp Voltage (All -0.8 -1.0 A% Ic =—5mA
Input Pins)
Ig Input Load Current:
Fo—Fs. CLK, Ko, K4, EA, ED —0.05 —0.25 mA Vg =0.45V
lo, 11, Mg, My, LI -0.85 -1.6 mA
Cl -2.3 —4.0 mA
IR Input Leakage Current:
Fo-Fe, CLK, Ko, K1, EA, ED 40 uA Vg = 5.25V
lo, 11, Mg, My, LI 60 UA
Cl 180 HA
ViL Input Low Voltage 0.8 \Y Vee = 5.0V
ViH Input High Voltage 2.0 \%
Icc Power Supply Currentm 145 190 mA
VoL Output Low Voltage (All 0.3 0.45 \Y loL =10 mA
Output Pins)
VoH Output High Voltage (All 24 3.0 \ loH =—1mA
Output Pins)
los Short Circuit Output Current -15 -25 —60 mA Vce = 5.0V
(All Output Pins)
10 (off) Off State Output Current —-100 HA Vo =0.45V
Ao, Aq, Dg, Dy, CO and RO 100 MA Vo =56.25V

NOTES:
(1) Typical values are for Tp = 25°C and nominal supply voltage

(2) CLK input grounded, other inputs open.

221

3002

A.C. CHARACTERISTICS AND WAVEFORMS

Ta = 0°C to 70°C, Vcc = 5V 5%

SYMBOL PARAMETER MIN Typ? MAX UNIT
tey Clock Cycle Time ? 100 70 ns
twp Clock Pulse Width 33 20 ns
tFs Function Input Set-Up Time (Fg through Fg) 60 40 ns

Data Set-Up Time:
tps lo, 11, Mg, Mq, Kg, Kq 50 30 ns
tss LI, CI 27 13 ns
Data and Function Hold Time:
tFH Fo through Fg ’ 5 -2 ns
toH lo. 14, Mg, My, Ko, K4 5 -4 ns
tsH LI, CI 15 2 ns
Propagation Delay to X, Y, RO from:
txF Any Function Input 37 52 ns
txp Any Data Input 29 42 ns
txT Trailing Edge of CLK 40 60 ns
txL Leading Edge of CLK 20 ns
Propagation Delay to CO from:
toL Leading Edge of CLK 20 ns
teT Trailing Edge of CLK 48 70 ns
tcr Any Function Input 43 65 ns
tco Any Data Input 30 55 ns
tce Cl (Ripple Carry) ' 14 25 ns
Propagation Delay to Ag, A1, Dg, Dy from:
tpL Leading Edge of CLK 5 32 50 ns
tpe Enable Input ED, EA 12 25 ns
NOTE:

(1) Typical values are for Ta = 25°C and nominal supply voltage.
(2) tcy = tps * tOL-

TEST CONDITIONS: TEST LOAD CIRCUIT:

Input pulse amplitude: 2.5 V

Input rise and fall times of 5 ns between 1 and 2 volts.

Output loading is 10 mA and 30 pF.

Speed measurements are made at 1.5 volt levels. out

30 pF 1KQ

CAPACITANCE? T, = 25°C

SYMBOL PARAMETER MIN TYP MAX UNIT
CiNn Input Capacitance 5 10 pF
Cout Output Capacitance 6 12 pF

NOTE:

(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, Vgjas = 2.5V, V¢ = 5.0V and
Ta =25°C.

222

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias oo v vt e ot et e e e e e e -55°Cto +125°C
Storage TeMPEraturet i i ittt e e e e e e e e e —65°C to +160°C
All Output and SUPPly Voltagesottt et e e e e e e e e e e e —0.5V to +7V
ANLINPUE VOItageS ottt e e e e e e e e e e e -1.0V to +5.5V
OULPUL CUITENTS . o vttt ettt et e et e e e e e e e e e et e e e e 100 mA

*COMMENT: Stresses above those listed under **Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.

Ta = -55°C to +125°C, Ve = 5.0V +10%.

LIMITS
SYMBOL PARAMETER MIN TYp! MAX UNIT CONDITIONS
Ve Input Clamp Voltage (All —0.8 -1.2 \ Ic =-5mA
Input Pins)
Ie Input Load Current:
Fo—Fg, CLK, Ko, K¢, EA, ED —0.05 —0.25 mA Vg =045V
lo, 11, Mg, Mq, LI —0.85 -1.5 mA
Cl -2.3 -4.0 mA
IR Input Leakage Current:
Fo-Fg., CLK, Ko, Ky, EA, ED 40 MA VR = 6.5V
lg. 11, Mg, My, LI 100 HA
Ci 250 uA
ViL Input Low Voltage 0.8 \Y Ve = 5.0V
ViH Input High Voltage 2.0 \
lcc Power Supply Current 145 210 mA
VoL Output Low Voltage (All 0.3 0.45 \% loL =10 mA
Output Pins)
Vox Output High Voltage (All 24 3.0 \ lon =—1TmA
Output Pins)
los Short Circuit Output Current -15 -25 —60 mA Vce = 5.0V
(All Output Pins)
10 (off) Off State Output Current -100 MA Vo =0.45V
Ag, Ay, Dg, Dy, CO and RO 100 MA Vo = 5.5V

NOTES:
(1) Typical values are for Tp = 25°C and nominal supply voltage

(2) CLK input grounded, other inputs open.

223

3002 Miy [—
A.C. CHARACTERISTICS AND WAVEFORMS 4 TEI

Ta =-55°C to +125°C, V¢ = 5.0V +10%.

SYMBOL PARAMETER MIN Typl! MAX UNIT
tcy Clock Cycle Time (2 120 70 ns
twp Clock Pulse Width 42 20 ns
tFs Function Input Set-Up Time (Fg through Fg) 70 40 ns

Data Set-Up Time:
tps lo, 11, Mg, My, Ko, K4 60 30 ns
tss LI, CI 30 13 ns
Data and Function Hold Time:
tEH Fo through Fg 5 -2 ns
tpH lo, 11, Mo, My, Ko, Ky 5 -4 ns
tSH LI, CI 15 2 ns
Propagation Delay to X, Y, RO from:
txF Any Function Input 37 65 ns
txp Any Data Input 29 55 ns
tXT Trailing Edge of CLK 40 75 ns
txL Leading Edge of CLK 22 ns
Propagation Delay to CO from:
tcL Leading Edge of CLK 22 ns
tcT Trailing Edge of CLK 48 85 ns
tcr Any Function Input 43 75 ns
tcp Any Data Input 30 65 ns
tce Cl (Ripple Carry) 14 30 ns
Propagation Delay to Ag, A;, Dg, Dy from:
toL Leading Edge of CLK 5 32 60 ns
toe Enable Input ED, EA 12 35 ns
NOTE:

(1) Typical values are for Ta = 25°C and nominal supply voltage.
(2) tcy =tps +tpL

TEST CONDITIONS: TEST LOAD CIRCUIT:

Vee
Input pulse amplitude: 2.5 V

Input rise and fall times of 5 ns between 1 and 2 volts.

Output loading is 10 mA and 30 pF. 5000
Speed measurements are made at 1.5 volt levels. out
30 pF 1 KQ
CAPACITANCE®? T, = 25°C
SYMBOL PARAMETER MIN TYP MAX uNIT
Cin Input Capacitance 5 10 pF
Cout Output Capacitance 6 12 pF

NOTE:
(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, Vg|as = 2.6V, V¢ = 5.0V and
Ta =25°C.

2-24

3002

3002 WAVEFORMS

CLOCK INPUT twe
CLK

s —> teH

— i
FUNCTION INPUTS }K
Fo-Fg -+

tos toH

DATA INPUTS
lo, 11, Ko, K1, Mg, My — — —_

[€— tgg — € tgy

r -/
CARRY AND SHIFT)
p—

INPUTS LI, CI

txr

txF [txL

txp

CARRY AND SHIFT K
OUTPUTS X, Y, RO 1

& tee >

| W _—

tcr tcL

co — —/ ~ —_

ENABLE INPUTS
EAED —

toe toL

DATA OUTPUTS
Ag.A1,Dg, Dy — - \ -

225

3002

TYPICAL AC AND DC CHARACTERISTICS

Icc — POWER SUPPLY CURRENT (mA)

tgg — SET UP TIME (ns) OUTPUT CURRENT (mA)

tp, — PROPAGATION DELAY (ns)

POWER SUPPLY CURRENT VS. TEMPERATURE

180
140
Vec = 5.0V
/\/‘ \
130
120 | _—
56 0 26 70 126
TEMPERATURE (°C)
OUTPUT CURRENT VS. OUTPUT VOLTAGE
0
Voo =5.0V oc. 55¢C
s 125°C
%°C 70°C
-10
() 1.0 20 3.0 4.0 5.0
OUTPUT VOLTAGE

CARRY IN SET UP TIME VS. Voo AND TEMPERATURE

30
20
-56°C
'\\
\ \
10 F—
126°C S—;
25°C
04.5 4.78 5.0 5.26 5.50
Vec (VOLTS)

PROPAGATION DELAY — CLOCK TO “A” AND “D”
DATA OUTPUT VS. Vcc AND TEMPERATURE

60
50
\ s5c
40
1265°C —
30
45 4.75 5.0 5.26 5.5

Ve (VOLTS)

OUTPUT CURRENT (mA)

OUTPUT CURRENT VS. OUTPUT LOW VOLTAGE

» |
Veg = 5.0V
ﬁ V/
) 4
15 +— 26°C —
10
70°C # o°c
s /|
o G e
[
(Y] 0.2 0.3 04 05

OUTPUT VOLTAGE

CLOCK PULSE WIDE VS. Vcc AND TEMPERATURE

40

z
£ .-66°C
e 2
z
§ \ 126°C
2 —
x P——
g 2 i
-
o
.'; %°c

10

45V 4.76V 5.0V 5.26V 5.50v
Vec (VOLTS)

PROPAGATION DELAY FROM FUNCTION INPUT§ T0
CASCADE QUTPUTS VS. Vcc AND TEMPERATURE
60

z

>

g 50\

z ~J_ssc

8 \

é \

& 40 P

€ 26°C

1

X 126°C —
%45 475 6.0 626 65

Vec (VOLTS)

PROPAGATION DELAY — CLOCK TO
“A" AND “D"” DATA OUTPUT VS. LOAD CAPACITANCE

60
_ -2
H Ve = 5.0V
>
3 -
a8 % L
4
8 L
5 /
g 40 /
g —
] /
2

30

0 50 100 150 200

LOAD CAPACITANCE (pF)

|
——— MEMORY ADDRESS BUS
(2N LINES)
J
==
—— DATA BUS TO MEMORY
(2N LINES)
CLOCK =
Fa-Fg [1 JJ,
A DO
Fq4-Fg CLK f&— —
co c v &
CARRY FROM u 3002 RO 3002 0 a w0z |
Fo-F3
I MK
A 7N T {[7y
i
Forka [i - 7
{
CARRY TO 3001 v o
MICROPROGRAM —— —
CONSTANT/MASK
INPUT BUS L = =i
(2N LINES) {
— DATA BUS FROM
J MEMORY
———4!, , (2N LINES)
EXTERNAL DATA BUS
——':L (2N LINES)
T T
Ripple-Carry Configuration
(N 3002 CPE’s)
+5V
I) a ,a
ECh+8 T ECh+8 T .
3003 [Cot8 3003 Cn |
Cat7 XV . X1 Yy Catl Xo Yo X7Y7 Co+7 Xg Vg L X1 Yy G+l Xo Yo
v L4 o
X Y X Y X Y X Y
—co ¢ -
CARRY 3002 3002 3002 3002 3002 3002 3002 3002
FROM Ll RO = s] —
3001
CARRY
T0
3001

Carry Look-Ahead Configuration

With Ripple Through the Left Slice

(32 Bit Array)

2-27

3002

APPENDIX A MICRO-FUNCTION SUMMARY

F-GROUP R-GROUP MICRO-FUNCTION

| Ry + (AC A K) + CI > R, AC

0 I M+ (AC AK) +Cl—> AT
m AT_ A (IL A KL)~ RO LI v [{lg A Ky) A ATQ] = ATy
[ATLA (ILA KO VATV IR A Ky)l > AT
I K Vv R, > MAR Rn+ K +Cl >R,
1 I K v M->MAR M+ K+Cl > AT

m (AT v K) + (AT A K) + Cl > AT

[(AC A K) -1+ Cl >R,
2 1] (AC A K) -1+ Cl > AT (see Note 1)
1] (I AK)-1+Cl->AT

I Rn + (AC A K) +CI > R,y
3 i M+ (AC AK) +Cl - AT
" AT + (1 AK) +Cl > AT

[Cl v(Ry A AC AK)~>CO Rn A (AC AK) =~ R,

4 " Cl V(M AAC AK)=CO M A (AC AK) > AT
" Clv (AT A1 A K)~>CO AT A (I A K) > AT
I Clv (Ry AK)~CO K ARp = Ry,
5 " Cl Vv (M AK) > CO K AM-—>AT
" Cl v (AT AK) = CO K AAT > AT
I Cl v (AC AK) -~ CO Rn V (AC A K) = R,y
6 T ClV (AC AK)~>CO MV (AC A K) > AT
" Cl v (I AK)>CO AT v (I AK)-> AT

| Cl v(Ry A AC AK) = CO R, ® (AC A K) = R,

7 1 Clv (MA AC AK)—>CO M & (AC A K) = AT
(11} Clv (ATA T AK)=>CO AT © (I A K) = AT
NOTES:
1. 2's complement arithmetic adds 111 ... 11 to perform subtraction of 000 ... 01.

2. Rpincludes T and AC as source and destination registers in R-group 1 micro-functions.
3. Standard arithmetic carry output values are generated in F-group 0, 1, 2 and 3 instructions.

SYMBOL MEANING

LK, M Data on the |, K, and M busses, respectively
Cl, LI Data on the carry input and left input, respectively
CO, RO Data on the carry output and right output, respectively
R, Contents of register n including T and AC (R-Group |)
AC Contents of the accumulator
AT Contents of AC or T, as specified
MAR Contents of the memory address register
L, H As subscripts, designate low and high order bit, respectively
+ 2's complement addition
— 2's complement subtraction
A Logical AND
\ Logical OR
& Exclusive-NOR
- Deposit into

2-28

3002

APPENDIX B ALL-ZERO AND ALL-ONE K-BUS MICRO-FUNCTIONS

K-BUS = 00 MICRO-FUNCTION MNEMONIC K-BUS = 11 MICRO-FUNCTION MNEMONIC
R, + Cl = R,, AC ILR AC + R, +ClI = R, AC ALR
M+ Cl—> AT ACM M+ AC+Cl—> AT AMA
AT > RO ATy~ AT, SRA (See Appendix A) -
R, > MAR R, +Cl~ R, LMl 11> MAR R, — 1+Cl=R, DSM
M-> MAR M+ Cl—= AT LMM 11> MAR M—-1+Cl—>AT LDM
AT +Cl—> AT CIA AT —1+Cl—> AT DCA
Cl—1—->R, SeeNotetl CSR AC—-1+Cl—>R, See Note 1 SDR
Cl—1-> AT See Notes 1,4 CSA AC —1+Cl > AT See Notes 1,4 SDA
(See CSA above) - I-—1+Cl> AT LD!
R, +Cl >R, INR AC+R, +Cl~> R, ADR
(See ACM above) - (See AMA above) -
AT + Cl > AT INA I+ AT +Cl > AT AlA
Cl~>Co 0~ R, CLR Clv (R, A AC)>CO R, A AC~ R, ANR
Cl—>CO 0- AT CLA ClLv (M A AC) = CO M A AC - AT ANM
(See CLA above) — Clv (AT A 1)>CO AT A 1> AT ANI
(See CLR above) - Clv R,~CO R, - R TZR
(See CLA above) - ClvM-CO M- AT LTM
(See CLA above) — Clv AT->CO AT > AT TZA
Cl-CO R, ~ R NOP Clv AC—>CO Rn Vv AC- R, ORR
Cl->CO M- AT LMF Civ AC~CO M v AC—> AT ORM
(See NOP above) - Clvi=COo | vV AT > AT ORI
cl-co R, - Rn CMR Clv (R, AC)>CO R,3AC-R, XNR
Cl->CO M- AT LCM Clv (M AC)->CO Mo AC—-> AT XNM
cl->Co AT > AT CMA Clv (AT 1)>CO 1@ AT > AT XNI

4. The more general operations, CSR and SDR, should be used in place of the CSA and SDA operations, respectively.

3002

APPENDIX C FUNCTION AND REGISTER GROUP FORMATS

FUNCTION
GROUP Fe 5 .
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
RZ‘;‘SLE,R REGISTER Fa 2 1 0
Ro 0 0 0 0
Rq 0 0 0 1
Ry 0 0 1 0
Rs 0 0 1 1
Ra 0 1 0 0
Rs 0 1 0 1
Re 0 1 1 0
R, 0 1 1 1
Rg 1 0 0 0
Rg 1 0 0 1
T 1 1 0 0
AC 1 1 0 1
T 1 0 1 0
" AC 1 0 1 1
T 1 1 1 0

-

2-30

intal

The INTEL® 3003 Look-Ahead Carry
Generator (LCG) is a high speed circuit
capable of anticipating a carry across a
full 16-bit 3002 Central Processing
Array. When used with a larger 3002

CP Array multiple 3003 carry generators
provide high speed carry look-ahead
capability for any word length.

The LCG accepts eight pairs of active
high cascade inputs (X,Y) and an active
low carry input and generates active
low carries for up to eight groups of
binary adders.

SCHOTTKY
BIPOLAR LSI
MICROCOMPUTER
SET

High Performance — 10 ns typical
propagation delay

Compatible with INTEL 3001 MCU
and 3002 CPE

DTL and TTL compatible

Full look-ahead across 8 adders
Low voltage diode input clamp
Expandable

28-pin DIP

© OUTPLTS

3003 LOOK-AHEAD CARRY GENERATOR
CP ARRAY
302'S

w
\NPUTS

2-31

MANPUTS \ANPUTS

3003
LOOK-AHEAD
CARRY
GENERATOR

PACKAGE CONFIGURATION

v —4 1 28 f— Vec
X;— 2 27— vg
EC,+8—] 3 2 |— Xg
cn+8 =0l 4 26 JO~Cn+7
Xs—1 5 24— X,
e 28—V,
vg — 7 INTE® 22 |0 cn+6
Vi— 8 3003 21—,
cn+s—Of 9 20 |— X,
X3 =10 19— X
Y3 —n BV,
cn+a =12 17 [O—¢n
Cn+2 —413 16 JO—cn+3
GND——+ “ 15 JO—Cn+1

3003

LOGIC DIAGRAM
EC+8 4{}r
Y
PIN DESCRIPTION x 4: >—
PIN SYMBOL NAME AND TYPE D_
FUNCTION —]
1,7,8,11 Yo-Y7 Standard carry Active = |
18,21,23 look-ahead HIGH -
27 inputs Cn+8
2,5,6,10 Xo-X7 Standard carry Active
19,20,24 look-ahead HIGH
26 inputs
17 Ch Carry input Active
Low
L]
49,12 Cn+1- Carry outputs Active ;: : Cn+7
13,15,16 Ch+g LOW e .
L[] Cn+6
Xg
3 ECn+g Cp+g carry Active s .
output enable HIGH X, H Cns
Y3 °
28 Vee +5 volt supply X3 . Gned
\ .
] Cn+3
14 GND Ground %2 o
Yy .
X, ° Cn+2
Yo
1
%o Cn+1
Cn {> |

3003 LOGIC EQUATIONS

The 3003 Look-Ahead Generator is implemented in a compatible form for direct connection to the 3001 MCU and 3002 CPE.
Logic equations for the 3003 are:

C ¥ 1=YgXg+YoCh

Cht2=Y X1+ Y YgXo+ Y,YCp

Ch 3= YoXo + YoV X + Y ¥ YoXo+ Y, YCh

G+ 4= Y3Xg+ Y3Y Xy + YaY ¥ 1 X0+ YaY,o¥ YoXg + Y3YoY,YoCo

o F5=YgXg+ YaYgXg+YaYaY Xo+ Y, 4Y Yy Yy Xq +Y,Y3Y Y Y Xo+ Y,Y3Y5Y Y G,

Cp+ 6= YgXg+ YgYXa+ Y5Y,Y3Xa+ V¥ ,aYaVoXy + YoV, Y3V, Xy + YgY Y aY, Y Y X g + Y5Y,Y3Y,Y Y C

Co+.7 = YgXg+ YgY5X5+ Ye¥sYaXa* YgV5YaYaXa* YgY5YaYa¥oXa *+ YgY5YaYaYaY1Xs + YgY5YaYaYaY YoXg
+YgY5Y,4Y3Y5Y Y (Ch

Cn + 8 = High Impedance State when ECn +8 Low
C,*+8=YyX,+ Y7 ¥eXe t Y7Y6Y5X5 + Y7Y6Y5Y4X4 + Y716Y5Y4Y3X3 + Y7YGY5Y4Y3Y2X2 +YYgYgY4Y3YoY X,
+ Y7Y6Y5Y4Y3Y2Y1Y0X0 + Y7Y6Y5Y4Y3Y2Y1Yocn when EC_ + 8 high

2-32

3003

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias

' Storage Temperature

All Qutput and Supply Voltages .

All Input Voltages

Qutput Current

0°C to 70°C

-65°C to +160°C

-0.5V to +7V

. -1.0V to +5.5V

100 mA

*COMMENT: Stresses above those listed under ‘Absolute Maximum Rating’”’ may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is

not implied.

Tpo=0°Ct0+70°C Vg = 5.0V 5%

A

SYMBOL PARAMETER MIN. MAX. UNIT CONDITIONS
Ve Input Clamp Voltage (All -0.8 -1.0 \% Ic=-5mA
Input Pins)
Ig Input Load Current:
Xg,X7Cn,EC, +8 -0.07 -0.25 mA VE = 0.45V
Y7.X0-Xs, -0.200 -0.500 mA
YoYe -0.6 -1.5 mA
IR Input Leakage Current:
C,and EC,+8 40 uA VR =5.25V
All Other Inputs 100 uA
ViL Input Low Voltage 0.8 \ Ve = 5.0V
ViH Input High Voltage 2.0 \ Ve = 5.0V
Icc Power Supply Current 80 130 mA All'Y and EC,, + 8 high,
All X and Cp, low
VoL Output Low Voltage (All 0.35 0.45 \Y loL =4 mA
Output Pins)
VoH Output High Voltage (All 2.4 3 \Y loy = -1 mA
Output Pins)
los Short Circuit Output Current
(All Output Pins) -15 -40 -65 mA Vee =5V
10(off) Off-State Output Current -100 HA Vo = 0.45V
(Cn+8) +100 HA Vg = 5.26V
NOTE:
(1) Typical values are for Ta =25°C and nominal supply voltage.
A.C. CHARACTERISTICS
Ta=0°Cto70°C, Vg = +5V £ 5%
SYMBOL PARAMETER miN. Ty max. uNIT
txc X, Y to Outputs 3 10 20 ns
tce Carry In to Outputs 13 30 ns
tEN Enable Time, C,, + 8 20 40 ns
NOTE:
(1) Typical values are for Tp = 25°C and nominal supply voltage.

233

3003

D.C. AND OPERATING CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias

Storage Temperature

All Output and Supply Voltages .
All Input Voltages

Output Current

-55°C to +1256°C
-65°C to +160°C

-0.5V to +7V

. -1.0V to +6.5V

100 mA

*COMMENT: Stresses above those listed under “Absolute Maximum Rating’”’ may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is

not implied.

Ta = -55°Cto +125°C, Ve = 5.0V +10%.

SYMBOL PARAMETER min. TYP Y max. uniT CONDITIONS
VC Input Clamp Voltage (All -0.8 -1.2 \% Ic=-5mA
Input Pins)
IE Input Load Current:
X6,X7,Cn,ECh+8 -0.07 -0.25 mA Vg =0.45V
Y7,X0-Xs, -0.200 -0.500 mA
Yo- Y6 -0.6 -1.56 mA
IR Input Leakage Current:
Chand EC, + 8 40 uA Vee=5.25V, VR = 5.5V
All Other Inputs 100 MA
ViL Input Low Voltage 0.8 \% Veg = 5.0V
ViH Input High Voltage 2.1 \" Vce = 5.0V
Icc Power Supply Current 80 130 mA All Y and ECp, + 8 high,
All X and Cp, low
VoL Output Low Voltage (All 0.35 0.45 Vv loL =4 mA
Output Pins)
VoH Output High Voltage (All 2.4 3 Vv lop =-1mA
Qutput Pins)
los Short Circuit Output Current
(All Qutput Pins) -15 -40 -65 mA Vee =5V
10(off) Off-State Output Current -100 MA Vo =0.45V
(C, +8) +100 A Vo =55V
NOTE:

(1) Typical values are for Ta = 25°C and nominal supply voltage.

A.C. CHARACTERISTICS |

Ta =-55°C to +125°C, V¢ = +5.0V 10%

sYmBOL PARAMETER MIN. TYr.(D Max. uNIT
txc X, Y to Outputs 10 25 ns
tce Carry In to Outputs 13 40 ns
tEN Enable Time, C, + 8 20 50 ns
NOTE:
(1) Typical values are for Ta = 25°C and nominal supply voltage.

2-34

WAVEFORMS

X.Y INPUTS

tXC —————=]

Cp+1-Cnsg OUTPUTS)(

cc
NOTE: ALTERNATE TEST LOAD:
Cp INPUT
Vee

10K

Cpeg OUT
1K
Cn+g OUTPUT =
CAPACITANCE? T, = 25°C
SYMBOL PARAMETER MIN TYP MAX UNIT
Cin Input Capacitance All inputs 12 20 pF
Cout Output Capacitance C,+8 7 12 pF

NOTE:
(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, Vg as = 5.0V,
Vee =5.0V and Tp = 25°C.

TEST CONDITIONS: TEST LOAD CIRCUIT: vce

Input pulse amplitude of 2.5V. bR
Input rise and fall times of 5 ns between 1 and 2 volts.

QOutput loading is 5 mA and 30 pF. out 3
Speed measurements are made at 1.5 volt levels. s
30 pF

3003

TYPICAL A.C. AND D.C. CHARACTERISTICS

Icc VS. TEMPERATURE OUTPUT CURRENT VS. OUTPUT LOW VOLTAGE
20 l 80
Ve = 5.0V Ve = 5 VOLTS
80 60
<
£
. g Yeve
R 3 F— § 40
3 8 |
§ o°c
g
2
3
60 2 /
125°C
0°c
25°C
50 ° 1
275 60 -26 0 25 50 75 100 125 0 2 4 6 8
TEMPERATURE (°C) OUTPUT (V)
OUTPUT CURRENT VS. OUTPUT. HIGH VOLTAGE X, Y TO OUTPUTS VS. Vcc AND TEMPERATURE
[30
Vee =5V tycs-
5
- _ -56°C
g 0 R e
s 2 25°C
g -15 g \ —]
3 i — e
5 -2 x 10
]
70°C [l _ssc 70°C
125°C
% —o°c
125°C
t—26°C
) 1 2 3 4 3 6 %50 475 5.00 5.25 .50
OUTPUT (V) Vgc (VOLTS)
X, Y TO OUTPUT DELAY VS. LOAD CAPACITANCE X, Y TO OUTPUTS VS. Vcc AND TEMPERATURE
0 30
Vec =50V txc-+
Ty = 25°C
S .
E 125°C
> z 20 0°¢
2 v 25°C
=) 2
5 2 -r 5 %
3]
3 | e =
>
E / X 10
X 10 0°c
-55°C
%9 100 150 200 250 300 %50 475 5.00 5.25 5.50
LOAD CAPACITANCE (pF) Vec (VOLTS)

3003

TYPICAL CONFIGURATIONS

The 3003 LCG can be directly tied to the 3001 MCU and a 3002 CP array of any word length. The following figures represent
typical configurations of 16- and 32-bit CP arrays. Figures 1 and 2 illustrate use of the 3003 in a system where the carry output

(CO) to the 3001 MCU is rippled through the high order CPE slice. Figure 3 illustrates use of the 3003 in a system where tri-state

output Cp4+g is connected directly to the flag input on the 3001 MCU. C,,g is disabled during shift right by decoding that instruction
externally, thus multiplexing C,,,g with the shift right (RO) output of the low order CPE slice.

E_

) e
EC, +8
3003 Cn 47
Co*+7 Xg Ve . X1 Yy Cat1 X Yg
XY XYy
0 Ci CO Ci fo—vq
CARRY 3002 3002 3002 3002
FROM LI RO by > LI RO b
3001
CARRY
TO
3001

Figure 1. Carry Look-Ahead Configuration with Ripple through the Left Slice (16-Bit Array)

Fs
3 w5v
£y I
f2 2% 2
EC,+8 b EC. 2 8 -
[n n
Co+8 M3003 Cy Cp+8 M3003 [2
X7 Y3 Co+7 Xg Yg L X Ya G Xo Yo Xy Y7 Cat7 Xg Yg XY Xo Yo
‘ - r ¢ 2
Xy Y7 ’| X v X v X v
c1 ey
CARRY M3002 M3002 M3002 M3002 M3002 M3002 M3002 M3002
FROM L1 RO CPE CPE |
M3001
CARRY
T0
M3001

Figure 2. Carry Look-Ahead Configuration with No Carry Ripple through the Left Slice (32-Bit Array)

2-37

intel

The INTE(®3212 Multi-Mode Latch
Buffer is a versatile 8-bit latch with
three-state output buffers and built-in
device select logic. It also contains an
independent service request flip-flop
for the generation of central processor
interrupts. Because of its multi-mode
capabilities, one or more 3212's can
be used to implement many types of
interface and support systems for Series
3000 computing elements including:

Simple data latches
Gated data buffers
Multiplexers
Bi-directional bus drivers

Interrupting input/output ports

SCHOTTKY
BIPOLAR LSI
MICROCOMPUTER
SET

High Performance — 50 ns Write Cycle
Time

Low Input Load Current — 250 uA
Maximum

Three-State Fully Buffered Outputs
High Output Drive Capability

Independent Service Request Flip-
Flop

Asynchronous Data Latch Clear

24 Pin DIP

3212
MULTI-MODE
LATCH BUFFER

PACKAGE CONFIGURATION

os1—Y o = 124 vee
mp —2] 23 Nt
m,.l i&ow
00y 4 12! pog
D1y —] INTEL® ELR
00y —& = 00,
DIz —4] 1 Dig
Doz - 17 bog
Dig -2 L Dig
D04 Y P— DOg
sTB 1 B2 cr
anp 2 3 o5,

CONTROL YO
MEMORY /O

]
=
H PIPELINE
— REGISTER
2 (OPTIONAL)
[=3
<
MICRO %
PROGRAM
MEMORY \—

MEMORY
AGORAELSS BUS

~

VAYA BUS
TO MEMORY

A OUTPUTS D ouTPUTS

FO 6

cP ARRAN
2002'S

L

co *
ANPUTS

W ANPUTS | \WNPUTS

ADDRESS IN

T

cLOC
MAO-8
ACO-6
MCcu
w50 AW

-
X L
$X0-PX7 _ FCO-3 \

' \

j

INSTRUCTION BUS

Figure 1. Block Diagram of a Typical System

OATA FROWM ORI A FROWM

NMENMORY vVEN\CES

2-39

3212

PIN DESCRIPTION

PIN SYMBOL NAME AND FUNCTION ' ‘ TYpe!?
1 DS, Device Select Input 1 active LOW
2 MD Mode Input

When MD is high (output mode) the output buffers are enabled and the
write signal to the data latches is obtained from the device select logic.
When MD is low {input mode) the output buffer state is determined by
the device select logic and the write signal is obtained from the strobe

(STB) input.
3,579, DI,-Dig Data Inputs)
16, 18, 20, . .
2 The data inputs are connected to the D-inputs of the data latches.
4,6,8, 10, DO1—-DOg Data Outputs three-state
;?’ 17.19, The data outputs are the buffered outputs of the eight data latches.
1 STB Strobe Input
When MD is in the LOW state, the STB input provides the clock input
to the data latch.
12 GND Ground
13 . DS, Device Select Input 2
When DS is low and DS3 is high, the device is selected.
14 CLR Clear active LOW
23 INT Interrupt Output active LOW
The interrupt output will be active LOW (interrupting state) when
either the service request flip-flop is low or the device is selected.
NOTE:

(1) Active HIGH, unless otherwise specified.

2-40

3212

FUNCTIONAL DESCRIPTION

The 3212 contains eight D-type data

latches, eight three-state output buf-

fers, a separate D-type service request
flip-flop, and a flexible device select/
mode control section.

DATA LATCHES

The Q-output of each data latch will
follow the data on its corresponding
date input line (DIy—Dlg) while its
clock input is high. Data will be
latched when the internal write line WR
is brought low. The output of each
data latch is connected to a three-state,
non-inverting output buffer. The in-
ternal enable line EN is bussed to each
buffer. When the EN is high, the buf-
fers are enabled and the data in each
latch is available on its corresponding
data output line (DOy~—DOg).

DEVICE SELECT LOGIC

Two input lines DS and DS are pro-
vided for device selection. When DS,
is low and DS, is high, the 3212 is
selected.

MODE CONTROL SECTION

The 3212 may be operated in two
modes. When the mode input line MD
is low, the device is in the input mode.
In this mode, the output buffers are
enabled whenever the 3212 is selected;
the internal WR line follows the STB
input line.

When MD is high, the device is in the
output mode and, as a result, the out-
put buffers are enabled. In this mode,
the write signal for the data latch is
obtained from the device select logic.

SERVICE REQUEST FLIP-FLOP
AND STROBE

The service request flip-flop SR is used
to generate and control central proces-
sor interrupt signals. For system reset,
the SR flip-flop is placed in the non-
interrupting state (i.e., SR is set) by
bringing the CLR line low. This simul-
taneously clears (resets) the 8-bit data
latch.

The Q output of the SR flip-flop is
logically ORed with the output of
device select logic and then inverted
to provide the interrupt output INT,

The 3212 is considered to be in the in-

terrupting state when the INT output
is low. This allows direct connection
to the active LOW priority request in-
puts of the INTEL®3214 Interrupt
Control Unit.

When operated in the input mode (i.e.,
MD low) the strobe input STB is used
to synchronously write data into the
data latch and place the SR flip-flop in
the interrupting (reset) state. The in-
terrupt is removed by the central pro-
cessor when the interrupting 3212 is
selected.

I
|
;
I
|
|
|

z
3

9
°

Q
o
~N

3
8

Q
o
o

Q
o
@

[

3

|
Oh % i P
‘ ha
oIy [o o}
' C R
|
o1yl | P
37
, C R
I T
i —
Dig— o a
i 1 |° R l
Dig —+ ID Q
hal
DIg oD a
. C R
i
o1y — Jo cl
| Cr
|
|
olg—
C g
|
o
CLR n

M3212 Logic Diagram

o
o

i = [

! Y—I
3

|
J
1

241

3212

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias o . v v v vt it e e e e 0°C to 70°C
Storage TEMPEratUre v v v v e et e e e e e e e e -65°C to +160°C
All Output and Supply VOItages o ottt e e e e e -0.5V to +7V
AlLINnput Voltages e e e e e e e e e e e -1.0V to +5.5V
OULPUL CUITENTS . L o o o o o i e 100 mA

*COMMENT: Stresses above those listed under “Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Ta =0°C to +75°C Ve = +5V 5%

Symbol Parameter Min. Typ. Max. Unit Conditions

Ie Input Load Current -.25 mA Vg = .45V
STB, DSy, CLR, DI1—Dlg Inputs

Ig Input Load Current -.75 mA Vg = .45V
MD Input

13 Input Load Current -1.0 mA Vg = .45V
DS Input ’

lg Input Leakage Current 10 MA Vg = 5.26V
STB, DS, CLR, Dt1—Dlg Inputs

IR Input Leakage Current 30 uA Vg = 5.25V
MD Input

IR Input Leakage Current 40 MA Vg = 5.25V
DSy Input

Ve Input Forward Voltage Clamp -1 \% lc = -5mA

ViL Input ““Low"’ Voltage .85 \

ViH Input “High”" Voltage 2.0 \

VoL Output ““Low’’ Voltage .45 \ loL = 15mA

Vohn Output ““High” Voltage 3.65 4.0 \ lon = -1 mA

Isc Short Circuit Output Current -15 -75 mA Vce = 5.0V

[tol Output Leakage Current 20 MA Vo = .45V/5.25V

High Impedance State

lcc Power Supply Current 90 130 mA

242

3212

A.C. CHARACTERISTICS T4 =0°Cto 75°C, Vcc = +5.0V + 5%

Symbol Parameter Min. Typ. Max. Unit

thw Pulse Width 25 ns

tpp Data To Output Delay 30 ns

twe Write Enable To Output Delay 40 ns

tseT Data Setup Time 15 ns

ty Data Hold Time 20 ns

tr Reset To Output Delay 40 ns

tg Set To Output Delay 30 ns

te Output Enable Time 45 ns C_ = 30pf
te Clear To Output Display 45 ns

TEST CONDITIONS: TEST LOAD CIRCUIT:
Input pulse amplitude of 2.5 volts.

Input rise and fall times of 5 ns between 1 volt and 2 volts. Vee
Output load of 15 mA and 30 pF.

Speed measurements are taken at the 1.5 volt level. :; 3000

CAPACITANCE'"

LIMITS
Symbol Test
Min. Typ. Max. Units
Cin DS4, MD Input Capacitance 9 12 pf
Cin DS, CLR, STB, DI,-Dlg 5 9 pf
Input Capacitance

Cout DO1—DOg Output Capacitance 8 12 pf
NOTE:

(1) This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, Vg|as = 2.5V, Vg = 5V and
Ta=25°C.

243

3212

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias i i e e e e e -55°C to +125°C
Storage TeMPeraturettt e e -65°C to +160°C
All Qutput and Supply VoItages o L o e e e -0.5V to +7V
AlLINpUt VoItages o o e e e e e e e e e e e e e e e e e -1.0V to +5.5V
OUEPUL CUITENTS . . . o e e e et e e e e e e e e e e e 100 mA

*COMMENT: Stresses above those listed under “Absolute Maximum Ratings”’ may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Ta =-55°C to +126°C; V¢ =5.0V £10%

Symbol Parameter Min. Typ. Max. Unit Conditions

13 Input Load Current -.25 mA Vg = .45V
STB, DS;, CLR, DI1—Dlg Inputs

Ig Input Load Current -.75 mA Vg = .45V
MD Input

rs Input Load Current -1.0 mA VE = .45V
DSq Input

Ir Input Leakage Current 10 uA Vg = 5.5V

STB, DS, CLR, DI;—Dlg Inputs

IR Input Leakage Current 30 MA Vg = 5.5V
MD Input

Ir Input Leakage Current 40 ' uA Vg = 5.5V
DS Input

Ve Input Forward Voltage Clamp 1.2 \ lc = -5mA

ViL Input “Low’’ Voltage .80 \Y

Vin Input “High”” Voltage 2.0 \Y%

VoL Output ““Low’’ Voltage .45 v loL = 10mA

Vou Output ““High” Voltage 3.5 4.0 \ loH = .5mA

Isc Short Circuit Output Current -15 -75 mA Vce = 5.0V

ol - Output Leakage Current 20 uA Vo = .45V/5.5V

High Impedance State

lce Power Supply Current 90 145 mA

2-44

A.C. CHARACTERISTICS T, =-55°Cto +125°C, Vcc = 5.0V * 10% y TE Mp
"
Symbol Parameter Min. Typ. Max. Unit
tow Pulse Width 40 ns
top Data To Output Delay 30 ns
twe Write Enable To Output Delay 50 ns
tseT Data Setup Time 20 ns
th Data Hold Time 30 ns
tr Reset To Output Delay 55 ns
tg Set To Output Delay 35 ns
te Qutput Enable Time 50 ns CL = 30 pf
tc Clear To Output Display 55 ns
TEST CONDITIONS: TEST LOAD CIRCUIT:
Input pulse amplitude of 2.5 volts.
Input rise and fall times of 5 ns between 1 volt and 2 volts. Vee
Output load of 15 mA and 30 pF.
Speed measurements are taken at the 1.5 volt level. 3000
out
30 pF 60092

CAPACITANCE'"

LIMITS
Symbol Test
Min. Typ. Max. Units
Cin DS1, MD Input Capacitance 9 12 pf
Cin DS, CLR, STB, DI,—Dlg 5 9 pf
Input Capacitance

CouT DO 4,—DOg Output Capacitance 8 12 pf
NOTE:

(1) This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, Vgjag = 2.5V, V¢ = 5V and
Ta = 25°C.

2-45

3212

WAVEFORMS

r'—b !Pw—T* Ho—
STBor DS7+ DSy 1.5V 7|¢ Sk 1.5V
!
e tWE 4-,
‘X/_ ________
ouTPUT 1.5V
____________ —/

—
X Nt

g
e
Pl

-

o
E
-

]
<

—_—_———
DO 15V
—_———— e e/
ST T T T T T T T T
DATA 1.5v 1.5V
—_—————— N~ JE—

Ing tSET -I— tH gl
STB or 581 » DS, i 1.5\/\\
- tpp
1f-____"_—-_—__—'_'
OUTPUT 15v
U
sT8 15V

—— tpyy ——

- \ S
|

NOTE: ALTERNATIVE TEST LOAD R

Vee

2-46

3212

TYPICAL A.C. AND D.C. CHARACTERISTICS

OUTPUT CURRENT (mA) INPUT CURRENT (uA)

DATA TO OUTPUT DELAY (ns)

INPUT CURRENT VS. INPUT VOLTAGE

[
T
Vee = 5.0V
0 ////
-100
T, =25°C
Taz0€ T, =75°C
-150
-200
-250
il
-300, 2] o n w2 ey
INPUT VOLTAGE (V)
OUTPUT CURRENT VS.
OUTPUT “HIGH” VOLTAGE
0 T
Vec = +6.0V
-5 ¢
-10 /
T, =75°C /
A
\TA =25°C
-20 /7 Tp=0°C
Ny
-30 /A
35, 1.0 2.0 30 4.0 5.0
OUTPUT "HIGH" VOLTAGE (V)
DATA TO OUTPUT DELAY
VS. TEMPERATURE
z T
Vec = +6.0V
2
/
s
18 asi
v
\.’a’ td
”~
. —
/' t--
it
12
10
-2 [] F3 50 [3 100

TEMPERATURE (°C)

OUTPUT CURRENT VS. OUTPUT “LOW” VOLTAGE

100
80

I

£

5 60

&

9

«

2

o

5 a0

o

=

2

5
20
[
50
40

H

>

<

3

2 3

-

2

a

E

3

o 20

[

2

<

a
10
0

I
Ve = +5.0V
e
T, =25°C
‘ =0°C
[} 2 4 6 8
OUTPUT “LOW"” VOLTAGE (V)
DATA TO OUTPUT DELAY
VS. LOAD CAPACITANCE
I
Ve =+5.0V
T, =25°C
-t - ”
,’
i
L -
Pl / e
=
0 50 100 150 200 250 300

LOAD CAPACITANCE (pF)

WRITE ENABLE TO OUTPUT DELAY

VS. TEMPERATURE
40 -T-
Ve = +6.0V
E 3»
>
<
3
w
o 30
5 x
2 WA
5 P
S 2 —t Y
o - ",
: sT8 = e t+ o
el DS, ey o
[Yy — === t
E oS, —
w
=
g 5
10 |
-2 [] F3 50 7% 100

TEMPERATURE (°C)

2-47

3212

TYPICAL CONFIGURATIONS

GATED BUFFER (TRI-STATE)

CONTROL

INPUT
DATA i
(250 pA)

L TR

GATING {——————9

(DSTeDS2)

INTERRUPTING INPUT PORT

INPUT

STROBE I

e wy BT

SYSTEM _
RESET —CLR

ST8B

PORT _? I
SELECT|0N{ GND

BI-DIRECTIONAL BUS DRIVER

i3212

Pl

‘q o

GND

sT8

STB
ouTPUT
3212 DATA
:> (15mA) DATA
(3.65V MIN) BUS
| DATA BUS
GND CONTROL —
(0= L =R}
(1=R~1)
DATA
BUS
~")
INT
NS
TO 3214 ICU

(DS1DS2)

DATA
BUS

(ACTIVE LOW)

OR
TO CPU
INTERRUPT INPUT

OUTPUT PORT (WITH HAND-SHAKING)

E_-—— OUTPUT STROBE

e
—

sTB

) SYSTEM OUTPUT

R [o—+—— SYSTEM RESET

?—4——— PORT SELECTION

(LATCH CONTROL)

i3212
iNT CC
b~/ I
SYSTEM Vec
INTERRUPT

(DS1.DS2)

T

GND

i3212 K

DATA
BUS

intal

The Intel®3214 Interrupt Control Unit
(ICU) implements multi-level interrupt
capability for systems designed with
Series 3000 computing elements.

The ICU accepts an asynchronous in-
terrupt strobe from the 3001 Micro-
program Control Unit or a bit in
microprogram memory and generates
a synchronous interrupt acknowledge
and an interrupt vector which may be
directed to the MCU or CP Array to
uniquely identify the interrupt source.

The ICU is fully expandable in 8-level
increments and provides the following
system capabilities:

Eight unique priority levels per ICU
Automatic Priority Determination
Programmable Status

N-level expansion capability

Automatic interrupt vector genera-
tion

SCHOTTKY
BIPOLAR LSI
MICROCOMPUTER
SET

High Performance — 80 ns Cycle Time

Compatible with Intel 3001 MCU and
3002 CPE

8-Bit Priority Interrupt Request Latch
4-Bit Priority Status Latch

3-Bit Priority Encoder with Open
Collector Outputs

DTL and TTL Compatible
8-Level Priority Comparator
Fully Expandable

24-Pin DIP

2-49

3214
INTERRUPT
CONTROL
UNIT

PACKAGE CONFIGURATION

B¢ 1 28— vee
8, 2 23j0—€cs
8, .ﬂ 3 22 jo—R;
sGs —Of 4 21j0—Rg
A —Q s 20 O—Rg
cLtk — 6 INTEL® 19 Jo— R4
158 —] 7 24 18J0—R3
Ap — 8 17 0—R;
A —d o 16 O— Ry
Ay —al10 15 JO— Ry
ELR — 1 14 —enLe
GND —] 12 13}—eTnG

3214

PIN DESCRIPTION

PIN SYMBOL NAME AND FUNCTION TYPe'!

1-3 Bo—B2 Current Status Inputs Active LOW
The Current Status inputs carry the binary value modulo 8 of the current
priority level to the current status latch.

4 SGS Status Group Select Input Active LOW
The Status Group Select input informs the ICU that the current priority
level does belong to the group level assigned to the ICU.

5 1A Interrupt Acknowledge Active LOW

-Coll
The Interrupt Acknowledge Output will only be active from the ICU 8pen Collector
R A X L utput
(multi-ICU system) which has received a priority request at a level
superior to the current status. It signals the controlled device (usually
the processor) and the other ICUs OR-tied on the Interrupt Acknowledge
line that an interrupt request has been recognized.
The |A signal also sets the Interrupt Disable flip-flop (it overrides the
clear function of the ECS input).

6 CLK Clock Input
The Clock input is used to synchronize the interrupt acknowledge with
the operation of the device which it controls.

7 ISE Interrupt Strobe Enable Input
The Interrupt Strobe Enable input informs the ICU that it is authorized
to enter the interrupt mode.

8-10 Ag—A, Request Level Outputs Active LOW
When valid, the Request Level outputs carry the binary value (modulo 8) Open-Collector
of the highest priority request present at the priority request inputs or
stored in the priority request latch. The request level outputs can be-
come active only with the ICU which has received the highest priority
request with a level superior to the current status.

1" ELR Enable Level Read Input Active LOW
When active, the Enable Level Read input enables the Request Leve!
output buffers (Ag—A3).

12 GND Ground

13 ETLG Enable This Level Group Input
The Enable This Level Group input allows a higher priority ICU in multi-

ICU systems to inhibit interrupts within the next lower priority ICU
(and all the following ICUs).

14 ENLG Enable Next Level Group Output
The Enable Next Level Group output allows the ICU to inhibit inter-
rupts within the lower priority ICU in a multi-ICU system.

15—-22 Ro—R7 Priority Interrupt Request Inputs Active LOW
The Priority Interrupt Request inputs are the inputs of the priority
Interrupt Request Latch. The lowest priority level interrupt request
signal is attached to Rg and the highest is attached to R .

23 ECS Enable Current Status Input Active LOW
The Enable Current Status input controls the current status latch
and the clear function of the Interrupt Inhibit flip-flop.

24 Vee +5 Volt Supply

NOTE:

(1) Active HIGH, unless otherwise noted.

250

3214

FUNCTIONAL AND LOGICAL DESCRIPTION

The ICU adds interrupt capability to
suitably microprogrammed processors
or controllers. One or more of these
units allows external signals called
interrupt requests to cause the pro-
cessor/controller to suspend execution
of the active process, save its status,
and initiate execution of a new task

as requested by the interrupt signal.

It is customary to strobe the ICU at
the end of each instruction execution.
At that time, if an interrupt request is
acknowledged by the ICU, the MCU is
forced to follow the interrupt micro-
program sequence.

Figure 1 shows the block diagram of
the ICU. Interrupt requests pass
through the interrupt request latch
and priority encoder to the magnitude
comparator. The output of the pri-
ority encoder is the binary equivalent
of the highest active priority request.
At the comparator, this value is com-
pared with the Current Status (cur-
rently active priority level) contained
in the current status latch. A request,
if acknowledged at interrupt strobe
time, will cause the interrupt flip-flop
to enter the “‘interrupt active’ state
for one microinstruction cycle. This
action causes the interrupt acknowl-
edge (IA) signal to go low and sets the
interrupt disable flip-flop.

The IA signal constitutes the interrupt
command to the processor. It can
directly force entry into the interrupt
service routine as demonstrated in the
appendix. As part of this routine, the
microprogram normally reads the re-
questing level via the request level out-
put bus. This information which is
saved in the request latch can be en-
abled onto one of the processor input
data buses using the enable level read
input. Once the interrupt handler has
determined the requesting level, it
normally writes this level back into the
current status register of the ICU. This
action resets the interrupt disable flip-
flop and acts to block any further
request at this level or lower levels.

Entry into a macro level interrupt ser-
vice routine may be vectored using the
request level information to generate a
subroutine address which corresponds
to the level. Exit from such a macro-

program should normally restore the

prior status in the current status latch.

The Enable This Level Group (ETLG)
input and the Enable Next Level Group
(ENLG) output can be used in a daisy
chain fashion, as each ICU is capable

of inhibiting interrupts from all of the
following ICUs in a multiple ICU
configuration.

The interrupt acknowledge flip-flop
is set to the active LOW state on the
rising edge of the clock when the
following conditions are met:

An active request level (Rg—R7) is
greater than the current status
Bo—B2

The interrupt mode (ISE) is active
ETLG is enabled

The interrupt disable flip-flop is reset

When active, the |A signal asynchron-
ously sets the disable flip-flop and
holds the requests in the request latch
until new current status information
(Bo—B2, SGS) is enabled (ECS) into
the current status latch. The disable
flip-flop is reset at the completion of
this load operation.

During this process, ENLG will be en-
abled only if the following conditions
are met:

ETLG is enabled

The current status (SGS) does not
belong to this level group

There is no active request at this level

The request level outputs Ag—Ag and
the |A output are open-collector to
permit bussing of these lines in multi-
ICU configuration.

ELR I o4 |
ETLG 1
: l REQUEST ACTIVITY L/ :
Rp— 1 | :
R —_._L._——c
1
|\[+ A
[YSEN S - v L ! °
R q Reouest |
3 LATCH a
f—L 4 PRIOHITY ' VL———— !
Rg | Je Po— l Az
Rg ___‘_.q I
g II
|
| L "—d.-\ } ENLG
! PRIORITY !
o COMPARATOR | 1A
—— 1 o cumrent !
N STATUS |
,—L 4 T
ses I
| T I
£cs ——————y |
: s s a :
| “[7 NT I
ois
| FF |
| (4 ' '
| |
ISE } |
cLK -

Figure 1. 3214 Block Diagram.

3214

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias
Ceramic .
Plastic

Storage Temperature
All Output and Supply Voltages .
All Input Voltages
Output Currents .

. -65°C t0 +75°C
.0°C t0 +75°C

-65°C to +160°C
.-0.5V to +7V
. =1.0V to +6.5V

.100 mA

*COMMENT: Stresses above those listed under “Absolute Maximum Rating’’ may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Tp = 0°C to +75°C, V¢ = 5.0V 5%

LIMITS

SYMBOL PARAMETER MmN Tye() max UNIT CONDITIONS

Ve Input Clamp Voltage (all inputs) -1.0 \% Ic= "5mA

IE Input Forward Current: ETLG input -.15 -0.5 mA Vg =0.45V
all other inputs -.08 -0.25 mA

IR Input Reverse Current: ~ ETLG input 80 HA VR =56.26V
all other inputs 40 MA

ViL Input LOW Voltage: all inputs 0.8 \% Ve =5.0v

ViH Input HIGH Voltage: all inputs 2.0 \ Vee = 5.0V

Icc Power Supply Current'? 90 130 mA

VoL Output LOW Voltage: all outputs .3 45 \% loL = 15 mA

VoH Output HIGH Voltage: ENLG output - 2.4 3.0 \% loH = -1 mA

los Short Circuit Output Current: ENLG output =20 -35 -55 mA VCC =5.0V

'éEX Output Leakage Current: |A and 100 MA Vcex =5.25V
Ap—A3 outputs

NOTES:

“)Typical values are for Tp = 25°C and nominal supply voltage.

(2)30-82, SGS, CLK, Rp-R, grounded, all other inputs and all outputs open.

252

3214

A.C. CHARACTERISTICS

Ta = 0°C to +75°C, Vg = +5V * 5%

SYMBOL PARAMETER MIN Lw'l;(r?) max UNIT
toy CLK Cycle Time 80 ns
tpw CLK, ECS, IA Pulse Width 25 15 ns
Interrupt Flip-Flop Next State Determination:

tiss ISE Set-Up Time to CLK 16 12 ns
tisH ISE Hold Time After CLK 20 10 ns
‘ETCSZ ETLG Set-Up Time to CLK 25 12 ns
tETCHz ETLG Hold Time After CLK 20 10 ns
tECCS3 ECS Set-Up Time to CLK (to clear interrupt inhibit prior to CLK) 80 25 ns
tECCHa ECS Hold Time After CLK (to hold interrupt inhibit) 0 ns
fEcns3 ECS Set-Up Time to CLK (to enable new requests through the request latch) 110 70 ns
tECRH3 ECS Hold Time After CLK (to hold requests in request latch) 0

tEcssz ECS Set-Up Time to CLK (to enable new status through the status latch) 75 70 ns
tECSHZ ECS Hold Time After CLK (to hold status in status latch) 0 ns
tDcsz SGS and By-By Set-Up Time to CLK (current status latch enabled) 70 50 ns
tDCHz SGS and Bp-B5 Hold Time After CLK (current status latch enabled) 0 ns
tRCS3 R@-R7 Set-Up Time to CLK (request latch enabled) 90 55 ns
tRCH3 Rp-R7 Hold Time After CLK (request latch enabled) 0 ns
tics 1A Set-Up Time to CLK (to set interrupt inhibit F.F. before CLK) 55 35 ns
tcl CLK to IA Propagation Delay 15 25 ns

Contents of Request Latch and Request Level Output Status Determination:

tris? Rg-R7 Set-Up Time to 1A 10 0 ns
trin? Rg-R7 Hold Time After 1A 35 20 ns
tRA R@-R7 to Ag-Aj Propagation Delay (request latch enabled) 80 100 ns
tELA ELR to Ag-Ag Propagation Delay 40 55 ns
teca ECS to Ap-Aj Propagation Delay (to enable new requests through request latch) 100 120 ns-
tETA ETLG to Ag-Aj Propagation Delay 35 70 ns

2-53

3214

A.C. CHARACTERISTICS (CON'T)

LIMITS

SYMBOL PARAMETER MIN Tvp(1) MAX UNIT

Contents of Current Priority Status Latch Determination:
tpecs? SGS and B-By Set-Up Time to ECS 15 10 ns
tpecn? SGS and By-By Hold Time After ECS 15 10 ns

Enable Next Level Group Determination:
tREN Rg-R7 to ENLG Propagation Delay 45 70 ns
tETEN ETLG to ENLG Propagation Delay 20 25 ns
tECRN ECS to ENLG Propagation Delay (enabling new request through the 85 90 ns

request latch)
tECSN ECS to ENLG Propagation Delay (enabling new SGS through status latch) 35 55 ns
NOTES:
) Typical values are for TA = 25°C and nominal supply voltage.
(2 Required for proper operation if ISE is enabled during next clock pulse.
(3 These times are not required for proper operation but for desired change in interrupt flip-flop.
(4) Required for new request or status to be properly loaded.
8 tcy =ycsticl
TEST CONDITIONS: TEST LOAD CIRCUIT Vee
Input pulse amplitude: 2.5 volts. T
Input rise and fall times: 5 ns between 1 and 2 volts. 5E 3000
Output loading of 15 mA and 30 pf.
Speed measurements taken at the 1.5V levels. oure

= 30pt $ soon
CAPACITANCE'®!
Tp =25°C
LIMITS

SYMBOL PARAMETER MIN Typl1) MAX UNIT
CIN Input Capacitance 5 10 pf
Cout Output Capacitance 7 12 pf

TEST CONDITIONS:
Vgias = 2.5V, Vog =6V, Tp = 25°C, f= 1 MHz

NOTE:

(S)This parameter is periodically sampled and not 100% tested.

2-54

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias

CerDip « -B5Cro+125°C
Storage Temperature -65°Cto+160°C
All Output and Supply Voltages .-05Vto+7v
All InputVoltages .-10Vto+bsV
OUtpUt CUFTeNts 100 mA

*COMMENT: Stresses above those listed under ‘Absolute Maximum Rating’’ may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Ta=-55°C to +125°C; Vg =5.0V 10%

SYMBOL PARAMETER MIN ;IYIV;IJ,S MAX UNIT CONDITIONS
Ve Input Clamp Voltage (all inputs) -1.2 \Y Ic=5mA
Ie Input Forward Current: ETLG input -.15 -0.5 mA Vg = 0.45V
all other inputs -.08 -0.25 mA
IR Input Reverse Current: ETLG input 80 MA VR =5.5V
. all other inputs 40 MA
ViL Input LOW Voltage: all inputs 0.8 \ Ve = 5.0V
ViH Input HIGH Voltage: all inputs 2.0 \% Ve =5.0V
Icc Power Supply Current(2) 90 130 mA
VoL Output LOW Voltage: all outputs .3 .45 \% loL=10mA
VoH Output HIGH Voltage: ENLG output 2.4 3.0 \%) loy = -1 mA
los Short Circuit Qutput Current: ENLG output ~15 -35 -55 mA VCC =5.0V
ICEX Output Leakage Current: |A and 100 MA Vcex = 5.5V
Ag-Ag outputs
NOTES:

(”Typical values are for TA =25°C and nominal supply voltage.
(2)8@-82, SGS, CLK, RO-R4 grounded, all other inputs and all outputs open.

2-55

3214

A.C. CHARACTERISTICS

Ta=-55°C to +125°C; V¢ = 5.0V * 10%

SYMBOL PARAMETER MIN L_:.':;ILES) MAX UNIT
toy CLK Cycle Time(5) 85 ns
tpw CLK, ECS, IA Pulse Width 25 15 ns
Interrupt Flip-Flop Next State Determination:

tiss ISE Set-Up Time to CLK 16 12 ns
t1SH ISE Hold Time After CLK 20 10 ns
tETCSZ ETLG Set-Up Time to CLK 25 12 ns
tETCHz ETLG Hold Time After CLK 20 10 ns
‘Eccsa ECS Set-Up Time to CLK (to clear interrupt inhibit prior to CLK) 85 25 ns
tECCH3 ECS Hold Time After CLK (to hold interrupt inhibit) 0 ns
tECRSB ECS Set-Up Time to CLK (to enable new requests through the request latch) 110 70 ns
tECRHS ECS Hold Time After CLK (to hold requests in request latch) 0

tECSSZ ECS Set-Up Time to CLK (to enable new status through the status latch) 85 70 ns
tECSHz ECS Hold Time After CLK (to hold status in status latch) 0 ns
tDCSZ SGS and Bp-By Set-Up Time to CLK (current status latch enabled) 90 50 ns
tpcH2 SGS and Bp-B Hold Time After CLK (current status latch enabled) 0 ns
tres3 R@g-R7 Set-Up Time to CLK (request latch enabled) 100 55 ns
tRCHS Rg-R7 Hold Time After CLK (request latch enabled) 0 ns
tics 1A Set-Up Time to CLK (to set interrupt inhibit F.F. before CLK) 55 35 ns
tc) CLK to |A Propagation Delay 15 30 ns

Contents of Request Latch and Request Level Output Status Determination:

tRIS4 Rp-R7 Set-Up Time to 1A 10 0 ns
trin? Rg-R7 Hold Time After I1A 35 20 ns
tRA Rg-R7 to Ag-Ag Propagation Delay (request latch enabled) 80 100 ns
tELA ELR to Ap-Ag Propagation Delay 40 55 ns
tECA ECS to Ag-Ag Propagation Delay (to enable new requests through request latch) 100 130 ns
tETA ETLG to Ag-Ag Propagation Delay 35 70 ns

2-56

A.C. CHARACTERISTICS (CON'T)

SYMBOL PARAMETER LIMITS UNIT
min - Ty max
Contents of Current Priority Status Latch Determination:
tpecs? SGS and Bg-Bo Set-Up Time to ECS 20 10 ns
tpech? SGS and Bg-By Hold Time After ECS 20 10 ns
Enable Next Level Group Determination:
tREN Rg-R7 to ENLG Propagation Delay 45 70 ns
tETEN ETLG to ENLG Propagation Delay 20 30 ns
tECRN ECS to ENLG Propagation Delay (enabling new request through the 85 110 ns
request latch)
tECSN ECS to ENLG Propagation Delay (enabling new SGS through status latch) 35 55 ns
NOTES:
m Typical values are for Ta= 25°C and nominal supply voltage.
(2 Required for proper operation if ISE is enabled during next clock pulse.
(3 These times are not required for proper operation but for desired change in interrupt flip-flop.
(4 Required for new request or status to be properly loaded.
8 tey = tics * tci
TEST CONDITIONS: TEST LOAD CIRCUIT Vee
Input pulse amplitude: 2.5 volts.
Input rise and fall times: 5 ns between 1 and 2 volts. 3000
Output loading of 15 mA and 30 pf.
Speed measurements taken at the 1.5V levels. o e
== 30pt 6002
CAPACITANCE'®
Ta= 25°C
LIMITS
SYMBOL PARAMETER MIN Typll) MAX UNIT
CiNn Input Capacitance 5 10 pf
CouTt Output Capacitance ' 7 12 pf

TEST CONDITIONS:
VBlAS =25V, VCC =5V, TA = 25°C, f=1MHz

NOTE:
(S)This parameter is periodically sampled and not 100% tested.

2-57

3214

WAVEFORMS

SGS, 808,

‘oECS _|

e
| P 4

DECH

Yiss 4‘-—# tisH

——t e e

AgAy

ENLG

TYPICAL CONFIGURATIONS

The ICU has been designed for use
with the INTEL Series 3000 Bipolar
Microcomputer Set. It operates from
the single common system clock and
can accept an interrupt strobe (ISE)
generated by the 3001 Micropgoram
Control Unit or by a bit in micropro-
gram memory as shown in Figures 2
and 3.

The ICU responds to interrupt re-
quests of sufficient priority by enter-
ing the interrupt active mode. Its
output (IA) can be tied to the row
enable input (ERA) of the 3001 MCU.
This gates an alternate row address
onto the microprogram memory ad-

dress bus which forces the system to
execute an interrupt handling routine.
Alternatively, the ICU output can be
used to directly modify the MCU jump
instruction (AC inputs) so that the
next microprogram address corresponds
to the start of the interrupt routine
rather than the start of the macroin-
struction fetch sequence. Of course,

in the case of this particular imple-
mentation, the interrupt strobe must
be generated one clock period earlier
and the ISE output of the MCU

should not be used.

As shown in Figure 4, when several
ICUs are used together to provide a

multiple of 8 priority levels, most con-
trol lines will be bussed. The Intel
3205 Decoder may be used to decode
the high order bits of the request level,
the information being derived from
the daisy-chain group level signals.

As mentioned in the functional descrip-
tion, the request level information
(Ap—A2) may be sent to the 3001 MCU
or the 3002 CP array as a constant
through the Mask (K) bus or as data
through the memory (M) or data (1)
busses. Similarly, the status informa-
tion can be generated by the CP array
and carried to the ICU by the data (D)
output bus of the CP array.

258

3214

TYPICAL CONFIGURATIONS (CON'T)

MICROPROGRAM
MEMORY
RAM - 3106, 3107

ROM — 33014, 33044
PAOM - 3601, 3604

MICROPROGRAM ADDRESS

MICRO.INSTRUCTION
AY,
1/0 AND MAIN MEMORY

) %— %_{
MAg © + "MA, MA3 « . MA
€RA ace
mcy .
3001 .
Acqy
[nss o ock
1SE
o cux -,
—ia

Figure 2. Interfacing 3214 with 3001.

Interrupt strobe generated by MCU.
Interrupt routine start address at column 15 row 31.
Macro-instruction fetch start address at column 15 row @.

MICROPROGRAM
MEMORY

RAM - 3106, 3107
ROM - 3301A; 3304A
PROM - 3601 3604
Acg

MICRO-INSTRUCTION
TO CP ARRAY,
1/0 AND MAIN MEMORY

Ao
MICROPROGRAM ADDRESS |5

MAg***MA, MAgessMAg
ACq

meu N
3001 :
Acy
K
ISE
cu
324 cLK

cLock

s

Figure 3. Interfacing 3214 with 3001.

SV
E—— R 1Y
actverow | —m — N
. 2
REQUESTS |~] A
(HIGHEST | o o}, 1
PRIORITY . a0
GROUP) . vy
R ———
Ro
1 (e
scs se
[—— 82 enG
—] .
£e3 |=—
L5 _cux
cLock 4 5V
R
'7 ETLG A ETLG
ACTIVE-LOW N A . Az y—.’_
REQUESTS. . A N Ay p——1 p:
PRIORITY . Py © 321 R0
GROUP) . icus ° * eV R fd
€R .
fo " . A
—={ Ro
sas s¢ fd— 1s€ [—)
B2 ENLG =
pted « P
-
ot 80 oo oLk q
1 {
L L]] *‘&L
7T T Tﬁ~ —— -
“.7 ETLG |t T T
ACTIVE.LOW : a
REQUESTS N A
(LOWEST . 1
PRIORITY . ag
\our) . icuo
Ao iR
A
ses 15€ fat—o
1182 ENLG
S
ECS =
1% _cue
4
3208
CURRENT STATUS ENABLE CURRENT
(FROM CP ARRAY) STATUS

ACTIVE.LOW
REQUEST

LEVEL OUT
TO CP ARRAY

ENABLE LEVEL READ

INT ACKNOWLEDGE

(TO ERA PIN OF MCU)

INT STROBE FROM MCU OR
MICROPROGRAM MEMORY

Figure 4. Using Several 3214 Interrupt Chips to Provide more than Eight Priority Levels.
(The 3214 at the upper right is used to encode the high order bits of the requesting level)

Interrupt strobe generated by the microprogram memory.
Interrupt routine start address at column 14 row @,
Macro-instruction fetch start address at column 15 row 0.

2-59

intal

The INTEL®3216 is a high-speed 4-bit
Parallel, Bidirectional Bus Driver. Its

SCHOTTKY
BIPOLAR LSI
MICROCOMPUTER
SET

High Performance— 25 ns typical
propagation delay

3216/3226
PARALLEL
BIDIRECTIONAL
BUS DRIVER

PACKAGE CONFIGURATION

three-state outputs enable it to isolate Low Input Load Current—0.25 mA -
and drive external bus structures maximum s —q1 [:l 16— Vee
associated with Series 3000 systems High Output Drive Capability for 00y — 2 15 —— bcE
The INTEL 3226 is a high-speed 4-bit Driving System Data Busses 08y — 3 14 — 00y
Parallel, Inverting Bidirectional Bus Three-State Outputs o1 —4 wre® 08
Driver. Its three-state outputs enable TTL Compatible DO, 5 3216 12—,
it to isolate and drive external bus 16-pin DIP
DBy — 6 11— oo
structures associated with Series 3000 ! 2
systems. oh 7 10 DBy
GND —{ 8 9b—oi,
The 3216/3226 driver and receiver gates
have three state outputs with PNP
inputs. When the drivers or receivers 3216
are tri-stated the inputs are disabled,)
presenting a low current load, typically
less than 40 uamps, to the system bus cs—qf 16 Vee
structure. 00p —2 16 f——bce
DBy —c1 3 14— Do,
Dlg —{ 4 wre® P08
D0y —5 3226 12 F—D0i3
D8, —d 6 11— Do,
by —7 10 Jo— DB,
GND —]8 9b—o1,
3226
LOGIC DIAGRAM 3216 LOGIC DIAGRAM 3226
Dig o VII Dlgo- :;
$——0 08, 0 DB
e -
I O .
j‘ ——o08, 1 T—©°o8,
0O, O ad; 00y 0—— i
b . o |
j +——oo8, 1 +———oDs,
DO, 0 < 00,0 1 =
DIz 0 VI [DIz & =g
4 ¢———0 08B, 1 ——o0s8;
— |

DCE

cs

2-61

3216/3226

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias
Ceramic .

Plastic
Storage Temperature
All Output and Supply Voltages .
All Input Voltages

Output Currents .

-65°C t0 +75°C
0°C to +75°C

-65°C to +160°C
-0.5V to +7V
. -1.0V to +6.5V

125 mA

*COMMENT: Stresses above those listed under *‘Absolute Maximum Rating’’ may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is

not implied.

Ta = 0°Cto +75°C, V¢ = +6.0V 5%

Limit
Symbol Parameter Min. Typ. Max. Unit Condition
Ig Input LoaiCurrent
DCE, CS Inputs -0.15 -0.5 mA Vg =0.45V
All Other Inputs -0.08 -0.25 mA
I Input Legl_@ge Current
DCE, CS Inputs 80 MA VR =5.25V
DI Inputs 40 MA
Ve Input Clamp Voltage -1 \Y% Ic = -bmA
ViL Input Low Voltage 0.95 \% Vce = 5.0V
Vin Input High Voltage 2.0 v Vce = 5.0V
Vo1 Output Low Voltage 0.3 0.45 \ DO Outputs Ig =15mA
DO, DB Outputs DB Outputs ig =25mA
Vor2 Output Low Voltage 0.5 0.6 \ DB Outputs lg = 50mA
DB Outputs Only
VOH1 QOutput High Voltage 3.65 4.0 \% lo=-1mA
DO Outputs Only
Vo2 Output High Voltage 24 3.0 \ loH=-10mA
DB Outputs Only
Isc Output Short Circuit Current
DO Outputs -15 -35 -65 mA Vce = 5.0V
DB Outputs -30 -75 -120 mA
|lo | Output Leakage Current
High Impedance State
DO Outputs 20 HA Vp=0.45V/5.25V
DB Outputs 100 MA
Icc Power Supply Current 3216 95 130 mA
3226 85 120 mA

NOTE: Typical values are for Ty = 25°C

2-62

3216/3226

A.C. CHARACTERISTICS Ta =0°Cto +75°C, V¢ = +6.0V 6%

Limit
Symbol Parameter Min. Typ. Max Unit Condition
Tep1 Input to Output Delay 3216 15 25 ns C=30pF, R1=300¢2,
DO Outputs 3226 14 25 R,=6002
Tep2 Input to Qutput Delay 3216 19 30 ns C=300pF, R1=90%2,
DB Outputs 3226 16 25 R2=180$2
Te Output Enable Time 3216 42 65 ns(2) DO Outputs: C__=30pF,
DCE, CS 3226 36 54 R1=300£2/10K¢2,
R2=60082/1KQ2
DB Outputs: C =300pF,
R1=9092/10K$2,
R,=18022/1KQ2
To Output Disable Time 16 35 ns(2) DO Outputs: C_=5pF,

DCE, CS

R1=30082/10KL,
R,=60082/1KS

DB Outputs: C =5pF,
R1=9092/10KS2,
R,=18002/1K2

NOTE: (1) Typical values are for TA = 25°C and nominal supply voltage.

(2) The test load circuit is set for worst case source and sink loading on the outputs. The two resistor values for R1 and R2 correspond to

worst case sink and source loading, respectively.

CAPACITANCE? T, =25°C

Limit
Symbol Parameter Min. Typ. Max. Unit
Cin Input Capacitance 4 6 pF
Cout Output Capacitance
DO Outputs 6 10 pF
DB Outputs 13 18 pF
Note:

(2) This parameter is periodically sampled and is not 100% tested.
Condition of measurement is f = 1MHz, Vgjag = 2.5V,
Ve = 5.0V and Tp = 25°C.

WAVEFORMS

INPUTS

QuTPUT
ENABLE

OUTPUTS 1.5v

TEST CONDITIONS:

Input pulse amplitude of 2.5V.
Input rise and fall times of 5 ns between 1 and 2 volts.

Output loading is 5 mA and

10 pF.

Speed measurements are made at 1.5 volt levels.

TEST LOAD CIRCUIT:

ouT o~

Vee

1}
Al

2-63

3216/3226

D.C. AND OPERATING CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias

Ceramic. o e -65Cto+75°C
Storage Temperature -85°Cto+160°C
All Output and Supply Voltages . -05Vt+7v
All Input Voltages .. .-10VtotbbV
OutputCurrents « « « v e e e e e e 125mMA

*COMMENT: Stresses above those listed under "“Absolute Maximum Rating’’ may cause permanent damage to the device. This is a stress rating only

and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is
not implied.

Ta =-55°C to +125°C, Ve = +5.0V £10%

Limit
Symbol Parameter Min. Typ. Max. Unit Condition
Ig Input Loa_d_Current
DCE, CS Inputs -0.15 -0.5 mA Vg = 0.45V
All Other Inputs -0.08 -0.25 mA
Ir Input Lea_lgge Current
DCE, CS Inputs 80 MA VR = 5.5V
DI Inputs 40 MA
Ve Input Clamp Voltage -1.2 \% Ic =-5mA
ViL Input Low Voltage M3216 0.95 \Y Vce = 5.0V
M3226 0.90 \Y
ViH Input High Voltage 2.0 \Y Vee = 5.0V
Vo1 Output Low Voltage 0.3 0.45 \ DO Outputs lg_=15mA
DO, DB Outputs DB Outputs lg=25mA
VoL2 Output Low Voltage 0.5 0.6 \ DB Outputs |, = 45mA
DB Outputs Only
VoH1 Output High Voltage 34 3.8 \ lon=-0.5mA
DO Outputs Only lon=-2.0mA
Vou?2 Output High Voltage 24 3.0 \% lop=-5mA
DB Outputs Only
Isc Output Short Circuit Current
DO Outputs -15 -35 -65 mA Vce = 5.0V
DB Outputs -30 -75 -120 mA
| lo I Output Leakage Current
High Impedance State
DO Outputs 20 MA Vp=0.45V/5.5V
DB Outputs 100 uA
Icc Power Supply Current M3216 95 130 mA
M3226 85 120 mA

NOTE: Typical values are for T = 25°C

2-64

3216/3226

A.C. CHARACTERISTICS T, = -55°C to +125°C, V¢ = 5.0V $10%

Limit
Symbol Parameter Min. Typ. Max. Unit Condition
TrD1 Input to Output Delay 15 25 ns C=30pF, R1=300%2,
DO Outputs R2=60082
Tep2 Input to Output Delay M3216 19 33 ns 'C|_=300pF, R1=90%,
DB Outputs M3226 16 25 R2=18092
Te Output Enable Time M3216 42 75 ns(2) DO Outputs: C|_=30pF,
M3226 36 62 R1=30092/10K$2,
R2=60092/1KS2
DB Outputs: Ci =300pF,
R1=90Q/10K<2,
R,=180Q2/1KQ2
To Output Disable Time M3216 16 40 ns(2) DO Outputs: C_=5pF,
M3226 16 38 R1=300£2/10K$2,
R5=6002/1KQ
DB Outputs: C =5pF,
R1=90Q/10KL,
R2=18002/1KQ

NOTE: (1) Typical values are for Tp = 25°C and nominal supply voltage.

(2) The test load circuit is set for worst case source and sink loading on the outputs. The two resistor values for R1 and R2 correspond to
worst case sink and source loading, respectively.

CAPACITANCE®? T, =25°C

Limit TEST CONDITIONS:
Symbol Parameter Min. Typ. Max. Unit Input pulse amplitude of 2.5V.
Cin Input Capacitance 4 6 pF Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 5 mA and 10 pF.
Speed measurements are made at 1.5 volt levels.

Cout Output Capacitance

DO Outputs 6 10 pF
DB Outputs 13 18 pF
Now: TEST LOAD CIRCUIT: Yo
(2) This parameter is periodically sampled and is not 100% tested.
Condition of measurement is f = 1MHz, Vgjag = 2.5V, $

Vce =5.0V and T = 25°C.

out

WAVEFORMS

" X‘“ L__
-
OuUTPUT 15v
ENABLE

~ X =

o
£

2
N

2-65

System Timing

Series 3000
System Timing
Considerations

by Gary Fielland

While the timing for each componentin Intel’s 3000
Series Schottky Bipolar Microcomputer Set is clearly
specified, the composite system timing must be de-
rived. This system timing is highly dependent on the
particular configuration implemented, and hence,
must be carefully considered for each implementa-
tion.

Though Intel cannot generate the system timing for
every possible configuration, an effort has been
made to study a few simple variations. By examining
these examples and taking note of considerations
given, it should be easier for the system designer to
realize those times which are critical, and to gene-
rate the appropriate timing for his particular system.

The designer must consider many different factors in
determining this ‘“proper” system timing. Several
simplifications are made to facilitate this discussion.
Intel commercial grade parts are specified over a
wide temperature range (0°C — 70°C) and so varia-
tions in timing due to temperature will not be con-
sidered, except for a short note at the end.

Whenever a signal must traverse a conductor between
two points, there is a finite delay introduced into
the signal path that is not accounted for by any data
sheet. This is the delay due to such factors as the

length of the conductor, its transmission properties,
and the characteristics of the driver and receiver.
When a TTL totempole output drives a TTL input a
short distance away this delay is usually negligible
compared to other delays in the signal path. How-
ever, if there are many loads (increasing the capaci-
tance), or the driver is of the open-collector type
(limiting the drive), or if the receiver is physically far
removed, the designer should consider and allow for
any possible deleterious effects of this delay. For this
discussion, except in one special case, the delay in-
troduced by interconnection is not considered.

Aside from these simplifications, it should be realized
that this note is not an extensive study of the timing
of any particular system, but rather a compendium
of typical considerations which a designer might
examine.

Consider the basic “data sheet” 16-bit processor con-
figuration as shown in Figure 1. It utilizes pipeline
registers, full carry look-ahead, and a priority inter-
rupt mechanism. To implement any such system the
designer must be very careful to provide the proper
timing for all components under all possible operat-
ing conditions. Such a system is highly complex and
the analysis is best approached in a piecemeal fashion.

MICRO- i $
PROGRAM PIPELINE F.6 Aout Dour I
. ¢
16 330;-13 K oy RO
4 3604'S L ocl Xy Cif=
ADDRESS
INTERRUPT
SYSTEM VECTOR E G, carry XY
CLOCK cc Crig LOOK-AHEAD Cp e
T I I (o 3003
CK A2 CK MA84 MA3G|
ACE-8[~
1
cu S " mcu Fee3
3214 3001 o
7 ERA
RE-7 B0-2 SXB-PX7
INTERRUPT
REQUESTS MEMORY OTHER
DATA DATA

~ Figure 1. Basic 16-Bit Processor Configuration

31

System Timing

ARITHMETIC DELAY PATHS

First an analysis will be made of the arithmetic paths
and delays. Imagine cycles in which arithmetic is
being done within the CPE array. The carrys must
have time to propagate through the arithmetic por-
tion and reach the MCU so that a conditional jump
may be made based on that carry out bit. For the
moment ignore other critical paths, and examine
Figure 2 which illustrates these arithmetic cycles.

The cycle begins with the rising edge of the system
clock as it clocks the pipeline registers. After the de-
lay (tpLR) introduced by the pipeline, the function
is available at the CPE array. There is a delay (txF)
while all the CPE’s decode the function and generate
their X and Y outputs for the operation. Once the X
and Y outputs are stable, the Carry Look-Ahead cir-
cuit takes some time (txc) to simultaneously gener-
ate all the carry outputs, including the one which
goes to the MCU flag input. Time must be provided
to allow for the carry-input setup time of the CPE’s
(tsg) and the MCU (tgp). Finally, adding in enough
time for the clock pulse, which acts as a write pulse
for the CPE register array, the cycle time is deter-
mined. Note the time for the MCU flag output to
stabilize (tgp) was ignored as it is not a limiting
specification for this configuration.

teYcLE = tpLR * txXF * txc* tss + twp

Keeping the same train of thought, consider indi-
vidually the effects of variants from the configuration
of Figure 1. If full carry look-ahead is not used and
the carry is allowed to ripple through only the last
slice, an additional delay path is introduced. After
the 3003 has generated the carry outputs there is the
CPE carry-in setup time (tgg) which must be met as
before. However, the carry-out of the last slice will
not be available to the MCU flag input until it has
rippled through (tge) that slice. Finally, the MCU
flag input setup time (tgy) must be satisfied.

tcycLE = tPLR * tXF * txc * toc + ts1 + twp

If the 3003 Look-Ahead Carry circuit is not used,
there will be considerable delay added to the basic
cycle due to ripple carry time. Once the CPE func-
tion-inputs are stable, the function must be decoded
and the carry-out of the least significant slice gene-
rated (top). The carry must ripple through six slices
(6* toc) and meet the carry setup time (tgg) of the
most significant slice. However, it must also ripple
through this last slice (tgg) and meet the MCU flag
input setup time which is a more severe restriction.

tcycLE = tpLR * toF * (7* tog) + tgr + twp

|
CLOCK ~ ’
|

|
FUNCTION
INPUTS

i
- typ

X.Y,RO

OUTPUTS |
l
|e——1xc tss
|
CARRY
INPUTS
tec —>
FLAG
INPUT i
4
i
) —|
tPLR CLK 1 to pipeline register outputs (745174) 17 nsec
tXF Function inputs to X,Y,RO outputs 52
txc Lookahead — X,Y inputs to carry outputs . 20
tss Data set-up time, LI & CI 27
tce Ripple carry (Cl to CO) delay 25
NOTE: tcc included only if carry ripples through last slice.
ts| Flag input set-up time 15
twp Clock pulse width 33
ICYCLE Full fast carry tPLR + IXF + tXC * tsS + twp 149
Last slice ripple tPLR + IXF + IXC * tCC + tg) + twp 162

If pipeline registers are not used:; replace tp g with the sum of tcg (CLK' to MAy.g outputs,
44 nsec) plus tRoMm laccess time; 50 nsec for 3601-1, 70 nsec for 3604).

If 3003 fast carry is not used; replace txF with tcr (function IN to CO output, 65 nsec);
replace txc + tcc with (N-1)*tcc, where “N* is the number of slices used.

Figure 2. Non-Interrupt 16-Bit Processor Cycle Timing

System Timing

If pipeline registers are not used, there will be addi-
tional delay. It takes some time (tgp) after the ris-
ing edge of the clock for the next address to propa-
gate through the MCU address register and buffers.
Then, when this address is stable the ROMs must be
accessed and there will be a delay (tgpopm., access
time) before their output and hence the CPE func-
tion-input is stable. Thus, the cycle time for a non-
pipelined system with carry look-ahead is:

teycLE = tco t troM * txF * txc * tss + twp

In the previous discussion it was assumed that the
operands in the arithmetic operations were internal
registers and the K-bus as implemented. If one of the
operands is the M-bus or the I-bus, additional con-
sideration should be given. This situation will typ-
ically arise at the completion of a Memory-Read or
Input cycle. Typically, these cycles are implemented
such that the processor clock stops in its high state
to wait for the data to be available, while the pro-
cessor is in the midst of executing an LMM or similar
instruction. Thus, it is often the case that the pipe-
line registers have long since been accessed and the
function decoded.

Then, when the data becomes available a clock pulse
is issued and normal operation continues. It is the
time from the point the data becomes available until
the clock pulse is issued (Data Input Setup Time)
that is of concern here.

Consider first a special case. Namely, the data is in-
put via an LTM instruction and no test will be made
on the carry-output. This implies that for this specific
instruction, carry propagation is unimportant and it
is acceptable to have an erroneous carry-output. For
such a case, it is sufficient to only allow for the
CPE data setup time (tpg).

tseTuP = tDS

For the more general case where arithmetic is done
on input and the carry-output may be tested, the
above analysis is incomplete. While the above condi-
tion must be met, it is no longer the determining fact-
or. Time must be allowed for carry propagation.
See Figure 3, which illustrates this case.

From the point in time when the data becomes stable
at the CPE inputs, there is a delay (txp) while the
CPE generates the X and Y outputs. If Ripple Carry
is employed, the delay (tcp) is in waiting for the
carry-output of the least significant slice. After
either of these delays the rest of the setup time is
allocated analogously to that depicted in Figure 2
and discussed previously in relation to arithmetic
cycle times.

tspTup (Basic) = txp + txc + tgs

tggTyup (Last Slice Ripple) = txp+ txc + toc * tsr
tsgTup (Ripple Carry) = tep + (7* toe) + tgp
tsgrup (No Pipeline) — Same as Basic

CLOCK

__/

e tayp e Tyx —

DATA
INPUTS

XC

XY
OUTPUTS

txe

CARRY
INPUTS

FLAG
INPUT

her—

txXp Data inputs to X,Y outputs 42 nsec

tHX SX,PX input hold time 20

tSET-UP Full fast carry txD + tXC * tsS 89
Last slice ripple txp +txc * tcc * tsi 102

If 3003 fast carry is not used; replace txp with tcp (data input to CO output, 55 nsec):

replace txC + tcc with (N-1)*tcg then tgeT.yp (ripple carry). 245

NOTE: This diagram is usually of concern only in relation to memory-read, or input

cycles.

Figure 3. 16-Bit Processor Data Input Set-Up Times

33

System Timing

CONTROL DELAY PATHS

After carefully examining the arithmetic paths and
delays it is appropriate to push all of this informa-
tion onto your ‘“mental stack” and begin again with
a consideration of the control paths and delays.
After this study the stack can be popped and infor-
mation merged to yield overall system requirements.

Consider the MCU as it cycles in normal operation
(see Figure 4). At the rising edge of the clock the
new microprogram address is loaded into its holding
register and through the output buffers. Thus, the
new address reaches the ROM after a delay (tog).
Then there is a wait (tggy) while the ROMs are ac-
cessed before the outputs are valid. At this time the
MCU address control inputs (which are never pipe-
lined) are valid and this must be early enough in the
cycle to satisfy the MCU address control input setup
time (tgp). Adding the time for the clock pulse
(twp) yields the cycle time requirement. Note this
paragraph has ignored the generation of the ISE
output.

teycLE = tco * trom * tsF + twp

In the basic configuration shown in Figure 1 the ISE
output is used to strobe the 3214 Interrupt Control
Unit each time a JZR 15 (usually a jump to macro-
instruction fetch) is recognized at the MCU address

control inputs. Some consideration must be given to
the additional requirements on timing imposed by
the use of this ISE output. After the ROM has been
accessed and the MCU address control inputs are
valid, it takes the MCU some time (tpp) to decode the
JZR 15 operation and raise the ISE output. This out-
put is used as the 3214 ISE input and must be valid
early enough to meet that input setup time (tigg).
As this setup time is relative to the rising edge of the
clock, the clock pulse width need not be added in.

tcycLE = tco * trRom * tF1* tiss

Recalling the basic configuration depicted in Figure
1 and the situation described in the last paragraph,
imagine that an interrupt request had been active
long enough to meet the request setup time (tgcg)
of the ICU. Then since the ISE input went high and
satisfied the input setup time, the Interrupt Ack-
nowledge flip-flop within the 3214 will change state
and lower the MCUs ERA input after a delay (tcp-
After the row address outputs are disabled (tgg),
the pull-up resistors will begin to pull these lines high
and after the voltage on these lines rises to 2.0V
(tRiSE) the ROM address will be valid. The remainder
of this cycle is the same as previously described and
usually will not be required to again generate an ISE
pulse.

teycLE = tci * teo * tRISE * tROM * tsF +iwp

CLOCK \L / \ F
teo—»] twe [tRise —> twe
ROM
ADDRESS L
T !
tROM —t——— t5F ————» ; < tRoM ———w=— I5F —»
AC (6-8] ’)(
INPUTS
[T E— Yiss

ISE
ouTt | i i

| i

|<- to) —=— tgo _,l
ERA \
INPUT \

tux

tco CLK' to MA[8~¢] outputs

tROM

tSF AC[6~¢] input set-up time

tF| AC[6~¢] input to ISE output

1ss ISE input {3214) set-up

tcl CLK! to IA output (3214)

teo ERA input to MA[8~4] output

tRISE RISE time to 2.0 V with 1 K2 pull-ups: (16°3601-1)
tMUX Multiplexer switch time (74S158)

tCYCLE Ignoring ISE output

Using ISE output

ROM access time (70 nsec for 3604) 3601-1

1CO + tROM * tsF + twp (3601-1)

tco + tROM * tF| + tyss (3601-1)

44 nsec
50
10
40
16
25
32
84
21
12

137

157

150

(4*3604)

(3604)

Interrupt using pull-upstc) + teQ + tRISE * tROM * tSF + tWP (3601-1) 234

Interrupt using MUX* tc| + tMuX + tROM * tsF + twp (3601-1)

130

(*MUX adds tmyx-pPROP [6 nsec] to tco)

Figure 4. MCU & Interrupt Cycle Timing

34

System Timing

Examining the times shown on Figure 4 for this case
of an interrupt cycle using pull-up resistors, it is clear
that unless something is done this will be the limit-
ing cycle time requirement. There are several tech-
niques which may be used to ease this requirement.

Since interrupt cycles are relatively infrequent in
comparison with other cycles, one solution might be
to extend just that cycle. In other words, the system
cycle time would be determined by all considerations
previously mentioned, but ignoring the abnormal in-
terrupt cycle requirement. Then the clock circuit
would be designed such that it could extend a cycle
in response to a signal from the 3214 Interrupt Con-
trol Unit (see Figure 5).

SYSTEM
CLOCK

CLK cK cK
out ISE ISE
cLocK icu mcu
GENERATOR 3214 3001
CYCLE ERA
EXTEND

L

Figure 5. Interrupt Cycle Extension

The interrupt cycle would still be exactly as depicted
in Figure 4, but the length of the interrupt cycle
would be longer than a normal cycle, and in fact long
enough to accommodate the interrupt cycle require-
ment.

It can be seen that a significant portion of the inter-
rupt cycle is lost waiting for the pull-up resistors to
charge the capacitance on the address lines. Thus,
another method of easing the interrupt cycle require-
ment would be to reduce the address line rise time
(trisg)- Reducing the resistance of the pull-ups
would help but this technique is limited by the avail-
able MCU address output fanout. Alternatively, the
MCU row address outputs (MA8-4) could be con-
nected to the ROM address lines through a multi-
plexer such as the 745158 (see Figure 6). With such
a connection the interrupt cycle time is reduced
since the MCU enable time (tgg) plus the address
line rise time (tgjgg) may be replaced with simply
the multiplexer select time (tpjyx) as shown in Fig-
ure 4. However, it should be noted that such a con-
nection adds delay to the MCU address outputs, thus
effectively lengthening this existing delay (tcg) by
the multiplexer propagate time (tyyx.prop) and
hence lengthening any cycle which was dependent on
the MCU delay (tco)-

tcycLe (Interrupt with MUX) =

tor * tmux * trom * tsr t twp

MICRO-
PROGRAM
MEMORY

ADDRESS

MULTIPLEXER
SELECT

AlN B|N
+Vee '-'\/\/\—r
MAS8-4 MA3-0
ISE ISE
Icu MCcU
1A— Voo <=AMN—ERA

Figure 6. Multiplexer to Reduce Address Rise Time

A third alternative to solve the long interrupt cycle
requirement is to implement the interrupts in quite
a different way. Rather than changing the MCU ad-
dress outputs, the MCU address control input least
significant bit (AC¢) may be altered (see Figure 7).
Using this technique an extra ROM bit (Interrupt
Strobe) is required to strobe the 3214 ICU since the
MCUs ISE output occurs one cycle too late. Imple-
menting the same mechanism (interrupt strobe on
JZR 15) could be done by using the interrupt strobe
bit to strobe the ICU (see Figure 7) the cycle before
the JZR 15 code appears. An added benefit of this
method is that the interrupt structure may be strobed
at points other than the beginning of an instruction
fetch cycle, facilitating PAUSE or WAIT instructions.

Examining the timing diagrams in Figure 7, it can be
seen that this implementation of interrupts does not
limit the system cycle time. Rather, this interrupt
mechanism’s timing is less restrictive than timing for
a normal cycle. The only requirements are that the
interrupt strobe bit from the ROM reaches the 3214
ICU ISE-input within its setup time (tjgg). In the
next cycle it is only necessary that the IA-output has
gone low (tgy) early enough to meet the MCU ad-
dress control input setup time (tgg). Thus, for the
price of one bit of ROM interrupts can be imple-
mented with no penalty in time.

At this point both major delay paths (arithmetic and
control) have been examined for the implementation
in question. After the designer has assured himself

35

System Timing

MICRO-
PROGRAM
MEMORY
(OPEN-
COLLECTOR)
ISE INTERRUPT | —
STROBE
Icu
+!
1A 7417 Vee
MAS-0
i 13 ACg ICYCLE (Non-Interrupt) > tco + tROM + tSF + twp
+Vec MCU tCYCLE (Interrupt Strobe) > tco + tROM + tiss
tcycLE (AC[¢] Modification) > tco + tROM * tsF + twp. and
+Vec <AW—ERA ACE-1 VWA >1C) + tBUF + tSF + twp
tCYCLE (Interrupt) - Same as Non-Interrupt
CLOCK \ / \
teo —f twp tco —| twp —f
ROM
ADDRESS
trom tsr thom —} tse
AC[6-8] INTERRUPT STROBE JZR 15 CODE
INPUTS BIT APPEARS FROM ROM
MODIFIED TO JZR 14
t, t,
ss o BY IA OUTPUT
1A
ouTPUT
———l tBUF
7417
OUTPUT

Figure 7. Interrupt Using AC [¢] Modification

there are no other delays which he may have over-
looked, such as introducing external circuitry into
the paths, he may merge the various requirements
generated into a uniform set of system requirements.
Any change introduced after these requirements have
been generated must be closely examined that it does
not subtly alter any system requirements. Delays that
are negligible in one configuration may be dominant
in a slightly different structure.

WHAT HASN'T BEEN MENTIONED?

1. In the introduction it was explained that tempera-
ture would not be considered in the examples
since Intel specifies products over the 0°C to 70°C
temperature range. This deserves further comment.
A quick glance at an Intel Data Sheet will verify
that Intel parts are specified and guaranteed over
the 0°C to 70°C ambient temperature range and
concurrently with a five percent tolerance power
supply. This is a reasonable range and allows the
designer to guarantee circuit operation. '

Unfortunately, the standard Schottky MSI line
(74SXX) is only specified at 25°C ambient and
Vce = 5V. The variance of parameters over the
allowable temperature and supply voltage is un-
specified and left to the designer’s experience. Due
to this uncertainty the designer should ‘“‘appro-
priately” modify any times attributable to non-
Intel parts to allow for variations over tempera-
ture and supply voltage.

. In the examples given it was always assumed that
setup times would be honored. Though most of a
computing system is synchronous, it typically has
to interface with asynchronous events. It is at this
interface that difficulty may be encountered. Con-
sider a popular circuit (Figure 8) used to ‘‘synchro-
nize” asynchronous signals.

In this circuit the output delay is guaranteed only
if the input setup time is met. But since the input
is asynchronous, this setup time may not always
be satisfied, as at the second event depicted in
Figure 8. What happens? Though the results are
highly dependent on the flip-flop circuit design,

System Timing

some general observations may be made. Typically,
the effect is to stretch out the flip-flop delay time
as the event approaches arbitrarily close to the
clock edge. Theoretically, the delay will go to in-
finity if the event falls precisely on the clock edge.
Some flip-flops also exhibit a characteristic in
which the output may change state and some time
later return to the original state. This phenomena
is known as ‘“‘hang-up” and has been observed to
last for twenty nanoseconds on a 74S74. It can-
not be absolutely prevented when asynchronous
signals are introduced into a synchronous system,
but the probability of the ‘hung” flip-flop causing
an error can be reduced without limit. The tech-
nique is simply to cascade these interfaces.

If two such flip-flops are cascaded there is some
probability Py (P; <1) that the asynchronous event
will fall close enough to the clock edge to hang
the first flip-flop. Given that it hangs, there is
some probability Pg that it will hang for very near-
ly an entire clock period and into the hang-up
zone of the second flip-flop. Then, there is a
probability Pg that the second flip-flop will hang
long enough to cause an error. Thus, the prob-
ability of error is Pg = P; *Pg*P3. Hence, by cas-
cading flip-flops the probability of error can be
reduced without limit.

Recall the 3214 Interrupt Control Unit and its re-
quest setup time (tgcg) and its IA output delay
(tcr)- This delay is in several critical system paths
as shown by the examples. Of course, the IA out-
put delay specified also presumes the IA flip-flop
setup time was met. When deliberately violating
the IA flip-flop setup time, a hang-up of 50 nsec
has been observed. What is a designer to do?

Slowing down the system such that it could tole-
rate any expected hang-up would be the easiest
solution. This may not always be as bad as it
sounds. Recalling the situation depicted in Fig-
ure 7, note that some flip-flop hang-up is toler-
able. [tjA.HANG = tcYCLE - (tsF * twp)]. Anal-
ternative would be to “synchronize” the asyn-
chronous interrupt requests using the technique
previously described. An octal D flip-flop such as
the 745374 would be suitable.

In the examples given it has been assumed that
the system, including all the CPEs, the MCU, and
the ICU, operates from a single clock. If a circuit,
such as in Figure 9, that provides a separate clock
for different components is used, the possible
clock skew must also be considered when determ-
ining system timing.

ASYNCHRONOUS |

|
INTERFACE | syncHRrONOUS
SYSTEM | | SYSTEM
74574
| |
— o Q +
- | |
ASYNCHRONOUS

EVENT | cK |
T |
| f

[| svsTEm

| | oo
I |
| |

SYSTEM
cLoCK

"‘su'

ASYNC
EVENT

X

*—(Foil

Q
OUTPUT

tsy — 74574 Data input set-up time = 3 nsec.
tgp — 74574 Delay from clock 1 = 9 nsec.
tHU — Hang up due to set-up time violation.

Figure 8. Synchronizing Circuit Exhibiting Hang-Up

3-7

System Timing

TWice
CLOCK
RATE
MCU AND
_— SYSTEM
RUN ’ a CLOCK
cKy CPE
cLock
+Vee K

CPE CLOCK
INHIBIT
BIT FROM PIPELINE
REGISTE!

Figure 9. CPE Clock Inhibit Circuit

4. Though not explicitly mentioned, it has been as-
sumed that all input hold times would be observed.
Usually these times are satisfied with no conscious
effort required of the system designer. However,
parameters such as the MCU SX and PX input
hold time must be carefully considered. These in-
puts are used for macro instruction decoding and
typically are used at the end of an instruction
fetch cycle. When using these inputs the designer
must provide the necessary data hold time before
allowing the data to change.

SUMMARY

Generating the correct timing for a complex system
in which parameters may vary with temperature,
power supply voltage, lead length and the like is no
trivial task. Fortunately, large scale integration such
as Intel’s 3000 family is making the task much easier.
With the 3000 family of compatible parts the de-
signer need only worry about the interfaces and may
be assured the internal timing is correct. Such a sys-
tem is best analyzed by separately considering the
various delay paths and later combining the sundry
results. And of course, with Murphy on vacation the
designer can be confident of a flawless design on the
first pass.

3-8

Disk Controller Design

Disk Controller Designed
With Series 3000
Computing Elements

by Glenn Louie

With the introduction of the first micropro-
cessor, digital designers began a massive switch to
programmable LSI technology, away from hard-
wired random logic. Designers found that with
these new LSI components and the availability of
low cost ROMs they could easily implement struc-
tured designs which were both cost effective and
flexible. However, not all digital designs were
amenable to the microcomputer approach. One of
the basic limitations was the speed at which a par-
ticular critical program sequence could be executed
by a microprocessor. The early P-channel MOS
microprocessors, such as Intel’s 4004 and 8008,
were able to solve a broad class of logic problems
where speed was not essential. With the introduc-
tion of the more powerful n-channel MOS micro-
processors, such as the Intel®8080, the range of
applications was significantly broadened, but there
still existed a class of applications that even these
newer devices were not fast enough to handle.

Recently, two new Schottky bipolar LSI com-
puting elements, members of the Intel Bipolar
Microcomputer Set, were introduced which expand
the range of microcomputer applications to include
high speed peripheral controllers and communica-
tion equipment. The new elements are the 3001
Microprogram Control Unit (MCU) and the 3002
Central Processing Element (CPE). These two com-
ponents facilitate the design of specialized, high

Bipolar Microprogrammed Disk Controller

Figure 1.

speed microprocessors that together with a mini-
mum of external logic perform the intricate pro-
gram sequences required by high speed peripheral
controllers.

A multi-chip bipolar microprocessor differs from
the single chip MOS microprocessor in that the
bipolar microprocessor is programmed at the. micro-
instruction level rather than at the macroinstruc-
tion level. This means that instead of specifying
the action via a macroprogram using a fixed in-
struction set, a designer can specify the detailed
action occurring inside the microprocessor hard-
ware via a microprogram using his own customized
microinstructions.

In general, microinstructions are wider than
macroinstructions (e.g. 24 to 32 bits) and have a
number of independent fields that specify simulta-
neous operations. In a single microcycle, an arith-
metic operation can be executed while a constant is
stored into external logic and a conditional jump is
being performed.

A bipolar LSI microprocessor design is §imilar to
a general MSI/SSI microprocessor design‘ where
the intricacies of the application are imbedded in
the program patterns in ROM. However, the large
amount of logic necessary to access the microcode

39

has been replaced by the LSI MCU chip. Also,

Disk Controller Design

the MSI logic required to provide the arithmetic
and register capabilities has been replaced by the
functionally denser LSI CPE slices. Because of
these new LSI chips, microprogramming with all
its advantages can now be applied to designs which
previously were unable to justify microprogramming
overhead.

The effectiveness of these new LSI components
in a high speed peripheral controller design has
been demonstrated by the Applications Research
group at Intel with the design of a 2310/5440
moving head disk controller (BMDC). The BMDC
has a total of 67 IC chips and is packaged on a
printed circuit board measuring 8” x 15, as shown
in Figure 1. Disk controllers of equivalent com-
plexity realized with conventional components
typically require between 150 and 250 I.C.’s. The
BMDC performs all the operations required to
interface up to four “daisy chained” moving head
disk drives, with a combined storage capacity of
400 megabits, to a typical minicomputer. It is fast
enough to keep up with the drive’s 2.5 MHz bit
serial data stream while performing the requisite
data channel functions of incrementing an address
register, decrementing a word count register, and
terminating upon completion of a block transfer.

The BMDC interacts with the minicomputer’s
disk operating system (DOS) via I/O commands,
interrupts and direct memory access (DMA) cycles.
The I/O commands recognized by the BMDC’s
microprogram are:

Conditions In
Seek Cylinder
Write Data
Read Data
Verify Data
Format Data

The BMDC sends an interrupt to the minicom-
puter when either a command is successfully exe-
cuted, a command is aborted, or a drive has finished
seeking. The DOS then interrogates the BMDC
with a Conditions In command. The following
flags specify the conditions which the BMDC can
detect:

Done flag

Malfunction flag

Not Ready flag

Change In Seek Status flag
Program Error flag
Address Error flag

Data Error flag

Data Overrun flag

Data transfers between the minicomputer and
the disk BMDC occur during DMA cycles. DMA
cycles are also used for -passing command informa-
tion from the minicomputer to the BMDC.

The bipolar LSI microcomputer in the BMDC
performs the necessary command decoding, ad-
dress checking, sector counting, overlap seeking,
direct memory accessing, write protection, pass-
word protection, overrun detection, drive and read
selection, and formatting. External hardware assists
the microprocessor in updating the sector counter,
performing parallel-to-serial and serial-to-parallel
conversion, and generating the CRC data checking
information. The BMDC uses a special purpose
microprocessor, configured with the components
listed in Table A. The LSI microprocessor uses an
MCU, an 8:1 multiplexer, eight 3601 PROMs, a
command latch, a data buffer, and an array of
eight CPE slices (Fig. 2). The characteristics of
this design, only one of many possible with the
3000 family, are as follows:

e 400 nsec system clock

16-bit wide CP array

Ripple carry CPE configuration
Non-pipelined architecture

One level subroutining

230 32-bit microinstructions
Word to 4-bit nibble serialization

The MCU controls the sequence in which micro-
instructions are executed. It has a set of uncondi-
tional and conditional jump instructions which is
based on a 2-dimensional array for the micropro-
gram address spece called the MCU Jump Map. V)

PART # DESCRIPTION QUANTITY
3001 MCcu 1
3002 CPE 8
3212 8 bit 1/0 Port 6
3205 1 of 8 Decoder 2
3601 1K PROM 8
3404 6 bit Latch 1
74173 4 bit Gated D F/F 1
74174 6 bitD F/F 1
74175 4 bit D F/F 1
74151 8:1 Multiplexer 1
8233 Dual 4:1 Multiplexer 2
9300 4 bit Shift Register 1
9316 4 bit Binary Counter 1
8503 CRC Generator 1
7474 Dual D F/F 5
7473 Dual J-K F/F 2
7451 And-Or-Invert Gate 1
7404 Hex Inverter 6
7400 Quad 2 Input Nand Gate 9
74H08 Quad 2 Input And Gate 1
7403 Quad 2 Input Nand O.C. Gate 2
7438 Quad O.C. Drivers 4
74H103 Dual J-K F/F 2

Total 67 1.C. Packages

Table A. 1.C. Component List for Disk Controller

3-10

Disk Controller Design

MICROPROGRAM MEMORY

1s OUTPUT PORTS
I
N
s 2 T T TT — TTTT leewwed Teeeeed Teeeen
342
8:1 MUX
As] LI PORT B] PORT C J
MAO-6 T I
Mey ACO6 7 1 INPUT PORT
3001 FC
SX PX FI FO
]
706] NIBBLE OUT
1 R
¢ CP ARRAY 0 s
8- 3002's EXTERNAL LOGIC
co L
b A OUTPUTS D OUTPUTS ™ | 4
4 NIBBLE IN
A6 16 16 8 9 27
COMMAND
LATCH
DATA BUFFER
< 4
16 (6 35
DISK DRIVE

mDpB

Figure 2. Disk Controller — The various ts of a sp

SIGNALS

which together is the entire disk controller.

ialized microprogrammed processor is shown with the external logic

In addition, the MCU is connected in such a man-
ner as to perform command decoding, external
input testing, and one level subroutining.

Command decoding is achieved by connecting
the command latch to the Primary Instruction (PX)
bus inputs and using the JPX instruction (Fig. 3).
The testing of external input signals is performed
by routing the least significant bit (LSB) of the
seven bit jump code through an eight-to-one multi-
plexer (Fig. 2). The multiplexer is controlled by a
3-bit Input Select Code which selects either the
LSB of the jump code or one of 7 external input
signals to be routed to the MCU. This technique
has the effect of conditionally modifying an un-
conditional jump code so that the next address will
either be an odd or even location (Fig. 3). A one
instruction wait for external signal loop can be
simply implemented in this fashion.

One level subroutining is achieved by feeding the
four least significant bits of the address micropro-
gram outputs back into the secondary instruction
(SX) inputs. Enough program status information
can then be saved in the internal PR latch when a
subroutine is called with a JPX instruction so that

upon exiting, a subroutine with a JPR instruction,
control can be returned to the procedure which
called it (Fig. 4). This technique saves a significant
amount of microcode in the BMDC because some
long sequences do not have to be repeated.

The microprogram control store is an array of
eight 3601 PROMs organized to give 256 words x
32 bits (230 words were required for the BMDC).
The 32-bit wide word is divided into the following
subcontrol fields:

1. Jump Code field 7 bits
2. Flag Control field 2 bits
3. CPE Function field 7 bits
4. Input Select field 3 bits
5. Output Select field 3 bits
6. Mask or Data field 8 bits
7. Mask Control field 2 bits
TOTAL 32 bits

The command latch and data buffer retain com-
mand information from the computer so that the
memory bus will not be held up if the BMDC
should be busy performing an updating task. The
data buffer also retains the next data word during
a Write Data to disk operation.

311

Disk Controller Design

The CP array is connected in a ripple carry con-
figuration as shown in Figure 5. The eight CPE
slices provide the BMDC with a 16-bit arithmetic,
logic and register section. Word to nibble serial-
ization is made possible by connecting the Shift
Right Outputs (RO) of the first, third, fifth, and
seventh CPE to the Nibble Out bus. By using only
four shift right operations a word in a register can
be converted into four 4-bit nibbles. The final
serialization of these nibbles is done in the external

COLUMN
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

1

2 JCR)
(WAIT FOR EXTERNAL INPUT)

5 | seex waire neao
DATA DATA DATA DATA DATA

6 N\
\\ \\ b
7 T~ (PX,
ROW
8 (INSTRUCTION DECODING)
9 (1c9)
10
CONDITIONAL BRANCH ON EXTERNAL INPUTS
USING JUMP CURRENT COLUMN (JCC) AND
" JUMP CURRENT ROW (JCR) INSTRUCTION
12 1cR)
13
"
15 255

Figure 3. MCU Jump Map for instruction decoding and
conditional branching on external inputs

logic. Similarly, the Shift Right Inputs (LI) of the
second, fourth, sixth, and eighth CPE are connected
to the Nibble In bus so that with only four shift
right operations, a word can be assembled from
four nibbles.

COLUMN
0 1 2 3 a4 5 6 7 8 9 0 M 12 13 14 15

A o
ALL
: SUBROUTINE caL -~
6 A Y CALL c
el el %
5 8)caLlL_A~
ROW
8
s RET = —
10 I
DESIGNATED R ™ o+
n" ReTURN Row [& N

Figure 4. MCU Jump Map for one level subroutine call and
return. A subroutine is called from four different
places in the program each with a unique column
number. Upon returning from the subroutine,
control will be transferred back to the portion of
program which called it. A subroutine may be
called from a maximum of 16 different places.

ADDRESS
. 16 BUS
2 2 2 2 2 2 2 2 DATA
ouTPUT
NIBBLE \ 16 BUS
out 2 2 2 2 2 2 2 2
4
NIBBLE 4
N Y 5 A)
CARRY co o o @ cARRY
out
3002 3002 3002 3002 3002 3002 2002 3002
u RO bod Lad = bt L] u RO
MoK MK
2 2 2 2 DISK
)2 be bl B¢ s
'_I 8 CONDITIONS
2 2 2 2 1 1 “
1
2 2 2 2 2 2 2 2 DATA
INPUT
. ® Taus
2 242
01DATA MUX
2 8
MASK CONTROL DATA

FIELD

Figure 5. CPE Array — A 16-bit arithmetic, logic and register section is built up with 8 CPE slices connected in a ripple carry
configuration. The K, I, and M bus is used for loading information into the CPE slices. The LI inputs and RO outputs
are connected to make up the Nibble In and Nibble Out buses.

312

Disk Controller Design

An eight bit mask bus is connected to the mask
inputs of the least significant half of the array. The
mask inputs of the most significant half of the CP
array are all tied to the eighth mask bit. A constant
with a value between +127 and —128 can therefore
be loaded into the array from the microprogram.
The mask bus comes from the data field of the
microprogram via a 0-1 data multiplexer. When the
CP array requires either an all one or all zero mask,
the data field is freed to provide data to external
logic.

The 3002 CPE is an extremely flexible compo-
nent which makes it particularly attractive for
controller designs. The Memory Address Register
makes an ideal DMA address register.!) The ac-
cumulator (AC) register, which also has its own
output bus can be used as a data word buffer
during a write DMA cycle. Concurrently, another
word can be assembled in the T register using the
shift right operation. The three separate input buses
provide a multiplexing capability for routing dif-
ferent .data into the CPE. In the BMDC, the I-bus
is used for loading disk drive conditions, the K-bus
for loading mask or constant information, and the
M-bus for reading an external data buffer. The
arithmetic logic section performs zero detection
and bit testing with the result delivered to the

MCU chip via the carry out line. Finally, the eleven
scratchpad registers allow the controller to retain
data and status for the processor.

The CP array in the microprocessor performs the
following for the BMDC with its registers and
arithmetic functions.

1. Sector counting

Word to nibble serialization

Drive seek status monitoring

Header checking

DMA address incrementing

Word counting

Multi-sector length counting
Automatic resynchronization of sector
counter

Accessing of additional information from
memory

Time delays

PN H LR

9.
10.

The organization of the microprocessor was
chosen to maximize the use of the MCU and CPE
in performing the various tasks required for disk
control. However, there are some specialized tasks
which are more economically performed by ex-
ternal logic. The microprocessor controls this ex-
ternal logic by output ports which are selected by
the output select field in the microinstruction. The

TO EXTERNAL LOGIC

DRIVE CONDITIONS

EXTBUSRQ |
| EXTBUSRQ _|
BUS BUS ENABLE |
CONTROL & MEM REQ
DATA OVERRUN ACKL
DEVICE DECODER DETECT I"ReaDWRITE
16 8 16
- J MEM ADD BUS
6 ' : —=——| MEM DATA BUS
e _-BUS INTERFACE
4 9 DISK DRIVE INTERFACE
BIPOLAR LS % cvuinoer aoo
MICROPROCESSOR 4, | PLATTER-
="' HEAD SELECT
s 21 uniT seLecT
/) A WR GATE
pisk | 3 | RD GATE
4 CRC CABLE SET CYLINDER
NIBBLE OUT _ﬁ GENERATOR DRIVER |
DOUBLE |SERIAL - |
BUFFERED | DATA MUX
SHIFT REG. |
4
NIBBLE IN J T 1 '
SR CONTROL DOUBLE |
WITH MODULO FREQ GEN
4 COUNTER WITH XTAL DF DATA
osc. |
1 oaractock
|—= OUTPUT PORTS DISK DATA
: FOR CONTROLLING TOP INDEX PULSE
== EXTERNAL LOGIC " Mux BOTTOM INDEX
= INPUT PORT PULSE
: FOR TESTING
OR SYNCHRONIZING 1/f MUX TOP SECTOR PULSE

BOTTOM SECTOR
| PULSE

) —1

Figure 6. External Logic — Microprocessor monitors and controls external logic via input-output port to perform specialized

disk controller functions.

313

Disk Controller Design

data to these ports is delivered from the shared data
field.

The external logic section of the BMDC (Fig. 6)
has a double buffered 4-bit shift register which is
used for initial packing and the final serialization
of data. It is controlled by a modulo-4 counter
circuit. During a write operation, serial data from
the shift register is encoded by the clock controlled
double frequency encoder and sent to the drive. As
data is being transferred to a cyclic redundancy code
(CRC) is generated and then appended to the end of
the data stream to be recorded on the disk. The ex-
ternal logic also contains addressing latches and
flag flip-flops to capture sector and index pulses.
It also contains main memory bus-control circuitry
for performing bus protocol, bus acquisition, and
data overrun detection.

The microprogram for the BMDC microprocessor
directly implements the six I/O commands. The
program controls the sequential action of the vari-
ous elements of the microprocessor and of the
external logic needed to decode and execute the
commands. In Figure 7, the flow chart of the Read
command shows the actions required to read a file
off the disc. The BMDC first selects the drive speci-
fied by the command and checks its ready status.
It then uses a memory pointer passed to it by the
command to access four more words from the main
memory using DMA cycles. The first word is the
Header, which contains the track address and sector
address information. The second word is the Start-
ing Address specifying the first location in memory
where the data is to be stored. The third word is the
Block Length of the file to be retrieved. All of the
address information and the Block Length are
stored in several CPE registers for further process-
ing. The fourth word is the Password which is com-
pared against a microprogram word to insure that
the command from the computer is a valid one and
not a program error. The password can prevent an
erroneous command, due to a user programming
error, from destroying important files on the disc.

After the password check, the BMDC resyn-
chronizes the sector counter if necessary and waits
for the desired sector by monitoring the sector
pulse flag. When the desired sector arrives, the
BMDC synchronizes itself to a start nibble and
reads the header which it compares to the desired
header to insure that the head is positioned
properly. It then reads and stores 128 words of
data at sequential locations in memory. A cyclic
redundancy code is compiled during the read oper-

READ ROUTINE

I SELECT DRIVE PLATTER & HEAD I

RDETI‘)/YE’ SET NOT READY FLAG & ABORT

GET FROM MEMORY THE
HEADER. STARTING ADDRESS.
BLOCK LENGTH, & PASSWORD

SET PROGRAM ERROR FLAG & ABORT

PASSWORD
0.K.?

YES

aesvy
NO

YES WAIT FOR
INDEX PULSE &
CLEAR SECTOR COUNT

WAIT FOR
DESIRED SECTOR

READ HEADER

HEADER

CHECK? SET ADDRESS ERROR FLAG & ABORT

YES

PACK NIBBLES TO FORM WORDS
INCREMENT MEM ADD COUNT
DECREMENT WORD COUNT CRITICAL
INITIALIZE CHANNEL OPERATION TMSIONPG
L

SET DATA ERROR FLAG & ABORT

INCREMENT
HEADER

SET DONE FLAG

h

Figure 7. Read Command FI hart — This fl tis
coded in the microprogram which when executed
performs the disk Read operation.

Disk Controller Design

SECTOR YES INCREMENT MODULO

PULSE? 24 SECTOR COUNT
NO

YES

INITIALIZATION

INDEX

CLEAR SECTOR
PULSE? COUNT

IDLE
Loop

SET CHANGE IN
SEEK STATUS FLAG

CHANGE
IN SEEK

VERIFY

COMMANO

PROCESSING

SEEK

WRITE READ

&
FORMAT

—~—

SET FLAG

SET INTERRUPT

IN
CONDITION COMMAND?

Figure 8. BMDC Flowchart — The BMDC runs in the idle
loop when it is not busy doing command pro-
cessing.

ation and compared against the CRC word read in
after the data. At the end of each sector the block
length is decremented to see if it is the last sector.
If it is not, the sector address is incremented and
another sector is read.

In addition to the command routines, the micro-
program has an idle loop routine (Fig. 8) which the
BMDC executes when it is not busy with a com-
mand. While in the loop, the BMDC updates the
sector count, monitors the drives seeks status lines
and decodes any disc commands from the disc
operating system in the minicomputer.

The design process for the BMDC began with an
evaluation of what disc controller operations could
effectively be handled by the microprocessor. This
also determined what had to be performed by
external logic. A microprocessor configuration was
then established and certain critical sequences were
programmed to verify that the configuration was
fast enough. A flow chart was produced and the
microprogram coded directly from it. All attempts
were made to use the MCU and CPE slices effec-
tively and keep the microprogram within 256
words. The assignment of MCU addresses which
initially appeared difficult, was, with a little ex-
perience, quite straight forward and less restrictive
than a state counter design. After the coding, the
microprogram was assembled and loaded into the
microprocessor’s control memory.

The BMDC design demonstrates how a special-
ized high speed microprocessor can be designed
using standard bipz)lar LSI devices and micropro-
grammed to perform disc control functions with
the addition of a small amount of external logic.
The flexibility of Series 3000 allows a designer
to optimize the configuration for his application.
For extremely high speed applications, the designer
can add fast carry logic and microinstruction pipe-
lining to his microprocessor to achieve a 150 nsec
16-bit microprocessor.

At Intel, our design experience with the BMDC
design exercise has shown that the use of the MCU
and CPE results in a clean, well structured design.
The complexity of the design resides primarily in
the microprogram leaving the external logic rela-
tively simple. During debugging, most of the prob-
lems encountered were restricted to the micropro-
gram which was easily modified and debugged
using bipolar RAM for the control memory.

References

1. J. Rattner, J. Cornet, M. E. Hoff, Jr., “Bipolar
LSI Computing Elements Usher In New Era of
Digital Design,” ELECTRONICS, September 5,
1974, pp 89-96.

3-15

9l-€

a3

SEREA086|

069

0617

- 0en
[ATTI

ENDL 1110

u
=l =) O
.

g3

o

s

AT D 00
o, oLP

Qe

TR0

..

a1

g3

32 311 03¢ 0310 23

Lame D

8 opyz s
oos 4]
o 3
0
o ore
o 7
o7
11
1

€

H8080a0E

osx10

8N

WA pROT
v ADDR

3
€0
0313
€
0312
o310
ow
€03
022
034
can

wh CHECK

SEEK NG

ubisaqg J49jj043u0) Nsig

JILVINTHOS HITTOHLNOD XSIQ — XIAN3ddV

L1-€

omamn 3

@n s 2
RoGATE 10

o

1 oma i
f1yp _StTOMARIG 3

0ata oveRAUN
va

ciomn 3 RE
(0 ey
m

N 0

e a1
e
wor - 1

v ?
R c2s Nsus N3
) 0 g

na

%

1]

EFI 1=

v
G

o

NDEX Fix

INDE X REM

secrix

secaim

009

ciore s

s ”

wa cLock
3

Ao cLx

e

s 0aTa

s

“
e
e
o
v
o0r -
w
)
%
Leo s Jorsicroncoum
o Jov avosie
WR GATE A_qhoan
P Y
15 Jocwo
o e
or wa para
A v
of a0 0 (1]
eviaon
G
e e
) (oo
T+ Tt
o
.
o
v o], . .
89 R - -
) i it . oo I3
2] 3 < .
(BT

OILVIWIHOS H3TTOHLNOD XSIA — XIAN3ddV

ubisaq J9]j043u0) Msia

CPU Design

Central Processor Designs
Using The Intel® Series 3000
Computing Elements

by

M.E. Hoff, Jr.,
James Sugg,
Ron Yara

Contents

INTRODUCTION
THE SERIES 3000 FAMILY
AN INTRODUCTION TO MICROPROGRAMMING. .
CONSTRUCTING CENTRAL PROCESSING
UNITS .. e i e
Basic Design Steps
Hardware Organization
Writing of Microprograms
DEFINITION OF CONTROL FIELDS
ASSIGNMENT TO CONTROL MEMORY......
PROGRAMMING TECHNIQUES
A DESIGN EXAMPLE
Initial Specifications
Macro-Instruction Decoding
Microprogram Implementation

MEMORY REFERENCE AND
IMMEDIATEGROUP

JUMPGROUP ...t
REGISTER MOVE AND SUBROUTINE
GROUP
SPECIAL FUNCTIONGROUP
INPUT/OUTPUTGROUP
INTERRUPTS
Microprogram Memory Assignment
CONCLUSION
APPENDIX A — DESIGN EXAMPLE
INSTRUCTION SETcoiiiiniinenn.n.
Memory Reference Group
Immediate Group
Jump Group
Subroutine Call Group.,
Subroutine Return Group
Register Manipulation Group
Byte Load and Store Group
Special Memory Reference Instruction
Base and Status Register Move Group
Input/Output Group
Stack Push and Pop Group

APPENDIX B — MICROPROGRAM LISTINGS

APPENDIX C — CENTRAL PROCESSOR
SCHEMATIC i,

3-19

CPU Design

INTRODUCTION

Until recently, the area of high performance, gen-
eral purpose and special purpose central processors
was unaffected by the microprocessor revolution.
Although they covered a broad range of applica-
tions, the P-channel and N-channel microproces-
sors’ performance limitation prevented their use in
applications where high speed was necessary.

The introduction of the Series 3000 Computing
Elements has expanded the spectrum of micro-
processor applications to include both high per-
formance central processors and controllers. Utiliz-
ing Intel’s Schottky bipolar technology, the Series
3000 components realized a level of performance
that was not possible with MOS microprocessors.
For example, a 16-bit processor with a micro-
instruction cycle time of 150 nanoseconds can be
built with the 3000 components. In addition, the
components of the family can be arranged into a
number of different configurations and micropro-
grammed by the system designer to perform in a
variety of processing environments from front end
processing to arithmetic intensive computation.l

This application note describes a systematic proce-
dure for designing central processors with the Series
3000. Using a CPU design example, simple guide-
lines are given for tasks such as macro-instruction
opcode assignment, macro-instruction decoding and
execution and microprogram memory assignment.

THE SERIES 3000 FAMILY

The Intel® Series 3000 Bipolar Microcomputer Set
is a family of Schottky bipolar LSI computing ele-
ments which simplify the construction of micro-
programmed central processors and device con-
trollers. These processors and controllers are truly
microprogrammed in the sense that their control
functions are determined by the contents of a con-
trol memory. This control memory may be realized
with standard read-only (ROM) memory, read/
write (RAM) memory or programmable read-only
memory (PROM) elements.

The two most important computing elements in
the family are the 3001 Microprogram Control

Unit (MCU) and the 3002 Central Processing Ele-
ment (CPE). The MCU determines the sequence of
micro-instruction execution and controls carry/
shift data to and from the CPE array. The CPE
provides a complete two-bit wide slice through the
data processing section of a central processing unit.
CPEs may be arrayed in parallel to form a processor
of any desired word length. For example, to pro-
duce a 16-bit wide data path, eight CPEs would be
used.

All of the above components use standard TTL
logic levels, as some designers may wish to utilize
SSI and MSI TTL logic to control external cir-
cuitry, or to add functions not included in the
basic set to increase the speed of certain operations.

Other members of the family currently include the
following computing elements:

e 3003 Look-Ahead Carry Generator

e 3212 Multi-Mode Latch Buffer

e 3214 Interrupt Control Unit

e 3216 Bidirectional Bus Driver

e 3226 Inverting Bidirectional Bus Driver

The control and main memory portion of the
central processor may be implemented with any of
the standard bipolar or MOS memory components
shown on page 2.

AN INTRODUCTION TO
MICROPROGAMMING

The central processing unit of a general purpose
computer usually consists of two portions: an
arithmetic portion and a control portion. The con-
trol portion determines the sequence of instruc-
tions to be executed and presides over their fetch-
ing and execution while the arithmetic portion
performs arithmetic and logical operations.

The basic operation of the control portion consists
of selecting the next instruction from memory,
then executing a series of states based upon the
instruction fetched. This sequence may be imple-
mented via a combination of flip-flop and random
logic, or by the use of tables in control memory.

11. Rattner, J. Cornet, and M. E. Hoff, Jr., “Bipolar LSI Compuling Elements Usher In New Era of Digital Design,”

ELECTRONICS, September 5, 1974, pp 89-96.

CPU Design

Standard Bipolar and MOS Memory Components

NUWBER OFme TECHNOLOGY o llrion e
CONTROL MEMORY
3601 16 Bipolar PROM 256X 4 70 nS*
3602 16 Bipolar PROM 512X4 70 nS
3604 24 Bipolar PROM 512X8 70 nS
3624 24 Bipolar PROM 512X8 70 nS
3301A 16 Bipolar ROM 256X 4 45 nS
3302 16 Bipolar ROM 512X4 70 nS
3304A 24 Bipolar ROM 512X8 70 nS
3324A 24 Bipolar ROM 512X8 70 nS
3106A 16 Bipolar RAM 256X 1 60 nS
3107A 16 Bipolar RAM 256X 1 60 nS
MAIN MEMORY
1702A 24 Static MOS EPROM 256X8 1000 nS
2704 24 Static MOS EPROM 512X8 500 nS
2708 24 Static MOS EPROM 1024X8 500 nS
1302 24 Static MOS ROM 256X8 1000 nS
2308 24 Static MOS ROM 1024X8 500 nS
2316 24 Static MOS ROM 2048X8 850 nS
2101 22 Static MOS RAM 256X 4 1000 nS*
2102 16 Static MOS RAM 1024X1 1000 nS*
2111 18 Static MOS RAM 256X4 1000 nS*
2112 16 Static MOS RAM 256X 4 1000 nS*
2104 16 Dynamic MOS RAM 4096X 1
21078 22 Dynamic MOS RAM 4096X 1 200 nS
5101 22 Static CMOS RAM 256X4 650 nS

*Higher speed versions of these devices are available. Consult the Intel Data Catalog.

When the latter technique is used, the central
processor is said to be microprogrammed.

The functions of the control portion of a micro-
programmed central processing unit are very similar
to that of a central processing unit itself. To avoid
confusion, the terms “micro” and ‘“‘macro” are
used to distinguish those operations in the control
unit from those of the realized central processor.
For example, the central processor, under the
direction of micro-instructions read from its con-
trol memory, fetches macro-instructions from main

memory. Each macro-instruction is then executed
as a series of micro-instructions. Main memory con-
tains macroprograms, while control memory con-
tains microprograms which define the realized
central processor.

Figure 1 shows a block diagram of a micropro-
grammed central processing unit (defined by the
dotted boundary). The control unit issues addresses
to the control memory and fetches micro-instruc-
tions. This control unit uses the contents of control
memory (micro-instructions) to drive the data
processing unit, external circuits, and to select the

3-22

CPU Design

MAIN MEMORY
ADDRESS BUS

EXTERNAL CONTROL
SIGNALS
AN

CONTROL

DATA
PROCESSING
MEMORY I

MICRO-INSTRUCTION, UNIT
(ALU, REGISTERS,
BUS CONNECTIONS)

MAIN MEMORY
(MACROPROGRAMS))|

MICROP!

EXECUTION
CONTROL
UNIT

(— |

|
|
|
i |
i
|

MACRO-INSTRUCTION MACRO-INSTRUCTIONS/DATA
OPCODE

CENTRAL PROCESSING UNIT

Figure 1. Block Diagram — Microprogrammed
Computer

next micro-instruction. The data processing unit
performs the actual computations, logical opera-
tions, etc.

In the Intel® Bipolar Microcomputer set, the 3001
MCU performs the control unit function, while the
3002 CPE is the basic building block for the data
processing section.

Thus, within a microprogrammed machine, there
are at least two levels of control and two levels of
programming to be considered. The designer of a
central processor is usually concerned with the
definition of the macro-instruction set and its
realization as a microprogram. The Intel® Series
3000 Bipolar Microcomputer Set establishes a
micro-instruction set which is used as a base for the
microprograms which generate macro-instruction
sets.

The reason for using this microprogrammed ap-
proach is that very complex macro-instruction
sets can be realized as sequences of relatively prim-
itive micro-instructions. The logic of the final
macro-machine remains relatively simple, with most
of the design complexity residing in the micro-
instruction sequences contained in control memory.

The final user of the computer seldom needs to be
aware that the CPU was realized with micropro-
grams rather than hardwired logic. A functional
description of the macro-instruction set is usually
sufficient for his purposes. However, the user will
benefit from the microprogrammed approach if he

finds it necessary to alter or enhance the basic
macro-instruction set in some fashion. The tabular
or programming approach offered by the micro-
programmed architecture makes such changes far
easier than would be possible in a processor realized
via hardwired logic.

CONSTRUCTING CENTRAL PROCESSING
UNITS

Basic Design Steps

To realize a central processor with the Series 3000
computing elements, several steps are necessary:

1. Definition of hardware organization.

2. Definition of the central processor macro-
instruction set.

3. Implementation of microprograms which realize
the desired macro-instruction set.

Hardware Organization

A typical CPU constructed utilizing the Series 3000
computing elements will consist of an array of CPE
chips, one MCU, and a control memory. The array
of CPE chips realizes the arithmetic, logical func-
tions and registers of the CPU, while the combina-
tion of the MCU and control memory realizes the
control portion. The microprogram contained in
control memory initializes the machine when power
is first turned on and supervises the fetching and
execution of macro-level instructions. In addition,
routines to handle such special functions as inter-
rupts will also be contained within the control
memory.

The 3002 CPE array contains six buses for com-
munication with external circuitry. Four of these
buses are used primarily to communicate with
memory and I/O devices while the remaining two,
the function control bus (F-Bus) and the control
memory data bus (K-Bus), enable the control por-
tion of the processor to drive the CPE array. The
function control bus is driven by control memory
outputs which direct the CPE array to execute the
desired operation. The K-Bus allows the control
memory to supply various constants and/or masks
to the CPE array.

Because 8 bits of operation code information can
be passed directly to the MCU, the set is best
adapted to macro-instruction sets in which all of
the operation code information is defined by 8 bits
(256 unique macro-instructions). However, larger
macro-instruction sets can be realized by saving any
remaining bits of the operation code in the CPE
array or in an external register. The saved bits can

3-23

CPU Design

then be tested later by routing them to the MCU,
through its 8-bit input port.

A “pipelined” mode of operation may be imple-
mented by placing a register of edge triggered D
flip-flops between control memory outputs and the
circuitry controlled by those outputs. This register
causes the execution of a micro-instruction to over-
lap the fetching of the next micro-instruction. The
control lines which issue micro-instruction sequence
information to the MCU are not routed through
the pipeline register when the pipelined mode is
used; they are routed directly from the micropro-
gram memory outputs to the ACO—AC6 inputs of
the MCU.

Microprograms written to realize a given macro-
instruction set will differ for pipelined and non-
pipelined machines. The major differences are asso-
ciated with conditional jumps in the microprogram
which test the results of arithmetic or logical opera-
tions executed by the CPE array. In a pipelined
machine, these results are delayed by one micro-
instruction, so that conditional jumps must be
delayed by at least one micro-instruction before
execution. More detailed information concerning
these differences is contained in the micropro-
gramming section of this application note.

Figure 2 shows block diagrams illustrating the
organization of standard and pipelined central
processing units. The block diagrams show the
basic modules of standard and pipelined CPUs:
the MCU, CPE array, microprogram memory and
the pipeline register. The six buses associated with
the CPE array are shown:

e The address bus (A-Bus) to main memory

o The data bus (D-Bus) to memory

e The data bus (M-Bus) from memory with its
path for operation code data to the MCU

e The external device input bus (I-Bus), not
shown

e The micro-function bus (F-Bus) from the
pipeline register

e The constant bus (K-Bus) from the pipeline
register

In addition, the carry logic bus to and from the
MCU and the micro-instruction sequence logic bus
from control memory to the MCU are shown. Ad-
ditional control fields to such external logic as
memory and I/O control are shown as an output
bus from control memory.

The number of bits required for each word of
control memory, i.e., each micro-instruction, is
determined by the number of logical functions the
micro-instruction controls. A minimum of 18 bits
is usually required for basic hardware control:
7 bits of micro-instruction sequence control to the
MCU, (AC0—-AC6), 4 bits of carry control to the
MCU, (FCO0-FC3), and 7 bits of micro-function
selection to the CPE array, (FO—F6). That is, the
basic hardware requires at least three control word
fields of 7 bits, 4 bits, and 7 bits width respectively.
Almost every processor will require additional
fields to control other logical functions such as
main memory control, I[/O control, and constant
generation. Figure 3 illustrates a typical micro-
instruction word format with several typical user
defined control fields added.

CONTROL TO
MEMORY, 1/0

MEMORY ADDRESS DATA BUSTO
BUS MEMORY

CP ARRAY
(1-BUS NOT SHOWN)

Etocx x RO
INPUTS o

MICRO-
PROGRAM
MEMORY

ADDRESS IN

cLOcK

MAR-B

oo

-

cLock

©F cooe BTs TomMeY DATA IN FROM MEMORY

Figure 2. Bipolar Microcomputer Non-Pipelined
Organization

CONTROL TO
MEMORY, 1/

RY, I/0 BUS MEMORY
J LLLCLUPRLCOOEE TR

MEMORY ADDRESS DATA BUS TO

CP ARRAY
PIPELINE (1-BUS NOT SHOWN)

MICRO-
PROGRAM

— Ro|
MEMORY n

=]

ADDRESS IN

CcLOCK

wis
LTI

=]

Fco-3

Utﬂ—_

OP.CODE BITS MCU
DATA IN FROM MEMORY

Figure 2. Bipolar Microcomputer Pipelined
Organization

324

CPU Design

The constant bus to the CPE array seldom needs to
be as wide as the data buses. For example, consider
a 16-bit machine where an array of eight CPEs is
used. While the constant bus is nominally 16 bits
wide, if a limited set of masking operations are
used, the number of bits can be reduced signifi-
cantly. Figure 4 shows how 4 bits can be used to
generate the masks for such a machine where the
only masks needed are for separating high and low
order data bytes, for testing the sign and magnitude
of the data word, and for testing the least signifi-
cant bit of the word.

As an example of the use of additional logic to
enhance the set, consider the use of a control field
(1-bit width) to inhibit the CPE clock. This opera-
tion allows non-destructive testing of CPE registers
via the MCU carry logic. The carry logic in the
MCU responds just as if the micro-instruction were
executed, but the fact that the CPE clock was in-
hibited leaves the CPE registers unaltered. An ex-
ample of conditional clocking is given in a later
section called ‘“Programming Techniques.”

STANDARD FUNCTION FIELDS

USER DEFINED FUNCTION FIELDS

CcP FLAG MAIN
ARRAY LOGIC JUMP MASK MEMORY 1/0
FUNCTION FUNCTION FUNCTION FIELD CONTROL cansrgén
7.8ITS 4BITS 7-8ITS n-BITS ABITS
CPE Mmcu Mcu CPE MAIN 170
MEMORY SYSTEM
Figure 3. General Micro-Instruction Format
CO -1 | [| |—rp }t—]
K-BUS K-BUS
L =1 nPUTS] —1 —1 —1 INnPUTS

L]

K3 K2 K1 Ko
(BINARY, LOW TRUE)
1 1 0000
0001
00FF
FFOO
TFFF
8000
FFFF

co-0= ==
o200~

©c-0-o0
oc~o-o0o

Figure 4. Wiring the K-Bus Using 4-Bits

(HEXADECIMAL)

MASK FUNCTION

SELECT LSB

SELECT LOW ORDER BYTE
SELECT HIGH ORDER BYTE
SELECT WORD MAGNITUDE
SELECT WORD SIGN
SELECT ENTIRE WORD

MICRO-INSTRUCTION WORD

CONDITIONAL CLOCKING
CONTROL BIT

L

]

CYCLE TIME
MASTER \ [; ; L
cLocK

CONDITIONING
seewe /T
CONTROL BIT
CLOCK INPUT
TOCPE \ ’
ARRAY MASTER CLOCK

Figure 5. Conditional Clocking

CPE ARRAY
CLOCK
INPUT

3-25

CPU Design

Writing of Microprograms

Once the hardware design is established and the
macro-instruction set chosen, the designer should
proceed to implement the microprograms for the
system. To assist in the writing of these micro-
programs, Intel has developed CROMIS, a complete
microprogramming system for Series 3000 com-
puting elements.

CROMIS consists of two major software subsys-
tems, XMAS and XMAP. XMAS is a symbolic
microassembler which is extensible in both micro-
instruction length and memory address space.
XMAP is a complementary subsystem which maps
the micro-instruction bit patterns produced by
XMAS into compatible ROM/PROM programming
files for use with standard memory components.

Programs written in the microassembly language
have two main parts, a declaration part in which
various aspects of the micro-instruction word are
defined and a specification part in which micro-
instruction contents are symbolically declared. Pro-
vision is made for comment statements throughout
the program so that the programmer may explain
the functions being performed.

The main body of the program, the specification
part, defines the sequences of states to be executed,
and the operations which take place for each state.
The main effort in writing a microprogram will be
expended in developing this section.

Each statement of the specification part of the
program defines the action (and location) of one
micro-instruction, i.e., one word of control mem-
ory. The statement will declare, either directly or
by default, the contents of each control field for
the specified micro-instruction. Furthermore, the
statement will include assignment information des-
ignating the address in control memory where the
statement is located.

A specification statement consists of one or more
labels followed by a series of control field specifica-
tions. A colon after an entry indicates that it is a
label. The contents of the control fields are indi-
cated symbolically, using either standard MCU or
CPE symbols or user-defined symbols, or by an
equation of the type

FNM = 101B

where FNM is a name associated with the field.
The entry 101B implies the binary value 101.

Each symbol is associated with only one field, so
that the various symbols can be uniquely inter-
preted by the assembler. A number of symbols are
predefined for the assembler, and are not to be
used except as provided by the assembler. These
reserved symbols include the standard symbols for
the MCU and CPE functions, and a number of
directives to the assembler.

DEFINITION OF CONTROL FIELDS

Each control field added by the hardware designer
must be declared to the microprogram assembler.
In addition, each bit pattern to be assembled into a
word in the control field may be symbolically
designated. A FIELD definition statement in the
declaration part of the microprogram is used to
declare the field by name and define any states.

As an example, let a 2-bit field be defined for
memory control. If the programmer wishes to
name this field MEMC, and define symbols for the
states with 01 corresponding to READ, 10 corre-
sponding to WRITE, and 11 signalling RMW (read-
modify-write) and default to 00 if READ, WRITE
or RMW is not specified, the statement:

MEMC FIELD MICROPS (READ=01B, WRITE=108, RMW=118)
LENGTH=2 DEFAULT=008;

would perform the definition. The words FIELD,
MICROPS, LENGTH, and DEFAULT are directives
to the microprogram assembler.

Additional directives include IMPLY, STRING,
KBUS, and ADDRESS. The use of these words,
and other features of CROMIS are covered in the
Series 3000 Cross Microprogramming System Spe-
cification.

A typical statement of the specification section
might take the form:

78H: LAB: ILR(R3) FFO STZ JFL(NCTC);

The number 7BH (hexadecimal) followed by a
colon tells the assembler that the micro-instruction
is assigned to row 7 column 11 of control memory
(when control memory is treated as an array of 32
rows and 16 columns). The symbolic label LAB

3-26

CPU Design

(the colon indicates a label) is also associated with
this location. ILR(R3) indicates that the contents
of register 3 are to be conditionally incremented
and copied to the AC register, while FFO forces the
carry input to a logic zero, so that the increment
operation does not take place. STZ indicates that
the Z flip-flop is to be set by the results, so that,
as no carry can result, the Z flip-flop will be set to
a logic zero. These symbols are standard symbols,
with ILR associated with the CPE and FFO and
STZ associated with the MCU carry logic. The JFL
tests the carry output line for a conditional jump
to either the statement labeled NC or to the state-
ment labeled TC. JFL is also a standard symbol.
Note that, if the machine is pipelined, the condi-
tional jump tests the results of the previous instruc-
tion, not of the present one. The semicolon indi-
cates the end of the statement.

In the statement above, no information was pro-
vided for the K-Bus. It is assumed the assembler
will provide the appropriate default value associ-
ated with the ILR operation, i.e., the K-Bus at all
Zeros.

The reader is referred to the Intel® Series 3000
Cross Microprogramming System Specification for
detailed information concerning CROMIS.

ASSIGNMENT TO CONTROL MEMORY

The nature of the MCU next state address control
requires the programmer to assign control memory
locations to each micro-instruction. While this may
at first seem unfamiliar, it can usually be easily
accomplished if the following sequence is followed:

1. The microprogram should be written without
regard to address assignment. Then conditional
jumps are assigned using the basic conditional
jumps provided by the MCU (JFL, JCF, JZF,
JPR, JLL, JRL, JPX), noting the number of
possible destinations for the conditional jumps
chosen. When a sequence of instructions is to be
executed unconditionally and does not indicate
what jump codes will be used to advance to the
next state (unless the JCE enable feature is re-
quired), use the non-committal code JMP rather
than selecting a JCC, JZR or JCR.

Prepare a state sequence flowchart for the pro-
gram (see example, Figure 7). According to the
programmer’s preference, this may be done be-
fore, during or after the actual writing of the
code. Label the conditional jump points on the
flowchart.

3. Using the flowchart as a guide, perform the
assignment. In general, conditional jumps should
be assigned first, with clusters of conditional
jumps assigned before isolated jumps. Leave long
chains of unconditional sequences for last. The
process of assignment can be assisted by using a
diagram of the control memory showing the 32
rows and 16 columns. As each state is assigned,
the control memory diagram is marked to show
occupancy of that word and the flowchart
marked to show the assignment of the state.
With the assignment complete, the addresses are
copied from the memory diagram. -

One other procedure in microprogram memory
assignment has been found to be useful. When the
control memory diagram is marked as each state is
assigned, it is helpful to include state linkage infor-
mation in the diagram, i.e., memory location(s)
that reference the current location and memory
location(s) referenced by the current location.
With the additional information, micro-instruction
sequences can be easily traced on the control
memory diagram.

The state linkage information can be quite useful
when most of the microcode has been assigned and
only a few locations are left to assign the remaining
states. If reassignment of memory locations be-
comes necessary in order to assign the remaining
microcode, or modify the existing microcode, the
state linkage information will greatly simplify the
task.

When reassignment becomes necessary, sequences
of unconditional micro-instructions should be con-
sidered first since they are the easiest to move.
Therefore, these types of states are useful to
annotate.

In some cases, a particular sequence may be impos-
sible to assign as written. For example, consider the
following section of microprogram:

* ENTER WITH INSTRUCTION DISPLACEMENT “D” IN AC, SAVE AT R9 */
175: SDR(8) FF1 JPX(MO,M1, M2, M3, M4, M5, M6, M7, M8, M9, MA, MB, MC,
MD, ME, MF); /* ALSO TESTS HIGH 4 BITS OF MACRO-INSTRUCTION */
* MO — MACRO INSTRUCTION GROUP 1, FETCH R2 */
MO: ILR(R2) FFO
M1 ILR(R3) FFO;
MIP: ADR(RS) FFO;

128
129

JMP(M1P);

CPU Design

coL o 1 2 3 4 LI)

ROW 0 mip

JZR (MIP) f

ROW r Mo M1 M2 m3 MF

Jcc (miIp) i i Jce (MIP)

ROWp | mIP mip

Figure 6. Operation MIP Can Be Reached From
Both MO and M1 by Locating MIP in
Row 0 or Duplicating it in Both
Column 0 and Column 1

In the above example, MIP follows both MO and
MI. Since the row in which MO and M1 reside is
completely filled, MIP must be located in row zero
(because the JZR jump operation allows a location
in row zero to be reached from anywhere in mem-
ory). If row zero were already fully occupied, the
assignment could not be made. However, in this
case the state represented by MIP might be dupli-
cated so that it can be reached from state MO and
MI1. No extra execution time is added by this
modification, although one more memory location
is used.

When assigning to memory, row zero locations
should be used judiciously, but not sparingly, be-
cause only they can be reached from anywhere else
in the program using a single JZR jump function.

Finally, in a S512-word microprogram memory
there are 64 possible destination pairs for the JCF,
JZF and JFL conditional jump functions, since all
three use columns 2 and 3 or columns 10 and 11 as
their jump target. It is therefore important to
insure that enough destination pairs are available
for the conditional jumps used in a microprogram.

PROGRAMMING TECHNIQUES

Because of the flexibility of both the micro-opera-
tions and the architecture of the Series 3000 com-
puting elements, a number of programming “tricks”
can be used to implement a desired operation. As
the programmer becomes more familiar with the
set, he will find new ways to perform different
functions. The list of operations given here are
intended as examples. In general, the labels indi-
cating assignments to memory are not shown. In
all of the examples, KB is the name associated with
the K-Bus field of the micro-instruction. State-
ments bounded by /*...*/ are comments and do
not affect the assembly.

1. Forcing a fixed address to access a predetermined
location in memory or to select a specific I/0
device. (Also may be used to load literals.)

CLR(N) :
LMI(N} KB=DESAD ;

The first operation clears the register selected by
N, while the second loads the logical OR of the
contents of N and the contents of the K-Bus to
the memory address register (MAR) of the CPE
array and into register N. DESAD is a symbol
for the desired address value previously defined
by the programmer. The pair of micro-ops above
may also be used to set any register to any
desired constant, although the contents of the
MAR are destroyed.

. Any register may be set to all 1’s by the opera-
tion

CSR(N) FFO

3. A value read from memory or I/O into the AC

may be split into bytes and stored in another
register as follows:

SDR(N} FF1
SDR(AC) FF1

KFF00;
KOOFF;

/* STORE RIGHT BYTE INREGN */
/* SET LEFT BYTE OF ACTO ZERQ */

where KFFO0O is a symbol which causes the K-
Bustobesetto 1111 1111 0000 0000 in binary,
and KOOFF is a symbol for setting the K-Bus to
0000 0000 1111 1111 in binary. The high order
byte is placed in the upper byte of register N
while the low order byte remains in the low
position of the AC. The low byte of register N
and high byte of the AC are cleared.

. Sign Testing and Absolute Magnitude — To test
sign bits most effectively, an inhibit operation at
the CPE clock is very desirable. In the following
examples the symbol INH implies a signal from
the control memory to inhibit the CPE clock.
This prevents modification of the AC register.

The operations

TZR(AC) K8000 INH JFL(APAN);
AN: CIA(AC) ;

AP:

generate the absolute magnitude of AC in AC
for the non-pipelined case (note K8000 implies
1000 0000 0000 0000 on the K-Bus) while

TZR(AC) K8000 INH
NOP

JFL(AP,AN) ;
CIA(AC) H

AN:
AP:

performs the same operation for the pipelined
case.

3-28

CPU Design

When two numbers in AC and T must be con-
verted to positive numbers and the signs saved,
as well as the sign of the product, the following
routine may be used for a pipelined machine.

/" ENTER WITH VALUES IN T, AC */
/* FIRST CLEAR SIGN AREA - REGISTER 9 FOR THIS EXAMPLE */
CLR(R9)
* NEXT TEST SIGNS OF AC, THEN T */
TZRIAC) K8000 INH; /* TESTACSIGN BIT */
TZA(T) KBOOO INH JFLIAPAN);, /* TESTTSIGN BIT */
LMI(R9) KBO0O FF1 JFL(TPTN). /' SET HIGH AND LOW ORDER BIT */
CIA(AC) JFLITPTN). /° COMPLEMENT AC */
LMI(R9) K4000 JMPINXOP); /* SETBIT 15 */
CIAT); * COMPLEMENT T */

AP
AN
T
™
NXOP

FF1

Upon reaching label NXOP, both AC and T will
contain positive numbers (high order bit = 0)
and register 9 will contain a 1 in the high order
bit if and only if AC was originally positive, a 1
in the second bit from the top if and only if T
was originally positive, and a zero in the low
order bit if and only if the signs were the same.
A one will appear in the second lowest order bit
if and only if both numbers were originally
positive. Execution of the sequence takes 5
micro-instruction cycles.

. Pipelined Multiply — Assume that AC and T
represent the partial product and multiplier
respectively, while register 9 contains the multi-
plicand and register 8 will be used as a loop
counter. Register 7 is used for temporary stor-
age. It is assumed that both numbers are positive.
/* SET UP LOOP COUNTER */

MCL CSR(RB) K0000;
TZR(RB) KFFFO;

/" SETRBTO FFFF HEX °
/" SETRBTO FFFOHEX *
* CLEAR PARTIAL PRODUCT (AC) */
CLRIAC):
* FETCH AND TEST MULTIPLIER LOW-ORDER BIT */
SRA(T);
* MAIN LOOP - EXECUTE MULTIPLIER BIT TEST, ADD IF NECESSARY */
MLP. LMI(R8) FF1 STZ JFL(MBZMB1). /' INCREMENT LOOP COUNTER SAVEINZ */
* ADD SEQUENCE */
MB1- SDR(R7}] FF1

/* SAVE AC INREG7 */

ILR(R9) FFO, /* PLACE MULTIPLICAND, RS, IN AC */

ALR(R7) FFO /° ADD MULTIPLICAND TO PARTIAL PRODUCT */
* NOW ROTATE, THEN TEST LOOP COUNT ~ SAVED IN Z */
* NOTE - PIPELINE ALLOWS USE OF Z FOR SHIFT BIT PROPAGATION */

* NOTE - THE SDR(R7), ILR(R9). AND ALR(R7) MICRO-INSTRUCTIONS CAN BE
REPLACED WITH AN AMA MICRO-INSTRUCTION ELIMINATING Z INSTRUCTIONS
FROM THE INNER LOOP IF DATA IS LATCHED ON THE M-BUS */

MBZ: SRA(AC) FFO STZ; /* SHIFT PARTIAL PRODUCT. SAVE LSB */
SRA(T) FFZ JZFIMLPMEX). /* Z TEST IF OF LOOP COUNTI */

MEX

Note that the pipeline causes the JZF (or a JCF)
to test the contents of the flip-flop as set two or
more instructions earlier.

A state sequence flow diagram for the multiply
sequence might be drawn as shown in Figure 7.

Note that in Figure 7, each symbolically labeled
state is noted, and each conditional jump is indi-
cated and the conditions corresponding to each
jump are noted. A flowchart like that of Figure
7 contains sufficient information to perform the
assignment to memory. An assignment might be
as shown in Figure 8.

MCL

MCL+1

MBI
1

MB1+1

MB1+2

MEX

Figure 7. State Sequence Flow Diagram —
Multiply Loop
coL coL coL coL coL coL
0 1 2 3 4 5

ROW 9 mcL mcL

+

MLP MEX mcL

+2

MmCL
+3

ROW 10 me1

+1

MB1
+2

mMBZ mB1

Figure 8. An Assignment of the Multiply Loop
to Control Memory

Because MLP and MEX are the two destinations
of a JZF jump function, they must be in the
same row, in columns two and three respectively
or in columns 10 and 11 respectively. Since MLP
executes a JFL to MBZ, MBI, then MBZ and
MBI must be in the same pair of columns as
MLP and MEX. For the example, rows 9 and 10
were chosen, and columns 2 and 3, and the four
states MLP, MEX, MBZ, MBI are assigned first.
Next the states following MBL (indicated by
MBI1+1 and MB1+2) and MBZ are assigned. As
all of these jumps are unconditional, the opera-
tions JCC, JCR, and JZR are used. As the JZR
is usually reserved for entry to commonly used
routines, only the JCC and JCR jumps are used
here.

To demonstrate the techniques introduced above,
a central processing unit design cycle will be carried
through from initial specification to final micro-
program memory assignment.

A DESIGN EXAMPLE

The following design example illustrates some of
the basic techniques which may be used in develop-
ing a central processor with the Intel® Series 3000
Bipolar Microcomputer Set. The basic design se-
quence consists of stating the machine objectives,
then designing the hardware configuration and
microprograms. For this example, it is assumed
that the designer has the freedom to specify opera-
tion code assignments, and to modify the instruc-
tion set to take greatest advantage of the chip set’s
capabilities.

329

CPU Design

Initial Specifications

Let the following list of design objectives represent
the initial specifications for a central processor
instruction set.

1. The machine should use a 16-bit data path,
with instructions containing an opcode por-
tion and a data or displacement portion.

2. Machine registers should include a program
counter, P, a stack pointer, S, an accumulator,
A, an index register, X, and two base registers,
B and E. B is a base register for data and E is
a base register for program. In addition, a
carry flip-flop may be a bit in the status word,
w

3. References to memory for data should be
relative to the B register, using the displace-
ment portion of the instruction (designated
D). Memory reference modes include direct
(Address=B+D), indirect (address equals the
contents of B+D), and indirect indexed (ad-
dress equals the value given by the sum of X
and the contents of the word at address B+D).
Indirect and indirect-indexed modes should
include both absolute and B relative (i.e., the
address is relative to the contents of the B
register) forms so that indirections may be
computed both at time of assembly and dur-
ing program execution.

4. Memory reference instructions include: load
address to A, load data to A, AND data to A,
OR data to A, XOR data to A, add data to A,
subtract data from A, push address to stack,
push data to stack, store A at computed
address, pop stack to computed address, load
address to X, load data to X, add data to X,
subtract data from X, store X at computed
address (operations involving X may not need
to implement indirect-indexed modes).

5. Immediate instructions using the displacement
portion of the instruction as the data, include,
load A, load X, add to A, add to X. A two
word “load immediate” instruction may also
be implemented.

6. Jump instructions include a short relative
jump (Address=P+D-K, where K is a con-
stant), an indirect jump to an address relative
to the E base register, and an indirect call
operation.

7. The call (to a subroutine) operation saves the
P, E, B, and W registers (global call), or the P
register (local call) on the stack and loads the

P register with the starting address of the
routine. Similarly, a return instruction restores
the appropriate registers. Some jumps may
also be conditional, checking the status of the
C flip-flop, or the sign or magnitude of the A
register.

8. Additional operations may involve manipula-
tions of data in the A and X registers and the
ability to move data between the X and the
W, B, E or S registers.

9. Byte load and store operations should include
automatic packing and unpacking of bytes in
a 16-bit memory location.

10. Input/output instructions should use either
the displacement or the X register to specify
the I/O device address.

In addition to the definition of the macro-instruc-
tion set, the designer should also prepare descrip-
tions of the initialization operations (i.e., at “power
on’’) and interrupt handling to be used. For this
machine, let it be considered necessary for the
machine to start at power up with W, A, and X
cleared and for S to be set to the contents of word
0, B to be set to the contents of word 1 of mem-
ory, E set to the contents of word 2, and P set to
the contents of the memory location pointed to
by E.

Let I/O device O represent a source of interrupt
level information (level requesting in) and a desti-
nation for current level out, consistent with the use
of the 3214 Interrupt Control chip. In addition,
let the low order bits of W contain current inter-
rupt level information.

When servicing an interrupt, the processor will
execute a jump to subroutine which will reload P
and E while saving all registers except S on the
stack. The service routine will interrogate the inter-
rupt hardware to determine the level of the request
and will restore former status upon exit from the
interrupt program. For this purpose, a return and
restore status instruction will be provided.

In parallel with the specification of the design
objectives, a first pass at the CPU’s architecture can
be made. The block diagram in Figure 9 shows a
general CPU architecture as defined in the initial
specification above.

The design example machine uses a pipelined
architecture and includes a control structure which
implements eight basic memory bus and clock
operations. A 3-bit field is used to control this
structure. The states for this field are designated

3-30

CPU Design

{ MEMORY & | O ADDRESS BUS]

T

) BIDIRECTIONAL DATA BUS)
5 CONTROL BUS S
S Y 5
! |
I |
) 3002 CPE ARRAY |
! l i
! ' MEMORY AND 1 0|
| LAC REGISTER] AR j \ BUS CONTROL
! ' MS1 S}
! > I
| ! <
! 1
1 I
| _l I
! I
! |
! |
. ARITHML‘E’J'ISLOGIC N ; MICROPROGRAM
| | MEMORY
PERFORMS ADDRESS CALCU S
: LATIONS AND ARITHMETIC | T (ROMS PROMS)
LOGIC OPERATIONS UNDER 1
I CONTROL OF THE MICRO
| PROGRAM 1
1 |
) I
1 1
! I
| '
1 i
1 r i
| |
1 Ll
! [
| I
[—
1
i
—_ |
i
1
' |
! |
| | ——
| ! 7
' REGISTER FILE | ! |
' A - ACCUMULATOR (RO} 1 : 1
' X - INDEX REGISTER (R1)
\ W - STATUS REGISTER (R7) o SHIFT CARRY MICROPROGRAM !
' 8 - BASE REGISTER, DATA (R ! LoGiC SEQUENCE !
£ _ BASE AEGISTER, PROGRAM R6! [CONTROL UNIT !
! P - PROGRAM COUNTER (R3) 1 ! !
1 S — STACK POINTER (R4) l | !
' MICROPROGRAM WORKING [!
1 REGISTERS RB, RS, T ol I
i | e e e e e e e | ——— — -
'
[/\l |
! |
! '
' |
I 1
b e e e e e e e e e e == —
OPCODE FIELD

Figure 9. Block Diagram of CPU Architecture

NBO (No Bus Operation), INH (Inhibit CPE Clock),
CNB (CPE uses bus), RMW (read modify write
signal to memory — starts a read cycle and prevents
release of bus until the CPUexecutes a write cycle),
RRM (Request read cycle from memory), RWM
(Request write to memory), RIN (Request input
from an I/O device), and ROT (Request an output
to an I/O device).

33

The stack has been designed to run ‘“‘backwards
through memory, with a pop incrementing the

stack pointer and a push decrementing it. This
direction is preferred, as it leaves the stack pointer
pointing at the topmost entry in the stack. In
addition, pops usually appear more often than
pushes (pushes share code), and the increment
operation requires fewer micro-instructions.

The designer must select the actual instructions to
be used. Let the instructions and their associated
mnemonics shown in Table I be selected in the first
design pass.

3-31

CPU Design

Table I. Proposed Instruction Set

MEMORY REFERENCE GROUP

JUMP GROUP (continued)

MNEMONIC FUNCTION
LAA Load address to A
LDA Load data to A
ADA Add data to A
SDA Subtract data from A
NDA AND data to A
ODA OR datato A
XDA Exclusive OR data to A
PAS Push address to stack
PDS Push data to stack
SAM Store A into memory
PSM Pop stack into memory
LAX Load address to X
LDX Load data to X
ADX Add data to X
SDX Subtract data from X
SXM Store X in memory
IMMEDIATE GROUP
MNEMONIC FUNCTION
LAI Load to A immediate
AAl Add to A immediate
NAI AND to A immediate
OAl OR to A immediate
XAl Exclusive OR to A immediate
PSI Push to stack immediate
LXI1 Load to X immediate
AXI Add to X immediate

If D is equal to zero, the contents of the memory location
following the instruction is used as the immediate value.

JUMP GROUP
MNEMONIC
RELATIVE INDIRECT FUNCTION
JRU JiU Jump unconditional
JRGE JIGE Jump if A>0
JRLT JILT Jump if A<O
JRXG JIXG Jump if X>A
JREZ JIEZ Jump if A=0
JRNZ JINZ Jump if A#0

MNEMONIC

RELATIVE INDIRECT FUNCTION
JRCZ Jicz Jump if C=0
JRXL JIXL Jump if X<A
JRLE JILE Jump if A<O
JRGT JIGT Jump if A>0
JRCN JICN Jump if C#0
JRXE JIXE Jump if X=A
Jump relative: P=P+D-128
Jump indirect: P=(E+D)+E

STACK PUSH AND POP GROUP

MNEMONIC FUNCTION
PHAX Push A and X onto stack
PPAX Pop A and X from top of stack

SPECIAL MEMORY REFERENCE INSTRUCTION

MNEMONIC

FUNCTION

182

Increment location B+D and skip if zero

SUBROUTINE CALL GROUP

MNEMONIC FUNCTION

CLS Call local subroutine, push P onto stack
P=E+(E+D)

CVS Call value subroutine, push W, B, E, P
onto stack
E=E+(E+D)
P=E'+(E’)
where E'’=E+(E+D)

CAS Call absolute subroutine, push W, B, E, P

onto stack
P=(D)

SUBROUTINE RETURN GROUP

MNEMONIC FUNCTION
RLS Return from local subroutine, pop P from
stack
RVS Return from value subroutine, pop P, E,
B, W from stack
RSA Return from subroutine, restore all, pop

A, X, P, E, B, W from stack

3-32

CPU Design

Table I. Proposed Instruction Set (continued)

BYTE LOAD AND STORE GROUP INPUT/OUTPUT GROUP
MNEMONIC FUNCTION MNEMONIC FUNCTION
LBA Load byte absolute IND Input one word to the A register
LBR Load byte relative OoTD Output one word from the A register
SBA Store byte absolute D serves as the address for the 1/0 port.
SBR Store byte relative INX Input one word to the A register
Absolute mode: Byte address = (B+D)+X/2 oTX Output one word from the A register

Relative mode: Byte address = (B+D)+B+X/2

The least significant bit of the X register is treated as the
byte pointer in main memory as follows:

X Reg. LSB=0
=1

the left or high order byte is selected
the right or Jow order byte is selected

For load operations, the selected byte is loaded into the
right byte position of the A register and the left byte is
cleared. For store operations, the right byte of the A regis-
ter is stored at the selected byte location leaving the un-
selected byte of the word unaltered.

REGISTER MANIPULATION GROUP

MNEMONIC FUNCTION
RAR Rotate A right, include CFF
RAX Rotate A and X right, include CFF
SAX Shift A and X right, preserve sign
SAL Shift A left, fill with zeros

The shift count is given by D if D is non-zero or by the
least significant seven bits of the X register if D is zero.

BASE AND STATUS REGISTER MOVE GROUP

MNEMONIC FUNCTION
MSX Move S to X, adjust
MBX Move B to X, adjust
MEX Move E to X, adjust
MWX Move W to X, adjust
MXS Move X to S, adjust
MXB Move X to B, adjust
MXE Move X to E, adjust
MXW Move X to W, adjust

The destination register is adjusted by D-128 (i.e., D-128
is added to the destination register).

The X register provides the address for the 1/0 port.

Given the basic design objectives, the next step is
to write the sequences of micro-instructions to im-
plement the macro-instruction described above.
Each macro-instruction must be assigned a unique
operation code. The operation code (opcode) will
be used by the 3001 MCU to generate the appro-
priate address for the micro-instruction which exe-
cutes that macro-instruction.

Macro-Instruction Decoding

To take full advantage of the 3001 MCU’s eight
input lines (SX0-—3, PX4-7) for instruction de-
coding, all macro-instruction operations should be
completely specified in an 8-bit opcode field and
use the remaining 8 bits for displacement values.
In Figure 10 the 8-bit opcode of a macro-instruc-
tion being read in on the memory data bus is gated
directly to the 3001 MCU. While the displacement
is being stored in the CPE array, a JPX operation is

3001
Mcu 3002
PR CPE ARRAY
LATCH
PX4-7 SX0-3
)
L T1e

8
oPCODE FIELD /

16

MEMORY DATA
INPUT BUS

Figure 10. Macro-Instruction Decoding with
the 3001

executed by the 3001. The JPX operation executes
a 16 way branch based on the 4 bits of the PX lines
and also stores the 4 bits on the SX lines in the PR
latches for later decoding. For best microcode
efficiency then, the opcode field should be arranged
in such a manner that the first 4 bits tested (by the
JPX operation) select the initial processing (usually
an address calculation) of the macro-instruction. A
possible instruction format is shown in Figure 11.

3-33

CPU Design

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
||||||||||||:I

ADDRESS OPERATION DISPLACEMENT
MODE MODE

Figure 11. Possible Macro-Instruction Format

In the case of the CPU design example, the initial
processing involves address calculations and/or
operand fetching. Table II contains the initial
processing modes for the design example.

Table Il. Memory Modes

In the description below, the letters A, X, B, S, P, W, and E
represent the contents of the respective registers. D repre-
sents the 8-bit displacement treated as a positive number
ranging from O to 255. D’ represents D-128. () are used to
designate contents of memory. For example, (B+D) means
the contents of the memory location whose address is equal
to the sum of the contents of B and the displacement D. It
is assumed that, when the instruction is fetched, P is incre-
mented prior to instruction execution.

MEMORY REFERENCE MODES

1. Direct: Address = B+D

2. Indirect: Address = (B+D)

3. Indirect relative: Address = (B+D)+B

4. Indirectindexed: Address = (B+D)+X

5. Indirect indexed relative: Address = (B+D)+B+X

IMMEDIATE MODES

6. If D#0, Data = D-128

If D=0, Data = (P), P=P+1
JUMP MODES

Jump relative: P=P+D-128
Jump indirect: P=(E+D)+E
Call relative: P=(E+D)+E

10. Call indirect: P=E'+(E') where E'=E+(E+D)

REGISTER MODE

11. Fetch source register

Using the instruction format shown in Figure 11,
the high order 4 bits (bits 12 to 15) will be used to
select one of the modes listed in Table II. Thus, by
executing a JPX operation, a 16 way branch on the
PX0—PX3 bus can be performed to determine the
address mode specified. At the same time the SX
bus bits (the Operation Code field) will be stored
in the PR latches for later use. A possible assign-
ment of the first 4 bits (bits 12 through 15) might
be as shown in Table III.

In addition to the initial address mode processing
input/output, register to register, and other special
function operations can be specified in the first 4
bits, as shown in Table III.

Microprogram Implementation

Having assigned the first 4 bits of the macro-
instruction operation code, the next 4 may be
tentatively assigned. These 4 bits will have different
meanings for different instruction classes. To im-
prove microcode efficiency it is desirable to share
as much code as possible between different micro-
program segments. For example, the ADA and AAI
instructions might share the add operation once the
data has been fetched.

MEMORY REFERENCE AND IMMEDIATE
GROUP

The assignment shown in Table IV might be used
for the memory reference and immediate group
instructions. The clustering has been chosen in a
way that should allow JPR and JLL and JRL
micro-operations to be used effectively and to
allow code sharing between the two groups.

An initial flowchart for the memory reference and
immediate group instructions is shown in Figure
12. In the flowchart, the boxes indicate the opera-
tions performed. The appropriate jump operations
(JPX, JLL and JRL) are indicated along with the
bit patterns that select each box.

It is possible that when the actual code for the
sequence is written, some improvements in effi-
ciency may still be made. In addition, some of the
boxes shown as dummies may be eliminated by
suitable placement of the JLL and JRL instructions.

Knowledge of the MCU assignment restrictions
may also influence some choices here. For example,
the MCU provides twice as many possible JLL
jump destinations as JRL jump destinations, while
the sequence shown uses twice as many JRLs as
JLLs. As a result, an easier assignment might be
obtained if the JLLs and JRLs were exchanged,
which is equivalent to a reassignment of the macro-
operation codes.

Also, recognizing that the MCU’s JCC type jump
facilitates jumping from one JLL destination to
another, it is desirable to assign the macro-opera-
tion codes so that operations which share final
segments are aligned in columns. For example, the
SDA instruction would typically be achieved by
complementing the data, then adding it to A,
which may share the code for ADA. As a result, a

3-34

CPU Design

Table 11l. Mode Bit Assignments

ADDRESS MODE

BITS MODE INITIAL PROCESS SUBSEQUENT PROCESSING
0000 No operation

0001 Jump relative P+D’ Condition testing
0010 Jumps (index, etc.) (E+D)+E

0011 Immediate D’ or (P) LAI, AALI, etc.
0100 Direct memory reference B+D

0101 Indirect memory reference (B+D)

0110 Indirect index (B+D)+X LAA, LDA, etc.
0111 Indirect index relative (B+D)+X+B

1000 1/0 input D > MAR

1001 1/0 input X > MAR

1010 1/0 output D - MAR

1011 1/0 output X - MAR

1100 Move group

1101 Special function group Shift A

1110 Indirect relative memory reference (B+D)+B

11

No operation

Table IV. Memory Reference and Immediate

Op Code Assignment
OP FIELD MEMORY IMMEDIATE
BITS REFERENCE FUNCTION
FUNCTION

0000 ADA AAI
0001 ADX AXI|
0010 NDA NAI
0011 ODA OAl
0100 LDA LAI
0101 LDX LXI
0110 PDS PSI
0111 XDA XAl
1000 LAA

1001 LAX

1010 PAS

1011 SDA

1100 SAM

1101 SXM

1110 PSM

1M1 SDX

better assignment of opcodes might be achieved by
placing ADA and SDA in the same column. For
example, see the assignment shown in Table V.
Table V also assumes exchange of the JLL and JRL
instructions.

Table V. Modified Memory Reference Op Code
Assignments

0000 = NDA 0100=0DA 1000=XDA 1100 =ADA
0001 =LDA 0101=LDX 1001=PDS 1101=ADX
0010=LAA 0110=LAX 1010=PAS 1110=SDA
0011 =SAM 0111=SXM 1011=PSM 1111 =SDX

Except for those considerations mentioned above,
the code is most easily written without regard to
memory assignment. Also, it is assumed that reas-
signments of macro-operations codes are made
when efficiency can be improved.

Let the CPE register assignments be made as shown
in Table VI.

The code which follows represents the specification
portion of the microprogram in which the various
fields are identified, and symbols defined.

3-35

CPU Design

POWER ON START

INITIALIZE

FETcH—j

FETCH
MACRO-INSTRUCTION
9PX
100" io‘oﬁ l 0101 I 0110 lo'” IH!O
I o'onwnonﬂ r 8+DTOAC I I (8 +D) TO AC J [xusm)ro;&cl L"‘?o":c“” B+(B+D) TOAC
l JLL l l
l 00 l 01
I DUMMY | | DUMMY I JLL
00 01 ; 10 * n
I {AC) TO AC I {AC) TO AC I l DUMMY | rAC T0 MAﬁ—I

JRL

{W Jﬂ' ;w 1

[ADA I I XDA] I NDA l [ODA I
ooy

FETCH FETCH FETCH FETCH

JRL

FETCH FETCH FETCH FETCH

* %0 ;] ‘w ; 1
I LAA l I LAX. I I PAS I riSDA
! ! v !

JRL

FETCH FETCH FETCH FETCH
JRL
00 Jm Jm 1
I SAM I I sXM l I PSM l SDX
FETCH FETCH FETCH FETCH

Figure 12. First Pass of Memory Reference Group Flowchart

/* BIPOLAR MICROCOMPUTER MACRO-MACHINE
REGISTER MACHINE- -12/13/74

UPDATED 3/18/75

MACHINE HAS 7 REGISTERS AS FOLLOWS:
A ACCUMULATOR RO

X INDEX REGISTER R1

P PROGRAM COUNTER R3

S STACK POINTER R4

B DATA BASE REG R5

E PROG. BASE REG. R6
w STATUS WORD R7

" C=CARRY,LINK FLIP-FLOP=HOB OF W

DEFINITION OF KBUS FIELD */

3-36

CPU Design

KB FIELD LENGTH=4 DEFAULT=0
MICROPS(K0000=0 KOO07F=1 KOOOFF=3 K7FFF=7
K8000=8 KFF00=12 KFF80=14 KFFFF=15);
KB KBUS;
/* DEFINITION OF BUS CONTROL FIELD */
MCF FIELD LENGTH=3 DEFAULT=0
MICROPS(NBO=0008 INH=0018B RMW=0108 CNB=011B
RIN=100B ROT=101B RRM=110B RWM=1118B);
/* NBO NO BUS OPERATION
INH INHIBIT CPE ARRAY
RMW READ-MODIFY-WRITE
CNB CPU NEEDS BUS
RIN REQUEST INPUT
ROT REQUEST OUTPUT
RRM REQUEST READ MEM.
RWM REQUEST WRITE MEM.

SET UP FOR SYMBOLIC REPRESENTATION OF REGISTER DESIGNATIONS */

A STRING ‘RO’;
X STRING 'R1’;
P STRING 'R3’;
S STRING ‘R4’;
B STRING ‘R5’;
E STRING 'R6’;
w STRING 'R7%;

/* SET UP A SPECIAL NO.OP STRING */
NO.OP STRING ‘NOP(R3)’;

/* NEXT WE SPECIFY A DEFAULT TO FF1IN THE FO FIELD FOR THE SDR
MICROP IN THE CPE FIELD. SDR IS NORMALLY USED AS A STORE
OPERATION. WHEN A DECREMENT OPERATION IS ALSO DESIRED, FFO
WILL HAVE TO BE EXPLICITLY SPECIFIED */

SDR IMPLY FO=118B;
. . elementary flowchart followed is that of Figure 13,
Table V1. Register Assignments reflecting the reassignment shown in Table V.
RO = A number of programming “tricks” can be found

in the microcode. For example, the C flag of the
MCU (not to be confused with the C flip-flop of
the macro machine) is set each time the machine

A
R1 = X
[
R4 =8 executes a fetch instruction by the SDR micro-
B
E
w

R3 =

R5 = operation. SDR adds 111...1 to the AC (as masked
R6 = by the K-Bus) so that whenever the carry input of
the CPE array is a 1, the masked AC register will be

R7 = (C is high order bit of W)
stored unchanged into the designated register, and
The next portion of the code represents the ma- the carry output of the CPE array will be 1.
chine initialization (in which registers are set to Similarly, a ILR micro-operation (KBUS = 0) with
initial values during power up), and the memory a carry-in of zero never generates a carry, so that it
reference and immediate group of instructions. The can be used to clear the C flag if so desired.

3-37

CPU Design

POWER ON START
INITIALIZE

FETCH ———————>1

FETCH
MACRO-INSTRUCTION
JPX

lw!l IOIOO l 0101 l 0110
[ormoe] [Cooe] [Eome] [ceowos]

1110

B+(B+D)TOAC

JRL

JRL

00 01 ; 10 ‘ "
| (AC) TOAC I (AC) TO AC l I DUMMY | I AC TO MAR]

JLe

00 Jo\ Jm 1
NDA I opa II XDA Il ADA I

! !

FETCH FETCH FETCH FETCH

00 01 10 1
I LDA I—_I.DX {_PQS I_ADX

! vy !

FETCH FETCH FETCH FETCH

‘ 00 ; 01 ‘\o J "
[LAA] [LAX J r PAS —I [ISDLI
' vy v

JLL

Jue

FETCH FETCH FETCH FETCH
JLL

{oo ‘m Iw 1

I SAM I [sXM] [PSM I soX

FETCH FETCH FETCH FETCH

Figure 13. Second Pass of Memory Reference Group Flowchart

MICROCODE MICROCODE
The C flag is used to implement a type of micro- ST CFLAGS 0 SET CFLAG oY
code subroutine where code is shared by two [J
“calling” routines, one which leaves the C flag
unchanged and the other which clears it. Upon exit SHARED MICROCODE
from the shared code sequence, the C flag is tested SNCELAG 16 EXiT
giving a unique exit for each of the two calling
routines (see Figure 14). [mw-o]cmc-'
The inhibit operation, indicated by the “INH” OF S20UENCE #1 OF SEQUENCE #2
micro-operation, inhibits the clock to the CPE
array. For these operations the carry function and
conditional jump results are the same as if the oper- Figure 14. Microcode Subroutine Using the C-Flag
ation were executed. However, none of the CPE to Determine Exit

registers are altered when the clock is inhibited.

3-38

CPU Design

The result is a number of “‘compare” or test
micro-operations.

In general, row zero locations should be used
sparingly because they are the only locations that
can be reached from anywhere in microprogram
memory using a single JZR micro-operation. Dur-
ing the first pass of the microprogram implementa-
tion, notes can be added to indicate where code
might be saved if row zero locations are used.

A common case of such microcode saving follows
the execution of a JPR or JPX micro-operation. If
the datum being tested by the JPR or JPX repre-
sents a macro-instruction operation code in which
less than 16 modes are used, there is always the
possibility that an invalid code might be en-
countered. Rather than have the machine behave
unpredictably, it is better to have the machine exe-
cute some designated sequence for invalid macro-
operation codes. As a result, all 16 locations
reached by the JPX or JPR micro-operation must
be considered occupied. Therefore, when it is
desirable to have a single state follow each of
several states reached by a single JPX or JPR micro-
operation, two possible methods can be used which
do not require additional jump micro-operations:

1. Locate the single state in the row zero

2. Locate the single state in a column reached by a
JCF or JZF micro-instruction and insure the
corresponding (C or Z) flag is in the desired
state.

/* INITIALIZATION SEQUENCE
ZERO A, X, ANDW */

INIT: CLRI(A);
CLR(X);
GLR(W);

As an example of this situation, consider the tol-
lowing sequence of micro-instructions (only labels
and jumps shown):

TST: JPR (DO, D1, D2,D,...D15)
00: JMP (D1A)

D1:

Di1A:

In the sequence above, DO through D15 occupy an
entire row. The micro-instruction labeled DI1A
unconditionally follows both of those labeled DO
and D1. Since the row containing DO through D15
is fully occupied, D1A cannot be assigned to that
row. The only other unconditional jump which can
reach a common location from more than one col-
umn is the JZR. However, such conditional jumps
as JCF and JZF, where the condition is pre-set,
can jump to a given location from up to eight sites
in a given row, as illustrated in Figure 15.

COLUMN
o 1 2 3 4 5 6 7 8

wows [o0]or oo o [oe] e Jor [oe [oe
EEERERER
r— JCF MICRO-OPERATION

ROWn +i DES|

WITHIN CURRENT
ROW GROUP

COLUMN 2 FOR C-FLAG =0

Figure 15. Special Use of the Conditional Jump
Functions

/* ZERO T AS TEMPORARY POINTER, WRITE W TO INTERRUPT STRUCTURE */

CLR(T);
LMUT);
ILR(W) ROT;

/* SETS=(0), T=1FOR NEXT OPERATION */
LMI(T) FF1 RRM;
ACM(AC) ;
SDR(S);

/* SET B = (1), T=2 FOR NEXT OPERATION */
LMI(T) FF1 RRM;

ACM(AC);
SDR(B) STC;

/* THIS SETS THE C FLAG TO INSURE

A CORRECT JUMP TO XRTN */

3-39

CPU Design

/* GET (2), JUMP TO XRTN TOSETE = (2),P=(E) */

LMI(T) RRM;
ACM(AC) JCF (* XRTN);

/* FETCH SEQUENCE & START OF MACRO-INSTRUCTION PROCESSING
P IS ISSUED TO MAR AND INCREMENTED, MACRO-INSTRUCTION
IS FETCHED AND TESTED BY JPX MICRO-OPERATOR. NOTE
FETCH IS IN LOCATION 15 TO STROBE INTERRUPT ON ENTRY. */
FETCH: LMI(P) FF1 RRM;

/* LOAD DISPLACEMENT AND TEST FOR ZERO USING Z FLAG */

LTM(AC) STZ KOOFF;

/* SAVE DISPLACEMENT, TEST 4 BITS OF MACRO-OP. TEST IS
DELAYED TO ALLOW PIPELINE PROPAGATION. ALSO C FLAG IS
SET FOR LATER USE IN PSEUDO-SUBROUTINES. */

SDR(R9) STC JPX(NAO,JREL JIG,IMMD,DMRF ,IMRF,IXMA,IXMB,IND,
INX,0TD,0TX,MVGP,SPFG,IRBM,NA15);

*

/* UNASSIGNED OP-CODE GROUPS- -NOPS FOR THIS VERSION */

NAO: NO.OP JZR(FETCH);
NA15: NO.OP JZR(FETCH);

/* IMMEDIATE GROUP OF MACRO-INSTRUCTIONS- -TEST FOR LONG OR SHORT
FORM- -D IS IN AC AND R9- -ADJUST AC BY -128 */

IMMD: LMI(AC) KFF80 JZF(IMML,IMMS);
/* LONG FORM: FETCH NEXT WORD TO AC */

IMML: LMI(P) FF1 RRM;
ACM(AC) JRL(ILGA,ILPX,NAI1,NAI2);

SHORT FORM: NO PROCESSING NEEDED */

~
*

IMMS: NO.OP JRL(ILGA,ILPX,NAI1,NAI2);
/* PREPROCESSING FOR ARITHMETIC AND LOGIC ROUTINES? NONE NEEDED */

ILGA: NO.OP JLL(NDA,ODA,XDA,ADA);
ILPX: NO.OP JLL(LDA,LDX,PDS,ADX)

/* NOTE: NAI1 AND NAI2 ARE NON-VALID INSTRUCTIONS!! THEY ARE
MADE INTO NO-OPS IN THIS VERSION OF THE MACRO-MACHINE */

NAI1: NO.OP JZR(FETCH);
NAI2: NO.OP JZR(FETCH);

/* BASIC ARITHMETIC AND LOGIC PROCESSING- -UPDATE C FF OF MACRO-
MACHINE FOR ADA- -TOGGLE IT ON CARRY FROM ADA */

ADA: ADR(A);

ADA1: NO.OP JFL(NCY,SCY);
NCY: NO.OP JZR(FETCH);
SCY: LMI{W) K8000 JZR(FETCH);

/* LOGICALS */

NDA: ANR(A) JZR(FETCH);
ODA: ORR(A) JZR(FETCH);
XDA: CMR(AC);

XNR(A) JZR(FETCH);

3-40

CPU Design

/i

/a

*

/

*

/

*

/

*

/

*

/

*

/

LDA AND LDX OPERATIONS */

LDA: SDR(A) JZR(FETCH);
LDX: SDR(X) JZR(FETCH);

STACK PUSH- -ADVANCE STACK POINTER TO NEXT LOCATION (FOR THE
REVERSE DIRECTION STACK- -A DECREMENT OF S), THEN WRITE */

PDS: DSM(S);
PDS1: LMI(S) RWM JZR(FETCH);

ADX — SHARES CODE FOR ADA — ALSO TOGGLES C FF OF MACRO MACHINE */
ADX: ADR(X) JMP(ADA1);

MEMORY REFERENCE INSTRUCTION GROUPS
DIRECT- -GET B+D INTO AC- -ALSO R9 */

DMRF: ILR(B);
ALR(R9) JRL(MRV1MRV2MRAD STPG);

INDIRECT-ABSOLUTE- -GET (B+D) INTO AC- -C FLAG USED FOR PSEUDO-SUBROUTINE */

IMRF: ILR(B);
IMRF1: ALR(R9);
LMI(R9) RRM JCF(MADD,MLOAD);
MLOAD: ACM(AC) JRL(MRV1,MRV2MRAD,STPG);

NOTE: MADD WILL BE USED FOR OTHER INDIRECT OPERATIONS WHERE
B, X, ETC. HAS BEEN LOADED TO R8 */

MADD: ACM(AC);
ALR(R8) JRL(MRV1,MRV2MRAD,STPG);

INDIRECT INDEXED ABSOLUTE — CLEAR C FLAG, MOVE X TO R8 */

IXMA: ILR(X) STC;
SDR(R8);

NOTING THAT ASSIGNMENT RULES WOULD NOT ALLOW THE DESIRED
JUMP TO IMRF UNLESS IXMA+1 WERE IN ROW ZERO- ~AN EXTRA STATE
IS ADDED HERE */

IXMA2: ILR(B) JMP(IMRF1);
INDIRECT INDEXED RELATIVE — CLEAR C FLAG, PUT B+X IN R8 */
IXMB: ILR(X) STC;

SDR(R8);

ILR(B);
ADR(R8) JMP(IMRF);

INDIRECT RELATIVE (TO B) — CLEAR C FLAG,PUT BINR8 */
IRBM: ILR(B);

AGAIN ASSIGNMENT RULES PREVENT JUMPING TO IXMA+1 UNLESS IT IS
LOCATED IN ROW ZERO- -PLACEMENT THERE COULD FREE TWO WORDS */

SDR(R8) JMP(IXMA2);

THE FOLLOWING PROCEDURES IMPLEMENT THE BASIC PREPROCESSING FOR
VALUE AND ADDRESS LOADING.

VALUE-GROUP 1: GET (AC) IN AC */

MRV 1: LMI(AC) RRM;
ACM(AC) JLL(NDA,ODA,XDA ADA);

CPU Design

/* VALUE GROUP 2 */

MRV2: LMI{AC) RRM;
ACM(AC) JLL(LDA,LDX,PDS,ADX);

/* MRAD GROUP INCLUDES ADDRESS LOADS AND SUBTRACT FROM A */

MRAD: NO.OP JLL(LAA,LAX,PAS,ISDA);
LAA: SDR(A) JZR(FETCH);

LAX: SDR(X) JZR(FETCH);

PAS: DSM(S) JMP(PDS1);

/* FOR SUBTRACT, ADD 1'S COMPLEMENT PLUS 1 */
ISDA: LMI(AC) RRM;

LCM(AC);

ADR(A) FF1 JMP(ADA1);

/* STPG GROUP INCLUDES STORES AND SUBTRACT FROM X */

STPG: LMI(AC) JLL(SAM,SXM,PSM,SDX);
SAM: ILR(A) RWM JZR(FETCH);
SXM: ILR(X) RWM JZR(FETCH);

/* POP STACK TO MEMORY — SAVE ADDRESS, POP STACK */
PSM: SDR(T);
LMI(S) FF1 RRM;
ACM(AC);
LMI(T) RWM JZR(FETCH);
/* SUBTRACT FROM X */
SDX: LMI(AC) RRM;
LCM(AC);

ADR(X) FF1 JMP(ADA1);

Thus the initialization procedure requires 16 words
of microcode, the fetch sequence 3, and the mem-
ory reference and immediate groups use a total of
57 words. In addition, two dummy locations
(NAI1 and NAI?) are needed for unassigned macro-
operation codes.

Table VII. Representative Execution Times

Sample execution times for some of the instruc-
tions may be estimated by counting the number of
micro-instructions in the sequences and the number
of read and write memory cycles. Allowing 150
nsec for each micro-instruction, and 400 nsec for
each memory cycle, some representative execution
times would be as shown in Table VII.

INSTRUCTION MICROCYCLES READ CYCLES WRITE CYCLES EXECUTION TIME
ADA, direct 10 2 2.3uS
ADl, short 9 1 1.75 uS
LDA 8 2 2.0uS
LA, short 7 1 1.45 S
LDA, indirect index relative 15 3 3.45 uS

CPU Design

JUMP GROUP

The next section shows the realization of the jump
group instructions. Two basic classes, a jump rela-
tive to the program counter and an indirect jump
through a table stored at the beginning of the pro-
gram are represented. Conditional jumps include
A>0, A>0, A=0, A#0, A<0, A<O0, X+#A, X>0,
X<A, C=0 and C+#0.

In addition, two classes of subroutine calls are pro-
vided; a local call which pushes P onto the stack,
and jumps relative to E, and a global subroutine
call which stores the W, B, E, and P registers on
stack and computes new values for E, the program
base register, and P. Also, included in this section
of microcode is the operation that pushes both A
and X onto the stack.

Table VIII shows the opcode assignments for the
various jump operations implemented. Except for

Table VIII. Jump Instruction Group

the conditional jumps, X>A, X<A, X=A and X#A
which share a common subroutine and exit via a
JLL jump, the opcode values were assigned arbi-
trarily.

A flowchart representing the jump coding is shown
in Figure 16. During the microcoding of the se-
quence, two methods were evaluated. One used
the JRL, JLL sequence of testing 2 bits of macro-
operation code at a time, while the one actually
selected uses a JPR macro-operation. The JPR test
selected uses no more code than the JRL, JLL
sequence method, and executes more rapidly. At
one point (for the X=A, X#A, X>A, X<A tests),
code is shared as if it were part of a subroutine,
then a JLL instruction is used to resolve the exit.
This method is another example of a pseudo-
subroutine that saves microprogram memory. Use
of this technique does put a constraint on the
assignment of macro-operation codes.

RELA T
MNEMONIC FUNCTION oATvE piotRECT
JRU, JIU Jump unconditional 0001 0000 0010 0000
JRGE, JIGE Jump if A>0 0001 0001 0010 0001
JRLT, JILT Jump if A<O 0001 0010 0010 0010
JRXG JIXG Jump if X>A 0001 0011 0010 0011
JREZ, JIEZ Jump if A=0 0001 0100 0010 0100
JRNZ, JINZ Jump if A#0 0001 0101 0010 0101
JRCZ, JICZ Jump if C=0 0001 0110 0010 0110
JRXL, JIXL Jump if XA 0001 0111 0010 0111
JRLE, JILE Jump if A<O 0001 1000 0010 1000
JRGT, JIGT Jump if A>0 0001 1001 0010 1001
JRCN, JICN Jump if C#0 0001 1010 0010 1010
JRXE JIXE Jump if X=A 0001 1011 0010 1011
CVvsS Call subroutine, push W, B, E, P N.A. 0010 1100
PHAX Push A, X onto stack 0001 1101 0010. 1101
CLS Call subroutine, push P N.A. 0010 1110
JRXN, JIXN F)ump if X#A 0001 1111 0010 1111

Subroutine calls

Local: Push P to stack
P=E+(E+D)

Value: Push W, B, E, P to stack
E=E+(E+D)

P=E'+(E’) where E'=E+(E+D)

Unconditional and conditional jumps

P=P+D’ where D'=D-128
P=E+(E+D)

Relative:
Indirect:

3-43

CPU Design

X
F’x-oom ; PX=0010
| o E+(E+D) ~ AC,R9
PeD" = AC CLEAR C FLAG
l.vn JPR ASSEMBLER
SHOULD NOT
ALLOW THIS
PATH

PR=0000 ‘ oowI oml 10101 mui omol 0110 oonl omI

wm; ma{ 1l0|; mo; ¥ 1100

JuNe waco] firazo] Lieceo | firaso] Jieaso| Lircmo| | X0 X o T
it SET SET SET SET SET SET o Yo o b A>0 A<o PHAX cs cvs
Fe1 F1 F=1 F=0 F=0 F=0 op sup sie
1ZR 1ZR IJZR
TF XoA, SET C=1 -
OTHERWISE X<A, SET C=0 IR0 IF A<0 PUSH X ity
IF X=A, SET F=1 §-1 i‘: PUSH A PUSH £
OTHERWISE XA, SET F=0 P E
WL FL I WL JFL E-E+(E+D)
P—E+(E')
] '_‘ WHERE
00 0 10 1 =0 -0 E=E+(E+D)
X>A x<A X=A X+A IF A%0 IF A0
G 3 IF I SET SET
c=1 co F=1 F=0 F=1 F=1 P PsD-128
ICF ICF JFL JFL JFL JFL
-0 ,, -0 { - ! .
DUMMY AC-P Ac—p DumMMY AC-P
FETCH FETCH FETCH FETCH FETCH FETCH FETCH FETCH FETCH FETCH

Figure 16. Jump Group Flowchart

/* JUMP GROUPS- -USE JPR MICRO-OPERATION TO RESOLVE CONDITION SELECTION

DESTINATION ADDRESS IS COMPUTED FIRST- -PLACED IN AC AND R9

JUMP RELATIVE TO P- ~ADDRESS=P+D-128 */

JREL: ILR(P);
JRDR: LMI(AC) KFF80;

ALR(R9) JPR(JUNC,JAGE,JALT,JXGA,JAEQ,JANE,JCEZ,JXLA,
JALE,JAGT,JCNZ,JXEA,CPSS PXA,CLOP JXNA);

/* Jump |ND|§ECT — GET E+(E+D) IN AC AND R9 */

JIG: ILR(E);
ADR(R9);
LMI(R9) RRM;
AMA(AC);

SDR(R9) JPR(JUNC,JAGE,JALT,JXGA,JAEQ,JANE,JCEZ,JXLA,
JALE,JAGT,JCNZ,JXEA,CPSS PXA,CLOP,JXNA);

/* UNCONDITIONAL JUMP */

JUNC: SDR(P) JZR(FETCH);

/* TESTS FOR A.GE.O, ETC. */

JAGE: TZR(A) K8000 INH JMP(TTRU);
JALT: TZR(A) K8000 INH JMP(TFAL);
JAEQ: TZR(A) JMP(TTRU);
JANE: TZR(A) JMP(TFAL);

3-44

CPU Design

JAGT: TZR(A) K8000 INH;

TZR(A) JFL(APRE,ANPE);
APRE: NO.oP JFL(INT2,JTR2);
ANPE: NO.oP JZR(FETCH);
JALE: TZR(A) K8000 INH;

TZR(A) JFL(APE2,AN2);
APE2: NO.OP JFL(JTR1,UNT1);
AN2: SDR(P) JZR(FETCH);

/* TESTS OF C FLIP-FLOP (HIGH ORDER BIT OF W) */

JCEZ: TZR(W) K8000 INH JMP(TTRU);
JCNZ: TZR(W) K8000 INH JMP(TFAL);

/* TEST EXECUTION FOR ABOVE TESTS — ROW ZERO USED */

TTRU: NO.OP JFL(JTR1,UNT1);
JTR1: SDR(P) JZR(FETCH);
INT1: NO.OP JZR(FETCH);
TFAL: NO.OP JFL(INT2,JTR2);
INT2: NO.OP JZR(FETCH);
JTR2: SDR(P) JZR(FETCH);

/* TESTS FOR X.GT.A, X.LE.A, X.EQ.A, X.NE.A- ~-SHARED PSEUDO-
SUBROUTINE USES JLL FOR AN EXIT TEST- -ROUTINE ENTRY IN ROW 0
C FLAG IS SET FOR X.GT.A, FL TEST FOR X.EQ.A */

JXGA: ILR(X) JMP(XATS);
JXLA: ILR(X) JMP(XATS);
JXEA: ILR(X) JMP(XATS);
JXNA: ILR(X) JMP(XATS);

/* SAVE X AT T, FETCH AND COMPLEMENT A */

XATS: SDR(T);
ILR(A) STC; /* CLEARC FLAG */
CMA(AC);
/* ADD HOB'S OF A’ AND X — CARRY MEANS X NEG., A.GE.O */
ADR(T) K8000;

/* EXECUTE PREVIOUS TEST, SET UP TO TEST HOB OF RESULT- -IF 1,
THE SIGNS OF A AND X WERE THE SAME */

TZR(T) K8000 INH JFL(TFEQ,TXNG);

/* TXNG IMPLIES X NEG AND A.GE.O- -1.E. X.NE.A AND X.LT.A--DO A
DUMMY OPERATION TO FORCE THE PROPER F FLAG */

TXNG: ILR(A) JLLIXGX,IXLX,JXEX,JXNX);

/* PERFORM A TEST ADDITION AND EXECUTE SIGN-EQUAL TEST
C WILL BE SET IF SIGNS WERE THE SAME AND X.GT.A */

TFEQ: ADR(T) STC K7FFF JFL(SNEQ,SWEQ);
/* SNEQ IMPLIES SIGNS NOT EQUAL- -I.E. X.GE.O, A NEG- -X.GT.A */

SNEQ: SDR(AC) STC; /* DUMMY OP TO SET C FLAG */
NO.OP JLL(IXGX,IXLX,JXEX,JXNX);

3-45

CPU Design

/* FOR SIGNS EQUAL, IF X=A RESULT WOULD BE 1111...1. INCREMENT

WILL GENERATE A CARRY IF SO */

SWEQ: ILR(AC) FF1
/* EXECUTION OF JUMP TESTS */
JXGX: ILR(R9)
JXLX: ILR(R9)
JXEX: ILR(R9)
IXNX: ILR(R9)
/* SUBROUTINE CALLS

CALL LOCAL AND PUSH W, B, E, P =CPSS
CALL LOCAL AND PUSH P ONLY=CLOP

CL FLAG IS USED FOR EXIT TEST AFTER PUSHING P */

CPSS: DSM(S);

ILR(W);
LMI(S) RWM;
CPG2: DSM(S);

ILR(B);
LMI(S) RWM;

DSM(S);
ILR(E);
LMI(S) RWM;

DSM(S);
ILR(P);
CLOP2: LMI(S) RWM;

E+(E+D) INTO AC */

~
*

ILR(R9)

XRTN: SDR(E);
LMI(E) RRM;

AMA(AC);

LRTN: SDR(P)

CLOP: DSM(s);

ILR(P) STC
/* PUSH INSTRUCTION */

PXA: DSM(S);
ILR(X);

LMI(S) RWM;

DSM(S);
ILR(A);
LMI(S) RwWM

REGISTER MOVE AND SUBROUTINE
RETURN GROUP

In this section of code, the Register Move and Sub-
routine Return group instructions are implemented.
Both groups share the same JPX entry point,
1100B. Table X shows the opcode values assigned
to the macro-instructions.

JZR(FETCH);

JMP(CLOP2);

JZR(FETCH);

JLL(IXGX,IXLX,JXEX, JXNX);

JCF(JNT2,JTR2);
JCF(JTR1,UNT1);
JFL(INT2,JTR2);
JFL(JTR1,UNT1);

JCF(LRTN,XRTN);

To simplify the decoding for register selection (S,
B, E or W) in the Register Move group, the two low
order bits of the PR latch are used to modify the
micro-instruction as it is strobed into the pipeline
register. By tying the two PR latch outputs of the
3001 to the two low order bits of the CPE control
field, a JCE jump function (which enables the PR

3-46

CPU Design

latch outputs) can be used to provide a wire OR of Table X. Register Move and Subroutine

PRO, PR1 and FO, F1 (see Figure 17). Return Group
MNEMONIC FUNCTION M [o]
Vee
$s RLS Pop P 1100 1
1} 1)
Faom‘o—_D RVS PopP,E,B, W 1100 1101
mcnov:gag:r:': FPIPELINE “ aocee RSA Pop A, X,P,E,B,W 1100 1100
) —
PPAX Pop A, X 1100 1110
mz:“ B MSX Move S to X, adjust 1100 0100
1
MBX Move B to X, adjust 1100 0101
MEX Move E to X, adjust 1100 0110
Figure 17. Wire-OR of POg_1 and Fg_q MwWX Move W to X, adjust 1100 0111
MXS Move X to S, adjust 1100 0000
MXB Move X to B, adjust 1100 0001
Thus, in the micro-instruction MXE Move X to E, adjust 1100 0010
MXW Move X to W, adjust 1100 0011
SDR(R7) JCE (MXRX)
NO.OP Nothing implemented 1100 10XX
the register group field FO—F3 is modified as
shown in Table [X.
The microprogram sequence is shown in Figure 18.
Table IX. Register Group Field FO—F3 Modification
MICROPROGRAM
PR LATCH RESULT STORED IN
MEMORY OUTPUT OUTPUT PIPELINE REGISTER SELECTED REGISTER
(FO—F3)
0111 00 0100 S
0111 01 0101 B
0111 10 0110 E
0111 1 0111 w
00 ‘ 01 ‘ 10 ‘ 'Hi
NOT SUBROUTINE
Rn - X+D'-128 X+ Rn+D-128 IMPLEMENTED RETURN AND
NOoOP PPAX
l JRL
01 10 n
[POP PE, l I POPP
A AND X ONLY
FETCH FETCH FETCH FETCH FETCH FETCH

Figure 18. Register Move and Subroutine Return Group Flowchart

3-47

CPU Design

/* MOVE GROUP OF INSTRUCTIONS- -USES JCE TO SELECT REGISTER- -NOTE
THAT REGISTER ASSIGNMENT BECOMES IMPORTANT
FIRST MODIFY D TO GET D-128 */
MVGP: LMI{R9) KFF80 JLL(MVXR MVRX,MOD,PGRP);

/* MOVE X TO REG. — GET X, MODIFY BY D'=D-128 */

MVXR: ILR(X);

ALR(R9);
SDR(R7) JCE(MXRX); /* REGISTER OVERRIDE */
MXRX: NO.OP JZR(FETCH);

/* MOVE REG TO X — FETCH REG USING JCE OVERRIDE */

MVRX: ILR(R7) JCE(MRXX);
MRXX: ALR(R9) JMP(LDX);

/* MOD NOT IMPLEMENTED IN THIS VERSION */
MOD: NO.OoP JZR(FETCH);

/* ADJUST STACK AND RETURN GROUP
PPAL--POPS A, X, P, E, B, ANDW
PPRA- -POPS P, E, B, AND W
PPAX- -POPS ONLY A AND X
POPP- -POPS ONLY P */

PGRP: ILR(R9);

ADR(S) JRL(PPAL,PPRA,PPAX,POPP);
PPAL: LMI(S) FF1 RRM;

ACM(AC);

SDR(A);

LMI(S) FF1 RRM;
ACM(AC) JCF(PAXE,PAXC);
PAXC: SDR(X);

PPRA: LMI(S) FF1 RRM;
ACM(AC);
SDR(P);

LMI(S) FF1 RRM;
ACM(AC);
SDR(E);

LMI(S) FF1 RRM;
ACM(AC);
SDR(B);

LMI(S) FF1 RRM;
ACM(AC);
SDR(W);

/* RESTORE INTERRUPT STRUCTURE */

CLR(T);

LMI(T) ROT JZR(FETCH);
PAXE: SDR(X) JZR(FETCH);
PPAX: ILR(AC) STC JMP(PPAL);

POPP: LMI(S) FF1 RRM;
ACM(AC) JMP(JUNC);

3-48

CPU Design

SPECIAL FUNCTION GROUP Table XI. Special Function Groups

Thg JPX entry ppint IIQIB is used a§ an? entry MNEMONIC FUNCTION M o
point for the special function groups which include

byte load and store, register manipulation, and the LBA Load byte absolute 1101 0000
absolute subroutine call and increment and skip if .

zero instructions. Table XI lists the opcode values LBR Load byte relative 1101 0100
assigned to the instructions. A flowchart of the SBA Store byte absolute 1101 1000
sequences is shown in Figure 19. SBR Store byte relative 1101 1100
In order to execute a byte load or store operation RAR Rotate A right, include

efficiently, a byte swap capability (which exchanges CFF 1101 0001
the high and low order byte positions) is necessary. RAX Rotate A and X right,

By wiring the data outputs of the high order byte include CFF 1101 0101
to the I inputs of the low order byte, and the low SAX Shift A and X right,

order outputs to the high order I inputs, a byte preserve sign 1101 1001
swap operation can be performed (see Figure 20). SAL Shift A left, fill with

Note that with the configuration shown in Figure zeros 1101 101
20, a byte swap can be performed on either a 1Sz Increment and skif ip

memory word or the AC register of the CPE array zero 1101 XX10
by reading data in on the I-Bus inputs while per- CAS Call absolute, push

forming a memory read or enabling the D-Bus, P,E,W,B 1101 XX11
respectively. P < (D)

AC- B R9.- LS 7 BITS OF X
R9 - R9-1

JRL JLL l

00

AC - (8+D) + X/2
LSB OF X TO C FLAG

=1
STORE A TO
IGHT BYTE O
MEMORY

STORE A TO
LEFT BYTE OF
MEMORY

LOAD LEFT LOAD RIGHT

BYTETO A BYTETOA

R9—R9 - 1
STORE CARRY IN Z
i
00 oy 0y 1y
FETCH FETCH FETCH FETCH FETCH
RAR RAX
1zF

w | []

1
JzF $zF JzF

=1

RESTORE REGISTERS
CFF ~ Z.FLAG

Figure 19. Special Function Groups Flowchart

3-49

CPU Design

D-BUS

HIGH ORDER BYTE LOW ORDER BYTE
OF CPE ARRAY OF CPE ARRAY

M-BUS 1-BUS M-BUS 1-BUS

f
| LOW ORDER BYTE |

HIGH ORDER BYTE
BIDI
DATA BUS

Figure 20. 1-Bus Wired for Byte Swap

/* SPECIAL FUNCTION GROUP
BYTE OPERATORS- -~ADDR=(B+D)+B+X/2 OR (B+D)+X/2
CALL TO (D) AND PUSH ALL
SHIFT AND ROTATE GROUP
INCREMENT AND SKIP
FETCH B JUST IN CASE */

SPFG: ILR(B) JRL(BYTE,RSGP,SCJG,ISJG);
/* BYTE GROUP- -COMPUTE ADDR, STORE B IN CASE NEEDED */

BYTE: SDR(R8);

ADR(R9);
ILR(X);
SRA(AC) STC;
LMI(R9) RRM;
ACM(AC) JLL(LBYA,LBYR,SBYA,SBYR);
LBYR: ALR(R8);
LBYA: LMI(AC) RRM JCF(LBYT,RBYT);
LBYT: LDI(AC) FF1 KOOFF JMP(DBIA);
RBYT: LTM(AC) KOOFF;
DBIA: SDR(A) JZR(FETCH);
SBYR: ALR(R8);
SBYA: LMI(AC); /* LOAD MAR FOR LATER USE */
ILR(A);
TZR(AC) KOOFF RRM JCF(STLB,STRB);
STRB: LTM(T) KFFQO;
SRB1: ALR(T) RWM JZR(FETCH);

STLB: LTM(T) KOOFF;
LDI(AC) FF1 CNB JMP(SRB1);

/* ROTATE GROUP
ROTATE A WITH C- -ROTATE A AND X WITH C- -SHIFT A, X RIGHT, FILL
WITH SIGN- -SHIFT A LEFT, FILL WITH ZEROES

3-50

CPU Design

*

/

~
*

AT ENTRY, Z FLAG IS ZERO IF D=0. DUE TO PIPELINED OPERATION, IT IS
THIS CONDITION THAT IS TESTED BY THE FIRST JZF */

RSGP: TZR(W) STZ K8000 INH
SZDS: ILR(X);

SDR(R9) FFO KOO7F
SNZD: DSM(R9)

RACI: ILR(A)
RAXI: ILR(X);
SDR(T)
SAXI: TZR(A) STZ K8000 INH
SLZ1: ILR(A)

MAIN ROTATION LOOP */
RUNR: DSM(R9) STC

RACR: SRA(AC) FFZ STZ
RAXR: SRA(AC) FFZ STZ;
SRA(T) FFZ STZ
SAXR: SRA(AC) FFZ STC;
SRA(T) FFC
SLZR: ADR(AC) STZ

RSEX: SDR(A)

RACF: TZR(W) K7FFF
SNCF: NO.OP
SSCF: LMI(W) K8000
RAXF: ILR(T);
RXF1: SDR(X)
SAXF: ILR(T)
SLZF: TZR(W) K7FFF

JZF(SZDS,SNZD);

JLL(RACI, RAXI,SAXI,SLZ!);
JLL(RACI,RAXI,SAXI,SLZI);

JMP(RUNR);
JMP(RACI);

JMP(RAXI);
JMP(RUNRY);

JLL(RACR,RAXR,SAXR,SLZR);
JFL(RSEX,RUNR);
JCF(RSEX,RUNR);

JCF(RSEX,RUNRY);
JFL(RSEX,RUNR);

JLL(RACF,RAXF,SAXF,SLZF);

JZF(SNCF,SSCF);
JZR(FETCH);
JZR(FETCH);

JMP(RACF);
JMP(RXF1);
JZF(SNCF,SSCF);

SPECIAL CALL AND JUMP GROUP- —CURRENTLY CONTAINS ONLY THE
CALL TO (D) AND PUSH W,B,E,P- ~ALL 4 OPCODES DO THE SAME THING */

SCJG: LMI(R9) RRM;
ACM(AC);
SDR(R9)

JMP(CPSS);

INCREMENT AND SKIP GROUP- ~AGAIN 4 OPCODES ARE USED FOR ONE
INSTRUCTION- -LOCATION AT B+D IS INCREMENTED */

I1SJG: ALR(R9);
LMI(R9) RMW;
ACM(AC) FF1 RWM;
NO.OP

NOSK: NO.OP

SKIP: LMI(P) FF1

JFL(NOSK,SKIP);
JZR(FETCH);
JZR(FETCH);

3-51

CPU Design

INPUT/OUTPUT GROUP

In this section of code, the input/output instruc-
tions are implemented. In conjunction with the
memory address register, the bus control field

Table XII. Input/Output Group

generates a Request Input or Request Output to
select an I/O port and specify the operation to be
performed. Table XII lists the opcode values as-
signed to the macro-instructions. The flowchart in
Figure 21 shows the microcode sequence used.

INTERRUPTS
MNEMONIC FUNCTION M o A basic means for microcoding interrupts when
using the 3214 Interrupt Control Circuit involves
IND Input one word 1000 XXXX forcing an alternate microprogram address which
A<D then leads to an interrupt handling routine. The
oTD Output one word 1001 XXXX interrupt handling routine interrogates the inter-
(D<A rupt structure to determine the interrupting level.
INX Input one word 1010 XXXX This level is rewritten to the interrupt structure to
A<« (X) block further interrupts at the interrupting priority
OTX Output one word 1011 XXXX level or lower levels while enabling interrupts at
(X) <A higher levels.
o Riaraor nirercn
o i 1000 ' 1001 ':mo f 1011
AR O AR~ x AR~ D AR x

‘_!

A - (MAR
INPUT I/O WORD

FETCH

Figure 21. Input/Output Flowchart

(MAR} - A (MAR) - A
OUTPUT I/O WORD OUTPUT 1/0 WORD

!

FETCH FETCH

/* INTERRUPT- -UTILIZED CALL ROUTINES FOR REGISTER SAVING
1/0 DEVICE #0 REPRESENTS EXTERNAL INTERRUPT STRUCTURE

START BY PUSHING OLD VALUE OF STATUS */
INTER: DSM(S);
ILR(W);
LMI(S) RWM;

/* READ INTERRUPTING LEVEL FROM EXTERNAL STRUCTURE */

CLR(T);
LMI(T) RIN;

LTM(AC) KOOFF ROT; /* NOTE LEVEL REWRITTEN */

/* STORE PRIORITY INW — SET C FLAG FOR PROPER LOADING OF REGISTERS */

SDR(W) STC;

/* INTERRUPT ROUTINE STARTING ADDRESS IS COMPUTED IN R9 */

LMI(W) RRM;
ACM(AC);
SDR(R9)

JMP(CPG2);

3-562

CPU Design

Microprogram Memory Assignment

Having written the actual code with minimal regard
to memory assignment, the actual assignment to
ROM must be performed. To assist in this function,
a complete state (i.e., microcode instruction) flow-
chart should be prepared. Each machine state is
represented by a dot in the state diagrams shown

below. Conditional jumps should be labeled as to
type and condition corresponding to each destina-
tion. This information will be necessary when per-
forming an assignment. No other information is
needed on the flowchart, but it is quite useful to
show any symbolic label that may be associated
with a state.

INITIALIZATION GROUP

XRTN

ENTRY POINT
FROM OTHER
ROUTINES

INIT =00

FETCH = 000FH

JPX

Ioooo loom 1oa|o 1’oon 1omo 10101 lono lom 11000 1|oo|

lwm 11011 lnoo Inm lmo lun

NAO JREL JG IMMD DMRF IMRF IXMA IXme INX oTD oTX MVGP SPFG IRBM NA15
IMMEDIATE GROUP
IMML
00 "
ILGA NAI2
FROM MRXX
JLL /
? —
JLL
00 0 00 o 10 n
NDA ODA LDA LDX PDS j ADX
FROM MEM
FETCH FETCH FETCH [~ REF "PAS”

FETCH

FROM MEMORY
REFERENCE GROUP
“ISDA” AND "SDX"

FETCH FETCH

FETCH PDS1

FETCH

CPU Design

MEMORY REFERENCE

DMRF
GROUP
JRL
00 o1
MRV1 MRV2 MRAD STPG
L
00 01 10 n
JLL SAM SXM PSM SDX
loo lm llo 1n
LDA Lox PDS ADX FETCH FETCH
JLL
loo lm 10 "
NDA 00A XDA ADA FETCH
T0 “ADA1"
JLL
00 01 10 n
LAA LAX PAS ISDA
FETCH FETCH POS1
JUMP GROUP
JREL
T0 “ADA1"
JRDR 3G
PR) _ _wR
0000 1001
JUNC JAGT
FROM
“POPP+1”
FETCH
-0
JTR1 INT? INT2 JTR2
\
FETCH FETCH FETCH FETCH

JFL

00 01 0 "
IXEX IXNX IXGX IXLX
JFL ICF JCF

3-54

CPU Design

JUMP GROUP (CONTINUED)

_.{{!R
J)
1100 101
cPss PXA
FROM
INTER +9
cPG2
O FROM INT+13
FETCH FETCH
MOVE GROUP
MVGP
L
00 01 10 n
MVXR MVRX MOD PGRP
JCE
MRXX FETCH

JRL

10 n
PPAX POPP

MXRX

FETCH TO "“JUNC
O

3-55

CPU Design

SPECIAL FUNCTION GROUP

SPECIAL FUNCTION GROUP

JRL
sPF6 O
00 01 10 1
BYTE O RsGP SCJG 1546
JzF
=0 =1
szDs SNZD
JFL
=0 =1
TO ePss NOSK SKIP
m m FETCH FETCH

n

SBYR RACI RAXI SAXI sLz1
=1

STRB _.___iC_F—\

=0 =1 R
SRB1 UNR
RSEX
FETCH
JuL
JLL
00 0 10 1" 0 n
RACF RAXF SAXF O sLzfF RAXR SLZR
JzF
=0 -1
SNCF SSCF
FETCH FETCH
1/0 GROUP INTERRUPT SERVICE ROUTINE
IND INX oto oTx INTER = 256 cPG2
INDS FETCH FETCH

FETCH

3-56

CPU Design

Once all of the state diagrams have been prepared,
a number of steps may be followed to simplify the
assignment procedure. First, the basic hardware
characteristics dictate that INIT, FETCH, and
INTER be located in microprogram memory loca-
tions 0, 15, and 255 (decimal), respectively. Then,
note that each conditional jump has a limited
range. As a result, when several conditional jumps
follow one another in sequence, all may have to be
located within a restricted range in microprogram
memory. For JCF, JZF, JLL and JRL micro-
instructions, the calling instruction must be in the
same block of eight rows as the destinations.

To do the best assignment, the most restricted set
of micro-instructions should be assigned first. The
most restricted groups of micro-instructions are
usually associated with clusters of conditional
jumps which must be located within a given range
of memory. It is therefore very useful to catalog all
such clusters of conditional jumps. Table XIII lists
the clusters associated with this machine. In each
case the conditional jump is identified by the jump
micro-operation and the first of its destinations.
Thus in Table XIII the symbol JRL(MRV1) really
refers to the code JRL(MRVI1, MRV2, MRAD,
STPG). For this machine, there are only five
clusters.

Table XIIl. Conditional Jump Clusters

1. JPX (NAO)
JRL (ILGA), JRL (BYTE)
JLL (NDA), JLL (LDA), JLL (MVXR), JLL (RACI)
JZF (IMML), JZF (SZDS)

JRL (MRV1)
JLL (SAM), JLL (LAA)
JCF (MADD)

JLL (UXEX)
JEL (JTR1), JCF (UNT2)

JRL (PPAL)
JCF (PAXC)
JLL (RACR), JLL (RACF)
JCF (RSEX)
JZF (SNCF)

An examination of the flowcharts indicates that a
simpler code might result if clusters one and five
were combined because of the coupling between
JLL(RACI) of cluster one and the JCF(RSEX) of
cluster five. The combination of these two clusters
represents the greatest degree of restriction, as
within the same block of rows there would be one
JPX, six JLL, two JRL, one JCF and three JZF
micro-operations. In addition, the JLL(MVXR)

executes a JCE jump which uses an additional
location within the JLL destination columns. How-
ever, the basic jump micro-operation characteristics
do allow all of these conditional jumps to be placed
within one block of eight rows.

To retain row zero, the conditional jumps of
clusters one and five are placed in the last eight
rows of the microprogram memory. In addition to
the destinations, space must be reserved for the
“calling” micro-instructions for each of the condi-
tional jumps listed in the clusters.

Chart 1 shows an assignment of the conditional
jumps of clusters one and five, together with some
of the immediately related states. For the assign-
ment procedure, a form like that of Chart 1 is used
to show which microprogram memory locations
are occupied and which are available. The format
also aids visualization of valid jump micro-opera-
tions. As each state is assigned to its location in
micro memory, the corresponding position on the
state diagram is marked to show assignment. In this
way, unassigned states are easily located on the
state diagrams.

The information placed in the memory maps in-
cludes the state label or, for strings of states with
no assigned label, the label of the nearest previously
labeled state plus information to indicate how far
from that labeled state the present state is. For
example, INIT+2 is the second state after INIT.

The state assignment can proceed, with conditional
jumps and short unconditional sequences being as-
signed before long unconditional sequences. Chart
2 shows the state assignment at a point when all
states except those between INIT and FETCH,
those between PPRA and FETCH, and those asso-
ciated with IND, INX, OTD and OTX have been
assigned.

For those states which have only one calling state
(i.e., a state which has only one state jumping to it
with a non-conditional jump) and only one target
state (i.e., it makes a non-conditional jump to
another state), two hexadecimal numbers are also
written on the memory map. The number in the
lower left-hand corner is the address of the calling
state (first hex digit is the row, second hex digit is
the column), and the number in the lower right-
hand corner is the address of the target state. This
information will tell the designer at a glance which
states can be easily moved in the process of mem-
ory assignment, and to which locations they can be
moved. For instance, a state with its calling state
and target state in the same row (or column) can be
moved anywhere in that row (or column), and a

3-57

CPU Design

state with its target state in the row zero can be
moved anywhere in the same row or column as its
calling state.

As an example of how this information can be
used, note that in Chart 2 state RAXI+1 has been
assigned to location 090H. However, when the
INIT sequence is assigned, it becomes convenient
to locate INIT+1 somewhere in column 0. Since
there are no available spaces in column O, the
designer notes that state RAXI+1 has both its
calling and target states in row 9, and so RAXI+1
can be moved anywhere in row 9. In Chart 3,
RAXI+1 has been reassigned to location 098H,
and INIT+1 has been assigned to location 090H.
This moving process will typically be frequently
necessary in the assignment procedure, and thus it
is quite useful to have this information right on the
working memory map.

The final state assignments consist mostly of the
long unconditional sequences. Row zero locations

may then be used freely. In those cases where extra
states were used to avoid the use of row zero
locations, the assignment may be reconsidered. For
this machine, the operations IND, INX, OTD and
OTX were rewritten to utilize row zero locations.
Figure 22 shows the revised flow diagram for these
four operations.

The final assignment is as shown in Chart 3. Two
locations remain.

IND INX oTD oTx

IND1 oTD1

FETCH FETCH

Figure 22. IND, INX, OTD and OTX
Revised Flow Diagram

/* INPUT AND OUTPUT- -CURRENT VERSION DOES NOT DECODE INTO
SUBGROUPS- -ALSO ROW ZERO IS USED TO SAVE CODE */

IND: LMI(R9) RIN;
IND1: ACM(AC);

SDR(A) JZR(FETCH);
INX: LMI(X) RIN JMP(IND1);
OTD: LMI(R9);
OTD1: ILR(A) ROT JZR(FETCH);
oTX: LMI(X) JMP(OTD1);

CONCLUSION

In the central processor design example described
above, the final definition of the central processor
macro-instruction set evolved as the microprograms
were being implemented. In many instances, it was
necessary to modify the macro-instruction opcode
assignment in order to take full advantage of the
capabilities of the Series 3000 architecture. Macro-
instruction operations were also redefined to add
more flexibility as microprogramming techniques
improved.

The microprograms were implemented without
regard to memory assignment except in cases where
code sharing between micro-instruction opcode
assignments were critical. Actual assignment of the
micro-instructions to memory involved a very smail
portion of the design cycle. The 3001 MCU’s

ability to decode macro-instruction opcodes and
large repertoire of conditional and unconditional
jump operations resulted in both efficient micro-
programs and complete memory utilization. Only
two memory locations remained unused after the
microcoding was complete.

The central processor developed in this application
note is used as a design example only, and there-
fore does not represent a complete central pro-
cessor or an instruction set designed for a specific
application. However, because of the micropro-
grammability of the Series 3000 family, the same
basic organization can be tailored to a wide range
of operating environments from I/O processing to
data processing and dedicated arithmetic computa-
tion.

3-58

69-€

Chart 1

JEL, JCF, JZF JFL, JCF, JZF
COLUMN RESTRICT JLL COLUMN RESTRICT COLUMN RESTRICT| JRL COLUMN RESTRICT
f.c,z=0 f.c,z=1 f,c,z=0 f,c,z=1
0 1 2 3 a 5 6 7 9 A B c D E F
00 | INnIT FETCH
01
02
03
04
05
06
07
08 | NAD JREL JG IMMD DMRF IMRF IXMA IXM8B IND INX oTD oTX MVGP | SPFG IRBM NA15
RAXI+1 SZDS+1
09 | o o4 RSEX RUNR RACI RAXI SAXI sLzi oA SZDS SNZD
oa | RAXR-T SAXRAT | gyep SSCF RACR RAXR | SAXR SLZR
A4 A6
08 | RXFI g‘g“""” IMML IMMS RACF RAXF | SAXF SLZF
oc MVXR | MVRX | MOD PGRP BYTE RSGP SCJG 1SJG
oD NDA ODA XDA ADA PAXC PAXE PPAL PPRA PPAX POPP
OE LDA LDX PDS ADX ILGA ILPX NAI1 NAI2
oF MRXX INTER

a ndo

ubisa

Chart 2
JFL, JCF, JZF JFL, JCF, JZF
COLUMN RESTRICT JLL COLUMN RESTRICT COLUMN RESTRICT JRL COLUMN RESTRICT
f.c,.z=0 f.c.z=1 f,c,z=0 f,c,.z=1
0 1 2 3 4 5 6 7 8 9 A B [4 D E F
00 | INIT JAGT+1 | JTR1 INT1 TFAL TTRU JALE+1 MADD+1 [IMRF1+1 | XATS cLoP2 FETCH
SNEQ+1 SBYA+1 [sSBYA+2 STLB+1 FETCH+1
o7, SNEQ SWEQ LBYA LBYR SBYA SBYR 16 79 18 STLB STRB A 10 |SRB! oOF oF
: PPRA+1 |BYTE+5
02 | DBIA LBYT RBYT JXGX IXLX JXEX IXNX oo 2F | aE
03 | JUNC JAGE JALT JXGA JAEQ JANE JCEZ JXLA JALE JAGT JCNZ JXEA CPSS PXA cLop IXNA
o4 | PXA®2 APE2 AN2 IXMB+3 | IXMA+1 [1XMB+2 XATS+1 |SCJG+2 |PXA+1 |SCJG+1
4D 70 47 85 |86 56 |57 45 0B 5B [4E 3C |3D 40 |CE 4C
JIG+3 XATS+4 DMRF+1 IXMB+1 | INTER+3 | INTER+4 [XATS+3 | XATS+2 |CPSS+1 [CPSS+2 |IRBM+1 |INTER+2
% 1 g0 60 |5a TFEQ TXNG 84 IMRF1 | IXMAZ | 5, 47 | sF 59 |58 69 |58 51 |48 5A |3C 5D [s5c AD |8E 56 |BF s8
NG+ JRDR+1 ISDA+1 | INTER+5 INTER+6 | INTER+7 |CLOP+1 |INTER+8
06 | o T INT2 JTR1 LAA LAX PAS ISDA 67 r8 |59 ec |MADD IMLOAD | ot e I3 op |ep AF
PXA+3 | JRDR PSM+1 | SDX+1 |CPG2+2 |CPG2+3
7 A TP
97 | 40 Fo |81 &1 |APRE ANPE SAM SXM PSM SDX 76 A8 |77 Fo |aa 78 |7a £B |MRVI MRV2 MRAD | STPG
08 | NAO JRLE JG IMMD DMRF IMRF IXMA IXMB IND INX oTD oTX MVGP SPFG IRBM NA15
RAXI+1 SZDS+1 MRV 141 [MRV2+1 FETCH+2
99 | oe ‘g4 RSEX RUNR RACI RAXI SAXI sLzJ oA SXDS SNZD 7c 1D jpa
RAXR+1 | SAXR+1 PSM+2 | 1SJG+3 |CPG2+1 |BYTE+3 [BYTE+2 BYTE+4 | INTER+9
0A | A4 A6 SNCF SSCF RACR RAXR SAXR SLZR 8 88 | D9 a0 7a |ac ae lsc as |CPG2 AB 26 |6F AD
IMML+1 PSM+3 | XRTN+2 BYTE+1 [CLOP2+1 [XRTN+1 [INTER+1
08 | RXFI 82 IMML IMMS RACF RAXF SAXF SLZF 28 oF |89 Ba |LRTN XRTN cc ac oo 88 B9 |FF SF
MVXR+1 | MVXR+2 PGRP+1 | I1SJG+1
ol cacr leo NCY scy MVXR | MVRX | MOD PGRP c7 oF D9 |NOSK SKIP BYTE RSGP SCJG 1SJG
POPP+1 | XDA+1 | CPG2+7 | PPAL+1 PPAL+2 | 1SJG+2
POPP
00| o 30 Ips of |2 oo |oc os | NPA ODA XDA ADA 03 8 | Do mo |PAXE PAXC PPAL PPRA PPAX 0
JIG+2 JIG+1 PPAL+3 | PPAL+4 CPG2+4
Al NA
0E | &) 50 |MXRX |70 LDA LDX PDS ADX b8 Eo | €8 8 FB | 'LGA ILPX N 12
PXA+4 | PXA+5 | CPG2+6 ISDA+2 | sDX+2 CPG2+5
INTER
OF 170 1 |ro oF |F8 D2 MRXX | PDS1 ADAT 68 F7 |79 F7 EB F2 TE

a ndo

ubise

19-¢

Chart 3

JFL, JCF, JZF JFL, JCF, JZF
COLUMN RESTRICT JLL COLUMN RESTRICT COLUMN RESTRICT JRL COLUMN RESTRICT
f,c,.z=0 f.c.z=1 f,c,z=0 f,c.z=1
0 1 2 3 4 5 6 7 8 9 A B c D E F
00 | INIT JAGT+1 | JTR1 INT1 TFAL TTRU oTD1 JALE+1 | IND1 MADD+1 | IMRF1+1 | XATS 'N'T";é CLOP2 PPRA:é FETCH
SNEQ+1- [INIT+4 SBYA+1 |SBYA+2 STLB+1 PPRA+5 | FETCH+1
or| 3, N a1 SNEQ SWEQ LBYA LBYR SBYA SBYR 16 79 18 STLB STRB A 10 |SRB! of 9t | oF oF
INIT+3 INDI+1 | PPRA+13 | PPRA+11 | PPRA+12 PPRA+1 | BYTE+6 | PPRA+2
02 1A
o8 91 1N LBYT RBYT XGX Lx IXEX IXNX 08 OF (28 OF |EA 2B |2A 29 DD 2F | AE 2D 4F
03 | JUNC JAGE JALT JXGA JAEQ JANE JCEZ IXLA JALE JAGT JCNZ JXEA CPSS PXA cLop JXNA
04 | PXATZ | INIT45 | o) AN2 INIT+6 | IXMB+3 | IXMA+1 [IXMB+2 | INIT+11 |INIT+10 [INIT+9 |XATS+1 [SCJG+2 |PXA+1 |SCJG+1 | PPRA+3
4D 70 |11 44 41 FA4 |47 85 |86 56 |57 45 |49 0C |4A 48 |FA 49 [0B 5B [4E 3C |3D 40 |CE 4C | 2F OE
JIG+3 XATS+4 DMRF+1 IXMB+1 | INTER+3 | INTER+4 | XATS+3 | XATS+2 | CPSS+1 | CPSS+2 [IRBM+1 | INTER+2
%) e 60 |sa TFEQ TXNG 84 IMRFT | IXMAZ | 5,47 |sF s0 |58 63 |s8 51 |48 6A |3c 50 |sc AD |sE 56 | BF 58
JIG+4 JRDR+1 ISDA+1 | INTER+5 INTER+6 | INTER+7 | CLOP+1 | INTER+8
06 | oo " INT2 JTR1 LAA LAX PAS ISDA 67 F8 |ss sc |MADD [MLOAD | ot T e 3 op | 6D AF
PXA+3 | JRDR PSM+1 [SDX+1 |cCPG2+2 |CPG2+3
7
97 | 40 o |81 &1 |APRE ANPE SAM SXM PSM SDX 26 ag |77 Fo |aa 78 l7a E8 | MRV MRV2 MRAD | STPG
08 | NAO JRLE JIG IMMD DMRF IMRF IXMA IXMB IND INX oTD oTX MVGP SPFG IRBM NA15
INIT+1 [INIT+2 RAXI+1 |SZDS+1 MRV1+1 | MRV2+1 | PPRA+6 | FETCH+2
09 | 0 91 |90 21 RSEX RUNR RACI RAXI SAXI sLzJ 9 94 |oa SXDS SNZD 7c 7D 1€ Fe | 1F
RAXR+1 [SAXR+1 PSM+2 [ISJG+3 | CPG2+1 |BYTE+3 | BYTE+2 BYTE+4 | INTER+9
0A | a2 A6 SNCF SSCF RACR RAXR SAXR SLZR 78 88 | Do AD 7a |ac AE |BC As |CPG2 aB 2t | 6 AD
IMML+1 PSM+3 | XRTN+2 BYTE+1 | CLOP2+1| XRTN+1| INTER+1
08 | RXFI 82 IMML IMMS RACF RAXF SAXF SLZF A8 oF |Bo Ba |LBTN XRTN cc ac |oo 88 B9 | FF 5F
MVXR+1 | MVXR+2 PGRP+1 | 1SJG+1
€l cycr lco NCY scy MVXR |MVRX | MOD PGRP c7 oF Dpg |NOSK SKIP BYTE RSGP SCJG 1SJG
POPP+1 | XDA+1 | CPG2+7 | PPAL+1 PPAL+2 |1SJG+2
% | of 30 |06 ofF |F2 ob | pc pg |NDA ODA XDA ADA D3 E8 |D9 ag |PAXE PAXC PPAL PPRA PPAX POPP
JIG+2 JIG+1 PPRA+9 PPAL+3 |PPAL+4 | PPRA+10|CPG2+4
ILGA ILPX 12
0F [55 50 |MXRX [0 o | k3 ea |LDA LDX PDS ADX D8 Eo | Es €3 2a |78 FB LG L NAI1 NA
PXA+4 |PXA+5 |CPG2+6 | PPRA+8 |INIT+7 ISDA+2 |SDX+2 | INIT+8 |CPG2+5 | INIT+13 PPRA+7
R
% 170 F1 |Fo oF FB D2 | FE E3 |44 FA MRXX | PDS1 ADA1 68 F7 |79 F7 |F4 4A |EB F2 |[oOC ot F3 | 'NTE

ando

ubisa

CPU Design

APPENDIX A
THE DESIGN EXAMPLE INSTRUCTION SET

The basic machine uses a 16-bit word. All instruc-
tions are single word instructions except the long
immediate forms. Macroprograms are fully relo-
catable without reassembly. The data segment is
also independently relocatable. There are five basic
instruction catagories: memory reference, immedi-
ate data, jumps (including calls and returns), regis-
ter moves and manipulations, and input-output
functions.

The machine has seven registers as follows:

ASSIGNED
REGISTER CPE

REGISTER
(A) Accumulator RO
(X) Index Register R1
(B) Data-Base Register R5
(E) Program Execution Base Register R6
(P) Program Counter R3
(S) Stack Pointer R4
(W) Status Word Register” R7

*A carry flip-flop designated C is the high order bit of the status
word register W.

Memory Reference Group

ADDRESSMODE GoupyraTion CODES.
Direct B+D 0100
Indirect (B+D) 0101
Indirect Relative (8+D)+B 1110
Indirect Indexed (B+D)+X 0110
Indirect Indexed Relative (B+D)+X+B 0111

The operations supported under these five modes
are as follows:

MNEMONIC FUNCTION [0}
NDA AND datato A 0000
LDA Load data to A 0001
LAA Load address to A 0010
SAM Store A in memory 0011
ODA OR datato A 0100
LDX Load data to X 0101
LAX Load address to X 0110
SXM Store X in memory 0111
XDA Exclusive OR data to A 1000
PDS Push data to stack 1001
PAS Push address to stack 1010
PSM Pop stack to memory 1011
ADA Add datato A 1100
ADX Add data to X 1101
SDA Subtract data from A 1110
SDX Subtract data from X 1M1

Immediate Group

MNEMONIC FUNCTION m- o

FIELD FIELD
LAI Load to A immediate 0011 0001
AAl Add to A immediate 0011 1100
NAI AND to A immediate 0011 0000
OALl OR to A immediate 0011 0100
XAl Exclusive OR to A
immediate 0011 1000
PSI Push to stack immediate 0011 1001
LX1 Load to X immediate 0011 0101
AXI Add to X immediate 0011 1101

SUMMARY OF MEMORY REFERENCE MODES

Note: Values enclosed in () designate indirect
addresses.

If D is equal to zero, the contents of the memory
location following the instruction is used as the
immediate value.

3-62

CPU Design

Jump Group
RELATIVE INDIRECT
MNEMONIC FUNCTION M o M o
JRUJIU Jump unconditional 0001 0000 0010 0000
JRGE,JIGE Jump if A.GE.O 0001 0001 0010 0001
JRLTJILT Jump if ALLT.O 0001 0010 0010 0010
JRXG,JIXG Jump if X.GT.A 0001 0011 0010 0011
JREZ,JIEZ Jump if A.LEQ.O 0001 0100 0010 0100
JRNZ JINZ Jump if AINE.O 0001 0101 0010 0101
JRCZ JICZ Jump if C.EQ.O 0001 0110 0010 0110
JRXL,JIXL Jump if X.LE.A 0001 0111 0010 0111
JRLE JILE Jump if ALLE.O 0001 1000 0010 1000
JRGT,JIGT Jump if A.GT.O 0001 1001 0010 1001
JRCN,JICN Jump if C.NE.O 0001 1010 0010 1010
JRXE JIXE Jump if X.EQ.A 0001 1011 0010 1011
JRXN,JIXN Jump if X.NE.A 0001 1111 0010 1111
Unconditional and conditional jumps:
Relative: P = P+D’ where D'=D-128
Indirect: P = E+(E+D)
Subroutine Call Group
MNEMONIC FUNCTION ABSOLUTE
M [0}
CAS Call absolute, push 1101 XX11
P,E,W,B
P« (D)
M [0} M o
CLS Call local subroutine, N.A. 0010 1110
push P
CVS Call global subroutine, N.A. 0010 1100
push W. B, E, P
Local: Push P to stack
P = E+(E+D)
Value: Push W, B, E, P to stack
E = E+(E+D)
P = E'+(E") where E’=E+(E+D)

3-63

CPU Design

Subroutine Return Group

The shift count is given by D if D is non-zero or by
the least significant seven bits of the X register if D

MNEMONIC FUNCTION M (o] is zero.
RLS Pop P 1100 111
RVS PopP,E,B,W 1100 1101
RSA Pop A, X,P,E,B,W 1100 1100
Base and Status Register Move Group
MNEMONIC FUNCTION M (o]
Register Manipulation Group MSX Move S to X, adjust 1100 0100
MBX Move B to X, adjust 1100 0101
MNEMONIC FUNCTION ™ o MEX Move E to X, adjust 1100 0110
RAR Rotate A right, include 1101 0001 MWX Move W to X, adjust 1100 0111
CFF
MXS Move X to S, adjust 1100 0000
RAX Botate A and X right, 1101 0101 MXB Move X to B, adjust 1100 0001
include CFF
MXE Move X to E, adjust 1100 0010
SAX Shift A and X right, 1101 1001 .
preserve sign MXW Move X to W, adjust 1100 0011
NO.OP Nothing impl 1
SAL Shift A left, fill with 101 1101 0.0 othingimplemented 1100 T0XX
zeros L . . .
The destination register is adjusted by D-128.
Byte Load and Store Group Input/Output Group
MNEMONIC FUNCTION M (o] MNEMONIC FUNCTION M (0]
LBA Load byte absolute 1101 0000 IND Input one word 1000 XXXX
LBR Load byte relative 1101 0100 A< (D)
SBA Store byte absolute 1101 1000 OoTD Output one word 1001 XXXX
SBR Store byte relative 1101 1100 D) =A
INX Input one word 1010 XXXX
Absolute mode: Byte address = (B+D)+X/2 A< (X)
Relative mode: Byte address = (B+D)+B+X/2 OTX Output one word 1011 XXXX
(X) <A
Special Memory Reference Instruction
MNEMONIC FUNCTION M (o)
1SZ Increment and skip if 1101 XX10
zero
Stack Push and Pop Group
MNEMONIC FUNCTION M M (o]
PHAX Push A, X onto stack 0001 0010 1101
PPAX Pop A, X 1100

3-64

CPU Design

APPENDIX B
MICROPROGRAM LISTING © Intel Corporation, 1976

RECORD
NUMBER

/¥ BIPOLAR MICROCOMPUTER MACRO=-MACHINE
REGISTER MACHINE==12/13/174
UPDATED 3/18/75

MACHINE HAS 7 REGISTERS AS FOLLOWS:

E@mMT O OX>

ACCUMULATOR RO
INDEX REGISTER R1
PROGRAM COUNTER R3
STACK POINTER R4
DATA BASE REG RS
PROG. BASE REG. R6
STATUS WORD R7

C=CARRY,LINK FLIP=FLOP=HOB OF W

DEFINITION OF KBUS FIELD */
KB FIELD LENGTH=4 DEFAULT=0
MICROPS(K0000=0 KOO7F=1 KOOFF=3 KTFFF=7
K8000=8 KFF00=12 KFF80=14 KFFFF=15);
KB KBUS;
/% DEFINITION OF BUS CONTROL FI1ELD */
MCF FIELD LENGTH=3 DEFAULT=0
MICROPS(NMU=000B INH=001B RMW=010B CNB=011B
RIN=100B ROT=101B RRM=110B RWM=1118);
/% NBO NO BUS OPERATION
INH INHIBIT .CPE ARRAY
RMW READ=MODIFY=WRITE
CNB CPU NEEDS BUS
RIN REQUEST INPUT
ROT REQUEST OUTPUT
RRM REQUEST READ MEM.
RWM REQUEST WRITE MEM.

SET UP FOR SYMBOLIC REPRESENTATION OF REGISTER DESIGNATIONS */

E M ® WM UX>

STRING °‘RO‘;
STRING °‘R1°‘;
STRING 'R3‘;
STRING 'R4°;
STRING ‘R5°;
STRING ‘R6°;
STRING °‘R7°}

/% SET UP A SPECIAL NO.OP STRING */

NO.OP

STRING °NOP(R2)°;

/% NEXT WE SPECIFY A DEFAULT TO FF1 IN THE FO FIELD FOR THE S8DR
MICROP IN° THE CPE FIELD.
OPERATION, WHEN A DECREMENT OPERATION IS8 ALSO DESIRED, FFO
WILL HAVE TO BE EXPLICITLY SPECIFIED */

SDR

IMPLY FO=118B}

SDR 18 NORMALLY USED A8 A STORE

CPU Design

RECORD
NUNBER

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
30
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
917
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
110
117
118
119
120
121
122
123
124
125

/% INITIALIZATION SEQUENCE
ZERO A, X, AND W ¥/

000H: INIT: CLR(A);
090H: CLR(X)?
091H: CLR(W);

/% ZERO T AS TEMPORARY POINTER, WRITE W TO INTERRUPT STRUCTURE */

021H: CLR(T)?

O11H: LMI(T):

041H: ILR(W) ROT;
/% SET § = (0), T = 1 FOR NEXT OPERATION */
044H: LMI(T) FF1 RRM;

OF4H: ACM(AC)

OFAH: SDR(S);

/¥ SET B = (1), T = 2 FUR NEXT OPERATIUN */
04AH: LMI(T) FF1 RRM;

049H: ACM(AC);

048H: SDR(B) STC; /% THIS SETS THE C FLAG TO INSURE

A CORRECT JUMP TO XRIN ¥/
/% GET (2), JUMP TO XRTIN TO SET E = (2), P = (E) ¥/

00CH: LMI(T) RRM;
OFCH: ACM(AC) JCF (*,XRTN);

/% FETCH SEQUENCE & START OF MACRO=INSTRUCTION PROCESSING
P IS ISSUED TO MAR AND INCREMENTED, MACRO=INSTRUCTION
IS FETCHED AND TESTED BY JPX MICRO=-OPERATION. NOTE
FETCH IS IN LOCATION 15 TO STROBE INTERRUPT ON ENTRY. */

O0FH: FETCH: LMI(P) FF1 RRM;
/% LOAD DISPLACEMENT AND TEST FOR ZERO USING Z FLAG */
O01FH: LTM(AC) STZ KOOFF;

/% SAVE DISPLACEMENT, TEST 4 BITS OF MACRO-OP, TEST IS
DELAYED TO ALLOW PIPELINE PROPAGATION. ALSO C FLAG IS
SET FOR LATER USE IN PSEUDO=-SUBROUTINES., */

09FH: SDR(RY) STC JPX(NAO,JREL,JIG,IMMD,DMRF, IMRF, IXMA,I1X48,IND,
INX,01D,0TX,MVGP,SPFG, IRBM,NA1S)

/% UNASSIGNED OP=CODE GRUUPS==NOPS FUR THIS VERSION */

080H: NAO: NO.OP JZR(FETCH);
UBFH: NAL1S: NO.UP JZR(FETCH);

/% 1MMEOLIATE GROUP UF MACRO=INSTRUCTIONS==TEST FOR LONG OR SHORT
FORM==D 1S IN AC AND R9Y9=-ADJUS1 AC BY =128 */

0b3h: IMMD 2 LMI(AC) KKF80 JZF (IMML,1MMS);
/% LUNG FORM: FETCH NEXT WORD TU AC */

OB2h: IMML: LMI(P) FF1 RRM;

3-66

CPU Design

RECORD
NUMBER

1206 OB1H: ACH(AC) JRLCILGA,ILPX,NAI1,NAI2);

};; /% SHURI FORM: NO PROCESSING NEEDED */

}§3 083H: IMMS: nO.UP JRL(ILGA,ILPX,NAIL,NAL2)?

i;é /% PREPRUCESSING FUOR ARITHMETIC AND LOGIC ROUTINES? NONE NEEDED */

134 ORCH: ILGA: NO.UP JLL(NDA,ODA, XDA,ADA);
135 OEDH: ILPX: NO.OP JLL(LDA,LDX,PDS,ADX);
136

137 /% NOTE: NAILl AND NAL2 ARE NUN=VALID INSTRUCTIONS!! THEY ARE
138 MADE INTU wU=UPS IN 1HIS VERSIUN OF THE MACRO-MACHINE */
139

140 OEEH: NALL: NO.OP JZR(FETCH);

141 OEFH: NAI2: NO.OP JZR(FETCH);

142

143 /% BASIC ARITHMETIC AND LOGIC PROCESSING==UPDATE C FF OF MACRO=
144 MACHINE FOR ADA==TOGGLE IT ON CARRY FROM ADA */

145

146 UD/H: ADA: ADR(A);

147 OFTH: ADA1: NO.OP JFL(NCY,SCY);

148 0C2H: NCY: NO.OP JZR(FETCH);

149 0C3H: SCY: LMI(W) KBO0OO JZR(FETCH);

150

151 /% LOGICALS */

152

153 OD4H: NDA: ANRCA) JZR(FETCH)?

154 0DSH: ODA: ORR(A) JZR(FETCH) ¢

155 0D6H: XDA: CMR(AC):

156 OD1H: XNRCRA) JZR(FETCH);

157

158 /% LDA AND LDX OPERATIONS %/

159

160 OE4H: LDA: SDR(A) JZR(FETCH)

161 OESH: LDX: SDR(X) JZR(FETCH)

162

163 /% STACK PUSH=-=ADVANCE STACK POINTER TO NEXT LOCATION (FOR THE
164 REVERSE DIRECTION STACK==A DECREMENT OF S), THEN WRITE %/
165

166 OE6H: PDS: DSM(S):

167 OF6H: PDs1: LMI(S) RWM JZR(FETCH);

168

169 /% ADX = SHARES CODE FOR ADA = ALSU TOGGLES C FF OF MACRO MACHINE ¥/
170

171 OETH: ADX: ADR(X) JMP(ADA1);

172

173 /% MEMORY REFERENCE INSTRUCTION GROUPS

174 DIRECT==GET B+D INTO AC=~=ALSO RY9 %/

175

176 084H: DMRF ¢ ILR(B);

177 054H: ALR(R9) JKL(MRV1,MRV2,MRAD,STPG);
178

179 /% INDIRECT-ABSOLUTE==GET (B+D) INTO AC--C FLAG USED FOR PSEUDU=SUBROUTINE */
180

18l 085H: IMRF: ILR(B);

182 055H: IMRF1: ALR(R9);

183 00AH: LMI(R9) RRM JCF (MADD,MLOAD) ?

184 06BH: MLOAD: ACM(AC) JRL(MRV1,MRV2,MRAD,STPG):
185

180 /¥ NOLE: MADD WILL BE USED FUR OI'HER INDIRECT UPERATIONS WHERE
187 B, X, ETC. dAS BEEN LOADED TU K8 */

188

189 UbAH: MADD: ACMC(AC);

190 009H: ALR(K8) JRL(MRV1,MRVZ,MRAD,STPG);
191

192 /* INDIRECT INDEXED ABSOLUTL = CLEAR C FLAG, MOVE X TC R8 */

193

194 UB6H: IXMA: ILR(X) SIC;

195 046H: SDR(RB);

196

3-67

CPU Design

RECORD
NUMBER
197 /% NOTING THAT ASSIGNMENT RULES WOULD NOT ALLOW THE DESIRED
198 JUMP TO IMRF UNLESS IXMA+1 WERE IN ROW ZERO=-=AN EXTRA STATE
199 IS ADDED HERE ¥/
200
201 US56H: IXMA2: ILR(B) JMP(IMRF1);
202
203 /% INDIRECT INDEXED RELATIVE = CLEAR C FLAG, PUT B+X IN R8 %/
204
205 087H: IXMB: LLR(X) STC:
206 057H: SDR(R8);
207 047H: ILR(B);
208 045H: : ADR(R8) JMP (IMRF);
209
210 /% INDIRECT RELATIVE (TO B) = CLEAR C FLAG, PUT B IN R8 */
211
212 08EH: IRBM: ILR(B)?
213
214 /% AGAIN ASSIGNMENT RULES PREVENT JUMPING TO IXMA+1 UNLESS IT IS
215 LOCATED IN ROW ZERO==PLACEMENT THERE COULD FREE TWO WORDS */
216
217 0SEH: SDR(R8) JMP(IXMA2);
218
219 /¥ THE FOLLOWING PROCEDURES 1MPLEMENT THE BASIC PREPROCESSING FOR
220 VALUE AND ADDRESS LOADING.
221
222 VALUE=GROUP 1: GET (AC) IN AC ¥/
223
224 07CH: MRV1: LMI1(AC) RRM;
225 09CH: ACM(AC) JLL(NDA,ODA,XDA,ADA);
220
227 /¥ VALUE GROUP 2 ¥/
228
229 07DH: MRV2: LMICAC) RRM;
230 09DH: ACM(AC) JLL(LDA,LDX,PDS,ADX)}
231
232 /¥ MRAD GROUP INCLUDES ADDRESS LOUADS AND SUBTRACT FROM A */
233
234 O/EH: MRAD: NO.OP JLL(LAA,LAX,PAS,1SDA);
235
236 06442 LAA: SDR(A) JZR(FEICH);
231 065H: LAX: SDR(X) JZR(FETCH)
238 066H: PAS: DSM(S) JMP(PDS1);
239
240 /% FOR SUBTRACT, ADD 1°S COMPLEMENT PLUS 1 */
241
242 067H: ISDA: LMI(CAC) RRM;
243 068H: LCM(AC);
244 OF8H: ADR(A) FF1 JMP (ADAL);
245 .
246 /% S5TPG GROUP INCLUDES STURES AND SUBTRACT FKUM X */
247
248 07FH: STPG: LMI(AC) JLL(SAM,SXM,PSM,SDX);
249
250 074H: SAM: ILR(A) RwM JZR(FETICH);
251 VT5H: SXMs ILR(X) RWM JZR(FETCH);
252
253 /% POP STACK TO MEMORY = SAVE ADDRESS, POP STACK */
254
255 076H: PSM: SLR(T);
256 078h: LMI(S) FF1 RRM;
257 OABH: ACM(AC):
258 OBBH: LMI(T) RWM JZR(FETCH);
259
260 /% SUBTRACT FROM X %/
261
262 077H: SOX: LMICAC) RRM;
263 079H: LCHM(AC)?
264 OF9H: ADR(X) FF1 JMP(ADA1);
265
266 /% JUMP GROUPS==USE JPR MICRO-OPERATION TO RESOLVE CONDITION SELECTION
267 DESTINATION ADDRESS 1S COMPUTED FIRST~=PLACED IN AC AND R9

CPU Design

RECORD
NUMBER

268
209
270
271
272
273
274
275
276
217
278
279
280
281
282
283
284
285
2806
287
268
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
3217
3238
329
330
331
332
333
334
335
330
337
338

JUMP RELATIVE TO P=<=ADDRESS=P+D~128 */

081H: JREL:
071H: JRDR:
061H:

/% JUMP INDIRECY

ILR(P)?

LMI(AC) KFF80;

ALR(R9)

= GET E+(E+D) IN AC

082H: JIG: ILR(E)?
0E2H: ADR(R9)
OEOH: LMI(RY)
050K AMA(AC)
ObOH: SDR(R9)
/% UNCUNDITIUNAL JUMP ¥/
U30H: JuncC: SDR(P)
/¥ TESTS FUR A.GE.V0, ETC
031H: JAGE: TZR(A)
032H: JALT: TZR(A)
U34H: JAEQ: IZR(A)
035H: JANE: TZR(A)
03YR: JAGT: TZR(A)
VO1H: TZR(A)
072d: APKE: NO.OP
073d: ANPE: NO,.Ov
038H: JALE: TZR(A)
VOT7H: TZR(A)
042d: APE2: NO.OP
043d: AN2: SDR(P)
/% TESTS OF C FLIP=FLOP
036H: JCEZ: TZR(w)
03AH: JCNZ: TZR(wW)

/% TEST EXECUTION FUR ABUVE TESTS =

0USH: TTRU:
002n: JIRL:
003H: JNTL:
004H: TFAL:
062H: JNT2:
063H: JTR2:

NO.OP

SDR(P)
NO.OP

NO.UP

NO.OP
SDR(P)

H
RRM;

.
;

. ¥/

K8000
K80G0

K800U

K8000

(HIGH

K800U
K8000

INH
INH

INH;

INH;

ORDEK

INH
INH

JPR(JUNC,JAGE,JALT,JXGA,JAEQ,JANE,JCEZ,JXLA,
JALE,JAGT,JCNZ,JXEA,CPSS,PXA,CLOP,JXNA);

AND R9 */

JPR(JUNC,JAGE,JALT,JXGA,JAEQ,JANE,JCEZ,JXLA,
JALE,JAGT,JCNZ,JXEA,CPSS,PXA,CLOP,JXNA);

JZR(FETCH);

JMP (TTRU) ;
JMP(TFAL);
JMP (TTRU);
JME(TFAL);
JFL(APRE,ANPE);
JFL(JNT2,JTR2):;
JZR(FETCH) }
JFL(APE2,AN2);

JFL(JTR1,JINT1)?
JZR(FETCH);

BIT OF W) */

JMP(TTRU) ;
JMP(TFAL);

ROW ZERO USED */
JFL(JTR1,JNT1)?

JZR(FETCH);
JZR(FETCH);

JFL(JNT2,JTR2);

JZR(FETCH);
JZR(FETCH);

/% TESTS FOR X.GT.A, X.LE.A, X.EQ.A, X.NE.A==SHARED PSEUDO~

SUBROUTINE USES JLL FOR AN EXIT TEST=-KROUTINE ENTKY IN ROW 0
FL TEST FOR X.EQ.A ¥/

C FLAG IS SET FOR X.GT.A,

033H: JXGA:
037H: JXLA:
03BH: JKEA:
03FH: JXNAZ

/% SAVE X AT T,

00BH:
04BH:
USBH:

XATS:

ILR(X)
ILR(X)
ILR(X)
ILR(X)

JMP (XATS);
JMP (XATS)
JMP (XATS)?
JMP (XATS)?

FETCH AND COMPLEMENT A */

SDR(T);
1ILR(A)
CMA(AC)

STC?

/% CLEAR C FLAG */

3-69

CPU Design

RECORD
NUMBER

339
340
341
342
343
344
345
340
34/
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
kLY]
369
370
371
372
373
374
375
376
3N
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
4v6
407
408
409

/% ADD HOB'S OF A° AND X = CAKRY MEANS X NEG., A.GE.O */
USAH: ADR(T) K80ULO;

/% EXECUTE PREVIQUS TESI, SET UP TO TEST HUB OF RESULT=-IF 1,
THE SIGNS OF A AND X wWERE THE SAME */

051H: TZR(T) KBCOO INH JFL(TFEQ,TXNG);

/% TXNG IMPLIES X NEG AND A.GE.O0=-I1.E. X.NE.A AND X.LT.A==DO A
DUMMY OPERATION TO FORCE THE PROPER F FLAG */

053H: TXNGS 1LR(A) JLL(JIXGX ,JXLX,JXEX,JXNX)}

/% PERFORM A TEST ADDITION AND EXECUTE SIGN=EQUAL TEST
C WILL BE SEI IF SIGUNS WERE THE SAME AND X.GT.A ¥/

052H: IFEQ: ADR(T) STC KTFFF JFL(SNEQ,SWEQ);
/% SNEQ IMPLIES SIGNS NOT EQUAL==I.E. X.GE.0, A NEG==X.GT.A */

012H: SNEQ: SDR(AC) STC: /% DUMMY OP TO SET C FLAG %/
010H: NO.OP JLL (JXGX,JXLX,JXEX,JXNX);

/¥ FOR SIGNS EQUAL, IF X=A RESULT wOULD BE 111l...1. INCREMENT
wlLL GENERATE A CARRY IF SO */

013H: SWEQ: ILR(AC) FF1 JLL(JIXGX,JXLX,JXEX,JXNX)}

/% EXECUTION OF JUMP TESTS */

024H: JXGX3 ILR(R9) JCF(JNT2,JTR2);
U25H: JXLX: ILR(R9) JCF(JTR1,JNT1);
026H: JXEX3 ILR(R9) JFL(JNT2,JTR2);
027H: JXNX$ ILR(R9) JFL(JTR1,JNT1);

/% SUBROUTINE CALLS
CALL LOCAL AND PUSH W, B, E, P =CPSS
CALL LOCAL AND PUSH P ONLY=CLOP
C FLAG IS USED FOR EXIT TEST AFTER PUSHING P %/

03CH: CPSs: DSM(S);

0S5CH: ILR(W);
OSDH: LMI(S) RWM}
OADH: CpPG2: DSM(S);
OAAH: ILR(B)?
O7AH: LMI(S) RWM;
07BH: DSM(S);
OEBH: LLR(E)?
OFBH: LMI(S) RwM;
OF2H: DSM(8);
QD2H: ILR(P):

00DH: CLOP2: LMI(S) RWM;

/% e+(E+D) INTO AC */

0BDH: ILR(R9) JCF (LRTN,XRTN);
OBBH: XRIN: SDR(E);

OBEH: LMICE) RRM}

O0B9H: AMA(AC);

UBAH: LRIN: SDR(P) JZR(FETCH);

Q3kH: CLOP: DSM(S8);
ObEH: 1LR(P) STC JMP(CLOP2);

/% PUSH INSTRJUCTION */

3-70

CPU Design

RECORD
NUMBER

410
411

412
413
414
415
416
417
418
419
420
421

422
423
424
425
426
4217
428
429
430
431

432
433
434
435
436
437

438

439
440
441

442
443
444
445
446
447

448

449
450
451

452
453
454
455
456
457
458
459
460
461

462
463
404
465
406
46/
468
409
470
471

472
473
474
475
476
4717
478
479
480

03DH: PXA:
04DH:
040H:

070H:
OFOH:
OF1H:

bsm(s):
ILR(X)?
LMI(S) RWM;

DsSM(S);
ILR(A)?
LMI(S) RWM

JZR(FETCH);

/% MUVE GROUP OF INSTRUCTIONS==USES JCE TO SELECT REGISTER==NOTE
THAT REGISTER ASSIGNMENT BECOMES 1MPORTANT

FLRST MUDIFY D TO GET D=128 */

08CH: MVGP:

LMI(RY9) KFF80

JLL(MVXR,MVRX,MOD,PGRP);

/% MOVE X TO REG. = GET X, MODIFY BY D’=D~128 */

0C4H: MVXR?
OCOH:
0CiH:
OE1H: MXRX 3

/% MOVE REG TO

OCSH: MVRX:
OFSH: MRXX

ILR(X):
ALR(R9);
SDR(R7)
NO.OP

JCE (MXRX); /% REGISTER
JZR(FETCH);

= FETCH REG USING JCE OVERRIDE ¥/

ILR(R7)
ALR(R9)

JCE (MRXX)?
JMP(LDX);

/% MOD NOT IMPLEMENTED IN THIS VERSION */

O0CoH: MUD:

NO.OP

/% ADJUST STACK AND RETURN GROUP
X, P, E, B, AND

PPAL=--POPS A,
PPRA==POPS P, E, B, AND W

PPAX==POPS UNLY A ANDL X
POPP==-POPS ONLY P */

OCTH: PGRP:
OC8H:

ODCH: PPAL:
0D3H:
UDBH:

OE8H:
OE9H:
0DBH: PAXC:

00DH: PPRA?
Q2VH:
02KH:

U4FH:
O0EH:
OlEH:

QYEH:
OFEH:
OF 3H:

VE3H:
OEAH:
02AH:

/% RESTORE INTERRUPT STRUCTURE ¥/

02BH:
029H:

ODAH: PAXE:

1LR(RY);
ADR(S)

LMI(S) FF1
ACM(AC);
SDK(A);

LMI(S) FF1
ACM(AC)
SDR(X);

LMI(S) FF1.
ACM(AC):
SDR(P);

LMI(S) FF1
ACM(AC);
SDR(E)?

LMI(S) Fr1
ACM(AC);
SDR(B);

LMI(S) FF1

ACM(AC);
SDR(W);

CLR(T)?
LMI(T) ROT

SOR(X)

RRM;

RRi4;

RRM;

KRM}

RRM;

RRM?

JZR(FETCH);

JRL(PPAL,PPRA,PPAX,POPP)?;

JCF (PAXE,PAXC);

JZR(FETCH):

JZR(FETCH) 3

OVERRIDE */

3N

CPU Design

RECORD
NUMBER

481
482
483
484
485
486
487
488
4389
490
491
492
493
494
495
496
4917
498
499
500
501
502
503
504
505
506
S07
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
925
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

ODEH:

ODFH:
ODOH:

PPAX:

POPP:

ILR(AC) STC

LMI(S) FF1 RRM;
ACM(AC)

/% SPECIAL FUNCTION GROUP
BYTE OPERATORS==ADDR=(B+D)+B+X/2 OR (B+D)+X/2
CALL TO (D) AND PUSH ALL
SHIFT AND ROTATE GROUUP
INCREMENT AND SKIP
FETCH B JUST IN CASE */

O8DH:

/¥ BYTE GROUP~--COMPUTE ADDR,

OCCH:
OBCH:
OACH:
0ABH:
OAEH:
02EH:

uisn:
014H:
022H:
023H:
020H:

017H:
OloH:
018H:
O19H:
O1BH:
01DH:

O1AH:
01CH:

/% ROLATE GROUP

SPFG:

8YTE:

LBYK:
LBYA:
LBYT:
RBYT:
DBIA:

SBYR:
SBYAS
STRB:
SRB1:

STLB:

ILR(B)

SDR(K8):
ADR(R9);
ILR(X);
SRA(AC) STC:
LMI(RY) RRM;
AMA(AC)

ALR(R8);

LMICAC) RRM
LDI(AC) FF1 KOOFF
LTM(AC) KOOFF;
SDR(A)

ALRK(R8);

LMIC(AC)?

ILK(A);

TLRCAC) KOOFF RRM
LTM(T) KFFO00;
ALR(T) Rwi

LTM(T) KOOFF;
LDI(AC) FF1 CNB

JMP (PPAL);

JMP (JUNC);

JRL(BYTE,RSGP,SCJG,ISJG);

STORE B IN CASE NEEDED */

JLL(LBYA,LBYR,SBYA,SBYR)?;

JCF(LBYT,RBYT)?
JMP(LBIA);

JZR(FETCH);

/% LOAD MAR FOUOR LATER USE
JCF(STLB,STRB)

JZR(FETCH);

JMP(SRB1)?

RUTATE A WITH C=-ROTATE A AND X WITH C=-=SHIFT A, X RIGHT, FILL

WITH SIGN==SHIFT A LEFT,

Z FLAG 1S5 ZERO IF

D=0.

FILL WITH ZEROES

DUE TO PIPELINED OPERATION, IT

[HIS CONDITION THAT IS TESTED BY THE FIRST JZF ¥/

AT ENTRY,
OCDH: RSGP:
09AH: SZDs:
099H:
09BH: SNZD:
094H: RACI:
095H: RAXI:
098H:
096H: SAXI:
097H: SLZI:

/% MAIN ROTATION

093H:

0A4H:
OASH:
OAOH:
OAbH:
OA1H:
OAT7H:

092H:

0B4H:

RUNR:

RACR:
RAXR:

SAXR:
SLZR:
RSEX:

RACF:

TZR(W) STZ K800O INH

ILR(X);
SDR(R9) FFO KOO7F
DSM(R9)

ILR(A)
ILR(X);
SDR(T)
TZR(A) STZ K8000
ILR(A)

LOOP */
DSM(R9) STC
SRA(AC) FFZ STZ
SRA(AC) FFZ STZ;:
SRA(T) FFZ $TZ
SRA(AC) FFZ STC;
SRA(T) FFC
ADR(AC) STZ
SDRCA)

TZR(W) KTFFF

JZF(SZDS,SNZD);

JLL(RACI,RAXI,SAXI,sLZI);
JLL(RACI,RAXI,SAXI,SLZI)?

JMP (RUNR) ;
JMP(RACI);

JMP (RAXI);
JMP (RUNR);

JLL(RACR,RAXR,SAXR,SLZR)?
JFL(RSEX,RUNR);
JCF (RSEX,RUNR) ?

JCF (RSEX,RUNR);
JFL(RSEX,RUNR)?

JLL (RACF,RAXF ,SAXF,SLZF);

JZF (SNCF,SSCF);

*/

Is

CPU Design

*/

RECORD
NUMBER
552 0A2H: SNCF: NO.OP JZR(FETCH);
553 VA3H: SSCF: LMI(W) K8000 JZR(FETCH)?
554 0BS5H: RAXF ILR(T):
555 0BOH: RXF1: SDR(X) JMP(RACF)?
550 OBO6H: SAXF: ILR(T) JMP(RXF1)3;
557 UB7H: SLZE: TZR(W) K7FFF JZF (SNCF,SSCF);
5538
559 /% SPECIAL CALL AND JUMP GROUP==CURRENTLY COUNTAINS ONLY THE
560 CALL TO (D) AND PUSH w,B,E,P=--ALL 4 UPCODES DO THE SAME THING */
561
562 O0CEH: SCJG: LMI(R9) RRM;
So3 V4EH: ACHM(AC):;
564 04CH: SDR(RY) JMP(CPSS)}
565
566 /% INCREMENT AND SKIP GROUP=-=AGAIN 4 UPCUDES ARE USED FOR ONE
567 INSTRUCTION==LOCATION AT B+D IS INCREMENTED */
568
569 OCFH: 18JG: ALR(R9);
570 0C9H: LMICRY) RMW;
571 0DYH: ACM(AC) FF1;
572 OA9H: NO.OP RwM JFL(NOSK,SKIP);
573 OCAH: NOSK: NULOP JZR(FETCH)?
574 OCBH: SKIp: LMI(P) FF1 JZR(FETCH);
575
576 /% INPUT AND OuTPUT=<=CURRENT VERSION DOES NOT DECODE INTO
577 SUBGROUPS==-ALSO ROW ZERU IS USED TU SAVE CODE */
5138
579 088H: IND: LM1(R9) RIN;
580 008H: INDL: ACM(AC)?
581 028H: SDR(A) JZR(FETCH);
582 089H: INX: LMI(X) RIN JMP(IND1);
583 O08AH: 0TD: LM1(R9);
584 006H: 0TD1: ILR(A) ROT JZR(FETCH)?
585 08BH: oTX: LMIC(X) JMP(OTD1) 3
S8o
587 /% INTERRUPT==UTILIZES CALL ROUTINES FOR REGISTER SAVING
588 L/0 DEVICE #0 REPRESENTS EXTERNAL INTERRUPT STRUCTURE
589 START BY PUSHING OLD VALUE OF STATUS */
599
591 OFFH: INTER: DSM(S);
592 OBFH: ILR(W);
593 0S5FH: LMI(S) RWM;
594
595 /* READ INTERRUPTING LEVEL FROM EXTERNAL STRUCTURE */
596
597 058H: CLR(T)?
598 059H: LMICT) RIN;
599 069H: LTM(AC) KOOFF ROT; /% NCTE LEVEL REWRITTEN */
600
601 /% STORE PRIORLITY IN W = SET C FLAG FOR PROPER LOADING OF REGISTERS
602
603 06CH: SDR(W) STC:
604
605 /% INTERRUPT RUUIINE STARTING ADDRESS IS COMPUTED IN R9 */
600
60v7 U6DH: LMI(w) RRM;
608 06FH: ACM(AC);
609 OAFH: SDR(R9) JMP(CPG2);
610
611
612 EOF
NO PROGRAM EKRORS
END OUF PROGRAM

373

vie

MICROPRUGRAM MEMORY IMAGE

0H 1H 2H 3H 4H SH 6H TH 8H 9H AH BH CH DH EH FH
=zs==sSssssss=3ss3ss =%z= sz===s== ¥=zs=z======z3==3 ====== FEET=SSSS#S=ZZ=S=¥SSSIIIIISS==Z====3 =2ZBTET=SSSI=I==
. Jcc . JFL * JZR * JZR # JFL . JFL . JZR . JFL = Jce . JRL * JCF * Jcc * J<c . Jcc . Jce . Jce .
. 0090H . 0072H * OOOFH * VOOFH * 0062H . 0002H , OOOFH . 0042H = 0028H . 007CH * 006AH * 004BH * QOFCH . OOBDH . 001EH , OOlFH .
000A . * * * . . . = . * * *
. 67 . 290 * 316 * 317 319 . 314 584 . 302 = 580 . 190 * 183 * 335 * 92 . 394 . 463 . 100 .
. 0. 1% 4 4 ¥ 3. 3. 2. 1= 2., 1 * 1% 4 * 1. 2 . 1. 38 .
= e ® @ @ e = o Jeveencafecccrcal « @ = ° > = o * = = ®w ® * = * I = % = ® = = o feaeccvefencewecf * o = * * * ® * * .- - . .-
. JLL . JCC * CR #* JLL ¥ JCF . JCR . JCR . JCR = JCR . JCF * JCR * JCR * JCR . JZR . Jcc . JcC .
o OU24H . 0041H * UO10H * UO24H * 0022H . 0014H . VO18H . 0016H = 0019H . OO01AH * O0O0I1CH * 0O01DH * 0010DH . O0O0FH . OU9EH . O009FH .
VOLH . * . * . . . = . * * *
. 3ol . 74 * 360 * 366 * 505 . 504 . S1t . 510 = 512 . 513 * 517 * S14 * 518 . 515 . 404 104 .
. 1. 1 % 1% 1 2 . 1. 2 . 1= 1. 1 * 1 x 1 * 1. 2 . 1. 1.
w ® = o % ® ® = feccccncfocncenct @ = = ® ® = = = * ® = ® = @ ® I ®w > ® e = e feccccccfeccccesf = = = = = * ® . . = = .. . - =
. JLR . JCC * JCR * JCR * JCF . JCF . JFL . JFL = JZR . JZRr * JCR * JCR * . JCR . JLL . Jcc .
. OOOFH . 0011H * UQZOH * 0020H * 0062H . 0002H . 0U62H . OVO2H = O0O0O0FH , OOOFH * 002BH * 0029H * . 002FH . 0014H , 004FH .
Q02n . * * * . . . = . * * *
. Sus . 73 % S06 * 507 % 370 . 371 . 372 . 373 = 581 . 477 * 472 * 476 * . 459 . 502 . 460 .
. <4 . 1% 1 * 1 » 3 . 3. 3. 3 = 1. 1 * 1% 1 % . 1. 1. 1.
e e e e @ ® o o fecccncnfencccmnf © °© ® = ® = ® = ® ® = @ ® =@ = T ® ® ® = ® = » fecncnccfeccacesf © @ o = = * ® * ® ° ° . o . = o
. JZk . JZR * JZR * JLR ¥ JZR JZR . JZR . JZR = JZR . JZR ¥ JZR ¥ Jcc * Jcc . Jcc . Jcc . JZR .
. QuuFh . 0005+ * 0004H * 0008BH * 0005H . VU004H . OUOSH . 000BH = VOO7H . 0001H * 0004H * 000BH * 00SCH . 004DH . 006EH . 00UBH .
003n . * * * . . . = . * * *
. 286 . 290 * 291 * 328 ¢ 292 . 293 . 309 . 329 = 301 . 295 * 310 * 330 = 380 . 411 . 406 331 .
. 3. 2 * 2 # 2+ 2 ., 2. 2. 2 2., 2 * 2 % 2 % 3. 2. 2. 2 .
P R L P R L e L L L R L Y ittt
. Jcce . JCr * JFL ¥ JZR * Jcc . JCcc . Jce . JCR = JZR . JCR * JCR * JcC * Jcc . JCKR . JCR . JZR .
. OU70h . 0044H * OOU2H * QOOFH * OOF4H . OUB5H . 00S6H ., V045H = 000CH . 0048H * 0049H * O00SBH * 003CH . 0040H . 004CH . OOVEH .
004H . * * * . . . = . * * *
. 413 . 15 ¢ 304 ¢ 305 * 79 . 208 . 195 . 207 = 87 . 86 * 85 * 336 ¥ 564 . 412 . 563 . 462 .
. 1. 1 * 1 # 1 * 1. 1 . 1. 1= 1. 1 x 1 % 1 % 1. 1. 1. 1.
e ® ® ® ® = = ® Joececncfeonvnnel © = ® ® = @ ® ® » - @ » = ® I ® ® = www e = feouevecfennevcef * o ® = ®- =
. JCC . JEFL ¥ JFL * JLL * JRL . JZR . JCR . Jcc = JCR . JCC * JCR ¥ JCR * JCR Jcc . JCR . JCR .
. OU60H . 0052H * 0012H * 0024H * 007CH . OOOAH . 0055H . 0047H = 00594 , 0069H * 00SIH * 00SAH * 00SDH . OOADH . 00S6H . 00SBH .
VUSH . ¥ e * . . . = . * * * . . .
. 280 . 346 % 350 # 351 * 177 . 182 . 201 . 206 = 597 . 598 * 341 * 337 * 381 . 382 . 217 . 593 .,
. 1. 1 * 1 1 * 1. 2 . 2. 1= 1. 1 % 1 * 1% 1. 1. 1. 1.
e = ® ® @ = = o fucvwencfoccccccf @ © = © ® = ® ® % ® * ® ® = *® I ® = ®» ® = = = feccvcccfoncnvnel = = o ° = ® = ° @ @ e o * * = =
. JPR . JPR #* JZR * JZR * JiR . JZR . Jcc . JCR = Jcc . JCR * JIR * JRL * JCR . JCR . JZR . Jce .
. OU30H . 0030H * OOOFH * QO00FH * O00OFH . 00OFH . OO0F6H , 0068H = OOFBH . 006CH * 0009H * 007CH * 006DH . 006FH . O00DH . OOAFH .
0V6H . * * * . . . = . * * *
. 281 . 272 ¢ 321 # 322 * 236 . 237 . 238 . 242 = 243 . 599 * 189 * 184 * 603 . 607 . 407 . 608 .
. 1. 1 ¢ 4 ¢ 4 * 1. 1. 1. 1= 1. 1 * 1% 1% 1. 1. 1. 1.
e ® ® ® = ® @ ® §eccnncefoccccccl = ® ® @ ® = ® @ ® ® ® @ ® ® = T ® » ® ®» = ® ® feccececfoceccect = o ¢ ® = ® ® © = o o o = = o =
. Jcce . JCC * JEL ¢ JZk * JZR . JZR . JCR . JCR = Jcc . JCC * JCR * JCC ¢ Jcc . Jcc . JLL . JLL .
. OOFOH . 0061H * 0062H % O00OFh * 000FH , OOUFH . 0078H . 0079H = UOABH . OOF9H * 007BH * OOEBH * 009CH . OO9DH . 0064H . 0074H .
0074 . * . * . . . = . . * *
. 415 . 21 298 * 299 * 250 . 251 . 255 . 262 = 256 . 263 ¢ 386 * 388 * 224 . 229 . 234 248 .
. 1. 1 14 1 * 1. 1 . 1. 1= 1. 1 % 1 * 1% 3. 3. 3. 3.
---------------- 223#32232=3%3=3332=#STIITTTTTITITTTTSSISSIISIS ==z= *= ==z ==

a Ndo

ubiso

SL€

MICROPROGRAM MEMORY IMAGE

OH 1H 2H 3H 4H SH 6H TH 8H 9H AH BH CH DH EH
=== s== s===¥s3s=s3== * ss=z==z=z=z== SESIE=S=E=ZITITTSITSSTIZ3IS =SS Z=#SSSSSIS¥SSZZSSS#SITSEISITTITIITIITTSIIS
. JZR . JCC * Jcc ¢ JZF Jcc . Jcc . Jce . Jce = Jcc . JZR # JZR ¥ JZR ¢ JLL . JRL . Jce . JZR
. 000FH . 0071H ‘ O00E2H ' VUB2H ' 0054H . 0055H ., 0046H . 0057H = 0008H . 0008BH * 0006H * 0006H * 00C4H . OOCCH . 0OSEH . O0OFH
008H = . * * * . . .
. 115 . 270 * 2717 ' 121 ‘ 176 . 181 . 194 . 205 = 579 . 582 % 583 % 585 * 423 . 493 . 212 . 116
. 1. 1 1 1 # 1. 2. 1. 1= 1. 1% 1 * 1 ¢ 1. 1. 1. 1
® ® ® ® ® ® ® @ fececancferncecel = = = = ® = " @ @ ® ® ® * ® ® Z ® v ® = ® = v feaccecafecsncenl © @ o o * o o e v > e e = = =
. JCR . JCC * JLL * JLL * JCR JCR ., JCR . JCR = JCR . JLL * JCR * JLL * JLL . JLL . Jcc . JPX .
. 0091H . 0021H * 00B4H * UUA4H * 0093H . 0098H ..0095H . 00Y3H = 0094H . 0094H * 0099H * 0094H * 0OD4H . OOE4H . OOFEH . OUSBOH .
009H . * * * . . . = . * * *
. 68 . 69 * 549 * 540 * 532 . 533 ., 535 . $36 = 534 . 529 * 528 * 530 * 225 . 230 . 466 . 110 .
. 1. 1= 4 * 6 * 3. 3. 2 . 2 = 1. 1 * 1 * 1 * 1. 1. 1. 1.
- % ® e ® o e o fevovecnfacccccnl & @ ® ® ® * ® ® = ® = ® ® = " T ® ® ® ® * ® v feccocsclecavecel ® o & & ® ® ® ® * © ® = & ® ® =
. JCF .~ JCF * JZR * JZR * JFL . JCR . JCR . JFL = Jcec . JFL ¥ JCC * JCR * JCR . JCR Jcc . JCR .
.« 0092H . 0092H * OOOFH * OUOFH * 0092H . OUACH . OOAlH . 0092H = 00B8BH . OOCAH ‘ 007AH ' 00AEH ’ O0ABH . OOARAH . OU2EH . OUADH .
00AH . * * * . . . =
. S44 . 546 * 552 % 553 * 542 . 543 . 545 . 547 = 257 . 572 ‘ 385 ' 500 ‘ 499 . 384 . s01 . 609 .
. 1. 1 0¥ 2 * 2 1. 1. 1. 1= 1. 1 1 % 1 * 1. 2 . 1. 1.
® = = e ® ® ® « foeccccccfeccncnel ®© & @ © = ® B & e e = ® ® w ® T e e = w e e % fpacernciccorcnef @ @ = - s e e = e e = - e o=
. JCR . JRL * JCR * JRL ¥ JifF . JCR . JCR . JZF = JZR . JCR * JZR * JCR * Jce . JCF . JCR . Jee .
. 00B4H . OOECH * O0Blh * VOOECH * 00A2rH . O0OBOH . OOBOH . 00AZH = O000OFH ., OOBAH ‘ 000FH * 00BEH * OOACH . 00BAH . 00B9H . OOSFH .
008H . * * * . . . = . *
. 555 . 120 * 125 »* 130 » 551 . 554 . 556 . 557 = 258 . 402 ‘ 404 * 400 * 498 . 398 . 401 . 592 .
. 2. 1 % 1% 10 2 . 1. 1. 1= 1. 1 ¥ 3 2 % 1. 1. 1. 1.
U P gy g S g
. JCR . JCe * JZR * JZR * JCR JCE . JZR . JCR = JRL . JCC * JZR * JZR ¥ Jece . JZF . Jce . JCR
. 00CIH . OUEIH * CGOOFH * OOOFH * 00COH . OOFSH . O0OFH . 00CBH = 00OCH . OO0D9H * 00OFH "‘ OOO0FH * OOBCH . 009AH . 004EH . 00C9H .
00CH . * * * . . . = . *
. 428 . 429 * 148 * 149 » 427 . 434 . 439 . 447 = 448 . 570 * 573 ‘ 574 ' 497 . 527 . 562 . 569 .
. 1. 1 % 1% 1% 1. 1. 1. 1= 1. 1 % 1 % 1 % 1. 1. 1. 1.
® ® ® = ® & @ o fecemercfcccnesel = = = © - & ® ° e @ * ® = ® ® I = e ®« ® * * = fececnvaforcceccl o « o o @ * * = * o e e = e = =
. Jce . JLR ¥ JZR * JCR * JZR . JZR . JCR . Jcc = Jcc . JCC * JZR * JCR # JCR . Jce . JCR . JCR .
« 00304 . Q0OFH * Q0UDH * 0ODBH * O0OOFH . 00OFH . OODIH . OOF7H = OOE8H . OO0AYH ‘ 000FH * 0O0DDH ‘ OOD3H . 002DH . O0ODCH . OULOH .
0ooH . * * * . . . = . *
. 484 . 156 * 393 » 451 * 153 154 . 155 . 146 = 452 . 571 ‘ 479 * 456 ‘ 450 . 458 481 . 483
. 1. 1 * 1% 1 % 2., 2 . 2. 2= 1. 1 * 1 % 1 # 2. 2, 1. 1.
- ®» ® ® ® ® * @ fececccalaccrccnf = = ® ® ® ® = = @ ® ® ® ® ® ® Z ® ® = ® = ® w feccecccieccccrel = ¢ * ® ® e = ® ® ® ® e = = ® =
. JCC . JZR¥ JCR ¥ JCR* JZR . JZR . JCC . JCC = JCR . JCF % JcC * JcC *# JLL . JLL . JZR . JZR .
. GOSUH . 000FH ‘ 00EOH ' 00EAH . 000FH . OQUFH . OOF6H . OOF7H = OOE9H . OODAH : 002AH v 00FBH t 00D4H . OOE4H . 00OFH . O00OFH .
OVEH =
. 279 . 430 ‘ 278 * 470 ‘ 160 . 161 . 166 . 171 = 454 . 455 ‘ 471 ¥ 389 ‘ 134 . 135 . 140 . 141
. 1. 1 104 1 2. 3. 2. 2 = 1. 1o 1 1 2. 2. 2. 2 .
® ®» ®» ® ® ® ® o jovcaceciecccccanl @ « @ e ® @ ® & ® @ @ ® @ @ ® Z ®© ® e = * o v fecccesefccccacrf © @ @ ® ® @ @ * & ° e ® ® e = =
. JCR . JZR* JCC % JCC * JCR . JCC . JZR . JFL = JCR . JCR* JCC *# JCR * JCF . . JCR . JcC .
. 00F1H . OUOFH * 00D2H * OOE3H * 0OFAH . OOESH . 000FH . 00C2H = QOF7H . OOFTH * 004AH % OOF2H t 00BAH . . 00F3H . OOBFH .
00FH . * * * . . . = . * *
. 416 . 417 * 392 408 * 80 . 435 . 167 . 147 = 244 . 264 * 81 * 390 ‘ 93 . . 467 . 591 .
. 1. 1 1 * 1 % 1. 1. 2. 4 = 1. 1 ¥ 1 s 1% 1. . 1. 0.
ZXTT=BSISSISITSSISSESI==ssS 2SS HSTSITTRSTSTTSSISTTIISIESSS =====s3====S==s * ==s$s=z==zs=% sz==s=s z=ss=

ubisa@ NdO

CPU Design

APPENDIX C CENTRAL PROCESSOR SCHEMATICS

T 10

1T) 10— T

I

i=

p— | - q“' =e] .
vec m N =2 o a
i] N — —-DD N
o Tﬂ —l
y L~

T

:':

'|§§
A

[;[—
e

T
BESHEENEY S3 ce
1]

¥
¥
s

3-76

ORDERING INFORMATION

Standard Package Type

Component No. Of Pins Ceramic (C) CerDIP (D) Plastic (P)
3001 40 Yes Yes

MC3001 Yes

3002 28 Yes Yes

MC3002 Yes

3003 28 Yes Yes

MC3003 Yes

3212 24 Yes Yes
MD3212 Yes

3214 24 Yes Yes Yes
MD3214 Yes

3216/26 16 Yes Yes
MD3216/26 Yes

41

PACKAGE OUTLINES

16-LEAD PLASTIC DUAL IN-LINE PACKAGE (P)

16-LEAD CerDIP DUAL IN-LINE PACKAGE (D)

746 (18,923)
886 (21,717) Ny 736 (18,009)
830 21,082) Ny
248 (8223) ;
. 256 (6.477) an k17
28 5,178 750906 |.0z5 (0.636)
A | e _—-
- —] T o o 248 (1143) 248 (0223)
125 (3.178) f — 070 (1,778) 100 (4,084) f- 298 7.483) =
ﬁ(a,mx e —
T 100 (2,54) %rom [
020 (0,508) “TMIN, D18 (0381 | 008 0.203)
MIN. g 023 (0,884) 920 (0.500) 012 (0,308}
- i 080 (1.824)
- 010 (0284 4 032 (0.013) (1.300)
| ey ,-! L{ L_A:E.!L_.‘ - Rl A o sy —
%g% REF. mzu(::ﬂ) %8.%:{ J"_::g%""
24-LEAD CERAMIC DUAL IN-LINE PACKAGE (C) 24-LEAD PLASTIC DUAL IN-LINE PACKAGE (P)
1200 (30.68) 1
1.300 (33,02) 1.280 (31,780)
ooo oo oo
HHHHHHHH (REF)
o
190 (4.826)
C 550 (13,87) REF.
660 (16,51) _E -4
180 (3.81)
REF.
L™= = L [U S gy m gy m gy s — T
045 (1,14) NOTE 1~ .070(1.78) s0001270 | 280 (6,35)
o [T 1 reem ~T sz | REF.
H .mﬂ"m
} it 3 ‘ 200 18,08 ml:(;gm ~ [+ 7 ner.
| R 1l ax i A
015(0.38) | 908 (0.20) 88 u 191)
23 (058) “ 020 (08 '1 012 (030} -:jr—T 00 (0.762) ¢
0078 (0.19) 932 pep 100 (254) o e ! m“(&m seniusen ™
ons 029 o0 229 sy 180 380 T30 (1854 2 (0813 L -~ ’/ Fl
Foam " 060 (15261 nmz.w SEND LINE
916 {0.408)
‘023 (0584} mem
24-LEAD CerDIP DUAL IN-LINE PACKAGE (D)
1200 (30.48)
1300 (33,02)
oo o oo oo o000
C s
%0 (1851

045 (1,14)

™ [T mam

| g e g e g s sy o gy s gy ey g ey e AR BN

o 078
.110' 29

800 (12,20)
~ 00 us,m_"

J_!

[}
) | ioan, max.

L
015 (0.38) 008020
B 088 020 (081 =~ 012 ©0.3)
1 3
men e Tl
| o0 229
110 279
28-LEAD CERAMIC DUAL IN-LINE PACKAGE (C)

28-LEAD CerDIP DUAL IN-LINE PACKAGE (D)

1.483 (37.18)

"
PP -

(&3

i e

1.40 (3,586)
MAX.

inisisisinisisisininiaininial

14

514 (13.008)
588 (14,738)

A

SIS S S N N N N NN NNy

.230 (5,042)

090 (2.200) yyp,

100 (2,840}

e T =,] | £ AL

150 (3,810)

14,

42

PACKAGE OUTLINES

40-LEAD CERAMIC DUAL IN-LINE PACKAGE (C)

2.100 (53,34)
MAX.

PIN1
onooononnooonooOononornl [—

doduuUuduudUduJduuuJduuaguud

4

0.020 (0,608)
MIN.
015 (0,381) 090 (2,286) 150 (3,81) | 590(14988)
—l—zmosen ™ " 0279 T 710 (18,034)
40-LEAD CerDIP DUAL IN-LINE PACKAGE (D)
2,037 (61,74)
2083 (52001 PIN Y
P NN N U ST e S S T T S S L
c 560 (13.97)
860 (16,51)
T T T U T o T OO oo, b
PIN 40
070 (1,78)
~ sy Tom e
[]
(29 MAX. [
208 0.20)
J 02 051 012 (0,30)
0078 (0,19) 015 (0, 080 (1.27} 800 (15,24)
it == o e _4 B 100254 T tiasn
160 (3,81)
2m
110 (2,79)

43

intgl
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 246-7501

Printed in U.S.A. MCS 048-0276/ 10K

	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-61
	2-62
	2-63
	2-64
	2-65
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-19
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	4-01
	4-02
	4-03
	xBack

