in S80C186EB/S0C18SS8EB
Uspr’s Manual

Order Number: 270830-001

intel”

LITERATURE

To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES In the U.S. and Canada
P.O. BOX 7641 call toll free
Mt. Prospect, IL 60056-7641 (800) 548-4725

CURRENT HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design
information.

TITLE ~ ORDER NUMBER
SET OF 11 HANDBOOKS 231003
(Available in U.S. and Canada only)

EMBEDDED APPLICATIONS 270648
8-BIT EMBEDDED CONTROLLERS 270645
16-BIT EMBEDDED CONTROLLERS 270646
16/32-BIT EMBEDDED PROCESSORS 270647
MEMORY 210830
MICROCOMMUNICATIONS 231658
(2 volume set)

MICROCOMPUTER BOARDS AND SYSTEMS 280407
MICROPROCESSORS 230843
PERIPHERALS 296467
PRODUCT GUIDE 210846
(Overview of Intel's complete product lines)

PROGRAMMABLE LOGIC 296083

ADDITIONAL LITERATURE
(Not included in handbook set)

AUTOMOTIVE ' 231792
COMPONENTS QUALITY/RELIABILITY HANDBOOK 210997
INTERNATIONAL LITERATURE GUIDE E00029
LITERATURE PRICE LIST (U.S. and Canada) 210620
(Comprehensive list of current Intel Literature)

MILITARY 210461
(2 volume set)

SYSTEMS QUALITY/RELIABILITY 231762

LITINCOV/010590

intel

U.S. and CANADA LITERATURE ORDER FORM

NAME:
COMPANY:
ADDRESS:
CITY: STATE: ZIP:
COUNTRY:
PHONE NO.: ()

ORDER NO. TITLE QTY. PRICE TOTAL

LI I
LI T
L]
L]
L1

1

|
I
|
I
|
I
I
|
|
I

X X X X X X X X X X
|

| | |
| | |
HEEE
HEEE
LT 1]
HEEE
HEEN
HEEN
RN
[T]]

I
|
I
|
I

Subtotal

Must Add Your
Local Sales Tax

Postage: add 10% of subtotal

—» Postage

Total —
Pay by check, money order, or include company purchase order with this form ($100 minimum).We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks
for delivery.

OVISA [OMasterCard [0 American Express Expiration Date

" Account No.
Signature
Mail To: Intel Literature Sales International Customers outside the U.S. and Canada
P.O. Box 7641 should use the International order form or contact their local
Mt. Prospect, Il 60056-7641 Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725

Prices good until 12/31/90.

Source HB

intel

INTERNATIONAL LITERATURE ORDER FORM

NAME:

COMPANY:

ADDRESS:

CITY: STATE: ZIP:
COUNTRY:

PHONE NO.: {)

ORDER NO. TITLE QTY. PRICE TOTAL
LITTTT] X -
LITTTT] X =
LI T TT] X =
LITTTT] X =
LIT T T X -
LLT T T[] X =
LITTTT] X -
HEEEEE X =
LITTTT] X =
LITTTT] X =

Subtotal
Must Add Your
Local Sales Tax
Total
PAYMENT

Cheques should be made payable to your local Intel Sales Office

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned
to your local Intel Sales foice.

intel

80C186EB/80C188EB
USER’S MANUAL

MAY 1990

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors

which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to- make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

376, 386, 387, 486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196,
ACE960, BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX,
FaxBACK, Genius, i, i, i486, i750, i860, ICE, iCEL, ICEVIEW, iCS, iDBP,
iDIS, I12ICE, iLBX, iMDDX, iMMX, Inboard, Insite, Intel, intgl, Intel386,
intgIBOS, Intel Certified, Intelevision, intgligent Identifier, intgligent
Programming, Intellec, Intellink, iOSP, iPAT, iPDS, iPSC, iRMK, iRMX,
iSBC, iSBX, iSDM, iSXM, Library Manager, MAPNET, MCS,
Megachassis, MICROMAINFRAME, MULTIBUS, MULTICHANNEL,
MULTIMODULE, MuliSERVER, ONCE, OpenNET, OTP, PRO750,
PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse
Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, SugarCube,
ToolTALK, UPI, Visual Edge, VLSIiCEL, and ZapCode, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a
numerical suffix.

MDS is-an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.
CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its
FASTPATH trademark or products.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Sales

P.O. Box 7641
Mt. Prospect, IL 60056-7641

© INTEL CORPORATION 1990

intel”

CUSTOMER SUPPORT

INTEL’S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel’s complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor-
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer’s expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel’s customer support is quite extensive. It can start with assistance during your
development effort to network management. 100 Intel sales and service offices are located worldwide —in the
U.S., Canada, Europe and the Far East. So wherever you’re using Intel technology, our professional staff is
within close reach.

HARDWARE SUPPORT SERVICES

Intel’s hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor-
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and;
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa-
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course
categories include: architecture and assembly language, programming and operating systems, BITBUS™ and
LAN applications.

NETWORK MANAGEMENT SERVICES

Today’s networking products are powerful and extremely flexible. The return they can provide on your invest-
ment via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network’s physical and functional design, to
implementation, installation and maintenance. Whether installing your first network or adding to an existing
one, Intel’s Networking Specialists can optimize network performance for you.

Table of Contents

CHAPTER 1 INTRODUCTION
1.1 The 80186 Family LEGACYceecueriruirieriiieiece ettt see s sne e e 1-3
1.2 How to Use this ManUALc.coeeeiiieiiieie ettt 1-4

CHAPTER 2 OVERVIEW OF THE 80186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE
2.1 ArchiteCtural OVEIVIEWcccoiiiiiiieiriiinteniestrrreste st e e ssae s e s ssesseseranas e esseesananes
2.1.1 EXECULION UNIt ..ottt be e st s s
2.1.2 Bus Interface Uitcoooeieiiini ettt s s
.3 General REQISIErScccoiiiiriireeieree et ts et ae s e e enen
4 Segment REQGISIErSciiiiireteee et s s
5 INSLrUCION POINEEE ...ttt s s
B FIAGS -ttt st st a e s et a s
.7 Memory SegMENtAtioNccceervereerrieenerieierc et e st ene et see e sre s eaean
.8 LOGICal AQAIESSESeoeiieeiiieeiieeieseeetee st e te e e e s raeeae e s e e sseasae e nse e sesaeennes
.9 Dynamically Relocatable Codecccceveriinrensernnnirireserreseeseseeeseeeseessens
1.10 Stack IMplementationcocccvviinirenie et
2.1.11 Reserved Memory and I/0 SPaCEcccecvivererrrerrinrineeeeseriesesseeseersssesaesseessenee
2.2 SOMWAIE OVEIVIBWcveiieirieeieieiicsr st e e sse st sae s be e et sss st eaass st e sesssanens

2.1
2.1
2.1
2.1
2.1
21
21
2.

2.2.1.2 Arithmetic INStrUCHONSccoeivieirrciee e
2.2.1.3 Bit Manipulation INStrUCHIONScecveerirererreeeeee e
2.2.1.4 StiNgG INSIIUCHONSoeeiiieereecrtee et et s
2.2.1.5 Program Transfer INStructionscccoceeiinininceninnnenecscene e,
2.2.1.6 Processor Control InStructionscccceccrveeneneeenesensennennas
2.2.2 Addressing Modesccueeeereerriineeenreeesesesees e
2.2.2.1 Register and Immediate Operand Addressing Modes
2.2.2.2 Memory Addressing MOdEsSccoccerernerinnenireseeseni e esncsesssesseeensens
2.2.2.3 1/O POrt ADAreSSINgcceceeeeeeernerienteeeniesteresee st sesveee e sssresrsseessasees
2.2.3 Data Types Used in the 80C186 Modular Core Familyccccoovveeccrienniennnne

CHAPTER 3 BUS INTERFACE UNIT

20 T S =1 (== OSSR 3-1
3.2 Physical ADdress GEnerationc.c.cceerivrinereesisenesessesessessssessesssssesissssesssessesesns 3-4
3.3 DAtA BUS ...coviiiiiieriire ettt sttt e e e et nn 3-6
3.3.1 80C186 Modular Core Data Bus Operationcocuveeererirenereesesereeseeseesessessens 3-6
3.3.2 80C188 Modular Core Data Bus Operationcccceeeeeerereeseeeesesensenssesseessenaes 3-7
3.3.3 Peripheral INterfaceccevicercieiiriere ettt es e s e 3-8

3.4 Bus Control SIGNAlScoccriimreieiniisiineseres et sesesessss e sesas s e e seerane 3-8
3.4.1 RD @Nd WR ...ttt et s e e e e s s sae e bn e s e et n e sne s 39
3.4.2 SHAtUS LINES ..cveveiciiiicciereriestecte et cs et st s e see e e e sas s e e saesae e s e se e san e e aenannanns 3-11
3.4.3 Software-Initiated Bus CONMIOl........ccucurreieiiiriinerierennniesesresessessessssessasseessensens 3-11
3.4.3.1 TEST Input and LOCK OULPULeeeercreirererrrnreereisreseeseeessessesseneenens 3-12

3.4.3.2 Processor HALTcooiiciiierriecintiersereeeete st see e se s sevae s e s asneens 3-12

3.5 Transceiver Control SIGNAScccvceiveriiirieiiniersee e ces s s sesse s se s e sae s e s saesanenes 3-13
3.6 READY INterfacingc.ccoevvvirieerrineeresiesesiesesiese s sessessss e sessesssessssessesssesssssssssessssssanes 3-14
3.7 Execution Unit/Bus Interface Unit Relationshipc.ccccuvreenencnnennensmsesenssesesions 3-17
3.7.1 Prefetch Queue and Bus Performancecccccceeeeieeieceecieeceecereeseeeeeeeanen 3-17
3.7.2 Bus Performance and CPU Performanceccccouvvenernrenniceseeenssssessensenens 3-19
3.7.3 Wait States and CPU Performanceccoccvenerverenneeresrssussesinsessssesssessnsssesns 3-20

Table of Contents (continued)

3.8 HOLD/HLDA INtErfacececeecereiriiieeirieniestesie ettt s sr e 3-23
3.8.1 Response to HOLDcccceevemennnersereeseeeerceesesseneenns et e 3-23
3.8.2 HOLD/HLDA Timing and Bus Latency .. 3-24

3.8.3 Leaving HOLD ... 3-27
3.9 Priority of BUS CYClE TYPES ..c.eruereeieiririiiesieeteiesrnsesre s sse s s ese s s e sesrenss e e sesnannes 3-28
CHAPTER 4 CLOCK GENERATOR ,
4.1 Crystal OSCIllAtOrc.cceriverieriririceceriese e e str s e st ree st e e ebs b eae s be b e e s sanensannas 4-1
4.2 Using an External OSCIllator..........ccoiiiviiinininniiiensieniese e ssee e eseessesseeeeseseeesessnnenes 4-3
4.3 Output from ClIOCK GENEIALOrc.cceveiiereriririeresriesteee et s sre st e e s srasaeene s 4-3
4.4 RESET ..ottt ettt et ettt st et bbb b 4-3
CHAPTER 5 PERIPHERAL CONTROL BLOCK
5.1 Setting the Base LOCALIONccvvivirirreninenieisiesesesse e esas e e e s e s e sse s 5-2
5.2 Peripheral Control BIoCk REGISLENSccccerireririinieiri e 5-3
5.3 Reserved Locations and the Numerics Interfacec.ccooeveceennncrninenececinnsesnirennens 5-5
CHAPTER 6 TIMER/COUNTER
6.1 FUNCHIONAI OVEIVIBW ...ttt st e sre st n b sae s 6-4
B.2 TIMEE EVENES ...ccuerieiiiireee ettt bbbt et ens 6-9
6.3 Timer INput Pin OPErationcccuvecerieresesiesnesesese s stisssssssissessbsssessessesesssssseseenees 6-9
6.4 Timer Output Pin OPErationc..ccccvereivirieisensrisesnee e essresees s e ssesnsssessesnssaeenes 6-10
6.5 Programming the Timer/Counter Unit REQIStErsc.cceoierrrrieriernesnneninesesneseesnens 6-11
6.5.1 The Timer Control Register (TOCON, TICON, T2CON)ccccvveviivnriverrereeenne 6-11
6.6 Example Timer Initialization COodecccriivieiieiinneinieiinninneseinesneesesessssssesessessenns 6-13
6.6.1 Real TiMe ClOCKccviiiiiiiiciccncs et e e s 6-13
6.6.2 EVENt COUNLEE ..ovviiiiciiic i e s 6-16
CHAPTER 7 CHIP SELECT/READY LOGIC UNIT ‘
7.1 Functional OVEIVIEWc.cccecviirmnninniesieseniise e seeenaes R T R 7-6
7.1.1 Chip Select OPerationc.cueeiieriiriesesesreesee e sesaes 7-6
7.1.2 Ready Generation and Wait State INSertionc.ccccvvevervirernvensinnnnesesionens 7-10
7.1.3 Overlapping Rangesccccoorivrinvnicireninniesnesinsessenens TR 7-11
7.1.4 POrt 1 MURIPIEXEIcveeiiirieienie et s e 7-11
7.1.5 External Bus Mastersceoiiiirnnicniese et 7-11
7.1.6 Numerics I/O Locations (I/O Locations 00F8H to O0FFH)cccceoevecenncncennnne 7-12
7.1.7 CSU TIMINGS .oireiiiieiierrie ettt sre st e e srs s s sre e bb e se s nans 7-12
7.2 Programming the CSUccoeiiiiciinc e Werrerereririsesrenansnens 7-13
7.2.1 The Chip Select RegiStersccuvrrriririieiere e 7-13
7.2.1.1 The Chip Select Start Registerccocvnirnniniivniien A PRI 7-14
7.2.1.2 The Chip Select Stop Reglster ... 7-14
7.3 Initial Conditions (RESET)ccceviriiiiirsiirienissiesiesiesssesssesesesssesssessessessessssssssseessesssens 7-14
7.4 Applications EXAMPIESccoeeieriiriirirenne ettt e e en 7-15
7.4.1 Example 1: Simple CSU Applicationccccociirinieiiiinn e seseeeas 7-15
7.4.2 Example 2: Two Megabyte Software Paged RAMcccccovreivivnnnincennnninne 7-19
CHAPTER 8 SERIAL COMMUNICATIONS UNIT
8.1 FUNCONAI OVEIVIBW ...ttt se e e se e s 8-1
8.1.1 Asynchronous COmMMUNICALIONieirivrimiiie i re e 8-1
8.1. 1 1 RXMACHING ..t e s s s s e 8-8
8.1.1.2 TXMachingccccceererirnree s O A R P 8-10
8.1.1.3 The Asynchronous Modesccccviiiiniinnininecs i 8-12
8.1.1.3.1 Mode 1: (10 bit frame)cccocvrveierree e 8-12
8.1.1.3.2 Modes 2 and 3: (11 bit frames)c.ccoccevvvrercrreneiireseen 8-12
8.1.1.3.3 Mode 4 (9 bit frame)c.cceevirerrrereeerr e 8-14

Table of Contents (continued)

8.1.2 Synchronous COMMUNICALIONcceeveririireriienirre ettt see s 8-15

. 8.2 Programming the Serial Communications Unitcccceveeviiieniiicnienenieneeseseernens 8-17

8.2.1 The Serial Control Register (SOCON, STCON)ccoceeiirierrererirrennse e 8-17

8.2.2 The Serial Status Register (SOSTS, ST1STS) ..cccvvviriereriirerrese e e 8-18

8.3 Operation and Programming of Baud Rate Generatorccccecerrnrenenersenienen e 8-19

8.4 TIMNGS c.erirreiieeiiriet ettt ettt st e e e ae st et e e b s re e s e et e e base et sanesananne 8-21

8.4.1 ASynchronous (MOGES 1-4)cceeieiiirieericiert ettt sre s s 8-21

8.4.2 Synchronous (MOAe 0)ccoeviiiniiininienieeree e e es 8-21

8.4.3 CTS PinN TIMINGS ..ceevveuiiriirirreeiretereiseeene ettt s sese s ssesaesa s es 8-23

8.5 Serial Control Unit INtrTUPLEScoicviiiiiiiiiiin et s 8-25

8.5.1 Channel O INTEITUPESccceviirecirieieceere s s e 8-25

8.5.2 Channel 1 INtITUPEScceeveiieceeirere e e et 8-26

8.6 POrt 2 MURIPIEXET ...ttt s e e re s e s n e e s e e sneansessbanas 8-27

8.7 Application EXamplesccuiiiiriiieiinieniiessse e sae s s 8-27

8.7.1 Example 1: 9600 Baud, Full Duplex Asynchronous Channelcceenvennn. 8-27

8.7.2 Example 2: Synchronous Port EXpansionc.cccouvveernenrnnsniesinnsnssnssesnnees 8-27
CHAPTER 9 INTERRUPTS

9.1 Interrupt Control MOc.ccveevirivi e e e s s e sra 9-2

9.2 Interrupt Characteristics Related to Interrupt TYPecccceveverreniinnrrie s seneens 9-3

9.2.1 Interrupts Handled Directly by the CPU ..o e e 9-3

9.2.1.1 Instruction-Generated Traps and EXceptionsccocccvvervverienenienenne, 9-4

9.2.1.2 Non-Maskable Interrupt (NMI)ccocrrerienninnennecsecnnee e sesesnenens 9-5

9.2.1.3 User-Defined Software INterruptsccccvveernrnnreieniennienninenesssesseennens 9-6

9.2.2 Interrupts Handled by the Integrated Interrupt Controllerccocovverieriennnen. 9-6

9.3 Other Interrupt CharacteristiCscoocviiriiiriirinerssseser s sae e 9-6

9.3.1 Interrupt LatenCyccoceiiiiniiiiiin ettt 9-7

9.3.2 Interrupt Masks and NEStiNGcccceveiriniininiintc e 9-8

9.3.3 INtErrUPt PrOMItY .eccviieiiiisiicrrnctire e s e sassresmeesreans 9-8

9.4 Interrupt Control Unit OPerationcccerrrininniesniisnsnsncsnes s se s snnnes 9-11

9.4.1 External ConNECLIONSccciiriiiiinii e e 9-11

9.4.1.1 Direct INPUt MOcoceeiiiicieircre e 9-11

9.4.1.2 Cascade MOde ... s 9-12

9.4.2 Interrupt Unit Programmingccoecinnniieninnncnnnnnseses s sessensssnssessesssssnensens 9-13

9.4.2.1 The Control REQISterscccvvurrieriirinnienirrr v see e esesseseenes 9-13

9.4.2.2 Cascade MOdecccevririiinirinneesc e e 9-16

9.4.2.3 Special Fully Nested MOdeccovevevvrimviiniennnies e seesesseseessesanes 9-16

9.4.2.4 The Request RegISter.........ccciviirmineneininresr e e nese e ssee e snes 9-17

9.4.2.5 The Mask REQISIErceceiriinvirierinre e e 9-18

9.4.2.6 The Priority Mask RegIiStercccocevviniiniinicinenncice e s e 9-19

9.4.2.7 The In-Service RegISerccoeeeiicievinie e 9-19

9.4.2.8 The Poll and Poll Status RegiStercecceeierenenrnerreneteeesiecenes 9-20

9.4.2.9 The End of Interrupt RegiSterccovrvirienii e 9-21

9.4.2.10 Interrupt Status RegiSterccccoviirieiniiniieee e 9-22

9.4.3 INtEITUPE SOUICES ...ocueeeiei ettt st e e e e s re s eteeasesaeereesaesenneenne 9-23

9.4.3.1 INtErNAl SOUICESorveveirriririirerese ettt e e 9-23

9.4.3.2 EXternal SOUICESccccceviirirveiriinreete st s s 9-24

9.4.4 Interrupt RESPONSEccciviierririe ittt et 9-24

9.4.4.1 Internal VECIONNGccccceeiiieieeecievrirree et et e st eae st e seeeeneea 9-25

9.4.4.2 External VECONNGccceceimririirinirinersesesseesseeessesstessesesneessssnsesns 9-26

9.4.4.3 Interrupt Response TiMEccccveciiiieeieiesieeeeeceeesie e e e s seraee e saeenae s 9-27

9.4.5 Initialization EXAMPIEccceiriririereeceenieen ettt aene 9-27

9.5 Interrupt Controller FIOW Chartscccccviiecieecieiecie ettt e nees 9-28

Table of Contents (continued)
CHAPTER 10 REFRESH CONTROL UNIT

10.1 Refresh Control Unit Programmingc.ccocceiireiiiineneiennesiesene s 10-2
10.2 Refresh Control Unit Operationccccecerererrieirrnscicrerriesessesseeseseeseessesssessnessesanes 10-5
10.3 Refresh ADAreSSEScooiiiviiiiiintie ettt st 10-7
10.4 Refresh Operation and Bus HOLDccoceveririrmnennc e cieeneenns e 10-7
10.5 Decoding Refresh Bus CYCIEScccouevirieneriieniere e 10-8
CHAPTER 11 INPUT/OUTPUT PORT UNIT
11.1 FUNCHONAI OVEIVIEW ...ttt e s st ae s e 11-1
11,1, OULPUL POMS ...ttt s s ae s 11-7
T1.2.1 INPUL POIS ..t e 11-7
11.1.3 Open Drain Bi-directional POrSccccorenrirrrciereseseseseseseses e 11-11
11.2 Programming the 1/0 Port UNitccoeecriicnemieniiienenreesiessesesee e enenees 11-11
11.2.1 Port Direction Re@ISterccecruvririiriricirenineesivstes st esre s s seeseessessenns 11-11
11.2.2 Port Pin Register......ccoccvvvniirienneninnnns it s et s s e e s ran e 11-11
11.2.3 Port Control REJISIErcccooiririri ettt s 11-11
11.2.4 Port Latch RegISter ..ot 11-13
11.3 Initial Conditions (RESET)cccceeeeevrierirrerieseeceeseseeceseens STTRRPRC RN 11-13
11.4 Programming EXampPleccoveciiririenicriieneeceeies et se st sae e st s sennee s 11-14
CHAPTER 12 POWER MANAGEMENT UNIT
12.1 FUNCHONAI OVEIVIEW ...ttt ettt srt e siee v s e sae b sneeassreastesanesneanes 12-3
1211 1dIE MOGE ...t et s st et e 12-3
12.1.1.1 Refresh During Idle Modecccocovniiinviicninni s 12-3
12.1.1.2 HOLD/HLDA During Idle Modeccceivirmeieneneneieeeneeee e 12-3
12.1.1.3 Exiting Idle Mode Via an Unmasked Interruptcccoeoevvivnceencrnnnns 12-7
12.1.1.4 Exiting Idle Mode Via a Non-Maskable Interrupt (NMI) 12-7
12.1.1.5 Exiting Idle Mode Via a Resetc.civienriiinenneceeeeeneeens 12-7
12.1.2 POWErdOWN MOGEcc.couiiiiiiiieie ettt s s st e 12-7
12.1.2.1 Entering Powerdown Modecccceimiriencrinnserscre e 12-10
12.1.2.2 Exiting Powerdown Modecceeeririneiienniencie e 12-10
12.1.1.2.1 Calculation of PDTMR Capacitor Value 12-14
12.2 Programming EXamPleccoeceeeiiieeieninerete ettt et s 12-14
CHAPTER 13 HARDWARE PROVISIONS FOR FLOATING POINT MATH
13.1 80C 187 INSIIUCHION Stcveciieiiieie ettt s 13-1
13.1.1 Data Transfer INStrUCHIONScccociiiiiiiiiiirree e 13-2
13.1.2 Arithmetic INStrUCHONSccoiireiee e 13-2
13.1.3 Comparison INStrUCLIONScovecrvierereriei ettt st 13-2
13.1.4 Transcendental INStrUCHONSccceiirieiriiererieree st 13-2
13.1.5 Constant INSIIUCKIONSccvieiirienririnie i s aen 13-4
13.1.6 Processor Control INSrUCHONSc.cvreeriiriicece e e 13-4
13.2 BOCT87 DALA TYPES ..cveevereererernieniirenriseeeseee st sree e enee s e s sse s e besne st saeseessesaesmansesaeeaes 13-4
13.3 Using the 80C186EB with the 80C187 Numerics Processor Extension 13-5
13.3.1 80C186EB/B0C187 INtErfaCec.eeveiueriieiirieieieesie et 13-6
13.3.2 80C186EB Bus Cycles with the 80C187 Numerics Processor Extension 13-7
CHAPTER 14 ONCE™ MODE
14.1 Entering ONCE™ MOGEcooireriiiriircenirieeste st es e saeee s ssae e s e sraessesseesaessseenes 14-1
14.2 Leaving ONCE™ MOGEccociiniiniiiiicinii e e 14-1

Table of Contents (continued)
APPENDIX A DIFFERENCES BETWEEN THE 80C186 FAMILY

AND THE 8086/8088
A.1 CPU PErfOrMANCEcocooveeiieieeceeceteceeeteeteeeeseseeseeeesseeseseeessssesssnsaesnsansnssasesssnsennnees A-1
A2 ClOCKING ...euteriiieiiir ettt ettt s e st s e s se e s e s s e e s eneesse e sanesaneraesenesaneesnnens A-1
A.3 Local Bus Controller and Control Signalsccccovermninieveiiiniiniciicie s A-1
A.4 HOLD/HLDA vs. REQUEST/GRANT ...ttt crtesceteecesaeesssneessesessnnesssnnees A-2
A.5 StAtus INFOIMALION ..ceeeievieeiiicteee ettt ce e ar e s e csssseeessssbeasessranesssesssnnsnnes A-2
A.B BUS ULIIZAHON ...ttt seearaee s s e aae e e s sssbnne e s sraneeeesassnsnnnnes A-2
A.7 INStruCtioN EXECULIONeneeieeeeiiiieeee et e et ee e e e e e e e e e van s nme e e e e e s snnns A-2

APPENDIX B SUMMARY OF DIFFERENCES BETWEEN THE 80186/80C186/
80C186EB FAMILY MEMBERS

B.1 CPU Differ8NCEScviririiiriiiiriiniceteieiennisge st ssas b ssae e e B-2
B.1.1 INStUCHION Stcoeieiicrireerte e e e sanenne B-2
B.1.2 Semiconductor Technology Differencesccocevivveveineniiniinipineinecncieene B-3
B.1.3 Queue Status Modecccccureneenenne reeereereesteeaeebessesstasrgesaneeensesnneseneessesssesseens B
B.1.4 Numerics Interfaceccouueeee. et bbb B-3
B.1.5 Transceiver Interface (DEN and DT/R)cccecemeriienerienrecreeeee e eeeenenee e B-4
B.1.6 READY INtEIfACEceeiiircreeeereetes et e s esse s sne s s neesagemnenns B-4
B.2 Clock Oscillator Circuitry and External Frequency INPULSveererereseenriesaeeseeseerunens B-4
B.3 Power Consumption Management MOdEsScccceceeverreireenecnicnnen et B-4
B.4 INterrupt CONMIONETcoeieeieeerte et tcse s s eveessesee s e st e e sng e srareesanessasnessnan B-5
B.5 Timer Counter UNitccceveriinenerccrencrieeseesteseesesstesressnesaessegsenssesseesasnsssansssessessees B-5
B.6 DMA Unit ..cc.oceeeeecriennnne B-5
B.7 Serial Communications Un B-5
B.8 Chip Select Unitc.cooiioiiieieicterrererceteste e ... B-5
B.9 Refresh Control UNitcccccueeeriiinencrniirencccnees e sseesesseesaessresseessessesnssssasansssesaessses B-5
B.10 Peripheral Control BIOCKcccucoereeeienicricrcenreseesseeeese e e seessee e sseneessnsnensseesnes B-6
APPENDIX C SUMMARY OF DIFFERENCES BETWEEN

80C186EB AND 80CT88EBccceoouvvrirnrrrereeer s neesens C-1

APPENDIX D SYNCHRONIZATION OF EXTERNAL INPUTS
D.1 Why Synchronizers are REQUITEdccccueveeverrieniiiinirtncesseessneesaessessnessessnessanesanes D-1
D.2 80C186EB Family SYNChIrONIZErScccoovvireecircnrrerceestenisseesstesesssesesseesnessesnnessesnenes D-2
APPENDIX E INSTRUCTION SET SUMMARY ... eeeeseenas E-1
APPENDIX F INSTRUCTION SET SUMMARY 2 ...t F-1

Introduction 1

CHAPTER 1
INTRODUCTION

The 80C186EB is the third generation addition to the Intel’s 80186 family of embedded microproces-
sors. Intel’s advanced CHMOS IV semiconductor fabrication technology has allowed the integration
of many of today’s most used peripherals with a high performance, low-power, 8086 compatible CPU
core. The 80C186EB is the first choice in portable office and communication equipment due to its low
power and high integration. The flexible power management strategy of the 80C186EB allows for
low-power applications that do not sacrifice performance.

-z e o -
- ¥ - =X < b
FEEEE g E -
nqleaﬁ—.aa §8|§ oeS-Bx z3 z3
Ry Z&lb zzzzz 2R EF
|_PORT 2 MULTIPLEXER _| '1 l
CHANNEL 1 | CHANNEL 0 0 ! 2
TIMER | TIMER | TIMER REFRESH
»| INTERRUPT | g CONTROL
SERIAL CONTROL UNIT T
COMMUNICATIONS TIMER-COUNTER UNIT UN
UNIT

CLKOUT =
OSCOUT ~-t—
CLKIN =i~
RESOUT =
RESIN —#~
PDTMR

CLOCK
GEN.

POWER
MANAGEMENT
UNIT

F-BUS
Py LE8Us]
PREFETCH <a—{ STATE | CHIP-SELECT UNIT
o BUS INTERFACE UNIT STATE
llll‘llitl PORT 1 MULTIPLEXER
Sl=|e gl Qggmgmwon:>|zu\::<o< lem o - oM 0 © N~
fplegls 2 ¢lfdlREEIE5E3S [6I8 BRREREER
T|E z 23 glollges 286588583
o lui < %5 o Iczlv-.lﬁ.lval?.lvzl‘q'\.
< N FYR P P PR P R

270830-001-66

Figure 1.1. 80C186EB Block Diagram

1-1

intel INTRODUCTION

The 80C186EB maintains full code compatibility with it’s older relatives the 80186 and 80C186, but
adds a new, and enhanced, feature set:

¢ Low Power/Static CMOS Modular CPU core
* Power Management Unit

¢ Serial Communications Unit

* Input/Output Port Unit

* Enhanced Chip Select Unit

¢ Refresh Control Unit

» Interrupt Control Unit

¢ Timer/Counter Unit

The brains of the 80C186EB is the new Modular CPU Core. The CPU core shares the same
instruction set as the immensely popular 8086/8088 while adding the new instructions found on the
80186 and 80C186. There is no larger software base available today than that written for 8086
compatible products. Intel provides the programmer with a wide array of programming solutions
such as ASM86, C-86, PASCAL-86, and PLM-86. For those users requiring enhanced floating point
performance, the 80C186EB interfaces directly with the 80C187 Numerics Processor Extension.

The 80C186EB is a fully static device. The clock to the 80C186EB may be shut off indefinitely
without the device losing its state. Once the clock is restored to the 80C186EB it will begin executing
as if there had been no interruption. The integrated Power Management Unit uses this feature to turn
off sections of the chip while they are not being used and re-awaken them as they are needed.

The Serial Communications Unit is a new peripheral in the 80C186 product family. This new unit
includes two synchronous/asynchronous serial communications ports. The Serial Communications
Unit allows the 80C186EB family to be connected to serial based devices such as printers and PC
serial ports. The new serial ports are also fully compatible with those found on other popular Intel
microcontrollers such as the MCS-51 and MCS-96 families. Systems using an 80C186EB and a
compatible controller can now communicate without the need for board space robbing mailbox
memories.

The Enhanced Chip Select Unit is another new peripheral added to the 80C186EB family. It has
enormous flexibility. Each of the 10 available chip select lines can be programmed to select varying
sized regions in memory or I/O space. The chip selects can select overlapping regions and can be
enabled and disabled through software. Taken to the extreme this unit can extend the address space
of the 80C186EB to 10 megabytes of software paged memory.

1-2

intgl INTRODUCTION

Some customers may not need all the pin functions available on the 80C186EB. The Input/Output
portunit was added to allow the user to swap unused internal peripheral pins for input and output ports.
For example, eight of the ten chip select pins may be converted, via software, into output ports.

The Refresh Control Unit has been provided to simplify the design of dynamic memory systems. At
programmable intervals, the 80C186EB will run dummy read cycles to refresh the dynamic RAM.

The Interrupt Control Unit handles the 80C186EB interrupt duties. The Interrupt Controller handles
interrupt requests from all internal sources as well as the 5 external interrupt pins. If more than five
external interrupts are required, the Interrupt Unit can be cascaded to external 82C59 controllers
increasing the handling capacity to 129 interrupts.

Many systems require the handling of time related events. The Timer/Counter Unit provides a
flexible solution for this system need. The Timer/Counter unit contains three sixteen bit timers that
canbe configured to perform many tasks including: real time clock, event counter, programmable one
shot.

The introduction of the 80C186EB signals a new direction for the successful 80186 family. The
80C186EB story began over a decade ago with the introduction of Intel’s first 16-bit microprocessor,
the 8086.

1.1 THE 80186 FAMILY LEGACY

The 8086 microprocessor was first introduced in 1978 and gained rapid support as the microcomputer
engine of choice. There are literally millions of 8086/8088 based systems in the world today. The
amount of software written for the 8086/8088 microprocessor can be rivaled by no other architecture.

The 8086, however, required dozens of support chips to implement even a moderately complex
system. Intel recognized the need to integrate commonly used system peripherals onto the same
silicon die as the CPU. In 1982 Intel addressed this need by introducing the 80186/80188 family of
embedded microprocessors. The 80186 integrated the following peripherals with the CPU: Chip
Select Unit, Interrupt Unit, Clock Generator, DMA Unit, Interrupt Unit, and a Timer Counter Unit.
In addition to the new integrated peripherals, the CPU was enhanced by adding new instructions and
reducing the time required to perform all memory access instructions.

As technology advanced and turned towards small geometry CMOS processes, it became clear that
anew 80186 was needed. In 1987 Intel announced the second generation of the 80186 family: the
80C186. The 80C186 is pin compatible with the 80C186 while adding an enhanced feature set
including apower save unit, arefresh control unit, and adirect 80C187 interface. The high performance
CHMOS III process allowed the 80C186 to run at twice the clock rate of the NMOS 80186.

1-3

intel INTRODUCTION

In the past 5 years the size of personal computing equipment has shrunk dramatically. Computers that
once took up half the desk now sit comfortably on your lap during a long flight. Portable phones, once
a bulky and expensive luxury, are now commonplace. The FAX machine, a now critical piece of
office equipment, is now venturing into the automobile.

Intel saw the need for highly integrated yet low power solutions for these and many other computing
applications. Once again, the 80186 architecture was the answer.

The 80C186EB is the first member of the 80C186 Modular Core family. In following with the
electronics industry trend towards application specific products, the CPU of the 80C186 was rede-
signed to be a stand alone, proliferatable, core. The core was given an internal interface bus to which
a wide array of integrated peripherals could be attached.

The entire system was designed to be static. When the clock is disabled, while waiting for arelatively
slow human to touch the keyboard for instance, the chip will shut off and consume almost no power.
This kind of power management is critical in portable applications.

A new and enhanced feature set was added to the 80C186 Modular Core. This new feature set
exchanges the DMA controller for 2 serial ports and enhances the capabilities of the original periph-
erals.

The 80C186EB is the direct result of eight years of 80186 family development. It offers the designer
the peace of mind of a well established architecture with benefits of state of the art technology.

1.2 HOW TO USE THIS MANUAL

Throughout this manual you will come across phrases such as “80C186 Modular Core Family” or
“80C186EB family”. Each of these terms refers to a specific set of SOC186EB products. The phrases
and the products they refer to are as follows:

80C186 Modular Core Family: This phrase refers to any product that uses the embedded
80C186 CPU core architecture. At this time these are the 80C186EB and 80C188EB. Most
discussions that refer to the Modular Core Family are also true of the 80186 and 80C186 CPU’s.

80C186 Modular Core: Without the family, this refers to just the 16-bit bus members of the
modular core family.

80C188 Modular Core: This phrase refers to the 8-bit bus products.

80C186EB Family: This phrase refers specifically to the 80C186EB and the 80C188EB; both
the Modular CPU core and the specific peripheral set.

14

- ®
intel INTRODUCTION

80C186EB: This refers to just the 80C186EB (16-bit bus) version of the 80C186EB family.
80C188EB: The 8-bit bus member of the 80C186EB family.

Each chapter covers a specific section of the device beginning with the CPU core. In the appendices
you will find information regarding the differences among family members, instruction set references,
and special topics.

This user’s guide is intended to be a supplement to the device data sheet. Specific timing values are
not discussed in this guide; they can be found in the data sheet.

1-5

|
Overview of the 80C186 Family 2
Modular Microprocessor
Core Architecture

CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

The 80C186 Modular Microprocessor Core shares a common base architecture with the 8086, 8088,
80186, 80188, 80286, i1386™, and i486™ processors. The 80C186 Modular Core maintains full
object code compatibility with the well-known 8086/8088 family of 16-bit microprocessors, while
adding additional hardware and software performance enhancements. Most instructions require
fewer clocks to execute on the 80C186 Modular Core because of hardware enhancements in the Bus
Interface Unit and the Execution Unit. In addition, there are anumber of additional instructions which
simplify programming and reduce code size (see Appendix A.7).

This section describes the base architecture of the 80C186 Modular Core family. Those readers
already familiar with the 8086/8088 architecture will find this section to be, for the most part, areview
and may wish to read Appendix A (“Differences Between the 80C186 Modular Core Family and the
8086/8088”) instead.

2.1 ARCHITECTURAL OVERVIEW

The 80C186 Modular Microprocessor Core incorporates two separate processing units: an Execution
Unit(EU) and a Bus Interface Unit (BIU). The EU is functionally identical among all family members.
In the 80C186 Core the BIU is configured for a 16-bit external data bus and in the 80C188 Core the
BIU s configured foran 8-bit external data bus. The two units are connected by an instruction prefetch
queue.

The EU executes instructions and the BIU fetches instructions, reads operands, and writes results.
Whenever the EU requires another opcode byte, it takes the byte out of the prefetch queue. The two
units can operate independently of one another and are able, under most circumstances, to extensively
overlap instruction fetches and execution.

The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU) which performs 8-bit
or 16-bit arithmetic and logical operations. It provides for data movement among registers, memory
and I/O space. In addition, the CPU allows for high speed data transfer from one area of memory to
another using string move instructions, and to or from an I/O port and memory using block I/O
instructions. Finally, the CPU provides many conditional branch and control instructions.

This architecture features 14 basic registers which are grouped as general registers, segment registers,
pointer registers, and status and control registers. The four 16-bit general purpose registers (AX, BX,
CX, and DX) may be used as operands in most arithmetic operations in either 8- or 16-bit units. The
four 16-bit pointer registers (SI, DI, BP, and SP) may be used both in arithmetic operations and in
accessing memory-based variables. Four 16-bit segmentregisters (CS, DS, SS, and ES) allow simple
memory partitioning to aid modular programming. The status and control registers consist of an
instruction pointer (IP) and a status word register containing flag bits.

2-1

inter OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Figure 2.1 is a simplified CPU block diagram.

I ADDRESS BUS
AR AL I S
BH BL
CH CL | / \
GENERAL DH DL | \)
REGISTERS P 'DATA BU:S
SP | y teBmS)
5 | 3
DS
ES
| E
Y | COMMUNIATION
BUS
ALU DATA BUS REGISTERS I CONTROL |-t EXTERNAL
| I 4 (16 BITS) | \ LOGIC
\ \
[TEMPORARY REGISTERSjat—e |
r y | |
INSTRUCTION
__/_ | QUEUE
b | eu | asus
ALU b— CONTROL |t 1]2|al4]|s]6 e

SYSTEM | (8 BllTS)

| FLAGS - l
| EXECUTION UNIT I BUS INTERFACE UNIT
(EV) (BIU)

Figure 2.1. Simplified Functional Block Diagram of the 80C186 Modular Core Family CPU

270288-001-03

2.1.1 EXECUTION UNIT

The EU is responsible for the execution of all instructions, for providing data and addresses to the
BIU, and for manipulating the general registers and the flag register. A 16-bit ALU in the EU
maintains the CPU status and control flags, and manipulates the general registers and instruction
operands. All registers and data paths in the EU are 16 bits wide for fast internal transfers.

The EU does not connect directly to the system bus. It obtains instructions from a queue maintained
by the BIU. Likewise, when an instruction requires access to memory or to a peripheral device, the
EU requests the BIU to obtain and store the data. All addresses manipulated by the EU are 16 bits
wide. The BIU, however, performs an address calculation that gives the EU access to the full
megabyte of memory space.

When the EU is ready to execute an instruction, it fetches the instruction object code byte from the
BIU’s instruction queue and then executes the instruction. If the queue is empty when the EU is ready
to fetch an instruction byte, the EU waits for the instruction byte to be fetched. If a memory location

2-2

inter OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

or I/O port must be addressed during the execution of an instruction, the EU requests the BIU to
perform the required bus cycle.

2.1.2 BUS INTERFACE UNIT

The 80C186 Core and 80C188 Core BIUs are functionally identical, but are implemented differently
to match the structure and performance characteristics of their respective system buses. Data is
transferred between the CPU and memory or peripheral devices upon demand from the EU. The BIU
executes all external bus cycles. This unit consists of the segment registers, the instruction pointer, the
instruction code queue, and several miscellaneous registers. The BIU transfers data to and from the
EU on the ALU data bus.

The BIU generates 20-bit physical addresses in a dedicated adder. The adder shifts a 16-bit segment
value left 4 bits and then adds an offset value derived from combinations of the pointer registers, the
instruction pointer, and immediate values (see Figure 2.2). Any carry of this addition is ignored.

SHIFT LEFT 4 BITS SEGMENT
123 4 BASE
LOGICAL

T 15 0 ADDRESS
3 4 I°J
0

| 1 2 3 6 2J PHYSICAL ADDRESS
19 * 0
TO MEMORY

270288-001-04

Figure 2.2. Physical Address Generation

During periods when the EU is busy executing instructions, the BIU “looks ahead” and prefetches
more instructions from memory. As long as the prefetch queue is partially full, the EU can quickly
retrieve instructions upon demand.

2.1.3 GENERAL REGISTERS

80C186 Modular Core family CPUs have eight 16-bit general registers (see Figure 2.3). The general
registers are subdivided into two sets of four registers each. These are the data registers (also called
the H & L group for high and low), and the pointer and index registers (also called the P & I group).

2-3

inter’ OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

H : L
15 8,7 0
f
AX
-------- - = = === == === ===~ ACCUMULATOR
AH | AL
BX
———————————— F———=————————|BASE
BH 1 BL
DATA GROUP <
CX
———————————— =—=====—==——]| count
CH | cL
DX
———————————— F=—====—=—=———| DATA
DH 1 DL
\
SP STACK POINTER
BP BASE POINTER
POINTER AND
INDEX GROUP
Sl SOURCE INDEX
DI DESTINATION INDEX
.
270288-001-5

Figure 2.3. General Registers

The data registers are unique in that their upper and lower halves are separately addressable. This
means that each data register can be used interchangeably as a 16-bit register or as two 8-bitregisters.
The other CPU registers are always accessed as 16-bit only. The CPU can use data registers without
constraint in most arithmetic and logic operations. Most arithmetic and logic operations can also use
the pointer and index registers. Additionally, some instructions use certain registers implicitly (see
Table 2.1), therefore allowing compact yet powerful encoding.

i‘n-l-el“’ OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Table 2.1. Implicit Use of General Registers

REGISTER

OPERATIONS

AX

AL

AH
BX
CX
CL
DX

SP
Sl
DI

Word Multiply, Word Divide,
Word I/O

Byte Multiply, Byte Divide, Byte
I/0, Translate, Decimal Arithmetic

Byte Multiply, Byte Divide
Translate

String Operations, Loops
Variable Shift and Rotate

Word Multiply, Word Divide,
Indirect /O

Stack Operations
String Operations
String Operations

The state of any of the general registers is undefined at RESET.

2.1.4 SEGMENT REGISTERS

The 80C186 Modular Core family memory space (up to one megabyte) is divided into logical
segments of up to 64 Kbytes each. The CPU has direct access to four segments at a time. The base
addresses (starting locations) of these memory segments are contained in the segment registers (see
Figure 2.4). The CS register points to the current code segment. Instructions are fetched from the CS
segment. The SS register points to the current stack segment. Stack operations are performed on
locations in the SS segment. The DS register points to the current data segment. The data segment
generally contains program variables. The ES register points to the current extra segment, which also
is typically used for data storage. The segment registers are accessible to programs and can be
manipulated with several instructions.

Cs

DS

SS

ES

CODE SEGMENT

DATA SEGMENT

STACK SEGMENT

EXTRA SEGMENT

27088-001-6

Figure 2.4. Segment Registers

2-5

intel@ OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Upon RESET, the CS register is initialized to OFFFFH, and the DS, ES, and SS register are all
initialized to zero.

2.1.5 INSTRUCTION POINTER

The BIU updates a 16-bit instruction pointer (IP) register so that it contains the offset (distance in
bytes) of the next instruction from the beginning of the current code segment. In other words, the IP
register points to the next instruction. During normal execution, the instruction pointer contains the
offset of the next instruction to be fetched by the BIU. Whenever the [P register is saved on the stack,
however, itis first automatically adjusted to point to the next instruction to be executed. Programs do
not have direct access to the instruction pointer, but it may change, be saved, or be restored as a result
of program execution.

RESET initializes the instruction pointer to 0000H. The concatenation of CS and IP values comprises
a starting execution address of OFFFFOH (see Section 2.1.8 for a description of address formation).

2.1.6 FLAGS

The 80C186 Core family has six one-bit status flags (see Figure 2.5) that the EU posts as the result of
an arithmetic or logic operation. Program branch instructions allow a program to alter its execution
depending on conditions flagged by prior operation. Different instructions affect the status flags
differently, generally reflecting the following states: '

« Iftheauxiliary flag (AF) is set, there has been a carry out from the low nibble into the high nibble
or a borrow from the high nibble into the low nibble of an 8-bit quantity (low-order byte of a 16-
bit quantity). This flag is used by decimal arithmetic instructions.

« If the carry flag (CF) is set, there has been a carry out of, or a borrow into, the high-order bit of
the instruction result (8- or 16-bit). The flag is used by instructions that add and subtract multibyte
numbers. Rotate instructions can also isolate a bit in memory or aregister by placing it in the carry
flag. ‘

o Iftheoverflow flag (OF) s set, an arithmetic overflow has occurred; that is, a significant digit has
been lost because the size of the result exceeded the capacity of its destination location. An
Interrupt On Overflow instruction is available that will generate an interrupt in this situation.

« Ifthe sign flag (SF) is set, the high-order bit of the result is a 1. Since negative binary numbers
are represented in standard two’s complement notation, SF indicates the sign of the result (0 =
positive, 1 = negative). ’

. Ifthe parity flag (PF) is set, the result has even parity, an even number of 1-bits. This flag can be
used to check for data transmission errors. ‘

o If the zero flag (ZF) is set, the result of the operation is O.

intel“’ OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

STATUS FLAGS:
CARRY

PARITY
AUXILIARY CARRY
ZERO

SIGN

OVER FLOW

V 09 8 YV s 3 ,1

-

FloF| iF |7 |sF|zF] |aF] |PF] lcF

111‘““76 4 2 0

CONTROL FLAGS:
TRAP FLAG
INTERRUPT ENABLE
INTEL RESERVED e DIRECTION FLAG

270288-001-7

Figure 2.5. Status Word Format

The additional control flags (see Figure 2.5) can be set and cleared by programs to alter processor
operations:

« Setting the direction flag (DF) causes string instructions to auto-decrement; that is, to process
strings from the high address to the low address, or “right to left”. Clearing DF causes string
instructions to auto-increment, or process strings “left to right.”

» Setting the interrupt-enable flag (IF) allows the CPU to recognize maskable external or internal
interrupt requests. Clearing IF disables these interrupts. The interrupt-enable flag has no effect
upon software interrupts or non-maskable externally generated interrupts.

e Setting the trap flag (TF) puts the processor into single-step mode for debugging. In this mode,
the CPU automatically generates an internal interrupt after each instruction, allowing a program
to be inspected as it executes instruction by instruction.

Both the status and control flags are contained in a 16-bit status word (see Figure 2.5). The RESET
condition of the status word is OFOO0H.

2.1.7 MEMORY SEGMENTATION

Programs for the 80C186 Modular Core family view the one megabyte memory space as a group of
segments that are user-defined according to application. A segment is a logical unit of memory that
may be up to 64 Kbytes long. Each segment if made up of contiguous memory locations and is an
independent, separately-addressable unit. Software assigns every segment a base address (starting
location) in memory space. All segments begin on 16-bit memory boundaries. There are no other

intel“" OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

restrictions on segment locations. Segments may be adjacent, disjoint, partially overlapped, or fully
overlapped (see Figure 2.6). A physical memory location may be mapped into (covered by) one or

more logical segments.

FULLY

OVERLAPPED SEGMENT D
PARTLY :
OVERLAPPED DISJOINT
CONTIGUOUS LOGICAL
SEGMENTS

SEGMENT E

[SEGMENT A rSEGMENT B |
i 1|

|7 Yo

4 {\ A !
oH 10000H 20000H 30000H
270288-001-08

Figure 2.6. Segment Locations in Physical Memory

The four segment registers point to four “currently addressable” segments (see Figure 2.7). The
currently addressable segments provide a work space consisting of 64 Kbytes for code, a 64K stack,
and 128K of data storage. Programs obtain access to code and data in other segments by changing the

segment registers to point to the desired segments.

intel“’ OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

FFFFFH

DATA: DS:| B | — >
CODE: Cs: —-

STACK: SS: —| |
EXTRA: ES: : :__ .

= >]

m]|

~—

}

|
11

| = |

o
X

270288-001-09

Figure 2.7. Currently Addressable Segments

The segmented memory structure of the 80C186 Modular Core family is a hardware provision to
encourage modular programming. Every program will use segmentation differently. Smaller appli-
cations tend to initialize the segment registers and then simply forget them. Larger applications give
careful consideration to segment definition and use.

2.1.8 LOGICAL ADDRESSES

It is useful to think of every memory location as having two kinds of addresses, physical and logical.
A physical address is a 20-bit value that identifies each unique byte location in the memory space.
Physical addresses range from OH to FFFFFH. All exchanges between the CPU and memory com-
ponents use a physical address.

Programs deal with logical, rather than physical addresses. Program code can be developed without
prior knowledge of where the code is to be located in memory; in larger applications, dynamic
management of memory resources is a necessity. A logical address consists of a segment base value
and an offset value. For any given memory location, the segment base value locates the first byte of
the segment and the offset value is the distance, in bytes, of the target location from the beginning of
the segment. Segment base and offset values are unsigned 16-bit quantities. Many different logical
addresses can map to the same physical location. In the example (see Figure 2.8), physical memory
location 2C3H is contained in two different overlapping segments, one beginning at 2BOH and the
other at 2COH.

2-9

inte|° OVERVIEW OF THE 80C186 FAMILY MODULAR

MICROPROCESSOR CORE ARCHITECTURE

PHYSICAL

ADDRESS

LOGICAL
ADDRESSES

r

|

OFFSET
SEGMENT ik
EGM
BASE —!

OFFSET
(13H)

SEGMENT .
BASE

2C4H
2C3H
2C2H
2C1H
2C0H
2BFH
2BEH
2BDH
2BCH
2BBH
2BAH
2B9H
288H
2B7H
2B6H
2B5H
2B4H
2B3H
2B2H
2B1H
2B0H

270288-001-10

If left alone, the processor automatically assigns segments based on the specific addressing needs of
the program. The segment register to be selected is automatically chosen according to the rules in
Table 2.2. All information in one segment type generally shares the same logical attributes (e.g., code
or data), leading to programs which are shorter, faster, and better structured.

To generate a physical address, the BIU must first obtain the logical address. The logical address of
amemory location can come from different sources, depending on the type of reference that is being

Figure 2.8. Logical and Physical Address

made (see Table 2.2).
Table 2.2. Logical Address Sources
DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE
Instruction Fetch CS NONE IP
Stack Operation SS NONE SP
Variable (except following) DS CS, ES, SS Effective Address
String Source DS CS, ES, SS Si
String Destination ES NONE DI
BP Used As Base Register SS CS, DS, ES Effective Address

2-10

intel" OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Segment base addresses are always held in the segment registers. The BIU conveniently assumes
which segment register contains the base address according to the type of memory reference made.
However, it is possible for a programmer to explicitly direct the BIU to access a variable in any of the
currently addressable segments (except for the destination operand of a string instruction). In assembly
language, this is done by preceding an instruction with a segment override prefix.

Instructions are always fetched from the current code segment; the IP register contains the offset of
the target instruction from the beginning of the segment. Stack instructions always operate on the
current stack segment; the SP (stack pointer) register contains the offset of the top of the stack. Most
variables (memory operands) are assumed to reside in the current data segment, but a program can
instruct the BIU to override this assumption. Often, the offset of a memory variable is not directly
available and must be calculated at execution time. This calculation is based on the addressing mode
(see Section 2.2.2) specified in the instruction; the result is called the operand’s effective address
(EA).

Strings are addressed differently than other variables. The source operand of a string instruction is
assumed to lie in the current data segment, but the program may use another currently addressable
segment. The operand’s offset is taken from the SI (source index) register. The destination operand
of a string instruction always resides in the current extra segment; its offset is taken from the DI
(destination index) register. The string instructions automatically adjust the ST and DIregisters as they
process the strings one byte or word at a time.

When register BP, the base pointer register, is designated as a base register in an instruction, the
variable is assumed toreside in the current stack segment. Therefore, register BP provides aconvenient
way to address data on the stack. However, the BP register can also be used to access data in any of
the other currently addressable segments.

2.1.9 DYNAMICALLY RELOCATABLE CODE

The segmented memory structure of the 80C186 Modular Core family makes it possible to write
programs that are position-independent, or dynamically relocatable. Dynamic relocation allows a
multiprogramming or multitasking system to make particularly effective use of available memory.
The processor can write inactive programs to a disk and reallocate the space they occupied to other
programs. If a disk-resident program is needed later, it can be read back into any available memory
location and restarted. Similarly, if a program needs a large contiguous block of storage, and the total
amount is only available in non-adjacent fragments, other program segments can be compacted to
free up a continuous space. This process is illustrated graphically in Figure 2.9.

2-11

' ir.tel® OVERVIEW OF THE 80C186 FAMILY MODULAR
- MICROPROCESSOR CORE ARCHITECTURE

BEFORE RELOCATION i AFTER RELOCATION
CODE |
SEGMENT I
]——-—‘ cs I cs
ss I ss
STACK
SEGMENT oS DS
— - ES | ES —
DATA l CODE
SEGMENT | I SEGMENT
B o STACK
| SEGMENT
g DATA
l o | SEGMENT
EXTRA L EXTRA
SEGMENT - I SEG_MENT

:] FREE SPACE

270288-001-11

Figure 2.9. Dynamic Code Relocation

To be dynamically relocatable, a program must not load or alter its segment registers and must not
transfer directly to a location outside the current code segment. In other words, all offsets in the
program must be relative to fixed values contained in the segment registers. This allows the program
to be moved anywhere in memory as long as the segment registers are updated to point to the new base
addresses.

2.1.10 STACKIMPLEMENTATION

Stacks in the 80C186 Modular Core family are implemented in memory and are located by the stack
segment register (SS) and the stack pointer (SP). A system may have numerous stacks, and a stack
may be up to 64 Kbytes long, the maximum length of a segment. An attempt to grow a stack beyond
64K overwrites the beginning of the segment. Only one stack is directly addressable at a time. The SS
register contains the base address of the current stack; however, the base address is not the origination
point of the stack. The SP register contains an offset which points to the top of stack (TOS).

2-12

inter’ OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Stacks are 16 bits wide; instructions that operate on a stack add and remove stack elements one word
atatime. An element is pushed onto the stack (see Figure 2.10) by first decrementing the SP register
by 2 and then writing the data word. An element is popped off the stack by copying it from the TOS
and then incrementing the SP register by 2. In other words, the stack goes down in memory toward
its base address. Stack operations never move elements on the stack, nor do they erase them. The top
of the stack changes only as a result of updating the stack pointer.

POP AX
POP BX
PUSH AX X —I
EXSTING AX -I BX-I :
n ~ v N
1062 | 00] 11 T 1062 | 00 | 11 | 1062| 00| 11 l I
1060 | 22 33 M 1060 | 22 | 33 | 1060 22| 33 | :
105E | 44| 65 gg 105E | 44 | 55 I 105E| 44| 55 | |
1058 | 66 77 'gﬁ 1058| 66 | 77 105¢| 66 77 | |
105a] 88|99 | @© 105A[88 | 99 | TOS o 105a| 88 90
19 o 1055 [Aa] B8 > o8 1058 | AA| BB J 1058] Aa| BB -—J_J
1056 | 01] 23 EYX [1056|3412 [1056 34| 12 F —
1054 | 45| 67 §§ 1054 | 45| 67 1054 45] 67
1052 | 89 | AB cw 1052 | 89 | AB 1052| 89| AB
1050 | cp| EF 'czsg 1050 | co| EF 1050 co| EF

D L — [la] s

STACK OPERATION FOR CODE SEQUENCE

270288-001-12

Figure 2.10. Stack Operation

2.1.11 RESERVED MEMORY AND I/0 SPACE
Two specific areas in memory and one area in I/O space are reserved in the 80C186 Core family.

¢ Locations OH through 3FFH in low memory are reserved for interrupt vectors.

* Locations OFFFFOH through OFFFFFH in high memory are reserved for system reset code since
the processor begins execution at OFFFFOH.

* Locations OF8H through OFFH in I/O space are reserved for communication with other Intel

2-13

inte|° OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

hardware products. On the 80C186 Core, these addresses are used as I/O ports for the 80C187
numerics processor extension.

The peripheral control block (see Section 5.0) may reside in memory or 1/O space. All unused
locations in the peripheral control block are also reserved.

2.2 SOFTWARE OVERVIEW

Al180C186 Modular Core family members execute exactly the same instructions. This instruction set
includes all the 8086/8088 instructions plus several usefuladditions and enhancements. The following
sections provide a description of the instructions by category and a detailed discussion of the various
operand addressing modes. ’

Software for 80C186 Core family systems does not need to be written in assembly language. The
processor provides direct hardware support for programs written in the many high-level languages
available. Most high-level languages store variables in memory; the symmetrical instruction set
supports direct operation on memory operands, including operands on the stack. The hardware
addressing modes provide efficient, straightforward implementations of based variables, arrays,
arrays of structures and other high-level language data constructs. A powerful set of memory-to-
memory string operations is available for efficient character data manipulation. Finally, routines with
critical performance requirements that cannot be met with high- level languages may be written in
assembly language and linked with high-level code.

221 INSTRUCTION SET

Instructions in the 80C186 Modular Core family treat different types of operands uniformly. Nearly
every instruction can operate on either byte or word data. Register, memory and immediate operands
may be specified interchangeably in most instructions. The exception to this is that immediate values.
serve as source and not destination operands. In particular, memory variables may be added to,
subtracted from, shifted, compared, and so on, in place, without moving them in and out of registers.
This saves instructions, registers, and execution time in assembly language programs. In high-level
languages, where most variables are memory-based, compilers can produce faster and shorter object
programs.

The 80C186 Core family instruction set can be viewed as existing on two levels. One is the assembly
level and the other is the machine level. To the assembly language programmer, the 80C186 Core
family appears to have a repertoire of about 100 instructions. One MOV (data move) instruction, for
example, transfers a byte of a word from a register of a memory location or an immediate value to
either a register or a memory location. The 80C186 Modular Core family CPUs, however, recognize
28 different machine versions of the MOV instruction.

The two levels of instruction set address two different requirements: efficiency and simplicity. The
approximately 300 forms of machine-level instructions make very efficient use of storage. For

2-14

inte|° OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

example, the machine instruction that increments a memory operand is three or four bytes long
because the address of the operand must be encoded in the instruction. To increment a register,
however, does not require as much information, so the instruction can be shorter. The 80C186 Core
family has eight different machine-level instructions that increment a different 16-bit register. Each
of these instructions is only one byte long.

The assembly level instructions simplify the programmer’s view of the instruction set. The program-
mer writes one form of an INC (increment) instruction and the assembler examines the operand to
determine which machine level instruction to generate. The following paragraphs provide a func-
tional description of the assembly-level instructions.

2.2.1.1 DATA TRANSFER INSTRUCTIONS

The instruction set contains 14 data transfer instructions. These instructions move single bytes and
words between memory and registers, and also move single bytes and words between the AL or AX
registers and I/O ports. Table 2.3 lists the four types of data transfer instructions and their functions.

2-15

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

intgl

Table 2.3. Data Transfer Instructions

Table 2.4. Arithmetic Instructions

GENERAL PURPOSE ADDITION
MOV Move byte or word ADD Add byte or word
PUSH Push word onto stack ADC Add byte or word with carry
POP Pop word off stack INC Increment byte or word by 1
PUSHA Push registers onto stack AAA ASCII adjust for addition
POPA Pop registers off stack DAA Decimal adjust for addition
XCHG Exchange byte or word SUBTRACTION
XLAT Translate b
ranslate byte suB Subtract byte or word
INPUT/OUTPUT SBB Subtract byte or word with
IN Input byte or word borrow
ouT Output byte or word DEC Decrement byte or word by 1
NEG Negate byte or word
ADDRESS OBJECT AND STACK FRAME
- 'S CMP Compare byte or word
LEA Load effective address AAS ASCIi adjust for subtraction
LDS Load pointer using DS DAS Decimal adjust for subtraction
LES Load pointer using ES
ENTER Build stack frame MULTIPLICATION -
LEAVE Tear down stack frame MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
FLAG TRANSFER
G S AAM ASCII adjust for multiply
LAHF Load AH register from flags
SAHF Store AH register in flags I_)IVISION -
PUSHF Push flags onto stack DIv Divide byte or word unsigned
POPF Pop flags off stack IDIV Integer divide byte or word
AAD ASCII adjust for division
cBw Convert byte to word
CWD Convert word to doubleword
Table 2.5. Arithmetic Interpretation of 8-Bit Numbers
UNSIGNED SIGNED UNPACKED PACKED
HEX BIT PATTERN BINARY BINARY DECIMAL DECIMAL
07 00000111 7 +7 7 7
89 10001001 137 -119 invalid 89
C5 11000101 197 -59 invalid invalid

Data transfer instructions are categorized as general purpose, input/output, address object, and flag
transfer. The stack manipulation instructions which are used for transferring flag contents, and the
instructions for loading segment registers are also included in this group. Figure 2.11 shows the flag
storage formats. The address object instructions manipulate the addresses of variables instead of the
contents of values of the variables. This is useful for list processing, based variable, and string
operations.

2-16

intel" OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

LAHF
SAHF $,Z2,U,A U PUC

176 543210
|

|

|
PUSHF

1

|
I
I
popF LY Y, U,U,0,0,1,7,8,2,U,AUPUC|

151413121110 9 8 7 6 56 4 3 2 1 0

U = UNDEFINED; VALUE IS INDETERMINATE
O = OVERFLOW FLAG

D = DIRECTION FLAG

= INTERRUPT ENABLE FLAG

T =TRAP FLAG

S =SIGN FLAG

Z = ZERO FLAG

A = AUXILIARY CARRY FLAG
P = PARITY FLAG

C = CARRY FLAG

270288-001-13

Figure 2.11. Flag Storage Format
2.2.1.2 ARITHMETIC INSTRUCTIONS
The arithmetic instructions (see Table 2.4) operate on four types of numbers:

1. Unsigned binary.

2. Signed binary (integers).
3. Unsigned packed decimal.
4

Unsigned unpacked decimal.
Table 2.5 shows the interpretations of various bit patterns according to each number type.

Binary numbers may be 8 or 16 bits long. Decimal numbers are stored in bytes, two digits per byte for
packed decimal and one digit per byte for unpacked decimal. The processor always assumes that the
operands specified in arithmetic instructions contain data that represent valid numbers for the instruc-
tion being performed. Invalid data may produce unpredictable results. The processor analyzes
arithmetic results and posts certain characteristics of the operation to six flags.

2.2.1.3 BIT MANIPULATION INSTRUCTIONS

There are three groups of instructions for manipulating bits within both bytes and word. These three
groups are logical, shifts and rotates. Table 2.6 lists these three groups of bit manipulation instructions
with their functions.

intel“’ OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

The logical instructions include the Boolean operators NOT, AND, inclusive OR, and exclusive OR
(XOR). A TEST instruction that sets the flags as a result of a Boolean AND operation, but does not
alter either of its operands, is also included.

The bits in bytes and words may be shifted arithmetically or logically. Up to 255 shifts may be
performed, according to the value of the count operand coded in the instruction. The count may be
specified as an immediate value or as a variable in the CL register, allowing the shift count to be a
variable supplied at execution time. Arithmetic shifts may be used to multiply and divide binary
numbers by powers of two. Logical shifts can be used to isolate bits in bytes or words.

Bits in bytes and words can also be rotated. The processor does not discard the bits rotated out of an
operand; the bits circles back to the other end of the operand. As in the shift instructions, the number
of bits to be rotated is taken from the count operand, which may specify either an immediate value,
or the CL register. The carry flag may act as an extension of the operand in two of the rotate
instructions, allowing a bit to be isolated in CF and then tested by a JC (jump if carry) or INC (jump
if not carry) instruction.

2.2.1.4 STRING INSTRUCTIONS

Five basic string operations allow strings of bytes or words to be operated on, one element (byte or
word) at a time. Strings of up to 64 Kbytes may be manipulated with these instructions. Instructions
are available to move, compare and scan for a value, as well as moving string elements to and from
the accumulator. Table 2.7 lists the string instructions. These basic operations may be preceded by a
special one-byte prefix that causes the instruction to be repeated by the hardware, allowing long
strings to be processed much faster than would be possible with a software loop. The repetitions can
be terminated by a variety of conditions, and repeated operations may be interrupted and resumed.

The string instructions operate similarly in many respects (refer to Table 2.8). A string instruction
may have a source operand, a destination operand, or both. The hardware assumes that a source string
resides in the current data segment. A segment prefix may be used to override this assumption. A
destination string must be in the current extra segment. The assembler checks the attributes of the
operands to determine if the elements of the strings are bytes or words. However, the assembler does
not use the operand names to address strings. Instead, the contents of register SI (source index) are
used as an offset to address the current element of the source string. Also, the contents of register DI
(destination index) are taken as the offset of the current destination string element. These registers
must be initialized to point to the source/destination strings before executing the string instructions.
The LDS, LES and LEA instructions are useful in performing this function.

String instructions automatically update the ST or DI register or both prior to processing the next string
element. Setting the direction flag (DF) determines whether the index registers are auto-incremented
(DF =0) or auto-decremented (DF = 1). The processor adjusts the DI or SI register or both by one if
byte strings are being processed. The adjustment is two for word strings.

intal’

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Table 2.6. Bit Manipulation Instructions

Table 2.9. Program Transfer Instructions

2-19

LOGICALS UNCONDITIONAL TRANSFERS
NOT “Not” byte or word CALL Call procedure
AND “And” byte or word RET Return from procedure
OR “Inclusive or” byte or word JMP Jump
XOR “Exclusive or” byte or word CONDITIONAL TRANSFERS
TEST “Test” byte or word SAUNBE 3 T above/mot bol
ump if above/not below
SHIFTS nor equal
SHL/SAL Shift logical/arithmetic left JAE/UNB Jump if above or equal/
‘byte or word not below
SHR Shift logical right byte or word JB/UNAE Jump if below/not above
SAR Shift arithmetic right byte or nor equal
word JBE/UNA Jump if below or equal/
ROTATES not above
ROL Rotate left byte or word JC Jump !f carry
. JENZ Jump.if equal/zero
ROR Rotate right byte or word JG/INLE Jumb if areater/not les
RCL Rotate through carry left byte no?quuael erinotless
or word .
RCR Rotate through carry right byte JGEANL Jun;f"f sgreater or equal/
or word notiess
JLANGE Jump if less/not greater
Table 2.7. String Instructions nor gqual
JLE/ING Jump if less or equal/
REP Repeat not greater
ggﬁ; ot —oro JNE/JNZ Jum if not equal/not zero
MOVS Move byte or word string JNO Jump ff not overﬂow .
MOVSB/MOVSW | Move byte or word string JNP/JPO Jump if not parity/parity odd
INS Input byte or word string JNS Jump if not sign
ouTsS Output byte or word string JO Jump if overflow
CMPS Co;n_pare byte or word JP/JPE Jump if parity/parity even
string .l
SCAS Scan byte or word string JS Jump if sign
LODS Load byte or word string ITERATION CONTROLS
STOS Store byte or word string LOOP Loop ‘
. LOOPE/LOOPZ Loop if equal/zero
Table 2.8. String Instruction Register and Flag Use LOOPNE/LOOPNZ| Loop if not equal/not zero
Si Index (offset) for source string JCXZ Jump if register CX=0
DI Intsjter:;:1 (goffset) for destination INTERRUPTS
CX Repetition counter INT Interrupt
AL/AX gcarg value for LODS INTO Interrupt if overflow
sgﬁ?g: ;g’rnS?'rOLS D BOUND Interrupt if out of array
DF 0 SI, DI pounds
= auto-increment S,
1 = auto-decrement SI, DI IRET Interrupt return
ZF Scan/compare terminator

intel“’ OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Ifarepeat prefix has been coded, thenregister CX (the count register) is decremented by one aftereach
repetition of the string instruction. The CX register must be initialized to the number of repetitions
desired before the string instruction is executed. If the CX register is 0, the string instruction is not
executed and control goes to the following instruction.

2.2.1.5 PROGRAM TRANSFER INSTRUCTIONS

The sequence in which instructions are executed in the 80C186 Modular Core family is determined
by the contents of the CS and IPregisters. The CS register contains the base address of the current code
segment. The IP register points to the memory locations from which the next instruction is to be
fetched. In most operating conditions, the next instruction to be executed will have already been
fetched and is waiting in the CPU instruction queue. The program transfer instructions operate on the
instruction pointer and on the CS register; changing the content of these causes normal sequential
operation to be altered. When a program transfer occurs, the queue no longer contains the correct
instruction. When the BIU obtains the next instruction from memory using the new IP and CS values,
it passes the instruction directly to the EU and begins refilling the queue from the new location.

Four groups of program transfers are available with the 80C186 Core family processors. See Table
2.9. These are unconditional transfers, conditional transfers, iteration control instructions, and in-
terrupt-related instructions.

The unconditional transfer instructions may transfer control to a target instruction within the current
code segment (intrasegment transfer) or to a different code segment (intersegment transfer). The
assembler terms an intrasegment transfer SHORT or NEAR and an intersegment transfer FAR. The
transfer is made unconditionally any time the instruction is executed.

The conditional transfer instructions are jumps that may or may not transfer control depending on the
state of the CPU flags at the time the instruction is executed. These 18 instructions (see Table 2.10)
each test a different combination of flags for a condition. If the condition is logically TRUE then
control is transferred to the target specified in the instruction. If the condition is FALSE then control
passes to the instruction that follows the conditional jump. All conditional jumps are SHORT, that is,
the target must be in the current code segment and within -128 to +127 bytes of the first byte of the
next instruction. For example, JMP O0H causes a jump to the first byte of the next instruction. Since
jumps are made by adding the relative displacement of the target to the instruction pointer, all
conditional jumps are self-relative and are appropriate for position-independent routines.

2-20

inter OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Table 2.10. Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED “JUMPIF...”

JA/UJNBE (CF or ZF)=0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/UNAE CF=1 below/not above nor equal
JBE/JNA (CF or ZF)=1 below or equal/not above
JC CF=1 carry

JENZ ZF=1 equal/zero

JG/JNLE ((SF xor OF) or ZF) =0 greater/not less nor equal
JGE/JNL (SF xor OF)=0 greater or equal/not less
JL/UNGE (SF xor OF)=1 less/not greater nor equal
JLE/UNG ((SF xor OF) or ZF)=1 less or equal/not greater
JNC CF=0 not carry

JNE/JNZ ZF=0 not equal/not zero

JNO OF=0 not overflow

JNP/JPO PF=0 not parity/parity odd

JNS SF=0 not sign

JO OF=1 overflow

JP/JPE PF=1 parity/parity equal

JS SF=1 sign

Note: “above” and “below” refer to the relationship of two unsigned values;
“greater” and “less” refer to the relationship of two signed values.

The iteration control instructions can be used to regulate the repetition of software loops. These
instructions use the CX register as a counter. Like the conditional transfers, the iteration control
instructions are self-relative and may only transfer to targets that are within -128 to +127 bytes of
themselves, i.e., they are SHORT transfers.

The interrupt instructions allow interrupt service routines to be activated by programs as well as by
external hardware devices. The effect of software interrupts is similar to hardware-initiated inter-
rupts. However, the processor cannot execute an interrupt acknowledge bus cycle if the interrupt
originates in software or with an NMI (Non-Maskable Interrupt).

2.2.1.6 PROCESSOR CONTROL INSTRUCTIONS

The processor control instructions (see Table 2.11) allow programs to control various CPU functions.
One group of instructions updates flags, and another group is used primarily for synchronizing the
microprocessor to external events. A final instruction causes the CPU to do nothing. Except for the
flag operations, none of the processor control instructions affects the flags.

2-21

inter OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Table 2.11. Processor Control Instructions

FLAG OPERATIONS
STC Set carry flag
CLC Clear carry flag
CMC Complement carry flag
STD Set direction flag
CLD Clear direction flag
STI Set interrupt enable flag
CLI Clear interrupt enable flag
EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt or reset
WAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next
instruction
NO OPERATION
NOP I No operation

22.2 ADDRESSING MODES

An 80C186 Modular Core family member accesses instruction operands in many different ways.
Operands may be contained in registers, within the instruction itself, in memory, or atI/O ports. Also,
the addresses of memory and I/O port operands can be calculated in several different ways. These
addressing modes greatly extend the flexibility and convenience of the instruction set. The following
paragraphs briefly describe the register and immediate modes of operand addressing, and then
provide a detailed description of the memory and I/O addressing modes.

2.2.2.1 REGISTER AND IMMEDIATE OPERAND ADDRESSING MODES

Instructions that specify only register operands are usually the most compact and fastest executing of
the operand addressing forms. This is because the register operand addresses are encoded in in-
structions in justa few bits, and because these operands are performed entirely within the CPU (nobus
cycles are run). Registers may serve as source operands, destination operands, or both.

Immediate operands are constant data contained in an instruction. The data may be either 8 or 16 bits
in length. Immediate operands can be accessed quickly because they are available directly from the
instruction queue. Like the register operand, no bus cycles need to be run to get an immediate operand.
The limitations on immediate operands are that they may only serve as source operands and that they
are constant in value.

2-22

inter OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

2.2.2.2 MEMORY ADDRESSING MODES

Although the EU has direct access to register and immediate operands, memory operands must be
transferred to and from the CPU over the bus. When the EU needs to read or write a memory operand,
it must pass an offset value to the BIU. The BIU adds the offset to the shifted contents of a segment
register producing a 20-bit physical address and then executes the bus cycle or cycles needed to access
the operand.

The offset that the EU calculates for memory operand is called the operand’s effective address or EA.
This address is an unsigned 16-bit number that expresses the operand’s distance in bytes from the
beginning of the segment in which it resides. The EU can calculate the effective address in several
ways. Information encoded in the second byte of the instruction tells the EU how to calculate the
effective address of each memory operand. A compiler or assembler derives this information from the
statement or instruction written by the programmer. Assembly language programmers have access to
all addressing modes.

The EU calculates the EA by summing a displacement, the content of a base register and the content
of an index register (see Figure 2.12). Any combination of these three components may be present in
a given instruction. This allows a variety of memory addressing modes.

2-23

intgl

OVERVIEW OF THE 80C186 FAMILY MODULAR

MICROPROCESSOR CORE ARCHITECTURE

ENCODED
IN THE
INSTRUCTION

EXPLICIT
IN THE
INSTRUCTION

ASSUMED
UNLESS
OVERRIDDEN
BY PREFIX

{

{

SINGLE INDEX

><l

B

OR

OR

H

OR

/

f'\Al

DOUBLE INDEX

cs

0000

OR

Ss 0000
OR
DS 0000

OR

‘?

—— |
+ DISPLACEMENT F EFFECTIVE
> il __IJ:I_’Q ADDRESS

ES 0000

PHYSICAL ADDR

|

S

270288-001-14

The displacement element is an 8-bit or 16-bit number that is contained in the instruction. The
displacement generally is derived from the position of the operand name (a variable or label) in the

Figure 2.12. Memory Address Computation

program. The programmer can also modify this value or explicitly specify the displacement.

A programmer may specify that either the BX or BP register is to serve as a base register whose

content is to be used in the EA computation.

Similarly, either the SI or DI register may be specified as the index register. The displacement value
is a constant. The contents of the base and index registers may change during execution. This allows
one instruction to access different memory locations as determined by the current values in the base
or base and index registers. Effective address calculations with the BP register are made using the SS

register, by default, although either the DS or the ES register may be specified instead.

2-24

intel“ OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Direct addressing is the simplest memory addressing mode (see Figure 2.13). No registers are
involved and the EA is taken directly from the displacement of the instruction. The programmer
typically uses direct addressing to access scaler variables.

T |
OPCODE l MOD R/M r DISPLACEMENT J

270288-001-15

Figure 2.13. Direct Addressing

With register indirect addressing, the effective address of a memory operand may be taken directly
from one of the base or index registers (see Figure 2.14). One instruction can operate on many
different memory locations if the value in the base or index register is updated appropriately. Any 16-
bit general register may be used for register indirect addressing with the JMP or CALL instructions.

[OPCODET MOD R/M J

> BX
——OR
BP r
OR — EA |
Si L
—OR
DI

270288-001-16

Figure 2.14. Register Indirect Addressing

2-25

inte|® OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Inbased addressing (see Figure 2.15), the effective address is the sum of a displacement value and the
content of register BX or BP. Specifying register BP as a base register directs the BIU to obtain the
operand from the current stack segment (unless a segment override prefix is present). This makes
based addressing with the BP register a very convenient way to access stack data.

T A
OPCODE MOD R/M L DISPLACEMENT -}
BX
— OR—
%)

270288-001-17

Figure 2.15. Based Addressing

Based addressing also provides a simple way to address data structures which may be located at
different places in memory (see Figure 2.16). A base register can be pointed at the structure and
elements of the structure can be addressed by their displacement. Different copies of the same
structure can be accessed by simply changing the base register.

HIGH ADDRESS
DISPLACEMENT DISPLACEMENT
[mae) | AGE [STATUS | wate) |
RATE
vAC | sick
DEPT | DIV
- BASE REGISTER | EMPLOYEE | BASE REGISTER |4
| ! |
I - 3 !
e J . 1
AGE | STATUS i
RATE i
VAC | sicK |
DEPT | DIV !
EMPLOYEE | e e e — — -~

LOW ADDRESS

270288-001-18

Figure 2.16. Accessing a Structure with Based Addressing

2-26

inter OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

With indexed addressing, the effective address is calculated from the sum of a displacement plus the
content of an index register (SI or DI). See Figure 2.17. Indexed addressing is often used to access
elements in an array (see Figure 2.18). The displacement locates the beginning of the array, and the
value of the index register selects one element. If the index register contains 0000H, the processor
selects the firstelement. Since all array elements are the same length, simple arithmetic on the register
may select any element.

T——=—=—= |
l OPCODE MOD R/IM DISPLACEMENT :
Si
> OR (¥
DI

270288-001-19

Figure 2.17. Indexed Addressing

HIGH ADDRESS
o o
ARRAY (8)
r -{ DISPLACEMENT] | ARRAY (7)
ARRAY (6)
ARRAY (5)
INDEX REGISTER ARRAY (4)
I 14 | ARRAY (3)
Y ARRAY (2)
| EA — ARRAY (1)
. —»| ARRAY (0)
[N o] Tl
1 WORD
LOW ADDRESS

270288-001-20

Figure 2.18. Accessing an Array with Indexed Addressing

2-27

inter OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Based index addressing generates an effective address that is the sum of a base register, an index
register, and a displacement (see Figure 2.19). This mode of addressing is very flexible because the
values of two address components can be determined at execution time.

r————=—"
I OPCODE | MOD R/M r DISPLACEMENT !
BX
> OR — (+)
BP
]
- OR —(+)
DI

270288-001-21

Figure 2.19. Based Index Addressing

Based index addressing provides a convenient way for a procedure to address an array allocated on
astack (see Figure 2.20). Register BP can contain the offset of a reference point on the stack, typically
the top of the stack after the procedure has saved registers and allocated local storage. The offset of
the beginning of the array from the reference point can be expressed by a displacement value, and the
index register can be used to access individual array elements. Arrays contained in structures and
matrices (two-dimensional arrays) can also be accessed with based indexed addressing.

2-28

inte,” OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

HIGH ADDRESS
(o n

DISPLACEMENT DISPLACEMENT
PARM 2

PARM 1
P
OLD BP
OLD BX
OLD AX

ARRAY
ARRAY ;2 INDEX REGISTER
ARRAY (4)
ARRAY (3)
ARRAY (2)
ARRAY (1)
ARRAY (0) __T
COUNT
TEMP b ——— —— -+
STATUS |- i ______ -
\ \

N N
~g—1 WORD—»
LOWER ADDRESS

|

(BP)

BASE REGISTER

I |
>
_——— e ————

270288-001-22

Figure 2.20. Accessing a Stacked Array with Based Index Addressing

String instructions do not use the normal memory addressing modes to access operands. Instead, the
index registers are used implicitly (see Figure 2.21). When a string instruction is executed, the SI
register is assumed to point to the first byte or word of the source string. The DI register is assumed
to point to the first byte or word of the destination string. In a repeated string operation, the CPU will
automatically adjust the SI and DI registers to obtain subsequent bytes or words. Note that for string
instructions the DS register is the default segment register for the SI register and the ES register is the
default segment register for the DI register. This allows string instructions to easily operate on data
located anywhere within the one megabyte address space.

2-29

intel" OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

[ss }—={ sourceen |
[DI }—={ bestiaTioNEA

270288-001-23

Figure 2.21. String Operand

2.2.2.3 /O PORT ADDRESSING

Any of the memory operand addressing modes may be used to access an I/O port if the portis memory-
mapped. String instructions can also be used to transfer data to memory-mapped ports with an
appropriate hardware interface. ‘

Two different address modes can be used to access ports located in the I/O space (see Figure 2.22):
The port number is an 8-bit immediate operand for direct addressing. This allows fixed access to ports
numbered 0-255. Indirect I/O port addressing is similar to register indirect addressing of memory
operands. The port number is taken from register DX and can range from 0 to 65,535. By previously
adjusting the content of register DX, one instruction can access any port in the I/O space. A group of
adjacent ports can be accessed using a simple software loop that adjusts the value of the DX register.

OPCODE | DATA | OPCODE I
:) : \
PORT ADDRESS | DX }—={ PorT ADDRESS |

DIRECT PORT ADDRESSING INDIRECT PORT ADDRESSING

270288-001-24

Figure 2.22. 1/O Port Addressing

2-30

inter OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

2.2.3 DATA TYPES USED IN THE 80C186 MODULAR CORE FAMILY
The 80C186 Modular Core family supports the following data types:

¢ Integer- A signed binary numeric value contained in an 8-bit byte ora 16-bit word. All operations
assume a 2’s complement representation. Signed 32-and 64-bit integers are directly supported
with the addition of an 80C187 Numerics Processor Extension to an 80C186 Modular Core
system. The 80C188 Modular Core does not support the 80C187.

¢ Ordinal - An unsigned binary numeric value contained in an 8-bit byte or a 16-bit word.

« Pointer - A 16- or 32-bit quantity, composed of a 16-bit offset component or a 16-bit segment
base component in addition to a 16-bit offset component.

e String - A contiguous sequence of bytes of words. A string may contain from one byte to 64
Kbytes.

e ASCII- A byte representation of alphanumeric and control characters using the ASCII standard.
e BCD - A byte (unpacked) representation of the decimal digits 0-9.

« Packed BCD - A byte (packed) representation of two decimal digits (0-9). One digit is stored in
each nibble (4 bits) of the byte.

» Floating Point - A signed 32-, 64-, or 80-bit real number representation. Floating point operands
are directly supported with the addition of an 80C187 Numerics Processor Extension to an
80C186 Modular Core system. The 80C188 Modular Core does not support the 80C187.

In general, individual data elements must fit within defined segment limits. Figure 2.23 graphically
represents the data types supported by the 80C186 Modular Core family.

2-31

intgl

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

7 0
T T T T
SIGNED BYTE
SIGN BIT -
MAGNITUDE NOTE:
7 0 *SUPPORTED DIRECTLY WITH
rTTTTTT ADDITIONAL HARDWARE
INSIGNED BYTE
L MSB
MAGNITUDE
1514+ 8 7 0 0
L L L L L
SIGNED WORD
SIGN BIT - - MSB .
MAGNITUDE
31 +3 2423 +2 1615 + 8 7 0 0
SIGN DOUBLE I TT T T T T T[T T T TTTT
WORD* .
SIGNBIT = - MSB]
MAGNITUDE
63 +7 +6 4847 +5 +4 3231 +3 +2 161_5 +1 0 0
SIGN QUAD
WORD*
SIGNBIT = - MSB R
MAGNITUDE
15 + 8 7 Q 0
UL L LB L
INSIGNED WORD
L MSB)
MAGNITUDE
7 N 0 7 + 07 0 0
anarycooen [T T T 1 T 1T T T T T T T[T T T T
DECIMAL (BCD) e
BCD DIGIT N BCD DIGIT 1 BCD DIGIT 0
7 +N 0 +1 0 0
T T T T T 1T T T T T T T[T T T T 717
ASCII LI)
ASCII ASCII ASCII
CHARACTERy CHARACTER CHARACTER(
7 N 0 7 + 07 0 0
T T T T T TTTT T T T[T T T T T
PACKED BCD coe
MOST LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT
715 N 0 715+ 0715 O
L A I O
STRING eeo e
BYTE WORD N BYTE WORD 1 BYTE WORD 0
31 +3 2423 +2 1615 + 87 i 0
L L L L L T T T T T T T[T T T T
POINTER
h :
SELECTER OFFSET
79 +9 +8 +7 +6 +5 +4 +3 +2 +1
FLOATING POINT*
T . :
SIGNBIT EXPONENT MAGNITUDE

270288-001-25

Figure 2.23. 80C186 Modular Core Family Supported Data Types

2-32

Bus Interface Unit 3

CHAPTER 3
BUS INTERFACE UNIT

The 80C186 Modular Core family products are true 16-bit embedded microprocessors with 16-bit
internal data paths, one megabyte (2%°) of memory address space, and a separate 64 Kbyte (2!°) I/O
address space. The CPU communicates with its external environment via a twenty-bit, time-multi-
plexed address and data bus. There also exists a command and status bus (see Table 3.1). This
communication is managed by the Bus Interface Unit. To understand the operation of the address/data
bus requires an understanding of the BIU’s bus cycles.

Table 3.1. 80C186 Family Bus Signals

Function Signal Name
address/data AD15:0
address A19:16 _
coprocessor interface TEST/BUSY, PEREQ, ERROR, NCS
local bus arbitration HOLD, HLDA R
local bus control ALE, RD, WR, DT/R, DEN
multi-master bus LOCK
ready interface READY
status information S2:0

3.1 T-STATES

Totransfer data or fetch instructions the CPU executes abus cycle. A buscycle consists of aminimum
of four CPU clock cycles or T-states plus any number of wait states necessary to accommodate the
access time limitations of external memory or peripheral devices. T-states are numbered sequentially
T,T, T, T, and T,. Additional idle T-states (T, can occur between T, and T, when the processor
requires no bus activity. The beginning of a T-state is signaled by a HIGH-to-LOW transition of the
CPU clock. Each T-state is divided into two phases, phase 1 (the LOW phase) and phase 2 (the HIGH

phase). Figure 3.1 illustrates an 80C186 Modular Core family clock cycle.

3-1

intel BUS INTERFACE UNIT

I I
I |
o
CLOCKOUT

o 1@
[o2 |
wow	icH
PHASE)	PHASE)

NOTES:

1. FaIIIngedgeoan.

2. Rising edge of T, 270288-001-26

Figure 3.1. T-State in 2 80C186 Modular Core Family Processor

Different types of bus activity occur for all of the T-states (see Figure 3.2). Address generation
information occurs during T , and data generation occurs during T, T,, T, and T,. The beginning of
abus cycle is signaled by the status lines of the processor going from a passive state (all HIGH) to an
active state in the middle of the T-state immediately before T, (either a T, or a T)). Information
concerning an impending bus cycle appears during the T-state immediately before the first T-state of
the cycle itself. Two different types of T, and T, can be generated, one where the T-state is immedi-
ately followed by a bus cycle, and one where the T-state is immediately followed by an idle T-state.

=
I S

SIGNALS
(RD,WR)

|
1
|
{
LINES —— AoonessesH ! pATA [
ADDRESS/ !
|
|
}
|

|
|
CONTROL =+
|
|
|

270288-001-27

Figure 3.2. Example Bus Cycle of the 80C186 Core Family

intel BUS INTERFACE UNIT

During the first type of T, or T,, the processor generates status information concerning the impending
bus cycle. This information will be available no later than T, after the LOW-to-HIGH transition
of the processor’s CLKOUT in the middle of the T-state. During the second type of T, or T, the status
outputs remain inactive because no bus cycle will follow. The decision on which type T, or T, state
to present is made at the beginning of the T-state preceding the T, or T, state (see Figure 3.3). This

determination has an effect on bus latency (see Section 3.8.2).

Tyor
Tw | Ta l T

!

! Decision: No'hus'activi_ly requiled',
| idle bus cycles will be inserted

| |

wo _ [V LT

out 1 |
J_ L |
ACTIVE | [l]
STATUS __ sTATUS | ’ | RACTE
INFO | Tsor 1 |
| Tw) Te | T,
| Decision: Another bus cycle immediately
|/ required~no idle bus cycles
CLOCK I I I I
out [i
| | |
ACTIVE) A ' ACTIVE
1 INACTIVE |
STATUS STATUS ’ STATUS \ . __STATUS
LINES 1 | |
| |

I
270288-001-28

Figure 3.3. Active-Inactive Status Transitions in 80C186 Core Family Processor

The READY signal controls the number of wait states (T,,) inserted in each bus cycle. The maximum
number of wait states is unbounded.

The bus may remain idle for several T-states (T,) between accesses initiated by an 80C186 Modular
Core family processor. This situation occurs under the following diverse conditions:

e When the prefetch queue is full.

* When the processor is running a type of bus cycle which always includes idle states (interrupt
acknowledge, for example).

¢ When an instruction forces idle states (LOCK, for example).

During idle states, the processor may not necessarily float the bus; however, if the processor does
drive the bus, no control strobes are active.

3-3

intel BUS INTERFACE UNIT

3.2 PHYSICAL ADDRESS GENERATION

Physical addresses are generated by 80C186 Modular Core family processors during T, of abus cycle.
Since the address and data lines are multiplexed, addresses must be latched during T, if they are re-
quired to remain stable for the duration of the bus cycle. To facilitate latching of the physical address,
80C186 Modular Core family processors generate an active-HIGH ALE (Address Latch Enable)
signal which can be directly connected to the strobe input of a transparent latch. ALE is active for all
bus cycles and never floats (except during ONCE Mode for system testing).

Figure 3.4 illustrates the physical address generation parameters. Addresses are valid no later than

T, oy after the beginning of T , and remain valid at least T, . after the end of T,. The ALE signal is
driven HIGH in the middle of the T-state (either T, or T,) immediately preceding T, and is driven
LOW inthe middle of T, no soonerthan T AVLL after address becomes valid. T AVLL satisfies the address
latch set-up times of address valid to strobe inactive. Addresses remain stable on the address/data bus

atleast T, ,, after ALE goes inactive to satisfy address latch hold times.

CLOCK

ALE

A0-A19

. TCHOV: Clock high to ALE high.

: Clock low to address valid.
cHov: Clock high to ALE low.

- ToLor: Clock low to address invalid (address hold from clock low).
- TLAx ALE low to address invalid (address hold from ALE).

. T pyLo* Address valid to ALE low (address setup to ALE). 270830-001-100

=

CLov

oA WD = Z
- -~

-

Figure 3.4. Address Generation Timing

Because ALE goes HIGH before addresses become valid, the delay through the address latches will
be the propagation delay through the latch rather than the delay from the latch strobe.

3-4

intgl’ BUS INTERFACE UNIT

A typical circuit for latching physical addresses is shown in Figure 3.4. This circuit uses 3 transparent
non-inverting latches to demultiplex the 20 address bits provided on all 80C186 Modular Core family
microprocessors. Typically, the upper 4 address bits only select among various memory components
or subsystems, so when the integrated chip selects (see Chapter 7) are used, these upper bits need not
be latched. The worst case address generation time from the beginning of T, (including address latch
propagation) time for the circuit is:

TCLOV + TPD

Some memory and peripheral devices do not require addresses to remain stable throughout a data
transfer. If a system is constructed wholly with these types of devices, addresses need not be latched.

oo
4 ADDRESS
A16- | SIGNALS
Alg —rF—— 4
»-|STB Ot A16-A19
._.‘ OE
aps- B ol
AD15 7 ™ 8
—+»-|sTB o}—FA~s AS-A15
#——- OE
ADO- Pt .
AD7 4 8
ALE @——~{STB O} A0-A7
b
= 270288-001-30

Figure 3.5. Demultiplexing the Address Bus of an 80C186 Modular Core Family Processor Using
Transparent Latches.

The 80C186 Core generates one more signal, BHE (Bus High Enable), to address memory. BHE and
A0 are used to enable data transfers on either or both halves of the 16-bit bus. Since A0 only enables
devices onto the lower half of the data bus, systems commonly drive address inputs with address bits
A1-A19. This provides 512K unique word addresses, or 1M unique byte addresses. BHE does not
need to be latched. On the 80C188 Core, BHE is absent; all data transfers take place across a single
byte-wide data bus.

On 80C186 Modular Core family processors, effective (physical) address calculations take place in
dedicated hardware. An effective address (EA) calculation may be either fully-pipelined or non-
pipelined. The BIU gives no indication when a fully-pipelined address calculation occurs.

3-5

intel BUS INTERFACE UNIT

Non-pipelined EA calculations are required anytime an instruction has MOD and R/M bits in its
opcode. These bits often denote addressing modes which take longer to calculate the EA, such as
register-offset or two-register addressing. Here are some assembly code examples which cause non-
pipelined EA calculations:

MOV AX, ES:[DI] ; Uses indirect addressing.

AND AX,[DI]+5 ; Uses register-offset addressing.
XCHG mem_variable, DX ; Direct offset but has MOD and
; R/M bits.

A non-pipelined EA calculation takes four clocks, and occurs during T,(or T,)-T,-T-T, T (or T)-T--
T-T,, cycle sequences. In addition to inserting any necessary idle T-states, a non-pipelined EA
calculation alters the usual bus cycle priority scheme. Data cycles (reads or writes) associated with the
instruction temporarily take the highest bus priority possible, higher than even DRAM refresh cycles.
The altered priority scheme is a mechanism to better utilize the Execution Unit.

3.3 DATABUS

Many small systems do not require buffering because 80C186 Modular Core family devices have
adequate bus drive capabilities. If data buffers are not used, care should be taken not to allow bus
contention between the processor and the devices directly connected to the data bus. Since the
processor floats the address/data bus before activating any command lines, the only requirement on
adirectly connected device is that it float its output drivers after a read before the processor begins to
drive address information for the next bus cycle. The parameter of interest here is the minimum time
from RD inactive until addresses go active for the next bus cycle. If the memory or peripheral device
cannotdisable its output drivers in this time, data buffers will be required to prevent both the processor
and the device from driving these lines simultaneously. This parameter is unaffected by the addition
of wait states. Data buffers solve this problem because their output float times are typically much
faster than the required minimum.

3.3.1 80C186 MODULAR CORE DATA BUS OPERATION

Throughout T,, T,, T,, and T, of a bus cycle the multiplexed address/data bus becomes a 16-bit data
bus. Data transfers on this bus may be either bytes or words. All memory is byte addressable (see
Figure 3.6).

3-6

intgl’ BUS INTERFACE UNIT

16-BITS
[— 8 BITS —=|<—8 BITS —=
WORD ADDRESS
4q 5 4
2 3 2 BYTE ADDRESS SHOWN
IN BYTE FIELD
1] 1 [}
80C186 MODULAR
oe- oo- CORE FAMILY
01§ o7 SIGNAL CONNECTIONS

270830-001-101

Figure 3.6. Physical Memory Byte/Word Addressing in 80C186 Modular Core Family Microprocessors

All bytes with even addresses (A0 = 0) reside on the lower 8 bits of the data bus, while all bytes with
odd addresses (A0 = 1) reside on the upper 8 bits of the data bus. Whenever an access is made to only
the even byte, AQ is driven LOW, BHE is driven HIGH, and the data transfer occurs on DO-D7 of the
data bus. Whenever an access is made to only the od d byte, BHE is driven LOW, AOis driven HIGH,
and the data transfer occurs on D8-D15 of the data bus. Finally, if a word access is performed to an
even address, both AO and BHE are driven LOW and the data transfer occurs on D0-D15 of the data
bus.

Word accesses are made to the addressed byte and to the next higher numbered byte. If a word access
is performed to an odd address, two byte accesses must be performed, the first to access the odd byte
at the first word address on D8-D135, the second to access the even byte at the next sequential word
address on DO-D7. For example, in Figure 3.6, byte 0 and byte 1 can be individually accessed in two
separate bus cycles to byte address 0 and 1 at word address 0. They may also be accessed together in
a single bus cycle to word address 0. However, if a word access is made to address 1, two bus cycles
will be required, the first to access byte 1 at word address 0 (byte O will not be accessed), and the
second to access byte 2 at word address 2 (byte 3 will not be accessed). This is why all word data
should be located at even addresses to increase processor performance.

When byte reads are made, the data returned on the unused half of the data bus is ignored. When byte
writes are made, the data driven on the unused half of the data bus is indeterminate.

The 80C186 Core always fetches the instruction stream in words from even addresses except that the
first fetch after a program transfer to an odd address obtains a byte. The processor disassembles the
instruction stream inside the processor; so instruction alignment will not materially affect the per-
formance of most syste