
inter

© INTEL CORPORATION, 1983

APPLICATION
NOTE

AP-186

March 1983

ORDER NUMBER: 210973-001

Intel Corporation makes no warranty for the use of Its products and assumes no responsibility for any errors which may
appear In this document nor does It make a commitment to update the Information contained herein

Intel retains the right to make changes to these specifications at any time, without notice

Contact your local sales office to obtain the latest specifications before placing your order

The following are trademarks of Intel Corporation and may only be used to Identify Intel Products

BXP, CREDIT, I, ICE, 12 1CE, ICS, IDBP, IDIS, ILBX, 'm, IMMX,
Inslte, INTEL, Intel, Intelevlslon, Intellec, Intellgent Identifier'",
InteIBOS, Intellgent Programming'", Intelllnk, IOSP, IPDS,
IRMS, ISBC, ISBX, ISDM, ISXM, Library Manager, MCS,
Megachassls, Micromainframe, MULTIBUS, Multlchannel,M
Plug-A-Bubble, MULTI MODULE, PROMPT, Rlpplemode,
RMX/80, RUPI, System 2000, and UPI, and the combination of
ICE, ICS, IRMX, ISBC, MCS, or UPI and a numerical suffix

MDS IS an ordering code only and is not used as a product name or trademark MDS® IS a registered trademark of
Mohawk Data SCiences Corporation .

• MULTI BUS IS a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from

© INTEL CORPORATION, 1983

I ntel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

INTRODUCTION TO THE CONTENTS
80186 MICROPROCESSOR

1. INTRODUCTION..... 1
2. OVERVIEW OF THE 80186 2

2.1 The CPU 2
2.2 80186 CPU Enhancements 2
2.3 DMA Unit 3
2.4 Timers 3
2.5 Interrupt Controller 3
2.6 Clock Generator 3
2.7 Chip Select and Ready Generation

Un~ 3
2.8 Integrated Peripheral Accessing .. 3

3. USING THE 80186 4
3.1 Bus Interfacing to the 80186 4

3.1.1 Overview 4
3.1.2 Physical Address Generation . 5
3.1.3 80186 Data Bus Operation ... 7
3.1.4 80188 Data Bus Operation '" 7
3.1.5 General Data Bus Operation .. 8
3.1.6 Control Si9..l:§Is 9
3.1.6.1 RD and WR 9
3.1.6.2 Queue Status Signals 11
3.1.6.3 Status Lines 11
3.1 .6.4 TEST and LOCK' 11
3.1.7 HALT Timing 12
3.1.8 8288 and 8289 Interfacing 12
3.1.9 Ready Interfacing 13
3.1.10 Bus Performance Issues 16

3.2 Example Memory Systems 16
3.2.1 2764 Interface 16
3.2.2 2186 Interface 17
3.2.38203 DRAM Interface 19
3.2.4 8207 DRAM Interface 19

3.3 HOLD/HLDA Interface 21
3.3.1 HOLD Response 21
3.3.2 HOLD/HLDA Timing and Bus

Latency 21
3.3.3 Coming out of hold 23

3.4 Differences Between the 8086 bus
and the 80186 Bus 23

4. DMA UNIT INTERFACING 26
4.1 DMA Features 26
4.2 DMA Unit Programming 26
4.3 DMA Transfers 28
4.4 DMA Requests 28

4.4.1 DMA Request timing and
latency 28

4.5 DMA Acknowledge 30
4.6 Internally Generated DMA

Requests 30
4.7 Externally Synchronized DMA

Transfers 30

AFN·21 0973

AP-186

4.7.1 Source Synchronized DMA
Transfers 30

4.7.2 Destination Synchronized DMA
Transfers 30

4.8 DMA Halt and NMI 32
4.9 Example DMA Interfaces 32

4.9.1 8272 Floppy Disk Interface ... 32
4.9.28274 Serial Communication

Interface 34
5. TIMER UNIT INTERFACING 34

5.1 Timer Operation 34
5.2 Timer Registers 34
5.3 Timer Events 37
5.4 Timer Input Pin Operation 37
5.5 Timer Output Pin Operation 38
5.6 Sample 80186 Timer Applications . 38

5.6.1 80186 Timer Real Time Clock. 39
5.6.2 80186 Timer Baud Rate

Generator 39
5.6.3 80186 Timer Event Counter ... 39

6. 80186 INTERRUPT CONTROLLER
INTERFACING 40

6.1 Interrupt Controller Model 40
6.2 Interrupt Controller Operation 40
6.3 Interrupt Controller Registers 40

6.3.1 Control Registers 40
6.3.2 Request Register 41
6.3.3 Mask Register and Priority Mask

Register 41
6.3.4 In-Service Register 41
6.3.5 Poll and Poll Status Registers . 42
6.3.6 End of Interrupt Register 42
6.3.7 Interrupt Status Register 43
6.3.8 Interrupt Vector Register 43

6.4 Interrupt Sources 43
6.4.1 Internal Interrupt Sources 43
6.4.2 External Interrupt Sources 43
6.4.3 iRMX 86 Mode Interrupt

Sources 44
6.5 Interrupt Response 44

6.5.1 Internal Vectoring, Master
Mode 45

6.5.2 Internal Vectoring, iRMX 86
Mode 46

6.5.3 External Vectoring 47
6.6 Interrupt Controller External

Connections 47
6.6.1 Direct Input Mode 48
6.6.2 Cascade Mode 48
6.6.3 Special Fully Nested Mode ... 48

6.6.4 iRMX 86 Mode 49
6.7 Example 8259A/Cascade Mode

Interface 50
6.8 Example 80130 iRMX 86 Mode

Interface 50
6.9 Interrupt Latency 50

7. CLOCK GENERATOR 51
7.1 Crystal Oscillator 51
7.2 Using an External Oscillator 51
7.3 Clock Generator 52
7.4 Ready Generation ... : 52
7.5 Reset 52

8. CHIP SELECTS 52
8.1 Memory Chip Selects 53
8.2 Peripheral Chip Selects 53
8.3 Ready Generation 53
8.4 Examples of Chip Select Usage ... 54
8.5 Overlapping Chip Select Areas ... 54

9. SOFTWARE IN AN 80186 SYSTEM ... 55

9.1 S?:~re~ln~t~~I.i~~~i~.n. ~~ ~.n. ~?1.~~ ... 55
9.2 Initialization for iRMX 86 55
9.3 Instruction Execution Differences

Between the 8086 and 80186 55
10. CONCLUSiONS 56

APPENDIX A - Peripheral Control
Block 58

A.1 Setting the Base Location of the
Peripheral Control Block 58

A.2 Peripheral Control Block Registers 59
APPENDIX B - Synchronizers 60

B.1 Why Synchronizers Are Required . 60
B.2 80186 Synchronizers 60

APPENDIX C - 80186 Example DMA
Interface Code 61

APPENDIX D - 80186 Example Timer
Interface Code 64

APPENDIX E - 80186 Example Interrupt
Controller Interface Code 68

APPENDIX F - 80186/8086 Example
System Initialization Code 70

APPENDIX G - 80186 Wait State
Performance 72

APPENDIX H - 80186 New
Instructions 76

APPENDIX I - 80186/80188
Differences 78

AFN-21 0973

inter AP-186

1. INTRODUCTION

As state of the art technology has increased the number
of transistors possible on a single integrated circuit,
these devices have attained new, higher levels of both
performance and functionality. Riding this crest are the
Intel 80186 and 80286 microprocessors. While the
80286 has added memory protection and management
to the basic 8086 architecture, the 80186 has integrated
six separate functional blocks into a single device.

The purpose of this note is to explain, through example,
the use of the 80186 with various peripheral and mem­
ory devices. Because the 80186 integrates a DMA unit,
timer unit, interrupt controller unit, bus controller unit
and chip select and ready generation unit with the CPU

on a single chip (see Figure I), system construction is
simplified since many of the peripheral interfaces are in­
tegra ted on to the device.

The 80186 family actually consists of two processors: the
80186 and 80188. The only difference between the two
processors is that the 80186 maintains a 16-bit external
data bus while the 80188 has an 8-bit external data bus.
Internally, they both implement the same processor with
the same integrated peripheral components. Thus, ex­
cept where noted, all 80186 information in this note also
applies to the 80188. The implications of having an 8-bit
external data bus on the 80188 are explicitly noted in ap­
pendix I. Any parametric values included in this note are
taken from the iAPX 186 Advance Information data
sheet, and pertain to 8Mhz devices.

INT3/1NTAI

~

c-

'-I-SRDY
AROY

TEST
HOLD
HLDA

-I-
-I-
'-I-
,"-f-
,-I-
'--f-

RES
RESET

INT2/11'1fAii

CLKOUT Vee GND
INTI TMR OUT 1 TMR OUT 0

rlD~ ~ 1
TMR IN t TMR IN t

Nil INITO 1 ~
I I 'ExECUTIoN iiNiT1 ~ ~

, ,
PROGRAMMABLE

TIMERS
X, X, I 0 1 2

16-81T I MAX COUNT ~~ ALU I PROGRAMMABLE REGISTER B ~1.
INTERRUPT

CLOCK I CONTROLLER MAXCQUNT
GENERATOR I REGISTER A

16-81T
GENERAL I CONTROL REGISTERS
PURPOSE I REGISTERS CONTROt I 16-81T

-.J REGISTERS COUNT REGISTER

r {'[{ {
INTERNAL BUS

J U U + .-1-DRQO
DRQl

PROGRAMMABLE
DMAUNIT
O 1

CHIP·SELECT 20·BIT
UNIT SOURCE POINTERS

BUS INTERFACE L) 20·BIT
UNIT IS-BIT DESTINATION

SEGMENT
REGISTERS

POINTERS

6-BYTE PROGRAMMABLE I 16·61T
PREFETCH

CONTROL TRANSFER COUNT
QUEUE REGISTERS 11 CONTROL

I III {}JJ REGISTERS

~DiN l~AtE ±t 1 ~ ucs _ _ PCS6/A2
LOCK RD ADO- AI6/S3- LCS PCSS/Al

DT/A BHE/S7 ADIS A19/S6

MCS0-3 PCSO-'

Figure 1. 80186 Block Diagram

AFN·210973

AP·186

2. OVERVIEW OF THE 80186

2.1 The CPU

The 80186 CPU shares a common base architecture
with the 8086, 8088 and 80286. It is completely object
code compatible with the 8086/88. This architecture
features four 16-bit general purpose registers (AX,BX,
CX,DX) which may be used as operands in most arith­
metic operations in either 8 or 16 bit units. It also fea­
tures four 16-bit "pointer" registers (SI,OI,BP,SP)
which may be used both in arithmetic operations and in
accessing memory based variables. Four 16-bit segment
registers (CS,DS,SS,ES) are provided allowing simple
memory partitioning to aid construction of modular pro­
grams. Finally, it has a 16-bit instruction pointer and a
16-bit status register.

Physical memory addresses are generated by the 80186
identically to the 8086. The 16-bit segment value is left
shifted 4 bits and then is added to an offset value which
is derived from combinations of the pointer registers, the
instruction pointer, and immediate values (see Figure
2). Any carry out of this addition is ignored. The result
of this addition is a 20-bit physical address which is pre­
sented to the system memory.

The 80186 has a 16-bit ALU which performs 8 or 16-bit
arithmetic and logical operations. It provides for data
movement among registers, memory and I/O space. In
addition, the CPU allows for high speed data transfer
from one area of memory to another using string move
instructions, and to or from an I/O port and memory us­
ing block I/O instructions. Finally, the CPU provides a

I'
I'

SEGMENT VALUE I

OFFSET

PHYSICAL ADDRESS I
I·

wealth of conditional branch and other control
instructions.
In the 80186, as in the 8086, instruction fetching and in­
struction execution are performed by separate units: the
bus interface unit and the execution unit, respectively.
The 80186 also has a 6-byte prefetch queue as does the
8086. The 80188 has a 4-byte prefetch queue as does the
8088. As a program is executing, opcodes are fetched
from memory by the bus interface unit and placed in this
queue. Whenever the execution unit requires another in­
struction, it takes it out of the queue. Effective processor
throughput is increased by adding this queue, since the
bus interface unit may continue to fetch instructions
while the execution unit executes a long instruction.
Then, when the CPU completes this instruction, it does
not have to wait for another instruction to be fetched
from memory.

2.2 80186 CPU Enhancements
Although the 80186 is completely object code compati­
ble with the 8086, most of the 8086 instructions require
fewer clock cycles to execute on the 80186 than on the
8086 because of hardware enhancements in the bus in­
terface unit and the execution unit. In addition, the
80186 provides many new instructions which simplify
assembly language programming, enhance the perfor­
mance of high level language implementations, and re­
duce object code sizes for the 80186. These new
instructions are also included in the 80286. A complete
description of the architecture and instruction execution
of the 80186 can be found in volume I of the
iAPX86/186 users manual. The algorithms for the new
instructions are also given in appendix H of this note.

16 SITS

"I
16 SITS -I

I
+

=
I

20 SITS -I

Figure 2. Physical Address Generation in the 80186

2 AFN-21 0973

AP-186

2.3 DMA Unit

The 80186 includes a DMA unit which provides two
high speed DMA channels. This DMA unit will perform
transfers to or from any combination of I/O space and
memory space in either byte or word units. Every DMA
cycle requires two to four bus cycles, one or two to fetch
the data to an internal register, and one or two to deposit
the data. This allows word data to be located on odd
boundaries, or byte data to be moved from odd locations
to even locations. This is normally difficult, since odd
data bytes are transferred on the upper 8 data bits of the
16-bit data bus, while even data bytes are transferred on
the lower 8 data bits of the data bus.

Each DMA channel maintains independent 20-bit
source and destination pointers which are used to access
the source and destination of the data transferred. Each
of these pointers may independently address either I/O
or memory space. After each D MA cycle, the pointers
may be independently incremented, decremented, or
maintained constant. Each DMA channel also main­
tains a transfer count which may be used to terminate a
series of DMA transfers after a pre-programmed num­
ber of transfers.

2.4 Timers

The 80186 includes a timer unit which contains 3 inde­
pendent 16-bit timer/counters. Two of these timers can
be used to count external events, to provide waveforms
derived from either the CPU clock or an external clock
of any duty cycle, or to interrupt the CPU after a speci­
fied number of timer "events." The third timer counts
only CPU clocks and can be used to interrupt the CPU
after a programmable number of CPU clocks, to give a
count pulse to either or both of the other two timers after
a programmable number of CPU clocks, or to give a
DMA request pulse to the integrated DMA unit after a
programmable number of CPU clocks.

2.5 Interrupt Controller

The 80186 includes an interrupt controller. This control­
ler arbitrates interrupt requests between all internal and
external sources. It can be directly cascaded as the mas­
ter to two external 8259A interrupt controllers. In addi­
tion, it can be configured as a slave controller to an
external interrupt controller to allow complete compati­
bility with an 80130, 80150, and the iRMX@86 operat­
ing system.

2.6 Clock Generator
The 80186 includes a clock generator and crystal oscilla­
tor. The crystal oscillator can be used with a parallel res­
onant, fundamental mode crystal at 2X the desired CPU
clock speed (i.e., 16 MHz for an 8 MHz 80186), or with
an external oscillator also at 2X the CPU clock. The out­
put of the oscillator is internally divided by two to pro­
vide the 50% duty cycle CPU clock from which all

3

80186 system timing derives. The CPU clock is external­
ly available, and all timing parameters are referenced to
this externally available signal. The clock generator also
provides ready synchronization for the processor.

2.7 Chip Select and Ready Generation Unit

The 80186 includes integrated chip select logic which
can be used to enable memory or peripheral devices. Six
output lines are used for memory addressing and seven
output lines are used for peripheral addressing.

The memory chip select lines are split into 3 groups for
separately addressing the major memory areas in a typi­
cal 8086 system: upper memory for reset ROM, lower
memory for interrupt vectors, and mid-range memory
for program memory. The size of each of these regions is
user programmable. The starting location and ending
location of lower memory and upper memory are fixed
at OOOOOH and FFFFFH respectively; the starting loca­
tion of the mid-range memory is user programmable.

Each of the seven peripheral select lines address one of
seven contiguous 128 byte blocks above a programmable
base address. This base address can be located in either
memory or I/O space in order that peripheral devices
may be I/O or memory mapped.

Each of the programmed chip select areas has associated
with it a set of programmable ready bits. These ready
bits control an integrated wait state generator. This al­
lows a programmable number of wait states (0 to 3) to
be automatically inserted whenever an access is made to
the area of memory associated with the chip select area.
In addition, each set of ready bits includes a bit which
determines whether the external ready signals (ARDY
and SRDY) will be used, or whether they will be ignored
(i.e., the bus cycle will terminate even though a ready
has not been returned on the external pins). There are 5
total sets of ready bits which allow independent ready
generation for each of upper memory, lower memory,
mid-range memory, peripheral devices 0-3 and peripher­
al devices 4-6.

2.8 Integrated Peripheral Accessing

The integrated peripheral and chip select circuitry is
controlled by sets of 16-bit registers accessed using stan­
dard input, output, or memory access instructions.
These peripheral control registers are all located within
a 256 byte block which can be placed in either memory
or I/O space. Because they are accessed exactly as if
they were external devices, no new instruction types are
required to access and control the integrated peripher­
als. For more information concerning the interfacing
and accessing of the integrated 80186 peripherals not in­
cluded in this note, please consult the 80186 data sheet,
or volume II of the ;APX86/186'users manual.

AFN-21 0973

AP-186

3. USING THE 80186

3.1 Bus Interfacing to the 80186

3.1.1 OVERVIEW

The 80186 bus structure is very similar to the 8086 bus
structure. It includes a multiplexed address/data bus,
along with various control and status lines (see Table I).
Each bus cycle requires a minimum of 4 CPU clock cy­
cles along with any number of wait states required to ac­
commodate the speed access limitations of external
memory or peripheral devices. The bus cycles initiated
by the 80186 CPU are identical to the bus cycles initiat­
ed by the 80186 integrated DMA unit.

In the following discussion, all timing values given are
for an 8 MHz 80186. Future speed selections of the part
may have different values for the various parameters.

Each clock cycle of the 80186 bus cycle is called a "T"
state, and are numbered sequentially T 1, T2, T3, Tw and
T 4' Additional idle T states (TJ can occur between T 4

and T I when the processor requires no bus activity (in­
struction fetches, memory writes, I/O reads, etc.). The
ready signals control the number or wait states (Tw) in­
serted in each bus cycle. This number can vary from 0 to
positive infinity.

LINES

DATA

LINES

ADDRESS!

T,

CONTROL -;------;------n
SIGNALS

'~'o~l
IL..--..J

@1

I (LOW

I PHASE)

I

@2

(HIGH

PHASE)

L
Figure 3. T-state in the 80186

The beginning of a T state is signaled by a high to low
transition of the CPU clock. Each T state is divided into
two phases, phase I (or the low phase) and phase 2 (or
the high phase) which occur during the low and high lev­
els of the CPU clock respectively (see Figure 3).

Different types of bus activity occur for all of the T­
states (see Figure 4). Address generation information
occurs during T 1, data generation during T20 T3, Tw and

T, T,

(RD,WR) I·

Figure 4. Example Bus Cycle of the 80186

Table 1. 80186 Bus Signals

Function Signal Name

address/data ADO-ADlS
address / status AI6/S3-AI9-S6,BHE/S7
co-processor control TEST
local bus arbitration HOLD,HLDA
local bus control ALE,RD, WR,DT /R,DEN
multi-master bus LOCK
ready (wait) interface SRDY,ARDY
status information SO-S2

4 AFN-21 0973

AP-186

T 4' The beginning of a bus cycle is signaled by the status
lines of the processor going from a passive state (all
high) to an active state in the middle of the T-state im­
mediately before T, (either a T4 or a TJ Because infor­
mation concerning an impending bus cycle occurs
during the T-state immediately before the first T-state of
the cycle itself, two different types of T 4 and T, can be
generated: one where the T state is immediately fol­
lowed by a bus cycle, and one where the T state is imme­
diatly followed by an idle T state.

During the first type of T 4 or T" status information con­
cerning the impending bus cycle is generated for the bus
cycle immediately to follow. This information will be
available no later than tCHSV (55ns) after the low-to­
high transition of the 80186 clock in the middle of the T
state. During the second type of T 4 or T, the status out­
puts remain inactive (high), since no bus cycle is to be
started. This means that the decision per the nature of a
T 4 or T, state (i.e., whether it is immediately followed by
a T, or a T,) is decided at the beginning of the T-state
immediately preceding the T4 or T j (see Figure 5). This
has consequences for the bus latency time (see section
3.3.2 on bus latency).

3.1.2 PHYSICAL ADDRESS GENERATION

Physical addresses are generated by the 80186 during T,
of a bus cycle. Since the address and data lines are mul­
tiplexed on the same set of pins, addresses must be

T3 0r

latched during T, if they are required to remain stable
for the duration of the bus cycle. To facilitate latching of
the physical address, the 80186 generates an active high
ALE (Address Latch Enable) signal which can be di­
rectly connected to a transparent latch's strobe input.

Figure 6 illustrates the physical address generation pa­
rameters of the 80186. Addresses are guaranteed valid
no greater then tCLAV (44ns) after the beginning of T"
and remain valid at least tCLAX (t Ons) after the end of
T,. The ALE signal is driven high in the middle of the T
state (either T 4 or TJ immediately preceding T, and is
driven low in the middle ofT" no sooner than tAvAL (30
ns) after addresses become valid. This parameter
(tAVAL) is required to satisfy the address latch set-up
times of address valid until strobe inactive. Addresses
remain stable on the address/data bus at least tLLAX (30
ns) after ALE goes inactive to satisfy address latch hold
times of strobe inactive to address invalid.

Because ALE goes high long before addresses become
valid, the delay through the address latches will be chief­
ly the propagation delay through the latch rather than
the delay from the latch strobe, which is typically longer
than the propagation delay. For the Intel 8282 latch, this
parameter is t,vaY, the input valid to output valid delay
when strobe is held active (high). Note that the 80186
drives ALE high one full clock phase earlier than the
8086 or the 8288 bus controller, and keeps it high
throughout the 8086 or 8288 ALE high time (i.e., the
80186 ALE pulse is wider).

Tw 1 T4 T,

CLOCK

OUT

STATUS
ACTIVE
STATUS

INFO

,
DeCISion Nobusacttvltyrequlfed
'die bus cycles will be mserted

I

INACTIVE

T3 0r
STATUS

Tw T, To
DeCls.on Another bllscycle ,mmed,ately
required-no ,die, bus cycles

CLOCK

OUT

STATUS
ACTIVE
STATUS

LINES

Figure 5. Active-Inactive Status Transitions in the 80186

5 AFN-21 0973

CLOCK

OUT

ALE

T,OR

T, T,

AP-186

AO-A19 ----__ ~::::;;~~~~~~--

NOTES:
1. lcHlH: Clock high to ALE high = 35 ns max
2.lclAV: Clock low to address valid =44 ns max

3. tCHll: Clock high to ALE low=35 ns max
4. tClAX: Clock low to address invalid (address hold from clock low)=10 ns

min
5. tllAX: ALE low to address invalid (address hold from ALE)=30 ns min
6. tAVAl: Address valid to ALE low (address setup to ALE)=30 ns min

Figure 6_ Address Generation Timing of the 80186

A typical circuit for latching physical addresses is shown
in Figure 7. This circuit uses 3 8282 transparent octal
non-inverting latches to demultiplex all 20 address bits
provided by the 80186. Typically, the upper 4 address
bits are used only to select among various memory com­
ponents or subsystems, so when the integrated chip se-

lects (see section 8) are used, these upper bits need not
be latched. The worst case address generation time from
the beginning of T, (including address latch propaga­
tion time (t,vav) of the Intel 8282) for the circuit is:

tCLAY (44ns) + t ryay (30ns) = 74ns

186 SIGNALS

A16-

A19

AD8-

AD15

ADO­

AD7

/

/4

8

/8

8282

I

STB

- OE

8282

I

STB

>--- OE

8282

I

0
/

0
/

LATCHED ADDRESS
SIGNALS

/4
A16-A19

8
A8-A15

ALE AO-A7 STB 0
/8

/

~ OE

=
Figure 7_ Demultiplexing the Address Bus of the 80186

6 AFN-21 0973

inter AP-186

Many memory or peripheral devices may not require ad­
dresses to remain stable throughout a data transfer. Ex­
amples of these are the 80130 and 80150 operating
system firmware chips, and the 2186 8K x 8 iRAM. If a
system is constructed wholly with these types of devices,
addresses need not be latched. In addition, two of the pe­
ripheral chip select outputs of the 80186 may be config­
ured to provide latched A I and A2 outputs for
peripheral register selects in a system which does not de­
multiplex the address/data bus.

One more signal is generated by the 80186 to address
memory: BHE (Bus High Enable). This signal, along
with AO, is used to enable byte devices connected to ei­
ther or both halves (bytes) of the 16-bit data bus (see
section 3.1.3 on data bus operation section). Because AO
is used only to enable devices onto the lower half of the
data bus, memory chip address inputs are usually driven
by address bits AI-AI9, NOT AO-AI9. This provides
512K unique word addresses, or I M unique BYTE
addresses.

Of course, BHE is not present on the 8 bit 80188. All
data transfers occur on the 8 bits of the data bus.

3.1.3 80186 DATA BUS OPERATION

Throughout T2, T3, Two and T4 of a bus cycle the multi­
plexed address/data bus becomes a 16-bit data bus.
Oata transfers on this bus may be either in bytes or in
words. All memory is byte addressable, that is, the upper
and lower byte of a 16-bit word each have a unique byte
address by which they may be individually accessed,
even though they share a common word address (see
Figure 3-6).

All bytes with even addresses (AO = 0) reside on the
lower 8 bits of the data bus, while all bytes with odd ad­
dresses (AO = I) reside on the upper 8 bits of the data
bus. Whenever an access is made to only the even byte,
AO is driven low. BHE is driven high, and the data trans­
fer occurs on 00-07 of the data bus. Whenever an ac-

cess is made to only the odd byte, BHE is driven low, AO
is driven high, and the data transfer occurs on 08-015
of the data bus. Finally, if a word access is performed to
an even address, both AO and BHE are driven low and
the data transfer occurs on 00-015.

Word accesses are made to the addressed byte and to the
next higher numbered byte. If a word access is per­
formed to an odd address, two byte accesses must be per­
formed, the first to access the odd byte at the first word
address on 08-015, the second to access the even byte
at the next sequential word address on 00-07. For ex­
ample, in Figure 8, byte 0 and byte I can be individually
accessed (read or written) in two separate bus cycles
(byte accesses) to byte addresses 0 and I at word address
O. They may also be accessed together in a single bus cy­
cle (word access) to word address O. However, if a word
access is made to address 1, two bus cycles will be re­
quired, the first to access byte I at word address 0 (note
byte 0 will not be accessed), and the second to access
byte 2 at word address 2 (note byte 3 will not be ac­
cessed). This is why all word data should be located at
even addresses to maximize processor performance.

When byte reads are made, the data returned on the half
of the data bus not being accessed is ignored. When byte
writes are made, the data driven on the half of the data
bus not being written is indeterminate.

3.1.4 80188 DATA BUS OPERATION

Because the 80188 externally has only an 8 bit data bus,
the above discussion about upper and lower bytes of the
data bus does not apply to the 80188. No performance
improvement will occur if word data is placed on even
boundaries in memory space. All word accesses require
two bus cycles, the first to access the lower byte of the
word; the second to access the upper byte of the word.

Any 80188 access to the integrated peripherals must be
done 16 bits at a time: thus in this special case, a word
access will occur in a single bus cycle in the 80188. The

~16_BITS~
8 BITS-I~8 BITS

WORD ADDRESS

4 5 4

I'~~~-3 2

0 0

IN BYTE FIELD

08- 00- 80186 SIGNAL
015 07 CONNECTIONS

Figure 8. Physical Memory Byte/Word Addressing in the 80186

7 AFN-21 0973

inter AP-186

external data bus will record only a single byte being
transferred, however.

3.1.5 GENERAL DATA BUS OPERATION

Because of the bus drive capabilities of the 80186
(200pF, sinking 2mA, sourcing 400uA, roughly twice
that of the 8086), this bus may not require additional
buffering in many small systems. If data buffers are not
used in the system, care should be taken not to allow bus
contention between the 80186 and the devices directly
connected to the 80186 data bus. Since the 80186 floats
the address/data bus before activating any command
lines, the only requirement on a directly connected de­
vice is that it floats its output drivers after a read BE­
FORE the 80186 begins to drive address information for
the next bus cycle. T~arameter of interest here is the
minimum time from RD inactive until addresses active
for the next bus cycle (tRHAV) which has a minimum val­
ue of 85ns. If the memory or peripheral device cannot
disable its output drivers in this time, data buffers will
be required to prevent both the 80186 and the peripheral
or memory device from driving these lines concurrently.
Note, this parameter is unaffected by the addition of
wait states. Data buffers solve this problem because
their output float times are typically much faster than
the 80186 required minimum.

If buffers are required, the 80186 provides a DEN (Data
ENable) and DT/R (Data Transmit/Receive) si£;nals
to simplify buffer interfacing. The DEN and DT /R sig-

80186 SIGNAL

AD8-D15

DEN

BUFFERED

DEVICES

SELECT

ADO- AD7

DTiR

S
)

.,.....:
J)

.--

}

nals are activated during all bus cycles, whether or not
the cycle addresses buffered devices. The DEN signal is
driven low whenever the processor is either ready to re­
ceive data (during a read) or when the processor is ready
to send data (during a write) (that is, any time during an
active bus cycle when address information is not being
generated on the address/data pins). In most systems,
the DEN signal should NOT be directly connected to
the OE input of buffers, since unbuffered devices (or
other buffers) may be directly connected to the proces­
sor's address/data pins. If DEN'were directly connected
to several buffers, contention would occur during read
cycles, as many devices attempt to drive the processor
bus. Rather, it should be a factor (along with the chip se­
lects for buffered devices) in generating the output en­
able input of a bi-directional buffer.

The DT /R signal determines the direction of data prop­
agation through the bi- directional bus buffers. It is high
whenever data is being driven out from the processor,
and is low whenever data is being read into the processor.
Unlike the DEN signal, it may be directly connected to
bus buffers, since this signal does not usually directly en­
able the output drivers of the buffer. An example data
bus subsystem supporting both buffered and unbuffered
devices is shown in Figure 9. Note that the A side of the
8286 buffer is connected to the 80186, the B side to the
external device. The B side of the buffer has greater
drive capacity than the A side (since it is meant to drive
much greater loads). The DT /R signal can directly
drive the T (transmit) signal of the buffer, since it has
the correct polarity for this configuration.

8286

A

OE B

T

8286

A

OE B

T

/_8
/

8

L8

/L8

/

08·

AD15

00-

07

BUFFERED

DATA

BUS

UNBUFFERED

} DATA

BUS

Figure 9. Example 80186 Buffered/Unbuffered Data Bus

8 AFN-21 0973

AP-186

CLOCK

OUT

ADO­

AD15 ----......,:t'!

T, T,

1 tClAZ Clock low until address float~35 ns max
2. tClRl' Clock low until RD active ~ 70 ns max
3 tAZRl ' Address float until RD active ~ a ns min
4 tDVCl Data valid until clock low (data Input set-up time) ~ 20 ns min"
5. tClDX Clock low until data Invalid (data Input hold time from clock) ~ 10

ns min"
6. telRH: Clock low until RD high ~ 10 ns min
7 tRHAV: RD high until addresses valid ~ 85 ns min
8. tRHDX Read high until data Invalid (data Input hold from RD) ~ a ns min"
" Input requirements of 80186, all others are output characteristics

Figure 10. Read Cycle Timing of the 80186

3.1.6 CONTROL SIGNALS

The 80186 direc.!.!.L£!:ovides the control signals RD,
WR, LOCK and TEST. In addition, the 80186 provides
the status signals SO-S2 and S6 from which all other re­
quired bus control signals can be generated.

3.1.6.1 RD and WR

The RD and WR siggals strobe data to or from memory
or I/O space. The RD signal is driven low off the begin­
?ing ofT 2' and is driven high off the beginning offidur­
mg all memory and I/O reads (see Figure 10). RD will
not become active until the 80186 has ceased driving ad­
dress information on the address/data bus. Data is sam­
pled into the processor at the beginning of T 4' RD will
not go inactive until the processor's data hold time
(IOns) has been satisfied.

LATCH

52 -------1 D

Note tha!..!!!e 80186 does not provide separate I/O and
memory RD signals. If separate I/O read and memory
read signals are required, they can be synthesized using
the S2 signal (which is low for all I/O ~ations and
high for all memory operations) and the RD signal (see
Figure I U:.1t should be noted that if this approach is
used, the S2 signal will require latching, since the S2 sig­
nal (like SO and S I) goes to a passive state well before
the beginning of T4 (where RD goes inactive). If S2 was
directly used for this purpose, the type of read command
(I/O or memory) could change just before T 4 as S2 goes
to the passive state (high). The status signals may be
latched using ALE in an identical fashion as is used to
latch the address signals (often using the spare bits in
the address latches).

Often the lack of a seperate I/O and memory RD signal

Q~--~~ ______ r-",
ALE -------1 STB

RD
MEMORY

READ

Figure 11. Generating I/O and Memory Read Signals from the 80186

9 AFN-21 0973

AP-186

is not important in an 80186 system. Each of the 80186
chip select signals will respond on only one of memory or
I/0 accesses (the memory chip selects respond only to
accesses memory space; the peripheral chip selects can
respond to accesses in either I/0 or memory space, at
programmer option). Thus, the chip select signal en­
ables the external device only during accesses to the
proper address in the proper space.

The WR signal is also driven low off the beginni!!8..Qf T 2

and driven high off the beginning ofT4• Like the RD sig­
nal, the WR signal is active for all memory and I/O
writes, and also like the RD signal, separate I/O and
memory writes may b~nerated using the latched 82
signal along with the WR signal (see Figure 12). More

T,

importantly, however, is the active going edge of write.
At the time WR makes its active (high to low) transi­
tion, valid write data is NOT present on the data bus.
This has consequences when using this signal as a write
enable signal for DRAMs and iRAMs since both of
these devices require that the write data be stable on the
data bus at the time of the inactive to active transition of
the WE signal. In DRAM applications, this problem is
solved by a DRAM controller (such as the Intel 8207 or
8203), while with iRAMs this problem may be solved by
placing cross-coupled NAND gates between the CPU
and the iRAMs on the WR line (see fture 13). This
will delay the active going edge of the WR signal to the
iRAMs by a clock phase, allowing valid data to be driv­
en onto the data bus.

ADO- WRITE I ADDRESS
AD15 ___ ~ __ ~~J~ ______ -r~D~A~TA ____ t+ __ ~~~-r __ ~IN_F~O __ __

1. tCLDV: Clock low until data valid = 44 ns max
2. tCVCTV: Clock low until WR active = 70 ns max
3. tcvCTX: Clock low until WR inactive = 55 ns max
4. tCHDX: Clock high until data invalid = 10 n5 min

5. WR inactive until data invalid = tCLCH min - tCVCTX + tCHDX

= 55-55 + 10
= 10n5

Figure 12. Write Cycle Timing ot the 80186

CLKOUT ----+--'

DELAYED

WRITE

(DATA VALID

ON LEADING EDGE)

Figure 13. Synthesizing Delayed Write trom the 80186

10 AFN-21 0973

Ap·186

3.1.6.2 Queue Status Signals

If the RD line is externally grounded during reset and
remains grounded during processor operation, the
80186 will enter "queue status" mode. When in this
mode, the WR and ALE signals become queue status
outputs, reflecting the status of the internal pre fetch
queue during each clock cycle. These signals are pro­
vided to allow a processor extension (such as the Intel
8087 floating point processor) to track execution of in­
structions within the 80186. The interpretation of QSO
(ALE) and QSI (WR) are given in Table 2. These sig­
nals change on the high-to-low clock transition, one
clock phase earlier than on the 8086. Note that since ex­
ecution unit operation is independent of bus interface
unit operation, queue status lines may change in any T
state.

Table 2. 80186 Queue Status

QS1 QSO Interpretation

0 0 no operation

0 I first byte of instruction taken
from queue

I 0 queue was reinitialized

I I subsequent byte of instruction
taken from queue

Since the ALE, RD, and WR signals are not directly
available from the 80186 when it is configured in queue
status mo~ these signals must be derived from the sta­
tus lines SO-S2 using an external 8288 bus controller
(see below). To prevent the 80186 from accidentally en­
tering queue status mode during reset, the RD line is in­
ternally provided with a weak pullup device. RD is the
ONLY three-state or input pin on the 80186 which is
supplied with a pullup or pulldown device.

3.1.6.3 Status Lines

The 80186 provides 3 status outputs which are used to
indicate the type of bus cycle currently being executed.
These signals go from an inactive state (all high) to one
of seven possible active states during the T state immedi­
ately preceding T I of a bus cycle (see Figure 5). The pos­
sible status line encodings and their interpretations are
given in Table 3. The status lines are driven to their inac­
tive state in the T state (T3 or Tw) immediately preced­
ing T 4 of the current bus cycle.

The status lines may be directly connected to an 8288
bus controller, which can be used to provide local bus
control signals or multi-bus control signals (see Figure
14). Use of the 8288 bus controller does not preclude the
use of the 80186 generated RD, WR and ALE signals,
however. The 80186 directly generated signals may be
used to provide local bus control signals, while an 8288 is
used to provide multi-bus control signals, for example.

11

80186
8288

SO·52 SO·52
BUS CONTROL

CLOCK
SIGNALS

OUT
ClK

Figure 14. 80186/8288 Bus Controller
Interconnection

Table 3. 80186 Status Line Interpretation

S2 S1 S2 Operation

0 0 0 interrupt acknowledge
0 0 I read I/O
0 I 0 write I/O
0 I I halt
I 0 0 instruction fetch
I 0 I read memory
I I 0 write memory
I I I passive

The 80186 provides two additional status signals: S6
and S7. S7 is equivalent to BHE (see section 3.1.2) and
appears on the same pin as BHE. BHE/S7 changes
state, reflecting the bus cycle about to be run, in the mid­
dle of the T state (T 4 or T j) immediately preceding T I of
the bus cycle. This means that BHE/S7 does not need to
be latched, i.e., it may be used directly as the BHE sig­
nal. S6 provides information concerning the unit gener­
ating the bus cycle. It is time multiplexed with A 19, and
is available during T 2' T3, T4 and Tw' In the 8086 family,
all central processors (e.g., the 8086, 8088 and 8087)
drive this line low, while all I/O processors (e.g., 8089)
drive this line high during their respective bus cycles.
Following this scheme, the 80186 drives this line low
whenever the bus cycle is generated by the 80186 CPU,
but drives it high when the bus cycle is generated by the
integrated 80186 DMA unit. This allows external de­
vices to distinguish between bus cycles fetching data for
the CPU from those transfering data for the DMA unit.

Three other status signals are available on the 8086 but
not on the 80186. They are S3, S4, and S5. Taken to­
gether, S3 and S4 indicate the segment register from
which the current physical address derives. S5 indicates
the state of the interrupt flip-flop. On the 80186, these
signals will ALWAYS be low.

3.1.6.4 TEST and LOCK

Finally, the 80186 provides a TEST input and a LOCK
output. The TEST input is used in conjunction with the

AFN-21 0973

AP-186

processor WAIT instruction. It is typically driven by a
processor extension (like the 8087) to indicate whether
it is busy. Then, by executing the WAIT (or FWAIT) in­
struction, the central processor may be forced to tempo­
rarily suspend program execution until the processor
extension indicates that it is idle by driving the TEST
line low.

The LOCK output is driven low whenever the data cy­
cles of a LOCKED instruction are executed. A
LOCKED instruction is generated whenever the LOCK
prefix occurs immediately before an instruction. The
LOCK prefix is active for the single instruction immedi­
ately following the LOCK prefix. This signal is used to
indicate to a bus arbiter (e.g., the 8289) that a series of
locked data transfers is occurring. The bus arbiter
should under no circumstances rdease the bus while
locked transfers are occurring. The 80186 will not rec­
ognize a bus HOLD, nor will it allow DMA cycles to be
run by the integrated DMA controller during locked
data transfers. LOCKED transfers are used in multi­
processor systems to access memory based semaphore
variables which control access to shared system re­
sources (see AP-106, "Multiprogramming with the
iAPX88 and iAPX86 Microsystems," by George Alexy
(Sept. 1980».

On the 80186, the LOCK signal will go active during T I
of the first DATA cycle of the locked transfer. It is driv­
en inactive 3 T-states after the beginning of the last
DATA cycle of the locked transfer. On the 8086, the
LOCK signal is activated immediately after the LOCK
prefix is executed. The LOCK prefix may be executed
well before the processor is prepared to perform the
locked data transfer. This has the unfortunate conse­
quence of activating the LOCK signal before the first
LOCKED data cycle is performed. Since LOCK is ac­
tive before the processor requires the bus for the data
transfer, opcode pre-fetching can be LOCKED. Howev­
er, since the 80186 does not activate the LOCK signal
until the processor is ready to actually perform the
locked transfer, locked pre-fetching will not occur with
the 80186.

Note that the LOCK signal does not remain active until
the end of the last data cycle of the locked transfer. This
may cause problems in some systems if, for example, the
processor requests memory access from a dual ported
RAM array and is denied immediate access (because of
a DRAM refresh cycle, for example). When the proces­
sor finally is able to gain access to the RAM array, it
may have already dropped its LOCK signal, thus allow­
ing the dual port controller to give the other port access
to the RAM array instead. An example circuit which
can be used to hold LOCK active until a RDY has been
received by the 80186 is shown in Figure 15.

3.1.7 HALT TIMING

A HALT bus cycle is used to signal the world that the

12

80186 CPU has executed a HLT instruction. It differs
from a normal bus cycle in two important ways.

LOCK --~-------------i~

__ ~~y __ -L...../b-"""'-- LOCK
52

Figure 15. Circuit Holding Lock Active Until
Ready is Returned

The first way in which a HALT bus cycle differs from a
normal bus cycle is that since the processor is entering a
halted state, none of the control lines (RD or WR) will
be driven active. Address and data information will not
be driven by the processor, and no data will be returned.
The second way a HALT bus cycle differs from a normal
bus cycle is that the SO-S2 sta tus lines go to their passive
state (all high) during T2 of the bus cycle, well before
they go to their passive state during a normal bus cycle.

Like a normal bus cycle, however, ALE is driven active.
Since no valid address information is present, the infor­
mation strobed into the address latches should be ig­
nored. This ALE pulse can be used, however, to latch the
HALT status from the SO-S2 status lines.

The processor being halted does not interfere with the
operation of any of the 80186 integrated peripheral
units. This means that if a DMA transfer is pending
while the processor is halted, the bus cycles associated
with the DMA transfer will run. In fact, DMA latency
time will improve while the processor is halted because
the DMA unit will not be contending with the processor
for access to the 80186 bus (see section 4.4.1).

3.1.8 8288 AND 8289 INTERFACING

The 8288 and 8289 are the bus controller and multi­
master bus arbitration devices used with the 8086 and
8088. Because the 80186 bus is similar to the 8086 bus,
they can be directly used with the 80186. Figure 16
shows an 80186 interconnection to these two devices.

The 8288 bus cOQ!roller generates control signals (RD,
WR, ALE, DT JR, DEN, etc.) for an 8086 maximum
mode system. It derives its information by decoding sta­
tus lines SO-S2 of the processor. Because the 80186 and
the 8086 drive the same status information on these
lines, the 80186 can be directly connected to the 8288
just as in an 8086 system. Using the 8288 with the 80186
does not prevent using the 80186 control signals directly.
Many systems require both local bus control signals and
system bus control signals. In this type of system, the
80186 lines could be used as the local signals, with the

AFN-21 0973

inter AP-186

80186

so-
S2

ClOCKOUT

lCS UCS PeSO

Llb '--

--

TO MULTI-MASTER BUS

ADDRESS lATCHES &

DATA BUFFERS

8288
so- ALE I--52 DEN

DT/A

ClK

8289
SO-
52

SYSB/RESB

ClK

Figure 16_ 80186/8288/8289Interconnectlon

8288 lines used as the system signals. Note that in an
80186 system, the 8288 generated ALE pulse occurs lat­
er than that of the 80186 itself. In many multimaster
bus systems, the 8288 ALE pulse should be used to
strobe the addresses into the system bus address latches
to insure that the address hold times are met.

The 8289 bus arbiter arbitrates the use of a multi-mas­
ter system bus among various devices each of which can
become theQ.u!...master. This component also decodes
status lines SO-S2 of the processor directly to determine
when the system bus is required. When the system bus is
required, the 8289 forces the processor to wait until it

has acquired control ofthe bus, then it allows the proces­
sor to drive address, data and control information onto
the system bus. The system determines when it requires
system bus resources by an address decode. Whenever
the address being driven coincides with the address of an
on-board resource, the system bus is not required and
thus will not be requested. The circuit shown factors the
80186 chip select lines to determine when the system bus
should be requested, or when the 80186 request can be
satisfied using a local resource.

3.1.9 READY INTERFACING

The 80186 provides two ready lines, a synchronous
ready (SRDY) line and an asynchronous ready
(ARDY) line. These lines signal the processor to insert
wait states (Tw) into a CPU bus cycle. This allows slower
devices to respond to CPU service requests (reads or
writes). Wait states will only be inserted when both
ARDY and SRDY are low, i.e., only one of ARDY or
SRDY need be active to terminate a bus cycle. Any
number of wait states may be inserted into a bus cycle.
The 80186 will ignore the ROY inputs during any ac­
cesses to the integrated peripheral registers, and to any
area where the chip select ready bits indicate that the
external ready should be ignored.

The timing required by the two ROY lines is different.
The ARDY line is meant to be used with asynchronous
ready inputs. Thus, inputs to this line will be internally
synchronized to the CPU clock before being presented to
the processor. The synchronization circuitry used with
the ARDY line is shown in Figure 17. Figure 18A and
18 B show valid and invalid transitions of the ARDY line
(and subsequent wait state insertion). The first flip-flop
is used to "resolve" the asynchronous transition of the
ARDY line. It will achieve a definite level (either high
or low) before its output is latched into the second flip-

ARDY
INPUT ,----------------,

80186 I

I I
I
I
I C

C

I CPU
IClOCK-~--------------~
L ____________ _

1 . Asynchronous Resolution Flip Flop
2. Ready Latch Flip Flop

FROM SYNCHRONOUS

READY

TO BUS
INTERFACE
UNIT

Figure 17. Asynchronous Ready Circuitry of the 80186

13 AFN-21 0973

inter AP-186

flop for presentation to the CPU. When latched high, it
allows the level present on the AROY line to pass direct­
ly to the CPU; when latched low, it forces not ready to be
presented to the CPU (see Appendix B for 80186 syn­
chronizer information).

by any inactive going transition of the AROY line. The
reason AROY is implemented in this manner is to allow
a slow device the greatest amount of time to respond
with a not ready after it has been selected. In a normally
ready system, a slow device must respond with a not
ready quickly after it has been selected to prevent the
processor from continuing and accessing invalid data
from the slow device. By implementing AROY in the
a bove fashion, the slow device has an additional clock
phase to respond with a not ready.

With this scheme, notice that only the active going edge
of the AROY signal is synchronized. Once the synchro­
nization flip-flop has sampled high, the AROY input di­
rectly drives the ROY flip-flop. Since inputs to this
ROY flip-flop must satisfy certain setup and hold times,
it is important that these setup and hold times (tARYLCL
= 35ns and tCHARYX = 15 ns respectively) be satisfied

If ROY is sampled active into the ROY flip-flop at the
beginning of T3 or Tw (meaning that AROY was sam-

CLOCK

OUT

ARDY

T, T, I
I T,

~
1. No set-up or hold times required
2. tCLARYX: Clock low to ARDY inactive (ARDYactive hold time) ~ 15 ns min

CLOCK
OUT

ARDY

T, I
I T, T,

~
1. tARYHCH' ARDY valid until clock high (ARDY inactive set-up time to clock

high) ~ 20 ns min
2 No set-up or hold time required ONLY If (j) IS guaranteed
3. tCLARYX' Clock low to ARDY Inactive (ARDY active hold time) ~ 15 ns min

T, I T, I Tw : T,

~~
ARDY

tARYLCL' ARDY low to clock low (ARDY inactive set-up time to clock low) ~
35 ns min
must be satisfied since synchronizing FLIP-FLOP has sampled
active

2. tARYHCH' ARDY high to clock high (ARDY active set-up time) ~ 20 ns min
must be satisfied ONLY to guarantee recognition at the next clock
(I e to guarantee synchronizing FLIP-FLOP will sample ARDY
active)

3 tCLARYX Clock low to ARDY Inactive (ARDY active hold time) ~ 15 ns

Figure 18A. Valid ARDY Transitions

14 AFN-21 0973

inter AP-186

CLOCK

OUT

ARDY

CD LESS THAN 35 ns

CLOCK

OUT

ARDY

~:T'~T3:?~ 0D0~
I I I I
I I I I
I I I I

1 Less than 20 ns
2 Less than 35 ns

Figure 188. Invalid ARDY Transitions

pled high into the synchronization flip-flop in the middle
of a T state, and has remained high until the beginning
of the next Tstate), that Tstate will be immediately fol­
lowed by T 4' If RDY is sampled low into the RDY flip­
flop at the beginning of T 3 or Tw (meaning that either
ARDY was sampled low into the synchronization flip­
flop OR that ARDY was sampled high into the synchro­
nization flip-flop, but has subsequently changed to low
before the ARDY setup time) that T state will be imme­
diately followed by a wait state (Tw)' Any asynchronous
transition on the ARDY line not occurring during the
above times, that is, when the processor is not "looking
at" the ready lines, will not cause CPU malfunction.

Again, for ARDY to force wait states to be inserted,
SRDY must be driven low, since they are internally
o Red together to form the processor RD Y signal.

T,

The synchronous ready (SRDY) line requires that ALL
transitions on this line during T 2' T 3 or Tw satisfy a cer­
tain setup and hold time (tSRYCL' = 35 ns and tCLSRY =
15 ns respectively). If these requirements are not met,
the CPU will not function properly. Valid transitions on
this line, and subsequent wait state insertion is shown in
Figure 19. The processor looks at this line at the begin­
ning of each T 3 and Tw' If the line is sampled active at
the beginning of either of these two cycles, that cycle will

I
I

CLOCK

OUT

SRDY ~ ~
1 DeCISion Not ready, T-state Will be followed by a walt state
2 DeCISion Ready, T-state Will not be followed by a walt state
3 tSRYCL Synchronous ready stable until clock low (SRDY set-up

time) ~ 35 ns min

4 tCLSRY

Clock low until synchronous ready transition (SRDY hold time) ~
15 ns mm

Figure 19. Valid SRDY transitions on the 80186

15 AFN-21 0973

inter AP-186

be immediately followed by T 4' On the other hand, if the
line is sampled inactive at the beginning of either of
these two cycles, that cycle will be followed by a Tw' Any
asynchronous transition on the SRDY line not occurring
at the beginning ofTJ or Two that is, when the processor
is not "looking at" the ready lines will not cause CPU
malfunction.

3.1.10 BUS PERFORMANCE ISSUES

Bus cycles occur sequentially, but do not necessarily
come immediately one after another, that is the bus may
remain idle for several T states (T) between each bus
access initiated by the 80186. This occurs whenever the
80186 internal queue is full and no read/write cycles are
being requested by the execution unit or integrated
DMA unit. The reader should recall that a separate
unit, the bus interface unit, fetches opcodes (including
immediate data) from memory, while the execution unit
actually executes the pre-fetched instructions. The num­
ber of clock cycles required to execute an 80186 instruc­
tion vary from 2 clock cycles for a register to register
move to 67 clock cycles for an integer divide.

If a program contains many long instructions, program
execution will be CPU limited, that is, the instruction
queue will be constantly filled. Thus, the execution unit
does not need to wait for an instruction to be fetched. If a
program contains mainly short instructions or data
move instructions, the execution will be bus limited.
Here, the execution unit will be required to wait often
for an instruction to be fetched before it continues its op­
eration. Programs illustrating this effect and perfor­
mance degradation of each with the addition of wait
states are given in appendix G.

All instruction fetches are word (l6-bit) fetches from
even addresses unless the fetch occurs as a result of a
jump to an odd location. This maximizes the utilization

of each bus cycle used for instruction fetching, since
each fetch will access two bytes of information. It is also
good programming practice to locate all word data at
even locations, so that both bytes of the word may be ac­
cessed in a single bus cycle (see discussion on data bus
interfacing for further information, section 3.1.3 of this
note).

Although the amount of bus utilization, i.e., the percent­
age of bus time used by the 80186 for instruction fetch­
ing and execution required for fop performance will vary
considerably from one program to another, a typical in­
struction mix on the 80186 will require greater bus utili­
zation than the 8086. This is caused by the higher
performance execution unit requiring instructions from
the prefetch queue at a greater rate. This also means
that the effect of wait states is more pronounced in an
80186 system than in an 8086 system. In all but a few
cases, however, the performance degradation incurred
by adding a wait state is less than might be expected be­
cause instruction fetching and execution are performed
by separate units.

3.2 Example Memory Systems
3.2.1 2764 INTERFACE
With the above knowledge of the 80186 bus, various
memory interfaces may be generated. One of the sim­
plest of these is the example EPROM interface shown in
Figure 20.

The addresses are latched using the address generation
circuit shown earlier. Note that the AO line of each
EPR 0 M is connected to the A 1 address line from the
80186, NOT the AO line. Remember, AO only signals a
data transfer on the lower 8 bits of the 16-bit data bus!
The EPROM outputs are connected directly to the ad­
dress/data in~ofthe 80186, and the 80186 RD signal
is used as the OE for the EPROMs.

2764 2764

A13
A1

RD

ADO-AD7

AD8-AD15

CE L.... CE
/13 13 A12

~
A12

/ / AO AO

DE r Of'
00-07 00-07

J
8 I
8

Figure 20. Example 2764/80186 Interface

16 AFN-21 0973

AP-186

The chip enable of the EPROM is driven directly by the
chip select output of the 80186 (see section 8). In this
configuration, the access time calculation for the
EPROMsare:
time from
address: (3 + N)*tcLcL -tCLAV - t[vov(8282) - tovCL

= 375 + (N * 125) - 44 - 30 - 20

= 281 + (N * 125) ns
time from
chip select: (3 + N)*tcLcL - tCLCSV - tovCL

= 375 + (N * 125) - 66 - 20

= 289 + (N * 125) ns

time from
RD (OE): (2 + N)tcLcL -~CLRL - tovCL

= 250 + (N * 125) - 70 - 20

= 160 + (N * 125) ns

where:

tCLAY = time from clock low in T[until addresses
are valid

tCLCL = clock period of processor

t[yOY = time from input valid of 8282 until output
valid of 8282

CLKOUT--~~------~~~ __ ~~~
LCS

SHE

AD

CLKOUT
WR

RD
4.7K

AROY

tOYCL = 186 data valid input setup time until clock
low time of T 4

tCLCSY = time from clock low in T I until chip selects
are valid

tCLRL = time from clock low in T 2 until RD goes low

N = number of wait states inserted

Thus, for 0 wait state operation, 250ns EPROMs must
be used. The only significant ~ameter not included
above is tRHAy, the time from RD inactive (high) until
the 80186 begins driving address information. This pa­
rameter is 85ns, which meets the 2764-25 (250ns speed
selection) output float time of 85ns. If slower EPROMs
are used, a discrete data buffer MUST be inserted be­
tween the EPROM data lines and the address/data bus,
since these devices may continue to drive data informa­
tion on the multiplexed address/data bus when the
80186 begins to drive address information for the next
bus cycle.

3.2.2 2186 INTERFACE

An example interface between the 80186 and 2186
iRAMs is shown in Figure 21. This memory component
is almost an ideal match with the 80186, because of its
large integration, and its not requiring address latching.

2186

CE

WE

OE

AO-A12

ROY

00-07

2186

CE

WE

'--------~OE

AO-A12

00-07

A01- 13 A08-

AOO­
A015

____________________________________ ~A~01~3~~--------~~~----~~~----~ A015

Figure 21. Example 2186/80186 Interface

17 AFN-21 0973

AP-186

The 2186 internally is a dynamic RAM integrated with
refresh and control circuitry. It operates in two modes,
pulse mode and late cycle mode. Pulse mode is entered if
the CE signal is low to the device a maximum of 130ns,
and requires the command input (RD or WE) to go ac­
tive within 90ns after CEo Because of these require­
ments, interfacing the 80186 to the 2186 in pulse mode
would be difficult. Instead, the late cycle mode is used.
This affords a much simpler interface with no loss of
performance. The iRAM automatically selects between
these modes by the nature of the control signals.

The 2186 is a leading edge triggered device. This means
that address and data information are strobed into the
device on the active going (high to lo&transition of the
command signal. This requires both CE and WR be de­
layed until the address and data driven by the 80186 are
guaranteed stable. Figure 21 shows a simple circuit
which can be used to perform this function. Note that
ALE CANNOT be used to delay CE if addresses are not
latched externally, because this would violate the ad­
dress hold time required by the 2186 (30ns).

Because the 2186s are RAMs, data bus enables (BHE
and AO, see previous section) MUST be used to factor
either the chip enables or write enables of the lower and
upper bytes of the 16-bit RAM memory system. If this is
not done, all memory writes, including single byte
writes, will write to both the upper and lower bytes of the
memory system. The exampl~stem shown uses BHE
and AO as factors to the 2186 CEo This may be done, be­
cause both of these signals (AO and BHE) are valid
when the address information is valid from the 80186.

The 2186 requires a certain amount of recovery time be­
tween its chip enable going inactive and its chip enable
going active insure proper operation. For a "normal" cy­
cle (a read or write), this time is tEHEL = 40ns. This
means that the 80186 chip select lines will go inactive
soon enough at the end of a bus cycle to provide the re­
quired recovery time even iftwo consecutive accesses are
made to the iRAMs. If the 2186 CE is asserted without a
command signal (WE or OE), a "False Memory Cycle"
(FMC) will be generated. Whenever a FMC is generat­
ed, the recovery time is much longer; another memory
cycle must not be initiated for 200ns. As a result, if the
memory system will generate FMCs, CE must be taken
away in the middle of the T state (T) or Tw) immediately
preceding T 4 to insure two consecutive cycles to the
iRAM will not violate this parameter. Status going pas­
sive (all high) can be used for this purpose. These lines
will all go high during the first phase of the next to last T
state (either T) or Tw) of a bus cycle (see section 3.1.5).

Finally, since it is a dynamic device, the 2186 requires
refresh cycles to maintain data integrity. The circuitry
to generate these refresh cycles is integrated within the
2186. Because of this, the 2186 has a ready line which is
used to suspend processor operation if a processor RAM

18

access coincides with an internally generated refresh cy­
cle. This is an open collector output, allowing many of
them to be wire-OR'ed together, since more than one de­
vice may be accessed at at time. These lines are also nor­
mally ready, which means that they will be high
whenever the 2186 is not being accessed, i.e., they will
only be driven low if a processor request coincides with
an internal refresh cycle. Thus, the ready lines from the
iRAM must be factored into the 80186 RDY circuit
only during accesses to the iRAM itself. Since the 2186
refresh logic operates asynchronously to the 80186, this
RDY line must be synchronized for proper operation
with the 80186, either by the integrated ready synchro­
nizer or by an external circuit. The example circuit uses
the integrated synchronizer associated with the ARDY
processor input.

The ready lines of the 2186 are active unless a processor
access coincides with an internal refresh cycle. These
lines must go inactive soon enough after a cycle is re­
quested to insert wait states into the data cY£!.!;. The
2186 will drive this line low within 50ns after CE is re­
ceived, which is early enough to force the 80186 to insert
wait states if they are required. The primary concern
here is that the ARDY line be driven not active before
its setup time in the middle ofT 2' This is required by the
nature of the asynchronous ready synchronization cir­
cuitry of the 80186. Since the RDY pulse of the 2186
may be as narrow as 50ns, if ready was returned after
the first stage of the synchronizer, and subsequently
changed state within the ready setup and hold time of
the high to low going edge of the CPU clock at the end of
T2, improper operation may occur (see section 3.1.6).

The example interface shown has a zero wait state RAM
read access time from CE of:

where:

3 * tCLCL - tCLCSV - (TTL delay) - tDvCL
= 375 - 66 - 30 - 20 ns

= 259 ns

tCLCL = CPU clock cycle time

tCLCSV = time from clock low in T I until chip selects
are valid

tDvCL = 80186 data in setup time before clock low in
T4

The data valid delay from OE active is less than lOOns,
and is therefore not an access time limiter in this inter­
face. Additionally, the 2186 data float time from RD in­
active is less than the 85ns 80186 imposed maximum.
The CE generation circuit shown in Figure 21 provides
an address setup time of at least 11 ns, and an address
hold time of at least 35ns (assuming a maximum two
level TTL delay of less than 30ns).

AFN-21 0973

AP-186

Write cycle address setup and hold times are identical to
the read cycle times. The circuit shown provides at least
l!.!!.s write data setup and lOOns data hold time from
WE, easily meeting the Ons setup and 40ns hold times
required by the 2186.

For more information concerning 2186 timing and in­
terfacing, please consult the 2186 data sheet, or the ap­
plication note AP-132, "Designing Memory Systems
with the 8Kx8 iRAM" by John Fallin and William
Righter (June 1982).

3.2.3 8203 DRAM INTERFACE

An example 8203/DRAM interface is shown in Figure
22. The 8203 provides all required DRAM control sig­
nals, address multiplexing, and refresh generation. In
this circuit, the 8203 is configured to interface with 64K
DRAMs.

MCSl
MCSO

A17·Al

AROY

AOO·A015

RO

] "\

17/

-

--
./ ---

'--

~

All 8203 cycles are generated off control signals (RD
and WR) provided by the 80186. These signals will not
go active until T 2 of the bus cycle. In addition, since the
8203 clock (generated by the internal crystal oscillator
of the 8203) is asynchronous to the 80186 clock, all
memory requests by the 80186 must be synchronized to
the 8203 before the cycle will be run. To minimize this
synchronization time, the 8203 should be used with the
highest speed crystal that will maintain DRAM com­
patibility. Even if a 25 MHz crystal is used (the maxi­
mum allowed by the 8203) two wait states will be
required by the example circuit when using 150ns
DRAMs with an 8 MHz 80186, three wait states if
200ns DRAMs are used (see timing analysis, Figure
23).

The entire RAM array controlled by the 8203 can be se­
lected by one or a group of the 80186 provided chip se­
lects. These chip selects can also be used to insert the
wait states required by the interface.

'"'-

P->-
J 221l 22il

8203

SEL WR UPPER LOWER
BYTE WE BYTE WE

AO·
A16, WE -
BO
SACK ORAMs/

XACK
RD

t
/-

01:'15
8282 000-15

000-7

OE 010-7 I---
STB

8282

000-7

OE 010-7 I---
STB

Figure 22. Example 8203/DRAM/80186 Interface

19 AFN-21 0973

AP-186

T, T,

186 ---+----'I~
AD

8203 _______________ ~,....--..,

RAS

8203 -----i---------i-----....".--i---I
CAS

RAM

DATA ~~~~~~~~~~~~~~~~~~~'Y __ ~~ ________ __

LATCH

DATA

1. tClEL: Clock low until read low ~ 70 ns max
2. tCA: Command active until RAS ~ 150 ns max'
3. tcc: Command active until CAS ~ 245 ns max'
4. tCAC: Access time from CAS ~ 85 ns max
5. tISOU: Input to output delay ~ 30 ns max

(j) & ® are 186 specs
@ & ® are 8203 specs
@ is a 2164A-15 spec
® is on 8282 spec

6. tDVCl: Data valid to clock low (data in set up) ~ 20 ns min 'Assumes 25MHz
8203 operation Total Access Time ~ 70 + 245 +85 +30 +20 ~ 450 ns (3.6 T-states)

Figure 23. 8203/2164A-15 Access Time Calculation

Since the 8203 is operating asynchronously to the
80186, the RDY output of the 8203 (used to suspend
processor operation when a processor DRAM request
coincides with a DRAM refresh cycle) must be synchro­
nized to the 80186. The 80186 ARDY line is used to pro­
vide the necessary ready synchronization. The 8203
ready outputs operate in a normally not ready mode,
that is, they are only driven active when an 8203 cycle is
being executed, and a refresh cycle is not being run. This
is fundamentally different than the normally ready
mode used by the 2186 iRAMs (see previous section).
The 8203 SACK signal is presented to the 80186 only
when the DRAM is being accessed. Notice that the
SACK output of the 8203 is used, rather than the
XACK output. Since the 80186 will insert at least one
full CPU clock cycle between the time RDY is sampled
active, and the time data must be present on the data
bus, using the XA CK signal wOljld insert unnecessary
additional wait states, since it does not indicate ready
until valid data is available from the memory.

For more information about 8203/DRAM interfacing
and timing, please consult the 8203 data sheet, or
AP97A, "Interfacing Dynamic RAM to iAPX86/88

20

Systems Using the Intel 8202A and 8203" by Brad May
(April 1982).

3.2.4 8207 DRAM INTERFACE

The 8207 advanced dual-port DRAM controller pro­
vides a high performance DRAM memory interface
specifically for 80186 or 80286 microcomputer systems.
This controller provides all address multiplexing and
DRAM refresh circuitry. In addition, it synchronizes
and arbitrates memory requests from two different ports
(e.g., an 80186 and a Multibus), allowing the two ports
to share memory. Finally, the 8207 provides a simple in­
terface to the 8206 error detection and correction chip.

The simplest 8207 (and also the highest performance)
interface is shown in Figure 24. This shows the 80186
connected to an 8207 using the 8207 slow cycle, synchro­
nous status interface. In this mode, the 8207 decodes the
type of cycle to be run directly from the status lines of
the 80186. In addition, since the 8207 CLOCKIN is
driven by the CLOCKOUT of the 80186, any perfor­
mance degradation caused by required memory request
synchronization between the 80186 and the 8207 is not
present. Finally, the entire memory array driven by the

AFN-21 0973

AP-186

8207 may be selected using one or a group of the 80186
memory chip selects, as in the 8203 interface above.

80186 a~07

ClKOUT ClK

sa WR
+

U Sf RD PCTC

52 PCTl

LMCS PE
AACK

SRDY --«l I

Figure 24. 80186/8207/DRAM Interface

The 8207 AACK signal may be used to generate a syn­
chronous ready signal to the 80186 in the above inter­
face. Since dynamic memory periodically requires
refreshing, 80186 access cycles may occur simulta­
neously with an 8207 generated refresh cycle. When this
occurs, the 8207 will hold the AACK line high until the
processor initiated access is run (note, the sense of this
line is reversed with respect to the 80186 SRDY input).
This signal should be factored with the DRAM (8207)
select input and used to drive the SRDY line of the
80186. Remember that only one of SRDY and ARDY
needs to be active for a bus cycle to be terminated. If
asynchronous devices (e.g., a Multibus interface) are
connected to the ARDY line with the 8207 connected to
the SRDY line, care must be taken in design of the ready
circuit such that only one of the RDY lines is driven ac­
tive at a time to prevent premature termination of the
bus cycle.

3.3 HOLD/HLDA Interface

The 80186 employs a HOLD/HLDA bus exchange pro­
tocol. This protocol allows other asynchronous bus mas­
ter devices (i.e., ones which drive address, data, and
control info~mation on the bus) to gain control ofthe bus
to perform bus cycles (memory or I/O reads or writes).

3.3.1 HOLD RESPONSE

In the HOLD/HLDA protocol, a device requiring bus
control (e.g., an external DMA device) raises the
HOLD line. In response to this HOLD request, the
80186 will raise its HLDA line after it has finished its
current bus activity. When the external device is finished
with the bus, it drops its bus HOLD request. The 80186
responds by dropping its HLDA line and resuming bus
operation.

21

When the 80186 recognizes a bus hold by driving
HLDA high, it will float many of its signals (see Figure
25). ADO - ADI5 (address/data 0 - 15) and DEN (data
enable) are floated within tCLAZ (35ns) after the same
clock edge that HLDA is driven active. A16-A19 (ad­
dress_16 - 19), RD, WR, BHE (B~HisP Enable),
DT /R (Data Transmit/Receive) and SO - S2 (status 0 -
2) are floated within tCHCZ (45ns) after the clock edge
immediately before the clock edge on which HLDA
comes active.

CLOCK

OUT

T, OR T, T, T,

HOLD ----~----_;~~------~------

HlDA ---...;...----+-+-....;.,J

AD1S-ADO
DEN ______ _;~---J

A16·A19

RO,WR,BHE

DT/R,sa-52 ----;-----'

Figure 25. Signal Float/HLDA Timing of the 80186

Only the above mentioned signals are floated during bus
HOLD. Of the signals not floated by the 80186, some
have to do with peripheral functionality (e.g., TmrOut).
Many others either directly or indirectly control bus de­
vices. These signals are ALE (Address Latch Enable,
see section 3.1.2) and all the chip select lines (UCS,
LCS, MCSO-3, and PCSO-6). The designer must be
aware that the chip select circuitry does not look at ex­
ternally generated addresses (see section 10 for a discus­
sion of the chip select logic). Thus, for memory or
peripheral devices which are addressed by external bus
master devices, discrete chip select and ready generation
logic must be used.

3.3.2 HOLD/HLDA TIMING AND BUS LATENCY

The time required between HOLD going active and the
80186 driving HLDA active is known as bus latency.
Many factors affect this latency, including synchroniza­
tion delays, bus cycle times, locked transfer times and
interrupt acknowledge cycles.

The HOLD request line is internally synchronized by
the 80186, and may therefore be an asynchronous sig­
nal. To guarantee recognition on a certain clock edge, it
must satisfy a certain setup and hold time to the falling

AFN-21 0973

AP-186

edge of the CPU clock. A full CPU clock cycle is re­
quired for this synchronization, that is, the internal
HOLD signal is not presented to the internal bus arbi­
tration circuitry until one full clock cycle after it is
latched from the HOLD input (see Appendix B for a dis-

cussion of 80186 synchronizers). If the bus is idle,
HLDA will follow HOLD by two CPU clock cycles plus
a small amount of setup and propagation delay time.
The first clock cycle synchronizes the input; the second
signals the internal circuitry to initiate a bus hold. (see
Figure 26).

T, T,

HOLD

HLDA ________ ..;... ___ -J

Many factors influence the number of clock cycles be­
tween a HOLD request and a HLDA. These may make
bus latency longer than the best case shown above. Per­
haps the most important factor is that the 80186 will not
relinquish the local bus until the bus is idle. An idle bus
occurs whenever the 80186 is not performing any bus
transfers. As stated in section 3.1.1, when the bus is idle,
the 80186 generates idle T-states. The bus can become
idle only at the end of a bus cycle. Thus, the 80186 can
recognize HOLD only after the end of its current bus cy­
cle. The 80186 will normally insert no T, states between
T 4 and T I of the next bus cycle if it requires any bus ac­
tivity (e.g., instruction fetches or I/O reads). However,
the 80186 may not have an immediate need for the bus
after a bus cycle, and will insert T, states independent of
the HOLD input (see section 3.1.7).

1. tHVCL: Hold valid until clock low = 25 ns min
2. tCLHAV: Clock low until HLDA active = 50 ns max

Figure 26. 80186 Idle Bus Hold/HLDA Timing
When the HOLD request is active, the 80186 will be

CLOCK

OUT

HOLD

HLDA ----~-------~-------~

T,

DeCISion: No additional Internal bus cycles required, idle T-states will be
Inserted after T 4

2. Greater than 25 ns (tHyCL)
3. Less than 50 ns (tCLHAY)
4 HOLD request internally synchronized

T.OR

: Tw : T, : T,

CLOCK
OUT

HOLD

HLDA

~l
I I I , ,

1. DeCISion: Additional Internal bus cycles reqUired, no idle T-states will be
Inserted, Hold not active soon enough to force idle T-states

2. Greater than 25 ns (tHyCL): not required since It will not get recognized
anyway

3. HOLD request internally synchronized

Figure 27. HOLD/HLDATlming In the 80186

22 AFN-21 0973

AP-186

CLOCK
OUT

HOLD
I .. .1
I I
I I

HLDA

1. HOLD request Internally synchronized
2. DecIsion' HOLD request active, Idle t-states will be inserted at end of

current bus cycle
3. Greater than 25 ns
4. Less than 50 ns

Figure 27A. HOLD/HLDATiming in the 80186

forced to proceed from T4 to T, in order that the bus may
be relinquished. HOLD must go active 3 T-states before
the end of a bus cycle to force the 80186 to insert idle T­
states after T4 (one to synchronize the request, and one
to signal the 80186 that T 4 of the bus cycle will be fol­
lowed by idle T-states, see section 3.1.1). After the bus
cycle has ended, the bus hold will be immediately ac­
knowledged. If, however, the 80186 has already deter­
mined that an idle T-state will follow T 4 of the current
bus cycle, HOLD need go active only 2 T-states before
the end of a bus cycle to force the 80186 to relinquish the
bus at the end of the current bus cycle. This is because
the external HOLD request is not required to force the
generation of idle T-states. Figure 27 graphically por­
trays the scenarios depicted above.

An external HOLD has higher priority than both the
80186 CPU or integrated DMA unit. However, an exter­
nal HOLD will not separate the two cycles needed to
perform a word access when the word accessed is located
at an odd location (see section 3.1.3). In addition, an ex­
ternal HOLD will not separate the two-to-four bus cy­
cles required to perform a DMA transfer using the
integrated controller. Each of these factors will add .ad­
ditional bus cycle times to the bus latency of the 80186.

Another factor influencing bus latency time is locked
transfers. Whenever a locked transfer is occurring, the
80186 will not recognize external HOLDs (nor will it
recognize internal DMA bus requests). Locked trans­
fers are programmed by preceding an instruction with
the LOCK prefix. Any transfers generated by such a
prefixed instruction will be locked, and will not be sepa­
rated by any external bus requesting device. String in­
structions may be locked. Since string transfers may

23

require thousands of bus cycles, bus latency time will
suffer if they are locked.

The final factor affecting bus latency time is interrupt
acknowledge cycles. When an external interrupt con­
troller is used, or if the integrated interrupt controller is
used in iRMX 86 mode (see section 6.7.4) the 80186 will
run two interrupt acknowledge cycles back to back.
These cycles are automatically "locked" and will never
be separated by any bus HOLD, either internal or exter­
nal. See section 6.5 on interrupt acknowledge timing for
more information concerning interrupt acknowledge
timing.

3.3.3 COMING OUT OF HOLD
After the 80186 recognizes that the HOLD input has
gone inactive, it will drop its HLDA line in a single
clock. Figure 28 shows this timing. The 80186 will insert
only two T, after HLDA has gone inactive, assuming
that the 80186 has internal bus cycles to run. During the
last T" status information will go active concerning the
bus cycle about to be run (see section 3.1.1). If the
80186 has no pending bus activity, it will maintain all
lines floating (high impedance) until the last T, before it
begins its first bus cycle after the HOLD.

3.4 Differences Between the 8086 bus and
the 80186 Bus

The 80186 bus was defined to be upward compatible
with the 8086 bus. As a result, the 8086 bus interface
components (the 8288 bus controller and the 8289 bus
arbiter) may be used directly with the 80186. There are
a few significant differences between the two processors
which should be c:msidered.

AFN-21 0973

AP-186

CLOCK

OUT

T,

HOLD ----\

HLDA

ADO-AD15

T, T, T,

DEN ----------------------------~----~--~ ______ _

A16/53-A19/S6

RD,WR,BHE

DT/R,SO-S2

1 HOLD internally synchronized
2. Greater than 25 ns
3. Less than 50 ns
4. Lines come out of float only If a bus cycle is pending

Figure 28. 80186 Coming out of Hold

CPU Duty Cycle and Clock Generator

The 80186 employs an integrated clock generator which
provides a 50% duty cycle CPU clock (1/2 of the time it
is high, the other 1/2 of the time it is low). This is differ­
ent that the 8086, which employs an external clock gen­
erator (the 8284A) with a 33% duty cycle CPU clock
(1/3 of the time it is high, the other 2/3 of the time, it is
low). These differences manifest themselves as follows:

I) No oscillator output is available from the 80186,
as it is available from the 8284A clock generator.

2) The 80186 does not provide a PCLK (50% duty
cycle, 1/2 CPU clock frequency) output as does
the 8284A.

3) The clock low phase of the 80186 is narrower,
and the clock high phase is wider than on the
same speed 8086.

4) The 80186 does not internally factor AEN with
RDY. This means that if both RDY inputs
(ARDY and SRDY) are used, external logic
must be used to prevent the RDY not connected
to a certain device from being driven active dur­
ing an access to this device (remember, only one
RDY input needs to be active to terminate a bus
cycle, see section 3.1.6).

5) The 80186 concurrently provides both a single
asynchronous ready input and a single synchro­
nous ready input, while the 8284A provides ei-

24

ther two synchronous ready inputs or two
asynchronous ready inputs as a user strapable
option.

6) The CLOCKOUT (CPU clock output signal)
drive capacity of the 80186 is less than the CPU
clock drive capacity of the 8284A. This means
that not as many high speed devices (e.g.,
Schottky TTL flip-flops) may be connected to
this signal as can be used with the 8284A clock
output.

7) The crystal or external oscillator used by the
80186 is twice the CPU clock frequency, while
the crystal or external oscillator used with the
8284A is three times the CPU clock frequency.

Local Bus Controller and Control Signals

The 80186 simultaneously provides both local bus con­
troller outputs (RD, WR, ALE, DEN and DT/R) and
status outputs (SO, SI, S2) for use with the 8288 bus
controller. This is different from the 8086 where the lo­
cal bus controller outputs (generated only in min mode)
are sacrificed if status outputs (generated only in max
mode) are desired. These differences will manifest
themselves in 8086 systems and 80186 systems as
follows:

I) Because the 80186 can simultaneously provide
local bus control signals and status outputs,
many systems supporting both a system bus (e.g.,

AFN-21 0973

AP-186

a Multibus®) and a local bus will not require two
separate external bus controllers, that is, the
80186 bus control signals may be used to control
the local bus while the 80186 status signals are
concurrently connected to the 8288 bus control­
ler to drive the control signals of the system bus.

2) The ALE signal of the 80186 goes active a clock
phase earlier on the 80186 then on the 8086 or
8288. This minimizes address propagation time
through the address latches, since typically the
delay time through these latches from inputs val­
id is less than the propagation delay from the
strobe input active.

3) The 80186 RD input must be tied low to provide
queue status outputs from the 80186 (see Figure
29). When so s.!@Eped into "queue status mode,"
the ALE and WR outputs provide queue status
information. Notice that this queue status infor­
mation is available one clock phase earlier from
the 80186 than from the 8086 (see Figure 30).

80186

aso ALE
-

aSl WR

~
iffi

Figure 29. Generating Queue Status Information
from the 80186

HOLD/HLDA VS. RQ/GT

As discussed earlier, the 80186 uses a HOLD/HLDA
type of protocol for exchanging bus mastership (like the
8086 in min mode) rather than the RQ/GT protocol
used by the 8086 in max mode. This allows compatiblity
with Intel's the new generation of high performance/
high integration bus master peripheral devices (for ex-

CLOCK
OUT

ample the 82586 Ethernet" controller or 82730 high
performance CRT controller / text coprocessor).

Status Information

The 80186 does not provide S3-S5 status information.
On the 8086, S3 and S4 provide information regarding
the segment register used to generate the physical ad­
dress of the currently executing bus cycle. S5 provides
information concerning the state of the interrupt enable
flip-flop. These status bits are always low on the 80186.

Status signal S6 is used to indicate whether the current
bus cycle is initiated by either the CPU or a DMA de­
vice. Subsequently, it is always low on the 8086. On the
80186, it is low whenever the current bus cycle is initiat­
ed by the 80186 CPU, and is high when the current bus
cycle is initiated by the 80186 integrated DMA unit.

Bus Drive

The 80186 output drivers will drive 200pF loads. This is
double that of the 8086 (lOOpF). This allows larger sys­
tems to be constructed without the need for bus buffers.
It also means that it is very important to provide good
grounds to the 80186, since its large drivers can dis­
charge its outputs very quickly causing large current
transients on the 80186 ground pins.

Misc.

The 80186 does not provide early and late write signals,
as does the 8288 bus controller. The WR signal generat­
ed by the 80186 corresponds to the early write signal of
the 8288. This means that data is not stable on the ad­
dress/data bus when this signal is driven active.

The 80186 also does not provide differentiated I/O and
memory read and write command signals. If these sig­
nals are desired, an external 8288 bus controller may be
used, or the S2 signal may be used to synthesize differ­
entiated commands (see section 3.1.4).

'Ethernet IS a registered trademark of Xerox Corp.

186 --------~--------~----~'~~~~Mr~~~----
as ________ -+ ________ ~-----'1~+_----~~~------

8086 as ____________________________ JL ______ u\ ____ __

1 80186 changes queue status off falling edge of ClK
2 8086 changes queue status off rising edge of ClK

Figure 30. 80186 and 8086 Queue Status Generation

25 AFN-21 0973

AP-186

4. DMA UNIT INTERFACING

The 80186 includes a DMA unit which provides two in­
dependent high speed DMA channels. These channels
operate independently of the CPU, and drive all inte­
grated bus interface components (bus controller, chip se­
lects, etc.) exactly as the CPU (see Figure 31). This
means that bus cycles initiated by the DMA unit are ex­
actly the same as bus cycles initiated by the CPU (ex­
cept that S6 = I during all DMA initiated cycles, see
section 3.1). Thus interfacing with the D MA unit itself
is very simple, since except for the addition of the DMA
request connection, it is exactly the same as interfacing
to the CPU.

EXTERNAL ADDRESS/DATA,
'CONTROL, CHIP SELECTS,
ETC.

CHIP SELECT CIRCUITRY

DMA

REQUESTS

Figure 31. 80186 CPU/DMA Channel

Internal Model

4.1 DMA Features

Each of the two DMA channels provides the following
features:

Independent 20-bit source artd destination pointers
which are used to access the I/O or memory location
from which data will be fetched or to which data will
be deposited

Programmable auto-increment, auto-decrement or
neither of the source and destination pointers after
each DMA transfer

Programmable termination of DMA activity after a
certain number of DMA transfers

Programmable CPU interruption at DMA termina­
tion

Byte or word DMA transfers to or from even or odd
memory or I/O addresses

26

Programmable generation of DMA requests by:

I) the source of the data

2) the destination of the data

3) timer 2 (see section 5)

4) the D MA unit itself (continuous D MA requests)

4.2 DMA Unit Programming

Each of the two DMA channels contains a number of
registers which are used to control channel operation.
These registers are included in the 80186 integrated pe­
ripheral control block (see appendix A). These registers
include the source and destination pointer registers, the
transfer count register and the control register. The lay­
out and interpretation of the bits in these registers is giv­
en in Figure 32.

The 20-bit source and destination pointers allow access
to the complete I Mbyte address space of the 80186, and
that all 20 bits are affected by the auto-increment or
auto-decrement unit of the DMA (Le., the DMA
channels address the full I Mbyte address space of the
80186 as a flat, linear array without segments). When
addressing I/O space, the upper 4 bits of the DMA
pointer registers should be programmed to be o. If they
are not programmed 0, then the programmed value
(greater than 64K in I/O space) will be driven onto the
address bus (an area of I/O space not accessable to the
CPU). The data transfer will occur correctly, however.

After every DMA transfer the 16-bit DMA transfer
count register it is decremented by I, whether a byte
transfer or a word transfer has occurred. If the TC bit in
the DMA control register is set, the DMA ST/STOP
bit (see below) will be cleared when this register goes to
0, causing all DMA activity to cease. A transfer count of
zero allows 65536 (216) transfers.

The DMA control register (see Figure 33) contains bits
which control various channel characteristics, including
for each of the data source and destination whether the
pointer points to memory or I/O space, or whether the
pointer will be incremented, decremented or left alone
after each DMA transfer. It also contains a bit which se­
lects between byte or word transfers. Two synchroniza­
tion bits are used to determine the source of the DMA
requests (see section 4.7). The TC bit determines wheth­
er DMA activity will cease after a programmed number
of DMA transfers, and the INT bit is used to enable in­
terrupts to the processor when this has occurred (note
that an interrupt will not be generated to the CPU when
the transfer count register reaches zero unless both the
INT bit and the TC bit are set).

The control register also contains a start/stop
(ST /STOP) bit. This bit is used to enable DMA
transfers. Whenever this bit is set, the channel is

AFN-21 0973

AP-186

OFFSET

DEH

DCH

DAH

D8H

D6H

D4H

D2H

DOH
CEH

CCH

CAH

C8H

C6H

C4H

C2H

COH

15

15

15

15

15

15

(1) CONTROL REGISTER LAYOUT:

x

X

)(

)(

X

I I I I

X

I I I I

)(

)(

X

I I Ixi I I

119

119

X

I I IXI I I

)(119

)(119

0

18

0
18

0

0

18

0

16

0

CONTROL WORD

TRANSFER COUNT

DESTINATION POINTER

SOURCE POINTER CHANNEL 1 t
CHANNEL O~

CONTROL WORD

TRANSFER COUNT

DESTINATION POINTER

SOURCE POINTER

DESTINATION SOURCE SYNCHRONIZATION

Figure 32. 80186 DMA Register Layout

Figure 33. DMA Control Register

"armed," that is, a DMA transfer will occur whenever a
DMA request is made to the channel. If this bit is
cleared, no D MA transfers will be performed by the
channel. A companion bit, the CHG/NOCHG bit,
allows the contents of the DMA control register to be
changed without modifying the state of the start/stop
bit. The ST /STOP bit will only be modified if the
CHG/NOCHG bit is also set during the write to the
DMA control register. The CHG/NOCHG bit is
write only. It will always be read back as a 1. Because
DMA transfers could occur immediately after the
ST /STOP bit is set, it should only be set only after all
other DMA controller registers have been programmed.
This bit is automatically cleared when the transfer count
register reaches zero and the TC bit in the D MA control
register is set, or when the transfer count register
reaches zero and unsynchronized D MA transfers are
programmed.

27

All DMA unit programming registers are directly
accessable by the CPU. This means the CPU can, for ex­
ample, modify the DMA source pointer register after
137 DMA transfers have occurred, and have the new
pointer value used for the 138th DMA transfer. If more
than one register in the DMA channel is being modified
at any time that a DMA request may be generated and
the DMA channel is enabled (the ST/STOP bit in the
control register is set), the register programming values
should be placed in memory locations and moved into
the D MA registers using a locked string move instruc­
tion. This will prever.t a DMA transfer from occurring
after only half of the register values have changed. The
above also holds true if a read/modify/write type of op­
eration is being performed (e.g., ANDing off bits in a
pointer register in a single AND instruction to a pointer
register mapped into memory space).

AFN-21 0973

inter AP-186

I To I T, T2 T, Tw Tw T, T, T2 T, To CLOCK I I

OUTLn

I I I

~
I

\
I

I I
DRQ I I I I I

I I I I I I
ADO, I I

~ '@1X I
I I CD CD: I : Q I : 0:

AD15
I I I I I

RD
I I I I

:1
I I

:\ I I
I I

I I I I

WR
I I I I

:\ l(
I I

1. Sou ce address
2. Source data
3. Destination address
4. Destination data

NOTE: Walt states are inserted by the bus condition dunng the bus cycle, not by the DMA controller

Figure 34. Example DMA Transfer Cycle on the 80186

4.3 DMA Transfers

Every DMA transfer in the 80186 consists of two inde·
pendent bus cycles, the fetch cycle and the deposit cycle
(see Figure 34). During the fetch cycle, the byte or word
data is accessed from memory or I/O space using the ad·
dress in the source pointer register. The data accessed is
placed in an internal temporary register, which is not ac·
cessible to the CPU. During the deposit cycle, the byte
or word data in this internal register is placed in memory
or I/O space using the address in the destination pointer
register. These two bus cycles will not be separated by
bus HOLD or by the other DMA channel, and one will
never be run without the other except when the CPU is
RESET. Notice that the bus cycles run by the DMA
unit are exactly the same as memory or I/O bus cycles
run by the CPU. The only difference between the two is
the state of the S6 status line (which is multiplexed on
the AI9Iine): on all CPU initiated bus cycles, this status
line will be driven low; on all DMA initiated bus cycles,
this status line will be driven high.

4.4 DMA Requests

Each DMA channel has a single DMA request line by
which an external device may request a DMA transfer.
The synchronization bits in the 0 MA control register
determine whether this line is interpreted to be connect·
ed to the source of the DMA data or the destination of .
the DMA data. All transfer requests on this line are syn·
chronized to the CPU clock before being presented to in·

28

ternal DMA logic. This means that any asynchronous
transitions of the DMA request line will not cause the
DMA channel to malfunction. In addition to external
requests, DMA requests may be generated whenever the
internal timer 2 times out, or continuously by program·
ming the synchronization bits in the DMA control regis·
ter to call for unsynchronized DMA transfers.

4.4.1 DMA REQUEST TIMING AND LATENCY

Before any DMA request can be generated, the 80186
internal bus must be granted to the DMA unit. A certain
amount of time is required for the CPU to grant this in·
ternal bus to the DMA unit. The time between a DMA
request being issued and the DMA transfer being run is
known as DMA latency. Many of the issues concerning
DMA latency are the same as those concerning bus la·
tency (see section 3.3.2). The only important difference
is that external HOLD always has bus priority over an
internal DMA transfer. Thus, the latency time of an in·
ternal DMA cycle will suffer during an external bus
HOLD.

Each DMA channel has a programmed priority relative
to the other DMA channel. Both channels may be pro·
grammed to be the same priority, or one may be pro­
grammed to be of higher priority than the other channel.
If both channels are active, DMA latency will suffer on
the lower priority channel. If both channels are active
and both channels are of the same programmed priority,
DMA transfer cycles will alternate between the two
channels (i.e., the first channel will perform a fetch and

AFN·21 0973

AP-186

DRQ

1. tDRQCL = DMA request to clock low = 25 ns min to guarantee recognition
2. Synchronizer resolution time
3. DMA unit priority arbitration, etc. time
4. Bus Interface Unit latches DMA request and decides to run DMA cycle

Figure 35. DMA Request Timing on the 80186 (showing minimum response time to request)

deposit, followed by a fetch and deposit by the second
channel, etc).

The minimum timing required to generate a DMA cycle
is shown in Figure 35. Note that the minimum time from
DRQ becoming active until the beginning of the first
DMA cycle is 4 CPU clock cycles, that is, a DMA re­
quest is sampled 4 clock cycles before the beginning of a
bus cycle to determine if any DMA activity will be re­
quired. This time is independent of the number of wait
states inserted in the bus cycle. The maximum DMA la­
tency is a function of other processor activity (see
above).

80186

ADDR.
LATCH

A6

Also notice that if DRQ is sampled active at 1 in Figure
35, the DMA cycle will be executed, even if the DMA
request goes inactive before the beginning of the first
~MA cycl.e. This does not mean that the DMA request
IS latched Into the processor such that any transition on
the DMA request line will cause a DMA cycle eventual­
ly. Quite the contrary, DMA request must be active at a
certain time before the end of a bus cycle for the D MA
request to be recognized by the processor. If the DMA
request line goes inactive before that window, then no
DMA cycles will be run.

DMA DEVICE

ALEr-------------------------~
ACKNOWLEDGE

PCSO t-----------------------..... -----------I CHIP SEL

DRQO~----------------------------------~DMAREQUEST

Figure 36. DMA Acknowledge Synthesis from the 80186

29 AFN-21 0973

AP-186

4.5 DMA Acknowledge

The 80186 generates no explicit DMA acknowledge sig­
nal. Instead, the 80186 performs a read or write directly
to the DMA requesting device. If required, a DMA ac­
knowledge signal can be generated by a decode of an ad­
dress, or by merely using one of the PCS lines (see
Figure 36). Note ALE must be used to factor the D A CK
because addresses are not guaranteed stable when chip
selects go active. This is ~ired because if the address
is not stable when the PCS goes active, glitches can
occur at the output of the DACK generation circuitry as
the address lines change state. Once ALE has gone low,
the addresses are guaranteed to have been stable for at
least tAVAL (30ns).

4.6 Interna"y Generated DMA Requests
There are two types in internally synchronized DMA
transfers, that is, transfer initiated by a unit integrated
in the 80186. These two types are transfers in which the
DMA request is generated by timer 2, or where DMA
request is generated by the DMA channel itself.

The DMA channel can be programmed such that when­
ever timer 2 reaches its maximum count, a DMA re­
quest will be generated. This feature is selected by
setting the TDRQ bit in the DMA channel control regis­
ter. A DMA request generated in this manner will be
latched in the DMA controller, so that once the timer re­
quest has been generated, it cannot be cleared except by
running the DMA cycle or by clearing the TDRQ bits in
both DMA control registers. Before any DMA requests
are generated in this mode, timer 2 must be initiated and
enabled.

A timer requested DMA cycle being run by either DMA
channel will reset the timer request. Thus, if both chan­
nels are using it to requ~st a DMA cycle, only one DMA
channel will execute a transfer for every timeout of tim­
er 2. Another implication of having a single bit timer
DMA request latch in the DMA controller is that if an­
other timer 2 timeout occurs before a DMA channel has
a chance to run a DMA transfer, the first request will be
lost, i.e., only a single DMA transfer will occur, even
though the timer has timed out twice.

The DMA channel can also be programmed to provide
its own DMA requests. In this mode, DMA transfer cy­
cles will be run continuously at the maximum bus band­
width, one after the other until the preprogrammed
number of DMA transfers (in the DMA transfer count
register) have occurred. This mode is selected by pro­
gramming the synchronization bits in the DMA control
register for unsynchronized transfers. Note that in. this
mode, the DMA controller will monopolize the CPU
bus, i.e., the CPU will not be able to perform opcode
fetching, memory operations, etc., while the DMA
transfers are occurring. Also notice that the DMA will
only perform the number of transfers indicated in the

30

maximum count register regardless of the state of the
TC bit in the DMA control register.

4.7 Externa"y Synchronized DMA
Transfers

There are two types of externally synchronized DMA
transfers, that is, DMA transfers which are requested by
an external device rather than by integrated timer 2 or
by the DMA channel itself (in unsynchronized trans­
fers). These are source synchronized and destination
synchronized transfers. These modes are selected by
programming the synchronization bits in the DMA
channel control register. The only difference between
the two is the time at which the DMA request pin is sam­
pled to determine if another DMA transfer is immedi­
ately required after the currently executing DMA
transfer. On source synchronized transfers, this is done
such that two source synchronized DMA transfers may
occur one immediately after the other, while on destina­
tion synchronized transfers a certain amount of idle
time is automatically inserted between two DMA trans­
fers to allow time for the DMA requesting device to
drive its DMA request inactive.

4.7.1 SOURCE SYNCHRONIZED
DMA TRANSFERS

In a source synchronized D MA transfer, the source of
the DMA data requests the DMA cycle. An example of
this would be a floppy disk read from the disk to main
memory. In this type of transfer, the device requesting
the transfer is read during the fetch cycle of the DMA
transfer. Since it takes 4 CPU clock cycles from the time
DMA request is sampled to the time the DMA transfer
is actually begun, and a bus cycle takes a minimum of 4
clock cycles, the earliest time the DMA request pin will
be sampled for another DMA transfer will be at the be­
ginning of the deposit cycle of a DMA transfer. This al­
lows over 3 CPU clock cycles between the time the
DMA requesting device receives an acknowledge to its
DMA request (around the beginning of T2 of the DMA
fetch cycle), and the time it must drive this request inac­
tive (assuming no wait states) to insure that another
DMA transfer is not performed if it is not desired (see
Figure 37).

4.7.2 DESTINATION SYNCHRONIZED
DMA TRANSFERS

In destination synchronized DMA transfers, the desti­
nation of the DMA data requests the DMA transfer. An
example of this would be a floppy disk write from main
memory to the disk. In this type of transfer, the device
requesting the transfer is written during the deposit cy­
cle of the DMA transfer. This causes a problem, since
the DMA requesting device will not receive notification
of the D MA cycle being run until 3 clock cycles before
the end of the DMA transfer (if no wait states are being

AFN-21 0973

AP-186

FETCH CYCLE DEPOSIT CYCLE

T, T, T, T, T, T, T, T,

ORO --~----+-----~--~~

80186 DECISION:

1 Current DMA source synchronized transfer will not be immediately
followed by another DMA transfer

DEPOSIT CYCLE

T, T, : T, : Tw

ORO

80186 Decision:

T, T, T,

NEXT

DMA

TRANSFER

T,

Current DMA destination synchronized transfer will be followed
Immediately by another DMA transfer

Figure 37, Source & Destination Synchronized DMA Request Timing

inserted into the deposit cycle of the DMA transfer) and
it takes 4 clock cycles to determine whether another
DMA cycle should be run immediately following the
current DMA transfer. To get around this problem, the
DMA unit will relinquish the CPU bus after each desti­
nation synchronized DMA transfer for at least 2 CPU
clock cycles to allow the DMA requesting device time to
drop its DMA request if it does not immediately desire
another immediate DMA transfer. When the bus is re­
linquished by the DMA unit, the CPU may resume bus
operation (e.g., instruction fetching, memory or I/O
reads or writes, etc.) Thus, typically, a CPU initiated
bus cycle will be inserted between each destination syn­
chronized DMA transfer. If no CPU bus activity is re­
quired, however (and none can be guaranteed), the
DMA unit will insert only 2 CPU clock cycles between
the deposit cycle of one DMA transfer and the fetch cy­
cleofthe next DMA transfer. This means that the DMA
destination requesting device must drop its DMA re­
quest at least two clock cycles before the end of the de­
posit cycle regardless of the number of wait states
inserted into the bus cycle. Figure 37 shows the DMA
request going away too late to prevent the immediate
generation of another DMA transfer. Any wait states in­
serted in the deposit cycle of the DMA transfer will

31

lengthen the amount of time from the beginning of the
deposit cycle to the time DMA will be sampled for an­
other DMA transfer. Thus, if the amount of time a de­
vice requires to drop its DMA request after receiving a
DMA acknowledge from the 80186 is longer than the 0
wait state 80186 maximum (100 ns), wait states can be
inserted into the DMA cycle to lengthen the amount of
time the device has to drop its DMA request after receiv­
ing the DMA acknowledge. Table 4 shows the amount of
time between the beginning of T 2 and the time D MA re­
quest is sampled as wait states are inserted in the DMA
deposit cycle.

Table 4. DMA Request Inactive Timing

Max Time(ns)
Number of For DRQ Inactive
Wait States From Start of T2

0 100

1 225

2 350

3 475

AFN-21 0973

inter AP-186

DMA FETCH CYCLE

ORQ
(ALWAYS

HIGH)

NMI / I- '1' CD @
I
I

DHLT .
(INTERNAL
REGISTER

BIT)

1. DMA request synchronization
2. DecIsion: Will DMA cycle be run?

Answer: No DMA request is active but DHlT is set
(from NMI request)

3. NMI synchronization time

DMA DEPOSIT CYCLE

I I I
t. II I. .1
I CD CD I

·1

/

4. logic delay time from synchronized NMI until DHlT set (note: DHlT is in
the interrupt control status register)

Figure 38. NMI and DMA Interaction

4.8 DMA Halt and NMI

Whenever a Non-Maskable Interrupt is received by the
80186, all D MA activity will be suspended after the end
of the current DMA transfer. This is performed by the
NMI automatically setting the DMA Halt (DHLT) bit
in the interrupt controller status register (see section
7.3.1). The timing ofNMI required to prevent a DMA
cycle from occurring is shown in Figure 38. After the
NMI has been serviced, the DHLT bit should be cleared
by the programmer, and DMA activity will resume ex­
actly where it left off, i.e., none of the DMA registers
will have been modified. The DMA Halt bit is not auto­
matically reset after the NMI has been serviced. It is
automatically reset by the IRET instruction. This DMA
halt bit may also be set by the programmer to prevent
DMA activity during any critical section of code.

4.9 Example DMA Interfaces

4.9.1 8272 FLOPPY DISK INTERFACE

An example DMA Interface to the 8272 Floppy Disk
Controller is shown in Figure 39. This shows how a typi­
cal DMA device can be interfaced to the 80186. An ex­
ample floppy disk software driver for this interface is
given in Appendix C.

32

The data lines of the 8272 are connected, through buff­
ers, to the 80186 ADO-AD7 lines. The buffers are re­
quired because the 8272 will not float its output drivers
quickly enough to prevent contention with the 80186
driven address information after a read from the 8272
(see section 3.1.3).

DMA acknowledge for the 8272 is driven by an address
decode within the region assigned to PCS2. If
PCS2 is assigned to be active between I/O locations
0500H and 057FH, then an access to I/O location
0500H will enable only the chip select, while an access to
I/O location 051 OH will enable both the chip select and
the DMA acknowledge. Remember, ALE must be fac­
tored into the DACK generation logic because addresses
are not guaranteed stable when the chip selects become
active. If ALE were not used, the DACK generation cir­
cuitry could glitch as address output changed state while
the chip select was active.

Notice that the TC line of the 8272 is driven by a very
similar circuit as the one generating DACK (except for
the reversed sense of the output!). This line is used to ter­
minate an 8272 command before the command has com­
pleted execution. Thus, the TC input to the 8272 is
software driven in this case. Another method of driving
the TC input would be to connect the DACK signal to
one ... f the 80186 timers, and program the timer to out-

AFN-21 0973

AP-186

DRO ,.- D Qr--- D oJ
7474 7474

C. Cl C. Cl

I J DRO

CLKOUT H> ClK

PCS2 cs
-nI

ALE Dr- DACK

ADDR
lATCH 8272 U
~ TC

FLOPPY

DISK

NTERFACE
.~

AO

DATA
DSO-

AD7-ADO / SUF-
8' 8/ DS7

FER

RD RD

WR WR

RESET RESET

C. - 7474 CLOCK INPUT

Cl - 7474 CLEAR INPUT

Figure 39_ Example 8272/80186 DMA Interface

put a pulse to the 8272 after a certain number of DMA
cycles have been run (see next section for 80186 timer
information).

The above discussion assumed that a single 80186
PCS line is free to generate an 8272 select signals. If
more than one ch~lect is free, however, different
80186 generated PCS lines could be used for each
function. For example, PCS2 could be used to select
the 8272, PCS3 could be used to drive the DACK line
of the 8272, etc.

DMA requests are delayed by two clock periods in going
from the 8272 to the 80186. This is requir~ the 8272
tRQR (time from DMA request to DMA RD going ac­
tive) spec of 800ns min. This requires 6.4 80186 CPU

33

clock cycles (at 8 MHz), wen beyond the 5 minimum
provided by the 80186 (4 clock cycles to the beginning of
the DMA bus cyc~ to the beginning ofT 2 of the DMA
bus cycle where RD will go active). The two flip-flops
add two complete CPU clock cycles to this response
time.

DMA request will go away 200ns after DACK is pre­
sented to the 8272. During a DMA write cycle (i.e., a
destination synchronized transfer), this is not soon
enough to prevent the immediate generation of another
DMA transfer if no wait states are inserted in the depos­
it cycle to the 8272. Therefore, at least I wait state is re­
quired by this interface, regardless of the data access
parameters of the 8272.

AFN-21 0973

AP-186

4.9.2 8274 SERIAL
COMMUNICATION INTERFACE

An example 8274 synchronous/asynchronous serial
chip/80186 DMA interface is shown in Figure 40. The
8274 interface is even simpler than the 8272 interface,
since it does not require the generation of a DMA ac­
knowledge signal, and the 8274 does not require the
length of time between a DMA request and the DMA
read or write cycle that the 8272 does. An example serial
driver using the 8274 in DMA mode with the 80186 is
given in Appendix C.

8274
DRQO TxDRQ.

DRQl RxDRQ.

ADDR

--T--,..... AO,Al
LATCH

lV
A" 8286
A,

iT-ADO·AD7 DATA DBO-DB7
8 BUFFER

AD AD

WR WR

RESET RESET

Figure 40. Example 8274/80186 DMA Interface

The data lines of the 8274 are connected through buffers
to the 80186 ADO-AD7 lines. Again, these are required
not because of bus drive problems, but because the 8274
will not float its drivers before the 80186 will begin driv­
ing address information on its address/data bus. If both
the 8274 and the 8272 are included in the same 80186
system, they could share the same data bus buffer (as
could any other peripheral devices in the system).

The 8274 does not require a DMA acknowledge signal.
The first read from or write to the data register of the
8274 after the 8274 generates the DMA request signal
will clear the DMA request. The time between when the
control signal (RD or WR) becomes active and
when the 8274 will drop its DMA request during a
DMA write is 150ns, which will require at least one wait
state be inserted into the DMA write cycle for proper op­
eration of the interface.

34

5. TIMER UNIT INTERFACING

The 80186 includes a timer unit which provides three in­
dependent 16-bit timers. These timers operate indepen­
dently of the CPU. Two of these have input and output
pins allowing counting of external events and generation
of arbitrary waveforms. The third timer can be used as a
timer, as a prescaler for the other two timers, or as a
DMA request source.

5.1 Timer Operation

The internal timer unit on the 80186 could be modeled
by a single counter element, time multiplexed to three
register banks, each of which contains different control
and count values. These register banks are, in turn, dual
ported between the counter element and the 80186 CPU
(see Figure 41). Figure 42 shows the timer element se­
quencing, and the subsequent constraints on input and
output signals. If the CPU modifies one of the timer reg­
isters, this change will affect the counter element the
next time that register is presented to the counter ele­
ment. There is no connection between the sequencing of
the counter element through the timer register banks
and the Bus Interface Unit's sequencing through T­
states. Timer operation and bus interface operation are
completely asynchronous.

5.2 Timer Registers

Each timer is controlled by a block of registers (see Fig­
ure 43). Each of these registers can be read or written
whether or not the timer is operating. All processor ac­
cesses to these registers are synchronized to all counter
element accesses to these registers, meaning that one
will never read a count register in which only half of the
bits have been modified. Because of this synchroniza­
tion, one wait state is alllomatically inserted into any ac­
cess to the timer registers. Unlike the DMA unit,
locking accesses to timer registers will not prevent the
timer's counter element from accessing the timer
registers.

Each timer has a 16-bit count register. This register is
incremented for each timer event. A timer event can be a
low-to-high transition on the external pin (for timers 0
and I), a CPU clock transition (divided by 4 because of
the counter element multiplexing), or a time out of timer
2 (for timers 0 and I). Because the count register is 16
bits wide, up to 65536 (216) timer events can be counted
by a single timer / counter. This register can be both read
or written whether the timer is or is not operating.

Each timer includes a maximum count register. When­
ever the timer count register is equal to the maximum
count register, the count register will be reset to zero,
that is, the maximum count value will never be stored in
the count register. This maximum count value may be
writtAn while the timer is operating. A maximum count

AFN-2l0973

inter AP-186

CPU

DMA

REQUEST

Figure 41. 80186 Timer Model

TIMER IN
o

TIMER IN
1

TIMER OUT
o

TIMER OUT
1

1 Timer In 0 resolution time
2 Timer In 1 resolution time

TIMER 0

SERVICED

TIMER 1

SERVICED

3 Modified count value written Into 80186 timer 0 count register
4 Modified count value written Into 80186 timer 1 count register

TIMER 2

SERVICED DEAD

To OUT

T,OUT

TIMER 0

SERVICED

Figure 42. 80186 Counter Element Multiplexing and Timer Input Synchronization

35 AFN-21 0973

Ap·186

COUNT REGISTER

OFFSET

50H
52H
54H

56H
56H

SAH
SCH
5EH
60H

62H
64H
66H

------------_ MAX COUNT REGIS.!!R~ ____
TIMER 0

_ MAX COUNT REGIS~ar ____

CONTROL REGISTER I
_ COUNT REGISTER ______

_ MAX COUNT REGISTER~ ____
TIMER 1

MAX COUNT REGISTER B
- CONTROL REGISTER-C!) - - --

COUNT REGISTER ------------_ MAX COUNT REGISTER _____
TIMER 2

X X X
- CONTROL REGISTER-(ij - - --

<D CONTROL REGISTER LAYOUT

I MC I RTG I P I EXT I ALT ICON1i
15 o

Figure 43. 80186 Timer Register Layout

value of 0 implies a maximum count of 65536, a maxi·
mum count value of I implies a maximum count of I,
etc. The user should be aware that only equivalence be­
tween the count value and the maximum count register
value is checked, that is, the count value will not be
cleared if the value in the count register is greater than
the value in the maximum count register. This could only
occur by programmer intervention, either by setting the
value in the count register greater than the value in the
maximum count register, or by setting the value in the
maximum count register to be less than the value in the
count register. If this is programmed, the timer will
count to the maximum possible count (FFFFH), incre­
ment to 0, then count up to the value in the maximum
count register. The TC bit in the timer control register
will not be set when the counter overflows to 0, nor will
an interrupt be generated from the timer unit.

Timers 0 and I each contain an additional maximum
count register. When both maximum count registers are
used, the timer will first count up to the value in maxi·
mum count register A, reset to zero, count up to the val­
ue in maximum count register B, and reset to zero again.
The ALTernate bit in the timer control register deter­
mines whether one or both maximum count registers are
used. If this bit is low, only maximum count register A is
used; maximum count register B is ignored. If it is high,
both maximum count register A and maximum count
register B are used. The RIU (register in lise) bit in the
timer control register indicates which maximum count
register is currently being used. This bit is 0 when maxi­
mum count register A is being used, I when maximum
count register B is being used. This RIU bit is read only.
It is unaffected by any write to the timer control register.
It will always be read 0 in single maximum count regis-

36

ter mode (since only maximum count register A will be
used).

Each timer can generate an interrupt whenever the tim­
er count value reaches a maximum count value. That is,
an interrupt can be generated whenever the value in
maximum count register A is reached, and whenever the
value in maximum count register B is reached. In addi­
tion, the MC (maximum count) bit in the timer control
register is set whenever the timer count reaches a maxi­
mum count value. This bit is never automatically
cleared, Le., programmer intervention is required to
clear this bit. If a timer generates a second interrupt re­
quest before the first interrupt request has been ser­
viced, the first interrupt request to the CPU will be lost.

Each timer has an ENable bit in the timer control regis­
ter. This bit is used to enable the timer to count. The tim­
er will count timer events only when this bit is set. Any
timer events occurring when this bit is reset are ignored.
Any write to the timer control register will modify the
ENable bit only if the INHibit bit is also set. The timer
ENable bit will not be modified by a write to the timer
control register if the INHibit bit is not set. The INHibit
bit in the timer control register allows selective updating
of the timer ENable bit. The value of the INHibit bit is
not stored in a write to the timer control register; it will
always be read as a I.

Each timer has a CONTinuous bit in the timer control
register. If this bit is cleared, the timer EN able bit will
be automatically cleared at the end of each timing cycle.
If a single maximum count register is used, the end of a
timing cycle occurs when the count value resets to zero
after reaching the value in maximum count register A. If
dual maximum count registers are used, the end of a

AFN-21 0973

AP-186

timing cycle occurs when the count value resets to zero
after reaching the value in maximum count register B. If
the CONTinuous bit is set, the ENable bit in the timer
control register will never be automatically reset. Thus,
after each timing cycle, another timing cycle will auto­
matically begin. For example, in single maximum count
register mode, the timer will count up to the value in
maximum count register A, reset to zero, count up to the
value in maximum count register A, reset to zero, ad in­
finitum. In dual maximum count register mode, the tim­
er will count up the the value in maximum count register
A, reset to zero, count up the value in maximum count
register B, reset to zero, count up to the value in maxi­
mum count register A, reset to zero, et cetera.

5.3 Timer Events
Each timer counts timer events. All timers can use a
transition of the CPU clock as an event. Because of the
counter element multiplexing, the timer count value- will
be incremented every fourth CPU clock. For timer 2,
this is the only timer event which can be used. For timers
o and I, this event is selected by clearing the EXTernal
and Prescaler bits in the timer control register.

Timers 0 and 1 can use timer 2 reaching its maximum
count as a timer event. This is selected by clearing the
EXTernal bit and setting the Prescaler bit in the timer
control register. When this is done, the timer will incre­
ment whenever timer 2 resets to zero having reached its
own maximum count. Note that timer 2 must be initial­
ized and running for the other timer's value to be
incremented.

Timers 0 and 1 can also be programmed to count low-to­
high transitions on the external input pin. Each transi­
tion on the external pin is synchronized to the 80186
clock before it is presented to the timer circuitry, and
may, therefore, be asynchronous (see Appendix B for in­
formation on 80186 synchronizers). The timer counts
transitions on the input pin: the input value must go low,
then go high to cause the timer to increment. Any transi­
tion on this line is latched. If a transition occurs when a
timer is not being serviced by the counter element, the
transition on the input line will be remembered so that
when the timer does get serviced, the input transition
will be counted. Because of the counter element multi­
plexing, the maximum rate at which the timer can count
is 1/4 of the CPU clock rate (2 MHz with an 8 MHz
CPU clock).

5.4 Timer Input Pin Operation
Timers 0 and I each have individual timer input pins.
Alliow-to-high transitions on these input pins are syn­
chronized, latched, and presented to the counter element
when the particular timer is being serviced by the
counter element.

Signals on this input can affect timer operation in three
different ways. The manner in which the pin signals are
used is determined by the EXTernal and RTG (retrig-

37

ger) bits in the timer control register. If the EXTernal
bit is set, transitions on the input pin will cause the timer
count value to increment ifthe timer is enabled (the EN­
able bit in the timer control register is set). Thus, the
timer counts external events. If the EXTernal bit is
cleared, all timer increments are caused by either the
CPU clock or by timer 2 timing out. In this mode, the
RTG bit determines whether the input pin will enable
timer operation, or whether it will retrigger timer
operation.

If the EXTernal bit is low and the RTG bit is also low,
the timer will count internal timer events only when the
timer input pin is high and the ENable bit in the timer
control register is set. Note that in this mode, the pin is
level sensitive, not edge sensitive. A low-to-high transi­
tion on the timer input pin is not required to enable timer
operation. If the input is tied high, the timer will be con­
tinually enabled. The timer enable input signal is com­
pletely independent of the ENable bit in the timer
control register: both must be high for the timer to
count. Example uses for the timer in this mode would be
a real time clock or a baud rate generator.

If the EXTernal bit is low and the RTG bit is high, the
timer will act as a digital one-shot. In this mode, every
low-to-high transition on the timer input pin will cause
the timer to reset to zero. If the timer is enabled (i.e., the
ENable bit in the timer control register is set) timer op­
eration will begin (the timer will count CPU clock tran­
sitions or timer 2 timeouts). Timer operation will cease
at the end of a timer cycle, that is, when the value in the
maximum count register A is reached and the timer
count value resets to zero (in single maximum count reg­
ister mode, remember that the maximum count value is
never stored in the timer count register) or when the val­
ue in maximum count register B is reached and the timer
count value resets to zero (in dual maximum count regis­
ter mode). If another low-to-high transition occurs on
the input pin before the end of the timer cycle, the timer
will reset to zero and begin the timing cycle again re­
gardless of the state of the CONTinuous bit in the timer
control register the RIU bit will not be changed by the
input transition. If the CONTinuous bit in the timer
control register is cleared, the timer ENable bit will
automatically be cleared at the end of the timer cycle.
This means that any additional transitions on the input
pin will be ignored by the timer. If the CONTinuous bit
in the timer control register is set, the timer will reset to
zero and begin another timing cycle for every low-to­
high transition on the input pin, regardless of whether
the timer had reached the end of a timer cycle, because
the timer ENable bit would not have been cleared at the
end of the timing cycle. The timer will also continue
counting at the end of a timer cycle, whether or not an­
other transition has occurred on the input pin. An exam­
ple use of the timer in this mode is an alarm clock time
out signal or interrupt.

AFN-21 0973

AP-186

5.5 Timer Output Pin Operation

Timers 0 and 1 each contain a single timer output pin.
This pin can perform two functions at programmer op­
tion. The first is a single pulse indicating the end of a
timing cycle. The second is a level indicating the maxi­
mum count register currently being used. The timer out­
puts operate as outlined below whether internal or
external clocking of the timer is used. If external clock­
ing is used, however, the user should remember that the
time between an external transition on the timer input
pin and the time this transition is reflected in the timer
out pin will vary depending on when the input transition
occurs relative to the timer's being serviced by the
counter element.

When the timer is in single maximum count register
mode (the ALTernate bit in the timer control register is
cleared) the timer output pin will go low for a single
CPU clock the clock after the timer is serviced by the
counter element where maximum count is reached (see
Figure 44). This mode is useful when using the timer as

TIMER 0 SERVICED

a baud rate generator.

When the timer is programmed in dual maximum count
register mode (the ALTernate bit in the timer control
register is set), the timer output pin indicates which
maximum count register is being used. It is low if maxi­
mum count register B is being used for the current
count, high if maximum count register A is being used.
If the timer is programmed in continuous mode (the
CONTinuous bit in the timer control register is set), this
pin could generate a waveform of any duty cycle. For ex­
ample, if maximum count register A contained 10 and
maximum count register B contained 20, a 33% duty cy­
cle waveform would be generated.

5.6 Sample 80186 Timer Applications

The 80186 timers can be used for almost any application
for which a discrete timer circuit would be used. These
include real time clocks, baud rate generators, or event
counters.

INTERNAL --------------------~--------_r-------------------COUNT MAXCOUNT-1
VALUE

TMR OUT ---------------r,
PIN

Figure 44. 80186 Timer Out Signal

80186
+ 5V

+5V r----- TMRINJ
TIMER

TMRIN1
0 TMROUTO TxC } SERIAL

'----
RxC CONTROLLER

TMR0UT1

TMRINO

Figure 45. 80186 Real Time Clock Figure 46. 80186 Baud Rate Generator

38 AFN-21 0973

AP-186

80186

TMRINO

o
o
o 3GLIGHT

~

Figure 47.

5.6.1 80186 TIMER REAL TIME CLOCK

The sample program in appendix D shows the 80186
timer being used with the 80186 CPU to form a real
time clock. In this implementation, timer 2 is pro·
grammed to provide an interrupt to the CPU every milli­
second. The CPU then increments memory based clock
variables.

5.6.2 80186 TIMER BAUD RATE GENERATOR

The 80186 timers can also be used as baud rate gener­
ators for serial communication controllers (e.g., the
8274). Figure 46 shows this simple connection, and the

TIMER TIMER TIMER DMA DMA

code to program the timer as a baud rate generator is in­
cluded in appendix D.

5.6.3 80186 TIMER EVENT COUNTER

The 80186 timer can be used to count events. Figure 47
shows a hypothetical set up in which the 80186 timer
will count the interruptions in a light source. The num­
ber of interruptions can be read directly from the count
register of the timer, since the timer counts up, i.e., each
interruption in the light source will cause the timer
count value to increase. The code to set up the 80186
timer in this mode is included in appendix D.

o 1 2 0 1 INTO INT1 INT2 INT3 NMI

TIMER
CONTROL REG.

DMAO
CONTROL REG.

DMA1
CONTROL REG.

EXT. INPUT 0
CONTROL REG.

EXT. INPUT 1
CONTROL REG.

EXT. INPUT 2
CONTROL REG.

INTERRUPT
PRIORITY
RESOLVER

INTERRUPT
REQUEST TO
PROCESSOR

INTERNAL ADDRESS/DATA BUS

INTERRUPT
REQUEST REG.

INTERRUPT
MASK REG.

IN·SERVICE
REG.

PRIOR. LEY.
MASK REG.

INTERRUPT
STATUS REG.

Figure 48. 80186 Interrupt Controller Block Diagram

39 AFN-21 0973

AP-186

6. 80186 INTERRUPT CONTROLLER
INTERFACING

The 80186 contains an integrated interrupt controller.
This unit performs tasks of the interrupt controller in a
typical system. These include synchronization of inter­
rupt requests, priortization of interrupt requests, and re­
quest type vectoring in response to a CPU interrupt
acknowledge. It can be a master to two external 8259A
interrupt controllers or can be a slave to an external in­
terrupt controller to allow compatibility with the iRMX
86 operating system, and the 80130/80150 operating
system firmware chips.

6.1 Interrupt Controller Model

The integrated interrupt controller block diagram is
shown in Figure 48. It contains registers and a control
element. Four inputs are provided for external interfa9-
ing to the interrupt controller. Their functions change
according to the programmed mode of the interrupt con­
troller. Like the other 80186 integrated peripheral regis­
ters, the interrupt controller registers are available for
CPU reading or writing at any time.

6.2 Interrupt Controller Operation
The interrupt controller operates in two major modes,
non-iRMX 86 mode (referred to henceforth as master
mode), and iRMX 86 mode. In master mode the inte­
grated controller acts as the master interrupt controller
for the system, while in iRMX 86 mode the controller

operates as a slave to an external interrupt controller
which operates as the master interrupt controller for the
system. Some of the interrupt controller registers and in­
terrupt controller pins change definition between these
two modes, but the basic charter and function of the in­
terrupt controller remains fundamentally the same. The
difference is when in master mode, the interrupt control­
ler presents its interrupt input directly to the 80186
CPU, while in iRMX 86 mode the interrupt controller
presents its interrupt input to an external controller
(which then presents its interrupt input to the 80186
CPU). Placing the interrupt controller in iRMX 86
mode is done by setting the iRMX mode bit in the pe­
ripheral control block pointer (see appendix A).

6.3 Interrupt Controller Registers
The interrupt controller has a number of registers which
are used to control its operation (see Figure 49). Some of
these change their function between the two major
modes of the interrupt controller (master and iRMX 86
mode). The differences are indicated in the following
section. If not indicated, the function and implementa-'
tion of the registers is the same in the two basic modes of
operation of the interrupt controller. The method of in­
teraction among the various interrupt controller regis­
ters is shown in the flowcharts in Figures 57 and 58.

6.3.1 CONTROL REGISTERS

Each source of interrupt to the 80186 has a control regis­
ter in the internal controller. These rllgisters contain

MASTER MODE OFFSET ADDRESS ,RMX86~ Mode

INT3 CONTROL REGISTER

INT2 CONTROL REGISTER

INT1 CONTROL REGISTER

INTO CONTROL REGISTER

DMA1 CONTROL REGISTER

DMAO CONTROL REGISTER

TIMER CONTROL REGISTER

INTERRUPT CONTROLLER STATUS REGISTER

INTERRUPT REQUEST REGISTER

IN-SERVICE REGISTER

PRIORITY MASK REGISTER

MASK REGISTER

POLL STATUS REGISTER

POLL REGISTER -----------------------EOI REGISTER -----------0-----------

3EH CD
3CH ===========0=========== 3AH TIMER 2 CONTROL REGISTER

38H

38H

34H

32H

30H

2EH

TIMER 1 CONTROL REGISTER

DMA 1 CONTROL REGISTER

DMAO CONTROL REGISTER

TIMER 0 CONTROL REGISTER

INTERRUPT CONTROLLER STATUS REGISTER

INTERRUPT REQUEST REGISTER

2CH ______ .!.N..!I!'!Y~!~E~I~~~ _____ _

2AH PRIORITY MASK REGISTER

28H MASK REGISTER

28H ===========0=========== 24H ___________ 0 __________ _
22H SPECIFIC EOI REGISTER -----------------------
20H INTERRUPT VECTOR REGISTER

1. Unsupported in this mode: values written mayor may not be stored

Figure 49. 80186 Interrupt ControUer Registers

40 AFN-21 0973

AP-186

15 o

CD f
SPECIAL CAS- LEVEL

I I FULLY MASK
0 NESTED CADE TRIG. PRIORITY BITS

BITQ) MODEQ) MODE CD BIT I l
1. This bit present only In INTO-INT3 control registers
2. These bits present only in INTO-INT1 control register

Figure 50. Interrupt Controller Control Register

15 MASTER MODE 0 15 iRMXN 86 MODE 0

X X X 113112 111 110 I 01 I DO I x FMRI x

Figure 51. 80186 Interrupt Controller In-Service, Interrupt Request and Mask Register Format

three bits which select one of eight different interrupt
priority levels for the interrupt device (0 is highest prior­
ity, 7 is lowest priority), and a mask bit to enable the in­
terrupt (see Figure 50). When the mask bit is low, the
interrupt is enabled, when it is high, the interrupt is
masked.

There are seven control registers in the 80186 integrated
interrupt controller. In master mode, four of these serve
the external interrupt inputs, one each for the two DMA
channels, and one for the collective timer interrupts. In
iRMX 86 mode, the external interrupt inputs are not
used, so each timer can have its own individual control
register.

6.3.2 REQUEST REGISTER

The interrupt controller includes an interrupt request
register (see Figure 51). This register contains seven ac­
tive bits, one for each interrupt control register. When­
ever an interrupt request is made by the interrupt source
associated with a specific control register, the bit in in­
terrupt request register is set, regardless if the interrupt
is enabled, or if it is of sufficient priority to cause a pro­
cessor interrupt. The bits in this register which are asso­
ciated with integrated peripheral devices (the DMA and
timer units) can be read or written, while the bits in this
register which are associated with the external interrupt
pins can only be read (values written to them are not
stored). These interrupt request bits are automatically
cleared when the interrupt is acknowledged.

6.3.3 MASK REGISTER AND PRIORITY
MASK REGISTER

The interrupt controller contains a mask register (see
Figure 51). This register contains a mask bit for each in­
terrupt source associated with an interrupt control regis­
ter. The bit for an interrupt source in the mask register is

41

identically the same bit as is provided in the interrupt
control register: modifying a mask bit in the control reg­
ister will also modify it in the mask register, and vice
versa.

The interrupt controller also contains a priority mask
register (see Figure 52). This register contains three bits
which indicate the priority of the current interrupt being
serviced. When an interrupt is acknowledged (either by
the processor running the interrupt acknowledge or by
the processor reading the interrupt poll register, see be­
low), these bits are set to the priority of the device whose
interrupt is being acknowledged (which will never be
lower than the previous priority programmed into these
bits). They prevent any interrupt oflower priority (as set
by the priority bits in the interrupt control registers for
interrupt sources) from interrupting the processor.
These bits are automatically set to the priority of the
next lowest interrupt when the End Of Interrupt is is­
sued by the CPU to the interrupt controller (or all 1 's if
there is no interrupt pending, meaning that interrupts of
all priority levels are enabled). This register may be read
or written.

I" ·
• �L_X ____ X ___ X ___ x ___ x~I_P2~I_Pl~lp~01

Figure 52. 80186 Interrupt Controller Priority
Mask Register Format

6.3.4 IN-SERVICE REGISTER

The interrupt controller contains an in-service register
(see Figure 51). A bit in the in-service register is associ­
ated with each interrupt control register so that when an
interrupt request by the device associated with the con-

AFN-21 0973

AP-186

trol register is acknowledged by the processor (either by
the processor running the interrupt acknowledge or by
the processor reading the interrupt poll register) the bit
is set. The bit is reset when the CPU issues an End Of
Interrupt to the interrupt controller. This register may
be both read and written, i.e., the CPU may set in-ser­
vice bits without an interrupt ever occurring, or may re­
set them without using the EOI function of the interrupt
controller.

6.3.5 POLL AND POLL STATUS REGISTERS

The interrupt controller contains both a poll register and
a poll status register (see Figure 53). Both of these regis­
ters contain the same information. They have a single bit
to indicate an interrupt is pending. This bit is set if an
interrupt of sufficient priority has been received. It is
automatically cleared when the interrupt is acknowl­
edged. If (and only if) an interrupt is pending, they also
contain information as to the interrupt type of the high­
est priority interrupt pending.

15 o
x x x x I 541 53 1 52 1 51 I 50 I

50-54 ~ interrupt type

Figure 53. 80186 Poll & Poll Status
Register Format

Reading the poll register will acknowledge the pending
interrupt to the interrupt controller just as if the proces­
sor had acknowledged the interrupt through interrupt
acknowledge cycles. The processor will not actually run

15 MASTER MODE 0

~5PEC/X SO-54 ~ interrupt type

any interrupt acknowledge cycles, and will not vector
through a location in the interrupt vector table. Only the
interrupt request, in-service and priority mask registers
in the interrupt controller are set appropriately. Reading
the poll status register will merely transmit the status of
the polling bits without modifying any of the other inter­
rupt controller registers. These registers are read only:
data written to them is not stored. These registers are
not supported in iRMX 86 mode. The state of the bits in
these registers in iRMX 86 mode is not defined. Howev­
er, accessing the poll register location when in iRMX 86
mode will cause the interrupt controller to "acknowl­
edge" the interrupt (i.e., the in-service bit and priority
level mask register bits will be set).

6.3.6 END OF INTERRUPT REGISTER

The interrupt controller contains an End Of Interrupt
register (see Figure 54). The programmer issues an End
Of Interrupt to the controller by writing to this register.
After receiving the End Of Interrupt, the interrupt con­
troller automatically resets the in-service bit for the in­
terrupt and the priority mask register bits. The value of
the word written to this register determines whether the
End Of Interrupt is specific or non-specific. A non-spe­
cific End Of Interrupt is specified by setting the non­
specific bit in the word written to the End Of Interrupt
register. In a non-specific End Of Interrupt, the in-ser­
vice bit of the highest priority interrupt set is automati­
cally cleared, while a specific End Of Interrupt allows
the in-service bit cleared to be explicitly specified. The
in-service bit is reset whether the bit was set by an inter­
rupt acknowledge or if it was set by the CPU writing the

15 iRMX 86 MODE o

x x x x x
LO-L2 ~ interrupt priority level

x IL21L11LOI j
'----------

Figure 54. 80186 End of Interrupt Register Format

I I x x x
15r DHLT

x
o

x

Figure 55. 80186 Interrupt Status Register Format

15

x x x

Figure 56. 80186 Interrupt Vector Register Format (iRMX 86 mode only)

42 AFN-21 0973

inter AP-186

bit directly to the in-service register. If the highest prior­
ity interrupt is reset, the priority mask register bits will
change to reflect the next lowest priority interrupt to be
serviced. If a less than highest priority interrupt in-ser­
vice bit is reset, the priority mask register bits will not be
modified (because the highest priority interrupt being
serviced has not changed). Only the specific EOI is sup­
ported in iRMX 86 mode. This register is write only:
data written is not stored and cannot be read back.

6.3.7 INTERRUPT STATUS REGISTER

The interrupt controller also contains an interrupt status
register (see Figure 55). This register contains four sig­
nificant bits. There are three bits used to show which
timer is causing an interrupt. This is required because in
master mode, the timers share a single interrupt control
register. A bit in this register is set to indicate which tim­
er has generated an interrupt. The bit associated with a
timer is automatically cleared after the interrupt re­
quest for the timer is acknowledged. More than one of
these bits may be set at a time. The fourth bit in the in­
terrupt status register is the DMA halt bit. When set,
this bit prevents any DMA activity. It is automatically
set whenever a NMI is received by the interrupt control­
ler. It can also be set explicitly by the programmer. This
bit is automatically cleared whenever the IRET instruc­
tion is executed. All significant bits in this register are
read/write.

6.3.8 INTERRUPT VECTOR REGISTER

Finally, in iRMX 86 mode only, the interrupt controller
contains an interrupt vector register (see Figure 56).
This register is used to specify the 5 most significant bits
of the interrupt type vector placed on the CPU bus in re­
sponse to an interrupt acknowledgement (the lower 3
significant bits of the interrupt type are determined by
the priority level of the device causing the interrupt in
iRMX 86 mode).

6.4 Interrupt Sources

The 80186 interrupt controller receives and arbitrates
among many different interrupt request sources, both
internal and external. Each interrupt source may be pro­
grammed to be a different priority level in the interrupt
controller. An interrupt request generation flow chart is
shown in Figure 57. Such a flowchart would be followed
independently by each interrupt source.

6.4.1 INTERNAL INTERRUPT SOURCES

The internal interrupt sources are the three timers and
the two DMA channels. An interrupt from each of these
interrupt sources is latched in the interrupt controller, so
that if the condition causing the interrupt is cleared in
the originating integrated peripheral device, the inter­
rupt request will remain pending in the interrupt con­
troller. The state of the pending interrupt can be
obtained by reading the interrupt request register of the

43

interrupt controller. For all internal interrupts, the
latched interrupt request can be reset by the processor
by writing to the interrupt request register. Note that all
timers share a common bit in the interrupt request regis­
ter in master mode. The interrupt controller status regis­
ter may be read to determine which timer is actually
causing the interrupt request in this mode. Each timer
has a unique interrupt vector (see section 6.5.1). Thus
polling is not required to determine which timer has
caused the interrupt in the interrupt service routine.
Also, because the timers share a common interrupt con­
trol register, they are placed at a common priority level
as referenced to all other interrupt devices. Among
themselves they have a fixed priority, with timer 0 as the
highest priority timer and timer 2 as the lowest priority
timer.

6.4.2 EXTERNAL INTERRUPT SOURCES

The 80186 interrupt controller will accept external in­
terrupt requests only when it is programmed in master
mode. In this mode, the external pins associated with the
interrupt controller may serve either as direct interrupt
inputs, or as cascaded interrupt inputs from other inter­
rupt controllers as a programmed option. These options
are selected by programming the C and SFNM bits in
the INTO and INTI control registers (see Figure 50).

When programmed as direct interrupt inputs, the four
interrupt inputs are each controlled by an individual in­
terrupt control register. As stated earlier, these registers
contain 3 bits which select the priority level for the inter­
rupt and a single bit which enables the interrupt source
to the processor. In addition each of these control regis­
ters contains a bit which selects either edge or level trig­
gered mode for the interrupt input. When edge triggered
mode is selected, a low-to-high transition must occur on
the interrupt input before an interrupt is generated,
while in level triggered mode, only a high level needs to
be maintained to generate an interrupt. In edge trig­
gered mode, the input must remain low at least 1 clock
cycle before the input is "re-armed." In both modes, the
interrupt level must remain high until the interrupt is
acknowledged, i.e., the interrupt request is not latched
in the interrupt controller. The status of the interrupt in­
put can be shown by reading the interrupt request regis­
ter. Each of the external pins has a bit in this register
which indicates an interrupt request on the particular
pin. Note that since interrupt requests on these inputs
are not latched by the interrupt controller, if the external
input goes inactive, the interrupt request (and also the
bit in the interrupt request register) will also go inactive
(low). Also, if the interrupt input is in edge triggered
mode, a low-to-high transition on the input pin must oc­
cur before the interrupt request bit will be set in the in­
terrupt request register.

If the C (Cascade) bit of the INTO or INTI control reg­
isters are set, th~ interrupt input is cascaded to an exter­
nal interrupt controller. In this mode, whenever the

AFN-21 0973

AP-186

PRESENT INTERRUPT
REQUEST TO

EXTERNAL CONTROLLER

Figure 57. 80186 Interrupt Request Sequencing

interrupt presented to the INTO or INTI line is ac­
knowledged, the integrated interrupt controller will not
provide the interrupt type for the interrupt. Instead, two
INTA bus cycles will be run, with the INT2 and INT3
lines providing the interrupt acknowledge pulses for the
INTO and the INTI interrupt requests respectively. IN­
TO/INT2 and INTI/INT3 may be individually pro­
grammed into cascade mode. This allows 128
individually vectored interrupt sources if two banks of 9
external interrupt controllers each are used.

6.4.3 iRMX" 86 MODE INTERRUPT SOURCES

When the interrupt controller is configured in iRMX 86
mode, the integrated interrupt controller accepts inter-

44

rupt requests only from the integrated peripherals. Any
external interrupt requests must go through an external
interrupt controller. This external interrupt controller
requests interrupt service directly from the 80186 CPU
through the INTO line on the 80186, In this mode, the
function of this line is not affected by the integrated in­
terrupt controller. In addition, in iRMX 86 mode the in­
tegrated interrupt controller must request interrupt
service through this external interrupt controller. This
interrupt request is made on the INT3 line (see section
6.7.4 on external interrupt connections).

6.5 Interrupt Response
The 80186 can respond to an interrupt in two different
ways. The first will occur if the internal controller is pro-

AFN-210973

AP-186

GENERATE INTA

CJ;i:~':"~R YES
INTERRUPT CD

CONTROLLER

1 . Before actual interrupt acknowledge is run by CPU

GENERATE

INTA

WAIT FOR NEXT
INTERRUPT

ACKNOWLEDGE

2. Two interrupt acknowledge cycles will be run, the interrupt type is read by
the CPU on the second cycle

3. Interrupt acknowledge cycles will not be run, the interrupt vector address is
placed on an internal bus and is not available outside the processor

4. Interrupt type is not driven on external bus in iRMX86 mode

Figure 58. 80186 Interrupt Acknowledge Sequencing

viding the interrupt vector information with the control­
ler in master mode. The second will occur if the CPU
reads interrupt type information from an external inter­
rupt controller or if the interrupt controller is in iRMX
86 mode. In both of these instances the interrupt vector
information driven by the 80186 integrated interrupt
controller is not available outside the 80186
microprocessor.

In each interrupt mode, when the integrated interrupt
controller receives an interrupt response, the interrupt
controller will automatically set the in-service bit and
the priority mask bits and reset the interrupt request bit
in the integrated controller. The priority mask bits will
prevent the controller from generating any further inter­
rupts to the CPU from sources of lower priority until the
higher priority interrupt service routine has run. In ad­
dition, unless the interrupt control register for the inter­
rupt is set in Special Fully Nested Mode, the interrupt
controller will prevent any interrupts from occurring
from the same interrupt line until the in-service bit for
that line has been cleared.

45

6.5.1 INTERNAL VECTORING, MASTER MODE

In master mode, the interrupt types associated with all
the interrupt sources are fixed and unalterable. The~e
interrupt types are given in Table 5. In response to an in­
ternal CPU interrupt acknowledge the interrupt con­
troller will generate the vector address rather than the
interrupt type. On the 80186 (like the 8086) the inter­
rupt vector address is the interrupt type multiplied by 4.
This speeds interrupt response.

In master mode, the integrated interrupt controller is
the master interrupt controller of the system. As a re­
sult, no external interrupt controller need know when
the integrated controller is providing an interrupt vector,
nor when the interrupt acknowledge is taking place. As a
result, no interrupt acknowledge bus cycles will be gen­
erated. The first external indication that an interrupt
has been acknowledged will be the processor reading the
interrupt vector from the interrupt vector table in low
memory.

AFN·21 0973

inter AP-186

Table 5. 80186 Interrupt Vector Types 6.5.2 INTERNAL VECTORING, iRMX'" 86 MODE

Interrupt Vector Default
Name Type Priority

timer 0 8 Oa
timer I 18 Ob
timer 2 19 Oc
DMAO 10 2
DMAI II 3
INTO 12 4
INT I 13 5
INT 2 14 6
INT 3 15 7

Because the two interrupt acknowledge cycles are not
run, and the interrupt vector address does not need be be
calculated, interrupt response to an internally vectored
interrupt is 42 clock cycles, which is faster then the in­
terrupt response when external vectoring is required, or
if the interrupt controller is run in iRMX 86 mode.

If two interrupts of the same programmed priority occur,
the default priority scheme (as shown in table 5) is used.

T, T, T, T.

CLKOUT

In iRMX 86 mode, the interrupt types associated with
the various interrupt sources are alterable. The upper 5
most significant bits are taken from the interrupt vector
register, and the lower 3 significant bits are taken from
the priority level of the device causing the interrupt. Be­
cause the interrupt type, rather than the interrupt vector
address, is given by the interrupt controller in this mode
the interrupt vector address must be calculated by the
CPU before servicing the interrupt.

In iRMX 86 mode, the integrated interrupt controller
will present the interrupt type to the CPU in response to
the two interrupt acknowledge bus cycles run by the pro­
cessor. During the first interrupt acknowledge cycle, the
external master interrupt controller determines which
slave interrupt controller will be allowed to place its in­
terrupt vector on the microprocessor bus. During the
second interrupt acknowledge cycle, the processor reads
the interrupt vector from its bus. Thus, these two inter­
rupt acknowledge cycles must be run, since the integrat­
ed controller will present the interrupt type information
only when the external interrupt controller signals the
integrated controller that it has the highest pending in­
terrupt request (see Figure 59). The 80186 samples the

T, T, T, T, T, T.

I I

SO-S2 ----~:----~~--~~--~----~----~----~:----~----~I~4-~------
I I I I I I

INTO INTE,RRUPT A~KNOWLE~GE INT~RRUPT A~KNOWL~DGE
(HIGH) ---;----,----;;---7----,--;----;----;----7-1----;.--

INT3 ----~-----r----~----~----~--~----~----~----~~-~--­
(HIGH)

~---~---~~r-+---~------~---~---~---~------+----~~r~
CAS CD 80186 SLAVE ENABLE

----~----~--,~~----~'----~'----~----~----~----~----~--~-
SLAVE -----+----~---,

SELECT CD
,
I

INTA ~~----'---'-----'~'-'I
I

LOCK 4 r
I~-~--~--+--~--~---;.--~--+--~--J
I

1. SLAVE SELECT = INT1
2. INTA = INT2
3. Driven by external interrupt controller
4. SLAVE SELECT must be driven before Phase 2 of T 2 of the second INTA

9Y2!L ____ __
5. SLAVE SELECT read by 80186

Figure 59. 80186 iRMX-86 Mode Interrupt Acknowledge Timing

46 AFN-21 0973

AP-186

SO-52

INTA

ADO-AD7 --~----~----~----~----~----~----~----~-1
'---'-t-----'-'

LOCK
I
I I

INTERRUPT TYPE
(FROM EXTERNAL

CONTROLLER)

Figure 60. 80186 Cascaded Interrupt Acknowledge Timing

SLAVE SELECT line during the falling edge of the
clock at the beginning of T J of the second interrupt ac­
knowledge cycle. This input must be stable 20ns before
and IOns after this edge.

These two interrupt acknowledge cycles will be run back
to back, and will be LOCKED with the LOCK output
active (meaning that DMA requests and HOLD re­
quests will not be honored until both cycles have been
run). Note that the two interrupt acknowledge cycles
will always be separated by two idle T states, and that
wait states will be inserted into the interrupt acknowl­
edge cycle if a ready is not returned by the processor bus
interface. The two idle T states are inserted to allow
compatibility with the timing requirements of an exter­
nal 8259A interrupt controller.

Because the interrupt acknowledge cycles must be run in
iRMX 86 mode, even for internally generated vectors,
and the integrated controller presents an interrupt type
rather than a vector address, the interrupt response time
here is the same as if an externally vectored interrupt
was required, namely 55 CPU clocks.

6.5.3 EXTERNAL VECTORING

External interrupt vectoring occurs whenever the 80186
interrupt controller is placed in cascade mode, special
fully nested mode, or iRMX 86 mode (and the integrat­
ed controller is not enabled by the external master inter­
rupt controller). In this mode, the 80186 generates two
interrupt acknowledge cycles, reading the interrupt type

47

off the lower 8 bits of the address/data bus on the second
interrupt acknowledge cycle (see Figure 60). This inter­
rupt response is exactly the same as the 8086, so that the
8259A interrupt controller can be used exactly as it
would in an 8086 system. Notice that the two interrupt
acknowledge cycles are LOCKED, and that two idle T­
states are always inserted between the two interrupt ac­
knowledge bus cycles, and that wait states will be
inserted in the interrupt acknowledge cycle if a ready is
not returned to the processor. Also notice that the 80186
provides two interrupt acknowledge signals, one for in­
terrupts signaled by the INTO line, and one for inter­
rupts signaled by the INTI line (on the INT2/INTAO
and INT3/INTAl lines, respectively). These two inter­
rupt acknowledge signals are mutually exclusive. Inter­
r!!Qt acknowledge status will be driven on the status lines
(SO-S2) when either INT2/INTAO or INT3/
INTAI signal an interrupt acknowledge.

6.6 Interrupt Controller External
Connections

The four interrupt signals can be programmably config­
ured into 3 major options. These are direct interrupt in­
puts (with the integrated controller providing the
interrupt vector), cascaded (with an external interrupt
controller providing the interrupt vector), or iRMX 86
mode. In all these modes, any interrupt presented to the
external lines must remain set until the interrupt is
acknowledgt:d.

AFN-21 0973

AP-186

6.6.1 DIRECT INPUT MODE

When the Cascade mode bits are cleared, the interrupt
input lines are configured as direct interrupt input lines
(see Figure 61). In this mode an interrupt source (e.g.,
an 8272 floppy disk controller) may be directly connect­
ed to the interrupt input line. Whenever an interrupt is
received on the input line, the integrated controller will
do nothing unless the interrupt is enabled, and it is the
highest priority pending interrupt. At this time, the in­
terrupt controller will present the interrupt to the CPU
and wait for an interrupt acknowledge. When the ac­
knowledge occurs, it will present the interrupt vector ad­
dress to the CPU. In this mode, the CPU will not run any
interrupt acknowledge cycles.

INTERRUPT

SOURCES .
.

80186

INTO

INTl

INT2

INT3

Figure 61. 80186 Non-Cascaded
Interrupt Connection

These lines can be individually programmed in either
edge or level triggered mode using their respective con­
trol registers. In edge triggered mode, a low-to-high
transition must occur before the interrupt will be gener­
ated to the CPU, while in level triggered mode, only a
high level must be present on the input for an interrupt
to be generated. In edge trigger mode, the interrupt in­
put must also be low for at least I CPU clock cycle to
insure recognition. In both modes, the interrupt input
must remain active until acknowledged.

6.6.2 CASCADE MODE

When the Cascade mode bit is set and the SFNM bit is
cleared, the interrupt input lines are configured in cas­
cade mode. In this mode, the interrupt input line is
paired with an interrupt acknowledge line. The INT2/
INTAO and INn/INTAI lines are dual purpose; they
can function as direct input lines, or they can function as
interrupt acknowledge outputs. INT2/INTAO provides
the interrupt acknowledge for an INTO input, and
INT3/INTAI provides the interrupt acknowledge for
an INTI input. Figure 62 shows this connection.

When programmed in this mode, in response to an inter­
rupt request on the INTO line, the 80186 will provide
two interrupt acknowledge pulses. These pulses will be
provided on the INT2/INTAO line, and will also be re­
flected by interrupt acknowledge status being generated

48

on the SO-S2 status lines. On the second pulse, the inter­
rupt type will be read in. The 80186 externally vectored
interrupt response is covered in more detail in section
6.5.

8259A 80186

INT INTO

INTA INT2

8259A

INT INTl

INTA INT3

Figure 62. 80186 Cascade and Special Fully
Nested Mode Interface

INTO/INT2/INTAO and INTI/INn /INTAI may be
individually programmed into interrupt re­
quest/ acknowledge pairs, or programmed as direct in­
puts. This means that INTO/INT2/INTAO may be
programmed as an interrupt/acknowledge pair, while
INTI and INT3/INTAI each provide separate inter­
nally vectored interrupt inputs.

When an interrupt is received on a cascaded interrupt,
the priority mask bits and the in-service bits in the par­
ticular interrupt control register will be set into the in­
terrupt controller's mask and priority mask registers.
This will prevent the controller from generating an
80186 CPU interrupt request from a lower priority in­
terrupt. Also, since the in-service bit is set, any subse­
quent interrupt requests on the particular interrupt
input line will not cause the integrated interrupt control­
ler to generate an interrupt request to the 80186 CPU.
This means that if the external interrupt controller re­
ceives a higher priority interrupt request on one of its in­
terrupt request lines and presents it to the 80186
interrupt request line, it will not subsequently be pre­
sented to the 80186 CPU by the integrated interrupt
controller until the in-service bit for the interrupt line
has been cleared.

6.6.3 SPECIAL FULLY NESTED MODE

When both the Cascade mode bit and the SFNM bit are
set, the interrupt input lines are configured in Special
Fully Nested Mode. The external interface in this mode
is exactly as in Cascade Mode. The only difference is in
the conditions allowing an interrupt from the external
interrupt controller to the integrated interrupt control­
ler to interrupt the 80186 CPU.

When an interrupt is received from a special fully nested

AFN-21 0973

AP-186

mode interrupt line, it will interrupt the 80186 CPU if it
is the highest priority interrupt pending regardless of the
state of the in-service bit for the interrupt source in the
interrupt controller. When an interrupt is acknowledged
from a special fully nested mode interrupt line, the pri­
ority mask bits and the in-service bits in the particular
interrupt control register will be set into the interrupt
controUer's in-service and priority mask registers. This
will prevent the interrupt controUer from generating an
80186 CPU interrupt request from a lower priority in­
terrupt. Unlike cascade mode, however, the interrupt
controUer will not prevent additional interrupt requests
generated by the same external interrupt controller
from interrupting the 80186 CPU. This means that if
the external (cascaded) interrupt controller receives a
higher priority interrupt request on one of its interrupt
request lines and presents it to the integrated control­
ler's interrupt request line, it may cause an interrupt to
be generated to the 80186 CPU, regardless of the state
of the in-service bit for the interrupt line.
If the SFNM mode bit is set and the Cascade mode bit is
not also set, the controUer will provide internal interrupt
vectoring. It will also ignore the state of the in-service bit
in determining whether to present an interrupt request
to the CPU. In other words, it will use the SFNM condi­
tions of interrupt generation with an internally vectored
interrupt response, i.e., if the interrupt pending is the
highest priority type pending, it will cause a CPU inter­
rupt regardless of the state of the in-service bit for the
interrupt.

6.6.4 iRMX'" 86 MODE

When the RMX bit in the peripheral relocation register
is set, the interrupt controller is set into iRMX 86 mode.

80186
ARDY U

INTO

INT2

INTl

INT3

ADO-AD7

RD

WR

PCSA

In this mode, aU four interrupt controller input lines are
used to perform the necessary handshaking with the ex­
ternal master interrupt controUer. Figure 63 shows the
hardware configuration of the 80186 interrupt lines
with an external controUer in iRMX 86 mode.

80186 8259A

INTO INT -INT2 INTA

~}
CASCADE

INTl ADDR.
DECODE

INT3

Figure 63. 80186 iRMX86 Mode Interface

Because the integrated interrupt controUer is a slave
contro\1er, it must be able to generate an interrupt input
for an external interrupt controller. It also must be sig­
naled when it has the highest priority pending interrupt
to know when to place its interrupt vector on the bus.
These two signals are provided by the INT3/Slave In­
terrupt Output and INTI/Slave Select lines, respective­
ly. The external master interrupt controUer must be able
to interrupt the 80186 CPU, and needs to know when the
interru~est is acknowledged. The INTO and
INT2/INTAO lines provide these two functions.

8259A-2

INT

INTA

00-D7

RD

WR lIP
cs

t

OTHERARD

8

+5V

U

Y

10

EXTERNAL

INTERRUPTS

Figure 64. 80186/8259A Interrupt Cascading

49 AFN-21 0973

AP-186

6.7 Example 8259A/Cascade Mode
Interface

Figure 64 shows the 80186 and 8259A in cascade inter­
rupt mode. The code to initialize the 80186 interrupt
controller is given in Appendix E. Notice that an "inter­
rupt ready" signal must be returned to the 80186 to pre­
vent the generation of wait states in response to the
interrupt acknowledge cycles. In this configuration the
INTO and INT2 lines are used as direct interrupt input
lines. Thus, this configuration provides 10 external in­
terrupt lines: 2 provided by the 80186 interrupt control­
ler itself, and 8 from the external 8259A. Also, the
8259A is configured as a master interrupt controller. It
will only receive interrupt acknowledge pulses in re­
sponse to an interrupt it has generated. It may be cas­
caded again to up to 8 additional 8259As (each of which
would be configured in slave mode).

6.8 Example 80130 iRMX™ 8& Mode
Interface

Figure 65 shows the 80186 and 80130 connected in
iRMX 86 mode. In this mode, the 80130 interrupt con­
troller is the master interrupt controller of the system.

80188

ALE ADDR

r- LATCH

80130

ADO-AD15
)8

ADO-AD15 ,

CLK CLK

MMCS2 MEMCS
IRO·

JiCS3 iOCS IR7

so·n L3 so-n "
BHE BHE

INT

INTO J
INT3

The 80186 generates an interrupt request to the 80130
interrupt controller when one of the 80186 integrated
peripherals has created an interrupt condition, and that
condition is sufficient to generate an interrupt from the
80186 integrated interrupt controller. Note that the
80130 decodes the interrupt acknowledge status directly
from the 80186 status lines; thus, the INT2/INTAO
line of the 80186 need not be connected to the 80130.
Figure 65 uses this interrupt acknowledge signal to en­
able the cascade address decoder. The 80130 drives the
cascade address on AD8-AD10 during TI of the second
interrupt acknowledge cycle. This cascade address is
latched into the system address latches, and ifthe proper
cascade address is decoded by the 8205 decoder, the
80186 INTI/SLAVE SELECT line will be driven ac­
tive, enabling the 80186 integrated interrupt controller
to place its interrupt vector on the internal bus. The code
to configure the 80186 into iRMX 86 mode is presented
in appendix E.

6.9 Interrupt Latency

Interrupt latency time is the time from when the 80186
receives the interrupt to the time it begins to respond to
the interrupt. This is different from interrupt response

,,8 7

"
,

+5

"

AD-A15

3 AS·A 10

INTERRUPT

REQUESTS

8205 U
E2 E3

INT2

INT1

E1

7

Figure 65. 80186/80130 IRMX86 Mode Interface

50 AFN·21 0973

AP-186

time, which is the time from when the processor actually
begins processing the interrupt to when it actually ex­
ecutes the first instruction of the interrupt service rou­
tine. The factors affecting interrupt latency are the
instructIOn being executed and the state of the interrupt
enable flip-flop.

Interrupts will be acknowledged only if the interrupt en­
able flip-flop in the CPU is set. Thus, interrupt latency
will be very long indeed if interrupts are never enabled
by the processor'

When interrupts are enabled in the CPU, the interrupt
latency is a function of the instructions being executed.
Only repeated instructions will be interrupted before be­
ing completed, and those only between their respective
iterations. This means that the interrupt latency time
could be as long as 69 CPU clocks, which is the time it
takes the processor to execute an integer divide instruc­
tion (with a segment override prefix, see below), the
longest single instruction on the 80186.

Other factors can affect interrupt latency. An interrupt
will not be accepted between the execution of a prefix
(such as segment override prefixes and lock prefixes)
and the instructIOn. In addition, an Interrupt will not be
accepted between an instruction which modifies any of
the segment registers and the instruction immediately
following the Instruction. This is required to allow the
stack to be changed. If the interrupt were accepted, the
return address from the interrupt would be placed on a
stack which was not valid (the Stack Segment register
would have been modified but the Stack Pointer register
would not have been). Finally, an interrupt will not be
accepted between the execution of the WAIT instructiqg
and the instruction immediately followin.&..i!..i[the TEST
input is active. If the WAIT sees the TEST input in­
active, however, the interrupt will be accepted, and the
WAIT will be re-executed after the interrupt return.
This IS required, since the WAIT is used to prevent ex­
ecution by the 80186 of an 8087 instruction while the
8087 is busy.

x,

x,

RES ----------------... --1

7. CLOCK GENERATOR

The 80186 includes a clock generator which generates
the main clock signal for all 80186 integrated compo­
nents, and all CPU synchronous devices in the 80186
system. This clock generator includes a crystal oscilla­
tor, divide by two counter, reset circuitry, and ready gen­
eration logic. A block diagram of the clock generator is
shown in Figure 66.

7.1 Crystal Oscillator

The 80186 crystal oscillator is a parallel resonant,
Pierce oscillator. It was designed to be used as shown in
Figure 67. The capacitor values shown are approximate.
As the crystal frequency drops, they should be in­
creased, so that at the 4 MHz minimum crystal frequen­
cy supported by the 80186 they take on a value of 30pE
The output of this oscillator is not directly available out­
side the 80186.

80186

x, ~----~~-----,

x,~--~

Figure 67. 80186 Crystal Connection

7.2 USing an External Oscillator

An external oscillator may be used with the 80186. The
external frequency input (EFI) signal is connected di­
rectly to the X 1 input of the oscillator. X2 should be left
open. This oscillator input is used to drive an internal di-

CPU CLOCK &

CLOCKOUT

CPU

READY

C;PU RESET

&

RESET OUTPUT

Figure 66. 80186 Clock Generator Block Diagram

51 AFN-21 0973

AP-186

EFI

CLKOUT

Figure 68. 80186 Clock Generator Reset

vide-by-two counter to generate the CPU clock signal,
so the external frequency input can be of practically any
duty cycle, so long as the minimum high and low times
for the signal (as stated in the data sheet) are met.

7.3 Clock Generator
The output of the crystal oscillator (or the external fre­
quency input) drives a divide by two circuit which gener­
ates a 50% duty cycle clock for the 80186 system. All
80186 timing is referenced to this signal, which is avail­
able on the CLKOUT pin of the 80186. This signal will
change state on the high-to-Iow transition of the EFI
signal.

7.4 Ready Generation
The clock generator also includes the circuitry required
for ready generation. Interfacing to the SRDY and
ARDY inputs this provides is covered in section .3.1.6.

7.5 Reset

The 80186 clock generator also provides a synchronized
reset signal for the system. This signal is generated from
the reset input (RES) to the 80186. The clock generator
synchronizes this signal to the clockout signal.

The reset input signal also resets the divide-by-two
counter. A one clock cycle internal clear pulse is gener­
ated when the RES input signal first goes active. This
clear pulse goes active beginning on the first low-to-high
transition of the Xl input after RES goes active, and
goes inactive on the next low-to-high transition of the Xl
input. In order to insure that the clear pulse is generated
on the next EFI cycle, the RES input signal must satisfy
a 25ns setup time to the high-to-Iow EFI input signal
(see Figure 68). During this clear, clockout will be high.
On the next high-to-Iow transition of Xl, clockout will
go low, and will change state on every subsequent high­
to-low transition of EFI.

The reset signal presented to the rest of the 80186, and
also the signal present on the RESET output pin of the
80186 is synchronized by the high-to-Iow transition of
the clockout signal of the 80186. This signal remains ac-

52

tive as long as the RES input also remains active. After
the RES input goes inactive, the 80186 will begin to
fetch its first instruction (at memory location FFFFOH)
after 6 1/2 CPU clock cycles (i.e., T j of the first instruc­
tion fetch will occur 6 1/2 clock cycles later). To insure
that the RESET output will go inactive on the next CPU
clock cycle, the inactive going edge of the RES input
must satisfy certain hold and setup times to the low-to­
high edge of the clockout signal of the 80186 (see Figure
69).

'=rr~
RES-----..J

RESET ----------.,

\'---

Figure 69. 80186 Coming out of Reset

8. CHIP SELECTS

The 80186 includes a chip select unit which generates
hardware chip select signals for memory and I/O ac­
cesses generated by the 80186 CPU and DMA units.
This unit is programmable such that it can be used to
fulfill the chip select requirements (in terms of memory
device or bank size and speed) of most small and medi­
um sized 80186 systems.

The chip selects are driven only for internally generated
bus cycles. Any cycles generated by an external unit
(e.g., an external DMA controller) will not cause the
chip selects to go active. Thus, any external bus masters
must be responsible for their own chip select generation.
Also, during a bus HOLD, the 80186 does not float the
chip select lines. Therefore, logic must be included to en­
able the devices which the external bus master wishes to
access (see Figure 70).

AFN-21 0973

AP-186

80186 CHIP SELECT~ MEMORY or I/O

'"'EX"'T'"E""R"NAAOL"L"Y"G"'E"NE"'R""A"'T'"E"D"C"HI""P"S"'EL"E"'CT'"' ~ DEVICE CHIP SELECT

Figure 70. 80186/External Chip Select/Device Chip Select Generation

8.1 Memory Chip Selects

The 80186 provides six discrete chip select lines which
are meant to be connected to memory components in an
80186 system. These signals are named UCS, LCS,
and MCSO-3 for Upper Memory Chip Select, Lower
Memory Chip Select and Midrange Memory Chip Se­
lects 0-3. They are meant (but not limited) to be con­
nected to the three major areas of the 80186 system
memory (see Figure 71).

MCS3 {

MCS2 {

MCSl {

MCSO {

FFFFF

STARTUP

ROM

PROGRAM

MEMORY

INTERRUPT

VECTOR

TABLE
0

,Figure 71. 80186 Memory Areas & Chip Selects

As could be guessed by their names, upper memory, low­
er memory, and mid-range memory chip selects are de­
signed to address lipper, lower, and middle areas of
memory in an 80186 system. The upper limit of UCS
and the lower limit of LCS are fixed at FFFFFH and
OOOOOH in memory space, respectively. The other limit
of these is set by the memory size programmed into the
control register for the chip select line. Mid-range mem­
ory allows both the base address and the block size of the
memory area to be programmed. The only limitation is
that the base address must be programmed to be an inte­
ger multiple of the total block size. For example, if the
block size was 128K bytes (4 32K byte chunks) the base
address could be 0 or 20000H, but not 10000H.

53

The memory chip selects are controlled by 4 registers in
the peripheral control block (see Figure 72). These in­
clude I each for UCS and LCS, the values of which de­
termine the size of the memory blocks addressed by
these two lines. The other two registers are used to con­
trol the size and base address of the mid-range memory
block.

On reset, only UCS is active. It is programmed by reset
to be active for the top IK memory block, to insert 3 wait
states to all memory fetches, and to factor external
ready for every memory fetch (see section 8.3 for more
information on internal ready generation). All other
chip select registers assume indeterminate states after
reset, but none of the other chip select lines will be active
until all necessary registers for a signal have been ac­
cessed (not necessarily written, a read to an uninitialized
register will enable the chip select function controlled by
that register).

8.2 Peripheral Chip Selects

The 80186 provides seven discrete chip select lines
which are meant to be connected to peripheral compo­
nents in an 80186 system. These signals are named
PCSO-6. Each of these lines is active for one of seven
contiguous 128 byte areas in memory or I/O space
above a programmed base address.

The peripheral chip selects are controlled by two regis­
ters in the internal peripheral control block (see Figure
72). These registers allow the base address of the periph­
erals to be set, and allow the peripherals to be mapped
into memory or I/O space. Both of these registers must
be accessed before any of the peripheral chip selects will
become active.

A bit in the MPCS register allows PCS5 and PCS6
to become latched Al and A2 outputs. When this option
is selected, PCS5 and PCS6 will reflect the state of A I
and A2 throughout a bus cycle. These are provided to al­
low external peripheral register selection in a system in
which the addresses are not latched. Upon reset, these
lines are driven high. They will only reflect Al and A2
after both PACS and MPCS have been accessed (and
are programmed to provide Al and A2!).

8.3 Ready Generation

The 80186 includes a ready generation unit. This unit
generates an internal ready signal for all accesses to
memory or I/O areas to which the chip select circuitry of
the 80186 responds.

AFN-21 0973

AP-186

OFFSET:

AOH UPPER MEMORY SIZE CD UMCS

A2H LOWER MEMORY SIZE CD LMCS

A4H

A6H

PERIPHERAL CHIP SELECT BASE ADDRESS CD PACS

MMCS MID-RANGE MEMORY BASE ADDRESS CD
ASH MID-RANGE MEMORY SIZE I i I ~ I CD MPCS

1. Upper memory ready bits
2. lower memory ready bits
3. PCSO-PCS3 ready bits
4. Mid-range memory ready bits
5. PCS4-PCS6 ready bits
6. MS: 1 ~ Peripherals active in memory space

o ~ Peripherals active m I/O space
EX:1 ~ 7 PCS Imes
o ~ PCS5 ~ A1, PCS6 ~ A2

Not all bits of every field are used

Figure 72. 80186 Chip Select Control Registers

~or each ready g.eneration area, 0-3 wait states may be
Inserted by the Internal unit. Table 6 shows how the
ready control bits should be programmed to provide this.
In addition, the ready generation circuit may be pro­
grammed to Ignore the state of the external ready (i.e.,
only the internal ready circuit will be used) or to factor
the state of the external ready (i.e., a ready will be re­
turned to the processor only after both the internal ready
circuit has gone ready and the external ready has gone
ready). Some kind of circuit must be included to gener­
ate an external ready, however, since upon reset the
ready generator is programmed to factor external ready
to all accesses to the top 1 K byte memory block. If a
ready was not returned on one of the external ready lines
(ARDY or SRDY) the processor would wait forever to
fetch its first instruction.

Table 6. 80186 Wait State Programming

~R2 R1 RO Number of Wait States

0 0 0 o + external ready
0 0 1 1 + external ready
0 1 0 2 + external ready
0 1 1 3 + external ready
1 0 0 o (no external ready required)
1 0 1 1 (no external ready required)
1 1 0 2 (no external ready required)
1 1 I 3 (no external ready required)

54

8.4 Examples of Chip Select Usage

M~ny examples of the use of the chip select lines are giv­
en In the bus Interface section of this note (section 3.2).
These examples show how simple it is to use the chip se­
lect function provided by the 80186. The key point to re­
member when using the chip select function is that they
are only activated during bus cycles generated by the
80186 CPU or DMA units. When another master has
the bus, it must generate its own chip select function. In
addition, whenever the bus is given by the 80186 to an
external master (through the HOLD! HLDA arrange­
ment) the 80186 does NOT float the chip select lines.

8_5 Overlapping Chip Select Areas

Generally, the chip selects of the 80186 should not be
programmed such that any two areas overlap. In addi­
hon, none of the programmed chip select areas should
overlap any of the locations of the integrated 256-byte
control register block. The consequences of doing this
are:

Whenever two chip select lines are programmed to
respond to the same area, both will be activated dur­
ing any access to that area. When this is done, the
ready bits for both areas must be programmed to the
same value. lf this is not done, the processor response
to an access in this area is indeterminate.

lf any of the chip select areas overlap the integrated
256-byte control register block, the timing on the

AFN-21 0973

AP-186

chip select line is altered. As always, any values re­
turned on the external bus from this access are ig­
nored.

9. SOFTWARE IN AN 80186 SYSTEM

Since the 80186 is object code compatible with the 8086
and 8088, the software in an 80186 system is very simi­
lar to that in an 8086 system. Because of the hardware
chip select functions, however, a certain amount of ini­
tialization code must be included when using those func­
tions on the 80186.

9.1 System Initialization in an
80186 System

Most programmable components of a computer system
must be initialized before they are used. This is also true
for the 80186. The 80186 includes circuitry which di·
rectly affects the ability of the system to address mem­
ory and I/O devices, namely the chip select circuitry.
This circuitry must be initialized before the memory
areas and peripheral devices addressed by the chip select
signals are used.

Upon reset, the UMCS register is programmed to be ac­
tive for all memory fetches within the top 1 K byte of
memory space. It is also programmed to insert three
wait states to all memory accesses within this space. If
the hardware chip selects are used, they must be pro­
grammed before the processor leaves this 1 K byte area
of memory. If a jump to an area for which the chips are
not selected occurs, the microcomputer system will
cease to operate (since the processor will fetch garbage
from the data bus). Appendix F shows a typical initial­
ization sequence for the 80186 chip select unit.

Once the chip selects have been properly initialized, the
rest of the 80186 system may be initialized much like an
8086 system. For example, the interrupt vector table
might get set up, the interrupt controller initialized, a
serial I/O channel initialized, and the main program be­
gun. Note that the integrated peripherals included in the
80186 do not share the same programming model as the
standard Intel peripherals used to implement these
functions in a typical 8086 system, i.e., different values
must be programmed into different registers to achieve
the same function using the integrated peripherals. Ap­
pendix F shows a typical initialization sequence for an
interrupt driven system using the 80186 interrupt
controller.

9.2 Initialization for iRMX™ 86 System

Using the iRMX 86 operating system with the 80186 re­
quires an external 8259A and an external 8253/4 or al­
ternatively an external 80130 OSF component. These
are required because the operating system is interrupt
driven, and expects the interrupt controller and timers to
have the register model of these external devices. This

55

model is not the same as is implemented by the 80186.
Because of this, the 80186 interrupt controller must be
placed in iRMX 86 mode after reset. This initialization
can be done at any time after reset before jump to the
root task of iRMX 86 System is actually performed. If
need be, a small section of code which initializes both
the 80186 chip selects and the 80186 interrupt controller
can be inserted between the reset vector location and the
beginning of iRMX 86 System (see Figure 73). In this
case, upon reset, the processor would jump to the 80186
initialization code, and when this has been completed,
would jump to the iRMX 86 initialization code (in the
root task). It is important that the 80186 hardware be
initialized before iRMX 86 operation is begun, since
some of the resources addressed by the 80186 system
may not be initialized properly by iRMX 86 System if
the initialization is done in the reverse manner.

8086 80186

FFFF:O

Figure 73. iRMX-86 Initialization with
8086 & 80186

9.3 Instruction Execution Differences
Between the 8086 and 80186

There are a few instruction execution differences be­
tween the 8086 and the 80186. These differences are:

Undefined Opcodes:

When the opcades 63H,64H,65H,66H,67H,FlH,
FEH XXlllXXXB and FFH XX111XXXB
are executed, the 80186 will execute an illegal in­
struction exception, interrupt type 6. The 8086
will ignore the opcode.

OFH opcode:

When the opcode OFH is encountered, the 8086
will execute a POP CS, while the 80186 will ex­
ecute an illegal instruction exception, interrupt
type 6.

Word Write at Offset FFFFH:

When a word write is performed at offset
FFFFH in a segment, the 8086 will write one
byte 'It offset FFFFH, and the other at offset 0,
while the 80186 will write one byte at offset

AFN-21 0973

AP-186

FFFFH, and the other at offset 10000H (one
byte beyond the end of the segment). One byte
segment underflow will also occur (on the 80186)
if a stack PUSH is executed and the Stack Point­
er contains the value I.

Shift/Rotate by Value Greater Then 31:

Before the 80186 performs a shift or rotate by a
value (either in the CL register, or by an immedi­
ate value) it ANDs the value with IFH, limiting
the number of bits rotated to less than 32. The
8086 does not do this.

LOCK prefix:

The 8086 activates its LOCK signal immediately
after executing the LOCK prefix. The 80186
does not activate the LOCK signal until the pro­
cessor is ready to begin the data cycles associated
with the LOCKed instruction.

Interrupted String Move Instructions:

If an 8086 is interrupted during the execution of
a repeated string move instruction, the return
value it will push on the stack will point to the
last prefix instruction before the string move in­
struction. If the instructi\>n had more than one
prefix (e.g., a segment override prefix in addition
to the repeat prefix), it will not be re-executed
upon returning from the interrupt. The 80186
will push the value of the first prefix to the re­
peated instruction, so long as prefixes are not re­
peated, allowing the string instruction to
properly resume.

Conditions causing divide error with an integer
divide:

The 8086 will cause a divide error whenever the
absolute value of the quotient is greater then
7FFFH (for word operations) or if the absolute
value of the quotient is greater than 7FH (for
byte operations). The 80186 has expanded the
range of negative numbers allowed as a quotient

56

by I to include 8000H and 80H. These numbers
represent the most negative numbers representa­
ble using 2's complement arithmetic (equaling
-32768 and -128 in decimal, respectively).

ESC Opcode:

The 80186 may be programmed to cause an in­
terrupt type 7 whenever an ESCape instruction
(used for co-processors like the 8087) is execut­
ed. The 8086 has no such provision. Before the
80186 performs this trap, it must' be pro­
grammed to do so.

These differences can be used to determine whether the
program is being executed on an 8086 or an 80186.
Probably the safest execution difference to use for this
purpose is the difference in multiple bit shifts. For exam­
ple, if a multiple bit shift is programmed where the shift
count (stored in the CL register!) is 33, the 8086 will
shift the value 33 bits, whereas the 80186 will shift it
only a single bit.

In addition to the instruction execution differences not­
ed above, the 80186 includes a number of new instruc­
tion types, which simplify assembly language
programming of the processor, and enhance the perfor­
mance of higher level languages running on the proces­
sor. These new instructions are covered in depth in the
8086/80186 users manual and in appendix H of this
note.

10. CONCLUSIONS

The 80186 is a glittering example of state-of-the art in­
tegrated circuit technology applied to make the job of
the microprocessor system designer simpler and faster.
Because many of the required peripherals and their in­
terfaces have been cast in silicon, and because of the
timing and drive latitudes provided by the part, the de­
signer is free to concentrate on other issues of system de­
sign. As a result, systems designed around the 80186
allow applications where no other processor has been
able to provide the necessary performance at a compara­
ble size or cost.

AFN-21 0973

APPENDIX A 58
APPENDIX B 60
APPENDIX C 61
APPENDIX D 64

APPENDIX E 68
APPENDIX F 70

APPENDIX G 72

APPENDIX H 76

APPENDIX I 78

inter AP-186

APPENDIX A: PERIPHERAL CONTROL
BLOCK
All the integrated peripherals within the 80186 micro­
processor are controlled by sets of registers contained
within an integrated peripheral control block. The regis­
ters are physically located within the peripheral devices
they control, but are addressed as a single block of regis­
ters. This set of registers fills 256 contiguous bytes and
can be located beginning on any 256 byte boundary of
the 80186 memory or I/O space. A map of these regis­
ters is shown in Figure A-I.

A.1 Setting the Base Location of the
Peripheral Control Block

In addition to the control registers for each of the inte­
grated 80186 peripheral devices, the peripheral control

block contains the peripheral control block relocation
register. This register allows the peripheral control block
to be re-located on any 256 byte boundary within the
processor's memory or I/O space. Figure A-2 shows the
layout of this register.

This register is located at offset FEH within the periph­
eral control block. Since it is itself contained within the
peripheral control block, any time the location of the pe­
ripheral control block is moved, the location of the relo­
cation register will also move.

In addition to the peripheral control block relocation in­
formation, the relocation register contains two addition­
al bits. One is used to set the interrupt controller into
iRMX86 compatibility mode. The other is used to force
the processor to trap whenever an ESCape (coprocessor)
instruction is encountered.

OFFSET

Relocation Register FEH

DMA Descriptors Channel 1

DMA Descriptors Channel 0

Chip-Select Control Registers

Timer 2 Control Registers

Timer 1 Control Registers

Timer 0 Control Registers

Interrupt Controller Registers

--

DAH

DOH

CAH

COH

A8H

AOH

66H

60H
5EH

58H
56H

SOH

3EH '

20H

Figure A-1. 80186 Integrated Peripheral Control Block

58 AFN-21 0973

AP-186

11 10 9 B 7 6 5 4 3 2 o
OFFSET: FEH Relocation Address Bits R19-RB

= ESC Trap I No ESC Trap (1/0) ET
MilO
RMX

= Register block located In Memory 11/0 Space (1/0)
= Master Interrupt Controller mode IIRMX compatible

Interrupt Controller mode (0/1)

Figure A-2. 80186 Relocation Regllter Layout

Because the relocation register is contained within the
peripheral control block, upon reset the relocation regis­
ter is automatically programmed with the value 20FFH.
This means that the peripheral control block will be lo­
cated at the very top (FFOOH to FFFFH) of I/0 space.
Thus, after reset the relocation register will be located at
word location FFFEH in I/O space.

If the user wished to locate the peripheral control block
starting at memory location 10000H he would program
the peripheral control register with the value 1100H. By
doing this, he would move all registers within the inte·
grated peripheral control block to memory locations
10000H to 100FFH. Note that since the relocation reg­
ister is contained within the peripheral control block, it
too would move to word location 100FEH in memory
space.

A.2 Peripheral Control Block Registers
Each of the integrated peripherals' control and status
registers are loc,a ted at a fixed location above the pro­
grammed base location of the peripheral control block.
There are many locations within the peripheral control
block which are not assigned to any peripheral. If a write
is made to any of these locations, the bus cycle will be
run, but the value will not be stored in any internalloca­
tion. This means that if a subsequent read is made to the
same location, the value written will not be read back.

The processor will run an external bus cycle for any
memory or I/0 cycle which accesses a location within
the integrated control block. This means that the ad­
dress, data, and control information will be driven on the
80186 external pins just as if a "normal" bus cycle had
been run. Any information returned by an external de­
vice will be ignored, however, even if the access was to a
location which does not correspond to any of the inte-

59

grated peripheral control registers. The above is also
true for the 80188, except that the word access made to
the integrated registers will be performed in a single bus
cycle, with only the lower 8 bits of data being driven by
the write cycle (since the upper 8 bits of data are non­
existant on the external data bus!)

The processor internally generates a ready signal when­
ever any of the integrated peripherals are accessed; thus
any external ready signals are ignored whenever an ac­
cess is made to any location within the integrated pe­
ripheral register control block. This ready will also be
returned if an access is made to a location within the 256
byte area of the periperal control block which does not
correspond to any integrated peripheral control register.
The processor will insert 0 wait states to any access with­
in the integrated peripheral control block except for ac­
cesses to the timer registers. ANY access to the timer
control and counting registers will incur 1 wait state.
This wait state is required to properly multiplex proces­
sor and counter element accesses to the timer control
registers.

All accesses made to the integrated peripheral control
block must be WORD accesses. Any write to the inte­
grated registers will modify all 16 bits of the register,
whether the opcode specified a byte write or a word
write. A byte read from an even location should cause no
problems, but the data returned when a byte read is per­
formed from an odd address within the peripheral con­
trol block is undefined. This is true both for the 80186
AND the 80188. As stated above, even though the
80188 has an external 8 bit data bus, internally it is still
a 16 bit machine. Thus, the word accesses performed to
the integrated registers by the 80188 will each occur in a
single bus cycle with only the lower 8 bits of data being
driven on the external data bus (on a write).

AFN-21 0973

AP-186

APPENDIX B: 80186 SYNCHRONIZATION
INFORMATION

Many input signals to the 80186 are asynchronous, that
is, a specified set up or hold time is not required to insure
proper functioning ofthe device. Associated with each of
these inputs is a synchronizer which samples this exter­
nal asynchronous signal, and synchronizes it to the in­
ternal 80186 clock.

B.1 ,,a/hy Synchronizers Are Required

Every data latch requires a certain set up and hold time
in order to operate properly. At a certain window within
the specified set up and hold time, the part will actually
try to latch the data. If the input makes a transition
within this window, the output will not attain a stable
state within the given output delay time. The size of this
sampling window is typically much smaller than the ac­
tual window specified by the data sheet, however part to
part variation could move this window around within the
specified window in the data sheet.

Even if the input to a data latch makes a transition while
a data latch is attempting to latch this input, the output
of the latch will attain a stable state after a certain
amount of time, typically much longer than the normal
strobe to output delay time. Figure B-1 shows a normal
input to output strobed transition and one in which the
input signal makes a transition during the latch's sample
window. In order to synchronize an asynchronous signal,
all one needs to do is to sample the signal into one data
latch, wait a certain amount of time, then latch it into a
second data latch. Since the time between the strobe into
the first data latch and the strobe into the second data
latch allows the first data latch to attain a steady state
(or to resolve the asynchronous signal), the second data
latch will be presented with an input signal which satis­
fies any set up and hold time requirements it may have.
Thus, the output of this second latch is a synchronous
signal with respect to its strobe input.

A synchronization failure can occur if the synchronizer
fails to resolve the asynchronous transition within the
time between the two latch's strobe signals. The rate of
failure is determined by the actual size of the sampling

60

STROBE /

INPUT ----=SE:::T:::-U:-::P~T:::I:-:M=E· HOLD TIME

rrl
I

ACTUAL SAMPLING INSTANT

Ilel INVALID ~
_---J ~

INPUT ~

FiEsPONSE 1 • RESOLUTION TIME .1

VALID~
INPUT

RESPONSE _______ -J/

Figure 8-1_ Valid & Invalid Latch Input
Transitions & Responses

window of the data latch, and by the amount of time be­
tween the strobe signals of the two latches. Obviously, as
the sampling window gets smaller, the number of times
an asynchronous transition will occur during the sam­
pling window will drop. In addition, however, a smaller
sampling window is also indicative of a faster resolution
time for an input transition which manages to fall within
the sampling window.

B.2 80186 Synchronizers

The 80186 contains synchronizers on the RES,
TEST, TmrInO-I, DRQO-1, NMI, INTO-3,ARDY, and
HOLD input lines. Each of these synchronizers use the
two stage synchronization technique described above
(with some minor modifications for the ARDY line, see
section 3.1.6). The sampling window of the latches is de­
signed to be in the tens of pico-seconds, and should allow
operation of the synchronizers with a mean time be­
tween failures of over 30 years assuming continuous
operation.

AFN-21 0973

APPENDIX C: 80186 EXAMPLE DMA INTERFACE CODE

$modl86
name assembly.example.80 186.0 MA.support

This file contains an example procedure which initializes the 80186 OMA
controller to perform the OMA transfers between the 80186 system the the
8272 Floppy Oisk Controller (FOC). It assumes that the 80186
peripheral control block has not been moved from its reset location.

argl
arg2
arg3
OMA..FROM.LOWER
OMA..FROM_UPPER
OMA..TO.LOWER
OMA..TO_UPPER
OMA.COUNT
OMA_CONTROL
OMA..TO_DISK..CONTROL

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

OMA.FROM_OISK..CONTROLequ

FOCOMA equ
FOCOATA equ
FOCSTATUS equ

cgroup group

word ptr [BP + 4]
word ptr [BP + 6]
word ptr [BP + 8]
OFFCOh
OFFC2h
OFFC4h
OFFC6h
OFFC8h
OFFCAh
01486h

OA046h

6B8h
688h
680h

code

OMA register locations

destination synchronization
source to memory, incremented
destination to I/O
no terminal count
byte transfers

source synchroniza tion
source to I/O
destination to memory, incr
no terminal count
byte transfers
FOC OMA address
FOC data register
FOC status register

code segment public 'code'
public seLdma_
assume cs:cgroup

seLdma (offset,to) programs the OMA channel to point one side to the

seLdma.

disk OMA address, and the other to memory pointed to by ds:offset. If
'to' = 0 then will be a transfer from disk to memory; if
'to' = 1 then will be a transfer from memory to disk. The parameters to
the routine are passed on the stack.

proc near
enter 0,0
push AX
push BX
push OX
test arg2,1

jz from..disk
performing a transfer from memory to the disk controller

mov
rol

AX,OS
AX,4

61

set stack addressability
save registers used

check to see direction of
transfer

get the segment value
gen the upper 4 bits of the
physical address in the lower 4
bits of the register

• AFN·21 0973

AP-186

moy BX,AX saYe the result ...
moy DX,DMA.FROM_UPPER prgm the upper 4 bits of the
out DX,AX DMA source register
and AX,OFFFOh form the lower 16 bits of the

physical address
add AX,arg1 add the offset
may DX,DMA.FROM_LOWER prgm the lower 16 bits of the
out DX,AX DMA source register
jnc no_carry _from check for carry out of addition
inc BX if carry out, then need to adj
may AX,BX the upper 4 bits of the pointer
maY DX,DMA.FROM_UPPER
out DX,AX

no_carry_from:
may AX,FDCDMA prgm the low 16 bits of the DMA
may DX,DMA.TO_LOWER destination register
out DX,AX
xor AX,AX zero the up 4 bits of the DMA
may DX,DMA.TO_UPPER destination register
out DX,AX
may AX,DMA.TO_DISK..CONTROL; prgm the DMA ctl reg
may DX,DMA.CONTROL note: DMA may begin immediatly
out DX,AX after this word is output
pop DX
pop BX
pop AX
leaye
ret

frolTLdisk:

performing a transfer from the disk to memory

maY AX,DS
rol AX,4
may DX,DMA.TO-UPPER
out DX,AX
may BX,AX
and AX,OFFFOh
add AX,arg1
may DX,DMA.TO_LOWER
out DX,AX
jnc no_carry_to
inc BX
may AX,BX
may DX,DMA.TO_UPPER
out DX,AX

no_carry_to:
may AX,FDCDMA

may DX,DMA.FROM_LOWER
out DX,AX
xor AX,AX
may DX,DMA.FROM_UPPER
out DX,AX
may AX,DMA.FROM_DISK..CONTROL
may DX,DMA.CONTROL

62 AFN-21 0973

AP-186

out DX,AX
pop DX
pop BX
pop AX
leave
ret

seLdma.. endp

code ends
end

63 AFN-21 0973

inter AP-186

APPENDIX D: 80186 EXAMPLE TIMER INTERFACE CODE

$modl86
name

this file contains example 80186 timer routines. The first routine

argl
arg2
arg3
timer-2int

sets up the timer and interrupt controller to cause the timer
to generate an interrupt every 10 milliseconds, and to service
interrupt to implement a real time clock. Timer 2 is used in
this example because no input or output signals are required.
The code example assumes that the peripheral control block has
not been moved from its reset location (FFOO-FFFF in I/0 space).

equ word ptr [BP + 4)
equ word ptr [BP + 6)
equ word ptr [BP + 8)
equ 19

timer-2control equ OFF66h
timeL2malLcti equ OFF62h
timerjnLcti equ OFF32h
eoLregister equ OFF22h
interrupLstat equ OFF30h

data segment
public hour_,minute_,second_,msec_

msec_ db ?
hOUL db ?
minute_ db ?
second_ db ?
data ends

cgroup group code
dgroup group data

code segment
public seLtime_
assume cs:code,ds:dgroup

seLtime(hour,minute,second) sets the time variables, initializes the
80186 timer2 to provide interrupts every 10 milliseconds, and
programs the interrupt vector for timer 2

seLtime_ proc near
enter 0,0
push AX
push DX
push SI
push DS

xor AX,AX

mov DS,AX

mov SI,4 * timer2int

64

timer 2 has vector type 19

interrupt controller regs

public 'data'

public 'code'

set stack addressability
save registers used

set the interrupt vector
the timers have unique
interrupt
vectors even though they share
the same control register

AFN-21 0973

AP-186

mov OS: lSI] ,offset timer-2..interruptJoutine
inc SI
inc SI
mov OS: [SI],CS
pop OS

mov AX,argl set the time values
mov hour_,AL
mov AX,arg2
mov minute_,AL
mov AX,arg3
mov second_,AL
mov msec..,O

mov OX,timer2..maJLctl set the max count value
mov AX,20000 10 ms /500 ns (timer 2 counts

at 1/4 the CPU clock rate)
out OX,AX
mov OX,timer2..control set the control word
mov AX, III 000000000000 I b enable counting

generate interrupts on TC
continuous counting

out OX,AX

mov OX,timer..inLctl set up the interrupt controller
mov AX,OOOOb unmask interrupts

highest priority interrupt
out OX,AX
sti enable processor interrupts

pop SI
pop OX
pop AX
leave
ret

seUime_ endp

timer2..interruptJoutine proc far
push AX
push OX

cmp msec_,99 see if one second has passed
jae bump..second if above or equal...
inc msec_
jmp resetinLctl

bump..second:
mov msec_,O reset millisecond
cmp second..,59 see if one minute has passed
jae bump_minute
inc second..
jmp resetinLctl

bump_minute:
mov second..,O
cmp minute..,59 see if one hour has passed
jae bump..hour
inc minute_
jmp resetinLctl

65 AFN-21 0973

bump.hour:

reseLhour:

reseLinLctl:

timer2.interrupLroutine
code

$mod186
name

mov
cmp
jae
inc
jmp

AP-186

minute.,O
hour., I 2
reseLhour
hour.
reseLinLcti

mov hour.., I

mov
mov
out

pop
pop
iret
endp
ends
end

OX,eoLregister
AX,8000h
OX,AX

OX
AX

example.80 I 86.baud.code

this file contains example 80186 timer routines. The second routine
. sets up the timer as a baud rate generator. In this mode,

Timer I is used to continually output pulses with a period of
6.5 usec for use with a serial controller at 9600 baud
programmed in divide by 16 mode (the actual period required
for 9600 baud is 6.51 usec). This assumes that the 80186 is
running at 8 MHz. The code example also assumes that the
peripheral control block has not been moved from its reset
location (FFOO·FFFF in I/O space).

timer Lcontrol
timer LmalLcnt

equ OFF5Eh
equ OFF5Ah

see if 12 hours have passed

non-specific end of interrupt

code segment public 'code'
assume cs:code

seLbaudO initializes the 80186 timer I as a baud rate generator for
a serial port running at 9600 baud

seLbaud. proc near
push AX
push OX

mov OX,timerl.malLcnt
mov AX,13
out OX,AX
mov OX,timer Lcontrol
mov AX, II 0000000000000 I b

out OX,AX

pop OX
pop AX

66

save registers used

set the max count value
500ns * 13 = 6.5 usec

set the control word
enable counting
no interrupt on TC
continuous counting
single max count register

AFN-21 0973

seLbaud_
code

$modl86
name

ret
endp
ends
end

AP-186

example..80 I 86_counLcode

this file contains example 80186 timer routines. The third routine
sets up the timer as an external event counter. In this mode,
Timer I is used to count transitions on its input pin. After
the timer has been set up by the routine, the number of
events counted can be directly read from the timer count
register at location FF58H in I/0 space. The timer will
count a maximum of 65535 timer events before wrapping
around to zero. This code example also assumes that the
peripheral control block has not been moved from its reset
location (FFOO-FFFF in I/O space).

timer Lcontrol equ OFF5Eh
timer l..max-cnt equ OFF5Ah
timer LcnLreg equ OFF58H

code segment
assume cs:code

set..countO initializes the 80186 timer! as an event counter

seLcounL proc near
push AX
push OX

mov OX,timerl_max-cnt
mov AX,O

out OX,AX
mov OX,timerLcontrol
mov AX,II 00000000000 1 0 1 b

out OX,AX

xor AX,AX
mov OX,timerLcnLreg
out OX,AX

pop OX
pop AX
ret

seLcounL endp
code ends

end

67

public 'code'

save registers used

set the max count value
allows the timer to count
all the way to FFFFH

set the control word
enable counting
no interrupt on TC
continuous counting
single max count register
external clocking

zero AX
and zero the count in the timer
count register

AFN-21 0973

AP-186

APPENDIX E: 80186 EXAMPLE
INTERRUPT CONTROLLER INTERFACE
CODE

$modl86
name exampk80186jnterrupLcode

This routine configures the 80186 interrupt controller to provide
two cascaded interrupt inputs (through an external 8259A
interrupt controller on pins INTOjINT2) and two direct
interrupt inputs (on pins INTI and INT3). The default priority
levels are used. Because of this, the priority level programmed
into the control register is set the III, the level all
interrupts are programmed to at reset.

intO_control
inLmask

equ
equ

OFF38H
OFF28H

code

seLinL

seLinL
code

$modl86
name

segment
assume CS:code
proc near
push OX
push AX

mov AX,OIOOIlIB

mov OX,intO_control
out OX,AX

mov AX,OIOOllOIB

mov OX,inLmask
out OX,AX
pop AX
pop OX
ret
endp
ends
end

exampk80186jnterrupLcode

This routine configures the 80186 interrupt controller into iRMX 86
mode. This code does not initialize any of the 80186
integrated peripheral control registers, nor does it initialize
the external 8259A or 80130 interrupt controller.

relocation_reg equ OFFFEH

code segment
assume CS:code

seLrmlL proc near
push OX
push AX

mov OX,relocation_reg
in AX,OX
or AX,O I OOOOOOOOOOOOOOB
out OX,AX

68

public 'code'

cascade mode
interrupt unmasked

now unmask the other external
interrupts

public 'code'

read old contents of register
set the RMX mode bit

AFN-21 0973

seLrmx..
code

pop
pop
ret
endp
ends
end

AX
DX

Ap·186

69 AFN-21 0973

AP-186

APPENDIX F: 80186/8086 EXAMPLE
SYSTEM INITIALIZATION CODE

name example..80186_system.init

This file contains a system initialization routine for the 80186
or the 8086. The code determines whether it is running on
an 80186 or an 8086, and if it is running on an 80186, it
initializes the integrated chip select registers.

restart segment at

This is the processor reset address at OFFFFOH

org 0
jmp far ptr initialize

restart ends

extrn monitor:far
init.hw segment at

assume CS:init.hw

This segment initializes the chip selects. It must be located in the
top lK to insure that the ROM remains selected in the 80186

system until the proper size of the select area can be programmed.

UMCS.reg equ OFFAOH
LMCS.reg equ OFFA2H
PACS_reg equ OFFA4H
MPCS.reg equ OFFA8H
UMCS_value equ OF800H
LMCS_value equ 07F8H
PACS_value equ 72H
MPCS_value equ OBAH

initialize proc far
mov AX,2
mov CL,33
shr AX,CL
test AX,1
jz not.80186

mov DX,UMCS.reg
mov AX,UMCS_value
out DX,AX

mov DX,LMCS.reg
mov AX,LMCS_value
out DX,AX

mov DX,PACS.reg

mov AX,PACS_value
out DX,AX

70

OFfFFh

OFFFOh

chip select register locations

64K, no wait states
32K, no wait states
peripheral base at 400H, 2 ws
PCS5 and 6 supplies,
peripherals in I/O space

determine if this is an
8086 or an 80186 (checks
to see if the multiple bit
shift value was ANDed)

program the UMCS register

program the LMCS register

set up the peripheral chip
selects (note the mid-range
memory chip selects are not
needed in this system, and
are thus not initialized

AFN-21 0973

mov
mov
out

AP-186

DX,MPCS.reg
AX,MPCS_value
DX,AX

Now that the chip selects are all set up, the main program of the
computer may be executed.

noL80186:

initialize
iniLhw

jmp
endp
ends
end

far ptr monitor

71 AFN-21 0973

AP-186

APPENDIX G: 80186 WAIT STATE
PERFORMANCE

Because the 80186 contains seperate bus interface and
execution units, the actual performance of the processor
will not degrade at a constant rate as wait states are add­
ed to the memory cycle time from the processor. The ac­
tual rate of performace degradation will depend on the
type and mix of instructions actually encountered in the
user's program.

Shown below are two 80186 assembly language pro­
grams, and the actual execution time for the two pro­
grams as wait states are added to the memory system of
the processor. These programs show the two extremes to
which wait states will or will not effect system perfor­
mance as wait states are introduced.

Program I is very memory intensive. It performs many
memory reads and writes using the more extensive mem­
ory addressing modes of the processor (which also take a
greater number of bytes in the opcode for the instruc­
tion). As a result, the execution unit must constantly
wait for the bus interface unit to fetch and perform the
memory cycles to allow it to continue. Thus, the execu­
tion time of this type of routine will grow quickly as wait
states are added, since the execution time is almost total­
ly limited to the speed at which the processor can run bus
cycles.

Note also that this program execution times calculated
by merely summing up the number of clock cycles given
in the data sheet will typically be less than the actual
number of clock cycles actually required to run the pro­
gram. This is because the numbers quoted in the data
sheet assume that the opcode bytes have been prefetched
and reside in the 80186 prefetch queue for immediate
access by the execution unit. If the execution unit cannot

access the opcode bytes immediatly upon request, dead
clock cycles will be inserted in which the execution unit
will remain idle, thus increasing the number of clock cy­
cles required to complete execution of the program.

On the other hand, program 2 is more CPU intensive. It
performs many integer multiplies, during which time
the bus interface unit can fill up the instruction pre­
fetch queue in parallel with the execution unit perform­
ing the multiply. In this program, the bus interface unit
can perform bus operations faster than the execution
unit actually requires them to be run. In this case, the
performance degradation is much less as wait states are
added to the memory interface. The execution time of
this program is closer to the number of clock cycles cal­
culated by adding the number of cycles per instruction
because the execution unit does not have to wait for the
bus interface unit to place an opcode byte in the prefetch
queue as often. Thus, fewer clock cycles are wasted by
the execution unit laying idle for want of instructions.
Table G-l lists the execution times measured for these
two programs as wait states were introduced with the
80186 running at 8 MHz.

Table G-1

Program 1 Program 2

of Exec Exec
Wait Time Perf Time Perf

States (",sec) Oegr (",sec) Oegr

0 505 294

1 595 18% 311 6%

2 669 12% 337 8%

3 752 12% 347 3%

$modl86
name example_waiLstate_performance

This file contains two programs which demonstrate the 80186 performance
degradation as wait states are inserted. Program 1 performs a
transformation between two types of characters sets, then copies

cgroup
dgroup
data

the transformed characters back to the original buffer (which is 64
bytes long. Program 2 performs the same type of transformation, however
instead of performing a table lookup, it multiplies each number in the
original 32 word buffer by a constant (3, note the use of the integer
immediate multiply instruction). Program "nothing" is used to measure
the call and return times from the driver program only.

group code
group data
segment public 'data'

72 AFN-21 0973

AP-186

Ltable db 256 dup (?)
Lstring db 64 dup (?)
IILarray dw 32 dup (?)
data ends

code segment public 'code'
assume eS:cgroup,DS:dgroup
public benciLl , benciL2,nothing.., waiLsta te_,seLtimer_

benciLl proc near
push SI ; save registers used
push ex
push BX
push AX

mov eX,64 translate 64 bytes
mov SI,O
mov BH,O

loop_back:
mov BL,Lstring[SI] get the byte
mov AL,Ltable[BX] translate byte
mov Lstring [SI] ,AL and store it
inc SI increment index
loop loop_back do the next byte

pop AX
pop BX
pop ex
pop SI
ret

bench_l endp

benciL2 proc near
push AX save registers used
push SI
push ex

mov eX,32 multiply 32 numbers
mov SI,offset IILarray

loop_back..2:
imul AX,word ptr [SI],3 immediate multiply
mov word ptr [SI] ,AX
inc SI
inc SI
loop loop_back..2

pop ex
pop SI
pop AX
ret

benciL2_ endp

73 AFN-21 0973

nothing..

nothing_

proc
ret
endp

AP-186

near

waiLstate(n) sets the 80186 LMCS register to the number of wait states
(0 to 3) indicated by the parameter n (which is passed on the stack).
No other bits of the LMCS register are modified.

waiLstate_ proc near
enter 0,0
push AX
push BX
push OX

mov BX,word ptr [BP + 4]
mov OX,OFFA2h

contents
in AX,OX

and AX,OFFFCh
and BX,3
or AX,BX
out OX,AX

pop OX
pop BX
pop AX
leave
ret

waiLstate_ endp

seUimerO initializes the 80186 timers to count microseconds. Timer 2
is set up as a prescaler to timer 0, the microsecond count can be read

directly out of the timer 0 count register at location FF50H in I/0
space.

seuimeL proc near
push AX
push OX

mov OX,Off66h
mov AX,4000h
out OX,AX

mov OX,Off50h
mov AX,O
out OX,AX

mov OX,Off52h
mov AX,O
out OX,AX

74

set up stack frame
save registers used

get argument
get current LMCS register

and off existing ready bits
insure ws count is good
adjust the ready bits
and write to LMCS

tear down stack frame

stop timer 2

clear timer 0 count

timer 0 counts up to 65535

AFN-21 0973

AP-186

moy DX,Off56h enable timer 0
moy AX,OcOO9h
out DX,AX

mov DX,Off60h clear timer 2 count
moy AX,O
out DX,AX

moy DX,Off62h set maximum count of timer 2
moy AX,2
out DX,AX

moy DX,Off66h re-enable timer 2
moy AX,OcOOlh
out DX,AX

pop DX
pop AX
ret

seLtimer_ endp
code ends

end

75 AFN-210873

AP-186

APPENDIX H: 80186 NEW INSTRUCTIONS

The 80186 performs many additional instructions to
those of the 8086. These instructions appear shaded in
the instruction set summary at the back of the 80186
data sheet. This appendix explains the operation of these
new instructions. In order to use these new instructions
with the 8086/186 assembler, the "$mod 186" switch
must be given to the assembler. This can be done by plac­
ing the line: "$modI86" at the beginning of the assem­
bly language file.

PUSH immediate

This instruction allows immediate data to be pushed
onto the processor stack. The data can be either an im­
mediate byte or an immediate word. If the data is a byte,
it will be sign extended to a word before it is pushed onto
the stack (since all stack operations are word
operations).

PUSHA,POPA

These instructions allow all of the general purpose
80186 registers to be saved on the stack, or restored from
the stack. The registers saved by this instruction (in the
order they are pushed onto the stack) are AX, CX, DX,
BX, SP, BP, SI, and DI. The SP value pushed onto the
stack is the value of the register before the first PUSH
(AX) is performed; the value popped for the SP register
is ignored.

This instruction does not save any of the segment regis­
ters (CS, DS, SS, ES), the instruction pointer (IP), the
flag register, or any of the integrated peripheral
registers.

IMUL by an immediate value

This instruction allows a value to be multiplied by an im­
mediate value. The result of this operation is 16 bits
long. One operand for this instruction is obtained using
one of the 80186 addressing modes (meaning it can be in
a register or in memory). The immediate value can be
either a byte or a word, but will be sign extended if it is a
byte. The 16-bit result of the multiplication can be
placed in any of the 80186 general purpose or pointer
registers.

This instruction requires three operands: the register in
which the result is to be placed, the immediate value,
and the second operand. Again, this second operand can
be any of the 80186 general purpose registers or a speci­
fied memory location.

shifts/rotates by an immediate value

The 80186 can perform multiple bit shifts or rotates
where the number of bits to be shifted is specified by an

76

immediate value. This is different from the 8086, where
only a single bit shift can be performed, or a multiple
shift can be performed where the number of bits to be
shifted is specified in the CL register.

All of the shift/rotate instructions of the 80186 allow
the number of bits shifted to be specified by an immedi­
ate value. Like all multiple bit shift operations per­
formed by the 80186, the number of bits shifted is the
number of bits specified modulus 32 (i.e. the maximum
number of bits shifted by the 80186 multiple bit shifts is
31).

These instructions require two operands: the operand to
be shifted (which may be a register or a memory location
specified by any of the 80186 addressing modes) and the
number of bits to be shifted.

block input/output

The 80186 adds two new input/output instructions: INS
and OUTS. These instructions perform block input or
output operations. They operate similarly to the string
move instructions of the processor.

The INS instruction performs block input from an I/O
port to memory. The I/O address is specified by the DX
register; the memory loca tion is pointed to by the D I reg­
ister. After the operation is performed, the DI register is
adjusted by I (if a byte input is specified) or by 2 (if a
word input is specified). The adjustment is either an in-.
crement or a decrement, as determined by the Direction
bit in the flag register of the processor. The ES segment
register is used for memory addressing, and cannot be
overridden. When preceeded by a REPeat prefix, this in­
struction allows blocks of data to be moved from an I/O
address to a block of memory Note that the I/O address
in the DX register is not modified by this operation.

The OUTS instruction performs block output from
memory to an I/O port. The I/O address is specified by
the DX register; the memory location is pointed to by the
SI register. After the operation is performed, the SI reg­
ister is adjusted by I (if a byte output is specified) or by
2 (if a word output is specified). The adjustment is either
an increment or a decrement, as determined by the Di­
rection bit in the flag register of the processor. The DS
segment register is used for memory addressing, but can
be overridden by using a segment override prefix. When
preceeded by a REPeat prefix, this instruction allows
blocks of data to be moved from a block of memory to an
I/O address. Again note that the I/O address in the DX
register is not modified by this operation.

Like the string move instruction, these two instructions
require two operands to specify whether word or byte op­
erations are to take place. Additionally, this determina­
tion can be supplied by the mnemonic itself by adding a
"B" or "w" to the basic mnemonic, for example:
INSB ; perform byte input
REP OUTSW ; perform word block output

AFN-21 0973

AP-186

BOUND

The 80186 supplies a BOUND instruction to facilitate
bound checking of arrays. In this instruction, the calcu­
lated index into the array is placed in one of the general
purpose registers of the 80186. Located in two adjacent
word memory locations are the lower and upper bounds
for the array index. The BOUND instruction compares
the register contents to the memory locations, and if the
value in the register is not between the values in the
memory locations, an interrupt type 5 is generated. The
comparisons performed are SIGNED comparisons. A
register value equal to either the upper bound or the low­
er bound will not cause an interrupt.

This instruction requires two arguments: the register in
which the calculated array index is placed, and the word
memory location which contains the lower bound of the
array (which can be specified by any of the 80186 mem­
ory addressing modes). The memory location containing
the upper bound ofthe array must follow immediatly the
memory location containing the lower bound of the
array.

ENTER and LEAVE

The 80186 contains two instructions which are used to
build and tear down stack frames of higher level, block
structured languages. The instruction used to build
these stack frames is the ENTER instruction. The algo­
rithm for this instruction is:

PUSH BP

if level = 0 then
BP:= SP;

f* save the previous frame
pointer * f

else tempi := SP; /* save current frame pointer
*f

7

BP~ BEFORE

SP-

temp2 : = level - I;
do while temp2 > 0 /* copy down previous

BP:= BP- 2;
PUSH [BP);

BP:= tempi;
PUSHBP;

/* in the save area • f
SP:= SP - disp;

/* local variables * f

frame *f
/* pointers * f

/* put current level
pointer * f

/* create space on the
for *f

level

frame

stack

Figure H-I shows the layout of the stack before and
after this operation.

This instruction requires two operands: the first value
(disp) specifies the number of bytes the local variables of
this routine require. This is an unsigned value and can be
as large as 65535. The second value (level) is an un­
signed value which specifies the level of the procedure. It
can be as great as 255.

The 80186 includes the LEAVE instruction to tear down
stack frames built up by the ENTER instruction. As can
be seen from the layout of the stack left by the ENTER
instruction, this involves only moving the contents of the
BP register to the SP register, and popping the old BP
value from the stack.

Neither the ENTER nor the LEAVE instructions save
any of the 80186 general purpose registers. If they must
be saved, this must be done in addition to the ENTER
and the LEAVE. In addition, the LEAVE instruction
does not perform a return from a subroutine. If this is
desired, the LEAVE instruction must be explicitly fol­
lowed by the RET instruction.

AFTER

BP_ OLDBP I-
OLD FRAME

PTRS.

CURRENT FRAME >--PTR

LOCAL

VARIABLE

SP--
AREA

Figure H-1. ENTER Instruction Stack Frame

77 AFN-21 0973

AP-186

APPENDIX I: 80186/80188 DIFFERENCES

The 80188 is exactly like the 80186, except it has an 8 bit
external bus. It shares the same execution unit, timers,
peripheral control block, interrupt controller, chip se­
lect, and DMA logic. The differences between the two
caused by the narrower data bus are:

The 80188 has a 4 byte prefetch queue, rather than
the 6 byte prefetch queue present on the 80186. The
reason for this is since the 80188 fetches opcodes one
byte at a time, the number of bus cycles required to
fill the smaller queue of the 80188 is actually greater
than the number of bus cycles required to fill the
queue of the 80186. As a result, a smaller queue is
required to prevent an inordinate number of bus cy­
cles being wasted by prefetching opcodes to be dis­
carded during a jump.

AD8-ADI5 on the 80186 are transformed to A8-
A15 on the 80188. Valid address information is pre­
sent on these lines throughout the bus cycle of the
80188. Valid address information is not guaranteed
on these lines during idle T states.

BHEjS7 is always defined HIGH by the 80188,
since the upper half of the data bus is non-existant.

78

The DMA controller. of the 80188 only performs
byte transfers. The BjW bit in the DMA control
word is ignored.

Execution times for many memory access instruc­
tions are increased because the memory access must
be funnelled through a narrower data bus. The
80188 also will be more bus limited than the 80186
(that is, the execution unit will be required to wait
for the opcode information to be fetched more often)
because the data bus is narrower. The execution time
within the processor, however, has not changed be­
tween the 80186 and the 80188.

Another important point is that the 80188 internally is a
16-bit machine. This means that any access to the inte­
grated peripheral registers of the 80188 will be done in
16-bit chunks, NOT in 8-bit chunks. All internal periph­
eral registers are still 16-bits wide, and only a single read
or write is required to access the registers. When an ac­
cess is made to the internal registers, only a single bus
cycle will be run, and only the lower 8-bits of the written
data will be driven on the external bus. All accesses to
registers within the integrated peripheral block must be
WORD accesses.

AFN-21 0973

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

INTEL INTERNATIONAL, Brussels, Belgium; Tel. (02) 661 0711

I NTEL JAPAN k_k_, Ibaraki-ken; Tel. 029747-8511.

Printed in U.S.A./T-2406.1/0783/25K/RRD RM

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	xBack

