

LITERATURE
To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES
P.O. BOX 7641
Mt. Prospect, IL 60056-7641

CURRENT HANDBOOKS

In the U.S. and Canada
call toll free
(800) 548-4725

Product line handbooks contain data sheets, application notes, article reprints and other design
information.

TITLE

SET OF 11 HANDBOOKS
(Available in U.S. and Canada only)

EMBEDDED APPLICATIONS

8-BIT EMBEDDED CONTROLLERS

16-BIT EMBEDDED CONTROLLERS

16/32-BIT EMBEDDED PROCESSORS

MEMORY

MICROCOMMUNICATIONS
(2 volume set)

MICROCOMPUTER BOARDS AND SYSTEMS

MICROPROCESSORS

PERIPHERALS

PRODUCT GUIDE
(Overview of Intel's complete product lines)

PROGRAMMABLE LOGIC

ADDITIONAL LITERATURE
(Not included in handbook set)

AUTOMOTIVE

COMPONENTS QUALITY/RELIABILITY HANDBOOK

INTERNATIONAL LITERATURE GUIDE

LITERATURE PRICE LIST (U.S. and Canada)
(Comprehensive list of current Intel Literature)

MILITARY
(2 volume set)

SYSTEMS QUALITY/RELIABILITY

LITERATURE
ORDER NUMBER

231003

270648

270645

270646

270647

210830

231658

280407

230843

296467

210846

296083

231792

210997

E00029

210620

210461

231762

LlTINCOV/010590

U.S. and CANADA LITERATURE ORDER FORM
NAME: ___ _

COMPANY: __ __

ADDRESS: ___ ___

CITY: __________________ STATE: _______ ZIP: _____ _

COUNTRY: _________________________ ___

PHONENO.:~ __ ~~ __ __

ORDER NO. TITLE OTY. PRICE TOTAL

I I __ X ___ =

I I __ X __ =

__ X __ =

__ X __ =

__ X ___ =

__ X __ =

__ X __ =

__ X ___ =

__ X __ =

__ x
Subtotal

Must Add Your
Local Sales Tax

Postage: add 10% of subtotal
~ Postage

Total ___ _
Pay by check, money order, or include company purchase order with this form ($100 minimum).we also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks
for delivery.
o VISA 0 MasterCard 0 American Express Expiration Date _______ _

. Account No. ______________ ~ ______________ _

Signature ______________________________ _

Mall To: Intel Literature Sales
P.O. Box 7641
Mt. Prospect, II 60056-7641

International Customers outside the U.S. and Canada
should use the International order form or contact their local
Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725
Prices good until 12/31/90.

Source HB

INTERNATIONAL LITERATURE ORDER FORM
NAME: __ _

COMPANY: ______________________________________ ~ __________ __

ADDRESS: __ ___

CITY: _______________________________ STATE: _______ ZIP: ______ _
COUNTRY: __ __

PHONENO.:~(____ ~ ______________________________________ ___

ORDER NO. TITLE QTY. PRICE TOTAL

__ X

__ X ____ =

__ X ____ =

__ X

__ X ____ =

__ X

__ X ____ =

__ X

__ X

__ X ___ =

Subtotal

Must Add Your
Local Sales Tax

Total

PAYMENT

Cheques should be made payable to your local Intel Sales Office

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the L1TERATURE COORDINATOR and returned
to your 10callntel Sales Office.

80C186EB/80C188EB
USER'S MANUAL

MAY 1990

inter

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

376,386,387,486, 4-SITE, Above, ACE51 , ACE96, ACE186, ACE196,
ACE960, BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX,
FaxBACK, Genius, i, t, i486, i750, i860, ICE, iCEL, ICEVIEW, iCS, iDBP,
iDIS, 121CE, iLBX, iMDDX, iMMX, Inboard, Insite, Intel, intel, Inte1386,
intelBOS, Intel Certified, Intelevision, inteligent Identifier, inteligent
Programming, Intellec, Intellink, iOSP, iPAT, iPDS, iPSC, iRMK, iRMX,
iSBC, iSBX, iSDM, iSXM, Library Manager, MAPNET, MCS,
Megachassis, MICROMAINFRAME, MUL TIBUS, MULTICHANNEL,
MUL TIMODULE, MultiSERVER, ONCE, OpenNET, OTP, PR0750,
PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse
Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, SugarCube,
TooITALK, UPI, Visual Edge, VLSiCEL, and ZapCode, and the
combination of ICE,JCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a
numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

°MUL TIBUS is a patented Intel bus.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its
FASTPATH trademark or products.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

@INTELCORPORATION 1990

CUSTOMER SUPPORT

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel's complete support service that provides Intel customers with hardware support,
software support, customer trainin~, consulting services and network management services. For detailed infor­
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer's expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Inter's customer support is quite extensive. It can start with assistance during your
development effort to network management. 100 Intel sales and service offices are located worldwide-in the
U.S., Canada, Europe and the Far East. So wherever you're using Intel technology, our professional staff is
within close reach.

HARDWARE SUPPORT SERVICES

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor­
mation Phone Service), updates and subscription service (product-specific troubleshootmg guides and;
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa­
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course
categories include: architecture and assembly language, programming and operating systems, BITBUS™ and
LAN applications.

NETWORK MANAGEMENT SERVICES

Today's networking products are powerful and extremely flexible. The return they can provide on your invest­
ment via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network's physical and functional design, to
implementation, installation and maintenance. Whether installing your first network or adding to an existing
one, Intel's Networking Specialists can optimize network performance for you.

Table of Contents

CHAPTER 1 INTRODUCTION
1.1 The 80186 Family Legacy ... 1-3
1.2 How to Use this Manual ... 1-4

CHAPTER 2 OVERVIEW OF THE 80186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

2.1 Architectural Overview .. 2-1
2.1.1 Execution Unit ... 2-2
2.1.2 Bus Interface Unit .. 2-3
2.1.3 General Registers ... 2-3
2.1.4 Segment Registers .. 2-5
2.1.5 Instruction Pointer ... 2-6
2.1.6 Flags .. 2-6
2.1 .7 Memory Segmentation .. 2-7
2.1.8 Logical Addresses ... 2-9
2.1.9 Dynamically Relocatable Code•.. 2-11
2.1.10 Stack Implementation .. 2-12
2.1.11 Reserved Memory and 1/0 Space .. 2-13

2.2 Software Overview .. 2-14
2.2.1 Instruction Set ... 2-14

2.2.1.1 Data Transfer Instructions .. 2-15
2.2.1.2 Arithmetic Instructions .. 2-17
2.2.1.3 Bit Manipulation Instructions ... 2-17
2.2.1.4 String Instructions ... 2-18
2.2.1.5 Program Transfer Instructions .. 2-20
2.2.1.6 Processor Control Instructions ... 2-21

2.2.2 Addressing Modes ... 2-22
2.2.2.1 Register and Immediate Operand Addressing Modes 2-22
2.2.2.2 Memory Addressing Modes .. 2-23
2.2.2.3 1/0 Port Addressing .. 2-30

2.2.3 Data Types Used in the 80C186 Modular Core Family 2-31

CHAPTER 3 BUS INTERFACE UNIT
3.1 T -States .. 3-1
3.2 Physical Address Generation .. 3-4
3.3 Data Bus ... 3-6

3.3.1 80C186 Modular Core Data Bus Operation .. 3-6
3.3.2 80C188 Modular Core Data Bus Operation .. 3-7
3.3.3 Peripheral Interface ... 3-8

3.4 Bus Control Si~ls .. 3-8
3.4.1 RD and WR ... 3-9
3.4.2 Status Lines ... 3-11
3.4.3 Software-Initiated Bus Control ... 3-11

3.4.3.1 TEST Input and LOCK Output .. 3-12
3.4.3.2 Processor HALT ... 3-12

3.5 Transceiver Control Signals .. 3-13
3.6 READY Interfacing .. 3-14
3.7 Execution Unit/Bus Interface Unit Relationship d ••• 3-17

3.7.1 Prefetch Queue and Bus Performance ... 3-17
3.7.2 Bus Performance and CPU Performance ... 3-19
3.7.3 Wait States and CPU Performance ... 3-20

Table of Contents (continued)

3.8 HOLD/HLDA Interface .. : ', ,3-23
3.8.1 Response to HOLD ... , 3-23
3.8.2 HOLD/HLDA Timing and Bus Latency .. , , 3-24
3.8.3 Leaving HOLD ... 3-27

3.9 Priority of Bus Cycle Types ' .. , 3-28

CHAPTER 4 CLOCK GENERATOR
4.1 Crystal Oscillator .. ' 4-1
4.2 Using an External Oscillator .. 4-3
4.3 Output from Clock Generator .. 4-3
4.4 RESET .. 4-3

CHAPTER 5 PERIPHERAL CONTROL BLOCK
5.1 Setting the Base Location ... 5-2
5.2 Peripheral Control Block Registers ... 5-3
5.3 Reserved Locations and the Numerics Interface .. 5-5

CHAPTER 6 TIMER/COUNTER
6.1 Functional Overview .. ; .. 6-4
6.2 Timer Events ... 6-9
6.3 Timer Input Pin Operation ... 6-9
6.4 Timer Output Pin Operation .. 6-10
6.5 Programming the Timer/Counter Unit Registers ... 6"11

6.5.1 The Timer Control Register (TOCON, T1 CON, T2CON) 6-11
6.6 Example Timer Initialization Code .. 6-13

6.6.1 Real Time Clock .. 6-13
6.6.2 Event Counter ... 6-16

CHAPTER 7 CHIP SELECT/READY LOGIC UNIT
7.1 Functional Overview ... 7-6

7.1.1 Chip Select Operation ... : ... 7-6
7.1.2 Ready Generation and Wait State Insertion .. ; 7-10
7.1.3 Overlapping Ranges .. 7-1,1
7.1.4 Port 1 Multiplexer ... : 7-11
7.1.5 External Bus Masters .. 7-11
7.1.6 Numerics I/O Locations (I/O Locations 00F8H to OOFFH) 7-12
7.1.7 CSUTimings ... 7-12

7.2 Programming the CSU ; ... : 7-13
7.2.1 The Chip Select Registers ... 7-13

7.2.1.1 The Chip Select Start Register ... 7-14
7.2.1.2 The Chip Select Stop Register ... : 7-14

7.3 Initial Conditions (RESET) .. 7-14
7.4 Applications Examples .. 7-15

7.4.1 Example 1: Simple CSU Application ... 7-15
7.4.2 Example 2: Two Megabyte Software Paged RAM ; ... 7-19

CHAPTER 8 SERIAL COMMUNICATIONS UNIT
8.1 Functional Overview .. ; ; •. 8-1

8.1.1 Asynchronous Communication .. 8-1
8.1.1.1 RX Machine .. 8-8
8.1.1.2 TX Machine ... : ,; , 8-10
8.1.1.3 The Asynchronous Modes : ' 8-12

8.1.1.3.1 Mode 1: (10 bit frame) .. 8-12
8.1.1.3.2 Modes 2 and 3: (11 bit frames) ... 8-12
8.1.1.3.3 Mode 4 (9 bit frame) ... 8-14

ii

Table of Contents (continued)

8.1.2 Synchronous Communication ... 8-15
8.2 Programming the Serial Communications Unit ... 8-17

8.2.1 The Serial Control Register (SOCON, S1CON) ... 8-17
8.2.2 The Serial Status Register (SOSTS, S1 STS) .. 8-18

8.3 Operation and Programming of Baud Rate Generator ... 8-19
8.4 Timings ... 8-21

8.4.1 Asynchronous (Modes 1-4) ... 8-21
8.4.2 Synchronous (Mode 0) .. 8-21
8.4.3 CTS Pin Timings ... 8-23

8.5 Serial Control Unit Interrupts ... 8-25
8.5.1 Channel 0 Interrupts .. 8-25
8.5.2 Channel 1 Interrupts .. 8-26

8.6 Port 2 Multiplexer .. 8-27
8.7 Application Examples .. 8-27

8.7.1 Example 1: 9600 Baud, Full Duplex Asynchronous Channel 8-27
8.7.2 Example 2: Synchronous Port Expansion ... 8-27

CHAPTER 9 INTERRUPTS
9.1 Interrupt Control Model ... 9-2
9.2 Interrupt Characteristics Related to Interrupt Type ... 9-3

9.2.1 Interrupts Handled Directly by the CPU .. 9-3
9.2.1.1 Instruction-Generated Traps and Exceptions ... 9-4
9.2.1.2 Non-Maskable Interrupt (NMI) .. 9-5
9.2.1.3 User-Defined Software Interrupts ... 9-6

9.2.2 Interrupts Handled by the Integrated Interrupt Controller 9-6
9.3 Other Interrupt Characteristics .. 9-6

9.3.1 Interrupt Latency ... 9-7
9.3.2 Interrupt Masks and Nesting ... 9-8
9.3.3 Interrupt Priority ... 9-8

9.4 Interrupt Control Unit Operation .. 9-11
9.4.1 External Connections .. 9-11

9.4.1.1 Direct Input Mode ... 9-11
9.4.1.2 Cascade Mode ... 9-12

9.4.2 Interrupt Unit Programming ... 9-13
9.4.2.1 The Control Registers ... 9-13
9.4.2.2 Cascade Mode ... 9-16
9.4.2.3 Special Fully Nested Mode ... 9-16
9.4.2.4 The Request Register ... 9-17
9.4.2.5 The Mask Register ... 9-18
9.4.2.6 The Priority Mask Register ... 9-19
9.4.2.7 The In-Service Register .. 9-19
9.4.2.8 The Poll and Poll Status Register ... 9-20
9.4.2.9 The End of Interrupt Register ... 9-21
9.4.2.10 Interrupt Status Register .. 9-22

9.4.3 Interrupt Sources ... 9-23
9.4.3.1 Internal Sources ... , 9-23
9.4.3.2 External Sources .. 9-24

9.4.4 Interrupt Response .. , 9-24
9.4.4.1 Internal Vectoring ... 9-25
9.4.4.2 External Vectoring .. 9-26
9.4.4.3 Interrupt Response Time .. 9-27

9.4.5 Initialization Example ... 9-27
9.5 Interrupt Controller Flow Charts .. 9-28

iii

Table of Contents (continued)

CHAPTER 10 REFRESH CONTROL UNIT
10.1 Refresh Control Unit Programming .. 10-2
10.2 Refresh Control Unit Operation .. 10-5
10.3 Refresh Addresses ' .. 10-7
10.4 Refresh Operation and Bus HOLD .. 10-7
10.5 Decoding Refresh Bus Cycles ... 10-8

CHAPTER 11 INPUT/OUTPUT PORT UNIT
11.1 Functional Overview .. 11-1

11.1.1 Output Ports .. ' , 11-7
11.2.1 Input Ports ..•......................... 11-7
11.1.3 Open Drain Bi-directional Ports ... 11-11

11.2 Programming the I/O Port Unit ... 11-11
11.2.1 Port Direction Register ... 11-11
11.2.2 Port Pin Register ' .. 11-11
11.2.3 Port Control Register ... '" 11-11
11.2.4 Port Latch Register .. 11-13

11.3 Initial Conditions (RESET) ... ' 11-13
11.4 Programming Example .. 11-14

CHAPTER 12 POWER MANAGEMENT UNIT
12.1 Functional Overview .. 12-3

12.1.1 Idle Mode ... 12-3
12.1.1.1 Refresh During Idle Mode ... 12-3
12.1.1.2 HOLD/HLDA During .Idle Mode 12-3
12.1.1.3 Exiting Idle Mode Via an Unmasked Interrupt 12-7
12.1.1.4 Exiting Idle Mode Via a Non-Maskable Interrupt (NMI) 12-7
12.1.1.5 Exiting Idle Mode Via a Reset 12-7

12.1.2 Powerdown Mode .. 12-7
12.1.2.1 Entering Powerdown Mode ... 12-10
12.1.2.2 Exiting Powerdown Mode .. 12-10

12.1.1.2.1 Calculation of PDTMR Capacitor Value 12-14
12.2 Programming Example .. , 12-14

CHAPTER 13 HARDWARE PROVISIONS FOR FLOATING POINT MATH
13.1 80C187 Instruction Set ... 13-1

13.1.1 Data Transfer Instructions ; 13-2
13.1.2 Arithmetic Instructions .. 13-2
13.1.3 Comparison Instructions ... 13-2
13.1.4 Transcendental Instructions .. 13-2
13.1.5 Constant Instructions .. 13-4
13.1.6 Processor Control Instructions .. 13-4

13.2 80C187 Data Types .. 13-4
13.3 Using the 80C186EB with the 80C187 Numerics Processor Extension 13-5

13.3.1 80C186EB/80C187 Interface .. , 13-6
13.3.2 80C186EB Bus Cycles with the 80C187 Numerics Processor Extension 13-7

CHAPTER 14 ONCETM MODE
14.1 Entering ONCETM Mode .. 14-1
14.2 Leaving ONCETM Mode .. 14-1

iv

Table of Contents (continued)

APPENDIX A DIFFERENCES BETWEEN THE 80C186 FAMILY
AND THE 8086/8088

A.1 CPU Performance ... , .. A-1
A.2 Clocking ... , .. A-1
A.3 Local Bus Controller and Control Signals ... ,. A-1
A.4 HOLD/HLDA vs. REQUEST/GRANT ... A-~
A.5 Status Information ... , .. A-2
A.6 Bus Utilization ... A-2
A.7 Instruction Execution .. A-2

APPENDIX B SUMMARY OF DIFFERENCES BETWEEN THE 80186/80C186/
80C186EB FAMILY MEMBERS

B.1 CPU Differences , ... B-2
B.1.1 Instruction Set ... , ... 8-2
B.1.2 Semiconductor Technology Differences ... B-3
B.1.3 Queue Status Mode ... , , B-3
B.1.4 Numerics Interface .. , ... B-3
B.1.5 Transceiver Interface (DEN and Di/R) ... 8-4
B.1.6 READY Interface , , , 8-4

B.2 Clock Oscillator Circuitry and External Frequancy Inputs ., , , B-4
B.3 Power Consumption Management Modes , ... B-4
B.4 Interrupt Controller .. , , B-5
B.5 Timer Counter Unit ... B-5
B.6 DMA Unit .. B-5
B.7 Serial Communications Unit ... B-5
B.8 Chip Select Unit .. B-5
B.9 Refresh Control Unit .; ... , ... B-5
B.10 Peripheral Control Block ... B-6

APPENDIX C SUMMARY OF DIFFERENCES BETWEEN
80C186EB AND 80C188EB .. , C-1

APPENDIX D SYNCHRONIZATION OF EXTeRNAL INPUTS
D.1 Why Synchronizers are Required ... D-1
D.2 80C186EB Family Synchronizers ... D-2

APPENDIX E INSTRUCTION SET SUMMARy , ... E-1

APPENDIX F INSTRUCTION SET SUMMARY 2 .. F-1

v

Introduction 1

CHAPTER 1
INTRODUCTION

The 80C 186EB is the third generation addition to the Intel's 80186 family of embedded microproces­
sors. Intel's advanced CHMOS IV semiconductor fabrication technology has allowed the integration
of many of today 's most used peripherals with ahigh performance, low-power, 8086 compatible CPU
core. The 80C 186EB is the first choice in portable office and communication equipment due to its low
power and high integration. The flexible power management strategy of the 80C186EB allows for
low-power applications that do not sacrifice performance.

~ 0

1
0 I~ ~ ~ d ~ ~ ~ ~ ~ Z Z f- f-OUl<llt:a:<Il 0°1° ~~;::::~~ ~5 ~5 ~ ~I~ ~ ~ "": ~ ~ OOUl

~ ~ ~ ~ ~ ~ ~ ~ x X f-
~ ~ ~ ~ ~ ~r= ;::::;:::: a: f- 0

I PORT 2 MULTIPLEXER I

CHANNELl CHANNEL 0
0 1 I 2

TIMER TIMER TIMER

r-- INTERRUPT I--
REFRESH

SERIAL CONTROL UNIT
CONTROL

COMMUNICATIONS TIMER-COUNTER UNIT UNIT
UNIT

All ~ All ~ All ~ t ~
"'" CLKOUT~

CLOCK n OSCOUT~ GEN. ... "'t4.
.,. "'t4. ~ ~

CLKIN---'

RESOUT~
r------'

POWER ~

All ~ All ~ RESI~ ---. MANAGEMENT
PDTMR---. UNIT

"'t4. ~ "'t4.
.,.

CENTRAL

~
6-BYTE
~

~ PROCESSING PREFETCH BUS INTERFACE UNIT I-- STATE CHIP-SELECT UNIT
UNIT QUEUE GEN.

I I I I I I I I
--4

I PORT 1 MULTIPLEXER I

!!!!!!!!
~If-/Ul °la:

<;l m W/<;l W/W10Ia: >/Z a:1~ ° < /glg z~()WO "' ici ~ ~ <i ffi a:;: ~ gsd~ g c5 ~ Cf}C/)C/lVJcnCI'Jcncn
00000000 I-zffi~ Ci ;(0 W....l::C (!)(!)(!)(!)(!)(!)(!)(!)

0.. W < 05 a:
I~I~I~I~I~I~I~I~ :(

270830-001-66

Figure 1.1. 80C186EB Block Diagram

1-1

INTRODUCTION

The 80C 186EB maintains full code compatibility with it's olderrelatives the 80186 and 80C 186, but
adds a new, and enhanced, feature set:

Low Power/Static CMOS Modular CPU core

Power Management Unit

Serial Communications Unit

Input/Output Port Unit

Enhanced Chip Select Unit

Refresh Control Unit

Interrupt Control Unit

Timer/Counter Unit

The brains of the 80C186EB is the new Modular CPU Core. The CPU core shares the same
instruction set as the immensely popular 8086/8088 while adding the new instructions found on the
80186 and 80C186. There is no larger software base available today than that written for 8086
compatible products. Intel provides the programmer with a wide array of programming solutions
such as ASM86, C-86, PASCAL-86, andPLM-86. For those users requiring enhanced floating point
performance, the 80C 186EB interfaces directly with the 80C 187 Numerics Processor Extension.

The 80C186EB is afully static device. The clock to the 80C186EB may be shut off indefinitely
without the device losing its state. Once the clock is restored to the 80C 186EB it will begin executing
as if there had been no interruption. The integrated Power Management Unit uses this feature to tum
off sections of the chip while they are not being used and re-awaken them as they are needed.

The Serial Cornmunications Unit is a new peripheral in the 80C186 product family. This new unit
includes two synchronous/asynchronous serial communications ports. The Serial Communications
Unit allows the 80C186EB family to be connected to serial based devices such as printers and PC
serial ports. The new serial ports are also fully compatible with those found on other popular Intel
microcontrollers such as the MCS-51 and MCS-96 families. Systems using an 80C186EB and a
compatible controller can now communicate without the need for board space robbing mailbox
memories.

The Enhanced Chip Select Unit is another new peripheral added to the 80C186EB family. It has
enormous flexibility. Each ofthe 10 available chip select lines can be programmed to select varying
sized regions in memory or I/O space. The chip selects can select overlapping regions and can be
enabled and disabled through software. Taken to the extreme this unit can extend the address space
of the 80C 186EB to 10 megabytes of software paged memory.

1-2

INTRODUCTION

Some customers may not need all the pin functions available on the 80C 186EB. The Input/Output
port unit was added to allow the user to swap unused internal peripheral pins for input and output ports.
For example, eight of the ten chip select pins may be converted, via software, into output ports.

The Refresh Control Unit has been provided to simplify the design of dynamic memory systems. At
programmable intervals, the 80C186EB will run dummy read cycles to refresh the dynamic RAM.

The Interrupt Control Unit handles the 80C186EB interrupt duties. The Interrupt Controller handles
interrupt requests from all internal sources as well as the 5 external interrupt pins. If more than five
external interrupts are required, the Interrupt Unit can be cascaded to external 82C59 controllers
increasing the handling capacity to 129 interrupts.

Many systems require the handling of time related events. The Timer/Counter Unit provides a
flexible solution for this system need. The Timer/Counter unit contains three sixteen bit timers that
can be configured to perform many tasks including: real time clock, event counter, programmable one
shot.

The introduction of the 80C186EB signals a new direction for the successful 80186 family. The
80C 186EB story began over a decade ago with the introduction ofInteI's first 16-bit microprocessor,
the 8086.

1.1 THE 80186 FAMILY LEGACY

The 8086 microprocessor was first introduced in 1978 and gained rapid support as the microcomputer
engine of choice. There are literally millions of 8086/8088 based systems in the world today. The
amount of software written for the 8086/8088 microprocessor can be rivaled by no other architecture.

The 8086, however, required dozens of support chips to implement even a moderately complex
system. Intel recognized the need to integrate commonly used system peripherals onto the same
silicon die as the CPU. In 1982 Intel addressed this need by introducing the 80186/80188 family of
embedded microprocessors. The 80186 integrated the following peripherals with the CPU: Chip
Select Unit, Interrupt Unit, Clock Generator, DMA Unit, Interrupt Unit, and a Timer Counter Unit.
In addition to the new integrated peripherals, the CPU was enhanced by adding new instructions and
reducing the time required to perform all memory access instructions.

As technology advanced and turned towards small geometry CMOS processes, it became clear that
a new 80186 was needed. In 1987 Intel announced the second generation of the 80186 family: the
80C186. The 80C186 is pin compatible with the 80C186 while adding an enhanced feature set
including a power save unit, a refresh control unit, and a direct 80C 187 interface. The high performance
CHMOS III process allowed the 80C 186 to run at twice the clock rate of the NMOS 80186.

1-3

INTRODUCTION

In the past 5 years the size of personal computing equipment has shrunk dramatically. Computers that
once took up half the desk now sit comfortably on your lap during a long flight. Portable phones, once
a bulky and expensive luxury, are now commonplace. The FAX machine, a now critical piece of
office equipment, is now venturing into the automobile.

Intel saw the need for highly integrated yet low power solutions for these and many other computing
applications. Once again, the 80186 architecture was the answer.

The 80C186EB is the first member of the 80C186 Modular Core family. In following with the
electronics industry trend towards application specific products, the CPU of the 80C 186 was rede­
signed to be a stand alone, proliferatable, core. The core was given an internal interface bus to which
a wide array of integrated peripherals could be attached.

The entire system was designed to be static. When the clock is disabled, while waiting for a relatively
slow human to touch the keyboard for instance, the chip will shut off and consume almost no power.
This kind of power management is critical in portable applications.

A new and enhanced feature set was added to the 80C186 Modular Core. This new feature set
exchanges the DMA controller for 2 serial ports and enhances the capabilities of the original periph­
erals.

The 80C 186EB is the direct result of eight years of 80186 family development. It offers the designer
the peace of mind of a well established architecture with benefits of state of the art technology.

1.2 HOW TO USE THIS MANUAL

Throughout this manual you will come across phrases such as "80C186 Modular Core Family" or
"80C 186EB family". Each of these terms refers to a specific set of 80C 186EB products. The phrases
and the products they refer to are as follows:

80C186 Modular Core Family: This phrase refers to any product that uses the embedded
80C186 CPU core architecture. At this time these are the 80C186EB and 80C188EB. Most
discussions that refer to the Modular Core Family are also true of the 80186 and 80C186 CPU's.

80C186 Modular Core: Without the family, this refers to just the 16-bit bus members of the
modular core family.

80C188 Modular Core: This phrase refers to the 8-bit bus products.

80C186EB Family: This phrase refers specifically to the 80C186EB and the 80C188EB; both
the Modular CPU core and the specific peripheral set.

1-4

INTRODUCTION

80C186EB: This refers to just the 80C186EB (16-bit bus) version of the 80C186EB family.

80C188EB: The 8-bitbus member of the 80C186EB family.

Each chapter covers a specific section of the device beginning with the CPU core. In the appendices
you will find information regarding the differences among family members, instruction set references,
and special topics.

This user's guide is intended to be a supplement to the device data sheet. Specific timing values are
not discussed in this guide; they can be found in the data sheet.

1-5

Overview of the BOC 1B6 Family 2
Modular Microprocessor
Core Architecture

CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

The 80C 186 Modular Microprocessor Core shares a common base architecture with the 8086, 8088,
80186, 80188, 80286, i386™, and i486™ processors. The 80C186 Modular Core maintains full
object code compatibility with the well-known 8086/8088 family of 16-bit microprocessors, while
adding additional hardware and software performance enhancements. Most instructions require
fewer clocks to execute on the 80C 186 Modular Core because of hardware enhancements in the Bus
Interface Unit and the Execution Unit. In addition, there are a number of additional instructions which
simplify programming and reduce code size (see Appendix A.7).

This section describes the base architecture of the 80C186 Modular Core family. Those readers
already familiar with the 8086/8088 architecture will find this section to be, for the most part, a review
and may wish to read Appendix A ("Differences Between the 80C 186 Modular Core Family .and the
8086/8088") instead.

2.1 ARCHITECTURAL OVERVIEW

The 80C 186 Modular Microprocessor Core incorporates two separate processing units: an Execution
Unit (EU) and aBuslnterface Unit (BIU). TheEU is functionally identical among allfamilymembers.
In the 80C 186 Core the BIU is configured for a 16-bit external data bus and in the 80C 188 Core the
BIU is configured for an 8-bit external data bus. The two units are connected by an instruction prefetch
queue.

The EU executes instructions and the BIU fetches instructions, reads operands, and writes results.
Whenever the EU requires another opcode byte, it takes the byte out of the prefetch queue. The two
units can operate independently of one another and are able, under most circumstances, to extensively
overlap instruction fetches and execution.

The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU) which performs 8-bit
or 16-bit arithmetic and logical operations. It provides for data movement among registers, memory
and I/O space. In addition, the CPU allows for high speed data transfer from one area of memory to
another using string move instructions, and to or from an I/O port and memory using block I/O
instructions. Finally, the CPU provides many conditional branch and control instructions.

This architecture features 14 basic registers which are grouped as general registers, segment registers,
pointer registers, and status and control registers. The four 16-bit general purpose registers (AX, BX,
CX, and DX) may be used as operands in most arithmetic operations in either 8- or 16-bit units. The
four 16-bit pointer registers (SI, DI, BP, and SP) may be used both in arithmetic operations and in
accessing memory-based variables. Four 16-bit segment registers (CS, DS, SS, and ES) allow simple
memory partitioning to aid modular programming. The status and control registers consist of an
instruction pointer (JP) and a status word register containing flag bits.

2-1

inter OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Figure 2.1 is a simplified CPU block diagram.

AH AL

BH BL
CH CL

GENERAL DH DL
REGISTERS SP

SP
DI
SI

ALU DATA BUS

(16 BITS)

EXECUTION UNIT I
(EU)

CS
DS
SS

DATA BUS

(16 BITS)

BUS
CONTROL

LOGIC

BUS INTERFACE UNIT
(BIU)

EXTERNAL
BUS

270288·001·03

Figure 2.1. Simplified Functional Block Diagram of the 80C186 Modular Core Family CPU

2.1.1 EXECUTION UNIT

The EU is responsible for the execution of all instructions, for providing data and addresses to the
BIU, and for manipulating the general registers and the flag register. A 16-bit ALU in the EU
maintains the CPU status and control flags, and manipulates the general registers and instruction
operands. All registers and data paths in the EU are 16 bits wide for fast internal transfers.

The EU does not connect directly to the system bus. It obtains instructions from a queue maintained
by the BIU. Likewise, when an instruction requires access to memory or to a peripheral device, the
EU requests the BIU to obtain and store the data. All addresses manipulated by the EU are 16 bits
wide. The BIU, however, performs an address calculation that gives the EU access to the full
megabyte of memory space.

When the EU is ready to execute an instruction, it fetches the instruction object code byte from the
BIU's instruction queue and then executes the instruction. If the queue is empty when the EU is ready
to fetch an instruction byte, the EU waits for the instruction byte to be fetched. If a memory location

2-2

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

or I/O port must be addressed during the execution of an instruction, the EU requests the BIU to
perform the required bus cycle.

2.1.2 BUS INTERFACE UNIT

The 80C 186 Core and 80C 188 Core BIU s are functionally identical, but are implemented differently
to match the structure and performance characteristics of their respective system buses. Data is
transferred between the CPU and memory or peripheral devices upon demand from the EU. The BIU
executes all external bus cycles. This unit consists of the segment registers, the instruction pointer, the
instruction code queue, and several miscellaneous registers. The BIU transfers data to and from the
EU on the ALU data bus.

The BIU generates 20-bit physical addresses in a dedicated adder. The adder shifts a 16-bit segment
value left 4 bits and then adds an offset value derived from combinations of the pointer registers, the
instruction pointer, and immediate values (see Figure 2.2). Any carry of this addition is ignored.

+

=

TO MEMORY

~_1_2 _3_4--!0 ~!~~ENT} LOGICAL

ADDRESS

OFFSET
~---'----'O

PHYSICAL ADDRESS

Figure 2.2. Physical Address Generation

270288-001-04

During periods when the EU is busy executing instructions, the BIU "looks ahead" and prefetches
more instructions from memory. As long as the prefetch queue is partially full, the EU can quickly
retrieve instructions upon demand.

2.1.3 GENERAL REGISTERS

80C186 Modular Core family CPUs have eight 16-bit general registers (see Figure 2.3). The general
registers are subdivided into two sets of four registers each. These are the data registers (also called
the H & L group for high and low), and the pointer and index registers (also called the P & I group).

2-3

DATA GROUP

POINTER AND
INDEX GROUP

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

H I

8 I 7 o 15

AX
- - - - - - - - - - r - - - - - - - - - - - ACCUMULATOR

AH I AL

BX

-----------r----------- ME
BH I BL

CX
- - - - - - - - - - - r - - - - - - - - - - - COUNT

CH I CL

DX

f- - - - - - - - - - - - r - - - - - - - - - - - DATA
DH I DL

SP STACK POINTER

BP BASE POINTER

SI SOURCE INDEX

DI DESTINATION INDEX

270288-001-5

Figure 2.3. General Registers

The data registers are unique in that their upper and lower halves are separately addressable. This
means that each data register can be used interchangeably as a 16-bit register or as two 8-bitregisters.
The other CPU registers are always accessed as 16-bit only. The CPU can use data registers without
constraint in most arithmetic and logic oper~tions. Most arithmetic and logic operations can also use
the pointer and index registers. Additionally, some instructions use certain registers implicitly (see
Table 2.1), therefore allowing compact yet powerful encoding.

2-4

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Table 2.1. Implicit Use of General Registers

REGISTER OPERATIONS

AX Word Multiply, Word Divide,
Word 1/0

AL Byte Multiply, Byte Divide, Byte
1/0, Translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, Word Divide,
Indirect 1/0

SP Stack Operations

SI String Operations

DI String Operations

The state of any of the general registers is undefined at RESET.

2.1.4 SEGMENT REGISTERS

The 80C186 Modular Core family memory space (up to one megabyte) is divided into logical
segments of up to 64 Kbytes each. The CPU has direct access to four segments at a time. The base
addresses (starting locations) of these memory segments are contained in the segment registers (see
Figure 2.4). The CS register points to the current code segment. Instructions are fetched from the CS
segment. The SS register points to the current stack segment. Stack operations are performed on
locations in the SS segment. The DS register points to the current data segment. The data segment
generally contains program variables. The ES register points to the current extra segment, which also
is typically used for data storage. The segment registers are accessible to programs and can be
manipulated with several instructions.

15 o

cs CODE SEGMENT

DS DATA SEGMENT

ss STACK SEGMENT

ES EXTRA SEGMENT

27088-001-6

Figure 2.4. Segment Registers

2-5

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Upon RESET, the CS register is initialized to OFFFFH, and the DS, ES, and SS register are all
initialized to zero.

2.1.5 INSTRUCTION POINTER

The BIU updates a 16-bit instruction pointer (IP) register so that it contains the offset (distance in
bytes) of the next instruction from the beginning of the current code segment. In other words, the IP
register points to the next instruction. During normal execution, the instruction pointer contains the
offset of the next instruction to be fetched by the BIU. Whenever the IP register is saved on the stack,
however, it is first automatically adjusted to point to the next instruction to be executed. Programs do
not have direct access to the instruction pointer, but it may change, be saved, or be restored as a result
of program execution.

RESET initializes the instruction pointer to OOOOH. The concatenation ofCS and IP values comprises
a starting execution address of OFFFFOH (see Section 2.1.8 for a description of address formation).

2.1.6 FLAGS

The 80C 186 Core family has six one-bit status flags (see Figure 2.5) that the EU posts as the result of
an arithmetic or logic operation. Program branch instructions allow a program to alter its execution
depending on conditions flagged by prior operation. Different instructions affect the status flags
differently, generally reflecting the following states:

If the auxiliary flag (AF) is set, there has been a carry out from the low nibble into the high nibble
or a borrow from the high nibble into the low nibble of an 8-bit quantity (low-order byte of a 16-
bit quantity). This flag is used by decimal arithmetic instructions.

If the carry flag (CF) is set, there has been a carry out of, or a borrow into, the high-order bit of
the instruction result (8- or 16-bit). The flag is used by instructions that add and subtract multibyte
numbers. Rotate instructions can also isolate a bit in memory or a register by placing it in the carry
flag.

If the overflow flag (OF) is set, an arithmetic overflow has occurred; that is, a significant digit has
been lost because the size of the result exceeded the capacity of its destination location. An
Interrupt On Overflow instruction is available that will generate an interrupt in this situation.

If the sign flag (SF) is set, the high-order bit of the result is a 1. Since negative binary numbers
are represented in standard two's complement notation, SF indicates the sign of the result (0 =
positive, 1 = negative).

If the parity flag (PF) is set, the result has even parity, an even number of I-bits. This flag can be
used to check for data transmission errors.

If the zero flag (ZF) is set, the result of the operation is O.

2-6

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

STATUS FLAGS:

CARRY ------------------.
PARITY ---------------,

AUXILIARY CARRY -------------,
ZERO----------,

SIGN --------..,

OVER FLOW ----..,

STATUS WORD:

11 7 6 4 2

CONTROL FLAGS: 1....-- TRAP FLAG

o

I ,""'-"""''' 1....--- INTERRUPT ENABLE 1....---- DIRECTION FLAG

270288-001-7

Figure 2.5. Status Word Format

The additional control flags (see Figure 2.5) can be set and cleared by programs to alter processor
operations:

Setting the direction flag (DF) causes string instructions to auto-decrement; that is, to process
strings from the high address to the low address, or "right to left". Clearing OF causes string
instructions to auto-increment, or process strings "left to right."

• Setting the interrupt-enable flag (IF) allows the CPU to recognize maskable external or internal
interrupt requests. Clearing IF disables these interrupts. The interrupt-enable flag has no effect
upon software interrupts or non-maskable externally generated interrupts.

Setting the trap flag (TF) puts the processor into single-step mode for debugging. In this mode,
the CPU automatically generates an internal interrupt after each instruction, allowing a program
to be inspected as it executes instruction by instruction.

Both the status and control flags are contained in a 16-bit status word (see Figure 2.5). The RESET
condition of the status word is OFOOOH.

2.1.7 MEMORY SEGMENTATION

Programs for the 80C186 Modular Core family view the one megabyte memory space as a group of
segments that are user-defined according to application. A segment is a logical unit of memory that
may be up to 64 Kbytes long. Each segment if made up of contiguous memory locations and is an
independent, separately-addressable unit. Software assigns every segment a base address (starting
location) in memory space. All segments begin on 16-bit memory boundaries. There are no other

2-7

OVERVIEW OF THE80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

restrictions on segment locations. Segments may be adjacent, disjoint, partially overlapped, or fully
overlapped (see Figure 2.6). A physical memory location may be mapped into (covered by) one or
more logical segments.

LOGICAL
SEGMENTS

~t-----+----t----tl---~I?)~~~~~L
OH 10000H 20000H 30000H

Figure 2.6. Segment Locations in Physical Memory

270288-001-08

The four segment registers point to four "currently addressable" segments (see Figure 2.7). The
currently addressable segments provide a work space consisting of 64 Kbytes for code, a 64K stack,
and 128K of data storage. Programs obtain access to code and data in other segments by changing the
segment registers to point to the desired segments.

2-8

inter OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

FFFFFH

j
DATA: DS: B ~-- G CODE: CS: E 1---,

D

STACK: SS: H \--, I
I

: [j EXTRA: ES: h II
I I
I I
IL
I
L_

OH

Figure 2.7. Currently Addressable Segments

270288-001-09

The segmented memory structure of the 80Cl86 Modular Core family is a hardware provision to
encourage modular programming. Every program will use segmentation differently. Smaller appli­
cations tend to initialize the segment registers and then simply forget them. Larger applications give
careful consideration to segment definition and use.

2.1.8 LOGICAL ADDRESSES

It is useful to think of every memory location as having two kinds of addresses, physical and logical.
A physical address is a 20-bit value that identifies each unique byte location in the memory space.
Physical addresses range from OH to FFFFFH. All exchanges between the CPU and memory com­
ponents use a physical address.

Programs deal with logical, rather than physical addresses. Program code can be developed without
prior knowledge of where the code is to be located in memory; in larger applications, dynamic
management of memory resources is a necessity. A logical address consists of a segment base value
and an offset value. For any given memory location, the segment base value locates the first byte of
the segment and the offset value is the distance, in bytes, of the target location from the beginning of
the segment. Segment base and offset values are unsigned 16-bit quantities. Many different logical
addresses can map to the same physical location. In the example (see Figure 2.8), physical memory
location 2C3H is contained in two different overlapping segments, one beginning at 2BOH and the
other at 2COH.

2-9

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

PHYSICAL
ADDRESS

LOGICAL
ADDRESSES

,.

'I"

OF'SET
(3H)

~!~~ENT-...J

OFFSET
(13H)

SEGMENT
BASE

,~

Figure 2.8. Logical and Physical Address

""

~

2C4H

2C3H

2C2H

2C1H
2COH

2BFH
2BEH

2BDH

2BCH

2BBH

2BAH

2B9H
2B8H

2B7H
2B6H

2B5H

2B4H
2B3H
2B2H

2B1H
2BOH

270288-001-10

Ifleft alone, the processor automatically assigns segments based on the specific addressing needs of
the program. The segment register to be selected is automatically chosen according to the rules in
Table 2.2. All information in one segment type generally shares the same logical attributes (e.g., code
or data), leading to programs which are shorter, faster, and better structured.

To generate a physical address, the BIU must first obtain the logical address_ The logical address of
a memory location can come from different sources, depending on the type of reference that is being
made (see Table 2.2).

Table 2.2. Logical Address Sources

DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET

BASE BASE

Instruction Fetch CS NONE IP
Stack Operation SS NONE SP
Variable (except following) DS CS, ES,SS Effective Address
String Source DS CS, ES,SS SI
String Destination ES NONE DI
BP Used As Base Register SS CS, DS, ES Effective Address

2-10

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Segment base addresses are always held in the segment registers. The BIU conveniently assumes
which segment register contains the base address according to the type of memory reference made.
However, it is possible for a programmer to explicitly direct the BIU to access a variable in any of the
currently addressable segments (except for the destination operand of a string instruction). In assembly
language, this is done by preceding an instruction with a segment override prefix.

Instructions are always fetched from the current code segment; the IP register contains the offset of
the target instruction from the beginning of the segment. Stack instructions always operate on the
current stack segment; the SP (stack pointer) register contains the offset of the top of the stack. Most
variables (memory operands) are assumed to reside in the current data segment, but a program can
instruct the BIU to override this assumption. Often, the offset of a memory variable is not directly
available and must be calculated at execution time. This calculation is based on the addressing mode
(see Section 2.2.2) specified in the instruction; the result is called the operand's effective address
(EA).

Strings are addressed differently than other variables. The source operand of a string instruction is
assumed to lie in the current data segment, but the program may use another currently addressable
segment. The operand's offset is taken from the SI (source index) register. The destination operand
of a string instruction always resides in the current extra segment; its offset is taken from the DI
(destination index) register. The string instructions automatically adjustthe SI and DI registers as they
process the strings one byte or word at a time.

When register BP, the base pointer register, is designated as a base register in an instruction, the
variable is assumed to reside in the current stack segment. Therefore, register BP provides a convenient
way to address data on the stack. However, the BP register can also be used to access data in any of
the other currently addressable segments.

2.1.9 DYNAMICALLY RELOCATABLE CODE

The segmented memory structure of the 80C186 Modular Core family makes it possible to write
programs that are position-independent, or dynamically relocatable. Dynamic relocation allows a
multiprogramming or multitasking system to make particularly effective use of available memory.
The processor can write inactive programs to a disk and reallocate the space they occupied to other
programs. If a disk -resident program is needed later, it can be read back into any available memory
location and restarted. Similarly, if a program needs a large contiguous block of storage, and the total
amount is only available in non-adjacent fragments, other program segments can be compacted to
free up a continuous space. This process is illustrated graphically in Figure 2.9.

2-11

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

BEFORE RELOCATION AFTER RELOCATION

CODE
SEGMENT

L CS CS

I
SS

STACK ;-- OS
SEGMENT

SS

OS -
r- ES ES -

DATA CODE
SEGMENT SEGMENT

STACK
SEGMENT

DATA
SEGMENT

EXTRA
SEGMENT

EXTRA
SEGMENT

C:=J FREE SPACE

270288-001-11

Figure 2.9. Dynamic Code Relocation

To be dynamically relocatable, a program must not load or alter its segment registers and must not
transfer directly to a location outside the current code segment. In other words, all offsets in the
program must be relative to fixed values contained in the segment registers. This allows the program
to be moved anywhere in memory as long as the segment registers are updated to point to the new base
addresses.

2.1.10 STACK IMPLEMENTATION

Stacks in the 80C 186 Modular Core family are implemented in memory and are located by the stack
segment register (SS) and the stack pointer (SP). A system may have numerous stacks, and a stack
may be up to 64 Kbytes long, the maximum length of a segment. An attempt to grow a stack beyond
64 K overwrites the beginning of the segment. Only one stack is directly addressable at a time_ The SS
register contains the base address of the current stack; however, the base address is not the origination
point of the stack. The SP register contains an offset which points to the top of stack (TOS).

2-12

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Stacks are 16 bits wide; instructions that operate on a stack add and remove stack elements one word
at a time. An element is pushed onto the stack (see Figure 2.1 0) by first decrementing the SP register
by 2 and then writing the data word. An element is popped off the stack by copying it from the TOS
and then incrementing the SP register by 2. In other words, the stack goes down in memory toward
its base address. Stack operations never move elements on the stack, nor do they erase them. The top
of the stack changes only as a result of updating the stack pointer.

EXISTING
STACK , 'r-

t 1062 00 11

1060 22 33

" 44 55 ::;;0 105E 0;:5
105B 66 77 I=UJ

au..
mO

105A 88 99

~1058 AA BB

r 1056 01 23 f- G
1054 45 67 ~~
1052 89 AB g: ~

~b~ zO

10 50 SS

00 08 SP

PUSH AX

AX~l
\,

1062 00 11 I
1060 22 33 I
105E 44 55

I 105B 66 77

105A 88 99 I
1058 AA BB .J TOS r-- 1056 34 12

1054 45 67

1052 89 AB

r 1050
CD EF

10 50 SS

00 06 SP

STACK OPERATION FOR CODE SEQUENCE
PUSH AX
POP AX
POP BX

Figure 2.10. Stack Operation

2.1.11 RESERVED MEMORY AND I/O SPACE

POP AX
POP BX

AX~-,

BX~l I
I

I I 1062 00 11

1060 22 33 I I
I 55 I 105E 44
I 105C 66 77 I I ~105A 88 99 J I 105B AA BB _-.J

1056 34 12

1054 45 67

1052 89 AB

r 1050
CD EF

10 50 SS

00 OA SP

270288·001-12

Two specific areas in memory and one area in I/O space are reserved in the 80C186 Core family.

Locations OH through 3FFH in low memory are reserved for interrupt vectors.

Locations OFFFFOH through OFFFFFH in high memory are reserved for system reset code since
the processor begins execution at OFFFFOH.

Locations OF8H through OFFH in I/O space are reserved for communication with other Intel

2-13

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

hardware products. On the 80C186 Core, these addresses are used as I/O ports for the 80C187
numerics processor extension.

The peripheral control block (see Section 5.0) may reside in memory or I/O space. All unused
locations in the peripheral control block are also reserved.

2.2 SOFTWARE OVERVIEW

An80C 186 Modular Core family members execute exactly the same instructions. This instruction set
includes all the 8086/8088 instructions plus several useful additions and enhancements. The following
sections provide a description of the instructions by category and a detailed discussion of the various
operand addressing modes.

Software for 80C186 Core family systems does not need to be written in assembly language. The
processor provides direct hardware support for programs written in the many high-level languages
available. Most high-level languages store variables in memory; the symmetrical instruction set
supports direct operation on memory operands, including operands on the stack. The hardware
addressing modes provide efficient, straightforward implementations of based variables, arrays,
arrays of structures and other high-level language data constructs. A powerful set of memory-to­
memory string operations is available for efficient character data manipulation. Finally, routines with
critical performance requirements that cannot be met with high-level languages may be written in
assembly language and linked with high-level code.

2.2.1 INSTRUCTION SET

Instructions in the 80C 186 Modular Core family treat different types of operands uniformly. Nearly
every instruction can operate on either byte or word data. Register, memory and immediate operands
may be specified interchangeably in most instructions. The exception to this is that immediate values
serve as source and not destination operands. In particular, memory variables may be added to,
subtracted from, shifted, compared, and so on, in place, without moving them in and out of registers.
This saves instructions, registers, and execution time in assembly language programs. In high-level
languages, where most variables are memory-based, compilers can produce faster and shorter object
programs.

The 80C186 Core family instruction set can be viewed as existing on two levels. One is the assembly
level and the other is the machine level. To the assembly language programmer, the 80C186 Core
family appears to have a repertoire of about 100 instructions. One MOV (data move) instruction, for
example, transfers a byte of a word from a register of a memory location or an immediate value to
either a register or a memory location. The 80C 186 Modular Core family CPU s, however, recognize
28 different machine versions of the MOV instruction.

The two levels of instruction set address two different requirements: efficiency and simplicity. The
approximately 300 forms of machine-level instructions make very efficient use of storage. For

2-14

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

example, the machine instruction that increments a memory operand is three or four bytes long
because the address of the operand must be encoded in the instruction. To increment a register,
however, does not require as much information, so the instruction can be shorter. The 80C 186 Core
family has eight different machine-level instructions that increment a different 16-bit register. Each
of these instructions is only one byte long.

The assembly level instructions simplify the programmer's view of the instruction set. The program­
mer writes one form of an INC (increment) instruction and the assembler examines the operand to
determine which machine level instruction to generate. The following paragraphs provide a func­
tional description of the assembly-level instructions.

2.2.1.1 DATA TRANSFER INSTRUCTIONS

The instruction set contains 14 data transfer instructions. These instructions move single bytes and
words betwc.!n memory and registers, and also move single bytes and words between the AL or AX
registers and I/O ports. Table 2.3 lists the four types of data transfer instructions and their functions.

2-15

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Table 2.3. Data Transfer Instructions Table 2.4. Arithmetic Instructions

GENERAL PURPOSE ADDITION

MOV Move byte or word ADD Add byte or word
PUSH Push word onto stack ADC Add byte or word with carry

POP Pop word off stack INC Increment byte or word by 1

PUSHA Push registers onto stack AAA ASCII adjust for addition
POPA Pop registers off stack DAA Decimal adjust for addition
XCHG Exchange byte or word SUBTRACTION
XLAT I Translate byte

SUB Subtract byte or word
INPUT/OUTPUT SBB Subtract byte or word with

IN Input byte or word borrow

OUT Output byte or word D.EC Decrement byte or word by 1

ADDRESS OBJECT AND STACK FRAME
NEG Negate byte or word
CMP Compare byte or word

LEA Load effective address AAS ASCII adjust for subtraction
LOS Load pointer using OS DAS Decimal adjust for subtraction
LES Load pointer using ES

ENTER Build stack frame
MULTIPLICATION

LEAVE Tear down stack frame MUL Multiply byte or word unsigned

FLAG TRANSFER
IMUL Integer multiply byte or word

AAM ASCII adjust for multiply
LAHF Load AH register from flags
SAHF Store AH register in flags

DIVISION

PUSHF Push flags onto stack DIV Divide byte or word unsigned

POPF Pop flags off stack IDIV Integer divide byte or word

AAD ASCII adjust for division

CBW Convert byte to word
CWO Convert word to doubleword

Table 2.5. Arithmetic Interpretation of 8·Blt Numbers

HEX BIT PATTERN
UNSIGNED SIGNED UNPACKED PACKED

BINARY BINARY DECIMAL DECIMAL

07 00000111 7 +7 7 7

89 10001001 137 -119 invalid 89

C5 11000101 197 -59 invalid invalid

Data transfer instructions are categorized as general purpose, input/output, address object, and flag
transfer. The stack manipulation instructions which are used for transferring flag contents, and the
instructions for loading segment registers are also included in this group. Figure 2.11 shows the flag
storage formats. The address object instructions manipulate the addresses of variables instead of the
contents of values of the variables. This is useful for list processing, based variable, and string
operations.

2-16

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

~~~~IS,Z,U,A,U,P,u,cl 
17 6 5 4 3 2 1 01 
I I 
I 1 
I I 

PUSHFI I POPFUIUIUIUIO,D, I ,T,S,Z,U,AIU,P1U,C 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

U = UNDEFINED; VALUE IS INDETERMINATE ° = OVERFLOW FLAG 
D = DIRECTION FLAG 
I = INTERRUPT ENABLE FLAG 
T = TRAP FLAG 
S = SIGN FLAG 
Z =ZERO FLAG 
A = AUXILIARY CARRY FLAG 
P = PARITY FLAG 
C = CARRY FLAG 

Figure 2.11. Flag Storage Format 

2.2.1.2 ARITHMETIC INSTRUCTIONS 

The arithmetic instructions (see Table 2.4) operate on four types of numbers: 

1. Unsigned binary. 

2. Signed binary (integers). 

3. Unsigned packed decimal. 

4. Unsigned unpacked decimal. 

270288-001-13 

Table 2.5 shows the interpretations of various bit patterns according to each number type. 

Binary numbers may be 8 or 16 bits long. Decimal numbers are stored in bytes, two digits per byte for 
packed decimal and one digit per byte for unpacked decimal. The processor always assumes that the 
operands specified in arithmetic instructions contain data that represent valid numbers for the instruc­
tion being performed. Invalid data may produce unpredictable results. The processor analyzes 
arithmetic results and posts certain characteristics of the operation to six flags. 

2.2.1.3 BIT MANIPULATION INSTRUCTIONS 

There are three groups of instructions for manipulating bits within both bytes and word. These three 
groups are logical, shifts and rotates. Table 2.6 lists these three groups of bit manipUlation instructions 
with their functions. 

2-t7 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

The logical instructions include the Boolean operators NOT, AND, inclusive OR, and exclusive OR 
(XOR). A TEST instruction that sets the flags as a result of a Boolean AND operation, but does not 
alter either of its operands, is also included. 

The bits in bytes and words may be shifted arithmetically or logically. Up to 255 shifts may be 
performed, according to the value of the count operand coded in the instruction. The count may be 
specified as an immediate value or as a variable in the CL register, allowing the shift count to be a 
variable supplied at execution time. Arithmetic shifts may be used to multiply and divide binary 
numbers by powers of two. Logical shifts can be used to isolate bits in bytes or words. 

Bits in bytes and words can also be rotated. The processor does not discard the bits rotated out of an 
operand; the bits circles back to the other end of the operand. As in the shift instructions, the number 
of bits to be rotated is taken from the count operand, which may specify either an immediate value, 
or the CL register. The carry flag may act as an extension of the operand in two of the rotate 
instructions, allowing a bit to be isolated in CF and then tested by a JC Uump if carry) or JNC Uump 
if not carry) instruction. 

2.2.1.4 STRING INSTRUCTIONS 

Five basic string operations allow strings of bytes or words to be operated on, one element (byte or 
word) at a time. Strings of up to 64 Kbytes may be manipulated with these instructions. Instructions 
are available to move, compare and scan for a value, as well as moving string elements to and from 
the accumulator. Table 2. 7 lists the string instructions. These basic operations may be preceded by a 
special one-byte prefix that causes the instruction to be repeated by the hardware, allowing long 
strings to be processed much faster than would be possible with a software loop. The repetitions can 
be terminated by a variety of conditions, and repeated operations may be interrupted and resumed. 

The string instructions operate similarly in many respects (refer to Table 2.8). A string instruction 
may have a source operand, a destination operand, or both. The hardware assumes that a source string 
resides in the current data segment. A segment prefix may be used to override this assumption. A 
destination string must be in the current extra segment. The assembler checks the attributes of the 
operands to determine if the elements of the strings are bytes or words. However, the assembler does 
not use the operand names to address strings. Instead, the contents of register SI (source index) are 
used as an offset to address the current element of the source string. Also, the contents of register DI 
(destination index) are taken as the offset of the current destination string element. These registers 
must be initialized to point to the source/destination strings before executing the string instructions. 
The LDS, LES and LEA instructions are useful in performing this function. 

String instructions automatically update the SI or DI register or both prior to processing the next string 
element. Setting the direction flag (DF) determines whether the index registers are auto-incremented 
(DF = 0) or auto-decremented (DF = 1). The processor adjusts the DI or SI register or both by one if 
byte strings are being processed. The adjustment is two for word strings. 

2-18 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

Table 2.6. Bit Manipulation Instructions 

LOGICALS 

NOT "Not" byte or word 
AND "And" byte or word 
OR "Inclusive or" byte or word 
XOR "Exclusive or" byte or word 
TEST "Test" byte or word 

SHIFTS 

SHUSAL Shift logical/arithmetic left 
byte or word 

SHR Shift logical right byte or word 
SAR Shift arithmetic right byte or 

word 

ROTATES 

ROL Rotate left byte or word 
ROR Rotate right byte or word 
RCL Rotate through carry left byte 

or word 
RCR Rotate through carry right byte 

or word 

Table 2.7. String Instructions 

REP 
REPElREPZ 
REPNE/REPNZ 

MOVS 
MOVSB/MOVSW 
INS 
OUTS 
CMPS 

SCAS 
LODS 
sros 

Repeat 
Repeat while equal/zero 
Repeat while not 

equal/not zero 
Move byte or word string 
Move byte or word string 
Input byte or word string 
Output byte or word string 
Compare byte or word 

string 
Scan byte or word string 
Load byte or word string 
Store byte or word string 

Table 2.8. String Instruction Register and Flag Use 

SI 
01 

CX 
AUAX 

OF 

ZF 

Index (offset) for source string 
Index (offset) for destination 

string 
Repetition counter 
Scan value 
Destination for LODS 
Source for STOS 

o = auto-increment SI, 01 
1 = auto-decrement SI, 01 
Scan/compare terminator 

2-19 

Table 2.9. Program Transfer Instructions 

UNCONDITIONAL TRANSFERS 

CALL Call procedure 
RET Return from procedure 
JMP Jump 

CONDITIONAL TRANSFERS 

JNJNBE Jump if above/not below 
nor equal 

JAE/JNB Jump if above or equal/ 
not below 

JB/JNAE Jump if below/not above 
nor equal 

JBE/JNA Jump if below or equal/ 
not above 

JC Jump if carry 
JElJZ Jump if equal/zero 
JG/JNLE Jump if greater/not less 

nor equal 
JGElJNL Jump if greater or equal/ 

not less 
JUJNGE Jump if less/not greater 

nor equal 
JLE/JNG Jump if less or equal/ 

not greater 
JNC Jump if not carry 
JNElJNZ Jump if not equal/not zero 
JNO Jump if not overflow 
JNP/JPO Jump if not parity/parity odd 
JNS Jump if not sign 
JO Jump if overflow 
JP/JPE Jump if parity/parity even 
JS Jump if sign 

ITERATION CONTROLS 

LOOP Loop 
LOOPE/LQOPZ Loop if equal/zero 
LOOPNE/LOOPNZ Loop if not equal/not zero 
JCXZ Jump if register CX=O 

INTERRUPTS 

INT Interrupt 
INTO I nterrupt if overflow 
BOUND Interrupt if out of array 

bounds 
IRET Interrupt return 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

If arepeatpreftx has been coded, thenregisterCX (the count register) is decremented by one after each 
repetition of the string instruction. The CX register must be initialized to the number of repetitions 
desired before the string instruction is executed. If the CX register is 0, the string instruction is not 
executed and control goes to the following instruction. 

2.2.1.5 PROGRAM TRANSFER INSTRUCTIONS 

The sequence in which instructions are executed in the 80C 186 Modular Core family is determined 
by the contents of the CS and IPregisters. The CS register contains the base address of the current code 
segment. The IP register points to the memory locations from which the next instruction is to be 
fetched. In most operating conditions, the next instruction to be executed will have already been 
fetched and is waiting in the CPU instruction queue. The program transfer instructions operate on the 
instruction pointer and on the CS register; changing the content of these causes normal sequential 
operation to be altered. When a program transfer occurs, the queue no longer contains the correct 
instruction. When the BIUobtains the next instruction from memory using the new IP andCS values, 
it passes the instruction directly to the EU and begins reftlling the queue from the new location. 

Four groups of program transfers are available with the 80C186 Core family processors. See Table 
2.9. These are unconditional transfers, conditional transfers, iteration control instructions, and in­
terrupt crelated instructions. 

The unconditional transfer instructions may transfer control to a target instruction within the current 
code segment (intrasegment transfer) or to a different code segment (intersegment transfer). The 
assembler terms an intrasegment transfer SHORT or NEAR and an intersegment transfer FAR. The 
transfer is made unconditionally any time the instruction is executed. 

The conditional transfer instructions are jumps that mayor may not transfer control depending on the 
state of the CPU flags at the time the instruction is executed. These 18 instructions (see Table 2.10) 
each test a different combination of flags for a condition. If the condition is logically TRUE then 
control is transferred to the target specified in the instruction. If the condition is FALSE then control 
passes to the instruction that follows the conditional jump. All conditional jumps are SHORT, that is, 
the target must be in the current code segment and within -128 to + 127 bytes of the ftrst byte of the 
next instruction. For example, JMP OOH causes a jump to the fIrst byte of the next instruction. Since 
jumps are made by adding the relative displacement of the target to the instruction pointer, all 
conditional jutnps are self-relative and are appropriate for position-independent routines. 

2-20 



MNEMONIC 

JAlJNBE 
JAElJNB 

JB/JNAE 
JBElJNA 

JC 
JE/JZ 
JG/JNLE 

JGElJNL 
JUJNGE 
JLE/JNG 
JNC 
JNE/JNZ 

JNO 
JNP/JPO 
JNS 
JO 
JP/JPE 

JS 

OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

Table 2.10. Interpretation of Conditional Transfers 

CONDITION TESTED "JUMP IF .•• " 

(CFor ZF)=O above/not below nor equal 

CF=O above or equal/not below 

CF=1 below/not above nor equal 
(CForZF)=1 below or equal/not above 

CF=1 carry 
ZF=1 equal/zero 
((SF xor OF) or ZF) = 0 greater/not less nor equal 
(SF xor OF)=O greater or equal/not less 
(SF xor OF)=1 less/not greater nor equal 
((SF xor OF) or ZF)=1 less or equal/not greater 
CF=O not carry 

ZF=O not equal/not zero 

OF=O not overflow 

PF=O not parity/parity odd 
SF=O not sign 

OF=1 overflow 

PF=1 parity/parity equal 
SF=1 sign 

Note: "above" and "below" refer to the relationship of two unsigned values; 
"greater" and "less" refer to the relationship of two signed values. 

The iteration control instructions can be used to regulate the repetition of software loops. These 
instructions use the CX register as a counter. Like the conditiorial transfers, the iteration control 
instructions are self-relative and may only transfer to targets that are within -128 to +127 bytes of 
themselves, i.e., they are SHORT transfers. 

The interrupt instructions allow interrupt service routines to be activated by programs as well as by 
external hardware devices. The effect of software interrupts is similar to hardware-initiated inter­
rupts. However, the processor cannot execute an interrupt acknowledge bus cycle if the interrupt 
originates in software or with an NMI (Non-Maskable Interrupt). 

2.2.1.6 PROCESSOR CONTROL INSTRUCTIONS 

The processor control instructions (see Table 2.11) allow programs to control various CPU functions. 
One group of instructions updates flags, and another group is used primarily for synchronizing the 
microprocessor to external events. A final instruction causes the CPU to do nothing. Except for the 
flag operations, none of the processor control instructions affects the flags. 

2-21 



inter OVERVIEW OF THE80C186 FAMilY MODULAR 
MICROPROCESSOR COR£ARCHITECTURE 

Table 2.11. Processor COntrollnstrlJctions 

FLAG OPERATIONS 

STC Set carry flag 

CLC Clear carry flag 

CMC Complement carry flag 
STD Set direction flag 
CLD Clear direction flag 
STI Set interrupt enable flag 

CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interrupt or reset 
WAIT Wait for TEST pin active 

ESC Escape to external processor 

LOCK Lock bus during next 
instruction 

NO OPERATION 

NOP No operation 

2.2.2 ADDRESSING MODES 

An 80C186 Modular Core family member accesses instruction operands in many different ways. 
Operands may be contained in registers, within the instruction itself, in memory, or at I/Oports. Also, 
the addresses of memory and I/O port operands can be calculated in several different ways. These 
addressing modes greatly extend the flexibility and convenience of the instruction set. The following 
paragraphs briefly describe the register and immediate· modes of operand addressing, and then 
provide a detailed description of the memory and I/O addressing modes. 

2.2.2.1 REGISTER AND IMMEDIATE OPERAND ADDRESSING MODES 

Instructions that specify only register operands are usually the most compact and fastest executing of 
the operand addressing forms. This is because the register operand addresses are encoded in in­
structions injust a few bits, and because these operand!!~ perfo~ed entirely within the CPU (no bus 
cycles are run). Registers may serve as source operands, destination operands, or both. 

Immediate operand!> are constant data contained in an instruction. The data may be either 8 or 16 bits 
in.length. Immediate operands can be accessedquicldy because they are available directly from the 
instruction queue. Like the register operand; no bus cycles need to be run to get an immediate pperand. 
The limitations on immediate operands are that they may only serve as source operands and that they 
are constant in value. 

2-22 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

2.2.2.2 MEMORY ADDRESSING MODES 

Although the ED has direct access to register and immediate operands, memory operands must be 
transferred to and from the CPD over the bus. When the ED needs to read or write a memory operand, 
it must pass an offset value to the BID. The BID adds the offset to the shifted contents of a segment 
register producing a 20-bitphysical address and then executes the bus cycle or.cycles needed to access 
the operand. 

The offset that the ED calculates for memory operand is called the operand's effective address or EA. 
This address is an unsigned 16-bit number that expresses the operand's distance in bytes from the 
beginning of the segment in which it resides. The ED can calculate the effective address in several 
ways. Information encoded in the second byte of the instruction tells the ED how to calculate the 
effective address of each memory operand. A compiler or assembler derives this information from the 
statement or instruction written by the programmer. Assembly language programmers have access to 
all addressing modes. 

The EU calculates the EA by summing a displacement, the content of a base register and the content 
of an index register (see Figure 2.12). Any combination of these three components may be present in 
a given instruction. This allows a variety of memory addressing modes. 

2-23 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSORCOREARCHITECTORE 

ENCODED 
IN THE 
INSTRUCTION 

EXPLICIT { 
IN THE 
INSTRUCTION 

ASSUMED 
UNLESS 
OVERRIDDEN 
BY PREFIX 

SINGLE INDEX DOUBLE INDEX 

Figure 2.12. Memory Address Computation 

BIU 

270288-001-14 

The displacement element is an 8-bit or 16-bit number that is contained in the instruction. The 
displacement generally is derived from the position of the operand name (a variable or label) in the 
program. The programmer can also modify this value or explicitly specify the displacement. 

A programmer may specify that either the BX or BP register is to serve as a base register.whose 
content is to be used in the EA computation. 

Similarly, either the SI or DI register may be specified as the index register. The displacement value 
is a constant. The contents of the base and index registers may change during execution. This allows 
one instruction to access different memory locations as determined by the current values in the base 
or base and index registers. Effective address calculations with the BP register are made using the SS 
register, by default, although either the DS or the ES register may be specified instead. 

2-24 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

Direct addressing is the simplest memory addressing mode (see Figure 2.13). No registers are 
involved and the EA is taken directly from the displacement of the instruction. The programmer 
typically uses direct addressing to access scaler variables. 

r-----,------.------.-- ---..., 
1,--_oP_C_O_D_E ---I1_M_O_D_R_/M_.L-I __ D_18_P_LA-+C.E _M~~ __ J 

I EA I 
270288-001-15 

Figure 2.13. Direct Addressing 

With register indirect addressing, the effective address of a memory operand may be taken directly 
from one of the base or index registers (see Figure 2.14). One instruction can operate on many 
different memory locations ifthe value in the base or index register is updated appropriately. Any 16-
bit general register may be used for register indirect addressing with the JMP or CALL instructions. 

BX 
OR 
BP 

OR--+-_'" 
81 

OR 
DI 

Figure 2.14. Register Indirect Addressing 

2-25 

270288-001-16 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

In based addressing (see Figure 2.15), the effective address is the sum of a displacement value and the 
content of register BX or BP. Specifying register BP as a base register directs the BIU to obtain the 
operand from the current stack segment (unless a segment override prefix is present). This makes 
based addressing with the BP register a very convenient way to access stack data. 

270288·001-17 

Figure 2.15. Based Addressing 

Based addressing also provides a simple way to address data structures which may be located at 
different places in memory (see Figure 2.16). A base register can be pointed at the structure and 
elements of the structure can be addressed by their displacement. Different copies of the same 
structure can be accessed by simply changing the base register. 

HIGH ADDRESS 

VAC 

DEPT ________ .....1 

LOW ADDRESS 

Figure 2.16. Accessing a Structure with Based Addressing 

2-26 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

With indexed addressing, the effective address is calculated from the sum of a displacement plus the 
content of an index register (SI or 01). See Figure 2.17. Indexed addressing is often used to access 
elements in an array (see Figure 2.18). The displacement locates the beginning of the array, and the 
value of the index register selects one element. If the index register contains OOOOH, the processor 
selects the first element. Since all array elements are the same length, simple arithmetic on the register 
may select any element. 

Figure 2.17. Indexed Addressing 

r 
I 
I 
I 
I 
I INDEX REGISTER 
I 
I 
I 
I 
I EA 
L __________ _ 

HIGH ADDRESS 

ARRAY (8) 

ARRAY (7) 

ARRAY (6) 

ARRAY (5) 

ARRAY (4) INDEX REGISTER 

ARRAY (3) 2 

ARRAY (2) , 

I-_A_R_RA_Y_(1_) --I ---1 EA 

ARRAY (0) 

1 WORD 
LOW ADDRESS 

Figure 2.18. Accessing an Array with Indexed Addressing 

2-27 

270288-001-19 

.., 

270288-001-20 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

Based index addressing generates an effective address that is the sum of a base register, an index 
register, and a displacement (see Figure 2.19). This mode of addressing is very flexible because the 
values of two address components can be determined at execution time. 

270288-001-21 

Figure 2.19. Based Index Addressing 

Based index addressing provides a convenient way for a procedure to address an array allocated on 
a stack (see Figure 2.20). Register BP can contain the offset of a reference point on the stack, typically 
the top of the stack after the procedure has saved registers and allocated local storage. The offset of 
the beginning of the array from the reference point can be expressed by a displacement value, and the 
index register can be used to access individual array elements. Arrays contained in structures and 
matrices (two-dimensional arrays) can also be accessed with based indexed addressing. 

2-28 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

HIGH ADDRESS 

DISPLACEMENT 
PARM 2 

PARM 1 

IP 

OLD BP 

OLDBX (BP) 1 

I OLD AX I 
I AA~~ I 
I ARRAY (5) I 
I AA~~ I 
I ARRAY (3) I 
I AA~~ I 
I ARRAY (1) I 
II ~ ARRAY (0) --r II 

, COUNT , T - - - - - --t 1----______ --; I-- - - - - - ~ 
L ______ 1 1 ______ ~ 

__ 1 WORD_ 

LOWER ADDRESS 

Figure 2.20. Accessing a Stacked Array with Based Index Addressing 

270288-001-22 

String instructions do not use the nonnal memory addressing modes to access operands. Instead, the 
index registers are used implicitly (see Figure 2.21). When a string instruction is executed, the SI 
register is assumed to point to the first byte or word of the source string. The 01 register is assumed 
to point to the first byte or word of the destination string. In a repeated string operation, the CPU will 
automatically adjust the SI and 01 registers to obtain subsequent bytes or words. Note that for string 
instructions the OS register is the default segment register for the SI register and the ES register is the 
default segment register for the DI register. This allows string instructions to easily operate on data 
located anywhere within the one megabyte address space. 

2·29 



inter OVERVIEW OF THE80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

I OPCODE I 

SI ~ SOURCE EA 

01 r--t DESTINATION EA I 

Figure 2.21. String Operand 

2.2.2.3 I/O PORT ADDRESSING 

270288-001-23 

Any of the memory operaild addressing modes may be used to access an I/O port if the port is memory~ 
mapped. String instructions can also be used to transfer data to memory-mapped ports with an 
appropriate hardware interface. 

Two different address modes can be used to access ports located in the I/O space (see Figure 2.22); 
The port number is an 8-bit immediate operand for direct addressing. This allows fixed access to ports 
numbered 0-255. Indirect I/O port addressing is similar to register indirect addressing of memory 
operands. The port number is taken from register DX and can range from 0 to 65,535. By previously 
actjusting the content of register DX, one instruction can access any port in the I/O space. A group of 
adjacent ports can be accessed using a simple software loop that adjusts the value of the DXregister. 

DIRECT PORT ADDRESSING INDIRECT PORT ADDRESSING . 

270288-001-24 

Figure 2.22. 1/0 Port Addressing 

2-30 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

2.2.3 DATA TYPES USED IN THE 80C186 MODULAR CORE FAMILY 

The 80C186 Modular Core family supports the following data types: 

Integer - A signed binary numeric value contained in an 8-bit byte or a 16-bit word. All operations 
assume a 2's complement representation. Signed 32-and 64-bit integers are directly supported 
with the addition of an 80C187 Numerics Processor Extension to an 80C186 Modular Core 
system. The 80C188 Modular Core does not support the 80C187. 

Ordinal- An unsigned binary numeric value contained in an 8-bit byte or a 16-bit word. 

Pointer - A 16- or 32-bit quantity, composed of a 16-bit offset component or a 16-bit segment 
base component in addition to a 16-bit offset component. 

• String - A contiguous sequence of bytes of words. A string may contain from one byte to 64 
Kbytes. 

ASCII- A byte representation of alphanumeric and control characters using the ASCII standard. 

BCD - A byte (unpacked) representation of the decimal digits 0-9. 

Packed BCD - A byte (packed) representation of two decimal digits (0-9). One digit is stored in 
each nibble (4 bits) of the byte. 

Floating Point - A signed 32-, 64-, or 80-bit real number representation. Floating point operands 
are directly supported with the addition of an 80C187 Numerics Processor Extension to an 
80C 186 Modular Core system. The 80C 188 Modular Core does not support the 80C 187. 

In general, individual data elements must fit within defined segment limits. Figure 2.23 graphically 
represents the data types supported by the 80C186 Modular Core family. 

2-31 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

1
71 1°1 SIGNED BYTE _ 

SIGN BIT 3...J-t. =::;:::;:::;;::j. 
MAGNITUDE 

INSIGNED BYTE I I 
MAGNITUDE 

1514 +1 87 

SIGNED WORD II I I I I I I I I ° 

I 

NOTE: 
·SUPPORTED DIRECTLY WITH 
ADDITIONAL HARDWARE 

SIGN BIT...J .,-'-.-;;,;M.:;;SB;;"".._:-:,:,"::,:,:,:=~ ___ -, 

MAGNITUDE 

31 +3 2423 +2 1615 +1 8 7 ° 
I I I I I I I 

MAGNITUDE 

+4 3231 +3 +2 1615 +1 
° 

I I I 
63 +7 +6 4847 +5 

I 
MAGNITUDE 

15 +1 8 7 ° I 
I I I I I I I I I I 

INSIGNED WORD ... ,....-____ --'-_____ --1 

'-MSB 

MAGNITUDE 
+N 

BINARY CODED 17 I I I I I I ° I 
DECIMAL (BCD) ... _ --::-:-::,""""""",..,.-...J_ 

BCDDIGITN 

ASCII I I I I I I 1°1 

ASCII 
CHARACTERN 

7 +N ° 
I I iii ill 

PACKED BCD !-_---! __ --' 
L---J 

MOST 
SIGNIFICANT DIGIT 

7 15 +N ° 
I I II I I II I 

STRING L-=",."-="..,,.--I_ 

BYTE WORD N 

31 +3 2423 

POINTER I I I I I I I I I . 
I 

SELECTER 

79 +9 +8 +7 

FLOATING POINT· I 
I 

SIGN BIT...J • 
EXPONENT 

• •• 

• •• 

• •• 

• •• 

+2 
I I I 

+6 

7 +1 ° 7 ° I I I I I I I I I 
BCD DIGIT 1 BCD DIGIT ° 

7 +1 ° 7 ° ° 

I I I I I I I I I I I I 
I I 

ASCII ASCII 
CHARACTER 1 CHARACTERO 

+1 ° 
(I I I I I 1°171 I I I I I 1°1 

'---' 
LEAST 

SIGNIFICANT DIGIT 

715 +1 ° 7 15 ° 0 

11111 1111111111 

BYTE WORD 1 BYTE WORD ° 
1615 +1 8 7 ° ° I I I I I I I I I I I I I I I 

OFFSET 

+5 +4 +3 +2 

MAGNITUDE 

Figure 2.23. 80C186 Modular Core Family Supported Data Types 

2-32 

+1 
° 

I . 
270288-001-25 



Bus Interface Unit 3 





CHAPTER 3 
BUS INTERFACE UNIT 

The 80C186 Modular Core family products are true 16-bit embedded microprocessors with 16-bit 
internal data paths, one megabyte (220) of memory address space, and a separate 64 Kbyte (216) I/O 
address space. The CPU communicates with its external environment via a twenty-bit, time-multi­
plexed address and data bus. There also exists a command and status bus (see Table 3.1). This 
communication is managed by the B us Interface Unit. To understand the operation of the address/data 
bus requires an understanding of the BIU's bus cycles. 

Table 3.1. 80C186 Family Bus Signals 

Function Signal Name 

address/data AD15:0 
address A19:16 
coprocessor interface TEST/BUSY, PEREQ, ERROR, NCS 
local bus arbitration HOLD..J:iLDA 
local bus control ALE, RD, WR, DT/R, DEN 
multi-master bus LOCK 
ready interface READY 
status information S2:0 

3.1 T-STATES 

To transfer data or fetch instructions the CPU executes a bus cycle. A bus cycle consists of a minimum 
of four CPU clock cycles or T -states plus any number of wait states necessary to accommodate the 
access time limitations of external memory or peripheral devices. T -states are numbered sequentially 
T1, T2, T3, T4, and Tw' Additional idle T-states (Tj) can occur between T4 and TI when the processor 
requires no bus activity. The beginning of aT-state is signaled by a HIGH-to-LOW transition of the 
CPU clock. Each T -state is divided into two phases, phase 1 (the LOW phase) and phase 2 (the HIGH 
phase). Figure 3.1 illustrates an 80C186 Modular Core family clock cycle. 

3-1 



BUS INTERFACE UNIT 

I 
I 

I T. 

L '--lm I~ 
I 61 1 62 I 

I (LOW I (HIGH I 
I PHASE) I PHASE) I 
I I I 

NOTES: 
1. Failing edge ofT n. 
2. Rising edge of Tn. 270288-001-26 

Figure 3.1. T -State in a SOC186 Modular Core Family Processor 

Different types of bus activity occur for all of the T-states (see Figure 3.2). Address generation 
infonnation occurs during T l' and data generation occurs during T 2' T3, Tw and T 4' The beginning of 
a bus cycle is signaled by the status lines of the processor going from a passive state (all HIGH) to an 
active state in the middle of the T-state immediately beforeTI (either a T4 or aT): Infonnation 
conceming an impending bus cycle appears during the T -state immediately before the first T -state of 
the cycle itself. Two different types of T 4 and Ti can be generated, one where the T -state is immedi­
ately followed by a bus cycle, and one where the T -state is immediately followed by an idle T -state. 

UNES 

DATA 

LINES ";"'----i( 
ADDRESSI '-__ ~ '-+-__ -+ ___ ++_-1 
C~OL~---~------~J 

SIGNALS 

(RD,WR) 

Figure 3.2. Example Bus Cycle of the SOC186 Core Family 

270288-001-27 



BUS INTERFACE UNIT 

During the first type ofT4 or T j , the processor generates status information concerning the impending 
bus cycle. This information will be available no later than TCHOV after the LOW -to-HIGH transition 
of the processor's CLK OUT in the middle of the T -state. During the second type of T 4 or T j , the status 
outputs remain inactive because no bus cycle will follow. The decision on which type T4 or T j state 
to present is made at the beginning of the T -state preceding the T4 or T j state (see Figure 3.3). This 
determination has an effect on bus latency (see Section 3.8.2). 

CLOCK 

OUT 

T3 or 

Tw T.. I T, 

DecIsion: No' bus. activity required', 
idle bus cycles will be Inserted 

I I 

ACTIVE I i STATUS STATUS I INACTIVE 
INFO -==:'-'-+-1 T,o. I STATUS 

CLOCK 

OUT 

ACTIVE 
STATUS STATUS 

LINES _ ...... ---........ 

Tw : T. I T, 
Decision: Another bus cycle immediately 
required-no idle bus cycles 

I I 

ACTIVE 
STATUS 

270288-001-28 

Figure 3.3. Active-Inactive Status Transitions in 80C186 Core Family Processor 

The READY signal controls the number of wait states (Tw) inserted in each bus cycle. The maximum 
number of wait states is unbounded. 

The bus may remain idle for several T -states (T) between accesses initiated by an 80C 186 Modular 
Core family processor. This situation occurs under the following diverse conditions: 

When the prefetch queue is full. 

When the processor is running a type of bus cycle which always includes idle states (interrupt 
acknowledge, for example). 

When an instruction forces idle states (LOCK, for example). 

During idle states, the processor may not necessarily float the bus; however, if the processor does 
drive the bus, no control strobes are active. 

3-3 



BUS INTERFACE UNIT 

3.2 PHYSICAL ADDRESS GENERATION 

Physical addresses are generated by 80C 186 Modular Core family processors during T 1 of a bus cycle. 
Since the address and data lines are multiplexed, addresses must be latched during T 1 if they are re­
quired to remain stable for the duration of the bus cycle. To facilitate latching of the physical address, 
80C186 Modular Core family processors generate an active-HIGH ALE (Address Latch Enable) 
signal which can be directly connected to the strobe input of a transparent latch. ALE is active for all 
bus cycles and never floats (except during ONCE Mode for system testing). 

Figure 3.4 illustrates the physical address generation parameters. Addresses are valid no later than 
T CLOY after the beginning of T l' and remain valid at least T CLOP after the end of T l' The ALE signal is 
driven HIGH in the middle of the T-state (either T4 or T) immediately preceding Tl and is driven 
LOW in the middle ofT l' no sooner than T AVLL after address becomes valid. T A VLL satisfies the address 
latch set -up times of address valid to strobe inactive. Addresses remain stable on the address/data bus 
at least T LLAX after ALE goes inactive to satisfy address latch hold times. 

CLOCK 
OUT 

T,OR 

T. 

ALE __ -J 

T, T, 

AO.AI9 ____ ~-:::f:~~~~~_ 

NOTES: 

1. T CHOY: Clock high to ALE high. 
2. T CLOY: Clock low to address valid. 
3. T CHOY: Clock high to ALE low. 
4. T CLOF: Clock low to address invalid (address hold from clock low). 
5. T LLAX: ALE low to address invalid (address hold from ALE). 
6. T AYLL: Address valid to ALE low (address setup to ALE). 

Figure 3.4. Address Generation Timing 

270830-001-100 

Because ALE goes HIGH before addresses become valid, the delay through the address latches will 
be the propagation delay through the latch rather than the delay from the latch strobe. 

3-4 



BUS INTERFACE UNIT 

A typical circuit for latching physical addresses is shown in Figure 3.4. This circuit uses 3 transparent 
non-inverting latches to demultiplex the 20 address bits provided on all80C 186 Modular Core family 
microprocessors. Typically, the upper 4 address bits only select among various memory components 
or subsystems, so when the integrated chip selects (see Chapter 7) are used, these upper bits need not 
be latched. The worst case address generation time from the beginning ofT I (including address latch 
propagation) time for the circuit is: 

TCLOY + TpD 

Some memory and peripheral devices do not require addresses to remain stable throughout a data 
transfer. If a system is constructed wholly with these types of devices, addresses need not be latched. 

SIGNALS 
FROM CPU 

A16- 4 

A19 

AD8- 8 

AD15 

8 
ADO-
AD7 
ALE 

4 

BE 

STS 

BE 

STS 

BE 
'":' 

LATCHED 
ADDRESS 
SIGNALS 

A16-A19 

A8-A15 

AO-A7 

270288-001-30 

Figure 3.5. Demultiplexing the Address Bus of an 80C186 Modular Core Family Processor Using 
Transparent Latches. 

The 80C 186 Core generates one more signal, BHE (Bus High Enable), to address memory. BHE and 
AO are used to enable data transfers on either or both halves ofthe 16-bit bus. Since AO only enables 
devices onto the lower half of the data bus, systems commonly drive address inputs with address bits 
AI-AI9. This provides 5I2K unique word addresses, or 1M unique byte addresses. BHE does not 
need to be latched. On the 80C188 Core, BHE is absent; all data transfers take place across a single 
byte-wide data bus. 

On 80C186 Modular Core family processors, effective (physical) address calculations take place in 
dedicated hardware. An effective address (EA) calculation may be either fully-pipelined or non­
pipelined. The BIU gives no indication when a fully-pipelined address calculation occurs. 

3-5 



BUS INTERFACE UNIT 

Non-pipelinedEA calculations are required anytime an instruction has MOD and RIM bits in its 
opcode. These bits often denote addressing modes which take longer to calculate the EA, such as 
register-offset or two-register addressing. Here are some assembly code examples which cause non­
pipelined EA calculations: 

MOV 
AND 

AX,ES:[DI] 
AX, [DI] +5 

XCHG mem_ variable, DX 

; Uses indirect addressing. 
; Uses register-offset addressing. 
; Direct offset but has MOD and 
; RIM bits. 

A non-pipelined EA calculation takes four clocks, and occurs during T 3 (or T w)-T 4-T( Tp T i or T)-Tr 
Tt Tp cycle sequences. In addition to inserting any necessary idle T -states, a non-pipelined EA 
calculation alters the usual bus cycle priority scheme. Data cycles (reads or writes) associated with the 
instruction temporarily take the highest bus priority possible, higher than even DRAM refresh cycles. 
The altered priority scheme is a mechanism to better utilize the Execution Unit. 

3.3 DATA BUS 

Many small systems do not require buffering because 80Cl86 Modular Core family devices have 
adequate bus drive capabilities. If data buffers are not used, care should be taken not to allow bus 
contention between the processor and the devices directly connected to the data bus. Since the 
processor floats the address/data bus before activating any command lines, the only requirement on 
a directly connected device is that it float its output drivers after a read before the processor begins to 
drive address information for the next bus cycle. The parameter of interest here is the minimum time 
from RD inactive until addresses go active for the next bus cycle. If the memory or peripheral device 
cannot disable its output drivers in this time, data buffers will be required to prevent both the processor 
and the device from driving these lines simultaneously. This parameter is unaffected by the addition 
of wait states. Data buffers solve this problem because their output float times are typically much 
fasterthan the required minimum. 

3.3.1 80C186 MODULAR CORE DATA BUS OPERATION 

Throughout T2, T3, Tw and T4 ofa bus cycle the multiplexed address/data bus becomes a 16-bitdata 
bus. Data transfers on this bus may be either bytes or words. All memory is byte addressable (see 
Figure 3.6). 

3-6 



BUS INTERFACE UNIT 

~l'-BIITS::-l 
WORD ADDRESS .. r-_'_IItTS_-;-_' BIT_S---j....; 

I '~---1-----+------1: IN BYTE FIELD 

'----........ ----' 80C186 MODULAR 
0'-
015 

00- CORE FAMILY 
07 SIGNAL CONNECTIONS 

270830-001-101 

Figure 3.6. Physical Memory BytelWord Addressing In 80C186 Modular Cote Family Microprocessors 

All bytes with even addresses (AD = D) reside on the lower 8 bits of the data bus, while all bytes with 
odd addresses (AD = 1) reside on the upper 8 bits of the data bus. Whenever an access is made to only 
the even byte, AD is driven LOW, BHE is driven HIGH, and the data transfer occurs on DD-D7 of the 
data bus. Whenever an access is made to only the od d byte, BHE is driven LOW, AD is driven HIGH, 
and the data transfer occurs on D8-D15 of the data bus. Finally, if a word access is performed to an 
even address, both AO and BHE are driven LOW and the data transfer occurs on DO-DI5 of the data 
bus. 

Word accesses are made to the addressed byte and to the next higher numbered byte. If a word access 
is performed to an odd address, two byte accesses must be performed, the first to access the odd byte 
at the first word address on D8-DI5, the second to access the even byte at the next sequential word 
address on DO-D7. For example, in Figure 3.6, byte 0 and byte 1 can be individually accessed in two 
separate bus cycles to byte address 0 and 1 at word address O. They may also be accessed together in 
a single bus cycle to word address O. However, if a word access is made to address 1, two bus cycles 
will be required, the first to access byte 1 at word address 0 (byte 0 will not be accessed), and the 
second to access byte 2 at word address 2 (byte 3 will not be accessed). This is why all word data 
should be located at even addresses to increase processor performance. 

When byte reads are made, the data returned on the unused half of the data bus is ignored. When byte 
writes are made, the data driven on the unused half of the data bus is indeterminate. 

The 80C 186 Core always fetches the instruction stream in words from even addresses except that the 
first fetch after a program transfer to an odd address obtains a byte. The processor disassembles the 
instruction stream inside the processor; so instruction alignment will not materially affect the per­
formance of most systems. 

3.3.2 80C188 MODULAR CORE DATA BUS OPERATION 

Because the 80C 188 core externally has only an 8-bit data bus, the above discussion about upper and 
lower bytes of the data bus does not apply. No performance improvement will occur if word data is 
placed on even boundaries in memory space. All word accesses require two bus cycles, the first to 
access the lower byte of the word and the second to access the upper byte of the word. 

3-7 



BUS INTERFACE UNIT 

Any 80C 188 Core access to the integrated peripherals is perfonned 16 bits at a time, whether byte or 
word addressing is used. If a byte operation is used, the external bus indicates only a single byte 
transfer even though the word access takes place. See Chapter 5 for more infonnation on peripheral 
control block registers. 

3.3.3 PERIPHERAL INTERFACE 

The 80C 186 Modular Core family can interface with peripheral devices using either I/O instructions 
or memory instructions (memory-mapped I/O). The I/O instructions allow the peripheral devices to 
reside in a separate I/O address space while memory-mapped I/O allows the full power ofthe 
instruction set to be used for peripheral operations. Up to 64 Kbytes of I/O address space may be 
defined for system peripherals. To the programmer, the separate I/O address space is only accessible 
with IN and OUT commands, which transfer data between peripheral devices and the AX register (or 
AL for 8-bit data). The first 256 bytes ofI/O space (0 to 255) are directly addressable while the entire 
64K is only accessible via register indirect addressingthrough the DX register. The latter technique 
is particularly desirable for service procedures that handle more than one peripheral by allowing the 
desired device address to be passed to the procedure as a parameter. Peripherals may be connected 
to the local CPU busor a buffered system bus. 

On the 80C186 Modular Core, 8-bit peripherals may be connected to either the upper or lower half 
of the data bus. Assigning an equal number of devices to the upper and lower halves of the bus will 
distribute the bus loading. If a device is connected to the upper half of the data bus, all I/O addresses 
assigned to the device must be odd (AO = 1). If the device is on the lower half of the bus, its addresses 
must be even (AO = 0). The address assignment directs the 8-bit transfer to the upper (odd) or lower 
(even) half of the 16-bit data bus. Since AO will always be a one or zero for a specific device, AO 
cannot be used as an address input to select registers within a specific device. If a device on the upper 
half of the bus and one on the lower half are assigned addresses that differ only in AO (adjacent odd 
and even address), AO and BHE must be conditions of chip select decode to prevent a write to one 
device from erroneously perfonning a write to the other. 

16-bit peripheral devices should be assigned even addresses for reasons of efficient bus utilization 
and simplicity of device selection. To guarantee the device is selected only for word operations, AO 
and BHE should be conditions of chip select decode. 

3.4 BUS CONTROL SIGNALS 

80C186 Modular Core family processors directly provide the control signals RD, WR, LOCK, and 
TEST. In additiop, the processors provide the status signals SO-S2 from which other required bus 
control signals can be generated. 

3-8 



BUS INTERFACE UNIT 

3.4.1 RD AND WR 

The RD and WR signals strobe data from or to memory or I/O space. 

The RD signal is driven LOW atthe beginning ofT2 during all memory and I/O reads (see Figure 3.7). 
RD will not become active until the microprocessor ceases driving address information on the 
address/data bus. Data is sampled into the processor at the beginning of T4. RD will not go inactive 
until the processor's data hold time has been satisfied. 

NOTES: 

CLOCK 
OUT 

1. T CLOF: Clock low uni1 address float. 
2. T CLOV: Clock low unit RD active. 
3. T AFRL: Address float unit RD active. 

T, 

4. T CLlS: Data valid until clock low (data input set·up time). 
5. T CLlH: Clock low until data invalid (data input hold time). 
6. T CLOV: Clock low until RD high. 
7. T RHAX: RD high until addresses valid. 

T, T, 

Figure 3.7. Read Cycle Timing of 80C186 Family Microprocessors 

270830-001-102 

Note that 80C186 Modular Core family processors do not provide separate I/O and memory RD 
signals. If separate I/O read and memory read signals are required, they can be synthesized using the 
S2 signal (LOW for I/O operations and HIGH for memory operations) and the RD signal (see Figure 
3.8). If this approach is used, the S2 signal will require latching, since the S2 signal (like SO and S1) 
goes to an inactive state well before the beginning ofT4 (where RD goes inactive). If S2 was directly 
used for this purpose, the type of read command (I/O or memory) could change just before T4 as S2 
goes to the inactive state (HIGH). The status signals may be latched using ALE. 

3-9 



BUS INTERFACE UNIT 

LATCH 

~ 
ALE READ 

~----------------~~~ 
270288-001-33 

Figure 3.S. Generating 1/0 and Memory Read Signals 

Often the lack of separate I/O and memory RD signals is not important in a system. Each chip select 
signal will respond to accesses exclusively in memory or I/O space. Thus, when a chip select is used, 
the external device is enabled only during &ccesses to the proper address in the proper space. 

The WR signal is also driven LOW at the beginning ofT2 and driven HIGH at the beginning ofT 4 (see 
Figure 3.9). The WR signal is active for all memory and I/O writes, similar to the RD signal. Again, 
separate memory and I/O control lines may be generated using the latched S2 signal along with WR. 
More important, however, is the role of the active-going edge of WR. At the time WR makes its 
HIGH -to-LOW transition, valid write data is not present on the data bus. This has consequences when 
using WR to generate signals such as column address strobe (CAS) for DRAMs where data is required 
to be stable on the falling edge. In DRAM applications, the problem is solved by a DRAM controller. 
For other applications which require valid data before the WR transition, place cross-coupled NAND 
gates between the CPU and the device on the WR line (see Figure 3.10). The added gates delay the 
active-going edge of WR to the device by one clock phase, at which time valid data is driven on the 
bus by the microprocessor. 

T, T, 

ADO· 
AD15 .....:~~~+-''--__ +~:.:;:..._++-__ ~~,,'-.....::.::..:::...._ 
\iii 

NOTES: 

"1. T CLOY: Clock low until data valid. 
2. T CLOY: Clock low until WR active. 
3. T CLOY: Clock low until WR inactive. 
4. T CLOY: Clock high until data valid. 
5. T WHOx' WR inactive until data invalid. 270830·001-103 

Figure 3.9. Family Write Cycle Timing 

3-10 



BUS INTERFACE UNIT 

WR 

CLKOUT ----t---' 

3.4.2 STATUS LINES 

DELAYED 

WRITE 

(DATAVALID 

ON LEADING EDGEI 

Figure 3.10. Synthesizing a Delayed Write Signal 

270288-001-35 

An 80C 186 ~{10dular Core family processor provides three status outputs which indicate the type of 
bus cycle in progress. These signals go from an inactive state (all HIGH) to one of seven possible 
active states during the T -state immediately preceding T I of a bus cycle (see Figure 3.3). The possible 
status line encodings are given in Table 3.2. The status lines are driven inactive in the T3 or Tw state 
immediately preceding T4 of the current bus cycle. 

Table 3.2. Status Line Interpretation 

S2 S1 SO Operation 

0 0 0 interrupt acknowledge 
0 0 1 read I/O 
0 1 0 write I/O 
0 1 1 halt 
1 0 0 instruction fetch 
1 0 1 read memory 
1 1 0 write memory 
1 1 1 passive 

The status lines may be directly connected to an 82C88 Bus Controller, which provides local bus 
control signals or MUL TIBUSTM control signals. Use of the 82C88 Bus Controller does not preclude 
the use ofthe CPU-generated RD, WR and ALE signals, however. The processor-generated signals 
can provide local bus control signals, while an 82C88 can provide MUL TIBUS control signals. 

3.4.3 SOFTW ARE·INITIATED BUS CONTROL 

The programmer may control the progress of 80C186 Modular Core family execution-related bus 
activity by using the WAIT (or FW AIT), LOCK, and HL T instructions. 

3-11 



BUS INTERFACE UNIT 

3.4.3.1 TEST INPUT AND LOCK OUTPUT 

The 80C 186 Modular Core family processor provides a TEST input and a LOCK output for coor­
dinating instruction execution and bus activity. 

The TEST input is used in conjunction with the processor WAIT instruction, typically in a system 
containing a coprocessor. If the input is HIGH when WAIT executes, instruction execution suspends. 
TEST will be resampled every five clocks until it goes LOW, resuming execution. Any enabled 
interrupts will be serviced while the processor waits for TEST. 

The LOCK output is driven LOW whenever the data cycles of a LOCKed instruction are executed. 
A LOCKed instruction is generated whenever the LOCK prefix occurs immediately before an in­
struction. The LOCK prefix is active for the single instruction immediately following the LOCK 
prefix. The LOCK signal indicates to a bus arbiter (e.g., the 8289) that an atomic (uninterruptible) bus 
operation is occurring. The bus arbiter should under no circumstances release the bus while LOCKed 
transfers are occurring. An 80C 186 Modular Core family processor will not recognize a bus HOLD 
during LOCKed operations. LOCKed transfers are typically used in multiprocessor systems to 
access memory-based semaphore variables which control access to shared system resources. 

On 80C 186 Modular Core family devices, the LOCK signal will go active during T1 of the first data 
cycle of the LOCKed transfer. It is driven inactive at the end ofT 4 of the last data cycle of the LOCKed 
transfers independent of the number of wait states. 

The LOCK output is also driven LOW during interrupt acknowledge cycles when the integrated 
Interrupt Controller is connected to an external interrupt controller (i.e. 82C59A). 

80C 186 Modular Core family processors drive LOCK HIGH for one clock during RESET. Then, the 
pin floats until the start of the first bus cycle. LOCK also floats during HOLD. 

3.4.3.2 PROCESSOR HALT 

A HALT bus cycle signifies that the CPU has executed the HL T (HALT) instruction. It differs from 
a regular bus cycle in two ways. 

The first way a HALT bus cycle differs is that neither RD nor WR will be driven active. Address and 
data information will not be driven by the processor. The second way a HAL Tbus cycle differs is that 
the SO-S2 status lines go to theirinactive state (all HIGH) during T2 of the bus cycle, well before they 
go to their inactive state during a regular bus cycle. 

Like a normal bus cycle, however, ALE is driven active. Since no valid address information is 
present, the information strobed into the address latches should be ignored. This ALE pulse can be 
used, however, to latch the HALT status from the SO-S2 status lines. READY is ignored during 
HALT cycles. 

3-12 



BUS INTERFACE UNIT 

The HALTed state of the processor does not interfere with the operation of any of the 80C186 
Modular Core family integrated peripheral units. After the processor HALTs, a HOLD input can 
elicit HLDA and release of the bus by the processor as usual. 

Activation of RESIN, an NMI request, or a non-masked interrupt request from the integrated 
Interrupt Controller forces the processor out of the HALT state. 

Exiting from the HALT state is also dependent on the power management mode that the 80C186 
Modular Core family device is operating in. Please see the Power Management chapter of this user's 
guide for more details. 

3.5 TRANSCEIVER CONTROL SIGNALS 

If data buffers are required, the 80C 186 Modular Core family processor provides DEN (Data ENable) 
and DTiR (Data TransmitlReceive) signals to simplify buffer interfacing. The DEN and DT;R 
signals are activated during all bus cycles, including transfers between the 80C 186 core and 80C187. 

The DEN signal is driven LOW whenever the processor is either ready to receive data (during a read) 
or when the processor is ready to send data (during a write). In other words, DEN is LOW during any 
active bus cycle when address information is not being generated on the address/data pins. In most 
systems, the DEN signal should not be directly connected to the OE inputs of a buffer, since unbuf­
fered devices (or other buffers) may be directly connected to the processors's address/data pins. If 
DEN were directly connected to several buffers, contention would occur during read cycles, as many 
devices attempt to drive the processor bus. Rather, it should be a factor along with the chip selects in 
generating the output enable. DEN is HIGH whenever DT;R changes state. 

The DTIR signal determines the direction of data through the bi-directional buffers. It is HIGH 
whenever data is being written from the processor, and is LOW whenever data is being read into the 
processor. Unlike the DEN signal, it may be directly connected to bus buffers, since this signal does 
not usually enable the output drivers of the buffer. Figure 3.11 shows an example data bus subsystem 
supporting both buffered and unbuffered devices. Note that the A side of the buffer is connected to 
the 80C 186 Modular Core family device, the B side to the external device. The DT iR signal can 
directly drive the T (transmit) signal of a typical buffer since it has the correct polarity. 

3-13 



CPU·DERIVED SIGNALS 

AD8·DI5 

DEN 

m 

ADO· AD7 

DT/R 

BUS INTERFACE UNIT 

/8 
A 

~ 8 

J " ~ B 

,..... T 

BUFFER 

8 
A 

~ B 
/8 

T 

BUFFER 

/8 

//8 

/ 

I)8.D15 

BUFFERED 

DATA 

BUS 

UNBUFFERED 

} DATA 

BUS 

Figure 3.11. Example Buffered/Unbuffered Data Bus 

270288-001-37 

The processor drives the DT/R and DEN pins HIGH for one clock during RESET. Then the pins float 
until the first bus cycle. 

3.6 READY INTERFACING 

80C186EB family devices provide a READY line to allow the connection of slower memory and 
peripheral devices to the system bus. This line signals the Bus Interface Unit to insert wait states (Tw) 
into a CPU bus cycle, allowing slower devices to respond to bus activity. Wait states will only be 
inserted when READY is LOW. Any number of wait states may be inserted into a bus cycle. The 
processor will ignore the READY input during any accesses to the integrated peripheral registers and 
to any area where the chip select READY bits indicate that the external READY should be ignored. 

The READY line is synchronized (see Appendix D) by the CPU before presentation to the rest of the 
bus control logic. As shown in Figure 3.12, the first flip-flop is used to resolve the asynchronous 
transition of the READY line. It will achieve a definite HIGH or LOW level before its output is latched 
into the second flip-flop. When latched HIGH, it passes along the level present on the READY line; 
when latched LOW, it forces Not READY to be passed along to the rest of the circuit. With this 
design, note that only the rising edge of READY is fully synchronized; the falling edge of READY 
must be externally synchronized to the processor clock. Any asynchronous transition on the READY 
line when the processor is not sampling the input does not matter. 

3-14 



BUS INTERFACE UNIT 

READY 

D Q~----~~ D Qr-------,-~------r_~ 
TO 
BIU 

CLKOUT--..... ---I> 

SYNC 
READY 
LATCH 

INT/EXT READY CSU GENERATED 
FROM CSU WAIT STATES 
REGISTERS 

Figure 3.12. 80C186 Core Family READY Circuitry 

270830-001-59 

Figure 3.13 depicts activity for Normally-READY and Normally-Not-READY configurations of 
extemallogic. 

3-15 



NOTES: 

CLOCK 
OUT 

READY 

BUS INTERFACE UNIT 

In a Normally-Not-READY system, wait states will be inserted unless: 
1. T CHIS' READY setup to CLKOUT high. 
2. T CLlH' READY hold after CLKOUT low. 

CLOCK 
OUT 

READY 

In a Normally-READY system, wait states will be inserted if: 
1. TCHIS 
2. TCHIH 

CLOCK 
OUT 

READY 

Twor I 
T30r Twor 

T2 T3 I T4 

~ 
Altematively, in a Normally-READY system, wait states will be inserted if: 
1. TcLiS 
2. TCLIH 
READY must meet T CLiS and T CLiH or undesired CPU operation will result. 

Figure 3.13. READY Transitions 

270830-001-104 

270830-001-105 

270830-001-106 

In a Nonnally-Not-READY implementation the setup and hold times of both the resolution flip-flop 
and the READY latch must be satisfied. The READY pin must go active at least T CHIS before the rising 
edge ofT2, T3 orTw' and stay active until TCLIH after the falling edge ofT3 orTw to stop generation of 
wait states and tenninate the bus cycle. If READY goes active after the falling edge ofT3 there will 
be no wait state inserted. 

3-16 



inter BUS INTERFACE UNIT 

In a Nonnally-READY implementation the setup and hold times of either the resolution flip-flop or 
the READY latch must be met. If the external hardware does not meet this requirement, the CPU will 
not function properly. Wait states will be generated if READY goes inactive TCH1S before the rising 
edge of T 2 and stays inactive a minimum of T CHIH after the edge, or if READY goes inactive at least 
T CLIS before the falling edge of T 3 and stays inactive a minimum of T CLIH after the edge. The READY 
circuitry perfonns this way to allow a slow device the maximum amount of time to respond with a Not 
READY after it has been selected. 

3.7 EXECUTION UNIT/BUS INTERFACE UNIT RELATIONSHIP 

The 80C186 Modular Core family employs a pipelined architecture that allows instructions to be 
prefetched during spare bus cycles. The Bus Interface Unit (BIU) fetches instructions from memory 
and loads them into a prefetch queue. The Execution Unit (EU) executes instructions from the 
prefetch queue while other instructions are prefetched. The process of fetching new instructions 
while executing the current instruction is invisible to the user. 

3.7.1 PREFETCH QUEUE AND BUS PERFORMANCE 

The prefetch queue is six bytes long on the 80C186 Core. When two or more bytes are empty and the 
EU does not require the BIU to perfonn a bus cycle, the BIU executes instruction fetch cycles to refill 
the queue. Figure 3.14 shows how instruction fetches are interleaved with EU-initiated bus cycles. 
The chosen queue size allows the BIU to keep the EU supplied with prefetched instructions under 
most conditions without monopolizing the system bus. Recall that the 80C 186 Core BIU nonnally 
accesses two bytes (one word) of opcode per bus cycle. If a program transfer forces fetching from an 
odd address, the 80C186 Core automatically reads one byte from the odd address and then resumes 
fetching words from the subsequent even addresses. 

3-17 



80C186 
MODULAR CORE 
FAMILY 
MICROPROCESSOR 

BUS INTERFACE UNIT 

Illff~~~YJ~111 

BIU: _ 111~~~ftHIII _ fFETCH§ aD I~M~tWJ 

m 
-mIll 
.~ 

... It~IIII] 

INSTRUCTION STREAM 

1st INSTRUCTION (ALREADY FETCHED): 
EXECUTE AND WRITE RESULT 

2nd INSTRUCTION: 
EXECUTE ONLY 

3rd INSTRUCTION: 
READ OPERAND AND EXECUTE 

4th INSTRUCTION: 
(UNDEFINED) 

5th INSTRUCTION: 
(UNDEFINED) . 

270830-001-107 

Figure 3.14. Overlapped Instruction Fetch and Execution 

The prefetch queue is four bytes long on the 80C188 Core. When one or more bytes are empty, the 
processor attempts to refill the queue. With an 8-bit data bus, the 80C 188 Core BID accesses one byte 
of opcode per bus cycle. 

In most circumstances the queues contain at least one byte of the instruction stream and the EU does 
not have to wait for instructions to be fetched. The queue holds instructions from memory locations 
just above the source of the current instruction. That is, they are the next logical instructions so long 
as execution proceeds serially. If the EU executes an instruction that transfers control to another 
location, the BIU resets the queue, fetches the instruction from the new address, passes it immediately 
to the EU, and then begins refilling the queue from the new location. In addition, the BIU suspends 
instruction fetching whenever the EU requests a memory or I/O read or write, except for a fetch 
already in progress. 

Bus cycles occur sequentially, but do not necessarily follow immediately one after another. Since the 
CPU prefetches up to six bytes of the instruction stream for storage and execution from an internal 

3-18 



BUS INTERFACE UNIT 

instruction queue, the relationship between prefetching and instruction execution may be skewed in 
time and separated by additional instruction fetch bus cycles. In general, if the BID fetches an 
instruction into the processor's internal instruction queue, it may also fetch several additional instruc­
tions before the EU removes the instruction from the queue and executes it. If the EU executes a jump 
or other control transfer instruction from the queue, it ignores any instructions remaining in the queue; 
the CPU discards these instructions with no effect on operation. The bus activity observed during 
execution of a specific instruction depends on the preceding instructions; the activity, however, may 
always be determined within a specific sequence. 

3.7.2 BUS PERFORMANCE AND CPU PERFORMANCE 

Overall performance of a system based on an 80C 186 Modular Core family member system depends 
on both the bus bandwidth and execution rate. 

The number of clock cycles required to execute an instruction varies from two clocks for a register to 
register move to 67 clocks for an integer divide. If a program contains many long instructions, 
program execution will be CPU-limited, i.e., the prefetch queue will be full most of the time. If a 
program contains mainly short instructions or data move instructions, execution will be bus-limited. 
Here the processor will be required to wait often for an instruction to be fetched before it continues 
its operation. 

With an 8-bit external data bus, the 80C 188 M >dular Core can provide an opportunity for significant 
system cost savings over its 16-bit counterpl'..t, the 8OC186 Modular Core. In applications which 
manipulate only 8-bit quantities, the performance of the 8OC188 Core can approach that of the 
80C186 Core. The same is true for applications that are highly CPU-intensive (but not memory­
intensive) since all80C186 Modular Core family CPUs are internally 16-bit. 

Typical 80C186 Modular Core family applications are more data-intensive than computation-in­
tensive. The processor with an 8-bit bus must not only move data around eight bits at a time but also 
fetch instructions eight bits at a time. A sufficient number of prefetched bytes may not reside in the 
prefetch queue much of the time. In many cases, the performance degradation of an 8-bit bus will be 
significant. 

Adding up instruction clock counts given in 80C 186 Modular Core family data sheets and reference 
manuals yields only a rough approximation of execution time. Published clock counts assume that 
all the necessary opcode bytes reside. in the prefetch queue, frequently not the case for the 8OC188 
Core. A conservative rule of thumb for the 80C 188 Core is to add 100 per cent to the calculated clock 
count. The correction for the 80C 186 Core is typically about five to seven per cent. If there is any 
doubt of the performance capabilities of either the 80C 186 Core or the 80C 188 Core, we suggest the 
use of a performance analyzer on critical code sections early in the design process. 

3-19 



BUS INTERFACE UNIT 

3.7.3 WAIT STATES AND CPU PERFORMANCE 

Because an 80C186 Modular Core family processor contains separate Bus Interface and Execution 
Units, the actual performance of the processor will not degrade at a constant rate· as wait states are 
added to the memory cycle time from the processor. Shown below are two disparate ASM186 
assembly language routines, and the actual execution time for the two procedures as wait states are 
added to the memory system of the processor (CLKOUT = 8MHz); The percentage degradation from 
each wait state level to the following wait state level i's also indicated .. The actual rate of performance 
degradation is not as important as the conclusion that wait state degradation will depend on the type 
and mix of instructions encountered in the user's program. 

hod186 
name 

Example 1 

;. 

This file contains two programs which demonstrate the 80186 family processor 
performance degradation .as wait states .are ,inserted. Procedure Be'nch1 
performs a transformation betrween two types of of characters sets, then 
copies the transformed characters back to the original buffer <whic~ is 
64, bytes long. Procedl're B!!nch_2 perform~ the same type, of 
transformation, however instead of performing a table lookup, it 
multiplies each ~umber in the original 32 ~ord buffer by a constant 3 
<note the use of the integer immediate multiply instruction). Program 
nothing_is used to measure the call and the return time from the 

cgroup 
dgroup 
data 

t_tabh 
t_string 
m_arr·ay 
data 

code 

driver program only. 

group code 
,group data 
segment public_data_. 

db 
db 
dw 
ends 

256 dup <f) 
64 dup <f) 
32 dup<?)· 

segment pub li c' code' 
assume eS:cgroup,llS:dgroup 
public bench_1,· bench_2, noth,ing_,wait. st,ate_, set_timer_, 
proc near ;save registers used 
push SI 
push ex 
push BX 
push AX 

mov eX,64 
mov SI,O 
mov BH,·O 

mov BL,t_string 
mov Al, t_tabldBXl 
mov t_string[SIl,AL 
inc SI 
loop loop_back 

'pop AX 
pop BX 
pop ex 
pop SI 
endp 

proc near 
puxh AX 
push SI 
push ex 

3-20 

;translate 64 bytes 

;get the byte 
;and store it 
;and store it 
;increment index 
;do .the next byte ,. 

;save registers used 



bench_2 

nothing_. 

nothing_. 

mov 
mov 

imul 
mov 
inc 
inc 
loop 

pop 
pop 
pop 
ret 
endp 

proc 
ret 
endp 

BUS INTERFACE UNIT 

CX,32 
SI,offset m_array 

AX,wordptr [sil,3 
word ptr [SI1, AX 
SI 
SI 
100p_back_2 

ex 
SI 
AX 

near 

imultiply 32 numbers 

iimmediate multiply 

Wait_staten sets the 8DC18bEB family processor LCSST register to the number of 
wait states (0 to 3) indicated by the parameter n (which is passed on 
the stack). No other bits of the LCSST register are modified. 

proc near 
enter 0,0 
push AX 
push BX 
push DX 

mov BX, word ptr 
mov DX, DFFAD 

in AX,DX 

and AX,DFFFDH 
and BX,3 
or AX,BX 
out »X,AX 
pop DX 
pop BX 
pop AX 
leave 
endp 

[BP+41 

set up stack frame 
save registars used 

get argument 
get current LeSST register 
contents 

and off existing ready bits 
i insure ws count is good 
iadjust the ready bits 
i and write to LeSST 

tear downs tack frame 

Set_timer ( ) initializes the 8DC18bEB family processor timers to count 
microseconds. Timer 2 is set up as a prescaler to timer 0, the 
register at location FFSDH is 110 space. 

set_timer_. proc near 
push AX 
push DX 
mov DX,Dff4bH stop timer 2 
mov AX,4DDDh 
out »X,AX 

mov »X,Dff3DH iclear timer 0 count 
mov AX,D 
out DX,AX 

mov »X,Dff32H itimer 0 counts up to bSS3b 
mov AX,D 
out DX,AX 

mov DX,Dff3bH ienable timer 0 
mov AX,DcDD'lH 
out DX,AX 

mov DX,Dff4DH iclear timer 2 count 
mov AX,D 
out DX,AX 

3-21 



1II0V 

mov 
out 

mov 
mov 
out 

BUS INTERFACE UNIT 

I>X,Dff42H 
AX,D 
I>X,AX 

I>X,Dff4bH 
AX,D 
I>X,AX 

iset maximum count of timer 2 

ire-enable timer 2 

Table 3.3. Performance Degradation vs. Wait States 

Program 1 Program 2 
#of 
Wait Exec Exec 

States Time Perf Time Perf 
~sec) Degr (Ilsec) Degr 

0 505 294 

1 595 18% 311 6% 

2 669 12% 337 8% 

3 752 12% 347 3% 

Procedure Bench_l is very bus intensive. It performs many memory operations using elaborate 
addressing modes which also require more opcode bytes. As a result, the Execution Unit must 
constantly wait for the Bus Interface Unit to fetch and perform the memory cycles to allow it to 
continue. Thus, the execution time of this type of routine will grow quickly as wait states are added, 
since the execution time depends mainly on the speed at which the processor can run bus cycles. 

Note also that the program execution time calculated by merely summing up the number of clock 
cycles given in the data sheet will typically be less than the number of clock cycles actually required 
to run the program. This is true because the numbers quoted in the data sheet assume that the opcode 
bytes have been prefetched and reside in the prefetch queue for immediate access by the Execution 
Unit. If the Execution Unit cannot access the opcode bytes immediately upon request, dead clock 
cycles will be inserted in which the Execution Unit will remain idle, thus increasing the number of 
clock cycles required to complete execution of the program. 

On the other hand, procedure Bench_2 is more CPU intensive. The Bus Interface Unit can fill up the 
instruction prefetch queue in parallel with the Execution Unit performing integer multiplies. In this 
program, the Bus Interface Unit can perform bus operations faster than the Execution Unit actually 
requires them to be run. The performance degradation is much less as wait states are added to the 
memory interface. The execution time of this program is close to the number calculated by adding 
the number of cycles per instruction because the Execution Unit does not have to wait for the Bus 
Interface Unit to place an opcode byte in the prefetch queue as often. Fewer clock cycles are wasted 
by the Execution Unit lying idle for want of instructions .. 

3-22 



BUS INTERFACE UNIT 

3.8 HOLD/HLDA INTERFACE 

The 80C186 Modular Core family employs a HOLD/HLDA bus exchange protocol. This protocol 
allows other asynchronous bus masters (i.e., ones which drive address, data, and control information 
on the bus) to gain control. 

3.8.1 RESPONSE TO HOLD 

In the HOLD/HLDA protocol, a device requiring bus control (e.g., a token-ring communications 
controller) raises the HOLD line. In response to this HOLD request, the processor will raise its HLDA 
line after it has finished its current bus activity. When the external device is finished with the bus, it 
drops its bus HOLD request. The processor responds by dropping its HLDA line and resuming bus 
operation. 

When the processor recognizes a bus HOLD by driving HLDA HIGH, it will float many of its signals 
(see Figure 3.15). ADO-AD15 and DEN arefl~ted within TcLOpaftertheclockedge whenHLDAis 
driven active. A16-A19, RD, WR, BHE, DT/R, and SO-S2 are floated within TcHop after the clock 
edge on which HLDA becomes active. 

CLOCK 

OUT 

T,OIl T, T, T, 

HOLD ----'i----I~.;_---l..-_ 

HLDA --;.--+-+-.....,.... 
AD15·ADO 

DEN ___ +-_...J 
A16-A1B, _---'_+-. 

Im,WFI,IHE, ,"",_-+---,=::':"-+ __ 
DT/R,Ili-B, _---;_--.1 
~ 

Figure 3.15. Signal FloatlHLDA Timing of 80C186 Core Family Processor 

270288-001-45 

Only the above mentioned signals are floated during bus HOLD. Of the signals not floated by the 
processor, some have to do with peripheral functionality (e.g., timer outputs). Many others either 
directly or indirectly control bus devices. These signals are ALE and all chip select lines (UCS, LCS, 
GCSO-7). 

3-23 



BUS INTERFACE UNIT 

3.8.2 HOLD/HLDA TIMING AND BUS LATENCY 

The time required between HOLD going active and the microprocessor driving HLDA active is 
known as bus latency. Many factors affect bus latency, including synchronization delays, bus cycle 
times, LOCKed transfer times, interrupt acknowledge cycles, and DRAM refresh cycles. 

The HOLD request line is internally synchronized by the 80C186 Modular Core family processor, 
and may therefore be an asynchronous input. To guarantee recognition on a particular falling clock 
edge, it must satisfy setup and hold times. A full CPU clock cycle is required for synchronization (see 
Appendix B). If the bus is idle, HLDA will follow HOLD by two CPU clock cycles plus setup and 
propagation delay time. The first clock cycle synchronizes the input; the second signals the internal 
circuitry to initiate a bus HOLD (see Figure 3.16). 

T, T, 

HOLD 

HLDA __________ -..1 

NOTES: 
1. T CLIS: Hold valid un1il clock low. 
2. T CLOY: Clock low until HLDA active. 270830·00H 08 

Figure 3.16. Idle Bus Hold/HLDA Timing 

Many factors make bus latency longer than the best case described above. Perhaps the most important 
factor is that the processor will not relinquish the local bus until the bus is idle. The bus can become 
idle only at the end of a bus cycle. The processor will normally insert no Tj states between T4 and T[ 
of the next bus cycle if it requires any bus activity (e.g., instruction fetches or I/O reads). However, 
the processor may not have an immediate need for the bus after a bus cycle, and will insert Tj states 
independent of the HOLD input (see Section 3.1). 

3-24 



BUS INTERFACE UNIT 

When the HOLD request is active, the 80C 186 Modular Core family BIU will proceed from T4 to Tj 

to relinquish the bus. HOLD must go active two T -states before the end of a bus cycle to force the BIU 
to insert idle T -states after T 4' One T -state is spent synchronizing the request and one T -state is spent 
signaling the processor that T4 of the bus cycle will be followed by idle T-states (see Section 3.1). 
After the bus cycle has ended, the HOLD will be immediately acknowledged. If, however, the 
processor has already determined that an idle T -state will follow T4 of the current bus cycle, HOLD 
needs to go active only two T -states before the end of the bus cycle to force the microprocessor to 
relinquish the bus. Figure 3.17 shows these processes. Also, if HOLD is asserted during RESET, the 
processor releases the bus prior to the first fetch. 

3-25 



NOTES: 

CLOCK 

OUT 

BUS INTERFACE UNIT 

T,OR 

Tw 

HOLD ___ J 

HLDA 

T, 

1. Decision: No additional internal bus cycles required, idle T-states will be inserted after T 4' 
2. Greater than T CLIS' 
3. Less than T CHOV' 
4. HOLD request internally synchronized. 

NOTES: 

CLOCK 

OUT 

HOLD 

HLDA 

T,OR 

I Tw : T. : T1 

~l 
I I I 

I I 

270830-001-109 

270830-001-110 

1. Decision: Additional internal bus cycles required, no idle T-states will be inserted, HOLD not active soon enough to force idle T-states. 
2. Greater than T CLIS: not required since it will not get recognized anyway. 
3. HOLD request internally synchronized. 

CLOCK 
OUT 

HOLD 

I. .1 
I I 
I I 

HLDA 

270830-001-111 

NOTES: 
1. HOLD request internally synchronized. 
2. Decision: HOLD request active, idle T-states will be inserted at end of current bus cycle. 
3. Greater than TCLIS' 

4. Less than T CLOV' 

Figure 3.17. HOLD/HLDA Timing in the 8OC186 Modular Core Family 

3-26 



"nt_l@ 
III-e- BUS INTERFACE UNIT 

An external HOLD has higher priority than a CPU bus request. However, an external HOLD will not 
separate the two cycles needed to perfonn a word access when the word accessed is located at an odd 
location (see Section 3.3.1). 

Another factor influencing bus latency time is LOCKed transfers. Whenever a LOCKed transfer is 
occurring, the processor will not recognize external HOLDs. LOCKed transfers are programmed by 
preceding an instruction with the LOCK prefix. String instructions may be LOCKed. Since string 
transfers may require thousands of bus cycles, bus latency time will suffer if they are LOCKed. 

The final factor affecting bus latency time is interrupt acknowledge cycles. When an external 
interrupt controller is used the CPU will run two interrupt acknowledge cycles back-to-back. These 
cycles are automatically LOCKed and will never be separated by bus HOLD. 

3.B.3 LEAVING HOLD 

When the HOLD input goes inactive, the processor lowers its HLDA line in a single clock as shown 
in Fig\lre 3.18. If there is pending bus activity, only two T j states will be inserted after HLDA goes 
inactive. Status information will go active during the last idle state concerning the bus cycle about to 
be run (see Section 3.1). If there are no bus cycles to be run by the CPU, it will continue to float all lines 
until the last Ti before it begins its first bus cycle after the HOLD. 

NOTES: 

CLKOUT 

HOLD 

T, T, 

HLoA ___ --J. ___ ~,.... 

Ti T. T, 

ADG-ADI5 -----7---~---+--tL_;::C== DEN ~ 

RD,WR,BHE ___ ...l ___ -l ___ ..l_..Jr~---
oT/ii,so·52 

1. HOLD internally synchronized. 

2. Greater than T CLiS. 

3. Less than T CLOV. 
4. Lines come out of float only if a bus cycle is pending. 

Figure 3.18. 80C186 Modular Core Family 

3-27 

270830-001-113 



BUS INTERFACE UNIT 

A special mechanism exists on the 80C 186/80C 188 to provide for DRAM refreshing while the bus 
is in HOLD. See the chapter of this manual on the Refresh Control Unit for details. 

3.9 PRIORITY OF BUS CYCLE TYPES 

The 80C186EB family Bus Interface Unit arbitrates requests for bus cycles originating in the inte­
grated peripherals as well as the Execution Unit. Here is a summary of the overall priority for all bus 
cycle types (highest to lowest): 

1. Instruction execution reads or writes following a non-pipelined effective address calculation. 

2. DRAM refresh cycles. 

3. Bus cycles run by an external bus master during HOLD. The 80C186 Modular Core family 
signals its need to use the bus for a DRAM refresh cycle by lowering HLDA. 

4. Vectoring sequence for the single step interrupt. 

5. Vectoring sequence for the NMI interrupt. 

6. Vectoring sequence for divide error, breakpoint, overflow, array bounds, unused opcode, and 
ESCape trap interrupts, according to priority resolution. 

7. Vectoring sequence for hardware interrupts from the timers, Serial Communications Unit, and 
external pins. 

8. Vectoring sequence for 80C187 Numerics Coprocessor Extension errors. Such exceptions are 
sampled on the 80C186EB ERROR pin during numerics code execution. 

9. General instruction execution. This category includes reads or writes following a fully-pipelined 
effective address calculation, vectoring sequences for user-designated software interrupts, and 
numerics code execution. The following points are applicable to sequences of related execution 
cycles: 

The second read/write cycle of an 80C186 Core odd-addressed word operation is inseparable 
from the first bus cycle. 

'. On the 80eI88 Core, the two bus cycles associated with any word operation are inseparable. 

The second read/write cycle of an instruction with both load and store accesses (e.g., 
XCHG) may be separated from the first cycle by other bus cycles. 

Successive execution cycles of string instructions (e.g., MOVS) may be separated by other 
bus cycles. 

When a LOCKed instruction begins, its execution cycles are elevated to the highest priority 
level, making LOCKed cycles inseparable even to DRAM refresh cycles. String operations 
and 80C186EB/80C187 execution may be LOCKed like any other instructions. 

10. Fetches necessary to fill the prefetch queue with opcodes and operands. 

3·28 



Clock Generator 4 





CHAPTER 4 
CLOCK GENERATOR 

The clock generator provides the main clock signal for all integrated components and all CPU 
synchronous devices in a system based on the 80C186EB family. This clock generator includes a 
crystal oscillator, divide-by-two counter, RESET circuitry, and power management circuitry. A 
block diagram of the clock generator is shown in Figure 4.1. 

~----~--------------------~'-----------<POWERDOWN 

CLKIN 

OSCOUT 

RESIN 

4.1 CRYSTAL OSCILLATOR 

SCHMIDTT TRIGER 
"SQUARES-UP" CLKIN 

+2 
CLOCK 

PHASE 
DRIVERS 

,----(IDLE 

<l>JINTERNAL 
PHASE 

<1>2 CLOCKS 

...... --------------.... TO CLKOUT 

RESET CIRCUITRY 

Figure 4.1. Clock Generator 

INTERNAL 
RESET 

270830-001-69 

80C186EB family microprocessors use a parallel resonant Pierce oscillator. For low frequency 
80C 186EB family applications, a fundamental mode crystal is appropriate. At higher frequencies, the 
diminishing thickness of fundamental mode crystals makes a third overtone crystal the appropriate 
choice. The addition of external capacitors at CLKIN and OSCOUT is always required, and a third 
overtone crystal also requires an RC tank circuit to select the third overtone frequency over the 
fundamental frequency (see Figure 4.2). 

4-1 



80C186EB 
80C188EB 

CLKIN 

OSOUT 

(a) 

~ 

CLOCK GENERATOR 

(a) - FUNDAMENTAL MODE OPERATION 

(b) - THIRD OVERTONE OPERATION 

80C186EB 
80C188EB 

CLKIN 

OSOUT 

(b) 

Figure 4.2. 80C186EB Family Crystal Connections 

~ 

270830-001-70 

A Pierce oscillator is a specific form of the common phase shift oscillator. Phase shift oscillators 
operate by feeding a non-inverted, amplified, version of the input signal back into their input. This is 
known as positive feedback. For the 80C 186EB oscillator cicuitry, a 360 degree phase shift is needed 
around the feedback loop to insure positive feedback. The inverter itself provides 180 degrees. The 
combination of the output impedance of the inverter and C 1 (Figure 4.3) provides another 90 degrees. 
At resonance the crystal becomes primarily a resistive component. The combination of the crystal and 
C2 provide the final 90 degrees for the full 360 degree phase shift. Above and below resonance the 
crystal is reactive and tends to force the oscillator back towards the crystal's rated frequency. 

180' n RO= INVERTER OUTPUT RESISTANCE 

90' t 
f) U 

90' 

,J", n 
~ XTAL = ---JVVv-AT RESONANCE 

270830-001-71 

Figure 4.3. Pierce OSCillator 

4-2 



CLOCK GENERATOR 

The RC tank circuit, used for third overtone crystals, suppresses oscillation at the fundamental 
frequency. This is accomplished by preventing the first 90 degree phase shift from occurring. A more 
detailed analysis of crystal oscillator circuits is beyond the scope of this user's guide. Several excel­
lent articles and texts can be found on the subject of crystal oscillators should more information be 
necessary. 

The recommendations given in 80C186EB family data sheets for the values of the external com­
ponents should be taken only as rough guidelines, since there are situations which alter typical 
oscillator characteristics. One example would be the case in which the circuit layout introduces 
significant stray capacitance to the CLKIN and OSCOUTpins. Another example is at low frequencies 
(CLKOUT less than 6 MHz) where slightly larger capacitors are desirable. Finally, it is also possible 
to use ceramic resonators in place of crystals for low cost when precise frequencies are not required. 

For assistance in selecting the external oscillator components for unusual circumstances, the best 
resource is the crystal manufacturer. In general, almost any microprocessor grade crystal will work 
satisfactorily with any member of the 80C186EB family. The foremost circuit consideration is that 
the oscillator start correctly over the entire voltage and temperature ranges expected in operation. 

4.2 USING AN EXTERNAL OSCILLATOR 

An external oscillator may be used with the 80C186EB family. The external frequency input (EFI) 
signal is connected directly to the CLKIN input of the oscillator. OSCO UT must be left unconnected. 
This oscillator input drives an internal divide-by-two counter to generate the CPU clock signal. Thus 
the external frequency input can be of practically any duty cycle, so long as the minimum HIGH and 
LOW times for the signal (as stated in the data sheet) are met. 

4.3 OUTPUT FROM CLOCK GENERATOR 

The output of the crystal oscillator (or the external frequency input) drives a divide-by-two circuit 
which generates a 50 per cent duty cycle clock for the 80186 family processor system. All processor 
timing is referenced to this clock, available externally at the CLKOUT pin. CLKOUT changes state 
on the HIGH-to-LOW transition of the CLKIN signal, and is active during RESET and bus HOLD. 
CLKOUT is also available during Idle mode but not during Powerdown Mode (see the Chapter 12 for 
more details). 

4.4 RESET 

The 80C186EB family clock generator also provides a synchronized RESET signal for the system. 
This signal is generated from the RESIN input to the device. The clock generator synchronizes this 
signal to the CLKOUT signal. 

A Schmitt trigger in the RESIN input circuit ensures that a voltage difference separates the switch 
points for logic states 0 and 1. This hysteresis measures approximately 600 mY. An 80C186EB 

4-3 



CLOCK GENERATOR 

family processor must remain in RESET a minimum offourCLKOUT cy cles after Vee andCLKOUT 
stabilize. The hysteresis allows the RESIN input to be driven with a simple RC circuit as shown in 
Figure 4.4. Typical applications can use an RC time constant of approximately 100 ms. RESIN 
must be held LOW upon power-up for correct processor initialization. 

100 K 1yp. 

RESET IN ----.... ----~~--------1RESIN 

80C186EB 

1l1Ftyp. T 
270830-001-72 

Figure 4.4. Simple RC Circuit for Power Up RESET 

There are two types of RESETs than can occur: cold and warm. A cold reset takes place only at 
powerup (Figure 4.5). The RESIN input must be held low during power supply and oscillator startup. 
The device pins will assume their RESET pin states a maximum of 28 CLKIN periods after CLKIN 
and VCC have stabilized. RESIN must be held Iowan additional 4 CLKIN periods after the device 
pins have assumed their RESET state. 

A warm RESET takes place when the device is RESET while it is running (Figure 4.6). In this case, 
RESIN must be held low at least 4 CLKOUTperiods. The device pins will assume their RESET states 
on the second falling edge of CLKIN following the assertion of RESIN. 

Exiting RESET is the same in both cases. The rising edge of RESIN generates an internal RESYNC 
pulse (Figure 4.7) that resynchronizes thedivide-by-2 internal phase clock. RESIN is sampled by the 
falling edge of CLKIN. If RESIN is sampled high while CLKOUT is high, then CLKOUT will be 
forced low for the next 2 CLKOUT cycles. The clock essentially "skips a beat" to synchronize the 
internal phases. If RESIN is sampled high while CLKOUT is low, CLKOUT will not be affected (it 
is already in phase). 

RESOUT is deasserted on the second falling edge of CLKOUT after the internal clocks have re­
synchronized. Bus activity will begin seven CLKOUT periods after RESIN goes high. If HOLD is 
asserted during RESET, the processor will immediately assertHLDA (no instructions will be fetched). 

The state of all device pins at RESET can be found in Appendix H "Modal PinStates". 

4-4 



ClKIN 

1 

1 

1 

1 

CLOCK GENERATOR 

_1----""""" 

Vee 1 
I""""'l 
1 

Vee and ClKIN Stable to Output Valid 
1 __ I 

1 
1 
1 ClKOUT ~1--______ ..1 

1 

-I 
UCS, 1 

--1&§, 1 

GCS7:0'1 
TOOUT'I 
T10UT 1'""""'1�--------­

TXQ.LQ, 1 
NCS 1 

1 

HlDA,AlE,1 
SINT1 ;-~t-------""'-

1 

1 
1 

1 
A19:161 

i-!I-----== 

28 ClKIN Periods (Max) 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 

JlJ\.h.f\.Jl.-U1JU1Jl11J: 
1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 

II 

I 
1 

1 

1 1 

AD15:0,1 1 
S2'0 1 1 1 1 1 1 1 1 

RDD~~: : + - i~ - -:- - t- - - - ~II- -:- C 
DEN, 1 1 1 1 1 

lOCK 1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 If I i III 

RESIN 1 1 ~G) 1 I 
I~I~I------------~~---~-~I-~I'I -, 

1 1 1 1 
1 1 1 1 
1 1 1 1 
1 

RESOUT 

Vee and ClKIN Stable to Reset High, Resets High to First Bus Activity, 
Approximately 32 ClKIN Periods 7 ClKOUT Periods 

NOTES: 1) ClKOUT synchronization occurs on the rising edge of RESIN. If RESIN is sampled 
high while ClKOUT is high (solid line), then ClKOUT will remain low for two ClKIN 
periods. If RESIN is sampled high while ClKOUT is low (dashed line), the ClKOUT 
will not be affected. 270830-001-73 

Figure 4.5. Cold Reset Waveform 

4-5 



ClKIN 

ClKOUT 

UCS, 
lCS, 

GCS7:0, 
TOOUT, 
TlOUT 

TXD1:0, I 
NCSI 

I 
HlDA,AlE, 

SINT1 

A19:16 

AD15:0, I 
S2:0, I 

RD,WR. 
DT/R, 
DEN, 

lOCK 

CLOCK GENERATOR 

I 
I 
I 
I 

I I I I I I I 

-,--r-r-"1I --,- I I IIIII~ 

I I I I 
I I I I I I 
I I I I I I 
I I I I I I 

\,+':::'~"""""l--tll*",i I_-!i!! 
I 
I 

I I 

I I 
I I 
I I 
I I 
I I 

RESOUT 1-1 __________________ ...... ~I! !\,-_: ----'-~-
I 
I 

Minimum RESIN Resets High to First Bus Activity, 
low Time, 7 ClKOUT Periods 
4ClKOUT Periods 270830-001-74 

Figure 4.6. Warm Reset Waveform 

4-6 



CLOCK GENERATOR 

ClKIN 

RESIN 

RESYNC 
(INTERNAL) 

ClKOUT 

RESOUT 

CD Setup of RESIN to ClKIN falling. 

CD Next J transition of ClKIN starts RESYNC. 

CD J transition ends RESYNC. 

CD J of RESYNC resynchronizes the <I> clock. 

CD 21 of ClKOUT later RESOUT goes low. 

Figure 4.7. Clock Synchronization 

4-7 

270830-001-75 





Peripheral Control Block 5 





CHAPTERS 
PERIPHERAL CONTROL BLOCK 

All the integrated peripherals on the 80C 186EB/80C 188EB are controlled by sets of registers con­
tained within an integrated peripheral control block (PCB). The registers are physically located in the 
peripheral devices they control, but are addressed as a single block of registers. This set of registers 
encompasses 256 contiguous bytes and can be located on any 256 byte boundary of the memory or 
I/O space. Maps of these registers are shown in Figure 5.1. Any unused locations are reserved. 

80H GCSO Start 
82H GCSO Stop 

04H 84H GCS1 Start 
06H Poll Status 86H GCS1 Stop 
08H Interrupt Mask 88H GCS2 Start 
OAH Priority Mask 8AH GCS2Stop 
OCH In-Service 8CH GCS3 Start 
OEH Interrupt Request 8EH GCS3Stop 
10H Interrupt Status 50H PORT1 Direction 90H GCS4 Start 
12H Timer Control 52H PORT1 Pin 92H GCS4Stop 
14H Serial Control 54H PORT1 Control 94H GCS5 Start 
16H INT4 Control 56H PORT1 Latch 96H GCS5 Stop 
18H INTO Control 58H PORT2 Direction 98H GCS6 Start 
1AH INT1 Control 5AH PORT2 Pin 9AH GCS6 Stop 
1CH INT2 Control 5CH PORT2 Control 9CH GCS7 Start 

5EH PORT2 Latch 9EH GCS7 Stop 

60H SERIALO Baud AOH LCS Start 
62H SERIALO Count A2H LCS Stop 

64H SERIALO Control A4H 
66H SERIALO Status 

SERIALO RBUF 

32H TO Compare A 72H SERIAL 1 Count 

34H TO Compare B 74H SERIAL 1 Control 

36H TO Control 76H SERIAL 1 Status 

38H T1 Count 78H SERIAL 1 RBUF 

3AH T1 Compare A 

3CH T1 Compare B 
3EH T1 Control 

Figure 5.1. PCB Register Map 

5-1 



PERIPHERAL CONTROL BLOCK 

5.1 SETTING THE BASE LOCATION 

In addition to the control registers for each of the integrated peripheral devices, the peripheral control 
block contains the peripheral control block relocation register. This register allows the PCB to be 
relocated on any 256 byte boundary within the processor's memory or I/O space. Figure 5.2 shows 
the layout of this register. 

RCB RELOCATION REGISTER: (RELREG) 

THE UPPER ADDRESS BITS OF THE PCB BASE ADDRESS. 
LOWER BITS FIXED AT O. 
R19 THROUGH R161GNORED WHEN PCB 1/0 MAPPED. 

R R R R R R R R 
1 1 1 1 1 1· 1 1 
9 8 7 6 5 4 3 2 

MEMORY 1/0 BIT: 
0= PCB IN 1/0 SPACE 
1= PCB IN MEMORY SPACE 

ESCAPE TRAP BIT: 1...-___ 0= NO TRAP ON ESCape 
1 = TRAP ON ESCape 

R R R R 

1 ~ 9 8 

I ... : = UNDEFINED WHEN READ . 
. :; MUST WRITE "0". 

Figure 5.2. 

270830-001-49 

The relocation register is located at offset OA8H within the PCB. Since it is contained within the 
peripheral control block, any time the peripheral control block is moved, the relocation register will 
also move. 

In addition to the PCB relocation information, the relocation register contains an additional bit used 
to force the processor to trap whenever an ESCape (coprocessor) instruction is encountered. The 
function of this bit is described in greater detail in the "Provisions for Floating Point Math" section 
of this manual. 

The relocation register contains the value OOFFH upon RESET. This means that the peripheral control 
block will be located at the very top (OFFOOH to OFFFFH) of I/O space. Thus after RESET the 
relocation register will be located at word location OFF A8H in I/O space. 

To relocate the PCB to the memory range l0000-100FFH, for example, the user program.s the 
relocation register with the value 11 OOH. Since the relocation register is contained within the periph­
eral control block, it moves to word location lOOA8H. 

5-2 



PERIPHERAL CONTROL BLOCK 

All communication between the integrated peripherals and the Modular CPU Core takes place over 
a special bus called the F-Bus. The F-Bus always carries 16 bit data for both the 80C186EB and the 
80CI 88EB. 

Whenever mapping the 80Cl88EB peripheral control block to another location, the pro­
gramming of the relocation register should be done with a byte write (i.e., OUT DX, AL). Any 
access to the control block is done 16 bits at a time. Thus, internally, the relocation register will be 
written with 16 bits of the AX register while externally, the BIU will run only one 8-bit bus cycle. If 
a word instruction is used (Le., OUT OX, AX), the relocation register will be written on the first bus 
cycle. The BIU will then run a second bus cycle which is unnecessary. The address of the second bus 
cycle will no longer be within the control block (Le., the control block was moved on the·frrst cycle), 
and therefore will require the generation of external READY to complete the cycle. For this reason 
we recommend the use of byte operations for the relocation register. Byte instructions may also be 
used for the other registers in the control block of a 80C 188EB and will eliminate half of the bus cycles 
required if a word operation had been specified. Byte operations are only valid for even addressed 
writes to the PCB. A word read (Le., IN AX, OX) must be performed to read a 16-bit PCB register. 

5.2 PERIPHERAL CONTROL BLOCK REGISTERS 

Each of the integrated peripherals' control and status registers are located at a fixed location above the 
programmed base location of the peripheral control block. There are many locations within the 
peripheral control block which are not assigned to any peripheral. If a write is made to any of these 
locations, the bus cycle will be run, but the value will not be stored in any internal location. This means 
that if a subsequent read is made to the same location, the value written will not be read back. 

The processor will run an external bus cycle for any memory or I/O cycle which accesses a location 
within the integrated control block. This means that the address, data, and control information will be 
driven on the processor external pins just as if an ordinary bus cycle had been run. Any information 
returned by an external device will be ignored, however, even if the access was to a location which 
does not correspond to any of the integrated peripheral control registers. The above is true for the 
80C 188EB except that the word access made to the integrated registers will be performed in two bus 
cycles. 

The processor internally generates a READY signal whenever any of the integrated peripherals are 
accessed; any external READY signal is ignored. This READY will also be returned if an access is 
made to a location within the 256 byte area of the peripheral control block which does not correspond 
to any integrated peripheral control register. The processor will insert no wait states for any access 
within the integrated peripheral control clock except for accesses to the timer registers. Any access 
to the timer control and counting registers will incur one wait state. This wait state is required to 
properly multiplex processor and counter element accesses to the timer control registers. 

5-3 



inter PERIPHERAL CONTROL BLOCK 

The F-Bus does not function the same as the external data bus with regards to byte and word accesses. 
All Write transfers on the F-Bus take place as words regardless of how they are encoded. For example, 
the instruction OUT OX, AL (OX is even) will write the entire AX register to the PCB register at even 
location [OX]. If OX were an odd location, AL would be placed in [OX] and AH would be placed at 
[OX-I]. Similarly, a word operation to an odd address wouldmQdify [OX] and [OX-llwith theAH 
and AL bytes swapped. This is ditTerentfrom normal external bus operation where ulJaliglJed 
word writes would cause the modification of [DX] and [DX+l]. 

Aligned word reads work normally, however, unaligned word reads do not. For example, IN AX, OX 
(OX is odd) will actually transfer [OX] into AL and [OX-I] into AH. Byte readsfrom either even or 
odd addresses work normally, however only a byte will be read. Unlike the write operation, an IN 
AL, OX will not transfer [OX] into AX (onlyAL is modified). 

No problems will arise if the following recommendations are adhered to. For the 80C I 86EB : 

Word reads: Access only even aligned word with IN AX, OX or MaY <word register>, 
<even PCB address>. . 

Byte reads: Work normally. Beware of reading word wide PCB registers that may change value 
between successive reads (i.e. Timer count value). 

Word writes: Always write even aligned words. Writing an odd aligned word will give unex­
pected results. Use either OUT OX, AX or OUT OX, AL (or MaY <even PCB. address>, 
<word register> ) .. 

Byte writes: 00 not perform unaligned byte writes. Even aligned byte writes will modify the 
entire word PCB lOCation. 

For the 80CI88EB: 

Word reads: Access only even aligned words. witq IN AX, OX or MaY <word register>, 
. <even PCB address>. 

Byte reads: Work normally . Beware of reading word wide PCB registers that may change value 
between successive reads (i.e. Timer count value). 

Word writes: Always write even aligned words. Writing an odd aligned word will give unex­
pected results. Use OUT OX, AL or MaY <even aligned byte PCB address>, <byte registerlow 
byte>. Using OUT OX, AX will perform an unnecessary extra bus cycle. 

Byte writes: 00 not perform unaligned byte Writes. Even aligned byte writes will modify the 
entire wofd PCB location. 

5-4 



inter PERIPHERAL CONTROL BLOCK 

5.3 RESERVED LOCATIONS AND THE NUMERICS INTERFACE 

Any location within the 256 byte peripheral control block that are not explicitly used are reserved. 
Reading from these locations yields an undefined result. If reserved registers are written, for example 
during a block MOVe instruction, they must be set to OH. Failure to follow this guideline could 
result in incompatibilities with future 80Cl86EB and other 80C186 Modular Core family 
products. 

Systems using the 80C187 Numeric Processor Extension must not relocate the PCB to location OH 
in I/O space. The 8OC186EB/8OC187 interface uses I/O locations OF84 through OFFH. If the PCB 
were relocated over these locations, the 8OC186EB would be communicating with the PCB and not 
the 80C 187 interface circuitry. This will cause indeterminate system operation if a numerics instruc­
tion is encountered when the escape trap bit is cleared. 

5-5 





Timer/Counter Unit 6 





CHAPTER 6 
TIMER / COUNTER UNIT 

The 80C186EB family includes a Timer/Counter Unit which consists of three independent 16-bit 
timers (figure 6.1). These timers operate independently of the CPU. Two have input and output pins 
allowing counting of external events and generation of arbitrary waveforms. The third can be used 
as a free running timer or as a prescaler for the other timers. 

All of the timers can generate internal interrupt requests. Although the three timers share one request, 
they each have their own vectoring location and have a fixed priority amongst themselves. 

Timers 0 and 1 have two maximum count compare registers. Timers 0 and 1 also can be enabled or 
disabled via a package pin. This allows for convenient measurement of external pulse widths. The 
timer 0 and 1 in and out pins can also be configured as a digital one-shot. 

TO IN T11N 

TIMER 0 OUTPUT 
REGISTERS LATCH TO OUT 

CPU TIMER 1 
REGISTERS 

TIMER 2 OUTPUT T10UT 
REGISTERS 

LATCH 

CPU 
CLOCK 

270830-001-89 

Figure 6.1. Timer/Counter Unit Block Diagram 

Three peripheral control block registers are used for each timer: the control register, the count register, 
and the compare register. Timers 0 and 1 have an additional compare register. The PCB map and 
summary of operation are shown in figure 6.2. 

6-1 



TIMER/COUNTER UNIT 

Figure 6.2(a). PCB Map For Timer/Counter Unit 

TIMER MAXCOUNT COMPARE REGISTERS: 
(TOCMPA, TOCMPB, T1CMPA, T1CMPB, T2CMPA) 

15 

T T T T T T T T C C C C C C C C I I I I I I 9 8 5 4 3 2 1 0 

TIMER COMPARE VALUE 3 
RESET = UNDEFINED 

T T 
C C 
7 6 

Figure 6.2(b). 

TIMER COUNT REGISTERS: 
(TOCNT, T1CNT, T2CNT) 

15 

T T 
C C 
I I 
5 4 

T 
C 
I 
3 

T T T T T C C C C C I I I 9 8 2 1 0 

TIMER COUNT VALUE 3 
RESET = UNDEFINED 

T T 
C C 
7 6 

Figure 6.2(c). 

6-2 

o 
T T T T T T 
C C C C C C 
5 4 3 2 1 0 

270830-001-61 

o 
T T T T T T 
C C C C C C 
5 4 3 2 1 0 

270830-001-61A 



TIMER/COUNTER UNIT 

TIMER 0 and TIMER 1 CONTROL REGISTERS: 
(TOCON, T1 CON) 

,....--- ENABLE BIT: 
o = TIMER DISABLED. 
1 = TIMER ENABLED. 

INHIBIT: 
o - WRITES TO ENABLE BIT IGNORED. 
1 • ALLOWS WRITE TO ENABLE BIT. 

INTERRUPT ON TERMINAL COUNT: 
0- NO INTERRUPT REQUESTS FROM THIS TIMER. 
1 = GENERATE INTERRUPT REQUEST AT MAXCOUNT. 

15 ..... .,..r...,..r..,...,. ... 
E I I R 

N ~ ~ 0 

IlEGISTER IN USE: 
o = COMPARE REGISTER A IN USE. 
1 = COMPARE REGISTER B IN USE. 

MAX COUNT OCCURED: ------... 
o = NO MAXCOUNT YET. 
1 = MAXCOUNT HAS OCCURRED. 

RETRIGGER: --...-----------1 
o = TIMER INPUT SENSES 

LEVEL TO GATE CLOCK 
FOR INTERNAL CLOCKING. 

1 = T!MER INPUT SENSES 0-1 
EDGE TO RESET COUNT REGISTER 
FOR INTERNAL CLOCKING. 

E A 
P X L 

T T 

PRESCALAR ON: ------------' 
0= TIMER COUNTS 1/4 CLKOUT 

WHEN INTERNAL CLOCK 
SELECTED. 

1 = TIMER COUNTS TIMER 2 
MAXCOUNTS WHEN INTERNAL 
CLOCK SELECTED. 

EXTERNAL CLOCKING: -----_-_-----1 
0= INTERNAL CLOCK (CONTROLLED 

BYRTG). 
1 = EXTERNAL CLOCK (COUNT 

TRANSITIONS ON INPUT PIN). 

ALTERNATE COMPARE REGISTERS: ----------1 
0= ALWAYS USE A. 
1 = USE A THEN B. 

C 
o 
N 
T 

CONTINUOUS MODE: -------------..... 
o = CLEAR EN BIT (STOP TIMER) 

AFTER EACH CYCLE. 

o 

1 = TIMER RUNS CONTINUOUSLY. 270830-001-82 

Figure 6.2(d). 

6-3 



TIMERfCOtJNTER' UNIT 

TIMER 2 CONTROL REGISTER: 

CONTINUOUS MODE: --------------. 
o = CLEAR EN BIT AFTER 

EACH TIMER CYCLE. 
1 = TIMER RUNS CONTINUOUSLY. 

MAX COUNT OCCURED: -------, 
0= NO MAXCOUNT YET. 
1 = MAXCOUNT HAS OCCURRED. 

INTERRU~T ON TERMINAL COUNT: . 
0= NO INTERRUPT REQUESTS FROM THISJIME;R. 

. 1 = GEN~RArE I~TERRUPT REQUEST .AT Mi>.x~OUNT. . 

INHIBIT WRITES TO INABLE: . 

. ~ :~L~6~~WR~~~~e;~.~:'L~E~IT: 
"'-.................... ENAaLl,'SIT: 

o =; TIMER DISABLED; 
1 = TIMER ENABLED. 

RESET: lEN = 0 ALL OTHER BITS UNDEFINED 

• = UNDEFINED WHEN READ. 
, MUST WRITE "0". 

6.1 FUNCTIONAL QVERVIEW 

270830-001-63 

The internal Timer Unit on ilie 8OC186EB family can be modeled by a single counter element, time-. , 
ptultiplexed to three register banks, each of which contains different control and count values. These 
register banks are, in $n, dual-ported between the counter element and the CPU (see Figure 6.1)~ 
Figure 6.3 shows the timer element sequencing and the subsequent constraints on input and output 
signals. There is no connection between the sequencing of the counter element through the timer 
register banks and the lUU's sequencing through T -states. Timer, operation and bus interface opera­
tion are completely asynchronous. 

6-4 



TIMER IN 
o 

TIMER IN 
1 

TIMER OUT 
o 

TIMER OUT 
1 

TIMER/COUNTER UNIT 

TIMER 1 TIMER 2 
SERVICED SERVICED DEAD 

TIMER 0 
SERVICED 

NOTES: 1. Timer In 0 resolution time. 
2. Timer In 1 resolution lime. 
3. Modified count value written into Timer 0 count register. 
4. Modified count value written into Timer 1 count register. 270288-001-60 

Figure 6.3. Counter Element Multiplexing and Timer Input Synchronization 

Each timer is controlled by a register block (see Figure 6.2). Each of these registers can be read or 
written whether or not the timer is operating. All processor accesses to these registers are synchro­
nized to all counter accesses to these registers, meaning that one will never read a count register in 
which only half of the bits have been modified. 

The Bus Interface Unit automatically inserts one wait state for any access to the timer registers to 
perform this synchronization. LOCKing accesses to timer registers will not prevent the timer's 
counter elements from accessing the timer registers. 

Each timer has a 16-bit count register which is incremented for each timer event. A timer event can 
be aLOW -to-HIGH transition on a timerinputpin (for Timers 0 and 1), a pulse generated every fourth 
CPU Clock, or a time out of Timer 2 (for Timers 0 and 1). The count register is 16 bits wide, allowing 
up to 65536 (216) events to be counted. Upon RESET, the contents of the count registers are inde­
terminate and they should be initialized to zero before any timer operation. 

Each timer includes a maximum count register. Whenever the timer count register is equal to the 
maximum count register, the count register resets to zero, so the maximum count value is never stored 
in the count register. This maximum count value may be written while the timer is operating. A 
maximum count value of 0 implies a maximum count of 65536, a maximum count value of 1 implies 
a maximum count of 1, etc. Only equivalence between the count value and the maximum count 
register value is checked. This means that the count value will not be cleared if the value in the count 

6-5 



TIMER/COUNTER UNIT 

register is greater than the value in the maximum count register. If the timer is programmed in this 
way, it will count to the maximum count (OFFFFH), increment to 0, then count up to the value in the 
maximum count register, The terminal count (TC) bit in the timer control register will not be set when 
the counter overflows to 0, nor will an interrupt be generated from the Timer Unit. 

Timers 0 and I each contain an additional maximum count register. When both maximum count 
registers are used, the timer will first count up to the value in maximum count register A, reset to zero, 
count up to the value in maximum count register B, and reset to zero again. The AL Temate bit in the 
timer control register determines whether one or both maximum count registers are used. If this bit 
is LOW, only maximum count regis.ter A is used; maximum count register B is ignored. Ifit is IDaH, 
both registers are used. The RIU (register in use) bit in the timer control register indicates which 
maximum count register is presently counting up. This bit is 0 when maximum count register A is 
being used, 1 when maximum count register B is being used. The RIU bit is read only. It will always 
be read 0 in single maximum count register mode (since only maximum count register A will be used). 

Each timer can generate an interrupt whenever the timer count value reaches a maximum count value. 
All timers may use maximum count A in single max count mode. Timers 0 and 1 (dual max count 
mode) may also use maximum countB. In addition, the maximum count (MC) bit in the timer control 
register is set whenever the timer count reaches a maximum count value. This bit is never automati­
cally cleared, i.e., programmer intervention is required. If a timer generates a second interrupt request 
before the first interrupt request has been serviced, the first interrupt request to the CPU will be lost. 

Each timer has an ENable bit in the timer control register. The timer will count timer events only when 
this bit is set. Any write to the timer control register will modify the EN able bit only if the INHibit 
bit is also set. The INHibit bit in the timer control register allows selective updating of the timer 
ENable bit. The value of the INHibit bit is not stored in a write to the timer control register; it will 
always be read as logic zero. 

Each timer has a CONTinuous bit in the timer control register. If this bit is cleared, the timer ENable 
bit will be automatically cleared at the end of each timing cycle. If a single maximum count register 
is used, the end of a timing cycle occurs when the count value resets to zero after reaching the value 
in maximum count register A. If dual maximum count registers are used, the end of a timing cycle 
occurs when the count value resets to zero after reaching the value in maximum count register B. If 
the CONTinuous bit is set, the ENable bit will never be automatically reset. Thus, after each timing 
cycle, another timing cycle will automatically begin. For example, in single maximum count register 
mode, the timer will count up to the value in maximum count regi&ter A, reset to zero, ad infmitum. 
In dual maximum count register mode, the timer will count up to the value in maximum count register 
A, reset to zero, count up to the value in maximum count register B, reset to zero, and repeat. 

A flowchart of timer 0 and 1 operation can be found in Figure 6.4. 

6-6 



inter TIMER/COUNTER UNIT 

YES 

NO 

YES 

270830-001-64 

Figure 6.4(a). TImer 0 and 1 Flowchart. 

6-7 



TIMER/COUNTER UNIT 

Figure 6.4(b). Timer 0 and 1 Flowchart (continued) 

6-8 

270830·001·65 



TIMER/COUNTER UNIT 

6.2 TIMER EVENTS 

Each timer counts events. All timers can use a transition of the CPU clock as an event. If the internal 
clock is used, the count increments every fourth CPU clock because of timer element multiplexing. 
For Timer 2, this is the only timer event which can be used. For Timers 0 and 1, this event is selected 
by clearing the EXTernal and Prescaler bits in the timer control register. 

Timers 0 and 1 can use Timer 2 reaching its maximum count as a timer event. This is selected by 
clearing the EXTernal bit and setting the Prescaler bit in the timer control register. When this is done, 
the timer will increment whenever Timer 2 resets to zero having reached its own maximum count. 
Note that Timer 2 must be initialized and running in order to increment the value in the other timer/ 
counter. 

Timers 0 and 1 can also be programmed to count LOW -to-HIGH transitions on the external input pin. 
Each transition on the external pin is synchronized to the 80C 186EB family processor clock before 
it is presented to the timer circuitry (see Appendix B for information on synchronizers). The timer 
counts transitions on the input pin; the input value must go LOW, then HIGH, to cause the timer to 
increment. Transitions on this line are lat~hed. The maximum count rate for the timer is 1/4 the CPU 
clock rate measured at CLKOUT. 

6.3 TIMER INPUT PIN OPERATION 

Timers 0 and 1 each have individual timer input pins. All LOW -to-HIGH transitions on these input 
pins are synchronized, latched, and presented to the counter element when the particular timer is being 
serviced by the counter element. 

Signals on this input can affect timer operation in three different ways. The manner in which the pin 
signals are used is determined by the EXTernal and RTG (retrigger) bits in the timer control register. 
If the EXTernal bit is set, transitions on the input pin will cause the timer count value to increment if 
the timeris enabled (that is, the ENable bit in the timer control registeris set). Thus, the timer counts 
external events. If the EXTernal bit is cleared, all timerincrements are caused by either the CPU clock 
or by Timer 2 reaching its maximum count. In this mode, the RTG bit determines whether the input 
pin will enable timer operation, or whether it will retrigger timer operation. 

When the EXTernal bit is LOW and RTG bit is also LOW, the timer will count internal timer events 
only when the timerinput pin is HIGH and the ENable bit in the timer control registeris set. Note that 
in this mode, the pin is level sensitive, not edge sensitive. A LOW-to-HIGH transition on the timer 
input pin is not required to enable timer operation. If the input is tied HIGH, the timer will be 
continually enabled. The timer enable input signal is completely independent of the ENable bit in the 
timer control register. Both must be HIGH for the timer to count. Examples of uses for the timer in 
this mode would be a real time clock or a baud rate generator. 

6-9 



intJ TIMER/COUNTER UNIT 

When the EXTernal bit is LOW and the RTG bit is HIGH, every LOW-to-HIGH transition on the 
timer input pin causes the timer count register to reset to zero. This mode of operation can be used to 
generate a retriggerable digital one-shot. After the timer is enabled (i.e., the ENable bit in the timer 
control register is set), timer operation (counting) will begin only after the first LOW-to-HIGH 
transition of the timer input pin has been detected. If another LOW -to-HIGH transition occurs on the 
input pin before the end of the timer cycle, the timer will reset to zero and begin the timer cycle again. 
A timer cycle is defmed as the time the timer is counting from zero to the maximum count (either max 
count A or max count B). This means that in the dual max count mode, the RID bit is not set if the timer 
is reset by the LOW -to-HIGH transition on the input pin. Should a timer reset occur when RIU is set 
(indicating max count B), the timer will again begin to count up to max count B before resetting the 
RIU bit. Thus, when the ALTernate bit is set, a timer reset will retrigger (or extend) the dur~tion of 
the current max count in use (which means that either the LOW or HIGH level of the timer output will 
be extended). If the CONTinuous bit in the timer control register is cleared, the timer ENable bit will 
automatically be cleared whenever a timer cycle has been completed (max count is reached). If the 
CONtinuous bit in the timer control register is set, the timer will reset to zero and begin another timer 
cycle whenever the current cycle has completed. 

6.4 TIMER OUTPUT PIN OPERATION 

Timers 0 and 1 each have a timer output pin which can perform two functions. The first is a single 
pulse indicating the end of a timing cycle. The second is a level indication of the maximum count 
register being used. The timer outputs operate as outlined below whether internal or external clocking 
of the timer is used. With external clocking, the time between a transition on the timer input pin and 
a corresponding transition on the timer output pin varies from 2 1/2 to 6 clocks. The exact timing 
depends on when the input transition occurs relative to timer service by the counter element. 

When the timer is in single maximum count register mode, the timer output pin will go LOW for a 
single CPU clock one clock after the timer is serviced by the counter element when maximum count 
is reach~d (see Figure 6.5). 

TIMER 0 SERVICED 
~ 

INTERNAL~ 
~~~~~~ 0 

TMROUT------~~------~
PIN ----1

270830·001-90

Figure 6;5. TxOUT Signal.

TIMER/COUNTER UNIT

When the timer is programmed in dual maximum count register mode, the timer output pin indicates
which maximum count register is being used. It is LOW if maximum count register B is being used
and HIGH jf maximum count register A is being used. The timer can generate a repetitive waveform
if the CONTinuous bit in the timer control register is set. The frequency and duty cycle of this
waveform is easily controlled by the programmer. For example, if maximum count register A
contains 10, maximum count register B contains 20, and CLKOUT is 12.5 MHz, the timer generates
a 33 per cent duty cycle waveform at 104 kHz. If the timer is programmed to halt upon maximum
count, the output pin will go HIGH when the timer halts.

The timer output pins do not float during bus HOLD.

6.5 PROGRAMMING THE TIMER/COUNTER UNIT REGISTERS

Each timer is controlled through the use of at least three registers. The Timer Control Registers
(T2CON, TlCON, and TOCON) control the functional modes for the timers. The Timer Count
Registers (T2CNT, Tl CNT, and TOCNT) hold the count value for the timers. The maximum count
compare A registers hold the maxcount compare value for each timer (TOCMP A, Tl CMPA, and
T2CMP A). Timers 0 and 1 add two additional compare registers, TOCMPB and TOCMP A.

The compare and count registers have already been described. The following section describes the
control register in detail.

6.5.1 THE TIMER CONTROL REGISTER (lOCON, T1 CON, AND T2CON)

The timer 0 and 1 control registers contain 10 fields. Timer 2 uses only 5 fields since it lacks some
of the functionality of the other timers.

The ten bit fields are as follows:

ALT:
The ALT bit determines which of two MAX COUNT registers is used for count comparison. If
ALT=O, register A for that timer is always used, while if ALT=1, the comparison will alternate
between register A and register B when each maximum count is reached. This alternation allows the
user to change one MAX COUNT register while the other is being used, and thus provides a method
of generating non-repetitive waveforms. Square waves and pulse outputs of any duty cycle are a
subset of available signals obtained by not changing the final count registers. The ALT bit also de­
termines the function of the timer output pin. If AL T is zero, the output pin will go LOW for one clock,
the clock after the maximum count is reached. If AL T is one, the output pin will reflect the current
MAX COUNT register being used (0/1 for BfA).

6-11

TIMER/COUNTER UNIT

CONT:
Setting the CONT bit causes the associated timer to run continuously, while resetting it causes the
timer to halt upon maximum count. IfCONT=OandALT=l,the timer will count to the MAX COUNT
register A value, reset, count to the register B value, reset, and halt.

EXT:
The external bit selects between internal and external clocking for the timer. The external signal may
be asynchronous with respect to the 8OC186EB family clock. If this bit is set the timer will count
LOW -to-HIGH transitions for the input pin. If cleared, it will count an internal clock while using the
input pin for control. In this mode, the function of the external pin is defined by the RTF bit. The
maximum input to output transition latency time may be as much as 6 clocks. However, clock inputs
may be pipelined as closely together as every 4 clocks without losing clock pulses.

P:
The prescaler bit is ignored unless. internal clocking has been selected (EXT=O). If the P bit is a zero,
the timer will count at one-forth the internal CPU clock rate. If the P bit is a one, the output of timer
2 will be used as a clock for the timer. Note that th~ user must initialize and start timer 2 to obtain the
prescaled clock.

RTG:
Retrigger bit is only active for internal clocking (EXT=O). In this case it determines the control
function provided by the input pin.

If RTG=O, the input level gates the internal clock on and off. If the input pin is HIGH, the timer will
count; if the input pin is LOW, the timer will hold its value. As indicated previously, the input signal
may be asynchronous with respect to the 80C186EB family clock.

When RTG=l , the input pin detects LOW-to-HIGH transitions. The first such transiti9n starts the
timer running, clearing the timer value to zero on the first clock and then incrementing thereafter.
Further transitions on the input pin will again reset the timer to zero, from which it will start counting
up again. If CONT=O when the timer has reached maximum count, the EN bit will be cleared,
inhibiting further timet activity.

EN:
The enable bit provides programmer control over the timer's RUN/HAL T status. When set, the timer
is enabled to incrernent subject to the input pin constraints in the intemai clock mode (discussed
previously). When cleared, the timer will be inhibited from counting. All input pin transitions during
the time EN is . zero will be ignored. If CONT as zero, the EN bit is automatically cleared upon
maximum count.

INH:
The inhibit bit allows for selective updating of the enable (EN) bit. IfINH is a one during the write to
mode/control word. then the state of the EN bit will be modified by the write. If INH is a zero during

6·12

TIMER/COUNTER UNIT

the write, the EN bit will be unaffected by the operation. This bit is not stored; it will always be a 0 on
a read.

INT:
When set, the INT bit enables interrupts from the timer, which will be generated on every terminal
count. If the timer is configured in dual MAX COUNT register mode, an interrupt will be generated
each time the value in MAX COUNT register A is reached, and each time the value in MAX COUNT
register B is reached. If this enable bit is cleared after the interrupt request has been generated, but
before a pending interrupt is serviced, the interrupt request will still be in force. (The request is latched
in the interrupt Controller.)

MC:
The Maximum Count is set whenever the timer reaches its final maximum count value. If the timer
is configured in dual MAX COUNT register mode, this bit will be set each time the value in TxCMPA
is reached, and each time the value in the TxCMPB is reached. The MC bit gives the user the ability
to monitor timer status through software instead of through interrupts. Programmer intervention is
required to clear this bit.

RIU:
The Register in Use bit indicates which MAX COUNT register is currently being used for comparison
to the timer count value. A zero value indicates register A. The RIU bit cannot be written, i.e., its value
is not affected when the control register is written. It is always cleared when the ALT bit is zero.

The following fields are not used for the T2CON register: AL T, EXT, P, RTG, and RIU. Note that
these bits will return a zero when read.

6.6 EXAMPLE TIMER INITIALIZATION CODE

The 80CI86EB family timers possess great flexibility. It is easy to program them as baud rate
generators, digital one-shots, pulse width modulators, event counters, and pulse width measurement
applications.

6.6.1 REAL TIME CLOCK

Example I contains sample code to initialize Timer 2 to generate interrupts every millisecond. The
CPU then increments memory-based clock variables.

6·13

$modl86
name

TIMER/COUNTER UNIT

Example 1

This file contains an example 80186 family timer routine to set
up the timer and interrupt controller t~ cause the timer to
generate an interrupt every 10 milliseconds, and to service
interrupts to implement a real time clock. Timer 2 is used
in this example because no input or output signals are
required. The code example assumes that the peripheral
control block has not been moved from its reset location

i
arg1
arg2

CFFOO-FFFF in I/O space).

arg3
timer_2 nt
T2CON
T2CMPA
T2CNT
TCUCON
EOI
INTSTS

data

mesc_
hour _.
minute_
second_.
data

cgroup
dgroup

code

equ word ptr [BP + 4]
equ word ptr [BP + 6]
equ word ptr [BP + 8]
equ 19 itimer 2 has vector type 19

equ OFF46H
equ OFF42H
equ OFF40H
equ OFF12H
equ OFF02H iinterrupt controller reg
equ OFF10H

public 'data' segment
public
db

hour_, minute_,second_,mesc_.
?

db
db
db
ends

group
group

?
?
?

code
data

segment public_code_.
public set_time
assume cs:code, ds:dgroup

set_timeChour,minute,second)
sets the time variables, initializes timer 2 to pro­
vide interrupts every 10 milliseconds, and programs
the interrupt vector for timer 2

proc
enter
push
push
push
push
xor

near
0.0
AX
DX
SI
DS
AX,AX

mov DS,AX
mov SI,4*timer_2int

iset stack addressability
isave registers used

iset the interrupt vector
ithe timers have unique
iinterrupt vectors even though
ithey share the same c~ntrol
iregister

mov word ptr DS:[SI],offset t'mer_2_interrupt_routine
inc S I
inc SI
mov DS:[SI],CS
pop DS

mov
mov
mov

AX,arg1
hour_,AL
X,arg2

iset the time values

6-14

TIMER/COUNTER UNIT

mov
mov
mov

minute_,AL
AX,arg3
second_,AL

mov
mov
xor
out
mov
mov

msec_,O
DX,T2CNT
AX,AX
DX,AX
DX,T2CMPA
AX,2000

out DX,AX

;clear the
;count
;register
;set the max count vlaue
;10mx/SOO ns(timer 2 counts
;at 1/4 the CPU clock rate)

mov DX,T2CON ;set up the control word
mov AX,1110000000000001b;enable counting, generate

out DX,AX

mov

mov

out
sti

dx,TCUCON

AX,OOOOb

DX,AX

pop S I
pop DX
pop AX
leave
ret
endp

bump_minute:

;interrupts on TC, continuous
;counting

;set up the interrupt
;controller
;unmask interrupts highest
;priority interrupt

;enable processor interrupts

proc
push
push

far
AX
DX

c m p m s e c_ , 9 9 ; see i f 0 n e sec and has
;passed

j a e bum p_s e con d ; i f a b a v ear e qua 1 ' , ,
inc mesc_,
j m pre s e t_i n t_c t 1

m a v e m e s c_ , 0
c m p min u t e_, 5 9

j a e bum p_m i nut e
inc sec a n d_ '

;reset millisecond
;see if one minute has
;passed

j m pre s e t_i n t_c t 1

m a v e sec a n d_, 0
c m p min u t e_ , 5 9

j a e bum p_h 0 u r
inc min u t e_ '

;see if one hour has
;passsed

j m pre s e t_i n t_c t 1
pop DX
pop AX
ret

mov
cmp

minute_,O
hour_,12

j a ere s e t_h our
inc hour_,

;see if 12 hours have
;passed

j m pre s e t_i n t_c t 1

6-15

TIMER/COUNTER UNIT

mov hour_,1

mov
mov

DX,EOI
AX,8000h

out DX,AX

pop D X
pop A X
iret

inon-specific end of
iinterrupt

timer_2_interrupt_routine endp
code ends

end 270288-001-63

6.6.2 EVENT COUNTER

An 80C186EB family timer can count events using the timer input pins. Sample code for such an
application is shown in Example 2.

Example 2

$mod186
name

This file contains an example 80186 family timer routine to set
up the timer as an external event counter. In this mode,
Timer 1 is used to count transitions on its input pin. After
the timer has been set up by the routine, the number of
events counted can be directly read from the timer count
register. The timer will count a maximum of 65535 timer
events before wrapping around to zero· This code example
also assumes that the peripheral control block has not been
moved from its reset location (FFOO-FFFF in IIO space).

nCON
nCMPA
nCNT

equ
equ
equ

OFF3EH
OFF3AH
OFF38H

code

i

segment public'code'
assume cs: code

set_count() initializes the 80186 timer 1 as an event
counter

set_count proc near
AX
DX

isave registers used
push
push

mov
mov

out
mov
mov

Dx,nCMPA
AX,O

DX,AX
DX,nCON
AX,1100000000000101b

out DX,AX

6-16

set the max count value
allows the timer to count
all the way to FFFFH

set the control word
enable counting
no interrupt on TC
continuous counting
single max count register
external clocking

TIMER/COUNTER UNIT

xor
mov

Dx,nCNT
DX,nCNT

out DX,AX
pop DX
pop AX
ret

set_count endp
code ends

end

6-17

zero AX
and zero the count in the
timer

270288-001-65

Chip Select/Ready Logic Unit 7

CHAPTER 7
CHIP SELECT/READY LOGIC UNIT

The 80C 186EB contains an integrated Chip Select and Ready Logic Unit capable of supplying chip
select signals for up to ten memory and peripheral devices. The Chip Select Unit (CSU) can often
eliminate the need for external chip select decoding logic in small to medium sized systems (see
Figure 7.1). READY signal generation, needed for slower memory or peripheral devices, is integrated
into the CSU.

The CSU is an extremely flexible unit. The ten chip selects are all identical and completely independent
in operation. Two PCB registers define the operational characteristics of each channel (20 total
registers).

Each chip select is active for a programmable active range in either memory or peripheral (I/O) space.
The chip selects can be individually disabled under software control. An enabled chip select line
becomes active low whenever the Bus Interface Unit accesses a location (memory or I/O) within the
channel's active range. Channels configured for memory accesses can select ranges in lK byte
increments from 0 to the full 1 megabyte of physical memory. Those channels configured for I/O
accesses can select ranges in 64 byte increments from 0 to the full64K byte size ofI/O space.

Chip select ranges may overlap. Overlapping chip selects will all become active during accesses to
their shared ranges. This allows for the easy implementation of shadowed and paged memory.
Devices can share the same physical address space and be selectively enabled by software. The user
could configure the CSU for up to ten megabytes of software paged memory without external paging
hardware.

The granularity of the CSU is not fixed as it is with many popular external decoding schemes.
Typically, a simple external chip select decoding scheme will select one of several equally sized
ranges. The CSU can select varying sized ranges. This allows for optimization of the full memory and
peripheral space.

Each chip select has integrated programmable READY logic. This logic can automatically insert
between 0 and 15 wait states into bus cycles accessing memory or I/O locations within a chip select's
range. If greater than 15 waits states are required the READY pin can be used to extend the bus cycle
indefinitely.

The integrated chip select unit has advantages beyond reducing the chip count of a system. Externally
generated chip selects are delayed from a valid address by the propagation delay of the decoding
circuitry. Chip select signals generated by the CSUbecome active at the same time as the address. This
time savings can, in some instances, allow the use of slower memory devices without the insertion
of wait states.

7-1

l .,

READY

"TI
tiS' 0
I:

~ iii "tI
:... en
C) m
:r r-
ii' m
(jI) 0
!2. :::! CD 8OC186EB 16 ::D 2- m

N c: DATA BUS
l>

~ 0
~ <
'0 r-
n' 0
!!.. G)
:.- UCS (; '0
'S!. GCS1 C 0'

LCS Z DI - =i 0'
GCS2 ::l

GCSO

~
270830-001-1

CHIP SELECT/READY LOGIC UNIT

The Chip Select Unit will generate chip select signals only for accesses generated by the CPU (BIU
cycles and DRAM refresh cycles). An external bus master must supply its own chip select signals. See
Section 7.1.5 below for a discussion of external bus masters.

The Chip Select Unit PCB map and summary of register operation is shown in Figure 7.2.

REGISTER NAME

GCS1ST

GCS1SP

GCS2ST

GCS3ST

GCS3SP

GCS4ST

GCS5ST

GCS6ST

GCS7ST

LCSST

LCSSP

UCSSP

Figure 7.2(a). PCB Map for Chip Select Unit

7-3

inter CHIP SELECT/READY LOGIC UNIT

CHIP SELECT CHANNEL START REGISTERS: (UCSST, LCSST, GCSOST through GCS7ST)

r--- THE UPPER 10 BITS OF THE STARTING ADDRESS
FOR THE CHIP SELECT ACTIVE REGION

0

W W W W
S S S S
3 2 1 0

THE NUMBER OF WAIT STATES (0·15) TO BE f INSERTED FOR ACCESSES MADE IN THIS CHIP --_
SELECT REGION.

GCSxST

LCSST

OFFCFH

OFFCFH

UCSST FF8FH

I = UNDEFINED WHEN READ.
MUST WRITE "0".

Figure 7.2(b).

7-4

270830·001·2

CHIP SELECT/READY LOGIC UNIT

CHIP SELECT CHANNEL STOP REGISTERS: (UCSSP, LCSSP, GCSOSP through GCS7SP)

GCSxSP

LCSSP

UCSSP

r THE UPPER 10 BITS OF THE ENDING ADDRESS
~ FOR THE ACTIVE CHIP SELECT REGION

rh-5--------~-----------,1 0

CCCC MR
SSSS ED
9876 MY

CHIP SELECT ENABLE BIT: _______Jt r
o = CHIP SELECT CHANNEL OFF
1 = CHIP SELECT CHANNEL ON

IGNORE STOP ADDRESS BIT: ----------------'
o = USE STOP ADDRESS
1 = IGNORE STOP ADDRESS. STOP

ADDRESS IS THE TOP OF PHYSICAL
MEMORY (OFFFFH MEMORY,
OFFFFH FOR 1/0)

MEMORY CHIP SELECT BIT: -----------'
0= CHIP SELECT IS ACTIVE FOR 1/0

ACCESSES
1 = CHIP SELECT ACTIVE FOR MEMORY

ACCESSES

USE EXTERNAL READY PIN BIT: ---------......
0= WAIT STATE GENERATOR IGNORES

EXTERNAL READY PIN
1 = WAIT STATES WILL BE INSERTED UNTIL

EXTERNAL READY IS ASSERTED

OFFC3H

OFFC3H

OFFCFH

Figure 7.2(c).

7-5

I = UNDEFINED WHEN READ.
MUST WRITE '0".

270830-001-3

CHIP SELECT/READY LOGIC UNIT

7.1 FUNCTIONAL OVERVIEW

There are a total of ten chip select channels available: eight general purpose chip selects (GCSO­
GCS7), the Upper Chip Select (UCS), and the Lower Chip Select (LCS). The GCS channels are
multiplexed with output Port 1.

7.1.1 CHIP SELECT OPERATION

There are five conditions that must be met to activate a chip select line:

1. The current address (A19:0 in memory or A15:0 in I/O) must be greater than or equal to the
chip select channel's starting address. The starting address defines the beginning of a chip
select's active range.

2. The current address must be less than the chip select channel's stopping address. This address
defines the upper limit of a chip select channel's active range. Optionally, the stop address may
be ignored effectively making the top of physical memory (OFFFFFH memory; OFFFFH I/O) the
end of a channel's range.

3. The channel must be enabled. Disabled channels always drive their chip select line high, dese­
lecting the attached device.

4. The current access must be to the same device space, memory or I/O, that the chip select is
programmed for. A chip select programmed for memory accesses will not be active for IN or
OUT instructions; a channel programmed for I/O will not be active for memory accesses.

5. The memory or I/O location being accessed must not be in the Peripheral Control Block.
Accesses to the PCB take place internally and do not require a chip select signal. All CSU lines
will remain high during a PCB access.

6. For the General Purpose Chip Selects (GCS7-GCSO), the Port I multiplexer must be pro­
grammed to select CSU functions (see the I/O Unit section of this manual for details).

Every chip select channel that meets all these criteria will become a,ctive for a given 80C 186EB bus
cycle. Since each channel is independent, it is possible to have more than one channel active at a time.
The operation of overlapping channels is explained below. A logic block diagram describing chip
select operation is shown in Figure 7.3.

7-6

CHIP SELECT/READY LOGIC UNIT

Case 1: GCS configured for Memory Decoding (MEM~1)

PCB IS NOT LOCATED IN
CURRENT RANGE

CSEN~1
CHIP SELECT ENABLE

A19:10 ~ START
ADDRESS FIELD

A19:10 < STOP
ADDRESS FIELD

Case 2: GCS configured for 1/0 Decoding (MEM~O)

PCB IS NOT LOCATED IN
CURRENT RANGE

CSEN~1

CHIP SELECT ENABLE

A15:6~START

ADDRESS FIELD

A15:6 < STOP
ADDRESS FIELD

PORT 1 LATCH

PORT 1 MUX
CONTROL
(GCSONLY)

PORT 1 LATCH

PORT 1 MUX
CONTROL
(GCS ONLy)

Figure 7.3. CSU Logic Block Diagram

7-7

270830-001-4

CHIP SELECT/READY LOGIC UNIT

The granularity of a chip select decoder refers to the size of the range for which each signal is active.
In most simple decoding schemes a portion of the high order address bits are fed into a demultiplexing
(decoder) chip. The outputs of the demultiplexing chip would then select one of several equally sized
areas of memory. For example, consider the typical chip select decoding scheme in Figure 7.4. The
three highest order bits of the memory address bus (A 19: 17) are connected to a 74138 3 to 8 decoder.
The resulting chip selects would result in 8 128K byte ranges (a granularity of 128K). The granularity
for such schemes is fixed. Such arrangements can leave holes in the memory map when devices
smaller than the granularity are used. More elaborate decoding schemes could be devised to provide
for greater and more flexible granularity.

A1 9 A2 07 SELECTS B96K TO 1 MEG

A1 8 A1 06 SELECTS 76BK TO 896K

A1 7 A3 05

•
04

7413B •
03

•
E3 02

~l E2 01

E1 00

J.
SELECTS 0 TO 12BK

SELECTS 12BK TO 256K

270B30-001-5

Figure 7.4. Simple Chip Select Decoder Example

The CSU uses the 10 most significant bits of the address to decode each channel. The beginning and
ending addresses for each chip select are defined by separate ten bit fields in 2 PCB registers. The
lower bits are fixed at zero in hardware. The ten bit field width results in a minimum granularity of lK
bytes for memory accesses and 64 bytes for I/O. The example in Figure 7.5 illustrates this.

7-8

CHIP SELECT/READY LOGIC UNIT

EXAMPLE A: MEMORY ADDRESSING

~ ~~~~~~ERADDRESS
~OA"'OO

STOP
ADDRESS

START
ADDRESS

1 0 0 0 0 0 0 0 0 0 0 =400H=1028BYTES

EXAMPLE B: PERIPHERAL ADDRESSING

~ r6~~~Ts~ROGRAMMABLE

~'''~

Figure 7.5(a).

~. L ~'OW ORDER ADDRESS

~'" ""0 ., "''''

II

STOP
ADDRESS

START
ADDRESS

1 0 0 0 0 0 0 = 40H = 64 BYTES

Figure 7.5(b).

270830·001·6

270830·001·7

Active ranges all begin on modulo lK boundaries for memory and modulo 64 byte for I/O. The end
of a chip select range is one less than the stop address (unless the ignore stop address option is
selected). Figure 7.6 illustrates how the starting and stopping address fields are used to select the
active range for a chip select.

7-9

CHIP SELECT/READY LOGIC UNIT

STOP ADDRESS FIELD BITS FIXED AT ZERO

START ADDRESS FIELD

Figure 7.6. Programming an Active Range

MEMORY SPACE

00800 TO OOBFF
ACTIVE
RANGE

]
1K BYTE
PAGES

270830-001-8

The Ignore STOP address option is provided for chip select channels to access the finallK byte of
memory (or 64 bytes of I/O). Using the largest value possible in the stop address field (FFCOOH)
would result in a stop address ofFFBFFH (one less than FFCOOH). The ISTOP option tells the chip
select channel to ignore the programmed stop address making the end of the range the top of physical
memory. This allows access to the memory above FFBFFH. Similarly, I/O chip selects must use the
ISTOP option to gain access to I/O ports above FFBFH.

7.1.2 READY GENERATION AND WAIT STATE INSERTION

Each channel has an associated wait state/ready logic circuit. For any accesses within a chip select's
range, between 0 and 15 wait states will automatically be inserted into the bus cycle. With the READY
control enabled, the programmed number of wait states will be inserted then control will pass to the

7-10

CHIP SELECT/READY LOGIC UNIT

READY pin. Wait states will continue to be inserted until READY is asserted. With READY control
disabled, only the programmed number of wait states will be inserted; the state of the READY pin
is ignored.

Proper READY signal interfacing is explained in the Bus Interface Unit section.

7.1.3 OVERLAPPING RANGES

Chip select channels are permitted to have overlapping active ranges. An access to an overlapping
range results in all of the enabled overlapping chip selects becoming active. If all the overlapping
channels ignore external READY, then the maximum programmed number of wait states will be
inserted by the BIU. If one or more are programmed for external READY control, the minimum
number of programmed wait states are inserted after which control is passed to the READY signal.

As an example, consider the following three chip selects:

UCS: Active Range = 0 to OFFFFFH in memory
Enabled with 5 wait states, NO external READY

GCSO: Active Range = OlOOOH to 01400H in memory
Enabled with 3 wait states, NO external READY

GCS3: Active Range = 0400H to 01800H in memory
Enabled with 1 wait state, NO external READY

Any access to the overlapping region (OlOOOH to o 13FFH) will result in all chip selects going active
and 5 wait states inserted in the cycle. As a second example, let's assume GCSO required external
READY (though still with 3 wait states programmed). In this case an access to the overlapping region
would again result in all chip selects going active. This time, however, only one wait state is inserted;
control then passes to external READY. Once READY is asserted the bus cycle completes.

7.1.4 PORT 1 MULTIPLEXER

GCS7 through GCSO are multiplexed with output port 1 functions. The Port 1 Control registers must
be properly programmed for the GCS signals to appear at the package pins. Refer to the I/O Ports
section of this manual for further information.

7.1.5 EXTERNAL BUS MASTERS

The Chip Select Unit is active only for internally generated bus accesses. These include any opcode
fetch, memory or I/O access, or DRAM refresh cycle. Any bus cycles generated by an external master
will not cause the chip selects to go active. During a bus HOLD sequence the chip selects will not float,
but will instead remain in their inactive HIGH state. Systems utilizing external bus masters will
require the logic shown in Figure 7.7 to generate the proper chip select signals.

7-11

CHIP SELECT/READY LOGIC UNIT

80C186EB "[)o-MEMORY OR 1/0
CHIP SELECT--........ -1_ DEVICE CHIP SELECT

EXTERNALLY I
GENERATED --..J
CHIP SELECT

Figure 7.7. CS Generation with External Bus Masters

7.1.6 NUMERICS I/O LOCATIONS (I/O LOCATIONS OOF8H TO OOFFH)

270830·001·9

The interface between the 80C 186EB and the 80C 187 numerics processor extension makes use of the
I/O ports located between OOF8H and OOFFH. Programming a chip select with an active range that
includes these locations is not recommended.

7.1.7 CSU TIMINGS

The decision to activate a particular chip select is performed just after the effective address calculation
is completed. Both of these events occur before the address appears on the bus. The address and chip
select signals are gated on to the bus simultaneously in Tl. The status lines (S2:0) become valid one
half a cycle earlier. The status lines can be combined with the chip selects to create early read and write
selects for slow memory and peripheral devices.

The relative timings for the address lines, chip selects, and status lines can be found in Figure 7.8.

7-12

inter

CLKOUT

ALE

AD15:0
AD19:16

GCS7:0 :

LCS,VCS ';...---1-...1

S2:0

CHIP SELECT/READY LOGIC UNIT

ADDRESS
VALID

STATUS

TLLRL, T LLWL
~--+---~--------~I

RD,WR

Figure 7.S. CSU Relative Timings

7.2 PROGRAMMING THE CSU

7.2.1 THE CHIP SELECT REGISTERS

270830·001·10

Two PCB registers are used to program each channel. The chip select start registers (GCSOST to
GCS7ST, UCSST, and LCSST) define both the starting address for a chip select and the desired
number of wait states. The chip select stop registers (GCSOSP to GCS7SP, UCSSP, LCSSP) define
the ending address for a chip select's range as well as selecting the READY, ignore stop address,
memory/peripheral, and enable options (Figure 7.2),

7-13

CHIP SELECT/READY LOGIC UNIT

7.2.1.1 THE CHIP SELECT START REGISTER

The CS9:0 bits of the start register define the upper ten address bits for the beginning of the channel's
range. The lower bits (10 for memory and 6 for I/O) are fixed at O. The WS3:0 field indicates the
number of wait states (0 to 15) to be inserted for accesses in the chip select's range.

7.2.1.2 THE CHIP SELECT STOP REGISTER

The CS9:0 bits of the stop register define the upper ten bits for the ending address of the channel's
range. As with the start register, the lower bits are fixed at zero. The last address for which the
channel's chip select line is active will actually be one less than the full stop address. For example, if
CS9:0 contained 0000.0000.01 the stop address would be 0000.0000.0100.0000.0000 (400H) for
memory. The last active address would then be 3FFH.

The Chip Select ENable (CSEN) bit must be set for the channel to be active. Clearing this bit forces
the chip select line to remain high.

The Ignore STOP (lSTOP) bit, when set, forces the chip select unit to ignore the stop address. This
has the effect of making the stop address of the chip select's range FFFFFH in physical memory
(OFFFFH for I/O). The MEM bit selects between memory and I/O mapping for the channel. When
MEM is set the channel will be active for memory accesses in the selected range; with this bit cleared
it will be active for I/O.

The READY bit is used with the wait state field in the start register to control the ready generation
circuitry. When READY is cleared the Bus Interface Unit will ignore the external READY pin and
insert the number of wait states in the wait state field. If READY is set, the BIU will first insert the
programmed number of wait states then transfer control to the READY pin. The bus cycle is extended
until READY is asserted.

7.3 INITIAL CONDITIONS (RESET)

Following a RESET only UCS is enabled. The active range for UCS after reset is from FFCOOH to
FFFFFH in memory. This allows for the fetching of the initialization code at FFFFOH. Fifteen wait
states are inserted and external READY control is enabled. Systems using external READY should
be sure this line is valid during RESET. Systems not using READY should tie this pin high.

The Port 1 multiplexer selects the CSU as the source of data following a RESET.

Figure 7.2 shows the initial values for all of the CSU registers.

7-14

CHIP SELECT/READY LOGIC UNIT

7.4 APPLICATIONS EXAMPLES

The following sections illustrate two potential applications of the CSU. The first is a small system
with 3 separate memory selects and 21/0 selects. The second example shows how bank switching can
be used to access 2 megabytes of DRAM through a 512K byte window.

The following sections are provided as examples of CSU programming. As such the examples do not
go into detailed timing analysis or hardware design issues.

7.4.1 EXAMPLE 1: SIMPLE CSU APPLICATION

The system shown in Figure 7.1 is a typical small80C186EB system utilizing ROM, 2 separate banks
of RAM, a Floppy Disk controller, and aDMA controller. The schematic has been simplified showing
only the connections necessary for memory and I/O access. Detailed information on memory and
I/O device connection can be found in the bus interface unit section.

The ROM occupies 128K bytes (64K words) from EOOOOH to FFFFFH (3 wait states, no external
READY). The low RAM is 32K bytes and is located from OH to 7FFFH (0 wait states, no external
READY). The middle RAM is 64K bytes located at lOOOOH (1 wait state, no READY). At OH in
I/O space is the DMA controller with 16 total locations (2 wait states, no READY). The Floppy Disk
controller is at 40H using 1 location. The Floppy Disk controller requires external READY. A
memory map is shown in Figure 7.9.

7-15

".m_l®
I 1'tJI CHIP SELECT/READY LOGIC UNIT

MEMORY SPACE MAP 1/0 SPACE MAP

OFFFFFH

OEOOOOH

REGION NOT USED
UNUSED 1/0 SPACE

01FFFFH
0080H

010000H

0040H-004FH

007FFFH

OOOOOOH OOOOH-0001 H

270830-001-11

Figure 7_9. Memory Map for Example 1

The first step in setting up the CSU is assigning chip select channels to the individual memory and
I/O blocks. The selection is arbitrary with the exception of UCS. Since UCS is the only channel
enabled at reset, it must select the ROM in which the boot code resides. The remainder of the devices
are assigned as follows: low RAM is selected by LCS, middle RAM is selected by GCS 1, the DMA
controller is selected by GCSO, and the disk controller is selected by GCS2.

7·16

CHIP SELECT/READY LOGIC UNIT

Example 1

$mod186
n a m e c s u_i nit i a liz a t i 0 n_e x amp I e

This file contains an example of initialization code for
the Chip Select Unit on the 8oC186E8.

reset segment at oFFFFh ; The 8oC186E8 resets to
; oFFFFoH.

jmp far ptr initialize

reset ends

A new segment is located at FFFo:oH. The UCS channel is active
down to FFCo:o after reset. We do not need to jump this far for
the setup. 8y jumping to FFFo:o we stay within the active region
of UCS. 8y not jumping all the way down to FFCo:o we keep from
fragmenting the ROM. We have 240 bytes from FFFo:o to FFFF:o in
which to perform our initialization.

UCSST
UCSSP
LCSST
LCSSP
GCSoST
GCSoSP
GCS1ST
GCS1SP
GCS2ST
GCS2SP
GCS3ST
GCS3SP
P1CON

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

oFFA4H
oFFA6H
oFFAoH
oFFA2H
oFF8oH
oFF82H
oFF84H
oFF86H
oFF88H
oFF8AH
oFF8CH
oFF8EH
oFF54H

UCS START ADDRESS REG
UCS STOP ADDRESS REG
LCS START ADDRESS REG
LCS STOP ADDRESS REG
GCSo START
GCSo STOP
GCS1 START
GCS1 STOP
GCS2 START
GCS2 STOP
GCS3 START
GCS3 STOP
Port 1 mux control

segment at oFFFoH
assume cs:init_seg

initialize proc far

mov
mov
out
mov
mov
out

mov
mov
out
mov
mov
out

dx, UCSST
ax, oEo03H
dx, ax
dx, UCSSP
ax, oFFFEH
dx, ax

dx, LCSST
ax, DOH
dx, ax
dx, LCSSP
ax, o8oAH
dx, a x

UCS begins at Eooo:o
and requires 3 wait states

disable external ready
control. Top of range
is set at FFFF:F. Chip
select is enabled. ISTOP=l.

LCS starts at oH
and requires no wait states
or external ready.
LCS ends at o7FFFH.

7-17

CHIP SELECT/READY LOGIC UNIT

Example 1 (Continued)

mov
mov
out
mov
mov

dx, GCS1ST
ax, 0101H
dx, ax
dx, GCS1SP
ax, 020AH

GCS1 starts at 10000H
with 1 wait state.
GCS1 stops at 1FFFFH
ENabled for memory.

All of the memory chip selects have now been set up. The next thing
to do is set up the IIO chip selects.

mov dx, GCSOST This CS selects the DMA chip.
mov ax, 0042H Starts at 40H; 2 wait states.
out dx, ax
mov dx, GCSOSP Stop at 7FH, IIO mapped.
mov ax, 0088H ENabled, no external READY.

mov dx, GCS2ST This CS is for FDC system.
mov ax, OOOFH Starts at,OH; 15 wait states.
out dx, ax
mov dx, GCS2SP Stops at 3FH, I/O mapped.
mov ax, 0049H ENabled, use READY.

The IIO chip selects have now been set up and enabled.

jmp far ptr program_code jump to program code

initialize endp

code_seg segment at OEOOOH
assume cs:code_seg

program_code: NOP

; program continues here•••.

ends

Figure 7.10 contains the ASM186 code to properly initialize the CSU for this application. The
80C186EB begins fetching instructions at FFFF:OH immediately after reset. The UCS channel is
active after reset with a range of FFCOOH to FFFFFH in memory. The UCS is also programmed for
15 wait states with external READY. READY must be asserted for the boot code to be fetched. In
this system the boot ROM requires 3 wait states with no external READY. For an in depth discussion
of READY usage please refer to the Bus Interface Unit section.

7-18

CHIP SELECT/READY LOGIC UNIT

The first instruction executed following reset is a JMP to location FFEOOH (still within the UCS
range). FFCOOH was not jumped to in order to save contiguous memory space. The PCB is not being
relocated for this example so it resides at FFOOH in I/O space. The UCSST register has start field of
1110.0000.00 (EOOOOH start address) and a wait state field of 2 (2 wait states). The UCSSP register
has the stop field programmed to 0 but the ISTOP bit is set making the stop address FFFFFH. In
addition the MEMbit is set (memory chip select) and the READY bit is cleared (no external READY).
Finally the CSEN bit is set to keep the UCS enabled. The LCS register is set up similarly in the
following instructions.

Next, the middle RAM is set up. The same procedure is used as for UCS and LCS. The setup for the
peripherals follows; the only difference being in the programming of the MEM bit and the READY
bit for the floppy disk controller.

The CSU initialization sequence is now completed. The program jumps to location EOOOOH to
continue execution.

7.4.2 EXAMPLE 2: TWO MEGABYTE SOFTWARE PAGED RAM

Example 2 illustrates how the CSU can be used to extend the 80C186EB addressing capability
beyond 1 megabyte through the use of software paging.

The paged memory array is shown in Figure 7.11. Each page is 512K bytes arranged as 256K x 16.
The actual implementation of the memory is not pertinent to this example. Each page is enabled by
a separate GCS line, GCSO through GCS3. The four pages all occupy the same 512K space, or
window, in physical memory from 10000H to 7FFFFH.

7-19

GCS3

Ga;2

GCS1

GCSO

."
10'

WRITE LOW

c: ...
CD WRITE HI
......
:...
:-"
'0
III

CE CE CE
(Q
CD ~ WR -.. WR L...., WR L....,
Q.

"'.J 3

'" CD
0 3

0
-<
IJI
0'
()

,
A13

14/
A13 A13

-;~ A13

~
A13

~
A13

~ ADDRESS @ PAGE 0 PAGE 0 PAGE 1
LATCH ;z LOW ~ HIGH LOW

LA1'L
AO AO AO

I
;JI'

c
iii' RD ----. 256Kx 8

(Q

j;
3 / /)..

"-
LOW DATA BUS

V -

HIGH DATA BUS

CE CE CE

WR L....., WR -.. WR

A13 A13 A13

A13

~
A13

~
A13

PAGE 1 PAGE 2 PAGE 2
HIGH LO HI

AO AO AO

/).. / /)..

"
V V

CE

...... WR

A13

~
A13

PAGE 3

~ LO

AO

f j

,.......,,:-
CE

L...., WR

A13

~
PAGE 3

HI

AO

..I. >-.

I-
l-

... ,..
~ -

270830-001-12

(

o
~
"tJ
en m
r­m

~
:::0 m
l>
C
<
5
C)
(;
c z
::::j

inter CHIP SELECT/READY LOGIC UNIT

Two procedures are used in the paging implementation (Figure 7.12). The first procedure,
SET_UP _PAGES, initializes the GCSO through GCS3 channels. All four channels occupy the same
memory space with zero wait states. The channels are all disabled when the procedure is exited.

The second procedure, SELECT_PAGE, enables the individual pages. The page to be enabled is
passed on the stack by the calling program. Only one page is enabled at a time; enabling multiple pages
would result in bus contention. If a page other than 0 through 3 is selected all pages will be disabled.

Example 2

hod186
nam e c s u_pag ed_m em or y_e xam pie ,

This file contains an example of a paged memory implementation
with the Chip Select Unit on the 80C186EB.

UCSST EQU OFFA4H UCS START ADDRESS ~EG
UCSSP EQU OFFA6H UCS STOP ADD~ESS REG
LCSST EQU OFFAOH LCS START ADD~ESS ~EG
LCSSP EQU OFFA2H LCS STOP ADDRESS REG
GCSOST EQU OFF80H GCSO START
GCSOSP EQU OFF82H GCSO STOP
GCSlST EQU OFF84H GCSl STA~T
GCSlSP EQU OFF86H GCSl STOP
GCS2ST EQU OFF88H GCS2 START
GCS2SP EQU OFF8AH GCS2 STOP
GCS3ST EQU OFF8CH GCS3 START
GCS3S EQU OFF8EH GCS3 STOP
PHON EQU OFFS4H Port 1 mux control

This example uses 2 procedures: SET_UP_PAGES and SELECT_PAGE.
It is assumed that proper initialization of the other chip selects
has already been accomplished.

This code also assumes that the PCB is still located in I/O space
at OFFOOH.

segment
assume cs: code_seg

;*************************************** ;** PROC: SET_UP_PAGES **
;** **
; ** PARAMETERS: NONE * *
;** ** ;** FUNCTION: Sets up 4 overlap- **
; ** pages in memory from 10000H **
; ** to 8FFFFH. Leaves all of **
;** disabled. **
;***************************************
SET_UP_PAGES proc far

mov ax, 0100H

mov dx, GCSOST
out dx, ax
mov dx, GCSlST
out dx, ax
mov dx, GCS2ST

7-21

The pages start at 10000H.
No wait states.
Set all pages the same·

CHIP SELECT/READY LOGIC UNIT

Example 2 (Continued)

out dx, ax
mov dx, GCS3ST
out dx, ax
mov ax, 9DD2H Pages stop at 9DDDDH.

They are DISABLED (CSEN=D).
Memory mapped without
external READY.

mov dx, GCSDSP Set up all pages the same·
out dx, ax
mov dx, GCS]'SP
out dx, ax
mov dx, GCS2SP
out dx, ax
mov dx, GCS3SP
out dx, ax

The next step is programming the Port]' Control to allow GCSD-3 to
appear at the package pins. We must perform a READ-MODIfY-WRITE
so that any previous setups for the other GCS pins are not
affected.

mov dx, P]'CON
in ax, dx read the previous setup
or ax, DDDDl1l1B Set the lower 4 bits

to select GCS lines
at the package pins.

out dx, ax

At this point thi 4 Chip sel~cts share the overlapping region
]'DDDDH to 8ffffH, a total of 5]'2K bytes. They are all disabled.

ret

ENDP

;********************************** ; ** PROC: SELECT_PA GE * *
** ;** PARAMETERS: Passes page **

;** number on the stack. **
;** fUNCTION: Accepts page **
;** number then enables the **
;** selected page. If page **
;** does not exists (>3) all **
;** pages will be disabled. **
;**********************************

mov dx, GCSDSP
in ax, dx
and ax, Dfff7H
out dx, ax
mov dx, GCSlSP
out dx, ax
mov dx, GCS2SP
out dx, ax
mov dx, GCS3SP
out dx, ax
mov bp, sp

7-22

first, disable
~ll pages to prevent
connection.

Read current setup.

Turn off CSEN bit.
Repeat for other 3
channels.

intJ

mov

cmp
jg

CHIP SELECT/READY LOGIC UNIT

ax, [bp+41

ax, 3
invalid page

Example 2 (Continued)

[bp+4] points to page number
stored on the stack above
CS:IP.

If the page is not between
o and 3 THEN shut them all
off.

Since the stop registers we will be modifying are sequential the
following alogorithm may be used to calculate the 1/0 address:
Page stop register address = GCSDSP address + page * 2

imul
add
mov

ax, 2
ax, GCSDSP
dx, ax

; Calculate offset into PCB.

Now we enable the selected page. A READ-MODIfY-WRITE is used to
set just the enable bit without affecting any others.

in
or
out

ret

ends

ax, dx
ax, DDD8H
dx, ax

2

7-23

set CSEN bit

return and clean up
stack

Serial Communications Unit 8

CHAPTER 8
SERIAL COMMUNICATIONS UNIT

The Serial Communications Unit of the 80C 186EB contains two independent channels. The Serial
Communications Unit (SCU) can implement several different serial communications protocols:
Synchronous mode is used to expand the I/O capability of the 80Cl86EB by communicating with
serial I/O peripherals, the asynchronous modes all implement the standard "start bit-data-stop bit"
protocol. The asynchronous data frame size is programmable between seven and nine bits. Parity
generation/checking and break detection/transmission are additional features available in the asyn­
chronous modes. The synchronous and asynchronous modes both have the "Clear-To-Send" feature.
Clear-To-Send control allows external devices to selectively enable the transmitter.

The serial ports on the 80C186EB can be readily interfaced with those found on a wide variety of
embedded controller (e.g. MCS-51, MCS-96) and data communications devices. Several different
processors and systems can be connected to a common serial bus using a multiprocessor protocol (see
8.1.1.3.2). Such serial networks are attractive in systems where full parallel bus connectivity is either
impossible or impractical.

A block diagram of the Serial Communications Unit is shown in Figure 8.1. The two serial channels
are identical in operation although only channel 0 is supported by the integrated interrupt controller.
The interrupt request signal from channel 1 can be routed to an output pin through the port 2 multi­
plexer. Each channel generates an interrupt request when either a reception or a transmission is
completed. Both channels have independent baud rate generators that can use either the CPU clock
or an external clock as their time base.

Communication between the Serial Communications Unit and the CPU takes place through several
Peripheral Control Block (PCB) registers. The PCB map and a summary of register operation is
shown in Figure 8.2.

8.1 FUNCTIONAL OVERVIEW

The operation of the Serial Communications unit is logically divided between the synchronous and
asynchronous modes. The following discussions apply to both channels. Programming of the SCU
is described in Section 8.2.

8.1.1 ASYNCHRONOUS COMMUNICATION

The asynchronous serial communication modes (Modes 1 through 4) of the 80C 186EB follow the
industry standard "start bit-data-stop bit" protocol. Data is transmitted and received in serial frames.
A frame is a sequence of bits shifted serially on to (or off of) the communication line. The baud rate
of a channel is the number of bits per second shifted on to the line. The amount of time that each bit
is valid is called the "bit-time" (equal to l/baudrate).

8-1

<Xl
N

" 15"
t: ..
'III
Q)

~

~ c:
tD
0"
n
~

o
iii"

ID
;
3

i
~
'"

FROM
1/0 CPU
CLOCK

BAUD
RATE
GEN.

CHANNEL ONE

SERIAL PORT CONTROL LOGIC

RECEIVE
BUFFER

RCV. SHIFT
REGISTER

TRANSMIT
BUFFER

XMITSHIFT
REGISTER

PCB

I BCLK1 I RXD1 I TXD1 I CTS1 I SNT1 I BCLKO
i

PORT 2 MULTIPLEXER

BLCK1/P2.2 RXD1/P2.0 TXD1/P2.1 CTS1/P2.4 BCLKO/P2.5

BAUD
RATE
GEN.

CHANNEL ZERO

SERIAL PORT CONTROL LOGIC

RECEIVE
BUFFER

RCV.SHIFT
REGISTER

RXDO

TRANSMIT
BUFFER

XMITSHIFT
REGISTER

TXDO

TO
INTEGRATED
INTERRUPT
CONTROLLER

RINT

TINT

CTSO

RDXO TDXO CTSO

l

en m
:IJ
l> r-
o o s::
s::
c z
o
~ o z en
c z
:::j

inter SERIAL COMMUNICATIONS UNIT

REGISTER NAME

BOCMP

BOCNT

SOCON

SOSTS

SORBUF

SOTBUF

RESERVED

RESERVED

B1CMP

B1CNT

S1CON

S1STS

S1RBUF

S1TBUF

Figure 8.2(8)

BAUD RATE COMPARE REGISTERS: (BOCMP, B1CMP)

I B B B B B B B B B B B B B B B C R R R R R R R R R R R R R R R L 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0 K 4 3 2 1 0
,

t 't "''' "'no COO''''EV .. "", ""'''''

INTERNAL CLOCKING BIT

,

0= SELECTS BCLK PIN AS INPUT TO BAUD CLOCK
1 = SELECTS INTERNAL CPU CLOCK AS INPUT TO BAUD CLOCK

W CAUTION: WRITING TO THIS REGISTER WHILE THE SCU
• IS OPERATING WILL CAUSE INDETERMINATE

OPERATION.

270830·001 ·14

Figure 8.2(b).

8-3

SERIAL COMMUNICATIONS UNIT

BAUD RATE COUNTER REGISTERS: (BOCNT, B1CNT)

B B B B
C C C C
7 6 5 4

B B B B
C C C C
3 2 1 0

,L.... __ BAUD RATE COUNTER VALUE. SEE TEXT.

'\i7' '," CAUTION: WRITING TO THIS REGISTER WHILE THE SCU
'. ' IS OPERATING WILL CAUSE INDETERMINATE

OPERATION.

Figure S.2(c).

I " UNDEFINED WHEN READ.
MUST WRITE O.

SERIAL TRANSMIT BUFFER REGISTERS: (SOTBUF, S1TBUF)

DATA BYTE TO BE TRANSMITTED -_

Figure S.2(d).

I ~ UNDEFINED WHEN READ.
MUST WRITE O.

SERIAL RECEIVE BUFFER REGISTERS: (SORBUF, S1RBUF)

THE LOWER EIGHT BITS OF THE -_
LAST COMPLETED RECEPTION

o

R R R
B B B
2 1 0

I ~ UNDEFINED WHEN READ.
MUST WRITE O.

FigureS.2(e).

8-4

270830·001-15

270830-001-16

270830-001-17

SERIAL COMMUNICATIONS UNIT

SERIAL STATUS REGISTERS: (SOSTS, S1STS)

RECEIVE INTERRUPT: -------.,
o = NO RECEIVE INTERRUPT REQUESTED
1 = RECEIVE INTERRUPT REQUESTED

RECEIVED BIT 8 / PARITY ERROR:
WHEN PARITY IS DISABLED THIS
BIT CONTAINS THE 9th DATA BIT
RECEIVED IN MODES 2 & 3
FOR PARITY ERROR:
o = NO PARITY ERROR
1 = PARITY ERROR

DETECT BREAK 1: -----.,
o = NO BREAK 1 DETECTED
1 = BREAK LONGER THAN 2M + 3

BIT-TIMES DETECTED
DETECT BREAK 0: ----.,
o = NO BREAK 0 DETECTED
1 = BREAK LONGER THAN M

BIT-TIMES DETECTED

TRANSMIT INTERRUPT: -------......
o = NO TX INTERRUPT REQUESTED
1 = TX INTERRUPT REQUESTED

FRAMING ERROR: ----------.....
O=NOERROR
1 = NO STOP BIT FOUND

TRANSMITTER EMPTY: -------------'
o = TRANSMITTER NOT EMPTY
1 =TXEMPTY

OVERRUNERROR:--------------J
O=NOERROR
1 = RBUF NOT READ PRIOR TO

RECEPTION OF NEW DATA

CLEAR TO SEND VALUE:-, -------------'
COMPLEMENTED VALUE OF CTS PIN

W <D ALL BITS, EXCEPT CTS AND TXE, ARE CLEARED
• BY A READ OF THIS REGISTER.

® ERROR AND BREAK BITS CAN ONLY BE CLEARED BY A READ.
THEY CANNOT BE CLEARED BY A SUBSEQUENT
ERROR FREE RECEPTION

® WRITING:iO RI AND TI WILL NOT
GENERATE INTERRUPTS

Figure 8.2(f).

8-5

I = UNDEFINED WHEN READ.
MUST WRITE O.

270830-001-18

S&RIAl1.COMMUNICATIONS·UNIT

SERIAL CONTROL REGISTERS: (SOCON, S1CON)

CTS ENABLE: --------------,
o = CTS IGNORED .
1 = CTS MUST BE ASSERTED TO BEGIN TRANSMISSION

TRANSMIT BIT 8: -------------,
9th DATA BIT IN
MODES 2 AND 3

SENDBREAK:------------,
0- NORMAL TXD OPERATION
1 = TXD DRIVEN LOW REGARDLESS

OF MODE

RECEIVER ENABLE: ----~-----..... --...I
o • RECEIVER DISABLED
1 = RECEIVER ENABLED

EVEN PARITY: ____________ - __ -J.

0= ODD PARITY
1 = EVEN PARITY

PARITY ENABLE: ----------------.....
O-NOPARITY
1 = PARITY

MODE SELECT BITS: -----------------......
000. MODE 0
001-MODE 1
010 = MODE 2
011 = MODE 3
100 = MODE 4
101, 110, 111 = RESERVED (DO NOT USE)

Figure 8.2(9).

8-6

'1- UNDEFINED WHEN READ.
MUST WRITE O.

270830-001-19

SERIAL COMMUNICATIONS UNIT

Each frame consists of a start bit (a logic 0) followed by the data bits (7,8, or 9 for the 8OC186EB)
and a tenninating stop bit (a logic one). The last data bit may replaced by a parity bit in situations
where error detection is needed. Figure 8.3 shows a typical ten bit frame (8 bits data plus stop and start
bits).

Figure 8.3. Typical 1 O·blt Asynchronous Data Frame.

10

STOP
BIT

270830·001·20

A special "break character" may be used in some systems. The tenn "break character" is a misnomer
as the break condition is really a signal that extends longer than a serial frame. The break condition
is indicated on a serial channel by the presence of a logic low value for a preset amount of time equal
to or longer than an entire frame. This signal is used for several purposes. Popular applications for
break signalling include modem handshaking and catastrophic condition indication. .

The serial communications unit on the 80C 186EB recognizes only CMOS logic levels. Some serial
communications systems may require the use of alternate levels. RS232-C, for example, requires a
logic 1 be between -5V and -25V and a logic 0 be between +5V and +25V. Another common standard,
the 20ma current loop, requires the presence and absence of current to indicate logic states. Interface
circuitry for such systems is readily available from several manufacturers.

Each serial communications channel is divided into separate reception and transmission modules.
These are referred to as the "RX Machine" and the "TX Machine" respectively. These modules are
autonomous allowing transmission and reception to occur simultaneously (full duplex). Both the RX
and TX machines operate at the baud rate supplied by the baud rate generator for that channel. The
following sections describe the operation of the RX and TX machines in the asynchronous modes.

8-7

SERIAL COMMUNICATIONS UNIT

8.1.1.1 RXMACHINE

The RX machine must be enabled (through the REN bit) before reception in any mode can occur.
Once enabled, the RX machine begins sampling the RXD pin in search of a falling edge signifying
a start bit. Each data bit following the start bit is sampled three times near the center of the bit time.
The actual data received is based on a two-out-of-three majority of these samples. This oversampling
improves noise immunity. Each received data bit is shifted into the RX Machine receive shift register,
least significant bit first. A stop bit is expected by the RX Machine after the proper number of bits for
the selected mode have been received. The data in the receive shift register is copied to the RBUF
(receive buffer) register at the middle of stop bit time. A receive interrupt request is generated, and the
receive interrupt flag (RI) is set, when the shift register to RBUF transfer is completed~

The RX machine is capable of detecting several error conditions that may occur during reception.
These include:

1) Parity Errors: If the parity feature has been enabled and the parity of the received data is incorrect,
the Parity Error (PE) bit will be set.

2) Framing Errors: Failure to receive a valid stop bit during the bit time in which it is expected will
result in the Framing Error (FE) bit being set.

3) Overrun Errors: If the RBUF register (containing the data from a previous reception) has not been
read before the current reception completes, the Overrun Error bit (OE) will be set. This bit
indicates that data from an earlier reception has been lost. The data in RBUF will always be the
last byte received.

In addition, the RX Machine can recognize two different break signals. TheDBRKO bit indicates the
detection of a break condition on the RXD pin oflonger than M bit times, where M is equal to the total
number of bits (start+data+stop) in a frame. The DBRKI bit signifies that a longer break condition,
greater than 2*M+3 bit times, has been received. It's important to note that the break condition will
result in the RX Machine receiving at least one null (all zeros) character with the framing error bit
set. Other error bits may also be set depending on the length of the break signal and the mode of
operation of the channel.

The receiver can tolerate incoming baud rates that differ from the internal baud rate by 2.5% overspeed
and 5.5% underspeed. These values exceed the CCITT extended signalling rate specifications.

A block diagram of the RX Machine is shown in Figure 8.4.

8-8

(Xl

cO

"11
cO'
I:
iil
CI)

:...
JJ x
s::
~
::l"
:i"
CD
m
0"
n
~

C
iii'
cc
iiJ
3

RECEPTION
COMPLETE

I
~

RECEIVE
SHIFT
REGISTER·

TOPCS

TOPCS

CHANNEL STATUS LOGIC

8x SAUD
CLOCK

SHIFT
CLOCK ----.

RXD
PIN

I--------------------------.... ~ RI REQUEST
SIGNAL

l

en
m
::D
);
r­
o o
3:
3:
c z
o
~ o z en
c z
=i

SERIAL COMMUNICATIONS UNIT

8.1.1.2 TX MACHINE

The transmission sequence begins with a write to the TBUF (transmit buffer) register. The TBUF is
a holding register for the transmit shift register. The contents of the TBUF register are copied to the
transmit shift register as soon as the current transmission is completed. If no transmission is in
progress (i.e. the transmit shift register is empty) the TBUF is copied immediately to the transmit shift
register. The start and stop bits are appended during the TBUF to shift register transfer. Concurrently,
the parity bit is also generated and inserted in the data frame, if the parity feature has been selected,
At this point the TX Machine begins shifting the contents of the transmit shift register on to the TXD
pin. At the middle of the stop bit time the transmit interrupt request is generated and the transmit
interrupt bit (TI) is set.

Double buffering is an important feature of the TX Machine. When the transmit shift register is empty,
the TX Machine can accept two sequential writes to the TBUF register. The first byte is immediately
transferred to the transmit shift register . The second byte is then held in the TBUFpending completion
of the first transmission. The Transmitter Empty (TXE) bit signifies that both registers of the TX
Machine are empty, When this bit is set the user can safely write sequential bytes for transmission
without loss of data.

The transmitter can be selectively disabled through the "Clear-To-Send" feature. This feature is
selected through the programming of the CEN bit. When CEN is set, the TX Machine will not begin
transmission until CTS has been asserted. The entire frame will then be transmitted. Data will
continue to transmit as long as CTS is asserted and the transmitter is full.

The CTS pin is level sensitive. The state of the CTS pin is only looked at just prior to a pending
transmission. Holding the CTS pin low for 1 1/2 clock cycles when a transmission is pending will
insure that the transmission will occur. Section 8.4.3 discusses the CTS timings in greater detail.

Monitoring the state of the TXE bit is especially important while using CTS. When the transmitter is
disabled there is only room for two bytes in the transmitter; one in the TBUF and one in the transmit
shift register. Any further writes to the TBUF will result in a loss of data. The user must be sure that
the TBUF is empty before writing to it.

The TX Machine is also capable of transmitting a break signal. Setting the SBRK bit immediately
forces the TXD pin to a logic zero state. The TXD pin will remain low until the user clears the SBRK
bit. It is up to the user to time the duration of the break signal. Setting SBRK does not halt the internal
transmission sequence. In other words, the TX Machine will continue to run despite the fact that the
TXD pin is being held low. Transmit interrupts will still be generated as if normal transmission were
taking place.

The same baud rate generator is used for the RX Machine and the TX Machine for a given channel.
For this reason reception and transmission must occur at the same rate. If it is necessary to have
different baud rates for reception and transmission then the user must use both channels. One would
be dedicated to reception, the other to transmission.

:!!
CO
I: ...
CD
CO

cp in
......

~I
II)
n
::r
S·
CD

FROM
SXCNT

'" 21
~
6
~

'" '"

FROM1B8
BIT IN SXCNT

FROM PCB

TBUF

SHIFT
CLOCK
ENABLE

>­
g:

~
0-

t·
o,
~
~
[
::r
~.
.....
en
en

5
~ ::s
s·
::n
~
00
u.

l

en
m
::D
> r-
o o
s:::
s:::
c: z
(;

~ o z
en
c z
:::::j

SERIAL COMMUNICATIONS UNIT

8.1.1.3 THE ASYNCHRONOUS MODES

Modes 1 through 4 of the SCU implement variations of the asynchronous protocol described above.
The RX and TX Machines operate the same for all four modes with some minor exceptions.

8.1.1.3.1 MODE 1 : (10 bitframe)

Mode 1 is the standard 8 bit asynchronous communications mode. Each data frame consists of one
start bit, eight data bits, and a stop bit. Enabling the parity feature replaces the eighth data bit by a parity
bit. The sense, even or odd, of the parity is programmable. The data frame for Mode 1 is shown in
Figure 8.6. Both the RX and TX Machines operate as described above with no exceptions.

Figure 8.6. Mode 1 Waveform

8.1.1.3.2 MODES 2 AND 3: (11 bitframes)

10

STOP
BIT

270830·001·23

Modes 2 and 3 both make use of 11 bit frames. The data frame consists of a start bit, nine data bits,
and a stop bit (Figure 8.7).

Figure 8.7. Modes 2 and 3 Waveform

11

STOP
BIT

270830·001·24

The TX Machine gets the ninth bit (MSB) for transmission from the TB8 bit in the SxCON register.
This bit feeds directly into the transmit shift register, bypassing the TBUF. TB8 is not double
butTerred. A new TB 8 value must be specified for each byte to be transmitted. This precludes the use
of the double buffering feature when the user needs to explicitly program the ninth bit value.

8-12

SERIAL COMMUNICATIONS UNIT

There are two situations where TB 8 can be generated by the TX Machine. The TB 8 bit is cleared after
every transmission. If TB8 is cleared before transmission starts, and never set thereafter, every
transmission will have the ninth bit low. If the parity feature has been selected, bit 9 will be replaced
with the parity bit. This is a convenient method of generating an 8 bits plus parity data frame. In both
cases double buffering may once again be used since TB8 is automatically generated.

The RX Machine places the ninth received data bit in the RB8/pE (Receive Bit 8 /Parity Error) bit in
the SxSTS register. If the parity feature is enabled, the RB8/PE bit will instead contain the parity error
flag (set to indicate an error). All other error detection capabilities and interrupt requests function as
described above.

The RX Machine has an important functional difference between Modes 2 and 3. Mode 2 is com­
monly referred to as the "ninth bit recognition mode". Reception in Mode 2 will not complete unless
bit 9 of the data frame is a logic one. Any data received with bit 9 cleared will be completely ig­
nored. No flags will be set, no interrupts will be generated, and no data will be transferred to RBUF.
Reception in Mode 3, however, will complete regardless of the state of bit 9.

Modes 2 and 3 are commonly combined to implement multiprocessor communications. One possible
application is called the "master/slave network" (Figure 8.8). All slaves connected to the network
have their RXO pins directly connected to the "master transmit" line (TXO pin of the master). The
slaves' TXO pins are all tied to the "master receive" line (RXO pin of the master) through a 3-state
buffer. The buffer is necessary to avoid contention as the TXO line cannot be floated.

80C186EB

TXD
MASTER TRANSMIT LINE " ,

RXD
MASTER RECEIVE LINE ,

*- *- ~
RXD TXD RXD TXD RXD TXD

87C196KB 87C51 80C186EB
SLAVE SLAVE SLAVE

PORT ~ PORT - PORT -
PIN PIN PIN

1 I I
.L COMMONGND.

270830-001-25

Figure 8.8. Multiprocessor Network

.8-13

SERIAL COMMUNICATIONS UNIT

Initially all slaves are receiving in Mode 2 with their transmitters disconnected from the master
receive line. The master is set permanently in Mode 3. There are two types of transactions that can
occur in this system: a global slave command and a local master/slave data transfer.

When the master wishes to broadcast a command to all slaves, it transmits the eight bit command with
bit 9 set high. Every slave in the network is interrupted upon reception of the global command byte.
An example of a global command is "initiate system reset routine" to force all slaves to a known state.
Such global commands are unidirectional and require no response from the slaves.

If the master wishes to communicate bidirectionally with a particular slave it would issue a special
global "address" command (again with bit 9 high). Each slave would check its address against the
received address. The addressed slave would then gate its TXD line onto the master receive bus and
switch to Mode 3. Once in Mode 3 the slave could freely communicate with the master. During a
master/slave data transfer bit 9 would be kept low to prevent interrupting the other slave processors
on the network. Once the transaction was completed, the slave would detach itself from the master
receive bus and retum to Mode 2.

It is not recommended that the parity feature be used in Mode 2, as bit 9 is intended to be a control bit.
If parity were used in Mode 2 only those data frames whose parity resulted in setting bit 9 would be
received.

8.1.1.3.3 MODE 4 (9 bit frame)

Some older serial devices require the use of a seven bit data frame instead of the newer eight and nine
bit formats. To accommodate this need Mode 4 transmits and receives only 7 data bits. The lower 7
bits ofTBUF are transmitted; received data is placed in the lower 7 bits ofRBUF. RB7 in RBUF is
undefined and should be ignored. The parity feature is not available in this mode.

All other features function as described in the asynchronous description section above. The data
frame for Mode 4 is shown in Figure 8.9.

Figure 8.9. Mode 4 Waveform

8-14

9

STOP
BIT

270830-001-26

SERIAL COMMUNICATIONS UNIT

8.1.2 SYNCHRONOUS COMMUNICATION

The synchronous mode (Mode 0) of the SCD is intended for use primarily with shift register based
peripheral devices. In this mode the TXD pin provides the synchronizing transmission/reception
clock while the RXD pin sends or receives data in eight bit frames (Figure 8.10). Communication in
Mode 0 is half-duplex; the RXD pin cannot receive and transmit data simultaneously.

TXD

RXD

MODE 0 TRANSMIT

TXD

RXD ---<

MODE 0 RECEIVE 270830-001-27

Figure 8.10. Mode 0 Waveforms

Transmission in Mode 0 begins with a write to the TBUF register. TBUF will be copied into the
transmit shift register as soon as that register is empty (i.e. when any previous transmission is
completed). The data in the transmit shift register is then shifted out of the RXD pin (vs. the TXD pin
for the asynchronous modes) while the synchronizing clock is provided on the TXD pin. The re­
ceiving circuit must sample the transmitted data on the rising edge of TXD. The 80C186EB always
provides the synchronizing clock signal; it can never receive a synchronous clock signal on
TXD. The TI request bit is set in the middle of the 8th bit time; when transmission is complete. The
RXD pin floats prior to and following a transmission. The TXD pin never floats; when it is inactive
between transmissions it remains at a high logic state.

Transmissions are double bufferred in Mode 0 just as they are in the asynchronous modes described
above.

Reception in Mode 0 is initiated only when the receiver enable (REN) bit is set and the receiver
interrupt request (RI) bit is clear. As soon as these conditions are met the SCD begins shifting in the
data on the RXD pin. The TXD pin provides the synchronizing clock as in the case of transmission.

8-15

SERIAL COMMUNICATIONS UNIT

Received data is sampled by the SCU just prior to the rising edge ofTXD. The device driving the RXD
pin must adhere to the setup and hold times (with respect to TXD) outlined in the 80C186EB
datasheet. Reception of the eighth bit sets the receive interrupt request (RI) bit. Simultaneously, the
contents of the receive shift register are copied into the RBUF.

Reception of another data byte will not begin until the RI bit is cleared. The receiver can be disabled
during a reception although this will result in a loss of data.

~ ~
a: I-

§ !:::: t!;;ffi ..
::Ea: u.i~ ~~

0 g ~!5 ~~ a: I- CCI

~
--' 8 W

t:;:a: :z

~ Ii: ~ffi :;:~
:i2 "'''' '-' Wu...

~ffi ~
'-' u... w:::>
a: CCI a: a:

W

'"
CI ~ .

~~~ 
~ 
'-' 
CCI 

>= 
~ 

a: I- I~ a: 
t:;:a: 

W 
s.2 !:::: >< 

§ ~a: :Et=! ~ :z~ "'''' c; 
g ~~ ~ffi ~ ~ 

W :::> 

t5 >< a: ::E 
l- N 

--' 8 Ii: W c; :z t:;:a: :i2 ~ Ii: ~ffi ~t5 ~ 
'-' :i2 Wu... ::>8 

~ '-' u... w:::> ~~ a: a: CCI 
W 

'" 
§~:Z 
~~~ 

g
:.:: '-'

~:::>8 CCI

a: c.. --'
270830-001-13 u... '-' '-'

Figure 8.11. Mode 0 Port Expansion

8-16

inter SERIAL COMMUNICATIONS UNIT

A typical application for Mode 0 is shown in Figure 8.11. The 74HC 165 is a parallel in/ serial out shift
register. The eight configuration byte dip switches control the logic level applied to the parallel input
pins of the 74 HC 165. To read the configuration byte the port 1.7 pin is pulsed low to latch the parallel
data. Then the receiver would be enabled in Mode O. This would immediately shift the eight bits in
the 74HC 165 in to the serial receive buffer. A similar design could be used to construct an output port.

8.2 PROGRAMMING THE SERIAL COMMUNICATIONS UNIT

Six Peripheral Control Block registers are used to program each channel of the SCU. The receive and
transmit buffers, RBUF and TBUF, have already been described. The Baud Rate Compare (BxCMP)
and Baud Rate Count (BxCNT) Registers are used by the Baud Rate Generator as described in the
Baud Rate section below. The Serial Control (SxCON) Register is used to set the mode of operation
and select the feature set for a channel. Each channel reports its current operational state through the
use of the Serial Status (SxSTS) Register. This section will highlight the function of these two
registers.

8.2.1 THE SERIAL CONTROL REGISTER (SOCON, S1 CON)

The SxCON registers consists of the following seven fields:

Mode Field: These three bits, M2 to MO, control the operational mode of the channel. They are
defined as follows:

M2 Ml MO

0 0 0 Mode 0
0 0 1 Mode 1
0 1 0 Mode 2
0 1 Mode 3
1 0 0 Mode 4
1 0 1 Reserved for future use

1 0 Reserved for future use
1 1 Reserved for future use

PEN Bit: The Parity Enable Bit. When this bit is set the parity feature will be enabled. Every
transmission (except in modes 0 and 4) will have the MSB replaced by a parity bit. All
receptions will be parity checked and error conditions will be reported in the PE bit. The sense
of the parity is controlled by the EVN bit.

EVN Bit: EVEN/ODD Parity Sense Select. Setting this bit selects even parity; clearing it
selects odd.

8-17

SERIAL COMMUNICATIONS UNIT

REN Bit: Receiver enable bit. Setting this bit enables reception in all Modes.

CEN Bit: Clear-To-Send enable. Setting this bit invokes the Clear-To-Send transmission
control feature. With this option selected transmission will not begin until CTS is asserted.

TB8 Bit: The eighth bit for data transmission in Modes 2 and 3. This bit is cleared after every
transmission. This bit is not double buffered.

SBRK Bit: Send Break Bit. When this bit is set the TXD is immediately driven low regardless
of the current mode. TXD will remain low until this bit is cleared. Timing for break signal
duration is the users responsibility.

All of the remaining bits in the SxCON register are reserved for future use. These are all undefined
when read.

The SxCON is a read/write register. Reading the SxCON register will not affect its contents.

8.2.2 THE SERIAL STATUS REGISTER (SOSTS, S1 STS)

The Serial Status Register is used to monitor the current state of a channel. It is important to note that
the entire SxSTS register (with the exception of the CTS bit) is cleared every time it is accessed
(either read or written). If it is necessary to preserve the contents of the SxSTS register, it must be
saved in memory.

The Serial Status Register has nine bit fields:

CTS bit: Clear to Send status. This bit is the complement of the value on CTS pin. This bit is
the only one in the SxSTS that is not cleared by a read.

o E bit: Overrun error flag. This bit is set by the RX Machine to indicate a receive overrun error
has occurred. An overrun error occurs when the data in the RBUF register is not read before the
data in the receive shift register has overwritten it.

TXE bit: Transmitter Empty Flag. This bit will be set when both the TBUF and the transmit
shift register are empty. This indicates that the TX Machine can accept 2 sequential bytes for
transmission.

FE bit: Framing Error Flag. Set to indicate a framing error (valid stop bit not detected) has
occurred.

TI bit: Transmit Interrupt Request Flag. Set to indicate a transmission has completed and a
transmit interrupt request has been issued. Writing this bit win not generate an interrupt for
channelO.

8-18

SERIAL COMMUNICATIONS UNIT

RI bit: Receive Interrupt Request Flag. Set to indicate a reception has completed and a receive
interrupt has been issued. Clearing this bit when REN is set in Mode 0 initiates a reception.
Writing this bit will not generate an interrupt for channel O.

RBS/PE bit: Received Bit 8 /Parity Error Flag. In Modes 2 and 3 this will be the value of the
ninth received bit if parity is not enabled. Ifparity is enabled (in Modes 1,2, and 3) this bit will
be set to indicate a parity error was detected for the byte currently in RBUF (the last received
byte).

DBRKO bit: Break Detect 0 flag. Set to indicate the detection of a break condition of longer
than M bit times (M = total bits in frame).

DBRKI bit: Break Detect 1 flag. Set to indicate the detection of a break condition of longer
than 2M+3 bit times (M = total bits in frame).

All of the error bits (DE, PE, and FE) and the break detect bits (DBRKI and DBRKO) are only cleared
by reading the SxSTS register. For example, if a frame is received with a parity error (setting the PE
bit) then a subsequent error-free frame is received, and the SxSTS has not been read between the
two receptions, the PE bit will remain set. This allows the SxSTS register to be checked only at the
end of a long block of receptions.

8.3 OPERATION AND PROGRAMMING OF BAUD RATE GENERATOR

The Baud Rate Generator uses two PCB registers: the Baud Rate Counter (BxCNT) and the Baud Rate
Compare (BxCMP) Register. The Baud Rate Counter is a free running fifteen bit counter that
increments every cycle of the baud timebase clock. The baud timebase clock can either be the CPU
clock (1/2 the CLKIN frequency) or an external clocking signal applied to the BCLKx pin. If an
external timebase is selected, it is limited to 1/2 the frequency of the CPU clock. This limitation stems
from synchronization requirements.

The Baud Rate Compare Register contains two fields. The most significant bit is the ICLK select bit.
Setting this bit selects the internal CPU clock for the baud timebase; clearing it selects the BCLKx pin.
The lower 15 bits make up the baud rate comparison value. The Baud Rate Counter is compared
against the Baud Rate Compare value after every cycle of the baud timebase clock. If the two match,
the baud rate generator outputs a pulse and resets the BxCNT register. This repetitive process
generates a pulse train that is equal to the baud rate in Mode O. Modes 1 through 4, due to their
asynchronous nature, require repetitive sampling of the input waveform to insure reliable reception.
Eight baud rate generator cycles are required to perform this operation. For this reason, the baud rate
in Modes 1 through 4 is 1/8 the frequency of the baud rate pulse train.

8-19

SERIAL COMMUNICATIONS UNIT

The following· equations may be used to calculate the proper value of the BxCMP for a specific
desired baud rate (FCPU=CPU operating frequency, 1/2 CLKIN frequency):

Mode 0:
Baud Rate Compare value= [FCPU/(BAUDRATE)]-1

Mode 1:
Baud Rate Compare value= [FCPU/(8*BAUDRATE)]-1

For an external clock source with a frequency Fbclk, use the following:

Mode 0:
Baud Rate Compare value= [FBCLKI(BAUDRA TE)]-1

Mode 1:
Baud Rate Compare value= [FBLCKI(8*BAUDRATE)]-1

Note that a baud rate compare value of 0 is illegal and will result in unpredictable operation. Common
baud rates based on the crystal frequency are shown in Table 8.1.

Table 8.1 Common Baud Rates in Asynchronous Modes

CPU FREQUENCY BAUD RATE BxCMPValue % ERROR

16 MHz 19,200 8067H 0.16
16 MHz 9,600 80CFH 0.16
16 MHz 4,800 81AOH -0.08
16 MHz 2,400 8340H 0.04
16 MHz 1,200 8682H -0.02
16 MHz 600 8D04H 0.01
16 MHz 300 9AOAH 0

13 MHz 19,200 8054H -0.43
13 MHz 9,600 80A8H 0.16
13 MHz 4,800 8152H -0.14
13 MHz 2,400 82A4H 0.01
13 MHz 1,200 8549H 0.01
13 MHz 600 8A93H 0.01
13 MHz 300 9528H -0.01

8 MHz 19,200 8033H 0.16
8 MHz 9,600 8067H 0.16
8 MHz 4,800 80CFH 0.16
8 MHz 2,400 81AOH -0.08
8 MHz 1,200 8340H 0.04
8 MHz 600 8682H -0.02
8 MHz 300 8D04H 0.01

8-20

intJ SERIAL COMMUNICATIONS UNIT

8.4 TIMINGS

8.4.1 ASYNCHRONOUS (MODES 1-4)

For the asynchronous Modes (1 through 4) each bit ofa data frame is valid for what is called a "bit­
time" (Figure 8.12). A bit-time is equal to l/(baud rate). As an example, if the baud rate is set at 9600
each bit is valid for l04uS. Since it takes 10 bits (in Mode 1) to transmit one ASCII character the data
rate is 960 characters per second. The RX Machine expects the incoming data to have a baud rate
within a +2.5% to -5.5% range from internal (transmit) baud rate.

5 6

Figure 8.12. Asynchronous Timings

8.4.2 SYNCHRONOUS (MODE 0)

I 10 I
I I
I I

STOP I
BIT I

I
I

270830-001·29

In Mode 0 all timings are relative to the baud timebase clock (either CLKOUT or BCLK). Two cases
govern the behavior of the transmit/receive clock (on the TXD pin).

The first case is unique and occurs when the Baud Rate Compare Value is equal to 1 (see Figure 8.13).
In this situation the TXD pin toggles every cycle of the baud timebase clock resulting in a 50% duty
cycle waveform at 1/2 the baud timebase frequency. Transitions on TXD occur on the falling edge of
the timebase clock.

8-21

SERIAL COMMUNICATIONS UNIT

CLKOUT

TXD

RXD BIT 0

270830-001-30

Figure 8.13. Mode 0, BxCMP=2

Figure 8.14 shows the TXD wa.veforrn for baud rate compare values greater than 1. The TXD pin
remains high for N-1 clock cycles. On the falling edge beginning the Nth clock cycle TXD is driven
low where it remains for the next 2 clock cycles. The next falling edge of the timebase clock restarts
the TXD cycle.

CLKOUT

TXD

RXD BIT X

,....,'--- •••• -~h
HIGH FOR

N-1 CLOCKS

Figure 8.14. Mode 0, BxCMP>2

BITX+1

270830-001-31

During a transmission the state of the RXD pin changes state on the fIrst falling edge of CLKOUT
following the rising edge ofTXD. This is true for both of the above cases. For reception incoming data
on RXD must meet setup and hold timings with respect to the rising edge ofTXD (Figure 15). These
timings can be found in the data sheet.

8·22

CLKOUT

TXD

RXD

I
Tdvxh I

t-:
I
I

SERIAL COMMUNICATIONS UNIT

--, ,TXhdX

Figure 8.15. Mode 0, Receive Timings

8.4.3 CTS PIN TIMINGS

270830-001-32

When the clear-to-send feature is enabled (CEN bit is set) transmission will not begin in any mode
until the CTS signal is assertedwhile a transmission is pending. Figure 8.16 shows the sequence of
events involved in the recognition of a valid CTS signal.

The CTS pin is sampled by the rising edge ofCLKOUT (nptBCLKx). The high time of the clock cycle
is used to resolve (synchronize) the CTS signal. On the falling edge of CLKOUT the synchronized
CTS signal is presented to the SCU.1f it is necessary to have a very narrow pulse on CTS, the set up
and hold times in Figure 8.17 must be met. It is recommded that CTS have a valid pulse width of at
least I 1/2 clock periods. This will guarantee recognition.

The state ofCTS is not latched. If it is asserted before a transmission is initiated (i.e., a write to TBUF
occurs) the subsequent transmission will not begin. One can think of a write to the TB UP as "arming"
the CTS sense circuitry.

8·23

SERIAL COMMUNICATIONS UNIT

CTS SAMPLED{ CTS RESOLVED

HIGH TIME
TRANSMISSION

HERE ~ DURING CLKOUT

PENDING . ,-A--,

CLKOUT

CTS
(INTERNAL)

CLKOUT

Figure 8.16. CTS Recognition Sequence

I
I
I
I
I_I I--TcHIH

'~1D I I
I I
II I

Figure 8.17. CTS Setup and Hold

8-24

270830-001-45

270830-001-46

SERIAL COMMUNICATIONS UNIT

8.5 SERIAL CONTROL UNIT INTERRUPTS

A serial interrupt request will be generated when either channel completes a serial transaction (trans­
mission or reception). For the asynchronous modes, a reception or transmission is completed at the
middle of the stop bit. During synchronous communication the transaction is completed in the middle
of the eighth bit. The RI and TI bits (in the SxSTS register) indicate that either a receive or transmit
interrupt request has been generated.

The interrupt request circuitry differs between channel 0 and channell. The difference between the
two is best understood by following the interrupt request signals for each channel.

8.5.1 CHANNEL 0 INTERRUPTS

When a reception completes in channel 0, an internal receive-interrupt-request signal is generated.
This signal is routed to the SOSTS register and the internal interrupt controller (Figure 8.18). The RI
bit of the SOSTS signal is set by the receive-interrupt-request signal. Note that the RI bit does not
generate or affect the internal interrupt request. RI is merely an indicator that says: "Channel 0
has posted a receive-interrupt-request with the integrated interrupt unit." The transmit-interrupt­
request signal and TI behave the same for the case of transmission.

_~~~~~~~~~~~~ ____ +-______ -+ __ ~IRS TI~ _____ DTOSOSTS
TRANSMIT_INTERRUPT_REQUEST_O ••

Figure 8.18. Channel 0 Interrupt Model

8-25

SERIAL COMMUNICATIONS UNIT

At the interrupt unit the receive interrupt request is ORed with the transmit interrupt request from
channel 0 to generate a single "serial channel 0 interrupt request." The interrupt controller, however,
maintains separate vectors for receive and transmit interrupts. The receive and transmit interrupt
requests cannot be independently masked.

It is not necessary to clear theRI and TI bits for channel 0 to prevent further interrupts from occurring.
They are an indication that a request has occurred; they are not the source of the request. Setting these
bits by writing SOSTS will not generate an interrupt.

Receive interrupts take priority over transmit interrupts. They cannot nest, however, since they share
one interrupt request.

8.5.2 CHANNEL 1 INTERRUPTS

Channell is not directly supported by the integrated interrupt controller. When a receive or
transmit interrupt request is generated by channell the appropriate bit, RI or TI, is set in the S 1 STS.
The serial channell interrupt request signal (SINTl) is a direct ORing of these register bits (see Figure
8.19). This is different from channel O. For channell, setting the RI and TI bits by writing to S 1 STS
will cause the SINTlline to go active. The only way to deassert SINTl is by clearing theRI and TI
bits (by reading S 1 STS). SINTl is routed to a package pin through the Port 2 multiplexer.

In order for SINTl to generate a CPU interrupt, it must be tied to one ofthe external interrupt pins (e.g.,
NMI or INTO).

P2.3 LATCH

s"'~" ... "" 11~

R

TRANSMIT_INTERRUPT_REQUEST_1
TI

S

R

RECEIVEJNTERRUPT _REQUEST_1 .. S

RI

270830-001-48

Figure 8.19. Channel 1 Interrupt Model

8-26

SERIAL COMMUNICATIONS UNIT

8.6 PORT 2 MULTIPLEXER

All of the pins for channell, and the BCLKO pin for channel 0, are mUltiplexed with output port 2.
The I/O port section of this manual describes programming of the multiplexer.

8.7 APPLICATION EXAMPLES

The following sections show the proper programming of the SCU for two different applications. The
first application configures channel 0 as a standard 9600 baud full duplex asynchronous port. The
second application uses channell to read the configuration dip switch example shown in Figure 8.11.

8.7.1 Example 1: 9600 Baud, Full-Duplex Asynchronous Channel

The ASM186 code for example 1 consists of3 procedures. Procedure ASYNC_ CHANNEL_SETUP
configures channel 0 for 9600 baud, 7 bits plus even parity, with CTS control enabled.
ASYNC_CHANNEL_SETUP also initializes the interrupt vectors for the two interrupt procedures
ASYNC_REC_INT]ROC and ASYNC_XMIT_INT_PROC.

The body of the two interrupt handler procedures has been left empty. The code inserted in these
procedures is application dependent. Typically the receive procedure would check for error condi­
tions then store the received byte in a buffer. The transmit routine would get the next byte for
transmission out of a buffer and write it to the TBUF.

8.7.2 Example 2: Synchronous Port Expansion

Section 8.1.2 detailed how the SCU could be used in synchronous mode to expand the I/O capability
ofthe 80C186EB. This example shows the ASM186 code necessary to read the configuration byte
information for the circuit in Figure 8.11.

The code consists of one procedure: READ_CONFIG_BYTE. First, the procedure sets up channel
1 as a synchronous (mode 0) channel. A baud rate of 1 Mbaud is chosen. Next, the RXD 1 and TXD 1
signals are routed to the package pins by programming the Port 1 multiplexer.

To read the expansion port, pin Pl.7 is pulsed low to load the 74HC165 register with the dip switch
values. The REN (Receiver ENable) bit is then set and the data is shifted in to the RBUF. Since the
SINT line is not being used the RI bit must be polled. When a "1" is found in the RI flag the reception
is completed. The configuration data is returned in the AL register.

8-27

$mod186
name

SERIAL COMMUNICATIONS UNIT

Example 1

This file contains an example of initialization code for the
Serial Communications Unit on the 80C186EB.

This example has 3 procedures:

ASYNC_CHANNEL_SETUP: Sets up channel 0 as 9600 baud,
full duplex, 7 data bits-plus-partiy,
with CTS# control.

ASYNC REC INT PROC: Interrupt handler for a reception.
This procedure is nearly empty since
the code to perform error checking and
receive buffer handling is application
dependent.

AS Y N CX MIT _I N T _P ROC: In t err up t han dIe r for a t ran s m iss ion.
As with the above procedure this is
nearly devoid of code. A typical appli­
cation would test the TXE bit and then
copy data from the transmit buffer in
memory to the TBUF.

We assume PCB has NOT BEEN RELOCATED!

BOCMP
SOCON
SOSTS
SORBUF
SOTBUF
RI TYPE
TI-TYPE
EO!
SCUCON

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

OFF60H
OFF64H
OFF66H
OFF68H
OFF6AH
20
21
OFF02H
OFF14H

code_seg segment public
ass ume c s:c ode_s e g

ASYNC_CHANNEL_SETUP proc near

Channel 0 Baud Rate Compare
Channel 0 Control
Channel 0 Status
Channel 0 Receive Buffer
Channel 0 Transmit Buffer
Receive is type 20 interrupt
Xmit is type 21 interrupt
End-Of-Interrupt Register
SCU interrupt control reg

First, set up the Interrupt handler vectors····

xor
mov

a x, ax
d s, ax

mov bx, RI TYPE*4

Need DS to point to
int vector table at OH

mov ax, offset ASYNC REC INT PROC
mov [bx], ax - - -
m 0 v ax, se g ASYNCR E CI NT_P ROC
mov [bx+2], ax

8-28

SERIAL COMMUNICATIONS UNIT

Example 1 (Continued)

mov bx, TI TYPE*4
mov ax, offset ASYNC XMIT INT PROC
mov [bx], ax - - -
m 0 vax, s egA S Y N C_X M IT _I N T _P ROC
mov [bx+2], ax

Now set up channel 0 options •.....

mov
mov
out

mov

mov
out

ax, 80CFH
dx, BOCMP
dx, ax

ax, 00S9H

dx, SOCON
dx, ax

for 9600 baud from 16MHz
CPU clock.
Set baud rate.

CEN=l (CTS enabled)
REN=O (receiver not enabled
EVN=l (even parity)
PEN=l (parity turned ON)
MODE=l (10 bit frame)

write to Serial Control Reg.

Clear any old pending RI or TI, just for safety's sake.

mov dx, SOSTS
in ax, dx ; clear any old RI or TI

Clear interrupt mask bit in interrupt unit to allow SCU
interrupts.

mov
in
and

Turn on

mov
in

or
out

dx, SCUCON
ax, dx
ax, 0007H

the receiver

dx, SOCON
ax, dx

ax, 0020
dx, ax

SCU interrupt control

Clear mask bit to enable

Read SOCON

Set REN bit
Write SOC ON

Now receiver is enabled and sampling of the RXD line begins.

Any write to the TBUF will initiate a transmission.

ret

; The next procedure is executed every time a reception is
completed.

ASYNC_REC_INT_PROC proc near

mov dx, SOSTS
in ax, dx Get status info

test al, 10000000B Test for parity error
jnz parity_error

test a 1 , 00010000B Test for framing error
jnz f ram i n g_e r r 0 r

test a 1 , 00000100B Test for overrun error
jnz overrun_error

8-29

yet)

SERIAL COMMUNICATIONS UNIT

Example 1 (Continued)

At this point we know the received data is OK.

mov
in

and

dx, SORBUf
a x, dx

ax, 07fH

Read received data

Strip off parity bit

Code to store the data in a receive buffer would go here.
It has been ommitted since this is heavily application dependent.

pari ty_error:

Code for parity error handling goes here.

jmp eoi rcv int

framing_error:

Code for framing error handling goes here.

jmp eoi_rcv int

overrun_error:

Code for overrun error handling goes here.

jmp eoiJcv int

Must now issue END-Of-INTERRUPT command to interrupt unit

eoi_rcv_int: mov
mov
out

iret

dx, EOI
ax, 8000H
dx, ax

ASYNC_REC_INT_PROC endp

ASYNC_XMIT_INT_PROC proc near

issue non-specific EOI

This procedure is entered whenever a transmission completes.
Typical code would be inserted here to transmit the next byte
from a transmit buffer set up in memory. Since the configuration
of such a buffer is application dependent this section wil be
left blank.

Must now issue END-Of-INTERRUPT command to interrupt unit

eoi_xmit_int: mov dx, EOI
mov ax, 8000H
out dx, ax

iret

ends

issue non-specific EOI

8·30

tmod186
name

SERIAL COMMUNICATIONS UNIT

Example 2

This file contains an example of initialization code for the
Serial Communications Unit on the 80C186EB.

This example has 1 procedure:

READ CONFIG BYTE: Sets up channell as 1 M baud,
synchronous with no CTS# control.
It then reads in the configuration
byte from the shift register connected
as in Figure 8·11.

We assume PCB has NOT BEEN RELOCATED!

B1CMP EQU OFF70H
SlCON EQU OFF74H
SlSTS EQU OFF76H
SlRBUF EQU OFF78H
P1CON EQU OFF54H
P1LTCH EQU OFF56H
P2CON EQU OFF5CH

code_seg segment public
assume cs:code_seg

REA D_C ON F I G_B Y TE proc near

mov ax, 8007H
mov dx, B1CMP
out dx, ax

mov ax, OFFH
mov dx, P2CON
out dx, ax

The next piece of code pulses

mov dx, P1CON
in ax, dx
or ax, 7FH
out dx, ax

mov dx, P1LTCH
in ax, dx
or ax, 0080H
out dx, ax
and ax, OFF7FH
out dx, ax
or ax, 0080H
out dx, ax

Channel 1 Baud Rate Compare
Channell Control
Channel 1 Status
Channell Receive Buffer
Port 1 Multiplex control
Port 1 data latch
Port 2 Multiplex control

Mode 0 baud rate of
1 megabaud

Set Port 2.1 for TXD

Pl.7 low to load the 74HC165.

Get state of Pl controls

Make sure Pl.7 is port

get state of Pl Latch
set Pl.7 to 1.

Clear Pl.7

Set Pl.7

8-31

SERIAL COMMUNICATIONS UNIT

Example 2 (Continued)

Now set up the receiver in mode 0 and turn it on·

mov ax, 0020H Mode 0, No CTS
mov dx, SlCON Receiver ON
out dx, ax
mov dx, SlSTS

check - 4_RI: in ax, dx
test ax, 0040H ; look for SET RI bit

jz check 4 RI loop until RI set·

RI bit set. Reception is completed.

mov dx, SlRBUF
in ax, dx

ret

ends

8-32

Interrupts 9

CHAPTER 9
INTERRUPTS

80C186EB family interrupts can be software- or hardware-initiated. Software interrupts originate
from three sources:

Execution of INT instructions.

A direct result of program execution, that is, execution of a breakpointed instruction.

An indirect result of program logic, for example, attempted division by zero.

Hardware interrupts originate from either the integrated peripherals or external logic. In the 80C 186EB
family, an integrated Interrupt Control Unit performs the tasks which would otherwise be left to an
external 82C59 Interrupt Controller. Hardware interrupts are classified as either non-maskable or
maskable.

All interrupts, whether software- or hardware-initiated, result in the transfer of control to a new
program location. A 256-entry vector table (see Figure 9.1), which contains address pointers to the
interrupt routines, resides in memory locations 0 through 3FFH. Each entry in this table consists of
two 16-bit address values (four bytes) that are loaded into the code segment (CS) and the instruction
pointer (lP) registers when an interrupt is accepted.

All interrupts save the machine status by pushing the current contents of the flags onto the stack. The
80C186EB family CPU then clears the interrupt-enable and trap bits in the flags register to prevent
subsequent maskable and single step interrupts. Next, the CPU establishes the routine return linkage
by pushing the current CS and IP register contents onto the stack before loading the new CS and IP
register values from the vector table.

9-1

INTERRUPTS

MEMORY TABLE VECTOR
ADDRESS ENTRY DEFINITION

3FE ""---C-S-25-5--"'}
1-------1 TYPE 255

3FC IP 255

82

80

7E

7C

56

54

52

50

4E

4C

4A

48

46

44

42

40

3E

3C

3A

38

36

34

32

30

USER
AVAILABLE

CS32 } 1-_____ -1 TYPE 32

IP32

CS31 } 1-_____ -1 TYPE 31

IP 31 }"~~,,
CS21

IP 21

CS20

IP20

CS19

IP 19

CS18

IP 18

CS17

IP 17

CS16

IP 16

CS15

IP 15

'CS 14

IP 14

CS13

IP 13

CS12

IP 12

1-2 BYTES-I

1 TYPE 21 - SERIAL CHANNEL 0
TRANSMIT

TYPE 20 - SERIAL CHANNEL 0
RECEIVE

} TYPE 19 - TIMER 2

} TYPE 18-TIMER 1

} TYPE 17 -INT4

}
TYPE 16-NUMERICS
COPROCESSOR
EXCEPTION (80C186EB)

} TYPE 15 -INT3

} TYPE 14-INT2

} TYPE 13 -INT1

} TYPE 12-INTO

MEMORY
ADDRESS

2E

2C

2A

28

26

24

22

20

1E

1C

1A

18

16

14

12

10

OE

OC

OA

08

06

04

02

00

TABLE
ENTRY

CS11

IP 11

CS10

IP 10

CS9

IP 9

CS8

IP 8

CS7

IP 7

CS6

IP6

CS5

IP 5

CS4

IP 4

CS3

IP3

CS2

IP 2

CS1

IP 1

CSO

IPO

1-2 BYTES-I

VECTOR
DEFINITION

} TYPE 11 - RESERVED

} TYPE 10'- RESERVED

} TYPE 9 - RESERVED

} TYPE 8 - TIMER 0

} TYPE 7 - ESC OPCODE

}
TYPE 6 - UNUSED
OPCODE

}
TYPE 5 - ARRAY
BOUNDS

} TYPE 4 - OVERFLOW

} TYPE 3 - BREAKPOINT

} TYPE 2-NMI

} TYPE 1 - SINGLE-STEP

} TYPE 0 - DIVIDE
ERROR

CS = CODE SEGMENT VALUE
IP = INSTRUCTION POINTER VALUE

270830-001-76

Figure 9.1. Interrupt Vector Table

9.1 INTERRUPT CONTROL MODEL

80Cl86EB family software interrupts are presented directly to the CPU, while hardware interrupts
are managed through the integrated Interrupt Controller.

The tasks performed by the integrated Interrupt Controller include synchronization of interrupt
requests, prioritization of interrupt requests, and management of interrupt acknowledge sequences.
Nesting is provided so interrupt service routines for lower priority interrupts may themselves be

9-2

intJ INTERRUPTS

interrupted by higher priority interrupts. The integrated Interrupt Controller can be a master to two
external 8259A or 82C59A Interrupt Controllers.

The integrated Interrupt Controller block diagram is shown in Figure 9.2. It contains registers and a
control element. Five inputs are provided for external interfacing to the Interrupt Controller. Their
functions change according to the mode of the Interrupt Controller. Like the other 80C 186EB family
integrated peripheral registers, the Interrupt Controller registers are available for CPU reading or
writing at any time.

SERIAL SERIAL INT INT INT INT INT
RECEIVE TRANSMIT o 1 2 3 4

TIMER CONTROL REGISTER

SERIAL COM UNIT CONTROL
REGISTER

INTO PIN CONTROL REGISTER

INT1 PIN CONTROL REGISTER

INT2PIN CONTROL REGISTER

INT3 PIN CONTROL REGISTER

INT4 PIN CONTROL REGISTER

INTERRUPT PRIORITY
RESOLVER

TO CPU INTERRUPT
REQUEST

F-8US

INTERRUPT REQUEST PENDING
REGISTER

INTERRUPT MASK
REGISTER

IN-SERVICE REGISTER

PRIORITY LEVEL MASK REGISTER

INTERRUPT STATUS REGISTER

VECTOR
GENERATION

LOGIC

270830-001-77

Figure 9.2. Interrupt Controller Block .Diagram

9.2 INTERRUPT CHARACTERISTICS RELATED TO INTERRUPT TYPE

The interrupts handled directly by the CPU are varied andspecific, while the interrupts handled by the
integrated Interrupt Controller are processed like each other.

9.2.1 INTERRUPTS HANDLED DIRECTLY BY THE CPU

The integrated Interrupt Controller does not intervene in interrupt processing related to INT instruc­
tions, instruction traps and exceptions, and the Non-Maskable Interrupt.

9-3----

INTERRUPTS

9.2.1.1 INSTRUCTION-GENERATED TRAPS AND EXCEPTIONS

Software interrupts have higher priority than hardware interrupts, with the exception of NMI. There
are eight dedicated software interrupts associated with instruction execution or attempted instruction
execution, leaving room in the vector table from Type numbers 32 through 255 for user-defined
interrupts.

The predefined software interrupts in the 80C 186EB family are listed below with brief descriptions.
When an interrupt is invoked, the CPU will transfer control to the memory location specified by the
vector associated with the specific type. The user must provide the interrupt service routine and
initialize the interrupt vector table with the appropriate service routine address. The user may addi­
tionally invoke these interrupts through hardware or software: If the preassigned function is not used
in the system, the user may assign some other function to the associated type. However, for com­
patibility with future Intel products, interrupt Types 0-31 should not be reassigned as user defined
interrupts.

Divide Error -Type 0:

Type 0 interrupts are invoked by an aJtempted division in which the quotient exceeds the maximum
value (e.g., division by zero). The interrupt is non-maskable and is entered as part of the execution of
the divide instruction. If divide errors are common in an application and interrupts are not re-enabled
by the interrupt service routine, add the interrupt routine execution time to the worst case divide
instruction execution time to calculate interrupt latency for hardware interrupts.

Single Step - Type 1:

This interrupt occurs one instruction after the trap flag (TF) is set in the flag register. It is used to allow
software single stepping thr~)Ugh a sequence of code. Single stepping is initiated by copying the flags
onto the stack, setting the TF bit on the stack and popping the flags. The interrupt routine should be
the single step routine. The interrupt sequence saves the flags and program counter, then resets TF to
allow the single step routine to execute nonnally. To return to the routine under test, an interrupt return
restores theIP register, CS register, and flags (with TF set). This allows the execution of the next
instruction in the program under test before trapping back to the single step routine.

Breakpoint Interrupt - Type 3:

This is a speCial version of the INT instruction. Since it requires only a single byte of code space, the
breakpoint interrupt can map into the smallest instruction for absolute breakpoint resolution. This
interrupt is not maskable.

9-4

INTERRUPTS

Interrupt on Overflow· Type 4:

This non-maskable interrupt occurs if the overflow flag (OF) is set in the flag register and the INTO
instruction is executed. This instruction allows trapping to an overflow error service routine.

Array Bounds Exception. Type 5:

If an array index is outside the array bounds during the BOUND instruction, a Type 5 interrupt results.
The array bounds are located in memory at a location indicated by one of the instruction operands. The
other operand indicates the value of the index to be checked.

Unused Opcode Exception - Type 6:

Attempted execution of undefined opcodes generates this interrupt. This interrupt is non-maskable.

ESCape Opcode Exception· Type 7:

This exception is the result of attempted ESCape opcode (D8H-DFH) execution. On the 80C186EB,
the ESC trap is enabled by setting a bit in the relocation register. On the 80C 188EB, ESC instructions
always generate this trap. The return address of this exception will point to the ESC instruction
causing the exception. If a segment override prefix preceded the ESC instruction, the return address
will point to the segment override prefix.

Numerics Coprocessor Exception (80C186EB Only)· Type 16:

When the execution of numerics (ESCape) instruction causes an unmasked exception in the 80C 187
Numerics Processor Extension, the result is an interrupt Type 16. Although this is classified as a
software interrupt, signaling is performed in hardware from the 80C187 to the 80C186EB on the
ERROR pin. In general, this exception is detected by the 80C 186EB upon execution of the instruction
subsequent to the one causing the error condition.

9.2.1.2 NON-MASKABLE INTERRUPT (NMI)

The Non-Maskable Interrupt (NMI), a hardware interrupt, is interrupt Type 2. It has the highest
priority among hardware interrupts and is typically reserved for catastrophic events such as impending
power failure or timeout of a system watchdog timer. NMI cannot be prevented by programming and
multiple NMI inputs will lead to nesting ofNMI interrupt service routines. Noise on the NMI pin can
cause unnecessary system upsets.

NMI must be asserted for one CLKOUT period in order to be internally synchronized. The signal is
edge-triggered and level-latched. The vectoring sequence for NMI starts at the next available in­
struction edge after NMI is latched. The interrupt response time for NMI is 42 processor clocks.

9-5

INTERRUPTS

The processor will start recognizing the NMI input pin at the same clock edge on which the RES input
goes inactive. IfNMI is asserted within 10 clocks after RESET goes inactive, the processor will vector
to the NMI service routine before it executes the first instruction. This procedure is useful when it is
desired to begin execution somewhere other than the default starting address of OFFFFOH.

9.2.1.3 USER-DEFINED SOFTWARE INTERRUPTS

The user can generate an interrupt through the software with a two byte interrupt instruction INT nn.
The first byte is the INT opcode while the second byte (nn) contains the type number of the interrupt
to be performed. The INT instruction is notmaskable by the interrupt-enable flag. This instruction can
be used to transfer control to routines that are dynamically relocatable and whose location in memory
is not known by the calling program. This technique also saves the flags of the calling program on the
stack prior to transferring control. The called procedure must return control with an interrupt return
(IRET) instruction to remove the flags from the stack and fully restore the state of the calling program.

All interrupts invoked through software (all interrupts discussed thus far with the exception ofNMI)
are not maskable with IF and initiate the transfer of control at the end of the instruction in which they
occur. They do not initiate interrupt acknowledge bus cycles and will disable subsequent maskable
interrupts by resetting the flags IF and TF. The vectors for these interrupts are implied in the instruction.

9.2.2 INTERRUPTS HANDLED BY THE INTEGRATED INTERRUPT CONTROLLER

The 80C186EB family integrated Interrupt Controller receives and prioritizes hardware interrupts
from five external pins and five integrated peripheral sources. The Interrupt Controller was designed
to allow these interrupts to be flexibly managed. For example, it is possible to mask one or more
interrupt sources and handle them by polling while allowing vectored interrupts for all the other
sources to proceed.

Requests on interrupt pins INTO-4 are not latched. If a normally LOW INT input is pulsed HIGH
briefly while that interrupt is disabled or another interrupt is in service, that request will not be saved,
even if the corresponding bit gets temporarily set in the interrupt request register. It is necessary to
hold the INT input active until the processor starts the vectoring sequence, either by running interrupt
acknowledge cycles or reading the new CS and IP values from the interrupt vector table. The
80C186EB processor family does not employ a default vector as does the 8259A or 82C59A.

All interrupt requests from the integrated peripherals are latched in the integrated Interrupt Con­
troller for presentation to the CPU.

9.3 OTHER INTERRUPT CHARACTERISTICS

To understand how interrupts participate in the overall microprocessor system, it is necessary to
understand latency, masking and priority.

9-6

INTERRUPTS

9.3.1 INTERRUPT LATENCY

Interrupt latency is the time it takes the 80C186EB family processor to begin to respond to an
interrupt. This is different from interrupt response time, the time from reception of the interrupt until
it actually executes the first instruction of the interrupt service routine.

Two factors affecting interrupt latency are the instruction being executed and the state of the interrupt­
enable flip-flop. The interrupt-enable flip-flop must be explicitly set by issuing the STI instruction.
Since interrupt vectoring automatically clears the flip-flop, it is necessary to set the flip-flop within
the interrupt service routine if nested interrupts are desired.

In general, an interrupt can be acknowledged only when the CPU finishes executing an instruction,
i.e., interrupts are acknowledged at the first available instruction boundary. For the purpose of
determining instruction boundaries, prefixes (LOCK, REP, and segment ovemde) are considered to
be part of the following instruction. Thus, interrupt latency time can be as long as 69 CPU clocks, the
amount of time it takes the processor to execute an integer divide instruction with a segment override
prefix. There are a number of exceptions to these rules.

MOVs and POPs to a segment register cause interrupt processing to be delayed until after the next
instruction. This delay allows a 32-bit pointer to be loaded to the SS and SP stack registers without the
danger of an interrupt occurring between the two loads.

The WAIT instruction causes the CPU to suspend processing while checking the TEST pin for a logic
LOW condition. If an interrupt is detected, the processor will vector to the interrupt service routine
with the return pointer aimed back to the WAIT instruction. The 80C186EB does not check the
ERROR pin for 80C187 exceptions during the WAIT instruction.

When the repeat prefix (REP) is used in front of a string operation, the processor does allow interrupt
vectoring between repetitions, including those which are LOCKed. If multiple prefixes precede a
repeated string operation and the instruction is interrupted, only the prefix immediately preceding the
string primitive is restored.

With the 80C 186EB/80C 187 processor combination, interrupts on the external interrupt pins INTO-
4 can be serviced after the 80C186 starts a numerics instruction. However, once communication is
completely established with the 80C 187 (i.e., the 80C 187 is not busy), interrupts are blocked until the
end of the instruction.

Interrupt latency is also affected by activity of the integrated peripheral set. Interrupt latency is
increased if the processor does not have control of the bus due to the HOLD/HLDA protocol.

Finally, the 8OC186EB/8OC188EB will not accept interrupts during DRAM refresh bus cycles.

9-7

inter INTERRUPTS

9.3.2 INTERRUPT MASKS AND NESTING

To provide a high degree of flexibility in designing complex interrupt structures, the 80C186EB
family has an elaborate mechanism to control the enabling and disenabling of individual interrupts.
The programmer must understand this structure to utilize the processor most efficiently in a heavily
interrupt-driven system. The rules of masking are as follows:

The non-maskable interrupt (NMI), cannotbe prevented by programming, asits name implies.

Software interrupts, both user-defined and execution exception, cannot be masked.

• All other hardware interrupts aresubject to the condition of the interrupt-enable flag which is set
by the STI instruction and cleared by the CLI instruction. Since every interrupt vectoring se­
quence clears the flag, programmer intervention is required to enable interrupt nesting. The flag
is automatically restored upon execution of the IRET instruction.

• The integrated Interrupt Controller has a priority mask register which disables interrupts bel()w
a programmable priority limit.

The integrated Interrupt Controller has a mask register with programmable bits for each possible
interrupt source, including the Serial Communications Unit, timers, and the external interrupt
pins. (Timers share a mask bit. The receive and transmit interrupt requests share a bit.)

• The integrated Interrupt Controller has a control register for each interrupt source. (Timers share
a control register.) Each control register addresses the same mask bit as does the mask register.

Interrupts under control of the integrated Interrupt Controller are nestable subject to the states of their
in-service bits. Additionally, INTO and INTI have a provision called Special Fully Nested Mode
(SFNM),which allows successive interrupts on those pins to ignore the state of their in-service bits.

9.3.3 INTERRUPT PRIORITY

When considering the precedence of interrupts for multiple simultaneous interrupts, apply the foiM
lowing guidelines:

1. Of the non-maskable interrupts (NMI, instruction trap, and user-defined software), single step
has the highest priority (will be serviced first), followed by NMI, followed by all other software
interrupts.

2. The interrupts controlled by the 80C 186EB family integrated Interrupt Controller are all mask­
able hardware interrupts. Their priorities levels are lower than the non-maskable interrupts.

A simultaneous NMI and single step trap will cause the NMI service routine to follow single step. A
simultaneous software trap and single step trap will cause the software interrupt service routine to
f61l0w single step. Finally, and simultaneous NMI and software trap will cause the NMI service
routine to be executed followed by the software interrupt service routine. An exceptiori to this priority
structure occurs if all three interrupts are pending. For this case, transfer of control to the software

9-8

INTERRUPTS

interrupt service routine followed by the NMI trap will cause both the NMI and software interrupt
service routines to be executed without single stepping. Single stepping resumes upon execution of
the instruction following the instruction causing the software interrupt (the next instruction in the
routine being single stepped).

If the user does not wish to single step before hardware interrupt service routines, the single step
routine need only disable interrupts during execution of the program being single stepped and re­
enable interrupts on entry to the single step routine. Disabling the interrupts within the program under
test prevents entry into the interrupt service routine while single step (TF = 1) is active. To prevent
single stepping before NMI service routines, the single step routine must check the return address and
return control to that routine without single step enabled. As examples, consider Figures 9.3 and 9.4.
In Figure 9.3 single step and NMI occur simultaneously. In Figure 9.4, NMI, a timer interrupt and a
divide error all occur while single stepping a divide instruction.

TF, IF = 1

NMI

NORMAL SINGLE STEP
OPERATION

270288·001·81

Figure 9.3. NMI During Single Stepping and Normal Single Step Operation

9-9

TIMER

INTERRUPTS

TF= 1
IF = 1

CONTINUE TO SINGLE STEP
THE PROGRAM

TIMER INTERRUPT
STILL ACTIVE

270288-001-82

Figure 9.4. NMI, Timer, Single Step and Divide Error Simultaneous Interrupts

9-10

INTERRUPTS

9.4 INTERRUPT CONTROL UNIT OPERATION

The Interrupt Control Unit acts as the master interrupt controller for the system, receiving and
arbitrating hardware interrupts generated both internally and externally. The Interrupt Controller
presents interrupts directly to the CPU of the 80C 186EB family processor. As many as two 8259 A (or
82C59 A) Interrupt Controllers may act as slaves to the master processor.

User's familiar with the 80186 and 80C186 may remember that the interrupt controller on those
products has two modes: Master and Slave. The 80C 186EB has only one mode which is functionally
equivalent to master mode. Slave mode was rarely used on the 80186 and 80C186 and was deleted
from the 80C186EB.

9.4.1 EXTERNAL CONNECTIONS

The INTO through INT3 external interrupt pins are configurable according to two options, direct and
cascade. INT4 can only be configured as a direct input. With the pins configured in Direct Input Mode
the integrated Interrupt Controller provides interrupt vectors. With the pins configured in Cascade
Mode, interrupt types are furnished by an external Interrupt Controller. Mixed mode operation (two
pins as direct inputs and two pins as an INT lINT A pair) is also possible.

9.4.1.1 DIRECT INPUT MODE

When the Cascade Mode bits are cleared, the interrupt input pins are configured as direct interrupt
pins (see Figure 9.5). Whenever an interrupt is received on the input line, the integrated controller will
do nothing unless the interrupt is enabled, and it is the highest priority pending interrupt. At this time,
the Interrupt Controller will present the interrupt to the CPU and wait for an interrupt acknowledge.
When the acknowledge occurs, it will present the interrupt vector address to the CPU. In Direct Input
Mode, the CPU will not run any external interrupt acknowledge (INT A) cycles.

INTO

INT1

INT2 80C186EB FAMILY
MEMBER

INT3

INT4

270288-001-83

Figure 9.5. Direct Input Mode Interrupt Connections

9-11

INTERRUPTS

9.4.1.2 CASCADE MODE

The INT2/1NT AO and INT3/1NT A 1 lines are dual purpose; they can function as direct input lines, or
they can function as interrupt acknowledge outputs. When the Cascade Mode bit is set, the interrupt
input lines are configured in Cascade Mode. In this mode, the interrupt input line is paired with an
interrupt acknowledge line. INT AO provides the interrupt acknowledge for an INTO input, and
INTAI provides the interrupt acknowledge for an INTI input. Figure 9.6 shows this connection.

The INT AO and INTAI are configured as inputs until cascade mode is selected. The pullup resisters
in Figure 9.6 insure that the INT A lines never float (and thus issue a spurious interrupt acknowledge
to the 8259). The value of the resisters is not critical. The value must be high enough to prevent
excessive loading on the INT AO and INTAI pins.

INT INTO

Vcc
8259A

OR
82C59A

INTA INTAO

80C186EB FAMILY
MEMBER

INT INT1

Vcc
8259A

OR
82C59A

INTA INTA1

270288-001-84

Figure 9.6. 80C186EB Family Cascade Mode Interface

The 8259A or 82C59A Interrupt Controllers may each be further cascaded to eight more Interrupt
Controllers. Cascading Interrupt Controllers in this way allows up to 64 interrupt levels.

INTO with INT2/1NTAO and INTI with INT3/1NTAl may be individually programmed into inter­
rupt request/acknowledge pairs, or programmed as direct inputs. For example, INTO and INT2/
INT AO may be programmed as an interrupt and interrupt acknowledge pair, while INTI and INT3/
INTAI each provide separate internally vectored interrupt inputs.

9-12

INTERRUPTS

9.4.2 INTERRUPT UNIT PROGRAMMING

The Interrupt Controller registers are defined according to Figure 9.7.

REGISTER NAME

EOI

POLL

POLLSTS

IMASK

PRIMSK

INSERV

INTSTS

TCUCON

SCUCON

IOCON

12CON

13CON

Figure 9.7. Peripheral Control Block Map

9.4.2.1 THE CONTROL REGISTERS

Each interrupt source to an 80C186EB family processor has a control register in the internal control­
ler. These registers contain three bits which select one of eight interrupt priority levels for the device
(0 is highest priority ,7 is lowest priority), and a mask bitto enable the interrupt (see Figure 9.8). When
the mask bit is zero, the interrupt is enabled; when it is one, the interrupt is masked. All interrupt
sources have default priority levels.

9-13

INTERRUPTS

INTERRUPT CONTROL REGISTER (Internal Sources):
(SCUCON, TCUCON)

INTERRUPT MASK:------------,
o = ENABLE INTERRUPTS FROM

THIS SOURCE
1 = MASK INTERRUPTS

M P P P
S M M M
K 2 1 0

PRIORITY LEVEL:L,--J
0= HIGHEST ~
7=LOWEST

I = UNDEFINED WHEN READ.
MUST WRITE "0".

Figure 9.8(a).

INTERRUPT CONTROL REGISTER (Cascadable Pins):
(IOCON, 11 CON)

LEVEL TRIGGER PIN: ---------.
O=EDGEMODE
1 = LEVEL MODE

CASCADE MODE:---------.
o = NO CASCADE
1 = CASCADE TO

EXTERNAL CONTROLLER

SPECIAL FULLY NESTED MODE: ----.
o = NO NESTING
1 = ENABLE NESTING

M P P P
S M M M
K 2 1 0

INTERRUPT MASK: ______ ~t
o = ENABLE INTERRUPTS FROM

THIS SOURCE
1 = MASK THIS INTERRUPT

PRIORITY LEVEL: 0= HIGHEST _________ .J

7=LOWEST

I·' = UNDEFINED WHEN READ.
. MUST WRITE "0".

Figure 9.8(b).

9-14

270830·001·78

270830·001·79

INTERRUPTS

INTERRUPT CONTROL REGISTER (External Pins):
(12CON, 13CON, 14CON)

INTERRUPT MASK: -----------,
0= ENABLE INTERRUPTS FROM

THIS SOURCE
1 = MASK INTERRUPTS

LEVEL TRIGGER PIN: ----------,
0= EDGE MODE
1 = LEVEL MODE

M P P P
S M M M
K 2 1 0

PRIORITY LEVEL:~
O=HIGHEST ~
7= LOWEST

1< = UNDEFINED WHEN READ.
,.. MUST WRITE '0' .
.":Ii.'

Figure 9.8(c).

270830-001-80

There are seven control registers in the integrated Interrupt Controller: five of these serve the external
interrupt inputs, one for serial channel zero, and one for the collective timer interrupts.

The control registers for the external interrupt pins contain special bits not present for other interrupt
sources. Setting the L TM bit in these registers selects level-triggered operation as opposed to edge­
triggered operation. The INTO and INTI control registers contain C and SFNM bits to select Cascade
and Special Fully Nested Modes, respectively.

Setting the LTM bit in these registers selects level-triggered operation over edge-triggered operation.
With edge-triggered operation, a LOW -to-HIGH transition must occur before the interrupt will be
recognized. The interrupt input must also be LOW for one clock before the active-going edge. With
level-triggered operation, only a HIGH level is required to generate an interrupt. In both types of
operation, the interrupt input must remain active until acknowledged.

With level-triggered operation only, an interrupt request input left active until after the end-of­
interrupt causes another interrupt request.

Level triggering must be used when an 8259 (or 82C59) is cascaded to the Interrupt Control
Unit.

9-15

INTERRUPTS

9.4.2.2 CASCADE MODE

When programmed in cascade mode, the 80C186EB family processor will provide two interrupt
acknowledge pulses in response to external interrupts. These pulses will be provided on the INT2/
INTAO line, and will also be reflected by interrupt acknowledge status being generated on the SO-S2
status lines. The interrupt type will be read on the second pulse. Similarly, the processor will provide
two interrupt acknowledge pulses on INT3/1NTAl in response to an interrupt request on the INTI
line.

When an interrupt is received on a cascaded interrupt pin, the priority mask bits and the in-service bits
in the particular interrupt control register will be set. This prevents the controller from generating a
CPU interrupt request from a lower priority interrupt. Also, any subsequent interrupt requests on the
same interrupt input line will not cause the integrated Interrupt Controller to generate an interrupt
request to the 80C 186EB family CPU. This means that if the external Interrupt Controller receives a
higher priority interrupt request on one of its interrupt request lines and presents it to the CPU, the
Interrupt Controller will not present it to the CPU until the in-service bit for the interrupt line has been
cleared.

9.4.2.3 SPECIAL FULLY NESTED MODE

When both the Cascade Mode bit and the SFNM bit are set, the interrupt input lines are configured
in Special Fully Nested Mode. The external interface in this mode is exactly as in Cascade Mode. The
only difference is in the conditions which allow an external interrupt to interrupt the CPU.

When an interrupt is received from a Special Fully Nested Mode interrupt line, it will interrupt the
CPU if it is the highest priority pending interrupt regardless of the state of the in-service bit for the
source in the Interrupt Controller. Whenthe processor acknowledges an interrupt from a Special Fully
Nested Mode interrupt line, it sets corresponding bits in the priority mask and in-service registers.
This prevents the Interrupt Controller from accepting a lower priority interrupt. However, the Interrupt
Controller will allow additional requests generated by the same external source to interrupt the CPU.
This means that if the external (cascaded) Interrupt Controller receives higher priority interrupts on
its interrupt request lines and presents them to the integrated controller's request line, these interrupts
will be nested.

If the SFNM bit is set and the Cascade Mode bit is not set, the controller will provide internal interrupt
vectoring. It will also ignore the state of the in-service bit in determining whether to present an
interrupt request to the CPU. In other words, it will use the SFNM conditions of interrupt generation
with an internally vectored interrupt response, i.e., if the interrupt pending is the highest priority type
pending, it will cause a CPU interrupt regardless of the state of the in-service bit for the interrupt. This
operation is only applicable to INTO and INTI, which have SFNM bits in their control registers.

9-16

INTERRUPTS

9.4.2.4 THE REQUEST REGISTER

The Interrupt Controller includes an interrupt request register (see Figure 9.9). This register contains
seven active bits, one for every interrupt source with an interrupt control register. Whenever an
interrupt request is made, the bit in the interrupt request register is set regardless of whether the
interrupt is enabled. Interrupt request bits are automatically cleared when the interrupt is acknowl­
edged by starting the interrupt vectoring sequence.

INTERRUPT REQUEST REGISTER:
(REQST)

EXTERNAL PIN HAS
REQUESTED AN INTERRUPT: ------,
o = NO REQUEST
1 = REQUEST PENDING

SERIAL PORT 0
INTERRUPT REQUEST: ------'
o • NO R.EQUEST
1 • REQUEST PENDING

TIMER/COUNTER UNIT
o = NO REQUEST
1 = REQUEST PENDING

Figure 9.9.

9-17

I = UNDEFINED WHEN.READ.
MUST WRITE "0".

270830·001·81

INTERRUPTS

9.4.2.5 THE MASK REGISTER

The InterruptController mask register (see Figure 9.10) contains a mask bit for each interrupt source
associated with an interrupt control register. The bit for an interrupt source in the mask register is the
same bit as provided in the interrupt control register; modifying a mask bit in the control register will
also modify it in the mask register, and vice versa.

INTERRUPT MASK REGISTER:
(IMASK)

EXTERNAL PINS: ----,

SERIAL CHANNEL 0 -------'

TIMER/COUNTER UNIT '------..1
ALL SOURCES:

o = ENABLE INTERRUPTS
1 = MASK INTERRUPTS

Figure 9.10.

9-18

I = UNDEFINED WHEN READ,
MUST WRITE "0",

270830-001-82

inter INTERRUPTS

9.4.2.6 THE PRIORITY MASK REGISTER

The interrupt priority mask register (see Figure 9.11) contains three bits which indicate the lowest
priority an interrupt must have to cause an interrupt request to be serviced. Interrupts which have a
lower priority will be masked. Upon RESET, the register is set to the lowest priority of 7 to enable
interrupts of any priority. This register may be read or written.

INTERRUPT PRIORITY MASK REGISTER:
(PRIMASK)

9.4.2.7 THE IN-SERVICE REGISTER

PRIORITY MASK: --_
INTERRUPTS WITH
A PRIORTY LOWER
THAN THIS VALUE WILL
NOT BE SERVICED.

0= HIGHEST
7= LOWEST

1-UNDEFINED WHEN READ.
MUST WRITE '0".

Figure 9.11.

270830-001-83

The Interrupt Controller contains an in-service register (see Figure 9.12). A bit in the in-service
register is associated with each interrupt control register so that when an interrupt request by the
device associated with the control register is acknowledged by the processor (either by interrupt
acknowledge cycles or by reading the poll register) the bit is set. The bit is reset when the CPU issues
an End Of Interrupt to the Interrupt Controller. This register may be both read and written, i.e., the
CPU may set in-service bits without an interrupt ever occurring, or may reset them without using the
EO! function of the Interrupt Controller.

9-19

inter INTERRUPTS

INTERRUPT IN-SERVICE REGISTER:
(INSERV)

SERIAL PORT 0 INTERRUPT
REQUEST IN SERVICE: ___,.-__ --.1

o = NOT IN SERVICE
1 = IN SERVICE

TIMER INTERRUPT IN SERVICE:-------.I
o = NOT IN SERVICE
1 = IN SERVICE

Figure 9.12.

ALL SOURCES:
o = ENABLE INTERRUPTS
1 = MASK INTERRUPTS

I = UNDEFINED WHEN READ.
MUST WRITE "0".

9.4.2.8 THE POLL AND POLL STATUS REGISTERS

270830-001-84

The Interrupt Controller contains both a poll register and a poll status register (see Figure 9.13). These
registers contain the same information. They have a single bit to indicate an interrupt is pending and
five bits to indicate the type of the pending interrupt. The request bit is set if ail interrupt of sufficient
priority has been received. It is automatically cleared when the interrupt is acknowledged. If an
interrupt is pending, the remaining bits contain information about the highest priority pending inter­
rupt. These registers are read-only.

Reading the poll register will acknowledge the pending interrupt to the Interrupt Controller just as if
the prO'cessor had started the interrupt vectoring sequence. The processor will not actually run any
interrupt acknowledge cycles, and will not vector through a location in the interrupt vector table. The
contents of the interrupt request, in-service, poll, and poll statUs registers will change appropriately.

Reading the poll status register will merely transmit the status of the polling bits without modifying
any of the other Interrupt Controller registers.

9-20

POLL AND POLL STATUS REGISTERS:
(POLL, POLLSTS) READ ONLY

INTERRUPTS

r---- INTERRUPT REQUEST PENDING:
o = NO INTERRUPT PENDING
1 = INTERRUPT PENDING

v V V V
T T T T
3 2 1 0

HIGHEST PRIORITY __ ----It
PENDING INTERRUPT
(BY VECTOR TYPE)

WCD READING THE POLL REGISTER
WILL ACKNOWLEDGE A
PENDING INTERRUPT (SEE TEXT).

I = UNDEFINED WHEN READ.
MUST WRITE "0'.

Figure 9.13.

9.4.2.9 THE END OF INTERRUPT REGISTER

270830-001-85

The Interrupt Controller contains an End Of Interrupt register (see Figure 9.14). The programmer
issues an End OfInterrupt (EOI) to the controller by writing to this register. After receiving the EOI,
the Interrupt Controller automatically resets the in-service bit for the interrupt. The value of the word
written to this register determines whether the EOI is specific or non-specific. A non~specific EOI is
requested by setting the non-specific bit in the word written to the EOI register. In a non-specific EOI,
the in-service bit of the highest priority interrupt set is automatically cleared, while a specific EOI
allows the in-service bit cleared to be explicitly specified. If the highest priority interrupt is reset, the
poll and poll status registers change to reflect the next lowest priority interrupt to be serviced. If a less
than highest priority interrupt in-service bit is reset, the poll and poll status registers will not be
modified (because the highest priority interrupt to be serviced has not changed). This register is write­
only.

To issue a specific EOI for any timer interrupt the value 8 must be written to the EOI register.
Similarly, for both receive and transmit SCU interrupts the EOI register must be written with a 20
(decimal) for a specific EO!.

To issue a non-specific end-of-interrupt a value of 8000H is written to the EOI register. To issue a
specific end-of-interrupt the interrupt vector type of the interrupt to clear is written to the EOI register.

9-21

inter

END OF INTERRUPT REGISTER:
(EOI) WRITE ONLY

INTERRUPTS

r---- NON-SPECIFIC EOI:
0= NO OPERATION
1 = CLEAR HIGHEST PRIORITY REQUEST

v
T
3

V
T
2

INTERRUPT REQUEST----.... t
(BY VECTOR TYPE)
TO CLEAR

V V
T T
1 0

I = UNDEFINED WHEN READ.
MUST WRITE "0".

Figure 9.14.

9.4.2.10 INTERRUPT STATUS REGISTER IN MASTER MODE

270830-001-86

The Interrupt Controller also contains an interrupt status register (see Figure 9.15). This register
contains five bits. Three bits show which timer is causing an interrupt. This is required because the
timers share a single interrupt control register. A bit 'in this register is set to indicate which timer
generated an interrupt. The bit associated with a timer is automatically cleared after the interrupt
request for the timer is acknowledged. More than one of these bits may be set at a time.

The transmit and receive interrupt requests from serial channel 0 also share on interrupt request. The
SRX and STX bits are provided to distinguish between these interrupts.

INTERRUPT STATUS REGISTER:
(INTSTS)

INTERRUPTS

r--- D = NO NMI REQUEST
I = NMI REQUEST

SERIAL TRANSMIT: _____ -'
o = NO TX INTERRUPT
1 = TX INTERRUPT

S T T T
R M M M
X R R R

2 1 0

SERIAL RECIEVE: --------'
0= NO RX INTERRUPT
1 = RX INTERRUPT

TIMER/COUNTER INTERRUPT: ------....
o = NO INTERRUPT REQUEST
1 = CORRESPONDING TIMER

REQUESTED INTERRUPT.

I = UNDEFINED WHEN READ.
MUST WRITE ·0".

Figure 9.15.

9.4.3 INTERRUPT SOURCES

270830-001 -87

The 80C186EB family Interrupt Controller receives requests and arbitrates among many different
interrupt sources, both internal and external. Each interrupt source may be programmed to be a
different priority level.

9.4.3.1 INTERNAL SOURCES

The internal interrupt sources are the three timers and serial channel O. An interrupt from any of these
interrupt sources is latched in the Interrupt Controller. The state of the pending interrupt can be
obtained by reading the interrupt request register. Note that all timers share a common bit in the
interrupt request register. The Interrupt Controller status register may be read to detennine which
timer is actually causing the interrupt request. Each timer has a unique interrupt vector (see Section
9.0). Thus, polling is not required to determine which timer has caused the interrupt in the interrupt
service routine. Also, because the timers share a common interrupt control register, they are placed
at a common priority level relative to other interrupt sources. Among themselves they have a fixed
priority, with Timer 0 as the highest priority timer and Timer 2 as the lowest priority timer.

9-23

INTERRUPTS

Serial chanriel 0 generates an interrupt request whenever a reception or transmission is completed.
Like the timers, there is only one bit in the request register for the two serial interrupts. The interrupt
status register contains two bits, SRX and STX, which differentiate the. source of the interrupt.
Receive and transmit interrupts have seperate vectors; polling is not necessary to determine the source
of the interrupt. The serial communications unit interrupts have a single priority with respect to other
internal and external sources (because they are one request). Receive has a higher priority than
transmit when both occur at the same time.

9.4.3.2 EXTERNAL SOURCES

The external pins associated with the In.terrupt Controller may serve either as direct interrupt inputs,
or as cascaded interrupt inputs from other Interrupt Controllers. These options are selected by pro­
gramming the C and SFNM bits in the INTO and INTI control registers (see Figure 9.8(b».

When programmed as direct interrupt inputs, the five interrupt inputs are each controlled by an
individual interrupt control register. As stated earlier, each of these registers contain bits which select
the priority level for the interrupt and a mask bit. In. addition, each of these control registers contains
a bit which selects edge- or level-triggered mode for the interrupt input. When edge-triggered opera­
tion is selected, a LOW -to-mGH transition must occur on the interrupt input before an interrupt is
generated, while in level-triggered mode, only a HIGH level needs to be maintained to generate an
interrupt. In edge-triggered mode, the input must remain LOW at least one clock cycle before the
input is rearmed. In both modes, the interrupt level must remain HIGH until the interrupt is acknowl­
edged, i.e., the interrupt request is not latched in the Interrupt Controller. The status of the interrupt
input can be shown by reading the interrupt request register. Since interrupt requests on these inputs
are not latched by the Interrupt Controller, if an input goes inactive, the interrupt request (and its
request bit) will also go inactive.

If the C (Cascade) bit of either $e INTO orINT 1 control registeris set, the interrupt input is cascaded
to an external In.terrupt Controller. In. this mode, whenever the interrupt presented on the INTO or
INT 1 line is acknowledged, the integrated In.terrupt Controller will not provide the interrupt type for
the interrupt. Instead, two INT A bus cycles will be run, with !NT AO or !NT A 1 lines providing the
interrupt acknowledge pulses for the INTO and INTI interrupt requests, respectively. This allows up
to 128 (Plus INT4) individually vectored interrupt sources if two banks of 8 external Interrupt
Controllers each are used.

9.4.4 INTERRUPT RESPONSE

The 80(:,:186EB family processor can respond to an interrupt in two different ways. The first response
will occur if the internal controller is providing the interrupt vector information with the controller.
The second response will occur if the CPU reads interrupt type information from an.externalIn.terrupt
Controller. In. both instances the interrupt vector information driven by the integrated Interrupt
Controller is not available outside the microprocessor.

9-24

INTERRUPTS

When the integrated Interrupt Controller receives an interrupt, it will automatically set the in-service
bit and reset the interrupt request bit. In addition, unless the interrupt control register for the interrupt
is set in Special Fully Nested Mode, the Interrupt Controller will prevent any interrupts from occur­
ring from the same interrupt line until the in-service bit for that line has been cleared.

9.4.4.1 INTERNAL VECTORING

The interrupt types associated with all the interrupt sources are fixed and unalterable. These types are
given in Table 9.1. In response to an internal CPU interrupt acknowledge the Interrupt Controller will
generate the vector address rather than the interrupt type. On 80C 186EB family microprocessors the
interrupt vector address is the interrupt type multiplied by four.

Table 9.1. aoC186EB Internal Vectoring Default Priority

Interrupt Name Vector Type Relative Priority

Timer 0 8 o (a)

Timer 1 18 o (b)

Timer 2 19 o (c)

Serial Channel 0: Receive 20 1 (a)

Serial Channel 0: Transmit 21 1 (b)

INT4 17 2

INTO 12 3

INT1 13 4

INT2 14 5

INT3 15 6

No external Interrupt Controller need know when the integrated controller is providing an interrupt
vector, nor when the interrupt acknowledge is taking place. As a result, no interrupt acknowledge bus
cycles will be generated. The first external indication that an interrupt has been acknowledged will be
the processor reading the interrupt vector from the interrupt vector table in memory.

Interrupt response to an internally vectored interrupt is 42 clock cycles because the processor does not
run interrupt acknowledge cycles. This is faster than the interrupt response when external vectoring
is required.

If two interrupts of the same programmed priority occur, the default priority scheme (shown in Table
9.1) is used.

9-25

inter INTERRUPTS

9.4.4.2 EXTERNAL VECTORING

External interrupt vectoring occurs whenever the Interrupt Controller is placed in Cascade Mode.
With external vectoring, the 80C186EBfamily processor generates two interrupt acknowledge
cycles, reading the interrupt type off the lower 8 bits of the address/data bus on the second interrupt
acknowledge cycle (see Figure 9.16). In the 8259A or 82C59A" the upper five bits are user-pro­
grammable and the lower three bits are detennined by a defined interrupt request level. Intemipt
acknowledge bus cycles have the following characteristics:

The two interrupt acknowledge cycles are LOCKed.

Two idle T-states are always inserted between the two interrupt acknowledge cycles.

• Wait states will be inserted in an interrupt acknowledge cycle if READY is not returned to the
processor.

Also notice that the processor provides two interrupt acknowledge signals, one forinterrupts signaled
by the INTO line, and one for interrupts signaled by the INTI line (on the INT2/INT AO and INT3/
INT Al lines, respectively). These two interrupt acknowledge signals are mutually exclusive. Inter­
rupt acknowledge status will be driven on the status lines{SO-S2) when either INT2/1NT AO or INT3/
INT Al signal an interrupt acknowledge. The interrupt type generated on the second INT A cycle is
read by the CPU and then multiplied by four. The resultant value is used as a pointer into the interrupt
vector table.

ADO·AD7

NOTES: 1. ALE is generated for each INTA cycle.
2. RD is inactive.

INTERRUPT TYPE
(FROM EXTERNAL

CONTROLLER)

Figure 9.16. cascaded Interrupt Acknowledge Timing

270288-001-94

INTERRUPTS

9.4.4.3 INTERRUPT RESPONSE TIME

The interrupt response time for the 80C186EB family is 42-55 CPU clocks. Figure 9.17 shows how
the total is obtained. The clock count changes when the processor replaces the indicated idle states
with bus cycles for other tasks such as refresh cycles. The processor does not necessarily flush the
queue until the very last moment, so prefetching may continue for a while during the vectoring
sequence. Also, the clock count must be adjusted for wait states or for the 80C188EB. For the
80C188EB, double the number of clocks given for each bus cycle accessing the stack or memory.

CLOCKS

Interrupt presented to the interrupt controller ... >
5

Interrupt presented to CPU ... >
INTA 4
IDLE 2
INTA 4
IDLE 5
READ IP 4
IDLE 3
READCS 4
IDLE 4
PUSH FLAGS 4

IF O,TF O IDLE 3
PUSHCS 4
PUSHIP 4

First instruction fetch IDLE 5
from interrupt routine ... >

Total 42-55

}
CASCADE
MODE
ONLY

(5 IF NOT CASCADE MODE)

270288-001-66

Figure 9.17. 80C186EB Family Master Mode Interrupt Response Time

These clock counts are also applicable to software interrupts and NMI (notice there are no INT A
cycles).

9.4.5 INITIALIZATION EXAMPLE

The code to initialize the Interrupt Control Unit for a combination of direct inputs and Cascade Mode
inputs is given in Figure 9.18. Refer to Figures 9.5 and 9.6 for the corresponding hardware configu­
rations. Notice that a READY signal must be returned to the processor to prevent the generation of
wait states in response to the interrupt acknowledge cycles. This configuration provides 10 external
input lines: two provided by the Interrupt Controller itself (pins INTI and INT3), and eight from the
external 8259A (cascaded at pins INTO and INTAO). The 80C186EB integrated Interrupt Control
Unit is the master system Interrupt Controller. The 8259A will only receive interrupt acknowledge
pulses in response to interrupts it has generated. The 8259 A may be cascaded again as a master to as
many as eight additional 8259A Interrupt Controllers (configured as slaves).

9-27

$mod1llb
name

INTERRUPTS

This routine configures the interrupt controller to provide two cascaded
interrupt inputs (through an external 1l259A internal controller on
pins INTO and INT2/INTAO) and two direct interrupt inputs (on pins INT1

and

,
IOCON
IMASK

code

set int
code

INT3). The default priority levels are used. Because of this, the
priority level programmed into the control register is set to 111, the
level all interrupts assu,me at reset.

equ OFF11lH
equ OFFOIlH

segment
assume CS: code
proc near
push DX
push AX

mov AX,010D111B

mov DX,IOCON
out DX,AX

mov

mov
out
pop
pop
ret
endp
ends
end

AX,D10D1101B

DX,IMASK
DX,AX
AX
DX

; public 'code'

; Cascade Mode
; interrupt unmasked

; now unmask the other external
; interrupts

Figure 9.18. Example 80C186EB Family Interrupt Initialization for Master Mode

9.5 INTERRUPT CONTROLLER FLOW CHARTS

Figure 9.19 shows an interrupt request generation flow chart and Figure 9.20 shows an interrupt
acknowledge sequence flow chart. Each interrupt source processed by an 80C186EB family inte­
grated Interrupt Controller follows each flow chart independently.

9-28

INTERRUPTS

PRESENT INTERRUPT
REQUEST TO

EXTERNAL CONTROLLER

Figure 9.19. Interrupt Request Sequencing

9-29

YES

270288-001-111

INTERRUPTS

SET IN-SERVICE

SET IN-SERVICE

NOTES:
1. Before aclual interrupt acknowledge is run by CPU.
2. Two interrupt acknowledge cycles will be run; the interrupt type is read by

the CPU on the second cycle.
3. Interrupt acknowledge cycles will not be run; the interrupt vector address

is placed on an internal bus and is not available outside the processor.

Figure 9.20. Interrupt Acknowledge Sequencing

9-30

CD

270830-001-88

Refresh Control Unit 10

CHAPTER 10
REFRESH CONTROL UNIT

To simplify the design of a dynamic memory controller, the 80C186EB family incorporates inte­
grated address and clock counters into a Refresh Control Unit (RCU). Its relationship to the BIU is
shown in Figure 10.1. To the memory interface a refresh request looks exactly like a memory read bus
cycle. Integration of the RCU into the 80C 186EB family means that chip selects, wait state logic, and
status lines may be used by an external DRAM controller. The external DRAM controller generates
the RAS, CAS, and enable signals actually needed by the DRAMs.

9-BITDOWN
COUNTER

RFCON REGISTER

REFRESH REQUEST BIU
t-...;.;;;;;..;.;;;;.;.;.;.,;.;.;;.;;;.;;;.;;;,;;,;...-.... INTERFACE

REFRESH ACKNOWLEDGE
CLR ~-------4'----­
REQ

12-BIT ADDRESS COUNTER

20-BIT REFRESH ADDRESS 270830-001-50

Figure 10.1 Refresh Control Unit Block Diagram

The 12-bit address counter is used in the formation of refresh addresses. Thus, any dynamic memory
whose refresh address requirements (rows of memory cells) do not exceed twelve bits can be directly
supported by the 80C 186EB. The 12-bit address counter, a 7 -bit base register, and one fixed bit define
a full 20-bit refresh address. The 9-bit refresh clock counter decrements every clock cycle and
generates a refresh request to the BIU whenever it reaches 1. When the bus is free, the BIU will run
the refresh (dummy read) bus cycle. Refresh requests have a higher priority than any other bus request
(i.e., CPU, HOLD).

10-1

intJ REFRESH CONTROL UNIT

10.1 REFRESH CONTROL UNIT PROGRAMMING

There are three registers in the Peripheral Control Block that control the RCU. The three control
registers are RFBASE, RFfIME, and RFCON (see Figure lO.2). These registers define the operating
characteristics of the ReU. .

REGISTER NAME·

RFBASE

RFTIME

Figure 10.2(a). PCB Map of Refresh Control Unit

REFRESH BASE ADDRESS REGISTER: (RFBASE)

15

A19 THROUGHA13 OF ~
THE REFRESH ADDRESS

o

I = UNDEFINED WHEN READ.
MUST WRITE "0".

Figure 10.2(b).

270830-001-51

The RFBASE register programs the base address (upper 7 bits) of the refresh address.1bis allows the
refresh addreSS to be mapped to any 4 kilobyte boundary within the one megabyte address space. The
RFBASEregisteris not altered whenever the refresh address bits (RAl throughRAl2 in Figure 10.3)
roll over. In other words, the refresh address does not act like a linear counter found in a typical DMA
controller.

10-2

REFRESH CONTROL UNIT

REFRESH CLOCK RELOAD VALUE: (RFTIME)

15

R R R R
C C C C
7 6 5 4

VALUE TO RELOAD REFRESH ___ t
DOWN COUNTER CLOCK WITH
AFTER EVERY REFRESH CLOCK
CYCLE.

o

R R R R
C C C C
3 2 1 0

1 = UNDEFINED WHEN READ.
MUST WRITE "0".

270830-001-52

Figure 10.2(c).

REFRESH CONTROL REGISTER: (RFCON)

f REFRESH C.ONTROLLER ENABLE:
WHEN WRITTEN:
o = DISABLE RCU
1 = ENABLE RCU

WHEN READ: .
o = RCU STOPPED
1 = RCU RUNNING

R R R R
C C C C
7 6 5 4

CURRENT VALUE IN RCU ___ t
CLOCK DOWN COUNTER.
(READ ONLy)

R R R R
C C C C
3 2 1 0

I · = UND~FINED WHEN READ.
MUST WRITE ~O".

Figure 10.2(d).

10-3

270830-001-53

inter REF.RESH CONTROL UNIT

REFRESH ADDRESS REGISTER: (RFADDR)

R R R R
A A A A

1 ~ 9 8

R R R R
A A A A
765 4

t
A12THROUGHA1 OF -----...... -
REFRESH ADDRESS (AO=l).
GENERATED BY REFRESH
ADDRESS COUNTER.

R R R
A A A 1
3 2 1

I = UNDEFINED WHEN READ.
MUST WRITE "0'.

FROM RfBASE REGISTER

Figure 10,2(e).

FROM RFADDR REGISTER
I

R R
A A
9 8

20-BIT REFRESH ADDRESS

R R R R
A A A A
7 6 5 4

Figure 10.3. Refresh Address Generation

270830-001-54

R R R
A A A 1
3 2 1

270830-001-55

The RFTIME register defmes the interval between refresh requests by initializing the value loaded
into the 9-bit down counter. Thus, the higher the value, the longer the amount of time between
requests. The down counter is decremented every falling edge of CLKOUT, regardless of the activity
of the CPU or BIU. When the counter decrements to 1, a request is generated and the counter is again
loaded with the value in the RFTIME register. The amount of time between refresh requests can be
calculated using the equation shown in Figure 10.4.

10c4

REFRESH CONTROL UNIT

RpERIOD (l1s) x f(MHz)
_________________ = RFTIME Register Value

Refresh Rows + # (Refresh Rows x % Overhead)

RpERIOD = Maximum refresh period specified by DRAM manufacturer (microseconds).

f = Operating frequency of 80C186/C188EB in MHz.

Refresh Rows = Total number of rows to be refreshed.

% Overhead = Derating factor to compensate for missed refresh requests (typically 1-5%).

270830-001-56

Flgure10.4. Equation to Calculate Refresh Interval

The minimum value that can be programmed into the RFfIME register is 18 (12H) regardless of
operating frequency. This minimum count ensures that the BIU has enough time to execute the refresh
bus cycle. The BIU cannot queue DRAM refresh requests. If another request is generated before the
current request is executed, the current request is lost. However, the address associated with the
request is not lost; the refresh address changes only after the BIU runs a refresh bus cycle. Thus it is
possible to miss refresh requests, but not refresh addresses.

The RFCON register has two functions, depending on whether it is being written or read. During
writes to the RFCON register, only the Enable bit is active. Setting the Enable bit turns on the RCU
while clearing the Enable bit deactivates the RCU. When the RCU is enabled, the contents of the
RFCON register are loaded into the 9-bit down counter and refresh requests are generated when the
counter reaches 1. Disabling the RCU stops and clears the counter. A read of the RFCON register will
return the current value of the Enable bit as well as the current value of the 9-bit down counter (zero
if the RCU is not enabled). Writing to the RFCON register when the ReU is running does not
modify the count value in the to-bit counter.

10.2 REFRESH CONTROL UNIT OPERATION

Figure 10.5 illustrates the two major functions of the Refresh Control Unit that are responsible for
initiating and controlling the refresh bus cycles.

The RFCON down counter is loaded on the falling edge of CLKOUT, when either the Enable bit is
set or the counter decrements to l. Once loaded, the RFCON down counter will decrement every
falling edge of CLKOUT (as long as the Enable bit remains set).

10-5

inl:el® REFRESH CONTROL UNIT

REFRESH CONTROL UNIT BIU REFRESH BUS
OPERATION OPERATION

SET "E" BIT

LOAD COUNTER
FROM RFTIME

--1
I
I
I
I
I
I
IL EXECUTED

- EVERY
: CLOCK.J,

I
I
I
I
I
I

J

Figure 10.5. Flowchart of RCU Operation

CONTINUE

270830-001-57

When the counter decrements to 1, two things happen. First, a request is generated to the BIV to run
a refresh bus cycle. The request remains active until the bus cycle is run or the ReV is disabled. Second,
the down counter is reloaded with the value contained in the RFfIME register. At this time, the down
counter will again begin counting down every clock cycle. It does not wait until the request has been
serviced. This is done to ensure that each refresh request occurs at the correct interval. Otherwise, the
time between refresh requests would also be a function of varying bus activities. When the BIU
services the refresh request, it will clear the request and increment the refresh address.

10-6

REFRESH CONTROL UNIT

Refresh bus cycles are specially encoded to distinguish them from ordinary read cycles according to
Table 10.1.

Table 10.1. Identification of 80C186EB/80C188EB DRAM Refresh Cycles

80C186EB

80C188EB

NOTE:
BHE applies to be 80C186EB and

RFSH applies to the 80C188EB.

10.3 REFRESH ADDRESSES

BHE/RFSH AO

1 1

0 1

The physical address that is generated during a refresh bus cycle is shown in Figure 10.3, and applies
to both the 80Cl86EB and 80C188EB. The refresh address bits RAI through RA12 are generated
using a linear-feedback shift counter which does not increment the addresses linearly from 0 through
FFFH (although they do follow a predicable algorithm). Further, note that for the 80C 188EB, address
bit AO does not toggle during refresh operation, which means that it cannot be used as part of the
refresh (row) address applied to the dynamic memory device. Typically, AO is used as part of memory
decoding in 80C188EB applications, unlike 80C186EB applications which use AO along with BHE
to select an upper or lower bank.

10.4 REFRESH OPERATION AND BUS HOLD

When another bus master has control of the bus, the HLDA signal is kept active as long as the HOLD
input remains active. If a refresh request is generated while HOLD is active, the 80C186EB/C 188EB
will drive the HLDA signal inactive to indicate to the current bus master that the CPU wishes to regain
control of the bus (see Figure 10.6). Only when the HOLD input is removed will the BIU begin the
refresh bus cycle.

10-7

REFRESH CONTROL UNIT

TI T1 TI T1 T1 T4 TI

CLKOUT

HOLD -----r+----.-T'r.l.-"\

HLDA ----¥-'"'-

ADO-ADI5, -----t----r-r'rI---'1'"""---r-----t-+---t"{
DEN '--__

AI6/S3-A 19/56,
RD, WR, BHE, ---~----!-T',l_--..L...-----J'---~--_<

DTlR, SO-52 ""r----

NOTES:

I. HLDA deasserted, signaling need to run DRAM refresh cycles less than T CLOV
2. External bus master terminaies use of the bus.
3. HOLD deasserted; greater than TCLIS
4. HOLD may be reasserted after one clock.
5. Lines come out of float In order to run DRAM refresh cycle. 270830-001-58

Figure 10.6. Release of 8OC186/SOC188 HOLD to Run Refresh Cycle.

Therefore, it is the responsibility of the system designer to ensure that the 80C186EB/C 188EB Carl

regain the bus if a refresh request is signalled. The sequence of HLDA going inactive while HOLD
is active can be used to signal a pending refresh. If HOLD is again asserted, the CPU core will give
up the bus after the refresh bus cycle has been run (provided another refresh request is not generated
during that time).

10.5 DECODING REFRESH BUS CYCLES

The B1U distinguishes between refresh cycles and other bus cycle types. The 80C186EB and
8OC188EB differ in their methods of signalling a refresh in progress.

On the 8OC186EB, a refresh cycle is indicated when both BHE and AO are high. These two signals
may be ANDed together to signal a refresh in progress.

The 8OC188EB does not use the BHE pin. The BHE signal has been replaced by the RFSH signal
which is LOW whenever a refresh cycle is in progress. The RFSH signal has the same timings as the
BHE signal on the 8OC186EB. .

1.0-8

REFRESH CONTROL UNIT

10.6 EXAMPLE RCU INITIALIZATION CODE

Sample code to initialize the 80C186EB/80C188EB DRAM Refresh Control Unit is included in
Example 1.

Example 1.

$mod186
n a mer c u_i nit i a liz a t i 0 n_e x amp I e
;

This file contains an example of initialization code for the
Refresh Control Unit on the 80C186EB.

For the purposes of our example we will assume the system has
512K of DRAM at 40000H. We choose 256K x 4 DRAMS with 2 chips in
the low byte and 2 chips in the high byte. The data sheet specs
256 refresh cycles are required every 4 milliseconds. This
information also tells us that the array is organized as 256 rows
by 1024 columns. To calculate the maximum number of clocks
between refresh cycles, we multiply the totalrefresh period by
the CLKOUT frequency and divide by the total number of rows· For
an 80C186EB at 16MHz, the refresh rate is:
4E-03 * 16E+06 / 256 = 250 clocks.
We will assume the chip selects have been set up to select the
DRAM array correctly.

RF8ASE
RFTIME
RFCON

code

mov
mov
out

mov
mov
out

mov
mov
out

The RCU

ret

init

code

EQU
EQU
EQU

segment

OFF80H
OFF82H
OFF84H

public
assume cs:code

proc near

dx, RF8ASE
ax, 4000H
dx, ax

dx, RFTIME
ax, 250
dx, ax

dx, RFCON
ax, 8000H
dx, ax

is now initialized

rcu endp

ends
end

and

Set upper 7 address bits for
starting address of 40000H.

Set up down counter start value.
RCU request every 250 clocks.

Set ENable bit to start RCU.

running.

10-9

Input/Output Port Unit 11

CHAPTER 11
INPUT/OUTPUT PORT UNIT

Two general purpose I/O ports are available on the 80C 186EB. Port 1 is an 8 bit output only port. Port
2 is an 8 bit port consisting of 4 pure input, 2 pure output, and 2 open drain bidirectional signals.

Both ports are multiplexed with other integrated peripherals. Port 1 shares its pins with the general
purpose chip select (GCS) lines of the chip select unit. The pure input and output lines of Port 2 ate
multiplexed with some serial communications unit signals. The open drain I/O pins of Port 2 are not
multiplexed. A block diagram of the I/O Port unit is shown in Figure 11.1.

Each I/O port is controlled by 4 Peripheral Control Block registers. The PCB map and a summary of
register operation can be found in Figure 11.2.

REGISTER NAME

P1DIR

P1PIN

P1CON

P2DIR

P2PIN

P2CON

P2LTCH

Figure 11.2(a). PCB Map of 1/0 Port Unit

11.1 FUNCTIONAL OVERVIEW

All three port pin types are derived from a common logic module (Figure 11.3). Every port pin, be it
an input or an output, was derived from the common bi-directional module. This modular design
approach results in some normally unused circuitry. For example, the Port Direction Control register
bit exists for output only ports although it is not used.

These normally unused features are not necessarily useless. In the following discussions the
unimplemented functions are described along with potential secondary uses for them.

11-1

PL7!

GCS7

P1.6!

GCS6

INPUT/OUTPUT PORT UNIT

GCS7·GCSO
FROMCSU

~

PL5!

GCS5

P1.4!

GCS4

F·BUS

PL3!

GCS3

P1.21

GCS2

P1.1!

GCS1

Figure 11.1(a). Port 1 Block Diagram

11-2

PLO!

GCSO

P1 PIN

270830·001·33

P2LTCH.7

::!!
CO
t::
iil
:.. -.
{:!:

.... "U 0

W :l.
N

m
0'
()
~

i!
CO
iiJ
3

P2.7

F-BUS

P2LTCH.6

FROM SERIAL

P2.6

CHANNEL 1

TO SERIAL TO SERIAL
CHANNELO CHANNEL 1

•

P2.5/
BCLKO

•

P2.4/

CTS1

PORT2MUX

P2.3/
SINT

TO SERIAL
CHANNEL 1

•

P2.21
BCLK1

P2.11
TXD1

P2.0/
RXD1

FROMfTO SERIAL
CHANNEL 1

::t
0
!:i
N
a.

I

,J

II

P2 PIN I

270830-001-34

-.
€: ..

I I

Z
"tI
C
~
0
C
-I
"tI
C
-I
"tI
0
:II
-I
C
Z
::::j

INPUT/OUTPUT PORT UNIT

PORT 1 DIRECTION REGISTER: (P1 DIR)

P P P P
D D D D
7 6 5 4

UNUSED REGISTER ___ --It
(MAY BE USED FOR STORAGE)

o
P P P P
D D D D
3 2 1 0

I'.· = UNDEFINED WHEN READ. ·1 MUST WRITE "0" .
. i~~

x=UNDEFINED

Figure 11.2(b).

PORT 2 DIRECTION REGISTER: (P2DIR)

PORT 2.7 DIRECTION:---'"
O=OUTPUT
1 = INPUT

PORT 2.6 DIRECTION:------'
o = OUTPUT
1 = INPUT

UNUSED BITS -------------'

I = UNDEFINED WHEN READ.
, .. MUST WRITE "0".

x=UNDEFINED

Figure 11.2(c).

11-4

270830-001-35

270830-001-36

INPUT/OUTPUT PORT UNIT

PORT PIN REGISTERS: (P1 PIN, P2PIN) READ ONL V

PIPIN
P2PIN

RESET
LEVEL

ON PINS

STATE OF PORT PIN
(SYNCHRONIZED)

o

= UNDEFINED WHEN READ.
MUST WRITE "0".

Figure 11.2(d).

PORT 1 MULTIPLEXER CONTROL REGISTER: (P1CON)

15

PORT 1 MULTIPLEXER CONTROL BITS
l=PERIPHERAL (GCS) SIGNAL TO PIN
O=PORT LATCH VALUE TO PIN

x=UNDEFINED

o

I'. = UND. EFINED WHEN READ.
MUST WRITE "0".

Figure 11.2(e).

11-5

270830·001·37

270830·001·38

inter INPUT/OUTPUTPORT UNIT

PORT 2 MULTIPLEXER CONTROL REGISTER (P2CON)

UNUSED -----;......---....,.--.....--..,

OPEN DRAIN 1/0 SELECT: --..........
1 = FLOAT
0= PORT

P2.3/SINT1 SELECT: ----------1
1 = SINT1 TO PIN
0= P2.3 LATCH BIT TO PIN

o
P P
C C
1 0

P2.1ITXD1 SELECT: ------------.......1
1 = TXD1 TO PIN
0= P2.1 LATCH BIT TO PIN

RXD1 DATA SOURCE SELECT IN MODE 0 (TRANSMIT\---....I
1 = TBUF IS DATA SOURCE
0= P2.0 LATCH BIT IS DATA SOURCE

x=UNDEFINED

I·'· = UNDEFINED WHEN READ.
MUST WRITE "0".

Figure 11.2(f).

PORT LATCH REGISTERS: (P1LTCH, P2LTCH)

x=UNDEFINED

o
P P P P
L L L L
321 0

PORT LATCH VALUE -=oJ

Figure 11.2(g).

11-6

1_ = UNDEFINED WHEN READ.
MUST WRITE "0".

270830-001-39

270830-001-40

inter INPUT/OUTPUT PORT UNIT

11.1.1 OUTPUT PORTS

The internal construction of an output port pin is shown in Figure 11.4. An internal connection
pennanentiy enables the 3-state output driver. The source of the data driven on the pin is selected by
the Port Control bit. This bit controls the multiplexing of data between the Port Latch bit and the
integrated peripheral. If the Port Control bit is a logic one, the pin will be controlled by the integrated
peripheral. A logic zero Port Control bit gates the data in the Port Latch to the pin.

The Port Latch bit value is set by writing to the corresponding Port Latch register in the PCB. The
latched value can be read back from this register. Note that the value read from the Port Latch Register
is the state of the latch, not the state of the pin.

The actual state of the output pin can be read from the Port Pin register.

All of Port 1 and pins P2.1 and P2.3 of Port 2 are pure output.

11.1.2 INPUT PORTS

The internal control logic for an input port pin is shown in Figure 11.5. The 3-state output driver has
been internally disabled making the pin input only. The current state of the input pin is read from the
Port Pin register. The state of the port pin is synchronized to the CPU clock.

The Serial Communications Unit shares the input pins of Port 2. There is no need to configure these
pins as either peripheral or port as the input signals route to both units. Users can still read the state of
these pins even when they are being used for Serial Control Unit functions.

The Port Latch circuitry functions the same as it does for the output port described above. Since the
output is disabled, however, the value cannot affect the port pin. This vestigial latch can be used as bit
storage.

Port pins P2.2, P2.4, and P2.5 are pure input pins.

Input port P2.0 is a special case. P2.0 is shared with the RXDI function of serial communications
channell. The RXD 1 pin becomes an output during a synchronous transmission (Mode 0) regardless
of the state of the P2.0 Direction Bit. The data that appears at the P2.0/RXD 1 pin during synchronous
transmission depends on the P2.0 Control bit. If the P2.0 Control bit is a 1 (peripheral function
selected) the proper data from the TBUF will appear at the P2.0/RXD 1 pin. If the control bit is a 0, the
data contained in the Port 2.0 Latch bit will appear at the P2.0/RXDI pin. In both cases when the
transmission is completed the P2.0/RXDl will float.

11-7

FROM INTEGRATED
PERIPHERAL

READ PxLTCH

WRITE PxL TCH

READ PxPIN

READ PxDIR

F-BUS

INPUT/OUTPUT PORT UNIT

PORT/ PERIPHERAL
MULTIPLEXER

11
01

t--;-----112

SYNCH

PORT nICI.f'TI" .. BIT

OUTPUT
DRIVER

Q~-+------~--------~
---..... -ID

WRITE PxDIR

READ PxCON

01-.... ___ +...1
WRITE PxCON

TO INTEGRATED PERIPHERAL

Figure 11.3. Common 1/0 Moduie Block Diagram

11-8

270830-001-41

INTERNAL PERIPHERAL
SIGNAL (e.g. GCS7)

READ PORT LATCH
REGISTER (PxLTCH)

INTERNAL BUS
(F-BUS)

WRITE PORT LATCH
REGISTER (PxL TCH)

READ PORT PIN
REGISTER (PxPIN)

FROM PORT MULTIPLEX
CONTROL REGISTER (PxCON)

INPUT/OUTPUT PORT UNIT

PORT LATCH
REGISTER BIT

2-1 MULTIPLEXER

11

Q 1--4 ---112

Figure 11.4. Pure Output Pins

11·9

OUTPUT
DRIVER

SYNCH

270830-001-42

inter

READ PORT LATCH
REGISTER (PxL TCH)

INTERNAL BUS
(F·BUS)

WRITE PORT LATCH
REGISTER (PxL TCH)

READ PORT PIN
REGISTER (PxPIN)

TO INTEGRATED
PERIPHERAL

INPUT/OUTPUT PORT UNIT

PORT LATCH
REGISTER BIT

D

Figure 11.5. Pure Input Pins

11-10

OUTPUT
DRIVER
(DISABLED)

SYNCH

270830·001·43

INPUT/OUTPUT PORT UNIT

11.1.3 OPEN DRAIN BI-DIRECTIONAL PORTS

Port pins P2.6 and P2.7 are open drain bi-directional (Figure 11.4). With a low logic level on the Port
Direction signal the state of the PX Pin is controlled by the Q signal from the Port Latch. Writing a zero
to the Port Latch turns on the N-channel driver resulting in a "hard zero" being present at the PX Pin.
A one value in the Port Latch shuts off the driver resulting in a high impedance (input) state at the Px
Pin.

The PX Pin can be floated directly by setting its Port Direction bit to a 1. The state of the PX Pin can
be read from the Port Pin register.

The port/peripheral multiplexer exists for P2.6 and P2.7 even though the pins are not shared with 2
peripheral functions. The peripheral function input multiplexer is internally strapped to always float
the open drain pin if it is selected.

11.2 PROGRAMMING THE I/O PORT UNIT

11.2.1 PORT DIRECTION REGISTER

The Port Direction Register (PIDIR, P2DIR) controls the direction (input or output) for each bit in
the port. The direction control feature is not enabled for Port 1 and pins P2.0 through P2.5 of Port 2.
These unused direction control bits may be used for bit storage.

Only the direction bits for the open drain pins (P2.6 and 2.7) are used by the IPU. Setting the direction
bits for these pins puts the P2.6 and P2. 7 pins in a high impedance state. Clearing these bits allows the
state of the open drain pins to be controlled by the Port 2 Latch Register.

The Port Direction Register is read/write. When read each register will return the value written to it
previously. Pins with their direction fixed will return the value in this register, not a value indicating
their direction.

11.2.2 PORT PIN REGISTER

The Port Pin Register (PIPIN, P2PIN) is a read only register that is used to determine the state of a
port pin. When read, the current state of the port pins (either an input or output) will be gated to the
internal data bus.

11.2.3 PORT CONTROL REGISTER

The Port Control Register (PI CON, P2CON) selects the source of data driven on each output port
pin. Setting a bit in this register selects an integrated peripheral as the source; clearing it selects the
corresponding Port Latch bit. Tables 11.1 and 11.2 show the multiplexing options available for Port
1 and Port 2 respectively.

11-11

PORT DIRECTION
(PxDIR)

READ PORT LATCH
REGISTER (PxL TCH)

FROM PXCON

INPUT/OUTPUT PORT UNIT

PORT LATCH
PX PIN

Q~~---------iIS2 Q I------IL-./

SYNCH

270830-001-44

Figure 11.6. Open Drain Pins (P2.6, P2.7)

11-12

INPUT/OUTPUT PORT UNIT

Table 11.1. P1 CON Port 1 Multiplex Control

P1CONBIT PIN FUNCTION

P1CON.7 = 1 GCS7
=0 PORT1.7

P1CON.6 = 1 GCS6
=0 PORT1.6

P1CON.5 = 1 GCS5
=0 PORT1.5

P1CON.4= 1 GCS4
=0 PORT1.4

P1CON.3 = 1 GCS3
=0 PORT1.3

P1CON.2 = 1 GCS2
=0 PORT1.2

P1CON.1 = 1 GCS1
=0 PORT1.1

P1CON.0 = 1 GCSO
=0 PORT1.0

Table 11.2. P2CON Port 2 Multiplex Control

P2CON BIT FUNCTION PIN FUNCTION

P2CON.7 = 1 FLOAT
=0 P2.7

P2CON.6 =1 FLOAT
=0 P2.6

P2CON.5 NOT USED
P2CON.4 NOT USED
P2CON.3 =1 SINT1.

=0 P2.3
P2CON.1 =1 TXD1

=0 P2.1
P2CON.0 =1 RXD1*

=0 PS.O

* NOTE: P2CON.0 only has an effect during a synchronous
transmission in Mode 0 by SCU channell. See text.

The Port Control Register exists for input only pins although it has no affect on their operation (except
P2.0/RXD I, see 11.2.1). These unused bits may be used as storage.

11.2.4 PORT LATCH REGISTER

The Port Latch Register (PILTCH, P2LTCH) holds the value to be driven on an output pin. This
value will only appear at an output pin if the corresponding bit in the Port Control Register is cleared.

The Port Latch Register bits corresponding to input only pins exist but are not used by the IPU. These
vestigial latches may be used as storage.

The Port Latch Register is read/write. Reading a Port Latch Register returns the value of the latch itself
and not the associated port pin.

11.3 INITIAL CONDITIONS (RESET)

At reset the Port 1 multiplexer is configured with the Generic Chip Selects as the source of the output
data.

The Port 2 multiplexer resets with serial channell as the source of data for all output pins. The P2.6
and P2.7 open drain ports reset to a high impedance state (their corresponding PxDIR bits are = 1).

The reset values for all of the IPU registers is shown in Figure 11.2.

11-13

INPUTJOUTPUTPORT UNIT

11.4 PROGRAMMING EXAMPLE

The example in Figure 11.7 shows a typical ASM186 routine to configure the IPU. GCS7 through
GCS4 are routed to the pins while Pl.0 throught PIA are used as output ports. The binary value 0101
is written to P1.0 through P1.3. The state ofpinsP2.6 and P2.7 is read and stored in the AL register.

$mod186
n a m e i o_p 0 r t_u n i t_e x amp I e

This file contains an example of programming code for
the I/O Port Unit on the 80C186EB.

We assume PCB has NOT BEEN RELOCATED!

P1DIR
P1PIN
PHON
PlL TCH
P2DIR
P2PIN
P2CON
P2L TCH

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

OFF SOH
OFFS2H
OFFS4H
OFFS6H
OFFS8H
OFFSAH
OFFSCH
OFFSEH

segment public
assume cs:code_seg

proc near

first, select GCS7# through GCS4# to output pins.

mov
mov
out

dx, P1CON
ax, OFOH
dx, ax

write 0101B to pins Pl.3 through Pl.0

mov
mov
out

dx, P1LTCH
ax, 0101B
dx, ax

Read P2.6, P2.7. We assume they have not been changed to output
pins since reset·

mov
in
and

dx, P2PIN
ax"dx
ax, 3H ; strip unused and undefined bits

AL now holds the state of the P2.6 and P2.7 pins

code_seg ends
end

Figure 11.7. IPU Programming Example

11-14

Power Management Unit 12

CHAPTER 12
POWER MANAGEMENT UNIT

The majority ofVLSI devices on the market today make use of dynamic circuitry. A dynamic circuit
is one that makes use of a capacitance (usually parasitic gate or diffusion capacitance) to store
information. The charge stored on the capacitance will decay through time due to leakage currents in
the silicon. If the information stored on a dynamic node is not used before it decays, the state of the
entire machine may be lost. Dynamic RAMs, for example, must be refreshed periodically to insure
data retention. A dynamic microprocessor is one for which the minimum clock frequency is greater
than zero. When the clock on a dynamic microprocessor is frozen, the dynamic nodes within it will
begin to discharge. With a long enough delay it is likely that, when the clock is restarted, the
microprocessor will begin to execute in an unknown state. Normal operation can only be reinstated
through a reset.

The 80C I 86EB is a fully static device. The clock signal to both the CPU core and the peripherals may
be stopped without the loss of any internal information (provided V cc is maintained). When the clock
is restarted the 80C I 86EB will begin to execute in the same state as when the clock was stopped. This
feature, coupled with the fact that CMOS devices consume virtually no current when quiescent,
allows tremendous power savings in applications where the 80C I 86EB will be idle for long periods.

The Power Management Unit of the 80Cl86EB is provided to control the current consumption of the
device. Three modes are available: Active, Idle, and Powerdown.

In Active Mode the clock signal is gated to the CPU core and all of the integrated peripherals. This is
the default operating mode that the 8OCl86EB enters on reset. Current consumption is at its maxi­
mum.

During Idle Mode operation the clock signal is routed only to the integrated peripheral devices. The
clock to the CPU core (Execution and Bus Interface Units) is frozen. All peripherals operate
normally. Any unmasked interrupt, NMI, or a processor reset will return the 80Cl86EB to Active
mode. A DRAM refresh or HOLD request will awaken the core temporarily in order to respond.
Current consumption in Idle Mode is reduced to just the amount necessary to maintain the peripherals.

Entering Powerdown Mode freezes the clock to the entire device (CPU and peripherals) and disables
the crystal oscillator. All internal devices (registers, state machines, etc.) maintain their state as long
as V cc is applied. DRAM refresh and HOLD requests will not be acknowledged in Powerdown mode.
An NMI or a processor reset will cause the 80C 186EB to return to Active Mode. A timing pin is
provided to allow the crystal oscillator to stabilize before restarting the internal clocks. Current
consumption in Powerdown Mode is reduced to just transistor junction leakage (typically in the
microamp range).

The Power Management Unit is programmed through the use of the Power Control Register at offset
B8H in the Peripheral Control Block (Figure 12.1).

12-1

POWER MANAGEMENT UNIT

POWER MANAGEMENT CONTROL REGISTER:
(PWRCON):

OFFSET = OB8H

IDLE MODE: --------------.....
o = IDLE MODE NOT SELECTED
1 = ENTER IDLE MODE AT NEXT.

HALT CYCLE

POWERDOWNMODE:------------~
o = POWERDOWN MODE NOT SELECTED
1 = ENTER POWERDOWN MODE AT NEXT

HALT CYCLE

RESET = XXXX. XXXX. XXXX. XXOOB

m SETTING BOTH IDLE AND POWERDOWN WILL W RESULT IN A DEFAULT TO ACTIVE MODE.

I = UNDEFINED WHEN READ.
MUST WRITE O.

Figure 12.1.

12-2

270830-001-91

POWER MANAGEMENT UNIT

12.1 FUNCTIONAL OVERVIEW

The two low-power modes are armed by setting the appropriate bit in the Power Control Register. The
chosen mode is entered when a HLT instruction is executed. If both modes are selected (or no mode
is selected) the device will HaLT and remain in Active Mode. Section 3.4.4.2 describes the HALT
cycle in detail.

12.1.1 IDLE MODE

At the completion of the HALT execution, with the IDLE bit set, the clock signals routed to the CPU
core (Execution and Bus Unit) will be frozen in a logic low state. The clock signals to the integrated
peripherals continue to toggle as does CLKOUT. Current consumption will be cut by nearly half,
although this is dependent on the level of activity in the peripheral units.

Figure 12.2 shows the internal and external waveforms during entry into Idle Mode.

The core clocks can be restarted by several means. A DRAM refresh will tum on the core clock
temporarily in order to run the dummy read cycle. A HOLD request will tum on the core clock as long
as HOLD is asserted. Any unmasked interrupt or NMI will return the 80C186EB family device to
Active mode. A RESET will also return the device to Active Mode (although the state of the device
when the HALT was executed is lost). The following sections describe, in detail, each of these
situations.

12.1.1.1 REFRESH DURING IDLE MODE

Figure 12.3 shows the sequence of events for a refresh cycle while the CPU is in Idle Mode. The
refresh counter decrements on the falling edge of CLKOUT. The internal core clock begins to toggle
on the falling edge of CLKO UT after the down-counter reaches zero. After one idle T -state the refresh
request is run (the T j - T j - T2- T3-T4 sequence in Figure 12.3). There is one idle T-state after T4 before
the internal core clock shuts off again.

The READY, wait state generation, and chip select circuitry are all active for refresh cycles during
Idle Mode.

12.1.1.2 HOLD/HLDA DURING IDLE MODE

The core in Idle Mode will also respond to bus HOLD requests (Figure 12.4). The core clock restarts
one CLKOUT cycle after HOLD has been asserted (see Section 3.6 for requirements on HOLD
timing). HLDA is driven high one cycle after the core clock starts. The core clock turns off and HLDA
is deasserted one cycle after HOLD is dropped.

Refresh requests will force the BIU to drop HLDA during a HOLD request. Section 10.4 contains
more information on refresh cycles during HOLD.

12-3

ALE

POWER MANAGEMENT UNIT

0

1 U
, ,

1 ';.----;.. .-----i---...,;.----j------i
AD19:16, AD15:0 i,' :, X INDETE~' MINATE ::.. ' o ,f---~, .. " .. --_+---_i.r_--~---"""'l

" ,
1:~----~'------_+------~:-------~----~

RDANR: :
0: : , , , ,

Icc ACTIVE '''''': ------....I.------.... -------I~,
IDLE' :\ -------

270830-001-92

Figure 12.2. Entering Idle Mode

12-4

"11 Ti Ti
cO
r::
CiJ I CLKOUT -~
~
:D INTERNAL
CD PERIPHERAL - CLOCK ..
CD
In
:::r
0 INTERNAL
'< CORE
() CLOCK CD

I\) a.
r:: INTERNAL cJ, ..
5" REFRESH 3
ca COUNT
a:
CD

~I ALE
a.
CD

"0
::IE
!I AD19:16, AD15:0 INDETE~MINATE

~
CD
In
~I RD

REFRESH CYCLE
(Tw MAY BE INSERTED IF NEEDED)

I ~'-------------~
n : n n n n u Ti Ti

I

Ti Ti

270830-001-93

l

"'tJ

~ m
::u
3:
l>
Z
l>
G)
m
3:
m z
-I
c:
Z
::::j

..

POWER MANAGEMENT UNIT

i=

l<:1L
UIL go
U~ i=
W:::l
a:J:
800

i=

Cl • • • • •J
0 • • • • • J:
~ • • • • •
<Xl -----_.
W
co
co
()
0
co

i=

f-
wa:
a:~ i=
8~

a:

l<:)-
8::5 i=J w
UCl

i=

i=

i=

....J
<c

....Ja: ;;;! f- <cw
:::l ZJ:l<: Z l<:
0 a:"-u a:wu Cl <c
l<: ~ffig ~@59J ClJ 0J
U ~"-U ~uu J: J:

Figure 12.4. HOLD/HLDA during Idle Mode

12-6

POWER MANAGEMENT UNIT

12.1.1.3 EXITING IDLE MODE VIA AN UNMASKED INTERRUPT

Any unmasked interrupt received by the core will return the 80C 186EB to Active Mode. Unlike the
HOLD and refresh situations, another HALT must be executed for the core to return to Idle Mode.

For the example shown in Figure 12.5, the Interrupt Unit has been programmed for cascade mode on
pin INTO. The core clock begins toggling seven clocks after INTO (which is unmasked) goes high.
These seven clocks are required to perform mask and priority level checking. It takes another 6
CLKOUT cycles for the core to begin to respond to the interrupt request (in this case begin the
interrupt acknowledge cycle).

After the execution of the IRET (interrupt return) instruction in the interrupt service routine, the CS:IP
will be pointing to the instruction following the HALT. The PWRCON register is not modified by
interrupt execution. If the PWRCON register is not modified after exiting Idle Mode then the
80C 186EB family device will re-enter IDLE at the next HALT instruction.

12.1.1.4 EXITING IDLE MODE VIA A NON·MASKABLE INTERRUPT (NMI)

Like an unmasked interrupt, a non-maskable interrupt will return the core to Active mode from Idle
mode (Figure 12.6). It takes only 2 CLKOUT cycles to restart the core clock after an NMI is received.
The NMI signal does not have to go through the mask and priority checks that a maskable interrupt
does. This results in the 5 clock cycle difference in clock restart time between an NMI and an
unmasked interrupt.

The core begins the interrupt response 6 cycles after the core clock re-starts when it fetches the NMI
vector from location 00008. The PWRCON register is not affected by an NMI.

12.1.1.5 EXITING IDLE MODE VIA A RESET

Resetting the 80C186EB family processor will return the device to Active Mode. Unlike the case of
the interrupts, however, the PWRCON register will be cleared. Execution begins as it would following
a warm reset (see Section 4.4).

12.1.2 POWERDOWN MODE

Powerdown Mode is entered by the execution of a HLT instruction after the PWRDN bit in the Power
Control Register has been set. Following a normal software HLT cycle both the core and peripheral
clocks will be shut off and the crystal oscillator will be disabled. While in Powerdown Mode the
device will not respond to HOLD requests, nor will it run DRAM refresh cycles (as the clock to the
DRAM Refresh Unit is turned off).

Active Mode is re-entered after the reception of an NMI or a reset. A delay must be provided after the
NMI request to allow the crystal oscillator to stabilize before it is connected to the internal phase

12-7

"T1
6'
c:: ..
CD ...
N

!on
m
~,
=:
::::I co -.. CLKOUTAND 0
3 PERIPHERAL

c: CLOCK

CD INTERNAL
I\) 3: CORE
00 0 CLOCK c..

CD
<
iii' INTO
DI
::::I
c:
::::I

INTA 3
DI
III

&
S'
CD
c::
'0 -

7 CLOCKS FROM INTO VALID 6 CLOCKS UNTIL INTERRUPT
UNTIL CPU CLOCK STARTS PROCESSING BEGINS INTA CYCLE BEGINS

r"------"'A V A V A \
Ti Ti 'n ninininin nininininininin nini~inin

---1

\ ,
270830-001-95

l

"tI

~ m
:tJ
s::: » z
~ m
s:::
m
Z
-I
c:
Z
::::j

::!!
cc
c
iii ...
~

i:»
m
~.
d: INTERNAL ::::I

CC CORE - CLOCK ..
I\) 0
cO 3

is:
CD NMI

;:
0
Co
CD

S. ALE
III
III
::::I
z
~I A19:0

Ti Ti

6 CLOCKS UNTIL INTERRUPT
2 CLOCKS PROCESSING BEGINS BEGIN FETCHING NMI VECTORS

~ ~ v ~,--------

Ti Ti

, ,

Ti Ti Ti Ti Ti Ti Ti T1 T2

--~/~--------~\~: ~------------------------

---------------_-------11 \ ____ _

· ...
· ...

· ...
· ...

---~
270830-001-96

(

""0

~
m
:::D
3: :.:­z
~
m
3:
m z
-I
c: z
=i

RaWER MANAGEMENT UNIT

clocks. This delay is set by the discharge of an external capacitor through an internal pulldown on the
PDTMR pin (Figure 12.7). The operation of the powerdown timer circuitry is described in section
12.1.2.2 below.

Current consumption in Powerdown Mode is just the leakage currents of the quiescent CMOS circuits
within the 80C186EB family processor. This current is typically in the microampere (10-6) range.
Consult the datasheet for actual values.

12.1.2.1 ENTERING ROWERDOWN MODE

Figure 12.8 shows the internal waveforms during entry into Powerdown Mode. During the T 2 phase
Of the HaLT instruction, a signal is generated called EntecPowerdown. Enter_Powerdown disables
the internal CPU core and peripheral clocks immediately. The oscillator inverter and the Schmidtt
trigger that drives the internal phase clocks are disabled during the next CLKOUT cycle. If a crystal
oscillator is being used, it will stop immediately. When CLKIN is driven by an external frequency
input (EFI), the signal on the CLKIN pin is isolated from the internal circuitry. Therefore, CLKIN
may be driven during Powerdown Mode although it will not clock the 80C186EB family device.

CLKOUT freezes in a logic high state during Powerdbwn.

12.1.2.2 EXITING ROWERDOWN MODE

In order to reliably restart the ihternal phase clocks of the 80C186EB processor after Powerdown,
sufficient time must be provided to allow the crystal oscillator circuit to stabilize. This stabilization
time may be on the order of hundreds of milliseconds in some designs. The powerdown timer circuit
allows the designer to control the gating of the crystal oscillator to the internal clocks.

The powerdown timer circuit is shown in Figure 12.7. The strong P -channel device is on at all times
except during exit from Powerdown. This pullup keeps the Powerdown capacitor (CpD) charged up
to V cc- When an NMI is detected, the weak N-channel device turns on and the P turns off. CpD begins
to discharge. At the same. time the feedback inverter on the crystal oscillator is enabled and the
oscillator begins its startup processes. The Schmidtt trigger connected to the PDTMR pin asserts the
internal OSC_OK signal when the voltage at the pin drops below its switching threshold.

The OSC_ OK signal gates the crystal oscillator output to the internal clock circuitry. One CLKOUT
cycle is run before the internal clocks tum back on (see Figure 12.9). Ittakes two additional CLKOUT
cycles before the NMI is presented to the CPU. Six cycles later the NMI vector is fetched. The
PWRCON register is not affected by exiting Powerdown Mode via an NMI.

Powerdown mode can also be exited via a processor reset. Since the oscillator has been stopped, the
guidelines for a cold reset (Section 4.4) should be followed when RESETting out of Po.werdown
Mode.

12-10

PDTMR
PIN

POWER MANAGEMENT UNIT

r--­
80C186EB

I
I
I
I

110"---< 0, EXCEPT WHEN LEAVING
POWERDOWN

I

I EXIT_POWERDOWN

~ ~ "''' """""" PULLDOWN

270830-001-97

Figure 12.7. Powerdown Timer Circuit

12 .. 11

CLKIN

OSCOUT

CLKOUT

CORE
CLOCK

PERIPHERAL
CLOCK

ENTER_POWERDOWN

S2:0

ALE

AD19:0

POWER MANAGEMENT UNIT

T4

HALT CYCLE
r,.--_A _-...... ,

T1 T2 Ti
!1 CLKIN

TOGGLES ONLY
I WHEN AN EFI
: IS USED

I
I
I Vr --";'---";

~------~------+:------~i
I I
I I

I
I
I
I
I
I

\yl_01_1 -il 111:

U
INDETE MINATE

O~--~~--~------~I~----~----~

RDIWR

o

270830·001·96

Figure 12.8. Entering Powerdown Mode

12-12

POWER MANAGEMENT UNIT

OSCillATOR UNSTABLE

r~----------'~'--------~\ ,
1: , ,

ClKIN 0 _----...J , ,
l' ,

PDTMR 0

,
OSC_OK 0:

~----------------------~

,
ClKOUT 0: ,

ACTIVE MODE RE-ENTERED

r~----~~'-----~\

, ,
l' , , , , , IUl CPU CORE' CLOCK O~: __ ~ __
, , , ,

1: '
PERIPHERAL n n
CLOCK O:L--------------------------------------+-~I L--J I I" I I , , ,

6 CLOCKS TO
----.. NMIVECTOR

FETCH

, I , 270830-001-99

Figure 12.9. Leaving Powerdown after NMI

12-13

POWER MANAGEMENT UNIT

12.1.1.2.1 CALCULATION OF PDTMR CAPACITOR VALUE

The fIrst step in determining the proper value for CpD is to characterize the startup time for crystal
oscillator circuit being used. The simplest way to do this is with a storage oscilloscope. Be sure to
compensate for the loading effects of the scope probe on the oscillator circuit. Startup should be
characterized over the full range of operating voltages and temperatures.

Given the oscillator startup time, one can refer to the "Powerdown capacitor value vs. Oscillator
startup time" graph from the data sheet for the powerdown capacitor value. Typical values are in the
I~Frange.

12.2 PROGRAMMING EXAMPLE

Example 1 shows the 80C 186EB entering Idle Mode. The interrupts from the serial port and timers
have been unmasked. The serial port is connected to a keyboard controller. Whenever a byte is
received from the keyboard (a key has been touched) the 80C186EB will wake up to service the
interrupt. After taking action on the keystroke, the core will go back into Idle Mode.

The processing of the keystroke are not relevant to this example, and has been omitted.

12-14

POWER MANAGEMENT UNIT

Example 1.

hod186
namepmu_initialization_example ,

This file contains an example of initialization code for the
Power Management Unit on the 80C186EB.

For this example, the CPU core is placed in IDLE Mode while
waiting for serial input from an keyboard controller.
Timer interrupts will also be recognized.
After interrupt processing the core will return to IDLE Mode.

It is assumed that all interrupt vectors and procedures have
been previously set up.

The PCB is at FFOOH in 1/0 space.

IMASK
PWRCON

EQU
EQU

OFF08H
OFFB8H

code segment public
assume cs:code

idle proc near

mov
mov
out

mov
m6v
out

cli

i n_i dIe:

jmp

i d lEi

code
end

dx, IMASK
ax, 0005H
dx, ax

dx, PWRCON
ax, D2H
d x, a x

hIt

endp

ends

Enable Timer and SCU interrupts

Arm IDLE Mode

Clear global interrupt mask.

Enter IDLE Mode

After INT return to IDLE

12-15

Hardware Provisions for 13
Floating Point Math

CHAPTER 13
HARDWARE PROVISIONS FOR FLOATING POINT MATH

The 80C 186EB microprocessor family was designed for general-purpose microprocessing. In most
data controller applications, the actual arithmetic performed on data values is fairly simple, while fast,
efficient data movement and control instructions are very important. However, some applications
require more powerful arithmetic instructions and more complex data types than provided by a
general purpose data processor. Characteristics of such applications include the following:

Numeric data vary over a wide range of values or include non-integral values.

• Algorithms produce very large or very small intermediate results.

• Computations must be very precise, i.e., a large number of significant digits must be retained.

• Computations must be extremely reliable without undue dependence on programmed algo­
rithms.

Overall math performance exceeds the power provided by a general-purpose processor and
software alone.

The 8OC186EB family supports these needs by providing the necessary hardware interface to the
80C187, Figure 13.2 and a numerics coprocessor extension. The 8OC188EB does not supportnumer­
ics coprocessing.

13.1 8OC187 INSTRUCTION SET

8OC187 instructions are divided into six functional groups: data transfer, arithmetic, comparison,
transcendental, constant, and processor control. Typical 8OC187 instructions accept one or two
operands and produce a single result. Operands are most often located in memory or the 8OC187
stack. The operands of some instructions are predefined; for example, FSQRT always takes the
square root of the number in the top stack element. Others allow, or require, the programmer to
explicitly code the operand(s) along with the instruction mnemonic. Still others accept one explicit
operand and one implicit operand, usually the top stack element.

As with the basic 8OC186EB family instruction set, there are two types of operands, source and
destination. Source operands are not altered by the instruction. Even when an instruction converts the
source operand from one format to another (e.g., real to integer), the conversion is actually performed
in an internal work area to avoid altering the source operand. A destination operand is distinguished
from a source operand because its contents may be altered when it receives the result of the operation;
that is, the destination is replaced by the result.

13-1

HARDWARE PROVISIONS FOR FLOATING POINT MATH

13.1.1 DATA TRANSFER INSTRUCTIONS

These instructions move operands among elements of the 80C 187 register stack, and between stack
top and memory. Any of the seven data types can be converted to temporary real and loaded onto the
stack in a single operation; they can be stored to memory iIi the same manner. Data transfer instruction
are summarized in Table 13.1.

13.1.2 ARITHMETIC INSTRUCTIONS

The 80C 187' s arithmetic instruction set (Table 13.2) provides a wealth of variations on the basic add,
subtract, mUltiply, and divide operations,and a number of other usefUl functions. These range from
a simple absolute value to a square root instruction that executes faster than ordinary division. Other
arithmetic instructions perform exact modUlo division, round real numbers to integers, and scale
values by powers of two.

Table 13.2 summarizes the available operation and operand forms provided for basic arithmetic. In
addition to the four normal operations, two "reversed" instructions make subtraction and division
"symmetrical" like addition and mUltiplication. The variety of instruction and operand forms give the
programmeruilUsual flexibility:

• Operands may be located in registers or memory.

• ResUlts may be deposited in a choice of registers.

• Operands may be a variety of data types, including temporary real, long real, short real, short
integer, or word integer, with automatic type conversion to temporary real performed by the
80C187.

13.1.3 COMPARISON INSTRUCTIONS

Each of these instructions (Table 13.3) analyzes the stack top element, often in relationship to another
operand, and reports the resUlt in the status word condition code. The basic operations are compare,
test (compare with zero), and examine (report tag, sign, and normalization).

13.1.4 TRANSCENDENTAL INSTRUCTIONS

The instructions in this category perform the time-consuming core calculations for common trigono"
metric, hyperbolic, inverse hyperbolic, logarithmic, and exponential functions. Prologue and epi~
logue software may be used to reduce arguments to the range acc~pted by the instructions and to adjust
the result to correspond to the original arguments ifnecessary. The transcendentals operate on the top
one or two stack elements and they return their resUlts to the stack. Table 13.4 lists the transcendental
instructions.

13-2

HARDWARE PROVISIONS FOR FLOATING POINT MATH

Table 13.1. Data Transfer Instructions

REAL TRANSFERS

FLD Load real
FST Store real
FSTP Store real and pop
FXCH Exchange registers

INTEGER TRANSFERS

FILD Integer load
FIST Integer store
FISTP Integer store and pop

PACKED DECIMAL TRANSFERS

FBLD Packed decimal (BCD) load
FBSTP Packed decimal (BCD) store

and pop

Table 13.3. Comparison Instructions

FCOM Compare real
FCOMP Compare real and pop
FCOMPP Compare real and pop twice
FICOM Integer compare
FICOMP Integer compare and pop
FTST Test
FXAM
FUCOM
FUCOMP
FUCOMPP

Examine
Unordered compare
Unordered compare and pop
Unordered compare and pop
twice

Table 13.4. Transcendental Instructions

FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2"-1
FYL2X Y -log2X
FYL2XP1 Y - log2(X+ 1)
FCOS Cosine
FSIN Sine
FSINCOS Sine and cosine

13-3

Table 13.2. Arithmetic Instructions

ADDITION
FADD Add real
FADDP Add real and pop
FIADD Integer add

SUBTRACTION

FSUB Subtract real
FSUBP Subtract real and pop
FISUB Integer subtract
FSUBR Subtract real reversed
FSUBRP Subtract real reversed and pop.
FISUBR Integer subtract reversed

MULTIPLICATION

FMUL Multiply real
FMULP Multiply real and pop
FIMUL Integer multiply

DIVISION

FDIV Divide real
FDIVP Divide real and pop
FIDIV Integer divide
FDIVR Divide real reversed
FDIVRP Divide real reversed and pop
FIDIVR Integer divide reversed

OTHER OPERATIONS

FSQRT Square root
FSCALE Scale
FPREM Partial remainder
FRNDINT Round to integer
FXTRACT Extract exponent and significand
FABS Absolute value
FCHS Change sign
FPREMI Partial reminder (IEEE)

Table 13.5. Constant Instructions

FLDZ Load +0.1
FLD1 Load +1.0
FLDPI Load It
FLDL2T Load log21 0
FLDL2E Loadlog2e
FLDLG2 Load log102
FLDLN2 Loadloge2

HARDWARE PROVISIONS FOR FLOATING POINT MATH

13.1.5 CONSTANT INSTRUCTIONS

Each of these instructions (Table 13.5) loads a commonly used constant onto the stack. The values
have full temporary real precision (80 bits) and are accurate to approximately 19 decimal digits. Since
a temporary real constant occupies 10 memory bytes, the constant instructions, only two bytes long,
save memory space. These instructions simplify programming as well.

13.1.6 PROCESSOR CONTROL INSTRUCTIONS

Most of these instructions (Table 13.6) are not used in computations; they are provided principally for
system-level activities. These include initialization, exception handling and task switching.

Table 13.6. Processor Control Instructions

FINIT/FNINIT Initialize processor
FDISIIFNDISI Disable interrupts

FENI/FNENI Enable interrupts

FLDCW Load control word

FSTCW/FNSTCW Store control word

FSTSW/FNSTCW Store status word

FCLEXlFNCLEX Clear exceptions

FSTENV/FNSTENV Store environment
FLDENV Load environment

FSAVE/FNSAVE Save state

FRSTOR Restore state

FINCSTP Increment stack pointer

FDECSTP Decrement stack pointer

FFREE Free register

FNOP No operation

FWAIT CPU wait

13.2 80C187 DATA TYPES

An 80C186EB/80C187 system supports the following seven data types:

Word Integer -A signed binary numeric value contained in a 16-bit word. All operations assume
a 2's complement representation.

Short Integer - A signed binary numeric value contained in a 32-bit double word. All operations
assume a 2' s complement representation.

Long Integer - A signed binary numeric value contained in a 64-bit quad word. All operations
assume a 2's complement representation.

Packed Decimal - A signed numeric value contained in an 80-bit BCD format.

Short Real - A signed, floating point numeric value contained in a 32-bit format.

13-4

HARDWARE PROVISIONS FOR FLOATING POINT MATH

Long Real - A signed, floating point numeric value contained in a 64-bit format.

Temporary Real- A signed, floating point numeric value contained in an 80-bit format. Tempo­
rary real is the native 80C187 format.

Figure 13.1 graphically represents these data types .

WORD INTEGER S

...... ---- INCREASING SIGNIFICANCE

(TWO'S
COMPLEMENT)

MAGNITUDE
(TWO'S
COMPLEMENT) SHORT INTEGER I S I

~3~1------------------~0~

LONG INTEGER Is I
~6~3---0~

MAGNITUDE

PACKED DECIMAL S MAGNITUDE

(TWO'S
COMPLEMENT)

D17 D16 D15 D14 013 012 011 D10 D9 D8 D7 06 D5 D4 D3 02 D1 DO
72

BIASED
EXPONENT

52

14

14

o

SIGNIFICAND

o

SIGNIFICAND TEMPORARY REAL Is I E:~~~E~T h
~7~9--------------~M~63~4~------------------------------~0

Figure 13.1. &pC187 Support,", Data Ty~

13.3 USING THE 80C186EB WITH TJ-iE 80C187 NUMERICS PROCESSOR
EXTENSION

270830-001-67

The 80C 186EB supports floating point calculations by providing the necessary hardware interface to
the 80C 187 numerics processor extension.

13-5

HARDWARE PROVISIONS FOR FLOATING' POINT MATH

80C186EB

RESET

EXTERNAL
OSCilLATOR

1X OR 2X 80C187
INTERNAL FREQUENCY

lATCH

80C187

-------~RESET

-------~NPWR

-------~NPRD

-------~NPS1

-------~BUSY

-------~ERROR

I. CLOCK INPUT
~ UNDIVIDED

CKM 1---, CLOCK INPUT
DIVIDED BY2

-------~PEREQ NPS21-----i

, , , , ,
P • ClK

DATA 15:0

Figure 13.2. SOC186EB/SOC1S7 System Configuration

270830-001-68

13.3.180C186EB/80C187INTERFACE

The 80C186EB interfaces directly to the 80C187 (see Figure 13.2). The 80C186EB and 80C187
operate asynchronously, ea,ch up toits maximum rated clock speed. CLKOUT from the 80C186EB
may be used asthe 80C 187 clock input upto 12.5 MHz. The 80C l88EB cannot be used because the
flow of opcodes, instruction pointers, and data passes through 16-bit I/O ports.

The 80C 187 is referred to as a numerics processor extension because it operates as a slave device to
the host 80C186EB_ All communication between the 80C186EB and 80C187 occurs through the
dedicated I/O ports shown in Table 13.7. When the 80C186EB encounters a numerics opcode, it

13-6

HARDWARE PROVISIONS FOR FLOATING POINT MATH

writes the opcode to the 80C187, which decodes the instruction and passes elementary instruction
infonnation (Opcode Status) back to the 80C186EB. Since the 80C187 is a slave processor, all loads
and stores to memory are perfonned by the 80C 186EB.

Please note that the 80C 186EB cannot process any numerics (ESC) opcodes alone. If the 80C 186EB
encounters a numerics instruction (including the FlNIT/FNINIT initialization instruction) and the
80C 187 is not present, the operation of the 80C 186EB is indetenninate. In those applications where
the 80C187 is offered as an option, problems can be prevented in three ways:

Remove all numerics (ESC) instructions, including any code which checks for the presence of
theNPX.

Use a jumper or switch setting to indicate the presence of the 80C 187, and have the software
branch away from numerics instructions when the 80C187 socket is empty.

Add pull-up and pull-down resistors to various data and control lines to force the 80C 186EB into
predictable operation when the 80C187 socket is empty.

Table 13.7. Numerics Coprocessor I/O Port ASSignments

I/O Address Read Definition Write Definition

OOF8H Status/Control Opcode

OOFAH Data Data

OOFCH reserved CS:IP, DS:EA
OOFEH Opcode Status reserved

13.3.2 80C186EB BUS CYCLES WITH THE 80C187 NUMERICS PROCESSOR
EXTENSION

The 80C 186EB perfonns bus cycles to the 80C 187 numerics processor extension (NPX) exactly like
other I/O bus cycles. This fact has important implications:

Operations to the 80C187 require external READY to be provided.

If a chip select address range is programmed to cover the NPX port addresses, chip select line
goes active during each read or write from the 80C186EB to the 80C187. However, ordinary
reads and writes to those addresses do not activate NCS on the 80C186EB. Overlapping chip
select ranges and the NPX port addresses is not recommended due to the hardware conflicts that
could result.

DT/R and DEN function nonnally during NPX transfers. In a buffered system with the 80C187
residing on the local bus, use NCS to qualify DEN to the bus transceivers. Otherwise, contention
between the NPX and the transceivers occurs on read cycles.

The 80C186EB local bus is available to the integrated peripherals during execution of numerics
instructions when it is not needed by the CPU. This means that DRAM refresh cycles may be
interspersed with accesses to the 80e187.

13-7

JiARDWARE'PROVISIONSFOR FLOATING POINT MATH

• ~ ,The 8OC186EB·local bus is available to alternate bus masters during execution of numerics
instructions when it is nofneeded by the CPU. This means that bus cycles ori8inating from
alternate masters (via the HOLD/HLDA protocol) can suspend numerics bus cycles for an
indeftnite period.

TbeLOCKpin functions normally during numerics operations. This means that LOCKed nu­
merics instructions can monopolize the bus for a very long time.

13·8

ONCE™ Mode 14

CHAPTER 14
ONCETMMODE

ONCE™ mode (ON Circuit Emulation) provides the ability to 3-state all pins (except VCC and VSS)
of the 80C 186EB for either emulation or testing purposes. An emulator or test probe can be placed
over an existing 80C186EB in ONCETM mode and emulation or testing can be performed without
conflicts.

14.1 ENTERING ONCETM MODE

ONCETM mode (pronounced: ahnce) is entered by driving A1910w while RESIN is asserted. All pins
immediately float. As soon as RESIN transitions from low to high, the ONCETM request is latched and
the state of A19 is ignored. The 8OC186EB has been effectively removed from the circuit.

14.2 LEAVING ONCETM MODE

ONCETM mode is terminated by a normal reset of the device without A19 being driven (it is left
floating).

14-1

Differences Appendix A
Between the 80C 186
Family and the 808618088

APPENDIXA
DIFFERENCES BETWEEN THE

80C186 MODULAR CORE FAMILY AND THE 8086/8088

A.1 CPU PERFORMANCE

Because of 80C186 Modular Core family hardware enhancements in both the Bus Interface Unit
and the Execution Unit, most instructions require fewer clock cycles to execute than on the 8086/
8088. Execution speed is gained by performing the effective address calculations (base + displace­
ment + index) with a dedicated hardware adder, which takes only four clock cycles in the 80C186
Modular Core family Bus Interface Unit, rather than with a microcode routine. These calculations are
three to six times faster than the 8086/8088 at the same frequency.

In addition, the execution speed of specific instructions was improved. All multiple-bit shift and
rotate instructions execute 1.5 to 2.5 times faster than the (same speed) 8086/8088. Multiply and
divide instructions execute three times faster. String move instructions run at bus bandwidth, about
twice the speed of the 8086/8088. Overall, the 80C 186 Modular Core family processors run bench­
mark programs 1.2 - 2.6 times the performance level of the (same speed) 8086/8088.

A.2 CLOCKING

The 80C186 Modular Core family employs an integrated clock generator which provides a 50 per­
cent duty cycle CPU clock. This is different from the 8086 which utilizes an external clock generator
to provide a 33 percent (1/3 HIGH, 2/3 LOW) duty cycle CPU clock. The following points relate to
80186 clock generation:

The 80C186 Modular Core family uses a crystal or external frequency input that is twice the
desired processor clock frequency.

An 80C186 Modular Core family processor does not provide a clock output at reduced
frequency. However, a timer output may be easily programmed for this purpose.

A.3 LOCAL BUS CONTROLLER AND CONTROL SIGNALS

In general, the output drivers on 80C 186 Modular Core family products are much larger than those
of the 8086. This leads to larger systems without as much need for bus buffering. It also means that
the designer should be more careful to provide adequate grounding and bypassing, since large drivers
are more apt to cause current transients.

A-1

APPENDIX A

A.4 HOLD/HLDA VS. REQUEST/GRANT

The 80C 186 Modular Core family uses a HOLD/HLDA protocol for bus arbitnition rather than the
REQUEST/GRANT protocol used by the 8086 in max mode. This allows compatibility with newer
generation Intel bus master peripheral devices.

A.5 STATUS INFORMATION

Three status signals are available on the 8086 but not on the 80C 186 Modular Core family. They ar~
S3, S4, and S5. Taken together, S3 and S4 indicate the segment register from which the current
physical address has been derived. S5 indicates the state of the interrupt flip-flop. On 80C186
Modular Core family processors, these signals will always be LOW.

An 80C186 Modular Core family processor simultaneously provides both local bus control outputs
and status outputs for use with external Bus Controllers. This is different from the 8086 where the
local bus control outputs are sacrificed if status outputs are desired. These differences will manifest
themselves in 8086 systems and 80C186 Modular Core family systems as follows:

Many systems supporting both a system bus and a local bus will not require two separate external
bus controllers. The bus control signals may be used to control the local bus while the status
signals are concurrently connected to the 82C88 Bus Controller to drive the control signals of the
system bus.

The ALE signal goes active a clock phase earlier on the 80C 186 Modular Core family than on the
8086 or 82C88. This minimizes address propagation time through the address latches, since
typically the delay time through these latches from valid inputs is less than the propagation delay
from the strobe input active.

A.6 BUS UTILIZATION

A typical instruction mix will require greater bus utilization on the 80C 186 Modular Core family than
on the 8086. The 80C186 Modular Core family executes most instructions in fewer clock cycles,
requiring instructions from the queue at a faster rate. This also means that the effect of wait states is
more pronounced in an 80C 186 Modular Core family microprocessor system than in an 8086 system.

A. 7 INSTRUCTION EXECUTION

The following paragraphs explain the instruction execution differences between the 8086 and the
80186.

A-2

APPENDIX A

ADDED INSTRUCTIONS:

The 80C186 Modular Core family executes PUSHA, POPA, INS, OUTS, BOUND, ENTER, and
LEAVE.

IMPROVED INSTRUCTIONS:

PUSH, IMUL, and SHIFTS/ROT A TES may use immediate operands on the 80C 186 Modular Core
family.

UNDEFINED OPCODES:

When the opcodes 63H, 64H, 65H, 66H, 67H, FIH, FEH XXl1lXXXB and FFH XXIIIXXXB are
executed, the 80C 186 Modular Core family executes an illegal instruction exception, interrupt Type
6. The 8086 will ignore the opcode.

OFHOPCODE:

When the opcode OFH is encountered, the 8086 will execute a POP CS, while the 80C186 Modular
Core family will execute an illegal instruction exception, interrupt Type 6.

WORD WRITE AT OFFSET FFFFH:

When a word write is performed at offset FFFFH in a segment, the 8086 will write one byte at
offset FFFFH, and the other at offset 0, while an 80C186 Modular Core family processor will write
one byte at offset FFFFH, and the other at offset l0000H (one byte beyond the end ofthe segment).
One byte segment underflow will also occur if a stack PUSH is executed and the stack pointer contains
the value 1.

SHIFT/ROTATE BY VALUE GREATER THAN 31 :

Before the 80C 186 Modular Core family performs a shift or rotate by a value (either in the CL register,
or an immediate value) it ANDs the value with IFH, limiting the number of bits rotated to less than
32. The 8086 does not limit the rotation count.

LOCK PREFIX:

The 8086 activates its LOCK signal immediately upon executing the LOCK prefix. An 80C186
Modular Core family processor does not activate the LOCK signal until the processor is ready to
begin the data cycles associated with the LOCKed instruction.

A-3

APPENDIX A

INTERRUPTED STRING MOVE INSTRUCTIONS:

If an 8086 is interrupted during the execution of a repeated string move instruction, the retumvalue
it will push on the stack will point to the last prefix instruction before the string move instruction. If
the instruction has more than one prefix (e.g., a segment override prefix in addition to the repeat
prefix), the other prefixes will not be reexecuted upon returning from the interrupt. An 80C186
Modular Core family processor will push an IP value pointing to the first prefix of the repeated
instruction (as long as prefixes are not repeated), allowing the string instruction to properly resume.

CONDITIONS CAUSING DIVIDE ERROR WITH AN INTEGER DIVIDE:

The 8086 will cause a divide error whenever the absolute value of the quotient is greater than 7FFFH
(for word operations) or if the absolute value of the quotient is greater than 7FH (for byte operations).
The 80C 186 Modular Core family expanded the range of negative numbers allowed as a quotient by
1 to include 8000H and 80H. These numbers represent the most negative numbers representable using
2's complement arithmetic (equaling -32768 and -128 in decimal, respectively).

ESC OPCODES:

An 80C 186 Modular Core family microprocessor has a bit (the ET bit) in the relocation register which
can be programmed to cause a Type 7 interrupt upon attempted execution of a coprocessor (ESCape)
instruction. The 8086 has no such provision.

Execution of numerics opcodes proceeds differently in the 80C186EB than in the 8086/8088 or
80186/80188. See Chapter 12 for details. The 80C 188EB cannot utilize a numerics processor exten­
sion at all. When migrating from the 8086/8088 or 80186/80188 to the 80CI86/80CI88, the user
should be aware of these differences. In particular, it may be necessary to check software for unex­
pected numerics (ESCape) opcodes.

A-4

Differences Appendix B
Between all 80186/
80C 186/80C 186EB
Family Members

APPENDIX B
SUMMARY OF DIFFERENCES BETWEEN

THE 80186, 80C186, AND 80C186EB
FAMILIES

The 80C 186EB is the third member in a line of 80186 code compatible, high integration, embedded
microprocessors. There are differences between all members of the product line. The description of
these differences is handled in this Appendix on a functional block basis. The family matrix in figure
B-1 summarizes the family differences.

The original NMOS 80186 has only one major mode of operation. The 80C186, to remain pin and
software compatible with the 80186, has two. In Compatible Mode the 80C186 is a pin for pin re­
placement of the 80186 (with the exception of numerics co-processing capability). In Enhanced Mode
the user has access to two additional peripherals: the Refresh Control Unit, and the Power Save Unit.
Enhanced mode maps three of the chip select pins into numerics processor communications functions.
Mode selection is made only at reset.

The 80C I 86EB has only one mode. The on-board peripherals of the 80C 186EB are different from the
80186 (and 80C186) and therefore a "compatible mode" is not necessary.

8-1

APPENDIX B

B.1 CPU DIFFERENCES

FEATURE 80186

ENHANCED 8086 INSTRUCTION SET

NMOS TECHNOLOGY

CHMOSIII

CHMOS IV (1 MICRON)

DYNAMIC NON-MODULAR CORE

LOW-POWER STATIC MODULAR CORE

POWER SAVE (CLOCK DIVIDE) MODE

POWERDOWN AND IDLE MODES

QUEUE STATUS MODE

MULTIPLEXED 80C187 INTERFACE

DIRECT 80C187 INTERFACE

ONCE TEST MODE

INTERRUPT CONTROL UNIT

TIMER/CONTER UNIT

CHIP SELECT UNIT

DMAUNIT

SERIAL COMMUNICATIONS UNIT

REFRESH CONTROL UNIT

INPUT/OUTPUT PORT UNIT

COMPATIBLE WITH
ORIGINAL 80186

_ IMPROVED
VERSION

Figure 8-1: Family Feature Matrix

B.1.1INSTRUCTION SET

8OC186
80C186E8

All three devices execute the same instruction set. There have been no additions or deletions to this
set siIice the original 80 186. Any code written for an 80 1 86/80C 1 86/80C 1 86EB will be fully portable
amongst family members. Peripheral register locations have been moved, however, on the
80C186EB (see below).

All family members are upward compatible with the 8086/8088 instruction set.

8-2

APPENDIX B

B.1.2 SEMICONDUCTOR TECHNOLOGY DIFFERENCES

The 80186 is implemented in NMOS technology. As such, it dissipates more power and runs slower
than the more recent CMOS implementations. The 80186/188 is dynamic, which means the clock
must always be applied for the device to operate normally.

The 80C 186 is implemented in CHMOS III, a high performance CMOS technology. Like the 80186,
the 80C186 is dynamic. The 80C186 can run at up to twice the clock rate of the 80186.

The 80Cl86EB is implemented in CHMOS IV, a 1 micron CMOS technology. The 80C186EB is a
fully static device. The clock can be shut off without a loss of state (provided V cc is maintained). The
new modular core was also designed to consume less power than an 80C 186 operating at the same
frequency. These two features allow significant power savings over earlier 80186 family products.
The 80C186EB's execution speed is equal to that of the 80C186.

B.1.3 QUEUE STATUS MODE

The 80186 and 80C 186 families have an optional "queue status mode." This mode is entered during
reset by tying RD low. In queue status mode, the ALE and WR pins changed functionality to indicate
the internal queue status.

Queue status mode was deleted from the 80C186EB.

B.1.4 NUMERICS INTERFACE

The 80186 does not directly support a numerics interface. The 80186 can be connected to an 8087
through an 82188.

The 80C186/80C 188 in compatible mode does not support any numerics operations. The ET (Escape
Trap) bit in the relocation register has no effect in Compatible Mode; encountering an ESCape opcode
causes a type 7 interrupt to be executed.

The 80C186 in enhanced mode directly supports the 80C187 Numerics Processor Extension. The
MCSO,MCSl,andMCS3chipselectlinesbecomethePEREQ,ERROR, andNPS pins respectively.
The ET bit controls whether numerics instructions are dispatched to the 80C187 or trapped for
emulation.

The 80C 1 86EB directly supports the 80C 187 with 3 dedicated pins, no pin multiplexing is used. The
ET bit on the 80C 186EB functions the same as the ET bit on the 80C 186 in enhanced mode. Some
packaging options for the 80C 186EB delete the numerics pins.

8-3

APPENDIXB

B.1.5 TRANSCEIVER INTERFACE (DEN AND DT/R)

The timings for the transceiver interface pins (DEN and DTiR) on the 80C186EB family have been
improved to prevent bus contention.

B.1.6 READY INTERFACE

The 80186 and 80C186 family devices have two ready input pins: SRDY and ARDY. SRDY has to
be synchronized externally while ARDY is partially synchronized internally. The 80C186EB has
only one ready input, READY, which is functionally equivalent to ARDY.

B.2 CLOCK OSCILLATOR CIRCUITRY AND EXTERNAL FREQUENCY INPUT

The external frequency input (EPI) requirements differ somewhat between the NMOS 80186/80188
and the CMOS devices. On the NMOS device, itis possible to drive either Xl (with X2 unconnected)
or X2 (with Xl grounded). This is possible because of the nature of NMOS inverter pullups.

The only acceptable EPI configuration for the CMOS devices is to driveXl and leave X2 unconnected.
These pins were renamed CLKIN and OSCOUT on the 80C 186EB to reinforce this point. Driving X2
(OSCOUT) will overdrive the CMOS oscillator inverter and will, in time, render the clock circuitry
inoperable.

B.3 POWER CONSUMPTION MANAGEMENT MODES

The 80186 family and the 80C186 in compatible mode have no power management features.

The 80C 186 in enhanced mode has a power save unit. This unit allows the user to conserve power by
dividing the internal CPU frequency by a programmable pre scalar between 1 and 16. The minimum
internal CPU frequency is 500 KHz in any mode. Power save mode is entered by programming the
power-save register. Execution continues at the slowed clock rate.

The 80C186EB has two power management modes that make use of its static design: idle and
powerdown. Idle mode shuts off the CPU while leaving the peripheral set running. Any unmasked
interrupt, NMI, or reset will re-awaken the core. Refresh requests and HOLD requests will tempo­
rarily re-awaken the core for servicing. Powerdown mode shuts off all clocks and the external
oscillator. Power consumption is reduced to transistor leakage (typically in the microamp range).
Powerdown can only be exited via an NMI or reset. Both modes are entered by setting the corre­
sponding bit in the power control register and executing a HALT instruction.

8-4

APPENDIXB

B.4INTERRUPT CONTROLLER

The 80186 and 80C186 family devices have a slave mode (fonnally RMX mode) which allows the
internal interrupt unit to become a slave to an external 8259 . The 80C 186EB does not have this mode.

The 8OC186EB provides one extra external interrupt pin, INT4.

B.5 TIMER COUNTER UNIT

The timer counter unit operates identically in all members of the 80 186/80C 186/80C 186EB family.

B.6DMAUNIT

The 80186 and 80C186 families include a DMA unit. This unit is not available on the 80C186EB.

B.7 SERIAL COMMUNICATIONS UNIT

The 80C 186EB includes a 2 channel serial communications unit. This peripheral is not on the 80186
or the 80C186 family.

B.8 CHIP SELECT UNIT

The 80186 and 80C186 family devices include a chip select unit capable of accessing up to 768K of
memory and up to 7 peripheral devices. A maximum of 3 wait states can be inserted in bus cycles
automatically. Chip select areas cannot overlap and they cannot be disabled by software.

The 80C 186EB includes an enhanced chip select unitthat is not compatible with the 80186 chip select
unit. The enhanced chip select unit has a total of 10 channels that can be configured for any size region
of either memory or peripheral space. The channels can overlap and can be software enabled and
disabled. Up to 10 megabytes of physical memory can be accessed through software paging. Up to
fifteen wait states can be internally generated.

B.9 REFRESH CONTROL UNIT

The 80186 and 80C186 in compatible mode do not have a refresh control unit.

The 80C186/80C188 in enhanced mode has a refresh control unit capable of refreshing dynamic
RAMs with a row address of 9 bits or less.

The 80C 186EB refresh control unit can refresh dynamic RAMs with row addresses of 12 bits or less.

8-5

APPENDIX B

B.10 PERIPHERAL CONTROL BLOCK

The 80186 and 80C 186 peripheral control blocks are completely compatible. The register locations
of some peripherals (i.e. the timers) have been moved on the 80C186EB family to allow functional
groups of registers to remain together. The change of register locations must be kept in mind when
porting code among family members.

8-6

Differences Appendix C
Between 80C186EB
and 80C188EB

APPENDIXC
SUMMARY OF DIFFERENCES BETWEEN THE 80C186EB

AND THE 80C188EB

The 80Cl86EB and the 80Cl88EB have the same execution unit. The Bus Interface Unit, however,
differs between the two devices. The 80Cl88EB uses an 8-bit data bus to communicate with external
memories and peripherals, where the 80Cl86EB uses a 16-bit bus. The following list summarizes the
effects of the bus width difference:

The 80C I 88EB has a four byte prefetch queue, rather than the six byte prefetch queue present on
the 80C186EB. The reason is that the 80CI 88EB fetches opcodes one byte at a time, requiring
more bus cycles to fill the queue. A smaller queue is required to prevent an inordinate number of
bus cycles being wasted by prefetching opcodes to be discarded during a jump.

AD8-ADI5 on the 80Cl86EB are transformed to A8-A15 on the 80C188EB. Valid address
information is present on these lines throughout the bus cycle of the 80C I 88EB . Valid address
information is not guaranteed on these lines during idle T -states.

BHE on the 80Cl86EB is replaced by RFSH (refresh cycle running) on the 80C188EB. The
80Cl88EB has no high byte on the data bus.

Execution times for most data transfer instructions increases because the BIU funnels the ac­
cesses through a narrower data bus. The narrower bus also means that the prefetch queue will run
empty more often, causing the Execution Unit itself to be bus-limited. The execution time within
the processor, however, is not changed between the 80C I 86EB and 80C I 88EB.

Another important point is that the 80C 188EB is internally a 16-bit machine. This means that access
to the integrated peripheral registers of the 80C 188EB will be done in 16-bit words, not in 8-bit bytes.
When a word access is made to the internal registers, the BIU will run two bus cycles externally.

Access to the control block may also be done with byte operations. Internally the full 16 bits of the AX
register will be written, while only one bus cycle will be executed externally.

C-1

Synchronization Appendix 0

APPENDIXD
SYNCHRONIZATION OF EXTERNAL INPUTS

Many input signals to an 80C I 86EB family processor are asynchronous, that is, a specified set up or
hold time is not required to ensure proper functioning of the device. Associated with each of these
inputs is a synchronizer which samples this external asynchronous signal, and synchronizes it to the
internal clock.

0.1 WHY SYNCHRONIZERS ARE REQUIRED

Every data latch requires a certain set up and hold time in order to operate properly. At a certain
window within the specified set up and hold time, the part will actually try to latch the data. If the input
makes a transition within this window, the output will not attain a stable state within the given output
delay time. The actual size of this sampling window is typically much smaller than the window
specified by the data sheet; however, part to part variation could move the actual window around
within the specified window.

Even if the input to a data latch makes a transition while a data latch is attempting to latch this input,
the output of the latch will attain a stable state after a certain amount of time, typically much longer
than the normal strobe to output delay time. Figure D-I shows a normal input to output strobed
transition and one in which the input signal makes a transition during the latch's sample window. To
synchronize an asynchronous signal, all one needs to do is to sample the signal into one data latch long
enough for the output to stabilize, then latch it into a second data latch. The time between the first latch
strobe and the second latch strobe allows the first latch to attain a steady state. With the asynchronous
signal resolved in this way, the input signal at the second latch satisfies its setup and hold require­
ments.

STIIOIIE J
INPUT ----:111'=.~=' ITI=ME-:dIHOLD~

ACTUAL SAMPLING INSTANT

IV INVALID •
INP\IT---~ ~

RIIPONI! ----....
r-_.tl ::RI=IOLUTION=='I1MI:::LI

VALID --.J -
RIIPONI! _____ JJ

270288·001·131

Figure D-1. Valid and Invalid Latch Input Transitions and Response

0·1

APPENDIX 0

Thus, the output of this second latch is a synchronous signal with respect to its strobe input.

A synchronization failure can occur if the synchronizer fails to resolve the asynchronous transition
within the time between the strobes of the two latches. The rate offailure is determined by the actual
size of the sampling window of the data latch, and by the amount of time between the strobe signals
of the two latches. Obviously, as the sampling window gets smaller, the number of times an asynchro­
nous transition will occur during the sampling window will drop. In addition, however, a smaller
sampling window is also indicative of a faster resolution time for an input transition which manages
to fall within the sampling window.

0.2 80C186EB FAMILY SYNCHRONIZERS

The 8OC186EB family uses the two stage synchronization technique on TUN, T2IN, P~.x, P1.x,
NMI, INTO-4, and HOLD input lines. READY uses a slight modification (see Section 3.6).

D-2

Instruction
Summary

AppendixE

FUNCTION

DATA TRANSF£R
MDVoMDVE:

ROfllster to ROflisterlMemory

ROfllster/memory to rOfllster

Immediate to register memory

Immediate to register

Memory to aooumulator

Accumulatorto memory

Reglster/memory to SOflment register

Segment register to register/memory

PUSH. Puoh:

APPENDIXE

Appendix E. Instruction Set Summary

FORMAT

o 0 0 1 o 0 w mod reg rim

o 0 0 1 1 w mod reg rim

1 00 0 1 1 w modOOO rim data

o 1 1 w reg data dalaifw= 1

o 1 o 0 0 0 w addr-Iow addr-high

o 1 o 0 0 1 w addr-Iow addr-hlgh

o 0 0 1 1 1 0 mod o reg rim

o 0 0 1 1 0 0 mod 0 reg rim

datailw=1

Clock
Cycles

2112

2/9

12-13

3-4

9

2/9

2111

Memory 1 1 1 1 1 1 1 1 1 mod 1 1 0 rim 1 16

Register 1 0 1 0 1 reo 1 10

Comments

8/16-bit

8/16-bit

Segment register l:Wii0;i0iiioiiire;:;girrilliiii;1 ;;;0;il ___ """ ______ _

j!~m;iffi_i.i!im~Em~®m:mrmm®~m~~~m~Em®~@i~m~Hni1!-~MMii,j:Hi@#j~IMnM~m.mnmmmIWMIOtl;ttti!WHm®mHn~lHmmiliiR m:l]~iliH~if!En ;:t!mUi!H;;mln!iH"i!:

POP = Pop:

Memory

Register

Segment register

XeHG. Elcho",,,

Reglster/memory with register

Register with accumulator

IN • Input from:

Rxed port

Variable port

our. Output to:

Axed port

Vanable port

WT = Translate byte to AL

LEA = Load EA to register

LOS = Load pointer to OS

LES = Load pointer to ES

LAHF • Loed AH with flags

UHF = Store AH Into flags

PUSHF = Push flags

POPF.Pop flags

SEGMENT. Segme" Override:

CS

as
OS

ES

00011111 modOOO rim

o 1 0 1 1 reg 1

o 0 0 reg 1 1 1 1 (reg.ol)

o 0 0 0 1 1 wi mod reo rim I
o 0 1 0 reo 1

o 0 Owl port

o 1 1 owl

o 0 1 1 w port

o 1 1 1 w

o 1 0 1 11

o 0 0 1 1 o 1 mod reo rim

o 0 0 1 o 1 mod~ rim (mod.11)

o 0 0 1 o 0 mod reo rim (mod.ll)

o 0

o 0

o 0 1 o 0

1 0 0 1 o 1

o 0 o 1 1 01

o 0 01

o 0 1 11 01

o 0 1 o 0 1 01

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

E-1

20

10

4/17

10

11

18

18

intJ APPENDIXE

Appendix E.lnstructlon Set Summary (continued)

Clock
FUNCTION FORMAT Cycles Commenls

ARITHMmC

ADDoAdd:

Reg/memory with register to either .3110

Immediate to reglsterlmemory 41t6

Immediate to accumulator loooootow data data nw.t 314 SlI6-bit

ADC = Add wHh ,arry:

Reg/memory with register to either 3110

Immediate to register/memory 4/16

Immediate to accumulator 314 SlI6-b~

INC IIIlncramant:

Reglsterlmemory 11 1 1 1 1 1 w modOOO rim I 3115

Register 10 o 0 0 rag

SUB = Subtra,t:

Reg/memory and register to either 3110

Immediate from register/memory 4/16

Immediate from accumulator 1 0 1 lOw 314 Sll6-bit

SBB. Subtract wHh borrew:

Reg/memory and raglster to eHber 1000110dW mod reg rim I 3110

Immediate from register/memory 11 0 0 0 o 0 s W mod 0 1 rim I deta data if s w.Ol 4116

Immediate from accumulator 10001110W data dataifw.l 314 8/16-blt

DECoDocremo.t:

Reglster/memory 11 111 1 1 W mod 0 0 1 rim I 3115

Raglster 10 o 0 1 reg 3

CMP>Compare:

Reglster/memory wlltl register 10 0 o 1 w mod reg rim I 3110

Register with register/memory 3110

Immediate wit" register/memory 3110

Immediate with accumulator 314 SlI6-bH

NEG.Change sign

AAA=ASCIl adjust for add o 0 1 o 1 11

DM. Decimal adjust for add o 0 1 o 0 11

AAS.ASCII adjust for subtract o 0 111 11

DAS=Decimal adjust for subtract 10 0 o 1 1 11

MUl=Multiply (unsigned): 11 11 1 0 1 1 w mod 1 0 0 rim I
Register-Byte 26-28

Register-Word 35-37
Memory-Byte 32-34
Memory-Word 41-43

IMULolnteger muHlply (Signed): 11 1 1 1 01 1 w mod 1 0 1 rim I
Register-Byte 25-28
Register-Word 34-37
Memory-Byte 31-34
M8mory~Word 40-43

Shaded areas indicate instrUctions not available in iAPX 86,88 microsystems.

APPENDIX E

Appendix E. Instruction Set Summary (continued)

Clock
FUNCTION FORMAT Cycles Comments

ARITHMETIC (C,nllnued):

DlV~Divide (unsigned): 11 11 1 0 1 1 w I mod 1 1 0 rim I
Register-Byte 29

Register-Word 3B
Memory-Byte 35

Memory-Word 44

IDIV=lnteger divide (signed): 11 1 1 1 0 1 1 w I mod 1 1 1 rim I
Register-Byte 44-52

Register-Word 53-61

Memory-Byte 50-5B

Memory-Word 59-67

AAM~ASCII adjust for mul1iply 11 1 o 1 0 1 o 0 I o 0 0 0 1 0 1 o I 19

AAD~ASCII adjust for divide 11 1 0 1 o 1 o 1 I o 0 0 0 1 0 1 o I 15

CBW=Convert byte to word 11 0 0 1 1 o 0 0 I 2

CWD=Convert word to double word 11 o 0 1 1 o 0 1 I 4

lOGIC

Shlft/Rotata Instructions:

Register/Memory by 1 11101000wl modm rim I 2/15

Register/Memory by CL 11101001wl modm rim I 5+n/17+0

m Instruction
o 0 0 ROl
o 0 1 ROR
o 1 0 RCl
o 1 1 RCR
1 0 0 SHUSAl
1 0 1 SHR
111 SAR

AND .And:

Reg/memory and register to either I 0 0 1 0 0 o d w I mod reg rim I 3/10

Immediate to register/memory 11 o 0 0 0 o 0 w I modl00 rim I data I dataifw= 1 I 4/16

Immediate to accumulator I 0 o 1 0 0 lOw I data I data ifw=1 I 3/4 B/16-bit

TEST =And function to Ilags, no result:

Register/memory and register 11 0 0 o 0 1 o w I mod reg rim I 3/10

Immediate data and register/memory 11 1 1 1 0 1 1 w I modOOO rim I data I data ifw=1 I 4/10

Immediate data and accumulator 11 o 1 o 1 o 0 w I data I data ifw=1 I 3/4 B/16-bit

OR.Or:

Reg/memory and register to either I 0 0 0 o 1 0 d w I mod reg rim I 3/10

Immediate to register/memory 11 o 0 o 0 0 o w I modO 01 rim I data I data ifw=1 I 4/16

Immediate to accumulator I 0 0 0 o 1 1 Ow I data I data ifw=1 I 3/4 B/16-bit

XOR=Exclusive or:

Reg/memory and register to either I 0 0 1 1 0 0 d w I mod reg rim I 3/10

Immediate to register/memory 11 0 0 0 0 0 Ow I mod 1 1 0 rim I data I data ifw=1 I 4/16

Immediate to accumulator I 0 o 1 1 0 1 Ow I data I dataifw:::1 I 3/4 B/16-bit

NOT:::lnvert register/memory 11 11 1 0 1 1 w I modOl0 rim I 3

STRING MANIPULATION:

MOVS~Move byteiword 11 0 1 o 0 1 Ow I 14

CMPS:::Compare byte/word 11 0 1 0 0 1 1 w I 22

SCAS~Scan byteiword 11 0 1 0 1 1 1 w I 15

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

E-3

APPENDIXE

Appendix E. Instruction Set Summary (continued)

FUNCTION FORMAT

LODS.Load bytelwd to AIJAX o tOt 0 w

STRING MANIPULATION IConlinuod):

Repeated by count In CX

MOYS - Move string o 0 t o 0 1 Owl

CMPS - Compare string o 0 1 z o 0 1 wi

SCAS - Scan string o 0 1 z 11 1 wi

o 0 Owl

CONTROL TRANSFER

CALL. Call:

Direct within segment 11 o 1 o 0 dlsp-Iow dlsp-hour

Register memory Indirect within segment 11 modO 10 rim

Direct intersegment 11 o 0 1 segment offset

segment selector

Indirect intersegment 11111 1111 mod 0 1 1 rim I (mod.11)

JMP=Unconditlonal jump:

Short/long 11 o 1 o 1 1 disp-Iow

Direct within segment 11 o 1 o 0 disp-low disp-high

Register/memory indirect with segment 11 11 mod100 rim

Direct intersegment 11 o 1 segment offset

segment selector

Indirect intersegment 1111111 11 mod 1 0 1 rim I (mod.11)

RET = Retum from CALL:

Within segment 11 o 0 0 0 1

With seg adding immed to SP 11 o 0 0 0 1 data-low data-high

Intersegment 11 o 0 o 1

Intersegment adding immediate to SP 11 o 0 1 o 1 data-low data-high

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

E-4

Clock
Cycles

12

8+8n

5+22n

5+15n

6+11n

15

13/19

23

38

14

14

26

14

11/17

16

18

22

25

Comments

APPENDIXE

Appendix E. Instruction Set Summary (continued)

CIDCIc
FUNcnON FORMAT Cycll' Commlnl.

CONTROL TIWIIfER (Cantlnuld):

JEJJZ. Jump on .qual liro o 1 1 1 0 1 0 0 dlsp 4113 13nJMP

JlJJNGE = Jump on I"slnot graater or .qual o t 1 1 0 0 dlsp 4113 taken
41fJMP

JLf/JN8 = Jump on I •• s or .quaVnot gra.tar o 1 11 111 dlsp 4113 not taken

JI/JIlAE. Jump on below/not above or .qual o 1 1 0 0 1 dlse 4113

J8f/JIIA. Jump on below or .quaVnot above o 1 o 1 1 dlsp 4113

JP/JPE • Jump on panty/parity evan o 1 1 0 1 dlsp 4113

JO • Jump on overflow o 1 o 0 0 0 dlse 4113

J8 • Jump on sign o 1 1 0 0 0 dlsp 4113

JNf/JNZ. Jump on not equalfnot zero o 1 o 1 0 1 dlsp 4113

JNL/J8E = Jump on not less/grastar or .qual o 1 11 1 1 0 1 dlsp 4113

JNWJG • Jump on not 11188 or equaVgreater o 1 1 11111 dlsp 4113

JN8/JAE = Jump on not below/above or equal o 1 11 o 0 1 1 dlsp 4113

JNBE/JA. Jump on not below or equal/above o 1 1 0 1 1 dlsp 4113

JNP/JPO = Jump on not par/par odd o 1 1 1 0 1 1 dlsp 4113

JNO = Jump on not ove"low o 1 1 1 0 0 0 1 dlsp 4/13

JN8 = Jump on not sign o 1 1 1 0 0 1 dlsp 5115

JClIZ = Jump on ex zero 1 1 1 0 0 0 1 1 dlsp 6116

LOOP • loop ex times t 1 1 0 0 0 1 0 dlsp 6/16

LOOPZ/lOOPE = loop while zero/.qu.1 [11 1 0 0 0 0 1 dlsp 16 JMPtaken/

lOOPNZILOOPNE = loop while not Zero/equal [11 100000 dlsp JMP not taken

INT.lntarrupt:

Typ. speolfled [1 1 ·0 0 1 1 o 1 typo 47 nlntak.nf

Type 3 [1 1 o 0 1 1 o 0 45 n INT. not

[1
taken

INTO = Interrupt on overflow 1 0 0 1 1 1 0 46/4

IRET = Interrupt return [1 1 0 0 1 1 1 1 [28

.. ······ ••. HlIl! til! 11E@

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

E-5

inter APPENDIXE,

Appendix E. Instruction Set Summary (continued)

ClOCk
FUNCTION FORMAT Cyel .. Commenll

PROCEISOR CONTROL

ClC. Clear carry I 1 1 1 1 1 0 0 0 I 2

CMC .. 'Complement carry I 1 1 1 1 0 1 0 1 I 2

ITt,: Sot Carry I 1 1 1 1 1 0 0 1 I 2

CLD: Clear direction 1 1 1 1 1 1 0 0 I 2

STD. Set direction 1 1 1 1 1 1 0 1 I 2

Clio Clear Interrupt 1 1 1 1 1 0 1 0 I 2

STI • Sot interrupt 1 1 1 1 1 0 1 1 I 2

HlT.HaH 1 1 1 1 0 1 0 0 I 2
, WAIT. Walt 1 0 0 1 1 0 1 1 I 6 lIt.,," 0

LOCK. Bus loci< prellx I 1 1 1 1 0 0 0 0 I 2

ESC .. Processor extension Esc~ 11 1 0 lIT T T I mod III rim I 6
(m III are opcode to processor extension)

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

FOOTNOTES

The Effective Address (EA) of the memory operand
is computed according to the mod and rIm fields:

if mod = 11 then rIm is treated as a REG field
if mod = 00 then DISP = 0*, disp-Iow and disp-high
are absent
if mod = 01 then DISP = disp-low sign-extended to
16-bits, disp-high is absent
if mod = 10 then DISP = disp-high:disp-Iow

if rIm = 000 then EA = (BX) + (SI) + DISP
if rIm = 001 then EA = (BX) + (01) + DISP
if rIm = OlO'then EA = (BP) + (SI) + DISP
if rIm = 011 then EA = (BP) + (01) + DISP
if rIm = 100 ,then EA:::: (SI) + DISP
if rIm = 101 then EA = (DI) + DISP
if rIm = 110 then EA = (BP) + DISP*
if rIm = 111 then EA = (BX) +DISP

DISP follows 2nd byte of insturction (before data
if required)

·except if mod = 00 and rim = 110 then EA = disp-bigh:disp-1ow.

SEGMENT OVERRIDE PREFIX

o 0 1 reg 1 1 0

E-6

reg is assigned according to the following:

Segment
reg Register

00 ES
01 CS
10 SS
11 OS

REG is assigned according to the
following table:

16·Bit (w=l)

000 AX
OOlCX
OlOOX
011BX
lOOSP
101 BP
110S1
111 DI

8-Bit(w=O)

OOOAL
00ICL
010DL
011 BL
l00AH
tOlCH
110DH
ll1BH

The physical address of all operands
addressed by the BP register are com­
puted using the SS segment register. The
physical addresses of the destination
operands of the string primitive operation
(those addressed by the DI register) are
computed using the ES segment, which
may not be overriden.

Instruction
Summary 2

AppendixF

',; ..

APPENDIX F

Appendix F. Machine Instruction Decoding Guide

1ST BYTE
2ND BYTE BYTES 3,4,5,6 ASM·86 INSTRUCTION FORMAT

HEX

F·1

APPENDIX F

Appendix F. Machine Instruction Decoding Guide (continued)

1ST BYTE

HEX BINARY
2ND BYTE BYTES 3,4,5,6 ASM·86 INSTRUCTION FORMAT

.. .~"~.

F-2

APPENDIXF

Appendix F. Machine Instruction Decoding Guide (continued)

1ST BYTE

HEX BINARY
2NDBYfE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

73 0111 0011 IP-lNe8 JNB/JAEI SHORT-LABEL

74 0111 0100 IP-INC8
.Qll.i 0101

76

80

80

80 SBB REG8/MEM8,IMMED8

80 AND REG8/MEM8,IMMED8

80 SUB REG8/MEM8,IMMED8

80

80

81

81 REG 16/MEM16,IMMED16

F-3

APPENDIXF

Appendix F. Machine Instruction Decoding Guide (continued)

8D 1000 1101 MOD REG RIM (DlSP-LO),(DlSP-HI) LEA REG16,MEM16

F-4

APPENDIXF

Appendix F. Machine Instruction Decoding Guide (continued)

1ST BYTE

HEX BINARY
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

SE 1000 1110 MOD OSR RIM (DISP-LO),(DISP-HI) MOV SEGREG,REGl6/MEM16
i~~~rl_l;~rl:' rirn.i'lj·~f,~alif: ,1~:!IIII~ruf*_i;1r'!!!~: IJl~~1!~J~iiiIj;i;;ii;~i;li;f~l!;,ti;i:~;j;l!,!rJfl~1~~;~;:~,; ffJfl __ j,1~~~;~;j~~;!;~r;'~iji'r;~fii:~~iiliji,i(~;Hj~i;f;!f~i;i!Iii;~f~ilfaj

SF 1000 1111 MOD 000 RIM (DISP-LO),(DISP-HI) pop REGl6/MEM16
tt~~~_~tt1k ~i\ill{kbllrUli% ·~AIIIDJltl{_L~~~.~t' r,Wi~t~~t\W;~!J.fLt\{i:fi.diJ~JU:i}U;~Jj,!f~i~l~j}~~; ~llij_Ul~~~,~rjfl~~,ij.i~}iiUJf;~!~tli~iiJ:ji;l,if.!ji,lj~~;Jimjjfl0,iJ~,f:it;Jf:j~

DISP-Hl,SEG-LO,
SEG-Hl

ADDR-Hl

CALL FAR PROC

MOV AL,MEMS
11WI11~~~~ ~lmll}!11_W(~~1 __ ~~1~f!11~~~~11 ~~:~~~lI~lMf~)~1~~;~lt~v.~~1}lW;~}i ~i111illl~~%~~~I~~~t~j~~l~~~tl~~ii~1!~~·tt~~\~~t~iii;!

A2 1010 0010 ADDR-LO ADDR-Hl MOV MEMS,AL

m.!l~!: 1~1~~jlji.~~1i !111 ••• lllji!!!iilll! II!j~;liIIj!lllljJj!ll!!!il~!ll;m!llIIl1iljj!i_.li!I!II!11IJljljj~Jmllllllllljljl!il!
A4 1010 0100 MOVS DEST-STRS,SRC-STRS

!li~.!jl!i ~1I.m.ljllm1li1l*, .111!!i:I!!I!!IlllJiJ:I!!JI1JM!l1li)'IJ!i1tJJj!!diiJjiili'1lm'Jllm!!IJ11IIIIIJillll1!1ill!!i'I'I1I*,,!jjl_j!1JjIBlIIIBalllllIIIJllilj'
A6 1010 0110 CMPS DEST-STRS,SR-STRS

I!.~if m\~I.II\.'!\\lr L\!IIBl!!\lil"J.II~III.111(lmlI1l11t
AS 1010 1000 DATA-S TEST AL,IMMEDS

~~mll:iri~f l~!lIII~~~~.~~jl~, ~l~i._~.ll!~~nf.f:J~~~ :tl1~DIi1lll1]1]~r~llm}~~l~i.l~n~1~~1, 1!~~_I~F.J~~~It~J~~lJ~~~m@~1~Jl~~}~~·lrirr;~;
AA 1010 1010 STOS DEST-STRS

B2 1011 0010 DATA-S MOV DL,IMMEDS

B6 'lOll 0110 DATA-S MOV DH,IMMEDS

F-5

APPENDIXF

Appendix F. Machine Instruction Decoding Guide (continued)

BYTES 3,4,5,6

F-6

APPENDIX F

Appendix F. Machine Instruction Decoding Guide (continued)

1ST BYTE
2ND BYTE ASM·86 INSTRUCTION FORMAT

HEX BINARY
BYTES 3,4,5,6

CD 1100 1101 DATA·S IMMEDS
.... CE tiOD. t110

CF 1100 1111 IRET
1)0< ltol OOOQ·MODOOOR/M (DISP·LO);(DI$P~H:i) .abL ROOs1MBM8,.f
DO

DO
TOO

1101 0000 MOD 001 R/M (DISP·LO),(DISP·HI) ROR REGS/MEMS,l
llOlOOOO ··M;Q:[)010RtM· ·(tj1SJ;!.I;4),(J;>ISN4:il· ·'8.0I., •.......•...•..•. • .. ~G$l~N,l<
1101 0000 MOD 011 RIM (DISP·LO),(DISP·HI) RCR REGS/MEMS,l
11010006 ··MOIllOOR!M(DtSr.;i,O),(DtsP.}Jlj ·$~aL.*OO$~$,t

DO 1101 0000 MOD 101 R/M (DISP·LO),(DISP·HI) SHR REGS/MEMS,l
. PO> Hot o()Q()Mt)pJ IORlM > (IlQ{us«l) .

1101 0000 MOD 111 R/M (DISP.LO),(DISP·HI) SAR REGS/MEMS,l
1101 0001 MobOOORlM (DISP,.:j<;(»);(blSP"Ht) SAltRB<JliS/MEM16,1
1101 0001
HoI 00111
1101 0001
ItOlOool

MOD 001 R/M (DISP·LO),(DISP·HI) ROR REG16/MEMI6,l
MODOlOlYM .(DrSP;.U»,(DlSp~HI1· ··.RCI/.···.· ··.Rl!C}l6/MaMin;t.
MOD 011 RIM (DISP·LO),(DISP·HI) RCR REG 16/MEM16, 1
MOD iOORlM. ·CDISp:'LO),(DtspLHr) ···sAtts:til-RB<Jl6/M:md16; 1·

1101 0001 MOD 101 RIM . (DISP~LO),(DISP.HI) SHR REG16/MEMI6,1
>1 t01 .··000 FMOPl1QR/M· (nQtused)
1101 0001 MOD 111 R/M (DISP·LO),(DISP·HI) SAR REG16/MEM16,1
11010010 MOD·OO6RlM (DrSr~40),(DIS}qlI). ·ROL<RB08.tMEMS;Ct
1101 0010 MOD 001 RIM (DISP-LO),(DISP·HI) ROR REGS/MEMS,CL
1101 .. OOtOMOD01<:lR/M> .••.. (QI$P·OO),(pr$JJ.;lii)·RCtR:et8.JME'MS.CL
1101 0010 MOD 011 RIM (DISP·LO),(DISP·HI) RCR REGS/MEMS,CL

I."'''' .. , 11010010 ··.MOPlOOR/M· .(bISP~LOj;(!J):rSP~HI)· ··SA;t:,/SHL RBGs)MEMs;CL·
1101 0010 MOD 101 RIM (DISP-LO),(DISP-HI) SHR REGS/MEMS,CL

. nOl 0010 MOD 110 RIM>
1101 0010 MOD 111 R/M
11<H (l()ttMAD 000 RIM

D3 1101 0011 MOD 001 RIM
.p~ H(nOOt fMOPOl(lRlM

D3 1101 0011 MOD 011 RIM
,[)3l101·00UMOP1OORiM·
D3 1101 0011 MOD 001 RIM

.P3L.HOl· OOfFMODnOR/M
D3 1101 0011 MOD 111 R/M
·04····· ·110t(}1OO <00001010
D5 1101

.]$ Jr01

0010
0011 IP-INC-S
0100 DATA~8

E5 1110 0101 DATA-S

(DISP-LO),(DISP-HI) REGS/MEMS,CL
(PlSI91:»,(D1SP·1U) ...•. . ·RBOJ6.~16,CL ••• ••••
(DISP-LO),(DISP-HI) ROR REG16,MEM16,CL

....• (DlSJ'·.:t.;Q);(DISr~}JI)RCL··· ·RB016,~16:CI.;· ••
(DISP-LO),(DISP-HI) RCR REG16,MEM16,CL
.(DISP·L());(l1>!SP;;H:I)·· ...••. sAtllilH:tR;E',(,16,;MaM16;Ci.i·
(DISP-LO),(DISP-HI) SHR REG16,MEM16,CL

F-7

~Q()~lS,i)~!t;'4AB~ .
·<·I':Qo:P~Z<···.

LOOPE/ SHORT-LABEL
LOOPZ

<LOOPSflO~T~LABEL
SHORT-LABEL
AL,lMMEOS·

IN AX,IMMEDS

APPENDIXF

Appendix F. Machine Instruction Decoding Guide (continued)

1ST BYTE
2ND BYTE

HEX BINARY

E6 1110 0110 DATA-8
11\(IQlliDATA~!I< .

E8 1110 1000 IP-INC-LO
. Eit··· IltQl001· ···tp"lNC-Lo··
EA 1110 1010 IP-LO
au LUOlo1r· ·tp:INC8> .
EC 1110
BIJillQ:

F6
F6
F6

.F6
F7

QIlQM())DQQIRI&f
0110 MOD 010 RIM
(lllff···MoD·ottRJM··

1111 0110 MOD100RIM
11n·011O . Mo01QIRIM
1111 0110
lfn· ana
1111 0111

MOD 110 RIM
.).:{())011fIVM·
MOD 000 RIM

01Ui .:M;())D:QQ1:M4

BYTES 3,4,5,6

(DISP-LO),(DISP-HI)
. (I)ISP';LO),(OfsP.'ijI)
(DISP-LO),(DISP-HI)

; .(OlSp4:.o);())ISP~Hl)
(DISP-LO),(DISP-HI)
(OIsPI"Q),(OlSPHI)·· .
(DISP-LO),(DISP-HI),
DATA-LO,DATA-HI

MOD 010 RIM (DISP-LO),(DISP-HI)
.•• ··).:{QPOHIVM •. ;; ····()j)I$J:lhLo);(DrSp~HI} .•..

MOD 100 R/M (DISP-LO),(DISP-HI)

ASM-86 INSTRUCTION FORMAT

OUT AL,IMMED8
QUTAx,rMMEP$...

NEAR-PROC
·lSEAR:iLADEL··;· •..
FAR-LABEL

< SIloR.T~LABEL .

REG8/MEM8
• .• ·~<lIYMEM;!I ..

MUL REG8/MEM8
.IMU1..: R:!3G8I:MEMiL

DIV REG8/MEM8
IDIV R:!3G8/NmlA:tF·····
TEST REGl6/MEM16,IMMED16

(not l1s¢d) .
NOT REGl6/MEM16
N$Ci. .•• ·R:!3<lH'iffi;fEM16< ..
MUL REGl6/MEM16

l14·rl!~J:U.il . MQJ)10tIVM ··(.DtSR~W);W:tsP"HI)· IMUIr ··ItOO:L6/ME).:{1(!i···· ..

1110
ilJo
1110
1110

MOD 110 R/M (DISP-LO),(DISP-HI)
MOPIlJ.:M4 .. (OISp·W)~(DISP·HI)

F-8

DIV REGl6/MEM16
IDIVREG161MID\.f.1(:; ..

APPENDIX F

Appendix F. Machine Instruction Decoding Guide (continued)

1ST BYTE

HEX BINARY
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

FF 1111 1111 MOD 000 R/M (DISP-LO),(DISP-HI) INC MEMI6
FF 1111 1111 MOPO(HRtM ", (DrSP~LO),(DISPHl) ,"DEC MEM16
FF 1111 1111 MODOIOR/M (DISP-LO),(DISP-HI) CALL REG16/MEMI6(intra)
FF 1111 1m MODOilR/M (DlSP-LO),(D1SP~HI) I CALL ' MEM16(intersegnient)
FF 1111 1111 MOD IOOR/M (DISP-LO),(DISP-HI) IMP REG 16/MEM 16(intra)
FF 1111 1111 <MOD WI RIM ", ' • (PISP·LO).(DlSP;HI) "IMP ' MEM16(iritersegm(lrtt) , ,

FF 1111 1111 MOD llOR/M (DISP-LO),(DISP-HI) PUSH MEMI6
FF 00 .lUI MonUIR/M .", ' '< '(ttotused) . • "

"".

F-9

Mnemonic Appendix G
Encoding Matrix

LO

HI 0 1 2 3

0 ADD ADD ADD ADD
b,f,r/m w,f,r/m b,t,rlm w,t,r/m

1 ADC ADC ADC ADC
b,f,r/m w,f,r/m b,t,r/m w,t,r/m

2 AND AND AND AND
b,f,rlm w,f,rlm b,t,r/m w,t,r/m

3 XOR XOR XOR XOR
b,f,rlm w,f,r/m b,t,r/m w,t,r/m

4 INC INC INC INC
AX CX DX BX

5 PUSH PUSH PUSH PUSH
AX CX DX BX

6
PUSHA POPA

BOUND
w,f,rlm

7 JBI JNBI
JO JNO JNAE JAE

8 Immed Immed Immed Immed
b,r/m w,r/m b,rlm is,rlm

9 XCHG XCHG XCHG XCHG
AX CX DX BX

A MOV MOV MOV MOV
m-+AL m-+AX AL-+m AX-+m

B MOV MOV MOV MOV
i-+AL i-+CL i--+DL i-+BL

C Shift Shift RET.
b,i w,i (i+SP) RET

D Shift Shift Shift Shift
b w b,v W,V

E LOOPNZ/ LOOPZ/
LOOPNE LOOPE

LOOP JCXZ

P
LOCK REP

REP
Z

where:

modO rim

Immed

Shift

Grpl

Grp2

APPENDIXG

4 5 6

ADD ADD PUSH
b,ia w,ia ES

ADC ADC PUSH
b,i w,i SS

AND AND SEG
b,i w,i =ES

XOR XOR SEG
b,i w,i =SS

INC INC INC
SP BP SI

PUSH PUSH PUSH
SP BP SI

JE/ JNEI JBE/
JZ JNZ JNA

TEST TEST XCHG
b,r/m w,r/m b,r/m

XCHG XCHG XCHG
SP BP SI

MOVS MOVS CMPS

MOV MOV MOV
i-+AH HCH i-+DH

LES LDS
MOV
b,i,r/m

AAM AAD

IN IN OUT
b w b

Grp 1
HLT CMC b,r/m

(){)() 001 010

ADD OR ADC

ROL ROR RCL

TEST - NOT

INC DEC CALL
id

b = byte operation
d= direct
f = from CPU reg
i = immediate
ia = immed. to accurn.
id = indirect
is = immed. byte, sign ext.
1 = long ie. intersegment

7 8 9 A

POP OR OR OR
ES b,f,r/m w,f,r/m b,t,r/m

POP SBB SBB SBB
SS b,f,r/m w,f,r/m b,t,r/m

SUB SUB SUB
DAA b,f,r/m w,f,rlm b,t,r/m

CMP CMP CMP
AAA b,f,r/m w,f,r/m b,t,r/m

INC DEC DEC DEC
Dl AX CX DX

PUSH POP POP POP
Dl AX CX DX

PUSH IMUL PUSH
w,i w,i b,i

JNBE/ JP/
JA JS JNS JPE

XCHG MOV MOV MOV
w,r/m b,f,rlm w,f,r/m b,t,rlm

XCHG CALL
DI CBW CWD I,d

CMPS
TEST
b,i,a

TEST
w,i,a STOS

MOV MOV MOV MOV
j-+BH i-+AX i-+CX i-+DX

MOV
w,i,r/m ENTER LEAVE

RET.
l.(i+SP)

ESC ESC ESC
XLAT

0 1 2

OUT CALL JMP JMP
w d d I,d

Grp 1
w,r/m CLC STC CLI

Oll 100 101

SBB AND SUB

RCR SHUSAL SHR

NEG MUL IMUL

CALL JMP JMP
l,id

G-1

id l,id

rn=rnemory
rim = EA is second byte
si = short intrasegment
Sf = segment register
t=toCPUreg
v = variable
w = word operation
z= zero

B C D E P

OR OR OR PUSH
w.t.r/m b,i w,i CS

SBB SBB SBB PUSH POP
w,t,r/m b,i w,i DS DS

SUB SUB SUB SEG
w,t,r/m b,i w,i =CS

DAS

CMP CMP CMP SEG
w,t,r/m b,i w,i =DS AAS

DEC DEC DEC DEC DEC
BX SP BP SI Dl

POP POP POP POP POP
BX SP BP SI Dl

IMUL INS INS OUTS OUTS
b,i b w b w

JNPI JLI JNL/ JLE/ JNLE/
JPO JNGE JOE JNG JO

MOV MOV MOV POP
w,t,r/m sr,f,r/m LEA sr,t,rlm rim

WAIT PUSHP POPP SAHP LAHP

STOS LODS LODS SCAS SCAS

MOV MOV MOV MOV MOV
i-+BX i-+SP i-+BP i-+SI i-+DL

RET !NT INT
I Type 3 (Any) INTO IRET

ESC ESC ESC ESC ESC
3 4 5 6 7

JMP IN IN OUT OUT
si,d v,b v,w v,b v,w

Grp2 Grp2
STI CLD STD b,r/m w,r/m

110 111

XOR CMP

- SAR

DlV IDlV

PUSH -

Modal Pin States Appendix H

APPENDIXH
MODAL PIN STATES

The tenn "modal pin state" refers to the state that a device pin is in while in a particular mode. There are
a total of five states foran output pin: driven high, driven low ,active (toggling), float, or retain present state
(state the pin was in when the current mode was entered). Input pins may be either synchronous or
asynchronous. Synchronous pins must meet setup and hold times to guarantee proper device operation.
Asynchronous pins must meet setup and hold times to guarantee recognition. Appendix D covers
synchronization.

This Appendix includes a list of all 80C186EB/8OC188EB pins. With each pin in a description of its
function, its type (input, output, or I/O), and its modal pin state. Table H-l details the nomenclature used.

Table H-1. Pin Description Nomenclature

Symbol Description

I Input Only Pin

0 Output Only Pin

I/O Pin can be either input or output

- Pin "must be" connected as described

S(..) Synchronous. Input must meet setup and
hold times for proper operation. The pin is;

S(E) edge sensitive
A(L) level sensitive

A(..) Asynchronous. Input must meet setup and
hold only to guarantee recognition. The pin is;

A(E) edge sensitive
A(L) level sensitive

H(..) While the processor's bus is in the Hold
Acknowledge state, the pin;

H(1) is driven to vee
H(O) is driven to VSS
H(Z) floats
H(Q) remains active
H(X) retains current state

R(..) While RESIN is active, the pin;
R(1) is driven to vee
R(O) is driven to VSS
R(Z) floats
R(WH) weak pullup
R(WL) weak pulldown

P(..) While Idle or Powerdown Modes are active, the pin;
P(1) is driven to vee
P(O) is drive to VSS
P(Z) floats
P(Q) remains active (1)
P(X) retains current state

(1) Any pins that specify P(Q) are valid for Idle Mode. All Pins are P(X) for powerdown Mode.

H-1

APPENDIX H

Appendix H. 8OC186EB Pin Description

Name Modal State Type Description

Vee

Vss

ClKIN

OSCOUT

ClKOUT

RESIN

RESOUT

PDTMR

NMI

A(E)

H(Q)
R(Q)
P(1)

H(Q)
R(Q)
P(1)

A(l)

H(O)
R(1)
P(O)

A(l)
H(Z)
R(Z)

P(WH)

A(E)

TEST/BUSY A(l)

AD15:0 S(l)
H(Z)
R(Z)
P(Z)

A18:16 H(Z)
A 19/0NCE R(W1)

P(Z)

Power connections consist of four pins which must be shorted externally
to a Vcc board plane.

Ground connections consist of six pins which must be shorted externally
a Vss board plane.

CLocK INput is an input for a external clock. An external oscillator operat­
ing at two times the required 80C186EB operating frequency can be
connected to ClKIN. For crystal operation, ClKIN (along with OSCOUT)
are the crystal connections to an internal Pierce oscillator.

o OSCillator OUTput is only used when using a crystal to generate the
external clock. OSCOUT (along with ClKIN) are the crystal connections
to an internal Pierce oscillator. This pin is not to be used as 2X clock
output for non-crystal applications (Le. this pin is N.C. for non-crystal
applications).

o CLocK OUTput provides a timing reference for inputs and outputs of the
processor, and is one-half the input clock (ClKIN) frequency. ClKOUT
has a 50% duty cycle and transitions every falling edge of ClKIN.

RESet IN causes the 80C186EB to immediately terminate any bus cycle
in progress and assume an initialized state. All pins will be driven to a
known state, and RESOUT will also be driven active. The rising edge
(Iow-to-high) transition synchronizes ClKOUT with ClKIN before the
80C186EB begins fetching opcodes at memory location OFFFFOH.

o RESet OUTput that indicates the 80C186EB is currently in the reset
state. RESOUTwili remain active as long as RESIN remains active.

I/O Power-Down TIMeR pin (normally connected to an external capacitor)
that determines the amount of time the 80C186EB waits after an exit
from Powerdown before resuming normal operation. The duration of
time required will depend on the startup characteristics of the crystal
oscillator.

Non-Maskable Interrupt input causes a TYPE-2 interrupt to be serviced
by the CPU. NMI is latched internally.

TEST is used during the execution of the WAIT instruction to suspend
CPU operation until the pin is sampled active (lOW). TEST is alternately
knows as BUSY when interfacing with an 80C187 numerics coprocessor.

I/O These pins provide a multiplexed ADDRESS and DATA bus. During the
address phase of the bus cycle, address bits 0 through 15 are presented
on the bus and can be latched using ALE. 8- or 16-bit data information
is transferred during the data phase of the bus cycle.

I/O These pins provide ADDRESS information during the address phase of
the bus cycle. Address bits 16 through 19 are presented on these pins
and can be latched using ALE. These pins are driven to a logic 0 during
the data phase of the bus cycle. During a processor reset (RESIN active),
A 19/0NCE is used to enable ONCETM mode. A 18:A 16 must not be driven
low during reset or improper 80C186EB operation may result.

H-2

APPENDIX H

Name Modal State Type Description

82:0 H(Z) 0 Bus cycle Status are encoded on these pins to provide bus transaction
R(1) information. 82:0 are encoded as follows:
P(Z)

52 S1 50 Bus Cycle Initiated

0 0 0 Interrupt Acknowledge
0 0 1 Read I/O
0 1 0 Write I/O
0 1 1 Processor HALT

0 0 Queue Instruction Fetch
0 1 Read Memory
1 0 Write Memory
1 1 Passive (no bus activity)

ALE H(O) 0 Address Latch Enable output is used to strobe address information
R(O) into a transparent type latch during the address phase of the bus cycle.
P(O)

BHE H(Z) 0 Byte High Enable output to indicate that the bus cycle in progress is
R(Z) transferring data over the upper half of the data bus. BHE and AO have
P(X) the following logical encoding:

AO BHE Encoding

0 0 Word transfer
0 1 Even Byte transfer

0 Odd Byte transfer
1 Refresh operation

RD H(Z) 0 ReaD output signals that the accessed memory or I/O device should
R(Z) drive data information onto the data bus.
P(1)

WR H(Z) 0 WRite output signals that data available on the data bus are to written
R(Z) into the accessed memory or I/O device.
P(1)

READY A(L) READY input to signal the completion of a bus cycle. READY must be
S(L) active to terminate an 80C186EB bus cycle, unless it is ignored by

correctly programming the Chip-Select Unit.

DEN H(Z) 0 Data ENable output to control the enable of bi-directional transceivers
R(1) when buffering an 80C186EB system. DEN is active only when data
P(1) is to be transferred on the bus.

DT/R H(Z) 0 Data Transmit/Receive output controls the direction of a bidirectional
R(Z) buffer when buffering an 80C186EB system. DT/R is only available
P(X) on the PLCC package (80C186EB).

LOCK H(Z) I/O LOCK output indicates that the bus cycle in progress is not to be
R(W1) interrupted. The 80C186EB will not service other bus requests (such as
P(1) HOLD) while LOCK is active. This pin is configured as an weakly held

high input while RESIN is active and must not be driven low.

H-3

APPENDIXH

Name Modal State Type Description

HOLD A(L) HOLD request input to signal that an external bus master wishes to gain
control of the local bus. The 8QC186EB will relinquish control of the local
bus between instruction boundaries not conditioned by a LOCK prefix.

HLDA H(1) 0 HoLD Acknowledge output to indicate that the 80C186EB has relinquish
R(O) control of the local bus. When HLDA is asserted, the 80C186EB will
P(Q) (or has) floated its' data bus and control signals allowing another bus

master to drive the signals directly.

NCS H(1) 0 Numerics Coprocessor Select output is generated when accessing
R(1) a numerics coprocessor. NCS is not provided on the S80C186EB.
P(1)

ERROR A(L) ERROR input that indicates the last numerics coprocessor operation
resulted in a exception condition. An interrupt TYPE 16 is generated if
ERROR is sampled active at the beginning of a numerics operation.
ERROR is not provided on the S80C186EB.

PEREQ A(L) CoProcessor REQuest signals that a data transfer between an External
Numerics Coprocessor any Memory is pending. PEREQ is not provided
onthe S80C186EB.

UCS H(1) 0 Upper Chip Select will go active whenever the address of a memory or
R(1) I/O bus cycle is within the address limitations programmed by the user.
P(1) After reset, UCS is configured to be active for memory accesses between

OFFCOOH and OFFFFFH.

LCS H(1) 0 Lower Chip Select will go active whenever the address of a memory or
R(1) I/O bus cycle is within the address limitations programmed by the user.
P(1) LCS is inactive after a reset.

P1.0/GCSO H(X)/H(1) 0 These pins provide a multiplexed function. If enabled, each pin can
P1.1/GCS1 R(1) provide a Generic Chip Select output which will go active whenever
P1.2/GCS2 P(X)/P(1) the address of a memory or I/O bus cycle is within the address limitations
P1.3/GCS3 programmed by the user. When not programmed as a Chip-Select, each
P1.4/GCS4 pin may be used as a general purpose output Port. As an output port pin,
P1.S/GCSS the value of the pin can be read internally.
P1.6/GCS6
P1.7/GCS7

TOOUT H(Q) 0 Timer OUTput pins can be programmed to provide single clock or
T10UT R(O) continuous waveform generation, depending on the timer mode selected.

P(Q)

TOIN A(L) Timer INput is used either as clock or control signals, depending on the
T11N A(E) timer mode selected.

INTO A(E,L) Maskable INTerrupt input will cause a vector to a specific Type interrupt
INT1 routine. To allow interrupt expansion, INTO and/or INT1 can be used with
INT4 INTAO and INTA1 to interface with an external slave controller. INT4 is

edge triggered only.

H-4

APPENDIXH

Name Modal State Type Description

INT2/1NTAO A(E,L)/H(1)
I NT3/1NTA1 R(Z)/P(1)

P2.7 A(L)
P2.6 H(X)

R(Z)
P(X)

CTSO A(L)
P2.4/CTS1

TXDO H(X)/H(Q)
P2.1/TXD1 R(1)

P(X)/P(Q)

RXDO A(L)
P2.0/RXD1 R(Z)

H(Q)
P(X)

P2.5/BCLKO A(L)/A(E)
P2.2/BCLK1

P2.3/SINT1 H(X)/H(Q)
R(O)

P(X)/P(Q)

I/O These pins provide a multiplexed function. As inputs, they provide a mask­
able INTerrupt that will cause the CPU to vector to a specific Type
interrupt routine. As outputs, each is programmatically controlled to
provide an INTERRUPT ACKNOWLEDGE handshake signal to allow
interrupt expansion.

I/O BI-DIRECTIONAL, open-drain Port pins.

Clear-To-Send input is used to prevent the transmission of serial data
on the TXD signal pin. CTS1 is multiplexed with an input only port
function.

o Transmit Data output provides serial data information. TXD1 is
multiplexed with an output only Port function. During synchronous serial
communications, TXD will function as a clock output.

I/O Receive Data input accepts serial data information. RXD1 is multiplexed
with an input only Port function. During synchronous serial
communications, RXD is bi-directional and will become an output for
transmission of data (TXD becomes the clock).

Baud CLocK input can be used as an alternate clock source for each of
the integrated serial channels. BCLKx is multiplexed with an input only
Port function, and cannot exceed a clock rate greater than 1/2 the
operating frequency of the 80C 186EB.

o Serial INTerrupt output will go active to indicate serial channel 1 requires
service. SINT is multiplexed with an output only Port function.

H-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I
I

I
I
I
I

inter
ALABAMA

~~I ~:llord Dr .. #2
Huntsville 35805
Tel: (205) 830-4010
FAX: (205) 837-2640

ARIZONA

tlntel Corp.
11225 N. 28lh Or.
Sulle 0-214
Phoenix 85028
Tel: (~889-4980
FAX: (889-4294

~~~ ~"'tona Uas Rd. 
Su~e 215 
Tucson 85741 

~~:(=)s::t~2 
CALIFORNIA 

tlntel Corp. 
21515 Vanowen Street 
Su~e 116 

~~r,a\~~~~ 
FAX: (818) 340-1144 

tlntel Corp. 
2250 E. Imperial Highway 
Su~218 

~~~1~~~ 
FAX: (213) 640-7133

\nt~le~rg-ete Plaza
Suite 280C
Roseville 95878
Tel: (916) 782-8096
FAX: (916) 782-8153

tlnlel Corp.
9685 Cheeopeeke Dr.
Su~325
San Dim 92123
Tel: (819 292-8096
FAX: (81) 292-0628

tlntel Corp.'
400 N. Tustin Avenue
Suite 450
Santa Ana 92705

i~llJ{~~~
FAX: (714) 541-9157

tlntel Corp.-
San Tomas 4
2700 San Tornae ExPressway
2nd Floor
SanIe Clara 95051

~("s~~~=
FAX: (409) 727-2820

COLORADO

Intel Corp.
4445 Northpark D~ve
Su~ 100 .
CoiOredo Sp~ngs 80907

~~:~J~)5~0
tlntel Corp.'
850 S. Cherry St.
Suite 915
Denver 80222

~\3g;~_~1:=
FAX: (303) 322-8870

tSales and Sarvlce OfIIce
*Field Application location

DOMESTIC SALES
CONNECTICUT MASSACHUSETTS

tlntel Corp.' ~~eLe';>~rm COrporate Park Westford Corp. Center
83 Woosier Heights Rd. 3 CMlsle Road
Danbury 06810 2nd Floor
Tel: (203) 748-3130 Westford 01886
FAX: (203) 794-0339 ~\5~~]:~~
FLORIDA FAX: (508) 692-7867

t=1 ~.'W'eth Way
MICHIGAN

tlntel Corp. Suite 100
7071 Orchard Lake Road Ft. Lauderdale 33309
Sulle 100

~\~f~-~t~ Weol Bloomfield 48322
FAX: (305) 772-8183 ~~:(~m)~;~~~O
tlntel Corp.
5850 T.G. Lae Blvd. MINNESOTA
Su~340

tlntel Corp. Orlando 32822
Tel: (407) 240-8000 3500 W. 80th St.
FAX: (407) 240-8097 Suite 360

Bl00fn11ton 55431

\~~~~. Street North
Tel: (61 835-8722
TWX: 91 -576-2887

Su~ 170 FAX: (612) 831-8497
SI. Petersburg 33716

~~,<~m)5~~::Jg7 . MISSOURI

tlntel Corp.

GEORGIA 4203 Earth City Expressway
Su~131

Intel Corp. EMh CIW 63045
20 Technology Parkway, N.W. Tel: (314 291-1980
5ultel50 FAX: (314) 291-4341
Norcross 30092
Tel: (404) 449-0541 NEW JERSEY
FAX: (404) 605-9762

~.=.~~rfO; OfIIce Center
IWNOIS 328 Newman Springs Road
tlntel Corp.' Red Bank 07701
300 N. Martingale Road Tel: (201)'747-2233
Su~4oo FAX: (201) 747-0983

SchaumbuJ8 60173 tlntel Corp.
Tel: (7~ 5-8031 280 Corporate Center
FAX: (7) 7~762 75 Uvlngston Avenue

First Floor
INDIANA Roseland 07068

~~I~ueRoad
Tel: (201) 740-0111
FAX: (201) 740-0628

Su~ 125
Indlana~IS 46268

NEW YORK

Tel: (31 875-0623 Intel Corp.'
FAX: (31 875-8838 ~~~~4~ OfIIce Park

IOWA ~\7Jf~_~:%~~
Inlel Corp. FAX: (716) 223-2561
1930 St. Andrews Drive N.E.
2nd F10ar tlntet Corp. '*
Cedar Rapids 52402 2950 Expreseway Dr., South
Tel: (319) 393-1294 Su~ 130

Islandia 11722

KANSAS
Tel: (516) 231-3300
TWX: 510-227-6236

tlntet Corp. FAX: (516) 348-7939

~~I~~.D tlntel Cor~.
w~e uslnass Center Overland Park 66210 Bldg. 00, Route 9

Tel: (913) 345-2727 Fishkill 12524
FAX: (913) 345-2078 Tel: (914) 897-3660

FAX: (914) 897-3125
MARYLAND

NORTH CAROLINA
tlntel Corp.'
10010 Junction Dr. tlnte1 Corp.
Suite 200 5800 Executive Center Or.

~~!i ~::~:'o 20701
Suite 105
Charlotte 28212

FAX:(~ll206-3677 Tel: (704) 568-8966
1 208-3678 FAX: (704) 535-2236

OFFICES
Intel Corp.
5540 Centerview Or.

UTAH

Su~e 215 l!!lle~~rtoo South
~~~\~~~7:f_9537 Suite 104 
FAX: (919) 851-8974 ~~~rtlO\';'~~~8051 
OHIO FAX: (801) 288-1457 

tlntel Corp.· 
3401 Park Center Drive VIRGINIA 
Su~220 

~:rrs'\~f~5350 
tlntel Corp. 
1504 Santa Rosa Road 

TWX: 810-450-2528 Sulle 108 
FAX: (513) 890-8658 Richmond 23288 

tlntel Corp.' 
Tel: (804) 282-5888 

25700 SCience Park Dr. 
FAX: (216) 464-2270 

Suite 100 
Beachwood 44122 WASHINGTON 
Tol: (216) 464-2736 
TWX: 810-427-9296 tlntel Corp. 
FAX: (804) 282-0673 155 108th Avenue N.E. 

Su~e 388 
OKLAHOMA Bellevue 98004 

~~:)i~m:= ~.m\ 1.?r~roadWay FAX: (206) 451-9556 
Su~ lt5 
Oklahoma City 73162 ~:I ~O:Ullan Road 
~~:(~)=~9 Sulle 102 

Spokane 99206 
OREGON Tel: (509) 928-8066 

FAX: (509) 928-8467 

llm"s!. 1.?~. Greenbrier Parkway 
Building B WISCONSIN 
Beaverton 97005 
Tel: (503) 645-8051 
TWX: 910-467-8741 

Intel Corp. 
330 S. Executive Dr. 

FAX: (503) 645-8181 Su~el02 
Brookfleld 53005 

PENNSYLVANIA Tol: (414) 764-8087 
FAX: (414) 795-2115 tlntet Corp. * 

455 Pennsytvanla Avenue 
Su~230 

CANADA Fort Waeh~n 19034 
Tol: (215~ 1-1000 
TWX: 51 661-2On 
FAX: (215) 641-0785 BRITISH COLUMBIA 

tlntel Corp.' Intel Semiconductor of 
400 Penn Center Blvd. Conada, Ltd. 
Su~610 4585 Canada Way 
Pittsburgh 15235 S~202 
Tel: (412) 823-4970 Bumaby VSG 4L6 
FAX: (412) 829-7578 Tel: (804) 298-0387 

PUERTO RICO 
FAX: (804) 298-8234 

tlntel Corp. 
South Industrial Park 

ONTARIO 

P.O. Box 910 tlntel Semiconductor of 
Las Piedras 00671 Canada, Ltd. 
Tel: (809) 733-8816 2650 Queensvtew Drive 

Sulle 250 
TEXAS Ottawa K2B 8H6 

Intel Corp. Tel: (613) 829-9714 

~~nC;C~ ofTexae Hwy. 
FAX: (613) 820-5936 

Tel: (512) 794-8086 tlntel Semiconductor of 
Canada, Ud. FAX: (512) 338-9335 190 Attwell Drive 

tlntal Corp. '* Su~e 500 
Rexdaie M9W 6H8 12000 Ford Road 

Su~e 400 Tel: (416) 675-2105 
Dallas 75234 FAX: (416) 675-2438 
Tel: (214) 241-8087 
FAX: (214) 484-1180 

QUEBEC 
tlntol Corp.' 
7322 S.W. Freeway Intel Semiconductor of 
Suite 1490 Conada, Ltd. 
Houston 77074 620 St. Jean Boulevard 
Tel: (713) BB8-8088 Pointe Claire H9R 3K2 
TWX: 910-881-2490 ~'J&:(~~4J:8J: FAX: (713) 988-3880 



DOMESTIC DISTRIBUTORS 
ALABAMA tHamiiton Electro Sales Hamllton/Avnst Electronics tPloneer Electronics tHamliton/Avnet Electronics 

Arrow Electronics, Inc. 
10950 W. Washington Blvd. Commerce Industrial Park 1551 Carmen Drive 100 Centennial Drive 
Culver City 20230 Commerce Drive f~: ~mi :~~~0007 ~:~~~~~) °d3~~430 1015 Henderson Road Tel: (213) 558-2458 Danbury 06810 

Huntsville 35805 TWX: 910-340-6364 ~l~~b.~~~:~~~ TWX: 910-222-1834 TWX: 710-393-0382 
Tel: (205) 837-6955 

Hamilton Electro Sales 
INDIANA MTI Systems Sales tHamilton/Avnet Electronics 1361B West 190th Street tPioneer Electronics 83 Cambridge St. 4940 Research Drive Gardena 90248 112 Main Street fArrow Electronics. Inc. Burlington 01813 Huntsville 35805 Tel: (213) 217-6700 Norwalk 08851 2495 Directors Row, SUite H Tel: (205) 837-7210 

tHamUton/Avnet Electronics Tel: (203) 853-1515 Indlan~OIiS 46241 Pioneer Electronics 
TWX: 810-726-2162 TWX: 710-488-3373 44 Hartwell Avenue 3002 'G' Street ~lJ1~~~:~~~ ~:~i7m~) g~l?i.oo Pioneerrrechnologies Group, Inc. Ontario 91761 
4825 University Square Tel: (714) 989-9411 FLORIDA 

Hamilton/Avnet Electronics TWX: 710-326-6617 Huntsville 35805 
tAvnet Electronics tArrow Electronics, Inc. 485 Gradle Drive Tel: (205) 837-9300 400 Fairway Drive Carmel 46032 TWX: 810-726-2197 20501 Plummer MICHIGAN Chatsworth 91351 Suite 102 Tel: (317) 844-9333 
Tel: (213) 700-6271 Deerfield Beach 33441 TWX: 810-260-3966 Arrow Electronics, Inc. ARIZONA Tel: (305) 429-8200 TWX: 910-494-2207 

TWX: 510-955-9456 tPioneer Electronics 755 Phoenix Drive 
tHamliton/Avnet Electronics tHamilton Electro Sales 6408 Castleplace Drive Ann Arbor 48104 
505 S. Madison Drive 3170 Pullman Street Arrow Electronics, Inc. Indianapolis 46250 ~\3J~6_~~t:~g Tempe 85281 Costa Mesa 92626 37 Skyline Drive 

~~3Jib.~~~:~~~ Tel: (602) 231-5140 Tel: (714) 641-4150 Sune 3101 
TWX: 910-950-0077 TWX: 910-595-2638 Lake Marv 32746 Hamilton/Avnet Electronics 

~~4gi6_~~~~~3~ 2215 29th Street S.E. 
HamlitonJAvnet Electronics tHamliton/Avnet Electronics IOWA Space AS 
30 South McKiemy 4103 Northgate Blvd. Hamilton/Avnet Electronics Grand Rapids 49508 
Chandler 85226 Sacramento 95834 tHamilton/Avnet Electronics 915 33rd Avenue, S.W. Tel: (616) 243-8805 

~l~f6-~~6:~~ Tel: (916) 920-3150 8801 N,W, 15th Way Cedar Rapids 52404 TWX: 810-274-6921 
Ft. Lauderdale 33309 

Wyle Distribution Group Tel: (305) 971-2900 Tel: (319) 362-4757 Pioneer Electronics Arrow Electronics, Inc. 124 Maryland Street TWX: 510-958-3097 4504 Broadmoor S;E. 
4134 E. Wood Street EI Segundo 90254 KANSAS Grand Rapids 49508 
Phoenix 85040 Tel: (213) 322-8100 tHamiiton/Avnet Electronics 

Arrow Electronics FAX: 616-698-1831 
Tel: (602) 437-0750 3197 Tech Drive North 
TWX: 910-951-1550 Wyle Distribution Group f,;t(~tf~~~U;l:;g2 

8208 Melrose Dr., Suite 210 tHamilton/Avnet Electronics 7382 Lampson Ave. Lenexa 66214 32487 Schoolcraft Road Wyle Distribution Group Garden Grove 92641 TWX: 810-863-0374 Tel: (913) 541-9542 Livonia 48150 17855 N. Black Canyon Hwy. Tel: (714) 891-1717 
tHamilton/Avnet Electronics tHamilton/Avnet Electronics ~~3J~6_~~~:~Wg Phoenix 85023 TWX: 910-348-7140 or 7111 

Tel: (602) 249-2232 ~~re~~~~r~~7:~ulevard 9219 Qulvera Road 
TWX: 910-951-4282 Wyle Distribution Group Overland Park 66216 

1~8n~1a~~:san 11151 Sun Center Drive Tel: (305) 628-3888 Tel: (913) 888-8900 

CALIFORNIA Rancho Cordova 95670 TWX: 810-853-0322 TWX: 910-743-0005 
Uvonia 48150 Tel: (916) 638-5282 

tPioneer/Technologles Group, Inc. Pioneer/Tec Gr. ~~3J~b.~~~:1~1f, Arrow ElectroniCS, Inc. twyle Distribution Group 10824 Hope Street 337 S. Lake Blvd. 10551 Lockman Rd. 
9525 Chesapeake Drive Alta Monte Springs 32701 Lenexa 66215 Cypress 90630 San Diego 92123 Tel: (407) 834-9090 Tel: (913) 492-0500 Tel: (714) 220-6300 Tel: (619) 565-9171 TWX: 810-853-0284 MINNESOTA 

Arrow Electronics, Inc. TWX: 910-335-1590 KENTUCKY tArrow Electronics, Inc. 
19748 Dearborn Street tWyle Distribution Group 

Pioneer/TechnoloQles Group, Inc. 
5230 W, 73rd Street 

Chatsworth 91311 674 S. Military TraIl Hamilton/Avnet Electronics 
Tel: (213) 701-7500 

3000 Bowers Avenue Deerfield Beach 33442 1051 D. Newton Park Edina 55435 
Santa Clara 95051 Tel: (305) 428-8877 Tel: (612) 830-1600 

TWX: 910-493-2086 Tel: (408) 727-2500 TWX: 510-955-9653 ~:~17~~) ~g~\~75 TWX: 910-576-3125 
tArow Electronics, Inc. TWX: 910-338-0296 

tHamllton/Avnet Electronics 521 Weddell Drive tWyle Distribution Group GEORGIA MARYLAND 12400 Whitewater Drive Sunnyvale 94086 17872 Cowan Avenue tArrow Electronics, Inc. Minnetonka 55434 Tel: (408) 745-6600 Irvine 92714 Arrow ElectroniCS, Inc. 
TWX: 910-339-9371 Tel: (714) 863-9953 3155 Northwoods Parkway 8300 Guilford Drive 

Tel: (6t2) 932-0800 
Suite A 

Arrow ElectroniCS, Inc. TWX: 910-595-1572 Norcross 30071 Suite H, River Center tPioneer Electronics 
Columbia 21046 7625 Golden Triange Dr. 9511 Ridgehaven Court Wyle Distribution Group Tel: (404) 449-8252 Tel: (301) 995-0003 San Diego 92123 26677 W. Agoura Rd. TWX: 810-766-0439 SUiteG 

Tel: (619) 565-4800 Calabasas 91302 
TWX: 710-236-9005 Eden Prairi 55343 

TWX: 888-064 Tel: (818) 880-9000 tHarnilton/Avnet Electronics Hamilton/Avnet Electronics Tel: (612) 944-3355 
5825 0 Peachtree Corners 

tArrow Electronics, Inc. 
TWX: 372-0232 Norcross 30092 6822 Oak Hall Lane 

2961 Dow Avenue Tel: (404) 447-7500 Columbia 21045 MISSOURI 

Tustin 92680 COLORADO TWX: 810-766-0432 Tel: (301) 995-3500 

Tel: (714) 838-5422 Arrow Electronics, Inc. TWX: 710-862-1661 tArrow Electronics, Inc. 
TWX: 910-595-2860 7060 South Tucson Way Pioneer/Technologies Group, Inc. 

~~:~~t~;~~~'~J'o~~r8r. 
2380 Schuetz 

3100 F Northwoods Place St. Louis 63141 
tAvnet Electronics 

Englewood 80112 Norcross 30071 Tel: (314) 567-6888 
350 McCormick Avenue 

Tel: (303) 790-4444 
Tel: (404) 448-1711 Columbia 21046 TWX: 910-764-0882 

Costa Mesa 92626 tHamiiton/Avnet Electronics TWX: 810-766-4515 Tel: (301) 290-8150 
Tel: (714) 754-6071 8765 E. Orchard Road TWX: 710-828-9702 tHamilton/Avnet Electronics 
TWX: 910-595-1928 Suite 708 ILLINOIS tPioneerrrechnologies Group, Inc. 

13743 Shoreline Court 
Englewood 80111 Earth C~ 63045 

tHamiiton/Avnet ElectroniCS Tel: (303) 740-1017 Arrow Electronics, Inc. 9100 Gaither Road Tel: (314 344-1200 
1175 Bordeaux Drive TWX: 910-935-0787 1140 W. Thorndale Gaithersburg 20877 TWX: 910-762-0884 
Sunnyvale 94086 Itasca 60143 ~~3~1l~~~:~~ Tel: (408) 743-3300 tWyle Distribution Group Tel: (312) 250-0500 

NEW HAMPSHIRE TWX: 910-339-9332 451 E. 124th Avenue TWX: 312-250-0916 Arrow Electronics, Inc. Thornton 80241 
tHamiiton/Avnet ElectroniCS Tel: (303) 457-9953 tHarniiton/Avnet Electronics 7524 Standish ?face tArrow ElectroniCS, Inc. 
4545 Ridgeview Avenue TWX: 910-936-0770 1130 Thorndale Avenue Rockville 20855 3 Perimeter Road 
San Diego 92123 Bensenville 60106 Tel: 301-424-0244 Manchester 03103 
Tel: (619) 571-7500 CONNECTICUT Tel: (312) 660-7780 Tel: (603) 688-6988 
TWX: 910-595-2638 TWX: 910-227-0060 MASSACHUSETTS TWX: 710-220-1884 

tArrow ElectroniCS, Inc. 
tHamilton/Avnet Electronics 12 Beaumont Road MTI Systems Sales Arrow ElectroniCS, Inc. tHamilton/Avnet Electronics 
9650 Desoto Avenue Wallingford 06492 1100 W. Thomdale 25 Upton Dr, 444 E. Industrial Drive 
Chatsworth 91311 Tel: (203) 265-7741 Itasca 60143 WilmIngton 01887 Manchester 03103 
Tel: (818) 700-1161 TWX: 710-476-0162 Tel: (312) 773-2300 Tel: (617) 935-5134 Tel: (603) 624-9400 

tMicrocomputer System Technical Distributor Center 



intel~ 
DOMESTIC DISTRIBUTORS (Contd.) 

NEW JERSEY Pioneer Electronics OREGON tPloneer Electronics BRITISH COLUMBIA 

tArrow Electronics. Inc. 
40 Oser Avenue 

tAl mac Electronics Corp. 
13710 Omega Road 

tHamilton/Avnet Electronics Hauppauge 11787 Dallas 75234 Four East Stow Road Tel: (516) 231-9200 1885 N.w, 169th Place Tel; (214) 386-7300 105-2550 Boundary 
Unit 11 Beaverton 97005 TWX; 910-850-5563 ~~n~~ ~~~-:t:7 Marlton 08053 tPloneer Electronics Tel: (503) 629-8090 
Tel: (609) 596-8000 60 Crossway Park West TWX; 910-467-8746 tPloneer Electronics Zentronlcs 1WX: 710-897-0829 Woodbury, Long Island 11797 5853 Point West Drive 

Tel: (516) 921-8700 tHamilton/Avnet Electronics Houston 77036 108-11400 Bridgeport Rood 
tAr row Electronics 6024 S.w, Jean Road Richmond V6X 1T2 
6 Century Drive TWX: 510-221-2184 

Bldg. C, Suite 10 ~;tJ~6-~~t~m Tel: (604) 273-5575 

~:r:S~~7)~8J~~0 tPioneer Electronics Lake Oswego 97034 TWX: 04-5077-89 
840 Fairport Park Tel: (503) 635-7848 Wyle Distribution Group 

MANITOBA 
tHamiiton/Avnet ElectroniCs Fairport 14450 TWX: 910-455-8179 1810 Greenvll1e Avenue 
1 Keystone Ave., Bldg. 36 Tel: (716) 381-7070 

Wyle Distribution Group 
Richardson 75081 Zentronlcs 

¥~~(~0~;"4~~c:g~ 10 
TWX: 510-253-7001 

5250 N.E. Elam Young Parkway 
Tel: (214) 235-9953 60-1313 Border Unit 60 

NORTH CAROLINA Suite 600 UTAH f~n~~~ ~:10:5~ TWX: 710-940-0262 HlI1sboro 97124 
tHamiiton/Avnet Electronics tArrow Electronics, Inc. Tel; (503) 640-6000 Arrow Electronics ONTARIO 10 Industrial 5240 Greensdalry Road TWX: 910-460-2203 1946 Parkway Blvd. 
Fairfield 07006 ~:I~~~79W~:-3132 Salt Leke City 84119 Arrow Electronics, Inc. 
Tel: (201) 575-5300 PENNSYLVANIA Tel: (801) 973-6913 36 Antares Dr. 
TWX: 710-734-4388 TWX; 510-928-1856 

tHamllton/Avnet ElectroniCS 
Nepean K2E 7W5 

Arrow ElectroniCS, Inc. Tel: (613) 226-6903 
tMTI Systems Sales tHamllton/Avnet Electronics 650 Seco Road 1585 West 2100 South 
37 Kulick Rd. ~~1~g~~9Bo~orest Drive Monroeville 15146 Salt Leke City 84119 Arrow Electronics, Inc. 
Fairfield 07006 Tel: (412) 856-7000 Tel; (801) 972-2800 1093 Meyerside 
Tel: (201) 227-5552 Tel: (919) 878-0819 TWX: 910-925-4018 Mississauga 15T 1 M4 

tPioneer Electronics 
TWX: 510-928-1836 HamiltonfAvnet Electronics 

Wyle Distribution Group 
Tel: (416) 673-7769 

2800 Liberty Ave. TWX: 06-218213 
45 Route 46 ~~o~e:~~ci~t~~~~O~\~! ~r~gp, Inc. Pittsburgh 15238 1325 West 2200 South 
Plnebrook 07058 Tel: (412) 281-4150 Suite E tHamiltonfAvnet Electronics 
Tel: (201) 575-3510 Charlotte 28210 f.~~~~I~e~7~~~~3 

6845 Rexwood Road 
TWX: 710-734-4382 Tel; (919) 527-8188 Pioneer Electronics Units 3-4-5 

TWX; 810-621-0366 259 Kappa Drive Mississauga L4T 1 R2 
NEW MEXICO Pittsburgh 15238 WASHINGTON Tel: (416) 677-7432 

Alliance Electronics Inc. OHIO Tel: (412) 782-2300 TWX: 610-492-8867 

11030 Cochiti S.E. TWX; 710-795-3122 tAlmac Electronics Corp. HamiltonfAvnet Electronics 
Albuquerque 87123 Arrow ElectroniCS, Inc. 

tPloneer/Technologies Group, Inc. 
14360 S.E. Eastgate Way 6845 Rexwood Rd., Unit 6 7620 McEwen Road Bellevue 98007 , Tel: (505) 292-3360 Centerville 45459 Delaware Valley Tel: (206) 643-9992 Mississauga L4T 1 R2 

TWX: 910-989-1151 Tel; (513) 435-5563 261 Gibralter Road TWX: 910-444-2067 Tel: (416) 277-0484 

Hamilton/Avnet Electronics TWX: 810-459-1611 Horsham 19044 tHamilton/Avnet Electronics 
2524 Baylor Drive S.E. Tel: (215) 674-4000 Arrow Electronics, Inc. 190 Colonnade Road South 
Albuquerque 87106 tArrow ElectroniCS, Inc. TWX; 510-665-6778 19540 68th Ave. South Nepean K2E 7L5 
Tel: (505) 765-1500 6238 Cochran Road Kent 98032 Tel: (613) 226-1700 
TWX: 910-989-0614 Solon 44139 TEXAS Tel: (206) 575-4420 TWX; 05-349-71 

Tel: (216) 248-3990 
tHamiiton/Avnet ElectroniCS NEW YORK TWX: 810-427-9409 tArrow Electronics, Inc. tZentronics 

3220 Commander Drive 14212 N.E. 21st Street 8 Tilbury Court 
tArrow Electronics, Inc. tHamiiton/Avnet Electronics Carrollton 75006 Bellevue 98005 BTampton L6T 3T 4 
3375 Brighton Henrietta 954 Senate Drive Tel; (214) 380-6464 Tel; (206) 643-3950 Tel: (416) 451-9600 
Townline Rd. Dayton 45459 TWX; 910-860-5377 TWX: 910-443-2469 TWX: 06-976-78 
Rochester 14623 Tel: (513) 439-6733 

Wyle Distribution Group tZentronics Tel: (716) 275-0300 TWX: 810-450-2531 tArrow Electronics, Inc. 
TWX: 510-253-4766 10899 Kinghurst 15385 N.E. 90th Street 155 Colonnade Road 

Hamilton/Avnet Electronics Suite 100 Redmond 98052 Unit 17 
Arrow Electronics, Inc. 4588 Emery Industrial Pkwy. Houston 77099 Tel: (206) 881-1150 Napean K2E 7K1 
20 Oser Avenue Warrensville Heights 44128 Tel: (713) 530-4700 Tel: (613) 226-8840 
Hauppauge 11788 Tel: (216) 349-5100 TWX: 910-880-4439 WISCONSIN Zentronics Tel: (516) 231-1000 1WX: 810-427-9452 
TWX; 510-227-6623 tArrow ElectroniCS, Inc. Arrow Electronics, Inc. 60-1313 Border $t. 

tHamilton/Avnet Electronics 2227 W. Braker Lane 200 N. Patrick Blvd., Ste. 100 ~~(~~~ ~:-~~~7 Hamilton/Avnet 777 Brooksedge Blvd. Austin 78758 Brookfield 53005 
933 Motor Parkway Westerville 43081 Tel: (512) 835-4180 Tel: (414) 767-6600 
Hauppauge 11788 Tel; (614) 882-7004 TWX: 910-874-1348 TWX; 910-262-1193 QUEBEC 
Tel: (516) 231-9800 

tPioneer Electronics tArrow Electronics Inc. TWX: 510-224-6166 tHamilton/Avnet Electronics Hamilton/Avnet Electronics 
4433 Interpolnt Boulevard 1807 W. Braker Lane 2975 Moorland Road 4050 Jean Talon Quest 

tHamiiton/Avnet Electronics Montreat H4P lW1 
333 Metro Park 

Dayton 45424 Austin 78758 New Berlin 53151 Tel: (514) 735-5511 Tel; (513) 236-9900 Tel; (512) 837-8911 Tel: (414) 784-4510 Rochester 14623 TWX: 810-459-1622 TWX: 05-25590 
Tel: (716) 475-9130 TWX: 910-874-1319 TWX; 910-262-1182 
TWX: 510-253-5470 tPioneer ElectroniCS tHamilton/Avnet Electronics 

Arrow Electronics, Inc. 

tHamilton/Avnet Electronics 
4800 E. 131 st Street 2111 W. Walnut Hill Lane CANADA 

500 Avenue St-Jean Baptiste 
Cleveland 44105 Suite 280 

103 Twin Oaks Drive Tel; (216) 587-3600 
Irving 75038 Quebec G2E 5R9 

Syracuse 13206 Tel; (214) 550-6111 Tel: (418) 871-7500 
Tel: (315) 437-0288 

TWX: 810-422-2211 TWX; 910-860-5929 ALBERTA FAX: 418-871-6816 
TWX: 710-541-1560 

OKLAHOMA tHamilton/Avnet Electronics Hamilton/Avnet Electronics Hamilton/Avnet Electronics 
tMTI Systems Sales 4850 Wright Rd., Suite 190 2816 21st Street N.E. 2795 Halpern 
38 Harbor Park Drive Arrow ElectroniCS, Inc. Stafford 77477 Calgary T2E 6Z3 SI. Laurent H2E 7K1 
Port Washington 11050 1211 E. 51st St., Suite 101 Tel; (713) 240-7733 Tel: (403) 230-3586 Tel: (514) 335-1000 
Tel: (516) 621-6200 Tulsa 74146 TWX; 910-881-5523 TWX; 03-827-642 TWX: 610-421-3731 

tPioneer Electronics 
Tel: (918) 252-7537 

tPioneer Electronics Zentronics Zentronics 
68 Corporate Drive tHamilton/Avnet Electronics 18260 Kramer Bay No.1 817 McCaffrey 
Binghamton 13904 12121 E. 51st St., Suite 102A Austin 78758 3300 14th Avenue N.E. St. Laurent H4T 1 M3 
Tel: (607) 722-9300 Tulsa 74146 Tel: (512) 635-4000 Calgary T2A 6J4 Tel: (514) 737-9700 
TWX: 510-252-0893 Tel: (918) 252-7297 TWX: 910-874-1323 Tel; (403) 272-1021 TWX: 05-827-535 

tMicrocomputer System Technical Distributor Center 



DENMARK 
Intel Denmark NS 
Glentevej 61, 3rd Floor 
2400 copenh8isn NV 
+~:(m~1j 1 80 33 

FINLAND 

Intel Finland DY 
Ruoollantie2 
00390 Helsinki 
Tel: (358) 0 544 644 
TLl<: 123332 

FRANCE 

\~u~~f:"~GpS~.L. 
78054 st. Quentin-en~Yvelines 
Codex 
Tel: (33) (1) 30 57 70 00 
TLl<: 699016 

EUROPEAN SALES OFFICES 
,WEST GERMANY 
Intel Semiconductor GmbH· 
Domacher Strasss 1 
8016 Feldklrchen bel Muenchon 
Tel: (49) 089/90992-0 
TLX: 5-231n 

Intel Semiconductor GmbH 
HohenzoHem Strasse 5 
3000 Hannover 1 

+~,<:~1/344081 
'Intel Semiconductor GmbH 
Abraham Uncoln _ .. 16-18 
8200 W1e9baden 
Tel: (49) 0812117805-0 
TLl<: 4-188183 
Intel Semiconductor GmbH 
Zet1achring lOA 
7000StU~80 
+~'<~!b;~W287-280 

ISRAEL 

Intel Semiconductor Ud. * 
Atldlm Industrial Park-Novo Shere! 
P.O. Box 43202 
Tel-Aviv 61430 
Tel: (972) 3-546-3222 
TLl<: 371215 

ITALY 

Inial Corporation ltella S.p.A. * 
Mllanoftorl Palazzo E 
20090 Asoago 
Milano 

+~:(~1~ 88200950 

NETHERLANDS 

Intel Semiconductor B.V.'* 
Postbus 84130 
3099 CC Rotterdam 
m:(~~g·407.11.11 

NORWAY 

Intel Norway AlS 
Hvarnvelen 4-PD Box 92 
2013 Skjetten 

m'<~~ol~ 842 420 

SPAIN 

IntellberiaS.A. 
Zurbaran, 28 
28010 Madrid 
Tel: (34) (1) 308.25.52 
TLl<: 48880 

SWEDEN 

Intel SWeden A.B. * 

\':\T~~ 
+~:(~1734 01 00 

SWItzeRLAND 

Intel Semlcondu_ A.G. 
Zuorlchatresee 
8185 Wlnkel-Rue1I bel ZuerIch 
Tel: (41) 01/880 62 62 
TLl<: 6258n 

UNITED KINGDOM 

:;:~~ratlon (U.K.) Ud.* 

Swlndon,~l1shlre SN3 1 RJ 
Tel: (44) (0793) 698000 
TLX: 444447/8 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA Tekelec-Airtronic ITALY Dltram ~~~=b=ms 
Bacher Electronics G;m.b.H. CIte des Bruyeres Intesl Avanlda Miguel Bombarda, 133 

Rue Cerie Vernet - BP 2 1000 Lisboa ' WestemRoed Rotenmu.hlg .... 28 92310 Sevres Dlvlelone ITT Industries GmbH 
m,<m~~ 54 5313 Bracknell RG12 1 RW 

1120Wlen 
+~,<~~ 45 34 75 35 

Vlale Mllano1lori 
m:(~~44) 55333 +~: (~~~222) 83 58 45 Palazzo El5 

20090 = (MI) SPAIN 
WEST GERMANY Tol: (39) 4701 Jormyn 

BELGIUM TLl<: 311351 ATD Electrcnica, S.A. Vestry Estate 
Inelco Belgium S.A. Electrcnlc 2000 AG 

~~=~:'~'f~ 
Plaza Cludad de Viana, 6 Otford Road 

Av. des Croix de Guerra 94 =~=~~nl:a 28040 Madrid Sevenoaks 
1120 Br"""lI .. 20092 Clnl .. llo Balsamo (MI) m'<~4W 234 40 00 Kent TN14 5EU 

~1o~=nlaan, 94 
Tel: (49) 089/42001-0 Tel: (39) 02/2440012 +~:(~1~732) 450144 TLX: 522581 TLX: 352040 ITT-8ESA 

+~:<mt~~r2= 80 
ITT Multlkornponent GmbH Telcom S.r.l. ~~oM~~~:ngel, 21-3 MMD PoB1fach 1285 Via M. Clvltell 75 Unn 8 Southview Park Bahnho1stresse 44 20148 Milano +~:~~JV 419 09 57 Ceveraham DENMARK 7141 MoegIlngan Tel: (39) 02/404904B :::~re RG4 OAF ITT-Muttikomponent Tel: (49) 07141/4879 TLX: 335854 Mstroiogla lberico, S.A. 

Nave~and 29 TLl<: 7284472 

u;!1::~W=:~~ 
Ctra. de Fuencarral, n.80 m'<~lJJ~) 481888 

2800 Glostrup Jermyn GmbH 28100 AIcobendas (Madrid) 
Tel: (45) (0) 24566 45 1m Dachss1ueck 9 20090~OjMQ Tel: (34) (1) 853 88 11 Rapid Silicon TLX: 33 355 6250 Umburg Tel: (39) 0 2 701 

Tel: (49) 08431/508-0 TLl<: 311351 SWEDEN Rapid House 
FINLAND TLX: 415257-0 DenmarkS1reet 

Sllverstar Nordlsk Elektronlk AB High Wycombe 
OY Fintronlc AS MObologle GmbH Via Del Grecchl 20 Torshamnsgatan 39 BUCkI~hamShire HPII 2ER 
Melkonkatu 24A ~1'ij~':c=\i9 20145 Milano Box 35 +~: (:;!JaDj84) 442288 00210 HeI~nki Tel: (39) 02/49961 184 93 Kista 
Tel: (358) (0) 8928022 Tel: (49) 089178042-0 TLX: 332189 Tel: (45) 06-03 45 30 

=~=::;ns TLl<: 124224 TLl<: 5213189 TLl<: 105 47 

Proelectron Vertrlebs GmbH 
NETHERLANDS 

FRANCE Koning en Hartman Elektrotechniek SWITZERLAND Denmark Street 
Max Planck Strasse 1-3 High Wycombe 

Almex 6072 Drelelch B.V. Industrada A.G. Buck~hamshire HPII 2ER 
Zone industrietle d'Antony Tel: (49) 08103/30434-3 Energleweg 1 Hertistrasse 31 +~'<83~94) 450244 48, rue de l'Aubepine TLl<: 417903 2827 APDetft 8304 Wallisellen 
BP 102 +~,<~ 15/609906 m,<~~~I) 8328111 92164 Antony cedex IRELAND YUGOSLAVIA m:(~1h 466821 12 

~:;~~~"&'lece~irk NORWAY TURKEY 
Nordisk Elektronlkk (Norge) AJS H.R. MICroelectronICs Corp. 

Jermyn-Generlm Glenegeary Postboks 123 EMPA Electronic 2005 de Is Cruz Blvd., Ste', 223 
50, rue des Gemeaux Co. Dublin Smedsvlngen 4 Undwurmstr .... 9SA Sante Clare, CA 95050 
S1I1C580 +~:(mf:3) (01) 85 63 25 8000 Muenchen 2 U.S.A. 

~:?337U(~~~ ~".l'9 78 

1384H_ Tel: (49) 089/53 80 570 ~'<Y8t~ 986-0288 +~,<~~ 84 62 10 TLl<: 528573 
TLl<:281585 ISRAEL Rap/do ElectronIC Components 

r~~O~~~ieres Eastronics Ltd. PORTUGAL UNITED KINGDOM S.p.a. 
11 Rozanls Sbeet ATD Por1ugal LOA Accent Electronic Components Ud. Voa C. BeccarIa, 8 

4, avo Laurent-Cely P.D.B. 39300 Rua Doe Lusladoe, 5 SaIa B Jubilee House, Jubilee Rood 34133 Trieste 
92606 Asnieres cedex Tel-Aviv 61392 1300 Usboa LetchWorth, Herts 8G6 lTL IteIla 
:::~:~)1~ 4790 62 40 Tel: (972) 03-475151 m:(~~~ 84 80 91 +~'<~'I:F) 886888 

Tel: (39) 040/360855 
TLl<: 33S38 TLX: 450451 

*Field Application Location 



AUSTRALIA 

Intel Australia Ply. Lid.' 
Spectrum BUIIdI1..v., 

~~~~~~E.~8 
Tel: 812-957·2744
FAX: 812-923·2832

BRAZIL

Intel Samlcondutores do Brazil LTDA
Av. Paullsta, 1159-CJS 404/405
01311 • Sao Paulo· S.P.
Tel: 55-11·287-51\99
TLX: 3911153148IS0B
FAX: 55·11·287-5119

CHINA/HONG KONG

Intel PRC Corporation
15/F. 0fIIce I, CI1Ic Bldg.
Jlan Guo Men Wal Street

¥:lil'(1\' :::4850
TLX: 22947 INTEL CN
FAX: (1) 500-2953

Intel Semloonductor lid.'
1O/F East Tower
Bond Center
Queenoway, Central

~'~r~-4555
FAX: (852) 888·1989

INTERNATIONAL SALES OFFICES
INDIA InteI~nK.K.' KOREA

Mitsui· elmel Musashl.koe~1 Bldg.
Intel Asia Electronics, Inc. 915 Shlnmaruko, Nakahara- u

\~~r~~": lid. 412, Samreh Plaza Kswaoakl-shl, Ksnegawa 211
St. Mark's Road Tel: 044-733·7011

~~no~~8' Youngdeungpo-Ku
r.r~~I~~5055 FAX: 044-733·7010

TLX: 9539452875 DCBY ~~~~"G!l~~Ugl Bldg. ~~'<~:I~E~~' 8396
FAX: 091-812·215087 1·2·1 Asahl·mechl FAX: (2) 7_

JAPAN
:~~~~r243
FAX: 0482·29-3781 SINGAPORE

Intel Japan K.K. =kt~~~·~i~g. 5-6 Tokodal. Tsukuba-shl
\~I~~"fo~reR~:"~~~' lbarekl, 300-28 2·4-1 Tereuchi

Tel: 0298-47-8511 ~~=~i~"ka 560 United Square
TLX: 3656-160 Singapore 1130
FAX: 0298-47-8450 FAX: 08-1183-1094 Tel: 250-7811

Intel Japan K.K. TLX: 39921 INTEL

::~=~~;d9. Shlnmaru Bldg. FAX: 250-9258
1..s-1 Marunouchl 1-8989 Fuchu-cho
¥~rgg~~~~ 100 ~~~=~~1183 TAIWAN

FAX: Q423-8Q.0315 FAX: 03·201-8850

~:~a~.K.K. Intel Technology Far East lid.

=.~~~~: 8th Floor, No. 205
1-16-20 Nlshiki Bank Tower Bldg.

2-89 Hon"""o ~·ku, Negoya·shl Tung Hus N. Rood

~r':~~~ltsma 380
Aichl450 Taipei
Tel: 052·204-1281 Tol: 988·2·718-9880

FAX: 0485-24-7518 FAX: 052·204-1285 FAX: 886-2·717·2455

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES
AiRGENTINA Micronlc Devices ~i"ra~:" NEW ZEALAND
DaIsys S.R.L No. 518 5th Floor

Email Electronics Swastik Chambers ~=:~~f6Shl48Q Chacebuco, 9Q.6 Piso Slon, Trombay Road 36 Olivo Road
I069-Buonos Aires Chembur FAX: 052·204-2801 Penrose, Auckland
Tel: 54-1-334-7726 Bombay 400 071 Tel: 011-84-9-581-155
FAX: 54·1-334·1871 TLX: 9531171447 MDEV Ryoyo Electro Corp. FAX: 011·64·9-592-881

Konwa Bldg .
. AUSTRALIA Mlcronlc Oavlcee 1·12·22 T8ukiJI SINGAPORE

Email ElectroniCS 25/8, 181 Floor ¥~~~~1104
15-17 Hume Street Boda Bazaar Marg Bectronlc Resources Pte, Ltd.

~~~'lf!:1~=-8244 ~!~il.'1~rl~m 
FAX: 03-546-5044 17 Harvey Rood #04-01 

TLX: AA 30995 Tel: 011·91-11-5723509 KOREA ¥~~~~36 
FAX: 011-81-3-543-8179 011·91-11·589771 

J·Tek Corporation TWX: 56541 ERS 
TLX: 031-63253 MONO IN FAX: 2895327 

NSO-Australla 8th Floor, Government Pension Bldg. = ~1~d~=~~2~d. Micronlc Devices 24-3 YOIdc>don~ 
SOUTH AFRICA 6-3-348I12A Dwarakapuri Colony You::pdeu'lllP<': u 

Tel: 03 8900970 Hyderabad 500 482 Seou 15CH1 0 Electronic Building Elements FAX: 03 8990819 Tel: 011-91·842·228748 Tel: 82·2·780-8039 178 Erasmus Street (off Watarmeyet Street) TLX: 25299 KOOIGIT 
BRAZIL 

~~~~~~ 
FAX: 82·2·784-8391 ~:Fo~mi=6!£184

Elebre Microolectronlca SA Somaung Electronics FAX: 011·2712·603-8294
Ru. Geraldo Flauslna Gomes, 78 San Josa, CA 95118 150 Taapyungro·2 KA
7 And.. ' Tel: (408) 976-6216

¥~~~~~~:7~=·102 TAIWAN
04575· Sao Paulo· S.P. TLX:820281
Tel: 55-11-534-9641 FAX: (408) 976-6835 TLX: 27970 KORSST Micro Electronics C0iFuratlon
TLX: 55·11-54593/54591 FAX: 82·2·753-0967 5/F 597, MI~ Shen as! Rd.
FAX: 55-11-534-9424 JAPAN Taipei, R.O ..

MEXICO Tel: 886-2·601-8231
CHINAlHONG KONG Asahl Electronics Co. lid. SSB Electronics, Inc.

FAX: 686-2·505-6609
Novel PrecISion Machlne~ Co., lid. KMM Bldg. 2·14-1 Asano 975 Paiomar StreaL Bldg. 4, Suits A 'Sertek
~If..'!' r. :=~~In~re.'tg· Kokurekits·ku Chula Vista, CA 92011 15/F 135, SectIon 2

=~~1.~~ Tel: (619) 565-3253 Chien Juo North Rd.
N.T .. Kowloon TLX: 28n51 CBALL UR Taipal10479, R.O.C.
HO, Kon~ FAX: 093-551-7981 FAX: (619) 565-8322 Tel: (l5010055 Tel: 8521 22-3222

C. ltoh Techno-ScIence Co .. Lid. FAX: I 5012521 TWX: 39 14 JINMI HX Olcopel SA o 5058414
FAX: (852) 426-1602 4-6-1 Dobaahl, Mlyamao-ku Tochtll 368 Frecc. Ind. San Antonio

Kswaoakl·shl, Ksnegawa 213 Azcapotzaico
VENEZUELA INDIA Tel: 044-852-5121 C.P. 0276D-MexlC9, O.F.

Mlcronlc Devices
FAX: 044-8n-4288 Tel: 52-5-581-3211

P. Benavides S.A. TLX: 1 n 3790 Olcome
~n~'1>~.f.~ Road

Dla Semlcon Systems, Inc. FAX: 52-5-561-1279 Avllanes a Rio
Flower Hili Shlnmechl Hlgashl·kan Resldencla Kamar ...

l!asavanagudl 1·23-9 Shlnmachl, Setegaya·ku PSI S.A. de C.V. Locaias 4 AL 7

~r~~r.:l~2~631 Tokyo 154 Fco. Villa esq. Ajusco sin La Candelaria, Corecas
Tel: 03-439-1600 Cuernavaca- Morelos Tel: 56-2-574-6338

011-91-812-611·365 FAX: 03-439-1601 Tol: 52·73·13-9412 TLX: 28450
TLX: 9538458332 MDBG FAX: 52·73-17-5333 FAX: 58·2-572-3321

'Field Application Location

ALABAMA

~~I ~~~tOrd Dr., Suite 2
Huntsvill. 35805
T.I: (205) 830-4010

ALASKA

Intel Corp.
c/o TransAlaska Data Systems
300 Old St •••• Hwy.
Fairbanks 99701-3120
T.I: (907) 452-4401

Intel Corp.
C/o TransAlaska Data Systems
1551 Lore Road

~~~~·5~~W76 
ARIZONA 

"Intel Corp. 
11225 N. 28th Dr. 
Suite O~214 
Phoenix 85029 
T.I: (602) 869-4980 

*Intel Corp. 
500 E. Fry Blvd., Suit. M-15 
Sierra Vista 85635 
Tol: (602) 459-5010 

CALIFORNIA 

tlntel Corp. 
21515 Vanow.n St., Ste. 116 

¥:1~(N~8j"iS4~J~g 
*Intel Corp. 
2250 E. Impo~al Hwy., St •. 218 
EI Segundo 90245 
T.I: (213) 640-6040 

*Intel Corp. 

~~~:~~:~~~5~~' 
T.I: \~~~1~~~
Int.1 Corp.
9685 Ch.sap.ake Dr" Suit. 325

~:r ~~~o~~~86
**Intel Corp.
400 N. Tustin Avenue
Suit. 460
Santa Ana 92705
T.I: (714) 835-9842

**tlntel Corp.
San Tomas 4
2700 San Tomas Exp., 2nd Flocr
Santa Clara 95051
Tel: (408) 988-8086

CALIFORNIA

2700 San Tomas Expressway
Sante Clara 95051
T.I: (408) 970-1700

1-800-421-0386

DOMESTIC SERVICE OFFICES
COLORADO MASBACHUSETTS NORTH CAROLINA

*Intel Corp. ··tlntel Corp. ""Intel Corp.
~~C:!r ~~2~ St" Suit. 915 3 Carlisle Rd., 2nd Floor 5800 Executive Dr" Ste. 105

W.stford 01886 Cha~ott. 28212
T.I: (303) 321-8086 T.I: (508) 892-1080 T.I: (704) 588-8966

CONNECTICUT ""Intsl co~.
*Intel Co~. MICHIGAN ~~~Wil Road
301 Lee arm Cor~orate Park
83 Woost.r H.lgh Rd. "tlnt.1 Corp.

~~~~~~ 9Wgi-8022 Danbury 08810 7071 Orchard Lsk. Rd., St •. 100 

T.I: (203) 748-3130 W.st Bloomfl.ld 48322 
Tel: (313) 851-8905 

FLORIDA OHIO 

""·Intet Corp. MINNESOTA ;~~~~~oce;nter Or., $te. 220 ~ ~ci';:'ict~~ ~"lo9Ste. 100 ;t\\1\.(yC~h St., Suit. 360 ¥:r(s~ ~m6-5350 T.I: (305) 771-0600 

*Intel Corp. 
Bloomln~ 55431 
T.I: (612 635-6722 ""tlntal Corp. 

5650 T.O. L •• Blvd., St •. 340 25700 Science Park Dr., Ste. 100 
O~ando 32822 Beachwood 44122 
T.I: (407) 240-8000 MISSOURI T.I: (216) 484-2736 

GEORGIA ;~I i:J~'clty Exp., Sto. 131 *Iotel Corp. OREGON 
Earth Citr 83045 3280 Point. Pkwy., Ste. 200 T.I: (314 291-1990 Intel Corp. Norcross 30092 15254 N. W. Greenbrier Parkway Tol: (404) 449-0541 

~~::e~£~ 97005 N~JERSEY 
HAWAII 

T.I: (503) 845-8051 
*Intel Corp. **Intel Corp. 

~u~~i~9CT_~~~~1 Satt. 
300 Sylvan Avenue *Intel Corp. 
Englewood Cliffs 07632 5200 N.E. Elam Young Parkway 

Shalter Plats T.I: (201) 567-0821 Hillsboro 97123 
Shaft.r 98866 

~~~~:~Oe OffIce Center 

T.I: (503) 681-8080

ILLINOIS
328 Newman Springs Road PENNSYLVANIA

**tlntel Corfr' Rad Bank 07701
300 N. Mart ngal. Rd., St •. 400 T.I: (201) 747-2233 *tlntel Corp.

r.r(¥:l1~uJ&;_~~~ 455 Pennsylvania Ave .• Ste. 230
*Intel Corp. Fort Washington 19034
280 Corporat. C.nt.r T.I: (215) 841-1000

INDIANA 75 Livingston Ave., 1st Floor
Roseland 07068 tlnt.1 Corp.

;~:~I ~~ue Rd •• Ste. 125 Tot: (201) 740-0111 400 Penn Center Blvd., Ste. 610
Indianapolis 48268 ~:m~r 8~i~~70 T.I: (317) 875-0823 NEW YORK

Intel Corp. KANBAS *tlntel Corp. 1513 C.dar Cliff Dr.
"Int.1 Corp. 2950 Expr.asway Dr. South

~~~~:I~mko 10985 Cody, Suit. 140 Islandia 11722 
OV.rland Park 86210 T.I: (516) 231-3300 

Tal: (913) 345-2727 
*Intel Corg. PUERTO RICO 

MARYLAND west~ uslness Center 

~1~t\I(lII 1 ~5~~ut. 9 
Intel Corp. 

.. tlnt.1 Corp. South Industrial Park 
10010 Junction Dr" Sulta 200 Tal: (914) 897-3880 P.O. Box 910 

~~r(ro~) ~~g~a"a"O 20701 Los Piedras 00671 
T.I: (808) 733-8616 

FAX: 301-208-3877 

CUSTOMER TRAINING CENTERS 
ILLINOIS 

300 N. Martingal. Road 
Suit. 300 
Schaumbu~ 80173 

T.I: r:b~2~Jia~ 

MASSACHUSETTS 

3 carlisle Road, First Floor 
Westford 01886 

T.I: \~6b-~~~~ 

MARYLAND 

10010 Junction Dr. 
Suite 200 
Annapolis Junction 20701 

Tel: \~g!,b~~~~~~ 

TEXAS 

Intel Corp. 
8815 Dy.r St., Suit. 225 
EI Paso 79904 
T.I: (915) 751-0186 

*Intel Corp. 
313 E. Anderson Lane, Suite 314 
Austin 78752 
T.I: (512) 454-3628 

··tlntsl Corp. 
12000 Ford Rd., Su~. 401 
Dellas 75234 
Tel: (214) 241-8087 

""Intel Corp. 
7322 S.w. Fr •• way, St •. 1490 
Houston 77074 
Tel: (713) 988-8086 

UTAH 

Intel Corp. 
428 East 8400 South, Sto. 104 
Murray 84107 
T.I: (801) 263-8051 

VIRGINIA 

~=I ~~li Rosa Rd., Ste. 108 
Richmond 23288 
T.I: (804) 282-5688 

WASHINGTON 

*Intel Corp. 
155 108th Avenu. N.E., St •. 386 
B.llevu. 98004 
T.I: (206) 453-8086 

CANADA 

ONTARIO 

Intel Semiconductor of 
Canada, Ud. 
2660 QU •• nsvlew Dr" St •. 260 
Ottawa K2B 8H8 

~~:(~i~l~g:~Z~ 
Intel Semiconductor 01 
Canada, Ltd. 
190 Attw.1I Dr" Ste. 102 
R.xdal. M9W 6H8 
T.I: (416) 675-2105 
FAX: 416-675-2438 

SYSTEMS ENGINEERING MANAGERS OFFICES 
MINNESOTA 

3500 W. 80th Street 
Suit. 380 
Bloomington 55431 
T.I: (612) 835-6722 

tSystem Engineering locations 
*Carry·ln locations 

**carry·ln!mail·ln locations 

N~YORK 

2960 Expr.ssway Dr" South 
Islandia 11722 
T.I: (506) 231-3300 





UNITED STATES 
Intel Corporation 
3065 Bowers A venue 
Santa Clara, CA 95051 

JAPAN 
Intel Japan K.K. 
5~6 Tokodai, Tsukuba~shi 
Ibaraki, 300~26 

FRANCE 
Intel Corporation 
1 Rue Edison, BP 303 
78054 Sant~Quentin~en~Yvelines Cedex 

UNITED KINGDOM 
Intel Corporation (U.K.) Ltd. 
Pipers Way 
Swindon 
Wiltshire, England SN3 lRJ 

WEST GERMANY 
Intel Semiconductor GmbH 
Domacher Strasse 1 
8016 Feldkirchen bei Muenchen 

HONG KONG 
Intel Semiconductor Ltd. 
10fF East Tower 
Bond Center 
Queensway, Central 

CANADA 
Intel Semiconductor of Canada, Ltd. 
190 AttwelI Drive, Suite 500 
Rexdale, Ontario M9W 6H8 

Printed in U.S.A./05 90/20KlCG JB 
Embedded Processors 

ISBN 1-55512-113-6 


