

int:et

LITERATURE
To order Intel literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES
P.O. Box 7641
Mt. Prospect, IL 60056-7641

CURRENT HANDBOOKS

In the U.S. and Canada
call toll free
(800) 548-4725
This 800 number is for external customers only.

Product line handbooks contain data sheets, application notes, article reprints and other design
information. All handbooks can be ordered individually, and most are available in a pre-packaged set in the
U.S. and Canada.

TITLE

SET OF TEN HANDBOOKS
(Available in U.S. and Canada)

INTEL
ORDER NUMBER

231003

CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING:

EMBEDDED CONTROLLERS & PROCESSORS
(2 volume set)

MEMORY PRODUCTS

MICROCOMMUNICATIONS

MICROCOMPUTER PRODUCTS

MICROPROCESSORS

MULTIMEDIA & SUPERCOMPUTING PROCESSORS

PACKAGING

PERIPHERAL COMPONENTS

PRODUCT OVERVIEW
(A guide to Intel Architectures and Applications)

PROGRAMMABLE LOGIC

ADDITIONAL LITERATURE:
(Not included in handbook set)

AUTOMOTIVE HANDBOOK

COMPONENTS QUALITY/RELIABILITY

CUSTOMER LITERATURE GUIDE

EMBEDDED APPLICATIONS

INTERNATIONAL LITERATURE GUIDE
(Available in Europe only)

MILITARY HANDBOOK
(2 volume set)

SYSTEMS QUALITY/RELIABILITY

HANDBOOK DIRECTORY
(Index of all data sheets contained in the handbooks)

270645

210830

231658

280407

230843

272084

240800

296467

210846

296083

231792

210997

210620

270648

EOO029

210461

231762

241197

ISBN

N/A

1-55512-140-3

1-55512-144-6

1-55512-148-9

1-55512-143-8

1-55512-150-0

1-55512-149-7

1-55512-145-4

1-55512-146-2

1-55512-142-x

1-55512-147-0

1-55512-125-x

1-55512-132-2

N/A

1-55512-123-3

N/A

1-55512-126-8

1-55512-046-6

N/A

L!T!NCQV/091 091

u.s. and CANADA LITERATURE ORDER FORM
NAME: __ ~_

COMPANY: __ ___

ADDRESS:
CITY: _________________________ _ STATE: ______ ZIP: ____ __

COUNTRY: __ _
PHONE NO.: ~ __ ~ ____________________________________ __

ORDER NO

Include postage:
Must add 15% of Subtotal to cover U.S.
and Canada postage. (20% all other.)

TITLE QTY. PRICE

x

x

x

x

x

x

x

x

x

x

Subtotal

Must Add Your
Local Sales Tax

) Postage

Total

TOTAL

=
=

=

=

=
=
=

Pay by check, money order, or include company purchase order with this form ($200 minimum). We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks for
delivery. .

o VISA 0 MasterCard 0 American Express Expiration Date ____________ _

Account No. ______________________________ _

Signature ______________________________ _

Mail To: Intel Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

International Customers outside the U.S. and Canada
should use the International order form on the next page or
contact their local Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725
Prices good until 12131/92.
Source HB

intel®

INTERNATIONAL LITERATURE ORDER FORM

NAME: __ _
COMPANY: __ ___

ADDRESS:
CITY: _________________________ STATE: ___ ZIP:
COUNTRY: __ ___
PHONE NO.: ~ __ ~ ____________________________________ __

ORDER NO TITLE QTY. PRICE TOTAL

x =

x =

x =

x =

x =

x =

x =

x =

x =

x =

Subtotal

Must Add Your
Local Sales Tax

Total

PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover).

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORD!NATOR and returned to
your local Intel Sales Office.

inial·

80C186/188,
80C186XUC188XL
USER'S MANUAL

1992

Order Number 272164-001

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376, Above, ActionMedia, BITBUS, Code Builder, DeskWare, Digital Studio, DVI,
EtherExpress, ETOX, ExCA, FaxBACK, Grand Challenge, i, i287, i386, i387, i486,
i487, i750, i860, i960, ICE, ilBX, Inboard, Intel, Inte1287, Inte1386, Inte1387,
Inte1486, Inte1487, intel inside., Intellec, iPSC, iRMX, iSBC, iSBX, iWarp, LANPrint,
LAN Select, LANShell, LANSight, LAN Space, LANSpool, MAPNET, Matched, MCS,
Media Mail, NetPort, NetSentry, OpenNET, PR0750, ProSolver, READY-LAN,
Reference Point, RMX/80, SatisFAXtion, Snapln 386, Storage Broker, SugarCube,
The Computer Inside., TokenExpress, Visual Edge, and WYPIWYF.

MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of Mohawk
Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade­
mark or products.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
literature Sales
P.O. Box 7641
Mt. Prospect, Il60056-7641

©INTEL CORPORATION 1992

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION .. 1-1

1.1 DIFFERENCES BETWEEN THE 80C186
AND THE 80C186XL PRODUCT FAMILIES 1-2

1.2 HOW TO USE THIS MANUAL ... 1-3

CHAPTER 2
OVERVIEW OF THE 80C186 FAMIL V MODULAR
MICROPROCESSOR CORE ARCHITECTURE .. 2-1

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
2.1.11
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.5
2.2.1.6
2.2.2
2.2.2.1

2.2.2.2
2.2.2.3
2.2.2.4

2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.1.3

ARCHITECTURAL OVERViEW ... 2-1
EXECUTION UNIT ... 2-2
BUS INTERFACE UNIT ... 2-3
GENERAL REGiSTERS " .. 2-4
SEGMENT REGISTERS .. 2-5 '
INSTRUCTION POINTER .. 2-6
FLAGS .. 2-6
MEMORY SEGMENTATION .. 2-7
LOGICAL ADDRESSES ... 2-9
DYNAMICALLY RELOCATABLE CODE 2-12
STACK IMPLEMENTATION ... 2-13
RESERVED MEMORY AND I/O SPACE 2-14

SOFTWARE OVERViEW ... 2-14
INSTRUCTION SET ... 2-15
DATA TRANSFER .. 2-16
ARITHMETIC INSTRUCTIONS ... 2-18
BIT MANIPULATION INSTRUCTIONS .. 2-19
STRING INSTRUCTIONS .. ,2-19
PROGRAM TRANSFER INSTRUCTIONS 2-20
PROCESSOR CONTROL INSTRUCTIONS 2-23
ADDRESSING MODES .. 2-23
REGISTER AND IMMEDIATE OPERAND
ADDRESSING MODES .. 2-23
MEMORY ADDRESSING MODES .. 2-24
I/O PORT ADDRESSING ... 2-31
DATA TYPES USED IN THE
80C186 MODULAR CORE FAMILy .. 2-32

INTERRUPTS AND EXCEPTION HANDLING 2-32
INTERRUPT/EXCEPTION PROCESSING 2-34
NON-MASKABLE INTERRUPTS ... 2-36
MAS KABLE INTERRUPTS .. 2-37
EXCEPTIONS .. , 2-37

iii

2.3.2
2.3.3
2.3.4
2.3.5

CHAPTER 3

TABLE OF CONTENTS

SOFTWARE INTERRUPTS ... 2-38
INTERRUPT LATENCY ... 2-39
INTERRUPT RESPONSE .. 2-39
INTERRUPT AND EXCEPTION PRIORITy 2-40

BUS INTERFACE UNIT ... 3-1

3.1 MULTIPLEXED ADDRESS AND DATA BUS 3-1
3.2 ADDRESS AND DATA BUS CONCEPTS 3-1
3.2.1 16-BIT DATA BUS .. 3-1
3.2.2 8-BIT DATA BUS ~ .. 3-4
3.3 MEMORY AND I/O INTERFACES ... 3-5
3.3.1 16-BIT BUS MEMORY AND I/O REQUIREMENTS 3-6
3.3.2 8-BIT BUS MEMORY AND I/O REQUIREMENTS 3-6
3.4 BUS CYCLE OPERATION ... 3-6
3.4.1 ADDRESS/STATUS PHASE .. 3-7
3.4.2 DATA PHASE ... 3-11
3.4.3 WAIT STATES .. 3-12
3.4.3.1 ARDY INPUT ' ... 3-14
3.4.3.2 SRDY INPUT .. 3-16
3.4.4 IDLE STATES .. : 3-17
3.5 BUS CyCLES ... 3-17
3.5.1 READ BUS CyCLES .. 3-17
3.5.1.1 REFRESH BUS CyCLES ... 3-19
3.5.2 WRITE'BUS CYCLES .. 3-20
3.5.3 INTERRUPT ACKNOWLEDGE BUS CYCLE 3-23
3.5.3.1 SYSTEM DESIGN CONSIDERATIONS 3-25
3.5.4 HALT BUS CyCLE ... 3-25
3.5.5 TEMPORARILY EXITING THE HALT BUS STATE 3-26
3.5.6 EXITING HALT ... 3-27
3.6 SYSTEM DESIGN ALTERNATiVES .. 3-28
3.6.1 BUFFERING THE DATA BUS .. 3-28
3.6.2 SOFTWARE SYNCHRONIZATION ... 3-32
3.6.3 LOCKED BUS OPERATION .. 3-33
3.6.4 QUEUE STATUS OPERATION ... 3-34
3.7 MULTI-MASTER BUS SYSTEM DESIGNS 3-35
3.7.1 ENTERING BUS HOLD ... 3-35
3.7.1.1 HOLD BUS LATENCy ... ; 3-35
3.7.1.2 REFRESH OPERATION DURING A BUS HOLD 3-37
3.7.2 EXITING HOLD .. 3-38
3.8 BUS CYCLE PRIORITIES .. 3-38 . .

iv

intel .. TABLE OF CONTENTS

CHAPTER 4
PERIPHERAL CONTROL BLOCK .. 4-1

4.1 SETTING THE BASE LOCATION .. 4-1
4.2 PERIPHERAL CONTROL BLOCK REGiSTERS 4-4
4.3 RESERVED LOCATIONS AND THE NUMERICS INTERFACE 4-5

CHAPTERS
CLOCK GENERATION AND POWER MANAGEMENT 5-1

5.1
5.1.1
5.1.1.1
5.1.1.2
5.1.2
5.1.3
5.1.4
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.1.3

CLOCK GENERATION .. 5-1
CRYSTAL OSCILLATOR ... 5-1
OSCILLATOR OPERATION ... 5-1
SELECTING CRYSTALS ... 5-4
USING AN EXTERNAL OSCILLATOR .. 5-5
OUTPUT FROM THE CLOCK GENERATOR 5-6
RESET AND CLOCK SyNCHRONiZATION 5-6

POWER MANAGEMENT ... 5-9
POWER-SAVE MODE ... 5-10
ENTERING POWER-SAVE MODE .. 5-11
LEAVING POWER-SAVE MODE ... 5-11
EXAMPLE POWER-SAVE INITIALIZATION CODE 5-12

CHAPTER 6
CHIP SELECT UNIT ... : 6-1

6.1 FUNCTIONAL OVERVIEW .. 6-2
6.2 PROGRAMMING .. 6-5
6.2.1 INITIALIZATION SEQUENCE .. 6-11
6.2.2 START ADDRESS ... 6-11
6.2.3 STOP ADDRESS ... 6-12
6.2.4 BLOCK SiZE ... 6-13
6.2.5 BUS WAIT STATE AND READY CONTROL. 6-14
6.2.6 OVERLAPPING CHIP-SELECTS .. 6-14
6.2.7 MEMORY OR 1/0 BUS CYCLE DECODING 6-15
6.3 PROGRAMMING CONSiDERATIONS .. 6-15
6.4 CHIP-SELECTS AND BUS HOLD ... 6-16
6.5 EXAMPLES .. 6-17
6.5.1 EXAMPLE 1: TYPICAL SYSTEM CONFIGURATION : 6-17

v

intel .. TABLE OF CONTENTS

CHAPTER 7
REFRESH CONTROL UNIT .. 7-1

7.1
/ 7.2

7.3
7.4
7.5
7.6
7.7
7.7.1
7.7.2
7.7.2.1
7.7.2.2
7.7.2.3
7.7.3
7.8

THE ROLE OF THE REFRESH CONTROL UNIT 7-1
REFRESH CONTROL UNIT CAPABILITIES 7-2
REFRESH CONTROL UNIT OPERATION 7-2
REFRESH ADDRESSES ... 7-4
REFRESH BUS CYCLES .. 7-4
GUIDELINES FOR DESIGNING DRAM CONTROLLERS 7-5
PROGRAMMING THE REFRESH CONTROL UNIT 7-5

CALCULATING THE REFRESH INTERVAL 7-7
REFRESH CONTROL UNIT REGISTERS 7-7
REFRESH BASE ADDRESS REGiSTER 7-7
REFRESH CLOCK INTERVAL REGiSTER 7-7
REFRESH CONTROL REGISTER .. 7-9
PROGRAMMING EXAMPLE .. 7-9

REFRESH OPERATION AND BUS HOLD 7-11

CHAPTER 8
INTERRUPT CONTROL UNIT ... 8-1

8.1
8.2
8.2.1
8.2.1.1
8.2.1.1.1
8.2.1.1.2
8.2.1.2
8.2.1.2.1

8.2.1..2.2
8.3
8.3.1
8.3.2
8.3.2.1
8.3.3
8.3.3.1
8.3.4
8.3.5
8.3.6
8.3.7

8.4
8.4.1
8.4.1.1
8.4.1.2
8.4.1.3

FUNCTIONAL OVERVIEW .. 8-1
MASTER MODE ... 8-2

GENERIC FUNCTIONS IN MASTER MODE 8-2
INTERRUPT MASKING ... 8-2
GLOBAL MASKING OF INTERRUPT SOURCES 8-3
INDIVIDUAL MASKING OF INTERRUPT SOURCES 8-3
INTERRUPT PRIORITY ... 8-3
OPERATION WHEN INTERRUPT NESTING
IS NOT ENABLED .. 8-4
OPERATION WHEN NESTING INTERRUPTS 8-4

MASTER MODE OPERATION .. 8-5
TYPICAL INTERRUPT SEQUENCE .. 8-5
PRIORITY RESOLUTION ; ' .. 8-5
INTERRUPTS WHICH SHARE A SINGLE SOURCE 8-7
CASCADING WITH EXTERNAL 8~59As 8-7
SPECIAL FULLY NESTED MODE ... 8-8
!NTERRUPT ACKNOWLEDGE SEQUENCE 8-8
POLLING ... j 8-9
EDGE AND LEVEL TRIGGERING ... 8-9
ADDITIONAL LATENCY AND RESPONSE TIME
OF MASTER MODE ... 8-10

MASTER MODE INTERRUPT UNIT PROGRAMMING 8-11
INTERRUPT CONTROL UNIT REGISTER DEFINITIONS 8-11
INTERRUPT CONTROL REGISTERS .. 8-12
THE INTEHRUPT REQUEST REGiSTER 8-14
INTERRUPT MASK REGISTER .. -r 8-15

vi

intet.

8.4.1.4
8.4.1.5
8.4.1.6
8.4.1.7
8.4.1.8
8.4.2
8.4.3
8.5
8.5.2
8.5.2.1
8.5.2.2
8.5.2.3
8.5.2.4

TABLE OF CONTENTS

PRIORITY MASK REGISTER .. 8-16
IN-SERVICE REGiSTER .. 8-17
POLL AND POLL STATUS REGISTERS 8-18
END-OF-INTERRUPT REGISTER .. 8-20
INTERRUPT STATUS REGISTER .. 8-21
INTERRUPT CONTROL UNIT INITIALIZATION SEQUENCE 8-22
MASTER MODE INITIALIZATION EXAMPLE 8-23

SLAVE MODE .. 8-23
SLAVE MODE PROGRAMMING ... 8-25
INTERRUPT VECTOR REGISTER ... 8-25
END-OF-INTERRUPT REGISTER .. 8-26
OTHER REGISTERS IN SLAVE MODE 8-26
INTERRUPT VECTORING IN SLAVE MODE 8-27

CHAPTER 9
TIMER/COUNTER UNIT .. 9-1

9.1 FUNCTIONAL OVERViEW .. 9-1
9.2 PROGRAMMING THE TIMER/COUNTER UNIT.. 9-5
9.2.1 INITIALIZATION ... 9-7
9.2.2 CLOCK SOURCES .. 9-9
9.2.3 COUNTING SEQUENCE ... 9-9
9.2.3.1 RETRIGGERING .. 9-10
9.2.4 PULSED AND VARIABLE DUTY CYCLE OUTPUT 9-11
9.2.5 ENABLING/DISABLING COUNTERS .. 9-12
9.2.6 TIMER INTERRUPTS .. 9-13
9.2.7 PROGRAMMING CONSiDERATIONS .. 9-13
9.3 TIMING ... 9-13
9.3.1 INPUT SETUP AND HOLD TIMINGS .. 9-13
9.3.2 SYNCHRONIZATION AND MAXIMUM FREQUENCy 9-13
9.4 TIMER/COUNTER UNIT APPLICATION EXAMPLES 9-14
9.4.1 REAL-TIME CLOCK ... 9-14
9.4.2 SQUARE WAVE GENERATOR ... 9-17
9.4.3 DIGITAL ONE-SHOT .. 9-19

CHAPTER 10
DIRECT MEMORY ACCESS UNIT 10-1

10.1
10.1.1
10.1.1.1
10.1.1.2
10.1.2
10.1.3
10.1.4
10.1.4.1

FUNCTIONAL OVERViEW , .. 10-1
THE DMA TRANSFER , ... 10-1
DMA TRANSFER DIRECTIONS .. 10-2
BYTE AND WORD TRANSFERS .. 10-2
SOURCE AND DESTINATION POINTERS 10-3
DMA REQUESTS ... 10-3
EXTERNAL REQUESTS .. 10-3
SOURCE SYNCHRONIZATION .. 10-4

vii

intel .. TABLE OF CONTENTS

10.1.4.2 DESTINATION SYNCHRONIZATION ... 10-5
·10.1.5 INTERNAL REQUESTS ... 10-5
10.1.5.1 TIMER 2 INITIATED TRANSFERS .. 10-6
10.1.5.2 UNSYNCHRONIZED TRANSFERS ... 10-6
10.1.6 DMA TRANSFER COUNTS ... 10-6
10.1.7 TERMINATION AND SUSPENSION OF DMA TRANSFERS 10-7
10.1.7.1 TERMINATION AT TERMINAL COUNT 10-7
10.1.7.2 SOFTWARE TERMINATION .. : 10-7
10.1.7.3 SUSPENSION OF DMA DURING NMI.. 10-7
10.1.7.4 SOFTWARE SUSPENSION ... 10-7
10.1.8 DMAUNITINTERRUPTS .. 10-7
10.1.9 DMA CYCLES AND THE BIU .. 10-8
10.1.10 THE 2 CHANNEL DMA UNIT ... 10-8
10.1.10.1 DMA CHANNEL ARBITRATION .. 10-9
10.1.10.1.1 FIXED PRIORITy ... 10-9
10.1.10.1.2 ROTATING PRIORITY ... 10-9
10.2 PROGRAMMING THE DMA UNIT ... 10-10
10.2.1 DMA CHANNEL PARAMETERS ... 10-10
10.2.1.1 PROGRAMMING THE SOURCE AND

10.2.1.2
10.2.1.3
10.2.1.4
10.2.1.5
10.2.1.6
10.2.1.7
10.2.1.8
10.2.2
10.2.3
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.4

DESTINATION POINTERS , 10-10
SELECTING BYTE OR WORD SIZE TRANSFERS 10-15
SELECTING THE SOURCE OF DMA REQUESTS 10-15
ARMING THE DMA CHANNEL .. 10-15
SELECTING CHANNEL SYNCHRONIZATION 10-15
PROGRAMMING TH·E TRANSFER COUNT OPTIONS 10-15
GENERATING INTERRUPTS ON TERMINAL COUNT 10-16
SETTING THE RELATIVE PRIORITY OF A CHANNEL 10-16
SUSPENSION OF DMA TRANSFERS .. 10-17
INITIALIZING THE DMAUNIT ... 10-17

HARDWARE CONSIDERATIONS AND THE DMA UNIT 10-17
DRQ PIN TIMING REQUiREMENTS ... 10-17
DMA LATENCy : .. 10-17
DMA TRANSFER RATES .. ; ... 10-18
GENERATING A DMA ACKNOWLEDGE 10-18

DMA UNIT EXAMPLES .. 10-18

CHAPTER 11
MATH COPROCESSING ... 11-1

11.1
11.2
11.3
11.3.1
11.3.1.1
11.3.1.2
11.3.1.3
11.3.1.4

OVERVIEW OF MATH COPROCESSING 11-1
AVAI LABI L1TY OF MATH COPROCESSI NG 11-1
THE 80C187 MATH COPROCESSOR ; 11-2

80C187 INSTRUCTION SET ... 11-2
DATA TRANSFER INSTRUCTIONS ... 11-2
ARITHMETIC INSTRUCTIONS ... 11-3
COMPARISON INSTRUCTIONS ... 11-5
TRANSCENDENTAL INSTRUCTIONS 11-5

viii

inlet

11.3.1.5
11.3.1.6
11.3.2
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.5

TABLE OF CONTENTS

CONSTANT INSTRUCTIONS .. 11-6
PROCESSOR CONTROL INSTRUCTIONS 11-6
80C187 DATA TyPES .. 11-7

MICROPROCESSOR AND COPROCESSOR OPERATION 11-7
CLOCKING THE 80C187 ... 11-7
PROCESSOR BUS CYCLES ACCESSING THE 80C187 11-8
SYSTEM DESIGN TIPS ... 11-10
EXCEPTION TRAPPING ... 11-11

EXAMPLE MATH COPROCESSOR ROUTINES 11-11

CHAPTER 12:
ONCETM MODE .. 12-1

12.1 ENTERING/LEAVING ONCE MODE ... 12-1

APPENDIX A
80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS A-1

A.1
A.1.1
A.1.2
A.1.3
A.2
A.2.1
A.2.2
A.2.3
A.2.3.1
A.2.3.2

80C186 INSTRUCTION SET ADDITIONS A-1
DATA TRANSFER INSTRUCTIONS ... A-1
STRING INSTRUCTIONS .. A-1
HIGH LEVEL INSTRUCTIONS .. A-2

80C186 INSTRUCTION SET ENHANCEMENTS A-6
DATA TRANSFER INSTRUCTIONS ... A-7
ARITHMETIC INSTRUCTIONS ... A-8
BIT MANIPULATION INSTRUCTIONS .. A-8
SHIFT INSTRUCTIONS ... A-8
ROTATE INSTRUCTIONS ... A-9

APPENDIX B
INPUT SyNCHRONiZATION ... B-1

B.1 WHY SYNCHRONIZERS ARE REQUIRED B-1
B.2 ASYNCHRONOUS PINS ... B-2

APPENDIX C ... C-1

APPENDIX D
80C186XUC188XL COMPATIBILITY WITH THE 80C186/C188 0-1

0.1 DC SPECIFICATION DIFFERENCES ... 0-1
0.1.1 VIH SPECIFICATIONS ... 0-1

ix

D.1.2
D.1.3
D.2
D.2.1
D.2.2
D.2.3
D.2.4
D.2.5
D.3
D.3.1
D.3.2
D.3.3
D.3.4
D.3.5
D.3.6

TABLE OF CONTENTS

Icc SPECiFiCATIONS .. D-2
Vcc SPECIFICATIONS .. D-2

AC SPECIFICATION DIFFERENCES ... D-2
CONTROL LOGIC CONSIDERATIONS D-3
ADDRESS ANDDATA VALID CONSiDERATIONS D-4
BUFFERED DESIGN CONSiDERATIONS D-4
X1 CONSiDERATIONS .. D-4
CLKOUT HIGH/LOW TIME CONSIDERATIONS D-4

ERRATA COMPARISON ... D-4
["(JCl{/INTA CYCLES ... D-4
FWAITIERROR .. D-5
VIH ON SRDY AND ARDY INPUT PINS D-5
INTERRUPT STATIS REGiSTER .. D-5
BUS PREEMPTION ... D-5
80C188 RFSH PIN ... D-6

x

inlet. TABLE OF CONTENTS

Figures

1.1 Comparison of 80C186 Modular Core Family Products 1-2
2.1 Simplified Functional Block Diagram of the 80C186

Modular Core Family CPU ... 2-2
2.2 Physical Address Generation ... 2-3
2.3 General Registers ... 2-4
2.4 Segment Registers ... 2-6
2.5 Processor Status Word .. 2-8
2.6 Segment Locations in Physical Memory .. 2-9
2.7 Currently Addressable Segments .. 2-10
2.8 Logical and Physical Address .. 2-11
2.9 Dynamic Code Relocation .. 2-13
2.10 Stack Operation .. 2-15
2.11 Flag Storage Format... .. 2-18
2.12 Memory Address Computation ... 2-25
2.13 Direct Addressing ... 2-25
2.14 Register Indirect Addressing .. 2-26
2.15 Based Addressing .. 2-26
2.16 Accessing a Structure with Based Addressing 2-27
2.17 Indexed Addressing .. 2-28
2.18 Accessing an Array with Indexed Addressing 2-28
2.19 Based Index Addressing .. 2-29
2.20 Accessing a Stacked Array with Based Index Addressing 2-30
2.21 String Operand ... 2-31
2.22 I/O Port Addressing .. 2-31
2.23 80C186 Modular Core Family Supported Data Types 2-33
2.24 Interrupt Control Unit .. 2-34
2.25 Interrupt Vector Table ... 2-35
2.26 Interrupt Sequence ... 2-36
2.27 Interrupt Response Factors .. 2-40
2.28 Simultaneous NMI and Exception .. 2-41
2.29 Simultaneous NMI and Single Step Interrupts 2-42
2.30 Simultaneous NMI, Single Step and Maskable Interrupt 2-43
3.1 Physical Data Bus Models .. 3-2
3.2 16-Bit Data Bus Byte Transfers .. 3-3
3.3 16-Bit Data Bus Even Word Transfers ... 3-3
3.4 16-Bit Data Bus Odd Word Transfers .. 3-4
3.5 8-Bit Data Bus Word Transfers .. 3-5
3.6 Typical Bus Cycle ... 3-7
3.7 T -State Relation to CLKOUT .. 3-7
3.8 BIU State Diagram .. 3-8
3.9 T-State and Bus Phases .. 3-8
3.10 Address/Status Signal Relationships ... 3-9
3.11 Demultiplexing Address Information .. 3-10
3.12 Data Transfer Signal Relationships .. 3-11
3.13 Typical Bus Cycle With Wait States ... 3-12

xi

inlet TABLE OF CONTENTS

3.14 ARDYand,SRDY Pin Block Diagram ... 3-13
3.15 Generating a Normally Not-Ready Signal .. 3-13
3.16 Generating a Normally Ready Signal. .. 3-14
3.17 Normally Not-Ready System Timing .. 3-15
3.18 Normally Ready System Timing ... 3-16
3.19 Typical Read Bus Cycle ... 3-18
3.20 Read-Only Device Interface ... 3-20
3.21 Typical Write Bus Cycle ... 3-21
3.22 16-Bit Bus ReadlWrite Device Interface ... 3-22
3.23 Interrupt Acknowledge Bus Cycle .. 3-24
3.24 Typical ~2C59A Interface ... 3-25
3.25 HALT Bus Cycle ... 3-27
3.26 Returning to HALT After a Refresh Bus Cycle 3-28
3.27 Returning to HALT After a DMA Bus Cycle 3-29
3.28 Returning to HALT After a HOLD/HLDA Bus Exchange 3-29
3.29 Exiting HALT ... 3-30
3.30 DEN and DTIR Timing Relationship .. 3-31
3.31 Buffered AD Bus System .. 3-31
3.32 Qualifying DEN with Chip-Selects .. 3-32
3.33 Queue Status Timing .. 3-34
3.34 Timing Sequence Entering HOLD .. 3-36
3.35 Refresh Request During Bus Hold ... 3-37
3.36 Latching HLDA ... 3-38
3.37 Exiting HOLD .. 3-40
4.1 PCB Relocation Register .. 4-3
5.1 Clock Generator ... 5-1
5.2 Ideal Operation of Pierce Oscillator .. 5-2
5.3 Crystal Connections to Microprocessor ... 5-3
5.4 Equations for Crystal Calculations ... 5-3
5.5 Simple RC Circuit for Powerup Reset .. 5-6
5.6 Cold Reset Waveform .. 5-7
5.7 Warm Reset Waveform .. 5-8
5.8 Clock Synchronization at Reset ... 5-9
5.9 Power-Save Register ... 5-10
5.10 Power-Save Clock Transition ... 5-11
6.1 Common Chip-Select Generation Methods 6-1
6.2 Chip-Select Block Diagram .. 6-3
6.3 Chip-Select Relative Timings ... 6-4
6.4 UCS Reset Configuration ... """ ,,.6-5
6.5 UMCS Register Definition .. 6-6
6.6 LMCS Register Definition ... 6-7
6.7 MMCS Register Definition .. 6-8
6.8 MPCS Register Definition ... 6-9
6.9 PACS Register Definition ... 6-10
6.10 MCS Active Range ... 6-13
6.11 Wait State and Ready Control Functions ... 6-14
6.12 Using Chip-Selects During HOLD .. 6-16

xii

6.13
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

~ 8.1
8.2
8.3
8.4
8.5

8.6

8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
9.1
9.2
9.3(a)
9.3(b)
9.4
9.5
9.6
9.7
9.8
9.9
10.1
10.2
10.3
10.4

TABLE OF CONTENTS

Typical System ... 6-17
Refresh Control Unit Block Diagram .. 7-1
Refresh Control Unit Operation Flow Chart 7-3
Refresh Address Formation ... 7-3
Suggested DRAM Control Signal Timing Relationships 7-6
Formula for Calculating Refresh Interval for RFTIME Register 7-6
Refresh Base Address Register ... 7-8
Refresh Clock Interval Register .. 7-8
Refresh Control Register .. 7-9
Regaining Bus Control to Run a DRAM Refresh Bus Cycle 7-12
Interrupt Control Unit Block Diagram ... 8-2
Using 8259As in Cascade Mode .. 8-8
Interrupt Control Unit Latency and Response Time 8-10
Interrupt Control Register Template for Internal Sources 8-12
Interrupt Control Register Template for
Non-Cascadeable Interrupt Pins .. 8-13
Interrupt Control Register Template for Cascadeable
Interrupt Pins .. 8-14
Interrupt Request Register ... 8-15
Interrupt Mask Register .. 8-16
Priority Mask Register .. 8-17
In-Service Register ... 8-18
Poll Register ... 8-19
Poll Status Register .. 8-20
End-Of-Interrupt Register ... 8-21
Interrupt Status Register .. 8-22
Interrupt Control Unit In Slave Mode .. 8-24
Interrupt Sources In Slave Mode .. 8-24
Interrupt Vector Register .. 8-26
End-Of-Interrupt Register in Slave Mode ... 8-27
Other Registers In Slave Mode .. 8-27
Interrupt Vectoring In Slave Mode .. 8-28
Slave Mode Interrupt Response Time .. 8-29
Timer/Counter Unit Block Diagram ... 9-1
Counter Element Multiplexing and Timer Input Synchronization 9-2
Timers 0 and 1 Flow Chart ... 9-3
Timers 0 and 1 Flow Chart (Continued) ... 9-4
Timer/Counter Unit Output Modes ... 9-5
Timer 0 and Timer 1 Control Registers .. 9-6
Timer 2 Control Register .. 9-7
Timer Count Registers ... 9-8
Timer Maxcount Compare Registers ... 9-8
TxOUT Signal Timing ... 9-12
Typical DMA Transfer ... 10-2
DMA Request Minimum Response Time ... 10-4
Source Synchronized Transfers ... 10-5
Destination Synchronized Transfers .. 10-6

xiii

10.5
10.6
10.7
10.8
10.9
10.10
10.11(a)
10.11(b)
10.12
11.1
11.2
11.3
11.4
12.1
A1
A2
A3
A4
A5
A6
B.1

TABLE OF CONTENTS

Two Channel DMA Unit.. .. 10-8
Examples of DMA Priority .. 10-10
DMA Source Pointer (High Order Bits) .. 10-11
DMA Source Pointer (Low Order Bits) ... 10-11
DMA Destination Pointer (High Order Bits) 10-12
DMA Destination Pointer (Low Order Bits) 10-13
DMA Control Register Bit Positions .. 10-13
DMA Channel Control Register Bit Descriptions 10-14
Transfer Count Register '" 10-16
80C187-Supported Data Types .. 11-8
80C186 Modular Core Family/80C187 System Configuration ., 11-9
80C187 Configuration with Partially Buffered Bus 11-12
80C187 Exception Trapping via Processor Interrupt Pin 11-13
Entering/Leaving ONCE Mode ... 12-1
Formal Definitionof ENTER ... A-3
Variable Access in Nested Procedures .. A-3
Stack Frame for MAIN at Level 1 ... A-4
Stack Frame for Procedure A at Level 2 .. A-5
Stack Frame for Procedure B at Level 3 Called from A A-6
Stack Frame for Procedure C at Level 3 Called from B A-7
Input Synchronization Circuit... ... B-1

Tables

2.1 Implicit Use of General Registers ... 2-5
2.2 Logical Address Sources .. 2-11
2.3 Data Transfer Instructions .. 2-17
2.4 Arithmetic Instructions .. 2-17
2.5 Arithmetic Interpretation of 8-Bit Numbers 2-18
2.6 Bit Manipulation Instructions .. 2-21
2.7 String Instructions ... 2-21
2.8 String Instruction Register and Flag Use ... 2-21
2.9 Program Transfer Instructions ... 2-21
2.10 Interpretation of Conditional Transfers ... 2-22
2.11 Processor Control Instructions ... 2.23
3.1 Bus Cycle Types .. 3-10
3.2 Read Bus Cycle Types ... 3-19
3.3 Read Cycle Critical Timing Parameters ... 3-19
3.4 'vVrite Bus Cycle Types ... 3-22
3.5 Write Cycle Critical Timing Parameters ... 3-23
3.6 HALT Bus Cycle Pin States .. 3-26
3.7 Queue Status Bit Encoding .. 3-34
3.8 Signal Condition Entering HOLD .. 3-35
4.1 Peripheral Control Block Registers .. 4-2
5.1 Suggested Values for Inductor L1 in Third Overtone

Oscillator Circuit ... 5-4
6.1 Chip-Select Unit Registers ... 6-5

xiv

6.2
6.3
7.1
8.1
8.2
8.3
8.4
8.5
9.1
9.2
11.1
11.2
11.3
11.4
11.5
11.6
11.7
C.1
C.2
C.3

TABLE OF CONTENTS

MMCS Programming Restrictions .. 6-12
pes Chip-Selects Active Range .. 6-12
Identification of Refresh Bus Cycles .. 7-4
Default Interrupt Priorities ... 8-4
Fixed Interrupt Type ... 8-9
Interrupt Control Unit Registers in Master Mode 8-11
Interrupt Control Unit Registers In Slave Mode 8-25
Slave Mode Interrupt Type Bits .. 8-25
Timer 0 and 1 Clock Sources ... 9-9
Timer Retriggering .. 9-11
80C187 Data Transfer Instructions .. 11-3
80C187 Arithmetic Instructions .. 11-4
80C187 Comparison Instructions ... 11-5
80C187 Transcendental Instructions ... 11-5
80C187 Constant Instructions .. 11-6
80C187 Processor Control Instructions ... 11-6
80C187110 Port Assignments .. 11-10
Instruction Set Summary .. C-1
Machine Instruction Decoding Guide ... C-7
Mnemonic Encoding Matrix .. C-16

Examples

5.1 Power-Save Initialization Code .. 5-13
6.1 Chip-Select Unit Initialization Code .. 6-18
7.1 Refresh Control Unit Initialization Code ... 7-10
8.1 Initializing The Interrupt Control Unit.. .. 8-23
9.1 Real-Time Clock ... 9-14
9.2 Square Wave Generator .. 9-18
9.3 Digital One Shot ... 9-19
10.1 DMA Unit Initialization .. 10-19
10.2 Timed DMA Transfers .. 10-24
11.1 Initialization Sequence for 80C187 Math Coprocessor 11-14
11.2 Floating Point Math Routine Using FSINCOS 11-15

xv

Introduction 1

CHAPTER 1
INTRODUCTION

The 8086 microprocessor was first introduced in 1978 and gained rapid support as the
microcomputer engine of choice. There are literally millions of 8086/8088 based systems in
the world today. The amount of software written for the 8086/8088 is rivaled by no other
architecture.

By the early 1980's, however, it was clear that a replacement for the 8086/8088 was
necessary. An 8086/8088 system required dozens of support chips to implement even a
moderately complex design. Intel recognized the need to integrate commonly used system
peripherals onto the same silicon die as the CPU. In 1982 Intel addressed this need by
introducing the 80186/80188 family of embedded microprocessors. The original 80186/80188
integrated an enhanced 808618088 CPU with six commonly used system peripherals. A
parallel effort within Intel also gave rise to the 80286 microprocessor in 1982. The 80286
began the trend toward very high performance "x86" compatible CPUs that today includes the
i386™ and i486™ microprocessors.

As technology advanced and turned toward small geometry CMOS processes, it became clear
that a new 80186 was needed. In 1987 Intel announced the second generation of the 80186
family: the 80C186/C188. The 80C186 family is pin compatible with the 80186 family while
adding an enhanced feature set. The high performance CHMOS III process allowed the
80C186 to run at twice the clock rate of the NMOS 80186 while consuming less than one
quarter the power.

The 80186 family took another major step in 1990 with the introduction of the 80C186EB
family. The 80C186EB heralded many changes for the 80186 family. First, the enhanced
8086/8088 CPU was redesigned as a static, stand alone module known as the 80C186 Modular
Core. Second, the 80186 family peripherals were also redesigned as static modules with
standard interfaces. The goal behind this redesign effort was to give Intel the capability to
rapidly proliferate the 80186 family in order to provide solutions for an even wider range of
customer applications.

The 80C186EB/C188EB was the first product to use the new modular capability. The
80C186EB/C188EB includes a different peripheral set than the original 80186 family. Power
consumption was dramatically reduced as a direct result of the static design, power
management features and advanced CHMOS IV process. The 80C186EB/C188EB operates
down to 2.7 volts to directly support portable applications. This makes it the first high
integration microprocessor to work directly off of two standard cell batteries. The
80C186EB/C188EB has found acceptance in a wide array of portable equipment ranging from
cellular phones to personal organizers.

In 1991 the 80C186 Modular Core family was extended again with the introduction of three
new products: the 80C186XL, the 80C186EA and the 80C186EC. The 80C186XLlC188XL is
a higher performance, lower power replacement for the 80C186/C188. The 80C186EAJ
C188EA combines the feature set of the 80C186 plus new power management features for

1-1

INTRODUCTION

power critical applications. The 80C186ECIC188EC offers the highest level of integration of
any of the 80C186 Modular Core family products with a total of 14 on-chip peripherals (see
Figure 1.1).

The 80C186 family of products are the direct result of ten years of Intel development. They
offer the designer the peace of mind of a well established architecture with the benefits of state
of the art technology.

FEATURE

~~~:I~:~::;!~~~::~ 
i POWERDOWN AND IDLE MODES 

80C187 INTERFACE 

ONCE MODE 

INTERRUPT CONTROL UNIT 

TIMER/COUNTER UNIT 

CHIP-SELECT UNIT 

DMAUNIT 

SERIAL COMMUNICATIONS UNIT 

REFRESH CONTROL UNIT 

WATCHDOG TIMER UNIT 

1/0 PORTS 

Figure 1.1. Comparison of 80C186 Modular Core Family Products 

1.1 DIFFERENCES BETWEEN THE 80C186 AND THE 80C186XL PRODUCT 
FAMiliES 

As described earlier in this chapter, the 80C186XL and 80C188XL are functionally identical 
to the 80C186 and 80C188 respectively. Below is a list of the key differences: 

I. The 80C186/C188 were developed on a 1.5 micron CMOS process, while the 
80C 186XLlC 188XL were developed on a 1.0 micron CMOS process. 

1-2 



INTRODUCTION 

2. The 80C186/C188 are dynamic (i.e. requires a minimum operating frequency), while the 
80C 186XL/C 188XL are static (i.e. minimum operating frequency is DC). 

3. The maximum operating frequency of the 80C186/C188 is 16 MHz, while the 
80C 186XL/C 188XL operate up to 20 MHz. 

4. The 80C186XL/C188XL consume lower current than a 80C186/C188 operating at the 
same frequency. 

5. The 80C186XL/C188XL have a differentiated set of A.c. and D.C. specifications over the 
80C186/Cl88 due to its increased performance (see Appendix D for details). 

6. The 80C I 86XL/C 188XL fix all of the errata documented on the 80C I 86/C 188. 

In most applications, the 80C186XL/C188XL can replace the 80C186/C188 without any 
modifications to board layout, hardware design or device speed selection. However, since 
there are some A.C. and D.C. specification changes, it is recommended that a thorough design 
analysis be completed to ensure reliable system operation. 

1.2 HOW TO USE THIS MANUAL 

Throughout this manual you will come across phrases such as "80C186 Modular Core 
Family" or "80C188 Modular Core" as well as references to specific products such as 
"80C188EA". Each of these terms refers to a specific set of 80Cl86 family products. The 
phrases and the products they refer to are as follows: 

80C186 Modular Core Family: This phrase refers to any device that uses the 
modular 80C186/C188 CPU core architecture. At this time these include: 
80C186EAIC188EA, 80C 186EB/C 188EB, 80C186ECIC188EC and 80C186XL/ 
C188XL. 

80C186 Modular Core: Without the word family, this refers to just the 16-bit bus 
members of the 80C186 Modular Core Family. 

80C188 Modular Core: This phrase refers to the 8-bit bus products. 

Specific Product References: For example the phrase "On the 80C188EC ... " refers 
strictly to the 80C188EC and not to any other device. 

Each chapter covers a specific section of the device beginning with the CPU core. Each 
peripheral chapter includes programming examples intended to aid in your understanding of 
device operation. Please read the comments carefully, as not all of the examples include all of 
the code necessary for a specific application. 

This user's guide is a supplement to the device data sheet. Specific timing values are not 
discussed in this guide. When designing a system, always consult the most recent version of 
the device data sheet for up to date specifications. 

1-3 





Overview of the 2 
80C186 Family 
Modular Microprocessor 
Core Architecture 





CHAPTER 2 
OVERVIEW OF THE 80C186 FAMILY MODULAR 

MICROPROCESSOR CORE ARCHITECTURE 

The 80C186 Modular Microprocessor Core shares a common base architecture with the 8086, 
8088, 80186, 80188, 80286, i386™ and i486™ processors. The 80C186 Modular Core 
maintains full object code compatibility with the 8086/8088 family of 16-bit microprocessors, 
while adding hardware and software performance enhancements. Most instructions require 
fewer clocks to execute on the 80C 186 Modular Core because of hardware enhancements in 
the Bus Interface Unit and the Execution Unit. There are several additional instructions which 
simplify programming and reduce code size (see 80CI86 Instruction Set Additions and 
Extensions). 

2.1. ARCHITECTURAL OVERVIEW 

The 80C186 Modular Microprocessor Core incorporates two separate processing units: an 
Execution Unit (EU) and a Bus Interface Unit (BIU). The Execution Unit is functionally 
identical among all family members. The Bus Interface Unit is configured for a 16-bit external 
data bus for the 80C186 core and an 8-bit external data bus for the 80C188 core. The two units 
interface via an instruction prefetch queue. 

The Execution Unit executes instructions and the Bus Interface Unit fetches instructions, reads 
operands and writes results. Whenever the Execution Unit requires another opcode byte, it 
takes the byte out of the prefetch queue. The two units can operate independently of one 
another and are able, under most circumstances, to overlap instruction fetches and execution. 

The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU). The Arithmetic 
Logic Unit performs 8-bit or 16-bit arithmetic and logical operations. It provides for data 
movement between registers, memory and liD space. 

The 80C186 Modular Core family CPU allows for high speed data transfer from one area of 
memory to another using string move instructions and between an liD port and memory using 
block liD instructions. The CPU also provides many conditional branch and control 
instructions. 

The 80C186 Modular Core architecture features 14 basic registers grouped as general 
registers, segment registers, pointer registers and status and control registers. The four 16-bit 
general purpose registers (AX, BX, CX and DX) may be used as operands for most arithmetic 
operations as either 8- or 16-bit units. The four 16-bit pointer registers (SI, DI, BP and SP) 
may be used in arithmetic operations and in accessing memory-based variables. Four 16-bit 
segment -registers (CS, DS, SS and ES) allow simple memory partitioning to aid modular 
programming. The status and control registers consist of an Instruction Pointer (lP) and the 
Processor Status Word register containing flag bits. Figure 2.1 is a simplified CPU block 
diagram. 

2-1 



intet OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

GENERAL 

REGISTERS 

AH AL 

BH BL 
CH CL 

DH DL 

ADDRESS BUS (20 BITS) 

SP C S 

SP D S 

rn ss 

~ ES 

IP 

ALU DATA BUS 

(16 BITS) 

BUS 
EXTERNAL 

CONTROL 
BUS 

<I( ~ 

EXECUTION UNIT 

(EU) 

BUS INTERFACE UNIT 

(BIU) 

Figure 2.1. Simplified Functional Block Diagram of the 
80C186 Modular Core Family CPU 

2.1.1. EXECUTION UNIT 

The Execution Unit executes all instructions, provides data and addresses to the Bus Interface 
Unit and manipulates the general registers and the Processor Status Word. The l6-bit ALU 
within the Execution Unit maintains the CPU status and control flags and manipulates the 
general registers and instruction operands. All registers and data paths in the Execution Unit 
are 16 bits wide for fast internal transfers. 

2-2 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

The Execution Unit does not connect directly to the system bus. It obtains instructions from a 
queue maintained by the Bus Interface Unit. When an instruction requires access to memory 
or a peripheral device, the Execution Unit requests the Bus Interface Unit to read and write 
data. Addresses manipulated by the Execution Unit are 16 bits wide. The Bus Interface Unit, 
however, performs an address calculation which allows the Execution Unit to access the full 
megabyte of memory space. 

For the Execution Unit to execute an instruction, it must fetch the object code byte from the 
instruction queue and then execute the instruction. If the queue is empty when the Execution 
Unit is ready to fetch an instruction byte, the Execution Unit waits for the instruction byte to 
be fetched by the Bus Interface Unit. 

2.1.2. BUS INTERFACE UNIT 

The 80C186 Modular Core and 80C188 Modular Core Bus Interface Units are functionally 
identical. They are implemented differently to match the structure and performance 
characteristics of their respective system buses. The Bus Interface Unit executes all external 
bus cycles. This unit consists of the segment registers, the Instruction Pointer, the instruction 
code queue and several miscellaneous registers. The Bus Interface Unit transfers data to and 
from the Execution Unit on the ALU data bus. 

The Bus Interface Unit generates a 20-bit physical address in a dedicated adder. The adder 
shifts a 16-bit segment value left 4 bits and then adds a 16-bit offset. This offset is derived 
from combinations of the pointer registers, the Instruction Pointer and immediate values (see 
Figure 2.2). Any carry from this addition is ignored. 

SHIFT LEFT 4 BITS 

....-_2 ___ :-,1 SEGMENT BASE} 

OFFSET 
11 

f 
2 3 

19 t 
+ a a 2 2 

15 t a 

11 2 3 

19 t 
6 2 1 PHYSICAL ADDRESS 

~------,------o~ 

TO MEMORY 

Figure 2.2. Physical Address Generation 

2-3 

LOGICAL 

ADDRESS 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

During periods when the Execution Unit is busy executing instructions, the Bus Interface Unit 
sequentially prefetches instructions from memory. As long as the prefetch queue is partially 
full, the Execution Unit fetches instructions. 

2.1.3. GENERAL REGISTERS 

The 80C186 Modular Core family CPU has eight 16-bit general registers (see Figure 2.3). The 
general registers are subdivided into two sets of four registers. These sets are the data registers 
(also called the H & L group for high and low) and the pointer and index registers (also called 
the P & I group). 

DATA 
GROUP 

POINTER 
AND 

INDEX 
GROUP 

I 

J 

H L 
15 o 

AX 
M ___________________ ., ____________________ _ ACCUMULATOR 

AH AL 

BX 
--------------------.,--------------------- BASE 

BH BL 
CX 

--------------------., --------------------- COUNT CH CL 

OX 
DATA --------------------.,---------------------

DH DL 

SP STACK POINTER 

BP BASE POINTER 

SI SOURCE INDEX 

01 I DESTINATION INDEX 

Figure 2.3. General Registers 

2-4 



intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

The data registers may be addressed by their upper or lower halves. Each data register can be 
used interchangeably as a 16-bit register or two 8-bit registers. The pointer registers are always 
accessed as 16-bit values. The CPU can use data registers without constraint in most 
arithmetic and logic operations. Arithmetic and logic operations can also use the pointer and 
index registers. Some instructions use certain registers implicitly (see Table 2.1), allowing 
compact encoding. 

Table 2.1. Implicit Use of General Registers 

REGISTER OPERATIONS 
AX Word Multiply, Word Divide, Word 110 

AL Byte Multiply, Byte Divide, Byte 110, Translate, 
Decimal Arithmetic 

AH Byte Multiply, Byte Divide 

BX Translate 

CX String Operations, Loops 

CL Variable Shift and Rotate 

DX Word Multiply, Word Divide, Indirect 110 

SP Stack Operations 

SI String Operations 

DI String Operations 

The contents of the general purpose registers are undefined following a processor reset. 

2.1.4. SEGMENT REGISTERS 

The 8OC186 Modular Core family memory space is one megabyte in size and divided into 
logical segments of up to 64 Kbytes each. The CPU has direct access to four segments at a 
time. The segment registers contain the base addresses (starting locations) of these memory 
segments (see Figure 2.4). The CS register points to the current code segment, which contains 
instructions to be fetched. The SS register points to the current stack segment, which is used 
for all,stack operations. The DS register points to the currerttdata segment, which generally 
contains program variables. The ES register points to the current extra segment, typically used 
for data storage. Programs can access and manipulate the segment registers with several 
instructions. 

The CS register initializes to OFFFFH and the DS, ES and SS registers initialize to OOOOH. 

2-5 



intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

15 o 

CS CODE SEGMENT 

DS DATA SEGMENT 

SS STACK SEGMENT 

ES EXTRA SEGMENT 

Figure 2.4. Segment Registers 

2.1.5. 'INSTRUCTION POINTER 

The Bus Interface Unit updates the 16-bit Instruction Pointer (IP) register so it contains the 
offset of the next instruction to be fetched. Programs do not have direct access to the 
Instruction Pointer, but it may change, be saved or be restored as a result of program 
execution. For example, if the Instruction Pointer is saved on the stack, it is first automatically 
adjusted to point to the next instruction to be executed. 

Reset initializes the Instruction Pointer to OOOOH. The CS and IP values comprise a starting 
execution address of OFFFFOH (see Section 2.1.8 for a description of address formation). 

2.1.6. FLAGS 

The 80Cl86 Modular Core family has six status flags (see Figure 2.5) that the Execution Unit 
posts as the result of arithmetic or logical operations. Program branch instructions allow a 
program to alter its execution depending on conditions flagged b):' a prior operation. Different 
instructions affect the status flags differently, generally reflecting the following states: 

• If the Auxiliary Flag (AF) is set, there has been a carry out from the low nibble into the 
high nibble or a borrow from the high nibble into the low nibble of an 8-bit quantity (low­
order byte of a 16-bit quantity). This flag is used by decimal arithmetic instructions. 

• If the Carry Flag (CF) is set, there has been a carry out of or a borrow into the high-order 
bit of the instruction result (8- or 16-bit). This flag is used by instructions that add or 
subtract multibyte numbers. Rotate instructions can also isolate. a bit in memory or a 
register by placing it in the Carry Flag. 

2-6 



in1:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

• If the Overflow Flag (OF) is set, an arithmetic overflow has occurred. A significant digit 
has been lost because the size of the result exceeded the capacity of its destination 
location. An Interrupt On Overflow instruction is available that will generate an interrupt 
in this situation. 

• If the Sign Flag (SF) is set, the high-order bit of the result is a 1. Since negative binary 
numbers are represented in standard two's complement notation, SF indicates the sign of 
the result (0 = positive, 1 = negative). 

• If the Parity Flag (PF) is set, the result has even parity, an even number of 1 bits. This flag 
can be used to check for data transmission errors. 

• If the Zero Flag (ZF) is set, the result of the operation is zero. 

Additional control flags (see Figure 2.5) can be set or cleared by programs to alter processor 
operations: 

• Setting the Direction Flag (DF) causes string operations to auto-decrement. Strings are 
processed from the high address to the low address or "right to left". Clearing DF causes 
string operations to auto-increment on process strings "left to right". 

• Setting the Interrupt Enable Flag (IF) allows the CPU to recognize maskable external or 
internal interrupt requests. Clearing IF disables these interrupts. The Interrupt Enable Flag 
has no effect on software interrupts or non-maskable, interrupts. 

• Setting the Trap Flag (TF) bit puts the processor into single-step mode for debugging. In 
this mode, the CPU automatically generates an interrupt after each instruction. This 
allows a program to be inspected instruction by instruction during execution. 

Both the status and control flags are contained in a l6-bit Processor Status Word (see Figure 
2.5). Reset initializes the Processor Status Word to OFOOOH. 

2.1.7. MEMORY SEGMENTATION 

Programs for the 80Cl86 Modular Core family view the one megabyte memory space as a 
group of user-defined segments. A segment is a logical unit of memory that may be up to 64 
Kbytes long. Each segment is composed of contiguous memory locations. Segments are 
independent and separately-addressable. Software assigns every segment a base address 
(starting location) in memory space. All segments begin on l6-byte memory boundaries. 
There are no other restrictions on segment locations. Segments may be adjacent, disjoint, 
partially overlapped or fully overlapped (see Figure 2.6). A physical memory location may be 
mapped into (covered by) one or more logical segments. 

2-7 



int:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Register Name: 
Register Mnemonic: 
Register Function: 

Processor Status Word 
PSW (FLAGS) 
Posts CPU status information. 

o 
o D ITS Z 
F F F F F F 

BIT RESET 
MNEMONIC BIT NAME STATE FUNCTION 

OF Overflow Flag 0 If OF is set, an arithmetic overflow has 
occurred. 

OF Direction Flag 0 If OF is set, string instructions are processed 
high address to low address. If OF is clear, 
strings are processed low address to high 
address. 

IF Interrupt 0 If IF is set, the CPU will recognize maskable 
Enable Flag interrupt requests. If IF is clear, maskable 

interrupts are ignored. 

TF Trap Flag 0 If TF is set, the processor will enter single-step 
mode. 

SF Sign Flag 0 If SF is set, the high-order bit of the result of an 
operation is 1, indicating it is negative. 

ZF Zero Flag 0 If ZP is set, the result of an operation is zero. 

AF Auxiliary 0 If AF is set, there has been a carry from the low 
Carry Flag nibble to the high or a borrow from the high 

nibble to the low nibble of an 8-bit quantity. 
Used in BCO operations. 

PF Parity Flag 0 If PF is set, the result of an operation has even 
parity. 

CF Carry Flag 0 If CF is set, there has been a carry out of, or a 
borrow into, the high-order bit of the result of an 
instruction. 

NOTE: Reserved register bits are shown with gray shading. 

Figure 2.5. Processor Status Word 

2·8 



intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

FULLY 
OVERLAPPED 

PARTLY ~I SEGMENT D 
OVERLAPPED __ \1-: -------' 

CONTIGUOUS ~ SEGMENT C 

~~! 
SEGMENT A I SEGME~TB 

OH 10000H 20000H 

DISJOINT 

30000H 

Figure 2.6. Segment Locations in Physical Memory 

LOGICAL 
SEGMENTS 

The four segment registers point to four "currently addressable" segments (see Figure 2.7). 
The currently addressable segments provide a work space consisting of 64 Kbytes for code, a 
64 Kbytes for stack and 128 Kbytes for data storage. Programs access code and data in another 
segment by updating the segment register to point to the new segment. 

2.1.8. LOGICAL ADDRESSES 

It is useful to think of every memory location as having two kinds of addresses,. physical and 
logical. A physical address is a 20-bit value that identifies a unique byte location in the 
memory space. Physical addresses range from OH to OFFFFFH. All exchanges between the 
CPU and memory use physical addresses. 

Programs deal with logical rather than physical addresses. Program code can be developed 
without prior knowledge of where the code will be located in memory. A logical address 
consists of a segment base value and an offset value. For any given memory location, the 
segment base value locates the first byte of the segment. The offset value represents the 
distance, in bytes, of the target location from the beginning of the segment. Segment base and 
offset values are unsigned 16-bit quantities. Many different logical addresses can map to the 
same physical location. In Figure 2.8, physical memory location 2C3H is contained in two 
different overlapping segments, one beginning at 2BOH and the other at 2COH. 

2-9 



int:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

FFFFFH ,--

A 

r--

B 

DATA: DS: B ~--- ->'-- [j 
CODE: CS: E ~--l ,--

0-, 1 D 
STACK: SS: 1 f--

h 1 1 E 

tJ EXTRA: ES: 1 l " 
1 1 

, 
,--

1 1 
G 

H 
1 1_-

'--

1 
---> r--

,--

1 I 
J 

1 '--

---- ~ f--

K 

'--

OH 

Figure 2.7. Currently Addressable Segments 

The segment register is automatically selected according to the rules in Table 2.2~ All 
information in one segment type generally shares the same logical attributes (e.g., code or 
data). This leads to programs which are shorter, faster and better structured. 

The Bus Interface Unit must obtain the logical address before generating the physical address. 
The logical address of a memory location can come from different sources, depending on the 
type of reference that is being made (see Table 2.2). 

Segment registers always hold the segment base addresses. The Bus Interface Unit determines 
which segment register contains the base address according to the type of memory reference 
made. However, the programmer can explicitly direct the Bus Interface Unit to use any 
currently addressable segment (except for the destination operand of a string instruction). In 
assembly language, this is done by preceding an instruction with a segment override prefix. 

2-10 



intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

PHYSICAL 
ADDRESS 

LOGICAL 

ADDRESSES 

f 

\ 

SEGMENT 

BASE 

SEGMENT 

BASE 

t 
OFFSET 

(3H) 
I 
~ 

'-" 

... 
~~ 

,. 

OFFSET 

(13H) 

.... ,. 

Figure 2.8. Logical and Physical Address 

Table 2.2. Logical Address Sources 

DEFAULT ALTERNATE 
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT 

BASE BASE 

Instruction Fetch CS NONE 

Stack Operation SS NONE 

Variable (except following) OS CS,ES,SS 

String Source OS CS,ES,SS 

String Destination ES NONE 

BP Used As Base Register SS CS, OS, ES 

2-11 

'-" 

IP 

SP 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

C4H 

C3H 

C2H 

C1H 

COH 

BFH 

BEH 

BDH 

BCH 

BBH 

BAH 

B9H 

BBH 

B7H 

B6H 

B5H 

B4H 

B3H 

B2H 

B1H 

BOH 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

OFFSET 

Effective Address 

SI 

01 

Effective Address 



intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Instructions are always fetched from the current code segment. The IP register contains the 
instruction's offset from the beginning of the segment. Stack instructions always operate on 
the current stack segment. The Stack Pointer (SP) register contains the offset of the top of the 
stack from the base of the stack. Most variables (memory operands) are assumed to reside in 
the current data segment, but a program can instruct the Bus Interface Unit to override this 
assumption. Often, the offset of a memory variable is not directly available and must be 
calculated at execution time. The addressing mode specified in the instruction determines how 
this offset is calculated (see Section 2.2.2). The result is called the operand's Effective 
Address (EA). 

Strings are addressed differently than other variables. The source operand of a string 
instruction is assumed to lie in the current data segment However, the program may use 
another currently addressable segment. The operand's offset is taken from the Source Index 
(SI) register. The destination operand of a string instruction always resides in the current extra 
segment. The destination's offset is taken from the Destination Index (DI) register. The string 
instructions automatically adjust the SI and DI registers as they process the strings one byte or 
word at a time. 

When an instruction designates the Base Pointer (BP) register as a base register, the variable is 
assumed to reside in the current stack segment. The BP register provides a convenient way to 
access data on the stack. The BP register can also be used to access data in any other currently 
addressable segment. 

2.1.9. DYNAMICALLY RELOCATABLE CODE 

The segmented memory structure of the 80C186 Modular Core family allows creation of 
dynamically relocatable (position-independent) programs. Dynamic relocation allows a 
multiprogramming or multitasking system to make effective use of available memory. The 
processor can write inactive programs to a disk and reallocate the space they occupied to other 
programs. A disk-resident program can then be read back into available memory locations and 
restarted whenever it is needed. If a program needs a large contiguous block of storage and the 
total amount is only available in non-adjacent fragments, other program segments can be 
compacted to free up enough continuous space. This process is illustrated graphically in 
Figure 2.9. 

To be dynamically relocatable, a program must not load or alter its segment registers and must 
not transfer directly to a location outside the current code segment. All program offsets must 
be relative to the segment registers. This allows the program to be moved anywhere in 
memory provided the segment registers are updated to point to the new base addresses. 

2-12 



inlet. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

BEFORE AFTER 
RELOCATION RELOCATION 

CODE 
SEGMENT 

I 

"'I CS CS 

r-- SS SS -
STACK - DS DS -

SEGMENT - ES I ES -

"' 

CODE 
SEGMENT 

DATA -SEGMENT STACK 
.I 

"' SEGMENT - DATA 
SEGMENT 

'" ,. 
EXTRA EXTRA 

SEGMENT .I '" 
SEGMENT 

"' ,. 

c=J FREE SPACE 

Figure 2.9. Dynamic Code Relocation 

2.1.10. STACK IMPLEMENTATION 

Stacks in the 80C186 Modular Core family reside in memory space. They are located by the 
Stack Segment register (SS) and the Stack Pointer (SP). A system may have multiple stacks. A 
stack may be up to 64 Kbytes long, the maximum length of a segment. Growing a stack 
segment beyond 64 Kbytes overwrites the beginning of the segment. Only one stack is directly 
addressable at a time. The SS register contains the base address of the current stack. The top of 
the stack, not the base address, is the origination point of the stack. The SP register contains an 
offset which points to the Top Of Stack (TOS). 

2-13 



intel .. OVERVIEW OF THE 80C186 ,FAMILY ARCHITECTURE 

Stacks are 16 bits wide. Instructions operating on a stack add and remove stack elements one 
word at a time. An element is pushed onto the stack (see Figure 2.10) by first decrementing 
the SP register by 2 and then writing the data word. An element is popped off the stack by 
copying it from the top of the stack and then incrementing the SP' register by 2. The stack 
grows down in memory toward its base address. Stack operations never move or erase 
elements on the stack. The top of the stack changes only as a result of updating the stack 
pointer. 

2.1.11. RESERVED MEMORY AND 110 SPACE 

Two specific areas in memory and one area in I/O space are reserved in the 80C 186 Core 
family. 

• Locations OH through 3FFH in low memory are used for the Interrupt Vector Table. 
Programs should not be loaded here. 

• Locations OFFFFOH through OFFFFFH in high memory are used for system reset code 
since the processor begins execution at OFFFFOH. 

• Locations OF8H through OFFH in I/O space are reserved for communication with other 
Intel hardware products and may not be used. On the 80C 186 core, these addresses are 
used as I/O ports for the 80C 187 numerics processor extension. 

2.2. SOFTWARE OVERVIEW 

All80C186 Modular Core family members execute the same instructions. This includes all the 
8086/8088 instructions plus several additions and enhancements (see 80C186 Instruction Set 
Additions and Extensions). The following sections provide a description of the instructions by 
category and a detailed discussion of the operand addressing modes. 

Software for 80Cl86 core family systems does not need to be written in assembly language. 
The processor provides direct hardware support for programs written in the many high-level 
langUl:\ges available. The hardware addressing modes provide straight forward 
implementations of based variables, arrays, arrays of structures and other high-level language 
data constructs. A powerful set of memory-to-memory string operations allow efficient 
character data manipulation. Finally, routines with critical performance, requirements may be 
written in assembly language and linked with high-level code. 

2-1.4 



intel" OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

POP AX 
POPBX 

PUSH AX 1 10 150 ~ 
EXISTING I 

AX 112 134 ~I STACK 
1 BB 1 AA kl 

"," "," "r' ",r' I II 
1062 00 11 t 1062 00 11 I 1062 00 11 II 
1060 22 33 1060 22 33 I 1060 22 33 II 
lOSE 44 55 :qS lOSE 44 55 I lOSE 44 55 II 
105B 66 77 g~ 105B 66 77 I TOS 105B 66 77 II om 

I II TOS 105A 88 99 al~ 
105A 88 99 ~105A 88 99 

~1058 AA BB TOS 1058 AA BB I 1058 AA BB ..JI 
1056 01 23 ~1056 34 12 kJ 1056 34 12 ~ }~~ 1054 45 67 

1-0 
1054 45 67 1054 45 67 z~ 

~m 
89 AB 1052 1052 89 AB ww 1052 89 AB a:::c 

r1050 

0..1- r1050 r1050 
CD EF I-Z CD EF CD EF 

~o 

10 50 SS 10 50 SS 10 50 SS 

00 08 SP 00 06 SP 00 OA SP 

STACK OPERATION FOR CODE SEQUENCE 

PUSH AX 
POP AX 
POPBX 

Figure 2.10. Stack Operation 

2.2.1. INSTRUCTION SET 

The 80C186 Modular Core family instructions treat different types of operands unifonnly. 
Nearly every instruction can operate on either byte or word data. Register, memory and 
immediate operands may be specified interchangeably in most instructions. The exception to 
this is immediate values must serve as source operands and not destination operands. Memory 
variables may be added to, subtracted from, shifted, compared, etc., without moving them in 
and out of registers. This saves instructions, registers and execution time in assembly language 
programs. In high-level languages, where most variables are memory-based, compilers can 
produce faster and shorter object programs. 

2-15 



intel" OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

The 80C186 Modular Core family instruction set can be viewed as existing on two levels. One 
is the assembly level and the other is the machine level. To the assembly language 
programmer, the 8OC186 Modular Core family appears to have about 100 instructions. One 
MOV (data move) instruction, for example, transfers a byte or a word from a register, a 
memory location or an immediate value to either a register or a memory location. The 80C186 
Modular Core family CPUs, however, recognize 28 different machine versions of the MOV 
instruction. 

The two levels of instruction sets address two requirements: efficiency and simplicity. 
Approximately 300 forms of machine-level instructions make very efficient use of storage. 
For example, the machine instruction that increments a memory operand is three or four bytes 
long because the address of the operand must be encoded in the instruction. To increment a 
register, however, does not require as much information, so the instruction can be shorter. The 
8OC186 Core family has eight one byte machine-level instructions that increment different 16-
bit registers. 

The assembly level instructions simplify the programmer's view of the instruction set. The 
programmer writes one form of an INC (increment) instruction and the assembler examines 
the operand to determine which machine level instruction to . generate. The following 
paragraphs provide a functional description of the assembly-level instructions. 

2.2.1.1. DATA·TRANSFER INSTRUCTIONS 

The instruction set contains 14 data transfer instructions. These instructions move single bytes 
and words between memory and registers. They also move single bytes and words between the 
AL or AX registers and I/O ports. Table 2.3 lists the four types of data transfer instructions 
and their functions. 

Data transfer instructions are categorized as general purpose, input/output, address object and 
flag transfer. The stack manipulation instructions, used for transferring flag contents and 
instructions used for loading segment registers are also included in this group. Figure 2.11 
shows the flag· storage formats .. The address object instructions manipulate the addresses of 
variables instead of the values of the variables. 

2-16 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Table 2.3. Data Transfer 
Instructions 

GENERAL PURPOSE 

MOV Move byte or word 

PUSH Push word onto stack 

POP Pop word off stack 

PUSHA Push registers onto stack 

POPA Pop registers off stack 

XCHG Exchange byte or word 

XLAT Translate byte 

INPUT/OUTPUT 

IN Input byte or word 

OUT Output byte or word 

ADDRESS OBJECT AND STACK FRAME 

LEA Load effective address 

LOS Load pointer using OS 

LES Load pointer using ES 

ENTER Build stack frame 

LEAVE Tear down stack frame 

FLAG TRANSFER 

LAHF Load AH register from flags 

SAHF Store AH register in flags 

PUSHF Push flags onto stack 

POPF Pop flags off stack 

Table 2.4. Arithmetic Instructions 

ADDITION 

ADD Add byte or word 

ADC Add byte or word with carry 

INC Increment byte or word by 1 

AAA ASCII adjust for addition 

DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 

SBB Subtract byte or word with borrow 

DEC Decrement byte or word by 1 

NEG Negate byte or word 

CMP Compare byte or word 

AAS ASCII adjust for subtraction 

DAS Decimal adjust for subtraction 

MULTIPLICATION 

MUL Multiply byte or word unsigned 

IMUL Integer multiply byte or word 

AAM ASCII adjust for multiplication 

DIVISION 

DIV Divide byte or word unsigned 

IDIV Integer divide byte or word 

AAD ASCII adjust for division 

CBW Convert byte to word 

CWD Convert word to doubleword 

2-17 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Table 2.5. Arithmetic Interpretation of 8-Bit Numbers 

HEX 

07 
89 
C5 

BIT PATTERN UNSIGNED 
BINARY 

00000111 7 
10001001 137 
11000101 197 

SIGNED 
BINARY 

LAHF 
SAHF 

+7 
-119 
-59 

[S 

:7 

PUSHF I 
POPF U ,U ,U ,U , 0 , D ,I ,T ,S 

15 14 13 12 11 10 9 B 

U = Undefined; Value is indeterminate 
o = Overflow Flag 
D = Direction Flag 
I = Interrupt Enable Flag 
T = Trap Flag 
S = Sign Flag 
Z = Zero Flag 
A = Auxiliary Carry Flag 
P = Parity Flag 
C = Carry Flag 

7 

UNPACKED 
DECIMAL 

7 
invalid 
invalid 

, Z , U, A , U , P 

6 5 4 3 2 

,Z ,U ,A , U , P 

6 5 4 3 2 

Figure 2.11. Flag Storage Format 

2.2.1.2. ARITHMETIC INSTRUCTIONS 

,U 

,U 

The arithmetic instructions (see Table 2.4) operate on four types of numbers: 

• Unsigned binary 

• Signed binary (integers) 

• Unsigned packed decimal 

• Unsigned unpacked decimal 

PACKED 
DECIMAL 

7 
89 

invalid 

,C 

0 

,C 

0 

Table 2.5 shows the interpretations of various bit patterns according to number type. 

2-18 



in1:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Binary numbers may be 8 or 16 bits long. Decimal numbers are stored in bytes, two digits per 
byte for packed decimal and one digit per byte for unpacked decimal. The processor assumes 
that the operands in arithmetic instructions contain data that represents valid numbers for that 
instruction. Invalid data may produce unpredictable results. The Execution Unit analyzes 
arithmetic instruction's results and adjusts status flags accordingly. 

2.2.1.3. BIT MANIPULATION INSTRUCTIONS 

There are three groups of instructions for manipulating bits within bytes and words. These 
three groups are logical, shifts and rotates. Table 2.6 lists these three groups of bit 
manipulation instructions with their functions. 

Logical instructions include the Boolean operators NOT, AND, OR and exclusive OR (XOR). 
Logical instructions also include a TEST instruction that sets the flags as a result of a Boolean 
AND operation, but does not alter either of its operands. 

Individual bits in bytes and words can be shifted arithmetically or logically. Up to 32 shifts 
may be performed, according to the value of the count operand coded in the instruction. The 
count may be specified as an immediate value or as a variable in the CL register. This allows 
the shift count to be a supplied at execution time. Arithmetic shifts can be used to multiply and 
divide binary numbers by powers of two. Logical shifts can be used to isolate bits in bytes or 
words. 

Individual bits in bytes and words can also be rotated. The processor does not discard the bits 
rotated out of an operand. The bits circle back to the other end of the operand. The number of 
bits to be rotated is taken from the count operand, which may specify either an immediate 
value or the CL register. The carry flag may act as an extension of the operand in two of the 
rotate instructions. This allows a bit to be isolated in the Carry Flag (CF) and then tested by a 
JC (jump if carry) or JNC (jump if not carry) instruction. 

2.2.1.4. STRING INSTRUCTIONS 

Five basic string operations process strings of bytes or words, one element (byte or word) at a 
time. Strings of up to 64 Kbytes may be manipulated with these instructions. Instructions are 
available to move, compare or scan for a value, as well as move string elements to and from 
the accumulator. Table 2.7 lists the string instructions. These basic operations may be 
preceded by a one-byte prefix that causes the instruction to be repeated by the hardware, 
allowing long strings to be processed much faster than with a software loop. The repetitions 
can be terminated by a variety of conditions. Repeated operations may be interrupted and 
resumed. 

String instructions operate similarly in many respects (see Table 2.8). A string instruction may 
have a source operand, a destination operand or both. The hardware assumes that a source 
string resides in the current data segment. A segment prefix may override this assumption. A 
destination string must be in the current extra segment. The assembler does not use the 
operand names to address strings. Instead, the contents of the Source Index (SI) register are 

2-19 



Intet OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

used as an offset to address the current element of the source string. The contents of the 
Destination Index (DI) register are taken as the offset of the current destination string element. 
These registers must be initialized to point to the source/destination strings before executing 
the string instructions. The LDS, LES and LEA instructions are useful in performing this 
function. 

String instructions automatically update the SI, DI or both registers prior to processing the 
next string element. The Direction Flag (DF) determines whether the index registers are auto­
incremented (DF = 0) or auto-decremented (DF = 1). The processor adjusts the DI, SI or both 
registers by one for byte strings or two for word strings. 

If a repeat prefix is used, the count register (CX) is decremented by one after each repetition of 
the string instruction. The CX register must be initialized to the number of repetitions before 
the string instruction is executed. If the CX register is 0, the string instruction is not executed 
and control goes to the following instruction. 

2.2.1.5. PROGRAM TRANSFER INSTRUCTIONS 
\ 

The contents of the Code Segment (CS) and Instruction Pointer (IP) registers determine the 
instruction execution sequence in the 80C186 Modular Core family. The CS register contains 
the base address of the current code segment. The Instruction Pointer register points to the 
memory location of the next instruction to be fetched. In most operating conditions, the next 
instruction will already have been fetched and will be waiting in the CPU instruction queue. 
Program transfer instructions operate on the IP and CS registers. Changing the contents of 
these registers causes normal sequential operation to be altered. When a program transfer 
occurs,the queue no longer contains the correct instruction. The Bus Interface Unit obtains the 
next instruction from memory using the new IP and CS values. It then passes the instruction 
directly to the Execution Unit and begins refilling the queue from the new location. 

The 80C186 Modular Core family offers four groups of program transfer instructions (see 
Table 2.9). These are unconditional transfers, conditional transfers, iteration control 
instructions and interrupt-related instructions. 

Unconditional transfer instructions may transfer control to a target instruction within the 
current code segment (intrasegment transfer) or to a different code segment (intersegment 
transfer). The assembler terms an intrasegment transfer SHORT or NEAR and an intersegment 
transfer FAR. The transfer is made unconditionally when the instruction is executed. CALL, 
RET and JMP are all unconditional transfers. CALL is used to transfer the program to a 
procedure. A CALL can be NEAR or FAR. A NEAR CALL will stack only the Instruction 
Pointer, while a FAR CALL will stack the Instruction Pointer and the Code Segment register. 
The RET instruction uses the information pushed onto the stack to determine where to return 
when the procedure finishes. Note: the RET and CALL instructions must be the same type. 
This can be a problem when the CALL and RET instructions are in separately assembled 
programs. The JMP instruction does not push any information onto the stack. A JMP 
instruction may be NEAR or FAR. 

2-20 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Table 2.6 Bit Manipulation 
Instructions 

LOGICALS 

NOT "Not" byte or word 

AND "And" byte or word 

OR "Inclusive or" byte or word 

XOR "Exclusive or" byte or word 

TEST "Test" byte or word 

SHIFTS 

SHUSAL Shift logical/arithmetic left 

byte or word 

SHR Shift logical right byte or 

word 

SAR Shift arithmetic right byte or 

word 

ROTATES 

ROL Rotate left byte or word 

ROR Rotate right byte or word 

RCL Rotate through carry left 

byte or word 

RCR Rotate through carry right 

byte or word 

Table 2.7 String Instructions 

REPE/ Repeat while equal/zero 

REPZ 

REPNE/ Repeat while not equal/not 

REPNZ zero 

MOVSB/ Move byte or word string 

MOVSW 

MOVS Move byte or word string 

INS Input byte or word string 

OUTS Output byte or word string 

CMPS Compare byte or word string 

SCAS Scan byte or word string 

LODS Load byte or word string 

STOS Store byte or word string 

Table 2.8. String Instruction Register and 
Flag Use 

SI 

01 

CX 

AUAX 

OF 

ZF 

Index (offset) for source string 

Index (offset) for destination string 

Repetition counter 

Scan value 

Destination for LODS 

Source for STOS 

0= auto-increment SI, 01 

1 = auto-decrement SI, 01 

Scan/compare terminator 

Table 2.9. Program Transfer Instructions 

CONDITIONAL TRANSFERS 

JNJNBE Jump if above/not below nor equal 

JAE/JNB Jump if above or equal/not below 

JB/JNAE Jump if below/not above nor equal 

JBE/JNA Jump if below or equal/not above 

JC Jump if carry 

JE/JZ Jump if equal/zero 

JG/JNLE Jump if greater/not less nor equal 

JGE/JNL Jump if greater or equal/not less 

JUJNGE Jump if less/not greater nor equal 

JLE/JNG Jump if less or equal/not greater 

JNC Jump if not carry 

JNE/JNZ Jump if not equal/not zero 

JNO Jump if not overflow 

JNP/JPO Jump if not parity/parity odd 

JNS Jump if not sign 

JO Jump if overflow 

JP/JPE Jump if parity/parity even 

JS Jump if sign 

ITERATION CONTROL 

LOOP Loop 

LOOPE/LOOPZ Loop if equal/zero 

LOOPNE/LOOPNZ Loop if not equal/not zero 

JCXZ Jump if register CX=O 

INTERRUPTS 

INT Interrupt 

INTO I nterrupt if overflow 

BOUND Interrupt if out of array bounds 

IRET Interrupt return 

2-21 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE· 

Conditional transfer instructions are jumps that mayor may not transfer control. This depends 
on the state of the CPU flags when the instruction is executed. These 18 instructions (see 
Table 2.10) each test a different combination of flags for a condition. If the condition is 
logically TRUE, control is transferred to the target specified in the instruction. If the condition 
is FALSE, control passes to the instruction following the conditional jump. All conditional 
jumps are SHORT. The target must be in the current code segment within -128 to +127 bytes 
of the next instruction's first byte. For example, JMP OOH causes a jump to the first byte of the 
next instruction. Jumps are made by adding the relative displacement of the target to the 
Instruction Pointer. All conditional jumps are self-relative and are appropriate for position­
independent routines. 

Table 2.10. Interpretation of Conditional Transfers 

MNEMONIC CONDITION TESTED "JUMP IF ••• " 

JAlJNBE (CF or ZF)=O above/not below nor equal 
JAE/JNB CF=O above or equaVnot below 
JB/JNAE CF=1 below/not above nor equal 
JBElJNA (CF or ZF)=1 below or equaVnot above 
JC CF=1 carry 
JElJZ ZF=1 equaVzero 
JG/JNLE ((SF xor OF) or ZF)=O greater/not less nor equal 
JGE/JNL (SF xor OF)=O greater or equaVnot less 
JUJNGE (SF xor OF)=1 less/not greater nor equal 

JLElJNG ((SF xor OF) or ZF)=1 less or equaVnot greater 
JNC CF=O not carry 

JNElJNZ ZF=O not equaVnot zero 
JNO OF=O not overflow 
JNP/JPO PF=O not parity/parity odd 
JNS SF=O not sign 
JO OF=1 overflow 
JP/JPE PF=1 parity/parity equal 
JS SF=1 sign 

.. 
Note: "above" and "below" refer to the relationship of two unsigned values; 
"greater" and "less" refer to the relationship of two signed values. 

Iteration control instructions can be used to regulate the repetition of software loops. These 
instructions use the CX register as a counter. Like the conditional transfers, the iteration 
control instructions are self-relative and may only transfer to targets that are within -128 to 
+127 bytes of themselves. They are SHORT transfers. 

The interrupt instructions allow interrupt service routines to be activated by programs and 
external hardware devices. The effect of software interrupts is similar to hardware-initiated 
interrupts. The processor cannot execute an interrupt acknowledge bus cycle if the interrupt 
originates in software or with an NMI (Non-Maskable Interrupt). 

2-22 



inlel.. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

2.2.1.6. PROCESSOR CONTROL INSTRUCTIONS 

Processor control instructions (see Table 2.11) allow programs to control various CPU 
functions. One group of instructions updates flags and another group is used primarily for 
synchronizing the microprocessor to external events. Another instruction causes the CPU to do 
nothing. Except for flag operations, processor control instructions do not affect the flags. 

Table 2.11. Processor Control Instructions 

FLAG OPERATIONS 

STC Set Carry flag 
CLC Clear Carry flag 

CMC Complement Carry flag 

sm Set Direction flag 
CLD Clear Direction flag 

STI Set Interrupt Ellable flag 
CLI Clear Interrupt Enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interrupt or reset 
WAIT Wait for TEST# pin active 

ESC Escape to external processor 
LOCK Lock bus during next instruction 

NO OPERATION 

NOP No operation 

2.2.2. ADDRESSING MODES 

The 80C 186 Modular Core family members access instruction operands in several ways. 
Operands may be contained in registers, the instruction itself, memory or at I/O ports. 
Addresses of memory and I/O port operands can be calculated in many ways. These 
addressing modes greatly extend the flexibility and convenience of the instruction set. The 
following paragraphs briefly describe register and immediate modes of operand addressing. A 
detailed description of the memory and I/O addressing modes .is also provided. 

2.2.2.1. REGISTER AND IMMEDIATE OPERAND ADDRESSING MODES 

Usually, the fastest, most compact operand addressing forms specify only register operands. 
This is because the register operand addresses are encoded in instructions in just a few bits and 
no bus cycles are run (the operation occurs within the CPU). Registers may serve as source 
operands, destination operands or both. 

Immediate operands are constant data contained in an instruction. Immediate data may be 
either 8 or 16 bits in length. Immediate operands are available directly from the instruction 
queue and can be accessed quickly. Like the register operand, no bus cycles need to be run to 

2-23 



intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

get an immediate operand. Immediate operands can only be source operands and must have a 
constant value. 

2.2.2.2. MEMORY ADDRESSING MODES 

Although the Execution Unit has direct access to register and immediate operands, memory 
operands must be transferred to and from the CPU over the bus. When the Execution Unit 
needs to read· or write a memory operand, it must pass an offset value to the Bus Interface 
Unit. The Bus Interface Unit adds the offset to the shifted contents of a segment register 
producing a 20-bit physical address. One or more bus cycles are then run to access the 
operand. 

The offset that the Execution Unit calculates for memory operand is called the operand's 
effective address (EA). This address is an unsigned 16-bit number that expresses the operand's 
distance, in bytes, from the beginning of the segment where it resides. The Execution Unit can 
calculate the effective address in several ways. Information encoded in the second byte of the 
instruction tells the Execution Unit how to calculate the effective address of each memory 
operand. A compiler or assembler derives this information from the instruction written by the 
programmer. Assembly language programmers have access to all addressing modes. 

The Execution Unit calculates the Effective Address by summing a displacement, the contents 
ofa base register .and the contents of an index register (see Figure 2.12). Any combination of 
these may be present in a given instruction. This allows a variety of memory addressing 
modes. 

The displacement is an 8- or 16-bit number contained in the instruction. The displacement 
generally is derived from the position of the operand's name (a variable or label) in the 
program. The programmer can modify this value or explicitly specify the displacement. 

The BX or BP register may be specified as the base register for an effective address 
calculation. 

Similarly, either the SI or DI register may be specified as the index register. The displacement 
value is a constant. The contents of the base and index registers may change during execution. 
This allows one instruction to access different memory locations depending upon the current 
values in the base or base and index registers. The default base register for effective address 
calculations with the BP register is SS, although DS or ES may be specified. 

Direct addressing is the simplest memory addressing mode (see Figure 2.13). No registers are 
involved and the effective address. is taken directly from the displacement of the instruction. 
The programmer typically uses direct addressing to access scalar variables. 

2·24 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

ENCODED 
INTHE 

INSTRUCTION 

EXPLICIT 
IN THE 

INSTRUCTION 

ASSUMED UNLESS 
OVERRIDDEN 

BY PREFEX 

SINGLE INDEX DOUBLE INDEX 

{ DISPLACEMENT 
L __ ---'--_--' 

PHYSICAL ADDR 

Figure 2.12. Memory Address Computation 

~_O_PC_O_D_E __ ~ __ M_O_D_R_/M __ ~ _____ D_IS_P_LA_C_EM~;ENT ~~~~ 

cb 
Figure 2.13. Direct Addressing 

2-25 

EU 

BIU 



in1:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

With register indirect addressing, the effective address of a memory operand may be taken 
directly from one of the base or index registers (see Figure 2.14). One instruction can operate 
on various memory locations if the base or index register is updated accordingly. Any 16-bit 
general register may be used for register indirect addressing with the JMP or CALL 
instructions. 

In based addressing (see Figure 2.15), the effective address is the sum of a displacement value 
and the contents of the BX or BP register. Specifying the BP register as a base register directs 
the Bus Interface Unit to obtain the operand from the current stack segment (unless a segment 
override prefix is present). This makes based addressing with the BP register a convenient way 
to access stack data. 

I 

OPCODE MOD RIM 

BX 
OR 

BP 

R 

81 

OR 

DI 

Figure 2.14. Register Indirect Addressing 

EA 

OPCODE I MOD RIM I DI8PLACE~ENT ~ ~ ~ j 
I 

BX .... 
OR 

.... + , , 
BP 

W 

I EA I 

Figure 2.15. Based Addressing 

2-26 



int:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Based addressing provides a simple way to address data structures which may be located in 
different places in memory (see Figure 2.16). A base register can be pointed at the structure. 
Elements of the structure can then be addressed by their displacement. Different copies of the 
same structure can be accessed by simply changing the base register. 

HIGH ADDRESS 
DISPLACEMENT DISPLACEMENT 

AGE STATUS 

RATE 

VAC SICK 

I DEPT DIV -, 
I I 

~ EMPLOYEE I I I 
L _______ I I 

~ ~ I 
I 
I 

AGE I 
I 
I 

VAC SICK I 
DEPT DlV I 

EMPLOYEE --------~ 

LOW ADDRESS 

Figure 2.16. Accessing a Structure with Based Addressing 

With indexed addressing, the effective address is calculated by summing a displacement and 
the contents of an index register (SI or DI, see Figure 2.17). Indexed addressing is often used 
to access elements in an array (see Figure 2.18). The displacement locates the beginning of the 
array and the value of the index register selects one element. If the index register contains 
OOOOH, the processor selects the first element. Since all array elements are the same length, 
simple arithmetic on the register may select any element. 

2-27 



intel" 

I 
I 
I 

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

I OPCODE I MOD RIM I DISPLACEiMENT = = = j 
I 

J SI 

'" OR , 
DI 

V 

I EA I 

Figure 2.17. Indexed Addressing 

HIGH ADDRESS 

ARRAY (8) 

ARRAY (7) L--_.--_--I-i 
ARRAY (6) 

I INDEX REGISTER 
ARRAY (5) 

INDEX REGISTER 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
L _______ _ 

ARRAY (4) 

ARRAY (3) 

ARRAY (2) 

ARRAY (1) 

ARRAY (0) 

1 WORD 
LOW ADDRESS 

_ _______ .-1 

Figure 2.18. Accessing an Array with Indexed Addressing 

2-28 



int'et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Based index addressing generates an effective address which is the sum of a base register, an 
index register and a displacement (see Figure 2.19). The two address components can be 
determined at execution time, making this a very flexible addressing mode. 

----1 
'--_o_PC_O_D_E_----' __ MO_D_Rl,-M __ -'--___ D_IS_PL_AC_E+MENT ___ J 

BX 
~~~--OR--~~( 

BP

81

OR +
DI

EA

Figure 2.19. Based Index Addressing

Based index addressing provides a convenient way for a procedure to address an array located
on a stack (see Figure 2.20). The BP register can contain the offset of a reference point on the
stack. This is typically the top of the stack after the procedure has saved registers and allocated
local storage. The offset of the beginning of the array from the reference point can be
expressed by a displacement value. The index register can be used to access individual array
elements. Arrays contained in structures and matrices (two-dimensional arrays) can also be
accessed with based indexed addressing.

String instructions do not use normal memory addressing modes to access operands. Instead,
the index registers are used implicitly (see Figure 2.21). When a string instruction executes,
the SI register must point to the first byte or word of the source string. The DI register must
point to the first byte or word of the destination string. In a repeated string operation, the CPU
will automatically adjust the SI and DI registers to obtain subsequent bytes or words. For
string instructions, the DS register is the default segment register for the SI register and the ES
register is the default segment register for the DI register. This allows string instructions to
operate on data located anywhere within the one megabyte address space.

2-29

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

High Address

Displacement PARM2 Displacement

I PARM 1 -I
1 IP 1
1 Old BP 1
1 OldBX

1 1 1 1 Old AX
1 1 1 1 Array (6)

Index Register Index Register 1 1 1 1 Array (5) cp 1 1 1 1 Array (4)
1 1 1 1 Array (3)
1 1 1 1 EA Array (2)
1 1 1 1 Array (1) 1

1 1 T Array (0) T : 1 1 1 . Count ----->1 1~----tJ
1 t Temp

~----~ L _____ ~
Status

~1Wor~
Low Address

Figure 2.20. Accessing a Stacked Array with Based Index Addressing

2-30

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

OPCODE

SI >1 SOURCE EA

DI >1 DESTINATION EA

Figure 2.21. String Operand

2.2.2.3. 1/0 PORT ADDRESSING

Any memory operand addressing modes may be used to access an liD port if the port is
memory-mapped. String instructions can also be used to transfer data to memory-mapped
ports with an appropriate hardware interface.

Two addressing modes can be used to access ports located in the I/O space (see Figure 2.22).
The port number is an 8-bit immediate operand for direct addressing. This allows fixed access
to ports numbered 0 to 255. Indirect liD port addressing is similar to register indirect
addressing of memory operands. The DX register contains the port number which can range
from 0 to 65,535. By adjusting the contents of the DX register, one instruction can access any
port in the liD space. A group of adjacent ports can be accessed using a simple software loop
that adjusts the value of the DX register.

PORT ADDRESS

DIRECT PORT
ADDRESSING

DX

INDIRECT PORT
ADDRESSING

Figure 2.22. 1/0 Port Addressing

2-31

PORT ADDRESS

intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.2.2.4. DATA TYPES USED IN THE 80C186 MODULAR CORE FAMILY

The 80C186 Modular Core family supports the following data types:

• Integer - A signed 8- or l6-bit binary numeric value. All operations assume a 2's
complement representation. Signed 32- and 64-bit integers are directly supported with the
addition of an 80C187 Numerics Processor Extension to an 80C186 Modular Core
system. The 80C188 Modular Core does not support the 80e187.

• Ordinal - An unsigned 8- or l6-bit binary numeric value.

• Pointer - A 16- or 32-bit quantity, composed of a l6-bit offset component or a l6-bit
segment base component in addition to a l6-bit offset component.

• String - A contiguous sequence of bytes or words. A string may contain from one to 64
Kbytes.

• ASCII - A byte representation of alphanumeric and control characters using the ASCII
standard.

• BCD - A byte (unpacked) representation of the decimal digits 0-9.

• Packed BCD - A byte (packed) representation of two decimal digits (0-9). One digit is
stored in each nibble (4 bits) of the byte.

• Floating Point - A signed 32-, 64- or 80-bit real number representation. The 80C187
Numerics Processor Extension, when added to an 80C186 Modular Core system, directly
supports floating point operands. The 80C 188 Modular Core does not support the
80C187.

In general, individual data elements must fit within defined segment limits. Figure 2.23
graphically represents the data types supported by the 80C186 Modular Core family.

2.3. INTERRUPTS AND EXCEPTION HANDLING

Interrupts and exceptions alter the program execution in response to an external event or an
error condition. An interrupt handles asynchronous external events, for example an NMI.
Exceptions result directly from the execution of an instruction, usually an instruction fault.
The user can cause a software interrupt by executing an "INT n" instruction. The CPU
processes software interrupts the same as exceptions.

The 8OC186 Modular Core responds to interrupts and exceptions in the same way for all
devices within the 80C186 Modular Core family. However, devices within the family may
have different Interrupt Control Units. The Interrupt Control Unit handles all external interrupt
sources and presents them to the 80C 186 Modular Core via one maskable interrupt request.
See Figure 2.24. This section covers only areas of interrupts and exceptions common to the
80C186 Modular Core Architecture. The Interrupt Control Unit is proliferation dependent and
is covered in another section.

2-32

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

SIGNED BYTE I I 1 1 I 1 1 1 I
SIGN BIT-.J LMAGNITUDE-.J

7 0

UNSIGNED BYTE I ! I i I I I I I

~JfGNITUD~
+1

1514 8 7

SIGNED WORD I Iii I iii I I i I I I i I
~~------~----------~

SIGN BIT-.J I LMSB
MAGNITUDE------'

NOTE: * Supported directly with
additional hardware

31 +3 2423 +2 16 15 +1 8 7 0

SIGNED~~~U: I Iii Iii iii iii I I Iii I I I I I I I Iii I
SIGN BITL-.J-L-L-M-SB-------L-----------L---------~----------~

LI -----------MAGNITUDE----------~

+7 +6 +5 +4 +3 +2 +1
SIGNED QUAD

63 4847 3231 16 15

WORD * I I I
SIGN BITJ I LMSB

MAGNITUDE

+1

UNSIGNED "'5'-,,-,, -'-,'-"-T' 8C,1-,-7TI---r1 ,I-,---rl -'rTl-

WORD .

MAGNITUDE-----

+N

BINARY CODED I 1 1 1 I
DECIMAL (BCD) L. ______ .

iii

BCDDIGrrN

+N

ASCII I I i I I I i I I
ASCII CHARACTER N

+N

PACKED BC~ I I i II

~

MOST

1 1 1 I

SIGNIFICANT DIGIT

STRING Iii i I iii I
BYTE WORD N

31
+3

2423

POINTER
I I 1 I I I I

1

· . .
· . .
• • •

+2

1 I 1 I 1

SELECTOR

1 1

+1 ° 7 0 I 1 1 1

BCD DIGITl BCD DIGIT 0

+1 o 7
I I I I j i I I I

ASCII CHARACTER 1 ASCIICHARACTER O

7 +1 7 0

+1 o 7 I I I I

BYTE WORD 1

1615
+1

8 7

1
I 1 1 I 1 1 1

1

+0

Iii i I
~

LEAST
SIGNIFICANT DIGIT

i I I I
BYTE WORD 0

° I 1 1 I 1 I 1

1
OFFSET

FLOATING r7~9-+-9_,--+-8-.--+7-_.--+6-_.--+5-_,-+-4-_,_-+-3-._-+-2-r_-+-'_.-_+_0_,
POINT * LI ..1-1_--'-__ L-_--'-__ L-_---'-__ L-_---'-__ L-_---'-_---'

SIGN BIT.J L-EXPONENT---' LI ---------IMAGNITUDE---------~

Figure 2.23. 80C186 Modular Core Family Supported Data Types

2-33

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

? MASKABLE
INTERRUPT

.I REQUEST
.... ~

INTERRUPT EXTERNAL
CPU CONTROL ~ INTERRUPT

UNIT ~ SOURCES
'" ,

INTERRUPT
ACKNOWLEDGE

Figure 2.24. Interrupt Control Unit

2.3.1. INTERRUPT/EXCEPTION PROCESSING

The 80C186 Modular Core can service up to 256 different interrupts/exceptions. A 256 entry
Interrupt Vector Table contains the pointers to interrupt service routines. Each interrupti
exception is given a type number, 0 through 255 corresponding to its position in the Interrupt
Vector Table. See Figure 2.25. Each entry is 4 bytes long. An entry contains the Code
Segment (CS) and Instruction Pointer (IP) of the first instruction in the interrupt service
routine.

Interrupt types 0-31 are reserved for Intel and should not be used by an application program;

When an interrupt is acknowledged, a common sequence of events occur allowing the
processor to execute the interrupt service routine (See Figure 2.26).

1. The processor saves a partial machine status by pushing the Program Status Word onto
the stack.

2. The Trap Flag bit and Interrupt Enable bit are then cleared in the Program Status Word.
This prevents maskable interrupts or single step exceptions from interrupting the
processor during the interrupt service routine.

3. The current CS and IP are pushed onto the stack.

4. The CPU fetches the new CS and IP for the interrupt vector routine from the Interrupt
Vector Table and begins executing from that point.

2-34

MEMORY
ADDRESS

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

TABLE
ENTRY

VECTOR
DEFINITION

MEMORY
ADDRESS

TABLE
ENTRY

VECTOR
DEFINITION

3FE

3FC
i--__ CS_25_5_--I[} TYPE 255

IP 255 .

2E

2C

2A

28

26

24

22

20

1E

1C

1A

18

16

CS11
~ TYPE 11 - DMA1

IP 11

82

80

7E

7C

52

50

4E

4C

4A

48

46

44

42

40

3E

3C

3A

38

36

34

32

30

USER
AVAILABLE

CS 32

1~"~ IP 32

CS31
TYPE 31

IP 31

RESERVED

CS20 TYPE 20

IP 20

CS19
TYPE 19 - TIMER 2

IP 19

CS18
TYPE 18 - TIMER 1

IP 18

CS17 } IP 17
TYPE 17 - RESERVED

CS16 }
IP 16

TYPE 16 - NUMERICS

CS15 } IP 15
TYPE 15 - INT3

CS14
~ TYPE 14 - INT2

IP 14

CS13
~ TYPE 13-INT1

IP 13

CS12
}

IP 12
TYPE 12 - INTO

~2BYTES~

14

12

10

OE

OC

OA

08

06

04

02

00

CS10

IP 10

CS9

IP 9

CS8

IP 8

CS 7

IP 7

CS6

IP 6

CS 5

IP 5

CS4

IP4

CS3

IP 3

CS2

IP 2

CS 1

IP 1

CSO

IPO

~28YTES~

~

~

~

-:

~

~

~

~

I~

}

CS = CODE SEGMENT VALUE

TYPE 10- DMAO

TYPE 9- RESERVED

TYPE 8 - TIMER 0

TYPE 7- ESC
OPCODE

TYPE 6 - UNUSED
OPCODE

TYPE 5 - ARRAY
BOUNDS

TYPE 4 - OVERFLOW

TYPE 3 - BREAKPOINT

TYPE 2 - NMI

TYPE 1 - SINGLE-STEP

TYPE 0 - DIVIDE
ERROR

IP = INSTRUCTION POINTER VALUE

Figure 2.25. Interrupt Vector Table

The CPU is now executing the interrupt service routine_ The programmer must save (usually
by pushing onto the stack) all registers used in the interrupt service routine or their contents
will be lost. To allow nesting of maskable interrupts, the programmer must set the Interrupt
Enable bit in the Program Status Word.

When exiting an interrupt service routine, the programmer must restore (usually by popping
off the stack) the saved registers and execute an IRET instruction. An IRET instruction:

2-35

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

1. Loads the return CS and IP by popping them off the stack.

2. Pops and restores the old Program Status Word from the stack.

The CPU now executes from where it was before the interrupt/exception occurred.

STACK
PSW

CS

IP
SP ~1--------1

CS

IP

INTERRUPT
VECTOR TABLE

NTERRUPT ENABLE BIT

PROGRAM STATUS WORD
'----'---'---'-----'

f----------il CODE SEGMENT REGISTER

INSTRUCTION POINTER L-____________ ~

Figure 2.26. Interrupt Sequence

2.3.1.1. NON-MASKABLE INTERRUPTS

The Non-Maskable Interrupt (NMI) is the highest priority interrupt. It is usually reserved for a
catastrophic event such as impending power failure. An NMI cannot be prevented (or masked)
by software. When the NMI input is asserted, the interrupt processing sequence begins after
execution of the current instruction completes (see Section 2.3.4 on interrupt latency). The
CPU automatically generates a type 2 interrupt vector.

The NMI input is asynchronous. Setup and hold times are given only to guarantee recognition
on a specific clock edge. To be recognized, NMI must be asserted for at least one CLKOUT
period and meet the· correct setup and hold times. NMI is edge-triggered and level-latched.
Multiple NMI requests cause multiple NMI service routines to be executed. NMI can be
nested in this manner an infinite number of times.

2-36

inlet. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.3.1.2. MASKABLE INTERRUPTS

Maskable interrupts are the most common way to service external hardware interrupts.
Software can globally enable or disable maskable interrupts. This is done by setting or clearing
the Interrupt Enable bit in the Program Status Word.

The Interrupt Control Unit processes the multiple sources of maskable interrupts and presents
them to the core via a single maskable interrupt input. The Interrupt Control Unit provides the
interrupt vector type to the 80C186 Modular Core. The Interrupt Control Unit differs among
members ofthe 80Cl86 Modular Core family and is described in a different section.

2.3.1.3. EXCEPTIONS

Exceptions occur when an unusual condition prevents further instruction processing until the
exception is corrected. The CPU handles software interrupts and exceptions in the same way.
The interrupt type for an exception is either predefined or supplied by the instruction.

Exceptions are classified as either faults or traps. This depends on when they are detected and
if the instruction which caused the exception can be restarted. Faults are detected and serviced
before the faulting instruction can be executed. The return address pushed .onto the stack in the
interrupt processing instruction points to the beginning of the faulting instruction. This way,
the instruction can be restarted. A trap is detected and serviced immediately after the
instruction which caused the trap. The return address pushed onto the stack during the
interrupt processing points to the instruction following the trapping instruction.

Divide Error - Type 0:

A divide error trap is invoked when the quotient of an attempted division exceeds the
maximum value of the destination. A divide-by-zero is a common example.

Single Step - Type 1:

The single step trap occurs after the CPU executes one instruction with the Trap Flag (TF) bit
set in the Program Status Word. This allows programs to execute one instruction at a time.
Interrupts will not be generated after prefix instructions (e.g. REP), instructions which modify
segment registers (e.g. POP DS) or the WAIT instruction. Vectoring to the single-step
interrupt service routine clears the Trap Flag bit. An IRET instruction in the interrupt service
routine restores the Trap Flag bit to logic "I" and transfers control to the next instruction to be
single-stepped.

Breakpoint Interrupt - Type 3:

This is a single byte version of the INT instruction. The breakpoint interrupt is commonly used
by software debuggers to set breakpoints in RAM. Because the instruction is only one byte
long, it can substitute for any instruction.

2-37

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Interrupt on Overflow - Type 4:

The Interrupt on Overflow trap occurs if the Overflow Flag (OF) bit is set in the Program
Status Word and the INTO instruction is executed. Interrupt on Overflow is a common way to
conditionally handle arithmetic overflows.

Array Bounds Check - Type 5:

If the array index is outside the array bounds during execution of the BOUND instruction (see
80C1861nstruction Set Additions and Extensions), an array bounds trap occurs.

Invalid Opcode - Type 6:

Execution of an undefined opcode causes an Invalid Opcode trap.

Escape Opcode - Type 7:

The Escape Opcode fault is used for floating point emulation. With 80Cl86 Modular Core
family members, the escape opcode fault is enabled by setting the Escape Trap (ET) bit in the
Relocation Register (see Peripheral Control Block). When a floating point instruction is
executed with the Escape Trap bit set, the Escape Opcode Fault exception occurs. The Escape
Opcode service routine then emulates the floating point instruction. If the Escape Trap bit is
cleared, the CPU sends the floating point instruction to an external80CI87.

80CI88 Modular Core Family members do not support the 80Cl87 interface and always
generate the Escape Opcode Fault. The 80C186XL will generate the Escape Opcode Fault
regardless of the state of the Escape Trap bit unless it is in Numerics Mode.

Numerics Coprocessor Fault - Type 16:

The Numerics Coprocessor Fault is caused by an external 80C187 numerics coprocessor. The
80C187 reports the exception by asserting the ERROR pin. The 80C186 Modular Core only
checks the ERROR pin when executing a numerics instruction. A Numerics Coprocessor
Fault indicates that the previous numerics instruction caused the exception. The 80C 187 saves
the address of the floating point instruction that caused the exception. The return address
pushed onto the stack during the interrupt processing points to the numerics instruction which
detected the exception. This way, the last numerics instruction can be restarted.

2.3.2. SOFTWARE INTERRUPTS

A Software Interrupt is caused by executing an "INT n" instruction. The parameter n
corresponds to the specific interrupt type to be executed. The interrupt type can be any number
between 0 and 255. If the parameter n corresponds to an interrupt type associated with a
hardware interrupt (NMI, Timers), the vectors will be fetched and the routine executed, but the
corresponding bits in the Interrupt Status register will not be altered.

2-38

intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

The CPU processes software interrupts and exceptions in the same way. Software interrupts,
exceptions and traps cannot be masked.

2.3.3. INTERRUPT LATENCY

Interrupt latency is the amount of time it takes for the CPU to recognize the existence of an
interrupt. The CPU generally only recognizes interrupts between instructions or on instruction
boundaries. Therefore, the current instruction must finish executing before an interrupt can be
recognized.

The worst case 80C186 instruction execution time is an integer divide instruction with
seg~ent override prefix. The ~nstruction takes 6~ clocks, ass~min~ an 80C 186 Modular Core
famIly member and a zero walt state external bus. The executIOn time for an 80C188 Modular
Core family member may be longer depending on the queue.

This is one factor in determining interrupt latency. In addition, the following are also factors in
determining maximum latency:

1. The Interrupt Enable bit must be set for the CPU to recognize the Maskable Interrupt.

2. The CPU will not recognize interrupts during HOLD.

3. Once communication is completely established with an 80C187, the CPU will not
recognize interrupts until the numerics instruction is finished.

The CPU can only recognize interrupts on valid instruction boundaries. A valid instruction
boundary usually occurs when the current instruction finishes. The following is a list of
exceptions:

1. MOVs and POPs referencing a segment register will delay servicing of interrupts until
after the following instruction. The delay allows a 32-bit load to the SS and SP without an
interrupt occurring between the two loads.

2. The CPU allows interrupts between repeated string instructions. If multiple prefixes
precede a string instruction and the instruction is interrupted, only the one prefix
preceding the string primitive is restored.

3. The CPU can be interrupted during aWAIT instruction. The CPU will return to the WAIT
instruction.

2.3.4. INTERRUPT RESPONSE

Interrupt response time is the time from the CPU recognizing an interrupt until the first
instruction in the service routine is executed.

Interrupt response time is less for interrupts or exceptions which supply their own vector type.
The maskable interrupt has a longer response time because the vector type must be supplied

2-39

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

by the Interrupt Control Unit. The response time for the maskable interrupt is covered in the
Interrupt Control Unit section.

Figure 2.27 shows the sequence of events which dictate interrupt response time for the
interrupts which supply their type. Note that an on-chip bus master, such as the DRAM
Refresh Unit, can make use of idle bus cycles. This can increase interrupt response time.

Clocks

IDLE

READ I P 4

IDLE 5

READ CS 4

IDLE 4

PUSH FLAGS

IDLE

PUSH CS

PUSH IP

IDLE

FIRST INSTRUTION
FETCH FROM INTERRUPT
ROUTINE

------------------ --"----- ------ ---- >

Total 42

Figure 2.27. Interrupt Response Factors

2.3.5. INTERRUPT AND EXCEPTION PRIORITY

Interrupts can only be recognized on valid instruction boundaries. If an NMI and a maskable
interrupt are both recognized on the same instruction boundary, NMI has precedence. The
maskable interrupt will not be recognized until the Interrupt Enable bit is set and it is the
highest priority.

Only the single step exception can occur concurrently with another exception. At most, two
exceptions can occur at the same instruction boundary and one of the exceptions must be the
single step. Single step is a special case which will be discussed later. By ignoring single step
(for now), only one exception can occur at any given instruction boundary.

An exception has priority over both NMI and the maskable interrupt. However, a pending
NMI can interrupt the CPU at any valid instruction boundary. Therefore, NMI can interrupt an
exception service routine. If an exception and NMI occur simultaneously, the exception vector

2-40

intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

will be taken, followed immediately by the NMI vector. See Figure 2.28. While the exception
has higher priority at the instruction boundary, the NMI interrupt service routine is executed
first. .

NMI DIVIDE ERROR

PUSH PSW, CS, IP
FETCH DIVIDE ERROR VECTOR

EXECUTE DIVIDE
SERVICE ROUTINE

IRET

PUSH PSW, CS, IP
FETCH NMI VECTOR

EXECUTE NMI
SERVICE ROUTINE

IRET

Figure 2.28. Simultaneous NMI and Exception

Single step priority is a special case. If an interrupt (NMI or maskable) occurs at the same
instruction boundary as a single step, the interrupt vector is taken first, followed immediately
by the single step vector. The single step. service routine is executed before the interrupt
service routine. See Figure 2.29. If the single step service routine re-enables Single Step by
setting the Trap Flag bit before executing the IRET, the interrupt service routine will also be
single stepped. This can severely limit the real-time response of the CPU to an interrupt.

2-41

intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

To prevent the single step routine from executing before a maskable interrupt, disable
interrupts while single stepping an instruction. Then enable interrupts in the single step service
routine. The maskable interrupt is serviced from within the single step service routine and that
interrupt service routine is not single-stepped. To prevent single stepping before an NMI, the
single step service routine must compare the return address on the stack to the NMI vector. If
they are the same, return to the NMI service routine immediately without executing the single
step service routine.

NMI ~ I INSTRUCTION TRAP FLAG=1

I
~

PUSH PSW, CS, IP
FETCH DIVIDE

ERROR VECTOR
TRAP FLAG=O

I
~

PUSH PSW, CS, IP
FETCH SINGLE STEP VECTOR

t
EXECUTE SINGLE STEP

SERVICE ROUTINE

•••••• J
IRET

TRAP FLAG=?.??

Figure 2.29. Simultaneous NMI and Single Step Interrupts

The most complicated case is when an NMI, maskable interrupt, single step and another
exception are pending on the same instruction boundary. Figure 2.30 shows how this case is
prioritized by the cpu. Note: if the single step routine sets the Trap Flag bit before executing
the IRET instruction, the NMI routine will also be single stepped.

2-42

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

INTERRUPT ENABLE BIT (IE) = 1
TRAP FLAG (TF) = 1

NMI ~ TIMER INTERRUPT

PUSH PSW, CS, IP
FETCH DIVIDE ERROR VECTOR

PUSH PSW, CS, IP
FETCH NMI VECTOR

...... ..---------'

INTERRUPT ENABLE BIT (IF) = 0
TRAP FLAG (TF) = 0

INTERRUPT ENABLE BIT (IF) = 0
TRAP FLAG (TF) = 0

INTERRUPT ENABLE BIT
(IF) =0

TRAP FLAG (TF) = 0

INTERRUPT ENABLE BIT (IF) = 0
TRAP FLAG (TF) = ???

INTERRUPT ENABLE BIT (IF) = 1
TRAP FLAG (TF) = X

PUSH PSW, CS, IP
FETCH SINGLE STEP VECTOR

EXECUTE SINGLE STEP SERVICE ROUTINE

IRET

INTERRUPT ENABLE BIT (IE) = 1
TRAP FLAG = X

Figure 2.30. Simultaneous NMI, Single Step and Maskable Interrupt

2-43

Bus Interface Unit 3

CHAPTER 3
BUS INTERFACE UNIT

The Bus Interface Unit, abbreviated BIU, generates bus cycles that prefetch instructions from
memory, pass data to and from the execution unit, and pass data to and from the integrated
peripheral units.

The BIU drives address, data, status and control information to define a bus cycle. The start of
a bus cycle presents the address of a memory or 1/0 location and status information defining
the type of bus cycle. Read or write control signals follow address and define the direction of
data flow. A read cycle requires data to flow from the selected memory or 110 device to the
BIU. In a write cycle, the data flows from the BIU to the selected memory or 1/0 device. Opon
termination of the bus cycle, the BIU latches read data or removes write data.

3.1. MULTIPLEXED ADDRESS AND DATA BUS

The BIU has a combined address and data bus, commonly referred to as a time multiplexed
bus. Time multiplexing address and data information makes the most efficient use of device
package pins. A system with address latching provided within the memory and 1/0 devices
can directly connect to the addressldata bus (or local bus). The local bus can be demultiplexed
with a single set of address latches to provide non-multiplexed address and data information to
the system.

3.2. ADDRESS AND DATA BUS CONCEPTS

The programmer views the memory or 1/0 address space as a sequence of bytes. Memory
space consists of 1 Mbytes, while 1/0 space consists of 64 Kbytes. Any byte may contain an
eight bit data element, and any two consecutive bytes may contain a sixteen bit data element
(identified as a word). The discussions in this section apply to both memory and 1/0 bus
cycles. For brevity, memory bus cycles are used for examples and illustration.

3.2.1. 16-BIT DATA BUS

The memory address space on a l6-bit data bus is physically implemented by dividing the
address space into two banks of up to 512 Kbytes (see Figure 3.1). One bank connects to the
lower half of the data bus and contains even addressed bytes (AO=O). The other bank connects
to the upper half of the data bus and contains odd addressed bytes (AO=l). Address lines A19-
Al select a specific byte within each bank. AO and Byte High Enable (BHE) determine
whether one bank or both banks participate in the data transfer.

3·1

intel ..

PHYSICAL IMPLEMENTATION
OF THE ADDRESS SPACE FOR

8·BIT SYSTEMS

1 MBYTE

FFFFF
FFFFE

--'\
IV'

2
1
0

..;:...

..., 7'

A19:0 D7:0

BUS INTERFACE UNIT

PHYSICAL IMPLEMENTATION OF THE
ADDRESS SPACE FOR 16·BIT SYSTEMS

512 KBYTES 512 KBYTES

FFFFF FFFFE
FFFFD FFFFC

--'\ 0- --'\
11" IV'

5 4
3 2

1 0
..; ~ ..;'?-

I " 7' ..., 7

A19:1 D15:8 BHE D7:0

Figure 3.1. Physical Data Bus Models

0-

AO

Byte transfers to even addresses transfer information over the lower half of the data bus (see
Figure 3.2). AO low enables the lower bank: while BHE high disables the upper bank:. The data
value from the upper bank is ignored during a bus read cycle. BHE high prevents a write
operation from destroying.data in the upper bank.

Byte transfers to odd addresses transfer information over the upper half of the data bus (see
Figure 3.2). BHE low enables the upper bank while AO high disables the lower bank. The data
value from the lower bank is ignored during a bus read cycle. AO high prevents a write
operation from destroying data in the lower bank.

To access even addressed 16-bit words (two consecutive bytes with the least significant byte at
an even address), information is transferred over both halves of the data bus (see Figure 3.3).
A19-Al select the appropriate byte within each bank. AO and BHE drive low to enable both
banks simultaneously.

Odd addressed word accesses require the BIU to split the transfer intotwQ byte operations (see
Figure 3.4). The first operation transfers data over the upper half of the bus, while the second
operation transfers data over the lower half of the bus. The BIU automatically executes the
two byte sequence whenever an odd addressed word access is performed.

3-2

intel .. BUS INTERFACE UNIT

EVEN BYTE TRANFER

~
Y +1

~
Y

X+1 r-I ' '
--V

.«""

I '" '7 II'"

A19:1 D15:8 BHE(HIGH) D7:0 AO(LOW)

f--------1 ODD BYTE TRANSFER

A19:1 D15:8 BHE(LOW) D7:0 AO (HIGH)

Figure 3.2. 16·Bit Data Bus Byte Transfers

A19:1 D15:8 BHE(LOW) D7:0 AO (LOW)

Figure 3.3. 16·Bit Data Bus Even Word Transfers

3·3

BUS INTERFACE UNIT

During a byte read operation the BIU floats the entire 16-bit data bus even though the transfer
occurs on only one half of the bus. This action simplifies the decoding requirements for read
only devices (e.g., ROM, EPROM, FLASH). During the byte read, both halves of the bus can
be driven and the BIU automatically accesses the correct half. The BIU drives both halves of
the bus during a byte write operation. Information of the half of the bus not involved in the
transfer is indeterminate. This action requires that the appropriate bank (defined by BHE or
AO high) be disabled to prevent destroying data.

3.2.2. 8-BIT DATA BUS

The memory address space on an 8-bit data bus is physically implemented as one bank of 1
Mbytes (see Figure 3.1). Address lines A19-AO select a specific byte within the bank. Unlike a
16-bit bus, byte and word transfers (to even or odd addresses) all transfer data over the same
8-bit bus.

FIRST BUS CYCLE

A19:1 015:8 SHE (LOW) 07:0 AO (HIGH)

SECOND BUS CYCLE

-----'\ -----'\ Y + 1
IV' X + 1 IV' X

p- P-
L :::,. .& Ilo.

I " 7'
.. ".

A19:1 015:8 SHE (HIGH) 07:0 AO (LOW)

Figure 3.4. 16-Bit Data Bus Odd Word Transfers

3-4

intel .. BUS INTERFACE UNIT

Byte transfers to even or odd addresses transfer information in one bus cycle. Word transfers
to even or odd addresses transfer information in two bus cycles. The BIU automatically
converts the word access into two consecutive byte accesses, making the operation transparent
to the programmer.

For word transfers, the word address defines the first byte transferred. The second byte
transfer occurs from the word address plus one. Figure 3.5 illustrates a word transfer on an 8-
bit bus interface.

FIRST BUS CYCLE SECOND BUS CYCLE

A19:0 07:0 A19:0 07:0

Figure 3.5. 8-Bit Data Bus Word Transfers

3.3. MEMORY AND I/O INTERFACES

The CPU can interface with 8- and 16-bit memory and I/O devices. Memory devices exchange
information with the CPU during memory read, memory write and instruction fetch bus
cycles. 110 (peripheral) devices exchange information with the CPU during memory read,
memory write, 110 read, 110 write and interrupt acknowledge bus cycles. Memory mapped 110
refers to peripheral devices that exchanged information during memory cycles. Memory
mapped 110 allows the full power of the instruction set to be use when communicating. with
peripheral devices.

110 read and 110 write bus cycles use a separate 110 address space. Only IN and OUT
instructions can access 110 address space, and information must be transferred between the
peripheral device and the AX register. The first 256 bytes (0-255) of 110 space can be
accessed directly by the 110 instructions. The entire 64 Kbyte I/O address space can only be
accessed indirectly through the DX register. 110 instructions always force address bits A19-
A16 to zero.

Interrupt acknowledge, or INT A bus cycles access an 110 device intended to increase interrupt
input capability. Valid address information is not generated as part of the INT A bus cycle, and
data are transferred only over the lower bank (16-bit device).

3-5

intel® BUS INTERFACE UNIT

3.3.1. 16-BIT BUS MEMORY AND I/O REQUIREMENTS

A 16-bit bus has certain assumptions that must be met to operate properly. Memory used to
store instruction operands (i.e., the program) and immediate data must be 16-bits wide.
Instruction prefetch bus cycles require that both banks be used. The lower bank contains the
even bytes of code and the upper bank contains the odd bytes of code.

Memory used to store interrupt vectors and stack data must be 16-bits wide. Memory address
space between OH and IFFH (1 Kbyte) hold the starting location of an interrupt routine. In
response to an interrupt, the BIU fetches two consecutive, even addressed words from this 1
Kbyte address space. Stack pushes and pops always write or read even addressed word data.

3.3.2. 8-BIT BUS MEMORY AND 1/0 REQUIREMENTS

An 8-bit bus interface has no restrictions on implementing the memory or I/O interfaces. All
transfers, bytes and words, occur over the single 8-bit bus. Operations requiring word transfers
automatically execute two consecutive byte transfers.

3.4. BUS CYCLE OPERATION

The BIU executes a bus cycle to transfer data to or from any of the integrated units and
external memory or I/O devices (see Figure 3.6). A bus cycle consists of a minimum of four
CPU clocks known as "T -States." AT-state is bounded by one falling edge of CLKOUT to the
next falling edge of CLKOUT (see Figure 3.7). Phase 1 represents the low time of the T-state
and starts at the high-to-Iow transition of CLKOUT. Phase 2 represent the high time of the T­
state and starts at the low-to-high transition of CLKOUT. Address, data and control signals
generated by the BIU go active and inactive at different phases within aT-state.

Figure 3.8 shows the BIU state diagram. Typically a bus cycle consists of four consecutive T­
states labeled Tl, T2, T3 and T4. A TI (idle) state occurS when no bus cycle is pending.
Multiple T3 states occur to generate wait states. The symbol TW represents a wait state.

The operation of a bus cycle can be broken up into two phases:

• Address/Status Phase

• Data Transfer Phase

The address/status phase starts just prior to Tl and continues through Tl. The data transfer
phase starts at T2 and continues through T4. Figure 3.9 illustrates the T-state relationship of
the two phases.

3-6

CLKOUT

ALE

S2:0

AD15:0

WR / RD

BUS INTERFACE UNIT

T4 T1 T2 T3

DATA

L: ' , , , , , , ,

Figure 3.6. Typical Bus Cycle

CLKOUT

: TN

I' Falling I' Rising
I Edge Edge
!------~

PHASE 1

(LOW
PHASE)

PHASE 2

(HIGH
PHASE)

Figure 3.7. T -State Relation to CLKOUT

3.4.1. ADDRESS/STATUS PHASE

T4

L

Figure 3.10 shows signal timing relationships for the address/status phase of a bus cycle. A
bus cycle begins with the transition of the ALE and S2:0. These signals transition during
phase 2 of the T-state just prior to Tl. Referring back to Figure 3.8, T4 or TI precede T1
depending on the operation of the previous bus cycle.

3·7

REQUEST PENDING
HOLD DEASSERTED

BUS INTERFACE UNIT

BUS READY
REQUEST PENDING
HOLD DEASSERTED

------:J~~0) ---------;~~EX.:d

RESIN
ASSERTED

HALT BUS CYCLE

HOLD ASSERTED

READY

BUS READY
NO REQUEST PENDING
HOLD DEASSERTED

Figure 3.8. BIU State Diagram

T4 or TI , T1 , T2 ,T3ITW , T41T1

CLKOUT ~~L--Jn'---------Jn~

/ ADDRESS/ \1/ \
\ STATUS PHASE 11\'--___ D_A_TA_P_H_AS_E ___ -11

Figure 3.9. T-State and Bus Phases

3-8

NOTES:

BUS INTERFACE UNIT

CLKOUT

ALE

AD15-ADO
A19:16

82:0

BHE

TlorT4 T1

1. T CHLH CHSV : Clock high to ALE high, 82:0 valid.

2. T CLAV : Clock low to address valid, BHE valid.

T2

3. T AVLL : Address valid to ALE low (address setup to ALE).

4. T CHLL : Clock high to ALE low.

5. T CLAZ : Clock low to address invalid (address hold from clock low).

6. T LLAX : ALE low to address invalid (address hold from ALE).

Figure 3.10. Address/Status Signal Relationships

ALE provides a strobe to latch physical address information. Address is presented on the
multiplexed address/data bus during T1 (see Figure 3.10). The falling edge of ALE occurs
during the middle of T 1 and provides a strobe to latch address. Figure 3.11 presents a typical
circuit for latching addresses.

The status signals S2:0 define the type of bus cycle. Table 3.1 lists the possible bus cycle
types. S2:0 remain valid until phase 1 of T3 (or the last TW when wait states occur). The
circuit shown in Figure 3.11 can also be used to extend S2:0 beyond the T3 (or TW) state.

3-9

BUS INTERFACE UNIT

SIGNALS FROM
CPU

A19:16
S2:0

AD15:8

AD7:0

ALE

4/

3L
/

!j.,
/

!j.,
/

'" ,.

" ,.

'" ,.

...-

'" ,.

'" ,.

0---

'" ,.

'" ,.

I---

-

I
I 0

STB 0

-

OE

I

STS 0
-
OE

I

STB 0
-
OE

LATCHED
ADDRESS SIGNALS

4L.~
/ ,.

3/ '"
/ ,.

8.1' .""
/ ,.

IV "" / ,.

LA19:16

LS2:0

LA15:8

LA7:0

Figure 3.11. Demultiplexing Address Information

Table 3.1. Bus Cycle Types

STATUS BIT

S2 S1 SO OPERATION

0 0 0 Interrupt Acknowledge

0 0 1 I/O Read

0 1 0 liOWrite

0 1 1 Halt

1 0 0 Instruction Prefetch

1 0 1 Memory Read

1 1 0 Memory Write

1 1 1 Idle (passive)

3-10

intet

CLKOUT

RD/WR

AD15:0
WRITE

AD15:0
READ

NOTES:

T2

BUS INTERFACE UNIT

T30rTW

VALID WRITE DATA

VALID
READ DATA

T4 orTI

1. T CLRUCLWL TCLOV : Clock low to valid RDI WR active; Write data valid

2. T CLSH : Clock low to status inactive

3. T DVCL : Data input valid to clock low

4. T CLRH/CLWH : Clock valid to RDI WR inactive

5. T CLDX : Data input HOLD from clock low

6. TWHDX : Output data HOLD from WR high

7. T RHAV : Bus no longer floating from RD high

Figure 3.12. Data Transfer Signal Relationships

3.4.2. DATA PHASE

Figure 3.12 shows the timing relationships for the data phase of a bus cycle. The only bus
cycle type that does not have a data phase is a bus halt. During the data phase the bus transfers
information between the internal units and the memory or peripheral device selected during
the address/status phase. Appropriate control signals become active to coordinate the transfer
of data.

3-11

BUS INTERFACE UNIT

The data phase begins at phase 1 of T2 and continues until phase 2 of T4 or TI. The length of
the data phase varies depending on the number of wait states. Wait states occur after T3 and
before T4 or TI.

3.4.3. WAIT STATES

Wait states extend the data phase of the bus cycle. Memory and 110 devices that can not
provide or accept data in the minimum four CPU clocks require wait states. Figure 3.13 shows
a typical bus cycle with wait states inserted.

T1 T2 T3 TW TW T4

CLKOUT

ALE ~ \ I

S2:0 \ VALID 7
A19:16 /ADDRESS\

AD15:0 ~DDRESSX VALID WRITE DATA

WR \ r-
ARDY / \

Figure 3.13. Typical Bus Cycle With Wait States

The bus ready pins and the Chip-Select Unit control bus cycle wait states. Only the bus ready
pins are described in this section. Refer to Chapter 7 for a discussion of the Chip-Select Unit.

The SRDY and ARDY inputs control the wait state operation of the BIU. Figure 3.14 shows a
simplified block diagram of the SRDY and ARDY inputs. Either ARDY or SRDY must be
active to signal a bus ready condition. However, both ARDY and SRDY must be inactive to
signal a bus not-ready condition. Depending on the size and characteristics of the system,
ready implementation may take one of two approaches: normally not-ready or normally ready.

3-12

ARDY

CLKOUT

SRDY

BUS INTERFACE UNIT

D

--..,t---l> Rising
Edge

L-=======~ ___ +-___ -I> Falling
Edge

Q

Figure 3.14. ARDY and SRDY Pin Block Diagram

BUS READY

The condition where ARDY and SRDY remain low at all times except to signal a ready
condition defines a normally not-ready system. For any bus cycle, only the selected device
drives either ready input high to allow the BIU to complete the bus cycle. The circuit shown in
Figure 3.15 illustrates how to generate a normally not-ready signal. Note that if no device is
selected the bus remains not-ready indefinitely. Systems with many slow devices that can
not operate at the maximum bus bandwidth usually implement a normally not-ready signal.

The start of a bus cycle clears the wait state module and forces ARDY low. After every rising
edge of CLKOUT, INPUTl and INPUT2 are shifted through the module and eventually drive
ARDY high. Assuming INPUTl and INPUT2 are valid prior to phase 2 of T2, no delay
through the module causes one wait state. Each additional clock delay through the module
generates one additional wait state. Two inputs are used to establish different wait state
conditions. The same circuit works for SRDY, except no delay through the module results in
no wait states.

CS1
CS2

CS3
CS4

ALE

CLKOUT

WAIT STATE
MODULE

INPUT 1

INPUT 2

OUT

CLEAR

CLOCK

Figure 3.15. Generating a Normally Not-Ready Signal

3-13

ARDY

BUS INTERFACE UNIT

A normally ready system drives ARDY or SRDY (or both) high at all times except when the
selected device needs to signal a not-ready condition. For any bus cycle, only the selected
device drives the ready input (or inputs) low to delay the completion of the bus cycle. The
circuit shown in Figure 3.16 illustrates a simple circuit to generate a normally ready signal.
Note that if no device is selected the bus remains ready. Systems that have few or no
devices requiring wait states usually implement a normally ready signal.

The start of a bus cycle preloads a "zero" shifter and forces SRDY active (high). SRDY
remains active if neither CS I or CS2 go low. Should CS 1 or CS2 go low, a series of zeros
are shifted out every rising edge of CLKOUT causing SRDY to go inactive. At the end of the
shift pattern SRDY is forced active again. Assuming CS 1 and CS2 are active just prior to
phase 2 of T2, shifting one "zero" through the module causes one wait state. Each additional
zero shifted through the module generates one wait state. The same circuit works for ARDY,
except shifting one "zero" through the module results in two wait states.

WAIT STATE
MODULE

CS1
CS2 ENABLE

OUT SRDY
ALE LOAD

CLKOUT CLOCK

Figure 3.16. Generating a Normally Ready Signal

The BIU can execute an indefinite number of wait states. However, bus cycles with large
numbers of wait states limit the performance of the CPU and the integrated peripherals. CPU
performance suffers because the instruction prefetch queue can not be kept full. Integrated
peripheral performance suffers because the maximum bus bandwidth decreases.

3.4.3.1. ARDY INPUT

The ARDY input has two major timing concerns that can effect whether a normally ready or
normally not-ready signal may be required. Referring to Figure 3.14, two latches capture the
state of the ARDY input. The first latch captures ARDY on the phase 2 clock edge. The
second "latch captures ARDY and the result of the first latch on the phase 1 clock edge. The
following equations define the requirements of the ARDY input (SRDY is inactive) to meet
ready or not-ready bus conditions.

3-14

intet BUS INTERFACE UNIT

The bus is ready if:
1. ARDY is active prior to the phase 2 clock edge.

AND
2. ARDY is active prior to the phase 1 clock edge.

The bus is not-ready if:
1. ARDY is inactive prior to the phase 2 clock edge.

OR
2. ARDY is inactive prior to the phase 1 clock edge.

A normally not-ready system must generate a valid ready input at phase 2 of T2 to prevent
wait states. If it can not, then a normally ready system is required to run no wait states. Figure
3.17 illustrates the timing necessary to prevent wait states in a normally not -ready system.
Figure 3.17 also illustrates how to terminate a bus cycle with wait states in a normally not­
ready system.

, , ,
:T2,T30rTW :T3,TWorTW: T4

CLKOUT

ARDY ________ -1

SRDY __________ ~

In a Normally-Not-Ready system, wait states are inserted until (1 or 2) and 3 are met.

1. T ARYCH : ARDY active to clock high (assumes ARDY remains active until 3)

2. TSRYCL : SRDY active to clock low

3. TCLARX TCLSRY: ARDY + SRDY hold from clock low

1,\ Failure to meet SRDY setup & hold can cause a device failure (i.e., the bus
~ hangs or operates inappropriately).

Figure 3.17. Normally Not-Ready System Timing

A valid not-ready input can be generated as late as phase 1 of T3 to insert wait states in a
normally ready system. A normally not-ready system is required to run wait states if the not­
ready condition can not be met in time. Figure 3.18 illustrates the minimum and maximum
timing necessary to insert wait states in a normally ready system. Figure 3.18 also illustrates
how to terminate a bus cycle with wait states in a normally ready system.

3-15

in1'et BUS INTERFACE UNIT

T2 T3 TW

ClKOUT

ARDY

In a Normally-Not-Ready system, a wait state will be inserted when 1 & 2 are met.
(Assumes SRDY is low.)

1. TARYCH : ARDY low to clock high

2. T ARYCHl : Clock high to ARDY high (ARDY inactive hold time)

T2. T3 TW

ClKOUT

ARDY

SRDY

T4

T4

Alternatively, in a Normally-Ready system, a wait state will be inserted when 1 & 2 are
met for both SRDY & ARDY.

1. TARYlCl SRYCl: ARDY/SRDY low to clock low

2. TCHARX TClSRY: ARDY/SRDY low from clock low

1,\ Failure to meet ARDY & SRDY setup & hold time can cause a device failure
~ (Le., tHe bus hangs or operates inappropriately).

Figure 3.18. Normally Ready System Timing

3.4.3.2. SRDY INPUT

Referring to Figure 3.14, only one latch captures the state of the SRDY input. SRDY must be
valid by phase 1 clock edge. The following equations define the requirements of the SRDY
input (ARDY is inactive) to meet ready or not-ready bus conditions.

The bus is ready if:
1. SRDY is active prior to the phase 1 clock edge.

The bus is not-ready if:
1. SRDY is inactive prior to the phase 1 clock edge.

3-16

BUS INTERFACE UNIT

A normally not-ready system must generate a valid ready input at phase 1 of T3 to prevent
wait states. If it can not, then a normally ready system is required to run no wait states. Figure
3.17 illustrates the timing necessary to prevent wait states in a normally not-ready system.
Figure 3.17 also illustrates how to terminate a bus cycle with wait states in a normally not­
ready system.

A valid not-ready input can be generated as late as phase 1 of T3 to insert wait states in a
normally ready system. A normally not-ready system is required to run wait states if the not­
ready condition can not be met in time. Figure 3.18 illustrates the minimum and maximum
timing necessary to insert wait states in a normally ready system. Figure 3.18 also illustrates
how to terminate a bus cycle with wait states in a normally ready system.

3.4.4. IDLE STATES

Dnder most operating conditions the BID executes consecutive (back-to-back) bus cycles.
However, several conditions cause the BID to become idle. An idle condition occurs between
bus cycles (see Figure 3.8), and may last an indefinite amount of time (depending on the
instruction sequence). Conditions causing the BID to become idle include:

• The instruction prefetch queue is full

• An effective address calculation is in progress

• The bus cycle inherently requires idle states (e.g., interrupt acknowledge, locked
operations)

• Instruction execution forces idle states (e.g., HLT, WAIT)

An idle bus state mayor may not drive the bus. An idle bus state following a bus read cycle
continues to float the bus. An idle bus state following a bus write cycle continues to drive the
bus. The BID does not drive any of the control strobes active in an idle state unless to indicate
the start of another bus cycle.

3.5. BUS CYCLES

There are four basic types of bus cycles: read, write, interrupt acknowledge and halt. Interrupt
acknowledge and halt bus cycles define special bus operations and require separate
discussions. Read bus cycles include memory, 1/0 and instruction prefetch bus operations.
Write bus cycles include memory and I/O bus operations. All read and write bus cycles have
the same basic format.

The following sections present timing equations containing symbols found in the data sheet.
The timing equations provide information necessary to start a worst case design analysis.

3.5.1. READ BUS CYCLES

Figure 3.19 illustrates a typical read cycle. Table 3.2 lists the three types ofread bus cycles.

3-17

BUS INTERFACE UNIT

, T1 , T2 , T3 , T4 ,

CLKOUT~~~~

S2:0

I I I I I I I r I I
I , I I I I I I I I

I I I I I I t I ' I

1 \L~ ____ S_T_AT_U_S_V~A_L_ID ______ ~/ 'Li-' , , , , , , ,
, ,

ALE -iJ \ lIT
L. __ ~ ____ : ____ -L ____ ~ _____ L-___ :J :

A19:16

, ,

ADDRESS
VALID

A18:16=0
A19=VALID STATUS

, , ,

-BH-E [-~-~~-::] ~ ____ '~X~~ ________ ~ ____ V_A_L_ID __ ~ ________ ~ __ ~'~

AD15:0
[AD7:0]

RD

DEN

I t I I I I

-:T:-:-:-:~: : r:-:--I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

:I:I:~:----:'

Figure 3.19. Typical Read Bus Cycle

Figure 3.20 illustrates a typical16-bit interface connection to a read-only device interface. The
same example applies to an 8-bit bus system, except no devices connect to an upper bus. Four
parameters must be evaluated when detemlining the compatibility of a memory (or I/O)
device. TADLTCH defines the delay through the address latch. Table 3.3 lists.the four
parameters.

TOE, T ACC and TCE define the maximum data access requirements for the memory device.
These device parameters must be less than the value calculated in the equation column. A
equal to or greater than result indicates that wait states must be inserted into the bus cycle.

3-18

in1:et BUS INTERFACE UNIT

Table 3.2. Read Bus Cycle Types

STATUS BIT

52 51 SO BUS CYCLE TYPE

0 0 1 Read 1/0 - Initiated by the Execution Unit for IN, OUT,
INS, OUTS instructions or by the DMA Unit. A 15:0 selects

the desired 1/0 port. A 19: 16 drive to zero (see also DMA

Unit).

1 0 0 Instruction Prefetch - Initiated by the BIU. Data read from

the bus fills the prefetch queue.

1 0 1 Read Memory - Initiated by the Execution Unit, the DMA

Unit, or the Refresh Control Unit. A 19:0 select the desired
byte or word memory location

TDP determines the maximum time the memory device can float its outputs before the next bus
cycle begins. A TDP value greater than the equation result indicates a buffer fight. A buffer
fight means two (or more) devices are driving the bus at the same time. This can lead to short
circuit conditions, resulting in large current spikes and possible device damage.

TRHAX cannot be lengthened (other than slowing the clock rate). To resolve a buffer fight
condition, chose a faster device or buffer the AD bus (see Section 3.6.1).

Table 3.3. Read Cycle Critical Timing Parameters

MEMORY DEVICE

PARAMETER DESCRIPTION EQUATION
-

TOE Output enable (RD low) to data valid 2TCLCL - TCLRL - TOVCL

TACC Address valid to data valid 3TCLCL - TCLAv· TAOLTCH - TOVCL

--
TCE Chip enable (UCS) to data valid 3TCLCL - TCLCSV - TOVCL

-
TOF Output disable (RD high) to output float TRHAV

3.5.1.1. REFRESH BUS CYCLES

A refresh bus cycle operates similarly to a normal read bus cycle except for the following:

• For a 16-bit data bus, address bit AD and BHE drive to a 1 (high) and the data value on
the bus is ignored.

• For an 8-bit data bus, address bit AD drives to a 1 (high) and RFSH is driven active. The
data value on the bus is ignored. RFSH has the same bus timing as BHE.

3-19

BUS INTERFACE UNIT

UCS ... " CE
I
I

T '-'
A

AD7:0 °0-7

LA15:1 > 27C256
AO-14

v

RD " OE
i

\J

~ OE I

> AO-14
v

27C256
AD15:8 °0-7

" CE '-'

NOTE: Ao AND SHE ARE NOT USED.

Figure 3.20. Read-Only Device Interface

3.5.2. WRITE BUS CYCLES

Figure 3.21 illustrates a typical write bus cycle. The bus cycle starts with the transition of ALE
high and the generation of valid status bits S2:0. The bus cycle ends when WR transitions
high (inactive), although data remains valid for one additional clock. Table 3.3 lists the two
types of write bus cycles.

Figure 3.22 illustrates a typical 16-bit interface connection to a ReadlWrite device. Write bus
cycles have many parameters that must be evaluated in determining the compatibility of a
memory (or I/O) device. Table 3.4 lists some critical write bus cycle parameters.

3-20

T1

CLKOUT

S2:0

ALE J

BUS INTERFACE UNIT

T2 T3 T4

,

, ' , ' :;--:'
~~----~--~-----~----r---~: :

A18:16=0
A19=VALID STATUS

BHE VALID V
[A 15:8] .---.-L--'------.----.---.---,------.--.---.--------r/L

AD15:0
[AD7:0]

....,---~-'

DT/R J
DEN J

,

DATA ~
~.-__ ~ ____ V~A-L-ID--~---.--~~

\'---­
\'-----.,~-~-----;..j

Figure 3.21. Typical Write Bus Cycle

Most memory and peripheral devices latch data on the rising edge of the write strobe. Address,
chip-select and data must be valid (setup) prior to rising edge of WR. TAW, Tcw and TDW
define the minimum data setup requirements. The value calculated by their respective
equations must be greater than the device requirements. To increase the calculated value insert
wait states.

The minimum device data hold time (from WR high) is defined by TDH. The calculated value
must be greater than the minimum device requirements; however, the value can only be
changed by decreasing the clock rate.

3-21

BUS INTERFACE UNIT

Table 3.4. Write Bus Cycle Types

STATUS BITS

S2 S1 SO BUS CYCLE TYPE

0 1 0 Write I/O - Initiated by executing IN, OUT, INS, OUTS
instructions or by the DMA Unit. A 15:0 selects the desired
I/O port. A19:16 are driven to zero (see also DMA Unit).

1 1 0 Write Memory - Initiated by any of the Byte/ Word
memory instructions or the DMA Unit. A 19:0 selects the
desired byte or word memory location.

LA15:1 A 0-14

RD 0 OE 1/01 W AD7:O

0 WE 1/08

0 CS1

LAO
WR

SHE
OE 1101 W AD15:8

WE 1/08

LCS • 0 CS1

Figure 3.22. 16-Bit Bus Read/Write Device Interface

3·22

. in tel .. BUS INTERFACE UNIT

Table 3.5. Write Cycle Critical Timing Parameters

MEMORY DEVICE
PARAMETER DESCRIPTION EQUATION

TwC Write cycle time 4TCLCL

TAW Address valid to end of write strobe (WR high) 3TcLCL - T AOL TCH

Tcw Chip enable (LCS) to end of write strobe (WR 3TcLCL
high)

TWR Write recover time TWHLH

Tow Data valid to write strobe (WR high) 2TCLCL

TOH Data hold from write strobe (WR high) TWHOX

Twp Write pulse width TWLWH

Twc and Twp define the minimum time (maximum frequency) a device can process write bus
cycles. TWR determines the minimum time from the end of the current write cycle to the start
of the next write cycle. All three parameters require calculated values be greater than device
requirements. The calculated Twc and TwP values increase by inserting wait states. The
calculated TwR value, however, can not be changed except by decreasing the clock rate.

3.5.3. INTERRUPT ACKNOWLEDGE BUS CYCLE

Interrupt expansion is accomplished by interfacing the Interrupt Control Unit with a peripheral
device such as the 82C59A Programmable Interrupt Controller. The BIU controls the bus
cycles required to fetch vector information from the peripheral device, and then passes the
information to the CPU. These bus cycles, collectively know as an INTA bus cycle, operate
similarly to read bus cycles. However, instead of generating RD to enable the peripheral, the
signal INTA is used. Figure 3.23 illustrates a typical Interrupt Acknowledge bus cycle.

An Interrupt Acknowledge bus cycle consists of two consecutive bus cycles. LOCK is
generated to indicate the sequential bus operation. The second bus cycle strobes vector
information only from the lower half of the bus (D7:0). In a 16-bit bus system, the upper half
of the bus floats.

Figure 3.25 shows a typical 82C59A interface example. Bus ready must be provided to
terminate both bus cycles in the interrupt acknowledge sequence.

3-23

intel ..

CLKOUT.

\.

ALE

52:0

INTAO,

INTA1

AD15:0
[AD7:0]

LOCK

DT/R

A19:16
[A15:8]

SHE

RD,WR

, T1 , T2

BUS INTERFACE UNIT

T3 TI TI

, , .

A15:8 ARE UNKNOWN
A19:16ARE DRIVEN LOW

TI , T1 : T2

NOTE: Vector Type is read from AD7:0 on y.
INTA occurs during T2 in Slave Mode

Figure 3.23. Interrupt Acknowledge Bus Cycle

3-24

T3

intel .. BUS INTERFACE UNIT

PROCESSOR

f
82C59A

--
'" --

INTAO ,. INTA I RD

·)
INTO ~ INT • \

- - · ~

RD "" RD IR7 -- -
'" WR ,. WR

-- -..... PCSO , CS

LA1 ~ AO
D7:0

A II 1\

AD7:0 V
1\
~ V

Figure 3.24 Typical 82C59A Interface

3.5.3.1. SYSTEM DESIGN CONSIDERATIONS

Although ALE is generated for both bus cycles, the BIU does not drive valid address
information. Actually, all address bits except A19:16 float during the time ALE becomes
active (on both 8- and 16-bit bus devices). Address decode circuitry must be disabled for
Interrupt Acknowledge bus cycles to prevent erroneous operation.

3.5.4. HALT BUS CYCLE

Suspending the CPU reduces device power consumption and potentially reduces interrupt
latency time. The HLT instruction initiates two sequences:

1. Suspends the Execution Unit

2. Instructs the BIU to execute a HALT bus cycle

After executing a HALT bus cycle, the BIU suspends operation until any of the following
events occur:

3-25

intel .. BUS INTERFACE UNIT

• An interrupt is generated

• A bus HOLD is generated

• A DMA request is generated

• A refresh request is generated

Figure 3.25 shows the operation of a HALT bus cycle. During Tl, the AD bus either floats or
drives depending on the next bus cycle to be executed by the Bill. Under most instruction
sequences, the Bill floats the AD bus because the next operation would most likely be an
instruction prefetch. However, the AD bus drives either data or address information during Tl
if the HALT occurs just after a bus write operation. A19:16 continues to drive the previous
bus cycle information under most instruction sequences (it drives the next prefetch address
otherwise). The BIU always operates the same way for any given instruction sequence.

The Chip-Select Unit prevents a programmed chip-select from going active during a HALT
bus cycle. However, chip-selects generated by external decoder circuits must be disabled for
HALT bus cycles.

Table 3.6 lists the state of each pin after entering the HALT bus state.

Table 3.6. HALT Bus Cycle Pin States

PIN(S) PIN STATE

AD 15:0 (AD7:0 for S-bit) Float

A 15:S (S-bit) Drive Address

A19:16 Drive SH or Zero

BH E (16-bit) Drive Last Value

RD, WR, DEN, DT/R, Drive One
RF5H (S-bit), 52:0

3.5.5. TEMPORARILY EXITING THE HALT BUS STATE

A DMA request, refresh request or bus hold request cause the BIU to temporarily exit the
HALT bus state. The Bill returns to the HALT bus state after it completes the desired bus
operation. However, the BIU does not execute another bus HALT cycle (Le., ALE and bus
cycle status are not regenerated). Figures 3.26, 3.27, and 3.28 illustrate how the Bill
temporarily exits and then returns to the HALT bus state.

3·26

intel .. BUS INTERFACE UNIT

T1 TI TI

CLKOUT ~

ALE ~ \
82:0 \ 011 /

AD15:0
NOTE 1 [AD7:0]

[A15:8] NOTE 1

A19:16 NOTE 2

SHE
[RF8H = 1] /

3.5.6.

NOTES:

1. The AD15:0 [AD7:0] bus can be floating, driving a previous write data value,
or driving the next instruction prefetch address value. For an 8-bit device,
A 15:8 either drives the previous bus address value or the next instruction
prefetch address value.

2. The A19:16 bus either drives zero (all low) or 8H (all low except A19/S6,
which can be high if the previous bus cycle was a DMA or refresh operation).

Figure 3.25. HALT Bus Cycle

EXITING HALT

Any NMI or non-masked INTx interrupt forces the BIU to exit the HALT bus state. The first
bus operations to occur after exiting HALT are read cycles to reload the CS:IP registers.
Figure 3.29 shows how the HALT bus state is exited when and NMI or INTx occurs.

3-27

intel .. BUS INTERFACE UNIT

CLKOUT ~
ALE

----II 1\
S2:0 ----II

1
AD15:0

----II (ADDR) [AD7:0]

[A15:8] =:: NOTE 1 X ADDRESS

~: A 19:16 ------" NOTE 1 ~~ ___ A_1_9~_1._A_18_:1_6~_O ____________ _

----I ~~E-2---'7""'\-L-__ - ~~ __ - ~~_N_-O~T_E-3 __ -~~ __ - ~_-__ -~_-__ -~_-__ -

NOTE: 1. Previous bus cycle value.

2. Only occurs for BHE on the first refresh bus cycle after entering HALT.

3. BRE" = 1 for 16-bit device, 11FS'W= 0 for 8-bit device.

Figure 3.26. Returning to HALT After a Refresh Bus Cycle

3.6. SYSTEM DESIGN ALTERNATIVES

Most system designs do not require any additional signaling requirements than those already
provided by the BID. However, heavily loaded bus conditions, slow memory or peripheral
device performance, and off-board device interfaces may not be supported directly without
modifying the BIU interface. The following sections deal with topics to enhance or modify the
operation of the BIU.

3.6.1. BUFFERING THE DATA BUS

The BIU generates two control signals, DEN and DTIR, to control bidirectional buffers or
transceivers. The timing relationship of DEN and DTIR is shown in Figure 3.30. Conditions
requiring transceivers include:

• The capacitive load on the AD bus gets too large

• The current load on the AD bus exceeds device specifications

• Additional VOL and VOH drive is required

• A memory or liD device can not float its outputs in time to prevent a buffer fight

3-28

BUS INTERFACE UNIT

T4 T1 T2 T3 T4 T1 T2 T3 TI TI TI TI

CLKOUT

ALE ~ 1\
82:0

AD15:0 (ADDR) (ADDRX VALID DATA
[AD7:0]

[A15:8] NOTE
X

ADDRESS
X

ADDRESS

A19:16 NOTE XADDRX 8H XADDRX 8H

SHE NOTE
X

VALID
X

VALID

[RFSH=1]

NOTE: Drives previous bus cycle value

Figure 3.27. Returning to HALT After a DMA Bus Cycle

CLKOUT v-u-u--u-
HOLD J I~

HLDA r l

AD15:0
~I [AD7:0] L-

A15:8

A19:16 II

CONTROL II

Figure 3.28. Returning to HALT After a HOLD/HLDA Bus Exchange

3-29

in1:et BUS INTERFACE UNIT

CLKOUT-U
:------- NOTE 1

NMI/INTX~~

ALE
II

II
82:0

AD15,O.

:: [AD7:0)

[A15:8) ::
A19:16 ::

II SHE \ RFSH

NOTE:

1. For NMI, delay = 4 1/2 clock
For INTx, delay = 7 1/2 clocks

NOTE 2

NOTE 2

NOTE 2

NOTE 2

2. Previous bus cycle value

Figure 3.29. Exiting HALT

~
VALID

XADDRX

X ADDR

XADDRX

X

The circuit shown in Figure 3.31 illustrates how to use transceivers to buffer the AD bus. The
connection between the processor and the transceiver is known as the "local bus." Connections
between the transceiver and other memory or 1/0 devices is known as the "buffered bus." A
fully buffered system does not have any devices attached to the local bus. A partially buffered
system has devices on both the local and buffered buses.

DEN drives the transceiver output enable directly in a fully buffered system. A partially
buffered system requires DEN to be qualified with another signal to prevent the transceiver
from going active for local bus accesses. Figure 3.32 illustrates how to use chip-selects to
qualify DEN.

DT/R always connects directly to the transceiver. However, an inverter may be required if the
polarity of DT/R does not match the transceiver. DTIR only goes low (0) for memory and 110
read, instruction prefetch and interrupt acknowledge bus cycles.

3-30

intel .. BUS INTERFACE UNIT

T1 T2 T3 T4 T1

CLKOUT

RD,WR \ /

- J \ 7 DTt R

DEN ____ I _--- \ /
'-----. -----'-- - - -~

- - -WRITE CYCLE OPERATION

--READ CYCLE OPERATION

Figure 3.30. DEN and DTIR Timing Relationship

ALE '" ,.
1\

A19:16
v

LATCH

Ii t\

~D15:~ ADDRESS BUS

PROCESSOR

'(7
ADDR

--\
Ii t\ MEMORY

v
XCVR (DATABUS DATA OR CS ~ DEN '"

1/0
-

, ~ r
DEVICE

DTtR "" ,

4f ~
CPU LOCAL BUS BUFFERED BUS

Figure 3.31. Buffered AD Bus System

3-31

intel ..

AD15.:8
DEN

MCSO

AD7:0

DTt R

8/
/

8/.
/

BUS INTERFACE UNIT

'" A ,.

'" -
8/ '" ,. OE B / ,.

~ T

BUFFER

"'" , A

'"
-

~ , OE B / ,

'" T ,.

BUFFER

8/ ...
/ ".

8/ "'"
/ ,

D15:8

D7:0

}

BUFFERED
DATA
BUS

LOCAL
DATA BUS

Figure 3.32. Qualifying DEN with Chip-Selects

3.6.2. SOFTWARE SYNCHRONIZATION

The execution sequence of a program and hardware events occurring within a system are often
asynchronous to each other. In some systems there may be a requiremenuo suspend program
execution until an event (or events) occurs, and the program execution continues.

One way to synchronize software execution with hardware events requires the use of
interrupts. Executing a HALT instruction suspends program execution until an unmasked
interrupt occurs. However, there is a delay associated with servicing the interrupt before
program execution can once again proceed. Using the WAIT instruction removes the delay
associated with servicing interrupts.

The WAIT instruction suspends program execution until one of two events occurs: an
interrupt is generated, or the TEST input pin is sampled low. Unlike interrupts, the TEST
input pin does not require program execution to be transferred to a new location (i.e., an
interrupt routine is not executed). In processing the WAIT instruction, as long as TEST
remains high program execution remains suspended (at least until an interrupt occurs). When
TEST is sampled low, program execution resumes.

3-32

inteL BUS INTERFACE UNIT

The TEST input and WAIT instruction provide a mechanism to delay program execution until
a hardware event occurs, without having to absorb the delay associated with servicing an
interrupt.

3.6.3. LOCKED BUS OPERATION

To address the problems of controlling accesses to shared resources, the BIU provides a
hardware LOCK output. The execution of a LOCK prefix instruction activates the LOCK
output.

LOCK goes active in phase 1 of Tl of the first bus cycle following execution of the LOCK
prefix instruction. It remains active until phase 1 of Tl of the first bus cycle following the
execution of the instruction following the LOCK prefix. To provide bus access control in
multiprocessor systems, the LOCK signal should be incorporated into the system bus
arbitration logic resident to the CPU.

During normal mUltiprocessor system operation, pnonty of the shared system bus is
determined by the arbitration circuits on a cycle by cycle basis. As each CPU requires a
transfer over the system bus, it requests access to the bus via its resident bus arbitration logic.
When the CPU gains priority (determined by the system bus arbitration scheme and any
associated logic), it takes control of the bus, performs its bus cycle and either maintains bus
control, voluntarily releases the bus or is forced off the bus by the loss of priority.

The lock mechanism prevents the CPU from losing bus control (either voluntarily or by force)
and guarantees that the CPU can execute multiple bus cycles without intervention and possible
corruption of the data by another CPU. A classic use of the mechanism is the "TEST and SET
semaphore" during which a CPU must read from a shared memory location and return data to
the location without allowing another CPU to reference the same location during the test and
set operations.

Another application of LOCK for multiprocessor systems consists of a locked block move
which allows high speed message transfer from one CPU's message buffer to another.

During the locked instruction (i.e., while LOCK is active), a bus hold, DMA or refresh request
are recorded but not acknowledged until completion of the locked instruction. However,
LOCK has no affect on interrupts. As an example, a locked HALT instruction causes bus hold,
DMA or refresh bus requests to be ignored, but still allows the CPU to exit the HALT state on
an interrupt.

In general, prefix bytes (like LOCK) are considered extensions of the instructions they
preceded. Interrupts, DMA requests and refresh requests that occur during execution of prefix
are not acknowledged until completion of the instruction following the prefix (except for
instructions which are servicing interrupts during their execution, (i.e., HALT, WAIT and
repeated string primitive). Note that multiple prefix bytes may precede an instruction.

Another example is a "string primitive" preceded by the repetition prefix (REP) which is
interruptible after each execution of the string primitive, even if the REP prefix is combined

3-33

BUS INTERFACE UNIT

with the LOCK prefix. This prevents interrupts from being locked out during a block move or
other repeated string operations. However, bus hold, DMA and refresh requests remain locked
out until LOCK is removed (either by completing the block operation or after an interrupt
occurs).

3.6.4. QUEUE STATUS OPERATION

The queue status indicates what information is being removed from the internal queue and
when the queue is being reset due to a transfer of control (e.g., jump, interrupt, etc.). Since the
Execution Unit can remove information from the queue on any clock boundary, the queue
status pins can change state on every phase 1 clock edge (see Figure 3.33). The queue status
signals can not be related to any specific T -state, although for a given sequence of instructions
the relationship between the operation of the BIU and the sequence of queue status
information always remains the same.

CLKOUT

QSO, QS1

Figure 3.33. Queue Status Timing

The queue status signals QSO and QS 1 become alternate functions of the ALE and WR
signals, respectively. To enable QSO and QSl, the RD signal pin must be directly shorted to
ground. RD, WR and ALE are no longer available for use by the system and must be
generated by external hardware. A device like the 82C88 or a programmable logic device can
recreate the function of RD, WR and ALE. Table 3.7 shows the encoding of the QSO and QS 1
signals.

Table 3.7. Queue Status Bit Encoding

QS1 QS2 DEFINITION

0 0 No queue operation occurred

0 1 First byte of a new instruction has been taken from the queue.

1 0 The queue was reinitialized. Signals the flush of all prefetch information. BIU must
begin prefetching new queue information.

1 1 Subsequent byte of instruction taken from queue. The current instruction contains
multiple opcode bytes or immediate data.

Queue status mode is required in older generation devices for the purposes of interfacing with
an 8087 Math Coprocessor. However, the 8087 Math Coprocessor has been replaced by the

3-34

int'eL BUS INTERFACE UNIT

80187 Math Coprocessor, which has an I/O port interface similar to a peripheral device. This
new interface no longer requires queue status mode.

3.7. MULTI-MASTER BUS SYSTEM DESIGNS

The BIU supports protocols for transferring control of the local bus between itself and other
devices capable of acting as bus masters. To support such a protocol, the BIU uses a hold
request input (HOLD) and a hold acknowledge output (HLDA) as bus transfer handshake
signals. To gain control of the bus, a device asserts the HOLD input, and then waits until the
HLDA output goes active before driving the bus. After HLDA has gone active, the requesting
device can take control of the local bus and remains in control of the bus until HOLD is
removed.

3.7.1. ENTERING BUS HOLD

In responding to the hold request input, the BIU floats the entire address and data bus, and
many of the control signals. Table 3.8 lists the state of the BIU pins when HLDA is asserted.
Figure 3.35 illustrates the timing sequence when acknowledging the hold request. Of those
device pins not mentioned in Table 3.8 or shown in Figure 3.35, all other pins either remain
active (e.g., CLKOUT and TMR OUT!) or remain in their inactive state (e.g., UCS and INTA
). Refer to the data sheet for specific details of pin functioning during a bus hold.

Table 3.8. Signal Condition Entering HOLD

SIGNAL HOLD CONDITION
--

A19:16, 82:0, RD, WR, DT/R, BHE, RF8H, DT/R, These signals float one half clock before HLDA

LOCK is generated (i.e., phase 2).

--
AD15:0 (16-bit), AD7:0 (8-bit), A 15:8 (8-bit), DEN These signals float the same clock HLDA is

generated (i.e., phase 1).

3.7.1.1. HOLD BUS LATENCY

The duration of time between the assertion of HOLD by the external device and the assertion
of,HLDA by the BIU is known as bus latency. In Figure 3.34, the two clock delay between
HOLD and HLDA represents the shortest bus latency. Normally this only occurs if the bus is
idle, halted or the bus hold request occurs just prior to the BIU beginning another bus cycle.

3-35

HOLD

HLDA

AD15:0

DEN

A19:16,
RD, WR, BHE,

DT/R, 82:0
LOCK

BUS INTERFACE UNIT

FLOAT

NOTES:
1. THVCL : HOLD input to clock low

2. TCHCZ : Clock high to output float

3. TCLAZ : Clock low to output float

4. TCLHAV : Clock low to HLDA high

Figure 3.34. Timing Sequence Entering HOLD

The major factors that influence bus latency are listed below (in order of longest delay to
shortest delay).

1. Bus Not Ready - As long as the bus remains not ready a bus hold request can not be
serviced.

2. Locked Bus Cycle - As long as LOCK remains asserted a bus hold request can not be
serviced. Performing a locked move string operation can take several thousands of clocks.

3. Completion of Current Bus Cycle - A bus hold request is not serviced until the current
bus cycle completes. A bus hold request will not separate bus cycles required to move odd
aligned word data. Also, bus cycles with long wait states will delay the servicing of a bus
hold request.

4. Interrupt Acknowledge Bus Cycle - A bus hold request is not serviced until after an
INT A bus cycle has completed. An INT A bus cycle drives LOCK active.

5. DMA and Refresh Bus Cycles - A bus hold request is not serviced until after the DMA
request or refresh bus cycle has completed. Refresh bus cycles have a higher priority than
hold bus requests. A bus hold request can not separate the bus· cycles associated with a
DMA transfer (worst case is an odd aligned transfer, which takes four bus cycles to
complete).

3-36

inlet BUS INTERFACE UNIT

3.7.1.2. REFRESH OPERATION DURING A BUS HOLD

Under normal operating conditions, once HDLA has been asserted it remains asserted until
HOLD is removed. However, when a refresh bus request is generated, the HLDA output is
removed (driven low) to signal the need for the BIU to regain control of the local bus. The
BIU does not gain control of the bus until HOLD is removed. This procedure prevents the BIU
from just arbitrarily regaining control of the bus.

Figure 3.35 shows the timing associated with the occurrence of refresh request while HLDA is
active. Note that HLDA can be as short as one clock in duration. This happens when a refresh
request occurs just after HLDA is granted. A refresh request has higher priority than a bus
hold request, so when both occur simultaneously the refresh request occurs before HLDA
becomes active.

CLKOUT

HOLD

HLDA

AD1S:0

DEN

A19:16

RD, WR, SHE

DT/R, S2:0

LOCK

NOTES:
1. HLDA deasserted, signaling need to run refresh bus cycle
2. External bus master terminates use of the bus.
3. HOLD deasserted.
4. HOLD may be reasserted after one clock.
5. SIU runs refresh bus cycle

Figure 3.35. Refresh Request During Bus Hold

The device requesting a bus hold must be able to detect a one clock wide HLDA pulse. A bus
lockup (hang) condition may result because the requesting device did not detect the short
HLDA pulse and continues to wait for HLDA to be asserted, while the BIU waits for HOLD
to be deasserted. The circuit shown in Figure 3.36 can be used to latch HLDA.

3-37

intet BUS INTERFACE UNIT

+5

LD
PRE

Q LATCHED HLDA

HLDA

CLR

RESOUT ---j)
HOLD

Figure 3.36. Latching HLDA

The removal of HOLD must be detected for at least one clock cycle to allow the BIU to regain
the bus and execute a refresh bus cycle. The BIU will release the bus and generate HLDA
should HOLD go active prior to completing the refresh bus cycle.

3.7.2. EXITING HOLD

Figure 3.38 shows the timing associated with exiting the bus hold state. Normally a bus
operation (e.g., instruction prefetch) occurs just after HOLD is released. However, if no bus
cycle is pending when leaving a bus hold state, the bus and associated control signals remain
floating.

3.S. BUS CYCLE PRIORITIES

The BIU arbitrates requests for bus cycles from the Execution Unit, the integrated peripherals
(e.g., DMA Unit) and external bus masters (i.e., bus hold requests). The list below summarizes
the priority for all bus cycle requests (from highest to lowest).

1. Instruction execution reads or writes following a non-pipelined effective address
calculation.

2. Refresh bus cycles.

3. Bus hold request.

4. Single step interrupt vectoring sequence.

5. Non-Maskable interrupt vectoring sequence.

6. Internal error (e.g., divide error, overflow) interrupt vectoring sequence.

3-38

BUS INTERFACE UNIT

7. Hardware (e.g., INTO, DMA) interrupt vectoring sequence.

8. 80C187 Math Coprocessor error interrupt vectoring sequence.

9. DMA bus cycles.

10. General instruction execution. This category includes read and write operations
following a pipelined effective address calculation, vectoring sequences for software
interrupts and numerics code execution. The following points apply to sequences of
related execution cycles:

• The second read/write cycle of an odd addressed word operation is inseparable
from the first bus cycle.

• The second read/write cycle of an instruction with both load and store accesses
(e.g., EXCHG) may be separated from the first cycle by other bus cycles.

• Successive bus cycles of string instructions (e.g., MOVS) may be separated by
other bus cycles.

• When a locked instruction begins, its associated bus cycles become the highest
priority and can not be separated (or preempted) until completed.

11. Bus cycles necessary to fill the prefetch queue.

3-39

CLKOUT

HOLD

HLDA

AD15:0

DEN

RD, WR, SHE,

BUS INTERFACE UNIT

----------------------~~------~

DT/R,S2:0 --------------------------~~ ______ __

A19:16
LOCK

NOTES: 1. T HVCL

2.

HOLD recognition setup to clock low

HOLD internally synchronized

3. TCLHAV Clock low to HLDA low

4. TCHCV

5. TCLAV

Clock high to signal active (high or low)

: Clock low to signal active (high or low)

Figure 3.37. Exiting HOLD

3-40

Peripheral Control Block 4

CHAPTER 4
PERIPHERAL CONTROL BLOCK

All integrated peripherals are controlled by sets of registers within an integrated Peripheral
Control Block (PCB). These registers are physically located in the peripheral devices they
control, but they are addressed as a single block of registers. The Peripheral Control Block
encompasses 256 contiguous bytes. The control block can be located on any 256 byte
boundary of memory or VO space. Table 4.1 shows a map of these registers. Unused locations
are reserved.

4.1. SETTING THE BASE LOCATION

The Peripheral Control Block contains the Peripheral Control Block Relocation Register, in
addition to control registers for each integrated peripheral device. The Relocation Register
allows the Peripheral Control Block to be relocated to any 256 byte boundary within memory
or VO space, depending on the state of the Memory VO (MEM) bit and RI9:8. Figure 4.1
shows the layout of the Relocation Register.

The Relocation Register is located at a fixed offset within the Peripheral Control Block. If the
Peripheral Control Block is moved, the Relocation Register will also move.

The Peripheral Control Block Relocation Register contains the Escape Trap (ET) bit. When
set, this bit forces the processor to trap whenever an ESC (coprocessor) instruction is
encountered.

The Relocation Register also contains the Slave Master (SL) bit. This bit controls the function
of the Interrupt Control Unit. See Chapter 8 for further explanation of this bit.

The Relocation Register contains the value OOFFH upon RESET. This means the Peripheral
Control Block will be located at the top of I/O space (OFFOOH to OFFFFH).

As an example, to relocate the Peripheral Control Block to the memory range lOOOO-lOOFFH,
the user would program the Relocation Register with the value l100H. Since the Relocation
Register is part of the Peripheral Control Block, it relocates to word lOOOOH plus its fixed
offset.

All communication between integrated peripherals and the Modular CPU Core occurs over a
special bus called the F-Bus. The F-Bus always carries 16 bit data.

4-1

int'et PERIPHERAL CONTROL BLOCK

Table 4.1. Peripheral Control Block Register

PCB Function PCB Function PCB Function PCB Function
Offset Offset Offset Offset

OOH Reserved 40H Reserved 80H Reserved COH DOSRCL

02H Reserved 42H Reserved 82H Reserved C2H DOSRCH

04H Reserved 44H Reserved S4H Reserved C4H DODSTL

06H Reserved 46H Reserved 86H Reserved C6H DODSTH

08H Reserved 48H Reserved 88H Reserved C8H DOTC

OAH Reserved 4AH Reserved 8AH Reserved CAH DOCON

OCH Reserved 4CH Reserved 8CH Reserved CCH Reserved

OEH Reserved 4EH Reserved 8EH Reserved CEH Reserved

10H Reserved 50H TOCNT 90H Reserved DOH D1SRCL

12H Reserved 52H TOCMPA 92H Reserved D2H D1SRCH

14H Reserved 54H TOCMPB 94H Reserved D4H D1DSTL

16H Reserved 56H TOCON 96H Reserved D6H D1DSTH

18H Reserved 58H T1CNT 98H Reserved D8H DnC

1AH Reserved 5AH T1CMPA 9AH Reserved DAH D1CON

1CH Reserved 5CH T1CMPB 9CH Reserved DCH Reserved

1EH Reserved 5EH T1CON 9EH Reserved DEH Reserved

20H Reserved 60H T2CNT AOH UMCS EOH RFBASE

22H EOI 62H T2CMPA A2H LMCS E2H RFTIME

24H POLL 64H Reserved A4H PACS E4H RFCON

26H POLLSTS 66H T2CON A6H MMCS E6H RFADDR

28H IMASK 68H Reserved A8H MPCS E8H Reserved

2AH PRIMSK 6AH Reserved AAH Reserved EAH Reserved

2CH INSERV 6CH Reserved ACH Reserved ECH Reserved

2EH REQST 6EH Reserved AEH Reserved EEH Reserved

30H INTSTS 70H Reserved BOH Reserved FOH PWRSAV

32H TCUCON 72H Reserved B2H Reserved F2H PWRCON

34H DMAOCON 74H Reserved B4H Reserved F4H Reserved

36H DMA1CON 76H Reserved B6H Reserved F6H STEPID

38H IOCON 78H Reserved B8H Reserved F8H Reserved

3AH 11CON 7AH Reserved BAH Reserved FAH Reserved

3CH 12CON 7CH Reserved BCH Reserved FCH Reserved

3EH 13CON 7EH Reserved BEH Reserved FEH RELREG

4-2

intel .. PERIPHERAL CONTROL BLOCK

Whenever mapping the Peripheral Control Block to another location, the user should
program the Relocation Register with a byte write (i.e., OUT DX, AL). Accesses to the
Peripheral Control Block, like all integrated peripherals, are always done 16 bits at a time.
Internally, the Relocation Register is written with 16 bits of the AX register while externally
the Bus Interface Unit runs a single 8-bit bus cycle. If a word instruction is used with an
80C188 Modular Core family member (i.e., OUT DX, AX), the Relocation Register is written
on the first bus cycle. The Bus Interface Unit then runs an unnecessary second bus cycle. The
address of the second bus cycle will no longer be within the control block (the Peripheral
Control Block was moved on the first cycle). Generation of external READY is now needed
to complete the cycle. For this reason, we recommend byte operations for the Relocation
Register. Byte instructions should also be used for the other registers in the Peripheral Control
Block of an 80C188 Modular Core family member. This requires half of the bus cycles of
word operations. Byte operations are only valid for even addressed writes to the Peripheral
Control Block. A word read (i.e., IN AX, DX) must be performed to read a l6-bit Peripheral
Control Block register.

Register Name: PCB Relocation Register
Register Mnemonic: RELREG
Register Function: Relocates the PCB within memory or I/O space.

0

R R R R R R R R R R R R
1 1 1 1 1 1 1 1 1 1 9 8
9 8 7 6 5 4 3 2 1 0

BIT RESET
MNEMONIC BIT NAME STATE FUNCTION

ET Escape Trap 0 If set, the CPU will trap when an ESC instruction
is executed.

SL Slave Master 0 If set, the Interrupt Control Unit operates in slave
mode. If clear, the Interrupt Control Unit
operates in master mode.

MEM Memory/IO 0 If set, the PCB is located in memory space. If
clear, the PCB is located in I/O space.

R19:8 PCB Base 1 R 19:8 define the upper address bits of the PCB
Address base address. All lower bits are zero. R19:16 are
Upper Bits ignored when the PCB is mapped to I/O space.

NOTE: Reserved register bits are shown with grey shading. Reserved register bits must
be written with a logic zero value to maintain compatibility with future Intel products.

Figure 4.1. PCB Relocation Register

4-3

intel .. PERIPHERAL CONTROL BLOCK

4.2. PERIPHERAL CONTROL BLOCK REGISTERS

Each of the integrated peripherals' control and status registers is located at a fixed offset
above the programmed base location of the Peripheral Control Block. Many locations within
the Peripheral Control lock are not assigned to any peripheral. If a write is made to these
locations, a bus cycle will occur, but data will not be stored. If a subsequent read is made to
the same location, the value written will not be read back. Unused Peripheral Control Block
locations are reserved.

The processor will run an external bus cycle for any memory or 110 cycle accessing a location
within the Peripheral Control Block. Address, data and control information will be driven on
the external pins as with an ordinary bus cycle. Information returned by an external device
will be ignored, even if the access does not correspond to the location of an integrated
peripheral control register. This is also true for the 8OC188 Modular Core family, except word
accesses made to integrated registers will be performed in two bus cycles.

The processor generates an internal READY signal whenever an integrated peripheral is
accessed. External READY is ignored, READY will also be generated if an access is made to
the Peripheral Control Block not corresponding to an integrated peripheral control register.
The processor will not insert wait states for any access to the integrated Peripheral Control
Block. The exceptions to this are accesses to timer registers. Accesses to timer control and
counting registers insert one wait state. This is required to properly multiplex processor and
counter element accesses to the timer control registers.

The F-Bus does not function identically to the external data bus fpr byte and word accesses.
All write transfers on the F-Bus occur as words, regardless of how they are encoded. For
example, the instruction OUT DX, AL (DX is even) will write the entire AX register to the
Peripheral Control Block register at location [DX]. If DX were an odd location, AL would be
placed in [DX] and AH would be placed at [DX-l]. A word operation to an odd address
would write [DX] and [DX-l] with AL and AH, respectively. This differs from normal
external bus operation where unaligned word writes cause the modification of [DX] and
[DX+l]. In summary, do not use odd aligned byte or word writes to the PCB.

Aligned word reads work normally. Unaligned word reads do not work normally. For
example, IN AX, DX (DX is odd) will transfer [DX] into AL and [DX-l] into AH. Byte reads
from even or odd addresses work normally, but only a byte will be read. For example, IN AL,
DX will not transfer [DX] into AX (only AL is modified).

4-4

PERIPHERAL CONTROL BLOCK

No problems will arise if the following recommendations are adhered to. For the 80C186
Modular Core:

Word reads: Access only even aligned words with IN AX, DX or MOV <word
register>, <even PCB address>.

Byte reads: Work normally. Beware of reading word-wide PCB registers that may
change value between successive reads (i.e., timer count value).

Word writes: Always write even aligned words. Writing an odd aligned word will
give unexpected results. Use either OUT DX, AX or OUT DX, AL (or MOV <even
PCB address>, <word register».

Byte writes: Do not perform unaligned byte writes. Even aligned byte writes will
modify the entire word PCB location.

For the 80C188 Modular Core:

Word reads: Access only even aligned words with IN AX, DX or MOV <word
register>, <even PCB address>.

Byte reads: Work normally. Beware of reading word-wide PCB registers that may
change value between successive reads (i.e., timer count value).

Word writes: Always write even aligned words. Writing an odd aligned word will
give unexpected results. Use OUT DX, AL or MOV <even aligned byte PCB
address>, <byte register low byte>. Using OUT DX, AX will perform an
unnecessary bus cycle.

Byte writes: Do not perform unaligned byte writes. Even aligned byte writes will
modify the entire word PCB location.

4.3. RESERVED LOCATIONS AND THE NUMERICS INTERFACE

Locations within the Peripheral Control Block not explicitly used are reserved. Reading from
these locations yields an undefined result. If reserved registers are written, for example during
a block MOV instruction, they must be set to OH. Failure to follow this guideline could
result in incompatibilities with future 80C186 Modular Core family products.

Systems using the 80C187 Numeric Processor Extension must not relocate the Peripheral
Control Block to location OH in 1/0 space. The 80C187 interface uses I/O locations OF8H
through OFFH. If the Peripheral Control Block were relocated to these locations, the processor
would be communicating with the Peripheral Control Block, not the 80C187 interface
circuitry. This will cause indeterminate system operation if a numerics instruction is
encountered when the Escape Trap bit is clear.

4-5

Clock Generation and
Power Management

5

CHAPTER 5
CLOCK GENERATION AND POWER MANAGEMENT

The clock generation and distribution circuits provide uniform clock signals for the Execution
Unit, the Bus Interface Unit and all integrated peripherals. 80C186 Modular Core Family
processors have additional logic which controls the clock signals to provide power
management functions.

5.1. CLOCK GENERATION

The clock generation circuit includes a crystal oscillator, a divide-by-two counter and power­
save and reset circuitry (see Figure 5.1).

5.1.1.

X2

RES

SCHMITT TRIGGER
"SQUARES-UP" ClKIN

r----------< POWERSAVE

~ 2 CLOCK f--*-.... >
CLOCK DIVIDER

L-_~~

}
INTERNAL
PHASE

2 CLOCKS

TO
..... -------'J~ ClKOUT

I-------:l~ I NTE R NAl
RESET

Figure 5.1. Clock Generator

CRYSTAL OSCILLATOR

The internal oscillator is a parallel resonant Pierce oscillator, a specific form of the common
phase shift oscillator.

5.1.1.1. OSCILLATOR OPERATION

A phase shift oscillator operates through positive feedback, where a non-inverted, amplified
version of the input connects back to the input. A 360 degree phase shift around the loop will

5-1

CLOCK GENERATION AND POWER MANAGEMENT

sustain the feedback in the oscillator. The on-chip inverter provides a 180 degree phase shift.
The combination of the inverter's output impedance and the first load capacitor (see Figure
5.2) provides another 90 degree phase shift. At resonance, the crystal becomes primarily
resistive. The combination of the crystal and the second load capacitor provides the final 90
degree phase shift. Above and below resonance the crystal is reactive and forces the oscillator
back toward the crystal's nominal frequency.

Z, • INVERTER OUTPUT Z ~I-------i_-----j

I

NOTE: At resonance, the crystal is essential resistive.
Above resonance, the crystal is inductive.
Below resonance, the crystal is capacitive.

I

Figure 5.2. Ideal Operation of Pierce Oscillator

Figure 5.3 shows the actual microprocessor crystal connections. For low frequencies, crystal
vendors offer fundamental mode crystals. At higher frequencies, a third overtone crystal is the
only choice. The external capacitors, CX1 at Xl and CX2 at X2, together with stray capacitance,
form the load. A third overtone crystal requires an additional inductor L1 and capacitor C1 to
select the third overtone frequency and reject the fundamental frequency. Section 5.1.1.2
discusses crystal vibration modes in more detail.

Choose C1 and L1 component values in the third overtone crystal circuit to satisfy the
following conditions:

• The LC components form an equivalent series resonant circuit at a frequency below the
fundamental frequency. This criteria makes the circuit inductive at the fundamental
frequency. The inductive circuit cannot make the 90 degree phase shift and oscillations do
not take place.

• The LC components form an equivalent parallel resonant circuit at a frequency about
halfway between the fundamental frequency and the third overtone frequency. This
criteria makes the circuit capacitive at the third overtone frequency, necessary for
oscillation.

• The LC components form an equivalent parallel resonant circuit at a frequency about
halfway between the fundamental frequency and the third overtone frequency. This

5-2

in1:et CLOCK GENERATION AND POWER MANAGEMENT

criteria makes the circuit capacitive at the third overtone frequency, necessary for
oscillation.

• The two capacitors and inductor at OSCOUT, plus some stray capacitance, approximately
equal the 20 pF load capacitor, CX2, used alone in the fundamental mode circuit.

(a)

Fundamental
Mode Circuit

(b)

Third Overtone
Mode Circuit

(c)

Third Overtone
Mode

(Equivalent Circuit)

x1D ~ lc

X2 D:fiD ~ X, :--0--------------:

C X1 = C X2 = 20pF

C1 = 200 pF

L1 = (See Text)

: C L :

CX2J i:, : X2 ~C"
1- ________ ___ _______ _

Figure 5.3. Crystal Connections to Microprocessor

f =----

21!~

(a) Series or Parallel
Resonant Frequency

Ceq

(b) Equivalent Capacitance

Figure 5.4. Equations for Crystal Calculations

Choosing C1 as 200 pF (at least 10X the load capacitor) simplifies the circuit analysis. At the .
series resonance, the capacitance connected to Ll is 200 pF in series with 20 pF. The
equivalent capacitance is still about 20 pF and the equation in Figure 5.4(a) yields the series
resonant frequency.

5·3

CLOCK GENERATION AND POWER MANAGEMENT

To examine the parallel resonant frequency, refer to Figure 5.3(c), an equivalent circuit to
Figure 5.3(b). The capacitance connected to L1 is 200 pF in parallel with 20 pF. The
equivalent capacitance is still about 200 pF (within 10 percent) and the equation in Figure
5.4(a) now yields the parallel resonant frequency.

The equation in Figure 5.4(b) yields the equivalent capacitance Ce at the operation frequency.
The desired operation frequency is the third overtone frequen~y marked on the crystal.
Optimizing equations for the above three criteria yields Table 5.1. This table shows suggested
standard inductor values for various processor frequencies. The equivalent capacitance is
about 15 pF.

5.1.1.2.

Table 5.1. Suggested Values for Inductor Ll
in Third Overtone Oscillator Circuit

fCLKOUT f30.T. Ll
(MHz) (MHz) (JlH)

10 20 10.0, 12.0, 15.0

12.5 25 6.8, 8.2, 10.0

16 32 3.9, 4.7, 5.6

20 40 2.2, 2.7, 3.3

SELECTING CRYSTALS

When specifying crystals, consider these parameters:

• Resonance and Load Capacitance - Crystals carry a parallel or series resonance
specification. The two types do not differ in construction, just in test conditions and
expected circuit application. Parallel resonant crystals carry a test load specification, with
typical load capacitance values of 15, 18 or 22 pF. Series resonant crystals do not carry a
load capacitance specification. You may use a series resonant crystal with the
microprocessor even though the circuit is parallel resonant. However, it will vibrate at a
frequency slightly (on the order of 0.1 %) higher than its calibration frequency.

• Vibration Mode - The vibration mode is either fundamental or third overtone. Crystal
thickness varies inversely with frequency. Vendors furnish third or higher overtone
crystals to avoid manufacturing very thin, fragile quartz crystal elements. At a given
frequency, an overtone crystal is thicker and more rugged than its fundamental mode
counterpart. Below 20 MHz, most crystals are fundamental mode. In the 20 to 32 MHz
range, you can purchase both modes. Above 32 MHz, vendors usually offer a third
overtone component. You must know the vibrational mode to know whether to add the
LC circuit at X2.

5-4

CLOCK GENERATION AND POWER MANAGEMENT

• Equivalent Series Resistance (ESR) - ESR is proportional to crystal thickness, inversely
proportional to frequency. A lower value gives a faster startup time, but the specification
is usually not important in microprocessor applications.

• Shunt Capacitance - A lower value reduces ESR, but typical values such as 7 pF will
work fine.

• Drive Level - Specifies the maximum power dissipation for which the manufacturer
calibrated the crystal. It is proportional to ESR, frequency, load and Vcc. Disregard this
specification unless you use a third overtone crystal, whose ESR and frequency will be
relatively high. Several crystal manufacturers stock a standard microprocessor crystalline.
Specifying a "microprocessor grade" crystal should ensure the rated drive level is a
couple of milliwatts with 5-Volt operation.

• Temperature Range - Specifies an operating range over which the frequency will not
vary beyond a stated limit. Specify the temperature range to match the microprocessor
temperature range.

• Tolerance - The ailowable frequency deviation at a particular calibration temperature;
usually 25 degrees C. Quartz crystals are more accurate than microprocessor applications
call for; do not pay for a tighter specification than you need. Vendors quote frequericy
tolerance in percent or parts per million (ppm). Standard microprocessor crystals typical~y
have a frequency tolerance of 0.01 % (100 ppm). If you use these crystals, you can, usually
disregard all the other specifications; these crystais are ideal for the 80C186 Modular Core
family.

An important consideration when using crystals is that the oscillator start correctly over the
voltage and temperature ranges expected in operation. Observe oscillator startup in the
laboratory. Varying the load capacitors (within about ± 50 percent) can optimize startUp
characteristics versus stability. Iri your experiments, consider stray capacitance and scope
loading effects.

For help in selecting external oscillator components for unusual circumstances, count on the
crystal manufacturer as your best resource. Using low cost ceramic resonators in place of
crystals is possible if your application will tolerate less precise frequencies.

5.1.2. USING AN EXTERNAL OSCILLATOR

The microprocessor's on-board clock oscillator allows the use of a relatively low cost crystal.
However, the designer may also use a "canned oscillator" or other external frequency source.
Connect the external frequency input (EFI) signal directly to the oscillator Xl input. Leave X2
unconnected. This oscillator input drives the internal divide-by-two counter directly,
generating the CPU clock signals. The external frequency input can have practically any duty
cycle, provided it meets the minimum high and low times as stated in the data sheet. Selecting
an external clock oscillator is more straightforward than selecting a crystal.

5-5

inlel.. CLOCK GENERATION AND POWER MANAGEMENT

5.1.3. OUTPUT FROM THE CLOCK GENERATOR

The crystal oscillator output drives a divide-by-two circuit, generating a 50 percent duty cycle
clock for the processor's integrated components. All processor timings refer to this clock,
available externally at the CLKOUT pin. CLl(OUT changes state on the high-to-Iow transition
of the Xl signal, even during reset and bus hold. CLKOUT is also available during Idle Mode
but not during Powerdown Mode (see Sections 5.2.2 and 5.2.3). . .

In a CMOS circuit, significant current only flows during logic level transitions. Since. the
microprocessor consists mostly of clocked circuitry, the clock distribution is the basis of
power management.

5.1.4. RESET AND CLOCK SYNCHRONIZATION

The clock generator provides a system reset signal (RESET). The RES input generates
RESOUT and the clock generator synchronizes it to the CLKOUT signal.

A Schmitt trigger in the RES input ensures that the switch point for a low-to-high transition is
greater than the switch point for a high-to-Iow transition. The processor must remain in reset a
minimum of four CLKOUT cycles after Vee and CLKOUT stabilize. The hysteresis allows a
simple RC circuit to drive the RES input (see Figure 5.5). Typical applications can use about
100 ms. as an RC time constant. .

Reset may be either cold (power-up) or warm. Figure 5.6 illustrates a cold reset. Assert the
RES input during power supply and oscillator startup. The processor's pins assume their reset
pin states a maximum of 28 Xl periods after Xl and Vee stabilize. Assert RES four additional
Xl periods after the device pins assume their reset states.

Vee

50 KTYP. ~ "'>
~ ~ Ve(t) = V (1 • e ifb)

RESET IN RES

1. 1IlFTYP.

--

Figure 5.5. Simple RC Circuit for Powerup Reset

5-6

int'et CLOCK GENERATION AND POWER MANAGEMENT

Applying RES when the device is running constitutes a warm reset (see Figure 5.7). In this
case, assert RES at least 4 CLKOUT periods. The device pins will assume their reset states on
the second falling Xl edge following the assertion of RES.

'tc ~D X1 STABLE TO OUTPUT VALID 1

28 ClKIN PERIODS (MAX) > 1

X2~ __________ r-~

UCS MCS3:0

lCS
MCS3:0
PCS6:0
NCS~------dd~~~~~~~~~~~~

TMROUTO
TMROUT1

A19:16 ~ _____ ddd!dIIII~I~

AD15:0

S2:0
11[)

Wli DT/R ~ _____ dd~~~~

DEN
lOCK

1 1 1 1 1 1 1 1 1

-:- --~:- ---:- ---:- ---f ---f ~- -i --{=:
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 alii

RES --l!--il ------jl---+--+-I --..+'111 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

> >
VccAND X1 STABLE TO RES HIGH. RES HIGH TO FIRST BUS ACTIVITY.
APPROXIMATELY 32 ClKIN PERIODS. 7 ClKOUT PERIODS.

NOTE:
ClKOUT synchronization occurs approximately
1 - 1/2 ClKIN periods after RES is sampled low.

Figure 5.6. Cold Reset Waveform

5-7

intel .. CLOCK GENERATION AND POWER MANAGEMENT

The falling RES edge generates an internal RESYNC pulse (Figure 5.8) resynchronizing the
divide-by-two internal phase clock. The clock generator samples RES on the falling Xl edge.
If RES is sampled high while CLKOUT is high, the processor forces CLKOUT high for the
next two Xl cycles. The clock essentially "skips a beat" to synchronize the internal phases. If
RES is sampled high while CLKOUT is low, CLKOUT is already in phase.

X1

I I I
X2 I

- I I I I I
~~~ . I I I I I 

~~::;~ Ui!Uillii Ilin liB II lIB 11!i!I!Ulllii!IV I I I I I~ 
TM~~~T 0 . I I I I I 
TMR OU"",1 I I I I I 
H~~~ Iii II iiiilUililUUil.llifUI il[IJl I I I I 

I I II I It 

",:;~mm~uuul" : .: :~ 

I 
I 
IL 
I 

I I 
Irt= 
I I 

:¢= 
I I II I I I I 

S2:0 . .' I I I I I I I I 
AD15:0 

D~; UUiiinlUUUiiitiiil inii!ili!illtW I ~ --j --- t --j- --t~- - - j- ---~ --t mr---j-- -C 
~ I I I IIIIIII I I 
LvCK .1 I I I I II I I I I 

~~ I I I I .1 / I 7 I I II I I 
I I I I I I I I I I I I 

RESET ______ --+---1/1 1 I I II I I 1\ I. I I 

MINIMUM RES RES HIGH TO FIRST 
LOW TIME 4 BUS ACTIVITY 7 CLKOUT 
CLKOUT PERIODS PERIODS 

Figure 5.7. Warm Reset Waveform 

5-8 



CLOCK GENERATION AND POWER MANAGEMENT 

At the second falling CLKOUT edge after sampling RES inactive, the processor deasserts 
RESOUT. Bus activity starts 6-112 CLKOUT periods after recognition of RES in the logic 
high state. If an alternate bus master asserts HOLD during reset, the processor will 
immediately assert HLDA and will not prefetch instructions. 

X1 

RES 

RESYNC 
(INTERNAL) 

ClKOUT 

RESOUT 

NOTES: 1. Setup of RES to falling ClKIN. 

2. RESYNC pulse generated. 

3. RESYNC pulse drives ClKOUT high, resynchronizing the clock generator. 

4. RESOUT goes active. 

5. RES allowed to go inactive after minimum 4 ClKOUT cycles. 

6. RESOUT goes inactive 1-112 ClKOUT cycles after RES sampled inactive. 

Figure 5.8. Clock Synchronization at Reset 

5.2. POWER MANAGEMENT 

Many VLSI devices available today use dynamic circuitry. A dynamic circuit uses a capacitor 
(usually parasitic gate or diffusion capacitance) to store information. The stored charge decays 
over time due to leakage currents in the silicon. If the device does not use the stored 
information before it decays, the state of the entire device may be lost. Circuits must 
periodically refresh dynamic RAMs, for example, to ensure data retention. Any 
microprocessor which has a minimum clock frequency has dynamic logic. On a dynamic 
microprocessor, if you stop or slow the clock, the dynamic nodes within it begin discharging. 
With a long enough delay, the processor is likely to lose its present state, needing reset to 
resume normal operation. 

An 80C 186 Modular Core microprocessor is fully static. The CPU stores its current state in 
flip-flops, not capacitive nodes. The clock signal to both the CPU core and the peripherals can 
stop without losing any internal information, provided the design maintains power. When the 
clock restarts, the device will execute from its previous state. When the processor is inactive 

5-9 



CLOCK GENERATION AND POWER MANAGEMENT 

for significant periods, special power management hardware takes advantage of static 
operation to achieve major power savings. 

5.2.1. POWER-SAVE MODE 

Power-Save Mode is a means to reduce operating current. Power-Save Mode enables a 
programmable clock divider in the clock generation circuit. This divider operates in addition 
to the divide-by-two counter mentioned in Section 5.1. 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

PSEN Power Save 
Enable 

F1:0 Clock Division 
Factor 

Power Save Register 
PWRSAV 
Enables and sets clock division factor. 

RESET 
STATE 

0 

OH 

FUNCTION 

o 

F F 
1 0 

Setting this bit enables Power Save Mode and 
divides the internal operating clock by the value 
defined by F1 :0. This bit is cleared to disable 
Power-Save mode and force the CPU to operate 
at full speed. PSEN is automatically cleared 
whenever an interrupt occurs. 

These bits control the division factor used when 
Power Save mode is enabled. The allowable 
values are listed below: 

F1 FO Divisor 

0 0 By 1 

0 1 By4 
1 0 By 8 
1 1 By 16 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future lritel products. 

Figure 5.9. Power-Save Register 

5-10 



intel .. CLOCK GENERATION AND POWER MANAGEMENT 

Possible clock divisor settings are 1,4,8 and 16 (1 has no effect). The divided frequency feeds 
the core, the integrated peripherals and CLKOUT. The processor operates at the divided clock 
rate exactly as if the crystal or external oscillator frequency were lower by the same amount. 

It may be necessary to reprogram units such as the Timer Counter Unit and the Refresh 
Control Unit to compensate for the overall reduced clock rate. 

5.2.1.1. ENTERING POWER-SAVE MODE 

The Power-Save Register (see Figure 5.9) controls Power-Save Mode operation. The lower 
two bits select the divisor. When program execution sets the PSEN bit, the processor enters 
Power-Save Mode. The internal clock frequency changes at the falling edge of T3 of the write 
to the Power-Save Register. CLKOUT changes simultaneously and does not glitch. Figure 
5.10 illustrates the change at CLKOUT. 

5.2.1.2. 

CLKOUT 

WR \'--CD _____ ----o/ 

NOTES: 1. Write to Power-Save Register (as viewed on the bus). 
2. Low-going edge of T3 starts new clock rate. 

Figure 5.10. Power-Save Clock Transition 

LEAVING POWER-SAVE MODE 

Power-Save Mode continues until one of three events: execution clears the PSEN bit in the 
Power-Save Register, an unmasked interrupt occurs or an NMI occurs. 

When the PSEN bit clears, the clock returns to its undivided frequency (standard divide-by­
two) at the falling T3 edge of the write to the Power-Save Register. The same result happens 
from reprogramming the clock divisor to a new value. The Power-Save Register can be read or 
written at any time. 

Unmasked interrupts include those from the Interrupt Control Unit but not software interrupts. 
If an NMI occurs, or an unmasked interrupt request has sufficient priority to pass to the core, 
Power~Save Mode will end. The PSEN bit clears and the clock resumes full speed operation .at 
the falling edge of a bus cycle T3 state. However, the exact bus cycle of the transition is 
undefined. The Return from Interrupt instruction (IRET) does not automatically set the PSEN 
bit again. If you still want Power-Save Mode operation, you can set the PSEN bit as part of the 
interrupt service routine. 

5-11 



intel .. CLOCK GENERATION AND POWER MANAGEMENT 

5.2.1.3. EXAMPLE POWER-SAVE INITIALIZATION CODE 

Example 5.1 illustrates programming the Power-Save Unit for a typical system. The program 
also includes code to change the DRAM refresh rate to compensate for the reduced clock rate. 

$mod186 
name 

; FUNCTION: 

SYNTAX: 
INPUTS: 

OUTPUTS: 
NOTE: 

PWRSAV 
RFTIME 
Register 
RFCON 
PSEN 

data 
FreqTable 
data 

This function reduces CPU power consumption 
by dividing the CPU operating frequency by a 
divisor. 
extern void far power_save(int divisor) i 
divisor - This variable represents FO and Fl of 
PWRSAV. 
None 
Parameters are passed on the stack as required 
by high-level languages 

equ xxxxH 
equ xxxxH 

equ xxxxH 
equ 8000H 

segment public 
dw I, 4, 8, 
ends 

'data' 
16 

}substitute register offset 
;Power-Save Register 
;Refresh Interval Count 

;Refresh Control Register 
;Power-Save enable bit 

lib_80C186 segment public 'code' 
assume cs:lib_80C186, ds:data 

public -power_save 
-power_save proc far 

push bp 
mov bp, sp 

;save caller's bp 
;get current top of stack 

push ax ;save registers that will 
push bx ibe modified 
push dx 

- divisor equ word ptr [bp+6] ;get parameter off the 
;stack 

Example 5.1. Power-Save Initialization Code 

5-12 



_power_save 

lib 80C186 -

CLOCK GENERATION AND POWER MANAGEMENT 

mov 
in 
and 

dX"RFCON 
ax, dx 
ax, Olffh 

;get current DRAM refresh 
;rate 
;mask off unwanted bits 

div FreqTable[_divisor] ;divide refresh rate 

mov dx, 
out dx, 
mov dx, 
mov ax, 
and ax, 
or ax, 
out dx, 
pop dx 
pop ax 
pop bp 
ret 
endp 

ends 
end 

RFTIME 
ax 
PWRSAV 
divisor -

3 
PSEN 
ax 

;by _divisor 
;set new refresh rate 

;select Power-Save Register 
;get divisor 
;mask off unwanted bits 
;set enable bit 
;divide frequency 
;restore saved registers 

;restore caller's bp 

Example 5.1. Power-Save Initialization Code (Continued) 

5-13 





Chip Select Unit 6 





CHAPTER 6 
CHIP SELECT UNIT 

Every system requires some form of component select mechanism so the CPU can access a 
specific memory or peripheral device. The signal selecting the memory or peripheral device is 
referred to as a chip-select. Besides selecting a specific device, each chip-select can be used to 
control the number of wait states inserted into the bus cycle. Devices too slow to keep up with 
the maximum bus bandwidth can use wait states to slow the bus down. 

One method of generating chip-selects uses latched address signals directly. An example 
interface is shown in Figure 6.1 (A). In the example, an inverted A16 is connected to a device 
with an active low chip-select. Any bus cycle with an address between lOOOOH and lFFFFH 
(A16 = 1) enables the SRAM device. Also note that any bus cycle with an address starting at 
3FFFFH, 5FFFFH, 7FFFFH and so on also selects the device. 

Decoding more address bits solves the problem of a chip-select being active over multiple 
address ranges. In Figure 6.1 (B), a one-of-eight decoder is connected to the upper most 
address bits. Each of the eight decoded outputs are active for one-eighth of the 1 Mbyte 
address space. However, each chip-select has a fixed starting address and range. Future system 
memory changes may require circuit changes to accommodate the additional memory. 

27C256 74AC138 

A19 A3 Y7 SELECTS 896K TO 1 M D7:0 

A1=> 
AO A18 A2 Y6 SELECTS 768K TO 896K 

A13 A12 A17 A1 Y5 

Y4 

ALE E1 Y3 

RD DE 
Y2 

HLDA E2 

Y1 SELECTS 128K TO 256K 

A16 E3 
YO ELECTS OTO 128K 

(A) (8) 

CHIP-SELECTS USING CHIP-SELECTS USING 
ADDRESSES DIRECTLY SIMPLE DECODER 

Figure 6.1. Common Chip-Select Generation Methods 

6-1 



CHIP-SELECT UNIT 

The Chip-Select Unit overcomes limitations found in the above designs and has the following 
features: 

• Thirteen chip-select outputs 

• Programmable chip-select active range 

• Memory or I/O bus cycle decoder 

• Programmable wait state generator 

• Provision to override bus ready 

Figure 6.2 illustrates the logic blocks that generate a chip-select. 

6.1. FUNCTIONAL OVERVIEW 

The Chip-Select Unit, abbreviated CSU, decodes bus cycle address and status information and 
enables the appropriate chip-select. Figure 6.3 illustrates the timing of a chip-select during a 
bus cycle. Note the chip-select goes active in the same bus state as address goes active, 
eliminating any delay through address latches and decoder circuits. The Chip Select Unit 
activates a chip-select for CPU, DMA Control Unit or Refresh Control Unit initiated bus 
cycles. 

Six of the thirteen chip-selects only map into memory address space. The remaining seven 
chip-selects can map into memory or I/O address space. The chip-selects typically associate 
with memory and peripheral devices as follows: 

MCSO:3 

Mapped only to upper memory address space and selects the BOOT memory 
device (EPROM or FLASH memory types). 

Mapped only to lower memory address space and selects a static memory 
(SRAM) device that stores the interrupt vector table, local stack and data and 
scratch pad data. 

Mapped only to memory address space and selects additional SRAM memory, 
DRAM memory or system bus. 

Mapped to memory or I/O address space and selects peripheral devices or 
generates a DMA acknowledge strobe. 

The LCS chip-select always starts at address location OH and has a programmable block size 
up to 256 Kbytes. The UCS chip-select always ends at address location OFFFFH and has a 
programmable block size up to 256 Kbytes. 

6-2 



INTERNAL 
ADDRESS 

BUS 

CHIP-SELECT UNIT 

-= BLOCK SIZE UCS 

-
= BLOCK SIZE LCS 

--
= BLOCK SIZEl4 r- MCS3 

--
= BLOCK SIZE/4 f-- MCS2 

= BASE f --= BLOCK SIZE/4 f-- MCS1 

= BLOCK SIZEl4 r- MCSO 

BASE + 0 

)I = BASE f-- BASE + 128 

y~ MEMORYI 
BASE + 256 

1/0 SELECTOR BASE + 384 
MS 

BASE + 512 

BASE + 640 r--

BASE + 768 r-

_A 
INTERNAL A1 

ADDRESS BIT A2- B 

EX 
CONTROL BIT 

Figure 6.2. Chip-Select Block Diagram 

--
PCSO 
--
PCS1 
--
PCS2 
--
PCS3 
--
PCS4 

MUX f--

AlB r-

The four MCS chip-selects access one contiguous block of memory address space. The block 
size can range from 8 Kbytes to 512 Kbytes and each chip-select goes active for one fourth of 
the block size. The block start address is programmable but must be an integer multiple of the 
block size. This start address limitation prevents the MCS chip-selects from covering the entire 
address space between the LCS and UCS chip-selects. 

The PCS chip-selects access a contiguous block of memory or I/O address space. Each chip­
select goes active for 128 bytes of the 896 byte block. The PCS block start address can begin 
on any 1 Kbyte boundary. 

6-3 



CHIP-SELECT UNIT 

T4 T1 T2 T3 T4 

CLKOUT 

ALEU \ n 
AD15:0 : \ ADDRESS ) A19:16 : VALID 

UCS, PCS6:0 ~----T---T-----T-~11 
MCS3:0, LCS : : 

, , , , 

S2:0 [ \L_~ __ S_TA_T~U~ ___ --,J) 
, 

RD, WR~:, --~- --------:,\ / 
~--+-----T', , , 

Figure 6.3. Chip-Select Relative Timings 

A chip-select goes active when it meets all of the following criteria: 

l) The chip-select is enabled. 

2) The bus cycle status matches the default or programmed type (memory or I/O). 

3) The bus cycle address is within the default or programmed block size. 

4) The bus cycle is NOT accessing the Peripheral Control Block. 

A memory address applies to memory read, memory write and instruction prefetch bus cycles. 
An I/O address applies to I/O read and I/O write bus cycles. Interrupt acknowledge and HALT 
bus cycles never activate a chip-select regardless of the address generated. 

After power-on or system reset only the UCS chip-select is initialized and active (see Figure 
6.4). 

6-4 



int'et CHIP-SELECT UNIT 

'--~ARDY 

'--~~SRDY 

ADDRESS 

UCS I------J~I 

PROCESSOR 

CD - 3 WAIT STATES 
AUTOMATICALLY INSERTED 

- BUS READY MUST BE PROVIDED 

UCS 

ACTIVE FOR 
TOP 1 KBYTE 

MEMORY 
MAP 

'--__ ----'0 

Figure 6.4. UCS Reset Configuration 

6.2. PROGRAMMING 

DATA 

A set of registers determine the operating characteristics of the chip-selects. The Peripheral 
Control Block defines the location of the Chip-Select Unit registers. Table 6.1 lists all of the 
Chip-Select Unit registers and their associated programming names. 

The UCS and LCS chip-selects each have one register that defines their operation (see Figure 
6.5 and Figure 6.6). 

Table 6.1. Chip-Select Unit Registers 

REGISTER REGISTER CHIP-SELECT 
MNEMONIC MNEMONIC AFFECTED 

UMCS UCS 
LMCS LCS 
MMCS MPCS MCS3:0 
PACS MPCS PCS7:0 

6-5 



Register Name: 
Register Mnemonic: 
Register Function: 

15 

CHIP-SELECT UNIT 

UCS Control Register 
UMCS 
Controls the operation of the UCS chip-select. 

0 

U U !ill'"]: I 

R R 
1 1 1 1 1 0 

7 6 5 4 3 2 
I I 

l_~_ __ 
BIT RESET 

MNEMONIC BIT NAME STATE FUNCTION 

U17:10 Start Address OFFH Defines the starting address for the UCS chip-
select. During memory bus cycles, address bits 
A17:10 are compared against U17:10 and an 
equal to or greater than result enables the chip-
select (A19 and A18 must be 1 also). Allowable 
bit programming combinations are as follows: 

U17:0 Starting Address Block Size 

OOH OCOOOOH 256 Kbytes 
80H OEOOOOH 128 Kbytes 
COH OFOOOOH 64 Kbytes 
EOH OF8000H 32 Kbytes 
FOH OFCOOOH 16 Kbytes 
F8H OFEOOOH 8 Kbytes 
FCH OFFOOOH 4 Kbytes 
FEH OFF800H 2 Kbytes 
FFH OFFCOOH 1 Kbytes 

R2 Bus Ready 0 Clearing R2 requires bus ready be active to 
Disable complete a bus cycle. When R2 is cleared, R1:0 

control the number of bus wait states (bus ready 
is ignored). 

R1:0 Wait State 3H R1:0 define the minimum number of wait states 
Value inserted into the bus cycle. 

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero ' 
when writing this register (to ensure compatibility with future products). Do not program 
U17:10 with values other than what is shown. Failure to do so results in unreliable chip-select 
operation. Reading this register (prior to writing it) enabies the chip-seiect, however, none of 
the programmable fields will have been properly initialized. 

Figure 6.5. UMCS Register Definition 

6-6 



intel .. 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

U17:10 End Address 

R2 Bus Ready 
Disable 

R1:0 Wait State 
Value 

CHIP-SELECT UNIT 

LCS Control Register 
LMCS 
Controls the operation of the LCS" chip-select. 

RESET 

STATE FUNCTION 

XXH Defines the ending address for the LCS chip-
select. During memory bus cycles, address bits 
A17:10 are compared against U17:10 and a less 
than result enables the chip-select (A 19 and A 18 
must be 0 also). Allowable bit programming 
combinations are as follows: 

U17:Q !;OQjng Agdr~ss 610ckSize 
OOH 003FFH 1 Kbytes 
01H 007FFH 2 Kbytes 
03H OOFFFH 4 Kbytes 
07H 01FFFH 8 Kbytes 
OFH 03FFFH 16 Kbytes 
1FH 07FFFH 32 Kbytes 
3FH OFFFFH 64 Kbytes 
7FH 1FFFFH 128 Kbytes 
FFH 3FFFFH 256 KbVtes 

X Clearing R2 requires bus ready be active to 
complete a bus cycle. When R2 is cleared, R1:0 
control the number of bus wait states (bus ready 
is ignored). 

XH R1:0 define the minimum number of wait states 
inserted into the bus cycle. A zero value means 
no wait states (unless R2 is zero, which means 
bus ready controls wait states) 

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero 
when writing this register (to ensure compatibility with future products). Do not program 
U17:10 with values other than what is shown. Failure to do so results in unreliable chip-select 
operation. Reading this register (prior to writing it) enables the chip-select, however, none of 
the programmable fields will have been properly initialized. 

Figure 6.6. LMCS Register Definition 

6-7 



CHIP-SELECT UNIT 

The MCS and PCS chip-selects require two registers to define their operation. One register is 
shared between them. The MMCS and MPCS registers control the MCS chip-selects. The 
PACS and MPCS registers control the PCS chip-selects. Figure 6.7, Figure 6.8 and Figure 6.9 
define the programming attributes for each of the registers. 

Register Name: 
Register Mnemonic: 
Register Function: 

15 

U U U U 
1 1 1 1 
9 8 7 6 

BIT 
MNEMONIC BIT NAME 

U19:13 Start Address 

R2 Bus Ready 
Disable 

R1:0 Wait State 
Value 

fiilCS Control Register 
MMCS 
Controls the operation of the MCS chip-selects 

o 
U U U U U U 

1 
o 

R R R 
1 1 1 2 0 
5 4 3 2 

RESET 
STATE FUNCTION 

XXH Defines the starting (base) address for the block 
of MCS chip-selects. During memory bus cycles, 
address bits A 19: 13 are compared against 
U19:13 and an equal to or greater than result 
enables the chip-select. The start address must 
be an integer multiple of the MCS block size 
(defined in the MPCS register). 

XH Clearing R2 requires bus ready be active to 
complete a bus cycle. When R2 is cleared, R1:0 
control the number of bus wait states (bus ready 
is ignored). 

XH R1:0 define the minimum number of wait states 
inserted into the bus cycle. A zero value means 
no wait states (unless R2 is zero, which means 
bus ready controls wait states) 

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero 
when writing this register (to ensure compatibility with future products). Reading this register 
and the MPCS register (prior to writing them) enables the MCS chip-selects, however, none of 
the programmable fields will have been properly initialized. 

Figure 6.7. MMCS Register Definition 

6-8 



intet 

Register Name: 
Register Mnemonic: 
Register Function: 

M M M M 
6 5 4 3 

BIT 
MNEMONIC BIT NAME 

M6:0 Block Size 

EX Pin Selector 

MS Bus Cyqle 
Selector 

R2 Bus Ready 
Disable 

R1:0 Wait State 
Value 

CHIP-SELECT UNIT 

MCS and Pes Alternate Control Register 
MPCS 
Controls the operation for both the MCS and PCS 
chip-selects. 

0 

~rr 
E M R R R 
X S 2 0 

RESET 
STATE FUNCTION 

XXH Defines the block size for the MCS chip-selects. 
Allowable bit programming combinations are as 
follows: 

M6 M5 M4 M3 M2 M1 MO Block Size 

0 0 0 0 0 0 1 8 Kbytes 

0 0 0 0 0 1 X 16 Kbytes 

0 0 0 0 1 X X 32 Kbytes 

0 0 0 1 X X X 64 Kbytes 

0 0 1 X X X X 128 Kbytes 

0 1 X X X X X 256 Kbytes 

1 X X X X X X 512 Kbytes 

X = Don't Care, but should be 0 for future 
compatibility. 

XH Setting EX configures PCS5 and PCS6 pins as 
chip-selects. When EX is cleared, PCS5~_ 
becomes latched address bit 1 (A 1) and PCS6 
becomes latched address bit 2 (A2). 

XH When MS is cleared the PCS chip-selects go 
active for liD bus cycles. Setting MS activates 
the PCS chip-selects for memory bus cycles. 

XH This bit applies to the PCS4-PCS6 chip-selects 
only. Clearing R2 requires bus ready be active 
to complete a bus cycle. When R2 is set, R1:0 
control the number of bus wait states (bus ready 
is ignored). 

XH These bits apply to the PCS4-PCS6 chip-
selects only. R1:0 define the minimum number 
of wait states inserted into the bus cycle. A zero 
value means no wait states. 

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero 
when writing this register (to ensure compatibility with future products). Reading this register 
and the MMCS register or PACS register (prior to writing them) enables the associated chip-· 
selects, however, none of the programmable fields will have been properly initialized. 

Figure 6.8. MPCS Register Definition 

6-9 



Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

U19:10 Start Address 

R2 Bus Ready 
Disable 

R1:0 Wait State 
Value 

CHIP-SELECT UNIT 

PCS Control Register 
PACS 
Controls the operation of the PCS chip-selects. 

RESET 
STATE FUNCTION 

XXH Defines the starting (base) address for the block 
of PCS chip-selects. During memory or I/O bus 
cycles, address bits A 19: 13 are compared 
against U19:13 and an equal to or greater than 
result enables the chip-select. U19:16 must be 
programmed to zero for proper I/O bus cycle 
operation. 

XH Clearing R2 requires bus ready be active to 
complete a bus cycle. When R2 is set, R1:0 
control the number of bus wait states (bus ready 
is ignored). 

XH R1:0 define the minimum number of wait states 
inserted into the bus cycle. A zero value means 
no wait states (unless R2 is zero, which means 
bus ready controls wait states) 

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero 
when writing this register (to ensure compatibility with future products). Reading this register 
and the MPCS register (prior to writing them) enables the PCS chip-selects, however, none of 
the programmable fields will have been properly initialized. 

Figure 6.9. PACS Register Definition 

6-10 



intel.. CHIP-SELECT UNIT 

6.2.1. INITIALIZATION SEQUENCE 

Chip-selects do not have to be initialized in any specific order. However, the following 
guidelines help prevent a system failure. 

1) Initialize local memory chip-selects 

2) Initialize local peripheral chip-selects 

3) Perform local diagnostics 

4) Initialize off-board memory and peripheral chip-selects 

5) Complete system diagnostics 

An unmasked interrupt or NMI must not occur until the interrupt vector addresses have been 
written to memory. Failure to prevent an interrupt from occurring during initialization will 
cause a system failure. Use extemallogic to generate the chip-select if interrupts cannot be 
masked prior to initialization. 

Programming the UMCS and LMCS registers can be done in any sequence. To program the 
MCS and PCS chip-selects, follow the sequence shown below: 

1) Program the MPCS register 

2) Program the MMCS register to enable the MCS chip-selects 

3) Program the PACS register to enable the PCS chip-selects 

6.2.2. START ADDRESS 

The LCS chip-select has a fixed starting address of zero in memory address space. The UCS 
chip-select defines its starting address as 100000H (1 Mbyte) minus the programmed block 
size (see Section 6.2.4). The MCS chip-selects have a programmable base address that 
determines their individual start addresses (see Figure 6.10). However, there are limitations on 
the location of the base address depending on the MCS block size. 

Table 6.2 lists the limitations of the base address for the MCS chip-selects. Figure 6.10 
illustrates how to calculate the starting address for each MCS chip-select. 

Each PCS chip-select is active for 128 bytes and start at an offset above the programmed base 
address. The base address can start on any 1 Kbyte memory or 110 address location. Table 6.3 
lists the range for each chip-select. 

6-11 



intel .. CHIP-SELECT UNIT 

Table 6.2. MMCS Programming Restrictions 

ALLOWABLE BASE ADDRESS 
BLOCK SIZE RESTRICTIONS NOTES· 

8 Kbytes None 

16 Kbytes U13 must be zero 

32 Kbytes U13-14 must be zero 

64 Kbytes U13-15 must be zero 

128 Kbytes U13-16 must be zero 

256 Kbytes U13-17 must be zero 

512 Kbytes U13-18 must be zero Will overlap UCS if U19 is 1 

Table 6.3. PCS Chip-Selects Active Range 

CHIP 
SELECT ACTIVE RANGE. 

PCSO Base to Base + 127 (7FH) 

PCS1 Base + 128 (080H) to Base + 255 (OFFH) 

PCS2 Base + 256 (1 OOH) to Base + 383 (17FH) 

PCS3 Base + 384 (180H) to Base + 511 (1 FFH) 

PCS4 Base + 512 (200H) to Base + 639 (27FH) 

PCS5 Base + 640 (280H) to Base + 767 (2FFH) 

PCS6 Base + 768 (300H) to Base + 895 (37FH) 

6.2.3. STOP ADDRESS 

The UCS chip-select has a fixed ending address of OFFFFFH in memory address space. The 
LCS chip-select defines its ending address as one byte less than the programmed block size 
(see Section 6.2.4). 

6-12 



CHIP-SELECT UNIT 

STARTING ADDRESS ENDING ADDRESS 

BLOCK SIZE IS DEFINED BY M 

BASE + 3/4 BLOCK 

BASE + 1/2 BLOCK 

BASE + 1/4 BLOCK 

~#BASE 
(DEFINED BY U19:10) 

6:0 

SIZE 

SIZE 

SIZE 

BASE + (BLOCK SIZE· 1) 

MCS3 ACTIVE RANGE 
BASE + (314 BLOCK SIZE -1) 

MCS2 ACTIVE RANGE 
BASE + (112 BLOCK SIZE -1) 

MCS1 ACTIVE RANGE 
BASE + (1/4 BLOCK SIZE -1) 

MCSO ACTIVE RANGE 

> 

MEMORY MAP 

Figure 6.10. JiiifCS Active Range 

The ending address for the MCS chip-selects is defined by the programmed base address and 
the block size. Figure 6.10 illustrates how to calculate the ending address for each MCS chip­
select. 

The PCS chip-selects have fixed ending addresses defined by the programmed base address. 
Table 6.3 defines the ending address for each chip-select. 

6.2.4. BLOCK SIZE 

The LCS, UCS and MCS chip-selects have programmable block sizes to define their active 
ranges_ The PCS chip-selects have fixed block sizes of 128 bytes. 

The LMCS and UMCS registers define the block size for the LCS and UCS chip selects, 
respectively. The allowable block sizes, in Kbytes, for the LCS and UCS chip-selects are 1,2, 
4, 8, 16, 32, 64, 128 and 256. 

The combined MCS block size is controlled by the MPCS register. Each MCS chip-select is 
active for one quarter of the block size. Table 6.2 defines the allowable block sizes for the 
MCS chip-selects. 

6-13 



intel® CHIP-SELECT UNIT 

6.2.5. BUS WAIT STATE AND READY CONTROL 

Normally the bus ready inputs must be inactive at the appropriate time to insert wait states into 
the bus cycle. The Chip-Select Unit can ignore the state of the bus ready inputs to extend and 
complete the bus cycle automatically. Most memory and peripheral devices operate properly 
using three or less wait states. However, accessing devices such as a dual-port memory, an 
expansion bus interface, a system bus interface or remote peripheral devices can require more 
than three wait states to complete a bus cycle. 

The Chip-Select Unit can insert up to three wait states and control the state of the bus ready 
inputs. The UMCS, LMCS, MMCS, MPCS and PACS registers define a three-bit field (RO, 
RI, R2) that control bus wait state and ready requirements. Figure 6.11 shows a simplified 
logic diagram of the wait state and ready control functions. 

BUS READY 

R2 CONTROL BIT 

WAIT STATE VALUE 
(R1:0) 

WAIT 
STATE 

COUNTER 

WAIT STATE 
READY 

READY 

Figure 6.11. Wait State and Ready Control Functions 

The RO and Rl control bits define the number of wait states to insert into the bus cycle. The 
R2 control bit determines whether the bus cycle should complete normally (i.e., require bus 
ready) or unconditionally (i.e.,' ignore bus ready). Chip-selects connected to devices requiring 
three wait states or less can program R2 active to complete the bus cycle automatically. 
Devices that may require more than three wait states must program R2 inactive. 

A bus cycle with wait states automatically inserted cannot be shortened. A bus cycle ignoring 
bus ready cannot be lengthened. 

6.2.6. OVERLAPPING CHIP-SELECTS 

The Chip-Select Unit activates all enabled chip-selects programmed to cover the same 
physical address space. This is true if any portion of the chip-selects address range overlap 
(i.e., chip-selects ranges do not need to completely overlap to all go active). There are various 

6-14 



CHIP-SELECT UNIT 

reasons for overlapping chip-selects. For example, overlapping a portion of read-only memory 
with read/write memory or copying data to two devices simultaneously. 

If overlapping chip-selects do not have identical wait state value and bus ready programming, 
the following priority scheme exists: 

1. If any MCS chip-select is active, the MPCS R2:0 bits are used. 

2. If the PCS chip-selects overlap the LCS or UCS chip selects, the LMCS or UMCS R2:0 
bits (respectively) are used. 

As an example, consider the case where MCS3 overlaps UCS. MCS3 is programmed for two 
wait states and requires bus ready. UCS is programmed for no wait states and ignores bus 
ready. An access to the overlapped region results in two wait states and bus ready is required. 

Be cautious when overlapping chip selects with different wait state and bus ready 
programming. Here are two conditions that require special attention to ensure proper system 
operation. 

1. When all overlapping chip-selects ignore bus ready but have different wait states, make 
sure each chip-select still works properly using the highest wait state value. A system 
failure may result when the required number of wait states does not occur in the bus 
cycle. 

2. If one or more of the overlapping chip-selects requires bus ready, verify the following: 

A. All chip-selects that ignore bus ready work properly using the smallest wait state 
value. 

B. All chip-selects that ignore bus ready work properly for the longest bus cycle 
possible. 

A system failure may result when not enough or too many wait states occur in the bus cycle. 

6.2.7. MEMORY OR 1/0 BUS CYCLE DECODING 

The PCS chip-selects go active for memory or I/O address space. The MS control bit in the 
MPCS register selects the appropriate address space. Memory address space accesses consist 
of memory read, memory write and instruction prefetch bus cycles. I/O address space accesses 
consist of I/O read and I/O write bus cycles. 

The UCS, PCS and MCS chip-selects only go active for memory bus cycles. Chip-selects go 
active for CPU, DMA Control Unit and Refresh Control Unit initiated bus cycles. 

6.3. PROGRAMMING CONSIDERATIONS 

When programing the PCS chip-selects active for I/O bus cycles, remember that eight bytes 
of I/O are reserved by Intel. These eight bytes, located between OOF8H and OOFFH, control the 

6-15 



intel .. CHIP-SELECT UNIT 

interface to an 80C187 Numerics Coprocessor. A chip-select can overlap this reserved space 
provided there is rio intention of using the 8OC187. However, Intel recommends that the base 
address of the PCS chip~selects not start at OH in 110 address space to avoid possible future 
compatibility issues. 

An access to the appropriate chip-select register or registers, enables the chip-select. An 
access is any read or write operation. For instance, reading the LMCS register enables the 
LCS chip-select. However, reading the LMCS register does not ensure it has been 
programmed correctly. 

Do not read any chip-select register unless it has been previously written. Reading a register 
before programming it enables the chip-select and results in indeterminate operation. 

A chip-select can not be disabled once it has. been enabled. However, the operating 
characteristics of the chip-select can be changed by writing the appropriate register. 

Three of the MCS chip-selects are alternately used to support the 80C187 Numerics Processor 
interface when the device is configured iIi Enhanced Mode. However, the programming 
characteristics and operation of the MCS2 chip-select remain active. 

6.4. CHIP-SELECTS AND BUS HOLD 

The Chip-Select Unit only decodes address and bus state information generated internally. An 
external bus master cannot make use of the Chip-Select Unit. During HLDA, all chip-selects 
remain inactive. 

The circuit shown in Figure 6.12 allows an external bus master to access a device during bus 
HOLD. . 

CSU CHIP-SELECT 

EXTERNAL MASTER 
CHIP SELECT 

____ D--OEVICE SELECT 

Figure 6.12. Using Chip-Selects During HOLD 

6-16 



intel .. CHIP-SELECT UNIT 

ARDY ~ ; 
SRDY ..... 

~ ~ 
r- EPROM SRAM FLOPPY 

.... L 128K 0 32K DISK ALE 
, A R Cll 20, 

r~; 
- - ~ A19:16 T AODBUS / 

-
~BUS-v' DACK 

AD15:0 ~ I w; 1: ORa 
AO 

L-

~ cr- CE CE 

I I Tl I I 

ORa 

-
PCS1 

m 
-ucs 

8--
Q: MCS3:0 

,4 
, 

-
LCS 

PCSO 

Figure 6.13. Typical System 

6.5. EXAMPLES 

The following sections provide examples of programming the Chip-Select Unit to meet the 
needs of a particular application. The examples do not go into hardware analysis or design 
issues. 

6.5.1. EXAMPLE 1: TYPICAL SYSTEM CONFIGURATION 

Figure 6.13 illustrates a block diagram of a typical system design. The EPROM memory has a 
total size of 128 Kbytes and the SRAM memory has a total size of 32 Kbytes also. The 
peripherals are mapped to liD address space. 

6-17 



inial .. 

$ 
$ 

TITLE 
MOD186 
NAME 

CHIP-SELECT UNIT 

(Chip-Select Unit Initialization) 
XREF 
CSU_EXAMPLE_1 

.************************************************************** I 

* 
EXTERNAL REFERENCE FROM THIS MODULE * 

* 
.*************~*************************************** ********* I 

$ include (PCBMAP. INC) File declares register 
locations and names 

;************************************************************** 

* 
MODULE EQUATES * 

* ; 
.************************************************************** 
I 

INTRDY 
EXTRDY 
10 
ALLPCS 

EQU 
EQU 
EQU 
EQU 

CONFIGURATION EQUATES 

0004H 
OOOOH 
0080H 
0040H 

Ixternal bus ready modifier 
External bus ready modifier 
PCS Memory/IO Modifier 
PCS PCS/Latched Address Modifier 

Below is a list of the default system memory and I/O 
environment. These defaults configure the Chip-Select Unit 
for proper system operation. 

EPROM memory is located from OEOOOO to OFFFFF (128 Kbytes). 
Wait states are calculated assuming 16MHz operation. 
UCS# controls the accesses to EPROM memory space. 

EPROM_SIZE 
EPROM_BASE 
EPROM_WAIT 
EPROM_RDY 

EQU 
EQU 
EQU 
EQU 

128 
1024 - EPROM_SIZE 
2 
INTRDY 

Size in Kbytes 
Start address in Kbytes 
Wait states 
Ignore bus ready 

The UMCS regiser value is calculated using the above 
system constraints and the equations below. 

EQU (EPROM_BASE SHL 6) OR (OC038H) OR 
(EPROM_RDY) OR (EPROM_WAIT) 

Example 6.1. 

6-18 



infel" CHIP-SELECT UNIT 

SRAM memory starts at OH and continues to 7FFFH (32 Kbytes) . 
Wait states are caclulated assuming 16MHz operation. 
LCS# controls the accesses to SRAM memory space. 

SRAM_SIZE 
SRAM_BASE 
SRAM_WAIT 
SRAM_RDY 

EQU 
EQU 
EQU 
EQU 

32 
o 
o 
INTRDY 

Size in Kbytes 
Start address in Kbytes 
Wait states 
Ignore bus ready 

The LMCS register value is calculated using the above 
system constraints and the equation below 

EQU ((SRAM_SIZE - 1) SHL 6) OR (00038H) OR 
(SRAM_RDY) OR (SRAM_WAIT) 

A DRAM interface is selected by the four MCS# chip-selects. 
The BASE value defines the' starting address of the DRAM 
window. The SIZE value (along with the BASE value) define 
the ending address. Zero wait state performance is assumed. 
The Refresh Control Unit uses DRAM-BASE to properly configure 
refresh operation. 

DRAM_BASE 
DRAM_SIZE 
DRAM_WAIT 
DRAM_RDY 

EQU 
EQU 
EQU 
EQU 

256 
256 
o 
INTRDY 

Window start address in Kbytes 
Window size in Kbytes 
Wait states 
Ignore bus ready 

The MPCS register is used to program both the MCS and PCS 
chip-selects. Below are the equates for the I/O peripherals 
(also used to program the PACS register). 

IO_WAIT 
IO_RDY 
PCS_SPACE 
PCS_FUNC 

EQU 
EQU 
EQU 
EQU 

4 
INTRDY 
10 
ALLPCS 

10 Wait states 
Ignore bus ready 
Put PCSx# in I/O Space 
Generate PCS5# and PCS6# 

The MMCS and MPCS register values are calculated using the 
above system constraints and the equations below 

MMCS_VAL EQU (DRAM_BASE SHL 6) OR (OOlF8H) OR 
& (DRAM_RDY) OR (DRAM_WAIT) 

MPCS_VAL EQU (DRAM_SIZE SHL 5) OR (08038H) OR 
& (PCS_SPACE) OR (PCS_FUNC) OR 
& (IO_RDY) OR (IO_WAIT) 

Example 6.1. (Continued) 

6-19 



intel .. CHIP-SELECT UNIT 

I/O is selected using the PCSO# chip-select. Wait states 
assume operation at 16MHz. For this example, the Floppy Disk 
Controller is connect to PCS2# and PCS1# provides the DACK# 
signal. 

EQU 1 i IO start address in KBytes 

The PACS register value is calculated using the above 
system contraints and the equation below 

EQU (IO_BASE SHL 6) 
(.IO_RDY) 

OR (00038H) 
OR ( IO_WAI'l') 

OR 

The following statements define the default assumptions 
for segment locations. 

CODE 

ASSUME CS:CODE 
ASSUME DS:DATA 
ASSUME SS:DATA 
ASSUME ES:DATA 

SEGMENT PUBLIC 'CODE' 

.************************************************************** , 

ENTRY POINT ON POWER UP 
* 
* 
* 

.************************************************************** , 

LABEL FAR FORCES FAR JUMP 

CLI Disable Interrupts 

Place register initialization code here 

Example 6.1. {Continued} 

6·20 



in1:et 

SET 

UCS 
LCS 
PCS 
MCS 

CODE 

CHIP-SELECT UNIT 

UP CHIP SELECTS 

- EPROM Select (Initialized during POWER_ON code) 
- SRAM Select (Set to SRAM Size) 
- I/O Select (PCSO-l Support Floppy) 
- DRAM Select (Set to DRAM Size) 

Set up LCS Register MOV DX, LMCS - REG 
MOV AX, LMCS_VAL 
OUT DX, AL Remember, BYTE Writes OK 

MOV DX, MPCS REG READY FOR PCS LINES 4-6 
MOV AX, MPCS_VAL AS WELL AS MCS PROGRAMMING 
OUT X, AL 

MOV DX, MMCS - REG SET UP DRAM Chip-Select 
MOV AX, MMCS_VAL 
OUT DX, AL 

MOV DX, PACS - REG SET UP 10 Chip-Select 
MOV AX, PACS_VAL 
OUT DX, AL 

ENDS 

POWER ON RESET CODE TO GET STARTED 

ASSUME CS:POWER_ON 

POWER_ON SEGMENT AT OFFFFH 

MOV DX, UMCS_REG 
MOV AX, UMCS_VAL 
OUT DX, AL 
JMP FW_START 

Point to UMCS Register 
Reprogram UMCS to match 
system requirements 
Jump to init code 

Example 6.1. (Continued) 

6-21 



CHIP-SELECT UNIT 

;************************************************************* 

* 
DATA SEGMENT * 

* 
;************************************************************* 

DATA SEGMENT PUBLIC 'DATA' 

DD 256 DUP (?) Reserved for Interrupt Vectors 

;Place memory variables Here 

DW 500 DUP (?) Stack Allocation 

LABEL WORD 

DATA ENDS 

Program ends 

END 

Example 6.1. (Continued) 

6-22 



Refresh Control Unit 7 





CHAPTER 7 
REFRESH CONTROL UNIT 

The Refresh Control Unit (RCU) simplifies dynamic memory controller design with its 
integrated address and clock counters. Figure 7.1 shows the relationship between the Bus 
Interface Unit and the Refresh Control Unit. Integrating the Refresh Control Unit into the 
processor allows an external DRAM controller to use chip-selects, wait state logic and status 
lines. 

-../ 

F· 
BUS 

L..../ 

A I\. 

I 
REFRESH CLOCK 

'J v INTERVAL REGISTER 

CPU ~j,. 
CLOCK '" 

9·BITDOWN 

A 

\I 

A 

\I 

, 

'\ 
v 

COUNTER 
REFRESH REQUEST 

CLR J REFRESH ACKNOWLEDGE 
REO ....... 

REFRESH CONTROL 
REGISTER 

V-

12·BIT ADDRESS COUNTER 
REFRESH BASE 

ADDRESS REGISTER REFRESH ADDRESS 

/rt REGISTER 

~ 
/' 

20·BIT 
REFRESH ADDRESS 

"" , 

Figure 7.1. Refresh Control Unit Block Diagram 

7.1 THE ROLE OF THE REFRESH CONTROL UNIT 

BIU 
NTERFACE I 

Like a DMA controller, the Refresh Control Unit runs bus cycles independent of CPU 
execution. Unlike a DMA controller, however, the Refresh Control Unit does not run bus 
cycle bursts nor does it transfer data. The DRAM refresh process freshens individual DRAM 
rows in "dummy read" cycles, while cycling through all necessary addresses. 

7·1 



intel .. REFRESH CONTROL UNIT 

The microprocessor interface to DRAMs is more complicated than other memory interfaces. A 
complete DRAM controller requires circuitry beyond that provided by the processor even in 
the simplest configurations. This circuitry must respond correctly to reads, writes and DRAM 
refresh cycles. The external DRAM controller generates the Row Address Strobe (RAS), 
Column Address Strobe (CAS) and other DRAM control signals. 

Pseudo-static RAMs use dynamic memory cells but generate address strobes and refresh 
addresses internally. The address counters still need external timing pulses. These pulses are 
easy to derive from the processor's bus control signals. Pseudo-static RAMs do not need a full 
DRAM controller. . 

7.2. REFRESH CONTROL UNIT CAPABILITIES 

A nine-bit address counter forms the refresh addresses, supporting any dynamic memory 
devices with up to nine rows of memory cells (nine refresh address bits). This includes all 
practical DRAM sizes for the processor's one Mbyte address space. 

7.3. REFRESH CONTROL UNIT OPERATION 

Figure 7.2 illustrates Refresh Control Unit counting, address generation and Bill bus cycle 
generation in flow chart form. 

The 9-bit down-counter loads from the Refresh Interval Register on the falling edge of 
CLKOUT. Once loaded, it decrements every falling CLKOUT edge until it reaches one. Then 
the down-counter reloads and starts counting again, simultaneously triggering a refresh 
request. Once enabled, the DRAM refresh process continues indefinitely until the user 
reprograms the Refresh Control Unit, a reset occurs, or the processor enters Powerdown 
Mode. Power-Save Mode divides the Refresh Control Unit clocks, so reprogramming the 
Refresh Interval Register becomes necessary. 

The refresh request remains active until the bus becomes available. When the bus is free, the 
BID will run its "dummy read" cycle. Refresh bus requests have higher priority than most 
CPU bus cycles, all DMA bus cycles and all interrupt vectoring sequences. Refresh bus cycles 
also have a higher priority than the HOLDIHLDA bus arbitration protocol (see Section 7.8). 

The 9-bit refresh clock counter does not wait until the BIU services the refresh request to 
continue counting. This operation ensures refresh requests occur at the correct interval. 
Otherwise, the time between refresh requests would be a function of varying bus activity. 
When the BIU services the refresh request, it clears the request and increments the refresh 
address. 

7-2 



intel@ REFRESH CONTROL UNIT 

REFRESH CONTROL UNIT BIU REFRESH BUS 
OPERATION OPERATION 

SET "E" BIT REFRESH REQUEST 

LOAD COUNTER 
FROM REFRESH CLOCK 

INTERVAL REGISTER 

EXECUTED 
EVERY 
CLOCK 

ACKNOWLEDGED 

Figure 7.2. Refresh Control Unit Operation Flow Chart 

FROM 
REFRESH BASE ADDRESS REGISTER FIXED 

2O-BIT REFRESH ADDRESS 

FROM 
REFRESH ADDRESS COUNTER 

Figure 7.3. Refresh Address Formation 

7·3 

FIXED 



intel .. REFRESH CONTROL UNIT 

The BIU does not queue DRAM refresh requests. If the Refresh Control Unit generates 
another request before the BIU handles the present request, the BIU loses the present request. 
However, the address associated with the request is not lost. The refresh address changes only 
after the BIU runs a refresh bus cycle. If a DRAM refresh cycle is excessively delayed, there is 
still a chance that the processor will successfully refresh the corresponding row of cells in the 
DRAM, retaining the data. 

7.4. REFRESH ADDRESSES 

Figure 7.3 shows the physical address generated during a refresh bus cycle. This figure applies 
to both the 8-bit and 16-bit data bus microprocessor versions. Refresh address bits RAI9:13 
come from the Refresh Base Address Register described in Section 7.7.2.1. 

Refresh address bits RA12: 10 are always zero. A linear-feedback shift counter generates 
address bits RA9:1. The counter does not increment linearly from D through IFFH. However, 
the counting algorithm cycles uniquely through all possible 9-bit values. It only matters that 
each row of DRAM memory cells gets refreshed at a specific interval. The order of the rows is 
unimportant. 

Address bit AD is fixed at zero during all refresh operations. In applications based on a 16-bit 
data bus processor, AD typically selects memory devices placed on the low (even) half of the 
bus. Applications based on an 8-bit data bus processor typically use AD as a true address bit. 
The DRAM controller must not route AD to row address pins on the DRAMs. 

7.5. REFRESH BUS CYCLES 

Refresh bus cycles look exactly like ordinary memory read bus cycles except for the control 
signals indicated in Table 7.1. The 16-bit bus processor drives both the BHE and AD pins high 
during refresh cycles. These signals may be AND' ed in a DRAM controller to detect a refresh 
bus cycle. The 8-bit bus version replaces the BHE pin With RFSH, which is low during refresh 
cycles. RFSH and BHE timings are the same. AD is also high during refresh cycles on the 8-bit 
bus processor. 

Table 7.1. Identification of Refresh Bus Cycles 

DATA BUS WIDTH BHE/RFSH AO 

~ 
16-Bit Device 1 1 

8-Bit Device 0 1 

7-4 



intel .. REFRESH CONTROL UNIT 

7.6. GUIDELINES FOR DESIGNING DRAM CONTROLLERS 

The basic DRAM access method consists of four phases: 

1. The DRAM controller supplies a row address to the DRAMs. 

2. The controller asserts a Row Address Strobe (RAS), which latches the row address inside 
the DRAMs. 

3. The controller supplies a column addressto the DRAMs. 

4. The controller asserts a Column Address Strobe (CAS), which latches the column address 
inside the DRAMs. 

Most 80Cl86 Modular Core family DRAM interfaces use only this method. Others will not be 
discussed here. 

The DRAM controller's purpose is to use the processor's address, status and control lines to 
generate the multiplexed addresses and strobes. These signals must be appropriate for three 
bus cycle types: read, write and refresh. They must also meet specific pulse width, setup, and 
hold timing requirements. DRAM interface designs need special attention to transmission line 
effects, since DRAMs represent significant loads on the bus. 

DRAM controllers may be either clocked or unclocked. An unclocked DRAM controller 
requires a tapped digital delay line to derive the proper timings. 

Clocked DRAM controllers may use either discrete or programmable logic devices. A state 
machine design is appropriate, especially if the circuit must provide wait state control (beyond 
that possible with the processor's Chip-Select Unit). Because of the microprocessor's four­
clock bus, clocking some logic elements on each CLKOUT phase is advantageous (see Figure 
7.4). The cyCle begins with presentation of the row address. RAS should go active on the 
falling edge of T2• At the rising edge of T2, the address lines should switch to a column 
address. CAS goes active on the falling edge of T3• Refresh cycles do not require CAS. When 
CAS is present, the "dummy read" cycle becomes a true read cycle (the DRAM drives the 
bus), and the DRAM row still gets refreshed. 

Both RAS and CAS stay active during any wait states. They go inactive on the falling edge of 
T4• At the rising edge of T4, the address multiplexer shifts to its original selection (row 
addressing), preparing for the next DRAM access. 

7.7. PROGRAMMING THE REFRESH CONTROL UNIT 

Given a specific processor operating frequency and information about the DRAMs in the 
system, the user can program the Refresh Control Unit registers. 

7-5 



int'et REFRESH CONTROL UNIT 

T4 T1 T2 T4 

CLKOUT 

MUXED ADDRESS 

\ 
II 

NorES: 

1. CAS is unnecessary for refresh cycles only. 

2. WE is necessary for write cycles only. 

Figure 7.4. Suggested DRAM Control Signal Timing Relationships 

Rp. (l-1s) x f(MHz) 
enod 

-----------~---- = RFTIME Register Value 
# Refresh Rows + # (Refresh Rows x % Overhead) 

Rp . d = Maximum refresh period specified by DRAM manufacturer (microseconds). 
eno 

f = Operating frequency in MHz. 

# Refresh Rows = Total number of rows to be refreshed. 

% Overhead", Derating factor to compensate for missed refresh requests (typically 1-5%). 

Figure 7.5. Formula for Calculating Refresh Interval for RFTIME Register 

7-6 



inleL REFRESH CONTROL UNIT 

7.7.1. CALCULATING THE REFRESH INTERVAL 

DRAM data sheets show DRAM refresh requirements as a number of refresh cycles necessary 
and the maximum period to run the cycles. The indicated number of cycles is the same as the 
number of rows. Multiply the specified refresh period (convert to microseconds) by the 
microprocessor's CLKOUT frequency (MHz). Then divide the result by the number of rows 
in the DRAM. Figure 7.5 shows the formula. 

Bus latency is the time the Refresh Control Unit needs to gain control of the bus. Reduce the 
calculated refresh interval by one to five percent to compensate. If an external bus master will 
be extremely slow to release the bus, reduce the interval even more. At standard operating 
frequencies, DRAM refresh bus overhead totals two or three percent of the total bus 
bandwidth. 

If the processor enters Power-Save Mode, the refresh rate must increase to offset the reduced 
CPU clock rate to preserve memory. At lower frequencies, the refresh bus overhead increases. 
At frequencies less than about 1.5 MHz, the Bus Interface Unit will spend almost all its time 
running refresh cycles. There may not be enough bandwidth left for the processor to perform 
other activities, especially if the processor must share the bus with an external master. 

7.7.2. REFRESH CONTROL UNIT REGISTERS 

Three contiguous Peripheral Control Block registers operate the Refresh Control Unit: the 
Refresh Base Address Register, Refresh Clock Interval Register and the Refresh Control 
Register. 

7.7.2.1. REFRESH BASE ADDRESS REGISTER 

The Refresh Base Address Register (see Figure 7.6) programs the base (upper 7 bits) of the 
refresh address. Seven-bit mapping places the refresh address at any 4 Kbyte boundary 
within the one Mbyte address space. When the partial refresh address from the 9-bit address 
counter (see Section 7.3) passes IFFH, the Refresh Control Unit does not increment the 
refresh base address. 

7.7.2.2. REFRESH CLOCK INTERVAL REGISTER 

The Refresh Clock Interval Register (Figure 7.7) defines the time between refresh requests. 
The higher the value, the longer the time between requests. The down-counter decrements 
every falling CLKOUT edge, regardless of core activity. When the counter reaches 1, the 
Refresh Control Unit generates a refresh request and the counter again loads the value from 
the register. 

7-7 



in1:et REFRESH CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

15 

BIT 

R 
A 
1 
8 

MNEMONIC 

RA19:13 

R 
A 

7 
~I 
6 

BIT NAME 

Refresh Base 

Refresh Base Address Register 
RFBASE (MDRAM) 
Determines upper 7 bits of refresh address. 

RESET 
STATE FUNCTION 

OOH Uppermost address bits for DRAM refresh 
cycles. 

NOTE: Reserved register bits are shown with gray shading. Always program reserved register 
bits with a "0" to insure proper device functionality and compatibility with future Intel products. 

Figure 7.6. Refresh Base Address Register 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

RC8:0 Refresh 
Counter 
Reload Value 

Refresh Clock Interval Register 
RFTIME (CORAM) 
Sets refresh rate. 

RESET 
STATE FUNCTION 

OOOH Sets the desired clock count between refresh 
cycles. 

NOTE: Reserved register bits are shown with gray shading. Always program reserved register 
bits with a "0" to insure proper device functionality and compatibility with future Intel products. 

Figure 7.7. Refresh Clock Interval Register 

7-8 



intel® REFRESH CONTROL UNIT 

Register Name: Refresh Control Register 
Register Mnemonic: RFCON (EDRAM) 
Register Function: Controls Refresh Unit operation. 

0 
I 

R R R R R R R R R 
C C C C C C C C C 
8 7 6 5 4 3 2 0 

BIT RESET 
MNEMONIC BIT NAME STATE FUNCTION 

REN Refresh 0 Setting REN enables the Refresh Unit. Clearing 
Control Unit REN disables the Refresh Unit. 
Enable 

RC8:0 Refresh OOOH These bits contain the present value of the down 
Counter counter which triggers refresh requests. 

NOTE: Reserved register bits are shown with gray shading. Always program reserved register 
bits with a "0" to insure proper device functionality and compatibility with future Intel products. 

Figure 7.8. Refresh Control Register 

7.7.2.3. REFRESH CONTROL REGISTER 

Figure 7.8 shows the Refresh Control Register. The user may read or write the REN bit at 
any time to turn the Refresh Control Unit on or off. The lower nine bits contain the current 
9-bit down-counter value. The user cannot program these bits. Disabling the Refresh Control 
Unit clears both the counter and the corresponding counter bits in the control register. 

7.7.3. PROGRAMMING EXAMPLE 

Example 7.1 contains sample code to initialize the Refresh Control Unit. Example 5.2 shows 
the additional code to reprogram the Refresh Control Unit upon entering Power-Save Mode. 

7-9 



intet 

$mod186 
name 

REFRESH CONTROL UNIT 

iFUNCTION: This function initializes the DRAM Refresh 
iControl Unit to refresh the DRAM starting at dram_addr 
iat clock_time intervals. 

SYNTAX: 
extern void far config_rcu(int dram_addr, int clock_time) i 

INPUTS: dram_addr - Base address of DRAM to refresh 
clock_time - DRAM refresh rate 

OUTPUTS: None 

NOTE: Parameters are passed on the stack as 
required by high-level languages. 

RFBASE 
RFTIME 
RFCON 

equ 
equ 
equ 

xxxxh isubstitute register offset 
xxxxh 
xxxxh 

Enable 

_config_rcu 

clock time -
- dram_addr 

equ 8000h ienable bit 

segment public 'code' 
assume cs:lib_80186 

public 
proc far 

push bp 
mov bp, 

equ word 
equ word 

push ax 

push cx 
push dx 
push di 

_config_rcu 

sp 

ptr[bp+6] 
ptr [bp+8] 

isave caller's bp 
iget current top of stack 

iget parameters off 
ithe stack 

isave registers that 
iwill be modified 

Example 7.1. Refresh Control Unit Intialization Code 

7-10 



intel .. 

mov dx, 
mov ax, 
out dx, 

mov dx, 
mov ax, 
out dx, 

mov dx, 
mov ax, 
out dx, 

mov cx, 

xor di, 

REFRESH CONTROL UNIT 

RFBASE ;set upper 7 address bits 

- dram_addr 
ax 

RFTIME ;set clock pre_scaler 
clock_time 

ax 

RFCON 
Enable 
ax 

8 

di 

;Enable RCU 

;8 dummy cycles are 
;required by DRAMS 
;before actual use 

exercise_ram: 

_config_rcu 

lib 80186 -

mov word ptr [dil, 0 
loop _exercise_ram 

pop di ;restore saved registers 
pop dx 
pop cx 
pop ax 

pop bp ;restore caller's bp 

ret 
endp 

ends 
end 

Example 7.1. Refresh Control Unit Initialization Code (Continued) 

7.8. REFRESH OPERATION AND BUS HOLD 

When another bus master controls the bus, the processor keeps HLDA active as long as the 
HOLD input remains active. If the Refresh Control Unit generates a refresh request during bus 
hold, the processor drives the HLDA signal inactive, indicating to the current bus master that it 
wishes to regain bus control (see Figure 7.9). The BID begins a refresh bus cycle only after the 
alternate master removes HOLD. The user must design the system so the processor can regain 
bus control. If the alternate master asserts HOLD after the processor starts the refresh cycle, 
the CPU will give up the bus afterwards. 

7-11 



REFRESH CONTROL UNIT 

T1 T1 T1 T1 T1 T4 T1 

CLKOUT 

HOLD 

HLDA 

® 
ADO-AD1S, DEN 

- ---
A19:16, RD, WR, BHE, 

)2 ( DT/R, S2:0 
{( 

NOTES: 1. HLDA deasserted; signaling needs to run DRAM refresh cycles less than T CLOV 
2. External bus master terminates use of the bus 
3. HOLD deasserted; greater than T CLiS 
4. HOLD may be reasserted after one clock 
5. Lines come out of float in order to run DRAM refresh cycle 

Figure 7.9. Regaining Bus Control to Run a DRAM Refresh Bus Cycle 

7-12 



Interrupt Control Unit 8 





CHAPTER 8 
INTERRUPT CONTROL UNIT 

The 80C186 Modular Core has a single maskable interrupt input (See Section 2.3.1.2). An 
Interrupt Control Unit is needed to expand the interrupt capabilities beyond a single input. To 
fulfill this function, the Interrupt Control Unit has two different modes of operation; Master 
Mode and Slave Mode. 

In Master Mode, the Interrupt Control Unit processes all maskable interrupt sources and 
presents them to the CPU through the single maskable interrupt input. The Interrupt Control 
Unit synchronizes and prioritizes interrupt sources and provides the interrupt type vector to the 
CPU. The interrupts can originate from on-chip peripherals and from four external interrupt 
pins. Most systems use Master Mode. 

In Slave Mode, an external 8259A interrupt controller acts as the master interrupt controller. 
The 8259A now actually controls the maskable interrupt input to the CPU. The Interrupt 
Control Unit is only responsible for processing the on-chip interrupt sources and must request 
service from the external 8259A. 

Features of the Interrupt Control Unit are: 

• Programmable priority of each interrupt source 

• Support for polled operation 

• Individual masking of each interrupt source 

• Nesting of interrupt sources 

• External 8259As can be used for expanding external interrupt sources (Cascade Mode) 

8.1. FUNCTIONAL OVERVIEW 

All microprocessor systems must communicate in some way with the external world. A typical 
system may have a set of peripherals, for example, a keyboard, communications port and a 
display. Each peripheral requires the attention of the CPU at different times. There are two 
distinct ways to process peripheral 1/0 requests; polling and interrupts. 

Polling requires the CPU to check each peripheral in the system periodically to see if an 1/0 
request is pending. However, polling is not a very efficient use of CPU time and in most cases 
is detrimental to system throughput. 

Interrupts eliminate polling by allowing the peripheral to signal the CPU that it has an 1/0 
request pending. The CPU then stops execution of the current task, saves its state and begins 
executing the peripheral servicing routine (interrupt handler). At the end of the interrupt 
handler, the CPU restores its original state and returns to executing the original task. 

8-1 



INTERRUPT CONTROL UNIT 

The Interrupt Control Unit is responsible for processing interrupts from multiple peripherals 
and presenting them to the CPU in an orderly and defined fashion. 

8.2. MASTER MODE 

A block diagram of the Interrupt Control Unit in Master Mode is shown in Figure 8.1. 

TIMER TIMER TIMER 
o 2 

TO CPU 
INTERRUPT REQUEST 

DMA DMA 
o 1 

INTERRUPT 
PRIORITY 

RESOLVER 

INT INT INT INT 
o 1 2 3 

VECTOR 
GENERATION 

LOGIC 

Figure 8.1. Interrupt Control Unit Block Diagram 

8.2.1. GENERIC FUNCTIONS IN MASTER MODE 

There are several functions of the Interrupt Control Unit which are common among most 
interrupt controllers. This section covers how these generic functions are implemented on the 
Interrupt Control Unit. 

8.2.1.1. INTERRUPT MASKING 

There are several instances where a programmer may want to disable an interrupt source 
temporarily. Executing time-critical sections of code or servicing a high priority task are 
common examples of when interrupt sources may need to be disabled. This is called interrupt" 
masking. All interrupts from the Interrupt Control Unit may be globally masked or selectively 
masked on an individual basis. 

8-2 



inlet INTERRUPT CONTROL UNIT 

8.2.1.1.1. GLOBAL MASKING OF INTERRUPT SOURCES 

The Interrupt Enable Bit in the Program Status Word globally enables or disables the 
maskable interrupt request from the Interrupt Control Unit. The programmer controls the 
Interrupt Enable Bit by using the STI (Set Interrupt) and the CLI (Clear Interrupt) instructions. 

8.2.1.1.2. INDIVIDUAL MASKING OF INTERRUPT SOURCES 

In addition to the Interrupt Enable Bit, each interrupt source can be individually enabled or 
disabled. The Interrupt Mask Register has a single bit for each interrupt source. By setting or 
clearing a bit in the Interrupt Mask Register, the programmer can selectively mask or unmask 
the corresponding interrupt source. 

8.2.1.2. INTERRUPT PRIORITY 

One of the critical functions of the Interrupt Control Unit is to prioritize interrupt requests. 
Priority determines which interrupt request is serviced first if multiple interrupts are pending. 
In many systems, it is possible that an interrupt handler may itself be interrupted by another 
interrupt source. This is known as interrupt nesting. When nesting interrupts, priority 
determines if an interrupt source can preempt an interrupt handler which is currently 
executing. 

An interrupt source is assigned a priority between zero and seven. Zero is the highest possible 
priority and seven is the lowest. After reset, the interrupts default to the priority shown in 
Table 8.1. Because the timers share an interrupt source, they also share a priority. Within the 
assigned priority, they are prioritized relative to each other. Timer 0 has the highest relative 
priority, Timer 2 the lowest. 

Different priorities can be assigned for each source. This is done by programming the Interrupt 
Control Register with a new priority. The priority must be between zero and seven. InUrrupt 
f.ources can be programmed to share the same priority. The Interrupt Control Unit handles this 
by using the default priorities within the shared priority level. For example, assume INTO and 
INTI are programmed to priority seven. INTO is serviced first because it has the higher default 
priority. 

Interrupt sources can also be masked on the basis of their priority. The Priority Mask Register 
masks all interrupts with a lower priority than its programmed value. After reset, the Priority 
Mask Register contains priority seven, effectively enabling interrupts of any priority. The 
register can then be programmed with any valid priority. 

8-3 



INTERRUPT CONTROL UNIT 

Table 8.1. Default Interrupt Priorities 

Interrupt Name Relative 
Priority 

Timer 0 o (a) 

Timer 1 o (b) 

Timer 2 o (c) 

DMAO 1 

DMA1 2 

INTO 3 

INT1 4 

INT2 5 

INT3 6 

8.2.1.2.1. OPERATION WHEN INTERRUPT NESTING IS NOT ENABLED 

When entering an interrupt handler, the Program Status Word is pushed onto the stack. The 
Interrupt Enable Bit is cleared. The processor enters all interrupt handlers with maskable 
interrupts disabled. Maskable interrupts will not be enabled again until either the IRET 
instruction restores the Interrupt Enable Bit or the programmer explicitly enables interrupts. 
Enabling maskable interrupts within an interrupt handler allows interrupts to be nested. 
Otherwise, interrupts are processed sequentially; an interrupt handler must finish before 
another executes. 

The simplest way to use the Interrupt Control Unit is when nesting is not needed. The 
operation and servicing of all sources of maskable interrupts is straightforward. However, the 
application tradeoff is that an interrupt handler will finish executing even if a higher priority 
interrupt occurs. This can add considerable latency to the higher priority interrupt. 

In simplest terms, the Interrupt Control Unit asserts the maskable interrupt request to the CPU 
and waits for the interrupt acknowledge. When the Interrupt Control Unit receives the 
acknowledge, it presents the highest priority unmasked interrupt type at that time to the CPU. 
The CPU then executes the interrupt handler for that interrupt. Because the Interrupt Enable 
Bit is never set within the interrupt handler, the interrupt handler can never be interrupted. 

8.2.1.2.2. OPERATION WHEN NESTING INTERRUPTS 

The function of the Interrupt Control Unit is more complicated when nesting interrupts. An 
interrupt now can occur within an interrupt handler. The term used here is an interrupt 
preempting another interrupt. The following rules apply for nesting interrupts: 

8-4 



INTERRUPT CONTROL UNIT 

• An interrupt source can only preempt other interrupts of equal or higher priority. 

• An interrupt source cannot preempt itself. The interrupt handler must finish executing 
before the interrupt is serviced again. (An exception to this is Special Fully Nested Mode, 
which is covered in Section 8.3.3.1) 

8.3. MASTER MODE OPERATION 

This section covers the process in which the Interrupt Control Unit receives interrupts and 
asserts the Maskable Interrupt Request to the CPU. 

8.3.1. TYPICAL INTERRUPT SEQUENCE 

When the Interrupt Control Unit first detects an interrupt, it sets the corresponding bit in the 
Interrupt Request Register. That interrupt is pending or waiting to be serviced. The Interrupt 
Control Unit checks all pending interrupt sources. If the interrupt is not masked and it meets 
the priority criteria (see Section 8.3.2 on Priority Resolution), the Interrupt Control Unit 
asserts the maskable interrupt request to the CPU. 

The Interrupt Control Unit then waits for the interrupt acknowledge from the CPU. At that 
time, it passes the interrupt type to the CPU and the interrupt processing sequence takes place. 
See Section 2.3.1 for a detailed explanation of the interrupt processing sequence. The Interrupt 
Control Unit always passes the highest priority interrupt vector at the time the acknowledge is 
received. If a higher priority interrupt occurs before the interrupt acknowledge, the higher 
priority interrupt has precedence. 

When the interrupt acknowledge occurs, the corresponding bit in the Interrupt Request 
Register is cleared. The corresponding bit in the In-Service Register is set. The In-Service 
Register keeps track of which interrupt handlers are being processed. At the end of Interrupt 
Handler, the programmer must explicitly clear the bit in the In-Service Register by issuing an 
End-Of-Interrupt (EO!) command. If the bit remains set, the Interrupt Control Unit cannot 
process any more interrupts from that source. 

8.3.2. PRIORITY RESOLUTION 

The criteria for asserting the maskable interrupt request to the CPU is somewhat complicated. 
The complexity is needed to support interrupt nesting. First, an interrupt occurs and the 
corresponding bit is set in the Interrupt Request Register. The Interrupt Control Unit then 
asserts the maskable interrupt request to the CPU based on the following criteria: 

1. The interrupt is not masked. 

2. The interrupt has higher priority than the Priority Mask Register. 

3. The interrupt must not have its own In-Service bit set. 

4. An interrupt has equal or higher priority than any interrupt whose In-Service bit is set. 

8-5 



INTERRUPT CONTROL UNIT 

The In-Service Register keeps track of any currently executing interrupt handler. The Interrupt 
Control Unit uses this information to decide if another interrupt source has enough priority to 
preempt an interrupt handler that is currently executing. 

The following example illustrates the priority resolution: 

The initial conditions are: 

• The Interrupt Control Unit has been initialized. 

• There are no pending interrupts. 

• No bits are set in the In-Service Register. 

• All interrupts are unmasked and the Interrupt Enable bit is set. 

• The default priority scheme is used. 

• The Priority Mask Register is set to the lowest priority (seven). 

1. A low to high transition on INTO sets its bit in the Interrupt Request Register. The 
interrupt is now pending. 

2. Because INTO is the only interrupt pending, it must meet all the priority criteria. The 
Interrupt Control Unit asserts the interrupt request to the CPU and waits for an 
acknowledge. 

3. The CPU acknowledges the interrupt. The Interrupt Control Unit passes the interrupt type 
(in this case type 12) to the CPU. 

4. The Interrupt Control Unit clears the INTO in the Interrupt Request Register and sets the 
INTO bit in the In-Service Register. 

5. The CPU executes the interrupt processing sequence and begins executing the interrupt 
handler for INTO. 

6. During execution of the interrupt handler, a low to high transition on INT3 sets its bit in 
the Interrupt Request Register. 

7. INT3 has lower priority than INTO, whose interrupt handler is currently executing 
(INTO's In-Service bit is set). INT3 does not meet the priority criteria and thus no 
interrupt request is sent to the CPU. If INT3 had been programmed with an equal or 
higher priority than INTO, the interrupt request would have been sent to the CPU. INT3 
remains pending in the Interrupt Request Register. 

8. The INTO interrupt handler completes and an EO! command clears the INTO bit in the In­
Service Register. 

9. INT3 is still pending and now meets all the priority criteria. An interrupt request is sent to 
the CPU and the process begins again. 

8-6 



inlet INTERRUPT CONTROL UNIT 

8.3.2.1. INTERRUPTS WHICH SHARE A SINGLE SOURCE 

Multiple interrupt requests can share a single source input to the Interrupt Control Unit (the 
three timer interrupts, for example). Although these interrupts share a source input, each has 
its own interrupt vector. The actual vectoring sequence is transparent to the user (i.e., when a 
TimerO interrupt occurs, the TimerO interrupt handler gets executed). The application 
consequences of how these interrupts get prioritized and serviced is covered in this section. 
We will use the three timer interrupts as an example. 

The Interrupt Status Register acts as a second level request register to process the three timer 
interrupts. The Interrupt Status Register contains a bit for each timer interrupt. Lets assume a 
timer interrupt occurs. The specific bit for that timer in the Interrupt Status Register and the 
shared timer interrupt bit in the Interrupt Request Register are both'set. Now the shared timer 
interrupt is processed like any other interrupt source. Multiple timer interrupt bits can be set at 
one time in the Interrupt Status Register. . 

When the shared interrupt is acknowledged, the highest priority timer interrupt at that time 
gets serviced first (see Table 8.1). The highest priority timer bit is cleared in the Interrupt 
Status Register. Any other timer interrupts remain pending and their bits set. If only one timer 
interrupt is pending, the timer bit in the Interrupt Request Register is also cleared. Otherwise, 
it remains set, signalling other timer interrupts are pending. 

The shared In-Service Bit is set when the timer interrupt is acknowledged. No other timer 
interrupts can occur when the In-Service Bit is set. For example, assume a lower priority timer 
interrupt is being serviced and a higher priority timer interrupt occurs. The In-Service Bit is 
already set for the shared timer interrupt. The higher priority timer interrupt remains pending 
until the lower priority timer interrupt handler is finished and the In-Service Bit cleared. 

8.3.3. CASCADING WITH EXTERNAL 8259As 

For some applications, the number of external interrupt pins on the Interrupt Control Unit is 
not enough. The Interrupt Control Unit has Cascade Mode which expands the number of 
external interrupt pins using 8259A interrupt controllers. The INT2/INTAO and INT3/INTA1 
have two functions. They can function as external interrupt pins or as interrupt acknowledge 
outputs in Cascade Mode. INTAO is the acknowledge for INTO and INTA1 is the 
acknowledge for INTI as shown in Figure 8.2. 

The INT2/INTAO and INT3/INTA1 are inputs after reset until the pins are configured as 
outputs. The pullup resistors insure the INT A pins never float (issuing a spurious interrupt 
acknowledge to the 8259A). The value of the resistors must be high enough to prevent 
excessive loading on the INT A pins. 

8-7 



INTERRUPT CONTROL UNIT 

INT 
,.., 

INTO , 
8259A V C C 

OR 
82C59A 

-- --J 
INTA ...... INTAO 

INTERRUPT 
CONTROL 

UNIT 
'" INT , INTl 

8259A V C C 
OR 

82C59A 
-- --
INTA 

~ 

"""" INTAl 

Figure 8.2. Using 8259As in Cascade Mode 

8.3.3.1. SPECIAL FULLY NESTED MODE 

Special Fully Nested Mode is an optional feature nonnally used with Cascade Mode and is 
only applicable to INTO and INTI. In Special Fully Nested Mode, a request from an interrupt 
source is serviced even if its In-Service Bit is set. 

In Cascade Mode, up to eight external interrupts share a single interrupt pin under the control 
of an 8259A. Special Fully Nested Mode allows the priority structure of the 8259A to be 
maintained. For example, let's assume the CPU is currently servicing a low priority interrupt 
from the 8259A. While the interrupt handler is executing, the 8259A receives a higher priority 
interrupt from one of its sources. The 8259A applies its own priority criteria to that interrupt 
and asserts its interrupt pin to the Interrupt Control Unit. Special fully Nested Mode would 
allow that 8259A interrupt to be serviced even though the In-Service Bit is already set for that 
interrupt source. A higher priority interrupt has preempted a lower priority interrupt therefore 
fully maintaining interrupt nesting. 

Special Fully Nested Mode can still be used without Cascade Mode. This allows a single 
external interrupt pin, (either INTO or INTI) to preempt itself. 

8.3.4. INTERRUPT ACKNOWLEDGE SEQUENCE 

During the interrupt acknowledge sequence, the Interrupt Control Unit Rasses the interrupt 
type to the CPU. The CPU then multiplies the interrupt type by four to get the interrupt vector 
address in the interrupt vector table. See Section 2.3.1. 

8-8 



intel .. INTERRUPT CONTROL UNIT 

The interrupt types for all the sources are fixed and unalterable (see Table 8.2). The Interrupt 
Control Unit passes these types to the CPU internally. The first external indication of the 
interrupt acknowledge sequence will be the CPU fetching from the interrupt vector table. 

Table 8.2. Fixed Interrupt Types 

Interrupt Name Interrupt Type 

Timer 0 8 

Timer 1 18 

Timer 2 19 

DMAO 10 

DMA1 11 

INTO 12 

INT1 13 

INT2 14 

INT3 15 

In Cascade Mode, the external 8259A supplies the interrupt type to the CPU. Therefore, the 
CPU runs an external interrupt acknowledge cycle (see Section 3.5.3) to fetch the interrupt· 
type from the 8259A. 

8.3.5. POLLING 

In some applications, it is desirable to poll the Interrupt Control Unit. The CPU asks or polls, 
the Interrupt Control Unit for any pending interrupts. The User can then service interrupts 
whenever it is convenient. The Interrupt Control Unit has the Poll and Poll Status Registers to 
support polling. 

By reading the Poll Register, the user gets the type of the highest priority pending interrupt. 
Now the user must call that interrupt handler. Reading the poll register also acknowledges the 
interrupt. The specific bit in the Request Register is cleared and the bit in the In-Service 
Register is set. The Poll Status Register has the same format as the Poll Register. Reading the 
Poll Status Register does not acknowledge the interrupt. 

8.3.6. EDGE AND LEVEL TRIGGERING 

The external interrupt pins (INT3-0) are programmable for either edge or level triggering. 
Both types of triggering are active high. 

Edge triggeJ;ing is defined as a zero to one transition on an external interrupt pin. The pin must 
remain high until after the CPU acknowledges the interrupt. The external interrupt pin must go 
low again to reset the edge detect circuitry (see the data sheet for timing information). No 
further interrupts will occur unless the external interrupt pin goes low after being 
acknowledged. 

8-9 



intel .. INTERRUPT CONTROL UNIT 

Level triggering is defined as a valid logic one on the external interrupt pin. The logic one 
must remain until after the CPU acknowledges the interrupt. Unlike edge triggering, level 
triggering will contimie to generate interrupts if the pin remains high. A level triggered 
external interrupt pin must be deasserted before the EOI command or another interrupt occurs. 

8.3.7. ADDITIONAL LATENCY AND RESPONSE TIME OF MASTER MODE 

The Interrupt Control Unit adds five clocks to the interrupt latency of the CPU. The Interrupt 
Control Unit also adds. an extra 13 clocks to the interrupt response time when the Cascade 
Mode is used because the interrupt acknowledge bus cycles must be run. (See Figure 8.3). 

Section 2.3.3 defines the interrupt latency arid interrupt response time of the 80Cl86 Modular 
CPU. 

INTERRUPT PRESENTED TO 
INTERRUPT CONTROL UNIT 

INTERRUPT PRESENTED TO 
CPU 

FIRST iNSTRUCTION FETCH 
FROM INTERRUPT ROUTINE 

~ - - - - - -

INTA 

IDLE 

INTA 

IDLE 

READIP 

IDLE 

READCS 

IDLE 

PUSH FLAGS 

IDLE 

PUSH CS 

PUSH IP 

IDLE 

Clocks 
--~ 

5 
-~ 

4 

2 CASCADE 

4 MODE ONLY 

5 

4 

3 (51F NOT CASCADE MODE) 

4 

4 

4 

3 

4 

4 

5 
----~ 

Total 55 

Figure 8.3. Interrupt Control Unit Latency and Response Time 

8-10 



intel® INTERRUPT CONTROL UNIT 

8.4. MASTER MODE INTERRUPT UNIT PROGRAMMING 

The Peripheral Control Block map of the Interrupt Control Unit registers in Master Mode is 
shown in Table 8.3. 

Table 8.3. Interrupt Control Unit Registers in Master Mode 

Register Name Offset Address 

INT3 Control Register 3EH 

INT2 Control Register 3CH 

INT1 Control Register 3AH 

INTO Control Register 38H 

DMA 1 Control Register 36H 

DMAO Control Register 34H 

Timer Control Register 32H 

Interrupt Status Register 30H 

Interrupt Request Register 2EH 

In-Service Register 2CH 

Priority Mask Register 2AH 

Interrupt Mask Register 28H 

Poll Status Register 26H 

Poll Register 24H 

EOI Register 22H 

8.4.1. INTERRUPT CONTROL UNIT REGISTER DEFINITIONS 

The following sections define the bit-level functionality of the individual Interrupt Control 
Unit Registers. 

8-11 



intel® INTERRUPT CONTROL UNIT 

8.4.1.1. INTERRUPT CONTROL REGISTERS 

Each interrupt source has its own Interrupt Control Register (See Figures 8.4-8.6). Each 
Interrupt Control Register has three bits which can be programmed with the priority level for 
the interrupt source (see Figure 8.4). Also, each register has a mask bit which enables the 
interrupt source. The mask bit is the same bit in the Interrupt Mask Register. Modifying one 
bit in either register also modifies the other bit. 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

MSK Interrupt 
Mask 

PM2:0 Priority Level 
Field 

Interrupt Control Register (Internal Sources) 
TCUCON, DMAOCON, DMA 1 CON 
Control Register for the internal interrupt sources. 

o 
M p pip 
S M MM 
K 2 0 

RESET 
STATE FUNCTION 

1 Cleared to enable interrupts from this source. 

111 Sets the priority level for this source. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to insure compatibility with future Intel products. 

Figure 8.4. Interrupt Control Register Template for Internal Sources 

Each Interrupt Control Register for the external interrupt pins also has a L VL bit (see Figure 
8.5). The L VL bit selects between Level-triggered and Edge-triggered mode for the 
corresponding external interrupt pin. In Edge-triggered Mode, a low to high transition causes 
the interrupt. The pin must remain low at least one clock before the low to high transition. The 
interrupt pin must still must remain asserted until the CPU acknowledges the interrupt. 
Otherwise, the interrupt is lost. 

In Level-triggered Mode, an interrupt pin left asserted after the EOI causes another interrupt. 
Level-triggered Mode is useful when interrupt requests are wire-ORed to a single interrupt 
pin. 

8-12 



INTERRUPT CONTROL UNIT 

Register Name: 

Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

LVL Level-trigger 

MSK Interrupt 
Mask 

PM2:0 Priority Level 
Field 

Interrupt Control Register (Non-cascadable 
external pins) 
12CON, 13CON 
Control Register for non-cascadable 
external interrupt pins. 

I 
~S I ~ ~- -1~1: ~~~O 
K 2 1 0 

----1 

RESET 
STATE FUNCTION 

0 o = Edge-triggered mode 
1 = Level-triggered mode 

1 Cleared to enable interrupts from this source. 

111 Sets the priority level for this source. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to insure compatibility with future Intel products. 

Figure 8.5. Interrupt Control Register Template for 
Non-Cascadeable Interrupt Pins 

Level-triggered mode must be used when external 8259As are cascaded into the Interrupt 
Control Unit. 

To support external 8259As, the INTO and INTI Interrupt Control Registers have the CAS and 
SFNM bits (see Figure 8.6). The CAS bit enables Cascade Mode operation and the SFNM bit 
enables the Special Fully Nested Mode. 

8·13 



intel" INTERRUPT CONTROL UNIT 

Register Name: 

Register Mnemonic: 
Register Function: 

15 

Interrupt Control Register (Cascadable 
external pins) 
IOCON,11CON 
Control register for the cascadable external 
interrupt pins. 

m i lin UlllUllllllli III ~ 
M 

C 
A 
S 

L 
V 
L 

M 
S 
K 

P 
M 
2 

P 
M 

o 
P 
M 
o 

Uilil I! IIII! 11111 11111 !iii i II!II !IIIII 11111 ~~~~~~ ~~~--~~~~~~~~ 

BIT RESET 
MNEMONIC BIT NAME STATE FUNCTION 

SFNM Special Fully 0 Set to enable Special Fully Nested Mode. 
Nested Mode 

CAS Cascade 0 Set to enable Cascade Mode. 
Mode 

LVL Level-trigger 0 o = Edge-trigger mode 
1 = Level-trigger mode 

MSK Interrupt 1 Cleared to enable interrupts from this source. 
Mask 

PM2:0 Priority Level . 111 Sets the priority level for this interrupt source. 
Field 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to insure compatibility with future Intel products. 

Figure 8.S. Interrup~ Control Register Template for Cascadeable Interrupt Pins 

8.4.1.2. THE INTERRUPT REQUEST REGISTER 

The Interrupt Request Register has seven bits, one for each interrupt source (see Figure 8.7). 
When an interrupt occurs, the corresponding bit is set in the Interrupt Request Register. The 
bit is set whether the interrupt is masked or unmasked. The bit is cleared when the interrupt is 
acknowledged: 

8-14 



in1:et INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

15 

BIT 

Interrupt Request Register 
REQST 
Stores pending interrupt requests. 

RESET 
MNEMONIC BIT NAME STATE FUNCTION 

INT3:0 External 0 When set, the corresponding INT pin has an 
Interrupts interrupt pending. 

DMA1:0 DMA 0 DMA channel interrupt requests. When set, the 
Interrupts corresponding DMA channel has an interrupt 

pending. 

TMR Timer 0 Timer/Counter Unit interrupt request. When set, 
Interrupt the TCU has an interrupt pending. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.7. Interrupt Request Register 

For the external interrupt pins, the request must remain asserted until the interrupt is 
acknowledged. Otherwise, that bit in the Interrupt Request Register will be cleared and the 
interrupt will not be serviced. 

8.4.1.3. INTERRUPT MASK REGISTER 

The Interrupt Mask Register contains a mask bit for each interrupt source (see Figure 8.8). The 
bit for an interrupt source is the same as the mask bit in the Interrupt Control Register. The 
Interrupt Mask Register may be read or written. 

8-15 



in1:et INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 

Interrupt Mask Register 
IMASK 
Masks individual interrupt sources. 

RESET 

I-
i I I 

N N 
T T 
3 2 
~_L 

MNEMONIC BIT NAME STATE FUNCTION 

INT3:0 External 1111 Set to mask interrupt requests from the 
ilterrupts corresponding INT pin. 

DMA1:0 DMA 11 Set to mask interrupt requests from the 
Interrupts corresponding DMA Channel. 

TMR Timer 1 Set to mask interrupt requests from the 
Interrupt Timer/Counter Unit. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to insure compatibility with future Intel products. 

Figure 8.8. Interrupt Mask Register 

8.4.1.4. PRIORITY MASK REGISTER 

The Priority Mask Register (see Figure 8.9) indicates the lowest interrupt priority that will be 
serviced. Any interrupts with a lower priority will be masked. After reset, the Priority Mask 
Register is set to the lowest priority (seven) to enable interrupts of any priority. 

8-16 



INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

PM2:0 Priority Mask 
Field 

Priority Mask Register 
PRIMSK 
Masks all interrupts with a lower priority. 

RESET 
STATE FUNCTION 

111 Interrupts with a lower priority than PM2:0 will 
not be serviced. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to insure compatibility with future Intel products. 

Figure 8.9. Priority Mask Register 

8.4.1.5. IN-SERVICE REGISTER 

The In-Service Register (see Figure 8.10) has a bit for each interrupt source. The bits indicate 
which source's interrupt handlers are executing. The bit in the In-Service Register is set when 
the interrupt is acknowledged. The bit is then cleared at the end of the interrupt handler by the 
End-Of-Interrupt (EO!) command. 

The Interrupt Control Unit uses the In-Service Register to support interrupt nesting. 

8-17 



intet INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

INT3:0 External 
Interrupts 

DMA1:0 DMA 
Interrupts 

TMR Timer 
Interrupt 

In-Service Register 
INSERV 
Indicates which interrupt handlers are 
currently in process. 

RESET 
STATE 

0 

0 

0 

I I 
N N 
T T 
3 2 

I I 
N N 
T T 
1 0 

FUNCTION 

o 0 
M M 
A A 
1 0 

When set, the corresponding INT pin's interrupt 
request is in-service. 

When set, the corresponding DMA interrupt 
request is in-service. 

When set, the corresponding Timer interrupt 
request is in-service. 

o 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.10. In-Service Register 

8.4.1.6. POLL AND POLL STATUS REGISTERS 

The Poll and Poll Status Registers (see Figures 8.11 and 8.12) support polling the Interrupt 
Control Unit. They indicate an interrupt is pending and also the type of the highest priority 
pending interrupt. The programmer reads these registers to service interrupts through software. 

The Poll Register and Poll Status Register both contain the same information. If an interrupt of 
sufficient priority is pending, the IREQ bit is set and the highest priority vector type is 
contained in bits VT4:0. 

8-18 



INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

IREO Interrupt 
Request 

VT4:0 Poll Status 

Poll Register 
POLL 
Read to check for pending interrupts when 
polling. 

RESET 
STATE 

0 

0 

FUNCTION 

Set if an interrupt is pending. 

o 
v v v V 
T T T T 
3 2 0 

Indicate the type of the highest pending 
interrupt. Reading the Poll Register 
acknowledges highest pending interrupt. 

NOTE: Reserved register bits are shown with gral' shading. Reserved bits must be written to a 
logic zero to insure compatibility with future Intel products. 

Figure 8.11. Poll Register 

Reading the Poll Register acknowledges the pending interrupt the same as if the CPU had 
started the interrupt vectoring sequence. The processor will not actually run any interrupt 
acknowledge sequence or fetch the vector from the vector table. The user has the 
responsibility to use this information and execute the proper routine to service the interrupt. 
The Interrupt Control Unit updates the Interrupt Request, In-Service, Poll and Poll Status 
Registers the same as in the normal interrupt acknowledge sequence. 

The Poll Status Register may be read to get the same information as the Poll Register. 
However, the interrupt is not actually acknowledged and none of the other registers in the 
Interrupt Control Unit will be modified. 

8-19 



int:et INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 

Poll Status Register 
POLLSTS 

Register Function: Read to check for pending interrupts when polling. 

o 
v v v v V 
T T T T T 
4 3 2 0 

BIT RESET 
MNEMONIC BIT NAME STATE FUNCTION 

IREO Interrupt 0 Set if an interrupt is pending. 
Request 

VT4:0 Poll Status 0 Indicate the type of the highest pending 
interrupt. Reading the poll status register will 
NOT acknowledge the interrupt. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to insure compatibility with future Intel products. 

Figure 8.12. Poll Status Register 

8.4.1.7. END-OF-INTERRUPT REGISTER 

The End-Of-Interrupt Register (see Figure 8.13) is used to issue the EOI (End-Of-Interrupt) 
command to the Interrupt Control Unit. The EOI command is usually issued at the end of an 
interrupt handler and clears the bit in the In-Service Register. 

There are two types of EOIs, specific and non-specific. A non-specific EOI simply clears the 
In-Service bit of the highest priority interrupt. A non-specific EOI is performed by writing a 
word to the End-Of-Interrupt Register with the NSPEC bit set (8000H). 

8-20 



INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

15 

C Ii 

BIT 
MNEMONIC BIT NAME 

NSPEC Non-specific 
EOI 

VT4:0 Interrupt Type 
Number 

End of Interrupt Register 
EOI 
Used to issue the EOI command. 

if' v 
T 
4 

. ~. 

RESET 
STATE FUNCTION 

0 Set to issue a non-specific EOL 

0 Specifies the interrupt type when issuing a 
specific EOL 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to insure compatibility with future Intel products. 

Figure 8.13. End-Of-Interrupt Register 

A specific EOI clears a particular bit in the In-Service Register. To perform a specific EOI, 
write a word to the End-Of-Interrupt Register with the interrupt type in bits VT4:0 of the In­
Service bit to be cleared. The NSPEC bit must be cleared when issuing specific EOI 
command. 

The timer interrupts share a bit in the In-Service Register. Write the interrupt type 8 to the 
End-Of-Interrupt Register to clear any timer interrupt with a specific EOI. 

8.4.1.8. INTERRUPT STATUS REGISTER 

All three timer interrupts share a single interrupt source. The Interrupt Status Register 
distinguishes between the interrupts which share an interrupt source (see Figure 8.14). The bits 
in the Interrupt Status Register are cleared when the interrupt request is acknowledged. More 
than one of these bits may be set at a time. 

8-21 



INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 

Interrupt Status Register 
INTSTS 

Register Function: Indicates which interrupt(s) is(are) pending for 
those interrupts which share a source. 

15 o 

'----"'-'''-'UUU~UUl ,~~~~~~ ~-"-"--"-"L"-"-'lliUjLill IIIII ~ I f ~ 
BIT RESET 

MNEMONIC BIT NAME STATE FUNCTION 

DHLT DMA Halt 0 Set to prevent any DMA activity. 

TMR2:0 Timer 0 Set when a timer has an interrupt request 
Interrupts pending. 

NOTE: ReseNed register bits are shown with gray shading. ReseNed bits must be written to a 
logic zero to insure compatibility with future Intel products. 

Figure 8.14. Interrupt Status Register 

8.4.2. INTERRUPT CONTROL UNIT INITIALIZATION SEQUENCE 

To initialize the Interrupt Control Unit, follow these steps: 

1. Determine which interrupt sources will be utilized. 

2. Determine if the default priority scheme will be used or figure out your own priority. 

3. Initialize the Interrupt Control Registers for all used interrupt sources. 

A. For the external interrupt pins, determine whether edge or level triggered will be 
used. 

B. For either INTO or INTI determine whether The Cascade Mode and/or the Special 
Fully Nested Mode will be used. 

C. If using your own priority scheme, program the priority levels. 

4. Initialize the Priority Mask Register if seven is too Iowa priority for your application. 

5. Unmask all desired interrupt sources with the Interrupt Mask Register. 

6. Set the Interrupt Enable bit by executing the STI instruction. 

8-22 



inlet INTERRUPT CONTROL UNIT 

8.4.3. MASTER MODE INITIALIZATION EXAMPLE 

The following example shows how to initialize the Interrupt Control Unit. 

$mod186 
name 

i This routine configures the interrupt controller to provide 
itwo cascaded interrupt inputs (through an external 8259A 
iconnected to INTO and INTAO#) and two direct interrupt inputs 
iconnected to INTI and INT3. The default priorities are used. 

i The example assumes that the register addresses have been 
iproperly defined. 

code 

set int 

segment 
assume 
proc 
push 
push 
mov 
mov 
out 
mov 
mov 
out 
pop 
pop 
ret 
endp 
ends 
end 

cs:code 
near 
dx 
ax 
aX,OlOOlllB 
dX,IOCON 
dx,ax 
aX,OlOOllOlB 
dX,IMASK 
dx,ax 
ax 
dx 

:Cascade Mode 
iINTO Control Register 

iUnmask INTI and INT3 

Example 8.1. Initializing The Interrupt Control Unit 

8.5. SLAVE MODE 

Although Master Mode is the most common mode used in the Interrupt Control Unit, Slave 
Mode has some unique features that make it useful in larger system designs. In Slave Mode, 
an external 8259A acts as the master interrupt controller. The 8259A now controls the 
maskable interrupt input to the CPU. The Interrupt Control Unit acts as an interrupt input to 
the 8259A. In simplest terms, the Interrupt Control Unit behaves like a cascaded 8259A to the 
master 8259A (See Figure 8.15). 

8-23 



in1:et INTERRUPT CONTROL UNIT 

INTO ./ I NT 
~ "'" 

VI' 8 2 5 9 AI 
INTA# 82C59A 

> INT11 80186 
MODULAR 

CORE 

CASCADE 
SELECT# ,/ 

ADDRESS "" DECODE 

IRQ 

Figure 8.15.·lnterrupt Control Unit In Slave Mode 

TIMER TIMER TIMER DMA DMA 
o 1 2 0 

TO EXTERNAL 8259A 
INTERRUPT REQUEST 

INTERRUPT 
PRIORITY 

RESOLVER 

VECTOR 
GENERATION 

LOGIC 

Figure 8.16. Interrupt Sources In Slave Mode 

8·24 



in1:et INTERRUPT CONTROL UNIT 

8.5.2. SLAVE MODE PROGRAMMING 

Slave Mode adds one new register. Most of the registers retain the same functionality as in 
Master Mode. Many of the bit positions have changed, to account for each timer interrupt now 
being its own source to the Interrupt Control Unit. The register positions in the Peripheral 
Control Block have also changed (See Table 8.4). 

8.5.2.1. INTERRUPT VECTOR REGISTER 

The Interrupt Vector Register (see Figure 8.17) is the additional register in Slave Mode. In 
Slave Mode, the interrupt vector types are programmable. While in Master Mode, the interrupt 
vector types are fixed and unalterable. The Interrupt Vector Register specifies the five most 
significant bits of the interrupt vector type. The three least significant bits are fixed according 
to Table 8.5. 

Table 8.4. Interrupt Control Unit Registers In Slave Mode 

Register Name Offset Address 
Timer 2 Control Register 3AH 

Timer 1 Control Register 38H 

DMA 1 Control Register 36H 

DMAO Control Register 34H 

Timer 0 Control Register 32H 

Interrupt Status Register 30H 

Interrupt Request Register 2EH 

In-Service Register 2CH 

Priority Mask Register 2AH 

Interrupt Mask Register 28H 

EOI Register 22H 
Interrupt Vector Register 20H 

Table 8.5. Slave Mode Interrupt Type Bits 

Interrupt Source Type bits 2-0 
Timer 0 000 

(reserved) 001 
DMAO 010 
DMA1 011 

Timer 1 100 
Timer 2 101 

8-25 



INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

T4:0 Interrupt Type 
Field 

Interrupt Vector Register (Slave Mode) 
INTVEC . 
Sets the five most significant bits of the 
interrupt types for the interrupt sources in 
Slave Mode. 

RESET 
STATE 

0 

FUNCTION 

T T T T 
321 0 

o 

Sets the five most significant bits of the interrupt 
types for the internal sources. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to insure compatibility with future Intel products. 

Figure 8.17. Interrupt Vector Register 

8.5.2.2. END-OF-INTERRUPT REGISTER 

The End-Of-Interrupt Register (see Figure 8.18) retains the same function in Slave Mode. 
However, only specific EOIs can be issued to the Interrupt Control Register in Slave Mode. 
Non-specific EOIs are not supported. To clear an In-Service Bit in Slave Mode, write the three 
least significant bits of the interrupt type to VT2:0 in the End-Of-Interrupt Register. 

8.5.2.3. OTHER REGISTERS IN SLAVE MODE 

The Interrupt Control, Interrupt Request, Interrupt Mask, In-Service and Interrupt Status 
Registers all retain the same functionality in Slave Mode as in Master Mode. The individual 
bits are different to account for the addition of the separate timer sources and the deletion of 
the external interrupt pins (see Figure 8.19). 

The Priority Mask Register maintains the exact function and bit definitions in Slave Mode as 
in Master Mode. 

The Poll and Poll Status Registers are not supported in Slave Mode. 

8-26 



int'et INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 

End of Interrupt Register (Slave Mode) 
EOI 
Used to issue the EOI command in Slave 
Mode. 

RESET 
MNEMONIC BIT NAME STATE FUNCTION 

VT2:0 Interrupt Type 0 Write three LSBs of the interrupt type to VT2:0 to 
Number issue an EOI in Slave Mode. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to insure compatibility with future Intel products. 

Figure 8.18. End-Of-Interrupt Register In Slave Mode 

Figure 8.19. Other Registers In Slave Mode 

8.5.2.4. INTERRUPT VECTORING IN SLAVE MODE 

The external 8259A acts as the master interrupt controller in Slave Mode. Therefore, interrupt 
acknowledge cycles must be run for every interrupt. This includes any interrupts from the 
integrated peripherals. During the first interrupt acknowledge cycle, the external 8259A 
determines which slave interrupt controller has the highest priority interrupt request. The 
external 8259A then drives the address of that interrupt controller onto its CAS2:0 pins (see 
Figure 8.20). External logic must decode the correct slave address of the Interrupt Control 
Unit from the CAS2:0 signals to drive the SELECT pin. 

8-27 



INTERRUPT CONTROL UNIT 

T1 T2 T3 T4 Ti Ti T1 T2 T3: T4 

80-82 

INTAO 

SELECT 

LOCK 

CAS2:0 -i----+---:---'~ ~ SLAV~ CASC~DE A~DRES$ FRO~ 8259~ ct= 
NOTES: 

1. INT1/SELECT HAS THE SELECT FUNCTION IN SLAVE MODE 

2. INT2/1NTAO HAS THE INTAO FUNCTION IN SLAVE MODE 

3. CASCADE ADDRESS IS DRIVEN BY THE EXTERNAL 8259A 

4. SELECT MUST BE DRIVEN BEFORE PHASE 2 OF T2 OF THE SECOND INTA 

5. SELECT READ BY PROCESSOR 

6. ALE IS GENERATED FOR EACH INTA 

7. RD IS INACTIVE 

Figure 8.20. Interrupt Vectoring In Slave Mode 

The SELECT pin is used as the slave-select input to the Interrupt Control Unit. During the 
second interrupt acknowledge cycle, the slave interrupt controller with the highest priority 
transfers the interrupt type to the CPU of its highest priority interrupt. If the Interrupt Control 
Unit is selected, it passes the interrupt type internally to the CPU. However, the interrupt 
acknowledge cycle still must be rnn for the benefit of the external 8259A. 

External interrupt acknowledge cycles must be rnn for every maskable interrupt. Therefore, 
the interrupt response time for every interrupt will be 55 clocks. This is shown in Figure 8.21. 

8-28 



in1:et INTERRUPT CONTROL UNIT 

INTERRUPT PRESENTED TO 
INTERRUPT CONTROL UNIT 

INTERRUPT PRESENTED TO 
EXTERNAL 82C59A 

FIRST INSTRUCTION FETCH 
FROM INTERRUPT ROUTINE 

Clocks 
----------------------------------~ 

5 
----------------------------------~ 

INTA 4 

IDLE 2 

INTA 4 

IDLE 5 

READ IP 4 

IDLE 3 

READCS 4 

IDLE 4 

PUSH FLAGS 4 

IDLE 3 

PUSH CS 4 

PUSHIP 4 

IDLE 5 
----------------------------------~ 

Tolal55 

Figure 8.21. Slave Mode Interrupt Response Time 

8-29 





Timer/Counter Unit 9 





CHAPTER 9 
TIMER I COUNTER UNIT 

The Timer/Counter Unit can be used in many applications. Some of these applications include: 
a real-time clock, a square-wave generator and a. digital one-shot. All of these can be 
implemented in a system design. A real-time clock can be used to update time-dependent 
memory variables. A square-wave generator can be used to provide a system clock tick for 
peripheral devices. Code examples configuring the Timer/Counter Unit to function as a real­
time clock, a square-wave generator, and a digital one-shot are provided in Section 9.4. 

CPU 

TMR IN 0 

TRANSITION 
LATCH/ 

SYNCHRONIZER 

TMR IN 1 

TRANSITION 
LATCH/ 

SYNCHRONIZER 

IOUTPUT LATCH ~ TMR OUT 0 

COUNTER 
ELEMENT 

CPU .,--_--1 

CLOCK 

IOUTPUT LATCH ~ TMR OUT 1 

Figure 9.1. Timer/Counter Unit Block Diagram 

9.1. FUNCTIONAL OVERVIEW 

The Timer/Counter Unit is composed of three independent 16-bit timers (see Figure 9.1). 
These timers operate independently of the CPU. The internal Timer/Counter Unit can be 
modeled as a single counter element, time multiplexed to three register banks. The unit is 
serviced over 4 clock periods, one timer during each clock with an idle clock at the end (see 
Figure 9.2). No connection exists between the counter element's sequencing through timer 
register banks and the Bus Interface Unit's sequencing through T-states. Timer operation and 

9-1 



TIMER/COUNTER UNIT 

bus interface operation are asynchronous. This time multiplexed scheme results in a 2 112 to 6 
112 CLKOUT period delay from timer input to timer output. 

The register banks are dual-ported between the counter element and the CPU. During a given 
bus cycle, the counter element and CPU may both access the register banks. Counter element 
and CPU accesses to the register banks are synchronized. . 

TIMER 0 TIMER 1 TIMER 2 TIMER 0 TIMER 1 TIMER 2 TIMER 0 

SERVICED SERVICED SERVICED DEAD SERVICED SERVICED SERVICED DEAD SERVICED ,.-.,,.-.,,.-.,,.-.,,.-.,,.-.,,.-.,,.-.,,.-., 

TMR IN 1 

TMR OUT 0 

TMROUT 1 

NOTES: 1. TMR IN 0 resolution time (setup time met). 
2. TMR IN 1 resolution time (setup time not met). 
3. Modified count value written into Timer 0 count register. 
4. Modified count value written into Timer 1 count register. 
5. TMR IN 1 resolution time. 

Figure 9.2. Counter Element Multiplexing and Timer Input Synchronization 

Each timer keeps its own running count and has a user-defined maximum count value. Timers 
o and 1 can use one maximum count value (single maximum count mode) or two alternating 
maximum count values (dual maximum count mode). Timer 2 can only use one maximum 
count value. The control register for each timer determines the counting mode to be used. 
When a timer is serviced, its present count value is incremented and compared to the 
maximum count for that timer. If these two values match, the count value resets to zero. The 
timers can be configured to either stop after a single cycle or run continuously. 

9-2 



NO 

NO RETRIGGER 

TIMER INPUT 
AT HIGH LEVEL 

YES 

PRESCALER ON 

(PRE=') 

YES 

DID TIMER 2 
REACH MAXCOUNT 

LAST SERVICE 
STATE 

NO 

DONE 

YES 

NO 

YES 

TIMER/COUNTER UNIT 

NO 

YES 

LOTOHI 
TRANSITION 

ON INPUT PIN SINCE 
LAST SERVICE 

NO 

IS 
TIMER RUNNING 

FLAG SET 

NO 

START 

TIMER NO 

(EN=') 

YES 

EXTERNAL 
CLOCKING YES 

(EXT=') 

DONE 

CONTINUED 
"A" 

Figure 9.3(a). Timers 0 and 1 Flow Chart 

9-3 

DONE 

LOTOHI 



TIMER/COUNTER UNIT 

CONTINUED FROM 
'A' 

Figure 9.3(b). Timers 0 and 1 Flow Chart (Continued) 



TIMER/COUNTER UNIT 

Timers 0 and 1 are functionally identical. Each has a latched, synchronized input pin and a 
single output pin. Each timer may be clocked internally or externally. Internally, the timer may 
increment at either 114 CLKOUT frequency or be prescaled by Timer 2. If a timer is prescaled 
by Timer 2, when Timer 2 reaches its maximum count value, the timer increments. When 
configured for internal clocking, the Timer/Counter Unit uses the input pins to either enable 
timer counting or retrigger the associated timer. Externally, a timer will increment on LOW­
TO-HIGH transitions on its input pin (up to 114 CLKOUT frequency). A flow chart for Timer 
o and 1 operation is given in Figures 9.3(a) and 9.3(b). 

Timers 0 and 1 each have a single output pin. Timer output can be either a single pulse, 
indicating the end of a timing cycle, or a variable duty cycle wave. These two output options 
correspond to single maximum count mode and dual maximum count mode, respectively (see 
Figure 9.4). Interrupts can be generated at the end of every timing cycle. 

Timer 2 has no input or output pins and may only be operated in single maximum count mode. 
It may be used as a free-running clock and a prescaler to Timers 0 and 1. Timer 2 can only be 
clocked internally, at 114 CLKOUT frequency. Timer 2 can also generate interrupts at the end 
of every timing cycle. 

DUAL MAXIMUM 
COUNT MODE 

SINGLE MAXIMUM 
COUNT MODE 

MAXCOUNT A .. 

MAXCOUNT A 

MAXCOUNTB 

ONE CPU 
CLOCK 

::==:::.:==~ v ',--__ 

Figure 9.4. Timer/Counter Unit Output Modes 

9.2. PROGRAMMING THE TIMER/COUNTER UNIT 

Each timer has three registers: a Timer Control register (see Figures 9.5 and 9.6), a Timer 
Count register (see Figure 9.7) and a Timer Maxcount Compare register (see Figure 9.8). 
Timers 0 and 1 also have access to an additional Maxcount Compare register. The Timer 
Control register controls timer operation. The Timer Count register holds the current timer 
count value. The Maxcount Compare register holds the maximum timer count value. 

9-5 



Register Name: 
Register Mnemonic: 
Register Function: 

15 
-

E I I R 
N N N I 

H T U 

BIT 
MNEMONIC BIT NAME 

EN Enable 

INH Inhibit 

INT Interrupt 

RIU Register In 
Use 

MC Maximum 
Count 

RTG Retrigger 

P Prescaler 

EXT External 
Clock 

ALT Alternate 
Compare 
Register 

CONT Continuous 
Mode 

TIMER/COUNTER UNIT 

Timer 0 and 1 Control Registers 
TOCON, T1CON 
Defines Timer 0 and 1 operation. 

0 ---, 
M R P E A C 
C T X L 0 

G T T N 
T 

RESET 
STATE FUNCTION 

0 If set, the timer is enabled. This bit cannot be written to 
unless the INH bit is set. 

X If set, writes to the Enable bit are allowed. If clear, 
writes to the Enable bit are ignored. This bit is not 
stored and is always read as zero. 

X If set, an interrupt request is generated when the 
Count register equals a maximum count. If clear, the 
timer will not issue interrupt requests. 

X If set, Maxcount Compare register B is being used. If 
clear, Maxcount Compare register A is being used. 

X If set, counter has reached a maximum count. If clear, 
counter has not reached a maximum count. 

X If set, 0 to 1 edge on TMR INx resets count. If clear, 
high input enables counting. This bit is ignored with 
external clocking (EXT =1). 

X If set, timer is prescaled by Timer 2. If clear, timer 
counts 1/4 CLKOUT. This bit is ignored with external 
clocking (EXT =1). 

X If set, use external clock. If clear, use internal clock. 

X If set, count to Maxcount Compare A, reset Count 
register to zero, count to Maxcount Compare B, reset 
Count register to. zero again. If clear, count to 
Maxcount Compare A and reset Count register to zero. 

X If set, timer runs continuously. If clear, EN is cleared 
after each timer counting sequence. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a logic 
zero to insure compatibility with future Intel products. 

Figure 9.5. Timer 0 and Timer 1 Control Registers 

9-6 



in1:et TIMER/COUNTER UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

15 .,=--
E I 
N N 

H 

BIT 
MNEMONIC 

EN 

INH 

INT 

MC 

CO NT 

BIT NAME 

Enable 

Inhibit 

Interrupt 

Maximum 
Count 

Continuous 
Mode 

Timer 2 Control Register 
T2CON 
Defines Timer 2 operation. 

RESET 
STATE FUNCTION 

0 If set, the timer is enabled. If clear, the timer is 
disabled. This bit cannot be written to unless the 
INH bit is set. 

X If set, writes to the Enable bit are allowed. If 
clear, writes to the Enable bit are ignored. This 
bit is not stored and is always read as zero. 

X If set, an interrupt request is generated when the 
Count register equals a maximum count. If clear, 
the timer will not issue interrupt requests. 

X If set, counter has reached a maximum count. If 
clear, counter has not reached a maximum 
count. This bit must be cleared by the user after 
maximum count is reached. 

X If set, timer runs continuously. If clear, EN is 
cleared after each timer counting sequence. 

NOTE: ReseNed register bits are shown with gray shading. ReseNed bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 9.6. Timer 2 Control Register 

9.2.1. INITIALIZATION 

When initializing the Timer/Counter Unit, the following sequence is suggested: 

1. If timer interrupts will be used, program interrupt vectors into the Interrupt Vector Table. 

2. Clear the Timer Count register. 

3. Set Timer Maxcount Compare register to maximum count value. Make sure to program 
Maxcount Compare A and B if dual maximum count mode is used. 

4. Program Timer Control register to enable timer. 

9-7 



Register Name: 
Register Mnemonic: 
Register Function: 

BIT 

TIMER/COUNTER UNIT 

Timer Count Register 
TOCNT, T1 CNT, T2CNT 
Contains the current timer count. 

T ~I~ T 
C C 
6 5 4 3 

__ 1 __ 1_ 
RESET 

T 
C 
2 

MNEMONIC BIT NAME STATE FUNCTION 

o 
T T 
C C 
1 0 

TC15:0 Timer Count XXXXH Register contains the current count of the 
Value "l.ssociated timer. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 9.7. Timer Count Registers 

Register Name: Timer Maxcount Compare Register 
Register Mnemonic: 
Register Function: 

TOCMPA, TOCMPB, T1CMPA, T1CMPB, T2CMPA 
Contains timer maximum count value. 

15 

I~I~ ~ ~ 
,--I 5---"-1_~--,---3----,--~ 

TIT T T 
C I C C C 
1 I 1 9 8 
1 I 0 

I --

BIT RESET 
MNEMONIC BIT NAME STATE FUNCTION 

TC15:0 Timer XXXXH Register contains the maximum value a timer 
Compare will count to before resetting its Count register to I Value I I zero. I 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 9.8. Timer Maxcount Compare Registers 

The programmer must clear the Timer Count register before enabling the timer because the 
count register is undefined at reset. This ensures counting begins at zero. 

9·8 



TIMER/COUNTER UNIT 

When using Timer 2 to prescale another timer, Timer 2 should be enabled last. If Timer 2 is 
enabled first, it will be at an unknown point in its timing cycle when the timer to be prescaled 
is enabled. This results in an unpredictable duration of the first timing cycle for the prescaled 
timer. 

9.2.2. CLOCK SOURCES 

The 16-bit Timer Count register increments once for each timer event. A timer event can be a 
LOW-to-HIGH transition on a timer input pin (Timers 0 and 1), a pulse generated every fourth 
CPU Clock (all timers) or a time-out of Timer 2 (Timers 0 and 1). Up to 65536 (216) events 
may be counted. 

Timers 0 and 1 can be programmed to count LOW-TO-HIGH transitions on their input pins as 
timer events by setting the External (EXT) bit in their control registers. Transitions on the 
extemal pin are synchronized to the CPU clock before being presented to the timer circuitry. 
The timer counts transitions on this pin. The input signal must go LOW, then HIGH, to cause 
the timer to increment. The maximum count-rate for the timers is 114 the CPU clock rate 
(measured at CLKOUT) because the timers are only serviced once every four clocks. 

All timers can use transitions of the CPU clock as timer events. For internal clocking, the 
timer increments every fourth CPU clock due to the counter element's time-multiplexed 
servicing scheme. Timer 2 may only use the internal clock as a timer event. 

Timers 0 and 1 can also use Timer 2 reaching its maximum count as a timer event. In this 
configuration, Timer 0 or Timer 1 increments each time Timer 2 reaches its maximum count. 
See Table 9.1 for a summary of clock sources for Timers 0 and 1. 

Timer 2 must be initialized and running in order to increment values in other 
timer/counters. 

Table 9.1. Timer 0 and 1 Clock Sources 

EXT P CLOCK SOURCE 

0 0 Timer clocked internally at 1/4 CLKOUT 
frequency. 

0 1 Timer clocked internally, prescaled by Timer 2. 

1 X Timer clocked externally at up to 1/4 CLKOUT 
frequency. 

9.2.3. COUNTING SEQUENCE 

All timers have a Timer Count register and a Maxcount Compare A register. Timers 0 and 1 
also have access to a second Maxcount Compare B register. Whenever the contents of the 

9-9 



int:et TIMER/COUNTER UNIT 

Timer Count register equal the contents of the Maxcount Compare register, the count register 
resets to zero. The maximum count value will never be stored in the count register. This is 
because the counter element increments, compares and resets a timer in one clock cycle. 
Therefore, the ma~imum value is never written back to the count register. The Maxcount 
Compare register may be written to any time during timer operation. 

The timer counting from its initial count (usually zero) to its maximum count (either 
Maxcount Compare A or B) and resetting to zero defines one timing cycle. A Maxcount 
Compare value of 0 implies a maximum count of 65536, a Maxcount Compare value of 1 
implies a maximum count of 1, etc. 

Only equivalence between the Timer Count and Maxcount Compare registers is checked. The 
count does not reset to zero if its value is greater than the maximum count. If the count value 
exceeds the Maxcount Compare value, the timer counts to OFFFFH, increments to zero, then 
counts to the value in the Maxcount Compare register. Upon reaching a maximum count 
value, the Maximum Count (MC) bit in the Timer Control register sets. The MC bit must be 
cleared by writing to the Timer Control register, this is not done automatically. 

The Timer/Counter Unit may be configured to execute different counting sequences. The 
timers may operate in single maximum count mode (all timers) or dual maximum count mode 
(Timers 0 and 1 only). They may also be programmed to run continuously in either of these 
modes. The Alternate (ALT) bit in the Timer Control register determines the counting modes 
used by Timers 0 and 1. 

All timers may use single maximum count mode, where only Maxcount Compare A is used. 
The timer will count to the value contained in Maxcount Compare A and reset to zero. Timer 2 
can only operate in this mode. 

Timers 0 and 1 can also use dual maximum count mode. In this mode, Maxcount Compare A 
and Maxcount Compare B are both used. The timer counts to the value contained in Maxcount 
Compare A, resets to zero, counts to the value contained in Maxcount Compare B, and resets 
to zero again. The Register In Use (RIU) bit in the Timer Control register indicates which 
Maxcount Compare register is currently in use. 

The timers can be programmed to run continuously in single maximum count and dual 
maximum count modes. The Continuous (CaNT) bit in the Timer Control register determines 
if a timer is disabled after a single counting sequence. 

9.2.3.1. RETRIGGERING 

The timer input pins affect timer counting in three ways (see Table 9.2). The programming of 
the External (EXT) and Retrigger (RTG) bits in the Timer Control register determines how the 
input signals are used. When the timers are clocked internally, the RTG bit determines if the 
input pin enables timer counting or retriggers the current timing cycle. 

9·10 



inlet TIMER/COUNTER UNIT 

Table 9.2. Timer Retriggering 

EXT RTG TIMER OPERATION 

0 0 Timer counts internal events, if input pin remains 
high. 

0 1 Timer counts internal events, count will reset to 
zero on every LOW-to-HIGH transition on the 
input pin. 

1 X Timer input acts as clock source. 

When the EXT and RTG bits are LOW, the timer counts internal timer events. In this mode, 
the input is level-sensitive, not edge-sensitive. A LOW-to-HIGH transition on the timer input 
is not required for operation. The input pin acts as an external enable. If the input is HIGH; the 
timer will count through its sequence, provided the timer remains enabled. 

When the EXT bit is LOW and the RTG bit is HIGH, every LOW-to-HIGH transition on the 
timer input pin causes the Count register to reset to zero. After the timer is enabled, counting 
begins only after the first LOW-to-HIGH transition on the input pin. If another LOW-to­
HIGH transition occurs before the end of the timer cycle, the timer count resets to zero and 
the timer cycle begins again. In dual maximum count mode, the Register In Use (RIU) bit does 
not clear when a LOW-to-HIGH transition occurs. For example, if the timer retriggers while 
Maxcount Compare B is in use, the timer resets to zero and counts to maximum count B 
before the RIU bit clears. In dual maximum count mode, the timer retriggering extends 
the use of the current Maxcount Compare register. 

9.2.4. PULSED AND VARIABLE DUTY CYCLE OUTPUT 

Timers 0 and I each have an output pin which can perform two functions. First, the output 
may be a single pulse, indicating the end of a timing cycle (single maximum count mode). 
Second, the output may be a level indicating the Maxcount Compare register currently in use 
(dual maximum count mode). The output occurs one clock after the counter element services 
the timer when the maximum count is reached (see Figure 9.9). 

With external clocking, the time between a transition on a timer input and the corresponding 
transition of the timer output varies from 2 112 to 6 1/2 clocks. This delay occurs due to the 
time multiplexed servicing scheme of the Timer/Counter Unit. The exact timing depends on 
when the input occurs relative to the counter element's servicing of the timer. Figure 9.2 
shows the two extremes in timer output delay. Timer 0 demonstrates the best possible case, 
where the input occurs immediately before the timer is serviced. Timer 1 demonstrates the 
worst possible case, where input is latched, but the setup time is not met and the input is not 
recognized until the counter element services the timer again. 

In single maximum count mode, the timer output pin goes LOW for one CPU clock period 
(see Figure 9.4). This occurs when the count value equals the Maxcount Compare A value. If 
programmed to run continuously, the timer generates periodic pulses. 

9-11 



TIMER/COUNTER UNIT 

TIMER 0 SERVICED 
~ 

INTERNAL COUNT VALUE MAXCOUNT- 1 

TMR OUTxPIN 

NOTES: (j) TCl TMV 

Figure 9.9. TxOUT Signal Timing 

In dual maximum count mode, the timer output pin indicates which Maxcount Compare 
register is currently in use. A LOW output indicates Maxcount Compare B, and a HIGH 
output indicates Maxcount Compare A (see Figure 9.4). If programmed to run continuously, a 
repetitive waveform can be generated. For example, if Maxcount Compare A contains 10, 
Maxcount Compare B contains 20, and CLKOUT is 12.5 MHz, the timer generates a 33 
percent duty cycle waveform at 104 KHz. The output pin always goes HIGH at the end of the 
counting sequence (even if the timer is not programmed to run continuously). 

9.2.5. ENABLING/DISABLING COUNTERS 

Each timer has an Enable (EN) bit in its Control register to allow or prevent timer counting. 
The Inhibit (INH) bit controls write accesses to the EN bit. Timers ° and 1 can be 
programmed to use their input pins as enable functions also. If a timer is disabled, the count 
register will not increment when the counter element services the timer. 

The Enable bit can be altered by programming or the timers can be programmed to disable 
themselves at the end of a counting sequence with the Continuous (CaNT) bit. If the timer is 
not programmed for continuous operation, the Enable bit automatically clears at the end of a 
counting sequence. In single maximum count mode, this occurs after Maxcount Compare A is 
reached. In dual maximum count mode, this occurs after Maxcount Compare B is reached 
(Timers ° and 1 only). 

The input pins for Timers ° and 1 provide an alternate method for enabling and disabling timer 
counting. When using internal clocking, the input pin can be programmed to either enable the 
timer or reset the timer count depending on the state of the Retrigger (RTG) bit in the control 
register. When used as an enable function, the input pin either allows (input HIGH) or 
prevents (input LOW) timer counting. To ensure recognition of an input level, it must be valid 
for four CPU clocks. This, is due to the counter element's time-multiplexed servicing scheme 
for the timers. 

9·12 



intel .. TIMER/COUNTER UNIT 

9.2.6. TIMER INTERRUPTS 

All timers can generate internal interrupt requests. Although all three timers share a single 
interrupt request to the CPU, each has its own vector location and internal priority. Timer 0 
has the highest interrupt priority and Timer 2 has the lowest interrupt priority. 

Timer Interrupts are enabled or disabled via the Interrupt (INT) bit in the Timer Control 
register. If enabled, an interrupt is generated every time a maximum count value is reached. In 
dual maximum count mode, an interrupt will be generated each time the value in Maxcount 
Compare A or Maxcount Compare B is reached. If the interrupt is disabled after a request has 
been generated, but before a pending interrupt is serviced, the interrupt request will still be 
active (the Interrupt Controller latches the request). If a timer generates a second interrupt 
request before the CPU services the first interrupt request, the first request will be lost. 

9.2.7. PROGRAMMING CONSIDERATIONS 

Timer registers can be read or written whether the timer is operating or not. Since processor 
accesses to timer registers are synchronized with counter element accesses, a half-modified 
count register will never be read. 

When the Timer 0 and Timer 1 use an internal clock source, the input pin must be mGH to 
enable counting. 

9.3. TIMING 

Certain timing considerations need to be made with the Timer/Counter Unit. These include: 
input setup and hold times, synchronization and operating frequency. 

9.3.1. INPUT SETUP AND HOLD TIMINGS 

To ensure recognition, setup and hold times must be met with respect to CPU clock edges. The 
timer input signal must be valid TCHIS before the rising edge of CLKOUT. The timer input 
signal must remain valid TCHIR after the same rising edge. If these timing requirements are not 
met, the input will not be recognized until the next clock edge. 

9.3.2. SYNCHRONIZATION AND MAXIMUM FREQUENCY 

All timer inputs are latched and synchronized with the CPU clock. Because of the internal 
logic required to synchronize the external signals, and the multiplexing of the counter element, 
the Timer/Counter Unit may only operate up to 114 of the CLKOUT frequency. Clocking at 
greater frequencies will result in missed clocks. 

9-13 



intel .. TIMER/COUNTER UNIT 

9.4. TIMER/COUNTER UNIT APPLICATION EXAMPLES 

The following examples are possible applications of the Timer/Counter Unit. They include: a 
real-time clock, a square wave generator and a digital one-shot. 

9.4.1. REAL-TIME CLOCK 

Example 9.1 contains sample code to configure Timer 2 to generate an interrupt request every 
10 milliseconds. The CPU then increments memory-based clock variables. 

$mod186 

name 

0 ____________________________________________________________ _ , 
; FUNCTION: 

SYNTAX: 

INPUTS: 

OUTPUTS: 

NOTE: 

This function sets up the timer and interrupt 

controller to cause the timer to generate an 

interrupt every 10 milliseconds, and to 
service interrupts to implement a real time clock. 

Timer 2 is used in this example because no input or 

output signals are required. 

extern void far set_time (hour, minute, second, 
T2Compare) ; 

hour - hour to set time to. 

minute - minute to set time to. 
second - second to set time to. 
T2Compare - T2CMPA value (see note below) 

None 

Parameters are passed on the stack as required by 

high-level languages 

For a CLKOUT of 16Mhz, 

f(timer2) = 16Mhz/4 

4Mhz 
= 0.25us for T2CMPA 1 

T2CMPA(10ms) = 10ms/0.25us 

10e-3/0.25e-6 

= 40000 

Example 9.1. 

9-14 



intel .. TIMER/COUNTER UNIT 

0 ____________________________________________________________ _ , 

T2CON 

T2CMPA 
T2CNT 

TCUCON 
EOI 

INTSTS 
timer_2_int 

data 

_hour 

_minute 
_second 
_msec 

data 

public 
_set_time 

hour 
minute 

second 
T2Compare 

equ xxxxh 
equ xxxxh 
equ xxxxh 
equ xxxxh 
equ xxxxh 
equ xxxxh 

equ 19 

segment public 'data' 

;substitute register offsets 

;Timer 2 Control register 
;Timer 2 Compare register 
;Timer 2 Counter register 

;Int. Control register 
;End Of Interrupt register 

;Interrupt Status register 
;timer 2:vector type 19 

public _hour, _minute, _second, _msec 

db 
db 
db 

db 

ends 

? 

? 

? 

? 

segment public 'code' 

assume cs:lib_80186, ds:data 

_set_time 

proc far 

push bp ;save caller's bp 

mov bp, sp ;get current top of stack 

equ word ptr[bp+6] ;get parameters off stack 
equ word ptr [bp+8] 
equ word ptr[bp+10] 

equ word ptr[bp+12] 

push ax ;save registers used 
push DX 
push si 

push ds 
xor ax, ax ;set interrupt vector 
mov ds, ax 
mov si, 4*timer_2_ int 
mov word ptr ds: [si], offset 

Example 9.1. (Continued) 

9-15 



TIMER/COUNTER UNIT 

timer _2_interrupt_ routine 

inc si 

inc si 
mov ds: [sil , cs 
pop ds 

mov ax, hour 

mov _hour, al 
mov ax, minute 

mov _minute, al 
mov ax, second 

mov _second, al 
mov _msec, 0 

mov DX, T2CNT 

xor ax, ax 

out DX, ax 

mov DX, T2CMPA 
mov ax, T2Compare 

out DX, ax 

mov DX, T2CON 

mov ax, OEOO1H 
out DX, ax 

mov DX, TCUCON 
xor ax, ax 

out DX, ax 

sti 

pop si 
pop DX 
pop ax 

pop bp 

ret 
_set_time endp 

timer_2_interrupt_routine proc far 
push ax 
push DX 

;set time 

;clear Count register 

;set maximum count value 
;see note in header above 

;set up the control word: 
;enable counting, generate 

;interrupt on MC, 
icontinuous counting 

;set up interrupt controller 

;unmask highest 
;priority interrupt 

;enable interrupts 

;restore saved registers 

;restore caller's bp 

;save registers used 

Example 9.1. (Continued) 

9-16 



intel® TIMER/COUNTER UNIT 

cmp _msec, 99 ;has 1 sec passed? 
jae bump_second 

inc _msec 
jmp short reset int_ctl 

bump_second:mov _msec, 0 

cmp _minute, 59 
jae bump_minute 

inc second 
jmp short reset int_ctl 

bump_minute:mov _second, 0 

cmp _minute, 59 
j ae bump_hour 

inc _minute 
jmp short reset int - ctl 

mov _minute, 0 
cmp _hour, 12 
jae reset - hour 
inc hour -
jmp reset int ctl 

mov _hour, 1 

reset_int_ctl:mov DX, Eor 
mov ax, 8000h 
out DX, ax 
pop DX 
pop ax 

iret 

lib_80186 ends 

end 

;reset hour 

;if above or equal ... 

;reset millisecond 
;has 1 minute passed? 

;reset second 
;has 1 hour passed? 

;reset minute 
;have 12 hours passed? 

;non-specific end of interrupt 

Example 9.1. (Continued) 

9.4.2. SQUARE WAVE GENERATOR 

A square-wave generator can be useful to act as a system clock tick. Example 9.2 illustrates 
how to configure the Timer 1 to operate this way. 

9-17 



$mod186 

name 

; FUNCTION: 

SYNTAX: 

INPUTS: 

OUTPUTS: 

NOTE: 

TlCMPA equ 
TlCMPB equ 

TlCNT equ 
TlCON equ 

public 
_clock 

_space 
_mark 

TIMER/COUNTER UNIT 

This function generates a square wave of given 
frequency and duty cycle on Timer 1 output pin. 

extern void far clock(int mark, int space) 

mark This is the mark (1) time. 
space - This is the space (0) time. 

The register compare value for a given time can be 
easily calculated from the formula below. 

CompareValue (re~ulse_width*f)/4 

None 

Parameters are passed on the stack as required by 

high-level Languages 

xxxxH 

xxxxH 
xxxxH 

xxxxH 

segment public 'code' 
assume cs:lib_80186 

_clock 
proc far 

push bp 

mov bp, 

equ word 
equ word 

push ax 

push bx 
push DX 

sp 

ptr [bp+6] 
ptr [bp+8] 

;substitute register offsets 

;save caller's bp 
;get current top of stack 

;get parameters off the stack 

;save registers that will be 

;modified 

Example 9.2. 

9-18 



TIMER/COUNTER UNIT 

mov DX, T1CMPA ;set mark time 
mov ax, _mark 

out DX, ax 

mov DX, T1CMPB ;set space time 

mov ax, _space 

out DX, ax 

mov DX, T1CNT ;Clear Timer 1 counter 

xor ax, ax 

out DX, ax 

mov DX, T1CON ;start Timer 1 
mov ax, COO3H 
out DX, ax 

pop DX ;restore saved registers 
pop bx 
pop ax 

pop bp ;restore caller's bp 

ret 

- clock endp 
--------------------------------------------------------------, 
lib_80186 ends 

end 

Example 9.2. (Continued) 

9.4.3. DIGITAL ONE-SHOT 

Example 9.3 configures Timer I to act as a digital one-shot. 

$mod186 

name 

; FUNCTION: 

SYNTAX: 

This function generates an active-low one shot 

pulse on Timer 1 output pin. 

extern void far one_shot (int CMPB); 

Example 9.3. 

9-19 



int'et 

INPUTS: 

OUTPUTS: 

NOTE: 

TIMER/COUNTER UNIT 

CMPB - This is the TICMPB value required to 

generate a pulse of given pulse width. This value 

is calculated from the formula below. 

CMPB (re~ulse_width*f)/4 

None 

Parameters are passed on the stack as required by 

high-level languages 

---------------------------------------------------------------, 

TICNT 

TICMPA 

TICMPB 

TICON 

MaxCount 

public 
_one_shot 

equ xxxxH 

equ xxxxH 

equ 

equ 

equ 

xxxxH 

xxxxH 

0020H 

segment public 'code' 

assume cs:lib_80186 

_one_shot 

proc far 

push bp 

mov bp, sp 

equ word ptr[bp+6] 

push ax 

push DX 

mov DX, TICNT 

xor ax, ax 

out DX, ax 

mov DX, TICMPA 

mov ax, 1 

out DX, ax 

;substitute register offsets 

;save caller's bp 

;get current top of stack 

;get parameter off the stack 

;save registers that will be 

;modified 

;Clear Timer 1 Counter 

;set time before t shot to 0 

Example 9.3. (Continued) 

9-20 



CountDown: 

one shot 

TIMER/COUNTER UNIT 

mov DX, TICMPB 

mov ax, - CMPB 

out DX, ax 

mov DX, TICON 

mov ax, COO2H 

out DX, ax 

in ax, DX 

test ax, MaxCount 
jz CountDown 

and ax, not MaxCount 
out DX, ax 

pop DX 

pop ax 

pop bp 

ret 

endp 

;set pulse time 

;start Timer 1 

;read in TICON 

;max count occurred? 

;no: then wait 

;clear max count bit 

;update TICON 

;restore saved registers 

;restore caller's bp 

lib_80186 ends 

end 

Example 9.3. (Continued) 

9-21 





Direct Memory 
Access Unit 

10 





CHAPTER 10 
DIRECT MEMORY ACCESS UNIT 

In many applications, large blocks of data must be transferred between memory and 110 space. 
A disk drive, for example, usually reads and writes data in blocks that may be thousands of 
bytes long. If the CPU were required to handle each byte of the transfer, the main tasks would 
suffer a severe performance penalty. Even if the data transfers were interrupt driven, the 
overhead for transferring control to the interrupt handler would still have a detrimental effect 
on system throughput. 

Direct Memory Access, or DMA, allows data to be transferred between memory and 
peripherals without the intervention of the CPU. Systems that use DMA have a special 
device, known as the DMA controller, that takes control of the system bus and performs the 
transfer between memory and the peripheral device. When the DMA controller receives a 
request for a transfer from a peripheral, it signals the CPU that it needs control of the system 
bus. The CPU then releases control of the bus and the DMA controller performs the transfer. 
In many cases, the CPU will release the bus and continue to execute instructions from the 
prefetch queue. If the DMA transfers are relatively infrequent there will be no degradation of 
software performance; the DMA transfer is transparent to the CPU. 

The DMA Unit has two channels. Each channel can accept DMA requests from one of 3 
sources: an external request pin, the Timer/Counter Unit or by direct programming. Data can 
be transferred between any combination of memory and I/O space. The DMA Unit can access 
the entire memory and 110 space in either byte or word increments. 

10.1. FUNCTIONAL OVERVIEW 

The DMA Unit is comprised of two identical channels. Both channels are functionally 
identical. The following discussion is hierarchical beginning with an . overview of a single 
channel and ending with a description of the two channel unit. 

10.1.1. THE DMA TRANSFER 

A DMA transfer begins with a request. The requesting device may either have data to transmit 
(a source request) or it may require data (a destination request). Alternatively, transfers may be 
initiated by the system software without an external request. 

When the DMA request is granted, the Bus Interface Unit provides the bus signals for the 
DMA transfer while the DMA channel provides the address information for the source and 
destination devices. The DMA Unit does not provide a discrete DMA acknowledge signal, 
unlike other DMA controller chips (an acknowledge can be synthesized, however). The DMA 
channel will continue transferring data as long as the request is active and it has not exceeded 
its programmed transfer limit. 

10-1 



DIRECT MEMORY ACCESS UNIT 

Every DMA transfer consists of two distinct bus cycles: a fetch and a deposit (see Figure 
10.1). During the fetch cycle, the byte or word is read from the data source and placed in an 
internal temporary storage register. The data in the temporary storage register is written to the 
destination during the deposit cycle. The two bus cycles are indivisible; they cannot be 
separated by a bus hold request, a refresh request or another DMA request. 

1<111 ... ...--- FETCH ---~~I ... e---- DEPOSIT -----. 

CLKOUT 
I I I I 

ALE ~~r:-\~j--T-~~~~:--T-~--, , 

AD15:0 
r---'----~I I , I I I 

'----,------,~ >-
, SOURCE 'SOURCE ,DEST DESTINATION 
: ADDRESS : DATA : ADDRESS pATA 

RD ---'--~---r-"\j \'--_-___ : / 

WR 

Figure 10.1. Typical DMA Transfer 

10.1.1.1. DMA TRANSFER DIRECTIONS 

The source and destination addresses for a DMA transfer are programmable and can be in 
either memory or 1/0 space. DMA transfers can be programmed for any of the following four 
directions: 

• From memory space to 110 space 

• From 1/0 space to memory space 

• From memory space to memory space 

• From 110 space to 110 space 

DMA transfers can access the Peripheral Control Block. 

10.1.1.2. BYTE AND WORD TRANSFERS 

DMA transfers can be programmed to handle either byte or word sized transfers. The handling 
of byte and word data is the same as that for normal bus cycles and is processor bus width 

10-2 



intel .. DIRECT MEMORY ACCESS UNIT 

dependent. For example, odd aligned word DMA transfers on a 16-bit bus processor requires 
two fetches and two deposits (all back-to-back). BIU bus cycles are covered in greater detail in 
Chapter 3. Word transfers are illegal on the 8-bit bus device. 

10.1.2. SOURCE AND DESTINATION POINTERS 

Each DMA channel maintains a twenty bit pointer for the source of data and a twenty bit 
pointer for the destination of data. The twenty bit pointers allow access to the full 1 Mbyte of 
memory space. The DMA Unit views memory as a linear (unsegmented) array. 

With a twenty bit pointer it is possible to create an I/O address that is above the CPU limit of 
64 Kbytes. The DMA Unit will run I/O DMA cycles above 64K even though these addresses 
are not accessible through CPU instructions (e.g., IN and OUT). Some applications may wish 
to make use of this by swapping pages of data from I/O space above 64K to standard CPU 
memory. 

The source and destination pointers can be individually programmed to increment, decrement 
or remain constant after each transfer. The amount that a pointer is incremented or 
decremented is dependent on the programmed data width, byte or word, for the channel. Word 
transfers will change the pointer by two, byte transfers change the pointer by one. 

10.1.3. DMA REQUESTS 

There are three distinct sources of DMA requests: the external DRQ pin, the internal DMA 
request line and the system software. In all three cases, the system software must arm a DMA 
channel before it recognizes DMA requests. Arming a DMA channel is discussed in the 
programming section of this chapter. 

10.1.4. EXTERNAL REQUESTS 

External DMA requests are asserted on the DRQ pins. The DRQ pins are sampled on the 
falling edge of CLKOUT. It takes a minimum of four clocks before the DMA cycle is initiated 
by the BIU (see Figure 10.2). The DMA request is cleared four clocks before the end of the 
DMA cycle (effectively re-arming the DRQ input). 

10-3 



DIRECT MEMORY ACCESS UNIT 

T 1 or 

T w or 

T j 

: 
Tl 
OFDMA 
CYCLE 

i_I 

DRO 
, , ' , 

~ : ' , , 

'- f2\ ""'" ~ 

NOTES: 

G) TINVCL : DMA request to clock low. 
@ Synchronizer resolution time. 
@ DMA unit priority arbitration and overhead. 
@ Bus interface Unit latches DMA request and decides to run DMA cycle. 

Figure 10.2. DMA Request Minimum Response Time 

External requests (and the resulting DMA transfer) are classified as either source synchronized 
or destination synchronized. A source synchronized request originates from the peripheral 
from which data is transferred. For example, a disk controller in the process of reading data 
from a disk would use a source synchronized request. A destination synchronized request 
originates from the peripheral to which data is transferred. If the previously mentioned disk 
controller were writing data to the disk, it would use destination synchronization since the data 
would be moving from memory to the disk. The type of synchronization a channel uses is 
programmable. 

10.1.4.1. SOURCE SYNCHRONIZATION 

A typical source synchronized transfer is shown in Figure 10.3. Most DMA driven peripherals 
do not deassert their DRQ line until after the DMA transfer has begun. The DRQ signal must 
be deasserted at least 4 clocks before the end of the DMA transfer (at the T1 state of the 
deposit phase) in order to prevent another DMA cycle from occurring. A source synchronized 
transfer provides the source device at least three clock cycles from when it is accessed 
(acknowledged) to deassert its request line if further transfers are not required. 

10-4 



intel~ 

CLKOUT 

DRQ 
(CASE 1) 

DRQ 
(CASE 2) 

NOTES: 

DIRECT MEMORY ACCESS UNIT 

FETCH CYCLE DEPOSIT CYCLE 

,--.... ---.... ;.-.... ----··v-.... ---.. +-... ----~ 
T4 T1 

G) Current source synchronized transfer will not be immediately 
followed by another DMA transfer. 

® Current source synchronized transfer will be immediately 
followed by another DMA transfer. 

Figure 10.3. Source Synchronized Transfers 

10.1.4.2. DESTINATION SYNCHRONIZATION 

A destination synchronized transfer differs from a source synchronized transfer by the addition 
of two idle states at the end of the deposit cycle (Figure lOA). The two idle states extend the 
DMA cycle to allow the destination device to deassert its DRQ pin four clocks before the end 
of the cycle. If the two idle states were not inserted, the destination device would not be able 
to deassert its request in time to prevent another DMA cycle from occurring. 

The insertion of two idle states at the end of a destination synchronization transfer has an 
important side effect. A destination synchronized DMA channel gives up the bus during 
the idle states allowing any other bus master to gain ownership. This includes the CPU, 
the Refresh Control Unit, an external bus master or another DMA channel. 

10.1.5. INTERNAL REQUESTS 

Internal DMA requests can come from either Timer 2 or from the system software. 

10-5 



DIRECT MEMORY ACCESS UNIT 

FETCH CYCLE DEPOSIT CYCLE ~ _______ ~A~ _______ ~ ___________ ~~~ ____________ ~ 

T4 T1 T2 T3 T4 TIT I 

CLKOUT 

DRQ 
(CASE 1) 

DRQ ® 
(CASE 2) \ 

NOTES: 
CD Current destination synchronized transfer will not be immediately 

followed by another DMA transfer. 

® Current destination synchronized transfer will be immediately 
followed by another DMA transfer. 

Figure 10.4. Destination Synchronized Transfers 

10.1.5.1. TIMER 2 INITIATED TRANSFERS 

When programmed for Timer 2 initiated transfers, the DMA channel performs one DMA 
transfer every time that Timer 2 reaches its maximum count. Timer 2 initiated transfers are 
useful for servicing time based peripherals. For example, an AID converter would require data 
every 22 microseconds in order to produce an audio range waveform. In this case the DMA 
source would point at the waveform data, the destination would point to the AID converter and 
Timer 2 would request a transfer every 22 microseconds. 

10.1.5.2. UNSYNCHRONIZED TRANSFERS 

DMA transfers can be initiated directly by the system software by selecting unsynchronized 
transfers. Unsynchronized transfers continue, back-to-back, at the full bus bandwidth, until the 
channel's transfer count reaches zero or DMA transfers are suspended by an NMI. 

10.1.6. DMA TRANSFER COUNTS 

Each DMA Unit maintains a programmable 16-bit transfer count value that controls the total 
number of transfers the channel runs. The transfer count is decremented by one after each 

10-6 



intel· rnRECTMEMORYACCESSUNIT 

transfer (regardless of data size). The DMA channel can be programmed to terminate transfers 
when the transfer count reaches zero (also referred to as terminal count). 

10.1.7. TERMINATION AND SUSPENSION OF DMA TRANSFERS 

When DMA transfers for a channel are terminated, no further DMA requests for that channel 
will be granted until the channel is re-started by direct programming. A suspended DMA 
transfer temporarily disables transfers in order to perform a specific task. A suspended DMA 
channel does not need to be re-started by direct programming. 

10.1.7.1. TERMINATION AT TERMINAL COUNT 

When programmed to terminate on terminal count, the DMA channel disarms itself when the 
transfer count value reaches zero. No further DMA transfers take place on the channel until it 
is re-armed by direct programming. 

Unsynchronized transfers always terminate when the transfer count reaches zero 
regardless of programming. 

10.1.7.2. SOFTWARE TERMINATION 

A DMA channel can be disarmed by direct programming. Any DMA transfer that is in 
progress will complete but no further transfers are run until the channel is re-armed. 

10.1.7.3. SUSPENSION OF DMA DURING NMI 

DMA transfers are inhibited during the service of Non-Maskable Interrupts (NMI). DMA 
activity is halted in order to give the CPU full command of the system bus during the NMI 
service. Exit from the NMI via an IRET instruction re-enables the DMA Unit. DMA transfers 
can be enabled during an NMI service routine by the system software. 

10.1.7.4. SOFTWARE SUSPENSION 

DMA transfers can be temporarily suspended by direct programming. In time critical sections 
of code, interrupt handlers for example, it may be necessary to temporarily shut off DMA 
activity in order to give the CPU total control of the bus. 

10.1.8. DMA UNIT INTERRUPTS 

Each DMA channel can be programmed to generate an interrupt request when its transfer 
count reaches zero. 

10-7 



intel® DIRECT MEMORY ACCESS UNIT 

10.1.9. DMA CYCLES AND THE BIU 

The DMA Unit uses the Bus Interface Unit to perform its transfers. When the DMA Unit has a 
pending request, it signals the BIU. If the BIU has no other higher priority request pending it 
runs the DMA cycle (BIU priority is described in Chapter 3). The BIU signals that it is 
running a bus cycle initiated by a master other than the CPU by driving the S6 status bit high. 

The Chip-Select Unit monitors the BIU addresses to determine which chip-select, if any, to 
activate. Because the DMA Unit uses the BIU, chip-selects are active for DMA cycles. If a 
DMA channel accesses a region of memory or I/O space within a chip-select's programmed 
range, then that chip-select is asserted during the cycle. The Chip-Select Unit will not 
recognize DMA cycles that access 110 space above 64K. 

TIMER 2 
REQUEST 

10.1.10. 

DESTINATION POINTER 

CHANNEL 0 
CONTROL LOGIC 

DRQPIN 

MODULE DMA EQUEST 

INTER-MODULE 
ARBITRATION 

LOGIC 

CHANNEL 1 
CONTROL LOGIC 

DRQPIN 

Figure 10.5. Two Channel DMA Unit 

THE 2 CHANNEL DMAUNIT 

TIMER 2 
REQUEST 

Two DMA channels are combined with arbitration logic to form the two channel DMA Unit 
(see Figure 10.5). 

10-8 



int:et DIRECT MEMORY ACCESS UNIT 

10.1.10.1. DMA CHANNEL ARBITRATION 

Within a two channel DMA module, the arbitration logic decides which channel takes 
precedence when both channels simultaneously request transfers. Each channel can be set to 
either low priority or high priority. If the two channels are set to the same priority (either both 
high or both low) then the channels rotate priority. 

10.1.10.1.1. FIXED PRIORITY 

Fixed priority results when one channel in a module is programmed to high priority and the 
other is set to low priority. If both DMA requests occur simultaneously, the high priority 
channel will perform its transfer (or transfers) first. The high priority channel continues to 
perform transfers as long as the following conditions are met: 

• the channel's DMA request is still active 

• the channel has not terminated or suspended transfers (through programming or 
interrupts) 

• the channel has not released the bus (through the insertion of idle states for destination 
synchronized transfers) 

The last point is extremely important when the two channels use different synchronization. For 
example, consider the case where channel 1 is programmed for high priority and destination 
synchronization and channel 0 is programmed for low priority and source synchronization. If a 
DMA request occurred for both channels simultaneously channel I would perform the first 
transfer. At the end of channel I' s deposit cycle two idle states are inserted (thus releasing the 
bus). With the bus released, channel 0 is free to perform its transfer even though the higher 
priority channel 0 has not completed all of its transfers. Channel 1 would regain the bus at 
the end of channel O's transfer. The transfers would alternate as long as both requests 
remained active. 

A higher priority DMA channel will interrupt the transfers of a lower priority channel. Figure 
10.6 shows several transfers with different combinations of channel priority and 
synchronization. 

10.1.10.1.2. ROTATING PRIORITY 

Channel priority rotates when both channels are programmed as both high or both low 
priority. The highest priority is initially assigned to channell of the module. After a channel 
performs a transfer it is assigned the lower priority. When requests are active for both 
channels, the transfers alternate between the two as long as the bus is not released by the DMA 
Unit. Channel 1 is reassigned high priority whenever the bus is released (i.e., at the end of a 
destination synchronized transfer, or when DMA requests are no longer active). 

10-9 



intel .. DIRECT MEMORY ACCESS UNIT 

BOTH REQUESTS ASSERTED 

ICHANNEL 1 ICHANNEL 0 ICHANNEL 1 ICHANNEL 0 I.E~C .. 

ICHANNEL 0 IICHANNEL 0 Ie 

ICHANNEL 0 I\:ANNEL 1 IICHANNEL 0 I.CHANNEL 1 I 

DESTINATION 
SYNC RELEASES 
BUS 

Figure 10.6. Examples of DMA Priority 

10.2. PROGRAMMING THE DMA UNIT 

A total of six Peripheral Control Block registers configure each DMA channel. 

10.2.1. DMA CHANNEL PARAMETERS 

ETC. ••• 

The first step in programming the DMA Unit is to set up the parameters for each of the 
channels. 

10.2.1.1. PROGRAMMING THE SOURCE AND DESTINATION POINTERS 

The following parameters are programmable for the source and destination pointers: 

• pointer address 

• address space (memory or 1/0) 

• automatic pointer indexing (incrementidecrement) after transfer 

Two 16-bit Peripheral Control Block registers define each of the 20-bit pointers. Figures 10.7 
through 10.10 show the layout of the DMA Source and DMA Destination pointer address 
registers. The DS19:16 and DD19:16 (high order address bits) are driven on the bus even if 
110 transfers have been programmed. When performing 110 transfers within the normal 64K 
110 space only, the high order bits in the pointer registers must be cleared. 

10-10 



int:et DIRECT MEMORY ACCESS UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

DSA19:16 DMA Source 
Address 

DMA Source Address Pointer (High) 
DxSRCH 
Contains the upper 4 bits of the DMA Source 
pointer. 

RESET 
STATE FUNCTION 

XXXXH DSA19:16 are driven on A19:16 during the fetch 
phase of a DMA transfer. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to insure compatibility with future Intel products. 

Figure 10.7. DMA Source Pointer (High Order Bits) 

Register Name: 
Register Mnemonic: 
Register Function: 

D 
S 
A 
1 
1 

L .•.... ___ 

BIT 
MNEMONIC BIT NAME 

DSA15:0 DMA Source 
Address 

DMA Source Address Pointer (Low) 
DxSRCL 
Contains the lower 16 bits of the DMA Source 
pointer. 

0 
D D 
S S 
A A 
1 9 
0 

.-----

D 

~p 
D IF~nTf S S 

A A ~I~I~I~ 8 4 I"L 
RESET 
STATE FUNCTION 

XXXXH DSA 15:0 are driven on the lower 16 bits of the 
address bus during the fetch phase of a DMA 
transfer. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to insure compatibility with future Intel products. 

Figure 10.8. DMA Source Pointer (Low Order Bits) 

10-11 



int'et DIRECT MEMORY ACCESS UNIT 

The address space referenced by the source and destination pointers is programmed in the 
DMA Control Register for the channel (see Figure 10.l3). The SMEM and DMEM bits 
control the address space (memory or 110) for source pointer and destination pointer, 
respectively. 

Automatic pointer indexing is also controlled by the DMA Control Register. Each pointer has 
a two bit field, increment and decrement, that controls the indexing. If the increment and 
decrement bits for a pointer are programmed to the same value then the pointer will remain 
constant. The amount that a pointer is incremented or decremented is automatically controlled 
by the programmed data width, byte or word, for the channel. 

Register Name: 
Register Mnemonic: 
Register Function: 

15 

BIT 
MNEMONIC BIT NAME 

DDA19:16 DMA 
Destination 
Address 

DMA Destination Address Pointer (High) 
DxDSTH 
Contains the upper 4 bits of the DMA Source 
pointer. 

o --------'"-

D D D D 
D D D D 
A A A A 
1 1 1 1 
9 8 7 6 

RESET 
STATE FUNCTION 

XXXXH DDA19:16 are driven on A19:16 during the 
deposit phase of a DMA transfer. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to insure compatibility with future Intel products. 

Figure 10.9. DMA Destination Pointer (High Order Bits) 

10-12 



int'et DIRECT MEMORY ACCESS UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT BIT NAME 
MNEMONIC 

DDA15:0 DMA 
Destination 
Address 

DMA Destination Address Pointer (Low) 
DxDSTL 
Contains the lower 16 bits of the DMA Source 
painter. 

~ I ~~ 'Ili I ~I 9 8 765 

, 
-~ ----

RESET FUNCTION 
STATE 

XXXXH DDA 15:0 are driven on the lower 16 bits of the 
address bus during the deposit phase of a DMA 
transfer. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to insure compatibility with future Intel products. 

Figure 10.10. DMA Destination Pointer (Low Order Bits) 

Register Name: 
Register Mnemonic: 
Register Function: 

DMA Control Register 
DxCON 
Controls DMA channel parameters. 

Figure 10.11 (a).DMA Control Register Bit Positions 

10-13 



in1:el .. DIRECT MEMORY ACCESS UNIT 

BIT RESET 
MNEMONIC BIT NAME STATE FUNCTION 

SMEM/DME Source/ X Selects memory or I/O space for the corresponding 
M Destination pointer. Set SMEM/DMEM to select memory space; Clear 

Address SMEM/DMEM to select I/O space. SMEM corresponds to 
Space Select the source pointer. DMEM corresponds to the destination 

pOinter. 

SINC/DINC Source/ X Set to automatically increment the source/destination 
Destination pointer after each transfer. A pointer will remain constant if 
Increment its increment and decrement bits are equal. 

SDEC/DDEC Source/ X Set to automatically decrement the source/destination 
Destination pointer after each transfer. A pointer will remain constant if 
Decrement its increment and decrement bits are equal. 

TC Terminal X Set to terminate transfers on Terminal Count. 
Count 

INT Interrupt X Set to generate an interrupt request on Terminal Count. 
The TC bit must be set to generate an interrupt. 

SYN1:0 Synchron- XX Selects channel synchronization: 
ization Type 

SYN1:0 Synchronization Type 
00 Unsynchronized 
01 Source Synchronized 
10 Destination Synchronized 
11 Reserved (Do Not Use) 

P Relative X Setting P selects high priority for the channel. 
Priority 

IDRO Internal DMA X Setting IDRO selects internal (Timer 2) DMA requests. 
Request When IDRO is set the external DRO pin is ignored. 
Select Clearing IDRO selects the DRO pin as the source of DMA 

requests. 

CHG Change Start X CHG must be set to modify the STRT bit. 
Bit 

STRT StartDMA The DMA channel is armed by setting the STRT bit. The 
Channel STRT bit can only be modified when the CHG bit is set. 

WORD Word X The WORD bit selects between byte and word transfers. 
Transfer Setting WORD selects word transfers; clearing WORD 
Select selects byte transfers. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a logic 
zero to insure compatibility with future Intel products. 

Figure 10.11(b). DMA Channel Control Register Bit Descriptions 

10-14 



inlet DIRECT MEMORY ACCESS UNIT 

10.2.1.2. SELECTING BYTE OR WORD SIZE TRANSFERS 

The WORD bit in the DMA Control Register is used to control the data size for a channel. 
When WORD is set, the channel transfers data in 16-bit words. Byte transfers are selected by 
clearing the WORD bit. The data size for a channel also affects pointer indexing. Word sized 
transfers modify (increment or decrement) the pointer registers by two for each transfer 
whereas byte transfers modify the pointer registers by one. 

10.2.1.3. SELECTING THE SOURCE OF DMA REQUESTS 

DMA requests can come from either an internal source (Timer 2) or an external source. 

Timer 2 DMA requests are selected by setting the IDRQ bit in the DMA Control Register for 
the channel. The DMA channel ignores its DRQ pin when internal requests are programmed. 
Similarly, the DMA channel only responds to the DRQ pin (and ignores internal requests) 
when external requests are selected. 

10.2.1.4. ARMING THE DMA CHANNEL 

Each DMA channel must be armed before it will recognize DMA requests. A channel is armed 
by setting its STRT (Start) bit in the DMA Control Register. The STRT bit can only be 
modified if the CRG (Change Start) bit is set at the same time. The CRG bit is a safeguard to 
prevent unwanted arming of a DMA channel while modifying other channel parameters. 

A DMA channel is disarmed by clearing its STRT bit. The STRT bit is cleared either directly 
by software or by the channel itself when programmed to terminate on terminal count. 

10.2.1.5. SELECTING CHANNEL SYNCHRONIZATION 

The synchronization method for a channel is controlled by the SYN1:0 bits in the DMA 
Control Register. The combination SYN1:0=11 is reserved and will result in unpredictable 
operation, if used. 

When programmed for un synchronized transfers (SYN1:0=OO) the DMA channel will begin to 
transfer data as soon as the STRT bit is set. 

Transfers requested by Timer 2 must always be programmed for source 
synchronization. 

10.2.1.6. PROGRAMMING THE TRANSFER COUNT OPTIONS 

The Transfer Count Register and the TC bit in the DMA Control Register are used to stop 
DMA transfers for a channel after a specified number of transfers have occurred. 

10-15 



in1:et DIRECT MEMORY ACCESS UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

15 

T T T T 
C C C C 
1 1 1 1 
5 4 3 2 

BIT BIT NAME 
MNEMONIC 

TC15:0 Transfer 
Count 

DMA Transfer Count 
DxTC 
Contains the DMA channel's transfer count. 

-------,-~ 

T T TIT T T T T 
C C C I C C C C C 

o 

7 6 5 4 3 2 1 0 

I 
RESET FUNCTION 
STATE 

XXXXH Contains the transfer count for a DMA channel. 
This value is decremented by one after each 
transfer. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to insure compatibility with future Intel products. 

Figure 10.12. Transfer Count Register 

The number of transfers desired are written to the DMA Transfer Count Register (see Figure 
10.12) The Transfer Count Register is 16-bits wide limiting the total number of transfers for a 
channel to 65,536 (without reprogramming). The Transfer Count Register is decremented by 
one after each transfer (for both byte and word transfers). 

The TC bit, when set, instructs the DMA channel to disarm itself (by clearing the STRT bit) 
when the transfer count reaches zero. If the TC bit is cleared, the channel continues to perform 
transfers regardless of the state of the Transfer Count Register. Unsynchronized (software 
initiated) transfers always terminate when the transfer count reaches zero; the TC bit is 
ignored. 

10.2.1.7. GENERATING INTERRUPTS ON TERMINAL COUNT 

A channel can be programmed to generate an interrupt request whenever the transfer count 
reaches zero. Both the TC bit and the INT bit (in the DMA Control Register) must be set to 
generate an interrupt request. 

10.2.1.8. SETTING THE RELATIVE PRIORITY OF A CHANNEL 

The priority of a channel within a module is controlled by the Priority bit in the DMA Control 
Register. A channel may be assigned either high or low priority. If the priority for both 

10-16 



int:et DIRECT MEMORY ACCESS UNIT 

channels is programmed to the same priority (i.e., both high or both low) then the channels 
will rotate priority. 

10.2.2. SUSPENSION OF DMA TRANSFERS 

Whenever an NMI is received by the CPU, all DMA activity is suspended at the end of the 
current transfer. The CPU suspends transfers by setting the DHL T (DMA Halt) bit in the 
Interrupt Status Register (see Chapter 8). The DHLT bit is automatically cleared upon 
execution of an IRET instruction. DMA transfers resume when the DHLT bit is cleared. 

The DHLT bit may be read and written by the user. Do not write to the DHLT bit while 
Timer/Counter Unit interrupts are enabled; a conflict with the internal use of the 
register may lead to incorrect timer interrupt processing. 

The DHLT bit does not function when the interrupt controller is in Slave Mode. 

10.2.3. INITIALIZING THE DMA UNIT 

Use the following sequence when programming the DMA Unit: 

1. Program the source and destination pointers for all used channels. 

2. Program the DMA Control Registers in order of highest priority channel to lowest priority 
channel. 

10.3. HARDWARE CONSIDERATIONS AND THE DMA UNIT 

The following sections cover hardware interfacing and performance factors for the DMA Unit. 

10.3.1. DRQ PIN TIMING REQUIREMENTS 

The DRQ pins are sampled on the falling edge of CLKOUT. The DRQ pins must be setup a 
minimum of TINVCL before CLKOUT falling to guarantee recognition at a specific clock edge. 
Refer to the datasheet for specific values. 

The DRQ pins have an internal synchronizer. Violating the setup and hold times may only 
result in a missed DMA request, not a processor malfunction. 

10.3.2. DMA LATENCY 

DMA Latency is the delay between a DMA request being asserted and the DMA cycle being 
run. The DMA latency for a channel is controlled by many factors, including: 

10-17 



in1:et DIRECT MEMORY ACCESS UNIT 

• Bus HOLD: Bus HOLD takes precedence over internal DMA requests. Using bus HOLD 
will degrade DMA latency. 

• LOCKed Instructions: Long LOCKed instructions (e.g., LOCK REP MOVS) will 
monopolize the bus preventing access by the DMA Unit. 

• Inter-channel Priority Scheme: Setting a channel at low priority will affect its latency. 

The minimum latency in all cases is four CLKOUT cycles. This is the amount of time it takes 
to synchronize and prioritize a request. 

10.3.3. DMA TRANSFER RATES 

The maximum DMA transfer rate is a function of processor operating frequency and 
synchronization mode. For un synchronized and source synchronized transfers, 2 bytes can be 
transferred every eight CLKOUT cycles for the 80Cl86XL and one byte can be transferred for 
the 80C188XL. Maximum transfer rate for the 80C186XL is calculated by: 

Maximum DMA Transfer Rate in Mbytes/sec = .25*Fcpu 
(Source and Unsynchronized) 

Where Fcpu is the CPU operating frequency in megahertz. 

For destination synchronized transfers, the addition of two idle T -states reduces the bandwidth 
by two clocks per word: 

Maximum DMA Transfer Rate in Mbytes/sec = .20*Fcpu 
(Source and Unsynchronized) 

Where Fcpu is the CPU operating frequency in megahertz. 

Maximum transfer rates for the 80C 188XL are half those calculated by the above equations as 
the 80C188XL can only transfer one byte per cycle. 

10.3.4. GENERATING A DMA ACKNOWLEDGE 

The DMA channels do not provide a distinct DMA acknowledge signal. A chip select line can 
be programmed to active for the memory or I/O range that requires the acknowledge. The chip 
select must be programmed to active only when a DMA is in progress. Latched status line S6 
can be used as a qualifier to the chip select in situations where the chip select line will be 
active for both DMA and normal data accesses. 

10.4. DMA UNIT EXAMPLES 

In Example 10.1, channel 0 is set up to perform an unsynchronized burst transfer from 
memory to memory while channel 1 is used to service an external DMA request from a hard 
disk controller. 

10-18 



intel .. DIRECT MEMORY ACCESS UNIT 

Timed DMA transfers are shown in Example 10.2. A sawtooth waveform is created using 
DMA transfers to an NO converter. 

$MOD186 
NAME DMA_EXAMPLE_l 

This example shows code necessary 

to setup of two DMA channels. One 
channel performs an unsynchronized 

transfer from memory to memory. 
The second channel is used by a 

hard disk controller located in 
I/O space. 

It is assumed that the constants for PCB register 

addresses are defined elsewhere with EQUates. 

SEGMENT 
ASSUME CS:CODE_SEG 

START: MOV DATA SEGMENT POINTER 
MOV DS, AX 

ASSUME DS:DATA_SEG 

First we must initialize DMA channel O. DMAO will 
an unsynchronized transfer from SOURCE_DATA_l to 

DEST_DATA_l. The first step is to calculate the 
proper values for the source and destination 
pointers. 

ROL AX, 4 
MOV BX, AX 

AND AX, OFFFOH 

GET HIGH 4 BITS 
SAVE ROTATED VALUE 

GET SHIFTED LOW 4 
NIBBLES 

Example 10.1. DMA Unit Initialization 

10-19 



DIRECT MEMORY ACCESS UNIT 

NOW LOW BYTES OF 

POINTER ARE IN AX 

ADC BX, 0 ADD IN THE CARRY 
TO THE HIGH NIBBLE 

AND BX, OOOFH GET JUST THE HIGH 

NIBBLE 

MOV DX, DOSRCL 
OUT DX, AX AX=LOW 4 BYTES 

MOV DX, DOSRCH 

MOV AX, BX GET HIGH NIBBLE 

OUT DX, AX 

SOURCE POINTER DONE. REPEAT FOR DEST. 

MOV AX, SEG DEST_DATA_l 

ROL AX, 4 GET HIGH 4 BITS 

MOV BX, AX SAVE ROTATED VALUE 

AND AX, OFFFOH GET SHIFTED LOW 4 
NIBBLES 

ADD 

NOW LOW BYTES OF 

POINTER ARE IN AX 

ADC BX, 0 ADD IN THE CARRY 
TO THE HIGH NIBBLE 

AND BX, OOOFH GET JUST THE HIGH 

NIBBLE 

MOV DX, DODSTL 
OUT DX, AX AX=LOW 4 BYTES 

MOV DX, DODSTH 

MOV AX, BX GET HIGH NIBBLE 

OUT DX, AX 

Example 10.1. DMA Unit Initialization (Continued) 

10·20 



intel .. DIRECT MEMORY ACCESS UNIT 

THE POINTER ADDRESSES HAVE BEEN SET UP. NOW 

WE SET UP THE TRANSFER COUNT. 

MOV AX, 29 

MOV DX, DOTC 

OUT DX, AX 

THE MESSAGE IS 

29 BYTES LONG. 

XFER COUNT REG 

NOW WE NEED TO SET THE PARAMETERS FOR 

THE CHANNEL AS FOLLOWS: 

DESTINATION SOURCE 

MEMORY SPACE MEMORY SPACE 
INCREMENT PTR INCREMENT PTR 

TERMINATE ON TC, NO INTERRUPT, UNSYNCHRONIZED, 
LOW PRIORITY RELATIVE TO CHANNEL 1, BYTE XFERS. 

WE START THE CHANNEL 

MOV AX, 1011011000000110B 
MOV DX, DOCON 

OUT DX, AX 

THE UNSYNCHRONIZED BURST IS NOW RUNNING ON 
., THE BUS ... 

NOW SET UP CHANNEL 1 TO SERVICE THE DISK 

CONTROLLER. FOR THIS EXAMPLE WE WILL ONLY 
BE READING FROM THE DISK. 

THE SOURCE IS THE I/O PORT FOR THE 

DISK CONTROLLER. 

MOV AX, DISK_IO_ADDR 

MOV DX, D1SRCL 

OUT DX, AL PROGRAM LOW ADDR 

XOR AX, AX 

MOV DX, D1SRCH HI ADDR FOR 10=0 
OUT DX, AL 

Example 10.1. DMA Unit Initialization (Continued) 

10-21 



DIRECT MEMORY ACCESS UNIT 

THE DESTINATION IS THE DISK BUFFER IN MEMORY 

MOV AX, SEG DISK_BUFF 

ROL AX, 4 GET HIGH 4 BITS 
MOV BX, AX SAVE ROTATED VALUE 
AND AX, OFFFOH GET SHIFTED LOW 4 

NIBBLES 

ADD AX, OFFSET DISK_BUFF 

NOW LOW BYTES OF 

POINTER ARE IN AX 

ADC BX, 0 ADD IN THE CARRY 
TO THE HIGH NIBBLE 

AND BX, OOOFH GET JUST THE HIGH 
NIBBLE 

MOV DX, D1DSTL 

OUT DX, AX AX=LOW 4 BYTES 

MOV DX, DlDSTH 

MOV AX, BX GET HIGH NIBBLE 
OUT DX, AX 

THE POINTER ADDRESSES HAVE BEEN SET UP. NOW 
WE SET UP THE. TRANSFER COUNT. 

MOV AX, 512 

MOV DX, D1TC 
OUT DX, AX 

THE DISK READS IN 

512 BYTE SECTORS. 

XFER COUNT REG 

Example 10.1. DMA Unit Initialization (Continued) 

10-22 



intel .. DIRECT MEMORY ACCESS UNIT 

NOW WE NEED TO SET THE PARAMETERS FOR 
THE CHANNEL AS FOLLOWS: 

DESTINATION SOURCE 

MEMORY SPACE I/O SPACE 
INCREMENT PTR CONSTANT PTR 

TERMINATE ON TC, INTERRUPT, SOURCE SYNC, 
HIGH PRIORITY RELATIVE TO CHANNEL 0, BYTE XFERS, 
USE DRQ PIN FOR REQUEST SOURCE. 

THE CHANNEL IS ARMED. 

MOV AX, 1010001101100110B 
MOV DX, DOCON 
OUT DX, AX 

; REQUESTS ON DRQ1 WILL NOW RESULT IN TRANSFERS 

ENDS 

SEGMENT 

SOURCE_DATA_1 DB 
DEST_DATA_1 DB 

'80C186XL INTEGRATED PROCESSOR' 
30 DUP ( , DUMMY' ) ; JUNK DATA FOR TEST 

512 DUP(?) 

END START 

Example 10.1. DMA Unit Initialization (Continued) 

10-23 



DIRECT MEMORY ACCESS UNIT 

$MOD186 

NAME 

This example sets up the DMA Unit 

to perform a memory to I/O space 

transfer every 22uS. The data is 

sent to an A/D converter. 

It is assumed that the constants for PCB register 
addresses are defined elsewhere with EQUates. 

SEGMENT 
ASSUME CS:CODE_SEG 

START: MOV 

MOV 

AX, DATA_SEG 

DS, AX 

DATA SEGMENT POINTER 

ASSUME DS:DATA_SEG 

First, setup the pointers. The source is in memory. 

MOV AX, SEG WAVEFORM_DATA 

ROL AX, 4 GET HIGH 4 BITS 

MOV BX, AX SAVE ROTATED VALUE 
AND AX, OFFFOH GET SHIFTED LOW 4 

NIBBLES 

ADD AX, OFFSET WAVEFORM_DATA 

Example 10.2. Timed DMA Transfers 

10-24 



inlet DIRECT MEMORY ACCESS UNIT 

NOW LOW BYTES OF 
POINTER ARE IN AX 

ADC BX, 0 ADD IN THE CARRY 
TO THE HIGH NIBBLE 

AND BX, OOOFH GET JUST THE HIGH 
NIBBLE 

MOV DX, DOSRCL 
OUT DX, AX AX=LOW 4 BYTES 

MOV DX, DOSRCH 
MOV AX, BX GET HIGH NIBBLE 
OUT DX, AX 

MOV AX, DA_CNVTR; I/O ADDRESS OF D/A 
MOV DX, DODSTL 
OUT DX, AX 

MOV DX, DODSTH 
XOR AX, AX CLEAR HIGH NIBBLE 
OUT DX, AX 

THE POINTER ADDRESSES HAVE BEEN SET UP. NOW 
WE SET UP THE TRANSFER COUNT. 

MOV 

MOV 
OUT 

AX, 255 

DX, DOTC 
DX, AX 

8-BIT D/A SO 
WE SEND 256 BYTES 
TO GET A FULL SCALE 

Example 10.2. Timed DMA Transfers (Continued) 

10-25 



intel .. DIRECT MEMORY ACCESS UNIT 

NOW WE NEED TO SET THE PARAMETERS FOR 
THE CHANNEL AS FOLLOWS: 

DESTINATION SOURCE 

I/O SPACE MEMORY SPACE' 
CONSTANT PTR INCREMENT PTR 

TERMINATE ON TC, INTERRUPT, SOURCE SYNCHRONIZE, 
; INTERNAL REQUESTS, 

; LOW PRIORITY RELATIVE TO CHANNEL 1, BYTE XFERS. 

MOV AX, 0001011101010110B 
MOV DX, DOCON 
OUT DX, AX 

NOW WE ASSUME THAT TIMER 2 HAS BEEN PROPERLY 
PROGRAMMED FOR A 22US DELAY. 

WHEN THE TIMER IS STARTED, A DMA 
TRANSFER WILL OCCUR EVERY 22US. 

ENDS 

SEGMENT 

WAVEFORM_DATA DB 0,1,2,3,4,5,6,7,8,9,10,11,12,13 
DB 14,15,16,17,18,19,20,21,22,23,24 

; ETC. UP TO 255 

END START 

Example 10.2. Timed DMA Transfers (Continued) 

10-26 



Math Coprocessing 11 





CHAPTER 11 
MATH COPROCESSING 

The 80C186 Modular Core Family meets the need for a general-purpose embedded 
microprocessor. In most data control applications, efficient data movement and control 
instructions are foremost and arithmetic performed on the data is simple. However, some 
applications do require more powerful arithmetic instructions and more complex data types 
than provided by the 80C 186 Modular Core. 

11.1. OVERVIEW OF MATH CO PROCESSING 

Applications needing advanced mathematics capabilities have the following characteristics: 

• Numeric data values are non-integral or vary over a wide range 

• Algorithms produce very large or very small intermediate results 

• Computations must be precise, i.e., calculations must retain several significant digits 

• Computations must be reliable without dependence on programmed algorithms 

• Overall math performance exceeds that afforded by a general-purpose processor and 
software alone 

For the 80C186 Modular Core family, the 80C187 satisfies the need for powerful 
mathematics. The 80C187 can increase the math performance of the microprocessor system by 
50 to 100 times. 

11.2. AVAILABILITY OF MATH COPROCESSING 

The processor supports the 80C187 with a hardware interface under microcode control. To 
execute numerics instructions, the 80C 1 86XL must exit reset in Enhanced Mode. The 
processor checks its TEST pin at reset and enters Enhanced Mode automatically if the Math 
Coprocessor is present. 

The core has a TRAP bit in the Relocation Register to control the availability of math 
coprocessing. If the bit is a one, attempted numerics execution results in a Type 7 interrupt. 
The 80C187 will not work with the 8-bit bus version of the processor because all 80C187 
accesses must be l6-bit. The 8-bit bus version will automatically trap ESC (numerics) opcodes 
to the Type 7 interrupt regardless of Relocation Register programming. 

11-1 



inlel.. MATH COPROCESSING 

11.3. THE 80C187 MATH COPROCESSOR 

The 80C 187' s high perfonnance is due to its 80-bit internal architecture. It contains three 
units: a Floating Point Unit, a Data Interface and Control Unit and a Bus Control Logic Unit. 
The foundation of the Floating Point Unit is ail 8-element register file, usable as individually 
addressable registers or as a register stack. The register file allows storage of intennediate 
results in the 80-bit fonnat. The Floating Point Unit operates under supervision of the Data 
Interface and Control Unit. The Bus Control Logic Unit maintains handshaking and 
communications with the host microprocessor. The 80C187 has built-in exception handling. 

The 80C187 executes code written for the 387™ DX and 387™ SX math coprocessors. The 
80C187 confonns to ANSIIIEEE Standard 754-1985. 

11.3.1. 80C187 INSTRUCTION SET 

80C187 instructions fall into six functional groups: data transfer, arithmetic, comparison, 
transcendental, constant and processor control. Typical 80C 187 instructions accept one or two 
operands and produce a single result. Operands are usually located in memory or the 80C187 
stack. Some operands are predefined; FSQRT always takes the square root of the number in 
the top stack element, for example. Other instructions allow or require the programmer to 

. specify explicitly the operand(s) along with the instruction mnemonic. Still other instructions 
accept one explicit operand and one implicit operand (usually the top stack element). 

As with the basic (non-numerics) instruction set, there are two types of operands for 
coprocessor instructions, source and destination. Instruction execution does not alter a source 
operand. Even when an instruction converts the source operand from one fonnat to another 
(for example, real to integer), the coprocessor perfonns the conversion in a work area to 
preserve the source operand. A destination operand differs from a source operand because the 
80C 187 may alter the register when it receives the result of the operation. For most destination 
operands, the coprocessor usually replaces the destinations with results. 

11.3.1.1. DATA TRANSFER INSTRUCTIONS 

Data transfer instructions move operands between elements of the 80C187 register stack or 
between stack top and memory. Instructions can convert any of the data types to temporary 
real and load it onto the stack in a single operation. Conversely, instructions can convert a 
temporary real operand on the stack to any data type and store it to memory in a single 
operation. Table 11.1 summarizes the data transfer instructions. 

11-2 



in1'el .. MATH COPROCESSING 

Table 11.1. 80C187 Data Transfer Instructions 

REAL TRANSFERS 

FLO Load real 

FST Store real 

FSTP Store real and pop 

FXCH Exchange registers 

INTEGER TRANSFERS 

FILD Integer load 

FIST Integer store 

FISTP Integer store and pop 

PACKED DECIMAL TRANSFERS 

FBLD Packed decimal (BCD) load 

FBSTP Packed decimal (BCD) store and 
pop 

11.3.1.2. ARITHMETIC INSTRUCTIONS 

The 80C187's arithmetic instruction set includes many variations of add, subtract, multiply, 
and divide operations and several other useful functions. Examples include a simple absolute 
value and a square root instruction that executes faster than ordinary division. Other arithmetic 
instructions perform exact modulo division, round real numbers to integers and scale values by 
powers of two. 

Table 11.2 summarizes the available operation and operand forms for basic arithmetic. In 
addition to the four normal operations, two "reversed" instructions make subtraction and 
division "symmetrical" like addition and multiplication. In summary, the arithmetic 
instructions are highly flexible because: 

• The 80C 187 uses register or memory operands 

• The 80C 187 may save results in a choice of registers 

Available data types include temporary real, long real, short real, short integer and word 
integer. The 80C187 performs automatic type conversion to temporary real. 

11-3 



MATH COPROCESSING 

Table 11.2. 80C187 Arithmetic Instructions 

ADDITION 

FADD Add real 

FADDP Add real and pop 

FIADD Integer add 

SUBTRACTION 

FSUB Subtract real 

FSUBP Subtract real and pop 

FISUB I nteger subtract 

FSUBR Subtract real reversed 

FSUBRP Subtract real reversed and pop 

FISUBR Integer subtract reversed 

MULTIPLICATION 

FMUL Multiply real 

FMULP Multiply real and pop 

FIMUL Integer multiply 

DIVISION 

FDIV Divide real 

FDIVP Divide real and pop 

FIDIV Integer divide 

FDIVR Divide real reversed 

FDIVRP Divide real reversed and pop 

FIDIVR Integer divide reversed 

OTHER OPERATIONS 

FSQRT Square root 

FSCALE Scale 

FPREM Partial remainder 

FRNDINT Round to integer 

FXTRACT Extract exponent and significand 

FABS Absolute value 

FCHS Change sign 

FPREMI Partial remainder (IEEE) 

11-4 



inlel.. MATH COPROCESSING 

11.3.1.3. COMPARISON INSTRUCTIONS 

Each comparison instruction (see Table 11.3) analyzes the stack top element, often in 
relationship to another operand. Then it reports the result in the Status Word condition code. 
The basic operations are compare, test (compare with zero) and examine (report tag, sign and 
normalization). 

Table 11.3. 80C187 Comparison Instructions 

FCOM Compare real 

FCOMP Compare real and pop 

FCOMPP Compare real and pop twice 

FICOM Integer compare 

FICOMP Integer compare and pop 

FTST Test 

FXAM Examine 

FUCOM Unordered compare 

FUCOMP Unordered compare and pop 

FUCOMPP Unordered compare and pop 
twice 

11.3.1.4. TRANSCENDENTAL INSTRUCTIONS 

Transcendental instructions perform the core calculations for common trigonometric, 
hyperbolic, inverse hyperbolic, logarithmic and exponential functions. Use prologue code to 
reduce arguments to a range accepted by the instruction. Use epilogue code to adjust the result 
to the range of the original arguments. The transcendentals operate on the top one or two stack 
elements and return their results to the stack. Table 11.4 lists the transcendental instructions. 

Table 11.4. 80C187 Transcendental Instructions 

FPTAN Partial tangent 

FPATAN Partial arctangent 

F2XM1 2x - 1 

FYL2X Y log? X 

FYL2XP1 Y log? (X+1) 

FCOS Cosine 

FSIN Sine 

FSINCOS Sine and Cosine 

11·5 



intel® MATH COPROCESSING 

11.3.1.5. CONSTANT INSTRUCTIONS 

Each constant instruction (see Table 11.5) loads a commonly used constant onto the stack. The 
values have full 80-bit precision and are accurate to about 19 decimal digits. Since a 
temporary real constant occupies 10 memory bytes, the constant instructions, only two bytes 
long, save memory space. 

Table 11.5. 80C187 Constant Instructions 

FLDZ Load +0.1 

FLD1 Load +1.0 

FLDPI Load 1t 

FLDL2T Load log? 10 

FLDL2E Load log?e 

FLDLG2 Load log102 

FLDLG2 Load logA2 

11.3.1.6. PROCESSOR CONTROL INSTRUCTIONS 

Computations do not use the processor control instructions; they are available for activities at 
the operating system level. This group (see Table 11.6) includes initialization, exception 
handling and task switching instructions. 

Table 11.6. 80C187 Processor Control Instructions 

FINIT/FNINIT Initialize processor 

FDISI/FNDISI Disable interrupts 

FENI/FNENI Enable interrupts 

FLDCW Load control word 

FSTCW/FNSTCW Store control word 

FSTSW/FNSTSW Store status word 

FCLEX/FNCLEX Clear exceptions 

FSTENV IFNSTENV Store environment 

FLDENV Load environment 

FSAVE/FNSAVE Save state 

FRSTOR Restore state 

FINCSTP Increment stack pointer 

FDECSTP Decrement stack pOinter 

FFREE Free register 

FNOP No operation 

FWAIT CPU wait 

11-6 



inlet MATH COPROCESSING 

11.3.2. 80C187 DATA TYPES 

The microprocessor/math coprocessor combination supports the following seven data types: 

• Word Integer - A signed 16-bit numeric value. All operations assume a 2's complement 
representation. 

• Short Integer - A signed 32-bit numeric value (double word). All operations assume a 
2's complement representation. 

• Long Integer - A signed 64-bit numeric value (quad word). All operations assume a 2's 
complement representation. 

• Packed Decimal- A signed numeric value contained in an 80-bit BCD format. 

• Short Real- A signed 32-bit floating point numeric value. 

• Long Real - A signed 64-bit floating point numeric value. 

• Temporary Real - A signed 80-bit floating point numeric value. Temporary real is the 
native 80C 187 format. 

Figure 11.1 graphically represents these data types. 

11.4. MICROPROCESSOR AND COPROCESSOR OPERATION 

The 80C187 interfaces directly to the microprocessor (see Figure 11.2) and operates as an 
I/O-mapped slave peripheral device. Hardware handshaking requires connections between the 
80C187 and four special pins on the processor: NCS, BUSY, PEREQ and ERROR. These 
pins are multiplexed with MCS3, TEST, MCSO and MCS1, respectively. When the processor 
leaves reset, the presence of the 80C 187 automatically enables Enhanced Mode and configures 
the pins correctly. Note that MCS2 always retains its function as a chip select. The processor 
also retains the wait state and ready programming for the entire mid-range memory block, 
even though MCSO, MCS 1 and MCS3 are no longer available. 

11.4.1. CLOCKING THE 80C187 

The microprocessor and math coprocessor operate asynchronously and their clock rates may 
differ. The 80C187 has a CKM pin which determines whether it uses the input clock directly 
or divided by two. Direct clocking works up to 12.5 MHz, which makes it convenient to feed 
the clock input from the microprocessor's CLKOUT pin. Beyond 12.5 MHz, the 80C187 must 
use a 2X frequency clock input up to a maximum of 32 MHz. The microprocessor and the 
math coprocessor have correct timing relationships even with operation at different 
frequencies. 

11-7 



MATH COPROCESSING 

OllIE INCREASING SIGNIFICANCE 

WORD 

lsi MAGNITUDE (TWO'S COMPLEMENT) 
INTEGER 

15 

SHORT 

lsi MAGNITUDE (TWO'S CPMPLEMENT) INTEGER 

31 

LONG lsi MAGNITUDE (TWO'S 
INTEGER COMPLEMENT) 

63 

PACKED 
DECIMAL 

79 72 

SHORT 
REAL 

a 

LONG BIASED SIGNIFICAND 
REAL EXPONENT 

63 52 
1. 

TEMPORARY lsi BIASED bl SIGNIFICAND REAL EXPONENT 

79 64 63 .6. 

Figure 11.1. 80C187-Supported Data Types 

11.4.2. PROCESSOR BUS CYCLES ACCESSING THE 80C187 

Data tra.llsfers between the microprocessor and the 80C 187 occur through the dedicated, 16-bit 
110 ports shown in Table 11.7. When the processor encounters a numerics opcode, it first 
writes the opcode to the 80C187. The 80C187 decodes the instruction and passes elementary 
instruction information (Opcode Status Word) back to the processor. Since the 80C187 is a 
slave processor, the Modular Core processor performs all loads and stores to memory. 
Including the overhead in the microprocessor's microcode, each data transfer between 
memory and the 80C187 (via the microprocessor) takes at least 17 processor clocks. 

11·8 



MATH COPROCESSING 

EXTERNAL 
OSCILLATOR 

AD 15:0 

ALE 1----+-

CLKOUT f-----

RESET 

WR 

RD 

BUSY 

ERROR 

PEREa 

NCS 

LATCH 

80C187 

RESET 

NPWR 

NPRD 

BUSY 

ERROR 

PEREa 

I'JPSf 

CKM 

+1 

, 
--'-

+2 

Figure 11.2. 80C186 Modular Core Family/80C187 System Configuration 

11·9 



MATH COPROCESSING 

Table 11.7. 80C187110 Port Assignments 

1/0 READ WRITE 
ADDRESS DEFINITION DEFINITION 

OOF8H Status/ Control Opcode 

OOFAH Data Data 

OOFCH Reserved CS:IP, DS:EA 

OOFEH Opcode Status Reserved 

The microprocessor cannot process any numerics (ESC) opcodes alone. If the CPU encounters 
a numerics opcode with the TRAP bit in the Relocation Register a zero and the 80Cl87 is not 
present, its operation is indeterminate. Even the FINITIFNINIT initialization instruction (used 
in the past to test the presence of a coprocessor) will fail without the 80C187. If an application 
offers the 80C187 as an option, problems can be prevented in three ways: 

• Remove all numerics (ESC) instructions, including code which checks for the presence of 
the 80C187. 

• Use a jumper or switch setting to indicate the presence of the 80C187. The program can 
interrogate the jumper or switch setting and branch away from numerics instructions when 
the 80C187 socket is empty. 

• Trick the microprocessor into predictable operation when the 80C187 socket is empty. 
The fix is placing pull-up or pull-down resistors on certain data and handshaking lines so 
the CPU reads a recognizable Opcode Status Word. This solution requires a detailed 
knowledge of the interface. 

Bus cycles involving the 80C187 Math Coprocessor behave exactly like other 110 bus cycles 
with respect to the processor's control pins. The next section covers integration of the 80C187 
into the overall system. 

11.4.3. SYSTEM DESIGN TIPS 

All 80C 187 operations require that bus ready be asserted. The simplest way to return the ready 
indication is via hardware connected to the processor's ARDY or SRDY pin. If you program a 
chip select to cover the math coprocessor port addresses, its ready programming will be in 
force and can provide bus ready for coprocessor accesses. The user must verify there are no 
conflicts from other hardware connected to that chip select pin. 

A chip select pin will go active on 80C187 accesses if you program it for a range including the 
math coprocessor 110 ports. The converse is not true - a non-80C 187 access cannot activate 
NCS (numerics chip select) regardless of programming. 

11-10 



MATH COPROCESSING 

In a buffered system, it is customary to place the 80C187 on the local bus. Since DTIR and 
DEN function normally during 80C187 transfers, you must qualify DEN with NCS (see 
Figure 11.3). Otherwise, contention between the 80C187 and the transceivers occurs on read 
cycles to the 80C 187. 

The microprocessor's local bus is available to the integrated peripherals during numerics 
execution whenever the CPU is not communicating with the 80C187. The idle bus allows the 
processor to intersperse DRAM refresh cycles and DMA cycles with accesses to the 80C187. 

The microprocessor's local bus is available to alternate bus masters during execution of 
numerics instructions when the CPU does not need it. Bus cycles driven by alternate masters 
(via the HOLDIHLDA protocol) can suspend coprocessor bus cycles for an indefinite period. 

The programmer may lock 80C187 instructions. The CPU asserts the LOCK pin for the entire 
duration of a numerics instruction, monopolizing the bus for a very long time. 

11.4.4. EXCEPTION TRAPPING 

The 80C187 detects six error conditions that can occur during instruction execution. The 
80C187 can apply default fix-ups or signal exceptions to the microprocessor's ERROR pin. 
The processor tests ERROR at the beginning of numerics instructions, so it traps an exception 
on the next attempted numerics instruction after it occurs. When ERROR tests active, the 
processor executes a Type 16 interrupt. 

There is no automatic exception-trapping on the last numerics instruction of a series. If the last 
numerics instruction writes an invalid result to memory, subsequent non-numerics instructions 
can use that result as if it is valid, further compounding the original error. Insert the FNOP 
instruction at the end of the 80C187 routine to force an ERROR check. If the program is 
written in a high-level language, it is impossible to insert FNOP. In this case, route the error 
signal through an inverter to an interrupt pin on the microprocessor (see Figure 11.4). With 
this arrangement, use a flip-flop to latch BUSY upon assertion of ERROR. The latch gets 
cleared during the exception-handler routine. Use an additional flip-flop to latch PEREQ to 
maintain the correct handshaking sequence with the microprocessor. 

11.5. EXAMPLE MATH COPROCESSOR ROUTINES 

Example 11.1 shows the initialization sequence for the 80C187. Example 11.2 is an example 
of a floating point routine using the 80C 187. The FSINCOS instruction yields both sine and 
cosine in one operation. 

11-11 



EXTERNAL 
OSCILLATOR 

AD 15:0 

ALE 1---+-

CLKOUT 1----

RESET 

WR 

AD 

BUSY 

ERROR 

PEREQ 

NCS 

CS 

iJEiiJ 

OT/R 

MATH COPROCESSING 

LATCH 

BUFFER 
015:8 

80C187 

RESET BUFFER 

07:0 
NPWR 

NPRO 

BUSY T DE 

ERROR' 

PEREQ 

NPS1 

NPS2 

Figure 11.3. 80C187 Configuration with Partially Buffered Bus 

11·12 



intet MATH COPROCESSING 

ERROR 

RESET 

CSx 

INTx 
lATCH BUSY 

PEREQ 
EN j4-------j ALE NCS 

A19-A16 
RD AD1S-ADO 
WR 

A ClKOUT 0 
C 

Q 
0 '74 
0 Q 
R S 
E 
S 
S ClK 

A2 
CMD1 

19-0 
A1 

CMDO 

80C187 
NPS1 C 

0 Q 

CKM PEREQ '74 

BUSY 

NPS2 
ERROR 

RESET 

Figure 11_4_ 80C187 Exception Trapping via Processor Interrupt Pin 

11-13 



int:et MATH COPROCESSING 

$mod186 
name 

FUNCTION: This function initializes the 80C187 numerics 
co-processor. 

SYNTAX: extern unsigned char far 187_init(void); 

INPUTS: None 

OUTPUTS: unsigned char - OOOOh -> False -> coprocessor not 
initialized 

ffffh -> True -> coprocessor 
initialized 

NOTE: Parameters are passed on the stack as required by 
high-level languages. 

187 init 

segment public 'code' 
assume cs:lib_80186 

public 
proc far 

push bp 

187 init 

mov bp, sp 

eli 

fninit 
fnstcw [bp-2J 

sti 

mov ax, [bp-2J 
and ax, 0300h 

cmp ax, 0300h 
je Ok 
xor ax, ax 

;save caller's bp 
;get current top of stack 

;disable maskable 
; interrupts 

;init 80C187 processor 
;get current control word 

;enable interrupts 

;mask off unwanted control 
;bits 
;PC bits = 11 
;yes: processor ok 
;return false (80C187 not 
;ok) 

Example 11.1. Initialization Sequence for 80C187 Math Coprocessor 

11-14 



Ok: 

187 init 

pop 
ret 

and 
fldcw 

mov 
pop 
ret 

endp 

ends 
end 

MATH COPROCESSING 

bp 

[bp-2] , Offfeh 
[bp-2] 

aX,Offffh 
bp 

irestore caller's bp 

iunmask possible exceptions 

ireturn true (80C187 ok) 
irestore caller's bp 

Example 11.1. Initialization Sequence for 80C187 
Math Coprocessor (Continued) 

$mod186 
$modc187 

name 

DESCRIPTION: 

VARIABLES: 

RESULTS: 

NOTES: 

This code section uses the 80C187 FSINCOS 
transcendental instruction to convert the 
locus of a point from polar to Cartesian 
coordinates. 

The variables consist of the radius, r, and 
the angle, theta. Both are expressed as 
32-bit reals and 0 <= theta <= pi/4. 

The results of the computation are the 
coordinates x and y expressed as 32-bit 
reals. 

This routine is coded for Intel ASM86. It is 
not set up as a HLL-callable routine. 

This code assumes that the 80C187 has already 
been initialized. 

assume cs:code, ds:data 

Example 11.2. Floating Point Math Routine Using FSINCOS 

11-15 



intel" MATH COPROCESSING 

data segment at OlOOh 
r dd x.xxxx isubstitute real operand 
theta dd x.xxxx isubstitute real operand 
x dd ? 

Y dd ? 
data ends 

code segment at 0080h 

convert proc far 
mov ax, data 
mov ds, ax 

fld r ;load radius 
fld theta ;load angle 
fsincos ist=COS, st(l)=sin 
fmul st, st(2) icompute x 
fstp x ;store to memory and pop 
fmul ;compute y 
fstp y ;store to memory and pop 

convert endp 

code ends 
end 

Example 11.2. Floating Point Math Routine Using FSINCOS (Continued) 

11-16 



ONCPMMode 12 





CHAPTER 12 
ONCETM MODE 

ONCE (pronounced: ahnce) Mode provides the ability to three-state all output, bidirectional, 
or weakly held high/low pins except X2. X2 does not three-state to allow device operation 
with a crystal network. 

ONCE Mode electrically isolates the device from the rest of the board logic. This isolation 
allows a bed-of-nails tester to drive the device pins directly for more accurate and thorough 
testing. An in-circuit emulation probe uses ONCE Mode to isolate a surface mounted device 
from board logic and essentially "take over" operation of the board (without removing the 
soldered device from the board). 

12.1. ENTERING/LEAVING ONCE MODE 

Forcing UCS and LCS low while RES is asserted (low) enables ONCE Mode (see Figure 
12.1). Maintaining UCS, LCS and RES low continues to keep ONCE Mode active. Returning 
UCS and/or LCS back high exits the ONCE Mode. 

However, it is possible to always keep ONCE Mode active by deasserting RES while keeping 
UCS and LCS low. Removing RES "latches" ONCE Mode and allows UCS and LCS to be 
driven to any level. UCS and LCS must remain low for at least one clock beyond the time 
RES is driven high. Asserting RES exits ONCE Mode, assuming UCS and LCS do not 
remain low also (see Figure 12.1). 

ALL OUTPUT, 
BI-DIRECTIONAL, 

WEAKLY HELD 
PINS EXCEPT 

OSCOUT 

NOTES: 1. Entering ONCE Mode. 
2. Latching ONCE Mode. 
3. Leaving ONCE Mode (assuming 2. occurred) 

Figure 12.1. Entering/Leaving ONCE Mode 

12-1 





Appendix A 
80C186 Instruction Set 
Additions and Extensions 





APPENDIX A 
80C186 INSTRUCTION SET ADDITIONS AND 

EXTENSIONS 

The 80Cl86 Modular Core family instruction set differs from the original 8086/8088 
instruction set in two ways. First, there are several additional instructions that were not 
available in the 8086/8088 instruction set. Second, there are several 8086/8088 instructions 
that have been enhanced for the 80Cl86 Modular Core family instruction set. 

A.1. 80C186 INSTRUCTION SET ADDITIONS 

The following sections describe instructions added to the base 8086/8088 instruction set to 
make the instruction set for the 80Cl86 Modular Core family. These instructions did not exist 
in the 8086/8088 instruction set. 

A.1.1.DATA TRANSFER INSTRUCTIONS 

PUSHA/POPA 

PUSHA (push all) and paPA (pop all) allow all general purpose registers to be stacked and 
unstacked. The PUSHA instruction pushes all CPU registers (except as noted below) onto the 
stack. The paPA instruction pops all registers pushed by PUSHA off of the stack. The 
registers are pushed onto the stack in the following order: AX, CX, DX, BX, SP, BP, SI, DI. 
The Stack Pointer (SP) value pushed is the Stack Pointer value before the AX register was 
pushed. When paPA is executed, the Stack Pointer value is popped, but ignored. 

Note: This instruction does not save segment registers (CS, DS, SS, ES), the Instruction 
Pointer (IP), the Program Status Word or any integrated peripheral registers. 

A.1.2.STRING INSTRUCTIONS 

INS source _string, port 

INS (in string) performs block input from an va port to memory. The port address is placed in 
the DX register. The memory address is placed in the DI register. This instruction uses the ES 
segment register (which cannot be overridden). After the data transfer takes place, the pointer 
register (DI) increments or decrements, depending on the value of the Direction Flag (DF). 
The pointer register changes by I for byte transfers or 2 for word transfers. 

A·1 



intel~ APPENDIX A 

OUTS port, destination_string 

OUTS (out string) performs block output from memory to an 1/0 port. The port address is 
placed in the DX register. The memory address is placed in the SI register. This instruction 
uses the DS segment register, but this may be changed with a segment override instruction. 
After the data transfer takes place, the pointer register (SI) increments or decrements, 
depending on the value of the Direction Flag (DF). The pointer register changes by 1 for byte 
transfers or 2 for word transfers. 

A.1.3.HIGH LEVEL INSTRUCTIONS 

ENTER size, level 

ENTER creates the stack frame required by most block-structured high-level languages. The 
first parameter, siZe, specifies the number of bytes of dynamic storage to be allocated for the 
procedure being entered (16-bit value). The second parameter, level, is the lexical nesting level 
of the procedure (8-bit value). Note: the higher the lexical nesting level, the lower the 
procedure is in the nesting hierarchy. 

The lexical nesting level determines the number pointers to higher level stack frames copied 
into the current stack frame. This list of pointers is called the display. The first word of the 
display points to the previous stack frame. The display allows access to variables of higher­
level (lower lexical nesting level) procedures. 

After ENTER creates a display for the current procedure, it allocates dynamic storage space. 
The Stack Pointer decrements by the number of bytes specified by size. All PUSH and POP 
operations in the procedure use this value of the Stack Pointer as a base. 

Two forms of ENTER exist: non-nested and nested. A lexicai nesting level of 0 specifies the 
non-nested form. In this situation, BP is pushed, the Stack Pointer is copied to BP and 
decremented by the size of the frame. If the lexical nesting level is greater than 0, the nested 
form is used. Figure A.I gives the formal definition of ENTER. 

ENTER treats a reentrant procedure as a procedure calling another procedure at the same 
lexical level. A reentrant procedure can only address its own variables and variables of higher­
level calling procedures. ENTER ensures this by copying only stack frame pointers from 
higher-level procedures. 

Block-structured high-level languages use lexical nesting levels to control access to variables 
of previously nested procedures. For example, assume, as shown in Figure A.2, PROCEDURE 
A calls PROCEDURE B which calls PROCEDURE C which calls PROCEDURE D. 
PROCEDURE C will have access to the variables of MAIN and 
PROCEDURE A, but not PROCEDURE B because they operate at the same lexical nesting 
level. The following is a summary of the variable access for Figure A.2. 

A-2 



APPENDIX A 

The formal definition of the ENTER instruction for all cases is given by the 
following listing: (LEVEL denotes the value of the second operand.) 

Push BP 
Set a temporary value FRAME_PTR: = SP 
If LEVEL> 0 then 

Repeat (LEVEL - 1) times: 
BP: = BP - 2 
Push the word pointed to by BP 

End repeat 
Push FRAME_PTR 

End if 
BP: = FRAME_PTR 
SP: = SP - first operand 

Figure A.1. Formal Definition of ENTER 

MAIN PROGRAM (LEXICAL LEVEL 1) 

PROCEDURE A (LEXICAL LEVEL 2) 

I. PROCEDURE B (LEXICAL LEVEL 3) 

PROCEDURE C (LEXICAL LEVEL 3) 

PROCEDURE D (LEXICAL LEVEL 4) 

Figure A.2. Variable Access In Nested Procedures 

A-3 



intel .. APPENDIX A 

1. MAIN PROGRAM has variables at fixed locations. 

2. PROCEDURE A can access only the fixed variables of MAIN. 

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN. 
PROCEDURE B cannot access the variables of PROCEDURE C or PROCEDURE D. 

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN. 
PROCEDURE C cannot access the variables of PROCEDURE B or PROCEDURE D. 

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A and 
MAIN. PROCEDURE D cannot access the variables of PROCEDURE B. 

The first ENTER, executed in the MAIN PROGRAM, allocates dynamic storage space for 
MAIN, but no pointers are copied. The only word in the display points to itself because no 
previous value exists to return to after LEAVE is executed (see Figure A.3). 

BP~ 

SP~ 

5 

OLDBP 

BPM 

. -BPM - BP VALUE FOR MAIN 

o 

} DISPLAY MAIN 

} 
DYNAMIC 
STORAGE 

MAIN 

Figure A.3. Stack Frame for MAIN at Level 1 

After MAIN calls PROCEDURE A, ENTER creates a new display for PROCEDURE A. The 
first word points to the previous value of BP (BPM). The second word points to the current 
value of BP (BPA). BPM contains the base for dynamic storage in MAIN. All dynamic 
variables for MAIN will be at a fixed offset from this value (see Figure A.4). 

After PROCEDURE A calls PROCEDURE B, ENTER creates the display for PROCEDURE 
B. The first word of the display points to the previous value of BP (BP A). The second word 
points to the value of BP for MAIN (BPM). The third word points to the BP for 
PROCEDURE A (BPA). The last word points to the current BP (BPB). PROCEDURE B can 
access variables in PROCEDURE A or MAIN via the appropriate BP in the display (see 
Figure A.S). 

A-4 



APPENDIX A 

15 

OLD BP 

BPM 

BP~ 
BPM 

BPM 

BPA' 

SP~ 

'BPA = BP VALUE FOR PROCEDURE A 

0 

} DISPLAYA 

} DYNAMIC 
STORAGE A 

Figure A.4. Stack Frame for Procedure A at Level 2 

After PROCEDURE B calls PROCEDURE C, ENTER creates the display for PROCEDURE 
C. The first word of the display points to the previous value of BP (BPB). The second word 
points to the value of BP for MAIN (BPM). The third word points to the value of BP for 
PROCEDURE A (BPA). The fourth word points to the current BP (BPC). Because 
PROCEDURE B and PROCEDURE C have the same lexical nesting level, PROCEDURE C 
cannot access variables in PROCEDURE B. The only pointer to PROCEDURE B in the 
display of PROCEDURE C exists to allow the LEA VE instruction to collapse the 
PROCEDURE C stack frame (see Figure A.6). 

LEAVE 

LEA VE reverses the action of the most recent ENTER instruction. It collapses the last stack 
frame created. First, LEA VE copies the current BP to the Stack Pointer releasing the stack 
space allocated to the current procedure. Second, LEAVE pops the old value of BP from the 
stack, to return to the calling procedure's stack frame. An RET instruction will remove 
arguments stacked by the calling procedure for use by the called procedure. 

BOUND register, address 

BOUND verifies that the signed value in the specified register lies within specified limits. If 
the value does not lie within the bounds, an array bounds exception (type 5) occurs. 

A-5 



APPENDIX A 

15 

OLDBP 

BPM 

BPM 

BPM 

BPA 

BPA 
BP-» 

BPM 

BPA 

BPB 

SP~ 

o 

} DISP~YB 

} DYNAMIC 
STORAGE B 

Figure A.S. Stack Frame for Procedure B at Level 3 Called from A 

BOUND has two operands. The first, register, specifies the register being tested. The second, 
address, contains the effective relative address of the two signed boundary values. The lower 
limit word is at this address and the upper limit word immediately follows. The limit values 
cannot be register operands (if they are, an invalid opcode exception occurs). 

BOUND is useful fOi checking array bounds befOie attempting to access a.'l a.'Tay element. 
This avoids the program overwriting information outside the limits of the array. 

A.2. 80C186 INSTRUCTION SET ENHANCEMENTS 

The following sections describe enhancements to the 8086/8088 instruction set available with 
the 80C186 Modular COie family. These instructions were available with the 8086/8088 
instruction set, but have been expanded to be more useful. 

A-6 



intel .. 

15 

BP~ 

SP~ 

APPENDIX A 

OLDBP 
BPM 

BPM 
BPM 
BPA 

BPA 
BPM 
BPA 
BPB 

BPB 
BPM 
BPA 
BPC 

o 

} DISPLAye 

} 
DYNAMIC 

STORAGE C 

Figure A.S. Stack Frame for Procedure C at Level 3 Called from B 

A-7 



in1:et APPENDIX A 

A.2.1.DATA TRANSFER INSTRUCTIONS 

PUSH data 

PUSH (push immediate) allows an immediate argument, data, to be pushed onto the stack. 
The value can be either a byte or a word. Byte values will be sign extended to word size before 
being pushed. 

A.2.2.ARITHMETIC INSTRUCTIONS 

IMUL destination, source, data 

IMUL (integer immediate multiply, signed) allows a value to be multiplied by an immediate 
operand. IMUL requires three operands. The first, destination, is the register where the result 
will be placed. The second, source, is the effective address of the multiplier. The source may 
be the same register as the destination, another register or a memory location. The third, data, 
is an immediate value used as the multiplicand. The data operand may be a byte or word. If 
data is a byte, it is be sign extended to 16-bits. Only the lower 16-bits of the result are saved. 
The result must be placed in a general purpose register. 

A.2.3.BIT MANIPULATION INSTRUCTIONS 

The 80C186 Modular Core instruction set includes enhancements to the bit manipulation 
instructions. The following sections describe these enhancements. 

A.2.3.1. SHIFT INSTRUCTIONS 

SAL destination, count 

SAL (immediate shift arithmetic left) shifts the destination operand left by an immediate 
value. SAL has two operands. The first, destination, is the effective address to be shifted. The 
second, count, is an immediate byte value representing the number of shifts to be made. The 
CPU will AND count with IFH before shifting to allow no more than 32 shifts. Zeros shift in 
on the right. 

SHL destination, count 

SHL (immediate shift logical left) is physically the same instruction as SAL (immediate shift 
arithmetic left). 

SAR destination, count 

SAR (immediate shift arithmetic right) shifts the destination operand right by an immediate 
value. SAL has two operands. The first, destination, is the effective address to be shifted. The 
second, count, is an immediate byte value representing the number of shifts to be made. The 

A-a 



APPENDIX A 

CPU will AND count with lFH before shifting to allow no more than 32 shifts. The value of 
the original sign bit shifts into the most-significant bit to preserve the initial sign. 

SUR destination, count 

SHR (immediate shift logical right) is physically the same instruction as SAR (immediate shift 
arithmetic right). 

A.2.3.2. ROTATE INSTRUCTIONS 

ROL destination, count 

ROL (immediate rotate left) rotates the destination byte or word left by an immediate value. 
ROL has two operands. The first, destination, is the effective address to be rotated. The 
second, count is an immediate byte value representing the number of rotations to be made. The 
most-significant bit of destination rotates into the least-significant bit. 

ROR destination, count 

ROR (immediate rotate right) rotates the destination byte or word right by an immediate value. 
ROR has two operands. The first, destination, is the effective address to be rotated. The 
second, count is an immediate byte value representing the number of rotations to be made. The 
least-significant bit of destination rotates into the most-significant bit. 

RCL destination, count 

RCL (immediate rotate through carry left) rotates the destination byte or word left by an 
immediate value. RCL has two operands. The first, destination, is the effective address to be 
rotated. The second, count, is an immediate byte value representing the number of rotations to 
be made. The Carry Flag (CF) rotates into the least-significant bit of destination. The 
most-significant bit of destination rotates into the Carry Flag. 

RCR destination, count 

RCR (immediate rotate through carry right) rotates the destination byte or word right by an 
immediate value. RCR has two operands. The first, destination, is the effective address to be 
rotated. The second, count, is an immediate byte value representing the number of rotations to 
be made. The Carry Flag (CF) rotates into the most-significant bit of destination. The least­
significant bit of destination rotates into the Carry Flag. 

A·9 





AppendixB 
Input Synchronization 





APPENDIX B 
INPUT SYNCHRONIZATION 

Many input signals to an embedded processor are asynchronous. Asynchronous signals do not 
require a specified set up or hold time to ensure the device does not incur a failure. However, 
asynchronous setup and hold times are specified in the data sheet to ensure recognition. 
Associated with each of these inputs is a synchronizing circuit (see Figure B-1) which samples 
the asynchronous signal and synchronizes it to the internal operating clock. The output of the 
synchronizing circuit is then safely routed to the logic units. 

ASYNCHRONOUS 
INPUT 

NOTES: 

J-------1 D Q J------j D Q SYNCHRONIZED 
- OUTPUT 

FIRST 
LATCH 

CD -[> 

SECOND 
LATCH 

@-I> 

1. First latch sample clock, can be phase 1 or phase 2 depending on pin function 

2, Second latch sample clock, opposite phase of first latch sample clock 
(e,g, if first latch is sampled with phase 1, the second latch is sampled with phase 2), 

Figure B.1. Input Synchronization Circuit 

B.1. WHY SYNCHRONIZERS ARE REQUIRED 

Every data latch requires a specific set up and hold time to operate properly. The duration of 
the setup and hold time defines a window where the device attempts to latch the data. If the 
input makes a transition within this window, the output may not attain a stable state. The data 
sheet specifies a setup and hold window larger than is actually required. However, variations 
in device operation (e.g., temperature, voltage) require a larger window be specified to cover 
all conditions. 

Should the input to the data latch transition during the sample and hold window, the output of 
the latch eventually attains a stable state. Reaching this stable state must occur before the 
second stage of sychroniztion requires a valid input. To synchronize an asynchronous signal, 
the circuit in Figure B-1 samples the input into the first latch, allows to output to stabilize, then 
samples the stabilized value into a second latch. With the asynchronous signal resolved in this 
way, the input signal can not cause a internal device failure. 

8-1 



int:et APPENDIX B 

A synchronization failure can occur when the output of the first latch does not meet the setup 
and hold requirements of the input of the second latch. The rate of failure is determined by the 
actual size of the sampling window of the data latch, and by the amount of time between the 
strobe signals of the two latches. As the sampling window gets smaller, the number of times 
an asynchronous transition occurs during the sampling window drops. 

B.2. ASYNCHRONOUS PINS 

Those inputs that use the two stage synchronization circuit are: TMR IN 0, TMR IN 1, NMI, 
TESTIBUSY, INTO-3, HOLD, DRQO, and DRQ1. 

B·2 



AppendixC 





APPENDIX C 

Table C.1. Instruction Set Summary 

Function Format Clock Comments Cycles 

DATA TRANSFER 
MOV= MOVE: 

Register to Register/Memory 11 0 0 0 1 0 0 wi mod reg rim 2/12 
Register/memory to register 11 0 0 0 1 0 1 wi mod reg rim 2/9 
Immediate to register memory 11 1 0 0 0 1 1 wi modOOO rim data I data ifw=1 I 12-13 B/16-bil 
Immediate to register 11 0 1 1 w reg I data data ifw=1 I 3-4 Bl16-bil 
Memory to accumulator 11 0 1 0 0 0 0 wi addr-Iow addr-high I 9 
Accumulator to memory 11 0 1 0 0 0 1 wi addr-Iow addr-high I 8 
Register/memory to segment register 11 0 0 0 1 1 1 01 mod 0 reg rim 2/9 
Segment register to register/memory 11 0 0 0 1 1 0 o I modOreg rim 2/11 

PUSH = Push: 

Memory /1 1 1 1 1 1 1 1 / mod 110 rim / 16 
Register Lo~ 0 10 reg / 10 
Segment register /0 0 0 reg 0 9 

'~rl " 

PUSHA = Push All 10 1 1 o 0 0 0 o I 36 

POP = Pop: 

Memory 
11 0 0 o 1 1 1 1 I modOOO rim I 20 

Register 
10 1 0 1 1 reg I 10 

Segment register 
10 0 0 reg 1 1 11 (reg?Ol) 8 

, 

XCHG = Exchango: 

Register/memory with register 11 0 0 0 0 1 1 wi mod reg rim I 4117 

Register with accumulator 11 0 0 1 0 reg I 3 

IN = Input from: 

fixed port 11 1 1 o 0 1 owl port I 10 

Variable port 11 1 1 0 1 1 0 wi 8 

OUT = Oulpullo: 

Fixed port 11 1 1 0 0 1 1 w port I 9 

Variable port 11 1 1 0 1 1 1 w 7 

XLAT = Translate byte to AL 11 1 o 1 0 1 1 1 11 

LEA = Load EA to register 11 0 0 0 1 1 0 1 mod reg rim I 6 

LOS = Load pointer to OS 11 1 0 0 0 1 0 1 mod reg rim I (mod?ll) 18 

LES :::; Load painter to ES 11 1 0 0 0 1 0 0 mod reg rim I (mod?11) 18 

LAHF = Load AH wilh flags 11 0 0 1 1 1 1 1 2 

SAHF .. Store AH into flags 11 0 0 1 1 1 1 0 3 

PUSHF :::; Push flags 11 0 0 1 1 1 0 o I 9 

POPF = Pop Flags 11 0 0 1 1 1 0 1 I 8 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

C-1 



in1:et APPENDIXC 

Table C.1. Instruction Set Summary (Continued) 

Function Format 
Clock Comments Cycles 

DATA TRANSFER (Continued) 
SEGMENT", Segment Override: 

GS I 0 0 1 0 1 1 1 0 I 2 

SS 10 0 1 1 0 1 1 o I 2 

OS 10 0 1 1 1 1 1 o I 2 

ES 10 0 1 0 0 1 1 o I 2 

ARITHMETIC 
ADD= Add: 

Reg/memory with register to either 10 0 0 0 0 0 d wi mod reg rim I 3/10 

Immediate to register/memory 11 0 0 0 0 0 s wi modOOO rim I data I data if s w=OI I 4/16 

Immediate to accumulator 10 0 0 0 0 1 0 wi data I data if w=1 I 3/4 Bll6-bil 

ADC = Add with carry: 

Reg/memory with register to either 10 0 0 1 0 0 d wi mod reg rim I 3/10 

Immediate to register/memory 11 0 0 0 0 0 s wi modOl0 rim I data I data if s w_Ot I 4/t6 

I mmediate to accumulator 10 0 0 t 0 1 0 wi data I data ifw-1 I 3/4 8i16-bit 

INC = Increment 

Register/memory 11 1 1 1 1 1 1 wi modOOO rim I 3/15 

Register 10 1 0 0 0 reg I 3 

SUB = Subtra,l 

Reg/memory and register to either 10 0 1 0 1 0 d wi mod reg rim I 3/10 

Immediate from register/memory 11 0 0 0 0 0 s wi mod 101 rim I data I data if s w_Ol I 4/16 

Immediate from accumulator 10 0 1 0 1 1 0 wi data I data if w=1 I 3/4 8/16-bit 

SRa = Subtract with borrow 

Reg/memory and register to 'either 10 0 0 1 1 0 d wi mod reg rim I 3/10 

Immediate from register/memory 11 0 0 0 0 0 s wi mod 0 11 rim I data I data if s w=OI I 4/16 

Immediate from accumulator 10 0 0 1 1 1 0 wi data I data·ifw=1 I 3/4 Bll6-bit 

DEC = Decrement 

Register/memory 11 1 1 1 1 1 1 wi modOO1 rim I 3/15 

Register 10 1 0 0 1 reg I 3 

CMP = Compare: 

Register/memory with register 10 0 1 1 1 0 1 wi mod reg rim I 3/10 

Register with register/memory 10 0 1 1 1 0 0 wi mod reg rim I 3/10 

Immediate with register/memory 11 0 0 0 0 0 s wi mod 111 rim I data I data if s woOl I 3/10 

Immediate with accumulator 10 0 1 1 1 1 0 wi data I data ifw=1 I 3/4 8116-bit 

NEG", Change sign 11 1 1 1 0 1 1 wi mod 0 11 i/m i 3 

AAA '" ASCII adjust for Add 10 0 1 1 0 1 1 1 I 8 

OAA = Decimal adjust for add 10 0 1 0 0 1 1 1 I 4 

AAS = ASCII adjust for subtract 10 0 1 1 1 1 1 1 I 7 

DAS = Decimal adjust for subtract 10 0 1 0 1 1 1 1 I 4 

MUl = Multiply (unsigned): 11 1 1 1 0 1 1 wi mod 1 00 rim I 
Register-Byte 26-28 

R~gister-Word 35-37 

Memory-Byte 32-34 

Memory-Word 41-43 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

C-2 



APPENDIXC 

Table C.1. Instruction Set Summary (Continued) 

Function Format 

ARITHMETIC (Conllnued) 
IMUl = Integer multiply (signed): It 1 1 1 01 1 w I mod10 1 rim I 

Clock 
Cycles 

Register-Byte 25-28 

Register-Word 34-37 

.~~~ ~~ 

Memory-Word 40-43 

DIV :: Divide (unsigned): 

Register-Byte 

Register-Word 

Memory-Byte 

Memory-Word 

IDIV:: Integer divide (signed): 

Register-Byte 

Register-Word 

Memory-Byte 

Memory-Word 

AAM = ASCII adjust for multiply 

AAD = ASCII adjust for divide 

caw = Convert byte to word 

CWO = Convert word to double word 

lOGIC 
Shlft/Rolate Instructions: 

Register/Memory by 1 

Register/Memory by CL 

11 1 1 1 0 1 1 w I mod 110 rim 

11 1 1 1 0 1 1 wi mod111 rim 

11 o 10 01 

11 1 10 01 

11 o I 
11 0 1 1 0 0 1 I 

11101000wimodTTl rim I 
11 1 0 1 0 0 1 wi modTTl rim I 

29 

38 

35 

44 

44-52 

53-61 

50-58 

59-67 

19 

15 

2/15 

5+n/17+n 

Comments 

Ill!iI~f~iH it tPtHI Il II II Ii Ii lii!-ilJ.iUli 
TTl Instruction 

00 0 ROl 
00 1 ROR 
o 1 0 RCl 
o 1 1 RCR 
1 0 0 SHUSAl 
1 0 1 SHR 
111 SAR 

AND. And: 

Reg/memory and register to either 10 0 1 wi mod reg rim 3/10 

Immediate to register/memory 11 wi mod 1 00 rim data dataifw=1 4/16 

Immediate to accumulator 10 wi data dataifw=1 3/4 8!16-bit 

TEST:: And function to flags, no result: 

Register/memory and register 11 wi mod reg rim 3/10 

Immediate data and register/memory 11 wi modOOO rim data dataifw=1 4/10 

Immediate data and accumulator 11 0 1 0 1 wi data dataifw_1 3/4 Bl16-bit 

OR.Or: 

Reg/memory and register to either 10 0 0 0 1 wi mod reg rim 3110 

Immediate to register/memory lio wi mod 00 1 rim data data ifw_1 4/16 

Immediate to accumulator 10 0 1 0 wi data dataifw=1 3/4 8/16-bit 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

C·3 



in1:et APPENDIXC 

Table C.1. Instruction Set Summary (Continued) 

Function 

LOGIC (Conlln.ad) 
XOR :: Exclusive Dr: 

Reg/memory and register to either 

Immediate to register/memory 

Immediate to accumulator 

Not = Invert register/memory 

STRING MANIPULATION: 

MOVS = Move byte/word 

eMPS :::: Compare byte/Word 

SeAS = Scan bytelword 

LOOS = Load byte/wd to AUAX 

ST08 = Star byte/wd from AUA 

III" H 111>'" iJit*'tll~!JI! 4l~1 
IloIIt~iJN~HWMH! Q~ 11>11 

Repeated by count in ex 
MOVS " Move string 

eMPS - Compare string 

SeAS" Scan string 

LODS - load string 

ST08 - Store string 

IPIIII'!ftfMi1! !! III! IIII !! !! ~, 

CONTROL TRANSFER 
CALL = Call: 

Direct within segment 

Register memory indirect within segment 

Oirectintersegment 

indirectintersegment 

JMP ::: Unconditional jump: 

Short/long 

Direct within segment 

Register/memory indirect with segment 

Directintersegment 

Indirectintersegment 

RET = Rolum lrom CHPS: 

Within segment 

With seg adding immed to SP 

lntersegment 

lntersegment adding immediate to SP 

JE/JZ = Jump on equal zero 

JL/JNGE = Jump on less/not greater or equal 

JLE/JNG = Jump on less or eQuallnot greater 

Format 

10 o t t 0 d wi mod reg rim I 

It o 0 o w I mod 110 rim I data data if w=l 

10 o 1 1 o 1 wi data I data ifw=l 

11 1 t 1 0 1 w I modOl 0 rim I 

o 1 o a 1 

at 0 o 1 

o t o 1 

It 1 1 o 1 o 0 a I disp·low disp-hour 

It 1 1 1 1 1 1 11 modO 10 rim 

11 o 0 1 1 o 1 o I segment offset 

I selector 

11 1 1 1 1 t 1 t modO 11 rim (mod? tl) 

11 1 1 o 1 o 1 tI 
It t 1 o t o 0 1 I disp-tow disp-high 

It 1 1 1 1 1 1 11 modlOO rim 

11 1 1 o 1 o 1 o I segment offset 

I selector 

Lll:...:t....:..l ..:t...:.l _1:...:1_1'-L..:m",o",d.:.l.::.0.:..l _----'r/"'m:....J1 (mod? 11) 

11 1 0 o a 1 1 

11 o 0 0 0 t 0 data-tow data-high 

11 t o 0 t o t 1 

11 o 0 o t 0 data-tow data-high 

10 1 1 1 o 1 o 0 disp 

10 1 1 1 1 1 0 disp 

10 1 1 1 1 1 1 a disp 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

C-4 

Clock 
Cycles 

3/10 

4/16 

3(4 

14 

22 

15 

12 

10 

8+8n 

5+22n 

5+15n 

6+11n 

6+9n 

15 

t3/19 

23 

38 

t4 

14 

26 

14 

It/t7 

t6 

18 

22 

25 

4/13 

4/13 

4/13 

Comments 

Bll6-bit 

13ifJMP 
taken 

4ifJmp 
not taken 



in1'el .. APPENDIXC 

Table C.1. Instruction Set Summary (Continued) 

Function 

Co ..... 1 Tra"'" (Conlln.ad) 
JB/JNAE • Jump on below/not above or equal 

JBf/JNA. Jump on below or equal/not above 

JP/JPF. • Jump on parity/parity oven 

JO • Jump on overtlow 

JS. Jump on sign 

JNf/JNZ • Jump on not equallnot zero 

JNUJGE = Jump on not less/greater or equal 

JNlE/J6 '" Jump on not less or equaVgrea1er 

JNB/JAE = Jump on not below/above or equal 

JNBE/JA = Jump on not below or equaVabove 

JNP/JPO • Jump on not par/par odd 

JNO = Jump on not overflow 

JNS • Jump on not sign 

JCXZ • Jump on CX zero 

LOOP. Loop CX times 

LOOPZ/LOOPE • Loop while zeroJequal 

LOOPNZ/LOOPNE • Loop while not zeroJequal 

INT.lnlerrupl: 

Typa spocHied 

Typa3 

INTO = Interrupt on overflow 

IRET. Interrupl retum 

PROCESSOR CONTROL 

CLC • Clear carry 

CMC • Complement carry 

STC. Sot carry 

CLD • Clear direction 

ITO = Set direction 

CLI • Clear interrupt 

ITI • Sot interrupt 

HLT. Haft 

WAIT.Waft 

LOCK = Bus lock prefix 

ESC • Processor extension escape 

Format 

10 1 1 1 0 0 1 0 I dlsp I 
10 1 1 1 0 1 1 0 I dlsp I 
10 1 1 1 1 0 1 0 I dlSe I 
Lo 1 o 0 0 0 I disp J 
o 1 1 0 0 0 disp 

10 1 1 1 0 1 0 1 I dise I 
10 1 1 1 1 1 0 1 I disp I 
10 1 1 1111 11 dlsp I 
10 1 1 1 0 0 1 11 dlsp J 
10 1 1 0 1 1 11 dis2 I 
10 1 1 1 0 1 11 disp I 
10 1 1 1 0 0 0 1 I disp I 
10 1 1 1 1 0 0 1 I dlsp I 
111 1 0 0 0 1 1 I dlsp I 
111 1 0 0 0 1 0 I dlSe I 
I: 11 o 0 0 0 1 I disp 

I 11 o 0 0 0 0 dlsp 

11 1 0 0 1 1 0 1 I tyee 

It 1 0 0 1 1 1 1 I 

II 1 1 1 1 o 0 0 I 
11 o 1 o 1 I 
11 1 o 0 1 I 
11 1 1 1 1 1 o 0 I 
11 1 1 1 1 1 o 1 I 
11 1 1 1 o 1 o I 
11 1 1 1 o 1 11 

11 1 1 1 o 1 o 0 I 
11 o 0 1 1 o 1 11 

11 1 1 1 o 0 0 0 I 
11 1 o 1 1 T TTl modLLL rim 

(TIT UL are opcode to processor extenSion) 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

Clock 
Cycles 

4/13 

4/13 

4/13 

4/13 

4/13 

4/13 

4/13 

4/13 

4/13 

4/13 

4/13 

4/13 

5115 

6116 

6/16 

16 

47 

45 

48/4 

28 

Commentl 

JMPtaken/ 

JMP not taken 

IflNTtaken/ 

HINT not 

taken 

ffi8Si.o 



intel" APPENDIXC 

FOOTNOTES 

The Effective Address (EA) of the memory operand reg is assigned according to the following: 
is computed according to the mod and rim fields: 

if mod = 11 then rim is treated as a REG field 
if mod = 00 then DISP = 0*, disp-Iow and disp-high 
are absent 
if mod = 01 then DISP = disp-Iow sign-extended to 
16-bits, disp-high is absent 
if mod = 10 then DISP = disp-high:disp-Iow 

if rim = 000 then EA = (BX) + (SI) + DISP 
if rim = 001 then EA = (BX) + (01) + DISP 
if rim = 010 then EA = (BP) + (SI) + DISP 
if rim = 011 then EA = (BP) + (01) + DISP 
if rim = 100 then EA = (SI) + DISP 
if rim = 10 1 then EA = (01) + DISP 
if rim = 110 then EA = (BP) + DISP* 
if rim = 111 then EA = (BX) 1" DISP 

DISP follows 2nd byte of instruction (before data 
if required) 

"except if mod = 00 and rIm = 110 then EA = disp-high:disp-Iow. 

SEGMENT OVERRIDE PREFIX 

001 reg 1101 

C-6 

Segment 
reg Register 

00 ES 
01 CS 
10 SS 
11 DS 

REG is assigned according to the 
following table: 

16-Bit (w=l) 

000 AX 
001 CX 
OlODX 
011BX 
looSP 
101 BP 
110 SI 
111 01 

8-Bit (w=O) 

ooOAL 
001 CL 
OIODL 
011 BL 
100AH 
101CH 
110DH 
111 BH 

The physical address of all operands· 
addressed by the BP register are com­
puted using the SS segment register. The 
physical addresses of the destination 
operands of the string primitive operation 
(those addressed by the DI register) are 
computed using the ES segment, which 
may not be overridden. 



int'eL APPENDIXC 

Table C.2. Machine Instruction Decoding Guide 

1ST BYTE 
lNDBYTE BYTES 3,4,$,6 ASM·1I6 INSTRUCTION FORMAT 

HEX BINARY 

00 0000 0000 MOD REO, RIM (DISP-LO),(DISP-Ill) ADD RE081MEM8,REG8 

01 0000 0001 MOD REO RIM (DISP-LO),(DISP-Ill) ADD RE0161EM16,REG16 

02 0000 0010 MOD REO RIM (DISP-LO),(DISP-Ill) ADD RE08,RE08IMEM8 

03 0000 0011 MOD REO RIM (DISP-LO),(DISP-Ill) ADD RE016,RE0161MEM16 

04 0000 0100 DATA-8 ADD AL,lMMED8 

OS 0000 0101 DATA-LO DATA-HI ADD AX,lMMED16 

06 0000 0110 PUSH ES 

07 0000 0111 pop ES 

08 0000 0100 MOD REO RIM (DISP-LO),(DISP-HI) OR RE081MEM8,REG8 

09 0000 1001 MOD REO RIM (DISP-LO),(DISP-HI) OR RE0161MEM16,REO 16 

OA 0000 1010 MOD REO RIM (DISP-LO),(DISP-HI) OR RE08,RE08IMEM8 

OB 0000 1011 MOD REO RIM (DISP-LO),(DISP-HI) OR RE016,RE0161MEM16 

oc 0000 noo DATA-8 OR AL,lMMED8 

OD 0000 1101 DATA,LO DATA-HI OR AX,lMMED16 

OE 0000 1110 PUSH cs 
OF 0000 1111 (not used) 

10 0001 0000 MOD REO RIM (DISP-LO),(DISP-Ill) ADC REOSlMEM8,REG8 

11 0001 0001 MOD REO RIM (DISP-LO),(DISP-Ill) ADC RE0161MEM16,RE016 

12 0001 0010 MOD REO RIM (DISP-LO),(DISP-Ill) ADC RE08,RE08IMEM8 

13 0001 0011 MOD REO RIM (DISP-LO),(DISP-Ill) ADC RE016,RE0161MEM16 

14 0001 0100 DATA-8 ADC AL,lMMED8 

15 0001 0101 DATA-LO DATA-HI ADC AX,IMMED16 

16 0001 0110 PUSH SS 

17 0001 0111 pop SS 

18 0001 1000 MOD REO RIM (DISP-LO),(DISP-Ill) SBB RE081MEM8,RE08 

19 0001 1001 MOD REO RIM (DISP-LO),(DISP-Ill) SBB RE0161MEM16,REO 16 

lA 0001 1010. MOD REO RIM (DISP-LO),(DISP-Ill) SBB RE08,RE08IMEM8 

IB 0001 1011 MOD REO RIM (DISP-LO),(DISP-Ill) SBB RE016,RE0161MEM16 

lC 0001 1100 DATA-8 SBB AL,lMMED8 

10 0001 1101 DATA-LO DATA-HI SBB AX,IMMED16 

IE 0001 1110 PUSH DS 

IF 0001 1111 pop os 
20 0010 0000 MOD REO RIM (DISP-LO),(DISP-HI) AND REG8IMEM8,RE08 

21 0010 0001 MOD REO RIM (DISP-LO),(DISP-Hi) AND RE0161MEM16,RE016 

22 0010 0010 MOD REO RIM (DISP-LO),(DISP-Ill) AND RE08,RE08IMEM8 

23 0010 0911 MOD REO RIM (DISP-LO),(DISP-Ill) AND RE016,RE0161MEM16 

24 0010 0100 DATA-8 AND AL,lMMED8 

2S 0010 0101 DATA-LO DATA-HI AND AX,IMMED16 

26 0010 0110 ES: (segment override prefix) 

27 0010 0111 DAA 

28 0010 1000 MOD REO RIM (DISP-LO),(DISP-Ill) SUB RE081MEM8,RE08 

29 0010 1001 MOD REO RIM (DISP-LO),(DISP-HI) SUB RE0161MEM16,REO 16 

2A 0010 1010 MOD REO RIM (DISP-LO),(DISP-Ill) SUB RE08,RE08IMEM8 

2B 0010 1011 MOD REO RIM (DISP-LO),(DISP-HI) SUB RE016,RE0161MEM16 

2C 0010 1100 DATA-8 SUB AL,lMMED8 

2D 0010 1100 DATA-LO DATA-HI SUB AX,lMMED16 

C-7 



APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

lSTBYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86INSTRUCTION FORMAT 

HEX BINARY 

2E 0010 1110 cs: (segment override prefix) 

2F 0010 llll DAS 
30 0011 0000 MOD REO RIM (DISP-LO).(DISP-HI) XOR RE08JMEM8.RE08 
31 0011 0001 MOD REO RIM (DISP-LO).(DISP-HI) XOR REOl6JMEM16.RE016 
32 0011 0010 MOD REO RIM (DISP-LO),(DISP-HI) XOR RE08,RE08IMEM8 
33 0011 0011 MOD REO RIM (DISP-LO),(DISP-HI) XOR RE016,REG161MEM16 
34 0011 0100 DATA-8 XOR AL,lMMED8 
35 0011 0100 DATA-LO DATA-ID XOR AX,lMMED16 
36 OOll 0110 SS: (segment override prefix) 

37 0011 om AAA 
38 OOll 1000 MOD REO RIM (DISP-LO),(DISP-HI) CMP RE08JMEM8,RE08 
39 OOll 1001 MOD REO RIM (DISP-LO);(DISP-HI) CMP RE016IMEM16,REO 16 
3A 0011 1010 MOD REO RIM (DISP-LO),(DISP-ID) CMP RE08,REG8IMEM8 
3D 0011 1011 MOD REO RJM (DISP-LO),(DISP-HI) CMP RE016,REG161MEM16 
3C 0011 1100 DATA-8 CMP AL,lMMED8 
3D 0011 1101 DATA-LO DATA-ID CMP AX,lMMED16 
3E 0011 mo DS: (segment override prefIX) 

3F 0011 1111 AAS 
40 0100 0000 INC AX 
41 0100 0001 INC ex 
42 0100 0010 INC DX 
43 0100 0011 INC BX 
44 0100 0100 INC SP 
45 0100 0101 INC BP 
46 0100 0110 INC SI 
47 0100 om INC DI 
48 0100 1000 DEC AX 
49 0100 1001 DEC ex 
4A 0100 1010 DEC DX 
4D 0100 lOll DEC BX 
4C 0100 1100 DEC SP 
4D 0100 1101 DEC BP 
4E 0100 1110 DEC SI 
4F 0100 llll DEC DI 
50 0101 0000 PUSH AX 
51 0101 0001 PUSH ex 
52 0101 0010 PUSH DX 
53 0101 0011 PUSH BX 
54 0101 0100 PUSH SP 
55 0101 0101 PUSH BP 
56 0101 0110 PUSH SI 
57 0101 0111 PUSH DI 
58 0101 1000 pop AX 
59 0101 1001 pop ex 
5A 0101 1010 pop DX 
SB 0101 1011 pop BX 

c-s 



intet. APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM·86 INSTRUCI'IONFORMAT 

HEX BINARY 

SC 0101 1100 pop SP 

SD 0101 1101 pop BP 

SE 0101 1110 pop SI 

SF 0101 1111 pop DI 
60 0110 0000 PUSHA (18618 ONLY) 

61 0110 0001 POPA (18618 ONLy) 

62 0110 0010 MOD REO RIM BOUND RE016,MEM16(18618 ONLY) 

63 0110 0011 (not used) 

64 0110 0100 (not used) 

65 0110 0101 (not used) 

66 0110 0110 (not used) 

67 0110 0111 (not used) 

68 0110 1000 DATA-LO DATA-In PUSH IMMED16(18618 ONLY) 

69 0110 1001 MOD REO RIM DATA-LO,DATA-In IMUL IMMED16(18618 ONLy) 

6A 0110 1010 DATA-8 PUSH IMMED8(18618 ONLy) 

6B 0110 1011 MOD REO RIM DATA-8 IMUL IMMED8(18618 ONLy) 

6C 0110 1100 INS MEMB,DX(18618 ONLy) 

6D 0110 1101 INS MEM16,DX(18618 ONLy) 

6E 0110 1110 OUTS MEMB,CX(l8618 ONLy) 

6F 0110 1111 OUTS MEM16,DX(18618 ONLY) 

70 0111 0000 IP-INCB 10 SHORT-LABEL 

71 0111 0001 IP-INCS JNO SHORT-LABEL 

72 0111 0010 IP-INCS JBI SHORT-LABEL 
JNAE! 
lC 

73 0111 0011 IP-INC8 JNBI SHORT-LABEL 
1AE1 
JNC 

74 0111 0100 IP-INCS JEIJZ SHORT-LABEL 

75 0111 0101 IP-INCB JNEIJNZ SHORT-LABEL 

76 0111 0110 IP-INCS mEIJNA SHORT-LABEL 

77 0111 0111 IP-INCS JNBE! SHORT-LABEL 
1A 

7B 0111 1000 IP-INCS IS SHORT-LABEL 

79 0111 1001 IP-INCS JNS SHORT-LABEL 

7A 0111 1010 IP-INCS JPIlPE SHORT-LABEL 
7B 0111 1011 IP-INCS JNPnPO SHORT-LABEL 

7C 0111 1100 IP-INCB HI SHORT-LABEL 
JNOE 

7D 0111 1101 IP-INCS lNUOE SHORT-LABEL 

7E 0111 1110 IP-INCS 1LEI SHORT-LABEL 
JNO 

7F 0111 1111 IP-INCS JNLEI SHORT-LABEL 
10 

BO 1000 0000 MOD 000 RIM (DISP LO),(DISP HI) ADD RE08/MEMB,lMMEDB 
DATA-8 

e-g 



APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM·86INSTRUCl'ION FORMAT 

HEX BINARY 

80 1000 0000 MOD 001 RIM (DISP-LO).(DISP-HI). OR REG8IMEM8,IMMED8 

DATA-8 
80 1000 000 MOD 010 RIM (DISP-LO).(DISP-Fn). ADC REG8IMEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 011 RIM (DISP-LO).(DISP-Fn). SBB REG8IMEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 100 RIM (DISP-LO).(DISP-Fn). AND REG8IMEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 101 RIM (DISP-LO).(DISP-Fn). SUB REG81MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 110 RIM (DISP-LO).(DISP-Fn). XOR REG8IMEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 111 RIM (DISP-LO).(DISP-Fn). CMP REG8IMEM8,IMMED8 

DATA-8 
81 1000 0001 MOD 000 RIM (DISP-LO).(DISP-HI). ADD REG 161MEM16,IMMED16 

DATA-LO,DATA-Fn 
81 1000 0001 MOD 001 RIM (DISP-LO).(DISP-HI). OR REG 161MEM16,IMMED16 

DATA-LO,DATA-Fn 
81 1000 0001 MOD 010 RIM (DISP-LO).(DISP-Fn). ADC REG 161MEM16,IMMED16 

DATA-LO,DATA-Fn 

81 1000 0001 MOD 011 RIM (DISP-LO).(DISP-Fn). SBB REG 161MEM16,IMMED16 
DATA-LO,DATA-Fn 

81 1000 0001 MOD 100 RIM (DISP-LO).(DISP-Fn). AND REG16IMEM16,IMMED16 
DATA-LO,DATA-Fn 

81 1000 0001 MOD 101 RIM (DISP-LO).(DISP-Fn). SUB REG 161MEM16,IMMED16 
DATA-LO,DATA-Fn 

81 1000 0001 MOD 110 RIM (DISP-LO).(DISP-Fn). XOR REG 161MEM16,IMMED16 
DATA-LO,DATA-Fn 

81 1000 0001 MODlll RIM (DISP-LO).(DISP-Fn). CMP REG 161MEM16,IMMED16 
DATA-LO,DATA-Fn 

82 1000 0010 MOD 000 RIM (DISP-LO).(DISP-Fn). ADD REG8IMEM8,IMMED8 
DATA-8 

82 1000 0010 MOD 001 RIM (not used) 

82 1000 0010 MOD 010 RIM (DISP-LO).(DISP-Fn). ADC REG8IMEM8,IMMED8 
DATA-8 

82 1000 0010 MOD 011 RIM (DISP-LO).(DISP-Fn). SBB REG81MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD 100 RIM (not used) 

82 1000 0010 MOD 101 RIM (DISP-LO).(DISP-Fn). SUB REG8IMEM8,IMMED8 
DATA-8 

82 1000 0010 MOD 110 RIM (not used) 

82 1000 0010 MOD III RIM (DISP-LO).(DISP-Fn). CMP REG8IMEM8,IMMED8 
DATA-8 

83 1000 0011 MOD 000 RIM (DISP-LO).(DISP-HI), ADD REG161MEM16,IMMED8 
DATA-SX 

83 1000 0011 MOD 001 RIM (not used) 

C-10 



APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

lSTBYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

83 1000 0011 MOD 010 RIM (DISP-LO),(DISP-ID), ADC RE0161MEM16,IMMED8 
DATA-SX 

83 1000 0011 MOD 011 RIM (DISP-LO),(DISP-HI), SBB REG161MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD 100 RIM (not used) 

83 1000 0011 MOD 101 RIM (DISP-LO),(DISP-ID), SUB RE0161MEM16,IMMED8 

DATA-SX 
83 1000 011 MOD 110 RIM (not used) 

83 1000 0011 MODlll RIM (DISP-LO),(DISP-HI), CMP REGl61MEM16,IMMED8 

DATA-SX 
84 1000 0100 MOD REG RIM (DISP-LO),(DISP-ID) TEST REG8,MEM8,REG8 

85 1000 0101 MOD REG RIM (DISP-LO),(DISP-ID) TEST REGl6IMEM16,REG16 

86 1000 0110 MOD REO RIM (DISP-LO),(DISP-HI) XCHO REG8,REG8IMEM8 

87 1000 0111 MOD REO RIM (DISP-LO),(DISP-HI) XCHO REGl6,REGI6,MEM16 

88 1000 1000 MOD REO RIM (DISP-LO),(DISP-ID) MOV REG8IMEM8,RE08 
89 1000 1001 MOD REG RIM (DISP-LO),(DISP-HI) MOV RE0161MEM16lREG 16 

8A 1000 1010 MOD REO RIM (DISP-LO),(DISP-ID) MOV RE08,RE08IMEM8 

8B 1000 1011 MOD REG RIM (DISP-LO),(DISP-HI) MOV REGl6,REGl6IMEMI6 

8C 1000 1100 MODOSRRIM (DISP-LO),(DISP-HI) REOI6IMEM16,SEGREO 

8C 1000 1100 MODI-RM (not used) 

8D 1000 1101 MOD REO RIM (DISP-LO),(DISP-HI) LEA REGl6,MEMI6 

8E 1000 1110 MODOSRRIM (DISP-LO),(DISP-HI) MOV SEOREG,REG16IMEM16 

8E 1000 1110 MODI-RIM (not used) 

8F 1000 1111 MOD 000 RIM (DISP-LO),(DISP-HI) 

8F 1000 1111 MOD 001 RIM (not used) 

8F 1000 1111 MOD 010 RIM (not used) 

8F 1000 1111 MOD 011 RIM (not used) 

8F 1000 1111 MOD 100 RIM (not used) 

8F 1000 1111 MOD 101 RIM (not used) 

8F 1000 1111 MOD 110 RIM (not used) 

90 1001 0000 NOP (exchange AX,AX) 

91 1001 0001 XCHO AX,ex 
92 1001 0010 XCHO AX,DX 
93 1001 0011 XCHO AX,BX 

94 1001 0100 XCHO AX,SP 

95 1001 0101 XCHO AX,BP 

96 1001 0110 XCHO AX,SI 

97 1001 0111 XCHG AX,DI 

98 1001 1000 CBW 
99 1001 1001 CWD 

9A 1001 1010 DISP-LO DISP-HI,SEO-LO, CALL FAlU'ROC 
SEG-HI 

9B 1001 1011 WAIT 
9C 1001 1100 PUSHF 
9D 1001 1101 POPF 
9E 1001 1110 SAHF 

C-11 



APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

lSTBYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

9F 1001 llll LAHF 

AO 1010 0000 ADDR-LO ADDR-ID MOV AL,MEMS 

Al 1010 0001 ADDR-LO ADDR-ID MOV AX,MEM16 

A2 1010 0010 ADDR-LO ADDR-ID MOV MEMS,AL 

A3 1010 OOll ADDR-LO ADDR-ID MOV MEM16,AL 

A4 1010 0100 MOVS DEST-STRS,SRC-STRS 

AS 1010 0101 MOVS DEST -STR16,SRC-STR16 

A6 1010 OllO CMPS DEST -STRS,SR-STRS 

A7 1010 Olll CMPS DEST -STR16,sRC-STR16 

AS 1010 1000 DATA-8 TEST AL,IMMEDS 

A9 1010 1001 DATA-LO DATA-ID TEST AX,1MMED16 

AA 1010 1010 sros DEST-STRS 

AD 1010 lOll STOS DEST-STR16 

AC 1010 llOO LODS SRC-STRS 

AD 1010 llOl LODS SRC-STR16 

AE 1010 lllO SCAS DEST-STRS 

AF 1010 llli SCAS DEST-STR16 

BO lOll 0000 DATA-S MOV AL,IMMEDS 

Bl lOll 0001 DATA-S MOV CL,IMMEDS 

B2 1011 0010 DATA-S MOV DL,1MMEDS 

B3 1011 0011 DATA-S MOV BL,IMMEDS 

B4 1011 0100 DATA-S MOV AH,IMMEDS 

BS 1011 0101 DATA-S MOV CH,IMMEDS 

B6 lOll 0110 DATA-S MOV DH,IMMEDS 

B7 1011 Olll DATA-S MOV BH,IMMEDS 

BS 1011 1000 DATA-LO DATA-ID MOV AX,IMMED16 

B9 1011 1001 DATA-LO DATA-ID MOV CX,IMMED16 

BA 1011 1010 DATA-LO DATA-ID MOV DX,IMMED16 

BB 1011 lOll DATA-LO DATA-ID MOV BX,1MMED16 

DC 1011 1100 DATA-LO DATA-ID MOV SP,IMMED16 

BD 1011 1101 DATA-LO DATA-ID MOV BP,1MMED16 

BE 1011 mo DATA-LO DATA-ID MOV SI,1MMED16 
BF 1011 1111 DATA-LO DATA-ID MOV DI,1MMED16 
co 1100 0000 MOD 000 RIM DATA-S ROL REG8IMEM8,IMMED8(18Ci18 ONLY) 

co 1100 0000 MOD 001 RIM DATA-S ROR REGBlMEM8,IMMED8(18Ci18 ONLY) 

co llOO 0000 MOD 010 RIM DATA-S RCL REG8lMEM8,IMMED8(18Ci18 ONLY) 

co 1100 0000 MOD 011 RIM DATA-8 R:R REG8IMEM8,IMMED8(i8Ci18 ONLY) 

co 1100 0000 MOD 100 RIM DATA-S SHLISAL REGBlMEM8,IMMED8(18Ci18 ONLy) 

co 1100 0000 MOD 101 RIM DATA-S SHR REG8lMEMS,IMMED8(18Ci18 ONLY) 

co 1100 0000 MODlll.RIM DATA-S SAR REG8IMEMS,IMMED8(l8Ci18 ONLY) 

Cl 1100 0001 MOD 000 RIM DATA-S ROL REG161MDM16,IMMED8(18Ci18 ONLy) 

Cl 1100 0001 MOD 001 RIM DATA-S ROR REG161MDM16,IMMED8(18Ci18 ONLy) 

Cl 1100 0001 MOD 010 RIM DATA-S RCL REG161MDM16JMMED8(18Ci18 ONLY) 

Cl 1100 0001 MOD OIl RIM DATA-S RCR REG161MDM16,IMMED8(18Ci18 ONLy) 

Cl llOO 0001 MOD 100 RIM DATA-S SHLISAL REG161MDM16JMMED8(18618 ONLY) 

Cl 1100 0001 MOD 101 RIM DATA-S SHR REG161MDM16JMMED8(18Ci18 ONLY) 

C-12 



int:et APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

lSTBYTE 
ZNDBYTE BYTES 3,4,5,6 ASM·86 INSTRUCTION FORMAT 

HEX BINARY 

C1 1100 0001 MOD 111 RIM DATA·S SAR REG16IMDM16,IMMEDS(lS618 
ONLY) 

C2 1100 0010 DATA·LO DATA·m RET IMMED 16(intraseg) 

C3 1100 0011 RET (intrascgment) 

C4 1100 0100 MOD REG RIM (DISP·LO),(DISp·m) LES REG16,MEM16 

C5 1100 0101 MOD REG RIM (DISP·LO),(DISp·m) LOS REG16,MEM16 

C6 1100 OllO MOD 000 RIM (DISP·LO),(DISp·m), MOV MEMS,lMMEDS 

DATA·S 

C6 1100 0110 MOD 001 RIM (not used) 

C6 1100 0110 MOD 010 RIM (not used) 

C6 1100 0110 MOD 011 RIM (not used) 

C6 1100 0110 MOD 100 RIM (not used) 

C6 1100 0110 MOD 101 RIM (not used) 

C6 1100 0110 MOD 110 RIM (not used) 

C6 1100 0110 MOD 111 RIM (not used) 

C7 1100 0111 MOD 000 RIM (DISP·LO),(DISp·m), MOV MEM16,IMMED16 

DATA·LO,DATA·m 
C7 1100 0111 MOD 001 RIM (not used) 

C7 1100 0111 MOD 010 RIM (not used) 

C7 1100 0111 MOD 011 RIM (not used) 

C7 1100 0111 MOD 100 RIM (not used) 

C7 1100 0111 MOD 101 RIM (not used) 

C7 1100 0111 MOD 110 RIM (not used) 

C7 1100 0111 MOD 111 RIM (not used) 

CS 1100 1000 DATA·LO DATA·m,LEVEL ENTER IMMED16,IMMEDS(1S618 ONLY) 

C9 1100 1001 LEAVE (1S618 ONLY) 

CA 1100 1010 DATA·LO DATA·m RET IMMED16 (interscgment) 

CB 1100 1011 RET (intersegment) 

CC 1100 1100 INT 3 

CD 1100 1101 DATA·S INT IMMEDS 

CE 1100 1110 INTO 

CF 1100 1111 lRET 
DO 1101 0000 MOD 000 RIM (DISP·LO),(DISP·m) ROL REGSIMEMS,l 

DO 1101 0000 MOD 001 RIM (DISp·LO),(DISP·m) ROR REGSIMEMS,l 

DO 1101 0000 MOD 010 RIM (DISp·LO),(DISp·m) RCL REGSIMEMS,l 

DO 1101 0000 MOD 011 RIM (DISp·LO),(DISp·m) RCR REGSIMEMS,l 

DO 1101 0000 MOD 100 RIM (DISP·LO),(DISp·m) SALISHL REGSIMEMS,l 

DO 1101 '0000 MOD 101 RIM (DISP·LO),(DISp·m) SUR REGSIMEMS,l 

DO 1101 0000 MOD 110 RIM (not used) 

DO 1101 0000 MOD 111 RIM (DISP·LO),(DISP·m) SAR REGSIMEMS,l 

01 1101 0001 MOD 000 RIM (DISP·LO),(DISp·m) SAR REG161MEM16,l 

D1 1101 0001 MOD 001 RIM (DISP·LO),(DISp·m) ROR REG161MEM16,l 

D1 1101 0001 MOD 010 RIM (DISP·LO),(DISP·m) RCL REG161MEM16,l 

D1 1101 0001 MOD 011 RIM (DISP·LO),(DISp·m) RCR REG16IMEM16,l 

D1 1101 0001 MOD 100 RIM (DISP·LO),(DISP·m) SALISHL REG161MEM16,l 

D1 1101 0001 MOD 101 RIM (DISP·LO),(DISp·m) SUR REG16/MEM16,l 

D1 1101 0001 MOD 110 RIM (not used) 

C-13 



in1:et APPENDIX C 

Table C.2. Machine Instruction Decoding Guide (Continued) 

lSTBYTE 
lNDBYTE BYTES 3,4,5,6 ASM·86 INSTRUCTION FORMAT 

HEX BINARY 

D1 1101 0001 MOD 111 RIM (DISP-LO),(DISP-HI) SAR REG161MEM16,1 

D2 1101 0010 MOD 000 RIM (DISP-LO),(DISP-ill) ROL REG8IMEM8,CL 

D2 1101 0010 MOD 001 RIM (DISP-LO),(DISP-ill) ROR REG8IMEM8,CL 

D2 1101 0010 MOD 010 RIM (DISP-LO),(DISP-ill) RCL REG8IMEM8,CL 

D2 1101 0010 MOD 011 RIM (DISP-LO),(DISP-ill) RCR REG8IMEM8,CL 

D2 1101 0010 MOD 100 RIM (DISP-LO),(DISP-ill) SALISHL REG8IMEM8,CL 

D2 1101 0010 MOD 101 RIM (DISP-LO),(DISP-ill) SHR REG81MEM8,CL 

D2 1101 0010 MOD 110 RIM (not used) 

D2 1101 0010 MOD 111 RIM (DISP-LO),(DISP-ill) SAR REG8IMEM8,CL 

D3 1101 0011 MOD 000 RIM (DISP-LO),(DISP-ill) ROL REG16,MEMI6,CL 

D3 1101 0011 MOD 001 RIM (DISP-LO),(DISP-ill) ROR REG16,MEMI6,CL 

D3 1101 0011 MOD 010 RIM (DISP-LO),(DISP-HI) RCL REG16,MEMI6,CL 

D3 1101 0011 MOD 011 RIM (DISP-LO),(DISP-HI) RCR REGI6,MEMI6,CL 

D3 1101 0011 MOD 100 RIM (DISP-LO),(DISP-ill) SALISHL REG16,MEMI6,CL 

D3 1101 0011 MOD 001 RIM (DISP-LO),(DISP-ill) SHR REG16,MEMI6,CL 

D3 1101 0011 MOD 110 RIM (not used) 

D3 1101 0011 MOD 111 RIM (DISP-LO),(DISP-ill) SAR REG16,MEMI6,CL 

D4 1101 0100 00001010 AAM 
D5 1101 0101 00001010 AAD 

D6 1101 0110 (not used) 

D7 1101 0111 XLAT SOURCE-TABLE 

D8 1101 1000 MOD 000 RIM 

lXXX MOD yyy RIM (DISP-LO),(DISP-ill) ESC OPCODE,SOURCE 

DF 1101 1111 MOD 111 RIM 

EO 1110 0000 IP-INC-8 LOOPNFJI SHORT-LABEL 
LOOPNZ 

El 1110 0001 IP-INC-8 LOOPFJ SHORT-LABEL 

LOOPZ 

E2 1110 0010 IP-INC-8 LOOP SHORT-LABEL 

E3 1110 0011 IP-INC-8 lCXZ SHORT-LABEL 

E4 1110 0100 DATA-8 IN AL,lMMED8 

E5 1110 0101 DATA-8 IN AX,lMMED8 

E6 1110 0110 DATA-8 OUT AL,lMMED8 

E7 1110 0111 DATA-8 OUT AX,lMMED8 

E8 1110 1000 IP-INC-LO IP-PINC-ill CALL NEAR-PROC 

E9 1110 1001 IP-INC-LO IP-INC-ill IMP NEAR-LABEL 

EA 1110 1010 IP-LO IP-ID,CS-LO,CS-ID :IMP FAR-LABEL 

EB 1110 1011 IP-INC8 IMP SHORT-LABEL 

EC 1110 1100 IN AL,DX 

ED 1110 1101 IN AX,DX 

EE 1110 1110 OUT AL,DX 

EF 1110 1111 OUT AX,DX 

PO 1111 0000 LOCK (prefix) 

Fl 1111 0001 (not used) 

F2 1111 0010 REPNFJREPNZ 
F3 1111 0011 REPIREPElREPZ 

C-14 



intel .. APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

lSTBY1E 
2NDBY1E BYTES 3,4,5,6 ASM-86 INSTRVCl'IONFORMAT 

HEX BINARY 

F4 1111 0100 lILT 

FS 1111 0101 CMC 

F6 1111 0110 MOD 000 RIM (DISP-lO),(DISP-ID), lEST REG8JMEM8,IMMED8 

DATA-8 

F6 1111 0110 MOD 001 RIM (not used) 

F6 1111 0110 MOD 010 RIM (DISP-lO),(DISP·1D) NOT REG8JMBM8 

F6 1111 0110 MOD 011 RIM (DISP-lO).(DISP-ID) NEG REG8JMBM8 

F6 1111 0110 MOD 100 RIM (DISP-lO),(DISP-ID) MUL REG8JMBM8 

F6 1111 0110 MOD 101 RIM (DISP-lO),(DISP-ID) IMUL REG8JMBM8 

F6 1111 0110 MOD 110 RIM (DISP-lO).(DISP-ID) DIV REG8JMBM8 

F6 1111 0110 MOD 111 RIM (DISPlO),(DISPID) IDIV REG8JMBM8 

F7 1111 Olll MOD 000 RIM (DISP-lO),(DISP-ID), TEST REG 16JMEM16,IMMED16 

DATA-lO,DATA-1D 

F7 1111 0111 MOD 001 RIM (not used) 

F7 1111 0111 MOD 010 RIM (DISP-LO),(DISP-ID) NOT REG16IMBM16 

F7 1111 0111 MOD 011 RIM (DISP-lO),(DISP-ID) NEG REG16IMBM16 

F7 1111 Olll MOD 100 RIM (DISP-lO),(DISP-ID) MUL REG 16JMEM16 

F7 1111 0111 MOD 101 RIM (DISP-lO),(DISP-ID) IMUL REG16IMBM16 

F7 1111 0111 MOD 110 RIM (DISP-lO),(DISP-1D) DIV REG 16IMBM16 

F7 1111 Olll MOD 111 RIM (DISP-lO),(DISP-ID) IDIV REG16IMBM16 

F8 1111 0100 CLC 

F9 1111 1001 STC 

FA 1111 1010 cu 
fB 1111 1011 STI 

oc 1111 1100 CLD 

FD 1111 1101 SID 

FE 1111 1110 MOD 000 RIM (DISP-lO),(DISP-1D) INC REG8JMBM8 

FE 1111 1110 MOD 001 RIM (DISP-lO),(DISP-1D) DEC REG8IMBM8 

FE 1111 1110 MOD 010 RIM (not used) 

FE 1111 1110 MOD 011 RIM (not used) 

FE 1111 1110 MOD 100 RIM (not used) 

FE 1111 1110 MOD 101 RIM (not used) 

FE 1111 1110 MOD 110 RIM (not used) 

FE 1111 1110 MODlll RIM (not used) 

FF 1111 1111 MOD 000 RIM (DISP-lO),(DISP-1D) INC MBM16 

FF 1111 1111 MOD 001 RIM (DISP-lO),(DISP-1D) DEC MBM16 

FF 1111 1111 MOD 010 RIM (DISP-lO),(DISP-ID) CALL REG16JMEMI6("m1ra) 

FF 1111 1111 MOD 011 RIM (DISP-LO),(DISP-ID) CALL MBM16(intersesment) 

FF 1111 1111 MOD 100 RIM (DISP-lO),(DISP-1D) lMP REG16JMEM16(in1ra) 

FF 1111 1111 MOD 101 RIM (DISP-lO),(DISP~1D) lMP MBM16(intersesment) 

FF 1111 1111 MOD 110 RIM (DISP-lO),(DISP-1D) PUSH MBM16 

FF 1111 llll MOD III RIM (not used) 

C-15 



LO 
H I 0 I 2 

ADD ADD ADD 
0 

b,f,r/m w,f,rim b,t,rlm 

ADC ADC ADC 
I 

b,f,r/m w,f,r/m b,t,rlm 

AND AND AND 
2 

b,f,r/m w,f,r/m b,t,rlm 

XOR XOR XOR 
3 

b,f,r/m w,f,r/m b,t,rlm 

INC INC INC 
4 

AX CX DX 

PUSH PUSH PUSH 
5 

AX CX DX 

BOUND 
6 PUSHA POPA 

w,f,r/m 

181 
7 JO INO 

INAB 

Immed Immed Immed 
8 

b,T/m w,r/m b,T/m 

XCHG XCHG XCHO 
9 

AX CX DX 

MOV MOV MOV 
A 

m4 AL m-loAX AL-lom 

MOV MOV MOV 
B 

j-loAL i-loCL j-loDL 

Shift Shift RET. 
C 

b,i w,i (i+SP) 

Shift Shift Shift 
D 

b w b,v 

LOOPNZI LOOPZl 
E LOOP 

LOOPNE LOOPE 

F LOCK REP 

APPENDIX C 

Table C.3. Mnemonic Encoding Matrix 

3 4 5 6 7 8 9 A 

ADD ADD ADD PUSH pop OR OR OR 

w,t,r/m b,ia w,ia ES ES b,f,r/m w,f,rim b,t,rlm 

ADC ADC ADC PUSH pop SBB SBB SBB 

w,t,r/m b,i w,i SS SS b,f,r/m w,f,r/m b,t,rlm 

AND AND AND SEO SUB SUB SUB 
DAA 

w,t,r/m h,i w,i =ES b,f,rlm w,f,r/m b,t,rlm 

XOR XOR XOR SEO CMP CMP CMP 

w,t,r/m h,i w,i =SS 
AAA 

b,f,rim w,f,r/m b,t,rlm 

INC INC INC INC INC DEC DEC DEC 

BX SP BP SI DI AX CX DX 

PUSH PUSH PUSH PUSH PUSH POP POP POP 

BX SP BP SI DI AX CX DX 

PUSH IMUL PUSH 

w,i w,i b,i 

JNB/ lEI lNEI 18E1 JNBE/ IPI 

lAB IZ INZ INA IA 
IS INS 

IPE 

Immed TEST TEST XCHO XCHG MOV MOV MOV 

is,r/m b,T/m w,r/m b,T/m w,r/m b,f,r/m w,f,rim b,t,rlm 

XCHO XCHG XCHO XCHO XCHG CALL 

BX SP BP SI DI 
CBW CWD 

I,d 

MOV TEST TEST 

AX-lom 
MOVS MOYS CMPS CMPS 

b,i,a w,i,a 
STas 

MOV MOV MOV MOV MOV MOV MOV MOV 

i-loBL i-loAH i-loCH j-loDH i-loBH i-loAX i-loCX i-loDX 

MOV MOV RET. 
RET LES LDS 

b,i,r/m w,i,r/m 
ENTER LEAVE 

1.(i+SP) 

Shift ESC ESC ESC 
AAM AAD XLAT 

W,V 0 I 2 

IN IN OUT OUT CALL IMP IMP 
ICXZ 

b w b w d d I.d 

REP Orpl Orpl 
HLT CMC CLC STC CLI 

Z b,r/m w,r/m 

modOr/m 000 001 010 011 100 101 

Immed ADD OR ADC SBB AND SUB 

Shift ROL ROR RCL RCR SHUSAL SHR 

Grp 1 TEST - NOT NEO MUL IMUL 

Orp2 INC 
CALL 

DEC 
id 

b = byte operation 

d=direct 

f = from CPU reg 

i = immediate 
ia = immed. to accum. 

jd= indirect 

is = immed. byte, sign ext. 
j = iong ie. intersegment 

CALL 

l,id 

C-16 

IMP IMP 

id i,id 

m=memory 

rim = EA is second byte 

si = short intrasegment 

sr = segment register 

t=toCPUreg 

v=variable 

w = word operation 

B 

OR 

w,t,rfrn 

SBB 

w,t,r/m 

SUB 

w,t,rfm 

CMP 

w,t,r/m 

DEC 

BX 

POP 

BX 

IMUL 

h,i 

JNP/ 

lPO 

MOV 

w,t,r/m 

WAIT 

STOS 

MOV 

j-loBX 

RET 

I 

ESC 

3 

IMP 

si,d 

STI 

110 

XOR 

-

DIV 

PUSH 

C D E F 

OR OR PUSH 

h,i w.i CS 

SBB SBB PUSH POP 

b,i w,i DS DS 

SUB SUB SEO 
DAS 

b, w.i =CS 

CMP CMP SEO 

b,i w,i =DS 
AAS 

DEC DEC DEC DEC 

SP BP SI DI 

POP POP POP POP 

SP BP SI DI 

INS INS OUTS OUTS 

b w b w 

ILl INLi !LEI JNLE{ 

JNGE IGE INO IG 

MOV MOV POP 
LEA 

sr,f,r/m sf,t,rlm rim 

PUSHF POPF SAHF LAHF 

LODS LODS SCAS SCAS 

MOV MOV MOV MOV 

j-loSP j-loBP i-loSI j--+DL 

INT INT 

Type 3 (Any) 
INTO IRET 

ESC ESC ESC ESC 

4 5 6 7 

IN IN OUT OUT 

v,b v,w v,b v,w 

Orp2 Orp2 
CLD STD 

b,r/m w,r/m 

III 

CMP 

SAR 

IDIV 

-



Appendix 0 
80C186XUC188XL 
Compatibility With 
The 80C 186/C 188 





APPENDIX D 
80C186XUC188XL COMPATIBILITY 

WITH THE 80C186/C188 

This appendix details all known changes in AC and DC specifications and errata between the 
original Intel 80Cl86/C188 and the new 80C186XL/C188XL. The changes occur for two 
reasons: the XL parts have a new, fully static core and are produced on a faster 1 micron 
process. The new core and process provide 0 to 20 MHz operation and lower power 
consumption. The faster process also reduces minimum timings on some signals. In general, 
these changes will have no effect on system timings provided the system does not contain 
synchronous control logic. Additionally, standard 80C186/C188 errata have all been corrected 
on the 80C186XL/C188XL. Essentially, the 80C186XL/C188XL parts are higher 
performance, lower power, pin for pin replacements for the 80C186/C188 parts. 

0.1. DC SPECIFICATION DIFFERENCES 

Symbol 80C186 80C186XL Units Notes 

Min Max Min Max 

VIH 0.2Vee + 0.9 Vee + 0.5 0.2Vee + 0.9 Vee +0.5 V XL spec. now includes 
ARDY and SRDY. This 
corrects a previous 
80C186 errata. 

lee N/A 100 mA 20 MHz, O°C, Vee = 
5.5V(1) 

150 mA 16 MHz, O°C, Vee = 
5.25V(1) 

80 mA 16 MHz, O°C, Vee = 
5.5V(1) 

120 65 mA 12.5 MHz, O°C, Vee = 
5.5V(1) 

100 50 mA 10 MHz, O°C, Ver. = 
5.5V(1) . 

N/A 100 uA o MHz, O°C, Vee = 5.5V 

NOTES: 

1. Current is measured with the device in RESET with X1 , X2, inputs, and bidirectional outputs driven. 

0.1.1. VIH Specifications 

The extra VIH specification on the 80C186 for ARDY and SRDY has been removed on the 
80C186XL due to design improvements. The standard 80C186 has an errata associated with 
tolerances on input signals for guaranteed recognition of a high input voltage (see Errata 
section, "VIH on SRDY and ARDY Pins"). All other VIH specifications remain unchanged. 

0-1 



APPENDIX 0 

0.1.2. Icc Specifications 

The specifications for Icc at all operating frequencies have been reduced significantly on the 
80C186XL. This reduction is a direct result of the 1 micron process and the fully static core on 
the 80C186XL. The fully static core allows the processor clock to be stopped during operation 
without loss of the processor's current state. The 80C186XL part consumes only 100 uA at 0 
MHz (due to leakage current). 

0.1.3. V cc Specifications 

At 16 MHz, the 80C186XL has a 10% Vee tolerance, while the standard 80C186 has a 5% 
Vee tolerance at 16 MHz. This is an improved specification and will not affect existing 
designs converted to the XL parts. 

0.2. AC SPECIFICATION DIFFERENCES 

The 80C 186XL is on a new 1 micron process. This process· is inherently faster than the 1.5 
micron process used to produce the 80C 186. Due to the higher speed of this process, a number 
of timings have changed. The minimum delay timings have been reduced. This will have no 
effect on systems requiring 3 ns or less of hold time in synchronous control logic. Possible 
effects on system timings are discussed below. 

Symbol aoC186 80C186XL Units Frequency Parameter 
Min Max Min Max (MHz) 

TCHSV 5 45 3 45 ns 0 Status Active Delay 

5 35 3 35 ns 12.5 
5 31 3 31 ns 16 

3 25 ns 20 
TCLSH 5 46 3 46 ns 10 Status Inactive Delay 

5 35 3 35 ns 12.5 
5 30 3 30 ns 16 

3 25 ns 20 
TCLAV 5 44 3 44 ns 10 Address Valid Delay 

5 36 3 36 ns 12.5 
5 33 3 33 ns 16 

3 27 ns 20 
TCLDV 5 40 3 40 ns 10 Data Valid Delay 

5 36 3 36 ns 12.5 
5 33 3 33 ns 16 

3 27 ns 20 
TCHCSX 5 35 3 35 ns 10 Chip-Select Inactive Delay 

5 30 3 30 ns 12.5 
5 25 3 25 ns 16 

3 20 ns 20 

0-2 



intel .. APPENOIXO 

Symbol 80C186 80C186XL Units Frequency Parameter 

Min Max Min Max (MHz) 

TCVDEX 5 44 3 44 ns 10 DEN Inactive Delay 

5 37 3 37 ns 12.5 

5 31 3 31 ns 16 

3 22 ns 20 

TCHCTV 5 44 3 44 ns 10 Control Active Delay 2 

5 37 3 37 ns 12.5 

5 31 3 31 ns 16 

3 22 ns 20 

TCLRL 5 44 3 44 ns 10 RD Active Delay 

5 37 3 37 ns 12.5 

5 31 3 31 ns 16 

3 27 ns 20 

TCLRH 5 44 3 44 ns 10 RD Inactive Delay 

5 37 3 37 ns 12.5 

5 31 3 31 ns 16 

3 27 ns 20 

TCKIN 50 1000 50 00 ns 10 ClKIN Period 

40 1000 40 00 ns 12.5 

31.25 1000 31.25 00 ns 16 

25 00 ns 20 

TCLCK 20 20 00 ns 10 ClKIN Low Time 

16 16 00 ns 12.5 

13 13 00 ns 16 

10 00 ns 20 

TCHCK 20 20 00 ns 10 ClKIN High Time 

16 16 00 ns 12.5 

13 13 00 ns 16 

10 00 ns 20 

TCLCH 0.5 TCLCL - 8 0.5 TCLCL - 6 ns 10 ClKOUT Low Time 

(Min) 0.5 TCLCL-7 0.5 TCLCL - 5 ns 12.5 CL=100pF 

0.5 TCLCL-7 0.5 TCLCL - 5 ns 16 

0.5 TCLCL - 5 ns 20 

TCHCL 0.5 TCLCL - 8 0.5 TCLCL - 6 ns 10 ClKOUT High Time 

0.5 TCLCL - 7 0.5 TCLCL - 5 ns 12.5 CL = 100 pF 

0.5 TCLCL-7 0.5 TCLCL - 5 ns 16 

0.5 TCLCL - 5 ns 20 

0.2.1. Control Logic Considerations 

The reduced minimum timings will affect hold time requirements relative to synchronous 
control logic. If the required hold time is 3 ns or less, no problems will occur. Additionally, no 
problems will occur in designs where the required hold times were exceeded by 2 or more 
nanoseconds (the amount that the minimum timings were reduced on the XL). Designs with 

0-3 



intel .. APPENDIX 0 

tight timing margins for hold times should be evaluated to ensure the hold time requirements 
are still met. The timing specifications affected in this situation are: T CHSV(min), T CLSH(min), 
TCLAV(min) (BHE only), and TCHCSX(min). The specifications for TCLRL(min) and TCLRH(min) 
could also be an issue if RD is used in the synchronous control logic, but this is uncommon. 

0.2.2. Address and Data Valid Considerations 

TCLAV(min) (Address) should not cause a problem. Most designs are not affected by having the 
address valid to early. The same situation exists for TCLDV(min), data being valid earlier in the 
bus cycle. This should not cause difficulties in most designs. 

0.2.3. Buffered Design Considerations 

TCVDEX(min) and TCHCTV(min) changes will not affect system designs. This is due to the fact 
T CLDX(min) and T CVDEX(min) are both 3 ns. Therefore, you are guaranteed to meet the data 
hold time requirement. TCHCTV(min) should not affect system designs either. DT/R is used to 
control buffer data flow direction. If this signal goes valid/invalid earlier, it will not . .J1latter 
because the buffers are not enabled unless DEN is active. DT/R remains active long after 
DEN goes inactive; 

0.2.4. X1 Considerations 

Because the 80C186XUC188XL are fully static devices, they can operate down to 0 MHz 
without losing their present state. The maximum timings for T CKIN, T CLCK, and T CHCK have 
been set to infinity, reflecting the XL processor's ability to retain its current state, even with 
the clock stopped (infinite clock period). 

0.2.5. CLKOUT High/Low Time Considerations 

TCLCH(min) and TCHCL(min) are both improved for the 80C186XLlC188XL. The specifications 
for 50 pF loading were eliminated because the new 100 pF loading numbers are identical to 
the old 50 pF specifications. The same performance is achieved with heavier loading. 

0.3. ERRATA COMPARISON 

Below is a list of errata associated with the 80Ci86 and 80Ci88 devices. These errata have 
been fixed on the 80C186XL and 80C188XL devices. Always consult the latest data sheet for 
any 80Cl86XLlCl88XL specific errata. 

0.3.1. LOCKIINTA Cycles 

Description: If an interrupt arrives during a LOCK' ed bus cycle, a loss of synchronization can 
occur and LOCK may not be asserted between the first and second INT A pulses. Without 

0-4 



intel· APPENOIXO 

LOCK being active, the DMA controller or an auxiliary bus master can steal the bus, 
separating the INT A pulses. Some peripherals cannot tolerate separated INT A pulses, but the 
82C59A will not be affected. 

Disposition: Fixed within the Bus Interface Unit on the 80Cl 86XLlC 188XL. 

0.3.2. FWAIT/ERROR 

Description: During the execution of an FWAIT instruction, the 80C186 does not test the 
ERROR input pin. No other numerics instructions have this deficiency. This presents a 
problem when the FW AIT instruction is used to suspend program execution so that the result 
of the previous numerics instruction can be used immediately. Since FW AIT does not check 
for errors, the error may not be detected until the next numerics instruction is executed. 

Disposition: This has been declassified as an errata. If 80C 187 error synchronization is 
necessary, continue to follow the FW AIT instruction with a FNOP instruction or use an INT 
pin instead of the ERROR pin. 

0.3.3. V1H on SROY and AROY Input Pins 

Description: The minimum VIH specification for ARDY and SRDY is higher than those for 
other pins on the standard 80Cl86/CI88. As a result, less noise margin exists when interfacing 
to TTL devices at low voltage. 

Disposition: Switchpoints of ARDY and SRDY input buffers were fixed in the 
80C186XLlCl88XL. This change will have no effect on existing designs which required 
pullup resistors on the ARDY and SRDY inputs as a workaround. 

0.3.4. Interrupt Status Register 

Description: A timer interrupt request occurring during a write operation to the register may 
be ignored or redirected to the wrong interrupt vector. All instructions capable of affecting the 
register are implicated. 

Disposition: Declassified as an errata. Continue to disable interrupts during accesses to the 
DHLT bit. 

0.3.5. Bus Preemption 

Description: An internal conflict between the HOLD/HOLDA protocol and the DRAM 
refresh unit can lock up the 80Cl86/Cl88 bus controller. There are three necessary conditions: 
an 80Cl86/Cl88 HOLD in progress, a pending non-pipelined effective address calculation, 
and a pending refresh cycle. The non-pipelined effective address calculation disturbs the 
normal bus controller priority scheme. The effective address calculation is given priority over 

0-5 



int'et APPENOIXO 

the refresh. Hold must be deasserted additional clocks to allow the refresh cycle to begin, or 
the bus controller will lock-up. 

Disposition: Errata corrected in the 80C186XLlC188XL Bus Interface Unit. Workarounds 
used in existing 80C186/C188 designs will be unaffected. 

0.3.6. 80C188 RFSH pin 

Description: The RFSH pin on the 80C188 goes active and inactive on T4 rather than T1 as 
indicated by the data sheet. 

Disposition: Errata corrected on 80C188XL. Workaround to delay signal should be removed 
from designs converted to 80C188XL. 

0-6 

















ALABAMA 

Intel Corp. 
5015 Bradford Dr" #2 
Huntsville 35805 
Tel: (205) 830-4010 
FAX: (205) 837-2640 

ARIZONA 

tlntel Corp. 
410 North 44th Street 
Suite 500 
Phoenix ·85008 
Tel: (602) 231-0386 
FAX: (602) 244.()446 

CALIFORNIA 

tlntel Corp. 
21515 Vanowen Street 
Suite 116 

~(~f8ja;~~gg 
FAX: (818) 340-1144 

Intel Corp. 
1 Sierra Gate Plaza 
Suite 280C 
RosBville 95678 
Tel: (916) 782-6086 
FAX: (916) 782-8153 

tlntel Corp. 
9665 Chesapeake Dr. 
Suite 325 

~:I~ ~f~o~~:g86 
FAX: (619) 292'()628 

*tlntal Corp. 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 835-9642 
TWX: 910-595-1114 
FAX: (714) 541-9157 

"'tlntal Corp. 
San Tomas 4 
2700 San Tomas Expressway 
2nd Floor 
Santa Clara 95051 
Tel: (408) 986-8086 
TWX: 910-338-0255 
FAX: (408) 727-2620 

COLORADO 

Intel Corp. 
4445 Northpark Drive 
Suite 100 
Colorado Springs 80907 
Tel: (719) 594·8622 
FAX: (303) 594-0720 

"'tlntal Corp. 
600 S. Cherry 51. 
Suite 700 
Denver 80222 
Tel: (303) 321-8086 
TWX: 910-931·2289 
FAX: (303) 322-8670 

CONNECTICUT 

~~1teL~o~rm Corporate Park 
83 Wooster Heights Rd. 
Danbury 06810 
Tel: (203) 748·3130 
FAX: (203) 794-0339 

FLORIDA 

tlnlel Corp. 
800 Fairway Drive 
Suite 160 
Deerfield Beach 33441 
Tel: (305) 421-0506 
FAX: (305) 421-2444 

tSales and Service Office 
"'Field Application Location 

NORTH AMERICAN SALES OFFICES 
tlntel Corp. 'tlntel ~rp. "'tlntet Corp. 
5850 T.G. Lee Blvd. 2950 Exp~ss Dr" South 7322 S.W. Freeway 
SuHe 340 Suite 130 Suite 1490 
Orlando 32822 ~!f:n~~ 6\ V~\3300 Houston 77074 
Tel: (407) 240-8000 Tel: (713) 988-8086 
FAX: (407) 240-8097 TWX: 510-227-6236 TWX: 910-881-2490 

FAX: (516) 348-7939 FAX: (713) 988-3860 
GEORGIA 

tlntel Corp. 
tlnlel Corp. 300 Wastage Busines.s Center UTAH 
2Q Technology Parkway SuHe 230 
Suite 150 Fishkill 12524 tlntel Corp. 
Norcross 30092 Tel: (914) 897-3860 428 East 6400 South 
Tel: (404) 449-0541 FAX: (914) 897-3125 Suite 104 
FAX: (404) 805-9762 ~e~~r~0~i~_8051 OHIO 
ILLINOIS 

~tlntel Corp. 
FAX: (801) 268-1457 

""tlntel Corp. 3401 Park Genter Drive 
WASHINGTON Woodfield Corp. Center III Suite 220 

300 N. Martingale Road Dayton 45414 
tlntel Corp. Su"e 400 Tel: (513) 890-5350 

~;r~~&U~5~g~~ TWX: 810-450-2528 155 108th Avenue N.E. 
FAX: (513) 890-8858 Suite 386 

FAX: (708) 706-9762 Bellevue 98004 
*tlntel Corp. Tel: (206) 453-8086 

INDIANA 25700 Science Park Dr. TWX: 910-443-3002 

~~1tgl ~u~~ue Road 

SuJte 100 FAX: (206) 451-9556 
Beachwood 44122 
Tel: (216) 464-2736 ~~;I ~o~Uilan Road SuHe 350 TWX: 810-427-9298 

Indianapolis 46268 FAX: (804) 282-0673 Suite 102 
Tel: (317) 875-0623 Spokane 99206 
FAX: (317) 875-9938 OKLAHOMA Tel: (509) 928-8086 

MARYLAND Intel Corp. 
FAX: (509) 928-9487 

*tlntel Corp. 
6801 N. Broadway 

WISCONSIN Suite 115 
10010 Junction Dr. Oklahoma City 73162 
Suite 200 Tel: (405) 848-8086 Intel Corp. 
Annapolis Junction 20701 FAX: (405) 840-9819 330 S. Executive Dr. 
Tel: (410) 206-2860 Suite 102 
FAX: (410) 206-3678 OREGON Brookfield 53005 

Tel: (414) 784-8087 

MASSACHUSETTS 
tlntel Corp. FAX: (414) 796-2115 
15254 N.W. Greenbrier Pkwy. 

*tlntel Corp. Building B 
Beaverton 97006 CANADA Westford Corp. Center Tel: (503) 645-8051 3 Carlisle Road 

2nd Floor TWX: 910-467-8741 

Westford 01886 FAX: (503) 645-8181 
BRITISH COLUMBIA 

Tel: (508) 692-0960 
PENNSYLVANIA TWX: 710-343-6333 Intel Semiconductor of 

FAX: (508) 692-7867 ""tlntel Corp. Canada, Ltd. 

MICHIGAN 
925 Harvest Drive 4585 Canada Way 
Suite 200 Suite 202 

tlntel Corp. Blue Bell 19422 Burnaby VSG 4L6 

7071 Orchard Lake Road Tel: (215) 641-1000 Tel: (604) 298'()387 

Sulle 100 FAX: (215) 641-0785 FAX: (604) 298-8234 

West Bloomfield 48322 
;t~t~~~~r8enter Bwd. Tel: (313) 851-8096 ONTARIO 

FAX: (313) 851-8770 Suite 610 

MINNESOTA 
Pittsburgh 15235 tlntel Semiconductor of 
Tel: (412) 823-4970 Canada, Ltd. 

tlntel Corp. FAX: (412) 829-7578 2650 Queensview Drive 

3500 W. BOth 51. Suite 250 

Suite 360 PUERTO RICO OttawaK2B 8H6 

Bloominwon 55431 Tel: (613) 829-9714 

Tel: (612 835-6722 tlntel Corp. FAX: (613) 820-5936 
South industrial Park TWX: 910-576-2867 
P.O. Box 910 tlntel Semiconductor of FAX: (612) 831-8497 
Las Piedras 00671 Canada, Ltd. 

NEW JERSEY Tel: (809) 733-8616 190 Attwell Drive 
Suite 500 

~r~~~~ COffrce Center 
TEXAS Rexdaie M9W 6H8 

Tel: (416) 675-2105 
125 Half Mile Road ~~i~' ~.o~Pitai of Texas Hwy. 

FAX: (416) 676-2438 
Red Bank 07701 
Tel: (908) 747-2233 SUite 4230 

QUEBEC FAX: (908) 747-0983 Austin 78759 
Tel: (512) 794-8086 

tlntel Semiconductor of NEW YORK FAX: (512) 338-9335 
canada, Ltd. 

""Intel Corp. *tlntel Corp. 1 Rue Holiday 
850 Crosskeys Office Park 12000 Ford Road Suite 115 
Fairport 14450 Suite 400 Tour East 
Tel: (716) 425-2750 Dallas 75234 PI. Claire H9R 5N3 
TWX: 510-253-7391 Tel: (214) 241-8087 Tel: (514) 694-9130 
FAX: (716) 223-2561 FAX: (214) 484-1180 FAX: 514-694-0064 



ALABAMA 

Arrow Electronics, Inc. 
1015 Henderson Road 
Huntsvilio 35806 
Tol: (205) 837-6955 
FAX: (205) 72'-'58' 

Hamllton/Avnet ElectroniCS 
4960 Corporate Drive, #135 
Huntsvilio 35805 
Tol: (205) 837-72'0 
FAX: (205) 72Hl356 

~~oSe~~~~:ea~~ve 
Sullo '20 
Huntsville 35805 
Tol: (205) 830-9526 
FAX: (205) 830-9557 

PioneerlTechnologles Group, Inc. 
:::~5~1~~;~:65square, #5 
Tol: (205) 837-9300 
FAX: (205) 837-9358 

ARIZONA 

tArrow Electronics, Inc. 
4'34 E_ Wood Stroot 
Phoonlx 85040 
Tol: (802) 437-0750 
FAX: (602) 252-9'09 

:on:~a~~~:~y Avenue 
Chand lor 85226 
Tol: (602) 96'-6480 
FAX: (602) 96'-4787 

Hamilton/Avnet Electronics 
30 South McKamy Avenue 
Chandlor 85226 
Tol: (602) 96'-6403 
FAX: (602) 96' -, 33' 

Wyle Distribution Group 
4'4' E_ Raymond 
Phoenix 85040 
Tel: (602) 437-2088 
FAX: (602) 437-2'24 

CALIFORNIA 

Arrow Commercial System Group 
1502 Crocker Avenue 

~:rt:lg)~~537' 
FAX: (4'5) 489-9393 

Arrow Commercial System Group 
, 4242 Chambers Road 
Tustin 92680 
Tel: (7'4) 544-0200 
FAX: (1'4) 73'-8438 

tArrow Electronics, Inc. 
19748 Dearborn Street 
Chotsworth 9' 3" 
Tol: (8'8) 70'-7500 
FAX: (8'8) 772-8930 

tArrow Electronics, Inc. 
95" Rldgohavon Court 

~:r glf~o J,~':~o 
FAX: (6'9) 279-8062 

tArrow Electronics, Inc. 
1180 Murphy Avenue 
San Jose 95131 
Tol: (408) 44'-9700 
FAX: (408) 453-48'0 

tArrow Electronics, Inc. 
2961 Dow Avenue 
Tustin 92680 
Tol: (7'4) 838-5422 
FAX: (7'4) 838-4'5' 

Avnet Computer 
3170 Pullman Street 
Costa Mesa 92626 
Tol: (1'4) 64'-4'2' 
FAX: (7'4) 64'-4'70 

Avnet Computer 
'36' B West' 90th Stroot 
Gardena 90248 
Tel: (800) 345-3870 
FAX: (2'3) 327-5389 

tCertlfied VAO 

NORTH AMERICAN DISTRIBUTORS 
Avnet Computer COLORADO PloneerfTechnolOijies Group, Inc, 
755 Sunrise Blvd., #150 674 S_ MII~ary Trail 
Roseville 95661 Arrow Electronics, Inc. Deerfield Beach 33442 
Tel: (916) 78'-252' 3254 C Frazer Street Tel: (305) 428-6877 
FAX: (9'6) 78'-38'9 Aurora 80011 FAX: (305) 48'-2950 

Avnet Computer 
Tol: (303) 373-56'6 

1175 Bordeaux Drive, #A 
FAX: (303) 373-5780 

GEORGIA 
Sunnyvale 94089 tHamilton/Avnet Electronics 
Tol: (408) 743-3304 9605 Maroon Circle, #200 ~~ c~~~~ri: ~::em Group FAX: (408) 743-3348 Englewood 80"2 

~r~~~ ~~~~~:eet 
Tol: (303) 799-7800 Duluth 30'36 
FAX: (303) 799-760' Tol: (404) 623-8825 

Woodland Hills 91376 twyle Distribution Group 
FAX: (404) 623-8802 

~~~}~g~~)~~i~~ 451 E. 124th Avenue tArrow Electronics, Inc. 
Thornton 80241 4250 E. Rivergreen Pkwy., #E

tHamliton/Avnet Electronics Tel: (303) 457-9953 Duluth 30136
3170 Pullman Street FAX: (303) 457-483' Tol: (404) 497-'300
Coata Mesa 92626 FAX: (404) 476-'493
Tol: (7'4) 64t-4'00 CONNECTICUT Avnet Computer FAX: (7'4) 754-6033

tArrow Electronics, Inc. 3425 Corporote Way, #G
tHamilton/Avnet ElectroniCS Duluth 30'36
1175 Bordeaux Drive, #A 12 Beaumont Road Tol: (404) 623-5452
Sunnyvale 94089 Wallingford 06492 FAX: (404) 476-0'25
Tol: (408) 743-3300 Tel: (203) 285-774'

FAX: (408) 745-6879 FAX: (203) 265-7988 Hamilton/Avnet Electronics

tHamilton/Avnet Electronics Avnet Computer 3425 Corporoto Way, #G
Duluth 30136

4545 Vlewrldge Avenue 55 Fodoral Road, #'03 Tel: (404) 446-06"

~:r ~f~ 5~~' i200 Danbury 088'0 FAX: (404) 446-10" Tel: (203) 797-2680
FAX: (6'9) 57'-876' FAX: (203) 79' -9050 Pioneer{Technologies Group, Inc.
tHamllton/Avnet Electronics tHamllton/Avnet Electronics 4250 C. Rivergreen Parkway
2"50 Calila St_ 55 Fedoral Road, #'03 Duluth 30'36

Woodland Hills 9'367 Danbury 068'0 Tol: (404) 623-'003

Tel: (8'8) 594-0403 Tol: (203) 743-6077 FAX: (404) 623-0685

FAX: (8'8) 594-8234 FAX: (203) 79' -9050

tHamilton/Avnet Electronics tPloneer/Standard Electronics
IUINOIS

, 36' B Wost '9Oth Streot 112 Main Street tArrow ElectroniCS. Inc. Gardena 90248 Norwalk 06851 1140 W. Thorndale Rd. Tol: (2'3) 5'6-6800
FAX: (2'3) 217-6822

Tel: (203) 853-'5'5 Itasca 60'43
FAX: (203) 838-990' Tol: (708) 250-0500

tHamllton/Avnet Electronics
755 Sunrise Avenue, #150 FLORIDA Avnet Computer
Rosevilio 9566' 1124 Thorndale Avenue
Tel: (9'6) 925-22'6 tArrow Electronics, Inc. Bensenville 60106
FAX: (9'6) 925-3478 400 Fairway Drive, #102 Tel: (108) 880-8573

Pioneer(fechnologies Group, Inc. Deerfield Beach 33441 FAX: (708) 773-7976
Tol: (305) 429-8200

'34 Rio Roblos FAX: (305) 428-399' tHamilton/Avnet Electronics
San Joao 95'34 1130 Thorndale Avenue
Tel: (408) 954-9'00 tArrow Electronics, Inc. Bensenville 60106
FAX: 408-954-9'13 37 Skyline Drive, #3101 Tol: (708) 860-7700

tWyle Distribution Group Lake Mary 32746 FAX: (708) 860-8530

124 Maryland Street Tel: (407) 333-9300
MTI Systems EI Segundo 90245 FAX: (407) 333-9320
1140 W. Thorndale Avenue

Tol: (2'3) 322-8'00 Avnet Computer Itasca 60'43
FAX: (2'3) 4'6-' '5' 3343 W. Commercial Blvd, Tol: (708) 250-8222
Wyle Distribution Group Bldg. C/O, Sulle '07 FAX: (108) 250-8275
7431 Chapman Ave. Ft. Lauderdale 33309

tPioneer/Standard Electronics Garden Grove 92641 Tel: (305) 979-9067
Tol: (1'4) 891-1717 FAX: (305) 730-0368 2171 Executive Dr., Suite 200
FAX: (7'4) 89'-'62' Addison 60101

~~~~\~~~g~l:; North 
Tol: (708) 495-96BO 

tWyle Distribution Group FAX: (108) 495-963' 
2951 Sunrise Blvd., Suite 175 

~;t~f~~"-!~_::J6 Rancho Cordova 95742 
Tol: (9'6) 638-5282 FAX: (8'3) 572-4324 INDIANA 
FAX: (9'6) 638-'49' 

:l~ec~i:~~~:~~ g~~':f 
tHamilton/Avnet Electronics tArrow Electronics, Inc. 
5371 N,W. 33rd Avenue 7108 lakeview Parkway West Dr. 
Ft. Lauderdale 33309 Indianapolis 46268 

~:r ~f~o 5~~~~ 7' 
Tel: (305) 484-50'6 Tol: (317) 299-207' 

FAX: (6'9) 365-05'2 
FAX: (305) 484-8369 FAX: (317) 299-2379 

tWyle Distribution Group tHamiiton/Avnet Electronics Avnet Computer 

3000 Bowers Avenue 3247 Tech Drive North 485 Gradle Drive 

Santa Clara 95051 ~;t(~~~i~"-!l:~;~ 6 
Carmel 46032 

Tel: (408) 727-2500 
Tel: (317) 575-8029 

FAX: (408) 727-5896 FAX: (8'3) 572-4329 FAX: (3' 7) 844-4964 

tWyle Distribution Group tHamilton/Avnet Electronics Hamilton/Avnet Electronics 
17872 Cowan Avenue 7079 University Boulevard 485 Gradle Drive 
Irvine 92714 Winter Park 32791 Carmel 46032 
Tol: (1'4) 863-9953 Tel: (407) 657-3300 Tel: (317) 844-9333 
FAX: (7'4).263-0473 FAX: (407) 678-'878 FAX: (317) 844-592' 

twyle Distribution Group tPioneerJTechnologies Group, Inc. tPioneer/Standard ElectroniCS 
26010 Mureau Road, #150 337 Northlake Blvd_, Suite' 000 9350 Priority Way West Dr. 
Calabasas 9' 302 Alta Monte Springs 32701 Indianapolis 46250 
Tel: (8'8) 880-9000 Tel: (407) 834-9090 Tel: (317) 573-0880 
FAX: (8'8) 880-55'0 FAX: (407) 834-0885 FAX: (317) 573-0979 



NORTH AMERICAN DISTRIBUTORS (Contd.) 
IOWA MICHIGAN tArrow Electronics. Inc. Hamilton/Avnet Electronics 

Hamilton/Avnst l;Jectronics tArrow Electronics, Inc. 6 Cenlury Drive 103 Twin Oaks Drive 

~~~ =r:~~~g., N.E. 19880 Haggerty Road ~:["~~7)~~~-~~0 Syracuse 13120 

Uvonia 48152
Tel: (315) 437-2641

Tel: (319) 362-4757 Tel: (313) 665-4100 FAX: (201) 538-4962 FAX: (315) 432-0740

FAX: (319) 393-7050 FAX: (313) 462-2686 Avnst Computer MTI Systems

KANSAS ~~~2~h"CI"::.'::t, S.W, #5
1-8 Keystone Ave., Bldg. 36 50 Horseblock Road
Cherry Hili 08003 Brookhaven 11719

Arrow Electronics. Inc. Grandville 49418 Tel: (609) 424-8961 Tel: (516) 924-9400
8208 Melroae Dr., Suite 210 Tel: (616) 531-9607 FAX: (609) 751-2502 FAX: (516) 924-1103
Lenexa 66214 FAX: (616) 531-0059 Avnet Computer
Tel: (913) 541-9542 :r:o ~~g~~e~oad 10 Indus1rial Road

MTI Syslems
FAX: (913) 541-0328 Fairfield 07006

1 Penn Plaza
250 W. 34th Sheet

Avnet Computer Novi 48375 Tel: (201) 662-2879 New York 10119
15313 W. 95th Street Tel: (313) 347-1820 FAX: (201) 808-9251 Tel: (212) 643-1260
Lenexa 61219 FAX: (313) 347-4067 tHamiiton/Avnet Electronics FAX: (212) 643-1288
Tel: (913) 541-7989
FAX: (913) 541-7904 Hamllton/Avnet Electronics 1 Keystone Ave., Bldg. 36 Pioneer/Standard Electronics 2876 28th Street, S.w., #5 ~~~(~!114~'!i!~10 tHamilton/Avnet Electronics Grandville 49418 68 Corporate Drive

15313 W. 95th Tel: (616) 243-8805 FAX: (609) 751-2552 Binghamton 13904

Overland Park 66215 FAX: (616) 531-0059 Tel: (607) 722-9300

Tel: (913) 888-1055 Hamilton/Avnet Electronics
tHamilton/Avnet Electronics FAX: (607) 722-9562

FAX: (913) 541-7951 10 Industrial
41650 Garden Brook Rd .. #100 Fairfield 07006 tPioneer/Standard Electronics

KENTUCKY
Nov148375 Tel: (201) 575-3390 60 Crossway Park West
Tel: (313) 347-4270 FAX: (201) 575-5839 f.~:'1s~~r9~ra~~and 11797

Hamilton/Avnet Electronics FAX: (313) 347-4021
805 A. Newtown Circle tPioneer/Standard Electronics tMTI Systems Sales FAX: (516) 921-2143

~:f:I(~~) ~~.~~75 4505 Broodmoor S.E. 6 Century Drive
tPioneer/Standard Electronics

Grand Rapids 49512 ~:["~~)~~~~~~6 FAX: (606) 252-3238 Tel: (616) 698-1800
840 Fairport Park

FAX: (616) 698-1831 FAX: (201) 539-6430 Fairport 14450
MARYLAND Tel: (716) 381-7070

Arrow Commercial Systems 'Group
tPioneer/Standard Electronics tPioneerlStandard Electronics FAX: (716) 381-5955
13485 Stamford 14-A Madison Rd.

~~?;:~6:,~r=17 Livonia 48150 Fairtleld 07006
Tel: (313) 525-1800 Tel: (201) 575-3510 NORTH CAROLINA

Tel: (301) 670·1600 FAX: (313) 427-3720 FAX: (201) 575-3454
FAX: (301) 670-0188 tArrow Electronics, Inc.

tArrow ElectroniCS, Inc. MINNESOTA NEW MEXICO
5240 Greensdairy Road
Raleigh 27604

8300 Guilford Road, #H tArrow Electronics, Inc. Alliance Electronics Inc. Tel: (919) 876-3132
Columbia 21046 1 0120A West 76th Street FAX: (919) 878-9517
Tel: (301) 995·6002 Eden Prairie 55344 10510 Research Avenue
FAX: (301) 995-6201 Tel: (612) 829-5588 Albuquerque 87123 Avnet Computer Tel: (505) 292-3380
Avnet Computer FAX: (612) 942-7803 FAX: (505) 275-6392 2725 Millbrook Rd., #123

7172 Columbia Gateway Dr' j #G Avnet Computer ~~e~~~ 9r~:-1735 Columbia 21045 10000 West 76th Streel Avnet Computer
Tel: (301) 995-0020 Eden Prairie 55344 7801 Academy Road FAX: (919) 872-4972

FAX: (301) 995-3515 Tel: (612) 829-0025 Bldg. 1, Suite 204
Hamilton/Avnet Electronics

FAX: (612) 944-2781 Albuquerque 87109
tHamilton/Avnet Electronics Tel: (505) 828-9725 5250-77 Cenler Dr. #350
7172 Columbia Gateway Dr .• #F tHamiiton/Avnet Electronics FAX: (505) 828-0360 Charlotte 28217
Columbia 21045 12400 Whitewater Drive Tel: (704) 527-2485
Tel: (301) 995·3554 Minnetonka 55343 tHamiiton/Avnet Electronics FAX: (704) 527-8058
FAX: (301) 995-3515 Tel: (612) 932-0600 7601 Academy Rd. N.E.

tNorth Atfantlc Industries
FAX: (612) 932-0813 Bldg. 1, Suite 204 tHamiiton/Avnet Electronics

Systems Division tPioneer/Standard Electronics
Albuquerque 87108 3510 Spring Forest Drive

7125 Riverwood Dr. 7625 Golden Trlenge Dr., #G Tel: (505) 765-1500 Raleigh 27604

COlumbia 21046 Eden Prairie 55344
FAX: (505) 243-1395 Tel: (919) 876-0819

Tel: (301) 290-3999 Tel: (612) 944-3355 :~e~~q~~~~~~o~:~: g~3P' Inc.
tPioneer(Technologies Group, Inc.

FAX: (612) 944-3794 NEW YORK

15810 Gaither Rood MISSOURI tArrow Electronics, Inc: Charlotte 28210
Gaithersburg 20877 3375 Brighton Henrietta Townline Rd. Tel: (704) 527-8188

Tel: (301) 921-0660 tArrow Electronics, Inc. Rochester 14623 FAX: (704) 522-8564

FAX: (301) 670-6746 2380 Schuetz Road Tel: (716) 427-0300 Pioneer Technologies Group. Inc. St Louis 63141 FAX: (716) 427-0735
MASSACHUSETTS Tel: (314) 567-6888 2810 Meridian Parkway, #148

FAX: (314) 567-1164 Arrow Electronics, Inc. Durham 27713
Arrow Electronics: Inc.

Avnet Computer 20 Oser Avenue Tel: (919) 544-5400
25 Upton Dr. Hauppauge 11788 FAX: (919) 544'5885
Wilmington 01887; 739 Goddard Avenue Tel: (516) 231-1000
Tel: (508) 658-0900 Chesterfield 83005 FAX: (516) 231-1072
FAX: (508) 694-1754 Tel: (314) 537-2725 OHIO

Avnet Computer
FAX: (314) 537-4248

:~~~t~~~~:~ay Arrow Commercial System ~roup
10 D Centennial Drive tHamilton/Avnet Electronics

Hauppauge 11788 284 Cramer Creek Court

~:r~~g~) °J:~886
741 Goddard Dublin 43017
Chesterfield' 83005 Tel: (516) 231-9040 Tel: (614) 669-9347

FAX: (508) 532-9660 Tel: (314) 537-1600 FAX: (516) 434-7426 FAX: (614) 889-9660

tHamiiton/Avnet Electronics
FAX: (314) 537-4248 Avnet Computer

100 Centennial Drive NEW HAMPSHIRE 2060 Townline tAr row Electronics, Inc.

Peabody 01960 Rochester 14623 6573 Cochran Road, #E

Tel: (508) 531-7430 Avnet Computer Tel: (716) 272·9306 Solon 44139

FAX: (508) 532-9802 2 Executive Park Drive FAX: (716) 272-9685 Tel: (216) 248-3990
Bedford 03102 FAX: (216) 248-1106

tPioneer/Standard Electronics Tel: (603) 624-6830 tHamiiton/Avnet Electronics
Arrow Electronics, Inc. 44 Hartwell Avenue FAX: (603) 824-2402 933 Motor Parkway

Lexington 02173 Hauppauge 11788 8200 Washington Village Dr.
Tel: (617) 861·9200 NEW JERSEY Tel: (516) 231-9800 Centerville 45458
FAX: (617) 863-1547

tArrow Electronics, Inc.
FAX: (516) 434-7426 Tel: (513) 435-5563

Wyle Distribution Group 4 East Stow Road tHamitton/Avnet Electronics
FAX: (513) 435-2049

15 Third Avenue UMII 2060 Townline Rd.
Burl!ngton 01803 Marlton 08053 Rochester 14623
Tel: (617) 272-7300 Tel: (609) 596-6000 Tel: (716) 292-0730
FAX: (617) 272-6609 FAX: (609) 596-9832 FAX: (716) 292-0810

tCertifiedVAD

OHIO (Contd.)

Avnet Computer
7764 Washington Village Dr.
Daylon 45459
Tel: (513) 439·6756
FAX: (513) 439·6719

Avnet Computer
30325 Bainbridge Rd., Bldg. A
Solon 44139
Tel: (216) 349·2505
FAX: (216) 349·1894

tHamilton/Avnet Electronics
7760 Washlng10n Village Dr.
Daylon 45459
Tel: (513) 439·6733
FAX: (513) 439·6711

tHamilton/Avnet Electronics
30325 Bainbridge
Solon 44139
Tel: (800) 543·2984
FAX: (216) 349·1894

Hamilton/Avnet Electronics
2600 Corp Exchange Drive, #180
Columbus 43231
Tel: (614) 882-7004
FAX: (614) 882-8650

MTI Systems Sales
23404 Commerce Park Road
Beachwood 44122
Tel: (216) 484-6688
FAX: (216) 464-3564

tPioneer/Standard Electronics
4433 Interpoint Boulevard
Daylon 45424
Tel: (513) 236-9900
FAX: (513) 236-8133

tPioneerlStandard Electronics
4800 E. 13181 Streel
Cleveland 44105
Tel: (216) 587-3600
FAX: (216) 663-1004

OKLAHOMA

Arrow Electronics, Inc.
12111 Eas151s1Stree1,#101
Tulsa 74146
Tel: (918) 252-7537
FAX: (918) 254-0917

tHamilton/Avnet Electronics
12121 E. 5181 St .. Su~e 102A
Tulsa 74146
Tel: (918) 664-0444
FAX: (918) 250-8763

OREGON

tAlmac Electronics Corp.
1885 NW. 169th Place
Beaverton 97006
Tel: (503) 629-8090
FAX: 503-645-0611

Avnet Computer
9409 Southwest Nimbus Ave.
Beaverton 97005
Tel: (503) 627-0900
FAX: (503) 526-6242

tHamHton/Avnet Electronics
9409 S.W. Nimbus Ave.
Beaverton 97005
Tel: (503) 627-0201
FAX: (503) 641-4012

Wyle
9640 Sunshine Court
Bldg. G, Suite 200
Beaverton 97005
Tel: (503) 643-7900
FAX: (503) 646-5466

PENNSYLVANIA

Avnet Computer
213 ExecutIVe Drive, #320
Mars 16046
Tel: (412) 772-1888
FAX: (412) 772-1890

Hamilton/Avnet Electronics
213 Executive, #320
Mars 16045
Tel: (412) 281-4152
FAX: (412) 772-1890

tCertlfied VAD

NORTH AMERICAN DISTRIBUTORS (Contd.)
PloneerfTechnologies Group, Inc. Avnet Computer Zentronics
259 Kappa Drive 1100 E. 6600 South, #150 ~l:~o~~ds~~oMd., #108

~~~~~~,~r i~~~oo Salt Lake City 84121 
Tel: (801) 266-1115 Tel: (604) 273-5575 

FAX: (412) 963-8255 FAX: (801) 266-0362 FAX: (604) 273-2413 

tPioneer{Technoiogies Group, Inc. ~17~~ ~Oo~~~:t 78th Place 500 Enterprise Road ONTARIO 
Keith Valley Business Center Redmond 98052 
Horsham 19044 Tel: (206) 867-0160 Arrow Electronics, Inc. 
Tel: (215) 674-4000 FAX: (206) 867-0161 36 Antares Dr., Unit 100 
FAX: (215) 674-3107 tHamliton/Avnet ElectroniCS 

Nepean K2E 7W5 
Tel: (613) 226-6903 

TENNESSEE 
1100 East 6600 South, #120 FAX: (613) 723-2018 
Salt Lake City 84121 

Arrow Commercial System Group Tel: (801) 972-2800 tArrow Electronics, Inc. 
3635 Knight Road, #7 FAX: (801) 263-0104 1093 Meyerslde, Unit 2 
Memphis 38118 tWyle Distribution Group Misslssauga L5T 1 M4 
Tel: (901) 367-0540 1325 Wes12200 Soulh, #E Tel: (416) 670-7769 
FAX: (901) 367-2081 Wes1 Valley 84119 FAX: (416) 670-7781 

Tel: (801) 974-9953 
AVnet Computer TEXAS FAX: (801) 972-2524 
Canada System Engineering 

Arrow Electronics, Inc. WASHINGTON Group 
3220 Commander Drive 3688 Nashua Dr., Unit 6 
Carrollton 75006 tAlmac Electronics Corp. Mississuaga L4V 1 M5 
Tel: (214) 380-6464 14360 S.E. Eas1gate Way Tel: (416) 672-8638 
FAX: (214) 248-7208 Bellevue 98007 FAX: (416) 677-5091 

Avnet Computer 
Tel: (206) 643-9992 
FAX: (206) 643-9709 Avnet Computer 

4004 Beltline, Suite 200 
tHamiiton/Avnet Electronics 

6845 Rexwooc Road 
Dallas 75244 Units 7-9 
Tel: (214) 308-8181 17761 N.E. 78th Place, #C Mississuaga L4V 1 M4 
FAX: (214) 308-8129 Redmond 98052 Tel: (416) 672-6638 

Avnet Computer 
Tel: (206) 241-8555 FAX: (416) 672-8650 
FAX: (208) 241-5472 

1235 North Loop West, #525 
Wyle Distribution Group Avnet Computer 

Houston 77008 
Tel: (713) 867-7500 15385 N.E. 90th Street 190 Colonade Road 

FAX: (713) 861-6851 Redmond 98052 Nepean K2E 7J5 
Tel: (208) 881-1150 Tel: (613) 727-7529 

tHamllton/Avnet Electronics FAX: (206) 881-1567 FAX: (613) 226-1184 
1826-F Kramer Lane 

tHamilton/Avnet Electronics Austin 78758 WISCONSIN 
Tel: (800) 772-5668 6845 Rexwood Rd .. Units 3-5 

FAX: (512) 832-4315 Arrow Electronics, Inc. Mississauga L4T 1 R2 
200 N. Patrick Blvd., Ste. 100 Tel: (416) 677-7432 

tHamilton/AvnBt Electronics Brookfield 53005 FAX: (416) 677-0940 
4004 Beltllne, #200 Tel: (414) 792-0150 
Dallas 75244 FAX: (414) 792-0156 tHamilton/Avnet Electronics 
Tel: (214) 308-8111 

Avnet Computer 
190 Colonade Road 

FAX: (214) 308-8109 Nepean K2E 7 J5 

tHamihon/Avnel Electronics 
20875 Crossroads Circle, #400 Tel: (613) 226-1700 
Waukesha 53166 FAX: (613) 226-1184 

1235 N. Loop Wes1, #521 Tel: (414) 784-8205 
Houston 77008 FAX: (414) 784-6006 tZentronics 
Tel: (713) 240-7733 

tHamiiton/Avnet Electronics 
1355 Meyerslde Drive 

FAX: (713) 861-6541 
28875 Crossroads Circle, #400 

Mississauga L5T 1 C9 

tPioneer/Standard Electronics Waukesha 53186 
Tel: (416) 564-9600 

1826-0 Kramer Lane Tel: (414) 784-4510 
FAX: (416) 564-3127 

Austin 78758 FAX: (414) 784-9509 tZentronics 
Tel: (512) 835-4000 

Pioneer/Standard ElectroniCS 155 Colonade Rd., South 
FAX: (512) 835-9829 120 Bishops Way #163 UM17 

tPioneer/Standard Electronics Brookfield 53005 Nepea" K2E 7Kl 
13765 Beta Road Tel: (414) 784-3480 Tel: (613) 226-8840 

Dallas 75244 FAX: (613) 226-6352 

Tel: (214) 386-7300 ALASKA 
FAX: (214) 490-6419 

Avnet Computer QUEBEC 

tPioneer/Standard Electronics 1400 West Benson Blvd, 
Arrow Electronics Inc. 10530 Rockley Road, #100 Suite 400 

Houston 77099 ~~~~~ti~~e2~~~:99 
1100 51. Ragls Blvd. 

Tel: (713) 495-4700 Dorval H9P 2T5 

FAX: (713) 495-5642 FAX: (907) 277-2639 Tel: (514) 421-7411 
FAX: (514) 421-7430 

tWyle Distribution Group 
CANADA Arrow Electronics, Inc. 1810 Greenville Avenue 

Richardson 75081 500 Soul. St-Jean-Baptiste Ave. 
Tel: (214) 235-9953 ALBERTA 

Quebec H2E 5R9 
FAX: (214) 644-5064 Tel: (418) 871-7500 

Wyle Distribution Group ~~~: 2~~m&= Northeast 

FAX: (418) B71-6816 

4030 West Braker Lane, #330 
¥~1:9~'63122~~84 

Avnet Computer 
Austin 78758 2795 Rue Halpern 
Tel: (512) 345-8853 FAX: (403) 250-1591 St. Laurent H4S 1 P8 
FAX: (512) 345-9330 Tel: (514) 335-2483 

Wyle Distribution Group 
Zentronics FAX: (514) 335-2481 
6815 8th Street N.E., #100 

11001 South Wllcres1, #100 
¥~I:gt:63122~~-~838 

tHamiiton/Avnet Electronics 
Houston 77099 2795 Halpern 
Tel: (713) 879-9953 FAX: (403) 295-8714 St. Laurent H4S 1 P8 
FAX: (713) 879-8540 Tel: (514) 335-1000 

BRITISH COLUMBIA FAX: (514) 335-2481 
UTAH 

tHamilton/Avnet Electronics tZentronics 
Arrow Electronics, Inc. 8610 Commerce Court 520 McCaffrey 
1946 W. Parkway Blvd. Burnaby V5A 4N6 St. Laurent H4T 1 N3 
Sail Lake City 84119 Tel: (604) 420-4101 Tel: (514) 737-9700 
Tel: (801) 973-6913 FAX: (604) 420-5376 FAX: (514) 737-5212 



infel· 
FINLAND 

Intel Finland OY 
RuosIlanlie 2 
00590 Hel.ln~ 
Tal: (358) 0 544 644 
FAX: (358) 0 544 030 

FRANCE 

\':':Iu~=tl'PS~.L. 
78054 St Quemin-8n.-YveUnes 
Cedex 
Tal: (33) (1) 30 57 70 00 
FAX: (33) (1) 30 84 60 32 

EUROPEAN SALES OFFICES 
GERMANY ITALY SPAIN UNITED KINGDOM 

Intel GmbH Intel C!>rPoratlon ItaIla S.pA Intellbe~a SA 
Oomacher Str .... 1 Milanofiori Palazzo E Zuberan, 28 
8016 F~klrch.n bel Mu.nch.n 20084 Assago 28010 Madrid 

~~ic}~)~ Milano Tal: (34) 308 25 52 
Tal: <m (O~ 88200850 FAX: (34) 410 7570 

ISRAEL 
FAX: ) ( 3498484 

NETHERLANDS SWEDEN 
Inlel Samloondu_ Lid. 
A1Idim Indust~aI Park-Nove Share! Intel Samloondu_ B.Y. Intel SWeden A.B. 
P.O. Box 43202 Pastbus 84130 \,:~·go~ 

. ~:::"~~486060 3008 CO Ra1Ierdam 
T.I: (31) 104071111 Tal: (46) 8 734 01 00 

FAX: (972) 03 481870 FAX: (31) 104554886 FAX: (46) 8 278085 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTIll!' Proelectran Yertrlebs GmbH Lasl Elot1ranlca S.pA ITT Muttlkampan.nt AJS Bylach Syst.ms 

Bachar Electronics GmbH 
Max.planck-S1rasse 1-3 P.1. 00838000155 Naverland 28 UnU 
6072 Orei.ich VIaIe FuMo TeotI, N.260 OK·2800 Glaetrup The westem Centre Ralenmuehig .... 28 Tal: 48 6103 304343 20128 Milano Denmark Wastam Road A-112OWI.n FAX: 49 6103 304425 T.I: 39 2 88101370 T.I: 010 45 42 451822 Breckn.1I Tol: 43 222 81388460 FAX: 39 2 88101385 FAX: 010 45 42 457824 Barks RG121RW FAX: 43 222 834276 Roln Electronlk GmbH Tel: 0344 55333 

BELGIUM ~'::N88 Taloom •. r.l.-OMslane MOS Nordlak EI.klronlk AJS FAX: 0344 867270 
VI. Trombetta _,22 

Inoloo Balglum SA T.I: 48 2153 7330 Zona Marconi SmodsVing.n 4 Mstrol~1o 

~~~s~=:an 94 
FAX: 48 2153 733513 Strada Cassanese N·I384 HIiaIsIed ~d auss

~.P:~i~=o Norway rdRoad
T.I: 32 2 244 2811

GREECE
Tol: 47 2 848210 High Wyaambe

FAX: 32 2 2164301 FAX: 39 2 218081 FAX: 47 2 848545 Bucks
HortaHP112EE

FRANCE Paulladls Asoaclales Corp. Nordlsk Electronik AB T.I: 0484 474147
5 Koumbsrl Street NETHERLANDB Box 36 FAX: 0484 452144

Almax Kolana~ Square Torshamnagslan 39
48, Ru. do l'Aubepine 10674 Athens ~~~~.:~man B.Y. $-18493 KIsIa Jennyn
B.P.l02 T.I: 30 1 360 3741 Swedon Vestry Eststa
92184 Antony Cedox FAX: 30 1 360 7501 2827 APDaIfl Tel: 48 8 7034830 Otford Road
Tel: 33 1 409B 5400 Tal: 31 15808906 FAX: 48 8 7039845 Sovenaeks
FAX: 33 1 4886 6028

IRELAND
FAX: 3115 619194 Kant TN14 5EU

Lax Electronics SWIlZERLAND
T.I: 0732 450144

Slllc585 Micro Marketing PORTUGAL FAX: 0732 451251
eo Rue des Garneaux Tony Hall Industrad. A.G. MMO
~~u~~8~"'ra" Egllnton Terrace ATD EI_onlce LOA Her1lslresss 31 3 Bennal Court Dundrum Rua Dr. Faria de CH-8304 wamoallen Bennst Road FAX: 33 1 487B 0596 Dublin Vasconcefos, 3a Tal: 4118328111

:'~':;:1Ie RG2 OQX ro~~~~teres
Tel: 0001 988 400 1900 Usbaa FAX: 41 1 8307550
FAX: 0001 988 8282 T.I: 351 1 8472200 Tel: 0734 313232

4, Avenue Laurent CaIy FAX: 351 1 8472197 FAX: 0734 313255
92808 Asnlores Codax ISRAEL

TURKEY
Tal: 33 1 4790 8240 SPAIN EMPA ~~:~urt FAX: 33 1 4790 5947 Eestronlcs Lid. 60050 Sishan. Bennet Road Tekelec-Alrtronic Rozanis 11 ATO Electranlea SA Raflk Saydam Ced No. 88/5

:.~~nRG2 OQX Ctta Oas Bruysres P.O.B. 39300 Avda do Ie Industria, 32 Istanbul
RUB carte Vernet Tel Beruch Nave 17, 2B Tal: 90 1143 8212 Tel: 0734 752288 BP2 TaI-Aviv 61392 28100 Aloobendas FAX: 90 1 143 8547 FAX: 0734 312728
92310 Sav Tal: 9723475151 Mad~d
Tol: 33 1 4823 2425 FAX: 972 3 475125 T.I: 1 881 65 51

Me1rO~m8 FAX: 33 1 45072191 FAX: 1 881 63 00 UNITED KINGDOM
~d Quae

GERMANY ITALY Metrologia Iberica _ Elact Comp Lid. rdRoad

'E2000 Y.rtri.bs-AG C.lelia Sp!
Avenlde do la Industria NR 32·20 Jubilee House ~~c'l..~~E OfIctne 17 Jubllaa Rood

=~~=~~'~
Via F.lll Grecchi 36 28100 Aloobendas Lalchwar1h Tel: 0484 474171
20092 Cinisello Balsamo Madrid Hertfardshlre FAX: 0484 21860

Tol: 48 88 420010 Milano Tel: (1) 881 11 42 SGB lQH
FAX: 48 88 42001208 Tol: 39 2 69012003 FAX: (1) 881 5755 T.I: 0482 480888 YUGOSLAVIA
Jermyn GmbH

FAX: 39 2 6182433 FAX: 0482 682487
1m Dachastueck 9 Intesi Div. Dalla DauleCh. SCANDINAVIA ~~.~g~onts Ltd.

H.R. Microelectronics Corp.

~~~;~ OMsionem 2005 d. Ie Cruz Blvd. 
IndustMsGmbH OY Flntronlc AB Chineham Businass Park Sutta 220 

FAX: 48 6431 508288 P.1. 08550110156 H.I~laritI.2a Crockford Lane Sanle Clara, CA 95050 

~:n~~~~~ 
Milanofiori Palazzo E5 SF-00210 Helsinki Bealngstak. 

U.SA 
20094 Asssgo (Milano) T.I: 358 0 8828022 Hints 1IG12 lRW ~t.r~~)s:t.:a 

8000 Muenchen 70 Tel: 39 2 624701 FAX: 356 0 8821251 .TaI: 0258 707107 
Tel: 48 88 724470 FAX: 39 2 8242631 FAX: 0258 7071 B2 
FAX: 48 88 72447111 



intel~ 
AUSTRALIA 
Intel Australia Ply. Ud. 
Untt13 
Allamble Grove Business Park 
25 Franchs Forea1 Road Easl 
Franchs Fo_, NSW, 2086 
Sydney 
Tel: 61·2-975·3300 
FAX: 61-2-975·3375 

Intel AuSiraiia Ply. LUI. 
711 High S1reel 
lSi Floor East Kw. Vic., 3102 
Melbourne 
Tel: 61-3·810·2141 
FAX: 61-3-819 7200 

BRAZIL 

Inial Samloondueloras do BrazIl LTOA 
Avenlda PauliSla, 1158.cJS 404/405 
01311 • Sao Paulo· S.P. 
Tel: 55·11·267-5899 
TLX: 11-37-557·ISOB 
FAX: 55·11·267·5119 

CHINAlHONG KONG 

Intel PRC Corporation 
15/F, OffIoe 1, CHic Bldg. 
Jian Guo Men Wai 51rae1 

~:Iir(~' :J:f4850 
TLX: 22947 INTEL CN 
FAX: (1) 500-2953 

INTERNATIONAL SALES OFFICES 
Intel Semiconductor Ltd. * 
10/F EaSI Tower 
Bond Center 
Queansway, Central 

~:~8~)~ 
FAX: (852) 868-1989 

INDIA 

Intel Asia Eleelronlcs, Inc. 
4/2, Samrah Plaza 
$1. Mark's Road 

~:I~~~':a~2~mh 
TLX: 953-845-2646 INTEL IN 
FAX: 09HI12·215067 

JAPAN 

Inial Japan KK 
5·6 Tokodel, Tsukuba ... hi 
Ibarakl, 3Il().26 
Tol: 0296-47-8511 
FAX: 0296-47·8450 

Inlal~KK" 

~f-~l~~I~~~Chi 
~:''&'t~.1ma 192 
FAX: 0428-48-8775 

InteIJ~K.K." 

~!gB'Han~~ya 
~1~:2rMflBma 360 
FAX: 0485-24-7518 

Intel Japan KK." 
Kawa· ... BIdg. 
2·11-5 Shln·Yokohama 
Kohoku-ku. Yokohama-shl 
Kenagawa, 222 
Tel: 045-474-7681 
FAX: 045·471_ 

~~~~~~i~g. 
2·4·1 Terauchl

+~a::'lbs~ 560
FAX: 08-863·1D84

Inial Japan KK.
Shlnmaru Bldg.
1-5-1 Marunouchl

~~ltgg~1~ 100
FAX: D3-320H!85O

~~a~~K
1·18-20 Nishlki
Naka·ku, Nagoya·shi
Aichi 46D
Tel: 052·204·1261
FAX: 052·204·1285

KOREA

Intel Korea, LUI.
16111 Floor, Life Bldg.
~~I~~0'!8l'8' Youngdoungpo-Ku

Tol: (2) 784-8186
FAX: (2) 784-8096

SINGAPORE

TAIWAN

~:..;~~~ East L1d.
6Ih Floor, No. 205
Bank Tower Bldg.
Tung Hua N. Road
Taipei
Tel: 868·2·5144202
FAX: _2·717·2455

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES
ARGENTINA INDIA CTC Componems SySlems Co., LUI. SAUDI ARAiBIA

Datsys S.R.L Mlcronlc Devices
4-6·1 Oobeshl, Mlyamae·ku ME SySIems, Inc. Kawasakl·shl, Kenagawa 213

Chacabuco, 90-6 Piso Arun Complex Tel: 044-852-5121 642 N. POS1orla Avo.
1 Q69.Buenos Aires No. 65 O.V.G. Road FAX: 044-677-4268 Sunnyvale, CA 94066
Tel. & FAX: 54.1334.1671 Bosavanagudl U.S.A.

r.1~~::1~~2~~.fl31
O!a Semlcon Systems. Inc. Tel: (~732.1710

AUSTRALIA
Rower Hill Shinmachi Higashi-kan ~;~=SYS 011-91·612-611-365 1·23 Shin machi, Selagaya·ku

Email Eleolronics TLX: 9538458332 MOBG Tokyo 154
SINGAPORE 15·17 Humo S1rea1 Tel: 03-3439-1600

Mlcronlc Oovloes FAX: 03-3439-1601 Huntingdaio, 3168 No. 516 51h Floor Electronic Resources Pte. Ltd.
Tel: 011-61-3-544-6244 Swastik Chambers ~.'tr::~e 17 Harv~ Road
TLX:M30695 Sian, Trombay Road #03.()1 ing: 1336
FAX: 011·61-3-543-8179 Chembur ~~~~=5.hi 460 ~\~~~~l'll'RS
NSD-Australla ~~f~Wll7 MOEV FAX: 052·204-8360 FAX: (85) 268-5327

~~ ~1&.d~~~"8~2~· Mlcronlc DovIoes
Ryoyo Eleelro Corp. SOUTH AFRICA

Tel: 03 8900970 25/8. 1 st Floor
KonwaSldg.

f~~~~i~i1JI~~~ayel $1.)
FAX: 03 8990819 1-12·22 TouklJI

Bada Bazaar Marg Chuo-ku, Tokyo 104
Old Rajinder Nager T.I: 03-3548-5011 Mayerspark, Preloria, 0184

BRAZIL New Deihl 110 oeD FAX: 03·3546-5044 Tel: 011·2712·603-7860 Tel: 011·91·11·5723509 FAX: 011·2712·603-6294
Microllnear 011·91-11-589771 KOREA
Largo do Arcuche, 24 TLX: 031-63253 MONO IN

J-Tek Corporation TAIWAN 01219 Sao Paulo, SP
Tel: 5511·220·2215 Mlcronlc Dovloes ~~1.u~.!~~g.:"g, Kengnam.Ku

Micro Electronics Corporation
FAX: 5511·22Q..575O 8-3-348/12A Dwarakapurl Colony 121h Floor, Seolian 3

Hyderabad SOD 482 SaouI135-D90 ~:~~W.~.IbEast Road
CHILE Tel: 011·91·842·226748 Tel: (822) 557-8039

FAX: (822) 557-8304 Tol: (666) 2·7198419
SISIeco

S&S Corporallon
Samsung Electronics FAX: (886) 2·7197916

1587 Koo •• r Road
VeoInal40-Las Condas San Joso, CA 95118 Samsung Main BkllA, Acer Sertek Inc.
Sanllago Tel: (408) 976-6216 150 T"&r.un~.Ro- Chung'Ku 15th Floor, Sactlan 2
Tol: 562·234-1644 TLX: 62D261 Sooull ·10 Chion Kuo North Rd.
FAX: 562·233·9695 FAX: (408) 978·6635 C.P.O. Box 6760 Taipei 16479 R.O.C.

Tel: (822) 751-3860 Tel: 886·2·501.()055
CHINA/HONG KONG JAMAICA

TWX: KORSST K 27970 TWX: 23756 SERTEK
FAX: (822) 753-9065 FAX: (886) 2·5012521

Novol Pracision Machinery Co., LUI. MC Sys10ms MEXICO URUGUAY Room 728 Trade Square 10-12 Grenada Crescent

~~~~~~~~: Road 
KingSIOn 5 PSI S.A. de C.V. Inlarlaso 
Tel:!1929-2638 ~:r=\~~S:1~O Zabala 1378 

~\srJ:2~= HX 
909 926-0188 11000 Montevideo 

FAX: (8 ) 928-0104 Tel: 52·73-13·9412 Tel: 5982·98-0480 
FAX: (852) 725-3695 52·73·17-5340 5962-98-1143 

JAPAN FAX: 52·73·17·5333 FAX: 5982·96-2965 
GUATEMALA 

Asahi Electronics Co. Ltd. NEW ZEALAND VENEZUELA 
Abinltio KMM Bldg. 2·14-1 Asanc Email Eloclronlcs Unixel C.A. 11 Calle 2-Zona 9 Kokuraktts·ku 36 Olivo Road 4 Transversal de Monte Cristo Guatemala Ctty ~"d':~~';~'W Penrose. Auckland Edi. 1iXXA, Piso 1, 01. 1 &2 Tel: 5022-32-4104 Tel: 011-64-9-581-155 Centro Empresarlal Boleita FAX: 5022·32-4123 FAX: 093-551-7861 FAX: 01 HI4-9-592·661 Csraoes 

Tel: 582·238-6082 
FAX: 582·238·1816 

"Field Appllca1lan Location 



ALASKA 

Intel Corp. 
c/o TransAlaska Network 
t515 Lore Rd. 

~~~~~h~~e5~~W76 
Intel Corp.
C/o TransAlaska Data Systems
C/o Gel Operations
520 Fifth Ave., Suite 407
Fairbanks 99701
Tel: (907) 452·6284

ARIZONA

*Inlel Corp.
410 North 44th Street
Suite 500
Phoenix 85008
Tel: (602) 231·0386
FAX: (602) 244·0446

*Intel Corp.
500 E. Fry Blvd., Suite M·15
Sierra Vista 85635
Tel: (602) 459·5010

ARKANSAS

Intel Corp.
c/o Federal Express
1500 West Park Drive
Little Rock 72204

CALIFORNIA

*Intei Corp.
21515 Vanowen St., Sle. 116
Canoga Park 91303
Tel: (818) 704·8500

*Intel Corp.
300 N. Continental Blvd.
Surte 100

f~IS~~f~d~~~riJo
*Intel Corp.
1900 Prairte City Rd.
Folsom 95630·9597
Tel: (916) 351·6143

*Intel Corp.
9665 Chesapeake Dr., Suite 325

~:r Psif~o 2~~~:g86
**Intel Corp.
400 N. Tustin Avenue
Suite 450
Santa Ana 92705
Tel: (714) 835-9642

**Intel Corp.
2700 San Tomas Exp., 1st Floor
Santa Clara 95051
Tel: (408) 970·1747

COLORADO

*Intel Corp.
600 S. Cherry St., Suite 700
Denver 80222
Tel: (303) 321·8066

ARIZONA

2402 W. Beardsley Road
Phoenix 85027
Tel: (602) 869·4288

1·800·468·3548

MINNESOTA

3500 W. 80th Street
Suite 360
Bloomington 55431
Tel: (612) 835·6722

*Carry-in locations
"Carry-in/mail-in locations

NORTH AMERICAN SERVICE OFFICES
CONNECTICUT MARYLANO NEW YORK

"'Intel Corp. **Intel Corp. "'Intel Corp.
301 Lee Farm Corporate Park 10010 Junction Dr" Suite 200 2950 Expressway Dr. South
83 Wooster Heights Rd. Annapolis Junction 20701 Suite 130
Danbury' 06811 Tel: (301) 206·2860 Islandia 11722
Tel: (203) 748·3130 Tel: (516) 231·3300

FLORIDA
MASSACHUSETTS Intel Corp.
**Intel Corp. 300 Wastage Business Center

**Intel Corp. Westford Corp. Center Suite 230
600 Fairway Dr" Suite 160 3 Carlisle Rd., 2nd Floor Fishkill 12524
Deerfield Beach 33441 Tel: (914) 897·3860
Tel: (305) 421·0506 Westford 01886

FAX: (305) 421·2444 Tel: (506) 692·0960 Intel Corp.
5858 East Molloy Road

*Intel Corp. MICHIGAN Syracuse 13211
5850 T.G. Lee Blvd., Ste. 340 Tel: (315) 454-0576
Onando 32822 *Intel Corp. .
Tel: (407)240·8000 7071 Orchard Lake Rd., Ste. 100

West Bloomfield 48322 NORTH CAROLINA
GEORGIA Tel: (313) 851·8905

*Intel CO(p.
*Inlel Corp. MINNESOTA 5800 Executive Center Drive
20 Technology Park, Suite 150 Surte 105
Norcross 30092 *Intel Corp. Charlotte 28212
Tel: (404) 449·0541 Tel: (704) 568·8966 3500 W. 80th St., Surte 360
5523 Theresa Street ~~~:om~n2~t~5~~~~ **Intel Corp.
Columbus 31907 5540 Centerview Dr., Suite 215

HAWAII MISSISSIPPI
Raleigh 27606
Tel: (919) 851·9537

**Intel Corp. Intel Corp.
Honolulu 96820 C/o Compu-Care OHIO
Tel: (808) 847·6738 2001 Airport Road, Suite 205F

**Intel Corp. Jackson 39208
ILLINOIS Tel: (601) 932·6275 3401 Park Center Dr., Ste. 220

Dayton 45414
**tlntel Corp. Tel: (513) 890·5350 MISSOURI Woodfield Corp. Center 11/

*Intel Corp. 300 N. Martingale Rd., Ste. 400 *Inlel Corp.
Schaumburg 60173 3300 Rider Trail South 25700 Science Park Or., Ste. 100
Tel: (708) 605·8031 Suite 170 Beachwood 44122

Earth Citr 63045 Tel: (216) 484·2736
INDIANA Tel: (314 291·1990

*Intel Corp. Intel Corp.
OREGON

8910 Purdue Rd., Ste. 350 Route 2, Box 221
~~~~ ~w.·Greenbrier Pkwy. Indianapolis 46268 Smllhville 64089 

Tel: (317) 875·0623 Tel: (913) 345·2727 Building B 
Beaverton 97006 

KANSAS NEW JERSEY Tel: (503) 645·8051 
*Intel Corp. **Intel Corp. 10985 Cody, Surte 140 PENNSYLVANIA 
Overland Park 66210 300 Sylvan Avenue 
Tel: (913) 345·2727 Englewood Cliffs 07632 *tlntel Corp. 

Tel: (201) 567·0821 925 Harvest Drive 
KENTUCKY *Inlel Corp. Suite 200 

Blue Bell 19422 
Intel Corp. Lincroft Office Center Tel: (215) 841·1000 125 Half Mile Road 
133 Walton Ave., Office 1A Red Bank 07701 1·800·468·3548 
Lexington 40508 Tel: (908) 747·2233 FAX: (215) 841·0785 
Tel: (606) 255·2957 

**tlntel Corp. 
Intel Corp. NEW MEXICO 400 Penn Center Blvd., Sle. 610 
896 Hillcrest Road, Apt. A Pittsburgh 15235 
Radcllff 40160 (Louisville) Intel Corp. Tel: (412) 823·4970 

Rio Rancho 1 
LOUISIANA 4100 Sara Road *Intel Corp. 

Rio Rancho 87124-1025 1513 Cedar Cliff Dr. 
Hammond 70401 (near Albuquerque) Camp Hill 17011 
(serviced from Jackson, MS) Tel: (505) 893·7000 Tel: (717) 761·0860 

CUSTOMER TRAINING CENTERS 

SYSTEMS ENGINEERING OFFICES 
NEW YORK 

2950 Expressway Dr., South 
Islandia 11722 
Tel: (506) 231·3300 

PUERTO RICO 

Intel Corp. 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733·8616 

TEXAS 

;~~\~lc~o;~O, Suite 4230 
8911 N. Capitol of Texas Hwy. 
Austin 78752-1239 
Tel: (512) 794-8086 

**tlntel Corp. 
12000 Ford Rd., Suite 401 
Dallas 75234 
Tel: (214) 241·8087 

**Intel Corp. 
7322 SW Freeway, Suite 1490 
Houston 77074 
Tel: (713) 988·8086 

UTAH 

Intel Corp. 
428 East 8400 South 
Suite 104 
Murray 84107 
Tel: (801) 263·8051 
FAX: (801) 268·1457 

VIRGINIA 

*intel Corp. 
9030 Slony Point Pkwy. 
Suite 360 
Richmond 23235 
Tel: (804) 330·9393 

WASHINGTON 

**Inlel Corp. 
155108th Avenue N.E., Ste. 386 
Bellevue 98004 
Tel: (206) 453·8086 

CANADA 
ONTARIO 
**Inlel Semiconductor of 
Canada, Ltd. 
2650 Queensview Dr., Ste. 250 
Ottawa K2B 8H6 
Tel: (613) 829·9714 

**Intel Semiconductor of 
Canada, Ltd. 
190 Attwell Dr., Ste. 102 
Rexdale (Toronto) M9W 6H8 
Tel: (416) 675·2105 

QUEBEC 
**Intel Semiconductor of 
Canada, Ltd. 
1 Rue Holiday 
Suite 115 
Tour East 
Pt. Claire H9R 5N3 
Tel: (514) 694·9130 
FAX: 514·694·0064 



U~ITED STATES 
Intel Corporation 
2200 ~li~~ion Collegc Boulevard 
P.O. Box 58119 
Santa Clara. CA 95052-8119 

JAPA~ 

Intcl Japan K.K. 
5-6 Tokodai. Tsukuba-shi 
Ibaraki. 30()-26 

FRA~CE 

Intcl Corporation S.A.R.L 
1. Ruc Edison. BP 303 
78054 Saint-Quentin-cn-Yvclines Ccdcx 

L~ITED KI~GDOM 

Intel Corporation (L~K.) Ltd. 
Pipers Wa~ 
Swindon 
Wiltshire. England SN3 IRJ 

GER:\lM'Y 
Intel GmbH 
Dornacher Strasse 1 
8016 Fcldkirchen bci \luenchcn 

HONG KONG 
Intel Semiconductor Ltd. 
lOfF East Tower 
Bond Center 
Queenswa~. Ccntral 

CA~ADA 

Intel Scmiconductor of Canada. Ltd. 
190 Attwell Drhc. Suite 500 
Rexdalc. Ontario ~19W 6H8 

Pnnted in USAl292/20K/RRD PS ISBN 1-55512-163-2 


