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CHAPTER 1 
INTRODUCTIO'N 

The 8086 microprocessor was first introduced in 1978 and gained rapid support as the microcom­
puter engine of choice. There are literally millions of 8086/8088-based systems in the world to­
day. The amount of software written for the 8086/8088 is rivaled by no other architecture. 

By the early 1980's, however, it was clear that a replacement for the 8086/8088 was necessary. 
An 8086/8088 system required dozens of support chips to implement even a moderately complex 
design. Intel recognized the need to integrate commonly used system peripherals onto the same 
silicon die as the CPU. In 1982 Intel addressed this need by introducing the 80186/80188 family 
of embedded microprocessors. The original 80186/80188 integrated an enhanced 808618088 
CPU with six commonly used system peripherals. A parallel effort within Intel also gave rise to 
the 80286 microprocessor in 1982. The 80286 began the trend toward the very high performance 
Intel architecture that today includes the Inte1386™, Intel486™ and Pentium™ microprocessors. 

As technology advanced and turned toward small geometry CMOS processes, it became clear 
that a new 80186 was needed. In 1987 Intel announced the second generation ofthe 80186 family: 
the 8OC186/C188. The 80C186 family is pin compatible with the 80186 family, while adding an 
enhanced feature set. The high-performance CHMOS III process allowed the 80C186 to run at 
twice the clock rate of the NMOS 80186, while consuming less than one-fourth the power. 

The 80186 family took another major step in 1990 with the introduction of the 80C186EB family. 
The 80C 186EB heralded many changes for the 80186 family. First, the enhanced 8086/8088 CPU 
was redesigned as a static, stand-alone module known as the 80C186 Modular Core. Second, the 
80186 family peripherals were also redesigned as static modules with standard interfaces. The 
goal behind this redesign effort was to give Intel the capability to proliferate the 80186 family 
rapidly, in order to provide solutions for an even wider range of customer applications. 

The 80C186EB/C188EB was the first product to use the new modular capability. The 
8OC186EB/C188EB includes a different peripheral set than the original 80186 family. Power 
consumption was dramatically reduced as a direct result of the static design, power management 
features and advanced CHMOS N process. The 80C186EB/C188EB has found acceptance in a 
wide array of portable equipment ranging from cellular phones to personal organizers. 

In 1991 the 80C186 Modular Core family was again extended with the introduction of three new 
products: the 80C186XL, the 80C186EA and the 80C186EC. The 80C186XL/C188XL is a high­
er performance, lower power replacement for the 8OC186/C188. The 8OC186EAlC188EA com­
bines the feature set of the 8OC186 with new power management features for power-critical 
applications. The 80C 186EC/C 188EC offers the highest level of integration of any of the 80C 186 
Modular Core family products, with 14 on-chip peripherals (see Table 1-1). 

I 
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INTRODUCTION 

The 80C186 Modular Core family is the direct result often years ofIntel development. It offers 
the designer the peace of mind of a well-established architecture with the benefits of state-of-the­
art technology. 

Table 1-1. Comparison of 80C186 Modular Core Family Products 

1.1 HOW TO USE THIS MANUAL 

This manual uses phrases such as 80C186 Modular Core Family or 80C188 Modular Core, as 
well as references to specific products such as 80C188EA. Each phrase refers to a specific set of 
80C186 family products. The phrases and the products they refer to are as follows: 

80C186 Modular Core Family: This phrase refers to any device that uses the modular 
80C186/C188 CPU core architecture. At this time these include the 80C186EAlC188EA, 
80CI86EB/CI88EB, 80C186EC/C188EC and 8OC186XLlC188XL. 

80C186 Modular Core: Without the word/amity, this phrase refers only to the 16-bit bus mem­
bers of the 80C 186 Modular Core Family. 

80C188 Modular Core: This phrase refers to the 8-bit bus products. 

80C188EC: A specific product reference refers only to the named device. For example, On the 
80C188EC. .. refers strictly to the 80C188EC and not to any other device. 

1-2 
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INTRODUCTION 

Each chapter covers a specific section of the device, beginning with the CPU core. Each periph­
eral chapter includes programming examples intended to aid in your understanding of device op­
eration. Please read the comments carefully, as not all of the examples include all the code 
necessary for a specific application. 

This user's guide is a supplement to the device data sheet. Specific timing values are not dis­
cussed in this guide. When designing a system, always consult the most recent version of the de­
vice data sheet for up-to-date specifications. 

1.2 RELATED DOCUMENTS 

The following table lists documents and software that are useful in designing systems that incor­
porate the 80C186 Modular Core Family. These documents are available through Intel Literature. 
In the U.S. and Canada, call 1-800-548-4725 to order. In Europe and other international locations, 
please contact your local Intel sales office or distributor. 

I 

NOTE 

If you will be transferring a design from the 80186/80188 or 8OC186/80C188 
to the 80C186XL/80C188XL, refer to FaxBack Document No. 2132. 

Table 1-2. Related Documents and Software 

Document/Software Title Document 
Order No. 

Embedded Microprocessors (includes 186 family data sheets) 272396 

186 Embedded Microprocessor Line Card 272079 

80186/80188 High-Integration 16-Bit Microprocessor Data Sheet 272430 

80C186XUC188XL-20, -12 16-Bit High-Integration Embedded Microprocessor 272431 
Data Sheet 

80C186EAl80C188EA-20, -12 and 80L 186EAl80L 188EA-13, -8 (low power 272432 
versions) 16-Bit High-Integration Embedded Microprocessor Data Sheet 

80C186EB/80C188EB-20, -13 and 80L 186EB/80L 188EB-13, -8 (low power 272433 
versions) 16-Bit High-Integration Embedded Microprocessor Data Sheet 

80C186EC/80C188EC-20, -13 and 80L 186EC/80L 188EC-13, -8 (low power 272434 
versions) 16-Bit High-Integration Embedded Microprocessor Data Sheet 

80C187 80-Bit Math Coprocessor Data Sheet 270640 

Low Voltage Embedded Design 272324 

80C186/C188, 80C186XUC188XL Microprocessor User's Manual 272164 

80C186EAl80C188EA Microprocessor User's Manual 270950 

80C186EB/80C188EB Microprocessor User's Manual 270830 

80C186EC/80C188EC Microprocessor User's Manual 272047 

8086/8088/8087/80186/80188 Programmer's Pocket Reference Guide 231017 
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INTRODUCTION 

Table 1-2. Related Documents and Software (Continued) 

Document/Software Title 
Document 
Order No. 

8086/8088 User's Manual Programmer's and Hardware Reference Manual 240487 

ApBUILDER Software 272216 

80C186EA Hypertext Manual 272275 

80C186EB Hypertext Manual 272296 

80C186EC Hypertext Manual 272298 

80C186XL Hypertext Manual 272630 

ZCON - Z80 Code Converter Available on BBS 

1.3 CUSTOMER SERVICE 

This section provides telephone numbers and describes various customer services. 

• Customer Support (U.S. and Canada) 800-628-8686 

• Customer Training (U.S. and Canada) 800-234-8806 

• Literature Fulfillment 

- 800-548-4725 (U.S. and Canada) 

- +44(0)793-431155 (Europe) 

• FaxBack* Service 

800-628-2283 (U.S. and Canada) 

+44(0)793-496646 (Europe) 

916-356-3105 (worldwide) 

• Application Bulletin Board System 

916-356-3600 (worldwide, up to 14.4-Kbaud line) 

916-356-7209 (worldwide, dedicated 2400-baud line) 

+44(0)793-496340 (Europe) 

Intel provides 24-hour automated technical support through the use of our FaxBack service and 
our centralized Intel Application Bulletin Board System (BBS). The FaxBack service is a simple­
to-use information system that lets you order technical documents by phone for immediate deliv­
ery to your fax machine. The BBS is a centralized computer bulletin board system that provides 
updated application-specific information about Intel products. 
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1.3.1 How to Use Intel's FaxBack Service 

Think of the FaxBack service as a library of technical documents that you can access with your 
phone. Just dial the telephone number (see page 1-4) and respond to the system prompts. After 
you select a document, the system sends a copy to your fax machine. 

Each document is assigned an order number and is listed in a subject catalog. First-time users 
should order the appropriate subject catalogs to get a complete listing of document order num­
bers. 

The following catalogs and information packets are available: 

1. Microcontroller, Flash, and iPLD catalog 

2. Development tool catalog 

3. System catalog 

4. DVI and multimedia catalog 

5. BBS catalog 

6. Microprocessor and peripheral catalog 

7. Quality and reliability catalog 

8. Technical questionnaire 

1.3.2 How to Use Intel's Application BBS 

The Application Bulletin Board System (BBS) provides centralized access to information, soft­
ware drivers, firmware upgrades, and revised software. Any user with a modem and computer can 
access the BBS. Use the following modem settings. 

• 14400, N, 8, 1 

If your modem does not support 14.4K baud, the system provides auto configuration support for 
1200- through 14.4K-baud modems. 

To access the BBS, just dial the telephone number (see page 1-4) and respond to the system 
prompts. During your first session, the system asks you to register with the system operator by 
entering your name and location. The system operator will then set up your access account within 
24 hours. At that time, you can access the files on the BBS. For a listing of files, call the FaxBack 
service and order catalog #6 (the BBS catalog). 
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INTRODUCTION intela. 
If you ~ncounter any difficulty accessing our high-speed modem, try our dedicated 2400-baud 
modem (see page 1-4). Use the following modem settings. 

• 2400 baud, N, 8, 1 

1.3.3 How to Find the Latest ApBUILDER Flies, Hypertext Manuals, and 
Data Sheets on the BBS 

The latest ApBUILDER files and hypertext manuals and data sheets are available first from the 
BBS. To access the files: 

1. Select [F] from the BBS Main menu. 

2. Select [L] from the Intel Apps Files menu. 

3. The BBS displays the list of all area levels and prompts for the area number. 

4. Select [25] to choose the ApBUILDER I Hypertext area. 

5. Area level 25 has four sublevels: (1) GeJ;leral, (2) 196 Files, (3) 186 Files, and (4) 8051 
Files. 

6. Select [1] to find the latest ApBUILDER files or the number of the appropriate product­
family sublevel to find the hypertext manuals and data sheets. 

7. Enter the file number to tag the files you wish to download. The BBS displays the approx­
imate download time for tagged files. 
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CHAPTER 2 
OVERVIEW OF THE 80C186 FAMILY 

ARCHITECTURE 

The 8OC186 Modular Microprocessor Core shares a common base architecture with the 8086, 
8088, 80186, 80188, 80286, Intel386™ and Intel486™ processors. The 8OC186 Modular Core 
maintains full object-code compatibility with the 8086/8088 family of 16-bit microprocessors, 
while adding hardware and software performance enhancements. Most instructions require fewer 
clocks to execute on the 8OC186 Modular Core because of hardware enhancements in the Bus 
Interface Unit and the Execution Unit. Several additional instructions simplify programming and 
reduce code size (see Appendix A, "8OC186 Instruction Set Additions and Extensions"). 

2.1 ARCHITECTURAL OVERVIEW 

The 8OC186 Modular Microprocessor Core incorporates two separate processing units: an Exe­
cution Unit (EU) and a Bus Interface Unit (BIU). The Execution Unit is functionally identical 
among all family members. The Bus Interface Unit is configured for a 16-bit external data bus 
for the 80C186 core and an 8-bit external data bus for the 8OC188 core. The two units interface 
via an instruction prefetch queue. 

The Execution Unit executes instructions; the Bus Interface Unit fetches instructions, reads op­
erands and writes results. Whenever the Execution Unit requires another opcode byte, it takes the 
byte out of the prefetch queue. The two units can operate independently of one another and are 
able, under most circumstances, to overlap instruction fetches and execution. 

The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU). The Arithmetic 
Logic Unit performs 8-bit or 16-bit arithmetic and logical operations. It provides for data move­
ment between registers, memory and 110 space. 

The 8OC186 Modular Core family CPU allows for high-speed data transfer from one area of 
memory to another using string move instructions and between an 110 port and memory using 
block 110 instructions. The CPU also provides many conditional branch and control instructions. 

The 8OC186 Modular Core architecture features 14 basic registers grouped as general registers, 
segment registers, pointer registers and status and control registers. The four 16-bit general-pur­
pose registers (AX, BX, CX and DX) can be used as open~nds for most arithmetic operations as 
either 8- or 16-bit units. The four 16-bit pointer registers (SI, 01, BP and SP) can be used in arith­
metic operations and in accessing memory-based variables. Four 16-bit segment registers (CS, 
DS, SS and ES) allow simple memory partitioning to aid modular programming. The status and 
control registers consist of an Instruction Pointer (IP) and the Processor Status Word (PSW) reg­
ister, which contains flag bits. Figure 2-1 is a simplified CPU block diagram. 
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Figure 2-1. Simplified Functional Block Diagram of the 80C186 Family CPU 

2.1.1 Execution Unit 

The Execution Unit executes all instructions, provides data and addresses to the Bus Interface 
Unit and manipulates the general registers and the Processor Status Word. The 16-bit ALU within 
the Execution Unit maintains the CPU status and control flags and manipulates the general reg­
isters and instruction operands. All registers and data paths in the Execution Unit are 16 bits wide 
for fast internal transfers. 
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The Execution Unit does not connect directly to the system bus. It obtains instructions from a 
queue maintained by the Bus Interface Unit. When an instruction requires access to memory or a 
peripheral device, the Execution Unit requests the Bus Interface Unit to read and write data. Ad­
dresses manipulated by the Execution Unit are 16 bits wide. The Bus Interface Unit, however, 
performs an address calculation that allows the Execution Unit to access the full megabyte of 
memory space. 

To execute an instruction, the Execution Unit must first fetch the object code byte from the in­
struction queue and then execute the instruction. If the queue is empty when the Execution Unit 
is ready to fetch an instruction byte, the Execution Unit waits for the Bus Interface Unit to fetch 
the instruction byte. 

2.1.2 Bus Interface Unit 

The 8OC186 Modular Core and 8OC188 Modular Core Bus Interface Units are functionally iden­
tical. They are implemented differently to match the structure and performance characteristics of 
their respective system buses. The Bus Interface Unit executes all external bus cycles. This unit 
consists of the segment registers, the Instruction Pointer, the instruction code queue and several 
miscellaneous registers. The Bus Interface Unit transfers data to and from the Execution Unit on 
the ALU data bus. 

The Bus Interface Unit generates a 20-bit physical address in a dedicated adder. The adder shifts 
a 16-bit segment value left 4 bits and then adds a 16-bit offset. This offset is denved from com­
binations of the pointer registers, the Instruction Pointer and immediate values (see Figure 2-2). 
Any carry from this addition is ignored. 
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Figure 2-2. Physical Address Generation 
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During periods when the Execution Unit is busy executing instructions, the Bus Interface Unit 
sequentially prefetches instructions from memory. As long as the prefetch queue is partially full, 
the Execution Unit fetches instructions. 

2.1.3 General Registers 

The 8OC186 Modular Core family CPU has eight 16-bit general registers (see Figure 2-3). The 
general registers are subdivided into two sets of four registers. These sets are the data registers 
(also called the H & L group for high and low) and the pointer and index registers (also called the 
P& I group). 
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Figure 2-3. General Registers 
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The data registers can be addressed by their upper or lower halves. Each data register can be used 
interchangeably as a 16-bit register or two 8-bit registers. The pointer registers are always access­
ed as 16-bit values. The CPU can use data registers without constraint in most arithmetic and log­
ic operations. Arithmetic and logic operations can also use the pointer and index registers. Some 
instructions use certain registers implicitly (see Table 2-1), allowing compact encoding. 

Table 2-1. Implicit Use of General Registers 

Register Operations 

AX Word Multiply, Word Divide, Word 1/0 

AL Byte Multiply, Byte Divide, Byte 1/0, Translate, Decimal Arithmetic 

AH Byte Multiply, Byte Divide 

BX Translate 

CX String Operations, Loops 

CL Variable Shift and Rotate 

OX Word Multiply, Word Divide, Indirect 1/0 

SP Stack Operations 

SI String Operations 

01 String Operations 

The contents of the general-purpose registers are undefined following a processor reset. 

2.1.4 Segment Registers 

The 80C186 Modular Core family memory space is 1 Mbyte in size and divided into logical seg­
ments of up to 64 Kbytes each. The CPU has direct access to four segments at a time. The segment 
registers contain the base addresses (starting locations) of these memory segments (see Figure 
2-4). The CS register points to the current code segment, which contains instructions to be 
fetched. The SS register points to the current stack segment, which is used for all stack operations. 
The DS register points to the current data segment, which generally contains program variables. 
The ES register points to the current extra segment, which is typically used for data storage. The 
CS register initializes to OFFFFH, and the SS, DS and ES registers initialize to OOOOH. Programs 
can access and manipulate the tgment registers with several instructions. 

&5""1c 
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15 o 

CS I Code Segment 
DS Data Segment 

r-----------------------~ 
1--__________ S_S _________ ---1 Stack Segment 

ES Extra Segment 
~----------------------~ 

Figure 2-4. Segment Registers 

2.1.5 Instruction Pointer 

The Bus Interface Unit updates the 16-bit Instruction Pointer (IP) register so it contains the offset 
of the next instruction to be fetched. Programs do not have direct access to the Instruction Pointer, 
but it can change, be saved or be restored as a result of program execution. For example, if the 
Instruction Pointer is saved on the stack, it is first automatically adjusted to point to the next in­
struction to be executed. 

Reset initializes the Instruction Pointer to OOOOH. The CS and IP values comprise a starting exe­
cution address of OFFFFOH (see "Logical Addresses" on page 2-10 for a description of address 

/ formation). 
\ 
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2.1.6 Flags 

The 80C186 Modular Core family has six status flags (see Figure 2-5) that the Execution Unit 
posts as the result of arithmetic or logical operations. Program branch instructions allow a pro­
gram to alter its execution depending on conditions flagged by a prior operation. Different in­
structions affect the status flags differently, generally reflecting the following states: 

• If the Auxiliary Flag (AF) is set, there has been a carry out from the low nibble into the high 
nibble or a borrow from the high nibble into the low nibble of an 8-bit quantity (low-order 
byte of a 16-bit quantity). This flag is used by decimal arithmetic instructions. 

• If the Carry Flag (CF) is set, there has been a carry out of or a borrow into the high-order bit 
of the instruction result (8- or 16-bit). This flag is used by instructions that add or subtract 
multibyte numbers. Rotate instructions can also isolate a bit in memory or a register by 
placing it in the Carry Flag. 

• If the Overflow Flag (OF) is set, an arithmetic overflow has occurred. A significant digit 
has been lost because the size of the result exceeded the capacity of its destination location. 
An Interrupt On Overflow instruction is available that will generate an interrupt in this 
situation. 

• If the Sign Flag (SF) is set, the high-order bit of the result is a 1. Since negative binary 
numbers are represented in standard two's complement notation, SF indicates the sign of the 
result (0 = positive, 1 = negative). 

• If the Parity Flag (PF) is set, the result has even parity, an even number of 1 bits. This flag 
can be used to check for data transmission errors. 

• If the Zero Flag (ZF) is set, the result of the operation is zero. 

Additional control flags (see Figure 2-5) can be set or cleared by programs to alter prpcessor op­
erations: 

• Setting the Direction Flag (DF) causes string operations to auto-decrement. Strings are 
processed from high address to low address (or "right to left"). Clearing DF causes string 
operations to auto-increment. Strings are processed from low address to high address (or 
"left to right"). 

• Setting the Interrupt Enable Flag (IF) allows the CPU to recognize maskable external or 
internal interrupt requests. Clearing IF disables these interrupts. The Interrupt Enable Flag 
has no effect on software interrupts or non-maskable interrupts. 

• Setting the Trap Flag (TF) bit puts the processor into single-step mode for debugging. In 
this mode, the CPU automatically generates an interrupt after each instruction. This allows 
a program to be inspected instruction by instruction during execution. 

The status and control flags are contained in a 16-bit Processor Status Word (see Figure 2-5). Re­
set initializes the Processor Status Word to OFOOOH. 

I 
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2.1.7 Memory Segmentation 

Programs for the 8OC186 Modular Core family view the 1 Mbyte memory space as a group of 
user-defined segments. A segment is a logical unit of memory that can be up to 64 Kbytes long. 
Each segment is composed of contiguous memory locations. Segments are independent and sep­
arately addressable. Software assigns every segment a base address (starting location) in memory 
space. All segments begin on 16-byte memory boundaries. There are no other restrictions on seg­
ment locations. Segments can be adjacent, disjoint, partially overlapped or fully overlapped (see 
Figure 2-6). A physical memory location can be mapped into (covered by) one or more logical 
segments. 
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Register Name: 

Register Mnemonic: 

Register Function: 

o 0 
F F 

Processor Status Word 

PSW (FLAGS) 
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I T 
F F 

s Z 
F F 
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Bit 
Bit Name 

Reset 
Function Mnemonic State 

OF Overflow Flag 0 If OF Is set, an arithmetic overflow has occurred. 

If OF Is set, string Instructions are processed high 
OF Direction Flag 0 address to low address. If OF Is clear, strings are 

processed low address to high address. 

Interrupt If IF is set, the CPU recognizes maskable interrupt 
IF 

Enable Flag 0 requests. If IF is clear, maskable Interrupts are 
ignored. 

TF Trap Flag 0 If TF is set, the processor enters single-step mode. 

SF Sign Flag 0 
If SF is set, the high-order bit of the result of an 
operation Is 1, indicating It Is negative. 

ZF Zero Flag 0 If ZF Is set, the result of an operation Is zero. 

If AF Is set, there has been a carry from the low 

AF Auxiliary Flag 0 
nibble to the high or a borrow from the high nibble 
to the low nibble of an a-bit quantity. Used In BCD 
operations. 

PF Parity Flag 0 
If PF is set, the result of an operation has even 
parity. 

If CF Is set, there has been a carry out of, or a 
CF Carry Flag 0 borrow Into, the hlgh-order bit of the result of an 

instruction. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to ensure compatibility with future Intel products. 

Figure 2-5. Processor Status Word 
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The four segment registers point to four "currently addressable" segments (see Figure 2-7). The 
currently addressable segments provide a work space consisting of 64 Kbytes for code, a 64 
Kbytes for stack and 128 Kbytes for data storage. Programs access code and data in another seg­
ment by updating the segment register to point to the new segment. 

2.1.8 Logical Addresses 

It is useful to think of every memory location as having two kinds of addresses, physical and log­
ical. A physical address is a 20-bit value that identifies a unique byte location in the memory 
space. Physical addresses range from OH to OFFFFFH. All exchanges between the CPU and 
memory use physical addresses. 

Programs deal with logical rather than physical addresses. Program code can be developed with­
out prior knowledge of where the code will be located in memory. A logical address consists of 
a segment base value and an offset value. For any given memory location, the segment base value 
locates the first byte of the segment. The offset value represents the distance, in bytes, of the target 
location from the beginning of the segment. Segment base and offset values are unsigned 16-bit 
quantities. Many different logical addresses can map to the same physical location. In Figure 2-8, 
physical memory location 2C3H is contained in two different overlapping segments, one begin­
ning at 2BOH and the other at 2COH. 
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Figure 2-7. Currently Addressable Segments 

The segment register is automatically selected according to the rules in Table 2-2. All information 
in one segment type generally shares the same logical attributes (e.g., code or data). This leads to 
programs that are shorter, faster and better structured. 

The Bus Interface Unit must obtain the logical address before generating the physical address. 
The logical address of a memory location can come from different sources, depending on the type 
of reference that is being made (see Table 2-2). 

Segment registers always hold the segment base addresses. The Bus Interface Unit determines 
which segment register contains the base address according to the type of memory reference 
made. However, the programmer can explicitly direct the Bus Interface Unit to use any currently . 
addressable segment (except for the destination operand of a string instruction). In assembly lan­
guage, this is done by preceding an instruction with a segment override prefix. 
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Table 2-2. Logical Address Sources 

Type of Memory Reference 
Default Alternate 

Offset Segment Base Segment Base 

Instruction Fetch CS NONE IP 

Stack Operation SS NONE SP 

Variable (except following) DS CS, ES, SS Effective Address 

String Source DS CS, ES, SS SI 

String Destination ES NONE DI 

BP Used as Base Register SS CS,DS,ES Effective Address 

Instructions are always fetched from the current code segment. The IP register contains the in­
struction's offset from the beginning of the segment. Stack instructions always operate on the cur­
rent stack segment. The Stack Pointer (SP) register contains the offset of the top of the stack from 
the base of the stack. Most variables (memory operands) are assumed to reside in the current data 
segment, but a program can instruct the Bus Interface Unit to override this assumption. Often, the 
offset of a memory variable is not directly available and must be calculated at execution time. The 
addressing mode specified in the instruction determines how this offset is calculated (see "Ad­
dressing Modes" on page 2-27). The result is called the operand's Effective Address (EA). 

Strings are addressed differently than other variables. The source operand of a string instruction 
is assumed to lie in the current data segment. However, the program can use another currently 
addressable segment. The operand's offset is taken from the Source Index (SI) register. The des­
tination operand of a string instruction always resides in the current extra segment. The destina­
tion's offset is taken from the Destination Index (DI) register. The string instructions 
automatically adjust the SI and DI registers as they process the strings one byte or word at a time. 

When an instruction designates the Base Pointer (BP) register as a base register, the variable is 
assumed to reside in the current stack segment. The BP register provides a convenient way to ac­
cess data on the stack. The BP register can also be used to access data in any other currently ad­
dressable segment. 

2.1.9 Dynamically Relocatable Code 

The segmented memory structure of the 80C 186 Modular Core family allows creation of dynam­
ically relocatable (position-independent) programs. Dynamic relocation allows a multiprogram­
ming or multitasking system to make effective use of available memory. The processor can write 
inactive programs to a disk and reallocate the space they occupied to other programs. A disk-res­
ident program can then be read back into available memory locations and restarted whenever it 
is needed. If a program needs a large contiguous block of storage and the total amount is available 
only in non-adjacent fragments, other program segments can be compacted to free enough con­
tinuous space. This process is illustrated in Figure 2-9. 
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To be dynamically relocatable, a program must not load or alter its segment registers and must 
not transfer directly to a location outside the current code segment. All program offsets must be 
relative to the segment registers. This allows the program to be moved anywhere in memory, pro­
vided that the segment registers are updated to point to the new base addresses. 
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2.1.10 Stack Implementation 

Stacks in the 80C 186 Modular Core family reside in memory space. They are located by the Stack 
Segment register (SS) and the Stack Pointer (SP). A system can have multiple stacks, but only 
one stack is directly addressable at a time. A stack can be up to 64 Kbytes long, the maximum 
length of a segment. Growing a stack segment beyond 64 Kbytes overwrites the beginning of the 
segment. The SS register contains the base address of the current stack. The top of the stack, not 
the base address, is the origination point of the stack. The SP register contains an offset that points 
to the Top of Stack (TOS). 

Stacks are 16 bits wide. Instructions operating on a stack add and remove stack elements one 
word at a time. An element is pushed onto the stack (see Figure 2-10) by first decrementing the 
SP register by 2 and then writing the data word. An element is popped off the stack by copying it 
from the top of the stack and then incrementing the SP register by 2. The stack grows J!own in 
memory toward its base address. Stack operations never move or erase elements on the stack. The 
top of the stack changes only as a result of updating the stack pointer. 

2.1.11 Reserved Memory and 110 Space 

Two specific areas in memory and one area in I/O space are reserved in the 8OC186 Core family. 

I 

• Locations OH through 3FFH in low memory are used for the Interrupt Vector Table. 
Programs should not be loaded here. 

• Locations OFFFFOH through OFFFFFH in high memory are used for system reset code 
because the processor begins execution at OFFFFOH. 

• Locations OF8H through OFFH in I/O space are reserved for communication with other Intel 
hardware products and must not be used. On the 8OC186 core, these addresses are used as 
I/O ports for the 80C187 numerics processor extension. 
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Figure 2-10. Stack Operation 

2-16 

I 



in1et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

2.2 SOFTWARE OVERVIEW 

All 80C186 Modular Core family members execute the same instructions. This includes all the 
8086/8088 instructions plus several additions and enhancements (see Appendix A, "8OC186 In­
struction Set Additions and Extensions"). The following sections describe the instructions by cat­
egory and provide a detailed discussion of the operand addressing modes. 

Software for 80C186 core family systems need not be written in assembly language. The proces­
sor provides direct hardware support for programs written in the many high-level languages 
available. The hardware addressing modes provide straightforward implementations of based 
variables, arrays, arrays of structures and other high-level language data constructs. A powerful 
set of memory-to-memory string operations allow efficient character data manipulation. Finally, 
routines with critical performance requirements can be written in assembly language and linked 
with high-level code. 

2.2.1 Instruction Set 

The 80C 186 Modular Core family instructions treat different types of operands uniformly. Nearly 
every instruction can operate on either byte or word data. Register, memory and immediate oper­
ands can be specified interchangeably in most instructions. Immediate values are exceptions: they 
must serve as source operands and not destination operands. Memory variables can be manipu­
lated (added to, subtracted from, shifted, compared) without being moved into and out of regis­
ters. This saves instructions, registers and execution time in assembly language programs. In 
high-level languages, where most variables are memory-based, compilers can produce faster and 
shorter object programs. 

The 80C186 Modular Core family instruction set can be viewed as existing on two levels. One is 
the assembly level and the other is the machine level. To the assembly language programmer, the 
80C186 Modular Core family appears to have about 100 instructions. One MOV (data move) in­
struction, for example, transfers a byte or a word from a register, a memory location or an imme­
diate value to either a register or a memory location. The 80C186 Modular Core family CPUs, 
however, recognize 28 different machine versions of the MOV instruction. 

The two levels of instruction sets address two requirements: efficiency and simplicity. Approxi­
mately 300 forms of machine-level instructions make very efficient use of storage. For example, 
the machine instruction that increments a memory operand is three or four bytes long because the 
address of the operand must be encoded in the instruction. Incrementing a register, however, re­
quires less information, so the instruction can be shorter. The 80C186 Core family has eight sin­
gle-byte machine-level instructions that increment different 16-bit registers. 

The assembly level instructions simplify the programmer's view of the instruction set. The pro­
grammer writes one form of an INC (increment) instruction and the assembler examines the op­
erand to determine which machine level instruction to generate. The following paragraphs 
provide a functional description of the assembly-level instructions. 
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2.2.1.1 Data Transfer Instructions 

The instruction set contains 14 data transfer instructions. These instructions move single bytes 
and words between memory and registers. They also move single bytes and words between the 
AL or AX register and 110 ports. Table 2-3 lists the four types of data transfer instructions and 
their functions. 

Table 2-3. Data Transfer Instructions 

General-Purpose 

MOV Move byte or word 

PUSH Push word onto stack 

POP Pop word off stack 

PUSHA Push registers onto stack 

POPA Pop registers off stack 

XCHG Exchange byte or word 

XLAT Translate byte 

Input/Output 

IN Input byte or word 

OUT Output byte or word 

Address Object and Stack Frame 

LEA Load effective address 

LOS Load pOinter using OS 

LES Load pOinter using ES 

ENTER Build stack frame 

LEAVE Tear down stack frame 

Flag Transfer 

LAHF Load AH register from flags 

SAHF Store AH register in flags 

PUSHF Push flags from stack 

POPF Pop flags off stack 

Data transfer instructions are categorized as general purpose, input/output, address object and 
flag transfer. The stack manipulation instructions, used for transferring flag contents and instruc­
tions used for loading segment registers are also included in this group. Figure 2-11 shows the 
flag storage formats. The address object instructions manipulate the addresses of variables in­
stead of the values of the variables. 
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LAHF SAHF S,Z,U,A,U,P,U,C 
7 6 5 4 321 0 

U = Undefined; Value is indeterminate 
o = Overflow Flag 
D = Direction Flag 
I = Interrupt Enable Flag 
T=Trap Flag 
S = Sign Flag 
Z = Zero Flag 
A = Auxiliary Carry Flag 
P = Parity Flag 
C = Carry Flag 

Figure 2-11. Flag Storage Format 

2.2.1.2 Arithmetic Instructions 

The arithmetic instructions (see Table 2-4) operate on four types of numbers: 

• Unsigned binary 

• Signed binary (integers) 

• Unsigned packed decimal 

• Unsigned unpacked decimal 

I 
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Table 2-5 shows the interpretations of various bit patterns according to number type. Binary num­
bers can be 8 or 16 bits long. Decimal numbers are stored in bytes, two digits per byte for packed 
decimal and one digit per byte for unpacked decimal. The processor assumes that the operands in 
arithmetic instructions contain data that represents valid numbers for that instruction. Invalid data 
may produce unpredictable results. The Execution Unit analyzes the results of arithmetic instruc­
tions and adjusts status flags accordingly. 

Table 2-4. Arithmetic Instructions 

Addition 

ADD Add byte or word 

ADC Add byte or word with carry 

INC Increment byte or word by 1 

AAA ASCII adjust for addition 

DAA Decimal adjust for addition 

Subtraction 

SUB Subtract byte or word 

SBB Subtract byte or word with borrow 

DEC Decrement byte or word by 1 

NEG Negate byte or word 

CMP Compare byte or word 

AAS ASCII adjust for subtraction 

DAS Decimal adjust for subtraction 

Multiplication 

MUL Multiply byte or word unsigned 

IMUL Integer multiply byte or word 

AAM ASCII adjust for multiplication 

Division 

DIV Divide byte or word unsigned 

IDIV Integer divide byte or word 

AAD ASCII adjust for division 

CBW Convert byte to word 

CWD Convert word to double-word 
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Table 2-5. Arithmetic Interpretation of 8-Bit Numbers 

Hex Bit Pattern Unsigned Signed Unpacked Packed 
Binary Binary Decimal Decimal 

07 00000111 7 +7 7 7 

89 10001001 137 -119 invalid 89 

C5 11000101 197 -59 invalid invalid 

2.2.1.3 Bit Manipulation Instructions 

There are three groups of instructions for manipulating bits within bytes and words. These three 
groups are logical, shifts and rotates. Table 2-6 lists the bit manipulation instructions and their 
functions. 

Table 2-6. Bit Manipulation Instructions 

Logicals 

NOT "Not" byte or word 

AND "And" byte or word 

OR "Inclusive or" byte or word 

XOR "Exclusive or" byte or word 

TEST ''Test'' byte or word 

Shifts 

SHUSAL Shift logical/arithmetic left byte or word 

SHR Shift logical right byte or word 

SAR Shift arithmetic right byte or word 

Rotates 

ROL Rotate left byte or word 

ROR Rotate right byte or word 

RCL Rotate through carry left byte or word 

RCR Rotate through carry right byte or word 

Logical instructions include the Boolean operators NOT, AND, OR and exclusive OR (XOR), as 
well as a TEST instruction. The TEST instruction sets the flags as a result of a Boolean AND op­
eration but does not alter either of its operands. 

Individual bits in bytes and words can be shifted either arithmetically or logically. Up to 32 shifts 
can be performed, according to the value of the count operand coded in the instruction. The count 
can be specified as an immediate value or as a variable in the CL register. This allows the shift 
count to be a supplied at execution time. Arithmetic shifts can be used to multiply and divide bi­
nary numbers by powers of two. Logical shifts can be used to isolate bits in bytes or words. 
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Individual bits in bytes and words can also be rotated. The processor does not discard the bits ro­
tated out of an operand. The bits circle back to the other end of the operand. The number of bits 
to be rotated is taken from the count operand, which can specify either an immediate value or the 
CL register. The carry flag can act as an extension of the operand in two of the rotate instructions. 
This allows a bit to be isolated in the Carry Flag (CF) and then tested by a IC (jump if carry) or 
JNC (jump if not carry) instruction. 

2.2.1.4 String Instructions 

Five basic string operations process strings of bytes or words, one element (byte or word) at a 
time. Strings of up to 64 Kbytes can be manipulated with these instructions. Instructions are avail­
able to move, compare or scan for a value, as well as to move string elements to and from the 
accumulator. Table 2-7 lists the string instructions. These basic operations can be preceded by a 
one-byte prefix that causes the instruction to be repeated by the hardware, allowing long strings 
to be processed much faster than is possible with a software loop. The repetitions can be termi­
nated by a variety of conditions. Repeated operations can be interrupted and resumed. 

Table 2-7. String Instructions 

REP Repeat 

REPElREPZ Repeat while equaVzero 

REPNElREPNZ Repeat while not equaVnot zero 

MOVSBIMOVSW Move byte string/word string 

MOVS Move byte or word string 

INS Input byte or word string 

OUTS Output byte or word string 

CMPS Compare byte or word string 

SCAS Scan byte or word string 

LODS Load byte or word string 

STOS Store byte or word string 

String instructions operate similarly in many respects (see Table 2-8). A string instruction can· 
have a source operand, a destination operand, or both. The hardware assumes that a source string 
resides in the current data segment. A segment prefix can override this assumption. A destination 
string must be in the current extra segment. The assembler does not use the operand names to ad­
dress strings. Instead, the contents of the Source Index (SI) register are used as an offset to address 
the current element of the source string. The contents of the Destination Index (01) register are 
taken as the offset of the current destination string element. These registers must be initialized to 
point to the source and destination strings before executing the string instructions. The LOS, LES 
and LEA instructions are useful in performing this function. 

2-22 

I 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

String instructions automatically update the SI register, the DI register, or both, before processing 
the next string element. The Direction Flag (DF) determines whether the index registers are auto­
incremented (DF = 0) or auto-decremented (DF = I). The processor adjusts the DI, SI, or both 
registers by one for byte strings or by two for word strings. 

If a repeat prefix is used, the count register (CX) is decremented by one after each repetition of· 
the string instruction. The CX register must be initialized to the number of repetitions before the 
string instruction is executed. If the CX register is 0, the string instruction is not executed and 
control goes to the following instruction. 

2.2.1.5 

Table 2-8. String Instruction Register and Flag Use 

SI 

01 

ex 
AUAX 

Index (offset) for source string 

Index (offset) for destination string 

Repetition counter 

Scan value 

Destination for LODS 

Source for STOS 

OF Direction Flag 

0= auto-increment SI, 01 

1 = auto-decrement SI, 01 

ZF Scan/compare terminator 

Program Transfer Instructions 

The contents of the Code Segment (CS) and Instruction Pointer (IP) registers determine the in­
struction execution sequence in the 8OCl86 Modular Core family. The CS register contains the 
base address of the current code segment. The Instruction Pointer register points to the memory 
location of the next instruction to be fetched. In most operating conditions, the next instruction 
will already have been fetched and will be waiting in the CPU instruction queue. Program transfer 
instructions operate on the IP and CS registers. Changing the contents of these registers causes 
normal sequential operation to be altered. When a program transfer occurs, the queue no longer 
contains the correct instruction. The Bus Interface Unit obtains the next instruction from memory 
using the new IP and CS values. It then passes the instruction directly to the Execution Unit and 
begins refilling the queue from the new loc~tion. 

The 8OC186 Modular Core family offers four groups of program transfer instructions (see Table 
2-9). These are unconditional transfers, conditional transfers, iteration control instructions and in­
terrupt-related instructions. 

I 
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Unconditional transfer instructions can transfer control either to a target instruction within the 
current code segment (intrasegment transfer) or to a different code segment (intersegment trans­
fer). The assembler terms an intrasegment transfer SHORT or NEAR and an intersegment trans­
fer FAR. The transfer is made unconditionally when the instruction is executed. CALL, RET and 
JMP are all unconditional transfers. 

CALL is used to transfer the program to a procedure. A CALL can be NEAR or FAR. A NEAR 
CALL stacks only the Instruction Pointer, while a FAR CALL stacks both the Instruction Pointer 
and the Code Segment register. The RET instruction uses the information pushed onto the stack 
to determine where to return when the procedure finishes. Note that the RET and CALL instruc­
tions must be the same type. This can be a problem when the CALL and RET instructions are in 
separately assembled programs. The JMP instruction does not push any information onto the 
stack. A JMP instruction can be NEAR or FAR. 

Conditional transfer instructions are jumps that mayor may not transfer control, depending on 
the state of the CPU flags when the instruction is executed. Each conditional transfer instruction 
tests a different combination of flags for a condition (see Table 2-10). If the condition is logically 
TRUE, control is transferred to the target specified in the instruction. If the condition is FALSE, 
control passes to the instruction following the conditional jump. All conditional jumps are 
SHORT. The target must be in the current code segment within -128 to + 127 bytes of the next 
instruction's first byte. For example, JMP OOH causes a jump to the first byte of the next instruc­
tion. Jumps are made by adding the relative displacement of the target to the Instruction Pointer. 
All conditional jumps are self-relative and are appropriate for position-independent routines. 
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Table 2-9. Program Transfer Instructions 

Conditional Transfers 

JAlJNBE Jump if above/not below nor equal 

JAE/JNB Jump if above or equal/not below 

JB/JNAE Jump if below/not above nor equal 

JBE/JNA Jump if below or equaVnot above 

JC Jump if carry 

JElJZ Jump if equal/zero 

JG/JNLE Jump if greater/not less nor equal 

JGElJNL Jump if greater or equal/not less 

JUJNGE Jump if less/not greater nor equal 

JLE/JNG Jump if less or equaVnot greater 

JNC Jump if not carry 

JNElJNZ Jump if not equaVnot zero 

JNO Jump if not overflow 

JNP/JPO Jump if not parity/parity odd 

JNS Jump if not sign 

JO Jump if overflow 

JP/JPE Jump if parity/parity even 

JS Jump if sign 

Unconditional Transfers 

CALL Call procedure 

RET Return from procedure 

JMP Jump 

Iteration Control 

LOOP Loop 

LOOPEILOOPZ Loop if equal/zero 

LOOPNEILOOPNZ Loop if not equaVnot zero 

JCXZ Jump if register CX=O 

Interrupts 

INT Interrupt 

INTO Interrupt if overflow 

BOUND Interrupt if out of array bounds 

IRET Interrupt return 

I 
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Iteration control instructions can be used to regulate the repetition of software loops. These in­
structions use the ex register as a counter. Like the conditional transfers, the iteration control in­
structions are self-relative and can transfer only to targets that are within -128 to + 127 bytes of 
themselves. They are SHORT transfers. 

The interrupt instructions allow programs and external hardware devices to activate interrupt ser­
vice routines. The effect of a software interrupt is similar to that of a hardware-initiated interrupt. 
The processor cannot execute an interrupt acknowledge bus cycle if the interrupt originates in 
software or with an NMI (Non-Maskable Interrupt). 
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Table 2-10. Interpretation of Conditional Transfers 

Mnemonic Condition Tested "Jump if ••• " 

JAlJNBE (CF orZF)=O above/not below nor equal 

JAElJNB CF=O above or equal/not below 

JB/JNAE CF=1 below/not above nor equal 

JBElJNA (CF or ZF)=1 below or equal/not above 

JC CF=1 carry 

JElJZ ZF=1 equal/zero 

JG/JNLE «SF xor OF) or ZF)=O greater/not less nor equal 

JGElJNL (SF xor OF)=O greliter or equal/not less 

JLlJNGE (SF xor OF)=1 less/not greater nor equal 

JLE/JNG «SF xor OF) or ZF)=1 less or equal/not greater 

JNC CF=O not carry 

JNElJNZ ZF=O not equal/not zero 

JNO OF=O not overflow 

JNP/JPO PF=O not parity/parity odd 

JNS SF=O not sign 

JO OF=1 overflow 

JP/JPE PF=1 parity/parity equal 

JS SF=1 sign 

NOTE: The terms above and below refer to the relationship of two unsigned values; 
greater and less refer to the relationship of two signed values. 
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2.2.1.6 Processor Control Instructions 

Processor control instructions (see Table 2-11) allow programs to control various CPU functions. 
Seven of these instructions update flags, four of them are used to synchronize the microprocessor 
with external events, and the remaining instruction causes the CPU to do nothing. Except for flag 
operations, processor control instructions do not affect the flags. 

Table 2-11. Processor Control Instructions 

Flag Operations 

STC Set Carry flag 

CLC Clear Carry flag 

CMC Complement Carry flag 

STD Set Direction flag 

CLD Clear Direction flag 

STI Set Interrupt Enable flag 

CLI Clear Interrupt Enable flag 

External Synchronization 

HLT Halt until interrupt or reset 

WAIT Wait for TEST pin active 

ESC Escape to external processor 

LOCK Lock bus during next instruction 

No Operation 

NOP No operation 

2.2.2 Addressing Modes 

The 80C186 Modular Core family members access instruction operands in several ways. Oper­
ands can be contained either in registers, in the instruction itself, in memory or at I/O ports. Ad­
dresses of memory and I/O port operands can be calculated in many ways. These addressing 
modes greatly extend the flexibility and convenience of the instruction set. The following para­
graphs briefly describe register and immediate modes of operand addressing. A detailed descrip­
tion of the memory and I/O addressing modes is also provided. 

2.2.2.1 Register and Immediate Operand Addressing Modes 

Usually, the fastest, most compact operand addressing forms specify only register operands. This 
is because the register operand addresses are encoded in instructions in just a few bits and no bus 
cycles are run (the operation occurs within the CPU). Registers can serve as source operands, des­
tination operands, or both. 

I 
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Immediate operands are constant data contained in an instruction. Immediate data can be either 
8 or 16 bits in length. Immediate operands are available directly from the instruction queue and 
can be accessed quickly. As with a register operand, no bus cycles need to be run to get an imme­
diate operand. Immediate operands can be only source operands and must have a constant value. 

2.2.2.2 Memory Addressing Modes 

Although the Execution Unit has direct access to register and immediate operands, memory op­
erands must be transferred to and from the CPU over the bus. When the Execution Unit needs to 
read or write a memory operand, it must pass an offset value to the Bus Interface Unit. The Bus 
Interface Unit adds the offset to the shifted contents of a segment register, producing a 20-bit 
physical address. One or more bus cycles are then run to access the operand. 

The offset that the Execution Unit calculates for memory operand is called the operand's Effec­
tive Address (EA). This address is an unsigned 16-bit number that expresses the operand's dis­
tance, in bytes, from the beginning of the segment in which it resides. The Execution Unit can 
calculate the effective address in several ways. Information encoded in the second byte of the in­
struction tells the Execution Unit how to calculate the effective address of each memory operand. 
A compiler or assembler derives this information from the instruction written by the programmer. 
Assembly language programmers have access to all addressing modes. 

The Execution Unit calculates the Effective Address by summing a displacement, the contents of 
a base register and the contents of an index register (see Figure 2-12). Any combination of these 
can be present in a given instruction. This allows a variety of memory addressing modes. 
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Encoded 
in the 

Instruction 

Explicit 
in the 

Instruction 

Assumed Unless 
Overridden 

by Prefix 

Single Index Double Index 

.-------~----. 

1 Displacement 
1 ______ -----' 

Physical Addr 

Effective 
Address 

Figure 2-12. Memory Address Computation 

EU 

BIU 

Al015-0A 

The displacement is an 8- or 16-bit number contained in the instruction. The displacement gen­
erally is derived from the position of the operand's name (a variable or label) in the program. The 
programmer can modify this value or explicitly specify the displacement. 
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The BX or BP register can be specified as the base register for an effective address calculation. 
Similarly, either the SI or the DI register can be specified as the index register. The displacement 
value is a constant. The contents of the base and index registers can change during execution. This 
allows one instruction to access different memory locations depending upon the current values in 
the base or base and index registers. The default base register for effective address calculations 
with the BP register is SS, although DS or ES can be specified. 

Direct addressing is the simplest memory addressing mode (see Figure 2-13). No registers are in­
volved, and the effective address is taken directly from the displacement of the instruction. Pro­
grammers typically use direct addressing to access scalar variables, 

With register indirect addressing, the effective address of a memory operand can be taken directly 
from one of the base or index registers (see Figure 2-14). One instruction can operate on various 
memory locations if the base or index register is updated accordingly. Any 16-bit general register 
can be used for register indirect addressing with the lMP or CALL instructions. 

In based addressing, the effective address is the sum of a displacement value and the contents of 
the BX or BP register (see Figure 2-15). Specifying the BP register as a base register directs the 
Bus Interface Unit to obtain the operand from the current stack segment (unless a segment over­
ride prefix is present). This makes based addressing with the BP register a convenient way to ac­
cess stack data. 

r---------~--------~~--------_r---------~ I Opcode I Mod RIM I Displacement 
~--------~----------~----------r---------~ 

I EA I 
Al016-0A 

Figure 2-13. Direct Addressing 
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Mod RIM 

BX 
or 

BP 
or 
SI 
or 

DI EA 

Al017-0A 

Figure 2-14. Register Indirect Addressing 

---------.. I I Opcode Mod RIM Displacement I 
I ----______ 1 

I 

BX It 

~ or ~ + 
BP 

It 

I EA I 
Al018-0A 

Figure 2-15. Based Addressing 

Based addressing provides a simple way to address data structures that may be located in different 
places in memory (see Figure 2-16). A base register can be pointed at the structure. Elements of 
the structure can then be addressed by their displacements. Different copies of the same structure 
can be accessed by simply changing the base register. 

I 2-31 



OVERVIEW OF THE 80C186 FAMIL V ARCHITECTURE 

I-­
I 
I 
I 

Displacement 

I I-
I I 
I I 
I I 
I I 

~----------------~ 

High Address 

Age Status 

Rate 

Vac Sick 

Dept Div 

Employee 

Age 

Vac Sick 

Dept Div 

Employee 

Low Address 

Displacement 

Figure 2-16. Accessing a Structure with Based Addressing 

A1019-0A 

With indexed addressing, the effective address is calculated by summing a displacement and the 
contents of an index register (SI or DI, see Figure 2-17). Indexed addressing is often used to ac­
cess elements in an array (see Figure 2-18). The displacement locates the beginning of the array, 
and the value of the index register selects one element. If the index register contains OOOOH, the 
processor selects the first element. Since all array elements are the same length, simple arithmetic 
on the register can select any element. 
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I Mod RIM I ----------
Displacement I 

I ----______ 1 

I 

SI 
or + 
DI 

I EA I 
Figure 2-17. Indexed Addressing 

High Address 

Array (8) 

Array (7) 

Array (6) 

Array (5) 

Array (4) 

Array (3) 

Array (2) 

Array (1) 

Array (0) 

1 Word 
Low Address 

Index Register 

2 

Al020-0A 

Al021-0A 

Figure 2-18. Accessing an Array with Indexed Addressing 
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Based index addressing generates an effective address that is the sum of a base register, an index 
register and a displacement (see Figure 2-19). The two address components can be determined at 
execution time, making this a very flexible addressing mode. 

--------
I I I Opcode Mod RIM Displacement 

---------

BX 
or + 
BP 

SI It 

or ~ + 
DI 

I EA I 
Figure 2-19. Based Index Addressing 

I 
I 

_I 

A1022·OA 

Based index addressing provides a convenient way for a procedure to address an array located on 
a stack (see Figure 2-20). The BP register can contain the offset of a reference point on the stack. 
This is typically the top of the stack after the procedure has saved registers and allocated local 
storage. The offset of the beginning of the array from the reference point can be expressed by a 
displacement value. The index register can be used to access individual array elements. Arrays 
contained in structures and matrices (two-dimensional arrays) can also be accessed with based 
indexed addressing. 

String instructions do not use normal memory addressing modes to access operands. Instead, the 
index registers are used implicitly (see Figure 2-21). When a string instruction executes, the SI 
register must point to the first byte or word of the source string, and the 01 register must point to 
the first byte or word of the destination string. In a repeated string operation, the CPU will auto­
matically adjust the SI and 01 registers to obtain subsequent bytes or words. For string instruc­
tions, the OS register is the default segment register for the SI register and the ES register is the 
default segment register for the 01 register. This allows string instructions to operate on data lo­
cated anywhere within the 1 Mbyte address space. 

2-34 

I 



in1et OVERVIEW OF THE 80C186 FAMIL V ARCHITECTURE 

I 

Displacement 

Index Register 

12 

High Address 

Parm2 

Parm 1 

IP 

Old BP 

OldBX 

Old AX 

Array (6) 

Array (5) 

Array (4) 

Array (3) 

Array (2) 

Array (1) 

----.-- Array (0) ----.-­
~r---------~ ~ 
I Cou~ I 

Displacement 

--------------~ ~-------------rJ 
I Temp I I ________________ J_ Status l _____________ J 

~1word~ 
Low Address 

A1024-0A 

Figure 2-20. Accessing a Stacked Array with Based Index Addressing 
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Opcode 

~ __ S_I __ Ji----~-~I ___ s_ou_~_ce __ EA __ ~ 

01 _I Destination EA 

A1025-0A 

Figure 2·21. String Operand 

2.2.2.3 110 Port Addressing 

Any memory operand addressing modes can be used to access an 110 port if the port is memory­
mapped. String instructions can also be used to transfer data to memory-mapped ports with an 
appropriate hardware interface. 

Two addressing modes.can be used to access ports located in the 110 space (see Figure 2-22). For 
direct 110 port addressing, the port number is an 8-bit immediate operand. This allows fixed ac­
cess to ports numbered 0 to 255. Indirect 110 port addressing is similar to register indirect address­
ing of memory operands. The OX register contains the port number, which can range from 0 to 
65,535. Adjusting the contents of the OX register allows one instruction to access any port in the 
I/O space. A group of adjacent ports can be accessed using a simple software loop that adjusts the 
value of the OX register. 
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2.2.2.4 Data Types Used in the 80C186 Modular Core Family 

The 80C186 Modular Core family supports the data types described in Table 2-12 and illustrated 
in Figure 2-23. In general, individual data elements must fit within defined segment limits. 

Table 2·12. Supported Data Types 

Type Description 

Integer A signed 8- or 16-bit binary numeric value (signed byte or word). All operations assume 
a 2's complement representation. 

The 80C18? numerics processor extension, when added to an 80C186 Modular Core 
system, directly supports signed 32- and 64-bit integers (signed double-words and 
quad-words). The 80C188 Modular Core does not support the 80C18? 

Ordinal An unsigned 8- or 16-bit binary numeric value (unsigned byte or word). 

BCD A byte (unpacked) representation of a single decimal digit (0-9). 

ASCII A byte representation of alphanumeric and control characters using the ASCII 
standard. 

Packed BCD A byte (packed) representation of two decimal digits (0-9).One digit is stored in each 
nibble (4 bits) of the byte. 

String A contiguous sequence of bytes or words. A string can contain from 1 byte to 64 
Kbytes. 

Pointer A 16- or 32-bit quantity. A 16-bit pointer consists of a 16-bit offset component; a 32-bit 
pointer consists of the combination of a 16-bit base component (selector) plus a 16-bit 
offset component. 

Floating Point A signed 32-, 64-, or 80-bit real number representation. 

The 80C18? numerics processor extension, when added to an 80C186 Modular Core 
system, directly supports floating point operands. The 80C188 Modular Core does not 
support the 80C18? 
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Figure 2-23. 80C186 Modular Core Family Supported Data Types 
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2.3 INTERRUPTS AND EXCEPTION HANDLING 

Interrupts and exceptions alter program execution in response to an external event or an error 
condition. An interrupt handles asynchronous external events, for example an NMI. Exceptions 
result directly from the execution of an instruction, usually an instruction fault. The user can 
cause a software interrupt by executing an "INTn" instruction. The CPU processes software in­
terrupts il! the same way that it handles exceptions. -

The 8OC186 Modular Core responds to interrupts and exceptions in the same way for all devices 
within the 80C 186 Modular Core family. However, devices-within the family may have different 
Interrupt Control Units. The Interrupt Control Unit handles all external interrupt sources and pre­
sents them to the 80C186 Modular Core via one maskable interrupt request (see Figure 2-24). 
This discussion covers only those areas of interrupts and exceptions that are common to the 
80C 186 Modular Core family. The Interrupt Control Unit is proliferation-dependent; see Chapter 
8, "Interrupt Control Unit," for additional information. 

NMI 

CPU 

Maskable 
Interrupt 
Request 

Interrupt 
Acknowledge ~ 

Interrupt 
Control 

Unit 

Figure 2-24. Interrupt Control Unit 

2.3.1 Interrupt/Exception Processing 

External 
Interrupt 
Sources 

Al028-0A. 

The 80C 186 Modular Core can service up to 256 different interrupts and exceptions. A 256-entry 
Interrupt Vector Table (Figure 2-25) contains the pointers to interrupt service routines. Each entry 
consists of four bytes, which contain the Code Segment (CS) and Instruction Pointer (IP) of the 
first instruction in the interrupt service routine. Each interrupt or exception is given a type num­
ber, 0 through 255, corresponding to its position in the Interrupt Vector Table. Note that interrupt 
types 0-31 are reserved for Intel and should not be used by an application program. 
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($1iF 7/11/15 ~).1!j~~ 
Figure 2-25. Interrupt Vector Table 

( ) 
When an interrupt is acknowledged, a common event sequence (Figure 2-26) allows the proces­
sor to execute the interrupt service routine. 

1. The processor saves a partial machine status by pushing the Processor Status Word onto 
the stack. 
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2. The Trap Flag bit and Interrupt Enable bit are cleared in the Processor Status Word. This 
prevents maskable interrupts or single step exceptions from interrupting the processor 
during the interrupt service routine. 

3. The current CS and IP are pushed onto the stack. 

4. The CPU fetches the new CS and IP for the interrupt vector routine from the Interrupt 
Vector Table and begins executing from that point. 

The CPU is now executing the interrupt service routine. The programmer must save (usually by 
pushing onto the stack) all registers used in the interrupt service routine; otherwise, their contents 
will be lost. To allow nesting of maskable interrupts, the programmer must set the Interrupt En­
able bit in the Processor Status Word. 

When exiting an interrupt service routine, the programmer must restore (usually by popping off 
the stack) the saved registers and execute an IRET instruction, which performs the following 
steps. 

1. Loads the return CS and IP by popping them off the stack. 

2. Pops and restores the old Processor Status Word from the stack. 

The CPU now executes from the point at which the interrupt or exception occurred. 
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2.3.1.1 
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Code Segment Register 
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A1029-0A 

Figure 2-26. Interrupt Sequence 

Non-Maskable Interrupts 

The Non-Maskable Interrupt (NMI) is the highest priority interrupt. It is usually reserved for a 
catastrophic event such as impending power failure. An NMI cannot be prevented (or masked) 
by software. When the NMI input is asserted, the interrupt processing sequence begins after ex­
ecution of the current instruction completes (see "Interrupt Latency" on page 2-45). The CPU au-

• tomatically generates a type 2 interrupt vector. 

The NMI input is asynchronous. Setup and hold times are given only to guarantee recognition on 
a specific clock edge. To be recognized, NMI must be asserted for at least one CLKOUT period 
and meet the correct setup and hold times. NMI is edge-triggered and level-latched. Multiple 
NMI requests cause multiple NMI service routines to be executed. NMI can be nested in this man­
ner an infinite number of times. 
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2.3.1.2 Maskable Interrupts 

Maskable interrupts are the most common way to service external hardware interrupts. Software 
can globally enable or disable maskable interrupts. This is done by setting or clearing the Inter­
rupt Enable bit in the Processor Status Word. 

The Interrupt Control Unit processes the multiple sources of maskable interrupts and presents 
them to the core via a single maskable interrupt input. The Interrupt Control Unit provides the 
interrupt vector type to the 80CI86 Modular Core. The Interrupt Control Unit differs among 
members of the 80CI86 Modular Core family; see Chapter 8, "Interrupt Control Unit," for infor­
mation. 

2.3.1.3 Exceptions 

Exceptions occur when an unusual condition prevents further instruction processing until the ex­
ception is corrected. The CPU handles software interrupts and exceptions in the same way. The 
interrupt type for an exception is either predefined or supplied by the instruction. 

Exceptions are classified as either faults or traps, depending on when the exception is detected 
and whether the instruction that caused the exception can be restarted. Faults are detected and ser­
viced before the faulting instruction can be executed. The return address pushed onto the stack 
in the interrupt processing instruction points to the beginning of the faulting instruction. This al­
lows the instruction to be restarted. Traps are detected and serviced immediately after the instruc­
tion that caused the trap. The return address pushed onto the stack during the interrupt processing 
points to the instruction following the trapping instruction. 

Divide Error - Type 0 

A Divide Error trap is invoked when the quotient of an attempted division exceeds the maximum 
value of the destination. A divide-by-zero is a common example. 

Single Step - Type 1 

The Single Step trap occurs after the CPU executes one instruction with the Trap Flag (TF) bit set 
in the Processor Status Word. This allows programs to execute one instruction at a time. Interrupts 
are not generated after prefix instructions (e.g., REP), after instructions that modify segment reg­
isters (e.g., POP DS) or after the WAIT instruction. Vectoring to the single-step interrupt service 
routine clears the Trap Flag bit. An IRET instruction in the interrupt service routine restores the 
Trap Flag bit to logic "I" and transfers control to the next instruction to be single-stepped. 

I 
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Breakpoint Interrupt -1)rpe 3 

The Breakpoint Interrupt is a single-byte version of the INT instruction. It is commonly used by 
software debuggers to set breakpoints in RAM. Because the instruction is only one byte long, it 
can substitute for any instruction. 

Interrupt on Overflow -1)rpe 4 

The Interrupt on Overflow trap occurs if the Overflow Flag (OF) bit is set in the Processor Status 
Word and the INTO instruction is executed. Interrupt on Overflow is a common method for han­
dling arithmetic overflows conditionally. 

Array Bounds Check -1)rpe 5 

An Array Bounds trap occurs when the array index is outside the array bounds during execution 
of the BOUND instruction (see Appendix A, "80C186 Instruction Set Additions and Exten­
sions"). 

Invalid Opcode -1)rpe 6 

Execution of an undefined opcode causes an Invalid Opcode trap. 

Escape Opcode -1)rpe 7 

The Escape Opcode fault is used for floating point emulation. With 80C 186 Modular Core family 
members, this fault is enabled by setting the Escape Trap (ET) bit in the Relocation Register (see 
Chapter 4, "Peripheral Control Block"). When a floating point instruction is executed with the 
Escape Trap bit set, the Escape Opcode fault occurs, and the Escape Opcode service routine em­
ulates the floating point instruction. If the Escape Trap bit is cleared, the CPU sends the floating 
point instruction to an external8OCl87. 

8OC188 Modular Core Family members do not support the 8OC187 interface and always generate 
the Escape Opcode Fault. 

Numerics Coprocessor Fault -1)rpe 16 

The Numerics Coprocessor fault is caused by an external 80C187 numerics coprocessor. The 
80C187 reports the exception by asserting the ERROR pin. The 8OC186 Modular Core checks 
the ERROR pin only when executing a numerics instruction. A Numerics Coprocessor Fault in­
dicates that the previous numerics instruction caused the exception. The 80C187 saves the ad­
dress of the floating point instruction that caused the exception. The return address pushed onto 
the stack during the interrupt processing points to the numerics instruction that detected the ex­
ception. This way, the last numerics instruction can be restarted. 
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2.3.2 Software Interrupts 

A Software Interrupt is caused by executing an "INTn" instruction. The n parameter corresponds 
to the specific interrupt type to be executed. The interrupt type can be any number between 0 and 
255. If the n parameter corresponds to an interrupt type associated with a hardware interrupt 
(NMI, Timers), the vectors are fetched and the routine is executed, but the corresponding bits in 
the Interrupt Status register are not altered. 

The CPU processes software interrupts and exceptions in the same way. Software interrupts, ex­
ceptions and traps cannot be masked. 

2.3.3 Interrupt Latency 

Interrupt latency is the amount of time it takes for the CPU to recognize the existence of an inter­
rupt. The CPU generally recognizes interrupts only between instructions or on instruction bound­
aries. Therefore, the current instruction must finish executing before an interrupt can be 
recognized. 

The worst-case 8OC186 instruction execution time is an integer divide instruction with segment 
override prefix. The instruction takes 69 clocks, assuming an 80C 186 Modular Core family mem­
ber and a zero wait-state external bus. The execution time for an 80C188 Modular Core family 
member may be longer, depending on the queue. 

This is one factor in determining interrupt latency. In addition, the following are also factors in 
determining maximum latency: 

1. The CPU does not recognize the Maskable Interrupt unless the Interrupt Enable bit is set. 

2. The CPU does not recognize interrupts during HOLD. 

3. Once communication is completely established with an 80C187, the CPU does not 
recognize interrupts until the numerics instruction is finished. 

The CPU can recognize interrupts only on valid instruction boundaries. A valid instruction 
boundary usually occurs when the current instruction finishes. The following is a list of excep­
tions: 

I 

1. MOVs and POPs referencing a segment register delay the servicing of interrupts until 
after the following instruction. The delay allows a 32-bit load to the SS and SP without an 
interrupt occurring between the two loads. 

2. The CPU allows interrupts between repeated string instructions. If multiple prefixes 
precede a string instruction and the instruction is interrupted, only the one prefix 
preceding the string primitive is restored. 

3. The CPU can be interrupted during a WAIT instruction. The CPU will return to the WAIT 
instruction. 

2-45 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

2.3.4 Interrupt Response Time 

Interrupt response time is the time from the CPU recognizing an interrupt until the first instruction 
in the service routine is executed. Interrupt response time is less for interrupts or exceptions 
which supply their own vector type. The maskable interrupt has a longer response time because 
the vector type must be supplied by the Interrupt Control Unit (see Chapter 8, "Interrupt Control 
Unit"). 

Figure 2-27 shows the events that dictate interrupt response time for the interrupts that supply 
their type. Note that an on-chip bus master, such as the DRAM Refresh Unit, can make use of idle 
bus cycles. This can increase interrupt response time. 

Clocks 

Idle 5 
ReadlP 4 
Idle 5 

Read CS 4 
Idle 4 
Push Flags 4 
Idle 3 
Push CS 4 
PushlP 4 
Idle 5 

First Instruction Fetch ...................................... ~ 
From Interrupt Routine 

Total 42 

A1030-0A 

Figure 2-27. Interrupt Response Factors 

2.3.5 Interrupt and Exception Priority 

Interrupts can be recognized only on valid instruction boundaries. If an NMI and a maskable in­
terrupt are both recognized on the same instruction boundary, NMI has precedence. The maskable 
interrupt will not be recognized until the Interrupt Enable bit is set and it is the highest priority. 
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Only the single step exception can occur concurrently with another exception. At most, two ex­
ceptions can occur at the same instruction boundary and one of those exceptions must be the sin­
gle step. Single step is a special case; it is discussed on page 2-48. Ignoring single step (for now), 
only one exception can occur at any given instruction boundary. 

An exception has priority over both NMI and the maskable interrupt. However, a pending NMI 
can interrupt the CPU at any valid instruction boundary. Therefore, NMI can interrupt an excep­
tion service routine. If an exception and NMI occur simultaneously, the exception vector is taken, 
then is followed immediately by the NMI vector (see Figure 2-28). While the exception has high­
er priority at the instruction boundary, the NMI interrupt service routine is executed first. 

NMI 

I 

F=1 

Divide Error 

Push PSW, CS, IP 
Fetch Divide Error Vector 

Execute Divide 
Service Routine 

IRET 

Push PSW, CS, IP 
Fetch NMI Vector 

Execute NMI 
Service Routine 

IRET 

A1031-0A 

Figure 2-28. Simultaneous NMI and Exception 
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Single step priority is a special case. If an interrupt (NMI or maskable) occurs at the same instruc­
tion boundary as a single step, the interrupt vector is taken first, then is followed immediately by 
the single step vector. However, the single step service routine is executed before the interrupt 
service routine (see Figure 2-29). If the single step service routine re-enables single step by exe­
cuting the IRET, the interrupt service routine will also be single stepped. This can severely limit 
the real-time response of the CPU to an interrupt. 

To prevent the single-step routine from executing before a maskable interrupt, disable interrupts 
while single stepping an instruction, then enable interrupts in the single step service routine. The 
maskable interrupt is serviced from within the single step service routine and that interrupt ser­
vice routine is not single-stepped. To prevent single stepping before an NMI, the single-step ser­
vice routine must compare the return address on the stack to the NMI vector. If they are the same, 
return to the NMI service routine immediately without executing the single step service routine. 

NMI Instruction Trap Flag = 1 

I , 
Push PSW, CS, IP 

Fetch Divide Error Vector 

Trap Flag = 0 
I 

f 
Push PSW, CS, IP 

Fetch Single Step Vector , 
Execute Single Step 

Service Routine 

•••••• - IRET 

Trap Flag = ??? 
Al032-0A 

Figure 2-29. Simultaneous NMI and Single Step Interrupts 

The most complicated case is when an NMI, a maskable interrupt, a single step and another ex­
ception are pending on the same instruction boundary. Figure 2-30 shows how this case is prior­
itized by the CPU. Note that if the single-step routine sets the Trap Flag (TF) bit before executing 
the IRET instruction, the NMI routine will also be single stepped. 
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NMI 

Interrupt Enable Bit (IE) = 1 
Trap Flag (TF) = 1 

Timer Interrupt 

Push PSW, CS, IP Interrupt Enable Bit (IE) = 0 
Fetch Divide Error Vector Trap Flag (TF) = 0 

Push PSW, CS, IP Interrupt Enable Bit (IE) = 0 
Fetch NMI Vector Trap Flag (TF) = 0 

Push PSW, CS, IP Interrupt Enable Bit (IE) = 0 
Fetch Single Step Vector Trap Flag (TF) = 0 

Execute Single Step 
Service Routine ...... ~-------' 

IRET 

Interrupt Enable Bit (IE) = 0 
Trap Flag (TF) = ??? 

Interrupt Enable Bit (IE) = 1 
Trap Flag (TF) = X 

Push PSW, CS, IP Interrupt Enable Bit (IE) = 1 
Fetch Single Step Vector Trap Flag (TF) = X 

Execute Single Step Service Routine 

IRET 

Figure 2-30. Simultaneous NMI, Single Step and Maskable Interrupt 

A1034-0A 
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CHAPTER 3 
BUS INTERFACE UNIT 

The Bus Interface Unit (BIU) generates bus cycles that prefetch instructions from memory, pass 
data to and from the execution unit, and pass data to and from the integrated peripheral units. 

The BIU drives address, data, status and control information to define a bus cycle. The start of a 
bus cycle presents the address of a memory or 110 location and status information defining the 
type of bus cycle. Read or write control signals follow the address and define the direction of data 
flow. A read cycle requires data to flow from the selected memory or 110 device to the BIU. In a 
write cycle, the data flows from the BIU to the selected memory or 110 device. Upon termination 
of the bus cycle, the BIU latches read data or removes write data. 

3.1 MULTIPLEXED ADDRESS AND DATA BUS 

The BIU has a combined address and data bus, commonly referred to as a time-multiplexed bus. 
Time multiplexing address and data information makes the most efficient use of device package 
pins. A system with address latching provided within the memory and 110 devices can directly 
connect to the address/data bus (or local bus). The local bus can be demultiplexed with a single 
set of address latches to provide non-multiplexed address and data information to the system. 

3.2 ADDRESS AND DATA BUS CONCEPTS 

The programmer views the memory or 110 address space as a sequence of bytes. Memory space 
consists of 1 Mbyte, while 110 space consists of 64 Kbytes. Any byte can contain an 8-bit data 
element, and any two consecutive bytes can contain a 16-bit data element (identified as a word). 
The discussions in this section apply to both memory and 110 bus cycles. For brevity, memory 
bus cycles are used for examples and illustration. 

3.2.1 16-Bit Data Bus 

The memory address space on a 16-bit data bus is physically implemented by dividing the address 
space into two banks of up to 512 Kbytes each (see Figure 3-1). One bank connects to the lower 
half of the data bus and contains even-addressed bytes (AO=O). The other bank connects to the 
upper half of the data bus and contains odd-addressed bytes (AO=1). Address lines A19:1 select 
a specific byte within each bank. AO and Byte High Enable (BHE) determine whether one bank 
or both banks participate in the data transfer. 
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Physical Implementation 
of the Address Space for 

8-Bit Systems 

1 MByte 
FFFFF 
FFFFE 

~ ~ 
-V 

2 
1 
0 
~ 

.... '1'" I 
A19:0 07:0 A19:1 

Physical Implementation 
of the Address Space for 

16-Bit Systems 

512 KBytes 512 KBytes 
FFFFF FFFFE 
FFFFO FFFFC 

P- r:> 0-

5 4 
3 2 
1 0 .. :... AI. 1"-

.... '1'" .... 7' 

015:8 BHE 07:0 AO 
AllO<HlA 

Figure 3-1. Physical Data Bus Models 

Byte transfers to even addresses transfer information over the lower half of the data bus (see Fig­
ure 3-2). AO low enables the lower bank, while BHE high disables the upper bank. The data value 
from the upper bank is ignored during a bus read cycle. BHE high prevents a write operation from 
destroying data in the upper bank. 

Byte transfers to odd addresses transfer information over the upper half of the data bus (see Figure 
3-2). BHE low enables the upper bank, while AO high disables the lower bank. The data value 
from the lower bank is ignored during a bus read cycle. AO high prevents a write operation from 
destroying data in the lower bank. 

To access even-addressed 16-bit words (two consecutive bytes with the least-significant byte at 
an even address), information is transferred over both halves of the data bus (see Figure 3-3). 
A19:1 select the appropriate byte within each bank. AO and BHE drive low to enable both banks 
simultaneously. 

Odd-addressed word accesses require the BIU to split the transfer into two byte operations (see 
Figure 3-4). The first operation transfers data over the upper half of the bus, while the second op­
eration transfers data over the lower half of the bus. The BIU automatically executes the two-byte 
sequence whenever an odd-addressed word access is performed; 
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A19:1 

A19:1 

I 

Even Byte Transfer 

D15:8 SHE 
(High) 

Odd Byte Transfer 

D15:8 SHE 
(Low) 

BUS INTERFACE UNIT 

D7:0 AO 
(Low) 

D7:0 AO 
(High) 

A1104-0A 

Figure 3-2. 16-Bit Data Bus Byte Transfers 
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A19:1 D15:8 SHE 
(Low) 

D7:0 

Figure 3-3. 16-Bit Data Bus Even Word Transfers 

AO 
(Low) 

A1107-0A 

During a byte read operation, the Bill floats the entire 16-bit data bus, even though the transfer 
occurs on only one half of the bus. This action simplifies the decoding requirements for read~only 
devices (e.g., ROM, EPROM, Flash). During the byte read, an external device can drive both 
halves of the bus, and the BIU automatically accesses the correct half. During the byte write op­
eration, the BIU drives both halves of the bus. Information on the half of the bus not involved in 
the transfer is indeterminate. This action requires that the appropriate bank (defined by BHE or 
AO high) be disabled to prevent destroying data. 
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A19:1 

A19:1 

015:8 

First Bus Cycle 

BHE 
(Low) 

Second Bus 

D15:8 BHE 
(High) 

07:0 

07:0 

BUS INTERFACE UNIT 

AO 
(High) 

AO 
(Low) 

A1108-0A 

Figure 3-4. 16-Bit Data Bus Odd Word Transfers 

3.2.2 a-Bit Data Bus 

The memory address space on an 8-bit data bus is physically implemented as one bank of 1 Mbyte 
(see Figure 3-1 on page 3-2). Address lines A19:0 select a specific byte within the bank. Unlike 
transfers with a 16-bit bus, byte and word transfers (to even or odd addresses) all transfer data 
over the same 8-bit bus. 

Byte transfers to even or odd addresses transfer information in one bus cycle_ Word transfers to 
even or odd addresses transfer information in two bus cycles_ The BIU automatically converts the 
word access into two consecutive byte accesses, making the operation transparent to the program­
mer_ 
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For word transfers, the word address defines the first byte transferred. The second byte transfer 
occurs from the word address plus one. Figure 3-5 illustrates a word transfer on an 8-bit bus in­
terface. 

First Bus Cycle Second Bus Cycle 

A19:0 07:0 A19:0 07:0 

A1109-0A 

Figure 3-5. a-Bit Data Bus Word Transfers 

3.3 MEMORY AND 110 INTERFACES 

The CPU can interface with 8- and 16-bit memory and I/O devices. Memory devices exchange 
information with the CPU during memory read, memory write and instruction fetch bus cycles. 
I/O (peripheral) devices exchange information with the CPU during memory read, memory write, 
I/O read, I/O write and interrupt acknowledge bus cycles. Memory-mapped I/O refers to periph­
eral devices that exchange information during memory cycles. Memory-mapped I/O allows the 
full power of the instruction set to be used when communicating with peripheral devices. 

I/O read and I/O write bus cycles use a separate I/O address space. Only IN and OUT instructions 
can access I/O address space, and information must be transferred between the peripheral device 
and the AX register. The first 256 bytes (0-255) of I/O space can be accessed directly by the I/O 
instructions. The entire 64 Kbyte I/O address space can be accessed only indirectly, through the 
OX register. I/O instructions always force address bits A19:16 to zero. 

Interrupt acknowledge, or INTA, bus cycles access an I/O device intended to increase interrupt 
input capability. Valid address information is not generated as part of the INTA bus cycle, and 
data is transferred only over the lower bank (16-bit device). 
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3.3.1 16-Bit Bus Memory and 1/0 Requirements 

A 16-bit bus has certain assumptions that must be met to operate properly. Memory used to store 
instruction operands (i.e., the program) and immediate data must be 16 bits wide. Instruction 
prefetch bus cycles require that both banks be used. The lower bank contains the even bytes of 
code and the upper bank contains the odd bytes of code. 

Memory used to store interrupt vectors and stack data must be 16 bits wide. Memory address 
space between OH and 3FFH (1 Kbyte) holds the starting location of an interrupt routine. In re­
sponse to an interrupt, the BIU fetches two consecutive, even-addressed words from this 1 Kbyte 
address space. Stack pushes and pops always write or read even-addressed word data. 

3.3.2 8-Bit Bus Memory and 110 Requirements 

An 8-bit bus interface has no restrictions on implementing the memory or 110 interfaces. All 
transfers, bytes and words, occur over the single 8-bit bus. Operations requiring word transfers 
automatically execute two consecutive byte transfers. 

3.4 BUS CYCLE OPERATION 

The BIU executes a bus cycle to transfer data between any of the integrated units and any external 
memory or 110 devices (see Figure 3-6). A bus cycle consists of a minimum of four CPU clocks 
known as "T-states." A T-state is bounded by one falling edge of CLKOUT to the next falling 
edge of CLKOUT (see Figure 3-7). Phase 1 represents the low time of the T-state and starts at the 
high-to-Iow transition of CLKOUT. Phase 2 represents the high time of the T-state and starts at 
the low-to-high transition of CLKOUT. Address, data and control signals generated by the BIU 
go active and inactive at different phases within aT-state. 
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i T4 : T1 : T2 : T3 : T4 

CLKOUT 

ALE 

82:0 

AD15:0 

RD/WR 

A1S07·0A 

Figure 3-6. Typical Bus Cycle 

I I I 

I TN I I 
I I -

CLKOUT 
Falling Rising 
Edge Edge 

-
I I I 
I Phase 1 I Phase 2 I 
I I I 
I 

(Low Phase) 
I 

(High Phase) 
I 

! ! ! 

A1111·0A 

Figure 3-7. T-State Relation to CLKOUT 

Figure 3-8 shows the BIU state diagram. Typically a bus cycle consists of four consecutive T­
states labeled n, T2, T3 and T4. A TI (idle) state occurs when no bus cycle is pending. Multiple 
T3 states occur to generate wait states. The TW symbol represents a wait state. 

The operation of a bus cycle can be separated into two phases: 

• Address/Status Phase 

• Data Phase 
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The address/status phase starts just before Tl and continues through Tl. The data phase starts at 
T2 and continues through T4. Figure 3-9 illustrates the T-state relationship of the two phases. 

I 

Request Pending 
HOLD Deasserted 

Bus Ready 
Request Pending 

HOLD Deasserted 

Halt Bus Cycle 

--------~.~~--------~~ 

HOLD Asserted 

Bus Ready 
No Request Pending 
HOLD Deasserted 

Figure 3-8. BIU State Diagram 

A153B-Ol 
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CLKOUT 

T4 
orTI 

1/ 

T1 

Address/ " ~ Status Phase J \ 

T2 
T3 

orTW 

Data Phase 

Figure 3-9. T-State and Bus Phases 

3.4.1 Address/Status Phase 

T4 
orTI 

, 
I 

A1113-0A 

. Figure 3-10 shows signal timing relationships for the address/status phase of a bus cycle. A bus 
cycle begins with the transition o( ALE and S2:0. These signals transition during phase 2 of the 
T-state just prior to Tl. Either T4 or TI precedes Tl, depending on the operation of the previous 
bus cycle (see Figure 3-8 on page 3-9). 

ALE provides a strobe to latch physical address information. Address is presented on the multi­
plexed address/data bus during Tl (see Figure 3-10). The falling edge of ALE occurs during the 
middle of Tl and provides a strobe to latch the address. Figure 3-11 presents a typical circuit for 
latching addresses. 

The status signals (S2:0) define the type of bus cycle (Table 3-1). S2:0 remain valid until phase 
1 of T3 (or the last 1W, when wait states occur). The circuit shown in Figure 3-11 can also be 
used to extend S2:0 beyond the T3 (or 1W) state. 
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CLKOUT 

ALE 

AD15:0 
A19:16 

S2:0 

SHE 

NOTES: 

T4 
arTI T1 T2 

1. T CHOV : Clock high to ALE high, 82:0 valid. 
2. T CLOV : Clock low to address valid, BHE valid. 
3. T AVLL : Addres~ valid to ALE low (address setup to ALE). 
4. T CHOV : Clock high to ALE low. 
5. T CLOF : Clock low to address invalid (address hold from clock lOw). 
6. T LLAX : ALE low to address invalid (address hold from ALE). 

Figure 3-10. AddresslStatus Phase Signal Relationships 
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3-12 

Signals From CPU 
Latched 

Address Signals 

A19:16 
S2:0 

AD15:8 

AD7:0 

ALE 

4 / I 
3 '/ 

I , 
STB 

-.-- OE 

8 I '" 
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.--- OE 

8 / I 
'" 
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...- OE 
--I... 

0 4 " , 
3 " 0 '" ,. 

0 8/ , 

0 8 " -, -~ 

LA19:16 

LS2:0 

LA15:8 

LA7:0 

Figure 3-11. Oemultiplexing Address Information 

Table 3-1. Bus Cycle TYpes 

Status Bit 
Operation 

S2 S1 SO 

0 0 0 interrupt Acknowledge 

0 0 1 1/0 Read 

0 1 0 110 Write 

0 1 1 Halt 

1 0 0 Instruction Prefetch 

1 0 1 Memory Read 

1 1 0 Memory Write 

1 1 1 Idle (passive) 

All02-0A 
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3.4.2 Data Phase 

Figure 3-12 shows the timing relationships for the data phase of a bus cycle. The only bus cycle 
type that does not have a data phase is a bus halt. During the data phase, the bus transfers infor­
mation between the internal units and the memory or peripheral device selected during the ad­
dress/status phase. Appropriate control signals become active to coordinate the transfer of data. 

The data phase begins at phase 1 of T2 and continues until phase 2 of T 4 or TI. The length of the 
data phase varies depending on the number of wait states. Wait states occur after T3 and before 
T40rT!. 

3.4.3 Wait States 

Wait states extend the data phase of the bus cycle. Memory and I/O devices that cannot provide 
or accept data in the minimum four CPU clocks require wait states. Figure 3-13 shows a typical 
bus cycle with wait states inserted. 

The READY input and the Chip-Select Unit control bus cycle wait states. Only the READY input 
is described in this chapter. (See Chapter 6, "Chip-Select Unit," for additional information.) 

Figure 3-14 shows a simplified block diagram of the READY input. To avoid wait states, 
READY must be active (high) within a specified setup time prior to phase 2 of T2. To insert wait 
states, READY must be inactive (low) within a specified setup time to phase 2 of T2 or phase 1 
of T3. Depending on the size and characteristics of the system, ready implementation can take 
one of two approaches: normally not-ready or normally ready. 
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3-14 

CLKOUT 

RD/WR 

AD15:0 
Write 

AD15:0 
Read 

S2:0 

NOTES: 

T2 
T3 

orTW 

Valid 
Read Data 

1. T CLOV : Clock low to valid RD! WR active; Write data valid 
2. T CLOV : Clock low to status inactive 
3. T CLiS : Data input valid to clock low 
4. T CLOV : Clock valid to RD! WR inactive 
5. T CLiH : Data input HOLD from clock low 
6. T WHDX : Output data HOLD from WR...!:!!gh 
7. T RHAV : Bus no longer floating from RD high 

Figure 3-12. Data Phase Signal Relationships 
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Figure 3-13. Typical Bus Cycle with Wait States 
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A normally not-ready system is one in which READY remains low at all times except to signal a 
ready condition. For any bus cycle, only the selected device drives the READY input high to 
complete the bus cycle. The circuit shown in Figure 3-15 illustrates a simple circuit to generate a 
normally not-ready signal. Note that if no device is selected the bus remains not-ready indef­
initely. Systems with many slow devices that cannot operate at the maximum bus bandwidth usu­
ally implement a normally not-ready signal. 

The start of a bus cycle clears the wait state module and forces READY low. After every rising 
edge of CLKOUT, INPUTl and INPUT2 are shifted through the module and eventually drive 
READY high. Assuming INPUTl and INPUT2 are valid prior to phase 2 ofT2, no delay through 
the module causes one wait state. Each additional clock delay through the module generates one 
additional wait state. Two inputs are used to establish different wait state conditions. 

CS1 Wait State Module 

CS2 
Input 1 

Input 2 
CS3 

CS4 Out READY 

ALE Clear 

CLKOUT Clock 

Al0aO-OA 

Figure 3-15. Generating a Normally Not-Ready Bus Signal 

A normally ready signal remains high at all times except when the selected device needs to signal 
a not-ready condition. For any bus cycle, only the selected device drives the READY input low 
to delay the completion of the bus cycle. The circuit shown in Figure 3-16 illustrates a simple cir­
cuit to generate a normally ready signal. Note that if no device is selected the bus remains 
ready. Systems that have few or no devices requiring wait states usually implement a normally 
ready signal. 

The start of a bus cycle preloads a zero shifter and forces READY active (high). READY remains 
active if neither CS 1 or CS2 goes low. Should either CS 1 or CS2 go low, zeros are shifted out on 
every rising edge of CLKOUT, causing READY to go inactive. At the end of the shift pattern, 
READY is forced active again. Assuming CSI and CS2 are active just prior to phase 2 of T2, 
shifting one zero through the module causes two wait states. Each additional zero shifted through 
the module generates one wait state. 
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Wait State Module 

CS1-~ 

CS2 ---"'A 

)-----l Enable 

ALE -----l Load 

CLKOUT Clock 

Out READY 

Al081·0A 

Figure 3-16. Generating a Normally Ready Bus Signal 

The READY input has two major timing concerns that can affect whether a normally ready or 
normally not-ready signal may be required. Two latches capture the state of the READY input 
(see Figure 3-14 on page 3-15). The first latch captures READY on the phase 2 clock edge. The 
second latch captures READY and the result of first latch on the phase 1 clock edge. The follow­
ing items define the requirements of the READY input to meet ready or not-ready bus conditions. 

• The bus is ready if both of these two conditions are true: 

READY is active prior to the phase 2 clock edge, and 

READY remains active after the phase 1 clock edge. 

• The bus is not-ready if either of these two conditions is true: 

READY is inactive prior to the phase 2 clock edge, or 

READY is inactive prior to the phase 1 clock edge. 

A normally not-ready system must generate a valid READY input at phase 2 of T2 to prevent 
wait states. If it cannot, then running without wait states requires a normally ready system. Figure 
3-17 illustrates the timing necessary to prevent wait states in a normally not-ready system. Figure 
3-17 also shows how to terminate a bus cycle with wait states in a normally not-ready system. 

I 
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CLKOUT 

READY 

T2 
orT3 

orTW 

T3 
orTW 
orTW T4 

In a Normally-Not-Ready system, wait states will be inserted until both 1 & 2 are met. 

1. T CHIS : READY active to clock high (assumes Ready remains 
active between 1 & 2) 

2. TCLIH : READY hold from clock low 

Al082·0A 

Figure 3-17. Normally Not-Ready System Timing 

A valid not-ready input can be generated as late as phase 1 of T3 to insert wait states in a normally 
ready system. A normally not-ready system must run wait states if the not-ready condition cannot 
be met in time. Figure 3-18 illustrates the minimum and maximum timing necessary to insert wait 
states in a normally ready system. Figure 3-18 also shows how to terminate a bus cycle with wait 
states in a normally ready system. 

The BIU can execute an indefinite number of wait states. However, bus cycles with large numbers 
of wait states limit the performance of the CPU and the integrated peripherals. CPU performance 
suffers because the instruction prefetch queue cannot be kept full. Integrated peripheral perfor­
mance suffers because the maximum bus bandwidth decreases. 

3.4.4 Idle States 

Under most operating conditions, the BIU executes consecutive (back-to-back) bus cycles. How­
ever, several conditions cause the BIU to become idle. An idle condition occurs between bus cy­
cles (see Figure 3-8 on page 3-9) and may last an indefinite period of time, depending on the 
instruction sequence. 
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T2 T3 TW T4 

CLKOUT 

READY 

In a Normally-Ready system, a wait state will be inserted when 1 & 2 are met. 

1. T CHIS : READY low to clock high 
2. T CHIH : READY hold from clock high 

T2 T3 TW T4 

CLKOUT 

READY 

Alternatively, in a Normally-Ready system, a wait state will be inserted when1 & 2 are met. 

1. T CLIS : READY low to clock low 
2. T CLIH : READY hold from clock low 

~ Failure to meet READY setup and hold can cause a device failure 
~ (Le., the bus hangs or operates inappropriately). 

Figure 3-18. Normally Ready System Timings 

A10B3·0A 

Conditions causing the BIU to become idle include the following. 

I 

• The instruction prefetch queue is full. 

• An effective address calculation is in progress. 

• The bus cycle inherently requires idle states (e.g., interrupt acknowledge, locked opera­
tions). 

• Instruction execution forces idle states (e.g., HLT, WAIT). 
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An idle bus state mayor may not drive the bus. An idle bus state following a bus read cycle con­
tinues to float the bus. An idle bus state following a bus write cycle continues to drive the bus. 
The BIU drives no control strobes active in an idle state except to indicate the start of another bus 
cycle. 

3.5 BUS CYCLES 

There are four basic types of bus cycles: read, write, interrupt acknowledge and halt. Interrupt 
acknowledge and halt bus cycles define special bus operations and require separate discussions. 
Read bus cycles include memory, 110 and instruction prefetch bus operations. Write bus cycles 
include memory and 110 bus operations. All read and write bus cycles have the same basic format. 

The following sections present timing equations containing symbols found in the data sheet. The 
timing equations provide information necessary to start a worst-case design analysis. 

3.5.1 Read Bus Cycles 

Figure 3-19 illustrates a typical read cycle. Table 3-2 lists the three types ofread bus cycles. 

Table 3-2. Read Bus Cycle Types 

Status Bit 
Bus Cycle Type 

S2 S1 SO 

0 0 1 Read 1/0 -Initiated by the Execution Unit or the Refresh Control Unit. A19:16 
are driven to zero. 

1 0 0 Instruction Prefetch -Initiated by the BIU. Data read from the bus fills the 
prefetch queue. 

1 0 1 Read Memory - Initiated by the Execution Unit or the Refresh COl)trol Unit. 
A 19:0 select the desired byte or word memory location. 

Figure 3-20 illustrates a typical 16-bit interface connection to a read-only device interface; The 
same example applies to an 8-bit bus system, except that no devices connect to an upper bus. Four 
parameters (Table 3-3) must be evaluated when determining the compatibility of a memory (or 
I/O) device. TADLTCHdefines the delay through the address latch. 

Table 3-3. Read Cycle Critical Timing Parameters 

Memory Device 
Description Equation 

Parameter 

TOE Output enable (RD low) to data valid 2T - TClov2 - TcLiS 

TACC Address valid to data valid 3T - TClov2 - TAOlTCH - TcLis 

TCE Chip enable (UCS) to data valid 3T - TClov2 - TCllS 

TOF Output disable (RD high) to output float TRHAX 

3-20 
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TOE' TACC and T CE define the maximum data access requirements for the memory device. These 
device parameters must be less than the value calculated in the equation column. An equal to or 
greater than result indicates that wait states must be inserted into the bus cycle. 

T DF determines the maximum time the memory device can float its outputs before the next bus 
cycle begins. A T DF value greater than the equation result indicates a buffer fight. A buffer fight 
means two (or more) devices are driving the bus at the same time. This can lead to short circuit 
conditions, resulting in large current spikes and possible device damage. 

TRHAX cannot be lengthened (other than by slowing the clock rate). To resolve a buffer fight con­
dition, choose a faster device or buffer the AD bus (see "Buffering the Data Bus" on page 3-35). 

T1 T2 T3 T4 

CLKOUT 
I I I I I I 
I I 

St~tus vajid !7 I 

S2:0 
I \ ! :\ I 
I 
I I I I 
I I I 

il -11 i\ I 

ALE 
I 
I 

I I I 
I I I 

I 
I Address Valid A18:16 = 0, A19=Valid Status A19:16 I 

I I 
I I 

BHE [A1S:8] : valid: i)C RFSH 

A1S:0 
[AD7:0] 

I 
I 

RD \ :1 
I 
I 

=v I 

\ 
I 

I DT fR I I 
I I 
I I 

I I I 

DEN ! !7 i\ il 
I I 
I I 
I 

Al084-0A 

Figure 3-19. Typical Read Bus Cycle 
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3.5.1.1 Refresh Bus Cycles 

A refresh bus cycle operates similarly to a normal read bus cycle except for the following: 

• For a 16-bit data bus, address bit AO and BHE drive to a 1 (high) and the data value on the 
bus is ignored. 

• For an 8-bit data bus, address bit AO drives to a 1 (high) and RFSH is driven active (low). 
The data value on the bus is ignored. RFSH has the same bus timing as BHE. 

,... 
CE .... UCS 

A 

AD7:0 00-7 
~ 

~ 27C256 

-/ AO-14 LA15:1 

RD ,., 
OE -

,., OE -
~ 
/ AO-14 

< 27C256 
00-7 AD15:8 

,... CE .... 

Note: AO and SHE are not used. 

A1105·0A 

Figure 3-20. Read-Only Device Interface 

3.5.2 Write Bus Cycles 

Figure 3-21 illustrates a typical write bus cycle. The bus cycle starts with the transition of ALE 
high and the generation of valid status bits S2:0. The bus cycle ends when WR transitions high 
(inactive), although data remains valid for one additional clock. Table 3-4 lists the two types of 
write bus cycles. 
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:\ 
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A18:16 = 0, A19=Valid Status 

!X 
Data Valid K 

~~-:--, -. 
I 

:/ 
I 
I 
I 
I 

~-P--~~--~---T----~--~----¥!;r-­
I 

A1085·0A 

Figure 3-21. Typical Write Bus Cycle 

Table 3-4. Write Bus Cycle Types 

Bus Cycle Type 

Write 1/0 -Initiated by executing IN, OUT, INS, OUTS instructions. A15:0 
select the desired 1/0 port. A 19: 16 are driven to zero. 

Write Memory -Initiated by any of the Bytel Word memory instructions. A 19:0 
selects the desired byte or word memory location. 

Figure 3-22 illustrates a typical 16-bit interface connection to a read/write device. Write bus cy­
cles have many parameters that must be evaluated in determining the compatibility of a memory 
(or I/O) device. Table 3-5 lists some critical write bus cycle parameters. 

I 
3-23 



BUS INTERFACE UNIT intel· 
Most memory and peripheral devices latch data on the rising edge of the write strobe. Address, 
chip-select and data must be valid (set up) prior to the rising edge ofWR. TAW> Tcw and Tow de­
fine the minimum data setup requirements. The value calculated by their respective equations 
must be greater than the device req~irements. To increase the calculated value, insert wait states. 

LA15:1 

RD --------1 

3-24 

LAO 
WR 

SHE 

LCS 

1/01:8 

t--+--aWE 

t--+--aCS1 

1/01:8 

L-....t----O WE 

------_.-----aCS1 

Figure 3-22. 16-Bit Bus ReadIWrlte Device Interface 
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The minimum device data hold time (from WR high) is defined by T DH' The calculated value 
must be greater than the minimum device requirements; however, the value can be changed only 
by decreasing the clock rate. 

Table 3-5. Write Cycle Critical Timing Parameters 

Memory Device 
Description Equation Parameter 

Twc Write cycle time 4T 

TAW Address valid to end of write strobe (WR high) 3T - TAOLTCH 

Tcw Chip enable (LCS) to end of write strobe (WR high) 3T 

TWR Write recover time TWHLH 

Tow Data valid to write strobe (WR high) 2T 

TOH Data hold from write strobe (WR high) TWHOX 

Twp Write pulse width TWLWH 

Twe and Twp define the minimum time (maximum frequency) a device can process write bus cy­
cles. T WR determines the minimum time from the end of the current write cycle to the start of the 
next write cycle. All three parameters require that calculated values be &:~~~t~r.than device re­
quirements. The calculated T we and Twp values increase with the insertion of wait states. The cal­
culated T WR value, however, can be changed only by decreasing the clock rate. 

3.5.3 Interrupt Acknowledge Bus Cycle 

Interrupt expansion is accomplished by interfacing the Interrupt Control Unit with a peripheral 
device such as the 82C59A Programmable Interrupt Controller. (See Chapter 8, "Interrupt Con­
trol Unit," for more information.) The BIU controls the bus cycles required to fetch vector infor­
mation from the peripheral device, then passes the information to the CPU. These bus cycles, 
collectively known as Interrupt Acknowledge bus cycles, operate similarly to read bus cycles. 
However, instead of generating RD to enable the peripheral, the INTA signal is used. Figure 3-23 
illustrates a typical Interrupt Acknowledge (or INTA) bus cycle. 

An Interrupt Acknowledge bus cycle consists of two consecutive bus cycles. LOCK is generated 
to indicate the sequential bus operation. The second bus cycle strobes vector information only 
from the lower half ofthe bus (D7:0).In a 16-bit bus system, D15:13 contain cascade address in­
formation and D12:8 float. . 

I 
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Figure 3-23. Interrupt Acknowledge Bus Cycle 
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Figure 3-24 shows a typical 82C59A interface example. Bus ready must be provided to terminate 
both bus cycles in the interrupt acknowledge sequence. 

3.5.3.1 

NOTE 

Due to an internal condition, external ready is ignored if the device is 
configured in Cascade mode and the Peripheral Control Block (PCB) is 
located at OOOOH in JIG space. In this case, wait states cannot be added to 
interrupt acknowledge bus cycles. However, you can add wait states to 
interrupt acknowledge cycles if the PCB is located at any other address. 

System Design Considerations 

Although ALE is generated for both bus cycles, the BIU does not drive valid address information. 
Actually, all address bits except A19:16 float during the time ALE becomes active (on both 8-
and 16-bit bus devices). Address-decoding circuitry must be disabled for Interrupt Acknowledge 
bus cycles to prevent erroneous operation. 

I 

Processor 

INTO 14-----1 INT 

RD I----~~ 

WR I----~~ WR 

GCSO , CS 

LA1~ AO 

82C59A 

D7:0 

IRO A 
• I~---­. \ 
1~7\r--c----

/L--A _111...---------'\1-
AD7:0 K 

~~---------------vr 
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Figure 3-24. Typical 82C59A Interface 
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3.5.4 HALT Bus Cycle 

Suspending the CPU reduces device power consumption and potentially reduces interrupt latency 
time. The HLT instruction initiates two events: 

l. Suspends the Execution Unit. 

2. Instructs the BIU to execute a HALT bus cycle. 

The Idle or Powerdown power management mode (or the absence of both of them, known as Ac­
tive Mode) affects the operation of the bus HALT cycle. The effects relating to BIU operation and 
the HALT bus cycle are described in this chapter. Chapter 5, "Clock Generation and Power Man~ 
agement," discusses the concepts of Active, Idle and Powerdown power management modes. 

After executing a HALT bus cycle, the BIU suspends operation until one of the following events 
occurs: 

• An interrupt is generated. 

• A bus HOLD is generated (except when Powerdown mode is enabled). 

• A refresh request is generated (except when Powerdown mode is enabled). 

Figure 3-25 shows the operation of a HALT bus cycle. The address/data bus either floats or drives 
during Tl, depending on the next bus cycle to be executed by the BIU. Under most instruction 
sequences, the BIU floats the address/data bus because the next operation would most likely be 
an instruction prefetch. However, if the HALT occurs just after a bus write operation, the ad­
dress/data bus drives either data or address information during Tl. A19:16 continue to drive the 
previous bus cycle information under most instruction sequences (otherwise, they drive the next 
prefetch address). The BIU always operates in the same way for any given instruction sequence. 

The Chip-Select Unit prevents a programmed chip-select from going active during a HALT bus 
cycle. However, chip-selects generated by external decoder circuits must be disabled for HALT 
bus cycles. 
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After several TI bus states, all address/data, address/status and bus control pins drive to a known 
state when Powerdown or Idle Mode is enabled. The address/data and address/status bus pins 
force a low (0) state. Bus control pins force their inactive state. Figure 3-3 lists the state of each 
pin after entering the HALT bus state. 

Table 3-6. HALT Bus Cycle Pin States 

Pin State 

Pln(s) .rm Powerdown Powerdown 
or Idle Mode or Idle Mode 

AD15:0 (AD7:0 for S·bit) Float Drive Zero 

A 15:S (S-bit) Drive Address Drive Zero 

A19:16 Drive SH or Zero Drive Zero 

BHE (16-bit) Drive Last Value Drive One 

RD, WR, DEN, DTIR, RFSH (S-blt), S2:0 Drive One Drive One 

I 
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T1 TI TI 
CLKOUT 

ALE I \ 

52:0 \ 011 / 
AD1S:0 

Note [AD7:0] 

[A1S:8] Note 

A19:16 \ 
SHE 7 [RF5H = 1] 

NOTE: The AD15:0 [AD7:0] bus can be floating, driving a previous write data value, 
or driving the next instruction prefetch address value. For an 8-bit device, 
A 15:8 either drives the previous bus address value or the next instruction 
prefetch address value. 

A1066-0A 

Figure 3·25. HALT Bus Cycle 

3.5.5 Temporarily Exiting the HALT Bus State 

A refresh request or bus hold request causes the BID to exit the HALT bus state temporarily. This 
can occur only when in the Active or Idle power management mode. The BIU returns to the 
HALT bus state after it completes the desired bus operation. However, the BID does not execute 
another bus HALT cycle (i.e., ALE and bus cycle status are not regenerated). Figures 3-26 and 
3-27 illustrate how the BID temporarily exits and then returns to the HALT bus state. 
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AD15:0 
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A15:SJ 
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------------------~I~I---------------
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Note 
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NOTE: A19:16 and control signals remain floating until a valid cycle 
occur (Le., the BIU exists HALT or a refresh bus cycle is generated.) 

Figure 3-26. Returning to HALT After a HOLD/HLDA Bus Exchange 
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Figure 3-27. Returning to HALT After a Refresh Bus Cycle 

3.5.6 Exiting HALT 

Any NMI or maskable interrupt forces the BID to exit the HALT bus state (in any power man­
agement mode). The first bus operations to occur after exiting HALT are read cycles to reload the 
CS:IP registers. Figure 3-28 and Figure 3-29 show how the HALT bus state is exited when an 
NMI or INTn occurs. 

3-32 

I 



int"et~ BUS INTERFACE UNIT 

I 

CLKOUT ------I~ 

ALE 

82:0 

AD15:0 
[AD7:0] 

[A 15:8] 

:~ .: 
l 8 1/2 clocks to first vector fetch 
I .------, 
I 

------I~I-4I------------~I~1 --~ 
I 
I 

------I~I~I------------~I~I----~--------------

\'------

II 
-----II I L.....-_.....J}---

------II 

:: X Note 
------II 

__ BHE ------II 

[RF8H = 1] II 

A 19: 16 ------II I II-I -------------------

~ Time is determi,ned by PDTMR 
NMI J\ (41/2 clocks mln;?t--______________ _ 

NOTE: Previous bus cycle address value, 

A1069·0A 

Figure 3-28. Exiting HALT (Powerdown Mode) 
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1. For NMI, delay = 4112 clocks. For INTx, delay = 7112 clocks (min). 
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a write, bus will drive data value. 
3. Previous bus cycle value. 
4. If previous bus cycle was a refresh cycle, value will be 8H (A19 = 1); 

otherwise, value will be O. 

Figure 3-29. Exiting HALT (Active/Idle Mode) 

3.6 SYSTEM DESIGN ALTERNATIVES 

A1070·0A 

Most system designs require no signals other than those already provided by the BIU. However, 
heavily loaded bus conditions, slow memory or peripheral device performance and off-board de­
vice interfaces may not be supported directly without modifying the BIU interface. The following 
sections deal with topics to enhance or modify the operation of the BIU. 
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3.6.1 Buffering the Data Bus 

The BIU generates two control signals, DEN and DTIR, to control bidirectional buffers or trans­
ceivers. The timing relationship of DEN and DTIR is shown in Figure 3-30. The following con­
ditions require transceivers: 

• The capacitive load on the address/data bus gets too large. 

• The current load on the address/data bus exceeds device specifications. 

• Additional VOL and V OH drive is required. 

• A memory or 110 device cannot float its outputs in time to prevent bus contention, even at 
reset. 

CLKOUT 

RD,WR 

DT/R ~ 

T1 

. \ 
I \ 

T2 T3 T4 T1 

\\.-__ ---11 

DEN ___ -oJ _\"---__ ....... 1-_/ 
Write Cycle Operation 
Read Cycle Operation 

Figure 3-30. DEN and DT/R Timing Relationships 

Al094-AO 

The circuit shown in Figure 3-31 illustrates how to use transceivers to buffer the address/data bus. 
The connection between the processor and the transceiver is known as the local bus. A connection 
between the transceiver and other memory or 110 devices is known as the buffered bus. Afully 
buffered system has no devices attached to the local bus. A partially buffered system has devices 
on both the local and buffered buses. 
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- Device 
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Figure 3-31. Buffered AD Bus System 

In a fully buffered system, DEN directly drives the transceiver output enable. A partially buffered 
system requires that DEN be qualified with another signal to prevent the transceiver from going 
active for local bus accesses. Figure 3-32 illustrates how to use chip-selects to qualify DEN. 

DTtR always connects directly to the transceiver. However, an inverter may be required if the po­
larity of DTtR does not match the transceiver. DTtR goes 19w (0) only for memory and I/O read, 
instruction prefetch and interrupt acknowledge bus cycles. 
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Figure 3-32. Qualifying DEN with Chip-Selects 

3.6.2 Synchronizing Software and Hardware Events 

The execution sequence of a program and hardware events occurring within a system are often 
asynchronous to each other_ In some systems there may be a requirement to suspend program ex­
ecution until an event (or events) occurs, then continue program execution. 

One way to synchronize software execution with hardware events requires the use of interrupts. 
Executing a HALT instruction suspends program execution until an unmasked interrupt occurs. 
However, there is a delay associated with servicing the interrupt before program execution can 
proceed. Using the WAIT instruction removes the delay associated with servicing interrupts_ 

I 
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The WAIT instruction suspends program execution until one of two events occurs: an interrupt is 
generated, or the TEST input pin is sampled low. Unlike interrupts, the TEST input pin does not 
require that program execution be transferred to a new location (i.e., an interrupt routine is not 
executed). In processing the WAIT instruction, program execution remains suspended as long as 
TEST remains high (at least until an interrupt occurs). When TEST is sampled low, program ex­
ecution resumes. 

The TEST input and WAIT instruction provide a mechanism to delay program execution until a 
hardware event occurs, without having to absorb the delay associated with servicing an interrupt. 

3.6.3 Using a Locked Bus 

To address the problems of controlling accesses to shared resources, the BIU provides a hardware 
LOCK output. The execution of a LOCK prefix instruction activates the LOCK output. 

LOCK goes active in phase 1 of TI of the first bus cycle following execution of the LOCK prefix 
instruction. It remains active until phase 1 of TI of the first bus cycle following the execution of 
the instruction following the LOCK prefix. To provide bus access control in multiprocessor sys­
tems, the LOCK signal should be incorporated into the system bus arbitration logic residing in 
the CPU. 

During normal multiprocessor system operation, priority of the shared system bus is determined 
by the arbitration circuits on a cycle by cycle basis. As each CPU requires a transfer over the sys­
tem bus, it requests access to the bus via its resident bus arbitration logic. When the CPU gains 
priority (determined by the system bus arbitration scheme and any associated logic), it takes con­
trol of the bus, performs its bus cycle and either maintains bus control, voluntarily releases the 
bus or is forced off the bus by the loss of priority. 

The lock mechanism prevents the CPU from losing bus control (either voluntarily or by force) 
and guarantees that the CPU can execute multiple bus cycles without intervention and possible 
corruption of the data by another CPU. A classic use of the mechanism is the "TEST and SET 
semaphore," during which a CPU must read from a shared memory location and return data to 
the location without allowing another CPU to reference the same location during the test and set 
operations. 

Another application of LOCK for multiprocessor systems consists of a locked block move, which 
allows high speed message transfer from one CPU's message buffer to another. During the locked 
instruction (i.e., while LOCK is active), a bus hold or refresh request is recorded, but is not ac­
knowledged until completion of the locked instruction. However, LOCK has no effect on inter­
rupts. As an example, a locked HALT instruction causes bus hold or refresh bus requests to be 
ignored, but still allows the CPU to exit the HALT state on an interrupt. 
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In general, prefix bytes (such as LOCK) are considered extensions of the instructions they pre­
cede. Interrupts and refresh requests that occur during execution of the prefix are not acknowl­
edged until the instruction following the prefix completes (except for instructions that are 
servicing interrupts during their execution, such as HALT, WAIT and repeated string primitives). 
Note that multiple prefix bytes can precede an instruction. 

Another example is a string primitive preceded by the repetition prefix (REP), which can be in­
terrupted after each execution of the string primitive, even if the REP prefix is combined with the 
LOCK prefix. This prevents interrupts from being locked out during a block move or other re­
peated string operations. However, bus hold and refresh requests remain locked out until LOCK 
is removed (either when the block operation completes or after an interrupt occurs). 

3.7 MULTI-MASTER BUS SYSTEM DESIGNS 

The BIU supports protocols for transferring control of the local bus between itself and other de­
vices capable of acting as bus masters. To support such a protocol, the BIU uses a hold request 
input (HOLD) and a hold acknowledge output (HLDA) as bus transfer handshake signals. To gain 
control of the bus, a device asserts the HOLD input, then waits until the HLDA output goes active 
before driving the bus. After HLDA goes active, the requesting device can take control of the lo­
cal bus and remains in control of the bus until HOLD is removed. 

3.7.1 Entering Bus HOLD 

In responding to the hold request input, the BIU floats the entire address and data bus, and many 
of the control signals. Figure 3-33 illustrates the timing sequence when acknowledging the hold 
request. Table 3-7 lists the states of the BIU pins when HLDA is asserted. All device pins not 
mentioned in Table 3-7 or shown in Figure 3-33 remain either active (e.g., CLKOUT and 
T1 OUT) or inactive (e.g., UCS and INTA). Refer to the data sheet for specific details of pin func­
tions during a bus hold. 
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CLKOUT 

HOLD 

HLDA 

AD15:0 
DEN 

A19:16 
RD,W~ 

DT/R 
S2:0,BHE 

LOCK 

NOTES: 
1. T CLiS : HOLD input to clock low 
2. T CHOF : Clock high to output float 
3. T CLOF : Clock low to output fl?at 
4. T CLOY : Clock low to HLDA high 

Al097-0A 

Figure 3-33. Timing Sequence Entering HOLD 

Table 3-7. Signal Condition Entering HOLD 

Signal HOLD Condition 

A19:16, S2:0, RD, WR, DT/R, BHE (RFSH), LOCK These signals float one-half clock before HLDA 
is generated (Le., p'hase 2). 

AD15:0 (16-bit), AD7:0 (S-bit), A15:S (S-bit), DEN These signals float during the same clock in 
which HLDA is generated (Le., phase 1). 

3.7.1.1 HOLD Bus Latency 

The duration between the time that the external device asserts HOLD and the time that the BIU 
asserts HLDA is known as bus latency. In Figure 3-33, the two-clock delay between HOLD and 
HLDA represents the shortest bus latency. Normally this occurs only if the bus is idle or halted 
or if the bus hold request occurs just before the BIU begins another bus cycle. 
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The major factors that influence bus latency are listed below (in order from longest delay to short­
est delay). 

1. Bus Not Ready - As long as the bus remains not ready, a bus hold request cannot be 
serviced. 

2. Locked Bus Cycle - As long as LOCK remains asserted, a bus hold request cannot be 
serviced. Performing a locked move string operation can take several thousands of clocks. 

3. Completion of Current Bus Cycle - A bus hold request cannot be serviced until the 
current bus cycle completes. A bus hold request will not separate bus cycles required to 
move odd-aligned word data. Also, bus cycles with long wait states will delay the 
servicing of a bus hold request. 

4. Interrupt Acknowledge Bus Cycle - A bus hold request is not serviced until after an 
INTA bus cycle has completed. An INTA bus cycle drives LOCK active. 

5. Refresh Bus Cycles - A bus hold request is not serviced until after the refresh bus cycle 
has completed. Refresh bus cycles have a higher priority than hold bus requests. 

3.7.1.2 Refresh Operation During a Bus HOLD 

Under normal operating conditions, once HLDA has been asserted it remains asserted until 
HOLD is removed. However, when a refresh bus request is generated, the HLDA output is re­
moved (driven low) to signal the need for the BIU to regain control of the local bus. The BIU does 
not gain control of the bus until HOLD is removed. This procedure prevents the BID from just 
arbitrarily regaining control of the bus. 

Figure 3-34 shows the timing associated with the occurrence of a refresh request while HLDA is 
active. Note that HLDA can be as short as one clock in duration. This happens when a refresh 
request occurs just after HLDA is granted. A refresh request has higher priority than a bus hold 
request; therefore, when the two occur simultaneously, the refresh request occurs before HLDA 
becomes active. 
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CLKOUT 

HOLD 

HLDA 

AD15:0 
DEN -------1 

RD,WR, 
BHE, 52:0 -------4 \-__________ -{ 

DT/R, ~ ____ __ 
A19:16 
LOCK 

NOTES: 
1. : HLDA is deasserted, signaling need to run refresh bus cycle 
2. : External bus master terminates use of the bus 
3. : HOLD deasserted 
4. : Hold may be reasserted after one clock 
5. : BIU runs refresh cycle . 

A109B'()A 

Figure 3-34. Refresh Request During HOLD 

The device requesting a bus hold must be able to detect a HLDA pulse that is one clock in dura­
tion. A bus lockup (hang) condition can result if the requesting device fails to detect the short 
HLDA pulse and continues to wait for HLDA to be asserted while the BIU waits for HOLD to be 
deasserted. The circuit shown in Figure 3-35 can be used to latch HLDA. 
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RESOUT 
HOLD 

BUS INTERFACE UNIT 

+5 

+5 PRE 

D QI---- Latched HLDA 

CLR 

A1310-0A 

Figure 3-35. Latching HLDA 

The removal of HOLD must be detected for at least one clock cycle to allow the BIU to regain 
the bus and execute a refresh bus cycle- Should HOLD go active before the refresh bus cycle is 
complete, the BIU will release the bus and generate HLDA. 

3.7.2 Exiting HOLD 

Figure 3-36 shows the timing associated with exiting the bus hold state_ Normally a bus operation 
(e.g., an instruction prefetch) occurs just after HOLD is released. However, if no bus cycle is 
pending when leaving a bus hold state, the bus and associated control signals remain floating, if 
the system is in normal operating mode. (For signal states associated with Idle and Powerdown 
modes, see "Temporarily Exiting the HALT Bus State" on page 3-30). 
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CLKOUT 

HOLD 

HLDA 

AD15:0 
DEN 

RD, WR, SHE, 
DT IR, 82:0, 

A19:16 

NOTES: 
1. T CLiS : HOLD recognition setup to clock low 
2.~ : HOLD internally synchronized 
3. T CLOV : Clock low to HLDA low 
4. T CHOV : Clock high to signal active (high or low) 
5. T CLOV : Clock low to signal active (high or low) 

Figure 3-36. Exiting HOLD 

3.8 BUS CYCLE PRIORITIES 

intet~ 

A1099·0A 

The BIU arbitrates requests for bus cycles from the Execution Unit, the integrated peripherals 
(e.g., Interrupt Control Unit) and external bus masters (Le., bus hold requests). The list below 
summarizes the priorities for all bus cycle requests (from highest to lowest). 

1. Instruction execution read/write following a non-pipelined effective address calculation. 

2. Refresh bus cycles. 

3. Bus hold request. 

4. Single step interrupt vectoring sequence. 

S. Non-Maskable interrupt vectoring sequence. 
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6. Internal error (e.g., divide error, overflow) interrupt vectoring sequence. 

7. Hardware (e.g., INTO) interrupt vectoring sequence. 

8. 8OC187 Math Coprocessor error interrupt vectoring sequence. 

9. General instruction execution. This category includes read/write operations following a 
pipelined effective address calculation, vectoring sequences for software interrupts and 
numerics code execution. The following points apply to sequences of related execution 
cycles. 

- The second read/write cycle of an odd-addressed word operation is inseparable from 
the first bus cycle. 

- The second read/write cycle of an instruction with both load and store accesses (e.g., 
XCHG) can be separated from the frrst cycle by other bus cycles. 

- Successive bus cycles of string instructions (e.g., MOVS) can be separated by other bus 
cycles. 

- When a locked instruction begins, its associated bus cycles become the highest priority 
and cannot be separated (or preempted) until completed. 

10. Bus cycles necessary to fill the prefetch queue. 
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CHAPTER·· 4 
PERIPHERAL CONTROL BLoak: 

All integrated peripherals in the 80C186 Modular Core family are controlled by sets of registers 
within an integrated Peripheral Control Block (PCB). The peripheral control registers are physi­
cally located in the peripheral devices they control, but they are addressed as a single block of 
registers. The Peripheral Control Block encompasses 256 contiguous bytes and can be located on 
any 256-byte boundary of memory or 110 space. The PCB Relocation Register, which is also lo­
cated within the Peripheral Control Block, controls the location of the PCB. 

4.1 PERIPHERAL CONTROL REGISTERS 

Each of the integrated peripherals' control and status registers is located at a fixed offset above 
the programmed base location of the Peripheral Control Block (see Table 4-1). These registers 
are described in the chapters that cover the associated peripheral. "Accessing the Peripheral Con­
trol Block" on page 4-4 discusses how the registers are accessed and outlines considerations for 
reading and writing them. 

4.2 PCB RELOCATION REGISTER 

In addition to control registers for the integrated peripherals, the Peripheral Control Block con­
tains the PCB Relocation Register (Figure 4-1). The Relocation Register is located at a fixed off­
set within the Peripheral Control Block (Table 4-1). If the Peripheral Control Block is moved, the 
Relocation Register also moves. 

The PCB Relocation Register allows the Peripheral Control Block to be relocated to any 256-byte 
boundary within memory or 110 space. The Memory 110 bit (MEM) selects either memory space 
or 110 space, and the R19:8 bits specify the starting (base) address of the PCB. The remaining bit, 
Escape Trap (ET), controls access to the math coprocessor interface. 

"Setting the PCB Base Location" on page 4-6 describes how to set the base location and outlines 
some restrictions on the Peripheral Control Block location. 
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Register Name: PCB Relocation Register 

RELREG Register Mnemonic: 

Register Function: Relocates the PCB within memory or 1/0 space. 

4-2 

Bit 
Mnemonic 

ET 

MEM 

R19:8 

R R R R 
111 1 
9 876 

BltName Reset 
State 

Escape Trap 0 

Memory 1/0 0 

PCB Base OFFH 
Address 
Upper Bits 

R R R R 
1 1 1 1 
543 2 

R R R R 
1 1 9 8 
1 0 

Function 

o 

A1263-0A 

The ET bit controls access to the math copro-
cessor. If ET Is set, the CPU will trap (resulting In 
a Type 7 Interrupt) when an ESC Instruction is 
executed. 
NOTE: The 8-blt bus version of the device 
automatically traps an ESC opcode to the Type 7 
Interrupt, regardless of the state of the ET bit. 

The MEM bit specifies the PCB location. Set 
MEM to locate the PCB In memory space, or 
clear it to locate the PCB In I/O space. 

R19:8 define the upper address bits of the PCB 
base address. All lower bits are zero. R19:16 are 
Ignored when the PCB is mapped to I/O space. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 4-1. PCB Relocation Register 
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Table 4-1. Peripheral Control Block 

PCB Function Offset 
PCB 

Function Offset 
PCB Function Offset 

PCB Function Offset 

OOH Reserved 40H T2CNT 80H GCSOST COH Reserved 

02H EOI 42H T2CMPA 82H GCSOSP C2H Reserved 

04H POLL 44H Reserved 84H GCS1ST C4H Reserved 

06H POLLSTS 46H T2CON 86H GCS1SP C6H Reserved 

08H IMASK 48H Reserved 88H GCS2ST C8H Reserved 

OAH PRIMSK 4AH Reserved 8AH GCS2SP CAH Reserved 

OCH INSERV 4CH Reserved 8CH GCS3ST CCH Reserved 

OEH REQST 4EH Reserved 8EH GCS3SP CEH Reserved 

10H INSTS 50H P1DIR 90H GCS4ST DOH Reserved 

12H TCUCON 52H P1PIN 92H GCS4SP D2H Reserved 

14H SCUCON 54H P1CON 94H GCS5ST D4H Reserved 

16H 14CON 56H P1LTCH 96H GCS5SP D6H Reserved 

18H IOCON 58H P2DIR 98H GCS6ST D8H Reserved 

1AH 11CON 5AH P2PIN 9AH GCS6SP DAH Reserved 

1CH 12CON 5CH P2CON 9CH GCS7ST DCH Reserved 

1EH 13CON 5EH P2LTCH 9EH GCS7SP DEH Reserved 

20H Reserved 60H BOCMP AOH LCSST EOH Reserved 

22H Reserved 62H BOCNT A2H LCSSP E2H Reserved 

24H Reserved 64H SOCON A4H UCSST E4H Reserved 

26H Reserved 66H SOSTS A6H UCSSP E6H Reserved 

28H Reserved 68H SORBUF A8H RELREG E8H Reserved 

2AH Reserved 6AH SOTBUF AAH Reserved EAH Reserved 

2CH Reserved 6CH Reserved ACH Reserved ECH Reserved 

2EH Reserved 6EH Reserved AEH Reserved EEH Reserved 

30H TOCNT 70H B1CMP BOH RFBASE FOH Reserved 

32H TOCMPA 72H B1CNT B2H RFTIME F2H Reserved 

34H TOCMPB 74H S1CON B4H RFCON F4H Reserved 

36H TOCON 76H S1STS B6H RFADDR F6H Reserved 

38H T1CNT 78H S1RBUF B8H PWRCON F8H Reserved 

3AH T1CMPA 7AH S1TBUF BAH Reserved FAH Reserved 

3CH T1CMPB 7CH Reserved BCH STEPID FCH Reserved 

3EH T1CON 7EH Reserved BEH Reserved FEH Reserved 
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4.3 RESERVED LOCATIONS 

Many locations within the Peripheral Control Block are not assigned to any peripheral. Unused 
locations are reserved. Reading from these locations yields an undefined result. If reserved reg­
isters are written (for example, during a block MOV instruction) they must be set to OR. 

NOTE 

Failure to follow this guideline could result in incompatibilities with future 
80Cl86 Modular Core family products. 

4.4 ACCESSING THE PERIPHERAL CONTROL BLOCK 

All communication between integrated peripherals and the Modular CPU Core occurs over a spe­
cial bus, called the F-Bus, which always carries 16-bit data. The Peripheral Control Block, like 
all integrated peripherals, is always accessed 16 bits at a time. 

4.4.1 Bus Cycles 

The processor runs an external bus cycle for any memory or 110 cycle accessing a location within 
the Peripheral Control Block. Address, data and control information is driven on the external pins 
as with an ordinary bus cycle. Information returned by an external device is ignored, even if the 
access does not correspond to the location of an integrated peripheral control register. This is also 
true for the 80CI88 Modular Core family, except that word accesses made to integrated registers 
are performed in two bus cycles. 

4.4.2 READY Signals and Wait States 

The processor generates an internal READY signal whenever an integrated peripheral is access­
ed. External READY is ignored. READY is also generated if an access is made to a location with­
in the Peripheral Control Block that does not correspond to an integrated peripheral control 
register. For accesses to timer control and counting registers, the processor inserts one wait state. 
This is required to properly multiplex processor and counter element accesses to the timer control 
registers. For accesses to the remaining locations in the Peripheral Control Block, the processor 
does not insert wait states. 
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4.4.3 F-Bus Operation 

The F-Bus functions differently than the external data bus for byte and word accesses. All write 
transfers on the F-Bus occur as words, regardless of how they are encoded. For example, the in­
struction OUT OX, AL (OX is even) will write the entire AX register to the Peripheral Control 
Block register at location [OX]. If OX were an odd location, AL would be placed in [OX] and 
AH would be placed at [OX-I]. A word operation to an odd address would write [OX] and [OX-
1] with AL and AH, respectively. This differs from normal external bus operation where un­
aligned word writes modify [OX] and [OX+ 1]. In summary, do not use odd-aligned byte or word 
writes to the PCB. 

Aligned word reads work normally. Unaligned word reads work differently. For example, IN AX, 
OX (OX is odd) will transfer [OX] into AL and [OX-I] into AH. Byte reads from even or odd 
addresses work normally, but only a byte will be read. For example, IN AL, OX will not transfer 
[OX] into AX (only AL is modified). 

No problems will arise if the following recommendations are adhered to. 

Word reads 

Byte reads 

Word writes 

Byte writes 

I 

Aligned word reads of the PCB work normally. Access only even­
aligned words with IN AX, OX or MOV word register, even PCB 
address. 

Byte reads of the PCB work normally. Beware of reading word-wide 
PCB registers that may change value between successive reads (e.g., 
timer count value). 

Always write even-aligned words to the PCB. Writing an odd­
aligned word will give unexpected results. 

For the 80CI86 Modular Core, use either 
- OUT OX, AX or 
- OUT OX, AL or 
- MOV even PCB address, word register. 

For the 80CI88 Modular Core, using OUT OX, AX will perform an 
unnecessary bus cycle and is not recommended. Use either 
- OUT OX, AL or 
- MOV even-aligned byte PCB address, byte register low byte. 

Always use even-aligned byte writes to the PCB. Even-aligned byte 
writes will modify the entire word PCB location. Do not perform 
unaligned byte writes to the PCB. 
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4.4.3.1 Writing the PCB Relocation Register 

Whenever mapping the Peripheral Control Block to another location, the user should program the 
Relocation Register with a byte write (Le., OUT DX, AL). Internally, the Relocation Register is 
written with 16 bits of the AX register, while externally the Bus Interface Unit runs a single 8-bit 
bus cycle. If a word instruction (i.e., OUT DX, AX) is used with an 80C188 Modular Core family 
member, the Relocation Register is written on the first bus cycle. The Bus Interface Unit then runs 
an unnecessary second bus cycle. The address of the second bus cycle is no longer within the con­
trol block, since the Peripheral Control Block was moved on the first cycle. External READY 
must now be generated to complete the cycle. For this reason, we recommend byte operations for 
the Relocation Register. 

4.4.3.2 Accessing the Peripheral Control Registers 

Byte instructions should be used for the registers in the Peripheral Control Block of an 80C188 
Modular Core family member. This requires half the bus cycles of word operations. Byte opera­
tions are valid only for even-addressed writes to the Peripheral Control Block. A word read (e.g., 
IN AX, DX) must be performed to read a 16-bit Peripheral Control Block register when possible. 

4.4.3.3 Accessing Reserved Locations 

Unused locations are reserved. If a write is made to these locations, a bus cycle occurs, but data 
is not stored. If a subsequent read is made to the same location, the value written is not read back. 
If reserved registers are written (for example, during a block MOV instruction) they must be 
cleared to OH. 

NOTE 
Failure to follow this guideline could result in incompatibilities with future 
80C186 Modular Core family products. 

4.5 SETTING THE PCB BASE LOCATION 

Upon reset, the PCB Relocation Register (see Figure 4-1 on page 4-2) contains the value OOFFH, 
which causes the Peripheral Control Block to be located at the top of I/O space (OFFOOH to 
OFFFFH). Writing the PCB Relocation Register allows the user to change that location. 
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As an example, to relocate the Peripheral Control Block to the memory range lOOOO-lOOFFH, the 
user would program the PCB Relocation Register with the value llOOH. Since the Relocation 
Register is part of the Peripheral Control Block, it relocates to word lOOOOH plus its fixed offset. 

NOTE 

Due to an internal condition, external ready is ignored if the device is 
configured in Cascade mode and the Peripheral Control Block (PCB) is 
located at OOOOH in 110 space. In this case, wait states cannot be added to 
interrupt acknowledge bus cycles. However, you can add wait states to 
interrupt acknowledge cycles if the PCB is located at any other address. 

4.5.1 Considerations for the 80C187 Math Coprocessor Interface 

Systems using the 80C 187 math coprocessor interface must not relocate the Peripheral Control 
Block to location OOOOH in 110 space. The 80C187 interface uses 110 locations OF8H through 
OFFH. If the Peripheral Control Block resides in these locations, the processor communicates 
with the Peripheral Control Block, not the 80C187 interface circuitry. 

NOTE 

If the PCB is located at OOOOH in 110 space and access to the math coprocessor 
interface is enabled (the Escape Trap bit is clear), a numerics (ESC) instruction 
causes indeterminate system operation. 

Since the 8-bit bus version of the device does not support the 80C187, it automatically traps an 
ESC instruction to the Type 7 interrupt, regardless of the state of the Escape Trap (ET) bit. 

For details on the math coprocessor interface, see Chapter 12, "Math Coprocessing." 
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CHAPTER 5 
CLOCK GENERATION AND POWER 

MANAGEMENT 

The clock generation and distribution circuits provide uniform clock signals for the Execution 
Unit, the Bus Interface Unit and all integrated peripherals. The 80C186 Modular Core Family 
processors have additional logic that controls the clock signals to provide power management 
functions. 

5.1 CLOCK GENERATION (fl-/'" I,!; t'~) ~.-.-'\)I.wA/) . 

X bUi'.,} "'" 
The clock generation circuit (Figure 5-1) includes a crystal oscillator, a divide-by-two counterjM 
and reset circuitry. See "Power Management" on page 5-10 for a discussion of power manage-
ment options. 

OSCOUT 

RESIN 

~~~---------------------e---------<PowerDown 
Schmitt Trigger 
"Squares-up" ClKIN 

+2 
Clock 

~---< Idle 

$1 } Internal 
Phase 

$2 Clocks 

..... -----...... To ClKOUT 

Reset Circuitry Internal Reset 

A1524-0A 

Figure 5-1. Clock Generator 

5.1.1 Crystal Oscillator 

The internal oscillator is a parallel resonant Pierce oscillator, a specific form of the common phase 
shift oscillator. 
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5.1.1.1 Oscillator Operation 

A phase shift oscillator operates through positive feedback, where a non-inverted, amplified ver­
sion of the input connects back to the input. A 3600 phase shift around the loop will sustain the 
feedback in the oscillator. The on-chip inverter provides a 1800 phase shift. The combination of 
the inverter's output impedance and the first load capacitor (see Figure 5-2) provides another 900 

phase shift. At resonance, the crystal becomes primarily resistive. The combination of the crystal 
and the second load capacitor provides the final 900 phase shift. Above and below resonance, the 
crystal is reactive and forces the oscillator back toward the crystal's nominal frequency. 

Zo = Inverter Output Z , 

-.----y.,----~' ,"' -----.,----~' ",' --.,--~ 
90· 90· 

NOTE: 
At resonance, the crystal is essentially resistive. 
Above resonance, the crystal is inductive. 
Below resonance, the crystal is capacitive. 

Figure 5-2. Ideal Operation of Pierce Oscillator 

180· 

A1125-0A 

Figure 5-3 shows the actual microprocessor crystal connections. For low frequencies, crystal ven­
dors offer fundamental mode crystals. At higher frequencies, a third overtone crystal is the only 
choice. The external capacitors, CXJ at CLKIN and CX2 at OSCOUT, together with stray capaci­
tance, form the load. A third overtone crystal requires an additional inductor L J and capacitor C J 

to select the third overtone frequency and reject the fundamental frequency. See "Selecting Crys­
tals" on page 5-5 for a more detailed discussion of crystal vibration modes. 
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Choose CJ and L J component values in the third overtone crystal circuit to satisfy the following 
conditions: 

• The LC components form an equivalent series resonant circuit at a frequency below the 
fundamental frequency. This criterion makes the circuit inductive at the fundamental 
frequency. The inductive circuit cannot make the 90° phase shift and oscillations do not take 
place. 

• The LC components form an equivalent parallel resonant circuit at a frequency about 
halfway between the fundamental frequency and the third overtone frequency. This 
criterion makes the circuit capacitive at the third overtone frequency, necessary for oscil­
lation. 

• The two capacitors and inductor at OSCOUT, plus some stray capacitance, approximately 
equal the 20 pF load capacitor, CX2, used alone in the fundamental mode circuit. 

(a) 
Fundamental 
Mode Circuit 

(b) 
Third Overtone 

Mode Circuit 

D-I"""-c-x1-"l 
ClKIN D V 

(c) 
Third Overtone Mode 

(Equivalent Circuit) 

1------------------------, , , , , , 
'C X2 l1 

C1 = 200pF L1 = (See text) 

A1126-0A 

Figure 5-3. Crystal Connections to Microprocessor 

Choosing CJ as 200 pF (at least 10 times the value of the load capacitor) simplifies the circuit 
analysis. At the series resomtnce, the capacitance connected to LJ is 200 pF in series with 20 pF. 
The equivalent capacitance is still about 20 pF and the equation in Figure 5-4(a) yields the series 
resonant frequency. 

To examine the parallel resonant frequency, refer to Figure 5-3(c), an equivalent circuit to Figure 
5-3(b). The capacitance connected to LJ is 200 pF in parallel with 20 pF. The equivalent capaci­
tance is still about 200 pF (within 10%) and the equation in Figure 5-4(a) now yields the parallel 
resonant frequency. 
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(a) Series or Parallel Resonant Frequency 

f = 1 
21tJL1C1 

(b) Equivalent Capacitance 

Figure 5·4. Equations for Crystal Calculations 

The equation in Figure 5-4(b) yields the equivalent capacitance Ceq at the operation frequency. 
The desired operation frequency is the third overtone frequency marked on the crystal. Optimiz­
ing equations for the above three criteria yields Table 5-1. This table shows suggested standard 
inductor values for various processor frequencies. The equivalent capacitance is about 15 pF. 

Table 5·1. Suggested Values for Inductor Ll in Third Overtone Oscillator Circuit 

CLKOUT Third·Overtone Crystal Inductor Ll 
Frequency (MHz) Frequency (MHz) Values (IJH) 

13.04 26.08 6.8,8.2, 10.0 

16 32 3.9,4.7,5.6 

20 40 2.2,2.7,3.3 
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5.1.1.2 Selecting Crystals 

When specifying crystals, consider these parameters: 

I 

• Resonance and Load Capacitance - Crystals carry a parallel or series resonance specifi­
cation. The two types do not differ in construction, just in test conditions and expected 
circuit application. Parallelresonal1t crystals carry a test load specification, with typical 
load capacitance values of 15, 18 or 22 pF. Series resonant crystals do not carry a load 
capacitance specification. You may use a series resonant crystal with the microprocessor, 
even though the circuit is parallel resonant. However, it will vibrate at a frequency slightly 
(on the order of 0.1 %) higher than its calibration frequency. 

• Vibration Mode - The vibration mode is either fundamental or third overtone. Crystal 
thickness varies inversely with frequency. Vendors furnish third or higher overtone crystals 
to avoid manufacturing very thin, fragile quartz crystal elements. At a given frequency, an 
overtone crystal is thicker and more rugged than its fundamental mode counterpart. Below 
20 MHz,most crystals are fundamental m_ode. In the 20 to 32 MHz range, you can purchase 
both modes. You must know the vibration mode to know whether to add the LC circuit at 
OSCOUT. 

• Equivalent Series Resistance (ESR) - ESR is proportional to crystal thickness, inversely 
proportional to frequency. A lower valuegiyes a faster startup time, but the specification is 
usually not important in microprocessor applications. 

• Shunt Capacitance - A lower value reduces ESR, but typical values such as 7 pF will work 
fine. "-

• Drive Level - Specifies the maximum power dissipation for which the manufacturer 
calibrated the crystal. It is proportional to ESR, frequency, load and Vee. Disregard this 
specification unless you use a third overtone crystal whose ESR and frequency will be 
relatively high. Several crystal manufacturers stock a standard microprocessor crystalline. 
Specifying a "microprocessor grade" crystal should ensure that the rated drive level is a 
couQ~Qf roilliwatts with 5-volt operation. 

• Temperature Range - Specifies an operating range over which the frequency will not vary 
beyond a stated limit. Specify the temperature range to match the microprocessor 
temperature range. 

• Tolerance - The allowable frequency deviation at a particular calibration temperature, 
usually 25° C. Quartz crystals are more accurate than microprocessor applications call for; 
do not pay for a tighter specification than you need. Vendors quote frequency tolerance in 
percentage or parts per million (ppm). Standard microprocessor crystals typically have a 
frequency tolerance of O.Ol~ (100 ppm). If you use these crystals, you can usually 
disregard all the other specifications; these crystals are ideal for the 80C186 Modular Core 
family. 
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An important consideration when using crystals is that the oscillator start correctly over the volt­
age and temperature ranges expected in operation. Observe oscillator startup in the laboratory. 
Varying the load capacitors (within about ± 50%) can optimize startup characteristics versus sta­
bility. In your experiments, consider stray capacitance and scope loading effects. 

For help in selecting external oscillator components for unusual circumstances, count on the crys­
tal manufacturer as your best resource. Using low-cost ceramic resonators in place of crystals is 
possible if your application will tolerate less precise frequencies. 

5.1.2 Using an External Oscillator 

The microprocessor's on-board clock oscillator allows the use of a relatively low cost crystal. 
However, the designer may also use a "canned oscillator" or other external frequency source. 
Connect the external frequency input (EFI) signal directly to the oscillator CLKIN input. Leave 
OSCOUT unconnected. This oscillator input drives the internal divide-by-two counter directly, 
generating the CPU clock signals. The external frequency input can have practically any duty cy­
cle, provided it meets the minimum high and low times stated in the data sheet. Selecting an ex­
ternal clock oscillator is more straightforward than selecting a crystal. 

5.1.3 Output from the Clock Generator 

The crystal oscillator output drives a divide-by-two circuit, generating a 50% duty cycle clock for 
the processor's integrated components. All processor timings refer to this clock, available exter­
nally at the CLKOUT pin. CLKOUT changes state on the high-to-Iow transition of the CLKIN 
signal, even during reset and bus hold. CLKOUT is also available during Idle mode, but not dur­
ing Powerdown mode. (See "Idle Mode" on page 5-11 and "Powerdown Mode" on page 5-16.) 

In a CMOS circuit, significant current flows only during logic level transitions. Since the micro­
processor consists mostly of clocked circuitry, the clock distribution is the basis of power man­
agement. 

5.1.4 Reset and Clock Synchronization 

The clock generator provides a system reset signal (RESOUT). The RESIN input generates RE­
SOUT and the clock generator synchronizes it to the CLKOUT signal. 

A Schmitt trigger in the RESIN input ensures that the switch point for a low-to-high transition is 
greater than the switch point for a high-to-Iow transition. The processor must remain in reset a 
minimum of 4 CLKOUT cycles after Vee and CLKOUT stabilize. The hysteresis allows a simple 
RC circuit to drive the RESIN input (see Figure 5-5). Typical applications can use about 100 mil­
liseconds as an RC time constant. 
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Reset may be either cold (power-up) or warm. Figure 5-6 illustrates a cold reset. Assert the RES­
IN input during power supply and oscillator startup. The processor's pins assume their reset pin 
states a maximum of 28 CLKIN periods after CLKIN and Vee stabilize. Assert RESIN 4 addi­
tional CLKIN periods after the device pins assume their reset states. 

Applying RESIN when the device is running constitutes a warm reset (see Figure 5-7). In this 
case, assert RESIN for at least 4 CLKOUT periods. The device pins will assume their reset states 
on the second falling edge of CLKIN following the assertion of RESIN. 

1 Oak typical 

RESET IN RESIN 

1J.JF typical 

A1128-0A 

Figure 5·5. Simple RC Circuit for Powerup Reset 

The processor exits reset identically in both cases. The rising RESIN edge generates an internal 
RESYNC pulse (see Figure 5-8), resynchronizing the divide-by-two internal phase clock. The 
dock generator samples RESIN on the falling CLKIN edge. If RESIN is sampled high while 
CLKOUT is high, the processor forces CLKOUT low for the next two CLKIN cycles. The clock 
essentially "skips a beat" to synchronize the internal phases. If RESIN is sampled high while 
CLKOUT is low, CLKOUT is already in phase. 

I 
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Vee 

CLKOUT .. It __ --J~ 

UCS, LCS 
GC7:0,NPS~~ ____ .. 

TOOUT, T10UT 
TXD1:0 

HLDA, ALE~I-_....aIIIII_ 
SINT1 

A19:16-4.--amI111111 

Vcc and ClKIN stable to 
RESET high, approximately 
32 ClKIN periods. 

NOTES: ___ _ 

RESET high to 
first bus activity, 
7 ClKOUT periods. 

1. ClKOUT synchronization occurs on the rising edge of RESIN. If RESIN is sampled high while 
ClKOUT is high (solid line), then ClKOUT will remain low for two ClKIN periods. If RESIN is 
sampled high while ClKOUT is low (dashed line), the ClKOUT will not be affected. 

Al134·0A 

Figure 5-6. Cold Reset Waveform 

5-8 

I 



intet 

ClKIN 

CLKOUT 

UCS, LCS 
GCS7:0 
TOOUT 
T10UT 

TXD1:0,NPS 

HLDA,ALE 
SINT1 

A19:16 

AD15:0 
S2:0, RD 

WR, DEN 
DT/R 
LOCK 

RESOUT 

CLOCK GENERATION AND POWER MANAGEMENT 

Minimum RESIN 
low time 4 CLKOUT 
periods. 

Figure 5-7. Warm Reset Waveform 

RESIN 
high to 
first bus 
activity 7 
CLKOUT 
periods. 

A1133·0A 

At the second falling CLKOUT edge after the internal clocks resynchronize, the processor deas­
serts RES OUT. Bus activity starts seven CLKOUT periods after recognition of RESIN in the log­
ic high state. If an alternate bus master asserts HOLD during reset, the processor immediately 
asserts HLDA and will not prefetch instructions. 

I 
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ClKIN 

RESIN 
RESYNC 
(Internal) --.f------~~ 

ClKOUT 

RESOUT 

NOTES: 
1. Setup of RESIN to falling CLKIN. 
2. RESOUT goes active. 
3. RESIN allowed to go inactive after minimum 4 CLKOUT ~Ies. 
4. RESYNC pulse generated. 
5. RESYNC pulse drives CLKOUT low, resynchronizing the clock generator. 

infel. 

6. RESOUT goes inactive on the second falling CLKOUT edge following CLKOUT resynchronization. 

AlllHIA 

Figure 5-8. Clock Synchronization at Reset 

5.2 POWER MANAGEMENT 

Many VLSI devices available today use dynamic circuitry. A dynamic circuit uses a capacitor 
(usually parasitic gate or diffusion capacitance) to store information. The stored charge decays 
over time due to leakage currents in the silicon. If the device does not use the stored information 
before it decays, the state of the entire device may be lost. Circuits must periodically refresh dy­
namic RAMs, for example, to ensure data retention. Any microprocessor that has a minimum 
clock frequency has dynamic logic. On a dynamic microprocessor, if you stop or slow the clock, 
the dynamic nodes within it begin discharging. With a long enough delay, the processor is likely 
to lose its present state, needing a reset to resume normal operation. 

An 80C186 Modular Core microprocessor is fully static. The CPU stores its current state in 
flip-flops, not capacitive nodes. The clock signal to both the CPU core and the peripherals can 
stop without losing any internal information, provided the design maintains power. When the 
clock restarts, the device will execute from its previous state. When the processor is inactive for 
significant periods, special power management hardware takes advantage of static operation to 
achieve major power savings. 
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There are two power management modes: Idle and Powerdown. Power management is a clock 
distribution function. For this discussion, Active mode is the condition of no programmed power 
management. Active mode operation feeds the clock signal to the CPU core and all the integrated 
peripherals and power consumption reaches its maximum for the application. The processor de­
faults to Active mode at reset. 

5.2.1 Idle Mode 

During Idle mode operation, the clock signal is routed only to the integrated peripheral devices. 
CLKOUT continues toggling. The clocks to the CPU core (Execution and Bus Interface Units) 
freeze in a logic low state. Idle mode reduces current consumption by about a third, depending 
on the activity in the peripheral units. 

5.2.1.1 Entering Idle Mode 

Setting the appropriate bit in the Power Control Register (Figure 5-9) prepares for Idle mode. The 
processor enters Idle mode when it executes the HLT (halt) instruction. If the program arms both 
Idle mode and Powerdown mode by mistake, the device halts but remains in Active mode. See 
Chapter 3, "Bus Interface Unit," for detailed information on HALT bus cycles. Figure 5-10 
shows some internal and external waveforms during entry into Idle mode. 

I 
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Register Name: 

Register Mnemonic: 

Register Function: 

15 

Bit 
Bit Name 

Mnemonic 

IDLE Idle Mode 

PWRDN Powerdown 
Mode 

Power Control Register 

PWRCON 

Arms power management functions. 

0 

I P 
0 W 
L R 
E 0 

N 

A1129-0A 

Reset 
Function 

State 

0 Setting the IDLE bit forces the CPU to enter the 
Idle mode when the HLT instruction is executed. 
The PWRDN bit must be cleared when setting 
the IDLE bit. otherwise Idle mode is not armed. 

0 Setting the PWRDN bit forces the CPU to enter 
the Powerdown mode when the next HLT 
instruction is executed. The IDLE bit must be 
cleared when setting the PWRDN bit. otherwise 
Powerdown mode is not armed. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 5-9. Power Control Register 
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Halt Cycle 

T40rTI T1 TI TI TI 

I 
I 
I 
I 

\ 1 
011 7 

~ \ 
A1119-0A 

Figure 5-10. Entering Idle Mode 

5.2.1.2 Bus Operation During Idle Mode 

DRAM refresh requests and HOLD requests temporarily turn on the core clocks. If the processor 
needs to run a refresh cycle during Idle mode, the internal core clock begins to toggle on the fall­
ing CLKOUT edge immediately after the down-counter reaches zero. After one idle T-state, the 
processor runs the refresh cycle. As with all other bus cycles, the BIU uses the ready, wait state 
generation and chip-select circuitry as necessary for refresh cycles during Idle mode. There is one 
idle T-state after T4 before the internal core clock shuts off again. 

I 
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A HOLD request from an external bus master turns on the core clock as long as HOLD is active 
(see Figure 5-11). The core clock restarts one CLKOUT cycle after the bus processor samples 
HOLD high. The microprocessor asserts HLDA one cycle after the core clock starts. The core 
clock turns off and the processor deasserts HLDA one cycle after the external bus master deas­
sertsHOLD. 

CLKOUT 

Internal 
Peripheral 

Clock 
Internal 

Core Clock 

HOLD 

HLDA 

TI TI 

1 Clock 
Delay 

L..:. 
F • 

TI I TI I 
I I 
I I 

Core 
Restart 
....-I 
" • 

TI I TI TI I 
I 

Processor 
In Hold 

Core Clock 
Shuts Off 

" " • 
: TI : TI : TI : TI : TI 
I I I I I I 

• •• 
I I I I I I 
I I I I I I 
I I I I I I 

... Ul..IUULn 
I I I 
I I I 
I I I 

• •• 

••• 

• •• 

A112D-OA 

Figure 5-11. HOLDIHLDA During Idle Mode 

As in Active mode, refresh requests will force the BIU to drop HLDA during bus hold. (For more 
information on refresh cycles during hold, see "Refresh Operation During a Bus HOLD" on page 
3-41 and "Refresh Operation and Bus HOLD" on page 7-13.) 

5.2.1.3 Leaving Idle Mode 

Any unmasked interrupt or non-maskable interrupt (NMI) will return the processor to Active 
mode. Reset also returns the processor to Active mode, but the device loses its prior state. 

Any unmasked interrupt received by the core will return the processor to Active mode. Interrupt 
requests pass through the Interrupt Control Unit with an interrupt resolution time for mask and 
priority level checking. Then, after 1 Y2 clocks, the core clock begins toggling. It takes an addi­
tional 6 CLKOUT cycles for the core to begin the interrupt vectoring sequence. 
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After execution of the lRET (interrupt return) instruction in the interrupt service routine, the 
CS:IP will point to the instruction following the HALT. Interrupt execution does not modify the 
Power Control Register. Unless the programmer intentionally reprograms the register after exit­
ing Idle mode, the processor will re-enter Idle mode at the next HLT instruction. 

Like an unmasked interrupt, an NMI will return the core to Active mode from Idle mode. It takes 
two CLKOUT cycles to restart the core clock after an NMI occurs. The NMI signal does not need 
the mask and priority checks that a maskable interrupt does. This results in a considerable differ­
ence in clock restart time between an NMI and an unmasked interrupt. The core begins the inter­
rupt response six cycles after the core clock restarts when it fetches the NMI vector from location 
00008H. NMI does not clear the IDLE bit in the Power Control Register. 

Resetting the microprocessor will return the device to Active mode. Unlike interrupts, a reset 
clears the Power Control Register. Execution begins as it would following a warm reset (see "Re­
set and Clock Synchronization" on page 5-6). 

5.2.1.4 Example Idle Mode Initialization Code 

Example 5-1 illustrates programming the Power Control Register and entering Idle mode upon 
HLT. The interrupts from the serial port and timers are not masked. Assume that the serial port 
connects to a keyboard controller. At every keystroke, the keyboard sends a data byte, and the 
processor wakes up to service the interrupt. After acting on the keystroke, the core will go back 
into Idle mode. The example excludes the actual keystroke processing. 

I 
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$mod186 
name 

; FUNCTION: 
SYNTAX: 
INPUTS: 

OUTPUTS: 
NOTE: 

PWRCON equ xxxxH 

-power.Jl\gt 

-power_mgt 
lib_80C186 

This function reduces CPU power consumption. 
extern void far power_mgt(int mode); 
mode - 00 -> Active Mode 

None 

01 -> Powerdown Mode 
02 -> Idle Mode 
03 -> Active Mode 

Parameters are passed on the stack as required 
by high-level languages 

segment public 'code' 
assume cs:lib_80C186 
public -power_mgt 
proc far 

push bp 
mov bp, sp 
push ax 
push dx 

equ word ptr[bp+6] 

mov dx, PWRCON 
mov ax, _mode 
and ax, 3 
out dx, ax 
hlt 
pop dx 
pop ax 
pop bp 
ret 
endp 
ends 
end 

;substitute PWRCON register 
;offset 

;save caller's bp 
;get current top of stack 
;save registers that will 
;be modified 

;get parameter off the 
; stack 
;select Power Control Reg 
;get mode 
;mask off unwanted bits 

;enter mode 
;restore saved registers 

;restore caller's bp 

Example 5-1. Initializing the Power Management Unit for Idle or Powerdown Mode 

5.2.2 Powerdown Mode 

Powerdown mode freezes the clock to the entire device (core and peripherals) and disables the 
crystal oscillator. All internal devices (registers, state machines, etc.) maintain their states as long 
as Vee is applied. The BIU will not honor DRAM refresh and HOLD requests in Powerdown 
mode because the clocks for those functions are off. CLKOUT freezes in a logic high state. Cur­
rent consumption in Powerdown mode consists of just transistor leakage (typically less than 100 
microaIIlps). 
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5.2.2.1 Entering Powerdown Mode 

Powerdown mode is entered by executing the HLT instruction after setting the PWRDN bit in the 
Power Control Register (see Figure 5-9 on page 5-12). The HALT cycle turns off both the core 
and peripheral clocks and disables the crystal oscillator. See Chapter 3, "Bus Interface Unit," for 
detailed information on HALT bus cycles. Figure 5-12 shows the internal and external waveforms 
during entry into Powerdown mode. 

elKIN toggles 

Halt Cycle 
only when 
external 

:On 
frequency 

T4 or T1 T1 T2 TI input is used: 
I 

ClKIN 
I I 
I I -----------, 08COUT Indeterminate I 
------------1 

ClKOUT 

CPU Core 
Clock 

Internal 
Peripheral 

Clock 

82:0 \ 011 if 
ALE I \ 

Al121-0A 

Figure 5-12. Entering Powerdown Mode 

During the T2 phase of the HLT instruction, the core generates a signal called EntecPowerdown. 
EntecPowerdown immediately disables the internal CPU core and peripheral clocks. The pro­
cessor disables the oscillator inverter during the next CLKOUT cycle. If the design uses a crystal 
oscillator, the oscillator stops immediately. When c:LKINoriginates from an external frequency 
iJ!ItuUEFI), Powerdown isolates the signal on theCLKIN pin from the internal circuitry. There­
fore, the circuit may drive CLKIN during Powerdown mode, although it will not clock the device. 
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5.2.2.2 Leaving Powerdown Mode 

An NMI or reset returns the processor to Active mode. If the device leaves Powerdown mode by 
an NMI, a delay must follow the interrupt request to allow the crystal oscillator to stabilize before 
gating it to the internal phase clocks. An external timing pin sets this delay as described below. 
Leaving Powerdown by an NMI does not clear the PWRDN bit in the Power Control Register. A 
reset also takes the processor out of Powerdown mode. Since the oscillator is off, the user should 
follow the oscillator cold start guidelines (see "Reset and Clock Synchronization" on page 5-6). 

The Powerdown timer circuit (Figure 5-13) has a PDTMR pin. Connecting this pin to an external 
capacitor gives the user control over the gating of the crystal oscillator to the internal clocks. The 
strong P-channel device is always on except during exit from Powerdown mode. This pullup 
keeps the powerdown capacitor CPD charged up to Vee. CPD discharges slowly. At the same time, 
the circuit turns on the feedback inverter on the crystal oscillator and oscillation starts. 

The Schmitt trigger connected to the PDTMR pin asserts the internal OSC_OK signal when the 
voltage at the pin drops below its switching threshold. The OSC_OK signal gates the crystal os­
cillator output to the internal clock circuitry. One CLKOUT cycle runs before the internal clocks 
turn back on. It takes two additional CLKOUT cycles for an NMI request to reach the CPU and 
another six clocks for the vector to be fetched, 
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Strong P-Channel 
Pullup 

PDTMR Pin 

I 
Weak N-Channel 

Pulldown 

0, Except when leaving 
Powerdown 

r--- Exit Powerdown 
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Figure 5-13. Powerdown Timer Circuit 
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The first step in determining the proper CPD value is startup time characterization for the crystal 
oscillator circuit. This step can be done with a storage oscilloscope if you compensate for scope 
probe loading effects. Characterize startup over the full range of operating voltages and temper­
atures. The oscillator starts up on the order of a couple of milliseconds. After determining the os­
cillator startup time, refer to "PD1MR Pin Delay Calculation" in the data sheet. Multiply the 
startup time (in seconds) by the given constant to get the CPD value. Typical values are less than 
1!JF. 

If the design uses an external oscillator instead of a crystal, the external oscillator continues run­
ning during Powerdown mode. Leave the PDTMR pin unconnected and the processor can exit 
Powerdown mode immediately. 

5.2.3 Implementing a Power Management Scheme 

Table 5-2 summarizes the power management options available to the user. Overall power con­
sumption has two parts: switching power dissipated by driving loads such as the address/data bus, 
and device power dissipated internally by the microprocessor whether or not it is connected to 
external devices. A power management scheme should consider loading as well as the raw spec­
ifications in the processor's data sheet. 

I 

Table 5·2. Summary of Power Management Modes 

Mode 
Relative Typical User Chief 
Power Power Overhead Advantage 

Active Full 250 mW at 16 MHz - Full-speed operation 

Idle Low 175 mW at 16 MHz Low Peripherals are unaffected 

Powerdown Lowest 250llW Low to Moderate Long battery life 

NOTE 

If an NMI or external maskable interrupt service routine is used to enter a 
power management mode, the interrupt request signal should be deassefted 
before entering the power management mode. 
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CHAPTER 6 
CHIP-SELECT UNIT 

Every system requires some form of component-selection mechanism to enable the CPU to ac­
cess a specific memory or peripheral device. The signal that selects the memory or peripheral de­
vice is referred to as a chip-select. Besides selecting a specific device, each chip-select can be 
used to control the number of wait states inserted into the bus cycle. Devices that are too slow to 
keep up with the maximum bus bandwidth can use wait states to slow the bus down. 

6.1 COMMON METHODS FOR GENERATING CHIP-SELECTS 

One method of generating chip-selects uses latched address signals directly. An example interface 
is shown in Figure 6-1(A). In the example, an inverted A16 is connected to an SRAM device with 
an active-low chip-select. Any bus cycle with an address between 10000H and IFFFFH (A16 = 
1) enables the SRAM device. Also note that any bus cycle with an address starting at 30000H, 
50000H, 70000H and so on also selects the SRAM device. 

Decoding more address bits solves the problem of a chip-select being active over multiple address 
ranges. In Figure 6-1 (B), a one-of-eight decoder is connected to the uppermost address bits. Each 
decoded output is active for one-eighth of the 1 Mbyte address space. However, each chip-select 
has a fixed starting address and range. Future system memory changes could require circuit 
changes to accommodate the additional memory. 

6.2 CHIP-SELECT UNIT FEATURES AND BENEFITS 

The Chip-Select Unit overcomes limitations of the designs shown in Figure 6-1 and has the fol­
lowing features: 

• Ten chip-select outputs 

• Programmable start and stop addresses 

• Memory or I/O bus cycle decoder 

• Programmable wait-state generator 

• Provision to disable a chip-select 

• Provision to override bus ready 

Figure 6-2 illustrates the logic blocks that generate a chip-select. Each chip-select has a duplicate 
set of logic. 
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27C256 

RO---OIOE 

A16 

(A) 
Chip-Selects Using 
Addresses Directly 

07:0 
A19 

A18 

A17 

ALE 
HLOA 

74AC138 

(8) 

Chip-Selects Using 
Simple Decoder 

Selects 896K to 1 M 

Selects 768K to 896K 

Selects 128K to 256K 

Selects 0 to 128K 

Al168-0A 

Figure 6-1. Common Chip-Select Generation Methods 

6.3 CHIP-SELECT UNIT FUNCTIONAL OVERVIEW 

The Chip-Select Unit (CSU) decodes bus cycle address and status information and enables the 
appropriate chip-select. Figure 6-3 illustrates the timing of a chip-select during a bus cycle. Note 
that the chip-select goes active in the same bus state as address goesactive, eliminating any delay 
through address latches and decoder circuits. The Chip-Select Unit activates a chip-select for bus 
cycles initiated by the CPU or Refresh Control Unit. 

Any of the ten chip-selects can map into either memory or I/O address space. A memory-mapped 
chip-select can start and end on any 1 Kbyte address location. An I/O-mapped chip-select can 
start and end on any 64 byte address location. The chip-selects typically associate with memory 
and peripheral devices as follows: 
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Memory/IO 
Selector 

MEM 
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Shifter 

Start 
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CHIP-SELECT UNIT 

Ignore Stop 
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ISTOP 

Stop 
Value < 

Comparator 

Start 
Value ~ 

Chip Select 
Enable 
CSEN 

Peripheral Control Block 
Access Indicator 

Chip 
Select 

Al16Q-OA 

Figure 6-2. Chip-Select Block Diagram 

Mapped to the upper memory address space; selects the BOOT memory device 
(EPROM or Flash memory types). 

Mapped to the lower memory address space; selects a static memory (SRAM) 
device that stores the interrupt vector table, local stack, local data, and scratch 
pad data. 

Mapped to memory or I/O address space; selects additional SRAM memory, 
DRAM memory, local peripherals, system bus, etc. 
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Figure 6-3. Chip-Select Relative Timings 

A chip-select goes active when it meets all of the following criteria: 

1. The chip-select is enabled. 

2. The bus cycle status matches the programmed type (memory or 110). 

3. The bus cycle address is equal to or greater than the start address value. 

intet~ 

A115Q-OA 

4. The bus cycle address is less than the stop address value or the stop address is ignored. 

5. The bus cycle is not accessing the Peripheral Control Block. 

A memory address applies to memory read, memory write and instruction prefetch bus cycles. 
An 110 address applies to 110 read and 110 write bus cycles. Interrupt acknowledge and HALT 
bus cycles never activate a chip-select, regardless of the address generated. 

After power-on or system reset, only the UCS chip-select is initialized and active (see Figure 6-4). 
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1. 15 Wait states automatically inserted. Bus READY must be provided. 

Figure 6-4. UCS Reset Configuration 

6.4 PROGRAMMING 

1MB 

1023K 

o 

A1162·0A 

Two registers, START and STOP, determine the operating characteristics of each chip-select. The 
Peripheral Control Block defines the location of the Chip-Select Unit registers. Table 6-1 lists the 
registers and their associated programming names. 

Table 6-1. Chip-Select Unit Registers 

START Register STOP Register 
Chip-Select Affected 

Mnemonic Mnemonic 

GCSOST GCSOSP GCSO 

GCS1ST GCS1SP GCS1 

GCS2ST GCS2SP GCS2 

GCS3ST GCS3SP GCS3 

GCS4ST GCS4SP GCS4 

GCS5ST GCS5SP GCS5 

GCS6ST GCS6SP GCS6 

GCS7ST GCS7SP GCS7 

UCSST UCSSP UCS 

LCSST LCSSP LCS 

I 
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The START register (Figure 6-5) defines the starting address and the wait state requirements. The 
STOP register (Figure 6-6) defines the ending address and the bus ready, bus cycle and enable 
requirements. 

6.4.1 Initialization Sequence 

Chip-selects do not have to be initialized in any specific order. However, the following guidelines 
help prevent a system failure. 

1. Initialize local memory chip-selects 

2. Initialize local peripheral chip-selects 

3. Perform local diagnostics 

4. Initialize off-board memory and peripheral chip-selects 

5. Complete system diagnostics 

An unmasked interrupt or NMI must not occur until the interrupt vector addresses have been writ­
ten to memory. Failure to prevent an interrupt from occurring during initialization will cause a 
system failure. Use external logic to generate the chip-select if interrupts cannot be masked prior 
to initialization .. 
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Register Name: 

Register Mnemonic: 

Register Function: 

15 

C C C C 
S S S S 
9 8 7 6 

Chip-Select Start Register 

UCSST, LCSST, GCSxST (x=O-7) 

Defines chip-select start address and number of 
bus wait states. 

C C C C 
S S S S 
543 2 

C C 
S S 

o 

w w 
s s 
3 2 

o 
w w 
s S 
1 0 

A1163-0A 

Bit Bit Name 
Reset 

Function 
Mnemonic State 

CS9:0 Start 3FFH Defines the starting (base) address for the chip-
Address select. CS9:0 are compared with the A19:10 

(memory bus cycles) or A 15:6 (1/0 bus cycles) 
address bits. An equal to or greater than result 
enables the chip-select. 

WS3:0 Wait State OFH WS3:0 define the minimum number of wait 
Value states inserted into the bus cycle_ A zero value 

means no wait states. Additional wait states 
can be inserted into the bus cycle using bus 
ready. 

NOTE: Reserved register bits are shown with gray shading_ Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 6-5. START Register Definition 
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Register Name: Chip-Select Stop Register 

UCSSP, LCSSP, GCSxSP (x=O-7) Register Mnemonic: 

Register Function: Defines chip-select stop address and other control 
functions. 

6-8 

15 

C C C C C C C C 
S S S S S S S S 
9 8 7 6 5 4 3 2 

Bit 
Bit Name 

Reset 
Mnemonic State 

CS9:0 Stop 3FFH 
Address 

CSEN Chip-Select 0 
Enable (Note) 

ISTOP Ignore Stop 0 
Address (Note) 

C C 
S S 
1 0 

C 
S 
E 
N 

Function 

I 
S 
T 
0 
P 

o 
M R 
E D 
M Y 

A1164-0A 

Defines the ending address for the chip-select. 
CS9:0 are compared with the A19:10 (memory 
bus cycles) or A15:6 (I/O bus cycles) address 
bits. A less than result enables the chip-select. 
CS9:0 are ignored if ISTOP is set. 

Disables the chip-select when cleared. Setting 
CSEN enables the chip-select. 

Setting this bit disables stop address checking, 
which automatically sets the ending address at 
OFFFFFH (memory) or OFFFFH (I/O). When 
ISTOP is cleared, the stop address require-
ments must be met to enable the chip-select. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. The reset state of 
CSEN and ISTOP is '1' for the UCSSP register. 

Figure 6-6. STOP Register Definition 
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Register Name: Chip-Select Stop Register 

UCSSP, LCSSP, GCSxSP (x=O-7) Register Mnemonic: 

Register Function: Defines chip-select stop address and other control 
functions. 

15 

C C 
S S 
9 8 

Bit 
Mnemonic 

MEM 

ROY 

C C 
S S 
7 6 

C C C C 
S S S S 
5 4 3 2 

Bit Name Reset 
State 

Bus Cycle 1 
Selector 

Bus Ready 1 
Enable 

C C 
S S 
1 0 

C 
S 
E 
N 

Function 

I 
S 
T 
0 
P 

o 
M R 
E 0 
M Y 

A1164-0A 

When MEM is set, the chip-select goes active 
for memory bus cycles. Clearing MEM activates 
the chip-select for 1/0 bus cycles. 

MEM defines which address bits are used by 
the start and stop address comparators. When 
MEM is cleared, address bits A15:6 are routed 
to the comparators. When MEM is set, address 
bits A19:10 are routed to the comparators. 

Setting ROY requires that bus ready be active 
to complete a bus cycle. Bus ready is ignored 
when ROY is cleared. ROY must be set to 
extend wait states beyond the number 
determined by WS3:0. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. The reset state of 
CSEN and ISTOP is '1' for the UCSSP register. 

Figure 6-6. STOP Register Definition (Continued) 

The correct sequence to program a non-enabled chip-select is as follows. (If the chip-select is al­
ready enabled, either reverse the sequence or disable the chip-select before reprogramming it.) 

I 

1. 

2. 

Program the START register 

Program the STOP register 
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6.4.2 Start Address 

The START register of each chip-select defines its starting (base) address. The start address value 
is compared to the ten most -significant address bits of the bus cycle. A bus cycle whose ten most­
significant address bits are equal to or greater than the start address value causes the chip-select 
to go active. Table 6-2 defines the address bits that are compared with the start address value for 
memory and I/O bus cycles. 

It is not possible to have a chip-select start on any arbitrary byte boundary. A chip-select config­
ured for memory accesses can start only on multiples of 1 Kbyte. A chip-select configured for I/O 
accesses can start only on multiples of 64 bytes. The equations below calculate the physical start 
address for a given start address value. 

For memory accesses:Start Value (Decimal) x 1024 = Physical Start Address (Decimal) 

For I/O accesses:Start Value (Decimal) x 64= Physical Start Address (Decimal) 

Table 6-2. Memory and VO Compare Addresses 

Address Space Address Range Number of Bits Comparator Input Resolution 

Memory 1 Mbyte 20 A19:A10 1 Kbyte 

I/O 64 Kbyte 16 A15:A6 64 Bytes 

6.4.3 Stop Address 

The STOP register of each chip-select defines its ending address. The stop address value is com­
pared to the ten most-significant address bits of the bus cycle. A bus cycle whose ten most-sig­
nificant bits of address are less than the stop address value causes the chip-select to go active. 
Table 6-2 defines the address bits that are compared with the stop address value for memory and 
I/O bus cycles. 

It is not possible to have a chip-select end on any arbitrary byte boundary. A chip-select config­
ured for memory accesses can end only on multiples of 1 Kbyte. A chip-select configured for I/O 
accesses can end only on multiples of 64 bytes. The equations below define the ending address 
for the chip-select. 

For memory accesses:(Stop Value (Decimal) x 1024) -1= Physical Ending Address (Decimal) 

For I/O accesses:(Stop Value (Decimal) x 64) -1= Physical Ending Address (Decimal) 
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In the previous equations, a stop value of 1023 (03FFH) results in a physical ending address of 
OFFBFFH (memory) or OFFBFH (I/O). These addresses do not represent the top of the memory 
or I/O address space. To have a chip-select enabled to the end of the physical address space, the 
ISTOP control bit must be set. The IS TOP control bit overrides the stop address comparator out­
put (see Figure 6-2 on page 6-3). 

6.4.4 Enabling and Disabling Chip-Selects 

The ability to enable or disable a chip-select is important when multiple memory devices share 
(or can share) the same physical address space. Examples of where two or more devices would 
occupy the same address space include shadowed memory, bank switching and paging. 

The STOP register holds the CSEN control bit, which determines whether the chip-select should 
go active. A chip-select never goes active if its CSEN control bit is cleared. 

Chip-selects can be disabled by programming the stop address value less than the start address 
value or by programming the start address value greater than the stop address value. However, 
the ISTOP control bit cannot be set when chip-selects are disabled in this manner. 

6.4.5 Bus Wait State and Ready Control 

Normally, the bus ready input must be inactive at the appropriate time to insert wait states into 
the bus cycle. The Chip-Select Unit can ignore the state of the bus ready input to extend and com­
plete the bus cycle automatically. Most memory and peripheral devices operate properly using fif­
teen or fewer wait states. However, accessing such devices as a dual-port memory, an expansion 
bus interface, a system bus interface or remote peripheral devices can require more than fifteen 
wait states to complete a bus cycle. 

The START register holds a four-bit value (WS3:0) that defines the number of wait states to insert 
into the bus cycle. Figure 6-7 shows a simplified logic diagram of the wait state and ready control 
functions. 

I 
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BUSREADY-----------4 

READY Control Bit -----\ 

Wait State Value (WS3:0) 
Wait 
State 

Counter 

Figure 6-7. Wait State and Ready Control Functions 
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The STOP register defines the RDY control bit to extend bus cycles beyond fifteen wait states. 
The RDY control bit determines whether the bus cycle should complete normally (i.e., require 
bus ready) or unconditionally (i.e., ignore bus ready). Chip-selects connected to devices requiring 
fifteen wait states or fewer can program RDY inactive to automatically complete the bus cycle. 
Devices that may require more than fifteen wait states must program RDY active. 

A bus cycle with wait states automatically inserted cannot be shortened. A bus cycle that ignores 
bus ready cannot be lengthened. 

6.4.6 Overlapping Chip-Selects 

The Chip-Select Unit activates all enabled chip-selects programmed to cover the same physical 
address space. This is true if any portion of the chip-selects' address ranges overlap (i.e., chip­
selects' ranges do not need to overlap completely to all go active). There are various reasons for 
overlapping chip-selects. For example, a system might have a need for overlapping a portion of 
read-only memory with read/write memory or copying data to two devices siumltaneously. 

If overlapping chip-selects do not have identical wait state and bus ready programming, the Chip­
Select Unit will adjust itself based on the criteria shown in Figure 6-8. 
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Figure 6-8. Overlapping Chip-Selects 
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Table 6-3 lists example wait state and bus ready requirements for overlapping chip-selects and 
the resulting requirements for accesses to the overlapped region. 

Table6-3. Example Adjustments for Overlapping Chip-Selects 

Chip-Select X Chip-Select Y Overlapped Region Access 

Wait States Bus Ready Walt States Bus Ready Walt States Bus Ready 

3 ignored 9 ignored 9 ignored 

5 required 0 ignored 0 required 

2 required 2 required 2 required 

Be cautious when overlapping chip-selects with different wait state or bus ready programming. 
The following two conditions require special attention to ensure proper system operation: 

1. When all overlapping chip-selects ignore bus ready but have different wait states, verify 
that each chip-select still works properly using the highest wait state value. A system 
failure may result when too few or too many wait states occur in the bus cycle. 

2. If one or more of the overlapping chip-selects requires bus ready, verify that all chip­
selects that ignore bus ready still work properly using both the smallest wait state value 
and the longest possible bus cycle. A system failure may result when too few or too many 
wait states occur in the bus cycle. 

6.4.7 Memory or VO Bus Cycle Decoding 

The Chip-Select Unit decodes bus cycle status and address information to determine whether a 
chip-select goes active. The MEM control bit in the STOP register defines whether memory or 
I/O address space is decoded. Memory address space accesses consist of memory read, memory 
write and instruction prefetch bus cycles. I/O address space accesses consist of I/O read and I/O 
write bus cycles. 

Chip-selects go active for bus cycles initiated by the CPU and Refresh Control Unit. 

6.4.8 Programming Considerations 

When programming chip-selects active for I/O bus cycles, remember that eight bytes of I/O are 
reserved by Intel. These eight bytes (locations OOF8H through OOFFH) control the interface to an 
8OC187 math coprocessor. A chip-select can overlap this reserved space provided there is no in­
tention of using the 80C 187. However, to avoid possible future compatibility issues, Intel recom­
mends that no chip-select start at I/O address location OOCOH. 
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The GCS chip-select outputs are multiplexed with output port functions. The register that controls 
the multiplexed outputs resides in the 110 Port Unit. (See Table II-Ion page 11-7 and Figure 11-5 
on page 11-8.) 

6.5 CHIP-SELECTS AND BUS HOLD 

The Chip-Select Unit decodes only internally generated address and bus state information. An ex­
ternal bus master cannot make use of the Chip-Select Unit. During HLDA, all chip-selects remain 
inactive. 

The circuit shown in Figure 6-9 allows an external bus master to access a device during bus 
HOLD. 

CSU Chip Select ---, ~ 

:=====:~ Device select 
External Master Chip Select -----' 

A1167·0A 

Figure 6-9. USing Chip-Selects During HOLD 

6.6 EXAMPLES 

The following sections provide examples of programming the Chip-Select Unit to meet the needs 
of a particular application. The examples do not go into hardware analysis or design issues. 

6.6.1 Example 1: Typical System Configuration 

Figure 6-10 illustrates a block diagram of a typical system design with a 128 Kbyte EPROM and 
a 32 Kbyte SRAM. The peripherals are mapped to 110 address space. Example 6.1 shows a pro­
gram template for initializing the Chip-Select Unit. 
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Figure 6-10. Typical System 
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$ 
$ 

$ 

TITLE 
MOD186XREF 
NAME 

(Chip-Select Unit Initialization) 

External reference from this module 

include (PCBMAP. INC) 

Module equates 

Configuration equates 

TRUE EQU 
FALSE EQU 
READY EQU 
CSEN EQU 
ISTOP EQU 
MEM EQU 
10 EQU 

OFFH 
NOT TRUE 
0001H 
0008H 
0004H 
0002H 
OOOOH 

;File declares Register 
;Locations and names. 

;BuS ready control modifier 
;Chip-Select enable modifier 
;Stop address modifier 
;Memory select modifier 
;1/0 select modifier 

;Below is a list of the default system memory and I/O environment. These 
;defaults configure the Chip-Select Unit for proper system operation. 

;EPROM memory is located from OEOOOO to OFFFFF (128 Kbytes). 
;Wait states are calculated assuming 16MHz operation. 
;UCS# controls the accesses to EPROM memory space. 

EPROM_SIZEEQU 
EPROM_BASEEQU 
EPROM_WAITEQU 

128 ; Size in Kbytes 
1024 - EPROM_SIZE;Start address in Kbytes 
1 ;Wait states 

;The UCS# START and STOP register values are calculated using the above system 
;constraints and the equations below. 

UCSST_VALEQU 
UCSSP_VALEQU 

(EPROM_BASE SHL 6) OR (EPROM_WAIT) 
(CSEN) OR (ISTOP) OR (MEM) 

;SRAM memory starts at OH and continues to 7FFFH (32 Kbytes). 
;Wait states are calculated assuming 16MHz operation. 
;LCS# controls the accesses to SRAM memory space. 

SRAM_SIZEEQU 
SRAM_BASEEQU 
SRAM_WAITEQU 

32 
o 
o 

;Size in Kbytes 
;Start address in Kbytes 
;Wait states 

;The LCS# START and STOP register values are calculated using the above system 
;constraints and the equations below 

& 

LCSST_VALEQU 
LCSSP_VALEQU 

(SRAM_BASE SHL 6) OR (SRAM_WAIT) 
(((SRAM_BASE) OR (SRAM_SIZE» SHL 6) OR 
(CSEN) OR (MEM) 

A DRAM interface is selected by the GCS1# chip-select. The BASE value defines 
the starting address of the DRAM window. The SIZE value (along with the BASE 
value) defines the ending address. Zero wait state performance is assumed. The 
Refresh Control Unit uses DRAM_BASE to properly configure refresh operation. 

Example 6-1. Initializing the Chip-Select Unit 
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DRAM_BASEEQU 
DRAM_SIZEEQU 
DRAM_WAITEQU 

128 
512 
o 

Window start address in Kbytes 
Window size in Kbytes 
Wait states (change to match 
system) 

;The GCS1# START and STOP register values are calculated using the above systen 
;constraints and the equations below 

& 

GCS1ST_VALEQU (DRAM_BASE SHL 6) OR (DRAM_WAIT) 
GCS1SP_VALEQU «(DRAM_BASE) OR (DRAM_SIZE» SHL 6) OR 

(CSEN) OR (MEM) 

;I/O is selected using the GCS2# chip-select. Wait states assume operation at 
;16MHz. The SIZE and BASE values must be modulo 64 bytes. For this example, the 
;Floppy Disk Controller is connected to GCS2# and GCSO# is connected to 
;the DMA Controller. 

IO_SIZEEQU 
IO_BASEEQU 
IO_WAITEQU 

DMA_BASEEQU 
DMA_WAITEQU 

64 
256 
4 

512 
o 

;Size in bytes 
;Start address in bytes 
;Wait states 

;Start address in bytes 
;Wait states 
;Size assumed to be 64 bytes 

;The GCSO# and GCS2# START and STOP register values are calculated using the 
;above system contraints and the equations below. 

& 

GCS2ST_VALEQU «IO_BASE/64) SHL 6) OR (IO_WAIT) 
GCS2SP_VALEQU «(IO_BASE/64) OR (IO_SIZE/64» SHL 6) OR 

(CSEN) OR (IO) 

GCSOST_VALEQU «DMA_BASE/64) SHL 6) OR (DACK_WAIT) 
GCSOSP_VALEQU «(DMA_BASE/64) + 1) SHL 6) OR (CSEN) OR (IO) 

;The following statements define the default assumptions for SEGMENT locations. 

ASSUMECS:CODE 
ASSUMEDS:DATA 
ASSUMESS:DATA 
ASSUMEES:DATA 

CODE SEGMENT PUBLIC 'CODE' 

;ENTRY POINT ON POWER UP: 
;The power-on or reset code does a jump here after the UCS register is 
; programmed. 

FW_STARTLABEL FAR 

CLI 

;Place register initialization code here 

;Forces far jump 

;Make sure interrupts are 
;globally disabled 

Example 6-1. Initializing the Chip-Select Unit (Continued) 
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;SET UP CHIP SELECTS 

UCS# 
LCS# 
GCS1# 
GCS2# 
GCSO# 

- EPROM Select 
- SRAM Select 
- DRAM Select 
- FLOPPY Select 
- DMA Select 

MOV DX, UCSSP 
MOV AX. , UCSSP_VAL 
OUT DX, AL 

MOV DX, LCSST 
MOV AX. , LCSST_VAL 
OUT DX, AL 
MOV DX, LCSSP 
MOV AX. , LCSSP_VAL 
OUT DX, AL 

MOV DX, GCS1ST 
MOV AX. , GCS1ST_VAL 
OUT DX, AL 
MOV AX. , GCS1SP_VAL 
MOV DX, GCS1SP 
OUT DX, AL 

MOV DX, GCSOST 
MOV AX. , GCSOST_VAL 
OUT DX, AL 
MOV AX. , GCSOSP_VAL 
MOV DX, GCSOSP 
OUT DX, AL 

MOV DX, GCS2ST 
MOV AX. , GCS2ST_VAL 
OUT DX, AL 
MOV DX, GCS2SP 
MOV AX. , GCS2SP_VAL 
OUT DX, AL 

;Place remaining User Code here. 

CODE ENDS 

;POWER ON RESET CODE TO GET STARTED 

ASSUME CS:POWER_ON 

POWER_ON SEGMENT AT OFFFFH 

MOV DX, UCSST 
MOV AX. , UCSST_VAL 
OUT DX, AL 
JMP FW_START 

POWER_ON ENDS 

CHIP-SELECT UNIT 

;Finish setting up UCS# 

; Remember, byte writes work ok 

;Set up LCS# 

; Remember, byte writes work ok 

;Set up GCS1# 

; Remember, byte writes work ok 

;Set up GCSO# 

; Remember, byte writes work ok 

;Set up GCS2# 

; Remember, byte writes work ok 

;Point to UCS register 
;Reprogram UCS# for EPROM size 

;Jump to start of init code 

Example 6-1. Initializing the Chip-Select Unit (Continued) 
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DATA SEGMENT 

DATA SEGMENT PUBLIC 'DATA' 

DD 256 DUP (?) ;Reserved for Interrupt Vectors 

;Place additional memory variable here 

DW 500 DUP (?) ;Stack allocation 

STACK_TOP LABEL WORD 

DATA ENDS 

;Program Ends 

END 

Example 6-1. Initializing the Chip-Select Unit (Continued) 

6.6.2 Example 2: Detecting Attempts to Access Guarded Memory 

A chip-select is configured to set an interrupt when the bus accesses a physical address region 
that does not contain a valid memory or peripheral device. Figure 6-11 illustrates how a simple 
circuit detects the errant bus cycle and generates an NMI. System software then deals with the 
error. The purpose of using the chip-select is to generate a bus ready and prevent a bus "hang" 
condition. 

Processor 

NMI GCS5 

,... 
..... 

A1158-0A 

Figure 6-11. Guarded Memory Detector 
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CHAPTER 7 
REFRESH CONTROL UNIT 

The Refresh Control Unit (RCU) simplifies dynamic memory controller design with its integrat­
ed address and clock counters. Figure 7-1 shows the relationship between the B us Interface Unit 
and the Refresh Control Unit. Integrating the Refresh Control Unit into the processor allows an 
external DRAM controller to use chip-selects, wait state logic and status lines. 

~ 

F-Bus 

-

I 

.A ... 
) 

'4 I" 

CPU 
Clock ... 

.A ... 
K ) 

'4 I" 

.A ... 
K ) 

'4 I" 

Refresh Clock 
Interval Register 

V 
9-Bit Down 

Counter Refresh Request 

CLR Refresh Acknowledge 
REO 

Refresh Control 
Register 

12-Bit Address Counter 

Refresh Base Refresh Address 
Address Register Register 

7 ...... v 13 vi-' 
;' ;" 

20-Bit 
Refresh Address 

Figure 7-1. Refresh Control Unit Block Diagram 

BIU 
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7.1 THE ROLE OF THE REFRESH CONTROL UNIT 

Like a DMA controller, the Refresh Control Unit runs bus cycles independent of CPU execution. 
Unlike a DMA controller, however, the Refresh Control Unit does not run bus cycle bursts nor 
does it transfer data. The DRAM refresh process freshens individual DRAM rows in "dummy 
read" cycles, while cycling through all necessary addresses. 

The microprocessor interface to DRAMs is more complicated than other memory interfaces. A 
complete DRAM controller requires circuitry beyond that provided by the processor even in the 
simplest configurations. This circuitry must respond correctly to reads, writes and DRAM refresh 
cycles. The external DRAM controller generates the Row Address Strobe (RAS), Column Ad­
dress Strobe (CAS) and other DRAM control signals. 

Pseudo-static RAMs use dynamic memory cells but generate address strobes and refresh address­
es internally. The address counters still need external timing pulses. These pulses are easy to de­
rive from the processor's bus control signals. Pseudo-static RAMs do not need a full DRAM 
controller. 

7.2 REFRESH CONTROL UNIT CAPABILITIES 

A 12-bit address counter forms the refresh addresses, supporting any dynamic memory devices 
with up to 12 rows of memory cells (12 refresh address bits). This includes all practical DRAM 
sizes for the processor's 1 Mbyte address space. 

7.3 REFRESH CONTROL UNIT OPERATION 

Figure 7-2 illustrates Refresh Control Unit counting, address generation and BIU bus cycle gen­
eration in flowchart form. 

The nine-bit down-counter loads from the Refresh Interval Register on the falling edge of CLK­
OUT. Once loaded, it decrements every falling CLKOUT edge until it reaches one. Then the 
down-counter reloads and starts counting again, simultaneously triggering a refresh request. 
Once enabled, the DRAM refresh process continues indefinitely until the user reprograms the Re­
fresh Control Unit, a reset occurs, or the processor enters Powerdown mode. 

The refresh request remains active until the bus becomes available. When the bus is free, the BIU 
will run its "dummy read" cycle. Refresh bus requests have higher priority than most CPU bus 
cycles, all DMA bus cycles and all interrupt vectoring sequences. Refresh bus cycles also have a 
higher priority than the HOLDIHLDA bus arbitration protocol (see "Refresh Operation and Bus 
HOLD" on page 7-13). 
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Figure 7-2. Refresh Control Unit Operation Flow Chart 

The nine-bit refresh clock counter does not wait until the BIU services the refresh request to con­
tinue counting. This operation ensures that refresh requests occur at the correct interval. Other­
wise, the time between refresh requests would be a function of varying bus activity. When the 
BIU services the refresh request, it clears the request and increments the refresh address. 
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The BIU does not queue DRAM refresh requests. If the Refresh Control Unit generates another 
request before the BIU handles the present request, the BIU loses the present request. However, 
the address associated with the request is not lost. The refresh address changes only after the BIU 
runs a refresh bus cycle. If a DRAM refresh cycle is excessively delayed, there is still a chance 
that the processor will successfully refresh the corresponding row of cells in the DRAM, retaining 
the data. 

7.4 REFRESH ADDRESSES 

Figure 7-3 shows the physical address generated during a refresh bus cycle. This figure applies 
to both the 8-bit and 16-bit data bus microprocessor versions. Refresh address bits RA 19: 13 come 
from the Refresh Base Address Register. (See "Refresh Base Address Register" on page 7-7.) 

From Refresh Base 
Address Register From Refresh Address Counter Fixed 

~~--------~----~iir------------------------------~I'-' 

20-Bit Refresh Address 

A1266-0A 

Figure 7-3. Refresh Address Formation 

A linear-feedback shift counter generates address bits RA12:1 and RAO is always one. The 
counter does not count linearly from 0 through FFFH. However, the counting algorithm cycles 
uniquely through all possible 12-bit values. It matters only that each row of DRAM memory cells 
is refreshed at a specific interval. The order of the rows is unimportant. 

Address bit AO is fixed at one during all refresh operations. In applications based on a 16-bit data 
bus processor, AO typically selects memory devices placed on the low (even) half of the bus. Ap­
plications based on an 8-bit data bus processor typically use AO as a true address bit. The DRAM 
controller must not route AO to row address pins on the DRAMs. 
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7.5 REFRESH BUS CYCLES 

Refresh bus cycles look exactly like ordinary memory read bus cycles except for the control sig­
nals listed in Table 7-1. These signals can be ANDed in a DRAM controller to detect a refresh 
bus cycle. The 16-bit bus processor drives both the BHE and AO pins high during refresh cycles. 
The 8-bit bus version replaces the BHE pin with RFSH, which has the same timings. The 8-bit 
bus processor drives RFSH low and AO high during refresh cycles. 

Table 7-1. Identification of Refresh Bus Cycles 

Data Bus Width BHEIRFSH AO 

16-Bit Device 1 1 

a-Bit Device 0 1 

7.6 GUIDELINES FOR DESIGNING DRAM CONTROLLERS 

The basic DRAM access method consists of four phases: 

I. The DRAM controller supplies a row address to the DRAMs. 

2. The DRAM controller asserts a Row Address Strobe (RAS), which latches the row 
address inside the DRAMs. 

3. The DRAM controller supplies a column address to the DRAMs. 

4. The DRAM controller asserts a Column Address Strobe (CAS), which latches the column 
address inside the DRAMs. 

Most 8OC186 Modular Core family DRAM interfaces use only this method. Others are not dis­
cussed here. 

The DRAM controller's purpose is to use the processor's address, status and control lines to gen­
erate the multiplexed addresses and strobes. These signals must be appropriate for three bus cycle 
types: read, write and refresh. They must also meet specific pulse width, setup and hold timing 
requirements. DRAM interface designs need special attention to transmission line effects, since 
DRAMs represent significant loads on the bus. 

DRAM controllers may be either clocked or unclocked. An unclocked DRAM controller requires 
a tapped digital delay line to derive the proper timings. 

Clocked DRAM controllers may use either discrete or programmable logic devices. A state ma­
chine design is appropriate, especially if the circuit must provide wait state control (beyond that 
possible with the processor's Chip-Select Unit). Because of the microprocessor's four-clock bus, 
clocking some logic elements on each CLKOUT phase is advantageous (see Figure 7-4). 
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CLKOUT 

Muxed 
Address 

T4 T1 T2 

\ 
NOTES: 
1. CAS is unnecessary for refresh cycles only. 
2. WE is necessary for write cycles only. 

infelQP 

T3fTW T4 

A1267·0A 

Figure 7-4. Suggested DRAM Control Signal Timing Relationships 

The cycle begins with presentation of the row address. RAS should go active on the falling edge 
of T2. At the rising edge of T2, the address lines should switch to a column address. CAS goes 
active on the falling edge of T3. Refresh cycles do not require CAS. When CAS is present, the 
"dummy read" cycle becomes a true read cycle (the DRAM drives the bus), and the DRAM row 
still gets refreshed. 

Both RAS and CAS stay active during any wait states. They go inactive on the falling edge ofT4. 
At the rising edge of T4, the address multiplexer shifts to its original selection (row addressing), 
preparing for the next DRAM access. 
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7.7 PROGRAMMING THE REFRESH CONTROL UNIT 

Given a specific processor operating frequency and information about the DRAMs in the system, 
the user can program the Refresh Control Unit registers. 

7.7.1 Calculating the Refresh Interval 

DRAM data sheets show DRAM refresh requirements as a number of refresh cycles necessary 
and the maximum period to run the cycles. (The number of refresh cycles is the same as the num­
ber of rows.) You must compensate for bus latency - the time it takes for the Refresh Control 
Unit to gain control of the bus. This is typically 1-5%, but if an external bus master will be ex­
tremely slow to release the bus, increase the overhead percentage. At standard operating frequen­
cies, DRAM refresh bus overhead totals 2-3% of the total bus bandwidth. 

Given this information and the CPU operating frequency, use the formula in Figure 7-5 to deter­
mine the correct value for the RFfIME Register value. 

RpERIOD X Fcpu 
---------- = RFTIME RegisterValue 
Rows + (ROWS x Overhead%) 

Maximum refresh period specified by DRAM manufacturer (in I1s). 

Operating frequency (in MHz). 

Total number of rows to be refreshed. 

Overhead % = Derating factor to compensate for missed refresh requests (typically 1 - 5 %). 

Figure 7-5. Formula for Calculating Refresh Interval for RFTIME Register 

7.7.2 Refresh Control Unit Registers 

Three contiguous Peripheral Control Block registers operate the Refresh Control Unit: the Re­
fresh Base Address Register, Refresh Clock Interval Register and the Refresh Control Register. 
A fourth register, the Refresh Address Register, permits examination of the refresh address bits 
generated by the Refresh Control Unit. 

7.7.2.1 Refresh Base Address Register 

The Refresh Base Address Register (Figure 7-6) programs the base (upper seven bits) of the re­
fresh address. Seven-bit mapping places the refresh address at any 4 Kbyte boundary within the 
1 Mbyte address space. When the partial refresh address from the 12-bit address counter (see Fig­
ure 7-1 and "Refresh Control Unit Capabilities" on page 7-2) passes FFFH, the Refresh Control 
Unit does not increment the refresh base address. Setting the base address ensures that the address 
driven during a refresh bus cycle activates the DRAM chip select. 
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Register Name: 

Register Mnemonic: 

Register Function: 

Bit Bit Name 
Mnemonic 

RA19:13 Refresh 
Base 

Refresh Base Address Register 

RFBASE 

infel~ 

Determines upper 7 bits of refresh address. 

o 
R R R R R R R 
A A A A A A A 
1 1 1 1 1 1 1 
987 6 5 4 3 

A100B-OA 

Reset Function 
State 

OOH Uppermost address bits for DRAM r~fresh 
cycles. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 7-6. Refresh Base Address Register 

7.7.2.2 Refresh Clock Interval Register 

The Refresh Clock Interval Register (Figure 7-7) defines the time between refresh requests. The 
higher the value, the longer the time between requests. The down-counter decrements every fall­
ing CLKOUT edge, regardless of core activity. When the counter reaches one, the Refresh Con­
trol Unit generates a refresh request, and the counter reloads the value from the register. 
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Register Name: 

Register Mnemonic: 

Register Function: 

Bit Bit Name Mnemonic 

RC8:0 Refresh Counter 
Reload Value 

REFRESH CONTROL UNIT 

Refresh Clock Interval Register 

RFTIME 

Sets refresh rate. 

R R R R R R R R 
C C C C C C C C 
765 4 321 0 

Reset Function 
State 

o 

A1288'OA 

OOOH Sets the desired clock count between refresh 
cycles. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to ensure compatibility with future Intel products. 

Figure 7-7. Refresh Clock Interval Register 

7.7.2.3 Refresh Control Register 

Figure 7-8 shows the Refresh Control Register. The user may read or write the REN bit at any 
time to turn the Refresh Control Unit on or off. The lower nine bits contain the current nine-bit 
down-counter value. The user cannot program these bits. Disabling the Refresh Control Unit 
clears both the counter and the corresponding counter bits in the control register. 
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Register Name: 

Register Mnemonic: 

Register Function: 

Bit Bit Name Mnemonic 

REN Refresh 
Control Unit 
Enable 

RC8:0 Refresh 
Counter 

Refresh Control Register 

RFCON 

Controls Refresh Unit operation. 

R R R R R R R R 
C C C C C C C C 
7 6 5 4 321 0 

Reset Function State 

intet~ 

o 

A1311-0A 

0 Setting REN enables the Refresh Unit. Clearing 
REN disables the Refresh Unit. 

OOOH These bits contain the present value of the 
down-counter that triggers refresh requests. 
The user cannot program these bits. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 7-8. Refresh Control Register 

7.7.2.4 Refresh Address Register 

The Refresh Address Register (Figure 7-9) contains address bits RAI2:1, which will appear on 
the bus as A12: I on the next refresh bus cycle. Bit 0 is fixed as a one in the register and in all 
refresh addresses. 
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Register Name: 

Register Mnemonic: 

Register Function: 

Refresh Address Register 

RFADDR 

Contains the generated refresh address bits. 

R R R R 
A A A A 
1 1 9 8 
1 0 

R R R R 
A A A A 
7 6 5 4 

R R 
A A 
3 2 

o 
R R 
A A 
1 0 

A1501-0A 

Bit Bit Name Reset Function Mnemonic State 

RA12:1 Refresh OOOH These bits comprise A12:1 of the refresh 
Address Bits address. 

RAO Refresh Bit 1 AO of the refresh address. This bit is always 1 
0 and is read-only. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 7-9. Refresh Address Register 

7.7.3 Programming Example 

Example 7-1 contains sample code to initialize the Refresh Control Unit. 
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$mod186 
name 

FUNCTION: This function initializes the DRAM Refresh 
Control Unit to refresh the DRAM starting at dram_addr 
at cloc~time intervals. 

SYNTAX: 
extern void far config_rcu(int dr~addr, int clock_time}; 

INPUTS: 

OUTPUTS: 

RFBASE 
RFTIME 
RFCON 
Enable 

_clock_time 
_dr~addr 

7-12 

dram_addr - Base address of DRAM to refresh 
clock_time - DRAM refresh rate 

None 

NOTE: Parameters are passed on the stack as 
required by high-level languages. 

equ xxxxh 
equ xxxxh 
equ xxxxh 
equ 8000h 

segment public 'code' 
assume cs:lib_80186 

public _config_rcu 
proc far 

push bp 
mov bp, sp 

equ word ptr[bp+6] 
equ word ptr [bp+8] 

push ax 
push cx 
push dx 
push di 

;substitute register offset 

;enable bit 

;save caller's bp 
;get current top of stack 

;get parameters off 
;the stack 

;save registers that 
;will be modified 

Example 7-1. Initializing the Refresh Control Unit 
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mov dx, RFBASE 
mov ax, _dram_addr 
out dx, al 

mov dx, RFTIME 
mov ax, _clock_time 
out dx, al 

mov dx, RFCON 
mov ax, Enable 
out dx, al 

mov cx, 8 

xor di, di 

_exercise_ram: 
mov word ptr [dil, 
loop _exercise_ram 

pop di 
pop dx 
pop cx 
pop ax 
pop bp 

ret 
_config_rcu endp 
lib_80186 ends 

end 

0 

REFRESH CONTROL UNIT 

;set upper 7 address bits 

;set clock pre_scaler 

;Enable RCU 

;8 dummy cycles are 
;required by DRAMs 
;before actual use 

;restore saved registers 

;restore caller's bp 

Example 7-1. Initializing the Refresh Control Unit (Continued) 

7.8 REFRESH OPERATION AND BUS HOLD 

When another bus master controls the bus, the processor keeps HLDA active as long as the 
HOLD input remains active. If the Refresh Control Unit generates a refresh request during bus 
hold, the processor drives the HLDA signal inactive, indicating to the current bus master that it 
wishes to regain bus control (see Figure 7-10). The BIU begins a refresh bus cycle only after the 
alternate master removes HOLD. The user must design the system so that the processor can re­
gain bus control. If the alternate master asserts HOLD after the processor starts the refresh cycle, 
the CPU will relinquish control by asserting HLDA when the refresh cycle is complete. 
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T1 T1 T1 T1 T1 T4 

CLKOUT 

HOLD 

AD15:0 
DEN----~----~~~----~----~----~-T----~ 

RD,WR, 
BHE,S2~O ____ T-____ ~~~ __ -T ______ ~ ____ ~ __ ~ 

DT JR, 
A19:16 

NOTES: 

T1 

1. HLDA is deasserted; signaling need to run DRAM refresh cycles less than T CLOV' 
2. External bus master terminates use of the bus. 
3. HOLD deasserted; greater than T CLiS' 
4. Hold may be reasserted after one clock. 
5. Lines come out of float in order to run DRAM refresh cycle. 

A1269-0A 

Figure 7-10. Regaining Bus Control to Run a DRAM Refresh Bus Cycle 
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CHAPTER 8 
INTERRUPT CONTROL UNIT 

The 80C186 Modular Core has a single maskable interrupt input. (See "Interrupts and Exception 
Handling" on page 2-39.) The Interrupt Control Unit (ICU) expands the interrupt capabilities be­
yond a single input. It receives and processes maskable interrupts from multiple sources and pre­
sents them to the CPU through the maskable interrupt input. Interrupts can originate from the on­
chip peripherals and from five external interrupt pins. The Interrupt Control Unit synchronizes 
and prioritizes the interrupts and provides the interrupt type vector to the CPU. (See Figure 8-1.) 

The Interrupt Control Unit has the following features: 

• Programmable priority of each interrupt source 

• Individual masking of each interrupt source 

• Nesting of interrupt sources 

• Support for polled operation 

• Support for cascading external 8259A modules to expand external interrupt sources 

8.1 FUNCTIONAL OVERVIEW 

All microcomputer systems must communicate in some way with the external world. A typical 
system might have a keyboard, a disk drive and a communications port, all requiring CPU atten­
tion at different times. There are two distinct ways to process peripheral I/O requests: polling and 
interrupts. 

Polling requires that the CPU check each peripheral device in the system periodically to see­
whether it requires servicing. It would not be unusual to poll a low-speed peripheral (a serial port, 
for instance) thousands of times before it required servicing. In most cases, the use of polling has 
a detrimental effect on system throughput. Any time used to check the peripherals is time spent 
away from the main processing tasks. 

Interrupts eliminate the need for polling by signalling the CPU that a peripheral device requires 
servicing. The CPU then stops executing the main task, saves its state and transfers execution to 
the peripheral-servicing code (the interrupt handler). At the end of the interrupt handler, the 
CPU's original state is restored and execution continues at the point of interruption in the main 
task. 

I 
8-1 



INTERRUPT CONTROL UNIT intet 
til 
Serial Serial 

Timer 0 Timer 1 Timer 2 Receive Transmit INTO INT1 INT2 INT3 INT 4 

To CPU Interrupt Request 

Interrupt 
Priority 

Resolver 

F - Bus 

Vector 
Generation 

Logic 

NOTE: The three timers are multiplexed into a single input, as are the two serial interrupts. 
A1203-AO 

Figure 8·1. Interrupt Control Unit Block Diagram 

(~ 7/J'/~s ~) 
8.1.1 Generic Functions 

Several functions of the Interrupt Control Unit are common among most interrupt controllers. 
This section describes how those generic functions are implemented in the Interrupt Control Unit. 

8.1.1.1 Interrupt Masking 

There are circumstances in which a programmer may need to disable an interrupt source tempo­
rarily (for example, while executing a time-critical section of code or servicing a high-priority 
task). This temporary disabling is called interrupt masking. All interrupts from the Interrupt Con­
trol Unit can be masked either globally or individually. 
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The Interrupt Enable bit in the Processor Status Word globally enables or disables the maskable 
interrupt request from the Interrupt Control Unit. The programmer controls the Interrupt Enable 
bit with the STI (set interrupt) and CLI (clear interrupt) instructions. 

Besides being globally enabled or disabled by the Interrupt Enable bit, each interrupt source can 
be individually enabled or disabled. The Interrupt Mask register has a single bit for each interrupt 
source. The programming can selectively mask (disable) or unmask (enable) each interrupt 
source by setting or clearing the corresponding bit in the Interrupt Mask register. 

8.1.1.2 Interrupt Priority 

One critical function of the Interrupt Control Unit is to prioritize interrupt requests. When multi­
ple interrupts are pending, priority determines which interrupt request is serviced first. In many 
systems, an interrupt handler may itself be interrupted by another interrupt source. This is known 
as interrupt nesting. With interrupt nesting, priority determines whether an interrupt source can 
preempt an interrupt handler that is currently executing. 

Each interrupt source is assigned a..Qrioritybetween zero (hi~hest) and seven (lowest). After reset, 
the interrupts default to the prioriti~~~sho'wn in Table 8-1. Because the timers share an interrupt 
source, they also share a priority. Within the assigned priority, each has a relative priority (Timer 
o has the highest relative priority and Timer 2 has the lowest). The serial channel 0 receive and 
transmit interrupts also share a priority. Within the assigned priority, the receive interrupt has the 
higher relative priority. 

Table 8-1. Default Interrupt Priorities 
AIAwl&' ?1l..1Ctf.\lj 

Interrupt Name Relative Priority 

IIVTlI- 2-

/IV/O 3 

Timer 0 o (a) 

Timer 1 o (b) 

jlvT I 'I Timer 2 o (c) 

I~T"2.. S- Serial Channel 0 Receive 1 (a) 

/~T3 ~ Serial Channel 0 Transmit 1(b) 

The priority of each source is programmable. The Interrupt Control register enables the 
programmer to assign each source a priority that differs from the default. The priority must still 
be between zero (highest) and seven (lowest). Interrupt sources can be programmed to share a 
priority. The Interrupt Control Unit uses the default priorities (see Table 8-1) within the shared 
priority level to determine which interrupt to service first. For example, assume that INTO and 
INTI are both programmed to priority seven. Because INTO has the higher default priority, it is 
serviced first. 
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Interrupt sources can be masked on the basis of their priority. The Priority Mask register masks 
all interrupts with priorities lower than its programmed value. After reset, the ~ori!Y M~Kreg­
ister contains priority seven, which effectively enabl~s al1int~rruJ?ts. The programmer can then 
program the register with any valid priority level. . 

8.1.1.3 Interrupt Nesting 

When entering an interrupt handler, the CPU pushes the Processor Status Word onto the stack and 
clears the Interrupt Enable bit. The processor enters all interrupt handlers with maskable inter­
rupts disabled. Maskable interrupts remain disabled until either the IRET instruction restores the 
Interrupt Enable bit or the programmer explicitly enables interrupts. Enabling maskable inter­
rupts within an interrupt handler allows interrupts to be nested. Otherwise, interrupts are pro­
cessed sequentially; one interrupt handler must finish before another executes. 

The simplest way to use the Interrupt Control Unit is without nesting. The operation and servicing 
of all sources of maskable interrupts is straightforward. However, the application tradeoff is that 
an interrupt handler will finish executing even if a higher priority interrupt occurs. This can add 
considerable latency to the higher priority interrupt. 

In the simplest terms, the Interrupt Control Unit asserts the maskable interrupt request to the CPU, 
waits for the interrupt acknowledge, then presents the interrupt type of the highest priority un­
masked interrupt to the CPU. The CPU then executes the interrupt handler for that interrupt. Be­
cause the interrupt handler never sets the Interrupt Enable bit, it can never be interrupted. 

The function of the Interrupt Control Unit is more complicated with interrupt nesting. In this case, 
an interrupt can occur during execution of an interrupt handler. That is, one interrupt can preempt· 
another. Two rules apply for interrupt nesting: 

• An interrupt source cannot preempt interrupts of higher priority. 

• An interrupt source cannot preempt itself. The interrupt handler must finish executing 
before the interrupt is serviced again. (Special Fully Nested Mode is an exception. See 
"Special Fully Nested Mode" on page 8-8.) 

8.2 FUNCTIONAL OPERATION 

This section covers the process in which the Interrupt Control Unit receives interrupts and asserts 
the maskable interrupt request to the CPU. 
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8.2.1 TYpical Interrupt Sequence 

When the Interrupt Control Unit first detects an interrupt, it sets the corresponding bit in the In­
terrupt Request register to indicate that the interrupt is pending. The Interrupt Control Unit checks 
all pending interrupt sources. If the interrupt is unmasked and meets the priority criteria (see "Pri­
ority Resolution" on page 8-5), the Interrupt Control Unit asserts the maskable interrupt request 
to the CPU, then waits for the interrupt acknowledge. 

When the Interrupt Control Unit receives the interrupt acknowledge, it passes the interrupt type 
to the CPU. At that point, the CPU begin the interrupt processing sequence.(See "InterruptlEx­
ception Processing" on page 2-39 for details.) The Interrupt Control Unit always passes the vector 
that has the highest priority at the time the acknowledge is received. If a higher priority interrupt 
occurs before the interrupt acknowledge, the higher priority interrupt has precedence. 

When it receives the interrupt acknowledge, the Interrupt Control Unit clears the corresponding 
bit in the Interrupt Request register and sets the corresponding bit in the In-Service register. The 
In-Service register keeps track of which interrupt handlers are being processed. At the end of an 
interrupt handler, the programmer must issue an End-of-Interrupt (EOl) command to explicitly 
clear the In-Service register bit. If the bit remains set, the Interrupt Control Unit cannot process 
any additional interrupts from that source. 

8.2.2 Priority Resolution 

The decision to assert the maskable interrupt request to the CPU is somewhat complicated. The 
complexity is needed to support interrupt nesting. First, an interrupt occurs and the corre­
sponding Interrupt Request register bit is set The Interrupt Control Unit 'then asserts the 
maskable interrupt request to the CPU, if the pending interrupt satisfies these requirements: 

1. its Interrupt Mask bit is cleared (it is unmasked) 

2. its priority is higher than the value in the Priority Mask register 

3. its In-Service bit is cleared 

4. its priority is equal to or greater than that of any interrupt whose In-Service bit is set 

The In-Service register keeps track of interrupt handler execution. The Interrupt Control Unit 
uses this information to decide whether another interrupt source has sufficient priority to preempt 
an interrupt handler that is executing. 
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8.2.2.1 Priority Resolution Exampte 

This example illustrates priority resolution. Assume these initial conditions: 

• the Interrupt Control Unit has been initialized 

• no interrupts are pending 

• no In-Service bits are set 

• the Interrupt Enable bit is set 

• all interrupts are unmasked 

• the default priority scheme is being used 

• the Priority Mask register is set to the lowest priority (seven) 

The example uses two external interrupt sources, INTO and INTI, to describe the process. 

1. A low-to-high transition on INTO sets its Interrupt Request bit. The interrupt is now 
pending. 

2. Because INTO is the only pending interrupt, it meets all the priority criteria. The Interrupt 
Control Unit asserts the interrupt request to the CPU and waits for an acknowledge. 

3. The CPU acknowledges the interrupt. 

4. The Interrupt Control Unit passes the interrupt type (in this case, type 12) to the CPU. 

S. The Interrupt Control Unit clears the INTO bit in the Interrupt Request register and sets the 
INTO bit in the In-Service register. 

6. The CPU executes the interrupt processing sequence and begins executing the interrupt 
handler for INTO. 

7. During execution of the INTO interrupt handler, a low-to-high transition on INT3 sets its 
Interrupt Request bit. 

8. The Interrupt Control Unit determines that INT3 has a lower priority than INTO, which is 
currently executing (INTO's In-Service bit is set). INT3 does not meet the priority criteria, 
so no interrupt request is sent to the CPU. (If INT3were programmed with a higher 
priority than INTO, the request would be sent.) INT3 remains pending in the Interrupt 
Request register. 

9. The INTO interrupt handler completes and sends an EO! command to clear the INTO bit in 
the In-Service register. 

10. INT3 is still pending and now meets all the priority criteria. The Interrupt Control Unit 
asserts the interrupt request to the CPU and the process begins again. 
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8.2.2.2 Interrupts That Share a Single Source 

Multiple interrupt requests can share a single interrupt input to the Interrupt Control Unit. (For 
example, the three timers share a single input.) Although these interrupts share an input, each has 
its own interrupt vector. (For example, when a Timer 0 interrupt occurs, the Timer 0 interrupt han­
dler is executed.) This section uses the three timers as an example to describe how these interrupts 
are prioritized and serviced. 

The Interrupt Status register acts as a second-level request register to process the timer interrupts. 
It contains a bit for each timer interrupt. When a timer interrupt occurs, both the individual Inter­
rupt Status register bit and the shared Interrupt Request register bit are set. From this point, the 
interrupt is processed like any other interrupt source. 

When the shared interrupt is acknowledged, the timer interrupt with the highest priority (see Ta­
ble 8-1 on page 8-3) at that time is serviced first and that timer's Interrupt Status bit is cleared. 
If no other timer Interrupt Status bits are set, the shared Interrupt Request bit is also cleared. If 
other timer interrupts are pending, the Interrupt Request bit remains set. 

When the timer interrupt is acknowledged, the shared In-Service bit is set. No other timer inter­
rupts can occur when the In-Service bit is set. If a second timer interrupt occurs while another 
timer interrupt is being serviced, the second interrupt remains pending until the interrupt handler 
for the first interrupt finishes and clears the In-Service bit. (This is true even if the second inter­
rupt has a higher priority than the first.) 

8.2.3 Cascading with External 8259As 

For applications that require more external interrupt pins than the number provided on the Inter­
rupt Control Unit, external 8259A modules can be used to increase the number of external inter­
rupt pins. The cascade mode of the Interrupt Control Unit supports the external 8259As. The 
INT2IINTAO and INT3IINTAI pins can serve either of two functions. Outside cascade mode, 
they serve as external interrupt inputs. In cascade mode, they serve as interrupt acknowledge out­
puts. INTAO is the acknowledge for INTO, and INTAI is the acknowledge for INTI. (See Figure 
8-2.) 

The INT2IINTAO and INT3/INTAl pins are inputs after reset until the pins are confiugred as out­
puts. The pull up resistors ensure that the INTA pins never float (which would cause a spurious 
interrupt acknowledge to the 8259A). The value of the resistors must be high enough to prevent 
excessive loading on the pins. 
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INT INTO 

8259A VCC 
or -r 

82C59A ~ :> 
-- --
INTA INTAO 

Interrupt 
Control 

Unit 

INT INT1 

8259A VCC 
or 

82C59A :> 
~ -- --

INTA INTA1 

A1211·AO 

Figure 8-2. Using External 8259A Modules in Cascade Mode 

8.2.3.1 Special Fully Nested Mode 

Special fully nested mode is an optional feature normally used with cascade mode. It is applicable 
only to INTO and INTI. In special fully nested mode, an interrupt request is serviced even if its 
In-Service bit is set. 

In cascade mode, an 8259A controls up to eight external interrupts that share a single interrupt 
input pin. Special fully nested mode allows the 8259A's priority structure to be maintained. For 
example, assume that the CPU is servicing a low-priority interrupt from the 8259A. While the 
interrupt handler is executing, the 8259A receives a higher priority interrupt from one of its sourc­
es. The 8259A applies its own priority criteria to that interrupt and asserts its interrupt to the In­
terrupt Control Unit. Special fully nested mode allows the higher priority interrupt to be serviced 
even though the In-Service bit for that source is already set. A higher priority interrupt has pre­
empted a lower priority interrupt, and interrupt nesting is fully maintained. 

Special fully nested mode can also be used without cascade mode. In this case, it allows a single 
external interrupt pin (either INTO or INTI) to preempt itself. 
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8.2.4 Interrupt Acknowledge Sequence 

During the interrupt acknowledge sequence, the Interrupt Control Unit passes the interrupt type 
to the CPU. The CPU then multiplies the interrupt type by four to derive the interrupt vector ad­
dress in the interrupt vector table. ("InterruptlException Processing" on page 2-39 describes the 
interrupt acknowledge sequence and Figure 2-25 on page 2-40 illustrates the interrupt vector ta­
ble.) 

The interrupt types for all sources are fixed and unalterable (see Table 8-2). The Interrupt Control 
Unit passes these types to the CPU internally. The first external indication of the interrupt ac­
knowledge sequence is the CPU fetch from the interrupt vector table. 

In cascade mode, the external 8259A supplies the interrupt type. In this case, the CPU runs an 
external interrupt acknowledge cycle to fetch the interrupt type from the 8259A (see "Interrupt 
Acknowledge Bus Cycle" on page 3-25). 

Table 8-2. Fixed Interrupt Types 

Interrupt Name Interrupt Type 

limerO 8 

limer 1 18 

limer2 19 

Serial Channel 0 Receive 20 

Serial Channel 0 Transmit 21 

INT4 17 

INTO 12 

INT1 13 

INT2 14 

INT3 15 

8.2.5 Polling 

In some applications, it is desirable to poll the Interrupt Control Unit. The CPU polls the Interrupt 
Control Unit for any pending interrupts, and software can service interrupts whenever it is con­
venient. The Poll and Poll Status registers support polling. 

Software reads the Poll register to get the type of the highest priority pending interrupt, then calls 
the corresponding interrupt handler. Reading the Poll register also acknowledges the interrupt. 
This clears the Interrupt Request bit and sets the In-Service bit for the interrupt. The Poll Status 
register has the same format as the Poll register, but reading the Poll Status register does not ac­
knowledge the interrupt. 

I 
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8.2.6 Edge and Level Triggering 

~( The external interrupts (INT4:0) can be programmed for either edge or level triggering (see "In­
\ terruptControl Registers" on page 8-12). Both types of triggering are active high. An edge-trig­
) gered interrupt is generated by a zero-to-one transition on an external interrupt pin. The pin must 

I, 

, 
remain high until after the CPU acknowledges the interrupt, then must go low to reset the edge-

/ detection circuitry. (See the current data sheet for timing requirements.) The edge-detection cir­
. / cuitry must be reset to enable further interrupts to occur. 

2 
/ A level-triggered interrupt is generated by a valid logic one on the external interrupt pin. The pin 

must remain high until after the CPU acknowledges the interrupt. Unlike edge-triggered inter­
rupts, level-triggered interrupts will continue to occur if the pin remains high. A level-triggered 
external interrupt pin must go low before the EOI command to prevent another interrupt. 

NOTE 

When external 8259As are cascaded into the Interrupt Control Unit, INTO and 
INTI must be programmed for level-triggered interrupts. 

8.2.7 Additional Latency and Response Time 

The Interrupt Control Unit adds 5 clocks to the interrupt latency of the CPU. Cascade mode adds 
13 clocks to the interrupt response time because the CPU must run the interrupt acknowledge bus 
cycles. (See Figure 8-3 on page 8-11 and Figure 2-27 on page 2-46.) 
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Clocks 
Interrupt presented to control unit ....................... ~ 

5 
Interrupt presented to CPU ....................... ~ 

INTA 4 } 

:~~~ !5 Cascade Mode Only 

IDLE 
READ IP 4 
IDLE 3 (5 if not cascade mode) 
READCS 4 
IDLE 4 
PUSH FLAGS 4 
IDLE 3 
PUSH CS 4 
PUSH IP 4 
IDLE 5 

First instruction fetch ...................................... ~ 
from interrupt routine 

Total 55 
A1212·AO 

Figure 8-3. Interrupt Control Unit Latency and Response Time 

8.3 PROGRAMMING THE INTERRUPT CONTROL UNIT 

Table 8-3 lists the Interrupt Control Unit registers with their Peripheral Control Block offset ad­
dresses. The remainder of this section describes the functions of the registers. 

Table 8-3. Interrupt Control Unit Registers 

Register Name Offset Address 

INT3 Control 1EH 

INT2 Control 1CH 

INn Control 1AH 

INTO Control 18H 

INT4 Control 16H 

Serial Control 14H 

Timer Control 12H 

Interrupt Status 10H 

Interrupt Request OEH 

I 
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Table 8-3. Interrupt Control Unit Registers (Continued) 

Register Name Offset Address 

In-Service OCH 
Priority Mask OAH 

Interrupt Mask 08H 

Poll Status 06H 

Poll 04H 

EOI 02H 

8.3.1 Interrupt Control Registers 

Each interrupt source has its own Interrupt Control register. The Interrupt Control register allows 
you to define the behavior of each interrupt source. Figure 8-4 shows the registers for the timers 
and serial channel, Figure 8-5 shows the registers for INT4:2, and Figure 8-6 shows the registers 
for INTO and INTI. 

All Interrupt Control registers have a three-bit field (PM2:0) that defines the priority level for the 
interrupt source and a mask bit (MSK) that enables or disables the interrupt source. The mask bit 
is the same as the one in the Interrupt Mask register. Modifying a bit in either register also mod­
ifies that same bit in the other register. 

The Interrupt Control registers for the external interrupt pins also have a bit (LVL) that selects 
level-triggered or edge-triggered mode for that interrupt. (See "Edge and Level Triggering" on 
page 8-10.) 

The Interrupt Control registers for the cascadable external interrupt pins (INTO and INTI) have 
two additional bits to support the external 8259As. The CAS bit enables cascade mode, and the 
SFNM bit enables special fully nested mode. 

8-12 
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Register Name: 

Register Mnemonic: 

Register Function: 

Interrupt Control Register (intemal sources) 

TCUCON, SCUCON, 

Control register for the internal interrupt sources 

o 
M P P P 
S M M M 
K 2 1 0 

A121~AO 

Bit Bit Name Reset Function Mnemonic State 

MSK Interrupt 1 Clear to enable Interrupts from this source. 
Mask 

PM2:0 Priority 111 Defines the priority level for this source. 
Level 

NOTE: Reserved register bits are shown with gray shading. Reserved bHs must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 8-4. Interrupt Control Register for Internal Sources 
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Register Name: 

Register Mnemonic: 

Register Function: 

Bit Bit Name Mnemonic 

LVL Level-trigger 

MSK Interrupt 
Mask 

PM2:0 Priority 
Level 

. 

Interrupt Control Register (non-cascadable pins) 

12CON, 13CON, 14CON 

Control register for the non-cascadable external 
internal interrupt pins 

o 
M P P P 
S M M M 
K 2 1 0 

A1214-AO 

Reset 
Function State 

0 Selects the interrupt triggering mode: 

o = edge triggering 
1 = level triggering. 

1 Clear to enable interrupts from this source. 

111 Defines the priority level for this source. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 8-5. Interrupt Control Register for Noncascadable External Pins 
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I 

Register Name: 

Register Mnemonic: 

Register Function: 

Bit 
Bit Name 

Mnemonic 

SFNM Special 
Fully 
Nested 
Mode 

CAS cascade 
Mode 

LVL Level-trigger 

MSK Interrupt 
Mask 

PM2:0 Priority 
Level 

Interrupt Control Register (cascadable pins) 

IOCON, 11 CON 

Control register for the cascadable external 
interrupt pins 

0 

S C L M P P P 
F A V S M M M 
N S L K 2 1 0 
M 

A1215-AO 

Reset 
Function 

State 

0 Set to enable special fully nested mode. 

0 Set to enable cascade mode. 

0 Selects the interrupt triggering mode: 

o = edge triggering 
1 = level triggering. 

The LVL bH must be set when extemal 8259As 
are cascaded Into the Interrupt Control Unit. 

1 Clear to enable interrupts from this source. 

111 Defines the priority level for this source. 

NOTE: Reserved register bits are shown with gray shading. Reserved bHs must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 8-6. Interrupt Control Register for Cascadable Interrupt Pins 
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8.3.2 Interrupt Request Register 

The Interrupt Request register (Figure 8-7) has one bit for each interrupt source. When a source 
requests an interrupt, its Interrupt Request bit is set (without regard to whether the interrupt is 
masked). The Interrupt Request bit is cleared when the interrupt is acknowledged. An external 
interrupt pin must remain asserted until its interrupt is acknowledged. Otherwise, the Interrupt 
Request bit will be cleared, but the interrupt will not be serviced. 

Register Name: 

Register Mnemonic: 

Register Function: 

Interrupt Request Register 

REQST 

Stores pending interrupt requests 

IIII 
I I I I 
N N N N 
T T T T 
321 0 

I S 
N E 
T R 
4 

Bit 
Bit Name Reset Function Mnemonic State 

A12()6.AQ 

INT3:0,INT4 External 0000 0 A bit is set to indicate a pending interrupt from 

8-16 

Interrupts the corresponding external interrupt pin. 

SER Serial 0 This bit is set to indicate a pending interrupt 
Channel 0 from serial channel 0 (either a receive or a 
Interrupt transmit interrupt). 

TMR Timer 0 This bit is set to indicate a pending interrupt 
Interrupt from one of the timers. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 8-7. Interrupt Request Register 
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8.3.3 Interrupt Mask Register 

The Interrupt Mask register (Figure 8-8) contains a mask bit for each interrupt source. This reg­
ister allows you to mask (disable) individual interrupts. Set a mask bit to disable interrupts from 
the corresponding source. The mask bit is the same as the one in the Interrupt Control register. 
Modifying a bit in either register also modifies that same bit in the other register. 

I 

Register Name: 

Register Mnemonic: 

Register Function: 

Interrupt Mask Register 

IMASK 

Masks individual interrupt sources 

I I I I I S 
N N N N N E 
T T T T T R 
3 2 1 0 4 

0 

A1207-AO 

Bit 
Bit Name 

Reset 
Function Mnemonic State 

INT3:0,INT4 External -eeee-e- Set a bit to mask (disable) interrupt requests 
Interrupt F'h.) Ih from the corresponding extemallnterrupt pin. 
Mask 

SER Serial 
\~ 

Set to mask (disable) interrupt requests from 
Channel 0 serial channel O. 
Interrupt 
Mask 

TMR Timer 
i~ 

Set to mask (disable) interrupt requests from 
Interrupt the timers. 
Mask 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 8-8. Interrupt Mask Register 

(f'Z.-/t4/fS- ~) 
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8.3.4 Priority Mask Register 

The Priority Mask register (Figure 8-9) contains a three-level field that holds a priority value. 
This register allows you to mask interrupts based on their priority levels. Write a priority value to 

i the PM2:0 field to specify the lowest priority interrupt to be serviced. This disables (masks) any 
interrupt source whose priority is lower than the PM2:0 value. After reset, the Priority Mask reg­
ister is set to the lowest priority (seven), which enables all interrupts of any priority. 

Register Name: 

Register Mnemonic: 

Register Function: 

15 

Priority Mask Register 

PRIMSK 

Masks lower-priority interrupt sources 

o 

IIII 
P P P 
M M M 
210 

A1216-AO 

Bit Bit Name Reset Function Mnemonic State 
, 

PM2:0 Priority 111 Defines a priority-based interrupt mask. 
Mask Interrupts whose priority is lower than this value 

are masked. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 8-9. Priority Mask Register 

8.3.5 In-Service Register 

The In-Service register has a bit for each interrupt source. The bits indicate which source's inter­
rupt handlers are currently executing. The In-Service bit is set when an interrupt is acknowl­
edged; the interrupt handler must clear it with an End-of-Interrupt (EO!) command. The Interrupt 
Control Unit uses the In-Service rtbgister to support interrupt nesting. 
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Register Name: 

Register Mnemonic: 

Register Function: 

15 

In-Service Register 

INSERV 

Indicates which interrupt handlers are in process 

IIII 
I I 
N N 
T T 
3 2 

I I 
N N 
T T 
1 0 

I S 
N E 
T R 
4 

o 

A1204-AO 

Bit 
Bit Name 

Reset 
Function 

Mnemonic State 

INT3:0,INT4 External 0000 0 A bit is set to indicate that the corresponding 
Interrupt In- external interrupt is being serviced_ 
Service 

SER Serial 0 This bit Is set to indicate that a serial channel 
Channel 0 interrupt is being serviced. 
Interrupt In-
Service 

TMR Timer 0 This bit is set to indicate that a timer interrupt Is 
Interrupt In- being serviced. 
Service 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 8-10. In-Service Register 

8.3.6 Poll and Poll Status Registers 

The Poll and Poll Status registers allow you to poll the Interrupt Control Unit and service inter­
rupts through software. You can read these registers to determine whether an interrupt is pending 
and, if so, the interrupt type. The registers contain identical information, but reading them pro­
duces different results. 

I 
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Reading the Poll register (Figure 8-11) acknowledges the pending interrupt, just as if the CPU 
had started the interrupt vectoring sequence. The Interrupt Control Unit updates the Interrupt Re­
quest, In-Service, Poll, and Poll Status registers, as it does in the normal interrupt acknowledge 
sequence. However, the processor does not run an interrupt acknowledge sequence or fetch the 
vector from the vector table. Instead, software must read the interrupt type and execute the proper 
routine to service the pending interrupt. 

Reading the P~llStatus register (Figure 8-12) will merely transmit the status of the polling bits 
without modifying any of the other Interrupt Controller registers. 

Register Name: 

Register Mnemonic: 

Register Function: 

Bit 
Bit Name Mnemonic 

IREO Interrupt 
Request 

VT4:0 Vector Type 

Poll Register 

POLL 

Read to check for and acknowledge pending 
interrupts when polling 

o 
v v v V 
T T T T 
321 0 

A120B-AO 

Reset Function 
State 

0 This bit is set to indicate a pending interrupt. 

0 Contains the interrupt type of the highest 
priority pending interrupt. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 8-11. Poll Register 
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Register Name: 

Register Mnemonic: 

Register Function: 

Bit Bit Name 
Mnemonic 

IREO Interrupt 
Request 

VT4:0 Vector Type 

Poll Status Register 

POLLSTS 

INTERRUPT CONTROL UNIT 

Read to check for pending interrupts when polling 

v V 
T T 
3 2 

o 
v V 
T T 
1 0 

A1209-AO 

Reset Function 
State 

0 This bit is set to indicate a pending interrupt. 

0 Contains the interrupt type of the highest 
priority pending interrupt. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 8-12. Poll Status Register 

8.3.7 End-ot-Interrupt (EOI) Register 

The End-of-Interrupt register (Figure 8-13) issues an End-of-Interrupt (EOI) command to the In­
terrupt Control Unit, which clears the In-Service bit for the associated interrupt. An interrupt han­
dler typically ends with an EOI command. There are two types of EOI commands: nonspecific 
and specific. A nonspecific EOI simply clears the In-Service bit of the highest priority interrupt. 
To issue a nonspecific EOI command, set the NSPEC bit. (Write 8000H to the EO! register.) 

A specific EOI clears a particular In-Service bit. To issue a specific EOI command, clear the 
NSPEC bit and write the VT4:0 bits with the interrupt type of the interrupt whose In-Service bit 
you wish to clear. For example, to clear the In-Service bit for INT2, write OOOEH to the EOI reg­
ister. The timer interrupts share an In-Service bit. To clear the In-Service bit for any timer inter­
rupt with a specific EOI, write 0OO8H (interrupt type 8) to the EOI register. 

I 
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Register Name: 

Register Mnemonic: 

Register Function: 

End-of-Interrupt Register 

EOI 

Used to issue an EOI command 

o 
v v v V 
T T T T 
321 0 

A121()'AO 

Bit Bit Name Reset Function Mnemonic State 

NSPEC Nonspecific 0 Set to issue a nonspecific EOL 
EOI 

VT4:0 Interrupt 00000 Write with the interrupt type of the interrupt 
Type whose In-Service bit is to be cleared. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logiC zero to ensure compatibility with future Intel products. 

Figure 8-13. End-ot-Interrupt Register 

8.3.8 Interrupt Status Register 

The Interrupt Status register (Figure 8-14) contains one bit for each interrupt that shares an inter­
rupt source and one bit for the nonmaskable interrupt (NMI). A bit is set to indicate a pending 
interrupt and is cleared when the interrupt request is acknowledged. Any number of bits can be 
set at anyone time. 
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Register Name: 

Register Mnemonic: 

Register Function: 

Bit Bit Name 
Mnemonic 

NMI Non-
maskable 
Interrupt 

STX Serial 
Transmit 

SRX Serial 
Receive 

TMR2:0 Timer 

Interrupt Status Register 

INTSTS 

Indicates pending NMI or shared-source interrupts 

0 

S T T T 
R M M M 
X R R R 

2 1 0 

A1205-AO 

Reset Function 
State 

0 This bit is set to indicate a pending NMI. 

0 This bit is set to indicate a pending serial 
transmit interrupt. 

0 This bit is set to indicate a pending serial 
receive interrupt. 

0 A bit is set to indicate a pending interrupt from 
the corresponding timer. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 8-14. Interrupt Status Register 

8.3.9 Initializing the Interrupt Control Unit 

Follow these steps to initialize the Interrupt Control Unit. 

I 

1. 

2. 

Determine which interrupt sources you want to use. 

Determine whether to use the default priority scheme or devise your own. 
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3. Program the Interrupt Control register for each interrupt source. 

- For external interrupt pins, select edge or level triggering. 

-For INTO or INTI, enable cascade mode, special fully nested mode, or both, if you 
wish to use them. 

- If you are using a custom priority scheme, program the priority level for each interrupt 
source. 

4. Program the Priority Mask with a priority mask level, if you wish to mask interrupts based 
on priority. (The default is level seven, which enables all interrupt levels.) 

5. Set the mask bit in the Interrupt Mask register for any interrupts that you wish to disable. 

Example 8-1 shows sample code to initialize the Interrupt Control Unit. 

$modl86 
name 

;This routine configures the interrupt controller to provide two cascaded 
;interrupt inputs (through an external 8259A connected to INTO and INTAO#) 
;and two direct interrupt inputs connected to INTl and INT3. The default 
;priorities are used. 

;The example assumes that the register addresses have been properly defined. 

code 

8-24 

segment 
assume cs:code 
proc near 
push dx 
push ax 
mov ax,OllOlllB 
mov dx,IOCON 
out dx,ax 
mov ax,OlOOllOlB 
mov dx,IMASK 
out dx,ax 
pop ax 
pop dx 
ret 
endp 
ends 
end 

;cascade mode, priority seven 
;INTO control register 

;unmask INTl and INT3 

Example 8-1. Initializing the Interrupt Control Unit 
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CHAPTER 9 
TIMER/COUNTER UNIT 

The Timer/Counter Unit can be used in many applications. Some of these applications include a 
real-time clock, a square-wave generator and a digital one-shot. All of these can be implemented 
in a system design. A real-time clock can be used to update time-dependent memory variables. A 
square-wave generator can be used to provide a system clock tick for peripheral devices. (See 
"Timer/Counter Unit Application Examples" on page 9-17 for code examples that configure the 
Timer/Counter Unit for these applications.) 

9.1 FUNCTIONAL OVERVIEW 

The Timer/Counter Unit is composed of three independent 16-bit timers (see Figure 9-1). The op­
eration of these timers is independent of the CPU. The internal TImer/Counter Unit can be mod­
eled as a single counter element, time-multiplexed to three register banks. The register banks are 
dual-ported between the counter element and the CPU. During a given bus cycle, the counter el­
ement and CPU can both access the register banks; these accesses are synchronized. 

The Timer/Counter Unit is serviced over four clock periods, one timer during each clock, with an 
idle clock at the end (see Figure 9-2). No connection exists between the counter element's se­
quencing through timer register banks and the Bus Interface Unit's sequencing through T-states. 
Timer operation and bus interface operation are asynchronous. This time-multiplexed scheme re­
sults in a delay of 2Yz to 6Y2 CLKOUT periods from timer input to timer output. 

Each timer keeps its own running count and has a user-defined maximum count value. Timers 0 
and 1 can use one maximum count value (single maximum count mode) or two alternating max­
imum count values (dual maximum count mode). TImer 2 can use only one maximum count val­
ue. The control register for each timer determines the counting mode to be used. When a timer is 
serviced, its present count value is incremented and compared to the maximum count for that tim­
er. If these two values match, the count value resets to zero. The timers can be configured either 
to stop after a single cycle or to run continuously. 

Timers 0 and 1 are functionally identical. Figure 9-3 illustrates their operation. Each has a latched, 
synchronized input pin and a single output pin. Each timer can be clocked internally or externally. 
Internally, the timer can either increment at v.. CLKOUT frequency or be prescaled by Timer 2. 
A timer that is prescaled by Timer 2 increments when Timer 2 reaches its maximum count value. 
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CPU 

TO In 

Transition Latch/ 
Synchronizer 

T1 In 

Transition Latch/ 
Synchronizer 

Counter 
Element 

CPU 
Clock----' 

Figure 9-1. Timer/Counter Unit Block Diagram 
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TO 
Out 

T1 
Out 
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Timer 0 Timer 1 Timer 2 Timer 0 TImer 1 Timer 2 
Serviced Serviced Serviced Dead Serviced Serviced Serviced Dead 

,.....-' ..........,...."'" 

TOIN 

T11N 

TOOUT 

T10UT 

NOTES: 
1. TOIN resolution time (setup time met). 
2. T1IN resolution time (setup time not met). 
3. Modified count value written into Timer 0 count register. 
4. T1IN resolution time, count value written into Timer 1 count register. 
5. T1IN resolution time. 

A1293-0A 

Figure 9·2. Counter Element Multiplexing and Timer Input Synchronization 
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A1294-0A 

Figure 9-3. Timers 0 and 1 Flow Chart 

9-4 

I 



intet TIMER/COUNTER UNIT 

No 

A1295-0A 

Figure 9-3. Trmers 0 and 1 Flow Chart (Continued) 

(1?'/'Lf/'f" I:.~) 
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When configured for internal clocking, the Timer/Counter Unit uses the input pins either to en­
able timer counting or to retrigger the associated timer. Externally, a timer increments on low-to­
high transitions on its input pin (up to 1;4 CLKOUT frequency). 

Timers 0 and 1 each have a single output pin. Timer output can be either a single pulse, indicating 
the end of a timing cycle, or a variable duty cycle wave. These two output options correspond to 
single maximum count mode and dual maximum count mode, respectively (Figure 9-4). Inter­
rupts can be generated at the end of every timing cycle. 

Timer 2 has no input or output pins and can be operated only in single maximum count mode (Fig­
ure 9-4). It can be used as a free-running clock and as a prescaler to Timers 0 and 1. Timer 2 can 
be clocked only internally, at 1;4 CLKOUT frequency. Timer 2 can also generate interrupts at the 
end of every timing cycle. 

Dual Maximum 
Count Mode 

Single Maximum 
Count Mode 

: Maxcount A .. 

MaxcountA .. 

Maxcount B 

• 

One CPU 
Clock .. • 

.. 

Figure 9-4. Timer/Counter Unit Output Modes 

9.2 PROGRAMMING THE TIMER/COUNTER UNIT 

A1296-0A 

Each timer has three registers: a Timer Control register (Figure 9-5 and Figure 9-6), a Timer 
Count register (Figure 9-7) and a Timer Maxcount Compare register (Figure 9-8). Timers 0 and 
1 also have access to an additional Maxcount Compare register. The Timer Control register con­
trols timer operation. The Timer Count register holds the current timer count value, and the Max­
count Compare register holds the maximum timer count value. 
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I 

Register Name: 

Register Mnemonic: 

Register Function: 

15 

E I I R 
N N N I 

H T U 

Bit Bit Name 
Mnemonic 

EN Enable 

INH Inhibit 

INT Interrupt 

RIU Register In 
Use 

MC Maximum 
Count 

Timer 0 and 1 Control Registers 

TOCON, T1CON 

Defines Timer 0 and 1 operation. 

M R 
C T 

G 

P E 
X 
T 

o 
A C 
L 0 
T N 

T 

A1297-0A 

Reset 
Function State 

0 Set to enable the timer. This bit can be written only 
when the INH bit is set. 

X Set to enable writes to the EN bit. Clear to ignore 
writes to the EN bit. The INH bit is not stored; it 
always reads as zero. 

X Set to generate an interrupt request when the Count 
register equals a Maximum Count register. Clear to 
disable interrupt requests. 

X Indicates which compare register is in use. When set, 
the current compare register is Maxcount Compare B; 
when clear, it is Maxcount Compare A. 

X This bit is set when the counter reaches a maximum 
count. The MC bit must be cleared by writing to the 
Timer Control register. This is not done automati-
cally. If MC is clear, the counter has not reached a 
maximum count. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to ensure compatibility with future Intel products. 

Figure 9-5. Timer 0 and Timer 1 Control Registers 
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Register Name: 

Register Mnemonic: 

Register Function: 

15 

Timer 0 and 1 Control Registers 

TOCON, T1 CON 

Defines Timer 0 and 1 operation. 

0 

M R P E A C 
C T X L 0 

G T T N 
T 

E I I R 
N N N I 

H T U IIII 

9-8 
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Bit Bit Name Reset Function Mnemonic State 

RTG Retrigger X This bit specifies the action caused by a low-to-high 
transition on the TMR INx input. Set RTG to reset the 
count; clear RTG to enable counting. This bit is 
ignored with external clocking (EXT =1). 

P Prescaler X Set to increment the timer when Timer 2 reaches its 
maximum count. Clear to increment the timer at ¥I 
CLKOUT. This bit is ignored with external clocking 
(EXT=1). 

EXT External X Set to use external clock; clear to use internal clock. 
Clock The RTG and P bits are ignored with external clocking 

(EXT set). 

ALT Alternate X This bit controls whether the timer runs in single or 
Compare dual maximum count mode (see Figure 9-4 on page 
Register 9-6). Set to specify dual maximum count mode; clear 

to specify single maximum count mode. 

CONT Continuous X Set to cause the timer to run continuously. Clear to 
Mode disable the counter (clear the EN bit) after each 

counting sequence. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a 
logic zero to ensure compatibility with future Intel products. 

Figure 9-5. Timer 0 and Timer 1 Control Registers (Continued) 
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Register Name: 

Register Mnemonic: 

Register Function: . 

15 

E I I 
N N N 

H T 

Bit 
Mnemonic 

EN 

INH 

INT 

MC 

CONT 

Bit Name 

Enable 

Inhibit 

Interrupt 

Maximum 
Count 

Continuous 
Mode 

Timer 2 Control Register 

T2CON 

Defines Timer 2 operation. 

Al:t\111-UA 

Reset Function State 

0 Set to enable the timer. This bit can be written 
only when the INH bit is set. 

X Set to enable writes to the EN bit. Clear to 
ignore writes to the EN bit. The INH bit is not 
stored; it always reads as zero. 

X Set to generate an interrupt request when the 
Count register equals a Maximum Count 
register. Clear to disable interrupt requests. 

X This bit is set when the counter reaches a 
maximum count. The Me bit must be cleared 
by writing to the Timer Control register. This 
is not done automatlca"y. If MC Is clear, the 
counter has not reached a maximum count. 

X Set to cause the timer to run continuously. 
Clear to disable the counter (clear the EN bit) 
after each counting sequence. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 9-6. Timer 2 Control Register 
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Register Name: 

Register Mnemonic: 

Register Function: 

15 

T T T T T 
C C C C C 
1 1 1 1 1 
5 4 3 2 1 

Bit Bit Name Mnemonic 

TC15:0 Timer Count 
Value 

Timer Count Register 

TOCNT, T1 CNT, T2CNT 

Contains the current timer count. 

T T T T T T T T 
C C C C C C C C 
1 9 8 7 6 5 4 3 
0 

Reset Function State 

infel~ 

o 
T T T 
C C C 
2 1 0 

A1299-0A 

XXXXH Contains the current count of the associated 
timer_ 

Figure 9-7. Timer Count Registers 
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Register Name: Timer Maxcount Compare Register 

Register Mnemonic: TOCMPA, TOCMPB, T1CMPA, T1CMPB, T2CMPA 

Register Function: Contains timer maximum count value. 

15 o 
T T T T T T T T T T T T T T T T 
C C C C C C C C C C C C C C C C 
1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0 
5 4 3 2 1 0 

A1300-0A 

Bit Bit Name Reset Function Mnemonic State 

TC15:0 Timer XXXXH Contains the maximum value a timer will count 
Compare to before resetting its Count register to zero_ 
Value 

Figure 9·8. Timer Maxcount Compare Registers 

9.2.1 Initialization Sequence 

When initializing the Timer/Counter Unit, the following sequence is suggested: 

I 

1. 

2. 

3. 

If timer interrupts will be used, program interrupt vectors into the Interrupt Vector Table. 

Clear the Timer Count register. This must be done before the timer is enabled because 
the count register is undefined at reset Clearing the count register ensures that counting 
begins at zero. 

Write the desired maximum count value to the Timer Maxcount Compare register. For 
dual maximum count mode, write a value to both Maxcount Compare A and B. 

Program the Timer Control register to enable the timer. When using Timer 2 to prescale 
another timer, enable Timer 2 last If Timer 2 is enabled first, it will be at an unknown 
point in its timing cycle when the timer to be prescaled is enabled. This results in an 
unpredictable duration of the first timing cycle for the prescaled timer. 

9-11 



TIMER/COUNTER UNIT int"et 

9.2.2 Clock Sources 

The 16-bit Timer Count register increments once for each timer event. A timer event can be a low­
to-high transition on a timer input pin (Timers 0 and 1), a pulse generated every fourth CPU clock 
(all timers) or a timeout of Timer 2 (Timers 0 and 1). Up to 65536 (216) events can be counted. 

Timers 0 and 1 can be programmed to count low-to-high transitions on their input pins as timer 
events by setting the External (EXT) bit in their control registers. Transitions on the external pin 
are synchronized to the CPU clock before being presented to the timer circuitry. The timer counts 
transitions on this pin. The input signal must go low, then high, to cause the timer to increment. 
The maximum count-rate for the timers is ':4 the CPU clock rate (measured at CLKOUT) because 
the timers are serviced only once every four clocks. 

All timers can use transitions of the CPU clock as timer events. For internal clocking, the timer 
increments every fourth CPU clock due to the counter element's time-multiplexed servicing 
scheme. Timer 2 can use only the internal clock as a timer event. 

Timers 0 and 1 can also use Timer 2 reaching its maximum count as a timer event. In this config­
uration, Timer 0 or Timer 1 increments each time Timer 2 reaches its maximum count. See Table 
9-1 for a summary of clock sources for Timers 0 and 1. Timer 2 must be initialized and running 
in order to increment values in other timer/counters. 

Table 9-1. Timer 0 and 1 Clock Sources 

EXT P Clock Source 

0 0 Timer clocked internally at ~ CLKOUT frequency. 

0 1 Timer clocked internally. prescaled by Timer 2. 

1 X Timer clocked externally at up to ~ CLKOUT frequency. 

9.2.3 Counting Modes 

All timers have a Timer Count register and a Maxcount Compare A register. Timers 0 and 1 also 
have access to a second Maxcount Compare B register. Whenever the contents of the Timer Count 
register equal the contents of the Maxcount Compare register, the count register resets to zero. 
The maximum count value will never be stored in the count register. This is because the counter 
element increments, compares and resets a timer in one clock cycle. Therefore, the maximum val­
ue is never written back to the count register. The Maxcount Compare register can be written at 
any time during timer operation. 

The timer counting from its initial count (usually zero) to its maximum count (either Maxcount 
Compare A or B) and resetting to zero defines one timing cycle. A Maxcount Compare value of 
o implies a maximum count of 65536, a Maxcount Compare value of 1 implies a maximum count 
of 1, etc. 
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Only equivalence between the Timer Count and Maxcount Compare registers is checked. The 
count does not reset to zero if its value is greater than the maximum count. If the count value ex­
ceeds the Maxcount Compare value, the timer counts to OFFFFH, increments to zero, then counts 
to the value in the Maxcount Compare register. Upon reaching a maximum count value, the Max­
imum Count (MC) bit in the Timer Control register sets. The MC bit must be cleared by writing 
to the Timer Control register. This is not done automatically. 

The Timer/Counter Unit can be configured to execute different counting sequences. The timers 
can operate in single maximum count mode (all timers) or dual maximum count mode (Timers 0 
and 1 only). They can also be programmed to run continuously in either of these modes. The Al­
ternate (ALT) bit in the Timer Control register determines the counting modes used by Timers 0 
and 1. 

All timers can use single maximum count mode, where only Maxcount Compare A is used. The 
timer will count to the value contained in Maxcount Compare A and reset to zero. Timer 2 can 
operate only in this mode. 

Timers 0 and 1 can also use dual maximum count mode. In this mode, Maxcount Compare A and 
Maxcount Compare B are both used. The timer counts to the value contained in Maxcount Com­
pare A, resets to zero, counts to the value contained in Maxcount Compare B, and resets to zero 
again. The Register In Use (RIU) bit in the TImer Control register indicates which Maxcount 
Compare register is currently in use. 

The timers can be programmed to run continuously in single maximum count and dual maximum 
count modes. The Continuous (CaNT) bit in the Timer Control register determines whether a 
timer is disabled after a single counting sequence. 

9.2.3.1 Retriggering 

The timer input pins affect timer counting in three ways (see Table 9-2). The programming of the 
External (EXT) and Retrigger (RTG) bits in the Timer Control register determines how the input 
signals are used. When the timers are clocked internally, the RTG bit determines whether the in­
put pin enables timer counting or retriggers the current timing cycle. 

Table 9-2. Timer Retriggering 

EXT RTG Timer Operation 

0 0 Timer counts internal events, if input pin remains high. 

0 1 Timer counts internal events; count resets to zero on every low-to-high transition on 
the input pin. 

1 X Timer input acts as clock source. 

I 
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When the EXT and RTG bits are clear, the timer counts internal timer events. In this mode, the 
input is level-sensitive, not edge-sensitive. A low-to-high transition on the timer input is not re­
quired for operation. The input pin acts as an external enable. If the input is high, the timer will 
count through its sequence, provided the timer remains enabled. 

When the EXT bit is clear and the RTG bit is set, every low-ta-high transition on the timer input 
pin causes the Count register to reset to zero. After the timer is enabled, counting begins only after 
the first low-to-high transition on the input pin. If another low-to-high transition occurs before 
the end of the timer cycle, the timer count resets to zero and the timer cycle begins again. In dual 
maximum count mode, the Register In Use (RIU) bit does not clear when a low-to-high transition 
occurs. For example, if the timer retriggers while Maxcount Compare B is in use, the timer resets 
to zero and counts to maximum count B before the RIU bit clears. In dual maximum count 
mode, the timer retriggering extends the use of the current Maxcount Compare register. 

9.2.4 Pulsed and Variable Duty Cycle Output 

Timers 0 and 1 each have an output pin that can perform two functions. First, the output can be a 
single pulse, indicating the end of a timing cycle (single maximum count mode). Second, the out­
put can be a level, indicating the Maxcount Compare register currently in use (dual maximum 
count mode). The output occurs one clock after the counter element services the timer when the 
maximum count is reached (see Figure 9-9). 

With external clocking, the time between a transition on a timer input and the corresponding tran­
sition of the timer output varies from 2'12 to 6'12 clocks. This delay occurs due to the time-multi­
plexed servicing scheme of the Timer/Counter Unit. The exact timing depends on when the input 
occurs relative to the counter element's servicing of the timer. Figure 9-2 on page 9-3 shows the 
two extremes in timer output delay. Timer 0 demonstrates the best possible case, where the input 
occurs immediately before the timer is serviced. Timer 1 demonstrates the worst possible case, 
where the input is latched, but the setup time is not met and the input is not recognized until the 
counter element services the timer again. 

In single maximum count mode, the timer output pin goes low for one CPU clock period (see Fig­
ure 9-4 on page 9-6). This occurs when the count value equals the Maxcount Compare A value. 
If programmed to run continuously, the timer generates periodic pulses. 
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Internal Count Value 

TxOUT Pin 

Timer 0 
Serviced 

Maxcount -1 

NOTE: 1. T CLOV1 

o 

Figure 9-9. TxOUT Signal Timing 

TIMER/COUNTER UNIT 

Al301-0A 

In dual maximum count mode, the timer output pin indicates which Maxcount Compare register 
is currently in use. A low output indicates Maxcount Compare B, and a high output indicates 
Maxcount Compare A (see Figure 9-4 on page 9-6). If programmed to run continuously, a repet­
itive waveform can be generated. For example, if Maxcount Compare A contains 10, Maxcount 
Compare B contains 20, and CLKOUT is 12.5 MHz, the timer generates a 33 percent duty cycle 
waveform at 104 KHz. The output pin always goes high at the end of the counting sequence (even 
if the timer is not programmed to run continuously). 

9.2.5 Enabling/Disabling Counters 

Each timer has an Enable (EN) bit in its Control register to allow or prevent timer counting. The 
Inhibit (INH) bit controls write accesses to the EN bit. Timers 0 and 1 can be programmed to use 
their input pins as enable functions also. If a timer is disabled, the count register does not incre­
ment when the counter element services the timer. 

The Enable bit can be altered by programming or the timers can be programmed to disable them­
selves at the end of a counting sequence with the Continuous (CaNT) bit. If the timer is not pro­
grammed for continuous operation, the Enable bit automatically clears at the end of a counting 
sequence. In single maximum count mode, this occurs after Maxcount Compare A is reached. In 
dual maximum count mode, this occurs after Maxcount Compare B is reached (Timers 0 and 1 
only). 

I 
9-15 



TIMER/COUNTER UNIT intele 
The input pins for Timers 0 and 1 provide an alternate method for enabling and disabling timer 
counting. When using internal clocking, the input pin can be programmed either to enable the tim­
er or to reset the timer count, depending on the state of the Retrigger (RTG) bit in the control reg­
ister. When used as an enable function, the input pin either allows (input high) or prevents (input 
low) timer counting. To ensure recognition of an input level, it must be valid for four CPU clocks. 
This is due to the counter element's time-multiplexed servicing scheme for the timers. 

9.2.6 Timer Interrupts 

{ All timers can generate internal interrupt requests. Although all three timers share a single inter­
) rupt request to the CPU, each has its own vector location and internal priority. Timer 0 has the 
I highest interrupt priority and Timer' 2 has the lowest. 

Timer Interrupts are enabled or disabled by the Interrupt (!NT) bit in the Timer Control register. 
If enabled, an interrupt is generated every time a maximum count value is reached. In dual max­
imum count mode, an interrupt is generated each time the value in Maxcount Compare A or Max­
count Compare B is reached. If the interrupt is disabled after a request has been generated, but 
before a pending interrupt is serviced, the interrupt request remains active (the Interrupt Control­
ler latches the request). If a timer generates a second interrupt request before the CPU services 
the first interrupt request, the first request is lost. 

9.2.7 Programming Considerations 

Timer registers can be read or written whether the timer is operating or not. Since processor ac­
cesses to timer registers are synchronized with counter element accesses, a half-modified count 
register will never be read. 

~ Whe~ Timer 0 and Timer 1 use an internal clock source, the ,input pin. ~ust be high to enable 
,countmg. 
) 

9.3 TIMING 

Certain timing considerations need to be made with the Timer/Counter Unit. These include input 
setup and hold times, synchronization and operating frequency. 

9.3.1 Input Setup and Hold Timings 

To ensure recognition, setup and hold times must be met with respect to CPU clock edges. The 
timer input signal must be valid T CHIS before the rising edge of CLKOUT and must remain valid 
T CHIH after the same rising edge. If these timing requirements are not met, the input will not be 
recognized until the next clock edge. 
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9.3.2 Synchronization and Maximum Frequency 

All timer inputs are latched and synchronized with the CPU clock. Because of the internal logic 
required to synchronize the external signals, and the multiplexing of the counter element, the 
Timer/Counter Unit can operate only up to 1A of the CLKOUT frequency. Clocking at greater fre­
quencies will result in missed clocks. 

9.3.2.1 Timer/Counter Unit Application Examples 

The following examples are possible applications of the Timer/Counter Unit. They include a real­
time clock, a square wave generator and a digital one-shot. 

9.3.3 Real-Time Clock 

Example 9-1 contains sample code to configure Timer 2 to generate an interrupt request every 10 
milliseconds. The CPU then increments memory-based clock variables. 

9.3.4 Square-Wave Generator 

A square-wave generator can be useful to act as a system clock tick. Example 9-2 illustrates how 
to configure Timer 1 to operate this way. 

9.3.5 Digital One-Shot 

Example 9-3 configures Timer 1 to act as a digital one-shot. 

I 
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$mod186 
name examp1e_80186_family_timer_code 

; FUNCTION: 

; SYNTAX: 

; INPUTS: 

;OUTPUTS: 

;NOTE: 

This function sets up the timer and interrupt controller 
to cause the timer to generate an interrupt every 
10 milliseconds and to service interrupts to 
implement a real time clock. 

Timer 2 is used in this example because no input or 
output signals are required. 

extern void far set_time (hour, minute, second, T2Compare) 

hour - hour to set time to. 
minute - minute to set time to. 
second - second to set time to. 
T2Compare - T2CMPA value (see note below) 

None 

Parameters are passed on the stack as required by 
high-level languages 

For a CLKOUT of l6Mhz, 

f(timer2) 

T2CMPA(10ms) 

l6Mhz/4 
4Mhz 
0.25us for T2CMPA 

10ms/0.25us 
10e-3/0.25e-6 
40000 

1 

;substitute register offsets 

T2CON 
T2CMPA 
T2CNT 
TCUCON 
EOI 
INTSTS 

timer_2_int 

equ xxxxh 
equ xxxxh 
equ xxxxh 
equ xxxxh 
equ xxxxh 
equ xxxxh 
equ 19 

;Timer 2 Control register 
;Timer 2 Compare register 
;Timer 2 Counter register 
;Int. Control register 
;End Of Interrupt register 
;Interrupt Status register 
;timer 2:vector type 19 

data segment public 'data' 

public _hour, _minute, _second, _msec 

_hour db ? 
_minute db ? 
_second db ? 
_msec db ? 

data ends 

Example 9-1. Configuring a Real-Time Clock 
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I 

'lib_80186 segment public 'code' 
assume cs:lib_80186, ds:data 

public _set_time 
_set_time proc far 

push 
mov 

bp 
bp, sp 

;save caller's bp 
;get current top of stack 

hour equ word ptr[bp+6] ;get parameters off stack 
minute equ word ptr[bp+8] 
second equ word ptr[bp+10] 
T2Compare equ word ptr[bp+12] 

push 
push 
push 

ax 
dx 
si 

push ds 

;save registers used 

xor ax, ax ;set interrupt vector 
mov ds, ax 
mov si, 4*timer_2_int 
mov word ptr ds:[si], offset 

timer_2_interrupt_routine 
inc si 
inc si 
mov ds: [si], cs 
pop ds 

mov ax, hour 
mov _hour, al 
mov ax, minute 
mov _minute, al 
mov ax, second 
mov _second, al 
mov _msec, 0 

mov dx, T2CNT 
xor ax, ax 
out dx, al 

mov dx, T2CMPA 
mov ax, T2Compare 
out dx, al 
mov dx, T2CON 
mov ax, OEOO1H 
out dx, al 

mov dx, TCUCON 
xor ax, ax 
out dx, al 

;set time 

;clear Count register 

;set maximum count value 
;see note in header above 

;set up the control word: 
;enable counting, 
;generate interrupt on MC, 
;continuous counting 

;set up interrupt controller 
;unmask highest priority interrupt 

Example 9-1. Configuring a Real-Time Clock (Continued) 
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sti 

pop si 
pop dx 
pop ax 
pop bp 
ret 

set_time endp 

push 
push 
cmp 
jae 

ax 
dx 
_msec, 99 
bump_second 

,inc _msec 
jmp short reset_int_ctl 

bump_second: 
mov _msec, 0 
cmp _minute, 59 
jae bump_minute 
inc _second 
jmp short reset_int_ctl 

bump_minute: 
mov _second, 0 
cmp _minute, 59 
j ae bump_hour 
inc _minute 
jmp short reset_int_ctl 

bump_hour: 
mov 
cmp 
jae 
inc 
jmp 

reset_hour: 
mov 

mov 
mov 
out 
pop 
pop 
iret 

-Ylinute, 0 
_hour, 12 
reset_hour 
_hour 
reset_int_ctl 

_hour, 1 

dx, 
ax, 
dx, 
dx 
ax 

ends 
end 

EOr 
8000h 
al 

;enable interrupts 

;restore saved registers 

;restore caller's bp 

;save registers used 

;has 1 sec passed? 
;if above or equal ... 

;reset millisecond 
;has 1 minute passed? 

;reset second 
;has 1 hour passed? 

;reset minute 
;have 12 hours passed? 

;reset hour 

;non-specific end of interrupt 

Example 9-1. Configuring a Real-Time Clock (Continued) 
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$mod186 
name example_timer1_square_wave_code 

; FUNCTION: This function generates a square wave of given 
frequency and duty cycle on Timer 1 output pin. 

SYNTAX: extern void far clock(int mark, int space) 

INPUTS: mark - This is the mark (1) time. 
space - This is the space (0) time. 

The register compare value for a given time can be 
easily calculated from the formula below. 

Comparevalue = (re~ulse_width*f)/4 

OUTPUTS: None 

NOTE: Parameters are passed on the stack as required by 
high-level Languages 

T1CMPA 
T1CMPB 
T1CNT 
T1CON 

lib_80186 
assume 

public 
_clock 

push 
mov 
_space 
_mark 

push 
push 
push 

mov 
mov 
out 

mov 
mov 
out 

mov 
xor 
out 

mov 
mov 
out 

equ xxxxH 
equ xxxxH 
equ xxxxH 
equ xxxxH 

segment public 'code' 
cs:lib_80186 

_clock 
proc far 

bp 
bp, sp 
equ word ptr[bp+6] 
equ word ptr[bp+8] 

ax 
bx 
dx 

dx, T1CMPA 
ax, _mark 
dx, al 

dx, T1CMPB 
ax, _space 
dx, al 

dx, T1CNT 
ax, ax 
dx, al 

dx, T1CON 
ax, C003H 
dx, al 

;substitute register offsets 

;save caller's bp 
;get current top of stack 
;get parameters off the stack 

;save registers that will be 
;modified 

;set mark time 

;set space time 

;Clear Timer 1 Counter 

;start Timer 1 

Example 9-2. Configuring a Square-Wave Generator 
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pop 
pop 
pop 

pop 
ret 

_clock 
lib_80186 

end 

dx 
bx 
ax 

bp 

endp 
ends 

;restore saved registers 

;restore caller's bp 

Example 9-2. Configuring a Square-Wave Generator (Continued) 

$mod186 
name example_timerl_l_shot_code 

FUNCTION: This function generates an active-low one-shot pulse 
on Timer 1 output pin. 

SYNTAX: extern void far one_shot(int CMPB); 

INPUTS: CMPB - This is the TICMPB value required to generate a 
pulse of a given pulse width. This value is calculated 
from the formula below, 

CMPB = (re~ulse_width*f)/4 

OUTPUTS: None 

NOTE: Parameters are passed on the stack as required by 
high-level languages 

TlCNT equ xxxxH 
TICMPA equ xxxxH 
TICMPB equ xxxxH 
TICON equ xxxxH 
MaxCount equ 0020H 

lib_80186 
assume 

public 
_one_shot 

push 
mov 

segment public 'code' 
cs:lib_80186 

_one_shot 
proc far 

bp 
bp, sp 

;substitute register offsets 

;save caller's bp 
;get current top of stack 

Example 9-3. Configuring a Digital One-Shot 
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_CMPB 

push 
push 
mov 
xor 
out 
mov 
mov 
out 
mov 
mov 
out 
mov 
mov 
out 

CountDown: 
test 
jz 
and 
out 

pop 
pop 
pop 
ret 

one shot 
lib_ 80186 

end 

I 

equ word ptr [bp+6] 

ax 
dx 
dx, T1CNT 
ax, ax 
dx, a1 
dx, TICMPA 
ax, 1 
dx, a1 
dx, T1CMPB 
ax, _CMPB 
dx, al 
dx, T1CON 
ax, C002H 
dx, al 

in ax, dx 
ax, MaxCount 
CountDown 
ax, not MaxCount 
dx, al 

dx 
ax 
bp 

endp 
ends 

TIMER/COUNTER UNIT 

;get parameter off the stack 

;save registers that will be 
; modified 
;Clear Timer 1 Counter 

;set time before t_shot to 0 

;set pulse time 

;start Timer 1 

;read in T1CON 
;max count occurred? 
;nQ: then wait 
;c1ear max count bit 
;update T1CON 

;restore saved registers 

;restore caller's bp 

Example 9-3. Configuring a Digital One-Shot (Continued) 
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CHAPTER 10 
SERIAL COMMUNICATIONS UNIT 

10.1 INTRODUCTION 

The Serial Communications Unit is composed of two identical serial ports, or channels. Each se­
rial port is independent of the other. This chapter describes the operation of a single serial port. 

The serial port implements several industry-standard asynchronous communications protocols, 
and it readily interfaces to many different processors over a standard serial interface. Several pro­
cessors and systems can be connected to a common serial bus using a multiprocessor protocol. 
The serial port also implements a simple synchronous protocol. The synchronous protocol is most 
commonly used to expand the number of I/O pins with shift registers. 

Features: 

• Full duplex operation 

• Programmable seven, eight or nine data bits in asynchronous mode 

• Independent baud rate generator 

• Maximum baud rate of 1116 the processor clock 

• Double-buffered transmit and receive 

• Clear-to-Send feature for transmission 

• Break character transmission and detection 

• Programmable even, odd or no parity 

• Detects both framing and overrun errors 

• Supports interrupt on transmit and receive 

10.1.1 Asynchronous Communications 

Asynchronous communications protocols allow different devices to communicate without a com­
mon reference clock. The devices communicate at a common baud rate, or bits per second. Data 
is transmitted and received in frames . Aframe is a sequence of bits shifted serially onto or off the 
communications line. 

Each asynchronous frame consists of a start bit (always a logic zero), followed by the data bits 
and a terminating stop bit. The serial port can transmit and receive seven, eight or nine data bits. 
The last data bit can optionally be replaced by an even or odd parity bit. Figure 10-1 shows a typ­
ical to-bit frame. 
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2 3 4 5 6 7 8 9 10 

A1274-0A 

Figure 10-1. Typical10-Bit Asynchronous Data Frame 

When discussing asynchronous communications, it makes sense to talk about the receive ma­
chine (RX machine) and the transmit machine (TX machine) separately. Each is completely in­
dependent. Transmission and reception can occur simultaneously, making the asynchronous 
modes full-duplex. 

10.1.1.1 RX Machine 

The RX machine (Figure 10-2) shifts the received serial data into the receive shift register. When 
the reception has completed, the data is then moved into the Serial Receive Buffer (SxRBUF) 
Register. From there, the user can read the received data byte. 

The RX machine samples the RXD pin, looking for a logical low (start bit) signifying the begin­
ning of a reception. Once the logical low has been detected, the RX machine begins the receive 
process. Each expected bit-time is divided into eight samples by the 8X baud clock. The RX ma­
chine takes the three middle samples and, based on a two-out-of-three majority, determines the 
data bit value. This oversampling is common for asynchronous serial ports and improves noise 
immunity. This majority value is then shifted into the receive shift register. 

Using this method, the RX machine can tolerate incoming baud rates that differ from its own in­
ternal baud rates by 2.5% overspeed and 5.5% underspeed. These limits exceed the CCIIT ex­
tended signaling rate specifications. 

A stop bit is expected by the RX machine after the proper number of data bits. When the stop bit 
has been validated, the data from the shift register is copied into SxRBUF and the Receive Inter­
rupt (RI) bit is set. Note that the stop bit is actually validated right after its middle three samples 
are taken. Therefore, the data is moved into SxRBUF and the RI bit is set approximately in the 
middle of the stop bit time. 
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The RX machine can detect several error conditions that may occur during reception: 

1. Parity errors - A parity error flag is set when the parity of the received data is incorrect. 

2. Framing errors - If a valid stop bit is not received when expected by the RX machine, a 
framing error flag is set. 

3. Overrun errors - If SxRBUF is not read before another reception completes, the old data 
in SxRBUF is overwritten and an overrun error flag is set. This indicates that data from an 
earlier reception has been lost. 

The RX machine also recognizes two different break characters. The shorter break character is M 
bit times, where M is equal to the total number of bits (start + data + stop) in a frame. The longer 
break character is 2M + 3 bit times. A break character results in at least one null (all zero) char­
acter with a framing error being received. Other error flags could be set depending on the length 
of the break character and the mode of the serial port. 

10.1.1.2 TX Machine 

A block diagram of the TX machine is shown in Figure 10-3. The TX machine logic supports the 
following features: 

• parity generation (even, odd or none) 

• Clear-to-Send 

• break character transmission 

• double-buffered operation 

A transmission begins by writing a byte to the Serial Transmit Buffer (SxTBUF) Register. SxT­
BUF is a holding register for the transmit shift register. The contents of SxTBUF are transferred 
to the transmit shift register as soon as it is empty. If no transmission is in progress (i.e., the trans­
mit shift register is empty), SxTBUF is copied immediately to the transmit shift register. If parity 
is enabled, the parity bits are calculated and appended to the transmit shift register during the 
transfer. The start and stop bits are added when the data is transmitted. The Transmit Interrupt bit 
(TI) is set at the beginning of the stop bit time. 

Double buffering is a useful feature of the TX machine. When the transmit shift register is empty, 
the user can write two sequential bytes to SxTBUF. The first byte is transmitted immediately and 
the second byte is held in SxTBUF until the first byte has been transmitted. 
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The Transmit machine can be disabled by an external source by using the Clear-to-Send feature. 
When the Clear-to-Send feature is enabled, the TX machine will not transmit until the CTS pin 
is asserted. The CTS pin is level sensitive. Asserting the CTS pin before a pending transmission 
for at least 1'12 clock cycles ensures that the entire frame will be transmitted. See "CTS Pin Tim­
ings" on page 10-19 for details. 

The TX machine can also transmit a break character. Setting the SBRK bit forces the TXD pin 
immediately low. The TXD pin remains low until the user clears SBRK. The TX machine will 
continue the transmission sequence even if SBRK is set. Use caution when setting SBRK or char­
acters will be lost. 

10.1.1.3 Modes 1, 3 and 4 

The three asynchronous modes of the serial ports, Modes 1, 3 and 4, operate in approximately the 
same manner. Mode 1 is the 8-bit asynchronous communications mode. Each frame consists of a 
start bit, eight data bits and a stop bit, as shown in Figure 10-4. When parity is used, the eighth 
data bit becomes the parity bit. Both the RX and TX machines use this frame in Mode 1 with no 
exceptions. 

Mode 3 is the 9-bit asynchronous communications mode (see Figure 10-5). Mode 3 is the same 
as Mode 1 except that a frame contains nine data bits. The ninth data bit becomes the parity bit 
when the parity feature is enabled. When parity is disabled, the ninth data bit is controlled by the 
user. (See "Modes 2 and 3 for Multiprocessor Communications" on page 10-14.) Mode 3 can be 
used with Mode 2 for mUltiprocessor communications or alone for "8 data bits + parity" frames. 

Mode 4 is the 7-bit asynchronous communications mode. Each frame consists of a start bit, seven 
data bits and a stop bit, as shown in Figure 10-6. Parity is not available in Mode 4. Both the RX 
and TXmachines use this frame in Mode 4 with no exceptions. 

2 3 4 5 6 7 

Figure 10-4. Mode 1 Waveform 

10-6 

8 9 10 

Stop 
Bit 

A1285-0A 
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Figure 10-5. Mode 3 Waveform 

Figure 10-6. Mode 4 Waveform 

9 

Stop 
Bit 

11 

Stop 
Bit 

A1286-0A 

A1287·0A 

10.1.1.4 Mode 2 

Asynchronous Mode 2 is referred to as the "address recognition mode." Mode 2 is used together 
with Mode 3 for multiprocessor communications over a common serial link. 

In Mode 2, the RX machine will not complete a reception unless the ninth data bit is a one. Any 
character received with the ninth bit equal to zero is ignored. No flags are set, no interrupts occur 
and no data is transferred to SxRBUF. In Mode 3, characters are received regardless of the state 
of the ninth data bit. The following is brief example of using Modes 2 and 3. See "Master/Slave 
Example" on page 10-28 for more information. 

Assume one master serial port connects to multiple slave serial ports over a serial link. The slaves 
are initially in Mode 2, and the master is always in Mode 3. The master communicates with one 
sl~ve at a time. The CPU overhead of the serial communications burdens only the master and the 
target slave device. 

I 

1. 

2. 

3. 

4. 

The master transmits the "address" of the target slave, with the ninth bit set, over the serial 
link. 

All slaves receive the character and check whether that address is theirs. 

The target slave switches to Mode 3; all other slaves remain in Mode 2. 

The master and the target slave continue the communication with all ninth data bits equal 
to zero. The other slave devices ignore the activity on the serial link. 

10-7 
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5. At the end of the communication, the target slave switches back to Mode 2 and waits for 

another address. 

The parity feature cannot be used when implementing multiprocessor communications with 
Modes 2 and 3, as the ninth data bit is a control bit and cannot be used as the parity bit. 

10.1.2 Synchronous Communications 

The synchronous mode (Mode 0) is useful primarily with shift register-based peripheral devices. 
The device outputs a synchronizing clock on TXD and transmits and receives data on RXD in 8-
bit frames (Figure 10-7). The serial port always provides the synchronizing clock; it can never 
receive a synchronous clock on TXD. Communication in the synchronous mode is half-duplex. 
The RXD pin cannot transmit and receive data at the same time. Because the serial port always 
acts as the master in Mode 0, all transmissions and receptions are controlled by the serial port. In 
Mode 0, the parity functions and break character detection functions are not available. 

Mode 0 Transmit 

Mode 0 Receive 

A1289-0A 

Figure 10-7. Mode 0 Waveforms 
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10.2 PROGRAMMING 

This section describes how to program the serial port using the appropriate registers. The Serial 
Receive Buffer Register (SxRBUF) is shown in Figure 10-8 and the Serial Transmit Buffer Reg­
ister (SxTBUF) is shown in Figure 10-9. These registers have the same functions in any serial 
port mode. 

Register Name: 

;Register Mnemonic: 

Register Function: 

Serial Receive Buffer Register 

SxRBUF 

Received data bytes are stored in SxRBUF. 

R R R R 
888 8 
7 6 5 4 

o 
R R R R 
8 8 8 8 
321 0 

Al290-0A 

I 

Bit Bit Name 
Reset 

Function Mnemonic State 

RB7:0 Received 0 Received data byte. 
Data 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 10-S. Serial Receive Buffer Register (SxRBUF) 
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Register Name: 

Register Mnemonic: 

Register Function: 

15 

IIII 
Bit Bit Name Mnemonic 

TB7:0 Transmit 
Data Field 

Serial Transmit Buffer Register 

SxTBUF 

Bytes are written to SxTBUF to be transmitted. 

Reset 
State 

0 

T T T T 
B B B B 
7 6 5 4 

o 
T T T T 
B B B B 
321 0 

Function 

Data byte to be transmitted. 

A1291·0A 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 10-9. Serial Transmit Buffer Register (SxTBUF) 

10.2.1 Baud Rates 

The baud rate generator is composed of a IS-bit counter register (BxCNT) and a IS-bit compare 
register (BxCMP). BxCNT (Figure 10-10) is a free-running counter that is incremented by the 
baud timebase clock. The baud timebase clock can be either the internal CPU clock or an external 
clock applied to the BCLK pin. BxCMP (Figure 10-11) is programmed by the user to determine 
the baud rate. The most-significant bit ofBxCMP (ICLK) selects which source is used as the baud 
timebase clock. 

BxCNT is incremented by the baud timebase clock and compared to BxCMP. When BxCNT and 
BxCMP are equal, the baud rate generator outputs a pulse and resets BxCNT. This pulse train is 
the actual baud clock used by the RX and TX machines. The baud clock is eight times the baud 
rate in the asynchronous modes because of the sampling requirements. The baud clock equals the 
baud rate in the synchronous mode. 
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Register Name: 

Register Mnemonic: 

Register Function: 

B B B 
C C C 
1 1 1 
432 

B 
C 
1 
1 

Baud Rate Counter Register 

BxCNT 

1S-bit baud rate counter value. 

B B B B B B B B 
C C C C C C C C 
1 9 8 7 6 5 4 3 
0 

0 

B B B 
C C C 
2 1 0 

A1275-0A 

Bit Bit Name Reset Function 
Mnemonic State 

BC14:0 Baud rate 0 Reflects current value of the baud rate counter. 
counter field NOTE: Writing to this register while the serial 

port is transmitting causes indeterminate 
operation. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 10-10. Baud Rate Counter Register (BxCNT) 
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Register Name: 

Register Mnemonic: . 
Register Function: 

15 

I B B B B 
C R R R R 
L 1 1 1 1 
K 4 3 2 1 

Bit Bit Name 
Mnemonic 

ICLK Internal 
Clocking 

BR14:0 Baud Rate 
Compare 
Field 

Baud Rate Compare Register 

BxCMP 

Determines baud rate for the serial port. 

B B B B B B B B B B 
R R R R R R R R R R 
1 9 8 7 6 5 4 3 2 1 
0 

Reset Function State 

0 Selects the input clock: 

o = BCLK is input to baud clock. 
1 = CPU clock is input to baud clock. 

o 
B 
R 
0 

A1276-0A 

0 Sets the compare value for the baud rate clock. 

Figure 10-11. Baud Rate Compare Register (BxCMP) 

The equations in Figure 10-12 show how to calculate the proper BxCMP value for a specific baud 
rate (where Fcpu = CPU operating frequency = ~ CLKIN frequency). 

If CPU clock is baud timebase clock: 

If BCLK is baud timebase clock: 

Mode 0 

F 
BxCMP = cpu 

baudrate 

BxCMP = BCLK 
baud rate 

Mode 1-4 

F 
BxCMP = cpu -1 

baudrate x 8 

BxCMP = _.=B..::C..::L:..:K_ 
baudrate x 8 

Figure 10-12. Calculating the BxCMP Value for a Specific Baud Rate 
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Due to internal synchronization requirements, the maximum input frequency to BCLK is one-half 
the CPU operating frequency. See "BCLK Pin Timings" on page 10-19 for more information. Ta­
ble 1 0-1 shows the correct BxCMP values for common baud rates. 

Table 10-1. BxCMP Values for Typical Baud Rates and CPU Frequencies 

CPU Frequency 

Baud 25 MHz 20 MHz 16 MHz 8 MHz 
Rate 

BxCMP % BxCMP % BxCMP % BxCMP % 
Value Error Value Error Value Error Value Error 

19,200 80A2H -0.14 8081H 0.16 8067H 0.16 8033H 0.16 

9,600 8145H -0.14 8103H 0.16 80CFH 0.16 8067H 0.16 

4,800 828AH 0.00 8208H -0.03 81AOH -0.08 80CFH 0.16 

2,400 8515H 0.00 8411H -0.03 8340H 0.04 81AOH -0.08 

1,200 8A2BH 0.00 8822H 0.01 8682H -0.02 8340H 0.04 

NOTE 

A zero or one value for BxCMP is illegal and results in unpredictable 
operation. Programming BxCMP during a transmission or reception causes 
indeterminate operation. 

10.2.2 Asynchronous Mode Programming 

The serial port operation is controlled by two registers. The Serial Port Control (SxCON) Register 
controls the mode of operation of the serial port (see Figure 10-13). The Serial Port Status 
(SxSTS) Register acts as the flags register, reporting on errors and the state of the RX and TX 
machines (see Figure 10-14). Depending on the serial port mode, these registers can have differ­
ent functionality. This section outlines how to use SxCON and SxSTS to obtain the desired oper­
ation from the serial port. 

10.2.2.1 Modes 1, 3 and 4 for Stand-alone Serial Communications 

When using these modes for their respective seven, eight or nine bit data modes, operation is fair­
ly straightforward. The serial port must be initialized correctly (through SxCON), then SxSTS 
needs to be interpreted. 

To configure the serial port, first program the baud rate through the BxCMP register, then pro­
gram SxCON (Figure 10-13 on page 10-16) as follows. 

I 

1. 

2. 

Determine the values for M2:0 for the desired serial port mode. 

If parity is used, enable it with the PEN bit. Set the sense of parity (even or odd) with the 
EVN bit. Note that parity is not available in Mode 4 (seven bit data). 
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3. If the Clear-to-Send feature is used, set the CEN bit to enable it. 

4. If receptions are desired, set the REN bit to enable the RX machine. Note the TX machine 
need not be explicitly enabled. 

At this point, you will be able to transmit and receive in the mode specified. Now that the serial 
port is operating, you must correctly interpret its status. This is done by reading the SxSTS reg­
ister (Figure 10-14 on page 10-17) and interpreting its contents. Reading SxSTS clears all bits 
except the CTS and TXE bits. SxSTS must first be saved in memory and then each bit can be 
interpreted individually. 

The RI, TI and TXE bits indicate the condition of the transmit and receive buffers. RI and TI are 
also used with the Interrupt Control Unit for interrupt-based communications. The OE, FE and 
PE bits indicate any errors when a character is received. Once an error occurs, the appropriate bit 
remains set until SxSTS is read. For example, assume a character is received with a parity error 
(PE set) and a subsequent error-free character is received. If the SxSTS register was not read be­
tween the two receptions, the PE bit remains set. 

10.2.2.2 Modes 2 and 3 for Multiprocessor Communications 

Programming for multiprocessor communications is much the same as the stand-alone operation. 
The only added complexity is that the ninth data bit must be controlled and interpreted correctly. 

The ninth data bit is set for transmissions by setting the TB8 bit in SxCON. TB8 is cleared after 
every transmission. TB8 is not double-buffered. This is usually not a problem, as very few bytes 
are actually transmitted with TB8 equal to one. When writing TB8, make sure that the other bits 
in SxCON are written with their appropriate value. 

In Modes 2 and 3, the state of the ninth data bit can be determined by the RB8 bit in SxSTS. RB8 
reflects the ninth bit for the character currently in SxRBUF. Note that the RB8 bit shares func­
tionality with the PE bit in SxSTS. When parity is enabled, the PE bit has precedence over RB8. 

10.2.2.3 Sending and Receiving a Break Character 

The serial port can send as well as receive BREAK characters. A BREAK character is a long 
string of zeros. To send a BREAK character, set the SBRK bit in SxCON. SBRK drives the TXD 
pin immediately low, regardless of the current serial port mode. The user controls the length of 
the BREAK character in software by controlling the length of time that SBRK remains set. When 
writing SBRK, make sure the other bits in SxCON retain their current states. 
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Register Name: 

Register Mnemonic: 

Register Function: 

15 

Serial Port Control Register 

SxCON 

Controls serial port operating modes. 

T eRE 
BEE V 
aNN N 

o 
P M M M 
E 2 1 0 
N 

A1277-0A 

Bit Bit Name Reset 
Function Mnemonic State 

SBRK Send Break 0 Setting SBRK drives TXD low. TXD remains low 
until SBRK is cleared. 

TBa Transmitted 0 TBa is the eighth data bit transmitted in modes 2 
Bit a and 3. 

CEN Clear-to- O When CEN is set, no transmissions will occur until 
Send Enable the CTS pin is asserted. 

REN Receive 0 Set to enable the receive machine. 
Enable 

EVN Even Parity 0 When parity is enabled, EVN selects between even 
Select and odd parity. Set for even, clear for odd parity. 

PEN Parily 0 Selting PEN enables the parity generation/checking 
Enable for alilransmissionslreceplions_ 

M2:0 Serial Port 0 Operaling mode for Ihe serial port channel. 
Mode Field M2 M1 MO Mode 

0 0 0 Synchronous ModeO 
0 0 1 10-Bil Asynch Mode1 
0 1 0 11-Bil Asynch Mode2 
0 1 1 11-Bil Asynch Mode3 
1 0 0 9-Bit Asynch Mode4 
1 0 1 Reserved 
1 1 0 Reserved 
1 1 1 Reserved 

NOTE: Reserved register bits are shown with gray shading. Reserved bils must be written to 
a logic zero to ensure compalibility wilh future Inlel producls. 

Figure 10-13. Serial Port Control Register (SxCON) 
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The serial port receives BREAK characters of two different lengths. If a BREAK character longer 
than M bit-times is detected, the DBRKO bit in SxSTS is set. If the BREAK character is longer 
than 2M+3 bit-times, DBRKI in SxSTS is set. M is equal to the total number of bits in a frame. 
For example, M is equal to 11 (decimal) in Mode 3. 

Register Name: 

Register Mnemonic: 

Register Function: 

Bit 
Bit Name 

Mnemonic 

DBRK1 Detect Break 1 

DBRKa Detect Break a 

RBS/PE Received 
BitS/Parity 
Error 

RI Receive 
Interrupt 

TI Transmit 
Interrupt 

Serial Status Register 

SxSTS 

Indicates the status of the serial port. 

0 

D D R R T F T 0 C 
B B B I I E X E T 
R R 81 E S 
K K P 
1 0 E 

A1278-0A 

Reset 
Function 

State 

a Set when a break longer than 2M+3 bits occurs. 

a Set when a break longer than M bits occurs. 

a Contains the 9th received data bit in modes 2 
and 3. PE is set when a parity error occurs. PE 
is valid only when parity is enabled in Mode 1, 
20r3. 

a RI is set when a character has been received 
and placed in SxRBUF. Note that RI need not 
be explicitly cleared to receive more characters. 
Writing a one to this bit will not cause an 
interrupt. 

a TI is set when a character has finished trans-
mitting. TI determines when one more 
character can be transmitted. Writing a one to 
this bit will not cause an interrupt. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 10-14. Serial Port Status Register (SxSTS) 
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Register Name: 

Register Mnemonic: 

Register Function: 

15 

Bit 
Bit Name 

Mnemonic 

FE Framing Error 

TXE Transmitter 
Empty 

OE Overrun Error 

CTS Clear To Send 

SERIAL COMMUNICATIONS UNIT 

Serial Status Register 

SxSTS 

Indicates the status of the serial port. 

0 

D D R R T F T 0 C 
8 8 8 I I E X E T 
R R 8/ E S 
K K P 
1 0 E 

A1278-0A 

Reset 
Function 

State 

0 FE is set when a framing error occurs. A 
framing error occurs when a valid stop bit is not 
detected. 

1 TXE is set when both SxTBUF and the transmit 
shift register are empty. TXE determines when 
two consecutive bytes can be written to 
SxTBUF for transmission. Accessing SxSTS 
does not clear TXE. 

0 OE is set when an overrun error occurs. An 
overrun error occurs when the character in 
SxRBUF is not read before another complete 
character is received. SxRBUF always contains 
the most recent reception. 

0 CTS is the complement of the value on the CTF 
pin. Accessing SxSTS does not clear CTS. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 10-14. Serial Port Status Register (Continued) 

When either BREAK character is detected, an overrun error occurs (DE is set). SxRBUF will con­
tain at least one null character. 

I 
10-17 



SERIAL COMMUNICATIONS UNIT intet~ 

10.2.3 Programming in Mode 0 

Programming is much easier in Mode 0 than in the asynchronous modes. Configuring SxCON 
(Figure 10-13 on page 10-16) for Mode 0 requires only two steps: 

1. Program M2:0 with the correct combination for Mode O. 

2. If the Clear-to-Send feature is desired, set the CEN bit. 

The serial port is now configured for Mode O. To transmit, write a character to SxTBUF. The TI 
and TXE bits reflect the status of SxTBUF and the transmit shift register. Note that the SBRK bit 
is independent of serial port mode functions in Mode O. 

Receptions in Mode 0 are controlled by software. To begin a reception, set the REN bit in Sx­
CON. The RI bit must be zero or the reception will not begin. Data begins shifting in on RXD as 
soon as REN is set. The asynchronous error flags (DE, FE and PE) and break flags (DBRKO and 
DBRKl) are invalid in Mode O. 

10.3 HARDWARE CONSIDERATIONS FOR THE SERIAL PORT 

There are several interface considerations when using the serial port. 

10.3.1 CTS Pin Timings 

When the Clear-to-Send ~*ur;e.,~q!lble<1 transmissions will not begin until the CTS pin is as­
serted while a transmission is pending. Figure 10-15 shows the recognition of a valid CTS. 

, The CTS pin is sampled by the rising edge of CLKOUT. The CLKOUT high time synchronizes 
, the CTS signal. On the falling edge of CLKOUT, the synchronized CTS signal is presented to the 

serial port. CTS is an asynchronous signal. The setup and hold times are given only to ensure rec­
ognition at a specific clock edge. When CTS is asynchronously, it should be asserted for at least 
1 Y:z clock cycles to guarantee that the signal is recognized. 

CTS is not latched internally. If CTS is asserted before a transmission starts, the subsequent trans­
mission will not begin. A write to SxTBUF "arms" the CTS sense circuitry. 

10.3.2 BCLK Pin Timings 

The BCLK pin can be configured as the input to the baud timebase clock. The baud time base 
clock increments the BxCNT register. However, the BCLK signal does not run directly into the 
baud timebase clock. BCLK is first synchronized to the CPU clock (Figure 10-16.) The internal 
synchronization logic uses a low-to-high level transition on BCLK to generate the baud timebase 
clock that increments the BxCNT register. The CPU recognizes a low-to-high transition by sam­
pling the BCLK pin low, then high. 

10-18 
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The CPU samples BCLK on the rising edge of CLKOUT. The CLKOUT high time synchronizes 
the BCLK signal. On the falling edge of CLKOUT, the synchronized BCLK signal is presented 
to the baud timebase clock. 

I 

CLKOUT 

CTS 

CTS 
(Internal) 

CLKOUT 

BCLK 

Increment BCNT 
(Internal) 

CTS Resolved 
During CLKOUT 
High Time 

:.: :-- TCHIH 
TCHIS -: :-.; 

Figure 10-15. CTS Recognition Sequence 

• . :-: :-.... TCHIH 
~ :--TCHIH TCHIS-i :-; 

TCHIS -: :-.; 

~ I 
__ ----'I 

Figure 10-16. BCLK Synchronization 

A1279-0A 

A12BO-OA 
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BCLK is an asynchronous input. However, the pin does have setup and hold times, which guar­
antee recognition at a specific CLKOUT. If the BCLK input signal has high and low times that 
are both at least 1 ~ CLKOUT periods, than synchronization to CLKOUT is not necessary. How­
ever, when the BCLK signal has a high or a low time of less than 1 ~ CLKOUT periods, meeting 
the setup and hold times to CLKOUT is necessary to avoid missing BCLK transitions. The max­
imum input frequency to BCLK is one-half the frequency of CLKOUT (CPU operating frequen­
cy). 

10.3.3 Mode 0 Timings 

This section shows the timings of the TXD and RXD pins in Mode O. In Mode 0, TXD never 
floats. When not transmitting or receiving, TXD is high. RXD floats except when transmitting a 
character. 

10.3.3.1 CLKOUT as Baud Timebase Clock 

The behavior of the transmit/receive clock (on TXD) is governed by the value of BxCMP. When 
the BxCMP value is greater than or equal to two. The TXD pin is low for two CLKOUT periods 
and is high for (BxCMP - 1) CLKOUT periods (see Figure 10-17). BxCMP cannot be equal to a 
one, otherwise the serial port buffer registers (SxRBUF) will not receive the correct data. 

CLKOUT 

TXD ····L High For 
N-1 Clocks 

RXD l,--_B_IT_O ___ .....JX,-__ B_IT_1 __ _ 

Figure 10-17. Mode 0, BxCMP > 2 

A12B2-A 

For transmissions, the RXD pin changes on the next CLKOUT falling edge following a low-to­
high transition on TXD. Therefore, the data on the RXD pin is guaranteed to be valid on the rising 
edges of TXD. Use the rising edge ofTXD to latch the value on RXD. For receptions, the incom­
ing serial data must meet the setup and hold timings with respect to the rising edge of TXD. These 
timings can be found in the AC timings section of the data sheet. 
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10.3.3.2 BCLK as Baud Timebase Clock 

BCLK does not run directly into the baud timebase clock, but is first synchronized to the CPU 
clock. BCLK causes the baud timebase clock to increment, but transitions on TXD and RXD (for 
transmissions) still occur relative to CLKOUT. 

A low-to-high transition on BCLK increments BxCNT. If BxCNT is equal to BxCMP, TXD goes 
low approximately 4% CLKOUTs later. TXD will always remain low for two CLKOUT periods 
and then go high. TXD will go low again 4V2 CLKOUTs after BxCNT equals BxCMP. Therefore, 
the output frequency on TXD is roughly equal to the input frequency on BCLK multiplied by Bx­
CMP. There will be some clock jitter, as the output on TXD will always be some mUltiple of CLK­
OUTs. This is due to the internal synchronization. 

10.4 SERIAL COMMUNICATIONS UNIT INTERRUPTS 

Serial communication is usually interrupt-driven. An interrupt needs to occur on each reception 
and on each transmission of a character. The RI and TI flags in the SxSTS register (Figure 10-14 
on page 10-17) provide the interrupt mechanism for the serial ports. The two serial ports, or chan­
nels, have different interrupt circuitry. Serial channel 0 is directly supported by the integrated In­
terrupt Control Unit. Serial channell is supported by the SINTl output. 

10.4.1 Channel 0 Interrupts 

Figure 10-18 illustrates the channel 0 interrupt circuitry. Channel 0 receptions assert an internal 
signal, Receive_InterrupcRequescO. This signal is routed both to the Interrupt Control Unit and 
to the SOSTS register, where it sets the RI bit. The RI bit has no effect on the internal interrupt 
request. Writing to RI does not cause an interrupt, and setting it does not prevent interrupts. 

Channel 0 transmissions assert an internal signal, TransmiCInterrupCRequesCO. Like the 
Receive_InterrupcRequesCO signal, this signal is routed to the Interrupt Control Unit and to the 
SOSTS register. This signal sets the TI bit in SOSTS. Like the RI bit, TI has no effect on the inter­
nal interrupt request. Writing to TI does not cause an interrupt, and setting it does not prevent in­
terrupts. 

10.4.2 Channel 1 Interrupts 

Figure 10-18 illustrates the channell interrupt circuitry. Channell receptions assert an internal 
Receive_InterrupCRequesC1 signal and transmISSIOns assert an internal 
TransmiCInterrupCRequesC1 signal. Serial channell is supported by the SINTl output. Each 
internal signal is routed to the SlSTS register, where it sets the RI or TI bit. The RI and TI bits 
are ORed into the SINTl signal, so setting either bit asserts SINTl. Reading S 1 STS clears the RI 
and TI bits and deasserts SINTl. (This is the only method available for de asserting SINTl.) 

I 
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TransmiUnterrupCRequest_O 
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Figure 10-18. Channel 0 Interrupts 
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Figure 10-19. Channel 1 Interrupts 
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10.5 SERIAL PORT EXAMPLES 

This section contains examples that show ways to use the serial port. 

NOTE 

The examples assume that the Peripheral Control Block is located in I/O space. 

10.5.1 Asynchronous Mode Example 

Example 10-1 contains sample code to initialize Serial Port 0 for 9600-baud operation in asyn­
chronous Mode 4. 

I 

$mod186 
name 
, 
;This file contains an example of initialization code for the 80C186EB 
;Serial Communications Unit. The example has three procedures: 
;ASYNC_CHANNEL_SETUP sets up channel 0 as 9600 baud, full duplex, 
; 7 data bits+parity, with CTS# control. 
;ASYNC~REC_INT_PROC is an interrupt handler for a reception. The procedure 

is nearly empty, since the code to perform error checking 
; and receive buffer handling is application dependent. 
;ASYNC_XMIT_INT_PROC is an interrupt handler for a transmission. This 

procedure, too, is nearly devoid of code. A typical 
application would test the TXE bit, then copy data from 
the transmit buffer in memory to the SOTBUF register. 

;We assume serial port registers have been correctly defined and the PCB 
, 
BOCMP 
SOCON 
SOSTS 
SORBUF 
SOTBUF 
RI_TYPE 
TI_TYPE 
EOI 
SCUCON 

code_seg 
assume 

is located in I/O space. 
equ Oxxxx ;channel 0 baud rate compare 
equ Oxxxx ;channel 0 control 
equ Oxxxx ;channel 0 status 
equ Oxxxx ;channel 0 receive buffer 
equ Oxxxx ;channel 0 transmit buffer 
equ xx ; receive is interrupt type 20 
equ 21 ;transmit is interrupt type 21 
equ Off02h ;end-of-interrupt register 
equ Off14h ;SCU interrupt control register 

segment public 
cs:code_seg 

;First, set up the interrupt handler vectors 
xor aX,ax 
mov ds, ax 

mov bx, RI_TYPE* 4 

;need DS to point to interrupt vector 
;table at Oh 

mov ax,offset ASYNC_REC_INT_PROC 
mov [bx] ,ax 
mov ax, seg ASYNC_REC_INT_PROC 
mov [bx+2] ,ax 

Example 10-1. Asynchronous Mode 4 Example 
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mov bx, TI_TYPE*4 
mov aX,offset ASYNC_XMIT_INT_PROC 
mov [bxl,ax 
mov ax, seg ASYNC_XMIT_INT_PROC 
mov [bx+21,ax 

;Now set up channel 0 options 

mov ax,8067h 
mov dx, BOCMP 
out dx,ax 
mov aX,0059H 

mov dx, SOCON 
out dx,ax 

;for 9600 baud from l6MHz CPU clock 

;set baud rate 
;CEN=l (CTS enabled) 
;REN=O (receiver not yet enabled) 
;EVN=l (even parity) 
;PEN=l (parity turned on) 
;MODE=l (lO-bit frame) 

;write to serial control register 

;Clear any pending RI or TI, just for safety 

mov dx, SOSTS 
in ax,dx ;clear any old RI or TI 

;Clear interrupt mask bit in interrupt unit to allow SCU interrupts 

mov 
in 
and 
out 

dx,SCUCON 
ax,dx 
aX,0007h 
dx,ax 

;Turn on the receiver 
mov dx, SOCON 
in ax,dx 
or aX,0020 
out dx,ax 

ret 
ASYNC CHANNEL_SETUP endp 

;SCU interrupt control 

;clear mask bit to enable 

;read SOCON 
;set REN bit (REN=l, receiver enabled) 
;write SOCON 

;Now the receiver is enabled and sampling of the RXD line begins. 
;Any write to SOTBUF will initiate a transmission. 

;The next procedure is executed every time a reception is completed. 

mov dx, SOSTS 
in ax, dx ;get status info 
test al, lOOOOOOOb ;test for parity error 
jnz parity_error 
test aI, OOOlOOOOb ;test for framing error 
jnz framing_error 
test aI, OOOOOlOOb ;test for overrun error 
jnz overrun_error 

;At this point, we know the received data is OK. 

Example 10-1. Asynchronous Mode 4 Example (Continued) 
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I 

mov dx, SORBUF 
in ax, dx 
and ax, 07fh 

;read received data 
;strip off parity bit 

;Code to store the data in a receive buffer would go here. It has been omitted 
;since this is heavily application dependent. 

parity_error: 

;Code for parity error handling goes here. 

framing_error: 

;Code for framing error handling goes here. 

overrun_error: 

;Code for overrun error handling goes here. 

;Now we must issue the end-of-interrupt command to the interrupt unit. 

mov 
mov 
out 
iret 

dx,EOI 
aX,8000h 
dx, ax 

;issue non-specific EOI 

;This procedure is entered whenever a transmission completes. Typical code 
;would be inserted here to transmit the next byte from a transmit buffer 
;set up in memory. since the configuration of such a buffer is application 
; dependent, this section is omitted. 

;Now we must issue the end-of-interrupt command to the interrupt unit. 

mov 
mov 
out 
iret 

ends 

dx,EOI 
aX,8000h 
dx, ax 

;issue non-specific EOI 

Example 10-1. Asynchronous Mode 4 Example (Continued) 
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10.5.2 Mode 0 Example 

Example 10-2 shows a sample Mode 0 application. 

$mod186 
name 

i***************************************************** ********* 
FUNCTION: This function transmits the user's data, user_data, serially 
over RXD1. TXD1 provides the transmit clock. The transmission frequency 
is calculated as follows: 

tran_freq = (0.5*CLKIN/BAUDRATE)-1 

A 0-1-0 pulse on P1.0 indicates the end of transmission. 

SYNTAX: 

INPUTS: 

OUTPUTS: 
NOTE: 

extern void far parallel_serial (char user_data,int tran_freq) 

user_data - byte to send out serially 
tran_freq - baud rate compare value 
None 
Parameters are passed on the stack as required by high-level 
languages. , 

i***************************************************** ********* 

B1CMP equ xxxxH ; Channel 1 Baud Rate Compare 
SlCON equ xxxxH ; Channel 1 Control 
SlSTS equ xxxxH ; Channel 1 Status 
SlTBUF equ xxxxH ; Channel 1 Receive Buffer 

iXXXX - substitute register offset 

;Example assumes that all the port pins are configured correctly and 
;PCB is located in I/O space. 
lib_80186 segment public 'code' 

assume cs:lib_80186 

public -parallel_serial 
-parallel_serialproc far 

user_data 
tran_freq 

10-26 

push bp 
mov bp, sp 

;save caller's bp 
;get current top of stack 

equ word ptr [bp+6];get parameters off the stack 
equ word ptr [bp+8] 

push ax 
push dx 

mov dx, SlSTS 

;save registers that 
;will be modifiled 

;clear any pending exceptions 

Example 10-2. Mode 0 Example 
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mov dx, P1CON ;Get state of port 1 controls 
in ax, dx 
and ax, Ofeh ; make sure PI. 0 is port 
out dx, al 
mov dx, B1CMP 
mov ax, tran_freq 
or ax, 8000h ;set internal clocking bit 
out dx, ax ; Mode 0, 1 million bps 

mov dx, P2CON ;set Port 2.1 for TXD 
mov ax, Offh 
out dx, al 

mov dx, SlTBUF ;send user's data 
mov ax, user_data 
out dx, al 
mov dx, SlCON ;Mode 0, No CTS, Transmit 
xor ~x, ax 
Qut dx, ax 
mov dx, SlSTS 

Check_4_TI: in ax, dx 
test ax, 0020h ; check for TI bit 
jz Check_4_TI 

mov dx, P1LTCH ;pulse PI. 0 
xor ax, ax 
out dx, al 

not ax ;set PLO high 
out dx, al 

not ax ;set PI. 0 low 
out dx, al 

pop dx ; restore saved registers 
pop ax 
pop bp ; restore user's bp 
ret 

...parallel_serial endp 
lib_ 80186 ends 

end 

Example 10-2. Mode 0 Example (Continued) 

10.5.3 Master/Slave Example 

This section shows an example of a Mode 2 and 3 master/slave network. Figure 10-20 shows the 
proper connection of the master to the slaves. The buffer is necessary to avoid contention on the 
receive line. Alternatively, an open-collector buffer could be used and the port pin function could 
be deleted. 
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MASTER 

186 Core 
Device 

Master Transmit Line 
TXD~~------------~'-----------~~--~ 

Master Receive Line 
RXD~~--~----------~~~------~--~--

Port Port Port 
Pin Pin Pin 

186 Core 
80C51 80C196 Device 

SLAVES 

Figure 10-20. MfsterSlave Exam.J?!~) 
($€IL 7 {31 f5" ~ 

A1273-0A 

Example 10-3 demonstrates how to implement a master/slave network in a typical system. The 
remaining three examples show the routines used in the implementation. Example 10-4 is a mas­
ter routine that addresses a slave and waits for it to respond. Example 10-5 is a slave routine that 
responds to commands sent by the master. Equation 10-6 is the master routine that sends com­
mands to the slave. 
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I 

$mod186 
name 

i***************************************************** ************** 
FUNCTION: This function demonstrates how to implement the three 
masterlslave routines {_slave_1, _select_slave, and _send_slave_commandl 
in a typical setup. 

NOTE: It is assumed that the network is set up as shown in 
Figure 10-20, that the slave unit is running the 
_slave_1 code, and that the PCB is located in 1/0 space. 

; 
i***************************************************** ************** 
Slave1 
Flash 
Disc 
False 

extrn 
extrn 
lib_80186 

code 

public 
_main 

;send the 

;send it 

equ 01h 
equ 01h 
equ Ofh 
equ OOh 

;address assigned to slave unit 1 
;command to flash EVAL board LEDs 
;command to disconnect from network 

segment public 'code' 
select_slave: far 

_send_slave_cmd:far 
ends 

segment public 'code' 
assume cs:code 

_main 
proc near 

;declare external routines 

push Slave1 ;get slave unit 1 address 
address over the network 

call far ptr _select_slave 
add sp, 2 ;adjust sp 
cmp ax, false ;was slave 1 properly selected? 
j e SlaveExi t ; no: then exi t 

push Flash 

call far ptr 
add sp, 2 

;yes: then send Flash command 

send_slave_cmd 
;adjust sp 

;insert a delay routine to allow completion of last command 

;send it 

SlaveExit: 
_main 
code 

push Disc 

call far ptr 
add sp, 2 

ret 
endp 
ends 
end _main 

;prepare to disconnect slave 

send_slave_cmd 
;adjust sp 

Example 10-3. Master/Slave-Implementing the Master/Slave Routines 
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$mod186 
name 
i***************************************************** *********; 

FUNCTION: This function transmits a slave address, _slave_addr, over the 
serial network, with data bit 9 set to one. It then waits for the addressed 
slave to respond with its (slave) address. If this address does not match 
the originally transmitted slave address, or if there is no response within 
a set time, the function will return false (ax = 0). Otherwise, the function 
will return true (ax <> 0). 

SYNTAX: extern int far select_slave(int slave_addr); 

INPUTS: _slave_addr - address of the slave on the network 

OUTPUTS: True/False 

NOTE: Parameters are passed on the stack as required by high-level 
; languages. Example assumes that PCB is located in I/O space. 
i***************************************************** ********* 
; substitute register offset in place of xxxxh 

P1CON equ xxxxh ;Port 1 Control register 
P2CON equ xxxxh ; Port 2 Control register 
SlCON equ xxxxh ; Serial Port 1 Control register 
SlSTS equ xxxxh ; serial Port 1 Status register 
SlTBUF equ xxxxh ; Serial Port 1 Transmit Buffer 
SlRBUF equ xxxxh ; Serial Port 1 Receive Buffer 

lib_80l86 segment public 'code' 

public 
_select_slave 

assume cs:lib_80l86 

_select_slave 
proc far 

push bp 
mov bp, sp 

;get slave address off the stack 
_slave_addr equ word ptr [bp+6] 

push cx 
push dx 

mov dx, P1CON 
in ax, dx 
and ax, OfOh 
out dx, al 
mov dx, P2CON 
mov ax, Offh 
out dx, al 

;save caller's bp 
;get current top of stack 

;save registers that will be 
; modi fied 

;Get state of port 1 controls 

;make sure Pl.0:3 is port 

;set Port 2.1 for TXD1, P2.0 RXDl 

Example 10-4. Master/Slave - The _selecCslave Routine 
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I 

Check _4_ RI: 

NoTimeOut: 

SlaveExit: 

mov dx, SlSTS ;clear any pending exceptions 
in ax, dx 
mov dx, SlCON ; prepare to send address 
mov ax, 0083h ;d9=1, mode 3 
out dx, ax 
mov dx, SlTBUF ;select slave 
mov ax, slave_addr 

;get slave address 
out dx, al ;send it 

mov dx, SlCON 
mov ax, 0023h ;set REN 
out dx, ax ; enable receiver 

xor cx, cx ; reset time-out counter 

mov dx, SlSTS ; check to see if data is waiting 

dec cx ; decrement time-out counter 
jnz NoTimeOut ;time-out=false:then continue 

xor ax, ax ;time-out=true:set return 
;value false (0) 

jmp short SlaveExit 

in ax, dx 
test ax, 0040h ;test for RI bit 

jz Check_4_RI ; keep checking till data received 

mov dx, SlRBUF ;get slave response 
in ax, dx 
and ax, Offh ;mask off unwanted bits 

xor ax, _slave_addr;did addressed slave respond? 
;ax=O:true else false 

not ax ;invert state of ax to be consistent 
;with false(O) and true(non zero) 

pop dx ; restore saved registers 
pop cx 
pop bp 
ret 

;restore caller's bp 

lib_80l86 ends 
end 

Example 10-4. Master/Slave - The _select_slave Routine (Continued) 
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$mod186 
name 

.**************************************************************. , , 

FUNCTION: 

SYNTAX: 

INPUTS: 

OUTPUTS: 

NOTE: 

slave_i 

This function represents a slave unit connected to a multi­
processor master/slave network. This slave responds to two 
commands: 
Flash the LEOs on the EVAL Board, and 
Disconnect from the Network. 
Other commands are easily added. 

extern void far slave_i!void); 

None 

None 

Parameters are passed on the stack as required by high-level 
languages. The slave should be running this code before the 
master calls the slave. Example assumes PCB is in I/O space. , 

i***************************************************** ********* 
;substitute register offsets in place of xxxxh 

PiCON 
PiLTCH 
P2CON 
SlCON 
SlSTS 
SlTBUF 
SlRBUF 

MY_Address 
TriStateEna 
TriStateDis 
FlashLEDs 
Disconnect 
public 
_slave_i 

10-32 

equ xxxxh 
equ xxxxh 
equ xxxxh 
equ xxxxh 
equ xxxxh 
equ xxxxh 
equ xxxxh 

; Port 1 
; Port 1 
; Port 2 
; Serial 
; Serial 
; serial 
;Serial 

Control register 
Latch register 
Control register 
Port 1 Control register 
Port 1 Status register 
Port 1 Transmit Buffer 
Port 1 Receive Buffer 

segment public 'code' 
assume cs:lib_80i86 

equ Oih 
equ 08h 
equ OOh 
equ Oih 
equ Ofh 
_slave_i 
proc far 

push ax 
push bx 
push cx 
push dx 

;slave 1 network address 
;Tri-state buffer enable 
;Tri-state buffer disable 
;list of commands unit 1 responds to 

;save registers that will be modified 

Example 10-5. Master/Slave - The slave_1 Routine 
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DisconnectMode: 

SelStatus: 
Check_4_RI: 

mov 
in 
mov 
in 
and 
out 
mov 
mov 
out 
mov 
mov 
out 

mov 
mov 
out 

dx, SISTS 
ax,dx 
dx, PICON 
ax, dx 
ax, OfOh 
dx, ax 
dx, P2CON 
ax, Offh 
dx, ax 
dx, PILTCH 
ax, TriStateDis 
dx, ax 

dx, SICON 
ax, 0022h 
dx, ax 

mov dx, SISTS 
in ax, dx 
test ax, 0040h 
jz Check_4_RI 

mov 
in 
cmp 
jne 

mov 
mov 
out 

mov 
mov 
out 
mov 
mov 
out 

mov 
mov 
out 

mov 
in 
test 
jz 

dx, SlSRUF 
ax, dx 
aI, My_Address 
SelStatus 

dx, SICON 
ax, 0003h 
dx, ax 

dx, PILTCH 
ax, TriStateEna 
dx, ax 
dx, SITBUF 
ax, MY_Address 
dx, ax 

dx, SICON 
ax, 0023h 
dx, ax 

dx, SISTS 
ax, dx 
ax, 0040h 
Wait_4_Cmd 

mov dx, SIRBUF 
in ax, dx 

SERIAL COMMUNICATIONS UNIT 

clear any pending exceptions 

get state of port I controls 

make sure PI.O:PI.3 is port 

set P2.1 for TXDI, P2.0for RXDI 

make sure TXD latch is tristated 

set PI.7 to zero 

select control register 
receive, Mode 2 

select status register 
get status 
data waiting? 
no: then keep checking 

yes: then get data 

is slave_l being addressed? 
no: then ignore 

yes: then switch to Mode 3, transmit 
Mode 3 

enable tristate buffer 

gate TXD onto master's RXD 
echo MY_Address to the master 

switch to receive mode 
Mode 3, receive 

select status register 
get status 
command waiting? 
no: then keep checking 

yes: then get command 

cmp al, Disconnect; Disconnect command? 
je DisconnectMode; yes: then disconnect RXD from network 

Example 10-5. Master/Slave - The slave_1 Routine (Continued) 
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Send: 

Dly1: 

10-34 

cmp al. FlashLEDs 
jne Wait_4_Cmd 

mov dx. P1LTCH 
mov ex. 20 
xor ax. ax 

not ax 
out dx. ax 
mov bx. Offffh 

dec bx 
jnz Dly1 

dec ex 
jnz Send 

jmp short Wait_4_Cmd 

pop dx 
pop ex 
pop bx 
pop ax 

ret 
endp 

ends 
end 

Flash LEDs command 
no: then ignore 

yes: then flash LEDs 10 times 

Example 10-5. MasterlSlave - The slave_1 Routine (Continued) 
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$mod186 
name 
;************************************************************************ 

FUNCTION: 

SYNTAX: 

INPUTS: 

OUTPUTS: 

NOTE: 

send_slave_cmd 
This function transmits a slave command, _slave_cmd, over 
the serial network to a previously addressed slave. 
extern void far send_slave_cmd (int slave_cmd) 

_slave_cmd (command to send to addressed slave) 

None 

Parameters are passed on the stack as required by 
high-level languages. Example assumes PCB is in 1/0 space. ; 

i************************************************************************i 
; substitute register offsets in place of xxxxh 

serial Port 1 Status register 
serial Port 1 Control register 

SISTS 
SICON 
SITBUF 

equ xxxxh 
equ xxxxh 
equ xxxxh Serial Port 1 Transmit Buffer register 

public 

segment public 'code' 
assume cs:lib_80l86 

_send_slave_cmd 
_send_slave_cmd 
push bp 
mov bp, sp 

proc far 
; save caller's bp 
; get current top of stack 

; get slave command off the stack 
_slave_cmd equ word ptr [bp+6] 

push 
push 

mov 
in 
mov 
mov 
out 

mov 
mov 
out 

pop 
pop 
pop 
ret 

ends 
end 

ax 
dx 

dx, 
ax, 
dx, 
ax, 
dx, 

dx, 
ax, 
dx, 

dx 
ax 
bx 

SISTS 
dx 
SICON 
0OO3h 
ax 

SITBUF 
slave_cmd 

al 

save registers that are modified 

clear any pending exceptions 

prepare to send command 
Mode 3 

select slave 
get command to send to slave 
send it 

restore saved registers 

restore caller's bp 

Example 10-6. Master/Slave - The _send_slave_command Routine 
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CHAPTER 11 
INPUT/OUTPUT PORTS 

Many applications do not require full use of all the on-chip peripheral functions. For example, the 
Chip-Select Unit provides a total of ten chip-select lines; only a large design would require all 
ten. For smaller designs that require fewer than ten chip-selects, these pins would be wasted. 

The input/output ports give system designers the flexibility to replace the functions of unused pe­
ripheral pins with general-purpose I/O ports. Many of the on-chip peripheral pin functions are 
multiplexed with an I/O port. If a particular peripheral pin function is unnecessary in an applica­
tion, that pin can be used for I/O. The 80C186EB/8OC188EB has four types of ports: bidirection­
al, input-only, output-only, and open-drain bidirectional. 

11.1 FUNCTIONAL OVERVIEW 

All port pin types are derived from a common bidirectional port logic module. Unidirectional and 
open-drain ports are a subset of the bidirectional module. The following sections describe each 
port type. The bidirectional port is described in detail, as it is the basis for all of the other port 
types. The descriptions for the unidirectional and open-drain ports only highlight their specific 
differences from the common bidirectional module. 

11.1.1 Bidirectional Port 

Figure, 11-1 shows a simplified schematic of a bidirectional port pin. The overall function of a 
bidirectional port pin is controlled by the state of the Port Control Latch. The output of the Port 
Control Latch selects the source of output data and the source of the control signal for the three­
state output driver. When the port is programmed to act as a peripheral pin, both the data for the 
pin and the directional control signal for the pin come from the associated integrated peripheral. 
When a bidirectional port pin is programmed as an I/O port, all port parameters are under soft­
ware control. 

The output of the Port Direction latch enables (or disables) the three-state output driver when the 
pin is programmed as an I/O port. The three-state output driver is enabled by clearing the Port 
Direction latch. The data driven on an output port pin is held in the Port Data latch. Setting the 
Port Direction latch disables the three-state output driver, making the pin an input. 

The signal present on the device pin is routed through a synchronizer to a three-state latch that 
connects to the internal data bus. The state of the pin can be read at any time, regardless of wheth­
er the pin is used as an I/O port or for a peripheral function. 
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Figure 11-1. Simplified Logic Diagram of a Bidirectional Port Pin 
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11.1.2 Input Port 

Figure 11-3 shows the internal construction of an input port pin. An internal connection perma­
nently disables the three-state output driver. The Port Pin register holds the current state (synchro­
nized to the CPU clock) of the input pin. The Port Direction and Port Data bits are not used for 
an input-only port pin; they can be used for storage. 

11.1.3 Output Port 

Figure 11-3 shows the internal construction of an output port pin. An internal connection perma­
nently enables the three-state output driver. The Port Control latch selects the source of data for 
the pin, which can be either the on-chip peripheral or the Port Data latch. The Port Direction bit 
has no effect on an output-only pin; it can be used for storage. 

11.1.4 Open-Drain Bidirectional Port 

Figure 11-4 shows the internal control logic for the open-drain bidirectional port pin. The logic 
is slightly different from that for the other port types. When the open-drain port pin is configured 
as an output, clearing the Port Data latch turns on the N-channel driver, resulting in a "hard zero" 
being present at the pin. A one value in the Port Data Latch shuts off the driver, resulting in a high 
impedance (input) state at the pin. The open-drain pin can be floated directly by setting its Port 
Direction bit. 

The open-drain ports are not multiplexed with on-board peripherals. The port/peripheral data 
multiplexer exists for open-drain ports, even though the pins are not shared with peripheral func­
tions. The open-drain port pin floats if the Port Control latch is programmed to select the non­
existent peripheral function. 

11.1.5 Port Pin Organization 

The port pins are organized as two functional groups, Port 1 and Port 2. Port 1 consists of eight 
output-only pins. Port 2 has one bidirectional, two output-only, three input-only, and two open­
drain bidirectional pins. Most of the port pins are multiplexed with peripheral functions. 
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Figure 11-2. Simplified Logic Diagram of an Input Port Pin 
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11.1.5.1 Port 1 Organization 

Port 1 consists of eight output-only port pins. The Port 1 pins are multiplexed with the general­
purpose chip-selects (GCS7:0). Table 11-1 shows the multiplexing options for Port 1. 

Table 11-1. Port 1 Multiplexing Options 

Pin Name Peripheral Function Port Function 

P1.7/GCS7 GCS7 P1.7 

P1.6/GCS6 GCS6 P1.6 

P1.5/GCS5 GCS5 P1.5 

P1.4/GCS4 GCS4 P1.4 

P1.3/GCS3 GCS3 P1.3 

P1.2/GCS2 GCS2 P1.2 

P1.1/GCS1 GCS1 P1.1 

P1.0/GCSO GCSO P1.0 

11.1.5.2 Port 2 Organization 

Six of the Port 2 pins are multiplexed with serial channel functions; the other two provide open­
drain bidirectional port pin functions. Table 11-2 shows the Port 2 multiplexing options. 

Table 11-2. Port 2 Multiplexing Options 

Pin Name Peripheral Function Port Function 

P2.7 None P2.7 (Open-drain) 

P2.6 None P2.6 (Open-drain) 

P2.5/BClKO BClKO (Input) P2.5 

P2.4/CTS1 CTS1 (Input) P2.4 

P2.3/SINT1 SINT1 (Output) P2.3 

P2.2/BClK1 BClK1 (Input) P2.2 

P2.1/TXD1 TXD1 (Output) P2.1 

P2.0/RXD1 RXD1 (1/0) P2.0 

11.2 PROGRAMMING THE I/O PORT UNIT 

Each port is controlled by a set of four Peripheral Control Block registers: the Port Control Reg­
ister (PxCON), the Port Direction Register (PxDIR), the Port Data Latch Register (PxLTCH) and 
the Port Pin State Register (PxPIN). 

I 
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11.2.1 Port Control Register 

The Port Control Register (Figure 11-5) selects the overall function for each port pin: peripheral 
or port. For I/O ports, the Port Control Register is used to assign the pin to either the associated 
on-chip peripheral or to a general-purpose I/O port. For output-only ports, the Port Control Reg­
ister selects the source of data for the pin: either an on-chip peripheral or the Port Data latch. 

Register Name: 

Register Mnemonic: 

Port Control Register 

PxCON (P1 CON, P2CON) 

Register Function: Selects port or peripheral function for a port pin. 

15 

Bit Bit Name Reset 
Mnemonic State 

PC7:0 Port Control FFH 
7:0 

p p p p 
C C C C 
7 6 5 4 

p p 
C C 
3 2 

Function 

o 
p p 
C C 
1 0 

When the PC bit for a specific pin is set, the 

A1312-0A 

associated integrated peripheral controls both 
pin direction and pin data. Clearing the PC bit 
makes the pin a general-purpose 1/0 port. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 11-5. Port Control Register (PxCON) 

11.2.2 Port Direction Register 

The Port Direction Register (Figure 11-6) controls the direction (input or output) for each pin pro­
grammed as a general-purpose I/O port. The Port Direction bit has no effect on output-only port 
pins. These unused direction control bits can be used for bit storage. 

The Port Direction Register is read/write. When read, the register returns the value written to it 
previously. Pins with their direction fixed return the value in this register, not a value indicating 
their true direction. The direction of a port pin assigned to a peripheral function is controlled by 
the peripheral; the Port Direction value is ignored. 
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Register Name: 

Register Mnemonic: 

Register Function: 

15 

Bit Bit Name 
Mnemonic 

PD7:0 Port 
Direction 7:0 

INPUT/OUTPUT PORTS 

Port Direction Register 

PxDIR (P1 DIR, P2DIR) 

Controls the direction of pins programmed as 1/0 
ports. 

o 
p p p p p p p p 
0 0 0 0 0 0 0 0 
7 6 5 4 3 2 1 0 

A1313-0A 

Reset 
Function 

State 

FFH Setting the PD bit for a pin programmed as a 
general-purpose I/O port selects the pin as an 
input. Clearing the PD bit selects the pin as an 
output. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 

to a logic zero to ensure compatibility with future Intel products. 

Figure 11-6. Port Direction Register (PxDIR) 

11.2.3 Port Data Latch Register 

The Port Data Latch Register (Figure 11-7) holds the value to be driven on an output or bidirec­
tional pin. This value appears at the pin only if it is programmed as a port. 

The Port Data Latch Register is read/write. Reading a Port Data Latch Register returns the value 
of the latch itself and not that of the associated port pin. 
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Register Name: 

Register Mnemonic: 

Register Function: 

Bit Bit Name 
Mnemonic 

PL7:0 Port Data 
Latch 7:0 

Port Data Latch Register 

PxLTCH (P1LTCH, P2LTCH) 

Contains the data driven on pins programmed as 
output ports. 

Reset 
State 

FFH 

p P 
L L 
7 6 

p P 
L L 
5 4 

P 
L 
3 

Function 

P 
L 
2 

P 
L 
1 

o 
P 
L 
o 

The data written to a PL bit appears on pins 

A1314-0A 

programmed as general-purpose output ports. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be writ­
ten to a logic zero to ensure compatibility with future Intel products. 

Figure 11-7. Port Data Latch Register (PxLTCH) 

11.2.4 Port Pin State Register 

The Port Pin State Register (Figure 11-8) is a read-only register that is used to determine the state 
of a port pin. When the Port Pin State Register is read, the current state of the port pins is gated 
to the internal data bus. 
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Register Name: 

Register Mnemonic: 

Register Function: 

Bit Bit Name 
Mnemonic 

PP7:0 Port Pin 
State 7:0 

INPUT/OUTPUT PORTS 

Port Pin State Register 

PxPIN (P1 PIN, P2PIN) 

Reads the logic state at a port pin. 

Reset 
State 

p p 
p P 
7 6 

p p 
p P 
5 4 

p 
P 
3 

Function 

p 
P 
2 

o 
p p 
p P 
1 0 

A1315-0A 

XXXXH Reading the Port Pin State register returns the 
logic state present on the associated pin. 

NOTE: Reserved register bits are shown with gray shading_ Reserved bits must be written 
to a logic zero to ensure compatibility with future Intel products. 

Figure 11-8. Port Pin State Register (PxPIN) 

11.2.5 Initializing the VO Ports 

The state of the I/O ports following a reset is as follows: 

• Port 1 is configured for peripheral function (general-purpose chip-selects, GCS7:0). 

• Port 2 is configured for peripheral function. The direction of each pin is the default direction 
for the peripheral function (e.g., P2.lITXDl is an output, P2.5IBCLKO is an input). See 
Table 11-2 on page 11-7 for details. 

There are no set rules for initializing the I/O ports. The Port Data Latch should be programmed 
before selecting a pin as an output port (to prevent unknown Port Data Latch values from reaching 
the pins). 
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11.3 PROGRAMMING EXAMPLE 

Example 11-1 shows a typical ASM86 routine to configure the 110 ports. GCS7 through GCS4 
are routed to the pins, while Pl.O through P1.4 are used as output ports. The binary value 0101 is 
written to P1.0 through P1.3. The states of pins P2.6 and P2.7 are read and stored in the AL reg­
ister. 

$modl86 
name 
, 
;This file contains sample programming code for the 80Cl86EB I/O Port Unit. 
, 
;PCB EQUates in an include file. 
#include PCBMAP.inc 

segment public 
assume cs:code_seg 

I O_UNIT_EXAMPL proc near 
;write OIOIB to data latch for pins PI.3 through PI.O 

mov dx,PILTCH 
mov aI, OIOlb 
out dx,al 

;Gate data latch to output pins. PI.3 to PI.O are port pins. 

mov dx,PICON 
mov al,OFOh 
out dx,al 

;Read P2.6 and P2.7.We assume they have not been changed to output pins since 
;reset. 

mov 
in 
and 

dx,P2PIN 
al,dx 
al,OCOh; strip unused bits 

;AL now holds the states of the P2.6 and P2.7 pins. 

code_seg ends 
end 

Example 11·1. VO Port Programming Example 
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CHAPTER 12 
MATH COPROCESSING 

The 80C186 Modular Core Family meets the need for a general-purpose embedded microproces­
sor. In most data control applications, efficient data movement and control instructions are fore­
most and arithmetic performed on the data is simple. However, some applications do require more 
powerful arithmetic instructions and more complex data types than those provided by the 80C 186 
Modular Core. 

12.1 OVERVIEW OF MATH COPROCESSING 

Applications needing advanced mathematics capabilities have the following characteristics. 

• Numeric data values are non-integral or vary over a wide range 

• Algorithms produce very large or very small intermediate results 

• Computations must be precise (i.e., calculations must retain several significant digits) 

• Computations must be reliable without dependence on programmed algorithms 

• Overall math performance exceeds that afforded by a general-purpose processor and 
software alone 

For the 80C186 Modular Core family, the 8OC187 math coprocessor satisfies the need for pow­
erful mathematics. The 80C 187 can increase the math performance of the microprocessor system 
by 50 to 100 times. 

12.2 AVAILABILITY OF MATH COPROCESSING 

The 80C 186 Modular Core supports the 80C 187 with a hardware interface under microcode con­
trol. However, not all proliferations support the 80C187. Some package types have insufficient 
leads to support the required external handshaking requirements. The 3-volt versions of the pro­
cessor do not specify math coprocessing because the 80C 187 has only a 5-volt rating. Please refer 
to the current data sheets for details. 

The core has an Escape Trap (ET) bit in the PCB Relocation Register (Figure 4-1 on page 4-2) to 
control the availability of math coprocessing. If the ET bit is set, an attempted numerics execution 
results in a Type 7 interrupt. The 80C187 will not work with the 8-bit bus version of the processor 
because a1l80C187 accesses must be 16-bit. The 80C188 Modular Core automatically traps ESC 
(numerics) opcodes to the Type 7 interrupt, regardless of Relocation Register programming. 
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12.3 THE 80C187 MATH COPROCESSOR 

The 80C187's high performance is due to its 80-bit internal architecture. It contains three units: 
a Floating Point Unit, a Data Interface and Control Unit and a Bus Control Logic Unit. The foun­
dation of the Floating Point Unit is an 8-element register file, which can be used either as indi­
vidually addressable registers or as a register stack. The register file allows storage of 
intermediate results in the 80-bit format. The Floating Point Unit operates under supervision of 
the Data Interface and Control Unit. The Bus Control Logic Unit maintains handshaking and 
communications with the host microprocessor. The 8OC187 has built-in exception handling. 

The 80C187 executes code written for the Intel387™ DX and Intel387 SX math coprocessors. 
The 8OC187 conforms to ANSIIIEEE Standard 754-1985. 

12.3.1 80C187 Instruction Set 

8OC187 instructions fall into six functional groups: data transfer, arithmetic, comparison, tran­
scendental, constant and processor control. Typical 8OC187 instructions accept one or two oper­
ands and produce a single result. Operands are usually located in memory or the 8OC187 stack. 
Some operands are predefined; for example, FSQRT always takes the square root of the number 
in the top stack element. Other instructions allow or require the programmer to specify the oper­
and(s) explicitly along with the instruction mnemonic. Still other instructions accept one explicit 
operand and one implicit operand (usually the top stack element). 

As with the basic (non-numerics) instruction set, there are two types of operands for coprocessor 
instructions, source and destination. Instruction execution does not alter a source operand. Even 
when an instruction converts the source operand from one format to another (for example, real to 
integer), the coprocessor performs the conversion in a work area to preserve the source operand. 
A destination operand differs from a source operand because the 8OC187 can alter the register 
when it receives the result of the operation. For most destination operands, the coprocessor usu­
ally replaces the destinations with results. 
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12.3.1.1 Data Transfer Instructions 

Data transfer instructions move operands between elements of the 80C187 register stack or be­
tween stack top and memory. Instructions can convert any data type to temporary real and load it 
onto the stack in a single operation. Conversely, instructions can convert a temporary real operand 
on the stack to any data type and store it to memory in a single operation. Table 12-1 summarizes 
the data transfer instructions. 

Table 12-1. 80C187 Data Transfer Instructions 

Real Transfers 

FLD Load real 

FST Store real 

FSTP Store real and pop 

FXCH Exchange registers 

Integer Transfers 

FILD Integer load 

FIST I nteger store 

FISTP Integer store and pop 

Packed Decimal Transfers 

FBLD Packed decimal (BCD) load 

FBSTP Packed decimal (BCD) store and pop 

12.3.1.2 Arithmetic Instructions 

The 80C187's arithmetic instruction set includes many variations of add, subtract, multiply, and 
divide operations and several other useful functions. Examples include a simple absolute value 
and a square root instruction that executes faster than ordinary division. Other arithmetic instruc­
tions perform exact modulo division, round real numbers to integers and scale values by powers 
of two. 

Table 12-2 summarizes the available operation and operand forms for basic arithmetic. In addi­
tion to the four normal operations, "reversed" instructions make subtraction and division "sym­
metrical" like addition and multiplication. In summary, the arithmetic instructions are highly 
flexible for these reasons: 

• the 80C187 uses register or memory operands 

• the 80C 187 can save results in a choice of registers 
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Available data types include temporary real, long real, short real, short integer and word integer. 
The 80C187 performs automatic type conversion to temporary real. 

Table 12-2. 80C187 Arithmetic Instructions 

Addition Division 

FADD Add real FDIV Divide real 

FADDP Add real and pop FDIVP Divide real and pop 

FIADD Integer add FIDIV Integer divide 

Subtraction FDIVR Divide real reversed 

FSUB Subtract real FDIVRP Divide real reversed and pop 

FSUBP Subtract real and pop FIDIVR Integer divide reversed 

FISUB I nteger subtract Other Operations 

FSUBR Subtract real reversed FSQRT Square root 

FSUBRP Subtract real reversed and pop FSCALE Scale 

FISUBR Integer subtract reversed FPREM Partial remainder 

Multiplication FRNDINT Round to integer 

FMUL Multiply real FXTRACT Extract exponent and significand 

FMULP Multiply real and pop FABS Absolute value 

FIMUL Integer multiply FCHS Change sign 

FPREMI Partial remainder (IEEE) 
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12.3.1.3 Comparison Instructions 

Each comparison instruction (see Table 12-3) analyzes the stack top element, often in relationship 
to another operand. Then it reports the result in the Status Word condition code. The basic oper­
ations are compare, test (compare with zero) and examine (report tag, sign and normalization). 

Table 12-3. 80C187 Comparison Instructions 

FCOM Compare real 

FCOMP Compare real and pop 

FCOMPP Compare real and pop twice 

FICOM Integer compare 

FICOMP Integer compare and pop 

FTST Test 

FXAM Examine 

FUCOM Unordered compare 

FUCOMP Unordered compare and pop 

FUCOMPP Unordered compare and pop twice 

12.3.1.4 Transcendental Instructions 

Transcendental instructions (see Table 12-4) perform the core calculations for common trigono­
metric, hyperbolic, inverse hyperbolic, logarithmic and exponential functions. Use prologue code 
to reduce arguments to a range accepted by the instruction. Use epilogue code to adjust the result 
to the range of the original arguments. The transcendentals operate on the top one or two stack 
elements and return their results to the stack. 

Table 12-4. 80C187 Transcendental Instructions 

FPTAN Partial tangent 

FPATAN Partial arctangent 

F2XM1 2x-1-

FYL2X Y log2X 

FYL2XP1 Y log2(X+1) 

FCOS Cosine 

FSIN Sine 

FSINCOS Sine and Cosine 
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12.3.1.5 Constant Instructions 

Each constant instruction (see Table 12-5) loads a commonly used constant onto the stack. The 
. values have full SO-bit precision and are accurate to about 19 decimal digits. Since a temporary 
real constant occupies 10 memory bytes, the constant instructions, only 2 bytes long, save mem­
ory space. 

Table 12-5. 80C187 Constant Instructions 

FLDZ Load + 0.1 

FLD1 Load +1.0 

FLDPI Load 

FLDL2T Loadlog21o 

FLDL2E Load IOg2e 

FLDLG2 Load IOg102 

FLDLN2 Load log. 2 

12.3.1.6 Processor Control Instructions 

Computations do not use the processor control instructions; these instructions are available for 
activities at the operating system level. This group (see Table 12-6) include~ initialization, excep­
tion handling and task switching instructions. 

Table 12-6. 80C187 Processor Control Instructions 

FINIT/FNINIT Initialize processor FLDENV Load environment 

FDISI/FNDISI Disable interrupts FSAVElFNSAVE Save state 

FENI/FNENI Enable interrupts FRSTOR Restore state 

FLDCW Load control word FINCSTP Increment stack pOinter 

FSTCW/FNSTCW Store control word FDECSTP Decrement stack pointer 

FSTSW/FNSTSW Store status word FFREE Free register 

FCLEXlFNCLEX Clear exceptions FNOP No operation 

FSTENVIFNSTENV Store environment FWAIT CPU wait 
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12.3.2 80C187 Data Types 

The microprocessor/math coprocessor combination supports seven data types: 

• Word Integer - A signed 16-bit numeric value. All operations assume a 2's complement 
representation. 

• Short Integer - A signed 32-bit numeric value (double word). All operations assume a 2's 
complement representation. 

• Long Integer - A signed 64-bit numeric value (quad word). All operations assume a 2's 
complement representation. 

• Packed Decimal- A signed numeric value contained in an 80-bit BCD format. 

• Short Real - A signed 32-bit floating point numeric value. 

• Long Real- A signed 64-bit floating point numeric value. 

• Temporary Real - A signed 80-bit floating point numeric value. Temporary real is the 
native 8OC187 format. 

Figure 12-1 graphically represents these data types. 

12.4 MICROPROCESSOR AND COPROCESSOR OPERATION 

The 8OC187 interfaces directly to the microprocessor (as shown in Figure 12-2) and operates as 
an I/O-mapped slave peripheral device. Hardware handshaking requires connections between the 
8OC187 and four special pins on the processor: NCS, BUSY, PEREQ and ERROR. These pins 
are not available in some package types. Refer to the data sheet for details. 
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Word 
Integer 

Short 

Integer 

Long 
Integer 

Packed 
Decimal 

Short 
Real 

Long 
Real 

Temporary 
Real 

12-8 

lIE Increasing Significance 

(Two's Complement) 

lsi Magnitude I (Two's Complement) 

31 0 

lsi Magnitude 

63 

lsi Biased I Significand Exponent 

63 52"'-1 ... 

lsi 
Biased 

64~ Significand 
Exponent 

79 

NOTES: 
S = Sign bit (0 = positive, 1 = negative) 
dn = Decimal digit (two per byte) 

I (Two's 
Complement) 

0 

I 
0 

I 
0 

X = Bits have no significance; 80C187 ignores when loading. zeros when storing . 
... = Position of implicit binary point 
I = Integer bit of significand; stored in temporary real, implicit in short and long real 
Exponent Bias (normalized values): 

Short Real: 127 (7FH) 
Long Real: 1023 (3FFH) 
Temporary Real: 16383 (FFFH) 

Figure 12-1. 80C187-Supported Data Types 
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Figure 12-2. 80C186 Modular Core Family/80C187 System Configuration 
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12.4.1 Clocking the 80C187 

The microprocessor and math coprocessor operate asynchronously, and their clock rates may dif­
fer. The 80C187 has a CKM pin that determines whether it uses the input clock directly or divided 
by two. Direct clocking works up to 12.5 MHz, which makes it convenient to feed the clock input 
from the microprocessor's CLKOUT pin. Beyond 12.5 MHz, the 80C187 must use a multiply­
by-two clock input up to a maximum of 32 MHz. The microprocessor and the math coprocessor 
have correct timing relationships, even with operation at different frequencies. 

12 .. 4.2 Processor Bus Cycles Accessing the 80C187 

Data transfers between the microprocessor and the 80C187 occur through the dedicated, 16-bit 
110 ports shown in Table 12-7. When the processor encounters a numerics opcode, it first writes 
the opcode to the 80C187. The 8OC187 decodes the instruction and passes elementary instruction 
information (Opcode Status Word) back to the processor. Since the 80C187 is a slave processor, 
the Modular Core processor performs all loads and stores to memory. Including the overhead in 
the microprocessor's microcode, each data transfer between memory and the 80C187 (via the mi­
croprocessor) takes at least 17 processor clocks. 

Table 12-7. 80C187 VO Port Assignments 

I/O Address Read Definition Write Definition 

OOFBH Status/Control Opcode 

OOFAH Data Data 

OOFCH Reserved CS:IP, DS:EA 

OOFEH Opcode Status Reserved 

The microprocessor cannot process any numerics (ESC) opcodes alone. If the CPU encounters a 
numerics opcode when the Escape Trap (ET) bit in the Relocation Register is a zero and the 
8OC187 is not present, its operation is indeterminate. Even the FINITIFNINIT initialization in­
struction (used in the past to test the presence of a coprocessor) fails without the 8OC187. If an 
application offers the 80C187 as an option, problems can be prevented in one ofthree ways: 

• Remove all numerics (ESC) instructions, including code that checks for the presence of the 
8OC187. 

• Use a jumper or switch setting to indicate the presence of the 80C187. The program can 
interrogate the jumper or switch setting and branch away from numerics instructions when 
the 80C 187 socket is empty. 

• Trick the microprocessor into predictable operation when the 80C187 socket is empty. The 
fix is placing pull-up or pull-down resistors on certain data and handshaking lines so the 
CPU reads a recognizable Opcode Status Word. This solution requires a detailed knowledge 
of the interface. 
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Bus cycles involving the 8OC187 Math Coprocessor behave exactly like other 110 bus cycles with 
respect to the processor's control pins. See "System Design Tips" for information on integrating 
the 80C187 into the overall system. 

12.4.3 System Design Tips 

All 8OC187 operations require that bus ready be asserted. The simplest way to return the ready 
indication is through hardware connected to the processor's external ready pin. If you program a 
chip-select to cover the math coprocessor port addresses, its ready programming is in force and 
can provide bus ready for coprocessor accesses. The user must verify that there are no conflicts 
from other hardware connected to that chip-select pin. 

A chip-select pin goes active on 80C 187 accesses if you program it for a range including the math 
coprocessor 110 ports. The converse is not true - a non-80C187 access cannot activate NCS (nu­
merics coprocessor select), regardless of programming. 

In a buffered system, it is customary to place the 8OC187 on the local bus. Since DTR and DEN 
function normally during 80C187 transfers, you must qualify DEN with NCS (see Figure 12-3). 
Otherwise, contention between the 8OC187 and the transceivers occurs on read cycles to the 
8OC187. 

The microprocessor's local bus is available to the integrated peripherals during numerics execu­
tion whenever the CPU is not communicating with the 80C 187. The idle bus allows the processor 
to intersperse DRAM refresh cycles with accesses to the 8OC187. 

The microprocessor's local bus is available to alternate bus masters during execution of numerics 
instructions when the CPU does not need it. Bus cycles driven by alternate masters (via the 
HOLDIHLDA protocol) can suspend coprocessor bus cycles for an indefinite period. 

The programmer can lock 80C187 instructions. The CPU asserts the LOCK pin for the entire du­
ration of a numerics instruction, monopolizing the bus for a very long time. 
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Figure 12-3. 80C187 Configuration with a Partially Buffered Bus 

12-12 

D15:8 

D7:0 

A1255-01 

I 



MATH COPROCESSING 

12.4.4 Exception Trapping 

The 80C 187 detects six error conditions that can occur during instruction execution. The 80C 187 
can apply default fix-ups or signal exceptions to the microprocessor's ERROR pin. The processor 
tests ERROR at the beginning of numerics instructions, so it traps an exception on the next at­
tempted numerics instruction after it occurs. When ERROR tests active, the processor executes a 
Type 16 interrupt. 

There is no automatic exception-trapping on the last numerics instruction of a series. If the last 
numerics instruction writes an invalid result to memory, subsequent non-numerics instructions 
can use that result as if it is valid, further compounding the original error. Insert the FNOP in­
struction at the end of the 80C 187 routine to force an ERROR check. If the program is written in 
a high-level language, it is impossible to insert FNOP. In this case, route the error signal through 
an inverter to an interrupt pin on the microprocessor (see Figure 12-4). With this arrangement, 
use a flip-flop to latch BUSY upon assertion of ERROR. The latch gets cleared during the excep­
tion-handler routine. Use an additional flip-flop to latch PEREQ to maintain the correct hand­
shaking sequence with the microprocessor. 

12.5 Example Math Coprocessor Routines 

Example 12-1 shows the initialization sequence for the 80C187. Example 12-2 is an example of 
a floating point routine using the 80C187. The FSINCOS instruction yields both sine and cosine 
in one operation. 
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Figure 12-4. 80C187 Exception Trapping via Processor Interrupt Pin 
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MATH COPROCESSING 

$modlB6 
name example_BOClB7_init 

; FUNCTION: 

; SYNTAX: 

; INPUTS: 

;OUTPUTS: 

;NOTE: 

Ok: 

push 
mov 

cli 

fninit 
fnstcw 

sti 

mov 
and 
cmp 
je 
xor 
pop 
ret 

and 
fldcw 

mov 
pop 
ret 

_lB7_initendp 

lib_BOlB6ends 
end 

This function initializes the BOClB7 numerics coprocessor. 

extern unsigned char far lB7_init(void); 

None 

unsigned char - OOOOh -> False -> coprocessor not initialized 
ffffh -> True -> coprocessor initialized 

Parameters are passed on the stack as required by 
high-level languages. 

segment public 'code' 
assume cs:lib_BOlB6 

bp 
bp, sp 

[bp-2] 

ax, [bp-2] 
ax, 0300h 
ax, 0300h 
Ok 
ax, ax 
bp 

[bp-2], Offfeh 
[bp-2] 

aX,Offffh 
bp 

;save caller's bp 
;get current top of stack 

;disable maskable interrupts 

;init BOClB7 processor 
;get current control word 

;enable interrupts 

;mask off unwanted control bits 
;PC bits = 11 
;yes: processor ok 
;return false (BOClB7 not ok) 
;restore caller's bp 

;unmask possible exceptions 

;return true (BOClB7 ok) 
;restore caller's bp 

Example 12-1. Initialization Sequence for 80C187 Math Coprocessor 
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$modl86 
$modcl87 

name 

; DESCRIPTION: This code section uses the 80Cl87 FSINCOS transcendental 
instruction to convert the locus of a point from polar 
to Cartesian coordinates. 

;VARIABLES: The variables consist of the radius, r, and the angle, theta. 
Both are expressed as 32-bit reals and 0 <= theta <= pil4. 

;RESULTS: The results of the computation are the coordinates x and y 
expressed as 32-bit reals. 

;NOTES: This routine is coded for Intel ASM86. It is not set up as an 
HLL-callable routine. 

convert 

This code assumes that the 80Cl87 has already been initialized. 

assume cs:code, ds:data 

data 

data 

code 

mov 
mov 

fld 
fld 
fsincos 
fmul 
fstp 
fmul 
fstp 

segment at OlOOh 
r dd x.xxxx 
theta dd x.xxxx 
x dd ? 
Y dd ? 
ends 

segment at 0080h 

proc far 
ax, data 
ds, ax 

r 
theta 

st, st(2) 
x 

y 

;substitute real operand 
;substitute real operand 

;load radius 
;load angle 
;st=cos, st(l)=sin 
;compute x 
;store to memory and pop 
;compute Y 
;store to memory and pop 

convert endp 

code ends 
end 

Example 12-2. Floating Point Math Routine Using FSINCOS 
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CHAPTER 13 
ONCE MODE 

ONCE (pronounced "ahnce") Mode provides the ability to three-state all output, bidirectional, or 
weakly held high/low pins except OSCOUT. To allow device operation with a crystal network, 
OSCOUT does not three-state. 

ONCE Mode electrically isolates the device from the rest of the board logic. This isolation allows 
a bed-of-nails tester to drive the device pins directly for more accurate and thorough testing. An 
in-circuit emulation probe uses ONCE Mode to isolate a surface-mounted device from board log­
ic and essentially "take over" operation of the board (without removing the soldered device from 
the board). 

13.1 ENTERING/LEAVING ONCE MODE 

Forcing AI9/0NCE low while RESIN is asserted (low) enables ONCE Mode (see Figure 13-1). 
Maintaining AI9/0NCE and RESIN low continues to keep ONCE Mode active. Returning 
AI9/0NCE high exits ONCE Mode. 

However, it is possible to keep ONCE Mode always active by deasserting RESIN while keeping 
AI9/0NCE low. Removing RESIN "latches" ONCE Mode and allows AI9/0NCE to be driven 
to any level. A 19/0NCE must remain low for at least one clock beyond the time RESIN is driven 
high. Asserting RESIN exits ONCE Mode, assuming AI9/0NCE does not also remain low (see 
Figure 13-1). 

I 

A19/0NCE 

All output, 
bidirectional, 
weakly held 
pins except 

OSCOUT 

NOTES: 1. Entering ONCE Mode. 
2. Latching ONCE Mode. 
3. Leaving ONCE Mode (assuming 2 occurred). 

Figure 13-1. Entering/Leaving ONCE Mode 

A1260-0A 
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APPENDIX A 
80C186 INSTRUCTION SET 

ADDITIONS AND EXTENSIONS 

The 80C 186 Modular Core family instruction set differs from the original 8086/8088 instruction 
set in two ways. First, several instructions that were not available in the 8086/8088 instruction set 
have been added. Second, several 8086/8088 instructions have been enhanced for the 80C186 
Modular Core family instruction set. 

A.1 80C186 INSTRUCTION SET ADDITIONS 

This section describes the seven instructions that were added to the base 8086/8088 instruction 
set to make the instruction set for the 80C186 Modular Core family. These instructions did not 
exist in the 8086/8088 instruction set. 

• Data transfer instructions 

PUSHA 

POP A 

• String instructions 

INS 

OUTS 

• High-level instructions 

ENTER 

LEAVE 

BOUND 

A.1.1 Data Transfer Instructions 

PUSHAIPOPA 

PUSHA (push all) and POPA (pop all) allow all general-purpose registers to be stacked and un­
stacked. The PUSHA instruction pushes all CPU registers (except as noted below) onto the stack. 
The POPA instruction pops all registers pushed by PUSHA off of the stack. The registers are 
pushed onto the stack in the following order: AX, CX, DX, BX, SP, BP, SI, DI. The Stack Pointer 
(SP) value pushed is the Stack Pointer value before the AX register was pushed. When POPA is 
executed, the Stack Pointer value is popped, but ignored. Note that this instruction does not save 
segment registers (CS, DS, SS, ES), the Instruction Pointer (IP), the Processor Status Word or any 
integrated peripheral registers. 
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A.1.2 String Instructions 

INS source_string, port 

INS (in string) performs block input from an I/O port to memory. The port address is placed in 
the DX register. The memory address is placed in the DI register. This instruction uses the ES 
segment register (which cannot be overridden). After the data transfer takes place, the pointer reg­
ister (DI) increments or decrements, depending on the value of the Direction Flag (DF). The 
pointer register changes by one for byte transfers or by two for word transfers. 

OUTS port, destination_string 

OUTS (out string) performs block output from memory to an I/O port. The port address is placed 
in the DX register. The memory address is placed in the SI register. This instruction uses the DS 
segment register, but this may be changed with a segment override instruction. After the data 
transfer takes place, the pointer register (SI) increments or decrements, depending on the value 
of the Direction Flag (DF). The pointer register changes by one for byte transfers or by two for 
word transfers. 

A.1.3 High-Level Instructions 

ENTER size, level 

ENTER creates the stack frame required by most block-structured high-level languages. The first 
parameter, size, specifies the number of bytes of dynamic storage to be allocated for the procedure 
being entered (I6-bitvalue). The second parameter, level, is the lexical nesting level of the pro­
cedure (8-bit value). Note that the higher the lexical nesting level, the lower the procedure is in 
the nesting hierarchy. 

The lexical nesting level determines the number of pointers to higher level stack frames copied 
into the current stack frame. This list of pointers is called the display. The first word of the display 
points to the previous stack frame. The display allows access to variables of higher level (lower 
lexical nesting level) procedures. 

After ENTER creates a display for the current procedure, it allocates dynamic storage space. The 
Stack Pointer decrements by the number of bytes specified by size. All PUSH and POP operations 
in the procedure use this value of the Stack Pointer as a base. 

Two forms of ENTER exist: non-nested and nested. A lexical nesting level of 0 specifies the non­
nested form. In this situation, BP is pushed, then the Stack Pointer is copied to BP and decrement­
ed by the size of the frame. If the lexical nesting level is greater than 0, the nested form is used. 
Figure A-I gives the formal definition of ENTER. 
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The following listing gives the formal definition of the 

ENTER instruction for all cases. 

LEVEL denotes the value of the second operand. 

Push BP 

Set a temporary value FRAME_PTR: = SP 

If LEVEL > 0 then 

End if 

BP:=FRAME_PTR 

Repeat (LEVEL - 1) times: 

BP:=BP - 2 

Push the word pointed to by BP 

End Repeat 

Push FRAME_PTR 

sp:=sp - first operand 

Figure A-1. Formal Definition of ENTER 

ENTER treats a reentrant procedure as a procedure calling another procedure at the same lexical 
level. A reentrant procedure can address only its own variables and variables of higher-level call­
ing procedures. ENTER ensures this by copying only stack frame pointers from higher-level pro­
cedures. 

Block-structured high-level languages use lexical nesting levels to control access to variables of 
previously nested procedures. For example, assume for Figure A-2 that Procedure A calls Proce­
dure B, which calls Procedure C, which calls Procedure D. Procedure C will have access to the 
variables of Main and Procedure A, but not to those of Procedure B because Procedures C and B 
operate at the same lexical nesting level. 

The following is a summary of the variable access for Figure A-2. 

I 

1. 

2. 

3. 

4. 

5. 

Main has variables at fixed locations. 

Procedure A can access only the fixed variables of Main. 

Procedure B can access only the variables of Procedure A and Main. 
Procedure B cannot access the variables of Procedure C or Procedure D. 

Procedure C can access only the variables of Procedure A and Main. 
Procedure C cannot access the variables of Procedure B or Procedure D. 

Procedure D can access the variables of Procedure C, Procedure A and Main. 
Procedure D cannot access the variables of Procedure B. 
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Main Program (Lexical Level 1) 

Procedure A (Lexical Level 2) 

Procedure B (Lexical Level 3) 

Procedure C (Lexical Level 3) 

Procedure D (Lexical Level 4) 

A1001-0A 

Figure A-2. Variable Access in Nested Procedures 

The first ENTER, executed in the Main Program, allocates dynamic storage space for Main, but 
no pointers are copied_ The only word in the display points to itself because no previous value 
exists to return to after LEAVE is executed (see Figure A-3)_ 

15 

BP 

SP ~ 

OldBP 
BPM 

* BPM = BP Value for MAIN 

0 

• Display Main 

Dynamic 
Storage 
Main 

Figure A-3. Stack Frame for Main at Level 1 

A1002-0A 

After Main calls Procedure A, ENTER creates a new display for Procedure A. The first word 
points to the previous value of BP (BPM). The second word points to the current value of BP 
(BPA). BPM contains the base for dynamic storage in Main. All dynamic variables for Main will 
be at a fixed offset from this value (see Figure A-4)_ 
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OldBP 

BPM 

BPM 

BPM 

BPA· 

-BPA - BP Value for Procedure A 

0 

} DisplayA 

} 
Dynamic 

Storage A 

Al003·0A 

Figure A-4. Stack Frame for Procedure A at Level 2 

After Procedure A calls Procedure B, ENTER creates the display for Procedure B. The first word 
of the display points to the previous value of BP (BPA). The second word points to the value of 
BP for MAIN (BPM). The third word points to the BP for Procedure A (BPA). The last word 
points to the current BP (BPB). Procedure B can access variables in Procedure A or Main via the 
appropriate BP in the display (see Figure A-5). 

After Procedure B calls Procedure C, ENTER creates the display for Procedure C. The first word 
of the display points to the previous value of BP (BPB). The second word points to the value of 
BP for MAIN (BPM). The third word points to the value of BP for Procedure A (BPA). The fourth 
word points to the current BP (BPC). Because Procedure B and Procedure C have the same lexical 
nesting level, Procedure C cannot access variables in Procedure B. The only pointer to Procedure 
B in the display of Procedure C exists to allow the LEAVE instruction to collapse the Procedure 
C stack frame (see Figure A-6). 

I A-5 



80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS 

15 

OldBP 
BPM 

BPM 
BPM 
BPA 

BP BPA 
~ 

BPM 
BPA 
BPB 

SP -

0 

} Display B 

} Dynamic 
Storage B 

Figure A-S. Stack Frame for Procedure B at Level 3 Called from A 
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80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS 

OldBP 
BPM 

BPM 
BPM 
BPA 

BPA 
BPM 
BPA 
BPB 

BPB 
BPM 
BPA 
BPC 

0 

} 
} 

DisplayC 

Dynamic 
Storage C 

A1005-0A 

Figure A-6. Stack Frame for Procedure C at Level 3 Called from B 

LEAVE reverses the action of the most recent ENTER instruction. It collapses the last stack frame 
created. First, LEAVE copies the current BP to the Stack Pointer, releasing the stack space allo­
cated to the current procedure. Second, LEAVE pops the old value ofBP from the stack, to return 
to the calling procedure's stack frame. A RET instruction will remove arguments stacked by the 
calling procedure for use by the called procedure. 

I 
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BOUND register, address 

BOUND verifies that the signed value in the specified register lies within specified limits. If the 
value does not lie within the bounds, an array bounds exception (type 5) occurs. BOUND is useful 
for checking array bounds before attempting to access an array element. This prevents the pro­
gram from overwriting information outside the limits of the array. 

BOUND has two operands. The first, register, specifies the register being tested. The second, ad­
dress, contains the effective relative address of the two signed boundary values. The lower limit 
word is at this address and the upper limit word immediately follows. The limit values cannot be 
register operands (if they are, an invalid opcode exception occurs). 

A.2 80C186 INSTRUCTION SET ENHANCEMENTS 

This section describes ten instructions that were available with the 8086/8088 but have been en­
hanced for the 80C186 Modular Core family. 

• Data transfer instructions 

- PUSH 

• Arithmetic instructions 

- IMUL 

• Bit manipulation instructions (shifts and rotates) 

SAL 

SHL 

SAR 

SHR 

ROL 

ROR 

RCL 

RCR 

A.2.1 Data Transfer Instructions 

PUSH data 

PUSH (push immediate) allows an immediate argument, data, to be pushed onto the stack. The 
value can be either a byte or a word. Byte values are sign extended to word size before being 
pushed. 
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A.2.2 Arithmetic Instructions 

IMUL destination, source, data 

IMUL (integer immediate multiply, signed) allows a value to be multiplied by an immediate op­
erand. IMUL requires three operands. The first, destination, is the register where the result will 
be placed. The second, source, is the effective address of the multiplier. The source may be the 
same register as the destination, another register or a memory location. The third, data, is an im­
mediate value used as the multiplicand. The data operand may be a byte or word. If data is a byte, 
it is sign extended to 16 bits. Only the lower 16 bits of the result are saved. The result must be 
placed in a general-purpose register. 

A.2.3 Bit Manipulation Instructions 

This section describes the eight enhanced bit-manipulation instructions. 

A.2.3.1 Shift Instructions 

SAL destination, count 

SAL (immediate shift arithmetic left) shifts the destination operand left by an immediate value. 
SAL has two operands. The first, destination, is the effective address to be shifted. The second, 
count, is an immediate byte value representing the number of shifts to be made. The CPU will 
AND count with IFH before shifting, to allow no more than 32 shifts. Zeros shift in on the right. 

SHL destination, count 

SHL (immediate shift logical left) is physically the same instruction as SAL (immediate shift 
arithmetic left). 

SAR destination, count 

SAR (immediate shift arithmetic right) shifts the destination operand right by an immediate val­
ue. SAL has two operands. The first, destination, is the effective address to be shifted. The sec­
ond, count, is an immediate byte value representing the number of shifts to be made. The CPU 
will AND count with IFH before shifting, to allow no more than 32 shifts. The value of the orig­
inal sign bit shifts into the most-significant bit to preserve the initial sign. 

SHR destination, count 

SHR (immediate shift logical right) is physically the same instruction as SAR (immediate shift 
arithmetic right). 
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A.2.3.2 Rotate Instructions 

ROL destination, count 

ROL (immediate rotate left) rotates the destination byte or word left by an immediate value. ROL 
has two operands. The first, destination, is the effective address to be rotated. The second, count, 
is an immediate byte value representing the number of rotations to be made. The most-significant 
bit of destination rotates into the least-significant bit. 

ROR destination, count 

ROR (immediate rotate right) rotates the destination byte or word right by an immediate value. 
ROR has two operands. The first, destination, is the effective address to be rotated. The second, 
count, is an immediate byte value representing the number of rotations to be made. The least-sig­
nificant bit of destination rotates into the most-significant bit. 

RCL destination, count 

RCL (immediate rotate through carry left) rotates the destination byte or word left by an imme­
diate value. RCL has two operands. The first, destination, is the effective address to be rotated. 
The second, count, is an immediate byte value representing the number of rotations to be made. 
The Carry Flag (CF) rotates into the least-significant bit of destination. The most-significant bit 
of destination rotates into the Carry Flag. 

RCR destination, count 

RCR (immediate rotate through carry right) rotates the destination byte or word right by an im­
mediate value. RCR has two operands. The first, destination, is the effective address to be rotated. 
The second, count, is an immediate byte value representing the number of rotations to be made. 
The Carry Flag (CF) rotates into the most-significant bit of destination. The least-significant bit 
of destination rotates into the Carry Flag. 
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APPENDIX B 
INPUT SYNCHRONIZATION 

Many input signals to an embedded processor are asynchronous. Asynchronous signals do not re­
quire a specified setup or hold time to ensure the device does not incur a failure. However, asyn­
chronous setup and hold times are specified in the data sheet to ensure recognition. Associated 
with each of these inputs is a synchronizing circuit (see Figure B-1) that samples the asynchro­
nous signal and synchronizes it to the internal operating clock. The output of the synchronizing 
circuit is then safely routed to the logic units. 

Asynchronous 
Input 1----10 

<D 
First 
Latch 

01------10 o 

® 
Second 

Latch 

Synchronized 
Output 

NOTES: 1. First latch sample clock, can be phase 1 or phase 2 depending on pin function. 

2. Second latch sample clock, opposite phase of first latch sample clock 
(e.g., if first latch is sampled with phase 1, the second latch is sampled with phase 2). 

Al007-0A 

Figure B-1. Input Synchronization Circuit 

B.1 WHY SYNCHRONIZERS ARE REQUIRED 

Every data latch requires a specific setup and hold time to operate properly. The duration of the 
setup and hold time defines a window during which the device attempts to latch the data. If the 
input makes a transition within this window, the output may not attain a stable state. The data 
sheet specifies a setup and hold window larger than is actually required. However, variations in 
device operation (e.g., temperature, voltage) require that a larger window be specified to cover 
all conditions. 

Should the input to the data latch make a transition during the sample and hold window, the output 
of the latch eventually attains a stable state. This stable state must be attained before the second 
stage of synchronization requires a valid input. To synchronize an asynchronous signal, the circuit 
in Figure B-1 samples the input into the first latch, allows the output to stabilize, then samples the 
stabilized value into a second latch. With the asynchronous signal resolved in this way, the input 
signal cannot cause an internal device failure. 

I 
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A synchronization failure can occur when the output of the first latch does not meet the setup and 
hold requirements of the input of the second latch. The rate of failure is determined by the actual 
size of the sampling window of the data latch and by the amount of time between the strobe sig­
nals of the two latches. As the sampling window gets smaller, the number of times an asynchro­
nous transition occurs during the sampling window drops. 

B.2 ASYNCHRONOUS PINS 

The 80C 1 86EB/8OC 1 88EB inputs that use the two-stage synchronization circuit are TOIN, TIIN, 
NMI, TESTIBUSY, INT4:0, HOLD, and all Port 2 input functions (P2.5IBCLKO, P2.2IBCLKl 
and P2.4/CTS 1). 
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APPENDIX C 
INSTRUCTION SET DESCRIPTIONS 

This appendix provides reference information for the 80Cl86 Modular Core family instruction 
set. Tables C-I through C-3 define the variables used in Table C-4, which lists the instructions 
with their descriptions and operations. 

Table C-1. Instruction Format Variables 

Variable Description 

dest A register or memory location that may contain data operated on by the instruction, 
and which receives (is replaced by) the resuH of the operation. 

src A register, memory location or immediate value that is used in the operation, but is not 
altered by the instruction 

target A label to which control is to be transferred directly, or a register or memory location 
whose content is the address of the location to which control is to be transferred 
indirectly. 

disp8 A label to which control is to be conditionally transferred; must lie within -128 to +127 
bytes of the first byte of the next instruction. 

accum Register AX for word transfers, AL for bytes. 

port An I/O port number; specified as an immediate value of 0-255, or register OX (which 
contains port number in range o-64K). 

src-string Name of a string in memory that is addressed by register SI; used only to identify 
string as byte or word and specify segment override, if any. This string is used in the 
operation, but is not altered. 

dest-string Name of string in memory that is addressed by register 01; used only to identify string 
as byte or word. This string receives (is replaced by) the result of the operation. 

count Specifies number of bits to shift or rotate; written as immediate value 1 or register CL 
(which contains the count in the range 0-255). 

interrupt-type Immediate value of 0-255 identifying interrupt pOinter number. 

optional-pop-value Number of.bytes (o-64K, ordinarily an even number) to discard from the stack. 

external-opcode Immediate value (0-63) that is encoded in the instruction for use by an external 
processor. 
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Table C-2. Instruction Operands 

Operand Description 

reg An 8- or 16-bit general register. 

reg16 An 16-bit general register. 

seg-reg A segment register. 

accum Register AX or AL 

immed A constant in the range O-FFFFH. 

immed8 A constant in the range O-FFH. 

mem An 8- or 16-bit memory location. 

mem16 A 16-bit memory location. 

mem32 A 32-bit memory location. 

src-table Name of 256-byte translate table. 

src-string Name of string addressed by register SI. 

dest-string Name of string addressed by register DI. 

short-label A label within the -128 to +127 bytes of the end of the instruction. 

near-label A label in current code segment. 

far-label A label in another code segment. 

near-proc A procedure in current code segment. 

far-proc A procedure in another code segment. 

memptr16 A word containing the offset of the location in the current code segment to which 
control is to be transferred. 

memptr32 A doubleword containing the offset and the segment base address of the location in 
another code segment to which control is to be transferred. 

regptr16 A 16-bit general register containing the offset of the location in the current code 
segment to which control is to be transferred. 

repeat A string instruction repeat prefix. 

C-2 
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Table C-3. Flag Bit Functions 

Name Function 

AF Auxiliary Flag: 

Set on carry from or borrow to the low order four bits of AL; cleared otherwise. 

CF Carry Flag: 

Set on high-order bit carry or borrow; cleared otherwise. 

DF Direction Flag: 

Causes string instructions to auto decrement the appropriate index register 
when set. Clearing DF causes auto increment. 

IF Interrupt-enable Flag: 

When set, maskable interrupts will cause the CPU to transfer control to an 
interrupt vector specified location. 

OF Overflow Flag: 

Set if the signed result cannot be expressed within the number of bits in the 
destination operand; cleared otherwise. 

PF Parity Flag: 

Set if low-order 8 bits of result contain an even number of 1 bits; cleared 
otherwise. 

SF Sign Flag: 

Set equal to high-order bit of result (O if positive, 1 if negative). 

TF Single Step Flag: 

Once set, a single step interrupt occurs after the next instruction executes. TF 
is cleared by the Single step interrupt. 

ZF Zero Flag: 

Set if result is zero; cleared otherwise. 

C-3 
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Name 

AAA 

AAD 

AAM 

NOTE: 

C-4 

Table C-4. Instruction Set 

Description Operation 

ASCII Adjust for Addition: if 

AAA «AL) and OFH) > 9 or (AF) = 1 

Changes the contents of register AL to 
then 

(AL) ~ (AL) + 6 
a valid unpacked decimal number; the (AH) ~ (AH) + 1 
high-order half-byte is zeroed. (AF) ~ 1 

Instruction Operands: (CF) ~ (AF) 

none (AL) ~ (AL) and OFH 

ASCII Adjust for Division: (AL) ~ (AH) x OAH + (AL) 

AAD (AH) ~O 

Modifies the numerator in AL before 
dividing two valid unpacked decimal 
operands so that the quotient 
produced by the division will be a valid 
unpacked decimal number. AH must 
be zero for the subsequent DIV to 
produce the correct result. The 
quotient is returned in AL, and the 
remainder is returned in AH; both high-
order half-bytes are zeroed. 

Instruction Operands: 

none 

ASCII Adjust for Multiply: (AH) ~ (AL) / OAH 

AAM (AL) ~ (AL) % OAH 

Corrects the result of a previous multi-
plication of two valid unpacked 
decimal operands. A valid 2-digit 
unpacked decimal humber is derived 
from the content of AH and AL and is 
returned to AH and AL. The high-order 
half-bytes of the multiplied operands 
must have been OH for AAM to 
produce a correct result. 

Instruction Operands: 

none 

The three symbols used in the Flags Affected column are defined as follOWS: 
- the contents of the flag remain unchanged after the instruction Is executed 
? the contents of the flag is undefined after the instruction is executed 
./the flag is updated after the instruction is executed 

intet 

Flags 
Affected 

AF ./ 
CF ./ 
DF-
IF -
OF? 
PF? 
SF? 
TF -
ZF? 

AF? 
CF? 
DF-
IF -
OF? 
PF ./ 
SF ./ 
TF -
ZF ./ 

AF? 
CF? 
DF-
IF -
OF? 
PF ./ 
SF ./ 
TF -
ZF ./ 

I 



int'et INSTRUCTION SET DESCRIPTIONS 

Name 

AAS 

ADC 

NOTE: 

I 

Table C-4. Instruction Set (Continued) 

Description Operation 

ASCII Adjust for Subtraction: if 

AAS ((AL) and OFH) > 9 or (AF) = 1 
then 

Corrects the result of a previous (AL) f- (AL) - 6 
subtraction of two valid unpacked (AH) f- (AH) - 1 
decimal operands (the destination (AF) f- 1 
operand must have been specified as (CF) f- (AF) 
register AL). Changes the content of (AL) f- (AL) and OFH 
AL to a valid unpacked decimal 
number; the high-order half-byte is 
zeroed. 

Instruction Operands: 

none 

Add with Carry: if 

ADC desf, src (CF) = 1 
then 

Sums the operands, which may be (dest) f- (dest) + (src) + 1 
bytes or words, adds one if CF is set else 
and replaces the destination operand (dest) f- (dest) + (src) 
with the result. Both operands may be 
signed or unsigned binary numbers 
(see AAA and DAA). Since ADC incor-
porates a carry from a previous 
operation, it can be used to write 
routines to add numbers longer than 
16 bits. 

Instruction Operands: 

ADC reg, reg 
ADC reg, mem 
ADC mem, reg 
ADC reg, immed 
ADC mem, immed 
ADC accurh, immed 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
v'the flag is updated after the instruction is executed 

Flags 
Affected 

AF v' 
CF v' 
DF-
IF -
OF? 
PF? 
SF? 
TF -
ZF? 

AF v' 
CF v' 
DF-
IF -
OF v' 
PF v' 
SF v' 
TF -
ZF v' 
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INSTRUCTION SET DESCRIPTIONS 

Name 

ADD 

AND 

NOTE: 

C-6 

Table C~4. Instruction Set (Continued) 

Description Operation 

Addition: (dest) +- (dest) + (src) 

ADD dest, src 

Sums two operands, which may be 
bytes or words, replaces the 
destination operand. Both operands 
may be signed or unsigned binary 
numbers (see AAA and DAA). 

Instruction Operands: 

ADD reg, reg 
ADD reg, mem 
ADDmem, reg 
ADD reg, immed 
ADD mem, immed 
ADD accum, immed 

And Logical: (dest) +- (dest) and (src) 

AND dest, src (CF) +- 0 

Performs the logical "and" of the two 
(OF) +- 0 

operands (byte or word) and retums 
the result to the destination operand. A 
bit in the result is set If both corre-
sponding bits of the original operands 
are set; otherwise the bit Is cleared. 

Instruction Operands: 

AND reg, reg 
AND reg, mem 
ANDmem, reg 
AND reg, Immed 
AND mem, immed 
AND accum, immed 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'/the flag is updated after the Instruction is executed 

Flags 
Affected 

AF ,/ 
CF ,/ 
DF-
IF -
OF ,/ 
PF ,/ 
SF ,/ 
TF -
ZF ,/ 

AF? 
CF ,/ 
DF-
IF -
OF ,/ 
PF ,/ 
SF ,/ 
TF -
ZF ,/ 

I 



Name 

BOUND 

CALL 

NOTE: 

I 

INSTRUCTION SET DESCRIPTIONS 

Table C-4. Instruction Set (Continued) 

Description Operation 

Detect Value Out of Range: if 

BOUND dest, src ({dest) < (src) or (dest) > ((src) + 2) 
then 

Provides array bounds checking in (SP) ~ (SP) - 2 
hardware. The calculated array index ((SP) + 1 : (SP)) ~ FLAGS 
is placed in one of the general purpose 

(IF)~O 
registers, and the upper and lower (TF) ~ 0 
bounds of the array are placed in two (SP) ~ (SP) - 2 
consecutive memory locations. The ((SP) + 1 : (SP)) ~ (CS) 
contents of the register are compared (CS) ~ (1EH) 
with the memory location values, and if (SP) ~ (SP) - 2 
the register value is less than the first ((SP) + 1 : (SP)) ~ (IP) 
location or greater than the second (IP) ~ (1CH) 
memory location, a trap type 5 is 
generated. 

Instruction Operands: 

BOUND reg, mem 

Call Procedure: if 

CALL procedure-name Inter-segment 
then 

Activates an out-of-line procedure, (SP) ~ (SP) - 2 
saving information on the stack to ((SP) + 1 :(SP)) ~ (CS) 
permit a RET (return) instruction in the 

(CS)~SEG 
procedure to transfer control back to (SP) ~ (SP) - 2 
the instruction following the CALL. The ((SP) +1:(SP)) ~ (IP) 
assembler generates a different type (IP) ~ dest 
of CALL instruction depending on 
whether the programmer has defined 
the procedure name as NEAR or FAR. 

Instruction Operands: 

CALL near-proc 
CALL far-proc 
CALL memptr16 
CALL regptr16 
CALL memptr32 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

Flags 
Affected 

AF -
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -
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INSTRUCTION SET DESCRIPTIONS 

Name 

CBW 

CLC 

CLO 

NOTE: 

C-8 

Table C-4. Instruction Set (Continued) 

Description Operation 

Convert Byte to Word: if 

CBW (AL) < SOH 

Extends the sign of the byte in register 
then 

(AH) ~ 0 
AL throughout register AH. Use to else 
produce a double-length (word) (AH) ~ FFH 
dividend from a byte prior to 
performing byte division. 

Instruction Operands: 

none 

Clear Carry flag: (CF) ~ 0 

CLC 

Zeroes the carry flag (CF) and affects 
no other flags. Useful in conjunction 
with the rotate through carry left (RCL) 
and the rotate through carry right 
(RCR) instructions. 

Instruction Operands: 

none 

Clear Direction flag: (OF) ~ 0 

CLO 

Zeroes the direction flag (OF) causing 
the string instructions to auto-
increment the source index (SI) and/or 
destination index (01) registers. 

Instruction Operands: 

none 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

Flags 
Affected 

AF-
CF-
OF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF-
CF ,( 
OF-
IF -
OF-
PF-
SF -
TF -
ZF -

AF-
CF-
OF ,( 
IF -
OF-
PF -
SF -
TF -
ZF -

I 



int'et INSTRUCTION SET DESCRIPTIONS 

Table C-4. Instruction Set (Continued) 

Name Description Operation 

CLI Clear Interrupt-enable Flag: (IF)~O 

CLI 

Zeroes the interrupt-enable flag (I F). 
When the interrupt-enable flag is 
cleared, the 8086 and 8088 do not 
recognize an external interrupt request 
that appears on the INTR line; in other 
words maskable interrupts are 
disabled. A non-maskable interrupt 
appearing on NMI line, however, is 
honored, as is a software interrupt. 

Instruction Operands: 

none 

CMC Complement Carry Flag: if 

CMC (CF)=O 

Toggles complement carry flag (CF) to 
then 
(CF)~ 1 

its opposite state and affects no other else 
flags. 

(CF)~O 
Instruction Operands: 

none 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the Instruction is executed 
"'the flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF-
CF-
DF-
IF '" OF-
PF-
SF-
TF -
ZF -

AF -

CF '" 
DF-
IF -
OF-
PF -
SF -
TF -
ZF -
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INSTRUCTION SET DESCRIPTIONS 

Name 

CMP 

CMPS 

NOTE: 

C-10 

Table C-4. Instruction Set (Continued) 

Description Operation 

Compare: (dest) - (src) 

CMP dest, src 

Subtracts the source from the desti· 
nation, which may be bytes or words, 
but does not return the result. The 
operands are unchanged, but the flags 
are updated and can be tested by a 
subsequent conditional Jump 
Instruction. The comparison reflected 
In the flags Is that of the destination to 
the source. If a CMP Instruction Is 
followed by a JG Oump if greater) 
Instruction, for example, the Jump Is 
taken if the destination operand is 
greater than the source operand. 

Instruction Operands: 

CMP reg, reg 
CMP reg, mem 
CMPmem, reg 
CMP reg, immed 
CMP mem, Immed 
CMP accum, immed 

Compare String: (dest-string) - (src-string) 

CMPS dest-string, src-string if 

Subtracts the destination byte or word 
(OF) = 0 

then 
from the source byte or word. The (SI) +- (SI) + DELTA 
destination byte or word Is addressed (01) +- (01) + DELTA 
by the destination Index (01) register else 
and the source byte or word is (SI) +- (SI) - DELTA 
addresses by the source index (SI) (01) +- (01) - DELTA 
register. CMPS updates the flags to 
reflect the relationship of the 
destination element to the source 
element but does not alter either 
operand and updates SI and 01 to 
pOint to the next string element. 

Instruction Operands: 

CMP dest-string, src-string 
CMP (repeat) dest-string, src-strlng 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the Instruction Is executed 
? the contents of the flag is undefined after the Instruction Is executed 
v'the flag is updated after the instruction Is executed 

intel«t 

Flags 
Affected 

AF v' 
CF v' 
OF-
IF -
OFv' 
PF v' 
SF v' 
TF -
ZF v' 

AF v' 
CF v' 
OF-
IF -
OFv' 
PF v' 
SF v' 
TF -
ZF v' 

I 



intet~ INSTRUCTION SET DESCRIPTIONS 

Table C-4. Instruction Set (Continued) 

Name Description Operation 

CWO Convert Word to Doubleword: if 

CWO (AX) < BOOOH 
then 

Extends the sign of the word in register (OX) f- 0 
AX throughout register OX. Use to else 
produce a double·length (doubleword) (OX) f- FFFFH 
dividend from a word prior to 
performing word division. 

Instruction Operands: 

none 

OAA Decimal Adjust for Addition: if 

OAA ((AL) and OFH) > 9 or (AF) = 1 
then 

Corrects the result of previously (AL) f- (AL) + 6 
adding two valid packed decimal (AF) f- 1 
operands (the destination operand if 
must have been register AL). Changes (AL) > 9FH or (CF) = 1 
the content of AL to a pair of valid then 
packed decimal digits. (AL) f- (AL) + 60H 

Instruction Operands: (CF) f- 1 

none 

OAS Decimal Adjust for Subtraction: if 

OAS ((AL) and OFH) > 9 or (AF) = 1 
then 

Corrects the result of a previous (AL) f- (AL) - 6 
subtraction of two valid packed (AF) f- 1 
decimal operands (the destination if 
operand must have been specified as (AL) > 9FH or (CF) = 1 
register AL). Changes the content of then 
AL to a pair of valid packed decimal (AL) f- (AL) - 60H 
digits. (CF) f- 1 

Instruction Operands: 

none 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
v'the flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF-
CF-
OF-
IF -
OF-
PF-
SF -
TF -
ZF -

AF v' 

CF v' 

OF-
IF -
OF? 
PF v' 

SF v' 

TF -
ZF v' 

AF v' 

CF v' 

OF-
IF -
OF? 
PF v' 

SF v' 

TF -
ZF v' 
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INSTRUCTION SET DESCRIPTIONS 

Name 

DEC 

NOTE: 

C-12 

Table C-4. Instruction Set (Continued) 

Description Operation 

Decrement: (dest) ~ (dest) - 1 

DEC dest 

Subtracts one from the destination 
operand. The operand may be a byte 
or a word and is treated as an 
unsigned binary number (see AAA and 
DAA). 

Instruction Operands: 

DEC reg 
DECmem 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
,fthe flag is updated after the instruction is executed 

intet~ 

Flags 
Affected 

AF ,f 

CF-
DF-
IF -
OF ,f 
PF ,f 

SF ,f 

TF -
ZF ,f 

I 



INSTRUCTION SET DESCRIPTIONS 

Table C-4. Instruction Set (Continued) 

Name Description Operation 

OIV Divide: When Source Operand Is a Byte: 

OIV src (temp) f- (byte-src) 

Performs an unsigned division of the if 
(temp) I (AX) > FFH accumulator (and its extension) by the 

source operand. then (type 0 interrupt is generated) 
(SP) f- (SP) - 2 

If the source operand is a byte, it is ((SP) + 1 :(SP)) f- FLAGS 
divided into the two-byte dividend (IF) f- 0 
assumed to be in registers AL and AH. (TF) f- 0 
The byte quotient is returned in AL, (SP) f- (SP) - 2 
and the byte remainder is returned in ((SP) + 1 :(SP)) f- (CS) 
AH. (CS) f- (2) 
If the source operand is a word, it is (SP) f- (SP) - 2 
divided into the two-word dividend in ((SP) + 1 :(SP)) f- (IP) 
registers AX and OX. The word (IP) f- (0) 
quotient is returned in AX, and the else 
word remainder is returned in OX. (AL) f- (temp) I (AX) 

If the quotient exceeds the capacity of (AH) f- (temp) % (AX) 

its destination register (FFH for byte When Source Operand is a Word: 
source, FFFFH for word source), as (temp) f- (word-src) 
when division by zero is attempted, a if 
type 0 interrupt is generated, and the (temp) I (OX:AX) > FFFFH 
quotient and remainder are undefined. then (type 0 interrupt is generated) 
Nonintegral quotients are truncated to (SP) f- (SP) - 2 
integers. ((SP) + 1:(SP)) f- FLAGS 

Instruction Operands: (IF) f- 0 

OIV reg (TF) f- 0 

OIVmem (SP) f- (SP) - 2 
((SP) + 1 :(SP)) f- (CS) 
(CS) f- (2) 
(SP) f- (SP) - 2 
((SP) + 1 : (SP)) f- (IP) 
(lP) f- (0) 

else 
(AX) f- (temp) I (OX:AX) 
(OX) f- (temp) % (OX:AX) 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
.Ithe flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF? 
CF? 
OF-
IF -
OF? 
PF? 
SF? 
TF -
ZF? 
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INSTRUCTION SET DESCRIPTIONS 

Name 

ENTER 

ESC 

NOTE: 

C-14 

Table C-4. Instruction Set (Continued) 

Description Operation 

Procedure Entry: (SP) f- (SP) - 2 

ENTER locals, levels ((SP) + 1 :(SP)) f- (BP) 

Executes the calling sequence for a 
(FP) f- (SP) 
if 

high-level language. It saves the level> a 
current frame pOinter in BP, copies the then 
frame pOinters from procedures below repeat (level - 1) times 
the current call (to allow access to (BP) f- (BP) - 2 
local variables in these procedures) (SP) f- (SP) - 2 
and allocates space on the stack for ((SP) + 1:(SP)) f- (BP) 
the local variables of the current end repeat 
procedure invocation. (SP) f- (SP) - 2 

Instruction Operands: ((SP) + 1:(SP)) f- (FP) 

ENTER locals, level end if 
(BP) f- (FP) 
(SP) f- (SP) - (locals) 

Escape: if 

ESC mod;c 11 

Provides a mechanism by which other 
then 

data bus f- (EA) 
processors (coprocessors) may 
receive their instructions from the 8086 
or 8088 instruction stream and make 
use of the 8086 or 8088 addressing 
modes. The CPU (8086 or 8088) does 
a no operation (NOP) for the ESC 
instruction other than to access a 
memory operand and place it on the 
bus. 

Instruction Operands: 

ESC immed, mem 
ESC immed, reg 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

Flags 
Affected 

AF -
CF-
DF-
IF -
OF-
PF -
SF-
TF -
ZF -

AF -
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -

I 



intet INSTRUCTION SET DESCRIPTIONS 

Table C-4. Instruction Set (Continued) 

Name Description Operation 

HLT Halt: None 

HLT 

Causes the CPU to enter the halt 
state. The processor leaves the halt 
state upon activation of the RESET 
line, upon receipt of a non-maskable 
interrupt request on NMI, or upon 
receipt of a maskable interrupt request 
on INTR (if interrupts are enabled). 

Instruction Operands: 

none 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -

C-15 



INSTRUCTION SET DESCRIPTIONS 

Table C-4. Instruction Set (Continued) 

Name Description Operation 

IDIV Integer Divide: When Source Operand is a Byte: 

IOIV src (temp) f- (byte-src) 

Performs a signed division of the if 

accumulator (and its extension) by the (temp) / (AX) > 0 and 

source operand. If the source operand (temp) I (AX) > 7FH or 

is a byte, it is divided into the double- (temp) I (AX) < 0 and 

length dividend assumed to be in (temp) I (AX) < 0 - 7FH - 1 

registers AL and AH; the single-length then (type 0 interrupt is generated) 

quotient is returned in AL, and the (SP) f- (SP) - 2 

single-length remainder is returned in ((SP) + 1 :(SP)) f- FLAGS 

AH. For byte integer division, the (IF) f- 0 

maximum positive quotient is +127 (TF) f- 0 

(7FH) and the minimum negative (SP) f- (SP) - 2 

quotient is -127 (81 H). ((SP) + 1 :(SP)) f- (CS) 

If the source operand is a word, it is 
(CS) f- (2) 

divided into the double-length dividend 
(SP) f- (SP) - 2 

in registers AX and OX; the single-
((SP) + 1 :(SP)) f- (IP) 

length quotient is returned in AX, and 
(IP) f- (0) 

the single-length remainder is returned 
else 

in OX. For word integer division, the 
(AL) f- (temp) / (AX) 

maximum positive quotient is +32,767 
(AH) f- (temp) % (AX) 

(7FFFH) and the minimum negative When Source Operand is a Word: 

quotient is-32,767 (8001H). (temp) f- (word-src) 

If the quotient is positive and exceeds if 

the maximum, or is negative and is (temp) I (OX:AX) > 0 and 

less than the minimum, the quotient (temp) I (OX:AX) > 7FFFH or 

and remainder are undefined, and a (temp) I (OX:AX) < 0 and 

type 0 interrupt is generated. In (temp) I (OX:AX) < 0 - 7FFFH - 1 

particular, this occurs if division by 0 is then (type 0 interrupt is generated) 

attempted. Nonintegral quotients are (SP) f- (SP) - 2 

truncated (toward 0) to integers, and ((SP) + 1:(SP)) f- FLAGS 

the remainder has the same sign as (IF) f- 0 

the dividend. (TF) f- 0 

Instruction Operands: 
(SP) f- (SP) - 2 
((SP) + 1 :(SP)) f- (CS) 

IOIV reg (CS) f- (2) 
IOIVmem (SP) f- (SP) - 2 

((SP) + 1 :(SP)) f- (IP) 
(IP) f- (0) 

else 
(AX) f- (temp) I (OX:AX) 
(OX) f- (temp) % (OX:AX) 

NOTE. The three symbols used In the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
"the flag is updated after the instruction is executed 

C-16 

Flags 
Affected 

AF? 
CF? 
OF-
IF -
OF? 
PF? 
SF? 
TF -
ZF? 
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intet INSTRUCTION SET DESCRIPTIONS 

Table C-4_ Instruction Set (Continued) 

Name Description Operation 

IMUL Integer Multiply: When Source Operand is a Byte: 

IMUL sre (AX) f- (byte-src) x (AL) 
if Performs a signed multiplication of the 

(AH) = sign-extension of (AL) source operand and the accumulator. 
then If the source is a byte, then it is 

(CF) f- 0 multiplied by register AL, and the 
else double-length result is returned in AH 

(CF) f- 1 and AL. If the source is a word, then it 
is multiplied by register AX, and the (OF) f- (CF) 

double-length result is returned in When Source Operand is a Word: 
registers OX and AX. If the upper half (OX:AX) f- (word-src) x (AX) 
of the result (AH for byte source, OX if 
for word source) is not the sign (OX) = sign-extension of (AX) 
extension of the lower half of the then 
result, CF and OF are set; otherwise (CF) f- 0 
they are cleared. When CF and OF are else 
set, they indicate that AH or OX (CF) f- 1 
contains significant digits of the result. (OF) f- (CF) 

Instruction Operands: 

IMUL reg 
IMULmem 
IMULimmed 

IN Input Byte or Word: When Source Operand is a Byte: 

IN aeeum, port (AL) f- (port) 

Transfers a byte or a word from an When Source Operand is a Word: 
input port to the AL register or the AX (AX) f- (port) 
register, respectively. The port number 
may be specified either with an 
immediate byte constant, allowing 
access to ports numbered 0 through 
255, or with a number previously 
placed in the OX register, allowing 
variable access (by changing the value 
in OX) to ports numbered from 0 
through 65,535. 

Instruction Operands: 

IN AL, immed8 
IN AX, OX 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF? 
CF ,( 
OF-
IF -
OF ,( 
PF? 
SF? 
TF -
ZF? 

AF -
CF-
OF-
IF -
OF-
PF-
SF -
TF -
ZF -
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INSTRUCTION SET DESCRIPTIONS 

Name 

INC 

INS 

NOTE: 

C-18 

Table C-4. Instruction Set (Continued) 

Description Operation 

Increment: (dest) ~ (dest) + 1 

INC dest 

Adds one to the destination operand. 
The operand may be byte or a word 
and is treated as an unsigned binary 
number (see AAA and OAA). 

Instruction Operands: 

INC reg 
INCmem 

In String: (dest) ~ (src) 

INS dest-string, port 

Performs block input from an 1/0 port 
to memory. The port address is placed 
in the OX register. The memory 
address is placed in the 01 register. 
This instruction uses the ES register 
(which cannot be overridden). After the 
data transfer takes place, the 01 
register increments or decrements, 
depending on the value of the direction 
flag (OF). The 01 register changes by 1 
for byte transfers or 2 for word 
transfers. 

Instruction Operands: 

INS dest-string, port 
INS (repeat) dest-string, port 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'/the flag is updated after the instruction is executed 

Flags 
Affected 

AF ,/ 
CF-
OF-
IF -
OF ,/ 
PF ,/ 
SF ,/ 
TF -
ZF ,/ 

AF -
CF-
OF-
IF -
OF-
PF -
SF -
TF -
ZF -

I 



Name 

INT 

NOTE: 
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INSTRUCTION SET DESCRIPTIONS 

Table C-4. Instruction Set (Continued) 

Description Operation 

Interrupt: (SP) ~ (SP) - 2 

INT interrupt-type «SP) + 1 :(SP)) ~ FLAGS 

Activates the interrupt procedure 
(IF) ~ 0 
(TF) ~ 0 

specified by the interrupt-type (SP) ~ (SP) - 2 
operand. Decrements the stack pointer «SP) + 1 :(SP)) ~ (CS) 
by two, pushes the flags onto the (CS) ~ (interrupt-type x 4 + 2) 
stack, and clears the trap (TF) and (SP) ~ (SP) - 2 
interrupt-enable (IF) flags to disable «SP) + 1 : (SP)) ~ (I P) 
single-step and maskable interrupts. (IP) ~ (interrupt-type x 4) 
The flags are stored in the format used 
by the PUSHF instruction. SP is 
decremented again by two, and the CS 
register is pushed onto the stack. 

The address of the interrupt pointer is 
calculated by multiplying interrupt-
type by four; the second word of the 
interrupt painter replaces CS. SP 
again is decremented by two, and I P is 
pushed onto the stack and is replaced 
by the first word of the interrupt painter. 
If interrupt-type = 3, the assembler 
generates a short (1 byte) form of the 
instruction, known as the breakpoint 
interrupt. 

Instruction Operands: 

INT immed8 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'/the flag is updated after the instruction is executed 

Flags 
Affected 

AF-
CF-
DF-
IF ,/ 

OF-
PF -
SF -
TF ,/ 
ZF -
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Name 

INTO 

IRET 

JA 
JNBE 

NOTE: 

C-20 

Table C-4. Instruction Set (Continued) 

Description Operation 

Interrupt on Overflow: if 

INTO (OF) = 1 
then 

Generates a software interrupt if the (SP) +- (SP) - 2 
overflow flag (OF) is set; otherwise ((SP) + 1 :(SP» +- FLAGS 
control proceeds to the following (IF) +- 0 
instruction without activating an (TF) +- 0 
interrupt procedure. INTO addresses (SP) +- (SP) - 2 
the target Interrupt procedure (its type ((SP) + 1:(SP» +- (CS) 
is 4) through the interrupt pOinter at (CS) +- (12H) 
location 10H; it clears the TF and IF (SP) +- (SP) - 2 
flags and otherwise operates like INT. ((SP) + 1:(SP» +- (IP) 
INTO may be written following an (IP) +- (10H) 
arithmetic or logical operation to 
activate an interrupt procedure if 
overflow occurs. 

Instruction Operands: 

none 

Interrupt Return: (IP) +- ((SP) + 1:(SP» 

IRET (SP) +- (SP) + 2 
(CS) +- ((SP) + 1 :(SP» 

Transfers control back to the point of (SP) +- (SP) + 2 
interruption by popping IP, CS, and the FLAGS +- ((SP) + 1:(SP» 
flags from the stack. IRET thus affects (SP) +- (SP) + 2 
all flags by restoring them to previously 
saved values. IRET is used to exit any 
interrupt procedure, whether activated 
by hardware or software. 

Instruction Operands: 

none 

Jump on Above: if 
Jump on Not Below or Equal: ((CF) = 0) or ((ZF) = 0) 

JA disp8 then 

JNBE disp8 (IP) +- (lP) + disp8 (sign-ext to 16 bits) 

Transfers control to the target location 
if the tested condition ((CF=O) or 
(ZF=O» is true. 

Instruction Operands: 

JA short-label 
JNBE short-label 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
./the flag is updated after the instruction is executed 

Flags 
Affected 

AF -
CF-
OF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF ./ 
CF ./ 
OF ./ 
IF ./ 
OF ./ 
PF ./ 
SF ./ 
TF ./ 
ZF ./ 

AF -
CF-
OF-
IF -
OF-
PF -
SF -
TF -
ZF -

I 



Name 

JAE 
JNB 

JB 
JNAE 

JBE 
JNA 

JC 

NOTE: 

I 

INSTRUCTION SET DESCRIPTIONS 

Table C-4. Instruction Set (Continued) 

Description Operation 

Jump on Above or Equal: if 
Jump on Not Below: (CF) = 0 

JAE disp8 then 

JNB disp8 (I P) f- (I P) + disp8 (sign-ext to 16 bits) 

Transfers control to the target location 
if the tested condition (CF = 0) is true. 

Instruction Operands: 

JAE short-label 
JNB short-label 

Jump on Below: if 
Jump on Not Above or Equal: (CF) = 1 

JB disp8 then 

JNAE disp8 (IP) f- (IP) + disp8 (sign-ext to 16 bits) 

Transfers control to the target location 
if the tested condition (CF = 1) is true. 

Instruction Operands: 

JB short-label 
JNAE short-label 

Jump on Below or Equal: if 
Jump on Not Above: «CF) = 1) or «ZF) = 1) 

JBE disp8 then 

JNA disp8 (I P) f- (I P) + disp8 (sign-ext to 16 bits) 

Transfers control to the target location 
if the tested condition «C =1) or 
(ZF=1)) is true. 

Instruction Operands: 

JBE short-label 
JNA short-label 

Jump on Carry: if 

JC disp8 (CF) = 1 
then 

Transfers control to the target location (IP) f- (IP) + disp8 (sign-ext to 16 bits) 
if the tested condition (CF=1) is true. 

Instruction Operands: 

JC short-label 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
,l'the flag is updated after the instruction is executed 

Flags 
Affected 

AF -
CF-
DF-
IF -
OF-
PF -
SF-
TF -
ZF -

AF -
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -
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Name 

JCXZ 

JE 
JZ 

JG 
JNLE 

JGE 
JNL 

NOTE: 

C-22 

Table C-4. Instruction Set (Continued) 

Description Operation 

Jump If ex Zero: If 

JCXZ dispB (CX) = 0 

Transfers control to the target location 
then 

(IP) +- (IP) + disp8 (sign-ext to 16 bits) 
if CX is O. Useful at the beginning of a 
loop to bypass the loop If CX has a 
zero value, I.e., to execute the loop 
zero times. 

Instruction Operands: 

JCXZ short-label 

Jump on Equal: If 
Jump on Zero: (ZF) = 1 

JE dispB then 

JZ dispB (IP) +- (IP) + disp8 (sign-ext to 16 bits) 

Transfers control to the target location 
If the condition tested (ZF = 1) is true. 

Instruction Operands: 

JE short-label 
JZ short-label 

Jump on Greater Than: if 
Jump on Not Less Than or Equal: «SF) = (OF» and «ZF) = 0) 

JG dlspB then 

JNLE dlspB (IP) +- (IP) + disp8 (sign-ext to 16 bits) 

Transfers control to the target location 
if the condition tested (SF = OF) and 
(ZF=O) is true. 

Instruction Operands: 

JG short-label 
JNLE short-label 

Jump on Greater Than or Equal: If 
Jump on Not Less Than: (SF) = (OF) 

JGE dispB then 

JNL dlspB (IP) +- (IP) + dlsp8 (sign-ext to 16 bits) 

Transfers control to the target location 
H the condition tested (SF=OF) is true. 

Instruction Operands: 

JGE short-label 
JNL short-label 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the Instruction Is executed 
"'the flag Is updated after the Instruction Is executed 

intel· 

Flags 
Affected 

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF -
SF-
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF-
SF -
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF-
SF -
TF -
ZF -

I 



Name 

JL 
JNGE 

JLE 
JNG 

JMP 

JNC 

NOTE: 

I 

INSTRUCTION SET DESCRIPTIONS 

Table C-4. Instruction Set (Continued) 

Description Operation 

Jump on Less Than: if 
Jump on Not Greater Than or Equal: (SF) "'- (OF) 

JL disp8 then 

JNGE disp8 (IP) ~ (IP) + disp8 (sign-ext to 16 bits) 

Transfers control to the target location 
if the condition tested (SF~F) is true. 

Instruction Operands: 

JL short-label 
JNGE short-label 

Jump on Less Than or Equal: if 
Jump on Not Greater Than: ((SF) "'- (OF)) or ((ZF) = 1) 

JGE disp8 then 

JNL disp8 (IP) ~ (IP) + disp8 (sign-ext to 16 bits) 

Transfers control to the target location 
If the condition tested ((SF"'-OF) or 
(ZF=O)) is true. 

Instruction Operands: 

JGE short-label 
JNL short-label 

Jump Unconditionally: if 

JMP target Inter-segment 
then 

Transfers control to the target location. (CS) ~ SEG 
Instruction Operands: (IP) ~ dest 

JMP short-label 
JMP near-label 
JMP far-label 
JMP memptr 
JMP regptr 

Jump on Not Carry: if 

JNC disp8 (CF) = 0 
then 

Transfers control to the target location (I P) ~ (I P) + disp8 (sign-ext to 16 bits) 
if the tested condition (CF=O) is true. 

Instruction Operands: 

JNC short-label 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

Flags 
Affected 

AF-
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -

AF -
CF-
DF-
IF -
OF-
PF-
SF -
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -
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Name 

JNE 
JNZ 

JNO 

JNS 

JNP 
JPO 

NOTE: 

C-24 

Table C-4. Instruction Set (Continued) 

Description Operation 

Jump on Not Equal: if 
Jump on Not Zero: (ZF) = 0 

JNE disp8 then 

JNZ disp8 (IP) ~ (IP) + disp8 (sign-ext to 16 bits) 

Transfers control to the target location 
if the tested condition (ZF = 0) is true. 

Instruction Operands: 

JNE short-label 
JNZ short-label 

Jump on Not Overflow: if 

JNO disp8 (OF) = 0 

Transfers control to the target location 
then 

(I P) ~ (IP) + disp8 (sign-ext to 16 bits) 
if the tested condition (OF = 0) is true. 

Instruction Operands: 

JNO short-label 

Jump on Not Sign: if 

JNS disp8 (SF) = 0 

Transfers control to the target location 
then 

(IP) ~ (IP) + disp8 (sign-ext to 16 bits) 
if the tested condition (SF = 0) is true. 

Instruction Operands: 

JNS short-label 

Jump on Not Parity: if 
Jump on Parity Odd: (PF) = 0 

JNO disp8 then 

JPO disp8 (IP) ~ (IP) + disp8 (sign-ext to 16 bits) 

Transfers control to the target location 
if the tested condition (PF=O) is true. 

Instruction Operands: 

JNO short-label 
JPO short-label 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

Flags 
Affected 

AF-
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF -
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -

AF -
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -

I 
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Table C-4. Instruction Set (Continued) 

Name Description Operation 

JO Jump on Overflow: if 

JO disp8 (OF) = 1 
then 

Transfers control to the target location (IP) ~ (IP) + disp8 (sign-ext to 16 bits) 
if the tested condition (OF = 1) is true. 

Instruction Operands: 

JO short-label 

JP Jump on Parity: if 
JPE Jump on Parity Equal: (PF) = 1 

JP disp8 then 

JPE disp8 (IP) ~ (lP) + disp8 (sign-ext to 16 bits) 

Transfers control to the target location 
if the tested condition (PF = 1) is true. 

Instruction Format: 

JP short-label 
JPE short-label 

JS Jump on Sign: if 

JS disp8 (SF) = 1 
then 

Transfers control to the target location (I P) ~ (I P) + disp8 (sign-ext to 16 bits) 
if the tested condition (SF = 1) is true. 

Instruction Format: 

JS short-label 

LAHF Load Register AH From Flags: (AH) ~ (SF):(ZF):X:(AF):X:(PF):X:(CF) 

LAHF 

Copies SF, ZF, AF, PF and CF (the 
8080/8085 flags) into bits 7, 6, 4, 2 and 
0, respectively, of register AH. The 
content of bits 5, 3, and 1 are 
undefined. LAHF is provided primarily 
for converting 8080/8085 assembly 
language programs to run on an 8086 
or 8088. 

Instruction Operands: 

none 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
"the flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF-
ZF -

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -
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Name 

LOS 

LEA 

LEAVE 

NOTE: 

C-26 

Table C-4. Instruction Set (Continued) 

Description Operation 

Load Pointer Using DS: (dest) +- (EA) 

LOS dest, src (OS) +- (EA + 2) 

Transfers a 32-bit pointer variable from 
the source operand, which must be a 
memory operand, to the destination 
operand and register OS. The offset 
word of the pOinter is transferred to the 
destination operand, which may be 
any 16-bit general register. The 
segment word of the pointer is 
transferred to register OS. 

Instruction Operands: 

LOS reg16, mem32 

Load Effective Address: (dest) +- EA 

LEA dest, src 

Transfers the offset of the source 
operand (rather than its value) to the 
destination operand. 

Instruction Operands: 

LEA reg16, mem16 

Leave: (SP) +- (BP) 

LEAVE (BP) +- ((SP) + 1 :(SP)) 

Reverses the action of the most recent 
(SP) +- (SP) + 2 

ENTER instruction. Collapses the last 
stack frame created. First, LEAVE 
copies the current BP to the stack 
pointer releasing the stack space 
allocated to the current procedure. 
Second, LEAVE pops the old value of 
BP from the stack, to return to the 
calling procedure's stack frame. A 
return (RET) instruction will remove 
arguments stacked by the calling 
procedure for use by the called 
procedure. 

Instruction Operands: 

none 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

int"et~ 

Flags 
Affected 

AF -
CF-
OF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF -
CF-
OF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF -
CF-
OF-
IF -
OF-
PF -
SF -
TF -
ZF -

I 
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Name 

LES 

LOCK 

NOTE: 

I 

Table C-4. Instruction Set (Continued) 

Description Operation 

Load Pointer Using ES: (dest) ~ (EA) 

LES dest, src (ES) ~ (EA + 2) 

Transfers a 32-bit pOinter variable from 
the source operand to the destination 
operand and register ES. The offset 
word of the pOinter is transferred to the 
destination operand. The segment 
word of the pointer is transferred to 
register ES. 

Instruction Operands: 

LES reg16, mem32 

Lock the Bus: none 

LOCK 

Causes the 8088 (configured in 
maximum mode) to assert its bus 
LOCK signal while the following 
instruction executes. The instruction 
most useful in this context is an 
exchange register with memory. 

The LOCK prefix may be combined 
with the segment override and/or REP 
prefixes. 

Instruction Operands: 

none 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

Flags 
Affected 

AF-
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF -
SF-
TF -
ZF -
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Name 

LOD5 

LOOP 

LOOPE 
LOOPZ 

NOTE: 

C-28 

Table C-4. Instruction Set (Continued) 

Description Operation 

Load String (Byte or Word): When Source Operand is a Byte: 

LOD5 src-string (AL) ~ (src-string) 

Transfers the byte or word string if 
(DF) =0 element addressed by 51 to register AL 

then or AX and updates 51 to point to the 
(51) ~ (51) + DELTA next element in the string. This 

instruction is not ordinarily repeated else 
(51) ~ (51) - DELTA since the accumulator would be 

overwritten by each repetition, and When Source Operand is a Word: 
only the last element would be (AX) ~ (src-string) 
retained. if 

Instruction Operands: (DF) =0 

LOD5 src-string then 

LOD5 (repeat) src-string (51) ~ (51) + DELTA 
else 

(51) ~ (51) - DELTA 

Loop: (CX) ~ (CX) - 1 

LOOP disp8 if 
(CX) *-0 

Decrements CX by 1 and transfers then 
control to the target location if CX is (IP) ~ (IP) + disp8 (sign-ext to 16 bits) 
not 0; otherwise the instruction 
following LOOP is executed. 

Instruction Operands: 

LOOP short-label 

Loop While Equal: (CX) ~ (CX) - 1 
Loop While Zero: if 

LOOPE disp8 (ZF) = 1 and (CX) *- 0 

LOOPZ disp8 then 
(IP)~(IP) + disp8 (sign-ext to 16 bits) 

Decrements CX by 1 and transfers 
control is to the target location if CX is 
not 0 and if ZF is set; otherwise the 
next sequential instruction is executed. 

Instruction Operands: 

LOOPE short-label 
LOOPZ short-label 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
"the flag is updated after the instruction is executed 

intet 

Flags 
Affected 

AF -
CF-
DF-
IF -
OF-
PF -
5F -
TF -
ZF -

AF -
CF-
DF-
IF -
OF-
PF -
5F -
TF -
ZF -

AF -
CF-
DF-
IF -
OF-
PF -
5F -
TF -
ZF -

I 
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Table C-4. Instruction Set (Continued) 

Name Description Operation 

LOOPNE Loop While Not Equal: (CX) to- (CX) - 1 
LOOPNZ Loop While Not Zero: if 

LOOPNE disp8 (ZF) = 0 and (CX) *" 0 

LOOPNZ disp8 then 

Decrements CX by 1 and transfers 
(I P) to- (I P) + disp8 (sign-ext to 16 bits) 

control to the target location if CX is 
not 0 and if ZF is clear; otherwise the 
next sequential instruction is executed. 

Instruction Operands: 

LOOPNE short-label 
LOOPNZ short-label 

MOV Move (Byte or Word): (dest)to-(src) 

MOV dest, src 

Transfers a byte or a word from the 
source operand to the destination 
operand. 

Instruction Operands: 

MOV mem, accum 
MOV accum, mem 
MOV reg, reg 
MOVreg, mem 
MOVmem, reg 
MOV reg, immed 
MOV mem, immed 
MOV seg-reg, reg16 
MOV seg-reg, mem16 
MOV reg16, seg-reg 
MOV mem16, seg-reg 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
"the flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF-
CF-
DF-
IF -
OF-
PF -
SF-
TF -
ZF -

AF -
CF-
DF-
IF -
OF-
PF-
SF -
TF -
ZF -
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Name 

MOV5 

MUL 

NOTE: 

C-30 

Table C-4. Instruction Set (Continued) 

Description Operation 

Move String: (dest-string) ~ (src-string) 

MOV5 dest·strlng, src-string 

Transfers a byte or a word from the 
source string (addressed by SI) to the 
destination string (addressed by 01) 
and updates 51 and 01 to point to the 
next string element. When used In 
conjunction with REP, MOVS 
performs a memory-to-memory block 
transfer. 

Instruction Operands: 

MOVS dest-string, src-string 
MOVS (repeat) dest-string, src-string 

Multiply: When Source Operand Is a Byte: 

MULsrc (AX) ~ (AL) x (src) 

Performs an unsigned multiplication of If 
(AH) = 0 the source operand and the accumu-

lator. If the source is a byte, then it is then 
(CF) ~O multiplied by register AL, and the 

double-length result is retumed In AH else 
(CF) ~ 1 and AL. If the source operand Is a 

word, then It is multiplied by register (OF) ~ (CF) 

AX, and the double-length result is When Source Operand Is a Word: 
returned In registers OX and AX. The (OX:AX) ~ (AX) x (src) 
operands are treated as unsigned if 
binary numbers (see AAM). If the (OX) = 0 
upper half of the result (AH for byte then 
source, OX for word source) is non- (CF) ~O 
zero, CF and OF are set; otherwise else 
they are cleared. (CF) ~ 1 

Instruction Operands: (OF) ~(CF) 

MUL reg 
MULmem 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction Is executed 
? the contents of the flag Is undefined after the Instruction Is executed 
'(the flag is updated after the instruction is executed 

Flags 
Affected 

AF-
CF-
OF-
IF -
OF-
PF-
5F-
TF -
ZF -

AF? 
CF ,( 
OF-
IF -
OF ,( 
PF? 
SF? 
TF -
ZF? 

I 



Name 

NEG 

NOP 

NOT 

NOTE: 

I 

INSTRUCTION SET DESCRIPTIONS 

Table C-4. Instruction Set (Continued) 

Description Operation 

Negate: When Source Operand is a Byte: 

NEG dest (dest) ~ FFH - (dest) 

Subtracts the destination operand, (dest) ~ (dest) + 1 (affecting flags) 

which may be a byte or a word, from 0 When Source Operand is a Word: 
and returns the result to the desti- (dest) ~ FFFFH - (dest) 
nation. This forms the two's (dest) ~ (dest) + 1 (affecting flags) 
complement of the number, effectively 
reversing the sign of an integer. If the 
operand is zero, its sign is not 
changed. Attempting to negate a byte 
containing -128 or a word containing-
32,768 causes no change to the 
operand and sets OF. 

Instruction Operands: 

NEG reg 
NEG mem 

No Operation: None 

NOP 

Causes the CPU to do nothing. 

Instruction Operands: 

none 

Logical Not: When Source Operand is a Byte: 

NOT dest (dest) ~ FFH - (dest) 

Inverts the bits (forms the one's When Source Operand is a Word: 
complement) of the byte or word (dest) ~ FFFFH - (dest) 
operand. 

Instruction Operands: 

NOT reg 
NOTmem 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
.;'the flag is updated after the instruction is executed 

Flags 
Affected 

AF .;' 
CF .;' 
DF-
IF -
OF.;' 
PF .;' 
SF .;' 
TF -
ZF .;' 

AF-
CF-
DF-
IF -
OF-
PF-
SF -
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF -
SF-
TF -
ZF -
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Name 

OR 

OUT 

NOTE: 

C-32 

Table C-4. Instruction Set (Continued) 

Description Operation 

Logical OR: (dest) +- (dest) or (src) 

OR dest,src (CF) +- 0 

Performs the logical "inclusive or" of 
(OF) +- 0 

the two operands (bytes or words) and 
retums the result to the destination 
operand. A bit in the result is set if 
either or both corresponding bits in the 
original operands are set; otherwise 
the result bit is cleared. 

Instruction Operands: 

OR reg, reg 
OR reg, mem 
ORmem, reg 
OR accum, Immed 
OR reg, Immed 
OR mem, immed 

Output: (dest) +- (src) 

OUT port, accumulator 

Transfers a byte or a word from the AL 
register or the AX register, respec-
tively, to an output port. The port 
number may be specified either with 
....... ; ............ 80 .... 100+.0. h,.t.a. I'nnC!tant alln,.,inn tall ... lIlu;;n, .......... "" ..,., .. "" .... """1 .... _11.' _ .. _ ..... ~ 

access to ports numbered 0 through 
255, or with a number previously 
placed In register OX, allowing variable 
access (by changing the value in OX) 
to ports numbered from 0 through 
65,535. 

Instruction Operands: 

OUT immed8, AL 
OUT OX, AX 

The three symbols used in the Flags Affected column are defined as follOWS: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
,(the flag is updated after the instruction is executed 

Flags 
Affected 

AF? 
CF ,( 
OF-
IF -
OF'( 
PF ,( 
SF ,( 
TF-
ZF ,( 

AF-
CF-
OF-
IF -
OF-
PF-
SF-
TF -
ZF -

I 
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Table C-4. Instruction Set (Continued) 

Name Description Operation 

OUTS Out String: (dst) ~ (src) 

OUTS port, src_string 

Performs block output from memory to 
an 1/0 port. The port address is placed 
in the OX register. The memory 
address is placed in the SI register. 
This instruction uses the OS segment 
register, but this may be changed with 
a segment override instruction. After 
the data transfer takes place, the 
pointer register (SI) increments or 
decrements, depending on the value 
of the direction flag (OF). The pOinter 
register changes by 1 for byte 
transfers or 2 for word transfers. 

Instruction Operands: 

OUTS port, src_string 
OUTS (repeat) port, src_string 

POP Pop: (dest) ~ «SP) + 1 :(SP)) 

POP dest (SP) ~ (SP) + 2 

Transfers the word at the current top of 
stack (pointed to by SP) to the 
destination operand and then 
increments SP by two to point to the 
new top of stack. 

Instruction Operands: 

POP reg 
POP seg-reg (CS illegal) 
POP mem 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
"the flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF -
CF-
OF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF-
CF-
OF-
IF -
OF-
PF-
SF-
TF -
ZF -
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Name 

POPA 

POPF 

PUSH 

NOTE: 

C-34 

Table C-4. Instruction Set (Continued) 

Description Operation 

Pop All: (01) f- «SP) + 1 :(SP» 

POPA (SP) f- (SP) + 2 

Pops all data, pointer, and index 
(SI) f- «SP) + 1 :(SP» 
(SP) f- (SP) + 2 

registers off of the stack. The SP value (BP) f- «SP) + 1 :(SP» 
popped is discarded. (SP) f- (SP) + 2 

Instruction Operands: (BX) f- «SP) + 1 :(SP» 

none (SP) f- (SP) + 2 
(OX) f- «SP) + 1 :(SP» 
(SP) f- (SP) + 2 
(CX) f- «SP) + 1 :(SP» 
(SP) f- (SP) + 2 
(AX) f- «SP) + 1 :(SP» 
(SP) f- (SP) + 2 

Pop Flags: Flags f- «SP) + 1 :(SP» 

POPF (SP) f- (SP) + 2 

Transfers specific bits from the word at 
the current top of stack (pointed to by 
register SP) into the 8086/8088 flags, 
replacing whatever values the flags 
previously contained. SP is then 
incremented by two to point to the new 
top of stack. 

In .. t ... ".lnn nn ..... n'h.· ------------. -.---------
none 

Push: (SP) f- (SP) - 2 

PUSH src «SP) + 1 :(SP» f- (src) 

Decrements SP by two and then 
transfers a word from the source 
operand to the top of stack now 
pointed to by SP. 

Instruction Operands: 

PUSH reg 
PUSH seg-reg (CS legal) 
PUSH mem 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction Is executed 
o/the flag is updated after the instruction is executed 

intet~ 

Flags 
Affected 

AF-
CF-
OF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF 0/ 

CF 0/ 

OF 0/ 

IF 0/ 

OF 0/ 

PF 0/ 

SF 0/ 

TF 0/ 

ZF 0/ 

AF-
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -
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Table C-4. Instruction Set (Continued) 

Name Description Operation 

PUSHA Push All: temp t- (SP) 

PUSHA (SP) t- (SP) - 2 
((SP) + 1 :(SP)) t- (AX) 

Pushes all data, pOinter, and index (SP) t- (SP) - 2 
registers onto the stack. The order in ((SP) + 1 :(SP)) t- (CX) 
which the registers are saved is: AX, (SP) t- (SP) - 2 
CX, DX, BX, SP, BP, SI, and DI. The ((SP) + 1 :(SP)) t- (DX) 
SP value pushed is the SP value (SP) t- (SP) - 2 
before the first register (AX) is pushed. ((SP) + 1 :(SP)) t- (BX) 

Instruction Operands: (SP) t- (SP) - 2 

none ((SP) + 1 :(SP)) t- (temp) 
(SP) t- (SP) - 2 
((SP) + 1 :(SP)) t- (BP) 
(SP) t- (SP) - 2 
((SP) + 1 : (SP)) t- (SI) 
(SP) t- (SP) - 2 
((SP) + 1 :(SP)) t- (DI) 

PUSHF Push Flags: (SP) t- (SP) - 2 

PUSHF ((SP) + 1 : (SP)) t- Flags 

Decrements SP by two and then 
transfers all flags to the word at the top 
of stack pOinted to by SP. 

Instruction Operands: 

none 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
-"the flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -
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Name 

RCL 

RCR 

NOTE: 

C-36 

Table C-4. Instruction Set (Continued) 

Description Operation 

Rotate Through Carry Left: (temp) ~ count 

RCL dest, count do while (temp) * 0 

Rotates the bits in the byte or word 
(tmpcf) ~ (CF) 
(CF) ~ high-order bit of (dest) 

destination operand to the left by the (dest) ~ (dest) x 2 + (tmpcf) 
number of bits specified in the count (temp) ~ (temp) - 1 
operand. The carry flag (CF) is treated if 
as "part of" the destination operand; count = 1 
that is, its value is rotated into the low- then 
order bit of the destination, and itself is if 
replaced by the high-order bit of the high-order bit of (dest) * (CF) 
destination. then 

Instruction Operands: (OF) ~ 1 

RCL reg, n else 

RCL mem, n (OF)~O 

RCL reg, CL else 

RCL mem, CL (OF) undefined 

Rotate Through Carry Right: (temp) ~ count 

RCR dest, count do while (temp) * 0 

Operates exactly like RCL except that 
(tmpcf) ~ (CF) 
(CF) ~ low-order bit of (dest) 

the bits are rotated right instead of left. (dest) ~ (dest) 12 
Instruction Operands: high-order bit of (dest) ~ (tmpcf) 

RCR reg, n (temp) ~ (temp) - 1 

RCR mem, n ii 

RCR reg, CL count = 1 

RCR mem, CL then 
if 

high-order bit of (dest) * 
next-to-high-order bit of (dest) 

then 
(OF)~1 

else 
(OF)~O 

else 
(OF) undefined 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

int:et 

Flags 
Affected 

AF -
CF ,( 
DF-
IF -
OF ,( 
PF -
SF -
TF -
ZF -

AF-
CF ,( 
DF-
IF -
OF ,( 
PF -
SF -...... ,.- -
ZF -
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Table C-4. Instruction Set (Continued) 

Name Description Operation 

REP Repeat: do while (CX) * 0 
REPE Repeat While Equal: service pending interrupts (if any) 
REPZ Repeat While Zero: execute primitive string 
REPNE Repeat While Not Equal: Operation in succeeding byte 
REPNZ Repeat While Not Zero: (CX) +- (CX) - 1 

Controls subsequent string instruction if 

repetition. The different mnemonics primitive operation Is CMPB, 

are provided to improve program CMPW, SCAB, or SCAW and 

clarity. (ZF) *0 
then 

REP is used in conjunction with the exit from while loop 
MOVS (Move String) and STOS (Store 
String) instructions and is interpreted 
as "repeat while not end-of-string' (CX 
not 0). 

REPE and REPZ operate identically 
and are physically the same prefix byte 
as REP. These instructions are used 
with the CMPS (Compare String) and 
SCAS (Scan String) instructions and 
require ZF (posted by these instruc-
tions) to be set before initiating the 
next repetition. 

REPNE and REPNZ are mnemonics 
for the same prefix byte. These 
instructions function the same as 
REPE and REPZ except that the zero 
flag must be cleared or the repetition is 
terminated. ZF does not need to be 
initialized before executing the 
repeated string instruction. 

Instruction Operands: 

none 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -
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Name 

RET 

ROL 

NOTE: 

C-38 

Table C-4. Instruction Set (Continued) 

Description Operation 

Return: (IP) f- «SP) = 1 :(SP» 

RET optional-pop-value (SP) f- (SP) + 2 

Transfers control from a procedure 
if 

inter-segment 
back to the instruction following the then 
CALL that activated the procedure. 

(CS) f- «SP) + 1 :(SP» 
The assembler generates an intra- (SP) f- (SP) + 2 
segment RET if the programmer has if 
defined the procedure near, or an add immed8 to SP 
intersegment RET if the procedure has then 
been defined as far. RET pops the (SP) f- (SP) + data 
word at the top of the stack (pointed to 
by register SP) into the instruction 
pOinter and increments SP by two. If 
RET is intersegment, the word at the 
new top of stack is popped into the CS 
register, and SP is again incremented 
by two. If an optional pop value has 
been specified, RET adds that value to 
SP. 

Instruction Operands: 

RETimmed8 

Rotate Left: (temp) f- count 

ROL dest. count do while (temp) "* 0 
(CF) f- nign-oraer bit of (dest) 

Rotates the destination byte or word (dest) f- (dest) x 2 + (CF) 
left by the number of bits specified in (temp) f- (temp) - 1 
the count operand. if 

Instruction Operands: count = 1 

ROL reg, n then 

ROLmem, n if 

ROL reg, CL high-order bit of (dest) "* (CF) 

ROLmem CL then 
(OF) f-1 

else 
(OF) f- 0 

else 
(OF) undefined 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

Flags 
Affected 

AF-
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF -
CF ,( 
DF-
IF -
OF ,( 
PF -
SF -
TF -
ZF -
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Table C-4. Instruction Set (Continued) 

Name Description Operation 

ROR Rotate Right: (temp) (- count 

ROR dest, count do while (temp) ;t 0 

Operates similar to ROL except that 
(CF) (-low-order bit of (dest) 
(dest) (- (dest) /2 

the bits in the destination byte or word high-order bit of (dest) (- (CF) 
are rotated right instead of left. (temp) (- (temp) - 1 

Instruction Operands: if 

ROR reg, n count = 1 

ROR mem, n then 

ROR reg, CL if 

RORmem, CL high-order bit of (dest) ;t 

next-to-high-order bit of (dest) 
then 

(OF) (- 1 
else 

(OF) (- 0 
else 

(OF) undefined 

SAHF Store Register AH Into Flags: (SF):(ZF):X:(AF):X:(PF):X:(CF) (- (AH) 

SAHF 

Transfers bits 7, 6, 4, 2, and 0 from 
register AH into SF, ZF, AF, PF, and CF, 
respectively, replacing whatever 
values these flags previously had. 

Instruction Operands: 

none 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
v'the flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF -
CF v' 
DF-
IF -
OFv' 
PF -
SF -
TF -
ZF -

AF v' 
CF v' 
DF-
IF -
OF-
PF v' 
SF v' 
TF -
ZF v' 
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Name 

SHL 
SAL 

SAR 

NOTE: 

C-40 

Table C-4. Instruction Set (Continued) 

Description 

Shift Logical Left: 
Shift Arithmetic Left: 

SHL dest, count 
SAL dest, count 
Shifts the destination byte or word left 
by the number of bits specified in the 
count operand. Zeros are shifted in on 
the right. If the sign bit retains its 
original value, then OF is cleared. 

Instruction Operands: 

SHL reg, n SAL reg, n 
SHL mem, n SAL mem, n 
SHL reg, CL SAL reg, CL 
SHL mem, CL SAL mem, CL 

Shift Arithmetic Right: 

SAR dest, count 
Shifts the bits in the destination 
operand (byte or wprd) to the right by 
the number of bits specified in the 
count operand. Bits equal to the 
original high-order (sign) bit are shifted 
in on the left, preserving the sign of the 
original value. Note that SAR does not 
produce the same result as the 
dividend of an "equivalent" IDIV 
instruction if the destination operand is 
negative and 1 bits are shifted out. For 
example, shifting -5 right by one bit 
yields -3, while integer division -5 by 2 
yields -2. The difference in the instruc­
tions is that IDIV truncates all numbers 
toward zero, while SAR truncates 
positive numbers toward zero and 
negative numbers toward negative 
infinity. 

Instruction Operands: 

SAR reg, n 
SAR mem, n 
SAR reg, CL 
SAR mem, CL 

Operation 

(temp) ~ count 
do while (temp) '" 0 

if 

(CF) ~ high-order bit of (dest) 
(dest) ~ (dest) x 2 
(temp) ~ (temp) - 1 

count = 1 
then 

if 
high-order bit of (dest) '" (CE) 

then 
(OF)~1 

else 
(OF)~O 

else 
(OF) undefined 

(temp) ~ count 
do while (temp) '" 0 

if 

(CF) ~ low-order bit of (dest) 
(dest) ~ (dest) 12 
(temp) ~ (temp) - 1 

count = 1 
then 

" " 
high-order bit of (dest) '" 
next-to-high-order bit of (dest) 

then 
(OF)~1 

else 
(OF)~O 

else 
(OF)~O 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'(the flag is updated after the instruction is executed 

Flags 
Affected 

AF? 
CF ,( 
DF­
IF -
OF ,( 
PF ,( 
SF ,( 
TF -
ZF ,( 

AF? 
CF ,( 
DF­
IF -
OF ,( 
PF ,( 
SF ,( 
TF -
"71::' ./ 
£.1 • 
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Table C-4. Instruction Set (Continued) 

Name Description Operation 

SBB Subtract With Borrow: if 

SBS dest, src (CF) = 1 
then 

Subtracts the source from the desti- (dest) = (dest) - (src) - 1 
nation, subtracts one if CF is set, and else 
returns the result to the destination (dest) ~ (dest) - (src) 
operand. Both operands may be bytes 
or words. Both operands may be 
signed or unsigned binary numbers 
(see AAS and DAS) 

Instruction Operands: 

SSB reg, reg 
SBB reg, mem 
SBB mem, reg 
SBB accum, immed 
SSB reg, immed 
SBS mem, immed 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
'/the flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF ,/ 
CF ,/ 
DF-
IF -
OF ,/ 
PF ,/ 
SF ,/ 
TF -
ZF ,/ 
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Name 

SCAS 

NOTE: 

C-42 

Table C-4. Instruction Set (Continued) 

Description Operation 

Scan String: When Source Operand Is a Byte: 

SCAS dest-string (AL) - (byte-string) 

Subtracts the destination string if 
(OF) = 0 element (byte or word) addressed by 

01 from the content of AL (byte string) then 
(01) +- (01) + OELTA or AX (word string) and updates the 

flags, but does not alter the destination else 
(01) +- (01) - OELTA string or the accumulator. SCAS also 

updates 01 to point to the next string When Source Operand is a Word: 
element and AF, CF, OF, PF, SF and (AX) - (word-string) 
ZF to reflect the relationship of the if 
scan value in AUAX to the string (OF) = 0 
element. If SCAS is prefixed with then 
REPE or REPZ, the operation is (01) +- (01) + OELTA 
interpreted as "scan while not end-of- else 
string (CX not 0) and string-element = (01) +- (01) - OELTA 
scan-value (ZF = 1)." This form may be 
used to scan for departure from a 
given value. If SCAS is prefixed with 
REPNE or REPNZ, the operation is 
interpreted as "scan while not end-of-
string (CX not 0) and string-element is 
not equal to scan-value (ZF = 0)." 

Instruction Operands: 

SCAS dest-string 
SCAS (repeat) dest-string 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
./the flag is updated after the instruction is executed 

Flags 
Affected 

AF ./ 
CF ./ 
OF-
IF -
OF ./ 
PF ./ 
SF ./ 
TF -
ZF ./ 
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Name 

SHR 

STC 

STO 

NOTE: 

I 

Table C-4. Instruction Set (Continued) 

Description Operation 

Shift Logical Right: (temp) +- count 

SHR dest, src do while (temp) *- 0 

Shifts the bits in the destination 
(CF) +-Iow·order bit of (dest) 
(dest) +- (dest) 12 

operand (byte or word) to the right by (temp) +- (temp) - 1 
the number of bits specified in the if 
count operand. Zeros are shifted in on count = 1 
the left. If the sign bit retains its original then 
value, then OF is cleared. if 

Instruction Operands: high-order bit of (dest) *-
SHR reg, n next-to-high-order bit of (dest) 

SHR mem, n then 

SHR reg, CL (OF) +-1 

SHR mem, CL else 
(OF) +- 0 

else 
(OF) undefined 

Set Carry Flag: (CF) +- 1 

STC 

Sets CF to 1. 

Instruction Operands: 

none 

Set Direction Flag: (OF) +- 1 

STD 

Sets OF to 1 causing the string instruc-
tions to auto-decrement the SI and/or 
01 index registers. 

Instruction Operands: 

none 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
V"the flag is updated after the instruction is executed 

Flags 
Affected 

AF? 
CF V" 
OF-
IF -
OF V" 
PF V" 
SF V" 
TF -
ZF V" 

AF-
CF V" 
OF-
IF -
OF-
PF-
SF-
TF -
ZF -

AF -
CF-
OF V" 
IF -
OF-
PF-
SF-
TF -
ZF -
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Name 

STI 

STOS 

NOTE: 

C-44 

Table C-4. Instruction Set (Continued) 

Description Operation 

Set Interrupt-enable Flag: (IF) ~ 1 

STI 

Sets IF to 1, enabling processor 
recognition of maskable interrupt 
requests appearing on the INTR line. 
Note however, that a pending interrupt 
will not actually be recognized until the 
instruction following STI has executed. 

Instruction Operands: 

none 

Store (Byte or Word) String: When Source Operand Is a Byte: 

STOS dest·string (DEST) ~ (AL) 

Transfers a byte or word from register if 
(DF) = 0 AL or AX to the string element 

addressed by DI and updates DI to then 
(DI) ~ (DI) + DELTA point to the next location in the string. 

As a repeated operation. else 
(DI) ~ (DI) - DELTA 

Instruction Operands: 

STOS dest-string 
When Source Operand Is a Word: 

STOS (repeat) dest-string (DEST) ~ (AX) 
If 

(DF) =0 
then 

(DI) ~ (DI) + DELTA 
else 

(DI) ~ (DI) - DELTA 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
~the flag is updated after the instruction Is executed 

Flags 
Affected 

AF-
CF-
DF-
IF ~ 
OF-
PF-
SF-
TF -
ZF -

AF-
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -
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Table C-4. Instruction Set (Continued) 

Name Description Operation 

SUB Subtract: (dest) (- (dest) - (src) 

SUB dest, src 

The source operand is subtracted from 
the destination operand, and the result 
replaces the destination operand. The 
operands may be bytes or words. Both 
operands may be signed or unsigned 
binary numbers (see AAS and DAS). 

Instruction Operands: 

SUB reg, reg 
SUB reg, mem 
SUB mem, reg 
SUB accum, immed 
SUB reg, immed 
SUB mem, immed 

TEST Test: (dest) and (src) 

TEST dest, src (CF) (- 0 
(OF) (- 0 

Performs the logical "and" of the two 
operands (bytes or words), updates 
the flags, but does not return the 
result, i.e., neither operand is 
changed. If a TEST instruction is 
followed by a JNZ Oump if not zero) 
instruction, the jump will be taken if 
there are any corresponding one bits 
in both operands. 

Instruction Operands: 

TEST reg, reg 
TEST reg, mem 
TEST accum, immed 
TEST reg, immed 
TEST mem, immed 

NOTE: The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
"the flag is updated after the instruction is executed 

I 

Flags 
Affected 

AF" 
CF" 
DF-
IF -
OF" 
PF" 
SF" 
TF -

ZF " 

AF? 
CF" 
DF-
IF -
OF" 
PF" 
SF" 
TF -

ZF " 
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Name 

WAiT 

XCHG 

NOTE: 

C-46 

Table C-4. Instruction Set (Continued) 

Description Operation 

Wait: None 

WAIT 

Causes the CPU to enter the wait state 
while its test line is not active. 

Instruction Operands: 

none 

Exchange: (temp) f- (dest) 

XCHG dest, src (dest) f- (src) 

Switches the contents of the source 
(src) f- (temp) 

and destination operands (bytes or 
words). When used in conjunction with 
the LOCK prefix, XCHG can test and 
set a semaphore that controls access 
to a resource shared by multiple 
processors. 

Instruction Operands: 

XCHG accum, reg 
XCHG mem, reg 
XCHG reg, reg 

The three symbols used ill the F!ags Affected co!umn are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
v"the flag is updated after the instruction is executed 

Flags 
Affected 

AF-
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -

AF -
CF-
DF-
IF -
OF-
PF -
SF -
TF -
ZF -
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Name 

XLAT 

XOR 

NOTE: 

I 

Table C-4. Instruction Set (Continued) 

Description Operation 

Translate: AL t- ((BX) + (AL» 

XLAT translate-table 

Replaces a byte in the AL register with 
a byte from a 2S6-byte, user-coded 
translation table. Register BX is 
assumed to pOint to the beginning of 
the table. The byte in AL is used as an 
index into the table and is replaced by 
the byte at the offset in the table corre-
sponding to AL's binary value. The first 
byte in the table has an offset of O. For 
example, if AL contains SH, and the 
sixth element of the translation table 
contains 33H, then AL will contain 33H 
following the instruction. XLAT is 
useful for translating characters from 
one code to another, the classic 
example being ASCII to EBCDIC or 
the reverse. 

Instruction Operands: 

XLAT src-table 

Exclusive Or: (dest) t- (dest) xor (src) 

XOR dest, src (CF) t- 0 
(OF) t- 0 

Performs the logical "exclusive or' of 
the two operands and returns the 
result to the destination operand. A bit 
in the result is set if the corresponding 
bits of the original operands contain 
opposite values (one is set, the other 
is cleared); otherwise the result bit is 
cleared. 

Instruction Operands: 

XOR reg, reg 
XOR reg, mem 
XOR mem, reg 
XOR accum, immed 
XOR reg, immed 
XOR mem, immed 

The three symbols used in the Flags Affected column are defined as follows: 
- the contents of the flag remain unchanged after the instruction is executed 
? the contents of the flag is undefined after the instruction is executed 
.Ithe flag is updated after the instruction is executed 

Flags 
Affected 

AF-
CF-
DF-
IF -
OF-
PF-
SF-
TF -
ZF -

AF? 
CF .I 
DF-
IF -
OF .I 
PF .I 
SF .I 
TF -
ZF .I 

C-47 





intel· 

Instruction Set 
Opcodes and Clock 
Cycles 

I 

D 





APPENDIX D 
INSTRUCTION SET OPCODES 

AND CLOCK CYCLES 

This appendix provides reference information for the 8OC186 Modular Core family instruction 
set. Table D-I defines the variables used in Table D-2, which lists the instructions with their for­
mats and execution times. Table D-3 is a guide for decoding machine instructions. Table D-4 is a 
guide for encoding instruction mnemonics, and Table D-S defines Table D-4 abbreviations. 

I 

Table 0-1. Operand Variables 

Variable Description 

mod 

rim 

reg 

MMM 

PPP 

Tn 

rim 

000 

001 

010 

011 

100 

1 01 

110 

1 1 1 

reg 

000 

001 

010 

011 

100 

101 

110 

111 

mod and rim determine the Effective Address (EA). 

rim and mod determine the Effective Address (EA). 

reg represents a register. 

MMM and PPP are opcodes to the math coprocessor. 

PPP and MMM are opcodes to the math coprocessor. 

TTT defines which shift or rotate instruction is executed. 

EA Calculation mod Effect on EA Calculation 

(BX) + (SI) + OISP 00 if rim ,. 110, OISP = 0; disp-Iow and disp-high are absent 

(BX) + (01) + OISP 00 if rim = 110, EA = disp-high:disp-Iow 

(BP) + (SI) + OISP 01 OISP = disp-Iow, sign-extended to 16 bits; disp-high is absent 

(BP) + (01) + OISP 10 OISP = disp-high:disp-Iow 

(SI) +OISP 1 1 rim is treated as a reg field 

(OI)+OISP OISP follows the second byte of the instruction (before any required data). 

(BP) + OISP, if mod ,. 00 

disp-high:disp-Iow, if mod =00 

(BX)+OISP 

Physical addresses of operands addressed by the BP register are computed 
using the SS segment register. Physical addresses of destination operands of 
string primitives (addressed by the 01 register) are computed using the ES seg­
ment register, which cannot be overridden. 

16-bit(w=1) a-bit (w=O) TTT Instruction 

AX AL 000 ROL 

CX CL 001 ROR 

OX OL 010 RCL 

BP BL 011 RCR 

SP AH 100 SHUSAL 

BP CH 101 SHR 

SI OH 110 -
01 BH 111 SAR 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES 

Table 0-2. Instruction Set Summary 

Function Format 

DATA TRANSFER INSTRUCTIONS 

MOV=Move 

register to register/memory 

register/memory to register 

immediate to register/memory 

immediate to register 

memory to accumulator 

accumulator to memory 

register/memory to segment register 

segment register to register/memory 

PUSH = Push 

XCHG = Exchange 

register/memory with register 

register with accumulator 

1000100w mod reg rim 

1000101w mod reg rim 

1100011 w mod 000 rim 

1011 w reg data 

1010000w addr·low 

1010001w addr·low 

10001110 modO reg rim 

10001100 modO reg rim 

DATA TRANSFER INSTRUCTIONS (Continued) 

XLAT = Translate byte to AL 

IN = Input from 

fixed port 

variable port 

OUT = Output from 

fixed port 

NOTES: 

...------, 
11010111 

\1110010W \ port 

1. Clock cycles are given for 8-bitl16-bit operations. 
2. Clock cycles are given for jump not taken/jump taken. 

data 

data ffw=l 

addr·high 

addr·high 

3. Clock cycles are given for interrupt taken/interrupt not taken. 
4. If TEST = 0 

data ifw=l 

Clocks 

2112 

219 

12113 

314 

9 

8 

219 

2111 

4/17 

3 

11 

10 

8 

9 

Notes 

(1) 

(1) 

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, "80C186 
Instruction Set Additions and ExtenSions," for details. 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES 

Table 0-2. Instruction Set Summary (Continued) 

Function Format 

variable port 

LEA = Load EA to register 

LOS = Load pointer to DS 

SAHF = Store AH into flags 

PUSHF = Push flags 

POPF = Pop flags 

ARITHMETIC INSTRUCTIONS 

AOO = Add 

reg/memory with register to either 

immediate to register/memory 

immediate to accumulator 

AOC = Add with carry 

reg/memory with register to either 

immediate to register/memory 

immediate to accumulator 

INC = Increment 

register/memory 

register 

AAA = ASCII adjust for addition 

OAA = Decimal adjust for addition 

NOTES: 

OOOOOOdw mod reg rim 

100000sw mod 000 rim 

0000010w data 

000100dw mod reg rim 

100000sw mod 010 rim 

0001010w data 

1111111w mod 000 rim 

01000 reg 

00110111 

00100111 

1 . Clock cycles are given for 8-bitl16-bit operations. 
2. Clock cycles are given for jump not taken/jump taken. 

data 

data ifw=1 

data 

data ifw=1 

3. Clock cycles are given for interrupt taken/interrupt not taken. 
4. If TEST = 0 

Clocks 

7 

6 

18 

3 

9 

8 

3110 

4116 

Notes 

314 (1) 

3110 

4116 

3/4 (1) 

3115 

3 

8 

4 

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, "80C 186 
Instruction Set Additions and Extensions," for details. 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES 

Table 0-2. Instruction Set Summary (Continued) 

Function Format Clocks Notes 

SUB = Subtract 

reglmemory with register to either 001010dw mod reg rim 3110 

immediate from register/memory 100000sw mod 101 rIm data I data if sw=OI I 4116 

immediate from accumulator 0001110w data data Hw=1 I 314 (1) 

SBB = Subtract with borrow 

reg/memory with register to either 000110dw mod reg rIm 3110 

immediate from registerlmemory 100000sw mod 011 rIm data J data if sw=OI I 4116 

immediate from accumulator 0OO1110w data data ifw=1 I 314 (1) 

ARITHMETIC INSTRUCTIONS (Continued) 

DEC = Decrement 

registerlmemory lllllllw mod 001 rim J 3115 

register 01001 reg 3 

NEG = Change sign 111101 1 w mod reg rIm 3 

CMP = Compare 

register/memory with register 0011101 w mod reg rIm 3110 

register with registerlmemory 0011100w mod reg rIm 3110 

immediate with register/memory 100000sw mod 111 rim data I data if sw=OI I 3/10 

Irnrnediate with accumu:ator 0011110w data data If .... ;;;;1 ! 314 (1) 

AAS = ASCII adjust for subtraction 00111111 7 

DAS = Decimal adjust for subtraction 00101111 4 

MUL = multiply (unsigned) 1111011 w mod 100 rim 

register-byte 26-28 

register-word 35-37 

memory-byte 32-34 

memory-word 41-43 

IMUL = Integer multiply (signed) 11111011W I mod 101 rIm I 
register-byte 25-28 

register-word 34-37 

memory-byte 31-34 

NOTES: 
1. Clock cycles are given for 8-bit/16-bit operations. 
2. Clock cycles are given for jump not taken/jump taken. 
3. Clock cycles are given for interrupt taken/interrupt not taken. 
4. If TEST = 0 

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, "80C186 
Instruction Set Additions and Extensions," for details. 
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INSTRUCTION SET OPCOOES AND CLOCK CYCLES 

Table 0-2. Instruction Set Summary (Continued) 

Function Format 

memory-word 

ARITHMETIC INSTRUCTIONS (Continuerd)'---____ .-____ ---. 

AAM = ASCII adjust for multiply 

DIV = Divide (unsigned) 

register-byte 

register-word 

memory-byte 

memory-word 

11010100 

1111011 w 

IDIV = Integer divide (signed) 

register-byte 

11 1 1101 1 w I mod 111 rim 

register-word 

memory-byte 

memory-word 

AAD = ASCII adjust for divide 

CBW = Convert byte to word 

CWO = Convert word to double-word 

BIT MANIPULATION INSTRUCTIONS 

NOT= Invert register/memory 

AND = And 

reg/memory and register to either 

immediate to register/memory 

immediate to accumulator 

11010101 

10011000 

10011001 

11111011w 

001000dw 

1000000w 

0010010w 

BIT MANIPULATION INSTRUCTIONS (Continued) 

OR=Or 

reg/memory and register to either 

immediate to register/memory 

NOTES: 

000010dw 

1000000w 

00001010 I 

I mod 010 rim 

mod reg rim 

mod 100 rim 

data 

1 . Clock cycles are given for 8-bitl16-bit operations. 
2. Clock cycles are given for jump not taken/jump taken. 

data 

data ifw=1 

3. Clock cycles are given for interrupt taken/interrupt not taken. 
4. If TEST = 0 

Clocks 

40-43 

19 

29 

38 

35 

44 

29 

38 

35 

44 

15 

2 

4 

3 

3110 

4/16 

314 

3110 

4/10 

Notes 

(1) 

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, "80C186 
Instruction Set Additions and Extensions," for details. 
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INSTRUCTION SET OPCOOES AND CLOCK CYCLES 

Table 0-2. Instruction Set Summary (Continued) 

Function Format 

immediate to accumulator 

XOR = Exclusive or 

reg/memory and register to either 

immediate to register/memory 

immediate to accumulator 

TEST = And function to flags, no result 

register/memory and register 

immediate data and register/memory 

immediate data and accumulator 

ShlftS/Romles 

register/memory by 1 

LODS = Load byte/word to AIJAX 

STOS = Store byte/word from AIJAX 

Repeated by counl In CX: 

SCAS = Scan byte/word 

LODS = Load byte/word to AIJAX 

STOS = Store byte/word from AIJAX 

NOTES: 

10000110W I data 

001100dw mod reg rIm 

1000000w mod 110 rIm 

0011010w data 

1000010w mod reg rIm 

1111011 w mod 000 rIm 

1010100w data 

1. Clock cycles are given for 8-biU16-bit operations. 
2. Clock cycles are given for jump not taken/jump taken. 

I data ifw=1 

data 

data ifw=1 

data 

data ifw=1 

3. Clock cycles are given for interrupt taken/interrupt not taken. 
4. If TEST = 0 

Clocks 

314 

3110 

4110 

314 

3110 

4110 

314 

2115 

15 

12 

10 

5+15n 

6+11n 

6+9n 

Notes 

(1) 

(1) 

(1) 

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, "80C186 
Instruction Set Additions and Extensions," for details. 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES 

Table 0-2. Instruction Set Summary (Continued) 

Function Format Clocks Notes 

PROGRAM TRANSFER INSTRUCTIONS 

Conditional Transfers - jump il: 

JElJZ= equaVzero 01110100 disp 4/13 (2) 

JUJNGE = less/not greater or equal 01111100 disp 4/13 (2) 

JLElJNG = less or equaVnot greater 011111 10 disp 4/13 (2) 

JBJJNAE = below/not above or equal 01110010 disp 4/13 (2) 

JC = carry 01110010 disp 4/13 (2) 

JBElJNA = below or equal/not above 01110110 disp 4/13 (2) 

JP/JPE = parity/parity even 01111010 disp 4/13 (2) 

JO= overflow 01110000 disp 4/13 (2) 

JS = sign 01111000 disp 4/13 (2) 

JNElJNZ = not equal/not zero 01110101 disp 4/13 (2) 

PROGRAM TRANSFER INSTRUCTIONS (Continued) 

JNUJGE = not less/greater or equal 01111101 disp 4/13 (2) 

JNLElJG = not less or equaVgreater 01111111 disp 4/13 (2) 

JNBJJAE = not below/above or equal 01110011 disp 4/13 (2) 

JNC = not carry 011 10011 disp 4/13 (2) 

JNBElJA = not below or equaVabove 01 1 10111 disp 4/13 (2) 

JNP/JPO = not parity/parity odd 01 1 11011 disp 4/13 (2) 

JNO = not overflow 01110001 disp 4/13 (2) 

JNS = not sign 01111001 disp 5/15 (2) 

Unconditional Transfers 

CALL = Call procedure 

direct within segment 11101000 disp-Iow disp-high I 15 

reg/memory indirect within segment 1 1 1 1 1 1 1 1 mod 010 rim 13/19 

indirect intersegment 1 1 1 1 1 1 1 1 mod 011 rim (mod?11) 38 

direct intersegment 10011010 segment offset 23 

selector 

RET = Return from procedure 

within segment 111000011 I 16 

NOTES: 
1. Clock cycles are given for 8-bit/16-bit operations. 
2. Clock cycles are given for jump not taken/jump taken. 
3. Clock cycles are given for jnterrupt taken/interrupt not taken. 
4. If TEST = 0 

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, "80C186 
Instruction Set Additions and ExtenSions," for details. 
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INSTRUCTION SET OPCOOES AND CLOCK CYCLES 

Table 0-2. Instruction Set Summary (Continued) 

Function Format 

within segment adding immed to SP 11000010 

intersegment 11001011 

intersegment adding immed to SP 11001010 

PROGRAM TRANSFER INSTRUCTIONS (Continued) 

JMP = Unconditional jump 

shortllong 

direct within segment 

reg/memory indirect within segment 

indirect intersegment 

direct intersegment 

Iteration Control 

LOOP = Loop CX times 

LOOPZILOOPE =Loop while zero/equal 

LOOPNZlLOOPNE = 
Loop while not zero/not equal 

JCXZ = Jump if CX = zero 

Interrupts 

INT = Interrupt 

, Type specified 

Type 3 

11101011 

11101001 

11111111 

11111111 

11101010 

11100010 

11100001 

11100000 

11100011 

PROCESSOR CONTROL INSTRUCTlONrS _____ -, 

I 11111000 CLC = Clear carry 

NOTES: 

data-low 

data-low 

disp-Iow 

disp-Iow 

mod 100 rim 

mod 101 rim 

segment offset 

selector 

disp 

disp 

disp 

disp 

1. Clock cycles are given for 8-bitl16-bit operations. 
2. Clock cycles are given for jump not taken/jump taken. 

disp-high 

(mod ?11) 

3. Clock cycles are given for interrupt taken/interrupt not taken_ 
4. If TEST = 0 

intet 

Clocks Notes 

18 

22 

25 

14 

14 

26 

11/17 

14 

6/16 

5/16 

5/16 

6/16 

47 

45 

2 

(2) 

(2) 

(2) 

(2) 

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, "80C186 
Instruction Set Additions and Extensions," for details. 
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intel~ INSTRUCTION SET OPCOOES ANO CLOCK CYCLES 

Table 0-2. Instruction Set Summary (Continued) 

Function Format Clocks Notes 

CMC = Complement carry 11110101 2 

STC = Set carry 11111001 2 

CLD = Clear direction 11111100 2 

STD = Set direction 11111101 2 

CU = Clear interrupt 11111010 2 

sn = Set interrupt 11111011 2 

HLT= Halt 11110100 2 

WAIT = Wait 10011011 6 (4) 

LOCK = Bus lock prefix 11110000 2 

ESC = Math coprocessor escape 11011 MMM modPPP rIm I 6 

NOP = No operation 10010000 3 

SEGMENT OVERRIDE PREFIX 

CS 00101110 2 

SS 00110110 2 

OS 00111110 2 

ES 00100110 2 

NOTES: 
1. Clock cycles are given for 8-bitl16-bit operations. 
2. Clock cycles are given for jump not taken/jump taken. 
3. Clock cycles are given for interrupt taken/interrupt not taken. 
4. If TEST = a 

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, "80C186 
Instruction Set Additions and Extensions," for details. 

Table 0-3. Machine Instruction Decoding Guide 

Byte 1 
Byte 2 Bytes 3-6 ASM-86 Instruction Format 

Hex Binary 

00 00000000 mod reg rIm (disp-Io),(disp-hi) add reg8lmem8, reg8 

01 00000001 mod reg rIm (dlsp-Io),(dlsp-hi) add regl61mem18,reg16 

02 00000010 mod reg rIm (disp-Io),(disp·hl) add reg8,reg8lmem8 

03 00000011 mod reg rIm (disp-Io),(disp-hi) add reg16,regl61mem16 

04 00000100 data·8 add AL,immed8 

05 0000 0101 data·lo data·hi add AX,lmmed16 

06 0000 0110 push ES 

07 0000 0111 pop ES 

06 0000 0100 mod reg rIm (disp·lo),(disp·hi) or reg8lmem8,reg8 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES intet 
Table 0-3. Machine Instruction Decoding Guide (Continued) 

Byte 1 
Byte 2 Bytas3-6 ASM-86 Instruction Format 

Hex Binary 

09 0000 1001 mod reg rim (disp-Io),(dlsp-hi) or regl61mernl6,regl6 

OA 0000 1010 mod reg rim (disp-Io),(disp-hl) or reg8,reg6lmern8 

OB 0000 1011 mod reg rim (disp-Io),(dlsp-hi) or reg16,reg161rnem 16 

OC 0000 1100 data-8 or AL,lmmed8 

00 0000 1101 data-Io data-hi or AX,immed16 

OE 0000 1110 push CS 

OF 00001111 -
10 00010000 mod reg rim (disp-Io),(disp-hi) ade reg8lmem8,reg8 

11 00010001 mod reg rim (dlsp-Io),(disp-hi) ade regl61meml6,regl6 

12 00010010 mod reg rim (disp-Io),(dlsp-hi) ade reg8,reg8lmem8 

13 00010011 mod reg rim (disp-Io),(disp-hl) ade reg18,reg161rnem16 

14 00010100 data-8 ade AL,immed8 

15 00010101 data-Io data-hi ade AX,Immed16 

16 00010110 push SS 

17 00010111 pop SS 

18 00011000 mod reg rim (disp-Io),(disp-hl) sbb reg8lmem8,regB 

19 00011001 mod reg rim (dlsp-Io),(disp-hi) sbb regl61meml6,regl6 

lA 00011010 mod reg rim (disp-Io),(disp-hl) sbb regB,reg8lmem8 

lB 00011011 mod reg rim (disp-Io),(disp-hi) sbb reg16,reg161rnem 16 

lC 00011100 data-B sbb AL,lmmed8 

10 00011101 data-Io data-hi sbb AX,immed16 

IE 00011110 push OS 

IF 00011111 pop OS 

20 00100000 mod reg rim (disp-Io),(disp-hi) and reg8lmemB,regB 

21 0010 0001 mod reg rim (dlsp-Io),(disp-hl) and regl61meml6,regl6 

22 00100010 mod reg rim (disp-Io),(disp-hi) and regB,reg8lmemB 

23 00100011 mod reg rim (disp-Io),(disp-hi) and regl6,regl61meml6 

24 0010 0100 data-B and AL,immedB 

25 00100101 data-Io data-hi and AX,Immed16 

26 00100110 ES: (segment override prefix) 

27 00100111 daa 

2B 0010 1000 mod reg rim (disp-Io),(disp-hi) sub reg8lmemB,regB 

29 0010 1001 mod reg rim (disp-Io),(dlsp-hl) sub regl61meml6,regl6 

2A 0010 1010 mod reg rim (dlsp-Io),(disp-hl) sub regB,reg61memB 

2B 0010 1011 mod reg rim (disp-Io),(disp-hi) sub reg16,reg161rnem16 

2C 0010 1100 data-8 sub AL,lmmed8 

20 0010 1101 data-Io data-hi sub AX,immed16 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES 

Table D-3. Machine Instruction Decoding Guide (Continued) 

Byte 1 
Byte 2 Bytes 3-6 ASM-86 Instruction Format 

Hex Binary 

2E 00101110 os: (segment override prefix) 

2F 00101111 das 

30 00110000 mod reg rIm (disp-Io),(disp-hi) xor reg8lmem8,reg8 

31 00110001 mod reg rIm (disp-Io),(disp-hi) xor reg161mem16,reg16 

32 00110010 mod reg rIm (disp-Io),(disp-hi) xor reg8,reg8lmem8 

33 00110011 mod reg rIm (disp-Io),(disp-hi) xor reg16,reg161mem16 

34 00110100 data-8 xor AL,immed8 

35 00110101 data-Io data-hi xor AX,immed16 

36 00110110 SS: (segment override prefix) 

37 00110111 aaa 

38 00111000 mod reg rIm (disp-Io),(disp-hi) xor reg8lmem8, reg8 

39 00111001 mod reg rIm (disp-Io),(disp-hi) xor reg161mem16,reg16 

3A 00111010 mod reg rIm (disp-Io),(disp-hi) xor reg8,reg8lmem8 

3B 00111011 mod reg rIm (disp-Io),(disp-hi) xor reg16,reg161mem16 

3C 00111100 data-8 xor AL,immed8 

30 00111101 data-Io data-hi xor AX,immed16 

3E 00111110 OS: (segment override prefix) 

3F 00111111 aas 

40 01000000 inc AX 

41 01000001 inc CX 

42 01000010 inc OX 

43 01000011 inc BX 

44 01000100 inc SP 

45 01000101 inc BP 

46 01000110 inc SI 

47 01000111 inc 01 

48 01001000 dec AX 

49 01001001 dec CX 

4A 01001010 dec OX 

4B 01001011 dec BX 

4C 0100 1100 dec SP 

40 01001101 dec BP 

4E 01001110 dec SI 

4F 01001111 dec 01 

50 01010000 push AX 

51 01010001 push CX 

52 01010010 push OX 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES int:et 
Table D-3. Machine Instruction Decoding Guide (Continued) 

Byte 1 
Byte 2 Bytes 3-6 ASM-86 Instruction Format 

Hex Binary 

53 0101 0011 push BX 

54 0101 0100 push 5P 

55 0101 0101 push BP 

56 0101 0110 push 51 

57 01010111 push 01 

58 0101 1000 pop AX 

59 01011001 < pop CX 

5A 01011010 pop OX 

5B 01011011 pop BX 

5C 0101 1100 pop 5P 

50 01011101 pop BP 

5E 0101 1110 pop 51 

5F 01011111 pop 01 

60 01100000 pusha 

61 01100001 popa 

62 01100010 mod reg rIm bound reg16,mem16 

63 01100011 -
64 01100100 -
65 01100101 -
66 01100110 -
67 01100111 -
68 01101000 data-Io data-hi push immed16 

69 01101001 mod reg rIm data-Io, data-hi imul immed16 

70 0111 0000 IP-inc-8 jo short-label 

71 0111 0001 IP-inc-B jno short-label 

72 01110010 IP-inc-8 jb~naeljc short-label 

73 01110011 IP-inc-8 jnbljae~nc short-label 

74 0111 0100 IP-inc-8 je~z short-label 

75 01110101 IP-inc-8 jneljnz short-label 

76 0111 0110 IP-inc-8 jb~na short-label 

77 01110111 IP-inc-8 jnbe~a short-label 

78 01111000 IP-inc-8 js short-label 

79 01111001 IP-inc-8 jns short-label 

7A 0111 1010 IP-inc-8 jp/jpe short-label 

7B 0111 1011 IP-inc-8 jnp/jpo short-label 

7C 0111 1100 IP-inc-8 jl/jnge short-label 

70 01111101 IP-inc-8 jnVjge short-label 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES 

Table D-3. Machine Instruction Decoding Guide (Continued) 

Byte 1 
Byte 2 Bytes 3-6 ASM-86 Instruction Format 

Hex Binary 

7E 0111 1110 IP-inc-8 jle/jng short-label 

7F 0111 1111 IP-inc-8 jnle/jg short-label 

80 10000000 mod 000 rim (disp-Io),(disp-hi), data-8 add reg8imem8,immed8 

mod 001 rim (disp-Io),(disp-hi), data-8 or reg8imem8,immed8 

mod 010 rim (disp-Io),(disp-hi), data-8 adc reg8imem8,immed8 

mod 011 rim (disp-Io),(disp-hi), data-8 sbb reg8imem8,immed8 

mod 100 rim (disp-Io),(disp-hi), data-8 and reg8imem8,immed8 

mod 101 rim (disp-Io),(disp-hi), data-8 sub reg8imem8,immed8 

mod 110 rim (disp-Io),(disp-hi), data-8 xor reg8imem8,immed8 

mod 111 rim (disp-Io),(disp-hi), data-8 cmp reg8imem8,immed8 

81 10000001 mod 000 rim (disp-Io),(disp-hi), data-Io,data-hi add reg16/mem16,immed16 

mod 001 rim (disp-Io),(dlsp"hi), data-Io,data-hi or reg161mem16,immed16 

mod 010 rim (disp-Io),(disp-hi), data-Io,data-hi adc reg16/mem16,immed16 

mod 011 rim (disp-Io),(disp-hi), data-Io,data-hi sbb regl61mem16,immed16 

mod 100 rim (disp-Io),{disp-hi), data-Io,data-hi and reg16/mem16,immed16 

81 10000001 mod 101 rim {disp-Io),(disp-hij, data-Io,data-hi sub reg16/mem16,immed16 

mod 110 rim (disp-Io),{disp-hi), data-Io,data-hi xor regl61mem16,immed16 

mod 111 rim (disp-Io),{disp-hi), data-Io,data-hi cmp regl61mem16,immed16 

82 10000010 mod 000 rim (disp-Io),{disp-hi), data-8 add reg8imem8,immed8 

mod 001 rim -

mod 010 rim (disp-Io),{disp-hi), data-8 adc reg8imem8,immed8 

mod 011 rim (disp-Io),{disp-hi), data-8 sbb reg8imem8,immed8 

mod 100 rim -
mod 101 rim (disp-Io),{disp-hi), data-8 sub reg8imem8,immed8 

mod 110 rim -
mod 111 rim (disp-Io),{disp-hi), data-8 cmp reg8imem8,immed8 

83 10000011 mod 000 rim (disp-Io),{disp-hi), data-SX add reg 16/mem 16,immed8 

mod 001 rim -
mod 010 rim (disp-Io),{disp-hi), data-SX adc reg16/mem16,immed8 

mod 011 rim (disp-Io),{disp-hi), data-SX sbb reg 16/mem 16,immed8 

mod 100 rim -

mod 101 rim (disp-Io),{disp-hi), data-SX sub reg16/mem16,immed8 

mod 110 rim -
mod 111 rim (disp-Io),(disp-hi), data-SX cmp reg16/mem16,immed8 

84 10000100 mod reg rim (disp-Io),{disp-hi) test reg8imem8,reg8 

85 10000101 mod reg rim (disp-Io),{disp-hi) test reg 16/mem 16, reg 16 

86 10000110 mod reg rim (disp-Io),{disp-hi) xchg reg8,reg8imem8 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES 

Table D-3. Machine Instruction Decoding Guide (Continued) 

Byte 1 . 

Hex Binary 
Byte 2 Bytes 3-6 ASM-86 Instruction Format 

87 10000111 mod reg rIm (dlsp-Io),(disp-hi) xchg reg16,regl61mem 16 

88 10000100 mod reg rIm (disp-Io),(disp-hi) moY reg8lmem8,reg8 

89 1000 1001 mod reg rIm (disp-Io),(disp-hi) moy regl61mem16,reg16 

8A 1000 1010 mod reg rIm (disp-Io),(dlsp-hi) moy reg8,reg8lmem8 

8B 10001011 mod reg rIm (disp-Io),(disp-hi) moy reg16,regl61mem16 

8C 10001100 mod OSR rIm (disp-Io),(disp-hi) moy regl61mem16,SEGREG 

mod 1- rIm -
80 10001101 mod reg rIm (disp-Io),(dlsp-hi) lea reg16,mem16 

8E 10001110 mod OSR rIm (dlsp-Io),(disp-hi) moy SEGREG,regl61mem16 

mod 1- rIm -
8F 1000 1111 pop mem16 

90 10010000 nop (xchg AX.AX) 

91 10010001 xchg AX,CX 

92 10010010 xchg AX,OX 

93 10010011 xchg AX,BX 

94 10010100 xchg AX,SP 

95 10010101 xchg AX,BP 

96 10010110 xchg AX,SI 

97 10010111 xchg AX,OI 

98 10011000 cbw 

99 10011001 cwd 

9A 10011010 disp-Io disp-hi,seg-Io,seg-hi call far-proc 

9B 10011011 wait 

9C 10011100 push! 

90 10011101 pop! 

9E 10011110 sah! 

9F 10011111 lah! 

AO 10100000 addr-Io addr-hi moy AL,mem8 

Al 10100001 addr-Io addr-hl moY AX,mem16 

A2 10100010 addr-Io addr-hi moy mem8,AL 

A3 10100011 addr-Io addr-hi mov mem16,AL 

A4 10100100 moys dest-strB,src-strB 

A5 10100101 moys dest-str16,src-str16 

A6 10100110 crnps dest-str8,src-strB 

A7 10100111 crnps dest-str16,src-str16 

A8 10101000 data-8 test AL,immed8 

A9 10101001 data-Io data-hi test AX,Immed16 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES 

Table 0-3. Machine Instruction Decoding Guide (Continued) 

Byte 1 
Byte 2 Bytes :Hi ASM-86 Instruction Format 

Hex Binary 

AA 10101010 slos desl-slrS 

AB 10101011 slos desl-slrlB 

AC 10101100 lods sre-slrS 

AD 10101101 lods sre-slrlB 

AE 10101110 seas desl-slrS 

AF 10101111 seas desl-slrlB 

BO 10110000 dala-8 mov AL,immedS 

Bl 10110001 dala-B mov CL,immedB 

82 10110010 dala-B mov DL,immedB 

83 10110011 dala-B mov 8L,immedB 

84 10110100 dala-B mov AH,immedB 

85 10110101 dala-B mov CH,immedS 

8B 10110110 dala-B mov DH,immedS 

87 10110111 dala-8 mov 8H,immedS 

8B 10111000 dala-Io dala-hi mov AX,immedlB 

89 10111001 dala-Io dala-hi mov CX,immedlB 

8A 10111010 dala-Io dala-hi mov DX,immedl6 

88 10111011 data-Io data-hi mov 8X,immedl6 

8C 10111100 data-Io data-hi mov SP,immedl6 

8D 10111101 data-Io data-hi mov 8P,immedl6 

8E 10111110 data-Io data-hi mov SI,immedl6 

8F 10111111 data-Io data-hi mov DI,immedlB 

CO 11000000 mod 000 rIm dala-B ral regB/memS, immedB 

mod 001 rIm data-B rar regB/memS, immedS 

mod 010 rIm dala-B rei regB/memB, immedB 

mod 011 rIm data-B rer regB/memB, immedS 

mod 100 rIm data-B shl/sal regB/memB, immedB 

mod 101 rIm data-B shr regB/memB, immedB 

mod 110 rIm -
mod 111 rIm data-B sar regB/memB, immedB 

Cl 11000001 mod 000 rIm data-B rol reglB/memI6, immedB 

mod 001 rIm data-B ror reglB/memI6, immedB 

mod 010 rIm dala-B rei reglB/memI6, immedB 

mod 011 rIm data-B rer reglB/memI6, immedB 

mod 100 rIm data-B shl/sal reglBlmeml6, immedB 

mod 101 rIm data-8 shr reglB/memI6, immedB 

mod 110 rIm -

I 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES 

Table D-3. Machine Instruction Decoding Guide (Continued) 

Byte 1 
Byte 2 Bytes 3-6 ASM-86 Instruction Format 

Hex Binary 

mod 111 rIm data-8 sar regl61meml6, immed8 

C2 11000010 data-Io data-hi ret immed16 (intrasegment) 

C3 11000011 ret (intrasegment) 

C4 1100 0100 mod reg rIm (disp-Io),(disp-hi) les reg16,mem16 

C5 11000101 mod reg rIm (disp-Io),(disp-hi) Ids reg16,mem16 

C6 11000110 mod 000 rIm (disp-lo),(disp-hi),data-8 mov mem8,immed8 

mod 001 rIm -
mod 010 rIm -
mod 011 rIm -
mod 100 rIm -
mod 101 rIm -
mod 110 rIm -

C6 11000110 mod 111 rIm -
C7 11000111 mod 000 rIm (disp-Io),(disp-hi),data-Io,data-hi mov mem16,immed16 

mod 001 rIm -
mod 010 rIm -
mod 011 rIm -
mod 100 rIm -
mod 101 rIm -
mod 110 rIm -
mod 111 rIm -

C8 11001000 data-Io data-hi, level • enter immed16, immed8 

C9 11001001 leave 

CA 11001010 data-Io data-hi ret immed16 (intersegment) 

CB 1100 1011 ret (intersegment) 

CC 11001100 int 3 

CD 11001101 data-8 int immed8 

CE 11001110 into 

CF 11001111 iret 

DO 11010000 mod 000 rIm (disp-Io),(disp-hi) rol reg8lmem8,1 

mod 001 rIm (disp-Io),(disp-hi) ror reg8lmem8,1 

mod 010 rim (disp-Io),(disp-hi) rei reg8lmem8,1 

mod 011 rIm (disp-Io),(disp-hi) rer reg8lmem8,1 

mod 100 rIm (disp-Io),(disp-hi) saVshl reg8lmem8,1 

mod 101 rIm (disp-Io),(disp-hi) shr reg8lmem8,1 

mod 110 rIm -
mod 111 rIm (disp-Io),(disp-hi) sar reg8lmem8,1 
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Table D-3. Machine Instruction Decoding Guide (Continued) 

Byte 1 
Byte 2 Bytes 3-6 ASM-86 Instruction Format 

Hex Binary 

01 11010001 mod 000 rim (disp-Io),(disp-hi) rol reg161mem16,1 

mod 001 rim (disp-Io),(disp-hi) ror reg161mern16,1 

01 11010001 mod 010 rim (disp-Io),(disp-hi) rei reg161mem16,1 

mod 011 rim (disp-Io),(disp-hi) rcr reg161mem 16, 1 

mod 100 rim (dlsp-Io),(disp-hi) salish I reg161mern 16, 1 

mod 101 rim (disp-Io),(dlsp-hi) shr reg161mem16,1 

mod 110 rim -
mod 111 rim (disp-Io),(disp-hi) sar reg161mern16,1 

02 11010010 mod 000 rim (disp-Io),(disp-hi) rol reg6lmem8,CL 

mod 001 rim (disp-Io),(disp-hi) ror reg6lmem8,CL 

mod 010 rim (disp-Io),(disp-hi) rei reg6lmem8,CL 

mod 011 rim (disp~o),(disp-hi) rcr reg6lmemB,CL 

mod 100 rim (disp-Io),(disp-hi) sal/shl reg6lmemB,CL 

mod 101 rim (disp-Io),(disp-hi) shr reg6lmem8,CL 

mod 110 rim -
mod 111 rim (disp-Io),(disp-hi) sar reg6lmem8,CL 

03 11010011 mod 000 rim (disp-Io),(disp-hi) rol reg161mern16,CL 

mod 001 rim (disp-Io),(disp-hi) ror reg161mem16,CL 

mod 010 rim (disp-Io),(disp-hi) rei reg161mem16,CL 

mod 011 rim (disp-Io),(disp-hi) rcr reg161mem16,CL 

mod 100 rim (disp-Io),(disp-hi) saVshl reg161mem16,CL 

mod 101 rim (disp-Io),(disp-hi) shr reg161mem16,CL 

mod 110 rim -
mod 111 rim (disp-Io),(disp-hi) sar reg161mem16,CL 

04 11010100 0000 1010 aam 

05 11010101 00001010 aad 

06 11010110 -
07 11010111 xlat source-table 

DB 11011000 mod 000 rim (disp-Io),(disp-hi) esc opcode,source 

09 11011001 mod 001 rim (disp-Io),(disp-hi) esc opcode,source 

OA 11011010 mod 010 rim (disp-Io),(disp-hi) esc opoode,source 

DB 11011011 mod 011 rim (disp-Io),(disp-hi) esc opcode,source 

DC 11011100 mod 100 rim (disp-Io),(disp-hi) esc opoode,source 

DO 11011101 mod 101 rim (disp-Io),(disp-hi) esc opcode,source 

DE 11011110 mod 110 rim (disp-Io),(disp-hi) esc opoode,source 

OJ;' 11011111 mod 111 rim (disp-Io),(disp-hi) esc opcode,souree 

EO 11100000 IP-inc-B loopnelloopnz short-label 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES 

Table D·3. Machine Instruction Decoding Guide (Continued) 

Byte 1 
Byte 2 Bytes 3-6 ASM-86 Instruction Format 

Hex Binary 

El 11100001 IP-inc-8 loopeJloopz short-label 

E2 11100010 IP-lnc-8 loop short-label 

E3 11100011 IP-inc-8 icxz short-label 

E4 11100100 dala-8 in AL,immed8 

E5 11100101 data-8 In AX,Immed8 

E6 11100110 dala-8 out AL,lmmed8 

E7 11100111 data-8 out AX,immed8 

E8 11101000 IP-inc-Io IP-Inc-hl call near-proc 

E9 11101001 IP-inc-Io IP-inc-hi jmp near-label 

EA 11101010 IP-Io IP-hl,CS-lo,CS-hi imp far-label 

EB 11101011 IP-inc-8 imp short-label 

EC 11101100 In AL,DX 

ED 11101101 in AX,DX 

EE 11101110 out AL,DX 

EF 11101111 out AX,DX 

FO 11110000 lock (prefix) 

Fl 11110001 -
F2 11110010 repne/repnz 

F3 11110011 replrepe/repz 

F4 11110100 hh 

F5 11110101 erne 

F6 11110110 mod 000 rIm (disp-lo),(dlsp-hi),data-8 test reg8lmem8,immed8 

mod 001 rim -
mod 010 rIm (dlsp-Io),(dlsp-hi) not reg8lmem8 

mod 011 rIm (disp-Io),(dlsp-hi) neg reg8lmem8 

mod 100 rIm (dlsp-Io),(dlsp-hl) mul reg8/mem8 

mod 101 rIm (disp-Io),(disp-hl) Imul regB/mem8 

mod 110 rIm (disp-Io),(disp-hl) dly reg8lmem8 

mod 111 rim (disp-Io),(disp-hl) Idiy regB/mem8 

F7 11110111 mod 000 rIm (dlsp-lo),(dlsp-hi),dala-IO,dala-hi test regl81mem16,immed16 

mod 001 rIm -
mod 010 rim (disp-Io),(disp-hl) not regl61mem16 

mod 011 rIm (dlsp-Io),(disp-hl) neg regl61mem16 

mod 100 rIm (disp-Io),(dlsp-hi) mul regl61mem16 

mod 101 rIm (disp-Io),(dlsp-hl) Imul regl61mem16 

mod 110 rIm (disp-Io),(dlsp-hl) diy regl61mem16 

mod 111 rIm (dlsp-Io),(dlsp-hi) idiy regl61mem16 
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Table D-3. Machine Instruction Decoding Guide (Continued) 

Byte 1 
Byte 2 Bytes 3-6 ASM-8& Instruction Format 

Hex Binary 

Fa 11111000 dc 

F9 11111001 sIC 

FA 11111010 cli 

FB 11111011 sti 

Fe 11111100 cld 

FD 11111101 sId 

FE 11111110 mod 000 rIm (disp..lo).(disp-hi) inc mem16 

mod 001 rIm (dlsp-Io).(disp..hi) dec mem16 

mod 010 rIm -
FE 11111110 mod 011 rIm -

mod 100 rIm -
mod 101 rIm -
mod 110 rIm -
mod 111 rIm -

FF 11111111 mod 000 rIm (disp-Io).(disp..hi) inc 'mem16 

mod 001 rIm (disp-Io).(disp..hi) dec mem16 

mod 010 rIm (disp-Io).(disp..hi) cali regl61mem16 (inlrasegmenl) 

mod 011 rIm (disp-Io).(disp-hi) cali mem16 (inlersegmenl) 

mod 100 rIm (disp..lo).(disp-hi) jmp regl61mem16 (inlrasegmenl) 

mod 101 rIm (disp-Io).(disp-hi) jmp mem16 (inlersegmenl) 

mod 110 rIm (disp..lo).(disp-hi) push mem16 

mod 111 rIm -
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INSTRUCTION SET OPCODES AND CLOCK CYCLES 

Table D-4. Mnemonic Encoding Matrix (Left Half) 

KG x1 x2 x3 x4 x6 x6 

ADD ADD ADD ADD 
Ox 

1x 

2x 

AM 

3x 

4x 

5x 

6x 

7x 

8x 

9x 

Ax 

Bx 

ex 

Dx 

Ex 

Fx 

NOTE: Table 0·5 defines abbreviations used In this matrix. Shading indicates reserved opcodes. 
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INSTRUCTION SET OPCODES AND CLOCK CYCLES 

Table 0-4. Mnemonic Encoding Matrix (Right Half) 

x8 x9 xA xB xC xO xE 

--OR OR OR OR OR OR PUSH 

b.t.r/m w.t.r/m b.t.r/m w.t.r/m b.i _CS 
Ox 

-"'Ii 
SBB SBB SBB SBB SBB SBB PUSH POP 

1x 
b,t.r/m w,t.r/m b,t.r/m w,t,r/m b,i w,i OS OS 
SUB SUB SUB SUB SUB SUB SEG OAS 

2x 
b,t,r/m w.t,r/m b,t,r/m w.t,r/m b.i w,i =CS 
CMP CMP CMP CMP CMP CMP SEG AAS 

3x 
b,t.r/m w.t.r/m b,t,r/m w,t,r/m b,i w.i =OS 
DEC DEC DEC DEC DEC DEC DEC DEC 

4x 
AX CX OX BX SP BP SI 01 

POP POP POP POP POP POP POP POP 
5x 

AX CX OX BX SP BP SI 01 
PUSH IMUL PUSH IMUL INS INS OUTS OUTS 

6x 
w.i w,i b,i w,i b w b w 
JS JNS JPI JNPI JU JNU JLEI JNLEI 

JPE JPO JNGE JGE JNG JG 7x 

MOV MOV MOV MOV MOV LEA MOV POP 
8x 

b.t.r/m w.t.r/m b.t.r/m w.t.r/m sr.t.r/m sr.t.r/m rim 
CBW CWO CALL WAIT PUSHF POPF SAHF LAHF 

9x 
L,O 

TEST TEST STOS STOS LOOS LOOS SCAS SCAS 
Ax 

bJa_ 'JV,ia 
MOV MOV MOV MOV MOV MOV MOV MOV 

Bx 
i .... AX i .... CX i .... OX i .... BX i .... SP i .... BP i .... SI i .... OI 

ENTER LEAVE RET RET INT INT INTO IRET 
CX 

l(i+SP) I tvpe3 (any) 

ESC ESC ESC ESC ESC ESC ESC ESC 
OX 

a 1 2 3 4 5 6 7 
CALL JMP JMP JMP IN IN OUT OUT 

Ex 

CLC STC CLI STI CLS STD Grp2 Grp2 
Fx 

b,r/m w,r/m 

NOTE: Table 0-5 defines abbreviations used in this matrix. Shading indicates reserved opcodes. 
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Table 0·5. Abbreviations for Mnemonic Encoding Matrix 

Abbr Definition Abbr Definition Abbr Definition Abbr Definition 

b byte operation ia immediate to 8!1Cumulator m. memory t to CPU register 

d direct id Indirect rIm EA is second byte v variable 

f from CPU register Is immediate byte, sign extended si short intrasegment w word operation 

i immediate I long (intersegment) sr segment register z zero 

Byte 2 Immed Shift Grp1 Grp2 

mod 000 rIm ADD ROL lEST INC 

mod 001 rIm OR ROR - DEC 

mod 010 rim ADC RCL NOT CALL id 

mod 011 rim SBB RCR NEG CALLI, id 

mod 100 rIm AND SHLIBAL MUL JMPld 

mod 101 rIm SUB SHR IMUL JMPi,ld 

mod 110 rim XOR - DIV PUSH 

mod 111 rIm CMP BAR IDIV -
mod and rhn determine the Effective Address (EA) calculation. See Table 0-1 for definttlons. 
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80C187 Math Coprocessor, 12-2-12-8 
accessing, 12-10-12-11 
arithmetic instructions, 12-3-12-4 
bus cycles, 12-11 
clocking, 12-10 
code examples, 12-13-12-16 
comparison instructions, 12-5 
constant instructions, 12-6 
data transfer instructions, 12-3 
data types, 12-7-12-8 
design considerations, 12-10-12-11 
example floating point routine, 12-16 
exceptions, 12-13 
I/O port assignments, 12-10 
initialization example, 12-13-12-16 
instruction set, 12-2 
interface, 12-7-12-13 

and chip-selects, 6-14, 12-11 
and PCB location, 4-7 
exception trapping, 12-13 
generating READY, 12-11 

processor control instructions, 12-6 
testing for presence, 12-10 
transcendental instructions, 12-5 

8259A Programmable Interrupt Controllers, 8-1 
and special fully nested mode, 8-8 
cascading, 8-7, 8-8 
interrupt type, 8-9 
priority structure, 8-8 

82C59A Programmable Interrupt Controller 
interfacing with, 3-25-3-27 

A 
Address and data bus, 3-1-3-6 

16-bit, 3-1-3-5 
considerations, 3-7 

.8-bit, 3-5-3-6 
considerations, 3-7 

See also Bus cycles, Data transfers 
Address bus, See Address and data bus 
Address space, See Memory space, I/O space 
Addressing modes, 2-27-2-36 

I 

and string instructions, 2-34 
based, 2-30,2-31,2-32 

INDEX 

based index, 2-34,2-35 
direct, 2-29 
immediate operands, 2-28 
indexed, 2-32, 2-33 
indirect, 2-36 
memory operands, 2-28 
register indirect, 2-30, 2-31 
register operands, 2-27 

AH register, 2-5 
AL register, 2-5,2-18,2-23 
ApBUILDER files, obtaining from BBS, 1-6 
Application BBS, 1-5 
Architecture 

CPU block diagram, 2-2 
device feature comparisons, 1-2 
family introduction, 1-1 
overview, 1-1,2-1 

Arithmetic 
instructions, 2-19-2-20 
interpretation of 8-bit numbers, 2-20 

Arithmetic Logic Unit (ALU), 2-1 
Array bounds trap (Type 5 exception), 2-44 
ASCII, defined, 2-37 
Asynchronous inputs, synchronizing, B-2 
Auxiliary Flag (AP), 2-7,2-9 
AX register, 2-1,2-5,2-18,2-23,3-6 

B 
Base Pointer (BP), See BP register 
Baud Rate Compare Register (BxCMP), 10-12 
Baud Rate Counter Register (BxCNT), 10-11 
BBS, 1-5 
BCD, defined, 2-37 
Bit manipulation instructions, 2-21-2-22 
BOUND instruction, 2-44, A-8 
BP register, 2-1,2-13,2-30,2-34 
Breakpoint interrupt (Type 3 exception), 2-44 
Bus cycles, 3-20-3-45 

address/status phase, 3-10-3-12 
and 80C187, 12-11 
and CSU; 6-14 
and Idle mode, 5-13 
and PCB accesses, 4-4 
and Powerdown mode, 5-16 
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and T-states, 3-9 
data phase, 3-13 
HALT cycle, 3-28-3-34 

and chip-selects, 6-4 
HALT state, exiting, 3-30-3-34 
idle states, 3-18 
instruction prefetch, 3-20 
interrupt acknowledge (INTA) cycles, 3-6, 

3-25-3-26,8-9 
and chip-selects, 6-4 

operation, 3-7-3-20 
priorities, 3-44-3-45, 7-2 
read cycles, 3-20-3-21 
refresh cycles, 3-22, 7-4, 7-5 

control signals, 7-5,7-6 
during HOLD, 3-41-3-43,7-13-7-14 

wait states, 3-13-3-18 
write cycles, 3-22-3-25 
See also Data transfers 

Bus hold protocol, 3-39-3-44 
and CLKOUT, 5-6 
and CSU, 6-15 
and Idle mode, 5-14 
and refresh cycles, 3-41-3-43, 7-13-7-14 
and reset, 5-9 
latency, 3-40-3-41 

Bus Interface Unit (BID), 2-1,2-3,2-11,3-1-3-45 
and DRAM refresh requests, 7-4 
and TCU, 9-1 
buffering the data bus, 3-35-3-37 
modifying interface, 3-34-3-37, 3-37 
relationship to RCU, 7-1 
synchronizing software and hardware events, 

3-37-3-38 
using a locked bus, 3-38-3-39 
using multiple bus masters, 3-39-3-44 

BX register, 2-1, 2-5, 2-30 

C 
Carry Flag (CP), 2-7,2-9 
Chip-Select Unit (CSU), 6-1 

and HALT bus cycles, 3-28 
and READY, 6-11-6-12 
and wait states, 6-11-6-12 
block diagram, 6-3 
bus cycle decoding, 6-14 
examples, 6-15-6-20 

Index-2 

features and benefits, 6-1 
functional overview, 6-2-6-5 
programming, 6-5--6-15 
registers, 6-5--6-15 
system diagram, 6-16 
See also Chip selects 

Chip-selects 
activating, 6-4 
and 80C187 interface, 6-14, 12-11 
and bus hold protocol, 6-15 
and DRAM controllers, 7-1 
and guarded memory locations, 6-20 
and reserved 110 locations, 6-14 
enabling and disabling, 6-11 
initializing, 6-6-6-15 
methods for generating, 6-1 
multiplexed 110 port pins, 11-7 
overlapping, 6-12-6-14 
programming considerations, 6-14 
start address, 6-10,6-14 
stop address, 6-10 
timing, 6-4 

CL register, 2-5, 2-21, 2-22 
CLKOUT 

and bus hold, 5-6 
and power management modes, 5-6 
and reset, 5-6 

Clock generator, 5-6-5-10 
and system reset, 5-6-5-7 
output, 5-6 
synchronizing CLKOUT and RESOUT, 5-6-

5-7 
Clock sources, TCU, 9-12 
Code (programs), See Software 
Code segment, 2-5 
Counters, See Timer Counter Unit (TCU) 
CPU, block diagram, 2-2 
Crystal,See Oscillator 
CS register, 2-1,2-5,2-6,2-13,2-23,2-39,2-41 
Customer service, 1-4 
CX register, 2-1,2-5,2-23,2-25,2-26 

D 
Data, 3-6 
Data bus, See Address and data bus 
Data segment, 2-5 
Data sheets, obtaining from BBS, 1-6 
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intet 
Data transfers, 3-1-3-6 

instructions, 2-18 
PCB considerations, 4-5 
PSW flag storage formats, 2-19 
See also Bus cycles 

Data types, 2-37-2-38 
DI register, 2-1,2-5,2-13,2-22,2-23,2-30,2-32, 

2-34 
Digital one-shot, code example, 9-17-9-23 
Direction Rag (DF), 2-7,2-9,2-23 
Display, defined, A-2 
Divide Error trap (Type ° exception), 2-43 
Documents, related, 1-3 
DRAM controllers 

and wait state control, 7-5 
clocked, 7-5 
design guidelines, 7-5 
unclocked, 7-5 
See also Refresh Control Unit 

DS register, 2-1,2-5,2-6,2-13,2-30,2-34,2-43 
DX register, 2-1,2-5,2-36,3-6 

E 
Effecti ve Address (EA), 2-13 

calculati on, 2-28 
Emulation mode, 13-1 
End-of-Interrupt (EDI) 

command, 8-21 
register, 8-21, 8-22 

ENTER instruction, A-2 
ES register, 2-1,2-5,2-6,2-13,2-30,2-34 
Escape opcode fault (Type 7 exception), 2-44, 12-1 
Examples, code, See Software 
Exceptions, 2-43-2-44 

priority, 2-46-2-49 
Execution Unit (EU), 2-1,2-2 
Extra segment, 2-5 

F 
Fault exceptions, 2-43 
FaxBack service, 1-5 
F-Bus 

and PCB, 4-5 
operation, 4-5 

Rags, See Processor Status Word (PSW) 
Floating Point, defined, 2-37 

I 

INDEX 

H 
HALT bus cycle, See Bus cycles 
HOLD/HLDA protocol, See Bus hold protocol 
Hypertext manuals, obtaining from BBS, 1-6 

I/O devices 
interfacing with, 3-6-3-7 
memory-mapped, 3-6 

110 ports, 11-1-11-12 
addressing, 2-36 
bidirectional, 11-1 
configuration example, 11-12 
initializing, 11-11 
input-only, 11-3 
open-drain bidirectional, 11-3 
output-only, 11-3 
overview, 11-1 
port 1, 11-7 
port 2, 11-7 
programming, 11-7...:11-12 
registers, 11-7-11-11 
reset status, 11-11 

110 space, 3-1-3-7 
accessing, 3-6 
reserved locations, 2-15,6-14 

Idle mode, 5-11-5-16,5-16 
bus operation, 5-13 
control register, 5-12 
entering, 5-11, 5-13 
exiting, 5-14-5-15 
exiting HALT bus cycle, 3-34 
initialization code, 5-15-5-16 

Idle states 
and bus cycles, 3-18 

Immediate operands, 2-28 
IMUL instruction, A-9 
Input/output ports, 11-1 
Inputs, asynchronous, synchronizing, B-1 
INS instruction, A-2 
In-Service register, 8-5,8-7,8-18,8-19 
Instruction Pointer (lP), 2-1,2-6,2-13,2-23,2-39, 

2-41 
reset status, 2-6 

Instruction prefetch bus cycle, See Bus cycles 
Instruction set, 2-17, A-I, D-l 

additions, A-I 
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arithmetic instructions, 2-19-2-20, A-9 
bit manipulation instructions, 2-21-2-22, A-9 
data transfer instructions, 2-18-2-20, A-I, 

A-8 
data types, 2-37-2-38 
enhancements, A-8 
high-level instructions, A-2 
nesting, A-2 
processor control instructions, 2-27 
program transfer instructions, 2-23-2-24 
reentrant procedures, A-2 
rotate instructions, A-IO 
shift instructions, A-9 
string instructions, 2-22-2-23, A-2 

!NT instruction, single-byte, See Breakpoint 
inte"upt 

INTO instruction, 2-44 
INT A bus cycle, See Bus cycles 
Integer, defined, 2-37, 12-7 . 
Interrupt Control registers, 8-12 

for external pins, 8-14, 8-15 
for intemal sources, 8-13 

Interrupt Control Unit (lCU), 8-1-8-24 
block diagram, 8-2 
cascade mode, 8-7 
initializing, 8-23, 8-24 
interfacing with an 82C59A Programmable 

Interrupt Controller, 3-25-3-27 
operation with nesting, 8-4 
programming, 8-11 
registers, 8-11 
special fully nested mode, 8-8 

with cascade mode, 8-8 
without cascade mode, 8-8 

typical interrupt sequence, 8-5 
Interrupt Enable Flag (IF), 2-7,2-9,2-41 
Interrupt Mask register, 8-17 
Interrupt Request register, 8-16 
Interrupt Status register, 8-7,8-22,8-23 
Interrupt Vector Table, 2-39,2-40 
Interrupt-on-overflow trap (Type 4 exception), 

2-44 
Interrupts, 2-39-2-43 

and CSU initialization, 6-6 
controlling priority, 8-12 
edge- and level-sensitive, 8-10 

and extemal8259As, 8-10 
enabling cascade mode, 8-12 
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enabling special fully nested mode, 8-12 
latency, 2-45 

reducing, 3-28 
latency and response times, 8-10, 8-11 
maskable, 2-43 
masking, 8-2,8-12,8-17 

priority-based, 8-18 
multiplexed, 8-7 
nesting, 8-4 
NMI,2-42 
nonmaskable, 2-45 
overview, 8-1 
priority, 2-46-2-49, 8-3 

default, 8-3 
resolution, 8-5, 8-6 

processing, 2-39-2-42 
reserved, 2-39 
response time, 2-46 
selecting edge- or level-triggering, 8-12 
software, 2-45 
timer interrupts, 9-16 
types, 8-9 
See also Exceptions, Inte"upt Control Unit 

INTn instruction, 2-45 
Invalid opcode trap (Type 6 exception), 2-44 
IRET instruction, 2-41 

L 
LEAVE instruction, A-7 
Local bus, 3-1,3-39, 12-11 
Long integer, defined, 12-7 
Long real, defined, 12-7 

M 
Math coprocessing, 12-1 

hardware support, 12-1 
overview, 12-1 

Memory 
addressing, 2-28-2-36 
operands, 2-28 
reserved locations, 2-15 

Memory devices, interfacing with, 3-6-3-7 
Memory segments, 2-8 

accessing, 2-5,2-10,2-11,2-13 
address 

base value, 2-10,2-11,2-12 
Effective Address (EA), 2-13 
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logical, 2-10, 2-12 
offset value, 2-10, 2-13 
overriding, 2-11, 2-13 
physical, 2-3,2-10,2-12 

and dynamic code relocation, 2-13 
Memory space, 3-1-3-6 

N 
Normally not-ready signal, See READY 
Normally ready signal, See READY 
Numerics coprocessor fault (Type 16 exception), 

2-44, 12-13 

o 
ONCE mode, 13-1 
One-shot, code example, 9-17-9-23 
Ordinal, defined, 2-37 
Oscillator 

external 
and powerdown, 5-19 
selecting crystal, 5-5 
using canned, 5-6 

internal crystal, 5-1-5-10 
controlling gating to internal clocks, 

5-18 
operation, 5-2-5-3 
selecting C1 and L1 components, 5-3-

5-6 
OUTS instruction, A-2 
Overflow Flag (OF), 2-7, 2-9, 2-44 

p 
Packed BCD, defined, 2-37 
Packed decimal, defined, 12-7 
Parity Flag (PP), 2-7,2-9 
PCB Relocation Register, 4-1, 4-3, 4-6 

and math coprocessing, 12-1 
PDTMR pin, 5-18 
Peripheral Control Block (PCB), 4-1 

accessing, 4-4 
and P:Bus operation, 4-5 
base address, 4-6-4-7 
bus cycles, 4-4 
READY signals, 4-4 
reserved locations, 4-6 
wait states, 4-4 

Peripheral control registers, 4-1, 4-6 

I 

Pointer, defined, 2-37 
Poll register, 8-9, 8-19, 8-20 
Poll Status register, 8-9,8-19,8-20,8-21 
Polling, 8-1, 8-9 
POPA instruction, A-I 
Port Control Register (PxCON), 11-8 

INDEX 

Port Data Latch Register (PxLTCH), 11-10 
Port Direction Register (PxDIR), 11-9 
Port Pin State Register (PxPIN), 11-11 
Power consumption, reducing, 3-28,5-19 
Power Control Register, 5-12 
Power management, 5-10-5-19 
Power management modes 

and HALT bus cycles, 3-28,3-30,3-32 
compared, 5-19 

Powerdown mode, 5-16-5-19,7-2 
and bus cycles, 5-16 
control register, 5-12 
entering, 5-17 
exiting, 5-18-5-19 
exiting HALT bus cycle, 3-33 
initialization code, 5-15-5-18 

Priority Mask register, 8-18 
Processor control instructions, 2-27 
Processor Status Word (PSW), 2-1,2-7,2-41 

bits defined, 2-7,2-9 
flag storage formats, 2-19 
reset status, 2-7 

Program transfer instructions, 2-23-2-24 
conditional transfers, 2-24, 2-26 
interrupts, 2-26 
iteration control, 2-25 
unconditional transfers, 2-24 

Programming examples, See Software 
PUSH instruction, A-8 
PUSHA instruction, A-I 

R 
RCL instruction, A-lO 
RCR instruction, A-lO 
Read bus cycles, See Bus cycles 
READY 

and chip-selects, 6-11 
and normally not-ready signal, 3-16-3-18 
and normally ready signal, 3-16-3-17 
and PCB accesses, 4-4 
and wait states, 3-13-3-18 
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block diagram, 3-15 
implementation approaches, 3-13 
timing concerns, 3-17 

Real, defined, 12-7 
Real-time clock, code example, 9-17-9-20 
Refresh address, 7-4 
Refresh Address Register (RFADDR), 7-10 
Refresh Base Address Register (RFBASE), 7-7, 

7-8 
Refresh bus cycle, See Bus cycles 
Refresh Clock Interval Register (RFTIME), 7-7, 

7-8 
Refresh Control Register (RFCON), 7-9,7-10 
Refresh Control Unit (RCU), 7-1-7-14 

and bus hold protocol, 7-13-7-14 
and Powerdown mode, 7-2 
block diagram, 7-1 
bus latency, 7-7 
calculating refresh interval, 7-7 
control registers, 7-7-7-10 
initialization code, 7-11 
operation, 7-2 
overview, 7-2-7-4 
programming, 7-7-7-12 
relationship to BIU, 7-1 

Register operands, 2-27 
Regi~ters, 2-1 

control, 2-1 
data, 2-4,2-5 
general, 2-1,2-4,2-5 
H & L group, 2-4 
index, 2-5,2-13,2-34 
P & I group, 2-4 
pointer, 2-1,2-5,2-13 
pointer and index, 2-4 
segment, 2-1,2-5,2-11,2-12 
status, 2-1 

Relocation Register, See PCB Relocation Register 
Reset 

and bus hold protocol, 5-6 
and clock synchronization, 5-6-5-10 
cold, 5-7, 5-8 
RC circuit for reset input, 5-7 
warm, 5-7, 5-9 

ROL instruction, A-IO 
ROR instruction, A-I0 
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S 
SAL instruction, A-9 
SAR instruction, A-9 
Serial Communications Unit (SCU) 

asynchronous communications, 10-1-10-8, 
10-13-10-18 

example, 10-24-10-28 
mode 1, 10-6 
mode 2, 10-7 
mode 3, 10-6 
mode4, 10-6 

baud rates, 10-10--10-13 
bilUd timebase clock, 10-21, 10-22 
BCLK pin timings, 10-19-10-21 
break characters, 10-4, 10-15 
channel 0 interrupts, 10-22 
channell interrupts, 10-22 
crs# pin timings, 10-19 
examples, 10-24-10-36 
features, 10-1 
framing errors, 10-4 
hardware considerations, 10-19-10-22 
interrupts, 10-22 
master/slave example, 10-28-10-36 
multiprocessor communications, 10-14 
overrun errors, 10-4 
overvie\v, 10-1-10-8 
parity errors, 10-4 
programming, 10-9-10-19 
receiver, 10-2 
RX machine, 10-2 
stand-alone communications, 10-13 
synchronous communications, 10-8, 10-19 

example, 10-27 
timings, 10-21 

transmitter, 10-4 
TX machine, 10-4 

Serial Port Control Register (SxCON), 10-16 
Serial Port Status Register (SxSTS), 10-17, 10-18 
Serial ports, See Serial ConimlUlications Unit 

(SCU) • 
Serial Receive Buffer Register (SxRBUF), 10-9 
Serial Transmit Buffer Register (SxTBUF), 10-10 
SHL instruction, A-9 
Short integer, defined, 12-7 
Short real, defined, 12-7 

I 



SHR instruction, A-9 
Sl register, 2-1,2-5,2-13,2-22,2-23,2-30,2-32, 

2-34 
Sign Flag (SF), 2-7, 2-9 
Single-step trap (Type 1 exception), 2-43 
Software 

code example 
80C187 floating-point routine, 12-16 
80C187 initialization, 12-13-12-15 
digital one-shot, 9-17-9-23 
I/O port configuration, 11-12 
ICU initialization, 8-24 
real-time clock, 9-17-9-19 
SCU asynchronous mode, 10-24 
SCU master/slave network, 10-28-

10-36 
initialization code, 10-30-10-32 
_select_slave routine, 10-31-10-32 
_send_slave30mmand routine, 

10-36 
_slave_l routine, 10-33-10-35 

SCU synchronous mode, 10-27 
square-wave generator, 9-17-9-22 
TCU configurations, 9-17-9-23 

data types, 2-37, 2-38 
dynamic code relocation, 2-13,2-14 
interrupts, 2-45 
overview, 2-17 
See also Addressing modes, Instruction set 

Square-wave generator, code example, 9-17-9-22 
SS register, 2-1,2-5,2-6,2-13,2-15,2-30,2-45 
Stack frame pointers, A-2 
Stack Pointer, 2-1,2-5,2-13,2-15,2-45 
Stack segment, 2-5 
Stacks, 2-15 
START registers, CSU, 6-5,6-7,6-11 
STOP registers, CSU, 6-5,6-8,6-12 
String instructions, 2-22-2-23 

and addressing modes, 2-34 
and memory-mapped I/O ports, 2-36 
operand locations, 2-13 
operands, 2-36 

Strings 
accessing, 2-13,2-34 
defined, 2-37 

Synchronizing asynchronous inputs, B-1 
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T 
Temporary real, defined, 12-7 
Terminology 

"above" vs "greater", 2-26 
"below" vs "less", 2-26 
device names, 1-2 

Timer Control Registers (TxCON), 9-7, 9-8 
Timer Count Registers (TxCNT), 9-10 
Timer Counter Unit (TCU), 9-1-9-23 

application examples, 9-17-9-23 
block diagram, 9-2 
clock sources, 9-12 
configuring a digital one-shot, 9-17-9-23 
configuring a real-time clock, 9-17-9-19 
configuring a square-wave generator, 9-17-

9-22 
counting sequence, 9-12-9-13 
dual maxcount mode, 9-13-9-14 
enabling and disabling counters, 9-15-9-16 
frequency, maximum, 9-17 
initializing, 9-11 
input synchronization, 9-17 
interrupts, 9-16 
overview, 9-1-9-6 
programming, 9-6-9-16 

considerations, 9-16 
pulsed output, 9-14-9-15 
retriggering, 9-13-9-14 
setup and hold times, 9-16 
single maxcount mode, 9-13,9-14-9-16 
timer delay, 9-1 
timing, 9-1 

and BIU, 9-1 
considerations, 9-16 
TxOUT signal, 9-15 

variable duty cycle output, 9-14-9-15 
Timer Maxcount Compare Registers (TxCMPA, 

TxCMPB), 9-11 
Timers, See Timer/Counter Unit (TCU), Watchdog 

timer 
Trap exceptions, 2-43 
Trap Flag (TF), 2-7,2-9,2-43,2-48 
T-state 

and bus cycles, 3-9 
and CLKOUT, 3-8 
defined, 3-7 
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w 
Wait states 

and bus cycles, 3-13 
and chip-selects, 6-11-6-14 
and DRAM controllers, 7-1 
and PCB accesses, 4-4 
and READY input, 3-13 

Word integer. defined, 12-7 
Write bus cycle. 3-22 

Z 
Zero Flag (ZF). 2-7. 2-9, 2-23 
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