1
o
2
<
©
T~
(Y
~
(aV}
i
Q
o
E
3
Z
g
()
©
=
O

11

n g
¥ SR
b7 i
;
= =
-
L ) (L J
i \
& \




intgl.

LITERATURE

To order Intel literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES In the U.S. and Canada
P.O. Box 7641 call toll free
Mt. Prospect, IL 60056-7641 (800) 548-4725

This 800 number is for external customers only.

CURRENT HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design
information. All handbooks can be ordered individually, and most are available in a pre-packaged set in the
U.S. and Canada.

INTEL
TITLE ORDER NUMBER ISBN
SET OF TEN HANDBOOKS 231003 N/A

(Available in U.S. and Canada)

CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING:

EMBEDDED CONTROLLERS & PROCESSORS 270645 1-55512-140-3
(2 volume set)

MEMORY PRODUCTS 210830 1-556512-144-6
MICROCOMMUNICATIONS 231658 1-55512-148-9
MICROCOMPUTER PRODUCTS 280407 1-565512-143-8
MICROPROCESSORS 230843 1-565512-150-0
MULTIMEDIA & SUPERCOMPUTING PROCESSORS 272084 1-55512-149-7
PACKAGING 240800 1-55512-145-4
PERIPHERAL COMPONENTS 296467 1-55512-146-2
PRODUCT OVERVIEW 210846 1-55512-142-x
(A guide to Intel Architectures and Applications)

PROGRAMMABLE LOGIC 296083 1-55512-147-0
ADDITIONAL LITERATURE:

(Not included in handbook set)

AUTOMOTIVE HANDBOOK 231792 1-565512-125-x
COMPONENTS QUALITY/RELIABILITY 210997 1-5656512-132-2
CUSTOMER LITERATURE GUIDE 210620 N/A
EMBEDDED APPLICATIONS 270648 © 1-55512-123-3
INTERNATIONAL LITERATURE GUIDE E00029 N/A

(Available in Europe only)

MILITARY HANDBOOK 210461 1-565512-126-8
(2 volume set)

SYSTEMS QUALITY/RELIABILITY 231762 1-565512-046-6
HANDBOOK DIRECTORY 241197 N/A

(Index of all data sheets contained in the handbooks)



intel.

U.S. and CANADA LITERATURE ORDER FORM

NAME:
COMPANY:
ADDRESS:
CITY: STATE: ________ ZIP:
COUNTRY:
PHONE NO.: _( )

ORDER NO. TITLE QTy. PRICE TOTAL
LI rrri X =
L1 P17 1] X =
LI T I T T X =
L1 [T T 1] x =
LI rrri x =
L1 T T TT] x =
LI T T T11 X =
LI [T T 1] X =
LI T T T 1] X =
LI T T T 1] X =

Subtotal

Must Add Your
Local Sales Tax

Include postage:
Must add 15% of Subtotal to cover U.S. Postage
and Canada postage. (20% all other.)

Total

Pay by check, money order, or include company purchase order with this form ($200 minimum). We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks for
delivery. ’

[ VISA [] MasterCard [] American Express Expiration Date

Account No.

Signature

Mail To: Intel Literature Sales International Customers outside the U.S. and Canada
P.O. Box 7641 should use the International order form on the next page or
Mt. Prospect, IL 60056-7641 contact their local Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725

Prices good until 12/31/92.
Source HB



intel.

INTERNATIONAL LITERATURE ORDER FORM

NAME:

COMPANY:

ADDRESS:

CITY: STATE: ________ ZIP:
COUNTRY:

PHONE NO.: _( )

ORDER NO. TITLE QTy. PRICE TOTAL
HEEEEEN X =
Lt L1111 x =
I x =
I I I O x =
L1 1 I 1] x =
L1 1 01 1] x =
. x =
| . x =
I x =
Lt i Id x =

Subtotal
Must Add Your
Local Sales Tax
Total
PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover).

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned to
your local Intel Sales Office.



intal

80C186/188,
80C186XL/C188XL
USER’S MANUAL

1992
Order Number 272164-001



Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376, Above, ActionMedia, BITBUS, Code Builder, DeskWare, Digital Studio, DVI,
EtherExpress, ETOX, ExCA, FaxBACK, Grand Challenge, i, i287, i386, i387, i486,
i487, i750, 860, 960, ICE, iLBX, Inboard, Intel, Intel287, Intel386, Intel387,
Intel486, Intel487, intel inside., Intellec, iPSC, iRMX, iSBC, iSBX, iWarp, LANPrint,
LANSelect, LANShell, LANSight, LANSpace, LANSpool, MAPNET, Matched, MCS,
Media Mail, NetPort, NetSentry, OpenNET, PRO750, ProSolver, READY-LAN,
Reference Point, RMX/80, SatisFAXtion, Snapin 386, Storage Broker, SugarCube,
The Computer Inside., TokenExpress, Visual Edge, and WYPIWYF.

MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of Mohawk
Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel’'s FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
mark or products.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

©INTEL CORPORATION 1992



TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION ...ttt 1-1
1.1 DIFFERENCES BETWEEN THE 80C186
AND THE 80C186XL PRODUCT FAMILIES ..........ccoovviniininenn 1-2
1.2 HOW TO USE THIS MANUAL ......ocoiiiririneeeree s 1-3
CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE..............c.ccoiiiniiiiienn, 2-1
2.1 ARCHITECTURAL OVERVIEW. ......cccoiiiciictisnsnnnines 2-1
2.1.1 EXECUTION UNIT ...t 2-2 .
21.2 BUS INTERFACE UNIT ..o 2-3
2.1.3 GENERAL REGISTERS........ccoiiiiircen e 2-4
2.1.4 SEGMENT REGISTERS.........ccooiviie s 25
215 INSTRUCTION POINTER.......cccoi ittt 2-6
2.1.6 FLAGS ... s 2-6
2.1.7 MEMORY SEGMENTATION........ccciiiiiniiincninnscaes 2-7
2.1.8 LOGICAL ADDRESSES..........cccooiiiiiiiiinin e 2-9
2.1.9 DYNAMICALLY RELOCATABLE CODE ........ccccccoiviiniinniinennn, 2-12
2.1.10 STACK IMPLEMENTATION........coovviriinnias 2-13
2.1.11 RESERVED MEMORY AND I/O SPACE.........cccovcinninniincnnn, 2-14
2.2 SOFTWARE OVERVIEW........ooiiiiii s 2-14
221 INSTRUCTION SET ...t 2-15
22141 DATA TRANSFER.......coiiiiicirctr 2-16
221.2 ARITHMETIC INSTRUCTIONS ..o 2-18
2213 BIT MANIPULATION INSTRUCTIONS..........ccooeviiieiciiiciiene, 2-19
2214 STRING INSTRUCTIONS .........ccoeniiiciiciiiincis s, 2-19
2.2.1.5 PROGRAM TRANSFER INSTRUCTIONS ..........cccociiiiiiriienn, 2-20
2.2.1.6 PROCESSOR CONTROL INSTRUCTIONS...........ccooviiiiniienn 2-23
222 ADDRESSING MODES.........ccocconiiiiiiii i 2-23
2221 REGISTER AND IMMEDIATE OPERAND
ADDRESSING MODES..........ccoocoiiiinnni e 2-23
2222 MEMORY ADDRESSING MODES. ..........ccoooinenrrreneereeces 2-24
2223 I/O PORT ADDRESSING .......cccoeiiirinieereeeeeeees e 2-31
2224 DATA TYPES USED IN THE
80C186 MODULAR CORE FAMILY .....ccoocviniiniininiiinnee 2-32
2.3 INTERRUPTS AND EXCEPTION HANDLING ........cccovviireininenne 2-32
2.3.1 INTERRUPT/EXCEPTION PROCESSING..........ccooniiiniiiinienn, 2-34
2.3.11 NON-MASKABLE INTERRUPTS. ........ccooviiiiiin s 2-36
2.3.1.2 MASKABLE INTERRUPTS ..ot 2-37
2.3.1.3 EXCEPTIONS. ... 2-37



intel.

TABLE OF CONTENTS

23.2 SOFTWARE INTERRUPTS ..o 2-38
233 INTERRUPT LATENCY ....cooriiiiiciiiir s 2-39
234 INTERRUPT RESPONSE ..........cocoiiviiiiince e 2-39
235 INTERRUPT AND EXCEPTION PRIORITY ....ccccoiviiiiiiiniiniens 2-40
CHAPTER 3

BUS INTERFACE UNIT ...t 3-1
3.1 MULTIPLEXED ADDRESS AND DATABUS .......cccoceciiiiiiiiis 3-1
3.2 ADDRESS AND DATA BUS CONCEPTS ........ccccoiiiiiciniiicien 3-1
3.2.1 16-BIT DATABUS ... oo 3-1
322 8-BITDATABUS. ... 3-4
3.3 MEMORY AND I/O INTERFACES ...........ccoiiiciceee 3-5
3.3.1 16-BIT BUS MEMORY AND I/O REQUIREMENTS .................... 3-6
3.3.2 8-BIT BUS MEMORY AND I/0 REQUIREMENTS...........covveeee. 3-6
3.4 BUS CYCLE OPERATION.......coiiiiiieininene s
34.1 ADDRESS/STATUS PHASE
34.2 DATAPHASE ...
34.3 WAIT STATES ...,
3.4.31 ARDY INPUT ..o
3432 SRDY INPUT ...t s
34.4 IDLE STATES.....cci e e
3.5 BUS CYCLES ... e
3.5.1 READ BUS CYCLES........cccciiiii
3.5.1.1 REFRESH BUS CYCLES.........coo o
35.2 WRITE BUS CYCLES. ..ottt
3.5.3 INTERRUPT ACKNOWLEDGE BUS CYCLE ..o 3-23
3.5.3.1 SYSTEM DESIGN CONSIDERATIONS ........ocoiieeirieeeinnis 3-25
35.4 HALT BUS CYCLE ..ot 3-25
35.5 TEMPORARILY EXITING THE HALT BUS STATE...........ccocceue 3-26
3.5.6 EXITING HALT ..ottt s 3-27
3.6 SYSTEM DESIGN ALTERNATIVES ..o 3-28
3.6.1 BUFFERING THE DATA BUS.........ccooeiiiiiie 3-28
3.6.2 SOFTWARE SYNCHRONIZATION .......ccooiiiiiiiii e, 3-32
3.6.3 LOCKED BUS OPERATION ......cccooiiiieirenie et 3-33
3.6.4 QUEUE STATUS OPERATION .......ccociiiiiniiicnni e, 3-34
3.7 MULTI-MASTER BUS SYSTEM DESIGNS..........cccooniiiiiicniinns 3-35
3.7.1 ENTERING BUS HOLD.......oooiiccce e 3-35
3.7.1.1 HOLD BUS LATENCY .....coiiiiiiieieeieecincre i 3-35
3712 REFRESH OPERATION DURING A BUS HOLD.........c..ceciueans 3-37
3.7.2 EXITING HOLD .....c.ooiiiieeeieie v 3-38
3.8 BUS CYCLE PRIORITIES.........ccoooovimiinniieesinies [ 3-38



'nteL TABLE OF CONTENTS

CHAPTER 4

PERIPHERAL CONTROL BLOCK .........c.cootiiieeeeeeee e 4-1
4.1 SETTING THE BASE LOCATION......ccoiiereeeieinieeerieeeeeseene s 4-1
4.2 PERIPHERAL CONTROL BLOCK REGISTERS..........cc.ccocvvvnnne. 4-4
4.3 RESERVED LOCATIONS AND THE NUMERICS INTERFACE .....4-5
CHAPTER 5

CLOCK GENERATION AND POWER MANAGEMENT .............cccoeceviennne. 5-1
5.1 CLOCK GENERATION ......ooiiiiiiecirrreeeecseeresre e 5-1
5.1.1 CRYSTAL OSCILLATOR ......ccoiiiiricrercece e 5-1
5.1.1.1 OSCILLATOR OPERATION........coiiiviiiiininnr e 5-1
51.1.2 SELECTING CRYSTALS ..o 5-4
5.1.2 USING AN EXTERNAL OSCILLATOR .......ccoorinreiceeerceeeenne 5-5
5.1.3 OUTPUT FROM THE CLOCK GENERATOR .......ccccevereeiinenne 5-6
514 RESET AND CLOCK SYNCHRONIZATION.........cccceeriermeeninenn 5-6
52 POWER MANAGEMENT .....ccooiiiiinecneere et 5-9
5.2.1 POWER-SAVE MODE .......ccocoiiiinerenirene et 5-10
5.2.1.1 ENTERING POWER-SAVE MODE...........cccocinmninenenenreeneeeae 5-11
5.2.1.2 LEAVING POWER-SAVE MODE.........ccccoceiininiiieneniecnnienene 5-11
52.1.3 EXAMPLE POWER-SAVE INITIALIZATION CODE. .................... 5-12
CHAPTER 6

CHIP SELECT UNIT ... 6-1
6.1 FUNCTIONAL OVERVIEW .......coiiiiiiiiiccnrccnerees e 6-2
6.2 PROGRAMMING..........cociiiitiiireieenteeereenr e 6-5
6.2.1 INITIALIZATION SEQUENCE ........ccoiiieieeeeieee e 6-11
6.2.2 START ADDRESS ........ccooiiiiiiirererreeirererrece e e 6-11
6.2.3 STOP ADDRESS .........ocoiiiiiiiiee s 6-12
6.2.4 BLOCK SIZE........cotiiiiteeeeereee et e 6-13
6.2.5 BUS WAIT STATE AND READY CONTROL.......cccccevvrerernnenne 6-14
6.2.6 OVERLAPPING CHIP-SELECTS ......cccceoitreneneneeee e 6-14
6.2.7 MEMORY OR I/O BUS CYCLE DECODING .........ccccoceneureamnnenen 6-15
6.3 PROGRAMMING CONSIDERATIONS..........cccoconiiriiireinin e 6-15
6.4 CHIP-SELECTS AND BUS HOLD .......ccocviieiierieeeseee e 6-16
6.5 EXAMPLES ...ttt 6-17
6.5.1 EXAMPLE 1: TYPICAL SYSTEM CONFIGURATION ........ e 6-17



intgl. TABLE OF CONTENTS

CHAPTER 7 ,
REFRESH CONTROL UNIT ......oooiiiiiireeecc e 7-1
71 THE ROLE OF THE REFRESH CONTROL UNIT .........ccccoennrrininnn. 7-1
7.2 REFRESH CONTROL UNIT CAPABILITIES..........cccccoinininciennens 7-2
7.3 REFRESH CONTROL UNIT OPERATION.........cccooiviniiiniinicinnnes 7-2
7.4 ~ REFRESH ADDRESSES..........ccooieereeee e 7-4
75 REFRESH BUS CYCLES .........ccooiiiiccstc s 7-4
76 . GUIDELINES FOR DESIGNING DRAM CONTROLLERS.............. 7-5
7.7 PROGRAMMING THE REFRESH CONTROL UNIT.......ccccovnennnes 7-5
7.7 CALCULATING THE REFRESH INTERVAL ........cocovviiininiins 7-7
772 REFRESH CONTROL UNIT REGISTERS ..........ccoocvniiiniininnnn 7-7
7.7.21 REFRESH BASE ADDRESS REGISTER.........ccocvvrrerereererens 7-7
7722 REFRESH CLOCK INTERVAL REGISTER.........ccccovvvvininiinnnn 7-7
7723 REFRESH CONTROL REGISTER .........ccooniinininiiinnininns 7-9
7.7.3 PROGRAMMING EXAMPLE.........ccooii e 7-9
7.8 REFRESH OPERATION AND BUS HOLD.........ccooeiininiiinicnninns 7-11
CHAPTER 8
INTERRUPT CONTROL UNIT ......cooiiiiiieeeecr e 8-1
8.1 FUNCTIONAL OVERVIEW .......oooiiiienerece e 8-1
8.2 MASTER MODE........cccooiitiiiiirinn st 8-2
8.2.1 GENERIC FUNCTIONS IN MASTER MODE...........ccccoviineiniinnen. 8-2
8.2.1.1 INTERRUPT MASKING ........coooiiiiriere e 8-2
8.2.1.1.1 GLOBAL MASKING OF INTERRUPT SOURCES...........ccccceniee 8-3
8.2.1.1.2  INDIVIDUAL MASKING OF INTERRUPT SOURCES.................. 8-3
8.2.1.2 INTERRUPT PRIORITY ..ottt ee e 8-3
8.2.1.2.1 OPERATION WHEN INTERRUPT NESTING
: IS NOT ENABLED.......cocoititititnpn s 8-4
8.2.1.22  OPERATION WHEN NESTING INTERRUPTS ......cc.ccomrvernrrirnnens 8-4
8.3 MASTER MODE OPERATION .......cocovniriinniine e 8-5
8.3.1 TYPICAL INTERRUPT SEQUENCE................. et ee e 8-5
83.2 . PRIORITY RESOLUTION ......cocouriririiiciririneeiee e 8-5
8.3.2.1 INTERRUPTS WHICH SHARE A SINGLE SOURCE.................. 8-7
8.3.3 CASCADING WITH EXTERNAL 8259As.........cccvvivirininiisiniieninas 8-7
8.3.3.1 SPECIAL FULLY NESTED MODE.........ccocorernnenernec s 8-8
8.34 INTERRUPT ACKNOWLEDGE SEQUENCE .............cc.coccennne. 8-8
8.3.5 POLLING ...ttt s 8-9
8.3.6 EDGE AND LEVEL TRIGGERING..........c..cccevururunnnne - 8-9
8.3.7 ADDITIONAL LATENCY AND RESPONSE TIME
OF MASTER MODE..........ccociiiiiiiircrnrt e 8-10
8.4 MASTER MODE INTERRUPT UNIT PROGRAMMING .................. 8-11
8.4.1 INTERRUPT CONTROL UNIT REGISTER DEFINITIONS ......... 8-11
8.4.1.1 INTERRUPT CONTROL REGISTERS .........ccccoiiiiiiniiiiiiiiiens 8-12
84.1.2 THE INTERRUPT REQUEST REGISTER..........cccooeniiiiiiiin 8-14
84.1.3 INTERRUPT MASK REGISTER ......ccoooiieeiiriiireiecnin, .. 8-15

vi



intgl. TABLE OF CONTENTS

8.4.1.4 PRIORITY MASK REGISTER ........ccoooiiiiiireneecreie 8-16
8.4.1.5 IN-SERVICE REGISTER.......ccccooeriiiiiircccn s 8-17
8.41.6 POLL AND POLL STATUS REGISTERS. .........ccccooviriiiinienne 8-18
8.4.1.7 END-OF-INTERRUPT REGISTER .......ccccooviiiiiniineciieeiens 8-20
8.4.1.8 INTERRUPT STATUS REGISTER ......ccoeoeiiiicicicincncne 8-21
8.4.2 INTERRUPT CONTROL UNIT INITIALIZATION SEQUENCE.... 8-22
8.4.3 MASTER MODE INITIALIZATION EXAMPLE ..........cccoccovvnennnene 8-23
8.5 SLAVE MODE ........coiiiiiiircncnicee et 8-23
8.5.2 SLAVE MODE PROGRAMMING .........cccooiriiniiiiniiniinne s 8-25
8.56.2.1 INTERRUPT VECTOR REGISTER ......ccooerviiniiniireiiccecnene 8-25
8.5.2.2 END-OF-INTERRUPT REGISTER .......c.ccocviiiiiiiniirein 8-26
8.5.2.3 OTHER REGISTERS IN SLAVE MODE. .........ccccciviiiiininreninne 8-26
8.5.24 INTERRUPT VECTORING IN SLAVE MODE .........ccoovnrinrnnnnns 8-27
CHAPTER 9

TIMER/COUNTER UNIT ...t 9-1
9.1 FUNCTIONAL OVERVIEW. ........ccoiiiiiiiriece e 9-1
9.2 PROGRAMMING THE TIMER/COUNTER UNIT........cccceeiiieinnnen. 9-5
9.2.1 INITIALIZATION ..ot 9-7
9.2.2 CLOCK SOURCES ..ottt 9-9
9.2.3 COUNTING SEQUENCE ......cccooiiiiiiiincnnce s 9-9
9.2.3.1 RETRIGGERING..........ccooviiiiiiiiiic s 9-10
9.2.4 PULSED AND VARIABLE DUTY CYCLE OUTPUT ..........ccce.u.e. 9-11
9.2.5 ENABLING/DISABLING COUNTERS...........ccccoviiririiecnienn 9-12
9.2.6 TIMER INTERRUPTS ...t 9-13
9.2.7 PROGRAMMING CONSIDERATIONS..........cccooovinirinenreienes 9-13
9.3 TIMING ...t 9-13
9.3.1 INPUT SETUP AND HOLD TIMINGS..........cccoviiiiiiiniccie 9-13
9.3.2 SYNCHRONIZATION AND MAXIMUM FREQUENCY ................ 9-13
9.4 TIMER/COUNTER UNIT APPLICATION EXAMPLES..................... 9-14
9.4.1 REAL-TIME CLOCK ........ooiiriecicie e s 9-14
942 SQUARE WAVE GENERATOR........ccocenriiiiiieccsins 9-17
9.4.3 DIGITAL ONE-SHOT .....utiririireireerenenieesienieeeneseeeseesssensenneesees 9-19
CHAPTER 10

DIRECT MEMORY ACCESS UNIT .......c.coooiiiiiiincesns 10-1
10.1 FUNCTIONAL OVERVIEW ... oot 10-1
10.1.1 THE DMA TRANSFER ..o, 10-1
10.1.1.1 DMA TRANSFER DIRECTIONS.......c.cooviirieiiniccirieeeree s 10-2
10.1.1.2 BYTE AND WORD TRANSFERS .........c.cccciiiinnininiienen 10-2
10.1.2 SOURCE AND DESTINATION POINTERS.........ccccovviiiiniiiiinns 10-3
10.1.3 DMA REQUESTS. .........oooiienree i 10-3
10.1.4 EXTERNAL REQUESTS.......ccciiiiiiicsisii i 10-3
10.1.4.1 SOURCE SYNCHRONIZATION .....ccooviiiieeieniiniisee i 10-4

vii



intel. TABLE OF CONTENTS

e e e e T e I I N A N N S N

0.1.4.2 DESTINATION SYNCHRONIZATION ......cccoinirinieininneniniees 10-5
0.1.5 INTERNAL REQUESTS..........cocviiriiiiiirr s 10-5
0.1.5.1 TIMER 2 INITIATED TRANSFERS. .........ccoi i, 10-6
0.1.5.2 UNSYNCHRONIZED TRANSFERS.........cccoooiiiirenereeeeeeee 10-6
0.1.6 DMA TRANSFER COUNTS........cciviiriirccni s 10-6
0.1.7 TERMINATION AND SUSPENSION OF DMA TRANSFERS ..... 10-7
0.1.7.1 TERMINATION AT TERMINAL COUNT ......coiiirirriirireine 10-7
0.1.7.2 SOFTWARE TERMINATION ......cccooiiiiirineereceeee e 10-7
0.1.7.3 SUSPENSION OF DMA DURING NMI .........cooocinmiinniiiinnieiis 10-7
0.1.7.4 SOFTWARE SUSPENSION..........ccoiniviiinnes 10-7
0.1.8 DMA UNIT INTERRUPTS ..ot 10-7
0.1.9 DMA CYCLES AND THE BIU .....ccooiiiiiiiiiii s 10-8
0.1.10 THE 2 CHANNEL DMA UNIT.....ociiiiiiiiiiennenns 10-8
0.1.10.1  DMA CHANNEL ARBITRATION ......cccoooiiiiiriiiiii i 10-9
10.1.10.1.1 FIXED PRIORITY ..ooriiiiiciirii e 10-9
10.1.10.1.2 ROTATING PRIORITY ....occriiiiiiiriiisi s 10-9
10.2 PROGRAMMING THE DMA UNIT ..o, 10-10
10.2.1 DMA CHANNEL PARAMETERS .........ccccoiiiiiiiiinininn, 10-10
10.2.1.1 PROGRAMMING THE SOURCE AND
DESTINATION POINTERS........ccooiiiiicricsi s 10-10
10.2.1.2 SELECTING BYTE OR WORD SIZE TRANSFERS.................... 10-15
10.2.1.3 SELECTING THE SOURCE OF DMA REQUESTS ..........cccoovune. 10-15
10.2.1.4 ARMING THE DMA CHANNEL.........cccviiiiiieii e 10-15
10.2.1.5 SELECTING CHANNEL SYNCHRONIZATION...........ccovinniniinn 10-15
10.2.1.6 PROGRAMMING THE TRANSFER COUNT OPTIONS.............. 10-15
10.2.1.7 GENERATING INTERRUPTS ON TERMINAL COUNT .............. 10-16
10.2.1.8 SETTING THE RELATIVE PRIORITY OF A CHANNEL ............. 10-16
10.2.2 SUSPENSION OF DMA TRANSFERS. ...........ccconiininiiinie 10-17
10.2.3 INITIALIZING THE DMA UNIT ...coviiiiiiissee 10-17
10.3 HARDWARE CONSIDERATIONS AND THE DMA UNIT ............... 10-17
10.3.1 DRQ PIN TIMING REQUIREMENTS..........coocoiiniiiiiicincienn, 10-17
10.3.2 DMA LATENCY ..ot 10-17
10.3.3 DMA TRANSFER RATES ........coooiiiiiin i, 10-18
10.3.4 GENERATING A DMA ACKNOWLEDGE...........ccccoiiiiiiniiniinnns 10-18
10.4 DMA UNIT EXAMPLES ... 10-18
CHAPTER 11
MATH COPROCESSING ...........ccooiiiiienieee e 11-1
1.1 OVERVIEW OF MATH COPROCESSING .......cccccoviiiniiiiiiieniens 11-1
11.2 AVAILABILITY OF MATH COPROCESSING ........cccoovveniinienienns 11-1
11.3 THE 80C187 MATH COPROCESSOR........ccccooiiiiiiiiiiniecenen 11-2
11.3.1 80C187 INSTRUCTION SET .....cccccniiiiiiiniimcniinsniens s 11-2
11.3.1.1 DATA TRANSFER INSTRUCTIONS ........ccoooiiiiinicenines 11-2
11.3.1.2 ARITHMETIC INSTRUCTIONS ......cccoovrrieiereeererecenerreeseeeneee 11-3
11.3.1.3 COMPARISON INSTRUCTIONS. ...t 11-5
11.3.1.4 TRANSCENDENTAL INSTRUCTIONS .......ccooviiiiiinecnciein, 11-5

viii



intel. TABLE OF CONTENTS

11.3.1.5 CONSTANT INSTRUCTIONS........ccoetiriiinicec i, 11-6
11.3.1.6 PROCESSOR CONTROL INSTRUCTIONS...........cccoeviuiininnenen, 11-6
11.3.2 80C187 DATA TYPES. ...t 11-7
114 MICROPROCESSOR AND COPROCESSOR OPERATION.......... 11-7
11.4.1 CLOCKING THE 80C187 ......ccoecicriiiiinrccincnnisiniienanes 11-7
11.4.2 PROCESSOR BUS CYCLES ACCESSING THE 80C187 .......... 11-8
11.4.3 SYSTEM DESIGN TIPS ...t 11-10
11.4.4 EXCEPTION TRAPPING .......ccciiieiieerceeee s 11-11
11.5 EXAMPLE MATH COPROCESSOR ROUTINES...........ccocecnnene. 11-11

CHAPTER 12:

T ONCETMMODE. ..o eeeeeeeeeeeeeeesseeeseeseeeseess s eenesseee s 12-1
12.1 ENTERING/LEAVING ONCE MODE ........ooevvveeeeeesssssesseennsoenenns 12-1
APPENDIX A

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS ................... A-1
A 80C186 INSTRUCTION SET ADDITIONS ......oovvveeeeerreeessenreene A-1
A1 DATA TRANSFER INSTRUCTIONS ...........ovvvoeeeeeesserreeereerrennnas A-1
A1.2 STRING INSTRUCTIONS .....oooooorrerrereereeeeeeesssseeneseeeeesesess e A-1
A1.3 HIGH LEVEL INSTRUCTIONS ......ccooomrreereerroeeesesserseeeeereennns A-2
A2 80C186 INSTRUCTION SET ENHANCEMENTS............vvveecrreee. A-6
A2.1 DATA TRANSFER INSTRUCTIONS .........vvvveeeeeseeserrreeeoennas A-7
A2.2 ARITHMETIC INSTRUCTIONS ......ooveeeereeerreeeseeserreeesessseeeee A-8
A2.3 BIT MANIPULATION INSTRUCTIONS .........ccemmrrrrreerrrrnrecerrn A-8
A23.1 SHIFT INSTRUCTIONS ... oovveeeeoeeoeeeeeeeeeeoeessssseesssseesse s A-8
A2.32  ROTATE INSTRUCTIONS.....cccoommmmmmromeeisessssmmrreeeessssssseneeneeee A-9
APPENDIX B

INPUT SYNCHRONIZATION .........ooooooeieeoeoeseeeeeeesssseeeeeeseeeeesesssessees oo B-1
B.1 WHY SYNCHRONIZERS ARE REQUIRED ..........co....ccccerimrrrnneee B-1
B.2 ASYNCHRONOUS PINS .....ooooeeoeeeeeeeeeeeeeoesesssseeeeeeoee s B-2
APPENDIX C......oooovooeoee oo eeeeeeoeseseseeeeeoeeesseseeeeeessssseeesesseseesssseessssssssssesseees C-1
APPENDIX D

80C186XL/C188XL COMPATIBILITY WITH THE 80C186/C188 ................. D-1
D.1 DC SPECIFICATION DIFFERENCES ..........ovvvvveeeeeessseseeeeees D-1
D.1.1 Vit SPECIFICATIONS .....oovvooeeoeeeseeeeeeeveeeeessssesessessseensssssssee D-1



TABLE OF CONTENTS

D.1.2 lcc SPECIFICATIONS.......ccooiir s D-2
D.1.3 Ve SPECIFICATIONS ...t D-2
D.2 AC SPECIFICATION DIFFERENCES .........ccooiiiinincenieieens D-2
D.2.1 CONTROL LOGIC CONSIDERATIONS ........cccoinirrireeneeeneen D-3
D22 ADDRESS AND DATA VALID CONSIDERATIONS.................... D-4
D23 BUFFERED DESIGN CONSIDERATIONS..........ccoove i D-4
D.2.4 X1 CONSIDERATIONS ..ottt D-4
D.2.5 CLKOUT HIGH/LOW TIME CONSIDERATIONS ........ccccoovnenene. D-4
D.3 ERRATA COMPARISON .....ccocotiiirieeieerenerecene e D-4
D.3.1 LOCK/INTA CYCLES. ..ottt D-4
D.3.2 FWAIT/ERROR .....cocuiiiiiriiecnieieiei et D-5
D.3.3 Vi ON SRDY AND ARDY INPUT PINS .......c.ccoeiiienieene e D-5
D.3.4 INTERRUPT STATIS REGISTER......ccoeeiiiirere e D-5
D.3.5 BUS PREEMPTION ....coomiiiiiiiicee et D-5
D.3.6

80C188 RFSH PIN ..ot D-6



TABLE OF CONTENTS
Figures

1.1 Comparison of 80C186 Modular Core Family Products .................. 1-2
2.1 Simplified Functional Block Diagram of the 80C186

Modular Core Family CPU .........ccccociieiinirieiece e 2-2
22 Physical Address Generation............coccvveenieineeniennennneeneeeeeineens 2-3
23 General Registers.........cocuiiiiiiiiieinieniesie e 2-4
2.4 Segment Registers ... 2-6
25 Processor Status Word ... 2-8
2.6 Segment Locations in Physical Memory ...........ccccccniiiniininnininne, 2-9
27 Currently Addressable Segments ..........ccoccovverieeriiniiennienneeneens 2-10
2.8 Logical and Physical Address ...........coerviiiiininniinnecneeeneenneens 2-11
29 Dynamic Code Relocation............cccovveirieiiiiieiiiieee e eeeeee e 2-13
2.10 Stack Operation...........cceeeieieriiie e e s 2-15
2.1 Flag Storage Format..........cccccceeriieriiiinieccceececee s 2-18
212 Memory Address Computation...........c.cceceeviiniiiiinncniinicnee 2-25
2.13 Direct Addressing .......ccccceveriirerieiin i 2-25
2.14 Register Indirect Addressing .........cc.ccvcivrveiieninininnicie s 2-26
2.15 Based AdAreSSiNg .......cccceerieeeieeniinieiee e e 2-26
2.16 Accessing a Structure with Based Addressing...........c.ccceeviiiiennnnns 2-27
217 Indexed AdAreSSiNg........cooveireereeniiiee e e 2-28
2.18 Accessing an Array with Indexed Addressing..........cccoceeeeenieeenenee 2-28
2.19 Based Index AdAressing ......c..ccceceevieiiiiinnicnr e 2-29
2.20 Accessing a Stacked Array with Based Index Addressing............... 2-30
2.21 String OPerand .........coueoiiiiiiiieeee e 2-31
2.22 I/O Port ADAresSsing ........ccceeevereenerieiieiiereneeeesiessre e 2-31
2.23 80C186 Modular Core Family Supported Data Types.........c.ccuu..e. 2-33
2.24 Interrupt Control Unit..........ccooiiiiiiniceceeeeee e 2-34
2.25 Interrupt Vector Table.........coooiiiiieciieeee e 2-35
2.26 INtErrUPt SEQUENCE .......ceeeeeieeeie ettt 2-36
2.27 Interrupt Response Factors...........cevvveeiiieenecenneeeeeeeeeeeeceeenn 2-40
2.28 Simultaneous NMI and Exception ..........cccceiierciniinnienicenicncnn, 2-41
2.29 Simultaneous NMI and Single Step Interrupts ........ccccccevveenieninee. 2-42
2.30 Simultaneous NMI, Single Step and Maskable Interrupt ................. 2-43
3.1 Physical Data Bus Models............cccceiiiiiiiiiiiieeeeeereeeeeessveeeeeeen 3-2
3.2 16-Bit Data Bus Byte Transfers..........ccccooeenriiniiieniiicccncecieee 3-3
3.3 16-Bit Data Bus Even Word Transfers..........ccoccveieeiinnieenienneneens 3-3
3.4 16-Bit Data Bus Odd Word Transfers ...........ccccvervnnrenieeiiencennenns 3-4
35 8-Bit Data Bus Word Transfers ..........ccverveeveniivninee e 3-5
3.6 Typical BUS CYCIE......coccieiieee ettt 3-7
3.7 T-State Relation 10 CLKOUT ........cocoiciiiiineeeeeeeceee e 3-7
3.8 BIU State Diagram.........cccoeviiiiiiiieneeeeeeee e 3-8
3.9 T-State and Bus Phases ..........cccceviiiiiniiiieenceccie e 3-8
3.10 Address/Status Signal Relationships .........ccccoevveinenienieecienneneee 3-9
3.11 Demultiplexing Address Information ..........cccccocvviiciiniieniciiins 3-10
3.12 Data Transfer Signal Relationships............cccccovoniinniiiiinniiccien, 3-11
3.13 Typical Bus Cycle With Wait States ...........cceceeveeivenneniieneneeee 3-12

Xi



TABLE OF CONTENTS
3.14 ARDY and SRDY Pin Block Diagram...........ccccecvvnininincsincicnenne 3-13
3.15 Generating a Normally Not-Ready Signal.............. e ———————— 3-13
3.16 Generating a Normally Ready Signal..........cccccvviiveineenieeeneennienne 3-14
3.17 Normally Not-Ready System Timing ........ccocceveerveiiiinieenceecieenene 3-15
3.18 Normally Ready System Timing.......ccccccvvervriiinncennieecieee e 3-16
3.19 Typical Read BuS CYCIe .........cooviiiiriieiieeice e 3-18
3.20 Read-Only Device Interface .........ccccooeeerinieniceenecienreceeeeneen 3-20
3.21 Typical Write BuS CYCle .......ccoviieiiienieiecicrce e 3-21
3.22 16-Bit Bus Read/Write Device Interface...........cccceeveeveicceinneenncnne 3-22
3.23 Interrupt Acknowledge Bus CycCle ..........ccceeeririineniieneeeeceeee 3-24
3.24 Typical 82C59A Interface.........cccocviviiniiniiicicc, 3-25
3.25 HALT Bus O3 o - US 3-27
3.26 Returning to HALT After a Refresh Bus Cycle ................................. 3-28
3.27 Returning to HALT After a DMA Bus Cycle.......ccccooveeniieccecnniennnen. 3-29
3.28 Returning to HALT After a HOLD/HLDA Bus Exchange................... 3-29
3.29 EXItING HALT ...ttt 3-30
3.30 DEN and DT/R Timing Relationship .........ccccceeeeeeieveieceeceereeienens 3-31
3.31 Buffered AD BuS SYStEM.........cccoceririieneniereneee e 3-31
3.32 Qualifying DEN with Chip-Selects.........c.cccocviiiiininieiinciieecenes 3-32
3.33 Queue Status TiMing........cccceeevvireeniicinenne, e 3-34
3.34 Timing Sequence Entering HOLD ..........ccccocoeiiriineiieneecee e, 3-36
3.35 Refresh Request During Bus HoId ...........c.coeviiviinciicinicnicce, 3-37
3.36 Latching HLDA .......oo e 3-38
3.37 EXItiNg HOLD ...ttt 3-40
4.1 PCB Relocation Register...........ccccevvereniiiciniieer e 4-3
5.1 ClOCK GENEIALON ..ottt e 5-1
5.2 Ideal Operation of Pierce Oscillator............ccccoevveeieincsioinnieieeeeee, 5-2
5.3 Crystal Connections to MiCrOPrOCESSOT ........cccevuirvverseesieereneranenane 5-3
5.4 Equations for Crystal Calculations ...........cccceeeeveneenenenccnecneneen 5-3
5.5 Simple RC Circuit for Powerup Reset ..........c.cccooiviiiiiiniciiieiies 5-6
5.6 Cold Reset Waveform ...........coveereerieeneneee e 5-7
5.7 Warm Reset Waveform ..., 5-8
5.8 Clock Synchronization at Reset .........cccoceevvenveniniiecniecee e 5-9
5.9 Power-Save RegiSter .........ccoiiiviiiiieieeerr e 5-10
5.10 Power-Save Clock Transition ...........ccueueeeienienienicieesee e 5-11
6.1 Common Chip-Select Generation Methods ...........ccccoceeiinieniencnns 6-1
6.2 Chip-Select Block Diagram .........cccceceveeieeienierienenreseeseessee e 6-3
6.3 Chip-Select Relative Timings ...........cccceevvvmieieieiininnicseeiecee 6-4
6.4 UCS Reset Configuration................cccooooveveeiecciiccccccscceceecnnn. 6-5
6.5 UMCS Register Definition ..........ccccooverieeieniniineeesceee e 6-6
6.6 LMCS Register Definition ..........ccoceeeiiniinieniinesiecee e e 6-7
6.7 MMCS Register Definition ..........cccceoveeieieriniineneieee e 6-8
6.8 MPCS Register Definition............cccoeeeeiieieiieniiinereeeee e 6-9
6.9 PACS Register Definition ..........ccccceoereeieninicnieeeneeseeeeeeee 6-10
6.10 MCS ACHIVE RANGE ..ot 6-13
6.11 Wait State and Ready Control Functions..........ccccoevveveienniicn e 6-14
6.12 Using Chip-Selects During HOLD ........cccoooiiiieiienieeecece e 6-16

xii



TABLE OF CONTENTS
6.13 TypICal SYSIEM .....eiiiiiieee e s 6-17
71 Refresh Control Unit Block Diagram ..........cccceevvevenieneencnnnscnnnens 7-1
7.2 Refresh Control Unit Operation Flow Chart ...........ccccccovvienvenniineennns 7-3
7.3 Refresh Address Formation .........cccceviviiiiininiiiiiinieecne 7-3
7.4 Suggested DRAM Control Signal Timing Relationships .................. 7-6
7.5 Formula for Calculating Refresh Interval for RFTIME Register ....... 7-6
7.6 Refresh Base Address RegiSter..........ccevverveiiieicieniinniesnecseneeene 7-8
7.7 Refresh Clock Interval Register.........c.ccevvviiiininniiinie e 7-8
7.8 Refresh Control Register...........oovvvieiieiiieeiieeeeeeeee e 7-9
7.9 Regaining Bus Control to Run a DRAM Refresh Bus Cycle............ 7-12
‘8.1 Interrupt Control Unit Block Diagram ............ccecveveeveeneeenennesenennens 8-2
8.2 Using 8259As in Cascade Mode...........ccooveeiirierneeeceenree e 8-8
8.3 Interrupt Control Unit Latency and Response Time.........c.cccccveveen. 8-10
8.4 Interrupt Control Register Template for Internal Sources................. 8-12
8.5 Interrupt Control Register Template for
Non-Cascadeable Interrupt Pins ..........ccccoeeiveeecveeccceeeee e, 8-13
8.6 Interrupt Control Register Template for Cascadeable
INEEITUPE PiNS ...t 8-14
8.7 Interrupt Request Register ...t 8-15
8.8 Interrupt Mask Register .........cccocoviiiiiiiiii e 8-16
8.9 Priority Mask Re@iSter ..........cccouiiiiviiiienie et 8-17
8.10 IN-Service REGISter.......coooiiiiiiiiieeee e 8-18
8.1 POl REGISIEN ... 8-19
8.12 Poll Status REgISter.........cooiiiiiiriierie et 8-20
8.13 End-Of-Interrupt REGIStEr .........ccccerieiiiiiieeiie e 8-21
8.14 Interrupt Status ReQIStEr ........ccovverviiiiiiiinies e 8-22
8.15 Interrupt Control Unit In Slave Mode.........ccccccevviiennieciniiciniineeenn. 8-24
8.16 Interrupt Sources In Slave Mode..........cccccceeveveeeeieenciieceeeeen 8-24
8.17 Interrupt Vector Register .........ccvveeciininiecie e 8-26
8.18 End-Of-Interrupt Register in Slave Mode ..........cccocceieiieniineennnee. 8-27
8.19 Other Registers In Slave Mode ..........cccoveevieeiieniecrie e 8-27
8.20 Interrupt Vectoring In Slave Mode..........cccoiiiiciiiiniiceceee, 8-28
8.21 Slave Mode Interrupt Response Time.........cccerveerieeieeenieeneesie e 8-29
9.1 Timer/Counter Unit Block Diagram...........cccccveveeeevineenneiniiisinnnecenne 9-1
9.2 Counter Element Multiplexing and Timer Input Synchronization ..... 9-2
9.3(a) Timers 0 and 1 Flow Chart.........ccccoeoeeiviieiciie e 9-3
9.3(b) Timers 0 and 1 Flow Chart (Continued) ..........ccccoooeeviveiiinnie i 9-4
9.4 Timer/Counter Unit Output Modes .........cceceiiiveriineeneerercees 9-5
95 Timer 0 and Timer 1 Control RegiSters .........cccveieeiceerieiniieeireneene 9-6
9.6 Timer 2 Control Register ..........ccccveiciviiiiecee e 9-7
9.7 Timer Count REGISLEIS ........ccceviririniiieieeee s 9-8
9.8 Timer Maxcount Compare Registers ..........ccceerervenieineenenecnnnens 9-8
9.9 TXOUT Signal TimiNg ....cocveeeeiiiieieeieee et 9-12
10.1 Typical DMA Transfer........cccooiiieriiiciniicte e sreenas 10-2
10.2 DMA Request Minimum Response Time........ccccceeveiienncnnieene e, 10-4
10.3 Source Synchronized Transfers.........cccovirieiiieniienre e 10-5
10.4 Destination Synchronized Transfers ..........ccccevveeiieiieeicnccceneenee, 10-6

xiii



intel.

TABLE OF CONTENTS
10.5 Two Channel DMA Unit.......cccccooiriiiniiineeeeeee e 10-8
10.6 Examples of DMA PrOKY ...coocveiviinieiceneesee e 10-10
10.7 DMA Source Pointer (High Order BitS) .........cccccerviviiviienniiinniene, 10-11
10.8 DMA Source Pointer (Low Order BitS) .......cc.cccevveirieeinieeicieeeeee 10-11
10.9 DMA Destination Pointer (High Order Bits).........c.cccceeevererienineenene. 10-12
10.10 DMA Destination Pointer (Low Order BitS)..........ccoceeereirienneiienneene. 10-13
10.11(a) DMA Control Register Bit POSitions...........ccceevininceininicecienen, 10-13
10.11(b) DMA Channel Control Register Bit Descriptions...........ccccceeeeernennne 10-14
10.12 Transfer Count RegiSter.........ccooeriiiiieiiniieese e 10-16
11.1 80C187-Supported Data TYPES.....cccevvervueriieereeeriennieeeseeseesseeessreenns 11-8
1.2 80C186 Modular Core Family/80C187 System Configuration.......... 11-9
11.3 80C187 Configuration with Partially Buffered Bus...........ccccccceuennns 11-12
11.4 80C187 Exception Trapping via Processor Interrupt Pin................. 11-13
121 Entering/Leaving ONCE ModE..........ccceririenerieieieee e 12-1
AA Formal Definition of ENTER ..........cccciriininiecieneeee e A-3
A2 Variable Access in Nested Procedures............ccccceveeiiicicnnnennnen. A-3
A3 Stack Frame for MAIN at Level 1 ..o A-4
A4 Stack Frame for Procedure A at Level 2..........coccoveeeveieiecinenecnens A-5
A5 Stack Frame for Procedure B at Level 3 Called from A.................... A-6
A6 Stack Frame for Procedure C at Level 3 Called from B................... A-7
B.1 Input Synchronization CirCuit............cccoeoiiniiiinie e B-1
Tables
2.1 Implicit Use of General Registers............ccevirienniniiecneeneecnen 2-5
22 Logical Address SOUICES........cceuieerrieereeneeriirree e 2-11
2.3 -Data Transfer INStruCtions ............ooueveeiienee e 2-17
24 Arithmetic INStrUCHIONS ......coocuvieiieee e 2-17
2.5 Arithmetic Interpretation of 8-Bit Numbers ..........ccccocvrieriiniiiennen, 2-18
2.6 Bit Manipulation INStructions ..........ccccvveviivcieeeniiee e 2-21
27 StNG INSIUCIONS ... e 2-21
2.8 String Instruction Register and Flag Use ..........ccocoeiiciiiiiiiienens 2-21
2.9 Program Transfer Instructions............cccceeeevvivennne. e ———— 2-21
2.10 Interpretation of Conditional Transfers..........ccccoevveviiiecccieniciieeens 2-22
2.1 Processor Control INStructions ............cooooviieriiiiciieciieieee e 2.23
31 BUS CYClE TYPES.....eiiieiiieeeeie et e e 3-10
3.2 Read Bus CyCle TYPES.......cccviriireireeeeerrie e 3-19
3.3 Read Cycle Critical Timing Parameters ..........cc.cceeeerieinieninecneene 3-19
3.4 Write BuUS CYCIE TYPES ..evrveeiieiiicieeite e 3-22
3.5 Write Cycle Critical Timing Parameters ..., 3-23
3.6 HALT Bus Cycle Pin States.........cccoviiiieenienieeneesee e 3-26
37 Queue Status Bit ENCOding ........c.coeeiiireeiiiiieneree e 3-34
3.8 Signal Condition Entering HOLD..........coconiiiiienieicceeeeeeeee 3-35
41 Peripheral Control Block Registers ...........cccovrveniiieneciiiiccccnenns 4-2
5.1 Suggested Values for Inductor L4 in Third Overtone
OSCIllator CirCUIL ........ceiveeeieeee e 5-4
6.1 Chip-Select Unit RegiSters ..........ccceveevenerieneeerecee e 6-5

Xiv



TABLE OF CONTENTS
6.2 MMCS Programming Restrictions............ccccocerveneiiennncnienineeenn 6-12
6.3 PCS Chip-Selects Active Range...........cc.c.ceveeerereeeeeiesieeeeerie e 6-12
71 Identification of Refresh Bus Cycles ..........ccocovvevienernincenenreee. 7-4
8.1 Default Interrupt Priorities..........cocvveriiiniiieneeccceceeen 8-4
8.2 Fixed INterrupt TYPE .....oooiieiiieceeeeee e 8-9
8.3 Interrupt Control Unit Registers in Master Mode............ccoccevenenen. 8-11
8.4 Interrupt Control Unit Registers In Slave Mode.........c.ccccceverennnnnen. 8-25
8.5 Slave Mode Interrupt Type BitS......ccccevviinierciiieeiiercieeneer e 8-25
9.1 Timer 0 and 1 ClOCK SOUICES .......ccceeieriiieeieeieeeeeetee e 9-9
9.2 Timer Retriggering......coo et 9-11
11.1 80C187 Data Transfer Instructions ...........cccceccveeveeeiiencieesiecciieenne 11-3
11.2 80C187 Arithmetic INStruCtions ...........ccccovrvinieiniencie e 11-4
11.3 80C187 Comparison INStrUCtONS..........ccccverieriririeieeieeeciee e 11-5
114 80C187 Transcendental INStructions ............cccceveeeiiiercnnniiesiniiennns 11-5
11.5 80C187 Constant INStrUCtIONS ........ccovevrvieiiiierie et 11-6
11.6 80C187 Processor Control INStructions ............cccceeevvinneenieeseninennne 11-6
11.7 80C187 I/0O Port ASSIGNMENES......ccereriereerirrereeeseeee e 11-10
C.1 Instruction Set SuMMAry ..o C-1
Cc2 Machine Instruction Decoding GUIdE ..........c.ccceviverrieiieenieneeneee, C-7
C.3 Mnemonic Encoding MatriX..........cccoeeoiiiiirinieeeiieeee e C-16
Examples

5.1 Power-Save Initialization Code .........ccceviveiieiiieriieeceerecreeeeenn 5-13
6.1 Chip-Select Unit Initialization Code..........cceovvrvrierirneeienivnceceenns 6-18
71 Refresh Control Unit Initialization Code ..........cccoevviriiiieiniieineneen. 7-10
8.1 Initializing The Interrupt Control Unit............ccccoeveenvieeienniencceeee, 8-23
9.1 Real-Time ClIOCK ......ccccueiiieiie ettt e 9-14
9.2 Square Wave GENErator ...........cccccvveeieeeeeeciiiiee e e ssreee s e e 9-18
9.3 Digital ONe SOt .......coiiiiiiiiieee e 9-19
10.1 DMA Unit Initialization ...........ccoceereeeieninnieesiceree e 10-19
10.2 Timed DMA Transfers ... 10-24
11.1 Initialization Sequence for 80C187 Math Coprocessor.................... 11-14
11.2 Floating Point Math Routine Using FSINCOS.............cccooviieennnen. 11-15

Xv






Introduction







CHAPTER 1
INTRODUCTION

The 8086 microprocessor was first introduced in 1978 and gained rapid support as the
microcomputer engine of choice. There are literally millions of 8086/8088 based systems in
the world today. The amount of software written for the 8086/8088 is rivaled by no other
architecture.

By the early 1980’s, however, it was clear that a replacement for the 8086/8088 was
necessary. An 8086/8088 system required dozens of support chips to implement even a
moderately complex design. Intel recognized the need to integrate commonly used system
peripherals onto the same silicon die as the CPU. In 1982 Intel addressed this need by
introducing the 80186/80188 family of embedded microprocessors. The original 80186/80188
integrated an enhanced 8086/8088 CPU with six commonly used system peripherals. A
parallel effort within Intel also gave rise to the 80286 microprocessor in 1982. The 80286
began the trend toward very high performance “x86” compatible CPUs that today includes the
i386™ and i486™ microprocessors.

As technology advanced and turned toward small geometry CMOS processes, it became clear
that a new 80186 was needed. In 1987 Intel announced the second generation of the 80186
family: the 80C186/C188. The 80C186 family is pin compatible with the 80186 family while
adding an enhanced feature set. The high performance CHMOS III process allowed the
80C186 to run at twice the clock rate of the NMOS 80186 while consuming less than one
quarter the power.

The 80186 family took another major step in 1990 with the introduction of the 80C186EB
family. The 80C186EB heralded many changes for the 80186 family. First, the enhanced
8086/8088 CPU was redesigned as a static, stand alone module known as the 80C186 Modular
Core. Second, the 80186 family peripherals were also redesigned as static modules with
standard interfaces. The goal behind this redesign effort was to give Intel the capability to
rapidly proliferate the 80186 family in order to provide solutions for an even wider range of
customer applications.

The 80C186EB/C188EB was the first product to use the new modular capability. The
80C186EB/C188EB includes a different peripheral set than the original 80186 family. Power
consumption was dramatically reduced as a direct result of the static design, power
management features and advanced CHMOS IV process. The 80C186EB/C188EB operates
down to 2.7 volts to directly support portable applications. This makes it the first high
integration microprocessor to work directly off of two standard cell batteries. The
80C186EB/C188EB has found acceptance in a wide array of portable equipment ranging from
cellular phones to personal organizers.

In 1991 the 80C186 Modular Core family was extended again with the introduction of three
new products: the 80C186XL, the 80C186EA and the 80C186EC. The 80C186XL/C188XL is
a higher performance, lower power replacement for the 80C186/C188. The 80C186EA/
C188EA combines the feature set of the 80C186 plus new power management features for

11



intel. INTRODUCTION

power critical applications. The 80C186EC/C188EC offers the highest level of integration of
any of the 80C186 Modular Core family products with a total of 14 on-chip peripherals (see
Figure 1.1). :

The 80C186 family of products are the direct result of ten years of Intel development. They
offer the designer the peace of mind of a well established architecture with the benefits of state
of the art technology.

FEATURE
ENHANCED 8086 INSTRUCTION SET

' LOW POWER STATIC MODULAR CPU
POWER SAVE (CLOCK DIVIDE) MODE
POWERDOWN AND IDLE MODES
80C187 INTERFACE
ONCE MODE
INTERRUPT CONTROL UNIT
TIMER/COUNTER UNIT
CHIP-SELECT UNIT

| DMAUNIT

SERIAL COMMUNICATIONS UNIT

' REFRESH CONTROL UNIT

WATCHDOG TIMER UNIT

/O PORTS

Figure 1.1. Comparison of 80C186 Modular Core Family Products

1.1 DIFFERENCES BETWEEN THE 80C186 AND THE 80C186XL PRODUCT
FAMILIES

As described earlier in this chapter, the 80C186XL and 80C188XL are functionally identical
to the 80C186 and 80C188 respectively. Below is a list of the key differences:

1. The 80C186/C188 were developed on a 1.5 micron CMOS process, while the
80C186XL/C188XL were developed on a 1.0 micron CMOS process.



intgl. INTRODUCTION

2. The 80C186/C188 are dynamic (i.e. requires a minimum operating frequency), while the
80C186XL/C188XL are static (i.e. minimum operating frequency is DC).

3. The maximum operating frequency of the 80C186/C188 is 16 MHz, while the
80C186XL/C188XL operate up to 20 MHz.

4. The 80C186XL/C188XL consume lower current than a 80C186/C188 operating at the
same frequency.

5. The 80C186XL/C188XL have a differentiated set of A.C. and D.C. specifications over the
80C186/C188 due to its increased performance (see Appendix D for details).

6. The 80C186X1L./C188XL fix all of the errata documented on the 80C186/C188.

In most applications, the 80C186XL/C188XL can replace the 80C186/C188 without any
modifications to board layout, hardware design or device speed selection. However, since
there are some A.C. and D.C. specification changes, it is recommended that a thorough design
analysis be completed to ensure reliable system operation.

1.2 HOW TO USE THIS MANUAL

Throughout this manual you will come across phrases such as “80CI186 Modular Core
Family” or “80C188 Modular Core” as well as references to specific products such as
“80C188EA”. Each of these terms refers to a specific set of 80C186 family products. The
phrases and the products they refer to are as follows:

80C186 Modular Core Family: This phrase refers to any device that uses the
modular 80C186/C188 CPU core architecture. At this time these include:
80C186EA/C188EA, 80C186EB/C188EB, 80C186EC/CI88EC and 80C186XL/
C188XL.

80C186 Modular Core: Without the word family, this refers to just the 16-bit bus
members of the 80C186 Modular Core Family.

80C188 Modular Core: This phrase refers to the 8-bit bus products.

Specific Product References: For example the phrase “On the 80CISSEC...” refers
strictly to the 8OC188EC and not to any other device.

Each chapter covers a specific section of the device beginning with the CPU core. Each
peripheral chapter includes programming examples intended to aid in your understanding of
device operation. Please read the comments carefully, as not all of the examples include all of
the code necessary for a specific application.

This user’s guide is a supplement to the device data sheet. Specific timing values are not

discussed in this guide. When designing a system, always consult the most recent version of
the device data sheet for up to date specifications.

1-3






Overview of the

80C186 Family

Modular Microprocessor
Core Architecture







CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

The 80C186 Modular Microprocessor Core shares a common base architecture with the 8086,
8088, 80186, 80188, 80286, i386™ and i486™ processors. The 80C186 Modular Core
maintains full object code compatibility with the 8086/8088 family of 16-bit microprocessors,
while adding hardware and software performance enhancements. Most instructions require
fewer clocks to execute on the 80C186 Modular Core because of hardware enhancements in
the Bus Interface Unit and the Execution Unit. There are several additional instructions which
simplify programming and reduce code size (see 80CI86 Instruction Set Additions and
Extensions).

2.1. ARCHITECTURAL OVERVIEW

The 80C186 Modular Microprocessor Core incorporates two separate processing units: an
Execution Unit (EU) and a Bus Interface Unit (BIU). The Execution Unit is functionally
identical among all family members. The Bus Interface Unit is configured for a 16-bit external
data bus for the 80C186 core and an 8-bit external data bus for the 80C188 core. The two units
interface via an instruction prefetch queue.

The Execution Unit executes instructions and the Bus Interface Unit fetches instructions, reads
operands and writes results. Whenever the Execution Unit requires another opcode byte, it
takes the byte out of the prefetch queue. The two units can operate independently of one
another and are able, under most circumstances, to overlap instruction fetches and execution.

The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU). The Arithmetic
Logic Unit performs 8-bit or 16-bit arithmetic and logical operations. It provides for data
movement between registers, memory and I/O space.

The 80C186 Modular Core family CPU allows for high speed data transfer from one area of
memory to another using string move instructions and between an I/O port and memory using
block I/O instructions. The CPU also provides many conditional branch and control
instructions.

The 80C186 Modular Core architecture features 14 basic registers grouped as general
registers, segment registers, pointer registers and status and control registers. The four 16-bit
general purpose registers (AX, BX, CX and DX) may be used as operands for most arithmetic
operations as either 8- or 16-bit units. The four 16-bit pointer registers (SI, DI, BP and SP)
may be used in arithmetic operations and in accessing memory-based variables. Four 16-bit
segment -registers (CS, DS, SS and ES) allow simple memory partitioning to aid modular
programming. The status and control registers consist of an Instruction Pointer (IP) and the
Processor Status Word register containing flag bits. Figure 2.1 is a simplified CPU block
diagram.



Inte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

GENERAL
REGISTERS
AH AL
BH BL
CH CL
DH DL

SP

SP

DI

S|

ALU DATA BUS

ADDRESS BUS (20 BITS)

DATA
BUS

(16 BITS)

Ccs

DS

S$S

ES

IP

r

AA¢~

<>

TEMPORARY
REGISTERS

(16 BITS)

EU

CONTROL
SYSTEM ‘|2 8
Q BUS

EXECUTION UNIT

(EV)

A

INTERNAL

COMMUNICATIONS

REGISTERS
CO?\#SROL EXTERNAL
LOGIC BUS
INSTRUCTION
QUEUE
+[s]s

(8 BITS)

BUS INTERFACE UNIT

(BIU)

Figure 2.1. Simplified Functional Block Diagram of the

2.1.1. EXECUTION UNIT

The Execution Unit executes all instructions, provides data and addresses to the Bus Interface
Unit and manipulates the general registers and the Processor Status Word. The 16-bit ALU
within the Execution Unit maintains the CPU status and control flags and manipulates the
general registers and instruction operands. All registers and data paths in the Execution Unit

are 16 bits wide for fast internal transfers.

80C186 Modular Core Family CPU




intgl. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

The Execution Unit does not connect directly to the system bus. It obtains instructions from a
queue maintained by the Bus Interface Unit. When an instruction requires access to memory
or a peripheral device, the Execution Unit requests the Bus Interface Unit to read and write
data. Addresses manipulated by the Execution Unit are 16 bits wide. The Bus Interface Unit,
however, performs an address calculation which allows the Execution Unit to access the full
megabyte of memory space.

For the Execution Unit to execute an instruction, it must fetch the object code byte from the
instruction queue and then execute the instruction. If the queue is empty when the Execution
Unit is ready to fetch an instruction byte, the Execution Unit waits for the instruction byte to
be fetched by the Bus Interface Unit.

2.1.2. BUS INTERFACE UNIT

The 80C186 Modular Core and 80C188 Modular Core Bus Interface Units are functionally
identical. They are implemented differently to match the structure and performance
characteristics of their respective system buses. The Bus Interface Unit executes all external
bus cycles. This unit consists of the segment registers, the Instruction Pointer, the instruction
code queue and several miscellaneous registers. The Bus Interface Unit transfers data to and
from the Execution Unit on the ALU data bus.

The Bus Interface Unit generates a 20-bit physical address in a dedicated adder. The adder
shifts a 16-bit segment value left 4 bits and then adds a 16-bit offset. This offset is derived
from combinations of the pointer registers, the Instruction Pointer and immediate values (see
Figure 2.2). Any carry from this addition is ignored.

SHIFT LEFT 4 BITS

* 1 2 3 4| SEGMENT BASE
: 15 0 LOGICAL
12 3 4 :0 ADDRESS
OFFSET
T 0 0o 0 2 2
15 0
+ 0 0 2 2

= |1 2 3 6 2 | PHYSICAL ADDRESS

TO MEMORY

Figure 2.2. Physical Address Generation




"T"eI@ OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

During periods when the Execution Unit is busy executing instructions, the Bus Interface Unit
sequentially prefetches instructions from memory. As long as the prefetch queue is partially
full, the Execution Unit fetches instructions.

2.1.3. GENERAL REGISTERS

The 80C186 Modular Core family CPU has eight 16-bit general registers (see Figure 2.3). The
general registers are subdivided into two sets of four registers. These sets are the data registers
(also called the H & L group for high and low) and the pointer and index registers (also called
the P & I group).

H : L
15 87 0
( AX
po 5 - ACCUMULATOR
X BASE
BH i BL
DATA { i
GROUP ................... 9 ,X. .................... COUNT
CH : cL
DX
\ - i " DATA
( SP STACK POINTER
POINTER BP BASE POINTER
AND
INDEX {
GROUP S| SOURCE INDEX
\ B DESTINATION INDEX

Figure 2.3. General Registers

2-4



lnte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

The data registers may be addressed by their upper or lower halves. Each data register can be
used interchangeably as a 16-bit register or two 8-bit registers. The pointer registers are always
accessed as 16-bit values. The CPU can use data registers without constraint in most
arithmetic and logic operations. Arithmetic and logic operations can also use the pointer and
index registers. Some instructions use certain registers implicitly (see Table 2.1), allowing
compact encoding.

Table 2.1. Implicit Use of General Registers

REGISTER OPERATIONS
AX Word Multiply, Word Divide, Word 1/O
AL Byte Multiply, Byte Divide, Byte I/O, Translate,
Decimal Arithmetic
AH Byte Multiply, Byte Divide
BX Translate
CX String Operations, Loops
CL Variable Shift and Rotate
DX Word Multiply, Word Divide, Indirect /O
SP Stack Operations
Sl String Operations
DI String Operations

The contents of the general purpose registers are undefined following a processor reset.

2.1.4. SEGMENT REGISTERS

The 80C186 Modular Core family memory space is one megabyte in size and divided into
logical segments of up to 64 Kbytes each. The CPU has direct access to four segments at a
time. The segment registers contain the base addresses (starting locations) of these memory
segments (see Figure 2.4). The CS register points to the current code segment, which contains
instructions to be fetched. The SS register points to the current stack segment, which is used
for all stack operations. The DS register points to the current data segment, which generally
contains program variables. The ES register points to the current extra segment, typically used
for data storage. Programs can access and manipulate the segment registers with several
instructions.

The CS register initializes to OFFFFH and the DS, ES and SS registers initialize to 0000H.

2-5



'“te|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

15 0
CS CODE SEGMENT
DS DATA SEGMENT
SS STACK SEGMENT
ES EXTRA SEGMENT

Figure 2.4. Segment Registers

2.1.5. INSTRUCTION POINTER

The Bus Interface Unit updates the 16-bit Instruction Pointer (IP) register so it contains the
offset of the next instruction to be fetched. Programs do not have direct access to the
Instruction Pointer, but it may change, be saved or be restored as a result of program
execution. For example, if the Instruction Pointer is saved on the stack, it is first automatically
adjusted to point to the next instruction to be executed.

Reset initializes the Instruction Pointer to 0000H. The CS and IP values comprise a starting
execution address of OFFFFOH (see Section 2.1.8 for a description of address formation).

2.1.6. FLAGS

The 80C186 Modular Core family has six status flags (see Figure 2.5) that the Execution Unit
posts as the result of arithmetic or logical operations. Program branch instructions allow a
program to alter its execution depending on conditions flagged by a prior operation. Different
instructions affect the status flags differently, generally reflecting the following states:

o If the Auxiliary Flag (AF) is set, there has been a carry out from the low nibble into the
high nibble or a borrow from the high nibble into the low nibble of an 8-bit quantity (low-
order byte of a 16-bit quantity). This flag is used by decimal arithmetic instructions.

e If the Carry Flag (CF) is set, there has been a carry out of or a borrow into the high-order
bit of the instruction result (8- or 16-bit). This flag is used by instructions that add or
subtract multibyte numbers. Rotate instructions can also isolate a bit in memory or a
register by placing it in the Carry Flag.




Inte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

o If the Overflow Flag (OF) is set, an arithmetic overflow has occurred. A significant digit
has been lost because the size of the result exceeded the capacity of its destination
location. An Interrupt On Overflow instruction is available that will generate an interrupt
in this situation.

e If the Sign Flag (SF) is set, the high-order bit of the result is a 1. Since negative binary
numbers are represented in standard two’s complement notation, SF indicates the sign of
the result (0 = positive, 1 = negative).

e If the Parity Flag (PF) is set, the result has even parity, an even number of 1 bits. This flag
can be used to check for data transmission errors.

e If the Zero Flag (ZF) is set, the result of the operation is zero.

Additional control flags (see Figure 2.5) can be set or cleared by programs to alter processor
operations:

e Setting the Direction Flag (DF) causes string operations to auto-decrement. Strings are
processed from the high address to the low address or “right to left”. Clearing DF causes
string operations to auto-increment on process strings “left to right”.

e Setting the Interrupt Enable Flag (IF) allows the CPU to recognize maskable external or
internal interrupt requests. Clearing IF disables these interrupts. The Interrupt Enable Flag
has no effect on software interrupts or non-maskable, interrupts.

e Setting the Trap Flag (TF) bit puts the processor into single-step mode for debugging. In
this mode, the CPU automatically generates an interrupt after each instruction. This
allows a program to be inspected instruction by instruction during execution.

Both the status and control flags are contained in a 16-bit Processor Status Word (see Figure
2.5). Reset initializes the Processor Status Word to OFOOOH.

2.1.7. MEMORY SEGMENTATION

Programs for the 80C186 Modular Core family view the one megabyte memory space as a
group of user-defined segments. A segment is a logical unit of memory that may be up to 64
Kbytes long. Each segment is composed of contiguous memory locations. Segments are
independent and separately-addressable. Software assigns every segment a base address
(starting location) in memory space. All segments begin on 16-byte memory boundaries.
There are no other restrictions on segment locations. Segments may be adjacent, disjoint,
partially overlapped or fully overlapped (see Figure 2.6). A physical memory location may be
mapped into (covered by) one or more logical segments.



intgl. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Register Name:
Register Mnemonic:
Register Function:

Processor Status Word
PSW (FLAGS)
Posts CPU status information.

15
O|D | I {T S|z
F|F|F]F F|F
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION

OF Overflow Flag 0 If OF is set, an arithmetic overflow has
occurred.

DF Direction Flag 0 If DF is set, string instructions are processed
high address to low address. If DF is clear,
strings are processed low address to high
address.

IF Interrupt 0 If IF is set, the CPU will recognize maskable

Enable Flag interrupt requests. If IF is clear, maskable
interrupts are ignored.

TF Trap Flag 0 If TF is set, the processor will enter single-step
mode.

SF Sign Flag 0 If SF is set, the high-order bit of the result of an
operation is 1, indicating it is negative.

ZF Zero Flag 0 If ZP is set, the result of an operation is zero.

AF Auxiliary 0 If AF is set, there has been a carry from the low

Carry Flag nibble to the high or a borrow from the high
nibble to the low nibble of an 8-bit quantity.
Used in BCD operations.

PF Parity Flag 0 If PF is set, the result of an operation has even
parity.

CF Carry Flag 0 If CF is set, there has been a carry out of, or a
borrow into, the high-order bit of the result of an
instruction.

NOTE: Reserved register bits are shown with gray shading.

Figure 2.5. Processor Status Word

2-8




Inte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

FULLY
OVERLAPPED
PARTLY EGM
OVERLAPPED SEGNENTD DISJOINT
CONTIGUOUS LOGICAL
N SEGNENTC }SEGMENTS
| SEGMENT A | SEGMENTB l § SEGMENT E

( } PHYSICAL
MEMORY

0 A

OH 10000H 20000H 30000H

Figure 2.6. Segment Locations in Physical Memory

The four segment registers point to four “currently addressable” segments (see Figure 2.7).
The currently addressable segments provide a work space consisting of 64 Kbytes for code, a
64 Kbytes for stack and 128 Kbytes for data storage. Programs access code and data in another
segment by updating the segment register to point to the new segment.

2.1.8. LOGICAL ADDRESSES

It is useful to think of every memory location as having two kinds of addresses, physical and
logical. A physical address is a 20-bit value that identifies a unique byte location in the
memory space. Physical addresses range from OH to OFFFFFH. All exchanges between the
CPU and memory use physical addresses.

Programs deal with logical rather than physical addresses. Program code can be developed
without prior knowledge of where the code will be located in memory. A logical address
consists of a segment base value and an offset value. For any given memory location, the
segment base value locates the first byte of the segment. The offset value represents the
distance, in bytes, of the target location from the beginning of the segment. Segment base and
offset values are unsigned 16-bit quantities. Many different logical addresses can map to the
same physical location. In Figure 2.8, physical memory location 2C3H is contained in two
different overlapping segments, one beginning at 2BOH and the other at 2COH.

2-9




Iniel“’ OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

FFFFFH
A
B
DATA: DS: B ————1 —>»> c
CODE:  CS: E ——
| D
STACK: ss: H — |
J | | .
EXTRA: ES: | R > E
| | G
| l H
| -
|
I -
——— 1>
K
OH

Figure 2.7. Currently Addressable Segments -

The segment register is automatically selected according to the rules in Table 2.2. All
information in one segment type generally shares the same logical attributes (e.g., code or
data). This leads to programs which are shorter, faster and better structured.

The Bus Interface Unit must obtain the logical address before generating the physical address.
The logical address of a memory location can come from different sources, depending on the
type of reference that is being made (see Table 2.2).

Segment registers always hold the segment base addresses. The Bus Interface Unit determines
which segment register contains the base address according to the type of memory reference
made. However, the programmer can explicitly direct the Bus Interface Unit to use any
currently addressable segment (except for the destination operand of a string instruction). In
assembly language, this is done by preceding an instruction with a segment override prefix.

2-10




intgl. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

NV NV
2C4H
e S —
2C2H
( OFFSET 2C1H
SEGMENT (e 200
BASE 2BFH
2BEH
2BDH
2BCH
OFFSET 2BBH
LOGICAL (13H) 2BAH
ADDRESSES 9BOH
2B8H
2B7H
2B6H
2B5H
2B4H
2B3H
2B2H
\ SEGMENT 2B1H
BASE 2BOH
o o
Figure 2.8. Logical and Physical Address
Table 2.2. Logical Address Sources
DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE
Instruction Fetch CSs NONE P
Stack Operation SS NONE SP
Variable (except following) DS CS, ES, SS Effective Address
String Source DS CS,ES, SS sl
String Destination ES NONE DI
BP Used As Base Register SS CS, DS, ES Effective Address

2-11




Inte|® : OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Instructions are always fetched from the current code segment. The IP register contains the
instruction’s offset from the beginning of the segment. Stack instructions always operate on
the current stack segment. The Stack Pointer (SP) register contains the offset of the top of the
stack from the base of the stack. Most variables (memory operands) are assumed to reside in
the current data segment, but a program can instruct the Bus Interface Unit to override this
assumption. Often, the offset of a memory variable is not directly available and must be
calculated at execution time. The addressing mode specified in the instruction determines how
this offset is calculated (see Section 2.2.2). The result is called the operand’s Effective
Address (EA).

Strings are addressed differently than other variables. The source operand of a string
instruction is assumed to lie in the current data segment However, the program may use
another currently addressable segment. The operand’s offset is taken from the Source Index
(SI) register. The destination operand of a string instruction always resides in the current extra
segment. The destination’s offset is taken from the Destination Index (DI) register. The string
instructions automatically adjust the SI and DI registers as they process the strings one byte or
word at a time.

When an instruction designates the Base Pointer (BP) register as a base register, the variable is
assumed to reside in the current stack segment. The BP register provides a convenient way to
access data on the stack. The BP register can also be used to access data in any other currently
addressable segment.

2.1.9. DYNAMICALLY RELOCATABLE CODE

The segmented memory structure of the 80C186 Modular Core family allows creation of
dynamically relocatable (position-independent) programs. Dynamic relocation allows a
multiprogramming or multitasking system to make effective use of available memory. The
processor can write inactive programs to a disk and reallocate the space they occupied to other
programs. A disk-resident program can then be read back into available memory locations and
restarted whenever it is needed. If a program needs a large contiguous block of storage and the
total amount is only available in non-adjacent fragments, other program segments can be
compacted to free up enough continuous space. This process is illustrated graphically in
Figure 2.9.

To be dynamically relocatable, a program must not load or alter its segment registers and must
not transfer directly to a location outside the current code segment. All program offsets must
be relative to the segment registers. This allows the program to be moved anywhere in
memory provided the segment registers are updated to point to the new base addresses.

2-12



intel.

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

BEFORE
RELOCATION

CODE
SEGMENT

AFTER
RELOCATION

CS

SS

STACK
SEGMENT

SS

DS

DS

T =

ES

ES

DATA
SEGMENT

EXTRA
SEGMENT

:l FREE SPACE

CODE
SEGMENT

STACK
SEGMENT

DATA
SEGMENT

EXTRA
SEGMENT

Figure 2.9. Dynamic Code Relocation

2.1.10. STACK IMPLEMENTATION

Stacks in the 80C186 Modular Core family reside in memory space. They are located by the
Stack Segment register (SS) and the Stack Pointer (SP). A system may have multiple stacks. A
stack may be up to 64 Kbytes long, the maximum length of a segment. Growing a stack
segment beyond 64 Kbytes overwrites the beginning of the segment. Only one stack is directly
addressable at a time. The SS register contains the base address of the current stack. The top of
the stack, not the base address, is the origination point of the stack. The SP register contains an

offset which points to the Top Of Stack (TOS).

2-13




InteL OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Stacks are 16 bits wide. Instructions operating on a stack add and remove stack elements one
word at a time. An element is pushed onto the stack (see Figure 2.10) by first decrementing
the SP register by 2 and then writing the data word. An element is popped off the stack by
copying it from the top of the stack and then incrementing the SP register by 2. The stack
grows down in memory toward its base address. Stack operations never move or erase
elements on the stack. The top of the stack changes only as a result of updating the stack
pointer.

2.1.11. RESERVED MEMORY AND I/O SPACE

Two specific areas in memory and one area in I/O space are reserved in the 80C186 Core
family.

e Locations OH through 3FFH in low memory are used for the Interrupt Vector Table.
Programs should not be loaded here.

o Locations OFFFFOH through OFFFFFH in high memory are used for system reset code
since the processor begins execution at OFFFFOH.

e Locations OF8H through OFFH in I/O space are reserved for communication with other
Intel hardware products and may not be used. On the 80C186 core, these addresses are
used as I/O ports for the 80C187 numerics processor extension.

2.2. SOFTWARE OVERVIEW

All 80C186 Modular Core family members execute the same instructions. This includes all the
8086/8088 instructions plus several additions and enhancements (see 80C186 Instruction Set
Additions and Extensions). The following sections provide a description of the instructions by
category and a detailed discussion of the operand addressing modes.

Software for 80C186 core family systems does not need to be written in assembly language.
The processor provides direct hardware support for programs written in the many high-level
languages available. The hardware addressing modes provide straight forward
implementations of based variables, arrays, arrays of structures and other high-level language
data constructs. A powerful set of memory-to-memory string operations allow efficient
character data manipulation. Finally, routines with critical performance requirements may be
written in assembly language and linked with high-level code.

2-14



Intel‘D OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

POP AX
POP BX
PUSH AX ERER

EXISTING l
s ole Ia by 1
b A o o | [l
1062 | 00 | 11 T 1062 | 00 | 11 | | 1062 |00 |11 | Il
1060 | 2 | 33 060 | 2 [ 3 | | 1060 | 2 [a |
e w5 | =x t5E | 4 |85 | | 105 | a4 |55 | Il
0 |e |7 | B 108 | 66 | 77 | | s 0B | & [ 7 |1
Tos 105A | 8 |w | O osn | 88 |9 | | 100 [ s | o _l“
1068 | AA | BB 1os 1058 | A | B8 l 1058 | AA | BB _:

066 | 01 [ |} >, s [ | 1 < 105 | % | 1

1054 | 45 [or [LE2 1054 | 45 | 67 1054 | 45 | &7

1052 | 0 [ g |f B 1052 | 8 | AB 1052 | 8 | B

1080 | cp | e E z 108 | co | EF 105 |cp | EF
10 [ s |ss L0 [ 50 |ss [0 [ s |ss
5P 5P [0 o Jse

STACK OPERATION FOR CODE SEQUENCE

PUSH AX
POP AX
POP BX

Figure 2.10. Stack Operation

2.2.1. INSTRUCTION SET

The 80C186 Modular Core family instructions treat different types of operands uniformly.
Nearly every instruction can operate on either byte or word data. Register, memory and
immediate operands may be specified interchangeably in most instructions. The exception to
this is immediate values must serve as source operands and not destination operands. Memory
variables may be added to, subtracted from, shifted, compared, etc., without moving them in
and out of registers. This saves instructions, registers and execution time in assembly language
programs. In high-level languages, where most variables are memory-based, compilers can
produce faster and shorter object programs.

2-15




lnte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

The 80C186 Modular Core family instruction set can be viewed as existing on two levels. One
is the assembly level and the other is the machine level. To the assembly language
programmer, the 80C186 Modular Core family appears to have about 100 instructions. One
MOV (data move) instruction, for example, transfers a byte or a word from a register, a
memory location or an immediate value to either a register or a memory location. The 80C186
Modular Core family CPUs, however, recognize 28 different machine versions of the MOV
instruction. '

The two levels of instruction sets address two requirements: efficiency and simplicity.
Approximately 300 forms of machine-level instructions make very efficient use of storage.
For example, the machine instruction that increments a memory operand is three or four bytes
long because the address of the operand must be encoded in the instruction. To increment a
register, however, does not require as much information, so the instruction can be shorter. The
80C186 Core family has eight one byte machine-level instructions that increment different 16-
bit registers.

The assembly level instructions simplify the programmer’s view of the instruction set. The
programmer writes one form of an INC (increment) instruction and the assembler examines
the operand to determine which machine level instruction to generate. The following
paragraphs provide a functional description of the assembly-level instructions.

2.2.1.1. DATA TRANSFER INSTRUCTIONS

The instruction set contains 14 data transfer instructions. These instructions move single bytes
and words between memory and registers. They also move single bytes and words between the
AL or AX registers and I/O ports. Table 2.3 lists the four types of data transfer instructions
and their functions.

Data transfer instructions are categorized as general purpose, input/output, address object and
flag transfer. The stack manipulation instructions, used for transferring flag contents and
instructions used for loading segment registers are also included in this group. Figure 2.11
shows the flag storage formats. The address object instructions manipulate the addresses of
variables instead of the values of the variables.

2-16



intgl.

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Table 2.3. Data Transfer

Table 2.4. Arithmetic Instructions

Instructions
GENERAL PURPOSE ADDITION
MOV Move byte or word ADD Add byte or word
PUSH Push word onto stack ADC Add byte or word with carry
POP Pop word off stack INC Increment byte or word by 1
PUSHA | Push registers onto stack AAA ASCII adjust for addition
POPA Pop registers off stack DAA Decimal adjust for addition
XCHG Exchange byte or word SUBTRACTION
XLAT Translate byte suB Subtract byte or word
INPUT/OUTPUT SBB Subtract byte or word with borrow
IN Input byte or word DEC Decrement byte or word by 1
ouT Output byte or word NEG Negate byte or word
ADDRESS OBJECT AND STACK FRAME CMP Compare byte or word
LEA Load effective address AAS ASCII adjust for subtraction
LDS Load pointer using DS DAS Decimal adjust for subtraction
LES Load pointer using ES MULTIPLICATION
ENTER | Build stack frame MUL Multiply byte or word unsigned
LEAVE | Tear down stack frame IMUL Integer muitiply byte or word
FLAG TRANSFER AAM ASCI!I adjust for multiplication
LAHF Load AH register from flags DIVISION
SAHF Store AH register in flags DIV Divide byte or word unsigned
PUSHF | Push flags onto stack IDIV Integer divide byte or word
POPF Pop flags off stack AAD ASCII adjust for division
CBW Convert byte to word
CWD Convert word to doubleword

2-17




Inte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Table 2.5. Arithmetic Interpretation of 8-Bit Numbers

HEX BIT PATTERN UNSIGNED SIGNED UNPACKED PACKED
BINARY BINARY DECIMAL DECIMAL
07 00000111 7 +7 7 7
89 10001001 137 -119 invalid . 89
C5 11000101 197 -59 invalid invalid
LAHF

A
op 1S.Z.UAUPLUCH

'7 6 5 4 3 2 1 0

PUSHF

e luu.u,u,00, 1,157 up U]

% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U = Undefined; Value is indeterminate
0O = Overflow Flag

D = Direction Flag

| = Interrupt Enable Flag

T="Trap Flag

S = Sign Flag

Z=Zero Flag

A = Auxiliary Carry Flag

P = Parity Flag

C =Carry Flag

Figure 2.11. Flag Storage Format

2.2.1.2. ARITHMETIC INSTRUCTIONS
The arithmetic instructions (see Table 2.4) operate on four types of numbers:

e  Unsigned binary
e Signed binary (integers)
e Unsigned packed decimal

e Unsigned unpacked decimal

Table 2.5 shows the interpretations of various bit patterns according to number type.

2-18




lnte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Binary numbers may be 8 or 16 bits long. Decimal numbers are stored in bytes, two digits per
byte for packed decimal and one digit per byte for unpacked decimal. The processor assumes
that the operands in arithmetic instructions contain data that represents valid numbers for that
instruction. Invalid data may produce unpredictable results. The Execution Unit analyzes
arithmetic instruction’s results and adjusts status flags accordingly.

2.2.1.3. BIT MANIPULATION INSTRUCTIONS

There are three groups of instructions for manipulating bits within bytes and words. These
three groups are logical, shifts and rotates. Table 2.6 lists these three groups of bit
manipulation instructions with their functions.

Logical instructions include the Boolean operators NOT, AND, OR and exclusive OR (XOR).
Logical instructions also include a TEST instruction that sets the flags as a result of a Boolean
AND operation, but does not alter either of its operands.

Individual bits in bytes and words can be shifted arithmetically or logically. Up to 32 shifts
may be performed, according to the value of the count operand coded in the instruction. The
count may be specified as an immediate value or as a variable in the CL register. This allows
the shift count to be a supplied at execution time. Arithmetic shifts can be used to multiply and
divide binary numbers by powers of two. Logical shifts can be used to isolate bits in bytes or
words.

Individual bits in bytes and words can also be rotated. The processor does not discard the bits
rotated out of an operand. The bits circle back to the other end of the operand. The number of
bits to be rotated is taken from the count operand, which may specify either an immediate
value or the CL register. The carry flag may act as an extension of the operand in two of the
rotate instructions. This allows a bit to be isolated in the Carry Flag (CF) and then tested by a
JC (jump if carry) or INC (jump if not carry) instruction.

2.2.1.4. STRING INSTRUCTIONS

Five basic string operations process strings of bytes or words, one element (byte or word) at a
time. Strings of up to 64 Kbytes may be manipulated with these instructions. Instructions are
available to move, compare or scan for a value, as well as move string elements to and from
the accumulator. Table 2.7 lists the string instructions. These basic operations may be
preceded by a one-byte prefix that causes the instruction to be repeated by the hardware,
allowing long strings to be processed much faster than with a software loop. The repetitions
can be terminated by a variety of conditions. Repeated operations may be interrupted and
resumed. .

String instructions operate similarly in many respects (see Table 2.8). A string instruction may
have a source operand, a destination operand or both. The hardware assumes that a source
string resides in the current data segment. A segment prefix may override this assumption. A
destination string must be in the current extra segment. The assembler does not use the
operand names to address strings. Instead, the contents of the Source Index (SI) register are

2-19



Inte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

used as an offset to address the current element of the source string. The contents of the
Destination Index (DI) register are taken as the offset of the current destination string element.
These registers must be initialized to point to the source/destination strings before executing
the string instructions. The LDS, LES and LEA instructions are useful in performing this
function.

String instructions automatically update the SI, DI or both registers prior to processing the
next string element. The Direction Flag (DF) determines whether the index registers are auto-
incremented (DF = 0) or auto-decremented (DF = 1). The processor adjusts the DI, SI or both
registers by one for byte strings or two for word strings.

If a repeat prefix is used, the count register (CX) is decremented by one after each repetition of
the string instruction. The CX register must be initialized to the number of repetitions before
the string instruction is executed. If the CX register is 0, the string instruction is not executed
and control goes to the following instruction.

22.1.5. PROGRAM TRANSFER INSTRUCTIONS

The contents of the Code Segment (CS) and Instruction Pointer (IP) registers determine the
instruction execution sequence in the 80C186 Modular Core family. The CS register contains
the base address of the current code segment. The Instruction Pointer register points to the
memory location of the next instruction to be fetched. In most operating conditions, the next
instruction will already have been fetched and will be waiting in the CPU instruction queue.
Program transfer instructions operate on the IP and CS registers. Changing the contents of
these registers causes normal sequential operation to be altered. When a program transfer
occurs, the queue no longer contains the correct instruction. The Bus Interface Unit obtains the
next instruction from memory using the new IP and CS values. It then passes the instruction
directly to the Execution Unit and begins refilling the queue from the new location.

The 80C186 Modular Core family offers four groups of program transfer instructions (see
Table 2.9). These are unconditional transfers, conditional transfers, iteration control
instructions and interrupt-related instructions.

Unconditional transfer instructions may transfer control to a target instruction within the
current code segment (intrasegment transfer) or to a different code segment (intersegment
transfer). The assembler terms an intrasegment transfer SHORT or NEAR and an intersegment
transfer FAR. The transfer is made unconditionally when the instruction is executed. CALL,
RET and JMP are all unconditional transfers. CALL is used to transfer the program to a
procedure. A CALL can be NEAR or FAR. A NEAR CALL will stack only the Instruction
Pointer, while a FAR CALL will stack the Instruction Pointer and the Code Segment register.
The RET instruction uses the information pushed onto the stack to determine where to return
when the procedure finishes. Note: the RET and CALL instructions must be the same type.
This can be a problem when the CALL and RET instructions are in separately assembled
programs. The JMP instruction does not push any information onto the stack. A JMP
instruction may be NEAR or FAR.

2-20



intel.

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Table 2.6 Bit Manipulation

Table 2.8. String Instruction Register and

Instructions Flag Use
LOGICALS SI Index (offset) for source string
NOT “Not” byte or word DI Index (offset) for destination string
AND “And” byte or word CX Repetition counter
OR “Inclusive or” byte or word AL/AX Scan value
XOR “Exclusive or” byte or word Destination for LODS
TEST “Test” byte or word Source for STOS
SHIFTS DF 0 = auto-increment SI, DI
SHL/SAL Shift logical/arithmetic left 1 = auto-decrement S, DI
byte or word ZF Scan/compare terminator
SHR Shift logical right byte or
word
SAR Shift arithmetic right byte or Table 2.9. Program Transfer Instructions
word
ROTATES CONDITIONAL TRANSFERS
ROL Rotate left byte or word JA/UNBE Jump if above/not below nor equal
ROR Rotate right byte or word JAE/JNB Jump if above or equal/not below
RCL Rotate through carry left JB/UNAE Jump if below/not above nor equal
byte or word JBE/UNA Jump if below or equal/not above
RCR Rotate through carry right JC Jump if carry
byte or word JENZ Jump if equal/zero
JG/JNLE Jump if greater/not less nor equal
JGE/JNL Jump if greater or equal/not less
JU/IUNGE Jump if less/not greater nor equal
Table 2.7 String Instructions JLE/ING Jump if less or equal/not greater
JNC Jump if not carry
REPE/ Repeat while equal/zero JNE/UNZ Jump if not equal/not zero
REPZ JNO Jump if not overflow
REPNE/ Repeat while not equal/not JNP/JPO Jump if not parity/parity odd
REPNZ zero JNS Jump if not sign
MOVSB/ Move byte or word string JO Jump if overflow
MOVSwW JP/JPE Jump if parity/parity even
MOVS Move byte or word string JS Jump if sign
INS Input byte or word string ITERATION CONTROL
OouTS Output byte or word string LOOP Loop
CMPS Compare byte or word string LOOPE/LOOPZ Loop if equal/zero
SCAS Scan byte or word string LOOPNE/LOOPNZ | Loop if not equal/not zero
LODS Load byte or word string JCXZ Jump if register CX=0
STOS Store byte or word string INTERRUPTS
INT Interrupt
INTO Interrupt if overflow
BOUND Interrupt if out of array bounds
IRET Interrupt return

2-21




intel.

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

\

Conditional transfer instructions are jumps that may or may not transfer control. This depends
on the state of the CPU flags when the instruction is executed. These 18 instructions (see
Table 2.10) each test a different combination of flags for a condition. If the condition is
logically TRUE, control is transferred to the target specified in the instruction. If the condition
is FALSE, control passes to the instruction following the conditional jump. All conditional
jumps are SHORT. The target must be in the current code segment within -128 to +127 bytes
of the next instruction’s first byte. For example, JMP O0H causes a jump to the first byte of the
next instruction. Jumps are made by adding the relative displacement of the target to the
Instruction Pointer. All conditional jumps are self-relative and are appropriate for position-
independent routines.

Table 2.10. Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED “JUMP IF ...”
JA/JNBE (CF or ZF)=0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/UNAE CF=1 below/not above nor equal
JBE/JNA (CF or ZF)=1 below or equal/not above
JC CF=1 carry

JE/JZ ZF=1 equal/zero

JG/INLE ((SF xor OF) or ZF)=0 greater/not less nor equal
JGE/JNL (SF xor OF)=0 greater or equal/not less
JL/UNGE (SF xor OF)=1 less/not greater nor equal
JLE/UNG ((SF xor OF) or ZF)=1 less or equal/not greater
JNC CF=0 not carry

JNE/UNZ ZF=0 not equal/not zero

JNO OF=0 not overflow

JNP/JPO PF=0 not parity/parity odd

JNS SF=0 not sign

JO OF=1 overflow

JP/JPE PF=1 parity/parity equal

JS SF=1 sign

Note: “above” and “below” refer to the relationship of two unsigned values;
“greater” and “less” refer to the relationship of two signed values.

Iteration control instructions can be used to regulate the repetition of software loops. These
instructions use the CX register as a counter. Like the conditional transfers, the iteration
control instructions are self-relative and may only transfer to targets that are within -128 to
+127 bytes of themselves. They are SHORT transfers.

The interrupt instructions allow interrupt service routines to be activated by programs and
external hardware devices. The effect of software interrupts is similar to hardware-initiated
interrupts. The processor cannot execute an interrupt acknowledge bus cycle if the interrupt
originates in software or with an NMI (Non-Maskable Interrupt).

2-22



'“te|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.2.1.6. PROCESSOR CONTROL INSTRUCTIONS

Processor control instructions (see Table 2.11) allow programs to control various CPU
functions. One group of instructions updates flags and another group is used primarily for
synchronizing the microprocessor to external events. Another instruction causes the CPU to do
nothing. Except for flag operations, processor control instructions do not affect the flags.

Table 2.11. Processor Control Instructions

FLAG OPERATIONS

STC Set Carry flag
CLC Clear Carry flag
CMC Complement Carry flag
STD Set Direction flag
CLD Clear Direction flag
STI Set Interrupt Enable flag
CLI Clear Interrupt Enable flag

EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt or reset
WAIT Wait for TEST# pin active
ESC Escape to external processor
LOCK Lock bus during next instruction

NO OPERATION

NOP l No operation

2.2.2. ADDRESSING MODES

The 80C186 Modular Core family members access instruction operands in several ways.
Operands may be contained in registers, the instruction itself, memory or at I/O ports.
Addresses of memory and I/O port operands can be calculated in many ways. These
addressing modes greatly extend the flexibility and convenience of the instruction set. The
following paragraphs briefly describe register and immediate modes of operand addressing. A
detailed description of the memory and I/O addressing modes is also provided.

2.2.2.1. REGISTER AND IMMEDIATE OPERAND ADDRESSING MODES

Usually, the fastest, most compact operand addressing forms specify only register operands.
This is because the register operand addresses are encoded in instructions in just a few bits and
no bus cycles are run (the operation occurs within the CPU). Registers may serve as source
operands, destination operands or both.

Immediate operands are constant data contained in an instruction. Immediate data may be

either 8 or 16 bits in length. Immediate operands are available directly from the instruction
queue and can be accessed quickly. Like the register operand, no bus cycles need to be run to

2-23



Inte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

get an immediate operand. Immediate operands can only be source operands and must have a
constant value.

2.2.2.2. MEMORY ADDRESSING MODES

Although the Execution Unit has direct access to register and immediate operands, memory
operands must be transferred to and from the CPU over the bus. When the Execution Unit
needs to read or write a memory operand, it must pass an offset value to the Bus Interface
Unit. The Bus Interface Unit adds the offset to the shifted contents of a segment register
producing a 20-bit physical address. One or more bus cycles are then run to access the
- operand.

The offset that the Execution Unit calculates for memory operand is called the operand’s
effective address (EA). This address is an unsigned 16-bit number that expresses the operand’s
distance, in bytes, from the beginning of the segment where it resides. The Execution Unit can
calculate the effective address in several ways. Information encoded in the second byte of the
instruction tells the Execution Unit how to calculate the effective address of each memory
operand. A compiler or assembler derives this information from the instruction written by the
programmer. Assembly language programmers have access to all addressing modes.

The Execution Unit calculates the Effective Address by summing a displacement, the contents
of a base register and the contents of an index register (see Figure 2.12). Any combination of
‘these may be present in a given instruction. This allows a variety of memory addressing
modes. ’ ‘

The displacement is an 8- or 16-bit number contained in the instruction. The displacement
generally is derived from the position of the operand’s name (a variable or label) in the
program. The programmer can modify this value or explicitly specify the displacement.

The BX or BP register may be specified as the base register for an effective address
calculation.

Similarly, either the SI or DI register may be specified as the index register. The displacement
value is a constant. The contents of the base and index registers may change during execution.
This allows one instruction to access different memory locations depending upon the current
values in the base or base and index registers. The default base register for effective address
calculations with the BP register is SS, although DS or ES may be specified.

Direct addressing is the simplest memory addressing mode (see Figure 2.13). No registers are

involved and the effective address is taken directly from the displacement of the instruction.
The programmer typically uses direct addressing to access scalar variables.

2-24



lnie|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

SINGLE INDEX DOUBLE INDEX
OR R oF
ENCODED
INTHE { OR .
INSTRUCTION s L
OR
\ DI
EXPLICIT %(‘l‘DISPLACEMENT ;) EFFECTIVE
IN THE == ADDRESS
INSTRUCTION
( — cs |00
OR
ss | o000 [
ASSUMED UNLESS
OVERRIDDEN { OR
BY PREFEX
1 DS 0000 [
OR
k (+5~‘ ES | 0000 +

# PHYSICAL ADDR F

EL

BIU

Figure 2.12. Memory Address Computation

T T

T
OPCODE —I MOD RM | DISPLACE|\IAENT

Figure 2.13. Direct Addressing

2-25




Inte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

With register indirect addressing, the effective address of a memory operand may be taken
directly from one of the base or index registers (see Figure 2.14). One instruction can operate
on various memory locations if the base or index register is updated accordingly. Any 16-bit
general register may be used for register indirect addressing with the JMP or CALL
instructions.

In based addressing (see Figure 2.15), the effective address is the sum of a displacement value
and the contents of the BX or BP register. Specifying the BP register as a base register directs
the Bus Interface Unit to obtain the operand from the current stack segment (unless a segment
override prefix is present). This makes based addressing with the BP register a convenient way
to access stack data.

OPCODE [ MOD RM

BX
OR
BP
OR
sl
OR
DI —>» EA

Figure 2.14. Register Indirect Addressing

—————
OPCODE MOD RM DISPLACEMENT J
BX lA
—> OR E
BP

Figure 2.15. Based Addressing

2-26



lnteL‘ OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Based addressing provides a simple way to address data structures which may be located in
different places in memory (see Figure 2.16). A base register can be pointed at the structure.
Elements of the structure can then be addressed by their displacement. Different copies of the
same structure can be accessed by simply changing the base register.

HIGH ADDRESS

DISPLACEMENT DISPLACEMENT
(RATE) AGE STATUS (RATE)
RATE %
VAG SIcK
nsé’,’;?ER DEPT o BASEREGSTER  [— —
EMPLOYEE :
|
dn |
N l
AGE STATUS :
RATE < |
VA SIcK :
DEPT DIV |
EMPLOYEE <l — — — — — — — _
LOW ADDRESS

Figure 2.16. Accessing a Structure with Based Addressing

With indexed addressing, the effective address is calculated by summing a displacement and
the contents of an index register (SI or DI, see Figure 2.17). Indexed addressing is often used
to access elements in an array (see Figure 2.18). The displacement locates the beginning of the
array and the value of the index register selects one element. If the index register contains
0000H, the processor selects the first element. Since all array elements are the same length,
simple arithmetic on the register may select any element.

2-27




intel.

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

OPCODE

MOD RM

T
DISPLACEMENT

_ ]

o

Sl

f———0R —

DI

EA

Figure 2.17. Indexed Addressing

] DISPLACEMENT

;

INDEX REGISTER

s~ HIGH ADDRESS

\/’\

ARRAY (8)

ARRAY (7)

DISPLACEMENT

ARRAY (6)

ARRAY (5)

;

ARRAY (4)

INDEX REGISTER

ARRAY (3)

2

ARRAY (2)

ARRAY (1)

ARRAY (0)

1 WORD
LOW ADDRESS

Figure 2.18. Accessing an Array with Indexed Addressing

2-28




I'“*QI‘B OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Based index addressing generates an effective address which is the sum of a base register, an
index register and a displacement (see Figure 2.19). The two address components can be
determined at execution time, making this a very flexible addressing mode.

1

I
OPCODE MOD RM DISPLACEMENT |

BX

—>> OR >
BP

sl Y

——>——o0R >
DI

EA

Figure 2.19. Based Index Addressing

Based index addressing provides a convenient way for a procedure to address an array located
on a stack (see Figure 2.20). The BP register can contain the offset of a reference point on the
stack. This is typically the top of the stack after the procedure has saved registers and allocated
local storage. The offset of the beginning of the array from the reference point can be
expressed by a displacement value. The index register can be used to access individual array
elements. Arrays contained in structures and matrices (two-dimensional arrays) can also be
accessed with based indexed addressing.

String instructions do not use normal memory addressing modes to access operands. Instead,
the index registers are used implicitly (see Figure 2.21). When a string instruction executes,
the SI register must point to the first byte or word of the source string. The DI register must
point to the first byte or word of the destination string. In a repeated string operation, the CPU
will automatically adjust the SI and DI registers to obtain subsequent bytes or words. For
string instructions, the DS register is the default segment register for the SI register and the ES
register is the default segment register for the DI register. This allows string instructions to
operate on data located anywhere within the one megabyte address space.

2-29




'“te|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

«~ High Address o

Displacement PARM 2 Displacement
— 6 PARM 1 6 —_

P o q

r Base Register|(BP) Old BX (BP){Base Register%—l

Old AX

. —>> Array (6) i
Index Register Index Register
1 Array (5) >

Array (4)
Array (3) ¢

Array (2) EA

Array (1)

Array (0) T
<

Count

Temp
SR N T A

Y \Jr'\
<—1 Word—>
Low Address

Figure 2.20. Accessing a Stacked Array with Based Index Addressing

2-30




Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

OPCODE

[ s F——> soucee
DESTINATION EA

Figure 2.21. String Operand

2.2.2.3. 1/0 PORT ADDRESSING

Any memory operand addressing modes may be used to access an I/O port if the port is
memory-mapped. String instructions can also be used to transfer data to memory-mapped

ports with an appropriate hardware interface.

Two addressing modes can be used to access ports located in the I/O space (see Figure 2.22).
The port number is an 8-bit immediate operand for direct addressing. This allows fixed access
to ports numbered O to 255. Indirect I/O port addressing is similar to register indirect
addressing of memory operands. The DX register contains the port number which can range
from 0 to 65,535. By adjusting the contents of the DX register, one instruction can access any
port in the I/O space. A group of adjacent ports can be accessed using a simple software loop

that adjusts the value of the DX register.

PORT ADDRESS

OPCODE DATA OPCODE
PORT ADDRESS DX
DIRECT PORT INDIRECT PORT
ADDRESSING ADDRESSING

Figure 2.22. /0O Port Addressing

2-31




intgl. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

22.24. DATATYPES USED IN THE 80C186 MODULAR CORE FAMILY

The 80C186 Modular Core family supports the following data types:

e Integer - A signed 8- or 16-bit binary numeric value. All operations assume a 2’s
complement representation. Signed 32- and 64-bit integers are directly supported with the
addition of an 80C187 Numerics Processor Extension to an 80C186 Modular Core
system. The 80C188 Modular Core does not support the 80C187.

e Ordinal - An unsigned 8- or 16-bit binary numeric value.

e Pointer - A 16- or 32-bit quantity, composed of a 16-bit offset component or a 16-bit
segment base component in addition to a 16-bit offset component.

e String - A contiguous sequence of bytes or words. A string may contain from one to 64
Kbytes.

e ASCII - A byte representation of alphanumeric and control characters using the ASCII
standard.

e BCD - A byte (unpacked) representation of the decimal digits 0-9.

e Packed BCD - A byte (packed) representation of two decimal digits (0-9). One digit is
stored in each nibble (4 bits) of the byte.

e Floating Point - A signed 32-, 64- or 80-bit real number representation. The 80C187
Numerics Processor Extension, when added to an 80C186 Modular Core system, directly
supports floating point operands. The 80C188 Modular Core does not support the
80C187.

In general, individual data elements must fit within defined segment limits. Figure 2.23
graphically represents the data types supported by the 80C186 Modular Core family.

2.3. INTERRUPTS AND EXCEPTION HANDLING

Interrupts and exceptions alter the program execution in response to an external event or an
error condition. An interrupt handles asynchronous external events, for example an NMI.
Exceptions result directly from the execution of an instruction, usually an instruction fault.
The user can cause a software interrupt by executing an “INT n” instruction. The CPU
processes software interrupts the same as exceptions.

The 80C186 Modular Core responds to interrupts and exceptions in the same way for all
devices within the 80C186 Modular Core family. However, devices within the family may
have different Interrupt Control Units. The Interrupt Control Unit handles all external interrupt
sources and presents them to the 80C186 Modular Core via one maskable interrupt request.
See Figure 2.24. This section covers only areas of interrupts and exceptions common to the
80C186 Modular Core Architecture. The Interrupt Control Unit is proliferation dependent and
is covered in another section.

2-32



intel.

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

7 0

siGN BIT- Lmaanmupe -
7 0

Lmss
L—MAGNITUDE—

+1

NOTE: * Supported directly with
additional hardware

0

+0

15 14 8 7
T T I T T T T T T I T T T
SIGNED WORD | I |
siGN BIT-  Lmss
MAGNITUDE —————
+3 il 0
31 2423 16 15 8 7 0
SIGNED DOUBLE L LI B LI B e LN B
WORD * I I
siGN BiITd Lwmss
' MAGNITUDE I
+7 +6 +5 +4 +3 +2 +1 0
SIGNEDQUAD & 847 32 31 16 15 0
woro+ [ | | | | | | L]
sian eIt Lmss |
MAGNITUDE
15 * 8 7 ° 0
UNSIGNED [T T T [ T 17 T T
WORD
Lmse
L MAGNITUDE J
7 +N 0 7 i 07 0
DECIMAL (BCD)
BCDDIGITN BCD DIGIT 1 BCDDIGIT O
7 N o 7 * 07 ° 0
L ' 1T T 1T | L
ASClHI e o o | l |
ASCIl CHAFiACTEFlN ASCIl CHARACTER 1 ASCII CHARACTER 0
7 +N 0 7 +1 7 0 +0 0
MOST LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT
7 N o 7 + 07 0 0
smwe [T L [
BYTE WORD N BYTE WORD 1 BYTE WORD 0
31 +3 %2 2 16 15 *1 8 °
PO'N-'-EH | T 17T | T T | T T 1 ‘ T 17 | L l T 1T 7T I L I L |
L SELECTOR L OFFSET J
79 +9 +8 +7 +6 +5 +4 +3 +2 +1
FLOATING
ponts [ [ | | 1 [ | l | |

SIGNBIT/ L ExpPONENT—I L

MAGNITUDE

Figure 2.23. 80C186 Modular Core Family Supported Data Types

2-33




intgl. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

NMI
MASKABLE
INTERRUPT
REQUEST
<
: INTERRUPT EXTERNAL
CPU : CONTROL <€—— NTERRUPT
: UNIT , SOURCES
> <
INTERRUPT
ACKNOWLEDGE

Figure 2.24. Interrupt Control Unit

2.3.1. INTERRUPT/EXCEPTION PROCESSING

The 80C186 Modular Core can service up to 256 different interrupts/exceptions. A 256 entry
Interrupt Vector Table contains the pointers to interrupt service routines. Each interrupt/
exception is given a type number, 0 through 255 corresponding to its position in the Interrupt
Vector Table. See Figure 2.25. Each entry is 4 bytes long. An entry contains the Code
Segment (CS) and Instruction Pointer (IP) of the first instruction in the interrupt service
routine.

Interrupt types 0-31 are reserved for Intel and should not be used by an application program.

When an interrupt is acknowledged, a common sequence of events occur allowing the
processor to execute the interrupt service routine (See Figure 2.26).

1. The processor saves a partial machine status by pushing the Program Status Word onto
the stack.

2. The Trap Flag bit and Interrupt Enable bit are then cleared in the Program Status Word.
This prevents maskable interrupts or single step exceptions from interrupting the
processor during the interrupt service routine.

The current CS and IP are pushed onto the stack.

4. The CPU fetches the new CS and IP for the interrupt vector routine from the Interrupt
Vector Table and begins executing from that point.

2-34




intel.

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

VECTOR
DEFINITION

TYPE 11 - DMA1

TYPE 10 - DMAO

TYPE 9- RESERVED

TYPE 8 - TIMER 0

TYPE7-ESC

OPCODE

TYPE 6 - UNUSED
OPCODE

TYPE 5 - ARRAY

BOUNDS

TYPE 4 - OVERFLOW

TYPE 3 - BREAKPOINT

TYPE 2-NMI

TYPE 1 - SINGLE-STEP

TYPE 0 - DIVIDE
ERROR

MEMORY TABLE VECTOR MEMORY TABLE
ADDRESS ENTRY DEFINITION ADDRESS ENTRY
3FE CS 255 2E cs 1
aFC TYPE 255
IP 255 2C P11
i i y USER 2 CS 10
' ' AVAILABLE g
82 cs 32 IP 10
TYPE 32 26
80 P32 520
24
7 cs 3t P9
e TYPE 31 22 css
7C
: X 20 P8
‘ h ¥ RESERVED
i ' 1E cs7
52 CS 20 TYPE 20 1C P7
50 1P 20 y 1A ose
48 cs 19 TYPE 19 - TIMER 2 18 IP 6
4C IP 19 16 css
4A cs18 TYPE 18 - TIMER 1 14 IP5
48 IP 18 12 CcS4
4 cs 17
6 TYPE 17- RESERVED 10 P4
44 P17 OE osa
42 cs 16
TYPE 16-NUMERICS %€ IP3
40 IP 16 0A cs2
8E cs 15 TYPE 15 - INT3 08 P2
3ac IP 15 06 cs 1
A cs14 TYPE 14 - INT2 04 IP 1
38 IP 14 02 cso
36 cs 13 TYPE 13- INT1 00 IPO
34 P13
€—28YTES—
82 cs 12 TYPE 12 - INTO
30 IP 12 . CS = CODE SEGMENT VALUE
<—25YTES—> IP = INSTRUCTION POINTER VALUE

The CPU is now executing the interrupt service routine. The programmer must save (usually
by pushing onto the stack) all registers used in the interrupt service routine or their contents
will be lost. To allow nesting of maskable interrupts, the programmer must set the Interrupt

Enable bit in the Program Status Word.

When exiting an interrupt service routine, the programmer must restore (usually by popping

Figure 2.25. Interrupt Vector Table

off the stack) the saved registers and execute an IRET instruction. An IRET instruction:

2-35




intel.  ovERVIEW OF THE 80C186 FAMILY ARCHITECTURE

1. Loads the return CS and IP by popping them off the stack.

2. Pops and restores the old Program Status Word from the stack.

The CPU now executes from where it was before the interrupt/exception occurred.

NTERRUPT ENABLE BIT
STACK TRAP FLAG
PSW © @
cs \ lo]o] | PROGRAM STATUS WORD
P
P >
\J\ SN ®
CODE SEGMENT REGISTER
INSTRUCTION POINTER
®
\\ '\D
cs
P
\ hal
INTERRUPT
VECTOR TABLE

Figure 2.26. Interrupt Sequence

2.3.1.1. NON-MASKABLE INTERRUPTS

The Non-Maskable Interrupt (NMI) is the highest priority interrupt. It is usually reserved for a
catastrophic event such as impending power failure. An NMI cannot be prevented (or masked)
by software. When the NMI input is asserted, the interrupt processing sequence begins after
execution of the current instruction completes (see Section 2.3.4 on interrupt latency). The
CPU automatically generates a type 2 interrupt vector.

The NMI input is asynchronous. Setup and hold times are given only to guarantee recognition
on a specific clock edge. To be recognized, NMI must be asserted for at least one CLKOUT
period and meet the correct setup and hold times. NMI is edge-triggered and level-latched.
Multiple NMI requests cause multiple NMI service routines to be executed. NMI can be
nested in this manner an infinite number of times.

2-36




Inte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.3.1.2. MASKABLE INTERRUPTS

Maskable interrupts are the most common way to service external hardware interrupts.
Software can globally enable or disable maskable interrupts. This is done by setting or clearing
the Interrupt Enable bit in the Program Status Word.

The Interrupt Control Unit processes the multiple sources of maskable interrupts and presents
them to the core via a single maskable interrupt input. The Interrupt Control Unit provides the
interrupt vector type to the 80C186 Modular Core. The Interrupt Control Unit differs among
members of the 80C186 Modular Core family and is described in a different section.

2.3.1.3. EXCEPTIONS

Exceptions occur when an unusual condition prevents further instruction processing until the
exception is corrected. The CPU handles software interrupts and exceptions in the same way.
The interrupt type for an exception is either predefined or supplied by the instruction.

Exceptions are classified as either faults or traps. This depends on when they are detected and
if the instruction which caused the exception can be restarted. Faults are detected and serviced
before the faulting instruction can be executed. The return address pushed onto the stack in the
interrupt processing instruction points to the beginning of the faulting instruction. This way,
the instruction can be restarted. A trap is detected and serviced immediately after the
instruction which caused the trap. The return address pushed onto the stack during the
interrupt processing points to the instruction following the trapping instruction.

Divide Error - Type 0:

A divide error trap is invoked when the quotient of an attempted division exceeds the
maximum value of the destination. A divide-by-zero is a common example.

Single Step - Type 1:

The single step trap occurs after the CPU executes one instruction with the Trap Flag (TF) bit
set in the Program Status Word. This allows programs to execute one instruction at a time.
Interrupts will not be generated after prefix instructions (e.g. REP), instructions which modify
segment registers (e.g. POP DS) or the WAIT instruction. Vectoring to the single-step
interrupt service routine clears the Trap Flag bit. An IRET instruction in the interrupt service
routine restores the Trap Flag bit to logic “1” and transfers control to the next instruction to be
single-stepped.

Breakpoint Interrupt - Type 3:
This is a single byte version of the INT instruction. The breakpoint interrupt is commonly used

by software debuggers to set breakpoints in RAM. Because the instruction is only one byte
long, it can substitute for any instruction.

2-37



"“-el‘E OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Interrupt on Overflow - Type 4:

The Interrupt on Overflow trap occurs if the Overflow Flag (OF) bit is set in the Program
- Status Word and the INTO instruction is executed. Interrupt on Overflow is a common way to
conditionally handle arithmetic overflows.

Array Bounds Check - Type 5:

If the array index is outside the array bounds during execution of the BOUND instruction (see
80C186 Instruction Set Additions and Extensions), an array bounds trap occurs.

Invalid Opcode - Type 6:
Execution of an undefined opcode causes an Invalid Opcode trap.
Escape Opcode - Type 7:

The Escape Opcode fault is used for floating point emulation. With 80C186 Modular Core
family members, the escape opcode fault is enabled by setting the Escape Trap (ET) bit in the
Relocation Register (see Peripheral Control Block). When a floating point instruction is
executed with the Escape Trap bit set, the Escape Opcode Fault exception occurs. The Escape
Opcode service routine then emulates the floating point instruction. If the Escape Trap bit is
cleared, the CPU sends the floating point instruction to an external 80C187.

80C188 Modular Core Family members do not support the 80C187 interface and always
generate the Escape Opcode Fault. The 80C186XL will generate the Escape Opcode Fault
regardless of the state of the Escape Trap bit unless it is in Numerics Mode.

Numerics Coprocessor Fault - Type 16:

The Numerics Coprocessor Fault is caused by an external 80C187 numerics coprocessor. The
80C187 reports the exception by asserting the ERROR pin. The 80C186 Modular Core only
checks the ERROR pin when executing a numerics instruction. A Numerics Coprocessor
Fault indicates that the previous numerics instruction caused the exception. The 80C187 saves
the address of the floating point instruction that caused the exception. The return address
pushed onto the stack during the interrupt processing points to the numerics instruction which
detected the exception. This way, the last numerics instruction can be restarted.

23.2. SOFTWARE INTERRUPTS

A Software Interrupt is caused by executing an “INT n” instruction. The parameter n
corresponds to the specific interrupt type to be executed. The interrupt type can be any number
between 0 and 255. If the parameter n corresponds to an interrupt type associated with a
hardware interrupt (NMI, Timers), the vectors will be fetched and the routine executed, but the
corresponding bits in the Interrupt Status register will not be altered.

2-38



'“te|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

The CPU processes software interrupts and exceptions in the same way. Software interrupts,
exceptions and traps cannot be masked.

2.3.3. INTERRUPT LATENCY

Interrupt latency is the amount of time it takes for the CPU to recognize the existence of an
interrupt. The CPU generally only recognizes interrupts between instructions or on instruction
boundaries. Therefore, the current instruction must finish executing before an interrupt can be
recognized.

The worst case 80C186 instruction execution time is an integer divide instruction with
segment override prefix. The instruction takes 69 clocks, assuming an 80C186 Modular Core
family member and a zero wait state external bus. The execution time for an 80C188 Modular
Core family member may be longer depending on the queue.

This is one factor in determining interrupt latency. In addition, the following are also factors in
determining maximum latency:

1. The Interrupt Enable bit must be set for the CPU to recognize the Maskable Interrupt.

2. The CPU will not recognize interrupts during HOLD.

3. Once communication is completely established with an 80C187, the CPU will not

recognize interrupts until the numerics instruction is finished.

The CPU can only recognize interrupts on valid instruction boundaries. A valid instruction
boundary usually occurs when the current instruction finishes. The following is a list of
exceptions:

1. MOVs and POPs referencing a segment register will delay servicing of interrupts until
after the following instruction. The delay allows a 32-bit load to the SS and SP without an
interrupt occurring between the two loads.

2. The CPU allows interrupts between repeated string instructions. If multiple prefixes
precede a string instruction and the instruction is interrupted, only the one prefix
preceding the string primitive is restored.

3. The CPU can be interrupted during a WAIT instruction. The CPU will return to the WAIT
instruction.

2.3.4. INTERRUPT RESPONSE

Interrupt response time is the time from the CPU recognizing an interrupt until the first
instruction in the service routine is executed.

Interrupt response time is less for interrupts or exceptions which supply their own vector type.
The maskable interrupt has a longer response time because the vector type must be supplied

2-39



Inte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

by the Interrupt Control Unit. The response time for the maskable interrupt is covered in the
Interrupt Control Unit section.

Figure 2.27 shows the sequence of events which dictate interrupt response time for the
interrupts which supply their type. Note that an on-chip bus master, such as the DRAM
Refresh Unit, can make use of idle bus cycles. This can increase interrupt response time.

Clocks
IDLE
READ IP
IDLE
READ CS
IDLE
PUSH FLAGS
IDLE
PUSH CS
PUSH IP
IDLE

LS I - T~ S U & L B~ & ]

FIRST INSTRUTION

FETCHFROM INTERRUPT ~ rrmrmmmmmmmmssomommommm oo oo >

ROUTINE _
Total 42

Figure 2.27. Interrupt Response Factors

2.3.5. INTERRUPT AND EXCEPTION PRIORITY

Interrupts can only be recognized on valid instruction boundaries. If an NMI and a maskable
interrupt are both recognized on the same instruction boundary, NMI has precedence. The
maskable interrupt will not be recognized until the Interrupt Enable bit is set and it is the
highest priority.

Only the single step exception can occur concurrently with another exception. At most, two
exceptions can occur at the same instruction boundary and one of the exceptions must be the
single step. Single step is a special case which will be discussed later. By ignoring single step
(for now), only one exception can occur at any given instruction boundary.

An exception has priority over both NMI and the maskable interrupt. However, a pending

NMI can interrupt the CPU at any valid instruction boundary. Therefore, NMI can interrupt an
exception service routine. If an exception and NMI occur simultaneously, the exception vector

2-40




Intel‘f‘ OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

will be taken, followed immediately by the NMI vector. See Figure 2.28. While the exception
has higher priority at the instruction boundary, the NMI interrupt service routine is executed
first. '

F=1

NMI DIVIDE <<— DIVIDE ERROR

v

PUSH PSW, CS, IP

FETCH DIVIDE ERROR VECTOR
PUSH PSW, CS, IP
FETCH NMI VECTOR
EXECUTE NMI
SERVICE ROUTINE
¢ IRET
EXECUTE DIVIDE
SERVICE ROUTINE

¢ IRET

Figure 2.28. Simultaneous NMI and Exception

Single step priority is a special case. If an interrupt (NMI or maskable) occurs at the same
instruction boundary as a single step, the interrupt vector is taken first, followed immediately
by the single step vector. The single step service routine is executed before the interrupt
service routine. See Figure 2.29. If the single step service routine re-enables Single Step by
setting the Trap Flag bit before executing the IRET, the interrupt service routine will also be
single stepped. This can severely limit the real-time response of the CPU to an interrupt.

2-M1




'"te|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

To prevent the single step routine from executing before a maskable interrupt, disable
interrupts while single stepping an instruction. Then enable interrupts in the single step service
routine. The maskable interrupt is serviced from within the single step service routine and that
interrupt service routine is not single-stepped. To prevent single stepping before an NMI, the
single step service routine must compare the return address on the stack to the NMI vector. If
they are the same, return to the NMI service routine immediately without executing the single
step service routine.

NMI —>>]

INSTRUCTION

<€— TRAP FLAG=1

PUSH PSW, CS, IP
FETCH DIVIDE
ERROR VECTOR
TRAP FLAG=0

—

PUSH PSW, CS, IP
FETCH SINGLE STEP VECTOR

Y

EXECUTE SINGLE STEP
SERVICE ROUTINE

< | IRET

TRAP FLAG=7??

Figure 2.29. Simultaneous NMI and Single Step Interrupts

The most complicated case is when an NMI, maskable interrupt, single step and another
exception are pending on the same instruction boundary. Figure 2.30 shows how this case is
prioritized by the CPU. Note: if the single step routine sets the Trap Flag bit before executing

. the IRET instruction, the NMI routine will also be single stepped.

2-42




Inte|® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

INTERRUPT ENABLE BIT (IE) = 1
TRAP FLAG (TF) = 1

NMI —> DIVIDE «€— TIMER INTERRUPT
PUSH PSW, CS, IP INTERRUPT ENABLE BIT (IF) =0
FETCH DIVIDE ERROR VECTOR TRAP FLAG (TF) =0
PUSH PSW, CS, IP INTERRUPT ENABLE BIT (IF) =0
FETCH NMI VECTOR TRAP FLAG (TF) =0
PUSH PSW, CS, IP INTERRUPT ENABLE BIT
FETCH SINGLE STEP VECTOR (F)=0
¢ TRAP FLAG (TF) =0
EXECUTE SINGLE STEP
SERVICE ROUTINE
|
o0 0 00 0K IRET

INTERRUPT ENABLE BIT (IF) =0

TRAP FLAG (TF) = 72?

INTERRUPT ENABLE BIT (IF) = 1
TRAP FLAG (TF) =X

y

PUSH PSW, CS, IP
FETCH SINGLE STEP VECTOR

¥

INTERRUPT ENABLE BIT (IE) = 1
TRAP FLAG =X

EXECUTE SINGLE STEP SERVICE ROUTINE

; IRET

Figure 2.30. Simultaneous NMI, Single Step and Maskable Interrupt

2-43







Bus Interface Unit







CHAPTER 3
BUS INTERFACE UNIT

The Bus Interface Unit, abbreviated BIU, generates bus cycles that prefetch instructions from
memory, pass data to and from the execution unit, and pass data to and from the integrated
peripheral units.

The BIU drives address, data, status and control information to define a bus cycle. The start of
a bus cycle presents the address of a memory or I/O location and status information defining
the type of bus cycle. Read or write control signals follow address and define the direction of
data flow. A read cycle requires data to flow from the selected memory or I/O device to the
BIU. In a write cycle, the data flows from the BIU to the selected memory or I/O device. Opon
termination of the bus cycle, the BIU latches read data or removes write data.

3.1. MULTIPLEXED ADDRESS AND DATA BUS

The BIU has a combined address and data bus, commonly referred to as a time multiplexed
bus. Time multiplexing address and data information makes the most efficient use of device
package pins. A system with address latching provided within the memory and I/O devices
can directly connect to the address/data bus (or local bus). The local bus can be demultiplexed
with a single set of address latches to provide non-multiplexed address and data information to
the system.

3.2. ADDRESS AND DATA BUS CONCEPTS

The programmer views the memory or I/O address space as a sequence of bytes. Memory
space consists of 1 Mbytes, while I/O space consists of 64 Kbytes. Any byte may contain an
eight bit data element, and any two consecutive bytes may contain a sixteen bit data element
(identified as a word). The discussions in this section apply to both memory and I/O bus
cycles. For brevity, memory bus cycles are used for examples and illustration.

3.2.1. 16-BIT DATA BUS

The memory address space on a 16-bit data bus is physically implemented by dividing the
address space into two banks of up to 512 Kbytes (see Figure 3.1). One bank connects to the
lower half of the data bus and contains even addressed bytes (A0=0). The other bank connects
to the upper half of the data bus and contains odd addressed bytes (AO=1). Address lines A19-
Al select a specific byte within each bank. A0 and Byte High Enable (BHE) determine
whether one bank or both banks participate in the data transfer.

3-1



BUS INTERFACE UNIT

intel.

PHYSICAL MPLEMENTATION PHYSICAL IMPLEMENTATION OF THE

OF THE ADDRESS SPACE FOR
8-BIT SYSTEMS ADDRESS SPACE FOR 16-BIT SYSTEMS
1 MBYTE 512 KBYTES 512 KBYTES
FFFFF FFFFF FFFFE
FFFFE FFFFD FFFFC
> 0O— > O—
2 5 4
1 3 2
0 1 0
N
N
A19:0 D7:0 A19:1 D15:8 BHE D7:0 A0

Figure 3.1. Physical Data Bus Models

Byte transfers to even addresses transfer information over the lower half of the data bus (see
Figure 3.2). A0 low enables the lower bank while BHE high disables the upper bank. The data
value from the upper bank is ignored during a bus read cycle. BHE high prevents a write
operation from destroying data in the upper bank.

Byte transfers to odd addresses transfer information over the upper half of the data bus (see
Figure 3.2). BHE low enables the upper bank while AO high disables the lower bank. The data
value from the lower bank is ignored during a bus read cycle. AO high prevents a write
operation from destroying data in the lower bank.

To access even addressed 16-bit words (two consecutive bytes with the least significant byte at
an even address), information is transferred over both halves of the data bus (see Figure 3.3).
A19-A1 select the appropriate byte within each bank. A0 and BHE drive low to enable both
banks simultaneously.

0Odd addressed word accesses require the BIU to split the transfer into two byte operations (see
Figure 3.4). The first operation transfers data over the upper half of the bus, while the second
operation transfers data over the lower half of the bus. The BIU automatically executes the
two byte sequence whenever an odd addressed word access is performed.

3-2




intel. BUS INTERFACE UNIT
EVEN BYTE TRANFER
Y+1
) X+1
PN
~ <
A19:1 D15:8 BHE (HIGH) D7:0 A0 (LOW)
0DD BYTE TRANSFER
Y
X
A19:1 D158  BHE (LOW) D70 A0 (HIGH)

Figure 3.2. 16-Bit Data Bus Byte Transfers

A19:1 D15:8 BHE (LOW) D7:0 A0 (LOW)

Figure 3.3. 16-Bit Data Bus Even Word Transfers

3-3




intel. BUS INTERFACE UNIT

During a byte read operation the BIU floats the entire 16-bit data bus even though the transfer
occurs on only one half of the bus. This action simplifies the decoding requirements for read
only devices (e.g., ROM, EPROM, FLASH). During the byte read, both halves of the bus can
be driven and the BIU automatically accesses the correct half. The BIU drives both halves of
the bus during a byte write operation. Information of the half of the bus not involved in the
transfer is indeterminate. This action requires that the appropriate bank (defined by BHE or
AO0 high) be disabled to prevent destroying data.

3.2.2. 8-BIT DATABUS

The memory address space on an 8-bit data bus is physically implemented as one bank of 1
Mbytes (see Figure 3.1). Address lines A19-A0 select a specific byte within the bank. Unlike a
16-bit bus, byte and word transfers (to even or odd addresses) all transfer data over the same
8-bit bus.

FIRST BUS CYCLE
Y
X
A19:1 D15:8 BHE (LOW) D7:0 A0 (HIGH)

SECOND BUS CYCLE
Y +1
X+1
PN
v .
A19:1 D15:8 BHE (HIGH) D7:0 A0 (LOW)

Figure 3.4. 16-Bit Data Bus Odd Word Transfers

3-4




intgl. BUS INTERFACE UNIT

Byte transfers to even or odd addresses transfer information in one bus cycle. Word transfers
to even or odd addresses transfer information in two bus cycles. The BIU automatically
converts the word access into two consecutive byte accesses, making the operation transparent
to the programmer.

For word transfers, the word address defines the first byte transferred. The second byte
transfer occurs from the word address plus one. Figure 3.5 illustrates a word transfer on an 8-
bit bus interface.

FIRST BUS CYCLE SECOND BUS CYCLE

A19:0 D7:0 A19:0 D7:0

Figure 3.5. 8-Bit Data Bus Word Transfers

3.3. MEMORY AND /O INTERFACES

The CPU can interface with 8- and 16-bit memory and I/O devices. Memory devices exchange
information with the CPU during memory read, memory write and instruction fetch bus
cycles. /O (peripheral) devices exchange information with the CPU during memory read,
memory write, I/O read, I/O write and interrupt acknowledge bus cycles. Memory mapped 1/O
refers to peripheral devices that exchanged information during memory cycles. Memory
mapped /O allows the full power of the instruction set to be use when communicating with
peripheral devices.

I/O read and 1/O write bus cycles use a separate 1/O address space. Only IN and OUT
instructions can access I/O address space, and information must be transferred between the
peripheral device and the AX register. The first 256 bytes (0-255) of I/O space can be
accessed directly by the I/O instructions. The entire 64 Kbyte I/O address space can only be
accessed indirectly through the DX reglster I/O instructions always force address bits A19-
A16 to zero.

Interrupt acknowledge, or INTA bus cycles access an I/O device intended to increase interrupt
input capability. Valid address information is not generated as part of the INTA bus cycle, and
data are transferred only over the lower bank (16-bit device).




intgl. BUS INTERFACE UNIT

3.3.1. 16-BIT BUS MEMORY AND I/O REQUIREMENTS

A 16-bit bus has certain assumptions that must be met to operate properly. Memory used to
store instruction operands (i.e., the program) and immediate data must be 16-bits wide.
Instruction prefetch bus cycles require that both banks be used. The lower bank contains the
even bytes of code and the upper bank contains the odd bytes of code.

Memory used to store interrupt vectors and stack data must be 16-bits wide. Memory address
space between OH and 1FFH (1 Kbyte) hold the starting location of an interrupt routine. In
response to an interrupt, the BIU fetches two consecutive, even addressed words from this 1
Kbyte address space. Stack pushes and pops always write or read even addressed word data.

3.3.2. 8-BIT BUS MEMORY AND I/O REQUIREMENTS

An 8-bit bus interface has no restrictions on implementing the memory or I/O interfaces. All
transfers, bytes and words, occur over the single 8-bit bus. Operations requiring word transfers
automatically execute two consecutive byte transfers.

3.4. BUS CYCLE OPERATION

The BIU executes a bus cycle to transfer data to or from any of the integrated units and
external memory or I/O devices (see Figure 3.6). A bus cycle consists of a minimum of four
CPU clocks known as “T-States.” A T-state is bounded by one falling edge of CLKOUT to the
next falling edge of CLKOUT (see Figure 3.7). Phase 1 represents the low time of the T-state
and starts at the high-to-low transition of CLKOUT. Phase 2 represent the high time of the T-
state and starts at the low-to-high transition of CLKOUT. Address, data and control signals
generated by the BIU go active and inactive at different phases within a T-state.

Figure 3.8 shows the BIU state diagram. Typically a bus cycle consists of four consecutive T-
states labeled T1, T2, T3 and T4. A TI (idle) state occurs when no bus cycle is pending.
Multiple T3 states occur to generate wait states. The symbol TW represents a wait state.

The operation of a bus cycle can be broken up into two phases:

e  Address/Status Phase
e Data Transfer Phase
The address/status phase starts just prior to T1 and continues through T1. The data trahsfer

phase starts at T2 and continues through T4. Figure 3.9 illustrates the T-state relationship of
the two phases.



intel. BUS INTERFACE UNIT

Figure 3.6. Typical Bus Cycle

PIN
Falling Rising
CLKOUT Edge Eip
PHASE1 i  PHASE2
(Low * (HIGH
PHASE) PHASE)

Figure 3.7. T-State Relation to CLKOUT

3.4.1. ADDRESS/STATUS PHASE

Figure 3.10 shows signal timing relationships for the address/status phase of a bus cycle. A
bus cycle begins with the transition of the ALE and S2:0. These signals transition during
phase 2 of the T-state just prior to T1. Referring back to Figure 3.8, T4 or TI precede T1
depending on the operation of the previous bus cycle.




intgl. BUS INTERFACE UNIT

BUS READY
REQUEST PENDING
HOLD DEASSERTED

BUS NOT
READY
HALT BUS CYCLE
BUS READY
REQUEST PENDING NO REQUEST PENDING
HOLD DEASSERTED HOLD DEASSERTED
RESIN
ASSERTED
HOLD ASSERTED
Figure 3.8. BIU State Diagram
TaorT 1 T PoT PoTaTW i T4
CLKOUT

< ADDRESS/ >
STATUS PHASE DATA PHASE

Figure 3.9. T-State and Bus Phases

3-8




intgl. BUS INTERFACE UNIT

Tlor T4 E T ! T2
CLKOUT
ALE
AD15-AD0O
A19:16
S2:0
BHE
NOTES:
1. ToutH THsy : Clock high to ALE high, $2:0 valid.
2. TCLAV : Clock low to address valid, BHE valid.
3. TAVLL : Address valid to ALE low (address setup to ALE).
4. ToyLL : Clock high to ALE low.
5. TCLAZ : Clock low to address invalid (address hold from clock low).
6. TLLAX : ALE low to address invalid (address hold from ALE).

Figure 3.10. Address/Status Signal Relationships

ALE provides a strobe to latch physical address information. Address is presented on the
multiplexed address/data bus during T1 (see Figure 3.10). The falling edge of ALE occurs
during the middle of T1 and provides a strobe to latch address. Figure 3.11 presents a typical
circuit for latching addresses.

The status signals S2:0 define the type of bus cycle. Table 3.1 lists the possible bus cycle
types. S2:0 remain valid until phase 1 of T3 (or the last TW when wait states occur). The
circuit shown in Figure 3.11 can also be used to extend S2:0 beyond the T3 (or TW) state.

3-9




BUS INTERFACE UNIT

SIGNALS FROM LATCHED
CPU ADDRESS SIGNALS
AT >
$2:0 3 0 4> LA19:16
—>{STB 0 ‘73;) LS2:0
3
AD15:8 8 > |
OF
AD7:0 8 > |
3

Figure 3.11. Demultiplexing Address Information

Table 3.1. Bus Cycle Types

STATUS BIT

S2 s1 S0 OPERATION
0 0 0 Interrupt Acknowledge
0 0 1 I/O Read

0 i 0 i/0 Write

0 1 1 Halt

1 0 0 Instruction Prefetch

1 0 1 Memory Read

1 1 0 Memory Write

1 1 1 Idle (passive)

3-10




intgl. BUS INTERFACE UNIT

2 T3orTW T4orTI

CLKOUT 17: '
® ® ®@
/
£
_

AD15:0
WRITE

77 e V-
VALID WRITE DATA \\ \%
N

AD15:0
READ

VALID
READ DATA

% N/

NOTES:

TetrucLwL  cLov

ToLsH : Clock low to status inactive

: Clock low to valid RD/ WR active; Write data valid

TovcL : Data input valid to clock low
TCLRH/CLWH : Clock valid to RD/ WR inactive
ToLpx : Data input HOLD from clock low

TWHDX : Output data HOLD from WR high

N o o s~ b=

TRHAY : Bus no longer floating from RD high

Figure 3.12. Data Transfer Signal Relationships

3.4.2. DATA PHASE

Figure 3.12 shows the timing relationships for the data phase of a bus cycle. The only bus
cycle type that does not have a data phase is a bus halt. During the data phase the bus transfers
information between the internal units and the memory or peripheral device selected during
the address/status phase. Appropriate control signals become active to coordinate the transfer
of data. :

3-11




intel. BUS INTERFACE UNIT

The data phase begins at phase 1 of T2 and continues until phase 2 of T4 or TI. The length of
the data phase varies depending on the number of wait states. Wait states occur after T3 and
before T4 or TL.

3.4.3. WAIT STATES

Wait states extend the data phase of the bus cycle. Memory and I/O devices that can not
provide or accept data in the minimum four CPU clocks require wait states. Figure 3.13 shows
a typical bus cycle with wait states inserted.

T | TJ2 1 T3 TW__ TW__ T4

cikout | L] [ ]
ALE \ a
20\ VALID /
A19:16  /ADDRESS\
AD15:0  XADDRESSX  VALID WRITE DATA

WR \ [
ARDY /——\__—_

Figure 3.13. Typical Bus Cycle With Wait States

The bus ready pins and the Chip-Select Unit control bus cycle wait states. Only the bus ready
pins are described in this section. Refer to Chapter 7 for a discussion of the Chip-Select Unit.

The SRDY and ARDY inputs control the wait state operation of the BIU. Figure 3.14 shows a
simplified block diagram of the SRDY and ARDY inputs. Either ARDY or SRDY must be
active to signal a bus ready condition. However, both ARDY and SRDY must be inactive to
signal a bus not-ready condition. Depending on the size and characteristics of the system,
ready implementation may take one of two approaches: normally not-ready or normally ready.

3-12



intgl. BUS INTERFACE UNIT

ARDY
D A D Q |— BUS READY
Rising
CLKOUT Edge
Falling
Edge
SRDY

Figure 3.14. ARDY and SRDY Pin Block Diagram

The condition where ARDY and SRDY remain low at all times except to signal a ready
condition defines a normally not-ready system. For any bus cycle, only the selected device
drives either ready input high to allow the BIU to complete the bus cycle. The circuit shown in
Figure 3.15 illustrates how to generate a normally not-ready signal. Note that if no device is
selected the bus remains not-ready indefinitely. Systems with many slow devices that can
not operate at the maximum bus bandwidth usually implement a normally not-ready signal.

The start of a bus cycle clears the wait state module and forces ARDY low. After every rising
edge of CLKOUT, INPUT1 and INPUT?2 are shifted through the module and eventually drive
ARDY high. Assuming INPUT1 and INPUT2 are valid prior to phase 2 of T2, no delay
through the module causes one wait state. Each additional clock delay through the module
generates one additional wait state. Two inputs are used to establish different wait state
conditions. The same circuit works for SRDY, except no delay through the module results in
no wait states.

— WAIT STATE
Gs1 MODULE
CS2
INPUT 1
INPUT 2
CS3
o ouT ARDY
ALE CLEAR
CLKOUT CLOCK

Figure 3.15. Generating a Normally Not-Ready Signal

3-13




intgl. BUS INTERFACE UNIT

A normally ready system drives ARDY or SRDY (or both) high at all times except when the
selected device needs to signal a not-ready condition. For any bus cycle, only the selected
device drives the ready input (or inputs) low to delay the completion of the bus cycle. The
circuit shown in Figure 3.16 illustrates a simple circuit to generate a normally ready signal.
Note that if no device is selected the bus remains ready. Systems that have few or no
devices requiring wait states usually implement a normally ready signal.

The start of a bus cycle preloads a “zero” shifter and forces SRDY active (high). SRDY
remains active if neither CS1 or CS2 go low. Should CST or CS2 go low, a series of zeros
are shifted out every rising edge of CLKOUT causing SRDY to go inactive. At the end of the
shift pattern SRDY is forced active again. Assuming CS1 and CS2 are active just prior to
phase 2 of T2, shifting one “zero” through the module causes one wait state. Each additional
zero shifted through the module generates one wait state. The same circuit works for ARDY,
except shifting one “zero” through the module results in two wait states.

WAIT STATE
MODULE
CSt
2 ENABLE
ouT SRDY
ALE LOAD
CLKOUT =~ —— CLOCK

Figure 3.16. Generating a Normally Ready Signal

The BIU can execute an indefinite number of wait states. However, bus cycles with large
numbers of wait states limit the performance of the CPU and the integrated peripherals. CPU
performance suffers because the instruction prefetch queue can not be kept full. Integrated
peripheral performance suffers because the maximum bus bandwidth decreases.

3.4.3.1. ARDY INPUT

The ARDY input has two major timing concerns that can effect whether a normally ready or
normally not-ready signal may be required. Referring to Figure 3.14, two latches capture the
state of the ARDY input. The first latch captures ARDY on the phase 2 clock edge. The
second Tatch captures ARDY and the result of the first latch on the phase 1 clock edge. The
following equations define the requirements of the ARDY input (SRDY is inactive) to meet
ready or not-ready bus conditions.

3-14




intgl. BUS INTERFACE UNIT

The bus is ready if:

1. ARDY is active prior to the phase 2 clock edge.

AND

2. ARDY is active prior to the phase 1 clock edge.
The bus is not-ready if: -
1. ARDY is inactive prior to the phase 2 clock edge.

OR

2. ARDY is inactive prior to the phase 1 clock edge.

A normally not-ready system must generate a valid ready input at phase 2 of T2 to prevent
wait states. If it can not, then a normally ready system is required to run no wait states. Figure
3.17 illustrates the timing necessary to prevent wait states in a normally not-ready system.
Figure 3.17 also illustrates how to terminate a bus cycle with wait states in a normally not-
ready system.

T2, T30rTW | T3, TWor TW | T4
CLKOUT

O\ ©® ®
ARDY
SRDY

In a Normally-Not-Ready system, wait states are inserted until (1 or 2) and 3 are met.
1. TARYCH : ARDY active to clock high (assumes ARDY remains active until 3)
2. TSRYCL : SRDY active to clock low

3. TCLARX TCLSRY : ARDY + SRDY hold from clock low

Failure to meet SRDY setup & hold can cause a device failure (i.e., the bus
hangs or operates inappropriately).

Figure 3.17. Normally Not-Ready System Timing

A valid not-ready input can be generated as late as phase 1 of T3 to insert wait states in a
normally ready system . A normally not-ready system is required to run wait states if the not-
ready condition can not be met in time. Figure 3.18 illustrates the minimum and maximum
timing necessary to insert wait states in a normally ready system. Figure 3.18 also illustrates
how to terminate a bus cycle with wait states in a normally ready system.

3-15




intgl. BUS INTERFACE UNIT

! ' T3 ' T™W : T4

T2
CLKOUT P
0] ®
ARDY
In a Normally-Not-Ready system, a wait state will be inserted when 1 & 2 are met.
(Assumes SRDY is low.)

1. TARYCH : ARDY low to clock high
2. TARYCHL : Clock high to ARDY high (ARDY inactive hold time)
T2 T3 ™ i T4
CLKOUT N
@\ /O
ARDY 1
SRDY
Alternatively, in a Normally-Ready system, a wait state will be inserted when 1 & 2 are
met for both SRDY & ARDY.

1. TARYLCL ERYCL : ARDY/SRDY low to clock low

2. TCH ARX TCLSRY : ARDY/SRDY low from clock low

A Failure to meet ARDY & SRDY setup & hold time can cause a device failure
(i.e., the bus hangs or operates inappropriately).

Figure 3.18. Normally Ready System Timing

3.4.3.2. SRDY INPUT

Referring to Figure 3.14, only one latch captures. the state of the SRDY input. SRDY must be
valid by phase 1 clock edge. The following equations define the requirements of the SRDY
input (ARDY is inactive) to meet ready or not-ready bus conditions.

The bus is ready if:

1. SRDY is active prior to the phase 1 clock edge.
The bus is not-ready if:

1. SRDY is inactive prior to the phase 1 clock edge.

3-16



intel. BUS INTERFACE UNIT

A normally not-ready system must generate a valid ready input at phase 1 of T3 to prevent
wait states. If it can not, then a normally ready system is required to run no wait states. Figure
3.17 illustrates the timing necessary to prevent wait states in a normally not-ready system.
Figure 3.17 also illustrates how to terminate a bus cycle with wait states in a normally not-
ready system.

A valid not-ready input can be generated as late as phase 1 of T3 to insert wait states in a
normally ready system. A normally not-ready system is required to run wait states if the not-
ready condition can not be met in time. Figure 3.18 illustrates the minimum and maximum
timing necessary to insert wait states in a normally ready system. Figure 3.18 also illustrates
how to terminate a bus cycle with wait states in a normally ready system.

3.4.4. IDLE STATES

Under most operating conditions the BIU executes consecutive (back-to-back) bus cycles.
However, several conditions cause the BIU to become idle. An idle condition occurs between
bus cycles (see Figure 3.8), and may last an indefinite amount of time (depending on the
instruction sequence). Conditions causing the BIU to become idle include:

e  The instruction prefetch queue is full

e An effective address calculation is in progress

e The bus cycle inherently requires idle states (e.g., interrupt acknowledge, locked
operations)

e Instruction execution forces idle states (e.g., HLT, WAIT)
An idle bus state may or may not drive the bus. An idle bus state following a bus read cycle
continues to float the bus. An idle bus state following a bus write cycle continues to drive the

bus. The BIU does not drive any of the control strobes active in an idle state unless to indicate
the start of another bus cycle. ‘

3.5. BUS CYCLES

There are four basic types of bus cycles: read, write, interrupt acknowledge and halt. Interrupt
acknowledge and halt bus cycles define special bus operations and require separate
discussions. Read bus cycles include memory, I/O and instruction prefetch bus operations.
Write bus cycles include memory and I/O bus operations. All read and write bus cycles have
the same basic format.

The following sections present timing equations containing symbols found in the data sheet.
The timing equations provide information necessary to start a worst case design analysis.

3.5.1. READ BUS CYCLES

Figure 3.19 illustrates a typical read cycle. Table 3.2 lists the three types of read bus cycles.

3-17



intgl. \ BUS INTERFACE UNIT

T2 T3 T4

T
}

\ STATUS VALID /

o]
-
A
o
[
=
L

ADDRESS ‘ A18:16=0
VALID A19=VALID STATUS

|

' i '
1 f ' ' '
' ) '

VALID

z|
pu g
m
—
=
o
o]
—
L. R
B

f

AD15:0 ADDRESS \ DATA
[AD7:0] VALID / VALID

\

7_

DT/R | \ :

DEN

T

\ [0

Figure 3.19. Typical Read Bus Cycle

Figure 3.20 illustrates a typical 16-bit interface connection to a read-only device interface. The
same example applies to an 8-bit bus system, except no devices connect to an upper bus. Four
parameters must be evaluated when determining the compatibility of a memory (or I/O)
device. TADLTCH defines the delay through the address latch. Table 3.3 lists the four

parameters.
ToE, TACC and TCE define the maximum data access requirements for the memory device.

These device parameters must be less than the value calculated in the equation column. A
equal to or greater than result indicates that wait states must be inserted into the bus cycle.

3-18




intgl. BUS INTERFACE UNIT

Table 3.2. Read Bus Cycle Types

STATUS BIT
S2 S1 'S0 BUS CYCLE TYPE

0 0 1 Read I/O - Initiated by the Execution Unit for IN, OUT,
INS, OUTS instructions or by the DMA Unit. A15:0 selects
the desired 1/0 port. A19:16 drive to zero (see also DMA
Unit).

1 0 0 Instruction Prefetch - Initiated by the BIU. Data read from
the bus fills the prefetch queue. .

1 0 1 Read Memory - Initiated by the Execution Unit, the DMA
Unit, or the Refresh Control Unit. A19:0 select the desired
byte or word memory location

TDF determines the maximum time the memory device can float its outputs before the next bus
cycle begins. A TDF value greater than the equation result indicates a buffer fight. A buffer
fight means two (or more) devices are driving the bus at the same time. This can lead to short
circuit conditions, resulting in large current spikes and possible device damage.

TRHAX cannot be lengthened (other than slowing the clock rate). To resolve a buffer fight
condition, chose a faster device or buffer the AD bus (see Section 3.6.1).

Table 3.3. Read Cycle Critical Timing Parameters

MEMORY DEVICE
PARAMETER DESCRIPTION EQUATION
Toe Output enable (RD low) to data valid . 2TCLCL - TCLRL -‘I"DVCL
Tacc Address valid to data valid 3TCLCL - TCLAV - TADLTCH - TDVCL
Tee Chip enable (UCS) to data valid 3TcLcL - TeLesy - ToveL
Tor Output disable (RD high) to output float | TRHAV

3.5.1.1. REFRESH BUS CYCLES
A refresh bus cycle operates similarly to a normal read bus cycle except for the following:

e For a 16-bit data bus, address bit AO and BHE drive to a 1 (high) and the data value on
the bus is ignored.

e  For an 8-bit data bus, address bit AQ drives to a 1 (high) and RFSH is driven active. The
data value on the bus is ignored. RFSH has the same bus timing as BHE.

3-19



intgl. BUS INTERFACE UNIT

ucCs ? Ol CE
AD70 < 00.7
| 27C256
’ ‘E -
‘ OE
| Ao-14
27C256
AD15:8 < Oo.7
O| CE

NOTE: Ap AND BHE ARE NOT USED.

Figure 3.20. Read-Only Device Interface

3.5.2. WRITE BUS CYCLES

Figure 3.21 illustrates a typical write bus cycle. The bus cycle starts with the transition of ALE
high and the generation of valid status bits S2:0. The bus cycle ends when WR transitions
high (inactive), although data remains valid for one additional clock. Table 3.3 lists the two
types of write bus cycles.

Figure 3.22 illustrates a typical 16-bit interface connection to a Read/Write device. Write bus

cycles have many parameters that must be evaluated in determining the compatibility of a
memory (or I/O) device. Table 3.4 lists some critical write bus cycle parameters.

3-20




intgl. BUS INTERFACE UNIT

: ™ T T L T4 !
cLKOUT _| l I | | l | ! f L
50 \ STATUS VALID / \
el TN T
: / ADDRESS >< ' A1816=0 X
A19:16 | : VALID A19=VALID STATUS
— : . ! : : : ; :
Ats:8] VALID K

AD15:0 ADDRESS DATA
[AD7:0] VALID VALID

:

WR R
pUR /b
DEN AN R SR R A N

Figure 3.21. Typical Write Bus Cycle

Most memory and peripheral devices latch data on the rising edge of the write strobe. Address,
chip-select and data must be valid (setup) prior to rising edge of WR. TAw, Tcw and Tpw
define the minimum data setup requirements. The value calculated by their respective
equations must be greater than the device requirements. To increase the calculated value insert
wait states.

The minimum device data hold time (from WR high) is defined by TDH. The calculated value

must be greater than the minimum device requirements; however, the value can only be
changed by decreasing the clock rate.

3-21




intgl. BUS INTERFACE UNIT

Table 3.4. Write Bus Cycle Types

STATUS BITS
s2 s1 So BUS CYCLE TYPE
1 0 Write I/O - Initiated by executing IN, OUT, INS, OUTS
instructions or by the DMA Unit. A15:0 selects the desired
I/O port. A19:16 are driven to zero (see also DMA Unit).
1 1 0 Write Memory - Initiated by any of the Byte/ Word

memory instructions or the DMA Unit. A19:0 selects the
desired byte or word memory location.

LA15:1 >A0-14
RD O|0E 10 1
| <:>AD7:O
O[WE 105
- O|cst
LAO —OD:
R Tﬁ >A0-14
BHE —CQ )O
—O|0E /0 1
| <:> AD15:38
—O| WE 110 8
LCS Olcst

Figure 3.22. 16-Bit Bus Read/Write Device Interface

3-22




intel. BUS INTERFACE UNIT

Table 3.5. Write Cycle Critical Timing Parameters

MEMORY DEVICE
PARAMETER DESCRIPTION EQUATION
Twc Write cycle time 4TcLeL
TAW Address valid to end of write strobe (WR high) 3TcCLCL - TADLTCH
Tew Chip enable (LCS) to end of write strobe (WR 3TcLeL
high)
TWR Write recover time v TWHLH
Tow Data valid to write strobe (WR high) 2TcLeL
TDH Data hold from write strobe (WR high) TWHDX
Twp Write pulse width TWLWH

Twc and Twp define the minimum time (maximum frequency) a device can process write bus
cycles. TWR determines the minimum time from the end of the current write cycle to the start
of the next write cycle. All three parameters require calculated values be greater than device
requirements. The calculated TWC and TWP values increase by inserting wait states. The
calculated TWR value, however, can not be changed except by decreasing the clock rate.

3.5.3. INTERRUPT ACKNOWLEDGE BUS CYCLE

Interrupt expansion is accomplished by interfacing the Interrupt Control Unit with a peripheral
device such as the 82C59A Programmable Interrupt Controller. The BIU controls the bus
cycles required to fetch vector information from the peripheral device, and then passes the
information to the CPU. These bus cycles, collectively know as an INTA bus cycle, operate
similarly to read bus cycles. However, instead of generating RD to enable the peripheral, the
signal INTA is used. Figure 3.23 illustrates a typical Interrupt Acknowledge bus cycle.

An Interrupt Acknowledge bus cycle consists of two consecutive bus cycles. LOCK is
generated to indicate the sequential bus operation. The second bus cycle strobes vector
information only from the lower half of the bus (D7:0). In a 16-bit bus system, the upper half
of the bus floats.

Figure 3.25 shows a typical 82C59A interface example. Bus ready must be provided to
terminate both bus cycles in the interrupt acknowledge sequence.

3-23



BUS INTERFACE UNIT

intel.

T3

T2

T1

Tl

Ti

Tl

T3

™ T2

CLKOUT |

NOTE: Vector Type is read from AD7:0 only.

INTA occurs during T2 in Slave Mode

Figure 3.23. Interrupt Acknowledge Bus Cycle

3-24



intgl. BUS INTERFACE UNIT

PROCESSOR 82C50A
INTAO INTA IR0
INTO {€&—————— INT . K
RD ———>RD IR7

WR —> WR

PCSO ——>CS
LAl —>» AD

D7:0

i

Figure 3.24 Typical 82C59A Interface

3.5.3.1. SYSTEM DESIGN CONSIDERATIONS
Although ALE is generated for both bus cycles, the BIU does not drive valid address
information. Actually, all address bits except A19:16 float during the time ALE becomes

active (on both 8- and 16-bit bus devices). Address decode circuitry must be disabled for
Interrupt Acknowledge bus cycles to prevent erroneous operation.

3.54. HALTBUS CYCLE

Suspending the CPU reduces device power consumption and potentially reduces interrupt
latency time. The HLT instruction initiates two sequences:

1. Suspends the Execution Unit
2. Instructs the BIU to execute a HALT bus cycle

After executing a HALT bus cycle, the BIU suspends operation until any of the following
events occur:

3-25




intgl. BUS INTERFACE UNIT

e An interrupt is generated
e Abus HOLD is generated
e A DMA request is generated

e Arefresh request is generated

Figure 3.25 shows the operation of a HALT bus cycle. During T1, the AD bus either floats or
drives depending on the next bus cycle to be executed by the BIU. Under most instruction
sequences, the BIU floats the AD bus because the next operation would most likely be an
instruction prefetch. However, the AD bus drives either data or address information during T1
if the HALT occurs just after a bus write operation. A19:16 continues to drive the previous
bus cycle information under most instruction sequences (it drives the next prefetch address
otherwise). The BIU always operates the same way for any given instruction sequence.

The Chip-Select Unit prevents a programmed chip-select from going active during a HALT
bus cycle. However, chip-selects generated by external decoder circuits must be disabled for
HALT bus cycles.

Table 3.6 lists the state of each pin after entering the HALT bus state.

Table 3.6. HALT Bus Cycle Pin States

PIN(S) PIN STATE
AD15:0 (AD7:0 for 8-bit) " Float
A15:8 (8-bit) Drive Address
A19:16 ‘ Drive 8H or Zero
BHE (16-bit) Drive Last Value
_R__D_,___W, m,_DT R, Drive One
RFSH (8-bit), $2:0

3.5.5. TEMPORARILY EXITING THE HALT BUS STATE

A DMA request, refresh request or bus hold request cause the BIU to temporarily exit the
HALT bus state. The BIU returns to the HALT bus state after it completes the desired bus
operation. However, the BIU does not execute another bus HALT cycle (i.e., ALE and bus
cycle status are not regenerated). Figures 3.26, 3.27, and 3.28 illustrate how the BIU
temporarily exits and then returns to the HALT bus state.

3-26



intgl. BUS INTERFACE UNIT

CLKOUT N

AD15:0 ‘
(AD7.0] NOTE 1
[A15:8] NOTE 1
A19:16 , NOTE 2
BHE /
[ RFSH = 1]
NOTES:

1. The AD15:0 [AD7:0] bus can be floating, driving a previous write data value,
or driving the next instruction prefetch address value. For an 8-bit device,
A15:8 either drives the previous bus address value or the next instruction
prefetch address value.

2. The A19:16 bus either drives zero (all low) or 8H (all low except A19/S6,
which can be high if the previous bus cycle was a DMA or refresh operation).

Figure 3.25. HALT Bus Cycle

3.5.6. EXITING HALT

Any NMI or non-masked INTx interrupt forces the BIU to exit the HALT bus state. The first
bus operations to occur after exiting HALT are read cycles to reload the CS:IP registers.
Figure 3.29 shows how the HALT bus state is exited when and NMI or INTx occurs.

3-27




intgl. BUS INTERFACE UNIT

AD15:0 N I\
[AD7:0] v \_ACDR /
[A15:8] " NOTET X ADDRESS
—t
A19:16 NOTE 1 XADDR X A19=1. A18:16=0
§FI_E_: 1+ - B
RFSH \NOTE2 / \ NOTE 3

NOTE: 1. Previous bus cycle value.
2. Only occurs for BHE on the first refresh bus cycle after entering HALT.
3. BHE = 1 for 16-bit device, RFSH = 0 for 8-bit device.

Figure 3.26. Returning to HALT After a Refresh Bus Cycle

3.6. SYSTEM DESIGN ALTERNATIVES

Most system designs do not require any additional signaling requirements than those already
provided by the BIU. However, heavily loaded bus conditions, slow memory or peripheral
device performance, and off-board device interfaces may not be supported directly without
modifying the BIU interface. The following sections deal with topics to enhance or modify the
operation of the BIU.

3.6.1. BUFFERING THE DATA BUS

The BIU generates two control signals, DEN and DT[E, to control bidirectional buffers or
transceivers. The timing relationship of DEN and DT/R is shown in Figure 3.30. Conditions
requiring transceivers include:

o The capacitive load on the AD bus gets too large
o The current load on the AD bus exceeds device specifications
¢ Additional VOL and VOH drive is required

¢ A memory or I/O device can not float its outputs in time to prevent a buffer fight

3-28




intgl. BUS INTERFACE UNIT

4 T T2 T3 T4 T T2 T3 T T TI T
CLKOUT

ALE / \ / \

S2:0 \ / \ ]
AD15:0 { ADDR } (ADDRX VALID DATA )———
[AD7:0]

ADDRESS ADDRESS

G

[A15:8] NOTE

X
A19:16 NOTE XADDRX 8H XADDHX 8H

BHE NOTE X VALID X VALID
[RFSH=1]

NOTE: Drives previous bus cycle value

Figure 3.27. Returning to HALT After a DMA Bus Cycle

owour _[ L[ LI LT LI L
oo | '
HLDA /e W

[“SS%’} e -

A15:8
A19:16 ) i
CONTROL ) i

Figure 3.28. Returning to HALT After a HOLD/HLDA Bus Exchange

3-29




intgl. BUS INTERFACE UNIT

CLKOUT |__| I_l |——l |—

=" NOTE 1

NMI/INTxX '/ \
ALE [ \
5§20 |~ VALID

AD15,0. i

[AD7:0] " NOTE 2 XADDRY
[A15:8] NOTE 2 Y ApDR
A19:16 NOTE 2 YaoDRY

BHE it
SESH NOTE 2
RFSH \ X
NOTE:
1. For NMI, delay = 4 1/2 clock 2. Previous bus cycle value

For INTX, delay = 7 1/2 clocks

Figure 3.29. Exiting HALT

The circuit shown in Figure 3.31 illustrates how to use transceivers to buffer the AD bus. The
connection between the processor and the transceiver is known as the “local bus.” Connections
between the transceiver and other memory or I/O devices is known as the “buffered bus.” A
fully buffered system does not have any devices attached to the local bus. A partially buffered
system has devices on both the local and buffered buses.

DEN drives the transceiver output enable directly in a fully buffered system. A partially
buffered system requires DEN to be qualified with another signal to prevent the transceiver
from going active for local bus accesses. Figure 3.32 illustrates how to use chlp-selects to
qualify DEN.

DT/R always connects directly to the transceiver. However, an inverter may be required if the
polarity of DT/R does not match the transceiver. DT/R only goes low (0) for memory and I/O
read, instruction prefetch and interrupt acknowledge bus cycles.

3-30




BUS INTERFACE UNIT

T T2 T3 T4 m
CLKOUT _| | | | | | L
D, WR \ /
DT/ R _/ \ /
oeN R \ [
— -~ WRITE CYCLE OPERATION

— READ CYCLE OPERATION

Figure 3.30. DEN and DT/R Timing Relationship

ALE >
A19:16 )
LATCH
K AD15:0 X ADDRESS BUS
PROCESSOR
) ADDR
> MEMORY
< > OR
DEN XCVR DATABUS )DATA A CSi-

— > DEVICE

DT/R >
N\ -’ V/
Y
CPU LOCAL BUS BUFFERED BUS

Figure 3.31. Buffered AD Bus System

3-31




intgl. BUS INTERFACE UNIT

AD15:8 8 > A
DEN L 8 \
> T
BUFFER
BUFFERED
8 DATA
AD7:0 > A BUS
> OE B %D?:O
DT/R > T ),
BUFFER
> LOCAL
8 > DATA BUS

Figure 3.32. Qualifying DEN with Chip-Selects

3.6.2. SOFTWARE SYNCHRONIZATION

The execution sequence of a program and hardware events occurring within a system are often
asynchronous to each other. In some systems there may be a requirement to suspend program
execution until an event (or events) occurs, and the program execution continues.

One way to synchronize software execution with hardware events requires the use of
interrupts. Executing a HALT instruction suspends program execution until an unmasked
interrupt occurs. However, there is a delay associated with servicing the interrupt before
program execution can once again proceed. Using the WAIT instruction removes the delay
associated with servicing interrupts.

The WAIT instruction suspends program execution until one of two events occurs: an
interrupt is generated, or the TEST input pin is sampled low. Unlike interrupts, the TEST
input pin does not require program execution to be transferred to a new location (i.e., an
interrupt routine is not executed). In processing the WAIT instruction, as long as TEST
remains high program execution remains suspended (at least until an interrupt occurs). When
TEST is sampled low, program execution resumes.

3-32




intgl. BUS INTERFACE UNIT

The TEST input and WAIT instruction provide a mechanism to delay program execution until
a hardware event occurs, without having to absorb the delay associated with servicing an
interrupt.

3.6.3. LOCKED BUS OPERATION

To address the problems of controlling accesses to shared resources, the BIU provides a
hardware LOCK output. The execution of a LOCK prefix instruction activates the LOCK
output.

LOCK goes active in phase 1 of T1 of the first bus cycle following execution of the LOCK
prefix instruction. It remains active until phase 1 of T1 of the first bus cycle following the
execution of the instruction following the LOCK prefix. To provide bus access control in
multiprocessor systems, the LOCK signal should be incorporated into the system bus
arbitration logic resident to the CPU.

During normal multiprocessor system operation, priority of the shared system bus is
determined by the arbitration circuits on a cycle by cycle basis. As each CPU requires a
transfer over the system bus, it requests access to the bus via its resident bus arbitration logic.
When the CPU gains priority (determined by the system bus arbitration scheme and any
associated logic), it takes control of the bus, performs its bus cycle and either maintains bus
control, voluntarily releases the bus or is forced off the bus by the loss of priority.

The lock mechanism prevents the CPU from losing bus control (either voluntarily or by force)
and guarantees that the CPU can execute multiple bus cycles without intervention and possible
corruption of the data by another CPU. A classic use of the mechanism is the “TEST and SET
semaphore” during which a CPU must read from a shared memory location and return data to
the location without allowing another CPU to reference the same location during the test and
set operations.

Another application of LOCK for multiprocessor systems consists of a locked block move
which allows high speed message transfer from one CPU’s message buffer to another.

During the locked instruction (i.e., while LOCK is active), a bus hold, DMA or refresh request
are recorded but not acknowledged until completion of the locked instruction. However,
LOCK has no affect on interrupts. As an example, a locked HALT instruction causes bus hold,
DMA or refresh bus requests to be ignored, but still allows the CPU to exit the HALT state on
an interrupt.

In general, prefix bytes (like LOCK) are considered extensions of the instructions they
preceded. Interrupts, DMA requests and refresh requests that occur during execution of prefix
are not acknowledged until completion of the instruction following the prefix (except for
instructions which are servicing interrupts during their execution, (i.e., HALT, WAIT and
repeated string primitive). Note that multiple prefix bytes may precede an instruction.

Another example is a “string primitive” preceded by the repetition prefix (REP) which is
interruptible after each execution of the string primitive, even if the REP prefix is combined

3-33



intgl. BUS INTERFACE UNIT

with the LOCK prefix. This prevents interrupts from being locked out during a block move or
other repeated string operations. However, bus hold, DMA and refresh requests remain locked
out until LOCK is removed (either by completing the block operation or after an interrupt
occurs).

3.6.4. QUEUE STATUS OPERATION

The queue status indicates what information is being removed from the internal queue and
Execution Unit can remove information from the queue on any clock boundary, the queue
status pins can change state on every phase 1 clock edge (see Figure 3.33). The queue status
signals can not be related to any specific T-state, although for a given sequence of instructions
the relationship between the operation of the BIU and the sequence of queue status
information always remains the same.

CLKOUT 9 ) \ C_—\
Qs0, @St S o Y >

Figure 3.33.'Queue Status Timing

The queue status signals QSO and QS1 become alternate functions of the ALE and WR
signals, respectively. To enable QSO and QS1, the RD signal pin must be directly shorted to
ground. RD, WR and ALE are no longer available for use by the system and must be
generated by external hardware. A device like the 82C88 or a programmable logic device can
recreate the function of RD, WR and ALE. Table 3.7 shows the encoding of the QS0 and QS1
signals.

Table 3.7. Queue Status Bit Encoding

Qs1 Qs2 DEFINITION
0 No queue operation occurred
0 1 First byte of a new instruction has been taken from the queue.
1 0 The queue was reinitialized. Signals the flush of all prefetch information. BIU must

begin prefetching new queue information.

1 1 Subsequent byte of instruction taken from queue. The current instruction contains
multiple opcode bytes or immediate data.

Queue status mode is required in older generation devices for the purposes of interfacing with
an 8087 Math Coprocessor. However, the 8087 Math Coprocessor has been replaced by the

3-34




intgl. BUS INTERFACE UNIT

80187 Math Coprocessor, which has an I/O port interface similar to a peripheral device. This
new interface no longer requires queue status mode.

3.7. MULTI-MASTER BUS SYSTEM DESIGNS

The BIU supports protocols for transferring control of the local bus between itself and other
devices capable of acting as bus masters. To support such a protocol, the BIU uses a hold
request input (HOLD) and a hold acknowledge output (HLDA) as bus transfer handshake
signals. To gain control of the bus, a device asserts the HOLD input, and then waits until the
HLDA output goes active before driving the bus. After HLDA has gone active, the requesting
device can take control of the local bus and remains in control of the bus until HOLD is
removed.

3.7.1. ENTERING BUS HOLD

In responding to the hold request input, the BIU floats the entire address and data bus, and
many of the control signals. Table 3.8 lists the state of the BIU pins when HLDA is asserted.
Figure 3.35 illustrates the timing sequence when acknowledging the hold request. Of those
device pins not mentioned in Table 3.8 or shown in Figure 3.35, all other pins either remain
active (e.g., CLKOUT and TMR OUTY1) or remain in their inactive state (e.g., UCS and INTA
). Refer to the data sheet for specific details of pin functioning during a bus hold.

Table 3.8. Signal Condition Entering HOLD

SIGNAL HOLD CONDITION
A19:16, S2:0, RD, WR, DT/R, BHE, RFSH, DT/R, These signals float one half clock before HLDA
LOCK is generated (i.e., phase 2).
AD15:0 (16-bit), AD7:0 (8-bit), A15:8 (8-bit), DEN These signals float the same clock HLDA is
generated (i.e., phase 1).

3.7.1.1. HOLD BUS LATENCY

The duration of time between the assertion of HOLD by the external device and the assertion
of HLDA by the BIU is known as bus latency. In Figure 3.34, the two clock delay between
HOLD and HLDA represents the shortest bus latency. Normally this only occurs if the bus is
idle, halted or the bus hold request occurs just prior to the BIU beginning another bus cycle.

3-35



intgl. BUS INTERFACE UNIT

CLKOUT C§ <F /ﬁz@ B

AD15:0

e \ \5\ FLOAT
A19:16, \

ﬁ, W@—Bﬂg % ’ FLOAT
DT/ R, S2:0
LOCK

NOTES:
1. TyycL : HOLD input to clock low

2. Tcycz : Clock high to output float
3. ToLaz  : Clock low to output float
4. Ternay : Clock low to HLDA high

Figure 3.34. Timing Sequence Entering HOLD

The major factors that influence bus latency are listed below (in order of longest delay to

shortest delay).

1. Bus Not Ready — As long as the bus remains not ready a bus hold request can not be
serviced.

2. Locked Bus Cycle — As long as LOCK remains asserted a bus hold request can not be
serviced. Performing a locked move string operation can take several thousands of clocks.

3. Completion of Current Bus Cycle — A bus hold request is not serviced until the current
bus cycle completes. A bus hold request will not separate bus cycles required to move odd
aligned word data. Also, bus cycles with long wait states will delay the servicing of a bus
hold request.

4. Interrupt Acknowledge Bus Cycle — A bus hold request is not serviced until after an
INTA bus cycle has completed. An INTA bus cycle drives LOCK active.

5. DMA and Refresh Bus Cycles — A bus hold request is not serviced until after the DMA

request or refresh bus cycle has completed. Refresh bus cycles have a higher priority than
hold bus requests. A bus hold request can not separate the bus cycles associated with a
DMA transfer (worst case is an odd aligned transfer, which takes four bus cycles to
complete).

3-36




intgl. BUS INTERFACE UNIT

3.7.1.2. REFRESH OPERATION DURING A BUS HOLD

Under normal operating conditions, once HDLA has been asserted it remains asserted until
HOLD is removed. However, when a refresh bus request is generated, the HLDA output is
removed (driven low) to signal the need for the BIU to regain control of the local bus. The
BIU does not gain control of the bus until HOLD is removed. This procedure prevents the BIU
from just arbitrarily regaining control of the bus.

Figure 3.35 shows the timing associated with the occurrence of refresh request while HLDA is
active. Note that HLDA can be as short as one clock in duration. This happens when a refresh
request occurs just after HLDA is granted. A refresh request has higher priority than a bus
hold request, so when both occur simultaneously the refresh request occurs before HLDA
becomes active.

CLKOUT

HOLD

HLDA

AD15:0
DEN

A19:16
RD, WR, BHE
DT/R, S2:0
LOCK
NOTES:

HLDA deasserted, signaling need to run refresh bus cycle
. External bus master terminates use of the bus.

HOLD deasserted.

HOLD may be reasserted after one clock.

. BIU runs refresh bus cycle

s

Figure 3.35. Refresh Request During Bus Hold

The device requesting a bus hold must be able to detect a one clock wide HLDA pulse. A bus
lockup (hang) condition may result because the requesting device did not detect the short
‘HLDA pulse and continues to wait for HLDA to be asserted, while the BIU waits for HOLD
to be deasserted. The circuit shown in Figure 3.36 can be used to latch HLDA.

3-37




intgl. BUS INTERFACE UNIT

+5 PRE

Lo o

LATCHED HLDA

HLDA

CLR

RESOUT
HOLD

Figure 3.36. Latching HLDA

The removal of HOLD must be detected for at least one clock cycle to allow the BIU to regain
the bus and execute a refresh bus cycle. The BIU will release the bus and generate HLDA
should HOLD go active prior to completing the refresh bus cycle.

3.7.2. EXITING HOLD

Figure 3.38 shows the timing associated with exiting the bus hold state. Normally a bus
operation (e.g., instruction prefetch) occurs just after HOLD is released. However, if no bus
cycle is pending when leaving a bus hold state, the bus and associated control signals remain
floating.

3.8. BUS CYCLE PRIORITIES

The BIU arbitrates requests for bus cycles from the Execution Unit, the integrated peripherals
(e.g., DMA Unit) and external bus masters (i.e., bus hold requests). The list below summarizes
the priority for all bus cycle requests (from highest to lowest).

1. Instruction execution reads or writes following a non-pipelined effective address
calculation. -

Refresh bus cycles.
Bus hold request.
Single step interrupt vectoring sequence.

Non-Maskable interrupt vectoring sequence.

SR

Internal error (e.g., divide error, overflow) interrupt vectoring sequence.

3-38




intgl. BUS INTERFACE UNIT

10.

11.

Hardware (e.g., INTO, DMA) interrupt vectoring sequence.
80C187 Math Coprocessor error interrupt vectoring sequence.
DMA bus cycles.

General instruction execution. This category includes read and write operations
following a pipelined effective address calculation, vectoring sequences for software
interrupts and numerics code execution. The following points apply to sequences of
related execution cycles:

e The second read/write cycle of an odd addressed word operation is inseparable
from the first bus cycle.

e The second read/write cycle of an instruction with both load and store accesses
(e.g., EXCHG) may be separated from the first cycle by other bus cycles.

e Successive bus cycles of string instructions (e.g., MOVS) may be separated by
other bus cycles.

e  When a locked instruction begins, its associated bus cycles become the highest
priority and can not be separated (or preempted) until completed.

Bus cycles necessary to fill the prefetch queue.

3-39



intgl. BUS INTERFACE UNIT

CLKOUT g (?\ 8?\
HOLD ; ® / ® D /@9
- / / |
HLDA L7

AD15:0 / \5/—‘

DEN \
RD, WR, BHE

D) R! 4
DT/R, S2:0
A19:16
LOCK
NOTES: 1. TyycL : HOLD recognition setup to clock low
2. : HOLD internally synchronized
3. TC'_I_I AV - Clock low to HLDA low
4. TCHCV : Clock high to signal active (high or low)
5. TCLAV : Clock low to signal active (high or low)

Figure 3.37. Exiting HOLD

3-40




Peripheral Control Block







CHAPTER 4
PERIPHERAL CONTROL BLOCK

All integrated peripherals are controlled by sets of registers within an integrated Peripheral
Control Block (PCB). These registers are physically located in the peripheral devices they
control, but they are addressed as a single block of registers. The Peripheral Control Block
encompasses 256 contiguous bytes. The control block can be located on any 256 byte
boundary of memory or I/O space. Table 4.1 shows a map of these registers. Unused locations
are reserved.

4.1. SETTING THE BASE LOCATION

The Peripheral Control Block contains the Peripheral Control Block Relocation Register, in
addition to control registers for each integrated peripheral device. The Relocation Register
allows the Peripheral Control Block to be relocated to any 256 byte boundary within memory
or I/O space, depending on the state of the Memory I/O (MEM) bit and R19:8. Figure 4.1
shows the layout of the Relocation Register.

The Relocation Register is located at a fixed offset within the Peripheral Control Block. If the
Peripheral Control Block is moved, the Relocation Register will also move.

The Peripheral Control Block Relocation Register contains the Escape Trap (ET) bit. When
set, this bit forces the processor to trap whenever an ESC (coprocessor) instruction is
encountered.

The Relocation Register also contains the Slave Master (SL) bit. This bit controls the function
of the Interrupt Control Unit. See Chapter 8 for further explanation of this bit.

The Relocation Register contains the value 0OFFH upon RESET. This means the Peripheral
Control Block will be located at the top of I/O space (OFFOOH to OFFFFH).

As an example, to relocate the Peripheral Control Block to the memory range 10000-100FFH,
the user would program the Relocation Register with the value 1100H. Since the Relocation
Register is part of the Peripheral Control Block, it relocates to word 10000H plus its fixed
offset.

All communication between integrated peripherals and the Modular CPU Core occurs over a
special bus called the F-Bus. The F-Bus always carries 16 bit data.



PERIPHERAL CONTROL BLOCK

Table 4.1. Peripheral Control Block Register

PCB Function PCB Function PCB Function PCB Function
Offset Offset Offset Offset

00H Reserved 40H Reserved 80H Reserved COH DOSRCL
02H Reserved 42H Reserved 82H Reserved C2H DOSRCH
04H Reserved 44H Reserved 84H Reserved C4H DODSTL
06H Reserved 46H Reserved 86H Reserved C6H DODSTH
08H Reserved 48H Reserved 88H Reserved C8H DOTC
0AH Reserved 4AH Reserved 8AH Reserved CAH DOCON
0CH Reserved 4CH Reserved 8CH Reserved CCH Reserved
OEH Reserved 4EH Reserved 8EH Reserved CEH Reserved
10H Reserved 50H TOCNT 90H Reserved DOH D1SRCL
12H Reserved 52H TOCMPA 92H Reserved D2H D1SRCH
14H Reserved 54H TOCMPB 94H Reserved D4H D1DSTL
16H Reserved 56H TOCON 96H Reserved D6H D1DSTH
18H Reserved 58H T1CNT 98H Reserved D8H D1TC
1AH Reserved 5AH T1CMPA 9AH Reserved DAH D1CON
1CH Reserved - 5CH T1CMPB 9CH Reserved DCH Reserved
1EH Reserved 5EH T1CON 9EH Reserved DEH Reserved
20H Reserved 60H T2CNT AOH UMCS EOH RFBASE
22H EOI 62H T2CMPA A2H LMCS E2H RFTIME
24H POLL 64H Reserved A4H PACS E4H RFCON
26H POLLSTS 66H T2CON A6H MMCS E6H RFADDR
28H IMASK 68H Reserved A8H MPCS E8H Reserved
2AH PRIMSK 6AH Reserved AAH Reserved EAH Reserved
2CH INSERV 6CH Reserved ACH Reserved ECH Reserved
2EH REQST 6EH Reserved AEH Reserved EEH Reserved
30H INTSTS 70H Reserved BOH Reserved FOH PWRSAV
32H TCUCON 72H Reserved B2H Reserved F2H PWRCON
34H DMAOCON 74H Reserved B4H Reserved F4H Reserved
36H DMA1CON 76H Reserved B6H Reserved F6H STEPID
38H I0CON 78H Reserved B8H Reserved F8H Reserved
3AH 11CON 7AH Reserved BAH Reserved FAH Reserved
3CH 12CON 7CH Reserved BCH Reserved FCH Reserved
3EH I3CON 7EH Reserved BEH Reserved FEH RELREG

4-2




intgl.

PERIPHERAL CONTROL BLOCK

Whenever mapping the Peripheral Control Block to another location, the user should
program the Relocation Register with a byte write (i.e., OUT DX, AL). Accesses to the
Peripheral Control Block, like all integrated peripherals, are always done 16 bits at a time.
Internally, the Relocation Register is written with 16 bits of the AX register while externally
the Bus Interface Unit runs a single 8-bit bus cycle. If a word instruction is used with an
80C188 Modular Core family member (i.e., OUT DX, AX), the Relocation Register is written
on the first bus cycle. The Bus Interface Unit then runs an unnecessary second bus cycle. The
address of the second bus cycle will no longer be within the control block (the Peripheral
Control Block was moved on the first cycle). Generation of external READY is now needed
to complete the cycle. For this reason, we recommend byte operations for the Relocation
Register. Byte instructions should also be used for the other registers in the Peripheral Control
Block of an 80C188 Modular Core family member. This requires half of the bus cycles of
word operations. Byte operations are only valid for even addressed writes to the Peripheral
Control Block. A word read (i.e., IN AX, DX) must be performed to read a 16-bit Peripheral
Control Block register.

Register Name:
Register Mnemonic:
Register Function:

PCB Relocation Register
RELREG
Relocates the PCB within memory or I/O space.

15 0

E R|I|R|R|R RI|R|R|R R{R|[R]|R

T 111 [1]1 11711 1]1]119]8

8176 514]13]2 1
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION

ET Escape Trap 0 If set, the CPU will trap when an ESC instruction
is executed.

SL Slave Master 0 If set, the Interrupt Control Unit operates in slave
mode. If clear, the Interrupt Control Unit
operates in master mode.

MEM Memory I/O 0 If set, the PCB is located in memory space. If
clear, the PCB is located in I/O space.
R19:8 PCB Base 1 R19:8 define the upper address bits of the PCB
Address base address. All lower bits are zero. R19:16 are
Upper Bits ignored when the PCB is mapped to I/O space.

NOTE: Reserved register bits are shown with grey shading. Reserved register bits must
be written with a logic zero value to maintain compatibility with future Intel products.

Figure 4.1. PCB Relocation Register

43




intgl. PERIPHERAL CONTROL BLOCK

4.2. PERIPHERAL CONTROL BLOCK REGISTERS

Each of the integrated peripherals’ control and status registers is located at a fixed offset

above the programmed base location of the Peripheral Control Block. Many locations within

the Peripheral Control lock are not assigned to any peripheral. If a write is made to these

locations, a bus cycle will occur, but data will not be stored. If a subsequent read is made to

the same location, the value written will not be read back. Unused Peripheral Control Block
locations are reserved.

The processor will run an external bus cycle for any memory or I/O cycle accessing a location
within the Peripheral Control Block. Address, data and control information will be driven on
the external pins as with an ordinary bus cycle. Information returned by an external device
will be ignored, even if the access does not correspond to the location of an integrated
peripheral control register. This is also true for the 80C188 Modular Core family, except word
accesses made to integrated registers will be performed in two bus cycles.

The processor generates an internal READY signal whenever an integrated peripheral is
accessed. External READY is ignored. READY will also be generated if an access is made to
the Peripheral Control Block not corresponding to an integrated peripheral control register.
The processor will not insert wait states for any access to the integrated Peripheral Control
Block. The exceptions to this are accesses to timer registers. Accesses to timer control and
counting registers insert one wait state. This is required to properly multiplex processor and
counter element accesses to the timer control registers.

The F-Bus does not function identically to the external data bus for byte and word accesses.
All write transfers on the F-Bus occur as words, regardless of how they are encoded. For
example, the instruction OUT DX, AL (DX is even) will write the entire AX register to the
Peripheral Control Block register at location [DX]. If DX were an odd location, AL would be
placed in [DX] and AH would be placed at [DX-1]. A word operation to an odd address
would write [DX] and [DX-1] with AL and AH, respectively. This differs from normal
external bus operation where unaligned word writes cause the modification of [DX] and
[DX+1]. In summary, do not use odd aligned byte or word writes to the PCB.

Aligned word reads work normally. Unaligned word reads do not work normally. For
example, IN AX, DX (DX is odd) will transfer [DX] into AL and [DX-1] into AH. Byte reads
from even or odd addresses work normally, but only a byte will be read. For example, IN AL,
DX will not transfer [DX] into AX (only AL is modified).

4-4



lnteL PERIPHERAL CONTROL BLOCK

No problems will arise if the following recommendations are adhered to. For the 80C186
Modular Core:

Word reads: Access only even aligned words with IN AX, DX or MOV <word
register>, <even PCB address>.

Byte reads: Work normally. Beware of reading word-wide PCB registers that may
change value between successive reads (i.e., timer count value).

Word writes: Always write even aligned words. Writing an odd aligned word will
give unexpected results. Use either OUT DX, AX or OUT DX, AL (or MOV <even
PCB address>, <word register>).

Byte writes: Do not perform unaligned byte writes. Even aligned byte writes will
modify the entire word PCB location.

For the 80C188 Modular Core:

Word reads: Access only even aligned words with IN AX, DX or MOV <word
register>, <even PCB address>.

Byte reads: Work normally. Beware of reading word-wide PCB registers that may
change value between successive reads (i.e., timer count value).

Word writes: Always write even aligned words. Writing an odd aligned word will
give unexpected results. Use OUT DX, AL or MOV <even aligned byte PCB
address>, <byte register low byte>. Using OUT DX, AX will perform an
unnecessary bus cycle.

Byte writes: Do not perform unaligned byte writes. Even aligned byte writes will
modify the entire word PCB location.

4.3. RESERVED LOCATIONS AND THE NUMERICS INTERFACE

Locations within the Peripheral Control Block not explicitly used are reserved. Reading from
these locations yields an undefined result. If reserved registers are written, for example during
a block MOV instruction, they must be set to OH. Failure to follow this guideline could
result in incompatibilities with future 80C186 Modular Core family products.

Systems using the 80C187 Numeric Processor Extension must not relocate the Peripheral
Control Block to location OH in I/O space. The 80C187 interface uses I/O locations OF8H
through OFFH. If the Peripheral Control Block were relocated to these locations, the processor
would be communicating with the Peripheral Control Block, not the 80C187 interface
circuitry. This will cause indeterminate system operation if a numerics instruction is
encountered when the Escape Trap bit is clear.

4-5






Clock Generation and
Power Management







CHAPTER 5
CLOCK GENERATION AND POWER MANAGEMENT

The clock generation and distribution circuits provide uniform clock signals for the Execution
Unit, the Bus Interface Unit and all integrated peripherals. 80C186 Modular Core Family
processors have additional logic which controls the clock signals to provide power
management functions.

5.1. CLOCK GENERATION

The clock generation circuit includes a crystal oscillator, a divide-by-two counter and power-
save and reset circuitry (see Figure 5.1).

SCHMITT TRIGGER
"SQUARES-UP" CLKIN OWERSAVE

Xi

+2 | CLOCK PHASE »&bl INTERNAL

CLOCK | |DIVIDER DRIVERS | s [ PHASE
TO
> CLKOUT
x2
RESET CIRCUITRY > g“gg;TNAL

RES

Figure 5.1. Clock Generator

5.1.1. CRYSTAL OSCILLATOR

The internal oscillator is a parallel resonant Pierce oscillator, a specific form of the common
phase shift oscillator.

5.1.1.1. OSCILLATOR OPERATION

A phase shift oscillator operates through positive feedback, where a non-inverted, amplified
version of the input connects back to the input. A 360 degree phase shift around the loop will




'"te|® CLOCK GENERATION AND POWER MANAGEMENT

sustain the feedback in the oscillator. The on-chip inverter provides a 180 degree phase shift.
The combination of the inverter’s output impedance and the first load capacitor (see Figure
5.2) provides another 90 degree phase shift. At resonance, the crystal becomes primarily
resistive. The combination of the crystal and the second load capacitor provides the final 90
degree phase shift. Above and below resonance the crystal is reactive and forces the oscillator
back toward the crystal’s nominal frequency.

Zo = INVERTER OUTPUT 7

==
~ -\ N ~ i
90° 90° 180°

NOTE: At resonance, the crystal is essential resistive.
Above resonance, the crystal is inductive.
Below resonance, the crystal is capacitive.

Figure 5.2. Ideal Operation of Pierce Oscillator

Figure 5.3 shows the actual microprocessor crystal connections. For low frequencies, crystal
vendors offer fundamental mode crystals. At higher frequencies, a third overtone crystal is the
only choice. The external capacitors, Cx; at X1 and Cx, at X2, together with stray capacitance,
form the load. A third overtone crystal requires an additional inductor L, and capacitor C; to
select the third overtone frequency and reject the fundamental frequency. Section 5.1.1.2
discusses crystal vibration modes in more detail.

Choose C; and L; component values in the third overtone crystal circuit to satisfy the
following conditions:

o The LC components form an equivalent series resonant circuit at a frequency below the
fundamental frequency. This criteria makes the circuit inductive at the fundamental
frequency. The inductive circuit cannot make the 90 degree phase shift and oscillations do
not take place.

o The LC components form an equivalent parallel resonant circuit at a frequency about
halfway between the fundamental frequency and the third overtone frequency. This
criteria makes the circuit capacitive at the third overtone frequency, necessary for
oscillation.

e The LC components form an equivalent parallel resonant circuit at a frequency about
halfway between the fundamental frequency and the third overtone frequency. This

5-2




Intel‘?' CLOCK GENERATION AND POWER MANAGEMENT

criteria makes the circuit capacitive at the third overtone frequency, necessary for
oscillation.

e The two capacitors and inductor at OSCOUT, blus some stray capacitance, approximately
equal the 20 pF load capacitor, Cx,, used alone in the fundamental mode circuit.

(a) (b) (c)

Fundamental Third Overtone Third Overtone
Mode Circuit Mode Circuit Mode
(Equivalent Circuit)

X1 D—ﬂ X1

| g"“ DE% X |
0 Vgl z

c L e L, !
—Vr X2 Cyo— L, LUx2 1

- o
C 1=CX2=20pF R A

X
Cq =200 pF
L, =(See Text)

Figure 5.3. Crystal Connections to Microprocessor

2
1 0" Cy Cy,L,-C, - Cxy
fze—— Ceq =

an’VL ¢ 0?c,L,- 1

(a) Series or Parallel (b) Equivalent Capacitance
Resonant Frequency

Figure 5.4. Equations for Crystal Calculations

Choosing C; as 200 pF (at least 10X the load capacitor) simplifies the circuit analysis. At the -
series resonance, the capacitance connected to L; is 200 pF in series with 20 pF. The
equivalent capacitance is still about 20 pF and the equation in Figure 5.4(a) yields the series
resonant frequency.

5-3



Inte|® CLOCK GENERATION AND POWER MANAGEMENT

To examine the parallel resonant frequency, refer to Figure 5.3(c), an equivalent circuit to
Figure 5.3(b). The capacitance connected to L, is 200 pF in parallel with 20 pF. The
equivalent capacitance is still about 200 pF (within 10 percent) and the equation in Figure
5.4(a) now yields the parallel resonant frequency.

The equation in Figure 5.4(b) yields the equivalent capacitance C,, at the operation frequency.
The desired operation frequency is the third overtone frequency marked on the crystal.
Optimizing equations for the above three criteria yields Table 5.1. This table shows suggested
standard inductor values for various processor frequencies. The equivalent capacitance is
about 15 pF.

Table 5.1. Suggested Values for Inductor L,
in Third Overtone Oscillator Circuit

feLkour f3or. L,
(MHz) (MHz) (uH)
10 20 10.0, 12.0, 15.0
12.5 25 6.8, 8.2, 10.0
16 32 3.9,4.7,5.6
20 40 2.2,2.7,3.3

5.1.1.2. SELECTING CRYSTALS

When specifying crystals, consider these parameters:

Resonance and Load Capacitance — Crystals carry a parallel or series resonance
specification. The two types do not differ in construction, just in test conditions and
expected circuit application. Parallel resonant crystals carry a test load specification, with
typical load capacitance values of 15, 18 or22 pF. Series resonant crystals do not carry a
load capacitance specification. You may use a series resonant crystal with the
microprocessor even though the circuit is parallel resonant. However, it will vibrate at a
frequency slightly (on the order of 0.1%) higher than its calibration frequency.

Vibration Mode — The vibration mode is either fundamental or third overtone. Crystal
thickness varies inversely with frequency. Vendors furnish third or higher overtone
crystals to avoid manufacturing very thin, fragile quartz crystal elements. At a given
frequency, an overtone crystal is thicker and more rugged than its fundamental mode
counterpart. Below 20 MHz, most crystals are fundamental mode. In the 20 to 32 MHz
range, you can purchase both modes. Above 32 MHz, vendors usually offer a third
overtone component. You must know the vibrational mode to know whether to add the
LC circuit at X2.

5-4



lnteL CLOCK GENERATION AND POWER MANAGEMENT

e Equivalent Series Resistance (ESR) — ESR is proportional to crystal thickness, inversely
proportional to frequency. A lower value gives a faster startup time, but the specification
is usually not important in microprocessor applications.

e Shunt Capacitance — A lower value reduces ESR, but typical values such as 7 pF will
work fine.

e Drive Level — Specifies the maximum power dissipation for which the manufacturer
calibrated the crystal. It is proportional to ESR, frequency, load and Vcc. Disregard this
specification unless you use a third overtone crystal, whose ESR and frequency will be
relatively high. Several crystal manufacturers stock a standard microprocessor crystal line.
Specifying a “microprocessor grade” crystal should ensure the rated drive level is a
couple of milliwatts with 5-Volt operation.

e Temperature Range — Specifies an operating range over which the frequency will not
vary beyond a stated limit. Specify the temperature range to match the microprocessor
temperature range.

e Tolerance — The allowable frequency deviation at a particular calibration temperature,
usually 25 degrees C. Quartz crystals are more accurate than microprocessor applications
call for; do not pay for a tighter specification than you need. Vendors quote frequency
tolerance in percent or parts per million (ppm). Standard microprocessor crystals typically
have a frequency tolerance of 0.01% (100 ppm). If you use these crystals, you can usually
disregard all the other specifications; these crystals are ideal for the 80C186 Modular Core
family.

An important consideration when using crystals is that the oscillator start correctly over the
voltage and temperature ranges expected in operation. Observe oscillator startup in the
laboratory. Varying the load capacitors (within about + 50 percent) can optimize startup
characteristics versus stability. In your experiments, consider stray capacitance and scope
loading effects.

For help in selecting external oscillator components for unusual circumstances, count on the
crystal manufacturer as your best resource. Using low cost ceramic resonators in place of
crystals is possible if your application will tolerate less precise frequencies.

5.1.2. USING AN EXTERNAL OSCILLATOR

The microprocessor’s on-board clock oscillator allows the use of a relatively low cost crystal.
However, the designer may also use a “canned oscillator” or other external frequency source.
Connect the external frequency input (EFI) signal directly to the oscillator X1 input. Leave X2
unconnected. This oscillator input drives the internal divide-by-two counter directly,
generating the CPU clock signals. The external frequency input can have practically any duty
cycle, provided it meets the minimum high and low times as stated in the data sheet. Selecting
an external clock oscillator is more straightforward than selecting a crystal.

5-5



intgl. CLOCK GENERATION AND POWER MANAGEMENT

5.1.3. OUTPUT FROM THE CLOCK GENERATOR

The crystal oscillator output drives a divide-by-two circuit, generating a 50 percent duty cycle
clock for the processor’s integrated components. All processor timings refer to this clock,
available externally at the CLKOUT pin. CLKOUT changes state on the high-to-low transition
of the X1 signal, even during reset and bus hold. CLKOUT is also available during Idle Mode
but not during Powerdown Mode (see Sections 5.2.2 and 5.2.3).

In a CMOS circuit, significant current only flows during logic level transitions. Since the
microprocessor consists mostly of clocked circuitry, the clock d1str1but10n is the basis of
power management.

5.1.4. RESET AND CLOCK SYNCHRONIZATION

The clock generator provides a system reset signal (RESET). The RES input generates
RESOUT and the clock generator synchronizes it to the CLKOUT signal.

A Schmitt trigger in the RES input ensures that the switch point for a low-to-high transition is
greater than the switch point for a high-to-low transition. The processor must remain in reset a
minimum of four CLKOUT cycles after Vcc and CLKOUT stabilize. The hysteresis allows a
simple RC circuit to drive the RES input (see Figure 5.5). Typical applications can use about
100 ms. as an RC time constant.

Reset may be either cold (power-up) or warm. Figure 5.6 illustrates a cold reset. Assert the
RES input during power supply and oscillator startup. The processor’s pins assume their reset
pin states a maximum of 28 X1 periods after X1 and Vcc stabilize. Assert RES four additional
X1 periods after the device pins assume their reset states.

t
=V ( 1 -eF'C)
50 K TYP. c(t)

RESET IN . OL=

Figure 5.5. Simple RC Circuit for Powerup Reset

5-6




lnte|® CLOCK GENERATION AND POWER MANAGEMENT

Applying RES when the device is running constitutes a warm reset (see Figure 5.7). In this
case, assert RES at least 4 CLKOUT periods. The device pins will assume their reset states on
the second falling X1 edge following the assertion of RES.

RES

|
l
|
|
l
|
l
)
|
[
|
l
|
l
i

RESET )

T
Ve AND X1 STABLE TO RES HIGH, RES HIGH TO FIRST BUS ACTIVITY,
APPROXIMATELY 32 CLKIN PERIODS. 7 CLKOUT PERIODS.
NOTE:
CLKOUT synchronization occurs approximately
1 - 1/2 CLKIN periods after RES is sampled low.

Figure 5.6. Cold Reset Waveform

5-7




Inte|® CLOCK GENERATION AND POWER MANAGEMENT

The falling RES edge generates an internal RESYNC pulse (Figure 5.8) resynchronizing the
divide-by-two internal phase clock. The clock generator samples RES on the falling X1 edge.
If RES is sampled high while CLKOUT is high, the processor forces CLKOUT high for the
next two X1 cycles. The clock essentially “skips a beat” to synchronize the internal phases. If
RES is sampled high while CLKOUT is low, CLKOUT is already in phase.

|
mmmmwumw

B

=

el---4----}---

|
|
|
|
|
|
l
|
|
|
[
|
|
|

[ |/

] |
] |
RN l
. |
] I
EREEEE.
T T T 1T
EREN !
ERERREE
IR |
IR |
N |
] !
T O O O
| O
] |
I |

e

1

I\

|
||
|
|
|
||
|
||
7| |
|
||
1
|
|
-
|

RESET

1 \_l.t_l_l_
MINIMUM RES RES HIGH TO FIRST
LOW TIME 4 BUS ACTIVITY 7 CLKOUT
CLKOUT PERIODS PERIODS

Figure 5.7. Warm Reset Waveform

5-8




lnte|® CLOCK GENERATION AND POWER MANAGEMENT

At the second falling CLKOUT edge after sampling RES inactive, the processor deasserts
RESOUT. Bus activity starts 6-1/2 CLKOUT periods after recognition of RES in the logic
high state. If an alternate bus master asserts HOLD during reset, the processor will
immediately assert HLDA and will not prefetch instructions.

X1

RES O©

RESYNC
(INTERNAL)

CLKOUT

RESOUT

NOTES: 1. Setup of RES to falling CLKIN.

RESYNC pulse generated.

RESYNC pulse drives CLKOUT high, resynchronizing the clock generator.
RESOUT goes active.

RES allowed to go inactive after minimum 4 CLKOUT cycles.

RESOUT goes inactive 1-1/2 CLKOUT cycles after RES sampled inactive.

oo s DN

Figure 5.8. Clock Synchronization at Reset

5.2. POWER MANAGEMENT

Many VLSI devices available today use dynamic circuitry. A dynamic circuit uses a capacitor
(usually parasitic gate or diffusion capacitance) to store information. The stored charge decays
over time due to leakage currents in the silicon. If the device does not use the stored
information before it decays, the state of the entire device may be lost. Circuits must
periodically refresh dynamic RAMs, for example, to ensure data retention. Any
microprocessor which has a minimum clock frequency has dynamic logic. On a dynamic
microprocessor, if you stop or slow the clock, the dynamic nodes within it begin discharging.
With a long enough delay, the processor is likely to lose its present state, needing reset to
resume normal operation.

An 80C186 Modular Core microprocessor is fully static. The CPU stores its current state in
flip-flops, not capacitive nodes. The clock signal to both the CPU core and the peripherals can
stop without losing any internal information, provided the design maintains power. When the
clock restarts, the device will execute from its previous state. When the processor is inactive




intgl. CLOCK GENERATION AND POWER MANAGEMENT

for significant periods, special power management hardware takes advantage of static
operation to achieve major power savings.

5.2.1. POWER-SAVE MODE

Power-Save Mode is a means to reduce operating current. Power-Save Mode enables a
programmable clock divider in the clock generation circuit. This divider operates in addition
to the divide-by-two counter mentioned in Section 5.1.

Register Name: Power Save Register
Register Mnemonic: PWRSAV
Register Function: Enables and sets clock division factor.

15 0

%

N\

BIT RESET

.

4%/%%4

MNEMONIC BIT NAME | STATE FUNCTION
PSEN Power Save 0 Setting this bit enables Power Save Mode and
’ Enable divides the internal operating clock by the value

defined by F1:0. This bit is cleared to disable
Power-Save mode and force the CPU to operate
at full speed. PSEN is automatically cleared
whenever an interrupt occurs.

F1:.0 Clock Division OH These bits control the division factor used when
Factor Power Save mode is enabled. The allowable
values are listed below:

F1 FO _ Divisor
0 0 By 1
0 1 By 4
1 0 By 8
1 1 By 16

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 5.9. Power-Save Register

5-10



Inte|® CLOCK GENERATION AND POWER MANAGEMENT

Possible clock divisor settings are 1, 4, 8 and 16 (1 has no effect). The divided frequency feeds
the core, the integrated peripherals and CLKOUT. The processor operates at the divided clock
rate exactly as if the crystal or external oscillator frequency were lower by the same amount.

It may be necessary to reprogram units such as the Timer Counter Unit and the Refresh
Control Unit to compensate for the overall reduced clock rate.

5.2.1.1. ENTERING POWER-SAVE MODE

The Power-Save Register (see Figure 5.9) controls Power-Save Mode operation. The lower
two bits select the divisor. When program execution sets the PSEN bit, the processor enters
Power-Save Mode. The internal clock frequency changes at the falling edge of T, of the write
to the Power-Save Register. CLKOUT changes simultaneously and does not glitch. Figure
5.10 illustrates the change at CLKOUT.

T2 T3 T4

CLKOUT |
®

e \ @ /

NOTES: 1. Write to Power-Save Register (as viewed on the bus).
2. Low-going edge of T3 starts new clock rate.

Figure 5.10. Power-Save Clock Transition

5.2.1.2, LEAVING POWER-SAVE MODE

Power-Save Mode continues until one of three events: execution clears the PSEN bit in the
Power-Save Register, an unmasked interrupt occurs or an NMI occurs.

When the PSEN bit clears, the clock returns to its undivided frequency (standard divide-by-
two) at the falling Ts edge of the write to the Power-Save Register. The same result happens
from reprogramming the clock divisor to a new value. The Power-Save Register can be read or
written at any time.

Unmasked interrupts include those from the Interrupt Control Unit but not software interrupts.
If an NMI occurs, or an unmasked interrupt request has sufficient priority to pass to the core,
Power-Save Mode will end. The PSEN bit clears and the clock resumes full speed operation at
the falling edge of a bus cycle T; state. However, the exact bus cycle of the transition is
undefined. The Return from Interrupt instruction (IRET) does not automatically set the PSEN
bit again. If you still want Power-Save Mode operation, you can set the PSEN bit as part of the
interrupt service routine.

5-11




|n"'e|® CLOCK GENERATION AND POWER MANAGEMENT

5.2.1.3. EXAMPLE POWER-SAVE INITIALIZATION CODE

Example 5.1 illustrates programming the Power-Save Unit for a typical system. The program
also includes code to change the DRAM refresh rate to compensate for the reduced clock rate.

$Smodl186
name example_PSU_code

;FUNCTION: This function reduces CPU power consumption

; by dividing the CPU operating frequency by a

; divisor.

; SYNTAX: extern void far power_save(int divisor);

;  INPUTS: divisor - This variable represents F0 and F1l of
; PWRSAV.

; OUTPUTS: None

; NOTE: Parameters are passed on the stack as required
; by high-level languages

;substitute register offset

PWRSAV equ XXXXH ; Power-Save Register
RFTIME equ XXXxH ;Refresh Interval Count
Register

RFCON equ XXXXH ;Refresh Control Register
PSEN equ 8000H ; Power-Save enable bit
data segment public 'data'

FreqgTable dw 1, 4, 8, 16

data ends

1lib_80C186 segment public 'code'
assume cs:1ib_80C186, ds:data

. public _power_save
_power_save proc far

push bp v ;save caller's bp

mov bp, sp ;get current top of stack
push ax ;save registers that will
push bx ;be modified
push dx '
_divisor equ word ptr[bp+6] ;get parameter off the
;stack

Example 5.1. Power-Save Initialization Code

5-12




InteL CLOCK GENERATION AND POWER MANAGEMENT

mov
in
and

div

mov
out
mov
mov
and
or
out
pop
pop
pop
ret

_power_save endp

1ib_80C186 ends
end

dax, -

ax,
ax,

FreqTable[_divisor]

dax,
dx,
ax,
ax,
ax,
ax,
dax,
dx

ax

bp

RFCON
dx
01ffh

RFTIME
ax
PWRSAV

_divisor

3
PSEN
ax

;get current DRAM refresh
;rate
;mask off unwanted bits

;divide refresh rate
;by _divisor
;set new refresh rate

;select Power-Save Register
;get divisor

;mask off unwanted bits
;set enable bit

;divide frequency

;restore saved registers

;restore caller's bp

Example 5.1. Power-Save Initialization Code (Continued)

5-13







Chip Select Unit







CHAPTER 6
CHIP SELECT UNIT

Every system requires some form of component select mechanism so the CPU can access a
specific memory or peripheral device. The signal selecting the memory or peripheral device is
referred to as a chip-select. Besides selecting a specific device, each chip-select can be used to
control the number of wait states inserted into the bus cycle. Devices too slow to keep up with
the maximum bus bandwidth can use wait states to slow the bus down.

One method of generating chip-selects uses latched address signals directly. An example
interface is shown in Figure 6.1 (A). In the example, an inverted A16 is connected to a device
with an active low chip-select. Any bus cycle with an address between 10000H and 1FFFFH
(A16 = 1) enables the SRAM device. Also note that any bus cycle with an address starting at
3FFFFH, SFFFFH, 7FFFFH and so on also selects the device.

Decoding more address bits solves the problem of a chip-select being active over multiple
address ranges. In Figure 6.1 (B), a one-of-eight decoder is connected to the upper most
address bits. Each of the eight decoded outputs are active for one-eighth of the 1 Mbyte
address space. However, each chip-select has a fixed starting address and range. Future system
memory changes may require circuit changes to accommodate the additional memory.

27C256 74AC138
e —
<:j pro At9 —f A3 Y7 |b-J»-SELECTS 896K TO 1M
Al ::> A0 A1 —| A2 Y6  p-Jp-SELECTS 768K TO 896K
A13 Af2 A7 —{ A1 Y5 b
e (D158
N Y4 b3
ALE—Q BT Y3 b3
RD————Q OE —
HLDA—Q E2 Y2 O}
ZL Y1 D-»SELECTS 128K TO 256K
A16 ‘{>°—d cs E3 YO  b--SELECTS 0TO 128K
A) B)
CHIP-SELECTS USING CHIP-SELECTS USING
ADDRESSES DIRECTLY - SIMPLE DECODER

Figure 6.1. Common Chip-Select Generation Methods

6-1



intel. CHIP-SELECT UNIT

The Chip-Select Unit overcomes limitations found in the above designs and has the following
features:

e Thirteen chip-select outputs

e  Programmable chip-select active range

e Memory or I/O bus cycle decoder

e Programmable wait state generator

e Provision to override bus ready

Figure 6.2 illustrates the logic blocks that generate a chip-select.

6.1. FUNCTIONAL OVERVIEW

The Chip-Select Unit, abbreviated CSU, decodes bus cycle address and status information and
enables the appropriate chip-select. Figure 6.3 illustrates the timing of a chip-select during a
bus cycle. Note the chip-select goes active in the same bus state as address goes active,
eliminating any delay through address latches and decoder circuits. The Chip Select Unit
activates a chip-select for CPU, DMA Control Unit or Refresh Control Unit initiated bus
cycles.

-Six of the thirteen chip-selects only map into memory address space. The remaining seven
chip-selects can map into memory or I/O address space. The chip-selects typically associate
with memory and peripheral devices as follows:

UCS Mapped only to upper memory address space and selects the BOOT memory
device (EPROM or FLASH memory types).

LCS Mapped only to lower memory address space and selects a stétic memory
(SRAM) device that stores the interrupt vector table, local stack and data and
scratch pad data.

MCSO0:3 Mapped only to memory address space and selects additional SRAM memory,
DRAM memory or system bus.

PCS7:0 Mapped to memory or I/O address space and selects peripheral devices or
generates a DMA acknowledge strobe. '

The LCS chip-select always starts at address location OH and has a programmable block size
up to 256 Kbytes. The UCS chip-select always ends at address location OFFFFH and has a
programmable block size up to 256 Kbytes.




intgl.

CHIP-SELECT UNIT

INTERNAL
ADDRESS
BUS

:> =BLOCK SIZE L {cs
N =BLOCK SIZE — Lcs
= BLOCK SIZE/4 — MCS3
= BLOCK SIZE/4 — MCS2
= BLOCK SIZE/4 L MCST
= BLOCK SIZE/4 — 7c%0
BASE +0 PCS0
~ BASE BASE + 128 pPCcS1
1/0 SELECTOR E— BASE + 384 PCS3
MS -
BASE + 512 PCS4
BASE + 640
BASE + 768
A Wux  — PCS5
INTERNAL A | ~
ADDRESS BIT A2 B A/B |—PCSs
EX
CONTROL BIT

The four MCS chip-selects access one contiguous block of memory address space. The block
size can range from 8 Kbytes to 512 Kbytes and each chip-select goes active for one fourth of
the block size. The block start address is programmable but must be an integer multiple of the
block size. This start address limitation prevents the MCS chip-selects from covering the entire

Figure 6.2. Chip-Select Block Diagram

address space between the LCS and UCS chip-selects.

The PCS chip-selects access a contiguous block of memory or I/O address space. Each chip-
select goes active for 128 bytes of the 896 byte block. The PCS block start address can begin

on any 1 Kbyte boundary.

6-3




intgl. CHIP-SELECT UNIT

T

LT o2 T3 i oTa |
CLKOUT ! | ! | ! l ! | ! | E
aEl T\ ; A
A19:16! N VALD ' : '
Ucs, FeSE0; [
MCS3:0, LCS 5 ; 5 3 5
520 \ I STATUS ' / — N

D, WA ‘

\

Figure 6.3. Chip-Select Relative Timings

A chip-select goes active when it meets all of the following criteria:

1) The chip-select is enabled.
2) The bus cycle status matches the default or programmed type (memory or I/O).
3) . The bus cycle address is within the default or programmed block size.
4) The bus cycle is NOT accessing the Peripheral Control Block.
A memory address applies to memory read, memory write and instruction prefetch bus cycles.

An 1/O address applies to I/O read and I/O write bus cycles. Interrupt acknowledge and HALT
- bus cycles never activate a chip-select regardless of the address generated.

After power-on or system reset only the UCS chip-select is initialized and active (see Figure
6.4).

6-4




intgl. CHIP-SELECT UNIT

—
@
| S ARDY ADDRESS [y (— DATA
|————) SRDY
UCS b
PROCESSOR o
y1MB
o5 \
1022K
ACTIVE FOR
@ . 3 WAIT STATES TOP 1 KBYTE
AUTOMATICALLY INSERTED MEMORY
- BUS READY MUST BE PROVIDED MAP
0

Figure 6.4. UCS Reset Configuration

6.2. PROGRAMMING

A set of registers determine the operating characteristics of the chip-selects. The Peripheral
Control Block defines the location of the Chip-Select Unit registers. Table 6.1 lists all of the
Chip-Select Unit registers and their associated programming names.

The UCS and LCS chip-selects each have one register that defines their operation (see Figure
6.5 and Figure 6.6).

Table 6.1. Chip-Select Unit Registers

REGISTER REGISTER CHIP-SELECT

MNEMONIC MNEMONIC AFFECTED
UMCS UcsS
LMCS LCS
MMCS MPCS MCS3:0
PACS MPCS PCS7:0




intel.

CHIP-SELECT UNIT

Register Name:

UCS Control Register

Register Mnemonic: UMCS
Register Function: Controls the operation of the UCS chip-select.
15 0
u u uju U R R
1 101 1 111 1,0
6 4 | 3|2 1
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
U17:10 Start Address | OFFH | Defines the starting address for the UCS chip-
select. During memory bus cycles, address bits
A17:10 are compared against U17:10 andan -
equal to or greater than result enables the chip-
select (A19 and A18 must be 1 also). Allowable
bit programming combinations are as follows:
U17:0 Starting Address _Block Size
00H O0CO0000H 256 Kbytes
80H OEO0O000H 128 Kbytes
COH OF0000H 64 Kbytes
EOH OF8000H 32 Kbytes
FOH OFCOO00H 16 Kbytes
F8H OFEOOOH 8 Kbytes
FCH OFFOO00H 4 Kbytes
FEH OFF800H 2 Kbytes
FFH OFFCOQOH 1 Kbytes
R2 Bus Ready 0 Clearing R2 requires bus ready be active to
Disable complete a bus cycle. When R2 is cleared, R1:0
) control the number of bus wait states (bus ready
is ignored).
R1:0 Wait State 3H R1:0 define the minimum number of wait states
Value inserted into the bus cycle.

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero -
when writing this register (to ensure compatibility with future products). Do not program
U17:10 with values other than what is shown. Failure to do so results in unreliable chip-select
operation. Reading this register (prior to writing it) enabies the chip-seiect, however, none of
the programmable fields will have been properly initialized.

Figure 6.5. UMCS Register Definition

6-6




intgl. CHIP-SELECT UNIT

Register Name: LCS Control Register
Register Mnemonic: LMCS
Register Function: Controls the operation of the LCS chip-select.

15 . .0
U ujluju|u u|u R
1 1 1 1 1 1 1 0
6 5 4 3 2 1 0
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION

u17:10 End Address XXH | Defines the ending address for the LCS chip-
select. During memory bus cycles, address bits
A17:10 are compared against U17:10 and a less
than result enables the chip-select (A19 and A18
must be 0 also). Allowable bit programming
combinations are as follows:

17: Ending Address lock Size
O00H 003FFH 1 Kbytes
01H 007FFH 2 Kbytes
03H 00FFFH 4 Kbytes
07H 01FFFH 8 Kbytes
OFH 03FFFH 16 Kbytes
1FH 07FFFH 32 Kbytes
3FH OFFFFH 64 Kbytes
7FH 1FFFFH 128 Kbytes
FFH 3FFFFH 256 Kbytes
R2 Bus Ready X Clearing R2 requires bus ready be active to
Disable complete a bus cycle. When R2 is cleared, R1:0
control the number of bus wait states (bus ready
is ignored).
R1:0 Wait State XH R1:0 define the minimum number of wait states
Value inserted into the bus cycle. A zero value means

no wait states (unless R2 is zero, which means
bus ready controls wait states)

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero
when writing this register (to ensure compatibility with future products). Do not program
U17:10 with values other than what is shown. Failure to do so results in unreliable chip-select
operation. Reading this register (prior to writing it) enables the chip-select, however, none of
the programmable fields will have been properly initialized.

Figure 6.6. LMCS Register Definition

6-7



intgl. CHIP-SELECT UNIT

The MCS and PCS chip-selects require two registers to define their operation. One register is
shared between them. The MMCS and MPCS registers control the MCS chip-selects. The
PACS and MPCS registers control the PCS chip-selects. Figure 6.7, Figure 6.8 and Figure 6.9
define the programming attributes for each of the registers.

Register Name: MCS Control Register
Register Mnemonic: MMCS
Register Function: Controls the operation of the MCS chip-selects

15 0
U ujlu ujlujuju Uu|lu R|R|R
1111111 10111 1] 1 21110
9 716 5 3|2 10

BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION

uU19:13 Start Address | XXH | Defines the starting (base) address for the block
of MCS chip-selects. During memory bus cycles,
address bits A19:13 are compared against
U19:13 and an equal to or greater than result
enables the chip-select. The start address must
be an integer multiple of the MCS block size
(defined in the MPCS register).

R2 Bus Ready XH Clearing R2 requires bus ready be active to
Disable complete a bus cycle. When R2 is cleared, R1:0
control the number of bus wait states (bus ready
is ignored).
R1:0 Wait State XH R1:0 define the minimum number of wait states
Value inserted into the bus cycle. A zero value means

no wait states (unless R2 is zero, which means
bus ready controls wait states)

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero
when writing this register (to ensure compatibility with future products). Reading this register
and the MPCS register (prior to writing them) enables the MCS chip-selects, however none of
the programmabile fields will have been properly mmahzed

Figure 6.7. MMCS Register Definition

6-8



intel.

CHIP-SELECT UNIT

Register Name:

Register Mnemonic:

Register Function:

oz

MCS and PCS Alternate Control Register

MPCS
Controls the operation for both the MCS and PCS

chip-selects.

- 30
o I

BIT
MNEMONIC

BIT NAME

RESET
STATE

FUNCTION

Mé6:0

Block Size

XXH

Defines the block size for the MCS chip-selects.
Allowable bit programming combinations are as
follows:

M6 M5 M4 M3 M2 M1 MO Block Size
0 0 0 0 1 8 Kbytes
16 Kbytes
32 Kbytes
64 Kbytes
128 Kbytes
256 Kbytes
1 X X X X X 512 Kbytes

X = Don't Care, but should be 0 for future
compatibility.

O O O O oo
- O OO0 oo
X = O O O
X X = © o
X X X =+ 0O
X X X X =
X X X X X

x

EX

Pin Selector

XH

Setting EX configures PCS5 and PCS6 pins as
chip-selects. When EX is cleared, PCS5
becomes latched address bit 1 (A1) and PCS6
becomes latched address bit 2 (A2).

MS

Bus Cycle
Selector

XH

When MS is cleared the PCS chip-selects go
active for I/0 bus cycles. Setting MS activates
the PCS chip-selects for memory bus cycles.

R2

Bus Ready
Disable

XH

This bit applies to the PCS4-PCS6 chip-selects
only. Clearing R2 requires bus ready be active
to complete a bus cycle. When R2 is set, R1:0
control the number of bus wait states (bus ready
is ignored).

R1:0

Wait State
Value

XH

These bits apply to the PCS4-PCS6 chip-
selects only. R1:0 define the minimum number
of wait states inserted into the bus cycle. A zero
value means no wait states.

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero
when writing this register (to ensure compatibility with future products). Reading this register
and the MMCS register or PACS register (prior to writing them) enables the associated chip--
selects, however, none of the programmable fields will have been properly initialized.

Figure 6.8. MPCS Register Definition

6-9




intgl. CHIP-SELECT UNIT

Register Name: PCS Control Register
Register Mnemonic: PACS
Register Function:  Controls the operation of the PCS chip-selects.

15 0
U U ujuju|u R | R
11111 1111 1 110
9 6 54 |3]|2 1

- BIT RESET
MNEMONIC BIT NAME STATE FUNCTION

uU19:10 Start Address | XXH | Defines the starting (base) address for the block
of PCS chip-selects. During memory or I/O bus
cycles, address bits A19:13 are compared
against U19:13 and an equal to or greater than
result enables the chip-select. U19:16 must be
programmed to zero for proper I/O bus cycle

operation.
R2 Bus Ready XH Clearing R2 requires bus ready be active to
Disable complete a bus cycle. When R2 is set, R1:0
control the number of bus wait states (bus ready
is ignored).
R1:0 Wait State XH R1:0 define the minimum number of wait states
Value inserted into the bus cycle. A zero value means

no wait states (unless R2 is zero, which means
bus ready controls wait states)

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero
when writing this register (to ensure compatibility with future products). Reading this register
and the MPCS register (prior to writing them) enables the PCS chip-selects, however, none of
the programmable fields will have been properly initialized.

Figure 6.9. PACS Register Definition

6-10



intgl. CHIP-SELECT UNIT

6.2.1. INITIALIZATION SEQUENCE

Chip-selects do not have to be initialized in any specific order. However, the following
guidelines help prevent a system failure.

1) Initialize local memory chip-selects

2) Initialize local peripheral chip-selects

3) Perform local diagnostics

4) Initialize off-board memory and peripheral chip-selects

5) Complete system diagnostics

An unmasked interrupt or NMI must not occur until the interrupt vector addresses have been
written to memory. Failure to prevent an interrupt from occurring during initialization will

cause a system failure. Use external logic to generate the chip-select if interrupts cannot be
masked prior to initialization.

Programming the UMCS and LMCS registers can be done in any sequence. To program the
MCS and PCS chip-selects, follow the sequence shown below:

1) Program the MPCS register
2) Program the MMCS register to enable the MCS chip-selects
3) Program the PACS register to enable the PCS chip-selects

6.2.2. START ADDRESS

The LCS chip-select has a fixed starting address of zero in memory address space. The UCS
chip-select defines its starting address as 100000H (1 Mbyte) minus the programmed block
size (see Section 6.2.4). The MCS chip-selects have a programmable base address that
determines their individual start addresses (see Figure 6.10). However, there are limitations on
the location of the base address depending on the MCS block size.

Table 6.2 lists the limitations of the base address for the MCS chip-selects. Figure 6.10
illustrates how to calculate the starting address for each MCS chip-select.

Each PCS chip-select is active for 128 bytes and start at an offset above the programmed base
address. The base address can start on any 1 Kbyte memory or I/O address location. Table 6.3
lists the range for each chip-select.

6-11



intel. CHIP-SELECT UNIT

Table 6.2. MMCS Programming Restrictions

ALLOWABLE BASE ADDRESS
BLOCK SIZE RESTRICTIONS NOTES .
8 Kbytes ‘ None
16 Kbytes U13 must be zero
32 Kbytes U13-14 must be zero
64 Kbytes | U13-15 must be zero
128 Kbytes U13-16 must be zero
256 Kbytes 'U13-17 must be zero
512 Kbytes U13-18 must be zero Will overlap UCS if U19 is 1

Table 6.3. PCS Chip-Selects Active Range

CHIP

SELECT , ACTIVE RANGE
PCSO Base to Base + 127 (7FH)
PCST Base + 128 (080H) to Base + 255 (OFFH)
PCS2 Base + 256 (100H) to Base + 383 (17FH)

PCS3 Base + 384 (180H) to Base + 511 (1FFH)
PCS4 Base + 512 (200H) to Base + 639 (27FH)

PCS5 Base + 640 (280H) to Base + 767 (2FFH)

PCS6 Base + 768 (300H) to Base + 895 (37FH)

6.2.3. STOP ADDRESS
The UCS chip-select has a fixed ending address of OFFFFFH in memory address space. The

LCS chip-select defines its ending address as one byte less than the programmed block size
(see Section 6.2.4).

6-12



intgl. | CHIP-SELECT UNIT

STARTING ADDRESS ENDING ADDRESS

BLOCK SIZE IS DEFINED BY M6:0

BASE + (BLOCK SIZE - 1)

MCS3 ACTIVE RANGE

BASE + 3/4 BLOCK SIZE BASE + (3/4 BLOCK SIZE - 1)
MCS2 ACTIVE RANGE

BASE + 1/2 BLOCK SIZE BASE + (1/2 BLOCK SIZE - 1)
MCST ACTIVE RANGE

BASE + 1/4 BLOCK SIZE BASE + (1/4 BLOCK SIZE - 1)

MCS0 ACTIVE RANGE
MCS# BASE
(DEFINED BY U19:10)

MEMORY MAP

Figure 6.10. MCS Active Range

The ending address for the MCS chip-selects is defined by the programmed base address and
the block size. Figure 6.10 illustrates how to calculate the ending address for each MCS chip-
select. ,

The PCS chip-selects have fixed ending addresses defined by the programmed base address.
Table 6.3 defines the ending address for each chip-select.

6.2.4. BLOCK SIZE

The LCS, UCS and MCS chip-selects have programmable block sizes to define their active
ranges. The PCS chip-selects have fixed block sizes of 128 bytes.

The LMCS and UMCS registers define the block size for the LCS and UCS chip selects,
respectively. The allowable block sizes, in Kbytes, for the LCS and UCS chip-selects are 1, 2,
4, 8, 16, 32, 64, 128 and 256.

The combined MCS block size is controlled by the MPCS register. Each MCS chip-select is
active for one quarter of the block size. Table 6.2 defines the allowable block sizes for the
MCS chip-selects.

6-13




intel. CHIP-SELECT UNIT

6.2.5. BUS WAIT STATE AND READY CONTROL

Normally the bus ready inputs must be inactive at the appropriate time to insert wait states into
the bus cycle. The Chip-Select Unit can ignore the state of the bus ready inputs to extend and
complete the bus cycle automatically. Most memory and peripheral devices operate properly
using three or less wait states. However, accessing devices such as a dual-port memory, an
expansion bus interface, a system bus interface or remote peripheral devices can require more
than three wait states to complete a bus cycle.

The Chip-Select Unit can insert up to three wait states and control the state of the bus ready
inputs. The UMCS, LMCS, MMCS, MPCS and PACS registers define a three-bit field (RO,
R1, R2) that control bus wait state and ready requirements. Figure 6.11 shows a simplified
logic diagram of the wait state and ready control functions.

BUS READY
R2 CONTROL BIT .
:>— READY
WAIT STATE
WAIT READY
WAIT STATE VALUE ﬁ) STATE
(R1:0) COUNTER

Figure 6.11. Wait State and Ready Control Functions

The RO and R1 control bits define the number of wait states to insert into the bus cycle. The
R2 control bit determines whether the bus cycle should complete normally (i.e., require bus
ready) or unconditionally (i.e., ignore bus ready). Chip-selects connected to devices requiring
three wait states or less can program R2 active to complete the bus cycle automatically.
Devices that may require more than three wait states must program R2 inactive.

A bus cycle with wait states automatically inserted cannot be shortened. A bus cycle ignoring
bus ready cannot be lengthened.

6.2.6. OVERLAPPING CHIP-SELECTS

The Chip-Select Unit activates all enabled chip-selects programmed to cover the same
physical address space. This is true if any portion of the chip-selects address range overlap
(i.e., chip-selects ranges do not need to completely overlap to all go active). There are various

6-14 -




intel. CHIP-SELECT UNIT

reasons for overlapping chip-selects. For example, overlapping a portion of read-only memory
with read/write memory or copying data to two devices simultaneously.

If overlapping chip-selects do not have identical wait state value and bus ready programming,
the following priority scheme exists:

1. If any MCS chip-select is active, the MPCS R2:0 bits are used.
2. If the PCS chip-selects overlap the LCS or UCS chip selects, the LMCS or UMCS R2:0

bits (respectively) are used.

As an example, consider the case where MCS3 overlaps UCS. MCS3 is programmed for two
wait states and requires bus ready. UCS is programmed for no wait states and ignores bus
ready. An access to the overlapped region results in two wait states and bus ready is required.

Be cautious when overlapping chip selects with different wait state and bus ready
programming. Here are two conditions that require special attention to ensure proper system
operation.

1.  When all overlapping chip-selects ignore bus ready but have different wait states, make
sure each chip-select still works properly using the highest wait state value. A system
failure may result when the required number of wait states does not occur in the bus
cycle.

2. If one or more of the overlapping chip-selects requires bus ready, verify the following:

A. All chip-selects that ignore bus ready work properly using the smallest wait state
value.

B. All chip-selects that ignore bus ready work properly for the longest bus cycle
possible.

A system failure may result when not enough or too many wait states occur in the bus cycle.

6.2.7. MEMORY OR I/0 BUS CYCLE DECODING

The PCS chip-selects go active for memory or I/O address space. The MS control bit in the
MPCS register selects the appropriate address space. Memory address space accesses consist
of memory read, memory write and instruction prefetch bus cycles. I/O address space accesses
consist of I/O read and I/O write bus cycles.

The UCS, PCS and MCS chip-selects only go active for memory bus cycles. Chip-selects go
active for CPU, DMA Control Unit and Refresh Control Unit initiated bus cycles.

6.3. PROGRAMMING CONSIDERATIONS

When programing the PCS chip-selects active for I/O bus cycles, remember that eight bytes
of I/O are reserved by Intel. These eight bytes, located between 00F8H and O0FFH, control the

6-15



intel. _ CHIP-SELECT UNIT

interface to an 80C187 Numerics Coprocessor. A chip-select can overlap this reserved space
provided there is no intention of using the 80C187. However, Intel recommends that the base
address of the PCS chip-selects not start at OH in I/O address space to avoid possible future
compatibility issues.

An access to the appropriate chip-select register or registers, enables the chip-select. An
access is any read or write operation. For instance, reading the LMCS register enables the
LCS chip-select. However, reading the LMCS register does not ensure it has been
programmed correctly.

Do not read any chip-select register unless it has been previously written. Reading a register
before programming it enables the chip-select and results in indeterminate operation.

A chip-select can not be disabled once it has been enabled. However, the operating
characteristics of the chip-select can be changed by writing the appropriate register.

Three of the MCS chip-selects are alternately used to support the 80C187 Numerics Processor
interface when the device is configured in Enhanced Mode. However, the programming
characteristics and operation of the MCS2 chip-select remain active.

6.4. CHIP-SELECTS AND BUS HOLD

The Chip-Select Unit only decodes address and bus state information generated internally. An
external bus master cannot make use of the Chip-Select Unit. During HLDA, all chip-selects
remain inactive.

The circuit shown in Figure 6.12 allows an external bus master to access a device during bus
HOLD.

CSU CHIP-SELECT
i J——DEVICE SELECT
EXTERNAL MASTER

CHIP SELECT

Figure 6.12. Using Chip-Selects During HOLD

6-16




intel. CHIP-SELECT UNIT

ARDY (

SRDY ( rl;

EPROM SRAM FLOPPY
128K 32K DISK
ClL

DACK <
DRQ

-

ALE

2y
ADD BUS /
7

> 3

16 A0 Bus
AD15:0

IO - >

] 9' g =T >3O
—
|
Y Y]

Processor
[y
8

Figure 6.13. Typical System

6.5. EXAMPLES
The following sections provide examples of programming the Chip-Select Unit to meet the

needs of a particular application. The examples do not go into hardware analysis or design
issues.

6.5.1. EXAMPLE 1: TYPICAL SYSTEM CONFIGURATION

Figure 6.13 illustrates a block diagram of a typical system design. The EPROM memory has a
total size of 128 Kbytes and the SRAM memory has a total size of 32 Kbytes also. The
peripherals are mapped to I/O address space.

6-17



intel. CHIP-SELECT UNIT

S TITLE (Chip-Select Unit Initialization)
S MOD186 XREF
NAME CSU_EXAMPLE_1

PRKKK KKK KKK KKK KR KKK KKK KK KKK R KKK KKK KKK KKK KKK KA KK KK XK KKk Kk Kk k*
. ' *
!
; EXTERNAL REFERENCE FROM THIS MODULE *

. *
’
skhkkhkhkhkhkhkhk ko hkhkhhkhkhkhkdhhkhhkhhkhdhdhhkhbdkhodhhkhkhhkhdhhrhhhkrhrhhhhkhkhkhhkhkdhkhixxk
’

S include (PCBMAP.INC) ; File declares register
. ; locations and names

PR R R R R R S R R i S R R R S I I R R R
’

: *
H MODULE EQUATES : *
. *
1

5 ok ok ok Kk ok ok ok Kk ok ok ok ok K K ook ok ok ok kK K K o ok ok ok Kk ok ok ok Kk ok ok ok kK Kk o ok ok ok Kk o ok ok Kk K ok ok

H CONFIGURATION EQUATES

INTRDY EQU 0004H ; Ixternal bus ready modifier
EXTRDY EQU 0000H ; External bus ready modifier

I0 EQU 0080H ; PCS Memory/IO Modifier

ALLPCS EQU 0040H ; PCS PCS/Latched Address Modifier

; Below is a list of the default system memory and I/O
; environment. These defaults configure the Chip-Select Unit
; for proper system operation.

; EPROM memory is located from OE0000 to OFFFFF (128 Kbytes).
; Wait states are calculated assuming 16MHz operation.
; UCS# controls the accesses to EPROM memory space.

EPROM_SIZE EQU 128 ; Size in Kbytes
EPROM_BASE EQU 1024 - EPROM_SIZE ; Start address in Kbytes
EPROM_WAIT EQU 2 ; Wait states

EPROM_RDY EQU INTRDY ; Ignore bus ready

The UMCS regiser value is calculated using the above

i)

; system constraints and the equations below.

UMCS_VAL EQU (EPROM_BASE SHL 6) OR (0C038H) OR
& (EPROM_RDY) ~ OR (EPROM_WAIT)
Example 6.1.

6-18



intgl. CHIP-SELECT UNIT

; SRAM memory starts at OH and continues to 7FFFH (32 Kbytes).
; Wait states are caclulated assuming 16MHz operation.
; LCS# controls the accesses to SRAM memory space.

SRAM_SIZE EQU 32 ; Size in Kbytes
SRAM_BASE EQU 0 ; Start address in Kbytes
SRAM_WAIT EQU 0 ; Wait states

SRAM_RDY EQU INTRDY ; Ignore bus ready

; The LMCS register value is calculated using the above
; system constraints and the equation below

LMCS_VAL EQU ((SRAM_SIZE - 1) SHL 6) OR (00038H) OR
& (SRAM_RDY) OR (SRAM_WAIT)

; A DRAM interface is selected by the four MCS# chip-selects.

; The BASE value defines the* starting address of the DRAM

; window. The SIZE value (along with the BASE value) define

; the ending address. Zero wait state performance is assumed.
; The Refresh Control Unit uses DRAM-BASE to properly configure
; refresh operation.

DRAM_BASE EQU 256 ; Window start address in Kbytes
DRAM_SIZE EQU 256 ; Window size in Kbytes
DRAM_WAIT EQU 0 ; Wait states

DRAM_RDY EQU INTRDY ; Ignore bus ready

; The MPCS register is used to program both the MCS and PCS
; chip-selects. Below are the equates for the I/O peripherals
; (also used to program the PACS register).

IO_WAIT EQU 4 ; I0 Wait states

IO_RDY EQU INTRDY ; Ignore bus ready
PCS_SPACE EQU I0 ; Put PCSx# in I/O Space
PCS_FUNC EQU ALLPCS ; Generate PCS5# and PCS6#

; The MMCS and MPCS register values are calculated using the
; above system constraints and the equations below

MMCS_VAL EQU (DRAM_BASE SHL 6) OR (001F8H) OR
& (DRAM_RDY) OR (DRAM_WAIT)
MPCS_VAL EQU (DRAM_SIZE SHL 5) OR (08038H) OR
& (PCS_SPACE) OR (PCS_FUNC) OR
& (IO_RDY) OR (IO_WAIT)

Example 6.1. (Continued)

6-19




intel. CHIP-SELECT UNIT

; I/0 is selected using the PCSO# chip-select. Wait states

; assume operation at 16MHz. For this example, the Floppy Disk
; Controller is connect to PCS2# and PCS1# provides the DACK#

; signal.

IO_BASE EQU 1 ; IO start address in KBytes

; The PACS register value is calculated using the above
; system contraints and the equation below

PACS_VAL EQU (IO_BASE SHL 6) OR (00038H) OR
& (IO_RDY) OR (IO_WAIT)

; The following statements define the default assumptions
; for segment locations.

ASSUME CS:CODE
ASSUME DS:DATA
ASSUME SS:DATA
ASSUME ES:DATA

CODE SEGMENT PUBLIC 'CODE’

3 %K K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK ok ok ok ok ok kK K ok ok ok ok ok ok ok ok kK ok ok ok ok K K ok ok ok ok ok ok ok K ok ok kK
. *
!
; ENTRY POINT ON POWER UP *

. *
!
;**************************************************************

FW_START LABEL FAR ; FORCES FAR JUMP

CLI ; Disable Interrupts

; Place register initialization code here

Example 6.1. (Continued)

6-20




CHIP-SELECT UNIT

; SET UP CHIP SELECTS

; UCS - EPROM Select

; LCS - SRAM Select

; PCS - I/O

; MCS - DRAM Select
MOV DX, LMCS_REG
MOV AX, LMCS_VAL
ouT DX, AL
MOV DX, MPCS_REG
MOV AX, MPCS_VAL
ouT X, AL
MOV DX, MMCS_REG
MOV AX, MMCS_VAL
ouT DX, AL
MOV DX, PACS_REG
MOV AX, PACS_VAL
ouT DX, AL

CODE ENDS

(Initialized during POWER_ON code)
(Set to SRAM Size)

Select (PCS0-1 Support Floppy)
(Set to DRAM Size)

Set up LCS Register
Remember, BYTE Writes OK

READY FOR PCS LINES 4-6
AS WELL AS MCS PROGRAMMING

SET UP DRAM Chip-Select

SET UP IO Chip-Select

; POWER ON RESET CODE TO GET STARTED

ASSUME CS:POWER_ON

POWER_ON SEGMENT AT OFFFFH

MOV
MOV
ouT
JMP

DX, UMCS_REG
AX, UMCS_VAL
DX, AL
FW_START

POWER_ON ENDS

Point to UMCS Register
Reprogram UMCS to match
system requirements
Jump to init code

Example 6.1. (Continued)

6-21




intel. CHIP-SELECT UNIT

,-*************************************************************

. *
’

H DATA SEGMENT : *

. *
’

;*************************************************************

DATA SEGMENT PUBLIC "DATA’
DD 256 DUP (?) ; Reserved for Interrupt Vectors

;Place memory variables Here

DW 500 DUP (?) ; Stack Allocation

STACK_TOP LABEL WORD

DATA ENDS
; Program ends

END

Example 6.1. (Continued)

6-22




Refresh Control Unit







The Refresh Control Unit (RCU) simplifies dynamic memory controller design with its
and clock counters. Figure 7.1 shows the relationship between the Bus
Interface Unit and the Refresh Control Unit. Integrating the Refresh Control Unit into the
processor allows an external DRAM controller to use chip-selects, wait state logic and status

integrated address

CHAPTER 7
REFRESH CONTROL UNIT

lines.

M

<:> REFRESH CLOCK

INTERVAL REGISTER
CPU JT
CLOCK
———>)  9-BIT DOWN
COUNTER
N REFRESH REQUEST . BU
8L INTERFACE
CLR | _ REFRESH ACKNOWLEDGE
Req [€
<:> REFRESH CONTROL
REGISTER
12-BIT ADDRESS COUNTER
REFRESH BASE .
ADDRESS REGISTER REFRESH ADDRESS
REGISTER
g B
LV
A Pre
20-BIT
REFRESH ADDRESS

Figure 7.1. Refresh Control Unit Block Diagram

7.1 THE ROLE OF THE REFRESH CONTROL UNIT

Like a DMA controller, the Refresh Control Unit runs bus cycles independent of CPU
execution. Unlike a DMA controller, however, the Refresh Control Unit does not run bus
cycle bursts nor does it transfer data. The DRAM refresh process freshens individual DRAM

rows in “dummy read” cycles, while cycling through all necessary addresses.




intgl. REFRESH CONTROL UNIT

The microprocessor interface to DRAMs is more complicated than other memory interfaces. A
complete DRAM controller requires circuitry beyond that provided by the processor even in
the simplest configurations. This circuitry must respond correctly to reads, writes and DRAM
refresh cycles. The external DRAM controller generates the Row Address Strobe (RAS),
Column Address Strobe (CAS) and other DRAM control signals.

Pseudo-static RAMs use dynamic memory cells but generate address strobes and refresh
addresses internally. The address counters still need external timing pulses. These pulses are
easy to derive from the processor’s bus control signals. Pseudo-static RAMs do not need a full
DRAM controller. ‘

7.2. REFRESH CONTROL UNIT CAPABILITIES

A nine-bit address counter forms the refresh addresses, supporting any dynamic memory
devices with up to nine rows of memory cells (nine refresh address bits). This includes all
practical DRAM sizes for the processor’s one Mbyte address space. ‘

7.3. REFRESH CONTROL UNIT OPERATION

Figure 7.2 illustrates Refresh Control Unit counting, address generatmn and BIU bus cycle
generation in flow chart form.

The 9-bit down-counter loads from the Refresh Interval Register on the falling edge of
CLKOUT. Once loaded, it decrements every falling CLKOUT edge until it reaches one. Then
the down-counter reloads and starts counting again, simultaneously triggering a refresh
request. Once enabled, the DRAM refresh process continues indefinitely until the user
reprograms the Refresh Control Unit, a reset occurs, or the processor enters Powerdown
Mode. Power-Save Mode divides the Refresh Control Unit clocks, so reprogramming the
Refresh Interval Register becomes necessary.

The refresh request remains active until the bus becomes available. When the bus is free, the
BIU will run its “dummy read” cycle. Refresh bus requests have higher priority than most
CPU bus cycles, all DMA bus cycles and all interrupt vectoring sequences. Refresh bus cycles
also have a higher priority than the HOLD/HLDA bus arbitration protocol (see Section 7.8).

The 9-bit refresh clock counter does not wait until the BIU services the refresh request to
continue counting. This operation ensures refresh requests occur at the correct interval.
Otherwise, the time between refresh requests would be a function of varying bus activity.
When the BIU services the refresh request, it clears the request and increments the refresh
address.

7-2



intel. REFRESH CONTROL UNIT

REFRESH CONTROL UNIT
OPERATION

( SET'E'BIT ]

>

LOAD COUNTER
FROM REFRESH CLOCK
INTERVAL REGISTER

EXECUTED
[ EVERY
CLOCK

L  DECREMENT
COUNTER

GENERATED BIU
REQUEST

]

BIU REFRESH BUS
OPERATION

REFRESH REQUEST
ACKNOWLEDGED

)

v

EXECUTE
MEMORY READ

v

INCREMENT
ADDRESS

'

REMOVE REQUEST

CONTINUE

Figure 7.2. Refresh Control Unit Operation Flow Chart

FROM
REFRESH BASE ADDRESS REGISTER FIXED

FROM
REFRESH ADDRESS COUNTER

FIXED

T L
IRA19 IRA18 IHA17 IRA16 |RA15 |RA14 |RA13| 0 | 0 | 0 [HAQ lHAﬂ IF!A7 |RA6 lRA5 |RA4 IRAB |HA2 IRA1

19
L

]
0

20-BIT REFRESH ADDRESS

Figure 7.3. Refresh Address Formation




intel. REFRESH CONTROL UNIT

The BIU does not queue DRAM refresh requests. If the Refresh Control Unit generates
another request before the BIU handles the present request, the BIU loses the present request.
However, the address associated with the request is not lost. The refresh address changes only
after the BIU runs a refresh bus cycle. If a DRAM refresh cycle is excessively delayed, there is
still a chance that the processor will successfully refresh the corresponding row of cells in the
DRAM, retaining the data.

7.4. REFRESH ADDRESSES

Figure 7.3 shows the physical address generated dﬁring a refresh bus cycle. This figure applies
to both the 8-bit and 16-bit data bus microprocessor versions. Refresh address bits RA19:13
come from the Refresh Base Address Register described in Section 7.7.2.1.

Refresh address bits RA12:10 are always zero. A linear-feedback shift counter generates
address bits RA9:1. The counter does not increment linearly from O through 1FFH. However,
the counting algorithm cycles uniquely through all possible 9-bit values. It only matters that
each row of DRAM memory cells gets refreshed at a specific interval. The order of the rows is
unimportant.

Address bit AO is fixed at zero during all refresh operations. In applications based on a 16-bit
data bus processor, A0 typically selects memory devices placed on the low (even) half of the
bus. Applications based on an 8-bit data bus processor typically use A0 as a true address bit.
The DRAM controller must not route AO to row address pins on the DRAMs.

7.5. REFRESH BUS CYCLES

Refresh bus cycles look exactly like ordinary memory read bus cycles except for the control
signals indicated in Table 7.1. The 16-bit bus processor drives both the BHE and A0 pins high
during refresh cycles. These signals may be AND’ed in a DRAM controller to detect a refresh
bus cycle. The 8-bit bus version replaces the BHE pin with RFSH, which is low during refresh
cycles. RFSH and BHE timings are the same. AOQ is also high during refresh cycles on the 8-bit
bus processor.

Table 7.1. Identification of Refresh Bus Cycles

DATABUS WIDTH | BHE/RFSH AQ
16-Bit Dévice 1 1
8-Bit Device 0 1

7-4



Inte|® | REFRESH CONTROL UNIT

7.6. GUIDELINES FOR DESIGNING DRAM CONTROLLERS

The basic DRAM access method consists of four phases:

1. The DRAM controller supplies a row address to the DRAMs.

2. The controller asserts a Row Address Strobe (RAS), which latches the row address inside
the DRAMs.

The controller supplies a column address to the DRAM:s.

4. The controller asserts a Column Address Strobe (CAS), which latches the column address
inside the DRAMs.

Most 80C186 Modular Core family DRAM interfaces use only this method. Others will not be
discussed here.

The DRAM controller’s purpose is to use the processor’s address, status and control lines to
generate the multiplexed addresses and strobes. These signals must be appropriate for three
bus cycle types: read, write and refresh. They must also meet specific pulse width, setup, and
hold timing requirements. DRAM interface designs need special attention to transmission line
effects, since DRAM:s represent significant loads on the bus.

DRAM controllers may be either clocked or unclocked. An unclocked DRAM controller
requires a tapped digital delay line to derive the proper timings.

Clocked DRAM controllers may use either discrete or programmable logic devices. A state
machine design is appropriate, especially if the circuit must provide wait state control (beyond
that possible with the processor’s Chip-Select Unit). Because of the microprocessor’s four-
clock bus, clocking some logic elements on each CLKOUT phase is advantageous (see Figure
7.4). The cycle begins with presentation of the row address. RAS should go active on the
falling edge of T,. At the rising edge of T,, the address lines should switch to a column
address. CAS goes active on the falling edge of Ts. Refresh cycles do not require CAS. When
CAS is present, the “dummy read” cycle becomes a true read cycle (the DRAM drives the
bus), and the DRAM row still gets refreshed.

Both RAS and CAS stay active during any wait states. They go inactive on the falling edge of
Ts4. At the rising edge of T, the address multiplexer shifts to its original selection (row
addressing), preparing for the next DRAM access.

7.7. PROGRAMMING THE REFRESH CONTROL UNIT

Given a specific processor operating frequency and information about the DRAMs in the
system, the user can program the Refresh Control Unit registers.

7-5



intel. REFRESH CONTROL UNIT

T4 T T2 T3 / ™ T4
ckout | [ ] | CB_&_' |
MUXED ADDRESS ‘ X ROW (:(:COLUIVIIN

) [/
ms / »\\>\ | M"
w50 7 e

weo 1\ Y —

NOTES:

1. CAS is unnecessary for refresh cycles only.
2. WE is necessary for write cycles only.

Figure 7.4. Suggested DRAM Control Signal Timing Relationships

Rperiog 18 X f(MHz2)

# Refresh Rows + # (Refresh Rows x % Overhead)

= RFTIME Register Value

RPerio q= Maximum refresh period specified by DRAM manufacturer (microseconds).

f = Operating frequency in MHz.
# Refresh Rows = Total number of rows to be refreshed.
% Overhead = Derating factor to compensate for missed refresh requests (typically 1-5%).

Figure 7.5. Formula for Calculating Refresh Interval for RFTIME Register

7-6




intel. REFRESH CONTROL UNIT

7.7.1. CALCULATING THE REFRESH INTERVAL

DRAM data sheets show DRAM refresh requirements as a number of refresh cycles necessary
and the maximum period to run the cycles. The indicated number of cycles is the same as the
number of rows. Multiply the specified refresh period (convert to microseconds) by the
microprocessor’s CLKOUT frequency (MHz). Then divide the result by the number of rows
in the DRAM. Figure 7.5 shows the formula.

Bus latency is the time the Refresh Control Unit needs to gain control of the bus. Reduce the
calculated refresh interval by one to five percent to compensate. If an external bus master will
be extremely slow to release the bus, reduce the interval even more. At standard operating
frequencies, DRAM refresh bus overhead totals two or three percent of the total bus
bandwidth.

If the processor enters Power-Save Mode, the refresh rate must increase to offset the reduced
CPU clock rate to preserve memory. At lower frequencies, the refresh bus overhead increases.
At frequencies less than about 1.5 MHz, the Bus Interface Unit will spend almost all its time
running refresh cycles. There may not be enough bandwidth left for the processor to perform
other activities, especially if the processor must share the bus with an external master.

7.7.2. REFRESH CONTROL UNIT REGISTERS

Three contiguous Peripheral Control Block registers operate the Refresh Control Unit: the
Refresh Base Address Register, Refresh Clock Interval Register and the Refresh Control
Register.

7.7.2.1. REFRESH BASE ADDRESS REGISTER

The Refresh Base Address Register (see Figure 7.6) programs the base (upper 7 bits) of the
refresh address. Seven-bit mapping places the refresh address at any 4 Kbyte boundary
within the one Mbyte address space. When the partial refresh address from the 9-bit address
counter (see Section 7.3) passes 1FFH, the Refresh Control Unit does not increment the
refresh base address.

7.7.2.2. REFRESH CLOCK INTERVAL REGISTER

The Refresh Clock Interval Register (Figure 7.7) defines the time between refresh requests.
The higher the value, the longer the time between requests. The down-counter decrements
every falling CLKOUT edge, regardless of core activity. When the counter reaches 1, the
Refresh Control Unit generates a refresh request and the counter again loads the value from
the register.



intgl. REFRESH CONTROL UNIT

Register Name: Refresh Base Address Register
Register Mnemonic: RFBASE (MDRAM)
Register Function: Determines upper 7 bits of refresh address.
15 0
RIR|R|R|IR|R|R
AlA A|A|A|AlA
LR T O N S R O B O
9 8|7 |6||5| 4|3
BIT RESET
MNEMONIC | BIT NAME | STATE FUNCTION

RA19:13 Refresh Base 00H | Uppermost address bits for DRAM refresh
cycles.

NOTE: Reserved register bits are shown with gray shading. Always program reserved register
bits with a “0” to insure proper device functionality and compatibility with future Intel products.

Figure 7.6. Refresh Base Address Register

Register Name: Refresh Clock Interval Register
Register Mnemonic: RFTIME (CDRAM)
Register Function: Sets refresh rate.
0
] R u R|/R| R | R
| C J clc|c|c
lal3l210
BIT RESET
MNEMONIC | BIT NAME | STATE FUNCTION
RC8:0 Refresh 000H | Sets the desired clock count between refresh
Counter cycles.
Reload Value

NOTE: Reserved register bits are shown with gray shading. Always program reserved register
bits with a “0” to insure proper device functionality and compatibility with future Intel products.

Figure 7.7. Refresh Clock Interval Register



intgl. REFRESH CONTROL UNIT

Register Name: Refresh Control Register
Register Mnemonic: RFCON (EDRAM)
Register Function: Controls Refresh Unit operation.
| OJ
R l R R
cic|cC
2 ’ 110
BIT RESET '
MNEMONIC | BIT NAME | STATE FUNCTION
REN Refresh 0 Setting REN enables the Refresh Unit. Clearing
Control Unit REN disables the Refresh Unit.
Enable
RC8:0 Refresh 000H ° | These bits contain the present value of the down
Counter counter which triggers refresh requests.

NOTE: Reserved register bits are shown with gray shading. Always program reserved register
bits with a “0” to insure proper device functionality and compatibility with future Intel products.

Figure 7.8. Refresh Control Register

7.7.2.3. REFRESH CONTROL REGISTER
Figure 7.8 shows the Refresh Control Register. The user may read or write the REN bit at
any time to turn the Refresh Control Unit on or off. The lower nine bits contain the current

9-bit down-counter value. The user cannot program these bits. Disabling the Refresh Control
Unit clears both the counter and the corresponding counter bits in the control register.

7.7.3. PROGRAMMING EXAMPLE

Example 7.1 contains sample code to initialize the Refresh Control Unit. Example 5.2 shows
the additional code to reprogram the Refresh Control Unit upon entering Power-Save Mode.

7-9



intel.

REFRESH CONTROL UNIT

Smod186

name example_80C186_RCU_code

1

;FUNCTION: This function initializes the DRAM Refresh
;Control Unit to refresh the DRAM starting at dram_addr
;at clock_time intervals.

1

; SYNTAX:

; extern void far config_rcu(int dram_addr, int clock_time);

’

;  INPUTS: dram_addr

- Base address of DRAM to refresh

; clock_time - DRAM refresh rate

; OUTPUTS: None

; NOTE: Parameters are passed on the stack as
; required by high-level languages.

’

RFBASE equ
RFTIME equ
RFCON equ
Enable equ

lib_80186 segment public

xxxxh ;substitute register offset

XXXXh
xxxxh

8000h ;enable bit

assume cs:11b_80186

public

_config_rcu

_config_rcu proc far

push
mov

_clock_time equ
_dram_addr equ

bp
bp, sp

word ptr[bp+6]
word ptr[bp+8]

push ax

push cx
push dx
push di

'code'’

;save caller's bp
;get current top of stack

;get parameters off

;the stack

;save registers that
;will be modified

Example 7.1. Refresh Control Unit Intialization Code

7-10




intgl. REFRESH CONTROL UNIT

mov dx, RFBASE ;set upper 7 address bits
mov ax, _dram_addr
out dx, ax

mov dx, RFTIME ;set clock pre_scaler
mov ax, _clock_time
out dx, ax

mov dx, RFCON ;Enable RCU
mov ax, Enable
out dx, ax

mov cx, 8 ;8 dummy cycles are
;required by DRAMS
xor di, di ;before actual use

_exercilse_ram:
mov word ptr [di], O
loop _exercise_ram

pop di ;restore saved registers
pop dx
pop cCx
pop ax

pop bp ;restore caller's bp

ret
_config_rcu endp

1lib_80186 ends
end

Example 7.1. Refresh Control Unit Initialization Code (Continued)

7.8. REFRESH OPERATION AND BUS HOLD

When another bus master controls the bus, the processor keeps HLDA active as long as the
HOLD input remains active. If the Refresh Control Unit generates a refresh request during bus
hold, the processor drives the HLDA signal inactive, indicating to the current bus master that it
wishes to regain bus control (see Figure 7.9). The BIU begins a refresh bus cycle only after the
alternate master removes HOLD. The user must design the system so the processor can regain
bus control. If the alternate master asserts HOLD after the processor starts the refresh cycle,
the CPU will give up the bus afterwards.

7-11




intel. ' REFRESH CONTROL UNIT
T4 T4 T1 T1 T1 Ta T
CLKOUT
HOLD /

HLDA \)\ » @//

/
ADO-AD15, DEN Q +

A19:16, RD, WR, BHE, N K/‘——“

[<¢ \

DTAR, S2:0

NOTES: 1. HLDA deasserted; signaling needs to run DRAM refresh cycles less than T oy
2. External bus master terminates use of the bus

3. HOLD deasserted; greater than T |g

4. HOLD may be reasserted after one clock
5. Lines come out of float in order to run DRAM refresh cycle

Figure 7.9. Regaining Bus Control to Run a DRAM Refresh Bus Cycle

7-12




Interrupt Control Unit







CHAPTER 8
INTERRUPT CONTROL UNIT

The 80C186 Modular Core has a single maskable interrupt input (See Section 2.3.1.2). An
Interrupt Control Unit is needed to expand the interrupt capabilities beyond a single input. To
fulfill this function, the Interrupt Control Unit has two different modes of operation; Master
Mode and Slave Mode.

In Master Mode, the Interrupt Control Unit processes all maskable interrupt sources and
presents them to the CPU through the single maskable interrupt input. The Interrupt Control
Unit synchronizes and prioritizes interrupt sources and provides the interrupt type vector to the
CPU. The interrupts can originate from on-chip peripherals and from four external interrupt
pins. Most systems use Master Mode.

In Slave Mode, an external 8259A interrupt controller acts as the master interrupt controller.
The 8259A now actually controls the maskable interrupt input to the CPU. The Interrupt
Control Unit is only responsible for processing the on-chip interrupt sources and must request
service from the external 8259A.

Features of the Interrupt Control Unit are:

e Programmable priority of each interrupt source
e Support for polled operation

e Individual masking of each interrupt source

e Nesting of interrupt sources

o External 8259As can be used for expanding external interrupt sources (Cascade Mode)

8.1. FUNCTIONAL OVERVIEW

All microprocessor systems must communicate in some way with the external world. A typical
system may have a set of peripherals, for example, a keyboard, communications port and a
display. Each peripheral requires the attention of the CPU at different times. There are two
distinct ways to process peripheral I/O requests; polling and interrupts.

Polling requires the CPU to check each peripheral in the system periodically to see if an I/O
request is pending. However, polling is not a very efficient use of CPU time and in most cases
is detrimental to system throughput.

Interrupts eliminate polling by allowing the peripheral to signal the CPU that it has an I/O
request pending. The CPU then stops execution of the current task, saves its state and begins
-executing the peripheral servicing routine (interrupt handler). At the end of the interrupt
handler, the CPU restores its original state and returns to executing the original task.



intgl. INTERRUPT CONTROL UNIT

The Interrupt Control Unit is responsible for processing interrupts from multiple peripherals
and presenting them to the CPU in an orderly and defined fashion.

8.2. MASTER MODE

A block diagram of the Interrupt Control Unit in Master Mode is shown in Figure 8.1.

TIMER TIMER TIMER DMA DMA INT INT INT INT

0 1 2 0 1 0 1 2 3
INTERRUPT
PRIORITY
RESOLVER

VECTOR

GENERATION

TOCPU LOGIC

INTERRUPT REQUEST {}

I ' E-BUS L

Figure 8.1. Interrupt Control Unit Block Diagram

8.2.1. GENERIC FUNCTIONS IN MASTER MODE

There are several functions of the Interrupt Control Unit which are common among most
interrupt controllers. This section covers how these generic functions are implemented on the
Interrupt Control Unit.

8.2.1.1. INTERRUPT MASKING

There are several instances where a programmer may want to disable an interrupt source
temporarily. Executing time-critical sections of code or servicing a high priority task are
common examples of when interrupt sources may need to be disabled. This is called interrupt *
masking. All interrupts from the Interrupt Control Unit may be globally masked or selectively
masked on an individual basis.

8-2



InU® INTERRUPT CONTROL UNIT

8.2.1.1.1. GLOBAL MASKING OF INTERRUPT SOURCES

The Interrupt Enable Bit in the Program Status Word globally enables or disables the
maskable interrupt request from the Interrupt Control Unit. The programmer controls the
Interrupt Enable Bit by using the STI (Set Interrupt) and the CLI (Clear Interrupt) instructions.

8.2.1.1.2. INDIVIRUAL MASKING OF INTERRUPT SOURCES

In addition to the Interrupt Enable Bit, each interrupt source can be individually enabled or
disabled. The Interrupt Mask Register has a single bit for each interrupt source. By setting or
clearing a bit in the Interrupt Mask Register, the programmer can selectively mask or unmask
the corresponding interrupt source.

8.2.1.2. INTERRUPT PRIORITY

One of the critical functions of the Interrupt Control Unit is to prioritize interrupt requests.
Priority determines which interrupt request is serviced first if multiple interrupts are pending.
In many systems, it is possible that an interrupt handler may itself be interrupted by another
interrupt source. This is known as interrupt nesting. When nesting interrupts, priority
determines if an interrupt source can preempt an interrupt handler which is currently
executing. ’

An interrupt source is assigned a priority between zero and seven. Zero is the highest possible
priority and seven is the lowest. After reset, the interrupts default to the priority shown in
Table 8.1. Because the timers share an interrupt source, they also share a priority. Within the
assigned priority, they are prioritized relative to each other. Timer O has the highest relative
priority, Timer 2 the lowest.

Different priorities can be assigned for each source. This is done by programming the Interrupt
Control Register with a new priority. The priority must be between zero and seven. Intzrrupt
sources can be programmed to share the same priority. The Interrupt Control Unit handles this
by using the default priorities within the shared priority level. For example, assume INTO and
INT1 are programmed to priority seven. INTO is serviced first because it has the higher default
priority.

Interrupt sources can also be masked on the basis of their priority. The Priority Mask Register
masks all interrupts with a lower priority than its programmed value. After reset, the Priority
Mask Register contains priority seven, effectively enabling interrupts of any priority. The
register can then be programmed with any valid priority.

8-3



intel. INTERRUPT CONTROL UNIT

Table 8.1. Default Ihterrupt Priorities

Interrupt Name Relative
Priority
Timer 0 0(a)
- Timer 1 0 (b)
Timer 2 0(c)
DMAO 1
DMA1 2
INTO 3
INTH 4
INT2 5
INT3 6
8.2.1.2.1. OPERATION WHEN INTERRUPT NESTING IS NOT ENABLED

" When entering an interrupt handler, the Program Status Word is pushed onto the stack. The
Interrupt Enable Bit is cleared. The processor enters all interrupt handlers with maskable
interrupts disabled. Maskable interrupts will not be enabled again until either the IRET
instruction restores the Interrupt Enable Bit or the programmer explicitly enables interrupts.
Enabling maskable interrupts within an interrupt handler allows interrupts to be nested.
Otherwise, interrupts are processed sequentially; an interrupt handler must finish before
another executes.

The simplest way to use the Interrupt Control Unit is when nesting is not needed. The
operation and servicing of all sources of maskable interrupts is straightforward. However, the
application tradeoff is that an interrupt handler will finish executing even if a higher priority
interrupt occurs. This can add considerable latency to the higher priority interrupt.

In simplest terms, the Interrupt Control Unit asserts the maskable interrupt request to the CPU
and waits for the interrupt acknowledge. When the Interrupt Control Unit receives the
acknowledge, it presents the highest priority unmasked interrupt type at that time to the CPU.
The CPU then executes the interrupt handler for that interrupt. Because the Interrupt Enable
Bit is never set within the interrupt handler, the interrupt handler can never be interrupted.

8.2.1.2.2. OPERATION WHEN NESTING INTERRUPTS

The function of the Interrupt Control Unit is more complicated when nesting interrupts. An
interrupt now can occur within an interrupt handler. The term used here is an interrupt
preempting another interrupt. The following rules apply for nesting interrupts:

8-4



intgl. INTERRUPT CONTROL UNIT

e  An interrupt source can only preempt other interrupts of equal or higher priority.

e An interrupt source cannot preempt itself. The interrupt handler must finish executing
before the interrupt is serviced again. (An exception to this is Special Fully Nested Mode,
which is covered in Section 8.3.3.1)

8.3. MASTER MODE OPERATION

This section covers the process in which the Interrupt Control Unit receives interrupts and
asserts the Maskable Interrupt Request to the CPU.

8.3.1. TYPICAL INTERRUPT SEQUENCE

When the Interrupt Control Unit first detects an interrupt, it sets the corresponding bit in the
Interrupt Request Register. That interrupt is pending or waiting to be serviced. The Interrupt
Control Unit checks all pending interrupt sources. If the interrupt is not masked and it meets
the priority criteria (see Section 8.3.2 on Priority Resolution), the Interrupt Control Unit
asserts the maskable interrupt request to the CPU.

The Interrupt Control Unit then waits for the interrupt acknowledge from the CPU. At that
time, it passes the interrupt type to the CPU and the interrupt processing sequence takes place.
See Section 2.3.1 for a detailed explanation of the interrupt processing sequence. The Interrupt
Control Unit always passes the highest priority interrupt vector at the time the acknowledge is
received. If a higher priority interrupt occurs before the interrupt acknowledge, the higher
priority interrupt has precedence.

When the interrupt acknowledge occurs, the corresponding bit in the Interrupt Request
Register is cleared. The corresponding bit in the In-Service Register is set. The In-Service
Register keeps track of which interrupt handlers are being processed. At the end of Interrupt
Handler, the programmer must explicitly clear the bit in the In-Service Register by issuing an
End-Of-Interrupt (EOI) command. If the bit remains set, the Interrupt Control Unit cannot
process any more interrupts from that source.

8.3.2. PRIORITY RESOLUTION

The criteria for asserting the maskable interrupt request to the CPU is somewhat complicated.
The complexity is needed to support interrupt nesting. First, an interrupt occurs and the
corresponding bit is set in the Interrupt Request Register. The Interrupt Control Unit then
asserts the maskable interrupt request to the CPU based on the following criteria:

1. The interrupt is not masked.
2.. The interrupt has higher priority than the Priority Mask Register.
3. The interrupt must not have its own In-Service bit set.

4. An interrupt has equal or higher priority than any interrupt whose In-Service bit is set.

8-5



intgl. INTERRUPT CONTROL UNIT

The In-Service Register keeps track of any currently executing interrupt handler. The Interrupt
Control Unit uses this information to decide if another interrupt source has enough priority to
preempt an interrupt handler that is currently executing.

The following example illustrates the priority resolution:

The initial conditions are:

The Interrupt Control Unit has been initialized.

There are no pending interrupts.

No bits are set in the In-Service Register.

All interrupts are unmasked and the Interrupt Enable bit is set.

The default priority scheme is used.

The Priority Mask Register is set to the lowest priority (seven).

A low to high transition on INTO sets its bit in the Interrupt Request Registér. The
interrupt is now pending.

Because INTO is the only interrupt pending, it must meet all the priority criteria. The
Interrupt Control Unit asserts the interrupt request to the CPU and waits for an
acknowledge.

The CPU acknowledges the interrupt. The Interrupt Control Unit passes the interrupt type
(in this case type 12) to the CPU.

The Interrupt Control Unit clears the INTO in the Interrupt Request Register and sets the
INTO bit in the In-Service Register.

The CPU executes the interrupt processing sequence and begins executing the interrupt
handler for INTO. .

During execution of the interrupt handler, a low to high transition on INT3 sets its bit in
the Interrupt Request Register.

INT3 has lower priority than INTO, whose interrupt handler is currently executing
(INTO’s In-Service bit is set). INT3 does not meet the priority criteria and thus no
interrupt request is sent to the CPU. If INT3 had been programmed with an equal or
higher priority than INTO, the interrupt request would have been sent to the CPU. INT3
remains pending in the Interrupt Request Register.

The INTO interrupt handler completes and an EOI command clears the INTO bit in the In-
Service Register.

INT3 is still pending and now meets all the priority criteria. An interrupt request is sent to
the CPU and the process begins again.

8-6



In‘".el‘E INTERRUPT CONTROL UNIT

8.3.2.1. INTERRUPTS WHICH SHARE A SINGLE SOURCE

Multiple interrupt requests can share a single source input to the Interrupt Control Unit (the
three timer interrupts, for example). Although these interrupts share a source input, each has
its own interrupt vector. The actual vectoring sequence is transparent to the user (i.e., when a
TimerQ interrupt occurs, the TimerO interrupt handler gets executed). The application
consequences of how these interrupts get prioritized and serviced is covered in this section.
We will use the three timer interrupts as an example.

The Interrupt Status Register acts as a second level request register to process the three timer
interrupts. The Interrupt Status Register contains a bit for each timer interrupt. Lets assume a
timer interrupt occurs. The specific bit for that timer in the Interrupt Status Register and the
shared timer interrupt bit in the Interrupt Request Register are both set. Now the shared timer
interrupt is processed like any other interrupt source. Multiple timer interrupt bits can be set at
one time in the Interrupt Status Register.

When the shared interrupt is acknowledged, the highest priority timer interrupt at that time
gets serviced first (see Table 8.1). The highest priority timer bit is cleared in the Interrupt
Status Register. Any other timer interrupts remain pending and their bits set. If only one timer
interrupt is pending, the timer bit in the Interrupt Request Register is also cleared. Otherwise,
it remains set, signalling other timer interrupts are pending.

The shared In-Service Bit is set when the timer interrupt is acknowledged. No other timer
interrupts can occur when the In-Service Bit is set. For example, assume a lower priority timer
interrupt is being serviced and a higher priority timer interrupt occurs. The In-Service Bit is
already set for the shared timer interrupt. The higher priority timer interrupt remains pending
until the lower priority timer interrupt handler is finished and the In-Service Bit cleared.

8.3.3. CASCADING WITH EXTERNAL 8259As

For some applications, the number of external interrupt pins on the Interrupt Control Unit is
not enough. The Interrupt Control Unit has Cascade Mode which expands the number of
external interrupt pins using 8259A interrupt controllers. The INT2/INTAOQ and INT3/INTA1
have two functions. They can function as external interrupt pins or as interrupt acknowledge
outputs in Cascade Mode. INTAO is the acknowledge for INTO and INTAI is the
acknowledge for INT1 as shown in Figure 8.2.

The INT2/INTAO and INT3/INTA1 are inputs after reset until the pins are configured as
outputs. The pullup resistors insure the INTA pins never float (issuing a spurious interrupt
acknowledge to the 8259A). The value of the resistors must be high enough to prevent
excessive loading on the INTA pins.

8-7



intel. INTERRUPT CONTROL UNIT

INT >IN0
8259A Voo
OR
82C59A %
INTA INTAO
INTERRUPT
CONTROL
UNIT
INT > INT1
8259A v
P cC
82C59A %
INTA INTAS

Figure 8.2. Using 8259As in Cascade Mode

8.3.3.1. SPECIAL FULLY NESTED MODE

Special Fully Nested Mode is an optional feature normally used with Cascade Mode and is
only applicable to INTO and INT1. In Special Fully Nested Mode, a request from an interrupt
source is serviced even if its In-Service Bit is set.

In Cascade Mode, up to eight external interrupts share a single interrupt pin under the control
of an 8259A. Special Fully Nested Mode allows the priority structure of the 8259A to be
maintained. For example, let’s assume the CPU is currently servicing a low priority interrupt
from the 8259A. While the interrupt handler is executing, the 8259A receives a higher priority
interrupt from one of its sources. The 8259A applies its own priority criteria to that interrupt
and asserts its interrupt pin to the Interrupt Control Unit. Special fully Nested Mode would
allow that 8259A interrupt to be serviced even though the In-Service Bit is already set for that
interrupt source. A higher priority interrupt has preempted a lower priority interrupt therefore
fully maintaining interrupt nesting.

Special Fully Nested Mode can still be used without Cascade Mode. This allows a single
external interrupt pin, (either INTO or INT1) to preempt itself.

8.3.4. INTERRUPT ACKNOWLEDGE SEQUENCE

During the interrupt acknowledge sequence, the Interrupt Control Unit passes the interrupt
type to the CPU. The CPU then multiplies the interrupt type by four to get the interrupt vector
address in the interrupt vector table. See Section 2.3.1.

8-8




intel. INTERRUPT CONTROL UNIT

The interrupt types for all the sources are fixed and unalterable (see Table 8.2). The Interrupt
Control Unit passes these types to the CPU internally. The first external indication of the
interrupt acknowledge sequence will be the CPU fetching from the interrupt vector table.

Table 8.2. Fixed Interrupt Types

Interrupt Name Interrupt Type

Timer 0 8
Timer 1 18
Timer 2 19
DMAO 10
DMAT1 11

" INTO 12
INT1 13

INT2 14

INT3 15

In Cascade Mode, the external 8259A supplies the interrupt type to the CPU. Therefore, the
CPU runs an external interrupt acknowledge cycle (see Section 3.5.3) to fetch the interrupt -
type from the 8259A.

8.3.5. POLLING

In some applications, it is desirable to poll the Interrupt Control Unit. The CPU asks or polls,
the Interrupt Control Unit for any pending interrupts. The user can then service interrupts
whenever it is convenient. The Interrupt Control Unit has the Poll and Poll Status Registers to
support polling.

By reading the Poll Register, the user gets the type of the highest priority pending interrupt.
Now the user must call that interrupt handler. Reading the poll register also acknowledges the
interrupt. The specific bit in the Request Register is cleared and the bit in the In-Service
Register is set. The Poll Status Register has the same format as the Poll Register. Reading the
Poll Status Register does not acknowledge the interrupt.

8.3.6. EDGE AND LEVEL TRIGGERING

The external interrupt pins (INT3-0) are programmable for either edge or level triggering.
Both types of triggering are active high.

Edge triggering is defined as a zero to one transition on an external interrupt pin. The pin must
remain high until after the CPU acknowledges the interrupt. The external interrupt pin must go
low again to reset the edge detect circuitry (see the data sheet for timing information). No
further interrupts will occur unless the external interrupt pin goes low after being
acknowledged.

8-9



intel. INTERRUPT CONTROL UNIT

Level triggering is defined as a valid logic one on the external interrupt pin. The logic one
must remain until after the CPU acknowledges the interrupt. Unlike edge triggering, level
triggering will continue to generate interrupts if the pin remains high. A level triggered
external interrupt pin must be deasserted before the EOI command or another interrupt occurs.

8.3.7. ADDITIONAL LATENCY AND RESPONSE TIME OF MASTERV MODE

The Interrupt Control Unit adds five clocks to the interrupt latency of the CPU. The Interrupt
Control Unit also adds an extra 13 clocks to the interrupt response time when the Cascade
Mode is used because the interrupt acknowledge bus cycles must be run. (See Figure 8.3).

Section 2.3.3 defines the interrupt latency and interrupt response time of the 80C186 Modular
CPU.

INTERRUPT PRESENTEDTO F'f’f;‘s
INTERRUPT CONTROL UNIT .
INTERRUPT PRESENTEDTO . . . >
CPU INTA 4
IDLE 2 CASCADE
INTA . MODE ONLY
IDLE 5
READ IP 4
IDLE 3 (5 IF NOT CASCADE MODE)
READ CS 4
IDLE 4
PUSH FLAGS 4
IDLE 3
PUSH CS 4
PUSH IP 4
FIRST INSTRUCTION FETCH IDLE 5

FROM INTERRUPTROUTINE =~~~ =~~~ =~ "~ >

Total 55

- Figure 8.3. Interrupt Control Unit Latency and Response Time

8-10




In‘tel® INTERRUPT CONTROL UNIT

8.4. MASTER MODE INTERRUPT UNIT PROGRAMMING

The Peripheral Control Block map of the Interrupt Control Unit registers in Master Mode is
shown in Table 8.3.

Table 8.3. Interrupt Control Unit Registers in Master Mode

Register Name Offset Address
INT3 Control Register 3EH
INT2 Control Register 3CH
INT1 Control Register 3AH
INTO Control Register 38H
DMA1 Control Register 36H
DMAO Control Register 34H
Timer Control Register 32H
Interrupt Status Register 30H
Interrupt Request Register 2EH
In-Service Register 2CH
Pribrity Mask Register 2AH
Interrupt Mask Register 28H
Poll Status Register 26H
Poll Register 24H
EOI Register 22H

8.4.1. INTERRUPT CONTROL UNIT REGISTER DEFINITIONS

The following sections define the bit-level functionality of the individual Interrupt Control
Unit Registers.

8-11



intgl. INTERRUPT CONTROL UNIT

8.4.1.1. INTERRUPT CONTROL REGISTERS

Each interrupt source has its own Interrupt Control Register (See Figures 8.4-8.6). Each
Interrupt Control Register has three bits which can be programmed with the priority level for
the interrupt source (see Figure 8.4). Also, each register has a mask bit which enables the
interrupt source. The mask bit is the same bit in the Interrupt Mask Register. Modifying one
bit in either register also modifies the other bit.

Register Name: Interrupt Control Register (Internal Sources)
Register Mnemonic: TCUCON, DMAOCON, DMA1CON
Register Function: Control Register for the internal interrupt sources.

15 ‘ 0

P
M
0

BIT RESET

MNEMONIC BIT NAME | STATE FUNCTION
MSK Interrupt 1 Cleared to enable interrupts from this source.
Mask

PM2:0 Priority Level 111 Sets the priority level for this source.
Field

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to insure compatibility with future Intel products.

Figure 8.4. Interrupt Control Register Template for Internal Sources

Each Interrupt Control Register for the external interrupt pins also has a LVL bit (see Figure
8.5). The LVL bit selects between Level-triggered and Edge-triggered mode for the
corresponding external interrupt pin. In Edge-triggered Mode, a low to high transition causes
the interrupt. The pin must remain low at least one clock before the low to high transition. The
interrupt pin must still must remain asserted until the CPU acknowledges the interrupt.
Otherwise, the interrupt is lost.

In Level-triggered Mode, an interrupt pin left asserted after the EOI causes another interrupt.

Level-triggered Mode is useful when interrupt requests are wire-ORed to a single interrupt
pin.

8-12



intgl. INTERRUPT CONTROL UNIT

Register Name: Interrupt Control Register (Non-cascadable
external pins)

Register Mnemonic: [2CON, ISCON

Register Function: Control Register for non-cascadable
external interrupt pins.

0
M|P|P|P
S/ MMM
K|l2|1]0
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
LvL Level-trigger 0 0 = Edge-triggered mode
1 = Level-triggered mode
MSK Interrupt 1 Cleared to enable interrupts from this source.
Mask
PM2:0 Priority Level 111 Sets the priority level for this source.
Field

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to insure compatibility with future Intel products.

Figure 8.5. Interrupt Control Register Template for
Non-Cascadeable Interrupt Pins

Level-triggered mode must be used when external 8259As are cascaded into the Interrupt
" Control Unit.

To support external 8259As, the INTO and INT1 Interrupt Control Registers have the CAS and

SFNM bits (see Figure 8.6). The CAS bit enables Cascade Mode operation and the SFNM bit
enables the Special Fully Nested Mode.

8-13



intel.

INTERRUPT CONTROL UNIT

Register Name:

Register Mnemonic:
Register Function:

Interrupt Control Register (Cascadable
external pins)

IOCON, I1CON

Control register for the cascadable external
interrupt pins.

0
S|C|L M| P |P P
F|lA|V S MMM
N|[S | L Kl2|1]0
M
BIT : RESET )
MNEMONIC BIT NAME | STATE FUNCTION
SFNM Special Fully 0 Set to enable Special Fully Nested Mode.
Nested Mode
CAS Cascade 0 Set to enable Cascade Mode.
Mode
LVL Level-trigger 0 0 = Edge-trigger mode
1 = Level-trigger mode
MSK Interrupt 1 Cleared to enable interrupts from this Source.
Mask
PM2:0 Priority Level | - 111 Sets the priority level for this interrupt source.
Field

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be wntten toa
logic zero to insure compatibility with future Intel products.

Figure 8.6. Interrupt Control Register Template for Cascadeable Interrupt Pins

8.4.1.2. THE INTERRUPT REQUEST REGISTER

The Interrupt Request Register has seven bits, one for each interrupt source (see Figure 8.7).
When an interrupt occurs, the corresponding bit is set in the Interrupt Request Register. The
bit is set whether the interrupt is masked or unmasked. The bit is cleared when the interrupt is

acknowledged.

814



intel. INTERRUPT CONTROL UNIT

Register Name: Interrupt Request Register
Register Mnemonic: REQST
Register Function: Stores pending interrupt requests.

0
| | D|D T
N | N M| M M
T| T Al A R
110 10
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
INT3:0 External 0 When set, the corresponding INT pin has an
Interrupts interrupt pending.
DMA1:0 DMA 0 DMA channel interrupt requests. When set, the
Interrupts corresponding DMA channel has an interrupt
pending.
TMR Timer 0 Timer/Counter Unit interrupt request. When set,
Interrupt the TCU has an interrupt pending.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.7. Interrupt Request Register

For the external interrupt pins, the request must remain asserted until the interrupt is
acknowledged. Otherwise, that bit in the Interrupt Request Register will be cleared and the
interrupt will not be serviced.

8.4.1.3. INTERRUPT MASK REGISTER

The Interrupt Mask Register contains a mask bit for each interrupt source (see Figure 8.8). The
bit for an interrupt source is the same as the mask bit in the Interrupt Control Register. The
Interrupt Mask Register may be read or written.

8-15



intgl.  INTERRUPT CONTROL UNIT

Register Name: Interrupt Mask Register
Register Mnemonic: IMASK
Register Function: Masks individual interrupt sources.

0
I | | | D|D T
N|[N|N|N MM M
T T |T|T Al A R
3,210 10
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
INT3:0 External 1111 | Set to mask interrupt requests from the
ilterrupts corresponding INT pin.
DMA1:0 DMA 11 Set to mask interrupt requests from the
Interrupts corresponding DMA channel.
TMR Timer 1 Set to mask interrupt requests from the
Interrupt Timer/Counter Unit.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to insure compatibility with future Intel products.

Figure 8.8. Interrupt Mask Register

8.4.1.4. PRIORITY MASK REGISTER

The Priority Mask Register (see Figure 8.9) indicates the lowest interrupt priority that will be
serviced. Any interrupts with a lower priority will be masked. After reset, the Priority Mask
Register is set to the lowest priority (seven) to enable interrupts of any priority.

8-16



intgl. INTERRUPT CONTROL UNIT

Register Name: Priority Mask Register
Register Mnemonic: PRIMSK
Register Function: Masks all interrupts with a lower priority.

0
P|P|P
M M| M
2 |1 0
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
PM2:0 Priority Mask 111 Interrupts with a lower priority than PM2:0 will
Field not be serviced.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to insure compatibility with future Intel products.

Figure 8.9. Priority Mask Register

8.4.1.5. IN-SERVICE REGISTER

The In-Service Register (see Figure 8.10) has a bit for each interrupt source. The bits indicate
which source’s interrupt handlers are executing. The bit in the In-Service Register is set when
the interrupt is acknowledged. The bit is then cleared at the end of the interrupt handler by the
End-Of-Interrupt (EOI) command.

The Interrupt Control Unit uses the In-Service Register to support interrupt nesting.

8-17



Inte|° _ INTERRUPT CONTROL UNIT

Register Name: In-Service Register
Register Mnemonic: INSERV
Register Function: Indicates which interrupt handlers are

currently in process.

l l | | D|D
N|N|N|N M M
T|T|T|T A|A
3/2|1]0 1,0
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
INT3:0 External 0 When set, the corresponding INT pin’s interrupt
Interrupts request is in-service.
DMA1:0 DMA 0 When set, the corresponding DMA interrupt
Interrupts request is in-service.
TMR Timer 0 When set, the corresponding Timer interrupt
Interrupt request is in-service.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.10. In-Service Register

8.4.1.6. POLL AND POLL STATUS REGISTERS

The Poll and Poll Status Registers (see Figures 8.11 and 8.12) support polling the Interrupt
Control Unit. They indicate an interrupt is pending and also the type of the highest priority
pending interrupt. The programmer reads these registers to service interrupts through software.

The Poll Register and Poll Status Register both contain the same information. If an interrupt of

sufficient priority is pending, the IREQ bit is set and the hlghest priority vector type is
contained in bits VT4:0.

8-18



intgl. INTERRUPT CONTROL UNIT

Register Name: Poll Register
Register Mnemonic: POLL
Register Function: Read to check for pending interrupts when

polling.
15 R ) 0
! Vi V|V |V
R T|T|T | T
E 32|10
Q
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
IREQ Interrupt 0 Set if an interrupt is pending.
Request
VT4:0 Poll Status 0 Indicate the type of the highest pending
interrupt. Reading the Poll Register
acknowledges highest pending interrupt.

NOTE: Reserved register bits are shown with gray’ shading. Reserved bits must be written to a
logic zero to insure compatibility with future Intel products.

Figure 8.11. Poll Register

Reading the Poll Register acknowledges the pending interrupt the same as if the CPU had
started the interrupt vectoring sequence. The processor will not actually run any interrupt
acknowledge sequence or fetch the vector from the vector table. The user has the
responsibility to use this information and execute the proper routine to service the interrupt.
The Interrupt Control Unit updates the Interrupt Request, In-Service, Poll and Poll Status
Registers the same as in the normal interrupt acknowledge sequence.

The Poll Status Register may be read to get the same information as the Poll Register.

However, the interrupt is not actually acknowledged and none of the other registers in the
Interrupt Control Unit will be modified.

8-19



intel.

INTERRUPT CONTROL UNIT

Register Name:

Register Mnemonic:

Register Function:

15

Poll Status Register
POLLSTS

Read to check for pending interrupts when polling.

0
VI V]|V
T T | T
2,10

BIT RESET
- MNEMONIC BIT NAME | STATE FUNCTION
IREQ Interrupt 0 Set if an interrupt is pending.
Request )
VT4:0 Poll Status 0 Indicate the type of the highest pending
interrupt. Reading the poll status register will
NOT acknowledge the interrupt.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to insure compatibility with future Intel products.

Figure 8.12. Poll Status Register

8.4.1.7. END-OF-INTERRUPT REGISTER

The End-Of-Interrupt Register (see Figure 8.13) is used to issue the EOI (End-Of-Interrupt)
command to the Interrupt Control Unit. The EOI command is usually issued at the end of an

interrupt handler and clears the bit in the In-Service Register.

There are two types of EOIs, specific and non-specific. A non-specific EOI simply clears the
In-Service bit of the highest priority interrupt. A non-specific EOI is performed by writing a

word to the End-Of-Interrupt Register with the NSPEC bit set (8000H).

8-20




lntelﬂ INTERRUPT CONTROL UNIT

Register Name: End of Interrupt Register
Register Mnemonic: EOI
Register Function: Used to issue the EOl command.

15 0
N ViV |V |V
S T|T|T|T
P 3210
E
C
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
NSPEC Non-specific 0 Set to issue a non-specific EOI.
EOI
VT4:0 Interrupt Type 0 Specifies the interrupt type when issuing a
Number specific EOL.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to insure compatibility with future Intel products.

Figure 8.13. End-Of-Interrupt Register

A specific EOI clears a particular bit in the In-Service Register. To perform a specific EOI,
write a word to the End-Of-Interrupt Register with the interrupt type in bits VT4:0 of the In-
Service bit to be cleared. The NSPEC bit must be cleared when issuing specific EOI
command.

The timer interrupts share a bit in the In-Service Register. Write the interrupt type 8 to the
End-Of-Interrupt Register to clear any timer interrupt with a specific EOL

8.4.1.8. INTERRUPT STATUS REGISTER

All three timer interrupts share a single interrupt source. The Interrupt Status Register
distinguishes between the interrupts which share an interrupt source (see Figure 8.14). The bits
in the Interrupt Status Register are cleared when the interrupt request is acknowledged. More
than one of these bits may be set at a time.

8-21



intgl. INTERRUPT CONTROL UNIT

Register Name: Interrupt Status Register
Register Mnemonic: INTSTS
Register Function: Indicates which interrupt(s) is(are) pending for

those interrupts which share a source.

15 0
D T|IT|T
H M| MM
L R/ R|R
T 2,1 |0
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
DHLT DMA Halt 0 Set to prevent any DMA activity.
TMR2:0 Timer 0 Set when a timer has an interrupt request
Interrupts pending.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to insure compatibility with future Intel products.

Figure 8.14. Interrupt Status Register

8.4.2. INTERRUPT CONTROL UNIT INITIALIZATION SEQUENCE

To initialize the Interrupt Control Unit, follow these steps:

1. Determine which interrupt sources will be utilized.
2. Determine if the default priority scheme will be used or figure out your own priority.
3. Initialize the Interrupt Control Registers for all used interrupt sources.

A. For the external interrupt pins, determine whether edge or level triggered will be
used.

B. For either INTO or INT1 determine whether The Cascade Mode and/or the Special
Fully Nested Mode will be used.

C. If using your own priority scheme, program the priority levels.
4. Initialize the Priority Mask Register if seven is too low a priority for your application.
Unmask all desired interrupt sources with the Interrupt Mask Register.

6. Set the Interrupt Enable bit by executing the STI instruction.

8-22



intgl. INTERRUPT CONTROL UNIT

8.4.3. MASTER MODE INITIALIZATION EXAMPLE

The following example shows how to initialize the Interrupt Control Unit.

Smodl186
name example_80186_ICU_initialization

;This routine configures the interrupt controller to provide
;two cascaded interrupt inputs (through an external 8259A
;connected to INTO and INTAO#) and two direct interrupt inputs
;connected to INT1 and INT3. The default priorities are used.

;The example assumes that the register addresses have been
;properly defined.

’

code segment
assume cs:code
set_int_ proc near
push dx
push ax
mov ax,0100111B :Cascade Mode
mov dx, IOCON ; INTO Control Register
out dx, ax
mov ax,01001101B ;Unmask INT1 and INT3
mov dx, IMASK
out dx, ax
pop ax
pop dx
ret
set_int_ endp
code ends
end

Example 8.1. Initializing The Interrupt Control Unit

8.5. SLAVE MODE

Although Master Mode is the most common mode used in the Interrupt Control Unit, Slave
Mode has some unique features that make it useful in larger system designs. In Slave Mode,
an external 8259A acts as the master interrupt controller. The 8259A now controls the
maskable interrupt input to the CPU. The Interrupt Control Unit acts as an interrupt input to
the 8259A. In simplest terms, the Interrupt Control Unit behaves like a cascaded 8259A to the
master 8259A (See Figure 8.15).

8-23




INTERRUPT CONTROL UNIT

INTO ” INT
(1Y 8259A/
INTA# 82C59A
INTA#
80186
MODULAR ll
CORE
CASCADE
SELECT# ADDRESS
DECODE
IRQ

Figure 8.15. Interrupt Control Unit In Slave Mode

TIMER TIMER TIMER DMA DMA

et

INTERRUPT
PRIORITY
RESOLVER

VECTOR

GENERATION
TO EXTERNAL 8259A LoGIC
INTERRUPT REQUEST
E-BUS

Figure 8.16. Interrupt Sources In Slave Mode

8-24




'“telw INTERRUPT CONTROL UNIT

8.5.2. SLAVE MODE PROGRAMMING

Slave Mode adds one new register. Most of the registers retain the same functionality as in
Master Mode. Many of the bit positions have changed, to account for each timer interrupt now
being its own source to the Interrupt Control Unit. The register positions in the Peripheral
Control Block have also changed (See Table 8.4).

8.5.2.1. INTERRUPT VECTOR REGISTER

The Interrupt Vector Register (see Figure 8.17) is the additional register in Slave Mode. In
Slave Mode, the interrupt vector types are programmable. While in Master Mode, the interrupt
vector types are fixed and unalterable. The Interrupt Vector Register specifies the five most
significant bits of the interrupt vector type. The three least significant bits are fixed according
to Table 8.5.

Table 8.4. Interrupt Control Unit Registers In Slave Mode

Register Name Offset Address
Timer 2 Control Register 3AH
Timer 1 Control Register 38H
DMAT1 Control Register 36H
DMAQO Control Register 34H
Timer 0 Control Register 32H
interrupt Status Register 30H
Interrupt Request Register 2EH
In-Service Register 2CH
Priority Mask Register 2AH
Interrupt Mask Register 28H
EOI Register 22H
Interrupt Vector Register 20H

Table 8.5. Slave Mode Interrupt Type Bits

Interrupt Source Type bits 2-0
Timer 0 000
(reserved) 001
DMAO 010
DMA1 011
Timer 1 100
Timer2 101

8-25



intgl. INTERRUPT CONTROL UNIT

Register Name: Interrupt Vector Register (Slave Mode)

Register Mnemonic: INTVEC

Register Function: Sets the five most significant bits of the
interrupt types for the mterrupt sources in

Slave Mode.
0
T T | T |T
31210
BIT RESET
MNEMONIC BIT NAME | STATE ~ FUNCTION
T4:0 Interrupt Type 0 Sets the five most significant bits of the interrupt
Field types for the internal sources.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to insure compatibility with future Intel products.

Figure 8.17. Interrupt Vector Register

8.5.2.2. END-OF-INTERRUPT REGISTER

The End-Of-Interrupt Register (see Figure 8.18) retains the same function in Slave Mode.
However, only specific EOIs can be issued to the Interrupt Control Register in Slave Mode.
Non-specific EOIs are not supported. To clear an In-Service Bit in Slave Mode, write the three
least significant bits of the interrupt type to VT2:0 in the End-Of-Interrupt Register.

8.5.2.3. OTHER REGISTERS IN SLAVE MODE

The Interrupt Control, Interrupt Request, Interrupt Mask, In-Service and Interrupt Status
Registers all retain the same functionality in Slave Mode as in Master Mode. The individual
bits are different to account for the addition of the separate timer sources and the deletion of
the external interrupt pins (see Figure 8.19).

The Priority Mask Register maintains the exact function and bit definitions in Slave Mode as
in Master Mode.

The Poll and Poll Status Registers are not supported in Slave Mode.

8-26



intel.

INTERRUPT CONTROL UNIT

Register Name:
Register Mnemonic:
Register Function:

End of Interrupt Register (Slave Mode)
EOI
Used to issue the EOl command in Slave
Mode.

o Ha<

BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
VT2:0 Interrupt Type 0 Write three LSBs of the interrupt type to VT2:0 to
Number issue an EOI in Slave Mode.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to insure compatibility with future Intel products.

Figure 8.18. End-Of-Interrupt Register In Slave Mode

»DZ A
-3=ZHA
o»zO

=->»=Z0

Figure 8.19. Other Registers In Slave Mode

8.5.2.4. INTERRUPT VECTORING IN SLAVE MODE

The external 8259A acts as the master interrupt contyroller in Slave Mode. Therefore, interrupt
acknowledge cycles must be run for every interrupt. This includes any interrupts from the
integrated peripherals. During the first interrupt acknowledge cycle, the external 8259A
determines which slave interrupt controller has the highest priority interrupt request. The
external 8259A then drives the address of that interrupt controller onto its CAS2:0 pins (see
Figure 8.20). External logic must decode the correct slave address of the Interrupt Control

Unit from the CAS2:0 signals to drive the SELECT pin.

8-27




intgl. INTERRUPT CONTROL UNIT

v T4 0 T2 T30 T4  Ti v Ti v T1 0 T2 T3 T4

2.
>

S0852 i INTA i

v
'
1
'
i
[l
I
'
'
'
'

—

\

INTAO | E E ! E E E E :
secect 4\ s L) L
[OCK — : 5 : E 5 ‘ / ; ; ;
CAS20 | . i sLAVE CASCADE ADDRESS FROM 82594 |
NOTES:
1. INT1/SELECT HAS THE SELECT FUNCTION IN SLAVE MODE
2. INT2/INTAO HAS THE INTAO FUNCTION IN SLAVE MODE
3. CASCADE ADDRESS IS DRIVEN BY THE EXTERNAL 8259A
4. SELECT MUST BE DRIVEN BEFORE PHASE 2 OF T2 OF THE SECOND INTA
5. SELECT READ BY PROCESSOR
6. ALE IS GENERATED FOR EACH INTA
7. RD IS INACTIVE

Figure 8.20. Interrupt Vectoring In Slave Mode

The SELECT pin is used as the slave-select input to the Interrupt Control Unit. During the
second interrupt acknowledge cycle, the slave interrupt controller with the highest priority
transfers the interrupt type to the CPU of its highest priority interrupt. If the Interrupt Control
Unit is selected, it passes the interrupt type internally to the CPU. However, the interrupt
acknowledge cycle still must be run for the benefit of the external 8259A.

External interrupt acknowledge cycles must be run for every maskable interrupt. Therefore,
the interrupt response time for every interrupt will be 55 clocks. This is shown in Figure 8.21.

8-28




lnte|” INTERRUPT CONTROL UNIT

INTERRUPT PRESENTED TO
INTERRUPT CONTROL UNIT

INTERRUPT PRESENTED TO
EXTERNAL 82C59A

FIRST INSTRUCTION FETCH
FROM INTERRUPT ROUTINE

INTA
IDLE
READ IP
IDLE
READ CS
IDLE
PUSH FLAGS
IDLE
PUSH CS
PUSH IP
IDLE

Total 55

A R W R A AW R OSSN

Figure 8.21. Slave Mode Interrupt Response Time

8-29







Timer/Counter Unit







CHAPTER 9
TIMER / COUNTER UNIT

The Timer/Counter Unit can be used in many applications. Some of these applications include:
a real-time clock, a square-wave generator and o digital one-shot.” All of these can be
implemented in a system design. A real-time clock can be used to update time-dependent
memory variables. A square-wave generator can be used to provide a system clock tick for
peripheral devices. Code examples configuring the Timer/Counter Unit to function as a real-
time clock, a square-wave generator, and a digital one-shot are provided in Section 9.4.

TMRINO TMRIN 1
TRANSITION TRANSITION
LATCH/ LATCH/
SYNCHRONIZER | |SYNCHRONIZER

L |
Y ¥

TIMER 0
<> IR —>loutpuT LATCH -3 JTMROUT 0
CPU TIMER 1 COUNTER
<> pecisTERS [€2] ELEMENT
TIMER2 |3 L3 |OUTPUT LATCH —)D TMR OUT 1
REGISTERS
cfopgK—j |__) INTERRUPT
LATCH

Figure 9.1. Timer/Counter Unit Block Diagram

9.1. FUNCTIONAL OVERVIEW

The Timer/Counter Unit is composed of three independent 16-bit timers (see Figure 9.1).
These timers operate independently of the CPU. The internal Timer/Counter Unit can be
modeled as a single counter element, time multiplexed to three register banks. The unit is
serviced over 4 clock periods, one timer during each clock with an idle clock at the end (see
Figure 9.2). No connection exists between the counter element’s sequencing through timer
register banks and the Bus Interface Unit’s sequencing through T-states. Timer operation and




intgl. TIMER/COUNTER UNIT

bus interface operation are asynchronous. This time multiplexed scheme results ina 2 1/2to 6
1/2 CLKOUT period delay from timer input to timer output.

The register banks are dual-ported between the counter element and the CPU. During a given
bus cycle, the counter element and CPU may both access the register banks. Counter element
and CPU accesses to the register banks are synchronized.

TIMER 0 TIMER 1 TIMER 2 TIMER 0 TIMER 1 TIMER 2 TIMER 0
SERVICED ~ SERVICED  SERVICED DEAD  SERVICED ~ SERVICED  SERVICED DEAD SERVICED
i — —— p—— i —  f——— o ——— p——

TMRINO

€O
TMRIN 1

TMR OUT 0 xX {

\
TMR OUT 1 XX

NOTES: 1. TMR IN 0 resolution time (setup time met).
2. TMR IN 1 resolution time (setup time not met).
3. Modified count value written into Timer 0 count register.
4. Modified count value written into Timer 1 count register.
5. TMR IN 1 resolution time.

Figure 9.2. Countér Element Multiplexing and Timer Input Synchronization

Each timer keeps its own running count and has a user-defined maximum count value. Timers
0 and 1 can use one maximum count value (single maximum count mode) or two alternating
maximum count values (dual maximum count mode). Timer 2 can only use one maximum
count value. The control register for each timer determines the counting mode to be used.
When a timer is serviced, its present count value is incremented and compared to the
maximum count for that timer. If these two values match, the count value resets to zero. The
timers can be configured to either stop after a single cycle or run continuously.

9-2




TIMER/COUNTER UNIT

EXTERNAL
CLOCKING
?

(EX:T=1)

RETRIGGER
?

(RTG=1)

NO TIMER INPUT

AT HIGH LEVEL
?

(PRE=1)

LAST SERVICE
STATE
?

PRESCALER ON

LOTOHI

TRANSITION \_YES CLEAR COUNT
ON INPUT PIN SINCE REGISTER
LAST SERVICE ¢
SET TIMER
RUNNING FLAG

IS
TIMER RUNNING
FLAG SET
?

INCREMENT
COUNTER

NO

LOTOHI

TRANSITION

ON INPUT PIN SINC

ST SERVIC|
?

YES

CONTINUED
A

Figure 9.3(a). Timers 0 and 1 Flow Chart

9-3




intgl. TIMER/COUNTER UNIT

NO
(USE "B")

USING
MAXCOUNT A
?

(RIU-0)

COUNTER =
COMPARE "A"
?

COUNTER =
COMPARE "A"
?

COUNTER =
COMPARE 'B"
?

NO

PULSE TOUT PIN
LOW FOR 1 CLOCK

SET RIUBIT CLEARRIUBIT
TOUT PIN DRIVEN LOW TOUT PIN DRIVEN HIGH

CONTINUOUS
MODE ?

(CONT=1) CONTINUOUS

MODE ?
(CONT+1)

CLEAR ENABLE BIT
(STOP COUNTING) CLEAR ENABLE BIT

(STOP COUNTING)

REQUEST
INTERRUPT

CLEAR
COUNTER

Figure 9.3(b). Timers 0 and 1 Flow Chart (Continued)




intgl. TIMER/COUNTER UNIT

Timers 0 and 1 are functionally identical. Each has a latched, synchronized input pin and a
single output pin. Each timer may be clocked internally or externally. Internally, the timer may
increment at either 1/4 CLKOUT frequency or be prescaled by Timer 2. If a timer is prescaled
by Timer 2, when Timer 2 reaches its maximum count value, the timer increments. When
configured for internal clocking, the Timer/Counter Unit uses the input pins to either enable
timer counting or retrigger the associated timer. Externally, a timer will increment on LOW-
TO-HIGH transitions on its input pin (up to 1/4 CLKOUT frequency). A flow chart for Timer
0 and 1 operation is given in Figures 9.3(a) and 9.3(b).

Timers O and 1 each have a single output pin. Timer output can be either a single pulse,
indicating the end of a timing cycle, or a variable duty cycle wave. These two output options
correspond to single maximum count mode and dual maximum count mode, respectively (see
Figure 9.4). Interrupts can be generated at the end of every timing cycle.

Timer 2 has no input or output pins and may only be operated in single maximum count mode.
It may be used as a free-running clock and a prescaler to Timers 0 and 1. Timer 2 can only be
clocked internally, at 1/4 CLKOUT frequency. Timer 2 can also generate interrupts at the end
of every timing cycle.

MAXCOUNT A MAXCOUNT B

- ——

DUAL MAXIMUM
COUNT MODE
ONE CPU
MAXCOUNT A CLOCK
—— ——— pr——
SINGLE MAXIMUM [
COUNT MODE

Figure 9.4. Timer/Counter Unit Output Modes

9.2. PROGRAMMING THE TIMER/COUNTER UNIT

Each timer has three registers: a Timer Control register (see Figures 9.5 and 9.6), a Timer
Count register (see Figure 9.7) and a Timer Maxcount Compare register (see Figure 9.8).
Timers O and 1 also have access to an additional Maxcount Compare register. The Timer
Control register controls timer operation. The Timer Count register holds the current timer
count value. The Maxcount Compare register holds the maximum timer count value.

9-5




intgl. TIMER/COUNTER UNIT

Register Name: Timer 0 and 1 Control Registers
Register Mnemonic: TOCON, T1CON
Register Function: Defines Timer O and 1 operation.

15 0
E | I I | R PIE|A]|C
N[ N|N/|I X|L|O
H{T U T|T|N
T
BIT RESET .
MNEMONIC BIT NAME | STATE FUNCTION

EN Enable 0 If set, the timer is enabled. This bit cannot be written to
unless the INH bit is set.

INH Inhibit X If set, writes to the Enable bit are allowed. If clear,
writes to the Enable bit are ignored. This bit is not
stored and is always read as zero.

INT Interrupt X If set, an interrupt request is generated when the
Count register equals a maximum count. If clear, the
timer will not issue interrupt requests.

RIU Register In X If set, Maxcount Compare register B is being used. If

Use clear, Maxcount Compare register A is being used.

MC Maximum X If set, counter has reached a maximum count. If clear,

Count counter has not reached a maximum count.

RTG Retrigger X If set, 0 to 1 edge on TMR INx resets count. If clear,

‘ high input enables counting. This bit is ignored with
external clocking (EXT=1).

P Prescaler X If set, timer is prescaled by Timer 2. If clear, timer
counts 1/4 CLKOUT. This bit is ignored with external
clocking (EXT=1).

EXT External X If set, use external clock. If clear, use internal clock.

Clock
ALT Alternate X If set, count to Maxcount Compare A, reset Count
Compare register to zero, count to Maxcount Compare B, reset
Register Count register to zero again. If clear, count to
Maxcount Compare A and reset Count register to zero.
CONT Continuous X If set, timer runs continuously. If clear, EN is cleared
Mode after each timer counting sequence.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a logic
zero to insure compatibility with future Intel products.

Figure 9.5. Timer 0 and Timer 1 Control Registers

9-6




intel.

TIMER/COUNTER UNIT

Register Name:

Register Mnemonic:

Register Function:

Timer 2 Control Register
T2CON
Defines Timer 2 operation.

15
E | I |
N|N|N
H|T
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION

EN Enable 0 If set, the timer is enabled. If clear, the timer is
disabled. This bit cannot be written to unless the
INH bit is set.

INH Inhibit X If set, writes to the Enable bit are allowed. If
clear, writes to the Enable bit are ignored. This
bit is not stored and is always read as zero.

INT Interrupt X If set, an interrupt request is generated when the
Count register equals a maximum count. If clear,
the timer will not issue interrupt requests.

MC Maximum X If set, counter has reached a maximum count. If

Count clear, counter has not reached a maximum
count. This bit must be cleared by the user after
maximum count is reached.

CONT Continuous X If set, timer runs continuously. If clear, EN is

Mode cleared after each timer counting sequence.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 9.6. Timer 2 Control Register

9.2.1. INITIALIZATION
When initializing the Timer/Counter Unit, the following sequence is suggested:

If timer interrupts will be used, program interrupt vectors into the Interrupt Vector Table.

2. Clear the Timer Count register.
Set Timer Maxcount Compare register to maximum count value. Make sure to program
Maxcount Compare A and B if dual maximum count mode is used.

4. Program Timer Control register to enable timer.

9-7



intgl. TIMER/COUNTER UNIT

Register Name: Timer Count Register
Register Mnemonic: TOCNT, TICNT, T2CNT
Register Function: Contains the current timer count.
15 ‘ ‘ 0
JTFT‘T]T TTTT‘TTTT T|T|T|7T
cic ,Cc,|cC c|c|C|C c|c|Cc|C c| c|Cc|cC
101 1|1 11198 ‘7 6| 5/ 4(/3[2|1]0
5|4|3]|2 1,0 '
L \
BIT RESET
MNEMONIC | BITNAME | STATE FUNCTION
TC15:0 Timer Count | XXXXH | Register contains the current count of the
Value associated timer.

NOTE: Reserved register bits are shown with giray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 9.7. Timer Count Registers

Register Name: Timer Maxcount Compare Register
Register Mnemonic: TOCMPA, TOCMPB, TICMPA, TICMPB, T2CMPA
Register Function: Contains timer maximum count value.
15 ‘ . , [ 0
‘T}T‘.T‘@‘T‘T\TTTHT[T‘T THT TJTT
IC’CrC[C clclclc c{ccc,cc_cc
.11;13‘1‘1198"7 6\54[3 2’10
(5’4[3(2“1}0 H } [ /
| | ‘ i I { ‘
BIT RESET
MNEMONIC | BIT NAME | STATE FUNCTION
TC15:0 Timer XXXXH | Register contains the maximum value a timer
Compare will count to before resetting its Count register to
Value zero.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products. )

Figure 9.8. Timer Maxcount Compare Registers

The programmer must clear the Timer Count register before enabling the timer because the
count register is undefined at reset. This ensures counting begins at zero.



intgl. TIMER/COUNTER UNIT

When using Timer 2 to prescale another timer, Timer 2 should be enabled last. If Timer 2 is
enabled first, it will be at an unknown point in its timing cycle when the timer to be prescaled
is enabled. This results in an unpredictable duration of the first timing cycle for the prescaled
timer.

9.2.2. CLOCK SOURCES

The 16-bit Timer Count register increments once for each timer event. A timer event can be a
LOW-to-HIGH transition on a timer input pin (Timers 0 and 1), a pulse generated every fourth
CPU Clock (all timers) or a time-out of Timer 2 (Timers 0 and 1). Up to 65536 (21) events
may be counted.

Timers 0 and 1 can be programmed to count LOW-TO-HIGH transitions on their input pins as
timer events by setting the External (EXT) bit in their control registers. Transitions on the
external pin are synchronized to the CPU clock before being presented to the timer circuitry.
The timer counts transitions on this pin. The input signal must go LOW, then HIGH, to cause
the timer to increment. The maximum count-rate for the timers is 1/4 the CPU clock rate
(measured at CLKOUT) because the timers are only serviced once every four clocks.

All timers can use transitions of the CPU clock as timer events. For internal clocking, the
timer increments every fourth CPU clock due to the counter element’s time-multiplexed
servicing scheme. Timer 2 may only use the internal clock as a timer event.

Timers 0 and 1 can also use Timer 2 reaching its maximum count as a timer event. In this
configuration, Timer 0 or Timer 1 increments each time Timer 2 reaches its maximum count.
See Table 9.1 for a summary of clock sources for Timers 0 and 1.

Timer 2 must be initialized and running in order to increment values in other
timer/counters.

Table 9.1. Timer 0 and 1 Clock Sources

EXT P CLOCK SOURCE
0 0 Timer clocked internally at 1/4 CLKOUT
frequency.
0 1 Timer clocked internally, prescaled by Timer 2.
1 X Timer clocked externally at up to 1/4 CLKOUT
frequency.

9.2.3. COUNTING SEQUENCE

All timers have a Timer Count register and a Maxcount Compare A register. Timers 0 and 1
also have access to a second Maxcount Compare B register. Whenever the contents of the



intel. TIMER/COUNTER UNIT

Timer Count register equal the contents of the Maxcount Compare register, the count register
resets to zero. The maximum count value will never be stored in the count register. This is
because the counter element increments, compares and resets a timer in one clock cycle.
Therefore, the maximum value is never written back to the count register. The Maxcount
Compare register may be written to any time during timer operation.

The timer counting from its initial count (usually zero) to its maximum count (either
Maxcount Compare A or B) and resetting to zero defines one timing cycle. A Maxcount
Compare value of 0 implies a maximum count of 65536, a Maxcount Compare value of 1
implies a maximum count of 1, etc.

Only equivalence between the Timer Count and Maxcount Compare registers is checked. The
count does not reset to zero if its value is greater than the maximum count. If the count value
exceeds the Maxcount Compare value, the timer counts to OFFFFH, increments to zero, then
counts to the value in the Maxcount Compare register. Upon reaching a maximum count
value, the Maximum Count (MC) bit in the Timer Control register sets. The MC bit must be
cleared by writing to the Timer Control register, this is not done automatically.

The Timer/Counter Unit may be configured to execute different counting sequences. The
timers may operate in single maximum count mode (all timers) or dual maximum count mode
(Timers O and 1 only). They may also be programmed to run continuously in either of these
modes. The Alternate (ALT) bit in the Timer Control register determines the counting modes
used by Timers 0 and 1.

All timers may use single maximum count mode, where only Maxcount Compare A is used.
The timer will count to the value contained in Maxcount Compare A and reset to zero. Timer 2
can only operate in this mode.

Timers 0 and 1 can also use dual maximum count mode. In this mode, Maxcount Compare A
and Maxcount Compare B are both used. The timer counts to the value contained in Maxcount
Compare A, resets to zero, counts to the value contained in Maxcount Compare B, and resets
to zero again. The Register In Use (RIU) bit in the Timer Control register indicates which
Maxcount Compare register is currently in use.

The timers can be programmed to run continuously in single maximum count and dual
maximum count modes. The Continuous (CONT) bit in the Timer Control register determines
if a timer is disabled after a single counting sequence.

9.2.3.1. RETRIGGERING

The timer input pins affect timer counting in three ways (see Table 9.2). The programming of
the External (EXT) and Retrigger (RTG) bits in the Timer Control register determines how the
input signals are used. When the timers are clocked internally, the RTG bit determines if the
input pin enables timer counting or retriggers the current timing cycle.

9-10



intgl. TIMER/COUNTER UNIT

Table 9.2. Timer Retriggering

EXT RTG TIMER OPERATION

0 0 Timer counts internal events, if input pin remains
high.

0 1 Timer counts internal events, count will reset to
zero on every LOW-to-HIGH transition on the
input pin.

1 X Timer input acts as clock source.

When the EXT and RTG bits are LOW, the timer counts internal timer events. In this mode,
the input is level-sensitive, not edge-sensitive. A LOW-to-HIGH transition on the timer input
is not required for operation. The input pin acts as an external enable. If the input is HIGH; the
timer will count through its sequence, provided the timer remains enabled.

When the EXT bit is LOW and the RTG bit is HIGH, every LOW-to-HIGH transition on the
timer input pin causes the Count register to reset to zero. After the timer is enabled, counting
begins only after the first LOW-to-HIGH transition on the input pin. If another LOW-to-
HIGH transition occurs before the end of the timer cycle, the timer count resets to zero and
the timer cycle begins again. In dual maximum count mode, the Register In Use (RIU) bit does
not clear when a LOW-to-HIGH transition occurs. For example, if the timer retriggers while
Maxcount Compare B is in use, the timer resets to zero and counts to maximum count B
before the RIU bit clears. In dual maximum count mode, the timer retriggering extends
the use of the current Maxcount Compare register.

9.2.4. PULSED AND VARIABLE DUTY CYCLE OUTPUT

Timers 0 and 1 each have an output pin which can perform two functions. First, the output
may be a single pulse, indicating the end of a timing cycle (single maximum count mode).
Second, the output may be a level indicating the Maxcount Compare register currently in use
(dual maximum count mode). The output occurs one clock after the counter element services
the timer when the maximum count is reached (see Figure 9.9).

With external clocking, the time between a transition on a timer input and the corresponding
transition of the timer output varies from 2 1/2 to 6 1/2 clocks. This delay occurs due to the
time multiplexed servicing scheme of the Timer/Counter Unit. The exact timing depends on
when the input occurs relative to the counter element’s servicing of the timer. Figure 9.2
shows the two extremes in timer output delay. Timer 0 demonstrates the best possible case,
where the input occurs immediately before the timer is serviced. Timer 1 demonstrates the
worst possible case, where input is latched, but the setup time is not met and the input is not
recognized until the counter element services the timer again.

In single maximum count mode, the timer output pin goes LOW for one CPU clock period

(see Figure 9.4). This occurs when the count value equals the Maxcount Compare A value. If
programmed to run continuously, the timer generates periodic pulses.

9-11



intgl. TIMER/COUNTER UNIT

TIMER 0 SERVICED
r———

M_W%—L_f

INTERNAL COUNT VALUE =~ MAXCOUNT- 1X / 0

TMR OUT x PIN (

R

NOTES: @ TCLTMV

Figure 9.9. TxOUT Signal Timing

In dual maximum count mode, the timer output pin indicates which Maxcount Compare
register is currently in use. A LOW output indicates Maxcount Compare B, and a HIGH
output indicates Maxcount Compare A (see Figure 9.4). If programmed to run continuously, a
repetitive waveform can be generated. For example, if Maxcount Compare A contains 10,
Maxcount Compare B contains 20, and CLKOUT is 12.5 MHz, the timer generates a 33
percent duty cycle waveform at 104 KHz. The output pin always goes HIGH at the end of the
counting sequence (even if the timer is not programmed to run continuously).

9.2.5. ENABLING/DISABLING COUNTERS

Each timer has an Enable (EN) bit in its Control register to allow or prevent timer counting.
The Inhibit (INH) bit controls write accesses to the EN bit. Timers 0 and 1 can be
programmed to use their input pins as enable functions also. If a timer is disabled, the count
register will not increment when the counter element services the timer.

The Enable bit can be altered by programming or the timers can be programmed to disable
themselves at the end of a counting sequence with the Continuous (CONT) bit. If the timer is
not programmed for continuous operation, the Enable bit automatically clears at the end of a
counting sequence. In single maximum count mode, this occurs after Maxcount Compare A is
reached. In dual maximum count mode, this occurs after Maxcount Compare B is reached
(Timers 0 and 1 only).

The input pins for Timers 0 and 1 provide an alternate method for enabling and disabling timer
counting. When using internal clocking, the input pin can be programmed to either enable the
timer or reset the timer count depending on the state of the Retrigger (RTG) bit in the control
register. When used as an enable function, the input pin either allows (input HIGH) or
prevents (input LOW) timer counting. To ensure recognition of an input level, it must be valid
for four CPU clocks. This is due to the counter element’s time-multiplexed servicing scheme
for the timers. '

9-12




intgl. TIMER/COUNTER UNIT

9.2.6. TIMER INTERRUPTS

All timers can generate internal interrupt requests. Although all three timers share a single
interrupt request to the CPU, each has its own vector location and internal priority. Timer O
has the highest interrupt priority and Timer 2 has the lowest interrupt priority.

Timer Interrupts are enabled or disabled via the Interrupt (INT) bit in the Timer Control
register. If enabled, an interrupt is generated every time a maximum count value is reached. In
dual maximum count mode, an interrupt will be generated each time the value in Maxcount
Compare A or Maxcount Compare B is reached. If the interrupt is disabled after a request has
been generated, but before a pending interrupt is serviced, the interrupt request will still be
active (the Interrupt Controller latches the request). If a timer generates a second interrupt
request before the CPU services the first interrupt request, the first request will be lost.

9.2.7. PROGRAMMING CONSIDERATIONS

Timer registers can be read or written whether the timer is operating or not. Since processor
accesses to timer registers are synchronized with counter element accesses, a half-modified
count register will never be read.

When the Timer 0 and Timer 1 use an internal clock source, the input pin must be HIGH to
enable counting.

9.3. TIMING

Certain timing considerations need to be made with the Timer/Counter Unit. These include:
input setup and hold times, synchronization and operating frequency.

9.3.1. INPUT SETUP AND HOLD TIMINGS

To ensure recognition, setup and hold times must be met with respect to CPU clock edges. The
timer input signal must be valid Tcuis before the rising edge of CLKOUT. The timer input
signal must remain valid TcHin after the same rising edge. If these timing requirements are not
met, the input will not be recognized until the next clock edge.

9.3.2. SYNCHRONIZATION AND MAXIMUM FREQUENCY

All timer inputs are latched and synchronized with the CPU clock. Because of the internal
logic required to synchronize the external signals, and the multiplexing of the counter element,
the Timer/Counter Unit may only operate up to 1/4 of the CLKOUT frequency. Clocking at
greater frequencies will result in missed clocks.

9-13



intel. | TIMER/COUNTER UNIT

9.4. TIMER/COUNTER UNIT APPLICATION EXAMPLES

The following examples are possible applications of the Timer/Counter Unit. They include: a
real-time clock, a square wave generator and a digital one-shot.

9.4.1. REAL-TIME CLOCK

Example 9.1 contains sample code to configure Timer 2 to generate an interrupt request every
10 milliseconds. The CPU then increments memory-based clock variables.

Smod186

name example_80186_family_timer_code

; FUNCTION: This function sets up the timer and interrupt

; controller to cause the timer to generate an

; interrupt every 10 milliseconds, and to

; service interrupts to implement a real time clock.
; Timer 2 is used in this example because no input or
; output signals are required.

;  SYNTAX: extern void far set_time(hour, minute, second,

; T2Compare) ;

;  INPUTS: hour - hour to set time to.

; minute - minute to set time to.

; second - second to set time to.

; T2Compare - T2CMPA value (see note below)

; OUTPUTS: None

; NOTE: Parameters are passed on the stack as required by

; high-level languages
; For a CLKOUT of 16Mhz,

i f(timer2) = 16Mhz/4
; = 4Mhz
i = 0.25us for T2CMPA = 1

: © T2CMPA (10ms) = 10ms/0.25us
10e-3/0.25e-6
H : = 40000

Example 9.1.

9-14




TIMER/COUNTER UNIT

; ;substitute register offsets

T2CON equ  xxxxh ;Timer 2 Control register
T2CMPA equ xxxxh ;Timer 2 Compare register
T2CNT equ  xxxxh ;Timer 2 Counter register
TCUCON equ  xxxxh ;Int. Control register
EOI equ  xxxxh ;End Of Interrupt register
INTSTS equ xXxxxh ;Interrupt Status register
timer_2_int equ 19 ;timer 2:vector type 19
data segment public ‘data’

public _hour, _minute, _second, _msec
_hour db ?
_minute db ?
_second db ?
_msec db ?
data ends
1ib_80186 segment public ‘code’

assume cs:1ib_80186, ds:data
public _set_time
_set_time proc far

push bp ;save caller’s bp

mov bp, sp ;get current top of stack
hour equ - word ptr[bp+6] ;get parameters off stack
minute equ word ptr[bp+8]
second equ word ptr[bp+10]
T2Compare equ word ptr[bp+12]

push ax ;save registers used

push DX

push si

push ds

XOr ax, ax ;set interrupt vector

mov ds, ax
mov si, 4*timer_2_int
mov word ptr ds:[si], offset

Example 9.1. (Continued)

9-15




intel.

TIMER/COUNTER UNIT

timer_2_interrupt_routine

_set_time

timer_2_interrupt_routine proc far

inc si
inc si

mov ds: [si], cs

pop ds

mov ax, hour
mov _hour, al
mov ax, minute

mov _minute, al

mov ax, second

mov _second, al

mov _msec, 0
mov DX, T2CNT
XOr ax, ax

out DX, ax

mov DX, T2CMPA

mov ax, T2Compare

out DX, ax
mov DX, T2CON
mov ax, O0E0O01H
out DX, ax

mov DX, TCUCON
XOor ax, ax
out DX, ax

sti

pop si
pop DX
pop ax

pop bp
ret
endp

push ax
push DX

;set time

;clear Count register

;set maximum count value
;see note in header above

;set up the control word:
;enable counting, generate
;interrupt on MC,
;continuous counting

;set up interrupt controller
;unmask highest

;priority interrupt

;enable interrupts

;restore saved registers

;restore caller’s bp

;save registers used

Example 9.1. (Continued)

9-16




intel. TIMER/COUNTER UNIT

cmp _msec, 99 ;has 1 sec passed?
jae bump_second ;if above or equal...
inc _msec

jmp short reset_int_ctl

bump_second:mov _msec, 0 ;reset millisecond
cmp _minute, 59 ;has 1 minute passed?
jae bump_minute
inc _second
jmp short reset_int_ctl

bump_minute:mov _second, 0 ;reset second
cmp _minute, 59 ;has 1 hour passed?
jae bump_hour
inc _minute
jmp short reset_int_ctl

bump_hour: mov _minute, 0 ;reset minute
cmp _hour, 12 ;have 12 hours passed?
jae reset_hour
inc _hour
jmp reset_int_ctl

reset_hour: mov _hour, 1 ;reset hour

reset_int_ctl:mov DX, EOI

mov ax, 8000h ;non-specific end of interrupt
out DX, ax

pop DX

pop ax

iret

timer_2_interrupt_routine endp

1ib_80186 ends
end

Example 9.1. (Continued)

9.4.2. SQUARE WAVE GENERATOR

A square-wave generator can be useful to act as a system clock tick. Example 9.2 illustrates
how to configure the Timer 1 to operate this way.

9-17




intgl. TIMER/COUNTER UNIT

$mod186
name example_timerl_square_wave_code
; FUNCTION: This function generates a square wave of given
; frequency and duty cycle on Timer 1 output pin.
;  SYNTAX: extern void far clock(int mark, int space)
;  INPUTS: mark - This is the mark (1) time.
H space - This is the space (0) time.
; The register compare value for a given time can be
; easily calculated from the formula below.
H CompareValue = (req_pulse_width*f)/4
; OUTPUTS: None
; NOTE: Parameters are passed on the stack as required by
; high-level Languages
T1CMPA equ XXXXH ;substitute register offsets
T1CMPB equ XXXXH
T1CNT equ - xXxxxH
T1CON equ xxxxH
1ib_80186 ‘ segment public ’‘code’
assume cs:1ib_80186
public _clock
_clock proc far
push bp ;save caller’s bp
mov bp, sp ;get current top of stack
_space equ word ptr[bp+6] ;get parameters off the stack
_mark equ word ptr[bp+8]
push ax ;save registers that will be
;modified
push bx
push DX
Example 9.2.

9-18




TIMER/COUNTER UNIT
mov DX, T1CMPA ;set mark time
mov ax, _mark
out DX, ax
mov DX, T1CMPB ;set space time
mov ax, _space
out DX, ax
mov DX, T1CNT ;Clear Timer 1 Counter
XOr ax, ax
out DX, ax
mov DX, T1CON ;start Timer 1
mov ax, CO003H
out DX, ax
pop DX ;restore saved registers
pop bx
pop ax
pop bp ;restore caller’s bp
ret
clock endp
1ib_80186 ends
end

Example 9.2. (Continued)

9.4.3. DIGITAL ONE-SHOT

Example 9.3 configures Timer 1 to act as a digital one-shot.

$mod186
name

example_timerl_1_shot_code

; FUNCTION:

7

7

;7 SYNTAX:

7

This function generates an active-low one shot

pulse on Timer 1 output pin.

extern void far one_shot (int CMPB) ;

9-19

Example 9.3.




intel.

TIMER/COUNTER UNIT

;  INPUTS:

; OUTPUTS:

H NOTE:

CMPB - This is the T1CMPB value required to
generate a pulse of given pulse width. This value
is calculated from the formula below.

CMPB

None

(req_pulse_width*f) /4

Parameters are passed on the stack as required by

high-level languages

T1CNT
T1CMPA
T1CMPB
T1CON
MaxCount
1ib_80186

public
_one_shot

_CMPB

equ
equ
equ
equ

equ

xxxxH
xxXXH
xxxxH
XXXXH

0020H

segment public ‘code’
assume cs:1ib_80186

_one_shot
proc far

push bp
mov bp, sp

equ

word ptr[bp+6]

push ax

push DX

mov DX, TICNT

Xor
out

mov
mov
out

ax, ax
DX, ax

DX, T1CMPA
ax, 1

DX, ax

;substitute register offsets

;save caller’s bp

;get current top of stack

;get parameter off the stack

;save registers that will be

;modified

;Clear Timer 1 Counter

;set time before

t_shot to 0

Example 9.3. (Continued)

9-20




TIMER/COUNTER UNIT
mov DX, T1CMPB ;set pulse time
mov ax, _CMPB
out DX, ax
mov DX, T1CON
mov ax, COO02H ;start Timer 1
out DX, ax
CountDown : in ax, DX ;read in T1CON
test ax, MaxCount ;max count occurred?
jz CountDown ;no: then wait
and ax, not MaxCount ;clear max count bit
out DX, ax ;update T1CON
pop DX ;restore saved registers
pop ax
pop bp ;restore caller’s bp
ret
one_shot endp
1ib_80186 ends
end

Example 9.3. (Continued)

9-21







Direct Memory
Access Unit

10







CHAPTER 10
DIRECT MEMORY ACCESS UNIT

In many applications, large blocks of data must be transferred between memory and 1/0O space.
A disk drive, for example, usually reads and writes data in blocks that may be thousands of
bytes long. If the CPU were required to handle each byte of the transfer, the main tasks would
suffer a severe performance penalty. Even if the data transfers were interrupt driven, the
overhead for transferring control to the interrupt handler would still have a detrimental effect
on system throughput.

Direct Memory Access, or DMA, allows data to be transferred between memory and
peripherals without the intervention of the CPU. Systems that use DMA have a special
device, known as the DMA controller, that takes control of the system bus and performs the
transfer between memory and the peripheral device. When the DMA controller receives a
request for a transfer from a peripheral, it signals the CPU that it needs control of the system
bus. The CPU then releases control of the bus and the DMA controller performs the transfer.
In many cases, the CPU will release the bus and continue to execute instructions from the
prefetch queue. If the DMA transfers are relatively infrequent there will be no degradation of
software performance; the DMA transfer is transparent to the CPU.

The DMA Unit has two channels. Each channel can accept DMA requests from one of 3
sources: an external request pin, the Timer/Counter Unit or by direct programming. Data can
be transferred between any combination of memory and I/O space. The DMA Unit can access
the entire memory and I/O space in either byte or word increments.

10.1. FUNCTIONAL OVERVIEW

The DMA Unit is comprised of two identical channels. Both channels are functionally
identical. The following discussion is hierarchical beginning with an overview of a single
channel and ending with a description of the two channel unit.

10.1.1. THE DMA TRANSFER

A DMA transfer begins with a request. The requesting device may either have data to transmit
(a source request) or it may require data (a destination request). Alternatively, transfers may be
initiated by the system software without an external request.

When the DMA request is granted, the Bus Interface Unit provides the bus signals for the
DMA transfer while the DMA channel provides the address information for the source and
destination devices. The DMA Unit does not provide a discrete DMA acknowledge signal,
unlike other DMA controller chips (an acknowledge can be synthesized, however). The DMA
channel will continue transferring data as long as the request is active and it has not exceeded
its programmed transfer limit.

10-1



intgl. DIRECT MEMORY ACCESS UNIT

Every DMA transfer consists of two distinct bus cycles: a fetch and a deposit (see Figure
10.1). During the fetch cycle, the byte or word is read from the data source and placed in an
internal temporary storage register. The data in the temporary storage register is written to the
destination during the deposit cycle. The two bus cycles are indivisible; they cannot be
separated by a bus hold request, a refresh request or another DMA request.

l«@——FETCH Pt DEPOSIT —9>

IR LR R

oy

X -

'
,
AD15:0 <
' I SOURCE SOURCE \ DEST  DESTINATION
' ' ADDRESS DATA ' ADDRES DATA
RD : : , : ' : . :
1 ] 1 ] 1 1 ] 1
WR &+ b A G S

Figure 10.1. Typical DMA Transfer

10.1.1.1. DMA TRANSFER DIRECTIONS

The source and destination addresses for a DMA transfer are programmable and can be in
either memory or I/O space. DMA transfers can be programmed for any of the following four
directions:

e  From memory space to I/O space
¢ From I/O space to memory space
¢ From memory space to memory space

e From I/O space to I/O space

DMA transfers can access the Peripheral Control Block.

10.1.1.2. BYTE AND WORD TRANSFERS

DMA transfers can be programmed to handle either byte or word sized transfers. The handling
of byte and word data is the same as that for normal bus cycles and is processor bus width

10-2




intgl. DIRECT MEMORY ACCESS UNIT

dependent. For example, odd aligned word DMA transfers on a 16-bit bus processor requires
two fetches and two deposits (all back-to-back). BIU bus cycles are covered in greater detail in
Chapter 3. Word transfers are illegal on the 8-bit bus device.

10.1.2. SOURCE AND DESTINATION POINTERS

Each DMA channel maintains a twenty bit pointer for the source of data and a twenty bit
pointer for the destination of data. The twenty bit pointers allow access to the full 1 Mbyte of
memory space. The DMA Unit views memory as a linear (unsegmented) array.

With a twenty bit pointer it is possible to create an I/O address that is above the CPU limit of
64 Kbytes. The DMA Unit will run /O DMA cycles above 64K even though these addresses
are not accessible through CPU instructions (e.g., IN and OUT). Some applications may wish
to make use of this by swapping pages of data from I/O space above 64K to standard CPU
memory.

The source and destination pointers can be individually programmed to increment, decrement
or remain constant after each transfer. The amount that a pointer is incremented or
decremented is dependent on the programmed data width, byte or word, for the channel. Word
transfers will change the pointer by two, byte transfers change the pointer by one.

10.1.3. DMA REQUESTS

There are three distinct sources of DMA requests: the external DRQ pin, the internal DMA
request line and the system software. In all three cases, the system software must arm a DMA
channel before it recognizes DMA requests. Arming a DMA channel is discussed in the
programming section of this chapter.

10.1.4. EXTERNAL REQUESTS

- External DMA requests are asserted on the DRQ pins. The DRQ pins are sampled on the
falling edge of CLKOUT. It takes a minimum of four clocks before the DMA cycle is initiated
by the BIU (see Figure 10.2). The DMA request is cleared four clocks before the end of the
DMA cycle (effectively re-arming the DRQ input).

10-3



intel. DIRECT MEMORY ACCESS UNIT

T, o o Tyor o Tgor T,

Ty or b Tyor b Tyor P Tyor | OFDMA
T LTy T P ! CYCLE

J' | @

DRQ?LJ K \\\\\\ \\\‘X\ N\ \

NOTES:

@ TinveL @ DMA request to clock low.

(® Synchronizer resolution time.

(® DMA unit priority arbitration and overhead.

(@ Bus interface Unit latches DMA request and decides to run DMA cycle.

Figure 10.2. DMA Request Minimum Response Time

External requests (and the resulting DMA transfer) are classified as either source synchronized
or destination synchronized. A source synchronized request originates from the peripheral
from which data is transferred. For example, a disk controller in the process of reading data
from a disk would use a source synchronized request. A destination synchronized request
originates from the peripheral to which data is transferred. If the previously mentioned disk
controller were writing data to the disk, it would use destination synchronization since the data
would be moving from memory to the disk. The type of synchronization a channel uses is
programmable. '

10.1.4.1. SOURCE SYNCHRONIZATION

A typical source synchronized transfer is shown in Figure 10.3. Most DMA driven peripherals
do not deassert their DRQ line until after the DMA transfer has begun. The DRQ signal must
be deasserted at least 4 clocks before the end of the DMA transfer (at the T1 state of the
deposit phase) in order to prevent another DMA cycle from occurring. A source synchronized
transfer provides the source device at least three clock cycles from when it is accessed
(acknowledged) to deassert its request line if further transfers are not required.

10-4




intgl. DIRECT MEMORY ACCESS UNIT

FETCH CYCLE DEPOSIT CYCLE

CLKOUT

DRQ
(CASE 1) ®©

DRQ ®
(CASE 2) \

NOTES:
@® Current source synchronized transfer will not be immediately
followed by another DMA transfer.

® Current source synchronized transfer will be immediately
followed by another DMA transfer.

Figure 10.3. Source Synchronized Transfers

10.1.4.2. DESTINATION SYNCHRONIZATION

A destination synchronized transfer differs from a source synchronized transfer by the addition
of two idle states at the end of the deposit cycle (Figure 10.4). The two idle states extend the
DMA cycle to allow the destination device to deassert its DRQ pin four clocks before the end
of the cycle. If the two idle states were not inserted, the destination device would not be able

to deassert its request in time to prevent another DMA cycle from occurring.

The insertion of two idle states at the end of a destination synchronization transfer has an
important side effect. A destination synchronized DMA channel gives up the bus during
the idle states allowing any other bus master to gain ownership. This includes the CPU,

the Refresh Control Unit, an external bus master or another DMA channel.

10.1.5. INTERNAL REQUESTS

Internal DMA requests can come from either Timer 2 or from the system software.

10-5



intgl. DIRECT MEMORY ACCESS UNIT

FETCH CYCLE DEPOSIT CYCLE

CLKOUT

DRQ
(CASE 1) @

DRQ
(CASE 2)

e

NOTES:
® Current destination synchronized transfer will not be immediately
followed by another DMA transfer.

® Current destination synchronized transfer will be immediately
followed by another DMA transfer.

Figure 10.4. Destination Synchronized Transfers

10.1.5.1.  TIMER 2 INITIATED TRANSFERS

When programmed for Timer 2 initiated transfers, the DMA channel performs one DMA
transfer every time that Timer 2 reaches its maximum count. Timer 2 initiated transfers are
useful for servicing time based peripherals. For example, an A/D converter would require data
every 22 microseconds in order to produce an audio range waveform. In this case the DMA
source would point at the waveform data, the destination would point to the A/D converter and
Timer 2 would request a transfer every 22 microseconds.

10.1.5.2. UNSYNCHRONIZED TRANSFERS

DMA transfers can be initiated directly by the system software by selecting unsynchronized
transfers. Unsynchronized transfers continue, back-to-back, at the full bus bandwidth, until the
channel’s transfer count reaches zero or DMA transfers are suspended by an NMI.

10.1.6. DMA TRANSFER COUNTS

Each DMA Unit maintains a programmable 16-bit transfer count value that controls the total
number of transfers the channel runs. The transfer count is decremented by one after each

10-6




Intel@ DIRECT MEMORY ACCESS UNIT

transfer (regardless of data size). The DMA channel can be programmed to terminate transfers
when the transfer count reaches zero (also referred to as terminal count).

10.1.7. TERMINATION AND SUSPENSION OF DMA TRANSFERS
When DMA transfers for a channel are terminated, no further DMA requests for that channel
will be granted until the channel is re-started by direct programming. A suspended DMA

transfer temporarily disables transfers in order to perform a specific task. A suspended DMA
channel does not need to be re-started by direct programming.

10.1.7.1. TERMINATION AT TERMINAL COUNT
When programmed to terminate on terminal count, the DMA channel disarms itself when the
transfer count value reaches zero. No further DMA transfers take place on the channel until it

is re-armed by direct programming.

Unsynchronized transfers always terminate when the transfer count reaches zero
regardless of programming.

10.1.7.2. SOFTWARE TERMINATION

A DMA channel can be disarmed by direct programming. Any DMA transfer that is in
progress will complete but no further transfers are run until the channel is re-armed.

10.1.7.3. SUSPENSION OF DMA DURING NMI
DMA transfers are inhibited during the service of Non-Maskable Interrupts (NMI). DMA
activity is halted in order to give the CPU full command of the system bus during the NMI

service. Exit from the NMI via an IRET instruction re-enables the DMA Unit. DMA transfers
can be enabled during an NMI service routine by the system software.

10.1.7.4. SOFTWARE SUSPENSION

DMA transfers can be temporarily suspended by direct programming. In time critical sections
of code, interrupt handlers for example, it may be necessary to temporarily shut off DMA
activity in order to give the CPU total control of the bus.

10.1.8. DMA UNIT INTERRUPTS

Each DMA channel can be programmed to generate an interrupt request when its transfer
count reaches zero.

10-7



intgl. | DIRECT MEMORY ACCESS UNIT

10.1.9. DMA CYCLES AND THE BIU

The DMA Unit uses the Bus Interface Unit to perform its transfers. When the DMA Unit has a
pending request, it signals the BIU. If the BIU has no other higher priority request pending it
runs the DMA cycle (BIU priority is described in Chapter 3). The BIU signals that it is
running a bus cycle initiated by a master other than the CPU by driving the S6 status bit high.

The Chip-Select Unit monitors the BIU addresses to determine which chip-select, if any, to
activate. Because the DMA Unit uses the BIU, chip-selects are active for DMA cycles. If a
DMA channel accesses a region of memory or I/O space within a chip-select’s programmed
range, then that chip-select is asserted during the cycle. The Chip-Select Unit will not
recognize DMA cycles that access I/O space above 64K.

MODULE DMA%EQUEST
INTER-MODULE
TIMER2 ARBITRATION TIMER 2
REQUEST LOGIC REQUEST
A A
SQURCE POINTER SOURCE POINTER
DESTINATION POINTER DESTINATION POINTER
CHANNEL 0 - L CHANNEL 1
CONTROL LOGIC CONTROL LOGIC

DRQPIN DRQPIN

Figure 10.5. Two Channel DMA Unit

10.1.10.  THE 2 CHANNEL DMA UNIT

Two DMA channels are combined with arbitration logic to form the two channel DMA Unit
(see Figure 10.5).

10-8




intgl. DIRECT MEMORY ACCESS UNIT

10.1.10.1. DMA CHANNEL ARBITRATION

Within a two channel DMA module, the arbitration logic decides which channel takes
precedence when both channels simultaneously request transfers. Each channel can be set to
either low priority or high priority. If the two channels are set to the same priority (either both
high or both low) then the channels rotate priority.

10.1.10.1.1. FIXED PRIORITY

Fixed priority results when one channel in a module is programmed to high priority and the
other is set to low priority. If both DMA requests occur simultaneously, the high priority
channel will perform its transfer (or transfers) first. The high priority channel continues to
perform transfers as long as the following conditions are met:

e the channel’s DMA request is still active

e the channel has not terminated or suspended transfers (through programming or
interrupts)

e the channel has not released the bus (through the insertion of idle states for destination
synchronized transfe