

inter
Series 3000 Family Of
Computing Elements -
The Total System Solution.
Since its introduction in September, 1974, the Series 3000 family of computing
elements has found acceptance in a wide range of high performance
applications from disk controllers to airborne CPU's.

The Series 3000 family represents more than a simple collection of bipolar
components, it is a complete family of computing elements and hardware/software
support that greatly simplifies the task of transforming a design from concept
to production.

The Series 3000 Component Family

A complete set of computing elements that are designed as a system requiring
a minimum amount of ancillary circuitry.

3001 Microprogram Control Unit.
3002 Central Processing Element.
3003 . Look-Ahead Carry Generator.
3212 Multi-Mode Latch Buffer.
3214 Interrupt Control Unit.
3216/26 Parallel Bi-directional Bus Driver.
ROMs/PROMs A complete set of bipolar ROMs and PROMs.
RAMs A Complete family of MOS and bipolar RAMs.

rhe Series 3000 Support

A comprehensive support system that assists the designer in writing
microprograms, debugging hardware and microcode, and programming
prototype and production PROMs.

CROMIS Cross microprogram assembler.

MDS-800 Microcomputer development system with TTY/CRT,
line printer, diskette, PROM programmer and high
speed paper tape reader facilities.

ICE-30 In-circuit emulation for the 3001 MCU.

ROM-SIM ROM simulation for all of Intel's Bipolar ROMs
and PROMs.

Application Central processor and disk controller designs and
Notes system timing considerations.

Customer Comprehensive 3 day course covering the component
Course family, CPU and controller designs, microprogramming

and the MDS-800, ICE-30 and ROM-SIM operation.

The Series 3000 family is designed to provide a Total System Solution: high
performance, minimum package count and total commitment to support.

Series 3000
Reference

Manual

Contents
INTRODUCTION 1-1
COMPONENT FAMILY 2-1

3001 Microprogram Control Unit 2-1
3002 Central Processing Element 2-15
3003 Look-Ahead Carry Generator 2-31
3212 Multi-Mode Latch Buffer 2-39
3214 Interrupt Control Unit 2-49
3216/3226 Parallel Bi-Directional

Bus Driver. .. 2-61

APPLICATIONS 3-1
3000 Family System Timing 3-1
Disk Controller Designed With Series 3000

Computing Elements. 3-9
Central Processor Designs Using The

Intel® Series 3000 Computing
Elements .. 3-19

ORDERING AND PACKAGING
INFORMATION 4-1

Ordering Information 4-1
Package Outlines 4-2

INTRODUCTION

A family architecture

To reduce component count as far as practical, a
multi-chip LSI microcomputer set must be designed as a
complete, compatible family of devices. The omission of
a bus or a latch or the lack of drive current can multiply
the number of miscellaneous SSI and MSI packages to a
dismaying extent-witness the reputedly LSI mini­
computers now being offered which need over a hun­
dred extra TIL packages on their processor boards to
support one or two custom LSI devices. Successful inte­
gration should .result in a minimum of extra packages,
and that includes the interrupt and the input/output
systems.

With this objective in mind, the Intel Schottky bipo­
lar LSI microcomputer chip set was developed. Its two
major components, the 3001 Microprogram Control
Unit (MCU) and the 3002 Central Processing Element
(CPE), may be combined by the digital designer with
standard bipolar LSI memory to construct high-per­
formance controller-processors (Fig.!) with a minimum
of ancillary logic.

Among the features that minimize package count and
improve performance are: the multiple independent
data and address busses that eliminate time multiplex­
ing and the need for external latches; the three-state
output buffers with high fanout that make bus drivers
unnecessary except in the largest systems, and the sepa­
rate output-enable logic that permits bidirectional

NE~T
ADDRESS
CONTROL

CLOCK
181T

MICRO
PROGRAM
MEMORY

CONTROL TO
MEMORY 110

MEMORY
AOORESS BUS

1 BIT

8 BITS

Series 3000 Family

busses to be formed simply by connecting inputs and
outputs together.

Each CPE represents a complete two-bit slice through
the data-processing section of a computer. Several CPES
may be arrayed in parallel to form a processor of any
desired word length. The MCU, which together with the
microprogram memory, controls the step-by-step oper­
ation of the processor, is itself a powerful micro­
programed state sequencer.

Enhancing the performance and capabilities of these
two components are a number of compatible computing
elements. These include a fast look-ahead carry gener­
ator, a priority interrupt unit, and a multimode latch
buffer. A complete summary of the first available mem­
bers of this family of LSI computing elements and mem­
ories is given in the table on this page.

3001
3002
3003
3212
3214
3216
3226
3601
3604
3301 A
3304A

DATA BUS
TO MEMORY

Microprogram control unit
Central processing element
Look.-ahead carry generator
Multimode latch buffer
Priority interrupt unit
Noninverting bidirectional bus driver
Inverting bidirectional bus driver
256-by-4-bit programable read-only memory
512-by-8-bit programable read-only memory
256-by-4-bit read-only memory
512-by-8-bit read-only memory .

FROM EXTERNAL
110 DEVICES

DATA IN FROM
MEMORY

1. Bipolar microcomputer. Block diagram shows how to implement a typical 16-bit controller-processor with new family of
bipolar computer elements. An array of eight central processing elements (CPEs} is governed by a microprogram control unit
(MCU} through a separate read-only memory that carries the microinstructions for the various processing elements. This ROM
may be a fast, off-the-shelf unit.

Intll Corporation ... mll no responsibility for the u. of any circuitry or microprogram other than circuitry or microprograms embodied in an Intel product. No other circuit patent licenas Ire implied.
1-1

Series 3000 Family

ePEs form a processor

Each CPE (Fig. 2) carries two bits of five independent
busses. The three input busses can be used in several
different ways. Typically, the K-bus is used for micro­
program mask or literal (constant) value input, while
the other two input busses, M and I, carry data from ex­
ternal memory or input/output devices. D-bus outputs
are connected to the CPE accumulator; A-bus outputs
are connected to the CPE memory address register. As
the CPES are wired together, all the data paths, registers,
and busses expand accordingly.

Certain data operations can be performed simply by
connecting the busses in a particular fashion. For ex­
ample, a byte exchange operation, often used in data­
communications processors, may be carried out by wir­
ing the D-bus outputs back to the I-bus inputs, ex­
changing the high-order outputs and low-order inputs.
Several other discretionary shifts and rotates can be
accomplished in this manner.

A sixth CPE bus, the seven-line microfunction bus,
controls the internal operation of the CPE by selecting
the operands and the operation to be performed. The
arithmetic function section, under control of the micro­
function bus decoder, performs over 40 Boolean and
binary functions, including 2's complement arithmetic
and logical AND, OR, NOT, and exclusive-NOR. It incre­
ments, decrements, shifts left or right, and tests for zero.

MEMORY AOORESS BUS OUTPUTS

MEMORY
ADDRESS EA
ENABLE

Unlike earlier MSI arithmetic-iogic units, which con­
tain many functions that are rarely used, the micro­
function decoder selects only useful CPE operations.
Standard carry look-ahead outputs, X and y, are gener­
ated by the CPE for use with available look-ahead de­
vices or the Intel 3003 Look-ahead Carry Generator. In­
dependent carry input, carry output, shift input, and
shift output lines are also available.

What's more, since the K-bus inputs are always
ANDed with the B-multiplexer outputs into the arith­
metic function section, a number of useful functions
that in conventional MSI ALUs would require several
cycles are generated in a single CPE microcycle. The
type of bit masking frequently done in computer control
systems can be performed with the mask supplied to the
K-bus directly from the microinstruction.

Placing the K-bus in either the aU-one or all-zero
state wiU, in most cases, select or deselect the accumula­
tor in the operation, respectively. This toggling effect of
the K-bus on the accumulator nearly doubles the CPE's
repertoire of microfunctions. For instance, with the
K-bus in the all-zero state, the data on the M-bus may
be complemented and loaded into the CPE's accumula­
tor. The same function selected with the K-bus in the
all-one state will exclusive-NOR the data on the M-bus
with the accumulator contents.

MEMORY DATA BUS

CARRY {_j __ --========~lL-l=t:==~==TTll LOOK-AHEAD x
OUTPUTS y --:-------------1 !+--+-+--+-+--j:>---CARRY INPUT

RIPPLE CARRY -- CLIO-~-----------+t"'T'"T""" _____ -r-.-J SHIFT RIGHT
OUTPUT ./ OUTPUT

SHIFT RIGHT./" CLK.....I I
INPUT vee .-J

MICRO- {;;O-i II
FUNCTION;' FUM~g~N
BUS ' I INPUTS F, DECOOER

F,

~ I
L __ _

M, Mo

~
MEMORY OATA

BUS INPUTS

~--.--­
EXTERNAL MASK BUS
BUS I NPUTS INPUTS

__.-J

2. Central processing element. This element contains all the circuits representing a two-bit-wide slice through a small com­
puter's central processor. To build a processor of word width N, all that's necessary is to connect an array of NI2 CPEs together.

1-2

Threelnnovatlonl

The power and versatility of the CPE are increased by
three rather novel techniques. The first of these is the
use of the carry lines and logic during non-arithmetic
operations for bit testing and zero detection. The carry
circuits during these operations perform a word-wide
logical OR (oRing adjacent bits) of a selected result from
the arithmetic section. The value of the OR, called the
carry OR, is passed along the carry lines to be ORed with
the result of an identical operation taking place simulta­
neously in the adjacent higher-order CPE.

Obviously, the presence of at least one bit in the logi­
cal I state will result in a true carry output from the
highest-order CPE. This output, as explained later, can
be used by the MCV to determine which microprogram
sequence to follow. With the ability to mask any desired
bit, or set of bits, via the K-bus inputs included in the
carry OR, a powerful bit-testing and zero-detection facil­
ity is realized.

The second novel CPE feature is the use of three-state
outputs on the shift right output (RO) and carry output
(CO) lines. During a right shift operation, the CO line is
placed in the high-impedance (Z) state, and the shift
data is active on the RO line. In all other CPE operations,
the RO line is placed in the Z state, and the carry data is
active on the CO line. This permits the CO and RO lines
to be tied together and sent as a single rail input to the
MCV for testing and branching. Left shift operations uti­
lize the carry lines, rather than the shift lines, to propa­
gate data.

The third novel CPE capability, called conditional
clocking, saves microcode and microcycles by reducing
the number of microinstructions required to perform a
given test. One extra bit is used in the microinstruction
to selectively control the gating of the clock pulse to the
central processor (CP) array. Momentarily freezing the
clock (Fig. 3) permits the CPE microfunction to be per­
formed, but stops the results from being clocked into
the specified registers. The carry or shift data that re­
sults from the operation is available because the arith­
metic section is CQmbinatorial, rather than sequential.
The data can be used as a jump condition by the MCV
and in this way permits a variety of nondestructive tests
to be performed on register data.

Microprogram control

The classic form of microprogram control incorpo­
rates a next-address field in each microinstruction-any

MICIIOINSTRlICTlDN WORD .

CPARRAY

3. Conditional clock. This feature permits an extra bit in
microinstruction to selectively control gating of clock pulse
to CP array. Carry or shift data thus made available permits
tests to be performed on data with fewer microinstructions.

1-3

Series 3000 Family

other approach would require some type of program
counter. To simplify its logic, the MCV (Fig. 4) uses the
classic approach and requires address control informa­
tion from each microinstruction. This information is
not, however, simply the next microprogram address.
Rather, it is a highly encoded specification of the next
address and one of a set of conditional tests on the MCV
bus inputs and regist(:rs.

The next-address logic and address control functions
of the MCV are based on a unique scheme of memory
addressing. Microprogram addresses are organized as a
two-dimensional array or matrix. Unlike in ordinary
memory, which has linearly sequenced addresses, each
microinstruction is pinpointed by its row and column
address in the matrix. The 9-bit microprogram address
specifies the row address in the upper 5 bits and the
column address in the lower 4 bits. The matrix can
therefore contain up to 32 row addresses and 16 col­
umn addresses for a total of 512 microinstruction
addresses.

The next-address logic of the MCV makes extensive
use of this addressing scheme. For example, from a par­
ticular row or column address, it is possible to jump ei­
ther unconditionally to any other location in that row or
column or conditionally to other specified locations, all
in one operation. For a given location in the matrix
there is a fixed subset of microprogram addresses that
may be selected as the next address. These are referred
to as a jump set, and each type of MCV address control
jump function has ajump set associated with it.

Incorporating a jump operation in every micro­
instruction improves performance by allowing process­
ing functions to be executed in parallel with program
branches. Reductions in microcode are also obtained
because common microprogram sequences can be
shared without the time-space penalty usually incurred
by conditional branching.

Independently controlled lIag logic in the MCV is
available for latching and controlling the value of the
carry and shift inputs to the CP array. Two lIags, called
C and Z, are used to save the state of the lIag input line.
Under microprogram control, the lIag logic simulta­
neously sets the state of the lIag output line, forcing the
line to logical 0, logical I, or the value of the C or Z lIag.

The jump decisions are made by the next-address
logic on the basis of: the MCV'S current microprogram
address; the address control function on the accumula­
tor inputs; and the data that's on the macroinstruction
(X) bus or in the program latch or in the lIags. Jump de­
cisions may also be based on the instantaneous state of
the lIag input line without loading the value in one of
the !lags. This feature eliminates many extra micro­
instructions that would be required if only the lIag lIip-
1I0p could be tested.

Microinstruction sequences are normally selected by
the operation codes (op codes) supplied by the micro­
instructions, such as control commands or user instruc­
tions in main memory. The MCV decodes these com­
mands by using their bit patterns to determine which is
to be the next microprogram address. Each decoding re­
sults in a 16-way program branch to the desired micro­
instruction sequence.

Series 3000 Family

NEXT
AODRESS
CONTROL
FUNCTION
INPUTS

ENABLE ROW AODRESS "'"

INTERRUPT STROBE ENABLE " r----

l :~:~ AC. ---f-------l I
AC,----1f-------,
AC, -If-------,
AC, ----1r-----.,
AC,----1f---.

MICROPROGRAM LO
AOORESS LOAO

MICROPROGRAM
ROW AOORESS COLUMN AOORESS

• ,.------A..----
._ MA. MA J - •. MAo

__ -.J

PR, }
PR,

PR,

PROGRAM
LATCH
OUTPUTS

FCo Fe,
~

FLAG LOGIC
CONTROL

FI Fa Fe .. Fe J PX 7 •· .•• - px. SX 3 ·· sXo

~
SECONOARY

INSTRUCTIONS

INPUT OUTPUT ~' •
\ ,I CONTROL PRIMARY
FLAG LOGIC ---" INSTRUI~TlONS

IN

4. Microprogram control unit. The MCU's two major control functions include controlling the sequence of microprograms
fetched from the microprogram memory, and keeping track of the carry inputs and outputs of the CP array by means of the
flag logic control.

Cracking the op cod ••

For instance, the Meu can be microprogramed to di­
rectly decode conventional 8-bit op codes. In these op
codes the upper 4 bits specify one of up to 16 instruction
classes or address modes, such as register, indirect, or
indexed. The remaining bits specify the particular sub­
class such as ADD, SKIP IF ZERO, and so on. If a set of op
codes is required to be in a different format, as may oc­
cur in a full emulation, an external pre-decoder, such as
ROM, can be used in series with the X-bus to reformat
the data for the Meu.

In rigorous decoding situations where speed or space
is critical, the fu)] 8-bit macroinstruction bus can be
used for a single 256-way branch. Pulling down the load
line of the Meu forces the 8 bits of data on the X-bus
(typically generated by a predecoder) directly into the
microprogram address register.

The data thUs directly determines the next micro­
program address which should be the start of the de­
sired microprogram sequence. The load line may also
be used by external logic to force the Meu, at power-up,
into the system re-initialization sequence.

1-4

From time to time, a microprocessor must examine
the state of its interrupt system to determine whether an
interrupt is pending. If one is, the processor must sus­
pend its normal execution sequence and enter an inter­
rupt sequence in the microprogram. This requirement is
handled by the Meu in a simple but elegant manner.

When the microprogram flows through address row 0
and column IS, the interrupt strobe enable line of the
Meu is raised. The interrupt system, an Intel 3214 Inter­
rupt Control Unit, responds by disabling the row ad­
dress outputs of the Meu via the enable row address
line, and by forcing the row entry address of the micro­
program interrupt sequence onto the row address bus.
The operation is normally performed just before the
macroinstruction fetch cycle, so that a macroprogram is
interrupted between, not during, macroinstructions.

The 9-bit microprogram address register and address
bus of the Meu directly address 5 12 microinstructions.
This is about twice as many as required by the typical
16-bit disk-controller or central processor.

Series 3000 Family

STANOARO fUNCTION flELOS USER·DEfINABLE fUNCTION flELOS

r~-------------------#A~------------------~\ r A \

CPARRAY
fUNCTION fUNCTION fUNCTION flELO I fUNCTIONS I I fLAG LOGIC JUMP I --:::S-;" - -T -::O:L7R:s:R-l

'--____ ---L _________ ---L. __ - ____ J.- - - -4~ __ J

I--7 BITS --_a I"I.~ 4 BITS -+1,_--7 BITS--_.I"I.>---- N BITS --..... -+1 --- n'BITS---.j

5. Microinstruction format. Only a generalized microinstruction format can be shown since allocation of bits for the mask
field and optional processor functions depends on the wishes of the designer and the tradeoffs he decides to make.

Moreover, multiple 512 microinstruction memory
planes can easily be implemented simply by adding an
extra address bit to the microinstruction each time the
number of extra planes is doubled. Incidentally, as the
number of bits in the microinstruction is increased.
speed is not reduced. The additional planes also permit
program jumps to take place in three address dimen­
sions instead of two.

Because of the tremendous design flexibility offered
by the Intel computing elements, it is impossible to de­
scribe every microinstruction format exactly. But gener­
ally speaking. the formats all derive from the one in Fig.
5. The minimum width is 18 bits: 7 bits for the address
control functions. plus 4 bits for the flag logic control:
plus 7 bits for the CPE microfunction control.

More bits can be added to the microinstruction for­
mat to provide such functions as mask field input to the
CP array. external memory control. conditional clocking.
and so on. Allocation of these bits is left to the designer
who organizes the system. He is free to trade off
memory costs. support logic. and microinstruction
cycles to meet his cOSt/performance objectives.

Microprograming technology

• Microprogram: A type of program that directly
controls the operation of each functional element in a
microprocessor.
• Mlcrolnllrucllon: A bit pattern that is stored in a
microprogram memory word and specifies the oper­
ation of the individual LSI computing elements and re­
lated subunits, such as main memory and in­
put loutput interfaces.
• Mlcrolnllrucllon lequence: The series of micro­
instructions that the microprogram control unit (MCU)
selects from the microprogram to execute a single
macroinstruction or control command. Micro­
instruction sequences can be, shared by several mac­
roinstructions.
• Macrolnllructlon: Either a conventional computer
instruction (e.g. ADD MEMORY TO REGISTER, IN­
CREMENT, and SKIP, etc.) or device controller com­
mand (e.g., SEEK, READ, etc.).

1-5

The cOlt/performance spectrum

The total flexibility of the Intel LSI computing ele­
ments is demonstrated by the broad cost/performance
spectrum of the controllers and processors that can be
constructed with them. These include:
• High-speed controllers. built with a stand-alone ROM­
MCV combination that sequences at up to 10 mega­
hertz; it can be used without any CPES as a system state
coniroller.
• Pipelined look-ahead carry controller-processors,
where the overlapped microinstruction fetch/execute
cycles and fast-carry logic reduce the l6-bit add time to
less than 125 nanoseconds.
• Ripple-carry controller processors (a l6-bit design
adds the contents of two registers in 300 nanoseconds).
• Multiprocessots. or networks of any of the above con­
trollers and processors, to provide computation, inter­
rupt superviSion. and peripheral control.

These configurations represent a range of micro­
instruction execution rates of from 3 million to 10 mil­
lion instructions per second, or up to two orders of
magnitude faster, for example, than p-channel micro­
processors. Moreover, the increases in processor per­
formance are achieved with relative simplicity. A
ripple-carry l6-bit processor uses one MCV, eight CPES.
plus microprogram memory. One extra computing ele­
ment, the 3003 Look-ahead Carry Generator, enhances

. the processor with fast carry. Increasing speed further
by pipe lining, the overlap of microinstruction fetch and
execute cycles, requires a few D-type MSI flip-flOps.

At the multiprocessor level, the microprogram
memory, MCV. or CPE devices can be shared. A l6-bit
processor. complete with bus control and microprogram
memory. requires some 20 bipolar LSI packages and
half that many small-scale ICs. In this configuration. it
replaces an equivalent MSI TIL system having more
than 200 packages.

Furthermore. systems built with this large-scale inte­
grated circuitry are much smaller and less costly and
consume less energy than equivalent designs using
lower levels of transistor-transistor-logic integration.
Even allowing for ancillary logic circuits. the new bipo­
lar computing elements cut 60% to 80% off the package
count in realizing most of today's designs made with
small- or medium-scale-integrated TIL.

intel"

The INTEL ® 3001 Microprogram Con­
trol Unit (MCU) controls the sequence in
which microinstructions are fetched
from the microprogram memory. Its
functions include the following:

Maintenance of the microprogram
address register.

Selection of the next microinstruction
based on the contents of the micro­
program address register.

Decoding and testing of data supplied
via several input busses to determine
the microinstruction execution
sequence.

Saving and testing of carry output data
from the central processor (CP) array_

Control of carry/shift input data to
the CP array.

Control of microprogram interrupts_

SCHOTTKY
BIPOLAR LSI
MICROCOMPUTER
SET

High Performance - 85 ns Cycle
Time

TTL and DTL Compatible

Fully Buffered Three-State and Open
Collector Outputs
Direct Addressing of Standard Bipolar
PROM or ROM

512 Microinstruction Addressability

Advanced Organization
9-Bit Microprogram Address Regjster
and Bus
4·Bit Program Latch
Two Flag Registers

Eleven Address Control Functions
Three Jump and Test Latch
Functions
16·way Jump and Test Instruction
Bus Function

Eight Flag Control Functions
Four Flag Input Functions
Four Flag Output Functions

40 Pin DIP

2-1

3001
MICROPROGRAM
CONTROL UNIT

PACKAGE CONFIGURATION

px. vcc
PX7 ACo
PX6 AC,
PX5 4 AC5
sX3 5 lD
SX2 6 ERA
PR 2 7 MAs
sx, 8 MA7
PR, 9

INTEl@ ~~ MA6
sXo 10 MA.
PRo 11 3001 30 MA.
FC3 12 29 MAo
FC2 13 28 MA3
FO 14 27 MA2

FCo 15 26 MA,
FC, 16 25 EN

FI 17 24 AGo
ISE 18 23 AC.

ClK 19 22 AC3
GND 20 21 AC2

3001

PIN DESCRIPTION

PIN

1-4

5,6,8,10

7,9,11

12,13,15,
16

14

17

18

19

20

21-24
37-39

25

26-29

30-34

35

36

40

NOTE:

SYMBOL

·FCO-FC3

FO

FI

ISE

CLK

GND

ACo-ACs

EN

MAo-MA3

MA,j-MAa

ERA

LD

VCC

NAME AND FUNCTION

Primary Instruction Bus Inputs
Data on the primary instruction bus is tested by the JPX function to
determine the next microprogram address_

Secondary I nstruction Bus Inputs
Data on the secondary instruction bus is synchronously loaded into the
PR-Iatch while the data on the PX-bus is being tested (JPX)_ During a
subsequent cycle, the contents of the PR-Iatch may be tested by the
JPR, JLL, or JRL functions to determine the next microprogram address_

PR-Latch Outputs
The PR-Iatch outputs are asynchronously enabled by the JCE function_
They can be used to modify microinstructions at the outputs of the
microprogram memory or to provide additional control lines_

Flag Logic Control Inputs

The flag logic control inputs are used to cross-switch the flags (C and Z)
with the flag logic input (FI) and the flag logic output (FO).

Flag Logic Output
The outputs of the flags (C and Z) are multiplexed internally to form the
common flag logic output_ The output may also be forced to a logical 0
or logical 1_

Flag Logic Input

The flag logic input is demultiplexed internally and applied to the inputs
of the flags (C and Z). Note: the flag input data is saved in the F-Iatch
when the clock input (CLK) is low_

Interrupt Strobe Enable Output

The interrupt strobe enable output goes to logical 1 when one of the JZR
functions are selected (see Functional Description, page 6). It can be used
to provide the strobe signal required by the INTEL 3214 Priority Interrupt
Control Unit or other interrupt circuits_

Clock Input

Ground

Next Address Control Function Inputs
All jump functions are selected by these control lines.

Enable Input
When in the HIGH state, the enable input enables the microprogram
address, PR-Iatch and flag outputs.

Microprogram Column Address Outputs

Microprogram Row Address Outputs

Enable Row Address Input

When in the LOW state, the enable row address input independently
disables the microprogram row address outputs. It can be used with the
INTEL 3214 Priority Interrupt Control Unit or other interrupt circuits
to facilitate the implementation of priority interrupt systems.

Microprogram Address Load Input
When in the active HIGH state, the microprogram address load input
inhibits all jump functions and synchronously loads the data on the
instruction busses into the microprogram registllr. However, it does not
inhibit the operation of the PR-Iatch or the generation of the interrupt
strobe enable.

+5 Volt Supply

111 Active HIGH unless otherwise specified_

2-2

TYPE 111

active LOW

active LOW

open collector

active LOW
three-state

active LOW

three-state

three-state

LOGICAL DESCRIPTION

The MCU performs two major control
functions. First, it controls the sequence
in which microinstructions are fetched
from the microprogram memory. For
this purpose, the MCU contains a micro­
program address register and the
associated logic for selecting the next
microinstruction address. The second
function of the MCU is the control of
the two flag flip·flops that are included
for interaction with the carry input and
carry output logic of the CP array.
The logical organization of the MCU
is shown in Figure 2.

NEXT ADDRESS LOGIC

The next address logic of the MCU pro·
vides a set of conditional and uncondi·
tional address control functions. These
address control functions are used to
implement a jump or jumpltest opera·
tion as part of every microinstruction.
That is to say, each microinstruction
typically contains a jump operation field
that specifies the address control
function, and hence, the next micro·
program address.

INTERRUPT
STROBE
ENABLE

ADDRESS
CONTROL
fUNCTION

LOAD

ISE

ACe

AC,

AC,

AC,

AC,

AC,

AC.

LD

GND-,

vee ---.I

I
I
I
I

FCo Fe,
FLAG
LOGIC

CONtROL

Figura 2. 3001 Block Diagram

F,

FLAG
INPUT

In order to minimize the pin count of
the MCU, and reduce the complexity of
the next address logic, the microprogram
address space is organized as a two
dimensional array or matrix. Each
microprogram address corresponds to
a unit of the matrix at a particular
row and column location. Thus, the 9-
bit microprogram address is treated as
specifying not one, but two addresses -
the row address in the upper five bits
and the column address in the lower
four bits. The address matrix can there­
fore contain, at most, 32 row addresses
and 16 column addresses for a total of
512 microinstructions.

The next address logic of the MCU
makes extensive use of this two com­
ponent addressing scheme. For example,
from a particular row or column
address, it is possible to jump uncon·
ditionally in one operation anywhere in
that row or column. It is not possible,
however, to jump anywhere in the
address matrix. In fact, for a given loca­
tion in the matrix, there is a fixed sub·
set of microprogram addresses that may
be selected as the next address. These

ENABLE
ROW

ADDRESS
MICROPROGRAM MEMORY

ADDRESS

3001

possible jump target addresses are referred
to as a jump set. Each type of MCU
address control (jump) function has a
jump set associated with it. Appendix
C illustrates the jump set for each
function.

FLAG LOGIC

The flag logic of the MCU provides a
set of functions for saving the current
value of the carry output of the CP
array and for controlling the value of
the carry input to the CP array. These
two distinct flag control functions are
called flag input functions and flag
output functions.

The flag logic is comprised of two
flip·flops, designated the C-flag and the
Z-flag, along with a simple latch, called
the F-Iatch, that indicates the current
state of the carry output line of the
CP array. The flag logic is used in con­
junction with the carry and shift logic
of the CP array to implement a variety
of shift/rotate and arithmetic functions.

ERA MAo - - - MAo -- MAo

FO FC2 FC3 PX, - - PX4

FLAG FLAG PRIMARY
OUTPUT LOGIC INSTRUCTION

CONTROL BUS

2-3

EN MCUOUTPUT
ENABLE

~l-l--f~::~~+--PR2 MOGRAM
PR, LATCH

'-___ l""T"-PRO OUTPUTS

I
I
I

---~
SX3 - - SXo

SECONDARY
INSTRUCTION

aus

3001

FUNCTIONAL DESCRIPTION

ADDRESS CONTROL FUNCTIONS

The address control functions of the
MCU are selected by the seven input
lines designated ACO-ACS. On the
rising edge of the clock, the 9-bit micro­
program address generated by the next
address logic is loaded into the micro­
program address register. The next
microprogram address is delivered to the
microprogram memory via the nine
output lines designated MAo-MAs. The
microprogram address outputs are or­
ganized into row and column addresses
as:

MAS MA7 MAs MA5 MA4

row address

MA3 MA2 MA, MAo

column address

Each address control function is speci­
fied by a unique encoding of the data on
the function input lines. From three to
five bits of the data specify the par­
ticular function while the remaining bits
are used to select part of either the row
or column address desired. Function
code formats are given in Appendix A,
"Address Control Function Summary."

The following is a detailed description
of each of the eleven address control
functions. The symbols shown below
are used throughout the description to
specify row and column addresses.

Symbol

coin

Meaning

5-bit next row address
where n is the decimal row
address.

4-bit next column address
where n is the decimal
column address.

UNCONDITIONAL ADDRESS CON­
TROL (JUMP) FUNCTIONS

The jump functions use the current
microprogram address (i.e., the contents
of the microprogram address register
prior to the rising edge of the clock) and
several bits from the address control in­
puts to generate the next microprogram
address.

Mnemonic

JCC

Function Description

Jump in current column.
ACo-AC4 are used to
se I ect 1 of 32 row ad­
dresses in the current
column, specified by

MAO-MA3, as the next
address

JZR Jump to zero row.
ACO-AC3 are used to
select 1 of 16 column
addresses in rowO, as the
next address.

JCR Jump in current row.
ACO-AC3 are used to
select 1 of 16 addresses
in the current row, speci­
fied by MA4-MAS, as
the next address.

JCE Jump in current column/
row group and enable
PR-Iatch outputs. ACo­
AC2 are used to select 1
of 8 row addresses in the
current row group, speci­
fied by MA7-MAs, as
the next row address. The
current column is speci­
fied by MAo-MA3. The
PR-Iatch outputs are
asynchronously enabled.

FLAG CONDITIONAL ADDRESS
CONTROL (JUMP/TEST)
FUNCTIONS

The jump/test flag functions use the
current microprogram address, the con­
tents of the selected flag or latch, and
several bits from the address control
function to generate the next micro­
program address.

Mnemonic

JFL

JCF

Function Description

Jump/test F-Latch.
ACO-AC3 are used to
select 1 of 16 row ad­
dresses in the current
row group, specified by
MAs, as the next row
address. If the current
column group, specified
by MA3, is colo-coI7,
the F-Iatch is used to
select col2 or col3 as the
next column address. If
MA3 specifies column
group coIS-col,5, the
F-Iatch is used to select
col1O or col" as the
next column address.

Jump/test C-flag.
ACO-AC2 are used to
select 1 of 8 row ad­
dresses in the current

2-4

row group, specified by
MA7 and MAs, as the
next row address. If the
current column group
specified by MA3 is
coIO-coI7, the C-flag is
used to select col2 or
col3 as the next column
address. If MA3 specifies
column group cols-col,5,
the C-flag is used to select
col,O or col" as the next
column address.

JZF Jump/test Z-flag. Identical
to the JCF function de­
scribed above, except
that the Z-flag, rather
than the C-flag, is used to
select the next column
address.

PX-BUS AND PR-LATCH CONDI­
TIONAL ADDRESS CONTROL
(JUMPITEST) FUNCTIONS

The PX-bus jump/test function uses the
data on the primary instruction bus
(PX4-PX71. the current mircoprogram
address, and several selection bits from
the address control function to generate
the next microprogram address. The
PR-Iatch jump/test functions use the
data held in the PR-Iatch, the current
microprogram address, and several selec­
tion bits from the address control
function to generate the next micro­
program address.

Mnemonic

JPR

Mnemonic

JLL

Function Description

Jump/test PR-Iatch.
ACO-AC2 are used to
select 1 of 8 row ad­
dresses in the current
row group, specified by
MA7 and MAS, as the
next row address. The
four PR-Iatch bits are
used to select 1 of 16
possible column ad­
dresses as the next
column address.

Function Description

Jump/test leftmost PR­
latch bits. ACO-AC2 are
used to select 1 of 8 row
addresses in the current
row group, specified by
MA7 and MAS, as the
next row address. PR2
and PR3 are used to

FUNCTIONAL DESCRIPTION (con't)

JRL

JPX

select 1 of 4 possible
column addresses in col4
through col7 as the next
column address.

Jump/test rightmost P R·
latch bits. ACo and ACl
are used to select 1 of 4
high·order row addresses
in the current row group,
specified by MA7 and
MAS, as the next row
address. PRo and PRl are
used to select 1 of 4 pos­
sible column addresses in
col12 through coilS as the
next column address.

Jump/test PX·bus and
load PR-Iatch. ACo and
ACl are used to select 1
of 4 row addresses in the
current row group, speci­
fied by MAs-MAS' as the
next row address. PX4-
PX7 are used to select 1
of 16 possible column
addresses as the next
column address. SXO-

. SX3 data is locked in the
PR-Iatch at the rising
edge of the clock.

FLAG CONTROL FUNCTIONS

The flag control functions of the MCU
are selected .by the four input lines
designated FCO-FC3. Function code
formats are given in Appendix B, "Flag
Control Function Summary."

The following is a detailed description
of each of the eight flag control
functions.

FLAG INPUT CONTROL FUNCTIONS

The flag input control functions select
which flag or flags will be set to the cur­
rent value of the flag input (FI) line.
Data on FI is stored in the F-Iatch when
the clock is low. The content of the F­
latch is loaded into the C and/or Z flag
on the rising edge of the clock.

Mnemonic

SCZ

STZ

STC

Function Description

Set C-flag and Z-flag to
FI. The C-flag and the Z­
flag are both set to the
value of FI.

Set Z-flag to F I. The Z­
flag is set to the value of
FI. The C-flag is
unaffected.

Set C-flag to F I. The C­
flag is set to the value of
FI. The Z flag is
unaffected.

HCZ Hold C-flag and Z-flag.
The values in the C-flag
and Z-flag are unaffected.

FLAG OUTPUT CONTROL
FUNCTIONS

The flag output control functions
select the value to which the flag out­
put (FO) line will be forced.

Mnemonic

FFO

FFC

FFZ

FF1

Function Description

Force FO to o. FO is
forced to the value of
10gicalO.

Force FO to C. FO is
forced to the value of
the C-flag.

Force FO to Z. FO is
forced to the value of
the Z-flag.

Force FO to 1. FO is
forced to the value of
logical 1.

2-5

LOAD AND INTERRUPT
STROBE FUNCTIONS

3001

The load function of the MCU is con­
trolled by the input line designated LD.
If the LD line is active HIGH at the
rising edge of the clock, the data on
the primary and secondary instruction
busses, PX4-PX7 and SXO-SX3, is
loaded ·into the microprogram address
register. PX4-PX7 are loaded into
MAo-MA3 and SXO-SX3 are loaded
into M~-MA7. The high-order bit of
the microprogram address register MAs
is set to a logical O. The bits from the
primary instruction bus select 1 of 16
possible column addresses. Likewise,
the bits from the secondary instruction
bus select 1 of the first 16 row addresses.

The interrupt strobe enable of the MCU
is available on the output line designated
ISE. The line is placed in the active high
state whenever a JZR to COl15 is selected
as the address control function. Cus­
tomarily, the start of a macroinstruction
fetch sequence is situated at rowo and
COl15 so that the INTEL 3214 Priority
Interrupt Control Unit may be enabled
at the beginning of the fetch/execute
cycle. The priority interrupt control
unit may respond to the interrupt by
pulling the enable row address (ERA)
input line down to override the selected
next row address from the MCU. Then
by gating an alternative next row address
on to the row address lines of the micro­
program memory, the microprogram
may be forced to enter an interrupt
handling routine. The alternative row
address placed on the microprogram
memory address lines does not alter
the contents of the microprogram
address register. Therefore, subsequent
jump functions will utilize the row
address in the register, and not the
alternative row address, to determine
the next microprogram address.

Note, the load function always overrides
the address control function on ACo­
ACe. I t does not, however, override the
latch enable or load sub-functions of the
JCE or JPX instruction, respectively. In
addition, it does not inhibit the interrupt
strobe enable or any of the flag control
functions.

3001

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias .. , O°C to· 70°C

Storage Temperature .. -65°C to +160°C

All Output and Supply Voltages ... ;).5V to +7V

All Input Voltages .. -1.0V to +5.5V

Output Currents .. 100 mA

·COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanont damage to tho device. Thi. i ••• tro •• rating only
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

TA = O°C to 70°C Vec = 5.0V ±5%

SYMBOL PARAMETER MIN TYP(1) MAX UNIT CONDITIONS

Vc Input Clamp Voltage (All --o.B -1.0 V Ic =-5.mA
Input Pins)

IF Input Load Current:
CLK Input --0.075 --0.75 mA VF =0.45V
EN Input --0.05 --0.50 mA
All Other Inputs --0.025 --0.25 mA

IR Input Leakage Current:
ClK 120 j.lA VR = 5.25V
EN Input 80 j.lA
All Other Inputs 40 j.lA

VIL Input low Voltage O.B V Vcc = 5.0V

VIH Input High Voltage 2.0 V

Icc Power Supply Current (21 170 240 mA

VOL Output low Voltage 0.35 0.45 V 10L = 10mA
(All Output Pins)

VOH Output High Voltage 2.4 3.0 V 10H =-1 mA
(MAo-MAs. ISE. FO)

los Output Short Circuit Current -15 -28 --60 mA Vec = 5.0V
(MAo-MAs. ISE. FO)

10 (of!) Off-State O~tPut Current:
MAo-M.AS. FO -100 j.lA Vo = 0.45V
MAo-MAs. F.O. PRo-PR2 100 j.lA Vo = 5.25V

NOTES:
(1) Typical values are for T A = 25°C and nominal supply voltage.
(2) EN input grounded. all other inputs and outputs open.

2-6

3001

A.C. CHARACTERISTICS AND WAVEFORMS TA .. o·c to 70·C. vcc = 5.0V ±5%

SYMBOL PARAMETER MIN Typl'l MAX UNIT

tCY Cycle Time (21 85 60 ns

twp Clock Pulse Width 30 20 ns

Control and Data Input Set·Up Times:
tSF lD. ACo-ACS 10 0 ns
tSK FCO.FC, 0 ns
tsx SXO-SX3. PX4-PX7 35 25 ns
tSI FI 15 5 ns

Control and Data Input Hold Times:
tHF lD. ACo-ACs 5 0 ns
tHK FCo. FC, 0 ns
tHx SXO-SX3. PX4-PX7 20 5 ns
tHI FI 20 8 ns

tco Propagation Delay from Clock Input (ClKI to Outputs 10 30 45 ns
(MAo-MAs. Fa)

tKO Propagation Delay from Control Inputs FC2 and FC3 to Flag 16 30 ns
Out (Fa)

tFO Propagation Delay from Control Inputs ACo-ACs to latch 26 40 ns
Outputs (PRo-PR2)

tEO Propagation Delay from Enable Inputs EN and ERA to Outputs 21 32 ns
(MAo-MAs. Fa. PRo-PR2)

tFI Propagation Delay from Control Inputs ACo-ACS to Interrupt 24 40 ns
Strobe Enable Output (lSE)

NOTE:
I1l Typical values are for T A • 25°C and nominal supply voltage.
121 tCY = twp + tSF + tco

TEST CONDITIONS: TEST lOAD CIRCUIT:

Input pulse amplitude of 2.5 volts.
vee

Input rise and fall times of 5 ns between 1 volt and 2 volts.
Output load of 10 mA and 50 pF. soon
Speed measurements are taken at the 1.5 volt level.

OUT

50pF 1 Kfl

-=-

CAPACITANCE(21 T A .. 25·C

SYMBOL PARAMETER MIN TYP MAX UNIT

CIN Input Capacitance:
ClK.EN 11 16 pF
All Other Inputs 5 10 pF

CoUT Output Capacitance 6 12 pF

NOTE:
(21 This parameter is periodically sampled and is not 100% tested. Condition 01 measurement is 1·1 MHz. VBIAS· 2.SV. Vcc = SV and

TA=2SoC.

2·7

3001

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias .. -55°C to +125°C

Storage Temperature .. -i55°C to +160°C

All Output and Supply Voltages ... -il.5V to +7V

All Input Voltages .. -1.0V to +5.5V

Output Currents .. 100 mA

'COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operational sactions of this specification is not
implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

SYMBOL PARAMETER MIN

Vc Input Clamp Voltage (All
Input Pins)

IF Input load Current:
ClK Input
EN Input
All Other Inputs

IR Input Leakage Current:
CLK
EN Input
All Other Inputs

VIL Input Low Voltage

VIH Input High Voltage 2.0

Icc Power Supply Current (2)

VOL Output Low Voltage
(All Output Pins)

VOH Output High Voltage 2.4
(MAo-MA8. ISE. FO)

los Output Short Circuit Current -15
(MAo-MAs. ISE. FO)

10 (off) Off·State Output Current:
MAO-MA8. FO
MAo-MA8. F.O. PRo-PR2

NOTES:
(1) Typical values are for T A = 2SoC and nominal supply voltage.
(2) EN input grounded. all other inputs and outputs open.

Typ(1) MAX

-0.8 -1.2

-75 -750
-50 -500
-25 -250

120
80
40

0.8

170 250

0.35 0.45

3.0

-28 -60

-100
100

2-8

UNIT

V

IJ.A
IJ.A
IJ.A

IJ.A
IJ.A
IJ.A

V

V

mA

V

V

mA

IJ.A
IJ.A

CONDITIONS

IC =-5mA

VF = 0.45V

VR = 5.5V

Vcc = 5.0V

10L = 10 mA

10H =-1 mA

Vcc = 5.0V

Va = 0.45V
Va = 5.5V

A.C. CHARACTERISTICS AND WAVEFORMS

SYMBOL

tCY

twp

tSF
tSK

tsx
tsl

NOTE:

Cycle Time (2)

Clock Pulse Width

PARAMETER

Control and Data Input Set-Up Times:
lD. ACo-AC6
FCo. FC,
SXO-SX3. PXot-PX7
FI

Control and Data Input Hold Times:
lD. ACO-AC6
FCo. FC,
SXO-SX3. PX4-PX7
FI

Propagation Delay from Clock Input (ClK) to Outputs
(MAo-MAs. FO)

Propagation Delay from Control Inputs FC2 and FC3 to Flag
Out (FO)

Propagation Delay from Control Inputs ACO-AC6 to latch
Outputs (PRo-PR2)

Propagation Delay from Enable Inputs EN and ERA to Outputs
(MAo-MAs. FO. PRo-PR2)

Propagation Delay from Control Inputs ACO-AC6 to Interrupt
Strobe Enable Output (lSE)

II) Typical.alues are lor TA = 25°C and nominal supply voltage.

121 tCY = twp + tSF + tco

TEST CONDITIONS:

Input pulse amplitude of 2.5 volts.
Input rise and fall times of 5 ns between 1 volt and 2 volts.
Output load of 10 mA and 50 pF.
Speed measurements are taken at the 1.5 volt level.

CAPACITANCE(2) TA = 25°C

SYMBOL PARAMETER

CIN Input Capacitance:
ClK.EN
All Other Inputs

COUT Output Capacitance

NOTE:

4f'L/lr~ 3001

MIN Typ(1)

95 60

40 20

10 0
0
35 25
15 5

5 0
0
25 5
22 8

10 30

16

26

21

24

TEST lOAD CIRCUIT:

Vee

500n

OUTo-...... --i

50pF 1 Kfl

MIN TYP

11
5

6

MAX

45

50

50

35

40

MAX

16
10

12

UNIT

ns

ns

ns
ns
ns
ns

ns
ns
ns
ns

ns

ns

ns

ns

ns

UNIT

pF
pF

pF

121 This parameter is periodically sampled and is not 100% tested. Condition 01 measurement is I = 1 MHz. VBIAS = 2.5V. Vcc = 5V and
TA = 25°C.

2-9

3001

3001 WAVEFORMS

CLK
CLOCK INPUT

EN. ERA
ENABLE INPUTS

MAO·MAS
CONTROL MEMORY
ADDRESS OUTPUTS

ACO-AC6. LD
ADDRESS CONTROL

INPUTS

PRO-PR2
"PR" LATCH OUTPUTS

FCO-FC3
FLAG CONTROL

INPUTS

FI
FLAG INPUT

FO
FLAG OUTPUT

ISE
INTERRUPT STROBE

ENABLE OUTPUT

SXO-PX7
INSTRUCTION

BUS INPUTS

~
\ J

/ \ 1/
\ /
~IW~

ICY

V
1\

E-tco -----l>

---l lEO f-
\1
11\

E-----IHF ISF-----)

\f
/\

'f---IEO- -----l>

----'l IFO E--

V
1\

iE-IHK tsK

\V
11\

IHI lSI E--

\1
1\

iE--IKO
E--IEO-

E-tco

V
"-

E--IFI---J

\/
\

IHX ISX)1

2-10

TYPICAL AC AND DC CHARACTERISTICS

CLOCK PULSE WIDTH Vs. VCC AND TEMPERATURE

40

126'C

0 26'C

0
4.6 4.75 5.0 6.26 &.60

Vee

CLOCK TO mA OUTPUTS VS. LOAD CAPACITANCE

40

30 -56°C

12&°C
26' --

0

0
4.6 4.7& 5.0 5.25 5.5 5.75

Vee

CLOCK TO MA OUTPUTS VS. LOAD CAPACITANCE

60

we 1 MAo ---~ r- Vee - 5.0V -
~ TA • WC ----.--

~

0

0
60 100 160 300 260 300 350

LOAD CAPACITANCE (pFI

2-11

1
E
a:

3001

ICC VS. TEMPERATURE

190

Vee·5.0V

V -~
~

"'

190

170

160
-56 C O'C 26"C 70 C 126"C

TEMPERATURE (OC)

OUTPUT CURRENT VS. OUTPUT LOW VOLTAGE

6O.-------,--------r------~------_,

Vee - I.OV

6Or--------r--------r--------r--~~~

a .r--------r------~~--~~~------_;

~
3Or-------+-----~~~----_t------~

25'C
70'C

126'C

°0~----~~~----~0.~4------~0.8~----~0~

OUTPUT VOLTAGE (VOLTSI

OUTPUT CURRENT VS. OUTPUT HIGH VOLTAGE

Vee -~.ov -6&'C

~ 1"26'C O'C

~ r"-?O'C
26"c

5 /
~ ".

5 IJ
~r'

-35 ~
-40 o 1.0 2.0 3.0 4.0

OUTPUT VOLTAGE (VOLTS)

5.0

3001

APPENDIX A ADDRESS CONTROL FUNCTION SUMMARY

FUNCTION NEXT ROW NEXT COL
MNEMONIC DESCRIPTION

AC6 S 4 3 2 0 MAS 7 6 S 4 MA3 2 0

JCC Jump in current column 0 0 d4 d3 d2 d, do d4 d3 d2 d, do m3 m2 m, mo

JZR Jump to zero row 0 0 d3 d2 d, do 0 0 0 0 0 d3 d2 d, dO

JCR Jump in current row 0 d3 d2 d, dO . ma m7 m6 mS m4 d3 d2 d, dO

JCE Jump in column/enable 0 d2 d, dO ma m7 d2 d, dO m3 m2 m, mo

JFL Jump/test F-Iatch 0 0 d3 d2 d, do ma d3 d2 d, do m3 0

JCF Jump/test C-flag 0 0 d2 d, dO ma m7 d2 d, dO m3 0 c

JZF Jump/test Z-flag 0 d2 d, do ma m7 d2 d, do m3 0

JPR Jump/test PR-Iatches 0 0 d2 d, do ma m7 d2 d, do P3 P2 p, Po

JLL Jump/test left PR bits 0 d2 d, do ma m7 d2 d, do 0 P3 P2

JRL Jump/test right PR bits d, dO ma m7 1 d, dO p, Po

JPX Jump/test PX-bus 0 d, do ma m7 mS d, do X7 Xs Xs x4

SYMBOL MEANING

dn Data on address control line n

mn Data in microprogram address register bit n

Pn Data in PR-Iatch bit n

xn Data on PX-bus line n (active LOW)

f. c. z Contents of F-Iatch. C-flag. or Z-flag. respectively

APPENDIX B FLAG CONTROL FUNCTION SUMMARY

TYPE MNEMONIC DESCRIPTION FC, 0

SCZ Set C-flag and Z -flag to f 0 0

Flag STZ Set Z-flag to f 0

Input STC Set C-flag to f 0

HCZ Hold C-flag and Z-flag

TYPE MNEMONIC DESCRIPTION FC3 2

FFO Force Fa to 0 0 0

Flag FFC Force Fa to C-flag 0 1
Output FFZ Force Fa to Z-flag 0

FFl Force Fa to 1

LOAD
NEXT ROW NEXT COL FUNCTION

LD MAs 7 s S 4 MA3 2 0

0 see Appendix A see Appendix A

0 x3 x2 x, Xo x7 Xs Xs X4

SYMBOL MEANING

Contents of the F-Iatch

xn Data on PX- or SX-bus line n (active LOW)

2-'2

APPENDIX C JUMP SET DIAGRAMS

The following ten diagrams illustrate
the jump set for each of the eleven
jump and jump/test functions of the
MCU. Location 341, indicated by the
black square, represents one current
row (row21) and current column (COI5)
address. The grey boxes ind icate the
microprogram locations that may be
selected by the particular function as
the next address.

JCR
Jump in Current Row

JPR
Jump/Tlit PR·Latch

current -
row
group
Ma7

10

currant
.ow
group
Ma7

10

JCE
Jump Column/En

current column

JLL
Jump/Tlit Left Latch

2-13

JCC
Jump in Current Column

row31---i>

t t
colo current

column

JFL
Jump/Tlit F·Lau:h

JRL
Jump/Tlit Right Latch

current
row
group
Ma7

10

:,rentL
group

M,~tJ

3001

JZR
Jump to Zero Row

JCF, JZF
Jump/Tlit C-FI8g
Jump/Test Z-FI8g

JPX
Jump/Tlit PX-Bul

3001

TYPICAL CONAGURATIONS

r'S-,--~'~R7A~M~A~'~""~"'~""-"'~"'~""~M~A-0--------"N~

A,
ClK

1

~8

360.
PROM

3604
PROM

Non-Pipelined Configuration with
512 Microinstruction Addressability

sv

IIIII

3604
PROM

cs,··cs. AO ·················A8

AC.

°5 0 ,

3604
PROM

cs, ··CS4 Ao ············--·A8

.11

AS" ···········AOCS4-·CS' A8 ········ __ ······-AOCS4--CS'

360.
PROM

08 ··········· .. ··0,

3604
PROM

08 ···············0,

TO 3002 CP ARRAY

360'
PROM

CS,.-CS4 AO'" . ···-A8

II
-.ll

A8 ·················.4.0 CS4"CS,

380.
PROM

Os ····· .. ·······0,

Os ···.0,

'"'"' PROM

CS,··CS. AO ················-Aa

II
A8·················AOCS4··CS'

360'
PROM

Oa ·············0,

IS'

AC,

lllI_~_~ACO AC, AC3 AC, ACs AC.

2D 2Q~
3D 30-

t
sv

MAa··· MAo

3001
MCU

'NW

TO MEMORY DATA BUS

L=::j:=!==/ TO 3002 CPARRAV U§~sv~~~~~~ r;:-:JI
ig ~~-======:::::::...J

NOTE; Two O-Iype flip-flops of the '5174 pipeline register ate used as the
microprogram address reglst.r 81(1I1'1S1on.

Pipelined Configuration with
2048 Microinstruction Addressability

2-14

eLK CLK

5V 0-- CLR

~

PIPELINE
REGISTER

The I NTE L® 3002 Central Processing
Element contains all of the circuits that
represent a 2·bit wide slice through the
data processing section of a digital com·
puter. To construct a complete central
processor for a given word width N, it
is simply necessary to connect an array
of N/2 CPE's together. When wired
together in such an array, a set of CPE's
provide the following capabilities:

2's complement arithmetic

Logical AND, OR, NOT and
exclusive·OR

Incrementing and decrementing

Shifting left or right

Bit testing and zero detection

Carry look·ahead generation

Multiple data and address busses

SCHOTTKY
BIPOLAR LSI
MICROCOMPUTER
SET

High Performance - 100 ns Cycle Time

TTL and DTL Compatible

N·Bit Word Expandable Multi·Bus
Organization

3 I nput Data Busses
2 Three·State Fully Buffered Output
Data Busses

11 General Purpose Registers

Full Function Accumulator

Independent Memory Address Register

Cascade Outputs for Full Carry
Look·Ahead

Versatile Functional Capability
8 Function Groups
Over 40 Useful Functions
Zero Detect and Bit Test

Single Clock

28 Pin DIP

2·15

3002
CENTRAL
PROCESSING
ELEMENT

PACKAGE CONFIGURATION

10 vee
I, F2

Ko 3 26 F,

K, 4 25 Fo

X 5 24 F3
y 6 ED

co 7 INTEL@ Mo

RO 8 3002 M,

LI 9 0,

CI 10 19 Do

EA 11 18 CLK

A, 12 17 F.

Ao 13 16 Fs

GND 14 15 F6

3002

PIN DESCRIPTION

PIN SYMBOL

1,2

3,4

5,6 X,Y

7 CO

B RO

9 LI

10 CI

11 EA

12-13 Ao-A1

14 GNO

15-17, Fo-F6
24-27,

18 ClK

19-20 00-0 1

21-22 Mo-M1

23 ED

28 Vee

NOTE:

NAME AND FUNCTION

External Bus Inputs

The external bus inputs provide a separate input port for external input
devices.

Mask Bus Inputs

The mask bus inputs provide a separate input port for the microprogram
memory, to allow mask or constant entry.

Standard Carry Look-Ahead Cascade Outputs

The cascade outputs allow high speed arithmetic operations to be
performed when they are used in conjunction with the INTEL 3003
Look-Ahead Carry Generator.

Ripple Carry Output

The ripple carry output is only disabled during shift right operations.

Sh ift Right Output

The shift right output is only enabled during shift right operations.

Shift Right Input

Carry Input

Memory Address Enable Input

When in the LOW state, the memory address enable input enables the
memory address outputs (AO-A1)'

Memory Address Bus Outputs

The memory address bus outputs are the buffered outputs of the
memory address register (MAR).

Ground

Micro-Function Bus Inputs

The micro-function bus inputs control ALU function and register
selection.

Clock Input

Memory Data Bus Outputs

The memory data bus outputs are the buffered outputs of the full
function accumulator register (AC).

Memory Data Bus Inputs

The memory data bus inputs provide a separate input port for
memory data.

Memory Data Enable Input

When in the LOW state, the memory data enable input enables the
memory data outputs (00-01)

+5 Volt Supply

1. Active HIGH, unless otherwise specified.

2-16

Active lOW

Active LOW

Active LOW
Th ree-state

Active LOW
Three-state

Active LOW

Active LOW

Active LOW

Active LOW
Th ree-state

Active LOW
Three-state

Active LOW

Active LOW

LOGICAL DESCRIPTION

The CPE provides the arithmetic, logic
and register functions of a 2·bit wide
slice through a microprogrammed central
processor. Data from external sources
such as main memory, is brought into
the CPE on one of the three separate in·
put busses. Data being sent out of the
CPE to external devices is carried on
either of the two output busses. Within
the CPE, data is stored in one of eleven
scratch pad registers or in the accumula·
tor. Data from the input busses, the
registers, or the accumulator is available
to the arithmetic/logic section (ALS)
under the control of two internal multi·
plexers. Additional inputs and outputs
are included for carry propagation,
shifting, and micro·function selection.
The complete logical organization of the
CPE is shown below.

MICRO·FUNCTION BUS AND
DECODER

The seven micro·function bus input
lines of the CPE, designated Fa-Fa,
are decoded internally to select the
ALS function, generate the scratch pad
address, and control the A and B
multiplexers.

M·BUS AND I·BUS INPUTS

The M·bus inputs are arranged to bring
data from an external main memory
into the CPE. Data on the M·bus is
multiplexed internally for input to
the ALS.

The I·bus inputs are arranged to bring
data from an external I/O system into
the CPE. Data on the I·bus is also mul·
tiplexed internally, although indepen·
dently of the M·bus, for input to the
ALS Separation of the two busses per·
mits a relatively lightly loaded memory
bus even though a large number of I/O
devices are connected to the I·bus.
Alternatively, the I·bus may be wired
to perform a multiple bit shift (e.g., a
byte exchange) by connecting it to one
of the output busses. In this case, I/O
device data is gated externally onto the
M·bus.

SCRATCH PAD

The scratchpad contains eleven registers
designated Ra through Rg and T. The
output of the scratch pad is multiplexed
interl'lally for input to ALS. The ALS
output is returned for input into the
scratch pad.

ACCUMULATOR AND D·BUS

An independent register called the
accumulator (AC) is available for storing
the result of an ALS operation. The
output of the accumulator is multi·
plexed internally for input back to the

ALS and is also available via a three·
state output buffer on the D·bus
outputs. Conventional usage of the
D·bus is for data being sent to the
external main memory or to external
I/O devices.

A AND B MULTIPLEXERS

The A and B multiplexers select the two
inputs to the ALS specified on the
micro·function bus. Inputs to the A·
multiplexer include the M·bus, the
scratchpad, and the accumulator. The
B·multiplexer selects either the I·bus,
the accumulator, or the K·bus. The
selected B·multiplexer input is always.
logically ANDed with the data on the
K·bus (see below) to provide a flexible
masking and bit testing capability.

ALS AND K-BUS

The A LS is capable of a variety of
arithmetic and logic operations, in·
cluding 2's complement addition, in·
crementing, and decrementing, plus
logical AND, inclusive·OR, exclusive·
NOR, and logical complement. The
result of an ALS operation may be
stored in the accumulator or one of the
scratchpad registers. Separate left input
and right output lines, designated LI
and RO, are available for use in right
shift operations. Carry input and carry
output lines, designated CI and CO are
provided for normal ripple carry propaga·

ENABLE EA
ADDRESS

MAIN MEMORY
ADDRESS

A, ..

LOOK AHEAD {X
CARRY OUTPUTS Y -+------l

CARRY OUT co -<!"------l
LEFT IN II ...0.-----+1

3002

tion. CO and RO data are brought out via
two alternately enabled tri·state buffers.
In addition, standard look ahead carry
outputs, designated X and Y, are available
for full carry look ahead across any word
length.

The ability of the K·bus to mask inputs
to the ALS greatly increases the versa·
tility of the CPE. During non·arithmetic
operations in which carry propagation
has no meaning, the carry circuits are
used to perform a word·wise inclusive·
OR of the bits, masked by the K·bus,
from the register or bus selected by the
function decoder. Thus, the CPE pro·
vides a flexible bit testing capability.
The K·bus is also used during arithmetic
operations to mask portions of the field
being operated upon. An additional­
function of the K-bus is that of supply·
ing constants to the CPE from the
microprogram.

MEMORY ADDRESS REGISTER
ANDA·BUS

A separate ALS output is also avail·
able to the memory address register
(MAR) and to the A·bus via a three·
state output buffer. Conventional usage
of the MAR and A·bus is for sending ad·
dresses to an external main memory.
The MAR and A·bus may also be used
to select an external device when
executing I/O operations.

D,

ARITHMETIC/LOGIC
SECTION

D,

ED ENABLE
DATA

CI CARRY IN

AD RIGHT OUT

CLX -I L,---.---.---...--J

F,

F,

F.

MICRO·FUNCTION F3
BUS

F,

F,

F,

Figure 2.3002 Block Diagram

2·17

M, Mo I, 10

MEMORY EXT
DATA IN DEVICE IN

K, Ko

MASK
IN

3002

FUNCTIONAL DESCRIPTION

During each micro-cycle, a micro­
function is applied to F-bus inputs of
the CPE. The micro-function is decoded,
the operands are selected by the multi­
plexers, and the specified operation is
performed by ALS. If a negative going
clock edge is applied, the result of the
ALS operation is either deposited in
the accumulator or written into the
selected scratch pad register. In addition,
certain operations permit related ad·
dress data to be deposited in the MAR.
A new micro·function should only be
applied following the rising edge of the
clock.

By externally gating the clock input to
CPE, referred to as conditional clocking,
the clock pulse may be selectively
omitted during a micro-cycle. Since the
carry, shift, and look· ahead circuits are
not clocked, their outputs may be used
to perform a variety of non-destructive
tests on data in the accumulator or in
the scratch pad. No register contents are
modified by the operation due to the
absence of the clock pulse.

The micro-function to be performed is
determined from the function group
(F·Group) and register group (R-Group)
selected by the data on the F-bus. The
F-Group is specified by the upper three
bits of data, F4-FS' The R-Group is
specified by the lower four bits of data,
Fo-F3. R-Group I contains Ro through
Rg, T, and AC and is denoted by the
symbol Rn. R-Group II and R-Group III
contain only T and AC. F-Group and
R-Group formats are summarized in
Appendix A.

The following is a detailed explanation
of each of the CPE micro-functions.
A general functional description of each
operation is given followed by two
additional descriptions which explain
the result of the micro·function with
both K·bus inputs at logical 0 or both at
logical!. In most cases, the effect of
placing the K·bus in the all·one or the
all· zero state is to either select or de·
select the accumulator in the operation,
respectively. A micro-function
mnemonic is included with each descrip·
tion for reference purposes and to assist
in the design of micro'assembly
languages. The micro·functions are sum­
marized in Appendix A. The effective
micro-functions for the all·zero and the
all·one K·bus states are summarized in
Appendix B.

F-GROUPO R-GROUP I

Logically AND the contents of AC with
the data on the K-bus. Add the result to
the contents of Rn and the value of the
carry input (CI). Deposit the sum in AC
and Rn.
ILR K-BUS = 00
Conditionally increment Rn and load
the result in AC. Used to load AC from
Rn or to increment Rn and load a copy
of the result in AC.
ALR K-BUS= 11
Add AC and CI to Rn and load the reo
suit in AC. Used to add AC to a register.
If Rn is AC, then AC is shifted left one
bit position.

F-GROUPO R-GROUP II
Logically AND the contents of AC with
the data on the K-bus. Add the result to
CI and the data on the M-bus. Deposit
the sum in AC or T, as specified.
ACM K-BUS = 00
Add CI to the data on the M-bus. Load
the result in AC or T, as speCified. Used
to load memory data in the specified
register, or to load incremented mem­
ory data in the specified register.
AMA K-BUS = 11
Add the data on the M-bus to AC and
CI, and load the result in AC or T, as
specified. Used to add memory data
or incremented memory data to AC
and store the sum in the specified
register.

F-GROUPO R-GROUP III
(General description omitted, see Ap·
pendix A.)
SRA K-BUS = 00
Shift the contents of AC or T, as speci·
fied, right one bit position. Place the
previous low order bit value on RO and
fill the high order bit from the data on
LI. Used to shift or rotate AC or T
right one bit.

(K-bus = 11 description omitted, see
Appendix B.)

2-18

F-GROUP 1 R-GROUP I

Logically OR the contents of Rn with
the data on the K-bus. Deposit the re­
sult in MAR. Add the data on the K-bus
to contents of Rn and CI. Deposit the
result in Rn.
LMI K-BUS = 00
Load MAR from Rn. Conditionally
increment Rn. Used to maintain a
macro-instruction program counter.
DSM K·BUS = 11
Set MAR to all one's. Conditionally
decrement Rn by one. Used to force
MAR to its highest address and to
decrement R n'

F-GROUP 1 R-GROUP II
Logically OR the data on the M-bus with
the data on the K-bus. Deposit the re­
sult in MAR. Add the data on the K-bus
to the data on the M-bus and CI. De­
posit the sum in AC or T, as specified.
LMM K-BUS = 00
Load MAR from the M-bus. Add CI to
the data on the M-bus. Deposit the re­
sult in AC or T. Used to load the
address register with memory data for
macro-instructions using indirect
addressing.

LDM K-BUS = 11
Set MAR to all ones. Subtract one
from the data on the M-bus. Add CI
to the difference and deposit the result
in AC or T, as specified. Used to load
decremented memory data in AC or T.

F·GROUP 1 R-GROUP III
Logically OR the data on the K-bus with
the complement of the contents of AC
or T, as specified. Add the result to the
logical AN D of the contents of specified
register with the data on the K-bus. Add
the sum to CI. Deposit the result in the
specified register.

CIA K·BUS = 00
Add CI to the complement of the con­
tents of AC or T, as specified. Deposit
the result in the specified register. Used
to form the 1 's or 2's complement of
AC orT.
DCA K·BUS = 11
Subtract one from the contents of AC
or T, as specified. Add CI to the dif­
ference and deposit the sum in the
specified register. Used to decrement
AC or T.

FUNCTIONAL DESCRIPTION (con't)

F-GROUP2 R-GROUP I
Logically AND the data on the K-bus
with the contents of AC_ Subtract one
from the result and add the difference
to CI. Deposit the sum in Rn.
CSR K-BUS = 00
Subtract one from CI and deposit the
difference in Rn. Used to conditionally
clear or set Rn to all O's or l's,
respectively.

SOR K-BUS = 11
Subtract one from AC and add the
difference to CI. Deposit the sum in
Rn. Used to store AC in Rn or to store
the decremented value of AC in Rn.

F-GROUP2 R-GROUP II
Logically AND the data on the K-bus
with the contents of AC. Subtract one
from the result and add the difference
to CI. Deposit the sum in AC or T,
as specified.

CSA K-BUS = 00

Subtract one from CI and deposit the
difference in AC or T, as specified. Used
to conditionally clear or set AC or T.

SOA K-BUS = 11
Subtract one from AC and add the
difference to CI. Deposit the sum in
AC or T, as specified. Used to store
AC in T, or decrement AC, or store
the decremented value of AC in T.

F-GROUP 2 R-GROUP III
Logically AND the data of the K-bus
with the data on the I-bus. Subtract one
from the result and add the difference
to CI. 'Deposit the sum in AC or T, as
specified.
(K-bus = 00 description omitted, see
CSA above.)

LOI K·BUS = 11
Subtract one from the data on the I-bus
and add the difference to CI. Deposit
the sum in AC or T, as specified.
Used to load input bus data or decre­
mented input bus data in the specified
register.

F-GROUP3 R-GROUP I
Logically AND the contents of AC with
the data on the K-bus. Add the con­
tents of Rn and CI to the result. Deposit
the sum in Rn.
INR K-BUS = 00
Add CI to the contents of Rn and
deposit the sum in Rn. Used to in­
crement Rn.
ADR K-BUS = 11

Add the contents of AC to Rn. Add the
result to CI and deposit the sum in Rn.
Used to add the accumulator to a register
or to add the incremented value of the
accumulator to a register.

F-GROUP 3 R-GROUP II
(All descriptions omitted, identical to
F-Group OIR-Group II described above.)

F-GROUP 3 R-GROUP III
Logically AND the data on the K-bus
with the data on the I-bus. Add CI
and the contents of AC OF T, as speci­
fied, to the result. Deposit the sum in
the specified register.

INA K-BUS = 00

Conditionally increment the contents of
AC or T, as specified. Used to incre­
mentACorT.

AlA K-BUS = 11
Add the data on the I-bus to the con­
tents of AC or T, as specified. Add CI
to the result and deposit the sum in the
specified register. Used to add input
data or incremented input data to the
specified register.

F-GROUP4 R-GROUP I
Logically AND the data on the K-bus
with the contents of AC. Logically
AND the result with the contents of
Rn. Deposit the final result in Rn.
Logically OR the value of CI with the
word-wise OR of the bits of the final
result. Place the value of the carry OR
on the carry output (CO) line.

CLR K-BUS = 00

Clear Rn to all O's. Force CO to CI.
Used to clear a register and force CO
to CI.
ANR K-BUS = 11

Logically AND AC with Rn. Deposit the
result in Rn. Force CO to one if the
result is non-zero. Used to AN D the
accumulator with a register and test for
a zero result.

2-19

3002

F-GROUP4 R-GROUP II

Logically AND the data on the K-bus
with the contents of AC. Logically
AND the result with the data on the
M-bus. Deposit the final resu It in AC
or T, as specified. Logically OR the
value of CI with the word·wise OR of
the bits of the final result. Place the
value of the carry OR on CO.

CLA K-BUS = 00
Clear AC or T, as specified, to all O's.
Force CO to CI. Used to clear the
specified register and force CO to CI.

ANM K-BUS = 11
Logically AND the data on the M·bus
with the contents of AC. Deposit the
result in AC or T, as specified. Force
CO to one if the result is non-zero. Used
to AND M-bus data to the accumulator
and test for a zero result.

F-GROUP4 R·GROUP III
Logically AND the data on I-bus with
the data on the K -bus. Logically AN D
the result with the contents of AC or T,
as specified. Deposit the final result in
the specified register. Logically OR CI
with the word-wise OR of the bits of
the final result. Place the value of the
carry OR on CO.
(K-bus = 00 description omitted, see
CLA above.)
ANI K-BUS = 11

Logically AN D the data on the I-bus
with the contents of AC or T, as speci­
fied. Deposit the result in the specified
register. Force CO to one if the result
is non-zero. Used to AND the I-bus to
'the accumulator and test for a zero
res(J{t,

F-GROUP5 R-GROUP I

Logically AND the data on the K-bus
with the contents of Rn. Deposit the
result in Rn. Logically OR CI with the
word-wise OR of the result. Place the
value of the carry OR on CO.

(K-bus = 00 description omitted, see
CLR above.)
TZR K-BUS = 11

Force CO to one if Rn is non-zero. Used
to test a register for zero. Also used to
AND K-bus data with a register (see
general description) for masking and,
optionally, testi ng for a zero result.

3002

FUNCTIONAL DESCRIPTION (con't)

F-GROUP5 R-GROUP II

Logically AND the data on the K-bus
with the data on the M-bus. Deposit the
result in AC or T, as specified. Logically
OR CI with the word·wise OR of the
result. Place the value of the carry OR
on CO.
(K·bus = 00 description omitted, see
CLA above.)

LTM K-BUS = 11

Load AC or T, as specified, with data
from the M-bus. Force CO to one if the
result is non·zero. Used to load the
specified register from memory and test
for a zero result. Also used to AND
K·bus data with M·bus data (see general
description) for masking and, optionally,
testing for a zero result.

F-GROUP 5 R-GROUP III

Logically AND the data on K·bus with
contents of AC or T, as specified. De­
posit the result in the specified register.
Logically OR CI with the word·wise OR
of the result. Place the value of the
carry OR on CO.

(K-bus = 00 description omitted, see
CLA above.)

TZA K·BUS = 11

Force CO to one if AC or T, as specified,
is non-zero. Used to test the specified
register for zero. Also used to AND
K-bus data to the specified register (see
general description) for masking and,
optionally, testing for a zero result.

F·GROUP6 R·GROUP I
Logically OR CI with the word-wise
OR of the logical AND of AC and the
data on the K-bus. Place the result of
the carry OR on CO. Logically OR the
contents of Rn with the logical AND
of AC and the data on the K-bus.
Deposit the result in Rn.

NOP K-BUS = 00
Force CO to CI. Used as a null opera'
tion or to force CO to CI.

ORR K·BUS = 11
Force CO to one if AC is non· zero.
Logically OR the contents of the ac­
cumulator to the contents of Rn. De·
posit the result in Rn. Used to OR the
accumulator to a register and,
optionally. test the previous accumula·
tor value for zero.

F-GROUP6 R-GROUP II

Logically OR CI with the word-wise
OR of the logical AND of AC and the
data on the K ·bus. Place the value of
the carry OR on CO. Logically OR the
data on the M-bus, with the logical
AND of AC and the data on the K·bus.
Deposit the final result in AC or T,
as specified.

LMF K-BUS = 00
Load AC or T, as specified, from the
M-bus. Force CO to CI. Used to load
the specified register with memory data
and force CO to CI.

ORM K·BUS = 11
Force CO to one if AC is non·zero.
Logically OR the data on the M·bus with
the contents of AC. Deposit the result
in AC or T, as specified. Used to OR
memory data with the accumulator and,
optionally, test the previous value of
the accumulator for zero.

F-GROUP 6 R·GROUP III
Logically OR CI with the word-wise OR
of the logical AND of the data on the
I-bus and the data on the K-bus. Place
the value of the carry 0 R on CO. Logi­
cally AND the data on the K·bus with
the data on the I-bus. Logically OR the
result with the contents of AC or T,
as specified. Deposit the final result
in the specified register.

(K-bus = 00 description omitted, see
NOPabove.)

ORI K-BUS = 11

Force CO to one if the data on the
I·bus is non-zero. Logically 0 R the
data on the I·bus to the contents of
AC or T, as specified. Deposit the
result in the specified register. Used to
OR I-bus data with the specified
register and, optionally, test the I-bus
data for zero.

F·GROUP7 R-GROUP I

Logically OR CI with the word-wise OR
of the logical AND of the contents of
Rn and AC and the data on the K-bus.
Place the value of the carry OR on CO.
Logically AND the data on the K-bus
with the contents of AC. Exclusive­
NOR the result with the contents of
Rn. De·posit the final result in Rn.

CMR K-BUS = 00
Complement the contents of Rn. Force
CO to CI.

2-20

XNR K·BUS = 11

Force CO to one if the logical AND of
AC and Rn is non· zero. Exclusive-NOR
the contents of AC with the contents of
Rn. Deposit the result in Rn. Used to
exciusive·NOR the accumulator with
a register.

F·GROUP7 R·GROUP II

Logically OR CI with the word·wise
OR of the logical AND of the contents
of AC and the data on the K-bus and
M·bus. Place the value of the carry OR
on CO. Logically AND the data on the
K-bus with the contents of AC. Exclu­
sive-NOR the result with the data on
the M-bus. Deposit the final result in
AC or T, as specified.

LCM K-BUS = 00

Load the complement of the data on
the M-bus into AC or T, as specified.
Force CO to CI.
XNM K·BUS = 11

Force CO to one if the logical AND of
AC and the M-bus data is non-zero.
Exciusive·NOR the contents of AC with
the data on the M-bus. Deposit the
result in AC or T, as specified. Used to
exclusive-NOR memory data with
the accumulator.

F-GROUP 7 R-GROUP III

Logically OR CI with the word-wise
OR of the logical AND of the contents
of the specified register and the data on
the I·bus and K·bus. Place the value of
the carry OR on CO. Logically AND
the data on the K·bus with the data
on the I-bus. Exciusive·NOR the
result with the contents of AC or T, as
specified. Deposit the final result in
the specified register.

CMA K-BUS = 00
Complement AC or T, as specified. Force
CO to CI.

XNI K-BUS = 11

Force CO to one if the logical AND of
the contents of AC or T, as specified, and
the I-bus data is non-zero. Exclusive­
NOR the contents of the specified regis'
ter with the data on the I-bus. Deposit
the result in AC or T, as specified. Used
to exclusive-NOR input data with the
accumulator.

3002

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias. .. O°C to 70°C

Storage Temperature --65° C to + 1600 C

All Output and Supply Voltages ... -o.5V to +7V

All Input Voltages ... -1.0V to +5.5V

Output Currents .. 100 rnA

'COMMENT: Stres .. s above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.

TA = oDe to +70°C. VCC = 5.0V ±5%

LIMITS

SYMBOL PARAMETER MIN Typ(1) MAX UNIT CONDITIONS

Vc Input Clamp Voltage (All -0.8 -1.0 V Ic=-5mA
Input Pins)

IF Input Load Current:
FO-Fs.CLK.Ko. K1.EA.ED -0.05 -0.25 rnA VF =0.45V
10.11. MO. M1. LI -0.85 -1.5 rnA
CI -2.3 -4.0 rnA

IR Input Leakage Current:
FO-FS.CLK. KO. K1. EA. ED 40 IJA VR = 5.25V
10.11. MO. M1. LI 60 IJA
CI 180 IJA

Vll I nput Low Voltage 0.8 V VCC = 5.0V

VIH Input High Voltage 2.0 V

Icc Power Supply Current (2) 145 190 rnA

VOL Output Low Voltage (All 0.3 0.45 V 10l = 10 rnA
Output Pins)

VOH Output High Voltage (All 2.4 3.0 V 10H =-1 rnA
Output Pins)

lOS Short Circuit Output Current -15 -25 -60 rnA VCC = 5.0V
(All Output Pins)

10 loft) Off State Output Current -100 IJA Vo = 0.45V
Ao. A1. Do. D1. CO and RO 100 IJA Vo = 5.25V

NOTES:
III Typical values are for T A = 25° C and nominal supply voltage
121 elK input grounded, other inputs open.

2-21

3002

A.C. CHARACTERISTICS AND WAVEFORMS

TA = O°C to 70°C. Vee = 5V ±5%

SYMBOL PARAMETER MIN

tCY Clock Cycle Time (2) 100

twp Clock Pulse Width 33

tFs Function Input Set-Up Time (Fo through Fs) 60

Data Set-Up Time:

tos 10. 11. Mo. MI. Ko. K1
tss LI. CI

Data and Function Hold Time:
tFH Fo through FS
tOH 10. 11. Mo. M1. Ko, Kl
tSH LI. CI

Propagation Delay to X. Y. RO from:
tXF Any Function Input
txo Any Data Input

tXT Trailing Edge of ClK
tXl leading Edge of ClK

Propagation Delay to CO from:
tCl leading Edge of ClK
tCT Trailing Edge of ClK
tCF Any Function Input
tco Any Data Input
tcc CI (Ripple Carry)

Propagation Delay to Ao. A1. Do. 01
tOl Leading Edge of CLK
tOE Enable Input ED. EA

NOTE:
(1) Typical values are for T A = 25°C and nominal supply voltage.
(2) tCY • tos + tOl'

TEST CONDITIONS:

Input pulse amplitude: 2.5 V
Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 10 mA and 30 pF.
Speed measurements are made at 1.5 volt levels.

CAPACITANCE(2) T A = 2SoC

SYMBOL

NOTE:

Input Capacitance

Output Capacitance

PARAMETER

50
27

5
5
15

20

20

from:
5

TEST lOAD CIRCUIT:
Vee

500!!

OUT 0-""'-'"
30 pF 1 K!l

MIN

TYP(1)

70

20

40

30
13

-2
-4
2

37
29
40

48
43
30
14

32
12

TYP

5

6

MAX

52
42'
60

70
65
55
25

50
25

MAX

10

12

UNIT

ns

ns

ns

ns
ns

ns
ns
ns

ns
ns
ns
ns

ns
ns
ns
ns
ns

ns
ns

UNIT

pF

pF

(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, VBIAS = 2.5V, Vcc = 5.0V and
TA = 25°C.

2-22

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias .. -55°C to +125°C

Storage Temperature .. -65°C to +160°C

All Output and Supply Voltages ... -o.5V to +7V

All Input Voltages ... -1.0V to +5.5V

Output Currents ... 100 mA

'COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.

TA = _55°C to +125°C. VCC = 5.0V ±10%.

SYMBOL

Vc

VIL

VIH

Icc

VOL

VOH

lOS

IOloff)

NOTES:

PARAMETER

Input Clamp Voltage (All
Input Pins)

Input Load Current:
Fo-Fs.CLK.Ko. K,.EA. ED
10. I,. Mo. M,. LI
CI

I nput Leakage Current:
FO-FS.CLK.Ko. K,. EA. EO
10.1,. Mo. M,. LI
CI

Input Low Voltage

Input High Voltage

Power Supply Current

Output Low Voltage (All
Output Pins)

Output High Voltage (All
Output Pins)

Short Circuit Output Current
(All Output Pins)

Off State Output Current
Ao. A,. Do. 0,. CO and RO

MIN

2.0

2.4

-15

I') Typical values are for T A = 25° C and nominal supply voltage
(2) CLK input grounded. other inputs open.

LIMITS

Typ(l) MAX

-0.8 -1.2

-0.05 -0.25
-0.85 -1.5
-2.3 -4.0

40
100
250

0.8

145 210

0.3 0.45

3.0

-25 -60

-100
100

2·23

UNIT

V

mA
mA
mA

p.A
p.A
p.A

V

V

mA

V

V

mA

p.A
p.A

CONDITIONS

IC =-5mA

VF = 0.45V

VR = 5.5V

Vcc = 5.0V

IOL=10mA

10H =-1 mA

Vcc = 5.0V

Vo = 0.45V
Vo = 5.5V

TEST CONDITIONS:

Input pulse amplitude: 2.5 V
Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 10 mA and 30 pF.
Speed measurements are made at 1.5 volt levels.

CAPACITANCE (2) TA = 25°C

SYMBOL

NOTE:

Input Capacitance

Output Capacitance

PARAMETER

TEST LOAD CIRCUIT:
Vee

500n

OUT 0-""",-"

30pF 1 Kn

MIN TYP

5

6

MAX

10

12

UNIT

pF

pF

(2) This parameter is periodically sampled and is not 100% tested. Condition 01 measurement is 1 = 1 MHz, VBIAS = 2.SV, VCC = S.OV and
TA=2SoC.

2-24

3002

3002 WAVEFORMS

CLOCK INPUT
ClK

FUNCTION INPUTS
Fo-Fe

OATAINPUTS
10. It. Ko. Kt. MO. Mt

CARRY AND SHIFT
INPUTS LI. CI

CARRY AND SHIFT
OUTPUTS X. Y. RO

CO

ENABLE INPUTS
EA. ED

tev

!E------ twp -------l

V
~ V

tFS ---? ~tFH

\ ,--------_.-f------'V

-------_.- ../1\ 1'--____
1

tos tOH-----7

r - f--.--------- I----'V --
____ -.J\ V~ _____

';-tss --! E--tSH~

\~- ----,

----- - f-
_. ____ -.J / '--------_ ..

tXT

tXF Eo--- tXL --iI

txo

\ r-- -----,V

----.- -f--------_.-~~ 1'---____ -

~tec~
teT

tCF !E---teL~
te~

\~r r--- -----; V
__________ _______ --.J '\ J\... _____

\ r---------------------
______ ---.J

E----tOE IE
I

tOL __ =1,--_____ ,1._
DATA OUTPUTS :t)K

AO. At. Do. Dt _______________ --.J "------

2·25

3002

TYPICAL AC AND DC CHARACTERISTICS

1
5

'10

POWER SUPPLY CURRENT VS. TEMPERATURE

~ '40

Vee·&.OY -

i

t-.
a: '30

I ,
j!

I
"' :E
;::
~

~ ,
}

!
5

70 '26
TEMPERATURE rCI

OUTPUT CURRENT vs. OUTPUT VOLTAGE

Vee -&.ov

3.0

OUTPUT VOLTAGE

4.0 &.0

CARRY IN SET UP TIME vs. Vee AND TEMPERATURE

30

2D

'0

10

.... C -~ --r----
,:nrc;

26:::-
4.711 &.0

Vee (VOLTSI

PROPAGATION DELAY - CLOCK TO "A" AND "0"
DATA OUTPUT VS. "-CC: AND TEMPERATURE

~ 1Or-------;-------~--------+_------~

~
I ,
:P

Vee (VOLTSI

2-26

I
>-:s
"' ..
~
i ..
E ,
~K

OUTPUT CURRENT VS. OUTPUT LOW VOL.TAGE
3Or-----~----,_-----r----~----..

26 f------I--.

OUTPUT VOLTAGE

CLOCK PULSE WIDE VS. Vee AND TEMPERATURE
40

...... c

-< I"-- '2&"~

~
2&"C

0 '4.&V 4.7IIV I.DY &.2&V UDY

vee (VOLTS)

PROPAGATION DELAY FROM FUNCTION INPUTS TO
CASCADE OUTPUTS VS. Vee AND TEMPE_R!'TURE

eo

&0

40

Vee (VOLTS)

PROPAGATION DELAY - CLOCK TO
"A" AND "0" DATA OUTPUT VS. LOAD CAPACITANCE

I
5

1Or--------r------~--------r_------~

~ &0

~

! 40 1----+-::;_
IE ,
:P

LOAD CAPAC'T ANCE (pFI

TYPICAL CONRGURATIONS

CARRY FROM
3001

CARRY TO 3001
MICROPROGRAM
CONSTANT IMASK
INPUT BUS
(ZH llNESI

I

Rippltl-Carry Confi.,ration
IN 3002 CPE's)

CARRY
FROM
3001

CARRY

ECn +8

LAD
'--v' F.-F. ClK l+-

CO CI
3002

II RO

--::>F o-F3

I M K

r--

""""
-

r-

1,
3002

ir>

'---

i-

~
r-------.-

3002

MEMORY ADDRESS BUS
(ZH L1NESI

DATA BUS TO MEMORY
(2N llNESI

"rt=

1-

.J +
+

+5V

ECn +8

----ll-I'-----, DATA BUS FROM
MEMORY

----ll------' (2N llNESI

EXTERNAL DATA BUS
(2N L1NESI

TO +-~--~ 3001

Carry Look-Aha. Confi.,retion
With Ripple Through tho Left Slice
(32 Bit Array)

2-27

3002

APPENDIX A MICRO-FUNCTION SUMMARY

F·GROUP

o

2

3

4

5

6

7

NOTES:

R·GROUP

II

III

II

III

II

III

II

III

II

III

II

III

II

III

II

III

MICRO·FUNCTION

Rn + (AC A K) + CI ... Rn, AC

M + (AC A K) + CI'" AT

ATL A (lL A Kd'" RO II V [(IH A KH) A ATHl "'ATH
[AhA (lLA Kdl V [ATHV(lH A KH)l"'Ah

K V Rn "'MAR Rn + K + CI ... Rn

K V M "'MAR M+K+CI"'AT

(AT V K) + (AT A K)+CI"'AT

(AC A K) -1 + CI ... Rn

1
(AC A K) -1 + CI'" AT (see Note 1)

(I A K) -1 + CI'" AT

Rn + (AC ,\ K) + CI ... Rn

M + (AC A K) + CI ... AT

AT + (I A K) + CI ... AT

CI V (Rn A AC A K) ... CO Rn A (AC A K) ... Rn

CI V (M A AC /\ K) ... CO M A (AC A K)'" AT

CI V (AT A I A K)->CO AT A (I A K)'" AT

CI V (R n A K)'" CO K A Rn ... Rn

CI V (M A K) ... CO K AM'" AT

CI V (AT A K)'" CO K A AT'" AT

CI V (AC A K) ... CO Rn V (AC A K)'" Rn

CI V (AC A K) ... CO MV(ACAK)"'AT

CI V (I A K) ... CO AT V (I A K) -~ AT

CI V (Rn A AC A K) ... CO Rn iii (AC A K) ... Rn

CI V (M A AC A K) ... CO M iii (AC /\ K)'" AT

CI V (AT A I A K) ... CO AT iii (I A K)'" AT

1. 2'5 complement arithmetic adds 111 ... 11 to perform subtraction of 000 ... 01.

2. Rn includes T and AC as source and destination registers in R-group 1 micro-functions.

3. Standard arithmetic carry output values are generated in F-group 0, 1, 2 and 3 instructions.

SYMBOL

I, K,M
CI, II

CO, RO
Rn
AC
AT

MAR
L, H

+

/\

V

(ji

MEANING

Data on the I, K, and M busses, respectively
Data on the carry input and left input, respectively
Data on the carry output and right output, respectively
Contents of register n including T and AC (R-Group I)
Contents of the accumulator
Contents of AC or T, as specified
Contents of the memory address register
As subscripts, designate low and high order bit, respectively
2's complement addition
2's complement subtraction
Logical AND
Logical OR
Exclusive-NOR
Deposit into

2-28

APPENDIX B ALL-ZERO AND ALL-ONE K-BUS MICRO-FUNCTIONS

K·BUS = 00 MICRO·FUNCTION

Rn + CI Rn. AC

M + CI AT

ATL RO ATH ATL LI ATH

Rn MAR Rn + CI Rn

M MAR M+CI-+AT

AT+ CI AT

CI-1 Rn See Note 1

CI-1--AT See Notes 1,4

(See CSA above)

Rn + CI -- Rn

(See ACM above)

AT + CI AT

CI CO 0 Rn

CI->CO 0"" AT

(See C LA above)

(See CLR above)

(See C LA above)

(See C LA above I

CI"'CO Rn'" Rn

CI"'CO M""AT

(See NOP above)

CI--CO R;; Rn

CI""CO M"'AT

CI""CO AT"" AT

MNEMONIC

ILR

ACM

SRA

LMI

LMM

CIA

CSR

CSA

INR

INA

CLR

CLA

NOP

LMF

CMR

LCM

CMA

K·BUS = 11 MICRO·FUNCTION

AC + Rn + CI Rn. AC

M + AC + CI AT

(See Appendix AI

11 MAR Rn - 1 + CI-- Rn

11 MAR M - 1 + CI AT

AT-1 + CI->AT

AC - 1 + CI-> Rn See Note 1

AC -1 + CI'" AT See Notes 1.4

1- 1 + CI-- AT

AC + Rn + CI -- Rn

(See AMA above)

I+AT+CI->AT

CI v (Rn II AC) -> CO Rn II AC -> Rn

Cl.v (M II ACI ... CO MIIAC""AT

CI v (AT II I)'" CO AT II I'" AT

CI v Rn'" CO Rn'" Rn

CI v M "'CO M"'AT

CI v AT'" CO AT -+AT

CI v AC"'CO Rn v AC'" Rn

CI v AC"'CO M v AC"'AT

CI v I'" CO I v AT'" AT

CI v (Rn AC)"'CO Rn iii AC'" Rn

Clv (M AC)"'CO Miii AC"'AT

Clv (AT I)--CO I iii AT--AT

4. The more general operations. CSR and SDR. should be used in place of the CSA and SDA operations. respectively.

2·29

3002

MNEMONIC

ALR

AMA

DSM

LDM

DCA

SDR

SDA

LDI

ADR

AlA

ANR

ANM

ANI

TZR

LTM

TZA

ORR

ORM

ORI

XNR

XNM

XNI

3002

APPENDIX C FUNCTION AND REGISTER GROUP FORMATS

FUNCTION
GROUP F6 5 4

0 0 0 0
1 0 0 1
2 0 0
3 0 1 1
4 0 0
5 0 1
6 1 0
7 1 1

REGISTER
GROUP REGISTER F3 2 0

RO 0 0 0 0
R, 0 0 0 1
R2 0 0 0
R3 0 0 1 1
R4 0 0 0
RS 0 0 1
R6 0 0
R7 0 1 1 1
RS 1 0 0 0
Rg 0 0 1
T 1 0 0
AC 1 0 1

T 0 0
II AC 0

T 0
III AC 1

2-30

The INTEL (!) 3003 Look·Ahead Carry
Generator (LCG) is a high speed circuit
capable of anticipating a carry across a
full 16-bit 3002 Central Processing
Array. When used with a larger 3002
CP Array multiple 3003 carry generators
provide high speed carry look·ahead
capability for any word length.

The LCG accepts eight pairs of active
high cascade inputs (X, V) and an active
low carry input and generates active
10\'11 carries for up to eight groups of
binary adders.

SCHOTTKY
BIPOLAR LSI
MICROCOMPUTER
SET

High Performance - 10 ns typicel
propagation dalay

Compatible with INTEL 3001 MCU
and 3002CPE

DTL and TTL compatible

Full look-ahead across 8 adders

Low voltage diode input clamp

Expandable

28-pin DIP

2-31

3003
LOOK-AHEAD
CARRY
GENERATOR

PACKAGE CONFIGURATION

Y7 Vee
x7 YI

ECn+ 8 28 Xs
Cn+1 Cn+ 7

Xs Xl

X. Y2

Ys INTEL- Cn+.
3003

Y. Y,

Cn+S X,

X3 "0
Y3 11 Yo

Cn+" en

en +2 '3 en +3

GND ,. Cn+ 1

3003

LOGIC DIAGRAM

ECn+ 8
....

PIN DESCRIPTION
V7
X7

PIN SYMBOL
NAME AND

TYPE
FUNCTION

R=-= }--

1,7,8,11 YO-Y7 Standard carry Active
18,21,23 look-ahead HIGH
27 inputs

2,5,6,10 XO-X7 Standard carry Active
19,20,24 look-ahead HIGH
26 inputs

17 Cn Carry input Active
LOW

:;;;;

=;= ~

~
4,9,12 Cn+l- Carry outputs Active Vs

Xs
13,15,16 Cn+8 LOW Vo

3 ECn+8 Cn+8 carry Active
Xs
v.

output enable HIGH X.
V3

28 Vee +5 volt supply X3

V2

14 GND Ground X2

v,
X,

Vo

Xo

Cn
-rt=r>-....

to'" -
3003 LOGIC EQUATIONS

The 3003 Look-Ahead Generator is implemented in a compatible form for direct connection to the 3001 MCU and 3002 CPE.
Logic equations for the 3003 are:

Cn +.7 = Y SXS + Y SY5X5 + Y SY5Y 4X4 + YSY5Y 4Y3X3 + YSY5Y 4Y3Y2X2 + Y6Y5Y4Y3Y2Y1Xl + Y SY5Y 4Y3Y 2Y lYOXO

+YSY5Y4Y3Y2Y1YOCn

Cn + 8 = High Impedance State when ECn + 8 Low

Cn + 8 = Y7X7 + Y7YSXS + Y7YSY5X5 + Y7YSY5Y4X4 + Y7YSY5Y 4Y3X3 + Y7YSY5Y 4Y3Y2X2 + Y7YSY5Y4Y3Y2Y1Xl

+ Y7Y SY5Y 4Y3Y2Y l YOXO + Y7YSY5Y 4Y3Y2Y 1 YOGn when ECn + 8 high

2-32

en+8

en+7

en+8

Cn+5

Cn+~

Cn+3

en+ 2

en+ 1

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias

Storage Temperature

All Output and Supply Voltages.

All Input Voltages

Output Current .

3003

. . o°C to 70°C

-65°C to +160°C

-0.5V to +7V

-1.0V to +5.5V

100mA

·COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is
not implied.

T A = O°C to +70°C VCC = 5.0V ±5%

SYMBOL PARAMETER MIN. TYP.(1) MAX. UNIT CONDITIONS

Vc Input Clamp Voltage (All
Input Pins)

-O.B -1.0 V 'C = -5 mA

'F Input Load Current:

X6,X7Cn,ECn + 8 -0.07 -0.25 mA VF = 0.45V

Y7,XO,X5, -0.200 -0.500 mA

YO'Y6 -0.6 -1.5 mA

'R Input Leakage Current:
Cn and ECn + 8 40 jJ.A VR = 5.25V
All Other Inputs 100 jJ.A

V,L Input Low Voltage 0.8 V VCC = 5.0V

V,H Input High Voltage 2.0 V VCC = 5.0V

ICC Power Supply Current 80 130 mA All Y and ECn + 8 high,
All X and Cn low

VOL Output Low Voltage (All 0.35 0.45 V 10L = 4 mA
Output Pins)

VOH Output High Voltage (All 2.4 3 V 10H = -1 mA
Output Pins)

lOS Short Circuit Output Current
(All Output Pins) -15 -40 -65 mA VCC = 5V

'O(off) Off·State Output Current -100 jJ.A Vo = 0.45V
(Cn + 8) +100 jJ.A Vo = 5.25V

NOTE:
(11 Typical values are for TA = 25°C and nominal supply voltage.

A.C. CHARACTERISTICS

TA = O°C to 70°C, VCC = +5V ± 5%

SYMBOL PARAMETER MIN. TYP.(1) MAX. UNIT

txc X, Y to Outputs 3 10 20 ns

tcc Carry I n to Outputs 13 30 ns

tEN Enable Time, Cn + 8 20 40 ns

NOTE:
(11 Typical values are for T A = 25°C and nominal supply voltage.

2-33

3003

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias -55·C to +125·C

Storage Temperature -65·C to +160·C

All Output and Supply Voltages. -0.5V to +7V

All I nput Voltages -1.0V to +5.5V

Output Current . 100mA

·COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is
not implied.

TA = -55·Cto +125·C, Vee = 5.0V ±10%.

SYMBOL PARAMETER MIN. TYP.(I) MAX. UNIT CONDITIONS

Vc Input Clamp Voltage (All -0.8 -1.2 V IC = -5 mA
Input Pins)

IF Input Load Current:
X6,X7,Cn,ECn+8 -0.07 -0.25 mA VF = 0.45V
Y7,XO,X5, -0.200 -0.500 mA
YO'Y6 -0.6 -1.5 mA

IR Input Leakage Current:
en and ECn + 8 40 IJA VCC = 5.25V, VR = 5.5V
All Other Inputs 100 IJA

VIL Input low Voltage 0.8 V VCC= 5.0V

VIH Input High Voltage 2.1 V VCC = 5.0V

ICC Power Supply Current 80 130 mA All Y and ECn + 8 high,
All X and Cn low

VOL Output Low Voltage (All 0.35 0.45 V 10l = 4 mA
Output Pins)

VOH Output High Voltage (All 2.4 3 V 10H = -1 mA
Output Pins)

lOS Short Circuit Output Current
(All Output Pins) -15 -40 -65 mA VCC = 5V

10(off) Off·State Output Current -100 IJA VO=0.45V
(Cn + 8) +100 IJA VO= 5.5V

NOTE:
(1) Typical values are for T A = 25°C and nominal supply voltage.

A.C. CHARACTERISTICS

TA = -55·C to +125·C, Vee = +5.0V ±10%

SYMBOL PARAMETER MIN. TYP.(I) MAX. UNIT

txc X. Y to Outputs 3 10 25 ns

tcc Carry I n to Outputs 13 40 ns

Enable Time. Cn + 8 20 50 ns

NOTE:
(11 Typical values are for TA = 25°C and nominal supply voltage.

2-34

3003

WAVEFORMS

X,V INPUTS

G .. =*.....---
________________ ~*~I~.~---------~----------~-e------~----.--! __________ __

NOTE: ALTERNATE TeST LOAD:

Cn INPUT ------- Vee

~'0'
Cn.a OUT

,. ----.-;~-tEN1-r--.. ,~,J::.::"-1-j~ ____ T VOH

Cn.8 OUTPUT I . _ ~ t
__________ J t VOL

SYMBOL

NOTE:

Input Capacitance

Output Capacitance

PARAMETER

All inputs

Cn + 8

MIN

O.SV

TYP

12

7

MAX

20

12

(21 This parameter is periodically sampled and is not 100% tested. C.ondition 01 measurement is 1 = 1 MHz, VBIAS = S.OV,
VCC = S.OV and TA = 25°C.

TEST CONDITIONS:

Input pulse amplitude of 2.5V.
Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 5 mA and 30 pF.
Speed measurements are made at 1.5 volt levels.

TEST LOAD CIRCUIT: Vee

OUT o--~---+

"

UNIT

pF

pF

= 3O.F 2.

2-35

3003

TYPICAL A.C. AND D.C. CHARACTERISTICS

80

! 70
Jj

ICC VS. TEMPERATURE

L .. L

-

~75 -50 -26 25 50 75 100 125

TEMPERATURE (OCI

OUTPUT CURRENT VS.OUTPUT.HIGH VOLTAGE

-.
! -'0 .. z ..
a: a: -,.
::l
U

~ -m
0

-26

-30
0

OUTPUT IV)

x, Y TO OUTPUT DELAY VS. LOAD CAPACITANCE

..
Vee ls.ov
TA " 26°C

!
30

>

~
Q

!; m
I!:
::l
0

:e
>

,-+ -~ ...-::: ~ I--"
~

p--

x '0

0 ..
'00 , .. 260 300

LOAD CAPACITANCE (pFI

2·36

!
~
~ ..
::l
0

:e
>
x

!
~

~
0

:e
>
x

OUTPUT CURRENT vs. OUTPUT LOW VOLTAGE

8Or_----,-----~------r_--~

8O~-----+------~------~~~~

m~----~----.,,~------+-----~

°0~--~~~-----7------~----~

OUTPUT (V)

x, Y TO OUTPUTS VI. Vee AND TEMPERATURE

30

m ---~
'0

o 4.75

t xc ._

_55°C

/ O"c
/ }5'C

//

'\).:c
125'1

5.00 5.25 5."

Vee (VOLTS)

x, Y TO OUTPUTS VS. VCC AND TEMPERATURE

30

m

'0

o

J
70'C 1-"

25'\ '" ~
"- "-

~ \'C

-5T
4.75 5.00

Vee (VOL TSI

txc_+

5.26

3003

TYPICAL CONFIGURATIONS

The 3003 LCG can be directly tied to the 3001 MCU and a 3002 CP array of any word length. The following figures represent
typical configurations of 16· and 32-bit CP arrays. Figures 1 and 2 illustrate use of the 3003 in a system where the carry output
(CO) to the 3001 MCU is rippled through the high order CPE slice. Figure 3 illustrates use of the 3003 in a system where tri·state
output Cn+8 is connected directly to the flag input on the 3001 MCU. Cn+8 is disabled during shift right by decoding that instruction
externally. thus multiplexing Cn+8 with the shift right (RO) output of the low order CPE slice.

CARRY
FROM
3001

CARRY

Een + 8

TO +-~--__ ~

3001

Figure 1. Carry Look-Ahead Configuration with Ripple through the Left Slice U6-Bit Array)

...
F;"

...
F3

F,
F,

CARRY
FROM
M3IlOl

-5V

Ec" +8

~~RRV~-+ __ ~

M3IlOl

Figure 2. Carry Look-Ahead Configuration with No Carry Ripple through the Left Slice (32-Bit Array)

2·37

The INTE~3212 Multi-Mode Latch
Buffer is a versatile 8-bit latch with
three-state output buffers and built-in
device select logic. It also contains an
independent service request flip-flop
for the generation of central processor
interrupts. Because of its multi-mode
capabilities, one or more 3212's can
be used to implement many types of
interface and support systems for Series
3000 computing elements including:

Simple data latches

Gated data buffers

Multiplexers

Bi-directional bus drivers

Interrupting input/output ports

MICRO
PROGRAM
MEMORV

CQNTROL "0
MEMORV 110

Figure 1_ Block Diagram of a Typicel System

SCHOTTKY
BIPOLAR LSI
MICROCOMPUTER
SET

High Performance - 50 ns Write Cycle
Time

Low Input Load Current - 250 JJ.A
Maximum

Three-State Fully Buffered Outputs

High Output Drive Capability

Independent Service Request Flip­
Flop

Asynchronous Data Latch Clear

24 Pin DIP

M'fMOR'"
"');l-:''''''~S aus

INSTRUCTION BUS

2·39

3212
MULTI-MODE
LA TCH BUFFER

PACKAGE CONFIGURATION

OSI • 24 Vcc

MO
23

INT

011 22
DiS

001
4 21

DOS

012
INTEL@ 20

01 7 3212

002
19

007

013
IS

016

003
17

006

014
16

015

004 10 15
005

5TB
11 14

CLR

GNO
12 13

OS2

't)Ptt..~ l!trr.. ~V'..o"" u ... ~ po., ~"()V\
""'t'W\o"" 't)'C.. ,c'C..'S.

3212

PIN DESCRIPTION

PIN SYMBOL

OS1

2 MO

3,5,7,9, 011- 01 S
16, lB, 20,
22

4,6, B,10, 001-00S
15,17,19,
21

11 STB

12 GNO

13

14 CLR

23 INT

NOTE:

NAME AND FUNCTION

Device Select Input 1

Mode Input

When MO is high (output mode) the output buffers are enabled and the
write signal to the data latches is obtained from the device select logic.
When MO is low (input mode) the output buffer state is determined bV
the device select logic and the write signal is obtained from the strobe
(STB) input.

Data Inputs

The data inputs are connected to the O-inputs of the data latches.

Data Outputs

The data outputs are the buffered outputs of the eight data latches.

Strobe Input

When MO is in the LOW state, the STB input provides the clock input
to the data latch.

Ground

Device Select Input 2

When OS1 is low and OS2 is high, the device is selected.

Clear

Interrupt Output

The interrupt output will be active LOW (interrupting state) when
either the service request flip-flop is low or the device is selected.

(1) Active HIGH, unless otherwise specified.

2-40

active LOW

three-state

active LOW

active LOW

FUNCTIONAL DESCRIPTION

The 3212 contains eight D·type data
latches, eight three·state output buf·
fers, a separate D·type service request
flip·flop, and a flexible device select!
mode control section.

DATA LATCHES

The Q·output of each data latch will
follow the data on its corresponding
date input line (DI,-Dls) while its
clock input is high. Data wi II be
latched when the internal write line WR
is brought low. The output of each
data latch is connected to a three·state,
non·inverting output buffer. The in·
ternal enable line EN is bussed to each
buffer. When the EN is high, the buf·
fers are enabled and the data in each
latch is available on its corresponding
data output line (DOo-DOS)'

DEVICE SELECT LOGIC

Two input lines DS, and D'S2 are pro·
vided for device selection. When DS,
is low and DS2 is high, the 3212 is
selected.

MODE CONTROL SECTION

The 3212 may be operated in two
modes. When the mode input line MD
is low, the device is in the input mode.
In this mode, the output buffers are
enabled whenever the 3212 is selected;
the internal WR line follows the STB
input line.

When M D is high, the device is in the
output mode and, as a result, the out·
put buffers are enabled. In this mode,
the write signal for the data latch is
obtained from the device select logic.

SERVICE REQUEST FLIP·FLOP
AND STROBE

The service request flip-flop SR is used
to generate and control central proces·
sor interrupt signals. For system reset,
the SR flip·flop is placed in the non·
interrupting state (i.e., SR is set) by
bringing the CLR line low. This simul·
taneously clears (resets) the 8·bit data
latch.

The Q output of the SR flip·flop is
logically ORed with the output of
device select logic and then inverted
to provide the interrupt output INT.
The 3212 is considered to be in the in·
terrupting state when the INT output
is low. This allows direct connection
to the active LOW priority request in·
puts of the INTEL<I>3214 Interrupt
Control Unit.

3212

When operated in the input mode (i.e.,
MD low) the strobe input STB is used
to synchronously write data into the
data latch and place the SR flip·flop in
the interrupting (reset) state. The in·
terrupt is removed by the central pro·
cessor when the interrupting 3212 is
selected.

1---------------1
I I
I I
I I
I I

STB::+===::t::;:===!f:> ~ I
D~ I
052

INT

0" I-++--r>-~DOI

012 1-4--1--1'">4-002

013

01.

DiS

01.

01, H-+--f>-"':"'-oo,

01, 1-4--1'"> DO,

CLR

L

M3212 Logic Diagram

2·41

3212

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias .. O°C to 70°C

Storage Temperature

All Output and Supply Voltages.

All Input Voltages

Output Currents

.. _65°C to +160°C

. ... -0.5V to +7V

. -1.0V to +5.5V

..... 100mA

·COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

T A .. aOc to +75°C Vee = +5V ±5%

Symbol Parameter Min. Typ. Max. Unit Conditions

IF Input Load Current -.25 mA VF = .45V
STB, 052, CLR, 01,-0IS Inputs

IF Input Load Current -.75 mA VF .45V
MO Input

IF I nput Load Current -1.0 mA VF .45V
OS, Input

IR Input Leakage Current 10 IlA VR 5.25V
STB, OS,CLR, 01,-0ISlnputs

IR I nput Leakage Current 30 IlA VR 5.25V
MO Input

IR I nput Leakage Current 40 IlA VR 5.25V
05, Input

Ve Input Forward Voltage Clamp -1 V Ie -5 mA

VIL Input "Low" Voltage .85 V

VIH Input "High" Voltage 2.0 V

VOL Output "Low" Voltage .45 V 10L 15mA

VOH Output "High" Voltage 3.65 4.0 V 10H -1 mA

Ise Short Circuit Output Current -15 -75 mA Vee = 5.0V

1101 Output Leakage Current 20 IlA Vo = .45V/5.25V
High I mpedance State

lee Power Supply Current 90 130 mA

2042

A.C. CHARACTERISTICS TA - ooc to 75°C, VCC = +5.0V ± 5%

Symbol Paramatar Min. Typ.

tpw Pulse Width 25

tpD Data To Output Delay

twE Write Enable To Output Delay

tSET Data Setup Time 15

tH Data Hold Time 20

tR Reset To Output Delay

ts Set To Output Delay

tE Output Enable Time

tc Clear To Output Display

TEST CONDITIONS:

Input pulse amplitude of 2.5 volts.
Input rise and fall times of 5 ns between 1 volt and 2 volts.
Output load of 15 mA and 30 pF.
Speed measurements are taken at the 1.5 volt level.

CAPACITANCE(1I

Symbol Test
Min.

CIN OS,. MD Input Capacitance

CIN DS2, CLR, STB, 0I 1-DIS
I nput Capacitance

COUT D01-DOS Output Capacitance

NOTE:

LIMITS

Typ.

9

5

B

Max. Unit

ns

30 ns

40 ns

ns

ns

40 ns

30 ns

45 ns CL = 30 pf

45 ns

TEST LOAD CIRCUIT:

Vee

300n

our 0--_--+
30pF

Max. Units

12 pf

9 pf

12 pf

11) This parameter is periodicallv sampled and is not 100% tested. Condition 01 measurement is 1 = 1 MHz. VSIAS = 2.SV. VCC = SV and
TA = 25°C.

2-43

3212

3212

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias .. -55°C to +125°C

Storage Temperature

All Output and Supply Voltages.

All Input Voltages

Output Currents

. .. -0.5V to + 7V

. -1.0V to +5.5V

..... 100 mA

·COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

TA = _55°C to +125°C; Vee = 5.0V ±10%

Symbol Parameter Min. Typ. Max. Unit Conditions

IF I nput Load Current -.25 mA VF = .45V
STB, OS2, CLR, OI,-OIS Inputs

IF Input Load Current -.75 mA VF .45V
MO Input

IF I nput Load Current -1.0 mA Vrf. .45V
OS, Input

IR I nput Leakage Current 10 f.l.A VR 5.5V
STB, OS, CLR, OI,-OIS Inputs

IR I nput Leakage Current 30 f.l.A VR 5.5V
MO Input

IR Input Leakage Current 40 f.l.A VR 5.5V
OS, Input

Ve Input Forward Voltage Clamp 1.2 V Ie -5 mA

V 1L Input "Low" Voltage .80 V

VIH Input "High" Voltage 2.0 V

VOL Output "Low" Voltage .45 V 10L = 10mA

VOH Output "High" Voltage 3.5 4.0 V 10H = .5mA

Ise Short Circuit Output Current -15 -75 mA Vee = 5.0V

1101 Output Leakage Current 20 f.l.A Va = .45V/5.5V
High Impedance State

lee Power Supply Current 90 145 mA

2-44

A.C. CHARACTERISTICS TA = -55°C to +125°C. Vee = 5.0V ± 10%

Symbol Parametar Min. Typ.

tpw Pulse Width 40

tpo Data To Output Delay

tWE Write Enable To Output Delay

tSET Data Setup Time 20

tH Data Hold Time 30

tR Reset To Output Delay

ts Set To Output Delay

tE Output Enable Time

tc Clear To Output Display

TEST CONDITIONS:

Input pulse amplitude of 2.5 volts.
Input rise and fall times of 5 ns between 1 volt and 2 volts.
Output load of 15 mA and 30 pF.
Speed measurements are taken at the 1.5 volt level.

CAPACITANCE I1}

Symbol Test
Min.

CIN 051• MD Input Capacitance

CIN DS2. CLR, STB, Oil-Dis
I nput Capacitance

COUT DO I-DOS Output Capacitance

NOTE:

LIMITS

Typ.

9

5

8

Max.

12

9

12

ArIL/~ 3212

Max. Unit

ns

30 ns

50 ns

ns

ns

55 ns

35 ns

50 ns CL 30 pf

55 ns

TEST LOAD CIRCUIT:

Vcc

300n

OUTo--_--t

30 pF 600n

Units

pf

pf

pf

111 This parameter is periodicallv sampled and is not 100% tested. Condition of measurement is f = 1 MHz. VSIAS = 2.SV. Vee = SV and
TA = 2Soe.

2-45

3212

WAVEFORMS

DATA ,o5vX-------------y5v
-------' ° I;=='PW 'I' 'H ~'------

STBodis,. DS2 'o5Vl \'5V
I ~---------------

____________ I4--__ '_W_E=j , __________ _
OUTPUT _______________ --' X'-'_o5V _________ _

OUTPUT

DO

DATA ,5VX- ------------- --Y'5V
-------.../ I-- 'SET r 'H '.I '----

STB .. OS, • 052 '5V\'-____________ _
'PDo-j

!,------------
OUTPUT _________ __ -I X'-:_5V _______________ _

STB _____ -J~~'o_5V ____________________ _
-~l

NOTE: ALTERNATIVE TEST LOAD _0 'R -<

~
VCC'0K

OUT

CL lK

2-46

TYPICAL A.C. AND D.C. CHARACTERISTICS

INPUT CURRENT vs. INPUT VOLTAGE

-so

~ -100

~
~ -150
il
i
! -200

C
!
>-
~
rr:
rr:
:>
u
>-
i
>-
:>
0

-250

-300
-3

-s

-'0

-,S

-20

-25

22

20

•

•
0

2

0 ,
-211

Vee" ~5.DV
~ ~

~

I /' V TA • 2."C
TA .. ere VVTA ·'S"C

-2 -, ., .2

INPUT VOLTAGE IV)

OUTPUT CURRENT vs.
OUTPUT "HIGH" VOLTAGE

Vee" +5.0V

TA " 75°C

T ... -a"c
TA -O"C

OUTPUT "HIGH" VOLTAGE (VI

DATA TO OUTPUT DELAY
vs. TEMPERATURE

Vee" +I.GV

",,'

,;':""," "'"""
......-- r--....

I

211 80

TE_ER"TURE C·CI

.3

'00

2-47

OUTPUT CURRENT VS. OUTPUT "LOW" VOLTAGE

c
!
>-
~
rr:
rr:
:>
u
>-

~
0

!
>

" ;;j
0
....
~
:>
0
0
>-

" !<
0

1
>
~ ..
0

~
0
0
>-..
~ z
>-a:
;I

'00r------,-------,------,-------,
Vee" +5.0V

8O~----~------_+------~----~

60

00

20

°o~--~~~-----L------~------J

so

00

30

20

'0

00

00

35

30

25

20

's

'0
-25

OUTPUT "LOW" VOLTAGE (VI

DATA TO OUTPUT DELAY
VS. LOAD CAPACITANCE

Vee ,·~s.ov
TA .. 25G e

... ---~ \---;. ----
~ f.--~-::.

so '00 'so 250

LOAD CAPACITANCE (pFI

WRITE ENABLE TO OUTPUT DELAY
VS. TEMPERATURE

Vee" +5.0V

I
~~ I -- . - \-

~~~<' 
1---- ........ ;:-i --

300 

...... _--
DS~< .--I--

I--

I 
I 

26 80 '00 

3212 



3212 

TYPICAL CONFIGURATIONS 

GATED BUFFER (TRI·STATE) 

VCC---r-------.----;:~~_, 
STB 

INPUT 
DATA 
(250 "A) 

;3212 

L-__________ ~ CLR 

GND 
GATING { 
CONTROL 
(DS1.DS2) ----------------' 

INPUT 
STROBE 

SYSTEM 
INPUT 

SYSTEM 
RESET 

INTERRUPTING INPUT PORT 

STB 

DATA 
BUS 

OUTPUT 
DATA 
(!5mAI 
(3.65V MINI 

t---- T~c~~~~ IE~W) 

SYSTEM 
INTERRUPT 

DR 
TO CPU 
INTERRUPT INPUT 

OUTPUT PORT (WITH HAND·SHAKING) 

DATA 
BUS 

,....------ OUTPUT STROBE 

STB 

SYSTEM OUTPUT 

SYSTEM RESET 

} 
PORT SELECTION 
(LATCH CONTROL) 1........::..:'--____ - (DS\.DS21 

2-48 

DATA 
BUS 

DATA BUS 
CONTROL 
(0: L - RI 
(I: R - LI 

BI·DIRECTIONAL BUS DRIVER 

.I.. 

STB 

'" 1 ;3212 

" I. ~ 

r-< CLR 

-- G~D L..-

STB 

;3212 V-

L 
.... 

CLR 

L-...J ~ 
GND 

,L 
DATA 

BUS 



The Intel"'3214 Interrupt Control Unit 
(ICU) implements multi-level interrupt 
capability for systems designed with 
Series 3000 computing elements. 

The ICU accepts an asynchronous in­
terrupt strobe from the 3001 Micro­
program Control Unit or a bit in 
microprogram memory and generates 
a synchronous interrupt acknowledge 
and an interrupt vector which may be 
directed to the MCU or CP Array to 
uniquely identify the interrupt source. 

The ICU is fully expandable in 8-level 
increments and provides the following 
system capabilities: 

Eight unique priority levels per ICU 

Automatic Priority Determination 

Programmable Status 

N-Ievel expansion capability 

Automatic interrupt vector genera­
tion 

SCHOTTKY 
BIPOLAR LSI 
MICROCOMPUTER 
SET 

High Performance - 80 ns Cycle Time 

Compatible with Intel 3001 MCU and 
3002 CPE 

8-Bit Priority I nterrupt Request Latch 

4·Bit Priority Status Latch 

3-Bit Priority Encoder with Opan 
Collector Outputs 

DTL and TTL Compatible 

8-Level Priority Comparator 

Fully Expandable 

24-Pin DIP 

2-49 

3214 
INTERRUPT 
CONTROL 
UNIT 

PACKAGE CONFIGURATION 

•• Vcc ., ECS ., R, 

SGS R. 

IA R, 

ClK R, 

ISE R, 

At R, 

A, R, 

A, R. 

EtR ENLG 

GNo " " ETLG 



3214 

PIN DESCRIPTION 

PIN 

1-3 

4 

5 

6 

7 

8-10 

11 

12 

13 

14 

15-22 

23 

24 

NOTE: 

SYMBOL 

SGS 

IA 

CLK 

ISE 

ELR 

GND 

ETLG 

ENLG 

ECS 

Vee 

NAME AND FUNCTION 

Current Status Inputs 

The Current Status inputs carry the binary value modulo 8 of the current 
priority level to the current status latch. 

Status Group Select Input 

The Status Group Select input informs the ICU that the current priority 
level does belong to the group level assigned to the ICU. 

Interrupt Acknowledge 

The Interrupt Acknowledge Output will only be active from the ICU 
(multi·ICU system) which has received a priority request at a level 
superior to the current status. It signals the controlled device (usually 
the processor) and the other ICUs OR·tied on the Interrupt Acknowledge 
line that an interrupt request has been recognized. 

The IA signal also sets the Interrupt Disable flip·flop (it overrides the 
clear function of the ECS input). 

Clock Input 

The Clock input is used to synchronize the interrupt acknowledge with 
the operation of the device which it controls. 

Interrupt Strobe Enable Input 

The Interrupt Strobe Enable input informs the ICU that it is authorized 
to enter the interrupt mode. 

Request Level Outputs 

When valid, the Request Level outputs carry the binary value (modulo 8) 
of the highest priority request present at the priority request inputs or 
stored in the priority request latch. The request level outputs can be­
come active only with the ICU which has received the highest priority 
request with a level superior to the current status. 

Enable Level Read Input 

When active, the Enable Level Read input enables the Request Level 
output buffers (Ao-A2)' 

Ground 

Enable This Level Group Input 

The Enable This Level Group input allows a higher priority ICU in multi­
ICU systems to inhibit interrupts within the next lower priority ICU 
(and all the following ICUs). 

Enable Next Level Group Output 

The Enable Next Level Group output allows the ICU to inhibit inter­
rupts within the lower priority ICU in a multi-ICU system. 

Priority Interrupt Request Inputs 

The Priority Interrupt Request inputs are the inputs of the priority 
Interrupt Request Latch, The lowest priority level interrupt request 
signal is attached to Ro and the highest is attached to R7. 

Enable Current Status Input 

The Enable Current Status input controls the current status latch 
and the clear function of the Interrupt Inhibit flip-flop. 

+5 Volt Supply 

(1) Active HIGH, unless otherwise noted. 

Active LOW 

Active LOW 

Active LOW 
Open·Coliector 
Output 

Active LOW 
Open·Coliector 

Active LOW 

Active LOW 

Active LOW 



3214 

FUNCTIONAL AND LOGICAL DESCRIPTION 

The ICU adds interrupt capability to 
suitably microprogrammed processors 
or controllers. One or more of these 
units allows external signals called 
interrupt requests to cause the pro· 
cessor/controller to suspend execution 
of the active process, save its status, 
and initiate execution of a new task 
as requested by the interrupt signal. 

It is customary to strobe the ICU at 
the end of each instruction execution. 
At that time, if an interrupt request is 
acknowledged by the ICU, the MCU is 
forced to follow the interrupt micro· 
program sequence. 

Figure 1 shows the block diagram of 
the ICU. Interrupt requests pass 
through the interrupt request latch 
and priority encoder to the magnitude 
comparator. The output of the pri· 
ority encoder is the binary equivalent 
of the highest active priority request. 
At the comparator, this value is com· 
pared with the Current Status (cur· 
rently active priority level) contained 
in the current status latch. A request, 
if acknowledged at interrupt strobe 
time, will cause the interrupt flip·flop 
to enter the "interrupt active" state 
for one microinstruction cycle. This 
action causes the interrupt acknowl· 
edge (lA) signal to go low and sets the 
interrupt disable flip·flop. 

El" 
ETlG 

", 
", 
", 
", 
", 
", 
", 
", 

., ., 

., 
SGS 

'CS 

I 
J 
1 
I 
I 

I 

I 
I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I 
I 
I 

I 

INTERRUPT 
REQUEST 

LATCH 

• PRIORITY 
ENCODER 

~ 

CURRENT 
STATUS 
LATCH 

'I' 

r~ 
DIS 

" 
-.:.l........ 

The IA signal constitutes the interrupt 
command to the processor. It can 
directly force entry into the interrupt 
service routine as demonstrated in the 
appendix. As part of this routine, the 
microprogram normally reads the reo 
questing level via the request level out· 
put bus. This information which is 
saved in the request latch can be en· 
abled onto one of the processor input 
data buses using the enable level read 
input. Once the interrupt handler has 
determined the requesting level, it 
normally writes this level back into the 
current status register of the ICU. This 
action resets the interrupt disable flip· 
flop and acts to block any further 
request at this level or lower levels. 

Entry into a macro level interrupt ser· 
vice routine may be vectored using the 
request level information to generate a 
subroutine address which corresponds 
to the level. Exit from such a macro· 
program should normally restore the 
prior status in the current status latch. 

The Enable This Level Group (ETLG) 
input and the Enable Next Level Group 
(EN LG) output can be used in a daisy 
chain fashion, as each ICU is capable 
of inhibiting interrupts from all of the 
following ICUs in a multiple ICU 
configuration. 

.......-
REaUEST ACTIVITY -

~~ - -

The interrupt acknowledge flip-flop 
is set to the active LOW state on the 
rising edge of the clock when the 
following conditions are met: 

An active request level (Ro-R7) is 
greater than the current status 
Bo-B2 

The interrupt mode (lSE) is active 

ETLG is enabled 

The interrupt disable flip·flop is reset 

When active, the IA signal asynchron· 
ously sets the disable flip·flop and 
holds the requests in the request latch 
until new current status information 
(BO-B2, SGS) is enabled (ECS) into 
the current status latch. The disable 
flip·flop is reset at the completion of 
this load operation. 

During this process, ENLG will be en· 
abled only if the following conditions 
are met: 

ETLG is enabled 

The current status (SGS) does not 
belong to this level group 

There is no active request at this level 

The request level outputs Ao-A2 and 
the IA output are open·collector to 
permit bussing of these lines in multi· 
ICU configuration. 

I 
I 
I 
I 

....r:- I 

:r- I 

::c- I ..... I 

At 

A, 

A, 
I 
I 

ENlG 

I '-- PRIORITV 

FD ~r;--;; .... 
F= 

COMPARATOR 

- INT 
..... 

I I--- ACK 
FF I 

r--c.S.!...... I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I IS' 

CLK L ___________________________________ ~ 

Figure 1. 3214 Block Diagram. 

2·51 



3214 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias 
Ceramic. . . . 
Plastic . . . . 

Storage Temperature 

All Output and Supply Voltages. 

All Input Voltages 

Output Currents . 

. -65°C to +75°C 

. . O°C to +75°C 

_65°C to + 160°C 

.-0.5V to +7V 

-1.0V to +5.5V 

. .. 100mA 

·COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not 
implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. 

TA = oOe to +75°C, Vcc = 5.0V ±5% 

SYMBOL PARAMETER 
LIMITS 

UNIT CONDITIONS 
MIN Typ(1) MAX 

Vc Input Clamp Voltage (all inputs) -1.0 V IC = -5 mA 

IF I nput Forward Current: ETLG input -.15 -0.5 mA VF = 0.45V 
all other inputs -.OS -0.25 mA 

IR Input Reverse Current: ETLG input 80 iJ.A VR = 5.25V 
all other inputs 40 iJ.A 

VIL Input LOW Voltage: all inputs 0.8 V VCC = 5.0V 

VIH Input HIGH Voltage: all inputs 2.0 V VCC = 5.0V 

ICC Power Supply Current (2) 90 130 mA 

VOL Output LOW Voltage: all outputs .3 .45 V 10L = 15 mA 

VOH Output HIGH Voltage: ENLG output 2.4 3.0 V 10H = -1 mA 

lOS Short Circuit Output Current: ENLG output -20 -35 -55 mA VCC = 5.0V 

ICEX Output Leakage Current: IA and 100 iJ.A VCEX = 5.25V 
AO-A2 outputs 

NOTES: 

11)Typical values are for T A = 25°C and nominal supply voltage. 

12)80-82, SGS, ClK, R0-R4 grounded, ali other inputs and ali outputs open. 

2·52 



3214 

A.C. CHARACTERISTICS 

TA z DoC to +75°e. Vee - +5V ± 5% 

SYMBOL PARAMETER 
liMITS 

UNIT 
MIN TYP(1) MAX 

ttv ClK Cycle Time 80 ns 

tpw ClK, ECS, IA Pulse Width 25 15 ns 

Interrupt Flip-Flop Next State Determination: 

tlSS ISE Set-Up Time to ClK 16 12 ns 

tlSH ISE Hold Time After ClK 20 10 ns 

tETCS2 ETlG Set-Up Time to ClK 25 12 ns 

tETCH 2 ETlG Hold Time After ClK 20 10 ns 

tECCS3 ECS Set-Up Time to ClK (to clear interrupt inhibit prior to ClK) 80 25 ns 

tECCH 3 ECS Hold Time After ClK (to hold interrupt inhibit) 0 ns 

tECRS3 ECS Set-Up Time to ClK (to enable new requests through the request latch) 110 70 ns 

tECRH 
3 ECS Hold Time After ClK (to hold requests in request latch) 0 

tECSS2 ECS Set-Up Time to ClK (to enable new status through the status latch) 75 70 ns 

tECSH 2 ECS Hold Time After ClK (to hold status in status latch) 0 ns 

tDCS2 SGS and B0-82 Set-Up Time to ClK (current status latch enabled) 70 50 ns 

tDCH2 SGS and 80-B2 Hold Time After ClK (current status latch enabled) 0 ns 

tRCS3 R0-R7 Set-Up Time to ClK (request latch enabled) 90 55 ns 

tRCH3 R0-R7 Hold Time After ClK (request latch enabled) 0 ns 

tiCS IA Set-Up Time to ClK (to set interrupt inhibit F_F. before ClK) 55 35 ns 

tCI ClK to IA Propagation Delay 15 25 ns 

Contents of Request Latch and Request Level Output Status Determination: 

tRIS4 R0-R7 Set·Up Time to IA 10 0 ns 

tRIH4 R0-R7 Hold Time After IA 35 20 ns 

tRA R0-R7 to A0-A2 Propagation Delay (request latch enabled) 80 100 ns 

tELA ElR to A0-A2 Propagation Delay 40 55 ns 

tECA ECS to A0-A2 Propagation Delay (to enable new requests through request latch) 100 120 ns· 

tETA ETlG to A0-A2 Propagation Delay 35 70 ns 

2-53 



3214 

A.C. CHARACTERISTICS (CON'T) 

SYMBOL 

NOTES: 

PARAMETER 

Contents of Current Priority Status Latch Determination: 

SGS and B0-B2 Set-Up Time to ECS 

SGS and 80-82 Hold Time After ECS 

Enable Next Level Group Determination: 

R0-R7 to EN LG Propagation Delay 

ETLG to EN LG Propagation Delay 

ECS to ENLG Propagation Delay (enabling new request through the 
request latch) 

ECS to ENLG Propagation Delay (enabling new SGS through status latch) 

(11 Typical values are for TA = 25°C and nominal supply voltage. 

(2) Required for proper operation if ISE is enabled during next clock pulse. 

(3) The~e times are not required for proper operation but for desired change in interrupt flip-flop. 

(4) Required for new request or status to be properly loaded. 

(5) tCY = tiCS + tCI 

MIN 

15 

15 

TEST CONDITIONS: TEST LOAD CI RCUIT 

Input pulse amplitude: 2_5 volts_ 

Input rise and fall times: 5 ns between 1 and 2 volts_ 

Output loading of 15 mA and 30 pf_ 

LIMITS 
Typ(l) 

10 

10 

45 

20 

85 

35 

300n 

Speed measurements taken at the 1_5 V levels_ 
OUT 0---..--------; 

CAPACITANCE(5) 

SYMBOL PARAMETER 

Input Capacitance 

Output Capacitance 

TEST CONDITIONS: 
VBIAS = 2_5V, Vee = 5V, TA = 25°C, f = 1 MHz 

NOTE: 

(5)This parameter is periodically sampled and not 100% tested_ 

3001 

MIN 

2-64 

lOOn 

LIMITS 
Typ(l) 

5 

7 

MAX 
UNIT 

ns 

ns 

70 ns 

25 ns 

90 ns 

55 ns 

MAX 
UNIT 

10 pf 

12 pf 



D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias 
CerDip . . . . . 

Storage Temperature 

All Output and Supply Voltages. 

All Input Voltages 

Output Currents . 

-55°C to +125°C 
-65°C to +160°C 

. . -0.5V to + 7V 

. -1.0V to +5.5V 

.•.•. 100mA 

·COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device: This is a stress rating only 
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not 
implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. 

TA = _55°C to +125°C; Vee = 5.0V ± 10% 

SYMBOL PARAMETER 
LIMITS 

UNIT CONDITIONS 
MIN TYPO) MAX 

Vc Input Clamp Voltage (all inputs) -1.2 V IC = -5 mA 

IF I nput Forward Current: ETLG input -.15 -0.5 mA VF = 0.45V 
all other inputs -.08 -0.25 mA 

IR I nput Reverse Current: ETLG input 80 /lA V R = 5.5V 
all other inputs 40 /lA 

V IL Input LOW Voltage: all inputs 0.8 V VCC = 5.0V 

VIH Input HIGH Voltage: all inputs 2.0 V VCC = 5.0V 

ICC Power Supply Current(2 ) 90 130 mA 

VOL Output LOW Voltage: all outputs .3 .45 V 10L = 10mA 

VOH Output HIGH Voltage: ENLG output 2.4 3.0 V 10H = -1 mA 

lOS Short Circuit Output Current: ENLG output -15 -35 -55 mA VCC= 5.0V 

ICEX Output Leakage Current: IA and 100 /lA VCEX = 5.5V 
A0-A3 outputs 

NOTES: 

(1)Typical values are for T A = 2SCl C and nominal supply voltage. 

12)80-82' SGS. elK. R0-R4 grounded. all other inputs and all outputs open. 

2·55 



3214 M41 
A.C. CHARACTERISTICS 

. ~r4RV· 

TA=-55°Cto+125°C; vee =5.0V± 10% 

SYMBOL PARAMETER 
LIMITS 

UNIT 
MIN Typ(l) MAX 

tcy ClK Cycle Time l51 85 ns 

tpw ClK. ECS. IA Pulse Width 25 15 ns 

Interrupt Flip-Flop Next State Determination: 

tlSS ISE Set-Up Time to ClK 16 12 ns 

tlSH ISE Hold Time After ClK 20 10 ns 

tETCS2 ETlG Set-Up Time to ClK 25 12 ns 

tETCH 2 ETlG Hold Time After ClK 20 10 ns 

tECCS3 ECS Set-Up Time to ClK (to clear interrupt inhibit prior to ClK) 85 25 ns 

tECCH 3 ECS Hold Time After ClK (to hold interrupt inhibit) 0 ns 

tECRS3 ECS Set-Up Time to ClK (to enable new requests through the request latch) 110 70 ns 

tECRH 
3 ECS Hold Time After ClK (to hold requests in request latch) 0 

tECSS2 ECS Set-Up Time to ClK (to enable new status through the status latch) 85 70 ns 

tECSH 2 ECS Hold Time After ClK (to hold status in status latch) 0 ns 

tDCS2 SGS and B0-B2 Set-Up Time to ClK (current status latch enabled) 90 50 ns 

tDCH 2 SGS and B0-82 Hold Time After ClK (current status latch enabled) 0 ns 

tRCS3 R0-R7 Set-Up Time to ClK (request latch enabled) 100 55 ns 

tRCH 3 R0-R7 Hold Time After ClK (request latch enabled) 0 ns 

tiCS IA Set-Up Time to ClK (to set interrupt inhibit F.F_ before ClK) 55 35 ns 

tCI ClK to IA Propagation Delay 15 30 ns 

Contents of Request Latch and Request Level Output Status Determination: 

tRIS4 R0-R7 Set-Up Time to IA 10 0 ns 

tRIH4 R0-R7 Hold Time After IA 35 20 ns 

tRA R0-R7 to A0-A2 Propagation Delay (request latch enabled) 80 100 ns 

tELA ElR to A0-A2 Propagation Delay 40 55 ns 

tECA ECS to A0-A2 Propagation Delay (to enable new requests through request latch) 100 130 ns 

tETA ETlG to A0-A2 Propagation Delay 35 70 ns 

2-56 



A.C. CHARACTERISTICS (CON'T) 

SYMBOL 

tECSN 

NOTES: 

PARAMETER 

Contents of Current Priority Status Latch Determination: 

SGS and B0-B2 Set-Up Time to ECS 

SGS and B0-82 Hold Time After ECS 

Enable Next Level Group Determination: 

R0-R7 to EN LG Propagation Delay 

ETLG to ENLG Propagation Delay 

ECS to ENLG Propagation Delay (enabling new request through the 
request latch) 

ECS to EN LG Propagation Delay (enabling new SGS through status latch) 

111 Typical values are for TA = 25°C and nominal supply voltage. 

121 Required for proper operation if ISE is enabled during next clock pulse. 

(3) These times are not required for proper operation but for desired change in interrupt flip-flop. 

(4) Required for new request or status to be properlv loaded. 

(51 tCY = tiCS + tCI 

MIN 

20 

20 

TEST CONDITIONS: TEST LOAD CIRCUIT 

Input pulse amplitude: 2.5 volts. 

Input rise and fall times: 5 ns between 1 and 2 volts. 

Output loadi ng of 15 rnA and 30 pf. 

LIMITS 
TYP(1) 

10 

10 

45 

20 

85 

35 

Vce 

300n 

Speed measurements taken at the 1.5V levels. 
OUT O--~-------1 

CAPACITANCE(5) 

SYMBOL PARAMETER 

Input Capacitance 

Output Capacitance 

TEST CONDITIONS: 
VBIAS = 2.5V, VCC = 5V, TA = 25°C, f = 1 MHz 

NOTE: 

(S)This parameter is periodically sampled and not 100% tested. 

30 pI 

MIN 

2-57 

LIMITS 
TYP(1) 

5 

7 

MAX 
UNIT 

ns 

ns 

70 ns 

30 ns 

110 ns 

55 ns 

MAX 
UNIT 

10 pf 

12 pf 



3214 

WAVEFORMS 

0 0 0, '(u---------------x x-------
• ______ J 'OCS 'ocH','-.;;;;---;07/1 

------- --, r--- -----------
~ ~ X 

-------+--Ji~--------- -J1''-----r----------
teres 'ETCH 

ISE ------- --------ylX----------------
------4---~------J.;I~ _J

1 

'ISS IISH 

r---- , r-~ 

SGS '0', JI~+~EJ~ -------J~~,~D~HJ '-I-.-~.-EC-SS-.-EC-SH-I--
"""\ Ir+---+~, ~--+,I 

ECS i'--J lEeRS =± '-_+--J 
'PW I-~."""~--f -- tecRH 

_.j::~::j:::j:==1==1==~EC~C"-S--- leeCH ICY 

CLK 

"CRN ~i 'CI ~ 
r-----, 

_________ __________ J~ I~ __ _ 
I tpw 

-:~~-- ------)(I~--------------
IA -----

ELO 

-+--...j::j::-:::-=I=I-:-:,!.,-ar +----- ~L: __ ,I~ ___ _ 
-.-- .... -IETEN.I '--+-________ J '- _______ _ 

OEN ------
tecsN 

ENLG -------------------------~)(--------------)(------

TYPICAL CONFIGURATIONS 

The ICU has been designed for use 
with the INTEL Series 3000 Bipolar 
Microcomputer Set. It operates from 
the single common system clock and 
can accept an interrupt strobe (lSE) 
generated by the 3001 Micropgoram 
Control Unit or by a bit in micropro' 
gram memory as shown in Figures 2 
and 3. 

The ICU responds to interrupt reo 
quests of sufficient priority by enter· 
ing the interrupt active mode. Its 
output (lA) can be tied to the row 
enable input (ERA) of the 3001 MCU. 
This gates an alternate row address 
onto the microprogram memory ad· 

dress bus which forces the system to 
execute an interrupt handling routine. 
Alternatively, the ICU output can be 
used to directly modify the MCU jump 
instruction (AC inputs) so that the 
next microprogram address corresponds 
to the start of the interrupt routine 
rather than the start of the macroin· 
struction fetch sequence. Of course, 
in the case of this particular imple· 
mentation, the interrupt strobe must 
be generated one clock period earlier 
and the ISE output of the MCU 
should not be used. 

As shown in Figure 4, when several 
ICUs are used together to provide a 

2-58 

multiple of 8 priority levels, most con· 
trollines will be bussed. The Intel 
3205 Decoder may be used to decode 
the high order bits of the request level, 
the information being derived from 
the daisy·chain group level signals. 

As mentioned in the functional descrip­
tion, the request level information 
(Ao-A2) may be sent to the 3001 MCU 
or the 3002 CP array as a constant 
through the Mask (K) bus or as data 
through the memory (M) or data (I) 
busses. Similarly, the status informa­
tion can be generated by the CP array 
and carried to the ICU by the data (D) 
output bus of the CP array. 



TYPICAL CONFIGURATIONS (CON'T) 

MIC;:AOf'ROGRAM 
MEMORY 

AAM-31G1.lI01 
ROM-3)(11,\,3304. 
"ROM-lIIIl,3IIM 

MICRO·INSTRUCTION 
TOct'ARRAY. 

110 AND M"IN MEMOFlY 

Figura 2. Interfacing 3214 with 3001. 

Interrupt strobe generated by MCU. 
Interrupt routine start address at column 15 row 31. 
Macro-instruction fetch start address at column 15 row 0. 

.. "VHOW{ INTERRUPT 
RIOUIS" 
IHIO"II' 
PRIORITY 

OROlWl 

.. "V, LOW { INTEIIHU" 
REOUESTS 

12ND HIGHEST 
"UOfUTY 

GROUPI 

AC"VHOW{ INTERRUPT 
REOUESTS 

ILOWEST 
I'RIORITY 

GROUPI 

l ".. 

... 
~J .. ., 

: ICU1.t.o 

.. rnI ,. 
'G, OI. 

r-- l:r ENLO-

e--' m-
r-~ 

I 
,III 

i 
CU""IJIITITATUS 
If"" CI' ""RAYI 

r;--
.' ElLG ., ., 

ICUI AO .. "" I. -
SG$ 

OS. r-
- 112 ENlG 
_. 
-~ 1 

L..J... 

~f-[J ., ., 
: ICUO Ao .. "" f-r-I. r-

'GS ISE f- r-
::'.' ENLG ... 

I 

~ 

tHAIU CURRENT 
STATUI 

1m 

MICROPROGRAM 
MEMORY 

RAM -3101,3107 
"OM-3301A, 3304" 
I'ROM -1801.3104 

MlCRO·INSTRUCTION 
TOct'ARRAY, 

110 AND MAIN MEMORY 

AC'I===::;l 

Figura 3. Interfacing 3214 with 3001. 

3214 

I nterrupt strobe generated by the microprogram memory. 
Interrupt routine start address at column 14 row 0-
Macro-instruction fetch start address at column 15 row 0 . 

III 

r;:::=: 
r;::: 

r-

-
r--
r--

}a~. 
r----
A, ETlO ., ., -

32.4 Ao -
1CUfi'R_ 

I. 
A. 

ISE~ 

~l 

_,v 

ENABLE LEVEL READ 

INT ACKNOWLEDGE 
{TO ERA"'" Of MCUI 
INT STROBE FROM MCU OR 
MICROPROGRAM MEMORY 

Figura 4. Using Several 3214 Interrupt Chips to Provide more than Eight Priority Levels. 
(The 3214 at the upper right is used to encode the high order bits of the requesting level) 

2-59 



intel 

The INTE~3216 is a high-speed 4-bit 
Parallel, Bidirectional Bus Driver. Its 
three-state outputs enable it to isolate 
and drive external bus structures 
associated with Series 3000 systems 

The INTEL 3226 is a high-speed 4-bit 
Parallel, Inverting Bidirectional Bus 
Driver_ Its three-state outputs enable 
it to isolate and drive external bus 

structures associated with Series 3000 
systems_ 

The 3216/3226 driver and receiver gates 
have three state outputs with PNP 
inputs_ When the drivers or receivers 
are tri-stated the inputs are disabled, 
presenting a low current load, typically 
less than 40 /lamps, to the system bus 
structure_ 

LOGIC DIAGRAM 3216 

010 o----~I>-~---, 

DOoo-----i----<O----i----' 

0" o----j---jl>---j---, 

oo,o-----i----<O----i----' 

01, o-----i-~I>----i---, 

DO,o----j----<c.t----j----' 

OI,o----j---jI>---j---, 

DO,o----j----<c.t----j----' 

SCHOTTKY 
BIPOLAR LSI 
MICROCOMPUTER 
SET 

3216/3226 
PARALLEL 
BIDIRECTIONAL 
BUS DRIVER 

High Performance- 25 ns typical 
propagation delay 

PACKAGE CONFIGURATION 

Low Input Load Current-O_25 mA 
maximum 

High Output Drive Capability for 
Driving System Data Busses 

Three-State Outputs 

TTL Compatible 

16-pin DIP 

cs 

000 

DBa 

01 0 

DO, 

DB, 

01, 

GND 

INTEl@ 
3216 

3216 

3226 

LOGIC DIAGRAM 3226 

DIOO------jl>o>---j---, 

000 o--~--o<O-~----' 

01, 0---+--1:><>--+--, 

DD,o----j--<>O---j----' 

OI,o----j---jI>o>---j---, 

DO,o----j--<><Ct---+----' 

DD,o----j--o<Ct---+----' 

vcc 

DCE 

'4 003 

'3 DB3 

'2 01 3 

11 0°2 

'A DB2 

01 2 

OBO 

DB, 

DB, 

L----r-~-~cs 

DCE o--~-------' DCE 0---+--------' 

2-61 



3216/3226 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias 

Ceramic. 

Plastic 

Storage Temperature 

All Output and Supply Voltages. 

All Input Voltages 

Output Currents . 

_65°C to +75°C 

O°C to +75°C 

-65°C to +160°C 

-0.5V to +7V 

-1.0V to +5.5V 

125mA 

*COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is 
not implied. 

TA = O°C to +75°C, Vee = +5.0V ±5% 

Limit 
Symbol Parameter Min. Typ. Max. Unit Condition 

IF Input Load Current 
DCE, CS Inputs -0.15 -0.5 mA VF = 0.45V 
All Other Inputs -0.08 -0.25 mA 

IR Input Leakage Current 
DCE, CS Inputs 80 JlA VR = 5.25V 
01 Inputs 40 JlA 

Ve Input Clamp Voltage -1 V Ie = -5mA 

VIL Input Low Voltage 0.95 V Vee = 5.0V 

VIH Input High Voltage 2.0 V Vee = 5.0V 

VOLl Output Low Voltage 0.3 0.45 V DO Outputs 10L =15mA 
DO, DB Outputs DB Outputs 10L =25mA 

VOL2 Output Low Voltage 0.5 0.6 V DB Outputs 10L = 50mA 
DB Outputs Only 

VOHI Output High Voltage 3.65 4.0 V 10H=-lmA 
DO Outputs Only 

VOH2 Output High Voltage 2.4 3.0 V IOH=-10mA 
DB Outputs Only 

ISC Output Short Circuit Current 
DO Outputs -15 -35 -65 mA Vee =5.0V 
DB Outputs -30 -75 -120 mA 

1101 Output Leakage Current 
High I mpedance State 

DO Outputs 20 JlA Vo=0.45V /5.25V 
DB Outputs 100 JlA 

lee Power Supply Current 3216 95 130 mA 
3226 85 120 mA 

NOTE: TYPical values are for T A = 25°C 

2-62 



A.C. CHARACTERISTICS TA % O°C to +75°C, Vcc % +5.0V ±5% 

Symbol 

TpD' 

TpD2 

TE 

Parameter 

Input to Output Delay 
DO Outputs 

Input to Output Delay 
DB Outputs 

Output Enable Time 
DCE, CS 

Output Disable Time 
DCE, CS 

Min. 

3216 
3226 

3216 
3226 

3216 
3226 

NOTE: (1) Typical values are for TA = 25°C and nominal supply voltage. 

Limit 
Typ. 

15 
14 

19 
16 

42 
36 

16 

Max. Unit 

25 ns 
25 

30 ns 
25 

65 ns(21 

54 

35 ns(2) 

3216/3226 

Condition 

CL %30pF, R, %300n, 
R2%600n 

CL %300pF, R,%90n, 
R2%1BOn 

DO Outputs: CL %30pF, 
R,%300!U10Kn, 
R2%600nJ1Kn 

DB Outputs: CL %300pF, 
R,%90n/10Kn, 
R2%180nJ1 Kn 

DO Outputs: CL %5pF, 
R,%3QOnI10Kn, 
R2%600n/1Kn 

08 Outputs: CL %5pF, 
R,%90n/10Kn, 
R2%180n/1Kn 

(2) The test load circuit is set for worst case source and sink loading on the outputs. The two resistor values for Rl and R2 correspond to 
worst case sink and source loading, respectively. 

CAPACITANCE 12) TA = 25°C 

Limit 
Symbol Parameter Min. Typ. Max. Unit 

GIN I nput Capacitance 4 6 pF 

GoUT Output Capacitance 
DO Outputs 6 10 pF 
DB Outputs 13 18 pF 

Note: 
(2) This parameter is periodicallv sampled and is not '00% tested. 

Condition 01 measurement is 1 % , MHz. VBIAS % 2.5V, 
VCC = 5.0V and TA % 25°C. 

WAVEFORMS 

INPUTS 

OUTPUT 
ENABLE 

ourP'UTS 1.5V 

x_v 
I 

¥. 
'pd 

"I 
1.SV 

" 

"I J( 

2·63 

TEST CONDITIONS: 

Input pulse amplitude of 2.5V. 
I nput rise and fall times of 5 ns between 1 and 2 volts. 
Output loading is 5 mA and 10 pF. 
Speed measurements are made at 1.5 volt levels. 

TEST LOAD CI RCUIT: 

., 
OUT o--~-----~ 

., 

GNO 

O.5V 



3216/3226 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias 

Ceramic. . . . 

Storage Temperature 

All Output and Supply Voltages. 

All I nput Voltages 

Output Currents . 

-0.5V to +7V 

-1.0V to +5.5V 

125mA 

·COMMENT: Stresses above those listed under" Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is 
not implied. 

TA = -55°C to +125°C, Vee = +5.0V ±10% 

Limit 
Symbol Parameter Min. Typ. Max. Unit Condition 

IF I nput load Current 
DCE, CS Inputs -0.15 -0.5 mA VF = 0.45V 
All Other Inputs -0.08 -0.25 mA 

IR Input Leakage Current 
DCE, CS Inputs 80 /lA VR = 5.5V 
01 Inputs 40 /lA 

Ve Input Clamp Voltage -1.2 V Ie = -5mA 

VIL Input low Voltage M3216 0.95 V Vee = 5.0V 
M3226 0.90 V 

VIH Input High Voltage 2.0 V Vee = 5.0V 

VOLI Output Low Voltage 0.3 0.45 V DO Outputs 10L =15mA 
DO, DB Outputs DB Outputs 10L =25mA 

VOL2 Output Low Voltage 0.5 0.6 V DB Outputs 10L = 45mA 
DB Outputs Only 

VOH1 Output High Voltage 3.4 3.8 V IOH=-0.5mA 
DO Outputs Only IOW-2.OmA 

VOH2 Output High Voltage 2.4 3.0 V Iow-5mA 
DB Outputs Only 

ISC Output Short Circuit Current 
DO Outputs -15 -35 -65 mA Vee = 5.0V 
DB Outputs -30 -75 -120 mA 

1101 Output Leakage Current 
High I mpedance State 

DO Outputs 20 /lA Vo=0.45V/5.5V 
DB Outputs 100 /lA 

lee Power Supply Current M3216 95 130 mA 
M3226 85 120 mA 

NOTE: Typical values are lor T A = 2S'e 

2·64 



-------------------------------~~ A.C. CHARACTERISTICS TA = _55°C to +125°C, vcc = 5.0V ±10% 

Symbol Parameter Min. 

TpDl Input to Output Delay 
DO Outputs 

TpD2 Input to Output Delay M3216 
DB Outputs M3226 

TE Output Enable Time M3216 
M3226 

TO Output Disable Time M3216 
M3226 

NOTE: (1) Typical values are lor T A = 25°C and nominal supply voltage. 

Limit 
Typ. 

15 

19 
16 

42 
36 

16 
16 

Max. 

25 

33 
25 

75 
62 

40 
38 

Unit 

ns 

ns 

ns(2) 

ns(2) 

Condition 

CL =30pF, Rl =3000, 
R2=6000 

CL=300pF, Rl=90~ 
R2=1800 

DO Outputs: CL =30pF, 
R 1 =3000/1 OKO, 
R2=6000/1KO 

DB Outputs: CL =300pF, 
Rl=900/10KO, 
R2=1800/1KO 

DO Outputs: CI,. =5pF, 
R 1 =3000/1 OKO, 
R2=6000/1 KO 

DB Outputs: CL =5pF, 
R 1 =900/1 OKO, 
R2=1800I1KO 

(2) The test loed circuit is set lor worst case source and sink loading on the outputs. The two resistor values for Rl and R2 correspond to 
worst case sink and source loading, respectively. 

CAPACITANCE(2) TA = 2SoC 

Limit 
Symbol Parameter Min. Typ. Max. Unit 

CIN I nput Capacitance 4 6 pF 

toUT Output Capacitance 
DO Outputs 6 10 pF 
DB Outputs 13 18 pF 

Note: 
(2) This parameter is periodically sampled and is not 100% tested. 

Condition 01 measurement is 1= 1 MHz, VBIAS = 2.5V, 
Vcc = 5.0V and T A = 25° C. 

WAVEFORMS 

TEST CONDITIONS: 

Input pulse amplitude of 2.SV. 
Input rise and fall times of S ns between 1 and 2 volts. 
Output loading is 5 mA and 10 pF. 
Speed measurements are made at 1.5 volt levels. 

TEST LOAD CIRCUIT: 

A, 

OOT~ __ ~--------~ 

A, 

INPUTS ____ --'X\.'_5V......, ______________ _ 
I· Ipd • I OND 

~~!:~~ _XI.~~I'_'V ---JL 
- 'E I ~ T xr---->== =r V

OH 

-----------' I VOL 

OUTPUTS 1.5V 

O.5V 

2-65 





Series 3000 
System Timing 
Considerations 

by Gary Fielland 

While the timing for each component in Intel's 3000 
Series Schottky Bipolar Microcomputer Set is clearly 
specified, the composite system timing must be de­
rived. This system timing is highly dependent on the 
particular configuration implemented, and hence, 
must be carefully considered for each implementa­
tion. 

Though Intel cannot generate the system timing for 
every possible configuration, an effort has been 
made to study a few simple variations. By examining 
these examples and taking note of considerations 
given, it should be easier for the system designer to 
realize those times which are critical, and to gene­
rate the appropriate timing for his particular system. 

The designer must consider many different factors in 
determining this "proper" system timing. Several 
simplifications are made to facilitate this discussion. 
Intel commercial grade parts are specified over a 
wide temperature range (O°C - 70°C) and so varia­
tions in timing due to temperature will not be con­
sidered, except for a short note at the end. 

Whenever a signal must traverse a conductor between 
two points, there is a finite delay introduced into 
the signal path that is not accounted for by any data 
sheet. This is the delay due to such factors as the 

MICRO· 
PROGRAM 

System Timing 

length of the conductor, its transmission properties, 
and the characteristics of the driver and receiver. 
When a TTL totempole output drives a TTL input a 
short distance away this delay is usually negligible 
compared to other delays in the signal path. How­
ever, if there are many loads (increasing the capaci­
tance), or the driver is of the open-collector type 
(limiting the drive), or if the receiver is physically far 
removed, the designer should consider and allow for 
any possible deleterious effects of this delay. For this 
discussion, except in one special case, the delay in­
troduced by interconnection is not considered. 

Aside from these simplifications, it should be realized 
that this note is not an extensive study of the timing 
of any particular system, but rather a compendium 
of typical considerations which a designer might 
examine. 

Consider the basic "data sheet" I6-bit processor con­
figuration as shown in Figure 1. It utilizes pipeline 
registers, full carry look-ahead, and a priority inter­
rupt mechanism. To implement any such system the 
designer must be very careful to provide the proper 
timing for all components under all possible operat­
ing conditions. Such a system is highly complex and 
the analysis is best approached in a piecemeal fashion. 

t t 
PIPELINE F)1.6 "oUT DOUT "N 

MEMORY REGISTERS K BUS 16 BIT M,N I---

INTERRUPT 

STEM SY 
CL OCK 

VECtOR 
+Vcc 

j 1 
CK AB·2 

ICU 
ISE I--

3214 

IAI------

RiI·7 B8'·2 

INTEJRUPT 
t 

REQUESTS 

16 3601·1·S 
OR I---4 3604'S 

ADDRESS 

l 
CK MA8·4 MA3·B 

ISE 
AC6-9 --

MCU FC9·3 
3001 FO 

ERA 
FI 

SX9·PX7 

t 

Figure 1. Basic 16-Bit Processor Configuration 

74S174 

I 

3-1 

CK 

I 
MEMORY 

DATA 

CK 

,..- LI CI 

t 
E C" 

J~"+' Cn+8 

CPE ARRAY 
3OO2'S 

XY 

1 
CARRY XY 

LOOK-AHEAD 
3003 

ROI---

Cli-

C"~ 

OTHER 
DATA 



System Timing 

ARITHMETIC DELAY PATHS 

First an analysis will be made of the arithmetic paths 
and delays. Imagine cycles in which arithmetic is 
being done within the CPE array. The carrys must 
have time to propagate through the arithmetic por­
tion and reach the MCU so that a conditional jump 
may be made based on that carry out bit. For the 
moment ignore other critical paths, and examine 
Figure 2 which illustrates these arithmetic cycles. 

The cycle begins with the rising edge of the system 
clock as it clocks the pipeline registers. After the de­
lay (tpLR) introduced by the pipeline, the function 
is available at the CPE array. There is a delay (tXF) 
while all the CPE's decode the function and generate 
their X and Y outputs for the operation. Once the X 
and Y outputs are stable, the Carry Look-Ahead cir­
cuit takes some time (txC> to simultaneously gener­
ate all the carry outputs, including the one which 
goes to the MCU flag input. Time must be provided 
to allow for the carry-input setup time of the CPE's 
(tss) and the MCU (tsI). Finally, adding in enough 
time for the clock pulse, which acts as a write pulse 
for the CPE register array, the cycle time is deter­
mined. Note the time for the MCU flag output to 
stabilize (tKO) was ignored as it is not a limiting 
specification for this configuration. 

tCYCLE = tPLR + tXF + txc + tss + twp 

Keeping the same train of thought, consider indi­
vidually the effects of variants from the configuration 
of Figure 1. If full carry look-ahead is not used and 
the carry is allowed to ripple through only the last 
slice, an additional delay path is introduced. After 
the 3003 has generated the carry outputs there is the 
CPE carry-in setup time (tSS) which must be met as 
before. However, the carry-out of the last slice will 
not be available to the MCU flag input until it has 
rippled through (tCe> that slice. Finally, the MCU 
flag input setup time (tsI) must be satisfied. 

tCYCLE = tpLR + tXF + txc + tcc + tsI + twp 

If the 3003 Look-Ahead Carry circuit is not used, 
there will be considerable delay added to the basic 
cycle due to ripple carry time. Once the CPE func­
tion-inputs are stable, the function must be decoded 
and the carry-out of the least significant slice gene­
rated (tCF)' The carry must ripple through six slices 
(6* tCC) and meet the carry setup time (tsS) of the 
most significant slice. However, it must also ripple 
through this last slice (tCC) and meet the MCU flag 
input setup time which is a more severe restriction. 

tcYCLE = tPLR + tCF + (7* tCC) + tSI + twp 

u u 
• 1 ' 

CLOCK 

~~~ ~~~ 
FUNCTION *-------------------..;.I--C
INPUTS ----------- I i

X. Y. RO
OUTPUTS

CARRY
INPUTS

FLAG
INPUT

j-----tXF~:

r--------------------------
i I i'xc---+\---'sS-1

------------------------~------~
i t l

_tcc --'

================================== -'SI--~-i-----------
tPLR elK t to pipeline register outpUts (745174) 17 "sec
'XF function inputs to X,Y,RD outputs 52

'XC Lookahead - X. V inputs to carry OUtputl 20

'SS Data set-up time, LI &: CI 27

'CC Ripple carry lei to CO) delay 25

NOTE: tce included only if carry ripples through lalt slice.

'SI Flag input set"lJP time '5

'WP Clock pulse width 33

tCYCLE Full fast carry tpLA + tXF + txc + tss + tw'P '49
last slice ripple tPLR + tXF + txc + tce + tSI + tw'P '62

If pipeline ragistersare not used; replace tPLA with the sum of teo (eLKt to M~ outputs,

44 nsec) plus tROM (access time; 50 nsec for 3601-1, 70 nsec for 3604).

If 3003 fast carry is not used; replace tXF with teF (function IN to eo output, 85 nsec);

replac8tXe + tee with (N-l)-tee. where "N" is the number of stices used.

Figure 2. Non-Interrupt 16-Bit Processor Cycle Timing

3-2

If pipeline registers are not used, there will be addi­
tional delay. It takes some time (tCO) after the ris­
ing edge of the clock for the next address to propa­
gate through the MCU address register and buffers.
Then, when this address is stable the ROMs must be
accessed and there will be a delay (tROM' access
time) before their output and hence the CPE func­
tion-input is stable. Thus, the cycle time for a non­
pipelined system with carry look-ahead is:

tCYCLE = tco + tROM + tXF + txc + tss + twp

In the previous discussion it was assumed that the
operands in the arithmetic operations were internal
registers and the K-bus as implemented. If one of the
operands is the M-bus or the I-bus, additional con­
sideration should be given. This situation will typ­
ically arise at the completion of a Memory-Read or
Input cycle. Typically, these cycles are implemented
such that the processor clock stops in its high state
to wait for the data to be available, while the pro­
cessor is in the midst of executing an LMM or similar
instruction. Thus, it is often the case that the pipe­
line registers have long since been accessed and the
function decoded.

Then, when the data becomes available a clock pulse
is issued and normal operation continues. It is the
time from the point the data becomes available until
the clock pulse is issued (Data Input Setup Time)
that is of concern here.

CLOCK

DATA
INPUTS

x, V
OUTPUTS

-t 'xo"-

System Timing

Consider first a special case. Namely, the data is in­
put via an LTM instruction and no test will be made
on the carry-output. This implies that for this specific
instruction, carry propagation is unimportant and it
is acceptable to have an erroneous carry-output. For
such a case, it is sufficient to only allow for the
CPE data setup time (tDS)'

tSETUP = tDS

For the more general case where arithmetic is done
on input and the carry-output may be tested, the
above analysis is incomplete. While the above condi­
tion must be met, it is no longer the determining fact­
or. Time must be allowed for carry propagation.
See Figure 3, which illustrates this case.

From the point in time when the data becomes stable
at the CPE inputs, there is a delay (tXD) while the
CPE generates the X and Y outputs. If Ripple Carry
is employed, the delay (tCD) is in waiting for the
carry-output of the least significant slice. After
either of these delays the rest of the setup time is
allocated analogously to that depicted in Figure 2
and discussed previously in relation to arithmetic
cycle times.

tSETUP (Basic) = tXD + txc + tss

tsETUP (Last Slice Ripple) = tXD + txc + tcc + tsI

tsETUP (Ripple Carry) = teD + (7* tCe> + tSI

tsETUP (No Pipeline) - Same as Basic

I t=
-'xc-I' '"

CARRY
INPUTS

FLAG
INPUT

X
·I~,cc~

I

\'=tSI-_
I

tXD Data inputs to X.V outputs

tHX SX,PX input hold time

tSET-UP Full fast carry txo + txc + t55

LIlt slice ripple tXD + txc + tee + tSI

If 3003 fast carry is not used; replace tXD with tCD (data input to CO output, 55 nsec);

42 nsec

20

89
102

replace txc + tee with (N-ll-tCC then tSET-UP fripple carryl. 245

NOTE: This diagram is UMJ.lly of concern only in relation to memory-read, or input

cycles.

Fillur.3. 16-Bit Processor Data Input Set-Up Times

3-3

System Timing

CONTROL DELAY PATHS

After carefully examining the arithmetic paths and
delays it is appropriate to push all of this informa­
tion onto your "mental stack" and begin again with
a consideration of the control paths and delays_
After this study the stack can be popped and infor­
mation merged to yield overall system requirements_

Consider the MCU as it cycles in normal operation
(see Figure 4). At the rising edge of the clock the
new microprogram address is loaded into its holding
register and through the output buffers. Thus, the
new address reaches the ROM after a delay (teo).
Then there is a wait (tRaM) while the ROMs are ac­
cessed before the outputs are valid. At this time the
MCU address control inputs (which are never pipe­
lined) are valid and this must be early enough in the
cycle to satisfy the MCU address control input setup
time (tSF). Adding the time for the clock pulse
(twp) yields the cycle time requirement. Note this
paragraph has ignored the generation of the ISE
output.

tCYCLE = teo + tRaM + tSF + twp

In the basic configuration shown in Figure 1 the ISE
output is used to strobe the 3214 Interrupt Control
Unit each time a JZR 15 (usually a jump to macro­
instruction fetch) is recognized at the MCU address

CLOCK

ROM
ADDRESS

AC 16-61
INPUTS

ISE
OUT

ERA
INPUT

tco elK t to MA [8 4>1 outputs

control inputs. Some consideration must be given to
the additional requirements on timing imposed by
the use of this ISE output. After the ROM has been
accessed and the MCU address control inputs are
valid, it takes the MCU some time (tFI) to decode the
JZR 15 operation and raise the ISE output. This out­
put is used as the 3214 ISE input and must be valid
early enough to meet that input setup time (tISS).
As this setup time is relative to the rising edge of the
clock, the clock pulse width need not be added in.

tcYCLE = teo + tRaM + tFI + tISS

Recalling the basic configuration depicted in Figure
1 and the situation described in the last paragraph,
imagine that an interrupt request had been active
long enough to meet the request setup time (tRCS)
of the ICU. Then since the ISE input went high and
satisfied the input setup time, the Interrupt Ack­
nowledge flip-flop within the 3214 will change state
and lower the MCUs ERA input after a delay (tCI).
After the row address outputs are disabled (tEO)'
the pull-up resistors will begin to pull these lines high
and after the voltage on these lines rises to 2.0V
(tRISE) the ROM address will be valid. The remainder
of this cycle is the same as previously described and
usually will not be required to again generate an ISE
pulse.

tCYCLE = tCI + tEO + tRISE + tRaM + tSF + twp

: ',I

1--tc,t°-1 I

F==---tM-U-X~--~-----------------

tROM ROM access time (70 nsec for 3604) 3601- 1

44 nsec

50

tSF

tFI

tlSS

tc,
tEO

tRISE

ACIS 1/.l1 input set-up time

ACI6-¢1 input to ISE output

ISE input (3214) set-up

elKI to IAoutput (3214)

ERA input to MA 18 4J output

RISE time to 2.0 V with 1 KH pull-ups: (16"3601-1)

14"36041

10

40

16

25

32

84

21

tMUX Multiplexer switch time (7451581 12

tCYCLE Ignoring ISE output teo + tROM + tSF + twp \3601-11 137

(3604) 157

Using ISE output teo + tROM + tFI + llSS 13601-1) 150

Interrupt using pull-upstCI + tEO + tRISE + tRaM + tSF + twp (3601-11 234

Interrupt using MUX" tel + tMUX + tROM + tSF + twp (3601-11 130

("MUX adds tMUX-PROP [6 nsec] to tcol

Figure 4. MCU & Interrupt Cycle Timing

3-4

Examining the times shown on Figure 4 for this case
of an interrupt cycle using pull-up resistors, it is clear
that unless something is done this will be the limit­
ing cycle time requirement. There are several tech­
niques which may be used to ease this requirement.

Since interrupt cycles are relatively infrequent in
comparison with other cycles, one solution might be
to extend just that cycle. In other words, the system
cycle time would be determined by all considerations
previously mentioned, but ignoring the abnormal in­
terrupt cycle requirement. Then the clock circuit
would be designed such that it could extend a cycle
in response to a signal from the 3214 Interrupt Con­
trol Unit (see Figure 5).

I
ClK
OUT

CLOCK
GENERATOR

CYCLE
EXTEND

1

SYSTEM
CLOCK

j
CK

'CU
3214

Figure 5. Interrupt Cvcle Extension

r
CK

'SE i---- 'SE
MCU
3001 ~

TERA

The interrupt cycle would still be exactly as depicted
in Figure 4, but the length of the interrupt cycle
would be longer than a normal cycle, and in fact long
enough to accommodate the interrupt cycle require­
ment.

It can be seen that a significant portion of the inter­
rupt cycle is lost waiting for the pull-up resistors to
charge the capacitance on the address lines. Thus,
another method of easing the interrupt cycle require­
ment would be to reduce the address line rise time
(tRISE). Reducing the resistance of the pull-ups
would help but this technique is limited by the avail­
able MCU address output fanout. Alternatively, the
MCU row address outputs (MA8-4) could be con­
nected to the ROM address lines through a multi­
plexer such as the 74S158 (see Figure 6). With such
a connection the interrupt cycle time is reduced
since the MCU enable time (tEO) plus the address
line rise time (1RISE) may be replaced with simply
the multiplexer select time (tMUX) as shown in Fig­
ure 4. However, it should be noted that such a con­
nection adds delay to the MCU address outputs, thus
effectively lengthening this existing delay (teo) by
the multiplexer propagate time (tMUX.PROP) and
hence lengthening any cycle which was dependent on
the MCU delay (teo).

3·5

System Timing

teYCLE (Interrupt with MUX) =

tCI + tMUX + t ROM + tSF + twp

MICRO·
PROGRAM
MEMORY

ADDRESS

l
MULTIPLEXER

SELECT

A'N B'N

+Vcc

r
MAB-4 MA3-O

'SE 'SE
ICU MCU

IA f.-- +Vcc --" ERA

Figure 6. Multiplexer to Reduce Address Rise Time

A third alternative to solve the long interrupt cycle
requirement is to implement the interrupts in quite
a different way. Rather than changing the MCU ad­
dress outputs, the MCU address control input least
significant bit (AO/» may be altered (see Figure 7).
Using this technique an extra ROM bit (Interrupt
Strobe) is required to strobe the 3214 ICU since the
MCUs ISE output occurs one cycle too late. Imple­
menting the same mechanism (interrupt strobe on
JZR 15) could be done by using the interrupt strobe
bit to strobe the ICU (see Figure 7) the cycle before
the JZR 15 code appears. An added benefit of this
method is that the interrupt structure may be strobed
at points other than the beginning of an instruction
fetch cycle, facilitating PAUSE or WAIT instructions.

Examining the timing diagrams in Figure 7, it can be
seen that this implementation of interrupts does not
limit the system cycle time. Rather, this interrupt
mechanism's timing is less restrictive than timing for
a normal cycle. The only requirements are that the
interrupt strobe bit from the ROM reaches the 3214
ICU ISE-input within its setup time (tISS). In the
next cycle it is only necessary that the lA-output has
gone low (tCI) early enough to meet the MCU ad­
dress control input setup time (tSF). Thus, for the
price of one bit of ROM interrupts can be imple­
mented with no penalty in time.

At this point both major delay paths (arithmetic and
control) have been examined for the implementation
in question. After the designer has assured himself

System Timing

MICRO­
PROGRAM
MEMORY

(OPEN·
COLLECTOR)

ISEI-----I

CLOCK

ROM
ADDRESS

ICU

IA

+Vcc

+Vcc

L
~'co---

+Vcc

MCU

ERA AC6-11----4o-AJlIv--'

'wp-

__ t
ROM

___ -'S.-

~

~

tCYCLE (Non-Interrupti ;> teo + tROM + tSF + twp

tCYCLE (Interrupt Strobel)0 tco + tROM + 1155

tCYCLE IAC[411 Modification) > teo + tROM + tSF + twP. and

;;;.otel + tBUF + tSF + twP

tCYCLE (Interrupti - Same as Non-Interrupt

'-J
tco 'w.--

1\

I--'ROM ' .. -

Ir-

INTERRUPT STROBE JZR 15 CODE

IA
OUTPUT

7417
OUTPUT

Figure 7. I nterrupt Using AC (1/» Modification

BIT APPEARS

'ISS

there are no other delays which he may have over­
looked, such as introducing external circuitry into
the paths, he may merge the various requirements
generated into a uniform set of system requirements.
Any change introduced after these requirements have
been generated must be closely examined that it does
not subtly alter any system requirements. Delays that
are negligible in one configuration may be dominant
in a slightly different structure.

WHAT HASN'T BEEN MENTIONED?

1. In the introduction it was explained that tempera­
ture would not be considered in the examples
since Intel specifies products over the 0° C to 70° C
temperature range. This deserves further comment.
A quick glance at an Intel Data Sheet will verify
that Intel parts are specified and guaranteed over
the O°C to 70°C ambient temperature range and
concurrently with a five percent tolerance power
supply. This is a reasonable range and allows the
designer to guarantee circuit operation. .

FROM ROM

t
CI

__
MODIFIED TO JZR 14

BY IAOUTPUT

J --- tauF

[-
Unfortunately, the standard Schottky MSI line
(74SXX) is only specified at 25°C ambient and
Vee = 5V. The variance of parameters over the
allowable temperature and supply voltage is un·
specified and left to the designer's experience. Due
to this uncertainty the designer should "appro·
priately" modify any times attributable to non­
Intel parts to allow for variations over tempera­
ture and supply voltage.

2. In the examples given it was always assumed that
setup times would be honored. Though most of a
computing system is synchronous, it typically has
to interface with asynchronous events. It is at this
interface that difficulty may be encountered. Con­
sider a popular circuit (Figure 8) used to "synchro­
nize" asynchronous signals.
In this circuit the output delay is guaranteed only
if the input setup time is met. But since the input
is asynchronous, this setup time may not always
be satisfied, as at the second event depicted in
Figure 8. What happens? Though the results are
highly dependent on the flip-flop circuit design,

some general observations may be made. Typically,
the effect is to stretch out the flip-flop delay time
as the event approaches arbitrarily close to the
clock edge. Theoretically, the delay will go to in­
finity if the event falls precisely on the clock edge.
Some flip-flops also exhibit a characteristic in
which the output may change state and some time
later return to the original state. This phenomena
is known as "hang-up" and has been observed to
last for twenty nanoseconds on a 7 4S7 4. It can­
not be absolutely prevented when asynchronous
signals are introduced into a synchronous system,
but the probability of the "hung" flip-flop causing
an error can be reduced without limit. The tech­
nique is simply to cascade these interfaces.

If two such flip-flops are cascaded there is some
probability PI (Pj <1) that the asynchronous event
will fall close enough to the clock edge to hang
the first flip-flop. Given that it hangs, there is
some probability 1'2 that it will hang for very near­
ly an entire clock period and into the hang-up
zone of the second flip-flop. Then, there is a
probability Pa that the second flip-flop will hang
long enough to cause an error. Thus, the prob­
ability of error is I'E = PI *P2*Pa. Hence, by cas­
cading flip-flops the probability of error can be
reduced without limit.

ASVNCHRONOUS I

SVSTEM
INTERFACE

74874

System Timing

Recall the 3214 Interrupt Control Unit and its re­
quest setup time (tRCS) and its IA output delay
(tCI)' This delay is in several critical system paths
as shown by the examples. Of course, the IA out­
put delay specified also presumes the IA flip-flop
setup time was met. When deliberately violating
the IA flip-flop setup time, a hang-up of 50 nsec
has been observed. What is a designer to do?

Slowing down the system such that it could tole­
rate any expected hang-up would be the easiest
solution. This may not always be as bad as it
sounds. Recalling the situation depicted in Fig­
ure 7, note that some flip-flop hang-up is toler­
able. [tIA-HANG = tCYCLE - (tSF + twp)]. An al­
ternative would be to "synchronize" the asyn­
chronous interrupt requests using the technique
previously described. An octal D flip-flop such as
the 74S374 would be suitable. .

3. In the examples given it has been assumed that
the system, including all the CPEs, the MCU, and
the ICU, operates from a single clock. If a circuit,
such as in Figure 9, that provides a separate clock
for different components is used, the possible
clock skew must also be considered when determ­
ining system timing.

I SYNCHRONOUS
I SVSTEM

I
----+-----~D Q~------~-----

ASV-;;;;::ONOUS II

EVENT I~CK

SYSTEM
CLOCK

ASVNC
EVENT

Q

OUTPUT

LJ U
*'OU1

{:'"j
tsu - 74574 oa1a input set-up time" 3 nsec.

tFO - 74574 Delay hom clock t ·9 nsec.
tHU - Heng up due to set-up time violation.

Figure 8. Synchronizing Circuit Exhibiting Hang-Up

U

"'1J"'"'U""
SYSTEM
CLOCK

U

~l,"+;:t" .I.

3-7

~
1-'oU1

X
tHU---

System Timing

TWICE
CLOCK ---.._-------,
RATE

"RUN"---+-~

CPE CLOCK
INHIBIT

BIT FROM PIPE LINE
REGISTER

Figure 9. CPE Clock Inhibit Circuit

MCUANO
SYSTEM
CLOCK

CPE
CLOCK

4. Though not explicitly mentioned, it has been as­
sumed that all input hold times would be observed.
Usually these times are satisfied with no conscious
effort required of the system designer. However,
parameters such as the MCU SX and PX input
hold time must be carefully considered. These in­
puts are used for macro instruction decoding and
typically are used at the end of an instruction
fetch cycle. When using these inputs the designer
must provide the necessary data hold time before
allowing the data to change.

3-8

SUMMARY

Generating the correct timing for a complex system
in which parameters may vary with temperature,
power supply voltage, lead length and the like is no
trivial task. Fortunately, large scale integration such
as Intel's 3000 family is making the task much easier.
With the 3000 family of compatible parts the de­
signer need only worry about the interfaces and may
be assured the internal timing is correct. Such a sys­
tem is best analyzed by separately considering the
various delay paths and later combining the sundry
results. And of course, with Murphy on vacation the
designer can be confident of a flawless design on the
first pass.

Disk Controller Designed
With Series 3000

Computing Elements

by Glenn Louie

With the introduction of the first micropro­
cessor, digital designers began a massive switch to
programmable LSI technology, away from hard­
wired random logic. Designers found that with
these new LSI components and the availability of
low cost ROMs they could easily implement struc­
tured designs which were both cost effective and
flexible. However, not all digital designs were
amenable to the microcomputer approach. One of
the basic limitations was the speed at which a par­
ticular critical program sequence could be executed
by a microprocessor. The early P-channel MOS
microprocessors, such as Intel's 4004 and 8008,
were able to solve a broad class of logic problems
where speed was not essential. With the introduc­
tion of the more powerful n-channel MOS micro­
processors, such as the Intel@8080, the range of
applications was significantly broadened, but there
still existed a class of applications that even these
newer devices were not fast enough to handle.

Recently, two new Schottky bipolar LSI com­
puting elements, members of the Intel Bipolar
Microcomputer Set, were introduced which expand
the range of microcomputer applications to include
high speed peripheral controllers and communica­
tion equipment. The new elements are the 3001
Microprogram Control Unit (MCU) and the 3002
Central Processing Element (CPE). These two com­
ponents facilitate the design of specialized, high

3-9·

Disk Controller Design

Figure 1. Bipolar Microprogrammed Disk Controller

speed microprocessors that together with a mini­
mum of external logic perform the intricate pro­
gram sequences required by high speed peripheral
controllers.

A multi-chip bipolar microprocessor differs from
the single chip MOS microprocessor in that the
bipolar microprocessor is programmed at the· micro­
instruction level rather than at the macroinstruc­
tion level. This means that instead of specifying
the action via a macro program using a fixed in­
struction set, a designer can specify the detailed
action occurring inside the microprocessor hard­
ware via a microprogram using his own customized
microinstructions.

In general, microinstructions are wider than
macroinstructions (e.g. 24 to 32 bits) and have a
number of independent fields that specify simulta­
neous operations. In a single microcycle, an arith­
metic operation can be executed while a constant is
stored into external logic and a conditional jump is
being performed.

A bipolar LSI microprocessor design is)im. ilar to
a general MSI/SSI microprocessor design where
the intricacies of the application are imbedded in
the program patterns in ROM. However, the large
amount of logic necessary to access the microcode
has been replaced by the LSI MCU chip. Also,

Disk Controller Design

the MSI logic required to provide the arithmetic
and register capabilities has been replaced by the
functionally denser LSI CPE slices. Because of
these new LSI chips, microprogramming with all
its advantages can now be applied to designs which
previously were unable to justify microprogramming
overhead.

The effectiveness of these new LSI components
in a high speed peripheral controller design has
been demonstrated by the Applications Research
group at Intel with the design of a 2310/5440
moving head disk controller (BMDC). The BMDC
has a total of 67 IC chips and is packaged on a
printed circuit board measuring 8" x IS", as shown
in Figure I. Disk controllers of equivalent com­
plexity realized with conventional components
typically require between 150 and 250 I.C.'s. The
BMDC performs all the operations required to
interface up to four "daisy chained" moving head
disk drives, with a combined storage capacity of
400 megabits, to a typical minicomputer. It is fast
enough to keep up with the drive's 2.5 MHz bit
serial data stream while performing the requisite
data channel functions of incrementing an address
register, decrementing a word count register, and
terminating upon completion of a block transfer.

The BMDC interacts with the minicomputer's
disk operating system (DOS) via I/O commands,
interrupts and direct memory access (DMA) cycles.
The I/O commands recognized by the BMDC's
microprogram are:

Conditions In
Seek Cylinder
Write Data
Read Data
Verify Data
Format Data

The BMDC sends an interrupt to the minicom­
puter when either a command is successfully exe­
cuted, a command is aborted, or a drive has finished
seeking. The DOS then interrogates the BMDC
with a Conditions In command. The following
flags specify the conditions which the BMDC can
detect:

Done flag
Malfunction flag
Not Ready flag
Change In Seek Status flag
Program Error flag
Address Error flag
Data Error flag
Data Overrun flag

Data transfers between the minicomputer and
the disk BMDC occur during DMA cycles. DMA
cycles are also used for ·passing command informa­
tion from the minicomputer to the BMDC.

3·10

The bipolar LSI microcomputer in the BMDC
performs the necessary command decoding, ad­
dress checking, sector counting, overlap seeking,
direct memory accessing, write protection, pass­
word protection, overrun detection, drive and read
selection, and formatting. External hardware assists
the microprocessor in updating the sector counter,
performing parallel-to-serial and serial-to-parallel
conversion, and generating the CRC data checking
information. The BMDC uses a special purpose
microprocessor, configured with the components
listed in Table A. The LSI microprocessor uses an
MCV, an 8: I multiplexer, eight 360 I PROMs, a
command latch, a data buffer, and an array of
eight CPE slices (Fig. 2). The characteristics of
this design, only one of many possible with the
3000 family, are as follows:

• 400 nsec system clock
• 16-bit wide CP array
• Ripple carry CPE configuration
• Non-pipelined architecture
• One level subroutining
• 230 32-bit microinstructions
• Word to 4-bit nibble serialization

The MCV controls the sequence in which micro­
instructions are executed. It has a set of uncondi­
tional and conditional jump instructions which is
based on a 2-dimensional array for the micropro­
gram address spece called the MCV Jump Map. (I)

PART #

3001

3002

3212

3205

3601

3404

74173

74174

74175

74151

8233

9300

9316

8503

7474

7473

7451

7404

7400

74H08

7403

7438

74Hl03

DESCRIPTION

MCU

CPE

8 bit 1/0 Port

1 of 8 Decoder

lK PROM

6 bit Latch

4 bit Gated D F/F

6 bit D F/F

4 bit D F/F

8: 1 Multiplexer

Dual 4: 1 Multiplexer

4 bit Shift Register

4 bit Binary Counter

CAe Generator

Dual D F/F

Dual J·K F/F

And-Dr-Invert Gate

Hex Inverter

Quad 2 Input Nand Gate

Quad 2 Input And Gate

Quad 2 Input Nand O.C. Gate

Quad C.C. Drivers

Dual J·K F/F

Total

QUANTITY

1

8

6

2

8

2

1

5

2

1

6

9

1

2

4

2

67 I.C. Packages

Table A. I.C. Component List for Disk Controller

Disk Controller Design

MICROPROGRAM MEMORY
8·36015 OUTPUT PORTS

I
It····· t t t

1·····1'
8

~ J' I' 2 7 2 8 I I I I .1
, ,

8
8:1 MUX

----I I PORT B I I PORTA PORTe

MAO. ~IIIIIIIII t t ,
MCU ACQ·6 -7"; 1 INPU~ PORT
,001 Fe

SX PX F1 Fa y O-l-DATA I
MUX

......-'
LeI

f8

FO-6 K NIBBLE OUT

CP ARRAY
AO

4
8 - 3OO2's EXTERNAL LOGIC

'--- eo LI
A OUTPUTS o OUTPUTS M I 4

4 NIBBLE IN

,. ,. ,. 8 J. 27

COMMAND I
LATCH I DATA BUFFER ,

•
18 18 ,.

DISK DRIVE
MAB MOB SIGNALS

Figure 2. Disk Controller - The various elements of a specialized microprogrammed processor is shown with the external logic
which together is the entire disk controller.

In addition, the MCV is connected in such a man­
ner as to perform command decoding, external
input testing, and one level subroutining.

Command decoding is achieved by connecting
the command latch to the Primary Instruction (PX)
bus inputs and using the JPX instruction (Fig. 3).
The testing of external input signals is performed
by routing the least significant bit (LSB) of the
seven bit jump code through an eight-to-one multi­
plexer (Fig. 2). The mUltiplexer is controlled by a
3-bit Input Select Code which selects either the
LSB of the jump code or one of 7 external input
signals to be routed to the MCV. This technique
has the effect of conditionally modifying an un­
conditional jump code so that the next address will
either be an odd or even location (Fig. 3). A one
instruction wait for external signal loop can be
simply implemented in this fashion.

One level subroutining is achieved by feeding the
four least significant bits of the address micropro­
gram outputs back into the secondary instruction
(SX) inputs. Enough program status information
can then be saved in the internal PR latch when a
subroutine is called with a JPX instruction so that

3-11

upon exiting, a subroutine with a JPR instruction,
control can be returned to the procedure which
called it (Fig. 4). This technique saves a significant
amount of microcode in the BMDC because some
long sequences do not have to be repeated.

The microprogram control store is an array of
eight 360 I PROMs organized to give 256 words x
32 bits (230 words were required for the BMDC).
The 32-bit wide word is divided into the following
sub control fields:

I. Jump Code field
2. Flag Control field
3. CPE Function field
4. Input Select field
5. Output Select field
6. Mask or Data field
7. Mask Control field

TOTAL

7 bits
2 bits
7 bits
3 bits
3 bits
8 bits
2 bits

32 bits

The command latch and data buffer retain com­
mand information from the computer so that the
memory bus will not be held up if the BMDC
should be busy performing an updating task. The
data buffer also retains the next data word during
a Write Data to disk operation.

Disk Controller Design

The CP array is connected in a ripple carry con­
figuration as shown in Figure 5. The eight CPE
slices provide the BMDC with a l6-bit arithmetic,
logic and register section. Word to nibble serial­
ization is made possible by connecting the Shift
Right Outputs (RO) of the first, third, fifth, and
seventh CPE to the Nibble Out bus. By using only
four shift right operations a word in a register can
be converted into four 4-bit nibbles. The final
serialization of these nibbles is done in the external

ROW

COLUMN

2 3 4 5 6 7 8 9 10 " 12 13 14 15

SHItWAlnlltAOVAlfVfOR .. AT
DAnOATAOATADATA D"TA

(INSTRUCTION DECODING)

JCC I

(WAIT FOR EXTERNAL INPUT)

'--+-+H-CJNDITIION~L BRANCH ON EXTERNAL INPUTS -t-t-+--i
r USING JUMP CURRENT COLUMN (Jec) AND

1 T JUMP CURRENT ROW (JeRI INSTRUCTION

,,~t=~~=l~~JC3R~~~~~~~t=J==t=l~
13

Figure 3. MCU Jump Map for instruction decoding and
conditional branching on external inputs

BBlE NI
o ur

• NI BBLE 4 IN
~~y-

,
{, '.

,--!-
r- CO CII---

300'

'-LI RO I----
~K

,

,

,
1',
1

---.l

300'

r--

,

,

, ,
1', {,
I 1

L-L ---.l

- r- I---
300' 300'

'- I----

- -
, ,

, ,

r-

- '-

logic. Similarly, the Shift Right Inputs (LI) of the
second, fourth, sixth, and eighth CPE are connected
to the Nibble In bus so that with only four shift
right operations, a word can be assembled from
four nibbles.

,

COLUMN

o , 2 3 4 5 6 1 8 9 10 11 12 13 1415

0

V" CALL

i -!UBROUTlN~ ' CALL ~
C CAL~

B CAL~

ROW

RET

,. \ ~ ~ r---DESIGNATED .. ,
RETURN ROW

B" C., 0"

"
13

Figure 4. MCU Jump Map for one level subroutine call and
return. A subroutine is called from four different
places in the program each with a unique column
number. Upon returning from the subroutine,
control will be transferred back to the portion of
program which called it. A subroutine may be
called from a maximum of 16 different places.

" ,
{, {, {,

16 ,
{2'6

ADDRESS
BUS

CATA
OUTPUT

BUS

---.l L.J.. -..l ,~
- 1-

300' 3002

:...- l-

Tz --:r.T

I , ,

, , ,

-co
300' 300'

e- _LI
CI -

RO -
r- CARRY IN

n;-r M-t,-K
DISK

DRIVE
NOITIONS I

, I ,

I ,

01 DATA MUX

, }.
MASK CONTROL

FIELD FIELD

, ,

I

.

16

co

DATA
INPUT

BUS

Figure 5. CPE Array - A 16-bit arithmetic, logic and register section is built up with 8 CPE slices connected in a ripple carry
configuration. The K, I, and M bus is used for loading information into the CPE slices. The LI inputs and RO outputs
are connected to make up the Nibble In and Nibble Out buses.

3-12

An eight bit mask bus is connected to the mask
inputs of the least significant half of the array. The
mask inputs of the most significant half of the CP
array are all tied to the eighth mask bit. A constant
with a value between + 127 and -128 can therefore
be loaded into the array from the microprogram.
The mask bus comes from the data field of the
microprogram via a 0-1 data multiplexer. When the
CP array requires either an all one or all zero mask,
the data field is freed to provide data to external
logic.

The 3002 CPE is an extremely flexible compo­
nent which makes it particularly attractive for
controller designs. The Memory Address Register
makes an ideal DMA address register.(!) The ac­
cumulator (AC) register, which also has its own
output bus can be used as a data word buffer
during a write DMA cycle. Concurrently, another
word can be assembled in the T register using the
shift right operation. The three separate input buses
provide a mUltiplexing capability for routing dif­
ferent .data into the CPE. In the BMDC, the I-bus
is used for loading disk drive conditions, the K-bus
for loading mask or constant information, and the
M-bus for reading an external data buffer. The
arithmetic logic section performs zero detection
and bit testing with the result delivered to the

Disk Controller Design

MCV chip via the carry out line. Finally, the eleven
scratch pad registers allow the controller to retain
data and status for the processor.

The CP array in the microprocessor performs the
following for the BMDC with its registers and
arithmetic functions.

I. Sector counting
2. Word to nibble serialization
3. Drive seek status monitoring
4. Header checking
5. DMA address incrementing
6. Word counting
7. Multi-sector length counting
8. Automatic resynchronization of sector

counter
9. Accessing of additional information from

memory
10. Time delays

The organization of the microprocessor was
chosen to maximize the use of the MCV and CPE
in performing the various tasks required for disk
control. However, there are some specialized tasks
which are more economically performed by ex­
ternal logic. The microprocessor controls this ex­
ternal logic by output ports whiclr are selected by
the output select field in the microinstruction. The

BUS
CONTROL II

EXT BUS RD I
B~~!~~~LE I

DAT~EOT~~~RUN t-R!!:E'-:A='~~::":':':;'::::TE,-J

t--'-';6f:--_-i-C _______ ~------..:'+6 _>--<--.1 MEM ADO BUS

t---,7A-----------t~----,._____+._=__ _j MEM DATA BUS
16 16 BUS INTERFACE

BIPOLAR LSI
MICROPROCESSOR

NIBBLE OUT t--f-..,

NIBBLE IN t-,4---'

OUTPUT PORTS DISK DATA
FOR CONTROLLING
EXTERNAL LOGIC

INPUT PORT
FOR TESTING
OR SVNCHRONIZING
TO EXTERNAL LOGIC

• - - - - +DISK DRive INTERFACE

• CYLINDER ADD

4 I PLATTER-
HEAD SELECT
UNIT SELECT

WR GATE

DISK 3 I ;~T ~~TL~NDER
CABLE

DRIVER I

OF DATA

~ r;;t---J TOP INDEX PULSE

~ BOTTOM INDEX
PULSE

I;;;-l ~ TOP SECTOR PULSE
~~ BOTTOM SECTOR

L-____________ D_R_'V~E~C~0~ND~I_Tl~ON_S~/~8---------~I PULSE

Figure 6. External Logic - Microprocessor monitors and controls external logic via input-output port to perform sPeCialized
disk controller functions.

3-13

Disk Controller Design

data to these ports is delivered from the shared data
field.

The external logic section of the BMDC (Fig. 6)
has a double buffered 4-bit shift register which is
used for initial packing and the final serialization
of data. It is controlled by a modulo-4 counter
circuit. During a write operation, serial data from
the shift register is encoded by the clock controlled
double frequency encoder and sent to the drive. As
data is being transferred to a cyclic redundancy code
(CRC) is generated and then appended to the end of
the data stream to be recorded on the disk. The ex­
ternal logic also contains addressing latches and
flag flip-flops to capture sector and index pUlses.
It also contains main memory bus·control circuitry
for performing bus protocol, bus acquisition, and
data overrun detection.

The microprogram for the BMDC microprocessor
directly implements the six I/O commands. The
program controls the sequential action of the vari­
ous elements of the microprocessor and of the
external logic needed to decode and execute the
commands. In Figure 7, the flow chart of the Read
command shows the actions required to read a file
off the disc. The BMDC first selects the drive speci­
fied by the command and checks its ready status.
It then uses a memory pointer passed to it by the
command to access four more words from the main
memory using DMA cycles. The first word is the
Header, which contains the track address and sector
address information. The second word is the Start­
ing Address specifying the first location in memory
where the data is to be stored. The third word is the
Block Length of the file to be retrieved. All of the
address information and the Block Length are
stored in several CPE registers for further process­
ing. The fourth word is the Password which is com­
pared against a microprogram word to insure that
the command from the computer is a valid one and
not a program error. The password can prevent an
erroneous command, due to a user programming
error, from destroying important files on the disc.

After the password check, the BMDC resyn­
chronizes the sector counter if necessary and waits
for the desired sector by monitoring the sector
pulse flag. When the desired sector arrives, the
BMDC synchronizes itself to a start nibble and
reads the header which it compares to the desired
header to insure that the head is positioned
properly. It then reads and stores 128 words of
data at sequential locations in memory. A cyclic
redundancy code is compiled during the read oper-

3·14

~-_ SET NOT HEADY flAG 80 AHORT

GET FROM MEMORY THE
HEADER. STARTING ADDRESS,
BLOCK LENGTH, & PASSWORD

SET PROGRAM ERROR FLAG 8. ABORT

'---- SET ADDRESS ERROR FLAG & ABORT

PACK NIBBLES TO FORM WORDS
INCREMENT MEM ADD COUNT

DECREMENT WORD COUNT
INITIALIZE CHANNEL OPERATION

NO

CRITICAL
TIMING

lOOP

SET OATA ERROR FLAG l!. ABORT

YES
seT DONE flAG

Figure 7. Read Command Flowchart - This flowchart is
coded in the microprogram which when executed
performs the disk Read operation.

Figure 8. BMDC Flowchart - The BMDC runs in the idle
loop when it is not busy doing command pro­
cessing.

3·15

Disk Controller Design

ation and compared against the CRC word read in
after the data. At the end of each sector the block
length is decremented to see if it is the last sector.
If it is not, the sector address is incremented and
another sector is read.

In addition to the command routines, the micro­
program has an idle loop routine (Fig. 8) which the
BMDC executes when it is not busy with a com­
mand. While in the loop, the BMDC updates the
sector count, monitors the drives seeks status lines
and decodes any disc commands from the disc
operating system in the minicomputer.

The design process for the BMDC began with an
evaluation of what disc controller operations could
effectively be handled by the microprocessor. This
also determined what had to be performed by
external logic. A microprocessor configuration was
then established and certain critical sequences were
programmed to verify that the configuration was
fast enough. A flow chart was produced and the
microprogram coded directly from it. All attempts
were made to use the MCU and CPE slices effec­
tively and keep the microprogram within 256
words. The assignment of MCU addresses which
initially appeared difficult, was, with a little ex­
perience, quite straight forward and less restrictive
than a state counter design. After the coding, the
microprogram was assembled and loaded into the
microprocessor's control memory.

The BMDC design demonstrates how a special­
ized high speed microprocessor can be designed
using standard bipblar LSI devices and micropro­
grammed to perform disc control functions with
the addition of a small amount of external logic.
The flexibility of Series 3000 allows a designer
to optimize the configuration for his application.
For extremely high speed applications, the designer
can add fast carry logic and microinstruction pipe­
lining to his microprocessor to achieve alSO nsec
16-bit microprocessor.

At Intel, our design experience with the BMDC
design exercise has shown that the use of the MCU
and CPE results in a clean, well structured design.
The complexity of the design resides primarily in
the microprogram leaving the external logic rela­
tively simple. During debugging, most of the prob­
lems encountered were restricted to the micropro­
gram which was easily modified and debugged
using l:)ipolar RAM for the control memory.

References

I. J. Rattner, J. Cornet, M. E. Hoff, Jr., "Bipolar
LSI Computing Elements Usher In New Era of
Digital Design," ELECTRONICS, September 5,
1974, pp 89-96.

I:' ,
r.- CMlI

""w. ""I·r
110 iil- CO-AND

-.32 Cl" I)l' OlID JIll

.. ,'
"

::::~r;;;;-;;;;oli'; ii~~ •• ~~~~ - ,; ===ii " "::~ ::; =='i DU :: "" V'

'.",.:,:,1 ~ ~ Oil n 001 : 13 M lo"--~""
I .. ~ .,. ~'llt.~V UI]C~ST' 2l eoMMAlKl Oll iili I. USl~

An ~ ::~~T~ ~ ___ '_"_-<jjOO' »12 "7 ~

M . " " - I¥.-M " M

l> 0 'tJ
iii" 'tJ

m ~
Z

0 C
>< 0
I ~ -c 2-Cii (j) ~

0
....

0 0 z CD
-I en ::a cD' 0
r- ~
r-
m
::a
en
0
:I:
m
s::
~
(;

~ .. ~.
f&"V

CnAoO

»
'tI
'tI m
Z o
><
I
o
en
" 8
z
-I
:D o
r­
r­m
:D
en o
:I:
m
s::
~
(;

C
iii'

"" o o
:::I -(3
(5" ...
c
m

cO·
:::I

Central Processor Designs
Using The Intel® Series 3000

Computing Elements

by
M.E. Hoff, Jr.,
James Sugg,

Ron Yara

CPU Design

Contents
INTRODUCTION 3-21

THE SERIES 3000 F AMIL Y 3-21

AN INTRODUCTION TO MICROPROGRAMMING.. 3-21

CONSTRUCTING CENTRAL PROCESSING
UNITS 3-23

Basic Design Steps .. 3-23
Hardware Organization 3-23
Writing of Microprograms 3-26

DEFINITION OF CONTROL FIELDS 3-26
ASSIGNMENT TO CONTROL MEMORY. 3-27
PROGRAMMING TECHNIQUES 3-28

A DESIGN EXAMPLE 3-29
Initial Specifications 3-30
Macro-Instruction Decoding 3-33
Microprogram Implementation. 3-34

MEMORY REFERENCE AND
IMMEDIATE GROUP 3-34
JUMP GROUP. .. 3-43
REGISTER MOVE AND SUBROUTINE
GROUP 3-46
SPECIAL FUNCTION GROUP. 3-49
INPUT/OUTPUT GROUP 3-52
INTERRUPTS. .. 3-52

Microprogram Memory Assignment. 3-53

CONCLUSION 3-58

APPENDIX A - DESIGN EXAMPLE
INSTRUCTION SET. .. 3-62

Memory Reference Group 3-62
Immediate Group 3-62
Jump Group 3-63
Subroutine Call Group. .. 3-63
Subroutine Return Group 3-64
Register Manipulation Group. 3-64
Byte Load and Store Group. 3-64
Special Memory Reference Instruction 3-64
Base and Status Register Move Group 3-64
Input/Output Group .. 3-64
Stack Push and Pop Group 3-64

APPENDIX B - MICROPROGRAM LISTINGS 3-65
APPENDIX C - CENTRAL PROCESSOR
SCHEMATIC. .. 3-76

3·19

INTRODUCTION

Until recently, the area of high performance, gen­
eral purpose and special purpose central processors
was unaffected by the microprocessor revolution.
Although they covered a broad range of applica­
tions, the P-channel and N-channel microproces­
sors' performance limitation prevented their use in
applications where high speed was necessary.

The introduction of the Series 3000 Computing
Elements has expanded the spectrum of micro­
processor applications to include both high per­
formance central processors and controllers. Utiliz­
ing Intel's Schottky bipolar technology, the Series
3000 components realized a level of performance
that was not possible with MaS microprocessors.
For example, a l6-bit processor with a micro­
instruction cycle time of 150 nanoseconds can be
built with the 3000 components. In addition, the
components of the family can be arranged into a
number of different configurations and micropro­
grammed by the system designer to perform in a
variety of processing environments from front end
processing to arithmetic intensive computation. I

This application note describes a systematic proce­
dure for designing central processors with the Series
3000. Using a CPU design example, simple guide­
lines are given for tasks such as macro-instruction
opcode assignment, macro-instruction decoding and
execution and microprogram memory assignment.

THE SERIES 3000 F AMIL Y

The Intel® Series 3000 Bipolar Microcomputer Set
is a family of Schottky bipolar LSI computing ele­
ments which simplify the construction of micro­
programmed central processors and device con­
trollers. These processors and controllers are truly
microprogrammed in the sense that their control
functions are determined by the contents of a con­
trol memory. This control memory may be realized
with standard read-only (ROM) memory, read/
write (RAM) memory or programmable read-only
memory (PROM) elements.

The two most important computing elements in
the family are the 3001 Microprogram Control

CPU Design

Unit (MCU) and the 3002 Central Processing Ele­
ment (CPE). The MCU determines the sequence of
micro-instruction execution and controls carry /
shift data to and from the CPE array. The CPE
provides a complete two-bit wide slice through the
data processing section of a central processing unit.
CPEs may be arrayed in parallel to form a processor
of any desired word length. For example, to pro­
duce a l6-bit wide data path, eight CPEs would be
used.

All of the above components use standard TTL
logic levels, as some designers may wish to utilize
SSI and MSI TTL logic to control external cir­
cuitry, or to add functions not included in the
basic set to increase the speed of certain operations.

Other members of the family currently include the
following computing elements:

• 3003 Look-Ahead Carry Generator
• 3212 Multi-Mode Latch Buffer
• 3214 Interrupt Control Unit
• 3216 Bidirectional Bus Driver
• 3226 Inverting Bidirectional Bus Driver

The control and main memory portion of the
central processor may be implemented with any of
the standard bipolar or MaS memory components
shown on page 2.

AN INTRODUCTION TO
MICROPROGAMMING

The central processing unit of a general purpose
computer usually consists of two portions: an
arithmetic portion and a control portion. The con­
trol portion determines the sequence of instruc­
tions to be executed and presides over their fetch­
ing and execution while the arithmetic portion
performs arithmetic and logical operations.

The basic operation of the control portion consists
of selecting the next instruction from memory,
!hen executing a series of states based upon the
instruction fetched. This sequence may be imple­
mented via a combination of flip-flop and random
logic, or by the use of tables in control memory.

I J. Rattner, J. Cornet, and M. E. Hoff, Jr., "Bipolar LSI Computing Elements Usher In New Era of Digital Design,"
ELECTRONICS, September 5, 1974, pp 89-96.

3-21

CPU Design

Standard Bipolar and MOS Memory Components

PART NUMBER
TECHNOLOGY

DATA ACCESS
NUMBER OF PINS ORGANIZATION TIME

CONTROL MEMORY

3601 16 Bipolar PROM 256X4 70 nS'

3602 16 Bipolar PROM 512X4 70 nS

3604 24 Bipolar PROM 512X8 70 nS

3624 24 Bipolar PROM 512X8 70 nS

3301A 16 Bipolar ROM 256X4 45 nS

3302 16 Bipolar ROM 512X4 70 nS

3304A 24 Bipolar ROM 512X8 70 nS

3324A 24 Bipolar ROM 512X8 70 nS

3106A 16 Bipolar RAM 256X1 60 nS

3107A 16 Bipolar RAM 256X1 60 nS

MAIN MEMORY

1702A 24 Static MOS EPROM 256X8 1000 nS

2704 24 Static MOS EPROM 512X8 500 nS

2708 24 Static MOS EPROM 1024X8 500 nS

1302 24 Static MOS ROM 256X8 1000 nS

2308 24 Static MOS ROM 1024X8 500 nS

2316 24 Static MOS ROM 2048X8 850 nS

2101 22 Static MOS RAM 256X4 1000 nS'

2102 16 Static MOS RAM 1024X1 1000 nS'

2111 18 Static MOS RAM 256X4 1000 nS'

2112 16 Static MOS RAM 256X4 1000 nS'

2104 16 Dynamic MOS RAM 4096X1

2107B 22 Dynamic MOS RAM 4096X1 200 nS

5101 22 Static CMOS RAM 256X4 650 nS

*Higher speed versions of these devices are available. Consult the Intel Data Catalog.

When the latter technique is used, the central
processor is said to be microprogrammed.

The functions of the control portion of a micro­
programmed central processing unit are very similar
to that of a central processing unit itself. To avoid
confusion, the terms "micro" and "macro" are
used to distinguish those operations in the control
unit from those of the realized central processor­
For example, the central processor, under the
direction of micro-instructions read from its con­
trol memory, fetches macro-instructions from main

3-22

memory. Each macro-instruction is then executed
as a series of micro-instructions. Main memory con­
tains macroprograms, while control memory con­
tains microprograms which define the realized
central processor.

Figure I shows a block diagram of a micropro­
grammed central processing unit (defined by the
dotted boundary). The control unit issues addresses
to the control memory and fetches micro-instruc­
tions. This control unit uses the contents of control
memory (micro-instructions) to drive the data
processing unit, external circuits, and to select the

EXTERNAL CONTROL
SIGNALS

r-------
1

1.----...,
1

1

1 '---?O:~-'
1
1.--......... 1...-...,
1

1

I'--.....".,~-'

1

1

1

1

DATA
PROCESSING

UNIT
IALU, REGISTERS.

BUS CONNECTIONS)

I MAIN MEMORY I (MACROPROGRAMSI

1

L----.,..~-' I L---::oo::--'
1

MACRO·INSTRUCTION
OPCODE

1

1
1

MACRO-I'l'STRUCTIONSIDATA

1.. ________________ ...l

CENTRAL PROCESSING UNIT

Figure 1. Block Diagram - Microprogrammed
Computer

next micro-instruction. The data processing unit
performs the actual computations, logical opera­
tions, etc.

In the Intel® Bipolar Microcomputer set, the 3001
MCU performs the control unit function, while the
3002 CPE is the basic building block for the data
processing section.

Thus, within a microprogrammed machine, there
are at least two levels of control and two levels of
programming to be considered. The designer of a
central processor is usually concerned with the
definition of the macro-instruction set and its
realization as a microprogram. The Intel® Series
3000 Bipolar Microcomputer Set establishes a
micro-instruction set which is used as a base for the
microprograms which generate macro-instruction
sets.

The reason for using this microprogrammed ap­
proach is that very complex macro-instruction
sets can be realized as sequences of relatively prim­
itive micro-instructions. The logic of the final
macro-machine remains relatively simple, with most
of the design complexity residing in the micro­
instruction sequences contained in control memory.

The final user of the computer seldom needs to be
aware that the CPU was realized with micropro­
grams rather than hardwired logic. A functional
description of the macro-instruction set is usually
sufficient for his purposes. However, the user will
benefit from the microprogrammed approach if he

3-23

CPU Design

finds it necessary to alter or enhance the basic
macro-instruction set in some fashion. The tabular
or programming approach offered by the micro­
programmed architecture makes such changes far
easier than would be possible in a processor realized
via hardwired logic.

CONSTRUCTING CENTRAL PROCESSING
UNITS

Basic Design Steps

To realize a central processor with the Series 3000
computing elements, several steps are necessary:

1. Definition of hardware organization.
2. Definition of the central processor macro­

instruction set.
3. Implementation of microprograms which realize

the desired macro-instruction set.

Hardware Organization

A typical CPU constructed utilizing the Series 3000
computing elements will consist of an array of CPE
chips, one MCU, and a control memory. The array
of CPE chips realizes the arithmetic, logical func­
tions and registers of the CPU, while the combina­
tion of the MCU and control memory realizes the
control portion. The microprogram contained in
control memory initializes the machine when power
is first turned on and supervises the fetching and
execution of macro-level instructions. In addition,
routines to handle such special functions as inter­
rupts will also be contained within the control
memory.

The 3002 CPE array contains six buses for com­
munication with external circuitry. Four of these
buses are used primarily to communicate with
memory and I/O devices while the remaining two,
the function control bus (F-Bus) and the control
memory data bus (K-Bus), enable the control por­
tion of the processor to drive the CPE array. The
function control bus is driven by control memory
outputs which direct the CPE array to execute the
desired operation. The K-Bus allows the control
memory to supply various constants and/or masks
to the CPE array.

Because 8 bits of operation code information can
be passed directly to the MCU, the set is best
adapted to macro-instruction sets in which all of
the operation code information is defined by 8 bits
(256 unique macro-instructions). However, larger
macro-instruction sets can be realized by saving any
remaining bits of the operation code in the CPE
array or in an external register. The saved bits can

CPU Design

then be tested later by routing them to the MCV,
through its 8-bit input port.

A "pipelined" mode of operation may be imple­
mented by placing a register of edge triggered D
flip-flops between control memory outputs and the
circuitry controlled by those outputs. This register
causes the execution of a micro-instruction to over­
lap the fetching of the next micro-instruction. The
control lines which issue micro-instruction sequence
information to the MCV are not routed through
the pipeline register when the pipelined mode is
used; they are routed directly from the micropro­
gram memory outputs to the ACO-AC6 inputs of
the MCV.

Microprograms written to realize a given macro­
instruction set will differ for pipelined and non­
pipe lined machines. The major differences are asso­
ciated with conditional jumps in the microprogram
which test the results of arithmetic or logical opera­
tions executed by the CPE array. In a pipelined
machine, these results are delayed by one micro­
instruction, so that conditional jumps must be
delayed by at least one micro-instruction before
execution. More detailed information concerning
these differences is contained in the micropro­
gramming section of this application note.

Figure 2 shows block diagrams illustrating the
organization of standard and pipelined central
processing units. The block diagrams show the
basic modules of standard and pipelined CPVs:
the MCV, CPE array, microprogram memory and
the pipeline register. The six buses associated with
the CPE array are shown:

MEMORY ADDRESS DATA BUSTO
BUS MEMORY

CLOCK

DATA IN fROM MEMORY

Figure 2. Bipolar Microcomputer Non-Pipelined
Organization

• The address bus (A-Bus) to main memory
• The data bus (D-Bus) to memory
• The data bus (M-Bus) from memory with its

path for operation code data to the MCU
• The external device input bus (I-Bus), not

shown
• The micro-function bus (F-Bus) from the

pipeline register

• The constant bus (K-Bus) from the pipeline
register

In addition, the carry logic bus to and from the
MCV and the micro-instruction sequence logic bus
from control memory to the MCV are shown. Ad­
ditional control fields to such external logic as
memory and I/O control are shown as an output
bus from control memory.

The number of bits required for each word of
control memory, i.e., each micro-instruction, is
determined by the number of logical functions the
micro-instruction controls. A minimum of 18 bits
is usually required for basic hardware control:
7 bits of micro-instruction sequence control to the
MCV, (ACO-AC6), 4 bits of carry control to the
MCV, (FCO-FC3), and 7 bits of micro-function
selection to the CPE array, (FO-F6). That is, the
basic hardware requires at least three control word
fields of 7 bits, 4 bits, and 7 bits width respectively.
Almost every processor will require additional
fields to control other logical functions such as
main memory control, I/O control, and constant
generation. Figure 3 illustrates a typical micro­
instruction word format with several typical user
defined control fields added.

CONTROL TO MEMORY ADDRESS DATA IUS TO
MEMORY,IID IUS MEMORY

CLOCK

3-24

DATA IN FROM MEMORY

Figure 2. Bipolar Microcomputer Pipelined
Organization

The constant bus to the CPE array seldom needs to
be as wide as the data buses. For example, consider
a l6-bit machine where an array of eight CPEs is
used. While the constant bus is nominally 16 bits
wide, if a limited set of masking operations are
used, the number of bits can be reduced signifi­
cantly. Figure 4 shows how 4 bits can be used to
generate the masks for such a machine where the
only masks needed are for separating high and low
order data bytes, for testing the sign and magnitude
of the data word, and for testing the least signifi­
cant bit of the word.

CPE MCU MCU

Figure 3. General Micro-Instruction Format

co

LI

03

02o-----_4----_4--~----_+--~----~~

CPU Design

As an example of the use of additional logic to
enhance the set, consider the use of a control field
(I-bit width) to inhibit the CPE clock. This opera­
tion allows non-destructive testing of CPE registers
via the MCU carry logic. The carry logic in the
MCU responds just as if the micro-instruction were
executed, but the fact that the CPE clock was in­
hibited leaves the CPE registers unaltered. An ex­
ample of conditional clocking is given in a later
section called "Programming Techniques."

CPE MAIN
MEMORY

1/0
SYSTEM

01 O---4-__ ~----~_4----~~_+ ____ ~
OOo---~

03 02 01 O. K·BUS
!BINARV. LOW TRUE) (HEXADECIMALI MASK FUNCTION

1 1 1 0000
1 • 0001 SELECT lse

• • ooFF SELECT LOW ORDER BYTE

• 1 FFOO SELECT HIGH ORDER BYTE

1 a • 7FFF SELeCT WORD MAGNITUDE

• 1 1 8000 SELECT WORD SIGN

• • • • FFFF SELECT ENTIRE WORD

Figure 4. Wiring the K-Bus Using 4-Bits

MICRO-INSTRUCTION WORD

---J=0,-VCLETIME

MASTER
CLOCK

CONDITIONING

CO~~~~I:~ _____ -J!

Figure 5. Conditional Clocking

3·25

CONDITIONAL CLOCKING
CONTROL BIT

CPU Design

Writing of Microprograms

Once the hardware design is established and the
macro-instruction set chosen, the designer should
proceed to implement the microprograms for the
system. To assist in the writing of these micro­
programs, Intel has developed CROMIS, a complete
microprogramming system for Series 3000 com­
puting elements.

CROMIS consists of two major software subsys­
tems, XMAS and XMAP. XMAS is a symbolic
microassembler which is extensible in both micro­
instruction length and memory address space.
XMAP is a complementary subsystem which maps
the micro-instruction bit patterns produced by
XMAS into compatible ROM/PROM programming
files for use with standard memory components.

Programs written in the microassembly language
have two main parts, a declaration part in which
various aspects of the micro-instruction word are
defined and a specification part in which micro­
instruction contents are symbolically declared. Pro­
vision is made for comment statements throughout
the program so that the programmer may explain
the functions being performed.

The main body of the program, the specification
part, defines the sequences of states to be executed,
and the operations which take place for each state.
The main effort in writing a microprogram will be
expended in developing this section.

Each statement of the specification part of the
program defines the action (and location) of one
micro-instruction, i.e., one word of control mem­
ory. The statement will declare, either directly or
by default, the contents of each control field for
the specified micro-instruction. Furthermore, the
statement will include assignment information des­
ignating the address in control memory where the
statement is located.

A specification statement consists of one or more
labels followed by a series of control field specifica­
tions. A colon after an entry indicates that it is a
label. The contents of the control fields are indi­
cated symbolically, using either standard MCU or
CPE symbols or user-defined symbols, or by an
equation of the type

FNM IOIB

where FNM is a name associated with the field.
The entry 10lB implies the binary value 101.

3·26

Each symbol is associated with only one field, so
that the various symbols can be uniquely inter­
preted by the assembler. A number of symbols are
predefined for the assembler, and are not to be
used except as provided by the assembler. These
reserved symbols include the standard symbols for
the MCU and CPE functions, and a number of
directives to the assembler.

DEFINITION OF CONTROL FIELDS

Each control field added by the hardware designer
must be declared to the microprogram assembler.
In addition, each bit pattern to be assembled into a
word in the control field may be symbolically
designated. A FIELD definition statement in the
declaration part of the microprogram is used to
declare the field by name and define any states.

As an example, let a 2-bit field be defined for
memory control. If the programmer wishes to
name this field MEMC, and define symbols for the
states with 0 I corresponding to READ, 10 corre­
sponding to WRITE, and II signalling RMW (read­
modify-write) and default to 00 if READ, WRITE
or RMW is not specified, the statement:

MEMC FIELD MICROPS (REAO-01B, WRITE-lOB, RMW-l1BI

LENGTH-2 DEFAUL T-ooB;

would perform the definition. The words FIELD,
MICROPS, LENGTH, and DEFAULT are directives
to the microprogram assembler.

Additional directives include IMPLY, STRING,
KBUS, and ADDRESS. The use of these words,
and other features of CROMIS are covered in the
Series 3000 Cross Microprogramming System Spe­
cification.

A typical statement of the specification section
might take the form:

7BH: LAB: ILRIR3) FFO STZ JFllNC lei;

The number 7BH (hexadecimal) followed by a
colon tells the assembler that the micro-instruction
is assigned to row 7 column II of control memory
(when control memory is treated as an array of 32
rows and 16 columns). The symbolic label LAB

(the colon indicates a label) is also associated with
this location. ILR(R3) indicates that the contents
of register 3 are to be conditionally incremented
and copied to the AC register, while FFO forces the
carry input to a logic zero, so that the increment
operation does not take place. STZ indicates that
the Z flip-flop is to be set by the results, so that,
as no carry can result, the Z flip-flop will be set to
a logic zero. These symbols are standard symbols,
with ILR associated with the CPE and FFO and
STZ associated with the MCU carry logic. The JFL
tests the carry output line for a conditional jump
to either the statement labeled NC or to the state­
ment labeled Te. JFL is also a standard symbol.
Note that, if the machine is pipelined, the condi­
tional jump tests the results of the previous instruc­
tion, not of the present one. The semicolon indi­
cates the end of the statement.

In the statement above, no information was pro­
vided for the K-Bus. It is assumed the assembler
will provide the appropriate default value associ­
ated with the ILR operation, i.e., the K-Bus at all
zeros.

The reader is referred to the Intel® Series 3000
Cross Microprogramming System Specification for
detailed information concerning CROMIS.

ASSIGNMENT TO CONTROL MEMORY

The nature of the MCU next state address control
requires the programmer to assign control memory
locations to each micro-instruction. While this may
at first seem unfamiliar, it can usually be easily
accomplished if the following sequence is followed:

1. The microprogram should be written without
regard to address assignment. Then conditional
jumps are assigned using the basic conditional
jumps provided by the MCU (JFL, JCF, JZF,
JPR, JLL, JRL, JPX), noting the number of
possible destinations for the conditional jumps
chosen. When a sequence of instructions is to be
executed unconditionally and does not indicate
what jump codes will be used to advance to the
next state (unless the JCE enable feature is re­
quired), use the non-committal code JMP rather
than selecting a JCC, JZR or JCR.

2. Prepare a state sequence flowchart for the pro­
gram (see example, Figure 7). According to the
programmer's preference, this may be done be­
fore, during or after the actual writing of the
code. Label the conditional jump points on the
flowchart.

3·27

CPU Design

3. Using the flowchart as a guide, perform the
assignment. In general, conditional jumps should
be assigned first, with clusters of conditional
jumps assigned before isolated jumps. Leave long
chains of unconditional sequences for last. The
process of assignment can be assisted by using a
diagram of the control memory showing the 32
rows and 16 columns. As each state is assigned,
the control memory diagram is marked to show
occupancy of that word and the flowchart
marked to show the assignment of the state.
With the assignment complete, the addresses are
copied from the memory diagram.

One other procedure in microprogram memory
assignment has been found to be useful. When the
control memory diagram is marked as each state is
assigned, it is helpful to include state linkage infor­
mation in the diagram, i.e., memory location(s)
that reference the current location and memory
location(s) referenced by the current location.
With the additional information, micro-instruction
sequences can be easily traced on the control
memory diagram.

The state linkage information can be quite useful
when most of the microcode has been assigned and
only a few locations are left to assign the remaining
states. If reassignment of memory locations be­
comes necessary in order to assign the remaining
microcode, or modify the existing microcode, the
state linkage information will greatly simplify the
task.

When reassignment becomes necessary, sequences
of unconditional micro-instructions should be con­
sidered first since they are the easiest to move.
Therefore, these types of states are useful to
annotate.

In some cases, a particular sequence may be impos­
sible to assign as written. For example, consider the
following section of microprogram:

r ENTER WITH INSTRUCTION DISPLACEMENT "0" IN AC, SAVE AT R9 -,

175: SQR(9) FFI .PX(MO,Ml, M2, M3. M4, MS, MS, M7, MS, M9, MA. MS, Me,
MD. ME. MFI; r ALSO TESTS HIGH 4 BITS OF MACRO-INSTRUCTION .,

r MO- MACRO INSTRUCTION GROUP 1, FETCH R2 -,

128: MO: ILRIR21 FFO JMP(M1PI:

129 Ml: ILRIR3} FFO;

M1P; ADRIR91 FFO;

CPU Design

ROWp

Figure 6.

"
MIP I I: D

M2 M3 I M41·:"G

Operation MIP Can Be Reached From
Both MO and M1 by Locating MIP in
Row 0 or Duplicating it in Both
Column 0 and Column 1

In the above example, MIP follows both MO and
M 1. Since the row in which MO and M I reside is
completely filled, MIP must be located in row zero
(because the JZR jump operation allows a location
in row zero to be reached from anywhere in mem­
ory). If row zero were already fully occupied, the
assignment could not be made. However, in this
case the state represented by MIP might be dupli­
cated so that it can be reached from state MO and
M1. No extra execution time is added by this
modification, although one more memory location
is used.

When assigning to memory, row zero locations
should be used judiciously, but not sparingly, be­
cause only they can be reached from anywhere else
in the program using a single JZR jump function.

Finally, in a 512-word microprogram memory
there are 64 possible destination pairs for the JCF,
JZF and JFL conditional jump functions, since all
three use columns 2 and 3 or columns 10 and II as
their jump target. It is therefore important to
insure that enough destination pairs are available
for the conditional jumps used in a microprogram.

PROGRAMMING TECHNIQUES

Because of the flexibility of both the micro-opera­
tions and the architecture of the Series 3000 com­
puting elements, a number of programming "tricks"
can be used to implement a desired operation. As
the programmer becomes more familiar with the
set, he will find new ways to perform different
functions. The list of operations given here are
intended as examples. In general, the labels indi­
cating assignments to memory are not shown. In
all of the examples, KB is the name associated with
the K-Bus field of the micro-instruction. State­
ments bounded by /* ... * / are comments and do
not affect the assembly.

3·28

1. Forcing a fixed address to access a predetermined
location in memory or to select a specific I/O
device. (Also may be used to load literals.)

ClRtN)

LMIIN) KB"OESAD;

The first operation clears the register selected by
N, while the second loads the logical OR of the
contents of N and the contents of the K-Bus to
the memory address register (MAR) of the CPE
array and into register N. DESAD is a symbol
for the desired address value previously defined
by the programmer. The pair of micro-ops above
may also be used to set any register to any
desired constant, although the contents of the
MAR are destroyed.

2. Any register may be set to all I's by the opera­
tion

CSR(N) FFO

3. A value read from memory or I/O into the AC
may be split into bytes and stored in another
register as follows:

SOR{N) FFl KFFOO; f" STORE RIGHT BYTE IN REG N • /

SORIAe) FFl KOOFF; r SET lEFT BYTE OF ACTOZERQ ./

where KFFOO is a symbol which causes the K­
Bus to be set to IIII IIII 0000 0000 in binary,
and KOOFF is a symbol for setting the K-Bus to
0000 0000 II1I 1I1I in binary. The high order
byte is placed in the upper byte of register N
while the low order byte remains in the low
position of the AC. The low byte of register N
and high byte of the AC are cleared.

4. Sign Testing and Absolute Magnitude - To test
sign bits most effectively, an inhibit operation at
the CPE clock is very desirable. In the following
examples the symbol INH implies a signal from
the control memory to inhibit the CPE clock.
This prevents modification of the AC register.

The operations

TZAtAC) K8000 INH JFl(AP,AN);

AN: CtA(AC)

AP:

generate the absolute magnitude of AC in AC
for the non-pipelined case (note K8000 implies
1000 0000 0000 0000 on the K-Bus) while

TZR(AC) KSOOO INH

NOP JFLiAP,ANI;

AN: CIA(ACI

AP:

performs the same operation for the pipelined
case.

When two numbers in AC and T must be con­
verted to positive numbers and the signs saved,
as well as the sign of the product, the following
routine may be used for a pipelined machine.
/' ENTER WITH VALUES IN T,AC "

," fiRST CLEAR SIGN AREA REGISTER 9 FOR THIS EXAMPLE 'f

CLR(R91.

"NEXT TEST SIGNS OF AC. THEN T "

TZRIACI K8000 INH. r TEST AC SIGN SIT "

TlRm JfL(AP,ANI: ,'TESTTSIGNBIT "

LMI(R91 K8000 JFL(TP,TNI. I" SET HIGH AND LOW ORDER BIT "

CIA(ACI JFL(TP,TN). " COMPLEMENT AC "

LMHR91 «000 JMP(NXOPI: r SET BIT 15 'f

ClAm. ,. COMPLEMENT T 'f

Upon reaching label NXOP, both AC and T will
contain positive numbers (high order bit = 0)
and register 9 will contain a I in the high order
bit if and only if AC was originally positive, a I
in the second bit from the top if and only if T
was originally positive, and a zero in the low
order bit if and only if the signs were the same.
A one will appear in the second lowest order bit
if and only if both numbers were originally
positive. Execution of the sequence takes 5
micro-instruction cyeles.

5. Pipelined Multiply - Assume that AC and T
represent the partial product and multiplier
respectively, while register 9 contains the multi­
plicand and register 8 will be used as a loop
counter. Register 7 is used for temporary stor­
age. It is assumed that both numbers are positive.
r SET UP LOOP COUNTER 'f

MGl CSRIRBI 1(0000. "SET R8TOFFFF HEX'

TZFHR81 KFFFO. /' SET R8TOFFFOHEX •

!" CLEAR PARTIAL PRODUCT lAC) "

ClRIACI.
/' fETCH AND TEST MULTIPLIER LOWQAOER BIT "

SRA(TI;

" MAIN LOOP - EXECUTE MULTIPLIER BIT TEST, ADD IF NECESSARY',

MLP: LMUR81 FF 1 STZ JFLIMBZ.MBll. ,. INCREMENT LOOP COUNTER SAVE IN Z .,

" A.oD SEQUENCE "

MBI' SDRIRll FFI ,. SAVE AC IN REGl "

ILR(R91 FFO. I" PLACE MULTIPLICAND. R9.IN AC "

ALR(R7I FFO r ADO MULTIPLICAND TO PARTIAL PRODUCT ./

" NOW ROTATE. THEN TEST LOOP COUNT - SAveD IN Z .,

,'NOTE PIPELINE ALLOWS USE OF Z FOR SHIFT BIT PROPAGATION '/

r NOTE THE SoRIR7I. ILRIR91. AND ALRIR11 MICRO-INSTRUCTIONS CAN BE
REPLA.CEo WITH AN A¥A MICRO·INSTRUCTION ELIMINATING Z INSTRUCTIONS
FROM THE INNER LOOP IF OATA IS LATCHEO ON THE M BUS .,

MEX:

SRAIACI

SRAtTI

FFOSTZ. I' SHIFT PARTIAL PRODUCT. SAVE LSB .,

FFZ JZFIMLP.MEXI. I' Z TEST IF OF LOOP CDUNTI "

Note that the pipeline causes the lZF (or a lCF)
to test the contents of the flip-flop as set two or
more instructions earlier.

A state sequence flow diagram for the multiply
sequence might be drawn as shown in Figure 7.

Note that in Figure 7, each symbolically labeled
state is noted, and each conditional jump is indi­
cated and the conditions corresponding to each
jump are noted. A flowchart like that of Figure
7 contains sufficient information to perform the
assignment to memory. An assignment might be
as shown in Figure 8.

3-29

CPU Design

rCL

Mel+1

Mel +:~

MCl+J

MLP
M8'~~--------~'---~

JFL

M81+1

M81+2 o-________ -to~"'M8::::Z~>=JZ"'F

MEX

Figure 7. State Sequence Flow Diagram -
Multiply Loop

COL COL COL COL COL COL
o , 2 3 4 5

ROW 9 MCl MCl MlP MEX MCl MCl ., '2 '3

ROW 10 MB, MB' MBZ MB1

Figure 8. An Assignment of the Multiply Loop
to Control Memory

Because MLP and MEX are the two destinations
of a JZF jump function, they must be in the
same row, in columns two and three respectively
or in columns 10 and II respectively. Since MLP
executes a lFL to MBZ, MBI, then MBZ and
MBI must be in the same pair of columns as
MLP and MEX. For the example, rows 9 and 10
were chosen, and columns 2 and 3, and the four
states MLP, MEX, MBZ, MBI are assigned first.
Next the states following MBL (indicated by
MBI+I and MBI+2) and MBZ are assigned. As
all of these jumps are unconditional, the opera­
tions lCC, lCR, and lZR are used. As the lZR
is usually reserved for entry to commonly used
routines, only the JCC and JCR jumps are used
here.

To demonstrate the techniques introduced above,
a central processing unit design cycle will be carried
through from initial specification to final micro­
program memory assignment.

A DESIGN EXAMPLE

The following design example illustrates some of
the basic techniques which may be used in develop­
ing a central processor with the Intel® Series 3000
Bipolar Microcomputer Set. The basic design se­
quence consists of stating the machine objectives,
then designing the hardware configuration and
microprograms. For this example, it is assumed
that the designer has the freedom to specify opera­
tion code assignments, and to modify the instruc­
tion set to take greatest advantage of the chip set's
capabilities.

CPU Design

Initial Specifications

Let the following list of design objectives represent
the initial specifications for a central processor
instruction set.

I. The machine should use a 16-bit data path,
with instructions containing an opcode por­
tion and a data or displacement portion.

2. Machine registers should include a program
counter, P, a stack pointer, S, an accumulator,
A, an index register, X, and two base registers,
Band E. B is a base register for data and E is
a base register for program. In -addition, a
carry flip-flop may be a bit in the status word,
W.

3. References to memory for data should be
relative to the B register, using the displace­
ment portion of the instruction (designated
D). Memory reference modes include direct
(Address=B+D), indirect (address equals the
contents of B+D), and indirect indexed (ad­
dress equals the value given by the sum of X
and the contents of the word at address B+D).
Indirect and indirect-indexed modes should
include both absolute and B relative (Le., the
address is relative to the contents of the B
register) forms so that indirections may be
computed both at time of assembly and dur­
ing prog~am execution.

4. Memory reference instructions include: load
address to A, load data to A, AND data to A,
OR data to A, XOR data to A, add data to A,
subtract data from A, push address to stack,
push data to stack, store A at computed
address, pop stack to computed address, load
address to X, load data to X, add data to X,
subtract data from X, store X at computed
address (operations involving X may not need
to implement indirect-indexed modes).

5. Immediate instructions using the displacement
portion of the instruction as the data, include,
load A, load X, add to A, add to X. A two
word "load immediate" instruction may also
be implemented.

6. Jump instructions include a short relative
jump (Address=P+D-K, where K is a con­
stant), an indirect jump to an address relative
to the E base register, and an indirect call
operation.

7. The call (to a subroutine) operation saves the
P, E, B, and W registers (global call), or the P
register (local call) on the stack and loads the

P register with the starting address of the
routine. Similarly, a return instruction restores
the appropriate registers. Some jumps may
also be conditional, checking the status of the
C flip-flop, or the sign or magnitude of the A
register.

8. Additional operations may involve manipula­
tions of data in the A and X registers and the
ability to move data between the X and the
W, B, E or S registers.

9. Byte load and store operations should include
automatic packing and unpacking of bytes in
a 16-bit memory location.

10. Input/output instructions should use either
the displacement or the X register to specify
the I/O device address.

In addition to the definition of the macro-instruc­
tion set, the designer should also prepare descrip­
tions of the initialization operations (Le., at "power
on") and interrupt handling to be used. For this
machine, let it be considered necessary for the
machine to start at power up with W, A, and X
cleared and for S to be set to the contents of word
0, B to be set to the contents of word 1 of mem­
ory, E set to the contents of word 2, and P set to
the contents of the memory location pointed to
by E.

Let I/O device 0 represent a source of interrupt
level information (level requesting in) and a desti­
nation for current level out, consistent with the use
of the 3214 Interrupt Control chip. In addition,
let the low order bits of W contain current inter­
rupt level information.

When servicing an interrupt, the processor will
execute a jump to subroutine which will reload P
and E while saving all registers except S on the
stack. The service routine will interrogate the inter­
rupt hardware to determine the level of the request
and will restore former status upon exit from the
interrupt program. For this purpose, a return and
restore status instruction will be provided.

In parallel with the specification of the design
objectives, a first pass at the CPU's architecture can
be made. The block diagram in Figure 9 shows a
general CPU architecture as defined in the initial
specification above.

The design example machine uses a pipelined
architecture and includes a control structure which
implements eight basic memory bus and clock
operations. A 3-bit field is used to control this
structure. The states for this field are designated

3-30

CPU Design

\ MEMORY 8. I 0 ADDRESS BUS \

BIDIRECTIONAL DATA BUS \

CONTROL BUS

---------------,

AC REGISTER I I MAR I
3002 CPE ARRAY

I'MEMORY AND I 0
BUS CONTROL

IMSISSI!

I""--------r------------I MICROPROGRAM
ARITHMETlC:LOGIC

UNIT MEMORY

(ROMS PROMSr
P[AFOIl.MSADDf:lESSCALCU 1\,-____ --,

, ,

LATIONS AND AHITHMETIC
lOGIC OPERATIONS UNDER
CONTROL OF THE MICRO
PROGRAM

REGISTER FILE

A - ACCUMULATOR 11'101
X _ INDEX REGISTER (RlI
W - STATUS REGistER IR11
B - BASE REGISTER, DATA (1'151
E - BASE REGISTER, PROGRAMIR61
P - PROGRAM COUNTER IR31
S - STACK POINTER IR41

MICROPROGRAM WORKING
REGISTERS RB. 1'19, T

-
r--------------- - -------1
I 3001 MCU I

I -H' SHIFT CARRY
I LOGIC
I ,
I
I

MICROPROGRAM I
SEQUENCE

CONTROL UNIT

L _________________ _

L _____________________________ ~

OPCQDE FIELD

Figure 9. Block Diagram of CPU Architecture

NBO (No Bus Operation), INH (Inhibit CPE Clock),
CNB (CPE uses bus), RMW (read modify write
signal to memory - starts a read cycle and prevents
release of bus until the CPU executes a write cycle),
RRM (Request read cycle from memory), RWM
(Request write to memory), RIN (Request input
from an I/O device), and ROT (Request an output
to an I/O device).

The stack has been designed to run "backwards"
through memory, with a pop incrementing the

:j:.31

stack pointer and a push decrementing it. This
direction is preferred, as it leaves the stack pointer
pointing at the topmost entry in the stack. In
addition, pops usually appear more often than
pushes (pushes share code), and the increment
operation requires fewer micro-instructions.

The designer must select the actual instructions to
be used. Let the instructions and their associated
mnemonics shown in Table I be selected in the first
design pass.

CPU Design

Table I. Proposed Instruction Set

MNEMONIC

LAA

LDA

ADA

SDA

NDA

ODA

XDA

PAS

PDS

SAM

PSM

LAX

LDX

ADX

SDX

SXM

MNEMONIC

LAI

AAI

NAI

OAI

XAI

PSI

LXI

AXI

MEMORY REFERENCE GROUP

FUNCTION

Load address to A

Load data to A

Add data to A

Subtract data from A

AND data to A

OR data to A

Exclusive OR data to A

Push address to stack

Push data to stack

Store A into memory

Pop stack into memory

Load add ress to X

Load data to X

Add data to X

Subtract data from X

Store X in memory

IMMEDIATE GROUP

FUNCTION

Load to A immediate

Add to A immediate

AND to A immediate

OR to A immediate

Exclusive OR to A immediate

Push to stack immediate

Load to X immediate

Add to X immediate

If D is equal to zero, the contents of the memory location
following the instruction is used as the immediate value.

JUMP GROUP

MNEMONIC
FUNCTION

RELATIVE INDIRECT

JRU JIU Jump unconditional

JRGE JIGE Jump if A;;'O

JRLT JILT Jump if A<O

JRXG JIXG Jump if X>A

JREZ JIEZ Jump if A=O

JRNZ JINZ Jump if A*O

3-32

JUMP GROUP (continued)

MNEMONIC
FUNCTION

RELATIVE INDIRECT

JRCZ JICZ Jump if C=O

JRXL JIXL Jump if X';;;A

JRLE JILE Jump if A';;;O

JRGT JIGT Jump if A>O

JRCN JICN Jump ifC*O

JRXE JIXE Jump if X=A

Jump relative: P=P+D-128
Jump indirect: P=(E+D)+E

STACK PUSH AND POP GROUP

MNEMONIC

PHAX

PPAX

FUNCTION

Push A and X onto stack

Pop A and X from top of stack

SPECIAL MEMORY REFERENCE INSTRUCTION

MNEMONIC

ISZ

MNEMONIC

CLS

CVS

CAS

FUNCTION

I ncrement location B+D and skip if zero

SUBROUTINE CALL GROUP

FUNCTION

Call local subroutine, push P onto stack
P=E+(E+D)

Call value subroutine, push W, B, E, P
onto stack
E=E+(E+D)
P=E'+(E')

where E'=E+(E+D)

Call absolute subroutine, push W. B. E, P
onto stack
P=(D)

SUBROUTINE RETURN GROUP

MNEMONIC

RLS

FUNCTION

Return from local subroutine, pop P from
stack

RVS Return from value subroutine, pop P, E,
B, W from stack

RSA Return from subroutine, restore all, pop
A, X, P, E, B, W from stack

Table I. Proposed Instruction Set (continued)

BYTE LOAD AND STORE GROUP

MNEMONIC

LBA

LBR

SBA

SBR

Absolute mode:
Relative mode:

FUNCTION

Load byte absolute

Load byte relative

Store byte absol ute

Store byte relative

Byte address = (B+D)+X12
Byte address = (B+D)+B+X12

The least significant bit of the X register is treated as the
byte pointer in main memory as follows:

X Reg. LSB = 0 the left or high order byte is selected
= 1 the right or low order byte is selected

For load operations, the selected byte is loaded into the
right byte position of the A register and the left byte is
cleared. For store operations, the right byte of the A regis·
ter is stored at the selected byte location leaving the un·
selected byte of the word unaltered.

REGISTER MANIPULATION GROUP

MNEMONIC

RAR

RAX

SAX

SAL

FUNCTION

Rotate A right, include CF F

Rotate A and X right, include CFF

Shift A and X right, preserve sign

Shift A left, fill with zeros

The shift count is given by D if D is non· zero or by the
least significant seven bits of the X register if D is zero.

BASE AND STATUS REGISTER MOVE GROUP

MNEMONIC FUNCTION

MSX Move S to X, adjust

MBX Move B to X, adjust

MEX Move E to X, adjust

MWX Move W to X, adjust

MXS Move X to S, adjust

MXB Move X to B, adjust

MXE Move X to E, adjust

MXW Move X to W, adjust

The destination register is adjusted by D-128 (i.e., D-128
is added to the destination register).

3-33

CPU Design

INPUT/OUTPUT GROUP

MNEMONIC

IND

OTO

FUNCTION

Input one word to the A register

Output one word from the A register

D serves as the address for the I/O port.

INX

OTX

I nput one word to the A register

Output one word from the A register

The X register provides the address for the I/O port.

Given the basic design objectives, the next step is
to write the sequences of micro-instructions to im­
plement the macro-instruction described above.
Each macro-instruction must be assigned a unique
operation code. The operation code (opcode) will
be used by the 300 I MCV to generate the appro­
priate address for the micro-instruction which exe­
cutes that macro-instruction.

Macro-Instruction Decoding

To take full advantage of the 3001 MCV's eight
input lines (SXO-3, PX4-7) for instruction de­
coding, all macro-instruction operations should be
completely specified in an 8-bit opcode field and
use the remaining 8 bits for displacement values.
In Figure 10 the 8-bit opcode of a macro-instruc­
tion being read in on the memory data bus is gated
directly to the 3001 MCV. While the displacement
is being stored in the CPE array, a JPX operation is

300'
Meu

I'PR1
~

SXO-l

OPCODE FIELD

300'
CPE ARRAY

MEMORY DATA
INPUT BUS

Figure 10, Macro-Instruction Decoding with
the 3001

executed by the 300 I. The JPX operation executes
a 16 way branch based on the 4 bits of the PX lines
and also stores the 4 bits on the SX lines in the PR
latches for later decoding. For best microcode
efficiency then, the opcode field should be arranged
in such a manner that the first 4 bits tested (by the
JPX operation) select the initial processing (usually
an address calculation) of the macro-instruction. A
possible instruction format is shown in Figure II.

CPU Design

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I I I I I I I I I I I I I I I I I
ADDRESS OPERATION DISPLACEMENT

MODE MODE

Figure 11. possible Macro-Instruction Format

In the case of the CPU design example, the initial
processing involves address calculations and/or
operand fetching. Table II contains the initial
processing modes for the design example.

Table II. Memory Modes

In the description below, the letters A, X, B, S, P, W, and E
represent the contents of the respective registers. 0 repre­
sents the 8-bit displacement treated as a positive number
ranging from 0 to 255. 0' represents 0-128. () are used to
designate contents of memory. For example, (B+O) means
the contents of the memory location whose address is equal
to the sum of the contents of B and the displacement O. It
is assumed that, when the instruction is fetched, P is incre­
mented prior to instruction execution.

MEMORY REFERENCE MODES

1. Direct: Address = B+O

2. Indirect: Address = (B+O)

3. Indirect relative: Address = (B+O)+B

4. Indirect indexed: Address = (B+O)+X

5. Indirect indexed relative: Address = (B+O)+B+X

IMMEDIATE MODES

6. If 0*0, Data = 0-128

If 0=0, Data = (P), P=P+l

JUMP MODES

7. Jump relative: P=P+0-128

8. Jump indirect: P=(E+O)+E

g. Call relativ\!: P=(E+O)+E

10. Call indirect: P=E'+(E') where E'=E+(E+O)

REGISTER MODE

11. Fetch source register

Using the instruction format shown in Figure 11,
the high order 4 bits (bits 12 to 15) will be used to
select one of the modes listed in Table II. Thus, by
executing a JPX operation, a 16 way branch on the
PXQ-PX3 bus can be performed to determine the
address mode specified. At the same time the SX
bus bits (the Operation Code field) will be stored
in the PR latches for later use. A possible assign­
ment of the first 4 bits (bits 12 through 15) might
be as shown in Table III.

3-34

In addition to the initial address mode processing
input/output, register to register, and other special
function operations can be specified in the first 4
bits, as shown in Table III.

Microprogram Implementation

Having assigned the first 4 bits of the macro­
instruction operation code, the next 4 may be
tentatively assigned. These 4 bits will have different
meanings for different instruction classes. To im­
prove microcode efficiency it is desirable to share
as much code as possible between different micro­
program segments. For example, the ADA and AAI
instructions might share the add operation once the
data has been fetched.

MEMORY REFERENCE AND IMMEDIATE
GROUP

The assignment shown in Table IV might be used
for the memory reference and immediate group
instructions. The clustering has been chosen in a
way that should allow JPR and JLL and JRL
micro-operations to be used effectively and to
allow code sharing between the two groups.

An initial flowchart for the memory reference and
immediate group instructions is shown in Figure
12. In the flowchart, the boxes indicate the opera­
tions performed. The appropriate jump operations
(JPX, JLL and JRL) are indicated along with the
bit patterns that select each box.

It is possible that when the actual code for the
sequence is written, some improvements in effi­
ciency may still be made_ In addition, some of the
boxes shown as dummies may be eliminated by
suitable placement of the JLL and JRL instructions.

Knowledge of the MCU assignment restrictions
may also influence some choices here. For example,
the MCU provides twice as many possible JLL
jump destinations as JRL jump destinations, while
the sequence shown uses twice as many JRLs as
JLLs. As a result, an easier assignment might be
obtained if the JLLs and JRLs were exchanged,
which is equivalent to a reassignment of the macro­
operation codes.

Also, recognizing that the MCU's JCC type jump
facilitates jumping from one JLL destination to
another, it is desirable to assign the macro-opera­
tion codes so that operations which share final
segments are aligned in columns. For example, the
SDA instruction would typically be achieved by
complementing the data, then adding it to A,
which may share the code for ADA. As a result, a

Table III. Mode Bit Assignments

ADDRESS MODE
BITS

0000 No operation

0001 Jump relative

MODE

0010 Jumps (index, etc.)

0011 Immediate

0100 Direct memory reference

0101 Indirect memory reference

0110 I ndirect index

0111 Indirect index relative

1000 I/O input

1001 I/O input

1010 I/O output

1011 I/O output

1100 Move group

1101 Special function group

1110 Indirect relative memory reference

1111 No operation

Table IV. Memory Reference and Immediate
Op Code Assignment

OP FIELD
MEMORY

IMMEDIATE
BITS

REFERENCE
FUNCTION

FUNCTION

0000 ADA AAI

0001 ADX AXI

0010 NDA NAI

0011 ODA OAI

0100 LDA LAI

0101 LOX LXI

0110 PDS PSI

0111 XDA XAI

1000 LAA

1001 LAX

1010 PAS

1011 SDA

1100 SAM

1101 SXM

1110 PSM

1111 SDX

CPU Design

INITIAL PROCESS SUBSEOUENT PROCESSING

P+D' Condition testing

(E+D)+E

D' or (P) LAI, AAI, etc.

B+D

(B+D)

(B+D)+X LAA, LDA, etc.

(B+D)+X+B

D->MAR

X->MAR

D->MAR

X->MAR

Shift A

(B+D)+B

better assignment of opcodes might be achieved by
placing ADA and SDA in the same column. For
example, see the assignment shown in Table V.
Table V also assumes exchange of the JLL and JRL
instructions.

Table V. Modified Memory Reference Op Code
Assignments

0000 = NDA 0100 = ODA 1000 = XDA 1100 = ADA

0001 = LDA 0101 = LDX 1001 = PDS 1101 = ADX

0010=LAA 0110=LAX 1010=PAS 1110=SDA

0011 = SAM 0111 =SXM 1011 =PSM 1111 =SDX

Except for those considerations mentioned above,
the code is most easily written without regard to
memory assignment. Also, it is assumed that reas­
signments of macro-operations codes are made
when efficiency can be improved.

Let the CPE register assignments be made as shown
in Table VI.

The code which follows represents the specification
portion of the microprogram in which the various
fields are identified, and symbols defined.

3-35

CPU Design

fETCH FeTCH FETCH FeTCH
JRL

JRL

FETCH FETCH FETCH FETCH
JRL

FETCH FETCH FETCH FETCH
JRL

FETCH FETCH FETCH FETCH

Figure 12. First Pass of Memory Reference Group Flowchart

/* BIPOLAR MICROCOMPUTER MACRO-MACHINE
REGISTER MACHINE- -12/13/74
UPDATED 3/18/75

MACHINE HAS 7 REGISTERS AS FOLLOWS:
A ACCUMULATOR RD
X INDEX REGISTER R1
P PROGRAM COUNTER R3
S STACK POINTER R4
B DATA BASE REG R5
E PROG_ BASE REG. R6
W STATUS WORD R7

C=CARRY,LlNK FLiP-FLOP=HOB OF W

DEFINITION OF KBUS FIELD *1

3-36

CPU Design

KB FIELD LENGTH=4 DEFAULT=O
M ICROPS(KOOOO=O

K8000=8
K007F=1 KOOOFF=3 K7FFF=7
KFFOO=12 KFF80=14 KFFFF=15);

KB KBUS;

/* DEFINITION OF BUS CONTROL FIELD *f

MCF FIELD LENGTH=3 DEFAULT=O
MICROPS(NBO=OOOB

RIN=100B
INH=OOlB RMW=010B CNB=OllB

RWM=lllB); ROT=101B RRM=110B

/*
INH
RMW
CNB
RIN
ROT
RRM
RWM

NBO NO BUS OPERATION
INHIBIT CPE ARRAY
READ-MODIFY-WRITE
CPU NEEDS BUS
REQUEST INPUT
REQUEST OUTPUT
REQUEST READ MEM.
REQUEST WRITE MEM.

SET UP FOR SYMBOLIC REPRESENTATION OF REGISTER DESIGNATIONS *j

A
X
P
S
B
E
W

STRING 'RO';
STRING 'Rl';
STRING 'R3';
STRING 'R4';
STRING 'R5';
STRING 'R6';
STRING 'R7';

/* SET UP A SPECIAL NO.OP STRING *f

NO.OP STRING 'NOP(R3)';

/* NEXT WE SPECIFY A DEFAULT TO FFl IN THE FO FIELD FOR THE SDR
MICROP IN THE CPE FIELD. SDR IS NORMALLY USED AS A STORE
OPERATION. WHEN A DECREMENT OPERATION IS ALSO DESIRED, FFO
WILL HAVE TO BE EXPLICITLY SPECIFIED */

SDR IMPLY FO=llB;

Table VI. Register Assignments

RO = A

Rl = X
R3 = P

R4 = S

R5 = B
R6 = E

R7 = W (C is high order bit of W)

The next portion of the code represents the ma­
chine initialization (in which registers are set to
initial values during power up), and the memory
reference and immediate group of instructions. The

elementary flowchart followed is that of Figure 13,
reflecting the reassignment shown in Table V.

A number of programming "tricks" can be found
in the microcode. For example, the C flag of the
MCU (not to be confused with the C flip-flop of
the macro machine) is set each time the machine
executes a fetch instruction by the SDR micro­
operation. SDR adds 111 ... 1 to the AC (as masked
by the K-Bus) so that whenever the carry input of
the CPE array is a I, the masked AC register will be
stored unchanged into the designated register, and
the carry output of the CPE array will be I.
Similarly, a ILR micro-operation (KBUS = 0) with
a carry-in of zero never generates a carry, so that it
can be used to clear the C flag if so desired.

3-37

CPU Design

FETCH FETCH FETCH FETCH
JLL

JLL

FETCH FETCH FETCH FETCH
JLL

FETCH FETCH FETCH FETCH
JLL

FETCH FETCH FETCH FETCH

Figure 13. Second Pass of Memory Reference Group Flowchart

The C flag is used to implement a type of micro­
code subroutine where code is shared by two
"calling" routines, one which leaves the C flag
unchanged and the other which clears it. Upon exit
from the shared code sequence, the C flag is tested
giving a unique exit for each of the two calling
routines (see Figure 14).

The inhibit operation, indicated by the "INH"
micro-operation, inhibits the clock to the CPE
array. For these operations the carry function and
conditional jump results are the same as if the oper­
ation were executed. However, none of the CPE
registers are altered when the clock is inhibited.

Figure 14. Microcode Subroutine Using the C-Flag
to Determine Exit

3-38

The result is a number of "compare" or test
micro-operations.

In general, row zero locations should be used
sparingly because they are the only locations that
can be reached from anywhere in microprogram
memory using a single JZR micro-operation. Dur­
ing the first pass of the microprogram implementa­
tion, notes can be added to indicate where code
might be saved if row zero locations are used.

A common case of such microcode saving follows
the execution of a JPR or JPX micro-operation. If
the datum being tested by the JPR or JPX repre­
sents a macro-instruction operation code in which
less than 16 modes are used, there is always the
possibility that an invalid code might be en­
countered. Rather than have the machine behave
unpredictably, it is better to have the machine exe­
cute some designated sequence for invalid macro­
operation codes. As a result, all 16 locations
reached by the JPX or JPR micro-operation must
be considered occupied. Therefore, when it is
desirable to have a single state follow each of
several states reached by a single JPX or JPR micro­
operation, two possible methods can be used which
do not require additional jump micro-operations:

I. Locate the single state in the row zero
2. Locate the single state in a column reached by a

JCF or JZF micro-instruction and insure the
corresponding (C or Z) flag is in the desired
state.

'* INITIALIZATION SEQUENCE
ZERO A, X, AND W */

INIT: CLR(A);
CLR(X);
GLR(W);

CPU Design

As an example of this situation, consider the tol­
lowing sequence of micro-instructions (only labels
and jumps shown):

TST: ,R IDO. 01. 02. D •... D151
DO: .IMP ID1A)
01:
01A:

In the sequence above, DO through D 15 occupy an
entire row. The micro-instruction labeled DIA
unconditionally follows both of those labeled DO
and D I. Since the row containing DO through D 15
is fully occupied, DlA cannot be assigned to that
row. The only other unconditional jump which can
reach a common location from more than one col­
umn is the JZR. However, such conditional jumps
as JCF and JZF, where the condition is pre-set,
can jump to a given location from up to eight sites
in a given row, as illustrated in Figure 15.

COLUMN

012345678

ROWn 100 I 0+21 03 1 04 1 06 1 06 1 07108109 f
+_+_L+_L+_+_+_' >

-!---JCF MICRO"()PERATI'lN

ROWn+1 8
WITHIN CURRENT t

ROW GROUP

COLUMN 2 FOR C·FLAG" 0

Figure 15. Special Use of the Conditional Jump
Functions

/* ZERO T AS TEMPORARY POINTER, WRITE W TO INTERRUPT STRUCTURE */

CLR(T);
LMI(T);
ILR(W) ROT;

/* SET S = (0), T = 1 FOR NEXT OPERATION */

LMI (T) FF 1 RRM;
ACM(AC) ;
SOR(S);

/* SET B = (1), T = 2 FOR NEXT OPERATION */

LMI(T) FF1 RRM;
ACM(AC);
SOR(B) STC; /* THIS SETS THE C FLAG TO INSURE

A CORRECT JUMP TO XRTN */

3-39

CPU Design

/* GET (2), JUMP TO XRTN TO SET E = (2), P = (E) *j

LMI(T) RRM;
ACM(AC) JCF (*,XRTN);

/* FETCH SEQUENCE & START OF MACRO-INSTRUCTION PROCESSING
P IS ISSUED TO MAR AND INCREMENTED, MACRO-INSTRUCTION
IS FETCHED AND TESTED BY JPX MICRO-OPERATOR_ NOTE
FETCH IS IN LOCATION 15 TO STROBE INTERRUPT ON ENTRY_ *j

FETCH: LMI(P) FFl RRM;

/* LOAD DISPLACEMENT AND TEST FOR ZERO USING Z FLAG * j

LTM(AC) STZ KOOFF;

/* SAVE DISPLACEMENT, TEST 4 BITS OF MACRO-OP_ TEST IS
DELAYED TO ALLOW PIPELINE PROPAGATlON_ ALSO C FLAG IS
SET FOR LATER USE IN PSEUDO-SUBROUTlNES_ *j

SDR(R9) STC JPX(NAO,JREL,JIG,IMMD,DMRF,IMRF,IXMA,IXMB,IND,
I NX,OTD,OTX,MVGP ,SPFG,I R BM,NA 15);

/* UNASSIGNED OP-CODE GROUPS- -NOPS FOR THIS VERSION *j

NAO:
NA15:

NO_OP
NO_OP

JZR(FETCH);
JZR(FETCH);

/* IMMEDIATE GROUP OF MACRO-INSTRUCTIONS- -TEST FOR LONG OR SHORT
FORM- -D IS IN AC AND R9- -ADJUST AC BY -128 *j

IMMD: LMI(AC) KFF80 JZF(lMML,IMMS);

/* LONG FORM: FETCH NEXTWORD TO AC *j

IMML: LMI(P) FFl RRM;
ACM(AC) JRL(lLGA,ILPX,NAll,NAI2);

/* SHORT FORM: NO PROCESSING NEEDED *j

IMMS: NO_OP JRL(ILGA,ILPX,NAll,NAI2);

/* PREPROCESSING FOR ARITHMETIC AND LOGIC ROUTINES? NONE NEEDED *j

ILGA:
ILPX:

NO_OP
NO_OP

JLL(NDA,ODA,XDA,ADA);
JLL(LDA,LDX,PDS,ADX)

/* NOTE: NAil AND NAI2 ARE NON-VALID INSTRUCTIONS!! THEY ARE
MADE INTO NO-OPS IN THIS VERSION OF THE MACRO-MACHINE *j

NAil:
NAI2:

NO_OP
NO_OP

JZR(FETCH);
JZR(FETCH);

/* BASIC ARITHMETIC AND LOGIC PROCESSING- -UPDATE C FF OF MACRO­
MACHINE FOR ADA--TOGGLE ITON CARRY FROM ADA *j

ADA:
ADA1:
NCY:
SCY:

ADR(A);
NO_OP
NO_OP
LMI(W) K8000

/* LOGICALS *j

NDA:
ODA:
XDA:

ANR(A)
ORR(A)
CMR(AC);
XNR(A)

JFL(NCY,SCY);
JZR(FETCH);
JZR(FETCH);

JZR(FETCH);
JZR(FETCH);

JZR(FETCH);

3-40

/* LOA AND LOX OPERATIONS *j

LOA:
LOX:

SDR(A)
SDR(X)

JZR(FETCH);
JZR(FETCH);

/* STACK PUSH- -ADVANCE STACK POINTER TO NEXT LOCATION (FOR THE
REVERSE DIRECTION STACK- -A DECREMENT OF S), THEN WRITE *j

PDS:
PDS1:

DSM(S);
LMI(S) RWM JZR(FETCH);

/* ADX - SHARES CODE FOR ADA - ALSO TOGGLES C FF OF MACRO MACHINE *j

ADX: ADR(X) JMP(ADA1);

/* MEMORY REFERENCE INSTRUCTION GROUPS
DIRECT--GETB+D INTO AC--ALSO R9 *j

DMRF: ILR(B);
ALR(R9) JRL(MRV1,MRV2,MRAD,STPG);

/* INDIRECT-ABSOLUTE- -GET (B+D) INTO AC- -C FLAG USED FOR PSEUDO-SUBROUTINE *j

IMRF: ILR(B);
IMRF1: ALR(R9);

LMI(R9) RRM
MLOAD: ACM(AC)

JCF(MADD,MLOAD);
JRL(MRV1,MRV2,MRAD,STPG);

/* NOTE: MADD WILL BE USED FOR OTHER INDIRECT OPERATIONS WHERE
B, X, ETC_ HAS BEEN LOADED TO R8 *j

MADD: ACM(AC);
ALR(R8) JRL(MRV1,MRV2,MRAD,STPG);

/* INDIRECT INDEXED ABSOLUTE - CLEAR C FLAG, MOVE X TO R8 *j

IXMA: ILR(X) STC;
SDR(R8);

/* NOTING THAT ASSIGNMENT RULES WOULD NOT ALLOW THE DESIRED
JUMP TO IMRF UNLESS IXMA+l WERE IN ROW ZERO- -AN EXTRA STATE
IS ADDED HERE *j

IXMA2: ILR(B) JMP(lMRF1);

/* INDIRECT INDEXED RELATIVE - CLEAR C FLAG, PUT B+X IN R8 *j

IXMB: ILR(X) STC;
SDR(R8);
ILR(B);
ADR(R8) JMP(lMRF);

/* INDIRECT RELATIVE (TO B) - CLEAR C FLAG, PUT B IN R8 *j

IRBM: ILR(B);

/* AGAIN ASSIGNMENT RULES PREVENT JUMPING TO IXMA+l UNLESS IT IS
LOCATED IN ROW ZERO- -PLACEMENT THERE COULD FREE TWO WORDS *j

SDR(R8) JMP(lXMA2);

/* THE FOLLOWING PROCEDURES IMPLEMENT THE BASIC PREPROCESSING FOR
VALUE AND ADDRESS LOADING_

VALUE-GROUP 1: GET (AC) IN AC *'
MRV1: LMI(AC) RRM;

ACM(AC) JLL(NDA,ODA,XDA,ADA);

3-41

CPU Design

CPU Design

/* VALUE GROUP 2 *f

MRV2: LMI(AC) RRM;
ACM(AC) JLL(LDA,LDX,PDS,ADX);

f* MRAD GROUP INCLUDES ADDRESS LOADS AND SUBTRACT FROM A *f

MRAD:

LAA:
LAX:
PAS:

NO.OP

SDR(A)
SDR(X)
DSM(S)

JLL(LAA,LAX,PAS,ISDA);

JZR(FETCH);
JZR(FETCH);
JMP(PDS1);

/* FOR SUBTRACT, ADD l'S COMPLEMENT PLUS 1 * f

ISDA: LMI(AC) RRM;
LCM(AC);
ADR(A) FF1 JMP(ADA1);

/* STPG GROUP INCLUDES STORES AND SUBTRACT FROM X *f

STPG:

SAM:
SXM:

LMI(AC)

ILR(A) RWM
ILR(X) RWM

JLL(SAM,SXM,PSM,SDX);

JZR(FETCH);
JZR(FETCH);

/* POP STACK TO MEMORY - SAVE ADDRESS, POP STACK' f

PSM: SDR(T);
LMI(S) FF1 RRM;
ACM(AC);
LMI(T) RWM

/* SUBTRACT FROM X *f

SOX: LMI(AC) RRM;
LCM(AC);
ADR(X) FF1

JZR(FETCH);

JMP(ADA1);

Thus the initialization procedure requires 16 words
of microcode, the fetch sequence 3, and the mem­
ory reference and immediate groups use a total of
57 words. In addition, two dummy locations
(NAI I and NAI2) are needed for unassigned macro­
operation codes.

Sample execution times for some of the instruc­
tions may be estimated by counting the number of
micro-instructions in the sequences and the number
of read and write memory cycles. Allowing I SO
nsec for each micro-instruction, and 400 nsec for
each memory cycle, some representative execution
times would be as shown in Table VII.

Table VII. Representative Execution Times

INSTRUCTION MICROCYCLES

ADA, direct 10

ADI, short 9

LOA 8

LAI, short 7

LOA, indirect index relative 15

READ CYCLES

2

2

3

3-42

WRITE CYCLES EXECUTION TIME

2.3J.1S

1.75J.1S

2.0 JJS

1.45 J.lS

3.45 J.lS

JUMP GROUP

The next section shows the realization of the jump
group instructions. Two basic classes, a jump rela­
tive to the program counter and an indirect jump
through a table stored at the beginning of the pro­
gram are represented. Conditional jumps include
A>O, ,900, A=O, A~O, A~, A<O, X=t-A, X>O,
X~, C=O and c=t-o.

In addition, two classes of subroutine calls are pro­
vided; a local call which pushes P onto the stack,
and jumps relative to E, and a global subroutine
call which stores the W, B, E, and P registers on
stack and computes new values for E, the program
base register, and P. Also, included in this section
of microcode is the operation that pushes both A
and X onto the stack.

Table VIII shows the opcode assignments for the
various jump operations implemented. Except for

Table VIII. Jump Instruction Group

MNEMONIC FUNCTION

JRU, JIU Jump unconditional

JRGE, JIGE Jump if A;;'O

JRL T, JILT Jump if A<O

JRXG,JIXG Jump if X>A

JREZ, JIEZ Jump if A=O

JRNZ, JINZ Jump if A*O

JRCZ, JICZ Jump if C=O

JRXL, JIXL Jump ifX,A

JRLE, JILE Jump if A';;;O

JRGT, JIGT Jump if A>O

JRCN, JICN Jump ifC*O

JRXE,JIXE Jump if X=A

CVS Call subroutine, push W, B, E, P

PHAX Push A, X onto stack

CLS Call subroutine, push P

JRXN, JIXN)ump if X"=foA

Subroutine calls

Local: Push P to stack
P=E+(E+D)

Value: Push W, B, E, P to stack
E=E+(E+O)
P=E'+(E') where E'=E+(E+O)

3-43

CPU Design

the conditional jumps, X>A, X~, X=A and X=t-A
which share a common subroutine and exit via a
JLL jump, the opcode values were assigned arbi­
trarily.

A flowchart representing the jump coding is shown
in Figure 16. During the microcoding of the se­
quence, two methods were evaluated. One used
the JRL, JLL sequence of testing 2 bits of macro­
operation code at a time, while the one actually
selected uses a JPR macro-operation. The JPR test
selected uses no more code than the JRL, JLL
sequence method, and executes more rapidly. At
one point (for the X=A, X=t-A, X>A, X";A tests),
code is shared as if it were part of a subroutine,
then a JLL instruction is used to resolve the exit.
This method is another example of a pseudo­
subroutine that saves microprogram memory. Use
of this technique does put a constraint on the
assignment of macro-operation codes.

RELATIVE INDIRECT
M 0 M 0

0001 0000 0010 0000

0001 0001 0010 0001

0001 0010 0010 0010

0001 0011 0010 0011

0001 0100 0010 0100

0001 0101 0010 0101

0001 0110 0010 0110

0001 0111 0010 0111

0001 1000 0010 1000

0001 1001 0010 1001

0001 1010 0010 1010

0001 1011 0010 1011

N.A. 0010 1100

0001 1101 0010. 1101

N.A. 0010 1110

0001 1111 0010 1111

Unconditional and conditional jumps

Relative: P=P+O' where D'=0-128
Indirect: P=E+(E+O)

CPU Design

FETCH FETCH FETCH FETCH FETCH FETCH FETCH FETCH FETCH FETCH

Figure 16. Jump Group Flowchart

/* JUMP GROUPS- -USE JPR MICRO-OPERATION TO RESOLVE CONDITION SELECTION
DESTINATION ADDRESS IS COMPUTED FIRST - -PLACED IN AC AND R9
JUMP RELATIVE TO P- -ADDRESS=P+D-12S * f

JREL:
JRDR:

ILR(P);
LMI(AC) KFFSO;
ALR(R9) JPR(JUNC,JAGE,JAL T,JXGA,JAEO,JANE,JCEZ,JXLA,

JALE ,JAGT ,JCNZ,JX EA,CPSS,PXA,C LOP,JX NA);

/* JUMP INDIAECT - GET E+(E+D) IN AC AND R9 *f

JIG: ILR(E);
ADR(R9);
LMI(R9) RRM;
AMA(AC);
SDR(R9)

1* UNCONDITIONAL JUMP *f

JUNC: SDR(P)

/* TESTS FOR A_GE_O, ETC_ *f

JAGE:
JALT:
JAEO:
JANE:

TZR(A) KSOOO INH
TZR(A) KSOOO INH
TZR(A)
TZR(A)

JPR (JUNC,JAGE,JAL T,JXGA,JAEO,JAN E,JCEZ,JX LA,
JALE,JAGT,JCNZ,JXEA,CPSS,PXA,CLOP,JXNA);

JZR(FETCH);

JMP(TTRU);
JMP(TFAL);
JMP(TTRU);
JMP(TFAL);

3-44

JAGT: TZR(A) K8000 INH;
TZR(A) JFL(APRE,ANPE);

APRE: NO.OP JFL(JNT2,JTR2);
ANPE: NO.OP JZR(FETCH);

JALE: TZR(A) K8000 INH;
TZR(A) JFL(APE2,AN2);

APE2: NO.OP JFL(JTR1,JNT1);
AN2: SDR(P) JZR(FETCH);

/* TESTS OF C FLlp·FLOP (HIGH ORDER BIT OF W) *j

JCEZ:
JCNZ:

TZR(W) K8000lNH
TZR(W) K8000 INH

JMP(TTRU);
JMP(TFAL);

/* TEST EXECUTION FOR ABOVE TESTS - ROW ZERO USED * j

TTRU: NO.OP JFL(JTR1,JNT1);

JTR1: SDR(P) JZR(FETCH);
JNT1: NO.OP JZR(FETCH);

TFAL: NO.OP JFL(JNT2,JTR2.);

JNT2: NO.OP JZR(FETCH);
JTR2: SDR(P) JZR(FETCH);

/* TESTS FOR X.GT.A, X.LE.A, X.EQ.A, X.NE.A- -SHARED PSEUDO·
SUBROUTINE USES JLL FOR AN EXIT TEST - -ROUTINE ENTRY IN ROW 0
C FLAG IS SET FOR X.GT.A, FL TEST FOR X.EQ.A * j

JXGA:
JXLA:
JXEA:
JXNA:

ILR(X)
ILR(X)
ILR(X)
ILR(X)

JMP(XATS);
JMP(XATS);
JMP(XATS);
JMP(XATS);

/* SAVE X AT T, FETCH AND COMPLEMENT A *j

XATS: SDR(T);
ILR(A) STC;
CMA(AC);

/* CLEAR C FLAG * j

/* ADD HOB'S OF A' AND X - CARRY MEANS X NEG., A.GE.O *j

ADR(T) K8000;

/* EXECUTE PREVIOUS TEST, SET UP TO TEST HOB OF RESULT - -IF I,
THE SIGNS OF A AND X WERE THE SAME *j

TZR(T) K8000lNH JFL(TFEQ,TXNG);

/* TXNG IMPLIES X NEG AND A.GE.O- -I.E. X.NE.A AND X.L T.A- -DO A
DUMMY OPERATION TO FORCE THE PROPER F FLAG *j

TXNG: ILR(A) JLL(JXGX,JXLX,JXEX,JXNX);

/* PERFORM A TEST ADDITION AND EXECUTE SIGN·EQUAL TEST
C WILL BE SET IF SIGNS WERE THE SAME AND X.GT.A *j

TFEQ: ADR(T) STC K7FFF JFL(SNEQ,SWEQ);

/* SNEQ IMPLIES SIGNS NOT EQUAL- -I.E. X.GE.O, A NEG- -X.GT.A *j

SNEQ: SDR(AC) STC;
NO.OP

/* DUMMY OPIO SET C FLAG *j
JLL(JXGX,JXLX,JXEX,JXNX);

345

CPU Design

CPU Design

/* FOR SIGNS EQUAL,IF X=A RESULT WOULD BE 1111 ... 1. INCREMENT
WILLGENERATEACARRYIFSO *f

SWEQ: ILR(AC) FF1

/* EXECUTION OF JUMP TESTS * f

JXGX:
JXLX:
JXEX:
JXNX:

ILR(R9)
ILR(R9)
ILR(R9)
ILR(R9)

/* SUBROUTINE CALLS
CALL LOCAL AND PUSH W, B, E, P =CPSS
CALL LOCAL AND PUSH P ONL Y=CLOP

JLL(JXGX,JXLX,JXEX,JXNX);

JCF(JNT2,JTR2);
JCF(JTR1,JNT1);
JFL(JNT2,JTR2);
JFL(JTR l,JNT1);

CL FLAG IS USED FOR EXIT TEST AFTER PUSHING P *f

CPSS: DSM(S);
ILR(W);

LMI(S) RWM;

CPG2: DSM(S);
ILR(B);
LMI(S) RWM;

DSM(S);
ILR(E);
LMI(S) RWM;

DSM(S);
ILR(P);

CLOP2: LMI(S) RWM;

/* E+(E+D) INTO AC *f

ILR(R9) JCF(LRTN,XRTN);

XRTN: SDR(E);
LMI(E) RRM;
AMA(AC);

LRTN: SDR(P)

CLOP: DSM(S);
ILR(P) STC

/* PUSH INSTRUCTION *f

PXA: DSM(S);
ILR(X);
LMI(S) RWM;

DSM(S);
ILR(A);
LMI(S) RWM

REGISTER MOVE AND SUBROUTINE
RETURN GROUP

JZR(FETCH);

JMP(CLOP2);

JZR(FETCH);

In this section of code, the Register Move and Sub­
routine Return group instructions are implemented.
Both groups share the same IPX entry point,
I 100B. Table X shows the opcode values assigned
to the macro-instructions.

To simplify the decoding for register selection (S,
B, E or W) in the Register Move group, the two low
order bits of the PR latch are used to modify the
micro-instruction as it is strobed into the pipeline
register. By tying the two PR latch outputs of the
300 I to the two low order bits of the CPE control
field, a ICE jump function (which enables the PR

CPU Design

latch outputs) can be used to provide a wire OR of
PRO, PR I and FO, F I (see Figure 17).

Table X. Register Move and Subroutine
Return Group

MNEMONIC

Figure 17. Wire-OR of POa-1 and FO-1

Thus, in the micro-instruction

SDR(Rl) JCE (MXRXI

the register group field FO-F3 is modified as
shown in Table IX.

The microprogram sequence is shown in Figure 18.

Table IX. Register Group Field FO-F3 Modification

RLS

RVS

RSA

PPAX

MSX

MBX

MEX

MWX

MXS

MXB

MXE

MXW

NO.OP

MICROPROGRAM
PR LATCH RESULT STORED IN

MEMORY OUTPUT
OUTPUT PIPELINE REGISTER

(FO-F3)

0111 00 0100

0111 01 0101

0111 10 0110

0111 11 0111

FETCH FETCH FETCH FETCH

Figure 18, Register Move and Subroutine Return Group Flowchart

3-47

FUNCTION

Pop P

Pop P, E, B, W

Pop A, X, P, E, B, W

PapA, X

Move S to X, adjust

Move B to X, adjust

Move E to X, adjust

Move W to X, adjust

Move X to S, adjust

Move X to B, adjust

Move X to E, adjust

Move X to W, adjust

Nothing implemented

M 0

1100 1111

1100 1101

1100 1100

1100 1110

1100 0100

1100 0101

1100 0110

1100 0111

1100 0000

1100 0001

1100 0010

1100 0011

1100 10XX

SELECTED REGISTER

S

B

E

W

FETCH FETCH

CPU Design

/* MOVE GROUP OF INSTRUCTIONS- -USES JCE TO SELECT REGISTER- -NOTE
THAT REGISTER ASSIGNMENT BECOMES IMPORTANT
FIRST MODIFY D TO GET D-12B ./

MVGP: LMI(R9) KFFBO JLL(MVXR,MVRX,MOD,PGRP);

/* MOVE X TO REG. - GET X, MODIFY BY D'=D-12B ./

MVXR: ILR(X);
ALR(R9);
SDR(R7)

MXRX: NO.OP
JCE(MXRX);
JZR(FETCH);

/* MOVE REG TO X - FETCH REG USING JCE OVERRIDE ./

MVRX: ILR(R7)
MRXX: ALR(R9)

JCE(MRXX);
JMP(LDX);

/* MOD NOT IMPLEMENTED IN THIS VERSION ./

MOD: NO.OP

/* ADJUST STACK AND RETURN GROUP
PPAL- -POPS A, X, P, E, B, AND W
PPRA- -POPS P, E, B, AND W
PPAX- -POPS ONLY A AND X
POPP- -POPS ONLY P • /

PGRP:

JZR(FETCH);

/* REGISTER OVERRIDE ./

ILR(R9);
ADR(S) JRL(PPAL,PPRA,PPAX,POPP);

PPAL: LMI(S) FF1 RRM;
ACM(AC);
SDR(A);

PAXC:

LMI(S) FF1 RRM;
ACM(AC)
SDR(X);

PPRA: LMI(S) FF1 RRM;
ACM(AC);
SDR(P);

LMI(S) FF1 RRM;
ACM(AC);
SDR(E);

LMI(S) FF1 RRM;
ACM(AC);
SDR(B);

LMI(S) FF1 RRM;
ACM(AC);
SDR(W);

/. RESTORE INTERRUPT STRUCTURE ~

PAXE:

PPAX:

POPP:

CLR(T);
LMI(T) ROT

SDR(X)

ILR(AC) STC

LMI(S) FF1 RRM;
ACM(AC)

JCF(PAXE,PAXC);

JZR(FETCH);

JZR(FETCH);

JMP(PPAL);

JMP(JUNC);

3-48

SPECIAL FUNCTION GROUP

The JPX entry point 110 I B is used as an entry
point for the special function groups which include
byte load and store, register manipulation, and the
absolute subroutine call and increment and skip if
zero instructions. Table XI lists the opcode values
assigned to the instructions. A flowchart of the
sequences is shown in Figure 19.

In order to execute a byte load or store operation
efficiently, a byte swap capability (which exchanges
the high and low order byte positions) is necessary.
By wiring the data outputs of the high order byte
to the I inputs of the low order byte, and the low
order outputs to the high order I inputs, a byte
swap operation can be performed (see Figure 20).

Note that with the configuration shown in Figure
20, a byte swap can be performed on either a
memory word or the AC register of the CPE array
by reading data in on the I-Bus inputs while per-
forming a memory read or enabling the D-Bus,
respectively.

REGISTER
SHIFTIROTATE

GROUP

Figure 19. Special Function Groups Flowchart

Table XI.

MNEMONIC

LBA

LBR

SBA

SBR

RAR

RAX

SAX

SAL

ISZ

CAS

3-49

CPU Design

Special Function Groups

FUNCTION M 0

Load byte absolute 1101 0000

Load byte relative 1101 0100

Store byte absol ute 1101 1000

Store byte relative 1101 1100

Rotate A right, include
CFF 1101 0001

Rotate A and X right,
include CFF 1101 0101

Shift A and X right,
preserve sign 1101 1001

Shift A left, fill with
zeros 1101 1101

I ncrement and skif ip
zero 1101 XX10

Call absolute, push
P, E, W, B 1101 XXll
P <- (D)

CPU Design

BIDIRECTIONAL {J-::======~.2:.~ DATA BUS f-

Figure 20. I-Bus Wired for Byte Swap

/* SPECIAL FUNCTION GROUP
BYTE OPERATORS- -ADDR=(B+D)+B+X/2 OR (B+D)+XI2
CALL TO (D) AND PUSH ALL
SHIFT AND ROTATE GROUP
INCREMENT AND SKIP
FETCH B JUST IN CASE */

SPFG: ILR(B) JRL(BYTE,RSGP,SCJG,ISJG);

/* BYTE GROUP- -COMPUTE ADDR, STORE B IN CASE NEEDED */

BYTE:

LBYR:
LBYA:
LBYT:
RBYT:
DBIA:

SBYR:
SBYA:

STRB:
SRB1:

STLB:

SDR(R8);
ADR(R9);
ILR(X);
SRA(AC) STC;
LMI(R9) RRM;
ACM(AC)

ALR(R8);
LMI(AC) RRM
LDI(AC) FFl KOOFF
L TM(AC) KOOFF;
SDR(A)

ALR(R8);
LMI(AC);
ILR(A);
TZR(AC) KOOFF RRM
L TM(T) KFFOO;
ALR(T) RWM

LTM(T) KOOFF;
LDI(AC) FFl CNB

/* ROTATE GROUP

JLL(LBYA,LBYR,SBYA,SBYR);

JCF(LBYT,RBYT);
JMP(DBIA);

JZR(FETCH);

/* LOAD MAR FOR LATER USE */

JCF(STLB,STRB);

JZR(FETCH);

JMP(SRB1);

ROTATE A WITH C- -ROTATE A AND X WITH C- -SHIFT A, X RIGHT, FILL
WITH SIGN- -SHIFT A LEFT, FILL WITH ZEROES

3-50

AT ENTRY, Z FLAG IS ZERO IF D=O. DUE TO PIPELINED OPERATION, IT IS
THIS CONDITION THAT IS TESTED BY THE FIRST JZF *f

RSGP: TZR(W) STZ K8000lNH JZF(SZDS,SNZD);
SZDS: ILR(X);

SDR(R9) FFO K007F JLL(RACI, RAXI,SAXI,SLZI);
SNZD: DSM(R9) JLL(RACI,RAXI,SAXI,SLZI);

RACI: ILR(A) JMP(RUNR);
RAXI: ILR(X);

SDR(T) JMP(RACI);
SAXI: TZR(A) STZ K8000 INH JMP(RAXI);
SLZI: ILR(A) JMP(RUNR);

f* MAIN ROTATION LOOP *f

RUNR: DSM(R9)STC JLL(RACR,RAXR,SAXR,SLZR);

RACR: SRA(AC) FFZ STZ JFL(RSEX,RUNR);
RAXR: SRA(AC) FFZ STZ;

SRA(T) FFZ STZ JCF(RSEX,RUNR);
SAXR: SRA(AC) FFZ STC;

SRA(T) FFC JCF(RSEX,RUNR);
SLZR: ADR(AC) STZ JFL(RSEX,RUNR);

RSEX: SDR(A) JLL(RACF,RAXF,SAXF,SLZF);

RACF: TZR(W) K7FFF JZF(SNCF,SSCF);
SNCF: NO.OP JZR(FETCH);
SSCF: LMI(W) K8000 JZR(FETCH);
RAXF: ILR(T);
RXF1: SDR(X) JMP(RACF);
SAXF: ILR(T) JMP(RXF1);
SLZF: TZR(W) K7FFF JZF(SNCF,SSCF);

/* SPECIAL CALL AND JUMP GROUP- -CURRENTLY CONTAINS ONLY THE
CALL TO (D) AND PUSH W,B,E,P- -ALL 4 OPCODES DO THE SAME THING

SCJG: LMI(R9) RRM;
ACM(AC);
SDR(R9) JMP(CPSS);

f* INCREMENT AND SKIP GROUP- -AGAIN 4 OPCODES ARE USED FOR ONE
INSTRUCTlON- -LOCATION AT B+D IS INCREMENTED *f

ISJG: ALR(R9);
LMI(R9) RMW;
ACM(AC) FFl RWM;
NO.OP

NOSK: NO.OP
SKIP: LMI(P) FFl

JFL(NOSK,SKIP);
JZR(FETCH);
JZR(FETCH);

3-51

* f

CPU Design

CPU Design

INPUT/OUTPUT GROUP

In this section of code, the input/output instruc­
tions are implemented. In conjunction with the
memory address register, the bus control field

Table XII. Input/Output Group

MNEMONIC FUNCTION M 0

IND I nput one word 1000 XXXX
A+- (D)

OTD Output one word 1001 XXXX
(D) +-A

INX I nput one word 1010 XXXX
A+- (X)

OTX Output one word 1011 XXX X
(X) +-A

generates a Request Input or Request Output to
select an I/O port and specify the operation to be
performed. Table XII lists the opcode values as­
signed to the macro-instructions. The flowchart in
Figure 21 shows the microcode sequence used.

INTERRUPTS

A basic means for microcoding interrupts when
using the 3214 Interrupt Control Circuit involves
forcing an alternate microprogram address which
then leads to an interrupt handling routine. The
interrupt handling routine interrogates the inter­
rupt structure to determine the interrupting level.
This level is rewritten to the interrupt structure to
block further interrupts at the interrupting priority
level or lower levels while enabling interrupts at
higher levels.

• FOR NOW FOUR OPCOOE GROUPS Will BE
ASSIGNED FOR INPut AND OUTPUT'

LMIIR9)RIN
ACM(ACI.
SORIA)
LMIIXI RIN
ACM(AC)
LMIIR9)

JZRIFETCHI

wx--~----------~~----------~----------~----

FETCH FETCH

Figure 21. Input/Output Flowchart

/* INTERRUPT - -UTILIZED CALL ROUTINES FOR REGISTER SAVING
I/O DEVICE #0 REPRESENTS EXTERNAL INTERRUPT STRUCTURE
START BY PUSHING OLD VALUE OF STATUS */

INTER: DSM(S);
ILR(W);
LMI(S) RWM;

/* READ INTERRUPTING LEVEL FROM EXTERNAL STRUCTURE */

CLR(T);
LMI(T) RIN;
LTM(AC) KOOFF ROT; /* NOTE LEVEL REWRITTEN */

FETCH

/* STORE PRIORITY IN W - SET C FLAG FOR PROPER LOADING OF REGISTERS */

SDR(W) STC;

/* INTERRUPT ROUTINE STARTING ADDRESS IS COMPUTED IN R9 */

LMI(W) RRM;
ACM(AC);
SDR(R9) JMP(CPG2);

3·52

Microprogram Memory Assignment

Having written the actual code with minimal regard
to memory assignment, the actual assignment to
ROM must be performed. To assist in this function,
a complete state (Le., microcode instruction) flow­
chart should be prepared. Each machine state is
represented by a dot in the state diagrams shown

INITIALIZATION GROUP

ENTRV POINT
FROM OTHEA

ROUTINES

CPU Design

below. Conditional jumps should be labeled as to
type and condition corresponding to each destina­
tion. This information will be necessary when per­
forming an assignment. No other information is
needed on the flowchart, but it is quite useful to
show any symbolic label that may be associated
with a state.

INIT=OO

FETCH = OOOFH

NAO JREL JIG IMMO DMRf IMRF

IMMEDIATE GROUP

IMML

JRL

00 01

lLGA ILPX

JLL

00 01

NDA aDA

FETCH FETCH

FROM MEMORY
REFERENCE GROUP
"ISOA" AND "SOX"

IMMS

JPX

IXMA

10

xaA

FETCH

IXMB IND INX OTD aTX MVGP SPFG tRBM NA1S

NAI2

FROM MRXX

JLL

11
00 10 11

ADA LOA LOX PDS ADX

FETCH
FROMMEM
REF "PAS" FETCH

PDSl

FETCH

FETCH

3-53

CPU Design

MEMORY REFERENCE
GROUP

00

MRVl

LOA

JLL

00

NDA ODA

JUMP GROUP

OMRF

JRL

JLL

LOX

XDA

JREL

JROR

• 0
MADO

JRL

01

MRV2

11

PDS ADX

11

ADA

FETCH FETCH

IXMB IRBM

JRL

10 11

MRAD STPG

JLL

00 01 10 11

SAM SXM PSM sox

FETCH FETCH

FETCH
TO "ADA'"

10 11

PAS ISOA

PDS'

TO "ADA'"

JIG

~ n
r-oooo-----1~~~~--~--t------,------~--~--t-,O~IO~--~I~OO~I~-1-,~OO~O--~~~---r~~--,------,-,-ll~, ~

JUNe JCNZ JAGT JALE JXNA

FROM
"pop,,",","

FETCH

• 0

JTRI

FETCH FETCH

'1

ANPE

FETCH FeTCH

3-54

JUMP GROUP (CONTINUE'"

--1. "R

1100

CPIS

CPO'

MOVE GROUP

00
MVXR

MXRX

1101

PXA

FROM
INTER +9

FETCH

MRXX FETCH

00
'PAL

FETCH TO "LDX"

FETCH

LRTN

FETCH

.t
PPRA

11
PGRP

JRL

FETCH

CPU Design

1110

CLOP

CLOP2

JCF

XRTN

t. " PPAX POPP

TO "JUNC"

CPU Design

SPECIAL FUNCTION GROUP

SPECIAL FUNCTION GROUP

JOL
SP F.

00 0'
BYTE RSGP

---m-
'0

SZOS

> JLL

u~' LBVA LBVR SBYA SBVR kJ:11

JCF JCF

·0 ., -0 .,
LBYT R8VT STLB STRB

DBtA SRBl

FETCH FETCH
JLL

00 0'
(

10 11
RACF RAXF SAXF SLZF

~
JZF

·0

t~F SNCF

FETCH FETCH

If 0 GROUP

FETCH

3-56

-,
SNZO

JLL

RAel

JCF

JFL

'0
SCJ.

--.. TO "CPSS"

11
'SJG

~ -0

NOSK

.,
SKIP

FETCH FET CH

~:Y
SLZI

"0 '"1 RUNR

~RSEX

JLL "-
U~ACO 0' '0 11

RAXR SAXO SLZR

INTERRUPT SERVICE ROUTINE

INTER = 255 CPG'

Once all of the state diagrams have been prepared,
a number of steps may be followed to simplify the
assignment procedure. First, the basic hardware
characteristics dictate that INIT, FETCH, and
INTER be located in microprogram memory loca­
tions 0, 15, and 255 (decimal), respectively. Then,
note that each conditional jump has a limited
range.- As a result, when several conditional jumps
follow one another in sequence, all may have to be
located within a restricted range in microprogram
memory. For JCF, JZF, JLL and JRL micro­
instructions, the calling instruction must be in the
same block of eight rows as the destinations.

To do the best assignment, the most restricted set
of micro-instructions should be assigned first. The
most restricted groups of micro-instructions are
usually associated with clusters of conditional
jumps which must be located within a given range
of memory. It is therefore very useful to catalog all
such clusters of conditional jumps. Table XIII lists
the clusters associated with this machine. In each
case the conditional jump is identified by the jump
micro-operation and the first of its destinations.
Thus in Table XIII the symbol JRL(MRVI) really
refers to the code JRL(MRVI, MRV2, MRAD,
STPG). For this machine, there are only five
clusters.

Table XIII. Conditional Jump Clusters

1. JPX (NAO)
JRL (lLGA). JRL (BYTE)
JLL (NOA). JLL (LOA). JLL (MVXR). JLL (RACI)
JZF (IMML). JZF (SZOS)

2. JRL (MRV1)
JLL (SAM). JLL (LAA)
JCF (MAOO)

3. JLL (JXEX)
JFL (JTR 1). JCF (JNT2)

4. JRL (PPAL)
JCF (PAXC)

5. JLL (RACR). JLL (RACF)
JCF (RSEX)
JZF (SNCF)

An examination of the flowcharts indicates that a
simpler code might result if clusters one and five
were combined because of the coupling between
JLL(RACI) of cluster one and the JCF(RSEX) of
cluster five. The combination of these two clusters
represents the greatest degree of restriction, as
within the same block of rows there would be one
JPX, six JLL, two JRL, one JCF and three JZF
micro-operations. In addition, the JLL(MVXR)

3-57

CPU Design

executes a JCE jump which uses an additional
location within the JLL destination columns. How­
ever, the basic jump micro-operation characteristics
do allow all of these conditional jumps to be placed
within one block of eight rows.

To retain row zero, the conditional jumps of
clusters one and five are placed in the last eight
rows of the microprogram memory. In addition to
the destinations, space must be reserved for the
"calling" micro-instructions for each of the condi­
tional jumps listed in the clusters.

Chart I shows an assignment of the conditional
jumps of clusters one and five, together with some
of the immediately related states. For the assign­
ment procedure, a form like that of Chart I is used
to show which microprogram memory locations
are occupied and which are available. The format
also aids visualization of valid jump micro-opera­
tions. As each state is assigned to its location in
micro memory, the corresponding position on the
state diagram is marked to show assignment. In this
way, unassigned states are easily located on the
state diagrams.

The information placed in the memory maps in­
cludes the state label or, for strings of states with
no assigned label, the label of the nearest previously
labeled state plus information to indicate how far
from that labeled state the present state is. For
example, INIT+2 is the second state after INIT.

The state assignment can proceed, with conditional
jumps and short unconditional sequences being as­
signed before long unconditional sequences. Chart
2 shows the state assignment at a point when all
states except those between INIT and FETCH,
those between PPRA and FETCH, and those asso­
ciated with IND, INX, OTD and OTX have been
assigned.

For those states which have only one calling state
(Le., a state which has only one state jumping to it
with a non-conditional jump) and only one target
state (i.e., it makes a non-conditional jump to
another state), two hexadecimal numbers are also
written on the memory map. The number in the
lower left-hand corner is the address of the calling
state (first hex digit is the row, second hex digit is
the column), and the number in the lower right­
hand corner is the address of the target state. This
information will tell the designer at a glance which
states can be easily moved in the process of mem­
ory assignment, and to which locations they can be
moved. For instance, a state with its calling state
and target state in the same row (or column) can be
moved anywhere in that row (or column), and a

CPU Design

state with its target state in the row zero can be
moved anywhere in the same row or column as its
calling state.

As an example of how this information can be
used, note that in Chart 2 state RAXI+ I has been
assigned to location 090H. However, when the
INIT sequence is assigned, it becomes convenient
to locate INIT + I somewhere in column O. Since
there are no available spaces in column 0, the
designer notes that state RAXI+ 1 has both its
calling and target states in row 9, and so RAXI+ I
can be moved anywhere in row 9. In Chart 3,
RAXI+ I has been reassigned to location 098H,
and INIT+ 1 has been assigned to location 090H.
This moving process will typically be frequently
necessary in the assignment procedure, and thus it
is quite useful to have this information right on the
working memory map.

The final state assignments consist mostly of the
long unconditional sequences. Row zero locations

may then be used freely. In those cases where extra
states were used to avoid the use of row zero
locations, the assignment may be reconsidered. For
this machine, the operations IND, INX, OTD and
OTX were rewritten to utilize row zero locations.
Figure 22 shows the revised flow diagram for these
four operations.

The final assignment is as shown in Chart 3. Two
locations remain.

FETCH FETCH

Figure 22. IND, INX, OTD and OTX
Revised Flow Diagram

/* INPUT AND OUTPUT - -CURRENT VERSION DOES NOT DECODE INTO
SUBGROUPS- -ALSO ROW ZERO IS USED TO SAVE CODE */

IND: LMI(R9) RIN;
IND1: ACM(AC);

SDR(A) JZR(FETCH);
INX: LMI(X) RIN JMP(lND1);
OTD: LMI(R9);
OTD1: ILR(A) ROT JZR(FETCH);
OTX: LMI(X) JMP(OTD1);

CONCLUSION

In the central processor design example described
above, the final definition of the central processor
macro-instruction set evolved as the microprograms
were being implemented. In many instances, it was
necessary to modify the macro-instruction opcode
assignment in order to take full advantage of the
capabilities of the Series 3000 architecture. Macro­
instruction operations were also redefined to add
more flexibility as microprogramming techniques
improved.

The microprograms were implemented without
regard to memory assignment except in cases where
code sharing between micro-instruction opcode
assignments were critical. Actual assignment of the
micro-instructions to memory involved a very small
portion of the design cycle. The 3001 MCU's

3·58

ability to decode macro-instruction opcodes and
large repertoire of conditional and unconditional
jump operations resulted in both efficient micro­
programs and complete memory utilization. Only
two memory locations remained unused after the
microcoding was complete.

The central processor developed in this application
note is used as a design example only, and there­
fore does not represent a complete central pro­
cessor or an instruction set designed for a specific
application. However, because of the micropro­
grammability of the Series 3000 family, the same
basic organization can be tailored to a wide range
of operating environments from I/O processing to
data processing and dedicated arithmetic computa­
tion.

Chart 1

JFL, JCF, JZF
COLUMN RESTRICT JLL COLUMN RESTRICT

f,e,<=O f,e,<=1

0 , 2 3 4 5 6

00 IN IT

01

02

03

04

05

06

07

08 NAO JREL JIG IMMD DMRF IMRF IXMA

09
RAXI+l

RSEX RUNR RACI RAXI SAXI
95 94

OA
RAXR+l SAXR+l

SNCF SSCF RACR RAXR SAXR
A4 A6

OB RXFI
IMML+l

IMML IMMS RACF RAXF SAXF
B2

OC MVXR MVRX MOD

OD NDA ODA XDA

OE LDA LDX PDS

OF MRXX

JFL, JCF, JZF
COLUMN RESTRICT

f,e,<=O f,e,<=1

7 8 9 A B

IXMB IND INX OTD OTX

SLZI
SZDS+l

SZDS SNZD
9A

SLZR

SLZF

PGRP

ADA PAXC PAXE

ADX

C

MVGP

BYTE

PPAL

ILGA

JRL COLUMN RESTRICT

0 E F

FETCH

SPFG IRBM NA15

RSGP SCJG ISJG

PPRA PPAX POPP

ILPX NAil NAI2

INTER

o
"CJ c:
C
m cs·
:::J

Chart 2

JFL, JCF, JZF
COLUMN RESTRICT JLL COLUMN RESTRICT

1,<,.=0 1,<,.=1

0 1 2 3 4 5 6 7 8

00 INIT JAGT+l JTRI JNTI TFAL TTRU JALE+l

01
SNEO+l

SNEO SWEO LBYA LBYR SBYA
SBYA+l

12
SBYR

16 79

02 OBIA LBYT RBYT -JXGX JXLX JXEX JXNX

03 JUNC JAGE JALT JXGA JAEO JANE JCEZ JXLA JALE

04
PXAt2 IXMB+3 IXMA+l IXMB+2

APE2 AN2
40 70 47 85 86 56 57 45

05
JIG+3 XATS+4

TFEO TXNG
OMRF+l IXMB+l INTER+3

IMRFI IXMA2
EO 60 5A 84 87 47 5F 59

06
JIGt4 JROR+ 1

JNT2 JTRI LAA ISOA
ISOA+l

50 71
LAX PAS

67 F8

07
PXA+3 JROR PSM+1
40 FO

APRE ANPE SAM SXM PSM SOX
81 61 76 A8

08 NAO JRLE JIG IMMO OMRF IMRF IXMA IXMB INO

09
RAXI+1

RSEX RUNR
95 94

RACI RAXI SAXI SLZJ

OA
RAXR+ 1 SAXRt 1

RACR
PSM+2

SNCF SSCF RAXR SAXR SLZR
A4 A6 78 B8

OB RXFI
IMML+l

IMML IMMS RACF RAXF SAXF SLZF
PSM+3

B2 A8 OF

oc MVXRtl MVXRt2
NCY SCY MVXR PGRP

PGRP+l
C4 Cl CO

MVRX MOO
C7

00
POPP+l XOA+l CPG2+7 PPAL+l

NOA
PPAL+2

OF 30 06 OF F2 00 OC 08
aOA XOA AOA

03 E8

OE
JIGt2

MXRX
JIGtl

LOA LOX POS AOX
PPAL+3

E2 50 82 EO 08 E9

OF
PXAt4 PXAt5 CPG2+6 ISOA+2
70 Fl FO OF FB 02

MRXX POSI AOAI
68 F7

JFL, JCF, JZF
COLUMN RESTRICT

1,<,.=0 1,<,.=1

9 A B

MAOO+l IMRF1+l XATS

SBYA+2
STLB STRB

18

JAGT JCNZ JXEA

XATS+l

OB 5B

INTER+4 XATS+3 XATS+2

58 69 5B 51 4B 5A

INTER+5
MLOAO

59 6C
MAOO

SOX+l CPG2+2 CPG2+3
77 F9 AA 7B 7A EB

INX OTO OTX

SZOS+l
SNZO

9A
SXOS

ISJG+3 CPG2+1 BYTE+3
09 AO 7A AC AE

XRTN+2
LRTN XRTN

B9 BA

ISJG+l
CF 09

NOSK SKIP

ISJG+2
PAXC

09 A9
PAXE

PPAL+4 CPG2+4
E8 7B FB

SOX+2 CPG2+5
79 F7 EB F2

JRL COLUMN RESTRICT

C 0 E F

CLOP2 FETCH

STLB+l
SRBI

FETCH+l
lA 10 OF 9F

PPRA+l BYTE+5
DO 2F AE

CPSS PXA CLOP JXNA

SCJG+2 PXA+l SCJG+l
4E 3C 3D 40 CE 4C

CPSS+l CPSS+2 IRBM+l INTER+2

3C 50 5C AO 8E 56 BF 58

INTER+6 INTER+7 CLOP+l INTER+8

69 60 6C 6F 3E 00 60 AF

MRVI MRV2 MRAO STPG

MVGP SPFG IRBM NA15

MRV1+l MRV2+1 FETCH+2
7C 7D IF

BYTEt2 BYTEt4 INTERt9
CPG2

BC AB AB 2E 6F AO

BYTE+l CLOP2tl XRTN+l INTER+!

CC AC 00 BB B9 FF 5F

BYTE RSGP SCJG ISJG

PPAL PPRA PPAX POPP

ILGA ILPX NAil NAI2

INTER

o
"0 c:
c
I
cS'
:J

Chart 3

JFL. JCF. JZF
COLUMN RESTRICT JLL COLUMN RESTRICT

f.e •• =O f.e •• =1

0 1 2 3 4 5 6 7 8

00 INIT JAGT+l JTRl JNTl TFAL TTRU OTOl JALE+l IN01

01
SNEO+l INIT+4

SNEO SWEO LBYR SBYA SBYR
SBYA+l

12 21 41
LBYA

16 79

02
INIT+3

JXEX
INOl+l OBIA

91 11
LBYT RBYT JXGX JXLX JXNX os OF

03 JUNC JAGE JALT JXGA JAEO JANE JCEZ JXLA JALE

04
PXA+2 INIT+5

APE2
INIT+6 IXMB+3 IXMA+l IXMB+2 INIT+ll

40 70 11 44
AN2

41 F4 47 85 86 56 57 45 49 OC

05
JIG+3 XA1'S+4

TFEO TXNG
OMRF+l

IMRFl IXMA2
IXMB+l INTER+3

EO 60 5A 84 B7 47 5F 59

JIG+4 JROR+l ISOA+l 06
50 71

JNT2 JTRl LAA LAX PAS ISOA
67 F8

07
PXA+3 JROR

APRE ANPE SAM SXM PSM SOX
PSM+l

40 FO 81 61 76 A8

OS NAO JRLE JIG IMMO OMRF IMRF IXMA IXMB INO

INIT+l INIT+2 RAXI+1 09
00 91 90 21

RSEX RUNR RACI RAXI SAXI SLZJ
95 94

RAXR+l SAXR+l PSM+2 OA
A4 A6

SNCF SSCF RACR RAXR SAXR SLZR
78 B8

IMML+l PSM+3 OB RXFI IMML IMMS RACF RAXF SAXF SLZF
A8 OF B2

OC
MVXR+l MVXR+2

NCY SCY MVXR MVRX MOO PGRP
PGRP+l

C4 Cl CO C7

00
POPP+l XOA+l CPG2+7 PPAL+l

NOA OOA XOA AOA
PPAL+2

OF 30 06 OF F2 00 OC 08 03 E8

OE
JIG+2

MXRX
JIG+l PPRA+9

LOX POS AOX
PPAL+3

E2 50 82 EO F3 EA
LOA

08 E9

PXA+4 PXA+5 CPG2+6 PPRA+8 INIT+7 ISOA+2 OF
70 Fl FO OF FB 02 FE E3 44 FA

MRXX POSl AOAl
68 F7

JFL. JCF. JZF
COLUMN RESTRICT

f.e •• =O f,c,z=l

9 A B

MAOO+l IMRF1+l XATS

SBYA+2
STLB STRB

lB

PPRA+13 PPRA+ll PPRA+12
2B OF EA 2B 2A 29

JAGT JCNZ JXEA

INIT+10 INIT+9 XATS+l
4A 48 FA 49 OB 5B

INTER+4 XATS+3 XATS+2
58 69 5B 51 4B SA

INTER+5
59 6C

MAOO MLOAO

SOX+l CPG2+2 CPG2+3
77 F9 AA 7B 7A EB

INX OTD OTX

SZOS+l
9A

SXOS SNZO

ISJG+3 CPG2+1 BYTE+3
09 AO 7A AC AE

XRTN+2
B9 BA

LRTN XRTN

ISJG+l
NOSK SKIP

CF 09

ISJG+2
PAXE PAXC

09 A9

PPAL+4 PPRA+l0 CPG2+4
E8 E3 2A 7B FB

SOX+2 INIT+8 CPG2+5
79 F7 F4 4A EB F2

JRL COLUMN RESTRICT

C 0 E F

INIT+12
CLOP2

PPRA+4
FETCH

FC lE

STLB+l
SRBI

PPRA+5 FETCH+l
lA 10 OE 9E OF 9F

PPRA+l BYTE+5 PPRA+2
00 2F AE 20 4F

CPSS PXA CLOP JXNA

SCJG+2 PXA+l SCJG+l PPRA+3
4E 3C 30 40 CE 4C 2F OE

CPSS+l CPSS+2 IRBM+l INTER+2
3C 50 5C AO BE 56 BF 5B

INTER+6 INTER+7 CLOP+l INTER+8
69 60 6C 6F 3E 00 60 AF

MRVl MRV2 MRAO STPG

MVGP SPFG IRBM NA15

MRV1+l MRV2+1 PPRA+6 FETCH+2
7C 7D lE FE IF

BYTE+2
CPG2

BYTE+4 INTER+9
BC AB AB 2E 6F AO

BYTE+l CLOP2+1 XRTN+l INTER+l
CC AC 00 BB B9 FF 5F

BYTE RSGP SCJG ISJG

PPAL PPRA PPAX POPP

ILGA ILPX NAil NAI2

INIT+13 PPRA+7
INTER

OC 9E F3

o
'V c:
c
I
CS·
::s

CPU Design

APPENDIX A
THE DESIGN EXAMPLE INSTRUCTION SET

The basic machine uses a 16-bit word. All instruc­
tions are single word instructions except the long
immediate forms. Macroprograms are fully relo­
eatable without reassembly. The data segment is
also independently relocatable. There are five basic
instruction catagories: memory reference, immedi­
ate data, jumps (including calls and returns), regis­
ter moves and manipulations, and input-output
functions.

The machine has seven registers as follows:

ASSIGNED
REGISTER CPE

REGISTER

(A) Accumulator RO

(X) Index Register Rl

(B) Data·Base Register R5

(E) Program Execution Base Register R6

(P) Program Counter R3

(S) Stack Pointer R4

(W) Status Word Register' R7

• A carry flip·flop designated C is. the high order bit of the status
word register W.

Memory Reference Group

ADDRESS MODE
ADDRESS M·FIELD

COMPUTATION CODES

Direct B+o 0100

Indirect (B+D) 0101

Indirect Relative (B+o)+B 1110

Indirect Indexed (B+o)+X 0110

Indirect Indexed Relative (B+o)+X+B 0111

SUMMARY OF MEMORY REFERENCE MODES

Note: Values enclosed in () designate indirect
addresses.

3.&2

The operations supported under these five modes
are as follows:

MNEMONIC FUNCTION 0

NoA AND data to A 0000

LOA Load data to A 0001

LAA Load address to A 0010

SAM Store A in memory 0011

ODA OR data to A 0100

LOX Load data to X 0101

LAX Load address to X 0110

SXM Store X in memory 0111

XoA Exclusive OR data to A 1000

POS Push data to stack 1001

PAS Push address to stack 1010

PSM Pop stack to memory 1011

ADA Add data to A 1100

AoX Add data to X 1101

SoA Subtract data from A 1110

SOX Subtract data from X 1111

Immediate Group

MNEMONIC FUNCTION
M· O·

FIELD FIELD

LAI Load to A immediate 0011 0001

AAI Add to A immediate 0011 1100

NAI AND to A immediate 0011 0000

OAI OR to A immediate 0011 0100

XAI Exclusive OR to A
immediate 0011 1000

PSI Push to stack immediate 0011 1001

LXI Load to X immediate 0011 0101

AXI Add to X immediate 0011 1101

If D is equal to zero, the contents of the memory
location following the instruction is used as the
immediate value.

Jump Group

MNEMONIC FUNCTION
RELATIVE
M 0

JRU,JIU Jump unconditional 0001 0000

JRGE,JIGE Jump if A.GE.O 0001 0001

JRLT,JILT JumpifA.LT.O 0001 0010

JRXG,JIXG Jump if X.GT.A 0001 0011

JREZ,JIEZ Jump if A.EQ.O 0001 0100

JRNZ,JINZ Jump if A.NE.O 0001 0101

JRCZ,JICZ Jump if C.EQ.O 0001 0110

JRXL,JIXL Jump if X.LE.A 0001 0111

JRLE,JILE Jump if A.LE.O 0001 1000

JRGT,JIGT Jump if A.GT.O 0001 1001

JRCN,JICN Jump if C.NE.O 0001 1010

JRXE,JIXE Jump if X.EQ.A 0001 1011

JRXN,JIXN Jump i·f X.NE.A 0001 1111

Unconditional and conditional jumps:

Relative: P = P+D' where 0'=0-128
Indirect: P = E+(E+O)

Subroutine Call Group

MNEMONIC FUNCTION

CAS Call absolute, push
P, E, W, B
P +- (0)

CLS Call local subroutine,
push P

CVS Call global subroutine,
push W. B, E, P

Local: Push P to stack
P = E+(E+O)

Value: Push W, B, E, P to stack
E = E+(E+O)

ABSOLUTE
M 0

1101 XXll

M 0

N.A.

N.A.

P = E'+(E') where E'=E+(E+O)

CPU Design

INOIRECT
M 0

0010 0000

0010 0001

0010 0010

0010 0011

0010 0100

0010 0101

0010 0110

0010 0111

0010 1000

0010 1001

0010 1010

0010 1011

0010 1111

M 0

0010 1110

0010 1100

CPU Design

Subroutine Return Group

MNEMONIC FUNCTION M 0

RLS Pop P 1100 1111

RVS Pop P, E, B, W 1100 1101

RSA Pop A, X, P, E, B, W 1100 1100

Register Manipulation Group

MNEMONIC FUNCTION M 0

RAR Rotate A right, include 1101 0001
CFF

RAX Rotate A and X right, 1101 0101
include CFF

SAX Shift A and X right, 1101 1001
preserve sign

SAL Shift A left, fill with 1101 1101
zeros

Byte Load and Store Group

MNEMONIC FUNCTION M 0

LBA Load byte absol ute 1101 0000

LBR Load byte relative 1101 0100

SBA Store byte absol ute 1101 1000

SBR Store byte relative 1101 1100

Absolute mode: Byte add ress = (B+0)+X/2

Relative mode: Byte address = (B+O)+B+X12

Special Memory Reference Instruction

MNEMONIC

ISZ

FUNCTION

Increment and skip if
zero

M 0

1101 XX10

Stack Push and Pop Group

MNEMONIC

PHAX

PPAX

FUNCTION

Push A, X onto stack

Pop A, X

The shift count is given by D if D is non-zero or by
the least significant seven bits of the X register if D
is zero.

Base and Status Register Move Group

MNEMONIC FUNCTION M 0

MSX Move S to X, adjust 1100 0100

MBX Move B to X, adjust 1100 0101

MEX Move E to X, adjust 1100 0110

MWX Move W to X, adjust 1100 0111

MXS Move X to S, adjust 1100 0000

MXB Move X to B, adjust 1100 0001

MXE Move X to E, adjust 1100 0010

MXW Move X to W, adjust 1100 0011

NO.OP Nothing implemented 1100 10XX

The destination register is adj us ted by D-128.

Input/Output Group

MNEMONIC FUNCTION M 0

INO I nput one word 1000 XXXX
A<- (0)

OTD Output one word 1001 XXXX
(0) +-A

INX I nput one word 1010 XXXX
A+- (X)

OTX Output one word 1011 XXXX
(X) +-A

M o M 0

0001 1101 0010 1101

1100 1110

3-64

CPU Design

APPENDIX B
MICROPROGRAM LISTING © Intel Corporation, 1975

RECORD
NUMBER

1
2
3
4
5
6
7
B
9

10
11
12
13
14
15
16
17
113
19
.!O
21
22
23
.i!4
25
20
27
28
.!9
30
31
32
33
34
35
36
37
31i
39
40
41
42
43
44
45
4b
47
48
49
50
51
52
53
54
55
56
57
511
59
60

1* BIPOLAR MICROCOMPUTER MACRO-MACHINE
REGISTER MACHINE--12/13/74
UPDATED 3/18175

MACHINE
A

HAS 7 REGISTERS AS FOLLOWS:

X
P
S
I:i
g
W

ACCUMULATOR RO
INDEX REGISTER R1
PROGRAM COUNTER R3
STACK POINTER R4
DATA BASE REG R5
PROG. BASE REG. R6
STATUS WORD R7

C=CARRY,LINK FLIP-rLUP=HOB OF W

DErINIrl~H Or KBUS fIELD

KB FIELD LENG'lH=4
MICROPS(KOOOO=O

KIiOOO=B

KB KBUS:

*/

DEfAULT=O
K007f=1 KOOfF=3
KfFOO=12 KfFBO=14

,* DEFINITION OF BUS CONTROL FIELD */

MCr DEFAULT=O

K7FFF=7
KFFn-=15);

FIELD LENG1'H=3
MICROPS(NMO=0008

RHi=100B
INH=OOlB RMW=010B CNB=OIIB
ROT=10lB RRM=lI0B RWM=111B);

/* NBO NO BUS OPERATION
INH INHIBIT,CPE ARRAY
RMW READ-MODIFY-wRITE
CNB CPU NEEDS BUS
RIN REQUEST INPUT
ROT REQUEST OUTPUT
RRM REQUEST READ MEM.
RWM REQUEST WRITE MEM.

SEt UP FOR SYMBOLIC REPRESENTATION OF REGISTER DESIGNATIONS *1

A STRING 'RO',
X STRING 'Rl',
P STRING 'R3';
S STRING 'R4',
B STRING 'RS',
E STRING 'Ro';
w STRING 'R7',

1* SET UP A SPECIAL NO.OP STRING *1

NO.OP STRING 'NOP(R2)',

/* NEXT WE SPECIFY A DEFAULT TO rFl IN THE Fa FIELD tOR THE lOR
MlCROP IN" THE CPE FlELD. lOR 18 NORMALLY USED AS A STORE
OPERATION. WHEN A DECREMENT OPERATION II ALIO DESIRED, "0
WILL HAVE TO BE EXPLICITLY SPECIFIED *1

SDR IMPLY FO-11B'

CPU Design

RiCORD
NUMIER

61
62
63
64
65
66
b1
be
69
10
11
12
13
74
75
76
17
78
H
ao
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
10l
104
105
106
107
108
1()':/
110
111
112
113
114
11!)
110
117
116
119
120
121
12.1
123
124
125

'* INITIALIZATION SEQUENCE
ZERO A, X, AND W *'

OOOH:
090H:
091H:

INIT: CLR(A) J
CLR(X);
CLRCW)J

,. ZERO f AS TEMPORARY POINTER, WRITE W TO INTERkUPT STRUCTURE *'

021H:
01lH:
041H:

CLRCT) ,
LMl(l'H
ILR(W) Ron

/. SET S = CO), T = 1 fOR NEXT OPERATIO~ ./

044H:
OF4H:
OFAH:

LMlCT) fFl RRMJ
ACMCAC)
SDR(S);

/. SET B = (1), r = ~ FUR NEXT OPERATION *1

04AH:
049H:
048H:

L~ll(T) Ff1 RRM;
ACMCAC);
SDRCB} src; /. THIS SETS THE C fLAG TO INSURE

A CORRECT JUMP TO XRIN */

/. GET (2), JUMP TO XRTN TO SET E = (2), P = CE) ./

OOCH:
OFCH:

LMI(T) RRM;
ACM(AC) JCF C*,XRTN);

/* FETCH SEQUENCE & START Of MACRO-INSTRUCTION PROCESSING
P IS ISSUED TO MAR AND INCREMENTED, MACRO-INSTRUCTION
IS fETCHED AND TESTED BY JPX MICRO-OPtRATION. NOTE
fETCH IS IN LOCATION 15 TU STROBE INTERRUPT ON ENTRY. *'

OOFH: fETCH: LMI(P) ffl RRM;

/* LOAD DISPLACEMENT AND TEST fOR ZERO USING Z FLAG *'
0IFH: LTMCAC) STZ KOOfF;

'* SAVE DISPLACEMENT, TEST 4 BITS OF MACRO-OP. TEST IS
DELAYED TO ALLOW PIPELINE PROPAGATION. ALSO C FLAG IS
SET FOR LATER USE IN PSEUDO-SUBROUTINES. *'

09FH: SOH(RII) S'fC J~X(NAO,JR~L,JIG,IMMO,OM~f,lMRF,lXMA,lx~~,IhO,
INX,OIO,OTX,MVGP,SPfG,IRbM,NAI5);

/. ~~ASSIGN~D UP-CODE GHUUPS--NOP~ fUH 1HIS V~RSION ./

080H:
u8F'ti:

:'lAO:
NAl~:

1000.OP
NO.UP

JZRnTfCH) ;
JZR(nl'Cit);

/' IMM~()lATE GROUP Uf MACRU-INSTRUCTIONS--TEST fOR LONG O~ SHORT
F'URN--O IS IN AC AND H9--AOJUSl AC bY -128 ./

0.3tll IMMO: LIH(AC) KfF'I!O JZHIMML,IMMS);

/. LUNG F'O~M: FETCH NEXI WURD TU AC */

O~lh: lMML: LMl(P) Hi RR~I:

IlECOtlD
NU~tlt:R

12b
U7
12i!
129
13,)
131
132
133
134
Ij~

136
137
13b
139
140
141
142
143
144
1 .. ~
146
147
14~
1411
I~O
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
114
175
176
177
178
179
180
l~i
182
181
184
18~

180
1~7
188
1~9
I!lO
1~1
\1/2
l~j

194
195
196

OBIH: ACI-l(AC) JRLIILGA,ILPX,~AII,NAI2);

" SHURf fORM: NO PROCESSING NEEDEU "

Otl3ti: IMMS: JRLIILGA,ILPX,~All,NAI2);

" Pk~PRJCESSING fUR ARITHMETIC A~U LOGIC ROuTINES? NONE NEEDED "

Ol:H: ILGA:
Ot:DH: ILPX:

NO.UP
NO.OP

JLLINDA,DUA,XDA,ADA);
JLLILDA,LDX,PDS,ADX);

" ~OTE: NAIl AND NAil ARE NUN-VALID INSTRUCTIOhSll THt:1 ARE
~AD£ l~rU ~U-UPS IN lHIS VERSIUN Of fHE MACHO-MACHINE "

OHH: NAll :
OEfH: NAI2:

NO.OP
NO.UP

JZRlfETCH);
JZRlfETCH);

" BASIC ARITHMETIC AND LOGIC PROCt:SSING--UPUATE C ff O~ MACRU­
MACHINE fOR ADA--TOGGLE IT ON CARRY fROM ADA '1

OD/H: ADA: AURIA);
Of7H: AUAl: NU.OP
OC2H: NCY: NO.UP
OC3H: scr: LMIIW) K8000

" LOGICALS "

OD4H: NDA: ANH(A)
OU5H: ODA: ORRIA)
OD6H: XDA: CMR(AC l:
ODIH: XNR(A)

" LDA AND LOX OPERATIONS '1

OE4H: LDA: SDR(A)
OE5HI LDX: SDR(X)

/. STACK PUSH--ADVANCE STACK POINTER TO
REVERSE DIRECTION STACK--A DECREMENT

OE6H: PDS:
OfbH: PDSI:

DSM(S);
LMHS) RWM

JfL INcr, scn;
JZRlfETCH);
JZRlfETCH);

JZRlfETCH):
JZH(fETCH);

JZR(fETCH) I

J:l.R(FETCH) ,
J:l.R(FETCHl/

NEXT LOCATION (fOR THE
Of S), THEN WRITE '1

JZR(fETCH);

CPU Design

I' ADX - SHARES CODE fOR ADA - ALSU TOGGLES C ff Of MACRO MACHINE '1

OE7H: AUX: ADHIX)

" MEMONI REFERENCE INSTRUCTION GRUUPS
DIRECT--GET 8tD INTO AC--ALSO R9 '1

0&4H:
054H:

DMRf: ILRIS);
ALRIR9)

JMP(ADAl);

JRLIMRVl,MRV2,MRAU,STPG);

/. INDIRECT-ABSOLUIE--GET (8+D) INfO AC--C fLAG USED fOR PSEUDO-SUBROUTINE ./

O·~5H:
055H:
UOAH:
ObBH:

IMRf: ILR(B);
IMRr1: ALH(R9);

LMIIR9) RRM
MLOAD: ACM(AC)

JCf"(MADD, MLOAD);
JRL(MRVl,MRV2,MRAD,SIPG);

If ~OIE: kADD WILL bE USED fUR orHER IhDIPECT OPERATION~ WHERE
S, X, ETC. HAS BEEN LOADED TU RB '1

ObAH:
009H:

MADU: ACiHAC);
ALI« 1'\8) JRL(MRVl,MRV~,MRAD,STPG);

If INDIRECT INDEXlD Atl~OLUT~ - CLEAR C fLAG, MUVE X TO H8 '1

oa6H:
04bH:

lXMA: ILR(X) ~TC;
SDR(RS);

3-67

CPU Design

RECORD
NUMBER

197
198
19':1
200
lOI
202
203
204
205
:l06
207
2011
209
210
211
212
213
214
215
21b
211
218
219
220
221
222
223
224
22S
l2b

j* NOriNG r~AT ASSIGNMENT RULES WOULD NOT ALLOW ThE DESIRED
JUMP ro IMRF UNLESS IIMA+l WERE IN RO~ ZERO--AN EXTRA STATE
IS ADDED HERE */

U5bH: UMA2 : ILR(B) JMP (lHRf'1);

/* INDIRECT INDEXED RELATIVE - CLEAR C FLAG, PUT B+X IN R8 */

01l7H:
057H:
047H:
045H:

IXHB: lLR(X) STC;
SDR(R8);
ILR(BJ;
ADIHR8) JMP<IMRFl;

/* INDIRECT RELATIVE (TO B) - CLEAR C FLAG, PUT B IN RB */

08EH: lRBMI ILR(B);

/* AGAIN ASSIGNMENT RULES PREVENT JUMPING TO IIMA+l UNLESS IT IS
LOCATED IN RON ZERO--PLACEMENT THERE COULD FREE TWO WORDS */

05EH: SDRlRII) JMP (IXMA2);

/* THE fOLLOWING PRUCEDURES lMPLEMENT THE BASIC PREPROCESSING FOR
VALUE AND ADDRESS LOADING.

VALUE-GROUP 1:

07::H: MRVl:
O'lCH:

GET lAC) IN AC */

LMUAC) RRM;
ACM(AC) JLL(NDA,UDA,XDA,ADA)/

~27 /* VALUE GROUP 2 */
l2~
219
230
231
232
233
234
tJ5
236
237
238
H!I

07DH:
091>1'1:

MRV2: LMllAC) RRM;
ACM(AC) JLL(LDA,LDX,PDS,ADX)/

/~ MRAD GROUP INCLUDES ADDRESS LOAOS AND SUijTRACT FROM A */

OIEH:

064H:
065H:
066H:

MRAU:

LAA:
LAX:
PAS:

NO.OI'

SDI<CA)
SDRlX)
DSM(S)

JLL(LAA,LAX,PAS,ISDA);

JZR(fEICH);
JZR(fETCH)/
JMI' (PDSl);

240 '* faR
241,.

SUBTRACT, ADD l'S COMPLEMENT PLUS 1 */

24..1
J4J
244
245
246
247
248
249
250
251
252
253
lS4
255
256
257
258
259

067H:
068H:
OF8H:

ISDA: LMI(AC) RRH;
LCfHAC);
ADR(A) FFl JMP(ADAI);

/* StPG GROUP INCLUDES ~TURES AND SUbTRACT FKOM X */

OH'H:

o '/4H:
u751t:

STPG:

SAM:
SXM:

LMI(AC)

ILRlA) RilM
lLRlX) RWM

JLL(SAM,SXM,PSM,SDX);

JZR(FUCH);
JZR(FETCH) ;

/* POP STACK TO MEMORY - SAVE ADDRESS, POP STACK */

076H:
078h:
OA8H:
OBIiH:

PSM: SUR<l');
LMI(S) HI RRM;
ACMlAC)/
L~IICT) RwM JZR(FETCH) ;

260 '* SURTRACT FROM I */
2,,1
264/
263
264
265
266
267

077H:
079H:
OF9H:

SOX: LMICAC) RRM;
LCHCAC) ;
ADR(X) FFI JMP(ADA1) ;

/f JUMP GROUPS--USE JPR MICRO-OPERATION TO RESOLVE CONDITION SELECTION
DESTINATION ADDRESS IS COMPUTED FIRST--PLACED IN AC AND R9

RECORD
NUMBER

268
2to'J
270
271
272
213
274
~75
276
277
278
27~
280
281
28.o!
,2ijJ
28'1
285
280
287
2b8
2d9
290
291
29.o!
n3
2~4
29!>
2"'6
2'J7
29ij
2':1':1
300
301
30l
303
304
305
30b
307
308
309
310
311
H.o!
311
314
315
316
317
31ij
319
320
321
322
323
324
325
326
321
32ij
329
330
331
332
333
334
335
He>
3J7
338

JUMP RELATIVE TO P--AODRES~=P+D-128 *1

081H:
071H:

JREL:
JRllR:

CPU Design

OblH:

ILIHPl1
LMI(AC) KF'FIIO;
ALRIR9) JPRIJUNC,JAGE,JALT,JXGA,JAEO,JANE,JCEZ,JXLA,

JALE,JAGT,JCNZ,JXEA,CPSS,PXA,CLOP,JXNA);

1* JUMP INDIRECt - GET E+IE+D) IN AC ANll R9 *1

082H:
OE2ti:
OEOH:
050H:
OoOH:

JIG: ILR(E);
ADtHR9);
LMI (1,9) RRI',;
AMAIAC);
501'11'9) JPRIJUNC,JAGE,JALT,JXGA,JAEQ,JANE,JCEZ,JXLA,

JALE,JAGr,JCNZ,JXEA,CPSS,PXA,CLOP,JX~A);

1* UNCUNOITIU~AL JUMP *1

U30M: JUNC: SDRIP) JZR(FETCH);

1* TESTS FUR A.GE.O, ETC. *1

031H:
032H:
u34H:
035H:

OHH:
OOIH:

072n:
07Jti:

038H:
U07H:

04211:
043tl:

JAGE:
JIILT:
JAEQ:
JAM::

JAGT:

IIPkE:
AI~PE:

JALE:

Ak'E2:
AN2:

TZR(A) hSOOO INH
rZRIA) KeOaO INH
rZR(A)
TZIHA)

lZRIA) Kaooo INH;
TZRlA)

rw.up
NO.Oil

rZR(A) K8000 INH;
rZR(A)

NO.OP
SllPIP)

JMPCTTRlI);
J~IPITFAL);

JMP I TT'RU);
JMP(T,FAL);

.JfL(APRE,ANPE);

JH (JIliT2,JTR2);
JZR(rETCH)i

In(IIPU,AN2);

Jf"L(JTRI,JNTI) ;
JZRCFETCH);

1* TESTS OF C fLIP-fLOP (HIGH ORDER BIT or W) *1

UJbH:
03AH:

JCEZ:
JCNZ:

TZR(w) K800u INH JMP(TTRU);
TZR(W) Keooo INH JMP(TFAL);

1* TESI EXECUTION fUR ABuVE TESTS - ROW ZERO USED *1

005H: 'HRU: NO.OP JFL(JTRI,JNTl)1

002H: JIRl: SIlR(P) JZRIFETCH);
003H: JNTl: NO.OP JZR(FETCH);

004H: TfAL: NO.UP JFL(JNT2,JTR2)I

OblH: JNT2: NO.OP JZRCfETCH)I
063H: JTR2: SDR(P) JZR(FETCH)I

/* TESTS fOR X.GT.A, X.LE.A, X.EO.A, X.NE.A--SHARED PSEUDO­
SUBROUTINE USES JLL ~OR AN EXIT TEST--kOUTINE ENTRY IN ROW 0
C FLA~ IS SET FOR X.GT.A, FL TEST FOR X.EQ.A *1

033H: JXGA: ILRCX) JMP(XATS);
037H: JXLA: ILR(X) JMP(XATS);
03BH: JXEA: ILR(X) JMP(XATS);
03FH: JXNA: ILR(X) JMP(XATS);

/* SAVE X AT r, fETCH ANIl cmlPLEMENT A *1

OOBH XATS: SOR(T) ;
04BH lLRCA) STC; 1* CLEAR C FLAG *1
05bH CMA(AC);

3-69

CPU Design

RECORD
NUfoIBER

33~
340
341
342
343
344
345
HI>
34/
348
34':1
J50
J!>l
3::.:.1
J~J
354
3::'~
356
J~ I
35i!
J59
360
361
J02
3td
J64
365
Jb6
367
368
369
370
311
372
373
374
375
376
317
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
390
397
398
399
400
401
402
403
4114
40':)
4U6
407
40b
409

1* ADD Hoa'S Of A' AND X - CARRY ~EANS 1 NEG •• A.GE.O *1

u~AH: AOR(,£) K80UO;

1* EXEcurE PREVIOUS TEsr, SET UP TO TEST HOB OF RESULT--IF 1.
THE SIGNS OF A AND X ~ERE THE SAME *1

051H: TZR(T) ~8000 INH JFL(TFEQ,TXNG) ;

1* rXNG IMPLIES x NEG AND A.GE.O--I.E. X.NE.A AND X.LT.A--DO A
DUMMY OPERATION TO FURCE THE PkUPER F fLAG .,

053H: lLRCA) JLLCJXGX,JXLX,JXEX,JXNX);

1* PERfORM A TEST ADDITION AND EXECUTE SIGN-EQUAL TEST
C ~ILL BE SEf IF SIGNS WERE THE SAME AND X.GT.A .,

052H: rFEQ: ADR(T) STC K7FfF JFL (SNEQ, SWEQ) ;

I. SNEQ IM~L1ES SIGNS NOT EQUAL--I.E. X.GE.O, A NEG--X.GT.A *1

012H:
010H:

SNEQ: SDR(AC) STC;
NU.UP

I. DUMMY UP TO SET C fLAG .,
JLLCJXGX,JXLX,JXEX,JXNX);

1* FOR SIGNS EQUAL, IF X=A RESULT wOULD SE 1111 ••• 1. INCREMENT
wILL GENERATE A CARRY IF SO *1

OllH: Sf/EQ: ILkCAC) "1

1* EXECUTION OF JUMP TESTS .,

024H:
U2::'H:
02bH:
027H:

JXGX:
JXLX:
JXEX:
JXNX:

lLR(R9)
lLR(R9)
ILR(R9)
ILR(R9)

1* SUBROUTINE CALLS
CALL LOCAL AND PUSH W, S, E, P =CPSS
CALL LOCAL AND PUSH P ONLY-CLOP

JLLeJXGX,JXLX.JXEX,JXNX);

JCf(JNT2,JTR2) ;
JCf(JTR1,JNTl) ;
Jf'L(JNT2,JTR2);
Jf'L(JTR1,JNT1);

C FLAG IS USED FOR EXlT TEST AFTER PUSHING P "~I

03CH:
05CH:
OSDH:

OADH:
OAAH:
07AH:

07BH:
OEBH:
OFSH:

OF2H:
0l>2H:
OODH:

CPSS:

CPG2:

DSM(S);
ILR(W);
LMI(S) RWM;

DSM(S);
ILR(S);
LMICS) RWM;

DSM(S);
!LROd;
LMlCS) RwM;

DSM(S);
ILH(P);

CLOP2: LMI(S) RWM;

I. t:tCE+D) l",ro AC .,
OIlDH: ILR(R9)

OSSH: XRTI~ : SORCE);
OBEH: LMl(E) RRM;
OS9H: AMA(AC) ;

UBAH: LRTN: SDR(P)

031:.H: CLOP: DSM(S) ;
OoEH: lLR(P) STC

1* PUSri INSTRuCTION .,

JCFCLRTN,XRTN);

JZR(HTCH) ;

JMPCCLOP2);

3-70

RECORD
NUMBER

410
Ul
41~
413
414
415
411>
417
4111
419
420
421
422
42.3
4:l4
425
421>
421
428
429
430
431
432
433
U4
435
436
437
U8
439
440
441
44J
443
444
44!)
441>
447
448
449
450
451
452
453
454
4!)5
451>
4!)7
45S
459
460
41>1
4b2
463
404
46~
,*b6
46"/
468
41>9
470
471
4U
4·/j
474
475
476
471
478
419
480

030H:
04DH:
040H:

070H:
O~·OH:

OFIH:

PXA: OSM(S):
IL~(X):
LMI(S) 1'.\1114:

OSM(S):
ILIHA);
L~ll(S) RWM JZR(FETCH);

1* MUVE GROUP OF INSTI'.UCTIO~S--USES JCE TO SELECT REGISTER--NOTE
THAT REGISTER ASSIGNMENT BECOMES IMPORTANT
FIRST MUOIF¥ 0 to GET D-128 *1

08CH: MVGP: LMI(R9) KFF80 JLL(MVXR,MVRX,MOO,PGRP):

1* MOVE X TO REG. - GET X, MODIfY BY 0'=0-128 "

OC4H: MVXR: ILR(X);
OCOH: ALR(R9):

CPU Design

OCIH: SOR(R7) JCE(MXRX); " REGISTER OVERRIDE *1
OEIH: MXRX: NO.OP

1* MOVE Rt:G TO x - FETCH REG USING JCE

OCSH: MVRX: ILR(R7)
01'"5H: MRXX: ALR(R9)

" MOO NOT IMPLEMENTED IN THIS VERSION

OCbH: MUD: NO.OP

" ADJUST STACK AND RETURN GROUP
PPAL--~OPS A, X, P, E, B, AND W
PPHA--POPS P, E, B, AND w
PPAX--POPS UNLr A AND X
POPP--POPS ONLr P "

OC7H:
OC8H:

OOCH:
003H:
OOSH:

Olo:llH:
OE9H:
OOBH:

ODOH:
02UH:
02~·H:

04FH:
OOEH:
011::11:

09EI1:
OFEH:
O~jH:

01::311:
OEAH:
O~AH:

PGRP:

PPAL:

PAXC:

lLR(R9);
ADIHS)

LMl(S) FFl RRM;
ACM(AC):
SORIA):

LMI(S) n·1 RRM;
ACM(AC)
SDR(X);

LtU(S) HI· RRM;
ACM(AC):
SDR(P):

LMI(S) FF1 kRM;
ACIH AC);
SORCE):

LMHS) Fn RRM:
ACM(AC):
SOIHB) ;

LMI(S) FFI RRM;
ACM(AC) :
SOlleW);

1* RESTORE INTE.R~UI'T STRUCTURE *'
02t!H:
029H:

ODAIH

CLR(T);
LMI(T) HOT

50Rl1.)

3-71

JZR(FETCH) ,

OVERRIDE *1

JCE(MRXX);
JMP(LOX) :

*1

JZR(FETCH):

JRL(PPAL,PPRA,PPAX,POPP);

JCF(PAXE,PAXC) :

JZR(FETCH) ;

J'Z.R l rE'tC~) ;

CPU Design

RECORD
NUMBER

481
482
483
484
485
48b
481
488
4119.
490
491
492
493
494
49~
49i1
491
498
499
500
501
)02
503
504
505
50E>
SCI')
5011
509
510
511
512
S13
)14
515
51&
517
518
519
~lO
521
5U
52J
524
)l5
5lE>
527
528
52~

5JO
531
532
533
534
535
53E>
537
538
539
540
541
542
543
544
54::;
54&
547
548
54\1
550
551

OOEH: PPAX:

ODFH: POP!':
OOOH:

ILIHAC) STC

LMHS) FFl RRM;
ACM(AC)

I' SPECIAL FUNCTION GROUP

JMP(PPALl:

JMP(JUNC);

BYTE OPERATORS--AODR=(B+0)+S+X/2 OR (B+D)+X/2
CALL TO (D) AND PUSH ALL
SHIFT AND ROTATE GRUUP
INCREMENT AND SKIP
FETCH B JUST IN CASE *1

SPFG: ILR(B) JRL(BYTE,RSGP,SCJG,ISJG);

1* BYTE GROU!'--COMpUtE AOOR, STORE B IN CASE NEEDED *1

OCCH:
OBCri:
OACH:
OABri:
OAEH:
02EH:

1.115ri:
014H:
022H:
02JH:
020H:

017H:
01bH:
01t1H:
019H:
01bH:
010H:

OlAH:
OleH:

tinE:

LBYk:
LIHA:
LilYT:
KbYT:
DBIA:

SbYR:
SlltA:

STRb:
SRBI:

Sl'LS:

/f ROfArE GROUP

SOR(k8);
AOR(R9);
ILR(X);
SRA(AC) STC;
LtoIHR9) RRM;
AMA(AC)

ALR(R8);
LMI(AC) RRM
LDI(AC) FFI KOOFF
LT'UAC) KOOFF;
SOH(A)

ALI«k8) ;
LMUAC) ;
ILldA) ;
T~R(AC) KOOFF RRM
LTM('r) "'FrOO;
ALRlT) RwM

L'fMlT) KOOfF;
LOHAC) Ffl CNS

JLL(LBYA,LBYR,SB~A,SBYR);

JCrtLBYT,RBYT);
JMp (lJllIA);

JZH(Ft::TCH);

1* LOAD MAR FUR LATER US~ *1

JCnSTLB,STRB);

JZR(FETCH) ;

JMp(SRBI);

RUTArE A WITH C--ROIATE A AND I WITH C--SHIfT A, X RIGHT, FILL
~ITH SIGN--SHIFT A LEFT, FILL WITH ZEROES

AT ENTRY, Z FLAG is ZERO IF 0=0. DUE TO piPELINt::O OPERATION, IT IS
CHIS CUNOITION THAT IS TESTED bY THE fIRST JZF *1

OCDH: HSGp:
09AH: SZDS:
099H:
09BH: SIIIZD:

094H: RACI:
095H: RAil:
098H:
09bH: SAXI:
097H: SLZI:

1* MAIN ROTATION

093H: RUNR:

OA4H: RACR:
OA5H: RAXR:
OAOH:
OA&H: SAXR:
OA1H:
OA7ri: SLZR:

O\l2H: RSI::X:

OB4H: RACF:

TZR(W) STZ K8000 INH
ILRlX):
SDR(R9) FFO K007f
DSM(R9)

ILR(A)
ILR(I);
SDiHT)
TZR(A) STZ K8000 INH
ILR(A)

LOOP 'I

OSM(R9) STC

SRA(AC) FfZ STZ
SRA(AC) FFZ STZ;
SRA(T) FFZ lOTZ
SRA(AC) FFZ STC;
SRA(T) FFC
AOR(AC) STZ

lOLJR(A)

TZR(w) K7FFF

3-72

JZHSZOS, SNZD);

JLL(RACI,RAXI,SAII,SLZI);
JLL(RACI,RAXI,SAII,SLZI)7

JMP(RUNR);

JMp(RACI);
JMP (RAXI J:
JMP(RUNR);

JLL(RACR,RAXR,SAXR,SLZR),

JFL(RSEI,RUNR);

JCf'(RSEX, RUNR) 7

JC~' (RSEI, RliNIO ;
JFL(RSEX,RUNR);

JLL(RACf,HAXF,SAXf,SLZf);

JZH SNCF, SSCF);

RECORD
NUMBER

OA2H SNCF NO.Up JZIHFETCH) ;
uAJH SSCF LMl(W) K~OOO JZRtFETCH);
085H RAXf ILRtl);
OSOH RXF1 SDIHX) JMp(RACF);
08bH SAXf ILRtT) JMp t RXF 1);
vS"/H SLZ~ TZIHw) K7fH JZF (SNCF , SSCf') ;

" SPECIAL CALL AND JUMP GRO~p--CURRENTLY CUNTAINS ONL~ tHE
CALL TO to) A~D PUSH ~,B,E,p--ALL 4 UpCOD~S DO THE SAMg THING "

OCgll:
04EH:
04Cti:

SCJii: LMl(R9) RRM;
ACrHAC);
SOR(M!f) JI'!P(CPSS);

" INCR~MENT AND SKIP GROUp--AGAIN " OpCUDES ARE DSED FOR ONE
INS1RUCTION--LOCATIUN AT b+D IS l~CREMENTED "

OCFH: ISJG: ALRtR9);
OC9H: LMI(R9) RMW;
ODIIH: ACM(AC) Ffl;
OA9H: NU.Up R .. M Jf'L (NOSII, 51111');
OCIIH: NUSK: IW.OP JZIH fETCH);
OC8H: SKU': LMItp) ffl JZRtFEl'CH) ;

" INpur AND OuTPUT--CURRENT VERSION DOES NOT DECODE INTO
SUBGROUpS--ALSO ROW ZgRO IS USED TU SAVE CUDE "

08~H: INO: LMltR9) RIN;
008H: IND1: AC"! tAC J;
028H: SDRtA) JZRtHTCH);
089H: INX: LMItX) IUN JMp t IND1);
OIlAH: OtD: LMltR9);
006H: OTD1: ILlltA) ROT JZRtFETCH) ;
088H: OTX: LMIlX) JMp(OTD1);

" INTERRUpT--UTILIZES CALL ROUTINES FOR REGISTER SAVING
110 DEVICE 10 REPRESENTS EXTERNAL INTERRUPT STRUCTURE
START 8Y PUSHING OLD VALUE OF STATUS "

OFFH:
OBFH:
05FH:

INTER: DSM(S);
ILR(Wl;
LMItS) RioIM;

" READ INTERRUPTING LEVEL FROM EXTERNAL STRUCTURE "

058H:
059H:
0&9H:

CLR(T);
L!H(Tl R1N;
LTM(AC) KOOFF ROT; " NOTE LEVEL REWRIrTEN "

CPU Design

55~
553
554
5~5

55b
557
55d
559
5&0
5&1
5&~
Soj
~b4
SO~

50&
~67
!)6a
569
570
571
572
5"/3
574
57~
57&
577
51d
579
580
581
58~
583
584
585
580
~87
588
589
590
591
592
593
594
595
59&
597
598
599
600
601
602
603
604
&05
60b
ou7
60d
609
610
b11
612

" STORE PRIORITY IN W - SET C FLAG FOR PROPER LOADING OF REGISTERS "

O&CH: SDR(W) STCI

" INTERRUPT RUUfINE STARTING ADDRESS IS COMPUTED IN R9 "

U6DH:
OoFH:
OA~'H:

EOF

NO PROGRAM EMRORS
END Uf PROGRAM

[.~i l(w) RRM;
ACIHAC);
SDRtIl9)

3·73

JMPtCpG2);

Mle~OP~O~~A~ ~E~ORY IMA~E

OOOri

OH

JCC
0090H

b7
o

IH 2H

JfL' JZR
0072H • OOOFH

2~b
I

•
31b •

4 •

1H 4H

JZN' JFL
UOOFH • 0062H

317
4 •

319
3

- - - - - t-------.-------.
JLL JCC' JC~' JLL' JCF

0024H 0041H * uOIOH * u024H * 0022H
001H

301 74 * JoO 36b 505
I I * I * 1 2

- - - - - .-------f------·. -

OU2"

OOjH

J~H JCC * JCII' JCR * JCf
OOOtH 0011H UO.OH' 0020H * 0062H

5UiI
~

JZk
OuUt"h

20b
3

7J
I

SOb *
1 •

507
1

t-------f-------. -
370

JZ~ * JZR J~R * JZ~
OOO~H * 0004H OOOdH' U005H

190 *
l •

HI *
2 *

J28 •
l *

29l
2

SH

JfL
OOP2H

314
3

JCII
0014H

504
1

JCt'
0002f!

371
3

JZR
0004H

293
2

6H

584
2

JCR
0018H

511
2

J.L
OU02H

J72
J

JZR
0005H

J09
2

7H

JFL
0042H

302
1

JC~

0016H

510
1

JfL
000.2H

373
. 3

JZ~
OOOI:lH

329
2

8H

JCC
0028H

580
2

JC~
0019H

512
1

JZR
OOOFH

581
I

JZII
1i007H

]01
2

9H AH 8H eH

JRL' JCF' JCC' JCC
007CH * OOoAH • 004BH • OOFCH

•
190 •

1 •
18.1 •

1 *
335

4
*

.-------.-------. -
92

1

JCF' JCR' JCR' JCR
001AH * 001CH OOIOH 001UH

•
513 *

1 •
517 •

1 •
514 •

1 *
-------f-----~- -JZt<' JCR * JeR

OOOFH • 002BH • 0029H
• •

477' 472' 476'
l' 1* I'

--------------.

51a
1

JZII' JZR * Jec' JCC
OOOIH • 0004H * OOOSH * 005CH

295
2

•
310 •

2 •
330

2
380

3

OH

JCC
OOBOH

394
2

JZR
OOOFH

515
2

JCR
002.H

459
I

Jec
0040H

411
2

EH

JCC
001EH

463
1

Jce
OU9lH

FH

JCC
001FH

100
38

JCC
009t'H

4b4 104
I I

JLL Jee
0014H 004t'H

502
1

JCC
OObEH

406
2

460
1

JZR
OOUIlH

331
2

-------------------.-------.------.. -------------------------------:---------------,------.,-------,--------------------------------
U04H

OUbH

007H

JCC
0070h

413
1

Jet:
0060H

280
1

JPR
0030H

281
1

Jce
OOFOH

JCt< * JfL *
004411 * 0002H

*
75 * J04'

I • 1 •

JZH * JCC
OOOfH • 00F4H

JOS * 79
1 • 1

.-------.-------.
Jt'l. * JfL

OOSlH * OOllH

340
1 •

J5b *
1 *

JLL' JRL
0024H * 007CH

]SI
1 *

177
1

.-------f-------. -
J~R' JZM JZR' JZR

0030H * OOOFH OOOFH OOOfH

271
1

Jec' Jt"L
0061H • 0062H

2Jo
1

JZM * JZR
OilOFH OOOFH

Jee
Ou85H

2U8
I

JZR
OOOAH

182
2

JZII
OOOFH

237
I

JZR
OOOFt!

Jec
0056H

195
I

JCII
0055H

201
2

JCC
OOn.H

2]8
1

JCR
0078H

JCII
U04SH

207
1

JCC
0047H

206
1

JCR =
006aH

242
1 -- ,.

JCR ..
0079H

JZR
OOOCH

87
1

JCR
0059"

597
1

JCC
OOfSH

243
1

Jce
OOASH

JCR * JCR * JCC' JeC
004SH • 0049H • 005ijH • 003CH

86 •
1 •

85 •
1 •

•
33b •

1 * .-------.-------. -
564

I

JCC * JCR' JCR' JCR
00&9" • 0051H • 005"H • 0050H

• • •
598' 341' 337' 381
l' 1* 1* 1

.-------*-------. -JCR * JZR * JRL * JCR
006CH • 0009H * 007CH 0060H

599 •
1 •

189 •
1 *

184 •
1 •

.-------.-------.
603

1

JCC' JCR * Jec' JCC.
00F9H • 0078H • 00E8H • 00geH

* • •

JeM
0040H

412
I

JCC
OOAOK

382
1

JCII
006FH

607
1

JCC
0090H

JCR
004CH

5&3
1

Jell
0056H

217
1

JZR
OOOOH

407
1

JZH
OOOEK

402
1

JeR
0058K

593
1

JCC
OOArH

608
1

JLL JLL •
0064H 0074H

415 2/1 * 29~' 2~9' 250 251 255 262 25b 26.1 * ·3S6 * 388' 224 229 234 248
• 1. l' 1* 1* 1. 1. 1. 1 1. l' 1* l' J 3 3 J

================&=&*=======*=======*===8===a= •• =====3.==== •••• ===================.::=_==_ •••••

o
"'D c:
C
m ca·
~

MICROPROGRAM MEMORl IMAGE

008H

OH

JZR
OOOFH

II~
I

JCR
0091H

IH 2H 3H 4H

JCC * JCC. JZr. JCC
007111 * 00E2H * UU~2H * 0054H

•
270

1
277 •

I *
121 *

1 •
176

1 • _______ •• _____ .f -

JCC * JLL' JLL
0021H * 00B4H • OUA4H

JCII
OO~311

009H *
68 69' ~49 540' ~32

1 1* 4 6' J
- - - - - .-----__ f _______ •

JCF JCF. JZR' JZII JFL
0092H 0092H' OOOFH • OOOFH 0092H

OOAII •
544 540' 552' 553 542

1 l' 2' , 1 f _______ • _______ t

JCP JRL' JCN' JilL' JZ.
00B4H OOECn 00B1h' OOECH • OOA,1t

008H

~H

Jce
005511

181
2

6H

Jce
0046H

194
I

JCR. JeR
0098H •. 009~H

~H
3

JeR
OUAOH

~43
'1

JCR
0080H

535
2

JCR
OOA1H

545
I

JeR
OOIlOH

7H

JCC
0057H

205
I

Sit

Jee
0008H

579
I

Jell = JeR
0093H = 0094H

S3b
2

JFL
0092H

~47
1

JZF
OOA4i1l

534
1

Jce
001l8H

257
1

JZH
OOOFH

91t All Bit CH

JZR' JZR' JZR' JLL
0008H * 0006H • OOOoH 00e4h

•
582 •

I •
583

1 •
585 •

I • .-______ * _______ t -

423
1

JLL' JCR. JLL' JLL
0094H • 0099H • 0094H • 0004H

529
1

528
I

530
I

.-------*-------* -
22~

I

JfL' JCC * JCR * JCR
OOCAH • 007AH * OOAE" • OOASH

•
512 *

1 •

* 385 •
I •

500 *
1 * t-------*-------* -

499
1

JCII' JZR * JCR * JCC
OOBAH * OOOfH OOSEH. OOA:H

DH

JRL
ooeCH

493
I

JLL
00E4H

230
1

JeR
OOAAH

384
2

JCF
OOBAH

EH

Jce
005EH

212
1

Jee
OOFEH

FH

JZ~
OOOFH

116
I

JPX
OO&OH

too 110
1 1

Jec JCII
OU2EH OVAOH

501 609
I 1

JCII Jee
0089H 005fH

55~ 120 12~' 130 ~51 ~54 5~0 ~~7 258 40, 404. 400. 498 39S 401 592
2 I l' I 2 1 1 1 I 1 3' 2' I 1 1. 1.

-------------------.-------.-------.-------------------------------:---------------.------.. -------.--------------------------------
JCII JC~' JZR JZII' JeR JCE JZR JCR JilL Jce * JZR' JZII Jec JZf Jee Jell

OOClh OOElh' OUOfH OOOfH OOCOII OOfSH dOOFH OOCBH OODeH 0009H * OOOfH • OOOfH OObCH 009AH 004EH 00e911
ooer! • * •

OOOIt

Jec
0030H

429 •
I •

148 •
1 •

149 •
1 • f _______ f _______ •

427
1

JZR' JZR * JCII * JZR
OOOfH • OOODH • UODSH • OOOfH

484 15& * 393' 4~1 153
I 1. l' 1* 2 - - - - - t _______ * _______ • _

OOEH

OOfH

JCC JZII' JCR JCII * JZR
vO~UII OOOFH' OOEOH OOEAH. OOOfH

279
I

JCR
OOFlH

HO •

I *
•

278 *
I *

470
1 * *-------f------_. -

160
~

JZK * Jce * Jee * JCR
OOOfH • 0002H 00E3H OOFAH

434
1

JZR
OOOFH

1~4

2

JZR
OOOfH

161
3

Jce
00E5H

439
1

JCN
OOOIH

1~5
2

Jec
OOfoH

166
2

JZR
OOOFH

447
1

Jce
oonH

448
1

JCC
00E8H

146 4~2
2 I

Jce '" JCR
oonH '" 00E9H

171
2

454
I

JFL" Jell
00C2H .. oonH

570 *
1 •

573
1

574 *
1 •

-------t------- -
497

I

JCC' JZR * JC~ * JCII
00A9H • OOOF" * OOODH • OODlH

~71 •
1 •

479 •
1 •

•
4~0 *

1 * .-------*-------. -
450

2

Jef * JCC * JCC JLL
OODAH * 002AH • OOfSH 00D4H

45~

1 •

•
471 •

1 •
3B9

1 *
134

2

527
1

Jce
0020H

458
2

JLL
00E4H

135
2 .------_t _______ * - - __ - -

502
I

JC~
OODCH

481
I

JZR
OOOFH

140
2

JeR * Jee. JCR * JCF JeR
00F7H 004AH * OUf2H • OOSAH 00F3H

•

509
I

JCR
OUI)OH

483
1

JZII
OOOFH

141
2

Jec
OOSFH

416 417' 392' 4bB. 80 435 167 147.. 244 264 • 81 * 390. 93 467 591
• I 1* 1* 1* I. I 2 4= 1 1* I. 1* I. • 1. O.

aa.==a=a=====a=====*=======*= •• =K==*===============================a===========aa=.*.======*======.*:z:====.=.====.aa.aa= •••• =_:::::

o
"V c:
C
m
cO ::s

CPU Design
APPENDIX C CENTRAL PROCESSOR SCHEMJ\TICS

§ll' C2? .~ ~ ~ ~ ~ ~
=il J

~.r= ~ ,~~ l[,r~~ ~ ~~e.: Eb..L1.

~ § lliJ-J:il
r-

I
=-

::B 1= ~ II
i=-e-+-

~I ~

,)ll ~I[1-1 ~=! ~ ~$.l
plj- -~ .

Imfilll ~IIII .<! k-.

I~~ "Ul N1d FB:J ~ rt-:

- In~l~ ~
,,!!

- I r:::::: IL, .-
..........
~ ~ ::: . fgU ~-

~:~"
~ l'r-.

-""",,,

- llY} . rt-:L
~ ~ ~

Irl ~

-" ~ ~ IQ--

e-~ ~ """_RI_IT'-'l!
I-t

1 *~
,~ ..

""-: " _.u .. ~ . . - -~
.... II II

3·76

ORDERING INFORMATION
Standard Package Type

Component No. Of Pins Ceramic (C) CerOIP (0) Plastic (P)

3001 40 Yes Yes
MC3001 Yes

3002 28 Yes Yes
MC3002 Yes

3003 28 Yes Yes
MC3OO3 Yes

3212 24 Yes Yes
MD3212 Yes

3214 24 Yes Yes Yes
MD3214 Yes

3216/26 16 Yes Yes
MD3216/26 Yes

4-1

PACKAGE OUTLINES

16-LEAD PLASTIC DUAL IN·LlNE PACKAGE (PI

,-,..------r:=
JitIJ.l1ll
.1.11.n71

.... =.9:: rLrL.rL
MIN.

I-

I=~
m=RE'.

24-LEAD CERAMIC DUAL IN·LlNE PACKAGE (CI

.,.­
_CUI)

24-LEAD CerDIP DUAL IN·LlNE PACKAGE (01

16-LEAD CerDIP DUAL IN·LlNE PACKAGE (01

24-LEAD PLASTIC DUAL IN·LlNE PACKAGE (PI

oIIIlWI1I
.llDt1:s,1JOI

,-rIlE' .

'-",14) .G7011.1I)
mo lUi .«0 1i7it

.,.".­
:iiiii.ii

.1ID7S1D.

.I"liiiii I
K:iii~

28-LEAD CerDIP DUAL IN·LlNE PACKAGE (01 28-LEAD CERAMIC DUAL IN·LlNE PACKAGE (CI

I '~~I--II

4-2

4O-LEAD CERAMIC DUAL IN·LlNE PACKAGE (C)

r' _2"OOI53'34I_~1 MAX.

PIN 1

PACKAGE OUTLINES

I 1,230(6,8421 ~ -'---- =t MAX. JJ.-
r --~ 0.020 (0,5081 :on (Q,3061

MIN. _II :2l§m.m1 _I !_~~TVP fsS~ I_~~_I I--- .023(0,&841 .11012,7141' .71011',0341

4O-LEAD CarDIP DUAL IN·LINE PACKAGE (D)

4-3

inter
INTEL CORPORATION. 3065 Bowers Avenue. Santa Cara. California 95051 (4081246-7501

Printed in U.S.A. MCS 048"()276/10K

	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-61
	2-62
	2-63
	2-64
	2-65
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-19
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	4-01
	4-02
	4-03
	xBack

