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Series 3000 Family Of 
Computing Elements -
The Total System Solution. 
Since its introduction in September, 1974, the Series 3000 family of computing 
elements has found acceptance in a wide range of high performance 
applications from disk controllers to airborne CPU's. 

The Series 3000 family represents more than a simple collection of bipolar 
components, it is a complete family of computing elements and hardware/software 
support that greatly simplifies the task of transforming a design from concept 
to production. 

The Series 3000 Component Family 

A complete set of computing elements that are designed as a system requiring 
a minimum amount of ancillary circuitry. 

3001 Microprogram Control Unit. 
3002 Central Processing Element. 
3003 . Look-Ahead Carry Generator. 
3212 Multi-Mode Latch Buffer. 
3214 Interrupt Control Unit. 
3216/26 Parallel Bi-directional Bus Driver. 
ROMs/PROMs A complete set of bipolar ROMs and PROMs. 
RAMs A Complete family of MOS and bipolar RAMs. 

rhe Series 3000 Support 

A comprehensive support system that assists the designer in writing 
microprograms, debugging hardware and microcode, and programming 
prototype and production PROMs. 

CROMIS Cross microprogram assembler. 

MDS-800 Microcomputer development system with TTY/CRT, 
line printer, diskette, PROM programmer and high 
speed paper tape reader facilities. 

ICE-30 In-circuit emulation for the 3001 MCU. 

ROM-SIM ROM simulation for all of Intel's Bipolar ROMs 
and PROMs. 

Application Central processor and disk controller designs and 
Notes system timing considerations. 

Customer Comprehensive 3 day course covering the component 
Course family, CPU and controller designs, microprogramming 

and the MDS-800, ICE-30 and ROM-SIM operation. 

The Series 3000 family is designed to provide a Total System Solution: high 
performance, minimum package count and total commitment to support. 
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INTRODUCTION 

A family architecture 

To reduce component count as far as practical, a 
multi-chip LSI microcomputer set must be designed as a 
complete, compatible family of devices. The omission of 
a bus or a latch or the lack of drive current can multiply 
the number of miscellaneous SSI and MSI packages to a 
dismaying extent-witness the reputedly LSI mini­
computers now being offered which need over a hun­
dred extra TIL packages on their processor boards to 
support one or two custom LSI devices. Successful inte­
gration should .result in a minimum of extra packages, 
and that includes the interrupt and the input/output 
systems. 

With this objective in mind, the Intel Schottky bipo­
lar LSI microcomputer chip set was developed. Its two 
major components, the 3001 Microprogram Control 
Unit (MCU) and the 3002 Central Processing Element 
(CPE), may be combined by the digital designer with 
standard bipolar LSI memory to construct high-per­
formance controller-processors (Fig.!) with a minimum 
of ancillary logic. 

Among the features that minimize package count and 
improve performance are: the multiple independent 
data and address busses that eliminate time multiplex­
ing and the need for external latches; the three-state 
output buffers with high fanout that make bus drivers 
unnecessary except in the largest systems, and the sepa­
rate output-enable logic that permits bidirectional 
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busses to be formed simply by connecting inputs and 
outputs together. 

Each CPE represents a complete two-bit slice through 
the data-processing section of a computer. Several CPES 
may be arrayed in parallel to form a processor of any 
desired word length. The MCU, which together with the 
microprogram memory, controls the step-by-step oper­
ation of the processor, is itself a powerful micro­
programed state sequencer. 

Enhancing the performance and capabilities of these 
two components are a number of compatible computing 
elements. These include a fast look-ahead carry gener­
ator, a priority interrupt unit, and a multimode latch 
buffer. A complete summary of the first available mem­
bers of this family of LSI computing elements and mem­
ories is given in the table on this page. 

3001 
3002 
3003 
3212 
3214 
3216 
3226 
3601 
3604 
3301 A 
3304A 

DATA BUS 
TO MEMORY 

Microprogram control unit 
Central processing element 
Look.-ahead carry generator 
Multimode latch buffer 
Priority interrupt unit 
Noninverting bidirectional bus driver 
Inverting bidirectional bus driver 
256-by-4-bit programable read-only memory 
512-by-8-bit programable read-only memory 
256-by-4-bit read-only memory 
512-by-8-bit read-only memory . 

FROM EXTERNAL 
110 DEVICES 

DATA IN FROM 
MEMORY 

1. Bipolar microcomputer. Block diagram shows how to implement a typical 16-bit controller-processor with new family of 
bipolar computer elements. An array of eight central processing elements (CPEs} is governed by a microprogram control unit 
(MCU} through a separate read-only memory that carries the microinstructions for the various processing elements. This ROM 
may be a fast, off-the-shelf unit. 

Intll Corporation ... mll no responsibility for the u. of any circuitry or microprogram other than circuitry or microprograms embodied in an Intel product. No other circuit patent licenas Ire implied. 
1-1 
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ePEs form a processor 

Each CPE (Fig. 2) carries two bits of five independent 
busses. The three input busses can be used in several 
different ways. Typically, the K-bus is used for micro­
program mask or literal (constant) value input, while 
the other two input busses, M and I, carry data from ex­
ternal memory or input/output devices. D-bus outputs 
are connected to the CPE accumulator; A-bus outputs 
are connected to the CPE memory address register. As 
the CPES are wired together, all the data paths, registers, 
and busses expand accordingly. 

Certain data operations can be performed simply by 
connecting the busses in a particular fashion. For ex­
ample, a byte exchange operation, often used in data­
communications processors, may be carried out by wir­
ing the D-bus outputs back to the I-bus inputs, ex­
changing the high-order outputs and low-order inputs. 
Several other discretionary shifts and rotates can be 
accomplished in this manner. 

A sixth CPE bus, the seven-line microfunction bus, 
controls the internal operation of the CPE by selecting 
the operands and the operation to be performed. The 
arithmetic function section, under control of the micro­
function bus decoder, performs over 40 Boolean and 
binary functions, including 2's complement arithmetic 
and logical AND, OR, NOT, and exclusive-NOR. It incre­
ments, decrements, shifts left or right, and tests for zero. 

MEMORY AOORESS BUS OUTPUTS 

MEMORY 
ADDRESS EA 
ENABLE 

Unlike earlier MSI arithmetic-iogic units, which con­
tain many functions that are rarely used, the micro­
function decoder selects only useful CPE operations. 
Standard carry look-ahead outputs, X and y, are gener­
ated by the CPE for use with available look-ahead de­
vices or the Intel 3003 Look-ahead Carry Generator. In­
dependent carry input, carry output, shift input, and 
shift output lines are also available. 

What's more, since the K-bus inputs are always 
ANDed with the B-multiplexer outputs into the arith­
metic function section, a number of useful functions 
that in conventional MSI ALUs would require several 
cycles are generated in a single CPE microcycle. The 
type of bit masking frequently done in computer control 
systems can be performed with the mask supplied to the 
K-bus directly from the microinstruction. 

Placing the K-bus in either the aU-one or all-zero 
state wiU, in most cases, select or deselect the accumula­
tor in the operation, respectively. This toggling effect of 
the K-bus on the accumulator nearly doubles the CPE's 
repertoire of microfunctions. For instance, with the 
K-bus in the all-zero state, the data on the M-bus may 
be complemented and loaded into the CPE's accumula­
tor. The same function selected with the K-bus in the 
all-one state will exclusive-NOR the data on the M-bus 
with the accumulator contents. 

MEMORY DATA BUS 

CARRY {_j __ --========~lL-l=t:==~==TTll LOOK-AHEAD x 
OUTPUTS y --:-------------1 !+--+-+--+-+--j:>---CARRY INPUT 
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~--.--­
EXTERNAL MASK BUS 
BUS I NPUTS INPUTS 

__.-J 

2. Central processing element. This element contains all the circuits representing a two-bit-wide slice through a small com­
puter's central processor. To build a processor of word width N, all that's necessary is to connect an array of NI2 CPEs together. 
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Threelnnovatlonl 

The power and versatility of the CPE are increased by 
three rather novel techniques. The first of these is the 
use of the carry lines and logic during non-arithmetic 
operations for bit testing and zero detection. The carry 
circuits during these operations perform a word-wide 
logical OR (oRing adjacent bits) of a selected result from 
the arithmetic section. The value of the OR, called the 
carry OR, is passed along the carry lines to be ORed with 
the result of an identical operation taking place simulta­
neously in the adjacent higher-order CPE. 

Obviously, the presence of at least one bit in the logi­
cal I state will result in a true carry output from the 
highest-order CPE. This output, as explained later, can 
be used by the MCV to determine which microprogram 
sequence to follow. With the ability to mask any desired 
bit, or set of bits, via the K-bus inputs included in the 
carry OR, a powerful bit-testing and zero-detection facil­
ity is realized. 

The second novel CPE feature is the use of three-state 
outputs on the shift right output (RO) and carry output 
(CO) lines. During a right shift operation, the CO line is 
placed in the high-impedance (Z) state, and the shift 
data is active on the RO line. In all other CPE operations, 
the RO line is placed in the Z state, and the carry data is 
active on the CO line. This permits the CO and RO lines 
to be tied together and sent as a single rail input to the 
MCV for testing and branching. Left shift operations uti­
lize the carry lines, rather than the shift lines, to propa­
gate data. 

The third novel CPE capability, called conditional 
clocking, saves microcode and microcycles by reducing 
the number of microinstructions required to perform a 
given test. One extra bit is used in the microinstruction 
to selectively control the gating of the clock pulse to the 
central processor (CP) array. Momentarily freezing the 
clock (Fig. 3) permits the CPE microfunction to be per­
formed, but stops the results from being clocked into 
the specified registers. The carry or shift data that re­
sults from the operation is available because the arith­
metic section is CQmbinatorial, rather than sequential. 
The data can be used as a jump condition by the MCV 
and in this way permits a variety of nondestructive tests 
to be performed on register data. 

Microprogram control 

The classic form of microprogram control incorpo­
rates a next-address field in each microinstruction-any 

MICIIOINSTRlICTlDN WORD . 

CPARRAY 

3. Conditional clock. This feature permits an extra bit in 
microinstruction to selectively control gating of clock pulse 
to CP array. Carry or shift data thus made available permits 
tests to be performed on data with fewer microinstructions. 
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other approach would require some type of program 
counter. To simplify its logic, the MCV (Fig. 4) uses the 
classic approach and requires address control informa­
tion from each microinstruction. This information is 
not, however, simply the next microprogram address. 
Rather, it is a highly encoded specification of the next 
address and one of a set of conditional tests on the MCV 
bus inputs and regist(:rs. 

The next-address logic and address control functions 
of the MCV are based on a unique scheme of memory 
addressing. Microprogram addresses are organized as a 
two-dimensional array or matrix. Unlike in ordinary 
memory, which has linearly sequenced addresses, each 
microinstruction is pinpointed by its row and column 
address in the matrix. The 9-bit microprogram address 
specifies the row address in the upper 5 bits and the 
column address in the lower 4 bits. The matrix can 
therefore contain up to 32 row addresses and 16 col­
umn addresses for a total of 512 microinstruction 
addresses. 

The next-address logic of the MCV makes extensive 
use of this addressing scheme. For example, from a par­
ticular row or column address, it is possible to jump ei­
ther unconditionally to any other location in that row or 
column or conditionally to other specified locations, all 
in one operation. For a given location in the matrix 
there is a fixed subset of microprogram addresses that 
may be selected as the next address. These are referred 
to as a jump set, and each type of MCV address control 
jump function has ajump set associated with it. 

Incorporating a jump operation in every micro­
instruction improves performance by allowing process­
ing functions to be executed in parallel with program 
branches. Reductions in microcode are also obtained 
because common microprogram sequences can be 
shared without the time-space penalty usually incurred 
by conditional branching. 

Independently controlled lIag logic in the MCV is 
available for latching and controlling the value of the 
carry and shift inputs to the CP array. Two lIags, called 
C and Z, are used to save the state of the lIag input line. 
Under microprogram control, the lIag logic simulta­
neously sets the state of the lIag output line, forcing the 
line to logical 0, logical I, or the value of the C or Z lIag. 

The jump decisions are made by the next-address 
logic on the basis of: the MCV'S current microprogram 
address; the address control function on the accumula­
tor inputs; and the data that's on the macroinstruction 
(X) bus or in the program latch or in the lIags. Jump de­
cisions may also be based on the instantaneous state of 
the lIag input line without loading the value in one of 
the !lags. This feature eliminates many extra micro­
instructions that would be required if only the lIag lIip-
1I0p could be tested. 

Microinstruction sequences are normally selected by 
the operation codes (op codes) supplied by the micro­
instructions, such as control commands or user instruc­
tions in main memory. The MCV decodes these com­
mands by using their bit patterns to determine which is 
to be the next microprogram address. Each decoding re­
sults in a 16-way program branch to the desired micro­
instruction sequence. 
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4. Microprogram control unit. The MCU's two major control functions include controlling the sequence of microprograms 
fetched from the microprogram memory, and keeping track of the carry inputs and outputs of the CP array by means of the 
flag logic control. 

Cracking the op cod •• 

For instance, the Meu can be microprogramed to di­
rectly decode conventional 8-bit op codes. In these op 
codes the upper 4 bits specify one of up to 16 instruction 
classes or address modes, such as register, indirect, or 
indexed. The remaining bits specify the particular sub­
class such as ADD, SKIP IF ZERO, and so on. If a set of op 
codes is required to be in a different format, as may oc­
cur in a full emulation, an external pre-decoder, such as 
ROM, can be used in series with the X-bus to reformat 
the data for the Meu. 

In rigorous decoding situations where speed or space 
is critical, the fu)] 8-bit macroinstruction bus can be 
used for a single 256-way branch. Pulling down the load 
line of the Meu forces the 8 bits of data on the X-bus 
(typically generated by a predecoder) directly into the 
microprogram address register. 

The data thUs directly determines the next micro­
program address which should be the start of the de­
sired microprogram sequence. The load line may also 
be used by external logic to force the Meu, at power-up, 
into the system re-initialization sequence. 
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From time to time, a microprocessor must examine 
the state of its interrupt system to determine whether an 
interrupt is pending. If one is, the processor must sus­
pend its normal execution sequence and enter an inter­
rupt sequence in the microprogram. This requirement is 
handled by the Meu in a simple but elegant manner. 

When the microprogram flows through address row 0 
and column IS, the interrupt strobe enable line of the 
Meu is raised. The interrupt system, an Intel 3214 Inter­
rupt Control Unit, responds by disabling the row ad­
dress outputs of the Meu via the enable row address 
line, and by forcing the row entry address of the micro­
program interrupt sequence onto the row address bus. 
The operation is normally performed just before the 
macroinstruction fetch cycle, so that a macroprogram is 
interrupted between, not during, macroinstructions. 

The 9-bit microprogram address register and address 
bus of the Meu directly address 5 12 microinstructions. 
This is about twice as many as required by the typical 
16-bit disk-controller or central processor. 
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5. Microinstruction format. Only a generalized microinstruction format can be shown since allocation of bits for the mask 
field and optional processor functions depends on the wishes of the designer and the tradeoffs he decides to make. 

Moreover, multiple 512 microinstruction memory 
planes can easily be implemented simply by adding an 
extra address bit to the microinstruction each time the 
number of extra planes is doubled. Incidentally, as the 
number of bits in the microinstruction is increased. 
speed is not reduced. The additional planes also permit 
program jumps to take place in three address dimen­
sions instead of two. 

Because of the tremendous design flexibility offered 
by the Intel computing elements, it is impossible to de­
scribe every microinstruction format exactly. But gener­
ally speaking. the formats all derive from the one in Fig. 
5. The minimum width is 18 bits: 7 bits for the address 
control functions. plus 4 bits for the flag logic control: 
plus 7 bits for the CPE microfunction control. 

More bits can be added to the microinstruction for­
mat to provide such functions as mask field input to the 
CP array. external memory control. conditional clocking. 
and so on. Allocation of these bits is left to the designer 
who organizes the system. He is free to trade off 
memory costs. support logic. and microinstruction 
cycles to meet his cOSt/performance objectives. 

Microprograming technology 

• Microprogram: A type of program that directly 
controls the operation of each functional element in a 
microprocessor. 
• Mlcrolnllrucllon: A bit pattern that is stored in a 
microprogram memory word and specifies the oper­
ation of the individual LSI computing elements and re­
lated subunits, such as main memory and in­
put loutput interfaces. 
• Mlcrolnllrucllon lequence: The series of micro­
instructions that the microprogram control unit (MCU) 
selects from the microprogram to execute a single 
macroinstruction or control command. Micro­
instruction sequences can be, shared by several mac­
roinstructions. 
• Macrolnllructlon: Either a conventional computer 
instruction (e.g. ADD MEMORY TO REGISTER, IN­
CREMENT, and SKIP, etc.) or device controller com­
mand (e.g., SEEK, READ, etc.). 
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The cOlt/performance spectrum 

The total flexibility of the Intel LSI computing ele­
ments is demonstrated by the broad cost/performance 
spectrum of the controllers and processors that can be 
constructed with them. These include: 
• High-speed controllers. built with a stand-alone ROM­
MCV combination that sequences at up to 10 mega­
hertz; it can be used without any CPES as a system state 
coniroller. 
• Pipelined look-ahead carry controller-processors, 
where the overlapped microinstruction fetch/execute 
cycles and fast-carry logic reduce the l6-bit add time to 
less than 125 nanoseconds. 
• Ripple-carry controller processors (a l6-bit design 
adds the contents of two registers in 300 nanoseconds). 
• Multiprocessots. or networks of any of the above con­
trollers and processors, to provide computation, inter­
rupt superviSion. and peripheral control. 

These configurations represent a range of micro­
instruction execution rates of from 3 million to 10 mil­
lion instructions per second, or up to two orders of 
magnitude faster, for example, than p-channel micro­
processors. Moreover, the increases in processor per­
formance are achieved with relative simplicity. A 
ripple-carry l6-bit processor uses one MCV, eight CPES. 
plus microprogram memory. One extra computing ele­
ment, the 3003 Look-ahead Carry Generator, enhances 

. the processor with fast carry. Increasing speed further 
by pipe lining, the overlap of microinstruction fetch and 
execute cycles, requires a few D-type MSI flip-flOps. 

At the multiprocessor level, the microprogram 
memory, MCV. or CPE devices can be shared. A l6-bit 
processor. complete with bus control and microprogram 
memory. requires some 20 bipolar LSI packages and 
half that many small-scale ICs. In this configuration. it 
replaces an equivalent MSI TIL system having more 
than 200 packages. 

Furthermore. systems built with this large-scale inte­
grated circuitry are much smaller and less costly and 
consume less energy than equivalent designs using 
lower levels of transistor-transistor-logic integration. 
Even allowing for ancillary logic circuits. the new bipo­
lar computing elements cut 60% to 80% off the package 
count in realizing most of today's designs made with 
small- or medium-scale-integrated TIL. 
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The INTEL ® 3001 Microprogram Con­
trol Unit (MCU) controls the sequence in 
which microinstructions are fetched 
from the microprogram memory. Its 
functions include the following: 

Maintenance of the microprogram 
address register. 

Selection of the next microinstruction 
based on the contents of the micro­
program address register. 

Decoding and testing of data supplied 
via several input busses to determine 
the microinstruction execution 
sequence. 

Saving and testing of carry output data 
from the central processor (CP) array_ 

Control of carry/shift input data to 
the CP array. 

Control of microprogram interrupts_ 

SCHOTTKY 
BIPOLAR LSI 
MICROCOMPUTER 
SET 

High Performance - 85 ns Cycle 
Time 

TTL and DTL Compatible 

Fully Buffered Three-State and Open 
Collector Outputs 
Direct Addressing of Standard Bipolar 
PROM or ROM 

512 Microinstruction Addressability 

Advanced Organization 
9-Bit Microprogram Address Regjster 
and Bus 
4·Bit Program Latch 
Two Flag Registers 

Eleven Address Control Functions 
Three Jump and Test Latch 
Functions 
16·way Jump and Test Instruction 
Bus Function 

Eight Flag Control Functions 
Four Flag Input Functions 
Four Flag Output Functions 

40 Pin DIP 
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3001 
MICROPROGRAM 
CONTROL UNIT 

PACKAGE CONFIGURATION 

px. vcc 
PX7 ACo 
PX6 AC, 
PX5 4 AC5 
sX3 5 lD 
SX2 6 ERA 
PR 2 7 MAs 
sx, 8 MA7 
PR, 9 

INTEl@ ~~ MA6 
sXo 10 MA. 
PRo 11 3001 30 MA. 
FC3 12 29 MAo 
FC2 13 28 MA3 
FO 14 27 MA2 

FCo 15 26 MA, 
FC, 16 25 EN 

FI 17 24 AGo 
ISE 18 23 AC. 

ClK 19 22 AC3 
GND 20 21 AC2 
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PIN DESCRIPTION 

PIN 

1-4 

5,6,8,10 

7,9,11 

12,13,15, 
16 

14 

17 

18 

19 

20 

21-24 
37-39 

25 

26-29 

30-34 

35 

36 

40 

NOTE: 

SYMBOL 

·FCO-FC3 

FO 

FI 

ISE 

CLK 

GND 

ACo-ACs 

EN 

MAo-MA3 

MA,j-MAa 

ERA 

LD 

VCC 

NAME AND FUNCTION 

Primary Instruction Bus Inputs 
Data on the primary instruction bus is tested by the JPX function to 
determine the next microprogram address_ 

Secondary I nstruction Bus Inputs 
Data on the secondary instruction bus is synchronously loaded into the 
PR-Iatch while the data on the PX-bus is being tested (JPX)_ During a 
subsequent cycle, the contents of the PR-Iatch may be tested by the 
JPR, JLL, or JRL functions to determine the next microprogram address_ 

PR-Latch Outputs 
The PR-Iatch outputs are asynchronously enabled by the JCE function_ 
They can be used to modify microinstructions at the outputs of the 
microprogram memory or to provide additional control lines_ 

Flag Logic Control Inputs 

The flag logic control inputs are used to cross-switch the flags (C and Z) 
with the flag logic input (FI) and the flag logic output (FO). 

Flag Logic Output 
The outputs of the flags (C and Z) are multiplexed internally to form the 
common flag logic output_ The output may also be forced to a logical 0 
or logical 1_ 

Flag Logic Input 

The flag logic input is demultiplexed internally and applied to the inputs 
of the flags (C and Z). Note: the flag input data is saved in the F-Iatch 
when the clock input (CLK) is low_ 

Interrupt Strobe Enable Output 

The interrupt strobe enable output goes to logical 1 when one of the JZR 
functions are selected (see Functional Description, page 6). It can be used 
to provide the strobe signal required by the INTEL 3214 Priority Interrupt 
Control Unit or other interrupt circuits_ 

Clock Input 

Ground 

Next Address Control Function Inputs 
All jump functions are selected by these control lines. 

Enable Input 
When in the HIGH state, the enable input enables the microprogram 
address, PR-Iatch and flag outputs. 

Microprogram Column Address Outputs 

Microprogram Row Address Outputs 

Enable Row Address Input 

When in the LOW state, the enable row address input independently 
disables the microprogram row address outputs. It can be used with the 
INTEL 3214 Priority Interrupt Control Unit or other interrupt circuits 
to facilitate the implementation of priority interrupt systems. 

Microprogram Address Load Input 
When in the active HIGH state, the microprogram address load input 
inhibits all jump functions and synchronously loads the data on the 
instruction busses into the microprogram registllr. However, it does not 
inhibit the operation of the PR-Iatch or the generation of the interrupt 
strobe enable. 

+5 Volt Supply 

111 Active HIGH unless otherwise specified_ 
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TYPE 111 

active LOW 

active LOW 

open collector 

active LOW 
three-state 

active LOW 

three-state 

three-state 



LOGICAL DESCRIPTION 

The MCU performs two major control 
functions. First, it controls the sequence 
in which microinstructions are fetched 
from the microprogram memory. For 
this purpose, the MCU contains a micro­
program address register and the 
associated logic for selecting the next 
microinstruction address. The second 
function of the MCU is the control of 
the two flag flip·flops that are included 
for interaction with the carry input and 
carry output logic of the CP array. 
The logical organization of the MCU 
is shown in Figure 2. 

NEXT ADDRESS LOGIC 

The next address logic of the MCU pro· 
vides a set of conditional and uncondi· 
tional address control functions. These 
address control functions are used to 
implement a jump or jumpltest opera· 
tion as part of every microinstruction. 
That is to say, each microinstruction 
typically contains a jump operation field 
that specifies the address control 
function, and hence, the next micro· 
program address. 
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In order to minimize the pin count of 
the MCU, and reduce the complexity of 
the next address logic, the microprogram 
address space is organized as a two 
dimensional array or matrix. Each 
microprogram address corresponds to 
a unit of the matrix at a particular 
row and column location. Thus, the 9-
bit microprogram address is treated as 
specifying not one, but two addresses -
the row address in the upper five bits 
and the column address in the lower 
four bits. The address matrix can there­
fore contain, at most, 32 row addresses 
and 16 column addresses for a total of 
512 microinstructions. 

The next address logic of the MCU 
makes extensive use of this two com­
ponent addressing scheme. For example, 
from a particular row or column 
address, it is possible to jump uncon· 
ditionally in one operation anywhere in 
that row or column. It is not possible, 
however, to jump anywhere in the 
address matrix. In fact, for a given loca­
tion in the matrix, there is a fixed sub· 
set of microprogram addresses that may 
be selected as the next address. These 

ENABLE 
ROW 

ADDRESS 
MICROPROGRAM MEMORY 

ADDRESS 
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possible jump target addresses are referred 
to as a jump set. Each type of MCU 
address control (jump) function has a 
jump set associated with it. Appendix 
C illustrates the jump set for each 
function. 

FLAG LOGIC 

The flag logic of the MCU provides a 
set of functions for saving the current 
value of the carry output of the CP 
array and for controlling the value of 
the carry input to the CP array. These 
two distinct flag control functions are 
called flag input functions and flag 
output functions. 

The flag logic is comprised of two 
flip·flops, designated the C-flag and the 
Z-flag, along with a simple latch, called 
the F-Iatch, that indicates the current 
state of the carry output line of the 
CP array. The flag logic is used in con­
junction with the carry and shift logic 
of the CP array to implement a variety 
of shift/rotate and arithmetic functions. 

ERA MAo - - - ..... MAo -- MAo 

FO FC2 FC3 PX, - - PX4 

FLAG FLAG PRIMARY 
OUTPUT LOGIC INSTRUCTION 

CONTROL BUS 
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FUNCTIONAL DESCRIPTION 

ADDRESS CONTROL FUNCTIONS 

The address control functions of the 
MCU are selected by the seven input 
lines designated ACO-ACS. On the 
rising edge of the clock, the 9-bit micro­
program address generated by the next 
address logic is loaded into the micro­
program address register. The next 
microprogram address is delivered to the 
microprogram memory via the nine 
output lines designated MAo-MAs. The 
microprogram address outputs are or­
ganized into row and column addresses 
as: 

MAS MA7 MAs MA5 MA4 

row address 

MA3 MA2 MA, MAo 

column address 

Each address control function is speci­
fied by a unique encoding of the data on 
the function input lines. From three to 
five bits of the data specify the par­
ticular function while the remaining bits 
are used to select part of either the row 
or column address desired. Function 
code formats are given in Appendix A, 
"Address Control Function Summary." 

The following is a detailed description 
of each of the eleven address control 
functions. The symbols shown below 
are used throughout the description to 
specify row and column addresses. 

Symbol 

coin 

Meaning 

5-bit next row address 
where n is the decimal row 
address. 

4-bit next column address 
where n is the decimal 
column address. 

UNCONDITIONAL ADDRESS CON­
TROL (JUMP) FUNCTIONS 

The jump functions use the current 
microprogram address (i.e., the contents 
of the microprogram address register 
prior to the rising edge of the clock) and 
several bits from the address control in­
puts to generate the next microprogram 
address. 

Mnemonic 

JCC 

Function Description 

Jump in current column. 
ACo-AC4 are used to 
se I ect 1 of 32 row ad­
dresses in the current 
column, specified by 

MAO-MA3, as the next 
address 

JZR Jump to zero row. 
ACO-AC3 are used to 
select 1 of 16 column 
addresses in rowO, as the 
next address. 

JCR Jump in current row. 
ACO-AC3 are used to 
select 1 of 16 addresses 
in the current row, speci­
fied by MA4-MAS, as 
the next address. 

JCE Jump in current column/ 
row group and enable 
PR-Iatch outputs. ACo­
AC2 are used to select 1 
of 8 row addresses in the 
current row group, speci­
fied by MA7-MAs, as 
the next row address. The 
current column is speci­
fied by MAo-MA3. The 
PR-Iatch outputs are 
asynchronously enabled. 

FLAG CONDITIONAL ADDRESS 
CONTROL (JUMP/TEST) 
FUNCTIONS 

The jump/test flag functions use the 
current microprogram address, the con­
tents of the selected flag or latch, and 
several bits from the address control 
function to generate the next micro­
program address. 

Mnemonic 

JFL 

JCF 

Function Description 

Jump/test F-Latch. 
ACO-AC3 are used to 
select 1 of 16 row ad­
dresses in the current 
row group, specified by 
MAs, as the next row 
address. If the current 
column group, specified 
by MA3, is colo-coI7, 
the F-Iatch is used to 
select col2 or col3 as the 
next column address. If 
MA3 specifies column 
group coIS-col,5, the 
F-Iatch is used to select 
col1O or col" as the 
next column address. 

Jump/test C-flag. 
ACO-AC2 are used to 
select 1 of 8 row ad­
dresses in the current 
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row group, specified by 
MA7 and MAs, as the 
next row address. If the 
current column group 
specified by MA3 is 
coIO-coI7, the C-flag is 
used to select col2 or 
col3 as the next column 
address. If MA3 specifies 
column group cols-col,5, 
the C-flag is used to select 
col,O or col" as the next 
column address. 

JZF Jump/test Z-flag. Identical 
to the JCF function de­
scribed above, except 
that the Z-flag, rather 
than the C-flag, is used to 
select the next column 
address. 

PX-BUS AND PR-LATCH CONDI­
TIONAL ADDRESS CONTROL 
(JUMPITEST) FUNCTIONS 

The PX-bus jump/test function uses the 
data on the primary instruction bus 
(PX4-PX71. the current mircoprogram 
address, and several selection bits from 
the address control function to generate 
the next microprogram address. The 
PR-Iatch jump/test functions use the 
data held in the PR-Iatch, the current 
microprogram address, and several selec­
tion bits from the address control 
function to generate the next micro­
program address. 

Mnemonic 

JPR 

Mnemonic 

JLL 

Function Description 

Jump/test PR-Iatch. 
ACO-AC2 are used to 
select 1 of 8 row ad­
dresses in the current 
row group, specified by 
MA7 and MAS, as the 
next row address. The 
four PR-Iatch bits are 
used to select 1 of 16 
possible column ad­
dresses as the next 
column address. 

Function Description 

Jump/test leftmost PR­
latch bits. ACO-AC2 are 
used to select 1 of 8 row 
addresses in the current 
row group, specified by 
MA7 and MAS, as the 
next row address. PR2 
and PR3 are used to 



FUNCTIONAL DESCRIPTION (con't) 

JRL 

JPX 

select 1 of 4 possible 
column addresses in col4 
through col7 as the next 
column address. 

Jump/test rightmost P R· 
latch bits. ACo and ACl 
are used to select 1 of 4 
high·order row addresses 
in the current row group, 
specified by MA7 and 
MAS, as the next row 
address. PRo and PRl are 
used to select 1 of 4 pos­
sible column addresses in 
col12 through coilS as the 
next column address. 

Jump/test PX·bus and 
load PR-Iatch. ACo and 
ACl are used to select 1 
of 4 row addresses in the 
current row group, speci­
fied by MAs-MAS' as the 
next row address. PX4-
PX7 are used to select 1 
of 16 possible column 
addresses as the next 
column address. SXO-

. SX3 data is locked in the 
PR-Iatch at the rising 
edge of the clock. 

FLAG CONTROL FUNCTIONS 

The flag control functions of the MCU 
are selected .by the four input lines 
designated FCO-FC3. Function code 
formats are given in Appendix B, "Flag 
Control Function Summary." 

The following is a detailed description 
of each of the eight flag control 
functions. 

FLAG INPUT CONTROL FUNCTIONS 

The flag input control functions select 
which flag or flags will be set to the cur­
rent value of the flag input (FI) line. 
Data on FI is stored in the F-Iatch when 
the clock is low. The content of the F­
latch is loaded into the C and/or Z flag 
on the rising edge of the clock. 

Mnemonic 

SCZ 

STZ 

STC 

Function Description 

Set C-flag and Z-flag to 
FI. The C-flag and the Z­
flag are both set to the 
value of FI. 

Set Z-flag to F I. The Z­
flag is set to the value of 
FI. The C-flag is 
unaffected. 

Set C-flag to F I. The C­
flag is set to the value of 
FI. The Z flag is 
unaffected. 

HCZ Hold C-flag and Z-flag. 
The values in the C-flag 
and Z-flag are unaffected. 

FLAG OUTPUT CONTROL 
FUNCTIONS 

The flag output control functions 
select the value to which the flag out­
put (FO) line will be forced. 

Mnemonic 

FFO 

FFC 

FFZ 

FF1 

Function Description 

Force FO to o. FO is 
forced to the value of 
10gicalO. 

Force FO to C. FO is 
forced to the value of 
the C-flag. 

Force FO to Z. FO is 
forced to the value of 
the Z-flag. 

Force FO to 1. FO is 
forced to the value of 
logical 1. 
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LOAD AND INTERRUPT 
STROBE FUNCTIONS 
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The load function of the MCU is con­
trolled by the input line designated LD. 
If the LD line is active HIGH at the 
rising edge of the clock, the data on 
the primary and secondary instruction 
busses, PX4-PX7 and SXO-SX3, is 
loaded ·into the microprogram address 
register. PX4-PX7 are loaded into 
MAo-MA3 and SXO-SX3 are loaded 
into M~-MA7. The high-order bit of 
the microprogram address register MAs 
is set to a logical O. The bits from the 
primary instruction bus select 1 of 16 
possible column addresses. Likewise, 
the bits from the secondary instruction 
bus select 1 of the first 16 row addresses. 

The interrupt strobe enable of the MCU 
is available on the output line designated 
ISE. The line is placed in the active high 
state whenever a JZR to COl15 is selected 
as the address control function. Cus­
tomarily, the start of a macroinstruction 
fetch sequence is situated at rowo and 
COl15 so that the INTEL 3214 Priority 
Interrupt Control Unit may be enabled 
at the beginning of the fetch/execute 
cycle. The priority interrupt control 
unit may respond to the interrupt by 
pulling the enable row address (ERA) 
input line down to override the selected 
next row address from the MCU. Then 
by gating an alternative next row address 
on to the row address lines of the micro­
program memory, the microprogram 
may be forced to enter an interrupt 
handling routine. The alternative row 
address placed on the microprogram 
memory address lines does not alter 
the contents of the microprogram 
address register. Therefore, subsequent 
jump functions will utilize the row 
address in the register, and not the 
alternative row address, to determine 
the next microprogram address. 

Note, the load function always overrides 
the address control function on ACo­
ACe. I t does not, however, override the 
latch enable or load sub-functions of the 
JCE or JPX instruction, respectively. In 
addition, it does not inhibit the interrupt 
strobe enable or any of the flag control 
functions. 
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D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias ............................................................ , O°C to· 70°C 

Storage Temperature ............................................................ -65°C to +160°C 

All Output and Supply Voltages ....................................................... ;).5V to +7V 

All Input Voltages .............................................................. -1.0V to +5.5V 

Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 100 mA 

·COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanont damage to tho device. Thi. i ••• tro •• rating only 
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not 
implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. 

TA = O°C to 70°C Vec = 5.0V ±5% 

SYMBOL PARAMETER MIN TYP(1) MAX UNIT CONDITIONS 

Vc Input Clamp Voltage (All --o.B -1.0 V Ic =-5.mA 
Input Pins) 

IF Input Load Current: 
CLK Input --0.075 --0.75 mA VF =0.45V 
EN Input --0.05 --0.50 mA 
All Other Inputs --0.025 --0.25 mA 

IR Input Leakage Current: 
ClK 120 j.lA VR = 5.25V 
EN Input 80 j.lA 
All Other Inputs 40 j.lA 

VIL Input low Voltage O.B V Vcc = 5.0V 

VIH Input High Voltage 2.0 V 

Icc Power Supply Current (21 170 240 mA 

VOL Output low Voltage 0.35 0.45 V 10L = 10mA 
(All Output Pins) 

VOH Output High Voltage 2.4 3.0 V 10H =-1 mA 
(MAo-MAs. ISE. FO) 

los Output Short Circuit Current -15 -28 --60 mA Vec = 5.0V 
(MAo-MAs. ISE. FO) 

10 (of!) Off-State O~tPut Current: 
MAo-M.AS. FO -100 j.lA Vo = 0.45V 
MAo-MAs. F.O. PRo-PR2 100 j.lA Vo = 5.25V 

NOTES: 
(1) Typical values are for T A = 25°C and nominal supply voltage. 
(2) EN input grounded. all other inputs and outputs open. 
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A.C. CHARACTERISTICS AND WAVEFORMS TA .. o·c to 70·C. vcc = 5.0V ±5% 

SYMBOL PARAMETER MIN Typl'l MAX UNIT 

tCY Cycle Time (21 85 60 ns 

twp Clock Pulse Width 30 20 ns 

Control and Data Input Set·Up Times: 
tSF lD. ACo-ACS 10 0 ns 
tSK FCO.FC, 0 ns 
tsx SXO-SX3. PX4-PX7 35 25 ns 
tSI FI 15 5 ns 

Control and Data Input Hold Times: 
tHF lD. ACo-ACs 5 0 ns 
tHK FCo. FC, 0 ns 
tHx SXO-SX3. PX4-PX7 20 5 ns 
tHI FI 20 8 ns 

tco Propagation Delay from Clock Input (ClKI to Outputs 10 30 45 ns 
(MAo-MAs. Fa) 

tKO Propagation Delay from Control Inputs FC2 and FC3 to Flag 16 30 ns 
Out (Fa) 

tFO Propagation Delay from Control Inputs ACo-ACs to latch 26 40 ns 
Outputs (PRo-PR2) 

tEO Propagation Delay from Enable Inputs EN and ERA to Outputs 21 32 ns 
(MAo-MAs. Fa. PRo-PR2) 

tFI Propagation Delay from Control Inputs ACo-ACS to Interrupt 24 40 ns 
Strobe Enable Output (lSE) 

NOTE: 
I1l Typical values are for T A • 25°C and nominal supply voltage. 
121 tCY = twp + tSF + tco 

TEST CONDITIONS: TEST lOAD CIRCUIT: 

Input pulse amplitude of 2.5 volts. 
vee 

Input rise and fall times of 5 ns between 1 volt and 2 volts. 
Output load of 10 mA and 50 pF. soon 
Speed measurements are taken at the 1.5 volt level. 

OUT 

50pF 1 Kfl 

-=-

CAPACITANCE(21 T A .. 25·C 

SYMBOL PARAMETER MIN TYP MAX UNIT 

CIN Input Capacitance: 
ClK.EN 11 16 pF 
All Other Inputs 5 10 pF 

CoUT Output Capacitance 6 12 pF 

NOTE: 
(21 This parameter is periodically sampled and is not 100% tested. Condition 01 measurement is 1·1 MHz. VBIAS· 2.SV. Vcc = SV and 

TA=2SoC. 
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D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -55°C to +125°C 

Storage Temperature ............................................................ -i55°C to +160°C 

All Output and Supply Voltages ....................................................... -il.5V to +7V 

All Input Voltages .............................................................. -1.0V to +5.5V 

Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 100 mA 

'COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or any other conditions above those indicated in the operational sactions of this specification is not 
implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. 

SYMBOL PARAMETER MIN 

Vc Input Clamp Voltage (All 
Input Pins) 

IF Input load Current: 
ClK Input 
EN Input 
All Other Inputs 

IR Input Leakage Current: 
CLK 
EN Input 
All Other Inputs 

VIL Input Low Voltage 

VIH Input High Voltage 2.0 

Icc Power Supply Current (2) 

VOL Output Low Voltage 
(All Output Pins) 

VOH Output High Voltage 2.4 
(MAo-MA8. ISE. FO) 

los Output Short Circuit Current -15 
(MAo-MAs. ISE. FO) 

10 (off) Off·State Output Current: 
MAO-MA8. FO 
MAo-MA8. F.O. PRo-PR2 

NOTES: 
(1) Typical values are for T A = 2SoC and nominal supply voltage. 
(2) EN input grounded. all other inputs and outputs open. 

Typ(1 ) MAX 

-0.8 -1.2 

-75 -750 
-50 -500 
-25 -250 

120 
80 
40 

0.8 

170 250 

0.35 0.45 

3.0 

-28 -60 

-100 
100 
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UNIT 

V 

IJ.A 
IJ.A 
IJ.A 

IJ.A 
IJ.A 
IJ.A 

V 

V 

mA 

V 

V 

mA 

IJ.A 
IJ.A 

CONDITIONS 

IC =-5mA 

VF = 0.45V 

VR = 5.5V 

Vcc = 5.0V 

10L = 10 mA 

10H =-1 mA 

Vcc = 5.0V 

Va = 0.45V 
Va = 5.5V 



A.C. CHARACTERISTICS AND WAVEFORMS 

SYMBOL 

tCY 

twp 

tSF 
tSK 

tsx 
tsl 

NOTE: 

Cycle Time (2) 

Clock Pulse Width 

PARAMETER 

Control and Data Input Set-Up Times: 
lD. ACo-AC6 
FCo. FC, 
SXO-SX3. PXot-PX7 
FI 

Control and Data Input Hold Times: 
lD. ACO-AC6 
FCo. FC, 
SXO-SX3. PX4-PX7 
FI 

Propagation Delay from Clock Input (ClK) to Outputs 
(MAo-MAs. FO) 

Propagation Delay from Control Inputs FC2 and FC3 to Flag 
Out (FO) 

Propagation Delay from Control Inputs ACO-AC6 to latch 
Outputs (PRo-PR2) 

Propagation Delay from Enable Inputs EN and ERA to Outputs 
(MAo-MAs. FO. PRo-PR2) 

Propagation Delay from Control Inputs ACO-AC6 to Interrupt 
Strobe Enable Output (lSE) 

II) Typical.alues are lor TA = 25°C and nominal supply voltage. 

121 tCY = twp + tSF + tco 

TEST CONDITIONS: 

Input pulse amplitude of 2.5 volts. 
Input rise and fall times of 5 ns between 1 volt and 2 volts. 
Output load of 10 mA and 50 pF. 
Speed measurements are taken at the 1.5 volt level. 

CAPACITANCE(2) TA = 25°C 

SYMBOL PARAMETER 

CIN Input Capacitance: 
ClK.EN 
All Other Inputs 

COUT Output Capacitance 

NOTE: 

4f'L/lr~ 3001 

MIN Typ(1 ) 

95 60 

40 20 

10 0 
0 
35 25 
15 5 

5 0 
0 
25 5 
22 8 

10 30 

16 

26 

21 

24 

TEST lOAD CIRCUIT: 

Vee 

500n 

OUTo-...... --i 

50pF 1 Kfl 

MIN TYP 

11 
5 

6 

MAX 

45 

50 

50 

35 

40 

MAX 

16 
10 

12 

UNIT 

ns 

ns 

ns 
ns 
ns 
ns 

ns 
ns 
ns 
ns 

ns 

ns 

ns 

ns 

ns 

UNIT 

pF 
pF 

pF 

121 This parameter is periodically sampled and is not 100% tested. Condition 01 measurement is I = 1 MHz. VBIAS = 2.5V. Vcc = 5V and 
TA = 25°C. 
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3001 WAVEFORMS 
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TYPICAL AC AND DC CHARACTERISTICS 

CLOCK PULSE WIDTH Vs. VCC AND TEMPERATURE 

40 

126'C 

0 26'C 

0 
4.6 4.75 5.0 6.26 &.60 

Vee 

CLOCK TO mA OUTPUTS VS. LOAD CAPACITANCE 

40 
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0 

0 
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60 

we 1 MAo ---~ r- Vee - 5.0V -
~ TA • WC ----.--

~ 

0 

0 
60 100 160 300 260 300 350 

LOAD CAPACITANCE (pFI 
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ICC VS. TEMPERATURE 
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APPENDIX A ADDRESS CONTROL FUNCTION SUMMARY 

FUNCTION NEXT ROW NEXT COL 
MNEMONIC DESCRIPTION 

AC6 S 4 3 2 0 MAS 7 6 S 4 MA3 2 0 

JCC Jump in current column 0 0 d4 d3 d2 d, do d4 d3 d2 d, do m3 m2 m, mo 

JZR Jump to zero row 0 0 d3 d2 d, do 0 0 0 0 0 d3 d2 d, dO 

JCR Jump in current row 0 d3 d2 d, dO . ma m7 m6 mS m4 d3 d2 d, dO 

JCE Jump in column/enable 0 d2 d, dO ma m7 d2 d, dO m3 m2 m, mo 

JFL Jump/test F-Iatch 0 0 d3 d2 d, do ma d3 d2 d, do m3 0 

JCF Jump/test C-flag 0 0 d2 d, dO ma m7 d2 d, dO m3 0 c 

JZF Jump/test Z-flag 0 d2 d, do ma m7 d2 d, do m3 0 

JPR Jump/test PR-Iatches 0 0 d2 d, do ma m7 d2 d, do P3 P2 p, Po 

JLL Jump/test left PR bits 0 d2 d, do ma m7 d2 d, do 0 P3 P2 

JRL Jump/test right PR bits d, dO ma m7 1 d, dO p, Po 

JPX Jump/test PX-bus 0 d, do ma m7 mS d, do X7 Xs Xs x4 

SYMBOL MEANING 

dn Data on address control line n 

mn Data in microprogram address register bit n 

Pn Data in PR-Iatch bit n 

xn Data on PX-bus line n (active LOW) 

f. c. z Contents of F-Iatch. C-flag. or Z-flag. respectively 

APPENDIX B FLAG CONTROL FUNCTION SUMMARY 

TYPE MNEMONIC DESCRIPTION FC, 0 

SCZ Set C-flag and Z -flag to f 0 0 

Flag STZ Set Z-flag to f 0 

Input STC Set C-flag to f 0 

HCZ Hold C-flag and Z-flag 

TYPE MNEMONIC DESCRIPTION FC3 2 

FFO Force Fa to 0 0 0 

Flag FFC Force Fa to C-flag 0 1 
Output FFZ Force Fa to Z-flag 0 

FFl Force Fa to 1 

LOAD 
NEXT ROW NEXT COL FUNCTION 

LD MAs 7 s S 4 MA3 2 0 

0 see Appendix A see Appendix A 

0 x3 x2 x, Xo x7 Xs Xs X4 

SYMBOL MEANING 

Contents of the F-Iatch 

xn Data on PX- or SX-bus line n (active LOW) 

2-'2 



APPENDIX C JUMP SET DIAGRAMS 

The following ten diagrams illustrate 
the jump set for each of the eleven 
jump and jump/test functions of the 
MCU. Location 341, indicated by the 
black square, represents one current 
row (row21 ) and current column (COI5) 
address. The grey boxes ind icate the 
microprogram locations that may be 
selected by the particular function as 
the next address. 

JCR 
Jump in Current Row 

JPR 
Jump/Tlit PR·Latch 

current -
row 
group 
Ma7 

10 

currant 
.ow 
group 
Ma7 

10 

JCE 
Jump Column/En ..... 

current column 

JLL 
Jump/Tlit Left Latch 
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JCC 
Jump in Current Column 

row31---i> 

t t 
colo current 

column 

JFL 
Jump/Tlit F·Lau:h 

JRL 
Jump/Tlit Right Latch 

current 
row 
group 
Ma7 

10 

:,rentL 
group 

M,~tJ 

3001 

JZR 
Jump to Zero Row 

JCF, JZF 
Jump/Tlit C-FI8g 
Jump/Test Z-FI8g 

JPX 
Jump/Tlit PX-Bul 
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TYPICAL CONAGURATIONS 

r'S-,--~'~R7A~M~A~'~""~"'~""-"'~"'~""~M~A-0--------"N~ 

A, 
ClK 

1 

~8 

360. 
PROM 

3604 
PROM 

Non-Pipelined Configuration with 
512 Microinstruction Addressability 

sv 

IIIII 

3604 
PROM 

cs,··cs. AO ·················A8 

AC. 

°5 ..... 0 , 

3604 
PROM 

cs, ··CS4 Ao ············--·A8 

.11 

AS" ···········AOCS4-·CS' A8 ········ __ ······-AOCS4--CS' 

360. 
PROM 

08 ··········· .. ··0, 

3604 
PROM 

08 ···············0, 

TO 3002 CP ARRAY 

360' 
PROM 

CS,.-CS4 AO'" . ···-A8 

II 
-.ll 

A8 ·················.4.0 CS4"CS, 

380. 
PROM 

Os ····· .. ·······0, 

Os ···.0, 

'"'"' PROM 

CS,··CS. AO ················-Aa 

II 
A8·················AOCS4··CS' 

360' 
PROM 

Oa ·············0, 

IS' 

AC, 

lllI_~_~ACO AC, AC3 AC, ACs AC. 

2D 2Q~ 
3D 30-

t 
sv 

MAa··· ........... MAo 

3001 
MCU 

'NW 

TO MEMORY DATA BUS 

L=::j:=!==/ TO 3002 CPARRAV U§~sv~~~~~~ r;:-:JI 
ig ~~-======:::::::...J 

NOTE; Two O-Iype flip-flops of the '5174 pipeline register ate used as the 
microprogram address reglst.r 81(1I1'1S1on. 

Pipelined Configuration with 
2048 Microinstruction Addressability 
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eLK CLK 

5V 0-- CLR 

~ 

PIPELINE 
REGISTER 



The I NTE L® 3002 Central Processing 
Element contains all of the circuits that 
represent a 2·bit wide slice through the 
data processing section of a digital com· 
puter. To construct a complete central 
processor for a given word width N, it 
is simply necessary to connect an array 
of N/2 CPE's together. When wired 
together in such an array, a set of CPE's 
provide the following capabilities: 

2's complement arithmetic 

Logical AND, OR, NOT and 
exclusive·OR 

Incrementing and decrementing 

Shifting left or right 

Bit testing and zero detection 

Carry look·ahead generation 

Multiple data and address busses 

SCHOTTKY 
BIPOLAR LSI 
MICROCOMPUTER 
SET 

High Performance - 100 ns Cycle Time 

TTL and DTL Compatible 

N·Bit Word Expandable Multi·Bus 
Organization 

3 I nput Data Busses 
2 Three·State Fully Buffered Output 
Data Busses 

11 General Purpose Registers 

Full Function Accumulator 

Independent Memory Address Register 

Cascade Outputs for Full Carry 
Look·Ahead 

Versatile Functional Capability 
8 Function Groups 
Over 40 Useful Functions 
Zero Detect and Bit Test 

Single Clock 

28 Pin DIP 

2·15 

3002 
CENTRAL 
PROCESSING 
ELEMENT 

PACKAGE CONFIGURATION 

10 vee 
I, F2 

Ko 3 26 F, 

K, 4 25 Fo 

X 5 24 F3 
y 6 ED 

co 7 INTEL@ Mo 

RO 8 3002 M, 

LI 9 0, 

CI 10 19 Do 

EA 11 18 CLK 

A, 12 17 F. 

Ao 13 16 Fs 

GND 14 15 F6 



3002 

PIN DESCRIPTION 

PIN SYMBOL 

1,2 

3,4 

5,6 X,Y 

7 CO 

B RO 

9 LI 

10 CI 

11 EA 

12-13 Ao-A1 

14 GNO 

15-17, Fo-F6 
24-27, 

18 ClK 

19-20 00-0 1 

21-22 Mo-M1 

23 ED 

28 Vee 

NOTE: 

NAME AND FUNCTION 

External Bus Inputs 

The external bus inputs provide a separate input port for external input 
devices. 

Mask Bus Inputs 

The mask bus inputs provide a separate input port for the microprogram 
memory, to allow mask or constant entry. 

Standard Carry Look-Ahead Cascade Outputs 

The cascade outputs allow high speed arithmetic operations to be 
performed when they are used in conjunction with the INTEL 3003 
Look-Ahead Carry Generator. 

Ripple Carry Output 

The ripple carry output is only disabled during shift right operations. 

Sh ift Right Output 

The shift right output is only enabled during shift right operations. 

Shift Right Input 

Carry Input 

Memory Address Enable Input 

When in the LOW state, the memory address enable input enables the 
memory address outputs (AO-A1)' 

Memory Address Bus Outputs 

The memory address bus outputs are the buffered outputs of the 
memory address register (MAR). 

Ground 

Micro-Function Bus Inputs 

The micro-function bus inputs control ALU function and register 
selection. 

Clock Input 

Memory Data Bus Outputs 

The memory data bus outputs are the buffered outputs of the full 
function accumulator register (AC). 

Memory Data Bus Inputs 

The memory data bus inputs provide a separate input port for 
memory data. 

Memory Data Enable Input 

When in the LOW state, the memory data enable input enables the 
memory data outputs (00-01) 

+5 Volt Supply 

1. Active HIGH, unless otherwise specified. 
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Active lOW 

Active LOW 

Active LOW 
Th ree-state 

Active LOW 
Three-state 

Active LOW 

Active LOW 

Active LOW 

Active LOW 
Th ree-state 

Active LOW 
Three-state 

Active LOW 

Active LOW 



LOGICAL DESCRIPTION 

The CPE provides the arithmetic, logic 
and register functions of a 2·bit wide 
slice through a microprogrammed central 
processor. Data from external sources 
such as main memory, is brought into 
the CPE on one of the three separate in· 
put busses. Data being sent out of the 
CPE to external devices is carried on 
either of the two output busses. Within 
the CPE, data is stored in one of eleven 
scratch pad registers or in the accumula· 
tor. Data from the input busses, the 
registers, or the accumulator is available 
to the arithmetic/logic section (ALS) 
under the control of two internal multi· 
plexers. Additional inputs and outputs 
are included for carry propagation, 
shifting, and micro·function selection. 
The complete logical organization of the 
CPE is shown below. 

MICRO·FUNCTION BUS AND 
DECODER 

The seven micro·function bus input 
lines of the CPE, designated Fa-Fa, 
are decoded internally to select the 
ALS function, generate the scratch pad 
address, and control the A and B 
multiplexers. 

M·BUS AND I·BUS INPUTS 

The M·bus inputs are arranged to bring 
data from an external main memory 
into the CPE. Data on the M·bus is 
multiplexed internally for input to 
the ALS. 

The I·bus inputs are arranged to bring 
data from an external I/O system into 
the CPE. Data on the I·bus is also mul· 
tiplexed internally, although indepen· 
dently of the M·bus, for input to the 
ALS Separation of the two busses per· 
mits a relatively lightly loaded memory 
bus even though a large number of I/O 
devices are connected to the I·bus. 
Alternatively, the I·bus may be wired 
to perform a multiple bit shift (e.g., a 
byte exchange) by connecting it to one 
of the output busses. In this case, I/O 
device data is gated externally onto the 
M·bus. 

SCRATCH PAD 

The scratchpad contains eleven registers 
designated Ra through Rg and T. The 
output of the scratch pad is multiplexed 
interl'lally for input to ALS. The ALS 
output is returned for input into the 
scratch pad. 

ACCUMULATOR AND D·BUS 

An independent register called the 
accumulator (AC) is available for storing 
the result of an ALS operation. The 
output of the accumulator is multi· 
plexed internally for input back to the 

ALS and is also available via a three· 
state output buffer on the D·bus 
outputs. Conventional usage of the 
D·bus is for data being sent to the 
external main memory or to external 
I/O devices. 

A AND B MULTIPLEXERS 

The A and B multiplexers select the two 
inputs to the ALS specified on the 
micro·function bus. Inputs to the A· 
multiplexer include the M·bus, the 
scratchpad, and the accumulator. The 
B·multiplexer selects either the I·bus, 
the accumulator, or the K·bus. The 
selected B·multiplexer input is always. 
logically ANDed with the data on the 
K·bus (see below) to provide a flexible 
masking and bit testing capability. 

ALS AND K-BUS 

The A LS is capable of a variety of 
arithmetic and logic operations, in· 
cluding 2's complement addition, in· 
crementing, and decrementing, plus 
logical AND, inclusive·OR, exclusive· 
NOR, and logical complement. The 
result of an ALS operation may be 
stored in the accumulator or one of the 
scratchpad registers. Separate left input 
and right output lines, designated LI 
and RO, are available for use in right 
shift operations. Carry input and carry 
output lines, designated CI and CO are 
provided for normal ripple carry propaga· 

ENABLE EA 
ADDRESS 

MAIN MEMORY 
ADDRESS 

A, .. 

LOOK AHEAD {X 
CARRY OUTPUTS Y -+------l 

CARRY OUT co -<!"------l 
LEFT IN II ...0.-----+1 
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tion. CO and RO data are brought out via 
two alternately enabled tri·state buffers. 
In addition, standard look ahead carry 
outputs, designated X and Y, are available 
for full carry look ahead across any word 
length. 

The ability of the K·bus to mask inputs 
to the ALS greatly increases the versa· 
tility of the CPE. During non·arithmetic 
operations in which carry propagation 
has no meaning, the carry circuits are 
used to perform a word·wise inclusive· 
OR of the bits, masked by the K·bus, 
from the register or bus selected by the 
function decoder. Thus, the CPE pro· 
vides a flexible bit testing capability. 
The K·bus is also used during arithmetic 
operations to mask portions of the field 
being operated upon. An additional­
function of the K-bus is that of supply· 
ing constants to the CPE from the 
microprogram. 

MEMORY ADDRESS REGISTER 
ANDA·BUS 

A separate ALS output is also avail· 
able to the memory address register 
(MAR) and to the A·bus via a three· 
state output buffer. Conventional usage 
of the MAR and A·bus is for sending ad· 
dresses to an external main memory. 
The MAR and A·bus may also be used 
to select an external device when 
executing I/O operations. 

D, 

ARITHMETIC/LOGIC 
SECTION 

D, 

ED ENABLE 
DATA 

CI CARRY IN 

AD RIGHT OUT 

CLX -I L,---.---.---...--J 

F, 

F, 

F. 

MICRO·FUNCTION F3 
BUS 

F, 

F, 

F, 

Figure 2.3002 Block Diagram 

2·17 

M, Mo I, 10 

MEMORY EXT 
DATA IN DEVICE IN 

K, Ko 

MASK 
IN 
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FUNCTIONAL DESCRIPTION 

During each micro-cycle, a micro­
function is applied to F-bus inputs of 
the CPE. The micro-function is decoded, 
the operands are selected by the multi­
plexers, and the specified operation is 
performed by ALS. If a negative going 
clock edge is applied, the result of the 
ALS operation is either deposited in 
the accumulator or written into the 
selected scratch pad register. In addition, 
certain operations permit related ad· 
dress data to be deposited in the MAR. 
A new micro·function should only be 
applied following the rising edge of the 
clock. 

By externally gating the clock input to 
CPE, referred to as conditional clocking, 
the clock pulse may be selectively 
omitted during a micro-cycle. Since the 
carry, shift, and look· ahead circuits are 
not clocked, their outputs may be used 
to perform a variety of non-destructive 
tests on data in the accumulator or in 
the scratch pad. No register contents are 
modified by the operation due to the 
absence of the clock pulse. 

The micro-function to be performed is 
determined from the function group 
(F·Group) and register group (R-Group) 
selected by the data on the F-bus. The 
F-Group is specified by the upper three 
bits of data, F4-FS' The R-Group is 
specified by the lower four bits of data, 
Fo-F3. R-Group I contains Ro through 
Rg, T, and AC and is denoted by the 
symbol Rn. R-Group II and R-Group III 
contain only T and AC. F-Group and 
R-Group formats are summarized in 
Appendix A. 

The following is a detailed explanation 
of each of the CPE micro-functions. 
A general functional description of each 
operation is given followed by two 
additional descriptions which explain 
the result of the micro·function with 
both K·bus inputs at logical 0 or both at 
logical!. In most cases, the effect of 
placing the K·bus in the all·one or the 
all· zero state is to either select or de· 
select the accumulator in the operation, 
respectively. A micro-function 
mnemonic is included with each descrip· 
tion for reference purposes and to assist 
in the design of micro'assembly 
languages. The micro·functions are sum­
marized in Appendix A. The effective 
micro-functions for the all·zero and the 
all·one K·bus states are summarized in 
Appendix B. 

F-GROUPO R-GROUP I 

Logically AND the contents of AC with 
the data on the K-bus. Add the result to 
the contents of Rn and the value of the 
carry input (CI). Deposit the sum in AC 
and Rn. 
ILR K-BUS = 00 
Conditionally increment Rn and load 
the result in AC. Used to load AC from 
Rn or to increment Rn and load a copy 
of the result in AC. 
ALR K-BUS= 11 
Add AC and CI to Rn and load the reo 
suit in AC. Used to add AC to a register. 
If Rn is AC, then AC is shifted left one 
bit position. 

F-GROUPO R-GROUP II 
Logically AND the contents of AC with 
the data on the K-bus. Add the result to 
CI and the data on the M-bus. Deposit 
the sum in AC or T, as specified. 
ACM K-BUS = 00 
Add CI to the data on the M-bus. Load 
the result in AC or T, as speCified. Used 
to load memory data in the specified 
register, or to load incremented mem­
ory data in the specified register. 
AMA K-BUS = 11 
Add the data on the M-bus to AC and 
CI, and load the result in AC or T, as 
specified. Used to add memory data 
or incremented memory data to AC 
and store the sum in the specified 
register. 

F-GROUPO R-GROUP III 
(General description omitted, see Ap· 
pendix A.) 
SRA K-BUS = 00 
Shift the contents of AC or T, as speci· 
fied, right one bit position. Place the 
previous low order bit value on RO and 
fill the high order bit from the data on 
LI. Used to shift or rotate AC or T 
right one bit. 

(K-bus = 11 description omitted, see 
Appendix B.) 
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F-GROUP 1 R-GROUP I 

Logically OR the contents of Rn with 
the data on the K-bus. Deposit the re­
sult in MAR. Add the data on the K-bus 
to contents of Rn and CI. Deposit the 
result in Rn. 
LMI K-BUS = 00 
Load MAR from Rn. Conditionally 
increment Rn. Used to maintain a 
macro-instruction program counter. 
DSM K·BUS = 11 
Set MAR to all one's. Conditionally 
decrement Rn by one. Used to force 
MAR to its highest address and to 
decrement R n' 

F-GROUP 1 R-GROUP II 
Logically OR the data on the M-bus with 
the data on the K-bus. Deposit the re­
sult in MAR. Add the data on the K-bus 
to the data on the M-bus and CI. De­
posit the sum in AC or T, as specified. 
LMM K-BUS = 00 
Load MAR from the M-bus. Add CI to 
the data on the M-bus. Deposit the re­
sult in AC or T. Used to load the 
address register with memory data for 
macro-instructions using indirect 
addressing. 

LDM K-BUS = 11 
Set MAR to all ones. Subtract one 
from the data on the M-bus. Add CI 
to the difference and deposit the result 
in AC or T, as specified. Used to load 
decremented memory data in AC or T. 

F·GROUP 1 R-GROUP III 
Logically OR the data on the K-bus with 
the complement of the contents of AC 
or T, as specified. Add the result to the 
logical AN D of the contents of specified 
register with the data on the K-bus. Add 
the sum to CI. Deposit the result in the 
specified register. 

CIA K·BUS = 00 
Add CI to the complement of the con­
tents of AC or T, as specified. Deposit 
the result in the specified register. Used 
to form the 1 's or 2's complement of 
AC orT. 
DCA K·BUS = 11 
Subtract one from the contents of AC 
or T, as specified. Add CI to the dif­
ference and deposit the sum in the 
specified register. Used to decrement 
AC or T. 



FUNCTIONAL DESCRIPTION (con't) 

F-GROUP2 R-GROUP I 
Logically AND the data on the K-bus 
with the contents of AC_ Subtract one 
from the result and add the difference 
to CI. Deposit the sum in Rn. 
CSR K-BUS = 00 
Subtract one from CI and deposit the 
difference in Rn. Used to conditionally 
clear or set Rn to all O's or l's, 
respectively. 

SOR K-BUS = 11 
Subtract one from AC and add the 
difference to CI. Deposit the sum in 
Rn. Used to store AC in Rn or to store 
the decremented value of AC in Rn. 

F-GROUP2 R-GROUP II 
Logically AND the data on the K-bus 
with the contents of AC. Subtract one 
from the result and add the difference 
to CI. Deposit the sum in AC or T, 
as specified. 

CSA K-BUS = 00 

Subtract one from CI and deposit the 
difference in AC or T, as specified. Used 
to conditionally clear or set AC or T. 

SOA K-BUS = 11 
Subtract one from AC and add the 
difference to CI. Deposit the sum in 
AC or T, as specified. Used to store 
AC in T, or decrement AC, or store 
the decremented value of AC in T. 

F-GROUP 2 R-GROUP III 
Logically AND the data of the K-bus 
with the data on the I-bus. Subtract one 
from the result and add the difference 
to CI. 'Deposit the sum in AC or T, as 
specified. 
(K-bus = 00 description omitted, see 
CSA above.) 

LOI K·BUS = 11 
Subtract one from the data on the I-bus 
and add the difference to CI. Deposit 
the sum in AC or T, as specified. 
Used to load input bus data or decre­
mented input bus data in the specified 
register. 

F-GROUP3 R-GROUP I 
Logically AND the contents of AC with 
the data on the K-bus. Add the con­
tents of Rn and CI to the result. Deposit 
the sum in Rn. 
INR K-BUS = 00 
Add CI to the contents of Rn and 
deposit the sum in Rn. Used to in­
crement Rn. 
ADR K-BUS = 11 

Add the contents of AC to Rn. Add the 
result to CI and deposit the sum in Rn. 
Used to add the accumulator to a register 
or to add the incremented value of the 
accumulator to a register. 

F-GROUP 3 R-GROUP II 
(All descriptions omitted, identical to 
F-Group OIR-Group II described above.) 

F-GROUP 3 R-GROUP III 
Logically AND the data on the K-bus 
with the data on the I-bus. Add CI 
and the contents of AC OF T, as speci­
fied, to the result. Deposit the sum in 
the specified register. 

INA K-BUS = 00 

Conditionally increment the contents of 
AC or T, as specified. Used to incre­
mentACorT. 

AlA K-BUS = 11 
Add the data on the I-bus to the con­
tents of AC or T, as specified. Add CI 
to the result and deposit the sum in the 
specified register. Used to add input 
data or incremented input data to the 
specified register. 

F-GROUP4 R-GROUP I 
Logically AND the data on the K-bus 
with the contents of AC. Logically 
AND the result with the contents of 
Rn. Deposit the final result in Rn. 
Logically OR the value of CI with the 
word-wise OR of the bits of the final 
result. Place the value of the carry OR 
on the carry output (CO) line. 

CLR K-BUS = 00 

Clear Rn to all O's. Force CO to CI. 
Used to clear a register and force CO 
to CI. 
ANR K-BUS = 11 

Logically AND AC with Rn. Deposit the 
result in Rn. Force CO to one if the 
result is non-zero. Used to AN D the 
accumulator with a register and test for 
a zero result. 
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F-GROUP4 R-GROUP II 

Logically AND the data on the K-bus 
with the contents of AC. Logically 
AND the result with the data on the 
M-bus. Deposit the final resu It in AC 
or T, as specified. Logically OR the 
value of CI with the word·wise OR of 
the bits of the final result. Place the 
value of the carry OR on CO. 

CLA K-BUS = 00 
Clear AC or T, as specified, to all O's. 
Force CO to CI. Used to clear the 
specified register and force CO to CI. 

ANM K-BUS = 11 
Logically AND the data on the M·bus 
with the contents of AC. Deposit the 
result in AC or T, as specified. Force 
CO to one if the result is non-zero. Used 
to AND M-bus data to the accumulator 
and test for a zero result. 

F-GROUP4 R·GROUP III 
Logically AND the data on I-bus with 
the data on the K -bus. Logically AN D 
the result with the contents of AC or T, 
as specified. Deposit the final result in 
the specified register. Logically OR CI 
with the word-wise OR of the bits of 
the final result. Place the value of the 
carry OR on CO. 
(K-bus = 00 description omitted, see 
CLA above.) 
ANI K-BUS = 11 

Logically AN D the data on the I-bus 
with the contents of AC or T, as speci­
fied. Deposit the result in the specified 
register. Force CO to one if the result 
is non-zero. Used to AND the I-bus to 
'the accumulator and test for a zero 
res(J{t, 

F-GROUP5 R-GROUP I 

Logically AND the data on the K-bus 
with the contents of Rn. Deposit the 
result in Rn. Logically OR CI with the 
word-wise OR of the result. Place the 
value of the carry OR on CO. 

(K-bus = 00 description omitted, see 
CLR above.) 
TZR K-BUS = 11 

Force CO to one if Rn is non-zero. Used 
to test a register for zero. Also used to 
AND K-bus data with a register (see 
general description) for masking and, 
optionally, testi ng for a zero result. 
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FUNCTIONAL DESCRIPTION (con't) 

F-GROUP5 R-GROUP II 

Logically AND the data on the K-bus 
with the data on the M-bus. Deposit the 
result in AC or T, as specified. Logically 
OR CI with the word·wise OR of the 
result. Place the value of the carry OR 
on CO. 
(K·bus = 00 description omitted, see 
CLA above.) 

LTM K-BUS = 11 

Load AC or T, as specified, with data 
from the M-bus. Force CO to one if the 
result is non·zero. Used to load the 
specified register from memory and test 
for a zero result. Also used to AND 
K·bus data with M·bus data (see general 
description) for masking and, optionally, 
testing for a zero result. 

F-GROUP 5 R-GROUP III 

Logically AND the data on K·bus with 
contents of AC or T, as specified. De­
posit the result in the specified register. 
Logically OR CI with the word·wise OR 
of the result. Place the value of the 
carry OR on CO. 

(K-bus = 00 description omitted, see 
CLA above.) 

TZA K·BUS = 11 

Force CO to one if AC or T, as specified, 
is non-zero. Used to test the specified 
register for zero. Also used to AND 
K-bus data to the specified register (see 
general description) for masking and, 
optionally, testing for a zero result. 

F·GROUP6 R·GROUP I 
Logically OR CI with the word-wise 
OR of the logical AND of AC and the 
data on the K-bus. Place the result of 
the carry OR on CO. Logically OR the 
contents of Rn with the logical AND 
of AC and the data on the K-bus. 
Deposit the result in Rn. 

NOP K-BUS = 00 
Force CO to CI. Used as a null opera' 
tion or to force CO to CI. 

ORR K·BUS = 11 
Force CO to one if AC is non· zero. 
Logically OR the contents of the ac­
cumulator to the contents of Rn. De· 
posit the result in Rn. Used to OR the 
accumulator to a register and, 
optionally. test the previous accumula· 
tor value for zero. 

F-GROUP6 R-GROUP II 

Logically OR CI with the word-wise 
OR of the logical AND of AC and the 
data on the K ·bus. Place the value of 
the carry OR on CO. Logically OR the 
data on the M-bus, with the logical 
AND of AC and the data on the K·bus. 
Deposit the final result in AC or T, 
as specified. 

LMF K-BUS = 00 
Load AC or T, as specified, from the 
M-bus. Force CO to CI. Used to load 
the specified register with memory data 
and force CO to CI. 

ORM K·BUS = 11 
Force CO to one if AC is non·zero. 
Logically OR the data on the M·bus with 
the contents of AC. Deposit the result 
in AC or T, as specified. Used to OR 
memory data with the accumulator and, 
optionally, test the previous value of 
the accumulator for zero. 

F-GROUP 6 R·GROUP III 
Logically OR CI with the word-wise OR 
of the logical AND of the data on the 
I-bus and the data on the K-bus. Place 
the value of the carry 0 R on CO. Logi­
cally AND the data on the K·bus with 
the data on the I-bus. Logically OR the 
result with the contents of AC or T, 
as specified. Deposit the final result 
in the specified register. 

(K-bus = 00 description omitted, see 
NOPabove.) 

ORI K-BUS = 11 

Force CO to one if the data on the 
I·bus is non-zero. Logically 0 R the 
data on the I·bus to the contents of 
AC or T, as specified. Deposit the 
result in the specified register. Used to 
OR I-bus data with the specified 
register and, optionally, test the I-bus 
data for zero. 

F·GROUP7 R-GROUP I 

Logically OR CI with the word-wise OR 
of the logical AND of the contents of 
Rn and AC and the data on the K-bus. 
Place the value of the carry OR on CO. 
Logically AND the data on the K-bus 
with the contents of AC. Exclusive­
NOR the result with the contents of 
Rn. De·posit the final result in Rn. 

CMR K-BUS = 00 
Complement the contents of Rn. Force 
CO to CI. 
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XNR K·BUS = 11 

Force CO to one if the logical AND of 
AC and Rn is non· zero. Exclusive-NOR 
the contents of AC with the contents of 
Rn. Deposit the result in Rn. Used to 
exciusive·NOR the accumulator with 
a register. 

F·GROUP7 R·GROUP II 

Logically OR CI with the word·wise 
OR of the logical AND of the contents 
of AC and the data on the K-bus and 
M·bus. Place the value of the carry OR 
on CO. Logically AND the data on the 
K-bus with the contents of AC. Exclu­
sive-NOR the result with the data on 
the M-bus. Deposit the final result in 
AC or T, as specified. 

LCM K-BUS = 00 

Load the complement of the data on 
the M-bus into AC or T, as specified. 
Force CO to CI. 
XNM K·BUS = 11 

Force CO to one if the logical AND of 
AC and the M-bus data is non-zero. 
Exciusive·NOR the contents of AC with 
the data on the M-bus. Deposit the 
result in AC or T, as specified. Used to 
exclusive-NOR memory data with 
the accumulator. 

F-GROUP 7 R-GROUP III 

Logically OR CI with the word-wise 
OR of the logical AND of the contents 
of the specified register and the data on 
the I·bus and K·bus. Place the value of 
the carry OR on CO. Logically AND 
the data on the K·bus with the data 
on the I-bus. Exciusive·NOR the 
result with the contents of AC or T, as 
specified. Deposit the final result in 
the specified register. 

CMA K-BUS = 00 
Complement AC or T, as specified. Force 
CO to CI. 

XNI K-BUS = 11 

Force CO to one if the logical AND of 
the contents of AC or T, as specified, and 
the I-bus data is non-zero. Exclusive­
NOR the contents of the specified regis' 
ter with the data on the I-bus. Deposit 
the result in AC or T, as specified. Used 
to exclusive-NOR input data with the 
accumulator. 



3002 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. O°C to 70°C 

Storage Temperature ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --65° C to + 1600 C 

All Output and Supply Voltages ....................................................... -o.5V to +7V 

All Input Voltages ............................................................... -1.0V to +5.5V 

Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 100 rnA 

'COMMENT: Stres .. s above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not 
implied. Exposure to absolute maximum ratings for extended periods may effect device reliability. 

TA = oDe to +70°C. VCC = 5.0V ±5% 

LIMITS 

SYMBOL PARAMETER MIN Typ(1 ) MAX UNIT CONDITIONS 

Vc Input Clamp Voltage (All -0.8 -1.0 V Ic=-5mA 
Input Pins) 

IF Input Load Current: 
FO-Fs.CLK.Ko. K1.EA.ED -0.05 -0.25 rnA VF =0.45V 
10.11. MO. M1. LI -0.85 -1.5 rnA 
CI -2.3 -4.0 rnA 

IR Input Leakage Current: 
FO-FS.CLK. KO. K1. EA. ED 40 IJA VR = 5.25V 
10.11. MO. M1. LI 60 IJA 
CI 180 IJA 

Vll I nput Low Voltage 0.8 V VCC = 5.0V 

VIH Input High Voltage 2.0 V 

Icc Power Supply Current (2) 145 190 rnA 

VOL Output Low Voltage (All 0.3 0.45 V 10l = 10 rnA 
Output Pins) 

VOH Output High Voltage (All 2.4 3.0 V 10H =-1 rnA 
Output Pins) 

lOS Short Circuit Output Current -15 -25 -60 rnA VCC = 5.0V 
(All Output Pins) 

10 loft) Off State Output Current -100 IJA Vo = 0.45V 
Ao. A1. Do. D1. CO and RO 100 IJA Vo = 5.25V 

NOTES: 
III Typical values are for T A = 25° C and nominal supply voltage 
121 elK input grounded, other inputs open. 
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3002 

A.C. CHARACTERISTICS AND WAVEFORMS 

TA = O°C to 70°C. Vee = 5V ±5% 

SYMBOL PARAMETER MIN 

tCY Clock Cycle Time (2) 100 

twp Clock Pulse Width 33 

tFs Function Input Set-Up Time (Fo through Fs) 60 

Data Set-Up Time: 

tos 10. 11. Mo. MI. Ko. K1 
tss LI. CI 

Data and Function Hold Time: 
tFH Fo through FS 
tOH 10. 11. Mo. M1. Ko, Kl 
tSH LI. CI 

Propagation Delay to X. Y. RO from: 
tXF Any Function Input 
txo Any Data Input 

tXT Trailing Edge of ClK 
tXl leading Edge of ClK 

Propagation Delay to CO from: 
tCl leading Edge of ClK 
tCT Trailing Edge of ClK 
tCF Any Function Input 
tco Any Data Input 
tcc CI (Ripple Carry) 

Propagation Delay to Ao. A1. Do. 01 
tOl Leading Edge of CLK 
tOE Enable Input ED. EA 

NOTE: 
(1) Typical values are for T A = 25°C and nominal supply voltage. 
(2) tCY • tos + tOl' 

TEST CONDITIONS: 

Input pulse amplitude: 2.5 V 
Input rise and fall times of 5 ns between 1 and 2 volts. 
Output loading is 10 mA and 30 pF. 
Speed measurements are made at 1.5 volt levels. 

CAPACITANCE(2) T A = 2SoC 

SYMBOL 

NOTE: 

Input Capacitance 

Output Capacitance 

PARAMETER 

50 
27 

5 
5 
15 

20 

20 

from: 
5 

TEST lOAD CIRCUIT: 
Vee 

500!! 

OUT 0-""'-'" 
30 pF 1 K!l 

MIN 

TYP(1) 

70 

20 

40 

30 
13 

-2 
-4 
2 

37 
29 
40 

48 
43 
30 
14 

32 
12 

TYP 

5 

6 

MAX 

52 
42' 
60 

70 
65 
55 
25 

50 
25 

MAX 

10 

12 

UNIT 

ns 

ns 

ns 

ns 
ns 

ns 
ns 
ns 

ns 
ns 
ns 
ns 

ns 
ns 
ns 
ns 
ns 

ns 
ns 

UNIT 

pF 

pF 

(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, VBIAS = 2.5V, Vcc = 5.0V and 
TA = 25°C. 
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D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias .......................................................... -55°C to +125°C 

Storage Temperature ............................................................ -65°C to +160°C 

All Output and Supply Voltages ....................................................... -o.5V to +7V 

All Input Voltages ............................................................... -1.0V to +5.5V 

Output Currents ..................................................................... 100 mA 

'COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not 
implied. Exposure to absolute maximum ratings for extended periods may effect device reliability. 

TA = _55°C to +125°C. VCC = 5.0V ±10%. 

SYMBOL 

Vc 

VIL 

VIH 

Icc 

VOL 

VOH 

lOS 

IOloff) 

NOTES: 

PARAMETER 

Input Clamp Voltage (All 
Input Pins) 

Input Load Current: 
Fo-Fs.CLK.Ko. K,.EA. ED 
10. I,. Mo. M,. LI 
CI 

I nput Leakage Current: 
FO-FS.CLK.Ko. K,. EA. EO 
10.1,. Mo. M,. LI 
CI 

Input Low Voltage 

Input High Voltage 

Power Supply Current 

Output Low Voltage (All 
Output Pins) 

Output High Voltage (All 
Output Pins) 

Short Circuit Output Current 
(All Output Pins) 

Off State Output Current 
Ao. A,. Do. 0,. CO and RO 

MIN 

2.0 

2.4 

-15 

I') Typical values are for T A = 25° C and nominal supply voltage 
(2) CLK input grounded. other inputs open. 

LIMITS 

Typ(l) MAX 

-0.8 -1.2 

-0.05 -0.25 
-0.85 -1.5 
-2.3 -4.0 

40 
100 
250 

0.8 

145 210 

0.3 0.45 

3.0 

-25 -60 

-100 
100 

2·23 

UNIT 

V 

mA 
mA 
mA 

p.A 
p.A 
p.A 

V 

V 

mA 

V 

V 

mA 

p.A 
p.A 

CONDITIONS 

IC =-5mA 

VF = 0.45V 

VR = 5.5V 

Vcc = 5.0V 

IOL=10mA 

10H =-1 mA 

Vcc = 5.0V 

Vo = 0.45V 
Vo = 5.5V 



TEST CONDITIONS: 

Input pulse amplitude: 2.5 V 
Input rise and fall times of 5 ns between 1 and 2 volts. 
Output loading is 10 mA and 30 pF. 
Speed measurements are made at 1.5 volt levels. 

CAPACITANCE (2) TA = 25°C 

SYMBOL 

NOTE: 

Input Capacitance 

Output Capacitance 

PARAMETER 

TEST LOAD CIRCUIT: 
Vee 

500n 

OUT 0-""",-" 

30pF 1 Kn 

MIN TYP 

5 

6 

MAX 

10 

12 

UNIT 

pF 

pF 

(2) This parameter is periodically sampled and is not 100% tested. Condition 01 measurement is 1 = 1 MHz, VBIAS = 2.SV, VCC = S.OV and 
TA=2SoC. 
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3002 

3002 WAVEFORMS 

CLOCK INPUT 
ClK 

FUNCTION INPUTS 
Fo-Fe 

OATAINPUTS 
10. It. Ko. Kt. MO. Mt 

CARRY AND SHIFT 
INPUTS LI. CI 

CARRY AND SHIFT 
OUTPUTS X. Y. RO 

CO 

ENABLE INPUTS 
EA. ED 

tev 

!E------ twp -------l 

V 
~ V 

tFS ---? ~tFH 

\ ,--------_.-f------'V 

-------_.- ../1\ 1'--____ 
1 

tos tOH-----7 

r - f--.--------- I----'V --
____ -.J\ V~ _____ 

';-tss --! E--tSH~ 

\~- ----, 

----- - f-
_. ____ -.J / '--------_ .. 

tXT 

tXF Eo--- tXL --iI 

txo 

\ r-- -----,V 

----.- -f--------_.-~~ 1'---____ -

~tec~ 
teT 

tCF !E---teL~ 
te~ 

\~r r--- -----; V 
__________ _______ --.J '\ J\... _____ 

\ r---------------------
______ ---.J 

E----tOE IE 
I 

tOL __ =1,--_____ ,1._ 
DATA OUTPUTS :t )K 

AO. At. Do. Dt _______________ --.J "------
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3002 

TYPICAL AC AND DC CHARACTERISTICS 

1 
5 

'10 

POWER SUPPLY CURRENT VS. TEMPERATURE 

~ '40 

Vee·&.OY -
---------

i 
----------

t-. 
a: '30 

I , 
j! 

I 
"' :E 
;:: 
~ 

~ , 
} 

! 
5 

70 '26 
TEMPERATURE rCI 

OUTPUT CURRENT vs. OUTPUT VOLTAGE 

Vee -&.ov 

3.0 

OUTPUT VOLTAGE 

4.0 &.0 

CARRY IN SET UP TIME vs. Vee AND TEMPERATURE 

30 

2D 

'0 

10 

.... C -~ --r----
,:nrc; 

26:::-
4.711 &.0 

Vee (VOLTSI 

PROPAGATION DELAY - CLOCK TO "A" AND "0" 
DATA OUTPUT VS. "-CC: AND TEMPERATURE 

~ 1Or-------;-------~--------+_------~ 

~ 
I , 
:P 

Vee (VOLTSI 
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I 
>-:s 
"' .. 
~ 
i .. 
E , 
~K 

OUTPUT CURRENT VS. OUTPUT LOW VOL.TAGE 
3Or-----~----,_-----r----~----.. 

26 f------I--. 

OUTPUT VOLTAGE 

CLOCK PULSE WIDE VS. Vee AND TEMPERATURE 
40 

...... ..... c 

-< I"-- ....... '2&"~ 

~ 
2&"C 

0 '4.&V 4.7IIV I.DY &.2&V UDY 

vee (VOLTS) 

PROPAGATION DELAY FROM FUNCTION INPUTS TO 
CASCADE OUTPUTS VS. Vee AND TEMPE_R!'TURE 

eo 

&0 

40 

Vee (VOLTS) 

PROPAGATION DELAY - CLOCK TO 
"A" AND "0" DATA OUTPUT VS. LOAD CAPACITANCE 

I 
5 

1Or--------r------~--------r_------~ 

~ &0 

~ 

! 40 1----+-::;_ ..... 
IE , 
:P 

LOAD CAPAC'T ANCE (pFI 



TYPICAL CONRGURATIONS 

CARRY FROM 
3001 

CARRY TO 3001 
MICROPROGRAM 
CONSTANT IMASK 
INPUT BUS 
(ZH llNESI 

I 

Rippltl-Carry Confi.,ration 
IN 3002 CPE's) 

CARRY 
FROM 
3001 

CARRY 

ECn +8 

LAD 
'--v' F.-F. ClK l+-

CO CI 
3002 

II RO 

--::>F o-F3 

I M K 

r--

"""" 
-

r-

1, 
3002 

ir> 

'---

i-

~ 
r-------.-

3002 

MEMORY ADDRESS BUS 
(ZH L1NESI 

DATA BUS TO MEMORY 
(2N llNESI 

"rt= 

1-

.J + 
+ 

+5V 

ECn +8 

----ll-I'-----, DATA BUS FROM 
MEMORY 

----ll------' (2N llNESI 

EXTERNAL DATA BUS 
(2N L1NESI 

TO +-~------------------------------------------------------------------------------~ 3001 

Carry Look-Aha. Confi.,retion 
With Ripple Through tho Left Slice 
(32 Bit Array) 
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3002 

APPENDIX A MICRO-FUNCTION SUMMARY 

F·GROUP 

o 

2 

3 

4 

5 

6 

7 

NOTES: 

R·GROUP 

II 

III 

II 

III 

II 

III 

II 

III 

II 

III 

II 

III 

II 

III 

II 

III 

MICRO·FUNCTION 

Rn + (AC A K) + CI ... Rn, AC 

M + (AC A K) + CI'" AT 

ATL A (lL A Kd'" RO II V [(IH A KH) A ATHl "'ATH 
[AhA (lLA Kdl V [ATHV(lH A KH)l"'Ah 

K V Rn "'MAR Rn + K + CI ... Rn 

K V M "'MAR M+K+CI"'AT 

(AT V K) + (AT A K)+CI"'AT 

(AC A K) -1 + CI ... Rn 

1 
(AC A K) -1 + CI'" AT (see Note 1) 

(I A K) -1 + CI'" AT 

Rn + (AC ,\ K) + CI ... Rn 

M + (AC A K) + CI ... AT 

AT + (I A K) + CI ... AT 

CI V (Rn A AC A K) ... CO Rn A (AC A K) ... Rn 

CI V (M A AC /\ K) ... CO M A (AC A K)'" AT 

CI V (AT A I A K)->CO AT A (I A K)'" AT 

CI V (R n A K)'" CO K A Rn ... Rn 

CI V (M A K) ... CO K AM'" AT 

CI V (AT A K)'" CO K A AT'" AT 

CI V (AC A K) ... CO Rn V (AC A K)'" Rn 

CI V (AC A K) ... CO MV(ACAK)"'AT 

CI V (I A K) ... CO AT V (I A K) -~ AT 

CI V (Rn A AC A K) ... CO Rn iii (AC A K) ... Rn 

CI V (M A AC A K) ... CO M iii (AC /\ K)'" AT 

CI V (AT A I A K) ... CO AT iii (I A K)'" AT 

1. 2'5 complement arithmetic adds 111 ... 11 to perform subtraction of 000 ... 01. 

2. Rn includes T and AC as source and destination registers in R-group 1 micro-functions. 

3. Standard arithmetic carry output values are generated in F-group 0, 1, 2 and 3 instructions. 

SYMBOL 

I, K,M 
CI, II 

CO, RO 
Rn 
AC 
AT 

MAR 
L, H 

+ 

/\ 

V 

(ji 

MEANING 

Data on the I, K, and M busses, respectively 
Data on the carry input and left input, respectively 
Data on the carry output and right output, respectively 
Contents of register n including T and AC (R-Group I) 
Contents of the accumulator 
Contents of AC or T, as specified 
Contents of the memory address register 
As subscripts, designate low and high order bit, respectively 
2's complement addition 
2's complement subtraction 
Logical AND 
Logical OR 
Exclusive-NOR 
Deposit into 
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APPENDIX B ALL-ZERO AND ALL-ONE K-BUS MICRO-FUNCTIONS 

K·BUS = 00 MICRO·FUNCTION 

Rn + CI .... Rn. AC 

M + CI .... AT 

ATL .... RO ATH .... ATL LI .... ATH 

Rn .... MAR Rn + CI .... Rn 

M .... MAR M+CI-+AT 

AT+ CI .... AT 

CI-1 .... Rn See Note 1 

CI-1--AT See Notes 1,4 

(See CSA above) 

Rn + CI -- Rn 

(See ACM above) 

AT + CI .... AT 

CI .... CO 0 .... Rn 

CI->CO 0"" AT 

(See C LA above) 

(See CLR above) 

(See C LA above) 

(See C LA above I 

CI"'CO Rn'" Rn 

CI"'CO M""AT 

(See NOP above) 

CI--CO R;; .... Rn 

CI""CO M"'AT 

CI""CO AT"" AT 

MNEMONIC 

ILR 

ACM 

SRA 

LMI 

LMM 

CIA 

CSR 

CSA 

INR 

INA 

CLR 

CLA 

NOP 

LMF 

CMR 

LCM 

CMA 

K·BUS = 11 MICRO·FUNCTION 

AC + Rn + CI .... Rn. AC 

M + AC + CI .... AT 

(See Appendix AI 

11 .... MAR Rn - 1 + CI-- Rn 

11 .... MAR M - 1 + CI .... AT 

AT-1 + CI->AT 

AC - 1 + CI-> Rn See Note 1 

AC -1 + CI'" AT See Notes 1.4 

1- 1 + CI-- AT 

AC + Rn + CI -- Rn 

(See AMA above) 

I+AT+CI->AT 

CI v (Rn II AC) -> CO Rn II AC -> Rn 

Cl.v (M II ACI ... CO MIIAC""AT 

CI v (AT II I)'" CO AT II I'" AT 

CI v Rn'" CO Rn'" Rn 

CI v M "'CO M"'AT 

CI v AT'" CO AT -+AT 

CI v AC"'CO Rn v AC'" Rn 

CI v AC"'CO M v AC"'AT 

CI v I'" CO I v AT'" AT 

CI v (Rn AC)"'CO Rn iii AC'" Rn 

Clv (M AC)"'CO Miii AC"'AT 

Clv (AT I)--CO I iii AT--AT 

4. The more general operations. CSR and SDR. should be used in place of the CSA and SDA operations. respectively. 
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3002 

MNEMONIC 

ALR 

AMA 

DSM 

LDM 

DCA 

SDR 

SDA 

LDI 

ADR 

AlA 

ANR 

ANM 

ANI 

TZR 

LTM 

TZA 

ORR 

ORM 

ORI 

XNR 

XNM 

XNI 



3002 

APPENDIX C FUNCTION AND REGISTER GROUP FORMATS 

FUNCTION 
GROUP F6 5 4 

0 0 0 0 
1 0 0 1 
2 0 0 
3 0 1 1 
4 0 0 
5 0 1 
6 1 0 
7 1 1 

REGISTER 
GROUP REGISTER F3 2 0 

RO 0 0 0 0 
R, 0 0 0 1 
R2 0 0 0 
R3 0 0 1 1 
R4 0 0 0 
RS 0 0 1 
R6 0 0 
R7 0 1 1 1 
RS 1 0 0 0 
Rg 0 0 1 
T 1 0 0 
AC 1 0 1 

T 0 0 
II AC 0 

T 0 
III AC 1 
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The INTEL (!) 3003 Look·Ahead Carry 
Generator (LCG) is a high speed circuit 
capable of anticipating a carry across a 
full 16-bit 3002 Central Processing 
Array. When used with a larger 3002 
CP Array multiple 3003 carry generators 
provide high speed carry look·ahead 
capability for any word length. 

The LCG accepts eight pairs of active 
high cascade inputs (X, V) and an active 
low carry input and generates active 
10\'11 carries for up to eight groups of 
binary adders. 

SCHOTTKY 
BIPOLAR LSI 
MICROCOMPUTER 
SET 

High Performance - 10 ns typicel 
propagation dalay 

Compatible with INTEL 3001 MCU 
and 3002CPE 

DTL and TTL compatible 

Full look-ahead across 8 adders 

Low voltage diode input clamp 

Expandable 

28-pin DIP 
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3003 
LOOK-AHEAD 
CARRY 
GENERATOR 

PACKAGE CONFIGURATION 

Y7 Vee 
x7 YI 

ECn+ 8 28 Xs 
Cn+1 Cn+ 7 

Xs Xl 

X. Y2 

Ys INTEL- Cn+. 
3003 

Y. Y, 

Cn+S X, 

X3 "0 
Y3 11 Yo 

Cn+" en 

en +2 '3 en +3 

GND ,. Cn+ 1 



3003 

LOGIC DIAGRAM 

ECn+ 8 
.... ..... 

PIN DESCRIPTION 
V7 
X7 

PIN SYMBOL 
NAME AND 

TYPE 
FUNCTION 

R=-= }--

1,7,8,11 YO-Y7 Standard carry Active 
18,21,23 look-ahead HIGH 
27 inputs 

2,5,6,10 XO-X7 Standard carry Active 
19,20,24 look-ahead HIGH 
26 inputs 

17 Cn Carry input Active 
LOW 

:;;;; 

=;= ~ 

~ 
4,9,12 Cn+l- Carry outputs Active Vs 

Xs 
13,15,16 Cn+8 LOW Vo 

3 ECn+8 Cn+8 carry Active 
Xs 
v. 

output enable HIGH X. 
V3 

28 Vee +5 volt supply X3 

V2 

14 GND Ground X2 

v, 
X, 

Vo 

Xo 

Cn 
-rt=r>-.... 

to'" -
3003 LOGIC EQUATIONS 

The 3003 Look-Ahead Generator is implemented in a compatible form for direct connection to the 3001 MCU and 3002 CPE. 
Logic equations for the 3003 are: 

Cn +.7 = Y SXS + Y SY5X5 + Y SY5Y 4X4 + YSY5Y 4Y3X3 + YSY5Y 4Y3Y2X2 + Y6Y5Y4Y3Y2Y1Xl + Y SY5Y 4Y3Y 2Y lYOXO 

+YSY5Y4Y3Y2Y1YOCn 

Cn + 8 = High Impedance State when ECn + 8 Low 

Cn + 8 = Y7X7 + Y7YSXS + Y7YSY5X5 + Y7YSY5Y4X4 + Y7YSY5Y 4Y3X3 + Y7YSY5Y 4Y3Y2X2 + Y7YSY5Y4Y3Y2Y1Xl 

+ Y7Y SY5Y 4Y3Y2Y l YOXO + Y7YSY5Y 4Y3Y2Y 1 YOGn when ECn + 8 high 
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D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias 

Storage Temperature 

All Output and Supply Voltages. 

All Input Voltages 

Output Current . 

3003 

. . o°C to 70°C 

-65°C to +160°C 

-0.5V to +7V 

-1.0V to +5.5V 

100mA 

·COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is 
not implied. 

T A = O°C to +70°C VCC = 5.0V ±5% 

SYMBOL PARAMETER MIN. TYP.(1) MAX. UNIT CONDITIONS 

Vc Input Clamp Voltage (All 
Input Pins) 

-O.B -1.0 V 'C = -5 mA 

'F Input Load Current: 

X6,X7Cn,ECn + 8 -0.07 -0.25 mA VF = 0.45V 

Y7,XO,X5, -0.200 -0.500 mA 

YO'Y6 -0.6 -1.5 mA 

'R Input Leakage Current: 
Cn and ECn + 8 40 jJ.A VR = 5.25V 
All Other Inputs 100 jJ.A 

V,L Input Low Voltage 0.8 V VCC = 5.0V 

V,H Input High Voltage 2.0 V VCC = 5.0V 

ICC Power Supply Current 80 130 mA All Y and ECn + 8 high, 
All X and Cn low 

VOL Output Low Voltage (All 0.35 0.45 V 10L = 4 mA 
Output Pins) 

VOH Output High Voltage (All 2.4 3 V 10H = -1 mA 
Output Pins) 

lOS Short Circuit Output Current 
(All Output Pins) -15 -40 -65 mA VCC = 5V 

'O(off) Off·State Output Current -100 jJ.A Vo = 0.45V 
(Cn + 8) +100 jJ.A Vo = 5.25V 

NOTE: 
(11 Typical values are for TA = 25°C and nominal supply voltage. 

A.C. CHARACTERISTICS 

TA = O°C to 70°C, VCC = +5V ± 5% 

SYMBOL PARAMETER MIN. TYP.(1) MAX. UNIT 

txc X, Y to Outputs 3 10 20 ns 

tcc Carry I n to Outputs 13 30 ns 

tEN Enable Time, Cn + 8 20 40 ns 

NOTE: 
(11 Typical values are for T A = 25°C and nominal supply voltage. 
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3003 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias -55·C to +125·C 

Storage Temperature -65·C to +160·C 

All Output and Supply Voltages. -0.5V to +7V 

All I nput Voltages -1.0V to +5.5V 

Output Current . 100mA 

·COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is 
not implied. 

TA = -55·Cto +125·C, Vee = 5.0V ±10%. 

SYMBOL PARAMETER MIN. TYP.(I) MAX. UNIT CONDITIONS 

Vc Input Clamp Voltage (All -0.8 -1.2 V IC = -5 mA 
Input Pins) 

IF Input Load Current: 
X6,X7,Cn,ECn+8 -0.07 -0.25 mA VF = 0.45V 
Y7,XO,X5, -0.200 -0.500 mA 
YO'Y6 -0.6 -1.5 mA 

IR Input Leakage Current: 
en and ECn + 8 40 IJA VCC = 5.25V, VR = 5.5V 
All Other Inputs 100 IJA 

VIL Input low Voltage 0.8 V VCC= 5.0V 

VIH Input High Voltage 2.1 V VCC = 5.0V 

ICC Power Supply Current 80 130 mA All Y and ECn + 8 high, 
All X and Cn low 

VOL Output Low Voltage (All 0.35 0.45 V 10l = 4 mA 
Output Pins) 

VOH Output High Voltage (All 2.4 3 V 10H = -1 mA 
Output Pins) 

lOS Short Circuit Output Current 
(All Output Pins) -15 -40 -65 mA VCC = 5V 

10(off) Off·State Output Current -100 IJA VO=0.45V 
(Cn + 8) +100 IJA VO= 5.5V 

NOTE: 
(1) Typical values are for T A = 25°C and nominal supply voltage. 

A.C. CHARACTERISTICS 

TA = -55·C to +125·C, Vee = +5.0V ±10% 

SYMBOL PARAMETER MIN. TYP.(I) MAX. UNIT 

txc X. Y to Outputs 3 10 25 ns 

tcc Carry I n to Outputs 13 40 ns 

Enable Time. Cn + 8 20 50 ns 

NOTE: 
(11 Typical values are for TA = 25°C and nominal supply voltage. 
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3003 

WAVEFORMS 

X,V INPUTS 

G .. =*.....---
________________ ~*~I~.~---------~----------~-e------~----.--! __________ __ 

NOTE: ALTERNATE TeST LOAD: 

Cn INPUT ------- Vee 

~'0' 
Cn.a OUT 

,. ----.-;~-tEN1-r--.. ,~,J::.::"-1-j~ ____ T VOH 

Cn.8 OUTPUT I . _ ~ t 
__________ J t VOL 

SYMBOL 

NOTE: 

Input Capacitance 

Output Capacitance 

PARAMETER 

All inputs 

Cn + 8 

MIN 

O.SV 

TYP 

12 

7 

MAX 

20 

12 

(21 This parameter is periodically sampled and is not 100% tested. C.ondition 01 measurement is 1 = 1 MHz, VBIAS = S.OV, 
VCC = S.OV and TA = 25°C. 

TEST CONDITIONS: 

Input pulse amplitude of 2.5V. 
Input rise and fall times of 5 ns between 1 and 2 volts. 
Output loading is 5 mA and 30 pF. 
Speed measurements are made at 1.5 volt levels. 

TEST LOAD CIRCUIT: Vee 

OUT o--~---+ 

" 

UNIT 

pF 

pF 

= 3O.F 2. 
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3003 

TYPICAL A.C. AND D.C. CHARACTERISTICS 
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3003 

TYPICAL CONFIGURATIONS 

The 3003 LCG can be directly tied to the 3001 MCU and a 3002 CP array of any word length. The following figures represent 
typical configurations of 16· and 32-bit CP arrays. Figures 1 and 2 illustrate use of the 3003 in a system where the carry output 
(CO) to the 3001 MCU is rippled through the high order CPE slice. Figure 3 illustrates use of the 3003 in a system where tri·state 
output Cn+8 is connected directly to the flag input on the 3001 MCU. Cn+8 is disabled during shift right by decoding that instruction 
externally. thus multiplexing Cn+8 with the shift right (RO) output of the low order CPE slice. 

CARRY 
FROM 
3001 

CARRY 

Een + 8 

TO +-~--________________________________________ ~ 

3001 

Figure 1. Carry Look-Ahead Configuration with Ripple through the Left Slice U6-Bit Array) 

... 
F;" 

... 
F3 

F, 
F, 

CARRY 
FROM 
M3IlOl 

-5V 

Ec" +8 

~~RRV~-+ ______________________________________________________________________________________ ~ 

M3IlOl 

Figure 2. Carry Look-Ahead Configuration with No Carry Ripple through the Left Slice (32-Bit Array) 
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The INTE~3212 Multi-Mode Latch 
Buffer is a versatile 8-bit latch with 
three-state output buffers and built-in 
device select logic. It also contains an 
independent service request flip-flop 
for the generation of central processor 
interrupts. Because of its multi-mode 
capabilities, one or more 3212's can 
be used to implement many types of 
interface and support systems for Series 
3000 computing elements including: 

Simple data latches 

Gated data buffers 

Multiplexers 

Bi-directional bus drivers 

Interrupting input/output ports 

MICRO 
PROGRAM 
MEMORV 

CQNTROL "0 
MEMORV 110 

Figure 1_ Block Diagram of a Typicel System 

SCHOTTKY 
BIPOLAR LSI 
MICROCOMPUTER 
SET 

High Performance - 50 ns Write Cycle 
Time 

Low Input Load Current - 250 JJ.A 
Maximum 

Three-State Fully Buffered Outputs 

High Output Drive Capability 

Independent Service Request Flip­
Flop 

Asynchronous Data Latch Clear 

24 Pin DIP 

M'fMOR'" 
"');l-:''''''~S aus 

INSTRUCTION BUS 
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3212 
MULTI-MODE 
LA TCH BUFFER 

PACKAGE CONFIGURATION 

OSI • 24 Vcc 

MO 
23 

INT 

011 22 
DiS 

001 
4 21 

DOS 

012 
INTEL@ 20 

01 7 3212 

002 
19 

007 

013 
IS 

016 

003 
17 

006 

014 
16 

015 

004 10 15 
005 

5TB 
11 14 

CLR 

GNO 
12 13 

OS2 

't)Ptt..~ l!trr.. ~V'..o"" u ... ~ po., ~"()V\ 
""'t'W\o"" 't)'C.. ...... ,c'C..'S. 



3212 

PIN DESCRIPTION 

PIN SYMBOL 

OS1 

2 MO 

3,5,7,9, 011- 01 S 
16, lB, 20, 
22 

4,6, B,10, 001-00S 
15,17,19, 
21 

11 STB 

12 GNO 

13 

14 CLR 

23 INT 

NOTE: 

NAME AND FUNCTION 

Device Select Input 1 

Mode Input 

When MO is high (output mode) the output buffers are enabled and the 
write signal to the data latches is obtained from the device select logic. 
When MO is low (input mode) the output buffer state is determined bV 
the device select logic and the write signal is obtained from the strobe 
(STB) input. 

Data Inputs 

The data inputs are connected to the O-inputs of the data latches. 

Data Outputs 

The data outputs are the buffered outputs of the eight data latches. 

Strobe Input 

When MO is in the LOW state, the STB input provides the clock input 
to the data latch. 

Ground 

Device Select Input 2 

When OS1 is low and OS2 is high, the device is selected. 

Clear 

Interrupt Output 

The interrupt output will be active LOW (interrupting state) when 
either the service request flip-flop is low or the device is selected. 

(1) Active HIGH, unless otherwise specified. 
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FUNCTIONAL DESCRIPTION 

The 3212 contains eight D·type data 
latches, eight three·state output buf· 
fers, a separate D·type service request 
flip·flop, and a flexible device select! 
mode control section. 

DATA LATCHES 

The Q·output of each data latch will 
follow the data on its corresponding 
date input line (DI,-Dls) while its 
clock input is high. Data wi II be 
latched when the internal write line WR 
is brought low. The output of each 
data latch is connected to a three·state, 
non·inverting output buffer. The in· 
ternal enable line EN is bussed to each 
buffer. When the EN is high, the buf· 
fers are enabled and the data in each 
latch is available on its corresponding 
data output line (DOo-DOS )' 

DEVICE SELECT LOGIC 

Two input lines DS, and D'S2 are pro· 
vided for device selection. When DS, 
is low and DS2 is high, the 3212 is 
selected. 

MODE CONTROL SECTION 

The 3212 may be operated in two 
modes. When the mode input line MD 
is low, the device is in the input mode. 
In this mode, the output buffers are 
enabled whenever the 3212 is selected; 
the internal WR line follows the STB 
input line. 

When M D is high, the device is in the 
output mode and, as a result, the out· 
put buffers are enabled. In this mode, 
the write signal for the data latch is 
obtained from the device select logic. 

SERVICE REQUEST FLIP·FLOP 
AND STROBE 

The service request flip-flop SR is used 
to generate and control central proces· 
sor interrupt signals. For system reset, 
the SR flip·flop is placed in the non· 
interrupting state (i.e., SR is set) by 
bringing the CLR line low. This simul· 
taneously clears (resets) the 8·bit data 
latch. 

The Q output of the SR flip·flop is 
logically ORed with the output of 
device select logic and then inverted 
to provide the interrupt output INT. 
The 3212 is considered to be in the in· 
terrupting state when the INT output 
is low. This allows direct connection 
to the active LOW priority request in· 
puts of the INTEL<I>3214 Interrupt 
Control Unit. 

3212 

When operated in the input mode (i.e., 
MD low) the strobe input STB is used 
to synchronously write data into the 
data latch and place the SR flip·flop in 
the interrupting (reset) state. The in· 
terrupt is removed by the central pro· 
cessor when the interrupting 3212 is 
selected. 

1---------------1 
I I 
I I 
I I 
I I 

STB::+===::t::;:===!f:> ~ I 
D~ I 
052 

INT 

0" I-++--r>-~DOI 

012 1-4--1--1'">4-002 

013 

01. 

DiS 

01. 

01, H-+--f>-"':"'-oo, 

01, 1-4--1'"> ........ DO, 

CLR 

L 

M3212 Logic Diagram 
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3212 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias ...................................................... O°C to 70°C 

Storage Temperature ...... . 

All Output and Supply Voltages. 

All Input Voltages 

Output Currents 

.. _65°C to +160°C 

. ... -0.5V to +7V 

. -1.0V to +5.5V 

..... 100mA 

·COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating 
only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification 
is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. 

T A .. aOc to +75°C Vee = +5V ±5% 

Symbol Parameter Min. Typ. Max. Unit Conditions 

IF Input Load Current -.25 mA VF = .45V 
STB, 052, CLR, 01,-0IS Inputs 

IF Input Load Current -.75 mA VF .45V 
MO Input 

IF I nput Load Current -1.0 mA VF .45V 
OS, Input 

IR Input Leakage Current 10 IlA VR 5.25V 
STB, OS,CLR, 01,-0ISlnputs 

IR I nput Leakage Current 30 IlA VR 5.25V 
MO Input 

IR I nput Leakage Current 40 IlA VR 5.25V 
05, Input 

Ve Input Forward Voltage Clamp -1 V Ie -5 mA 

VIL Input "Low" Voltage .85 V 

VIH Input "High" Voltage 2.0 V 

VOL Output "Low" Voltage .45 V 10L 15mA 

VOH Output "High" Voltage 3.65 4.0 V 10H -1 mA 

Ise Short Circuit Output Current -15 -75 mA Vee = 5.0V 

1101 Output Leakage Current 20 IlA Vo = .45V/5.25V 
High I mpedance State 

lee Power Supply Current 90 130 mA 
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A.C. CHARACTERISTICS TA - ooc to 75°C, VCC = +5.0V ± 5% 

Symbol Paramatar Min. Typ. 

tpw Pulse Width 25 

tpD Data To Output Delay 

twE Write Enable To Output Delay 

tSET Data Setup Time 15 

tH Data Hold Time 20 

tR Reset To Output Delay 

ts Set To Output Delay 

tE Output Enable Time 

tc Clear To Output Display 

TEST CONDITIONS: 

Input pulse amplitude of 2.5 volts. 
Input rise and fall times of 5 ns between 1 volt and 2 volts. 
Output load of 15 mA and 30 pF. 
Speed measurements are taken at the 1.5 volt level. 

CAPACITANCE(1I 

Symbol Test 
Min. 

CIN OS,. MD Input Capacitance 

CIN DS2, CLR, STB, 0I 1-DIS 
I nput Capacitance 

COUT D01-DOS Output Capacitance 

NOTE: 

LIMITS 

Typ. 

9 

5 

B 

Max. Unit 

ns 

30 ns 

40 ns 

ns 

ns 

40 ns 

30 ns 

45 ns CL = 30 pf 

45 ns 

TEST LOAD CIRCUIT: 

Vee 

300n 

our 0--_--+ 
30pF 

Max. Units 

12 pf 

9 pf 

12 pf 

11) This parameter is periodicallv sampled and is not 100% tested. Condition 01 measurement is 1 = 1 MHz. VSIAS = 2.SV. VCC = SV and 
TA = 25°C. 
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3212 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias .................................................. -55°C to +125°C 

Storage Temperature ...... . 

All Output and Supply Voltages. 

All Input Voltages 

Output Currents 

. .. -0.5V to + 7V 

. -1.0V to +5.5V 

..... 100 mA 

·COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating 
only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification 
is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. 

TA = _55°C to +125°C; Vee = 5.0V ±10% 

Symbol Parameter Min. Typ. Max. Unit Conditions 

IF I nput Load Current -.25 mA VF = .45V 
STB, OS2, CLR, OI,-OIS Inputs 

IF Input Load Current -.75 mA VF .45V 
MO Input 

IF I nput Load Current -1.0 mA Vrf. .45V 
OS, Input 

IR I nput Leakage Current 10 f.l.A VR 5.5V 
STB, OS, CLR, OI,-OIS Inputs 

IR I nput Leakage Current 30 f.l.A VR 5.5V 
MO Input 

IR Input Leakage Current 40 f.l.A VR 5.5V 
OS, Input 

Ve Input Forward Voltage Clamp 1.2 V Ie -5 mA 

V 1L Input "Low" Voltage .80 V 

VIH Input "High" Voltage 2.0 V 

VOL Output "Low" Voltage .45 V 10L = 10mA 

VOH Output "High" Voltage 3.5 4.0 V 10H = .5mA 

Ise Short Circuit Output Current -15 -75 mA Vee = 5.0V 

1101 Output Leakage Current 20 f.l.A Va = .45V/5.5V 
High Impedance State 

lee Power Supply Current 90 145 mA 

2-44 



A.C. CHARACTERISTICS TA = -55°C to +125°C. Vee = 5.0V ± 10% 

Symbol Parametar Min. Typ. 

tpw Pulse Width 40 

tpo Data To Output Delay 

tWE Write Enable To Output Delay 

tSET Data Setup Time 20 

tH Data Hold Time 30 

tR Reset To Output Delay 

ts Set To Output Delay 

tE Output Enable Time 

tc Clear To Output Display 

TEST CONDITIONS: 

Input pulse amplitude of 2.5 volts. 
Input rise and fall times of 5 ns between 1 volt and 2 volts. 
Output load of 15 mA and 30 pF. 
Speed measurements are taken at the 1.5 volt level. 

CAPACITANCE I1} 

Symbol Test 
Min. 

CIN 051• MD Input Capacitance 

CIN DS2. CLR, STB, Oil-Dis 
I nput Capacitance 

COUT DO I-DOS Output Capacitance 

NOTE: 

LIMITS 

Typ. 

9 

5 

8 

Max. 

12 

9 

12 

ArIL/~ 3212 

Max. Unit 

ns 

30 ns 

50 ns 

ns 

ns 

55 ns 

35 ns 

50 ns CL 30 pf 

55 ns 

TEST LOAD CIRCUIT: 

Vcc 

300n 

OUTo--_--t 

30 pF 600n 

Units 

pf 

pf 

pf 

111 This parameter is periodicallv sampled and is not 100% tested. Condition of measurement is f = 1 MHz. VSIAS = 2.SV. Vee = SV and 
TA = 2Soe. 
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3212 

WAVEFORMS 

DATA ,o5vX-------------y5v 
-------' ° I;=='PW 'I' 'H ~'------

STBodis,. DS2 'o5Vl \'5V 
I ~---------------

____________ I4--__ '_W_E=j , __________ _ 
OUTPUT _______________ --' X'-'_o5V _________ _ 

OUTPUT 

DO 

DATA ,5VX- ------------- --Y'5V 
-------.../ I-- 'SET r 'H '.I '----

STB .. OS, • 052 '5V\'-____________ _ 
'PDo-j 

!,------------
OUTPUT _________ __ -I X'-:_5V _______________ _ 

STB _____ -J~~'o_5V ____________________ _ 
-~l 

NOTE: ALTERNATIVE TEST LOAD _0 'R -< 

~
VCC'0K 

OUT 

CL lK 
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TYPICAL A.C. AND D.C. CHARACTERISTICS 

INPUT CURRENT vs. INPUT VOLTAGE 
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OUTPUT CURRENT VS. OUTPUT "LOW" VOLTAGE 
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3212 

TYPICAL CONFIGURATIONS 

GATED BUFFER (TRI·STATE) 

VCC---r-------.----;:~~_, 
STB 

INPUT 
DATA 
(250 "A) 

;3212 

L-__________ ~ CLR 

GND 
GATING { 
CONTROL 
(DS1.DS2) ----------------' 

INPUT 
STROBE 

SYSTEM 
INPUT 

SYSTEM 
RESET 

INTERRUPTING INPUT PORT 

STB 

DATA 
BUS 

OUTPUT 
DATA 
(!5mAI 
(3.65V MINI 

t---- T~c~~~~ IE~W) 

SYSTEM 
INTERRUPT 

DR 
TO CPU 
INTERRUPT INPUT 

OUTPUT PORT (WITH HAND·SHAKING) 

DATA 
BUS 

,....------ OUTPUT STROBE 

STB 

SYSTEM OUTPUT 

SYSTEM RESET 

} 
PORT SELECTION 
(LATCH CONTROL) 1........::..:'--____ - (DS\.DS21 
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DATA 
BUS 

DATA BUS 
CONTROL 
(0: L - RI 
(I: R - LI 

BI·DIRECTIONAL BUS DRIVER 

.I.. 

STB 

'" 1 ;3212 

" I. ~ 

r-< CLR 

-- G~D L..-

STB 

;3212 V-

L 
.... 

CLR 

L-...J ~ 
GND 

,L 
DATA 

BUS 



The Intel"'3214 Interrupt Control Unit 
(ICU) implements multi-level interrupt 
capability for systems designed with 
Series 3000 computing elements. 

The ICU accepts an asynchronous in­
terrupt strobe from the 3001 Micro­
program Control Unit or a bit in 
microprogram memory and generates 
a synchronous interrupt acknowledge 
and an interrupt vector which may be 
directed to the MCU or CP Array to 
uniquely identify the interrupt source. 

The ICU is fully expandable in 8-level 
increments and provides the following 
system capabilities: 

Eight unique priority levels per ICU 

Automatic Priority Determination 

Programmable Status 

N-Ievel expansion capability 

Automatic interrupt vector genera­
tion 

SCHOTTKY 
BIPOLAR LSI 
MICROCOMPUTER 
SET 

High Performance - 80 ns Cycle Time 

Compatible with Intel 3001 MCU and 
3002 CPE 

8-Bit Priority I nterrupt Request Latch 

4·Bit Priority Status Latch 

3-Bit Priority Encoder with Opan 
Collector Outputs 

DTL and TTL Compatible 

8-Level Priority Comparator 

Fully Expandable 

24-Pin DIP 
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PACKAGE CONFIGURATION 

•• Vcc ., ECS ., R, 

SGS R. 

IA R, 

ClK R, 

ISE R, 

At R, 

A, R, 
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3214 

PIN DESCRIPTION 

PIN 

1-3 

4 

5 

6 

7 

8-10 

11 

12 

13 

14 

15-22 

23 

24 

NOTE: 

SYMBOL 

SGS 

IA 

CLK 

ISE 

ELR 

GND 

ETLG 

ENLG 

ECS 

Vee 

NAME AND FUNCTION 

Current Status Inputs 

The Current Status inputs carry the binary value modulo 8 of the current 
priority level to the current status latch. 

Status Group Select Input 

The Status Group Select input informs the ICU that the current priority 
level does belong to the group level assigned to the ICU. 

Interrupt Acknowledge 

The Interrupt Acknowledge Output will only be active from the ICU 
(multi·ICU system) which has received a priority request at a level 
superior to the current status. It signals the controlled device (usually 
the processor) and the other ICUs OR·tied on the Interrupt Acknowledge 
line that an interrupt request has been recognized. 

The IA signal also sets the Interrupt Disable flip·flop (it overrides the 
clear function of the ECS input). 

Clock Input 

The Clock input is used to synchronize the interrupt acknowledge with 
the operation of the device which it controls. 

Interrupt Strobe Enable Input 

The Interrupt Strobe Enable input informs the ICU that it is authorized 
to enter the interrupt mode. 

Request Level Outputs 

When valid, the Request Level outputs carry the binary value (modulo 8) 
of the highest priority request present at the priority request inputs or 
stored in the priority request latch. The request level outputs can be­
come active only with the ICU which has received the highest priority 
request with a level superior to the current status. 

Enable Level Read Input 

When active, the Enable Level Read input enables the Request Level 
output buffers (Ao-A2)' 

Ground 

Enable This Level Group Input 

The Enable This Level Group input allows a higher priority ICU in multi­
ICU systems to inhibit interrupts within the next lower priority ICU 
(and all the following ICUs). 

Enable Next Level Group Output 

The Enable Next Level Group output allows the ICU to inhibit inter­
rupts within the lower priority ICU in a multi-ICU system. 

Priority Interrupt Request Inputs 

The Priority Interrupt Request inputs are the inputs of the priority 
Interrupt Request Latch, The lowest priority level interrupt request 
signal is attached to Ro and the highest is attached to R7. 

Enable Current Status Input 

The Enable Current Status input controls the current status latch 
and the clear function of the Interrupt Inhibit flip-flop. 

+5 Volt Supply 

(1) Active HIGH, unless otherwise noted. 

Active LOW 

Active LOW 

Active LOW 
Open·Coliector 
Output 

Active LOW 
Open·Coliector 

Active LOW 

Active LOW 

Active LOW 
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FUNCTIONAL AND LOGICAL DESCRIPTION 

The ICU adds interrupt capability to 
suitably microprogrammed processors 
or controllers. One or more of these 
units allows external signals called 
interrupt requests to cause the pro· 
cessor/controller to suspend execution 
of the active process, save its status, 
and initiate execution of a new task 
as requested by the interrupt signal. 

It is customary to strobe the ICU at 
the end of each instruction execution. 
At that time, if an interrupt request is 
acknowledged by the ICU, the MCU is 
forced to follow the interrupt micro· 
program sequence. 

Figure 1 shows the block diagram of 
the ICU. Interrupt requests pass 
through the interrupt request latch 
and priority encoder to the magnitude 
comparator. The output of the pri· 
ority encoder is the binary equivalent 
of the highest active priority request. 
At the comparator, this value is com· 
pared with the Current Status (cur· 
rently active priority level) contained 
in the current status latch. A request, 
if acknowledged at interrupt strobe 
time, will cause the interrupt flip·flop 
to enter the "interrupt active" state 
for one microinstruction cycle. This 
action causes the interrupt acknowl· 
edge (lA) signal to go low and sets the 
interrupt disable flip·flop. 
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The IA signal constitutes the interrupt 
command to the processor. It can 
directly force entry into the interrupt 
service routine as demonstrated in the 
appendix. As part of this routine, the 
microprogram normally reads the reo 
questing level via the request level out· 
put bus. This information which is 
saved in the request latch can be en· 
abled onto one of the processor input 
data buses using the enable level read 
input. Once the interrupt handler has 
determined the requesting level, it 
normally writes this level back into the 
current status register of the ICU. This 
action resets the interrupt disable flip· 
flop and acts to block any further 
request at this level or lower levels. 

Entry into a macro level interrupt ser· 
vice routine may be vectored using the 
request level information to generate a 
subroutine address which corresponds 
to the level. Exit from such a macro· 
program should normally restore the 
prior status in the current status latch. 

The Enable This Level Group (ETLG) 
input and the Enable Next Level Group 
(EN LG) output can be used in a daisy 
chain fashion, as each ICU is capable 
of inhibiting interrupts from all of the 
following ICUs in a multiple ICU 
configuration. 

.......-
REaUEST ACTIVITY -

~~ - -

The interrupt acknowledge flip-flop 
is set to the active LOW state on the 
rising edge of the clock when the 
following conditions are met: 

An active request level (Ro-R7) is 
greater than the current status 
Bo-B2 

The interrupt mode (lSE) is active 

ETLG is enabled 

The interrupt disable flip·flop is reset 

When active, the IA signal asynchron· 
ously sets the disable flip·flop and 
holds the requests in the request latch 
until new current status information 
(BO-B2, SGS) is enabled (ECS) into 
the current status latch. The disable 
flip·flop is reset at the completion of 
this load operation. 

During this process, ENLG will be en· 
abled only if the following conditions 
are met: 

ETLG is enabled 

The current status (SGS) does not 
belong to this level group 

There is no active request at this level 

The request level outputs Ao-A2 and 
the IA output are open·collector to 
permit bussing of these lines in multi· 
ICU configuration. 
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Figure 1. 3214 Block Diagram. 
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D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias 
Ceramic. . . . 
Plastic . . . . 

Storage Temperature 

All Output and Supply Voltages. 

All Input Voltages 

Output Currents . 

. -65°C to +75°C 

. . O°C to +75°C 

_65°C to + 160°C 

.-0.5V to +7V 

-1.0V to +5.5V 

. .. 100mA 

·COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not 
implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. 

TA = oOe to +75°C, Vcc = 5.0V ±5% 

SYMBOL PARAMETER 
LIMITS 

UNIT CONDITIONS 
MIN Typ(1) MAX 

Vc Input Clamp Voltage (all inputs) -1.0 V IC = -5 mA 

IF I nput Forward Current: ETLG input -.15 -0.5 mA VF = 0.45V 
all other inputs -.OS -0.25 mA 

IR Input Reverse Current: ETLG input 80 iJ.A VR = 5.25V 
all other inputs 40 iJ.A 

VIL Input LOW Voltage: all inputs 0.8 V VCC = 5.0V 

VIH Input HIGH Voltage: all inputs 2.0 V VCC = 5.0V 

ICC Power Supply Current (2) 90 130 mA 

VOL Output LOW Voltage: all outputs .3 .45 V 10L = 15 mA 

VOH Output HIGH Voltage: ENLG output 2.4 3.0 V 10H = -1 mA 

lOS Short Circuit Output Current: ENLG output -20 -35 -55 mA VCC = 5.0V 

ICEX Output Leakage Current: IA and 100 iJ.A VCEX = 5.25V 
AO-A2 outputs 

NOTES: 

11)Typical values are for T A = 25°C and nominal supply voltage. 

12)80-82, SGS, ClK, R0-R4 grounded, ali other inputs and ali outputs open. 
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A.C. CHARACTERISTICS 

TA z DoC to +75°e. Vee - +5V ± 5% 

SYMBOL PARAMETER 
liMITS 

UNIT 
MIN TYP(1) MAX 

ttv ClK Cycle Time 80 ns 

tpw ClK, ECS, IA Pulse Width 25 15 ns 

Interrupt Flip-Flop Next State Determination: 

tlSS ISE Set-Up Time to ClK 16 12 ns 

tlSH ISE Hold Time After ClK 20 10 ns 

tETCS2 ETlG Set-Up Time to ClK 25 12 ns 

tETCH 2 ETlG Hold Time After ClK 20 10 ns 

tECCS3 ECS Set-Up Time to ClK (to clear interrupt inhibit prior to ClK) 80 25 ns 

tECCH 3 ECS Hold Time After ClK (to hold interrupt inhibit) 0 ns 

tECRS3 ECS Set-Up Time to ClK (to enable new requests through the request latch) 110 70 ns 

tECRH 
3 ECS Hold Time After ClK (to hold requests in request latch) 0 

tECSS2 ECS Set-Up Time to ClK (to enable new status through the status latch) 75 70 ns 

tECSH 2 ECS Hold Time After ClK (to hold status in status latch) 0 ns 

tDCS2 SGS and B0-82 Set-Up Time to ClK (current status latch enabled) 70 50 ns 

tDCH2 SGS and 80-B2 Hold Time After ClK (current status latch enabled) 0 ns 

tRCS3 R0-R7 Set-Up Time to ClK (request latch enabled) 90 55 ns 

tRCH3 R0-R7 Hold Time After ClK (request latch enabled) 0 ns 

tiCS IA Set-Up Time to ClK (to set interrupt inhibit F_F. before ClK) 55 35 ns 

tCI ClK to IA Propagation Delay 15 25 ns 

Contents of Request Latch and Request Level Output Status Determination: 

tRIS4 R0-R7 Set·Up Time to IA 10 0 ns 

tRIH4 R0-R7 Hold Time After IA 35 20 ns 

tRA R0-R7 to A0-A2 Propagation Delay (request latch enabled) 80 100 ns 

tELA ElR to A0-A2 Propagation Delay 40 55 ns 

tECA ECS to A0-A2 Propagation Delay (to enable new requests through request latch) 100 120 ns· 

tETA ETlG to A0-A2 Propagation Delay 35 70 ns 
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A.C. CHARACTERISTICS (CON'T) 

SYMBOL 

NOTES: 

PARAMETER 

Contents of Current Priority Status Latch Determination: 

SGS and B0-B2 Set-Up Time to ECS 

SGS and 80-82 Hold Time After ECS 

Enable Next Level Group Determination: 

R0-R7 to EN LG Propagation Delay 

ETLG to EN LG Propagation Delay 

ECS to ENLG Propagation Delay (enabling new request through the 
request latch) 

ECS to ENLG Propagation Delay (enabling new SGS through status latch) 

(11 Typical values are for TA = 25°C and nominal supply voltage. 

(2) Required for proper operation if ISE is enabled during next clock pulse. 

(3) The~e times are not required for proper operation but for desired change in interrupt flip-flop. 

(4) Required for new request or status to be properly loaded. 

(5) tCY = tiCS + tCI 

MIN 

15 

15 

TEST CONDITIONS: TEST LOAD CI RCUIT 

Input pulse amplitude: 2_5 volts_ 

Input rise and fall times: 5 ns between 1 and 2 volts_ 

Output loading of 15 mA and 30 pf_ 

LIMITS 
Typ(l) 

10 

10 

45 

20 

85 

35 

300n 

Speed measurements taken at the 1_5 V levels_ 
OUT 0---..--------; 

CAPACITANCE(5) 

SYMBOL PARAMETER 

Input Capacitance 

Output Capacitance 

TEST CONDITIONS: 
VBIAS = 2_5V, Vee = 5V, TA = 25°C, f = 1 MHz 

NOTE: 

(5)This parameter is periodically sampled and not 100% tested_ 

3001 

MIN 

2-64 

lOOn 

LIMITS 
Typ(l) 

5 

7 

MAX 
UNIT 

ns 

ns 

70 ns 

25 ns 

90 ns 

55 ns 

MAX 
UNIT 

10 pf 

12 pf 



D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias 
CerDip . . . . . 

Storage Temperature 

All Output and Supply Voltages. 

All Input Voltages 

Output Currents . 

-55°C to +125°C 
-65°C to +160°C 

. . -0.5V to + 7V 

. -1.0V to +5.5V 

.•.•. 100mA 

·COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device: This is a stress rating only 
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not 
implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. 

TA = _55°C to +125°C; Vee = 5.0V ± 10% 

SYMBOL PARAMETER 
LIMITS 

UNIT CONDITIONS 
MIN TYPO) MAX 

Vc Input Clamp Voltage (all inputs) -1.2 V IC = -5 mA 

IF I nput Forward Current: ETLG input -.15 -0.5 mA VF = 0.45V 
all other inputs -.08 -0.25 mA 

IR I nput Reverse Current: ETLG input 80 /lA V R = 5.5V 
all other inputs 40 /lA 

V IL Input LOW Voltage: all inputs 0.8 V VCC = 5.0V 

VIH Input HIGH Voltage: all inputs 2.0 V VCC = 5.0V 

ICC Power Supply Current(2 ) 90 130 mA 

VOL Output LOW Voltage: all outputs .3 .45 V 10L = 10mA 

VOH Output HIGH Voltage: ENLG output 2.4 3.0 V 10H = -1 mA 

lOS Short Circuit Output Current: ENLG output -15 -35 -55 mA VCC= 5.0V 

ICEX Output Leakage Current: IA and 100 /lA VCEX = 5.5V 
A0-A3 outputs 

NOTES: 

(1)Typical values are for T A = 2SCl C and nominal supply voltage. 

12)80-82' SGS. elK. R0-R4 grounded. all other inputs and all outputs open. 
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3214 M41 
A.C. CHARACTERISTICS 

. ~r4RV· 

TA=-55°Cto+125°C; vee =5.0V± 10% 

SYMBOL PARAMETER 
LIMITS 

UNIT 
MIN Typ(l) MAX 

tcy ClK Cycle Time l51 85 ns 

tpw ClK. ECS. IA Pulse Width 25 15 ns 

Interrupt Flip-Flop Next State Determination: 

tlSS ISE Set-Up Time to ClK 16 12 ns 

tlSH ISE Hold Time After ClK 20 10 ns 

tETCS2 ETlG Set-Up Time to ClK 25 12 ns 

tETCH 2 ETlG Hold Time After ClK 20 10 ns 

tECCS3 ECS Set-Up Time to ClK (to clear interrupt inhibit prior to ClK) 85 25 ns 

tECCH 3 ECS Hold Time After ClK (to hold interrupt inhibit) 0 ns 

tECRS3 ECS Set-Up Time to ClK (to enable new requests through the request latch) 110 70 ns 

tECRH 
3 ECS Hold Time After ClK (to hold requests in request latch) 0 

tECSS2 ECS Set-Up Time to ClK (to enable new status through the status latch) 85 70 ns 

tECSH 2 ECS Hold Time After ClK (to hold status in status latch) 0 ns 

tDCS2 SGS and B0-B2 Set-Up Time to ClK (current status latch enabled) 90 50 ns 

tDCH 2 SGS and B0-82 Hold Time After ClK (current status latch enabled) 0 ns 

tRCS3 R0-R7 Set-Up Time to ClK (request latch enabled) 100 55 ns 

tRCH 3 R0-R7 Hold Time After ClK (request latch enabled) 0 ns 

tiCS IA Set-Up Time to ClK (to set interrupt inhibit F.F_ before ClK) 55 35 ns 

tCI ClK to IA Propagation Delay 15 30 ns 

Contents of Request Latch and Request Level Output Status Determination: 

tRIS4 R0-R7 Set-Up Time to IA 10 0 ns 

tRIH4 R0-R7 Hold Time After IA 35 20 ns 

tRA R0-R7 to A0-A2 Propagation Delay (request latch enabled) 80 100 ns 

tELA ElR to A0-A2 Propagation Delay 40 55 ns 

tECA ECS to A0-A2 Propagation Delay (to enable new requests through request latch) 100 130 ns 

tETA ETlG to A0-A2 Propagation Delay 35 70 ns 
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A.C. CHARACTERISTICS (CON'T) 

SYMBOL 

tECSN 

NOTES: 

PARAMETER 

Contents of Current Priority Status Latch Determination: 

SGS and B0-B2 Set-Up Time to ECS 

SGS and B0-82 Hold Time After ECS 

Enable Next Level Group Determination: 

R0-R7 to EN LG Propagation Delay 

ETLG to ENLG Propagation Delay 

ECS to ENLG Propagation Delay (enabling new request through the 
request latch) 

ECS to EN LG Propagation Delay (enabling new SGS through status latch) 

111 Typical values are for TA = 25°C and nominal supply voltage. 

121 Required for proper operation if ISE is enabled during next clock pulse. 

(3) These times are not required for proper operation but for desired change in interrupt flip-flop. 

(4) Required for new request or status to be properlv loaded. 

(51 tCY = tiCS + tCI 

MIN 

20 

20 

TEST CONDITIONS: TEST LOAD CIRCUIT 

Input pulse amplitude: 2.5 volts. 

Input rise and fall times: 5 ns between 1 and 2 volts. 

Output loadi ng of 15 rnA and 30 pf. 

LIMITS 
TYP(1) 

10 

10 

45 

20 

85 

35 

Vce 

300n 

Speed measurements taken at the 1.5V levels. 
OUT O--~-------1 

CAPACITANCE(5) 

SYMBOL PARAMETER 

Input Capacitance 

Output Capacitance 

TEST CONDITIONS: 
VBIAS = 2.5V, VCC = 5V, TA = 25°C, f = 1 MHz 

NOTE: 

(S)This parameter is periodically sampled and not 100% tested. 

30 pI 

MIN 
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LIMITS 
TYP(1) 

5 

7 

MAX 
UNIT 

ns 

ns 

70 ns 

30 ns 

110 ns 

55 ns 

MAX 
UNIT 

10 pf 

12 pf 
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TYPICAL CONFIGURATIONS 

The ICU has been designed for use 
with the INTEL Series 3000 Bipolar 
Microcomputer Set. It operates from 
the single common system clock and 
can accept an interrupt strobe (lSE) 
generated by the 3001 Micropgoram 
Control Unit or by a bit in micropro' 
gram memory as shown in Figures 2 
and 3. 

The ICU responds to interrupt reo 
quests of sufficient priority by enter· 
ing the interrupt active mode. Its 
output (lA) can be tied to the row 
enable input (ERA) of the 3001 MCU. 
This gates an alternate row address 
onto the microprogram memory ad· 

dress bus which forces the system to 
execute an interrupt handling routine. 
Alternatively, the ICU output can be 
used to directly modify the MCU jump 
instruction (AC inputs) so that the 
next microprogram address corresponds 
to the start of the interrupt routine 
rather than the start of the macroin· 
struction fetch sequence. Of course, 
in the case of this particular imple· 
mentation, the interrupt strobe must 
be generated one clock period earlier 
and the ISE output of the MCU 
should not be used. 

As shown in Figure 4, when several 
ICUs are used together to provide a 
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multiple of 8 priority levels, most con· 
trollines will be bussed. The Intel 
3205 Decoder may be used to decode 
the high order bits of the request level, 
the information being derived from 
the daisy·chain group level signals. 

As mentioned in the functional descrip­
tion, the request level information 
(Ao-A2) may be sent to the 3001 MCU 
or the 3002 CP array as a constant 
through the Mask (K) bus or as data 
through the memory (M) or data (I) 
busses. Similarly, the status informa­
tion can be generated by the CP array 
and carried to the ICU by the data (D) 
output bus of the CP array. 



TYPICAL CONFIGURATIONS (CON'T) 
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Figura 2. Interfacing 3214 with 3001. 

Interrupt strobe generated by MCU. 
Interrupt routine start address at column 15 row 31. 
Macro-instruction fetch start address at column 15 row 0. 
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Figura 3. Interfacing 3214 with 3001. 

3214 

I nterrupt strobe generated by the microprogram memory. 
Interrupt routine start address at column 14 row 0-
Macro-instruction fetch start address at column 15 row 0 . 

III 

r;:::=: 
r;::: 

r-

-
r--
r--

}a~. 
r----
A, ETlO ., ., -

32.4 Ao -
1CUfi'R_ 

I. 
A. 

ISE~ 

~l 

_,v 

ENABLE LEVEL READ 

INT ACKNOWLEDGE 
{TO ERA"'" Of MCUI 
INT STROBE FROM MCU OR 
MICROPROGRAM MEMORY 

Figura 4. Using Several 3214 Interrupt Chips to Provide more than Eight Priority Levels. 
(The 3214 at the upper right is used to encode the high order bits of the requesting level) 
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intel 

The INTE~3216 is a high-speed 4-bit 
Parallel, Bidirectional Bus Driver. Its 
three-state outputs enable it to isolate 
and drive external bus structures 
associated with Series 3000 systems 

The INTEL 3226 is a high-speed 4-bit 
Parallel, Inverting Bidirectional Bus 
Driver_ Its three-state outputs enable 
it to isolate and drive external bus 

structures associated with Series 3000 
systems_ 

The 3216/3226 driver and receiver gates 
have three state outputs with PNP 
inputs_ When the drivers or receivers 
are tri-stated the inputs are disabled, 
presenting a low current load, typically 
less than 40 /lamps, to the system bus 
structure_ 

LOGIC DIAGRAM 3216 

010 o----~I>-~---, 

DOoo-----i----<O----i----' 

0" o----j---jl>---j---, 

oo,o-----i----<O----i----' 

01, o-----i-~I>----i---, 

DO,o----j----<c.t----j----' 

OI,o----j---jI>---j---, 

DO,o----j----<c.t----j----' 

SCHOTTKY 
BIPOLAR LSI 
MICROCOMPUTER 
SET 

3216/3226 
PARALLEL 
BIDIRECTIONAL 
BUS DRIVER 

High Performance- 25 ns typical 
propagation delay 

PACKAGE CONFIGURATION 

Low Input Load Current-O_25 mA 
maximum 

High Output Drive Capability for 
Driving System Data Busses 

Three-State Outputs 

TTL Compatible 

16-pin DIP 
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LOGIC DIAGRAM 3226 
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3216/3226 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias 

Ceramic. 

Plastic 

Storage Temperature 

All Output and Supply Voltages. 

All Input Voltages 

Output Currents . 

_65°C to +75°C 

O°C to +75°C 

-65°C to +160°C 

-0.5V to +7V 

-1.0V to +5.5V 

125mA 

*COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is 
not implied. 

TA = O°C to +75°C, Vee = +5.0V ±5% 

Limit 
Symbol Parameter Min. Typ. Max. Unit Condition 

IF Input Load Current 
DCE, CS Inputs -0.15 -0.5 mA VF = 0.45V 
All Other Inputs -0.08 -0.25 mA 

IR Input Leakage Current 
DCE, CS Inputs 80 JlA VR = 5.25V 
01 Inputs 40 JlA 

Ve Input Clamp Voltage -1 V Ie = -5mA 

VIL Input Low Voltage 0.95 V Vee = 5.0V 

VIH Input High Voltage 2.0 V Vee = 5.0V 

VOLl Output Low Voltage 0.3 0.45 V DO Outputs 10L =15mA 
DO, DB Outputs DB Outputs 10L =25mA 

VOL2 Output Low Voltage 0.5 0.6 V DB Outputs 10L = 50mA 
DB Outputs Only 

VOHI Output High Voltage 3.65 4.0 V 10H=-lmA 
DO Outputs Only 

VOH2 Output High Voltage 2.4 3.0 V IOH=-10mA 
DB Outputs Only 

ISC Output Short Circuit Current 
DO Outputs -15 -35 -65 mA Vee =5.0V 
DB Outputs -30 -75 -120 mA 

1101 Output Leakage Current 
High I mpedance State 

DO Outputs 20 JlA Vo=0.45V /5.25V 
DB Outputs 100 JlA 

lee Power Supply Current 3216 95 130 mA 
3226 85 120 mA 

NOTE: TYPical values are for T A = 25°C 
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A.C. CHARACTERISTICS TA % O°C to +75°C, Vcc % +5.0V ±5% 

Symbol 

TpD' 

TpD2 

TE 

Parameter 

Input to Output Delay 
DO Outputs 

Input to Output Delay 
DB Outputs 

Output Enable Time 
DCE, CS 

Output Disable Time 
DCE, CS 

Min. 

3216 
3226 

3216 
3226 

3216 
3226 

NOTE: (1) Typical values are for TA = 25°C and nominal supply voltage. 

Limit 
Typ. 

15 
14 

19 
16 

42 
36 

16 

Max. Unit 

25 ns 
25 

30 ns 
25 

65 ns(21 

54 

35 ns(2) 

3216/3226 

Condition 

CL %30pF, R, %300n, 
R2%600n 

CL %300pF, R,%90n, 
R2%1BOn 

DO Outputs: CL %30pF, 
R,%300!U10Kn, 
R2%600nJ1Kn 

DB Outputs: CL %300pF, 
R,%90n/10Kn, 
R2%180nJ1 Kn 

DO Outputs: CL %5pF, 
R,%3QOnI10Kn, 
R2%600n/1Kn 

08 Outputs: CL %5pF, 
R,%90n/10Kn, 
R2%180n/1Kn 

(2) The test load circuit is set for worst case source and sink loading on the outputs. The two resistor values for Rl and R2 correspond to 
worst case sink and source loading, respectively. 

CAPACITANCE 12) TA = 25°C 

Limit 
Symbol Parameter Min. Typ. Max. Unit 

GIN I nput Capacitance 4 6 pF 

GoUT Output Capacitance 
DO Outputs 6 10 pF 
DB Outputs 13 18 pF 

Note: 
(2) This parameter is periodicallv sampled and is not '00% tested. 

Condition 01 measurement is 1 % , MHz. VBIAS % 2.5V, 
VCC = 5.0V and TA % 25°C. 

WAVEFORMS 

INPUTS 

OUTPUT 
ENABLE 

ourP'UTS 1.5V 

x_v 
I 

¥. 
'pd 

"I 
1.SV 

" 

"I J( 
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TEST CONDITIONS: 

Input pulse amplitude of 2.5V. 
I nput rise and fall times of 5 ns between 1 and 2 volts. 
Output loading is 5 mA and 10 pF. 
Speed measurements are made at 1.5 volt levels. 

TEST LOAD CI RCUIT: 

., 
OUT o--~-----~ 

., 

GNO 

O.5V 



3216/3226 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias 

Ceramic. . . . 

Storage Temperature 

All Output and Supply Voltages. 

All I nput Voltages 

Output Currents . 

-0.5V to +7V 

-1.0V to +5.5V 

125mA 

·COMMENT: Stresses above those listed under" Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is 
not implied. 

TA = -55°C to +125°C, Vee = +5.0V ±10% 

Limit 
Symbol Parameter Min. Typ. Max. Unit Condition 

IF I nput load Current 
DCE, CS Inputs -0.15 -0.5 mA VF = 0.45V 
All Other Inputs -0.08 -0.25 mA 

IR Input Leakage Current 
DCE, CS Inputs 80 /lA VR = 5.5V 
01 Inputs 40 /lA 

Ve Input Clamp Voltage -1.2 V Ie = -5mA 

VIL Input low Voltage M3216 0.95 V Vee = 5.0V 
M3226 0.90 V 

VIH Input High Voltage 2.0 V Vee = 5.0V 

VOLI Output Low Voltage 0.3 0.45 V DO Outputs 10L =15mA 
DO, DB Outputs DB Outputs 10L =25mA 

VOL2 Output Low Voltage 0.5 0.6 V DB Outputs 10L = 45mA 
DB Outputs Only 

VOH1 Output High Voltage 3.4 3.8 V IOH=-0.5mA 
DO Outputs Only IOW-2.OmA 

VOH2 Output High Voltage 2.4 3.0 V Iow-5mA 
DB Outputs Only 

ISC Output Short Circuit Current 
DO Outputs -15 -35 -65 mA Vee = 5.0V 
DB Outputs -30 -75 -120 mA 

1101 Output Leakage Current 
High I mpedance State 

DO Outputs 20 /lA Vo=0.45V/5.5V 
DB Outputs 100 /lA 

lee Power Supply Current M3216 95 130 mA 
M3226 85 120 mA 

NOTE: Typical values are lor T A = 2S'e 

2·64 



-------------------------------~~ A.C. CHARACTERISTICS TA = _55°C to +125°C, vcc = 5.0V ±10% 

Symbol Parameter Min. 

TpDl Input to Output Delay 
DO Outputs 

TpD2 Input to Output Delay M3216 
DB Outputs M3226 

TE Output Enable Time M3216 
M3226 

TO Output Disable Time M3216 
M3226 

NOTE: (1) Typical values are lor T A = 25°C and nominal supply voltage. 

Limit 
Typ. 

15 

19 
16 

42 
36 

16 
16 

Max. 

25 

33 
25 

75 
62 

40 
38 

Unit 

ns 

ns 

ns(2) 

ns(2) 

Condition 

CL =30pF, Rl =3000, 
R2=6000 

CL=300pF, Rl=90~ 
R2=1800 

DO Outputs: CL =30pF, 
R 1 =3000/1 OKO, 
R2=6000/1KO 

DB Outputs: CL =300pF, 
Rl=900/10KO, 
R2=1800/1KO 

DO Outputs: CI,. =5pF, 
R 1 =3000/1 OKO, 
R2=6000/1 KO 

DB Outputs: CL =5pF, 
R 1 =900/1 OKO, 
R2=1800I1KO 

(2) The test loed circuit is set lor worst case source and sink loading on the outputs. The two resistor values for Rl and R2 correspond to 
worst case sink and source loading, respectively. 

CAPACITANCE(2) TA = 2SoC 

Limit 
Symbol Parameter Min. Typ. Max. Unit 

CIN I nput Capacitance 4 6 pF 

toUT Output Capacitance 
DO Outputs 6 10 pF 
DB Outputs 13 18 pF 

Note: 
(2) This parameter is periodically sampled and is not 100% tested. 

Condition 01 measurement is 1= 1 MHz, VBIAS = 2.5V, 
Vcc = 5.0V and T A = 25° C. 

WAVEFORMS 

TEST CONDITIONS: 

Input pulse amplitude of 2.SV. 
Input rise and fall times of S ns between 1 and 2 volts. 
Output loading is 5 mA and 10 pF. 
Speed measurements are made at 1.5 volt levels. 

TEST LOAD CIRCUIT: 

A, 

OOT~ __ ~--------~ 

A, 

INPUTS ____ --'X\.'_5V......, ______________ _ 
I· Ipd • I OND 

~~!:~~ _XI.~~I'_'V ---JL 
- 'E I ~ T xr---->== =r V

OH 

-----------' I VOL 

OUTPUTS 1.5V 

O.5V 
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Series 3000 
System Timing 
Considerations 

by Gary Fielland 

While the timing for each component in Intel's 3000 
Series Schottky Bipolar Microcomputer Set is clearly 
specified, the composite system timing must be de­
rived. This system timing is highly dependent on the 
particular configuration implemented, and hence, 
must be carefully considered for each implementa­
tion. 

Though Intel cannot generate the system timing for 
every possible configuration, an effort has been 
made to study a few simple variations. By examining 
these examples and taking note of considerations 
given, it should be easier for the system designer to 
realize those times which are critical, and to gene­
rate the appropriate timing for his particular system. 

The designer must consider many different factors in 
determining this "proper" system timing. Several 
simplifications are made to facilitate this discussion. 
Intel commercial grade parts are specified over a 
wide temperature range (O°C - 70°C) and so varia­
tions in timing due to temperature will not be con­
sidered, except for a short note at the end. 

Whenever a signal must traverse a conductor between 
two points, there is a finite delay introduced into 
the signal path that is not accounted for by any data 
sheet. This is the delay due to such factors as the 

MICRO· 
PROGRAM 

System Timing 

length of the conductor, its transmission properties, 
and the characteristics of the driver and receiver. 
When a TTL totempole output drives a TTL input a 
short distance away this delay is usually negligible 
compared to other delays in the signal path. How­
ever, if there are many loads (increasing the capaci­
tance), or the driver is of the open-collector type 
(limiting the drive), or if the receiver is physically far 
removed, the designer should consider and allow for 
any possible deleterious effects of this delay. For this 
discussion, except in one special case, the delay in­
troduced by interconnection is not considered. 

Aside from these simplifications, it should be realized 
that this note is not an extensive study of the timing 
of any particular system, but rather a compendium 
of typical considerations which a designer might 
examine. 

Consider the basic "data sheet" I6-bit processor con­
figuration as shown in Figure 1. It utilizes pipeline 
registers, full carry look-ahead, and a priority inter­
rupt mechanism. To implement any such system the 
designer must be very careful to provide the proper 
timing for all components under all possible operat­
ing conditions. Such a system is highly complex and 
the analysis is best approached in a piecemeal fashion. 

t t 
PIPELINE F)1.6 "oUT DOUT "N 

MEMORY REGISTERS K BUS 16 BIT M,N I---

INTERRUPT 

STEM SY 
CL OCK 

VECtOR 
+Vcc 

j 1 
CK AB·2 

ICU 
ISE I--

3214 

IAI------

RiI·7 B8'·2 

INTEJRUPT 
t 

REQUESTS 

16 3601·1·S 
OR I---4 3604'S 

ADDRESS 

l 
CK MA8·4 MA3·B 

ISE 
AC6-9 --

MCU FC9·3 
3001 FO 

ERA 
FI 

SX9·PX7 

t 

Figure 1. Basic 16-Bit Processor Configuration 

74S174 

I 

3-1 

CK 

I 
MEMORY 
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CK 
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t 
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J~"+' Cn+8 

CPE ARRAY 
3OO2'S 

XY 

1 
CARRY XY 

LOOK-AHEAD 
3003 

ROI---

Cli-

C"~ 

OTHER 
DATA 



System Timing 

ARITHMETIC DELAY PATHS 

First an analysis will be made of the arithmetic paths 
and delays. Imagine cycles in which arithmetic is 
being done within the CPE array. The carrys must 
have time to propagate through the arithmetic por­
tion and reach the MCU so that a conditional jump 
may be made based on that carry out bit. For the 
moment ignore other critical paths, and examine 
Figure 2 which illustrates these arithmetic cycles. 

The cycle begins with the rising edge of the system 
clock as it clocks the pipeline registers. After the de­
lay (tpLR) introduced by the pipeline, the function 
is available at the CPE array. There is a delay (tXF) 
while all the CPE's decode the function and generate 
their X and Y outputs for the operation. Once the X 
and Y outputs are stable, the Carry Look-Ahead cir­
cuit takes some time (txC> to simultaneously gener­
ate all the carry outputs, including the one which 
goes to the MCU flag input. Time must be provided 
to allow for the carry-input setup time of the CPE's 
(tss) and the MCU (tsI). Finally, adding in enough 
time for the clock pulse, which acts as a write pulse 
for the CPE register array, the cycle time is deter­
mined. Note the time for the MCU flag output to 
stabilize (tKO) was ignored as it is not a limiting 
specification for this configuration. 

tCYCLE = tPLR + tXF + txc + tss + twp 

Keeping the same train of thought, consider indi­
vidually the effects of variants from the configuration 
of Figure 1. If full carry look-ahead is not used and 
the carry is allowed to ripple through only the last 
slice, an additional delay path is introduced. After 
the 3003 has generated the carry outputs there is the 
CPE carry-in setup time (tSS) which must be met as 
before. However, the carry-out of the last slice will 
not be available to the MCU flag input until it has 
rippled through (tCe> that slice. Finally, the MCU 
flag input setup time (tsI) must be satisfied. 

tCYCLE = tpLR + tXF + txc + tcc + tsI + twp 

If the 3003 Look-Ahead Carry circuit is not used, 
there will be considerable delay added to the basic 
cycle due to ripple carry time. Once the CPE func­
tion-inputs are stable, the function must be decoded 
and the carry-out of the least significant slice gene­
rated (tCF)' The carry must ripple through six slices 
(6* tCC) and meet the carry setup time (tsS) of the 
most significant slice. However, it must also ripple 
through this last slice (tCC) and meet the MCU flag 
input setup time which is a more severe restriction. 

tcYCLE = tPLR + tCF + (7* tCC) + tSI + twp 

u u 
• 1 ' 

CLOCK 

~~~ ~~~ 
FUNCTION *-------------------..;.I--C 
INPUTS ----------- I i 

X. Y. RO 
OUTPUTS 

CARRY 
INPUTS 

FLAG 
INPUT 

j-----tXF~: 

r--------------------------
i I i'xc---+\---'sS-1 

------------------------~------~ 
i t l 

_tcc --' 

================================== -'SI--~-i-----------
tPLR elK t to pipeline register outpUts (745174) 17 "sec 
'XF function inputs to X,Y,RD outputs 52 

'XC Lookahead - X. V inputs to carry OUtputl 20 

'SS Data set-up time, LI &: CI 27 

'CC Ripple carry lei to CO) delay 25 

NOTE: tce included only if carry ripples through lalt slice. 

'SI Flag input set"lJP time '5 

'WP Clock pulse width 33 

tCYCLE Full fast carry tpLA + tXF + txc + tss + tw'P '49 
last slice ripple tPLR + tXF + txc + tce + tSI + tw'P '62 

If pipeline ragistersare not used; replace tPLA with the sum of teo (eLKt to M~ outputs, 

44 nsec) plus tROM (access time; 50 nsec for 3601-1, 70 nsec for 3604). 

If 3003 fast carry is not used; replace tXF with teF (function IN to eo output, 85 nsec); 

replac8tXe + tee with (N-l)-tee. where "N" is the number of stices used. 

Figure 2. Non-Interrupt 16-Bit Processor Cycle Timing 
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If pipeline registers are not used, there will be addi­
tional delay. It takes some time (tCO) after the ris­
ing edge of the clock for the next address to propa­
gate through the MCU address register and buffers. 
Then, when this address is stable the ROMs must be 
accessed and there will be a delay (tROM' access 
time) before their output and hence the CPE func­
tion-input is stable. Thus, the cycle time for a non­
pipelined system with carry look-ahead is: 

tCYCLE = tco + tROM + tXF + txc + tss + twp 

In the previous discussion it was assumed that the 
operands in the arithmetic operations were internal 
registers and the K-bus as implemented. If one of the 
operands is the M-bus or the I-bus, additional con­
sideration should be given. This situation will typ­
ically arise at the completion of a Memory-Read or 
Input cycle. Typically, these cycles are implemented 
such that the processor clock stops in its high state 
to wait for the data to be available, while the pro­
cessor is in the midst of executing an LMM or similar 
instruction. Thus, it is often the case that the pipe­
line registers have long since been accessed and the 
function decoded. 

Then, when the data becomes available a clock pulse 
is issued and normal operation continues. It is the 
time from the point the data becomes available until 
the clock pulse is issued (Data Input Setup Time) 
that is of concern here. 

CLOCK 

DATA 
INPUTS 

x, V 
OUTPUTS 

-t 'xo"-

System Timing 

Consider first a special case. Namely, the data is in­
put via an LTM instruction and no test will be made 
on the carry-output. This implies that for this specific 
instruction, carry propagation is unimportant and it 
is acceptable to have an erroneous carry-output. For 
such a case, it is sufficient to only allow for the 
CPE data setup time (tDS)' 

tSETUP = tDS 

For the more general case where arithmetic is done 
on input and the carry-output may be tested, the 
above analysis is incomplete. While the above condi­
tion must be met, it is no longer the determining fact­
or. Time must be allowed for carry propagation. 
See Figure 3, which illustrates this case. 

From the point in time when the data becomes stable 
at the CPE inputs, there is a delay (tXD) while the 
CPE generates the X and Y outputs. If Ripple Carry 
is employed, the delay (tCD) is in waiting for the 
carry-output of the least significant slice. After 
either of these delays the rest of the setup time is 
allocated analogously to that depicted in Figure 2 
and discussed previously in relation to arithmetic 
cycle times. 

tSETUP (Basic) = tXD + txc + tss 

tsETUP (Last Slice Ripple) = tXD + txc + tcc + tsI 

tsETUP (Ripple Carry) = teD + (7* tCe> + tSI 

tsETUP (No Pipeline) - Same as Basic 

I t= 
-'xc-I' '" 

CARRY 
INPUTS 

FLAG 
INPUT 

X 
·I~,cc~ 

I 

\'=tSI-_ 
I 

tXD Data inputs to X.V outputs 

tHX SX,PX input hold time 

tSET-UP Full fast carry txo + txc + t55 

LIlt slice ripple tXD + txc + tee + tSI 

If 3003 fast carry is not used; replace tXD with tCD (data input to CO output, 55 nsec); 

42 nsec 

20 

89 
102 

replace txc + tee with (N-ll-tCC then tSET-UP fripple carryl. 245 

NOTE: This diagram is UMJ.lly of concern only in relation to memory-read, or input 

cycles. 

Fillur.3. 16-Bit Processor Data Input Set-Up Times 
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System Timing 

CONTROL DELAY PATHS 

After carefully examining the arithmetic paths and 
delays it is appropriate to push all of this informa­
tion onto your "mental stack" and begin again with 
a consideration of the control paths and delays_ 
After this study the stack can be popped and infor­
mation merged to yield overall system requirements_ 

Consider the MCU as it cycles in normal operation 
(see Figure 4). At the rising edge of the clock the 
new microprogram address is loaded into its holding 
register and through the output buffers. Thus, the 
new address reaches the ROM after a delay (teo). 
Then there is a wait (tRaM) while the ROMs are ac­
cessed before the outputs are valid. At this time the 
MCU address control inputs (which are never pipe­
lined) are valid and this must be early enough in the 
cycle to satisfy the MCU address control input setup 
time (tSF). Adding the time for the clock pulse 
(twp) yields the cycle time requirement. Note this 
paragraph has ignored the generation of the ISE 
output. 

tCYCLE = teo + tRaM + tSF + twp 

In the basic configuration shown in Figure 1 the ISE 
output is used to strobe the 3214 Interrupt Control 
Unit each time a JZR 15 (usually a jump to macro­
instruction fetch) is recognized at the MCU address 

CLOCK 

ROM 
ADDRESS 

AC 16-61 
INPUTS 

ISE 
OUT 

ERA 
INPUT 

tco elK t to MA [8 ..... 4>1 outputs 

control inputs. Some consideration must be given to 
the additional requirements on timing imposed by 
the use of this ISE output. After the ROM has been 
accessed and the MCU address control inputs are 
valid, it takes the MCU some time (tFI) to decode the 
JZR 15 operation and raise the ISE output. This out­
put is used as the 3214 ISE input and must be valid 
early enough to meet that input setup time (tISS). 
As this setup time is relative to the rising edge of the 
clock, the clock pulse width need not be added in. 

tcYCLE = teo + tRaM + tFI + tISS 

Recalling the basic configuration depicted in Figure 
1 and the situation described in the last paragraph, 
imagine that an interrupt request had been active 
long enough to meet the request setup time (tRCS) 
of the ICU. Then since the ISE input went high and 
satisfied the input setup time, the Interrupt Ack­
nowledge flip-flop within the 3214 will change state 
and lower the MCUs ERA input after a delay (tCI). 
After the row address outputs are disabled (tEO)' 
the pull-up resistors will begin to pull these lines high 
and after the voltage on these lines rises to 2.0V 
(tRISE) the ROM address will be valid. The remainder 
of this cycle is the same as previously described and 
usually will not be required to again generate an ISE 
pulse. 

tCYCLE = tCI + tEO + tRISE + tRaM + tSF + twp 

: ',I 

1--tc,t°-1 I 

F==---tM-U-X~--~-----------------

tROM ROM access time (70 nsec for 3604) 3601- 1 

44 nsec 

50 

tSF 

tFI 

tlSS 

tc, 
tEO 

tRISE 

ACIS ..... 1/.l1 input set-up time 

ACI6-¢1 input to ISE output 

ISE input (3214) set-up 

elKI to IAoutput (3214) 

ERA input to MA 18 ..... 4J output 

RISE time to 2.0 V with 1 KH pull-ups: (16"3601-1) 

14"36041 

10 

40 

16 

25 

32 

84 

21 

tMUX Multiplexer switch time (7451581 12 

tCYCLE Ignoring ISE output teo + tROM + tSF + twp \3601-11 137 

(3604) 157 

Using ISE output teo + tROM + tFI + llSS 13601-1) 150 

Interrupt using pull-upstCI + tEO + tRISE + tRaM + tSF + twp (3601-11 234 

Interrupt using MUX" tel + tMUX + tROM + tSF + twp (3601-11 130 

("MUX adds tMUX-PROP [6 nsec] to tcol 

Figure 4. MCU & Interrupt Cycle Timing 
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Examining the times shown on Figure 4 for this case 
of an interrupt cycle using pull-up resistors, it is clear 
that unless something is done this will be the limit­
ing cycle time requirement. There are several tech­
niques which may be used to ease this requirement. 

Since interrupt cycles are relatively infrequent in 
comparison with other cycles, one solution might be 
to extend just that cycle. In other words, the system 
cycle time would be determined by all considerations 
previously mentioned, but ignoring the abnormal in­
terrupt cycle requirement. Then the clock circuit 
would be designed such that it could extend a cycle 
in response to a signal from the 3214 Interrupt Con­
trol Unit (see Figure 5). 

I 
ClK 
OUT 

CLOCK 
GENERATOR 

CYCLE 
EXTEND 

1 

SYSTEM 
CLOCK 

j 
CK 

'CU 
3214 

Figure 5. Interrupt Cvcle Extension 

r 
CK 

'SE i---- 'SE 
MCU 
3001 ~ 

TERA 

The interrupt cycle would still be exactly as depicted 
in Figure 4, but the length of the interrupt cycle 
would be longer than a normal cycle, and in fact long 
enough to accommodate the interrupt cycle require­
ment. 

It can be seen that a significant portion of the inter­
rupt cycle is lost waiting for the pull-up resistors to 
charge the capacitance on the address lines. Thus, 
another method of easing the interrupt cycle require­
ment would be to reduce the address line rise time 
(tRISE). Reducing the resistance of the pull-ups 
would help but this technique is limited by the avail­
able MCU address output fanout. Alternatively, the 
MCU row address outputs (MA8-4) could be con­
nected to the ROM address lines through a multi­
plexer such as the 74S158 (see Figure 6). With such 
a connection the interrupt cycle time is reduced 
since the MCU enable time (tEO) plus the address 
line rise time (1RISE) may be replaced with simply 
the multiplexer select time (tMUX) as shown in Fig­
ure 4. However, it should be noted that such a con­
nection adds delay to the MCU address outputs, thus 
effectively lengthening this existing delay (teo) by 
the multiplexer propagate time (tMUX.PROP) and 
hence lengthening any cycle which was dependent on 
the MCU delay (teo). 

3·5 

System Timing 

teYCLE (Interrupt with MUX) = 

tCI + tMUX + t ROM + tSF + twp 

MICRO· 
PROGRAM 
MEMORY 

ADDRESS 

l 
MULTIPLEXER 

SELECT 

A'N B'N 

+Vcc 

r 
MAB-4 MA3-O 

'SE 'SE 
ICU MCU 

IA f.-- +Vcc --" ERA 

Figure 6. Multiplexer to Reduce Address Rise Time 

A third alternative to solve the long interrupt cycle 
requirement is to implement the interrupts in quite 
a different way. Rather than changing the MCU ad­
dress outputs, the MCU address control input least 
significant bit (AO/» may be altered (see Figure 7). 
Using this technique an extra ROM bit (Interrupt 
Strobe) is required to strobe the 3214 ICU since the 
MCUs ISE output occurs one cycle too late. Imple­
menting the same mechanism (interrupt strobe on 
JZR 15) could be done by using the interrupt strobe 
bit to strobe the ICU (see Figure 7) the cycle before 
the JZR 15 code appears. An added benefit of this 
method is that the interrupt structure may be strobed 
at points other than the beginning of an instruction 
fetch cycle, facilitating PAUSE or WAIT instructions. 

Examining the timing diagrams in Figure 7, it can be 
seen that this implementation of interrupts does not 
limit the system cycle time. Rather, this interrupt 
mechanism's timing is less restrictive than timing for 
a normal cycle. The only requirements are that the 
interrupt strobe bit from the ROM reaches the 3214 
ICU ISE-input within its setup time (tISS). In the 
next cycle it is only necessary that the lA-output has 
gone low (tCI) early enough to meet the MCU ad­
dress control input setup time (tSF). Thus, for the 
price of one bit of ROM interrupts can be imple­
mented with no penalty in time. 

At this point both major delay paths (arithmetic and 
control) have been examined for the implementation 
in question. After the designer has assured himself 
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tCYCLE (Non-Interrupti ;> teo + tROM + tSF + twp 
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IA 
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7417 
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Figure 7. I nterrupt Using AC (1/» Modification 

BIT APPEARS 

'ISS 

there are no other delays which he may have over­
looked, such as introducing external circuitry into 
the paths, he may merge the various requirements 
generated into a uniform set of system requirements. 
Any change introduced after these requirements have 
been generated must be closely examined that it does 
not subtly alter any system requirements. Delays that 
are negligible in one configuration may be dominant 
in a slightly different structure. 

WHAT HASN'T BEEN MENTIONED? 

1. In the introduction it was explained that tempera­
ture would not be considered in the examples 
since Intel specifies products over the 0° C to 70° C 
temperature range. This deserves further comment. 
A quick glance at an Intel Data Sheet will verify 
that Intel parts are specified and guaranteed over 
the O°C to 70°C ambient temperature range and 
concurrently with a five percent tolerance power 
supply. This is a reasonable range and allows the 
designer to guarantee circuit operation. . 

FROM ROM 

t
CI 

__ 
MODIFIED TO JZR 14 

BY IAOUTPUT 

J --- tauF 

[-
Unfortunately, the standard Schottky MSI line 
(74SXX) is only specified at 25°C ambient and 
Vee = 5V. The variance of parameters over the 
allowable temperature and supply voltage is un· 
specified and left to the designer's experience. Due 
to this uncertainty the designer should "appro· 
priately" modify any times attributable to non­
Intel parts to allow for variations over tempera­
ture and supply voltage. 

2. In the examples given it was always assumed that 
setup times would be honored. Though most of a 
computing system is synchronous, it typically has 
to interface with asynchronous events. It is at this 
interface that difficulty may be encountered. Con­
sider a popular circuit (Figure 8) used to "synchro­
nize" asynchronous signals. 
In this circuit the output delay is guaranteed only 
if the input setup time is met. But since the input 
is asynchronous, this setup time may not always 
be satisfied, as at the second event depicted in 
Figure 8. What happens? Though the results are 
highly dependent on the flip-flop circuit design, 



some general observations may be made. Typically, 
the effect is to stretch out the flip-flop delay time 
as the event approaches arbitrarily close to the 
clock edge. Theoretically, the delay will go to in­
finity if the event falls precisely on the clock edge. 
Some flip-flops also exhibit a characteristic in 
which the output may change state and some time 
later return to the original state. This phenomena 
is known as "hang-up" and has been observed to 
last for twenty nanoseconds on a 7 4S7 4. It can­
not be absolutely prevented when asynchronous 
signals are introduced into a synchronous system, 
but the probability of the "hung" flip-flop causing 
an error can be reduced without limit. The tech­
nique is simply to cascade these interfaces. 

If two such flip-flops are cascaded there is some 
probability PI (Pj <1) that the asynchronous event 
will fall close enough to the clock edge to hang 
the first flip-flop. Given that it hangs, there is 
some probability 1'2 that it will hang for very near­
ly an entire clock period and into the hang-up 
zone of the second flip-flop. Then, there is a 
probability Pa that the second flip-flop will hang 
long enough to cause an error. Thus, the prob­
ability of error is I'E = PI *P2*Pa. Hence, by cas­
cading flip-flops the probability of error can be 
reduced without limit. 

ASVNCHRONOUS I 

SVSTEM 
INTERFACE 

74874 

System Timing 

Recall the 3214 Interrupt Control Unit and its re­
quest setup time (tRCS) and its IA output delay 
(tCI)' This delay is in several critical system paths 
as shown by the examples. Of course, the IA out­
put delay specified also presumes the IA flip-flop 
setup time was met. When deliberately violating 
the IA flip-flop setup time, a hang-up of 50 nsec 
has been observed. What is a designer to do? 

Slowing down the system such that it could tole­
rate any expected hang-up would be the easiest 
solution. This may not always be as bad as it 
sounds. Recalling the situation depicted in Fig­
ure 7, note that some flip-flop hang-up is toler­
able. [tIA-HANG = tCYCLE - (tSF + twp )]. An al­
ternative would be to "synchronize" the asyn­
chronous interrupt requests using the technique 
previously described. An octal D flip-flop such as 
the 74S374 would be suitable. . 

3. In the examples given it has been assumed that 
the system, including all the CPEs, the MCU, and 
the ICU, operates from a single clock. If a circuit, 
such as in Figure 9, that provides a separate clock 
for different components is used, the possible 
clock skew must also be considered when determ­
ining system timing. 
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System Timing 
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Figure 9. CPE Clock Inhibit Circuit 
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4. Though not explicitly mentioned, it has been as­
sumed that all input hold times would be observed. 
Usually these times are satisfied with no conscious 
effort required of the system designer. However, 
parameters such as the MCU SX and PX input 
hold time must be carefully considered. These in­
puts are used for macro instruction decoding and 
typically are used at the end of an instruction 
fetch cycle. When using these inputs the designer 
must provide the necessary data hold time before 
allowing the data to change. 
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SUMMARY 

Generating the correct timing for a complex system 
in which parameters may vary with temperature, 
power supply voltage, lead length and the like is no 
trivial task. Fortunately, large scale integration such 
as Intel's 3000 family is making the task much easier. 
With the 3000 family of compatible parts the de­
signer need only worry about the interfaces and may 
be assured the internal timing is correct. Such a sys­
tem is best analyzed by separately considering the 
various delay paths and later combining the sundry 
results. And of course, with Murphy on vacation the 
designer can be confident of a flawless design on the 
first pass. 



Disk Controller Designed 
With Series 3000 

Computing Elements 

by Glenn Louie 

With the introduction of the first micropro­
cessor, digital designers began a massive switch to 
programmable LSI technology, away from hard­
wired random logic. Designers found that with 
these new LSI components and the availability of 
low cost ROMs they could easily implement struc­
tured designs which were both cost effective and 
flexible. However, not all digital designs were 
amenable to the microcomputer approach. One of 
the basic limitations was the speed at which a par­
ticular critical program sequence could be executed 
by a microprocessor. The early P-channel MOS 
microprocessors, such as Intel's 4004 and 8008, 
were able to solve a broad class of logic problems 
where speed was not essential. With the introduc­
tion of the more powerful n-channel MOS micro­
processors, such as the Intel@8080, the range of 
applications was significantly broadened, but there 
still existed a class of applications that even these 
newer devices were not fast enough to handle. 

Recently, two new Schottky bipolar LSI com­
puting elements, members of the Intel Bipolar 
Microcomputer Set, were introduced which expand 
the range of microcomputer applications to include 
high speed peripheral controllers and communica­
tion equipment. The new elements are the 3001 
Microprogram Control Unit (MCU) and the 3002 
Central Processing Element (CPE). These two com­
ponents facilitate the design of specialized, high 
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Figure 1. Bipolar Microprogrammed Disk Controller 

speed microprocessors that together with a mini­
mum of external logic perform the intricate pro­
gram sequences required by high speed peripheral 
controllers. 

A multi-chip bipolar microprocessor differs from 
the single chip MOS microprocessor in that the 
bipolar microprocessor is programmed at the· micro­
instruction level rather than at the macroinstruc­
tion level. This means that instead of specifying 
the action via a macro program using a fixed in­
struction set, a designer can specify the detailed 
action occurring inside the microprocessor hard­
ware via a microprogram using his own customized 
microinstructions. 

In general, microinstructions are wider than 
macroinstructions (e.g. 24 to 32 bits) and have a 
number of independent fields that specify simulta­
neous operations. In a single microcycle, an arith­
metic operation can be executed while a constant is 
stored into external logic and a conditional jump is 
being performed. 

A bipolar LSI microprocessor design is )im. ilar to 
a general MSI/SSI microprocessor design where 
the intricacies of the application are imbedded in 
the program patterns in ROM. However, the large 
amount of logic necessary to access the microcode 
has been replaced by the LSI MCU chip. Also, 
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the MSI logic required to provide the arithmetic 
and register capabilities has been replaced by the 
functionally denser LSI CPE slices. Because of 
these new LSI chips, microprogramming with all 
its advantages can now be applied to designs which 
previously were unable to justify microprogramming 
overhead. 

The effectiveness of these new LSI components 
in a high speed peripheral controller design has 
been demonstrated by the Applications Research 
group at Intel with the design of a 2310/5440 
moving head disk controller (BMDC). The BMDC 
has a total of 67 IC chips and is packaged on a 
printed circuit board measuring 8" x IS", as shown 
in Figure I. Disk controllers of equivalent com­
plexity realized with conventional components 
typically require between 150 and 250 I.C.'s. The 
BMDC performs all the operations required to 
interface up to four "daisy chained" moving head 
disk drives, with a combined storage capacity of 
400 megabits, to a typical minicomputer. It is fast 
enough to keep up with the drive's 2.5 MHz bit 
serial data stream while performing the requisite 
data channel functions of incrementing an address 
register, decrementing a word count register, and 
terminating upon completion of a block transfer. 

The BMDC interacts with the minicomputer's 
disk operating system (DOS) via I/O commands, 
interrupts and direct memory access (DMA) cycles. 
The I/O commands recognized by the BMDC's 
microprogram are: 

Conditions In 
Seek Cylinder 
Write Data 
Read Data 
Verify Data 
Format Data 

The BMDC sends an interrupt to the minicom­
puter when either a command is successfully exe­
cuted, a command is aborted, or a drive has finished 
seeking. The DOS then interrogates the BMDC 
with a Conditions In command. The following 
flags specify the conditions which the BMDC can 
detect: 

Done flag 
Malfunction flag 
Not Ready flag 
Change In Seek Status flag 
Program Error flag 
Address Error flag 
Data Error flag 
Data Overrun flag 

Data transfers between the minicomputer and 
the disk BMDC occur during DMA cycles. DMA 
cycles are also used for ·passing command informa­
tion from the minicomputer to the BMDC. 
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The bipolar LSI microcomputer in the BMDC 
performs the necessary command decoding, ad­
dress checking, sector counting, overlap seeking, 
direct memory accessing, write protection, pass­
word protection, overrun detection, drive and read 
selection, and formatting. External hardware assists 
the microprocessor in updating the sector counter, 
performing parallel-to-serial and serial-to-parallel 
conversion, and generating the CRC data checking 
information. The BMDC uses a special purpose 
microprocessor, configured with the components 
listed in Table A. The LSI microprocessor uses an 
MCV, an 8: I multiplexer, eight 360 I PROMs, a 
command latch, a data buffer, and an array of 
eight CPE slices (Fig. 2). The characteristics of 
this design, only one of many possible with the 
3000 family, are as follows: 

• 400 nsec system clock 
• 16-bit wide CP array 
• Ripple carry CPE configuration 
• Non-pipelined architecture 
• One level subroutining 
• 230 32-bit microinstructions 
• Word to 4-bit nibble serialization 

The MCV controls the sequence in which micro­
instructions are executed. It has a set of uncondi­
tional and conditional jump instructions which is 
based on a 2-dimensional array for the micropro­
gram address spece called the MCV Jump Map. (I) 

PART # 

3001 

3002 

3212 

3205 

3601 

3404 

74173 

74174 

74175 

74151 

8233 

9300 

9316 

8503 

7474 

7473 

7451 

7404 

7400 

74H08 

7403 

7438 

74Hl03 

DESCRIPTION 

MCU 

CPE 

8 bit 1/0 Port 

1 of 8 Decoder 

lK PROM 

6 bit Latch 

4 bit Gated D F/F 

6 bit D F/F 

4 bit D F/F 

8: 1 Multiplexer 

Dual 4: 1 Multiplexer 

4 bit Shift Register 

4 bit Binary Counter 

CAe Generator 

Dual D F/F 

Dual J·K F/F 

And-Dr-Invert Gate 

Hex Inverter 

Quad 2 Input Nand Gate 

Quad 2 Input And Gate 

Quad 2 Input Nand O.C. Gate 

Quad C.C. Drivers 

Dual J·K F/F 

Total 

QUANTITY 

1 

8 

6 

2 

8 

2 

1 

5 

2 

1 

6 

9 

1 

2 

4 

2 

67 I.C. Packages 

Table A. I.C. Component List for Disk Controller 
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Figure 2. Disk Controller - The various elements of a specialized microprogrammed processor is shown with the external logic 
which together is the entire disk controller. 

In addition, the MCV is connected in such a man­
ner as to perform command decoding, external 
input testing, and one level subroutining. 

Command decoding is achieved by connecting 
the command latch to the Primary Instruction (PX) 
bus inputs and using the JPX instruction (Fig. 3). 
The testing of external input signals is performed 
by routing the least significant bit (LSB) of the 
seven bit jump code through an eight-to-one multi­
plexer (Fig. 2). The mUltiplexer is controlled by a 
3-bit Input Select Code which selects either the 
LSB of the jump code or one of 7 external input 
signals to be routed to the MCV. This technique 
has the effect of conditionally modifying an un­
conditional jump code so that the next address will 
either be an odd or even location (Fig. 3). A one 
instruction wait for external signal loop can be 
simply implemented in this fashion. 

One level subroutining is achieved by feeding the 
four least significant bits of the address micropro­
gram outputs back into the secondary instruction 
(SX) inputs. Enough program status information 
can then be saved in the internal PR latch when a 
subroutine is called with a JPX instruction so that 
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upon exiting, a subroutine with a JPR instruction, 
control can be returned to the procedure which 
called it (Fig. 4). This technique saves a significant 
amount of microcode in the BMDC because some 
long sequences do not have to be repeated. 

The microprogram control store is an array of 
eight 360 I PROMs organized to give 256 words x 
32 bits (230 words were required for the BMDC). 
The 32-bit wide word is divided into the following 
sub control fields: 

I. Jump Code field 
2. Flag Control field 
3. CPE Function field 
4. Input Select field 
5. Output Select field 
6. Mask or Data field 
7. Mask Control field 

TOTAL 

7 bits 
2 bits 
7 bits 
3 bits 
3 bits 
8 bits 
2 bits 

32 bits 

The command latch and data buffer retain com­
mand information from the computer so that the 
memory bus will not be held up if the BMDC 
should be busy performing an updating task. The 
data buffer also retains the next data word during 
a Write Data to disk operation. 
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The CP array is connected in a ripple carry con­
figuration as shown in Figure 5. The eight CPE 
slices provide the BMDC with a l6-bit arithmetic, 
logic and register section. Word to nibble serial­
ization is made possible by connecting the Shift 
Right Outputs (RO) of the first, third, fifth, and 
seventh CPE to the Nibble Out bus. By using only 
four shift right operations a word in a register can 
be converted into four 4-bit nibbles. The final 
serialization of these nibbles is done in the external 
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Figure 3. MCU Jump Map for instruction decoding and 
conditional branching on external inputs 
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logic. Similarly, the Shift Right Inputs (LI) of the 
second, fourth, sixth, and eighth CPE are connected 
to the Nibble In bus so that with only four shift 
right operations, a word can be assembled from 
four nibbles. 
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Figure 4. MCU Jump Map for one level subroutine call and 
return. A subroutine is called from four different 
places in the program each with a unique column 
number. Upon returning from the subroutine, 
control will be transferred back to the portion of 
program which called it. A subroutine may be 
called from a maximum of 16 different places. 
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Figure 5. CPE Array - A 16-bit arithmetic, logic and register section is built up with 8 CPE slices connected in a ripple carry 
configuration. The K, I, and M bus is used for loading information into the CPE slices. The LI inputs and RO outputs 
are connected to make up the Nibble In and Nibble Out buses. 
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An eight bit mask bus is connected to the mask 
inputs of the least significant half of the array. The 
mask inputs of the most significant half of the CP 
array are all tied to the eighth mask bit. A constant 
with a value between + 127 and -128 can therefore 
be loaded into the array from the microprogram. 
The mask bus comes from the data field of the 
microprogram via a 0-1 data multiplexer. When the 
CP array requires either an all one or all zero mask, 
the data field is freed to provide data to external 
logic. 

The 3002 CPE is an extremely flexible compo­
nent which makes it particularly attractive for 
controller designs. The Memory Address Register 
makes an ideal DMA address register.(!) The ac­
cumulator (AC) register, which also has its own 
output bus can be used as a data word buffer 
during a write DMA cycle. Concurrently, another 
word can be assembled in the T register using the 
shift right operation. The three separate input buses 
provide a mUltiplexing capability for routing dif­
ferent .data into the CPE. In the BMDC, the I-bus 
is used for loading disk drive conditions, the K-bus 
for loading mask or constant information, and the 
M-bus for reading an external data buffer. The 
arithmetic logic section performs zero detection 
and bit testing with the result delivered to the 
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MCV chip via the carry out line. Finally, the eleven 
scratch pad registers allow the controller to retain 
data and status for the processor. 

The CP array in the microprocessor performs the 
following for the BMDC with its registers and 
arithmetic functions. 

I. Sector counting 
2. Word to nibble serialization 
3. Drive seek status monitoring 
4. Header checking 
5. DMA address incrementing 
6. Word counting 
7. Multi-sector length counting 
8. Automatic resynchronization of sector 

counter 
9. Accessing of additional information from 

memory 
10. Time delays 

The organization of the microprocessor was 
chosen to maximize the use of the MCV and CPE 
in performing the various tasks required for disk 
control. However, there are some specialized tasks 
which are more economically performed by ex­
ternal logic. The microprocessor controls this ex­
ternal logic by output ports whiclr are selected by 
the output select field in the microinstruction. The 
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disk controller functions. 
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data to these ports is delivered from the shared data 
field. 

The external logic section of the BMDC (Fig. 6) 
has a double buffered 4-bit shift register which is 
used for initial packing and the final serialization 
of data. It is controlled by a modulo-4 counter 
circuit. During a write operation, serial data from 
the shift register is encoded by the clock controlled 
double frequency encoder and sent to the drive. As 
data is being transferred to a cyclic redundancy code 
(CRC) is generated and then appended to the end of 
the data stream to be recorded on the disk. The ex­
ternal logic also contains addressing latches and 
flag flip-flops to capture sector and index pUlses. 
It also contains main memory bus·control circuitry 
for performing bus protocol, bus acquisition, and 
data overrun detection. 

The microprogram for the BMDC microprocessor 
directly implements the six I/O commands. The 
program controls the sequential action of the vari­
ous elements of the microprocessor and of the 
external logic needed to decode and execute the 
commands. In Figure 7, the flow chart of the Read 
command shows the actions required to read a file 
off the disc. The BMDC first selects the drive speci­
fied by the command and checks its ready status. 
It then uses a memory pointer passed to it by the 
command to access four more words from the main 
memory using DMA cycles. The first word is the 
Header, which contains the track address and sector 
address information. The second word is the Start­
ing Address specifying the first location in memory 
where the data is to be stored. The third word is the 
Block Length of the file to be retrieved. All of the 
address information and the Block Length are 
stored in several CPE registers for further process­
ing. The fourth word is the Password which is com­
pared against a microprogram word to insure that 
the command from the computer is a valid one and 
not a program error. The password can prevent an 
erroneous command, due to a user programming 
error, from destroying important files on the disc. 

After the password check, the BMDC resyn­
chronizes the sector counter if necessary and waits 
for the desired sector by monitoring the sector 
pulse flag. When the desired sector arrives, the 
BMDC synchronizes itself to a start nibble and 
reads the header which it compares to the desired 
header to insure that the head is positioned 
properly. It then reads and stores 128 words of 
data at sequential locations in memory. A cyclic 
redundancy code is compiled during the read oper-
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SET PROGRAM ERROR FLAG 8. ABORT 
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Figure 7. Read Command Flowchart - This flowchart is 
coded in the microprogram which when executed 
performs the disk Read operation. 



Figure 8. BMDC Flowchart - The BMDC runs in the idle 
loop when it is not busy doing command pro­
cessing. 
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ation and compared against the CRC word read in 
after the data. At the end of each sector the block 
length is decremented to see if it is the last sector. 
If it is not, the sector address is incremented and 
another sector is read. 

In addition to the command routines, the micro­
program has an idle loop routine (Fig. 8) which the 
BMDC executes when it is not busy with a com­
mand. While in the loop, the BMDC updates the 
sector count, monitors the drives seeks status lines 
and decodes any disc commands from the disc 
operating system in the minicomputer. 

The design process for the BMDC began with an 
evaluation of what disc controller operations could 
effectively be handled by the microprocessor. This 
also determined what had to be performed by 
external logic. A microprocessor configuration was 
then established and certain critical sequences were 
programmed to verify that the configuration was 
fast enough. A flow chart was produced and the 
microprogram coded directly from it. All attempts 
were made to use the MCU and CPE slices effec­
tively and keep the microprogram within 256 
words. The assignment of MCU addresses which 
initially appeared difficult, was, with a little ex­
perience, quite straight forward and less restrictive 
than a state counter design. After the coding, the 
microprogram was assembled and loaded into the 
microprocessor's control memory. 

The BMDC design demonstrates how a special­
ized high speed microprocessor can be designed 
using standard bipblar LSI devices and micropro­
grammed to perform disc control functions with 
the addition of a small amount of external logic. 
The flexibility of Series 3000 allows a designer 
to optimize the configuration for his application. 
For extremely high speed applications, the designer 
can add fast carry logic and microinstruction pipe­
lining to his microprocessor to achieve alSO nsec 
16-bit microprocessor. 

At Intel, our design experience with the BMDC 
design exercise has shown that the use of the MCU 
and CPE results in a clean, well structured design. 
The complexity of the design resides primarily in 
the microprogram leaving the external logic rela­
tively simple. During debugging, most of the prob­
lems encountered were restricted to the micropro­
gram which was easily modified and debugged 
using l:)ipolar RAM for the control memory. 
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INTRODUCTION 

Until recently, the area of high performance, gen­
eral purpose and special purpose central processors 
was unaffected by the microprocessor revolution. 
Although they covered a broad range of applica­
tions, the P-channel and N-channel microproces­
sors' performance limitation prevented their use in 
applications where high speed was necessary. 

The introduction of the Series 3000 Computing 
Elements has expanded the spectrum of micro­
processor applications to include both high per­
formance central processors and controllers. Utiliz­
ing Intel's Schottky bipolar technology, the Series 
3000 components realized a level of performance 
that was not possible with MaS microprocessors. 
For example, a l6-bit processor with a micro­
instruction cycle time of 150 nanoseconds can be 
built with the 3000 components. In addition, the 
components of the family can be arranged into a 
number of different configurations and micropro­
grammed by the system designer to perform in a 
variety of processing environments from front end 
processing to arithmetic intensive computation. I 

This application note describes a systematic proce­
dure for designing central processors with the Series 
3000. Using a CPU design example, simple guide­
lines are given for tasks such as macro-instruction 
opcode assignment, macro-instruction decoding and 
execution and microprogram memory assignment. 

THE SERIES 3000 F AMIL Y 

The Intel® Series 3000 Bipolar Microcomputer Set 
is a family of Schottky bipolar LSI computing ele­
ments which simplify the construction of micro­
programmed central processors and device con­
trollers. These processors and controllers are truly 
microprogrammed in the sense that their control 
functions are determined by the contents of a con­
trol memory. This control memory may be realized 
with standard read-only (ROM) memory, read/ 
write (RAM) memory or programmable read-only 
memory (PROM) elements. 

The two most important computing elements in 
the family are the 3001 Microprogram Control 
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Unit (MCU) and the 3002 Central Processing Ele­
ment (CPE). The MCU determines the sequence of 
micro-instruction execution and controls carry / 
shift data to and from the CPE array. The CPE 
provides a complete two-bit wide slice through the 
data processing section of a central processing unit. 
CPEs may be arrayed in parallel to form a processor 
of any desired word length. For example, to pro­
duce a l6-bit wide data path, eight CPEs would be 
used. 

All of the above components use standard TTL 
logic levels, as some designers may wish to utilize 
SSI and MSI TTL logic to control external cir­
cuitry, or to add functions not included in the 
basic set to increase the speed of certain operations. 

Other members of the family currently include the 
following computing elements: 

• 3003 Look-Ahead Carry Generator 
• 3212 Multi-Mode Latch Buffer 
• 3214 Interrupt Control Unit 
• 3216 Bidirectional Bus Driver 
• 3226 Inverting Bidirectional Bus Driver 

The control and main memory portion of the 
central processor may be implemented with any of 
the standard bipolar or MaS memory components 
shown on page 2. 

AN INTRODUCTION TO 
MICROPROGAMMING 

The central processing unit of a general purpose 
computer usually consists of two portions: an 
arithmetic portion and a control portion. The con­
trol portion determines the sequence of instruc­
tions to be executed and presides over their fetch­
ing and execution while the arithmetic portion 
performs arithmetic and logical operations. 

The basic operation of the control portion consists 
of selecting the next instruction from memory, 
!hen executing a series of states based upon the 
instruction fetched. This sequence may be imple­
mented via a combination of flip-flop and random 
logic, or by the use of tables in control memory. 

I J. Rattner, J. Cornet, and M. E. Hoff, Jr., "Bipolar LSI Computing Elements Usher In New Era of Digital Design," 
ELECTRONICS, September 5, 1974, pp 89-96. 
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Standard Bipolar and MOS Memory Components 

PART NUMBER 
TECHNOLOGY 

DATA ACCESS 
NUMBER OF PINS ORGANIZATION TIME 

CONTROL MEMORY 

3601 16 Bipolar PROM 256X4 70 nS' 

3602 16 Bipolar PROM 512X4 70 nS 

3604 24 Bipolar PROM 512X8 70 nS 

3624 24 Bipolar PROM 512X8 70 nS 

3301A 16 Bipolar ROM 256X4 45 nS 

3302 16 Bipolar ROM 512X4 70 nS 

3304A 24 Bipolar ROM 512X8 70 nS 

3324A 24 Bipolar ROM 512X8 70 nS 

3106A 16 Bipolar RAM 256X1 60 nS 

3107A 16 Bipolar RAM 256X1 60 nS 

MAIN MEMORY 

1702A 24 Static MOS EPROM 256X8 1000 nS 

2704 24 Static MOS EPROM 512X8 500 nS 

2708 24 Static MOS EPROM 1024X8 500 nS 

1302 24 Static MOS ROM 256X8 1000 nS 

2308 24 Static MOS ROM 1024X8 500 nS 

2316 24 Static MOS ROM 2048X8 850 nS 

2101 22 Static MOS RAM 256X4 1000 nS' 

2102 16 Static MOS RAM 1024X1 1000 nS' 

2111 18 Static MOS RAM 256X4 1000 nS' 

2112 16 Static MOS RAM 256X4 1000 nS' 

2104 16 Dynamic MOS RAM 4096X1 

2107B 22 Dynamic MOS RAM 4096X1 200 nS 

5101 22 Static CMOS RAM 256X4 650 nS 

*Higher speed versions of these devices are available. Consult the Intel Data Catalog. 

When the latter technique is used, the central 
processor is said to be microprogrammed. 

The functions of the control portion of a micro­
programmed central processing unit are very similar 
to that of a central processing unit itself. To avoid 
confusion, the terms "micro" and "macro" are 
used to distinguish those operations in the control 
unit from those of the realized central processor­
For example, the central processor, under the 
direction of micro-instructions read from its con­
trol memory, fetches macro-instructions from main 
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memory. Each macro-instruction is then executed 
as a series of micro-instructions. Main memory con­
tains macroprograms, while control memory con­
tains microprograms which define the realized 
central processor. 

Figure I shows a block diagram of a micropro­
grammed central processing unit (defined by the 
dotted boundary). The control unit issues addresses 
to the control memory and fetches micro-instruc­
tions. This control unit uses the contents of control 
memory (micro-instructions) to drive the data 
processing unit, external circuits, and to select the 
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Figure 1. Block Diagram - Microprogrammed 
Computer 

next micro-instruction. The data processing unit 
performs the actual computations, logical opera­
tions, etc. 

In the Intel® Bipolar Microcomputer set, the 3001 
MCU performs the control unit function, while the 
3002 CPE is the basic building block for the data 
processing section. 

Thus, within a microprogrammed machine, there 
are at least two levels of control and two levels of 
programming to be considered. The designer of a 
central processor is usually concerned with the 
definition of the macro-instruction set and its 
realization as a microprogram. The Intel® Series 
3000 Bipolar Microcomputer Set establishes a 
micro-instruction set which is used as a base for the 
microprograms which generate macro-instruction 
sets. 

The reason for using this microprogrammed ap­
proach is that very complex macro-instruction 
sets can be realized as sequences of relatively prim­
itive micro-instructions. The logic of the final 
macro-machine remains relatively simple, with most 
of the design complexity residing in the micro­
instruction sequences contained in control memory. 

The final user of the computer seldom needs to be 
aware that the CPU was realized with micropro­
grams rather than hardwired logic. A functional 
description of the macro-instruction set is usually 
sufficient for his purposes. However, the user will 
benefit from the microprogrammed approach if he 
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finds it necessary to alter or enhance the basic 
macro-instruction set in some fashion. The tabular 
or programming approach offered by the micro­
programmed architecture makes such changes far 
easier than would be possible in a processor realized 
via hardwired logic. 

CONSTRUCTING CENTRAL PROCESSING 
UNITS 

Basic Design Steps 

To realize a central processor with the Series 3000 
computing elements, several steps are necessary: 

1. Definition of hardware organization. 
2. Definition of the central processor macro­

instruction set. 
3. Implementation of microprograms which realize 

the desired macro-instruction set. 

Hardware Organization 

A typical CPU constructed utilizing the Series 3000 
computing elements will consist of an array of CPE 
chips, one MCU, and a control memory. The array 
of CPE chips realizes the arithmetic, logical func­
tions and registers of the CPU, while the combina­
tion of the MCU and control memory realizes the 
control portion. The microprogram contained in 
control memory initializes the machine when power 
is first turned on and supervises the fetching and 
execution of macro-level instructions. In addition, 
routines to handle such special functions as inter­
rupts will also be contained within the control 
memory. 

The 3002 CPE array contains six buses for com­
munication with external circuitry. Four of these 
buses are used primarily to communicate with 
memory and I/O devices while the remaining two, 
the function control bus (F-Bus) and the control 
memory data bus (K-Bus), enable the control por­
tion of the processor to drive the CPE array. The 
function control bus is driven by control memory 
outputs which direct the CPE array to execute the 
desired operation. The K-Bus allows the control 
memory to supply various constants and/or masks 
to the CPE array. 

Because 8 bits of operation code information can 
be passed directly to the MCU, the set is best 
adapted to macro-instruction sets in which all of 
the operation code information is defined by 8 bits 
(256 unique macro-instructions). However, larger 
macro-instruction sets can be realized by saving any 
remaining bits of the operation code in the CPE 
array or in an external register. The saved bits can 
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then be tested later by routing them to the MCV, 
through its 8-bit input port. 

A "pipelined" mode of operation may be imple­
mented by placing a register of edge triggered D 
flip-flops between control memory outputs and the 
circuitry controlled by those outputs. This register 
causes the execution of a micro-instruction to over­
lap the fetching of the next micro-instruction. The 
control lines which issue micro-instruction sequence 
information to the MCV are not routed through 
the pipeline register when the pipelined mode is 
used; they are routed directly from the micropro­
gram memory outputs to the ACO-AC6 inputs of 
the MCV. 

Microprograms written to realize a given macro­
instruction set will differ for pipelined and non­
pipe lined machines. The major differences are asso­
ciated with conditional jumps in the microprogram 
which test the results of arithmetic or logical opera­
tions executed by the CPE array. In a pipelined 
machine, these results are delayed by one micro­
instruction, so that conditional jumps must be 
delayed by at least one micro-instruction before 
execution. More detailed information concerning 
these differences is contained in the micropro­
gramming section of this application note. 

Figure 2 shows block diagrams illustrating the 
organization of standard and pipelined central 
processing units. The block diagrams show the 
basic modules of standard and pipelined CPVs: 
the MCV, CPE array, microprogram memory and 
the pipeline register. The six buses associated with 
the CPE array are shown: 

MEMORY ADDRESS DATA BUSTO 
BUS MEMORY 

CLOCK 

DATA IN fROM MEMORY 

Figure 2. Bipolar Microcomputer Non-Pipelined 
Organization 

• The address bus (A-Bus) to main memory 
• The data bus (D-Bus) to memory 
• The data bus (M-Bus) from memory with its 

path for operation code data to the MCU 
• The external device input bus (I-Bus), not 

shown 
• The micro-function bus (F-Bus) from the 

pipeline register 

• The constant bus (K-Bus) from the pipeline 
register 

In addition, the carry logic bus to and from the 
MCV and the micro-instruction sequence logic bus 
from control memory to the MCV are shown. Ad­
ditional control fields to such external logic as 
memory and I/O control are shown as an output 
bus from control memory. 

The number of bits required for each word of 
control memory, i.e., each micro-instruction, is 
determined by the number of logical functions the 
micro-instruction controls. A minimum of 18 bits 
is usually required for basic hardware control: 
7 bits of micro-instruction sequence control to the 
MCV, (ACO-AC6), 4 bits of carry control to the 
MCV, (FCO-FC3), and 7 bits of micro-function 
selection to the CPE array, (FO-F6). That is, the 
basic hardware requires at least three control word 
fields of 7 bits, 4 bits, and 7 bits width respectively. 
Almost every processor will require additional 
fields to control other logical functions such as 
main memory control, I/O control, and constant 
generation. Figure 3 illustrates a typical micro­
instruction word format with several typical user 
defined control fields added. 

CONTROL TO MEMORY ADDRESS DATA IUS TO 
MEMORY,IID IUS MEMORY 

CLOCK 
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DATA IN FROM MEMORY 

Figure 2. Bipolar Microcomputer Pipelined 
Organization 



The constant bus to the CPE array seldom needs to 
be as wide as the data buses. For example, consider 
a l6-bit machine where an array of eight CPEs is 
used. While the constant bus is nominally 16 bits 
wide, if a limited set of masking operations are 
used, the number of bits can be reduced signifi­
cantly. Figure 4 shows how 4 bits can be used to 
generate the masks for such a machine where the 
only masks needed are for separating high and low 
order data bytes, for testing the sign and magnitude 
of the data word, and for testing the least signifi­
cant bit of the word. 

CPE MCU MCU 

Figure 3. General Micro-Instruction Format 

co 

LI 

03 

02o-----_4----_4--~----_+--~----~~ 
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As an example of the use of additional logic to 
enhance the set, consider the use of a control field 
(I-bit width) to inhibit the CPE clock. This opera­
tion allows non-destructive testing of CPE registers 
via the MCU carry logic. The carry logic in the 
MCU responds just as if the micro-instruction were 
executed, but the fact that the CPE clock was in­
hibited leaves the CPE registers unaltered. An ex­
ample of conditional clocking is given in a later 
section called "Programming Techniques." 

CPE MAIN 
MEMORY 

1/0 
SYSTEM 

01 O-----------------------------------------4-__ ~----~_4----~~_+ ____ ~ 
OOo-------------------------------------------------------------------------~ 

03 02 01 O. K·BUS 
!BINARV. LOW TRUE) (HEXADECIMALI MASK FUNCTION 

1 1 1 0000 
1 • 0001 SELECT lse 

• • ooFF SELECT LOW ORDER BYTE 

• 1 FFOO SELECT HIGH ORDER BYTE 

1 a • 7FFF SELeCT WORD MAGNITUDE 

• 1 1 8000 SELECT WORD SIGN 

• • • • FFFF SELECT ENTIRE WORD 

Figure 4. Wiring the K-Bus Using 4-Bits 

MICRO-INSTRUCTION WORD 

---J=0,-VCLETIME 

MASTER 
CLOCK 

CONDITIONING 

CO~~~~I:~ _____ -J! 

Figure 5. Conditional Clocking 
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Writing of Microprograms 

Once the hardware design is established and the 
macro-instruction set chosen, the designer should 
proceed to implement the microprograms for the 
system. To assist in the writing of these micro­
programs, Intel has developed CROMIS, a complete 
microprogramming system for Series 3000 com­
puting elements. 

CROMIS consists of two major software subsys­
tems, XMAS and XMAP. XMAS is a symbolic 
microassembler which is extensible in both micro­
instruction length and memory address space. 
XMAP is a complementary subsystem which maps 
the micro-instruction bit patterns produced by 
XMAS into compatible ROM/PROM programming 
files for use with standard memory components. 

Programs written in the microassembly language 
have two main parts, a declaration part in which 
various aspects of the micro-instruction word are 
defined and a specification part in which micro­
instruction contents are symbolically declared. Pro­
vision is made for comment statements throughout 
the program so that the programmer may explain 
the functions being performed. 

The main body of the program, the specification 
part, defines the sequences of states to be executed, 
and the operations which take place for each state. 
The main effort in writing a microprogram will be 
expended in developing this section. 

Each statement of the specification part of the 
program defines the action (and location) of one 
micro-instruction, i.e., one word of control mem­
ory. The statement will declare, either directly or 
by default, the contents of each control field for 
the specified micro-instruction. Furthermore, the 
statement will include assignment information des­
ignating the address in control memory where the 
statement is located. 

A specification statement consists of one or more 
labels followed by a series of control field specifica­
tions. A colon after an entry indicates that it is a 
label. The contents of the control fields are indi­
cated symbolically, using either standard MCU or 
CPE symbols or user-defined symbols, or by an 
equation of the type 

FNM IOIB 

where FNM is a name associated with the field. 
The entry 10lB implies the binary value 101. 
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Each symbol is associated with only one field, so 
that the various symbols can be uniquely inter­
preted by the assembler. A number of symbols are 
predefined for the assembler, and are not to be 
used except as provided by the assembler. These 
reserved symbols include the standard symbols for 
the MCU and CPE functions, and a number of 
directives to the assembler. 

DEFINITION OF CONTROL FIELDS 

Each control field added by the hardware designer 
must be declared to the microprogram assembler. 
In addition, each bit pattern to be assembled into a 
word in the control field may be symbolically 
designated. A FIELD definition statement in the 
declaration part of the microprogram is used to 
declare the field by name and define any states. 

As an example, let a 2-bit field be defined for 
memory control. If the programmer wishes to 
name this field MEMC, and define symbols for the 
states with 0 I corresponding to READ, 10 corre­
sponding to WRITE, and II signalling RMW (read­
modify-write) and default to 00 if READ, WRITE 
or RMW is not specified, the statement: 

MEMC FIELD MICROPS (REAO-01B, WRITE-lOB, RMW-l1BI 

LENGTH-2 DEFAUL T-ooB; 

would perform the definition. The words FIELD, 
MICROPS, LENGTH, and DEFAULT are directives 
to the microprogram assembler. 

Additional directives include IMPLY, STRING, 
KBUS, and ADDRESS. The use of these words, 
and other features of CROMIS are covered in the 
Series 3000 Cross Microprogramming System Spe­
cification. 

A typical statement of the specification section 
might take the form: 

7BH: LAB: ILRIR3) FFO STZ JFllNC lei; 

The number 7BH (hexadecimal) followed by a 
colon tells the assembler that the micro-instruction 
is assigned to row 7 column II of control memory 
(when control memory is treated as an array of 32 
rows and 16 columns). The symbolic label LAB 



(the colon indicates a label) is also associated with 
this location. ILR(R3) indicates that the contents 
of register 3 are to be conditionally incremented 
and copied to the AC register, while FFO forces the 
carry input to a logic zero, so that the increment 
operation does not take place. STZ indicates that 
the Z flip-flop is to be set by the results, so that, 
as no carry can result, the Z flip-flop will be set to 
a logic zero. These symbols are standard symbols, 
with ILR associated with the CPE and FFO and 
STZ associated with the MCU carry logic. The JFL 
tests the carry output line for a conditional jump 
to either the statement labeled NC or to the state­
ment labeled Te. JFL is also a standard symbol. 
Note that, if the machine is pipelined, the condi­
tional jump tests the results of the previous instruc­
tion, not of the present one. The semicolon indi­
cates the end of the statement. 

In the statement above, no information was pro­
vided for the K-Bus. It is assumed the assembler 
will provide the appropriate default value associ­
ated with the ILR operation, i.e., the K-Bus at all 
zeros. 

The reader is referred to the Intel® Series 3000 
Cross Microprogramming System Specification for 
detailed information concerning CROMIS. 

ASSIGNMENT TO CONTROL MEMORY 

The nature of the MCU next state address control 
requires the programmer to assign control memory 
locations to each micro-instruction. While this may 
at first seem unfamiliar, it can usually be easily 
accomplished if the following sequence is followed: 

1. The microprogram should be written without 
regard to address assignment. Then conditional 
jumps are assigned using the basic conditional 
jumps provided by the MCU (JFL, JCF, JZF, 
JPR, JLL, JRL, JPX), noting the number of 
possible destinations for the conditional jumps 
chosen. When a sequence of instructions is to be 
executed unconditionally and does not indicate 
what jump codes will be used to advance to the 
next state (unless the JCE enable feature is re­
quired), use the non-committal code JMP rather 
than selecting a JCC, JZR or JCR. 

2. Prepare a state sequence flowchart for the pro­
gram (see example, Figure 7). According to the 
programmer's preference, this may be done be­
fore, during or after the actual writing of the 
code. Label the conditional jump points on the 
flowchart. 
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3. Using the flowchart as a guide, perform the 
assignment. In general, conditional jumps should 
be assigned first, with clusters of conditional 
jumps assigned before isolated jumps. Leave long 
chains of unconditional sequences for last. The 
process of assignment can be assisted by using a 
diagram of the control memory showing the 32 
rows and 16 columns. As each state is assigned, 
the control memory diagram is marked to show 
occupancy of that word and the flowchart 
marked to show the assignment of the state. 
With the assignment complete, the addresses are 
copied from the memory diagram. 

One other procedure in microprogram memory 
assignment has been found to be useful. When the 
control memory diagram is marked as each state is 
assigned, it is helpful to include state linkage infor­
mation in the diagram, i.e., memory location(s) 
that reference the current location and memory 
location(s) referenced by the current location. 
With the additional information, micro-instruction 
sequences can be easily traced on the control 
memory diagram. 

The state linkage information can be quite useful 
when most of the microcode has been assigned and 
only a few locations are left to assign the remaining 
states. If reassignment of memory locations be­
comes necessary in order to assign the remaining 
microcode, or modify the existing microcode, the 
state linkage information will greatly simplify the 
task. 

When reassignment becomes necessary, sequences 
of unconditional micro-instructions should be con­
sidered first since they are the easiest to move. 
Therefore, these types of states are useful to 
annotate. 

In some cases, a particular sequence may be impos­
sible to assign as written. For example, consider the 
following section of microprogram: 

r ENTER WITH INSTRUCTION DISPLACEMENT "0" IN AC, SAVE AT R9 -, 

175: SQR(9) FFI .PX(MO,Ml, M2, M3. M4, MS, MS, M7, MS, M9, MA. MS, Me, 
MD. ME. MFI; r ALSO TESTS HIGH 4 BITS OF MACRO-INSTRUCTION ., 

r MO- MACRO INSTRUCTION GROUP 1, FETCH R2 -, 

128: MO: ILRIR21 FFO JMP(M1PI: 

129 Ml: ILRIR3} FFO; 

M1P; ADRIR91 FFO; 
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Figure 6. 

" 
MIP I I: D 

M2 M3 I M41·:"G 

Operation MIP Can Be Reached From 
Both MO and M1 by Locating MIP in 
Row 0 or Duplicating it in Both 
Column 0 and Column 1 

In the above example, MIP follows both MO and 
M 1. Since the row in which MO and M I reside is 
completely filled, MIP must be located in row zero 
(because the JZR jump operation allows a location 
in row zero to be reached from anywhere in mem­
ory). If row zero were already fully occupied, the 
assignment could not be made. However, in this 
case the state represented by MIP might be dupli­
cated so that it can be reached from state MO and 
M1. No extra execution time is added by this 
modification, although one more memory location 
is used. 

When assigning to memory, row zero locations 
should be used judiciously, but not sparingly, be­
cause only they can be reached from anywhere else 
in the program using a single JZR jump function. 

Finally, in a 512-word microprogram memory 
there are 64 possible destination pairs for the JCF, 
JZF and JFL conditional jump functions, since all 
three use columns 2 and 3 or columns 10 and II as 
their jump target. It is therefore important to 
insure that enough destination pairs are available 
for the conditional jumps used in a microprogram. 

PROGRAMMING TECHNIQUES 

Because of the flexibility of both the micro-opera­
tions and the architecture of the Series 3000 com­
puting elements, a number of programming "tricks" 
can be used to implement a desired operation. As 
the programmer becomes more familiar with the 
set, he will find new ways to perform different 
functions. The list of operations given here are 
intended as examples. In general, the labels indi­
cating assignments to memory are not shown. In 
all of the examples, KB is the name associated with 
the K-Bus field of the micro-instruction. State­
ments bounded by /* ... * / are comments and do 
not affect the assembly. 
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1. Forcing a fixed address to access a predetermined 
location in memory or to select a specific I/O 
device. (Also may be used to load literals.) 

ClRtN) 

LMIIN) KB"OESAD; 

The first operation clears the register selected by 
N, while the second loads the logical OR of the 
contents of N and the contents of the K-Bus to 
the memory address register (MAR) of the CPE 
array and into register N. DESAD is a symbol 
for the desired address value previously defined 
by the programmer. The pair of micro-ops above 
may also be used to set any register to any 
desired constant, although the contents of the 
MAR are destroyed. 

2. Any register may be set to all I's by the opera­
tion 

CSR(N) FFO 

3. A value read from memory or I/O into the AC 
may be split into bytes and stored in another 
register as follows: 

SOR{N) FFl KFFOO; f" STORE RIGHT BYTE IN REG N • / 

SORIAe) FFl KOOFF; r SET lEFT BYTE OF ACTOZERQ ./ 

where KFFOO is a symbol which causes the K­
Bus to be set to IIII IIII 0000 0000 in binary, 
and KOOFF is a symbol for setting the K-Bus to 
0000 0000 II1I 1I1I in binary. The high order 
byte is placed in the upper byte of register N 
while the low order byte remains in the low 
position of the AC. The low byte of register N 
and high byte of the AC are cleared. 

4. Sign Testing and Absolute Magnitude - To test 
sign bits most effectively, an inhibit operation at 
the CPE clock is very desirable. In the following 
examples the symbol INH implies a signal from 
the control memory to inhibit the CPE clock. 
This prevents modification of the AC register. 

The operations 

TZAtAC) K8000 INH JFl(AP,AN); 

AN: CtA(AC) 

AP: 

generate the absolute magnitude of AC in AC 
for the non-pipelined case (note K8000 implies 
1000 0000 0000 0000 on the K-Bus) while 

TZR(AC) KSOOO INH 

NOP JFLiAP,ANI; 

AN: CIA(ACI 

AP: 

performs the same operation for the pipelined 
case. 



When two numbers in AC and T must be con­
verted to positive numbers and the signs saved, 
as well as the sign of the product, the following 
routine may be used for a pipelined machine. 
/' ENTER WITH VALUES IN T,AC " 

," fiRST CLEAR SIGN AREA REGISTER 9 FOR THIS EXAMPLE 'f 

CLR(R91. 

"NEXT TEST SIGNS OF AC. THEN T " 

TZRIACI K8000 INH. r TEST AC SIGN SIT " 

TlRm JfL(AP,ANI: ,'TESTTSIGNBIT " 

LMI(R91 K8000 JFL(TP,TNI. I" SET HIGH AND LOW ORDER BIT " 

CIA(ACI JFL(TP,TN). " COMPLEMENT AC " 

LMHR91 «000 JMP(NXOPI: r SET BIT 15 'f 

ClAm. ,. COMPLEMENT T 'f 

Upon reaching label NXOP, both AC and T will 
contain positive numbers (high order bit = 0) 
and register 9 will contain a I in the high order 
bit if and only if AC was originally positive, a I 
in the second bit from the top if and only if T 
was originally positive, and a zero in the low 
order bit if and only if the signs were the same. 
A one will appear in the second lowest order bit 
if and only if both numbers were originally 
positive. Execution of the sequence takes 5 
micro-instruction cyeles. 

5. Pipelined Multiply - Assume that AC and T 
represent the partial product and multiplier 
respectively, while register 9 contains the multi­
plicand and register 8 will be used as a loop 
counter. Register 7 is used for temporary stor­
age. It is assumed that both numbers are positive. 
r SET UP LOOP COUNTER 'f 

MGl CSRIRBI 1(0000. "SET R8TOFFFF HEX' 

TZFHR81 KFFFO. /' SET R8TOFFFOHEX • 

!" CLEAR PARTIAL PRODUCT lAC) " 

ClRIACI. 
/' fETCH AND TEST MULTIPLIER LOWQAOER BIT " 

SRA(TI; 

" MAIN LOOP - EXECUTE MULTIPLIER BIT TEST, ADD IF NECESSARY', 

MLP: LMUR81 FF 1 STZ JFLIMBZ.MBll. ,. INCREMENT LOOP COUNTER SAVE IN Z ., 

" A.oD SEQUENCE " 

MBI' SDRIRll FFI ,. SAVE AC IN REGl " 

ILR(R91 FFO. I" PLACE MULTIPLICAND. R9.IN AC " 

ALR(R7I FFO r ADO MULTIPLICAND TO PARTIAL PRODUCT ./ 

" NOW ROTATE. THEN TEST LOOP COUNT - SAveD IN Z ., 

,'NOTE PIPELINE ALLOWS USE OF Z FOR SHIFT BIT PROPAGATION '/ 

r NOTE THE SoRIR7I. ILRIR91. AND ALRIR11 MICRO-INSTRUCTIONS CAN BE 
REPLA.CEo WITH AN A¥A MICRO·INSTRUCTION ELIMINATING Z INSTRUCTIONS 
FROM THE INNER LOOP IF OATA IS LATCHEO ON THE M BUS ., 

MEX: 

SRAIACI 

SRAtTI 

FFOSTZ. I' SHIFT PARTIAL PRODUCT. SAVE LSB ., 

FFZ JZFIMLP.MEXI. I' Z TEST IF OF LOOP CDUNTI " 

Note that the pipeline causes the lZF (or a lCF) 
to test the contents of the flip-flop as set two or 
more instructions earlier. 

A state sequence flow diagram for the multiply 
sequence might be drawn as shown in Figure 7. 

Note that in Figure 7, each symbolically labeled 
state is noted, and each conditional jump is indi­
cated and the conditions corresponding to each 
jump are noted. A flowchart like that of Figure 
7 contains sufficient information to perform the 
assignment to memory. An assignment might be 
as shown in Figure 8. 
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rCL 

Mel+1 

Mel +:~ 

MCl+J 

MLP 
M8'~~--------~'---~ 

JFL 

M81+1 

M81+2 o-________ -to~"'M8::::Z~>=JZ"'F 

MEX 

Figure 7. State Sequence Flow Diagram -
Multiply Loop 

COL COL COL COL COL COL 
o , 2 3 4 5 

ROW 9 MCl MCl MlP MEX MCl MCl ., '2 '3 

ROW 10 MB, MB' MBZ MB1 

Figure 8. An Assignment of the Multiply Loop 
to Control Memory 

Because MLP and MEX are the two destinations 
of a JZF jump function, they must be in the 
same row, in columns two and three respectively 
or in columns 10 and II respectively. Since MLP 
executes a lFL to MBZ, MBI, then MBZ and 
MBI must be in the same pair of columns as 
MLP and MEX. For the example, rows 9 and 10 
were chosen, and columns 2 and 3, and the four 
states MLP, MEX, MBZ, MBI are assigned first. 
Next the states following MBL (indicated by 
MBI+I and MBI+2) and MBZ are assigned. As 
all of these jumps are unconditional, the opera­
tions lCC, lCR, and lZR are used. As the lZR 
is usually reserved for entry to commonly used 
routines, only the JCC and JCR jumps are used 
here. 

To demonstrate the techniques introduced above, 
a central processing unit design cycle will be carried 
through from initial specification to final micro­
program memory assignment. 

A DESIGN EXAMPLE 

The following design example illustrates some of 
the basic techniques which may be used in develop­
ing a central processor with the Intel® Series 3000 
Bipolar Microcomputer Set. The basic design se­
quence consists of stating the machine objectives, 
then designing the hardware configuration and 
microprograms. For this example, it is assumed 
that the designer has the freedom to specify opera­
tion code assignments, and to modify the instruc­
tion set to take greatest advantage of the chip set's 
capabilities. 
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Initial Specifications 

Let the following list of design objectives represent 
the initial specifications for a central processor 
instruction set. 

I. The machine should use a 16-bit data path, 
with instructions containing an opcode por­
tion and a data or displacement portion. 

2. Machine registers should include a program 
counter, P, a stack pointer, S, an accumulator, 
A, an index register, X, and two base registers, 
Band E. B is a base register for data and E is 
a base register for program. In -addition, a 
carry flip-flop may be a bit in the status word, 
W. 

3. References to memory for data should be 
relative to the B register, using the displace­
ment portion of the instruction (designated 
D). Memory reference modes include direct 
(Address=B+D), indirect (address equals the 
contents of B+D), and indirect indexed (ad­
dress equals the value given by the sum of X 
and the contents of the word at address B+D). 
Indirect and indirect-indexed modes should 
include both absolute and B relative (Le., the 
address is relative to the contents of the B 
register) forms so that indirections may be 
computed both at time of assembly and dur­
ing prog~am execution. 

4. Memory reference instructions include: load 
address to A, load data to A, AND data to A, 
OR data to A, XOR data to A, add data to A, 
subtract data from A, push address to stack, 
push data to stack, store A at computed 
address, pop stack to computed address, load 
address to X, load data to X, add data to X, 
subtract data from X, store X at computed 
address (operations involving X may not need 
to implement indirect-indexed modes). 

5. Immediate instructions using the displacement 
portion of the instruction as the data, include, 
load A, load X, add to A, add to X. A two 
word "load immediate" instruction may also 
be implemented. 

6. Jump instructions include a short relative 
jump (Address=P+D-K, where K is a con­
stant), an indirect jump to an address relative 
to the E base register, and an indirect call 
operation. 

7. The call (to a subroutine) operation saves the 
P, E, B, and W registers (global call), or the P 
register (local call) on the stack and loads the 

P register with the starting address of the 
routine. Similarly, a return instruction restores 
the appropriate registers. Some jumps may 
also be conditional, checking the status of the 
C flip-flop, or the sign or magnitude of the A 
register. 

8. Additional operations may involve manipula­
tions of data in the A and X registers and the 
ability to move data between the X and the 
W, B, E or S registers. 

9. Byte load and store operations should include 
automatic packing and unpacking of bytes in 
a 16-bit memory location. 

10. Input/output instructions should use either 
the displacement or the X register to specify 
the I/O device address. 

In addition to the definition of the macro-instruc­
tion set, the designer should also prepare descrip­
tions of the initialization operations (Le., at "power 
on") and interrupt handling to be used. For this 
machine, let it be considered necessary for the 
machine to start at power up with W, A, and X 
cleared and for S to be set to the contents of word 
0, B to be set to the contents of word 1 of mem­
ory, E set to the contents of word 2, and P set to 
the contents of the memory location pointed to 
by E. 

Let I/O device 0 represent a source of interrupt 
level information (level requesting in) and a desti­
nation for current level out, consistent with the use 
of the 3214 Interrupt Control chip. In addition, 
let the low order bits of W contain current inter­
rupt level information. 

When servicing an interrupt, the processor will 
execute a jump to subroutine which will reload P 
and E while saving all registers except S on the 
stack. The service routine will interrogate the inter­
rupt hardware to determine the level of the request 
and will restore former status upon exit from the 
interrupt program. For this purpose, a return and 
restore status instruction will be provided. 

In parallel with the specification of the design 
objectives, a first pass at the CPU's architecture can 
be made. The block diagram in Figure 9 shows a 
general CPU architecture as defined in the initial 
specification above. 

The design example machine uses a pipelined 
architecture and includes a control structure which 
implements eight basic memory bus and clock 
operations. A 3-bit field is used to control this 
structure. The states for this field are designated 
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L _________________ _ 

L _____________________________ ~ 

OPCQDE FIELD 

Figure 9. Block Diagram of CPU Architecture 

NBO (No Bus Operation), INH (Inhibit CPE Clock), 
CNB (CPE uses bus), RMW (read modify write 
signal to memory - starts a read cycle and prevents 
release of bus until the CPU executes a write cycle), 
RRM (Request read cycle from memory), RWM 
(Request write to memory), RIN (Request input 
from an I/O device), and ROT (Request an output 
to an I/O device). 

The stack has been designed to run "backwards" 
through memory, with a pop incrementing the 

:j:.31 

stack pointer and a push decrementing it. This 
direction is preferred, as it leaves the stack pointer 
pointing at the topmost entry in the stack. In 
addition, pops usually appear more often than 
pushes (pushes share code), and the increment 
operation requires fewer micro-instructions. 

The designer must select the actual instructions to 
be used. Let the instructions and their associated 
mnemonics shown in Table I be selected in the first 
design pass. 
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Table I. Proposed Instruction Set 

MNEMONIC 

LAA 

LDA 

ADA 

SDA 

NDA 

ODA 

XDA 

PAS 

PDS 

SAM 

PSM 

LAX 

LDX 

ADX 

SDX 

SXM 

MNEMONIC 

LAI 

AAI 

NAI 

OAI 

XAI 

PSI 

LXI 

AXI 

MEMORY REFERENCE GROUP 

FUNCTION 

Load address to A 

Load data to A 

Add data to A 

Subtract data from A 

AND data to A 

OR data to A 

Exclusive OR data to A 

Push address to stack 

Push data to stack 

Store A into memory 

Pop stack into memory 

Load add ress to X 

Load data to X 

Add data to X 

Subtract data from X 

Store X in memory 

IMMEDIATE GROUP 

FUNCTION 

Load to A immediate 

Add to A immediate 

AND to A immediate 

OR to A immediate 

Exclusive OR to A immediate 

Push to stack immediate 

Load to X immediate 

Add to X immediate 

If D is equal to zero, the contents of the memory location 
following the instruction is used as the immediate value. 

JUMP GROUP 

MNEMONIC 
FUNCTION 

RELATIVE INDIRECT 

JRU JIU Jump unconditional 

JRGE JIGE Jump if A;;'O 

JRLT JILT Jump if A<O 

JRXG JIXG Jump if X>A 

JREZ JIEZ Jump if A=O 

JRNZ JINZ Jump if A*O 
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JUMP GROUP (continued) 

MNEMONIC 
FUNCTION 

RELATIVE INDIRECT 

JRCZ JICZ Jump if C=O 

JRXL JIXL Jump if X';;;A 

JRLE JILE Jump if A';;;O 

JRGT JIGT Jump if A>O 

JRCN JICN Jump ifC*O 

JRXE JIXE Jump if X=A 

Jump relative: P=P+D-128 
Jump indirect: P=(E+D)+E 

STACK PUSH AND POP GROUP 

MNEMONIC 

PHAX 

PPAX 

FUNCTION 

Push A and X onto stack 

Pop A and X from top of stack 

SPECIAL MEMORY REFERENCE INSTRUCTION 

MNEMONIC 

ISZ 

MNEMONIC 

CLS 

CVS 

CAS 

FUNCTION 

I ncrement location B+D and skip if zero 

SUBROUTINE CALL GROUP 

FUNCTION 

Call local subroutine, push P onto stack 
P=E+(E+D) 

Call value subroutine, push W, B, E, P 
onto stack 
E=E+(E+D) 
P=E'+(E') 

where E'=E+(E+D) 

Call absolute subroutine, push W. B. E, P 
onto stack 
P=(D) 

SUBROUTINE RETURN GROUP 

MNEMONIC 

RLS 

FUNCTION 

Return from local subroutine, pop P from 
stack 

RVS Return from value subroutine, pop P, E, 
B, W from stack 

RSA Return from subroutine, restore all, pop 
A, X, P, E, B, W from stack 



Table I. Proposed Instruction Set (continued) 

BYTE LOAD AND STORE GROUP 

MNEMONIC 

LBA 

LBR 

SBA 

SBR 

Absolute mode: 
Relative mode: 

FUNCTION 

Load byte absolute 

Load byte relative 

Store byte absol ute 

Store byte relative 

Byte address = (B+D)+X12 
Byte address = (B+D)+B+X12 

The least significant bit of the X register is treated as the 
byte pointer in main memory as follows: 

X Reg. LSB = 0 the left or high order byte is selected 
= 1 the right or low order byte is selected 

For load operations, the selected byte is loaded into the 
right byte position of the A register and the left byte is 
cleared. For store operations, the right byte of the A regis· 
ter is stored at the selected byte location leaving the un· 
selected byte of the word unaltered. 

REGISTER MANIPULATION GROUP 

MNEMONIC 

RAR 

RAX 

SAX 

SAL 

FUNCTION 

Rotate A right, include CF F 

Rotate A and X right, include CFF 

Shift A and X right, preserve sign 

Shift A left, fill with zeros 

The shift count is given by D if D is non· zero or by the 
least significant seven bits of the X register if D is zero. 

BASE AND STATUS REGISTER MOVE GROUP 

MNEMONIC FUNCTION 

MSX Move S to X, adjust 

MBX Move B to X, adjust 

MEX Move E to X, adjust 

MWX Move W to X, adjust 

MXS Move X to S, adjust 

MXB Move X to B, adjust 

MXE Move X to E, adjust 

MXW Move X to W, adjust 

The destination register is adjusted by D-128 (i.e., D-128 
is added to the destination register). 
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INPUT/OUTPUT GROUP 

MNEMONIC 

IND 

OTO 

FUNCTION 

Input one word to the A register 

Output one word from the A register 

D serves as the address for the I/O port. 

INX 

OTX 

I nput one word to the A register 

Output one word from the A register 

The X register provides the address for the I/O port. 

Given the basic design objectives, the next step is 
to write the sequences of micro-instructions to im­
plement the macro-instruction described above. 
Each macro-instruction must be assigned a unique 
operation code. The operation code (opcode) will 
be used by the 300 I MCV to generate the appro­
priate address for the micro-instruction which exe­
cutes that macro-instruction. 

Macro-Instruction Decoding 

To take full advantage of the 3001 MCV's eight 
input lines (SXO-3, PX4-7) for instruction de­
coding, all macro-instruction operations should be 
completely specified in an 8-bit opcode field and 
use the remaining 8 bits for displacement values. 
In Figure 10 the 8-bit opcode of a macro-instruc­
tion being read in on the memory data bus is gated 
directly to the 3001 MCV. While the displacement 
is being stored in the CPE array, a JPX operation is 

300' 
Meu 

I'PR1 
~ 

SXO-l 

OPCODE FIELD 

300' 
CPE ARRAY 

MEMORY DATA 
INPUT BUS 

Figure 10, Macro-Instruction Decoding with 
the 3001 

executed by the 300 I. The JPX operation executes 
a 16 way branch based on the 4 bits of the PX lines 
and also stores the 4 bits on the SX lines in the PR 
latches for later decoding. For best microcode 
efficiency then, the opcode field should be arranged 
in such a manner that the first 4 bits tested (by the 
JPX operation) select the initial processing (usually 
an address calculation) of the macro-instruction. A 
possible instruction format is shown in Figure II. 
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ADDRESS OPERATION DISPLACEMENT 

MODE MODE 

Figure 11. possible Macro-Instruction Format 

In the case of the CPU design example, the initial 
processing involves address calculations and/or 
operand fetching. Table II contains the initial 
processing modes for the design example. 

Table II. Memory Modes 

In the description below, the letters A, X, B, S, P, W, and E 
represent the contents of the respective registers. 0 repre­
sents the 8-bit displacement treated as a positive number 
ranging from 0 to 255. 0' represents 0-128. ( ) are used to 
designate contents of memory. For example, (B+O) means 
the contents of the memory location whose address is equal 
to the sum of the contents of B and the displacement O. It 
is assumed that, when the instruction is fetched, P is incre­
mented prior to instruction execution. 

MEMORY REFERENCE MODES 

1. Direct: Address = B+O 

2. Indirect: Address = (B+O) 

3. Indirect relative: Address = (B+O)+B 

4. Indirect indexed: Address = (B+O)+X 

5. Indirect indexed relative: Address = (B+O)+B+X 

IMMEDIATE MODES 

6. If 0*0, Data = 0-128 

If 0=0, Data = (P), P=P+l 

JUMP MODES 

7. Jump relative: P=P+0-128 

8. Jump indirect: P=(E+O)+E 

g. Call relativ\!: P=(E+O)+E 

10. Call indirect: P=E'+(E') where E'=E+(E+O) 

REGISTER MODE 

11. Fetch source register 

Using the instruction format shown in Figure 11, 
the high order 4 bits (bits 12 to 15) will be used to 
select one of the modes listed in Table II. Thus, by 
executing a JPX operation, a 16 way branch on the 
PXQ-PX3 bus can be performed to determine the 
address mode specified. At the same time the SX 
bus bits (the Operation Code field) will be stored 
in the PR latches for later use. A possible assign­
ment of the first 4 bits (bits 12 through 15) might 
be as shown in Table III. 
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In addition to the initial address mode processing 
input/output, register to register, and other special 
function operations can be specified in the first 4 
bits, as shown in Table III. 

Microprogram Implementation 

Having assigned the first 4 bits of the macro­
instruction operation code, the next 4 may be 
tentatively assigned. These 4 bits will have different 
meanings for different instruction classes. To im­
prove microcode efficiency it is desirable to share 
as much code as possible between different micro­
program segments. For example, the ADA and AAI 
instructions might share the add operation once the 
data has been fetched. 

MEMORY REFERENCE AND IMMEDIATE 
GROUP 

The assignment shown in Table IV might be used 
for the memory reference and immediate group 
instructions. The clustering has been chosen in a 
way that should allow JPR and JLL and JRL 
micro-operations to be used effectively and to 
allow code sharing between the two groups. 

An initial flowchart for the memory reference and 
immediate group instructions is shown in Figure 
12. In the flowchart, the boxes indicate the opera­
tions performed. The appropriate jump operations 
(JPX, JLL and JRL) are indicated along with the 
bit patterns that select each box. 

It is possible that when the actual code for the 
sequence is written, some improvements in effi­
ciency may still be made_ In addition, some of the 
boxes shown as dummies may be eliminated by 
suitable placement of the JLL and JRL instructions. 

Knowledge of the MCU assignment restrictions 
may also influence some choices here. For example, 
the MCU provides twice as many possible JLL 
jump destinations as JRL jump destinations, while 
the sequence shown uses twice as many JRLs as 
JLLs. As a result, an easier assignment might be 
obtained if the JLLs and JRLs were exchanged, 
which is equivalent to a reassignment of the macro­
operation codes. 

Also, recognizing that the MCU's JCC type jump 
facilitates jumping from one JLL destination to 
another, it is desirable to assign the macro-opera­
tion codes so that operations which share final 
segments are aligned in columns. For example, the 
SDA instruction would typically be achieved by 
complementing the data, then adding it to A, 
which may share the code for ADA. As a result, a 



Table III. Mode Bit Assignments 

ADDRESS MODE 
BITS 

0000 No operation 

0001 Jump relative 

MODE 

0010 Jumps (index, etc.) 

0011 Immediate 

0100 Direct memory reference 

0101 Indirect memory reference 

0110 I ndirect index 

0111 Indirect index relative 

1000 I/O input 

1001 I/O input 

1010 I/O output 

1011 I/O output 

1100 Move group 

1101 Special function group 

1110 Indirect relative memory reference 

1111 No operation 

Table IV. Memory Reference and Immediate 
Op Code Assignment 

OP FIELD 
MEMORY 

IMMEDIATE 
BITS 

REFERENCE 
FUNCTION 

FUNCTION 

0000 ADA AAI 

0001 ADX AXI 

0010 NDA NAI 

0011 ODA OAI 

0100 LDA LAI 

0101 LOX LXI 

0110 PDS PSI 

0111 XDA XAI 

1000 LAA 

1001 LAX 

1010 PAS 

1011 SDA 

1100 SAM 

1101 SXM 

1110 PSM 

1111 SDX 
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INITIAL PROCESS SUBSEOUENT PROCESSING 

P+D' Condition testing 

(E+D)+E 

D' or (P) LAI, AAI, etc. 

B+D 

(B+D) 

(B+D)+X LAA, LDA, etc. 

(B+D)+X+B 

D->MAR 

X->MAR 

D->MAR 

X->MAR 

Shift A 

(B+D)+B 

better assignment of opcodes might be achieved by 
placing ADA and SDA in the same column. For 
example, see the assignment shown in Table V. 
Table V also assumes exchange of the JLL and JRL 
instructions. 

Table V. Modified Memory Reference Op Code 
Assignments 

0000 = NDA 0100 = ODA 1000 = XDA 1100 = ADA 

0001 = LDA 0101 = LDX 1001 = PDS 1101 = ADX 

0010=LAA 0110=LAX 1010=PAS 1110=SDA 

0011 = SAM 0111 =SXM 1011 =PSM 1111 =SDX 

Except for those considerations mentioned above, 
the code is most easily written without regard to 
memory assignment. Also, it is assumed that reas­
signments of macro-operations codes are made 
when efficiency can be improved. 

Let the CPE register assignments be made as shown 
in Table VI. 

The code which follows represents the specification 
portion of the microprogram in which the various 
fields are identified, and symbols defined. 
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fETCH FeTCH FETCH FeTCH 
JRL 

JRL 

FETCH FETCH FETCH FETCH 
JRL 

FETCH FETCH FETCH FETCH 
JRL 

FETCH FETCH FETCH FETCH 

Figure 12. First Pass of Memory Reference Group Flowchart 

/* BIPOLAR MICROCOMPUTER MACRO-MACHINE 
REGISTER MACHINE- -12/13/74 
UPDATED 3/18/75 

MACHINE HAS 7 REGISTERS AS FOLLOWS: 
A ACCUMULATOR RD 
X INDEX REGISTER R1 
P PROGRAM COUNTER R3 
S STACK POINTER R4 
B DATA BASE REG R5 
E PROG_ BASE REG. R6 
W STATUS WORD R7 

C=CARRY,LlNK FLiP-FLOP=HOB OF W 

DEFINITION OF KBUS FIELD *1 
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KB FIELD LENGTH=4 DEFAULT=O 
M ICROPS( KOOOO=O 

K8000=8 
K007F=1 KOOOFF=3 K7FFF=7 
KFFOO=12 KFF80=14 KFFFF=15); 

KB KBUS; 

/* DEFINITION OF BUS CONTROL FIELD *f 

MCF FIELD LENGTH=3 DEFAULT=O 
MICROPS(NBO=OOOB 

RIN=100B 
INH=OOlB RMW=010B CNB=OllB 

RWM=lllB); ROT=101B RRM=110B 

/* 
INH 
RMW 
CNB 
RIN 
ROT 
RRM 
RWM 

NBO NO BUS OPERATION 
INHIBIT CPE ARRAY 
READ-MODIFY-WRITE 
CPU NEEDS BUS 
REQUEST INPUT 
REQUEST OUTPUT 
REQUEST READ MEM. 
REQUEST WRITE MEM. 

SET UP FOR SYMBOLIC REPRESENTATION OF REGISTER DESIGNATIONS *j 

A 
X 
P 
S 
B 
E 
W 

STRING 'RO'; 
STRING 'Rl'; 
STRING 'R3'; 
STRING 'R4'; 
STRING 'R5'; 
STRING 'R6'; 
STRING 'R7'; 

/* SET UP A SPECIAL NO.OP STRING *f 

NO.OP STRING 'NOP(R3)'; 

/* NEXT WE SPECIFY A DEFAULT TO FFl IN THE FO FIELD FOR THE SDR 
MICROP IN THE CPE FIELD. SDR IS NORMALLY USED AS A STORE 
OPERATION. WHEN A DECREMENT OPERATION IS ALSO DESIRED, FFO 
WILL HAVE TO BE EXPLICITLY SPECIFIED */ 

SDR IMPLY FO=llB; 

Table VI. Register Assignments 

RO = A 

Rl = X 
R3 = P 

R4 = S 

R5 = B 
R6 = E 

R7 = W (C is high order bit of W) 

The next portion of the code represents the ma­
chine initialization (in which registers are set to 
initial values during power up), and the memory 
reference and immediate group of instructions. The 

elementary flowchart followed is that of Figure 13, 
reflecting the reassignment shown in Table V. 

A number of programming "tricks" can be found 
in the microcode. For example, the C flag of the 
MCU (not to be confused with the C flip-flop of 
the macro machine) is set each time the machine 
executes a fetch instruction by the SDR micro­
operation. SDR adds 111 ... 1 to the AC (as masked 
by the K-Bus) so that whenever the carry input of 
the CPE array is a I, the masked AC register will be 
stored unchanged into the designated register, and 
the carry output of the CPE array will be I. 
Similarly, a ILR micro-operation (KBUS = 0) with 
a carry-in of zero never generates a carry, so that it 
can be used to clear the C flag if so desired. 
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FETCH FETCH FETCH FETCH 
JLL 

JLL 

FETCH FETCH FETCH FETCH 
JLL 

FETCH FETCH FETCH FETCH 
JLL 

FETCH FETCH FETCH FETCH 

Figure 13. Second Pass of Memory Reference Group Flowchart 

The C flag is used to implement a type of micro­
code subroutine where code is shared by two 
"calling" routines, one which leaves the C flag 
unchanged and the other which clears it. Upon exit 
from the shared code sequence, the C flag is tested 
giving a unique exit for each of the two calling 
routines (see Figure 14). 

The inhibit operation, indicated by the "INH" 
micro-operation, inhibits the clock to the CPE 
array. For these operations the carry function and 
conditional jump results are the same as if the oper­
ation were executed. However, none of the CPE 
registers are altered when the clock is inhibited. 

Figure 14. Microcode Subroutine Using the C-Flag 
to Determine Exit 
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The result is a number of "compare" or test 
micro-operations. 

In general, row zero locations should be used 
sparingly because they are the only locations that 
can be reached from anywhere in microprogram 
memory using a single JZR micro-operation. Dur­
ing the first pass of the microprogram implementa­
tion, notes can be added to indicate where code 
might be saved if row zero locations are used. 

A common case of such microcode saving follows 
the execution of a JPR or JPX micro-operation. If 
the datum being tested by the JPR or JPX repre­
sents a macro-instruction operation code in which 
less than 16 modes are used, there is always the 
possibility that an invalid code might be en­
countered. Rather than have the machine behave 
unpredictably, it is better to have the machine exe­
cute some designated sequence for invalid macro­
operation codes. As a result, all 16 locations 
reached by the JPX or JPR micro-operation must 
be considered occupied. Therefore, when it is 
desirable to have a single state follow each of 
several states reached by a single JPX or JPR micro­
operation, two possible methods can be used which 
do not require additional jump micro-operations: 

I. Locate the single state in the row zero 
2. Locate the single state in a column reached by a 

JCF or JZF micro-instruction and insure the 
corresponding (C or Z) flag is in the desired 
state. 

'* INITIALIZATION SEQUENCE 
ZERO A, X, AND W */ 

INIT: CLR(A); 
CLR(X); 
GLR(W); 

CPU Design 

As an example of this situation, consider the tol­
lowing sequence of micro-instructions (only labels 
and jumps shown): 

TST: ,R IDO. 01. 02. D •... D151 
DO: .IMP ID1A) 
01: 
01A: 

In the sequence above, DO through D 15 occupy an 
entire row. The micro-instruction labeled DIA 
unconditionally follows both of those labeled DO 
and D I. Since the row containing DO through D 15 
is fully occupied, DlA cannot be assigned to that 
row. The only other unconditional jump which can 
reach a common location from more than one col­
umn is the JZR. However, such conditional jumps 
as JCF and JZF, where the condition is pre-set, 
can jump to a given location from up to eight sites 
in a given row, as illustrated in Figure 15. 

COLUMN 

012345678 

ROWn 100 I 0+21 03 1 04 1 06 1 06 1 07108109 f 
+_+_L+_L+_+_+_' > 

-!---JCF MICRO"()PERATI'lN 

ROWn+1 8 
WITHIN CURRENT t 

ROW GROUP 

COLUMN 2 FOR C·FLAG" 0 

Figure 15. Special Use of the Conditional Jump 
Functions 

/* ZERO T AS TEMPORARY POINTER, WRITE W TO INTERRUPT STRUCTURE */ 

CLR(T); 
LMI(T); 
ILR(W) ROT; 

/* SET S = (0), T = 1 FOR NEXT OPERATION */ 

LMI (T) FF 1 RRM; 
ACM(AC) ; 
SOR(S); 

/* SET B = (1), T = 2 FOR NEXT OPERATION */ 

LMI(T) FF1 RRM; 
ACM(AC); 
SOR(B) STC; /* THIS SETS THE C FLAG TO INSURE 

A CORRECT JUMP TO XRTN */ 
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/* GET (2), JUMP TO XRTN TO SET E = (2), P = (E) *j 

LMI(T) RRM; 
ACM(AC) JCF (*,XRTN); 

/* FETCH SEQUENCE & START OF MACRO-INSTRUCTION PROCESSING 
P IS ISSUED TO MAR AND INCREMENTED, MACRO-INSTRUCTION 
IS FETCHED AND TESTED BY JPX MICRO-OPERATOR_ NOTE 
FETCH IS IN LOCATION 15 TO STROBE INTERRUPT ON ENTRY_ *j 

FETCH: LMI(P) FFl RRM; 

/* LOAD DISPLACEMENT AND TEST FOR ZERO USING Z FLAG * j 

LTM(AC) STZ KOOFF; 

/* SAVE DISPLACEMENT, TEST 4 BITS OF MACRO-OP_ TEST IS 
DELAYED TO ALLOW PIPELINE PROPAGATlON_ ALSO C FLAG IS 
SET FOR LATER USE IN PSEUDO-SUBROUTlNES_ *j 

SDR(R9) STC JPX(NAO,JREL,JIG,IMMD,DMRF,IMRF,IXMA,IXMB,IND, 
I NX,OTD,OTX,MVGP ,SPFG,I R BM,NA 15); 

/* UNASSIGNED OP-CODE GROUPS- -NOPS FOR THIS VERSION *j 

NAO: 
NA15: 

NO_OP 
NO_OP 

JZR(FETCH); 
JZR(FETCH); 

/* IMMEDIATE GROUP OF MACRO-INSTRUCTIONS- -TEST FOR LONG OR SHORT 
FORM- -D IS IN AC AND R9- -ADJUST AC BY -128 *j 

IMMD: LMI(AC) KFF80 JZF(lMML,IMMS); 

/* LONG FORM: FETCH NEXTWORD TO AC *j 

IMML: LMI(P) FFl RRM; 
ACM(AC) JRL(lLGA,ILPX,NAll,NAI2); 

/* SHORT FORM: NO PROCESSING NEEDED *j 

IMMS: NO_OP JRL(ILGA,ILPX,NAll,NAI2); 

/* PREPROCESSING FOR ARITHMETIC AND LOGIC ROUTINES? NONE NEEDED *j 

ILGA: 
ILPX: 

NO_OP 
NO_OP 

JLL(NDA,ODA,XDA,ADA); 
JLL(LDA,LDX,PDS,ADX) 

/* NOTE: NAil AND NAI2 ARE NON-VALID INSTRUCTIONS!! THEY ARE 
MADE INTO NO-OPS IN THIS VERSION OF THE MACRO-MACHINE *j 

NAil: 
NAI2: 

NO_OP 
NO_OP 

JZR(FETCH); 
JZR(FETCH); 

/* BASIC ARITHMETIC AND LOGIC PROCESSING- -UPDATE C FF OF MACRO­
MACHINE FOR ADA--TOGGLE ITON CARRY FROM ADA *j 

ADA: 
ADA1: 
NCY: 
SCY: 

ADR(A); 
NO_OP 
NO_OP 
LMI(W) K8000 

/* LOGICALS *j 

NDA: 
ODA: 
XDA: 

ANR(A) 
ORR(A) 
CMR(AC); 
XNR(A) 

JFL(NCY,SCY); 
JZR(FETCH); 
JZR(FETCH); 

JZR(FETCH); 
JZR(FETCH); 

JZR(FETCH); 
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/* LOA AND LOX OPERATIONS *j 

LOA: 
LOX: 

SDR(A) 
SDR(X) 

JZR(FETCH); 
JZR(FETCH); 

/* STACK PUSH- -ADVANCE STACK POINTER TO NEXT LOCATION (FOR THE 
REVERSE DIRECTION STACK- -A DECREMENT OF S), THEN WRITE *j 

PDS: 
PDS1: 

DSM(S); 
LMI(S) RWM JZR(FETCH); 

/* ADX - SHARES CODE FOR ADA - ALSO TOGGLES C FF OF MACRO MACHINE *j 

ADX: ADR(X) JMP(ADA1); 

/* MEMORY REFERENCE INSTRUCTION GROUPS 
DIRECT--GETB+D INTO AC--ALSO R9 *j 

DMRF: ILR(B); 
ALR(R9) JRL(MRV1,MRV2,MRAD,STPG); 

/* INDIRECT-ABSOLUTE- -GET (B+D) INTO AC- -C FLAG USED FOR PSEUDO-SUBROUTINE *j 

IMRF: ILR(B); 
IMRF1: ALR(R9); 

LMI(R9) RRM 
MLOAD: ACM(AC) 

JCF(MADD,MLOAD); 
JRL(MRV1,MRV2,MRAD,STPG); 

/* NOTE: MADD WILL BE USED FOR OTHER INDIRECT OPERATIONS WHERE 
B, X, ETC_ HAS BEEN LOADED TO R8 *j 

MADD: ACM(AC); 
ALR(R8) JRL(MRV1,MRV2,MRAD,STPG); 

/* INDIRECT INDEXED ABSOLUTE - CLEAR C FLAG, MOVE X TO R8 *j 

IXMA: ILR(X) STC; 
SDR(R8); 

/* NOTING THAT ASSIGNMENT RULES WOULD NOT ALLOW THE DESIRED 
JUMP TO IMRF UNLESS IXMA+l WERE IN ROW ZERO- -AN EXTRA STATE 
IS ADDED HERE *j 

IXMA2: ILR(B) JMP(lMRF1); 

/* INDIRECT INDEXED RELATIVE - CLEAR C FLAG, PUT B+X IN R8 *j 

IXMB: ILR(X) STC; 
SDR(R8); 
ILR(B); 
ADR(R8) JMP(lMRF); 

/* INDIRECT RELATIVE (TO B) - CLEAR C FLAG, PUT B IN R8 *j 

IRBM: ILR(B); 

/* AGAIN ASSIGNMENT RULES PREVENT JUMPING TO IXMA+l UNLESS IT IS 
LOCATED IN ROW ZERO- -PLACEMENT THERE COULD FREE TWO WORDS *j 

SDR(R8) JMP(lXMA2); 

/* THE FOLLOWING PROCEDURES IMPLEMENT THE BASIC PREPROCESSING FOR 
VALUE AND ADDRESS LOADING_ 

VALUE-GROUP 1: GET (AC) IN AC *' 
MRV1: LMI(AC) RRM; 

ACM(AC) JLL(NDA,ODA,XDA,ADA); 
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/* VALUE GROUP 2 *f 

MRV2: LMI(AC) RRM; 
ACM(AC) JLL(LDA,LDX,PDS,ADX); 

f* MRAD GROUP INCLUDES ADDRESS LOADS AND SUBTRACT FROM A *f 

MRAD: 

LAA: 
LAX: 
PAS: 

NO.OP 

SDR(A) 
SDR(X) 
DSM(S) 

JLL(LAA,LAX,PAS,ISDA); 

JZR(FETCH); 
JZR(FETCH); 
JMP(PDS1); 

/* FOR SUBTRACT, ADD l'S COMPLEMENT PLUS 1 * f 

ISDA: LMI(AC) RRM; 
LCM(AC); 
ADR(A) FF1 JMP(ADA1); 

/* STPG GROUP INCLUDES STORES AND SUBTRACT FROM X *f 

STPG: 

SAM: 
SXM: 

LMI(AC) 

ILR(A) RWM 
ILR(X) RWM 

JLL(SAM,SXM,PSM,SDX); 

JZR(FETCH); 
JZR(FETCH); 

/* POP STACK TO MEMORY - SAVE ADDRESS, POP STACK' f 

PSM: SDR(T); 
LMI(S) FF1 RRM; 
ACM(AC); 
LMI(T) RWM 

/* SUBTRACT FROM X *f 

SOX: LMI(AC) RRM; 
LCM(AC); 
ADR(X) FF1 

JZR(FETCH); 

JMP(ADA1); 

Thus the initialization procedure requires 16 words 
of microcode, the fetch sequence 3, and the mem­
ory reference and immediate groups use a total of 
57 words. In addition, two dummy locations 
(NAI I and NAI2) are needed for unassigned macro­
operation codes. 

Sample execution times for some of the instruc­
tions may be estimated by counting the number of 
micro-instructions in the sequences and the number 
of read and write memory cycles. Allowing I SO 
nsec for each micro-instruction, and 400 nsec for 
each memory cycle, some representative execution 
times would be as shown in Table VII. 

Table VII. Representative Execution Times 

INSTRUCTION MICROCYCLES 

ADA, direct 10 

ADI, short 9 

LOA 8 

LAI, short 7 

LOA, indirect index relative 15 

READ CYCLES 

2 

2 

3 
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WRITE CYCLES EXECUTION TIME 

2.3J.1S 

1.75J.1S 

2.0 JJS 

1.45 J.lS 

3.45 J.lS 



JUMP GROUP 

The next section shows the realization of the jump 
group instructions. Two basic classes, a jump rela­
tive to the program counter and an indirect jump 
through a table stored at the beginning of the pro­
gram are represented. Conditional jumps include 
A>O, ,900, A=O, A~O, A~, A<O, X=t-A, X>O, 
X~, C=O and c=t-o. 

In addition, two classes of subroutine calls are pro­
vided; a local call which pushes P onto the stack, 
and jumps relative to E, and a global subroutine 
call which stores the W, B, E, and P registers on 
stack and computes new values for E, the program 
base register, and P. Also, included in this section 
of microcode is the operation that pushes both A 
and X onto the stack. 

Table VIII shows the opcode assignments for the 
various jump operations implemented. Except for 

Table VIII. Jump Instruction Group 

MNEMONIC FUNCTION 

JRU, JIU Jump unconditional 

JRGE, JIGE Jump if A;;'O 

JRL T, JILT Jump if A<O 

JRXG,JIXG Jump if X>A 

JREZ, JIEZ Jump if A=O 

JRNZ, JINZ Jump if A*O 

JRCZ, JICZ Jump if C=O 

JRXL, JIXL Jump ifX,A 

JRLE, JILE Jump if A';;;O 

JRGT, JIGT Jump if A>O 

JRCN, JICN Jump ifC*O 

JRXE,JIXE Jump if X=A 

CVS Call subroutine, push W, B, E, P 

PHAX Push A, X onto stack 

CLS Call subroutine, push P 

JRXN, JIXN )ump if X"=foA 

Subroutine calls 

Local: Push P to stack 
P=E+(E+D) 

Value: Push W, B, E, P to stack 
E=E+(E+O) 
P=E'+(E') where E'=E+(E+O) 

3-43 

CPU Design 

the conditional jumps, X>A, X~, X=A and X=t-A 
which share a common subroutine and exit via a 
JLL jump, the opcode values were assigned arbi­
trarily. 

A flowchart representing the jump coding is shown 
in Figure 16. During the microcoding of the se­
quence, two methods were evaluated. One used 
the JRL, JLL sequence of testing 2 bits of macro­
operation code at a time, while the one actually 
selected uses a JPR macro-operation. The JPR test 
selected uses no more code than the JRL, JLL 
sequence method, and executes more rapidly. At 
one point (for the X=A, X=t-A, X>A, X";A tests), 
code is shared as if it were part of a subroutine, 
then a JLL instruction is used to resolve the exit. 
This method is another example of a pseudo­
subroutine that saves microprogram memory. Use 
of this technique does put a constraint on the 
assignment of macro-operation codes. 

RELATIVE INDIRECT 
M 0 M 0 

0001 0000 0010 0000 

0001 0001 0010 0001 

0001 0010 0010 0010 

0001 0011 0010 0011 

0001 0100 0010 0100 

0001 0101 0010 0101 

0001 0110 0010 0110 

0001 0111 0010 0111 

0001 1000 0010 1000 

0001 1001 0010 1001 

0001 1010 0010 1010 

0001 1011 0010 1011 

N.A. 0010 1100 

0001 1101 0010. 1101 

N.A. 0010 1110 

0001 1111 0010 1111 

Unconditional and conditional jumps 

Relative: P=P+O' where D'=0-128 
Indirect: P=E+(E+O) 
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FETCH FETCH FETCH FETCH FETCH FETCH FETCH FETCH FETCH FETCH 

Figure 16. Jump Group Flowchart 

/* JUMP GROUPS- -USE JPR MICRO-OPERATION TO RESOLVE CONDITION SELECTION 
DESTINATION ADDRESS IS COMPUTED FIRST - -PLACED IN AC AND R9 
JUMP RELATIVE TO P- -ADDRESS=P+D-12S * f 

JREL: 
JRDR: 

ILR(P); 
LMI(AC) KFFSO; 
ALR(R9) JPR(JUNC,JAGE,JAL T,JXGA,JAEO,JANE,JCEZ,JXLA, 

JALE ,JAGT ,JCNZ,JX EA,CPSS,PXA,C LOP,JX NA); 

/* JUMP INDIAECT - GET E+(E+D) IN AC AND R9 *f 

JIG: ILR(E); 
ADR(R9); 
LMI(R9) RRM; 
AMA(AC); 
SDR(R9) 

1* UNCONDITIONAL JUMP *f 

JUNC: SDR(P) 

/* TESTS FOR A_GE_O, ETC_ *f 

JAGE: 
JALT: 
JAEO: 
JANE: 

TZR(A) KSOOO INH 
TZR(A) KSOOO INH 
TZR(A) 
TZR(A) 

JPR (JUNC,JAGE,JAL T,JXGA,JAEO,JAN E,JCEZ,JX LA, 
JALE,JAGT,JCNZ,JXEA,CPSS,PXA,CLOP,JXNA); 

JZR(FETCH); 

JMP(TTRU); 
JMP(TFAL); 
JMP(TTRU); 
JMP(TFAL); 
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JAGT: TZR(A) K8000 INH; 
TZR(A) JFL(APRE,ANPE); 

APRE: NO.OP JFL(JNT2,JTR2); 
ANPE: NO.OP JZR(FETCH); 

JALE: TZR(A) K8000 INH; 
TZR(A) JFL(APE2,AN2); 

APE2: NO.OP JFL(JTR1,JNT1); 
AN2: SDR(P) JZR(FETCH); 

/* TESTS OF C FLlp·FLOP (HIGH ORDER BIT OF W) *j 

JCEZ: 
JCNZ: 

TZR(W) K8000lNH 
TZR(W) K8000 INH 

JMP(TTRU); 
JMP(TFAL); 

/* TEST EXECUTION FOR ABOVE TESTS - ROW ZERO USED * j 

TTRU: NO.OP JFL(JTR1,JNT1); 

JTR1: SDR(P) JZR(FETCH); 
JNT1: NO.OP JZR(FETCH); 

TFAL: NO.OP JFL(JNT2,JTR2.); 

JNT2: NO.OP JZR(FETCH); 
JTR2: SDR(P) JZR(FETCH); 

/* TESTS FOR X.GT.A, X.LE.A, X.EQ.A, X.NE.A- -SHARED PSEUDO· 
SUBROUTINE USES JLL FOR AN EXIT TEST - -ROUTINE ENTRY IN ROW 0 
C FLAG IS SET FOR X.GT.A, FL TEST FOR X.EQ.A * j 

JXGA: 
JXLA: 
JXEA: 
JXNA: 

ILR(X) 
ILR(X) 
ILR(X) 
ILR(X) 

JMP(XATS); 
JMP(XATS); 
JMP(XATS); 
JMP(XATS); 

/* SAVE X AT T, FETCH AND COMPLEMENT A *j 

XATS: SDR(T); 
ILR(A) STC; 
CMA(AC); 

/* CLEAR C FLAG * j 

/* ADD HOB'S OF A' AND X - CARRY MEANS X NEG., A.GE.O *j 

ADR(T) K8000; 

/* EXECUTE PREVIOUS TEST, SET UP TO TEST HOB OF RESULT - -IF I, 
THE SIGNS OF A AND X WERE THE SAME *j 

TZR(T) K8000lNH JFL(TFEQ,TXNG); 

/* TXNG IMPLIES X NEG AND A.GE.O- -I.E. X.NE.A AND X.L T.A- -DO A 
DUMMY OPERATION TO FORCE THE PROPER F FLAG *j 

TXNG: ILR(A) JLL(JXGX,JXLX,JXEX,JXNX); 

/* PERFORM A TEST ADDITION AND EXECUTE SIGN·EQUAL TEST 
C WILL BE SET IF SIGNS WERE THE SAME AND X.GT.A *j 

TFEQ: ADR(T) STC K7FFF JFL(SNEQ,SWEQ); 

/* SNEQ IMPLIES SIGNS NOT EQUAL- -I.E. X.GE.O, A NEG- -X.GT.A *j 

SNEQ: SDR(AC) STC; 
NO.OP 

/* DUMMY OPIO SET C FLAG *j 
JLL(JXGX,JXLX,JXEX,JXNX); 

345 
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/* FOR SIGNS EQUAL,IF X=A RESULT WOULD BE 1111 ... 1. INCREMENT 
WILLGENERATEACARRYIFSO *f 

SWEQ: ILR(AC) FF1 

/* EXECUTION OF JUMP TESTS * f 

JXGX: 
JXLX: 
JXEX: 
JXNX: 

ILR(R9) 
ILR(R9) 
ILR(R9) 
ILR(R9) 

/* SUBROUTINE CALLS 
CALL LOCAL AND PUSH W, B, E, P =CPSS 
CALL LOCAL AND PUSH P ONL Y=CLOP 

JLL(JXGX,JXLX,JXEX,JXNX); 

JCF(JNT2,JTR2); 
JCF(JTR1,JNT1); 
JFL(JNT2,JTR2); 
JFL(JTR l,JNT1); 

CL FLAG IS USED FOR EXIT TEST AFTER PUSHING P *f 

CPSS: DSM(S); 
ILR(W); 

LMI(S) RWM; 

CPG2: DSM(S); 
ILR(B); 
LMI(S) RWM; 

DSM(S); 
ILR(E); 
LMI(S) RWM; 

DSM(S); 
ILR(P); 

CLOP2: LMI(S) RWM; 

/* E+(E+D) INTO AC *f 

ILR(R9) JCF(LRTN,XRTN); 

XRTN: SDR(E); 
LMI(E) RRM; 
AMA(AC); 

LRTN: SDR(P) 

CLOP: DSM(S); 
ILR(P) STC 

/* PUSH INSTRUCTION *f 

PXA: DSM(S); 
ILR(X); 
LMI(S) RWM; 

DSM(S); 
ILR(A); 
LMI(S) RWM 

REGISTER MOVE AND SUBROUTINE 
RETURN GROUP 

JZR(FETCH); 

JMP(CLOP2); 

JZR(FETCH); 

In this section of code, the Register Move and Sub­
routine Return group instructions are implemented. 
Both groups share the same IPX entry point, 
I 100B. Table X shows the opcode values assigned 
to the macro-instructions. 

To simplify the decoding for register selection (S, 
B, E or W) in the Register Move group, the two low 
order bits of the PR latch are used to modify the 
micro-instruction as it is strobed into the pipeline 
register. By tying the two PR latch outputs of the 
300 I to the two low order bits of the CPE control 
field, a ICE jump function (which enables the PR 
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latch outputs) can be used to provide a wire OR of 
PRO, PR I and FO, F I (see Figure 17). 

Table X. Register Move and Subroutine 
Return Group 

MNEMONIC 

Figure 17. Wire-OR of POa-1 and FO-1 

Thus, in the micro-instruction 

SDR(Rl) JCE (MXRXI 

the register group field FO-F3 is modified as 
shown in Table IX. 

The microprogram sequence is shown in Figure 18. 

Table IX. Register Group Field FO-F3 Modification 

RLS 

RVS 

RSA 

PPAX 

MSX 

MBX 

MEX 

MWX 

MXS 

MXB 

MXE 

MXW 

NO.OP 

MICROPROGRAM 
PR LATCH RESULT STORED IN 

MEMORY OUTPUT 
OUTPUT PIPELINE REGISTER 

(FO-F3) 

0111 00 0100 

0111 01 0101 

0111 10 0110 

0111 11 0111 

FETCH FETCH FETCH FETCH 

Figure 18, Register Move and Subroutine Return Group Flowchart 
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FUNCTION 

Pop P 

Pop P, E, B, W 

Pop A, X, P, E, B, W 

PapA, X 

Move S to X, adjust 

Move B to X, adjust 

Move E to X, adjust 

Move W to X, adjust 

Move X to S, adjust 

Move X to B, adjust 

Move X to E, adjust 

Move X to W, adjust 

Nothing implemented 

M 0 

1100 1111 

1100 1101 

1100 1100 

1100 1110 

1100 0100 

1100 0101 

1100 0110 

1100 0111 

1100 0000 

1100 0001 

1100 0010 

1100 0011 

1100 10XX 

SELECTED REGISTER 

S 

B 

E 

W 

FETCH FETCH 
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/* MOVE GROUP OF INSTRUCTIONS- -USES JCE TO SELECT REGISTER- -NOTE 
THAT REGISTER ASSIGNMENT BECOMES IMPORTANT 
FIRST MODIFY D TO GET D-12B ./ 

MVGP: LMI(R9) KFFBO JLL(MVXR,MVRX,MOD,PGRP); 

/* MOVE X TO REG. - GET X, MODIFY BY D'=D-12B ./ 

MVXR: ILR(X); 
ALR(R9); 
SDR(R7) 

MXRX: NO.OP 
JCE(MXRX); 
JZR(FETCH); 

/* MOVE REG TO X - FETCH REG USING JCE OVERRIDE ./ 

MVRX: ILR(R7) 
MRXX: ALR(R9) 

JCE(MRXX); 
JMP(LDX); 

/* MOD NOT IMPLEMENTED IN THIS VERSION ./ 

MOD: NO.OP 

/* ADJUST STACK AND RETURN GROUP 
PPAL- -POPS A, X, P, E, B, AND W 
PPRA- -POPS P, E, B, AND W 
PPAX- -POPS ONLY A AND X 
POPP- -POPS ONLY P • / 

PGRP: 

JZR(FETCH); 

/* REGISTER OVERRIDE ./ 

ILR(R9); 
ADR(S) JRL(PPAL,PPRA,PPAX,POPP); 

PPAL: LMI(S) FF1 RRM; 
ACM(AC); 
SDR(A); 

PAXC: 

LMI(S) FF1 RRM; 
ACM(AC) 
SDR(X); 

PPRA: LMI(S) FF1 RRM; 
ACM(AC); 
SDR(P); 

LMI(S) FF1 RRM; 
ACM(AC); 
SDR(E); 

LMI(S) FF1 RRM; 
ACM(AC); 
SDR(B); 

LMI(S) FF1 RRM; 
ACM(AC); 
SDR(W); 

/. RESTORE INTERRUPT STRUCTURE ~ 

PAXE: 

PPAX: 

POPP: 

CLR(T); 
LMI(T) ROT 

SDR(X) 

ILR(AC) STC 

LMI(S) FF1 RRM; 
ACM(AC) 

JCF(PAXE,PAXC); 

JZR(FETCH); 

JZR(FETCH); 

JMP(PPAL); 

JMP(JUNC); 
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SPECIAL FUNCTION GROUP 

The JPX entry point 110 I B is used as an entry 
point for the special function groups which include 
byte load and store, register manipulation, and the 
absolute subroutine call and increment and skip if 
zero instructions. Table XI lists the opcode values 
assigned to the instructions. A flowchart of the 
sequences is shown in Figure 19. 

In order to execute a byte load or store operation 
efficiently, a byte swap capability (which exchanges 
the high and low order byte positions) is necessary. 
By wiring the data outputs of the high order byte 
to the I inputs of the low order byte, and the low 
order outputs to the high order I inputs, a byte 
swap operation can be performed (see Figure 20). 

Note that with the configuration shown in Figure 
20, a byte swap can be performed on either a 
memory word or the AC register of the CPE array 
by reading data in on the I-Bus inputs while per-
forming a memory read or enabling the D-Bus, 
respectively. 

REGISTER 
SHIFTIROTATE 

GROUP 

Figure 19. Special Function Groups Flowchart 

Table XI. 

MNEMONIC 

LBA 

LBR 

SBA 

SBR 

RAR 

RAX 

SAX 

SAL 

ISZ 

CAS 
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Special Function Groups 

FUNCTION M 0 

Load byte absolute 1101 0000 

Load byte relative 1101 0100 

Store byte absol ute 1101 1000 

Store byte relative 1101 1100 

Rotate A right, include 
CFF 1101 0001 

Rotate A and X right, 
include CFF 1101 0101 

Shift A and X right, 
preserve sign 1101 1001 

Shift A left, fill with 
zeros 1101 1101 

I ncrement and skif ip 
zero 1101 XX10 

Call absolute, push 
P, E, W, B 1101 XXll 
P <- (D) 
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BIDIRECTIONAL {J-::======~.2:.~ DATA BUS f-

Figure 20. I-Bus Wired for Byte Swap 

/* SPECIAL FUNCTION GROUP 
BYTE OPERATORS- -ADDR=(B+D)+B+X/2 OR (B+D)+XI2 
CALL TO (D) AND PUSH ALL 
SHIFT AND ROTATE GROUP 
INCREMENT AND SKIP 
FETCH B JUST IN CASE */ 

SPFG: ILR(B) JRL(BYTE,RSGP,SCJG,ISJG); 

/* BYTE GROUP- -COMPUTE ADDR, STORE B IN CASE NEEDED */ 

BYTE: 

LBYR: 
LBYA: 
LBYT: 
RBYT: 
DBIA: 

SBYR: 
SBYA: 

STRB: 
SRB1: 

STLB: 

SDR(R8); 
ADR(R9); 
ILR(X); 
SRA(AC) STC; 
LMI(R9) RRM; 
ACM(AC) 

ALR(R8); 
LMI(AC) RRM 
LDI(AC) FFl KOOFF 
L TM(AC) KOOFF; 
SDR(A) 

ALR(R8); 
LMI(AC); 
ILR(A); 
TZR(AC) KOOFF RRM 
L TM(T) KFFOO; 
ALR(T) RWM 

LTM(T) KOOFF; 
LDI(AC) FFl CNB 

/* ROTATE GROUP 

JLL(LBYA,LBYR,SBYA,SBYR); 

JCF(LBYT,RBYT); 
JMP(DBIA); 

JZR(FETCH); 

/* LOAD MAR FOR LATER USE */ 

JCF(STLB,STRB); 

JZR(FETCH); 

JMP(SRB1); 

ROTATE A WITH C- -ROTATE A AND X WITH C- -SHIFT A, X RIGHT, FILL 
WITH SIGN- -SHIFT A LEFT, FILL WITH ZEROES 
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AT ENTRY, Z FLAG IS ZERO IF D=O. DUE TO PIPELINED OPERATION, IT IS 
THIS CONDITION THAT IS TESTED BY THE FIRST JZF *f 

RSGP: TZR(W) STZ K8000lNH JZF(SZDS,SNZD); 
SZDS: ILR(X); 

SDR(R9) FFO K007F JLL(RACI, RAXI,SAXI,SLZI); 
SNZD: DSM(R9) JLL(RACI,RAXI,SAXI,SLZI); 

RACI: ILR(A) JMP(RUNR); 
RAXI: ILR(X); 

SDR(T) JMP(RACI); 
SAXI: TZR(A) STZ K8000 INH JMP(RAXI); 
SLZI: ILR(A) JMP(RUNR); 

f* MAIN ROTATION LOOP *f 

RUNR: DSM(R9)STC JLL(RACR,RAXR,SAXR,SLZR); 

RACR: SRA(AC) FFZ STZ JFL(RSEX,RUNR); 
RAXR: SRA(AC) FFZ STZ; 

SRA(T) FFZ STZ JCF(RSEX,RUNR); 
SAXR: SRA(AC) FFZ STC; 

SRA(T) FFC JCF(RSEX,RUNR); 
SLZR: ADR(AC) STZ JFL(RSEX,RUNR); 

RSEX: SDR(A) JLL(RACF,RAXF,SAXF,SLZF); 

RACF: TZR(W) K7FFF JZF(SNCF,SSCF); 
SNCF: NO.OP JZR(FETCH); 
SSCF: LMI(W) K8000 JZR(FETCH); 
RAXF: ILR(T); 
RXF1: SDR(X) JMP(RACF); 
SAXF: ILR(T) JMP(RXF1); 
SLZF: TZR(W) K7FFF JZF(SNCF,SSCF); 

/* SPECIAL CALL AND JUMP GROUP- -CURRENTLY CONTAINS ONLY THE 
CALL TO (D) AND PUSH W,B,E,P- -ALL 4 OPCODES DO THE SAME THING 

SCJG: LMI(R9) RRM; 
ACM(AC); 
SDR(R9) JMP(CPSS); 

f* INCREMENT AND SKIP GROUP- -AGAIN 4 OPCODES ARE USED FOR ONE 
INSTRUCTlON- -LOCATION AT B+D IS INCREMENTED *f 

ISJG: ALR(R9); 
LMI(R9) RMW; 
ACM(AC) FFl RWM; 
NO.OP 

NOSK: NO.OP 
SKIP: LMI(P) FFl 

JFL(NOSK,SKIP); 
JZR(FETCH); 
JZR(FETCH); 
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INPUT/OUTPUT GROUP 

In this section of code, the input/output instruc­
tions are implemented. In conjunction with the 
memory address register, the bus control field 

Table XII. Input/Output Group 

MNEMONIC FUNCTION M 0 

IND I nput one word 1000 XXXX 
A+- (D) 

OTD Output one word 1001 XXXX 
(D) +-A 

INX I nput one word 1010 XXXX 
A+- (X) 

OTX Output one word 1011 XXX X 
(X) +-A 

generates a Request Input or Request Output to 
select an I/O port and specify the operation to be 
performed. Table XII lists the opcode values as­
signed to the macro-instructions. The flowchart in 
Figure 21 shows the microcode sequence used. 

INTERRUPTS 

A basic means for microcoding interrupts when 
using the 3214 Interrupt Control Circuit involves 
forcing an alternate microprogram address which 
then leads to an interrupt handling routine. The 
interrupt handling routine interrogates the inter­
rupt structure to determine the interrupting level. 
This level is rewritten to the interrupt structure to 
block further interrupts at the interrupting priority 
level or lower levels while enabling interrupts at 
higher levels. 

• FOR NOW FOUR OPCOOE GROUPS Will BE 
ASSIGNED FOR INPut AND OUTPUT' 

LMIIR9)RIN 
ACM(ACI. 
SORIA) 
LMIIXI RIN 
ACM(AC) 
LMIIR9) 

JZRIFETCHI 

wx--~----------~~----------~----------~----

FETCH FETCH 

Figure 21. Input/Output Flowchart 

/* INTERRUPT - -UTILIZED CALL ROUTINES FOR REGISTER SAVING 
I/O DEVICE #0 REPRESENTS EXTERNAL INTERRUPT STRUCTURE 
START BY PUSHING OLD VALUE OF STATUS */ 

INTER: DSM(S); 
ILR(W); 
LMI(S) RWM; 

/* READ INTERRUPTING LEVEL FROM EXTERNAL STRUCTURE */ 

CLR(T); 
LMI(T) RIN; 
LTM(AC) KOOFF ROT; /* NOTE LEVEL REWRITTEN */ 

FETCH 

/* STORE PRIORITY IN W - SET C FLAG FOR PROPER LOADING OF REGISTERS */ 

SDR(W) STC; 

/* INTERRUPT ROUTINE STARTING ADDRESS IS COMPUTED IN R9 */ 

LMI(W) RRM; 
ACM(AC); 
SDR(R9) JMP(CPG2); 
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Microprogram Memory Assignment 

Having written the actual code with minimal regard 
to memory assignment, the actual assignment to 
ROM must be performed. To assist in this function, 
a complete state (Le., microcode instruction) flow­
chart should be prepared. Each machine state is 
represented by a dot in the state diagrams shown 

INITIALIZATION GROUP 

ENTRV POINT 
FROM OTHEA 

ROUTINES 

CPU Design 

below. Conditional jumps should be labeled as to 
type and condition corresponding to each destina­
tion. This information will be necessary when per­
forming an assignment. No other information is 
needed on the flowchart, but it is quite useful to 
show any symbolic label that may be associated 
with a state. 

INIT=OO 

FETCH = OOOFH 

NAO JREL JIG IMMO DMRf IMRF 

IMMEDIATE GROUP 

IMML 

JRL 

00 01 

lLGA ILPX 

JLL 

00 01 

NDA aDA 

FETCH FETCH 

FROM MEMORY 
REFERENCE GROUP 
"ISOA" AND "SOX" 

IMMS 

JPX 

IXMA 

10 

xaA 

FETCH 

IXMB IND INX OTD aTX MVGP SPFG tRBM NA1S 

NAI2 

FROM MRXX 

JLL 

11 
00 10 11 

ADA LOA LOX PDS ADX 

FETCH 
FROMMEM 
REF "PAS" FETCH 

PDSl 

FETCH 

FETCH 
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MEMORY REFERENCE 
GROUP 

00 

MRVl 

LOA 

JLL 

00 

NDA ODA 

JUMP GROUP 

OMRF 

JRL 

JLL 

LOX 

XDA 

JREL 

JROR 

• 0 
MADO 

JRL 

01 

MRV2 

11 

PDS ADX 

11 

ADA 

FETCH FETCH 

IXMB IRBM 

JRL 

10 11 

MRAD STPG 

JLL 

00 01 10 11 

SAM SXM PSM sox 

FETCH FETCH 

FETCH 
TO "ADA'" 

10 11 

PAS ISOA 

PDS' 

TO "ADA'" 

JIG 

~ n 
r-oooo-----1~~~~--~--t------,------~--~--t-,O~IO~--~I~OO~I~-1-,~OO~O--~~~---r~~--,------,-,-ll~, ~ 

JUNe JCNZ JAGT JALE JXNA 

FROM 
"pop,,","," 

FETCH 

• 0 

JTRI 

FETCH FETCH 

'1 

ANPE 

FETCH FeTCH 
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JUMP GROUP (CONTINUE'" 

--1. "R 

1100 

CPIS 

CPO' 

MOVE GROUP 

00 
MVXR 

MXRX 

1101 

PXA 

FROM 
INTER +9 

FETCH 

MRXX FETCH 

00 
'PAL 

FETCH TO "LDX" 

FETCH 

LRTN 

FETCH 

.t 
PPRA 

11 
PGRP 

JRL 

FETCH 

CPU Design 

1110 

CLOP 

CLOP2 

JCF 

XRTN 

t. " PPAX POPP 

TO "JUNC" 
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SPECIAL FUNCTION GROUP 

SPECIAL FUNCTION GROUP 

JOL 
SP F. 

00 0' 
BYTE RSGP 

---m-
'0 

SZOS 

> JLL 

u~' LBVA LBVR SBYA SBVR kJ:11 

JCF JCF 

·0 ., -0 ., 
LBYT R8VT STLB STRB 

DBtA SRBl 

FETCH FETCH 
JLL 

00 0' 
( 

10 11 
RACF RAXF SAXF SLZF 

~ 
JZF 

·0 

t~F SNCF 

FETCH FETCH 

If 0 GROUP 

FETCH 
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-, 
SNZO 

JLL 

RAel 

JCF 

JFL 

'0 
SCJ. 

--.. TO "CPSS" 

11 
'SJG 

~ -0 

NOSK 

., 
SKIP 

FETCH FET CH 

~:Y 
SLZI 

"0 '"1 RUNR 

~RSEX 

JLL "-
U~ACO 0' '0 11 

RAXR SAXO SLZR 

INTERRUPT SERVICE ROUTINE 

INTER = 255 CPG' 



Once all of the state diagrams have been prepared, 
a number of steps may be followed to simplify the 
assignment procedure. First, the basic hardware 
characteristics dictate that INIT, FETCH, and 
INTER be located in microprogram memory loca­
tions 0, 15, and 255 (decimal), respectively. Then, 
note that each conditional jump has a limited 
range.- As a result, when several conditional jumps 
follow one another in sequence, all may have to be 
located within a restricted range in microprogram 
memory. For JCF, JZF, JLL and JRL micro­
instructions, the calling instruction must be in the 
same block of eight rows as the destinations. 

To do the best assignment, the most restricted set 
of micro-instructions should be assigned first. The 
most restricted groups of micro-instructions are 
usually associated with clusters of conditional 
jumps which must be located within a given range 
of memory. It is therefore very useful to catalog all 
such clusters of conditional jumps. Table XIII lists 
the clusters associated with this machine. In each 
case the conditional jump is identified by the jump 
micro-operation and the first of its destinations. 
Thus in Table XIII the symbol JRL(MRVI) really 
refers to the code JRL(MRVI, MRV2, MRAD, 
STPG). For this machine, there are only five 
clusters. 

Table XIII. Conditional Jump Clusters 

1. JPX (NAO) 
JRL (lLGA). JRL (BYTE) 
JLL (NOA). JLL (LOA). JLL (MVXR). JLL (RACI) 
JZF (IMML). JZF (SZOS) 

2. JRL (MRV1) 
JLL (SAM). JLL (LAA) 
JCF (MAOO) 

3. JLL (JXEX) 
JFL (JTR 1). JCF (JNT2) 

4. JRL (PPAL) 
JCF (PAXC) 

5. JLL (RACR). JLL (RACF) 
JCF (RSEX) 
JZF (SNCF) 

An examination of the flowcharts indicates that a 
simpler code might result if clusters one and five 
were combined because of the coupling between 
JLL(RACI) of cluster one and the JCF(RSEX) of 
cluster five. The combination of these two clusters 
represents the greatest degree of restriction, as 
within the same block of rows there would be one 
JPX, six JLL, two JRL, one JCF and three JZF 
micro-operations. In addition, the JLL(MVXR) 
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executes a JCE jump which uses an additional 
location within the JLL destination columns. How­
ever, the basic jump micro-operation characteristics 
do allow all of these conditional jumps to be placed 
within one block of eight rows. 

To retain row zero, the conditional jumps of 
clusters one and five are placed in the last eight 
rows of the microprogram memory. In addition to 
the destinations, space must be reserved for the 
"calling" micro-instructions for each of the condi­
tional jumps listed in the clusters. 

Chart I shows an assignment of the conditional 
jumps of clusters one and five, together with some 
of the immediately related states. For the assign­
ment procedure, a form like that of Chart I is used 
to show which microprogram memory locations 
are occupied and which are available. The format 
also aids visualization of valid jump micro-opera­
tions. As each state is assigned to its location in 
micro memory, the corresponding position on the 
state diagram is marked to show assignment. In this 
way, unassigned states are easily located on the 
state diagrams. 

The information placed in the memory maps in­
cludes the state label or, for strings of states with 
no assigned label, the label of the nearest previously 
labeled state plus information to indicate how far 
from that labeled state the present state is. For 
example, INIT+2 is the second state after INIT. 

The state assignment can proceed, with conditional 
jumps and short unconditional sequences being as­
signed before long unconditional sequences. Chart 
2 shows the state assignment at a point when all 
states except those between INIT and FETCH, 
those between PPRA and FETCH, and those asso­
ciated with IND, INX, OTD and OTX have been 
assigned. 

For those states which have only one calling state 
(Le., a state which has only one state jumping to it 
with a non-conditional jump) and only one target 
state (i.e., it makes a non-conditional jump to 
another state), two hexadecimal numbers are also 
written on the memory map. The number in the 
lower left-hand corner is the address of the calling 
state (first hex digit is the row, second hex digit is 
the column), and the number in the lower right­
hand corner is the address of the target state. This 
information will tell the designer at a glance which 
states can be easily moved in the process of mem­
ory assignment, and to which locations they can be 
moved. For instance, a state with its calling state 
and target state in the same row (or column) can be 
moved anywhere in that row (or column), and a 
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state with its target state in the row zero can be 
moved anywhere in the same row or column as its 
calling state. 

As an example of how this information can be 
used, note that in Chart 2 state RAXI+ I has been 
assigned to location 090H. However, when the 
INIT sequence is assigned, it becomes convenient 
to locate INIT + I somewhere in column O. Since 
there are no available spaces in column 0, the 
designer notes that state RAXI+ 1 has both its 
calling and target states in row 9, and so RAXI+ I 
can be moved anywhere in row 9. In Chart 3, 
RAXI+ I has been reassigned to location 098H, 
and INIT+ 1 has been assigned to location 090H. 
This moving process will typically be frequently 
necessary in the assignment procedure, and thus it 
is quite useful to have this information right on the 
working memory map. 

The final state assignments consist mostly of the 
long unconditional sequences. Row zero locations 

may then be used freely. In those cases where extra 
states were used to avoid the use of row zero 
locations, the assignment may be reconsidered. For 
this machine, the operations IND, INX, OTD and 
OTX were rewritten to utilize row zero locations. 
Figure 22 shows the revised flow diagram for these 
four operations. 

The final assignment is as shown in Chart 3. Two 
locations remain. 

FETCH FETCH 

Figure 22. IND, INX, OTD and OTX 
Revised Flow Diagram 

/* INPUT AND OUTPUT - -CURRENT VERSION DOES NOT DECODE INTO 
SUBGROUPS- -ALSO ROW ZERO IS USED TO SAVE CODE */ 

IND: LMI(R9) RIN; 
IND1: ACM(AC); 

SDR(A) JZR(FETCH); 
INX: LMI(X) RIN JMP(lND1); 
OTD: LMI(R9); 
OTD1: ILR(A) ROT JZR(FETCH); 
OTX: LMI(X) JMP(OTD1); 

CONCLUSION 

In the central processor design example described 
above, the final definition of the central processor 
macro-instruction set evolved as the microprograms 
were being implemented. In many instances, it was 
necessary to modify the macro-instruction opcode 
assignment in order to take full advantage of the 
capabilities of the Series 3000 architecture. Macro­
instruction operations were also redefined to add 
more flexibility as microprogramming techniques 
improved. 

The microprograms were implemented without 
regard to memory assignment except in cases where 
code sharing between micro-instruction opcode 
assignments were critical. Actual assignment of the 
micro-instructions to memory involved a very small 
portion of the design cycle. The 3001 MCU's 
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ability to decode macro-instruction opcodes and 
large repertoire of conditional and unconditional 
jump operations resulted in both efficient micro­
programs and complete memory utilization. Only 
two memory locations remained unused after the 
microcoding was complete. 

The central processor developed in this application 
note is used as a design example only, and there­
fore does not represent a complete central pro­
cessor or an instruction set designed for a specific 
application. However, because of the micropro­
grammability of the Series 3000 family, the same 
basic organization can be tailored to a wide range 
of operating environments from I/O processing to 
data processing and dedicated arithmetic computa­
tion. 



Chart 1 

JFL, JCF, JZF 
COLUMN RESTRICT JLL COLUMN RESTRICT 

f,e,<=O f,e,<=1 

0 , 2 3 4 5 6 

00 IN IT 

01 

02 

03 

04 

05 

06 

07 

08 NAO JREL JIG IMMD DMRF IMRF IXMA 

09 
RAXI+l 

RSEX RUNR RACI RAXI SAXI 
95 94 

OA 
RAXR+l SAXR+l 

SNCF SSCF RACR RAXR SAXR 
A4 A6 

OB RXFI 
IMML+l 

IMML IMMS RACF RAXF SAXF 
B2 

OC MVXR MVRX MOD 

OD NDA ODA XDA 

OE LDA LDX PDS 

OF MRXX 

JFL, JCF, JZF 
COLUMN RESTRICT 

f,e,<=O f,e,<=1 

7 8 9 A B 

IXMB IND INX OTD OTX 

SLZI 
SZDS+l 

SZDS SNZD 
9A 

SLZR 

SLZF 

PGRP 

ADA PAXC PAXE 

ADX 

C 

MVGP 

BYTE 

PPAL 

ILGA 

JRL COLUMN RESTRICT 

0 E F 

FETCH 

SPFG IRBM NA15 

RSGP SCJG ISJG 

PPRA PPAX POPP 

ILPX NAil NAI2 

INTER 

o 
"CJ c: 
C 
m cs· 
:::J 



Chart 2 

JFL, JCF, JZF 
COLUMN RESTRICT JLL COLUMN RESTRICT 

1,<,.=0 1,<,.=1 

0 1 2 3 4 5 6 7 8 

00 INIT JAGT+l JTRI JNTI TFAL TTRU JALE+l 

01 
SNEO+l 

SNEO SWEO LBYA LBYR SBYA 
SBYA+l 

12 
SBYR 

16 79 

02 OBIA LBYT RBYT -JXGX JXLX JXEX JXNX 

03 JUNC JAGE JALT JXGA JAEO JANE JCEZ JXLA JALE 

04 
PXAt2 IXMB+3 IXMA+l IXMB+2 

APE2 AN2 
40 70 47 85 86 56 57 45 

05 
JIG+3 XATS+4 

TFEO TXNG 
OMRF+l IXMB+l INTER+3 

IMRFI IXMA2 
EO 60 5A 84 87 47 5F 59 

06 
JIGt4 JROR+ 1 

JNT2 JTRI LAA ISOA 
ISOA+l 

50 71 
LAX PAS 

67 F8 

07 
PXA+3 JROR PSM+1 
40 FO 

APRE ANPE SAM SXM PSM SOX 
81 61 76 A8 

08 NAO JRLE JIG IMMO OMRF IMRF IXMA IXMB INO 

09 
RAXI+1 

RSEX RUNR 
95 94 

RACI RAXI SAXI SLZJ 

OA 
RAXR+ 1 SAXRt 1 

RACR 
PSM+2 

SNCF SSCF RAXR SAXR SLZR 
A4 A6 78 B8 

OB RXFI 
IMML+l 

IMML IMMS RACF RAXF SAXF SLZF 
PSM+3 

B2 A8 OF 

oc MVXRtl MVXRt2 
NCY SCY MVXR PGRP 

PGRP+l 
C4 Cl CO 

MVRX MOO 
C7 

00 
POPP+l XOA+l CPG2+7 PPAL+l 

NOA 
PPAL+2 

OF 30 06 OF F2 00 OC 08 
aOA XOA AOA 

03 E8 

OE 
JIGt2 

MXRX 
JIGtl 

LOA LOX POS AOX 
PPAL+3 

E2 50 82 EO 08 E9 

OF 
PXAt4 PXAt5 CPG2+6 ISOA+2 
70 Fl FO OF FB 02 

MRXX POSI AOAI 
68 F7 

JFL, JCF, JZF 
COLUMN RESTRICT 

1,<,.=0 1,<,.=1 

9 A B 

MAOO+l IMRF1+l XATS 

SBYA+2 
STLB STRB 

18 

JAGT JCNZ JXEA 

XATS+l 

OB 5B 

INTER+4 XATS+3 XATS+2 

58 69 5B 51 4B 5A 

INTER+5 
MLOAO 

59 6C 
MAOO 

SOX+l CPG2+2 CPG2+3 
77 F9 AA 7B 7A EB 

INX OTO OTX 

SZOS+l 
SNZO 

9A 
SXOS 

ISJG+3 CPG2+1 BYTE+3 
09 AO 7A AC AE 

XRTN+2 
LRTN XRTN 

B9 BA 

ISJG+l 
CF 09 

NOSK SKIP 

ISJG+2 
PAXC 

09 A9 
PAXE 

PPAL+4 CPG2+4 
E8 7B FB 

SOX+2 CPG2+5 
79 F7 EB F2 

JRL COLUMN RESTRICT 

C 0 E F 

CLOP2 FETCH 

STLB+l 
SRBI 

FETCH+l 
lA 10 OF 9F 

PPRA+l BYTE+5 
DO 2F AE 

CPSS PXA CLOP JXNA 

SCJG+2 PXA+l SCJG+l 
4E 3C 3D 40 CE 4C 

CPSS+l CPSS+2 IRBM+l INTER+2 

3C 50 5C AO 8E 56 BF 58 

INTER+6 INTER+7 CLOP+l INTER+8 

69 60 6C 6F 3E 00 60 AF 

MRVI MRV2 MRAO STPG 

MVGP SPFG IRBM NA15 

MRV1+l MRV2+1 FETCH+2 
7C 7D IF 

BYTEt2 BYTEt4 INTERt9 
CPG2 

BC AB AB 2E 6F AO 

BYTE+l CLOP2tl XRTN+l INTER+! 

CC AC 00 BB B9 FF 5F 

BYTE RSGP SCJG ISJG 

PPAL PPRA PPAX POPP 

ILGA ILPX NAil NAI2 

INTER 

o 
"0 c: 
c 
I 
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Chart 3 

JFL. JCF. JZF 
COLUMN RESTRICT JLL COLUMN RESTRICT 

f.e •• =O f.e •• =1 

0 1 2 3 4 5 6 7 8 

00 INIT JAGT+l JTRl JNTl TFAL TTRU OTOl JALE+l IN01 

01 
SNEO+l INIT+4 

SNEO SWEO LBYR SBYA SBYR 
SBYA+l 

12 21 41 
LBYA 

16 79 

02 
INIT+3 

JXEX 
INOl+l OBIA 

91 11 
LBYT RBYT JXGX JXLX JXNX os OF 

03 JUNC JAGE JALT JXGA JAEO JANE JCEZ JXLA JALE 

04 
PXA+2 INIT+5 

APE2 
INIT+6 IXMB+3 IXMA+l IXMB+2 INIT+ll 

40 70 11 44 
AN2 

41 F4 47 85 86 56 57 45 49 OC 

05 
JIG+3 XA1'S+4 

TFEO TXNG 
OMRF+l 

IMRFl IXMA2 
IXMB+l INTER+3 

EO 60 5A 84 B7 47 5F 59 

JIG+4 JROR+l ISOA+l 06 
50 71 

JNT2 JTRl LAA LAX PAS ISOA 
67 F8 

07 
PXA+3 JROR 

APRE ANPE SAM SXM PSM SOX 
PSM+l 

40 FO 81 61 76 A8 

OS NAO JRLE JIG IMMO OMRF IMRF IXMA IXMB INO 

INIT+l INIT+2 RAXI+1 09 
00 91 90 21 

RSEX RUNR RACI RAXI SAXI SLZJ 
95 94 

RAXR+l SAXR+l PSM+2 OA 
A4 A6 

SNCF SSCF RACR RAXR SAXR SLZR 
78 B8 

IMML+l PSM+3 OB RXFI IMML IMMS RACF RAXF SAXF SLZF 
A8 OF B2 

OC 
MVXR+l MVXR+2 

NCY SCY MVXR MVRX MOO PGRP 
PGRP+l 

C4 Cl CO C7 

00 
POPP+l XOA+l CPG2+7 PPAL+l 

NOA OOA XOA AOA 
PPAL+2 

OF 30 06 OF F2 00 OC 08 03 E8 

OE 
JIG+2 

MXRX 
JIG+l PPRA+9 

LOX POS AOX 
PPAL+3 

E2 50 82 EO F3 EA 
LOA 

08 E9 

PXA+4 PXA+5 CPG2+6 PPRA+8 INIT+7 ISOA+2 OF 
70 Fl FO OF FB 02 FE E3 44 FA 

MRXX POSl AOAl 
68 F7 

JFL. JCF. JZF 
COLUMN RESTRICT 

f.e •• =O f,c,z=l 

9 A B 

MAOO+l IMRF1+l XATS 

SBYA+2 
STLB STRB 

lB 

PPRA+13 PPRA+ll PPRA+12 
2B OF EA 2B 2A 29 

JAGT JCNZ JXEA 

INIT+10 INIT+9 XATS+l 
4A 48 FA 49 OB 5B 

INTER+4 XATS+3 XATS+2 
58 69 5B 51 4B SA 

INTER+5 
59 6C 

MAOO MLOAO 

SOX+l CPG2+2 CPG2+3 
77 F9 AA 7B 7A EB 

INX OTD OTX 

SZOS+l 
9A 

SXOS SNZO 

ISJG+3 CPG2+1 BYTE+3 
09 AO 7A AC AE 

XRTN+2 
B9 BA 

LRTN XRTN 

ISJG+l 
NOSK SKIP 

CF 09 

ISJG+2 
PAXE PAXC 

09 A9 

PPAL+4 PPRA+l0 CPG2+4 
E8 E3 2A 7B FB 

SOX+2 INIT+8 CPG2+5 
79 F7 F4 4A EB F2 

JRL COLUMN RESTRICT 

C 0 E F 

INIT+12 
CLOP2 

PPRA+4 
FETCH 

FC lE 

STLB+l 
SRBI 

PPRA+5 FETCH+l 
lA 10 OE 9E OF 9F 

PPRA+l BYTE+5 PPRA+2 
00 2F AE 20 4F 

CPSS PXA CLOP JXNA 

SCJG+2 PXA+l SCJG+l PPRA+3 
4E 3C 30 40 CE 4C 2F OE 

CPSS+l CPSS+2 IRBM+l INTER+2 
3C 50 5C AO BE 56 BF 5B 

INTER+6 INTER+7 CLOP+l INTER+8 
69 60 6C 6F 3E 00 60 AF 

MRVl MRV2 MRAO STPG 

MVGP SPFG IRBM NA15 

MRV1+l MRV2+1 PPRA+6 FETCH+2 
7C 7D lE FE IF 

BYTE+2 
CPG2 

BYTE+4 INTER+9 
BC AB AB 2E 6F AO 

BYTE+l CLOP2+1 XRTN+l INTER+l 
CC AC 00 BB B9 FF 5F 

BYTE RSGP SCJG ISJG 

PPAL PPRA PPAX POPP 

ILGA ILPX NAil NAI2 

INIT+13 PPRA+7 
INTER 

OC 9E F3 

o 
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CPU Design 

APPENDIX A 
THE DESIGN EXAMPLE INSTRUCTION SET 

The basic machine uses a 16-bit word. All instruc­
tions are single word instructions except the long 
immediate forms. Macroprograms are fully relo­
eatable without reassembly. The data segment is 
also independently relocatable. There are five basic 
instruction catagories: memory reference, immedi­
ate data, jumps (including calls and returns), regis­
ter moves and manipulations, and input-output 
functions. 

The machine has seven registers as follows: 

ASSIGNED 
REGISTER CPE 

REGISTER 

(A) Accumulator RO 

(X) Index Register Rl 

(B) Data·Base Register R5 

(E) Program Execution Base Register R6 

(P) Program Counter R3 

(S) Stack Pointer R4 

(W) Status Word Register' R7 

• A carry flip·flop designated C is. the high order bit of the status 
word register W. 

Memory Reference Group 

ADDRESS MODE 
ADDRESS M·FIELD 

COMPUTATION CODES 

Direct B+o 0100 

Indirect (B+D) 0101 

Indirect Relative (B+o)+B 1110 

Indirect Indexed (B+o)+X 0110 

Indirect Indexed Relative (B+o)+X+B 0111 

SUMMARY OF MEMORY REFERENCE MODES 

Note: Values enclosed in ( ) designate indirect 
addresses. 

3.&2 

The operations supported under these five modes 
are as follows: 

MNEMONIC FUNCTION 0 

NoA AND data to A 0000 

LOA Load data to A 0001 

LAA Load address to A 0010 

SAM Store A in memory 0011 

ODA OR data to A 0100 

LOX Load data to X 0101 

LAX Load address to X 0110 

SXM Store X in memory 0111 

XoA Exclusive OR data to A 1000 

POS Push data to stack 1001 

PAS Push address to stack 1010 

PSM Pop stack to memory 1011 

ADA Add data to A 1100 

AoX Add data to X 1101 

SoA Subtract data from A 1110 

SOX Subtract data from X 1111 

Immediate Group 

MNEMONIC FUNCTION 
M· O· 

FIELD FIELD 

LAI Load to A immediate 0011 0001 

AAI Add to A immediate 0011 1100 

NAI AND to A immediate 0011 0000 

OAI OR to A immediate 0011 0100 

XAI Exclusive OR to A 
immediate 0011 1000 

PSI Push to stack immediate 0011 1001 

LXI Load to X immediate 0011 0101 

AXI Add to X immediate 0011 1101 

If D is equal to zero, the contents of the memory 
location following the instruction is used as the 
immediate value. 



Jump Group 

MNEMONIC FUNCTION 
RELATIVE 
M 0 

JRU,JIU Jump unconditional 0001 0000 

JRGE,JIGE Jump if A.GE.O 0001 0001 

JRLT,JILT JumpifA.LT.O 0001 0010 

JRXG,JIXG Jump if X.GT.A 0001 0011 

JREZ,JIEZ Jump if A.EQ.O 0001 0100 

JRNZ,JINZ Jump if A.NE.O 0001 0101 

JRCZ,JICZ Jump if C.EQ.O 0001 0110 

JRXL,JIXL Jump if X.LE.A 0001 0111 

JRLE,JILE Jump if A.LE.O 0001 1000 

JRGT,JIGT Jump if A.GT.O 0001 1001 

JRCN,JICN Jump if C.NE.O 0001 1010 

JRXE,JIXE Jump if X.EQ.A 0001 1011 

JRXN,JIXN Jump i·f X.NE.A 0001 1111 

Unconditional and conditional jumps: 

Relative: P = P+D' where 0'=0-128 
Indirect: P = E+(E+O) 

Subroutine Call Group 

MNEMONIC FUNCTION 

CAS Call absolute, push 
P, E, W, B 
P +- (0) 

CLS Call local subroutine, 
push P 

CVS Call global subroutine, 
push W. B, E, P 

Local: Push P to stack 
P = E+(E+O) 

Value: Push W, B, E, P to stack 
E = E+(E+O) 

ABSOLUTE 
M 0 

1101 XXll 

M 0 

N.A. 

N.A. 

P = E'+(E') where E'=E+(E+O) 

CPU Design 

INOIRECT 
M 0 

0010 0000 

0010 0001 

0010 0010 

0010 0011 

0010 0100 

0010 0101 

0010 0110 

0010 0111 

0010 1000 

0010 1001 

0010 1010 

0010 1011 

0010 1111 

M 0 

0010 1110 

0010 1100 
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Subroutine Return Group 

MNEMONIC FUNCTION M 0 

RLS Pop P 1100 1111 

RVS Pop P, E, B, W 1100 1101 

RSA Pop A, X, P, E, B, W 1100 1100 

Register Manipulation Group 

MNEMONIC FUNCTION M 0 

RAR Rotate A right, include 1101 0001 
CFF 

RAX Rotate A and X right, 1101 0101 
include CFF 

SAX Shift A and X right, 1101 1001 
preserve sign 

SAL Shift A left, fill with 1101 1101 
zeros 

Byte Load and Store Group 

MNEMONIC FUNCTION M 0 

LBA Load byte absol ute 1101 0000 

LBR Load byte relative 1101 0100 

SBA Store byte absol ute 1101 1000 

SBR Store byte relative 1101 1100 

Absolute mode: Byte add ress = (B+0)+X/2 

Relative mode: Byte address = (B+O)+B+X12 

Special Memory Reference Instruction 

MNEMONIC 

ISZ 

FUNCTION 

Increment and skip if 
zero 

M 0 

1101 XX10 

Stack Push and Pop Group 

MNEMONIC 

PHAX 

PPAX 

FUNCTION 

Push A, X onto stack 

Pop A, X 

The shift count is given by D if D is non-zero or by 
the least significant seven bits of the X register if D 
is zero. 

Base and Status Register Move Group 

MNEMONIC FUNCTION M 0 

MSX Move S to X, adjust 1100 0100 

MBX Move B to X, adjust 1100 0101 

MEX Move E to X, adjust 1100 0110 

MWX Move W to X, adjust 1100 0111 

MXS Move X to S, adjust 1100 0000 

MXB Move X to B, adjust 1100 0001 

MXE Move X to E, adjust 1100 0010 

MXW Move X to W, adjust 1100 0011 

NO.OP Nothing implemented 1100 10XX 

The destination register is adj us ted by D-128. 

Input/Output Group 

MNEMONIC FUNCTION M 0 

INO I nput one word 1000 XXXX 
A<- (0) 

OTD Output one word 1001 XXXX 
(0) +-A 

INX I nput one word 1010 XXXX 
A+- (X) 

OTX Output one word 1011 XXXX 
(X) +-A 

M o M 0 

0001 1101 0010 1101 

1100 1110 

3-64 
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APPENDIX B 
MICROPROGRAM LISTING © Intel Corporation, 1975 

RECORD 
NUMBER 

1 
2 
3 
4 
5 
6 
7 
B 
9 

10 
11 
12 
13 
14 
15 
16 
17 
113 
19 
.!O 
21 
22 
23 
.i!4 
25 
20 
27 
28 
.!9 
30 
31 
32 
33 
34 
35 
36 
37 
31i 
39 
40 
41 
42 
43 
44 
45 
4b 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
511 
59 
60 

1* BIPOLAR MICROCOMPUTER MACRO-MACHINE 
REGISTER MACHINE--12/13/74 
UPDATED 3/18175 

MACHINE 
A 

HAS 7 REGISTERS AS FOLLOWS: 

X 
P 
S 
I:i 
g 
W 

ACCUMULATOR RO 
INDEX REGISTER R1 
PROGRAM COUNTER R3 
STACK POINTER R4 
DATA BASE REG R5 
PROG. BASE REG. R6 
STATUS WORD R7 

C=CARRY,LINK FLIP-rLUP=HOB OF W 

DErINIrl~H Or KBUS fIELD 

KB FIELD LENG'lH=4 
MICROPS(KOOOO=O 

KIiOOO=B 

KB KBUS: 

*/ 

DEfAULT=O 
K007f=1 KOOfF=3 
KfFOO=12 KfFBO=14 

,* DEFINITION OF BUS CONTROL FIELD */ 

MCr DEFAULT=O 

K7FFF=7 
KFFn-=15); 

FIELD LENG1'H=3 
MICROPS(NMO=0008 

RHi=100B 
INH=OOlB RMW=010B CNB=OIIB 
ROT=10lB RRM=lI0B RWM=111B); 

/* NBO NO BUS OPERATION 
INH INHIBIT,CPE ARRAY 
RMW READ-MODIFY-wRITE 
CNB CPU NEEDS BUS 
RIN REQUEST INPUT 
ROT REQUEST OUTPUT 
RRM REQUEST READ MEM. 
RWM REQUEST WRITE MEM. 

SEt UP FOR SYMBOLIC REPRESENTATION OF REGISTER DESIGNATIONS *1 

A STRING 'RO', 
X STRING 'Rl', 
P STRING 'R3'; 
S STRING 'R4', 
B STRING 'RS', 
E STRING 'Ro'; 
w STRING 'R7', 

1* SET UP A SPECIAL NO.OP STRING *1 

NO.OP STRING 'NOP(R2)', 

/* NEXT WE SPECIFY A DEFAULT TO rFl IN THE Fa FIELD tOR THE lOR 
MlCROP IN" THE CPE FlELD. lOR 18 NORMALLY USED AS A STORE 
OPERATION. WHEN A DECREMENT OPERATION II ALIO DESIRED, "0 
WILL HAVE TO BE EXPLICITLY SPECIFIED *1 

SDR IMPLY FO-11B' 
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RiCORD 
NUMIER 

61 
62 
63 
64 
65 
66 
b1 
be 
69 
10 
11 
12 
13 
74 
75 
76 
17 
78 
H 
ao 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
10l 
104 
105 
106 
107 
108 
1()':/ 
110 
111 
112 
113 
114 
11!) 
110 
117 
116 
119 
120 
121 
12.1 
123 
124 
125 

'* INITIALIZATION SEQUENCE 
ZERO A, X, AND W *' 

OOOH: 
090H: 
091H: 

INIT: CLR(A) J 
CLR(X); 
CLRCW)J 

,. ZERO f AS TEMPORARY POINTER, WRITE W TO INTERkUPT STRUCTURE *' 

021H: 
01lH: 
041H: 

CLRCT) , 
LMl(l'H 
ILR(W) Ron 

/. SET S = CO), T = 1 fOR NEXT OPERATIO~ ./ 

044H: 
OF4H: 
OFAH: 

LMlCT) fFl RRMJ 
ACMCAC) 
SDR(S); 

/. SET B = (1), r = ~ FUR NEXT OPERATION *1 

04AH: 
049H: 
048H: 

L~ll(T) Ff1 RRM; 
ACMCAC); 
SDRCB} src; /. THIS SETS THE C fLAG TO INSURE 

A CORRECT JUMP TO XRIN */ 

/. GET (2), JUMP TO XRTN TO SET E = (2), P = CE) ./ 

OOCH: 
OFCH: 

LMI(T) RRM; 
ACM(AC) JCF C*,XRTN); 

/* FETCH SEQUENCE & START Of MACRO-INSTRUCTION PROCESSING 
P IS ISSUED TO MAR AND INCREMENTED, MACRO-INSTRUCTION 
IS fETCHED AND TESTED BY JPX MICRO-OPtRATION. NOTE 
fETCH IS IN LOCATION 15 TU STROBE INTERRUPT ON ENTRY. *' 

OOFH: fETCH: LMI(P) ffl RRM; 

/* LOAD DISPLACEMENT AND TEST fOR ZERO USING Z FLAG *' 
0IFH: LTMCAC) STZ KOOfF; 

'* SAVE DISPLACEMENT, TEST 4 BITS OF MACRO-OP. TEST IS 
DELAYED TO ALLOW PIPELINE PROPAGATION. ALSO C FLAG IS 
SET FOR LATER USE IN PSEUDO-SUBROUTINES. *' 

09FH: SOH(RII) S'fC J~X(NAO,JR~L,JIG,IMMO,OM~f,lMRF,lXMA,lx~~,IhO, 
INX,OIO,OTX,MVGP,SPfG,IRbM,NAI5); 

/. ~~ASSIGN~D UP-CODE GHUUPS--NOP~ fUH 1HIS V~RSION ./ 

080H: 
u8F'ti: 

:'lAO: 
NAl~: 

1000.OP 
NO.UP 

JZRnTfCH) ; 
JZR(nl'Cit); 

/' IMM~()lATE GROUP Uf MACRU-INSTRUCTIONS--TEST fOR LONG O~ SHORT 
F'URN--O IS IN AC AND H9--AOJUSl AC bY -128 ./ 

0.3tll IMMO: LIH(AC) KfF'I!O JZHIMML,IMMS); 

/. LUNG F'O~M: FETCH NEXI WURD TU AC */ 

O~lh: lMML: LMl(P) Hi RR~I: 



IlECOtlD 
NU~tlt:R 

12b 
U7 
12i! 
129 
13,) 
131 
132 
133 
134 
Ij~ 

136 
137 
13b 
139 
140 
141 
142 
143 
144 
1 .. ~ 
146 
147 
14~ 
1411 
I~O 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
114 
175 
176 
177 
178 
179 
180 
l~i 
182 
181 
184 
18~ 

180 
1~7 
188 
1~9 
I!lO 
1~1 
\1/2 
l~j 

194 
195 
196 

OBIH: ACI-l( AC) JRLIILGA,ILPX,~AII,NAI2); 

" SHURf fORM: NO PROCESSING NEEDEU " 

Otl3ti: IMMS: JRLIILGA,ILPX,~All,NAI2); 

" Pk~PRJCESSING fUR ARITHMETIC A~U LOGIC ROuTINES? NONE NEEDED " 

Ol:H: ILGA: 
Ot:DH: ILPX: 

NO.UP 
NO.OP 

JLLINDA,DUA,XDA,ADA); 
JLLILDA,LDX,PDS,ADX); 

" ~OTE: NAIl AND NAil ARE NUN-VALID INSTRUCTIOhSll THt:1 ARE 
~AD£ l~rU ~U-UPS IN lHIS VERSIUN Of fHE MACHO-MACHINE " 

OHH: NAll : 
OEfH: NAI2: 

NO.OP 
NO.UP 

JZRlfETCH); 
JZRlfETCH); 

" BASIC ARITHMETIC AND LOGIC PROCt:SSING--UPUATE C ff O~ MACRU­
MACHINE fOR ADA--TOGGLE IT ON CARRY fROM ADA '1 

OD/H: ADA: AURIA); 
Of7H: AUAl: NU.OP 
OC2H: NCY: NO.UP 
OC3H: scr: LMIIW) K8000 

" LOGICALS " 

OD4H: NDA: ANH(A) 
OU5H: ODA: ORRIA) 
OD6H: XDA: CMR(AC l: 
ODIH: XNR(A) 

" LDA AND LOX OPERATIONS '1 

OE4H: LDA: SDR(A) 
OE5HI LDX: SDR(X) 

/. STACK PUSH--ADVANCE STACK POINTER TO 
REVERSE DIRECTION STACK--A DECREMENT 

OE6H: PDS: 
OfbH: PDSI: 

DSM(S); 
LMHS) RWM 

JfL INcr, scn; 
JZRlfETCH); 
JZRlfETCH); 

JZRlfETCH): 
JZH(fETCH); 

JZR(fETCH) I 

J:l.R(FETCH) , 
J:l.R(FETCHl/ 

NEXT LOCATION (fOR THE 
Of S), THEN WRITE '1 

JZR(fETCH); 

CPU Design 

I' ADX - SHARES CODE fOR ADA - ALSU TOGGLES C ff Of MACRO MACHINE '1 

OE7H: AUX: ADHIX) 

" MEMONI REFERENCE INSTRUCTION GRUUPS 
DIRECT--GET 8tD INTO AC--ALSO R9 '1 

0&4H: 
054H: 

DMRf: ILRIS); 
ALRIR9) 

JMP(ADAl); 

JRLIMRVl,MRV2,MRAU,STPG); 

/. INDIRECT-ABSOLUIE--GET (8+D) INfO AC--C fLAG USED fOR PSEUDO-SUBROUTINE ./ 

O·~5H: 
055H: 
UOAH: 
ObBH: 

IMRf: ILR(B); 
IMRr1: ALH(R9); 

LMIIR9) RRM 
MLOAD: ACM(AC) 

JCf"( MADD, MLOAD); 
JRL(MRVl,MRV2,MRAD,SIPG); 

If ~OIE: kADD WILL bE USED fUR orHER IhDIPECT OPERATION~ WHERE 
S, X, ETC. HAS BEEN LOADED TU RB '1 

ObAH: 
009H: 

MADU: ACiHAC); 
ALI« 1'\8) JRL(MRVl,MRV~,MRAD,STPG); 

If INDIRECT INDEXlD Atl~OLUT~ - CLEAR C fLAG, MUVE X TO H8 '1 

oa6H: 
04bH: 

lXMA: ILR(X) ~TC; 
SDR(RS); 

3-67 
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RECORD 
NUMBER 

197 
198 
19':1 
200 
lOI 
202 
203 
204 
205 
:l06 
207 
2011 
209 
210 
211 
212 
213 
214 
215 
21b 
211 
218 
219 
220 
221 
222 
223 
224 
22S 
l2b 

j* NOriNG r~AT ASSIGNMENT RULES WOULD NOT ALLOW ThE DESIRED 
JUMP ro IMRF UNLESS IIMA+l WERE IN RO~ ZERO--AN EXTRA STATE 
IS ADDED HERE */ 

U5bH: UMA2 : ILR(B) JMP (lHRf'1); 

/* INDIRECT INDEXED RELATIVE - CLEAR C FLAG, PUT B+X IN R8 */ 

01l7H: 
057H: 
047H: 
045H: 

IXHB: lLR(X) STC; 
SDR(R8); 
ILR(BJ; 
ADIHR8) JMP<IMRFl; 

/* INDIRECT RELATIVE (TO B) - CLEAR C FLAG, PUT B IN RB */ 

08EH: lRBMI ILR(B); 

/* AGAIN ASSIGNMENT RULES PREVENT JUMPING TO IIMA+l UNLESS IT IS 
LOCATED IN RON ZERO--PLACEMENT THERE COULD FREE TWO WORDS */ 

05EH: SDRlRII) JMP (IXMA2); 

/* THE fOLLOWING PRUCEDURES lMPLEMENT THE BASIC PREPROCESSING FOR 
VALUE AND ADDRESS LOADING. 

VALUE-GROUP 1: 

07::H: MRVl: 
O'lCH: 

GET lAC) IN AC */ 

LMUAC) RRM; 
ACM(AC) JLL(NDA,UDA,XDA,ADA)/ 

~27 /* VALUE GROUP 2 */ 
l2~ 
219 
230 
231 
232 
233 
234 
tJ5 
236 
237 
238 
H!I 

07DH: 
091>1'1: 

MRV2: LMllAC) RRM; 
ACM(AC) JLL(LDA,LDX,PDS,ADX)/ 

/~ MRAD GROUP INCLUDES ADDRESS LOAOS AND SUijTRACT FROM A */ 

OIEH: 

064H: 
065H: 
066H: 

MRAU: 

LAA: 
LAX: 
PAS: 

NO.OI' 

SDI<CA) 
SDRlX) 
DSM(S) 

JLL(LAA,LAX,PAS,ISDA); 

JZR(fEICH); 
JZR(fETCH)/ 
JMI' (PDSl); 

240 '* faR 
241,. 

SUBTRACT, ADD l'S COMPLEMENT PLUS 1 */ 

24..1 
J4J 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
lS4 
255 
256 
257 
258 
259 

067H: 
068H: 
OF8H: 

ISDA: LMI(AC) RRH; 
LCfHAC); 
ADR(A) FFl JMP(ADAI ); 

/* StPG GROUP INCLUDES ~TURES AND SUbTRACT FKOM X */ 

OH'H: 

o '/4H: 
u751t: 

STPG: 

SAM: 
SXM: 

LMI(AC) 

ILRlA) RilM 
lLRlX) RWM 

JLL(SAM,SXM,PSM,SDX); 

JZR(FUCH); 
JZR(FETCH) ; 

/* POP STACK TO MEMORY - SAVE ADDRESS, POP STACK */ 

076H: 
078h: 
OA8H: 
OBIiH: 

PSM: SUR<l'); 
LMI(S) HI RRM; 
ACMlAC)/ 
L~IICT) RwM JZR(FETCH) ; 

260 '* SURTRACT FROM I */ 
2,,1 
264/ 
263 
264 
265 
266 
267 

077H: 
079H: 
OF9H: 

SOX: LMICAC) RRM; 
LCHCAC) ; 
ADR(X) FFI JMP(ADA1) ; 

/f JUMP GROUPS--USE JPR MICRO-OPERATION TO RESOLVE CONDITION SELECTION 
DESTINATION ADDRESS IS COMPUTED FIRST--PLACED IN AC AND R9 



RECORD 
NUMBER 

268 
2to'J 
270 
271 
272 
213 
274 
~75 
276 
277 
278 
27~ 
280 
281 
28.o! 
,2ijJ 
28'1 
285 
280 
287 
2b8 
2d9 
290 
291 
29.o! 
n3 
2~4 
29!> 
2"'6 
2'J7 
29ij 
2':1':1 
300 
301 
30l 
303 
304 
305 
30b 
307 
308 
309 
310 
311 
H.o! 
311 
314 
315 
316 
317 
31ij 
319 
320 
321 
322 
323 
324 
325 
326 
321 
32ij 
329 
330 
331 
332 
333 
334 
335 
He> 
3J7 
338 

JUMP RELATIVE TO P--AODRES~=P+D-128 *1 

081H: 
071H: 

JREL: 
JRllR: 

CPU Design 

OblH: 

ILIHPl1 
LMI(AC) KF'FIIO; 
ALRIR9) JPRIJUNC,JAGE,JALT,JXGA,JAEO,JANE,JCEZ,JXLA, 

JALE,JAGT,JCNZ,JXEA,CPSS,PXA,CLOP,JXNA); 

1* JUMP INDIRECt - GET E+IE+D) IN AC ANll R9 *1 

082H: 
OE2ti: 
OEOH: 
050H: 
OoOH: 

JIG: ILR(E); 
ADtHR9); 
LMI (1,9) RRI',; 
AMAIAC); 
501'11'9) JPRIJUNC,JAGE,JALT,JXGA,JAEQ,JANE,JCEZ,JXLA, 

JALE,JAGr,JCNZ,JXEA,CPSS,PXA,CLOP,JX~A); 

1* UNCUNOITIU~AL JUMP *1 

U30M: JUNC: SDRIP) JZR(FETCH); 

1* TESTS FUR A.GE.O, ETC. *1 

031H: 
032H: 
u34H: 
035H: 

OHH: 
OOIH: 

072n: 
07Jti: 

038H: 
U07H: 

04211: 
043tl: 

JAGE: 
JIILT: 
JAEQ: 
JAM:: 

JAGT: 

IIPkE: 
AI~PE: 

JALE: 

Ak'E2: 
AN2: 

TZR(A) hSOOO INH 
rZRIA) KeOaO INH 
rZR(A) 
TZIHA) 

lZRIA) Kaooo INH; 
TZRlA) 

rw.up 
NO.Oil 

rZR(A) K8000 INH; 
rZR(A) 

NO.OP 
SllPIP) 

JMPCTTRlI); 
J~IPITFAL); 

JMP I TT'RU); 
JMP(T,FAL); 

.JfL(APRE,ANPE); 

JH (JIliT2,JTR2); 
JZR(rETCH)i 

In(IIPU,AN2); 

Jf"L(JTRI,JNTI) ; 
JZRCFETCH); 

1* TESTS OF C fLIP-fLOP (HIGH ORDER BIT or W) *1 

UJbH: 
03AH: 

JCEZ: 
JCNZ: 

TZR(w) K800u INH JMP(TTRU); 
TZR(W) Keooo INH JMP(TFAL); 

1* TESI EXECUTION fUR ABuVE TESTS - ROW ZERO USED *1 

005H: 'HRU: NO.OP JFL(JTRI,JNTl)1 

002H: JIRl: SIlR(P) JZRIFETCH); 
003H: JNTl: NO.OP JZR(FETCH); 

004H: TfAL: NO.UP JFL(JNT2,JTR2)I 

OblH: JNT2: NO.OP JZRCfETCH)I 
063H: JTR2: SDR(P) JZR(FETCH)I 

/* TESTS fOR X.GT.A, X.LE.A, X.EO.A, X.NE.A--SHARED PSEUDO­
SUBROUTINE USES JLL ~OR AN EXIT TEST--kOUTINE ENTRY IN ROW 0 
C FLA~ IS SET FOR X.GT.A, FL TEST FOR X.EQ.A *1 

033H: JXGA: ILRCX) JMP(XATS); 
037H: JXLA: ILR(X) JMP(XATS); 
03BH: JXEA: ILR(X) JMP(XATS); 
03FH: JXNA: ILR(X) JMP(XATS); 

/* SAVE X AT r, fETCH ANIl cmlPLEMENT A *1 

OOBH XATS: SOR(T) ; 
04BH lLRCA) STC; 1* CLEAR C FLAG *1 
05bH CMA(AC); 

3-69 
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RECORD 
NUfoIBER 

33~ 
340 
341 
342 
343 
344 
345 
HI> 
34/ 
348 
34':1 
J50 
J!>l 
3::.:.1 
J~J 
354 
3::'~ 
356 
J~ I 
35i! 
J59 
360 
361 
J02 
3td 
J64 
365 
Jb6 
367 
368 
369 
370 
311 
372 
373 
374 
375 
376 
317 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
390 
397 
398 
399 
400 
401 
402 
403 
4114 
40':) 
4U6 
407 
40b 
409 

1* ADD Hoa'S Of A' AND X - CARRY ~EANS 1 NEG •• A.GE.O *1 

u~AH: AOR(,£) K80UO; 

1* EXEcurE PREVIOUS TEsr, SET UP TO TEST HOB OF RESULT--IF 1. 
THE SIGNS OF A AND X ~ERE THE SAME *1 

051H: TZR(T) ~8000 INH JFL(TFEQ,TXNG) ; 

1* rXNG IMPLIES x NEG AND A.GE.O--I.E. X.NE.A AND X.LT.A--DO A 
DUMMY OPERATION TO FURCE THE PkUPER F fLAG ., 

053H: lLRCA) JLLCJXGX,JXLX,JXEX,JXNX); 

1* PERfORM A TEST ADDITION AND EXECUTE SIGN-EQUAL TEST 
C ~ILL BE SEf IF SIGNS WERE THE SAME AND X.GT.A ., 

052H: rFEQ: ADR(T) STC K7FfF JFL (SNEQ, SWEQ) ; 

I. SNEQ IM~L1ES SIGNS NOT EQUAL--I.E. X.GE.O, A NEG--X.GT.A *1 

012H: 
010H: 

SNEQ: SDR(AC) STC; 
NU.UP 

I. DUMMY UP TO SET C fLAG ., 
JLLCJXGX,JXLX,JXEX,JXNX); 

1* FOR SIGNS EQUAL, IF X=A RESULT wOULD SE 1111 ••• 1. INCREMENT 
wILL GENERATE A CARRY IF SO *1 

OllH: Sf/EQ: ILkCAC) "1 

1* EXECUTION OF JUMP TESTS ., 

024H: 
U2::'H: 
02bH: 
027H: 

JXGX: 
JXLX: 
JXEX: 
JXNX: 

lLR(R9) 
lLR(R9) 
ILR(R9) 
ILR(R9) 

1* SUBROUTINE CALLS 
CALL LOCAL AND PUSH W, S, E, P =CPSS 
CALL LOCAL AND PUSH P ONLY-CLOP 

JLLeJXGX,JXLX.JXEX,JXNX); 

JCf(JNT2,JTR2) ; 
JCf(JTR1,JNTl) ; 
Jf'L(JNT2,JTR2); 
Jf'L(JTR1,JNT1); 

C FLAG IS USED FOR EXlT TEST AFTER PUSHING P "~I 

03CH: 
05CH: 
OSDH: 

OADH: 
OAAH: 
07AH: 

07BH: 
OEBH: 
OFSH: 

OF2H: 
0l>2H: 
OODH: 

CPSS: 

CPG2: 

DSM(S); 
ILR(W); 
LMI(S) RWM; 

DSM(S); 
ILR(S); 
LMICS) RWM; 

DSM(S); 
!LROd; 
LMlCS) RwM; 

DSM(S); 
ILH(P); 

CLOP2: LMI(S) RWM; 

I. t:tCE+D) l",ro AC ., 
OIlDH: ILR(R9) 

OSSH: XRTI~ : SORCE); 
OBEH: LMl(E) RRM; 
OS9H: AMA(AC) ; 

UBAH: LRTN: SDR(P) 

031:.H: CLOP: DSM(S) ; 
OoEH: lLR(P) STC 

1* PUSri INSTRuCTION ., 

JCFCLRTN,XRTN); 

JZR(HTCH) ; 

JMPCCLOP2); 

3-70 



RECORD 
NUMBER 

410 
Ul 
41~ 
413 
414 
415 
411> 
417 
4111 
419 
420 
421 
422 
42.3 
4:l4 
425 
421> 
421 
428 
429 
430 
431 
432 
433 
U4 
435 
436 
437 
U8 
439 
440 
441 
44J 
443 
444 
44!) 
441> 
447 
448 
449 
450 
451 
452 
453 
454 
4!)5 
451> 
4!)7 
45S 
459 
460 
41>1 
4b2 
463 
404 
46~ 
,*b6 
46"/ 
468 
41>9 
470 
471 
4U 
4·/j 
474 
475 
476 
471 
478 
419 
480 

030H: 
04DH: 
040H: 

070H: 
O~·OH: 

OFIH: 

PXA: OSM(S): 
IL~(X): 
LMI(S) 1'.\1114: 

OSM(S): 
ILIHA); 
L~ll(S) RWM JZR(FETCH); 

1* MUVE GROUP OF INSTI'.UCTIO~S--USES JCE TO SELECT REGISTER--NOTE 
THAT REGISTER ASSIGNMENT BECOMES IMPORTANT 
FIRST MUOIF¥ 0 to GET D-128 *1 

08CH: MVGP: LMI(R9) KFF80 JLL(MVXR,MVRX,MOO,PGRP): 

1* MOVE X TO REG. - GET X, MODIfY BY 0'=0-128 " 

OC4H: MVXR: ILR(X); 
OCOH: ALR(R9): 

CPU Design 

OCIH: SOR(R7) JCE(MXRX); " REGISTER OVERRIDE *1 
OEIH: MXRX: NO.OP 

1* MOVE Rt:G TO x - FETCH REG USING JCE 

OCSH: MVRX: ILR(R7) 
01'"5H: MRXX: ALR(R9) 

" MOO NOT IMPLEMENTED IN THIS VERSION 

OCbH: MUD: NO.OP 

" ADJUST STACK AND RETURN GROUP 
PPAL--~OPS A, X, P, E, B, AND W 
PPHA--POPS P, E, B, AND w 
PPAX--POPS UNLr A AND X 
POPP--POPS ONLr P " 

OC7H: 
OC8H: 

OOCH: 
003H: 
OOSH: 

Olo:llH: 
OE9H: 
OOBH: 

ODOH: 
02UH: 
02~·H: 

04FH: 
OOEH: 
011::11: 

09EI1: 
OFEH: 
O~jH: 

01::311: 
OEAH: 
O~AH: 

PGRP: 

PPAL: 

PAXC: 

lLR(R9); 
ADIHS) 

LMl(S) FFl RRM; 
ACM(AC): 
SORIA): 

LMI(S) n·1 RRM; 
ACM(AC) 
SDR(X); 

LtU(S) HI· RRM; 
ACM(AC): 
SDR(P): 

LMI(S) FF1 kRM; 
ACIH AC ); 
SORCE): 

LMHS) Fn RRM: 
ACM(AC): 
SOIHB) ; 

LMI(S) FFI RRM; 
ACM(AC) : 
SOlleW); 

1* RESTORE INTE.R~UI'T STRUCTURE *' 
02t!H: 
029H: 

ODAIH 

CLR(T); 
LMI(T) HOT 

50Rl1.) 

3-71 

JZR(FETCH) , 

OVERRIDE *1 

JCE(MRXX); 
JMP(LOX) : 

*1 

JZR(FETCH): 

JRL(PPAL,PPRA,PPAX,POPP); 

JCF(PAXE,PAXC) : 

JZR(FETCH) ; 

J'Z.R l rE'tC~) ; 
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RECORD 
NUMBER 

481 
482 
483 
484 
485 
48b 
481 
488 
4119. 
490 
491 
492 
493 
494 
49~ 
49i1 
491 
498 
499 
500 
501 
)02 
503 
504 
505 
50E> 
SCI') 
5011 
509 
510 
511 
512 
S13 
)14 
515 
51& 
517 
518 
519 
~lO 
521 
5U 
52J 
524 
)l5 
5lE> 
527 
528 
52~ 

5JO 
531 
532 
533 
534 
535 
53E> 
537 
538 
539 
540 
541 
542 
543 
544 
54::; 
54& 
547 
548 
54\1 
550 
551 

OOEH: PPAX: 

ODFH: POP!': 
OOOH: 

ILIHAC) STC 

LMHS) FFl RRM; 
ACM(AC) 

I' SPECIAL FUNCTION GROUP 

JMP(PPALl: 

JMP(JUNC); 

BYTE OPERATORS--AODR=(B+0)+S+X/2 OR (B+D)+X/2 
CALL TO (D) AND PUSH ALL 
SHIFT AND ROTATE GRUUP 
INCREMENT AND SKIP 
FETCH B JUST IN CASE *1 

SPFG: ILR(B) JRL(BYTE,RSGP,SCJG,ISJG); 

1* BYTE GROU!'--COMpUtE AOOR, STORE B IN CASE NEEDED *1 

OCCH: 
OBCri: 
OACH: 
OABri: 
OAEH: 
02EH: 

1.115ri: 
014H: 
022H: 
02JH: 
020H: 

017H: 
01bH: 
01t1H: 
019H: 
01bH: 
010H: 

OlAH: 
OleH: 

tinE: 

LBYk: 
LIHA: 
LilYT: 
KbYT: 
DBIA: 

SbYR: 
SlltA: 

STRb: 
SRBI: 

Sl'LS: 

/f ROfArE GROUP 

SOR(k8); 
AOR(R9); 
ILR(X); 
SRA(AC) STC; 
LtoIHR9) RRM; 
AMA(AC) 

ALR(R8); 
LMI(AC) RRM 
LDI(AC) FFI KOOFF 
LT'UAC) KOOFF; 
SOH(A) 

ALI«k8) ; 
LMUAC) ; 
ILldA) ; 
T~R(AC) KOOFF RRM 
LTM('r) "'FrOO; 
ALRlT) RwM 

L'fMlT) KOOfF; 
LOHAC) Ffl CNS 

JLL(LBYA,LBYR,SB~A,SBYR); 

JCrtLBYT,RBYT); 
JMp (lJllIA); 

JZH(Ft::TCH); 

1* LOAD MAR FUR LATER US~ *1 

JCnSTLB,STRB); 

JZR(FETCH) ; 

JMp(SRBI); 

RUTArE A WITH C--ROIATE A AND I WITH C--SHIfT A, X RIGHT, FILL 
~ITH SIGN--SHIFT A LEFT, FILL WITH ZEROES 

AT ENTRY, Z FLAG is ZERO IF 0=0. DUE TO piPELINt::O OPERATION, IT IS 
CHIS CUNOITION THAT IS TESTED bY THE fIRST JZF *1 

OCDH: HSGp: 
09AH: SZDS: 
099H: 
09BH: SIIIZD: 

094H: RACI: 
095H: RAil: 
098H: 
09bH: SAXI: 
097H: SLZI: 

1* MAIN ROTATION 

093H: RUNR: 

OA4H: RACR: 
OA5H: RAXR: 
OAOH: 
OA&H: SAXR: 
OA1H: 
OA7ri: SLZR: 

O\l2H: RSI::X: 

OB4H: RACF: 

TZR(W) STZ K8000 INH 
ILRlX): 
SDR(R9) FFO K007f 
DSM(R9) 

ILR(A) 
ILR(I); 
SDiHT) 
TZR(A) STZ K8000 INH 
ILR(A) 

LOOP 'I 

OSM(R9) STC 

SRA(AC) FfZ STZ 
SRA(AC) FFZ STZ; 
SRA(T) FFZ lOTZ 
SRA(AC) FFZ STC; 
SRA(T) FFC 
AOR(AC) STZ 

lOLJR(A) 

TZR(w) K7FFF 

3-72 

JZHSZOS, SNZD); 

JLL(RACI,RAXI,SAII,SLZI); 
JLL(RACI,RAXI,SAII,SLZI)7 

JMP(RUNR); 

JMp(RACI); 
JMP (RAXI J: 
JMP(RUNR); 

JLL(RACR,RAXR,SAXR,SLZR), 

JFL(RSEI,RUNR); 

JCf'( RSEX, RUNR) 7 

JC~' (RSEI, RliNIO ; 
JFL(RSEX,RUNR); 

JLL(RACf,HAXF,SAXf,SLZf); 

JZH SNCF, SSCF); 



RECORD 
NUMBER 

OA2H SNCF NO.Up JZIHFETCH) ; 
uAJH SSCF LMl(W) K~OOO JZRtFETCH); 
085H RAXf ILRtl); 
OSOH RXF1 SDIHX) JMp(RACF); 
08bH SAXf ILRtT) JMp t RXF 1); 
vS"/H SLZ~ TZIHw) K7fH JZF (SNCF , SSCf') ; 

" SPECIAL CALL AND JUMP GRO~p--CURRENTLY CUNTAINS ONL~ tHE 
CALL TO to) A~D PUSH ~,B,E,p--ALL 4 UpCOD~S DO THE SAMg THING " 

OCgll: 
04EH: 
04Cti: 

SCJii: LMl(R9) RRM; 
ACrHAC); 
SOR(M!f) JI'!P(CPSS); 

" INCR~MENT AND SKIP GROUp--AGAIN " OpCUDES ARE DSED FOR ONE 
INS1RUCTION--LOCATIUN AT b+D IS l~CREMENTED " 

OCFH: ISJG: ALRtR9); 
OC9H: LMI(R9) RMW; 
ODIIH: ACM(AC) Ffl; 
OA9H: NU.Up R .. M Jf'L (NOSII, 51111'); 
OCIIH: NUSK: IW.OP JZIH fETCH); 
OC8H: SKU': LMItp) ffl JZRtFEl'CH) ; 

" INpur AND OuTPUT--CURRENT VERSION DOES NOT DECODE INTO 
SUBGROUpS--ALSO ROW ZgRO IS USED TU SAVE CUDE " 

08~H: INO: LMltR9) RIN; 
008H: IND1: AC"! tAC J; 
028H: SDRtA) JZRtHTCH); 
089H: INX: LMItX) IUN JMp t IND1); 
OIlAH: OtD: LMltR9); 
006H: OTD1: ILlltA) ROT JZRtFETCH) ; 
088H: OTX: LMIlX) JMp(OTD1); 

" INTERRUpT--UTILIZES CALL ROUTINES FOR REGISTER SAVING 
110 DEVICE 10 REPRESENTS EXTERNAL INTERRUPT STRUCTURE 
START 8Y PUSHING OLD VALUE OF STATUS " 

OFFH: 
OBFH: 
05FH: 

INTER: DSM(S); 
ILR(Wl; 
LMItS) RioIM; 

" READ INTERRUPTING LEVEL FROM EXTERNAL STRUCTURE " 

058H: 
059H: 
0&9H: 

CLR(T); 
L!H(Tl R1N; 
LTM(AC) KOOFF ROT; " NOTE LEVEL REWRIrTEN " 

CPU Design 

55~ 
553 
554 
5~5 

55b 
557 
55d 
559 
5&0 
5&1 
5&~ 
Soj 
~b4 
SO~ 

50& 
~67 
!)6a 
569 
570 
571 
572 
5"/3 
574 
57~ 
57& 
577 
51d 
579 
580 
581 
58~ 
583 
584 
585 
580 
~87 
588 
589 
590 
591 
592 
593 
594 
595 
59& 
597 
598 
599 
600 
601 
602 
603 
604 
&05 
60b 
ou7 
60d 
609 
610 
b11 
612 

" STORE PRIORITY IN W - SET C FLAG FOR PROPER LOADING OF REGISTERS " 

O&CH: SDR(W) STCI 

" INTERRUPT RUUfINE STARTING ADDRESS IS COMPUTED IN R9 " 

U6DH: 
OoFH: 
OA~'H: 

EOF 

NO PROGRAM EMRORS 
END Uf PROGRAM 

[.~i l( w) RRM; 
ACIHAC); 
SDRtIl9) 
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JMPtCpG2); 



Mle~OP~O~~A~ ~E~ORY IMA~E 

OOOri 

OH 

JCC 
0090H 

b7 
o 

IH 2H 

JfL' JZR 
0072H • OOOFH 

2~b 
I 

• 
31b • 

4 • 

1H 4H 

JZN' JFL 
UOOFH • 0062H 

317 
4 • 

319 
3 

- - - - - t-------.-------. 
JLL JCC' JC~' JLL' JCF 

0024H 0041H * uOIOH * u024H * 0022H 
001H 

301 74 * JoO 36b 505 
I I * I * 1 2 

- - - - - .-------f------·. -

OU2" 

OOjH 

J~H JCC * JCII' JCR * JCf 
OOOtH 0011H UO.OH' 0020H * 0062H 

5UiI 
~ 

JZk 
OuUt"h 

20b 
3 

7J 
I 

SOb * 
1 • 

507 
1 

t-------f-------. -
370 

JZ~ * JZR J~R * JZ~ 
OOO~H * 0004H OOOdH' U005H 

190 * 
l • 

HI * 
2 * 

J28 • 
l * 

29l 
2 

SH 

JfL 
OOP2H 

314 
3 

JCII 
0014H 

504 
1 

JCt' 
0002f! 

371 
3 

JZR 
0004H 

293 
2 

6H 

584 
2 

JCR 
0018H 

511 
2 

J.L 
OU02H 

J72 
J 

JZR 
0005H 

J09 
2 

7H 

JFL 
0042H 

302 
1 

JC~ 

0016H 

510 
1 

JfL 
000.2H 

373 
. 3 

JZ~ 
OOOI:lH 

329 
2 

8H 

JCC 
0028H 

580 
2 

JC~ 
0019H 

512 
1 

JZR 
OOOFH 

581 
I 

JZII 
1i007H 

]01 
2 

9H AH 8H eH 

JRL' JCF' JCC' JCC 
007CH * OOoAH • 004BH • OOFCH 

• 
190 • 

1 • 
18.1 • 

1 * 
335 

4 
* 

.-------.-------. -
92 

1 

JCF' JCR' JCR' JCR 
001AH * 001CH OOIOH 001UH 

• 
513 * 

1 • 
517 • 

1 • 
514 • 

1 * 
*-------f-----~-* -JZt<' JCR * JeR 

OOOFH • 002BH • 0029H 
• • 

477' 472' 476' 
l' 1* I' 

*-------*-------. 

51a 
1 

JZII' JZR * Jec' JCC 
OOOIH • 0004H * OOOSH * 005CH 

295 
2 

• 
310 • 

2 • 
330 

2 
380 

3 

OH 

JCC 
OOBOH 

394 
2 

JZR 
OOOFH 

515 
2 

JCR 
002.H 

459 
I 

Jec 
0040H 

411 
2 

EH 

JCC 
001EH 

463 
1 

Jce 
OU9lH 

FH 

JCC 
001FH 

100 
38 

JCC 
009t'H 

4b4 104 
I I 

JLL Jee 
0014H 004t'H 

502 
1 

JCC 
OObEH 

406 
2 

460 
1 

JZR 
OOUIlH 

331 
2 

-------------------.-------.------.. -------------------------------:---------------,------.,-------,--------------------------------
U04H 

OUbH 

007H 

JCC 
0070h 

413 
1 

Jet: 
0060H 

280 
1 

JPR 
0030H 

281 
1 

Jce 
OOFOH 

JCt< * JfL * 
004411 * 0002H 

* 
75 * J04' 

I • 1 • 

JZH * JCC 
OOOfH • 00F4H 

JOS * 79 
1 • 1 

.-------.-------. 
Jt'l. * JfL 

OOSlH * OOllH 

340 
1 • 

J5b * 
1 * 

JLL' JRL 
0024H * 007CH 

]SI 
1 * 

177 
1 

.-------f-------. -
J~R' JZM JZR' JZR 

0030H * OOOFH OOOFH OOOfH 

271 
1 

Jec' Jt"L 
0061H • 0062H 

2Jo 
1 

JZM * JZR 
OilOFH OOOFH 

Jee 
Ou85H 

2U8 
I 

JZR 
OOOAH 

182 
2 

JZII 
OOOFH 

237 
I 

JZR 
OOOFt! 

Jec 
0056H 

195 
I 

JCII 
0055H 

201 
2 

JCC 
OOn.H 

2]8 
1 

JCR 
0078H 

JCII 
U04SH 

207 
1 

JCC 
0047H 

206 
1 

JCR = 
006aH 

242 
1 -- ,. 

JCR .. 
0079H 

JZR 
OOOCH 

87 
1 

JCR 
0059" 

597 
1 

JCC 
OOfSH 

243 
1 

Jce 
OOASH 

JCR * JCR * JCC' JeC 
004SH • 0049H • 005ijH • 003CH 

86 • 
1 • 

85 • 
1 • 

• 
33b • 

1 * .-------.-------. -
564 

I 

JCC * JCR' JCR' JCR 
00&9" • 0051H • 005"H • 0050H 

• • • 
598' 341' 337' 381 
l' 1* 1* 1 

.-------*-------. -JCR * JZR * JRL * JCR 
006CH • 0009H * 007CH 0060H 

599 • 
1 • 

189 • 
1 * 

184 • 
1 • 

.-------.-------. 
603 

1 

JCC' JCR * Jec' JCC. 
00F9H • 0078H • 00E8H • 00geH 

* • • 

JeM 
0040H 

412 
I 

JCC 
OOAOK 

382 
1 

JCII 
006FH 

607 
1 

JCC 
0090H 

JCR 
004CH 

5&3 
1 

Jell 
0056H 

217 
1 

JZR 
OOOOH 

407 
1 

JZH 
OOOEK 

402 
1 

JeR 
0058K 

593 
1 

JCC 
OOArH 

608 
1 

JLL JLL • 
0064H 0074H 

415 2/1 * 29~' 2~9' 250 251 255 262 25b 26.1 * ·3S6 * 388' 224 229 234 248 
• 1. l' 1* 1* 1. 1. 1. 1 1. l' 1* l' J 3 3 J 
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MICROPROGRAM MEMORl IMAGE 

008H 

OH 

JZR 
OOOFH 

II~ 
I 

JCR 
0091H 

IH 2H 3H 4H 

JCC * JCC. JZr. JCC 
007111 * 00E2H * UU~2H * 0054H 

• 
270 

1 
277 • 

I * 
121 * 

1 • 
176 

1 • _______ •• _____ .f -

JCC * JLL' JLL 
0021H * 00B4H • OUA4H 

JCII 
OO~311 

009H * 
68 69' ~49 540' ~32 

1 1* 4 6' J 
- - - - - .-----__ f _______ • 

JCF JCF. JZR' JZII JFL 
0092H 0092H' OOOFH • OOOFH 0092H 

OOAII • 
544 540' 552' 553 542 

1 l' 2' , 1 f _______ • _______ t 

JCP JRL' JCN' JilL' JZ. 
00B4H OOECn 00B1h' OOECH • OOA,1t 

008H 

~H 

Jce 
005511 

181 
2 

6H 

Jce 
0046H 

194 
I 

JCR. JeR 
0098H •. 009~H 

~H 
3 

JeR 
OUAOH 

~43 
'1 

JCR 
0080H 

535 
2 

JCR 
OOA1H 

545 
I 

JeR 
OOIlOH 

7H 

JCC 
0057H 

205 
I 

Sit 

Jee 
0008H 

579 
I 

Jell = JeR 
0093H = 0094H 

S3b 
2 

JFL 
0092H 

~47 
1 

JZF 
OOA4i1l 

534 
1 

Jce 
001l8H 

257 
1 

JZH 
OOOFH 

91t All Bit CH 

JZR' JZR' JZR' JLL 
0008H * 0006H • OOOoH 00e4h 

• 
582 • 

I • 
583 

1 • 
585 • 

I • .-______ * _______ t -

423 
1 

JLL' JCR. JLL' JLL 
0094H • 0099H • 0094H • 0004H 

529 
1 

528 
I 

530 
I 

.-------*-------* -
22~ 

I 

JfL' JCC * JCR * JCR 
OOCAH • 007AH * OOAE" • OOASH 

• 
512 * 

1 • 

* 385 • 
I • 

500 * 
1 * t-------*-------* -

499 
1 

JCII' JZR * JCR * JCC 
OOBAH * OOOfH OOSEH. OOA:H 

DH 

JRL 
ooeCH 

493 
I 

JLL 
00E4H 

230 
1 

JeR 
OOAAH 

384 
2 

JCF 
OOBAH 

EH 

Jce 
005EH 

212 
1 

Jee 
OOFEH 

FH 

JZ~ 
OOOFH 

116 
I 

JPX 
OO&OH 

too 110 
1 1 

Jec JCII 
OU2EH OVAOH 

501 609 
I 1 

JCII Jee 
0089H 005fH 

55~ 120 12~' 130 ~51 ~54 5~0 ~~7 258 40, 404. 400. 498 39S 401 592 
2 I l' I 2 1 1 1 I 1 3' 2' I 1 1. 1. 

-------------------.-------.-------.-------------------------------:---------------.------.. -------.--------------------------------
JCII JC~' JZR JZII' JeR JCE JZR JCR JilL Jce * JZR' JZII Jec JZf Jee Jell 

OOClh OOElh' OUOfH OOOfH OOCOII OOfSH dOOFH OOCBH OODeH 0009H * OOOfH • OOOfH OObCH 009AH 004EH 00e911 
ooer! • * • 

OOOIt 

Jec 
0030H 

429 • 
I • 

148 • 
1 • 

149 • 
1 • f _______ f _______ • 

427 
1 

JZR' JZR * JCII * JZR 
OOOfH • OOODH • UODSH • OOOfH 

484 15& * 393' 4~1 153 
I 1. l' 1* 2 - - - - - t _______ * _______ • _ 

OOEH 

OOfH 

JCC JZII' JCR JCII * JZR 
vO~UII OOOFH' OOEOH OOEAH. OOOfH 

279 
I 

JCR 
OOFlH 

HO • 

I * 
• 

278 * 
I * 

470 
1 * *-------f------_. -

160 
~ 

JZK * Jce * Jee * JCR 
OOOfH • 0002H 00E3H OOFAH 

434 
1 

JZR 
OOOFH 

1~4 

2 

JZR 
OOOfH 

161 
3 

Jce 
00E5H 

439 
1 

JCN 
OOOIH 

1~5 
2 

Jec 
OOfoH 

166 
2 

JZR 
OOOFH 

447 
1 

Jce 
oonH 

448 
1 

JCC 
00E8H 

146 4~2 
2 I 

Jce '" JCR 
oonH '" 00E9H 

171 
2 

454 
I 

JFL" Jell 
00C2H .. oonH 

570 * 
1 • 

573 
1 

574 * 
1 • 

*-------t-------* -
497 

I 

JCC' JZR * JC~ * JCII 
00A9H • OOOF" * OOODH • OODlH 

~71 • 
1 • 

479 • 
1 • 

• 
4~0 * 

1 * .-------*-------. -
450 

2 

Jef * JCC * JCC JLL 
OODAH * 002AH • OOfSH 00D4H 

45~ 

1 • 

• 
471 • 

1 • 
3B9 

1 * 
134 

2 

527 
1 

Jce 
0020H 

458 
2 

JLL 
00E4H 

135 
2 .------_t _______ * - - __ - -

502 
I 

JC~ 
OODCH 

481 
I 

JZR 
OOOFH 

140 
2 

JeR * Jee. JCR * JCF JeR 
00F7H 004AH * OUf2H • OOSAH 00F3H 

• 

509 
I 

JCR 
OUI)OH 

483 
1 

JZII 
OOOFH 

141 
2 

Jec 
OOSFH 

416 417' 392' 4bB. 80 435 167 147.. 244 264 • 81 * 390. 93 467 591 
• I 1* 1* 1* I. I 2 4= 1 1* I. 1* I. • 1. O. 
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CPU Design 
APPENDIX C CENTRAL PROCESSOR SCHEMJ\TICS 
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ORDERING INFORMATION 
Standard Package Type 

Component No. Of Pins Ceramic (C) CerOIP (0) Plastic (P) 

3001 40 Yes Yes 
MC3001 Yes 

3002 28 Yes Yes 
MC3002 Yes 

3003 28 Yes Yes 
MC3OO3 Yes 

3212 24 Yes Yes 
MD3212 Yes 

3214 24 Yes Yes Yes 
MD3214 Yes 

3216/26 16 Yes Yes 
MD3216/26 Yes 
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PACKAGE OUTLINES 

16-LEAD PLASTIC DUAL IN·LlNE PACKAGE (PI 

,-,..------r:= 
JitIJ.l1ll 
.1.11.n71 

.... =.9:: rLrL.rL 
MIN. 

I-

I=~ 
m=RE'. 

24-LEAD CERAMIC DUAL IN·LlNE PACKAGE (CI 

.,.­
_CUI) 

24-LEAD CerDIP DUAL IN·LlNE PACKAGE (01 

16-LEAD CerDIP DUAL IN·LlNE PACKAGE (01 

24-LEAD PLASTIC DUAL IN·LlNE PACKAGE (PI 

oIIIlWI1I 
.llDt1:s,1JOI 

,-rIlE' . 

'-",14) .G7011.1I) 
mo lUi .«0 1i7it 

.,.".­
:iiiii.ii 

.1ID7S1D. .... 

.I"liiiii I 
K:iii~ 

28-LEAD CerDIP DUAL IN·LlNE PACKAGE (01 28-LEAD CERAMIC DUAL IN·LlNE PACKAGE (CI 

I '~~I--II 
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4O-LEAD CERAMIC DUAL IN·LlNE PACKAGE (C) 

r' _2"OOI53'34I_~1 MAX. 

PIN 1 

PACKAGE OUTLINES 

I 1,230(6,8421 ~ -'---- =t MAX. JJ.-
r --~ 0.020 (0,5081 :on (Q,3061 

MIN. _II :2l§m.m1 _I !_~~TVP fsS~ I_~~_I I--- .023(0,&841 .11012,7141' .71011',0341 

4O-LEAD CarDIP DUAL IN·LINE PACKAGE (D) 
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