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CHAPTER 1 
INTRODUCTION 

The 80C 186EB is the third generation addition to the Intel's 80186 family of embedded microproces­
sors. Intel's advanced CHMOS IV semiconductor fabrication technology has allowed the integration 
of many of today 's most used peripherals with ahigh performance, low-power, 8086 compatible CPU 
core. The 80C 186EB is the first choice in portable office and communication equipment due to its low 
power and high integration. The flexible power management strategy of the 80C186EB allows for 
low-power applications that do not sacrifice performance. 
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Figure 1.1. 80C186EB Block Diagram 
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INTRODUCTION 

The 80C 186EB maintains full code compatibility with it's olderrelatives the 80186 and 80C 186, but 
adds a new, and enhanced, feature set: 

Low Power/Static CMOS Modular CPU core 

Power Management Unit 

Serial Communications Unit 

Input/Output Port Unit 

Enhanced Chip Select Unit 

Refresh Control Unit 

Interrupt Control Unit 

Timer/Counter Unit 

The brains of the 80C186EB is the new Modular CPU Core. The CPU core shares the same 
instruction set as the immensely popular 8086/8088 while adding the new instructions found on the 
80186 and 80C186. There is no larger software base available today than that written for 8086 
compatible products. Intel provides the programmer with a wide array of programming solutions 
such as ASM86, C-86, PASCAL-86, andPLM-86. For those users requiring enhanced floating point 
performance, the 80C 186EB interfaces directly with the 80C 187 Numerics Processor Extension. 

The 80C186EB is afully static device. The clock to the 80C186EB may be shut off indefinitely 
without the device losing its state. Once the clock is restored to the 80C 186EB it will begin executing 
as if there had been no interruption. The integrated Power Management Unit uses this feature to tum 
off sections of the chip while they are not being used and re-awaken them as they are needed. 

The Serial Cornmunications Unit is a new peripheral in the 80C186 product family. This new unit 
includes two synchronous/asynchronous serial communications ports. The Serial Communications 
Unit allows the 80C186EB family to be connected to serial based devices such as printers and PC 
serial ports. The new serial ports are also fully compatible with those found on other popular Intel 
microcontrollers such as the MCS-51 and MCS-96 families. Systems using an 80C186EB and a 
compatible controller can now communicate without the need for board space robbing mailbox 
memories. 

The Enhanced Chip Select Unit is another new peripheral added to the 80C186EB family. It has 
enormous flexibility. Each ofthe 10 available chip select lines can be programmed to select varying 
sized regions in memory or I/O space. The chip selects can select overlapping regions and can be 
enabled and disabled through software. Taken to the extreme this unit can extend the address space 
of the 80C 186EB to 10 megabytes of software paged memory. 
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Some customers may not need all the pin functions available on the 80C 186EB. The Input/Output 
port unit was added to allow the user to swap unused internal peripheral pins for input and output ports. 
For example, eight of the ten chip select pins may be converted, via software, into output ports. 

The Refresh Control Unit has been provided to simplify the design of dynamic memory systems. At 
programmable intervals, the 80C186EB will run dummy read cycles to refresh the dynamic RAM. 

The Interrupt Control Unit handles the 80C186EB interrupt duties. The Interrupt Controller handles 
interrupt requests from all internal sources as well as the 5 external interrupt pins. If more than five 
external interrupts are required, the Interrupt Unit can be cascaded to external 82C59 controllers 
increasing the handling capacity to 129 interrupts. 

Many systems require the handling of time related events. The Timer/Counter Unit provides a 
flexible solution for this system need. The Timer/Counter unit contains three sixteen bit timers that 
can be configured to perform many tasks including: real time clock, event counter, programmable one 
shot. 

The introduction of the 80C186EB signals a new direction for the successful 80186 family. The 
80C 186EB story began over a decade ago with the introduction ofInteI's first 16-bit microprocessor, 
the 8086. 

1.1 THE 80186 FAMILY LEGACY 

The 8086 microprocessor was first introduced in 1978 and gained rapid support as the microcomputer 
engine of choice. There are literally millions of 8086/8088 based systems in the world today. The 
amount of software written for the 8086/8088 microprocessor can be rivaled by no other architecture. 

The 8086, however, required dozens of support chips to implement even a moderately complex 
system. Intel recognized the need to integrate commonly used system peripherals onto the same 
silicon die as the CPU. In 1982 Intel addressed this need by introducing the 80186/80188 family of 
embedded microprocessors. The 80186 integrated the following peripherals with the CPU: Chip 
Select Unit, Interrupt Unit, Clock Generator, DMA Unit, Interrupt Unit, and a Timer Counter Unit. 
In addition to the new integrated peripherals, the CPU was enhanced by adding new instructions and 
reducing the time required to perform all memory access instructions. 

As technology advanced and turned towards small geometry CMOS processes, it became clear that 
a new 80186 was needed. In 1987 Intel announced the second generation of the 80186 family: the 
80C186. The 80C186 is pin compatible with the 80C186 while adding an enhanced feature set 
including a power save unit, a refresh control unit, and a direct 80C 187 interface. The high performance 
CHMOS III process allowed the 80C 186 to run at twice the clock rate of the NMOS 80186. 
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In the past 5 years the size of personal computing equipment has shrunk dramatically. Computers that 
once took up half the desk now sit comfortably on your lap during a long flight. Portable phones, once 
a bulky and expensive luxury, are now commonplace. The FAX machine, a now critical piece of 
office equipment, is now venturing into the automobile. 

Intel saw the need for highly integrated yet low power solutions for these and many other computing 
applications. Once again, the 80186 architecture was the answer. 

The 80C186EB is the first member of the 80C186 Modular Core family. In following with the 
electronics industry trend towards application specific products, the CPU of the 80C 186 was rede­
signed to be a stand alone, proliferatable, core. The core was given an internal interface bus to which 
a wide array of integrated peripherals could be attached. 

The entire system was designed to be static. When the clock is disabled, while waiting for a relatively 
slow human to touch the keyboard for instance, the chip will shut off and consume almost no power. 
This kind of power management is critical in portable applications. 

A new and enhanced feature set was added to the 80C186 Modular Core. This new feature set 
exchanges the DMA controller for 2 serial ports and enhances the capabilities of the original periph­
erals. 

The 80C 186EB is the direct result of eight years of 80186 family development. It offers the designer 
the peace of mind of a well established architecture with benefits of state of the art technology. 

1.2 HOW TO USE THIS MANUAL 

Throughout this manual you will come across phrases such as "80C186 Modular Core Family" or 
"80C 186EB family". Each of these terms refers to a specific set of 80C 186EB products. The phrases 
and the products they refer to are as follows: 

80C186 Modular Core Family: This phrase refers to any product that uses the embedded 
80C186 CPU core architecture. At this time these are the 80C186EB and 80C188EB. Most 
discussions that refer to the Modular Core Family are also true of the 80186 and 80C186 CPU's. 

80C186 Modular Core: Without the family, this refers to just the 16-bit bus members of the 
modular core family. 

80C188 Modular Core: This phrase refers to the 8-bit bus products. 

80C186EB Family: This phrase refers specifically to the 80C186EB and the 80C188EB; both 
the Modular CPU core and the specific peripheral set. 
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80C186EB: This refers to just the 80C186EB (16-bit bus) version of the 80C186EB family. 

80C188EB: The 8-bitbus member of the 80C186EB family. 

Each chapter covers a specific section of the device beginning with the CPU core. In the appendices 
you will find information regarding the differences among family members, instruction set references, 
and special topics. 

This user's guide is intended to be a supplement to the device data sheet. Specific timing values are 
not discussed in this guide; they can be found in the data sheet. 
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CHAPTER 2 
OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

The 80C 186 Modular Microprocessor Core shares a common base architecture with the 8086, 8088, 
80186, 80188, 80286, i386™, and i486™ processors. The 80C186 Modular Core maintains full 
object code compatibility with the well-known 8086/8088 family of 16-bit microprocessors, while 
adding additional hardware and software performance enhancements. Most instructions require 
fewer clocks to execute on the 80C 186 Modular Core because of hardware enhancements in the Bus 
Interface Unit and the Execution Unit. In addition, there are a number of additional instructions which 
simplify programming and reduce code size (see Appendix A.7). 

This section describes the base architecture of the 80C186 Modular Core family. Those readers 
already familiar with the 8086/8088 architecture will find this section to be, for the most part, a review 
and may wish to read Appendix A ("Differences Between the 80C 186 Modular Core Family .and the 
8086/8088") instead. 

2.1 ARCHITECTURAL OVERVIEW 

The 80C 186 Modular Microprocessor Core incorporates two separate processing units: an Execution 
Unit (EU) and aBuslnterface Unit (BIU). TheEU is functionally identical among allfamilymembers. 
In the 80C 186 Core the BIU is configured for a 16-bit external data bus and in the 80C 188 Core the 
BIU is configured for an 8-bit external data bus. The two units are connected by an instruction prefetch 
queue. 

The EU executes instructions and the BIU fetches instructions, reads operands, and writes results. 
Whenever the EU requires another opcode byte, it takes the byte out of the prefetch queue. The two 
units can operate independently of one another and are able, under most circumstances, to extensively 
overlap instruction fetches and execution. 

The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU) which performs 8-bit 
or 16-bit arithmetic and logical operations. It provides for data movement among registers, memory 
and I/O space. In addition, the CPU allows for high speed data transfer from one area of memory to 
another using string move instructions, and to or from an I/O port and memory using block I/O 
instructions. Finally, the CPU provides many conditional branch and control instructions. 

This architecture features 14 basic registers which are grouped as general registers, segment registers, 
pointer registers, and status and control registers. The four 16-bit general purpose registers (AX, BX, 
CX, and DX) may be used as operands in most arithmetic operations in either 8- or 16-bit units. The 
four 16-bit pointer registers (SI, DI, BP, and SP) may be used both in arithmetic operations and in 
accessing memory-based variables. Four 16-bit segment registers (CS, DS, SS, and ES) allow simple 
memory partitioning to aid modular programming. The status and control registers consist of an 
instruction pointer (JP) and a status word register containing flag bits. 
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Figure 2.1 is a simplified CPU block diagram. 
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Figure 2.1. Simplified Functional Block Diagram of the 80C186 Modular Core Family CPU 

2.1.1 EXECUTION UNIT 

The EU is responsible for the execution of all instructions, for providing data and addresses to the 
BIU, and for manipulating the general registers and the flag register. A 16-bit ALU in the EU 
maintains the CPU status and control flags, and manipulates the general registers and instruction 
operands. All registers and data paths in the EU are 16 bits wide for fast internal transfers. 

The EU does not connect directly to the system bus. It obtains instructions from a queue maintained 
by the BIU. Likewise, when an instruction requires access to memory or to a peripheral device, the 
EU requests the BIU to obtain and store the data. All addresses manipulated by the EU are 16 bits 
wide. The BIU, however, performs an address calculation that gives the EU access to the full 
megabyte of memory space. 

When the EU is ready to execute an instruction, it fetches the instruction object code byte from the 
BIU's instruction queue and then executes the instruction. If the queue is empty when the EU is ready 
to fetch an instruction byte, the EU waits for the instruction byte to be fetched. If a memory location 
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or I/O port must be addressed during the execution of an instruction, the EU requests the BIU to 
perform the required bus cycle. 

2.1.2 BUS INTERFACE UNIT 

The 80C 186 Core and 80C 188 Core BIU s are functionally identical, but are implemented differently 
to match the structure and performance characteristics of their respective system buses. Data is 
transferred between the CPU and memory or peripheral devices upon demand from the EU. The BIU 
executes all external bus cycles. This unit consists of the segment registers, the instruction pointer, the 
instruction code queue, and several miscellaneous registers. The BIU transfers data to and from the 
EU on the ALU data bus. 

The BIU generates 20-bit physical addresses in a dedicated adder. The adder shifts a 16-bit segment 
value left 4 bits and then adds an offset value derived from combinations of the pointer registers, the 
instruction pointer, and immediate values (see Figure 2.2). Any carry of this addition is ignored. 

+ 

= 

TO MEMORY 

~_1_2 _3_4--!0 ~!~~ENT} LOGICAL 

ADDRESS 

OFFSET 
~---'----'O 

PHYSICAL ADDRESS 

Figure 2.2. Physical Address Generation 
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During periods when the EU is busy executing instructions, the BIU "looks ahead" and prefetches 
more instructions from memory. As long as the prefetch queue is partially full, the EU can quickly 
retrieve instructions upon demand. 

2.1.3 GENERAL REGISTERS 

80C186 Modular Core family CPUs have eight 16-bit general registers (see Figure 2.3). The general 
registers are subdivided into two sets of four registers each. These are the data registers (also called 
the H & L group for high and low), and the pointer and index registers (also called the P & I group). 
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Figure 2.3. General Registers 

The data registers are unique in that their upper and lower halves are separately addressable. This 
means that each data register can be used interchangeably as a 16-bit register or as two 8-bitregisters. 
The other CPU registers are always accessed as 16-bit only. The CPU can use data registers without 
constraint in most arithmetic and logic oper~tions. Most arithmetic and logic operations can also use 
the pointer and index registers. Additionally, some instructions use certain registers implicitly (see 
Table 2.1), therefore allowing compact yet powerful encoding. 
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Table 2.1. Implicit Use of General Registers 

REGISTER OPERATIONS 

AX Word Multiply, Word Divide, 
Word 1/0 

AL Byte Multiply, Byte Divide, Byte 
1/0, Translate, Decimal Arithmetic 

AH Byte Multiply, Byte Divide 

BX Translate 

CX String Operations, Loops 

CL Variable Shift and Rotate 

DX Word Multiply, Word Divide, 
Indirect 1/0 

SP Stack Operations 

SI String Operations 

DI String Operations 

The state of any of the general registers is undefined at RESET. 

2.1.4 SEGMENT REGISTERS 

The 80C186 Modular Core family memory space (up to one megabyte) is divided into logical 
segments of up to 64 Kbytes each. The CPU has direct access to four segments at a time. The base 
addresses (starting locations) of these memory segments are contained in the segment registers (see 
Figure 2.4). The CS register points to the current code segment. Instructions are fetched from the CS 
segment. The SS register points to the current stack segment. Stack operations are performed on 
locations in the SS segment. The DS register points to the current data segment. The data segment 
generally contains program variables. The ES register points to the current extra segment, which also 
is typically used for data storage. The segment registers are accessible to programs and can be 
manipulated with several instructions. 

15 o 

cs CODE SEGMENT 

DS DATA SEGMENT 

ss STACK SEGMENT 

ES EXTRA SEGMENT 

27088-001-6 

Figure 2.4. Segment Registers 
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Upon RESET, the CS register is initialized to OFFFFH, and the DS, ES, and SS register are all 
initialized to zero. 

2.1.5 INSTRUCTION POINTER 

The BIU updates a 16-bit instruction pointer (IP) register so that it contains the offset (distance in 
bytes) of the next instruction from the beginning of the current code segment. In other words, the IP 
register points to the next instruction. During normal execution, the instruction pointer contains the 
offset of the next instruction to be fetched by the BIU. Whenever the IP register is saved on the stack, 
however, it is first automatically adjusted to point to the next instruction to be executed. Programs do 
not have direct access to the instruction pointer, but it may change, be saved, or be restored as a result 
of program execution. 

RESET initializes the instruction pointer to OOOOH. The concatenation ofCS and IP values comprises 
a starting execution address of OFFFFOH (see Section 2.1.8 for a description of address formation). 

2.1.6 FLAGS 

The 80C 186 Core family has six one-bit status flags (see Figure 2.5) that the EU posts as the result of 
an arithmetic or logic operation. Program branch instructions allow a program to alter its execution 
depending on conditions flagged by prior operation. Different instructions affect the status flags 
differently, generally reflecting the following states: 

If the auxiliary flag (AF) is set, there has been a carry out from the low nibble into the high nibble 
or a borrow from the high nibble into the low nibble of an 8-bit quantity (low-order byte of a 16-
bit quantity). This flag is used by decimal arithmetic instructions. 

If the carry flag (CF) is set, there has been a carry out of, or a borrow into, the high-order bit of 
the instruction result (8- or 16-bit). The flag is used by instructions that add and subtract multibyte 
numbers. Rotate instructions can also isolate a bit in memory or a register by placing it in the carry 
flag. 

If the overflow flag (OF) is set, an arithmetic overflow has occurred; that is, a significant digit has 
been lost because the size of the result exceeded the capacity of its destination location. An 
Interrupt On Overflow instruction is available that will generate an interrupt in this situation. 

If the sign flag (SF) is set, the high-order bit of the result is a 1. Since negative binary numbers 
are represented in standard two's complement notation, SF indicates the sign of the result (0 = 
positive, 1 = negative). 

If the parity flag (PF) is set, the result has even parity, an even number of I-bits. This flag can be 
used to check for data transmission errors. 

If the zero flag (ZF) is set, the result of the operation is O. 
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STATUS FLAGS: 

CARRY ------------------. 
PARITY ---------------, 

AUXILIARY CARRY -------------, 
ZERO----------, 

SIGN --------.., 

OVER FLOW ----.., 

STATUS WORD: 

11 7 6 4 2 

CONTROL FLAGS: 1....-- TRAP FLAG 

o 

I ,""'-"""''' 1....--- INTERRUPT ENABLE 1....---- DIRECTION FLAG 
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Figure 2.5. Status Word Format 

The additional control flags (see Figure 2.5) can be set and cleared by programs to alter processor 
operations: 

Setting the direction flag (DF) causes string instructions to auto-decrement; that is, to process 
strings from the high address to the low address, or "right to left". Clearing OF causes string 
instructions to auto-increment, or process strings "left to right." 

• Setting the interrupt-enable flag (IF) allows the CPU to recognize maskable external or internal 
interrupt requests. Clearing IF disables these interrupts. The interrupt-enable flag has no effect 
upon software interrupts or non-maskable externally generated interrupts. 

Setting the trap flag (TF) puts the processor into single-step mode for debugging. In this mode, 
the CPU automatically generates an internal interrupt after each instruction, allowing a program 
to be inspected as it executes instruction by instruction. 

Both the status and control flags are contained in a 16-bit status word (see Figure 2.5). The RESET 
condition of the status word is OFOOOH. 

2.1.7 MEMORY SEGMENTATION 

Programs for the 80C186 Modular Core family view the one megabyte memory space as a group of 
segments that are user-defined according to application. A segment is a logical unit of memory that 
may be up to 64 Kbytes long. Each segment if made up of contiguous memory locations and is an 
independent, separately-addressable unit. Software assigns every segment a base address (starting 
location) in memory space. All segments begin on 16-bit memory boundaries. There are no other 
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restrictions on segment locations. Segments may be adjacent, disjoint, partially overlapped, or fully 
overlapped (see Figure 2.6). A physical memory location may be mapped into (covered by) one or 
more logical segments. 

LOGICAL 
SEGMENTS 

~t-----+----t----tl---~I? )~~~~~L 
OH 10000H 20000H 30000H 

Figure 2.6. Segment Locations in Physical Memory 
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The four segment registers point to four "currently addressable" segments (see Figure 2.7). The 
currently addressable segments provide a work space consisting of 64 Kbytes for code, a 64K stack, 
and 128K of data storage. Programs obtain access to code and data in other segments by changing the 
segment registers to point to the desired segments. 
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The segmented memory structure of the 80Cl86 Modular Core family is a hardware provision to 
encourage modular programming. Every program will use segmentation differently. Smaller appli­
cations tend to initialize the segment registers and then simply forget them. Larger applications give 
careful consideration to segment definition and use. 

2.1.8 LOGICAL ADDRESSES 

It is useful to think of every memory location as having two kinds of addresses, physical and logical. 
A physical address is a 20-bit value that identifies each unique byte location in the memory space. 
Physical addresses range from OH to FFFFFH. All exchanges between the CPU and memory com­
ponents use a physical address. 

Programs deal with logical, rather than physical addresses. Program code can be developed without 
prior knowledge of where the code is to be located in memory; in larger applications, dynamic 
management of memory resources is a necessity. A logical address consists of a segment base value 
and an offset value. For any given memory location, the segment base value locates the first byte of 
the segment and the offset value is the distance, in bytes, of the target location from the beginning of 
the segment. Segment base and offset values are unsigned 16-bit quantities. Many different logical 
addresses can map to the same physical location. In the example (see Figure 2.8), physical memory 
location 2C3H is contained in two different overlapping segments, one beginning at 2BOH and the 
other at 2COH. 
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Ifleft alone, the processor automatically assigns segments based on the specific addressing needs of 
the program. The segment register to be selected is automatically chosen according to the rules in 
Table 2.2. All information in one segment type generally shares the same logical attributes (e.g., code 
or data), leading to programs which are shorter, faster, and better structured. 

To generate a physical address, the BIU must first obtain the logical address_ The logical address of 
a memory location can come from different sources, depending on the type of reference that is being 
made (see Table 2.2). 

Table 2.2. Logical Address Sources 

DEFAULT ALTERNATE 
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET 

BASE BASE 

Instruction Fetch CS NONE IP 
Stack Operation SS NONE SP 
Variable (except following) DS CS, ES,SS Effective Address 
String Source DS CS, ES,SS SI 
String Destination ES NONE DI 
BP Used As Base Register SS CS, DS, ES Effective Address 
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Segment base addresses are always held in the segment registers. The BIU conveniently assumes 
which segment register contains the base address according to the type of memory reference made. 
However, it is possible for a programmer to explicitly direct the BIU to access a variable in any of the 
currently addressable segments (except for the destination operand of a string instruction). In assembly 
language, this is done by preceding an instruction with a segment override prefix. 

Instructions are always fetched from the current code segment; the IP register contains the offset of 
the target instruction from the beginning of the segment. Stack instructions always operate on the 
current stack segment; the SP (stack pointer) register contains the offset of the top of the stack. Most 
variables (memory operands) are assumed to reside in the current data segment, but a program can 
instruct the BIU to override this assumption. Often, the offset of a memory variable is not directly 
available and must be calculated at execution time. This calculation is based on the addressing mode 
(see Section 2.2.2) specified in the instruction; the result is called the operand's effective address 
(EA). 

Strings are addressed differently than other variables. The source operand of a string instruction is 
assumed to lie in the current data segment, but the program may use another currently addressable 
segment. The operand's offset is taken from the SI (source index) register. The destination operand 
of a string instruction always resides in the current extra segment; its offset is taken from the DI 
(destination index) register. The string instructions automatically adjustthe SI and DI registers as they 
process the strings one byte or word at a time. 

When register BP, the base pointer register, is designated as a base register in an instruction, the 
variable is assumed to reside in the current stack segment. Therefore, register BP provides a convenient 
way to address data on the stack. However, the BP register can also be used to access data in any of 
the other currently addressable segments. 

2.1.9 DYNAMICALLY RELOCATABLE CODE 

The segmented memory structure of the 80C186 Modular Core family makes it possible to write 
programs that are position-independent, or dynamically relocatable. Dynamic relocation allows a 
multiprogramming or multitasking system to make particularly effective use of available memory. 
The processor can write inactive programs to a disk and reallocate the space they occupied to other 
programs. If a disk -resident program is needed later, it can be read back into any available memory 
location and restarted. Similarly, if a program needs a large contiguous block of storage, and the total 
amount is only available in non-adjacent fragments, other program segments can be compacted to 
free up a continuous space. This process is illustrated graphically in Figure 2.9. 
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Figure 2.9. Dynamic Code Relocation 

To be dynamically relocatable, a program must not load or alter its segment registers and must not 
transfer directly to a location outside the current code segment. In other words, all offsets in the 
program must be relative to fixed values contained in the segment registers. This allows the program 
to be moved anywhere in memory as long as the segment registers are updated to point to the new base 
addresses. 

2.1.10 STACK IMPLEMENTATION 

Stacks in the 80C 186 Modular Core family are implemented in memory and are located by the stack 
segment register (SS) and the stack pointer (SP). A system may have numerous stacks, and a stack 
may be up to 64 Kbytes long, the maximum length of a segment. An attempt to grow a stack beyond 
64 K overwrites the beginning of the segment. Only one stack is directly addressable at a time_ The SS 
register contains the base address of the current stack; however, the base address is not the origination 
point of the stack. The SP register contains an offset which points to the top of stack (TOS). 
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Stacks are 16 bits wide; instructions that operate on a stack add and remove stack elements one word 
at a time. An element is pushed onto the stack (see Figure 2.1 0) by first decrementing the SP register 
by 2 and then writing the data word. An element is popped off the stack by copying it from the TOS 
and then incrementing the SP register by 2. In other words, the stack goes down in memory toward 
its base address. Stack operations never move elements on the stack, nor do they erase them. The top 
of the stack changes only as a result of updating the stack pointer. 

EXISTING 
STACK , 'r-

t 1062 00 11 

1060 22 33 

" 44 55 ::;;0 105E 0;:5 
105B 66 77 I=UJ 

au.. 
mO 

105A 88 99 

~1058 AA BB 

r 1056 01 23 f- G 
1054 45 67 ~~ 
1052 89 AB g: ~ 

~b~ zO 

10 50 SS 

00 08 SP 

PUSH AX 

AX~l 
\, 

1062 00 11 I 
1060 22 33 I 
105E 44 55 

I 105B 66 77 

105A 88 99 I 
1058 AA BB .J TOS r-- 1056 34 12 

1054 45 67 

1052 89 AB 

r 1050 
CD EF 

10 50 SS 

00 06 SP 

STACK OPERATION FOR CODE SEQUENCE 
PUSH AX 
POP AX 
POP BX 

Figure 2.10. Stack Operation 

2.1.11 RESERVED MEMORY AND I/O SPACE 

POP AX 
POP BX 

AX~-, 

BX~l I 
I 

I I 1062 00 11 

1060 22 33 I I 
I 55 I 105E 44 
I 105C 66 77 I I ~105A 88 99 J I 105B AA BB _-.J 

1056 34 12 

1054 45 67 

1052 89 AB 

r 1050 
CD EF 

10 50 SS 

00 OA SP 
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Two specific areas in memory and one area in I/O space are reserved in the 80C186 Core family. 

Locations OH through 3FFH in low memory are reserved for interrupt vectors. 

Locations OFFFFOH through OFFFFFH in high memory are reserved for system reset code since 
the processor begins execution at OFFFFOH. 

Locations OF8H through OFFH in I/O space are reserved for communication with other Intel 
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hardware products. On the 80C186 Core, these addresses are used as I/O ports for the 80C187 
numerics processor extension. 

The peripheral control block (see Section 5.0) may reside in memory or I/O space. All unused 
locations in the peripheral control block are also reserved. 

2.2 SOFTWARE OVERVIEW 

An80C 186 Modular Core family members execute exactly the same instructions. This instruction set 
includes all the 8086/8088 instructions plus several useful additions and enhancements. The following 
sections provide a description of the instructions by category and a detailed discussion of the various 
operand addressing modes. 

Software for 80C186 Core family systems does not need to be written in assembly language. The 
processor provides direct hardware support for programs written in the many high-level languages 
available. Most high-level languages store variables in memory; the symmetrical instruction set 
supports direct operation on memory operands, including operands on the stack. The hardware 
addressing modes provide efficient, straightforward implementations of based variables, arrays, 
arrays of structures and other high-level language data constructs. A powerful set of memory-to­
memory string operations is available for efficient character data manipulation. Finally, routines with 
critical performance requirements that cannot be met with high-level languages may be written in 
assembly language and linked with high-level code. 

2.2.1 INSTRUCTION SET 

Instructions in the 80C 186 Modular Core family treat different types of operands uniformly. Nearly 
every instruction can operate on either byte or word data. Register, memory and immediate operands 
may be specified interchangeably in most instructions. The exception to this is that immediate values 
serve as source and not destination operands. In particular, memory variables may be added to, 
subtracted from, shifted, compared, and so on, in place, without moving them in and out of registers. 
This saves instructions, registers, and execution time in assembly language programs. In high-level 
languages, where most variables are memory-based, compilers can produce faster and shorter object 
programs. 

The 80C186 Core family instruction set can be viewed as existing on two levels. One is the assembly 
level and the other is the machine level. To the assembly language programmer, the 80C186 Core 
family appears to have a repertoire of about 100 instructions. One MOV (data move) instruction, for 
example, transfers a byte of a word from a register of a memory location or an immediate value to 
either a register or a memory location. The 80C 186 Modular Core family CPU s, however, recognize 
28 different machine versions of the MOV instruction. 

The two levels of instruction set address two different requirements: efficiency and simplicity. The 
approximately 300 forms of machine-level instructions make very efficient use of storage. For 
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example, the machine instruction that increments a memory operand is three or four bytes long 
because the address of the operand must be encoded in the instruction. To increment a register, 
however, does not require as much information, so the instruction can be shorter. The 80C 186 Core 
family has eight different machine-level instructions that increment a different 16-bit register. Each 
of these instructions is only one byte long. 

The assembly level instructions simplify the programmer's view of the instruction set. The program­
mer writes one form of an INC (increment) instruction and the assembler examines the operand to 
determine which machine level instruction to generate. The following paragraphs provide a func­
tional description of the assembly-level instructions. 

2.2.1.1 DATA TRANSFER INSTRUCTIONS 

The instruction set contains 14 data transfer instructions. These instructions move single bytes and 
words betwc.!n memory and registers, and also move single bytes and words between the AL or AX 
registers and I/O ports. Table 2.3 lists the four types of data transfer instructions and their functions. 
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Table 2.3. Data Transfer Instructions Table 2.4. Arithmetic Instructions 

GENERAL PURPOSE ADDITION 

MOV Move byte or word ADD Add byte or word 
PUSH Push word onto stack ADC Add byte or word with carry 

POP Pop word off stack INC Increment byte or word by 1 

PUSHA Push registers onto stack AAA ASCII adjust for addition 
POPA Pop registers off stack DAA Decimal adjust for addition 
XCHG Exchange byte or word SUBTRACTION 
XLAT I Translate byte 

SUB Subtract byte or word 
INPUT/OUTPUT SBB Subtract byte or word with 

IN Input byte or word borrow 

OUT Output byte or word D.EC Decrement byte or word by 1 

ADDRESS OBJECT AND STACK FRAME 
NEG Negate byte or word 
CMP Compare byte or word 

LEA Load effective address AAS ASCII adjust for subtraction 
LOS Load pointer using OS DAS Decimal adjust for subtraction 
LES Load pointer using ES 

ENTER Build stack frame 
MULTIPLICATION 

LEAVE Tear down stack frame MUL Multiply byte or word unsigned 

FLAG TRANSFER 
IMUL Integer multiply byte or word 

AAM ASCII adjust for multiply 
LAHF Load AH register from flags 
SAHF Store AH register in flags 

DIVISION 

PUSHF Push flags onto stack DIV Divide byte or word unsigned 

POPF Pop flags off stack IDIV Integer divide byte or word 

AAD ASCII adjust for division 

CBW Convert byte to word 
CWO Convert word to doubleword 

Table 2.5. Arithmetic Interpretation of 8·Blt Numbers 

HEX BIT PATTERN 
UNSIGNED SIGNED UNPACKED PACKED 

BINARY BINARY DECIMAL DECIMAL 

07 00000111 7 +7 7 7 

89 10001001 137 -119 invalid 89 

C5 11000101 197 -59 invalid invalid 

Data transfer instructions are categorized as general purpose, input/output, address object, and flag 
transfer. The stack manipulation instructions which are used for transferring flag contents, and the 
instructions for loading segment registers are also included in this group. Figure 2.11 shows the flag 
storage formats. The address object instructions manipulate the addresses of variables instead of the 
contents of values of the variables. This is useful for list processing, based variable, and string 
operations. 
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~~~~IS,Z,U,A,U,P,u,cl 
17 6 5 4 3 2 1 01 
I I 
I 1 
I I 

PUSHFI I POPFUIUIUIUIO,D, I ,T,S,Z,U,AIU,P1U,C 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

U = UNDEFINED; VALUE IS INDETERMINATE ° = OVERFLOW FLAG 
D = DIRECTION FLAG 
I = INTERRUPT ENABLE FLAG 
T = TRAP FLAG 
S = SIGN FLAG 
Z =ZERO FLAG 
A = AUXILIARY CARRY FLAG 
P = PARITY FLAG 
C = CARRY FLAG 

Figure 2.11. Flag Storage Format 

2.2.1.2 ARITHMETIC INSTRUCTIONS 

The arithmetic instructions (see Table 2.4) operate on four types of numbers: 

1. Unsigned binary. 

2. Signed binary (integers). 

3. Unsigned packed decimal. 

4. Unsigned unpacked decimal. 

270288-001-13 

Table 2.5 shows the interpretations of various bit patterns according to each number type. 

Binary numbers may be 8 or 16 bits long. Decimal numbers are stored in bytes, two digits per byte for 
packed decimal and one digit per byte for unpacked decimal. The processor always assumes that the 
operands specified in arithmetic instructions contain data that represent valid numbers for the instruc­
tion being performed. Invalid data may produce unpredictable results. The processor analyzes 
arithmetic results and posts certain characteristics of the operation to six flags. 

2.2.1.3 BIT MANIPULATION INSTRUCTIONS 

There are three groups of instructions for manipulating bits within both bytes and word. These three 
groups are logical, shifts and rotates. Table 2.6 lists these three groups of bit manipUlation instructions 
with their functions. 

2-t7 



OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE 

The logical instructions include the Boolean operators NOT, AND, inclusive OR, and exclusive OR 
(XOR). A TEST instruction that sets the flags as a result of a Boolean AND operation, but does not 
alter either of its operands, is also included. 

The bits in bytes and words may be shifted arithmetically or logically. Up to 255 shifts may be 
performed, according to the value of the count operand coded in the instruction. The count may be 
specified as an immediate value or as a variable in the CL register, allowing the shift count to be a 
variable supplied at execution time. Arithmetic shifts may be used to multiply and divide binary 
numbers by powers of two. Logical shifts can be used to isolate bits in bytes or words. 

Bits in bytes and words can also be rotated. The processor does not discard the bits rotated out of an 
operand; the bits circles back to the other end of the operand. As in the shift instructions, the number 
of bits to be rotated is taken from the count operand, which may specify either an immediate value, 
or the CL register. The carry flag may act as an extension of the operand in two of the rotate 
instructions, allowing a bit to be isolated in CF and then tested by a JC Uump if carry) or JNC Uump 
if not carry) instruction. 

2.2.1.4 STRING INSTRUCTIONS 

Five basic string operations allow strings of bytes or words to be operated on, one element (byte or 
word) at a time. Strings of up to 64 Kbytes may be manipulated with these instructions. Instructions 
are available to move, compare and scan for a value, as well as moving string elements to and from 
the accumulator. Table 2. 7 lists the string instructions. These basic operations may be preceded by a 
special one-byte prefix that causes the instruction to be repeated by the hardware, allowing long 
strings to be processed much faster than would be possible with a software loop. The repetitions can 
be terminated by a variety of conditions, and repeated operations may be interrupted and resumed. 

The string instructions operate similarly in many respects (refer to Table 2.8). A string instruction 
may have a source operand, a destination operand, or both. The hardware assumes that a source string 
resides in the current data segment. A segment prefix may be used to override this assumption. A 
destination string must be in the current extra segment. The assembler checks the attributes of the 
operands to determine if the elements of the strings are bytes or words. However, the assembler does 
not use the operand names to address strings. Instead, the contents of register SI (source index) are 
used as an offset to address the current element of the source string. Also, the contents of register DI 
(destination index) are taken as the offset of the current destination string element. These registers 
must be initialized to point to the source/destination strings before executing the string instructions. 
The LDS, LES and LEA instructions are useful in performing this function. 

String instructions automatically update the SI or DI register or both prior to processing the next string 
element. Setting the direction flag (DF) determines whether the index registers are auto-incremented 
(DF = 0) or auto-decremented (DF = 1). The processor adjusts the DI or SI register or both by one if 
byte strings are being processed. The adjustment is two for word strings. 
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Table 2.6. Bit Manipulation Instructions 

LOGICALS 

NOT "Not" byte or word 
AND "And" byte or word 
OR "Inclusive or" byte or word 
XOR "Exclusive or" byte or word 
TEST "Test" byte or word 

SHIFTS 

SHUSAL Shift logical/arithmetic left 
byte or word 

SHR Shift logical right byte or word 
SAR Shift arithmetic right byte or 

word 

ROTATES 

ROL Rotate left byte or word 
ROR Rotate right byte or word 
RCL Rotate through carry left byte 

or word 
RCR Rotate through carry right byte 

or word 

Table 2.7. String Instructions 

REP 
REPElREPZ 
REPNE/REPNZ 

MOVS 
MOVSB/MOVSW 
INS 
OUTS 
CMPS 

SCAS 
LODS 
sros 

Repeat 
Repeat while equal/zero 
Repeat while not 

equal/not zero 
Move byte or word string 
Move byte or word string 
Input byte or word string 
Output byte or word string 
Compare byte or word 

string 
Scan byte or word string 
Load byte or word string 
Store byte or word string 

Table 2.8. String Instruction Register and Flag Use 

SI 
01 

CX 
AUAX 

OF 

ZF 

Index (offset) for source string 
Index (offset) for destination 

string 
Repetition counter 
Scan value 
Destination for LODS 
Source for STOS 

o = auto-increment SI, 01 
1 = auto-decrement SI, 01 
Scan/compare terminator 
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Table 2.9. Program Transfer Instructions 

UNCONDITIONAL TRANSFERS 

CALL Call procedure 
RET Return from procedure 
JMP Jump 

CONDITIONAL TRANSFERS 

JNJNBE Jump if above/not below 
nor equal 

JAE/JNB Jump if above or equal/ 
not below 

JB/JNAE Jump if below/not above 
nor equal 

JBE/JNA Jump if below or equal/ 
not above 

JC Jump if carry 
JElJZ Jump if equal/zero 
JG/JNLE Jump if greater/not less 

nor equal 
JGElJNL Jump if greater or equal/ 

not less 
JUJNGE Jump if less/not greater 

nor equal 
JLE/JNG Jump if less or equal/ 

not greater 
JNC Jump if not carry 
JNElJNZ Jump if not equal/not zero 
JNO Jump if not overflow 
JNP/JPO Jump if not parity/parity odd 
JNS Jump if not sign 
JO Jump if overflow 
JP/JPE Jump if parity/parity even 
JS Jump if sign 

ITERATION CONTROLS 

LOOP Loop 
LOOPE/LQOPZ Loop if equal/zero 
LOOPNE/LOOPNZ Loop if not equal/not zero 
JCXZ Jump if register CX=O 

INTERRUPTS 

INT Interrupt 
INTO I nterrupt if overflow 
BOUND Interrupt if out of array 

bounds 
IRET Interrupt return 
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If arepeatpreftx has been coded, thenregisterCX (the count register) is decremented by one after each 
repetition of the string instruction. The CX register must be initialized to the number of repetitions 
desired before the string instruction is executed. If the CX register is 0, the string instruction is not 
executed and control goes to the following instruction. 

2.2.1.5 PROGRAM TRANSFER INSTRUCTIONS 

The sequence in which instructions are executed in the 80C 186 Modular Core family is determined 
by the contents of the CS and IPregisters. The CS register contains the base address of the current code 
segment. The IP register points to the memory locations from which the next instruction is to be 
fetched. In most operating conditions, the next instruction to be executed will have already been 
fetched and is waiting in the CPU instruction queue. The program transfer instructions operate on the 
instruction pointer and on the CS register; changing the content of these causes normal sequential 
operation to be altered. When a program transfer occurs, the queue no longer contains the correct 
instruction. When the BIUobtains the next instruction from memory using the new IP andCS values, 
it passes the instruction directly to the EU and begins reftlling the queue from the new location. 

Four groups of program transfers are available with the 80C186 Core family processors. See Table 
2.9. These are unconditional transfers, conditional transfers, iteration control instructions, and in­
terrupt crelated instructions. 

The unconditional transfer instructions may transfer control to a target instruction within the current 
code segment (intrasegment transfer) or to a different code segment (intersegment transfer). The 
assembler terms an intrasegment transfer SHORT or NEAR and an intersegment transfer FAR. The 
transfer is made unconditionally any time the instruction is executed. 

The conditional transfer instructions are jumps that mayor may not transfer control depending on the 
state of the CPU flags at the time the instruction is executed. These 18 instructions (see Table 2.10) 
each test a different combination of flags for a condition. If the condition is logically TRUE then 
control is transferred to the target specified in the instruction. If the condition is FALSE then control 
passes to the instruction that follows the conditional jump. All conditional jumps are SHORT, that is, 
the target must be in the current code segment and within -128 to + 127 bytes of the ftrst byte of the 
next instruction. For example, JMP OOH causes a jump to the fIrst byte of the next instruction. Since 
jumps are made by adding the relative displacement of the target to the instruction pointer, all 
conditional jutnps are self-relative and are appropriate for position-independent routines. 
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Table 2.10. Interpretation of Conditional Transfers 

CONDITION TESTED "JUMP IF .•• " 

(CFor ZF)=O above/not below nor equal 

CF=O above or equal/not below 

CF=1 below/not above nor equal 
(CForZF)=1 below or equal/not above 

CF=1 carry 
ZF=1 equal/zero 
((SF xor OF) or ZF) = 0 greater/not less nor equal 
(SF xor OF)=O greater or equal/not less 
(SF xor OF)=1 less/not greater nor equal 
((SF xor OF) or ZF)=1 less or equal/not greater 
CF=O not carry 

ZF=O not equal/not zero 

OF=O not overflow 

PF=O not parity/parity odd 
SF=O not sign 

OF=1 overflow 

PF=1 parity/parity equal 
SF=1 sign 

Note: "above" and "below" refer to the relationship of two unsigned values; 
"greater" and "less" refer to the relationship of two signed values. 

The iteration control instructions can be used to regulate the repetition of software loops. These 
instructions use the CX register as a counter. Like the conditiorial transfers, the iteration control 
instructions are self-relative and may only transfer to targets that are within -128 to +127 bytes of 
themselves, i.e., they are SHORT transfers. 

The interrupt instructions allow interrupt service routines to be activated by programs as well as by 
external hardware devices. The effect of software interrupts is similar to hardware-initiated inter­
rupts. However, the processor cannot execute an interrupt acknowledge bus cycle if the interrupt 
originates in software or with an NMI (Non-Maskable Interrupt). 

2.2.1.6 PROCESSOR CONTROL INSTRUCTIONS 

The processor control instructions (see Table 2.11) allow programs to control various CPU functions. 
One group of instructions updates flags, and another group is used primarily for synchronizing the 
microprocessor to external events. A final instruction causes the CPU to do nothing. Except for the 
flag operations, none of the processor control instructions affects the flags. 
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Table 2.11. Processor COntrollnstrlJctions 

FLAG OPERATIONS 

STC Set carry flag 

CLC Clear carry flag 

CMC Complement carry flag 
STD Set direction flag 
CLD Clear direction flag 
STI Set interrupt enable flag 

CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interrupt or reset 
WAIT Wait for TEST pin active 

ESC Escape to external processor 

LOCK Lock bus during next 
instruction 

NO OPERATION 

NOP No operation 

2.2.2 ADDRESSING MODES 

An 80C186 Modular Core family member accesses instruction operands in many different ways. 
Operands may be contained in registers, within the instruction itself, in memory, or at I/Oports. Also, 
the addresses of memory and I/O port operands can be calculated in several different ways. These 
addressing modes greatly extend the flexibility and convenience of the instruction set. The following 
paragraphs briefly describe the register and immediate· modes of operand addressing, and then 
provide a detailed description of the memory and I/O addressing modes. 

2.2.2.1 REGISTER AND IMMEDIATE OPERAND ADDRESSING MODES 

Instructions that specify only register operands are usually the most compact and fastest executing of 
the operand addressing forms. This is because the register operand addresses are encoded in in­
structions injust a few bits, and because these operand!!~ perfo~ed entirely within the CPU (no bus 
cycles are run). Registers may serve as source operands, destination operands, or both. 

Immediate operand!> are constant data contained in an instruction. The data may be either 8 or 16 bits 
in.length. Immediate operands can be accessedquicldy because they are available directly from the 
instruction queue. Like the register operand; no bus cycles need to be run to get an immediate pperand. 
The limitations on immediate operands are that they may only serve as source operands and that they 
are constant in value. 
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2.2.2.2 MEMORY ADDRESSING MODES 

Although the ED has direct access to register and immediate operands, memory operands must be 
transferred to and from the CPD over the bus. When the ED needs to read or write a memory operand, 
it must pass an offset value to the BID. The BID adds the offset to the shifted contents of a segment 
register producing a 20-bitphysical address and then executes the bus cycle or.cycles needed to access 
the operand. 

The offset that the ED calculates for memory operand is called the operand's effective address or EA. 
This address is an unsigned 16-bit number that expresses the operand's distance in bytes from the 
beginning of the segment in which it resides. The ED can calculate the effective address in several 
ways. Information encoded in the second byte of the instruction tells the ED how to calculate the 
effective address of each memory operand. A compiler or assembler derives this information from the 
statement or instruction written by the programmer. Assembly language programmers have access to 
all addressing modes. 

The EU calculates the EA by summing a displacement, the content of a base register and the content 
of an index register (see Figure 2.12). Any combination of these three components may be present in 
a given instruction. This allows a variety of memory addressing modes. 
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ENCODED 
IN THE 
INSTRUCTION 

EXPLICIT { 
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INSTRUCTION 

ASSUMED 
UNLESS 
OVERRIDDEN 
BY PREFIX 

SINGLE INDEX DOUBLE INDEX 

Figure 2.12. Memory Address Computation 

BIU 
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The displacement element is an 8-bit or 16-bit number that is contained in the instruction. The 
displacement generally is derived from the position of the operand name (a variable or label) in the 
program. The programmer can also modify this value or explicitly specify the displacement. 

A programmer may specify that either the BX or BP register is to serve as a base register.whose 
content is to be used in the EA computation. 

Similarly, either the SI or DI register may be specified as the index register. The displacement value 
is a constant. The contents of the base and index registers may change during execution. This allows 
one instruction to access different memory locations as determined by the current values in the base 
or base and index registers. Effective address calculations with the BP register are made using the SS 
register, by default, although either the DS or the ES register may be specified instead. 
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Direct addressing is the simplest memory addressing mode (see Figure 2.13). No registers are 
involved and the EA is taken directly from the displacement of the instruction. The programmer 
typically uses direct addressing to access scaler variables. 

r-----,------.------.-- ---..., 
1,--_oP_C_O_D_E ---I1_M_O_D_R_/M_.L-I __ D_18_P_LA-+C.E _M~~ __ J 

I EA I 
270288-001-15 

Figure 2.13. Direct Addressing 

With register indirect addressing, the effective address of a memory operand may be taken directly 
from one of the base or index registers (see Figure 2.14). One instruction can operate on many 
different memory locations ifthe value in the base or index register is updated appropriately. Any 16-
bit general register may be used for register indirect addressing with the JMP or CALL instructions. 

BX 
OR 
BP 

OR--+-_'" 
81 

OR 
DI 

Figure 2.14. Register Indirect Addressing 
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In based addressing (see Figure 2.15), the effective address is the sum of a displacement value and the 
content of register BX or BP. Specifying register BP as a base register directs the BIU to obtain the 
operand from the current stack segment (unless a segment override prefix is present). This makes 
based addressing with the BP register a very convenient way to access stack data. 

270288·001-17 

Figure 2.15. Based Addressing 

Based addressing also provides a simple way to address data structures which may be located at 
different places in memory (see Figure 2.16). A base register can be pointed at the structure and 
elements of the structure can be addressed by their displacement. Different copies of the same 
structure can be accessed by simply changing the base register. 

HIGH ADDRESS 

VAC 

DEPT ________ .....1 

LOW ADDRESS 

Figure 2.16. Accessing a Structure with Based Addressing 
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With indexed addressing, the effective address is calculated from the sum of a displacement plus the 
content of an index register (SI or 01). See Figure 2.17. Indexed addressing is often used to access 
elements in an array (see Figure 2.18). The displacement locates the beginning of the array, and the 
value of the index register selects one element. If the index register contains OOOOH, the processor 
selects the first element. Since all array elements are the same length, simple arithmetic on the register 
may select any element. 

Figure 2.17. Indexed Addressing 

r 
I 
I 
I 
I 
I INDEX REGISTER 
I 
I 
I 
I 
I EA 
L __________ _ 

HIGH ADDRESS 

ARRAY (8) 

ARRAY (7) 

ARRAY (6) 

ARRAY (5) 

ARRAY (4) INDEX REGISTER 

ARRAY (3) 2 

ARRAY (2) , 

I-_A_R_RA_Y_(1_) --I ---1 EA 

ARRAY (0) 

1 WORD 
LOW ADDRESS 

Figure 2.18. Accessing an Array with Indexed Addressing 
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Based index addressing generates an effective address that is the sum of a base register, an index 
register, and a displacement (see Figure 2.19). This mode of addressing is very flexible because the 
values of two address components can be determined at execution time. 

270288-001-21 

Figure 2.19. Based Index Addressing 

Based index addressing provides a convenient way for a procedure to address an array allocated on 
a stack (see Figure 2.20). Register BP can contain the offset of a reference point on the stack, typically 
the top of the stack after the procedure has saved registers and allocated local storage. The offset of 
the beginning of the array from the reference point can be expressed by a displacement value, and the 
index register can be used to access individual array elements. Arrays contained in structures and 
matrices (two-dimensional arrays) can also be accessed with based indexed addressing. 
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__ 1 WORD_ 

LOWER ADDRESS 

Figure 2.20. Accessing a Stacked Array with Based Index Addressing 
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String instructions do not use the nonnal memory addressing modes to access operands. Instead, the 
index registers are used implicitly (see Figure 2.21). When a string instruction is executed, the SI 
register is assumed to point to the first byte or word of the source string. The 01 register is assumed 
to point to the first byte or word of the destination string. In a repeated string operation, the CPU will 
automatically adjust the SI and 01 registers to obtain subsequent bytes or words. Note that for string 
instructions the OS register is the default segment register for the SI register and the ES register is the 
default segment register for the DI register. This allows string instructions to easily operate on data 
located anywhere within the one megabyte address space. 
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I OPCODE I 

SI ~ SOURCE EA 

01 r--t DESTINATION EA I 

Figure 2.21. String Operand 

2.2.2.3 I/O PORT ADDRESSING 

270288-001-23 

Any of the memory operaild addressing modes may be used to access an I/O port if the port is memory~ 
mapped. String instructions can also be used to transfer data to memory-mapped ports with an 
appropriate hardware interface. 

Two different address modes can be used to access ports located in the I/O space (see Figure 2.22); 
The port number is an 8-bit immediate operand for direct addressing. This allows fixed access to ports 
numbered 0-255. Indirect I/O port addressing is similar to register indirect addressing of memory 
operands. The port number is taken from register DX and can range from 0 to 65,535. By previously 
actjusting the content of register DX, one instruction can access any port in the I/O space. A group of 
adjacent ports can be accessed using a simple software loop that adjusts the value of the DXregister. 

DIRECT PORT ADDRESSING INDIRECT PORT ADDRESSING . 

270288-001-24 

Figure 2.22. 1/0 Port Addressing 
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2.2.3 DATA TYPES USED IN THE 80C186 MODULAR CORE FAMILY 

The 80C186 Modular Core family supports the following data types: 

Integer - A signed binary numeric value contained in an 8-bit byte or a 16-bit word. All operations 
assume a 2's complement representation. Signed 32-and 64-bit integers are directly supported 
with the addition of an 80C187 Numerics Processor Extension to an 80C186 Modular Core 
system. The 80C188 Modular Core does not support the 80C187. 

Ordinal- An unsigned binary numeric value contained in an 8-bit byte or a 16-bit word. 

Pointer - A 16- or 32-bit quantity, composed of a 16-bit offset component or a 16-bit segment 
base component in addition to a 16-bit offset component. 

• String - A contiguous sequence of bytes of words. A string may contain from one byte to 64 
Kbytes. 

ASCII- A byte representation of alphanumeric and control characters using the ASCII standard. 

BCD - A byte (unpacked) representation of the decimal digits 0-9. 

Packed BCD - A byte (packed) representation of two decimal digits (0-9). One digit is stored in 
each nibble (4 bits) of the byte. 

Floating Point - A signed 32-, 64-, or 80-bit real number representation. Floating point operands 
are directly supported with the addition of an 80C187 Numerics Processor Extension to an 
80C 186 Modular Core system. The 80C 188 Modular Core does not support the 80C 187. 

In general, individual data elements must fit within defined segment limits. Figure 2.23 graphically 
represents the data types supported by the 80C186 Modular Core family. 
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Figure 2.23. 80C186 Modular Core Family Supported Data Types 
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CHAPTER 3 
BUS INTERFACE UNIT 

The 80C186 Modular Core family products are true 16-bit embedded microprocessors with 16-bit 
internal data paths, one megabyte (220) of memory address space, and a separate 64 Kbyte (216) I/O 
address space. The CPU communicates with its external environment via a twenty-bit, time-multi­
plexed address and data bus. There also exists a command and status bus (see Table 3.1). This 
communication is managed by the B us Interface Unit. To understand the operation of the address/data 
bus requires an understanding of the BIU's bus cycles. 

Table 3.1. 80C186 Family Bus Signals 

Function Signal Name 

address/data AD15:0 
address A19:16 
coprocessor interface TEST/BUSY, PEREQ, ERROR, NCS 
local bus arbitration HOLD..J:iLDA 
local bus control ALE, RD, WR, DT/R, DEN 
multi-master bus LOCK 
ready interface READY 
status information S2:0 

3.1 T-STATES 

To transfer data or fetch instructions the CPU executes a bus cycle. A bus cycle consists of a minimum 
of four CPU clock cycles or T -states plus any number of wait states necessary to accommodate the 
access time limitations of external memory or peripheral devices. T -states are numbered sequentially 
T1, T2, T3, T4, and Tw' Additional idle T-states (Tj) can occur between T4 and TI when the processor 
requires no bus activity. The beginning of aT-state is signaled by a HIGH-to-LOW transition of the 
CPU clock. Each T -state is divided into two phases, phase 1 (the LOW phase) and phase 2 (the HIGH 
phase). Figure 3.1 illustrates an 80C186 Modular Core family clock cycle. 
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I 
I 

I T. 

L '--lm I~ 
I 61 1 62 I 

I (LOW I (HIGH I 
I PHASE) I PHASE) I 
I I I 

NOTES: 
1. Failing edge ofT n. 
2. Rising edge of Tn. 270288-001-26 

Figure 3.1. T -State in a SOC186 Modular Core Family Processor 

Different types of bus activity occur for all of the T-states (see Figure 3.2). Address generation 
infonnation occurs during T l' and data generation occurs during T 2' T3, Tw and T 4' The beginning of 
a bus cycle is signaled by the status lines of the processor going from a passive state (all HIGH) to an 
active state in the middle of the T-state immediately beforeTI (either a T4 or aT): Infonnation 
conceming an impending bus cycle appears during the T -state immediately before the first T -state of 
the cycle itself. Two different types of T 4 and Ti can be generated, one where the T -state is immedi­
ately followed by a bus cycle, and one where the T -state is immediately followed by an idle T -state. 

UNES 

DATA 

LINES ";"'----i( 
ADDRESSI '-__ ~ '-+-__ -+ ___ ++_-1 
C~OL~---~------~J 

SIGNALS 

(RD,WR) 

Figure 3.2. Example Bus Cycle of the SOC186 Core Family 
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During the first type ofT4 or T j , the processor generates status information concerning the impending 
bus cycle. This information will be available no later than TCHOV after the LOW -to-HIGH transition 
of the processor's CLK OUT in the middle of the T -state. During the second type of T 4 or T j , the status 
outputs remain inactive because no bus cycle will follow. The decision on which type T4 or T j state 
to present is made at the beginning of the T -state preceding the T4 or T j state (see Figure 3.3). This 
determination has an effect on bus latency (see Section 3.8.2). 

CLOCK 

OUT 

T3 or 

Tw T.. I T, 

DecIsion: No' bus. activity required', 
idle bus cycles will be Inserted 

I I 

ACTIVE I i STATUS STATUS I INACTIVE 
INFO -==:'-'-+-1 T,o. I STATUS 

CLOCK 

OUT 

ACTIVE 
STATUS STATUS 

LINES _ ...... ---........ 

Tw : T. I T, 
Decision: Another bus cycle immediately 
required-no idle bus cycles 

I I 

ACTIVE 
STATUS 

270288-001-28 

Figure 3.3. Active-Inactive Status Transitions in 80C186 Core Family Processor 

The READY signal controls the number of wait states (Tw) inserted in each bus cycle. The maximum 
number of wait states is unbounded. 

The bus may remain idle for several T -states (T) between accesses initiated by an 80C 186 Modular 
Core family processor. This situation occurs under the following diverse conditions: 

When the prefetch queue is full. 

When the processor is running a type of bus cycle which always includes idle states (interrupt 
acknowledge, for example). 

When an instruction forces idle states (LOCK, for example). 

During idle states, the processor may not necessarily float the bus; however, if the processor does 
drive the bus, no control strobes are active. 
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3.2 PHYSICAL ADDRESS GENERATION 

Physical addresses are generated by 80C 186 Modular Core family processors during T 1 of a bus cycle. 
Since the address and data lines are multiplexed, addresses must be latched during T 1 if they are re­
quired to remain stable for the duration of the bus cycle. To facilitate latching of the physical address, 
80C186 Modular Core family processors generate an active-HIGH ALE (Address Latch Enable) 
signal which can be directly connected to the strobe input of a transparent latch. ALE is active for all 
bus cycles and never floats (except during ONCE Mode for system testing). 

Figure 3.4 illustrates the physical address generation parameters. Addresses are valid no later than 
T CLOY after the beginning of T l' and remain valid at least T CLOP after the end of T l' The ALE signal is 
driven HIGH in the middle of the T-state (either T4 or T) immediately preceding Tl and is driven 
LOW in the middle ofT l' no sooner than T AVLL after address becomes valid. T A VLL satisfies the address 
latch set -up times of address valid to strobe inactive. Addresses remain stable on the address/data bus 
at least T LLAX after ALE goes inactive to satisfy address latch hold times. 

CLOCK 
OUT 

T,OR 

T. 

ALE __ -J 

T, T, 

AO.AI9 ____ ~-:::f:~~~~~_ 

NOTES: 

1. T CHOY: Clock high to ALE high. 
2. T CLOY: Clock low to address valid. 
3. T CHOY: Clock high to ALE low. 
4. T CLOF: Clock low to address invalid (address hold from clock low). 
5. T LLAX: ALE low to address invalid (address hold from ALE). 
6. T AYLL: Address valid to ALE low (address setup to ALE). 

Figure 3.4. Address Generation Timing 
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Because ALE goes HIGH before addresses become valid, the delay through the address latches will 
be the propagation delay through the latch rather than the delay from the latch strobe. 

3-4 



BUS INTERFACE UNIT 

A typical circuit for latching physical addresses is shown in Figure 3.4. This circuit uses 3 transparent 
non-inverting latches to demultiplex the 20 address bits provided on all80C 186 Modular Core family 
microprocessors. Typically, the upper 4 address bits only select among various memory components 
or subsystems, so when the integrated chip selects (see Chapter 7) are used, these upper bits need not 
be latched. The worst case address generation time from the beginning ofT I (including address latch 
propagation) time for the circuit is: 

TCLOY + TpD 

Some memory and peripheral devices do not require addresses to remain stable throughout a data 
transfer. If a system is constructed wholly with these types of devices, addresses need not be latched. 

SIGNALS 
FROM CPU 

A16- 4 

A19 

AD8- 8 

AD15 

8 
ADO-
AD7 
ALE 

4 

BE 

STS 

BE 

STS 

BE 
'":' 

LATCHED 
ADDRESS 
SIGNALS 

A16-A19 

A8-A15 

AO-A7 
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Figure 3.5. Demultiplexing the Address Bus of an 80C186 Modular Core Family Processor Using 
Transparent Latches. 

The 80C 186 Core generates one more signal, BHE (Bus High Enable), to address memory. BHE and 
AO are used to enable data transfers on either or both halves ofthe 16-bit bus. Since AO only enables 
devices onto the lower half of the data bus, systems commonly drive address inputs with address bits 
AI-AI9. This provides 5I2K unique word addresses, or 1M unique byte addresses. BHE does not 
need to be latched. On the 80C188 Core, BHE is absent; all data transfers take place across a single 
byte-wide data bus. 

On 80C186 Modular Core family processors, effective (physical) address calculations take place in 
dedicated hardware. An effective address (EA) calculation may be either fully-pipelined or non­
pipelined. The BIU gives no indication when a fully-pipelined address calculation occurs. 

3-5 



BUS INTERFACE UNIT 

Non-pipelinedEA calculations are required anytime an instruction has MOD and RIM bits in its 
opcode. These bits often denote addressing modes which take longer to calculate the EA, such as 
register-offset or two-register addressing. Here are some assembly code examples which cause non­
pipelined EA calculations: 

MOV 
AND 

AX,ES:[DI] 
AX, [DI] +5 

XCHG mem_ variable, DX 

; Uses indirect addressing. 
; Uses register-offset addressing. 
; Direct offset but has MOD and 
; RIM bits. 

A non-pipelined EA calculation takes four clocks, and occurs during T 3 (or T w)-T 4-T( Tp T i or T)-Tr 
Tt Tp cycle sequences. In addition to inserting any necessary idle T -states, a non-pipelined EA 
calculation alters the usual bus cycle priority scheme. Data cycles (reads or writes) associated with the 
instruction temporarily take the highest bus priority possible, higher than even DRAM refresh cycles. 
The altered priority scheme is a mechanism to better utilize the Execution Unit. 

3.3 DATA BUS 

Many small systems do not require buffering because 80Cl86 Modular Core family devices have 
adequate bus drive capabilities. If data buffers are not used, care should be taken not to allow bus 
contention between the processor and the devices directly connected to the data bus. Since the 
processor floats the address/data bus before activating any command lines, the only requirement on 
a directly connected device is that it float its output drivers after a read before the processor begins to 
drive address information for the next bus cycle. The parameter of interest here is the minimum time 
from RD inactive until addresses go active for the next bus cycle. If the memory or peripheral device 
cannot disable its output drivers in this time, data buffers will be required to prevent both the processor 
and the device from driving these lines simultaneously. This parameter is unaffected by the addition 
of wait states. Data buffers solve this problem because their output float times are typically much 
fasterthan the required minimum. 

3.3.1 80C186 MODULAR CORE DATA BUS OPERATION 

Throughout T2, T3, Tw and T4 ofa bus cycle the multiplexed address/data bus becomes a 16-bitdata 
bus. Data transfers on this bus may be either bytes or words. All memory is byte addressable (see 
Figure 3.6). 
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Figure 3.6. Physical Memory BytelWord Addressing In 80C186 Modular Cote Family Microprocessors 

All bytes with even addresses (AD = D) reside on the lower 8 bits of the data bus, while all bytes with 
odd addresses (AD = 1) reside on the upper 8 bits of the data bus. Whenever an access is made to only 
the even byte, AD is driven LOW, BHE is driven HIGH, and the data transfer occurs on DD-D7 of the 
data bus. Whenever an access is made to only the od d byte, BHE is driven LOW, AD is driven HIGH, 
and the data transfer occurs on D8-D15 of the data bus. Finally, if a word access is performed to an 
even address, both AO and BHE are driven LOW and the data transfer occurs on DO-DI5 of the data 
bus. 

Word accesses are made to the addressed byte and to the next higher numbered byte. If a word access 
is performed to an odd address, two byte accesses must be performed, the first to access the odd byte 
at the first word address on D8-DI5, the second to access the even byte at the next sequential word 
address on DO-D7. For example, in Figure 3.6, byte 0 and byte 1 can be individually accessed in two 
separate bus cycles to byte address 0 and 1 at word address O. They may also be accessed together in 
a single bus cycle to word address O. However, if a word access is made to address 1, two bus cycles 
will be required, the first to access byte 1 at word address 0 (byte 0 will not be accessed), and the 
second to access byte 2 at word address 2 (byte 3 will not be accessed). This is why all word data 
should be located at even addresses to increase processor performance. 

When byte reads are made, the data returned on the unused half of the data bus is ignored. When byte 
writes are made, the data driven on the unused half of the data bus is indeterminate. 

The 80C 186 Core always fetches the instruction stream in words from even addresses except that the 
first fetch after a program transfer to an odd address obtains a byte. The processor disassembles the 
instruction stream inside the processor; so instruction alignment will not materially affect the per­
formance of most systems. 

3.3.2 80C188 MODULAR CORE DATA BUS OPERATION 

Because the 80C 188 core externally has only an 8-bit data bus, the above discussion about upper and 
lower bytes of the data bus does not apply. No performance improvement will occur if word data is 
placed on even boundaries in memory space. All word accesses require two bus cycles, the first to 
access the lower byte of the word and the second to access the upper byte of the word. 
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Any 80C 188 Core access to the integrated peripherals is perfonned 16 bits at a time, whether byte or 
word addressing is used. If a byte operation is used, the external bus indicates only a single byte 
transfer even though the word access takes place. See Chapter 5 for more infonnation on peripheral 
control block registers. 

3.3.3 PERIPHERAL INTERFACE 

The 80C 186 Modular Core family can interface with peripheral devices using either I/O instructions 
or memory instructions (memory-mapped I/O). The I/O instructions allow the peripheral devices to 
reside in a separate I/O address space while memory-mapped I/O allows the full power ofthe 
instruction set to be used for peripheral operations. Up to 64 Kbytes of I/O address space may be 
defined for system peripherals. To the programmer, the separate I/O address space is only accessible 
with IN and OUT commands, which transfer data between peripheral devices and the AX register (or 
AL for 8-bit data). The first 256 bytes ofI/O space (0 to 255) are directly addressable while the entire 
64K is only accessible via register indirect addressingthrough the DX register. The latter technique 
is particularly desirable for service procedures that handle more than one peripheral by allowing the 
desired device address to be passed to the procedure as a parameter. Peripherals may be connected 
to the local CPU busor a buffered system bus. 

On the 80C186 Modular Core, 8-bit peripherals may be connected to either the upper or lower half 
of the data bus. Assigning an equal number of devices to the upper and lower halves of the bus will 
distribute the bus loading. If a device is connected to the upper half of the data bus, all I/O addresses 
assigned to the device must be odd (AO = 1). If the device is on the lower half of the bus, its addresses 
must be even (AO = 0). The address assignment directs the 8-bit transfer to the upper (odd) or lower 
(even) half of the 16-bit data bus. Since AO will always be a one or zero for a specific device, AO 
cannot be used as an address input to select registers within a specific device. If a device on the upper 
half of the bus and one on the lower half are assigned addresses that differ only in AO (adjacent odd 
and even address), AO and BHE must be conditions of chip select decode to prevent a write to one 
device from erroneously perfonning a write to the other. 

16-bit peripheral devices should be assigned even addresses for reasons of efficient bus utilization 
and simplicity of device selection. To guarantee the device is selected only for word operations, AO 
and BHE should be conditions of chip select decode. 

3.4 BUS CONTROL SIGNALS 

80C186 Modular Core family processors directly provide the control signals RD, WR, LOCK, and 
TEST. In additiop, the processors provide the status signals SO-S2 from which other required bus 
control signals can be generated. 
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3.4.1 RD AND WR 

The RD and WR signals strobe data from or to memory or I/O space. 

The RD signal is driven LOW atthe beginning ofT2 during all memory and I/O reads (see Figure 3.7). 
RD will not become active until the microprocessor ceases driving address information on the 
address/data bus. Data is sampled into the processor at the beginning of T4. RD will not go inactive 
until the processor's data hold time has been satisfied. 

NOTES: 

CLOCK 
OUT 

1. T CLOF: Clock low uni1 address float. 
2. T CLOV: Clock low unit RD active. 
3. T AFRL: Address float unit RD active. 

T, 

4. T CLlS: Data valid until clock low (data input set·up time). 
5. T CLlH: Clock low until data invalid (data input hold time). 
6. T CLOV: Clock low until RD high. 
7. T RHAX: RD high until addresses valid. 

T, T, 

Figure 3.7. Read Cycle Timing of 80C186 Family Microprocessors 

270830-001-102 

Note that 80C186 Modular Core family processors do not provide separate I/O and memory RD 
signals. If separate I/O read and memory read signals are required, they can be synthesized using the 
S2 signal (LOW for I/O operations and HIGH for memory operations) and the RD signal (see Figure 
3.8). If this approach is used, the S2 signal will require latching, since the S2 signal (like SO and S1) 
goes to an inactive state well before the beginning ofT4 (where RD goes inactive). If S2 was directly 
used for this purpose, the type of read command (I/O or memory) could change just before T4 as S2 
goes to the inactive state (HIGH). The status signals may be latched using ALE. 

3-9 



BUS INTERFACE UNIT 
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Figure 3.S. Generating 1/0 and Memory Read Signals 

Often the lack of separate I/O and memory RD signals is not important in a system. Each chip select 
signal will respond to accesses exclusively in memory or I/O space. Thus, when a chip select is used, 
the external device is enabled only during &ccesses to the proper address in the proper space. 

The WR signal is also driven LOW at the beginning ofT2 and driven HIGH at the beginning ofT 4 (see 
Figure 3.9). The WR signal is active for all memory and I/O writes, similar to the RD signal. Again, 
separate memory and I/O control lines may be generated using the latched S2 signal along with WR. 
More important, however, is the role of the active-going edge of WR. At the time WR makes its 
HIGH -to-LOW transition, valid write data is not present on the data bus. This has consequences when 
using WR to generate signals such as column address strobe (CAS) for DRAMs where data is required 
to be stable on the falling edge. In DRAM applications, the problem is solved by a DRAM controller. 
For other applications which require valid data before the WR transition, place cross-coupled NAND 
gates between the CPU and the device on the WR line (see Figure 3.10). The added gates delay the 
active-going edge of WR to the device by one clock phase, at which time valid data is driven on the 
bus by the microprocessor. 

T, T, 

ADO· 
AD15 .....:~~~+-''--__ +~:.:;:..._++-__ ~~,,'-.....::.::..:::...._ 
\iii 

NOTES: 

"1. T CLOY: Clock low until data valid. 
2. T CLOY: Clock low until WR active. 
3. T CLOY: Clock low until WR inactive. 
4. T CLOY: Clock high until data valid. 
5. T WHOx' WR inactive until data invalid. 270830·001-103 

Figure 3.9. Family Write Cycle Timing 
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Figure 3.10. Synthesizing a Delayed Write Signal 
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An 80C 186 ~{10dular Core family processor provides three status outputs which indicate the type of 
bus cycle in progress. These signals go from an inactive state (all HIGH) to one of seven possible 
active states during the T -state immediately preceding T I of a bus cycle (see Figure 3.3). The possible 
status line encodings are given in Table 3.2. The status lines are driven inactive in the T3 or Tw state 
immediately preceding T4 of the current bus cycle. 

Table 3.2. Status Line Interpretation 

S2 S1 SO Operation 

0 0 0 interrupt acknowledge 
0 0 1 read I/O 
0 1 0 write I/O 
0 1 1 halt 
1 0 0 instruction fetch 
1 0 1 read memory 
1 1 0 write memory 
1 1 1 passive 

The status lines may be directly connected to an 82C88 Bus Controller, which provides local bus 
control signals or MUL TIBUSTM control signals. Use of the 82C88 Bus Controller does not preclude 
the use ofthe CPU-generated RD, WR and ALE signals, however. The processor-generated signals 
can provide local bus control signals, while an 82C88 can provide MUL TIBUS control signals. 

3.4.3 SOFTW ARE·INITIATED BUS CONTROL 

The programmer may control the progress of 80C186 Modular Core family execution-related bus 
activity by using the WAIT (or FW AIT), LOCK, and HL T instructions. 
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3.4.3.1 TEST INPUT AND LOCK OUTPUT 

The 80C 186 Modular Core family processor provides a TEST input and a LOCK output for coor­
dinating instruction execution and bus activity. 

The TEST input is used in conjunction with the processor WAIT instruction, typically in a system 
containing a coprocessor. If the input is HIGH when WAIT executes, instruction execution suspends. 
TEST will be resampled every five clocks until it goes LOW, resuming execution. Any enabled 
interrupts will be serviced while the processor waits for TEST. 

The LOCK output is driven LOW whenever the data cycles of a LOCKed instruction are executed. 
A LOCKed instruction is generated whenever the LOCK prefix occurs immediately before an in­
struction. The LOCK prefix is active for the single instruction immediately following the LOCK 
prefix. The LOCK signal indicates to a bus arbiter (e.g., the 8289) that an atomic (uninterruptible) bus 
operation is occurring. The bus arbiter should under no circumstances release the bus while LOCKed 
transfers are occurring. An 80C 186 Modular Core family processor will not recognize a bus HOLD 
during LOCKed operations. LOCKed transfers are typically used in multiprocessor systems to 
access memory-based semaphore variables which control access to shared system resources. 

On 80C 186 Modular Core family devices, the LOCK signal will go active during T1 of the first data 
cycle of the LOCKed transfer. It is driven inactive at the end ofT 4 of the last data cycle of the LOCKed 
transfers independent of the number of wait states. 

The LOCK output is also driven LOW during interrupt acknowledge cycles when the integrated 
Interrupt Controller is connected to an external interrupt controller (i.e. 82C59A). 

80C 186 Modular Core family processors drive LOCK HIGH for one clock during RESET. Then, the 
pin floats until the start of the first bus cycle. LOCK also floats during HOLD. 

3.4.3.2 PROCESSOR HALT 

A HALT bus cycle signifies that the CPU has executed the HL T (HALT) instruction. It differs from 
a regular bus cycle in two ways. 

The first way a HALT bus cycle differs is that neither RD nor WR will be driven active. Address and 
data information will not be driven by the processor. The second way a HAL Tbus cycle differs is that 
the SO-S2 status lines go to theirinactive state (all HIGH) during T2 of the bus cycle, well before they 
go to their inactive state during a regular bus cycle. 

Like a normal bus cycle, however, ALE is driven active. Since no valid address information is 
present, the information strobed into the address latches should be ignored. This ALE pulse can be 
used, however, to latch the HALT status from the SO-S2 status lines. READY is ignored during 
HALT cycles. 
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The HALTed state of the processor does not interfere with the operation of any of the 80C186 
Modular Core family integrated peripheral units. After the processor HALTs, a HOLD input can 
elicit HLDA and release of the bus by the processor as usual. 

Activation of RESIN, an NMI request, or a non-masked interrupt request from the integrated 
Interrupt Controller forces the processor out of the HALT state. 

Exiting from the HALT state is also dependent on the power management mode that the 80C186 
Modular Core family device is operating in. Please see the Power Management chapter of this user's 
guide for more details. 

3.5 TRANSCEIVER CONTROL SIGNALS 

If data buffers are required, the 80C 186 Modular Core family processor provides DEN (Data ENable) 
and DTiR (Data TransmitlReceive) signals to simplify buffer interfacing. The DEN and DT;R 
signals are activated during all bus cycles, including transfers between the 80C 186 core and 80C187. 

The DEN signal is driven LOW whenever the processor is either ready to receive data (during a read) 
or when the processor is ready to send data (during a write). In other words, DEN is LOW during any 
active bus cycle when address information is not being generated on the address/data pins. In most 
systems, the DEN signal should not be directly connected to the OE inputs of a buffer, since unbuf­
fered devices (or other buffers) may be directly connected to the processors's address/data pins. If 
DEN were directly connected to several buffers, contention would occur during read cycles, as many 
devices attempt to drive the processor bus. Rather, it should be a factor along with the chip selects in 
generating the output enable. DEN is HIGH whenever DT;R changes state. 

The DTIR signal determines the direction of data through the bi-directional buffers. It is HIGH 
whenever data is being written from the processor, and is LOW whenever data is being read into the 
processor. Unlike the DEN signal, it may be directly connected to bus buffers, since this signal does 
not usually enable the output drivers of the buffer. Figure 3.11 shows an example data bus subsystem 
supporting both buffered and unbuffered devices. Note that the A side of the buffer is connected to 
the 80C 186 Modular Core family device, the B side to the external device. The DT iR signal can 
directly drive the T (transmit) signal of a typical buffer since it has the correct polarity. 
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Figure 3.11. Example Buffered/Unbuffered Data Bus 
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The processor drives the DT/R and DEN pins HIGH for one clock during RESET. Then the pins float 
until the first bus cycle. 

3.6 READY INTERFACING 

80C186EB family devices provide a READY line to allow the connection of slower memory and 
peripheral devices to the system bus. This line signals the Bus Interface Unit to insert wait states (Tw) 
into a CPU bus cycle, allowing slower devices to respond to bus activity. Wait states will only be 
inserted when READY is LOW. Any number of wait states may be inserted into a bus cycle. The 
processor will ignore the READY input during any accesses to the integrated peripheral registers and 
to any area where the chip select READY bits indicate that the external READY should be ignored. 

The READY line is synchronized (see Appendix D) by the CPU before presentation to the rest of the 
bus control logic. As shown in Figure 3.12, the first flip-flop is used to resolve the asynchronous 
transition of the READY line. It will achieve a definite HIGH or LOW level before its output is latched 
into the second flip-flop. When latched HIGH, it passes along the level present on the READY line; 
when latched LOW, it forces Not READY to be passed along to the rest of the circuit. With this 
design, note that only the rising edge of READY is fully synchronized; the falling edge of READY 
must be externally synchronized to the processor clock. Any asynchronous transition on the READY 
line when the processor is not sampling the input does not matter. 
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Figure 3.12. 80C186 Core Family READY Circuitry 
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Figure 3.13 depicts activity for Normally-READY and Normally-Not-READY configurations of 
extemallogic. 
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In a Normally-Not-READY system, wait states will be inserted unless: 
1. T CHIS' READY setup to CLKOUT high. 
2. T CLlH' READY hold after CLKOUT low. 

CLOCK 
OUT 

READY 

In a Normally-READY system, wait states will be inserted if: 
1. TCHIS 
2. TCHIH 

CLOCK 
OUT 

READY 

Twor I 
T30r Twor 

T2 T3 I T4 

~ 
Altematively, in a Normally-READY system, wait states will be inserted if: 
1. TcLiS 
2. TCLIH 
READY must meet T CLiS and T CLiH or undesired CPU operation will result. 

Figure 3.13. READY Transitions 
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In a Nonnally-Not-READY implementation the setup and hold times of both the resolution flip-flop 
and the READY latch must be satisfied. The READY pin must go active at least T CHIS before the rising 
edge ofT2, T3 orTw' and stay active until TCLIH after the falling edge ofT3 orTw to stop generation of 
wait states and tenninate the bus cycle. If READY goes active after the falling edge ofT3 there will 
be no wait state inserted. 
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In a Nonnally-READY implementation the setup and hold times of either the resolution flip-flop or 
the READY latch must be met. If the external hardware does not meet this requirement, the CPU will 
not function properly. Wait states will be generated if READY goes inactive TCH1S before the rising 
edge of T 2 and stays inactive a minimum of T CHIH after the edge, or if READY goes inactive at least 
T CLIS before the falling edge of T 3 and stays inactive a minimum of T CLIH after the edge. The READY 
circuitry perfonns this way to allow a slow device the maximum amount of time to respond with a Not 
READY after it has been selected. 

3.7 EXECUTION UNIT/BUS INTERFACE UNIT RELATIONSHIP 

The 80C186 Modular Core family employs a pipelined architecture that allows instructions to be 
prefetched during spare bus cycles. The Bus Interface Unit (BIU) fetches instructions from memory 
and loads them into a prefetch queue. The Execution Unit (EU) executes instructions from the 
prefetch queue while other instructions are prefetched. The process of fetching new instructions 
while executing the current instruction is invisible to the user. 

3.7.1 PREFETCH QUEUE AND BUS PERFORMANCE 

The prefetch queue is six bytes long on the 80C186 Core. When two or more bytes are empty and the 
EU does not require the BIU to perfonn a bus cycle, the BIU executes instruction fetch cycles to refill 
the queue. Figure 3.14 shows how instruction fetches are interleaved with EU-initiated bus cycles. 
The chosen queue size allows the BIU to keep the EU supplied with prefetched instructions under 
most conditions without monopolizing the system bus. Recall that the 80C 186 Core BIU nonnally 
accesses two bytes (one word) of opcode per bus cycle. If a program transfer forces fetching from an 
odd address, the 80C186 Core automatically reads one byte from the odd address and then resumes 
fetching words from the subsequent even addresses. 
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Figure 3.14. Overlapped Instruction Fetch and Execution 

The prefetch queue is four bytes long on the 80C188 Core. When one or more bytes are empty, the 
processor attempts to refill the queue. With an 8-bit data bus, the 80C 188 Core BID accesses one byte 
of opcode per bus cycle. 

In most circumstances the queues contain at least one byte of the instruction stream and the EU does 
not have to wait for instructions to be fetched. The queue holds instructions from memory locations 
just above the source of the current instruction. That is, they are the next logical instructions so long 
as execution proceeds serially. If the EU executes an instruction that transfers control to another 
location, the BIU resets the queue, fetches the instruction from the new address, passes it immediately 
to the EU, and then begins refilling the queue from the new location. In addition, the BIU suspends 
instruction fetching whenever the EU requests a memory or I/O read or write, except for a fetch 
already in progress. 

Bus cycles occur sequentially, but do not necessarily follow immediately one after another. Since the 
CPU prefetches up to six bytes of the instruction stream for storage and execution from an internal 
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instruction queue, the relationship between prefetching and instruction execution may be skewed in 
time and separated by additional instruction fetch bus cycles. In general, if the BID fetches an 
instruction into the processor's internal instruction queue, it may also fetch several additional instruc­
tions before the EU removes the instruction from the queue and executes it. If the EU executes a jump 
or other control transfer instruction from the queue, it ignores any instructions remaining in the queue; 
the CPU discards these instructions with no effect on operation. The bus activity observed during 
execution of a specific instruction depends on the preceding instructions; the activity, however, may 
always be determined within a specific sequence. 

3.7.2 BUS PERFORMANCE AND CPU PERFORMANCE 

Overall performance of a system based on an 80C 186 Modular Core family member system depends 
on both the bus bandwidth and execution rate. 

The number of clock cycles required to execute an instruction varies from two clocks for a register to 
register move to 67 clocks for an integer divide. If a program contains many long instructions, 
program execution will be CPU-limited, i.e., the prefetch queue will be full most of the time. If a 
program contains mainly short instructions or data move instructions, execution will be bus-limited. 
Here the processor will be required to wait often for an instruction to be fetched before it continues 
its operation. 

With an 8-bit external data bus, the 80C 188 M >dular Core can provide an opportunity for significant 
system cost savings over its 16-bit counterpl'..t, the 8OC186 Modular Core. In applications which 
manipulate only 8-bit quantities, the performance of the 8OC188 Core can approach that of the 
80C186 Core. The same is true for applications that are highly CPU-intensive (but not memory­
intensive) since all80C186 Modular Core family CPUs are internally 16-bit. 

Typical 80C186 Modular Core family applications are more data-intensive than computation-in­
tensive. The processor with an 8-bit bus must not only move data around eight bits at a time but also 
fetch instructions eight bits at a time. A sufficient number of prefetched bytes may not reside in the 
prefetch queue much of the time. In many cases, the performance degradation of an 8-bit bus will be 
significant. 

Adding up instruction clock counts given in 80C 186 Modular Core family data sheets and reference 
manuals yields only a rough approximation of execution time. Published clock counts assume that 
all the necessary opcode bytes reside. in the prefetch queue, frequently not the case for the 8OC188 
Core. A conservative rule of thumb for the 80C 188 Core is to add 100 per cent to the calculated clock 
count. The correction for the 80C 186 Core is typically about five to seven per cent. If there is any 
doubt of the performance capabilities of either the 80C 186 Core or the 80C 188 Core, we suggest the 
use of a performance analyzer on critical code sections early in the design process. 
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3.7.3 WAIT STATES AND CPU PERFORMANCE 

Because an 80C186 Modular Core family processor contains separate Bus Interface and Execution 
Units, the actual performance of the processor will not degrade at a constant rate· as wait states are 
added to the memory cycle time from the processor. Shown below are two disparate ASM186 
assembly language routines, and the actual execution time for the two procedures as wait states are 
added to the memory system of the processor (CLKOUT = 8MHz); The percentage degradation from 
each wait state level to the following wait state level i's also indicated .. The actual rate of performance 
degradation is not as important as the conclusion that wait state degradation will depend on the type 
and mix of instructions encountered in the user's program. 

hod186 
name 

Example 1 

;. 

This file contains two programs which demonstrate the 80186 family processor 
performance degradation .as wait states .are ,inserted. Procedure Be'nch1 
performs a transformation betrween two types of of characters sets, then 
copies the transformed characters back to the original buffer <whic~ is 
64, bytes long. Procedl're B!!nch_2 perform~ the same type, of 
transformation, however instead of performing a table lookup, it 
multiplies each ~umber in the original 32 ~ord buffer by a constant 3 
<note the use of the integer immediate multiply instruction). Program 
nothing_is used to measure the call and the return time from the 

cgroup 
dgroup 
data 

t_tabh 
t_string 
m_arr·ay 
data 

code 

driver program only. 

group code 
,group data 
segment public_data_. 

db 
db 
dw 
ends 

256 dup <f) 
64 dup <f) 
32 dup<?)· 

segment pub li c' code' 
assume eS:cgroup,llS:dgroup 
public bench_1,· bench_2, noth,ing_,wait. st,ate_, set_timer_, 
proc near ;save registers used 
push SI 
push ex 
push BX 
push AX 

mov eX,64 
mov SI,O 
mov BH,·O 

mov BL,t_string 
mov Al, t_tabldBXl 
mov t_string[SIl,AL 
inc SI 
loop loop_back 

'pop AX 
pop BX 
pop ex 
pop SI 
endp 

proc near 
puxh AX 
push SI 
push ex 
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bench_2 

nothing_. 

nothing_. 

mov 
mov 

imul 
mov 
inc 
inc 
loop 

pop 
pop 
pop 
ret 
endp 

proc 
ret 
endp 
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CX,32 
SI,offset m_array 

AX,wordptr [sil,3 
word ptr [SI1, AX 
SI 
SI 
100p_back_2 

ex 
SI 
AX 

near 

imultiply 32 numbers 

iimmediate multiply 

Wait_staten sets the 8DC18bEB family processor LCSST register to the number of 
wait states (0 to 3) indicated by the parameter n (which is passed on 
the stack). No other bits of the LCSST register are modified. 

proc near 
enter 0,0 
push AX 
push BX 
push DX 

mov BX, word ptr 
mov DX, DFFAD 

in AX,DX 

and AX,DFFFDH 
and BX,3 
or AX,BX 
out »X,AX 
pop DX 
pop BX 
pop AX 
leave 
endp 

[BP+41 

set up stack frame 
save registars used 

get argument 
get current LeSST register 
contents 

and off existing ready bits 
i insure ws count is good 
iadjust the ready bits 
i and write to LeSST 

tear downs tack frame 

Set_timer ( ) initializes the 8DC18bEB family processor timers to count 
microseconds. Timer 2 is set up as a prescaler to timer 0, the 
register at location FFSDH is 110 space. 

set_timer_. proc near 
push AX 
push DX 
mov DX,Dff4bH stop timer 2 
mov AX,4DDDh 
out »X,AX 

mov »X,Dff3DH iclear timer 0 count 
mov AX,D 
out DX,AX 

mov »X,Dff32H itimer 0 counts up to bSS3b 
mov AX,D 
out DX,AX 

mov DX,Dff3bH ienable timer 0 
mov AX,DcDD'lH 
out DX,AX 

mov DX,Dff4DH iclear timer 2 count 
mov AX,D 
out DX,AX 
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I>X,Dff42H 
AX,D 
I>X,AX 

I>X,Dff4bH 
AX,D 
I>X,AX 

iset maximum count of timer 2 

ire-enable timer 2 

Table 3.3. Performance Degradation vs. Wait States 

Program 1 Program 2 
#of 
Wait Exec Exec 

States Time Perf Time Perf 
~sec) Degr (Ilsec) Degr 

0 505 294 

1 595 18% 311 6% 

2 669 12% 337 8% 

3 752 12% 347 3% 

Procedure Bench_l is very bus intensive. It performs many memory operations using elaborate 
addressing modes which also require more opcode bytes. As a result, the Execution Unit must 
constantly wait for the Bus Interface Unit to fetch and perform the memory cycles to allow it to 
continue. Thus, the execution time of this type of routine will grow quickly as wait states are added, 
since the execution time depends mainly on the speed at which the processor can run bus cycles. 

Note also that the program execution time calculated by merely summing up the number of clock 
cycles given in the data sheet will typically be less than the number of clock cycles actually required 
to run the program. This is true because the numbers quoted in the data sheet assume that the opcode 
bytes have been prefetched and reside in the prefetch queue for immediate access by the Execution 
Unit. If the Execution Unit cannot access the opcode bytes immediately upon request, dead clock 
cycles will be inserted in which the Execution Unit will remain idle, thus increasing the number of 
clock cycles required to complete execution of the program. 

On the other hand, procedure Bench_2 is more CPU intensive. The Bus Interface Unit can fill up the 
instruction prefetch queue in parallel with the Execution Unit performing integer multiplies. In this 
program, the Bus Interface Unit can perform bus operations faster than the Execution Unit actually 
requires them to be run. The performance degradation is much less as wait states are added to the 
memory interface. The execution time of this program is close to the number calculated by adding 
the number of cycles per instruction because the Execution Unit does not have to wait for the Bus 
Interface Unit to place an opcode byte in the prefetch queue as often. Fewer clock cycles are wasted 
by the Execution Unit lying idle for want of instructions .. 
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3.8 HOLD/HLDA INTERFACE 

The 80C186 Modular Core family employs a HOLD/HLDA bus exchange protocol. This protocol 
allows other asynchronous bus masters (i.e., ones which drive address, data, and control information 
on the bus) to gain control. 

3.8.1 RESPONSE TO HOLD 

In the HOLD/HLDA protocol, a device requiring bus control (e.g., a token-ring communications 
controller) raises the HOLD line. In response to this HOLD request, the processor will raise its HLDA 
line after it has finished its current bus activity. When the external device is finished with the bus, it 
drops its bus HOLD request. The processor responds by dropping its HLDA line and resuming bus 
operation. 

When the processor recognizes a bus HOLD by driving HLDA HIGH, it will float many of its signals 
(see Figure 3.15). ADO-AD15 and DEN arefl~ted within TcLOpaftertheclockedge whenHLDAis 
driven active. A16-A19, RD, WR, BHE, DT/R, and SO-S2 are floated within TcHop after the clock 
edge on which HLDA becomes active. 

CLOCK 

OUT 

T,OIl T, T, T, 

HOLD ----'i----I~.;_---l..-_ 

HLDA --;.--+-+-.....,.... 
AD15·ADO 

DEN ___ +-_...J 
A16-A1B, _---'_+-. 

Im,WFI,IHE, ,"",_-+---,=::':"-+ __ 
DT/R,Ili-B, _---;_--.1 
~ 

Figure 3.15. Signal FloatlHLDA Timing of 80C186 Core Family Processor 
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Only the above mentioned signals are floated during bus HOLD. Of the signals not floated by the 
processor, some have to do with peripheral functionality (e.g., timer outputs). Many others either 
directly or indirectly control bus devices. These signals are ALE and all chip select lines (UCS, LCS, 
GCSO-7). 
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3.8.2 HOLD/HLDA TIMING AND BUS LATENCY 

The time required between HOLD going active and the microprocessor driving HLDA active is 
known as bus latency. Many factors affect bus latency, including synchronization delays, bus cycle 
times, LOCKed transfer times, interrupt acknowledge cycles, and DRAM refresh cycles. 

The HOLD request line is internally synchronized by the 80C186 Modular Core family processor, 
and may therefore be an asynchronous input. To guarantee recognition on a particular falling clock 
edge, it must satisfy setup and hold times. A full CPU clock cycle is required for synchronization (see 
Appendix B). If the bus is idle, HLDA will follow HOLD by two CPU clock cycles plus setup and 
propagation delay time. The first clock cycle synchronizes the input; the second signals the internal 
circuitry to initiate a bus HOLD (see Figure 3.16). 

T, T, 

HOLD 

HLDA __________ -..1 

NOTES: 
1. T CLIS: Hold valid un1il clock low. 
2. T CLOY: Clock low until HLDA active. 270830·00H 08 

Figure 3.16. Idle Bus Hold/HLDA Timing 

Many factors make bus latency longer than the best case described above. Perhaps the most important 
factor is that the processor will not relinquish the local bus until the bus is idle. The bus can become 
idle only at the end of a bus cycle. The processor will normally insert no Tj states between T4 and T[ 
of the next bus cycle if it requires any bus activity (e.g., instruction fetches or I/O reads). However, 
the processor may not have an immediate need for the bus after a bus cycle, and will insert Tj states 
independent of the HOLD input (see Section 3.1). 
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When the HOLD request is active, the 80C 186 Modular Core family BIU will proceed from T4 to Tj 

to relinquish the bus. HOLD must go active two T -states before the end of a bus cycle to force the BIU 
to insert idle T -states after T 4' One T -state is spent synchronizing the request and one T -state is spent 
signaling the processor that T4 of the bus cycle will be followed by idle T-states (see Section 3.1). 
After the bus cycle has ended, the HOLD will be immediately acknowledged. If, however, the 
processor has already determined that an idle T -state will follow T4 of the current bus cycle, HOLD 
needs to go active only two T -states before the end of the bus cycle to force the microprocessor to 
relinquish the bus. Figure 3.17 shows these processes. Also, if HOLD is asserted during RESET, the 
processor releases the bus prior to the first fetch. 
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T,OR 

Tw 

HOLD ___ J 

HLDA 

T, 

1. Decision: No additional internal bus cycles required, idle T-states will be inserted after T 4' 
2. Greater than T CLIS' 
3. Less than T CHOV' 
4. HOLD request internally synchronized. 

NOTES: 

CLOCK 

OUT 

HOLD 

HLDA 

T,OR 

I Tw : T. : T1 

~l 
I I I 

I I 

270830-001-109 

270830-001-110 

1. Decision: Additional internal bus cycles required, no idle T-states will be inserted, HOLD not active soon enough to force idle T-states. 
2. Greater than T CLIS: not required since it will not get recognized anyway. 
3. HOLD request internally synchronized. 

CLOCK 
OUT 

HOLD 

I. .1 
I I 
I I 

HLDA 

270830-001-111 

NOTES: 
1. HOLD request internally synchronized. 
2. Decision: HOLD request active, idle T-states will be inserted at end of current bus cycle. 
3. Greater than TCLIS' 

4. Less than T CLOV' 

Figure 3.17. HOLD/HLDA Timing in the 8OC186 Modular Core Family 
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An external HOLD has higher priority than a CPU bus request. However, an external HOLD will not 
separate the two cycles needed to perfonn a word access when the word accessed is located at an odd 
location (see Section 3.3.1). 

Another factor influencing bus latency time is LOCKed transfers. Whenever a LOCKed transfer is 
occurring, the processor will not recognize external HOLDs. LOCKed transfers are programmed by 
preceding an instruction with the LOCK prefix. String instructions may be LOCKed. Since string 
transfers may require thousands of bus cycles, bus latency time will suffer if they are LOCKed. 

The final factor affecting bus latency time is interrupt acknowledge cycles. When an external 
interrupt controller is used the CPU will run two interrupt acknowledge cycles back-to-back. These 
cycles are automatically LOCKed and will never be separated by bus HOLD. 

3.B.3 LEAVING HOLD 

When the HOLD input goes inactive, the processor lowers its HLDA line in a single clock as shown 
in Fig\lre 3.18. If there is pending bus activity, only two T j states will be inserted after HLDA goes 
inactive. Status information will go active during the last idle state concerning the bus cycle about to 
be run (see Section 3.1). If there are no bus cycles to be run by the CPU, it will continue to float all lines 
until the last Ti before it begins its first bus cycle after the HOLD. 

NOTES: 

CLKOUT 

HOLD 

T, T, 

HLoA ___ --J. ___ ~,.... 

Ti T. T, 

ADG-ADI5 -----7---~---+--tL_;::C== DEN ~ 

RD,WR,BHE ___ ...l ___ -l ___ ..l_..Jr~---
oT/ii,so·52 

1. HOLD internally synchronized. 

2. Greater than T CLiS. 

3. Less than T CLOV. 
4. Lines come out of float only if a bus cycle is pending. 

Figure 3.18. 80C186 Modular Core Family 
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A special mechanism exists on the 80C 186/80C 188 to provide for DRAM refreshing while the bus 
is in HOLD. See the chapter of this manual on the Refresh Control Unit for details. 

3.9 PRIORITY OF BUS CYCLE TYPES 

The 80C186EB family Bus Interface Unit arbitrates requests for bus cycles originating in the inte­
grated peripherals as well as the Execution Unit. Here is a summary of the overall priority for all bus 
cycle types (highest to lowest): 

1. Instruction execution reads or writes following a non-pipelined effective address calculation. 

2. DRAM refresh cycles. 

3. Bus cycles run by an external bus master during HOLD. The 80C186 Modular Core family 
signals its need to use the bus for a DRAM refresh cycle by lowering HLDA. 

4. Vectoring sequence for the single step interrupt. 

5. Vectoring sequence for the NMI interrupt. 

6. Vectoring sequence for divide error, breakpoint, overflow, array bounds, unused opcode, and 
ESCape trap interrupts, according to priority resolution. 

7. Vectoring sequence for hardware interrupts from the timers, Serial Communications Unit, and 
external pins. 

8. Vectoring sequence for 80C187 Numerics Coprocessor Extension errors. Such exceptions are 
sampled on the 80C186EB ERROR pin during numerics code execution. 

9. General instruction execution. This category includes reads or writes following a fully-pipelined 
effective address calculation, vectoring sequences for user-designated software interrupts, and 
numerics code execution. The following points are applicable to sequences of related execution 
cycles: 

The second read/write cycle of an 80C186 Core odd-addressed word operation is inseparable 
from the first bus cycle. 

'. On the 80eI88 Core, the two bus cycles associated with any word operation are inseparable. 

The second read/write cycle of an instruction with both load and store accesses (e.g., 
XCHG) may be separated from the first cycle by other bus cycles. 

Successive execution cycles of string instructions (e.g., MOVS) may be separated by other 
bus cycles. 

When a LOCKed instruction begins, its execution cycles are elevated to the highest priority 
level, making LOCKed cycles inseparable even to DRAM refresh cycles. String operations 
and 80C186EB/80C187 execution may be LOCKed like any other instructions. 

10. Fetches necessary to fill the prefetch queue with opcodes and operands. 
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CHAPTER 4 
CLOCK GENERATOR 

The clock generator provides the main clock signal for all integrated components and all CPU 
synchronous devices in a system based on the 80C186EB family. This clock generator includes a 
crystal oscillator, divide-by-two counter, RESET circuitry, and power management circuitry. A 
block diagram of the clock generator is shown in Figure 4.1. 

~----~--------------------~'-----------<POWERDOWN 

CLKIN 

OSCOUT 

RESIN 

4.1 CRYSTAL OSCILLATOR 

SCHMIDTT TRIGER 
"SQUARES-UP" CLKIN 

+2 
CLOCK 

PHASE 
DRIVERS 

,----(IDLE 

<l>JINTERNAL 
PHASE 

<1>2 CLOCKS 

...... --------------.... TO CLKOUT 

RESET CIRCUITRY 

Figure 4.1. Clock Generator 

INTERNAL 
RESET 

270830-001-69 

80C186EB family microprocessors use a parallel resonant Pierce oscillator. For low frequency 
80C 186EB family applications, a fundamental mode crystal is appropriate. At higher frequencies, the 
diminishing thickness of fundamental mode crystals makes a third overtone crystal the appropriate 
choice. The addition of external capacitors at CLKIN and OSCOUT is always required, and a third 
overtone crystal also requires an RC tank circuit to select the third overtone frequency over the 
fundamental frequency (see Figure 4.2). 
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Figure 4.2. 80C186EB Family Crystal Connections 
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A Pierce oscillator is a specific form of the common phase shift oscillator. Phase shift oscillators 
operate by feeding a non-inverted, amplified, version of the input signal back into their input. This is 
known as positive feedback. For the 80C 186EB oscillator cicuitry, a 360 degree phase shift is needed 
around the feedback loop to insure positive feedback. The inverter itself provides 180 degrees. The 
combination of the output impedance of the inverter and C 1 (Figure 4.3) provides another 90 degrees. 
At resonance the crystal becomes primarily a resistive component. The combination of the crystal and 
C2 provide the final 90 degrees for the full 360 degree phase shift. Above and below resonance the 
crystal is reactive and tends to force the oscillator back towards the crystal's rated frequency. 

180' n RO= INVERTER OUTPUT RESISTANCE 

90' t 
f) U 

90' 

,J", n 
~ XTAL = ---JVVv-AT RESONANCE 

270830-001-71 

Figure 4.3. Pierce OSCillator 
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The RC tank circuit, used for third overtone crystals, suppresses oscillation at the fundamental 
frequency. This is accomplished by preventing the first 90 degree phase shift from occurring. A more 
detailed analysis of crystal oscillator circuits is beyond the scope of this user's guide. Several excel­
lent articles and texts can be found on the subject of crystal oscillators should more information be 
necessary. 

The recommendations given in 80C186EB family data sheets for the values of the external com­
ponents should be taken only as rough guidelines, since there are situations which alter typical 
oscillator characteristics. One example would be the case in which the circuit layout introduces 
significant stray capacitance to the CLKIN and OSCOUTpins. Another example is at low frequencies 
(CLKOUT less than 6 MHz) where slightly larger capacitors are desirable. Finally, it is also possible 
to use ceramic resonators in place of crystals for low cost when precise frequencies are not required. 

For assistance in selecting the external oscillator components for unusual circumstances, the best 
resource is the crystal manufacturer. In general, almost any microprocessor grade crystal will work 
satisfactorily with any member of the 80C186EB family. The foremost circuit consideration is that 
the oscillator start correctly over the entire voltage and temperature ranges expected in operation. 

4.2 USING AN EXTERNAL OSCILLATOR 

An external oscillator may be used with the 80C186EB family. The external frequency input (EFI) 
signal is connected directly to the CLKIN input of the oscillator. OSCO UT must be left unconnected. 
This oscillator input drives an internal divide-by-two counter to generate the CPU clock signal. Thus 
the external frequency input can be of practically any duty cycle, so long as the minimum HIGH and 
LOW times for the signal (as stated in the data sheet) are met. 

4.3 OUTPUT FROM CLOCK GENERATOR 

The output of the crystal oscillator (or the external frequency input) drives a divide-by-two circuit 
which generates a 50 per cent duty cycle clock for the 80186 family processor system. All processor 
timing is referenced to this clock, available externally at the CLKOUT pin. CLKOUT changes state 
on the HIGH-to-LOW transition of the CLKIN signal, and is active during RESET and bus HOLD. 
CLKOUT is also available during Idle mode but not during Powerdown Mode (see the Chapter 12 for 
more details). 

4.4 RESET 

The 80C186EB family clock generator also provides a synchronized RESET signal for the system. 
This signal is generated from the RESIN input to the device. The clock generator synchronizes this 
signal to the CLKOUT signal. 

A Schmitt trigger in the RESIN input circuit ensures that a voltage difference separates the switch 
points for logic states 0 and 1. This hysteresis measures approximately 600 mY. An 80C186EB 
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family processor must remain in RESET a minimum offourCLKOUT cy cles after Vee andCLKOUT 
stabilize. The hysteresis allows the RESIN input to be driven with a simple RC circuit as shown in 
Figure 4.4. Typical applications can use an RC time constant of approximately 100 ms. RESIN 
must be held LOW upon power-up for correct processor initialization. 

100 K 1yp. 

RESET IN ----.... ----~~--------1RESIN 

80C186EB 

1l1Ftyp. T 
270830-001-72 

Figure 4.4. Simple RC Circuit for Power Up RESET 

There are two types of RESETs than can occur: cold and warm. A cold reset takes place only at 
powerup (Figure 4.5). The RESIN input must be held low during power supply and oscillator startup. 
The device pins will assume their RESET pin states a maximum of 28 CLKIN periods after CLKIN 
and VCC have stabilized. RESIN must be held Iowan additional 4 CLKIN periods after the device 
pins have assumed their RESET state. 

A warm RESET takes place when the device is RESET while it is running (Figure 4.6). In this case, 
RESIN must be held low at least 4 CLKOUTperiods. The device pins will assume their RESET states 
on the second falling edge of CLKIN following the assertion of RESIN. 

Exiting RESET is the same in both cases. The rising edge of RESIN generates an internal RESYNC 
pulse (Figure 4.7) that resynchronizes thedivide-by-2 internal phase clock. RESIN is sampled by the 
falling edge of CLKIN. If RESIN is sampled high while CLKOUT is high, then CLKOUT will be 
forced low for the next 2 CLKOUT cycles. The clock essentially "skips a beat" to synchronize the 
internal phases. If RESIN is sampled high while CLKOUT is low, CLKOUT will not be affected (it 
is already in phase). 

RESOUT is deasserted on the second falling edge of CLKOUT after the internal clocks have re­
synchronized. Bus activity will begin seven CLKOUT periods after RESIN goes high. If HOLD is 
asserted during RESET, the processor will immediately assertHLDA (no instructions will be fetched). 

The state of all device pins at RESET can be found in Appendix H "Modal PinStates". 
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CHAPTERS 
PERIPHERAL CONTROL BLOCK 

All the integrated peripherals on the 80C 186EB/80C 188EB are controlled by sets of registers con­
tained within an integrated peripheral control block (PCB). The registers are physically located in the 
peripheral devices they control, but are addressed as a single block of registers. This set of registers 
encompasses 256 contiguous bytes and can be located on any 256 byte boundary of the memory or 
I/O space. Maps of these registers are shown in Figure 5.1. Any unused locations are reserved. 

80H GCSO Start 
82H GCSO Stop 

04H 84H GCS1 Start 
06H Poll Status 86H GCS1 Stop 
08H Interrupt Mask 88H GCS2 Start 
OAH Priority Mask 8AH GCS2Stop 
OCH In-Service 8CH GCS3 Start 
OEH Interrupt Request 8EH GCS3Stop 
10H Interrupt Status 50H PORT1 Direction 90H GCS4 Start 
12H Timer Control 52H PORT1 Pin 92H GCS4Stop 
14H Serial Control 54H PORT1 Control 94H GCS5 Start 
16H INT4 Control 56H PORT1 Latch 96H GCS5 Stop 
18H INTO Control 58H PORT2 Direction 98H GCS6 Start 
1AH INT1 Control 5AH PORT2 Pin 9AH GCS6 Stop 
1CH INT2 Control 5CH PORT2 Control 9CH GCS7 Start 

5EH PORT2 Latch 9EH GCS7 Stop 

60H SERIALO Baud AOH LCS Start 
62H SERIALO Count A2H LCS Stop 

64H SERIALO Control A4H 
66H SERIALO Status 

SERIALO RBUF 

32H TO Compare A 72H SERIAL 1 Count 

34H TO Compare B 74H SERIAL 1 Control 

36H TO Control 76H SERIAL 1 Status 

38H T1 Count 78H SERIAL 1 RBUF 

3AH T1 Compare A 

3CH T1 Compare B 
3EH T1 Control 

Figure 5.1. PCB Register Map 
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5.1 SETTING THE BASE LOCATION 

In addition to the control registers for each of the integrated peripheral devices, the peripheral control 
block contains the peripheral control block relocation register. This register allows the PCB to be 
relocated on any 256 byte boundary within the processor's memory or I/O space. Figure 5.2 shows 
the layout of this register. 

RCB RELOCATION REGISTER: (RELREG) 

THE UPPER ADDRESS BITS OF THE PCB BASE ADDRESS. 
LOWER BITS FIXED AT O. 
R19 THROUGH R161GNORED WHEN PCB 1/0 MAPPED. 

R R R R R R R R 
1 1 1 1 1 1· 1 1 
9 8 7 6 5 4 3 2 

MEMORY 1/0 BIT: 
0= PCB IN 1/0 SPACE 
1= PCB IN MEMORY SPACE 

ESCAPE TRAP BIT: 1...-___ 0= NO TRAP ON ESCape 
1 = TRAP ON ESCape 

R R R R 

1 ~ 9 8 

I ... : = UNDEFINED WHEN READ . 
. :; MUST WRITE "0". 

Figure 5.2. 

270830-001-49 

The relocation register is located at offset OA8H within the PCB. Since it is contained within the 
peripheral control block, any time the peripheral control block is moved, the relocation register will 
also move. 

In addition to the PCB relocation information, the relocation register contains an additional bit used 
to force the processor to trap whenever an ESCape (coprocessor) instruction is encountered. The 
function of this bit is described in greater detail in the "Provisions for Floating Point Math" section 
of this manual. 

The relocation register contains the value OOFFH upon RESET. This means that the peripheral control 
block will be located at the very top (OFFOOH to OFFFFH) of I/O space. Thus after RESET the 
relocation register will be located at word location OFF A8H in I/O space. 

To relocate the PCB to the memory range l0000-100FFH, for example, the user program.s the 
relocation register with the value 11 OOH. Since the relocation register is contained within the periph­
eral control block, it moves to word location lOOA8H. 
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All communication between the integrated peripherals and the Modular CPU Core takes place over 
a special bus called the F-Bus. The F-Bus always carries 16 bit data for both the 80C186EB and the 
80CI 88EB. 

Whenever mapping the 80Cl88EB peripheral control block to another location, the pro­
gramming of the relocation register should be done with a byte write (i.e., OUT DX, AL). Any 
access to the control block is done 16 bits at a time. Thus, internally, the relocation register will be 
written with 16 bits of the AX register while externally, the BIU will run only one 8-bit bus cycle. If 
a word instruction is used (Le., OUT OX, AX), the relocation register will be written on the first bus 
cycle. The BIU will then run a second bus cycle which is unnecessary. The address of the second bus 
cycle will no longer be within the control block (Le., the control block was moved on the·frrst cycle), 
and therefore will require the generation of external READY to complete the cycle. For this reason 
we recommend the use of byte operations for the relocation register. Byte instructions may also be 
used for the other registers in the control block of a 80C 188EB and will eliminate half of the bus cycles 
required if a word operation had been specified. Byte operations are only valid for even addressed 
writes to the PCB. A word read (Le., IN AX, OX) must be performed to read a 16-bit PCB register. 

5.2 PERIPHERAL CONTROL BLOCK REGISTERS 

Each of the integrated peripherals' control and status registers are located at a fixed location above the 
programmed base location of the peripheral control block. There are many locations within the 
peripheral control block which are not assigned to any peripheral. If a write is made to any of these 
locations, the bus cycle will be run, but the value will not be stored in any internal location. This means 
that if a subsequent read is made to the same location, the value written will not be read back. 

The processor will run an external bus cycle for any memory or I/O cycle which accesses a location 
within the integrated control block. This means that the address, data, and control information will be 
driven on the processor external pins just as if an ordinary bus cycle had been run. Any information 
returned by an external device will be ignored, however, even if the access was to a location which 
does not correspond to any of the integrated peripheral control registers. The above is true for the 
80C 188EB except that the word access made to the integrated registers will be performed in two bus 
cycles. 

The processor internally generates a READY signal whenever any of the integrated peripherals are 
accessed; any external READY signal is ignored. This READY will also be returned if an access is 
made to a location within the 256 byte area of the peripheral control block which does not correspond 
to any integrated peripheral control register. The processor will insert no wait states for any access 
within the integrated peripheral control clock except for accesses to the timer registers. Any access 
to the timer control and counting registers will incur one wait state. This wait state is required to 
properly multiplex processor and counter element accesses to the timer control registers. 
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The F-Bus does not function the same as the external data bus with regards to byte and word accesses. 
All Write transfers on the F-Bus take place as words regardless of how they are encoded. For example, 
the instruction OUT OX, AL (OX is even) will write the entire AX register to the PCB register at even 
location [OX]. If OX were an odd location, AL would be placed in [OX] and AH would be placed at 
[OX-I]. Similarly, a word operation to an odd address wouldmQdify [OX] and [OX-llwith theAH 
and AL bytes swapped. This is ditTerentfrom normal external bus operation where ulJaliglJed 
word writes would cause the modification of [DX] and [DX+l]. 

Aligned word reads work normally, however, unaligned word reads do not. For example, IN AX, OX 
(OX is odd) will actually transfer [OX] into AL and [OX-I] into AH. Byte readsfrom either even or 
odd addresses work normally, however only a byte will be read. Unlike the write operation, an IN 
AL, OX will not transfer [OX] into AX (onlyAL is modified). 

No problems will arise if the following recommendations are adhered to. For the 80C I 86EB : 

Word reads: Access only even aligned word with IN AX, OX or MaY <word register>, 
<even PCB address>. . 

Byte reads: Work normally. Beware of reading word wide PCB registers that may change value 
between successive reads (i.e. Timer count value). 

Word writes: Always write even aligned words. Writing an odd aligned word will give unex­
pected results. Use either OUT OX, AX or OUT OX, AL (or MaY <even PCB. address>, 
<word register> ) .. 

Byte writes: 00 not perform unaligned byte writes. Even aligned byte writes will modify the 
entire word PCB lOCation. 

For the 80CI88EB: 

Word reads: Access only even aligned words. witq IN AX, OX or MaY <word register>, 
. <even PCB address>. 

Byte reads: Work normally . Beware of reading word wide PCB registers that may change value 
between successive reads (i.e. Timer count value). 

Word writes: Always write even aligned words. Writing an odd aligned word will give unex­
pected results. Use OUT OX, AL or MaY <even aligned byte PCB address>, <byte registerlow 
byte>. Using OUT OX, AX will perform an unnecessary extra bus cycle. 

Byte writes: 00 not perform unaligned byte Writes. Even aligned byte writes will modify the 
entire wofd PCB location. 
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5.3 RESERVED LOCATIONS AND THE NUMERICS INTERFACE 

Any location within the 256 byte peripheral control block that are not explicitly used are reserved. 
Reading from these locations yields an undefined result. If reserved registers are written, for example 
during a block MOVe instruction, they must be set to OH. Failure to follow this guideline could 
result in incompatibilities with future 80Cl86EB and other 80C186 Modular Core family 
products. 

Systems using the 80C187 Numeric Processor Extension must not relocate the PCB to location OH 
in I/O space. The 8OC186EB/8OC187 interface uses I/O locations OF84 through OFFH. If the PCB 
were relocated over these locations, the 8OC186EB would be communicating with the PCB and not 
the 80C 187 interface circuitry. This will cause indeterminate system operation if a numerics instruc­
tion is encountered when the escape trap bit is cleared. 
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CHAPTER 6 
TIMER / COUNTER UNIT 

The 80C186EB family includes a Timer/Counter Unit which consists of three independent 16-bit 
timers (figure 6.1). These timers operate independently of the CPU. Two have input and output pins 
allowing counting of external events and generation of arbitrary waveforms. The third can be used 
as a free running timer or as a prescaler for the other timers. 

All of the timers can generate internal interrupt requests. Although the three timers share one request, 
they each have their own vectoring location and have a fixed priority amongst themselves. 

Timers 0 and 1 have two maximum count compare registers. Timers 0 and 1 also can be enabled or 
disabled via a package pin. This allows for convenient measurement of external pulse widths. The 
timer 0 and 1 in and out pins can also be configured as a digital one-shot. 

TO IN T11N 

TIMER 0 OUTPUT 
REGISTERS LATCH TO OUT 

CPU TIMER 1 
REGISTERS 

TIMER 2 OUTPUT T10UT 
REGISTERS 

LATCH 

CPU 
CLOCK 

270830-001-89 

Figure 6.1. Timer/Counter Unit Block Diagram 

Three peripheral control block registers are used for each timer: the control register, the count register, 
and the compare register. Timers 0 and 1 have an additional compare register. The PCB map and 
summary of operation are shown in figure 6.2. 
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Figure 6.2(a). PCB Map For Timer/Counter Unit 

TIMER MAXCOUNT COMPARE REGISTERS: 
(TOCMPA, TOCMPB, T1CMPA, T1CMPB, T2CMPA) 

15 

T T T T T T T T C C C C C C C C I I I I I I 9 8 5 4 3 2 1 0 

TIMER COMPARE VALUE 3 
RESET = UNDEFINED 

T T 
C C 
7 6 

Figure 6.2(b). 

TIMER COUNT REGISTERS: 
(TOCNT, T1CNT, T2CNT) 

15 

T T 
C C 
I I 
5 4 

T 
C 
I 
3 

T T T T T C C C C C I I I 9 8 2 1 0 

TIMER COUNT VALUE 3 
RESET = UNDEFINED 

T T 
C C 
7 6 

Figure 6.2(c). 
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TIMER 0 and TIMER 1 CONTROL REGISTERS: 
(TOCON, T1 CON) 

,....--- ENABLE BIT: 
o = TIMER DISABLED. 
1 = TIMER ENABLED. 

INHIBIT: 
o - WRITES TO ENABLE BIT IGNORED. 
1 • ALLOWS WRITE TO ENABLE BIT. 

INTERRUPT ON TERMINAL COUNT: 
0- NO INTERRUPT REQUESTS FROM THIS TIMER. 
1 = GENERATE INTERRUPT REQUEST AT MAXCOUNT. 

15 ..... .,..r...,..r..,...,. ... 
E I I R 

N ~ ~ 0 

IlEGISTER IN USE: 
o = COMPARE REGISTER A IN USE. 
1 = COMPARE REGISTER B IN USE. 

MAX COUNT OCCURED: ------... 
o = NO MAXCOUNT YET. 
1 = MAXCOUNT HAS OCCURRED. 

RETRIGGER: --...-----------1 
o = TIMER INPUT SENSES 

LEVEL TO GATE CLOCK 
FOR INTERNAL CLOCKING. 

1 = T!MER INPUT SENSES 0-1 
EDGE TO RESET COUNT REGISTER 
FOR INTERNAL CLOCKING. 

E A 
P X L 

T T 

PRESCALAR ON: ------------' 
0= TIMER COUNTS 1/4 CLKOUT 

WHEN INTERNAL CLOCK 
SELECTED. 

1 = TIMER COUNTS TIMER 2 
MAXCOUNTS WHEN INTERNAL 
CLOCK SELECTED. 

EXTERNAL CLOCKING: -----_-_-----1 
0= INTERNAL CLOCK (CONTROLLED 

BYRTG). 
1 = EXTERNAL CLOCK (COUNT 

TRANSITIONS ON INPUT PIN). 

ALTERNATE COMPARE REGISTERS: ----------1 
0= ALWAYS USE A. 
1 = USE A THEN B. 

C 
o 
N 
T 

CONTINUOUS MODE: -------------..... 
o = CLEAR EN BIT (STOP TIMER) 

AFTER EACH CYCLE. 

o 

1 = TIMER RUNS CONTINUOUSLY. 270830-001-82 

Figure 6.2(d). 

6-3 



TIMERfCOtJNTER' UNIT 

TIMER 2 CONTROL REGISTER: 

CONTINUOUS MODE: --------------. 
o = CLEAR EN BIT AFTER 

EACH TIMER CYCLE. 
1 = TIMER RUNS CONTINUOUSLY. 

MAX COUNT OCCURED: -------, 
0= NO MAXCOUNT YET. 
1 = MAXCOUNT HAS OCCURRED. 

INTERRU~T ON TERMINAL COUNT: . 
0= NO INTERRUPT REQUESTS FROM THISJIME;R. 

. 1 = GEN~RArE I~TERRUPT REQUEST .AT Mi>.x~OUNT. . 

INHIBIT WRITES TO INABLE: . 

. ~ :~L~6~~WR~~~~e;~.~:'L~E~IT: 
"'-.................... ENAaLl,'SIT: 

o =; TIMER DISABLED; 
1 = TIMER ENABLED. 

RESET: lEN = 0 ALL OTHER BITS UNDEFINED 

• = UNDEFINED WHEN READ. 
, MUST WRITE "0". 

6.1 FUNCTIONAL QVERVIEW 

270830-001-63 

The internal Timer Unit on ilie 8OC186EB family can be modeled by a single counter element, time-. , 
ptultiplexed to three register banks, each of which contains different control and count values. These 
register banks are, in $n, dual-ported between the counter element and the CPU (see Figure 6.1)~ 
Figure 6.3 shows the timer element sequencing and the subsequent constraints on input and output 
signals. There is no connection between the sequencing of the counter element through the timer 
register banks and the lUU's sequencing through T -states. Timer, operation and bus interface opera­
tion are completely asynchronous. 
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TIMER IN 
o 

TIMER IN 
1 

TIMER OUT 
o 

TIMER OUT 
1 

TIMER/COUNTER UNIT 

TIMER 1 TIMER 2 
SERVICED SERVICED DEAD 

TIMER 0 
SERVICED 

NOTES: 1. Timer In 0 resolution time. 
2. Timer In 1 resolution lime. 
3. Modified count value written into Timer 0 count register. 
4. Modified count value written into Timer 1 count register. 270288-001-60 

Figure 6.3. Counter Element Multiplexing and Timer Input Synchronization 

Each timer is controlled by a register block (see Figure 6.2). Each of these registers can be read or 
written whether or not the timer is operating. All processor accesses to these registers are synchro­
nized to all counter accesses to these registers, meaning that one will never read a count register in 
which only half of the bits have been modified. 

The Bus Interface Unit automatically inserts one wait state for any access to the timer registers to 
perform this synchronization. LOCKing accesses to timer registers will not prevent the timer's 
counter elements from accessing the timer registers. 

Each timer has a 16-bit count register which is incremented for each timer event. A timer event can 
be aLOW -to-HIGH transition on a timerinputpin (for Timers 0 and 1), a pulse generated every fourth 
CPU Clock, or a time out of Timer 2 (for Timers 0 and 1). The count register is 16 bits wide, allowing 
up to 65536 (216) events to be counted. Upon RESET, the contents of the count registers are inde­
terminate and they should be initialized to zero before any timer operation. 

Each timer includes a maximum count register. Whenever the timer count register is equal to the 
maximum count register, the count register resets to zero, so the maximum count value is never stored 
in the count register. This maximum count value may be written while the timer is operating. A 
maximum count value of 0 implies a maximum count of 65536, a maximum count value of 1 implies 
a maximum count of 1, etc. Only equivalence between the count value and the maximum count 
register value is checked. This means that the count value will not be cleared if the value in the count 
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register is greater than the value in the maximum count register. If the timer is programmed in this 
way, it will count to the maximum count (OFFFFH), increment to 0, then count up to the value in the 
maximum count register, The terminal count (TC) bit in the timer control register will not be set when 
the counter overflows to 0, nor will an interrupt be generated from the Timer Unit. 

Timers 0 and I each contain an additional maximum count register. When both maximum count 
registers are used, the timer will first count up to the value in maximum count register A, reset to zero, 
count up to the value in maximum count register B, and reset to zero again. The AL Temate bit in the 
timer control register determines whether one or both maximum count registers are used. If this bit 
is LOW, only maximum count regis.ter A is used; maximum count register B is ignored. Ifit is IDaH, 
both registers are used. The RIU (register in use) bit in the timer control register indicates which 
maximum count register is presently counting up. This bit is 0 when maximum count register A is 
being used, 1 when maximum count register B is being used. The RIU bit is read only. It will always 
be read 0 in single maximum count register mode (since only maximum count register A will be used). 

Each timer can generate an interrupt whenever the timer count value reaches a maximum count value. 
All timers may use maximum count A in single max count mode. Timers 0 and 1 (dual max count 
mode) may also use maximum countB. In addition, the maximum count (MC) bit in the timer control 
register is set whenever the timer count reaches a maximum count value. This bit is never automati­
cally cleared, i.e., programmer intervention is required. If a timer generates a second interrupt request 
before the first interrupt request has been serviced, the first interrupt request to the CPU will be lost. 

Each timer has an ENable bit in the timer control register. The timer will count timer events only when 
this bit is set. Any write to the timer control register will modify the EN able bit only if the INHibit 
bit is also set. The INHibit bit in the timer control register allows selective updating of the timer 
ENable bit. The value of the INHibit bit is not stored in a write to the timer control register; it will 
always be read as logic zero. 

Each timer has a CONTinuous bit in the timer control register. If this bit is cleared, the timer ENable 
bit will be automatically cleared at the end of each timing cycle. If a single maximum count register 
is used, the end of a timing cycle occurs when the count value resets to zero after reaching the value 
in maximum count register A. If dual maximum count registers are used, the end of a timing cycle 
occurs when the count value resets to zero after reaching the value in maximum count register B. If 
the CONTinuous bit is set, the ENable bit will never be automatically reset. Thus, after each timing 
cycle, another timing cycle will automatically begin. For example, in single maximum count register 
mode, the timer will count up to the value in maximum count regi&ter A, reset to zero, ad infmitum. 
In dual maximum count register mode, the timer will count up to the value in maximum count register 
A, reset to zero, count up to the value in maximum count register B, reset to zero, and repeat. 

A flowchart of timer 0 and 1 operation can be found in Figure 6.4. 
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Figure 6.4(a). TImer 0 and 1 Flowchart. 
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Figure 6.4(b). Timer 0 and 1 Flowchart (continued) 
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6.2 TIMER EVENTS 

Each timer counts events. All timers can use a transition of the CPU clock as an event. If the internal 
clock is used, the count increments every fourth CPU clock because of timer element multiplexing. 
For Timer 2, this is the only timer event which can be used. For Timers 0 and 1, this event is selected 
by clearing the EXTernal and Prescaler bits in the timer control register. 

Timers 0 and 1 can use Timer 2 reaching its maximum count as a timer event. This is selected by 
clearing the EXTernal bit and setting the Prescaler bit in the timer control register. When this is done, 
the timer will increment whenever Timer 2 resets to zero having reached its own maximum count. 
Note that Timer 2 must be initialized and running in order to increment the value in the other timer/ 
counter. 

Timers 0 and 1 can also be programmed to count LOW -to-HIGH transitions on the external input pin. 
Each transition on the external pin is synchronized to the 80C 186EB family processor clock before 
it is presented to the timer circuitry (see Appendix B for information on synchronizers). The timer 
counts transitions on the input pin; the input value must go LOW, then HIGH, to cause the timer to 
increment. Transitions on this line are lat~hed. The maximum count rate for the timer is 1/4 the CPU 
clock rate measured at CLKOUT. 

6.3 TIMER INPUT PIN OPERATION 

Timers 0 and 1 each have individual timer input pins. All LOW -to-HIGH transitions on these input 
pins are synchronized, latched, and presented to the counter element when the particular timer is being 
serviced by the counter element. 

Signals on this input can affect timer operation in three different ways. The manner in which the pin 
signals are used is determined by the EXTernal and RTG (retrigger) bits in the timer control register. 
If the EXTernal bit is set, transitions on the input pin will cause the timer count value to increment if 
the timeris enabled (that is, the ENable bit in the timer control registeris set). Thus, the timer counts 
external events. If the EXTernal bit is cleared, all timerincrements are caused by either the CPU clock 
or by Timer 2 reaching its maximum count. In this mode, the RTG bit determines whether the input 
pin will enable timer operation, or whether it will retrigger timer operation. 

When the EXTernal bit is LOW and RTG bit is also LOW, the timer will count internal timer events 
only when the timerinput pin is HIGH and the ENable bit in the timer control registeris set. Note that 
in this mode, the pin is level sensitive, not edge sensitive. A LOW-to-HIGH transition on the timer 
input pin is not required to enable timer operation. If the input is tied HIGH, the timer will be 
continually enabled. The timer enable input signal is completely independent of the ENable bit in the 
timer control register. Both must be HIGH for the timer to count. Examples of uses for the timer in 
this mode would be a real time clock or a baud rate generator. 
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When the EXTernal bit is LOW and the RTG bit is HIGH, every LOW-to-HIGH transition on the 
timer input pin causes the timer count register to reset to zero. This mode of operation can be used to 
generate a retriggerable digital one-shot. After the timer is enabled (i.e., the ENable bit in the timer 
control register is set), timer operation (counting) will begin only after the first LOW-to-HIGH 
transition of the timer input pin has been detected. If another LOW -to-HIGH transition occurs on the 
input pin before the end of the timer cycle, the timer will reset to zero and begin the timer cycle again. 
A timer cycle is defmed as the time the timer is counting from zero to the maximum count (either max 
count A or max count B). This means that in the dual max count mode, the RID bit is not set if the timer 
is reset by the LOW -to-HIGH transition on the input pin. Should a timer reset occur when RIU is set 
(indicating max count B), the timer will again begin to count up to max count B before resetting the 
RIU bit. Thus, when the ALTernate bit is set, a timer reset will retrigger (or extend) the dur~tion of 
the current max count in use (which means that either the LOW or HIGH level of the timer output will 
be extended). If the CONTinuous bit in the timer control register is cleared, the timer ENable bit will 
automatically be cleared whenever a timer cycle has been completed (max count is reached). If the 
CONtinuous bit in the timer control register is set, the timer will reset to zero and begin another timer 
cycle whenever the current cycle has completed. 

6.4 TIMER OUTPUT PIN OPERATION 

Timers 0 and 1 each have a timer output pin which can perform two functions. The first is a single 
pulse indicating the end of a timing cycle. The second is a level indication of the maximum count 
register being used. The timer outputs operate as outlined below whether internal or external clocking 
of the timer is used. With external clocking, the time between a transition on the timer input pin and 
a corresponding transition on the timer output pin varies from 2 1/2 to 6 clocks. The exact timing 
depends on when the input transition occurs relative to timer service by the counter element. 

When the timer is in single maximum count register mode, the timer output pin will go LOW for a 
single CPU clock one clock after the timer is serviced by the counter element when maximum count 
is reach~d (see Figure 6.5). 

TIMER 0 SERVICED 
~ 

INTERNAL~ 
~~~~~~ 0 

TMROUT------~~------~ 
PIN ..... ----1 

270830·001-90 

Figure 6;5. TxOUT Signal. 
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When the timer is programmed in dual maximum count register mode, the timer output pin indicates 
which maximum count register is being used. It is LOW if maximum count register B is being used 
and HIGH jf maximum count register A is being used. The timer can generate a repetitive waveform 
if the CONTinuous bit in the timer control register is set. The frequency and duty cycle of this 
waveform is easily controlled by the programmer. For example, if maximum count register A 
contains 10, maximum count register B contains 20, and CLKOUT is 12.5 MHz, the timer generates 
a 33 per cent duty cycle waveform at 104 kHz. If the timer is programmed to halt upon maximum 
count, the output pin will go HIGH when the timer halts. 

The timer output pins do not float during bus HOLD. 

6.5 PROGRAMMING THE TIMER/COUNTER UNIT REGISTERS 

Each timer is controlled through the use of at least three registers. The Timer Control Registers 
(T2CON, TlCON, and TOCON) control the functional modes for the timers. The Timer Count 
Registers (T2CNT, Tl CNT, and TOCNT) hold the count value for the timers. The maximum count 
compare A registers hold the maxcount compare value for each timer (TOCMP A, Tl CMPA, and 
T2CMP A). Timers 0 and 1 add two additional compare registers, TOCMPB and TOCMP A. 

The compare and count registers have already been described. The following section describes the 
control register in detail. 

6.5.1 THE TIMER CONTROL REGISTER (lOCON, T1 CON, AND T2CON) 

The timer 0 and 1 control registers contain 10 fields. Timer 2 uses only 5 fields since it lacks some 
of the functionality of the other timers. 

The ten bit fields are as follows: 

ALT: 
The ALT bit determines which of two MAX COUNT registers is used for count comparison. If 
ALT=O, register A for that timer is always used, while if ALT=1, the comparison will alternate 
between register A and register B when each maximum count is reached. This alternation allows the 
user to change one MAX COUNT register while the other is being used, and thus provides a method 
of generating non-repetitive waveforms. Square waves and pulse outputs of any duty cycle are a 
subset of available signals obtained by not changing the final count registers. The ALT bit also de­
termines the function of the timer output pin. If AL T is zero, the output pin will go LOW for one clock, 
the clock after the maximum count is reached. If AL T is one, the output pin will reflect the current 
MAX COUNT register being used (0/1 for BfA). 
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CONT: 
Setting the CONT bit causes the associated timer to run continuously, while resetting it causes the 
timer to halt upon maximum count. IfCONT=OandALT=l,the timer will count to the MAX COUNT 
register A value, reset, count to the register B value, reset, and halt. 

EXT: 
The external bit selects between internal and external clocking for the timer. The external signal may 
be asynchronous with respect to the 8OC186EB family clock. If this bit is set the timer will count 
LOW -to-HIGH transitions for the input pin. If cleared, it will count an internal clock while using the 
input pin for control. In this mode, the function of the external pin is defined by the RTF bit. The 
maximum input to output transition latency time may be as much as 6 clocks. However, clock inputs 
may be pipelined as closely together as every 4 clocks without losing clock pulses. 

P: 
The prescaler bit is ignored unless. internal clocking has been selected (EXT=O). If the P bit is a zero, 
the timer will count at one-forth the internal CPU clock rate. If the P bit is a one, the output of timer 
2 will be used as a clock for the timer. Note that th~ user must initialize and start timer 2 to obtain the 
prescaled clock. 

RTG: 
Retrigger bit is only active for internal clocking (EXT=O). In this case it determines the control 
function provided by the input pin. 

If RTG=O, the input level gates the internal clock on and off. If the input pin is HIGH, the timer will 
count; if the input pin is LOW, the timer will hold its value. As indicated previously, the input signal 
may be asynchronous with respect to the 80C186EB family clock. 

When RTG=l , the input pin detects LOW-to-HIGH transitions. The first such transiti9n starts the 
timer running, clearing the timer value to zero on the first clock and then incrementing thereafter. 
Further transitions on the input pin will again reset the timer to zero, from which it will start counting 
up again. If CONT=O when the timer has reached maximum count, the EN bit will be cleared, 
inhibiting further timet activity. 

EN: 
The enable bit provides programmer control over the timer's RUN/HAL T status. When set, the timer 
is enabled to incrernent subject to the input pin constraints in the intemai clock mode (discussed 
previously). When cleared, the timer will be inhibited from counting. All input pin transitions during 
the time EN is . zero will be ignored. If CONT as zero, the EN bit is automatically cleared upon 
maximum count. 

INH: 
The inhibit bit allows for selective updating of the enable (EN) bit. IfINH is a one during the write to 
mode/control word. then the state of the EN bit will be modified by the write. If INH is a zero during 
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the write, the EN bit will be unaffected by the operation. This bit is not stored; it will always be a 0 on 
a read. 

INT: 
When set, the INT bit enables interrupts from the timer, which will be generated on every terminal 
count. If the timer is configured in dual MAX COUNT register mode, an interrupt will be generated 
each time the value in MAX COUNT register A is reached, and each time the value in MAX COUNT 
register B is reached. If this enable bit is cleared after the interrupt request has been generated, but 
before a pending interrupt is serviced, the interrupt request will still be in force. (The request is latched 
in the interrupt Controller.) 

MC: 
The Maximum Count is set whenever the timer reaches its final maximum count value. If the timer 
is configured in dual MAX COUNT register mode, this bit will be set each time the value in TxCMPA 
is reached, and each time the value in the TxCMPB is reached. The MC bit gives the user the ability 
to monitor timer status through software instead of through interrupts. Programmer intervention is 
required to clear this bit. 

RIU: 
The Register in Use bit indicates which MAX COUNT register is currently being used for comparison 
to the timer count value. A zero value indicates register A. The RIU bit cannot be written, i.e., its value 
is not affected when the control register is written. It is always cleared when the ALT bit is zero. 

The following fields are not used for the T2CON register: AL T, EXT, P, RTG, and RIU. Note that 
these bits will return a zero when read. 

6.6 EXAMPLE TIMER INITIALIZATION CODE 

The 80CI86EB family timers possess great flexibility. It is easy to program them as baud rate 
generators, digital one-shots, pulse width modulators, event counters, and pulse width measurement 
applications. 

6.6.1 REAL TIME CLOCK 

Example I contains sample code to initialize Timer 2 to generate interrupts every millisecond. The 
CPU then increments memory-based clock variables. 
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Example 1 

This file contains an example 80186 family timer routine to set 
up the timer and interrupt controller t~ cause the timer to 
generate an interrupt every 10 milliseconds, and to service 
interrupts to implement a real time clock. Timer 2 is used 
in this example because no input or output signals are 
required. The code example assumes that the peripheral 
control block has not been moved from its reset location 

i 
arg1 
arg2 

CFFOO-FFFF in I/O space). 

arg3 
timer_2 nt 
T2CON 
T2CMPA 
T2CNT 
TCUCON 
EOI 
INTSTS 

data 

mesc_ 
hour _. 
minute_ 
second_. 
data 

cgroup 
dgroup 

code 

equ word ptr [BP + 4] 
equ word ptr [BP + 6] 
equ word ptr [BP + 8] 
equ 19 itimer 2 has vector type 19 

equ OFF46H 
equ OFF42H 
equ OFF40H 
equ OFF12H 
equ OFF02H iinterrupt controller reg 
equ OFF10H 

public 'data' segment 
public 
db 

hour_, minute_,second_,mesc_. 
? 

db 
db 
db 
ends 

group 
group 

? 
? 
? 

code 
data 

segment public_code_. 
public set_time 
assume cs:code, ds:dgroup 

set_timeChour,minute,second) 
sets the time variables, initializes timer 2 to pro­
vide interrupts every 10 milliseconds, and programs 
the interrupt vector for timer 2 

proc 
enter 
push 
push 
push 
push 
xor 

near 
0.0 
AX 
DX 
SI 
DS 
AX,AX 

mov DS,AX 
mov SI,4*timer_2int 

iset stack addressability 
isave registers used 

iset the interrupt vector 
ithe timers have unique 
iinterrupt vectors even though 
ithey share the same c~ntrol 
iregister 

mov word ptr DS:[SI],offset t'mer_2_interrupt_routine 
inc S I 
inc SI 
mov DS:[SI],CS 
pop DS 

mov 
mov 
mov 

AX,arg1 
hour_,AL 
X,arg2 

iset the time values 
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mov 
mov 
mov 

minute_,AL 
AX,arg3 
second_,AL 

mov 
mov 
xor 
out 
mov 
mov 

msec_,O 
DX,T2CNT 
AX,AX 
DX,AX 
DX,T2CMPA 
AX,2000 

out DX,AX 

;clear the 
;count 
;register 
;set the max count vlaue 
;10mx/SOO ns(timer 2 counts 
;at 1/4 the CPU clock rate) 

mov DX,T2CON ;set up the control word 
mov AX,1110000000000001b;enable counting, generate 

out DX,AX 

mov 

mov 

out 
sti 

dx,TCUCON 

AX,OOOOb 

DX,AX 

pop S I 
pop DX 
pop AX 
leave 
ret 
endp 

bump_minute: 

;interrupts on TC, continuous 
;counting 

;set up the interrupt 
;controller 
;unmask interrupts highest 
;priority interrupt 

;enable processor interrupts 

proc 
push 
push 

far 
AX 
DX 

c m p m s e c_ , 9 9 ; see i f 0 n e sec and has 
;passed 

j a e bum p_s e con d ; i f a b a v ear e qua 1 ' , , 
inc mesc_, 
j m pre s e t_i n t_c t 1 

m a v e m e s c_ , 0 
c m p min u t e_, 5 9 

j a e bum p_m i nut e 
inc sec a n d_ ' 

;reset millisecond 
;see if one minute has 
;passed 

j m pre s e t_i n t_c t 1 

m a v e sec a n d_, 0 
c m p min u t e_ , 5 9 

j a e bum p_h 0 u r 
inc min u t e_ ' 

;see if one hour has 
;passsed 

j m pre s e t_i n t_c t 1 
pop DX 
pop AX 
ret 

mov 
cmp 

minute_,O 
hour_,12 

j a ere s e t_h our 
inc hour_, 

;see if 12 hours have 
;passed 

j m pre s e t_i n t_c t 1 
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mov hour_,1 

mov 
mov 

DX,EOI 
AX,8000h 

out DX,AX 

pop D X 
pop A X 
iret 

inon-specific end of 
iinterrupt 

timer_2_interrupt_routine endp 
code ends 

end 270288-001-63 

6.6.2 EVENT COUNTER 

An 80C186EB family timer can count events using the timer input pins. Sample code for such an 
application is shown in Example 2. 

Example 2 

$mod186 
name 

This file contains an example 80186 family timer routine to set 
up the timer as an external event counter. In this mode, 
Timer 1 is used to count transitions on its input pin. After 
the timer has been set up by the routine, the number of 
events counted can be directly read from the timer count 
register. The timer will count a maximum of 65535 timer 
events before wrapping around to zero· This code example 
also assumes that the peripheral control block has not been 
moved from its reset location (FFOO-FFFF in IIO space). 

nCON 
nCMPA 
nCNT 

equ 
equ 
equ 

OFF3EH 
OFF3AH 
OFF38H 

code 

i 

segment public'code' 
assume cs: code 

set_count() initializes the 80186 timer 1 as an event 
counter 

set_count proc near 
AX 
DX 

isave registers used 
push 
push 

mov 
mov 

out 
mov 
mov 

Dx,nCMPA 
AX,O 

DX,AX 
DX,nCON 
AX,1100000000000101b 

out DX,AX 
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xor 
mov 

Dx,nCNT 
DX,nCNT 

out DX,AX 
pop DX 
pop AX 
ret 

set_count endp 
code ends 

end 
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CHAPTER 7 
CHIP SELECT/READY LOGIC UNIT 

The 80C 186EB contains an integrated Chip Select and Ready Logic Unit capable of supplying chip 
select signals for up to ten memory and peripheral devices. The Chip Select Unit (CSU) can often 
eliminate the need for external chip select decoding logic in small to medium sized systems (see 
Figure 7.1). READY signal generation, needed for slower memory or peripheral devices, is integrated 
into the CSU. 

The CSU is an extremely flexible unit. The ten chip selects are all identical and completely independent 
in operation. Two PCB registers define the operational characteristics of each channel (20 total 
registers). 

Each chip select is active for a programmable active range in either memory or peripheral (I/O) space. 
The chip selects can be individually disabled under software control. An enabled chip select line 
becomes active low whenever the Bus Interface Unit accesses a location (memory or I/O) within the 
channel's active range. Channels configured for memory accesses can select ranges in lK byte 
increments from 0 to the full 1 megabyte of physical memory. Those channels configured for I/O 
accesses can select ranges in 64 byte increments from 0 to the full64K byte size ofI/O space. 

Chip select ranges may overlap. Overlapping chip selects will all become active during accesses to 
their shared ranges. This allows for the easy implementation of shadowed and paged memory. 
Devices can share the same physical address space and be selectively enabled by software. The user 
could configure the CSU for up to ten megabytes of software paged memory without external paging 
hardware. 

The granularity of the CSU is not fixed as it is with many popular external decoding schemes. 
Typically, a simple external chip select decoding scheme will select one of several equally sized 
ranges. The CSU can select varying sized ranges. This allows for optimization of the full memory and 
peripheral space. 

Each chip select has integrated programmable READY logic. This logic can automatically insert 
between 0 and 15 wait states into bus cycles accessing memory or I/O locations within a chip select's 
range. If greater than 15 waits states are required the READY pin can be used to extend the bus cycle 
indefinitely. 

The integrated chip select unit has advantages beyond reducing the chip count of a system. Externally 
generated chip selects are delayed from a valid address by the propagation delay of the decoding 
circuitry. Chip select signals generated by the CSUbecome active at the same time as the address. This 
time savings can, in some instances, allow the use of slower memory devices without the insertion 
of wait states. 
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The Chip Select Unit will generate chip select signals only for accesses generated by the CPU (BIU 
cycles and DRAM refresh cycles). An external bus master must supply its own chip select signals. See 
Section 7.1.5 below for a discussion of external bus masters. 

The Chip Select Unit PCB map and summary of register operation is shown in Figure 7.2. 

REGISTER NAME 

GCS1ST 

GCS1SP 

GCS2ST 

GCS3ST 

GCS3SP 

GCS4ST 

GCS5ST 

GCS6ST 

GCS7ST 

LCSST 

LCSSP 

UCSSP 

Figure 7.2(a). PCB Map for Chip Select Unit 
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CHIP SELECT CHANNEL START REGISTERS: (UCSST, LCSST, GCSOST through GCS7ST) 

r--- THE UPPER 10 BITS OF THE STARTING ADDRESS 
FOR THE CHIP SELECT ACTIVE REGION 

0 

W W W W 
S S S S 
3 2 1 0 

THE NUMBER OF WAIT STATES (0·15) TO BE f INSERTED FOR ACCESSES MADE IN THIS CHIP --_ ...... 
SELECT REGION. 

GCSxST 

LCSST 

OFFCFH 

OFFCFH 

UCSST FF8FH 

I = UNDEFINED WHEN READ. 
MUST WRITE "0". 

Figure 7.2(b). 
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CHIP SELECT CHANNEL STOP REGISTERS: (UCSSP, LCSSP, GCSOSP through GCS7SP) 

GCSxSP 

LCSSP 

UCSSP 

r THE UPPER 10 BITS OF THE ENDING ADDRESS 
~ FOR THE ACTIVE CHIP SELECT REGION 

rh-5--------~-----------,1 0 

CCCC MR 
SSSS ED 
9876 MY 

CHIP SELECT ENABLE BIT: _______ ....Jt r 
o = CHIP SELECT CHANNEL OFF 
1 = CHIP SELECT CHANNEL ON 

IGNORE STOP ADDRESS BIT: ----------------' 
o = USE STOP ADDRESS 
1 = IGNORE STOP ADDRESS. STOP 

ADDRESS IS THE TOP OF PHYSICAL 
MEMORY (OFFFFH MEMORY, 
OFFFFH FOR 1/0) 

MEMORY CHIP SELECT BIT: -----------' 
0= CHIP SELECT IS ACTIVE FOR 1/0 

ACCESSES 
1 = CHIP SELECT ACTIVE FOR MEMORY 

ACCESSES 

USE EXTERNAL READY PIN BIT: ---------...... 
0= WAIT STATE GENERATOR IGNORES 

EXTERNAL READY PIN 
1 = WAIT STATES WILL BE INSERTED UNTIL 

EXTERNAL READY IS ASSERTED 

OFFC3H 

OFFC3H 

OFFCFH 

Figure 7.2(c). 
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7.1 FUNCTIONAL OVERVIEW 

There are a total of ten chip select channels available: eight general purpose chip selects (GCSO­
GCS7), the Upper Chip Select (UCS), and the Lower Chip Select (LCS). The GCS channels are 
multiplexed with output Port 1. 

7.1.1 CHIP SELECT OPERATION 

There are five conditions that must be met to activate a chip select line: 

1. The current address (A19:0 in memory or A15:0 in I/O) must be greater than or equal to the 
chip select channel's starting address. The starting address defines the beginning of a chip 
select's active range. 

2. The current address must be less than the chip select channel's stopping address. This address 
defines the upper limit of a chip select channel's active range. Optionally, the stop address may 
be ignored effectively making the top of physical memory (OFFFFFH memory; OFFFFH I/O) the 
end of a channel's range. 

3. The channel must be enabled. Disabled channels always drive their chip select line high, dese­
lecting the attached device. 

4. The current access must be to the same device space, memory or I/O, that the chip select is 
programmed for. A chip select programmed for memory accesses will not be active for IN or 
OUT instructions; a channel programmed for I/O will not be active for memory accesses. 

5. The memory or I/O location being accessed must not be in the Peripheral Control Block. 
Accesses to the PCB take place internally and do not require a chip select signal. All CSU lines 
will remain high during a PCB access. 

6. For the General Purpose Chip Selects (GCS7-GCSO), the Port I multiplexer must be pro­
grammed to select CSU functions (see the I/O Unit section of this manual for details). 

Every chip select channel that meets all these criteria will become a,ctive for a given 80C 186EB bus 
cycle. Since each channel is independent, it is possible to have more than one channel active at a time. 
The operation of overlapping channels is explained below. A logic block diagram describing chip 
select operation is shown in Figure 7.3. 
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Case 1: GCS configured for Memory Decoding (MEM~1) 

PCB IS NOT LOCATED IN 
CURRENT RANGE 

CSEN~1 
CHIP SELECT ENABLE 

A19:10 ~ START 
ADDRESS FIELD 

A19:10 < STOP 
ADDRESS FIELD 

Case 2: GCS configured for 1/0 Decoding (MEM~O) 

PCB IS NOT LOCATED IN 
CURRENT RANGE 

CSEN~1 

CHIP SELECT ENABLE 

A15:6~START 

ADDRESS FIELD 

A15:6 < STOP 
ADDRESS FIELD 

PORT 1 LATCH 

PORT 1 MUX 
CONTROL 
(GCSONLY) 

PORT 1 LATCH 

PORT 1 MUX 
CONTROL 
(GCS ONLy) 

Figure 7.3. CSU Logic Block Diagram 
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The granularity of a chip select decoder refers to the size of the range for which each signal is active. 
In most simple decoding schemes a portion of the high order address bits are fed into a demultiplexing 
(decoder) chip. The outputs of the demultiplexing chip would then select one of several equally sized 
areas of memory. For example, consider the typical chip select decoding scheme in Figure 7.4. The 
three highest order bits of the memory address bus (A 19: 17) are connected to a 74138 3 to 8 decoder. 
The resulting chip selects would result in 8 128K byte ranges (a granularity of 128K). The granularity 
for such schemes is fixed. Such arrangements can leave holes in the memory map when devices 
smaller than the granularity are used. More elaborate decoding schemes could be devised to provide 
for greater and more flexible granularity. 

A1 9 A2 07 SELECTS B96K TO 1 MEG 

A1 8 A1 06 SELECTS 76BK TO 896K 

A1 7 A3 05 

• 
04 

7413B • 
03 

• 
E3 02 

~l E2 01 

E1 00 

J. 
SELECTS 0 TO 12BK 

SELECTS 12BK TO 256K 

270B30-001-5 

Figure 7.4. Simple Chip Select Decoder Example 

The CSU uses the 10 most significant bits of the address to decode each channel. The beginning and 
ending addresses for each chip select are defined by separate ten bit fields in 2 PCB registers. The 
lower bits are fixed at zero in hardware. The ten bit field width results in a minimum granularity of lK 
bytes for memory accesses and 64 bytes for I/O. The example in Figure 7.5 illustrates this. 

7-8 



CHIP SELECT/READY LOGIC UNIT 

EXAMPLE A: MEMORY ADDRESSING 

~ ~~~~~~ERADDRESS 
~OA"'OO 

STOP 
ADDRESS 

START 
ADDRESS 

1 0 0 0 0 0 0 0 0 0 0 =400H=1028BYTES 

EXAMPLE B: PERIPHERAL ADDRESSING 

~ r6~~~Ts~ROGRAMMABLE 

~'''~ 

Figure 7.5(a). 

~. L ~'OW ORDER ADDRESS 

~'" ""0 ., "'''' 

II 

STOP 
ADDRESS 

START 
ADDRESS 

1 0 0 0 0 0 0 = 40H = 64 BYTES 

Figure 7.5(b). 
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270830·001·7 

Active ranges all begin on modulo lK boundaries for memory and modulo 64 byte for I/O. The end 
of a chip select range is one less than the stop address (unless the ignore stop address option is 
selected). Figure 7.6 illustrates how the starting and stopping address fields are used to select the 
active range for a chip select. 
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STOP ADDRESS FIELD BITS FIXED AT ZERO 

START ADDRESS FIELD 

Figure 7.6. Programming an Active Range 

MEMORY SPACE 

00800 TO OOBFF 
ACTIVE 
RANGE 

] 
1K BYTE 
PAGES 
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The Ignore STOP address option is provided for chip select channels to access the finallK byte of 
memory (or 64 bytes of I/O). Using the largest value possible in the stop address field (FFCOOH) 
would result in a stop address ofFFBFFH (one less than FFCOOH). The ISTOP option tells the chip 
select channel to ignore the programmed stop address making the end of the range the top of physical 
memory. This allows access to the memory above FFBFFH. Similarly, I/O chip selects must use the 
ISTOP option to gain access to I/O ports above FFBFH. 

7.1.2 READY GENERATION AND WAIT STATE INSERTION 

Each channel has an associated wait state/ready logic circuit. For any accesses within a chip select's 
range, between 0 and 15 wait states will automatically be inserted into the bus cycle. With the READY 
control enabled, the programmed number of wait states will be inserted then control will pass to the 
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READY pin. Wait states will continue to be inserted until READY is asserted. With READY control 
disabled, only the programmed number of wait states will be inserted; the state of the READY pin 
is ignored. 

Proper READY signal interfacing is explained in the Bus Interface Unit section. 

7.1.3 OVERLAPPING RANGES 

Chip select channels are permitted to have overlapping active ranges. An access to an overlapping 
range results in all of the enabled overlapping chip selects becoming active. If all the overlapping 
channels ignore external READY, then the maximum programmed number of wait states will be 
inserted by the BIU. If one or more are programmed for external READY control, the minimum 
number of programmed wait states are inserted after which control is passed to the READY signal. 

As an example, consider the following three chip selects: 

UCS: Active Range = 0 to OFFFFFH in memory 
Enabled with 5 wait states, NO external READY 

GCSO: Active Range = OlOOOH to 01400H in memory 
Enabled with 3 wait states, NO external READY 

GCS3: Active Range = 0400H to 01800H in memory 
Enabled with 1 wait state, NO external READY 

Any access to the overlapping region (OlOOOH to o 13FFH) will result in all chip selects going active 
and 5 wait states inserted in the cycle. As a second example, let's assume GCSO required external 
READY (though still with 3 wait states programmed). In this case an access to the overlapping region 
would again result in all chip selects going active. This time, however, only one wait state is inserted; 
control then passes to external READY. Once READY is asserted the bus cycle completes. 

7.1.4 PORT 1 MULTIPLEXER 

GCS7 through GCSO are multiplexed with output port 1 functions. The Port 1 Control registers must 
be properly programmed for the GCS signals to appear at the package pins. Refer to the I/O Ports 
section of this manual for further information. 

7.1.5 EXTERNAL BUS MASTERS 

The Chip Select Unit is active only for internally generated bus accesses. These include any opcode 
fetch, memory or I/O access, or DRAM refresh cycle. Any bus cycles generated by an external master 
will not cause the chip selects to go active. During a bus HOLD sequence the chip selects will not float, 
but will instead remain in their inactive HIGH state. Systems utilizing external bus masters will 
require the logic shown in Figure 7.7 to generate the proper chip select signals. 
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80C186EB "[)o-MEMORY OR 1/0 
CHIP SELECT ....--........ -1_ DEVICE CHIP SELECT 

EXTERNALLY I 
GENERATED --..J 
CHIP SELECT 

Figure 7.7. CS Generation with External Bus Masters 

7.1.6 NUMERICS I/O LOCATIONS (I/O LOCATIONS OOF8H TO OOFFH) 

270830·001·9 

The interface between the 80C 186EB and the 80C 187 numerics processor extension makes use of the 
I/O ports located between OOF8H and OOFFH. Programming a chip select with an active range that 
includes these locations is not recommended. 

7.1.7 CSU TIMINGS 

The decision to activate a particular chip select is performed just after the effective address calculation 
is completed. Both of these events occur before the address appears on the bus. The address and chip 
select signals are gated on to the bus simultaneously in Tl. The status lines (S2:0) become valid one 
half a cycle earlier. The status lines can be combined with the chip selects to create early read and write 
selects for slow memory and peripheral devices. 

The relative timings for the address lines, chip selects, and status lines can be found in Figure 7.8. 
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CLKOUT 

ALE 

AD15:0 
AD19:16 

GCS7:0 : 

LCS,VCS ';...---1-...1 

S2:0 
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ADDRESS 
VALID 

STATUS 

TLLRL, T LLWL 
~--+---~--------~I 

RD,WR 

Figure 7.S. CSU Relative Timings 

7.2 PROGRAMMING THE CSU 

7.2.1 THE CHIP SELECT REGISTERS 

270830·001·10 

Two PCB registers are used to program each channel. The chip select start registers ( GCSOST to 
GCS7ST, UCSST, and LCSST) define both the starting address for a chip select and the desired 
number of wait states. The chip select stop registers (GCSOSP to GCS7SP, UCSSP, LCSSP) define 
the ending address for a chip select's range as well as selecting the READY, ignore stop address, 
memory/peripheral, and enable options (Figure 7.2), 
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7.2.1.1 THE CHIP SELECT START REGISTER 

The CS9:0 bits of the start register define the upper ten address bits for the beginning of the channel's 
range. The lower bits (10 for memory and 6 for I/O) are fixed at O. The WS3:0 field indicates the 
number of wait states (0 to 15) to be inserted for accesses in the chip select's range. 

7.2.1.2 THE CHIP SELECT STOP REGISTER 

The CS9:0 bits of the stop register define the upper ten bits for the ending address of the channel's 
range. As with the start register, the lower bits are fixed at zero. The last address for which the 
channel's chip select line is active will actually be one less than the full stop address. For example, if 
CS9:0 contained 0000.0000.01 the stop address would be 0000.0000.0100.0000.0000 (400H) for 
memory. The last active address would then be 3FFH. 

The Chip Select ENable (CSEN) bit must be set for the channel to be active. Clearing this bit forces 
the chip select line to remain high. 

The Ignore STOP (lSTOP) bit, when set, forces the chip select unit to ignore the stop address. This 
has the effect of making the stop address of the chip select's range FFFFFH in physical memory 
(OFFFFH for I/O). The MEM bit selects between memory and I/O mapping for the channel. When 
MEM is set the channel will be active for memory accesses in the selected range; with this bit cleared 
it will be active for I/O. 

The READY bit is used with the wait state field in the start register to control the ready generation 
circuitry. When READY is cleared the Bus Interface Unit will ignore the external READY pin and 
insert the number of wait states in the wait state field. If READY is set, the BIU will first insert the 
programmed number of wait states then transfer control to the READY pin. The bus cycle is extended 
until READY is asserted. 

7.3 INITIAL CONDITIONS ( RESET) 

Following a RESET only UCS is enabled. The active range for UCS after reset is from FFCOOH to 
FFFFFH in memory. This allows for the fetching of the initialization code at FFFFOH. Fifteen wait 
states are inserted and external READY control is enabled. Systems using external READY should 
be sure this line is valid during RESET. Systems not using READY should tie this pin high. 

The Port 1 multiplexer selects the CSU as the source of data following a RESET. 

Figure 7.2 shows the initial values for all of the CSU registers. 
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7.4 APPLICATIONS EXAMPLES 

The following sections illustrate two potential applications of the CSU. The first is a small system 
with 3 separate memory selects and 21/0 selects. The second example shows how bank switching can 
be used to access 2 megabytes of DRAM through a 512K byte window. 

The following sections are provided as examples of CSU programming. As such the examples do not 
go into detailed timing analysis or hardware design issues. 

7.4.1 EXAMPLE 1: SIMPLE CSU APPLICATION 

The system shown in Figure 7.1 is a typical small80C186EB system utilizing ROM, 2 separate banks 
of RAM, a Floppy Disk controller, and aDMA controller. The schematic has been simplified showing 
only the connections necessary for memory and I/O access. Detailed information on memory and 
I/O device connection can be found in the bus interface unit section. 

The ROM occupies 128K bytes (64K words) from EOOOOH to FFFFFH (3 wait states, no external 
READY). The low RAM is 32K bytes and is located from OH to 7FFFH (0 wait states, no external 
READY). The middle RAM is 64K bytes located at lOOOOH (1 wait state, no READY). At OH in 
I/O space is the DMA controller with 16 total locations (2 wait states, no READY). The Floppy Disk 
controller is at 40H using 1 location. The Floppy Disk controller requires external READY. A 
memory map is shown in Figure 7.9. 
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MEMORY SPACE MAP 1/0 SPACE MAP 

OFFFFFH 

OEOOOOH 

REGION NOT USED 
UNUSED 1/0 SPACE 

01FFFFH 
0080H 

010000H 

0040H-004FH 

007FFFH 

OOOOOOH OOOOH-0001 H 
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Figure 7_9. Memory Map for Example 1 

The first step in setting up the CSU is assigning chip select channels to the individual memory and 
I/O blocks. The selection is arbitrary with the exception of UCS. Since UCS is the only channel 
enabled at reset, it must select the ROM in which the boot code resides. The remainder of the devices 
are assigned as follows: low RAM is selected by LCS, middle RAM is selected by GCS 1, the DMA 
controller is selected by GCSO, and the disk controller is selected by GCS2. 
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Example 1 

$mod186 
n a m e c s u_i nit i a liz a t i 0 n_e x amp I e 

This file contains an example of initialization code for 
the Chip Select Unit on the 8oC186E8. 

reset segment at oFFFFh ; The 8oC186E8 resets to 
; oFFFFoH. 

jmp far ptr initialize 

reset ends 

A new segment is located at FFFo:oH. The UCS channel is active 
down to FFCo:o after reset. We do not need to jump this far for 
the setup. 8y jumping to FFFo:o we stay within the active region 
of UCS. 8y not jumping all the way down to FFCo:o we keep from 
fragmenting the ROM. We have 240 bytes from FFFo:o to FFFF:o in 
which to perform our initialization. 

UCSST 
UCSSP 
LCSST 
LCSSP 
GCSoST 
GCSoSP 
GCS1ST 
GCS1SP 
GCS2ST 
GCS2SP 
GCS3ST 
GCS3SP 
P1CON 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

oFFA4H 
oFFA6H 
oFFAoH 
oFFA2H 
oFF8oH 
oFF82H 
oFF84H 
oFF86H 
oFF88H 
oFF8AH 
oFF8CH 
oFF8EH 
oFF54H 

UCS START ADDRESS REG 
UCS STOP ADDRESS REG 
LCS START ADDRESS REG 
LCS STOP ADDRESS REG 
GCSo START 
GCSo STOP 
GCS1 START 
GCS1 STOP 
GCS2 START 
GCS2 STOP 
GCS3 START 
GCS3 STOP 
Port 1 mux control 

segment at oFFFoH 
assume cs:init_seg 

initialize proc far 

mov 
mov 
out 
mov 
mov 
out 

mov 
mov 
out 
mov 
mov 
out 

dx, UCSST 
ax, oEo03H 
dx, ax 
dx, UCSSP 
ax, oFFFEH 
dx, ax 

dx, LCSST 
ax, DOH 
dx, ax 
dx, LCSSP 
ax, o8oAH 
dx, a x 

UCS begins at Eooo:o 
and requires 3 wait states 

disable external ready 
control. Top of range 
is set at FFFF:F. Chip 
select is enabled. ISTOP=l. 

LCS starts at oH 
and requires no wait states 
or external ready. 
LCS ends at o7FFFH. 
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Example 1 (Continued) 

mov 
mov 
out 
mov 
mov 

dx, GCS1ST 
ax, 0101H 
dx, ax 
dx, GCS1SP 
ax, 020AH 

GCS1 starts at 10000H 
with 1 wait state. 
GCS1 stops at 1FFFFH 
ENabled for memory. 

All of the memory chip selects have now been set up. The next thing 
to do is set up the IIO chip selects. 

mov dx, GCSOST This CS selects the DMA chip. 
mov ax, 0042H Starts at 40H; 2 wait states. 
out dx, ax 
mov dx, GCSOSP Stop at 7FH, IIO mapped. 
mov ax, 0088H ENabled, no external READY. 

mov dx, GCS2ST This CS is for FDC system. 
mov ax, OOOFH Starts at,OH; 15 wait states. 
out dx, ax 
mov dx, GCS2SP Stops at 3FH, I/O mapped. 
mov ax, 0049H ENabled, use READY. 

The IIO chip selects have now been set up and enabled. 

jmp far ptr program_code jump to program code 

initialize endp 

code_seg segment at OEOOOH 
assume cs:code_seg 

program_code: NOP 

; program continues here ....•••. 

ends 

Figure 7.10 contains the ASM186 code to properly initialize the CSU for this application. The 
80C186EB begins fetching instructions at FFFF:OH immediately after reset. The UCS channel is 
active after reset with a range of FFCOOH to FFFFFH in memory. The UCS is also programmed for 
15 wait states with external READY. READY must be asserted for the boot code to be fetched. In 
this system the boot ROM requires 3 wait states with no external READY. For an in depth discussion 
of READY usage please refer to the Bus Interface Unit section. 
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The first instruction executed following reset is a JMP to location FFEOOH (still within the UCS 
range). FFCOOH was not jumped to in order to save contiguous memory space. The PCB is not being 
relocated for this example so it resides at FFOOH in I/O space. The UCSST register has start field of 
1110.0000.00 (EOOOOH start address) and a wait state field of 2 (2 wait states). The UCSSP register 
has the stop field programmed to 0 but the ISTOP bit is set making the stop address FFFFFH. In 
addition the MEMbit is set (memory chip select) and the READY bit is cleared (no external READY). 
Finally the CSEN bit is set to keep the UCS enabled. The LCS register is set up similarly in the 
following instructions. 

Next, the middle RAM is set up. The same procedure is used as for UCS and LCS. The setup for the 
peripherals follows; the only difference being in the programming of the MEM bit and the READY 
bit for the floppy disk controller. 

The CSU initialization sequence is now completed. The program jumps to location EOOOOH to 
continue execution. 

7.4.2 EXAMPLE 2: TWO MEGABYTE SOFTWARE PAGED RAM 

Example 2 illustrates how the CSU can be used to extend the 80C186EB addressing capability 
beyond 1 megabyte through the use of software paging. 

The paged memory array is shown in Figure 7.11. Each page is 512K bytes arranged as 256K x 16. 
The actual implementation of the memory is not pertinent to this example. Each page is enabled by 
a separate GCS line, GCSO through GCS3. The four pages all occupy the same 512K space, or 
window, in physical memory from 10000H to 7FFFFH. 
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Two procedures are used in the paging implementation (Figure 7.12). The first procedure, 
SET_UP _PAGES, initializes the GCSO through GCS3 channels. All four channels occupy the same 
memory space with zero wait states. The channels are all disabled when the procedure is exited. 

The second procedure, SELECT_PAGE, enables the individual pages. The page to be enabled is 
passed on the stack by the calling program. Only one page is enabled at a time; enabling multiple pages 
would result in bus contention. If a page other than 0 through 3 is selected all pages will be disabled. 

Example 2 

hod186 
nam e c s u_pag ed_m em or y_e xam pie , 

This file contains an example of a paged memory implementation 
with the Chip Select Unit on the 80C186EB. 

UCSST EQU OFFA4H UCS START ADDRESS ~EG 
UCSSP EQU OFFA6H UCS STOP ADD~ESS REG 
LCSST EQU OFFAOH LCS START ADD~ESS ~EG 
LCSSP EQU OFFA2H LCS STOP ADDRESS REG 
GCSOST EQU OFF80H GCSO START 
GCSOSP EQU OFF82H GCSO STOP 
GCSlST EQU OFF84H GCSl STA~T 
GCSlSP EQU OFF86H GCSl STOP 
GCS2ST EQU OFF88H GCS2 START 
GCS2SP EQU OFF8AH GCS2 STOP 
GCS3ST EQU OFF8CH GCS3 START 
GCS3S EQU OFF8EH GCS3 STOP 
PHON EQU OFFS4H Port 1 mux control 

This example uses 2 procedures: SET_UP_PAGES and SELECT_PAGE. 
It is assumed that proper initialization of the other chip selects 
has already been accomplished. 

This code also assumes that the PCB is still located in I/O space 
at OFFOOH. 

segment 
assume cs: code_seg 

;*************************************** ;** PROC: SET_UP_PAGES ** 
;** ** 
; ** PARAMETERS: NONE * * 
;** ** ;** FUNCTION: Sets up 4 overlap- ** 
; ** pages in memory from 10000H ** 
; ** to 8FFFFH. Leaves all of ** 
;** disabled. ** 
;*************************************** 
SET_UP_PAGES proc far 

mov ax, 0100H 

mov dx, GCSOST 
out dx, ax 
mov dx, GCSlST 
out dx, ax 
mov dx, GCS2ST 
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Example 2 (Continued) 

out dx, ax 
mov dx, GCS3ST 
out dx, ax 
mov ax, 9DD2H Pages stop at 9DDDDH. 

They are DISABLED (CSEN=D). 
Memory mapped without 
external READY. 

mov dx, GCSDSP Set up all pages the same· 
out dx, ax 
mov dx, GCS]'SP 
out dx, ax 
mov dx, GCS2SP 
out dx, ax 
mov dx, GCS3SP 
out dx, ax 

The next step is programming the Port]' Control to allow GCSD-3 to 
appear at the package pins. We must perform a READ-MODIfY-WRITE 
so that any previous setups for the other GCS pins are not 
affected. 

mov dx, P]'CON 
in ax, dx read the previous setup 
or ax, DDDDl1l1B Set the lower 4 bits 

to select GCS lines 
at the package pins. 

out dx, ax 

At this point thi 4 Chip sel~cts share the overlapping region 
]'DDDDH to 8ffffH, a total of 5]'2K bytes. They are all disabled. 

ret 

ENDP 

;********************************** ; ** PROC: SELECT_PA GE * * 
** ;** PARAMETERS: Passes page ** 

;** number on the stack. ** 
;** fUNCTION: Accepts page ** 
;** number then enables the ** 
;** selected page. If page ** 
;** does not exists (>3) all ** 
;** pages will be disabled. ** 
;********************************** 

mov dx, GCSDSP 
in ax, dx 
and ax, Dfff7H 
out dx, ax 
mov dx, GCSlSP 
out dx, ax 
mov dx, GCS2SP 
out dx, ax 
mov dx, GCS3SP 
out dx, ax 
mov bp, sp 
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intJ 

mov 

cmp 
jg 
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ax, [bp+41 

ax, 3 
invalid page 

Example 2 (Continued) 

[bp+4] points to page number 
stored on the stack above 
CS:IP. 

If the page is not between 
o and 3 THEN shut them all 
off. 

Since the stop registers we will be modifying are sequential the 
following alogorithm may be used to calculate the 1/0 address: 
Page stop register address = GCSDSP address + page * 2 

imul 
add 
mov 

ax, 2 
ax, GCSDSP 
dx, ax 

; Calculate offset into PCB. 

Now we enable the selected page. A READ-MODIfY-WRITE is used to 
set just the enable bit without affecting any others. 

in 
or 
out 

ret 

ends 

ax, dx 
ax, DDD8H 
dx, ax 

2 
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CHAPTER 8 
SERIAL COMMUNICATIONS UNIT 

The Serial Communications Unit of the 80C 186EB contains two independent channels. The Serial 
Communications Unit (SCU) can implement several different serial communications protocols: 
Synchronous mode is used to expand the I/O capability of the 80Cl86EB by communicating with 
serial I/O peripherals, the asynchronous modes all implement the standard "start bit-data-stop bit" 
protocol. The asynchronous data frame size is programmable between seven and nine bits. Parity 
generation/checking and break detection/transmission are additional features available in the asyn­
chronous modes. The synchronous and asynchronous modes both have the "Clear-To-Send" feature. 
Clear-To-Send control allows external devices to selectively enable the transmitter. 

The serial ports on the 80C186EB can be readily interfaced with those found on a wide variety of 
embedded controller (e.g. MCS-51, MCS-96) and data communications devices. Several different 
processors and systems can be connected to a common serial bus using a multiprocessor protocol (see 
8.1.1.3.2). Such serial networks are attractive in systems where full parallel bus connectivity is either 
impossible or impractical. 

A block diagram of the Serial Communications Unit is shown in Figure 8.1. The two serial channels 
are identical in operation although only channel 0 is supported by the integrated interrupt controller. 
The interrupt request signal from channel 1 can be routed to an output pin through the port 2 multi­
plexer. Each channel generates an interrupt request when either a reception or a transmission is 
completed. Both channels have independent baud rate generators that can use either the CPU clock 
or an external clock as their time base. 

Communication between the Serial Communications Unit and the CPU takes place through several 
Peripheral Control Block (PCB) registers. The PCB map and a summary of register operation is 
shown in Figure 8.2. 

8.1 FUNCTIONAL OVERVIEW 

The operation of the Serial Communications unit is logically divided between the synchronous and 
asynchronous modes. The following discussions apply to both channels. Programming of the SCU 
is described in Section 8.2. 

8.1.1 ASYNCHRONOUS COMMUNICATION 

The asynchronous serial communication modes ( Modes 1 through 4 ) of the 80C 186EB follow the 
industry standard "start bit-data-stop bit" protocol. Data is transmitted and received in serial frames. 
A frame is a sequence of bits shifted serially on to (or off of) the communication line. The baud rate 
of a channel is the number of bits per second shifted on to the line. The amount of time that each bit 
is valid is called the "bit-time" (equal to l/baudrate). 
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inter SERIAL COMMUNICATIONS UNIT 

REGISTER NAME 

BOCMP 

BOCNT 

SOCON 

SOSTS 

SORBUF 

SOTBUF 

RESERVED 

RESERVED 

B1CMP 

B1CNT 

S1CON 

S1STS 

S1RBUF 

S1TBUF 

Figure 8.2(8) 

BAUD RATE COMPARE REGISTERS: (BOCMP, B1CMP) 

I B B B B B B B B B B B B B B B C R R R R R R R R R R R R R R R L 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0 K 4 3 2 1 0 
, 

t 't "''' "'no COO''''EV .. "", ""''''' 

INTERNAL CLOCKING BIT 

, 

0= SELECTS BCLK PIN AS INPUT TO BAUD CLOCK 
1 = SELECTS INTERNAL CPU CLOCK AS INPUT TO BAUD CLOCK 

W CAUTION: WRITING TO THIS REGISTER WHILE THE SCU 
• IS OPERATING WILL CAUSE INDETERMINATE 

OPERATION. 

270830·001 ·14 

Figure 8.2(b). 
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SERIAL COMMUNICATIONS UNIT 

BAUD RATE COUNTER REGISTERS: (BOCNT, B1CNT) 

B B B B 
C C C C 
7 6 5 4 

B B B B 
C C C C 
3 2 1 0 

,L.... __ BAUD RATE COUNTER VALUE. SEE TEXT. 

'\i7' '," CAUTION: WRITING TO THIS REGISTER WHILE THE SCU 
'. ' IS OPERATING WILL CAUSE INDETERMINATE 

OPERATION. 

Figure S.2(c). 

I " UNDEFINED WHEN READ. 
MUST WRITE O. 

SERIAL TRANSMIT BUFFER REGISTERS: (SOTBUF, S1TBUF) 

DATA BYTE TO BE TRANSMITTED -_ ....... 

Figure S.2(d). 

I ~ UNDEFINED WHEN READ. 
MUST WRITE O. 

SERIAL RECEIVE BUFFER REGISTERS: (SORBUF, S1RBUF) 

THE LOWER EIGHT BITS OF THE -_ ....... 
LAST COMPLETED RECEPTION 

o 

R R R 
B B B 
2 1 0 

I ~ UNDEFINED WHEN READ. 
MUST WRITE O. 

FigureS.2(e). 
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SERIAL COMMUNICATIONS UNIT 

SERIAL STATUS REGISTERS: (SOSTS, S1STS) 

RECEIVE INTERRUPT: -------., 
o = NO RECEIVE INTERRUPT REQUESTED 
1 = RECEIVE INTERRUPT REQUESTED 

RECEIVED BIT 8 / PARITY ERROR: 
WHEN PARITY IS DISABLED THIS 
BIT CONTAINS THE 9th DATA BIT 
RECEIVED IN MODES 2 & 3 
FOR PARITY ERROR: 
o = NO PARITY ERROR 
1 = PARITY ERROR 

DETECT BREAK 1: -----., 
o = NO BREAK 1 DETECTED 
1 = BREAK LONGER THAN 2M + 3 

BIT-TIMES DETECTED 
DETECT BREAK 0: ----., 
o = NO BREAK 0 DETECTED 
1 = BREAK LONGER THAN M 

BIT-TIMES DETECTED 

TRANSMIT INTERRUPT: -------...... 
o = NO TX INTERRUPT REQUESTED 
1 = TX INTERRUPT REQUESTED 

FRAMING ERROR: ----------..... 
O=NOERROR 
1 = NO STOP BIT FOUND 

TRANSMITTER EMPTY: -------------' 
o = TRANSMITTER NOT EMPTY 
1 =TXEMPTY 

OVERRUNERROR:--------------J 
O=NOERROR 
1 = RBUF NOT READ PRIOR TO 

RECEPTION OF NEW DATA 

CLEAR TO SEND VALUE:-, ..... -------------' 
COMPLEMENTED VALUE OF CTS PIN 

W <D ALL BITS, EXCEPT CTS AND TXE, ARE CLEARED 
• BY A READ OF THIS REGISTER. 

® ERROR AND BREAK BITS CAN ONLY BE CLEARED BY A READ. 
THEY CANNOT BE CLEARED BY A SUBSEQUENT 
ERROR FREE RECEPTION 

® WRITING:iO RI AND TI WILL NOT 
GENERATE INTERRUPTS 

Figure 8.2(f). 
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SERIAL CONTROL REGISTERS: (SOCON, S1CON) 

CTS ENABLE: --------------, 
o = CTS IGNORED . 
1 = CTS MUST BE ASSERTED TO BEGIN TRANSMISSION 

TRANSMIT BIT 8: -------------, 
9th DATA BIT IN 
MODES 2 AND 3 

SENDBREAK:------------, 
0- NORMAL TXD OPERATION 
1 = TXD DRIVEN LOW REGARDLESS 

OF MODE 

RECEIVER ENABLE: ----~-----..... --...I 
o • RECEIVER DISABLED 
1 = RECEIVER ENABLED 

EVEN PARITY: ____________ - __ -J. 

0= ODD PARITY 
1 = EVEN PARITY 

PARITY ENABLE: ----------------..... 
O-NOPARITY 
1 = PARITY 

MODE SELECT BITS: -----------------...... 
000. MODE 0 
001-MODE 1 
010 = MODE 2 
011 = MODE 3 
100 = MODE 4 
101, 110, 111 = RESERVED (DO NOT USE) 

Figure 8.2(9). 
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SERIAL COMMUNICATIONS UNIT 

Each frame consists of a start bit (a logic 0) followed by the data bits (7,8, or 9 for the 8OC186EB ) 
and a tenninating stop bit (a logic one). The last data bit may replaced by a parity bit in situations 
where error detection is needed. Figure 8.3 shows a typical ten bit frame ( 8 bits data plus stop and start 
bits ). 

Figure 8.3. Typical 1 O·blt Asynchronous Data Frame. 

10 

STOP 
BIT 

270830·001·20 

A special "break character" may be used in some systems. The tenn "break character" is a misnomer 
as the break condition is really a signal that extends longer than a serial frame. The break condition 
is indicated on a serial channel by the presence of a logic low value for a preset amount of time equal 
to or longer than an entire frame. This signal is used for several purposes. Popular applications for 
break signalling include modem handshaking and catastrophic condition indication. . 

The serial communications unit on the 80C 186EB recognizes only CMOS logic levels. Some serial 
communications systems may require the use of alternate levels. RS232-C, for example, requires a 
logic 1 be between -5V and -25V and a logic 0 be between +5V and +25V. Another common standard, 
the 20ma current loop, requires the presence and absence of current to indicate logic states. Interface 
circuitry for such systems is readily available from several manufacturers. 

Each serial communications channel is divided into separate reception and transmission modules. 
These are referred to as the "RX Machine" and the "TX Machine" respectively. These modules are 
autonomous allowing transmission and reception to occur simultaneously (full duplex). Both the RX 
and TX machines operate at the baud rate supplied by the baud rate generator for that channel. The 
following sections describe the operation of the RX and TX machines in the asynchronous modes. 
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SERIAL COMMUNICATIONS UNIT 

8.1.1.1 RXMACHINE 

The RX machine must be enabled (through the REN bit) before reception in any mode can occur. 
Once enabled, the RX machine begins sampling the RXD pin in search of a falling edge signifying 
a start bit. Each data bit following the start bit is sampled three times near the center of the bit time. 
The actual data received is based on a two-out-of-three majority of these samples. This oversampling 
improves noise immunity. Each received data bit is shifted into the RX Machine receive shift register, 
least significant bit first. A stop bit is expected by the RX Machine after the proper number of bits for 
the selected mode have been received. The data in the receive shift register is copied to the RBUF 
(receive buffer) register at the middle of stop bit time. A receive interrupt request is generated, and the 
receive interrupt flag (RI) is set, when the shift register to RBUF transfer is completed~ 

The RX machine is capable of detecting several error conditions that may occur during reception. 
These include: 

1) Parity Errors: If the parity feature has been enabled and the parity of the received data is incorrect, 
the Parity Error (PE) bit will be set. 

2) Framing Errors: Failure to receive a valid stop bit during the bit time in which it is expected will 
result in the Framing Error (FE) bit being set. 

3) Overrun Errors: If the RBUF register (containing the data from a previous reception) has not been 
read before the current reception completes, the Overrun Error bit (OE) will be set. This bit 
indicates that data from an earlier reception has been lost. The data in RBUF will always be the 
last byte received. 

In addition, the RX Machine can recognize two different break signals. TheDBRKO bit indicates the 
detection of a break condition on the RXD pin oflonger than M bit times, where M is equal to the total 
number of bits ( start+data+stop ) in a frame. The DBRKI bit signifies that a longer break condition, 
greater than 2*M+3 bit times, has been received. It's important to note that the break condition will 
result in the RX Machine receiving at least one null ( all zeros) character with the framing error bit 
set. Other error bits may also be set depending on the length of the break signal and the mode of 
operation of the channel. 

The receiver can tolerate incoming baud rates that differ from the internal baud rate by 2.5% overspeed 
and 5.5% underspeed. These values exceed the CCITT extended signalling rate specifications. 

A block diagram of the RX Machine is shown in Figure 8.4. 
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SERIAL COMMUNICATIONS UNIT 

8.1.1.2 TX MACHINE 

The transmission sequence begins with a write to the TBUF (transmit buffer) register. The TBUF is 
a holding register for the transmit shift register. The contents of the TBUF register are copied to the 
transmit shift register as soon as the current transmission is completed. If no transmission is in 
progress (i.e. the transmit shift register is empty) the TBUF is copied immediately to the transmit shift 
register. The start and stop bits are appended during the TBUF to shift register transfer. Concurrently, 
the parity bit is also generated and inserted in the data frame, if the parity feature has been selected, 
At this point the TX Machine begins shifting the contents of the transmit shift register on to the TXD 
pin. At the middle of the stop bit time the transmit interrupt request is generated and the transmit 
interrupt bit (TI) is set. 

Double buffering is an important feature of the TX Machine. When the transmit shift register is empty, 
the TX Machine can accept two sequential writes to the TBUF register. The first byte is immediately 
transferred to the transmit shift register . The second byte is then held in the TBUFpending completion 
of the first transmission. The Transmitter Empty (TXE) bit signifies that both registers of the TX 
Machine are empty, When this bit is set the user can safely write sequential bytes for transmission 
without loss of data. 

The transmitter can be selectively disabled through the "Clear-To-Send" feature. This feature is 
selected through the programming of the CEN bit. When CEN is set, the TX Machine will not begin 
transmission until CTS has been asserted. The entire frame will then be transmitted. Data will 
continue to transmit as long as CTS is asserted and the transmitter is full. 

The CTS pin is level sensitive. The state of the CTS pin is only looked at just prior to a pending 
transmission. Holding the CTS pin low for 1 1/2 clock cycles when a transmission is pending will 
insure that the transmission will occur. Section 8.4.3 discusses the CTS timings in greater detail. 

Monitoring the state of the TXE bit is especially important while using CTS. When the transmitter is 
disabled there is only room for two bytes in the transmitter; one in the TBUF and one in the transmit 
shift register. Any further writes to the TBUF will result in a loss of data. The user must be sure that 
the TBUF is empty before writing to it. 

The TX Machine is also capable of transmitting a break signal. Setting the SBRK bit immediately 
forces the TXD pin to a logic zero state. The TXD pin will remain low until the user clears the SBRK 
bit. It is up to the user to time the duration of the break signal. Setting SBRK does not halt the internal 
transmission sequence. In other words, the TX Machine will continue to run despite the fact that the 
TXD pin is being held low. Transmit interrupts will still be generated as if normal transmission were 
taking place. 

The same baud rate generator is used for the RX Machine and the TX Machine for a given channel. 
For this reason reception and transmission must occur at the same rate. If it is necessary to have 
different baud rates for reception and transmission then the user must use both channels. One would 
be dedicated to reception, the other to transmission. 
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SERIAL COMMUNICATIONS UNIT 

8.1.1.3 THE ASYNCHRONOUS MODES 

Modes 1 through 4 of the SCU implement variations of the asynchronous protocol described above. 
The RX and TX Machines operate the same for all four modes with some minor exceptions. 

8.1.1.3.1 MODE 1 : ( 10 bitframe ) 

Mode 1 is the standard 8 bit asynchronous communications mode. Each data frame consists of one 
start bit, eight data bits, and a stop bit. Enabling the parity feature replaces the eighth data bit by a parity 
bit. The sense, even or odd, of the parity is programmable. The data frame for Mode 1 is shown in 
Figure 8.6. Both the RX and TX Machines operate as described above with no exceptions. 

Figure 8.6. Mode 1 Waveform 

8.1.1.3.2 MODES 2 AND 3: (11 bitframes) 

10 

STOP 
BIT 

270830·001·23 

Modes 2 and 3 both make use of 11 bit frames. The data frame consists of a start bit, nine data bits, 
and a stop bit (Figure 8.7). 

Figure 8.7. Modes 2 and 3 Waveform 

11 

STOP 
BIT 

270830·001·24 

The TX Machine gets the ninth bit (MSB) for transmission from the TB8 bit in the SxCON register. 
This bit feeds directly into the transmit shift register, bypassing the TBUF. TB8 is not double 
butTerred. A new TB 8 value must be specified for each byte to be transmitted. This precludes the use 
of the double buffering feature when the user needs to explicitly program the ninth bit value. 
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SERIAL COMMUNICATIONS UNIT 

There are two situations where TB 8 can be generated by the TX Machine. The TB 8 bit is cleared after 
every transmission. If TB8 is cleared before transmission starts, and never set thereafter, every 
transmission will have the ninth bit low. If the parity feature has been selected, bit 9 will be replaced 
with the parity bit. This is a convenient method of generating an 8 bits plus parity data frame. In both 
cases double buffering may once again be used since TB8 is automatically generated. 

The RX Machine places the ninth received data bit in the RB8/pE (Receive Bit 8 /Parity Error) bit in 
the SxSTS register. If the parity feature is enabled, the RB8/PE bit will instead contain the parity error 
flag (set to indicate an error). All other error detection capabilities and interrupt requests function as 
described above. 

The RX Machine has an important functional difference between Modes 2 and 3. Mode 2 is com­
monly referred to as the "ninth bit recognition mode". Reception in Mode 2 will not complete unless 
bit 9 of the data frame is a logic one. Any data received with bit 9 cleared will be completely ig­
nored. No flags will be set, no interrupts will be generated, and no data will be transferred to RBUF. 
Reception in Mode 3, however, will complete regardless of the state of bit 9. 

Modes 2 and 3 are commonly combined to implement multiprocessor communications. One possible 
application is called the "master/slave network" (Figure 8.8). All slaves connected to the network 
have their RXO pins directly connected to the "master transmit" line (TXO pin of the master). The 
slaves' TXO pins are all tied to the "master receive" line (RXO pin of the master) through a 3-state 
buffer. The buffer is necessary to avoid contention as the TXO line cannot be floated. 

80C186EB 

TXD 
MASTER TRANSMIT LINE " , 

RXD 
MASTER RECEIVE LINE , 

*- *- ~ 
RXD TXD RXD TXD RXD TXD 

87C196KB 87C51 80C186EB 
SLAVE SLAVE SLAVE 

PORT ~ PORT - PORT -
PIN PIN PIN 

1 I I 
.L COMMONGND. 

270830-001-25 

Figure 8.8. Multiprocessor Network 
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Initially all slaves are receiving in Mode 2 with their transmitters disconnected from the master 
receive line. The master is set permanently in Mode 3. There are two types of transactions that can 
occur in this system: a global slave command and a local master/slave data transfer. 

When the master wishes to broadcast a command to all slaves, it transmits the eight bit command with 
bit 9 set high. Every slave in the network is interrupted upon reception of the global command byte. 
An example of a global command is "initiate system reset routine" to force all slaves to a known state. 
Such global commands are unidirectional and require no response from the slaves. 

If the master wishes to communicate bidirectionally with a particular slave it would issue a special 
global "address" command (again with bit 9 high). Each slave would check its address against the 
received address. The addressed slave would then gate its TXD line onto the master receive bus and 
switch to Mode 3. Once in Mode 3 the slave could freely communicate with the master. During a 
master/slave data transfer bit 9 would be kept low to prevent interrupting the other slave processors 
on the network. Once the transaction was completed, the slave would detach itself from the master 
receive bus and retum to Mode 2. 

It is not recommended that the parity feature be used in Mode 2, as bit 9 is intended to be a control bit. 
If parity were used in Mode 2 only those data frames whose parity resulted in setting bit 9 would be 
received. 

8.1.1.3.3 MODE 4 (9 bit frame) 

Some older serial devices require the use of a seven bit data frame instead of the newer eight and nine 
bit formats. To accommodate this need Mode 4 transmits and receives only 7 data bits. The lower 7 
bits ofTBUF are transmitted; received data is placed in the lower 7 bits ofRBUF. RB7 in RBUF is 
undefined and should be ignored. The parity feature is not available in this mode. 

All other features function as described in the asynchronous description section above. The data 
frame for Mode 4 is shown in Figure 8.9. 

Figure 8.9. Mode 4 Waveform 
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8.1.2 SYNCHRONOUS COMMUNICATION 

The synchronous mode ( Mode 0 ) of the SCD is intended for use primarily with shift register based 
peripheral devices. In this mode the TXD pin provides the synchronizing transmission/reception 
clock while the RXD pin sends or receives data in eight bit frames (Figure 8.10). Communication in 
Mode 0 is half-duplex; the RXD pin cannot receive and transmit data simultaneously. 

TXD 

RXD 

MODE 0 TRANSMIT 

TXD 

RXD ---< 

MODE 0 RECEIVE 270830-001-27 

Figure 8.10. Mode 0 Waveforms 

Transmission in Mode 0 begins with a write to the TBUF register. TBUF will be copied into the 
transmit shift register as soon as that register is empty (i.e. when any previous transmission is 
completed). The data in the transmit shift register is then shifted out of the RXD pin (vs. the TXD pin 
for the asynchronous modes) while the synchronizing clock is provided on the TXD pin. The re­
ceiving circuit must sample the transmitted data on the rising edge of TXD. The 80C186EB always 
provides the synchronizing clock signal; it can never receive a synchronous clock signal on 
TXD. The TI request bit is set in the middle of the 8th bit time; when transmission is complete. The 
RXD pin floats prior to and following a transmission. The TXD pin never floats; when it is inactive 
between transmissions it remains at a high logic state. 

Transmissions are double bufferred in Mode 0 just as they are in the asynchronous modes described 
above. 

Reception in Mode 0 is initiated only when the receiver enable (REN) bit is set and the receiver 
interrupt request (RI) bit is clear. As soon as these conditions are met the SCD begins shifting in the 
data on the RXD pin. The TXD pin provides the synchronizing clock as in the case of transmission. 
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Received data is sampled by the SCU just prior to the rising edge ofTXD. The device driving the RXD 
pin must adhere to the setup and hold times (with respect to TXD) outlined in the 80C186EB 
datasheet. Reception of the eighth bit sets the receive interrupt request (RI) bit. Simultaneously, the 
contents of the receive shift register are copied into the RBUF. 

Reception of another data byte will not begin until the RI bit is cleared. The receiver can be disabled 
during a reception although this will result in a loss of data. 
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Figure 8.11. Mode 0 Port Expansion 
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A typical application for Mode 0 is shown in Figure 8.11. The 74HC 165 is a parallel in/ serial out shift 
register. The eight configuration byte dip switches control the logic level applied to the parallel input 
pins of the 74 HC 165. To read the configuration byte the port 1.7 pin is pulsed low to latch the parallel 
data. Then the receiver would be enabled in Mode O. This would immediately shift the eight bits in 
the 74HC 165 in to the serial receive buffer. A similar design could be used to construct an output port. 

8.2 PROGRAMMING THE SERIAL COMMUNICATIONS UNIT 

Six Peripheral Control Block registers are used to program each channel of the SCU. The receive and 
transmit buffers, RBUF and TBUF, have already been described. The Baud Rate Compare (BxCMP) 
and Baud Rate Count (BxCNT) Registers are used by the Baud Rate Generator as described in the 
Baud Rate section below. The Serial Control (SxCON) Register is used to set the mode of operation 
and select the feature set for a channel. Each channel reports its current operational state through the 
use of the Serial Status (SxSTS) Register. This section will highlight the function of these two 
registers. 

8.2.1 THE SERIAL CONTROL REGISTER (SOCON, S1 CON) 

The SxCON registers consists of the following seven fields: 

Mode Field: These three bits, M2 to MO, control the operational mode of the channel. They are 
defined as follows: 

M2 Ml MO 

0 0 0 Mode 0 
0 0 1 Mode 1 
0 1 0 Mode 2 
0 1 Mode 3 
1 0 0 Mode 4 
1 0 1 Reserved for future use 

1 0 Reserved for future use 
1 1 Reserved for future use 

PEN Bit: The Parity Enable Bit. When this bit is set the parity feature will be enabled. Every 
transmission (except in modes 0 and 4) will have the MSB replaced by a parity bit. All 
receptions will be parity checked and error conditions will be reported in the PE bit. The sense 
of the parity is controlled by the EVN bit. 

EVN Bit: EVEN/ODD Parity Sense Select. Setting this bit selects even parity; clearing it 
selects odd. 
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REN Bit: Receiver enable bit. Setting this bit enables reception in all Modes. 

CEN Bit: Clear-To-Send enable. Setting this bit invokes the Clear-To-Send transmission 
control feature. With this option selected transmission will not begin until CTS is asserted. 

TB8 Bit: The eighth bit for data transmission in Modes 2 and 3. This bit is cleared after every 
transmission. This bit is not double buffered. 

SBRK Bit: Send Break Bit. When this bit is set the TXD is immediately driven low regardless 
of the current mode. TXD will remain low until this bit is cleared. Timing for break signal 
duration is the users responsibility. 

All of the remaining bits in the SxCON register are reserved for future use. These are all undefined 
when read. 

The SxCON is a read/write register. Reading the SxCON register will not affect its contents. 

8.2.2 THE SERIAL STATUS REGISTER (SOSTS, S1 STS) 

The Serial Status Register is used to monitor the current state of a channel. It is important to note that 
the entire SxSTS register (with the exception of the CTS bit) is cleared every time it is accessed 
(either read or written). If it is necessary to preserve the contents of the SxSTS register, it must be 
saved in memory. 

The Serial Status Register has nine bit fields: 

CTS bit: Clear to Send status. This bit is the complement of the value on CTS pin. This bit is 
the only one in the SxSTS that is not cleared by a read. 

o E bit: Overrun error flag. This bit is set by the RX Machine to indicate a receive overrun error 
has occurred. An overrun error occurs when the data in the RBUF register is not read before the 
data in the receive shift register has overwritten it. 

TXE bit: Transmitter Empty Flag. This bit will be set when both the TBUF and the transmit 
shift register are empty. This indicates that the TX Machine can accept 2 sequential bytes for 
transmission. 

FE bit: Framing Error Flag. Set to indicate a framing error (valid stop bit not detected) has 
occurred. 

TI bit: Transmit Interrupt Request Flag. Set to indicate a transmission has completed and a 
transmit interrupt request has been issued. Writing this bit win not generate an interrupt for 
channelO. 
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RI bit: Receive Interrupt Request Flag. Set to indicate a reception has completed and a receive 
interrupt has been issued. Clearing this bit when REN is set in Mode 0 initiates a reception. 
Writing this bit will not generate an interrupt for channel O. 

RBS/PE bit: Received Bit 8 /Parity Error Flag. In Modes 2 and 3 this will be the value of the 
ninth received bit if parity is not enabled. Ifparity is enabled (in Modes 1,2, and 3) this bit will 
be set to indicate a parity error was detected for the byte currently in RBUF (the last received 
byte). 

DBRKO bit: Break Detect 0 flag. Set to indicate the detection of a break condition of longer 
than M bit times ( M = total bits in frame ). 

DBRKI bit: Break Detect 1 flag. Set to indicate the detection of a break condition of longer 
than 2M+3 bit times (M = total bits in frame). 

All of the error bits (DE, PE, and FE) and the break detect bits (DBRKI and DBRKO) are only cleared 
by reading the SxSTS register. For example, if a frame is received with a parity error (setting the PE 
bit) then a subsequent error-free frame is received, and the SxSTS has not been read between the 
two receptions, the PE bit will remain set. This allows the SxSTS register to be checked only at the 
end of a long block of receptions. 

8.3 OPERATION AND PROGRAMMING OF BAUD RATE GENERATOR 

The Baud Rate Generator uses two PCB registers: the Baud Rate Counter (BxCNT) and the Baud Rate 
Compare (BxCMP) Register. The Baud Rate Counter is a free running fifteen bit counter that 
increments every cycle of the baud timebase clock. The baud timebase clock can either be the CPU 
clock (1/2 the CLKIN frequency) or an external clocking signal applied to the BCLKx pin. If an 
external timebase is selected, it is limited to 1/2 the frequency of the CPU clock. This limitation stems 
from synchronization requirements. 

The Baud Rate Compare Register contains two fields. The most significant bit is the ICLK select bit. 
Setting this bit selects the internal CPU clock for the baud timebase; clearing it selects the BCLKx pin. 
The lower 15 bits make up the baud rate comparison value. The Baud Rate Counter is compared 
against the Baud Rate Compare value after every cycle of the baud timebase clock. If the two match, 
the baud rate generator outputs a pulse and resets the BxCNT register. This repetitive process 
generates a pulse train that is equal to the baud rate in Mode O. Modes 1 through 4, due to their 
asynchronous nature, require repetitive sampling of the input waveform to insure reliable reception. 
Eight baud rate generator cycles are required to perform this operation. For this reason, the baud rate 
in Modes 1 through 4 is 1/8 the frequency of the baud rate pulse train. 
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The following· equations may be used to calculate the proper value of the BxCMP for a specific 
desired baud rate (FCPU=CPU operating frequency, 1/2 CLKIN frequency): 

Mode 0: 
Baud Rate Compare value= [FCPU/(BAUDRATE)]-1 

Mode 1: 
Baud Rate Compare value= [FCPU/(8*BAUDRATE)]-1 

For an external clock source with a frequency Fbclk, use the following: 

Mode 0: 
Baud Rate Compare value= [FBCLKI(BAUDRA TE)]-1 

Mode 1: 
Baud Rate Compare value= [FBLCKI(8*BAUDRATE)]-1 

Note that a baud rate compare value of 0 is illegal and will result in unpredictable operation. Common 
baud rates based on the crystal frequency are shown in Table 8.1. 

Table 8.1 Common Baud Rates in Asynchronous Modes 

CPU FREQUENCY BAUD RATE BxCMPValue % ERROR 

16 MHz 19,200 8067H 0.16 
16 MHz 9,600 80CFH 0.16 
16 MHz 4,800 81AOH -0.08 
16 MHz 2,400 8340H 0.04 
16 MHz 1,200 8682H -0.02 
16 MHz 600 8D04H 0.01 
16 MHz 300 9AOAH 0 

13 MHz 19,200 8054H -0.43 
13 MHz 9,600 80A8H 0.16 
13 MHz 4,800 8152H -0.14 
13 MHz 2,400 82A4H 0.01 
13 MHz 1,200 8549H 0.01 
13 MHz 600 8A93H 0.01 
13 MHz 300 9528H -0.01 

8 MHz 19,200 8033H 0.16 
8 MHz 9,600 8067H 0.16 
8 MHz 4,800 80CFH 0.16 
8 MHz 2,400 81AOH -0.08 
8 MHz 1,200 8340H 0.04 
8 MHz 600 8682H -0.02 
8 MHz 300 8D04H 0.01 
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8.4 TIMINGS 

8.4.1 ASYNCHRONOUS (MODES 1-4) 

For the asynchronous Modes (1 through 4) each bit ofa data frame is valid for what is called a "bit­
time" (Figure 8.12). A bit-time is equal to l/(baud rate). As an example, if the baud rate is set at 9600 
each bit is valid for l04uS. Since it takes 10 bits (in Mode 1) to transmit one ASCII character the data 
rate is 960 characters per second. The RX Machine expects the incoming data to have a baud rate 
within a +2.5% to -5.5% range from internal (transmit) baud rate. 

5 6 

Figure 8.12. Asynchronous Timings 

8.4.2 SYNCHRONOUS (MODE 0) 

I 10 I 
I I 
I I 

STOP I 
BIT I 

I 
I 

270830-001·29 

In Mode 0 all timings are relative to the baud timebase clock (either CLKOUT or BCLK). Two cases 
govern the behavior of the transmit/receive clock (on the TXD pin). 

The first case is unique and occurs when the Baud Rate Compare Value is equal to 1 (see Figure 8.13). 
In this situation the TXD pin toggles every cycle of the baud timebase clock resulting in a 50% duty 
cycle waveform at 1/2 the baud timebase frequency. Transitions on TXD occur on the falling edge of 
the timebase clock. 
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CLKOUT 

TXD 

RXD BIT 0 

270830-001-30 

Figure 8.13. Mode 0, BxCMP=2 

Figure 8.14 shows the TXD wa.veforrn for baud rate compare values greater than 1. The TXD pin 
remains high for N-1 clock cycles. On the falling edge beginning the Nth clock cycle TXD is driven 
low where it remains for the next 2 clock cycles. The next falling edge of the timebase clock restarts 
the TXD cycle. 

CLKOUT 

TXD 

RXD BIT X 

,....,'--- •••• -~h 
HIGH FOR 

N-1 CLOCKS 

Figure 8.14. Mode 0, BxCMP>2 

BITX+1 

270830-001-31 

During a transmission the state of the RXD pin changes state on the fIrst falling edge of CLKOUT 
following the rising edge ofTXD. This is true for both of the above cases. For reception incoming data 
on RXD must meet setup and hold timings with respect to the rising edge ofTXD (Figure 15). These 
timings can be found in the data sheet. 
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--, ,TXhdX 

Figure 8.15. Mode 0, Receive Timings 

8.4.3 CTS PIN TIMINGS 

270830-001-32 

When the clear-to-send feature is enabled (CEN bit is set) transmission will not begin in any mode 
until the CTS signal is assertedwhile a transmission is pending. Figure 8.16 shows the sequence of 
events involved in the recognition of a valid CTS signal. 

The CTS pin is sampled by the rising edge ofCLKOUT (nptBCLKx). The high time of the clock cycle 
is used to resolve (synchronize) the CTS signal. On the falling edge of CLKOUT the synchronized 
CTS signal is presented to the SCU.1f it is necessary to have a very narrow pulse on CTS, the set up 
and hold times in Figure 8.17 must be met. It is recommded that CTS have a valid pulse width of at 
least I 1/2 clock periods. This will guarantee recognition. 

The state ofCTS is not latched. If it is asserted before a transmission is initiated (i.e., a write to TBUF 
occurs) the subsequent transmission will not begin. One can think of a write to the TB UP as "arming" 
the CTS sense circuitry. 
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CTS SAMPLED{ CTS RESOLVED 

HIGH TIME 
TRANSMISSION 

HERE ~ DURING CLKOUT 

PENDING . ,-A--, 

CLKOUT 

CTS 
(INTERNAL) 

CLKOUT 

Figure 8.16. CTS Recognition Sequence 

I 
I 
I 
I 
I_I I--TcHIH 

'~1D I I 
I I 
II I 

Figure 8.17. CTS Setup and Hold 
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8.5 SERIAL CONTROL UNIT INTERRUPTS 

A serial interrupt request will be generated when either channel completes a serial transaction (trans­
mission or reception). For the asynchronous modes, a reception or transmission is completed at the 
middle of the stop bit. During synchronous communication the transaction is completed in the middle 
of the eighth bit. The RI and TI bits (in the SxSTS register) indicate that either a receive or transmit 
interrupt request has been generated. 

The interrupt request circuitry differs between channel 0 and channell. The difference between the 
two is best understood by following the interrupt request signals for each channel. 

8.5.1 CHANNEL 0 INTERRUPTS 

When a reception completes in channel 0, an internal receive-interrupt-request signal is generated. 
This signal is routed to the SOSTS register and the internal interrupt controller (Figure 8.18). The RI 
bit of the SOSTS signal is set by the receive-interrupt-request signal. Note that the RI bit does not 
generate or affect the internal interrupt request. RI is merely an indicator that says: "Channel 0 
has posted a receive-interrupt-request with the integrated interrupt unit." The transmit-interrupt­
request signal and TI behave the same for the case of transmission. 

_~~~~~~~~~~~~ ____ +-______ -+ __ ~IRS TI~ _____ DTOSOSTS 
TRANSMIT_INTERRUPT_REQUEST_O •• 

Figure 8.18. Channel 0 Interrupt Model 
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At the interrupt unit the receive interrupt request is ORed with the transmit interrupt request from 
channel 0 to generate a single "serial channel 0 interrupt request." The interrupt controller, however, 
maintains separate vectors for receive and transmit interrupts. The receive and transmit interrupt 
requests cannot be independently masked. 

It is not necessary to clear theRI and TI bits for channel 0 to prevent further interrupts from occurring. 
They are an indication that a request has occurred; they are not the source of the request. Setting these 
bits by writing SOSTS will not generate an interrupt. 

Receive interrupts take priority over transmit interrupts. They cannot nest, however, since they share 
one interrupt request. 

8.5.2 CHANNEL 1 INTERRUPTS 

Channell is not directly supported by the integrated interrupt controller. When a receive or 
transmit interrupt request is generated by channell the appropriate bit, RI or TI, is set in the S 1 STS. 
The serial channell interrupt request signal (SINTl) is a direct ORing of these register bits (see Figure 
8.19). This is different from channel O. For channell, setting the RI and TI bits by writing to S 1 STS 
will cause the SINTlline to go active. The only way to deassert SINTl is by clearing theRI and TI 
bits (by reading S 1 STS). SINTl is routed to a package pin through the Port 2 multiplexer. 

In order for SINTl to generate a CPU interrupt, it must be tied to one ofthe external interrupt pins (e.g., 
NMI or INTO). 

P2.3 LATCH 

s"'~" ... "" 11~ 

R 

TRANSMIT_INTERRUPT_REQUEST_1 
TI 

S 

R 

RECEIVEJNTERRUPT _REQUEST_1 .. S 

RI 

270830-001-48 

Figure 8.19. Channel 1 Interrupt Model 
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8.6 PORT 2 MULTIPLEXER 

All of the pins for channell, and the BCLKO pin for channel 0, are mUltiplexed with output port 2. 
The I/O port section of this manual describes programming of the multiplexer. 

8.7 APPLICATION EXAMPLES 

The following sections show the proper programming of the SCU for two different applications. The 
first application configures channel 0 as a standard 9600 baud full duplex asynchronous port. The 
second application uses channell to read the configuration dip switch example shown in Figure 8.11. 

8.7.1 Example 1: 9600 Baud, Full-Duplex Asynchronous Channel 

The ASM186 code for example 1 consists of3 procedures. Procedure ASYNC_ CHANNEL_SETUP 
configures channel 0 for 9600 baud, 7 bits plus even parity, with CTS control enabled. 
ASYNC_CHANNEL_SETUP also initializes the interrupt vectors for the two interrupt procedures 
ASYNC_REC_INT]ROC and ASYNC_XMIT_INT_PROC. 

The body of the two interrupt handler procedures has been left empty. The code inserted in these 
procedures is application dependent. Typically the receive procedure would check for error condi­
tions then store the received byte in a buffer. The transmit routine would get the next byte for 
transmission out of a buffer and write it to the TBUF. 

8.7.2 Example 2: Synchronous Port Expansion 

Section 8.1.2 detailed how the SCU could be used in synchronous mode to expand the I/O capability 
ofthe 80C186EB. This example shows the ASM186 code necessary to read the configuration byte 
information for the circuit in Figure 8.11. 

The code consists of one procedure: READ_CONFIG_BYTE. First, the procedure sets up channel 
1 as a synchronous (mode 0) channel. A baud rate of 1 Mbaud is chosen. Next, the RXD 1 and TXD 1 
signals are routed to the package pins by programming the Port 1 multiplexer. 

To read the expansion port, pin Pl.7 is pulsed low to load the 74HC165 register with the dip switch 
values. The REN (Receiver ENable) bit is then set and the data is shifted in to the RBUF. Since the 
SINT line is not being used the RI bit must be polled. When a "1" is found in the RI flag the reception 
is completed. The configuration data is returned in the AL register. 
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Example 1 

This file contains an example of initialization code for the 
Serial Communications Unit on the 80C186EB. 

This example has 3 procedures: 

ASYNC_CHANNEL_SETUP: Sets up channel 0 as 9600 baud, 
full duplex, 7 data bits-plus-partiy, 
with CTS# control. 

ASYNC REC INT PROC: Interrupt handler for a reception. 
This procedure is nearly empty since 
the code to perform error checking and 
receive buffer handling is application 
dependent. 

AS Y N CX MIT _I N T _P ROC: In t err up t han dIe r for a t ran s m iss ion. 
As with the above procedure this is 
nearly devoid of code. A typical appli­
cation would test the TXE bit and then 
copy data from the transmit buffer in 
memory to the TBUF. 

We assume PCB has NOT BEEN RELOCATED! 

BOCMP 
SOCON 
SOSTS 
SORBUF 
SOTBUF 
RI TYPE 
TI-TYPE 
EO! 
SCUCON 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

OFF60H 
OFF64H 
OFF66H 
OFF68H 
OFF6AH 
20 
21 
OFF02H 
OFF14H 

code_seg segment public 
ass ume c s:c ode_s e g 

ASYNC_CHANNEL_SETUP proc near 

Channel 0 Baud Rate Compare 
Channel 0 Control 
Channel 0 Status 
Channel 0 Receive Buffer 
Channel 0 Transmit Buffer 
Receive is type 20 interrupt 
Xmit is type 21 interrupt 
End-Of-Interrupt Register 
SCU interrupt control reg 

First, set up the Interrupt handler vectors···· 

xor 
mov 

a x, ax 
d s, ax 

mov bx, RI TYPE*4 

Need DS to point to 
int vector table at OH 

mov ax, offset ASYNC REC INT PROC 
mov [bx], ax - - -
m 0 v ax, se g ASYNCR E CI NT_P ROC 
mov [bx+2], ax 
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Example 1 (Continued) 

mov bx, TI TYPE*4 
mov ax, offset ASYNC XMIT INT PROC 
mov [bx], ax - - -
m 0 vax, s egA S Y N C_X M IT _I N T _P ROC 
mov [bx+2], ax 

Now set up channel 0 options •..... 

mov 
mov 
out 

mov 

mov 
out 

ax, 80CFH 
dx, BOCMP 
dx, ax 

ax, 00S9H 

dx, SOCON 
dx, ax 

for 9600 baud from 16MHz 
CPU clock. 
Set baud rate. 

CEN=l (CTS enabled) 
REN=O (receiver not enabled 
EVN=l (even parity) 
PEN=l (parity turned ON) 
MODE=l (10 bit frame) 

write to Serial Control Reg. 

Clear any old pending RI or TI, just for safety's sake. 

mov dx, SOSTS 
in ax, dx ; clear any old RI or TI 

Clear interrupt mask bit in interrupt unit to allow SCU 
interrupts. 

mov 
in 
and 

Turn on 

mov 
in 

or 
out 

dx, SCUCON 
ax, dx 
ax, 0007H 

the receiver 

dx, SOCON 
ax, dx 

ax, 0020 
dx, ax 

SCU interrupt control 

Clear mask bit to enable 

Read SOCON 

Set REN bit 
Write SOC ON 

Now receiver is enabled and sampling of the RXD line begins. 

Any write to the TBUF will initiate a transmission. 

ret 

; The next procedure is executed every time a reception is 
completed. 

ASYNC_REC_INT_PROC proc near 

mov dx, SOSTS 
in ax, dx Get status info 

test al, 10000000B Test for parity error 
jnz parity_error 

test a 1 , 00010000B Test for framing error 
jnz f ram i n g_e r r 0 r 

test a 1 , 00000100B Test for overrun error 
jnz overrun_error 
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Example 1 (Continued) 

At this point we know the received data is OK. 

mov 
in 

and 

dx, SORBUf 
a x, dx 

ax, 07fH 

Read received data 

Strip off parity bit 

Code to store the data in a receive buffer would go here. 
It has been ommitted since this is heavily application dependent. 

pari ty_error: 

Code for parity error handling goes here. 

jmp eoi rcv int 

framing_error: 

Code for framing error handling goes here. 

jmp eoi_rcv int 

overrun_error: 

Code for overrun error handling goes here. 

jmp eoiJcv int 

Must now issue END-Of-INTERRUPT command to interrupt unit .... 

eoi_rcv_int: mov 
mov 
out 

iret 

dx, EOI 
ax, 8000H 
dx, ax 

ASYNC_REC_INT_PROC endp 

ASYNC_XMIT_INT_PROC proc near 

issue non-specific EOI 

This procedure is entered whenever a transmission completes. 
Typical code would be inserted here to transmit the next byte 
from a transmit buffer set up in memory. Since the configuration 
of such a buffer is application dependent this section wil be 
left blank. 

Must now issue END-Of-INTERRUPT command to interrupt unit .... 

eoi_xmit_int: mov dx, EOI 
mov ax, 8000H 
out dx, ax 

iret 

ends 

issue non-specific EOI 
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Example 2 

This file contains an example of initialization code for the 
Serial Communications Unit on the 80C186EB. 

This example has 1 procedure: 

READ CONFIG BYTE: Sets up channell as 1 M baud, 
synchronous with no CTS# control. 
It then reads in the configuration 
byte from the shift register connected 
as in Figure 8·11. 

We assume PCB has NOT BEEN RELOCATED! 

B1CMP EQU OFF70H 
SlCON EQU OFF74H 
SlSTS EQU OFF76H 
SlRBUF EQU OFF78H 
P1CON EQU OFF54H 
P1LTCH EQU OFF56H 
P2CON EQU OFF5CH 

code_seg segment public 
assume cs:code_seg 

REA D_C ON F I G_B Y TE proc near 

mov ax, 8007H 
mov dx, B1CMP 
out dx, ax 

mov ax, OFFH 
mov dx, P2CON 
out dx, ax 

The next piece of code pulses 

mov dx, P1CON 
in ax, dx 
or ax, 7FH 
out dx, ax 

mov dx, P1LTCH 
in ax, dx 
or ax, 0080H 
out dx, ax 
and ax, OFF7FH 
out dx, ax 
or ax, 0080H 
out dx, ax 

Channel 1 Baud Rate Compare 
Channell Control 
Channel 1 Status 
Channell Receive Buffer 
Port 1 Multiplex control 
Port 1 data latch 
Port 2 Multiplex control 

Mode 0 baud rate of 
1 megabaud 

Set Port 2.1 for TXD 

Pl.7 low to load the 74HC165. 

Get state of Pl controls 

Make sure Pl.7 is port 

get state of Pl Latch 
set Pl.7 to 1. 

Clear Pl.7 

Set Pl.7 
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Example 2 (Continued) 

Now set up the receiver in mode 0 and turn it on· 

mov ax, 0020H Mode 0, No CTS 
mov dx, SlCON Receiver ON 
out dx, ax 
mov dx, SlSTS 

check - 4_RI: in ax, dx 
test ax, 0040H ; look for SET RI bit 

jz check 4 RI loop until RI set· 

RI bit set. Reception is completed. 

mov dx, SlRBUF 
in ax, dx 

ret 

ends 
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CHAPTER 9 
INTERRUPTS 

80C186EB family interrupts can be software- or hardware-initiated. Software interrupts originate 
from three sources: 

Execution of INT instructions. 

A direct result of program execution, that is, execution of a breakpointed instruction. 

An indirect result of program logic, for example, attempted division by zero. 

Hardware interrupts originate from either the integrated peripherals or external logic. In the 80C 186EB 
family, an integrated Interrupt Control Unit performs the tasks which would otherwise be left to an 
external 82C59 Interrupt Controller. Hardware interrupts are classified as either non-maskable or 
maskable. 

All interrupts, whether software- or hardware-initiated, result in the transfer of control to a new 
program location. A 256-entry vector table (see Figure 9.1), which contains address pointers to the 
interrupt routines, resides in memory locations 0 through 3FFH. Each entry in this table consists of 
two 16-bit address values (four bytes) that are loaded into the code segment (CS) and the instruction 
pointer (lP) registers when an interrupt is accepted. 

All interrupts save the machine status by pushing the current contents of the flags onto the stack. The 
80C186EB family CPU then clears the interrupt-enable and trap bits in the flags register to prevent 
subsequent maskable and single step interrupts. Next, the CPU establishes the routine return linkage 
by pushing the current CS and IP register contents onto the stack before loading the new CS and IP 
register values from the vector table. 
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MEMORY TABLE VECTOR 
ADDRESS ENTRY DEFINITION 

3FE ""---C-S-25-5--"'} 
1-------1 TYPE 255 

3FC IP 255 

82 

80 

7E 

7C 

56 

54 

52 

50 

4E 

4C 

4A 

48 

46 

44 

42 

40 

3E 

3C 

3A 

38 

36 

34 

32 

30 

USER 
AVAILABLE 

CS32 } 1-_____ -1 TYPE 32 

IP32 

CS31 } 1-_____ -1 TYPE 31 

IP 31 }"~~,, 
CS21 

IP 21 

CS20 

IP20 

CS19 

IP 19 

CS18 

IP 18 

CS17 

IP 17 

CS16 

IP 16 

CS15 

IP 15 

'CS 14 

IP 14 

CS13 

IP 13 

CS12 

IP 12 

1-2 BYTES-I 

1 TYPE 21 - SERIAL CHANNEL 0 
TRANSMIT 

TYPE 20 - SERIAL CHANNEL 0 
RECEIVE 

} TYPE 19 - TIMER 2 

} TYPE 18-TIMER 1 

} TYPE 17 -INT4 

} 
TYPE 16-NUMERICS 
COPROCESSOR 
EXCEPTION (80C186EB) 

} TYPE 15 -INT3 

} TYPE 14-INT2 

} TYPE 13 -INT1 

} TYPE 12-INTO 

MEMORY 
ADDRESS 

2E 

2C 

2A 

28 

26 

24 

22 

20 

1E 

1C 

1A 

18 

16 

14 

12 

10 

OE 

OC 

OA 

08 

06 

04 

02 

00 

TABLE 
ENTRY 

CS11 

IP 11 

CS10 

IP 10 

CS9 

IP 9 

CS8 

IP 8 

CS7 

IP 7 

CS6 

IP6 

CS5 

IP 5 

CS4 

IP 4 

CS3 

IP3 

CS2 

IP 2 

CS1 

IP 1 

CSO 

IPO 

1-2 BYTES-I 

VECTOR 
DEFINITION 

} TYPE 11 - RESERVED 

} TYPE 10'- RESERVED 

} TYPE 9 - RESERVED 

} TYPE 8 - TIMER 0 

} TYPE 7 - ESC OPCODE 

} 
TYPE 6 - UNUSED 
OPCODE 

} 
TYPE 5 - ARRAY 
BOUNDS 

} TYPE 4 - OVERFLOW 

} TYPE 3 - BREAKPOINT 

} TYPE 2-NMI 

} TYPE 1 - SINGLE-STEP 

} TYPE 0 - DIVIDE 
ERROR 

CS = CODE SEGMENT VALUE 
IP = INSTRUCTION POINTER VALUE 

270830-001-76 

Figure 9.1. Interrupt Vector Table 

9.1 INTERRUPT CONTROL MODEL 

80Cl86EB family software interrupts are presented directly to the CPU, while hardware interrupts 
are managed through the integrated Interrupt Controller. 

The tasks performed by the integrated Interrupt Controller include synchronization of interrupt 
requests, prioritization of interrupt requests, and management of interrupt acknowledge sequences. 
Nesting is provided so interrupt service routines for lower priority interrupts may themselves be 
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interrupted by higher priority interrupts. The integrated Interrupt Controller can be a master to two 
external 8259A or 82C59A Interrupt Controllers. 

The integrated Interrupt Controller block diagram is shown in Figure 9.2. It contains registers and a 
control element. Five inputs are provided for external interfacing to the Interrupt Controller. Their 
functions change according to the mode of the Interrupt Controller. Like the other 80C 186EB family 
integrated peripheral registers, the Interrupt Controller registers are available for CPU reading or 
writing at any time. 

SERIAL SERIAL INT INT INT INT INT 
RECEIVE TRANSMIT o 1 2 3 4 

TIMER CONTROL REGISTER 

SERIAL COM UNIT CONTROL 
REGISTER 

INTO PIN CONTROL REGISTER 

INT1 PIN CONTROL REGISTER 

INT2PIN CONTROL REGISTER 

INT3 PIN CONTROL REGISTER 

INT4 PIN CONTROL REGISTER 

INTERRUPT PRIORITY 
RESOLVER 

TO CPU INTERRUPT 
REQUEST 

F-8US 

INTERRUPT REQUEST PENDING 
REGISTER 

INTERRUPT MASK 
REGISTER 

IN-SERVICE REGISTER 

PRIORITY LEVEL MASK REGISTER 

INTERRUPT STATUS REGISTER 

VECTOR 
GENERATION 

LOGIC 
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Figure 9.2. Interrupt Controller Block .Diagram 

9.2 INTERRUPT CHARACTERISTICS RELATED TO INTERRUPT TYPE 

The interrupts handled directly by the CPU are varied andspecific, while the interrupts handled by the 
integrated Interrupt Controller are processed like each other. 

9.2.1 INTERRUPTS HANDLED DIRECTLY BY THE CPU 

The integrated Interrupt Controller does not intervene in interrupt processing related to INT instruc­
tions, instruction traps and exceptions, and the Non-Maskable Interrupt. 
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9.2.1.1 INSTRUCTION-GENERATED TRAPS AND EXCEPTIONS 

Software interrupts have higher priority than hardware interrupts, with the exception of NMI. There 
are eight dedicated software interrupts associated with instruction execution or attempted instruction 
execution, leaving room in the vector table from Type numbers 32 through 255 for user-defined 
interrupts. 

The predefined software interrupts in the 80C 186EB family are listed below with brief descriptions. 
When an interrupt is invoked, the CPU will transfer control to the memory location specified by the 
vector associated with the specific type. The user must provide the interrupt service routine and 
initialize the interrupt vector table with the appropriate service routine address. The user may addi­
tionally invoke these interrupts through hardware or software: If the preassigned function is not used 
in the system, the user may assign some other function to the associated type. However, for com­
patibility with future Intel products, interrupt Types 0-31 should not be reassigned as user defined 
interrupts. 

Divide Error -Type 0: 

Type 0 interrupts are invoked by an aJtempted division in which the quotient exceeds the maximum 
value (e.g., division by zero). The interrupt is non-maskable and is entered as part of the execution of 
the divide instruction. If divide errors are common in an application and interrupts are not re-enabled 
by the interrupt service routine, add the interrupt routine execution time to the worst case divide 
instruction execution time to calculate interrupt latency for hardware interrupts. 

Single Step - Type 1: 

This interrupt occurs one instruction after the trap flag (TF) is set in the flag register. It is used to allow 
software single stepping thr~)Ugh a sequence of code. Single stepping is initiated by copying the flags 
onto the stack, setting the TF bit on the stack and popping the flags. The interrupt routine should be 
the single step routine. The interrupt sequence saves the flags and program counter, then resets TF to 
allow the single step routine to execute nonnally. To return to the routine under test, an interrupt return 
restores theIP register, CS register, and flags (with TF set). This allows the execution of the next 
instruction in the program under test before trapping back to the single step routine. 

Breakpoint Interrupt - Type 3: 

This is a speCial version of the INT instruction. Since it requires only a single byte of code space, the 
breakpoint interrupt can map into the smallest instruction for absolute breakpoint resolution. This 
interrupt is not maskable. 
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Interrupt on Overflow· Type 4: 

This non-maskable interrupt occurs if the overflow flag (OF) is set in the flag register and the INTO 
instruction is executed. This instruction allows trapping to an overflow error service routine. 

Array Bounds Exception. Type 5: 

If an array index is outside the array bounds during the BOUND instruction, a Type 5 interrupt results. 
The array bounds are located in memory at a location indicated by one of the instruction operands. The 
other operand indicates the value of the index to be checked. 

Unused Opcode Exception - Type 6: 

Attempted execution of undefined opcodes generates this interrupt. This interrupt is non-maskable. 

ESCape Opcode Exception· Type 7: 

This exception is the result of attempted ESCape opcode (D8H-DFH) execution. On the 80C186EB, 
the ESC trap is enabled by setting a bit in the relocation register. On the 80C 188EB, ESC instructions 
always generate this trap. The return address of this exception will point to the ESC instruction 
causing the exception. If a segment override prefix preceded the ESC instruction, the return address 
will point to the segment override prefix. 

Numerics Coprocessor Exception (80C186EB Only)· Type 16: 

When the execution of numerics (ESCape) instruction causes an unmasked exception in the 80C 187 
Numerics Processor Extension, the result is an interrupt Type 16. Although this is classified as a 
software interrupt, signaling is performed in hardware from the 80C187 to the 80C186EB on the 
ERROR pin. In general, this exception is detected by the 80C 186EB upon execution of the instruction 
subsequent to the one causing the error condition. 

9.2.1.2 NON-MASKABLE INTERRUPT (NMI) 

The Non-Maskable Interrupt (NMI), a hardware interrupt, is interrupt Type 2. It has the highest 
priority among hardware interrupts and is typically reserved for catastrophic events such as impending 
power failure or timeout of a system watchdog timer. NMI cannot be prevented by programming and 
multiple NMI inputs will lead to nesting ofNMI interrupt service routines. Noise on the NMI pin can 
cause unnecessary system upsets. 

NMI must be asserted for one CLKOUT period in order to be internally synchronized. The signal is 
edge-triggered and level-latched. The vectoring sequence for NMI starts at the next available in­
struction edge after NMI is latched. The interrupt response time for NMI is 42 processor clocks. 
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The processor will start recognizing the NMI input pin at the same clock edge on which the RES input 
goes inactive. IfNMI is asserted within 10 clocks after RESET goes inactive, the processor will vector 
to the NMI service routine before it executes the first instruction. This procedure is useful when it is 
desired to begin execution somewhere other than the default starting address of OFFFFOH. 

9.2.1.3 USER-DEFINED SOFTWARE INTERRUPTS 

The user can generate an interrupt through the software with a two byte interrupt instruction INT nn. 
The first byte is the INT opcode while the second byte (nn) contains the type number of the interrupt 
to be performed. The INT instruction is notmaskable by the interrupt-enable flag. This instruction can 
be used to transfer control to routines that are dynamically relocatable and whose location in memory 
is not known by the calling program. This technique also saves the flags of the calling program on the 
stack prior to transferring control. The called procedure must return control with an interrupt return 
(IRET) instruction to remove the flags from the stack and fully restore the state of the calling program. 

All interrupts invoked through software (all interrupts discussed thus far with the exception ofNMI) 
are not maskable with IF and initiate the transfer of control at the end of the instruction in which they 
occur. They do not initiate interrupt acknowledge bus cycles and will disable subsequent maskable 
interrupts by resetting the flags IF and TF. The vectors for these interrupts are implied in the instruction. 

9.2.2 INTERRUPTS HANDLED BY THE INTEGRATED INTERRUPT CONTROLLER 

The 80C186EB family integrated Interrupt Controller receives and prioritizes hardware interrupts 
from five external pins and five integrated peripheral sources. The Interrupt Controller was designed 
to allow these interrupts to be flexibly managed. For example, it is possible to mask one or more 
interrupt sources and handle them by polling while allowing vectored interrupts for all the other 
sources to proceed. 

Requests on interrupt pins INTO-4 are not latched. If a normally LOW INT input is pulsed HIGH 
briefly while that interrupt is disabled or another interrupt is in service, that request will not be saved, 
even if the corresponding bit gets temporarily set in the interrupt request register. It is necessary to 
hold the INT input active until the processor starts the vectoring sequence, either by running interrupt 
acknowledge cycles or reading the new CS and IP values from the interrupt vector table. The 
80C186EB processor family does not employ a default vector as does the 8259A or 82C59A. 

All interrupt requests from the integrated peripherals are latched in the integrated Interrupt Con­
troller for presentation to the CPU. 

9.3 OTHER INTERRUPT CHARACTERISTICS 

To understand how interrupts participate in the overall microprocessor system, it is necessary to 
understand latency, masking and priority. 
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9.3.1 INTERRUPT LATENCY 

Interrupt latency is the time it takes the 80C186EB family processor to begin to respond to an 
interrupt. This is different from interrupt response time, the time from reception of the interrupt until 
it actually executes the first instruction of the interrupt service routine. 

Two factors affecting interrupt latency are the instruction being executed and the state of the interrupt­
enable flip-flop. The interrupt-enable flip-flop must be explicitly set by issuing the STI instruction. 
Since interrupt vectoring automatically clears the flip-flop, it is necessary to set the flip-flop within 
the interrupt service routine if nested interrupts are desired. 

In general, an interrupt can be acknowledged only when the CPU finishes executing an instruction, 
i.e., interrupts are acknowledged at the first available instruction boundary. For the purpose of 
determining instruction boundaries, prefixes (LOCK, REP, and segment ovemde) are considered to 
be part of the following instruction. Thus, interrupt latency time can be as long as 69 CPU clocks, the 
amount of time it takes the processor to execute an integer divide instruction with a segment override 
prefix. There are a number of exceptions to these rules. 

MOVs and POPs to a segment register cause interrupt processing to be delayed until after the next 
instruction. This delay allows a 32-bit pointer to be loaded to the SS and SP stack registers without the 
danger of an interrupt occurring between the two loads. 

The WAIT instruction causes the CPU to suspend processing while checking the TEST pin for a logic 
LOW condition. If an interrupt is detected, the processor will vector to the interrupt service routine 
with the return pointer aimed back to the WAIT instruction. The 80C186EB does not check the 
ERROR pin for 80C187 exceptions during the WAIT instruction. 

When the repeat prefix (REP) is used in front of a string operation, the processor does allow interrupt 
vectoring between repetitions, including those which are LOCKed. If multiple prefixes precede a 
repeated string operation and the instruction is interrupted, only the prefix immediately preceding the 
string primitive is restored. 

With the 80C 186EB/80C 187 processor combination, interrupts on the external interrupt pins INTO-
4 can be serviced after the 80C186 starts a numerics instruction. However, once communication is 
completely established with the 80C 187 (i.e., the 80C 187 is not busy), interrupts are blocked until the 
end of the instruction. 

Interrupt latency is also affected by activity of the integrated peripheral set. Interrupt latency is 
increased if the processor does not have control of the bus due to the HOLD/HLDA protocol. 

Finally, the 8OC186EB/8OC188EB will not accept interrupts during DRAM refresh bus cycles. 
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9.3.2 INTERRUPT MASKS AND NESTING 

To provide a high degree of flexibility in designing complex interrupt structures, the 80C186EB 
family has an elaborate mechanism to control the enabling and disenabling of individual interrupts. 
The programmer must understand this structure to utilize the processor most efficiently in a heavily 
interrupt-driven system. The rules of masking are as follows: 

The non-maskable interrupt (NMI), cannotbe prevented by programming, asits name implies. 

Software interrupts, both user-defined and execution exception, cannot be masked. 

• All other hardware interrupts aresubject to the condition of the interrupt-enable flag which is set 
by the STI instruction and cleared by the CLI instruction. Since every interrupt vectoring se­
quence clears the flag, programmer intervention is required to enable interrupt nesting. The flag 
is automatically restored upon execution of the IRET instruction. 

• The integrated Interrupt Controller has a priority mask register which disables interrupts bel()w 
a programmable priority limit. 

The integrated Interrupt Controller has a mask register with programmable bits for each possible 
interrupt source, including the Serial Communications Unit, timers, and the external interrupt 
pins. (Timers share a mask bit. The receive and transmit interrupt requests share a bit.) 

• The integrated Interrupt Controller has a control register for each interrupt source. (Timers share 
a control register.) Each control register addresses the same mask bit as does the mask register. 

Interrupts under control of the integrated Interrupt Controller are nestable subject to the states of their 
in-service bits. Additionally, INTO and INTI have a provision called Special Fully Nested Mode 
(SFNM),which allows successive interrupts on those pins to ignore the state of their in-service bits. 

9.3.3 INTERRUPT PRIORITY 

When considering the precedence of interrupts for multiple simultaneous interrupts, apply the foiM 
lowing guidelines: 

1. Of the non-maskable interrupts (NMI, instruction trap, and user-defined software), single step 
has the highest priority (will be serviced first), followed by NMI, followed by all other software 
interrupts. 

2. The interrupts controlled by the 80C 186EB family integrated Interrupt Controller are all mask­
able hardware interrupts. Their priorities levels are lower than the non-maskable interrupts. 

A simultaneous NMI and single step trap will cause the NMI service routine to follow single step. A 
simultaneous software trap and single step trap will cause the software interrupt service routine to 
f61l0w single step. Finally, and simultaneous NMI and software trap will cause the NMI service 
routine to be executed followed by the software interrupt service routine. An exceptiori to this priority 
structure occurs if all three interrupts are pending. For this case, transfer of control to the software 

9-8 



INTERRUPTS 

interrupt service routine followed by the NMI trap will cause both the NMI and software interrupt 
service routines to be executed without single stepping. Single stepping resumes upon execution of 
the instruction following the instruction causing the software interrupt (the next instruction in the 
routine being single stepped). 

If the user does not wish to single step before hardware interrupt service routines, the single step 
routine need only disable interrupts during execution of the program being single stepped and re­
enable interrupts on entry to the single step routine. Disabling the interrupts within the program under 
test prevents entry into the interrupt service routine while single step (TF = 1) is active. To prevent 
single stepping before NMI service routines, the single step routine must check the return address and 
return control to that routine without single step enabled. As examples, consider Figures 9.3 and 9.4. 
In Figure 9.3 single step and NMI occur simultaneously. In Figure 9.4, NMI, a timer interrupt and a 
divide error all occur while single stepping a divide instruction. 

TF, IF = 1 

NMI 

NORMAL SINGLE STEP 
OPERATION 

270288·001·81 

Figure 9.3. NMI During Single Stepping and Normal Single Step Operation 
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INTERRUPTS 

TF= 1 
IF = 1 

CONTINUE TO SINGLE STEP 
THE PROGRAM 

TIMER INTERRUPT 
STILL ACTIVE 

270288-001-82 

Figure 9.4. NMI, Timer, Single Step and Divide Error Simultaneous Interrupts 
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9.4 INTERRUPT CONTROL UNIT OPERATION 

The Interrupt Control Unit acts as the master interrupt controller for the system, receiving and 
arbitrating hardware interrupts generated both internally and externally. The Interrupt Controller 
presents interrupts directly to the CPU of the 80C 186EB family processor. As many as two 8259 A (or 
82C59 A) Interrupt Controllers may act as slaves to the master processor. 

User's familiar with the 80186 and 80C186 may remember that the interrupt controller on those 
products has two modes: Master and Slave. The 80C 186EB has only one mode which is functionally 
equivalent to master mode. Slave mode was rarely used on the 80186 and 80C186 and was deleted 
from the 80C186EB. 

9.4.1 EXTERNAL CONNECTIONS 

The INTO through INT3 external interrupt pins are configurable according to two options, direct and 
cascade. INT4 can only be configured as a direct input. With the pins configured in Direct Input Mode 
the integrated Interrupt Controller provides interrupt vectors. With the pins configured in Cascade 
Mode, interrupt types are furnished by an external Interrupt Controller. Mixed mode operation (two 
pins as direct inputs and two pins as an INT lINT A pair) is also possible. 

9.4.1.1 DIRECT INPUT MODE 

When the Cascade Mode bits are cleared, the interrupt input pins are configured as direct interrupt 
pins (see Figure 9.5). Whenever an interrupt is received on the input line, the integrated controller will 
do nothing unless the interrupt is enabled, and it is the highest priority pending interrupt. At this time, 
the Interrupt Controller will present the interrupt to the CPU and wait for an interrupt acknowledge. 
When the acknowledge occurs, it will present the interrupt vector address to the CPU. In Direct Input 
Mode, the CPU will not run any external interrupt acknowledge (INT A) cycles. 

INTO 

INT1 

INT2 80C186EB FAMILY 
MEMBER 

INT3 

INT4 

270288-001-83 

Figure 9.5. Direct Input Mode Interrupt Connections 
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9.4.1.2 CASCADE MODE 

The INT2/1NT AO and INT3/1NT A 1 lines are dual purpose; they can function as direct input lines, or 
they can function as interrupt acknowledge outputs. When the Cascade Mode bit is set, the interrupt 
input lines are configured in Cascade Mode. In this mode, the interrupt input line is paired with an 
interrupt acknowledge line. INT AO provides the interrupt acknowledge for an INTO input, and 
INTAI provides the interrupt acknowledge for an INTI input. Figure 9.6 shows this connection. 

The INT AO and INTAI are configured as inputs until cascade mode is selected. The pullup resisters 
in Figure 9.6 insure that the INT A lines never float (and thus issue a spurious interrupt acknowledge 
to the 8259). The value of the resisters is not critical. The value must be high enough to prevent 
excessive loading on the INT AO and INTAI pins. 

INT INTO 

Vcc 
8259A 

OR 
82C59A 

INTA INTAO 

80C186EB FAMILY 
MEMBER 

INT INT1 

Vcc 
8259A 

OR 
82C59A 

INTA INTA1 

270288-001-84 

Figure 9.6. 80C186EB Family Cascade Mode Interface 

The 8259A or 82C59A Interrupt Controllers may each be further cascaded to eight more Interrupt 
Controllers. Cascading Interrupt Controllers in this way allows up to 64 interrupt levels. 

INTO with INT2/1NTAO and INTI with INT3/1NTAl may be individually programmed into inter­
rupt request/acknowledge pairs, or programmed as direct inputs. For example, INTO and INT2/ 
INT AO may be programmed as an interrupt and interrupt acknowledge pair, while INTI and INT3/ 
INTAI each provide separate internally vectored interrupt inputs. 
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9.4.2 INTERRUPT UNIT PROGRAMMING 

The Interrupt Controller registers are defined according to Figure 9.7. 

REGISTER NAME 

EOI 

POLL 

POLLSTS 

IMASK 

PRIMSK 

INSERV 

INTSTS 

TCUCON 

SCUCON 

IOCON 

12CON 

13CON 

Figure 9.7. Peripheral Control Block Map 

9.4.2.1 THE CONTROL REGISTERS 

Each interrupt source to an 80C186EB family processor has a control register in the internal control­
ler. These registers contain three bits which select one of eight interrupt priority levels for the device 
(0 is highest priority ,7 is lowest priority), and a mask bitto enable the interrupt (see Figure 9.8). When 
the mask bit is zero, the interrupt is enabled; when it is one, the interrupt is masked. All interrupt 
sources have default priority levels. 
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INTERRUPT CONTROL REGISTER (Internal Sources): 
(SCUCON, TCUCON) 

INTERRUPT MASK:------------, 
o = ENABLE INTERRUPTS FROM 

THIS SOURCE 
1 = MASK INTERRUPTS 

M P P P 
S M M M 
K 2 1 0 

PRIORITY LEVEL:L,--J 
0= HIGHEST ~ 
7=LOWEST 

I = UNDEFINED WHEN READ. 
MUST WRITE "0". 

Figure 9.8(a). 

INTERRUPT CONTROL REGISTER (Cascadable Pins): 
(IOCON, 11 CON) 

LEVEL TRIGGER PIN: ---------. 
O=EDGEMODE 
1 = LEVEL MODE 

CASCADE MODE:---------. 
o = NO CASCADE 
1 = CASCADE TO 

EXTERNAL CONTROLLER 

SPECIAL FULLY NESTED MODE: ----. 
o = NO NESTING 
1 = ENABLE NESTING 

M P P P 
S M M M 
K 2 1 0 

INTERRUPT MASK: ______ ~t 
o = ENABLE INTERRUPTS FROM 

THIS SOURCE 
1 = MASK THIS INTERRUPT 

PRIORITY LEVEL: 0= HIGHEST _________ .J 

7=LOWEST 

I·' = UNDEFINED WHEN READ. 
. MUST WRITE "0". 

Figure 9.8(b). 
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INTERRUPT CONTROL REGISTER (External Pins): 
(12CON, 13CON, 14CON) 

INTERRUPT MASK: -----------, 
0= ENABLE INTERRUPTS FROM 

THIS SOURCE 
1 = MASK INTERRUPTS 

LEVEL TRIGGER PIN: ----------, 
0= EDGE MODE 
1 = LEVEL MODE 

M P P P 
S M M M 
K 2 1 0 

PRIORITY LEVEL:~ 
O=HIGHEST ~ 
7= LOWEST 

1< = UNDEFINED WHEN READ. 
,.. MUST WRITE '0' . 
.":Ii.' 

Figure 9.8(c). 

270830-001-80 

There are seven control registers in the integrated Interrupt Controller: five of these serve the external 
interrupt inputs, one for serial channel zero, and one for the collective timer interrupts. 

The control registers for the external interrupt pins contain special bits not present for other interrupt 
sources. Setting the L TM bit in these registers selects level-triggered operation as opposed to edge­
triggered operation. The INTO and INTI control registers contain C and SFNM bits to select Cascade 
and Special Fully Nested Modes, respectively. 

Setting the LTM bit in these registers selects level-triggered operation over edge-triggered operation. 
With edge-triggered operation, a LOW -to-HIGH transition must occur before the interrupt will be 
recognized. The interrupt input must also be LOW for one clock before the active-going edge. With 
level-triggered operation, only a HIGH level is required to generate an interrupt. In both types of 
operation, the interrupt input must remain active until acknowledged. 

With level-triggered operation only, an interrupt request input left active until after the end-of­
interrupt causes another interrupt request. 

Level triggering must be used when an 8259 (or 82C59) is cascaded to the Interrupt Control 
Unit. 
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9.4.2.2 CASCADE MODE 

When programmed in cascade mode, the 80C186EB family processor will provide two interrupt 
acknowledge pulses in response to external interrupts. These pulses will be provided on the INT2/ 
INTAO line, and will also be reflected by interrupt acknowledge status being generated on the SO-S2 
status lines. The interrupt type will be read on the second pulse. Similarly, the processor will provide 
two interrupt acknowledge pulses on INT3/1NTAl in response to an interrupt request on the INTI 
line. 

When an interrupt is received on a cascaded interrupt pin, the priority mask bits and the in-service bits 
in the particular interrupt control register will be set. This prevents the controller from generating a 
CPU interrupt request from a lower priority interrupt. Also, any subsequent interrupt requests on the 
same interrupt input line will not cause the integrated Interrupt Controller to generate an interrupt 
request to the 80C 186EB family CPU. This means that if the external Interrupt Controller receives a 
higher priority interrupt request on one of its interrupt request lines and presents it to the CPU, the 
Interrupt Controller will not present it to the CPU until the in-service bit for the interrupt line has been 
cleared. 

9.4.2.3 SPECIAL FULLY NESTED MODE 

When both the Cascade Mode bit and the SFNM bit are set, the interrupt input lines are configured 
in Special Fully Nested Mode. The external interface in this mode is exactly as in Cascade Mode. The 
only difference is in the conditions which allow an external interrupt to interrupt the CPU. 

When an interrupt is received from a Special Fully Nested Mode interrupt line, it will interrupt the 
CPU if it is the highest priority pending interrupt regardless of the state of the in-service bit for the 
source in the Interrupt Controller. Whenthe processor acknowledges an interrupt from a Special Fully 
Nested Mode interrupt line, it sets corresponding bits in the priority mask and in-service registers. 
This prevents the Interrupt Controller from accepting a lower priority interrupt. However, the Interrupt 
Controller will allow additional requests generated by the same external source to interrupt the CPU. 
This means that if the external (cascaded) Interrupt Controller receives higher priority interrupts on 
its interrupt request lines and presents them to the integrated controller's request line, these interrupts 
will be nested. 

If the SFNM bit is set and the Cascade Mode bit is not set, the controller will provide internal interrupt 
vectoring. It will also ignore the state of the in-service bit in determining whether to present an 
interrupt request to the CPU. In other words, it will use the SFNM conditions of interrupt generation 
with an internally vectored interrupt response, i.e., if the interrupt pending is the highest priority type 
pending, it will cause a CPU interrupt regardless of the state of the in-service bit for the interrupt. This 
operation is only applicable to INTO and INTI, which have SFNM bits in their control registers. 
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9.4.2.4 THE REQUEST REGISTER 

The Interrupt Controller includes an interrupt request register (see Figure 9.9). This register contains 
seven active bits, one for every interrupt source with an interrupt control register. Whenever an 
interrupt request is made, the bit in the interrupt request register is set regardless of whether the 
interrupt is enabled. Interrupt request bits are automatically cleared when the interrupt is acknowl­
edged by starting the interrupt vectoring sequence. 

INTERRUPT REQUEST REGISTER: 
(REQST) 

EXTERNAL PIN HAS 
REQUESTED AN INTERRUPT: ------, 
o = NO REQUEST 
1 = REQUEST PENDING 

SERIAL PORT 0 
INTERRUPT REQUEST: ------' 
o • NO R.EQUEST 
1 • REQUEST PENDING 

TIMER/COUNTER UNIT 
o = NO REQUEST 
1 = REQUEST PENDING 

Figure 9.9. 
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I = UNDEFINED WHEN.READ. 
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9.4.2.5 THE MASK REGISTER 

The InterruptController mask register (see Figure 9.10) contains a mask bit for each interrupt source 
associated with an interrupt control register. The bit for an interrupt source in the mask register is the 
same bit as provided in the interrupt control register; modifying a mask bit in the control register will 
also modify it in the mask register, and vice versa. 

INTERRUPT MASK REGISTER: 
(IMASK) 

EXTERNAL PINS: ----, 

SERIAL CHANNEL 0 -------' 

TIMER/COUNTER UNIT '------..1 
ALL SOURCES: 

o = ENABLE INTERRUPTS 
1 = MASK INTERRUPTS 

Figure 9.10. 
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9.4.2.6 THE PRIORITY MASK REGISTER 

The interrupt priority mask register (see Figure 9.11) contains three bits which indicate the lowest 
priority an interrupt must have to cause an interrupt request to be serviced. Interrupts which have a 
lower priority will be masked. Upon RESET, the register is set to the lowest priority of 7 to enable 
interrupts of any priority. This register may be read or written. 

INTERRUPT PRIORITY MASK REGISTER: 
(PRIMASK) 

9.4.2.7 THE IN-SERVICE REGISTER 

PRIORITY MASK: --_ ...... 
INTERRUPTS WITH 
A PRIORTY LOWER 
THAN THIS VALUE WILL 
NOT BE SERVICED. 

0= HIGHEST 
7= LOWEST 

1-UNDEFINED WHEN READ. 
MUST WRITE '0". 

Figure 9.11. 

270830-001-83 

The Interrupt Controller contains an in-service register (see Figure 9.12). A bit in the in-service 
register is associated with each interrupt control register so that when an interrupt request by the 
device associated with the control register is acknowledged by the processor (either by interrupt 
acknowledge cycles or by reading the poll register) the bit is set. The bit is reset when the CPU issues 
an End Of Interrupt to the Interrupt Controller. This register may be both read and written, i.e., the 
CPU may set in-service bits without an interrupt ever occurring, or may reset them without using the 
EO! function of the Interrupt Controller. 
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INTERRUPT IN-SERVICE REGISTER: 
(INSERV) 

SERIAL PORT 0 INTERRUPT 
REQUEST IN SERVICE: ___ .....,.-__ --.1 

o = NOT IN SERVICE 
1 = IN SERVICE 

TIMER INTERRUPT IN SERVICE:-------.I 
o = NOT IN SERVICE 
1 = IN SERVICE 

Figure 9.12. 

ALL SOURCES: 
o = ENABLE INTERRUPTS 
1 = MASK INTERRUPTS 

I = UNDEFINED WHEN READ. 
MUST WRITE "0". 

9.4.2.8 THE POLL AND POLL STATUS REGISTERS 

270830-001-84 

The Interrupt Controller contains both a poll register and a poll status register (see Figure 9.13). These 
registers contain the same information. They have a single bit to indicate an interrupt is pending and 
five bits to indicate the type of the pending interrupt. The request bit is set if ail interrupt of sufficient 
priority has been received. It is automatically cleared when the interrupt is acknowledged. If an 
interrupt is pending, the remaining bits contain information about the highest priority pending inter­
rupt. These registers are read-only. 

Reading the poll register will acknowledge the pending interrupt to the Interrupt Controller just as if 
the prO'cessor had started the interrupt vectoring sequence. The processor will not actually run any 
interrupt acknowledge cycles, and will not vector through a location in the interrupt vector table. The 
contents of the interrupt request, in-service, poll, and poll statUs registers will change appropriately. 

Reading the poll status register will merely transmit the status of the polling bits without modifying 
any of the other Interrupt Controller registers. 
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POLL AND POLL STATUS REGISTERS: 
(POLL, POLLSTS) READ ONLY 

INTERRUPTS 

r---- INTERRUPT REQUEST PENDING: 
o = NO INTERRUPT PENDING 
1 = INTERRUPT PENDING 

v V V V 
T T T T 
3 2 1 0 

HIGHEST PRIORITY __ ----It 
PENDING INTERRUPT 
(BY VECTOR TYPE) 

WCD READING THE POLL REGISTER 
WILL ACKNOWLEDGE A 
PENDING INTERRUPT (SEE TEXT). 

I = UNDEFINED WHEN READ. 
MUST WRITE "0'. 

Figure 9.13. 

9.4.2.9 THE END OF INTERRUPT REGISTER 

270830-001-85 

The Interrupt Controller contains an End Of Interrupt register (see Figure 9.14). The programmer 
issues an End OfInterrupt (EOI) to the controller by writing to this register. After receiving the EOI, 
the Interrupt Controller automatically resets the in-service bit for the interrupt. The value of the word 
written to this register determines whether the EOI is specific or non-specific. A non~specific EOI is 
requested by setting the non-specific bit in the word written to the EOI register. In a non-specific EOI, 
the in-service bit of the highest priority interrupt set is automatically cleared, while a specific EOI 
allows the in-service bit cleared to be explicitly specified. If the highest priority interrupt is reset, the 
poll and poll status registers change to reflect the next lowest priority interrupt to be serviced. If a less 
than highest priority interrupt in-service bit is reset, the poll and poll status registers will not be 
modified (because the highest priority interrupt to be serviced has not changed). This register is write­
only. 

To issue a specific EOI for any timer interrupt the value 8 must be written to the EOI register. 
Similarly, for both receive and transmit SCU interrupts the EOI register must be written with a 20 
(decimal) for a specific EO!. 

To issue a non-specific end-of-interrupt a value of 8000H is written to the EOI register. To issue a 
specific end-of-interrupt the interrupt vector type of the interrupt to clear is written to the EOI register. 
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END OF INTERRUPT REGISTER: 
(EOI) WRITE ONLY 

INTERRUPTS 

r---- NON-SPECIFIC EOI: 
0= NO OPERATION 
1 = CLEAR HIGHEST PRIORITY REQUEST 

v 
T 
3 

V 
T 
2 

INTERRUPT REQUEST----.... t 
(BY VECTOR TYPE) 
TO CLEAR 

V V 
T T 
1 0 

I = UNDEFINED WHEN READ. 
MUST WRITE "0". 

Figure 9.14. 

9.4.2.10 INTERRUPT STATUS REGISTER IN MASTER MODE 

270830-001-86 

The Interrupt Controller also contains an interrupt status register (see Figure 9.15). This register 
contains five bits. Three bits show which timer is causing an interrupt. This is required because the 
timers share a single interrupt control register. A bit 'in this register is set to indicate which timer 
generated an interrupt. The bit associated with a timer is automatically cleared after the interrupt 
request for the timer is acknowledged. More than one of these bits may be set at a time. 

The transmit and receive interrupt requests from serial channel 0 also share on interrupt request. The 
SRX and STX bits are provided to distinguish between these interrupts. 



INTERRUPT STATUS REGISTER: 
(INTSTS) 

INTERRUPTS 

r--- D = NO NMI REQUEST 
I = NMI REQUEST 

SERIAL TRANSMIT: _____ -' 
o = NO TX INTERRUPT 
1 = TX INTERRUPT 

S T T T 
R M M M 
X R R R 

2 1 0 

SERIAL RECIEVE: --------' 
0= NO RX INTERRUPT 
1 = RX INTERRUPT 

TIMER/COUNTER INTERRUPT: ------.... 
o = NO INTERRUPT REQUEST 
1 = CORRESPONDING TIMER 

REQUESTED INTERRUPT. 

I = UNDEFINED WHEN READ. 
MUST WRITE ·0". 

Figure 9.15. 

9.4.3 INTERRUPT SOURCES 

270830-001 -87 

The 80C186EB family Interrupt Controller receives requests and arbitrates among many different 
interrupt sources, both internal and external. Each interrupt source may be programmed to be a 
different priority level. 

9.4.3.1 INTERNAL SOURCES 

The internal interrupt sources are the three timers and serial channel O. An interrupt from any of these 
interrupt sources is latched in the Interrupt Controller. The state of the pending interrupt can be 
obtained by reading the interrupt request register. Note that all timers share a common bit in the 
interrupt request register. The Interrupt Controller status register may be read to detennine which 
timer is actually causing the interrupt request. Each timer has a unique interrupt vector (see Section 
9.0). Thus, polling is not required to determine which timer has caused the interrupt in the interrupt 
service routine. Also, because the timers share a common interrupt control register, they are placed 
at a common priority level relative to other interrupt sources. Among themselves they have a fixed 
priority, with Timer 0 as the highest priority timer and Timer 2 as the lowest priority timer. 

9-23 



INTERRUPTS 

Serial chanriel 0 generates an interrupt request whenever a reception or transmission is completed. 
Like the timers, there is only one bit in the request register for the two serial interrupts. The interrupt 
status register contains two bits, SRX and STX, which differentiate the. source of the interrupt. 
Receive and transmit interrupts have seperate vectors; polling is not necessary to determine the source 
of the interrupt. The serial communications unit interrupts have a single priority with respect to other 
internal and external sources (because they are one request). Receive has a higher priority than 
transmit when both occur at the same time. 

9.4.3.2 EXTERNAL SOURCES 

The external pins associated with the In.terrupt Controller may serve either as direct interrupt inputs, 
or as cascaded interrupt inputs from other Interrupt Controllers. These options are selected by pro­
gramming the C and SFNM bits in the INTO and INTI control registers (see Figure 9.8(b». 

When programmed as direct interrupt inputs, the five interrupt inputs are each controlled by an 
individual interrupt control register. As stated earlier, each of these registers contain bits which select 
the priority level for the interrupt and a mask bit. In. addition, each of these control registers contains 
a bit which selects edge- or level-triggered mode for the interrupt input. When edge-triggered opera­
tion is selected, a LOW -to-mGH transition must occur on the interrupt input before an interrupt is 
generated, while in level-triggered mode, only a HIGH level needs to be maintained to generate an 
interrupt. In edge-triggered mode, the input must remain LOW at least one clock cycle before the 
input is rearmed. In both modes, the interrupt level must remain HIGH until the interrupt is acknowl­
edged, i.e., the interrupt request is not latched in the Interrupt Controller. The status of the interrupt 
input can be shown by reading the interrupt request register. Since interrupt requests on these inputs 
are not latched by the Interrupt Controller, if an input goes inactive, the interrupt request (and its 
request bit) will also go inactive. 

If the C (Cascade) bit of either $e INTO orINT 1 control registeris set, the interrupt input is cascaded 
to an external In.terrupt Controller. In. this mode, whenever the interrupt presented on the INTO or 
INT 1 line is acknowledged, the integrated In.terrupt Controller will not provide the interrupt type for 
the interrupt. Instead, two INT A bus cycles will be run, with !NT AO or !NT A 1 lines providing the 
interrupt acknowledge pulses for the INTO and INTI interrupt requests, respectively. This allows up 
to 128 (Plus INT4) individually vectored interrupt sources if two banks of 8 external Interrupt 
Controllers each are used. 

9.4.4 INTERRUPT RESPONSE 

The 80(:,:186EB family processor can respond to an interrupt in two different ways. The first response 
will occur if the internal controller is providing the interrupt vector information with the controller. 
The second response will occur if the CPU reads interrupt type information from an.externalIn.terrupt 
Controller. In. both instances the interrupt vector information driven by the integrated Interrupt 
Controller is not available outside the microprocessor. 
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When the integrated Interrupt Controller receives an interrupt, it will automatically set the in-service 
bit and reset the interrupt request bit. In addition, unless the interrupt control register for the interrupt 
is set in Special Fully Nested Mode, the Interrupt Controller will prevent any interrupts from occur­
ring from the same interrupt line until the in-service bit for that line has been cleared. 

9.4.4.1 INTERNAL VECTORING 

The interrupt types associated with all the interrupt sources are fixed and unalterable. These types are 
given in Table 9.1. In response to an internal CPU interrupt acknowledge the Interrupt Controller will 
generate the vector address rather than the interrupt type. On 80C 186EB family microprocessors the 
interrupt vector address is the interrupt type multiplied by four. 

Table 9.1. aoC186EB Internal Vectoring Default Priority 

Interrupt Name Vector Type Relative Priority 

Timer 0 8 o (a) 

Timer 1 18 o (b) 

Timer 2 19 o (c) 

Serial Channel 0: Receive 20 1 (a) 

Serial Channel 0: Transmit 21 1 (b) 

INT4 17 2 

INTO 12 3 

INT1 13 4 

INT2 14 5 

INT3 15 6 

No external Interrupt Controller need know when the integrated controller is providing an interrupt 
vector, nor when the interrupt acknowledge is taking place. As a result, no interrupt acknowledge bus 
cycles will be generated. The first external indication that an interrupt has been acknowledged will be 
the processor reading the interrupt vector from the interrupt vector table in memory. 

Interrupt response to an internally vectored interrupt is 42 clock cycles because the processor does not 
run interrupt acknowledge cycles. This is faster than the interrupt response when external vectoring 
is required. 

If two interrupts of the same programmed priority occur, the default priority scheme (shown in Table 
9.1) is used. 
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9.4.4.2 EXTERNAL VECTORING 

External interrupt vectoring occurs whenever the Interrupt Controller is placed in Cascade Mode. 
With external vectoring, the 80C186EBfamily processor generates two interrupt acknowledge 
cycles, reading the interrupt type off the lower 8 bits of the address/data bus on the second interrupt 
acknowledge cycle (see Figure 9.16). In the 8259A or 82C59A" the upper five bits are user-pro­
grammable and the lower three bits are detennined by a defined interrupt request level. Intemipt 
acknowledge bus cycles have the following characteristics: 

The two interrupt acknowledge cycles are LOCKed. 

Two idle T-states are always inserted between the two interrupt acknowledge cycles. 

• Wait states will be inserted in an interrupt acknowledge cycle if READY is not returned to the 
processor. 

Also notice that the processor provides two interrupt acknowledge signals, one forinterrupts signaled 
by the INTO line, and one for interrupts signaled by the INTI line (on the INT2/INT AO and INT3/ 
INT Al lines, respectively). These two interrupt acknowledge signals are mutually exclusive. Inter­
rupt acknowledge status will be driven on the status lines{SO-S2) when either INT2/1NT AO or INT3/ 
INT Al signal an interrupt acknowledge. The interrupt type generated on the second INT A cycle is 
read by the CPU and then multiplied by four. The resultant value is used as a pointer into the interrupt 
vector table. 

ADO·AD7 

NOTES: 1. ALE is generated for each INTA cycle. 
2. RD is inactive. 

INTERRUPT TYPE 
(FROM EXTERNAL 

CONTROLLER) 

Figure 9.16. cascaded Interrupt Acknowledge Timing 
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9.4.4.3 INTERRUPT RESPONSE TIME 

The interrupt response time for the 80C186EB family is 42-55 CPU clocks. Figure 9.17 shows how 
the total is obtained. The clock count changes when the processor replaces the indicated idle states 
with bus cycles for other tasks such as refresh cycles. The processor does not necessarily flush the 
queue until the very last moment, so prefetching may continue for a while during the vectoring 
sequence. Also, the clock count must be adjusted for wait states or for the 80C188EB. For the 
80C188EB, double the number of clocks given for each bus cycle accessing the stack or memory. 

CLOCKS 

Interrupt presented to the interrupt controller ........................................................................................... > 
5 

Interrupt presented to CPU ..................................................................................................................... > 
INTA 4 
IDLE 2 
INTA 4 
IDLE 5 
READ IP 4 
IDLE 3 
READCS 4 
IDLE 4 
PUSH FLAGS 4 

IF .... O,TF .... O IDLE 3 
PUSHCS 4 
PUSHIP 4 

First instruction fetch IDLE 5 
from interrupt routine ............................................................................................................................... > 

Total 42-55 

} 
CASCADE 
MODE 
ONLY 

(5 IF NOT CASCADE MODE) 

270288-001-66 

Figure 9.17. 80C186EB Family Master Mode Interrupt Response Time 

These clock counts are also applicable to software interrupts and NMI (notice there are no INT A 
cycles). 

9.4.5 INITIALIZATION EXAMPLE 

The code to initialize the Interrupt Control Unit for a combination of direct inputs and Cascade Mode 
inputs is given in Figure 9.18. Refer to Figures 9.5 and 9.6 for the corresponding hardware configu­
rations. Notice that a READY signal must be returned to the processor to prevent the generation of 
wait states in response to the interrupt acknowledge cycles. This configuration provides 10 external 
input lines: two provided by the Interrupt Controller itself (pins INTI and INT3), and eight from the 
external 8259A (cascaded at pins INTO and INTAO). The 80C186EB integrated Interrupt Control 
Unit is the master system Interrupt Controller. The 8259A will only receive interrupt acknowledge 
pulses in response to interrupts it has generated. The 8259 A may be cascaded again as a master to as 
many as eight additional 8259A Interrupt Controllers (configured as slaves). 
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$mod1llb 
name 

INTERRUPTS 

This routine configures the interrupt controller to provide two cascaded 
interrupt inputs (through an external 1l259A internal controller on 
pins INTO and INT2/INTAO) and two direct interrupt inputs (on pins INT1 

and 

, 
IOCON 
IMASK 

code 

set int 
code 

INT3). The default priority levels are used. Because of this, the 
priority level programmed into the control register is set to 111, the 
level all interrupts assu,me at reset. 

equ OFF11lH 
equ OFFOIlH 

segment 
assume CS: code 
proc near 
push DX 
push AX 

mov AX,010D111B 

mov DX,IOCON 
out DX,AX 

mov 

mov 
out 
pop 
pop 
ret 
endp 
ends 
end 

AX,D10D1101B 

DX,IMASK 
DX,AX 
AX 
DX 

; public 'code' 

; Cascade Mode 
; interrupt unmasked 

; now unmask the other external 
; interrupts 

Figure 9.18. Example 80C186EB Family Interrupt Initialization for Master Mode 

9.5 INTERRUPT CONTROLLER FLOW CHARTS 

Figure 9.19 shows an interrupt request generation flow chart and Figure 9.20 shows an interrupt 
acknowledge sequence flow chart. Each interrupt source processed by an 80C186EB family inte­
grated Interrupt Controller follows each flow chart independently. 
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PRESENT INTERRUPT 
REQUEST TO 

EXTERNAL CONTROLLER 

Figure 9.19. Interrupt Request Sequencing 

9-29 

YES 

270288-001-111 



INTERRUPTS 

SET IN-SERVICE 

SET IN-SERVICE 

NOTES: 
1. Before aclual interrupt acknowledge is run by CPU. 
2. Two interrupt acknowledge cycles will be run; the interrupt type is read by 

the CPU on the second cycle. 
3. Interrupt acknowledge cycles will not be run; the interrupt vector address 

is placed on an internal bus and is not available outside the processor. 

Figure 9.20. Interrupt Acknowledge Sequencing 
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CHAPTER 10 
REFRESH CONTROL UNIT 

To simplify the design of a dynamic memory controller, the 80C186EB family incorporates inte­
grated address and clock counters into a Refresh Control Unit (RCU). Its relationship to the BIU is 
shown in Figure 10.1. To the memory interface a refresh request looks exactly like a memory read bus 
cycle. Integration of the RCU into the 80C 186EB family means that chip selects, wait state logic, and 
status lines may be used by an external DRAM controller. The external DRAM controller generates 
the RAS, CAS, and enable signals actually needed by the DRAMs. 

9-BITDOWN 
COUNTER 

RFCON REGISTER 

REFRESH REQUEST BIU 
t-...;.;;;;;..;.;;;;.;.;.;.,;.;.;;.;;;.;;;.;;;,;;,;...-.... INTERFACE 

REFRESH ACKNOWLEDGE 
CLR ~-------4'----­
REQ 

12-BIT ADDRESS COUNTER 

20-BIT REFRESH ADDRESS 270830-001-50 

Figure 10.1 Refresh Control Unit Block Diagram 

The 12-bit address counter is used in the formation of refresh addresses. Thus, any dynamic memory 
whose refresh address requirements (rows of memory cells) do not exceed twelve bits can be directly 
supported by the 80C 186EB. The 12-bit address counter, a 7 -bit base register, and one fixed bit define 
a full 20-bit refresh address. The 9-bit refresh clock counter decrements every clock cycle and 
generates a refresh request to the BIU whenever it reaches 1. When the bus is free, the BIU will run 
the refresh (dummy read) bus cycle. Refresh requests have a higher priority than any other bus request 
(i.e., CPU, HOLD). 
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10.1 REFRESH CONTROL UNIT PROGRAMMING 

There are three registers in the Peripheral Control Block that control the RCU. The three control 
registers are RFBASE, RFfIME, and RFCON (see Figure lO.2). These registers define the operating 
characteristics of the ReU. . 

REGISTER NAME· 

RFBASE 

RFTIME 

Figure 10.2(a). PCB Map of Refresh Control Unit 

REFRESH BASE ADDRESS REGISTER: (RFBASE) 

15 

A19 THROUGHA13 OF ~ 
THE REFRESH ADDRESS 

o 

I = UNDEFINED WHEN READ. 
MUST WRITE "0". 

Figure 10.2(b). 

270830-001-51 

The RFBASE register programs the base address (upper 7 bits) of the refresh address.1bis allows the 
refresh addreSS to be mapped to any 4 kilobyte boundary within the one megabyte address space. The 
RFBASEregisteris not altered whenever the refresh address bits (RAl throughRAl2 in Figure 10.3) 
roll over. In other words, the refresh address does not act like a linear counter found in a typical DMA 
controller. 
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REFRESH CLOCK RELOAD VALUE: (RFTIME) 

15 

R R R R 
C C C C 
7 6 5 4 

VALUE TO RELOAD REFRESH ___ ..... t 
DOWN COUNTER CLOCK WITH 
AFTER EVERY REFRESH CLOCK 
CYCLE. 

o 

R R R R 
C C C C 
3 2 1 0 

1 = UNDEFINED WHEN READ. 
MUST WRITE "0". 

270830-001-52 

Figure 10.2(c). 

REFRESH CONTROL REGISTER: (RFCON) 

f REFRESH C.ONTROLLER ENABLE: 
WHEN WRITTEN: 
o = DISABLE RCU 
1 = ENABLE RCU 

WHEN READ: . 
o = RCU STOPPED 
1 = RCU RUNNING 

R R R R 
C C C C 
7 6 5 4 

CURRENT VALUE IN RCU ___ .... t 
CLOCK DOWN COUNTER. 
(READ ONLy) 

R R R R 
C C C C 
3 2 1 0 

I · = UND~FINED WHEN READ. 
MUST WRITE ~O". 

Figure 10.2(d). 
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REFRESH ADDRESS REGISTER: (RFADDR) 

R R R R 
A A A A 

1 ~ 9 8 

R R R R 
A A A A 
765 4 

t 
A12THROUGHA1 OF -----...... -
REFRESH ADDRESS (AO=l). 
GENERATED BY REFRESH 
ADDRESS COUNTER. 

R R R 
A A A 1 
3 2 1 

I = UNDEFINED WHEN READ. 
MUST WRITE "0'. 

FROM RfBASE REGISTER 

Figure 10,2(e). 

FROM RFADDR REGISTER 
I 

R R 
A A 
9 8 

20-BIT REFRESH ADDRESS 

R R R R 
A A A A 
7 6 5 4 

Figure 10.3. Refresh Address Generation 
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R R R 
A A A 1 
3 2 1 

270830-001-55 

The RFTIME register defmes the interval between refresh requests by initializing the value loaded 
into the 9-bit down counter. Thus, the higher the value, the longer the amount of time between 
requests. The down counter is decremented every falling edge of CLKOUT, regardless of the activity 
of the CPU or BIU. When the counter decrements to 1, a request is generated and the counter is again 
loaded with the value in the RFTIME register. The amount of time between refresh requests can be 
calculated using the equation shown in Figure 10.4. 
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RpERIOD (l1s) x f(MHz) 
_________________ = RFTIME Register Value 

# Refresh Rows + # (Refresh Rows x % Overhead) 

RpERIOD = Maximum refresh period specified by DRAM manufacturer (microseconds). 

f = Operating frequency of 80C186/C188EB in MHz. 

# Refresh Rows = Total number of rows to be refreshed. 

% Overhead = Derating factor to compensate for missed refresh requests (typically 1-5%). 

270830-001-56 

Flgure10.4. Equation to Calculate Refresh Interval 

The minimum value that can be programmed into the RFfIME register is 18 (12H) regardless of 
operating frequency. This minimum count ensures that the BIU has enough time to execute the refresh 
bus cycle. The BIU cannot queue DRAM refresh requests. If another request is generated before the 
current request is executed, the current request is lost. However, the address associated with the 
request is not lost; the refresh address changes only after the BIU runs a refresh bus cycle. Thus it is 
possible to miss refresh requests, but not refresh addresses. 

The RFCON register has two functions, depending on whether it is being written or read. During 
writes to the RFCON register, only the Enable bit is active. Setting the Enable bit turns on the RCU 
while clearing the Enable bit deactivates the RCU. When the RCU is enabled, the contents of the 
RFCON register are loaded into the 9-bit down counter and refresh requests are generated when the 
counter reaches 1. Disabling the RCU stops and clears the counter. A read of the RFCON register will 
return the current value of the Enable bit as well as the current value of the 9-bit down counter (zero 
if the RCU is not enabled). Writing to the RFCON register when the ReU is running does not 
modify the count value in the to-bit counter. 

10.2 REFRESH CONTROL UNIT OPERATION 

Figure 10.5 illustrates the two major functions of the Refresh Control Unit that are responsible for 
initiating and controlling the refresh bus cycles. 

The RFCON down counter is loaded on the falling edge of CLKOUT, when either the Enable bit is 
set or the counter decrements to l. Once loaded, the RFCON down counter will decrement every 
falling edge of CLKOUT (as long as the Enable bit remains set). 
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REFRESH CONTROL UNIT BIU REFRESH BUS 
OPERATION OPERATION 

SET "E" BIT 

LOAD COUNTER 
FROM RFTIME 

--1 
I 
I 
I 
I 
I 
I 
IL EXECUTED 

- EVERY 
: CLOCK.J, 

I 
I 
I 
I 
I 
I 

J 

Figure 10.5. Flowchart of RCU Operation 

CONTINUE 

270830-001-57 

When the counter decrements to 1, two things happen. First, a request is generated to the BIV to run 
a refresh bus cycle. The request remains active until the bus cycle is run or the ReV is disabled. Second, 
the down counter is reloaded with the value contained in the RFfIME register. At this time, the down 
counter will again begin counting down every clock cycle. It does not wait until the request has been 
serviced. This is done to ensure that each refresh request occurs at the correct interval. Otherwise, the 
time between refresh requests would also be a function of varying bus activities. When the BIU 
services the refresh request, it will clear the request and increment the refresh address. 
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Refresh bus cycles are specially encoded to distinguish them from ordinary read cycles according to 
Table 10.1. 

Table 10.1. Identification of 80C186EB/80C188EB DRAM Refresh Cycles 

80C186EB 

80C188EB 

NOTE: 
BHE applies to be 80C186EB and 

RFSH applies to the 80C188EB. 

10.3 REFRESH ADDRESSES 

---
BHE/RFSH AO 

1 1 

0 1 

The physical address that is generated during a refresh bus cycle is shown in Figure 10.3, and applies 
to both the 80Cl86EB and 80C188EB. The refresh address bits RAI through RA12 are generated 
using a linear-feedback shift counter which does not increment the addresses linearly from 0 through 
FFFH (although they do follow a predicable algorithm). Further, note that for the 80C 188EB, address 
bit AO does not toggle during refresh operation, which means that it cannot be used as part of the 
refresh (row) address applied to the dynamic memory device. Typically, AO is used as part of memory 
decoding in 80C188EB applications, unlike 80C186EB applications which use AO along with BHE 
to select an upper or lower bank. 

10.4 REFRESH OPERATION AND BUS HOLD 

When another bus master has control of the bus, the HLDA signal is kept active as long as the HOLD 
input remains active. If a refresh request is generated while HOLD is active, the 80C186EB/C 188EB 
will drive the HLDA signal inactive to indicate to the current bus master that the CPU wishes to regain 
control of the bus (see Figure 10.6). Only when the HOLD input is removed will the BIU begin the 
refresh bus cycle. 
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TI T1 TI T1 T1 T4 TI 

CLKOUT 

HOLD -----r+----.-T'r.l.-"\ 

HLDA ----¥-'"'-

ADO-ADI5, -----t----r-r'rI---'1'"""---r-----t-+---t"{ 
DEN '--__ 

AI6/S3-A 19/56, 
RD, WR, BHE, ---~----!-T',l_--..L...-----J'---~--_< 

DTlR, SO-52 ""r----

NOTES: 

I. HLDA deasserted, signaling need to run DRAM refresh cycles less than T CLOV 
2. External bus master terminaies use of the bus. 
3. HOLD deasserted; greater than TCLIS 
4. HOLD may be reasserted after one clock. 
5. Lines come out of float In order to run DRAM refresh cycle. 270830-001-58 

Figure 10.6. Release of 8OC186/SOC188 HOLD to Run Refresh Cycle. 

Therefore, it is the responsibility of the system designer to ensure that the 80C186EB/C 188EB Carl 

regain the bus if a refresh request is signalled. The sequence of HLDA going inactive while HOLD 
is active can be used to signal a pending refresh. If HOLD is again asserted, the CPU core will give 
up the bus after the refresh bus cycle has been run (provided another refresh request is not generated 
during that time). 

10.5 DECODING REFRESH BUS CYCLES 

The B1U distinguishes between refresh cycles and other bus cycle types. The 80C186EB and 
8OC188EB differ in their methods of signalling a refresh in progress. 

On the 8OC186EB, a refresh cycle is indicated when both BHE and AO are high. These two signals 
may be ANDed together to signal a refresh in progress. 

The 8OC188EB does not use the BHE pin. The BHE signal has been replaced by the RFSH signal 
which is LOW whenever a refresh cycle is in progress. The RFSH signal has the same timings as the 
BHE signal on the 8OC186EB. . 
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10.6 EXAMPLE RCU INITIALIZATION CODE 

Sample code to initialize the 80C186EB/80C188EB DRAM Refresh Control Unit is included in 
Example 1. 

Example 1. 

$mod186 
n a mer c u_i nit i a liz a t i 0 n_e x amp I e 
; 

This file contains an example of initialization code for the 
Refresh Control Unit on the 80C186EB. 

For the purposes of our example we will assume the system has 
512K of DRAM at 40000H. We choose 256K x 4 DRAMS with 2 chips in 
the low byte and 2 chips in the high byte. The data sheet specs 
256 refresh cycles are required every 4 milliseconds. This 
information also tells us that the array is organized as 256 rows 
by 1024 columns. To calculate the maximum number of clocks 
between refresh cycles, we multiply the totalrefresh period by 
the CLKOUT frequency and divide by the total number of rows· For 
an 80C186EB at 16MHz, the refresh rate is: 
4E-03 * 16E+06 / 256 = 250 clocks. 
We will assume the chip selects have been set up to select the 
DRAM array correctly. 

RF8ASE 
RFTIME 
RFCON 

code 

mov 
mov 
out 

mov 
mov 
out 

mov 
mov 
out 

The RCU 

ret 

init 

code 

EQU 
EQU 
EQU 

segment 

OFF80H 
OFF82H 
OFF84H 

public 
assume cs:code 

proc near 

dx, RF8ASE 
ax, 4000H 
dx, ax 

dx, RFTIME 
ax, 250 
dx, ax 

dx, RFCON 
ax, 8000H 
dx, ax 

is now initialized 

rcu endp 

ends 
end 

and 

Set upper 7 address bits for 
starting address of 40000H. 

Set up down counter start value. 
RCU request every 250 clocks. 

Set ENable bit to start RCU. 

running. 
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CHAPTER 11 
INPUT/OUTPUT PORT UNIT 

Two general purpose I/O ports are available on the 80C 186EB. Port 1 is an 8 bit output only port. Port 
2 is an 8 bit port consisting of 4 pure input, 2 pure output, and 2 open drain bidirectional signals. 

Both ports are multiplexed with other integrated peripherals. Port 1 shares its pins with the general 
purpose chip select (GCS) lines of the chip select unit. The pure input and output lines of Port 2 ate 
multiplexed with some serial communications unit signals. The open drain I/O pins of Port 2 are not 
multiplexed. A block diagram of the I/O Port unit is shown in Figure 11.1. 

Each I/O port is controlled by 4 Peripheral Control Block registers. The PCB map and a summary of 
register operation can be found in Figure 11.2. 

REGISTER NAME 

P1DIR 

P1PIN 

P1CON 

P2DIR 

P2PIN 

P2CON 

P2LTCH 

Figure 11.2(a). PCB Map of 1/0 Port Unit 

11.1 FUNCTIONAL OVERVIEW 

All three port pin types are derived from a common logic module (Figure 11.3). Every port pin, be it 
an input or an output, was derived from the common bi-directional module. This modular design 
approach results in some normally unused circuitry. For example, the Port Direction Control register 
bit exists for output only ports although it is not used. 

These normally unused features are not necessarily useless. In the following discussions the 
unimplemented functions are described along with potential secondary uses for them. 
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PL7! 

GCS7 

P1.6! 

GCS6 

INPUT/OUTPUT PORT UNIT 

GCS7·GCSO 
FROMCSU 

~ 

PL5! 

GCS5 

P1.4! 

GCS4 

F·BUS 

PL3! 

GCS3 

P1.21 

GCS2 

P1.1! 

GCS1 

Figure 11.1(a). Port 1 Block Diagram 
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INPUT/OUTPUT PORT UNIT 

PORT 1 DIRECTION REGISTER: (P1 DIR) 

P P P P 
D D D D 
7 6 5 4 

UNUSED REGISTER ___ --It 
(MAY BE USED FOR STORAGE) 

o 
P P P P 
D D D D 
3 2 1 0 

I'.· = UNDEFINED WHEN READ. ·1 MUST WRITE "0" . 
. i~~ 

x=UNDEFINED 

Figure 11.2(b). 

PORT 2 DIRECTION REGISTER: (P2DIR) 

PORT 2.7 DIRECTION:---'" 
O=OUTPUT 
1 = INPUT 

PORT 2.6 DIRECTION:------' 
o = OUTPUT 
1 = INPUT 

UNUSED BITS -------------' 

I = UNDEFINED WHEN READ. 
, .. MUST WRITE "0". 

x=UNDEFINED 

Figure 11.2(c). 
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INPUT/OUTPUT PORT UNIT 

PORT PIN REGISTERS: (P1 PIN, P2PIN) READ ONL V 

PIPIN 
P2PIN 

RESET 
LEVEL 

ON PINS 

STATE OF PORT PIN 
(SYNCHRONIZED) 

o 

= UNDEFINED WHEN READ. 
MUST WRITE "0". 

Figure 11.2(d). 

PORT 1 MULTIPLEXER CONTROL REGISTER: (P1CON) 

15 

PORT 1 MULTIPLEXER CONTROL BITS 
l=PERIPHERAL (GCS) SIGNAL TO PIN 
O=PORT LATCH VALUE TO PIN 

x=UNDEFINED 

o 

I'. = UND. EFINED WHEN READ. 
MUST WRITE "0". 

Figure 11.2(e). 
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inter INPUT/OUTPUTPORT UNIT 

PORT 2 MULTIPLEXER CONTROL REGISTER (P2CON) 

UNUSED -----;......---....,.--.....--.., 

OPEN DRAIN 1/0 SELECT: --.......... 
1 = FLOAT 
0= PORT 

P2.3/SINT1 SELECT: ----------1 
1 = SINT1 TO PIN 
0= P2.3 LATCH BIT TO PIN 

o 
P P 
C C 
1 0 

P2.1ITXD1 SELECT: ------------.......1 
1 = TXD1 TO PIN 
0= P2.1 LATCH BIT TO PIN 

RXD1 DATA SOURCE SELECT IN MODE 0 (TRANSMIT\---....I 
1 = TBUF IS DATA SOURCE 
0= P2.0 LATCH BIT IS DATA SOURCE 

x=UNDEFINED 

I·'· = UNDEFINED WHEN READ. 
MUST WRITE "0". 

Figure 11.2(f). 

PORT LATCH REGISTERS: (P1LTCH, P2LTCH) 

x=UNDEFINED 

o 
P P P P 
L L L L 
321 0 

PORT LATCH VALUE -=oJ 

Figure 11.2(g). 
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inter INPUT/OUTPUT PORT UNIT 

11.1.1 OUTPUT PORTS 

The internal construction of an output port pin is shown in Figure 11.4. An internal connection 
pennanentiy enables the 3-state output driver. The source of the data driven on the pin is selected by 
the Port Control bit. This bit controls the multiplexing of data between the Port Latch bit and the 
integrated peripheral. If the Port Control bit is a logic one, the pin will be controlled by the integrated 
peripheral. A logic zero Port Control bit gates the data in the Port Latch to the pin. 

The Port Latch bit value is set by writing to the corresponding Port Latch register in the PCB. The 
latched value can be read back from this register. Note that the value read from the Port Latch Register 
is the state of the latch, not the state of the pin. 

The actual state of the output pin can be read from the Port Pin register. 

All of Port 1 and pins P2.1 and P2.3 of Port 2 are pure output. 

11.1.2 INPUT PORTS 

The internal control logic for an input port pin is shown in Figure 11.5. The 3-state output driver has 
been internally disabled making the pin input only. The current state of the input pin is read from the 
Port Pin register. The state of the port pin is synchronized to the CPU clock. 

The Serial Communications Unit shares the input pins of Port 2. There is no need to configure these 
pins as either peripheral or port as the input signals route to both units. Users can still read the state of 
these pins even when they are being used for Serial Control Unit functions. 

The Port Latch circuitry functions the same as it does for the output port described above. Since the 
output is disabled, however, the value cannot affect the port pin. This vestigial latch can be used as bit 
storage. 

Port pins P2.2, P2.4, and P2.5 are pure input pins. 

Input port P2.0 is a special case. P2.0 is shared with the RXDI function of serial communications 
channell. The RXD 1 pin becomes an output during a synchronous transmission (Mode 0) regardless 
of the state of the P2.0 Direction Bit. The data that appears at the P2.0/RXD 1 pin during synchronous 
transmission depends on the P2.0 Control bit. If the P2.0 Control bit is a 1 (peripheral function 
selected) the proper data from the TBUF will appear at the P2.0/RXD 1 pin. If the control bit is a 0, the 
data contained in the Port 2.0 Latch bit will appear at the P2.0/RXDI pin. In both cases when the 
transmission is completed the P2.0/RXDl will float. 
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FROM INTEGRATED 
PERIPHERAL 

READ PxLTCH 

WRITE PxL TCH 

READ PxPIN 

READ PxDIR 

F-BUS 

INPUT/OUTPUT PORT UNIT 

PORT/ PERIPHERAL 
MULTIPLEXER 

11 
01 

t--;-----112 

SYNCH 

PORT nICI.f'TI" .. BIT 

OUTPUT 
DRIVER 

Q~-+------~--------~ 
---..... -ID 

WRITE PxDIR 

READ PxCON 

01-.... ___ +...1 
WRITE PxCON 

TO INTEGRATED PERIPHERAL 

Figure 11.3. Common 1/0 Moduie Block Diagram 
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INTERNAL PERIPHERAL 
SIGNAL (e.g. GCS7) 

READ PORT LATCH 
REGISTER (PxLTCH) 

INTERNAL BUS 
(F-BUS) 

WRITE PORT LATCH 
REGISTER (PxL TCH) 

READ PORT PIN 
REGISTER (PxPIN) 

FROM PORT MULTIPLEX 
CONTROL REGISTER (PxCON) 

INPUT/OUTPUT PORT UNIT 

PORT LATCH 
REGISTER BIT 

2-1 MULTIPLEXER 

11 

Q 1--4 ...... ---112 

Figure 11.4. Pure Output Pins 

11·9 

OUTPUT 
DRIVER 

SYNCH 
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inter 

READ PORT LATCH 
REGISTER (PxL TCH) 

INTERNAL BUS 
(F·BUS) 

WRITE PORT LATCH 
REGISTER (PxL TCH) 

READ PORT PIN 
REGISTER (PxPIN) 

TO INTEGRATED 
PERIPHERAL 

INPUT/OUTPUT PORT UNIT 

PORT LATCH 
REGISTER BIT 

D 

Figure 11.5. Pure Input Pins 
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INPUT/OUTPUT PORT UNIT 

11.1.3 OPEN DRAIN BI-DIRECTIONAL PORTS 

Port pins P2.6 and P2.7 are open drain bi-directional (Figure 11.4). With a low logic level on the Port 
Direction signal the state of the PX Pin is controlled by the Q signal from the Port Latch. Writing a zero 
to the Port Latch turns on the N-channel driver resulting in a "hard zero" being present at the PX Pin. 
A one value in the Port Latch shuts off the driver resulting in a high impedance (input) state at the Px 
Pin. 

The PX Pin can be floated directly by setting its Port Direction bit to a 1. The state of the PX Pin can 
be read from the Port Pin register. 

The port/peripheral multiplexer exists for P2.6 and P2.7 even though the pins are not shared with 2 
peripheral functions. The peripheral function input multiplexer is internally strapped to always float 
the open drain pin if it is selected. 

11.2 PROGRAMMING THE I/O PORT UNIT 

11.2.1 PORT DIRECTION REGISTER 

The Port Direction Register (PIDIR, P2DIR) controls the direction (input or output) for each bit in 
the port. The direction control feature is not enabled for Port 1 and pins P2.0 through P2.5 of Port 2. 
These unused direction control bits may be used for bit storage. 

Only the direction bits for the open drain pins (P2.6 and 2.7) are used by the IPU. Setting the direction 
bits for these pins puts the P2.6 and P2. 7 pins in a high impedance state. Clearing these bits allows the 
state of the open drain pins to be controlled by the Port 2 Latch Register. 

The Port Direction Register is read/write. When read each register will return the value written to it 
previously. Pins with their direction fixed will return the value in this register, not a value indicating 
their direction. 

11.2.2 PORT PIN REGISTER 

The Port Pin Register (PIPIN, P2PIN) is a read only register that is used to determine the state of a 
port pin. When read, the current state of the port pins (either an input or output) will be gated to the 
internal data bus. 

11.2.3 PORT CONTROL REGISTER 

The Port Control Register (PI CON, P2CON) selects the source of data driven on each output port 
pin. Setting a bit in this register selects an integrated peripheral as the source; clearing it selects the 
corresponding Port Latch bit. Tables 11.1 and 11.2 show the multiplexing options available for Port 
1 and Port 2 respectively. 
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PORT DIRECTION 
(PxDIR) 

READ PORT LATCH 
REGISTER (PxL TCH) 

FROM PXCON 

INPUT/OUTPUT PORT UNIT 

PORT LATCH 
PX PIN 

Q~~---------iIS2 Q I------IL-./ 

SYNCH 

270830-001-44 

Figure 11.6. Open Drain Pins (P2.6, P2.7) 
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INPUT/OUTPUT PORT UNIT 

Table 11.1. P1 CON Port 1 Multiplex Control 

P1CONBIT PIN FUNCTION 

P1CON.7 = 1 GCS7 
=0 PORT1.7 

P1CON.6 = 1 GCS6 
=0 PORT1.6 

P1CON.5 = 1 GCS5 
=0 PORT1.5 

P1CON.4= 1 GCS4 
=0 PORT1.4 

P1CON.3 = 1 GCS3 
=0 PORT1.3 

P1CON.2 = 1 GCS2 
=0 PORT1.2 

P1CON.1 = 1 GCS1 
=0 PORT1.1 

P1CON.0 = 1 GCSO 
=0 PORT1.0 

Table 11.2. P2CON Port 2 Multiplex Control 

P2CON BIT FUNCTION PIN FUNCTION 

P2CON.7 = 1 FLOAT 
=0 P2.7 

P2CON.6 =1 FLOAT 
=0 P2.6 

P2CON.5 NOT USED 
P2CON.4 NOT USED 
P2CON.3 =1 SINT1. 

=0 P2.3 
P2CON.1 =1 TXD1 

=0 P2.1 
P2CON.0 =1 RXD1* 

=0 PS.O 

* NOTE: P2CON.0 only has an effect during a synchronous 
transmission in Mode 0 by SCU channell. See text. 

The Port Control Register exists for input only pins although it has no affect on their operation (except 
P2.0/RXD I, see 11.2.1). These unused bits may be used as storage. 

11.2.4 PORT LATCH REGISTER 

The Port Latch Register (PILTCH, P2LTCH) holds the value to be driven on an output pin. This 
value will only appear at an output pin if the corresponding bit in the Port Control Register is cleared. 

The Port Latch Register bits corresponding to input only pins exist but are not used by the IPU. These 
vestigial latches may be used as storage. 

The Port Latch Register is read/write. Reading a Port Latch Register returns the value of the latch itself 
and not the associated port pin. 

11.3 INITIAL CONDITIONS (RESET) 

At reset the Port 1 multiplexer is configured with the Generic Chip Selects as the source of the output 
data. 

The Port 2 multiplexer resets with serial channell as the source of data for all output pins. The P2.6 
and P2.7 open drain ports reset to a high impedance state ( their corresponding PxDIR bits are = 1 ). 

The reset values for all of the IPU registers is shown in Figure 11.2. 
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INPUTJOUTPUTPORT UNIT 

11.4 PROGRAMMING EXAMPLE 

The example in Figure 11.7 shows a typical ASM186 routine to configure the IPU. GCS7 through 
GCS4 are routed to the pins while Pl.0 throught PIA are used as output ports. The binary value 0101 
is written to P1.0 through P1.3. The state ofpinsP2.6 and P2.7 is read and stored in the AL register. 

$mod186 
n a m e i o_p 0 r t_u n i t_e x amp I e 

This file contains an example of programming code for 
the I/O Port Unit on the 80C186EB. 

We assume PCB has NOT BEEN RELOCATED! 

P1DIR 
P1PIN 
PHON 
PlL TCH 
P2DIR 
P2PIN 
P2CON 
P2L TCH 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

OFF SOH 
OFFS2H 
OFFS4H 
OFFS6H 
OFFS8H 
OFFSAH 
OFFSCH 
OFFSEH 

segment public 
assume cs:code_seg 

proc near 

first, select GCS7# through GCS4# to output pins. 

mov 
mov 
out 

dx, P1CON 
ax, OFOH 
dx, ax 

write 0101B to pins Pl.3 through Pl.0 

mov 
mov 
out 

dx, P1LTCH 
ax, 0101B 
dx, ax 

Read P2.6, P2.7. We assume they have not been changed to output 
pins since reset· 

mov 
in 
and 

dx, P2PIN 
ax"dx 
ax, 3H ; strip unused and undefined bits 

AL now holds the state of the P2.6 and P2.7 pins 

code_seg ends 
end 

Figure 11.7. IPU Programming Example 
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CHAPTER 12 
POWER MANAGEMENT UNIT 

The majority ofVLSI devices on the market today make use of dynamic circuitry. A dynamic circuit 
is one that makes use of a capacitance (usually parasitic gate or diffusion capacitance) to store 
information. The charge stored on the capacitance will decay through time due to leakage currents in 
the silicon. If the information stored on a dynamic node is not used before it decays, the state of the 
entire machine may be lost. Dynamic RAMs, for example, must be refreshed periodically to insure 
data retention. A dynamic microprocessor is one for which the minimum clock frequency is greater 
than zero. When the clock on a dynamic microprocessor is frozen, the dynamic nodes within it will 
begin to discharge. With a long enough delay it is likely that, when the clock is restarted, the 
microprocessor will begin to execute in an unknown state. Normal operation can only be reinstated 
through a reset. 

The 80C I 86EB is a fully static device. The clock signal to both the CPU core and the peripherals may 
be stopped without the loss of any internal information (provided V cc is maintained). When the clock 
is restarted the 80C I 86EB will begin to execute in the same state as when the clock was stopped. This 
feature, coupled with the fact that CMOS devices consume virtually no current when quiescent, 
allows tremendous power savings in applications where the 80C I 86EB will be idle for long periods. 

The Power Management Unit of the 80Cl86EB is provided to control the current consumption of the 
device. Three modes are available: Active, Idle, and Powerdown. 

In Active Mode the clock signal is gated to the CPU core and all of the integrated peripherals. This is 
the default operating mode that the 8OCl86EB enters on reset. Current consumption is at its maxi­
mum. 

During Idle Mode operation the clock signal is routed only to the integrated peripheral devices. The 
clock to the CPU core ( Execution and Bus Interface Units ) is frozen. All peripherals operate 
normally. Any unmasked interrupt, NMI, or a processor reset will return the 80Cl86EB to Active 
mode. A DRAM refresh or HOLD request will awaken the core temporarily in order to respond. 
Current consumption in Idle Mode is reduced to just the amount necessary to maintain the peripherals. 

Entering Powerdown Mode freezes the clock to the entire device (CPU and peripherals) and disables 
the crystal oscillator. All internal devices (registers, state machines, etc.) maintain their state as long 
as V cc is applied. DRAM refresh and HOLD requests will not be acknowledged in Powerdown mode. 
An NMI or a processor reset will cause the 80C 186EB to return to Active Mode. A timing pin is 
provided to allow the crystal oscillator to stabilize before restarting the internal clocks. Current 
consumption in Powerdown Mode is reduced to just transistor junction leakage (typically in the 
microamp range). 

The Power Management Unit is programmed through the use of the Power Control Register at offset 
B8H in the Peripheral Control Block (Figure 12.1). 
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POWER MANAGEMENT UNIT 

POWER MANAGEMENT CONTROL REGISTER: 
(PWRCON): 

OFFSET = OB8H 

IDLE MODE: --------------..... 
o = IDLE MODE NOT SELECTED 
1 = ENTER IDLE MODE AT NEXT. 

HALT CYCLE 

POWERDOWNMODE:------------~ 
o = POWERDOWN MODE NOT SELECTED 
1 = ENTER POWERDOWN MODE AT NEXT 

HALT CYCLE 

RESET = XXXX. XXXX. XXXX. XXOOB 

m SETTING BOTH IDLE AND POWERDOWN WILL W RESULT IN A DEFAULT TO ACTIVE MODE. 

I = UNDEFINED WHEN READ. 
MUST WRITE O. 

Figure 12.1. 
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POWER MANAGEMENT UNIT 

12.1 FUNCTIONAL OVERVIEW 

The two low-power modes are armed by setting the appropriate bit in the Power Control Register. The 
chosen mode is entered when a HLT instruction is executed. If both modes are selected (or no mode 
is selected) the device will HaLT and remain in Active Mode. Section 3.4.4.2 describes the HALT 
cycle in detail. 

12.1.1 IDLE MODE 

At the completion of the HALT execution, with the IDLE bit set, the clock signals routed to the CPU 
core (Execution and Bus Unit) will be frozen in a logic low state. The clock signals to the integrated 
peripherals continue to toggle as does CLKOUT. Current consumption will be cut by nearly half, 
although this is dependent on the level of activity in the peripheral units. 

Figure 12.2 shows the internal and external waveforms during entry into Idle Mode. 

The core clocks can be restarted by several means. A DRAM refresh will tum on the core clock 
temporarily in order to run the dummy read cycle. A HOLD request will tum on the core clock as long 
as HOLD is asserted. Any unmasked interrupt or NMI will return the 80C186EB family device to 
Active mode. A RESET will also return the device to Active Mode (although the state of the device 
when the HALT was executed is lost). The following sections describe, in detail, each of these 
situations. 

12.1.1.1 REFRESH DURING IDLE MODE 

Figure 12.3 shows the sequence of events for a refresh cycle while the CPU is in Idle Mode. The 
refresh counter decrements on the falling edge of CLKOUT. The internal core clock begins to toggle 
on the falling edge of CLKO UT after the down-counter reaches zero. After one idle T -state the refresh 
request is run (the T j - T j - T2- T3-T4 sequence in Figure 12.3). There is one idle T-state after T4 before 
the internal core clock shuts off again. 

The READY, wait state generation, and chip select circuitry are all active for refresh cycles during 
Idle Mode. 

12.1.1.2 HOLD/HLDA DURING IDLE MODE 

The core in Idle Mode will also respond to bus HOLD requests (Figure 12.4). The core clock restarts 
one CLKOUT cycle after HOLD has been asserted (see Section 3.6 for requirements on HOLD 
timing). HLDA is driven high one cycle after the core clock starts. The core clock turns off and HLDA 
is deasserted one cycle after HOLD is dropped. 

Refresh requests will force the BIU to drop HLDA during a HOLD request. Section 10.4 contains 
more information on refresh cycles during HOLD. 
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Figure 12.2. Entering Idle Mode 
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POWER MANAGEMENT UNIT 
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Figure 12.4. HOLD/HLDA during Idle Mode 
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POWER MANAGEMENT UNIT 

12.1.1.3 EXITING IDLE MODE VIA AN UNMASKED INTERRUPT 

Any unmasked interrupt received by the core will return the 80C 186EB to Active Mode. Unlike the 
HOLD and refresh situations, another HALT must be executed for the core to return to Idle Mode. 

For the example shown in Figure 12.5, the Interrupt Unit has been programmed for cascade mode on 
pin INTO. The core clock begins toggling seven clocks after INTO (which is unmasked) goes high. 
These seven clocks are required to perform mask and priority level checking. It takes another 6 
CLKOUT cycles for the core to begin to respond to the interrupt request (in this case begin the 
interrupt acknowledge cycle). 

After the execution of the IRET (interrupt return) instruction in the interrupt service routine, the CS:IP 
will be pointing to the instruction following the HALT. The PWRCON register is not modified by 
interrupt execution. If the PWRCON register is not modified after exiting Idle Mode then the 
80C 186EB family device will re-enter IDLE at the next HALT instruction. 

12.1.1.4 EXITING IDLE MODE VIA A NON·MASKABLE INTERRUPT (NMI) 

Like an unmasked interrupt, a non-maskable interrupt will return the core to Active mode from Idle 
mode (Figure 12.6). It takes only 2 CLKOUT cycles to restart the core clock after an NMI is received. 
The NMI signal does not have to go through the mask and priority checks that a maskable interrupt 
does. This results in the 5 clock cycle difference in clock restart time between an NMI and an 
unmasked interrupt. 

The core begins the interrupt response 6 cycles after the core clock re-starts when it fetches the NMI 
vector from location 00008. The PWRCON register is not affected by an NMI. 

12.1.1.5 EXITING IDLE MODE VIA A RESET 

Resetting the 80C186EB family processor will return the device to Active Mode. Unlike the case of 
the interrupts, however, the PWRCON register will be cleared. Execution begins as it would following 
a warm reset (see Section 4.4). 

12.1.2 POWERDOWN MODE 

Powerdown Mode is entered by the execution of a HLT instruction after the PWRDN bit in the Power 
Control Register has been set. Following a normal software HLT cycle both the core and peripheral 
clocks will be shut off and the crystal oscillator will be disabled. While in Powerdown Mode the 
device will not respond to HOLD requests, nor will it run DRAM refresh cycles (as the clock to the 
DRAM Refresh Unit is turned off). 

Active Mode is re-entered after the reception of an NMI or a reset. A delay must be provided after the 
NMI request to allow the crystal oscillator to stabilize before it is connected to the internal phase 
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RaWER MANAGEMENT UNIT 

clocks. This delay is set by the discharge of an external capacitor through an internal pulldown on the 
PDTMR pin (Figure 12.7). The operation of the powerdown timer circuitry is described in section 
12.1.2.2 below. 

Current consumption in Powerdown Mode is just the leakage currents of the quiescent CMOS circuits 
within the 80C186EB family processor. This current is typically in the microampere (10-6) range. 
Consult the datasheet for actual values. 

12.1.2.1 ENTERING ROWERDOWN MODE 

Figure 12.8 shows the internal waveforms during entry into Powerdown Mode. During the T 2 phase 
Of the HaLT instruction, a signal is generated called EntecPowerdown. Enter_Powerdown disables 
the internal CPU core and peripheral clocks immediately. The oscillator inverter and the Schmidtt 
trigger that drives the internal phase clocks are disabled during the next CLKOUT cycle. If a crystal 
oscillator is being used, it will stop immediately. When CLKIN is driven by an external frequency 
input (EFI), the signal on the CLKIN pin is isolated from the internal circuitry. Therefore, CLKIN 
may be driven during Powerdown Mode although it will not clock the 80C186EB family device. 

CLKOUT freezes in a logic high state during Powerdbwn. 

12.1.2.2 EXITING ROWERDOWN MODE 

In order to reliably restart the ihternal phase clocks of the 80C186EB processor after Powerdown, 
sufficient time must be provided to allow the crystal oscillator circuit to stabilize. This stabilization 
time may be on the order of hundreds of milliseconds in some designs. The powerdown timer circuit 
allows the designer to control the gating of the crystal oscillator to the internal clocks. 

The powerdown timer circuit is shown in Figure 12.7. The strong P -channel device is on at all times 
except during exit from Powerdown. This pullup keeps the Powerdown capacitor (CpD) charged up 
to V cc- When an NMI is detected, the weak N-channel device turns on and the P turns off. CpD begins 
to discharge. At the same. time the feedback inverter on the crystal oscillator is enabled and the 
oscillator begins its startup processes. The Schmidtt trigger connected to the PDTMR pin asserts the 
internal OSC_OK signal when the voltage at the pin drops below its switching threshold. 

The OSC_ OK signal gates the crystal oscillator output to the internal clock circuitry. One CLKOUT 
cycle is run before the internal clocks tum back on (see Figure 12.9). Ittakes two additional CLKOUT 
cycles before the NMI is presented to the CPU. Six cycles later the NMI vector is fetched. The 
PWRCON register is not affected by exiting Powerdown Mode via an NMI. 

Powerdown mode can also be exited via a processor reset. Since the oscillator has been stopped, the 
guidelines for a cold reset (Section 4.4) should be followed when RESETting out of Po.werdown 
Mode. 
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OSCillATOR UNSTABLE 

r~----------'~'--------~\ , 
1: , , 

ClKIN 0 _----...J , , 
l' , 

PDTMR 0 

, 
OSC_OK 0: 

~----------------------~ 

, 
ClKOUT 0: , 

ACTIVE MODE RE-ENTERED 

r~----~~'-----~\ 

, , 
l' , , , , , IUl CPU CORE' CLOCK O~: ________________________________________ ~ __ 
, , , , 

1: ' 
PERIPHERAL n n 
CLOCK O:L--------------------------------------+-~I L--J I I" I I , , , 

6 CLOCKS TO 
----.. NMIVECTOR 

FETCH 

, I , 270830-001-99 

Figure 12.9. Leaving Powerdown after NMI 

12-13 



POWER MANAGEMENT UNIT 

12.1.1.2.1 CALCULATION OF PDTMR CAPACITOR VALUE 

The fIrst step in determining the proper value for CpD is to characterize the startup time for crystal 
oscillator circuit being used. The simplest way to do this is with a storage oscilloscope. Be sure to 
compensate for the loading effects of the scope probe on the oscillator circuit. Startup should be 
characterized over the full range of operating voltages and temperatures. 

Given the oscillator startup time, one can refer to the "Powerdown capacitor value vs. Oscillator 
startup time" graph from the data sheet for the powerdown capacitor value. Typical values are in the 
I~Frange. 

12.2 PROGRAMMING EXAMPLE 

Example 1 shows the 80C 186EB entering Idle Mode. The interrupts from the serial port and timers 
have been unmasked. The serial port is connected to a keyboard controller. Whenever a byte is 
received from the keyboard (a key has been touched) the 80C186EB will wake up to service the 
interrupt. After taking action on the keystroke, the core will go back into Idle Mode. 

The processing of the keystroke are not relevant to this example, and has been omitted. 
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Example 1. 

hod186 
namepmu_initialization_example , 

This file contains an example of initialization code for the 
Power Management Unit on the 80C186EB. 

For this example, the CPU core is placed in IDLE Mode while 
waiting for serial input from an keyboard controller. 
Timer interrupts will also be recognized. 
After interrupt processing the core will return to IDLE Mode. 

It is assumed that all interrupt vectors and procedures have 
been previously set up. 

The PCB is at FFOOH in 1/0 space. 

IMASK 
PWRCON 

EQU 
EQU 

OFF08H 
OFFB8H 

code segment public 
assume cs:code 

idle proc near 

mov 
mov 
out 

mov 
m6v 
out 

cli 

i n_i dIe: 

jmp 

i d lEi 

code 
end 

dx, IMASK 
ax, 0005H 
dx, ax 

dx, PWRCON 
ax, D2H 
d x, a x 

hIt 

endp 

ends 

Enable Timer and SCU interrupts 

Arm IDLE Mode 

Clear global interrupt mask. 

Enter IDLE Mode 

After INT return to IDLE 
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CHAPTER 13 
HARDWARE PROVISIONS FOR FLOATING POINT MATH 

The 80C 186EB microprocessor family was designed for general-purpose microprocessing. In most 
data controller applications, the actual arithmetic performed on data values is fairly simple, while fast, 
efficient data movement and control instructions are very important. However, some applications 
require more powerful arithmetic instructions and more complex data types than provided by a 
general purpose data processor. Characteristics of such applications include the following: 

Numeric data vary over a wide range of values or include non-integral values. 

• Algorithms produce very large or very small intermediate results. 

• Computations must be very precise, i.e., a large number of significant digits must be retained. 

• Computations must be extremely reliable without undue dependence on programmed algo­
rithms. 

Overall math performance exceeds the power provided by a general-purpose processor and 
software alone. 

The 8OC186EB family supports these needs by providing the necessary hardware interface to the 
80C187, Figure 13.2 and a numerics coprocessor extension. The 8OC188EB does not supportnumer­
ics coprocessing. 

13.1 8OC187 INSTRUCTION SET 

8OC187 instructions are divided into six functional groups: data transfer, arithmetic, comparison, 
transcendental, constant, and processor control. Typical 8OC187 instructions accept one or two 
operands and produce a single result. Operands are most often located in memory or the 8OC187 
stack. The operands of some instructions are predefined; for example, FSQRT always takes the 
square root of the number in the top stack element. Others allow, or require, the programmer to 
explicitly code the operand(s) along with the instruction mnemonic. Still others accept one explicit 
operand and one implicit operand, usually the top stack element. 

As with the basic 8OC186EB family instruction set, there are two types of operands, source and 
destination. Source operands are not altered by the instruction. Even when an instruction converts the 
source operand from one format to another (e.g., real to integer), the conversion is actually performed 
in an internal work area to avoid altering the source operand. A destination operand is distinguished 
from a source operand because its contents may be altered when it receives the result of the operation; 
that is, the destination is replaced by the result. 
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13.1.1 DATA TRANSFER INSTRUCTIONS 

These instructions move operands among elements of the 80C 187 register stack, and between stack 
top and memory. Any of the seven data types can be converted to temporary real and loaded onto the 
stack in a single operation; they can be stored to memory iIi the same manner. Data transfer instruction 
are summarized in Table 13.1. 

13.1.2 ARITHMETIC INSTRUCTIONS 

The 80C 187' s arithmetic instruction set (Table 13.2) provides a wealth of variations on the basic add, 
subtract, mUltiply, and divide operations,and a number of other usefUl functions. These range from 
a simple absolute value to a square root instruction that executes faster than ordinary division. Other 
arithmetic instructions perform exact modUlo division, round real numbers to integers, and scale 
values by powers of two. 

Table 13.2 summarizes the available operation and operand forms provided for basic arithmetic. In 
addition to the four normal operations, two "reversed" instructions make subtraction and division 
"symmetrical" like addition and mUltiplication. The variety of instruction and operand forms give the 
programmeruilUsual flexibility: 

• Operands may be located in registers or memory. 

• ResUlts may be deposited in a choice of registers. 

• Operands may be a variety of data types, including temporary real, long real, short real, short 
integer, or word integer, with automatic type conversion to temporary real performed by the 
80C187. 

13.1.3 COMPARISON INSTRUCTIONS 

Each of these instructions (Table 13.3) analyzes the stack top element, often in relationship to another 
operand, and reports the resUlt in the status word condition code. The basic operations are compare, 
test (compare with zero), and examine (report tag, sign, and normalization). 

13.1.4 TRANSCENDENTAL INSTRUCTIONS 

The instructions in this category perform the time-consuming core calculations for common trigono" 
metric, hyperbolic, inverse hyperbolic, logarithmic, and exponential functions. Prologue and epi~ 
logue software may be used to reduce arguments to the range acc~pted by the instructions and to adjust 
the result to correspond to the original arguments ifnecessary. The transcendentals operate on the top 
one or two stack elements and they return their resUlts to the stack. Table 13.4 lists the transcendental 
instructions. 
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Table 13.1. Data Transfer Instructions 

REAL TRANSFERS 

FLD Load real 
FST Store real 
FSTP Store real and pop 
FXCH Exchange registers 

INTEGER TRANSFERS 

FILD Integer load 
FIST Integer store 
FISTP Integer store and pop 

PACKED DECIMAL TRANSFERS 

FBLD Packed decimal (BCD) load 
FBSTP Packed decimal (BCD) store 

and pop 

Table 13.3. Comparison Instructions 

FCOM Compare real 
FCOMP Compare real and pop 
FCOMPP Compare real and pop twice 
FICOM Integer compare 
FICOMP Integer compare and pop 
FTST Test 
FXAM 
FUCOM 
FUCOMP 
FUCOMPP 

Examine 
Unordered compare 
Unordered compare and pop 
Unordered compare and pop 
twice 

Table 13.4. Transcendental Instructions 

FPTAN Partial tangent 
FPATAN Partial arctangent 
F2XM1 2"-1 
FYL2X Y -log2X 
FYL2XP1 Y - log2(X+ 1 ) 
FCOS Cosine 
FSIN Sine 
FSINCOS Sine and cosine 
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Table 13.2. Arithmetic Instructions 

ADDITION 
FADD Add real 
FADDP Add real and pop 
FIADD Integer add 

SUBTRACTION 

FSUB Subtract real 
FSUBP Subtract real and pop 
FISUB Integer subtract 
FSUBR Subtract real reversed 
FSUBRP Subtract real reversed and pop. 
FISUBR Integer subtract reversed 

MULTIPLICATION 

FMUL Multiply real 
FMULP Multiply real and pop 
FIMUL Integer multiply 

DIVISION 

FDIV Divide real 
FDIVP Divide real and pop 
FIDIV Integer divide 
FDIVR Divide real reversed 
FDIVRP Divide real reversed and pop 
FIDIVR Integer divide reversed 

OTHER OPERATIONS 

FSQRT Square root 
FSCALE Scale 
FPREM Partial remainder 
FRNDINT Round to integer 
FXTRACT Extract exponent and significand 
FABS Absolute value 
FCHS Change sign 
FPREMI Partial reminder (IEEE) 

Table 13.5. Constant Instructions 

FLDZ Load +0.1 
FLD1 Load +1.0 
FLDPI Load It 
FLDL2T Load log21 0 
FLDL2E Loadlog2e 
FLDLG2 Load log102 
FLDLN2 Loadloge2 
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13.1.5 CONSTANT INSTRUCTIONS 

Each of these instructions (Table 13.5) loads a commonly used constant onto the stack. The values 
have full temporary real precision (80 bits) and are accurate to approximately 19 decimal digits. Since 
a temporary real constant occupies 10 memory bytes, the constant instructions, only two bytes long, 
save memory space. These instructions simplify programming as well. 

13.1.6 PROCESSOR CONTROL INSTRUCTIONS 

Most of these instructions (Table 13.6) are not used in computations; they are provided principally for 
system-level activities. These include initialization, exception handling and task switching. 

Table 13.6. Processor Control Instructions 

FINIT/FNINIT Initialize processor 
FDISIIFNDISI Disable interrupts 

FENI/FNENI Enable interrupts 

FLDCW Load control word 

FSTCW/FNSTCW Store control word 

FSTSW/FNSTCW Store status word 

FCLEXlFNCLEX Clear exceptions 

FSTENV/FNSTENV Store environment 
FLDENV Load environment 

FSAVE/FNSAVE Save state 

FRSTOR Restore state 

FINCSTP Increment stack pointer 

FDECSTP Decrement stack pointer 

FFREE Free register 

FNOP No operation 

FWAIT CPU wait 

13.2 80C187 DATA TYPES 

An 80C186EB/80C187 system supports the following seven data types: 

Word Integer -A signed binary numeric value contained in a 16-bit word. All operations assume 
a 2's complement representation. 

Short Integer - A signed binary numeric value contained in a 32-bit double word. All operations 
assume a 2' s complement representation. 

Long Integer - A signed binary numeric value contained in a 64-bit quad word. All operations 
assume a 2's complement representation. 

Packed Decimal - A signed numeric value contained in an 80-bit BCD format. 

Short Real - A signed, floating point numeric value contained in a 32-bit format. 
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Long Real - A signed, floating point numeric value contained in a 64-bit format. 

Temporary Real- A signed, floating point numeric value contained in an 80-bit format. Tempo­
rary real is the native 80C187 format. 

Figure 13.1 graphically represents these data types . 

WORD INTEGER S 

...... ---- INCREASING SIGNIFICANCE 

(TWO'S 
COMPLEMENT) 

MAGNITUDE 
(TWO'S 
COMPLEMENT) SHORT INTEGER I S I 

~3~1------------------~0~ 

LONG INTEGER Is I 
~6~3-----------------------------------------0~ 

MAGNITUDE 

PACKED DECIMAL S MAGNITUDE 

(TWO'S 
COMPLEMENT) 

D17 D16 D15 D14 013 012 011 D10 D9 D8 D7 06 D5 D4 D3 02 D1 DO 
72 

BIASED 
EXPONENT 

52 

14 

14 

o 

SIGNIFICAND 

o 

SIGNIFICAND TEMPORARY REAL Is I E:~~~E~T h 
~7~9--------------~M~63~4~------------------------------~0 

Figure 13.1. &pC187 Support,", Data Ty~ 

13.3 USING THE 80C186EB WITH TJ-iE 80C187 NUMERICS PROCESSOR 
EXTENSION 

270830-001-67 

The 80C 186EB supports floating point calculations by providing the necessary hardware interface to 
the 80C 187 numerics processor extension. 
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80C186EB 

RESET 

EXTERNAL 
OSCilLATOR 

1X OR 2X 80C187 
INTERNAL FREQUENCY 

lATCH 

80C187 

-------~RESET 

-------~NPWR 

-------~NPRD 

-------~NPS1 

-------~BUSY 

-------~ERROR 

I. CLOCK INPUT 
~ UNDIVIDED 

CKM 1---, CLOCK INPUT 
DIVIDED BY2 

-------~PEREQ NPS21-----i 

, , , , , 
P • ClK 

DATA 15:0 

Figure 13.2. SOC186EB/SOC1S7 System Configuration 

270830-001-68 

13.3.180C186EB/80C187INTERFACE 

The 80C186EB interfaces directly to the 80C187 (see Figure 13.2). The 80C186EB and 80C187 
operate asynchronously, ea,ch up toits maximum rated clock speed. CLKOUT from the 80C186EB 
may be used asthe 80C 187 clock input upto 12.5 MHz. The 80C l88EB cannot be used because the 
flow of opcodes, instruction pointers, and data passes through 16-bit I/O ports. 

The 80C 187 is referred to as a numerics processor extension because it operates as a slave device to 
the host 80C186EB_ All communication between the 80C186EB and 80C187 occurs through the 
dedicated I/O ports shown in Table 13.7. When the 80C186EB encounters a numerics opcode, it 

13-6 



HARDWARE PROVISIONS FOR FLOATING POINT MATH 

writes the opcode to the 80C187, which decodes the instruction and passes elementary instruction 
infonnation (Opcode Status) back to the 80C186EB. Since the 80C187 is a slave processor, all loads 
and stores to memory are perfonned by the 80C 186EB. 

Please note that the 80C 186EB cannot process any numerics (ESC) opcodes alone. If the 80C 186EB 
encounters a numerics instruction (including the FlNIT/FNINIT initialization instruction) and the 
80C 187 is not present, the operation of the 80C 186EB is indetenninate. In those applications where 
the 80C187 is offered as an option, problems can be prevented in three ways: 

Remove all numerics (ESC) instructions, including any code which checks for the presence of 
theNPX. 

Use a jumper or switch setting to indicate the presence of the 80C 187, and have the software 
branch away from numerics instructions when the 80C187 socket is empty. 

Add pull-up and pull-down resistors to various data and control lines to force the 80C 186EB into 
predictable operation when the 80C187 socket is empty. 

Table 13.7. Numerics Coprocessor I/O Port ASSignments 

I/O Address Read Definition Write Definition 

OOF8H Status/Control Opcode 

OOFAH Data Data 

OOFCH reserved CS:IP, DS:EA 
OOFEH Opcode Status reserved 

13.3.2 80C186EB BUS CYCLES WITH THE 80C187 NUMERICS PROCESSOR 
EXTENSION 

The 80C 186EB perfonns bus cycles to the 80C 187 numerics processor extension (NPX) exactly like 
other I/O bus cycles. This fact has important implications: 

Operations to the 80C187 require external READY to be provided. 

If a chip select address range is programmed to cover the NPX port addresses, chip select line 
goes active during each read or write from the 80C186EB to the 80C187. However, ordinary 
reads and writes to those addresses do not activate NCS on the 80C186EB. Overlapping chip 
select ranges and the NPX port addresses is not recommended due to the hardware conflicts that 
could result. 

DT/R and DEN function nonnally during NPX transfers. In a buffered system with the 80C187 
residing on the local bus, use NCS to qualify DEN to the bus transceivers. Otherwise, contention 
between the NPX and the transceivers occurs on read cycles. 

The 80C186EB local bus is available to the integrated peripherals during execution of numerics 
instructions when it is not needed by the CPU. This means that DRAM refresh cycles may be 
interspersed with accesses to the 80e187. 
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• ~ ,The 8OC186EB·local bus is available to alternate bus masters during execution of numerics 
instructions when it is nofneeded by the CPU. This means that bus cycles ori8inating from 
alternate masters (via the HOLD/HLDA protocol) can suspend numerics bus cycles for an 
indeftnite period. 

TbeLOCKpin functions normally during numerics operations. This means that LOCKed nu­
merics instructions can monopolize the bus for a very long time. 
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CHAPTER 14 
ONCETMMODE 

ONCE™ mode (ON Circuit Emulation) provides the ability to 3-state all pins (except VCC and VSS) 
of the 80C 186EB for either emulation or testing purposes. An emulator or test probe can be placed 
over an existing 80C186EB in ONCETM mode and emulation or testing can be performed without 
conflicts. 

14.1 ENTERING ONCETM MODE 

ONCETM mode (pronounced: ahnce) is entered by driving A1910w while RESIN is asserted. All pins 
immediately float. As soon as RESIN transitions from low to high, the ONCETM request is latched and 
the state of A19 is ignored. The 8OC186EB has been effectively removed from the circuit. 

14.2 LEAVING ONCETM MODE 

ONCETM mode is terminated by a normal reset of the device without A19 being driven (it is left 
floating). 
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APPENDIXA 
DIFFERENCES BETWEEN THE 

80C186 MODULAR CORE FAMILY AND THE 8086/8088 

A.1 CPU PERFORMANCE 

Because of 80C186 Modular Core family hardware enhancements in both the Bus Interface Unit 
and the Execution Unit, most instructions require fewer clock cycles to execute than on the 8086/ 
8088. Execution speed is gained by performing the effective address calculations (base + displace­
ment + index) with a dedicated hardware adder, which takes only four clock cycles in the 80C186 
Modular Core family Bus Interface Unit, rather than with a microcode routine. These calculations are 
three to six times faster than the 8086/8088 at the same frequency. 

In addition, the execution speed of specific instructions was improved. All multiple-bit shift and 
rotate instructions execute 1.5 to 2.5 times faster than the (same speed) 8086/8088. Multiply and 
divide instructions execute three times faster. String move instructions run at bus bandwidth, about 
twice the speed of the 8086/8088. Overall, the 80C 186 Modular Core family processors run bench­
mark programs 1.2 - 2.6 times the performance level of the (same speed) 8086/8088. 

A.2 CLOCKING 

The 80C186 Modular Core family employs an integrated clock generator which provides a 50 per­
cent duty cycle CPU clock. This is different from the 8086 which utilizes an external clock generator 
to provide a 33 percent (1/3 HIGH, 2/3 LOW) duty cycle CPU clock. The following points relate to 
80186 clock generation: 

The 80C186 Modular Core family uses a crystal or external frequency input that is twice the 
desired processor clock frequency. 

An 80C186 Modular Core family processor does not provide a clock output at reduced 
frequency. However, a timer output may be easily programmed for this purpose. 

A.3 LOCAL BUS CONTROLLER AND CONTROL SIGNALS 

In general, the output drivers on 80C 186 Modular Core family products are much larger than those 
of the 8086. This leads to larger systems without as much need for bus buffering. It also means that 
the designer should be more careful to provide adequate grounding and bypassing, since large drivers 
are more apt to cause current transients. 
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A.4 HOLD/HLDA VS. REQUEST/GRANT 

The 80C 186 Modular Core family uses a HOLD/HLDA protocol for bus arbitnition rather than the 
REQUEST/GRANT protocol used by the 8086 in max mode. This allows compatibility with newer 
generation Intel bus master peripheral devices. 

A.5 STATUS INFORMATION 

Three status signals are available on the 8086 but not on the 80C 186 Modular Core family. They ar~ 
S3, S4, and S5. Taken together, S3 and S4 indicate the segment register from which the current 
physical address has been derived. S5 indicates the state of the interrupt flip-flop. On 80C186 
Modular Core family processors, these signals will always be LOW. 

An 80C186 Modular Core family processor simultaneously provides both local bus control outputs 
and status outputs for use with external Bus Controllers. This is different from the 8086 where the 
local bus control outputs are sacrificed if status outputs are desired. These differences will manifest 
themselves in 8086 systems and 80C186 Modular Core family systems as follows: 

Many systems supporting both a system bus and a local bus will not require two separate external 
bus controllers. The bus control signals may be used to control the local bus while the status 
signals are concurrently connected to the 82C88 Bus Controller to drive the control signals of the 
system bus. 

The ALE signal goes active a clock phase earlier on the 80C 186 Modular Core family than on the 
8086 or 82C88. This minimizes address propagation time through the address latches, since 
typically the delay time through these latches from valid inputs is less than the propagation delay 
from the strobe input active. 

A.6 BUS UTILIZATION 

A typical instruction mix will require greater bus utilization on the 80C 186 Modular Core family than 
on the 8086. The 80C186 Modular Core family executes most instructions in fewer clock cycles, 
requiring instructions from the queue at a faster rate. This also means that the effect of wait states is 
more pronounced in an 80C 186 Modular Core family microprocessor system than in an 8086 system. 

A. 7 INSTRUCTION EXECUTION 

The following paragraphs explain the instruction execution differences between the 8086 and the 
80186. 
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ADDED INSTRUCTIONS: 

The 80C186 Modular Core family executes PUSHA, POPA, INS, OUTS, BOUND, ENTER, and 
LEAVE. 

IMPROVED INSTRUCTIONS: 

PUSH, IMUL, and SHIFTS/ROT A TES may use immediate operands on the 80C 186 Modular Core 
family. 

UNDEFINED OPCODES: 

When the opcodes 63H, 64H, 65H, 66H, 67H, FIH, FEH XXl1lXXXB and FFH XXIIIXXXB are 
executed, the 80C 186 Modular Core family executes an illegal instruction exception, interrupt Type 
6. The 8086 will ignore the opcode. 

OFHOPCODE: 

When the opcode OFH is encountered, the 8086 will execute a POP CS, while the 80C186 Modular 
Core family will execute an illegal instruction exception, interrupt Type 6. 

WORD WRITE AT OFFSET FFFFH: 

When a word write is performed at offset FFFFH in a segment, the 8086 will write one byte at 
offset FFFFH, and the other at offset 0, while an 80C186 Modular Core family processor will write 
one byte at offset FFFFH, and the other at offset l0000H (one byte beyond the end ofthe segment). 
One byte segment underflow will also occur if a stack PUSH is executed and the stack pointer contains 
the value 1. 

SHIFT/ROTATE BY VALUE GREATER THAN 31 : 

Before the 80C 186 Modular Core family performs a shift or rotate by a value (either in the CL register, 
or an immediate value) it ANDs the value with IFH, limiting the number of bits rotated to less than 
32. The 8086 does not limit the rotation count. 

LOCK PREFIX: 

The 8086 activates its LOCK signal immediately upon executing the LOCK prefix. An 80C186 
Modular Core family processor does not activate the LOCK signal until the processor is ready to 
begin the data cycles associated with the LOCKed instruction. 
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INTERRUPTED STRING MOVE INSTRUCTIONS: 

If an 8086 is interrupted during the execution of a repeated string move instruction, the retumvalue 
it will push on the stack will point to the last prefix instruction before the string move instruction. If 
the instruction has more than one prefix (e.g., a segment override prefix in addition to the repeat 
prefix), the other prefixes will not be reexecuted upon returning from the interrupt. An 80C186 
Modular Core family processor will push an IP value pointing to the first prefix of the repeated 
instruction (as long as prefixes are not repeated), allowing the string instruction to properly resume. 

CONDITIONS CAUSING DIVIDE ERROR WITH AN INTEGER DIVIDE: 

The 8086 will cause a divide error whenever the absolute value of the quotient is greater than 7FFFH 
(for word operations) or if the absolute value of the quotient is greater than 7FH (for byte operations). 
The 80C 186 Modular Core family expanded the range of negative numbers allowed as a quotient by 
1 to include 8000H and 80H. These numbers represent the most negative numbers representable using 
2's complement arithmetic (equaling -32768 and -128 in decimal, respectively). 

ESC OPCODES: 

An 80C 186 Modular Core family microprocessor has a bit (the ET bit) in the relocation register which 
can be programmed to cause a Type 7 interrupt upon attempted execution of a coprocessor (ESCape) 
instruction. The 8086 has no such provision. 

Execution of numerics opcodes proceeds differently in the 80C186EB than in the 8086/8088 or 
80186/80188. See Chapter 12 for details. The 80C 188EB cannot utilize a numerics processor exten­
sion at all. When migrating from the 8086/8088 or 80186/80188 to the 80CI86/80CI88, the user 
should be aware of these differences. In particular, it may be necessary to check software for unex­
pected numerics (ESCape) opcodes. 
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APPENDIX B 
SUMMARY OF DIFFERENCES BETWEEN 

THE 80186, 80C186, AND 80C186EB 
FAMILIES 

The 80C 186EB is the third member in a line of 80186 code compatible, high integration, embedded 
microprocessors. There are differences between all members of the product line. The description of 
these differences is handled in this Appendix on a functional block basis. The family matrix in figure 
B-1 summarizes the family differences. 

The original NMOS 80186 has only one major mode of operation. The 80C186, to remain pin and 
software compatible with the 80186, has two. In Compatible Mode the 80C186 is a pin for pin re­
placement of the 80186 (with the exception of numerics co-processing capability). In Enhanced Mode 
the user has access to two additional peripherals: the Refresh Control Unit, and the Power Save Unit. 
Enhanced mode maps three of the chip select pins into numerics processor communications functions. 
Mode selection is made only at reset. 

The 80C I 86EB has only one mode. The on-board peripherals of the 80C 186EB are different from the 
80186 (and 80C186) and therefore a "compatible mode" is not necessary. 
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B.1 CPU DIFFERENCES 

FEATURE 80186 

ENHANCED 8086 INSTRUCTION SET 

NMOS TECHNOLOGY 

CHMOSIII 

CHMOS IV (1 MICRON) 

DYNAMIC NON-MODULAR CORE 

LOW-POWER STATIC MODULAR CORE 

POWER SAVE (CLOCK DIVIDE) MODE 

POWERDOWN AND IDLE MODES 

QUEUE STATUS MODE 

MULTIPLEXED 80C187 INTERFACE 

DIRECT 80C187 INTERFACE 

ONCE TEST MODE 

INTERRUPT CONTROL UNIT 

TIMER/CONTER UNIT 

CHIP SELECT UNIT 

DMAUNIT 

SERIAL COMMUNICATIONS UNIT 

REFRESH CONTROL UNIT 

INPUT/OUTPUT PORT UNIT 

COMPATIBLE WITH 
ORIGINAL 80186 

_ IMPROVED 
VERSION 

Figure 8-1: Family Feature Matrix 

B.1.1INSTRUCTION SET 

8OC186 
80C186E8 

All three devices execute the same instruction set. There have been no additions or deletions to this 
set siIice the original 80 186. Any code written for an 80 1 86/80C 1 86/80C 1 86EB will be fully portable 
amongst family members. Peripheral register locations have been moved, however, on the 
80C186EB (see below). 

All family members are upward compatible with the 8086/8088 instruction set. 
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B.1.2 SEMICONDUCTOR TECHNOLOGY DIFFERENCES 

The 80186 is implemented in NMOS technology. As such, it dissipates more power and runs slower 
than the more recent CMOS implementations. The 80186/188 is dynamic, which means the clock 
must always be applied for the device to operate normally. 

The 80C 186 is implemented in CHMOS III, a high performance CMOS technology. Like the 80186, 
the 80C186 is dynamic. The 80C186 can run at up to twice the clock rate of the 80186. 

The 80Cl86EB is implemented in CHMOS IV, a 1 micron CMOS technology. The 80C186EB is a 
fully static device. The clock can be shut off without a loss of state (provided V cc is maintained). The 
new modular core was also designed to consume less power than an 80C 186 operating at the same 
frequency. These two features allow significant power savings over earlier 80186 family products. 
The 80C186EB's execution speed is equal to that of the 80C186. 

B.1.3 QUEUE STATUS MODE 

The 80186 and 80C 186 families have an optional "queue status mode." This mode is entered during 
reset by tying RD low. In queue status mode, the ALE and WR pins changed functionality to indicate 
the internal queue status. 

Queue status mode was deleted from the 80C186EB. 

B.1.4 NUMERICS INTERFACE 

The 80186 does not directly support a numerics interface. The 80186 can be connected to an 8087 
through an 82188. 

The 80C186/80C 188 in compatible mode does not support any numerics operations. The ET (Escape 
Trap) bit in the relocation register has no effect in Compatible Mode; encountering an ESCape opcode 
causes a type 7 interrupt to be executed. 

The 80C186 in enhanced mode directly supports the 80C187 Numerics Processor Extension. The 
MCSO,MCSl,andMCS3chipselectlinesbecomethePEREQ,ERROR, andNPS pins respectively. 
The ET bit controls whether numerics instructions are dispatched to the 80C187 or trapped for 
emulation. 

The 80C 1 86EB directly supports the 80C 187 with 3 dedicated pins, no pin multiplexing is used. The 
ET bit on the 80C 186EB functions the same as the ET bit on the 80C 186 in enhanced mode. Some 
packaging options for the 80C 186EB delete the numerics pins. 
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B.1.5 TRANSCEIVER INTERFACE (DEN AND DT/R) 

The timings for the transceiver interface pins (DEN and DTiR) on the 80C186EB family have been 
improved to prevent bus contention. 

B.1.6 READY INTERFACE 

The 80186 and 80C186 family devices have two ready input pins: SRDY and ARDY. SRDY has to 
be synchronized externally while ARDY is partially synchronized internally. The 80C186EB has 
only one ready input, READY, which is functionally equivalent to ARDY. 

B.2 CLOCK OSCILLATOR CIRCUITRY AND EXTERNAL FREQUENCY INPUT 

The external frequency input (EPI) requirements differ somewhat between the NMOS 80186/80188 
and the CMOS devices. On the NMOS device, itis possible to drive either Xl (with X2 unconnected) 
or X2 (with Xl grounded). This is possible because of the nature of NMOS inverter pullups. 

The only acceptable EPI configuration for the CMOS devices is to driveXl and leave X2 unconnected. 
These pins were renamed CLKIN and OSCOUT on the 80C 186EB to reinforce this point. Driving X2 
(OSCOUT) will overdrive the CMOS oscillator inverter and will, in time, render the clock circuitry 
inoperable. 

B.3 POWER CONSUMPTION MANAGEMENT MODES 

The 80186 family and the 80C186 in compatible mode have no power management features. 

The 80C 186 in enhanced mode has a power save unit. This unit allows the user to conserve power by 
dividing the internal CPU frequency by a programmable pre scalar between 1 and 16. The minimum 
internal CPU frequency is 500 KHz in any mode. Power save mode is entered by programming the 
power-save register. Execution continues at the slowed clock rate. 

The 80C186EB has two power management modes that make use of its static design: idle and 
powerdown. Idle mode shuts off the CPU while leaving the peripheral set running. Any unmasked 
interrupt, NMI, or reset will re-awaken the core. Refresh requests and HOLD requests will tempo­
rarily re-awaken the core for servicing. Powerdown mode shuts off all clocks and the external 
oscillator. Power consumption is reduced to transistor leakage (typically in the microamp range). 
Powerdown can only be exited via an NMI or reset. Both modes are entered by setting the corre­
sponding bit in the power control register and executing a HALT instruction. 
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B.4INTERRUPT CONTROLLER 

The 80186 and 80C186 family devices have a slave mode (fonnally RMX mode) which allows the 
internal interrupt unit to become a slave to an external 8259 . The 80C 186EB does not have this mode. 

The 8OC186EB provides one extra external interrupt pin, INT4. 

B.5 TIMER COUNTER UNIT 

The timer counter unit operates identically in all members of the 80 186/80C 186/80C 186EB family. 

B.6DMAUNIT 

The 80186 and 80C186 families include a DMA unit. This unit is not available on the 80C186EB. 

B.7 SERIAL COMMUNICATIONS UNIT 

The 80C 186EB includes a 2 channel serial communications unit. This peripheral is not on the 80186 
or the 80C186 family. 

B.8 CHIP SELECT UNIT 

The 80186 and 80C186 family devices include a chip select unit capable of accessing up to 768K of 
memory and up to 7 peripheral devices. A maximum of 3 wait states can be inserted in bus cycles 
automatically. Chip select areas cannot overlap and they cannot be disabled by software. 

The 80C 186EB includes an enhanced chip select unitthat is not compatible with the 80186 chip select 
unit. The enhanced chip select unit has a total of 10 channels that can be configured for any size region 
of either memory or peripheral space. The channels can overlap and can be software enabled and 
disabled. Up to 10 megabytes of physical memory can be accessed through software paging. Up to 
fifteen wait states can be internally generated. 

B.9 REFRESH CONTROL UNIT 

The 80186 and 80C186 in compatible mode do not have a refresh control unit. 

The 80C186/80C188 in enhanced mode has a refresh control unit capable of refreshing dynamic 
RAMs with a row address of 9 bits or less. 

The 80C 186EB refresh control unit can refresh dynamic RAMs with row addresses of 12 bits or less. 
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B.10 PERIPHERAL CONTROL BLOCK 

The 80186 and 80C 186 peripheral control blocks are completely compatible. The register locations 
of some peripherals (i.e. the timers) have been moved on the 80C186EB family to allow functional 
groups of registers to remain together. The change of register locations must be kept in mind when 
porting code among family members. 
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APPENDIXC 
SUMMARY OF DIFFERENCES BETWEEN THE 80C186EB 

AND THE 80C188EB 

The 80Cl86EB and the 80Cl88EB have the same execution unit. The Bus Interface Unit, however, 
differs between the two devices. The 80Cl88EB uses an 8-bit data bus to communicate with external 
memories and peripherals, where the 80Cl86EB uses a 16-bit bus. The following list summarizes the 
effects of the bus width difference: 

The 80C I 88EB has a four byte prefetch queue, rather than the six byte prefetch queue present on 
the 80C186EB. The reason is that the 80CI 88EB fetches opcodes one byte at a time, requiring 
more bus cycles to fill the queue. A smaller queue is required to prevent an inordinate number of 
bus cycles being wasted by prefetching opcodes to be discarded during a jump. 

AD8-ADI5 on the 80Cl86EB are transformed to A8-A15 on the 80C188EB. Valid address 
information is present on these lines throughout the bus cycle of the 80C I 88EB . Valid address 
information is not guaranteed on these lines during idle T -states. 

BHE on the 80Cl86EB is replaced by RFSH (refresh cycle running) on the 80C188EB. The 
80Cl88EB has no high byte on the data bus. 

Execution times for most data transfer instructions increases because the BIU funnels the ac­
cesses through a narrower data bus. The narrower bus also means that the prefetch queue will run 
empty more often, causing the Execution Unit itself to be bus-limited. The execution time within 
the processor, however, is not changed between the 80C I 86EB and 80C I 88EB. 

Another important point is that the 80C 188EB is internally a 16-bit machine. This means that access 
to the integrated peripheral registers of the 80C 188EB will be done in 16-bit words, not in 8-bit bytes. 
When a word access is made to the internal registers, the BIU will run two bus cycles externally. 

Access to the control block may also be done with byte operations. Internally the full 16 bits of the AX 
register will be written, while only one bus cycle will be executed externally. 
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APPENDIXD 
SYNCHRONIZATION OF EXTERNAL INPUTS 

Many input signals to an 80C I 86EB family processor are asynchronous, that is, a specified set up or 
hold time is not required to ensure proper functioning of the device. Associated with each of these 
inputs is a synchronizer which samples this external asynchronous signal, and synchronizes it to the 
internal clock. 

0.1 WHY SYNCHRONIZERS ARE REQUIRED 

Every data latch requires a certain set up and hold time in order to operate properly. At a certain 
window within the specified set up and hold time, the part will actually try to latch the data. If the input 
makes a transition within this window, the output will not attain a stable state within the given output 
delay time. The actual size of this sampling window is typically much smaller than the window 
specified by the data sheet; however, part to part variation could move the actual window around 
within the specified window. 

Even if the input to a data latch makes a transition while a data latch is attempting to latch this input, 
the output of the latch will attain a stable state after a certain amount of time, typically much longer 
than the normal strobe to output delay time. Figure D-I shows a normal input to output strobed 
transition and one in which the input signal makes a transition during the latch's sample window. To 
synchronize an asynchronous signal, all one needs to do is to sample the signal into one data latch long 
enough for the output to stabilize, then latch it into a second data latch. The time between the first latch 
strobe and the second latch strobe allows the first latch to attain a steady state. With the asynchronous 
signal resolved in this way, the input signal at the second latch satisfies its setup and hold require­
ments. 

STIIOIIE J 
INPUT ----:111'=.~=' ITI=ME-:dIHOLD~ 

ACTUAL SAMPLING INSTANT 

IV INVALID • 
INP\IT---~ ~ 

RIIPONI! ----.... 
r-_.tl ::RI=IOLUTION=='I1MI:::LI 

VALID --.J -
RIIPONI! _____ JJ 

270288·001·131 

Figure D-1. Valid and Invalid Latch Input Transitions and Response 
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Thus, the output of this second latch is a synchronous signal with respect to its strobe input. 

A synchronization failure can occur if the synchronizer fails to resolve the asynchronous transition 
within the time between the strobes of the two latches. The rate offailure is determined by the actual 
size of the sampling window of the data latch, and by the amount of time between the strobe signals 
of the two latches. Obviously, as the sampling window gets smaller, the number of times an asynchro­
nous transition will occur during the sampling window will drop. In addition, however, a smaller 
sampling window is also indicative of a faster resolution time for an input transition which manages 
to fall within the sampling window. 

0.2 80C186EB FAMILY SYNCHRONIZERS 

The 8OC186EB family uses the two stage synchronization technique on TUN, T2IN, P~.x, P1.x, 
NMI, INTO-4, and HOLD input lines. READY uses a slight modification (see Section 3.6). 
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FUNCTION 

DATA TRANSF£R 
MDVoMDVE: 

ROfllster to ROflisterlMemory 

ROfllster/memory to rOfllster 

Immediate to register memory 

Immediate to register 

Memory to aooumulator 

Accumulatorto memory 

Reglster/memory to SOflment register 

Segment register to register/memory 

PUSH. Puoh: 

APPENDIXE 

Appendix E. Instruction Set Summary 

FORMAT 

o 0 0 1 o 0 w mod reg rim 

o 0 0 1 1 w mod reg rim 

1 00 0 1 1 w modOOO rim data 

o 1 1 w reg data dalaifw= 1 

o 1 o 0 0 0 w addr-Iow addr-high 

o 1 o 0 0 1 w addr-Iow addr-hlgh 

o 0 0 1 1 1 0 mod o reg rim 

o 0 0 1 1 0 0 mod 0 reg rim 

datailw=1 

Clock 
Cycles 

2112 

2/9 

12-13 

3-4 

9 

2/9 

2111 

Memory 1 1 1 1 1 1 1 1 1 mod 1 1 0 rim 1 16 

Register 1 0 1 0 1 reo 1 10 

Comments 

8/16-bit 

8/16-bit 

Segment register l:Wii0;i0iiioiiire;:;girrilliiii;1 ;;;0;il ___ """ ______ _ 

j!~m;iffi_i.i!im~Em~®m:mrmm®~m~~~m~Em®~@i~m~Hni1!-~MMii,j:Hi@#j~IMnM~m.mnmmmIWMIOtl;ttti!WHm®mHn~lHmmiliiR m:l]~iliH~if!En ;:t!mUi!H;;mln!iH"i!: 

POP = Pop: 

Memory 

Register 

Segment register 

XeHG. Elcho",,, 

Reglster/memory with register 

Register with accumulator 

IN • Input from: 

Rxed port 

Variable port 

our. Output to: 

Axed port 

Vanable port 

WT = Translate byte to AL 

LEA = Load EA to register 

LOS = Load pointer to OS 

LES = Load pointer to ES 

LAHF • Loed AH with flags 

UHF = Store AH Into flags 

PUSHF = Push flags 

POPF.Pop flags 

SEGMENT. Segme" Override: 

CS 

as 
OS 

ES 

00011111 modOOO rim 

o 1 0 1 1 reg 1 

o 0 0 reg 1 1 1 1 (reg.ol) 

o 0 0 0 1 1 wi mod reo rim I 
o 0 1 0 reo 1 

o 0 Owl port 

o 1 1 owl 

o 0 1 1 w port 

o 1 1 1 w 

o 1 0 1 11 

o 0 0 1 1 o 1 mod reo rim 

o 0 0 1 o 1 mod~ rim (mod.11) 

o 0 0 1 o 0 mod reo rim (mod.ll) 

o 0 

o 0 

o 0 1 o 0 

1 0 0 1 o 1 

o 0 o 1 1 01 

o 0 01 

o 0 1 11 01 

o 0 1 o 0 1 01 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 
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11 
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Appendix E.lnstructlon Set Summary (continued) 

Clock 
FUNCTION FORMAT Cycles Commenls 

ARITHMmC 

ADDoAdd: 

Reg/memory with register to either .3110 

Immediate to reglsterlmemory 41t6 

Immediate to accumulator loooootow data data nw.t 314 SlI6-bit 

ADC = Add wHh ,arry: 

Reg/memory with register to either 3110 

Immediate to register/memory 4/16 

Immediate to accumulator 314 SlI6-b~ 

INC IIIlncramant: 

Reglsterlmemory 11 1 1 1 1 1 w modOOO rim I 3115 

Register 10 o 0 0 rag 

SUB = Subtra,t: 

Reg/memory and register to either 3110 

Immediate from register/memory 4/16 

Immediate from accumulator 1 0 1 lOw 314 Sll6-bit 

SBB. Subtract wHh borrew: 

Reg/memory and raglster to eHber 1000110dW mod reg rim I 3110 

Immediate from register/memory 11 0 0 0 o 0 s W mod 0 1 rim I deta data if s w.Ol 4116 

Immediate from accumulator 10001110W data dataifw.l 314 8/16-blt 

DECoDocremo.t: 

Reglster/memory 11 111 1 1 W mod 0 0 1 rim I 3115 

Raglster 10 o 0 1 reg 3 

CMP>Compare: 

Reglster/memory wlltl register 10 0 o 1 w mod reg rim I 3110 

Register with register/memory 3110 

Immediate wit" register/memory 3110 

Immediate with accumulator 314 SlI6-bH 

NEG.Change sign 

AAA=ASCIl adjust for add o 0 1 o 1 11 

DM. Decimal adjust for add o 0 1 o 0 11 

AAS.ASCII adjust for subtract o 0 111 11 

DAS=Decimal adjust for subtract 10 0 o 1 1 11 

MUl=Multiply (unsigned): 11 11 1 0 1 1 w mod 1 0 0 rim I 
Register-Byte 26-28 

Register-Word 35-37 
Memory-Byte 32-34 
Memory-Word 41-43 

IMULolnteger muHlply (Signed): 11 1 1 1 01 1 w mod 1 0 1 rim I 
Register-Byte 25-28 
Register-Word 34-37 
Memory-Byte 31-34 
M8mory~Word 40-43 

Shaded areas indicate instrUctions not available in iAPX 86,88 microsystems. 
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Appendix E. Instruction Set Summary (continued) 

Clock 
FUNCTION FORMAT Cycles Comments 

ARITHMETIC (C,nllnued): 

DlV~Divide (unsigned): 11 11 1 0 1 1 w I mod 1 1 0 rim I 
Register-Byte 29 

Register-Word 3B 
Memory-Byte 35 

Memory-Word 44 

IDIV=lnteger divide (signed): 11 1 1 1 0 1 1 w I mod 1 1 1 rim I 
Register-Byte 44-52 

Register-Word 53-61 

Memory-Byte 50-5B 

Memory-Word 59-67 

AAM~ASCII adjust for mul1iply 11 1 o 1 0 1 o 0 I o 0 0 0 1 0 1 o I 19 

AAD~ASCII adjust for divide 11 1 0 1 o 1 o 1 I o 0 0 0 1 0 1 o I 15 

CBW=Convert byte to word 11 0 0 1 1 o 0 0 I 2 

CWD=Convert word to double word 11 o 0 1 1 o 0 1 I 4 

lOGIC 

Shlft/Rotata Instructions: 

Register/Memory by 1 11101000wl modm rim I 2/15 

Register/Memory by CL 11101001wl modm rim I 5+n/17+0 

m Instruction 
o 0 0 ROl 
o 0 1 ROR 
o 1 0 RCl 
o 1 1 RCR 
1 0 0 SHUSAl 
1 0 1 SHR 
111 SAR 

AND .And: 

Reg/memory and register to either I 0 0 1 0 0 o d w I mod reg rim I 3/10 

Immediate to register/memory 11 o 0 0 0 o 0 w I modl00 rim I data I dataifw= 1 I 4/16 

Immediate to accumulator I 0 o 1 0 0 lOw I data I data ifw=1 I 3/4 B/16-bit 

TEST =And function to Ilags, no result: 

Register/memory and register 11 0 0 o 0 1 o w I mod reg rim I 3/10 

Immediate data and register/memory 11 1 1 1 0 1 1 w I modOOO rim I data I data ifw=1 I 4/10 

Immediate data and accumulator 11 o 1 o 1 o 0 w I data I data ifw=1 I 3/4 B/16-bit 

OR.Or: 

Reg/memory and register to either I 0 0 0 o 1 0 d w I mod reg rim I 3/10 

Immediate to register/memory 11 o 0 o 0 0 o w I modO 01 rim I data I data ifw=1 I 4/16 

Immediate to accumulator I 0 0 0 o 1 1 Ow I data I data ifw=1 I 3/4 B/16-bit 

XOR=Exclusive or: 

Reg/memory and register to either I 0 0 1 1 0 0 d w I mod reg rim I 3/10 

Immediate to register/memory 11 0 0 0 0 0 Ow I mod 1 1 0 rim I data I data ifw=1 I 4/16 

Immediate to accumulator I 0 o 1 1 0 1 Ow I data I dataifw:::1 I 3/4 B/16-bit 

NOT:::lnvert register/memory 11 11 1 0 1 1 w I modOl0 rim I 3 

STRING MANIPULATION: 

MOVS~Move byteiword 11 0 1 o 0 1 Ow I 14 

CMPS:::Compare byte/word 11 0 1 0 0 1 1 w I 22 

SCAS~Scan byteiword 11 0 1 0 1 1 1 w I 15 

Shaded areas indicate instructions not available in iAPX 86,88 microsystems. 
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Appendix E. Instruction Set Summary (continued) 

FUNCTION FORMAT 

LODS.Load bytelwd to AIJAX o tOt 0 w 

STRING MANIPULATION IConlinuod): 

Repeated by count In CX 

MOYS - Move string o 0 t o 0 1 Owl 

CMPS - Compare string o 0 1 z o 0 1 wi 

SCAS - Scan string o 0 1 z 11 1 wi 

o 0 Owl 

CONTROL TRANSFER 

CALL. Call: 

Direct within segment 11 o 1 o 0 dlsp-Iow dlsp-hour 

Register memory Indirect within segment 11 modO 10 rim 

Direct intersegment 11 o 0 1 segment offset 

segment selector 

Indirect intersegment 11111 1111 mod 0 1 1 rim I (mod.11) 

JMP=Unconditlonal jump: 

Short/long 11 o 1 o 1 1 disp-Iow 

Direct within segment 11 o 1 o 0 disp-low disp-high 

Register/memory indirect with segment 11 11 mod100 rim 

Direct intersegment 11 o 1 segment offset 

segment selector 

Indirect intersegment 1111111 11 mod 1 0 1 rim I (mod.11) 

RET = Retum from CALL: 

Within segment 11 o 0 0 0 1 

With seg adding immed to SP 11 o 0 0 0 1 data-low data-high 

Intersegment 11 o 0 o 1 

Intersegment adding immediate to SP 11 o 0 1 o 1 data-low data-high 

Shaded areas indicate instructions not available in iAPX 86,88 microsystems. 
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12 

8+8n 

5+22n 

5+15n 

6+11n 

15 

13/19 

23 

38 

14 

14 

26 

14 

11/17 

16 

18 

22 

25 

Comments 
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Appendix E. Instruction Set Summary (continued) 

CIDCIc 
FUNcnON FORMAT Cycll' Commlnl. 

CONTROL TIWIIfER (Cantlnuld): 

JEJJZ. Jump on .qual liro o 1 1 1 0 1 0 0 dlsp 4113 13nJMP 

JlJJNGE = Jump on I"slnot graater or .qual o t 1 1 0 0 dlsp 4113 taken 
41fJMP 

JLf/JN8 = Jump on I •• s or .quaVnot gra.tar o 1 11 111 dlsp 4113 not taken 

JI/JIlAE. Jump on below/not above or .qual o 1 1 0 0 1 dlse 4113 

J8f/JIIA. Jump on below or .quaVnot above o 1 o 1 1 dlsp 4113 

JP/JPE • Jump on panty/parity evan o 1 1 0 1 dlsp 4113 

JO • Jump on overflow o 1 o 0 0 0 dlse 4113 

J8 • Jump on sign o 1 1 0 0 0 dlsp 4113 

JNf/JNZ. Jump on not equalfnot zero o 1 o 1 0 1 dlsp 4113 

JNL/J8E = Jump on not less/grastar or .qual o 1 11 1 1 0 1 dlsp 4113 

JNWJG • Jump on not 11188 or equaVgreater o 1 1 11111 dlsp 4113 

JN8/JAE = Jump on not below/above or equal o 1 11 o 0 1 1 dlsp 4113 

JNBE/JA. Jump on not below or equal/above o 1 1 0 1 1 dlsp 4113 

JNP/JPO = Jump on not par/par odd o 1 1 1 0 1 1 dlsp 4113 

JNO = Jump on not ove"low o 1 1 1 0 0 0 1 dlsp 4/13 

JN8 = Jump on not sign o 1 1 1 0 0 1 dlsp 5115 

JClIZ = Jump on ex zero 1 1 1 0 0 0 1 1 dlsp 6116 

LOOP • loop ex times t 1 1 0 0 0 1 0 dlsp 6/16 

LOOPZ/lOOPE = loop while zero/.qu.1 [ 11 1 0 0 0 0 1 dlsp 16 JMPtaken/ 

lOOPNZILOOPNE = loop while not Zero/equal [ 11 100000 dlsp JMP not taken 

INT.lntarrupt: 

Typ. speolfled [ 1 1 ·0 0 1 1 o 1 typo 47 nlntak.nf 

Type 3 [ 1 1 o 0 1 1 o 0 45 n INT. not 

[ 1 
taken 

INTO = Interrupt on overflow 1 0 0 1 1 1 0 46/4 

IRET = Interrupt return [ 1 1 0 0 1 1 1 1 [ 28 

.. ······ ••. HlIl! til! 11E@ 

Shaded areas indicate instructions not available in iAPX 86,88 microsystems. 
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Appendix E. Instruction Set Summary (continued) 

ClOCk 
FUNCTION FORMAT Cyel .. Commenll 

PROCEISOR CONTROL 

ClC. Clear carry I 1 1 1 1 1 0 0 0 I 2 

CMC .. 'Complement carry I 1 1 1 1 0 1 0 1 I 2 

ITt,: Sot Carry I 1 1 1 1 1 0 0 1 I 2 

CLD: Clear direction 1 1 1 1 1 1 0 0 I 2 

STD. Set direction 1 1 1 1 1 1 0 1 I 2 

Clio Clear Interrupt 1 1 1 1 1 0 1 0 I 2 

STI • Sot interrupt 1 1 1 1 1 0 1 1 I 2 

HlT.HaH 1 1 1 1 0 1 0 0 I 2 
, WAIT. Walt 1 0 0 1 1 0 1 1 I 6 lIt.,," 0 

LOCK. Bus loci< prellx I 1 1 1 1 0 0 0 0 I 2 

ESC .. Processor extension Esc~ 11 1 0 lIT T T I mod III rim I 6 
(m III are opcode to processor extension) 

Shaded areas indicate instructions not available in iAPX 86,88 microsystems. 

FOOTNOTES 

The Effective Address (EA) of the memory operand 
is computed according to the mod and rIm fields: 

if mod = 11 then rIm is treated as a REG field 
if mod = 00 then DISP = 0*, disp-Iow and disp-high 
are absent 
if mod = 01 then DISP = disp-low sign-extended to 
16-bits, disp-high is absent 
if mod = 10 then DISP = disp-high:disp-Iow 

if rIm = 000 then EA = (BX) + (SI) + DISP 
if rIm = 001 then EA = (BX) + (01) + DISP 
if rIm = OlO'then EA = (BP) + (SI) + DISP 
if rIm = 011 then EA = (BP) + (01) + DISP 
if rIm = 100 ,then EA:::: (SI) + DISP 
if rIm = 101 then EA = (DI) + DISP 
if rIm = 110 then EA = (BP) + DISP* 
if rIm = 111 then EA = (BX) +DISP 

DISP follows 2nd byte of insturction (before data 
if required) 

·except if mod = 00 and rim = 110 then EA = disp-bigh:disp-1ow. 

SEGMENT OVERRIDE PREFIX 

o 0 1 reg 1 1 0 

E-6 

reg is assigned according to the following: 

Segment 
reg Register 

00 ES 
01 CS 
10 SS 
11 OS 

REG is assigned according to the 
following table: 

16·Bit (w=l) 

000 AX 
OOlCX 
OlOOX 
011BX 
lOOSP 
101 BP 
110S1 
111 DI 

8-Bit(w=O) 

OOOAL 
00ICL 
010DL 
011 BL 
l00AH 
tOlCH 
110DH 
ll1BH 

The physical address of all operands 
addressed by the BP register are com­
puted using the SS segment register. The 
physical addresses of the destination 
operands of the string primitive operation 
(those addressed by the DI register) are 
computed using the ES segment, which 
may not be overriden. 
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Appendix F. Machine Instruction Decoding Guide 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM·86 INSTRUCTION FORMAT 

HEX 

F·1 
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Appendix F. Machine Instruction Decoding Guide (continued) 

1ST BYTE 

HEX BINARY 
2ND BYTE BYTES 3,4,5,6 ASM·86 INSTRUCTION FORMAT 

.. .~"~. . ............................... . 
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Appendix F. Machine Instruction Decoding Guide (continued) 

1ST BYTE 

HEX BINARY 
2NDBYfE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

73 0111 0011 IP-lNe8 JNB/JAEI SHORT-LABEL 

74 0111 0100 IP-INC8 
.Qll.i 0101 

76 

80 

80 

80 SBB REG8/MEM8,IMMED8 

80 AND REG8/MEM8,IMMED8 

80 SUB REG8/MEM8,IMMED8 

80 

80 

81 

81 REG 16/MEM16,IMMED16 . . ..... . 
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Appendix F. Machine Instruction Decoding Guide (continued) 

8D 1000 1101 MOD REG RIM (DlSP-LO),(DlSP-HI) LEA REG16,MEM16 
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Appendix F. Machine Instruction Decoding Guide (continued) 

1ST BYTE 

HEX BINARY 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

SE 1000 1110 MOD OSR RIM (DISP-LO),(DISP-HI) MOV SEGREG,REGl6/MEM16 
i~~~rl_l;~rl:' rirn.i'lj·~f,~alif: ,1~:!IIII~ruf*_i;1r'!!!~: IJl~~1!~J~iiiIj;i;;ii;~i;li;f~l!;,ti;i:~;j;l!,!rJfl~1~~;~;:~,; ffJfl __ j,1~~~;~;j~~;!;~r;'~iji'r;~fii:~~iiliji,i(~;Hj~i;f;!f~i;i!Iii;~f~ilfaj 

SF 1000 1111 MOD 000 RIM (DISP-LO),(DISP-HI) pop REGl6/MEM16 
tt~~~_~tt1k ~i\ill{kbllrUli% ·~AIIIDJltl{_L~~~.~t' r,Wi~t~~t\W;~!J.fLt\{i:fi.diJ~JU:i}U;~Jj,!f~i~l~j}~~; ~llij_Ul~~~,~rjfl~~,ij.i~}iiUJf;~!~tli~iiJ:ji;l,if.!ji,lj~~;Jimjjfl0,iJ~,f:it;Jf:j~ 

DISP-Hl,SEG-LO, 
SEG-Hl 

ADDR-Hl 

CALL FAR PROC 

MOV AL,MEMS 
11WI11~~~~ ~lmll}!11_W( ~~1 __ ~~1~f!11~~~~11 ~~:~~~lI~lMf~)~1~~;~lt~v.~~1}lW;~}i ~i111illl~~%~~~I~~~t~j~~l~~~tl~~ii~1!~~·tt~~\~~t~iii;! 

A2 1010 0010 ADDR-LO ADDR-Hl MOV MEMS,AL 

m.!l~!: 1~1~~jlji.~~1i !111 ••• lllji!!!iilll! II!j~;liIIj!lllljJj!ll!!!il~!ll;m!llIIl1iljj!i_.li!I!II!11IJljljj~Jmllllllllljljl!il! 
A4 1010 0100 MOVS DEST-STRS,SRC-STRS 

!li~.!jl!i ~1I.m.ljllm1li1l*, .111!!i:I!!I!!IlllJiJ:I!!JI1JM!l1li)'IJ!i1tJJj!!diiJjiili'1lm'Jllm!!IJ11IIIIIJillll1!1ill!!i'I'I1I*,,!jjl_j!1JjIBlIIIBalllllIIIJllilj' 
A6 1010 0110 CMPS DEST-STRS,SR-STRS 

I!.~if m\~I.II\.'!\\lr L\!IIBl!!\lil"J.II~III.111(lmlI1l11t 
AS 1010 1000 DATA-S TEST AL,IMMEDS 

~~mll:iri~f l~!lIII~~~~.~~jl~, ~l~i._~.ll!~~nf.f:J~~~ :tl1~DIi1lll1]1]~r~llm}~~l~i.l~n~1~~1, 1!~~_I~F.J~~~It~J~~lJ~~~m@~1~Jl~~}~~·lrirr;~; 
AA 1010 1010 STOS DEST-STRS 

B2 1011 0010 DATA-S MOV DL,IMMEDS 

B6 'lOll 0110 DATA-S MOV DH,IMMEDS 

F-5 



APPENDIXF 

Appendix F. Machine Instruction Decoding Guide (continued) 

BYTES 3,4,5,6 
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Appendix F. Machine Instruction Decoding Guide (continued) 

1ST BYTE 
2ND BYTE ASM·86 INSTRUCTION FORMAT 

HEX BINARY 
BYTES 3,4,5,6 

CD 1100 1101 DATA·S IMMEDS 
.... CE tiOD. t110 

CF 1100 1111 IRET 
1)0< ltol OOOQ·MODOOOR/M (DISP·LO);(DI$P~H:i) .abL ROOs1MBM8,.f 
DO 

DO 
TOO 

1101 0000 MOD 001 R/M (DISP·LO),(DISP·HI) ROR REGS/MEMS,l 
llOlOOOO ··M;Q:[)010RtM· ·(tj1SJ;!.I;4),(J;>ISN4:il· ·'8.0I., •.......•...•..•. • .. ~G$l~N,l< 
1101 0000 MOD 011 RIM (DISP·LO),(DISP·HI) RCR REGS/MEMS,l 
11010006 ··MOIllOOR!M(DtSr.;i,O),(DtsP.}Jlj ·$~aL.*OO$~$,t 

DO 1101 0000 MOD 101 R/M (DISP·LO),(DISP·HI) SHR REGS/MEMS,l 
. PO> Hot o()Q()Mt)pJ IORlM > (IlQ{us«l) . 

1101 0000 MOD 111 R/M (DISP.LO),(DISP·HI) SAR REGS/MEMS,l 
1101 0001 MobOOORlM (DISP,.:j<;(»);(blSP"Ht) SAltRB<JliS/MEM16,1 
1101 0001 
HoI 00111 
1101 0001 
ItOlOool 

MOD 001 R/M (DISP·LO),(DISP·HI) ROR REG16/MEMI6,l 
MODOlOlYM .(DrSP;.U»,(DlSp~HI1· ··.RCI/.···.· ··.Rl!C}l6/MaMin;t. 
MOD 011 RIM (DISP·LO),(DISP·HI) RCR REG 16/MEM16, 1 
MOD iOORlM. ·CDISp:'LO),(DtspLHr) ···sAtts:til-RB<Jl6/M:md16; 1· 

1101 0001 MOD 101 RIM . (DISP~LO),(DISP.HI) SHR REG16/MEMI6,1 
>1 t01 .··000 FMOPl1QR/M· (nQtused) 
1101 0001 MOD 111 R/M (DISP·LO),(DISP·HI) SAR REG16/MEM16,1 
11010010 MOD·OO6RlM (DrSr~40),(DIS}qlI). ·ROL<RB08.tMEMS;Ct 
1101 0010 MOD 001 RIM (DISP-LO),(DISP·HI) ROR REGS/MEMS,CL 
1101 .. OOtOMOD01<:lR/M> .••.. (QI$P·OO),(pr$JJ.;lii)·RCtR:et8.JME'MS.CL 
1101 0010 MOD 011 RIM (DISP·LO),(DISP·HI) RCR REGS/MEMS,CL 

I."'''' .. , 11010010 ··.MOPlOOR/M· .(bISP~LOj;(!J):rSP~HI)· ··SA;t:,/SHL RBGs)MEMs;CL· 
1101 0010 MOD 101 RIM (DISP-LO),(DISP-HI) SHR REGS/MEMS,CL 

. nOl 0010 MOD 110 RIM> 
1101 0010 MOD 111 R/M 
11<H (l()ttMAD 000 RIM 

D3 1101 0011 MOD 001 RIM 
.p~ H(nOOt fMOPOl(lRlM 

D3 1101 0011 MOD 011 RIM 
,[)3l101·00UMOP1OORiM· 
D3 1101 0011 MOD 001 RIM 

.P3L.HOl· OOfFMODnOR/M 
D3 1101 0011 MOD 111 R/M 
·04····· ·110t(}1OO <00001010 
D5 1101 

.]$ Jr01 

0010 
0011 IP-INC-S 
0100 DATA~8 

E5 1110 0101 DATA-S 

(DISP-LO),(DISP-HI) REGS/MEMS,CL 
(PlSI91:»,(D1SP·1U) ...•. . ·RBOJ6.~16,CL ••• •••• 
(DISP-LO),(DISP-HI) ROR REG16,MEM16,CL 

....• (DlSJ'·.:t.;Q);(DISr~}JI)RCL··· ·RB016,~16:CI.;· •• 
(DISP-LO),(DISP-HI) RCR REG16,MEM16,CL 
.(DISP·L());(l1>!SP;;H:I)·· ...••. sAtllilH:tR;E',(,16,;MaM16;Ci.i· 
(DISP-LO),(DISP-HI) SHR REG16,MEM16,CL 

F-7 

~Q()~lS,i)~!t;'4AB~ . 
·<·I':Qo:P~Z<···. .... 

LOOPE/ SHORT-LABEL 
LOOPZ 

<LOOPSflO~T~LABEL 
SHORT-LABEL 
AL,lMMEOS· 

IN AX,IMMEDS 
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Appendix F. Machine Instruction Decoding Guide (continued) 

1ST BYTE 
2ND BYTE 

HEX BINARY 

E6 1110 0110 DATA-8 
11\(IQlliDATA~!I< . 

E8 1110 1000 IP-INC-LO 
. Eit··· IltQl001· ···tp"lNC-Lo·· 
EA 1110 1010 IP-LO 
au LUOlo1r· ·tp:INC8> . 
EC 1110 
BIJillQ: 

F6 
F6 
F6 

.F6 
F7 

QIlQM())DQQIRI&f 
0110 MOD 010 RIM 
(lllff···MoD·ottRJM·· 

1111 0110 MOD100RIM 
11n·011O . Mo01QIRIM 
1111 0110 
lfn· ana 
1111 0111 

MOD 110 RIM 
.).:{())011fIVM· 
MOD 000 RIM 

01Ui .:M;())D:QQ1:M4 

BYTES 3,4,5,6 

(DISP-LO),(DISP-HI) 
. (I)ISP';LO),(OfsP.'ijI) 
(DISP-LO),(DISP-HI) 

; .(OlSp4:.o);())ISP~Hl) 
(DISP-LO),(DISP-HI) 
(OIsPI"Q),(OlSPHI)·· . 
(DISP-LO),(DISP-HI), 
DATA-LO,DATA-HI 

MOD 010 RIM (DISP-LO),(DISP-HI) 
.•• ··).:{QPOHIVM •. ;; ····()j)I$J:lhLo);(DrSp~HI} .•.. 

MOD 100 R/M (DISP-LO),(DISP-HI) 

ASM-86 INSTRUCTION FORMAT 

OUT AL,IMMED8 
QUTAx,rMMEP$ ... 

NEAR-PROC 
·lSEAR:iLADEL··;· •.. 
FAR-LABEL 

< SIloR.T~LABEL . 

REG8/MEM8 
• .• ·~<lIYMEM;!I .. 

MUL REG8/MEM8 
.IMU1..: R:!3G8I:MEMiL 

DIV REG8/MEM8 
IDIV R:!3G8/NmlA:tF····· 
TEST REGl6/MEM16,IMMED16 

(not l1s¢d) . 
NOT REGl6/MEM16 
N$Ci. .•• ·R:!3<lH'iffi;fEM16< .. 
MUL REGl6/MEM16 

l14·rl!~J:U.il . MQJ)10tIVM ··(.DtSR~W);W:tsP"HI)· IMUIr ··ItOO:L6/ME).:{1(!i···· .. 

1110 
ilJo 
1110 
1110 

MOD 110 R/M (DISP-LO),(DISP-HI) 
MOPIlJ.:M4 .. (OISp·W)~(DISP·HI) 

F-8 

DIV REGl6/MEM16 
IDIVREG161MID\.f.1(:; .. 
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Appendix F. Machine Instruction Decoding Guide (continued) 

1ST BYTE 

HEX BINARY 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

FF 1111 1111 MOD 000 R/M (DISP-LO),(DISP-HI) INC MEMI6 
FF 1111 1111 MOPO(HRtM ", (DrSP~LO),(DISPHl) ,"DEC MEM16 
FF 1111 1111 MODOIOR/M (DISP-LO),(DISP-HI) CALL REG16/MEMI6(intra) 
FF 1111 1m MODOilR/M (DlSP-LO),(D1SP~HI) I CALL ' MEM16(intersegnient) 
FF 1111 1111 MOD IOOR/M (DISP-LO),(DISP-HI) IMP REG 16/MEM 16(intra) 
FF 1111 1111 <MOD WI RIM ", ' • (PISP·LO).(DlSP;HI) "IMP ' MEM16(iritersegm(lrtt) , , 

FF 1111 1111 MOD llOR/M (DISP-LO),(DISP-HI) PUSH MEMI6 
FF 00 .lUI MonUIR/M .", ' '< '(ttotused) . • " 

"". 
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LO 

HI 0 1 2 3 

0 ADD ADD ADD ADD 
b,f,r/m w,f,r/m b,t,rlm w,t,r/m 

1 ADC ADC ADC ADC 
b,f,r/m w,f,r/m b,t,r/m w,t,r/m 

2 AND AND AND AND 
b,f,rlm w,f,rlm b,t,r/m w,t,r/m 

3 XOR XOR XOR XOR 
b,f,rlm w,f,r/m b,t,r/m w,t,r/m 

4 INC INC INC INC 
AX CX DX BX 

5 PUSH PUSH PUSH PUSH 
AX CX DX BX 

6 
PUSHA POPA 

BOUND 
w,f,rlm 

7 JBI JNBI 
JO JNO JNAE JAE 

8 Immed Immed Immed Immed 
b,r/m w,r/m b,rlm is,rlm 

9 XCHG XCHG XCHG XCHG 
AX CX DX BX 

A MOV MOV MOV MOV 
m-+AL m-+AX AL-+m AX-+m 

B MOV MOV MOV MOV 
i-+AL i-+CL i--+DL i-+BL 

C Shift Shift RET. 
b,i w,i (i+SP) RET 

D Shift Shift Shift Shift 
b w b,v W,V 

E LOOPNZ/ LOOPZ/ 
LOOPNE LOOPE 

LOOP JCXZ 

P 
LOCK REP 

REP 
Z 

where: 

modO rim 

Immed 

Shift 

Grpl 

Grp2 

APPENDIXG 

4 5 6 

ADD ADD PUSH 
b,ia w,ia ES 

ADC ADC PUSH 
b,i w,i SS 

AND AND SEG 
b,i w,i =ES 

XOR XOR SEG 
b,i w,i =SS 

INC INC INC 
SP BP SI 

PUSH PUSH PUSH 
SP BP SI 

JE/ JNEI JBE/ 
JZ JNZ JNA 

TEST TEST XCHG 
b,r/m w,r/m b,r/m 

XCHG XCHG XCHG 
SP BP SI 

MOVS MOVS CMPS 

MOV MOV MOV 
i-+AH HCH i-+DH 

LES LDS 
MOV 
b,i,r/m 

AAM AAD 

IN IN OUT 
b w b 

Grp 1 
HLT CMC b,r/m 

(){)() 001 010 

ADD OR ADC 

ROL ROR RCL 

TEST - NOT 

INC DEC CALL 
id 

b = byte operation 
d= direct 
f = from CPU reg 
i = immediate 
ia = immed. to accurn. 
id = indirect 
is = immed. byte, sign ext. 
1 = long ie. intersegment 

7 8 9 A 

POP OR OR OR 
ES b,f,r/m w,f,r/m b,t,r/m 

POP SBB SBB SBB 
SS b,f,r/m w,f,r/m b,t,r/m 

SUB SUB SUB 
DAA b,f,r/m w,f,rlm b,t,r/m 

CMP CMP CMP 
AAA b,f,r/m w,f,r/m b,t,r/m 

INC DEC DEC DEC 
Dl AX CX DX 

PUSH POP POP POP 
Dl AX CX DX 

PUSH IMUL PUSH 
w,i w,i b,i 

JNBE/ JP/ 
JA JS JNS JPE 

XCHG MOV MOV MOV 
w,r/m b,f,rlm w,f,r/m b,t,rlm 

XCHG CALL 
DI CBW CWD I,d 

CMPS 
TEST 
b,i,a 

TEST 
w,i,a STOS 

MOV MOV MOV MOV 
j-+BH i-+AX i-+CX i-+DX 

MOV 
w,i,r/m ENTER LEAVE 

RET. 
l.(i+SP) 

ESC ESC ESC 
XLAT 

0 1 2 

OUT CALL JMP JMP 
w d d I,d 

Grp 1 
w,r/m CLC STC CLI 

Oll 100 101 

SBB AND SUB 

RCR SHUSAL SHR 

NEG MUL IMUL 

CALL JMP JMP 
l,id 

G-1 

id l,id 

rn=rnemory 
rim = EA is second byte 
si = short intrasegment 
Sf = segment register 
t=toCPUreg 
v = variable 
w = word operation 
z= zero 

B C D E P 

OR OR OR PUSH 
w.t.r/m b,i w,i CS 

SBB SBB SBB PUSH POP 
w,t,r/m b,i w,i DS DS 

SUB SUB SUB SEG 
w,t,r/m b,i w,i =CS 

DAS 

CMP CMP CMP SEG 
w,t,r/m b,i w,i =DS AAS 

DEC DEC DEC DEC DEC 
BX SP BP SI Dl 

POP POP POP POP POP 
BX SP BP SI Dl 

IMUL INS INS OUTS OUTS 
b,i b w b w 

JNPI JLI JNL/ JLE/ JNLE/ 
JPO JNGE JOE JNG JO 

MOV MOV MOV POP 
w,t,r/m sr,f,r/m LEA sr,t,rlm rim 

WAIT PUSHP POPP SAHP LAHP 

STOS LODS LODS SCAS SCAS 

MOV MOV MOV MOV MOV 
i-+BX i-+SP i-+BP i-+SI i-+DL 

RET !NT INT 
I Type 3 (Any) INTO IRET 

ESC ESC ESC ESC ESC 
3 4 5 6 7 

JMP IN IN OUT OUT 
si,d v,b v,w v,b v,w 

Grp2 Grp2 
STI CLD STD b,r/m w,r/m 

110 111 

XOR CMP 

- SAR 

DlV IDlV 

PUSH -
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APPENDIXH 
MODAL PIN STATES 

The tenn "modal pin state" refers to the state that a device pin is in while in a particular mode. There are 
a total of five states foran output pin: driven high, driven low ,active (toggling), float, or retain present state 
(state the pin was in when the current mode was entered). Input pins may be either synchronous or 
asynchronous. Synchronous pins must meet setup and hold times to guarantee proper device operation. 
Asynchronous pins must meet setup and hold times to guarantee recognition. Appendix D covers 
synchronization. 

This Appendix includes a list of all 80C186EB/8OC188EB pins. With each pin in a description of its 
function, its type (input, output, or I/O), and its modal pin state. Table H-l details the nomenclature used. 

Table H-1. Pin Description Nomenclature 

Symbol Description 

I Input Only Pin 

0 Output Only Pin 

I/O Pin can be either input or output 

- Pin "must be" connected as described 

S( .. ) Synchronous. Input must meet setup and 
hold times for proper operation. The pin is; 

S(E) edge sensitive 
A(L) level sensitive 

A( .. ) Asynchronous. Input must meet setup and 
hold only to guarantee recognition. The pin is; 

A(E) edge sensitive 
A(L) level sensitive 

H( .. ) While the processor's bus is in the Hold 
Acknowledge state, the pin; 

H(1) is driven to vee 
H(O) is driven to VSS 
H(Z) floats 
H(Q) remains active 
H(X) retains current state 

R( .. ) While RESIN is active, the pin; 
R(1) is driven to vee 
R(O) is driven to VSS 
R(Z) floats 
R(WH) weak pullup 
R(WL) weak pulldown 

P( .. ) While Idle or Powerdown Modes are active, the pin; 
P(1) is driven to vee 
P(O) is drive to VSS 
P(Z) floats 
P(Q) remains active (1) 
P(X) retains current state 

(1) Any pins that specify P(Q) are valid for Idle Mode. All Pins are P(X) for powerdown Mode. 
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Appendix H. 8OC186EB Pin Description 

Name Modal State Type Description 

Vee 

Vss 

ClKIN 

OSCOUT 

ClKOUT 

RESIN 

RESOUT 

PDTMR 

NMI 

A(E) 

H(Q) 
R(Q) 
P(1 ) 

H(Q) 
R(Q) 
P(1) 

A(l) 

H(O) 
R(1) 
P(O) 

A(l) 
H(Z) 
R(Z) 

P(WH) 

A(E) 

TEST/BUSY A(l) 

AD15:0 S(l) 
H(Z) 
R(Z) 
P(Z) 

A18:16 H(Z) 
A 19/0NCE R(W1 ) 

P(Z) 

Power connections consist of four pins which must be shorted externally 
to a Vcc board plane. 

Ground connections consist of six pins which must be shorted externally 
a Vss board plane. 

CLocK INput is an input for a external clock. An external oscillator operat­
ing at two times the required 80C186EB operating frequency can be 
connected to ClKIN. For crystal operation, ClKIN (along with OSCOUT) 
are the crystal connections to an internal Pierce oscillator. 

o OSCillator OUTput is only used when using a crystal to generate the 
external clock. OSCOUT (along with ClKIN) are the crystal connections 
to an internal Pierce oscillator. This pin is not to be used as 2X clock 
output for non-crystal applications (Le. this pin is N.C. for non-crystal 
applications). 

o CLocK OUTput provides a timing reference for inputs and outputs of the 
processor, and is one-half the input clock (ClKIN) frequency. ClKOUT 
has a 50% duty cycle and transitions every falling edge of ClKIN. 

RESet IN causes the 80C186EB to immediately terminate any bus cycle 
in progress and assume an initialized state. All pins will be driven to a 
known state, and RESOUT will also be driven active. The rising edge 
(Iow-to-high) transition synchronizes ClKOUT with ClKIN before the 
80C186EB begins fetching opcodes at memory location OFFFFOH. 

o RESet OUTput that indicates the 80C186EB is currently in the reset 
state. RESOUTwili remain active as long as RESIN remains active. 

I/O Power-Down TIMeR pin (normally connected to an external capacitor) 
that determines the amount of time the 80C186EB waits after an exit 
from Powerdown before resuming normal operation. The duration of 
time required will depend on the startup characteristics of the crystal 
oscillator. 

Non-Maskable Interrupt input causes a TYPE-2 interrupt to be serviced 
by the CPU. NMI is latched internally. 

TEST is used during the execution of the WAIT instruction to suspend 
CPU operation until the pin is sampled active (lOW). TEST is alternately 
knows as BUSY when interfacing with an 80C187 numerics coprocessor. 

I/O These pins provide a multiplexed ADDRESS and DATA bus. During the 
address phase of the bus cycle, address bits 0 through 15 are presented 
on the bus and can be latched using ALE. 8- or 16-bit data information 
is transferred during the data phase of the bus cycle. 

I/O These pins provide ADDRESS information during the address phase of 
the bus cycle. Address bits 16 through 19 are presented on these pins 
and can be latched using ALE. These pins are driven to a logic 0 during 
the data phase of the bus cycle. During a processor reset (RESIN active), 
A 19/0NCE is used to enable ONCETM mode. A 18:A 16 must not be driven 
low during reset or improper 80C186EB operation may result. 
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Name Modal State Type Description 

82:0 H(Z) 0 Bus cycle Status are encoded on these pins to provide bus transaction 
R(1) information. 82:0 are encoded as follows: 
P(Z) 

52 S1 50 Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Read I/O 
0 1 0 Write I/O 
0 1 1 Processor HALT 

0 0 Queue Instruction Fetch 
0 1 Read Memory 
1 0 Write Memory 
1 1 Passive (no bus activity) 

ALE H(O) 0 Address Latch Enable output is used to strobe address information 
R(O) into a transparent type latch during the address phase of the bus cycle. 
P(O) 

BHE H(Z) 0 Byte High Enable output to indicate that the bus cycle in progress is 
R(Z) transferring data over the upper half of the data bus. BHE and AO have 
P(X) the following logical encoding: 

AO BHE Encoding 

0 0 Word transfer 
0 1 Even Byte transfer 

0 Odd Byte transfer 
1 Refresh operation 

RD H(Z) 0 ReaD output signals that the accessed memory or I/O device should 
R(Z) drive data information onto the data bus. 
P(1) 

WR H(Z) 0 WRite output signals that data available on the data bus are to written 
R(Z) into the accessed memory or I/O device. 
P(1 ) 

READY A(L) READY input to signal the completion of a bus cycle. READY must be 
S(L) active to terminate an 80C186EB bus cycle, unless it is ignored by 

correctly programming the Chip-Select Unit. 

DEN H(Z) 0 Data ENable output to control the enable of bi-directional transceivers 
R(1) when buffering an 80C186EB system. DEN is active only when data 
P(1 ) is to be transferred on the bus. 

DT/R H(Z) 0 Data Transmit/Receive output controls the direction of a bidirectional 
R(Z) buffer when buffering an 80C186EB system. DT/R is only available 
P(X) on the PLCC package (80C186EB). 

LOCK H(Z) I/O LOCK output indicates that the bus cycle in progress is not to be 
R(W1) interrupted. The 80C186EB will not service other bus requests (such as 
P(1) HOLD) while LOCK is active. This pin is configured as an weakly held 

high input while RESIN is active and must not be driven low. 
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Name Modal State Type Description 

HOLD A(L) HOLD request input to signal that an external bus master wishes to gain 
control of the local bus. The 8QC186EB will relinquish control of the local 
bus between instruction boundaries not conditioned by a LOCK prefix. 

HLDA H(1) 0 HoLD Acknowledge output to indicate that the 80C186EB has relinquish 
R(O) control of the local bus. When HLDA is asserted, the 80C186EB will 
P(Q) (or has) floated its' data bus and control signals allowing another bus 

master to drive the signals directly. 

NCS H(1) 0 Numerics Coprocessor Select output is generated when accessing 
R(1 ) a numerics coprocessor. NCS is not provided on the S80C186EB. 
P(1) 

ERROR A(L) ERROR input that indicates the last numerics coprocessor operation 
resulted in a exception condition. An interrupt TYPE 16 is generated if 
ERROR is sampled active at the beginning of a numerics operation. 
ERROR is not provided on the S80C186EB. 

PEREQ A(L) CoProcessor REQuest signals that a data transfer between an External 
Numerics Coprocessor any Memory is pending. PEREQ is not provided 
onthe S80C186EB. 

UCS H(1) 0 Upper Chip Select will go active whenever the address of a memory or 
R(1) I/O bus cycle is within the address limitations programmed by the user. 
P(1) After reset, UCS is configured to be active for memory accesses between 

OFFCOOH and OFFFFFH. 

LCS H(1) 0 Lower Chip Select will go active whenever the address of a memory or 
R(1) I/O bus cycle is within the address limitations programmed by the user. 
P(1) LCS is inactive after a reset. 

P1.0/GCSO H(X)/H(1) 0 These pins provide a multiplexed function. If enabled, each pin can 
P1.1/GCS1 R(1) provide a Generic Chip Select output which will go active whenever 
P1.2/GCS2 P(X)/P(1 ) the address of a memory or I/O bus cycle is within the address limitations 
P1.3/GCS3 programmed by the user. When not programmed as a Chip-Select, each 
P1.4/GCS4 pin may be used as a general purpose output Port. As an output port pin, 
P1.S/GCSS the value of the pin can be read internally. 
P1.6/GCS6 
P1.7/GCS7 

TOOUT H(Q) 0 Timer OUTput pins can be programmed to provide single clock or 
T10UT R(O) continuous waveform generation, depending on the timer mode selected. 

P(Q) 

TOIN A(L) Timer INput is used either as clock or control signals, depending on the 
T11N A(E) timer mode selected. 

INTO A(E,L) Maskable INTerrupt input will cause a vector to a specific Type interrupt 
INT1 routine. To allow interrupt expansion, INTO and/or INT1 can be used with 
INT4 INTAO and INTA1 to interface with an external slave controller. INT4 is 

edge triggered only. 
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Name Modal State Type Description 

INT2/1NTAO A(E,L)/H(1) 
I NT3/1NTA1 R(Z)/P(1) 

P2.7 A(L) 
P2.6 H(X) 

R(Z) 
P(X) 

CTSO A(L) 
P2.4/CTS1 

TXDO H(X)/H(Q) 
P2.1/TXD1 R(1) 

P(X)/P(Q) 

RXDO A(L) 
P2.0/RXD1 R(Z) 

H(Q) 
P(X) 

P2.5/BCLKO A(L)/A(E) 
P2.2/BCLK1 

P2.3/SINT1 H(X)/H(Q) 
R(O) 

P(X)/P(Q) 

I/O These pins provide a multiplexed function. As inputs, they provide a mask­
able INTerrupt that will cause the CPU to vector to a specific Type 
interrupt routine. As outputs, each is programmatically controlled to 
provide an INTERRUPT ACKNOWLEDGE handshake signal to allow 
interrupt expansion. 

I/O BI-DIRECTIONAL, open-drain Port pins. 

Clear-To-Send input is used to prevent the transmission of serial data 
on the TXD signal pin. CTS1 is multiplexed with an input only port 
function. 

o Transmit Data output provides serial data information. TXD1 is 
multiplexed with an output only Port function. During synchronous serial 
communications, TXD will function as a clock output. 

I/O Receive Data input accepts serial data information. RXD1 is multiplexed 
with an input only Port function. During synchronous serial 
communications, RXD is bi-directional and will become an output for 
transmission of data (TXD becomes the clock). 

Baud CLocK input can be used as an alternate clock source for each of 
the integrated serial channels. BCLKx is multiplexed with an input only 
Port function, and cannot exceed a clock rate greater than 1/2 the 
operating frequency of the 80C 186EB. 

o Serial INTerrupt output will go active to indicate serial channel 1 requires 
service. SINT is multiplexed with an output only Port function. 
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DOMESTIC DISTRIBUTORS 
ALABAMA tHamiiton Electro Sales Hamllton/Avnst Electronics tPloneer Electronics tHamliton/Avnet Electronics 

Arrow Electronics, Inc. 
10950 W. Washington Blvd. Commerce Industrial Park 1551 Carmen Drive 100 Centennial Drive 
Culver City 20230 Commerce Drive f~: ~mi :~~~0007 ~:~~~~~) °d3~~430 1015 Henderson Road Tel: (213) 558-2458 Danbury 06810 

Huntsville 35805 TWX: 910-340-6364 ~l~~b.~~~:~~~ TWX: 910-222-1834 TWX: 710-393-0382 
Tel: (205) 837-6955 

Hamilton Electro Sales 
INDIANA MTI Systems Sales tHamilton/Avnet Electronics 1361B West 190th Street tPioneer Electronics 83 Cambridge St. 4940 Research Drive Gardena 90248 112 Main Street fArrow Electronics. Inc. Burlington 01813 Huntsville 35805 Tel: (213) 217-6700 Norwalk 08851 2495 Directors Row, SUite H Tel: (205) 837-7210 

tHamUton/Avnet Electronics Tel: (203) 853-1515 Indlan~OIiS 46241 Pioneer Electronics 
TWX: 810-726-2162 TWX: 710-488-3373 44 Hartwell Avenue 3002 'G' Street ~lJ1~~~:~~~ ~:~i7m~) g~l?i.oo Pioneerrrechnologies Group, Inc. Ontario 91761 
4825 University Square Tel: (714) 989-9411 FLORIDA 

Hamilton/Avnet Electronics TWX: 710-326-6617 Huntsville 35805 
tAvnet Electronics tArrow Electronics, Inc. 485 Gradle Drive Tel: (205) 837-9300 400 Fairway Drive Carmel 46032 TWX: 810-726-2197 20501 Plummer MICHIGAN Chatsworth 91351 Suite 102 Tel: (317) 844-9333 
Tel: (213) 700-6271 Deerfield Beach 33441 TWX: 810-260-3966 Arrow Electronics, Inc. ARIZONA Tel: (305) 429-8200 TWX: 910-494-2207 

TWX: 510-955-9456 tPioneer Electronics 755 Phoenix Drive 
tHamliton/Avnet Electronics tHamilton Electro Sales 6408 Castleplace Drive Ann Arbor 48104 
505 S. Madison Drive 3170 Pullman Street Arrow Electronics, Inc. Indianapolis 46250 ~\3J~6_~~t:~g Tempe 85281 Costa Mesa 92626 37 Skyline Drive 

~~3Jib.~~~:~~~ Tel: (602) 231-5140 Tel: (714) 641-4150 Sune 3101 
TWX: 910-950-0077 TWX: 910-595-2638 Lake Marv 32746 Hamilton/Avnet Electronics 

~~4gi6_~~~~~3~ 2215 29th Street S.E. 
HamlitonJAvnet Electronics tHamliton/Avnet Electronics IOWA Space AS 
30 South McKiemy 4103 Northgate Blvd. Hamilton/Avnet Electronics Grand Rapids 49508 
Chandler 85226 Sacramento 95834 tHamilton/Avnet Electronics 915 33rd Avenue, S.W. Tel: (616) 243-8805 

~l~f6-~~6:~~ Tel: (916) 920-3150 8801 N,W, 15th Way Cedar Rapids 52404 TWX: 810-274-6921 
Ft. Lauderdale 33309 

Wyle Distribution Group Tel: (305) 971-2900 Tel: (319) 362-4757 Pioneer Electronics Arrow Electronics, Inc. 124 Maryland Street TWX: 510-958-3097 4504 Broadmoor S;E. 
4134 E. Wood Street EI Segundo 90254 KANSAS Grand Rapids 49508 
Phoenix 85040 Tel: (213) 322-8100 tHamiiton/Avnet Electronics 

Arrow Electronics FAX: 616-698-1831 
Tel: (602) 437-0750 3197 Tech Drive North 
TWX: 910-951-1550 Wyle Distribution Group f,;t(~tf~~~U;l:;g2 

8208 Melrose Dr., Suite 210 tHamilton/Avnet Electronics 7382 Lampson Ave. Lenexa 66214 32487 Schoolcraft Road Wyle Distribution Group Garden Grove 92641 TWX: 810-863-0374 Tel: (913) 541-9542 Livonia 48150 17855 N. Black Canyon Hwy. Tel: (714) 891-1717 
tHamilton/Avnet Electronics tHamilton/Avnet Electronics ~~3J~6_~~~:~Wg Phoenix 85023 TWX: 910-348-7140 or 7111 

Tel: (602) 249-2232 ~~re~~~~r~~7:~ulevard 9219 Qulvera Road 
TWX: 910-951-4282 Wyle Distribution Group Overland Park 66216 

1~8n~1a~~:san 11151 Sun Center Drive Tel: (305) 628-3888 Tel: (913) 888-8900 

CALIFORNIA Rancho Cordova 95670 TWX: 810-853-0322 TWX: 910-743-0005 
Uvonia 48150 Tel: (916) 638-5282 

tPioneer/Technologles Group, Inc. Pioneer/Tec Gr. ~~3J~b.~~~:1~1f, Arrow ElectroniCS, Inc. twyle Distribution Group 10824 Hope Street 337 S. Lake Blvd. 10551 Lockman Rd. 
9525 Chesapeake Drive Alta Monte Springs 32701 Lenexa 66215 Cypress 90630 San Diego 92123 Tel: (407) 834-9090 Tel: (913) 492-0500 Tel: (714) 220-6300 Tel: (619) 565-9171 TWX: 810-853-0284 MINNESOTA 

Arrow Electronics, Inc. TWX: 910-335-1590 KENTUCKY tArrow Electronics, Inc. 
19748 Dearborn Street tWyle Distribution Group 

Pioneer/TechnoloQles Group, Inc. 
5230 W, 73rd Street 

Chatsworth 91311 674 S. Military TraIl Hamilton/Avnet Electronics 
Tel: (213) 701-7500 

3000 Bowers Avenue Deerfield Beach 33442 1051 D. Newton Park Edina 55435 
Santa Clara 95051 Tel: (305) 428-8877 Tel: (612) 830-1600 

TWX: 910-493-2086 Tel: (408) 727-2500 TWX: 510-955-9653 ~:~17~~) ~g~\~75 TWX: 910-576-3125 
tArow Electronics, Inc. TWX: 910-338-0296 

tHamllton/Avnet Electronics 521 Weddell Drive tWyle Distribution Group GEORGIA MARYLAND 12400 Whitewater Drive Sunnyvale 94086 17872 Cowan Avenue tArrow Electronics, Inc. Minnetonka 55434 Tel: (408) 745-6600 Irvine 92714 Arrow ElectroniCS, Inc. 
TWX: 910-339-9371 Tel: (714) 863-9953 3155 Northwoods Parkway 8300 Guilford Drive 

Tel: (6t2) 932-0800 
Suite A 

Arrow ElectroniCS, Inc. TWX: 910-595-1572 Norcross 30071 Suite H, River Center tPioneer Electronics 
Columbia 21046 7625 Golden Triange Dr. 9511 Ridgehaven Court Wyle Distribution Group Tel: (404) 449-8252 Tel: (301) 995-0003 San Diego 92123 26677 W. Agoura Rd. TWX: 810-766-0439 SUiteG 

Tel: (619) 565-4800 Calabasas 91302 
TWX: 710-236-9005 Eden Prairi 55343 

TWX: 888-064 Tel: (818) 880-9000 tHarnilton/Avnet Electronics Hamilton/Avnet Electronics Tel: (612) 944-3355 
5825 0 Peachtree Corners 

tArrow Electronics, Inc. 
TWX: 372-0232 Norcross 30092 6822 Oak Hall Lane 

2961 Dow Avenue Tel: (404) 447-7500 Columbia 21045 MISSOURI 

Tustin 92680 COLORADO TWX: 810-766-0432 Tel: (301) 995-3500 

Tel: (714) 838-5422 Arrow Electronics, Inc. TWX: 710-862-1661 tArrow Electronics, Inc. 
TWX: 910-595-2860 7060 South Tucson Way Pioneer/Technologies Group, Inc. 

~~:~~t~;~~~'~J'o~~r8r. 
2380 Schuetz 

3100 F Northwoods Place St. Louis 63141 
tAvnet Electronics 

Englewood 80112 Norcross 30071 Tel: (314) 567-6888 
350 McCormick Avenue 

Tel: (303) 790-4444 
Tel: (404) 448-1711 Columbia 21046 TWX: 910-764-0882 

Costa Mesa 92626 tHamiiton/Avnet Electronics TWX: 810-766-4515 Tel: (301) 290-8150 
Tel: (714) 754-6071 8765 E. Orchard Road TWX: 710-828-9702 tHamilton/Avnet Electronics 
TWX: 910-595-1928 Suite 708 ILLINOIS tPioneerrrechnologies Group, Inc. 

13743 Shoreline Court 
Englewood 80111 Earth C~ 63045 

tHamiiton/Avnet ElectroniCS Tel: (303) 740-1017 Arrow Electronics, Inc. 9100 Gaither Road Tel: (314 344-1200 
1175 Bordeaux Drive TWX: 910-935-0787 1140 W. Thorndale Gaithersburg 20877 TWX: 910-762-0884 
Sunnyvale 94086 Itasca 60143 ~~3~1l~~~:~~ Tel: (408) 743-3300 tWyle Distribution Group Tel: (312) 250-0500 

NEW HAMPSHIRE TWX: 910-339-9332 451 E. 124th Avenue TWX: 312-250-0916 Arrow Electronics, Inc. Thornton 80241 
tHamiiton/Avnet ElectroniCS Tel: (303) 457-9953 tHarniiton/Avnet Electronics 7524 Standish ?face tArrow ElectroniCS, Inc. 
4545 Ridgeview Avenue TWX: 910-936-0770 1130 Thorndale Avenue Rockville 20855 3 Perimeter Road 
San Diego 92123 Bensenville 60106 Tel: 301-424-0244 Manchester 03103 
Tel: (619) 571-7500 CONNECTICUT Tel: (312) 660-7780 Tel: (603) 688-6988 
TWX: 910-595-2638 TWX: 910-227-0060 MASSACHUSETTS TWX: 710-220-1884 

tArrow ElectroniCS, Inc. 
tHamilton/Avnet Electronics 12 Beaumont Road MTI Systems Sales Arrow ElectroniCS, Inc. tHamilton/Avnet Electronics 
9650 Desoto Avenue Wallingford 06492 1100 W. Thomdale 25 Upton Dr, 444 E. Industrial Drive 
Chatsworth 91311 Tel: (203) 265-7741 Itasca 60143 WilmIngton 01887 Manchester 03103 
Tel: (818) 700-1161 TWX: 710-476-0162 Tel: (312) 773-2300 Tel: (617) 935-5134 Tel: (603) 624-9400 

tMicrocomputer System Technical Distributor Center 
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DOMESTIC DISTRIBUTORS (Contd.) 

NEW JERSEY Pioneer Electronics OREGON tPloneer Electronics BRITISH COLUMBIA 

tArrow Electronics. Inc. 
40 Oser Avenue 

tAl mac Electronics Corp. 
13710 Omega Road 

tHamilton/Avnet Electronics Hauppauge 11787 Dallas 75234 Four East Stow Road Tel: (516) 231-9200 1885 N.w, 169th Place Tel; (214) 386-7300 105-2550 Boundary 
Unit 11 Beaverton 97005 TWX; 910-850-5563 ~~n~~ ~~~-:t:7 Marlton 08053 tPloneer Electronics Tel: (503) 629-8090 
Tel: (609) 596-8000 60 Crossway Park West TWX; 910-467-8746 tPloneer Electronics Zentronlcs 1WX: 710-897-0829 Woodbury, Long Island 11797 5853 Point West Drive 

Tel: (516) 921-8700 tHamilton/Avnet Electronics Houston 77036 108-11400 Bridgeport Rood 
tAr row Electronics 6024 S.w, Jean Road Richmond V6X 1T2 
6 Century Drive TWX: 510-221-2184 

Bldg. C, Suite 10 ~;tJ~6-~~t~m Tel: (604) 273-5575 

~:r:S~~7)~8J~~0 tPioneer Electronics Lake Oswego 97034 TWX: 04-5077-89 
840 Fairport Park Tel: (503) 635-7848 Wyle Distribution Group 

MANITOBA 
tHamiiton/Avnet ElectroniCs Fairport 14450 TWX: 910-455-8179 1810 Greenvll1e Avenue 
1 Keystone Ave., Bldg. 36 Tel: (716) 381-7070 

Wyle Distribution Group 
Richardson 75081 Zentronlcs 

¥~~(~0~;"4~~c:g~ 10 
TWX: 510-253-7001 

5250 N.E. Elam Young Parkway 
Tel: (214) 235-9953 60-1313 Border Unit 60 

NORTH CAROLINA Suite 600 UTAH f~n~~~ ~:10:5~ TWX: 710-940-0262 HlI1sboro 97124 
tHamiiton/Avnet Electronics tArrow Electronics, Inc. Tel; (503) 640-6000 Arrow Electronics ONTARIO 10 Industrial 5240 Greensdalry Road TWX: 910-460-2203 1946 Parkway Blvd. 
Fairfield 07006 ~:I~~~79W~:-3132 Salt Leke City 84119 Arrow Electronics, Inc. 
Tel: (201) 575-5300 PENNSYLVANIA Tel: (801) 973-6913 36 Antares Dr. 
TWX: 710-734-4388 TWX; 510-928-1856 

tHamllton/Avnet ElectroniCS 
Nepean K2E 7W5 

Arrow ElectroniCS, Inc. Tel: (613) 226-6903 
tMTI Systems Sales tHamllton/Avnet Electronics 650 Seco Road 1585 West 2100 South 
37 Kulick Rd. ~~1~g~~9Bo~orest Drive Monroeville 15146 Salt Leke City 84119 Arrow Electronics, Inc. 
Fairfield 07006 Tel: (412) 856-7000 Tel; (801) 972-2800 1093 Meyerside 
Tel: (201) 227-5552 Tel: (919) 878-0819 TWX: 910-925-4018 Mississauga 15T 1 M4 

tPioneer Electronics 
TWX: 510-928-1836 HamiltonfAvnet Electronics 

Wyle Distribution Group 
Tel: (416) 673-7769 

2800 Liberty Ave. TWX: 06-218213 
45 Route 46 ~~o~e:~~ci~t~~~~O~\~! ~r~gp, Inc. Pittsburgh 15238 1325 West 2200 South 
Plnebrook 07058 Tel: (412) 281-4150 Suite E tHamiltonfAvnet Electronics 
Tel: (201) 575-3510 Charlotte 28210 f.~~~~I~e~7~~~~3 

6845 Rexwood Road 
TWX: 710-734-4382 Tel; (919) 527-8188 Pioneer Electronics Units 3-4-5 

TWX; 810-621-0366 259 Kappa Drive Mississauga L4T 1 R2 
NEW MEXICO Pittsburgh 15238 WASHINGTON Tel: (416) 677-7432 

Alliance Electronics Inc. OHIO Tel: (412) 782-2300 TWX: 610-492-8867 

11030 Cochiti S.E. TWX; 710-795-3122 tAlmac Electronics Corp. HamiltonfAvnet Electronics 
Albuquerque 87123 Arrow ElectroniCS, Inc. 

tPloneer/Technologies Group, Inc. 
14360 S.E. Eastgate Way 6845 Rexwood Rd., Unit 6 7620 McEwen Road Bellevue 98007 , Tel: (505) 292-3360 Centerville 45459 Delaware Valley Tel: (206) 643-9992 Mississauga L4T 1 R2 

TWX: 910-989-1151 Tel; (513) 435-5563 261 Gibralter Road TWX: 910-444-2067 Tel: (416) 277-0484 

Hamilton/Avnet Electronics TWX: 810-459-1611 Horsham 19044 tHamilton/Avnet Electronics 
2524 Baylor Drive S.E. Tel: (215) 674-4000 Arrow Electronics, Inc. 190 Colonnade Road South 
Albuquerque 87106 tArrow ElectroniCS, Inc. TWX; 510-665-6778 19540 68th Ave. South Nepean K2E 7L5 
Tel: (505) 765-1500 6238 Cochran Road Kent 98032 Tel: (613) 226-1700 
TWX: 910-989-0614 Solon 44139 TEXAS Tel: (206) 575-4420 TWX; 05-349-71 

Tel: (216) 248-3990 
tHamiiton/Avnet ElectroniCS NEW YORK TWX: 810-427-9409 tArrow Electronics, Inc. tZentronics 

3220 Commander Drive 14212 N.E. 21st Street 8 Tilbury Court 
tArrow Electronics, Inc. tHamiiton/Avnet Electronics Carrollton 75006 Bellevue 98005 BTampton L6T 3T 4 
3375 Brighton Henrietta 954 Senate Drive Tel; (214) 380-6464 Tel; (206) 643-3950 Tel: (416) 451-9600 
Townline Rd. Dayton 45459 TWX; 910-860-5377 TWX: 910-443-2469 TWX: 06-976-78 
Rochester 14623 Tel: (513) 439-6733 

Wyle Distribution Group tZentronics Tel: (716) 275-0300 TWX: 810-450-2531 tArrow Electronics, Inc. 
TWX: 510-253-4766 10899 Kinghurst 15385 N.E. 90th Street 155 Colonnade Road 

Hamilton/Avnet Electronics Suite 100 Redmond 98052 Unit 17 
Arrow Electronics, Inc. 4588 Emery Industrial Pkwy. Houston 77099 Tel: (206) 881-1150 Napean K2E 7K1 
20 Oser Avenue Warrensville Heights 44128 Tel: (713) 530-4700 Tel: (613) 226-8840 
Hauppauge 11788 Tel: (216) 349-5100 TWX: 910-880-4439 WISCONSIN Zentronics Tel: (516) 231-1000 1WX: 810-427-9452 
TWX; 510-227-6623 tArrow ElectroniCS, Inc. Arrow Electronics, Inc. 60-1313 Border $t. 

tHamilton/Avnet Electronics 2227 W. Braker Lane 200 N. Patrick Blvd., Ste. 100 ~~(~~~ ~:-~~~7 Hamilton/Avnet 777 Brooksedge Blvd. Austin 78758 Brookfield 53005 
933 Motor Parkway Westerville 43081 Tel: (512) 835-4180 Tel: (414) 767-6600 
Hauppauge 11788 Tel; (614) 882-7004 TWX: 910-874-1348 TWX; 910-262-1193 QUEBEC 
Tel: (516) 231-9800 

tPioneer Electronics tArrow Electronics Inc. TWX: 510-224-6166 tHamilton/Avnet Electronics Hamilton/Avnet Electronics 
4433 Interpolnt Boulevard 1807 W. Braker Lane 2975 Moorland Road 4050 Jean Talon Quest 

tHamiiton/Avnet Electronics Montreat H4P lW1 
333 Metro Park 

Dayton 45424 Austin 78758 New Berlin 53151 Tel: (514) 735-5511 Tel; (513) 236-9900 Tel; (512) 837-8911 Tel: (414) 784-4510 Rochester 14623 TWX: 810-459-1622 TWX: 05-25590 
Tel: (716) 475-9130 TWX: 910-874-1319 TWX; 910-262-1182 
TWX: 510-253-5470 tPioneer ElectroniCS tHamilton/Avnet Electronics 

Arrow Electronics, Inc. 

tHamilton/Avnet Electronics 
4800 E. 131 st Street 2111 W. Walnut Hill Lane CANADA 

500 Avenue St-Jean Baptiste 
Cleveland 44105 Suite 280 

103 Twin Oaks Drive Tel; (216) 587-3600 
Irving 75038 Quebec G2E 5R9 

Syracuse 13206 Tel; (214) 550-6111 Tel: (418) 871-7500 
Tel: (315) 437-0288 

TWX: 810-422-2211 TWX; 910-860-5929 ALBERTA FAX: 418-871-6816 
TWX: 710-541-1560 

OKLAHOMA tHamilton/Avnet Electronics Hamilton/Avnet Electronics Hamilton/Avnet Electronics 
tMTI Systems Sales 4850 Wright Rd., Suite 190 2816 21st Street N.E. 2795 Halpern 
38 Harbor Park Drive Arrow ElectroniCS, Inc. Stafford 77477 Calgary T2E 6Z3 SI. Laurent H2E 7K1 
Port Washington 11050 1211 E. 51st St., Suite 101 Tel; (713) 240-7733 Tel: (403) 230-3586 Tel: (514) 335-1000 
Tel: (516) 621-6200 Tulsa 74146 TWX; 910-881-5523 TWX; 03-827-642 TWX: 610-421-3731 

tPioneer Electronics 
Tel: (918) 252-7537 

tPioneer Electronics Zentronics Zentronics 
68 Corporate Drive tHamilton/Avnet Electronics 18260 Kramer Bay No.1 817 McCaffrey 
Binghamton 13904 12121 E. 51st St., Suite 102A Austin 78758 3300 14th Avenue N.E. St. Laurent H4T 1 M3 
Tel: (607) 722-9300 Tulsa 74146 Tel: (512) 635-4000 Calgary T2A 6J4 Tel: (514) 737-9700 
TWX: 510-252-0893 Tel: (918) 252-7297 TWX: 910-874-1323 Tel; (403) 272-1021 TWX: 05-827-535 

tMicrocomputer System Technical Distributor Center 



DENMARK 
Intel Denmark NS 
Glentevej 61, 3rd Floor 
2400 copenh8isn NV 
+~:(m~1j 1 80 33 

FINLAND 

Intel Finland DY 
Ruoollantie2 
00390 Helsinki 
Tel: (358) 0 544 644 
TLl<: 123332 

FRANCE 

\~u~~f:"~GpS~.L. 
78054 st. Quentin-en~Yvelines 
Codex 
Tel: (33) (1) 30 57 70 00 
TLl<: 699016 

EUROPEAN SALES OFFICES 
,WEST GERMANY 
Intel Semiconductor GmbH· 
Domacher Strasss 1 
8016 Feldklrchen bel Muenchon 
Tel: (49) 089/90992-0 
TLX: 5-231n 

Intel Semiconductor GmbH 
HohenzoHem Strasse 5 
3000 Hannover 1 

+~,<:~1/344081 
'Intel Semiconductor GmbH 
Abraham Uncoln _ .. 16-18 
8200 W1e9baden 
Tel: (49) 0812117805-0 
TLl<: 4-188183 
Intel Semiconductor GmbH 
Zet1achring lOA 
7000StU~80 
+~'<~!b;~W287-280 

ISRAEL 

Intel Semiconductor Ud. * 
Atldlm Industrial Park-Novo Shere! 
P.O. Box 43202 
Tel-Aviv 61430 
Tel: (972) 3-546-3222 
TLl<: 371215 

ITALY 

Inial Corporation ltella S.p.A. * 
Mllanoftorl Palazzo E 
20090 Asoago 
Milano 

+~:(~1~ 88200950 

NETHERLANDS 

Intel Semiconductor B.V.'* 
Postbus 84130 
3099 CC Rotterdam 
m:(~~g·407.11.11 

NORWAY 

Intel Norway AlS 
Hvarnvelen 4-PD Box 92 
2013 Skjetten 

m'<~~ol~ 842 420 

SPAIN 

IntellberiaS.A. 
Zurbaran, 28 
28010 Madrid 
Tel: (34) (1) 308.25.52 
TLl<: 48880 

SWEDEN 

Intel SWeden A.B. * 

\':\T~~ 
+~:(~1734 01 00 

SWItzeRLAND 

Intel Semlcondu_ A.G. 
Zuorlchatresee 
8185 Wlnkel-Rue1I bel ZuerIch 
Tel: (41) 01/880 62 62 
TLl<: 6258n 

UNITED KINGDOM 

:;:~~ratlon (U.K.) Ud.* 

Swlndon,~l1shlre SN3 1 RJ 
Tel: (44) (0793) 698000 
TLX: 444447/8 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA Tekelec-Airtronic ITALY Dltram ~~~=b=ms 
Bacher Electronics G;m.b.H. CIte des Bruyeres Intesl Avanlda Miguel Bombarda, 133 

Rue Cerie Vernet - BP 2 1000 Lisboa ' WestemRoed Rotenmu.hlg .... 28 92310 Sevres Dlvlelone ITT Industries GmbH 
m,<m~~ 54 5313 Bracknell RG12 1 RW 

1120Wlen 
+~,<~~ 45 34 75 35 

Vlale Mllano1lori 
m:(~~44) 55333 +~: (~~~222) 83 58 45 Palazzo El5 

20090 = (MI) SPAIN 
WEST GERMANY Tol: (39) 4701 Jormyn 

BELGIUM TLl<: 311351 ATD Electrcnica, S.A. Vestry Estate 
Inelco Belgium S.A. Electrcnlc 2000 AG 

~~=~:'~'f~ 
Plaza Cludad de Viana, 6 Otford Road 

Av. des Croix de Guerra 94 =~=~~nl:a 28040 Madrid Sevenoaks 
1120 Br"""lI .. 20092 Clnl .. llo Balsamo (MI) m'<~4W 234 40 00 Kent TN14 5EU 

~1o~=nlaan, 94 
Tel: (49) 089/42001-0 Tel: (39) 02/2440012 +~:(~1~732) 450144 TLX: 522581 TLX: 352040 ITT-8ESA 

+~:<mt~~r2= 80 
ITT Multlkornponent GmbH Telcom S.r.l. ~~oM~~~:ngel, 21-3 MMD PoB1fach 1285 Via M. Clvltell 75 Unn 8 Southview Park Bahnho1stresse 44 20148 Milano +~:~~JV 419 09 57 Ceveraham DENMARK 7141 MoegIlngan Tel: (39) 02/404904B :::~re RG4 OAF ITT-Muttikomponent Tel: (49) 07141/4879 TLX: 335854 Mstroiogla lberico, S.A. 

Nave~and 29 TLl<: 7284472 

u;!1::~W=:~~ 
Ctra. de Fuencarral, n.80 m'<~lJJ~) 481888 

2800 Glostrup Jermyn GmbH 28100 AIcobendas (Madrid) 
Tel: (45) (0) 24566 45 1m Dachss1ueck 9 20090~OjMQ Tel: (34) (1) 853 88 11 Rapid Silicon TLX: 33 355 6250 Umburg Tel: (39) 0 2 701 

Tel: (49) 08431/508-0 TLl<: 311351 SWEDEN Rapid House 
FINLAND TLX: 415257-0 DenmarkS1reet 

Sllverstar Nordlsk Elektronlk AB High Wycombe 
OY Fintronlc AS MObologle GmbH Via Del Grecchl 20 Torshamnsgatan 39 BUCkI~hamShire HPII 2ER 
Melkonkatu 24A ~1'ij~':c=\i9 20145 Milano Box 35 +~: (:;!JaDj84) 442288 00210 HeI~nki Tel: (39) 02/49961 184 93 Kista 
Tel: (358) (0) 8928022 Tel: (49) 089178042-0 TLX: 332189 Tel: (45) 06-03 45 30 

=~=::;ns TLl<: 124224 TLl<: 5213189 TLl<: 105 47 

Proelectron Vertrlebs GmbH 
NETHERLANDS 

FRANCE Koning en Hartman Elektrotechniek SWITZERLAND Denmark Street 
Max Planck Strasse 1-3 High Wycombe 

Almex 6072 Drelelch B.V. Industrada A.G. Buck~hamshire HPII 2ER 
Zone industrietle d'Antony Tel: (49) 08103/30434-3 Energleweg 1 Hertistrasse 31 +~'<83~94) 450244 48, rue de l'Aubepine TLl<: 417903 2827 APDetft 8304 Wallisellen 
BP 102 +~,<~ 15/609906 m,<~~~I) 8328111 92164 Antony cedex IRELAND YUGOSLAVIA m:(~1h 466821 12 

~:;~~~"&'lece~irk NORWAY TURKEY 
Nordisk Elektronlkk (Norge) AJS H.R. MICroelectronICs Corp. 

Jermyn-Generlm Glenegeary Postboks 123 EMPA Electronic 2005 de Is Cruz Blvd., Ste', 223 
50, rue des Gemeaux Co. Dublin Smedsvlngen 4 Undwurmstr .... 9SA Sante Clare, CA 95050 
S1I1C580 +~:(mf:3) (01) 85 63 25 8000 Muenchen 2 U.S.A. 

~:?337U(~~~ ~".l'9 78 

1384H_ Tel: (49) 089/53 80 570 ~'<Y8t~ 986-0288 +~,<~~ 84 62 10 TLl<: 528573 
TLl<:281585 ISRAEL Rap/do ElectronIC Components 

r~~O~~~ieres Eastronics Ltd. PORTUGAL UNITED KINGDOM S.p.a. 
11 Rozanls Sbeet ATD Por1ugal LOA Accent Electronic Components Ud. Voa C. BeccarIa, 8 

4, avo Laurent-Cely P.D.B. 39300 Rua Doe Lusladoe, 5 SaIa B Jubilee House, Jubilee Rood 34133 Trieste 
92606 Asnieres cedex Tel-Aviv 61392 1300 Usboa LetchWorth, Herts 8G6 lTL IteIla 
:::~:~)1~ 4790 62 40 Tel: (972) 03-475151 m:(~~~ 84 80 91 +~'<~'I:F) 886888 

Tel: (39) 040/360855 
TLl<: 33S38 TLX: 450451 

*Field Application Location 



AUSTRALIA 

Intel Australia Ply. Lid.' 
Spectrum BUIIdI1..v., 

~~~~~~E.~8 
Tel: 812-957·2744 
FAX: 812-923·2832 

BRAZIL 

Intel Samlcondutores do Brazil LTDA 
Av. Paullsta, 1159-CJS 404/405 
01311 • Sao Paulo· S.P. 
Tel: 55-11·287-51\99 
TLX: 3911153148IS0B 
FAX: 55·11·287-5119 

CHINA/HONG KONG 

Intel PRC Corporation 
15/F. 0fIIce I, CI1Ic Bldg. 
Jlan Guo Men Wal Street 

¥:lil'(1\' :::4850 
TLX: 22947 INTEL CN 
FAX: (1) 500-2953 

Intel Semloonductor lid.' 
1O/F East Tower 
Bond Center 
Queenoway, Central 

~'~r~-4555 
FAX: (852) 888·1989 

INTERNATIONAL SALES OFFICES 
INDIA InteI~nK.K.' KOREA 

Mitsui· elmel Musashl.koe~1 Bldg. 
Intel Asia Electronics, Inc. 915 Shlnmaruko, Nakahara- u 

\~~r~~": lid. 412, Samreh Plaza Kswaoakl-shl, Ksnegawa 211 
St. Mark's Road Tel: 044-733·7011 

~~no~~8' Youngdeungpo-Ku 
r.r~~I~~5055 FAX: 044-733·7010 

TLX: 9539452875 DCBY ~~~~"G!l~~Ugl Bldg. ~~'<~:I~E~~' 8396 
FAX: 091-812·215087 1·2·1 Asahl·mechl FAX: (2) 7_ 

JAPAN 
:~~~~r243 
FAX: 0482·29-3781 SINGAPORE 

Intel Japan K.K. =kt~~~·~i~g. 5-6 Tokodal. Tsukuba-shl 
\~I~~"fo~reR~:"~~~' lbarekl, 300-28 2·4-1 Tereuchi 

Tel: 0298-47-8511 ~~=~i~"ka 560 United Square 
TLX: 3656-160 Singapore 1130 
FAX: 0298-47-8450 FAX: 08-1183-1094 Tel: 250-7811 

Intel Japan K.K. TLX: 39921 INTEL 

::~=~~;d9. Shlnmaru Bldg. FAX: 250-9258 
1..s-1 Marunouchl 1-8989 Fuchu-cho 
¥~rgg~~~~ 100 ~~~=~~1183 TAIWAN 

FAX: Q423-8Q.0315 FAX: 03·201-8850 

~:~a~.K.K. Intel Technology Far East lid. 

=.~~~~: 8th Floor, No. 205 
1-16-20 Nlshiki Bank Tower Bldg. 

2-89 Hon"""o ~·ku, Negoya·shl Tung Hus N. Rood 

~r':~~~ltsma 380 
Aichl450 Taipei 
Tel: 052·204-1281 Tol: 988·2·718-9880 

FAX: 0485-24-7518 FAX: 052·204-1285 FAX: 886-2·717·2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
AiRGENTINA Micronlc Devices ~i"ra~:" NEW ZEALAND 
DaIsys S.R.L No. 518 5th Floor 

Email Electronics Swastik Chambers ~=:~~f6Shl48Q Chacebuco, 9Q.6 Piso Slon, Trombay Road 36 Olivo Road 
I069-Buonos Aires Chembur FAX: 052·204-2801 Penrose, Auckland 
Tel: 54-1-334-7726 Bombay 400 071 Tel: 011-84-9-581-155 
FAX: 54·1-334·1871 TLX: 9531171447 MDEV Ryoyo Electro Corp. FAX: 011·64·9-592-881 

Konwa Bldg . 
. AUSTRALIA Mlcronlc Oavlcee 1·12·22 T8ukiJI SINGAPORE 

Email ElectroniCS 25/8, 181 Floor ¥~~~~1104 
15-17 Hume Street Boda Bazaar Marg Bectronlc Resources Pte, Ltd. 

~~~'lf!:1~=-8244 ~!~il.'1~rl~m 
FAX: 03-546-5044 17 Harvey Rood #04-01 

TLX: AA 30995 Tel: 011·91-11-5723509 KOREA ¥~~~~36 
FAX: 011-81-3-543-8179 011·91-11·589771 

J·Tek Corporation TWX: 56541 ERS 
TLX: 031-63253 MONO IN FAX: 2895327 

NSO-Australla 8th Floor, Government Pension Bldg. = ~1~d~=~~2~d. Micronlc Devices 24-3 YOIdc>don~ 
SOUTH AFRICA 6-3-348I12A Dwarakapuri Colony You::pdeu'lllP<': u 

Tel: 03 8900970 Hyderabad 500 482 Seou 15CH1 0 Electronic Building Elements FAX: 03 8990819 Tel: 011-91·842·228748 Tel: 82·2·780-8039 178 Erasmus Street (off Watarmeyet Street) TLX: 25299 KOOIGIT 
BRAZIL 

~~~~~~ 
FAX: 82·2·784-8391 ~:Fo~mi=6!£184 

Elebre Microolectronlca SA Somaung Electronics FAX: 011·2712·603-8294 
Ru. Geraldo Flauslna Gomes, 78 San Josa, CA 95118 150 Taapyungro·2 KA 
7 And.. ' Tel: (408) 976-6216 

¥~~~~~~:7~=·102 TAIWAN 
04575· Sao Paulo· S.P. TLX:820281 
Tel: 55-11-534-9641 FAX: (408) 976-6835 TLX: 27970 KORSST Micro Electronics C0iFuratlon 
TLX: 55·11-54593/54591 FAX: 82·2·753-0967 5/F 597, MI~ Shen as! Rd. 
FAX: 55-11-534-9424 JAPAN Taipei, R.O .. 

MEXICO Tel: 886-2·601-8231 
CHINAlHONG KONG Asahl Electronics Co. lid. SSB Electronics, Inc. 

FAX: 686-2·505-6609 
Novel PrecISion Machlne~ Co., lid. KMM Bldg. 2·14-1 Asano 975 Paiomar StreaL Bldg. 4, Suits A 'Sertek 
~If..'!' r. :=~~In~re.'tg· Kokurekits·ku Chula Vista, CA 92011 15/F 135, SectIon 2 

=~~1.~~ Tel: (619) 565-3253 Chien Juo North Rd. 
N.T .. Kowloon TLX: 28n51 CBALL UR Taipal10479, R.O.C. 
HO, Kon~ FAX: 093-551-7981 FAX: (619) 565-8322 Tel: (l5010055 Tel: 8521 22-3222 

C. ltoh Techno-ScIence Co .. Lid. FAX: I 5012521 TWX: 39 14 JINMI HX Olcopel SA o 5058414 
FAX: (852) 426-1602 4-6-1 Dobaahl, Mlyamao-ku Tochtll 368 Frecc. Ind. San Antonio 

Kswaoakl·shl, Ksnegawa 213 Azcapotzaico 
VENEZUELA INDIA Tel: 044-852-5121 C.P. 0276D-MexlC9, O.F. 

Mlcronlc Devices 
FAX: 044-8n-4288 Tel: 52-5-581-3211 

P. Benavides S.A. TLX: 1 n 3790 Olcome 
~n~'1>~.f.~ Road 

Dla Semlcon Systems, Inc. FAX: 52-5-561-1279 Avllanes a Rio 
Flower Hili Shlnmechl Hlgashl·kan Resldencla Kamar ... 

l!asavanagudl 1·23-9 Shlnmachl, Setegaya·ku PSI S.A. de C.V. Locaias 4 AL 7 

~r~~r.:l~2~631 Tokyo 154 Fco. Villa esq. Ajusco sin La Candelaria, Corecas 
Tel: 03-439-1600 Cuernavaca- Morelos Tel: 56-2-574-6338 

011-91-812-611·365 FAX: 03-439-1601 Tol: 52·73·13-9412 TLX: 28450 
TLX: 9538458332 MDBG FAX: 52·73-17-5333 FAX: 58·2-572-3321 

'Field Application Location 



ALABAMA 

~~I ~~~tOrd Dr., Suite 2 
Huntsvill. 35805 
T.I: (205) 830-4010 

ALASKA 

Intel Corp. 
c/o TransAlaska Data Systems 
300 Old St •••• Hwy. 
Fairbanks 99701-3120 
T.I: (907) 452-4401 

Intel Corp. 
C/o TransAlaska Data Systems 
1551 Lore Road 

~~~~·5~~W76 
ARIZONA 

"Intel Corp. 
11225 N. 28th Dr. 
Suite O~214 
Phoenix 85029 
T.I: (602) 869-4980 

*Intel Corp. 
500 E. Fry Blvd., Suit. M-15 
Sierra Vista 85635 
Tol: (602) 459-5010 

CALIFORNIA 

tlntel Corp. 
21515 Vanow.n St., Ste. 116 

¥:1~(N~8j"iS4~J~g 
*Intel Corp. 
2250 E. Impo~al Hwy., St •. 218 
EI Segundo 90245 
T.I: (213) 640-6040 

*Intel Corp. 

~~~:~~:~~~5~~' 
T.I: \~~~1~~~ 
Int.1 Corp. 
9685 Ch.sap.ake Dr" Suit. 325 

~:r ~~~o~~~86 
**Intel Corp. 
400 N. Tustin Avenue 
Suit. 460 
Santa Ana 92705 
T.I: (714) 835-9842 

**tlntel Corp. 
San Tomas 4 
2700 San Tomas Exp., 2nd Flocr 
Santa Clara 95051 
Tel: (408) 988-8086 

CALIFORNIA 

2700 San Tomas Expressway 
Sante Clara 95051 
T.I: (408) 970-1700 

1-800-421-0386 

DOMESTIC SERVICE OFFICES 
COLORADO MASBACHUSETTS NORTH CAROLINA 

*Intel Corp. ··tlntel Corp. ""Intel Corp. 
~~C:!r ~~2~ St" Suit. 915 3 Carlisle Rd., 2nd Floor 5800 Executive Dr" Ste. 105 

W.stford 01886 Cha~ott. 28212 
T.I: (303) 321-8086 T.I: (508) 892-1080 T.I: (704) 588-8966 

CONNECTICUT ""Intsl co~. 
*Intel Co~. MICHIGAN ~~~Wil Road 
301 Lee arm Cor~orate Park 
83 Woost.r H.lgh Rd. "tlnt.1 Corp. 

~~~~~~ 9Wgi-8022 Danbury 08810 7071 Orchard Lsk. Rd., St •. 100 

T.I: (203) 748-3130 W.st Bloomfl.ld 48322 
Tel: (313) 851-8905 

FLORIDA OHIO 

""·Intet Corp. MINNESOTA ;~~~~~oce;nter Or., $te. 220 ~ ~ci';:'ict~~ ~"lo9Ste. 100 ;t\\1\.(yC~h St., Suit. 360 ¥:r(s~ ~m6-5350 T.I: (305) 771-0600 

*Intel Corp. 
Bloomln~ 55431 
T.I: (612 635-6722 ""tlntal Corp. 

5650 T.O. L •• Blvd., St •. 340 25700 Science Park Dr., Ste. 100 
O~ando 32822 Beachwood 44122 
T.I: (407) 240-8000 MISSOURI T.I: (216) 484-2736 

GEORGIA ;~I i:J~'clty Exp., Sto. 131 *Iotel Corp. OREGON 
Earth Citr 83045 3280 Point. Pkwy., Ste. 200 T.I: (314 291-1990 Intel Corp. Norcross 30092 15254 N. W. Greenbrier Parkway Tol: (404) 449-0541 
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