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1. INTRODUCTION 

As state of the art technology has increased the number 
of transistors possible on a single integrated circuit, 
these devices have attained new, higher levels of both 
performance and functionality. Riding this crest are the 
Intel 80186 and 80286 microprocessors. While the 
80286 has added memory protection and management 
to the basic 8086 architecture, the 80186 has integrated 
six separate functional blocks into a single device. 

The purpose of this note is to explain, through example, 
the use of the 80186 with various peripheral and mem­
ory devices. Because the 80186 integrates a DMA unit, 
timer unit, interrupt controller unit, bus controller unit 
and chip select and ready generation unit with the CPU 

on a single chip (see Figure I), system construction is 
simplified since many of the peripheral interfaces are in­
tegra ted on to the device. 

The 80186 family actually consists of two processors: the 
80186 and 80188. The only difference between the two 
processors is that the 80186 maintains a 16-bit external 
data bus while the 80188 has an 8-bit external data bus. 
Internally, they both implement the same processor with 
the same integrated peripheral components. Thus, ex­
cept where noted, all 80186 information in this note also 
applies to the 80188. The implications of having an 8-bit 
external data bus on the 80188 are explicitly noted in ap­
pendix I. Any parametric values included in this note are 
taken from the iAPX 186 Advance Information data 
sheet, and pertain to 8Mhz devices. 
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2. OVERVIEW OF THE 80186 

2.1 The CPU 

The 80186 CPU shares a common base architecture 
with the 8086, 8088 and 80286. It is completely object 
code compatible with the 8086/88. This architecture 
features four 16-bit general purpose registers (AX,BX, 
CX,DX) which may be used as operands in most arith­
metic operations in either 8 or 16 bit units. It also fea­
tures four 16-bit "pointer" registers (SI,OI,BP,SP) 
which may be used both in arithmetic operations and in 
accessing memory based variables. Four 16-bit segment 
registers (CS,DS,SS,ES) are provided allowing simple 
memory partitioning to aid construction of modular pro­
grams. Finally, it has a 16-bit instruction pointer and a 
16-bit status register. 

Physical memory addresses are generated by the 80186 
identically to the 8086. The 16-bit segment value is left 
shifted 4 bits and then is added to an offset value which 
is derived from combinations of the pointer registers, the 
instruction pointer, and immediate values (see Figure 
2). Any carry out of this addition is ignored. The result 
of this addition is a 20-bit physical address which is pre­
sented to the system memory. 

The 80186 has a 16-bit ALU which performs 8 or 16-bit 
arithmetic and logical operations. It provides for data 
movement among registers, memory and I/O space. In 
addition, the CPU allows for high speed data transfer 
from one area of memory to another using string move 
instructions, and to or from an I/O port and memory us­
ing block I/O instructions. Finally, the CPU provides a 

I' 
I' 

SEGMENT VALUE I 

OFFSET 

PHYSICAL ADDRESS I 
I· 

wealth of conditional branch and other control 
instructions. 
In the 80186, as in the 8086, instruction fetching and in­
struction execution are performed by separate units: the 
bus interface unit and the execution unit, respectively. 
The 80186 also has a 6-byte prefetch queue as does the 
8086. The 80188 has a 4-byte prefetch queue as does the 
8088. As a program is executing, opcodes are fetched 
from memory by the bus interface unit and placed in this 
queue. Whenever the execution unit requires another in­
struction, it takes it out of the queue. Effective processor 
throughput is increased by adding this queue, since the 
bus interface unit may continue to fetch instructions 
while the execution unit executes a long instruction. 
Then, when the CPU completes this instruction, it does 
not have to wait for another instruction to be fetched 
from memory. 

2.2 80186 CPU Enhancements 
Although the 80186 is completely object code compati­
ble with the 8086, most of the 8086 instructions require 
fewer clock cycles to execute on the 80186 than on the 
8086 because of hardware enhancements in the bus in­
terface unit and the execution unit. In addition, the 
80186 provides many new instructions which simplify 
assembly language programming, enhance the perfor­
mance of high level language implementations, and re­
duce object code sizes for the 80186. These new 
instructions are also included in the 80286. A complete 
description of the architecture and instruction execution 
of the 80186 can be found in volume I of the 
iAPX86/186 users manual. The algorithms for the new 
instructions are also given in appendix H of this note. 
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Figure 2. Physical Address Generation in the 80186 
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2.3 DMA Unit 

The 80186 includes a DMA unit which provides two 
high speed DMA channels. This DMA unit will perform 
transfers to or from any combination of I/O space and 
memory space in either byte or word units. Every DMA 
cycle requires two to four bus cycles, one or two to fetch 
the data to an internal register, and one or two to deposit 
the data. This allows word data to be located on odd 
boundaries, or byte data to be moved from odd locations 
to even locations. This is normally difficult, since odd 
data bytes are transferred on the upper 8 data bits of the 
16-bit data bus, while even data bytes are transferred on 
the lower 8 data bits of the data bus. 

Each DMA channel maintains independent 20-bit 
source and destination pointers which are used to access 
the source and destination of the data transferred. Each 
of these pointers may independently address either I/O 
or memory space. After each D MA cycle, the pointers 
may be independently incremented, decremented, or 
maintained constant. Each DMA channel also main­
tains a transfer count which may be used to terminate a 
series of DMA transfers after a pre-programmed num­
ber of transfers. 

2.4 Timers 

The 80186 includes a timer unit which contains 3 inde­
pendent 16-bit timer/counters. Two of these timers can 
be used to count external events, to provide waveforms 
derived from either the CPU clock or an external clock 
of any duty cycle, or to interrupt the CPU after a speci­
fied number of timer "events." The third timer counts 
only CPU clocks and can be used to interrupt the CPU 
after a programmable number of CPU clocks, to give a 
count pulse to either or both of the other two timers after 
a programmable number of CPU clocks, or to give a 
DMA request pulse to the integrated DMA unit after a 
programmable number of CPU clocks. 

2.5 Interrupt Controller 

The 80186 includes an interrupt controller. This control­
ler arbitrates interrupt requests between all internal and 
external sources. It can be directly cascaded as the mas­
ter to two external 8259A interrupt controllers. In addi­
tion, it can be configured as a slave controller to an 
external interrupt controller to allow complete compati­
bility with an 80130, 80150, and the iRMX@86 operat­
ing system. 

2.6 Clock Generator 
The 80186 includes a clock generator and crystal oscilla­
tor. The crystal oscillator can be used with a parallel res­
onant, fundamental mode crystal at 2X the desired CPU 
clock speed (i.e., 16 MHz for an 8 MHz 80186), or with 
an external oscillator also at 2X the CPU clock. The out­
put of the oscillator is internally divided by two to pro­
vide the 50% duty cycle CPU clock from which all 

3 

80186 system timing derives. The CPU clock is external­
ly available, and all timing parameters are referenced to 
this externally available signal. The clock generator also 
provides ready synchronization for the processor. 

2.7 Chip Select and Ready Generation Unit 

The 80186 includes integrated chip select logic which 
can be used to enable memory or peripheral devices. Six 
output lines are used for memory addressing and seven 
output lines are used for peripheral addressing. 

The memory chip select lines are split into 3 groups for 
separately addressing the major memory areas in a typi­
cal 8086 system: upper memory for reset ROM, lower 
memory for interrupt vectors, and mid-range memory 
for program memory. The size of each of these regions is 
user programmable. The starting location and ending 
location of lower memory and upper memory are fixed 
at OOOOOH and FFFFFH respectively; the starting loca­
tion of the mid-range memory is user programmable. 

Each of the seven peripheral select lines address one of 
seven contiguous 128 byte blocks above a programmable 
base address. This base address can be located in either 
memory or I/O space in order that peripheral devices 
may be I/O or memory mapped. 

Each of the programmed chip select areas has associated 
with it a set of programmable ready bits. These ready 
bits control an integrated wait state generator. This al­
lows a programmable number of wait states (0 to 3) to 
be automatically inserted whenever an access is made to 
the area of memory associated with the chip select area. 
In addition, each set of ready bits includes a bit which 
determines whether the external ready signals (ARDY 
and SRDY) will be used, or whether they will be ignored 
(i.e., the bus cycle will terminate even though a ready 
has not been returned on the external pins). There are 5 
total sets of ready bits which allow independent ready 
generation for each of upper memory, lower memory, 
mid-range memory, peripheral devices 0-3 and peripher­
al devices 4-6. 

2.8 Integrated Peripheral Accessing 

The integrated peripheral and chip select circuitry is 
controlled by sets of 16-bit registers accessed using stan­
dard input, output, or memory access instructions. 
These peripheral control registers are all located within 
a 256 byte block which can be placed in either memory 
or I/O space. Because they are accessed exactly as if 
they were external devices, no new instruction types are 
required to access and control the integrated peripher­
als. For more information concerning the interfacing 
and accessing of the integrated 80186 peripherals not in­
cluded in this note, please consult the 80186 data sheet, 
or volume II of the ;APX86/186'users manual. 
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3. USING THE 80186 

3.1 Bus Interfacing to the 80186 

3.1.1 OVERVIEW 

The 80186 bus structure is very similar to the 8086 bus 
structure. It includes a multiplexed address/data bus, 
along with various control and status lines (see Table I). 
Each bus cycle requires a minimum of 4 CPU clock cy­
cles along with any number of wait states required to ac­
commodate the speed access limitations of external 
memory or peripheral devices. The bus cycles initiated 
by the 80186 CPU are identical to the bus cycles initiat­
ed by the 80186 integrated DMA unit. 

In the following discussion, all timing values given are 
for an 8 MHz 80186. Future speed selections of the part 
may have different values for the various parameters. 

Each clock cycle of the 80186 bus cycle is called a "T" 
state, and are numbered sequentially T 1, T2, T3, Tw and 
T 4' Additional idle T states (TJ can occur between T 4 

and T I when the processor requires no bus activity (in­
struction fetches, memory writes, I/O reads, etc.). The 
ready signals control the number or wait states (Tw) in­
serted in each bus cycle. This number can vary from 0 to 
positive infinity. 

LINES 

DATA 

LINES 

ADDRESS! 

T, 

CONTROL -;------;------n 
SIGNALS 

'~'o~l 
IL..--..J 

@1 

I (LOW 

I PHASE) 

I 

@2 

(HIGH 

PHASE) 

L 
Figure 3. T-state in the 80186 

The beginning of a T state is signaled by a high to low 
transition of the CPU clock. Each T state is divided into 
two phases, phase I (or the low phase) and phase 2 (or 
the high phase) which occur during the low and high lev­
els of the CPU clock respectively (see Figure 3). 

Different types of bus activity occur for all of the T­
states (see Figure 4). Address generation information 
occurs during T 1, data generation during T20 T3, Tw and 

T, T, 

(RD,WR) I· 

Figure 4. Example Bus Cycle of the 80186 

Table 1. 80186 Bus Signals 

Function Signal Name 

address/data ADO-ADlS 
address / status AI6/S3-AI9-S6,BHE/S7 
co-processor control TEST 
local bus arbitration HOLD,HLDA 
local bus control ALE,RD, WR,DT /R,DEN 
multi-master bus LOCK 
ready (wait) interface SRDY,ARDY 
status information SO-S2 
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T 4' The beginning of a bus cycle is signaled by the status 
lines of the processor going from a passive state (all 
high) to an active state in the middle of the T-state im­
mediately before T, (either a T4 or a TJ Because infor­
mation concerning an impending bus cycle occurs 
during the T-state immediately before the first T-state of 
the cycle itself, two different types of T 4 and T, can be 
generated: one where the T state is immediately fol­
lowed by a bus cycle, and one where the T state is imme­
diatly followed by an idle T state. 

During the first type of T 4 or T" status information con­
cerning the impending bus cycle is generated for the bus 
cycle immediately to follow. This information will be 
available no later than tCHSV (55ns) after the low-to­
high transition of the 80186 clock in the middle of the T 
state. During the second type of T 4 or T, the status out­
puts remain inactive (high), since no bus cycle is to be 
started. This means that the decision per the nature of a 
T 4 or T, state (i.e., whether it is immediately followed by 
a T, or a T,) is decided at the beginning of the T-state 
immediately preceding the T4 or T j (see Figure 5). This 
has consequences for the bus latency time (see section 
3.3.2 on bus latency). 

3.1.2 PHYSICAL ADDRESS GENERATION 

Physical addresses are generated by the 80186 during T, 
of a bus cycle. Since the address and data lines are mul­
tiplexed on the same set of pins, addresses must be 

T3 0r 

latched during T, if they are required to remain stable 
for the duration of the bus cycle. To facilitate latching of 
the physical address, the 80186 generates an active high 
ALE (Address Latch Enable) signal which can be di­
rectly connected to a transparent latch's strobe input. 

Figure 6 illustrates the physical address generation pa­
rameters of the 80186. Addresses are guaranteed valid 
no greater then tCLAV (44ns) after the beginning of T" 
and remain valid at least tCLAX (t Ons) after the end of 
T,. The ALE signal is driven high in the middle of the T 
state (either T 4 or TJ immediately preceding T, and is 
driven low in the middle ofT" no sooner than tAvAL (30 
ns) after addresses become valid. This parameter 
(tAVAL) is required to satisfy the address latch set-up 
times of address valid until strobe inactive. Addresses 
remain stable on the address/data bus at least tLLAX (30 
ns) after ALE goes inactive to satisfy address latch hold 
times of strobe inactive to address invalid. 

Because ALE goes high long before addresses become 
valid, the delay through the address latches will be chief­
ly the propagation delay through the latch rather than 
the delay from the latch strobe, which is typically longer 
than the propagation delay. For the Intel 8282 latch, this 
parameter is t,vaY, the input valid to output valid delay 
when strobe is held active (high). Note that the 80186 
drives ALE high one full clock phase earlier than the 
8086 or the 8288 bus controller, and keeps it high 
throughout the 8086 or 8288 ALE high time (i.e., the 
80186 ALE pulse is wider). 
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Figure 5. Active-Inactive Status Transitions in the 80186 
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NOTES: 
1. lcHlH: Clock high to ALE high = 35 ns max 
2.lclAV: Clock low to address valid =44 ns max 

3. tCHll: Clock high to ALE low=35 ns max 
4. tClAX: Clock low to address invalid (address hold from clock low)=10 ns 

min 
5. tllAX: ALE low to address invalid (address hold from ALE)=30 ns min 
6. tAVAl: Address valid to ALE low (address setup to ALE)=30 ns min 

Figure 6_ Address Generation Timing of the 80186 

A typical circuit for latching physical addresses is shown 
in Figure 7. This circuit uses 3 8282 transparent octal 
non-inverting latches to demultiplex all 20 address bits 
provided by the 80186. Typically, the upper 4 address 
bits are used only to select among various memory com­
ponents or subsystems, so when the integrated chip se-

lects (see section 8) are used, these upper bits need not 
be latched. The worst case address generation time from 
the beginning of T, (including address latch propaga­
tion time (t,vav) of the Intel 8282) for the circuit is: 

tCLAY (44ns) + t ryay (30ns) = 74ns 
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Figure 7_ Demultiplexing the Address Bus of the 80186 
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Many memory or peripheral devices may not require ad­
dresses to remain stable throughout a data transfer. Ex­
amples of these are the 80130 and 80150 operating 
system firmware chips, and the 2186 8K x 8 iRAM. If a 
system is constructed wholly with these types of devices, 
addresses need not be latched. In addition, two of the pe­
ripheral chip select outputs of the 80186 may be config­
ured to provide latched A I and A2 outputs for 
peripheral register selects in a system which does not de­
multiplex the address/data bus. 

One more signal is generated by the 80186 to address 
memory: BHE (Bus High Enable). This signal, along 
with AO, is used to enable byte devices connected to ei­
ther or both halves (bytes) of the 16-bit data bus (see 
section 3.1.3 on data bus operation section). Because AO 
is used only to enable devices onto the lower half of the 
data bus, memory chip address inputs are usually driven 
by address bits AI-AI9, NOT AO-AI9. This provides 
512K unique word addresses, or I M unique BYTE 
addresses. 

Of course, BHE is not present on the 8 bit 80188. All 
data transfers occur on the 8 bits of the data bus. 

3.1.3 80186 DATA BUS OPERATION 

Throughout T2, T3, Two and T4 of a bus cycle the multi­
plexed address/data bus becomes a 16-bit data bus. 
Oata transfers on this bus may be either in bytes or in 
words. All memory is byte addressable, that is, the upper 
and lower byte of a 16-bit word each have a unique byte 
address by which they may be individually accessed, 
even though they share a common word address (see 
Figure 3-6). 

All bytes with even addresses (AO = 0) reside on the 
lower 8 bits of the data bus, while all bytes with odd ad­
dresses (AO = I) reside on the upper 8 bits of the data 
bus. Whenever an access is made to only the even byte, 
AO is driven low. BHE is driven high, and the data trans­
fer occurs on 00-07 of the data bus. Whenever an ac-

cess is made to only the odd byte, BHE is driven low, AO 
is driven high, and the data transfer occurs on 08-015 
of the data bus. Finally, if a word access is performed to 
an even address, both AO and BHE are driven low and 
the data transfer occurs on 00-015. 

Word accesses are made to the addressed byte and to the 
next higher numbered byte. If a word access is per­
formed to an odd address, two byte accesses must be per­
formed, the first to access the odd byte at the first word 
address on 08-015, the second to access the even byte 
at the next sequential word address on 00-07. For ex­
ample, in Figure 8, byte 0 and byte I can be individually 
accessed (read or written) in two separate bus cycles 
(byte accesses) to byte addresses 0 and I at word address 
O. They may also be accessed together in a single bus cy­
cle (word access) to word address O. However, if a word 
access is made to address 1, two bus cycles will be re­
quired, the first to access byte I at word address 0 (note 
byte 0 will not be accessed), and the second to access 
byte 2 at word address 2 (note byte 3 will not be ac­
cessed). This is why all word data should be located at 
even addresses to maximize processor performance. 

When byte reads are made, the data returned on the half 
of the data bus not being accessed is ignored. When byte 
writes are made, the data driven on the half of the data 
bus not being written is indeterminate. 

3.1.4 80188 DATA BUS OPERATION 

Because the 80188 externally has only an 8 bit data bus, 
the above discussion about upper and lower bytes of the 
data bus does not apply to the 80188. No performance 
improvement will occur if word data is placed on even 
boundaries in memory space. All word accesses require 
two bus cycles, the first to access the lower byte of the 
word; the second to access the upper byte of the word. 

Any 80188 access to the integrated peripherals must be 
done 16 bits at a time: thus in this special case, a word 
access will occur in a single bus cycle in the 80188. The 

~16_BITS~ 
8 BITS-I~8 BITS 

WORD ADDRESS 

4 5 4 

I'~~~-3 2 

0 0 

IN BYTE FIELD 

08- 00- 80186 SIGNAL 
015 07 CONNECTIONS 

Figure 8. Physical Memory Byte/Word Addressing in the 80186 
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external data bus will record only a single byte being 
transferred, however. 

3.1.5 GENERAL DATA BUS OPERATION 

Because of the bus drive capabilities of the 80186 
(200pF, sinking 2mA, sourcing 400uA, roughly twice 
that of the 8086), this bus may not require additional 
buffering in many small systems. If data buffers are not 
used in the system, care should be taken not to allow bus 
contention between the 80186 and the devices directly 
connected to the 80186 data bus. Since the 80186 floats 
the address/data bus before activating any command 
lines, the only requirement on a directly connected de­
vice is that it floats its output drivers after a read BE­
FORE the 80186 begins to drive address information for 
the next bus cycle. T~arameter of interest here is the 
minimum time from RD inactive until addresses active 
for the next bus cycle (tRHAV) which has a minimum val­
ue of 85ns. If the memory or peripheral device cannot 
disable its output drivers in this time, data buffers will 
be required to prevent both the 80186 and the peripheral 
or memory device from driving these lines concurrently. 
Note, this parameter is unaffected by the addition of 
wait states. Data buffers solve this problem because 
their output float times are typically much faster than 
the 80186 required minimum. 

If buffers are required, the 80186 provides a DEN (Data 
ENable) and DT/R (Data Transmit/Receive) si£;nals 
to simplify buffer interfacing. The DEN and DT /R sig-

80186 SIGNAL 

AD8-D15 

DEN 

BUFFERED 

DEVICES 

SELECT 

ADO- AD7 

DTiR 

S 
) 

.,.....: 
J ) 

.--

} 

nals are activated during all bus cycles, whether or not 
the cycle addresses buffered devices. The DEN signal is 
driven low whenever the processor is either ready to re­
ceive data (during a read) or when the processor is ready 
to send data (during a write) (that is, any time during an 
active bus cycle when address information is not being 
generated on the address/data pins). In most systems, 
the DEN signal should NOT be directly connected to 
the OE input of buffers, since unbuffered devices (or 
other buffers) may be directly connected to the proces­
sor's address/data pins. If DEN'were directly connected 
to several buffers, contention would occur during read 
cycles, as many devices attempt to drive the processor 
bus. Rather, it should be a factor (along with the chip se­
lects for buffered devices) in generating the output en­
able input of a bi-directional buffer. 

The DT /R signal determines the direction of data prop­
agation through the bi- directional bus buffers. It is high 
whenever data is being driven out from the processor, 
and is low whenever data is being read into the processor. 
Unlike the DEN signal, it may be directly connected to 
bus buffers, since this signal does not usually directly en­
able the output drivers of the buffer. An example data 
bus subsystem supporting both buffered and unbuffered 
devices is shown in Figure 9. Note that the A side of the 
8286 buffer is connected to the 80186, the B side to the 
external device. The B side of the buffer has greater 
drive capacity than the A side (since it is meant to drive 
much greater loads). The DT /R signal can directly 
drive the T (transmit) signal of the buffer, since it has 
the correct polarity for this configuration. 

8286 

A 

OE B 

T 

8286 

A 

OE B 

T 

/_8 
/ 

8 

L8 

/L8 

/ 

08· 

AD15 

00-

07 

BUFFERED 

DATA 

BUS 

UNBUFFERED 

} DATA 

BUS 

Figure 9. Example 80186 Buffered/Unbuffered Data Bus 
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CLOCK 

OUT 

ADO­

AD15 ----......,:t'! 

T, T, 

1 tClAZ Clock low until address float~35 ns max 
2. tClRl' Clock low until RD active ~ 70 ns max 
3 tAZRl ' Address float until RD active ~ a ns min 
4 tDVCl Data valid until clock low (data Input set-up time) ~ 20 ns min" 
5. tClDX Clock low until data Invalid (data Input hold time from clock) ~ 10 

ns min" 
6. telRH: Clock low until RD high ~ 10 ns min 
7 tRHAV: RD high until addresses valid ~ 85 ns min 
8. tRHDX Read high until data Invalid (data Input hold from RD) ~ a ns min" 
" Input requirements of 80186, all others are output characteristics 

Figure 10. Read Cycle Timing of the 80186 

3.1.6 CONTROL SIGNALS 

The 80186 direc.!.!.L£!:ovides the control signals RD, 
WR, LOCK and TEST. In addition, the 80186 provides 
the status signals SO-S2 and S6 from which all other re­
quired bus control signals can be generated. 

3.1.6.1 RD and WR 

The RD and WR siggals strobe data to or from memory 
or I/O space. The RD signal is driven low off the begin­
?ing ofT 2' and is driven high off the beginning offidur­
mg all memory and I/O reads (see Figure 10). RD will 
not become active until the 80186 has ceased driving ad­
dress information on the address/data bus. Data is sam­
pled into the processor at the beginning of T 4' RD will 
not go inactive until the processor's data hold time 
(IOns) has been satisfied. 

LATCH 

52 -------1 D 

Note tha!..!!!e 80186 does not provide separate I/O and 
memory RD signals. If separate I/O read and memory 
read signals are required, they can be synthesized using 
the S2 signal (which is low for all I/O ~ations and 
high for all memory operations) and the RD signal (see 
Figure I U:.1t should be noted that if this approach is 
used, the S2 signal will require latching, since the S2 sig­
nal (like SO and S I) goes to a passive state well before 
the beginning of T4 (where RD goes inactive). If S2 was 
directly used for this purpose, the type of read command 
(I/O or memory) could change just before T 4 as S2 goes 
to the passive state (high). The status signals may be 
latched using ALE in an identical fashion as is used to 
latch the address signals (often using the spare bits in 
the address latches). 

Often the lack of a seperate I/O and memory RD signal 

Q~--~~ ______ r-", 
ALE -------1 STB 

RD 
MEMORY 

READ 

Figure 11. Generating I/O and Memory Read Signals from the 80186 
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is not important in an 80186 system. Each of the 80186 
chip select signals will respond on only one of memory or 
I/0 accesses (the memory chip selects respond only to 
accesses memory space; the peripheral chip selects can 
respond to accesses in either I/0 or memory space, at 
programmer option). Thus, the chip select signal en­
ables the external device only during accesses to the 
proper address in the proper space. 

The WR signal is also driven low off the beginni!!8..Qf T 2 

and driven high off the beginning ofT4• Like the RD sig­
nal, the WR signal is active for all memory and I/O 
writes, and also like the RD signal, separate I/O and 
memory writes may b~nerated using the latched 82 
signal along with the WR signal (see Figure 12). More 

T, 

importantly, however, is the active going edge of write. 
At the time WR makes its active (high to low) transi­
tion, valid write data is NOT present on the data bus. 
This has consequences when using this signal as a write 
enable signal for DRAMs and iRAMs since both of 
these devices require that the write data be stable on the 
data bus at the time of the inactive to active transition of 
the WE signal. In DRAM applications, this problem is 
solved by a DRAM controller (such as the Intel 8207 or 
8203), while with iRAMs this problem may be solved by 
placing cross-coupled NAND gates between the CPU 
and the iRAMs on the WR line (see fture 13). This 
will delay the active going edge of the WR signal to the 
iRAMs by a clock phase, allowing valid data to be driv­
en onto the data bus. 

ADO- WRITE I ADDRESS 
AD15 ___ ~ __ ~~J~ ______ -r~D~A~TA ____ t+ __ ~~~-r __ ~IN_F~O __ __ 

1. tCLDV: Clock low until data valid = 44 ns max 
2. tCVCTV: Clock low until WR active = 70 ns max 
3. tcvCTX: Clock low until WR inactive = 55 ns max 
4. tCHDX: Clock high until data invalid = 10 n5 min 

5. WR inactive until data invalid = tCLCH min - tCVCTX + tCHDX 

= 55-55 + 10 
= 10n5 

Figure 12. Write Cycle Timing ot the 80186 

CLKOUT ----+--' 

DELAYED 

WRITE 

(DATA VALID 

ON LEADING EDGE) 

Figure 13. Synthesizing Delayed Write trom the 80186 
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3.1.6.2 Queue Status Signals 

If the RD line is externally grounded during reset and 
remains grounded during processor operation, the 
80186 will enter "queue status" mode. When in this 
mode, the WR and ALE signals become queue status 
outputs, reflecting the status of the internal pre fetch 
queue during each clock cycle. These signals are pro­
vided to allow a processor extension (such as the Intel 
8087 floating point processor) to track execution of in­
structions within the 80186. The interpretation of QSO 
(ALE) and QSI (WR) are given in Table 2. These sig­
nals change on the high-to-low clock transition, one 
clock phase earlier than on the 8086. Note that since ex­
ecution unit operation is independent of bus interface 
unit operation, queue status lines may change in any T 
state. 

Table 2. 80186 Queue Status 

QS1 QSO Interpretation 

0 0 no operation 

0 I first byte of instruction taken 
from queue 

I 0 queue was reinitialized 

I I subsequent byte of instruction 
taken from queue 

Since the ALE, RD, and WR signals are not directly 
available from the 80186 when it is configured in queue 
status mo~ these signals must be derived from the sta­
tus lines SO-S2 using an external 8288 bus controller 
(see below). To prevent the 80186 from accidentally en­
tering queue status mode during reset, the RD line is in­
ternally provided with a weak pullup device. RD is the 
ONLY three-state or input pin on the 80186 which is 
supplied with a pullup or pulldown device. 

3.1.6.3 Status Lines 

The 80186 provides 3 status outputs which are used to 
indicate the type of bus cycle currently being executed. 
These signals go from an inactive state (all high) to one 
of seven possible active states during the T state immedi­
ately preceding T I of a bus cycle (see Figure 5). The pos­
sible status line encodings and their interpretations are 
given in Table 3. The status lines are driven to their inac­
tive state in the T state (T3 or Tw) immediately preced­
ing T 4 of the current bus cycle. 

The status lines may be directly connected to an 8288 
bus controller, which can be used to provide local bus 
control signals or multi-bus control signals (see Figure 
14). Use of the 8288 bus controller does not preclude the 
use of the 80186 generated RD, WR and ALE signals, 
however. The 80186 directly generated signals may be 
used to provide local bus control signals, while an 8288 is 
used to provide multi-bus control signals, for example. 

11 

80186 
8288 

SO·52 SO·52 
BUS CONTROL 

CLOCK 
SIGNALS 

OUT 
ClK 

Figure 14. 80186/8288 Bus Controller 
Interconnection 

Table 3. 80186 Status Line Interpretation 

S2 S1 S2 Operation 

0 0 0 interrupt acknowledge 
0 0 I read I/O 
0 I 0 write I/O 
0 I I halt 
I 0 0 instruction fetch 
I 0 I read memory 
I I 0 write memory 
I I I passive 

The 80186 provides two additional status signals: S6 
and S7. S7 is equivalent to BHE (see section 3.1.2) and 
appears on the same pin as BHE. BHE/S7 changes 
state, reflecting the bus cycle about to be run, in the mid­
dle of the T state (T 4 or T j ) immediately preceding T I of 
the bus cycle. This means that BHE/S7 does not need to 
be latched, i.e., it may be used directly as the BHE sig­
nal. S6 provides information concerning the unit gener­
ating the bus cycle. It is time multiplexed with A 19, and 
is available during T 2' T3, T4 and Tw' In the 8086 family, 
all central processors (e.g., the 8086, 8088 and 8087) 
drive this line low, while all I/O processors (e.g., 8089) 
drive this line high during their respective bus cycles. 
Following this scheme, the 80186 drives this line low 
whenever the bus cycle is generated by the 80186 CPU, 
but drives it high when the bus cycle is generated by the 
integrated 80186 DMA unit. This allows external de­
vices to distinguish between bus cycles fetching data for 
the CPU from those transfering data for the DMA unit. 

Three other status signals are available on the 8086 but 
not on the 80186. They are S3, S4, and S5. Taken to­
gether, S3 and S4 indicate the segment register from 
which the current physical address derives. S5 indicates 
the state of the interrupt flip-flop. On the 80186, these 
signals will ALWAYS be low. 

3.1.6.4 TEST and LOCK 

Finally, the 80186 provides a TEST input and a LOCK 
output. The TEST input is used in conjunction with the 
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processor WAIT instruction. It is typically driven by a 
processor extension (like the 8087) to indicate whether 
it is busy. Then, by executing the WAIT (or FWAIT) in­
struction, the central processor may be forced to tempo­
rarily suspend program execution until the processor 
extension indicates that it is idle by driving the TEST 
line low. 

The LOCK output is driven low whenever the data cy­
cles of a LOCKED instruction are executed. A 
LOCKED instruction is generated whenever the LOCK 
prefix occurs immediately before an instruction. The 
LOCK prefix is active for the single instruction immedi­
ately following the LOCK prefix. This signal is used to 
indicate to a bus arbiter (e.g., the 8289) that a series of 
locked data transfers is occurring. The bus arbiter 
should under no circumstances rdease the bus while 
locked transfers are occurring. The 80186 will not rec­
ognize a bus HOLD, nor will it allow DMA cycles to be 
run by the integrated DMA controller during locked 
data transfers. LOCKED transfers are used in multi­
processor systems to access memory based semaphore 
variables which control access to shared system re­
sources (see AP-106, "Multiprogramming with the 
iAPX88 and iAPX86 Microsystems," by George Alexy 
(Sept. 1980». 

On the 80186, the LOCK signal will go active during T I 
of the first DATA cycle of the locked transfer. It is driv­
en inactive 3 T-states after the beginning of the last 
DATA cycle of the locked transfer. On the 8086, the 
LOCK signal is activated immediately after the LOCK 
prefix is executed. The LOCK prefix may be executed 
well before the processor is prepared to perform the 
locked data transfer. This has the unfortunate conse­
quence of activating the LOCK signal before the first 
LOCKED data cycle is performed. Since LOCK is ac­
tive before the processor requires the bus for the data 
transfer, opcode pre-fetching can be LOCKED. Howev­
er, since the 80186 does not activate the LOCK signal 
until the processor is ready to actually perform the 
locked transfer, locked pre-fetching will not occur with 
the 80186. 

Note that the LOCK signal does not remain active until 
the end of the last data cycle of the locked transfer. This 
may cause problems in some systems if, for example, the 
processor requests memory access from a dual ported 
RAM array and is denied immediate access (because of 
a DRAM refresh cycle, for example). When the proces­
sor finally is able to gain access to the RAM array, it 
may have already dropped its LOCK signal, thus allow­
ing the dual port controller to give the other port access 
to the RAM array instead. An example circuit which 
can be used to hold LOCK active until a RDY has been 
received by the 80186 is shown in Figure 15. 

3.1.7 HALT TIMING 

A HALT bus cycle is used to signal the world that the 

12 

80186 CPU has executed a HLT instruction. It differs 
from a normal bus cycle in two important ways. 

LOCK --~-------------i~ 

__ ~~y __ -L...../b-"""'-- LOCK 
52 

Figure 15. Circuit Holding Lock Active Until 
Ready is Returned 

The first way in which a HALT bus cycle differs from a 
normal bus cycle is that since the processor is entering a 
halted state, none of the control lines (RD or WR) will 
be driven active. Address and data information will not 
be driven by the processor, and no data will be returned. 
The second way a HALT bus cycle differs from a normal 
bus cycle is that the SO-S2 sta tus lines go to their passive 
state (all high) during T2 of the bus cycle, well before 
they go to their passive state during a normal bus cycle. 

Like a normal bus cycle, however, ALE is driven active. 
Since no valid address information is present, the infor­
mation strobed into the address latches should be ig­
nored. This ALE pulse can be used, however, to latch the 
HALT status from the SO-S2 status lines. 

The processor being halted does not interfere with the 
operation of any of the 80186 integrated peripheral 
units. This means that if a DMA transfer is pending 
while the processor is halted, the bus cycles associated 
with the DMA transfer will run. In fact, DMA latency 
time will improve while the processor is halted because 
the DMA unit will not be contending with the processor 
for access to the 80186 bus (see section 4.4.1). 

3.1.8 8288 AND 8289 INTERFACING 

The 8288 and 8289 are the bus controller and multi­
master bus arbitration devices used with the 8086 and 
8088. Because the 80186 bus is similar to the 8086 bus, 
they can be directly used with the 80186. Figure 16 
shows an 80186 interconnection to these two devices. 

The 8288 bus cOQ!roller generates control signals (RD, 
WR, ALE, DT JR, DEN, etc.) for an 8086 maximum 
mode system. It derives its information by decoding sta­
tus lines SO-S2 of the processor. Because the 80186 and 
the 8086 drive the same status information on these 
lines, the 80186 can be directly connected to the 8288 
just as in an 8086 system. Using the 8288 with the 80186 
does not prevent using the 80186 control signals directly. 
Many systems require both local bus control signals and 
system bus control signals. In this type of system, the 
80186 lines could be used as the local signals, with the 
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80186 

so-
S2 

ClOCKOUT 

lCS UCS PeSO 

Llb '--
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TO MULTI-MASTER BUS 

ADDRESS lATCHES & 

DATA BUFFERS 

8288 
so- ALE I--52 DEN 

DT/A 

ClK 

8289 
SO-
52 

SYSB/RESB 

ClK 

Figure 16_ 80186/8288/8289Interconnectlon 

8288 lines used as the system signals. Note that in an 
80186 system, the 8288 generated ALE pulse occurs lat­
er than that of the 80186 itself. In many multimaster 
bus systems, the 8288 ALE pulse should be used to 
strobe the addresses into the system bus address latches 
to insure that the address hold times are met. 

The 8289 bus arbiter arbitrates the use of a multi-mas­
ter system bus among various devices each of which can 
become the ....Q.u!...master. This component also decodes 
status lines SO-S2 of the processor directly to determine 
when the system bus is required. When the system bus is 
required, the 8289 forces the processor to wait until it 

has acquired control ofthe bus, then it allows the proces­
sor to drive address, data and control information onto 
the system bus. The system determines when it requires 
system bus resources by an address decode. Whenever 
the address being driven coincides with the address of an 
on-board resource, the system bus is not required and 
thus will not be requested. The circuit shown factors the 
80186 chip select lines to determine when the system bus 
should be requested, or when the 80186 request can be 
satisfied using a local resource. 

3.1.9 READY INTERFACING 

The 80186 provides two ready lines, a synchronous 
ready (SRDY) line and an asynchronous ready 
(ARDY) line. These lines signal the processor to insert 
wait states (Tw) into a CPU bus cycle. This allows slower 
devices to respond to CPU service requests (reads or 
writes). Wait states will only be inserted when both 
ARDY and SRDY are low, i.e., only one of ARDY or 
SRDY need be active to terminate a bus cycle. Any 
number of wait states may be inserted into a bus cycle. 
The 80186 will ignore the ROY inputs during any ac­
cesses to the integrated peripheral registers, and to any 
area where the chip select ready bits indicate that the 
external ready should be ignored. 

The timing required by the two ROY lines is different. 
The ARDY line is meant to be used with asynchronous 
ready inputs. Thus, inputs to this line will be internally 
synchronized to the CPU clock before being presented to 
the processor. The synchronization circuitry used with 
the ARDY line is shown in Figure 17. Figure 18A and 
18 B show valid and invalid transitions of the ARDY line 
(and subsequent wait state insertion). The first flip-flop 
is used to "resolve" the asynchronous transition of the 
ARDY line. It will achieve a definite level (either high 
or low) before its output is latched into the second flip-

ARDY 
INPUT ,----------------, 

80186 I 

I I 
I 
I 
I C 

C 

I CPU 
IClOCK-~--------------~ 
L ____________ _ 

1 . Asynchronous Resolution Flip Flop 
2. Ready Latch Flip Flop 

FROM SYNCHRONOUS 

READY 

TO BUS 
INTERFACE 
UNIT 

Figure 17. Asynchronous Ready Circuitry of the 80186 
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flop for presentation to the CPU. When latched high, it 
allows the level present on the AROY line to pass direct­
ly to the CPU; when latched low, it forces not ready to be 
presented to the CPU (see Appendix B for 80186 syn­
chronizer information). 

by any inactive going transition of the AROY line. The 
reason AROY is implemented in this manner is to allow 
a slow device the greatest amount of time to respond 
with a not ready after it has been selected. In a normally 
ready system, a slow device must respond with a not 
ready quickly after it has been selected to prevent the 
processor from continuing and accessing invalid data 
from the slow device. By implementing AROY in the 
a bove fashion, the slow device has an additional clock 
phase to respond with a not ready. 

With this scheme, notice that only the active going edge 
of the AROY signal is synchronized. Once the synchro­
nization flip-flop has sampled high, the AROY input di­
rectly drives the ROY flip-flop. Since inputs to this 
ROY flip-flop must satisfy certain setup and hold times, 
it is important that these setup and hold times (tARYLCL 
= 35ns and tCHARYX = 15 ns respectively) be satisfied 

If ROY is sampled active into the ROY flip-flop at the 
beginning of T3 or Tw (meaning that AROY was sam-

CLOCK 

OUT 

ARDY 

T, T, I 
I T, 

~ 
1. No set-up or hold times required 
2. tCLARYX: Clock low to ARDY inactive (ARDYactive hold time) ~ 15 ns min 

CLOCK 
OUT 

ARDY 

T, I 
I T, T, 

~ 
1. tARYHCH' ARDY valid until clock high (ARDY inactive set-up time to clock 

high) ~ 20 ns min 
2 No set-up or hold time required ONLY If (j) IS guaranteed 
3. tCLARYX' Clock low to ARDY Inactive (ARDY active hold time) ~ 15 ns min 

T, I T, I Tw : T, 

~~ 
ARDY 

tARYLCL' ARDY low to clock low (ARDY inactive set-up time to clock low) ~ 
35 ns min 
must be satisfied since synchronizing FLIP-FLOP has sampled 
active 

2. tARYHCH' ARDY high to clock high (ARDY active set-up time) ~ 20 ns min 
must be satisfied ONLY to guarantee recognition at the next clock 
(I e to guarantee synchronizing FLIP-FLOP will sample ARDY 
active) 

3 tCLARYX Clock low to ARDY Inactive (ARDY active hold time) ~ 15 ns 

Figure 18A. Valid ARDY Transitions 
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CLOCK 

OUT 

ARDY 

CD LESS THAN 35 ns 

CLOCK 

OUT 

ARDY 

~:T'~T3:?~ 0D0~ 
I I I I 
I I I I 
I I I I 

1 Less than 20 ns 
2 Less than 35 ns 

Figure 188. Invalid ARDY Transitions 

pled high into the synchronization flip-flop in the middle 
of a T state, and has remained high until the beginning 
of the next Tstate), that Tstate will be immediately fol­
lowed by T 4' If RDY is sampled low into the RDY flip­
flop at the beginning of T 3 or Tw (meaning that either 
ARDY was sampled low into the synchronization flip­
flop OR that ARDY was sampled high into the synchro­
nization flip-flop, but has subsequently changed to low 
before the ARDY setup time) that T state will be imme­
diately followed by a wait state (Tw)' Any asynchronous 
transition on the ARDY line not occurring during the 
above times, that is, when the processor is not "looking 
at" the ready lines, will not cause CPU malfunction. 

Again, for ARDY to force wait states to be inserted, 
SRDY must be driven low, since they are internally 
o Red together to form the processor RD Y signal. 

T, 

The synchronous ready (SRDY) line requires that ALL 
transitions on this line during T 2' T 3 or Tw satisfy a cer­
tain setup and hold time (tSRYCL' = 35 ns and tCLSRY = 
15 ns respectively). If these requirements are not met, 
the CPU will not function properly. Valid transitions on 
this line, and subsequent wait state insertion is shown in 
Figure 19. The processor looks at this line at the begin­
ning of each T 3 and Tw' If the line is sampled active at 
the beginning of either of these two cycles, that cycle will 

I 
I 

CLOCK 

OUT 

SRDY ~ ~ 
1 DeCISion Not ready, T-state Will be followed by a walt state 
2 DeCISion Ready, T-state Will not be followed by a walt state 
3 tSRYCL Synchronous ready stable until clock low (SRDY set-up 

time) ~ 35 ns min 

4 tCLSRY 

Clock low until synchronous ready transition (SRDY hold time) ~ 
15 ns mm 

Figure 19. Valid SRDY transitions on the 80186 
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be immediately followed by T 4' On the other hand, if the 
line is sampled inactive at the beginning of either of 
these two cycles, that cycle will be followed by a Tw' Any 
asynchronous transition on the SRDY line not occurring 
at the beginning ofTJ or Two that is, when the processor 
is not "looking at" the ready lines will not cause CPU 
malfunction. 

3.1.10 BUS PERFORMANCE ISSUES 

Bus cycles occur sequentially, but do not necessarily 
come immediately one after another, that is the bus may 
remain idle for several T states (T) between each bus 
access initiated by the 80186. This occurs whenever the 
80186 internal queue is full and no read/write cycles are 
being requested by the execution unit or integrated 
DMA unit. The reader should recall that a separate 
unit, the bus interface unit, fetches opcodes (including 
immediate data) from memory, while the execution unit 
actually executes the pre-fetched instructions. The num­
ber of clock cycles required to execute an 80186 instruc­
tion vary from 2 clock cycles for a register to register 
move to 67 clock cycles for an integer divide. 

If a program contains many long instructions, program 
execution will be CPU limited, that is, the instruction 
queue will be constantly filled. Thus, the execution unit 
does not need to wait for an instruction to be fetched. If a 
program contains mainly short instructions or data 
move instructions, the execution will be bus limited. 
Here, the execution unit will be required to wait often 
for an instruction to be fetched before it continues its op­
eration. Programs illustrating this effect and perfor­
mance degradation of each with the addition of wait 
states are given in appendix G. 

All instruction fetches are word (l6-bit) fetches from 
even addresses unless the fetch occurs as a result of a 
jump to an odd location. This maximizes the utilization 

of each bus cycle used for instruction fetching, since 
each fetch will access two bytes of information. It is also 
good programming practice to locate all word data at 
even locations, so that both bytes of the word may be ac­
cessed in a single bus cycle (see discussion on data bus 
interfacing for further information, section 3.1.3 of this 
note). 

Although the amount of bus utilization, i.e., the percent­
age of bus time used by the 80186 for instruction fetch­
ing and execution required for fop performance will vary 
considerably from one program to another, a typical in­
struction mix on the 80186 will require greater bus utili­
zation than the 8086. This is caused by the higher 
performance execution unit requiring instructions from 
the prefetch queue at a greater rate. This also means 
that the effect of wait states is more pronounced in an 
80186 system than in an 8086 system. In all but a few 
cases, however, the performance degradation incurred 
by adding a wait state is less than might be expected be­
cause instruction fetching and execution are performed 
by separate units. 

3.2 Example Memory Systems 
3.2.1 2764 INTERFACE 
With the above knowledge of the 80186 bus, various 
memory interfaces may be generated. One of the sim­
plest of these is the example EPROM interface shown in 
Figure 20. 

The addresses are latched using the address generation 
circuit shown earlier. Note that the AO line of each 
EPR 0 M is connected to the A 1 address line from the 
80186, NOT the AO line. Remember, AO only signals a 
data transfer on the lower 8 bits of the 16-bit data bus! 
The EPROM outputs are connected directly to the ad­
dress/data in~ofthe 80186, and the 80186 RD signal 
is used as the OE for the EPROMs. 

2764 2764 

A13 
A1 

RD 

ADO-AD7 

AD8-AD15 

CE L.... CE 
/13 13 A12 

~ 
A12 

/ / AO AO 

DE r Of' 
00-07 00-07 

J 
8 I 
8 

Figure 20. Example 2764/80186 Interface 
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The chip enable of the EPROM is driven directly by the 
chip select output of the 80186 (see section 8). In this 
configuration, the access time calculation for the 
EPROMsare: 
time from 
address: (3 + N)*tcLcL -tCLAV - t[vov(8282) - tovCL 

= 375 + (N * 125) - 44 - 30 - 20 

= 281 + (N * 125) ns 
time from 
chip select: (3 + N)*tcLcL - tCLCSV - tovCL 

= 375 + (N * 125) - 66 - 20 

= 289 + (N * 125) ns 

time from 
RD (OE): (2 + N)tcLcL -~CLRL - tovCL 

= 250 + (N * 125) - 70 - 20 

= 160 + (N * 125) ns 

where: 

tCLAY = time from clock low in T[ until addresses 
are valid 

tCLCL = clock period of processor 

t[yOY = time from input valid of 8282 until output 
valid of 8282 

CLKOUT--~~------~~~ __ ~~~ 
LCS 

SHE 

AD 

CLKOUT 
WR 

RD 
4.7K 

AROY 

tOYCL = 186 data valid input setup time until clock 
low time of T 4 

tCLCSY = time from clock low in T I until chip selects 
are valid 

tCLRL = time from clock low in T 2 until RD goes low 

N = number of wait states inserted 

Thus, for 0 wait state operation, 250ns EPROMs must 
be used. The only significant ~ameter not included 
above is tRHAy, the time from RD inactive (high) until 
the 80186 begins driving address information. This pa­
rameter is 85ns, which meets the 2764-25 (250ns speed 
selection) output float time of 85ns. If slower EPROMs 
are used, a discrete data buffer MUST be inserted be­
tween the EPROM data lines and the address/data bus, 
since these devices may continue to drive data informa­
tion on the multiplexed address/data bus when the 
80186 begins to drive address information for the next 
bus cycle. 

3.2.2 2186 INTERFACE 

An example interface between the 80186 and 2186 
iRAMs is shown in Figure 21. This memory component 
is almost an ideal match with the 80186, because of its 
large integration, and its not requiring address latching. 

2186 

CE 

WE 

OE 

AO-A12 

ROY 

00-07 

2186 

CE 

WE 

'--------~OE 

AO-A12 

00-07 

A01- 13 A08-

AOO­
A015 

____________________________________ ~A~01~3~~--------~~~----~~~----~ A015 

Figure 21. Example 2186/80186 Interface 
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The 2186 internally is a dynamic RAM integrated with 
refresh and control circuitry. It operates in two modes, 
pulse mode and late cycle mode. Pulse mode is entered if 
the CE signal is low to the device a maximum of 130ns, 
and requires the command input (RD or WE) to go ac­
tive within 90ns after CEo Because of these require­
ments, interfacing the 80186 to the 2186 in pulse mode 
would be difficult. Instead, the late cycle mode is used. 
This affords a much simpler interface with no loss of 
performance. The iRAM automatically selects between 
these modes by the nature of the control signals. 

The 2186 is a leading edge triggered device. This means 
that address and data information are strobed into the 
device on the active going (high to lo&transition of the 
command signal. This requires both CE and WR be de­
layed until the address and data driven by the 80186 are 
guaranteed stable. Figure 21 shows a simple circuit 
which can be used to perform this function. Note that 
ALE CANNOT be used to delay CE if addresses are not 
latched externally, because this would violate the ad­
dress hold time required by the 2186 (30ns). 

Because the 2186s are RAMs, data bus enables (BHE 
and AO, see previous section) MUST be used to factor 
either the chip enables or write enables of the lower and 
upper bytes of the 16-bit RAM memory system. If this is 
not done, all memory writes, including single byte 
writes, will write to both the upper and lower bytes of the 
memory system. The exampl~stem shown uses BHE 
and AO as factors to the 2186 CEo This may be done, be­
cause both of these signals (AO and BHE) are valid 
when the address information is valid from the 80186. 

The 2186 requires a certain amount of recovery time be­
tween its chip enable going inactive and its chip enable 
going active insure proper operation. For a "normal" cy­
cle (a read or write), this time is tEHEL = 40ns. This 
means that the 80186 chip select lines will go inactive 
soon enough at the end of a bus cycle to provide the re­
quired recovery time even iftwo consecutive accesses are 
made to the iRAMs. If the 2186 CE is asserted without a 
command signal (WE or OE), a "False Memory Cycle" 
(FMC) will be generated. Whenever a FMC is generat­
ed, the recovery time is much longer; another memory 
cycle must not be initiated for 200ns. As a result, if the 
memory system will generate FMCs, CE must be taken 
away in the middle of the T state (T) or Tw) immediately 
preceding T 4 to insure two consecutive cycles to the 
iRAM will not violate this parameter. Status going pas­
sive (all high) can be used for this purpose. These lines 
will all go high during the first phase of the next to last T 
state (either T) or Tw) of a bus cycle (see section 3.1.5). 

Finally, since it is a dynamic device, the 2186 requires 
refresh cycles to maintain data integrity. The circuitry 
to generate these refresh cycles is integrated within the 
2186. Because of this, the 2186 has a ready line which is 
used to suspend processor operation if a processor RAM 
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access coincides with an internally generated refresh cy­
cle. This is an open collector output, allowing many of 
them to be wire-OR'ed together, since more than one de­
vice may be accessed at at time. These lines are also nor­
mally ready, which means that they will be high 
whenever the 2186 is not being accessed, i.e., they will 
only be driven low if a processor request coincides with 
an internal refresh cycle. Thus, the ready lines from the 
iRAM must be factored into the 80186 RDY circuit 
only during accesses to the iRAM itself. Since the 2186 
refresh logic operates asynchronously to the 80186, this 
RDY line must be synchronized for proper operation 
with the 80186, either by the integrated ready synchro­
nizer or by an external circuit. The example circuit uses 
the integrated synchronizer associated with the ARDY 
processor input. 

The ready lines of the 2186 are active unless a processor 
access coincides with an internal refresh cycle. These 
lines must go inactive soon enough after a cycle is re­
quested to insert wait states into the data cY£!.!;. The 
2186 will drive this line low within 50ns after CE is re­
ceived, which is early enough to force the 80186 to insert 
wait states if they are required. The primary concern 
here is that the ARDY line be driven not active before 
its setup time in the middle ofT 2' This is required by the 
nature of the asynchronous ready synchronization cir­
cuitry of the 80186. Since the RDY pulse of the 2186 
may be as narrow as 50ns, if ready was returned after 
the first stage of the synchronizer, and subsequently 
changed state within the ready setup and hold time of 
the high to low going edge of the CPU clock at the end of 
T2, improper operation may occur (see section 3.1.6). 

The example interface shown has a zero wait state RAM 
read access time from CE of: 

where: 

3 * tCLCL - tCLCSV - (TTL delay) - tDvCL 
= 375 - 66 - 30 - 20 ns 

= 259 ns 

tCLCL = CPU clock cycle time 

tCLCSV = time from clock low in T I until chip selects 
are valid 

tDvCL = 80186 data in setup time before clock low in 
T4 

The data valid delay from OE active is less than lOOns, 
and is therefore not an access time limiter in this inter­
face. Additionally, the 2186 data float time from RD in­
active is less than the 85ns 80186 imposed maximum. 
The CE generation circuit shown in Figure 21 provides 
an address setup time of at least 11 ns, and an address 
hold time of at least 35ns (assuming a maximum two 
level TTL delay of less than 30ns). 

AFN-21 0973 



AP-186 

Write cycle address setup and hold times are identical to 
the read cycle times. The circuit shown provides at least 
l!.!!.s write data setup and lOOns data hold time from 
WE, easily meeting the Ons setup and 40ns hold times 
required by the 2186. 

For more information concerning 2186 timing and in­
terfacing, please consult the 2186 data sheet, or the ap­
plication note AP-132, "Designing Memory Systems 
with the 8Kx8 iRAM" by John Fallin and William 
Righter (June 1982). 

3.2.3 8203 DRAM INTERFACE 

An example 8203/DRAM interface is shown in Figure 
22. The 8203 provides all required DRAM control sig­
nals, address multiplexing, and refresh generation. In 
this circuit, the 8203 is configured to interface with 64K 
DRAMs. 

MCSl 
MCSO 

A17·Al 

AROY 

AOO·A015 

RO 

] "\ 

17/ 

-

--
./ ---

'--

~ 

All 8203 cycles are generated off control signals (RD 
and WR) provided by the 80186. These signals will not 
go active until T 2 of the bus cycle. In addition, since the 
8203 clock (generated by the internal crystal oscillator 
of the 8203) is asynchronous to the 80186 clock, all 
memory requests by the 80186 must be synchronized to 
the 8203 before the cycle will be run. To minimize this 
synchronization time, the 8203 should be used with the 
highest speed crystal that will maintain DRAM com­
patibility. Even if a 25 MHz crystal is used (the maxi­
mum allowed by the 8203) two wait states will be 
required by the example circuit when using 150ns 
DRAMs with an 8 MHz 80186, three wait states if 
200ns DRAMs are used (see timing analysis, Figure 
23). 

The entire RAM array controlled by the 8203 can be se­
lected by one or a group of the 80186 provided chip se­
lects. These chip selects can also be used to insert the 
wait states required by the interface. 

'"'-

P->-
J 221l 22il 

8203 

SEL WR UPPER LOWER 
BYTE WE BYTE WE 

AO· 
A16, WE -
BO 
SACK ORAMs/ 

XACK 
RD 

t 
/-

01:'15 
8282 000-15 

000-7 

OE 010-7 I---
STB 

8282 

000-7 

OE 010-7 I---
STB 

Figure 22. Example 8203/DRAM/80186 Interface 
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T, T, 

186 ---+----'I~ 
AD 

8203 _______________ ~,....--.., 

RAS 

8203 -----i---------i-----....".--i---I 
CAS 

RAM 

DATA ~~~~~~~~~~~~~~~~~~~'Y __ ~~ ________ __ 

LATCH 

DATA 

1. tClEL: Clock low until read low ~ 70 ns max 
2. tCA: Command active until RAS ~ 150 ns max' 
3. tcc: Command active until CAS ~ 245 ns max' 
4. tCAC: Access time from CAS ~ 85 ns max 
5. tISOU: Input to output delay ~ 30 ns max 

(j) & ® are 186 specs 
@ & ® are 8203 specs 
@ is a 2164A-15 spec 
® is on 8282 spec 

6. tDVCl: Data valid to clock low (data in set up) ~ 20 ns min 'Assumes 25MHz 
8203 operation Total Access Time ~ 70 + 245 +85 +30 +20 ~ 450 ns (3.6 T-states) 

Figure 23. 8203/2164A-15 Access Time Calculation 

Since the 8203 is operating asynchronously to the 
80186, the RDY output of the 8203 (used to suspend 
processor operation when a processor DRAM request 
coincides with a DRAM refresh cycle) must be synchro­
nized to the 80186. The 80186 ARDY line is used to pro­
vide the necessary ready synchronization. The 8203 
ready outputs operate in a normally not ready mode, 
that is, they are only driven active when an 8203 cycle is 
being executed, and a refresh cycle is not being run. This 
is fundamentally different than the normally ready 
mode used by the 2186 iRAMs (see previous section). 
The 8203 SACK signal is presented to the 80186 only 
when the DRAM is being accessed. Notice that the 
SACK output of the 8203 is used, rather than the 
XACK output. Since the 80186 will insert at least one 
full CPU clock cycle between the time RDY is sampled 
active, and the time data must be present on the data 
bus, using the XA CK signal wOljld insert unnecessary 
additional wait states, since it does not indicate ready 
until valid data is available from the memory. 

For more information about 8203/DRAM interfacing 
and timing, please consult the 8203 data sheet, or 
AP97A, "Interfacing Dynamic RAM to iAPX86/88 
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Systems Using the Intel 8202A and 8203" by Brad May 
(April 1982). 

3.2.4 8207 DRAM INTERFACE 

The 8207 advanced dual-port DRAM controller pro­
vides a high performance DRAM memory interface 
specifically for 80186 or 80286 microcomputer systems. 
This controller provides all address multiplexing and 
DRAM refresh circuitry. In addition, it synchronizes 
and arbitrates memory requests from two different ports 
(e.g., an 80186 and a Multibus), allowing the two ports 
to share memory. Finally, the 8207 provides a simple in­
terface to the 8206 error detection and correction chip. 

The simplest 8207 (and also the highest performance) 
interface is shown in Figure 24. This shows the 80186 
connected to an 8207 using the 8207 slow cycle, synchro­
nous status interface. In this mode, the 8207 decodes the 
type of cycle to be run directly from the status lines of 
the 80186. In addition, since the 8207 CLOCKIN is 
driven by the CLOCKOUT of the 80186, any perfor­
mance degradation caused by required memory request 
synchronization between the 80186 and the 8207 is not 
present. Finally, the entire memory array driven by the 
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8207 may be selected using one or a group of the 80186 
memory chip selects, as in the 8203 interface above. 

80186 a~07 

ClKOUT ClK 

sa WR 
+ 

U Sf RD PCTC 

52 PCTl 

LMCS PE 
AACK 

SRDY --«l I 

Figure 24. 80186/8207/DRAM Interface 

The 8207 AACK signal may be used to generate a syn­
chronous ready signal to the 80186 in the above inter­
face. Since dynamic memory periodically requires 
refreshing, 80186 access cycles may occur simulta­
neously with an 8207 generated refresh cycle. When this 
occurs, the 8207 will hold the AACK line high until the 
processor initiated access is run (note, the sense of this 
line is reversed with respect to the 80186 SRDY input). 
This signal should be factored with the DRAM (8207) 
select input and used to drive the SRDY line of the 
80186. Remember that only one of SRDY and ARDY 
needs to be active for a bus cycle to be terminated. If 
asynchronous devices (e.g., a Multibus interface) are 
connected to the ARDY line with the 8207 connected to 
the SRDY line, care must be taken in design of the ready 
circuit such that only one of the RDY lines is driven ac­
tive at a time to prevent premature termination of the 
bus cycle. 

3.3 HOLD/HLDA Interface 

The 80186 employs a HOLD/HLDA bus exchange pro­
tocol. This protocol allows other asynchronous bus mas­
ter devices (i.e., ones which drive address, data, and 
control info~mation on the bus) to gain control ofthe bus 
to perform bus cycles (memory or I/O reads or writes). 

3.3.1 HOLD RESPONSE 

In the HOLD/HLDA protocol, a device requiring bus 
control (e.g., an external DMA device) raises the 
HOLD line. In response to this HOLD request, the 
80186 will raise its HLDA line after it has finished its 
current bus activity. When the external device is finished 
with the bus, it drops its bus HOLD request. The 80186 
responds by dropping its HLDA line and resuming bus 
operation. 
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When the 80186 recognizes a bus hold by driving 
HLDA high, it will float many of its signals (see Figure 
25). ADO - ADI5 (address/data 0 - 15) and DEN (data 
enable) are floated within tCLAZ (35ns) after the same 
clock edge that HLDA is driven active. A16-A19 (ad­
dress_16 - 19), RD, WR, BHE (B~HisP Enable), 
DT /R (Data Transmit/Receive) and SO - S2 (status 0 -
2) are floated within tCHCZ (45ns) after the clock edge 
immediately before the clock edge on which HLDA 
comes active. 

CLOCK 

OUT 

T, OR T, T, T, 

HOLD ----~----_;~~------~------

HlDA ---...;...----+-+-....;.,J 

AD1S-ADO 
DEN ______ _;~---J 

A16·A19 

RO,WR,BHE 

DT/R,sa-52 ----;-----' 

Figure 25. Signal Float/HLDA Timing of the 80186 

Only the above mentioned signals are floated during bus 
HOLD. Of the signals not floated by the 80186, some 
have to do with peripheral functionality (e.g., TmrOut). 
Many others either directly or indirectly control bus de­
vices. These signals are ALE (Address Latch Enable, 
see section 3.1.2) and all the chip select lines (UCS, 
LCS, MCSO-3, and PCSO-6). The designer must be 
aware that the chip select circuitry does not look at ex­
ternally generated addresses (see section 10 for a discus­
sion of the chip select logic). Thus, for memory or 
peripheral devices which are addressed by external bus 
master devices, discrete chip select and ready generation 
logic must be used. 

3.3.2 HOLD/HLDA TIMING AND BUS LATENCY 

The time required between HOLD going active and the 
80186 driving HLDA active is known as bus latency. 
Many factors affect this latency, including synchroniza­
tion delays, bus cycle times, locked transfer times and 
interrupt acknowledge cycles. 

The HOLD request line is internally synchronized by 
the 80186, and may therefore be an asynchronous sig­
nal. To guarantee recognition on a certain clock edge, it 
must satisfy a certain setup and hold time to the falling 
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edge of the CPU clock. A full CPU clock cycle is re­
quired for this synchronization, that is, the internal 
HOLD signal is not presented to the internal bus arbi­
tration circuitry until one full clock cycle after it is 
latched from the HOLD input (see Appendix B for a dis-

cussion of 80186 synchronizers). If the bus is idle, 
HLDA will follow HOLD by two CPU clock cycles plus 
a small amount of setup and propagation delay time. 
The first clock cycle synchronizes the input; the second 
signals the internal circuitry to initiate a bus hold. (see 
Figure 26). 

T, T, 

HOLD 

HLDA ________ ..;... ___ -J 

Many factors influence the number of clock cycles be­
tween a HOLD request and a HLDA. These may make 
bus latency longer than the best case shown above. Per­
haps the most important factor is that the 80186 will not 
relinquish the local bus until the bus is idle. An idle bus 
occurs whenever the 80186 is not performing any bus 
transfers. As stated in section 3.1.1, when the bus is idle, 
the 80186 generates idle T-states. The bus can become 
idle only at the end of a bus cycle. Thus, the 80186 can 
recognize HOLD only after the end of its current bus cy­
cle. The 80186 will normally insert no T, states between 
T 4 and T I of the next bus cycle if it requires any bus ac­
tivity (e.g., instruction fetches or I/O reads). However, 
the 80186 may not have an immediate need for the bus 
after a bus cycle, and will insert T, states independent of 
the HOLD input (see section 3.1.7). 

1. tHVCL: Hold valid until clock low = 25 ns min 
2. tCLHAV: Clock low until HLDA active = 50 ns max 

Figure 26. 80186 Idle Bus Hold/HLDA Timing 
When the HOLD request is active, the 80186 will be 

CLOCK 

OUT 

HOLD 

HLDA ----~-------~-------~ 

T, 

DeCISion: No additional Internal bus cycles required, idle T-states will be 
Inserted after T 4 

2. Greater than 25 ns (tHyCL) 
3. Less than 50 ns (tCLHAY) 
4 HOLD request internally synchronized 

T.OR 

: Tw : T, : T, 

CLOCK 
OUT 

HOLD 

HLDA 

~l 
I I I , , 

1. DeCISion: Additional Internal bus cycles reqUired, no idle T-states will be 
Inserted, Hold not active soon enough to force idle T-states 

2. Greater than 25 ns (tHyCL): not required since It will not get recognized 
anyway 

3. HOLD request internally synchronized 

Figure 27. HOLD/HLDATlming In the 80186 
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CLOCK 
OUT 

HOLD 
I .. .1 
I I 
I I 

HLDA 

1. HOLD request Internally synchronized 
2. DecIsion' HOLD request active, Idle t-states will be inserted at end of 

current bus cycle 
3. Greater than 25 ns 
4. Less than 50 ns 

Figure 27A. HOLD/HLDATiming in the 80186 

forced to proceed from T4 to T, in order that the bus may 
be relinquished. HOLD must go active 3 T-states before 
the end of a bus cycle to force the 80186 to insert idle T­
states after T4 (one to synchronize the request, and one 
to signal the 80186 that T 4 of the bus cycle will be fol­
lowed by idle T-states, see section 3.1.1). After the bus 
cycle has ended, the bus hold will be immediately ac­
knowledged. If, however, the 80186 has already deter­
mined that an idle T-state will follow T 4 of the current 
bus cycle, HOLD need go active only 2 T-states before 
the end of a bus cycle to force the 80186 to relinquish the 
bus at the end of the current bus cycle. This is because 
the external HOLD request is not required to force the 
generation of idle T-states. Figure 27 graphically por­
trays the scenarios depicted above. 

An external HOLD has higher priority than both the 
80186 CPU or integrated DMA unit. However, an exter­
nal HOLD will not separate the two cycles needed to 
perform a word access when the word accessed is located 
at an odd location (see section 3.1.3). In addition, an ex­
ternal HOLD will not separate the two-to-four bus cy­
cles required to perform a DMA transfer using the 
integrated controller. Each of these factors will add .ad­
ditional bus cycle times to the bus latency of the 80186. 

Another factor influencing bus latency time is locked 
transfers. Whenever a locked transfer is occurring, the 
80186 will not recognize external HOLDs (nor will it 
recognize internal DMA bus requests). Locked trans­
fers are programmed by preceding an instruction with 
the LOCK prefix. Any transfers generated by such a 
prefixed instruction will be locked, and will not be sepa­
rated by any external bus requesting device. String in­
structions may be locked. Since string transfers may 
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require thousands of bus cycles, bus latency time will 
suffer if they are locked. 

The final factor affecting bus latency time is interrupt 
acknowledge cycles. When an external interrupt con­
troller is used, or if the integrated interrupt controller is 
used in iRMX 86 mode (see section 6.7.4) the 80186 will 
run two interrupt acknowledge cycles back to back. 
These cycles are automatically "locked" and will never 
be separated by any bus HOLD, either internal or exter­
nal. See section 6.5 on interrupt acknowledge timing for 
more information concerning interrupt acknowledge 
timing. 

3.3.3 COMING OUT OF HOLD 
After the 80186 recognizes that the HOLD input has 
gone inactive, it will drop its HLDA line in a single 
clock. Figure 28 shows this timing. The 80186 will insert 
only two T, after HLDA has gone inactive, assuming 
that the 80186 has internal bus cycles to run. During the 
last T" status information will go active concerning the 
bus cycle about to be run (see section 3.1.1). If the 
80186 has no pending bus activity, it will maintain all 
lines floating (high impedance) until the last T, before it 
begins its first bus cycle after the HOLD. 

3.4 Differences Between the 8086 bus and 
the 80186 Bus 

The 80186 bus was defined to be upward compatible 
with the 8086 bus. As a result, the 8086 bus interface 
components (the 8288 bus controller and the 8289 bus 
arbiter) may be used directly with the 80186. There are 
a few significant differences between the two processors 
which should be c:msidered. 
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CLOCK 

OUT 

T, 

HOLD ----\ 

HLDA 

ADO-AD15 

T, T, T, 

DEN ----------------------------~----~--~ ______ _ 

A16/53-A19/S6 

RD,WR,BHE 

DT/R,SO-S2 

1 HOLD internally synchronized 
2. Greater than 25 ns 
3. Less than 50 ns 
4. Lines come out of float only If a bus cycle is pending 

Figure 28. 80186 Coming out of Hold 

CPU Duty Cycle and Clock Generator 

The 80186 employs an integrated clock generator which 
provides a 50% duty cycle CPU clock (1/2 of the time it 
is high, the other 1/2 of the time it is low). This is differ­
ent that the 8086, which employs an external clock gen­
erator (the 8284A) with a 33% duty cycle CPU clock 
(1/3 of the time it is high, the other 2/3 of the time, it is 
low). These differences manifest themselves as follows: 

I) No oscillator output is available from the 80186, 
as it is available from the 8284A clock generator. 

2) The 80186 does not provide a PCLK (50% duty 
cycle, 1/2 CPU clock frequency) output as does 
the 8284A. 

3) The clock low phase of the 80186 is narrower, 
and the clock high phase is wider than on the 
same speed 8086. 

4) The 80186 does not internally factor AEN with 
RDY. This means that if both RDY inputs 
(ARDY and SRDY) are used, external logic 
must be used to prevent the RDY not connected 
to a certain device from being driven active dur­
ing an access to this device (remember, only one 
RDY input needs to be active to terminate a bus 
cycle, see section 3.1.6). 

5) The 80186 concurrently provides both a single 
asynchronous ready input and a single synchro­
nous ready input, while the 8284A provides ei-

24 

ther two synchronous ready inputs or two 
asynchronous ready inputs as a user strapable 
option. 

6) The CLOCKOUT (CPU clock output signal) 
drive capacity of the 80186 is less than the CPU 
clock drive capacity of the 8284A. This means 
that not as many high speed devices (e.g., 
Schottky TTL flip-flops) may be connected to 
this signal as can be used with the 8284A clock 
output. 

7) The crystal or external oscillator used by the 
80186 is twice the CPU clock frequency, while 
the crystal or external oscillator used with the 
8284A is three times the CPU clock frequency. 

Local Bus Controller and Control Signals 

The 80186 simultaneously provides both local bus con­
troller outputs (RD, WR, ALE, DEN and DT/R) and 
status outputs (SO, SI, S2) for use with the 8288 bus 
controller. This is different from the 8086 where the lo­
cal bus controller outputs (generated only in min mode) 
are sacrificed if status outputs ( generated only in max 
mode) are desired. These differences will manifest 
themselves in 8086 systems and 80186 systems as 
follows: 

I) Because the 80186 can simultaneously provide 
local bus control signals and status outputs, 
many systems supporting both a system bus (e.g., 
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a Multibus®) and a local bus will not require two 
separate external bus controllers, that is, the 
80186 bus control signals may be used to control 
the local bus while the 80186 status signals are 
concurrently connected to the 8288 bus control­
ler to drive the control signals of the system bus. 

2) The ALE signal of the 80186 goes active a clock 
phase earlier on the 80186 then on the 8086 or 
8288. This minimizes address propagation time 
through the address latches, since typically the 
delay time through these latches from inputs val­
id is less than the propagation delay from the 
strobe input active. 

3) The 80186 RD input must be tied low to provide 
queue status outputs from the 80186 (see Figure 
29). When so s.!@Eped into "queue status mode," 
the ALE and WR outputs provide queue status 
information. Notice that this queue status infor­
mation is available one clock phase earlier from 
the 80186 than from the 8086 (see Figure 30). 

80186 

aso ALE 
-

aSl WR 

~ 
iffi 

Figure 29. Generating Queue Status Information 
from the 80186 

HOLD/HLDA VS. RQ/GT 

As discussed earlier, the 80186 uses a HOLD/HLDA 
type of protocol for exchanging bus mastership (like the 
8086 in min mode) rather than the RQ/GT protocol 
used by the 8086 in max mode. This allows compatiblity 
with Intel's the new generation of high performance/ 
high integration bus master peripheral devices (for ex-

CLOCK 
OUT 

ample the 82586 Ethernet" controller or 82730 high 
performance CRT controller / text coprocessor). 

Status Information 

The 80186 does not provide S3-S5 status information. 
On the 8086, S3 and S4 provide information regarding 
the segment register used to generate the physical ad­
dress of the currently executing bus cycle. S5 provides 
information concerning the state of the interrupt enable 
flip-flop. These status bits are always low on the 80186. 

Status signal S6 is used to indicate whether the current 
bus cycle is initiated by either the CPU or a DMA de­
vice. Subsequently, it is always low on the 8086. On the 
80186, it is low whenever the current bus cycle is initiat­
ed by the 80186 CPU, and is high when the current bus 
cycle is initiated by the 80186 integrated DMA unit. 

Bus Drive 

The 80186 output drivers will drive 200pF loads. This is 
double that of the 8086 (lOOpF). This allows larger sys­
tems to be constructed without the need for bus buffers. 
It also means that it is very important to provide good 
grounds to the 80186, since its large drivers can dis­
charge its outputs very quickly causing large current 
transients on the 80186 ground pins. 

Misc. 

The 80186 does not provide early and late write signals, 
as does the 8288 bus controller. The WR signal generat­
ed by the 80186 corresponds to the early write signal of 
the 8288. This means that data is not stable on the ad­
dress/data bus when this signal is driven active. 

The 80186 also does not provide differentiated I/O and 
memory read and write command signals. If these sig­
nals are desired, an external 8288 bus controller may be 
used, or the S2 signal may be used to synthesize differ­
entiated commands (see section 3.1.4). 

'Ethernet IS a registered trademark of Xerox Corp. 

186 --------~--------~----~'~~~~Mr~~~----
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1 80186 changes queue status off falling edge of ClK 
2 8086 changes queue status off rising edge of ClK 

Figure 30. 80186 and 8086 Queue Status Generation 

25 AFN-21 0973 



AP-186 

4. DMA UNIT INTERFACING 

The 80186 includes a DMA unit which provides two in­
dependent high speed DMA channels. These channels 
operate independently of the CPU, and drive all inte­
grated bus interface components (bus controller, chip se­
lects, etc.) exactly as the CPU (see Figure 31). This 
means that bus cycles initiated by the DMA unit are ex­
actly the same as bus cycles initiated by the CPU (ex­
cept that S6 = I during all DMA initiated cycles, see 
section 3.1). Thus interfacing with the D MA unit itself 
is very simple, since except for the addition of the DMA 
request connection, it is exactly the same as interfacing 
to the CPU. 

EXTERNAL ADDRESS/DATA, 
'CONTROL, CHIP SELECTS, 
ETC. 

CHIP SELECT CIRCUITRY 

DMA 

REQUESTS 

Figure 31. 80186 CPU/DMA Channel 

Internal Model 

4.1 DMA Features 

Each of the two DMA channels provides the following 
features: 

Independent 20-bit source artd destination pointers 
which are used to access the I/O or memory location 
from which data will be fetched or to which data will 
be deposited 

Programmable auto-increment, auto-decrement or 
neither of the source and destination pointers after 
each DMA transfer 

Programmable termination of DMA activity after a 
certain number of DMA transfers 

Programmable CPU interruption at DMA termina­
tion 

Byte or word DMA transfers to or from even or odd 
memory or I/O addresses 
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Programmable generation of DMA requests by: 

I) the source of the data 

2) the destination of the data 

3) timer 2 (see section 5) 

4) the D MA unit itself (continuous D MA requests) 

4.2 DMA Unit Programming 

Each of the two DMA channels contains a number of 
registers which are used to control channel operation. 
These registers are included in the 80186 integrated pe­
ripheral control block (see appendix A). These registers 
include the source and destination pointer registers, the 
transfer count register and the control register. The lay­
out and interpretation of the bits in these registers is giv­
en in Figure 32. 

The 20-bit source and destination pointers allow access 
to the complete I Mbyte address space of the 80186, and 
that all 20 bits are affected by the auto-increment or 
auto-decrement unit of the DMA (Le., the DMA 
channels address the full I Mbyte address space of the 
80186 as a flat, linear array without segments). When 
addressing I/O space, the upper 4 bits of the DMA 
pointer registers should be programmed to be o. If they 
are not programmed 0, then the programmed value 
(greater than 64K in I/O space) will be driven onto the 
address bus (an area of I/O space not accessable to the 
CPU). The data transfer will occur correctly, however. 

After every DMA transfer the 16-bit DMA transfer 
count register it is decremented by I, whether a byte 
transfer or a word transfer has occurred. If the TC bit in 
the DMA control register is set, the DMA ST/STOP 
bit (see below) will be cleared when this register goes to 
0, causing all DMA activity to cease. A transfer count of 
zero allows 65536 (216) transfers. 

The DMA control register (see Figure 33) contains bits 
which control various channel characteristics, including 
for each of the data source and destination whether the 
pointer points to memory or I/O space, or whether the 
pointer will be incremented, decremented or left alone 
after each DMA transfer. It also contains a bit which se­
lects between byte or word transfers. Two synchroniza­
tion bits are used to determine the source of the DMA 
requests (see section 4.7). The TC bit determines wheth­
er DMA activity will cease after a programmed number 
of DMA transfers, and the INT bit is used to enable in­
terrupts to the processor when this has occurred (note 
that an interrupt will not be generated to the CPU when 
the transfer count register reaches zero unless both the 
INT bit and the TC bit are set). 

The control register also contains a start/stop 
(ST /STOP) bit. This bit is used to enable DMA 
transfers. Whenever this bit is set, the channel is 
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Figure 32. 80186 DMA Register Layout 

Figure 33. DMA Control Register 

"armed," that is, a DMA transfer will occur whenever a 
DMA request is made to the channel. If this bit is 
cleared, no D MA transfers will be performed by the 
channel. A companion bit, the CHG/NOCHG bit, 
allows the contents of the DMA control register to be 
changed without modifying the state of the start/stop 
bit. The ST /STOP bit will only be modified if the 
CHG/NOCHG bit is also set during the write to the 
DMA control register. The CHG/NOCHG bit is 
write only. It will always be read back as a 1. Because 
DMA transfers could occur immediately after the 
ST /STOP bit is set, it should only be set only after all 
other DMA controller registers have been programmed. 
This bit is automatically cleared when the transfer count 
register reaches zero and the TC bit in the D MA control 
register is set, or when the transfer count register 
reaches zero and unsynchronized D MA transfers are 
programmed. 
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All DMA unit programming registers are directly 
accessable by the CPU. This means the CPU can, for ex­
ample, modify the DMA source pointer register after 
137 DMA transfers have occurred, and have the new 
pointer value used for the 138th DMA transfer. If more 
than one register in the DMA channel is being modified 
at any time that a DMA request may be generated and 
the DMA channel is enabled (the ST/STOP bit in the 
control register is set), the register programming values 
should be placed in memory locations and moved into 
the D MA registers using a locked string move instruc­
tion. This will prever.t a DMA transfer from occurring 
after only half of the register values have changed. The 
above also holds true if a read/modify/write type of op­
eration is being performed (e.g., ANDing off bits in a 
pointer register in a single AND instruction to a pointer 
register mapped into memory space). 
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NOTE: Walt states are inserted by the bus condition dunng the bus cycle, not by the DMA controller 

Figure 34. Example DMA Transfer Cycle on the 80186 

4.3 DMA Transfers 

Every DMA transfer in the 80186 consists of two inde· 
pendent bus cycles, the fetch cycle and the deposit cycle 
(see Figure 34). During the fetch cycle, the byte or word 
data is accessed from memory or I/O space using the ad· 
dress in the source pointer register. The data accessed is 
placed in an internal temporary register, which is not ac· 
cessible to the CPU. During the deposit cycle, the byte 
or word data in this internal register is placed in memory 
or I/O space using the address in the destination pointer 
register. These two bus cycles will not be separated by 
bus HOLD or by the other DMA channel, and one will 
never be run without the other except when the CPU is 
RESET. Notice that the bus cycles run by the DMA 
unit are exactly the same as memory or I/O bus cycles 
run by the CPU. The only difference between the two is 
the state of the S6 status line (which is multiplexed on 
the AI9Iine): on all CPU initiated bus cycles, this status 
line will be driven low; on all DMA initiated bus cycles, 
this status line will be driven high. 

4.4 DMA Requests 

Each DMA channel has a single DMA request line by 
which an external device may request a DMA transfer. 
The synchronization bits in the 0 MA control register 
determine whether this line is interpreted to be connect· 
ed to the source of the DMA data or the destination of . 
the DMA data. All transfer requests on this line are syn· 
chronized to the CPU clock before being presented to in· 
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ternal DMA logic. This means that any asynchronous 
transitions of the DMA request line will not cause the 
DMA channel to malfunction. In addition to external 
requests, DMA requests may be generated whenever the 
internal timer 2 times out, or continuously by program· 
ming the synchronization bits in the DMA control regis· 
ter to call for unsynchronized DMA transfers. 

4.4.1 DMA REQUEST TIMING AND LATENCY 

Before any DMA request can be generated, the 80186 
internal bus must be granted to the DMA unit. A certain 
amount of time is required for the CPU to grant this in· 
ternal bus to the DMA unit. The time between a DMA 
request being issued and the DMA transfer being run is 
known as DMA latency. Many of the issues concerning 
DMA latency are the same as those concerning bus la· 
tency (see section 3.3.2). The only important difference 
is that external HOLD always has bus priority over an 
internal DMA transfer. Thus, the latency time of an in· 
ternal DMA cycle will suffer during an external bus 
HOLD. 

Each DMA channel has a programmed priority relative 
to the other DMA channel. Both channels may be pro· 
grammed to be the same priority, or one may be pro­
grammed to be of higher priority than the other channel. 
If both channels are active, DMA latency will suffer on 
the lower priority channel. If both channels are active 
and both channels are of the same programmed priority, 
DMA transfer cycles will alternate between the two 
channels (i.e., the first channel will perform a fetch and 
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DRQ 

1. tDRQCL = DMA request to clock low = 25 ns min to guarantee recognition 
2. Synchronizer resolution time 
3. DMA unit priority arbitration, etc. time 
4. Bus Interface Unit latches DMA request and decides to run DMA cycle 

Figure 35. DMA Request Timing on the 80186 (showing minimum response time to request) 

deposit, followed by a fetch and deposit by the second 
channel, etc). 

The minimum timing required to generate a DMA cycle 
is shown in Figure 35. Note that the minimum time from 
DRQ becoming active until the beginning of the first 
DMA cycle is 4 CPU clock cycles, that is, a DMA re­
quest is sampled 4 clock cycles before the beginning of a 
bus cycle to determine if any DMA activity will be re­
quired. This time is independent of the number of wait 
states inserted in the bus cycle. The maximum DMA la­
tency is a function of other processor activity (see 
above). 

80186 

ADDR. 
LATCH 

A6 

Also notice that if DRQ is sampled active at 1 in Figure 
35, the DMA cycle will be executed, even if the DMA 
request goes inactive before the beginning of the first 
~MA cycl.e. This does not mean that the DMA request 
IS latched Into the processor such that any transition on 
the DMA request line will cause a DMA cycle eventual­
ly. Quite the contrary, DMA request must be active at a 
certain time before the end of a bus cycle for the D MA 
request to be recognized by the processor. If the DMA 
request line goes inactive before that window, then no 
DMA cycles will be run. 

DMA DEVICE 

ALEr-------------------------~ 
ACKNOWLEDGE 

PCSO t-----------------------..... -----------I CHIP SEL 

DRQO~----------------------------------~DMAREQUEST 

Figure 36. DMA Acknowledge Synthesis from the 80186 
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4.5 DMA Acknowledge 

The 80186 generates no explicit DMA acknowledge sig­
nal. Instead, the 80186 performs a read or write directly 
to the DMA requesting device. If required, a DMA ac­
knowledge signal can be generated by a decode of an ad­
dress, or by merely using one of the PCS lines (see 
Figure 36). Note ALE must be used to factor the D A CK 
because addresses are not guaranteed stable when chip 
selects go active. This is ~ired because if the address 
is not stable when the PCS goes active, glitches can 
occur at the output of the DACK generation circuitry as 
the address lines change state. Once ALE has gone low, 
the addresses are guaranteed to have been stable for at 
least tAVAL (30ns). 

4.6 Interna"y Generated DMA Requests 
There are two types in internally synchronized DMA 
transfers, that is, transfer initiated by a unit integrated 
in the 80186. These two types are transfers in which the 
DMA request is generated by timer 2, or where DMA 
request is generated by the DMA channel itself. 

The DMA channel can be programmed such that when­
ever timer 2 reaches its maximum count, a DMA re­
quest will be generated. This feature is selected by 
setting the TDRQ bit in the DMA channel control regis­
ter. A DMA request generated in this manner will be 
latched in the DMA controller, so that once the timer re­
quest has been generated, it cannot be cleared except by 
running the DMA cycle or by clearing the TDRQ bits in 
both DMA control registers. Before any DMA requests 
are generated in this mode, timer 2 must be initiated and 
enabled. 

A timer requested DMA cycle being run by either DMA 
channel will reset the timer request. Thus, if both chan­
nels are using it to requ~st a DMA cycle, only one DMA 
channel will execute a transfer for every timeout of tim­
er 2. Another implication of having a single bit timer 
DMA request latch in the DMA controller is that if an­
other timer 2 timeout occurs before a DMA channel has 
a chance to run a DMA transfer, the first request will be 
lost, i.e., only a single DMA transfer will occur, even 
though the timer has timed out twice. 

The DMA channel can also be programmed to provide 
its own DMA requests. In this mode, DMA transfer cy­
cles will be run continuously at the maximum bus band­
width, one after the other until the preprogrammed 
number of DMA transfers (in the DMA transfer count 
register) have occurred. This mode is selected by pro­
gramming the synchronization bits in the DMA control 
register for unsynchronized transfers. Note that in. this 
mode, the DMA controller will monopolize the CPU 
bus, i.e., the CPU will not be able to perform opcode 
fetching, memory operations, etc., while the DMA 
transfers are occurring. Also notice that the DMA will 
only perform the number of transfers indicated in the 
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maximum count register regardless of the state of the 
TC bit in the DMA control register. 

4.7 Externa"y Synchronized DMA 
Transfers 

There are two types of externally synchronized DMA 
transfers, that is, DMA transfers which are requested by 
an external device rather than by integrated timer 2 or 
by the DMA channel itself (in unsynchronized trans­
fers). These are source synchronized and destination 
synchronized transfers. These modes are selected by 
programming the synchronization bits in the DMA 
channel control register. The only difference between 
the two is the time at which the DMA request pin is sam­
pled to determine if another DMA transfer is immedi­
ately required after the currently executing DMA 
transfer. On source synchronized transfers, this is done 
such that two source synchronized DMA transfers may 
occur one immediately after the other, while on destina­
tion synchronized transfers a certain amount of idle 
time is automatically inserted between two DMA trans­
fers to allow time for the DMA requesting device to 
drive its DMA request inactive. 

4.7.1 SOURCE SYNCHRONIZED 
DMA TRANSFERS 

In a source synchronized D MA transfer, the source of 
the DMA data requests the DMA cycle. An example of 
this would be a floppy disk read from the disk to main 
memory. In this type of transfer, the device requesting 
the transfer is read during the fetch cycle of the DMA 
transfer. Since it takes 4 CPU clock cycles from the time 
DMA request is sampled to the time the DMA transfer 
is actually begun, and a bus cycle takes a minimum of 4 
clock cycles, the earliest time the DMA request pin will 
be sampled for another DMA transfer will be at the be­
ginning of the deposit cycle of a DMA transfer. This al­
lows over 3 CPU clock cycles between the time the 
DMA requesting device receives an acknowledge to its 
DMA request (around the beginning of T2 of the DMA 
fetch cycle), and the time it must drive this request inac­
tive (assuming no wait states) to insure that another 
DMA transfer is not performed if it is not desired (see 
Figure 37). 

4.7.2 DESTINATION SYNCHRONIZED 
DMA TRANSFERS 

In destination synchronized DMA transfers, the desti­
nation of the DMA data requests the DMA transfer. An 
example of this would be a floppy disk write from main 
memory to the disk. In this type of transfer, the device 
requesting the transfer is written during the deposit cy­
cle of the DMA transfer. This causes a problem, since 
the DMA requesting device will not receive notification 
of the D MA cycle being run until 3 clock cycles before 
the end of the DMA transfer (if no wait states are being 
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Figure 37, Source & Destination Synchronized DMA Request Timing 

inserted into the deposit cycle of the DMA transfer) and 
it takes 4 clock cycles to determine whether another 
DMA cycle should be run immediately following the 
current DMA transfer. To get around this problem, the 
DMA unit will relinquish the CPU bus after each desti­
nation synchronized DMA transfer for at least 2 CPU 
clock cycles to allow the DMA requesting device time to 
drop its DMA request if it does not immediately desire 
another immediate DMA transfer. When the bus is re­
linquished by the DMA unit, the CPU may resume bus 
operation (e.g., instruction fetching, memory or I/O 
reads or writes, etc.) Thus, typically, a CPU initiated 
bus cycle will be inserted between each destination syn­
chronized DMA transfer. If no CPU bus activity is re­
quired, however (and none can be guaranteed), the 
DMA unit will insert only 2 CPU clock cycles between 
the deposit cycle of one DMA transfer and the fetch cy­
cleofthe next DMA transfer. This means that the DMA 
destination requesting device must drop its DMA re­
quest at least two clock cycles before the end of the de­
posit cycle regardless of the number of wait states 
inserted into the bus cycle. Figure 37 shows the DMA 
request going away too late to prevent the immediate 
generation of another DMA transfer. Any wait states in­
serted in the deposit cycle of the DMA transfer will 
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lengthen the amount of time from the beginning of the 
deposit cycle to the time DMA will be sampled for an­
other DMA transfer. Thus, if the amount of time a de­
vice requires to drop its DMA request after receiving a 
DMA acknowledge from the 80186 is longer than the 0 
wait state 80186 maximum (100 ns), wait states can be 
inserted into the DMA cycle to lengthen the amount of 
time the device has to drop its DMA request after receiv­
ing the DMA acknowledge. Table 4 shows the amount of 
time between the beginning of T 2 and the time D MA re­
quest is sampled as wait states are inserted in the DMA 
deposit cycle. 

Table 4. DMA Request Inactive Timing 

Max Time(ns) 
Number of For DRQ Inactive 
Wait States From Start of T2 

0 100 

1 225 

2 350 

3 475 
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Figure 38. NMI and DMA Interaction 

4.8 DMA Halt and NMI 

Whenever a Non-Maskable Interrupt is received by the 
80186, all D MA activity will be suspended after the end 
of the current DMA transfer. This is performed by the 
NMI automatically setting the DMA Halt (DHLT) bit 
in the interrupt controller status register (see section 
7.3.1). The timing ofNMI required to prevent a DMA 
cycle from occurring is shown in Figure 38. After the 
NMI has been serviced, the DHLT bit should be cleared 
by the programmer, and DMA activity will resume ex­
actly where it left off, i.e., none of the DMA registers 
will have been modified. The DMA Halt bit is not auto­
matically reset after the NMI has been serviced. It is 
automatically reset by the IRET instruction. This DMA 
halt bit may also be set by the programmer to prevent 
DMA activity during any critical section of code. 

4.9 Example DMA Interfaces 

4.9.1 8272 FLOPPY DISK INTERFACE 

An example DMA Interface to the 8272 Floppy Disk 
Controller is shown in Figure 39. This shows how a typi­
cal DMA device can be interfaced to the 80186. An ex­
ample floppy disk software driver for this interface is 
given in Appendix C. 
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The data lines of the 8272 are connected, through buff­
ers, to the 80186 ADO-AD7 lines. The buffers are re­
quired because the 8272 will not float its output drivers 
quickly enough to prevent contention with the 80186 
driven address information after a read from the 8272 
(see section 3.1.3). 

DMA acknowledge for the 8272 is driven by an address 
decode within the region assigned to PCS2. If 
PCS2 is assigned to be active between I/O locations 
0500H and 057FH, then an access to I/O location 
0500H will enable only the chip select, while an access to 
I/O location 051 OH will enable both the chip select and 
the DMA acknowledge. Remember, ALE must be fac­
tored into the DACK generation logic because addresses 
are not guaranteed stable when the chip selects become 
active. If ALE were not used, the DACK generation cir­
cuitry could glitch as address output changed state while 
the chip select was active. 

Notice that the TC line of the 8272 is driven by a very 
similar circuit as the one generating DACK (except for 
the reversed sense of the output!). This line is used to ter­
minate an 8272 command before the command has com­
pleted execution. Thus, the TC input to the 8272 is 
software driven in this case. Another method of driving 
the TC input would be to connect the DACK signal to 
one ... f the 80186 timers, and program the timer to out-
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Figure 39_ Example 8272/80186 DMA Interface 

put a pulse to the 8272 after a certain number of DMA 
cycles have been run (see next section for 80186 timer 
information). 

The above discussion assumed that a single 80186 
PCS line is free to generate an 8272 select signals. If 
more than one ch~lect is free, however, different 
80186 generated PCS lines could be used for each 
function. For example, PCS2 could be used to select 
the 8272, PCS3 could be used to drive the DACK line 
of the 8272, etc. 

DMA requests are delayed by two clock periods in going 
from the 8272 to the 80186. This is requir~ the 8272 
tRQR (time from DMA request to DMA RD going ac­
tive) spec of 800ns min. This requires 6.4 80186 CPU 
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clock cycles (at 8 MHz), wen beyond the 5 minimum 
provided by the 80186 (4 clock cycles to the beginning of 
the DMA bus cyc~ to the beginning ofT 2 of the DMA 
bus cycle where RD will go active). The two flip-flops 
add two complete CPU clock cycles to this response 
time. 

DMA request will go away 200ns after DACK is pre­
sented to the 8272. During a DMA write cycle (i.e., a 
destination synchronized transfer), this is not soon 
enough to prevent the immediate generation of another 
DMA transfer if no wait states are inserted in the depos­
it cycle to the 8272. Therefore, at least I wait state is re­
quired by this interface, regardless of the data access 
parameters of the 8272. 
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4.9.2 8274 SERIAL 
COMMUNICATION INTERFACE 

An example 8274 synchronous/asynchronous serial 
chip/80186 DMA interface is shown in Figure 40. The 
8274 interface is even simpler than the 8272 interface, 
since it does not require the generation of a DMA ac­
knowledge signal, and the 8274 does not require the 
length of time between a DMA request and the DMA 
read or write cycle that the 8272 does. An example serial 
driver using the 8274 in DMA mode with the 80186 is 
given in Appendix C. 

8274 
DRQO TxDRQ. 

DRQl RxDRQ. 

ADDR 

--T--,..... AO,Al 
LATCH 

lV 
A" 8286 
A, 

iT-ADO·AD7 DATA DBO-DB7 
8 BUFFER 

AD AD 

WR WR 

RESET RESET 

Figure 40. Example 8274/80186 DMA Interface 

The data lines of the 8274 are connected through buffers 
to the 80186 ADO-AD7 lines. Again, these are required 
not because of bus drive problems, but because the 8274 
will not float its drivers before the 80186 will begin driv­
ing address information on its address/data bus. If both 
the 8274 and the 8272 are included in the same 80186 
system, they could share the same data bus buffer (as 
could any other peripheral devices in the system). 

The 8274 does not require a DMA acknowledge signal. 
The first read from or write to the data register of the 
8274 after the 8274 generates the DMA request signal 
will clear the DMA request. The time between when the 
control signal (RD or WR) becomes active and 
when the 8274 will drop its DMA request during a 
DMA write is 150ns, which will require at least one wait 
state be inserted into the DMA write cycle for proper op­
eration of the interface. 
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5. TIMER UNIT INTERFACING 

The 80186 includes a timer unit which provides three in­
dependent 16-bit timers. These timers operate indepen­
dently of the CPU. Two of these have input and output 
pins allowing counting of external events and generation 
of arbitrary waveforms. The third timer can be used as a 
timer, as a prescaler for the other two timers, or as a 
DMA request source. 

5.1 Timer Operation 

The internal timer unit on the 80186 could be modeled 
by a single counter element, time multiplexed to three 
register banks, each of which contains different control 
and count values. These register banks are, in turn, dual 
ported between the counter element and the 80186 CPU 
(see Figure 41). Figure 42 shows the timer element se­
quencing, and the subsequent constraints on input and 
output signals. If the CPU modifies one of the timer reg­
isters, this change will affect the counter element the 
next time that register is presented to the counter ele­
ment. There is no connection between the sequencing of 
the counter element through the timer register banks 
and the Bus Interface Unit's sequencing through T­
states. Timer operation and bus interface operation are 
completely asynchronous. 

5.2 Timer Registers 

Each timer is controlled by a block of registers (see Fig­
ure 43). Each of these registers can be read or written 
whether or not the timer is operating. All processor ac­
cesses to these registers are synchronized to all counter 
element accesses to these registers, meaning that one 
will never read a count register in which only half of the 
bits have been modified. Because of this synchroniza­
tion, one wait state is alllomatically inserted into any ac­
cess to the timer registers. Unlike the DMA unit, 
locking accesses to timer registers will not prevent the 
timer's counter element from accessing the timer 
registers. 

Each timer has a 16-bit count register. This register is 
incremented for each timer event. A timer event can be a 
low-to-high transition on the external pin (for timers 0 
and I), a CPU clock transition (divided by 4 because of 
the counter element multiplexing), or a time out of timer 
2 (for timers 0 and I). Because the count register is 16 
bits wide, up to 65536 (216) timer events can be counted 
by a single timer / counter. This register can be both read 
or written whether the timer is or is not operating. 

Each timer includes a maximum count register. When­
ever the timer count register is equal to the maximum 
count register, the count register will be reset to zero, 
that is, the maximum count value will never be stored in 
the count register. This maximum count value may be 
writtAn while the timer is operating. A maximum count 
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CPU 

DMA 

REQUEST 

Figure 41. 80186 Timer Model 

TIMER IN 
o 

TIMER IN 
1 

TIMER OUT 
o 

TIMER OUT 
1 

1 Timer In 0 resolution time 
2 Timer In 1 resolution time 

TIMER 0 

SERVICED 

TIMER 1 

SERVICED 

3 Modified count value written Into 80186 timer 0 count register 
4 Modified count value written Into 80186 timer 1 count register 

TIMER 2 

SERVICED DEAD 

To OUT 

T,OUT 

TIMER 0 

SERVICED 

Figure 42. 80186 Counter Element Multiplexing and Timer Input Synchronization 
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COUNT REGISTER 

OFFSET 

50H 
52H 
54H 

56H 
56H 

SAH 
SCH 
5EH 
60H 

62H 
64H 
66H 

------------_ MAX COUNT REGIS.!!R~ ____ 
TIMER 0 

_ MAX COUNT REGIS~ar ____ 

CONTROL REGISTER I 
_ COUNT REGISTER ______ 

_ MAX COUNT REGISTER~ ____ 
TIMER 1 

MAX COUNT REGISTER B 
- CONTROL REGISTER-C!) - - --

COUNT REGISTER ------------_ MAX COUNT REGISTER _____ 
TIMER 2 

X X X 
- CONTROL REGISTER-(ij - - --

<D CONTROL REGISTER LAYOUT 

I MC I RTG I P I EXT I ALT ICON1i 
15 o 

Figure 43. 80186 Timer Register Layout 

value of 0 implies a maximum count of 65536, a maxi· 
mum count value of I implies a maximum count of I, 
etc. The user should be aware that only equivalence be­
tween the count value and the maximum count register 
value is checked, that is, the count value will not be 
cleared if the value in the count register is greater than 
the value in the maximum count register. This could only 
occur by programmer intervention, either by setting the 
value in the count register greater than the value in the 
maximum count register, or by setting the value in the 
maximum count register to be less than the value in the 
count register. If this is programmed, the timer will 
count to the maximum possible count (FFFFH), incre­
ment to 0, then count up to the value in the maximum 
count register. The TC bit in the timer control register 
will not be set when the counter overflows to 0, nor will 
an interrupt be generated from the timer unit. 

Timers 0 and I each contain an additional maximum 
count register. When both maximum count registers are 
used, the timer will first count up to the value in maxi· 
mum count register A, reset to zero, count up to the val­
ue in maximum count register B, and reset to zero again. 
The ALTernate bit in the timer control register deter­
mines whether one or both maximum count registers are 
used. If this bit is low, only maximum count register A is 
used; maximum count register B is ignored. If it is high, 
both maximum count register A and maximum count 
register B are used. The RIU (register in lise) bit in the 
timer control register indicates which maximum count 
register is currently being used. This bit is 0 when maxi­
mum count register A is being used, I when maximum 
count register B is being used. This RIU bit is read only. 
It is unaffected by any write to the timer control register. 
It will always be read 0 in single maximum count regis-
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ter mode (since only maximum count register A will be 
used). 

Each timer can generate an interrupt whenever the tim­
er count value reaches a maximum count value. That is, 
an interrupt can be generated whenever the value in 
maximum count register A is reached, and whenever the 
value in maximum count register B is reached. In addi­
tion, the MC (maximum count) bit in the timer control 
register is set whenever the timer count reaches a maxi­
mum count value. This bit is never automatically 
cleared, Le., programmer intervention is required to 
clear this bit. If a timer generates a second interrupt re­
quest before the first interrupt request has been ser­
viced, the first interrupt request to the CPU will be lost. 

Each timer has an ENable bit in the timer control regis­
ter. This bit is used to enable the timer to count. The tim­
er will count timer events only when this bit is set. Any 
timer events occurring when this bit is reset are ignored. 
Any write to the timer control register will modify the 
ENable bit only if the INHibit bit is also set. The timer 
ENable bit will not be modified by a write to the timer 
control register if the INHibit bit is not set. The INHibit 
bit in the timer control register allows selective updating 
of the timer ENable bit. The value of the INHibit bit is 
not stored in a write to the timer control register; it will 
always be read as a I. 

Each timer has a CONTinuous bit in the timer control 
register. If this bit is cleared, the timer EN able bit will 
be automatically cleared at the end of each timing cycle. 
If a single maximum count register is used, the end of a 
timing cycle occurs when the count value resets to zero 
after reaching the value in maximum count register A. If 
dual maximum count registers are used, the end of a 
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timing cycle occurs when the count value resets to zero 
after reaching the value in maximum count register B. If 
the CONTinuous bit is set, the ENable bit in the timer 
control register will never be automatically reset. Thus, 
after each timing cycle, another timing cycle will auto­
matically begin. For example, in single maximum count 
register mode, the timer will count up to the value in 
maximum count register A, reset to zero, count up to the 
value in maximum count register A, reset to zero, ad in­
finitum. In dual maximum count register mode, the tim­
er will count up the the value in maximum count register 
A, reset to zero, count up the value in maximum count 
register B, reset to zero, count up to the value in maxi­
mum count register A, reset to zero, et cetera. 

5.3 Timer Events 
Each timer counts timer events. All timers can use a 
transition of the CPU clock as an event. Because of the 
counter element multiplexing, the timer count value- will 
be incremented every fourth CPU clock. For timer 2, 
this is the only timer event which can be used. For timers 
o and I, this event is selected by clearing the EXTernal 
and Prescaler bits in the timer control register. 

Timers 0 and 1 can use timer 2 reaching its maximum 
count as a timer event. This is selected by clearing the 
EXTernal bit and setting the Prescaler bit in the timer 
control register. When this is done, the timer will incre­
ment whenever timer 2 resets to zero having reached its 
own maximum count. Note that timer 2 must be initial­
ized and running for the other timer's value to be 
incremented. 

Timers 0 and 1 can also be programmed to count low-to­
high transitions on the external input pin. Each transi­
tion on the external pin is synchronized to the 80186 
clock before it is presented to the timer circuitry, and 
may, therefore, be asynchronous (see Appendix B for in­
formation on 80186 synchronizers). The timer counts 
transitions on the input pin: the input value must go low, 
then go high to cause the timer to increment. Any transi­
tion on this line is latched. If a transition occurs when a 
timer is not being serviced by the counter element, the 
transition on the input line will be remembered so that 
when the timer does get serviced, the input transition 
will be counted. Because of the counter element multi­
plexing, the maximum rate at which the timer can count 
is 1/4 of the CPU clock rate (2 MHz with an 8 MHz 
CPU clock). 

5.4 Timer Input Pin Operation 
Timers 0 and I each have individual timer input pins. 
Alliow-to-high transitions on these input pins are syn­
chronized, latched, and presented to the counter element 
when the particular timer is being serviced by the 
counter element. 

Signals on this input can affect timer operation in three 
different ways. The manner in which the pin signals are 
used is determined by the EXTernal and RTG (retrig-
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ger) bits in the timer control register. If the EXTernal 
bit is set, transitions on the input pin will cause the timer 
count value to increment ifthe timer is enabled (the EN­
able bit in the timer control register is set). Thus, the 
timer counts external events. If the EXTernal bit is 
cleared, all timer increments are caused by either the 
CPU clock or by timer 2 timing out. In this mode, the 
RTG bit determines whether the input pin will enable 
timer operation, or whether it will retrigger timer 
operation. 

If the EXTernal bit is low and the RTG bit is also low, 
the timer will count internal timer events only when the 
timer input pin is high and the ENable bit in the timer 
control register is set. Note that in this mode, the pin is 
level sensitive, not edge sensitive. A low-to-high transi­
tion on the timer input pin is not required to enable timer 
operation. If the input is tied high, the timer will be con­
tinually enabled. The timer enable input signal is com­
pletely independent of the ENable bit in the timer 
control register: both must be high for the timer to 
count. Example uses for the timer in this mode would be 
a real time clock or a baud rate generator. 

If the EXTernal bit is low and the RTG bit is high, the 
timer will act as a digital one-shot. In this mode, every 
low-to-high transition on the timer input pin will cause 
the timer to reset to zero. If the timer is enabled (i.e., the 
ENable bit in the timer control register is set) timer op­
eration will begin (the timer will count CPU clock tran­
sitions or timer 2 timeouts). Timer operation will cease 
at the end of a timer cycle, that is, when the value in the 
maximum count register A is reached and the timer 
count value resets to zero (in single maximum count reg­
ister mode, remember that the maximum count value is 
never stored in the timer count register) or when the val­
ue in maximum count register B is reached and the timer 
count value resets to zero (in dual maximum count regis­
ter mode). If another low-to-high transition occurs on 
the input pin before the end of the timer cycle, the timer 
will reset to zero and begin the timing cycle again re­
gardless of the state of the CONTinuous bit in the timer 
control register the RIU bit will not be changed by the 
input transition. If the CONTinuous bit in the timer 
control register is cleared, the timer ENable bit will 
automatically be cleared at the end of the timer cycle. 
This means that any additional transitions on the input 
pin will be ignored by the timer. If the CONTinuous bit 
in the timer control register is set, the timer will reset to 
zero and begin another timing cycle for every low-to­
high transition on the input pin, regardless of whether 
the timer had reached the end of a timer cycle, because 
the timer ENable bit would not have been cleared at the 
end of the timing cycle. The timer will also continue 
counting at the end of a timer cycle, whether or not an­
other transition has occurred on the input pin. An exam­
ple use of the timer in this mode is an alarm clock time 
out signal or interrupt. 
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5.5 Timer Output Pin Operation 

Timers 0 and 1 each contain a single timer output pin. 
This pin can perform two functions at programmer op­
tion. The first is a single pulse indicating the end of a 
timing cycle. The second is a level indicating the maxi­
mum count register currently being used. The timer out­
puts operate as outlined below whether internal or 
external clocking of the timer is used. If external clock­
ing is used, however, the user should remember that the 
time between an external transition on the timer input 
pin and the time this transition is reflected in the timer 
out pin will vary depending on when the input transition 
occurs relative to the timer's being serviced by the 
counter element. 

When the timer is in single maximum count register 
mode (the ALTernate bit in the timer control register is 
cleared) the timer output pin will go low for a single 
CPU clock the clock after the timer is serviced by the 
counter element where maximum count is reached (see 
Figure 44). This mode is useful when using the timer as 

TIMER 0 SERVICED 

a baud rate generator. 

When the timer is programmed in dual maximum count 
register mode (the ALTernate bit in the timer control 
register is set), the timer output pin indicates which 
maximum count register is being used. It is low if maxi­
mum count register B is being used for the current 
count, high if maximum count register A is being used. 
If the timer is programmed in continuous mode (the 
CONTinuous bit in the timer control register is set), this 
pin could generate a waveform of any duty cycle. For ex­
ample, if maximum count register A contained 10 and 
maximum count register B contained 20, a 33% duty cy­
cle waveform would be generated. 

5.6 Sample 80186 Timer Applications 

The 80186 timers can be used for almost any application 
for which a discrete timer circuit would be used. These 
include real time clocks, baud rate generators, or event 
counters. 

INTERNAL --------------------~--------_r-------------------COUNT MAXCOUNT-1 
VALUE 

TMR OUT ---------------r, 
PIN 

Figure 44. 80186 Timer Out Signal 

80186 
+ 5V 

+5V r----- TMRINJ 
TIMER 

TMRIN1 
0 TMROUTO TxC } SERIAL 

'----
RxC CONTROLLER 

TMR0UT1 

TMRINO 

Figure 45. 80186 Real Time Clock Figure 46. 80186 Baud Rate Generator 
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80186 

TMRINO 

o 
o 
o 3GLIGHT 

~ 

Figure 47. 

5.6.1 80186 TIMER REAL TIME CLOCK 

The sample program in appendix D shows the 80186 
timer being used with the 80186 CPU to form a real 
time clock. In this implementation, timer 2 is pro· 
grammed to provide an interrupt to the CPU every milli­
second. The CPU then increments memory based clock 
variables. 

5.6.2 80186 TIMER BAUD RATE GENERATOR 

The 80186 timers can also be used as baud rate gener­
ators for serial communication controllers (e.g., the 
8274). Figure 46 shows this simple connection, and the 

TIMER TIMER TIMER DMA DMA 

code to program the timer as a baud rate generator is in­
cluded in appendix D. 

5.6.3 80186 TIMER EVENT COUNTER 

The 80186 timer can be used to count events. Figure 47 
shows a hypothetical set up in which the 80186 timer 
will count the interruptions in a light source. The num­
ber of interruptions can be read directly from the count 
register of the timer, since the timer counts up, i.e., each 
interruption in the light source will cause the timer 
count value to increase. The code to set up the 80186 
timer in this mode is included in appendix D. 

o 1 2 0 1 INTO INT1 INT2 INT3 NMI 

TIMER 
CONTROL REG. 

DMAO 
CONTROL REG. 

DMA1 
CONTROL REG. 

EXT. INPUT 0 
CONTROL REG. 

EXT. INPUT 1 
CONTROL REG. 

EXT. INPUT 2 
CONTROL REG. 

INTERRUPT 
PRIORITY 
RESOLVER 

INTERRUPT 
REQUEST TO 
PROCESSOR 

INTERNAL ADDRESS/DATA BUS 

INTERRUPT 
REQUEST REG. 

INTERRUPT 
MASK REG. 

IN·SERVICE 
REG. 

PRIOR. LEY. 
MASK REG. 

INTERRUPT 
STATUS REG. 

Figure 48. 80186 Interrupt Controller Block Diagram 
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6. 80186 INTERRUPT CONTROLLER 
INTERFACING 

The 80186 contains an integrated interrupt controller. 
This unit performs tasks of the interrupt controller in a 
typical system. These include synchronization of inter­
rupt requests, priortization of interrupt requests, and re­
quest type vectoring in response to a CPU interrupt 
acknowledge. It can be a master to two external 8259A 
interrupt controllers or can be a slave to an external in­
terrupt controller to allow compatibility with the iRMX 
86 operating system, and the 80130/80150 operating 
system firmware chips. 

6.1 Interrupt Controller Model 

The integrated interrupt controller block diagram is 
shown in Figure 48. It contains registers and a control 
element. Four inputs are provided for external interfa9-
ing to the interrupt controller. Their functions change 
according to the programmed mode of the interrupt con­
troller. Like the other 80186 integrated peripheral regis­
ters, the interrupt controller registers are available for 
CPU reading or writing at any time. 

6.2 Interrupt Controller Operation 
The interrupt controller operates in two major modes, 
non-iRMX 86 mode (referred to henceforth as master 
mode), and iRMX 86 mode. In master mode the inte­
grated controller acts as the master interrupt controller 
for the system, while in iRMX 86 mode the controller 

operates as a slave to an external interrupt controller 
which operates as the master interrupt controller for the 
system. Some of the interrupt controller registers and in­
terrupt controller pins change definition between these 
two modes, but the basic charter and function of the in­
terrupt controller remains fundamentally the same. The 
difference is when in master mode, the interrupt control­
ler presents its interrupt input directly to the 80186 
CPU, while in iRMX 86 mode the interrupt controller 
presents its interrupt input to an external controller 
(which then presents its interrupt input to the 80186 
CPU). Placing the interrupt controller in iRMX 86 
mode is done by setting the iRMX mode bit in the pe­
ripheral control block pointer (see appendix A). 

6.3 Interrupt Controller Registers 
The interrupt controller has a number of registers which 
are used to control its operation (see Figure 49). Some of 
these change their function between the two major 
modes of the interrupt controller (master and iRMX 86 
mode). The differences are indicated in the following 
section. If not indicated, the function and implementa-' 
tion of the registers is the same in the two basic modes of 
operation of the interrupt controller. The method of in­
teraction among the various interrupt controller regis­
ters is shown in the flowcharts in Figures 57 and 58. 

6.3.1 CONTROL REGISTERS 

Each source of interrupt to the 80186 has a control regis­
ter in the internal controller. These rllgisters contain 

MASTER MODE OFFSET ADDRESS ,RMX86~ Mode 

INT3 CONTROL REGISTER 

INT2 CONTROL REGISTER 

INT1 CONTROL REGISTER 

INTO CONTROL REGISTER 

DMA1 CONTROL REGISTER 

DMAO CONTROL REGISTER 

TIMER CONTROL REGISTER 

INTERRUPT CONTROLLER STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

IN-SERVICE REGISTER 

PRIORITY MASK REGISTER 

MASK REGISTER 

POLL STATUS REGISTER 

POLL REGISTER -----------------------EOI REGISTER -----------0-----------

3EH CD 
3CH ===========0=========== 3AH TIMER 2 CONTROL REGISTER 

38H 

38H 

34H 

32H 

30H 

2EH 

TIMER 1 CONTROL REGISTER 

DMA 1 CONTROL REGISTER 

DMAO CONTROL REGISTER 

TIMER 0 CONTROL REGISTER 

INTERRUPT CONTROLLER STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

2CH ______ .!.N..!I!'!Y~!~E~I~~~ _____ _ 

2AH PRIORITY MASK REGISTER 

28H MASK REGISTER 

28H ===========0=========== 24H ___________ 0 __________ _ 
22H SPECIFIC EOI REGISTER -----------------------
20H INTERRUPT VECTOR REGISTER 

1. Unsupported in this mode: values written mayor may not be stored 

Figure 49. 80186 Interrupt ControUer Registers 
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CD f 
SPECIAL CAS- LEVEL 

I I FULLY MASK 
0 NESTED CADE TRIG. PRIORITY BITS 

BITQ) MODEQ) MODE CD BIT I l 
1. This bit present only In INTO-INT3 control registers 
2. These bits present only in INTO-INT1 control register 

Figure 50. Interrupt Controller Control Register 

15 MASTER MODE 0 15 iRMXN 86 MODE 0 

X X X 113112 111 110 I 01 I DO I x FMRI x 

Figure 51. 80186 Interrupt Controller In-Service, Interrupt Request and Mask Register Format 

three bits which select one of eight different interrupt 
priority levels for the interrupt device (0 is highest prior­
ity, 7 is lowest priority), and a mask bit to enable the in­
terrupt (see Figure 50). When the mask bit is low, the 
interrupt is enabled, when it is high, the interrupt is 
masked. 

There are seven control registers in the 80186 integrated 
interrupt controller. In master mode, four of these serve 
the external interrupt inputs, one each for the two DMA 
channels, and one for the collective timer interrupts. In 
iRMX 86 mode, the external interrupt inputs are not 
used, so each timer can have its own individual control 
register. 

6.3.2 REQUEST REGISTER 

The interrupt controller includes an interrupt request 
register (see Figure 51). This register contains seven ac­
tive bits, one for each interrupt control register. When­
ever an interrupt request is made by the interrupt source 
associated with a specific control register, the bit in in­
terrupt request register is set, regardless if the interrupt 
is enabled, or if it is of sufficient priority to cause a pro­
cessor interrupt. The bits in this register which are asso­
ciated with integrated peripheral devices (the DMA and 
timer units) can be read or written, while the bits in this 
register which are associated with the external interrupt 
pins can only be read (values written to them are not 
stored). These interrupt request bits are automatically 
cleared when the interrupt is acknowledged. 

6.3.3 MASK REGISTER AND PRIORITY 
MASK REGISTER 

The interrupt controller contains a mask register (see 
Figure 51). This register contains a mask bit for each in­
terrupt source associated with an interrupt control regis­
ter. The bit for an interrupt source in the mask register is 
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identically the same bit as is provided in the interrupt 
control register: modifying a mask bit in the control reg­
ister will also modify it in the mask register, and vice 
versa. 

The interrupt controller also contains a priority mask 
register (see Figure 52). This register contains three bits 
which indicate the priority of the current interrupt being 
serviced. When an interrupt is acknowledged (either by 
the processor running the interrupt acknowledge or by 
the processor reading the interrupt poll register, see be­
low), these bits are set to the priority of the device whose 
interrupt is being acknowledged (which will never be 
lower than the previous priority programmed into these 
bits). They prevent any interrupt oflower priority (as set 
by the priority bits in the interrupt control registers for 
interrupt sources) from interrupting the processor. 
These bits are automatically set to the priority of the 
next lowest interrupt when the End Of Interrupt is is­
sued by the CPU to the interrupt controller (or all 1 's if 
there is no interrupt pending, meaning that interrupts of 
all priority levels are enabled). This register may be read 
or written. 

I" · 
• �L_X ____ X ___ X ___ x ___ x~I_P2~I_Pl~lp~01 

Figure 52. 80186 Interrupt Controller Priority 
Mask Register Format 

6.3.4 IN-SERVICE REGISTER 

The interrupt controller contains an in-service register 
(see Figure 51). A bit in the in-service register is associ­
ated with each interrupt control register so that when an 
interrupt request by the device associated with the con-
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trol register is acknowledged by the processor (either by 
the processor running the interrupt acknowledge or by 
the processor reading the interrupt poll register) the bit 
is set. The bit is reset when the CPU issues an End Of 
Interrupt to the interrupt controller. This register may 
be both read and written, i.e., the CPU may set in-ser­
vice bits without an interrupt ever occurring, or may re­
set them without using the EOI function of the interrupt 
controller. 

6.3.5 POLL AND POLL STATUS REGISTERS 

The interrupt controller contains both a poll register and 
a poll status register (see Figure 53). Both of these regis­
ters contain the same information. They have a single bit 
to indicate an interrupt is pending. This bit is set if an 
interrupt of sufficient priority has been received. It is 
automatically cleared when the interrupt is acknowl­
edged. If (and only if) an interrupt is pending, they also 
contain information as to the interrupt type of the high­
est priority interrupt pending. 

15 o 
x x x x I 541 53 1 52 1 51 I 50 I 

50-54 ~ interrupt type 

Figure 53. 80186 Poll & Poll Status 
Register Format 

Reading the poll register will acknowledge the pending 
interrupt to the interrupt controller just as if the proces­
sor had acknowledged the interrupt through interrupt 
acknowledge cycles. The processor will not actually run 

15 MASTER MODE 0 

~5PEC/X SO-54 ~ interrupt type 

any interrupt acknowledge cycles, and will not vector 
through a location in the interrupt vector table. Only the 
interrupt request, in-service and priority mask registers 
in the interrupt controller are set appropriately. Reading 
the poll status register will merely transmit the status of 
the polling bits without modifying any of the other inter­
rupt controller registers. These registers are read only: 
data written to them is not stored. These registers are 
not supported in iRMX 86 mode. The state of the bits in 
these registers in iRMX 86 mode is not defined. Howev­
er, accessing the poll register location when in iRMX 86 
mode will cause the interrupt controller to "acknowl­
edge" the interrupt (i.e., the in-service bit and priority 
level mask register bits will be set). 

6.3.6 END OF INTERRUPT REGISTER 

The interrupt controller contains an End Of Interrupt 
register (see Figure 54). The programmer issues an End 
Of Interrupt to the controller by writing to this register. 
After receiving the End Of Interrupt, the interrupt con­
troller automatically resets the in-service bit for the in­
terrupt and the priority mask register bits. The value of 
the word written to this register determines whether the 
End Of Interrupt is specific or non-specific. A non-spe­
cific End Of Interrupt is specified by setting the non­
specific bit in the word written to the End Of Interrupt 
register. In a non-specific End Of Interrupt, the in-ser­
vice bit of the highest priority interrupt set is automati­
cally cleared, while a specific End Of Interrupt allows 
the in-service bit cleared to be explicitly specified. The 
in-service bit is reset whether the bit was set by an inter­
rupt acknowledge or if it was set by the CPU writing the 

15 iRMX 86 MODE o 

x x x x x 
LO-L2 ~ interrupt priority level 

x IL21L11LOI j 
'----------

Figure 54. 80186 End of Interrupt Register Format 

I I x x x 
15r DHLT 

x 
o 

x 

Figure 55. 80186 Interrupt Status Register Format 

15 

x x x 

Figure 56. 80186 Interrupt Vector Register Format (iRMX 86 mode only) 
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bit directly to the in-service register. If the highest prior­
ity interrupt is reset, the priority mask register bits will 
change to reflect the next lowest priority interrupt to be 
serviced. If a less than highest priority interrupt in-ser­
vice bit is reset, the priority mask register bits will not be 
modified (because the highest priority interrupt being 
serviced has not changed). Only the specific EOI is sup­
ported in iRMX 86 mode. This register is write only: 
data written is not stored and cannot be read back. 

6.3.7 INTERRUPT STATUS REGISTER 

The interrupt controller also contains an interrupt status 
register (see Figure 55). This register contains four sig­
nificant bits. There are three bits used to show which 
timer is causing an interrupt. This is required because in 
master mode, the timers share a single interrupt control 
register. A bit in this register is set to indicate which tim­
er has generated an interrupt. The bit associated with a 
timer is automatically cleared after the interrupt re­
quest for the timer is acknowledged. More than one of 
these bits may be set at a time. The fourth bit in the in­
terrupt status register is the DMA halt bit. When set, 
this bit prevents any DMA activity. It is automatically 
set whenever a NMI is received by the interrupt control­
ler. It can also be set explicitly by the programmer. This 
bit is automatically cleared whenever the IRET instruc­
tion is executed. All significant bits in this register are 
read/write. 

6.3.8 INTERRUPT VECTOR REGISTER 

Finally, in iRMX 86 mode only, the interrupt controller 
contains an interrupt vector register (see Figure 56). 
This register is used to specify the 5 most significant bits 
of the interrupt type vector placed on the CPU bus in re­
sponse to an interrupt acknowledgement (the lower 3 
significant bits of the interrupt type are determined by 
the priority level of the device causing the interrupt in 
iRMX 86 mode). 

6.4 Interrupt Sources 

The 80186 interrupt controller receives and arbitrates 
among many different interrupt request sources, both 
internal and external. Each interrupt source may be pro­
grammed to be a different priority level in the interrupt 
controller. An interrupt request generation flow chart is 
shown in Figure 57. Such a flowchart would be followed 
independently by each interrupt source. 

6.4.1 INTERNAL INTERRUPT SOURCES 

The internal interrupt sources are the three timers and 
the two DMA channels. An interrupt from each of these 
interrupt sources is latched in the interrupt controller, so 
that if the condition causing the interrupt is cleared in 
the originating integrated peripheral device, the inter­
rupt request will remain pending in the interrupt con­
troller. The state of the pending interrupt can be 
obtained by reading the interrupt request register of the 

43 

interrupt controller. For all internal interrupts, the 
latched interrupt request can be reset by the processor 
by writing to the interrupt request register. Note that all 
timers share a common bit in the interrupt request regis­
ter in master mode. The interrupt controller status regis­
ter may be read to determine which timer is actually 
causing the interrupt request in this mode. Each timer 
has a unique interrupt vector (see section 6.5.1). Thus 
polling is not required to determine which timer has 
caused the interrupt in the interrupt service routine. 
Also, because the timers share a common interrupt con­
trol register, they are placed at a common priority level 
as referenced to all other interrupt devices. Among 
themselves they have a fixed priority, with timer 0 as the 
highest priority timer and timer 2 as the lowest priority 
timer. 

6.4.2 EXTERNAL INTERRUPT SOURCES 

The 80186 interrupt controller will accept external in­
terrupt requests only when it is programmed in master 
mode. In this mode, the external pins associated with the 
interrupt controller may serve either as direct interrupt 
inputs, or as cascaded interrupt inputs from other inter­
rupt controllers as a programmed option. These options 
are selected by programming the C and SFNM bits in 
the INTO and INTI control registers (see Figure 50). 

When programmed as direct interrupt inputs, the four 
interrupt inputs are each controlled by an individual in­
terrupt control register. As stated earlier, these registers 
contain 3 bits which select the priority level for the inter­
rupt and a single bit which enables the interrupt source 
to the processor. In addition each of these control regis­
ters contains a bit which selects either edge or level trig­
gered mode for the interrupt input. When edge triggered 
mode is selected, a low-to-high transition must occur on 
the interrupt input before an interrupt is generated, 
while in level triggered mode, only a high level needs to 
be maintained to generate an interrupt. In edge trig­
gered mode, the input must remain low at least 1 clock 
cycle before the input is "re-armed." In both modes, the 
interrupt level must remain high until the interrupt is 
acknowledged, i.e., the interrupt request is not latched 
in the interrupt controller. The status of the interrupt in­
put can be shown by reading the interrupt request regis­
ter. Each of the external pins has a bit in this register 
which indicates an interrupt request on the particular 
pin. Note that since interrupt requests on these inputs 
are not latched by the interrupt controller, if the external 
input goes inactive, the interrupt request (and also the 
bit in the interrupt request register) will also go inactive 
(low). Also, if the interrupt input is in edge triggered 
mode, a low-to-high transition on the input pin must oc­
cur before the interrupt request bit will be set in the in­
terrupt request register. 

If the C (Cascade) bit of the INTO or INTI control reg­
isters are set, th~ interrupt input is cascaded to an exter­
nal interrupt controller. In this mode, whenever the 
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PRESENT INTERRUPT 
REQUEST TO 

EXTERNAL CONTROLLER 

Figure 57. 80186 Interrupt Request Sequencing 

interrupt presented to the INTO or INTI line is ac­
knowledged, the integrated interrupt controller will not 
provide the interrupt type for the interrupt. Instead, two 
INTA bus cycles will be run, with the INT2 and INT3 
lines providing the interrupt acknowledge pulses for the 
INTO and the INTI interrupt requests respectively. IN­
TO/INT2 and INTI/INT3 may be individually pro­
grammed into cascade mode. This allows 128 
individually vectored interrupt sources if two banks of 9 
external interrupt controllers each are used. 

6.4.3 iRMX" 86 MODE INTERRUPT SOURCES 

When the interrupt controller is configured in iRMX 86 
mode, the integrated interrupt controller accepts inter-
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rupt requests only from the integrated peripherals. Any 
external interrupt requests must go through an external 
interrupt controller. This external interrupt controller 
requests interrupt service directly from the 80186 CPU 
through the INTO line on the 80186, In this mode, the 
function of this line is not affected by the integrated in­
terrupt controller. In addition, in iRMX 86 mode the in­
tegrated interrupt controller must request interrupt 
service through this external interrupt controller. This 
interrupt request is made on the INT3 line (see section 
6.7.4 on external interrupt connections). 

6.5 Interrupt Response 
The 80186 can respond to an interrupt in two different 
ways. The first will occur if the internal controller is pro-

AFN-210973 



AP-186 

GENERATE INTA 

CJ;i:~':"~R YES 
INTERRUPT CD 

CONTROLLER 

1 . Before actual interrupt acknowledge is run by CPU 

GENERATE 

INTA 

WAIT FOR NEXT 
INTERRUPT 

ACKNOWLEDGE 

2. Two interrupt acknowledge cycles will be run, the interrupt type is read by 
the CPU on the second cycle 

3. Interrupt acknowledge cycles will not be run, the interrupt vector address is 
placed on an internal bus and is not available outside the processor 

4. Interrupt type is not driven on external bus in iRMX86 mode 

Figure 58. 80186 Interrupt Acknowledge Sequencing 

viding the interrupt vector information with the control­
ler in master mode. The second will occur if the CPU 
reads interrupt type information from an external inter­
rupt controller or if the interrupt controller is in iRMX 
86 mode. In both of these instances the interrupt vector 
information driven by the 80186 integrated interrupt 
controller is not available outside the 80186 
microprocessor. 

In each interrupt mode, when the integrated interrupt 
controller receives an interrupt response, the interrupt 
controller will automatically set the in-service bit and 
the priority mask bits and reset the interrupt request bit 
in the integrated controller. The priority mask bits will 
prevent the controller from generating any further inter­
rupts to the CPU from sources of lower priority until the 
higher priority interrupt service routine has run. In ad­
dition, unless the interrupt control register for the inter­
rupt is set in Special Fully Nested Mode, the interrupt 
controller will prevent any interrupts from occurring 
from the same interrupt line until the in-service bit for 
that line has been cleared. 
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6.5.1 INTERNAL VECTORING, MASTER MODE 

In master mode, the interrupt types associated with all 
the interrupt sources are fixed and unalterable. The~e 
interrupt types are given in Table 5. In response to an in­
ternal CPU interrupt acknowledge the interrupt con­
troller will generate the vector address rather than the 
interrupt type. On the 80186 (like the 8086) the inter­
rupt vector address is the interrupt type multiplied by 4. 
This speeds interrupt response. 

In master mode, the integrated interrupt controller is 
the master interrupt controller of the system. As a re­
sult, no external interrupt controller need know when 
the integrated controller is providing an interrupt vector, 
nor when the interrupt acknowledge is taking place. As a 
result, no interrupt acknowledge bus cycles will be gen­
erated. The first external indication that an interrupt 
has been acknowledged will be the processor reading the 
interrupt vector from the interrupt vector table in low 
memory. 
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Table 5. 80186 Interrupt Vector Types 6.5.2 INTERNAL VECTORING, iRMX'" 86 MODE 

Interrupt Vector Default 
Name Type Priority 

timer 0 8 Oa 
timer I 18 Ob 
timer 2 19 Oc 
DMAO 10 2 
DMAI II 3 
INTO 12 4 
INT I 13 5 
INT 2 14 6 
INT 3 15 7 

Because the two interrupt acknowledge cycles are not 
run, and the interrupt vector address does not need be be 
calculated, interrupt response to an internally vectored 
interrupt is 42 clock cycles, which is faster then the in­
terrupt response when external vectoring is required, or 
if the interrupt controller is run in iRMX 86 mode. 

If two interrupts of the same programmed priority occur, 
the default priority scheme (as shown in table 5) is used. 

T, T, T, T. 

CLKOUT 

In iRMX 86 mode, the interrupt types associated with 
the various interrupt sources are alterable. The upper 5 
most significant bits are taken from the interrupt vector 
register, and the lower 3 significant bits are taken from 
the priority level of the device causing the interrupt. Be­
cause the interrupt type, rather than the interrupt vector 
address, is given by the interrupt controller in this mode 
the interrupt vector address must be calculated by the 
CPU before servicing the interrupt. 

In iRMX 86 mode, the integrated interrupt controller 
will present the interrupt type to the CPU in response to 
the two interrupt acknowledge bus cycles run by the pro­
cessor. During the first interrupt acknowledge cycle, the 
external master interrupt controller determines which 
slave interrupt controller will be allowed to place its in­
terrupt vector on the microprocessor bus. During the 
second interrupt acknowledge cycle, the processor reads 
the interrupt vector from its bus. Thus, these two inter­
rupt acknowledge cycles must be run, since the integrat­
ed controller will present the interrupt type information 
only when the external interrupt controller signals the 
integrated controller that it has the highest pending in­
terrupt request (see Figure 59). The 80186 samples the 

T, T, T, T, T, T. 

I I 

SO-S2 ----~:----~~--~~--~----~----~----~:----~----~I~4-~------
I I I I I I 

INTO INTE,RRUPT A~KNOWLE~GE INT~RRUPT A~KNOWL~DGE 
(HIGH) ---;----,----;;---7----,--;----;----;----7-1----;.--

INT3 ----~-----r----~----~----~--~----~----~----~~-~--­
(HIGH) 

~---~---~~r-+---~------~---~---~---~------+----~~r~ 
CAS CD 80186 SLAVE ENABLE 

----~----~--,~~----~'----~'----~----~----~----~----~--~-
SLAVE -----+----~---, 

SELECT CD 
, 
I 

INTA ~~----'---'-----'~'-'I 
I 

LOCK 4 r 
I~-~--~--+--~--~---;.--~--+--~--J 
I 

1. SLAVE SELECT = INT1 
2. INTA = INT2 
3. Driven by external interrupt controller 
4. SLAVE SELECT must be driven before Phase 2 of T 2 of the second INTA 

9Y2!L ____ __ 
5. SLAVE SELECT read by 80186 

Figure 59. 80186 iRMX-86 Mode Interrupt Acknowledge Timing 
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SO-52 

INTA 

ADO-AD7 --~----~----~----~----~----~----~----~-1 
'---'-t-----'-' 

LOCK 
I 
I I 

INTERRUPT TYPE 
(FROM EXTERNAL 

CONTROLLER) 

Figure 60. 80186 Cascaded Interrupt Acknowledge Timing 

SLAVE SELECT line during the falling edge of the 
clock at the beginning of T J of the second interrupt ac­
knowledge cycle. This input must be stable 20ns before 
and IOns after this edge. 

These two interrupt acknowledge cycles will be run back 
to back, and will be LOCKED with the LOCK output 
active (meaning that DMA requests and HOLD re­
quests will not be honored until both cycles have been 
run). Note that the two interrupt acknowledge cycles 
will always be separated by two idle T states, and that 
wait states will be inserted into the interrupt acknowl­
edge cycle if a ready is not returned by the processor bus 
interface. The two idle T states are inserted to allow 
compatibility with the timing requirements of an exter­
nal 8259A interrupt controller. 

Because the interrupt acknowledge cycles must be run in 
iRMX 86 mode, even for internally generated vectors, 
and the integrated controller presents an interrupt type 
rather than a vector address, the interrupt response time 
here is the same as if an externally vectored interrupt 
was required, namely 55 CPU clocks. 

6.5.3 EXTERNAL VECTORING 

External interrupt vectoring occurs whenever the 80186 
interrupt controller is placed in cascade mode, special 
fully nested mode, or iRMX 86 mode (and the integrat­
ed controller is not enabled by the external master inter­
rupt controller). In this mode, the 80186 generates two 
interrupt acknowledge cycles, reading the interrupt type 
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off the lower 8 bits of the address/data bus on the second 
interrupt acknowledge cycle (see Figure 60). This inter­
rupt response is exactly the same as the 8086, so that the 
8259A interrupt controller can be used exactly as it 
would in an 8086 system. Notice that the two interrupt 
acknowledge cycles are LOCKED, and that two idle T­
states are always inserted between the two interrupt ac­
knowledge bus cycles, and that wait states will be 
inserted in the interrupt acknowledge cycle if a ready is 
not returned to the processor. Also notice that the 80186 
provides two interrupt acknowledge signals, one for in­
terrupts signaled by the INTO line, and one for inter­
rupts signaled by the INTI line (on the INT2/INTAO 
and INT3/INTAl lines, respectively). These two inter­
rupt acknowledge signals are mutually exclusive. Inter­
r!!Qt acknowledge status will be driven on the status lines 
(SO-S2) when either INT2/INTAO or INT3/ 
INTAI signal an interrupt acknowledge. 

6.6 Interrupt Controller External 
Connections 

The four interrupt signals can be programmably config­
ured into 3 major options. These are direct interrupt in­
puts (with the integrated controller providing the 
interrupt vector), cascaded (with an external interrupt 
controller providing the interrupt vector), or iRMX 86 
mode. In all these modes, any interrupt presented to the 
external lines must remain set until the interrupt is 
acknowledgt:d. 
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6.6.1 DIRECT INPUT MODE 

When the Cascade mode bits are cleared, the interrupt 
input lines are configured as direct interrupt input lines 
(see Figure 61). In this mode an interrupt source (e.g., 
an 8272 floppy disk controller) may be directly connect­
ed to the interrupt input line. Whenever an interrupt is 
received on the input line, the integrated controller will 
do nothing unless the interrupt is enabled, and it is the 
highest priority pending interrupt. At this time, the in­
terrupt controller will present the interrupt to the CPU 
and wait for an interrupt acknowledge. When the ac­
knowledge occurs, it will present the interrupt vector ad­
dress to the CPU. In this mode, the CPU will not run any 
interrupt acknowledge cycles. 

INTERRUPT 

SOURCES . 
. 

80186 

INTO 

INTl 

INT2 

INT3 

Figure 61. 80186 Non-Cascaded 
Interrupt Connection 

These lines can be individually programmed in either 
edge or level triggered mode using their respective con­
trol registers. In edge triggered mode, a low-to-high 
transition must occur before the interrupt will be gener­
ated to the CPU, while in level triggered mode, only a 
high level must be present on the input for an interrupt 
to be generated. In edge trigger mode, the interrupt in­
put must also be low for at least I CPU clock cycle to 
insure recognition. In both modes, the interrupt input 
must remain active until acknowledged. 

6.6.2 CASCADE MODE 

When the Cascade mode bit is set and the SFNM bit is 
cleared, the interrupt input lines are configured in cas­
cade mode. In this mode, the interrupt input line is 
paired with an interrupt acknowledge line. The INT2/ 
INTAO and INn/INTAI lines are dual purpose; they 
can function as direct input lines, or they can function as 
interrupt acknowledge outputs. INT2/INTAO provides 
the interrupt acknowledge for an INTO input, and 
INT3/INTAI provides the interrupt acknowledge for 
an INTI input. Figure 62 shows this connection. 

When programmed in this mode, in response to an inter­
rupt request on the INTO line, the 80186 will provide 
two interrupt acknowledge pulses. These pulses will be 
provided on the INT2/INTAO line, and will also be re­
flected by interrupt acknowledge status being generated 
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on the SO-S2 status lines. On the second pulse, the inter­
rupt type will be read in. The 80186 externally vectored 
interrupt response is covered in more detail in section 
6.5. 

8259A 80186 

INT INTO 

INTA INT2 

8259A 

INT INTl 

INTA INT3 

Figure 62. 80186 Cascade and Special Fully 
Nested Mode Interface 

INTO/INT2/INTAO and INTI/INn /INTAI may be 
individually programmed into interrupt re­
quest/ acknowledge pairs, or programmed as direct in­
puts. This means that INTO/INT2/INTAO may be 
programmed as an interrupt/acknowledge pair, while 
INTI and INT3/INTAI each provide separate inter­
nally vectored interrupt inputs. 

When an interrupt is received on a cascaded interrupt, 
the priority mask bits and the in-service bits in the par­
ticular interrupt control register will be set into the in­
terrupt controller's mask and priority mask registers. 
This will prevent the controller from generating an 
80186 CPU interrupt request from a lower priority in­
terrupt. Also, since the in-service bit is set, any subse­
quent interrupt requests on the particular interrupt 
input line will not cause the integrated interrupt control­
ler to generate an interrupt request to the 80186 CPU. 
This means that if the external interrupt controller re­
ceives a higher priority interrupt request on one of its in­
terrupt request lines and presents it to the 80186 
interrupt request line, it will not subsequently be pre­
sented to the 80186 CPU by the integrated interrupt 
controller until the in-service bit for the interrupt line 
has been cleared. 

6.6.3 SPECIAL FULLY NESTED MODE 

When both the Cascade mode bit and the SFNM bit are 
set, the interrupt input lines are configured in Special 
Fully Nested Mode. The external interface in this mode 
is exactly as in Cascade Mode. The only difference is in 
the conditions allowing an interrupt from the external 
interrupt controller to the integrated interrupt control­
ler to interrupt the 80186 CPU. 

When an interrupt is received from a special fully nested 
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mode interrupt line, it will interrupt the 80186 CPU if it 
is the highest priority interrupt pending regardless of the 
state of the in-service bit for the interrupt source in the 
interrupt controller. When an interrupt is acknowledged 
from a special fully nested mode interrupt line, the pri­
ority mask bits and the in-service bits in the particular 
interrupt control register will be set into the interrupt 
controUer's in-service and priority mask registers. This 
will prevent the interrupt controUer from generating an 
80186 CPU interrupt request from a lower priority in­
terrupt. Unlike cascade mode, however, the interrupt 
controUer will not prevent additional interrupt requests 
generated by the same external interrupt controller 
from interrupting the 80186 CPU. This means that if 
the external (cascaded) interrupt controller receives a 
higher priority interrupt request on one of its interrupt 
request lines and presents it to the integrated control­
ler's interrupt request line, it may cause an interrupt to 
be generated to the 80186 CPU, regardless of the state 
of the in-service bit for the interrupt line. 
If the SFNM mode bit is set and the Cascade mode bit is 
not also set, the controUer will provide internal interrupt 
vectoring. It will also ignore the state of the in-service bit 
in determining whether to present an interrupt request 
to the CPU. In other words, it will use the SFNM condi­
tions of interrupt generation with an internally vectored 
interrupt response, i.e., if the interrupt pending is the 
highest priority type pending, it will cause a CPU inter­
rupt regardless of the state of the in-service bit for the 
interrupt. 

6.6.4 iRMX'" 86 MODE 

When the RMX bit in the peripheral relocation register 
is set, the interrupt controller is set into iRMX 86 mode. 

80186 
ARDY U 

INTO 

INT2 

INTl 

INT3 

ADO-AD7 

RD 

WR 

PCSA 

In this mode, aU four interrupt controller input lines are 
used to perform the necessary handshaking with the ex­
ternal master interrupt controUer. Figure 63 shows the 
hardware configuration of the 80186 interrupt lines 
with an external controUer in iRMX 86 mode. 

80186 8259A 

INTO INT -INT2 INTA 

~} 
CASCADE 

INTl ADDR. 
DECODE 

INT3 

Figure 63. 80186 iRMX86 Mode Interface 

Because the integrated interrupt controUer is a slave 
contro\1er, it must be able to generate an interrupt input 
for an external interrupt controller. It also must be sig­
naled when it has the highest priority pending interrupt 
to know when to place its interrupt vector on the bus. 
These two signals are provided by the INT3/Slave In­
terrupt Output and INTI/Slave Select lines, respective­
ly. The external master interrupt controUer must be able 
to interrupt the 80186 CPU, and needs to know when the 
interru~est is acknowledged. The INTO and 
INT2/INTAO lines provide these two functions. 

8259A-2 

INT 

INTA 

00-D7 

RD 

WR lIP 
cs 

t 

OTHERARD 

8 

+5V 

U 
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10 

EXTERNAL 

INTERRUPTS 

Figure 64. 80186/8259A Interrupt Cascading 
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6.7 Example 8259A/Cascade Mode 
Interface 

Figure 64 shows the 80186 and 8259A in cascade inter­
rupt mode. The code to initialize the 80186 interrupt 
controller is given in Appendix E. Notice that an "inter­
rupt ready" signal must be returned to the 80186 to pre­
vent the generation of wait states in response to the 
interrupt acknowledge cycles. In this configuration the 
INTO and INT2 lines are used as direct interrupt input 
lines. Thus, this configuration provides 10 external in­
terrupt lines: 2 provided by the 80186 interrupt control­
ler itself, and 8 from the external 8259A. Also, the 
8259A is configured as a master interrupt controller. It 
will only receive interrupt acknowledge pulses in re­
sponse to an interrupt it has generated. It may be cas­
caded again to up to 8 additional 8259As (each of which 
would be configured in slave mode). 

6.8 Example 80130 iRMX™ 8& Mode 
Interface 

Figure 65 shows the 80186 and 80130 connected in 
iRMX 86 mode. In this mode, the 80130 interrupt con­
troller is the master interrupt controller of the system. 

80188 

ALE ADDR 

r- LATCH 

80130 

ADO-AD15 
)8 

ADO-AD15 , 

CLK CLK 

MMCS2 MEMCS 
IRO· 

JiCS3 iOCS IR7 

so·n L3 so-n " 
BHE BHE 

INT 

INTO J 
INT3 

The 80186 generates an interrupt request to the 80130 
interrupt controller when one of the 80186 integrated 
peripherals has created an interrupt condition, and that 
condition is sufficient to generate an interrupt from the 
80186 integrated interrupt controller. Note that the 
80130 decodes the interrupt acknowledge status directly 
from the 80186 status lines; thus, the INT2/INTAO 
line of the 80186 need not be connected to the 80130. 
Figure 65 uses this interrupt acknowledge signal to en­
able the cascade address decoder. The 80130 drives the 
cascade address on AD8-AD10 during TI of the second 
interrupt acknowledge cycle. This cascade address is 
latched into the system address latches, and ifthe proper 
cascade address is decoded by the 8205 decoder, the 
80186 INTI/SLAVE SELECT line will be driven ac­
tive, enabling the 80186 integrated interrupt controller 
to place its interrupt vector on the internal bus. The code 
to configure the 80186 into iRMX 86 mode is presented 
in appendix E. 

6.9 Interrupt Latency 

Interrupt latency time is the time from when the 80186 
receives the interrupt to the time it begins to respond to 
the interrupt. This is different from interrupt response 
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Figure 65. 80186/80130 IRMX86 Mode Interface 
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time, which is the time from when the processor actually 
begins processing the interrupt to when it actually ex­
ecutes the first instruction of the interrupt service rou­
tine. The factors affecting interrupt latency are the 
instructIOn being executed and the state of the interrupt 
enable flip-flop. 

Interrupts will be acknowledged only if the interrupt en­
able flip-flop in the CPU is set. Thus, interrupt latency 
will be very long indeed if interrupts are never enabled 
by the processor' 

When interrupts are enabled in the CPU, the interrupt 
latency is a function of the instructions being executed. 
Only repeated instructions will be interrupted before be­
ing completed, and those only between their respective 
iterations. This means that the interrupt latency time 
could be as long as 69 CPU clocks, which is the time it 
takes the processor to execute an integer divide instruc­
tion (with a segment override prefix, see below), the 
longest single instruction on the 80186. 

Other factors can affect interrupt latency. An interrupt 
will not be accepted between the execution of a prefix 
(such as segment override prefixes and lock prefixes) 
and the instructIOn. In addition, an Interrupt will not be 
accepted between an instruction which modifies any of 
the segment registers and the instruction immediately 
following the Instruction. This is required to allow the 
stack to be changed. If the interrupt were accepted, the 
return address from the interrupt would be placed on a 
stack which was not valid (the Stack Segment register 
would have been modified but the Stack Pointer register 
would not have been). Finally, an interrupt will not be 
accepted between the execution of the WAIT instructiqg 
and the instruction immediately followin.&..i!..i[ the TEST 
input is active. If the WAIT sees the TEST input in­
active, however, the interrupt will be accepted, and the 
WAIT will be re-executed after the interrupt return. 
This IS required, since the WAIT is used to prevent ex­
ecution by the 80186 of an 8087 instruction while the 
8087 is busy. 

x, 

x, 

RES ----------------... --1 

7. CLOCK GENERATOR 

The 80186 includes a clock generator which generates 
the main clock signal for all 80186 integrated compo­
nents, and all CPU synchronous devices in the 80186 
system. This clock generator includes a crystal oscilla­
tor, divide by two counter, reset circuitry, and ready gen­
eration logic. A block diagram of the clock generator is 
shown in Figure 66. 

7.1 Crystal Oscillator 

The 80186 crystal oscillator is a parallel resonant, 
Pierce oscillator. It was designed to be used as shown in 
Figure 67. The capacitor values shown are approximate. 
As the crystal frequency drops, they should be in­
creased, so that at the 4 MHz minimum crystal frequen­
cy supported by the 80186 they take on a value of 30pE 
The output of this oscillator is not directly available out­
side the 80186. 

80186 

x, ~----~~-----, 

x,~--~ 

Figure 67. 80186 Crystal Connection 

7.2 USing an External Oscillator 

An external oscillator may be used with the 80186. The 
external frequency input (EFI) signal is connected di­
rectly to the X 1 input of the oscillator. X2 should be left 
open. This oscillator input is used to drive an internal di-

CPU CLOCK & 

CLOCKOUT 

CPU 

READY 

C;PU RESET 

& 

RESET OUTPUT 

Figure 66. 80186 Clock Generator Block Diagram 
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EFI 

CLKOUT 

Figure 68. 80186 Clock Generator Reset 

vide-by-two counter to generate the CPU clock signal, 
so the external frequency input can be of practically any 
duty cycle, so long as the minimum high and low times 
for the signal (as stated in the data sheet) are met. 

7.3 Clock Generator 
The output of the crystal oscillator (or the external fre­
quency input) drives a divide by two circuit which gener­
ates a 50% duty cycle clock for the 80186 system. All 
80186 timing is referenced to this signal, which is avail­
able on the CLKOUT pin of the 80186. This signal will 
change state on the high-to-Iow transition of the EFI 
signal. 

7.4 Ready Generation 
The clock generator also includes the circuitry required 
for ready generation. Interfacing to the SRDY and 
ARDY inputs this provides is covered in section .3.1.6. 

7.5 Reset 

The 80186 clock generator also provides a synchronized 
reset signal for the system. This signal is generated from 
the reset input (RES) to the 80186. The clock generator 
synchronizes this signal to the clockout signal. 

The reset input signal also resets the divide-by-two 
counter. A one clock cycle internal clear pulse is gener­
ated when the RES input signal first goes active. This 
clear pulse goes active beginning on the first low-to-high 
transition of the Xl input after RES goes active, and 
goes inactive on the next low-to-high transition of the Xl 
input. In order to insure that the clear pulse is generated 
on the next EFI cycle, the RES input signal must satisfy 
a 25ns setup time to the high-to-Iow EFI input signal 
(see Figure 68). During this clear, clockout will be high. 
On the next high-to-Iow transition of Xl, clockout will 
go low, and will change state on every subsequent high­
to-low transition of EFI. 

The reset signal presented to the rest of the 80186, and 
also the signal present on the RESET output pin of the 
80186 is synchronized by the high-to-Iow transition of 
the clockout signal of the 80186. This signal remains ac-
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tive as long as the RES input also remains active. After 
the RES input goes inactive, the 80186 will begin to 
fetch its first instruction (at memory location FFFFOH) 
after 6 1/2 CPU clock cycles (i.e., T j of the first instruc­
tion fetch will occur 6 1/2 clock cycles later). To insure 
that the RESET output will go inactive on the next CPU 
clock cycle, the inactive going edge of the RES input 
must satisfy certain hold and setup times to the low-to­
high edge of the clockout signal of the 80186 (see Figure 
69). 

'=rr~ 
RES-----..J 

RESET ----------., 

\'---

Figure 69. 80186 Coming out of Reset 

8. CHIP SELECTS 

The 80186 includes a chip select unit which generates 
hardware chip select signals for memory and I/O ac­
cesses generated by the 80186 CPU and DMA units. 
This unit is programmable such that it can be used to 
fulfill the chip select requirements (in terms of memory 
device or bank size and speed) of most small and medi­
um sized 80186 systems. 

The chip selects are driven only for internally generated 
bus cycles. Any cycles generated by an external unit 
(e.g., an external DMA controller) will not cause the 
chip selects to go active. Thus, any external bus masters 
must be responsible for their own chip select generation. 
Also, during a bus HOLD, the 80186 does not float the 
chip select lines. Therefore, logic must be included to en­
able the devices which the external bus master wishes to 
access (see Figure 70). 
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80186 CHIP SELECT~ MEMORY or I/O 

'"'EX"'T'"E""R"NAAOL"L"Y"G"'E"NE"'R""A"'T'"E"D"C"HI""P"S"'EL"E"'CT'"' ~ DEVICE CHIP SELECT 

Figure 70. 80186/External Chip Select/Device Chip Select Generation 

8.1 Memory Chip Selects 

The 80186 provides six discrete chip select lines which 
are meant to be connected to memory components in an 
80186 system. These signals are named UCS, LCS, 
and MCSO-3 for Upper Memory Chip Select, Lower 
Memory Chip Select and Midrange Memory Chip Se­
lects 0-3. They are meant (but not limited) to be con­
nected to the three major areas of the 80186 system 
memory (see Figure 71). 

MCS3 { 

MCS2 { 

MCSl { 

MCSO { 

FFFFF 

STARTUP 

ROM 

---
PROGRAM 

MEMORY 
---

---

INTERRUPT 

VECTOR 

TABLE 
0 

,Figure 71. 80186 Memory Areas & Chip Selects 

As could be guessed by their names, upper memory, low­
er memory, and mid-range memory chip selects are de­
signed to address lipper, lower, and middle areas of 
memory in an 80186 system. The upper limit of UCS 
and the lower limit of LCS are fixed at FFFFFH and 
OOOOOH in memory space, respectively. The other limit 
of these is set by the memory size programmed into the 
control register for the chip select line. Mid-range mem­
ory allows both the base address and the block size of the 
memory area to be programmed. The only limitation is 
that the base address must be programmed to be an inte­
ger multiple of the total block size. For example, if the 
block size was 128K bytes (4 32K byte chunks) the base 
address could be 0 or 20000H, but not 10000H. 
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The memory chip selects are controlled by 4 registers in 
the peripheral control block (see Figure 72). These in­
clude I each for UCS and LCS, the values of which de­
termine the size of the memory blocks addressed by 
these two lines. The other two registers are used to con­
trol the size and base address of the mid-range memory 
block. 

On reset, only UCS is active. It is programmed by reset 
to be active for the top IK memory block, to insert 3 wait 
states to all memory fetches, and to factor external 
ready for every memory fetch (see section 8.3 for more 
information on internal ready generation). All other 
chip select registers assume indeterminate states after 
reset, but none of the other chip select lines will be active 
until all necessary registers for a signal have been ac­
cessed (not necessarily written, a read to an uninitialized 
register will enable the chip select function controlled by 
that register). 

8.2 Peripheral Chip Selects 

The 80186 provides seven discrete chip select lines 
which are meant to be connected to peripheral compo­
nents in an 80186 system. These signals are named 
PCSO-6. Each of these lines is active for one of seven 
contiguous 128 byte areas in memory or I/O space 
above a programmed base address. 

The peripheral chip selects are controlled by two regis­
ters in the internal peripheral control block (see Figure 
72). These registers allow the base address of the periph­
erals to be set, and allow the peripherals to be mapped 
into memory or I/O space. Both of these registers must 
be accessed before any of the peripheral chip selects will 
become active. 

A bit in the MPCS register allows PCS5 and PCS6 
to become latched Al and A2 outputs. When this option 
is selected, PCS5 and PCS6 will reflect the state of A I 
and A2 throughout a bus cycle. These are provided to al­
low external peripheral register selection in a system in 
which the addresses are not latched. Upon reset, these 
lines are driven high. They will only reflect Al and A2 
after both PACS and MPCS have been accessed (and 
are programmed to provide Al and A2!). 

8.3 Ready Generation 

The 80186 includes a ready generation unit. This unit 
generates an internal ready signal for all accesses to 
memory or I/O areas to which the chip select circuitry of 
the 80186 responds. 
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OFFSET: 

AOH UPPER MEMORY SIZE CD UMCS 

A2H LOWER MEMORY SIZE CD LMCS 

A4H 

A6H 

PERIPHERAL CHIP SELECT BASE ADDRESS CD PACS 

MMCS MID-RANGE MEMORY BASE ADDRESS CD 
ASH MID-RANGE MEMORY SIZE I i I ~ I CD MPCS 

1. Upper memory ready bits 
2. lower memory ready bits 
3. PCSO-PCS3 ready bits 
4. Mid-range memory ready bits 
5. PCS4-PCS6 ready bits 
6. MS: 1 ~ Peripherals active in memory space 

o ~ Peripherals active m I/O space 
EX:1 ~ 7 PCS Imes 
o ~ PCS5 ~ A1, PCS6 ~ A2 

Not all bits of every field are used 

Figure 72. 80186 Chip Select Control Registers 

~or each ready g.eneration area, 0-3 wait states may be 
Inserted by the Internal unit. Table 6 shows how the 
ready control bits should be programmed to provide this. 
In addition, the ready generation circuit may be pro­
grammed to Ignore the state of the external ready (i.e., 
only the internal ready circuit will be used) or to factor 
the state of the external ready (i.e., a ready will be re­
turned to the processor only after both the internal ready 
circuit has gone ready and the external ready has gone 
ready). Some kind of circuit must be included to gener­
ate an external ready, however, since upon reset the 
ready generator is programmed to factor external ready 
to all accesses to the top 1 K byte memory block. If a 
ready was not returned on one of the external ready lines 
(ARDY or SRDY) the processor would wait forever to 
fetch its first instruction. 

Table 6. 80186 Wait State Programming 

~R2 R1 RO Number of Wait States 

0 0 0 o + external ready 
0 0 1 1 + external ready 
0 1 0 2 + external ready 
0 1 1 3 + external ready 
1 0 0 o (no external ready required) 
1 0 1 1 (no external ready required) 
1 1 0 2 (no external ready required) 
1 1 I 3 (no external ready required) 
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8.4 Examples of Chip Select Usage 

M~ny examples of the use of the chip select lines are giv­
en In the bus Interface section of this note (section 3.2). 
These examples show how simple it is to use the chip se­
lect function provided by the 80186. The key point to re­
member when using the chip select function is that they 
are only activated during bus cycles generated by the 
80186 CPU or DMA units. When another master has 
the bus, it must generate its own chip select function. In 
addition, whenever the bus is given by the 80186 to an 
external master (through the HOLD! HLDA arrange­
ment) the 80186 does NOT float the chip select lines. 

8_5 Overlapping Chip Select Areas 

Generally, the chip selects of the 80186 should not be 
programmed such that any two areas overlap. In addi­
hon, none of the programmed chip select areas should 
overlap any of the locations of the integrated 256-byte 
control register block. The consequences of doing this 
are: 

Whenever two chip select lines are programmed to 
respond to the same area, both will be activated dur­
ing any access to that area. When this is done, the 
ready bits for both areas must be programmed to the 
same value. lf this is not done, the processor response 
to an access in this area is indeterminate. 

lf any of the chip select areas overlap the integrated 
256-byte control register block, the timing on the 
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chip select line is altered. As always, any values re­
turned on the external bus from this access are ig­
nored. 

9. SOFTWARE IN AN 80186 SYSTEM 

Since the 80186 is object code compatible with the 8086 
and 8088, the software in an 80186 system is very simi­
lar to that in an 8086 system. Because of the hardware 
chip select functions, however, a certain amount of ini­
tialization code must be included when using those func­
tions on the 80186. 

9.1 System Initialization in an 
80186 System 

Most programmable components of a computer system 
must be initialized before they are used. This is also true 
for the 80186. The 80186 includes circuitry which di· 
rectly affects the ability of the system to address mem­
ory and I/O devices, namely the chip select circuitry. 
This circuitry must be initialized before the memory 
areas and peripheral devices addressed by the chip select 
signals are used. 

Upon reset, the UMCS register is programmed to be ac­
tive for all memory fetches within the top 1 K byte of 
memory space. It is also programmed to insert three 
wait states to all memory accesses within this space. If 
the hardware chip selects are used, they must be pro­
grammed before the processor leaves this 1 K byte area 
of memory. If a jump to an area for which the chips are 
not selected occurs, the microcomputer system will 
cease to operate (since the processor will fetch garbage 
from the data bus). Appendix F shows a typical initial­
ization sequence for the 80186 chip select unit. 

Once the chip selects have been properly initialized, the 
rest of the 80186 system may be initialized much like an 
8086 system. For example, the interrupt vector table 
might get set up, the interrupt controller initialized, a 
serial I/O channel initialized, and the main program be­
gun. Note that the integrated peripherals included in the 
80186 do not share the same programming model as the 
standard Intel peripherals used to implement these 
functions in a typical 8086 system, i.e., different values 
must be programmed into different registers to achieve 
the same function using the integrated peripherals. Ap­
pendix F shows a typical initialization sequence for an 
interrupt driven system using the 80186 interrupt 
controller. 

9.2 Initialization for iRMX™ 86 System 

Using the iRMX 86 operating system with the 80186 re­
quires an external 8259A and an external 8253/4 or al­
ternatively an external 80130 OSF component. These 
are required because the operating system is interrupt 
driven, and expects the interrupt controller and timers to 
have the register model of these external devices. This 
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model is not the same as is implemented by the 80186. 
Because of this, the 80186 interrupt controller must be 
placed in iRMX 86 mode after reset. This initialization 
can be done at any time after reset before jump to the 
root task of iRMX 86 System is actually performed. If 
need be, a small section of code which initializes both 
the 80186 chip selects and the 80186 interrupt controller 
can be inserted between the reset vector location and the 
beginning of iRMX 86 System (see Figure 73). In this 
case, upon reset, the processor would jump to the 80186 
initialization code, and when this has been completed, 
would jump to the iRMX 86 initialization code (in the 
root task). It is important that the 80186 hardware be 
initialized before iRMX 86 operation is begun, since 
some of the resources addressed by the 80186 system 
may not be initialized properly by iRMX 86 System if 
the initialization is done in the reverse manner. 

8086 80186 

FFFF:O 

Figure 73. iRMX-86 Initialization with 
8086 & 80186 

9.3 Instruction Execution Differences 
Between the 8086 and 80186 

There are a few instruction execution differences be­
tween the 8086 and the 80186. These differences are: 

Undefined Opcodes: 

When the opcades 63H,64H,65H,66H,67H,FlH, 
FEH XXlllXXXB and FFH XX111XXXB 
are executed, the 80186 will execute an illegal in­
struction exception, interrupt type 6. The 8086 
will ignore the opcode. 

OFH opcode: 

When the opcode OFH is encountered, the 8086 
will execute a POP CS, while the 80186 will ex­
ecute an illegal instruction exception, interrupt 
type 6. 

Word Write at Offset FFFFH: 

When a word write is performed at offset 
FFFFH in a segment, the 8086 will write one 
byte 'It offset FFFFH, and the other at offset 0, 
while the 80186 will write one byte at offset 
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FFFFH, and the other at offset 10000H (one 
byte beyond the end of the segment). One byte 
segment underflow will also occur (on the 80186) 
if a stack PUSH is executed and the Stack Point­
er contains the value I. 

Shift/Rotate by Value Greater Then 31: 

Before the 80186 performs a shift or rotate by a 
value (either in the CL register, or by an immedi­
ate value) it ANDs the value with IFH, limiting 
the number of bits rotated to less than 32. The 
8086 does not do this. 

LOCK prefix: 

The 8086 activates its LOCK signal immediately 
after executing the LOCK prefix. The 80186 
does not activate the LOCK signal until the pro­
cessor is ready to begin the data cycles associated 
with the LOCKed instruction. 

Interrupted String Move Instructions: 

If an 8086 is interrupted during the execution of 
a repeated string move instruction, the return 
value it will push on the stack will point to the 
last prefix instruction before the string move in­
struction. If the instructi\>n had more than one 
prefix (e.g., a segment override prefix in addition 
to the repeat prefix), it will not be re-executed 
upon returning from the interrupt. The 80186 
will push the value of the first prefix to the re­
peated instruction, so long as prefixes are not re­
peated, allowing the string instruction to 
properly resume. 

Conditions causing divide error with an integer 
divide: 

The 8086 will cause a divide error whenever the 
absolute value of the quotient is greater then 
7FFFH (for word operations) or if the absolute 
value of the quotient is greater than 7FH (for 
byte operations). The 80186 has expanded the 
range of negative numbers allowed as a quotient 
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by I to include 8000H and 80H. These numbers 
represent the most negative numbers representa­
ble using 2's complement arithmetic (equaling 
-32768 and -128 in decimal, respectively). 

ESC Opcode: 

The 80186 may be programmed to cause an in­
terrupt type 7 whenever an ESCape instruction 
(used for co-processors like the 8087) is execut­
ed. The 8086 has no such provision. Before the 
80186 performs this trap, it must' be pro­
grammed to do so. 

These differences can be used to determine whether the 
program is being executed on an 8086 or an 80186. 
Probably the safest execution difference to use for this 
purpose is the difference in multiple bit shifts. For exam­
ple, if a multiple bit shift is programmed where the shift 
count (stored in the CL register!) is 33, the 8086 will 
shift the value 33 bits, whereas the 80186 will shift it 
only a single bit. 

In addition to the instruction execution differences not­
ed above, the 80186 includes a number of new instruc­
tion types, which simplify assembly language 
programming of the processor, and enhance the perfor­
mance of higher level languages running on the proces­
sor. These new instructions are covered in depth in the 
8086/80186 users manual and in appendix H of this 
note. 

10. CONCLUSIONS 

The 80186 is a glittering example of state-of-the art in­
tegrated circuit technology applied to make the job of 
the microprocessor system designer simpler and faster. 
Because many of the required peripherals and their in­
terfaces have been cast in silicon, and because of the 
timing and drive latitudes provided by the part, the de­
signer is free to concentrate on other issues of system de­
sign. As a result, systems designed around the 80186 
allow applications where no other processor has been 
able to provide the necessary performance at a compara­
ble size or cost. 
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APPENDIX A: PERIPHERAL CONTROL 
BLOCK 
All the integrated peripherals within the 80186 micro­
processor are controlled by sets of registers contained 
within an integrated peripheral control block. The regis­
ters are physically located within the peripheral devices 
they control, but are addressed as a single block of regis­
ters. This set of registers fills 256 contiguous bytes and 
can be located beginning on any 256 byte boundary of 
the 80186 memory or I/O space. A map of these regis­
ters is shown in Figure A-I. 

A.1 Setting the Base Location of the 
Peripheral Control Block 

In addition to the control registers for each of the inte­
grated 80186 peripheral devices, the peripheral control 

block contains the peripheral control block relocation 
register. This register allows the peripheral control block 
to be re-located on any 256 byte boundary within the 
processor's memory or I/O space. Figure A-2 shows the 
layout of this register. 

This register is located at offset FEH within the periph­
eral control block. Since it is itself contained within the 
peripheral control block, any time the location of the pe­
ripheral control block is moved, the location of the relo­
cation register will also move. 

In addition to the peripheral control block relocation in­
formation, the relocation register contains two addition­
al bits. One is used to set the interrupt controller into 
iRMX86 compatibility mode. The other is used to force 
the processor to trap whenever an ESCape (coprocessor) 
instruction is encountered. 

OFFSET 

Relocation Register FEH 

DMA Descriptors Channel 1 

DMA Descriptors Channel 0 

Chip-Select Control Registers 

Timer 2 Control Registers 

Timer 1 Control Registers 

Timer 0 Control Registers 

Interrupt Controller Registers 

--

DAH 

DOH 

CAH 

COH 

A8H 

AOH 

66H 

60H 
5EH 

58H 
56H 

SOH 

3EH ' 

20H 

Figure A-1. 80186 Integrated Peripheral Control Block 
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11 10 9 B 7 6 5 4 3 2 o 
OFFSET: FEH Relocation Address Bits R19-RB 

= ESC Trap I No ESC Trap (1/0) ET 
MilO 
RMX 

= Register block located In Memory 11/0 Space (1/0) 
= Master Interrupt Controller mode IIRMX compatible 

Interrupt Controller mode (0/1) 

Figure A-2. 80186 Relocation Regllter Layout 

Because the relocation register is contained within the 
peripheral control block, upon reset the relocation regis­
ter is automatically programmed with the value 20FFH. 
This means that the peripheral control block will be lo­
cated at the very top (FFOOH to FFFFH) of I/0 space. 
Thus, after reset the relocation register will be located at 
word location FFFEH in I/O space. 

If the user wished to locate the peripheral control block 
starting at memory location 10000H he would program 
the peripheral control register with the value 1100H. By 
doing this, he would move all registers within the inte· 
grated peripheral control block to memory locations 
10000H to 100FFH. Note that since the relocation reg­
ister is contained within the peripheral control block, it 
too would move to word location 100FEH in memory 
space. 

A.2 Peripheral Control Block Registers 
Each of the integrated peripherals' control and status 
registers are loc,a ted at a fixed location above the pro­
grammed base location of the peripheral control block. 
There are many locations within the peripheral control 
block which are not assigned to any peripheral. If a write 
is made to any of these locations, the bus cycle will be 
run, but the value will not be stored in any internalloca­
tion. This means that if a subsequent read is made to the 
same location, the value written will not be read back. 

The processor will run an external bus cycle for any 
memory or I/0 cycle which accesses a location within 
the integrated control block. This means that the ad­
dress, data, and control information will be driven on the 
80186 external pins just as if a "normal" bus cycle had 
been run. Any information returned by an external de­
vice will be ignored, however, even if the access was to a 
location which does not correspond to any of the inte-
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grated peripheral control registers. The above is also 
true for the 80188, except that the word access made to 
the integrated registers will be performed in a single bus 
cycle, with only the lower 8 bits of data being driven by 
the write cycle (since the upper 8 bits of data are non­
existant on the external data bus!) 

The processor internally generates a ready signal when­
ever any of the integrated peripherals are accessed; thus 
any external ready signals are ignored whenever an ac­
cess is made to any location within the integrated pe­
ripheral register control block. This ready will also be 
returned if an access is made to a location within the 256 
byte area of the periperal control block which does not 
correspond to any integrated peripheral control register. 
The processor will insert 0 wait states to any access with­
in the integrated peripheral control block except for ac­
cesses to the timer registers. ANY access to the timer 
control and counting registers will incur 1 wait state. 
This wait state is required to properly multiplex proces­
sor and counter element accesses to the timer control 
registers. 

All accesses made to the integrated peripheral control 
block must be WORD accesses. Any write to the inte­
grated registers will modify all 16 bits of the register, 
whether the opcode specified a byte write or a word 
write. A byte read from an even location should cause no 
problems, but the data returned when a byte read is per­
formed from an odd address within the peripheral con­
trol block is undefined. This is true both for the 80186 
AND the 80188. As stated above, even though the 
80188 has an external 8 bit data bus, internally it is still 
a 16 bit machine. Thus, the word accesses performed to 
the integrated registers by the 80188 will each occur in a 
single bus cycle with only the lower 8 bits of data being 
driven on the external data bus (on a write). 
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APPENDIX B: 80186 SYNCHRONIZATION 
INFORMATION 

Many input signals to the 80186 are asynchronous, that 
is, a specified set up or hold time is not required to insure 
proper functioning ofthe device. Associated with each of 
these inputs is a synchronizer which samples this exter­
nal asynchronous signal, and synchronizes it to the in­
ternal 80186 clock. 

B.1 ,,a/hy Synchronizers Are Required 

Every data latch requires a certain set up and hold time 
in order to operate properly. At a certain window within 
the specified set up and hold time, the part will actually 
try to latch the data. If the input makes a transition 
within this window, the output will not attain a stable 
state within the given output delay time. The size of this 
sampling window is typically much smaller than the ac­
tual window specified by the data sheet, however part to 
part variation could move this window around within the 
specified window in the data sheet. 

Even if the input to a data latch makes a transition while 
a data latch is attempting to latch this input, the output 
of the latch will attain a stable state after a certain 
amount of time, typically much longer than the normal 
strobe to output delay time. Figure B-1 shows a normal 
input to output strobed transition and one in which the 
input signal makes a transition during the latch's sample 
window. In order to synchronize an asynchronous signal, 
all one needs to do is to sample the signal into one data 
latch, wait a certain amount of time, then latch it into a 
second data latch. Since the time between the strobe into 
the first data latch and the strobe into the second data 
latch allows the first data latch to attain a steady state 
(or to resolve the asynchronous signal), the second data 
latch will be presented with an input signal which satis­
fies any set up and hold time requirements it may have. 
Thus, the output of this second latch is a synchronous 
signal with respect to its strobe input. 

A synchronization failure can occur if the synchronizer 
fails to resolve the asynchronous transition within the 
time between the two latch's strobe signals. The rate of 
failure is determined by the actual size of the sampling 
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STROBE / 

INPUT ----=SE:::T:::-U:-::P~T:::I:-:M=E· HOLD TIME 
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I 
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Ilel INVALID ~ 
_---J ~ 

INPUT ~ 

FiEsPONSE 1 • RESOLUTION TIME .1 

VALID~ 
INPUT 

RESPONSE _______ -J/ 

Figure 8-1_ Valid & Invalid Latch Input 
Transitions & Responses 

window of the data latch, and by the amount of time be­
tween the strobe signals of the two latches. Obviously, as 
the sampling window gets smaller, the number of times 
an asynchronous transition will occur during the sam­
pling window will drop. In addition, however, a smaller 
sampling window is also indicative of a faster resolution 
time for an input transition which manages to fall within 
the sampling window. 

B.2 80186 Synchronizers 

The 80186 contains synchronizers on the RES, 
TEST, TmrInO-I, DRQO-1, NMI, INTO-3,ARDY, and 
HOLD input lines. Each of these synchronizers use the 
two stage synchronization technique described above 
(with some minor modifications for the ARDY line, see 
section 3.1.6). The sampling window of the latches is de­
signed to be in the tens of pico-seconds, and should allow 
operation of the synchronizers with a mean time be­
tween failures of over 30 years assuming continuous 
operation. 
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APPENDIX C: 80186 EXAMPLE DMA INTERFACE CODE 

$modl86 
name assembly.example.80 186.0 MA.support 

This file contains an example procedure which initializes the 80186 OMA 
controller to perform the OMA transfers between the 80186 system the the 
8272 Floppy Oisk Controller (FOC). It assumes that the 80186 
peripheral control block has not been moved from its reset location. 

argl 
arg2 
arg3 
OMA..FROM.LOWER 
OMA..FROM_UPPER 
OMA..TO.LOWER 
OMA..TO_UPPER 
OMA.COUNT 
OMA_CONTROL 
OMA..TO_DISK..CONTROL 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

OMA.FROM_OISK..CONTROLequ 

FOCOMA equ 
FOCOATA equ 
FOCSTATUS equ 

cgroup group 

word ptr [BP + 4] 
word ptr [BP + 6] 
word ptr [BP + 8] 
OFFCOh 
OFFC2h 
OFFC4h 
OFFC6h 
OFFC8h 
OFFCAh 
01486h 

OA046h 

6B8h 
688h 
680h 

code 

OMA register locations 

destination synchronization 
source to memory, incremented 
destination to I/O 
no terminal count 
byte transfers 

source synchroniza tion 
source to I/O 
destination to memory, incr 
no terminal count 
byte transfers 
FOC OMA address 
FOC data register 
FOC status register 

code segment public 'code' 
public seLdma_ 
assume cs:cgroup 

seLdma (offset,to) programs the OMA channel to point one side to the 

seLdma. 

disk OMA address, and the other to memory pointed to by ds:offset. If 
'to' = 0 then will be a transfer from disk to memory; if 
'to' = 1 then will be a transfer from memory to disk. The parameters to 
the routine are passed on the stack. 

proc near 
enter 0,0 
push AX 
push BX 
push OX 
test arg2,1 

jz from..disk 
performing a transfer from memory to the disk controller 

mov 
rol 

AX,OS 
AX,4 
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set stack addressability 
save registers used 

check to see direction of 
transfer 

get the segment value 
gen the upper 4 bits of the 
physical address in the lower 4 
bits of the register 
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moy BX,AX saYe the result ... 
moy DX,DMA.FROM_UPPER prgm the upper 4 bits of the 
out DX,AX DMA source register 
and AX,OFFFOh form the lower 16 bits of the 

physical address 
add AX,arg1 add the offset 
may DX,DMA.FROM_LOWER prgm the lower 16 bits of the 
out DX,AX DMA source register 
jnc no_carry _from check for carry out of addition 
inc BX if carry out, then need to adj 
may AX,BX the upper 4 bits of the pointer 
maY DX,DMA.FROM_UPPER 
out DX,AX 

no_carry_from: 
may AX,FDCDMA prgm the low 16 bits of the DMA 
may DX,DMA.TO_LOWER destination register 
out DX,AX 
xor AX,AX zero the up 4 bits of the DMA 
may DX,DMA.TO_UPPER destination register 
out DX,AX 
may AX,DMA.TO_DISK..CONTROL; prgm the DMA ctl reg 
may DX,DMA.CONTROL note: DMA may begin immediatly 
out DX,AX after this word is output 
pop DX 
pop BX 
pop AX 
leaye 
ret 

frolTLdisk: 

performing a transfer from the disk to memory 

maY AX,DS 
rol AX,4 
may DX,DMA.TO-UPPER 
out DX,AX 
may BX,AX 
and AX,OFFFOh 
add AX,arg1 
may DX,DMA.TO_LOWER 
out DX,AX 
jnc no_carry_to 
inc BX 
may AX,BX 
may DX,DMA.TO_UPPER 
out DX,AX 

no_carry_to: 
may AX,FDCDMA 

may DX,DMA.FROM_LOWER 
out DX,AX 
xor AX,AX 
may DX,DMA.FROM_UPPER 
out DX,AX 
may AX,DMA.FROM_DISK..CONTROL 
may DX,DMA.CONTROL 
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out DX,AX 
pop DX 
pop BX 
pop AX 
leave 
ret 

seLdma.. endp 

code ends 
end 
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APPENDIX D: 80186 EXAMPLE TIMER INTERFACE CODE 

$modl86 
name 

this file contains example 80186 timer routines. The first routine 

argl 
arg2 
arg3 
timer-2int 

sets up the timer and interrupt controller to cause the timer 
to generate an interrupt every 10 milliseconds, and to service 
interrupt to implement a real time clock. Timer 2 is used in 
this example because no input or output signals are required. 
The code example assumes that the peripheral control block has 
not been moved from its reset location (FFOO-FFFF in I/0 space). 

equ word ptr [BP + 4) 
equ word ptr [BP + 6) 
equ word ptr [BP + 8) 
equ 19 

timer-2control equ OFF66h 
timeL2malLcti equ OFF62h 
timerjnLcti equ OFF32h 
eoLregister equ OFF22h 
interrupLstat equ OFF30h 

data segment 
public hour_,minute_,second_,msec_ 

msec_ db ? 
hOUL db ? 
minute_ db ? 
second_ db ? 
data ends 

cgroup group code 
dgroup group data 

code segment 
public seLtime_ 
assume cs:code,ds:dgroup 

seLtime(hour,minute,second) sets the time variables, initializes the 
80186 timer2 to provide interrupts every 10 milliseconds, and 
programs the interrupt vector for timer 2 

seLtime_ proc near 
enter 0,0 
push AX 
push DX 
push SI 
push DS 

xor AX,AX 

mov DS,AX 

mov SI,4 * timer2int 

64 

timer 2 has vector type 19 

interrupt controller regs 

public 'data' 

public 'code' 

set stack addressability 
save registers used 

set the interrupt vector 
the timers have unique 
interrupt 
vectors even though they share 
the same control register 

AFN-21 0973 



AP-186 

mov OS: lSI] ,offset timer-2..interruptJoutine 
inc SI 
inc SI 
mov OS: [SI],CS 
pop OS 

mov AX,argl set the time values 
mov hour_,AL 
mov AX,arg2 
mov minute_,AL 
mov AX,arg3 
mov second_,AL 
mov msec..,O 

mov OX,timer2..maJLctl set the max count value 
mov AX,20000 10 ms /500 ns (timer 2 counts 

at 1/4 the CPU clock rate) 
out OX,AX 
mov OX,timer2..control set the control word 
mov AX, III 000000000000 I b enable counting 

generate interrupts on TC 
continuous counting 

out OX,AX 

mov OX,timer..inLctl set up the interrupt controller 
mov AX,OOOOb unmask interrupts 

highest priority interrupt 
out OX,AX 
sti enable processor interrupts 

pop SI 
pop OX 
pop AX 
leave 
ret 

seUime_ endp 

timer2..interruptJoutine proc far 
push AX 
push OX 

cmp msec_,99 see if one second has passed 
jae bump..second if above or equal... 
inc msec_ 
jmp resetinLctl 

bump..second: 
mov msec_,O reset millisecond 
cmp second..,59 see if one minute has passed 
jae bump_minute 
inc second.. 
jmp resetinLctl 

bump_minute: 
mov second..,O 
cmp minute..,59 see if one hour has passed 
jae bump..hour 
inc minute_ 
jmp resetinLctl 
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bump.hour: 

reseLhour: 

reseLinLctl: 

timer2.interrupLroutine 
code 

$mod186 
name 

mov 
cmp 
jae 
inc 
jmp 

AP-186 

minute.,O 
hour., I 2 
reseLhour 
hour. 
reseLinLcti 

mov hour.., I 

mov 
mov 
out 

pop 
pop 
iret 
endp 
ends 
end 

OX,eoLregister 
AX,8000h 
OX,AX 

OX 
AX 

example.80 I 86.baud.code 

this file contains example 80186 timer routines. The second routine 
. sets up the timer as a baud rate generator. In this mode, 

Timer I is used to continually output pulses with a period of 
6.5 usec for use with a serial controller at 9600 baud 
programmed in divide by 16 mode (the actual period required 
for 9600 baud is 6.51 usec). This assumes that the 80186 is 
running at 8 MHz. The code example also assumes that the 
peripheral control block has not been moved from its reset 
location (FFOO·FFFF in I/O space). 

timer Lcontrol 
timer LmalLcnt 

equ OFF5Eh 
equ OFF5Ah 

see if 12 hours have passed 

non-specific end of interrupt 

code segment public 'code' 
assume cs:code 

seLbaudO initializes the 80186 timer I as a baud rate generator for 
a serial port running at 9600 baud 

seLbaud. proc near 
push AX 
push OX 

mov OX,timerl.malLcnt 
mov AX,13 
out OX,AX 
mov OX,timer Lcontrol 
mov AX, II 0000000000000 I b 

out OX,AX 

pop OX 
pop AX 
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save registers used 

set the max count value 
500ns * 13 = 6.5 usec 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 
single max count register 
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seLbaud_ 
code 

$modl86 
name 

ret 
endp 
ends 
end 

AP-186 

example..80 I 86_counLcode 

this file contains example 80186 timer routines. The third routine 
sets up the timer as an external event counter. In this mode, 
Timer I is used to count transitions on its input pin. After 
the timer has been set up by the routine, the number of 
events counted can be directly read from the timer count 
register at location FF58H in I/0 space. The timer will 
count a maximum of 65535 timer events before wrapping 
around to zero. This code example also assumes that the 
peripheral control block has not been moved from its reset 
location (FFOO-FFFF in I/O space). 

timer Lcontrol equ OFF5Eh 
timer l..max-cnt equ OFF5Ah 
timer LcnLreg equ OFF58H 

code segment 
assume cs:code 

set..countO initializes the 80186 timer! as an event counter 

seLcounL proc near 
push AX 
push OX 

mov OX,timerl_max-cnt 
mov AX,O 

out OX,AX 
mov OX,timerLcontrol 
mov AX,II 00000000000 1 0 1 b 

out OX,AX 

xor AX,AX 
mov OX,timerLcnLreg 
out OX,AX 

pop OX 
pop AX 
ret 

seLcounL endp 
code ends 

end 

67 

public 'code' 

save registers used 

set the max count value 
allows the timer to count 
all the way to FFFFH 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 
single max count register 
external clocking 

zero AX 
and zero the count in the timer 
count register 
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APPENDIX E: 80186 EXAMPLE 
INTERRUPT CONTROLLER INTERFACE 
CODE 

$modl86 
name exampk80186jnterrupLcode 

This routine configures the 80186 interrupt controller to provide 
two cascaded interrupt inputs (through an external 8259A 
interrupt controller on pins INTOjINT2) and two direct 
interrupt inputs (on pins INTI and INT3). The default priority 
levels are used. Because of this, the priority level programmed 
into the control register is set the III, the level all 
interrupts are programmed to at reset. 

intO_control 
inLmask 

equ 
equ 

OFF38H 
OFF28H 

code 

seLinL 

seLinL 
code 

$modl86 
name 

segment 
assume CS:code 
proc near 
push OX 
push AX 

mov AX,OIOOIlIB 

mov OX,intO_control 
out OX,AX 

mov AX,OIOOllOIB 

mov OX,inLmask 
out OX,AX 
pop AX 
pop OX 
ret 
endp 
ends 
end 

exampk80186jnterrupLcode 

This routine configures the 80186 interrupt controller into iRMX 86 
mode. This code does not initialize any of the 80186 
integrated peripheral control registers, nor does it initialize 
the external 8259A or 80130 interrupt controller. 

relocation_reg equ OFFFEH 

code segment 
assume CS:code 

seLrmlL proc near 
push OX 
push AX 

mov OX,relocation_reg 
in AX,OX 
or AX,O I OOOOOOOOOOOOOOB 
out OX,AX 

68 

public 'code' 

cascade mode 
interrupt unmasked 

now unmask the other external 
interrupts 

public 'code' 

read old contents of register 
set the RMX mode bit 
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seLrmx.. 
code 

pop 
pop 
ret 
endp 
ends 
end 

AX 
DX 

Ap·186 
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APPENDIX F: 80186/8086 EXAMPLE 
SYSTEM INITIALIZATION CODE 

name example..80186_system.init 

This file contains a system initialization routine for the 80186 
or the 8086. The code determines whether it is running on 
an 80186 or an 8086, and if it is running on an 80186, it 
initializes the integrated chip select registers. 

restart segment at 

This is the processor reset address at OFFFFOH 

org 0 
jmp far ptr initialize 

restart ends 

extrn monitor:far 
init.hw segment at 

assume CS:init.hw 

This segment initializes the chip selects. It must be located in the 
top lK to insure that the ROM remains selected in the 80186 

system until the proper size of the select area can be programmed. 

UMCS.reg equ OFFAOH 
LMCS.reg equ OFFA2H 
PACS_reg equ OFFA4H 
MPCS.reg equ OFFA8H 
UMCS_value equ OF800H 
LMCS_value equ 07F8H 
PACS_value equ 72H 
MPCS_value equ OBAH 

initialize proc far 
mov AX,2 
mov CL,33 
shr AX,CL 
test AX,1 
jz not.80186 

mov DX,UMCS.reg 
mov AX,UMCS_value 
out DX,AX 

mov DX,LMCS.reg 
mov AX,LMCS_value 
out DX,AX 

mov DX,PACS.reg 

mov AX,PACS_value 
out DX,AX 
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OFfFFh 

OFFFOh 

chip select register locations 

64K, no wait states 
32K, no wait states 
peripheral base at 400H, 2 ws 
PCS5 and 6 supplies, 
peripherals in I/O space 

determine if this is an 
8086 or an 80186 (checks 
to see if the multiple bit 
shift value was ANDed) 

program the UMCS register 

program the LMCS register 

set up the peripheral chip 
selects (note the mid-range 
memory chip selects are not 
needed in this system, and 
are thus not initialized 
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mov 
mov 
out 
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DX,MPCS.reg 
AX,MPCS_value 
DX,AX 

Now that the chip selects are all set up, the main program of the 
computer may be executed. 

noL80186: 

initialize 
iniLhw 

jmp 
endp 
ends 
end 

far ptr monitor 
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APPENDIX G: 80186 WAIT STATE 
PERFORMANCE 

Because the 80186 contains seperate bus interface and 
execution units, the actual performance of the processor 
will not degrade at a constant rate as wait states are add­
ed to the memory cycle time from the processor. The ac­
tual rate of performace degradation will depend on the 
type and mix of instructions actually encountered in the 
user's program. 

Shown below are two 80186 assembly language pro­
grams, and the actual execution time for the two pro­
grams as wait states are added to the memory system of 
the processor. These programs show the two extremes to 
which wait states will or will not effect system perfor­
mance as wait states are introduced. 

Program I is very memory intensive. It performs many 
memory reads and writes using the more extensive mem­
ory addressing modes of the processor (which also take a 
greater number of bytes in the opcode for the instruc­
tion). As a result, the execution unit must constantly 
wait for the bus interface unit to fetch and perform the 
memory cycles to allow it to continue. Thus, the execu­
tion time of this type of routine will grow quickly as wait 
states are added, since the execution time is almost total­
ly limited to the speed at which the processor can run bus 
cycles. 

Note also that this program execution times calculated 
by merely summing up the number of clock cycles given 
in the data sheet will typically be less than the actual 
number of clock cycles actually required to run the pro­
gram. This is because the numbers quoted in the data 
sheet assume that the opcode bytes have been prefetched 
and reside in the 80186 prefetch queue for immediate 
access by the execution unit. If the execution unit cannot 

access the opcode bytes immediatly upon request, dead 
clock cycles will be inserted in which the execution unit 
will remain idle, thus increasing the number of clock cy­
cles required to complete execution of the program. 

On the other hand, program 2 is more CPU intensive. It 
performs many integer multiplies, during which time 
the bus interface unit can fill up the instruction pre­
fetch queue in parallel with the execution unit perform­
ing the multiply. In this program, the bus interface unit 
can perform bus operations faster than the execution 
unit actually requires them to be run. In this case, the 
performance degradation is much less as wait states are 
added to the memory interface. The execution time of 
this program is closer to the number of clock cycles cal­
culated by adding the number of cycles per instruction 
because the execution unit does not have to wait for the 
bus interface unit to place an opcode byte in the prefetch 
queue as often. Thus, fewer clock cycles are wasted by 
the execution unit laying idle for want of instructions. 
Table G-l lists the execution times measured for these 
two programs as wait states were introduced with the 
80186 running at 8 MHz. 

Table G-1 

Program 1 Program 2 

# of Exec Exec 
Wait Time Perf Time Perf 

States (",sec) Oegr (",sec) Oegr 

0 505 294 

1 595 18% 311 6% 

2 669 12% 337 8% 

3 752 12% 347 3% 

$modl86 
name example_waiLstate_performance 

This file contains two programs which demonstrate the 80186 performance 
degradation as wait states are inserted. Program 1 performs a 
transformation between two types of characters sets, then copies 

cgroup 
dgroup 
data 

the transformed characters back to the original buffer (which is 64 
bytes long. Program 2 performs the same type of transformation, however 
instead of performing a table lookup, it multiplies each number in the 
original 32 word buffer by a constant (3, note the use of the integer 
immediate multiply instruction). Program "nothing" is used to measure 
the call and return times from the driver program only. 

group code 
group data 
segment public 'data' 
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Ltable db 256 dup (?) 
Lstring db 64 dup (?) 
IILarray dw 32 dup (?) 
data ends 

code segment public 'code' 
assume eS:cgroup,DS:dgroup 
public benciLl , benciL2,nothing.., waiLsta te_,seLtimer_ 

benciLl proc near 
push SI ; save registers used 
push ex 
push BX 
push AX 

mov eX,64 translate 64 bytes 
mov SI,O 
mov BH,O 

loop_back: 
mov BL,Lstring[SI] get the byte 
mov AL,Ltable[BX] translate byte 
mov Lstring [SI] ,AL and store it 
inc SI increment index 
loop loop_back do the next byte 

pop AX 
pop BX 
pop ex 
pop SI 
ret 

bench_l endp 

benciL2 proc near 
push AX save registers used 
push SI 
push ex 

mov eX,32 multiply 32 numbers 
mov SI,offset IILarray 

loop_back..2: 
imul AX,word ptr [SI],3 immediate multiply 
mov word ptr [SI] ,AX 
inc SI 
inc SI 
loop loop_back..2 

pop ex 
pop SI 
pop AX 
ret 

benciL2_ endp 
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nothing.. 

nothing_ 

proc 
ret 
endp 

AP-186 

near 

waiLstate(n) sets the 80186 LMCS register to the number of wait states 
(0 to 3) indicated by the parameter n (which is passed on the stack). 
No other bits of the LMCS register are modified. 

waiLstate_ proc near 
enter 0,0 
push AX 
push BX 
push OX 

mov BX,word ptr [BP + 4] 
mov OX,OFFA2h 

contents 
in AX,OX 

and AX,OFFFCh 
and BX,3 
or AX,BX 
out OX,AX 

pop OX 
pop BX 
pop AX 
leave 
ret 

waiLstate_ endp 

seUimerO initializes the 80186 timers to count microseconds. Timer 2 
is set up as a prescaler to timer 0, the microsecond count can be read 

directly out of the timer 0 count register at location FF50H in I/0 
space. 

seuimeL proc near 
push AX 
push OX 

mov OX,Off66h 
mov AX,4000h 
out OX,AX 

mov OX,Off50h 
mov AX,O 
out OX,AX 

mov OX,Off52h 
mov AX,O 
out OX,AX 

74 

set up stack frame 
save registers used 

get argument 
get current LMCS register 

and off existing ready bits 
insure ws count is good 
adjust the ready bits 
and write to LMCS 

tear down stack frame 

stop timer 2 

clear timer 0 count 

timer 0 counts up to 65535 
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moy DX,Off56h enable timer 0 
moy AX,OcOO9h 
out DX,AX 

mov DX,Off60h clear timer 2 count 
moy AX,O 
out DX,AX 

moy DX,Off62h set maximum count of timer 2 
moy AX,2 
out DX,AX 

moy DX,Off66h re-enable timer 2 
moy AX,OcOOlh 
out DX,AX 

pop DX 
pop AX 
ret 

seLtimer_ endp 
code ends 

end 
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APPENDIX H: 80186 NEW INSTRUCTIONS 

The 80186 performs many additional instructions to 
those of the 8086. These instructions appear shaded in 
the instruction set summary at the back of the 80186 
data sheet. This appendix explains the operation of these 
new instructions. In order to use these new instructions 
with the 8086/186 assembler, the "$mod 186" switch 
must be given to the assembler. This can be done by plac­
ing the line: "$modI86" at the beginning of the assem­
bly language file. 

PUSH immediate 

This instruction allows immediate data to be pushed 
onto the processor stack. The data can be either an im­
mediate byte or an immediate word. If the data is a byte, 
it will be sign extended to a word before it is pushed onto 
the stack (since all stack operations are word 
operations). 

PUSHA,POPA 

These instructions allow all of the general purpose 
80186 registers to be saved on the stack, or restored from 
the stack. The registers saved by this instruction (in the 
order they are pushed onto the stack) are AX, CX, DX, 
BX, SP, BP, SI, and DI. The SP value pushed onto the 
stack is the value of the register before the first PUSH 
(AX) is performed; the value popped for the SP register 
is ignored. 

This instruction does not save any of the segment regis­
ters (CS, DS, SS, ES), the instruction pointer (IP), the 
flag register, or any of the integrated peripheral 
registers. 

IMUL by an immediate value 

This instruction allows a value to be multiplied by an im­
mediate value. The result of this operation is 16 bits 
long. One operand for this instruction is obtained using 
one of the 80186 addressing modes (meaning it can be in 
a register or in memory). The immediate value can be 
either a byte or a word, but will be sign extended if it is a 
byte. The 16-bit result of the multiplication can be 
placed in any of the 80186 general purpose or pointer 
registers. 

This instruction requires three operands: the register in 
which the result is to be placed, the immediate value, 
and the second operand. Again, this second operand can 
be any of the 80186 general purpose registers or a speci­
fied memory location. 

shifts/rotates by an immediate value 

The 80186 can perform multiple bit shifts or rotates 
where the number of bits to be shifted is specified by an 

76 

immediate value. This is different from the 8086, where 
only a single bit shift can be performed, or a multiple 
shift can be performed where the number of bits to be 
shifted is specified in the CL register. 

All of the shift/rotate instructions of the 80186 allow 
the number of bits shifted to be specified by an immedi­
ate value. Like all multiple bit shift operations per­
formed by the 80186, the number of bits shifted is the 
number of bits specified modulus 32 (i.e. the maximum 
number of bits shifted by the 80186 multiple bit shifts is 
31 ). 

These instructions require two operands: the operand to 
be shifted (which may be a register or a memory location 
specified by any of the 80186 addressing modes) and the 
number of bits to be shifted. 

block input/output 

The 80186 adds two new input/output instructions: INS 
and OUTS. These instructions perform block input or 
output operations. They operate similarly to the string 
move instructions of the processor. 

The INS instruction performs block input from an I/O 
port to memory. The I/O address is specified by the DX 
register; the memory loca tion is pointed to by the D I reg­
ister. After the operation is performed, the DI register is 
adjusted by I (if a byte input is specified) or by 2 (if a 
word input is specified). The adjustment is either an in-. 
crement or a decrement, as determined by the Direction 
bit in the flag register of the processor. The ES segment 
register is used for memory addressing, and cannot be 
overridden. When preceeded by a REPeat prefix, this in­
struction allows blocks of data to be moved from an I/O 
address to a block of memory Note that the I/O address 
in the DX register is not modified by this operation. 

The OUTS instruction performs block output from 
memory to an I/O port. The I/O address is specified by 
the DX register; the memory location is pointed to by the 
SI register. After the operation is performed, the SI reg­
ister is adjusted by I (if a byte output is specified) or by 
2 (if a word output is specified). The adjustment is either 
an increment or a decrement, as determined by the Di­
rection bit in the flag register of the processor. The DS 
segment register is used for memory addressing, but can 
be overridden by using a segment override prefix. When 
preceeded by a REPeat prefix, this instruction allows 
blocks of data to be moved from a block of memory to an 
I/O address. Again note that the I/O address in the DX 
register is not modified by this operation. 

Like the string move instruction, these two instructions 
require two operands to specify whether word or byte op­
erations are to take place. Additionally, this determina­
tion can be supplied by the mnemonic itself by adding a 
"B" or "w" to the basic mnemonic, for example: 
INSB ; perform byte input 
REP OUTSW ; perform word block output 
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BOUND 

The 80186 supplies a BOUND instruction to facilitate 
bound checking of arrays. In this instruction, the calcu­
lated index into the array is placed in one of the general 
purpose registers of the 80186. Located in two adjacent 
word memory locations are the lower and upper bounds 
for the array index. The BOUND instruction compares 
the register contents to the memory locations, and if the 
value in the register is not between the values in the 
memory locations, an interrupt type 5 is generated. The 
comparisons performed are SIGNED comparisons. A 
register value equal to either the upper bound or the low­
er bound will not cause an interrupt. 

This instruction requires two arguments: the register in 
which the calculated array index is placed, and the word 
memory location which contains the lower bound of the 
array (which can be specified by any of the 80186 mem­
ory addressing modes). The memory location containing 
the upper bound ofthe array must follow immediatly the 
memory location containing the lower bound of the 
array. 

ENTER and LEAVE 

The 80186 contains two instructions which are used to 
build and tear down stack frames of higher level, block 
structured languages. The instruction used to build 
these stack frames is the ENTER instruction. The algo­
rithm for this instruction is: 

PUSH BP 

if level = 0 then 
BP:= SP; 

f* save the previous frame 
pointer * f 

else tempi := SP; /* save current frame pointer 
*f 

7 

BP~ BEFORE 

SP-

temp2 : = level - I; 
do while temp2 > 0 /* copy down previous 

BP:= BP- 2; 
PUSH [BP); 

BP:= tempi; 
PUSHBP; 

/* in the save area • f 
SP:= SP - disp; 

/* local variables * f 

frame *f 
/* pointers * f 

/* put current level 
pointer * f 

/* create space on the 
for *f 

level 

frame 

stack 

Figure H-I shows the layout of the stack before and 
after this operation. 

This instruction requires two operands: the first value 
(disp) specifies the number of bytes the local variables of 
this routine require. This is an unsigned value and can be 
as large as 65535. The second value (level) is an un­
signed value which specifies the level of the procedure. It 
can be as great as 255. 

The 80186 includes the LEAVE instruction to tear down 
stack frames built up by the ENTER instruction. As can 
be seen from the layout of the stack left by the ENTER 
instruction, this involves only moving the contents of the 
BP register to the SP register, and popping the old BP 
value from the stack. 

Neither the ENTER nor the LEAVE instructions save 
any of the 80186 general purpose registers. If they must 
be saved, this must be done in addition to the ENTER 
and the LEAVE. In addition, the LEAVE instruction 
does not perform a return from a subroutine. If this is 
desired, the LEAVE instruction must be explicitly fol­
lowed by the RET instruction. 

AFTER 

BP_ OLDBP I-
OLD FRAME 

PTRS. 

CURRENT FRAME >--PTR 

LOCAL 

VARIABLE 

SP--
AREA 

Figure H-1. ENTER Instruction Stack Frame 
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APPENDIX I: 80186/80188 DIFFERENCES 

The 80188 is exactly like the 80186, except it has an 8 bit 
external bus. It shares the same execution unit, timers, 
peripheral control block, interrupt controller, chip se­
lect, and DMA logic. The differences between the two 
caused by the narrower data bus are: 

The 80188 has a 4 byte prefetch queue, rather than 
the 6 byte prefetch queue present on the 80186. The 
reason for this is since the 80188 fetches opcodes one 
byte at a time, the number of bus cycles required to 
fill the smaller queue of the 80188 is actually greater 
than the number of bus cycles required to fill the 
queue of the 80186. As a result, a smaller queue is 
required to prevent an inordinate number of bus cy­
cles being wasted by prefetching opcodes to be dis­
carded during a jump. 

AD8-ADI5 on the 80186 are transformed to A8-
A15 on the 80188. Valid address information is pre­
sent on these lines throughout the bus cycle of the 
80188. Valid address information is not guaranteed 
on these lines during idle T states. 

BHEjS7 is always defined HIGH by the 80188, 
since the upper half of the data bus is non-existant. 

78 

The DMA controller. of the 80188 only performs 
byte transfers. The BjW bit in the DMA control 
word is ignored. 

Execution times for many memory access instruc­
tions are increased because the memory access must 
be funnelled through a narrower data bus. The 
80188 also will be more bus limited than the 80186 
(that is, the execution unit will be required to wait 
for the opcode information to be fetched more often) 
because the data bus is narrower. The execution time 
within the processor, however, has not changed be­
tween the 80186 and the 80188. 

Another important point is that the 80188 internally is a 
16-bit machine. This means that any access to the inte­
grated peripheral registers of the 80188 will be done in 
16-bit chunks, NOT in 8-bit chunks. All internal periph­
eral registers are still 16-bits wide, and only a single read 
or write is required to access the registers. When an ac­
cess is made to the internal registers, only a single bus 
cycle will be run, and only the lower 8-bits of the written 
data will be driven on the external bus. All accesses to 
registers within the integrated peripheral block must be 
WORD accesses. 
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