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PREFACE

This book is written for systems designers and operating system designers and programmers who plan
to use the Intel iAPX 286 microprocessor in its protected, virtual-address mode. The protected-mode
iAPX 286 is designed for multitasking systems: systems that serve many users or that simultaneously
run several programs.

This book analyzes operating system functions that are appropriate for the iAPX 286 when used in a
variety of multitasking applications, including

¢ Communications, such as automated PBXs
¢ Real-time, such as instrumentation or process control

e Multi-user, such as time-sharing or office systems

Many of the features of the iAPX 286 are intended for use by an operating system. This book identifies
and explains those features and gives examples of how they can be used in an operating system.

AUDIENCE

This book assumes that you have a knowledge of multitasking operating systems at least equivalent to
that presented in introductory undergraduate textbooks on the subject. It also assumes that you have
had some exposure to the architecture of the iAPX 286 through attending an introductory course or
reading introductory literature such as Introduction to the iAPX 286.

RELATED PUBLICATIONS

intel Literature

The following manuals contain additional information of use to operating-system designers and
programmers: '

o ASM286 Assembly Language Reference Manual, 121924

e Component Data Catalog, 210298

e [APX 286 Architecture Extension Kernel (K286) User’s Guide, 121961
* [APX 286 Programmer’s Reference Manual, 210498

e [APX 286 System Builder User’s Guide, 121935

* [APX 286 Utilities User’s Guide, 121934

» [APX 286/10 High Performance Microprocessor with Memory Management and Protectlon (Data
Sheet), 210253

e [Introduction to the iAPX 286, 210308
e PL/M-286 User’s Guide, 121945
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External Literature

Many aspects of operating system construction for the iAPX 286 are the same as for other processors.
The following are sources of generally applicable theorles and algorithms referred to in the text of this
book.

¢ Coffman, E.G., Jr., and Peter J. Denning, Operating Systems Thebry (Englewood Cliffs, N.J.:
Prentice-Hall, 1973)

* Denning, Peter J., “Virtual Memory,” Computing Surveys, Vol. 2, No. 3 (September 1970)
» Knuth, Donald E., Fundamental Algorithms, Vol. 1 (Reading, Mass.: Addison-Wesley, 1973)

¢ Peterson, James L., Petri Net Theory and the Modeling of Systems (Englewood Cliffs, N.J.: Prentice-
Hall, 1981)

RELATED PRODUCTS

Designers interested in operating systems for the protected-mode iAPX 286 should also be aware of
Intel’s iAPX 286 Architecture Extension Kernel K28. K286 is an operating-system kernel designed
for a wide variety of applications, including real-time, communications, business systems, and time-
sharing. K286 provides

e Short-term, priority schedulmg and management of multiple tasks
* Interrupt management

e Multiprocessor support

e Virtual memory support

¢ Data sharing among tasks with synchronization

» Intertask signals and messages

e Extended protection

Whether you use K286 “as is,” for greatest possible efficiency, or whether you add layers of software
to more fully support your applications, K286 can significantly reduce your system development time.
Since K286 has been designed by the architects of the iAPX 286 and implemented and tested by
Intel’s software engineers, using K286 can make your system more reliable.

K286 implements many of the concepts discussed in this book, which can therefore give you additional
understanding of why and how to use K286.

HOW TO USE THIS MANUAL

This manual has two related objectives:

e To identify features of the iAPX 286 architecture that are unique when applied to the implemen-
tation of an operating system

* To show how you can effectively use these unique features in the design of familiar operating system
functions
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In pursuit of these objectives, Chapters 2 thru 13 share a general, three-part structure:

1.

Identifing an operating system function (or class of functions). The functions chosen are those
with which you might already be familiar, since they are similar to those used in state-of-the-art
operating systems such as iRMX 86 (from Intel Corporation) or UNIX (from Bell Laboratories).

Reviewing the iAPX 286 features that support that function. While this portion of each chapter
may cover some material available in other Intel literature, it provides added value by discussing
in one place all the iAPX 286 features that bear on a given operating system function and by
identifying relationships among those features.

Outlining some examples of how to use those iAPX 286 features in an implementation of the
identified function. It is, of course, impossible to illustrate all the ways to design any given function,
but these examples serve to illustrate a few of the ways that the designers of the iAPX 286 archi-
tecture intended for it to be applied.

Chapter 1 introduces the iAPX 286 architecture; identifies the role of an operating system in a protected,
multitasking environment; and shows how Intel’s Binder and Builder utilities aid in the construction of
an operating system. You may skip Chapter 1 if you are already familiar with multitasking operating
systems and with the Binder and the Builder.

Both Chapter 2 and Chapter 5 contain key information about manipulating the protection features of
the iAPX 286. Be sure not to omit these chapters when scanning the contents of the book.

For the remaining chapters, you may turn directly to the subjects that interest you most. You will find
the reading easier, however, if you observe the partial orderings outlined in table 0-1.

NOTATIONAL CONVENTIONS

UPPERCASE Characters shown in uppercase must be entered in the order shown. You may

enter the characters in uppercase or lowercase.

italic Italic indicates a meta symbol that may be replaced with an item that fulfills

the rules for that symbol. The actual symbol may be any of the following:

system-id Is a generic label placed on sample listings where an operating system-

dependent name would actually be printed.

Vx.y Is a generic label placed on sample listings where the version number of the

product that produced the listing would actually be printed.

Table 0-1. Prerequisites by Chapter

Target Chapter Prerequisites
6 4
7 6
8 4,6
9 6,7
12 4,6,7
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CHAPTER 1
INTRODUCTION TO PROTECTED MULTITASKING
ON THE iAPX 286

The iAPX 286 architecture views the software system (the operating system as well as applications) as
a number of asynchronous tasks, each task possibly consisting of levels of procedures deserving differ-
ent degrees of “trust.” An operating system for the iAPX 286 must (with the help of the hardware)
coordinate the activities of multiple tasks and administer protection among tasks and among levels of
procedures within tasks.

TASKS

A task is the execution of a sequence of steps. A program is a logical entity that can have many
representations: for example, source code file or object program file. A program becomes a task when
it is actually available for execution. This is achieved by converting source (with a compiler and program
loader, for example) to a representation suitable for execution and notifying the operating system that
the task is ready for installation and execution.

The distinction between programs and tasks is most clear in a multitasking system, where it is possible
for two or more tasks to use one program simultaneously. The line editor program in a timesharing
system is a common example. Even though each line editor task uses the same program, each task
produces different results, since it receives different inputs.

Structure of a Program

Each program is formed from modules created by language translators and bound together into a single
executable unit. The translators (for example, ASM286, PL /M-286, Pascal-286, and FORTRAN-286)
and the object program utilities (for example, Intel’s Builder and Binder) support the concept of logical
segments. A logical segment is a contiguous block of either instructions or data. Each logical segment
can contain up to 64K bytes of code or data. Logical segments are the units that may be combined
when a program comprises more than one module.

'Segmented Memory

The iAPX 286 structures the address space of a task into physical segments of variable length. A
physical segment is a contiguous block of memory that does not (normally) overlap another physical
. segment. Each physical segment may contain up to 64K bytes of either instructions or data. Each
physical segment contains one or more logical segments of a task. The segments reflect how tasks are
organized into code, data, and stack areas.

Multitasking

One of the most important features of the iAPX 286 is its ability to switch rapidly from executing one
task to executing another task. This gives the appearance that the processor is executing more than
one task at a time.

1-1 121960-001



Intel INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

Hardware system tables enable both the hardware and the operating system to distinguish between the
physical segments of individual tasks. Figure 1-1 shows how physical segments of one task are logically
separate from those of other tasks. Since references to physical segments are always relative to system
descriptor tables, the actual locations of physical segments in physical memory are not significant to
the tasks and therefore are not illustrated.

Descriptor tables serve not only to identify the segments that belong to a task but also to isolate the
address space of one task from that of another, so that one task cannot inadvertently affect the opera-
tions of another.

Multitasking works through close interaction of the operating system with hardware features. When
the executing task needs to wait for some event (such as the arrival of data from some I/O device), it
notifies the operating system. The operating system determines which other task should execute next,
and then causes the processor to store the state of the current task, retrieve the state of the next task,
and begin executing the next task at the point where its processing last halted. The processor then
executes that task until the task needs to wait for some event. (This is a somewhat oversimplified
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Figure 1-1. Segregation of Segments by Tasks with Private LDTs
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description of what can be a complex operating system function. Chapter 4 covers the subject of task
switching in more detail.)

Figure 1-2 illustrates how the global descriptor table defines an address space that is accessible to all
tasks in the system. This global space is useful for translation tables, run-time libraries, operating-
system code and data, and the like. :

PRIVILEGE LEVELS

The iAPX 286 architecture uses the concept of privilege levels to protect critical procedures within a
task from less trusted procedures in the same task. For example, with previous generations of micro-
processors, applications code could access and possibly destroy tables used by the operating system.
An error of this sort could cause the operating system to incorrectly service a subsequent request from
another unrelated task. With the iAPX 286, such situations are prevented by hardware-enforced barriers
between different levels of procedures.
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MANAGER
CODE
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Figure 1-2. Global Segments in System
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Applied to procedures, privilege level is a measure of the degree to which you trust a procedure not to
make a mistake that might affect other procedures or data. Applied to data, privilege level is a measure
of the protection you think a data structure should have from less trusted procedures.

Privilege level also applies to instructions. Certain instructions (those that deal with system tables,
interrupts, and I/O, for example) have such an effect on the system as a whole that only highly trusted
procedures should have the right to use them.

Levels of Segments

With regard to privilege, you can view the segments of a task as being grouped into four levels. Level
zero is for the most privileged procedures and the most private data; level three is for the least trusted
procedures and the most public data. You (or your operating system) associate each segment of each
task with one of these four levels of privilege. The privilege level of a segment applies to all the proce-
dures or all the data.in that segment. Figure 1-3 illustrates the logical segregation of segments into
privilege levels. (Later chapters explain why operating-system segments are included within the task.)

PRIVILEGE
LEVEL PRIVILEGE
0 LEVEL PRIVILEGE
1 LEVEL PRIVILEGE
0.S. KERNEL 2 LEVEL
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ERNE STACK
PL=0
PL=0 —_—
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PL=0 DATA
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OPERATING
PL=1 SYSTEM
DYNAMIC
PL—2 0.S. BATA
DATA
PL=2
PL=2 >
PL=2 DATABASE DB
MANAGER DATA
PL=2 )
= DB
PL=3 CODE
PL=3
PL=3
PL=3 > APPLICATION
PL=3 \
- PROC A
PL=3 CODE
PL=3
7/
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Figure 1-3. Segment Segregation by Privilege Level within a Task
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Rules of Privilege

The 80286 processor controls access to both data and procedures between levels of a task. These rules
define access rights:

¢ Data can be accessed only from the same or a more privileged level.

» A procedure can be called only from the same level (or from a less privileged level, if the service is
deliberately “exported” to that level. Refer to gates in Chapter 2.).

SOFTWARE SYSTEM STRUCTURE

The way you choose to distribute software and data among tasks and privilege levels affects the relia-
bility, efficiency, and flexibility of your system. Operating-system modules may be segregated into
their own tasks or may be distributed among and shared by every task. Some advantages of placing
operating-system modules in separate tasks are

» Finer granularity of protection is achieved by using task separation as well as privilege levels.
¢ Operating-system functions can execute in parallel with the caller. '

» When only one task at a time can perform the function (for example, reading from a keyboard),
serialization of requests is automatic; you do not need to synchronize among requesting tasks.

Some advantages of distributing operating-system functions are

¢ The communication between application and operating system is faster.

+ It may be possible for all tasks to execute the same operation-system function in parallel. (You must
ensure reentrancy and provide for synchronization, however.)

Figures 1-4 through 1-7 illustrate some general approaches that you may consider.

The approach shown in figure 1-4 takes maximum advantage of the four privilege levels. The critical
procedures and data of the operating system kernel (for example, memory allocation tables and proce-
dures, information about tasks) are protected from all other procedures in the system. Those parts of
the operating system that are less reliable, either due to inherent complexity (for example, the /O
subsystem) or due to occasional changes (for example, policies designed to increase overall through-
put), are at a lower level but are still protected from application levels. Application logic has two levels
so that application services (such as database management) can be protected from less trusted appli-
cation code, yet application services cannot affect the integrity of the operating system. Operating-
system procedures and application services are shared among all the tasks in the system.

Figure 1-5 illustrates that you do not need to use all four privilege levels. You may prefer this two-level
approach if you are converting from a traditional multitasking system that offers protection only between
the two levels defined by application and operating system.

The iAPX 286 can also emulate one-level systems, as illustrated in figure 1-6. This approach may be
useful in the initial stages of converting from an unprotected system, but it does not take advantage of
many of the protection features offered by the iAPX 286. It does isolate tasks from one another, but
it does not protect the operating system from applications software.

Some operating system functions are better structured as independent operating-system tasks, not as

privileged procedures within a task. Certain I/O functions are suited to this treatment. Because of the
complexity of I/O code, the extra protection offered by a task boundary contributes to the reliability
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Figure 1-4. A Four-Level Protection Structure

of the system. Because many I/O functions involve waiting for responses from I/O devices, it is most
convenient to treat these functions as a separate task that can run asynchronously with respect to the
tasks that invoke them. Figure 1-7 illustrates a structure with independent operating-system tasks.

ROLE OF THE OPERATING SYSTEM

The role that an operating system may play in managing a multitasking execution environment depends
on the nature of the application.- Applications can be classified according to the volatility of tasks

1-6 121960-001



Intel INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

GLOBAL SPACE

GLOBAL
DATA

E] OPERATING SYSTEM TABSK

D APPLICATION

121960-44

Figure 1-5. A Two-Level Protection Structure

executing over a period of time. Applications in which tasks frequently begin and end (for example,
time-sharing systems or multi-user business systems) are called dynamic systems. Applications in which
the mix of tasks does not change (for example, process control systems in which tasks service a fixed
number of sensors and effectors) are called static systems.

Common O.S. Functions

The operating-system roles common to both static and dynamic applications are

* Allocation of the processor or processors to tasks

» Coordination and communication among cooperating tasks
» Processing of interrupts and exception conditions

« Standardization of interfaces to I/O devices

¢ Control of the numerics processor extension
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Figure 1-6. A One-Level Unprotected Structure .

0.S. Functions in a Dynamic Environment

Even though many of the duties of an operating system in a dynamic environment resemble those in a
static environment, the dynamic environment often introduces new complexities. Some additional
functions that a dynamic system may require include

* Real memory inanagement

* Program vloading

* Command language interface
¢ Virtual memory management

¢ Load-time binding

CONSTRUCTING THE INITIAL RUN-TIME ENVIRONMENT

Intel’s System Builder program helps you create the initial executable system. The Builder program
collects object modules into one module, assigns physical addresses, creates system tables, and assigns
privilege levels. A specification language gives you the ability to control precisely what the Builder
does. ‘

1-8 121960-001



Intel INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

APPLICATIONS TASKS

FORTRAN
COMPILER

Foeeypisk /oo N D
“ . DRWVER . f .\ 'DRIVER
i JUETHERNET N oo
S f o DRWERL L\

OPERATING-SYSTEM TASKS

OPERATING
SYSTEM

D APPLICATIONS

121960-1

Figure 1-7. Independent Operating-System Tasks

Building a Static System

In the case of static systems, the Builder does nearly all the work in constructing a running system.
Refer to figure 1-8 for an illustration of the building process. The output of the Builder is a single
module that contains all the tasks, both for the operating system and for applications, as well as all
system tables and protection information. The Builder’s output file has a format that simplifies creation
of a bootstrap loader for the system.

Building a Dynamic System

With dynamic systems, the Builder constructs as much of the final system as you can specify in advance,
but the nature of dynamic systems is such that the operating system must do at run-time many of the
operations that the Builder does for static systems (for example, allocation of memory and assignment
of physical addresses). The operating system must update system tables and administer the protection
mechanisms as the running environment changes.

1-9 121960-001



Intel INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

Figure 1-9 illustrates the process of constructing a dynamic system. The Builder creates a loadable
module containing those operating-system functions that permanently reside in the running operating
system, and it also creates a file that contains information about linking to operating-system primitives.
Either a static linker (such as Intel’s Binder) or a dynamically linking loader can use this information
to help dynamically loaded tasks use operating-system functions.
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Figure 1-8. Building a Static System
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Figure 1-9. Building a Dynamic System
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CHAPTER 2
USING HARDWARE PROTECTION FEATURES

The architecture of the iAPX 286 enables you to organize software systems so that each task is protected
from inadvertent or malicious damage by other tasks and so that privileged procedures are protected
from lower-level procedures. You control the degree of protection in your system by the way you set
up protection parameters through the Builder or through operating system procedures. The processor
interprets the protection parameters and automatically performs all the checking necessary to imple-
ment protection.

ADDRESSING MECHANISM

The protection mechanism of the iAPX 286 is embedded in the addressing mechanism. For an intro-
duction to the addressing mechanism, refer to figure 2-1, which shows those portions of the addressing
mechanism that are not concerned with protection features. From the point of view of the applications
programmer, an address is a pointer. A pointer consists of two parts: a selector and an offset. The
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Figure 2-1. Abstraction of Addressing Mechanism
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selector portion identifies a segment of the address space and the offset addresses an item within the
segment relative to the beginning of the segment.

A selector identifies a segment by reference to a descriptor table. Each entry in a descriptor table is a
descriptor. A selector contains an index that identifies a particular descriptor in a particular descriptor
table. The descriptor contains the physical address and access rights of the segment.

Both selectors and descriptors contain additional information that relates to the protection features of
the iAPX 286.

DESCRIPTORS

A reference from one segment to another is realized indirectly through a descriptor, which contains
information about the referenced segment. All descriptors reside in a descriptor table. Every segment
must have at least one descriptor; otherwise there is no means to address the segment.

Descriptors are strictly under your control via the Builder or operating system procedures. The exist-
ence and function of descriptors is completely invisible to the applications programmer.

Descriptor Format
There are four variations in descriptor format, corresponding to the four classes of descriptor:

1. Data segment descriptors refer only to segments that contain system or application data, including
stacks (see figure 2-2).

2. Executable segment descriptors refer only to segments that contain executable instructions (see
figure 2-3).

3. System segment descriptors refer only to segments that contain special hardware-recognized data.
structures, such as descriptor tables (see figure 2-4).

4.  Gate descriptors define entry points for control transfers. A gate descriptor does not directly address
a memory segment; instead it provides a.protected pointer to an exported entry point. (Refer to
the section “Gate Descriptors™ later in this chapter.)

The first two types of descriptor hold information that any operating system must maintain. The
iAPX 286, however, requires that such information be in a fixed format so the CPU can interpret it
directly. These descriptors are often created dynamically while a program executes (for example, a
data-segment descriptor may be created when a task needs additional memory to store an expanding
data structure).

The second two types of descriptor are unique to the iIAPX 286. They are constructed either once when
the system is built or once when a task is created. Code to manipulate these dcscrlptors is limited to
the procedures of a dynamic operating system that create new tasks.

Several of the descriptor formats have common fields. These flelds are listed first in the following
discussions of descriptor contents.

PRESENT BIT

This Boolean is set if the segment addressed by the descriptor is actually present in memory, reset if
not present. Operating systems for dynamic applications that implement virtual memory must set and
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Figure 2-2. Data Segment Descriptor

reset this bit as program segments are brought into or eliminated from memory. Reference to a segment
whose present bit is reset causes a fault, providing an opportunity for the operating system to load the
segment from virtual store. (Chapter 9 takes up implementation of virtual memory systems.) In systems
that do not implement virtual memory, this bit is always set for allocated segments.

DESCRIPTOR PRIVILEGE LEVEL

The value of this item defines the privilege level of the segment addressed by this descriptor. You
control the values in the descriptor privilege level (DPL) by the parameters you give to the builder
when creating a static system or the resident portion of a dynamic system, or by the procedures your
operating system uses when loading segments dynamically.

INTEL RESERVED

This portion of the descriptor is reserved by Intel and should always be initialized with zeros. Other
use of this field in a valid descriptor will prevent compatability with the iAPX 386 and other additions
to Intel’s family of processors.
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Figure 2-3. Executable Segment Descriptor

SEGMENT BASE

This field contains the physical address of the beginning of the memory segment referred to by this
descriptor. The 24 bits of this address give the 80286 a 16-megabyte range of real addresses. This is
the only place that physical addresses are used. All other addresses are relative to the physical addresses
stored in descriptors, making it possible to relocate executable and data segments without making any
changes to the relocated segments or to code that refers to the segments. The only changes necessary
to relocate segments are changes to the physical addresses stored in descriptor tables.

You can control the actual location of segments by means of specifications to the Builder or by means
of the algorithms your operating system uses to allocate memory to segments that are loaded
dynamically.

SEGMENT LIMIT

Segment limits prevent accidental reading or writing beyond the space allocated to a segment. The
value of this field is one less than the length of the segment (in bytes) relative to the beginning of the
segment. The 16 bits of this field make it possible to have segments up to 64K bytes long. The hardware
automatically checks all addressing operations to ensure that they do not exceed the segment limit of
the segment to which they refer. This protects other segments from such common programming errors
as runaway subscripts.
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Figure 2-4. System Segment Descriptor

Note that the segment limit field has a different meaning for “expand down” data segments. Refer to
the “expansion direction” bit later in this chapter.

SEGMENT TYPE

For system segments, the type field distinguishes between kinds of system segments. System segment
types are

1 and 3 Task state segment, a segment used for storing the context of a task. Chapter 4 discusses
task state segments more fully.

2 Local descriptor table. The three kinds of descriptor tables are explained later in this
chapter.

The processor interprets the type field to ensure that each segment is actually used as intended; for
example, an attempt to jump to a local descriptor table is obviously a mistake, and the processor
detects this error while examining the target segment’s descriptor during the JMP instruction.

EXPANSION DIRECTION

Data segments may contain stacks as well as other data structures. Stacks expand toward lower addresses
while most other data structures expand toward greater (higher) addresses. This field indicates the
growth pattern for the segment. A value of zero in this field indicates that the segment expands upward
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(from the base address toward the segment limit value that is also contained in the descriptor). A value
of one indicates that the segment expands downward (from offset FFFFH toward the limit).

WRITABLE

This field applies only to data segment descriptors. A value of one permits the CPU to write into the
segment; a value of zero protects the segment from attempts to write into it. Translation tables are but
one example of data that deserve the extra protection afforded by storage in a read-only segment.

CONFORMING

This field applies to executable-segment descriptors only. Ordinarily (when the conforming bit is zero)
a called procedure executes at the privilege level defined by the DPL in the descriptor of the segment
in which the procedure resides. When the conforming bit of the called segment is set, however, the
called procedure executes at the calling procedure’s privilege level. This feature cannot be used to
decrease (numerically) a segment’s privilege level below that defined by it’s DPL. Figure 2-5 shows
graphically how a conforming segment works. This feature is useful when you want to make procedures
(mathematical subroutines or run-time support procedures, for example) available to a number of other
procedures running at different privilege levels, but when you do not want to provide increased privi-
lege while the subroutine is executing.
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= CODE
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Figure 2-5. Calling a Conforming Segment
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READABLE

This field applies only to executable-segment descriptors. When reset, it prevents procedures in
other segments from reading this code segment; the contents of the segment can be executed only.
It is common, however, for executable segments to contain read-only data, in which case this bit
must be set.

ACCESSED

The processor sets this bit when the descriptor is accessed (that is, loaded into a segment register or
used by a selector test instruction). Operating systems that implement virtual memory may, by period-
ically testing and resetting this bit, monitor frequency of segment usage. This bit also indicates whether
a segment should be written to secondary storage before the RAM space it occupies is reused.

CONTROL FLOW TRANSFER

Transfers of control are also subject to protection rules. Within the application-oriented part of a task,
the protection rules allow unlimited access to code and data. Control transfers to privileged operating-
system functions and to other tasks, however, are controlled by gate descriptors. With gate descriptors,
the iAPX 286 architecture can perform functions in hardware that operating systems on other proces-
sors must do in software. These functions are invoked directly by ordinary CALL and JMP instruc-
tions, not by special interrupt or trap instructions.

As table 2-1 illustrates, transfers of control can be classified into four categories, depending on whether
control passes to another segment, another privilege level, or another task. This classification can help
clarify how privilege levels, descriptor tables, and tasks are used.

Processor functions that cause a change in the flow of control are

e Jump instruction (JMP)

e Procedure call instruction (CALL)

¢ Procedure return instruction (RET)
o Software interrupt instruction (INT)
e External interrupt

Table 2-1. Categories of Control Flow Transfer

Privilege
Category Segment Level Task
Intrasegment same same same
Intersegment different same same
Interlevel different different same
same : same
Intertask or or different
different different

2-7 121960-001



Intel USING HARDWARE PROTECTION FEATURES

¢ Processor-detected exception condition

» Interrupt return instruction (IRET)

Control transfers within the same privilege level may be either short (within same segment) or long (to
another segment). A short transfer simply specifies the offset of the instruction to which control is

transferred in the same segment. A long transfer also uses a selector to identify the segment to which
control is transferred.

For control transfer to a different privilege level or different task, the iAPX 286 introduces gate
descriptors. o ‘

Gate Descriptors

A gate descriptor is a type of descriptor used only for transferring control flow to instructions in another
segment. Gates provide an indirect reference that is useful for binding and protection purposes. By
requiring interlevel and intertask control transfers to reference gate descriptors, the iAPX 286 provides

two additional protection features:

1.  You can hide a procedure by not providing a gate for its entry point.

2. You can contro! access to a procedure via the privilege assigned to the gate. This allows hiding
critical procedures from untrusted software. '

Figure 2-6 illustrates the format of a gate descriptor.

DESTINATION SELECTOR
For call, interrupt, and trap gates, this field contains a selector for the segment descriptor of the desti-

nation executable segment. For task gates, the selector in this field points to a descriptor for a task
state segment, and the RPL field is not used.

DESTINATION OFFSET

For call, interrupt, and trap gates, this field contains the offset of the entry point within the destination
executable segment (not used with task gates).

WORD COUNT
For each privilege level within a task, there is a separate stack. For calls through a call gate, the

processor automatically copies parameters from the stack for the calling procedure’s privilege level to
the stack for the destination’s privilege level. In this field, you specify the number of words to copy.

GATE TYPE
For gate descriptors, the type field distinguishes among the four kinds of gates:

0 Call gate
1 Task gate
2 Interrupt gate
3 Trap gate
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Figure 2-6. Gate Descriptor

PRESENT BIT

Since a gate descriptor does not refer directly to a segment, the present bit in a gate descriptor does
not necessarily indicate whether a segment is present. It can be used for other purposes, however. Refer
to Chapter 11 for an example of using the present bit to facilitate late binding.

Control Transfer Mechanisms

Table 2-2 summarizes the mechanisms for each class of control flow transfer.

Control transfers within a segment function similarly to intrasegment transfers on the iAPX 86,88,
except that the processor checks that the destination address does not exceed the segment limit.

Figure 2-7 illustrates a change in control flow between segments at the same privilege level. Any of
the following instructions can effect such a transfer:

JMP offset selector
CALL offset selector
RET ; (offset and selector taken from stack)

The selector selects a descriptor for an executable segment. The DPL in the target segment’s descrip-
tor must be the same as the privilege level under which the calling segment is running. A CALL or
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Table 2-2. Control Transfer Mechanisms

Transfer . Descriptor
Type Operation Referenced Table
Intrasegment JMP, CALL, RET (none)
Intersegment JMP, CALL, RET, IRET code segment GDT/LDT
@]
CALL, JMP call gate GDT/LDT
(same PL)

INT instruction, trap or IDT
external interrupt, interrupt
or exception gate (same PL)

Interlevel CALL call gate GDT/IDT
INT instruction, - trap or IDT
external interrupt, interrupt
or exception gate
RET, IRET code segment GDT/IDT

Intertask CALL, JMP, IRET task state GDT

segment
CALL, JMP task gate GDT/LDT
INT instruction, task gate IDT
external interrupt,
exception

* Includes cases in which the target segment is incidentally the same as the calling segment.

JMP instruction may also reference a call gate. If the target executable segment is at the same privi-
lege level, no level change occurs.

For transfers of control between segments at different privilege levels (as illustrated in figure 2-8) there

are three differences:

* Only the following instructions can be used:

CALL offset selector

RET

Jumps between privilege levels within a task are not allowed.

¢ The selector does not select the descriptor of an executable segment but rather selects a gate

descriptor.

«- The offset operand must be present but is ignored.

2-10
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Figure 2-7. Intralevel Control Transfers

Privilege Rules for Gated Intersegment Transfers
An intersegment transfer through a gate involves four privilege level fields:

¢ The current privilege level (CPL) of the currently executing segment
¢ The requested privilege level (RPL) in the selector used in the CALL
e The DPL in the gate descriptor

» The DPL in the segment descriptor of the target executable segment

A transfer is valid only if the following relationships among privilege level numbers both hold:

MAX (CPL, RPL) <= gate DPL
target DPL <= CPL

Figure 2-9 illustrates both valid and invalid attempts to perform an interlevel transfer. Path E4,G5,E7
is not valid because the privilege level of gate G5 is numerically less than that of segment E4. Path
E4,E8 is not valid because all interlevel transfers must pass through a gate. Path E4,G4,E6 is not valid
because the privilege level of E6 is numerically greater than that of G4. Only paths E1,G2,E2; E1,G1,E3;
and E2,G1,E3 satisfy the privilege rule above.
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Figure 2-8. Gated Interlevel Call and Return

DESCRIPTOR TABLES

A descriptor table is simply a segment containing an array of eight-byte entries, where each entry is a
descriptor. Descriptors are stored in one of three classes of descriptor table:

* Local descriptor table (LDT)
* Global descriptor table (GDT)

* Interrupt descriptor table (IDT)

The descriptors in these tables define all the segments in the system. Each table has a variable upper
limit, so the size of the table need be no larger than required for the actual number of segments used.

You define the initial contents of descriptor tables through the Builder. An operating system for dynamic
applications may change the contents of descriptor tables and may create and delete LDT’s as tasks
come and go. Correct management of descriptors is the heart of protection on the iAPX 286.
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Figure 2-9. Valid and Invalid Interlevel Transfers
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Local Descriptor Table

An LDT contains the descriptors that are private to a task. Each task may have an LDT. The LDT
keeps the descriptors private to one task separate from those private to other tasks. A task cannot
normally gain access to the segments defined by another task. A local descriptor table may contain any
of the following types of descriptor:

¢ Data segment

+ Executable segment
« Call gate

o Task gate

The executable segment and data segment descriptors in an LDT normally refer to segments private
to a task. Call gates and task gates in an LDT provide private entry points to other procedures and
programs. .

The processor uses a task’s LDT automatically for certain addressing operations. The base address and
limit of the LDT segment of the executing task are kept in the LDT register. Only two operations are
available to programmatically change the contents of the LDT register:

* During a task switch operation, the processor loads the LDT register from the task state segment
(TSS).

¢ The LLDT instruction loads the LDT register directly. The LLDT instruction can be executed only
at privilege level O (PL 0). Initialization procedures use LLDT to give the LDT register its initial
value. Note that if you change the LDT register you must also change the LDT selector in the TSS
(refer to Chapter 4). An operating system may need to change the LDT register temporarily to gain
access to the address space of another task when passing information between tasks.

You can use the SLDT instruction to read the contents of the LDT register. Operating-system proce-
dures that operate on LDTs may usually be called from any task. These procedures may use the SLDT
-instruction to find which LDT belongs to the current task. In PL/M-286, the built-in variable
LOCALSTABLE gives access to the LDT register.

An LDT may contain up to 8,192 descriptors (the number of 8-byte descriptors that fit into a maximum-
sized segment of 65,536 bytes).

Global Descriptor Table

Descriptors that are shared among tasks reside in the GDT. There is only one GDT for the entire
system. The GDT can contain any of the following types of descriptor:

¢ Data segment

¢ Executable segment

e Task state segment

¢ Local descriptor table segment
e Call gate

¢ Task gate
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Since the GDT is shared among all tasks, its entries are usually protected. The privilege-level field in
each descriptor provides this function. When operating-system functions are distributed among and
shared by all tasks, the executable segments and data segments of the operating system are normally
kept in the GDT. Call gates then provide controlled access to privileged operating system functions.

The processor uses the GDT automatically for certain addressing operations. The base address and
limit of the GDT are kept in the processor’s GDT register. Only the LGDT instruction
(RESTORE$SGLOBALSTABLE in PL/M-286) can alter the contents of the GDT register, and the
LGDT instruction can be executed only at PL 0 (i.e., by the operating system).

.The SGDT instruction (SAVESGLOBALSTABLE in PL/M-286) reads the contents of the GDT
register.

A GDT may contain up to 8,191 descriptors (the number of 8-byte descriptors that fit into a maximum-
sized segment of 65,536 bytes). The first entry cannot be used as a descriptor. (A null selector is
identified by the fact that it refers to this first entry in the GDT.)

Interrupt Descriptor Table

When processing an interrupt, the processor refers to the IDT to determine what interrupt-handling
code to execute. Each interrupt is associated with an interrupt identifier, an integer that ranges from
0-255. The interrupt identifier is supplied either by the INT instruction or externally by the processor’s
INTA cycles. The interrupt identifier indexes an entry in the IDT. An IDT entry may be

e An interrupt gate

e A trap gate

* A task gate

In a manner similar to executable segment and data segment descriptors, each gate descriptor has a
descriptor privilege level. The DPL of a descriptor in the IDT determines the privilege required to
execute an INT n instruction (where n is the interrupt indentifier that corresponds to the descriptor).
This use of privilege levels prevents unauthorized programs from invoking interrupt handlers.

The processor locates the IDT by way of the IDT register. The IDT register can be changed only by
the LIDT (load IDT) instruction (RESTORESINTERRUPTSTABLE in PL/M-286). Only PL-0
procedures (i.e., the operating system) can execute an LIDT instruction.

The SIDT instruction (SAVESINTERRUPTSTABLE in PL/M-286) reads the contents of the IDT
register.

Refer to Chapters 6 and 7 for more detailed information on how the IDT is used.

SELECTORS

A selector references a segment indirectly by identifying the location in a descriptor table where a
descriptor for that segment is stored.

Format of Selector

See figure 2-10 for the format of a selector.
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Figure 2-10. Format of a Selector

INDEX

The index field of a selector specifies a descriptor in either the GDT or the task’s LDT. The index field
may take on values from O through n—1, where n is the number of descriptors in the table. The
processor compares the index with the limit of the descriptor table to ensure that the index refers to a
defined descriptor.

TABLE INDICATOR

This bit item tells which descriptor table is indexed by the selector. A value of zero specifies the GDT;
one specifies the LDT. (The IDT cannot be referenced via a selector; only via an interrupt identifier.)

REQUESTED PRIVILEGE LEVEL

Selector privilege is specified in the RPL field of a selector. Selector RPL may establish a less trusted
privilege level than the current privilege level for the use of that selector. RPL cannot effect an increase
in privilege. A task’s effective privilege level is the numeric maximum of the RPL and the current
privilege level. For example, if a task is executing at PL = 2, an RPL = 3 reduces the task’s effective
privilege to level 3 for access to that segment. On the other hand, if RPL = 1, the task’s effective
privilege level remains at 2.

RPL is generally used by an operating system to ensure that selector parameters passed to the more
privileged levels of the operating system do not give access to data at a level more privileged than the
calling procedure. The RPL field is a convenient place to store the privilege level of the procedure that
originated the selector. Any use of the selector can be restricted to the usage allowed its originator.

The ARPL instruction (ADJUSTS$RPL built-in function in PL/M-286) allows the operating system to
set the RPL of a selector either to CPL or to the privilege level of the originator, whlchever is (numer-
ically) larger. Refer to Chapter 13 for more information on the use of RPL.
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Null Selector

A selector that has a value of zero in both the index and table indicator fields (i.e., appears to point to
the first entry of the GDT) is a null selector. You can load such a selector into the DS or ES register,
but any attempt to reference memory via that register causes an exception condition.

ALIAS DESCRIPTORS

The need arises in dynamic applications for the operating system to maintain more than one descriptor
for a segment; however, care must be taken to preserve system integrity and protection.

As an example of the need for an alternate descriptor, consider the case of an executable segment.
Ordinarily, the processor fetches instructions from an executable segment that is typed execute-only.
However, if the operating system supports a debugger, the debugger needs to read the executable
segment in order to display its contents. The debugger may also need to write to the executable segment
in order to set breakpoints. If the debugger tries to use an execute-only segment descriptor to read
from or write to the segment, the processor detects a protection exception. To properly use that segment,
the debugger must use another descriptor that identifies the segment as a data segment. Figure 2-11
illustrates this situation.

The use of more than one descriptor for a segment is known as aliasing. Descriptors used in this way
are known as aliases, because they provide alternate names for segments.

L /!

0.S.
APPLLI.g?TION DEBUGGER
LoT
EXECUTE ONLY DATA SEGMENT
CODE SEGMENT

INSTRUCTIONS

121960-11

Figure 2-11. Aliasing for Debugger
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Explicit Variation of Type

Figure 2-11 illustrates one kind of need for aliasing: the need for a different type specification for a
segment. Figure 2-12 shows another example of the same need. In a dynamic application, the operating
system may need to modify the GDT, the IDT, TSSs, and LDTs. Changing the interrupt handler for
a specific interrupt vector requires changing the IDT. When the operating system places a new segment
into the address space of a task (as, for example, when transferring an I/O buffer from an I/O task),
it must update the task’s LDT. Starting a new task may require modification of the GDT to add
descriptors for the new task’s LDT and TSS.

With the iAPX 286, however, it is not possible to read or write a system segment by loading its selector
into DS or ES. This restriction prevents indiscriminate use of system segments within the operating
system. Such use of a system segment requires that the operating system have a descriptor that identi-
fies the system segment as a data segment.

The Builder allows for defining aliases for system segments. The Builder, by default, creates data-
segment aliases for the GDT and the IDT at fixed locations in the GDT.

Note that aliases for descriptof tables should have PL 0 in order to maintain the integrity of the protec-
tion mechanism; otherwise, procedures outside the operating system could indiscriminately change the
contents of descriptor tables.

Variation of Length

As illustrated in figure 2-13, aliases for a segment need not always have the same length. In the case
shown, the processor’s use of a descriptor to a TSS requires only that the segment contain 44 bytes.
However, the operating system maintains another descriptor that includes additional information about
the task.

GDT LoT DT
A
< <
= =
3 = 3
3

ALIAS GDT

ALIAS LDT

ALIAS IDT

® ALIAS FOR GDT SHOULD ALWAYS BE AVAILABLE TO KERNEL.

121960-12

Figure 2-12. Aliases for System Tables
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Figure 2-13. Aliases with Differing Limit

Sharing Segments among Tasks

Yet another reason for using aliases is the need for sharing a segment among tasks. Consider an appli-
cation in which a memory-mapped video display shows status information for a production process. In
this application, there are two tasks, each monitoring different aspects of the process but interleaving
data on the display (see figure 2-14). Figure 2-15 illustrates how both tasks can access the memory
segment containing the display buffer.

You can find segment sharing needs of this sort in both static and dynamic systems. Note that there
are other techniques for segment sharing that do not use aliases; for example, placing the segment’s
descriptor in the GDT, or permitting tasks to share a single LDT. The aliasing technique illustrated
here has the advantages that

- o No other tasks have access to the display buffer. (Putting its descriptor in the GDT makes it avail-
able to all other tasks.) .

e Other segﬁents in each of the tasks remain protécted from the other task. (With a shared LDT, all
segments of each task are accessible from the other.)

Protection and Integrity with Aliasing

You must use aliases with care; improper use can compromise the protection and integrity of your
system.
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Figure 2-14. Application of Segment Sharing

CONTROL ACCESS TO ALIASES

When you use an alias to provide an alternate type for a system segment (to write to an LDT), any
procedure that has access to that alias also has unlimited power to affect the entire system. Therefore,
in constructing an operating system that uses such aliases, you must restrict them to the highest privi-
lege levels of the operating system; that is, the DPL of such aliases should always be zero.

PLAN FOR CHANGE

When you design a dynamic system that uses aliases for segment sharing, you must consider what will
happen when there is any change in a segment to which aliases are pointing. For example, when a
segment is relocated, all descriptors pointing to the relocated segment must be updated. When a segment
is deleted, all aliases to it must be nullified. Chapter 5 presents a strategy for handling these changes.

EXAMPLE OF DESCRIPTOR MANIPULATION

As an example of how to manipulate descriptors and descriptor tables using an alias, consider the
procedures POINT_AT and NULLIFY in figure 2-16. POINT_AT creates a descriptor at a given slot
in the GDT. NULLIFY invalidates a descriptor. in the GDT. It is intended for use in connection with
POINT_AT to prevent accidental use of descriptors that are no longer needed.
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Figure 2-15. Aliases for Segment Sharing

NULLIFY invalidates a descriptor by writing a value of 80H in the access rights byte. A value of 80H
is invalid because it indicates a system segment of type zero, but no type zero is defined for system
segments. '

POINT_AT purposely loads the access rights byte of the descriptor last, to ensure that an accidental
use of the descriptor (as might occur if an external interrupt gives control to another procedure or task)
does not find partially complete information in a descriptor that otherwise looks valid.

These procedures do no checking of the privilege level of the calling procedure, and they freely create
descriptors of any type (except gate descriptors) and any DPL. Therefore, they are suitable for use
only at PL 0. As long as no gates for these procedures are provided at another privilege level, they can
be called only by other PL-0 procedures For an example of how you might use such procedures refer
to the example of a memory manager in Chapter 3.

When writing code to manipulate descriptors, you must be careful about changing a descriptor that is
currently loaded in either of the processor’s data-segment registers (DS or ES). Either disable inter-
rupts or move zero to the register before changing the descriptor, for example:

MOV DS, 0

Failure to do this leaves open the possibility that an external interrupt may cause the processor to
reload the segment register using the partially modified descriptor. When coding in PL/M-286, use
the compiler’s CODE option to view the way the generated code handles the DS and ES registers. This
situation does not arise in the present example. DS points to the data segment that contains the sole
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global data item GDTA_SEL. PL/M-286 uses ES for all the BASED variables used here. Referencing
the descrlptor table via its alias selector causes PL/M-286 to load ES with the alias descriptor, thercby
ensuring that ES does not contain the descriptor to be modified.

Remember that once a descriptor has been modified, it cannot be used to access a segment until it is
loaded into a segment register.

Be aware also that in a multitasking system, changes to shared segments (such as the GDT) must be
synchronized. Synchronization is the subject of Chapter 5. This example does not provide for
synchronization.

SLOT MANAGEMENT

The previous example assumes that the caller of POINT_AT already knows what descriptor-table slot
to use. Often, slots can be reserved in advance for specific operating system and applications functions.
But in general, dynamic systems require that the operating system dynamncally allocate descriptor
table slots.

Figure 2-17 illustrates a way of identifying available slots in a descriptor table. A value of zero in the
access rights byte is invalid for any descriptor, so it can mark a free slot. A value of 80H (as used in
the previous example) is also invalid and can mark a reserved but unused slot.

In larger systems, the time needed to search a descriptor table linearly for free slots may become
excessive. Shorter search times may result from linking available slots together in a manner similar to
that shown in figure 2-17. Contiguous free slots are treated as a block, with a count of the number of
slots in the first and last slots of the block. (Note that the block size is stored in the reserved word of
available descriptor slots. Since available descriptor slots contain an invalid type code, this use of the
reserved word does not prevent upward compatibility.) All the free blocks are linked in a circular, two-
way list that includes the list header. The list header can reside at a fixed slot location that is the same
in all descriptor tables (in the case of figure 2-17 the list header is at slot number one). Algorithms
normally used for managing memory space may also apply to blocks of free descriptors. Refer to
Chapter 3 for an example of such an algorithm.

It is convenient for the operating system to use adjacent descriptor slots for related purposes; for example, .
by locating together all the descriptors that the operating system uses for one task, the operating system
can quickly find any of those descriptors as long as it knows the location of one. Therefore, the algorithm
used for slot management should combine adjacent free slots into a single block. The procedures used
to manage free slots should then have a parameter that specifies the number of adjacent slots.

2-22 121960-001



ntel

USING HARDWARE PROTECTION FEATURES

PL/M-286 COMPILER 960-505 date PAGE 1

system-ID PL/M-286 VX.y COMPILATION OF MODULE POINT
OBJECT MODULE PLACED IN :F1:POINT.OBJ
COMPILER INVOKED BY: PLM286.86 :F1:POINT.PLM

w N

ww

$ PAGEWIDTH(71) TITLE('960-505') INCLUDE (:F1:NUCSUB.PLM)
$ NOLIST

POINT: DO;

/*****k*t************************ﬁ**********************/

/* Global declarations. */
DECLARE DESC_STR LITERALLY

'LIMIT WORD,

LO BASE WORD, /* Format of a descriptor. */

HI BASE BYTE,

RIGHTS BYTE,

SW_RESRVD WORD';

DECLARE DT_SIZE LITERALLY '200°',
GDTA SEL SELECTOR, /* Points to GDT alias */
GDTA_WSEL WORD AT (@GDTA_SEL)
INITIAL (8), /* Slot #1 by convention */
GDT BASED GDTA_SEL (DT_SIZE)
STRUCTURE (DESC_STR);

/**************************)\'****************************/

/* Subroutine to determine either the alias for */
/* the GDT or the alias for this task's LDT, */
/* depending on the TI bit in SEL. */

FIND DT_ALIAS: PROCEDURE (SEL) SELECTOR
PUBLIC REENTRANT;

DECLARE SEL SELECTOR,
WSEL WORD AT (@SEL);
DECLARE LDT_SEL SELECTOR,

LDT WSEL WORD AT (QLDT_SEL);

IF (WSEL AND Q004H)=0
THEN /* It's a selector to the GDT. */
RETURN GDTA_SEL;

ELSE DO; /* It's a selector to this task's LDT. */
LDT SEL=LOCALSTABLE; /* PL/M 286 built-in; stores a
selector to the GDT descriptor for this task's LDT. */
LDT WSEL=LDT_WSEL+8; /* Add 1 to index field. */
/* By convention, next slot holds alias. */
RETURN LDT_SEL;
END;

END FIND_DT_ALIAS;
S EJECT

Figure 2-16. Descriptor Manipulation Example
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PL/M-286 COMPILER 960-505 date PAGE 2

15
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31
32
33

34

NN
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/*******************************************************/

/* Create a descriptor at a given slot to a given */
/* segment, and return selector that points *x/
/* to that slot. */

POINT_AT: PROCEDURE(SLOT, RIGHTS, PHYS_ADDR_PTR, LIMIT)
PUBLIC REENTRANT;

DECLARE SLOT SELECTOR,
SLOTW WORD AT (@SLOT), /* Alternate type */
RIGHTS BYTE,

PHYS_ADDR_PTR POINTER,

PHYS_ADDR BASED PHYS_ADDR_PTR STRUCTURE
(LO_WORD WORD, -

_ HI_WORD WORD),

LIMIT WORD;

DECLARE SLOTI WORD, /* Slot index */
DTA_SEL SELECTOR, /* To be set to either
GDT alias or LDT alias. */
DT BASED DTA_SEL (DT_SIZE)
STRUCTURE (DESC_STR);

DTA_SEL = FIND_DT_ALIAS(SLOT);

SLOTI = SHR(SLOTW,3); /* Expose index value. */
DT (SLOTI) .LO_BASE PHYS_ADDR.LO_WORD;

DT (SLOTI) .HI BASE LOW(PHYS_ADDR.HI_WORD);

DT (SLOTI) .LIMIT LIMIT;
DT (SLOTI).SW_RESRVD = §;
DT (SLOTI) .RIGHTS RIGHTS;

RETURN;

END POINT_AT;

/**********************************************k********/
/* Invalidate descriptor indexed by SLOT. */

NULLIFY: PROCEDURE (SLOT) PUBLIC REENTRANT;

DECLARE SLOT SELECTOR, )
SLOTW WORD AT (@SLOT); /* Alternate type */

DECLARE SLOTI WORD, /* Slot index */
DTA_SEL SELECTOR, /* To be set to either
GDT alias or LDT alias. */
‘DT " BASED DTA SEL (DT _SIZE)
" STRUCTURE (PDESC_STR) ;

DTA_SEL = FIND_DT_ALIAS(SLOT);

SLOTI = SHR(SLOTW,3); /* Get index part of selector. */

DT (SLOTI) .RIGHTS = 80H;/* This invalid value prevents
use of the descriptor. *x/

RETURN;

END NULLIFY;

/*****************************************k*************/

Figure 2-16. Descriptor Manipulation Example (Cont’d.)
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PL/M-286 COMPILER 960-505

35 1 END POINT;

MODULE INFORMATION:

CODE AREA SIZE = QJCAH 202D
CONSTANT AREA SIZE = @O000H @D
VARIABLE AREA SIZE = 0002H 2D
MAXIMUM STACK SIZE = @@18H 24D

129 LINES READ
¢ PROGRAM WARNINGS
@ PROGRAM ERRORS

DICTIONARY SUMMARY:
96KB MEMORY AVAILABLE
5KB MEMORY USED (5%)
JKB DISK SPACE USED

END OF PL/M-286 COMPILATION

date

PAGE

3

Figure 2-16. Descriptor Manipulation Example (Cont’d.)
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CHAPTER 3
REAL MEMORY MANAGEMENT

In dynamic applications, when tasks begin and end frequently, the operating system is responsible for
allocating memory to tasks. Without the control that an operating system provides, independent tasks
cannot be trusted to share the system’s memory harmoniously. The iAPX 286, through the descriptor
mechanism, gives the operating system the power to control memory usage. For static systems, you can
use the Builder to allocate memory. This chapter presents an example of how to manage real memory
dynamically, using dynamically created descriptors.

MEMORY MANAGEMENT FUNCTIONS

Procedures at various levels in a system have a need to get memory for their use. Some of the functions
that use memory dynamically include

e Loading the code and data segments for a new task

¢ Creating the TSS and LDT of a new task

e Expanding an application data structure

» Expanding system stack segments when stacks grow too large
e Allocating buffers for a newly opened file '

In allocating memory statically using the Builder, you or the Builder must keep account of what memory
locations are available and what locations are used. A dynamic memory allocation module must do the
same, but, in addition, it needs to reuse the space vacated by tasks that have finished. Even tasks that
are still executing may no longer need all of the memory they once were using, so you need to provide
some means for them to return that space dynamically. The need to reclaim formerly used memory
space provides considerable challenge to operating system designers.

Protection usually requires that segments not overlap. The operating system should accurately keep
track of allocated memory to prevent new segments from overlapping current segments.

Allocation of memory to tasks in a dynamic environment is complicated by the facts that segments
have differing lengths and that the order of creation and deletion is unpredictable. Consequently, after
a number of tasks have come and gone, memory becomes fragmented, as illustrated in figure 3-1. It
becomes increasingly difficult to find free areas large enough to accomodate requests for space. It may
happen that no single free area in all of memory is large enough to fill a request for memory even
though the total of all smaller available areas is larger than the amount nceded. Knuth (see “External
Literature” in the Preface) discusses how various memory-management mechanisms can minimize or
magnify this problem.

Memory management on the iAPX 286 differs from memory management on other processors in that
descriptors must be constructed to access any region of physical memory.

EXAMPLE OF A MEMORY MANAGER

As an example of how a memory manager can manipulate descriptors and segments, consider a memory

management module that implements a version of the “first fit” algorithm (as described by Knuth)
and combines adjacent free segments as a way to reduce fragmentation. This example employs the
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Figure‘3-1. Memory Fragmentation

“first fit” algorithm because it provides an opportunity to illustrate how to create descriptors dynami-
cally to access free memory areas, not because it necessarily performs best in any specific application.
Knuth discusses other algorithms, including the “buddy system.”

Figure 3-2 illustrates conceptually the structure of this module. Hidden inside the module are the list
of available memory space, the aliases that permit modification of the GDT and LDTs, and the space-
management algorithms. The PUBLIC procedures ALLOCATE and FREE are the only interfaces
with the world outside the module.

Data Structures

Figure 3-3 illustrates the data structures implemented in this example memory manager. One-word
tags bound every memory area on the low and the high end. These boundary tags indicate whether the
area is free or in use by some task. Free areas are chained into a two-way linked list that uses physical
addresses to point to the next and prior segments in the list. The size of an area (in bytes) is stored
with the link addresses in the low-addressed end of the area. At the high-addressed end a physical
address points to the beginning of the area.

With boundary tags at both ends of every memory area, the memory manager can, when freeing a
segment that is no longer needed, easily determine whether either of the adjoining areas is free. Figure
3-4 illustrates how adjacent free areas can be combined to reduce memory fragmentation.

Figure 3-5 illustrates that boundary tags are invisible to procedures outside the memory management
module because the tags are not within the base and limit addresses in the segment descriptor that the
memory manager returns to the caller.
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Figure 3-2. Information Hiding in Memory-Management Example

This memory manager does not maintain descriptors to free segments; instead, it creates descriptors
dynamically when it needs to address the boundary tags and space-management linkages. This policy
minimizes the number of descriptors in the GDT. Note that as a result, free areas may be larger than
64K bytes.

Physical addresses are stored as double words (DWORD) to take advantage of double word arithmetic
in PL/M-286. In an actual implementation, you may wish to store physical addresses in three-byte
fields to save space, but you would need to implement arithmetic operations for three-byte operands.

The total size of the memory-management items associated with each free area is 20 bytes; therefore,
to ensure that no memory area is too small to contain the memory-management items, this algorithm
chooses the size of the allocated space to be a multiple of the next integer greater than 20 that is also
a multiple of 16. This number is identified as BLOCK_MODULUS.
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Figure 3-3. Example Memory-Management Data Structures

The memory manager maintains physical-address pointers to the first segment in the available segment
list and to the last. It also maintains a “current available” pointer that corresponds to Knuth’s “roving
pointer.”

This example also makes some assumptions about the placement of descriptors in the GDT. Figure
3-6 illustrates these assumptions:

¢ The memory manager frequently needs to create temporary descriptors for such purposes as reading
and updating the boundary tags and link fields. For its own convenience, the memory manager
reserves GDT slots for these temporary descriptors. This example identifies the slots as SLOT_A,
SLOT_B, and SLOT_C.

e Adjacent slots in the GDT contain all the descriptors to information for one task. This way, given a
selector for one task descriptor, simple addition or subtraction yields selectors for other descriptors
for the same task. ‘
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Figure 3-4. Using Boundary Tags
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Figure 3-5. Hiding Boundary Tags

There are two ways to reserve slots in a descriptor table:

1. Code absolute selector values in the program and use the Builder’s RESERVE statement to prevent
the Builder from allocating other descriptors to those slots. This is the method used in this example.

2. Use EXTERNALSs to dummy segments coded in an ASM286 module, and allow the Builder to
assign slots for the descriptors of the dummy segments. The Builder resolves the EXTERNALS.

PL/M-286 Code

This example separates space-management functions from descriptor-management functions. The space-
management procedures are DELINK, FIND_FIRST_FIT, and RETURN_SPACE. The public
procedures ALLOCATE and FREE_SEG call on POINT_AT and NULLIFY to manipulate descrip-
tors for allocated segments. (Refer to Chapter 2 for definitions of POINT_AT and NULLIFY.)

The PL/M-286 built-ins used to manipulate system structures in this example include

SELECTORS$OF (pointer)
GETS$SEGMENTSLIMIT (selector)

The external procedure GETSSEGMENTSBASE extracts the segment base address from the speci-
fied descriptor.

When the procedure FIND_FIRST_FIT finds an available space that is much larger than requested,

it allocates the higher-addressed portion of the space and leaves the lower-addressed portion in the free-
space list. Figure 3-7 illustrates the process of splitting an available space.
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Figure 3-6. Example GDT Layout

When returning an unneeded segment to the available list, the procedure RETURN_SPACE checks
the boundary tags of both the lower and higher adjacent segments to see whether there is another free
segment with which to combine. Four cases are possible, as illustrated in figure 3-8 at the end of this
chapter. Table 3-1 summarizes the actions taken in each of the four cases. .

See figure 3-9 at the end of this chapter for the PL/M-286 code that implements this example of a
memory manager.
Protection Structure

Where in the two-dimensional grid of protection offered by the iAPX 286 should the memory-
management module lie? There are two approaches that offer different advantages:

1. The module can be structured as privileged procedures that execute as part of every task that
calls them.

2. The module can execute as a separate task.
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Figure 3-7. Splitting an Available Block of Memory

GLOBAL PROCEDURES

Placing the module’s segment descriptors in the GDT allows all tasks in the system to share the module
yet requires only one copy of the module’s segments to be present in memory. This approach allows for
fastest communication between the application and the memory manager.

The procedures of the memory manager synchronize with the calling procedure (that is to say, the
calling procedure waits until the memory-management procedure returns). However, more than one
task can be executing the memory-management procedures at one time. This can be an advantage (as
when there are multiple CPUs and the requests are for different regions of the memory space), but it
requires synchronization of changes to space-management data structures (not shown in this example).

Segments containing procedures and data structures internal to this most critical operating-system
module should have the greatest protection possible. Because none of these procedures and data struc-
tures are PUBLIC, no other modules can gain knowledge of the locations of data and procedures. This
by itself, however, does not constitute positive protection from accidental or intentional snooping or
destruction. The segments containing these procedures and data should have privilege level 0 (PL 0)
so that the processor can prevent any access from less trusted procedures.
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Table 3-1. Actions for Combining Segments

Case O Case 1 Case 2 Case 3
Action Lo Hi Lo Hi Lo Hi Lo Hi
Free Free Free Used Used Free Used Used
_ Lo Lo This This
CURR_AVLBL= START START Base Base
CURR_LINK.PRIOR= — — Hi Null
—HINR. LINK.PRIOR u
_ Hi
CURR_LINK.NEXT= — — LINK NEXT FIRST_AVLBL
DELINK HI Yes No No No
FIRST_AVLBL=
CURR_AVLBL? No No No Yes
PRIOR FREE
LINK.NEXT= No No Yes No
CURR_AVLBL? -
NEXT FREE :
LINK.NEXT= No No Yes Yes
CURR_AVLBL?

The PUBLIC interface procedures ALLOCATE and FREE_SEG should execute at PL 0 to access
the internal data structures and procedures, which are also at PL 0. ALLOCATE and FREE_SEG
should have gates at PL 3, however, so that even least trusted application procedures can get the space
they need for such purposes as dynamic data structures.

SEPARATE TASK

Another possible structure, not exemplified here, is to treat the memory-management module as a
separate task. The iAPX 286 features for isolation of tasks provide the needed protection for the criti-
cal memory-management structures and procedures. Within the memory-management task, privilege
levels can be used to isolate the various internal procedures and data structures from one another. The
memory-manager task can use a message passing mechanism such as that shown in Chapter 5 to receive
requests and to pass segments to the requesting task.

With the memory-manager executing as a separate task, serialization of requests for space is automatic,
thereby eliminating the need for synchronization when modifying space-management structures. The
separate-task approach is also advantageous when there is a need to have the requesting task wait until
sufficient memory becomes available to fullfil a request. While one task is waiting, the memory manager
can continue to service requests from other tasks.
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In actual applications, the memory-management module may need to deal with such topics as

Different kinds of memory. The ALLOCATE procedure needs a parameter to specify (for example)
slow versus fast memory, and each type of memory needs its own free-space list.

Multiprocessing. When multiple processors share some, but not all, of the available memory, the
memory, management module must know what memory addresses each processor can access.
ALLOCATE must provide memory that is accessible to the processor that is running the calling
task. You need to partition memory into areas so that all the addresses in a given area satisfy a
common accessibility constraint. (The criteria for partitioning may also include memory types as
mentioned previously.) Each area needs its own free-space list.

Dynamic deletion of memory. When a memory parity error occurs, the need for continued system
operation may require deleting the affected block of memory from the available-space lists, so that
it cannot cause more trouble. :

Fixed-location segments. Often certain addresses of memory have specific uses, for example, video
refresh buffers, and communication blocks for intelligent peripheral controllers. The memory manager
must be aware of these areas and not use them for other purposes. Its interfaces must include the
means for a task to request a specific special-purpose area.

Compaction. It can happen that no single free memory space is large enough to satisfy an
ALLOCATE request, even though there is enough total free memory. Some memory-management
subsystems call on a compaction algorithm in such cases. Whether implementation of a compaction
algorithm is worthwhile depends primarily on the pattern of memory usage in a given application.
In many applications, this situation arises only when memory is nearly full anyway; compaction in
this case merely delays the inevitable by an insignificant time. If you do implement compaction,
you may choose to associate with each allocated segment a pointer that helps the compaction
algorithm find the descriptors for that segment. With a memory-management scheme such as that
exemplified here, the boundary tags are the most convenient container for descriptor pointers. With
descriptor pointers in place, the compaction algorithm need only follow the available-space lists to
discover all the opportunities for compaction.

3-10 121960-001



REAL MEMORY MANAGEMENT

BEFORE AFTER
CASE #0
[ereer ] [ rree )

START START

FROM
NEXT

FREE
SEGMENT

SIZE
NEXT
PRIOR

\4—
“FREE"
“USED”

FROM
PRIOR

FREE
SEGMENT eyl

“USED”
“FREE”
START

SIZE NEW SIZE
NEXT NEXT
PRIOR PRIOR

I “FREE"” l I “FREE" I

121960-21

Figure 3-8. Possibilities for Combining Segments
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Figure 3-8. Possibilities for Combining Segments (Cont’d.)

3-12 121960-001



REAL MEMORY MANAGEMENT

BEFORE AFTER
I “‘FREE" I CASE #2 I “FREE" I
START START
FROM
PRIOR
FREE
SEGMENT
SIZE
NEXT
—
PRIOR \\\
“FREE” \
“YSED” \\
\
FROM 1
NEXT [
FREE = FROM
EGMENT NEXT
s SEGMENT | FREE
TOBE | SEGMENT
FREED :
|
\ SIZE
N NEXT
PRIOR
“USED” “FREE”
“USED” “USED”
FROM
PRIOR
FREE
SEGMENT
[Coseo I s T
VALUE OF ADDRESS —>
MOVEMENT OF ADDRESS — —— -

121960-21
Figure 3-8. Possibilities for Combining Segments (Cont’d.)

121960-001




REAL MEMORY MANAGEMENT

BEFORE AFTER
I “U_S.ED"_I CASE #3 I “USED" 'I
““USED” ‘‘USED”
“‘USED” ‘“‘FREE"’
START
FORMER
SEGMENT FROM HEAD OF
TO BE FORMER LIST
FREED HEAD OF
LIST
SIZE
NEXT -
PRIOR -
“‘USED"” “FREE” l
“USED” “USED" =
2 NULL
HEAD
OF
LIST
| ‘‘USED” I ““USED”

121960-21

Figure 3-8. Possibilities for Combining Segments (Cont’d.)

121960-001



Intel REAL MEMORY MANAGEMENT

PL/M-286 COMPILER 96@~501 date PAGE 1

system-ID PL/M-286 DEBUG VX.y COMPILATION OF MODULE MEMORY
OBJECT MODULE PLACED IN :F1:MEMORY.OBJ
COMPILER INVOKED BY: :F3:PLM286.86 :F1:MEMORY.PLM CODE DEBUG

$ PAGEWIDTH(71) TITLE('960-5061') INCLUDE (:Fl:NUCSUB.PLM)

= S NOLIST
1 MEMORY: DO;
/********ﬁ**********************************************/
/* Externals. */
2 1 POINT_AT: PROCEDURE (SLOT, RIGHTS, PHYS_ADDR_PTR, LIMIT)
EXTERNAL;

w
N

DECLARE SLOT SELECTOR, RIGHTS BYTE,
PHYS_ADDR_PTR POINTER, LIMIT WORD;

END POINT_AT;
NULLIFY: PROCEDURE (SLOT) EXTERNAL;

DECLARE SLOT SELECTOR;

END NULLIFY;
GETSEGMENTBASE: PROCEDURE (SEL, BASE_ADDR_PTR) EXTERNAL;
DECLARE SEL SELECTOR, BASE_ADDR_PTR POINTER;

QW00 U
NNEFENNDFN

1 END GETSEGMENTBASE;
/**************************k***********t****************/
/* Space-management definitions. */
11 1 DECLARE PARAGRAPH LITERALLY 'l6';

/* To run under SIM286, all segments must have a base
address equal to zero mod PARAGRAPH. This is not
required when running on iAPX 286 hardware. *x/

12 1 DECLARE MEM_LINK LITERALLY

'PADDING (8) BYTE,

START DWORD,
HI_TAG WORD,
LO_TAG WORD,
PRIOR DWORD,
NEXT DWORD,
SIZE DWORD';

/* Base address of link descriptor is always PARAGRAPH
less than address of PRIOR field. Aaddress of PRIOR
field is always @ mod PARAGRAPH. PRIOR, NEXT, and
SIZE fields always point to a PRIOR - PARAGRAPH
address, */

13 1 DECLARE TAGS_SIZE LITERALLY ‘4°;
/* The space used by both tag words */

14 1 DECLARE LINK_LIMIT LITERALLY '27°';
/* Limit used to construct descriptors for MEM_LINK */

15 1 DECLARE BLOCK_MODULUS LITERALLY '32';
/* All memory blocks are an integral multiple of
BLOCK_MODULUS in length. */

Figure 3-9. Code for Memory-Management Example
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16 1 DECLARE NULL_PHYS_ADDR LITERALLY '@';
17 1 DECLARE USED LITERALLY ',
FREE LITERALLY '¢°';
/* values of boundary tags */
18 1 DECLARE OK LITERALLY '@°',
FAILED LITERALLY '800QH';

/* Values of exception codes */

19 1 DECLARE DWRIGHTS LITERALLY ‘'92H' /* For manipulating
space-management data structures, this module
needs these rights parameters: Present, DPL=0,
data segment, grow up, writable. */

/*******************************************************/
/* Space-management data structures. */

20 1 DECLARE (FIRST_AVLBL,LAST_AVLBL,CURRﬁAVLBL)DWORD PUBLIC;
/* Physical-address pointers to chain of available
space. These always point to PRIOR - PARAGRAPH to
avoid calculating base addresses for MEM_LINKs. */

21 1 DECLARE SLOT_A SELECTOR PUBLIC,
WSLOT_A WORD AT (@SLOT_A) INITIAL (38H), /* 7 */
SLOT_B' SELECTOR PUBLIC,
WSLOT_B WORD AT (@SLOT_B) INITIAL (40H), /* 8 */
SLOT_C SELECTOR PUBLIC,
WSLOT_C WORD AT (@SLOT_C) INITIAL (48H); /* 9 */
/* "Scratch" slots for addressing MEM _LINKS. */
/* Be sure to reserve these slots with the Builder */

/**'k******************************t*********************/

/* Round a size parameter upwards to next greater */
/* or equal (N * BLOCK_MODULUS) - TAGS_SIZE for some N */

22 1 ROUND_SIZE: PROCEDURE (A_PTR) PUBLIC REENTRANT;

23 2 DECLARE A_PTR POINTER,
ADDR BASED A_PTR DWORD;

24 2 ADDR = BLOCK_MODULUS
: * (((ADDR + TAGS_SIZE - 1) / BLOCK __MODULUS) + 1)
- TAGS_SIZE;
25 2 END ROUND_SIZE;
/****‘k**************************************************/
/* Delink from available space list. */
26 1 DELINK: PROCEDURE (THIS_SEL) REENTRANT;
27 2 DECLARE THIS_SEL SELECTOR,

THIS_LINK BASED THIS_SEL STRUCTURE (MEM_LINK);

28 2 DECLARE PRIOR_LINK BASED SLOT_C STRUCTURE (MEM_LINK),

Figure 3-9. Code for Memory-Management Example (Cont’d.)
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NEXT_LINK BASED SLOT_C STRUCTURE (MEM_LINK);

29 2 IF THIS LINK.PRIOR = NULL_PHYS_ADDR
/* This is the beginning of the list. */

30 2 THEN FIRST AVLBL = THIS_LINK. NEXT ;
31 2 ELSE DO; /¥ Update link from prior segment. */
32 3 CALL POINT AT(SLOT _C, DWRIGHTS,
@THIS_LINK. PRIOR, LINK_LIMIT);
33 3 PRIOR_LINK.NEXT = THIS LINK. NEXT;
34 3 END; -
35 2 IF THIS_LINK.NEXT = NULL_PHYS_ADDR
/* This is the end of the list. */
36 2 THEN LAST AVLBL = THIS LINK.PRIOR;
37 2 ELSE DO; /¥ Update link from next segment. */
38 3 CALL POINT_AT(SLOT_C, DWRIGHTS,
@THIS LINK.NEXT, LINK LIMIT);
39 3 NEXT_LINK.PRIOR = THIS_LTNK.PRIOR; -
40 3 END; -
41 2 END DELINK;

/***************k*******i*******************************/

42 1 FIND_FIRST FIT: PROCEDURE (SIZE,BASE_ADDR_PTR)
WORD REENTRANT;

43 2 DECLARE SIZE WORD,
BASE_ADDR_PTR POINTER,
BASE_J “ADDR BASED BASE _ADDR_PTR DWORD;

44 2 DECLARE CURR_LINK BASED SLOT_A STRUCTURE (MEM_LINK),
PHYS SIZE DWORD,
SIZE DIFF DWORD,
/* Boundary tag items */
BOUND_ADDR DWORD,
BOUND_MID BASED SLOT_B STRUCTURE (MEM_LINK),
BOUND_HI BASED SLOT_B STRUCTURE (MEM_LINK);

45 2 DECLARE TOP_LOOP LABEL;

46 2 PHYS SIZE = SIZE;
47 2 CALL ROUND SIZE (@PHYS_SIZE);
2

48 CALL POINT AT(SLOT _A, “DWRIGHTS,
@CURR _AVLBL, LINK_LIMIT);
49 2 TOP_LOOP:
IF SLOT_A = SELECTORSOF (NIL) /* Check for end of list */
50 2 THEN DO;
51 3 IF FIRST AVLBL = NULL_PHYS_ADDR
/* The list is empty. */
52 3 THEN RETURN FAILED;
53 3 END;
54 2 ELSE CALL POINT_AT(SLOT_A, DWRIGHTS,

QFIRST_AVLBL, LINK_LIMIT);
/* Continue from beginning of list. */

55 2 IF CURR_LINK.SIZE < PHYS_SIZE
THEN /* This segment is too small, so... */

Figure 3-9.  Code for Memory-Management Example (Cont’d.)
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56 2 DO; /* Look at next free segment in the list. */
57 3 CALL POINT_AT(SLOT_A, DWRIGHTS,
@CURR_LINK.NEXT, LINK_LIMIT);
58 3 IF CURR_AVLBL = CURR LINK.NEXT
/* Have searched entire list without a hit. */
59 3 THEN DO;
60 4 CALL NULLIFY(SLOT A);
61 4 RETURN FAILED; -
62 4 END;
63 3 GOTO TOP_LOOP;
64 3 END; /* Segment too small. */
65 2 SIZE DIFF = CURR _LINK.SIZE - PHYS SIZE;
/* Always a multiple of BLOCK_MODULUS */
66 2 IF SIZE DIFF = 0
67 2 THEN DO; /* This segment is a close fit. */
68 3 CURR_AVLBL = CURR_LINK.NEXT;
69 3 CALL DELINK (SLOT A),
/* Set lower boundary tag */
79 3 CURR_LINK.LO_TAG = USED;
/* Set upper boundary tag */
71 3 CALL GETS$SEGMENTSBASE (SLOT_A, @BOUND ADDR);
72 3 BASE_ADDR = BOUND_ADDR; -
73 3 BOUND ADDR = BOUND ADDR + CURR LINK.SIZE + TAGS SIZE;
74 3 CALL POINT AT(SLOT B,DWRIGHTS, @BOUND ADDR, LINK LIMIT),
75 3 BOUND_HI.HI_TAG =USED;
76 3 CALL NULLIFY(SLOT_A); CALL NULLIFY(SLOT_B);
78 3 BASE_ADDR = BASE_ADDR + PARAGRAPH;
79 3 RETURN OK; -
80 3 END; /* Close fit. */
81 2 ELSE DO; /* It will fit here with room to spare. */
82 3 CALL GETSSEGMENTSBASE (SLOT_A, @CURR_AVLBL);
/* Set boundary tag at end of new segment. */
83 3 BOUND_ADDR CURR_AVLBL + CURR_LINK.SIZE + TAGS_SIZE;
84 3 CALL POINT AT(SLOT B,DWRIGHTS, @BOUND ADDR,LINK LIMIT),
85 3 BOUND HI.HI TAG = USED,
/* Calculate starting address of the new segment. */
86 3 BOUND_ADDR = CURR_AVLBL + SIZE DIFF;
87 3 BASE_ADDR = BOUND_ADDR + PARAGRAPH;
/* Set the boundary fields between the 2 segments. */
88 3 CALL POINT_AT(SLOT_B,DWRIGHTS,@BOUND_, ADDR LINK_LIMIT);
89 3 BOUND_MID. START = CURR _AVLBL;
90 3 BOUND MID.HI_TAG = FRFE,
91 3 BOUND_MID. LO TAG = USED;
/* Change size of available segment,
considering the 2 boundary tag words. */
92 3 CURR_LINK.SIZE = SIZE_DIFF - TAGS_SIZE;
93 3 CALL NULLIFY(SLOT_A); CALL NULLIFY(SLOT_B);
95 3 RETURN OK;
96 3 END; /* Room to spare. */
97 2 END FIND_FIRST_FIT;

SEJECT

Figure 3-9. Code for Memory-Management Example (Cont’d.)

3-18 121960-001



el

REAL MEMORY MANAGEMENT

PL/M-286 COMPILER 960~501 date PAGE 5

98

99

100

101
192
103
164
105

106

107
108
109
111

112
113
114

116
117
118
119

120
121
122

124
125

126
127
128
129
130

N NN

NN [SEEN) NN NN DON NN

WwwhoNn

/*********k***k*****************************t***********/
/* Place a segment into the available space list. */

RETURN_SPACE: PROCEDURE (FREE_SEG) REENTRANT;

DECLARE FREE_SEG SELECTOR,
FREE_LINK BASED FREE_SEG STRUCTURE (MEM_LINK);

DECLARE CURR_LINK BASED SLOT_A STRUCTURE (MEM_LINK),

NEIBR_ADDR DWORD,

NEIBR_LINK BASED SLOT_B STRUCTURE (MEM_LINK) ,
FREE_BASE DWORD,

FREE_SIZE DWORD,

HI_SIZE DWORD,

NCASE BYTE,

HI_USED LITERALLY 'GlH',
LO_USED LITERALLY '@2H';

CALL GETSSEGMENTSBASE (FREE _SEG, @FREE_BASE) ;

FREE_BASE = FREE BASE - PARAGRAPH' /* point to tags */

FREE_SIZE GETSSEGMENT$LIMIT (FREE_SEG);

FREE_SIZE FREE_SIZE + 1;

CALL ROUND_SIZE (@FREE_SIZE);

/* Determine which case. */

NCASE = 0;

/* Check higher neighbor. */

NEIBR_ADDR = FREE_] BASE + FREE_SIZE + TAGS _SIZE;

CALL POINT _AT (SLOT B, DWRIGHTS @NEIBR ADDR LINK LIMIT),
IF NEIBR_| LINK.LO TAG = USED THEN NCASE=NCASE OR HI _USED;
ELSE HI SIZE = NEIBRﬁLINK SIZE; /* Save */

/* Check lower neighbor. */

NEIBR_ADDR = FREE_BASE;

CALL POINT_AT(SLOT_B,DWRIGHTS,@NEIBR_ADDR,LINK_LIMIT);
IF NEIBR_LINK.HI_TAG=USED THEN NCASE=NCASE OR LO_USED;

/* Which segment should become the new current one? */
IF (NCASE AND LO_USED)<>0 )
THEN CURR_AVLBL = FREE_BASE; /* low neighbor used */
ELSE CURR AVLBL = NEIBR_LINK. START; /* low free */
CALL POINT AT(SLOT A, DWRIGHTS @CURR _AVLBL, LINK LIMIT),

/* Calculate size of new segment. */
IF (NCASE AND LO_USED) = LO_USED /* if low neibr used */
THEN CURR_LINK.SIZE = a;
ELSE /* already contains size of low neighbor */
CURR_LINK.SIZE = CURR_LINK.SIZE + TAGS_SIZE;
IF (NCASE AND HI USED) <> HI USED
/* if high neighbor free */
THEN CURR_LINK.SIZE = CURR_LINK.SIZE+HI _SIZE+TAGS_SIZE;
CURR_LINK.SIZE = CURR_LINK. SIZE + FREE SIZF,

/* Set next and prior links in new segment. */

IF NCASE = 3 /* neither neighbor free */

THEN DO; /* insert at head of available list */
CURR LINK.PRIOR = NULL_PHYS ADDR;
CURR_LINK.NEXT = FIRST_AVLBL;

END;

Figure 3-9. Code for Memory-Management Example (Cont’d.)
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131 2 ELSE IF (NCASE AND HI_USED) <> HI_USED

/* if high neighbor free */
132 2 THEN DO; /* Dispose with high neighbor's links. */

/* Make selector for high neighbor. */

133 3 NEIBR_ADDR = FREE_BASE + FREE SIZE + TAGS_SIZE;
134 3 CALL POINT AT(SLOT B, DWRIGHTS, @NEIBR ADDR, LINK LIMIT),
135 3 IF NCASE = @ /* both neighbors free */
THEN /* remove one from available list. */
136 3 CALL DELINK (SLOT _B);
137 3 ELSE /* Must be Case 2. */
DO /* Transfer links to new current. */;
138 4 CURR_LINK.PRIOR = NEIBR_LINK.PRIOR;
139 4 CURR_LINK.NEXT = NEIBR_LINK,NEXT;
140 4 END;
141 3 END; /* disposing with high neighbor's links. */
142 2 IF (NCASE AND LO_USED) = LO_USED
/* if low neighbor used. */
143 2 THEN DO; /* Fix up links in prior and next segments. */
144 3 IF CURR_LINK.PRIOR = NULL_PHYS_ADDR
THEN /* there is no prior */
145 3 FIRST_AVLBL = CURR_AVLBL;
146 3 ELSE DO; /* f1x up prior */
147 4 NEIBR_ADDR = CURR_LINK. PRIOR;
148 4 CALL POINT_AT (SLOT_B, DWRIGHTS, @NEIBR_ADDR,
LINK_LIMIT);
149 4 NEIBR_LINK. NEXT = CURR_AVLBL;
150 4 END;
151 3 IF CURR LINK. NEXT = NULL_PHYS_ADDR
THEN /* there is no next */
152 3 LAST_AVLBL = CURR_AVLBL;
153 3 ELSE DO; /* fix up next */
154 4 NEIBR_ADDR = CURR_LINK.NEXT;
155 4 CALL POINT_AT (SLOT_B, DWRIGHTS, @NEIBR_ADDR,
LINK_LIMIT);
156 4 NEIBR_LINK.PRIOR = CURR_AVLBL;
157 4 END;
158 3 END; /* Fixing up links. */
/* Set tag words */
159 2 CURR_LINK.LO_TAG = FREE;
/* Set START field in new current segment. */
169 2 NEIBR_ADDR = CURR_AVLBL + CURR LINK.SIZE + TAGS_SIZE;
161 2 CALL POINT AT(SLOT B,DWRIGHTS, @NEIBR ADDR,LINK LIMIT),
162 2 NEIBR_LINK. START = CURR _AVLBL;
163 2 NEIBR_LINK.HI_TAG = FREE;
164 2 CALL NULLIFY (SLOT_A); CALL NULLIFY (SLOT_ﬁ);
166 2 END RETURN_SPACE;

SEJECT

Figure 3-9. Code for Memory-Management Example (Cont’d.)
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PL/M-286 COMPILER 960-501 date PAGE 7

/****************i*******k*************************i****/

167 1 ALLOCATE: PROCEDURE (SLOT, RIGHTS, SIZE, EXCEP_PTR)
PUBLIC REENTRANT ;
168 2 DECLARE SLOT SELECTOR,
RIGHTS BYTE,
SIZE WORD,

EXCEP_PTR POINTER,
EXCEP BASED EXCEP_PTR WORD;

169 2 DECLARE BASE_ADDR DWORD;
176 2 IF OK <> FIND FIRST FIT (SIZE, @BASE_ADDR)
171 2 THEN DO;
172 3 EXCEP = FAILED;
173 3 RETURN;
174 3 END;
175 2 CALL POINT AT (SLOT, RIGHTS, @BASE ADDR, SIZE-1);
176 2 EXCEP = OK;
177 2 END ALLOCATE;
/************************************************ﬁ****i*/
178 1 FREE_SEG: PROCEDURE (SLOT, EXCEP_PTR) PUBLIC REENTRANT;
179 2 DECLARE SLOT SELECTOR,
EXCEP_PTR POINTER,
EXCEP BASED EXCEP_PTR WORD;
186 2 CALL RETURN_SPACE (SLOT);
181 2 CALL NULLIFY (SLOT);
182 2 EXCEP = OK;
183 2 END FREE_SEG;
/***********ﬁ***********************************ﬁ*******/
184 1 END MEMORY;

Figure 3-9. Code for Memory-Management Example (Cont’d.)
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CHAPTER 4
TASK MANAGEMENT

The primary responsibility of an operating system is to allocate the processor to the executing tasks so
that each task makes progress consistent with its role in the application. This chapter examines how
the task-oriented features of the iAPX 286 hardware apply to conventional task-management concepts.

HARDWARE TASK-MANAGEMENT FEATURES

The operating system’s responsibility for managing a multitasking system is reduced by iAPX 286
features for saving and restoring task state and switching between tasks.

Storing Task State

The state of a task (from the processor’s point of view) is the contents of the registers used by that
task. The architecture of the iAPX 286 defines a special type of segment, the task state segment (TSS),
for storing the 80286-related state of a task. Multitasking operating systems on any processor need to
store similar information. The iAPX 286 requires merely that a specific format be used so that the
CPU can store and restore task state automatically. Figure 4-1 illustrates a TSS and related hardware
structures.

The processor keeps the location of the TSS of the currently executing task in the task register. The
task register has two parts:

» The “visible” portion, which a task can access. This part contains a selector to the descriptor (in
the GDT) for the current TSS.

* The “invisible” portion, which tasks do not control. When the contents of the visible portion are
changed, the processor loads the invisible portion with the base and limit values from the TSS
descriptor indexed by the selector in the visible portion.

There are two ways to change the task register:

e By one of the task switching operations described later in this section.

* By the LTR instruction. LTR is used to give the task register its initial value during system initial-
ization. Only privilege-level 0 (PL-0) procedures can execute LTR.

Because TSSs correspond one-to-one with tasks, the selector of a TSS uniquely identifies a task. The
STR instruction reads the task register into a selector. Operating-system procedures can use STR to
identify the calling task. The built-in variable TASKSREGISTER gives PL/M-286 programs access
to the task register.

The items in the TSS fall into four classes:
¢ Back link. Contains a selector to the TSS of the calling (or interrupted) task (if any).

¢ LDT selector. Contains a selector to this task’s LDT.
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Figure 4-1. Task State Segment and Register

* Processor registers and flags. Used to store the procéssor state of the task. Note in particular.the
NT flag, which indicates when the BACK LINK contains a valid selector.

» Initial stacks. Contain the initial SS and SP values to be used when a CALL transfers control to
any of the higher PLs (0, 1, or 2). No stack pointer is needed in the TSS for the PL-3 stack because
that stack is either the current stack (pointed to by the SS:SP fields) or is locatable via the chain
of stack pointers in higher-level stacks.
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The processor updates only the back link, the registers, and the flags as part of a task switching opera-
tion. The processor merely reads the initial stack fields (during interlevel CALLs) and the LDT selec-
tor (during a task switch). The operating system is responsible for initializing the stack and LDT fields.
It must also update the LDT selector before changing the LDT register.

Switching Tasks

Since a multitasking system typically has more tasks than it has processors to execute those tasks,
there must be some provision for causing a processor to cease executing one task and begin executing
another. The 80286 has several such mechanisms, each appropriate to different situations. All use
ordinary JMP, CALL, INT, or IRET instructions. The destination operand determines whether a task
switch occurs. Table 4-1 summarizes the operations and operands that cause switching of tasks.

In PL/M-286, an indirect CALL statement to the selector of a TSS descriptor or task gate causes
generation of an intertask CALL instruction. The WAITSFORSINTERRUPT built-in procedure
generates an IRET instruction.

The operand of a CALL or JMP instruction is a pointer containing both selector and offset parts; in
this case, the offset is not used, however. The selector portion may refer either to the descriptor of a
TSS or to a task gate for a TSS. The result is the same in either case. The difference lies in the
protection of access to the TSS. TSS descriptors, which may reside only in the GDT, normally have
DPL set to zero to prevent unauthorized task switching by procedures outside the operating system.
Task gates may reside in any descriptor table, giving task switching ability to procedures that have
access to the gate. A task gate in an LDT gives task switching power only to that LDT’s task. A task
gate in the IDT gives task switching power to interrupts. This reduces operating-system involvement in
interrupt handling, and thereby reduces the time needed to respond to interrupts.

The operating system normally uses a JMP instruction to a TSS descriptor to cause a task switch. A
CALL instruction to a task gate in an LDT is useful for implementing coroutines.

The IRET instruction exits from a nested task that is invoked by a CALL as well as from one invoked
by an interrupt. (You cannot use the RET instruction to exit from a CALLed task; RET does not
perform a task switch.) The NT (nested task) flag controls the function of the IRET instruction. When
a CALL (or interrupt) causes a task switch, the processor sets the NT flag as the new task begins and
fills the back-link of the new TSS with the selector of the calling task’s TSS. When the NT flag is set,
the IRET instruction causes a task switch to the task whose TSS selector is stored in the back-link.
The new task must be marked as busy (type code = 3); otherwise an exception occurs.

Table 4-1. Task Switching Operations

. Descriptor Descriptor
Operation Referenced Table
CALL, JMP, IRET TSS ‘ GDT
CALL, JMP task gate GDT, LDT
INT instruction,
external interrupt, ‘ task gate ' IDT
exception
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If the processer, while executing an IRET instruction, finds the NT flag not set, this indicates a return
to an interrupted procedure in the same task. Refer to Chapter 6 for details on interrupt procedures.

For CALL and JMP instructions, success of a task switch operation depends on the type field of the
TSS descriptor. If the type code is 1, denoting an available task, then the task switch proceeds. If the
type code is 3, denoting a busy task, then an attempt to switch to the task causes an exception. A task
is busy under either of these conditions:

¢ The task is the currently executing task.

« The task is on the chain of TSS back-links from the currently executing task. This prevents recur-
sion of task invocations. A task should be restarted only by the the task that interrupts it or by the
operating system after the task has been removed from the back-link chain.

If the target task is not busy, the processor takes these steps in executing a task switch:

* Saves all registers in current TSS
¢ Loads TR with new TSS descriptor
* Loads all registers and flags from new TSS (including LDT register)

o If switch is due to CALL (or interrupt), sets NT flag and sets back-link in new TSS to point to
previous TSS

» If switch is due to JMP or IRET, changes the old task’s descriptor type code to one, indicating that
the task is no longer busy ' '

¢ Resumes new task where it left off (i.e., CS:IP from new TSS)

Note that you cannot pass parameters by an intertask CALL. It is possible to share data between tasks,
however. Chapter 5 takes up this subject.

ROLE OF OPERATING SYSTEM IN TASK MANAGEMENT

Task switching without operating-system involvement is possible (though not necessarily advisable) in
static systems. Consider the following two application-driven scheduling strategies for static systems:

1. A fixed sequence of tasks is defined, and each task, when ready to relinquish the processor, volun-
tarily calls or jumps to the next task in sequence. Barring any errors, each task gets a share of
processor time.

2. All tasks in the system service external events. The interrupt mechanism of the iAPX 286, by
means of interrupt tasks, causes task initiation in real-time response to those events.

Strategy 1 is not viable in a highly protected system. Errors do happen. An erroneous program might
_easily skip a task entirely. A programming error that causes a tight loop in one task would prevent all
other tasks from being serviced.

Strategy 2 can be adequate by itself for certain real-time systems with a static mix of tasks. Task
switching by interrupt is usable in dynamic systems, too, but rarely do all tasks in a dynamic system
deal exclusively with interrupts. Therefore, in dynamic systems, in highly protected systems, and in
systems with tasks that do not provide real-time processing, the operating system may need to assist
the processor with task switching.
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State Model of Task Scheduling

The role that the operating system must play in using the iAPX 286 task features is most conveniently
expressed in terms of a state-transition model. To distinguish from the processing state of a task (as
stored in the TSS), the term scheduling state is used here. Figure 4-2 illustrates the scheduling states
that a task may assume and the events that may cause a change of state.

A RUNNING task is the one that the processor is executing. A RUNNING task continues to execute
until

» It voluntarily gives up control because it needs to wait for some event, such as completion of an
I/O operation, data from another program, or the end of a specific period of time.

e It is preempted, i.c., forced to give up control. The interrupt mechanism may cause preemption in
order to execute an interrupt task, or the operating system may preempt periodically (via timer
interrupt) to give another task a chance to receive its share of the processor’s attention.

A WAITING task may be waiting for any of several events:

» Completion of a request to the OS for I/O

e A ssignal from another task

¢ Data from another task

o The end of a time-delay period

The READY state is really a special case of the WAITING state. A READY task is waiting for one
specific event: the availability of a processor to execute it. A task becomes READY when first created.

A WAITING task becomes READY upon occurrence of the event (or events) for which it is waiting.
A RUNNING task becomes READY when preempted.

STOP RESUME

READY
(AWAITING
PROCESSOR)

INITIATE

121960-22

Figure 4-2. Scheduling State Transition Diagram
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Usually, termination of a task is possible regardless of its scheduling state; therefore, this diagram does
not illustrate the transition to “terminated” state.

Interfacing with the Hardware Scheduler

Many applications of the iAPX 286 need both software scheduling (by the operating system) and
hardware scheduling (by the interrupt mechanism), but when two schedulers work with the same set
of tasks, you must ensure that they work together harmoniously. Figure 4-3 illustrates the additional
complexity of dual schedulers.

Note that scheduling state under hardware scheduling is nearly analogous.to scheduling state under
software scheduling. The priority concept, often used in software scheduling, has its analog in the
priority mechanism implemented by the interrupt controller. The priority of hardware-scheduled tasks
relative to software-scheduled tasks is controlled by two factors:

e The CPU’s interrupt-enable flag (IF), and the instruction’s CLI (which clears IF) and STI (which
sets IF)

* The 8259A Programmable Interrupt Controller, an LSI component that allows selective masking
of interrupts so that software can prevent some external interrupts.

When IF is set, all hardware-scheduled tasks whose interrupts are not masked out have higher priority
than all software-scheduled tasks. When IF is reset, all hardware-scheduled tasks have lower priority
than the currently executing task. Only the operating system (CPL <<= IOPL) has the right to execute

HARDWARE SCHEDULED

RESUME

PREEMPTIVE INTERRUPT

PREEMPT
INITIATE

READY
(AWAITING
PROCESSOR)

AWAITING

PROCESSOR RUNNING

DISPATCH

INTERRUPT

AWAITING

INTERRUPT SOFTWARE SCHEDULED

121960-27

Figure 4-3. Expanded Scheduling State Transition Diagram

4-6 121960-001



lntel TASK MANAGEMENT

CLI and STI instructions due to the significant effect that priority setting has on correct, overall
system operation.

The ability for an interrupt handler to be an independent task not only protects the handler from the
rest of the system but also permits greater flexibility in the kinds of fun.:. ns an interrupt handler can
perform. An interrupt handler that is a task can use operating system fun.tions that might change its
scheduling state. For example, if an interrupt handler requests the operating system to read a disk
record, the operating system may change the interrupt handler task’s scheduling state from RUNNING
to WAITING while the I/O operation takes place. (Other tasks may then execute in the meantime.)
If the interrupt handler were a procedure instead of a task, it would be difficult to identify it separately
from the task that it interrupted.

The operating system must keep track of whether a task is attached to an interrupt (i.e., has a task
gate in the IDT). Occurrence of an interrupt can at any time dispatch the task attached to the inter-
rupt. This happens without intervention by the operating system; therefore, when a task calls on operat-
ing system services, the operating system cannot assume that the calling task is the same as the latest
software-scheduled task.

An operating system can easily determine whether the current task is hardware or software scheduled
if it associates with each task a Boolean that indicates whether the task was software-scheduled. The
operating system must ensure that only one task at a time is so marked. The operating system can use
the STR instruction to identify the current task. If the current task is not marked as software-scheduled,
then the interrupt mechanism must have dispatched it.

By knowing whether a task is attached to an interrupt, the operating system can

» Avoid executing a task that is awaiting an interrupt. A software-scheduled task cannot respond to
an interrupt. An exception occurs when an interrupt attempts to invoke a busy task.

¢ Avoid preempting an executing interrupt task. That task should finish before software schedules
another task.

* Decide what action to take when an interrupt-dispatched task calls on operating-system scheduling
services. Such action might be to mask off the interrupt or to place a gate for a counting task in the
IDT to mark lost interrupts.

When the operating system changes a task from hardware scheduling to software scheduling, it must
update the chain of tasks that threads through TSSs. Every hardware scheduled task has a link in its
TSS to the TSS of the interrupted task. If the system’s interrupt structure permits nesting of inter-
rupts, then the chain of interrupted tasks may be arbitrarily long. To change a task to software-scheduled
mode, the operating system must take these actions (as figure 4-4 illustrates):

¢ Reset the nested-task flag (NT) of the current task.
¢ Nullify the back-link field in the current TSS (as insurance in case it is ever used).

< Dispatch the prior task on the back-link chain.

Changing Scheduling State

In terms of the state model of scheduling, the operating system’s job is to effect transitions between
scheduling states according to the expressed needs of individual tasks and of the application as a whole.

In many cases, applications drive the scheduling activities of the operating system. Applications express
their scheduling needs by calls to operating system functions that indirectly relate to scheduling. For
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Figure 4-4. Changing Scheduling Mode
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example, when an application calls the operating system to request receipt of a message from another
task, the operating system determines whether a message is waiting for delivery. If no message is
waiting, then the operating system must switch the task from RUNNING state to WAITING state.
Later when another task calls the operating system to send a message to the waiting task, the operating
system must change the task from WAITING state to READY state. In cases such as these, the
operating system plays a bookkeeping role, simply keeping track of which tasks are waiting and associ-
ating events with the correct waiting tasks.

The operating system plays a much more significant role, however, when it determines which of the
ready tasks to dispatch (the transition from READY state to RUNNING state) or when to preempt
the task that is executing (the transition from RUNNING state to READY state). These decisions
affect the overall performance of the system, both throughput and response to external events.

POLICIES AND MECHANISMS

Because of the difficulty of establishing an effective policy for dispatching and preemption decisions,
it is desirable to clearly separate mechanisms from policies. The only control an operating system can
exercise over tasks is deciding which task to execute and how long to let it run before changing to
another task. The scheduling mechanisms must exert such control in a manner that the policies can
adjust. For example, to control how long a task executes, the scheduler implements a mechanism for
preempting the task after a certain time period has elapsed. The mechanism consists of an interval
timer (such as Intel’s 8254 Programmable Interval Timer) that interrupts the executing task periodi-
cally so that the operating system can determine whether the task has yet exceeded the time-slice
allocated to it. The length of the time-slice is a variable that the policy layer can control. The policy
layer sets the length of the time-slice to reflect the importance of the task.

The separation of policy and mechanism applies as well to deciding which task to execute next. For
example, the scheduling mechanism associates a priority number with each task. When changing tasks
it always chooses the task with highest priority. The priority, however, is a variable, and the policy
layer determines its value.

For the policy layer to make reasonable decisions about scheduling, the mechanism layer may need to
collect statistics about the run-time behavior of tasks, for example:

* Elapsed time in the system
* Total of actual time serviced by processor

* Running average of actual length of time-slice

(Note that interrupt-scheduled tasks subtract from the time allocated to software-scheduled tasks.)

The privilege levels of the IAPX 286 architecture can support the separation between mechanisms and
policies. The mechanisms belong to the kernel of the operating system, and as such they should be well
tested, highly reliable, and not subject to frequent change; in other words, they are good candidates
for PL 0. Policies, on the other hand, are subject to frequent change and, as a result, are less reliable.
Running scheduling policies at PL | ensures that errors cannot corrupt kernel procedures.
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SCHEDULING POLICIES

The actual implementation of scheduling policies depends on the needs of the application and the
behavior of the tasks in the system. Consider a simple policy that

» Gives all tasks equal priority
» Allocates the processor once to each task in turn

* Allocates the same maximum time-slot to each task

Even this seemingly “fair” policy actually favors certain tasks over others. A task that frequently
relinquishes the processor voluntarily (because, for example, it frequently has to wait for I/O) rarely
uses the full time-slot. A “processor-bound” task (for example, a computational task that uses many
instructions to accomplish its purpose but rarely does 1/0), on the other hand, almost always uses the
full time-slot, forcing the operating system to preempt it. Over a period of many time-slots, processor-
bound tasks will receive much more attention from the processor than I/O-bound tasks. Whether this
situation is desirable depends on the roles of the tasks in the application.

Attempting to discriminate against processor-bound tasks by introducing a priority mechanism can
result in different problems. Suppose all I/O-bound tasks have higher priority than all processor-bound
tasks. At the end of a time-slice or when a task voluntarily gives up the processor, the scheduler switches
to one of the higher-priority tasks if one is ready; if none is ready, it switches to one of the lower-
priority tasks. The problem occurs when there is a such a number of I/O-bound tasks that at least one
of them is always ready. In this case, the lower-priority, processor-bound tasks never execute.

Many more scheduling policies than those outlined here are possible. The examples given merely illus-
trate how important it is that the characteristics of the tasks in the system be known and that the
policies match those characteristics. Refer to Coffman and Denning (see “External Literature” in the
Preface) for a survey of these and other policies.

Structuring Task Information

If your operating system is to manipulate tasks efficiently, you must structure task-related information
so that the operating system can get the information it needs as quickly as the application requires.
The processor implements part of this structure through interlocking links in the GDT, LDT; and TSS.
In addition to this structure, the operating system must deal with additional state information, which
might include

¢ The data-segment alias to the task’s LDT

e The data-segment alias to the task’s TSS

¢ Scheduling state

* Scheduling parameters (for example, time-slice, priority)

¢ Scheduling statistics (for example, total processor time used, average time-slice used, expected
running time)

¢ Links for queues of waiting and ready tasks
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This additional state information is referred to here as the task database (TDB). There are two common
modes of access to the task database:

1. From within the current task to information about the current task. Most operating system services
use this mode of access, including the scheduler’s time-slice interrupt procedure.

2.  From within the current task to information about other tasks. The scheduler uses this mode of
access to find the next task to execute.

ACCESS MODE 1

Access mode 1 can be efficiently implemented via the GDT. All descriptors for the key segments
relating to one task reside in adjacent GDT slots. If the operating system can locate one of these
descriptors (as by using the STR instruction to obtain a selector to the current TSS), then it can locate
any of the others by a simple addition or subtraction. Figure 4-5 suggests one possible way of organiz-
ing the TDB. In this example the TDB is stored in a data structure called the task information block
(TIB).

In large systems you may need to minimize the number of GDT slots used for task information, so as
not to unduly limit either the number of tasks or the. number of other descriptors that GDT can hold.
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Figure 4-5. Task Information Structure A
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The example in figure 4-5 illustrates the general case in which all the pertinent information is in separate
segments. This case uses five GDT slots. You can free one GDT slot by including the TSS within the
TIB. The TIB descriptor can serve as the data-segment alias for the TSS. Figure 4-6 illustrates such a
configuration.

Speed of access to the TDB is critical in some applications. Figure 4-7 shows another configuration of
task information that helps improve access speed. Here the task’s stack segment for PL 0 contains both
the TSS and the TIB. The advantage of this approach is that the TIB and the TSS can be addressed
relative to the base address that the processor loads into SS when transferring control to a PL-0 operating-
system procedure. This eliminates the need for loading the DS or ES register to access the current
task’s TSS or TIB and also frees a segment register for other use. In such a case, the SP portion of the
TSS initial stack values for PL 0 is set to an offset beyond the TIB. In many applications it is still
desirable for the GDT to hold a descriptor for the TIB so as to facilitate access to TIBs for tasks other
than the current one.

ACCESS MODE 2

When the scheduler is dispatching a different task, it needs quick access to the queues of waiting and
ready tasks. If the links that implement these queues thread through the many segments that contain
TIBs, the time needed to search and update the queues is extended by the time needed to load a
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Figure 4-6. Task Information Structure B
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Figure 4-7. Task Information Structure C

segment register for each segment visited. This suggests that these queues all reside together in a
separate scheduler queue segment. A pointer in each queue element can refer back to the correspond-
ing task. Figure 4-8 illustrates such a structure.

EXAMPLE OF A DISPATCHER

The process of changing a READY task to RUNNING state is known as “dispatching.” Figure 4-9
shows a simple dispatching procedure. This procedure executes at PL O in the task that calls it. No
call gate is provided, so only other operating system procedures can call DISPATCHER; for example,
a procedure that switches the calling task to WAITING state, or a timer interrupt procedure that
determines when to preempt the task that it interrupts.

The DISPATCHER procedure is coded in ASM286 instead of PL/M-286 because it is more conveni-
ent to code an indirect, intertask JMP instruction in ASM286. DISPATCHER makes two assumptions
about the rest of the operating system that justify the use of an intertask JMP instead of an intertask
CALL:

= A task can call operating system procedures that change it from RUNNING state, so a task does
not need to execute an IRET for that purpose.

» The operating system procedure that calls DISPATCHER may set the TSS back link so as to
intercept an IRET if the task executes one. (When the operating system dispatches a task, it does
not make sense for an IRET to return to the previously executing task. That task may, for example,
be waiting for an event and not be ready to execute.)
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Figure 4-8. Scheduler Queue Segment
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iAPX286 MACRO ASSEMBLER 960~-503 84/22/83 PAGE 1

SERIES-III iAPX286 MACRO ASSEMBLER V1.0 ASSEMBLY OF MODULE DISPATCHER
OBJECT MODULE PLACED IN :F5:DISP.OBJ
ASSEMBLER INVOKED BY: ASM286.86 :F5:DISP.ASM

LoC 0BJ LINE SOURCE
1+41 TITLE ('960-583")
2
3
4 NAME DISPATCHER
5 EXTRN DEQUEUE_READY: FAR
6 PUBLIC DISPATCHER
——— 7 STACK STACKSEG 4
8
-00041() 9 TSS_PTR EQU DWORD PTR [BP-4]
-0802][) 16 TSS_SEL EQU WORD PTR [BP-2]
-00804() 11 TSS_OFFSET EQU WORD PTR (BP-4]
12
——— 13 NUCLEUS_CODE SEGMENT ER PUBLIC
14
eeao 15 DISPATCHER PROC NEAR
16
9000 C8040¢0C00 17 ENTER 4,0 ; WE'LL FORM POINTER ON STACK
0064 FA 18 CLI
00065 9AG0O0-~-- E 19 CALL DEQUEUE_READY ; RETURNS SELECTOR IN AX TO TSS
000A 3D06¢0 20 CMP AX, 0 ; SAME TASK?
900D 740B 21 JE D_EXIT ; JUST RETURN
22
BOQOF 8946FE 23 MOV TSS_SEL, AX ; FORM POINTER
8612 C746FC@000 24 MOV TSS_OFFSET, @ ; NOT USED ANYWAY
0017 FF6EFC 25 JMP TSS_PTR ; TASK SWITCH
26
291A 27 D_EXIT:
00lA FB 28 STI ; WHEN THIS TASK EVENTUALLY REGAINS CONTROL,
@d1B C9 29 LEAVE ; IT RESUMES EXECUTING HERE, SINCE THE OFFSET
gglc C3 30 RET ; OF THIS INSTRUCTION WAS THE LATEST VALUE IN
3L ; THE IP REGISTER FOR THIS TASK
32
33 DISPATCHER ENDP
34
=—== 35 NUCLEUS_CODE ENDS
*** WARNING #160, LINE #35, SEGMENT CONTAINS PRIVILEGED INSTRUCTIONS
36 END

ASSEMBLY COMPLETE, 1 WARNING, NO ERRORS

Figure 4-9. Dispatcher Example
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CHAPTER 5
DATA SHARING, ALIASING, AND SYNCHRONIZATION

Even the simplest multitasking applications present a need for sharing data among tasks. In fact,
examples presented in earlier chapters of this book have used data sharing, as in the example proce-
dures in Chapter 3 that manipulate the free space list. For simplicity, these examples have avoided
many of the implications of data sharing. However, sharing data among tasks is a complex activity
that offers many opportunities for one task to cause another to fail. Therefore, for the protection of the
system as a whole, the operating system must provide services that promote reliable data sharing.

DATA-SHARING TECHNIQUES

The architecture of the iAPX 286 allows segments to be shared among tasks through several mecha-
nisms. Each mechanism has different advantages and disadvantages, and requires different degrees of
support from the operating system.

Note that while the primary subject of this chapter is data sharing, these segment-sharmg techniques
apply as well to code segments.

Sharing via the GDT

All tasks in the system can access a segment whose descriptor resides in the GDT. This mode of sharing
is especially useful for operating-system databases. Many operating—system procedures can be called
from any task; they can access system data only if that data resides in segments accessible to every
task.

Normally, the system designer decides in advance which descriptors are to reside in the GDT and
which in LDTs, and uses the Builder to install them in the appropriate descriptor table. The only
support required from the operating system is to provide synchronization for access to the shared data.

It is not always desirable to use GDT descriptors for sharing segments that only a few tasks use. A
segment that has a descriptor in the GDT is accessible by all tasks, and exposing it to access from
unrelated tasks may compromise the system’s protection goals. Deletion of GDT descriptors may have
unknown effects, because it is diffucult to control usage of GDT descriptors. GDT space may be needed
for other purposes.

Sharing via Common LDT

When two (or more) tasks share most of the segments accesmble to either one, then it is feasible for
them to actually use that same LDT. Figure 5-1 illustrates how to share an LDT by placing the GDT
selector of the LDT in the LDT field of the TSS of each task.

LDT sharing is appropriate if the sharing tasks are designed to cooperate, and if you are willing to take
the risk that a failure in one task might adversely affect the other tasks that use the same LDT.
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Figure 5-1. Segment Sharing via Common LDT

Sharing via Aliases

When tasks need to share simultaneously some, but not all, segments with selected other tasks, then
aliasing is an appropriate method. As figure 2-15 illustrates, each task that shares a segment has a copy
of the descriptor for that segment in its LDT. The term alias is used when there are multiple descrip-
tors for a segment because each descriptor provides an alternate name for the segment. Not all the
aliases for one segment need to be identical. Aliases may, for example, have different type or different
access rights.

Descriptor manipulation must be restricted to privilege level 0 (PL 0), but procedures at any privilege
level can benefit from aliasing. Therefore, the operating system must provide high-level interfaces that
cause creation and deletion of aliases. The operating system makes copies of descriptors for the shared
segments and installs the copies in the LDTs of the sharing tasks (or possibly at other slots in the
GDT). The operating system must strictly control which tasks may receive copies of which descriptors.
The presence of multiple copies of a segment’s descriptor creates additional complexities for the
operating system when it relocates, deletes, or otherwise modifies the segment.

Beware of the confusion that can arise when tasks share data structures that contain selectors to alias
descriptors. Task A may find a selector that points to a slot in Task B’s LDT. Nothing prevents Task
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A from using the selector to reference its own LDT, but if it does so, the selector will likely refer to
the wrong descriptor. One way to avoid this potential problem is by reserving the same slot position in
the LDTs of all sharing tasks.

ALIAS MANAGEMENT

In any system that uses aliases for segment sharing, the operating system must ensure that all the
aliases for a given segment remain consistent in spite of changes to the segment. The operating system
may relocate a segment, transfer it to or from secondary store, or delete the segment. If allowed to use
a descriptor that had not been updated to reflect any of these changes, a task would fail and might
cause other tasks to fail. Therefore, an operating system must implement a means to find and update
all aliases for a segment when it changes any one of the aliases.

Alias Database

Figure 5-2 shows an example method for locating aliases. This method maintains a header block for
each segment that has aliases. Pointers to all the aliases for that segment are linked to the header. As
long as the entire list does not span more than one segment, the link fields (FIRST, LAST, NEXT,
PRIOR, and HEADER) need only contain offsets. The doubly linked list shown here aids dynamic
creation and deletion of alias pointers; for static systems, a singly linked list would suffice.

In addition to the FIRST and LAST links, the list header contains that segment information that might
change but that must remain consistent in all the aliases of a segment. Operating-system operations on
segments demand that the segment base address and the present bit be consistent. Furthermore, any
interrogation of the accessed bit for a segment demands that the accessed bits in all the aliases be
ORed together. This example assumes that the operating system does not permit creation of aliases
with differing limit or expansion direction.

When a task that has a selector for an alias descriptor calls on operating system functions that make
changes to segment attributes, those changes must be broadcast to all other aliases for the segment.
Therefore, the operating system must have a means, given any descriptor, to find the alias list that
includes that descriptor. Figure 5-3 illustrates one technique for doing this. Each descriptor table has
a parallel table of pointers to alias list headers. The index in a selector that locates a descriptor in the
descriptor table also locates a pointer in the parallel table. A descriptor that has no alias has a null
entry in the corresponding position in the parallel table. For applications in which aliases are few, you
can employ a hashing algorithm to reduce the number of entries in the parallel table.

Alias Procedures

Implementation of procedures for alias management for the 80286 is a straightforward application of
list processing algorithms and therefore is not illustrated here. At a minimum, the operating system
should provide a CREATE_ALIAS procedure and a DELETE_ALIAS procedure.

The operating system must enforce a correspondence between the existence of descriptors for a segment
and the existence of the segment itself. A segment must always have a descriptor, and an active
descriptor must always point to a valid segment. A convenient way to enforce these rules is to permit
only the DELETE_ALIAS procedure to call the segment FREE procedure. DELETE_ALIAS should
cause deletion of a segment only when the last descriptor for the segment has been deleted.

Creating an alias is only the first step toward segment sharing. The CREATE_ALIAS procedure can
only create an alias for a segment that is accessible to the task that calls CREATE_ALIAS. The next
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LINKED LIST OF POINTERS TO ALIAS DESCRIPTORS
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Figure 5-2. Alias List

step toward segment sharing is to pass the alias to another task. This subject is taken up in a later
section of this chapter, “Message Passing.” ‘

SYNCHRONIZATION

Consider the example of a memory manager given in Chapter 3. While a memory management proce-
dure manipulates the links that manage free space, there are instants when the data in the links is
temporarily inconsistent (for example, the next-pointer in one segment has been set, but the previous-
pointer in the next segment has not yet been updated). If the processor interrupts the task in which the
memory-management procedure is running to run another task (or even another procedure in the same
task) and if the new task (or procedure) calls the memory manager, then the the memory manager is
likely to behave incorrectly.

For the protection of the system, the operating system must prevent such forms of incorrect function
in its own logic and must provide synchronization operations that enable application logic to avoid such
failures as well.
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Figure 5-3. Identifying Alias List

Low-Level Mutual Exclusion

The most basic form of synchronization is control over critical sections. A critical section is a sequence
of instructions that operates on shared resources in such a way that errors could result if another
sequence of instructions operated on the same resources within the same time span. Any means that
prevents any two critical sections from overlapping in time would prevent such errors. In a single-
processor system, only an interrupt can cause the operations of one critical section to interleave with
those of another. Disabling interrupts provides the necessary mutual exclusion.

Procedures that disable interrupts to provide mutual exclusion must adhere to certain rules:

e Determine the maximum permissible delay for servicing an interrupt, and do not code a critical

section that takes more time.

* Avoid causing a fault that might keep interrupts disabled for a longer time than permissible.
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¢ Do not nest critical sections; there is only one interrupt flag.

¢ Do not switch tasks; doing so may enable interrupts.

Disabling interrupts as a means to provide mutual exclusion is not a generally applicable technique.
The rules above are too restrictive for many situations, and the CLI and STI instructions for disabling
and enabling interrupts are restricted to procedures whose CPL does not numerically exceed IOPL.
An operating system can, however, use this technique for its own short-term, high-speed exclusion
requirements and as the basis for more general synchronization operations.

High-Level Mutual Exclusion

A more generally applicable form of mutual exclusion must permit interleaving (via interrupts and
software task switching) of unrelated critical sections.

SEMAPHORE DATA STRUCTURE

Figure 5-4 illustrates an example data structure for implementing a general purpose form of control
over critical sections: binary semaphores. The semaphore structure consists of a counter and a queue.
Every shared resource subject to the effects of contention needs one semaphore structure to provide
mutual exclusion for the tasks using the resource.

The value of the counter is one minus the number of tasks waiting at the semaphore. A value of one
indicates that the semaphore is available; a value of zero indicates the the semaphore has been acquired

SCHEDULER QUEUE SEGMENT
HEAD OF QUEUE
QUEUE ELEMENTS
SEMAPHORE .
[ ' TO TASK
ENTRIES
COUNTER ‘L IN GDT
N L [ Lg
[ 1 R O o e
QUEUE o . A }
POINTER
\
) )
. A 1 1 pam—
121960-28

Figure 5-4. Semaphore Structure
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but no other tasks are waiting for the semaphore; a negative value indicates that some tasks are queued,
waiting for the semaphore to be released. The queue is circular so that the pointer to the head of the
queue also identifies the tail of the queue.

Semaphore structures may be stored individually in separate segments or may be stored together in
one or more segments. In the latter case the operating system must provide a means for identifying
individual semaphores within a segment. Storing the semaphore counter in a segment by itself yields
two important advantages:

* The processor can individually protect each semaphore.

* The selector of the descriptor for the semaphore segment serves as a convenient identifier for the

semaphore.

Semaphore structures are sensitive data that must be cloistered behind the level O protection wall.
Semaphores may reside either in the GDT or in the LDTs of the tasks that use them. The same
considerations apply as for shared data segments.

SEMAPHORE-MANAGEMENT PROCEDURES .
The minimum set of operating-system procedures needed to use semaphores includes

¢ WAIT_SEMAPHORE to acquire a semaphore if it is not already acquired
* SIGNAL_SEMAPHORE to signal departure from a critical section

Dynamic systems may also need to define semaphores dynamically with procedures such as

* CREATE_SEMAPHORE for setting up a new semaphore structure
« DELETE_SEMAPHORE to eliminate a semaphore structure that is no longer needed

The operating system’s responsibilities in managing binary semaphores include

* Ensuring that no more than one task holds a semaphore

¢ When a task requests a semaphore that has not been sngnalled placmg the task in a waiting queue,
and dispatching another task

* When a task 51gnals a semaphore, awakening the next task in the waltmg queue for that semaphore
and placing it in the ready queue

* Preventing or being prepared to handle any deadlock that may result from using semaphores
Figure 5-5 shows simple examples of how to use a low-level synchronization technique to implement
WAIT_SEMAPHORE and SIGNAL_SEMAPHORE procedures. These procedures must run at

PL 0 to access the semaphore structures. With segment descriptors in the GDT and with call gates at
PL 3, any procedure in the system can call these synchronization primitives.
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PL/M-286 COMPILER 960-504 date PAGE 1

system-~1D
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PL/M-286 Vx.y COMPILATION OF MODULE SEMAPH
OBJECT MODULE PLACED IN :Fl:SEMAPH.OBJ '
COMPILER INVOKED BY: PLM286.86 :Fl:SEMAPH.PLM DEBUG

$ PAGEWIDTH(71l) TITLE('960-504') INCLUDE (:F1:NUCSUB,PLM)
$ NOLIST ) ’

SEMAPH: DO;

/‘k***************************************************)\'**/
/* Externals */

DISPATCHER: PROCEDURE EXTERNAL;
END DISPATCHER;

ENQUEUE_WAIT: PROCEDURE(QUEUE_ID) EXTERNAL;
DECLARE QUEUE_ID SELECTOR;
END ENQUEUE_WAIT;

DEQUEUE_WAIT: PROCEDURE(QUEUE_ID,EXCEP_P) EXTERNAL;
DECLARE QUEUE_ID SELECTOR, EXCEP_P POINTER;
END DEQUEUE_WAIT;

/*****************i**********************t**************/
/* Semaphore Data Structures * /

DECLARE SEMAPHORMAT LITERALLY
'FILLER (2) WORD,
COUNTER WORD' ;

DECLARE OK LITERALLY '0';

/***i************k**************************************/
/* Test a semaphore; wait if not set */

WAIT_SEMAPHORE: PROCEDURE (SEMAPH_ID, EXCEP_P)
PUBLIC REENTRANT;

DECLARE SEMAPH_ID SELECTOR,
SEMAPH BASED SEMAPH_ID STRUCTURE (SEMAPHORMAT) ;

DECLARE EXCEP_P POINTER,
EXCEP BASED EXCEP_P WORD;

DISABLE;
SEMAPH.COUNTER=SEMAPH.COUNTER-1;
IF ZERO /* Test the zero flag. */
THEN /* Semaphore was set. */ DO;
ENABLE;
EXCEP=0K;
RETURN;
END;

/* Semaphore is not set; this task must wait. */
CALL ENQUEUE_WAIT (SEMAPH_ID);

Figure 5-5. Semaphore Example
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CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
107 LINES READ

@ PROGRAM WARNINGS
@ PROGRAM ERRORS

PL/M-286 COMPILER 960-504 date ‘ PAGE 2

24 2 ENABLE;
25 2 CALL DISPATCHER;
26 2 END WAIT_SEMAPHORE;

/***’l******4(********************************************/

/* Set a Semaphore *x/
27 1 SIGNAL_SEMAPHORE: PROCEDURE (SEMAPH_ID, EXCEP_P)

PUBLIC REENTRANT;
28 2 DECLARE SEMAPH_ID SELECTOR,
SEMAPH BASED SEMAPH_ID STRUCTURE (SEMAPHORMAT) ;
29 2 DECLARE EXCEP_P POINTER,
EXCEP BASED EXCEP_P WORD;
30 2 DISABLE;
31 2 SEMAPH.COUNTER=SEMAPH.COUNTER+1;
32 2 IF NOT (ZERO OR SIGN) /* Test flags. */
33 2 THEN /* No one is waiting at this semaphore. */ DO;
34 3 ENABLE;
35 3 EXCEP=0K;
36 3 RETURN;
37 3 END;
/* Someone is waiting at this semaphore. */

38 2 CALL DEQUEUE_WAIT (SEMAPH_ID, QEXCEP);
39 2 ENABLE; )
40 2 CALL DISPATCHER;
41 2 EXCEP=0K;
42 2 END SIGNAL_SEMAPHORE;

/********k**************4********************************/
43 1 END SEMAPH;

MODULE INFORMATION:

B084H 132D

= QQ00H oD
= Q000H oD
= @010H 16D

DICTIONARY SUMMARY:
91KB MEMORY AVAILABLE
4KB MEMORY USED (4%)
OKB DISK SPACE USED

END OF PL/M-286 COMPILATION

Figure 5-5. Semaphore Example (Cont’d.)
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OTHER FORMS OF SYNCHRONIZATION
You may wish to implement other forms of synchronization; for example:

¢ Conditional variation of WAIT_SEMAPHORE that does not force a task to wait when the semaphore
has not been signalled.

* Timed waiting, so that a task can be awakened if the semaphore is not signalled within a reasonable
time. (This helps guard against deadlocks.)

¢ An extension of the semaphore concept known as a region. A region is similar to a semaphore except
that only the task that acquires a region can release (signal) it, and a task that holds a region cannot
be suspended.

MESSAGE PASSING

Message passing is a general purpose means for transferring data from the address space of one task
to the address space of another, cooperating task. There are two aspects to the technique:

¢ Transferring data from a segment in one task’s address space into a segment in the receiving task’s
space

¢ Transferring a segment from one task’s space into another’s

The first case is suitable for passing relatively small amounts of data, such as parameters, information
describing events, etc. The second case has two primary applications;

e For transferring large *““consumable resources” such as I/O buffers
 For transferring aliases that implement the previously described method of “sharing via aliases”

When an alias is passed as part of a message, the operating system installs the alias in a descriptor-
table slot determined by the receiving task. :

Message-Passing Example

Figure 5-6 shows an example data structure for implementing a simple form of message passing. This
structure defines a mailbox, a queue of tasks waiting for messages from the mailbox, and a queue of
undelivered messages. The system may contain one mailbox for every communication channel between
tasks. For simplicity, this example assumes that the format of messages for all mallboxes is the same,
consisting of a fixed-length data item and two descriptors. -

If each mailbox resides in a unique segment, then these advantages result:

* Mailboxes are protected from operations on other mailboxes.

» A selector can serve as the identifier of a mailbox.

Only the sending and receiving tasks need access to a mailbox; therefore, the appropriate tables for
descriptors for mailbox segments are the LDTs of each of the tasks that share a mailbox. All tasks can

share a global mailbox, however, if its descriptor is in the GDT. The DPL for all mailbox segments
should be zero to prevent procedures outside the operating system from interfering with message passing.

Mailboxes require at least two procedures: SEND_MESSAGE and RECEIVE_MESSAGE. Figure
5-7 shows examples of these procedures. Both procedures must run at PL 0 to access level-0 mailbox
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Figure 5-6. Mailbox Structure
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segments. If there are call gates in the GDT at PL 3, then these procedures are accessible to all other
procedures in the system.

SEND_MESSAGE fills a message with the specified data and descriptors, removes the descriptors
from the descriptor table, and links the message at the tail of the message queue. If a task is waiting
at the mailbox, SEND_MESSAGE causes it to be linked into the ready queue so that it will find the
message the next time it is scheduled to run.

If RECEIVE_MESSAGE finds no messages waiting at the mailbox, then it links the task into a waiting
queue. The task queue threads through the task database. The task will continue executing when another
task sends a message to the mailbox. If (or when) a message is waiting, RECEIVE_MESSAGE writes
the data portion of the message at a specified location in the receiving task’s space and installs the
descriptor portion in specified slots in one of the receiving task’s descriptor tables (GDT or LDT).

These examples do not include management of space and queues for messages because conventional
algorithms  apply.  External procedures GET_MSG_SPACE, ENQUEUE_MESSAGE,
DEQUEUE_MESSAGE, and FREE_MSG_SPACE provide these functions.

Special handling is required to accommodate the fact that a descriptor in a message is temporarily not
in any descriptor table. There are two cases to consider:

+ The descriptor is the sole descriptor for the segment. In this case, no changes can be made to the
segment because it is temporarily inaccessible. You should take care that no failure in the commu-
nication process causes the descriptor to become lost. A memory area without a descriptor cannot
be freed.

e The descriptor is an alias (i.e., one of several descriptors for the same segment). Since the segment

" is (presumably) accessible via the other aliases, it is possible for some task to request some operation
on the segment during the time the descriptor in the message is absent from any descriptor table.
Normally, the operating system updates all aliases when it makes any major changes to a segment
(for example, relocation or swapping to secondary store). This is not possible (given the aliasing
scheme previously presented in this chapter) when the alias is not in a descriptor table. To solve the
problem, this example assumes there are two procedures:

a. DISABLE_ALIAS_PTR that marks the alias list element to indicate to the alias manager that
the alias is in a mailbox

b. FIX_ALIAS_PTR that, when the message is delivered, updates the alias pointer with the new
location of the alias and with any segment information that may have changed while the alias
was absent from the alias list.

Dynamic systems may need to create and delete mailboxes dynamically. The only difficulty in creating
a mailbox is ensuring that no task uses it while it is being constructed. (The next section considers this
problem.) To delete a mailbox the operating system must awaken any tasks that are waiting for messages,
delete any descriptors (aliases) that reside in undelivered messages, and delete the undelivered messages
themselves.

The operating system may, as part of the process of task creation, give each task at least one mailbox.
If the mailbox feature is the only means of passing aliases among tasks, a task cannot receive an alias
for a mailbox unless it already has a mailbox. Some operating system designs may require every task
to have a mailbox for such purposes as receiving memory segments from the memory-allocation module.
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PL/M-286 COMPILER 960-508 date PAGE 1

system-ID PL/M-286 Vx.y COMPILATION OF MODULE MAILBOX
OBJECT MODULE PLACED IN :F1:MBOX.OBJ
COMPILER INVOKED BY: PLM286.86 :F1:MBOX.PLM DEBUG

$ PAGEWIDTH(71) TITLE('960-508') INCLUDE (:F1l:NUCSUB.PLM)

= $ NOLIST
1 MAILBOX: DO;
/*********k**********************k***********t**********/
/* Definitions */
2 1 DECLARE FAILED LITERALLY '8000H',
OK LITERALLY '@';
/****************************'k******************R******i/
/* Externals */
3 1 NULLIFY: PROCEDURE (SLOT) EXTERNAL;
4 2 DECLARE SLOT SELECTOR;
5 2 END NULLIFY;
6 1 STORE_DESCR: PROCEDURE(SLOT,PTR) EXTERNAL;
7 2 DECLARE SLOT SELECTOR,
PTR POINTER;
8 2 END STORE_DESCR;
9 1 LOAD_DESCR: PROCEDURE(PTR,SLOT) EXTERNAL;
10 2 DECLARE PTR POINTER,
SLOT SELECTOR;
11 2 END LOAD_DESCR;
12 1 DISPATCHER: PROCEDURE EXTERNAL;
13 2 END DISPATCHER;
14 1 ENQUEUE_WAIT: PROCEDURE(QUEUE_ID) EXTERNAL;
15 2 DECLARE QUEUE_ID SELECTOR;
16 2 END ENQUEUE_WAIT;
17 1 DEQUEUE_WAIT: PROCEDURE (QUEUE_ID, EXCEP_P) EXTERNAL;
18 2 DECLARE QUEUE_ID SELECTOR, EXCEP_P POINTER;
19 2 END DEQUEUE_WAIT;
20 1 DISABLE_ALIAS_PTR: PROCEDURE (SLOT) EXTERNAL;
21 2 DECLARE SLOT SELECTOR;
22 2 END DISABLE_ALIAS_PTR;
23 1 FIX_ALIAS_PTR: PROCEDURE(ALIAS_LIST_ID) EXTERNAL;
24 2 DECLARE ALIAS_LIST_ID POINTER;
25 2 END FIX_ALIAS_PTR;
26 1 GET_MSG_SPACE: PROCEDURE(BOX_ID,MSG_P_P,EXCEP_P)EXTERNAL;
27 2 DECLARE BOX_ID SELECTOR, (MSG_P_P, EXCEP_P) POINTER;
28 2 END GET_MSG_SPACE;

Figure 5-7. Example of Mailbox Procedures
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PL/M-286 COMPILER 966-508 date " PAGE 2
29 1 FREE_MSG_SPACE: PROCEDURE(BOX_ID,MSG_PTR) EXTERNAL;
30 2 DECLARE BOX_1ID SELECTOR,
MSG_PTR POINTER;
31 2 END FREE_MSG_SPACE;
32 1 ENQUEUE_MESSAGE: PROCEDURE (BOX_ID, MSG_PTR) EXTERNAL;
33 2 DECLARE BOX_ID SELECTOR,
MSG_PTR POINTER;
34 2 END ENQUEUE_MESSAGE;
35 1 DEQUEUE_MESSAGE: BROCEDURE (BOX_ID, MSG_P_P, EXCEP_P)
: EXTERNAL;
36 2 DECLARE BOX_ID SELECTOR, (MSG_P_P, EXCEP_P) POINTER;
37. 2 END DEQUEUE_MESSAGE;
/*****************************************************h*/
/* . Mailbox Data Structures */
38 1 DECLARE MDATA_SIZE LITERALLY '46°';
39 1 DECLARE MESSAGE_FORMAT LITERALLY
'MDATA (MDATA_SIZE) BYTE,
DESCR1 (4) WORD,
DESCR2 (4) - WORD';
/k***t**************************************************/
/* Send Message via Mailbox */
40 1 SEND_MESSAGE: PROCEDURE(BOX_ID, MDATA_PTR, SLOT1, SLOT2Z2,
EXCEP_P) PUBLIC REENTRANT;
41 2 DECLARE BOX_ID SELECTOR,
MDATA_PTR POINTER,
(SLOT1, SLOT2) SELECTOR;
42 2 DECLARE EXCEP_P POINTER,
EXCEP BASED EXCEP_P WORD;
43 2 DECLARE MSG_PTR POINTER,
MESSAGE BASED MSG_PTR STRUCTURE
(MESSAGE_FORMAT) ;
44 2 CALL GET_MSG_SPACE(BOX_ID, @MSG_PTR, QEXCEP) ;
45 2 IF EXCEP=FAILED THEN /* the box is full of messages */
46 2 DO; .
47 3 CALL DISPATCHER;
48 3 RETURN;
49 3 END;
/* The next statement will cause an exception if the
segment containing the data is not present.
Therefore interrupts are enabled. */
50 2 CALL MOVB (MDATA_PTR,@MESSAGE.MDATA,MDATA_SIZE);
.51 2 IF SLOT1=SELECTORSOF (NIL)
52 2 THEN MESSAGE.DESCR1(2)=0; /* Mark as null */
53 2 ELSE DO;
54 3 CALL STORE_DESCR(SLOT1,@MESSAGE.DESCRI1);
55 3 CALL DISABLE_ALIAS PTR(SLOT1);

Figure 5-7. Example of Mailbox Procedures (Cont’d.)
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56 3 CALL NULLIFY(SLOT1);
57 3 END;
58 2 IF SLOT2=SELECTORS$OF(NIL)
59 2 THEN MESSAGE.DESCR2(2)=0; /* Mark as null */
60 2 ELSE DO;
61 3 CALL STORE_DESCR(SLOT2,@MESSAGE.DESCR2);
62 3 CALL DISABLE_ALIAS_PTR(SLOT2);
63 3 CALL NULLIFY(SLOTZ),
64 3 END;
65 2 DISABLE;
66 2 CALL ENQUEUE_MESSAGE (BOX_ID, MSG PTR),
67 2 CALL DEQUEUE WAIT(BOX Ib, @EXCEP),
68 2 ENABLE;
69 2 CALL DISPATCHER;
70 2 RETURN;
71 2 END SEND_MESSAGE;
/******************k*)\'*******k**************************/
/* Receive Message from Mailbox */
72 1 RECEIVE_MESSAGE: PROCEDURE (BOX_ID, MDATA_PTR, SLOT1,
SLOT2, EXCEP_P) PUBLIC REENTRANT;
73 2 DECLARE BOX_ID SELECTOR,
MDATA_PTR POINTER,
(SLOT1, SLOT2) SELECTOR;
74 2 DECLARE EXCEP_P POINTER,
EXCEP BASED EXCEP_P WORD;
75 2 DECLARE MSG_PTR POINTER,
MESSAGE BASED MSG_PTR STRUCTURE
(MESSAGE_FORMAT) ;
76 2 CHECK_MAIL:
DISABLE;
77 2 CALL DEQUEUE_MESSAGE (BOX_ID, @MSG_PTR, QEXCEP) ;
78 2 IF EXCEP=FAILED THEN /* No mail today */
79 2 DO;
8¢ 3 CALL ENQUEUE_WAIT (BOX_ID);
8l 3 ENABLE;
82 3 CALL DISPATCHER;
83 3 GOTO CHECK_MAIL;
84 3 END;
85 2 ENABLE;
/* Next statement may cause exception. */
86 2 CALL MOVB(@MESSAGE.MDATA, MDATA_PTR, MDATA SIZE),
87 2 IF MESSAGE.DESCR1(2)<>8 /* Test “for null descriptor */
88 2 THEN DO;
89 3 CALL LOAD_DESCR(@MESSAGE.DESCRl, SLOT1);
90 3 CALL FIX_ALIAS_PTR(@MESSAGE.DESCRl);
91 3 END;
92 2 IF MESSAGE.DESCR2(2)<>@® /* Test for null descriptor */
93 2 THEN DO;
94 3 CALL LOAD_DESCR(@MESSAGE.DESCRZ, SLOT2);

Figure 5-7. Example of Mailbox Procedures (Cont’d.)
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95 3 CALL FIX_ALIAS_PTR (@MESSAGE.DESCR2);
96 3 END;
97 2 CALL FREE_MSG_SPACE (BOX_ID,@MESSAGE);
98 2 EXCEP=0K;
99 2 END RECEIVE_MESSAGE;
/******k****************k***********’***********k********/

100 1 END MAILBOX;

MODULE INFORMATION:

CODE AREA SIZE #16EH 366D

CONSTANT AREA SIZE = @000H D
VARIABLE AREA SIZE = (000H oD
MAXIMUM STACK SIZE = @020H 32D

193 LINES READ
? PROGRAM WARNINGS
@ PROGRAM ERRORS

DICTIONARY SUMMARY:
91KB MEMORY AVAILABLE
6KB MEMORY USED (6%)
OKB DISK SPACE USED

END OF PL/M-286 COMPILATION

Figure 5-7. Example of Mailbox Procedures (Cont’d.)

Variations on the Mailbox Theme

Some of the features appropriate for semaphores are also appropriate for mailboxes, namely:

e Conditional receive

¢ Timed wait

For applications in which speed is not the overriding goal, mailboxes can substitute for semaphores. A
mailbox is analogous to a semaphore, with the counter of a semaphore corresponding to the number of
messages waiting at a mailbox. A mailbox with null messages is identical in function to a semaphore.

Most applications that use mailboxes require different message formats (different data size, different
number of descriptors) for different communication channels. With dynamically created mailboxes,
message format may be defined by parameters to the creation procedure, encoded in the mailbox, and
interpreted by the SEND_MESSAGE and RECEIVE_MESSAGE procedures.
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Systems that implement “pipes” as a form of intertask communication can call mailbox procedures
from the device drivers for the pipes.

It is possible to use mailboxes as the sole means of interface between applications and operating system.
For example, the operating system has one mailbox through which it receives service requests from all
applications; each task has a mailbox through which it receives responses from the operating system.
To get more memory, a task would send a memory request message to the operating system; the operat-
ing system would return a message containing an alias for the allocated memory segment and install
the alias in the task’s LDT. The advantage is simplicity. Only two global gates are needed: one for
SEND_MESSAGE and one for RECEIVE_MESSAGE. A task can wait for only one purpose: for a
message from a mailbox. The disadvantage is inefficiency. Any implementation of mailboxes is bound
to be less efficient than the interlevel CALL instruction normally used to communicate with an operating
system.

All of these forms of message-passing can use the primitive synchronization and descriptor-manipulation
techniques illustrated in this section.B
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CHAPTER 6
SIGNALS AND INTERRUPTS

Interrupts are a mechanism long used in single-task microprocessors for reacting quickly to external
events. In the multitasking architecture of the iAPX 286, each task may have the same needs for
information about external events as the one task in a single-task system. In a multitasking system,
several generalizations of interrupts are useful:

¢ Some tasks may do nothing but service a specific external event. While the task waits for an event
to occur, the processor can service other tasks.

¢ Information about an external event must be routed to the correct task.

« Events external to a task may include events occurring in other tasks as well as events external to
the processor.

¢ The ability to selectively ignore events must then extend to those events occurring in other tasks.

* Each task can benefit from a vector table to automatically route information about events to the
correct handler procedures within the task.

» Scheduling of tasks that service events must be coordinated with the software scheduler, while
retaining the ability to respond rapidly to events.

The 80286 implements some of these generalizations of interrupts onto the multitasking environment,
but the operating system has responsibility for others. Not all are relevant to every application of the
80286.

INTERRUPT FEATURES OF THE iAPX 286 ARCHITECTURE

The iIAPX 286 architecture includes a number of features that work together to enable efficient response
to events.

Vectoring

The processor associates each event with an identifying number in the range 0-255. The processor
recognizes three classes of events:

e External. Events occurring outside the 80286 processor’s environment are communicated to the
processor via the INTR or NMI (non-maskable interrupt) pins. The NMI is interrupt 2. Other
external interrupts share the INTR pm via one or more 8259A Programmable Interrupt Controllers,
which can map each interrupt to a unique interrupt ID in the range 32-255.

e Processor. When the processor detects a condition that it cannot handle, it communicates this fact
by causing an interrupt with an ID in the range 0-16 (except for interrupt 2, which is the NMI).

¢ Software. Programs can generate signal events by executing the instructions INT n and INTO.
- With INT n, the value of n can be any interrupt indentifier in the range 0-255. This gives software
the ability to simulate hardware interrupts as well as the ability to cause interrupts that are not
directly associated with hardware events. (Note that many software systems use the software inter-
rupt to call on operating-system services. With the iAPX 286, an interlevel CALL through a CALL
gate serves this purpose.)
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When an interrupt occurs, the processor uses the interrupt identifier as an index into the interrupt
descriptor table (IDT).

Enabling and Disabling Interrupts

The interrupt flag (IF) controls whether the processor immediately reacts to' external events. When
reset, IF masks out signals presented to the INTR pin. It has no effect on NMI on processor-detected
exceptions, or on software signals (INT and INTO).

To set IF, use the STI instruction (ENABLE statement in PL/M-286); to reset IF, use CLI (DISABLE).

Interrupt Descriptor Table

The IDT associates each interrupt identifier with a descriptor for the instructions that process the
associated event. The IDT is similar to the GDT and LDTs but is different in two important respects:

¢ The processor references the IDT only as the result of an interrupt.

e The only descriptors permitted in the IDT are three kinds of gate descriptors: task gates, interrupt
gates, and trap gates (descriptor types 5-7, respectively).

The IDT may dwell at any location in memory. The processor locates the IDT via the IDT register.
The operating system uses the instruction LIDT (load IDT) to set the IDT register. The instruction
SIDT (store IDT) reads the contents of the IDT register. There can be only one IDT, but the operating
system can use the LIDT instruction to substitute another array of gate descriptors.

Interrupt Tasks and Interrupt Procedures

In response to an event, the processor interrupts the currently executing task and begins executing the
instructions identified by the IDT gate descriptor that is associated with the event. The instructions
that execute as the result of the event may either be

* A task other than the current task
e A procedure within the current task

If the descriptor indexed by the interrupt identifier is a task gate, which points to a task state segment,
then the processor causes a task switch. Figure 6-1 illustrates the links that identify the interrupt task.
Chapter 4 discusses the mechanisms associated with task switching and considers the impact that
hardware task switching has on the operating system’s task scheduler.

If the descriptor indexed by the interrupt identifier is either an interrupt gate or a trap gate (which
point to executable segments), then no task switch occurs. Instead the processor behaves similarly to
the way it would if the current task had called the indicated procedure via a call gate. Figure 6-2
illustrates the links that identify the interrupt procedure. The iAPX 286 protection mechanism requires
either that the target segment have a privilege level numerically less than or equal to CPL or that the
target segment be conforming. If one of these conditions is true, then the indicated procedure begins
executing in the current task. The major mechanical difference between invoking a procedure by an
interrupt and invoking by a CALL is that, with an interrupt, the processor pushes the flag word onto
the stack of the invoked procedure before the return address (as illustrated in figure 6-3) and clears
the single-step flag (TF).
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10T GDT
TSS
'NTETDR T | taskaameE
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DESCRIPTOR ——]
121960-304
Figure 6-1. Interrupt Vectoring for Tasks
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IDT SEGMENT
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Figure 6-2. Interrupt Vectoring for Procedures

Note that if an interrupt occurs while a privilege-level 0 (PL-0) procedure is executing, an attempt to
transfer to a less privileged level violates protection rules. (The same protection rules apply as for a
CALL to a less privileged segment.) In general it is impossible to predict when an interrupt occurs;
therefore, it is equally 1mp0551b]e to avoid a protection violation when a less pr1v1leged procedure has
an interrupt gate or trap gate in the IDT.
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Figure 6-3. Interrupt Procedure’s Stack

What is the difference between an interrupt via an interrupt gate and an interrupt via a trap gate? In
the case of an interrupt gate, the processor automatically disables interrupts before transferring control
to the interrupt procedure; therefore, an interrupt gate is normally used with external interrupts. In
the case of a trap gate, the processor does not disable interrupts; therefore, trap gates are normally
used with processor-detected exception conditions, which are also known as “traps.”

The IRET instruction returns control from an interrupt regardless of whether a task gate, interrupt
gate, or trap gate is used to enter the interrupt handler. In all cases, executing IRET restores IF to its
value before the interrupt. In the case of an interrupt procedure, the processor restores flags from the
stack; in the case of an interrupt task, from the interrupted task’s TSS.

The difference in speed between handling an event by a task gate versus by an interrupt or trap gate
is not great, as table 6-1 illustrates.

OPERATING SYSTEM RESPONSIBILITIES

Given the number of hardware features that automate event handling, you might wonder what is left
for the operating system to do. In fact, for static systems in which interrupt tasks do not call on operat-
ing system functions and in which there is no need to change the IDT, the operating system need not
concern itself with interrupts. Few applications are so simple, however. The following sections discuss
some extensions to the processor’s event-handling features that you may find useful in your operating
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Table 6-1. Interrupt Response Time

Response Time (in number of clock cycles)
Operation ‘ Interrupt or
:::: Trap Gate
(to different PL)
Hardware interrupt
processing 167 v . _ 78
Save registers
PUSHA done by 17
PUSH DS task switch 3
PUSH ES 3
Initialize registers
MOV AX,SEG item-1 done by 2
MOV DS AX task switch 17
MOV AX,SEG item-2 2
MOV ES,AX ' 17
Total Clocks 167 ' 139 -

system. The common goal in all these extensions is to structure the software so that, when an event
occurs, the hardware can handle interrupt administration chores automatically within the efficiency
and protection requirements of the application.

Manage IDT

Many applications require the ability to change the association between an event and the procedure or
task associated with it. Even relatively static systems require this ability if interrupt procedures and
interrupt tasks are not loaded until after system initialization. Only PL-0 procedures can effect run-
time changes to the IDT because the data-segment alias for the IDT should have PL 0. The techniques
for changing the IDT are similar to those already illustrated in Chapter 2 for the GDT and LDTs.

Switch Scheduling Modes

An application may include tasks that run sometimes as interrupt tasks and other times as normal tasks
under the supervision of the operating system’s scheduler. Examples of such situations include the
following:

* An interrupt task calls on operating system services that might force the task to wait (for example,
RECEIVE_MESSAGE). o '

e The task loader (in a dynamic system) does not distinguish between interrupt tasks and regular
tasks, leaving it up to the task itself to request that the operating system attach it to an interrupt.
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If such situations can arise, the operating system must

o Keep track of whether a task is in hardware-scheduled mode or in software-scheduled mode
* Provide services to switch a task between hardware-scheduled and software-scheduled mode

Note, however, that an interrupt task that is in software-scheduled mode cannot service interrupts. If
it is possible for further interrupts of the same type to occur during the time the interrupt task is
software-scheduled, then switching to software-scheduled mode is not such a good idea. An alternative
‘strategy is to allocate interrupt-servicing duties among two or more tasks: one hardware-scheduled and
the others software-scheduled. The hardware-scheduled task responds to the interrupt and invokes one
of the software-scheduled tasks through a mechanism such as message-passing as discussed in
Chapter 5. If there are any delays in servicing that interrupt, it is one of the software-scheduled tasks
that waits, not the hardware-scheduled task.

Manage Interrupt Controller

Intel’s 8259A Programmable Interrupt Controller (PIC) is key system resource in a multitasking system.
The 8259A PIC is a flexible device that gives the main processor the ability to service up to 64 external
events via the processor’s single INTR pin. The 8259A PIC gives software control over such critical
parameters as the relative priorities among interrupts and the means for acknowledging interrupts.
Correct operation of the system requires proper use of the interrupt controller. For the operating system
to manage this critical resource is only consistent with the protection features of the iAPX 286.

At system initialization the operating system may initialize the 8259A PIC according to system config-
uration and the needs of the application. Initialization may include

» Setting the 8259A to operate in iAPX86 mode

 Setting up master/slave relationships when the hardware configuration includes multiple PICs
¢ Specifying whether interrupts are triggered by edge or by level

* Setting interrupt priority mode: rotating or masked

¢ Determining whether priority is fully nested (if priority is set by .masking)

* Determining whether interrupts are acknowledged automatically or by explicit EOI command

Refer to the Component Data Catalog for details of these and other features of the 8259A PIC.

If you choose an interrupt policy in which the 8259A automatically determines interrupt priority and
automatically acknowledges interrupts, then there may be no need, after initialization, for either the
operating system or interrupt tasks and procedures to deal with the 8259A. If, on the other hand, you
choose a dynamically changing priority scheme (whether by specific rotation or by mask commands)
or explicit end-of-interrupt commands, then you must also choose whether run-time control of the 8259A
is the responsibility of the interrupt tasks and procedures or of the operating system.

For the operating system to maintain run-time control over the 8259A PIC, it may provide a procedure
such as the following that applications programs CALL instead of executing the IRET instruction.

WATT_FOR_INTERRUPT PROC FAR
IRET ;3 Switch to task on back-link

; Execution resumes here upon interrupt
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; Send interrupt mask tq PIC
RET ; Return to application procedure
WAIT_FOR_INTERRUPT ENDP

The operating system executes the IRET instruction within WAIT_FOR_INTERRUPT.
WAIT_FOR_INTERRUPT would need to run as a privileged procedure within the calling task. With
this approach, the operating system has control just before the task begins to wait for an interrupt as
well as when the task begins to execute after the interrupt occurs. The operating system then has the
opportunity to send interrupt masks, end-of-interrupt commands, and specific priority rotation
commands, as appropriate for the application.

Provide Task-Level Interrupt Procedures

GDT interrupt procedures (i.c., those invoked via interrupt gates and trap gates in the IDT that point
to executable-segment descriptors in the GDT) provide a global mechanism for a task to react to
events. The mechanism is global in the sense that one set of interrupt procedures applies to all of the
tasks in the system. For example, suppose a GDT interrupt procedure handles the “divide error” excep-
tion. Then, a divide error in task A is handled by the same procedure as a divide error in task B because
there is just one gate for divide errors. There is often a need, however, for one task to take different
action than that taken by other tasks. For example, task A may need to terminate in case of a divide
error, while task B nay need to continue.

INTERRUPT DISTRIBUTION

The software system designer has a choice of mechanisms that make it possible for different tasks to
have different interrupt procedures for a given interrupt type

1. LDT-based interrupt procedures
2. An interrupt distributor

You must deploy alternative 1 carefully. If a trap or interrupt gate in the IDT contains a selector for
an LDT slot, then there must be a system-wide convention that every LDT will have an appropriate
descriptor in that slot. When the interrupt occurs, the processor uses the LDT of the current task to
locate the interrupt procedure.

Alternative 2 demands less from convention, but more from the operating system and the processor.
With this approach, each task has (in the task database) a table that is its own private analog of the
IDT. The operating system supplies a GDT interrupt procedure that merely indexes the current task’s
handler table to find a pointer to the appropriate handler procedure. If the task does not supply an
interrupt procedure for a specific interrupt, the operating system can invoke a default procedure.

CONFORMING INTERRUPT PROCEDURES

For certain interrupt procedures (for example, a divide-error exception handler that substitutes a fixed
value for the quotient), the appropriate privilege level at which to run the interrupt procedure is the
same as that of the interrupted procedure. In these cases, the interrupt procedure can be placed in a
conforming segment. For interrupt procedures in conforming segments, the processor automatically
sets CPL to the DPL of the segment containing the interrupted procedure. Note, however, that this
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technique does not apply to procedures called by an interrupt distribution procedure (because the
distribution procedure always runs at PL 0).

‘“OUTWARD CALL"

An application may contain some interrupt procedures that should run at a fixed privilege level that is
greater than zero.

The processor, on the other hand, prevents calls from PL nto PL m if n<<m. For privilege-checking
purposes the processor treats interrupts to procedures as calls. It is a privilege violation if the interrupt
procedure resides in a segment that has a DPL numerically greater than that of the interrupted proce-
dure. Since interrupts may occur at arbitrary times, it is possible for CPL to be less than the DPL of
the interrupt procedure, which would be an exception.

A similar problem results when an interrupt distribution procedure (which runs at PL 0) attempts to
call a less privileged procedure identified in the task’s interrupt handler table. The problem results
even if the interrupt distributor attempts to simulate a conforming interrupt procedure by using the
interrupted procedure’s CPL as the RPL value in the selector of the interrupt handler.

The operating system can employ the shadow task strategy to overcome this contradiction. Figure 6-4
outlines the shadow task strategy for invoking a lesser-privileged procedure from PL 0. Only a PL-0

TASK’S
HANDLER
DT TABLE
SHADOW TASK
OS INTERRUPT TASK'S
) »| PROCEDURE > J »|HANDLER
(PL 0) 1 PROC
MAIN TASK
INTERRUPT
D

121960-53

Figure 6-4. Private Interrupt Procedure -

6-8 121960-001



Intel SIGNALS AND INTERRUPTS

procedure such as the interrupt distribution procedure described previously can implement this mecha-
nism. Instead of calling the handler procedure (which could be a privilege violation), the operating
system’s interrupt procedure

» Creates a shadow task containing the handler procedure
¢ Sets the CS and IP fields of the shadow task’s TSS to the entry point of the handler procedure
e Calls the shadow task

An IRET instruction in the interrupt handler procedure returns control to the interrupt distributor
procedure in the main task.

Creating a shadow task involves simply allocating space for the new TSS and initializing it. Setting the
LDT field of the new TSS to the same value as in the main task’s TSS lets the shadow task have access
to all the same segments as the main task, including the segment containing the handler procedure.
The operating system may create the shadow task either at the time the main task is created or dynam-
ically, at the time the interrupt occurs.

Provide Software Signals

In some applications there is a need for one task to send a signal to another task that is not waiting for
the signal. The “quit” signal in an interactive system is an example. For the target task to respond
quickly to the signal, the signal must trigger some form of interrupt mechanism. The mechanisms
described previously for private interrupt procedures have the appropriate features: each task can define
the action to take upon receipt of the signal, and the signal handler can run at a restricted privilege
level. Additional components needed to implement software signals include

« Extended task handler table with entries for each possible software signal
¢ Operating system procedure that any task can call to send a signal to another task

A software signalling mechanism is also a convenient way for the operating system to signal tasks. This
method is particularly suited to

» Reporting exception conditions detected by the operating system
» Giving a task the chance to put its affairs in order before the operating system terminates it.
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CHAPTER 7
HANDLING EXCEPTION CONDITIONS

When the processor recognizes a condition that it cannot handle, an exception condition, operating
system or applications software must temporanly take control and dispose of the condition. Exception
conditions are also known as “faults.”

FAULT MECHANISM

The processor reports an exception condition by causing one of a predefined set of interrupts; one
interrupt vector is associated with each exception condition that the processor recognizes. As with any
interrupt, either a procedure or a task can field a fault. Faults resemble other interrupts, but they
differ in two significant ways:

* You cannot disable a fault.

» For certain faults, the processor pushes an error code onto the stack of the fault handler (whether
procedure or task) to help with recovery.

FAULT RECOVERY
When a fault occurs, the fault handler has three possible ways of dealing with the exception:

e Ignore it and continue execution of the task.
» Fix the problem and retry the faulting instruction.
» Kill the faulting task.

Ignoring an exception is not generally advisable. Killing a task is sometimes unavoidable, but, for
critical tasks, the handler should make every effort to recover from the exception. In many cases, the
iAPX 286 helps the exception handler identify the faulting instruction and the conditions that caused
the fault.

Locating the Faulting Instruction

Usually, a fault handler can locate the faulting instruction either via the return pointer on the stack (if
the exception handler is an interrupt procedure) or via the IP stored in the TSS of the faulting task (if
the exception handler is an interrupt task). This stored value of the IP is used to return control to the
interrupted task, but the exception handler can also use the stored IP value to examine the faulting
instruction. There are three cases to consider:

e The stored IP value points to the location of the faulting instruction (including all prefixes). This is
the normal case.

e The stored IP value points to the location of the next instruction.

e The stored IP value is unrelated to the fault. This occurs, for example, with 80287 instructions
(which execute in parallel with 80286 instructions), or when the 80286 processor discovers a fault
while attempting to handle an external interrupt.
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Error Code

With exceptions that may relate to a specific segment, the processor pushes an error code onto the
stack of the exception handler (whether procedure or task). Figure 7-1 illustrates the error code. The
format of the error code resembles that of a selector. However, instead of an RPL field, the error code
contains two one-bit items: '

e The processor sets the EX (external) bit when the fault does not directly result from an action of
the task. Occurrence of this condition generally indicates a “system” problem as opposed to an
“application software” problem.

» The processor sets the I (IDT) bit if the index portion of the error code refers to a gate descriptor
in the IDT. When the I bit is set, the handler can ignore the TI bit. If the I bit is reset, then the TI
bit identifies either the GDT or an LDT, just as in a selector.

The index field identifies the descriptor associated with the exception (if any).
In some cases the error code on the stack is null, in which case all bits in the word are zero. For some

faults, the handler can gain additional information about the fault by determining whether the error
code is null.

APPLICATION INTERFACE

Since some of the actions appropriate for exception conditions depend on the requirements of individ-
ual application programs, the operating system may need to provide an application interface to the
exception handling system. Chapter 6 discusses mechanisms for doing so.

EXCEPTION CONDITIONS

The action appropriate to each type of exception depends both on the type of exception and the needs
of the application. This section provides details for each type of exception. Some of the exception
conditions are identified by a two-character mnemonic that some other Intel literature uses.

INDEX T I | EX

1 = 1IF DESCRIPTOR IS IN IDT

EX = 1IF EXCEPTION DETECTED DURING
EVENT EXTERNAL TO TASK

121960-35

Figure 7-1. Exception Error Code
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Interrupt 0—Divide Error

This exception may occur during DIV (unsigned divide) and IDIV (integer divide) instructions. The
processor causes a divide-error exception in case of division by zero or quotient overflow.

A divide-error handler might, for example, replace the quotient with a predetermined value and permit
the faulting task to continue. The return pointer indicates the first byte of the divide instruction, so the
handler must increment the return pointer before returning.

Interrupt 1—Single Step

The processor causes a single step exception at the end of every instruction when the TF (trap flag) is
set. When the processor invokes any interrupt procedure, it saves the flags and resets the TF so that
the exception handler does not cause a single-step exception. Executing IRET at the end of the excep-
tion handler restores TF. : '

The exception handler for this exception typically belongs to a debugging system. Single stepping is a
valuable debugging tool. It allows the exception handler to act as a “window” into the system through
which you can observe task operation instruction by instruction. A single-step handler may, for example,
display register contents, the value of the instruction pointer, key variables, etc., as they change after
each instruction.

The single-step exception handler should take care, however, not to violate the system’s protection goals
by its actions. To protect the operating system from the debugging activities of an applications
programmer, the debugger should not give access to the more privileged levels. The debugger can
check, either before or after each instruction, whether the instruction causes a control transfer to a
prohibited level. After such a transfer, the return pointer identifies the next instruction in an accessible
segment. The debugger can set a breakpoint at that instruction and suspend single stepping until the
breakpoint trap occurs.

Interrupt 3—Breakpoint

The INT 3 instruction causes this exception. The INT 3 instruction is one byte long, which makes it
easy to insert a breakpoint anywhere in an executable segment. The operating system or a debugging
subsystem can use a data-segment alias for an executable segment to place an INT 3 instruction anyplace
where it is convenient to arrest normal execution so that some sort of special processing can be performed.
Debuggers typically use breakpoints as a way of displaying registers, variables, etc., at crucial points
in a task.

The saved IP value points to the next instruction. If a debugger has replaced a planted breakpoint with
a valid opcode, it must subtract one from the saved IP value before returning.

interrupt 4—Overflow

This exception occurs when the processor encounters an INTO instruction and the OF (overflow) flag
is set. Since signed arithmetic and unsigned arithmetic both use the same arithmetic instructions, the
processor can not tell which is intended and therefore does not cause an overflow exception. Instead it
merely sets OF when the results, if interpreted as signed numbers, would be out of range. When doing
arithmetic on signed operands, careful programmers and compilers either test OF directly or use the
INTO instruction.
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An exception handler usually terminates the faulting task; however, in some applications it is feasible
to place a “maximum value” in the recewmg operand and permit the task to continue. The return
pointer indicates the next instruction.

Interrupt 5—Bound Check

This exception occurs when the processor, while executing a BOUND instruction, finds that the operand
exceeds the specified limits. This condition usually indicates a programming error. The safest action
for the handler is to terminate the faulting task. In some applications, however, it is feasible to “adjust”
the erroneous operand. The return pointer points to the beginning of the faulting instruction.

Interrupt G—Undefined Opcode (UD)

This exception occurs when the processor detects an invalid operation code in the instruction stream.
Such an exception may occur, for example, if a programmer mistakenly causes a jump to read-only
data in an executable segment. This exception has several variations:

» The first byte of the instruction is completely invalid; for example, 64H.

» The first byte of the instruction indicates a two-byte opcode, but the second byte is invalid; for
example, OFH followed by OFFH.

e One of the operands of the instruction is not valid for use with the opcode.

o The opcode extension in the second byte of an instruction contains a value that is invalid for use
with the opcode; for example, opcode OF6H with xx001xxxB in the second byte.

¢ The opcode requires a memory operand, but the operand actually indicates a register, for example,
LGDT AX.

The offending opcode is invalid, so the handler should not restart the instruction.

You can use this exce’ptiori to implement extensions of the iAPX 286 instruction set. The exception

handler would interpret the instruction and advance the return pointer beyond the extended instruction

before returning.

Interrupt 7—Processor Extension Not Available (NM)

This exception occurs in either of two conditions:

* The processor encounters an ESC (escape) instruction, and the EM (emulate) bit of the machine
status word (MSW) is set.

e The proccssor encounters a WAIT instruction, and both the MP (math.present)"and TS (task

switched) bits of the MSW. are set.

Refer to Chapter 12 for details concerning the 80287 Numerics Processor Extension.
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Interrupt 8—Double Fault (DF)

This exception occurs when the processor detects an exception while trying to invoke the handler for a
prior exception, for example:

» The code segment containing the exception handler is marked “not present.”
+ Invoking the exception handler causes a stack to overflow.

The processor pushes a null error code onto the stack. If this or any other action while invoking the
double-fault handler causes an additional fault, the processor shuts down. To avoid the catastophe of a
shut-down, the double-fault handler must be a separate task (so that pushing the error code does not
cause a stack fault) and must always be present (so that invoking it does not cause a “not present”
fault).

Recovery is sometimes possible by eliminating the cause of the second exception and re-executing the
faulting instruction so that the original fault can be handled appropriately. The greatest difficulty lies
in 1dent1fymg the cause of the second exception. Often, however, a double-fault condition mdlcates a
serious error, and the faulting task should be terminated.

Interrupt 9—Processor Extension Segment Overrun

This exception occurs when a memory operand of an 80287 instruction has a segment-limit violation.
Since the 80287 executes in parallel with the 80286, the occurrence of this exception may not relate
directly to the instruction stream being executed by the current task. A task switch may have occurred
since the 80287 began executing the instruction. Even if the interrupted task is the correct task, its IP
may have been advanced by several instructions beyond the 80287 instruction. Refer to Chapter 12 for
more information about this excepuon

Interrupt 10—Invalid TSS (TS)
This exception occurs when the processor detects any of the following abnormalities in a TSS:

1. The value of the limit field of the descriptor to the TSS is too small (discovered during a task
switch).

2. The LDT indicated in the TSS is invalid or not present (task switch). Note that a null LDT
selector does not cause an exception during a task switch.

One of the segment register fields (SS, CS, DS, or ES) in the TSS is invalid (task switch).
. One of the privileged-stack selectors is invalid (interlevel CALL).
5. The back-link selector is invalid (intertask IRET).

This exception does not occur when a segment-register field or the back link is marked “not present”
but is otherwise valid. A *“‘not present” exception occurs in this case. If, during an interlevel CALL,
a privileged-stack selector in the TSS points to a descriptor marked ‘“not present,” then a stack
exception occurs.

The handler for this exception must be a separate task, invoked via a task gate in the IDT. The proces-
sor pushes an error code onto the stack of the handler. The error code either identifies the faulty
TSS (case 1) or contains the faulty selector from the TSS (cases 2-5). The instruction causing the
fault can be restarted. An IRET at the end of the exception handler causes the faulting instruction to
execute again. -
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A few of the conditions that can cause this exception are recoverable. If the system incorporates virtual
memory, the solution for a not present LDT may be to bring it in from virtual store. In the case of an
invalid back-link, you can make the assumption that the NT flag was set by mistake, give control to
the scheduler, and hope....

Interrupt 11—Segment Not Present (NP)

This cxceptlon occurs when the processor detects that the present bit of a descrlptor is reset. It may
occur in any of these cases:

¢ While loading the CS’, DS, or ES registers, but not while loading the SS register (a stack fault
occurs in that case).

* While loading the LDT register with an LLDT instruction, but not while loading the LDT register
during a task switch operation (the “invalid TSS” fault occurs in that case).

+ While attempting to use a gate that is marked “not present.”

An operating system typically uses the “not present” exception to implement a virtual memory system.
Refer to Chapter 9 for more information on virtual memory.

The processor pushes an error code onto the stack of the exception handler. The error code contains
the selector of the descriptor that is marked “not present.”

A “not present” indication in a gate descriptor usually has special significance for the operating system.
For gates in the IDT, the present bit may serve as a sign that the interrupt task is in software scheduled
mode and temporarily unable to service an interrupt. If an interrupt arrives in this case, there may be
an error either in the device that generates the interrupt or in the handling of the Interrupt Mask
Register of the 8259A PIC. (Refer to Chapter 6 for more information on interrupt handling). For gates
in the GDT or LDTs, the present bit may serve to signal an unresolved linkage. (Refer to Chapter 11
for information on binding.)

The instruction that causes a “not present” fault is restartable (except in the case of a task switch).
Execution of an IRET by the exception handler causes the processor to execute the faulting instruction
again. When the processor detects the “not present” exception while loading CS, DS, or ES during a
task switch, the exception occurs in the new task, and the return pointer points to the first instruction
of the new task. ‘

Interrupt 12—Stack Exception (SS)
This exception occurs in either of two general conditions:

* As aresult of a limit violation in any operation that refers:to the SS register. This includes stack-
oriented instructions such as POP, PUSH, ENTER, and LEAVE as well as other memory refer-
ences that implicitly use SS (for example, MOV AX,[BP+6] ). ENTER causes this exception when
the stack is too small for the indicated local variable space. An interlevel CALL references two
stacks; a stack-limit exception can result from either of them.

e When attempting to load the SS register with a descriptor that is marked “not present” but is
otherwise valid. This can occur in a task switch, an interlevel CALL,.an interlevel return, or a MOV
or POP instruction to SS.
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The processor pushes an error code on the stack of the exception handler. If the exception is due to a
not-present stack segment or to overflow of the new stack during an interlevel CALL, the error code
contains a selector to the segment in question (the exception handler can test the present bit in the
descriptor to determine which exception has occurred); otherwise the error code is null.

The instruction that causes a stack fault is usually restartable. Execution of an IRET by the exception
handler causes the processor to execute the faulting instruction again. The one case that is not restart-
able is a PUSHA or POPA intruction that attempts to wrap around the 64K boundaries of a stack
segment. This condition is identified by one of the values FFFEH, FFFFH, 0000H, or 0001H in the
saved SP.

When the processor detects a stack fault while loading SS during a task switch, the exception occurs
in the new task, and the return pointer has the value that the IP field of the new TSS held at the time
the task switch began.

When stack overflow causes the exception, the stack fault handler can increase the size of the stack
segment (up to a maximum of 64K) and permit the faulting task to continue. When the exception is
due to a stack segment not being present, recovery action resembles that of the “not present” fault
handler.

Interrupt 13—General Protection Exception (GP)

All protection violations that do not cause another exception cause a general protection exception. This
includes (but is not limited to)

» Exceeding segment limit when using DS, ES, or CS.

¢ Exceeding segment limit when referencing a descriptor table
¢ Jumping to a data segment

¢ Writing into a read-only segment or an executable segment

¢ .Reading from an execute-only segment

¢ Loading the SS register with a read-only descriptor (unless the selector comes from the TSS during
a task switch, in which case a TSS exception occurs)

¢ Loading DS, ES, or SS with the descriptor of a system segment

» Loading DS, ES, or SS with the descriptor of an executable segment

¢ Loading CS (by means of a CALL, JMP, or interrupt) with the descriptor of a data segment
e Accessing memory via DS or ES when it contains a null selector

» Switching to a busy task

¢ Violating privilege rules

The processor pushes an error code onto the exception handler’s stack. If loading a descriptor caused
the exception, the error code contains a selector to the descriptor; otherwise the error code is null.

The return pointer points to the beginning of the faulting instruction. Recovery may be possible, but
-because programming errors cause most of the conditions leading to a general protection exception,
recovery may not be worth the trouble required to identify the cause.

A string instruction (any variant of INS, OUTS, MOVS, STOS, SCAS, or CMPS) with a repeat prefix

(REP, REPE, or REPNE) is not restartable if it causes a segment limit violation. Check whether SI
or DI is near the segment limit.

7-7 121960-001



Intel HANDLING EXCEPTION CONDITIONS

An instruction that both tests and modifies the carry flag is not restartable (ADC, RCL, RCR; or
SBB).

Interrupt 16—Processor Extension Error (MF)

The 80286 causes this exception when it detects a signal from the 80287 on the 80286’s ERROR input
pin. The 80286 tests this pin only at the beginning of certain floating-point instructions and when it

encounters a WAIT instruction while the EM bit of the MSW is reset (no emulation).

Refer to Chapter 12 for more information on this exception.

Interrupt 17—Run-Time Exceptions

Intel’s run-time support software uses this interrupt to communicate exception conditions regarding
range checks and procedure stack overflow. Applications should avoid using this interrupt for any other
purpose. : '

RESTARTABILITY SUMMARY

Table 7-1 summarizes the information pertinent to restarting the faulting instruction.

Table 7-1. Restart Conditions

Return Address Error
Vector Exception Relative to Restartable? Code?
Faulting Instruction )
0 Divide error First byte Yes No
1 Single step Next instr. No No
3 Breakpoint Next instr. — No
4 Overflow Next instr. No No
5 Bound check First byte Yes No
6 Undefined opcode First byte No No
7 Processor extension Unrelated Yes No
not available :
8 Double fault First byte No Yes
(always null)
9 Processor extension Unrelated No "~ No
segment overrun
10 Invalid TSS First byte Yes Yes
11 Segment not present First byte Yes Yes
12 Stack exception First byte Yes Yes
13 General protection First byte No Yes
16 Processor extension Unrelated — No
error
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CHAPTER 8
INPUT/OUTPUT

Many of the concepts previously introduced in this book apply to the design of the I/O subsystem of
an operating system; in addition, the iAPX 286 has several 1/O features of special interest.

The functions typically performed by an I/O subsystem include

¢ Centrally implementing and standardizing 1/O logic so that all application programs can share it.

+ Providing a uniform, high-level interface by which application procedures can request I/O services
(as a minimum, the functions READ and WRITE). A more sophisticated system may need a full,
file-oriented set of interfaces such as Intel’s Universal Development Interface (UDI).

¢ Administering device naming. Often this includes transforming logical device identifiers into physi-
cal identifiers, so that applications that use the logical identifiers can maintain independence from
physical devices.

* Managing use of memory resources for I/O buffers.

* Managing sharing of physical devices. Often this reduces to giving one task exclusive use of a device
(for example, a printer) until the task relinquishes it. With disk devices, tasks can usually share the
device as long as each uses a different set of disk addresses. A sophisticated database-management
system may require unlimited disk sharing (the database system assumes responsibility-for block-
level synchronization, deadlock detection, and recovery).

« Providing device-driver procedures to deal with the vagaries of various I/O devices.

» Optimizing I/O efficiency. This might include any of these techniques: blocking, buffer pooling,
automatic seek-ahead, reduction of disk arm movement.

This discussion of I/O classifies physical I/O operations thus:

¢ Direct I/0, in which the 80286 processor itself communicates directly with the peripheral device.
Direct I/O breaks down further into

a. Memory-mapped, in which I/O is triggered by processor instructions that reference certain
memory locations.

b. I/O-mapped, in which special I/O instructions cause the processor to do I/O.
e Indirect I/O, in which an external processor (such as the Intel 8089 1/0O Processor) performs the

1/0.
1/0 AND PROTECTION

The concept of protection as applied to I/O deals not only with the memory used in I/O operations
but also with the right to execute I/O operations.

1/0 Privilege Level (IOPL)

You can limit to specific privilege levels the right to execute I/O and I/O-related instructions. IOPL
(a two-bit field in the flag word) restricts a task’s right to execute any of these instructions:

IN input
INS input string
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OouT output

OUTS output string

STI set interrupt flag (enable interrupts)
CLI clear interrupt flag (disable interrupts)

LOCK lock bus

When interpreting any of these restricted instructions, the processor compares CPL to IOPL. If CPL
exceeds IOPL, the processor causes a general protection exception and does not carry out the
instruction.

Only a privilege-level 0 (PL-0) procedure (i.e., the operating system) can change IOPL. There is no
instruction that explicitly affects IOPL; however, any of the operations that load the flag word can, in
some cases, change IOPL. The only mechanisms for changing the flag word are

e A task switch
+ The POPF (pop flags) instruction
¢ IRET

When CPL is greater than zero, the POPF instruction does not change IOPL, even though it changes
other flags in the flag word. The processor issues no error indication when this occurs. A task switch
‘loads the flags from the Task State Segment (TSS). As long as the operating system does not make
data-segment aliases for the TSS available to less privileged levels, only the operatmg system can
change IOPL in the TSS.

For maximum protection, the procedures of an I/O subsystem that run in the calling task should run
at a protection level numerically greater than the operating-system kernel but less than applications
procedures. IOPL can then include the I/O subsystem but exclude applications procedures. Used this
way, IOPL forces less privileged application procedures to call on I/O subsystem procedures for I/O
functions, thereby giving the operating system control over many I/O operations.

Tasks that deal primarily with 1/O (device drivers, for example) may have an IOPL value as great as
three. If that is the case, all procedures in the task have access to I/O operations, yet all four privilege
levels are available to protect the procedures of the task from one another.

Controlling 1/0 Addresses

Protection is incomplete if not applied to memory accesses by 1/0O operations. IOPL does not apply to
memory-mapped I/O nor to interface with intelligent controllers (because none of the restricted
instructions are used). The operating system designer must make special provisions to control these
I/0 operations, either via the operating system or with the Builder.

HARDWARE ADDRESS CHECKING

Memory-mapped 1/0 is subject to the segment-level protection mechanism of the iAPX 286. A task
can execute a memory-mapped I/O operation only if it has access to a descriptor for a data segment
that contains one of the memory addresses reserved for I/0. Giving a task descrlptors for only the
1/0 memory addresses that it has the right to use yields a double benefit:

* The task cannot access I/O devices assigned to other tasks.

* Within the task, I/O is restricted to those procedures whose privilege level is numerically less than
or equal to the DPL of the I/O memory address segments.
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You can still take advantage of 1/0O memory address protection even though the I/O devices on the
bus respond to 1/O commands. A hardware address mapper can convert the processor’s memory cycles
for the I/O memory space into I/O cycles on the bus. The address mapper will not initiate a bus I/0
cycle unless the memory operation passes the processor’s protection checking.

SOFTWARE ADDRESS CHECKING AND CONVERSION

With indirect I/O, the external controller accesses I/O buffers independently of the 80286. This presents
a three-fold problem to the operating system:

* Memory access by the controller is not subject to the automatic protection checking of the 80286.
¢ The controller (probably) uses “flat” addresses (i.e., addresses that are not relative to a base address).
» The addressing range of the controller may. not coincide completely with that of the 80286.

The flow of control for indirect I/O requests must pass through operating-system procedures at PL 0
so that the operating system can

« Check memory addresses and privilege levels against information stored in the task’s descriptors
¢ Transform base-relative addresses to a flat format recognizable by the controller

170 AND MEMORY MANAGEMENT

An I/0O subsystem can place additional requirements on the operatmg system’s memory manager; for
example:

e I/0O functions may use certain dedicated memory locations (for example, the addresses used for
memory-mapped /O, and the communication blocks and buffers that external controllers expect
to find a fixed locations). The memory manager must be aware of these locations and must not
allocate them for other purposes.

¢ When buffers for external controllers are allocated dynamically, addrcssmg limitations of the
controller may require the memory manager to find space within the portion of memory that the
controller can address.

e Once it allocates a segment for the use of an external controller, the memory manager must not
move, delete, or swap out the segment without cooperation from the controller.

PARTITIONING 1/0 FUNCTIONS
To determine how best to distribute I/O functions across tasks and privilege levels, you must consider

¢ The opportunities for parallelism
¢ The needs for synchronization

¢ The requirements for protection

8-3 121960-001



Inte| INPUT/OUTPUT

Requirements for Parallelism and Synchronization

The requirements for paral]ehsm and synchronization in the I/O subsystem may mclude any of the
following:

» The application procedure that requests a READ operation may run in parallel with the I/O subsys-
tem until that procedure needs to reference the requested data, at which point it must wait until
the data arrives or an exception occurs.

» The procedure that requests a WRITE operation can usually run in parallel with the I/O subsys-
tem. Some applications require acknowlegement of the completion of a WRITE operation (in order,
for example, to synchronize with a database recovery system), i in which case that procedure must
wait until the acknowledgement arrives.

e SEEK operations normally run in parallel with the requesting procedure.

» The I/O device can always run in parallel with some task in a multitasking system, whether it be
the task that requested the I/O operation or some other task that is not waiting for I/O.

* Inasimple I/O subsystem in which a device driver only manages one 1/O operation at a time, the
driver can simply wait until the device signals that the operation finishes. If the requesting proce-
dure is blocked, the device driver can merely convert the 1/O-complete signal into a wake-up signal
for that procedure.

¢ In a more sophisticated I/O subsystem (for example, one in which a disk driver handles more than
one spindle and more than one task can share a disk device), greatest efficiency results only when
device drivers run in parallel with I/O devices as well as with requesting procedures. An I/O-
complete signal from a device may arrive when the device driver is busy.

Figure 8-1 explains the symbols used in a Petri net graph. Figures 8-2 and 8-3 use Petri net graphs to
illustrate two approaches to synchronization between parts of ‘an I/O subsystem. A horizontal line
represents an event of interest that occurs only under certain conditions. Circles preceding an event
represent the conditions under which the event can occur. Circles after an event represent the condi-
tions that result from occurrence of the event. A dot inside a circle is called a token. A token represents
a condition that is in effect. An event occurs if and only if there are tokens for all its input conditions.
When an event occurs, tokens flow into all its output conditions.

Figure 8-2 assumes the simple device driver mentioned previously and points out how such a driver can
service only one task at a time. Figure 8-3 shows how a two-part driver can deal with more than one
I/0O request at a time (assuming that the I/O device can do so as well). I/O requests from applications
procedures drive part A, while interrupts drive part B. Not shown by the Petri net graphs is the fact
that the two parts of the driver must share information about outstanding I/O requests. Both figures
show simplified device drivers to highlight the interactions among parts of the I/O subsystem; for
example, a real device driver may issue multiple physical I/O commands in response to one 1/O request
and may retry I/O operations in case of certain error indications from the device.

Requirements for Protection

The requirements for protection in an I/O subsystem include (in addition to the protection considera-
tions previously discussed)

* Device allocation tables and any other data used by the primary I/O interface procedures must be
protected from all but those procedures privileged to do 1/0, but must be available to every task in
which the I/O interface procedures can run.

* Only the device driver should have access to a device’s control parameters (for example, head settling
time for a disk drive).
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e Only the operating system and the I/O subsystem should use queues of buffers and 1/O requests.
» An application procedure must not use a buffer that an I/O device is simultaneously using.

Implementation Alternatives

If descriptors for data global to the I/O subsystem (such as device allocation tables) reside in the GDT
with DPL equal to the I/O privilege level, then I/O procedures can access them regardless of what
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Figure 8-1. Petri Net Graph Symbols
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Figure 8-3. Synchronization with Two-Part Device Driver
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task the I/O procedures run in. The 1/0 interface procedures (READ, WRITE, etc.) must have DPL
equal to that of the global 1/O data and therefore must have call gates at the privilege level of appli-
cation procedures (PL 3). If these call gates reside in the LDTs of application tasks, then I/O interface
procedures can be shared by (but limited to) those tasks that need them. The call gates can also reside
in the GDT, where all tasks can access them. In either case the interface procedures run in the calling
task.

The possibilities for running device drivers in parallel with the calling task suggests that they be separate
tasks. Such a separation also serves to protect applications and device drivers from one another, a
definite advantage because inherent complexity and frequency of change tend to place device drivers
among the least reliable of operating system functions. The I/O interface procedures have the respon-
sibility for managing the details of communication between the calling task and the device drivers.

You can implement a sophisticated device driver such as that illustrated in figure 8-3 as two cooper-
ating tasks: one scheduled by interrupts via a task gate in the IDT, and the other scheduled by I/O
requests via an operating-system mailbox facility.

It is possible to implement device drivers as interrupt procedures that run within applications tasks.
Such a structure is advantageous in these cases:

¢ Efficiency of I/O is an overriding goal.

e Interrupts may arrive when a driver is busy.

The lack of protection inherent in such a structure becomes apparent, however, when you consider that
the driver procedure that fields an I/O-complete interrupt may run as part of a task completely unrelated
to the task that originally requested the I/O operation, and must run at PL 0.

Viewing the possible implementations of buffers from the perspective of the iAPX 286 architecture,
the most pertinent consideration is whether a segment contains just one buffer or several buffers. An
approach that uses one segment per buffer has several advantages:

* The protection mechanism of the iAPX 286 (working as it does on segment descriptors) focuses on
each buffer individually.

¢ The selector of a buffer segment serves as a convenient buffer identifier, fitting easily into the
aliasing and mailbox schemes outlined in Chapter 5.

You can avoid the potential GDT congestion that may result from having one segment (and therefore
at least one segment descriptor) per buffer by storing buffer descriptors in LDTs.

When tasks share buffers (as between an application task and one or more device-driver tasks), you
have a choice between

¢ Leaving the buffer at all times within the address spaces of all the sharing tasks
e Transferring the buffer from the address space of one task into that of another

The mailbox scheme outlined in Chapter 5 easily accomplishes the latter approach. This scheme has
the advantage that the application task cannot use the buffer at the same time as /O is in progress.
The “usage privilege level” (UPL), if set to IOPL, provides additional protection by limiting mailbox
access to I/O procedures. The application’s requirements for 1/O efficiency may, however, preclude
use of mailboxes for this purpose.
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CHAPTER 9
VIRTUAL MEMORY

The memory legitimately addressed by the tasks running on an iAPX 286 (the virtual memory) may
exceed the actual memory available. You can use this capability to lower memory costs, substituting
disk or other less expensive storage media for relatively expensive RAM. Virtual memory isolates
programmers from the amount of real memory in a computer system. The system designer can trade
off performance against system cost using identical software.

A system that supports virtual memory can be analyzed in terms of mechanisms and policies. The
iAPX 286 has mechanisms that help your operating system manage the swapping of segments between
RAM and less expensive memories. The operating system must implement additional mechanisms as
well as policies for efficient use of these mechanisms in a specific application.

HARDWARE MECHANISMS

The 80286 provides the essential hardware mechanisms without which virtual memory systems would
not be possible. The segment is the basic unit of the virtual-memory scheme, just as it is the basic
unit of the real-memory scheme. In each segment descriptor, the iAPX 286 architecture provides an
accessed bit and a present bit to aid the operating system in simulating the virtual memory space with
available RAM.

Accessed Bit

Every descriptor for an executable segment or data segment has an accessed flag in the least signifi-
cant bit position of the access rights byte. Each time a task loads segment register with a segment
descriptor, the processor automatically sets the accessed bit in that descriptor. The processor does not
automatically reset the accessed bit; software must explicitly write a zero into the accessed bit. The
accessed bit has a dual function in virtual memory management:

» By testing and then resetting the accessed bit at regular intervals, the virtual-memory manager can
measure how frequently the segment is being accessed.

* For writable data segments, the accessed bit (when set) indicates that the segment may have been
changed.

Present Bit

Every segment descriptor has a present flag in the high-order bit position of the access-rights byte. The
processor automatically tests this bit as it loads segment registers. If the present bit is reset, the proces-
sor causes a trap. Which trap depends on the circumstances:

¢ Trap 11 (Segment not Present) occurs when loading the CS, DS, or ES register with a not-present
segment descriptor, when switching to a not-present TSS, when loading the Task Register by means
of the LTR instruction with a not-present TSS descriptor, or when loading the LDT register with a
not-present LDT descriptor.

e Trap 11 also occurs when loading CS with a gate descriptor that is marked “not present.” This
condition does not necessarily mean that a segment is not present, however. The operating system
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may attach other meaning to the present bit of gate descriptors. Refer to the section on load-time
binding in Chapter 11 for an example of an alternate use for the present bit in gate descriptors.

e Trap 12 (Stack Exception) occurs when loading the SS register with a not-present descriptor. The
exception handler can distinguish this condition from other stack exceptions by examining the access
rights byte of the descriptor selected by the error code.

» Trap 10 (Invalid TSS) occurs when switching to a TSS that points to a not-present LDT. The
exception handler can distinguish this from other “invalid TSS” conditions by examining the access
rights byte of the descriptor selected by the error code.

» Trap 8 (Double Fault) occurs if the processor, while trying to invoke an exception handler due to a
previous exception, finds that the code segment containing its entry point is not present. The diffi-
culty of distinguishing between this and other double fault conditions implies that trap 8 is to be
treated as an error condition, not a normal use of the present bit.

Refer to Chapter 7 for additional information about these traps.

SOFTWARE MECHANISMS

The operating system must provide additional mechanisms for a virtual memory system: one for moving
a segment from RAM to secondary storage (the swap-out manager) and one for moving a segment
from secondary storage to RAM (the swap-in manager).

The swapping managers are essentially 1/O modules, but there are major differences between swapping
managers and the functions of a standard I/O subsystem:

» Swappers deal with executable segments, system segments, and data segments that are not normally
considered 1/O buffers.

» 1/0 performance of swappers is critical and often calls for specialized device drivers and disk space
allocation stategies.

Secondary Storage Management

Virtual-memory mechanisms use a secondary storage medium, such as disk, to simulate a larger memory
space than that provided in RAM. The operating system uses this secondary storage (here called the
swap space) to store copies of those segments that are currently in the virtual space but may be
eliminated from RAM.

There are two general approaches for allocating swap space for segments in dynamic systems:

* The loader can invoke a swap-space allocation procedure as it loads the segments of a task. It can
at the same time write an initial image of the segment into the swap space. This is particularly
useful for a segment such as an executable segment that is occasionally swapped in but may never
be swapped out (when its RAM space is used for another segment) due to the fact that its contents
do not change.

* The operating system may invoke the swap-space allocation procedure dynamically, either-when
allocating RAM for the segment or at the first time the operating system swaps the segment out.

Some operating systems may implement both approaches. A system that allocates swap space only at
load-time cannot swap out certain segments; namely, segments that a bootloader creates initially and
segments that the operating system creates dynamically. In many systems, this is not a problem. Often

9-2 121960-001



Intel VIRTUAL MEMORY

those segments that are bootloaded are just the segments that should not be swapped out. Other operat-
ing systems may allocate many segments dynamically: stacks, mailboxes, variable-length arrays, etc.
These systems may need both approaches.

In designing a dynamic swap-space allocation scheme, you should consider at what time it is best to
allocate swap space. The procedure that first allocates RAM space for a segment (a loader, for example)
often creates a writable data segment descriptor. Later, when the procedure has initialized the segment
(for example, by writing descriptors into a segment that is to be used as an LDT), it modifies the type
code in the descriptor to reflect the intended use of the segment (in this example, it would change the
type to LDT). By delaying the allocation of swap space until first swap out, the operating system never
allocates swap space for segments that it never swaps out (there is no need to allocate swap space for
an LDT, for example, if the operating system does not support swapping of LDTs).

Once the operating system allocates swap space for a segment, it must store the swap-space address in
a location that is easily accessible when it is time to swap the segment out. Two possible mechanisms
for storing the swap-space address are

o In a boundary tag of the segment, if boundary tags are used. (Refer to Chapter 3 for an example
of a space-management scheme that uses boundary tags.)

» In a table parallel to the descriptor table.

To determine whether to call the swap-space allocation procedure when it is time to swap a segment
out, the operating system can test whether the swap-space address field contains a null value.

When a segment is not present, the operating system can use the 24-bit base-address field in the segment
descriptor to store the address of the swap space in which the segment is stored. As long as the present
bit of a descriptor is reset, the processor does not use the base-address field. Storing the swap-space
address in the descriptor also makes the swap-space address readily accessible to the “not-present” trap
handler because the error code presented to the trap handler contains a selector to the descriptor for
the not-present segment.

Level Zero Support Procedures

While the swapping procedures are 1/O procedures that should run at privilege levels greater than
zero, protection of the system demands that highly privileged procedures carry out some details of the
swapping process. Only privilege-level 0 (PL-0) procedures have the right to perform such activities as

* Create read-data or write-data alias descriptors with which the swappers can access the segments
they are operating on

* Change the present bit in a descriptor
» Overwrite the base-address field of a descriptor
+ Prevent the swapper from operating on segments that must remain RAM-resident

» Update all the alias descriptors for a segment with its new status

The following checklist identifies some of those segments that should remain permanently in RAM (in
your application, there may be others):

» The GDT. (It is the key to all addressing operations.)

¢ LDTs that refer to present segments. (The processor cannot access an LDT segment without fetch-
ing its descriptor from the LDT.)
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» TSSs that point to present LDTs. (You cannot switch to a task and use its LDT without referring
to its TSS.)

¢ TSSs whose NT (nested task) flag is set.

» Certain operating-system kernel segments that are frequently referenced (for example, the segment
or segments containing the scheduler’s queues). (System performance may degrade excessively.)

» Segments belonging to the swapping managers.
+ I/O buffers that are in use by an external device.

» Executable segments that contain the entry point of an exception handler. (An exception would
result in a double fault.)

Note that, while the iAPX 286 does offer mechanisms that support swapping of TSSs and LDTs, doing
so is likely to cause not-present faults in PL-0 procedures and to cause unacceptable delays in invoking
interrupt tasks that are not present. For either of these reasons, the designers of an operating system
may elect not to swap out TSSs and LDTs.

Swapping Managers
Swapping managers may need to distinguish between two classes of segments:

* Segments of a task superstructure (the TSS, the task database (TDB), and possibly the level-zero
stack segment)

» Segments not part of a task superstructure

Swapping of the task superstructure requires that swapping managers be aware that the kernel may
treat the TSS as a “subsegment” of the TDB, which may itself reside within the level-zero stack (as
outlined in Chapter 4). The swapping managers should treat these segments as a unit.

Considering the complexities associated with swapping the segments of the task superstructure, it is
perfectly reasonable for an operating system to simplify its virtual-memory subsystem by leaving those
segments in RAM for the duration of the task.

OUT-SWAPPER

The out-swapper works best as a separate task; when the out-swapper must wait for the swapping-
device I/O driver to write a segment, other tasks can continue to run, including the task whose segment
is being swapped out.

The out-swapper’s responsibility is to

¢ Mark all the descriptors for the segment “not present.” The out-swapper must ensure that the present
bits in all descriptors for a segment always appear consistent. It must use a scmaphore or region to
prevent other access to the aliases while it is changing present bits.

e Copy the swap-space address into all the descriptors for the segment (or possibly, depending on
alias implementation, into a “master descriptor” that is linked to other descriptors).

¢ Create a temporary data-segment descriptor to give the swapper the right to read the segment. The
operating system must not move or delete this segment until the out-swapper is finished with it.

« Write the segment to the swap-space allocated for it (but only if the segment is writable and its
accessed bit is set).
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* Return the RAM space used by the segment.

* Delete the temporary data-segment descriptor.

IN-SWAPPER

In theory, the fetch policy module, invokes the in-swapper. In practice, when the fetch policy is “on
demand,” the in-swapper is the “not-present” fault handler, which may also be called by the stack
segment fault handler (for not present stack segments) and by the “invalid TSS” fault handler (for not
present LDTs). The not-present fault handler can run as a procedure in the task that caused the fault.

There is one case, however, that such a procedure cannot handle well. A dispatcher procedure running
in task A causes a not-present fault when switching to task B whose TSS is not present, If the not-
present handler procedure continues running in task A, then task A must wait until task B’s TSS can
be swapped in. Whether this is a problem depends on the role of task A in the application. The not-
present handler procedure can avoid this situation by suspending task B and sending a message to yet
another task that is dedicated to swapping in TSSs.

The steps that an in-swapper procedure takes are to

* Get the swap-space address and segment size (limit) from the descriptor indicated by the error code.
e Allocate a writable data segment in RAM large enough to receive the segment. '
» Copy the segment from swap space to the newly allocated RAM space.

¢ Update all regular descriptors for the segment with the new base address, setting the present bit
and resetting the accessed bit. (The base address comes from the temporary writable data-segment
descriptor.)

* Delete the temporary writable data-segment descriptdr.

An in-swapper task for not present TSSs gets a message from its input mailbox that identifies the
descriptor for the TSS and identifies the task to which the TSS belongs. The in-swapper task performs
the same steps as an in-swapper procedure, but it must also inform the scheduler when the task is
ready to run. You can avoid the additional complexities of not-present TSSs by not swapping TSSs
out.

COORDINATION OF IN- AND OUT-SWAPPER -

A number of interactions between the i in-swapper and out-swapper present pltfalls that the operating
system must avoid:

« A task may attempt to use a segment that is being swapped out. If the i m-swapper does not handle
this possibility, 1t may swap m old, erroneous data from the swap-space.

¢ Task A may request swapping in of a shared segment that is being swapped in for task B. If the in-
swapper blithely reads in the segment again for task A, it may overwrite changes made by task B.

* A task may delete a segment that is being swapped out. If the swap-space release procedure does
not allow for this case, the segment’s swap space may be released and reallocated while the out-
swapper is writing to it.

The in-swapper, out-swapper, and swap-space release procedures can control these interactions by
maintaining a shared table of all segments that are in transition. They must use a semaphore or region
to coordinate access to the shared table. The swap-space address can serve as the segment identifier in
the table. -
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SOFTWARE POLICIES

A virtual memory system gives each task the opportunity to affect other tasks in the system. Tasks
compete with one another for real memory resources. One task may attempt to use memory in such a
way as to unduly impede the progress of other tasks. The operating system must enforce policies which
ensure that every task makes appropriate progress.

Virtual memory management policies are not unique to the iAPX 286; the computer-science literature
contains many discussions of policies that apply to various classes of applications. There is, however, a
distinction between segmented architectures and paged architectures. The iAPX 286 has a segmented
architecture. Literature that deals with paged architectures may not apply to the iAPX 286. Refer to
the paper by Denning (see “External Literature” in the Preface) for a broad survey of the science of
virtual-memory management. .

The remainder of this chapter is an introduction to memory-management policy. The policies you need
to consider are of three types: fetch policy, placement policy, and replacement policy.

Fetch

The fetch policy determines which segment to bring from swap space into RAM and determines when
to bring it in.

The simplest fetch policy is to bring in a segment on demand, that is, at the time it is referenced.
Under this policy, the operating system brings in a segment from swap space only when the processor
causes a not-present exception as the result of a reference to the segment.

All other fetch policies are in some way anticipatory. A simple example of an anticipatory fetch policy
on the iAPX 286 is to always bring in the LDT of a task when bringing in its TSS. Some time-sharing
systems implement an anticipatory policy that brings in all the segments of a task at once. This policy
may be suitable for tasks that consist only of one code segment, one or two data segments, and stack
segment (as, for example, simple BASIC programs submitted by students in a university environment).
The swapping managers can use the segment register fields in the TSS (CS, DS, ES, SS) to identify
the task’s working set.

Attempting to implement such a full-task swap policy for more complex tasks that use many segments
may result in frequently fetching segments that are not referenced in any one time slice.

The additional complexity of implementing an anticipatory fetch policy is justifiable only if the antic-
ipatory policy performs better than the demand policy. Given the efficiency of the iAPX 286 exception
mechanism and given that in a multitasking environment there is usually some other task to service
while one task waits for the in-swapper to fetch a segment, an anticipatory policy typically does not
provide significantly greater throughput. An anticipatory policy may give better performance, however,
when judged by performance standards other than throughput (for example, interrupt latency for specnflc
tasks).

Placement

Determining where in RAM to place an incoming segment is the subject of Chapter 3. In a virtual-
memory system, however, the constant reallocation of real memory to segments of varying length places
special demands on the operating system’s memory management module. When choosing a space-
management algorithm for a system that includes virtual memory, you may wish to give extra consid-
eration to the trade-off between speed and memory fragmentation.
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Replacement

The operating system may need to replace one or more other segments that already reside in real
memory to make space for a segment that is the object of a “segment-not-present” fault. The replace-
ment policy determines which segments to eliminate and when to eliminate them.

The choice of which segments to evict from RAM ‘is crucial to the performance of the system. The
goal is to evict only segments that will not soon be referenced. The difficulty is knowing which segments
will not soon be referenced. Many different policies are discussed in the literature. They fall into three
general classes:

¢ Naive policies that determine which segment to evict without any knowledge of segment access
patterns

e Historical policies that use information about prior access patterns to determine the probability
that a segment will soon be referenced

* Optimal policies that use analyses of actual program control flow to determine the probability that
a segment will soon be referenced

HISTORICAL POLICIES

The iAPX 286 architecture supports gathering of historical information about actual segment access
patterns via the accessed bit in executable and data segment descriptors. An operating-system module
that periodically tests and resets the accessed bits of descriptors can develop a “profile” of segment
usage. The information gathered this way can be used both by the replacement policy module for run-
time decision making and by the operating system designers for improving replacement policy.

A “profiler” works best if it takes samples at regular intervals. To find all descriptors, it must step thru
LDTs. A profiler does not need to examine all descriptors in the system each time it is invoked; it needs
only to examine those of tasks that have run since the last time it was invoked. The same timer inter-
rupt procedure used by the scheduler can invoke the profiler at appropriate times.

A profiler may run either as a separate task or as a shared procedure in the current task. A profiler
that runs as a procedure in the current task can easily locate the LDT with an SLDT instruction. The
LSL (load segment limit) instruction helps the profiler find the size of an LDT. The LAR (load access
rights) instruction enables the profiler to test the accessed bit. A profiler that runs as a separate task
may require the support of a PL-0 procedure that locates LDTs and tests accessed bits in other tasks.

A profiler must give special consideration to aliases. If the accessed bit in any of the aliases of a
segment is set, the segment has been accessed. Here again, a PL-0 segment may be needed to step
through the kernel’s alias lists.

OPTIMAL POLICIES

Many of the optimal policies discussed in the literature are of theoretical interest only. They are used
as a standard against which to measure the performance of more practical policies.

The segment-register fields of the TSS provide support for a trivial, but possibly useful, optimal policy.
The replacement policy can assume that, next time any given task runs, all the segments identified by
the CS, DS, SS, and ES fields of the TSS will be referenced. The processor loads all these registers
during a task switch and causes a fault at that time for each not-present segment. Since the task cannot
run if any one of these segments is not present, the replacement policy may as well replace all of them
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at once. It then becomes possible to allocate swap space for these segments in such a way as to minimize
seek time. Such a policy works well with the full-task fetch policy outlined previously.

t

THRASHING

If not carefully controlled, the 1/O traffic in support of virtual memory may degrade system perform-
ance beyond acceptable limits. The worst case of performance degradation is called thrashing. This
happens when RAM is committed to simulating an excessively large virtual-memory space and the
behavior of the tasks in that space is such that no task can run without causing a not-present fault.

You can avoid thrashing by measuring or estimating the minimum amount of RAM a task needs in
which to operate without causing frequent not-present faults. If the task loader knows this figure, it
can refuse to load a task when not enough RAM is available. You can measure a task’s RAM require-
ments with a profiler such as that described previously.
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CHAPTER 10
SYSTEM INITIALIZATION

The initialization performed at power-on or RESET by the 80286 processor is not, by itself, adequate
for running in protected mode. Software must perform additional initialization before it is possible to
fully use protected mode.

INITIAL STATE
When you power up an 80286 system or perform a RESET, the state of the processor is as follows:

e The MSW (machine status word) is zero; i.e., the 80286 starts running in the real-address mode.
s CS:IP be set to FOO0:FFFO, and the CS limit is OFFFFH.

e The four high-order address lines A,3.5q are automatically asserted for all subsequent references to
CS until your initialization code changes CS.

e SS, DS, ES are set to zero, and the corresponding limit registers are set to OFFFFH.
¢ The flag word is zero. This means that the 80286 starts running with the maskable interrupts disabled.

The initial state of the address lines and CS:IP causes the processor to begin executing instructions at
physical address OFFFFFOH. Presumably, this addresses a JMP instruction in an initialization proce-
dure located in ROM or in RAM that has been loaded by another processor. The initialization proce-
dure may occupy any portion of the last 65,536 bytes of the 16-megabyte address space. The JMP
instruction at physical address OFFFFFOH transfers control to the actual beginning of the initialization
procedure. The first instruction that modifies the CS register causes the processor to cease asserting
the high-order four address lines; therefore, the initialization procedure must avoid using any instruc-
tions that modify the CS register, except for the final JMP instruction.

The initial state of the DS, ES, and SS registers gives the initialization procedure access to the first
65,536 bytes of the address space. The initialization procedure may change these registers, however,
to gain access to any location in the first megabyte of the address space. (With regard to segmentation
and addressing, the 80286 in real-address mode behaves just as an 8086.) Access to other portions of
memory is possible only after switching into protected mode.

SWITCHING TO PROTECTED MODE

You use the LMSW (load machine status word) instruction to set the PE bit in the MSW, thereby
switching the 80286 into protected, virtual-address mode. The current privilege level (CPL) starts at
zero. The segment registers continue to point to the same physical memory areas as in real-address
mode.

Immediately after setting the PE flag, the initialization code must flush the processor’s instruction
queues by executing a JMP instruction. The 80286 fetches and decodes instructions and addresses
before they are used; however, after a change into protected, virtual-address mode, the prefetched
instruction information (which pertains to real-address mode) is no longer valid. A JMP forces the
processor to discard the invalid information. An intrasegment JMP will cause the processor to drop the
four high-order address lines; however, in protected mode this is not a problem. All addressing in
protected mode uses the 24-bit base address from the segment descriptor; so, once in protected mode,
all of physical memory is accessible.
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INITIALIZING FOR PROTECTED MODE

You can do most of the initialization needed for protected mode either before or after switching into
protected mode. If done after, however, you must be careful to order the code so that it does not use
protected mode features that require initialization that is not yet completed.

Interrupt Vector

The initial state of the 80286 leaves interrupts disabled; however, to ensure a predictable action in case
an exception or non-maskable interrupt (NMI) occurs, it is a good idea to initialize the IDT register.
Since it is unlikely that the NMI interrupt handler or any exception handler has been initialized, the
most appropriate value to load into the IDT register is zeros, thereby guaranteeing a shutdown should
an interrupt happen. (The 80286 signals shutdown externally as an indication of a severe problem.)
Later, when interrupt service routines are ready, you can change the IDT register to point to an actual
IDT that contains gate descriptors for the interrupt routines. Interrupts may be enabled at that time.

Stack

Before you perform any stack operations, whether in real-address mode or in protected, virtual-address
mode, you must load the SS register with a descriptor to a stack segment in RAM. If the SS register
is loaded in real-address mode, it continues to point to the same segment after the switch into protected,
virtual-address mode.

Global Descriptor Table

Before you change any segment register in protected, virtual-address mode, the GDT register must
point to a valid GDT.

The GDT (as well as LDTs) should reside in RAM because the processor modifies the accessed bit of
descriptors. .

To allow full 16-megabyte addressing in the initialization code, you may find it convenient to build a
temporary GDT that contains only enough descriptors to permit the initialization procedure to read
the GDT segment from ROM or from a bootloadable module. After placing the real GDT into RAM,
you can change the GDT register.

STARTING FIRST TASK

The initialization procedure can run awhile in protected mode without initializing the task register;
however, before the first task switch, two conditions must prevail:

e There must be a valid task state segment (TSS) for the new task. The register fields of the TSS
should have appropriate values, the segment register fields must point to valid segments or be null,
the stack pointers for privilege levels numerically less than or equal to the initial CPL must point
to valid stack segments, the LDT pointer must point to the GDT entry for a valid LDT (or be null
if the task does not use an LDT) and, just as insurance, the back link of the TSS should be null.

» The task register must point to an area in which to save the current task state. After the first task
switch, the information dumped in this area is not needed, and the area can be used for other
purposes.
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Starting the first task is simply a matter of executing a long JMP via the descriptor of a TSS or via a
task gate to that descriptor. This task can perform any remaining initialization work while enjoying the
full protection and virtual-address features of the iAPX 286, the state assumed by the development
tools. :

EXAMPLE OF INITIALIZATION

The following figures present a detailed example of one way to initialize a protected, virtual-address
mode system. This example includes assembly language modules that work in conjunction with Builder
specifications.

Figure 10-1 shows the primary initialization module ENTP (ENTer Protected mode). This module puts
the 80286 into protected, virtual-address mode and invokes the first task constructed by BLD286. You
use a module such as ENTP by binding it with other modules (presumably those constituting the
operating system and the initial task) that you intend to place in EPROM.

The module SEGS shown in figure 10-2 supplies dummy segment descriptions for ENTP. The program
INIT shown in figure 10-3 serves as the initial task. It merely displays a message when initialization is.
complete.

Initialization Module ENTP
The steps that ENTP takes are to

¢ Switch into protected mode

e Create a temporary GDT

» Create an IDT and GDT copy in RAM from tables in EPROM

* Point the CPU to the RAM tables

« Copy all the TSSs and LDTs identified in the GDT from EPROM to RAM
* Update the RAM GDT to point to the RAM copies .

¢ JMP to the initialization task in the GDT

The initializations immcdiatefy following RESET_STARTUP are redundant. They simulate the
hardware RESET initializations in case of a software reset or in case of a branch to
RESET_STARTUP during debugging.

INITIAL_GDT is a temporary GDT containing descriptors for the IDT and the main GDT in EPROM
(the one constructed by BLD286). Since the symbols for these descriptors, GDT_DESC and
IDT_DESC, are PUBLIC, the Builder can insert the actual base and limit values into the table.

The code in segment ENTP_CODE is self-relocatable. In an EPROM-based system, you would specify
to the Builder the actual address of the segment ENTP_CODE, making sure that the entry point
resides at physical address FFFFFOH.

ENTP assumes a specific format for the GDT constructed by BLD286. The first two descriptors are
the data-segment aliases for the GDT and the IDT. The remaining descriptors are grouped according’
to the template defined by TASK_ENTRY. Three adjacent descriptors identify the key segments of
each task. ENTP adapts at run time to the actual number of such groups in the GDT. The task that
ENTP initiates is identified by a fixed position in the GDT.
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iAPX286 MACRO ASSEMBLER Enter Protected Mode 360-514 date PAGE

system-ID iAPX286 MACRD ASSEMBLER VX.Y ASSEMBLY CF MODULE ENTP
OBJECT MUDULE PLACED IN :F1:ENTP.C3BJ
ASSEMBLER INVOKED 3Y: ASM2B6.86 IF1:ENTP.ABS

-0l

100-096t21

Loc 08y LINE SOURCE
1 +1 STITLE(“Enter Protected Mode 960-5167)
2
3 NAME ENTP
4 . PUBLIC IDT_DESC,GDT_OESCySTART
S H
6 H Switch the 80285 from real 3address mode into protected mode.
7 H The initial EPRIM GDT, IDT, TSSs and LDT (if any) constructed by B8LD286
8 H are copied from EPROM into RAM. The RAM areas are defined by data
9 H segments allocated as fixed entrizs in tha GDOY. The CPU registers for
10 H the GDT, IDT, TSS, and LCT ar2 set to point at the RAM hased
11 H segments. The base fields in the RAM GDT are also updated to
12 H point at the RAM based segmants.
13 H
14 H Interrupts are disabled during this mod2 switching code.
15 H The EPROM hasad GOT, ICT, TSSy and LDT are checked to assure
16 : they are valid hefore copying them to RAM. If any of the RAM-based
17 H alias sagments ara smaller than the EPRIM segments they are to hold,
18 H halt or shutdouwn occurs. In general any exception or NMI causes
19 H shutdown to occur until the first task is invoked.
20 H
21 H If the RAM segment is larger than the EPROM segment, the RAM segment
22 H is expanded with zeroes. If the initial TSS specifies an LDT,
23 H the LOT is also copied into LDT_ALIAS with zero fill if needed.
24 H The EPROM or RAM based GDT, IDT, TSS, and LDT segments may be located
25 H anyuwuhere in physical memory.
26 :
27 +1  SEJECT
28 ;
29 H Define layout of a descriptor.
30 H
—— 31 DESC STRUC
0000 32 LIMIT DW 0 3 ODffset of last byte in segment
0002 33 BASE_LOW DW 0 : Low 16 bits of 14-bit address
0004 34 BASE_HIGH 08 0 $ High 8 bits of 24-bit address
0005 35 ACCESS +]-] 0 3 Access rights byte
0006 36 RES Ou ¢ $ Reserved word
——— 37 DESC ENDS
38 ;
39 H Define the fixed GDY selector values for the descriptors that
40 H define the EPROM based tables.

Figure 10-1. Initialization Module ENTP
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S-01

100-09612}

1APX286 MACRO ASSEMBLER
Loc 08y

0008
0010
0018
0020
0028

0001

0082
0092

0081
0060
0001
0004
002C
002A
0007

FE10
01E0
01€0 E969FE

0000

0000
0000 0000

Enter Protected Mode 960-516

LINE

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
85
56
67
68
59
70
71
72
73
74
75
76
17
18
79
30
31
82
93
34
35

+1

SJURCE

GDT_ALIAS
IDT_ALIAS

START_TSS_ALIAS

START_TASK

EAQU
EQU
EQU
EQU

START_LDT_ALIAS EQU

et o0 wo T wo ws o
m

EQU

1%SIZE
2%SILE
3%SIZE
4%STZE
S%SIZE

1

DESC
0ESC
DESC
DESC
DESC

as vo et ws o

Define machine status word bit

.
’

date PAGE

GDT(1) is data segment space for GDT
GDT(2) is data segment space for IDT
GDT(3) is data segment space for TSS
GOT(4) is TSS for starting task

GDT(5) is data segment space for LDT

positions.

Protection enable

Define particular values of descriptor access rights byte.

DT_ACCESS EQuU 82H $ Access byte value for an LOT
OS_ACCESS EQU 92H ¢ Access byte value for data segment:
:+ expand up, level 0, writeable
TSS_ACCESS EQU 81H 3 Access byte value for an idle 7SS
DPL EQU 60H 3 Privilege level field of access rights
ACCESSED EQU 1 t Define accessed bit
TI EQU 4 ¢ Position of TI bit
TSS_SIZE EQU 44 3 Size of a TSS
LOT_OFFSET EQU 42 : Position of LDT in TSS
TIRPL_MASK EQU SIZE DESC-1 ; TI and RPL field mask
SEJECT
H Pass control from the power up address to the mode switch code.
H The sagment containing this code must be 2t physical addrass FFFELOH
H to place the JMP instruction at physical addra2ss “FFFF0H. The base
H address is chosen according to the size of this segment.
H
ENTP_CODE SEGMENT ER
CS_OFFSET EQU OFE10H s Low 16 bits of starting address
ORG OFF=QH-CS_CFFSET: Start at address FFFFFOH
JMP RESET_STARTUP ;s Do not change CSt

*s wo we we we o0

INITIAL_GOY
NULL_DESC

GDT and stack.

ORG

LAaBEL
DESC

0

WCRD
<>

Cefine the template for a temporary GOT used to locate tha 1nitial
This data is copied to location 0.

This space is also used for a temporary stack and finally serves

as the TS$S written into when esntering the initial TSS.

Place remaining code below power_up
address

.
.

;s Filler and null 107 descriptor

Figure 10-1. Initialization Module ENTP (Cont’d.)

NOLLVZITVILINI N3LSAS



9-0t

100-09612}

iAPX286 MACRD ASSEMBLER

Loc

0002
0004
0005
0006

~0008

000A
oooC
000D
000€E
0010
0012
0014
0015
0016
0018
001A
001C
001D
001E

0020.

0022
0024
0025
0026

0028
002A
002C
0020
002E

0030

3F00
0000
00
92
0000

3F00
0000
00

0000

(¢:]

Enter Protectad Mod: 360-516 ) date
LINE SJURCE
3¢ GDT_DESC CESC <> : Descriptor for EPROM GOT
87 IDT_D=SC BESC <> ;s Cescriptor for EPROM IDT
88 TEMP_DESC DESC <> ) : Temporary descriptor
89 H
30 H Define a descriptor which points the GCT at location Q.
31 H "This descriptor is also loaded into SS to define the initial
92 H protected mods stack segmant.
93 H
94 TEMP_STACK CESC CENC_GDT-INITIAL_GDT-1,40,0,2S_ACCESS,0>
95 +1 SEJECT
36 H
17 H Cefina the TSS descriptor used to allow the task switch to the
98 H first task to overwrite this region of memory. The TSS overl»ys
99 H the initial GOT and stack at location 0.
100 H
101 SAVE_TSS DESC <END_GOT-INITIAL_GDT-1,0,0,TSS_ACCESS,0>
102 H
103 H Define the initial stack space and filler for the end of the TSS.
104 H
105 DW 8 DUP (D

PAGE

Figure 10-1. Initialization Module ENTP (Cont’d.)
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100-096121

iAPX286 MACRD ASSEMBLER

Loc

0040

0040
0040
0042

0000
0002
0004

0044
0046
0048
004A

004C
004C
004D
004E
0050
0052
0054
0056

0059

0059
00s5C
005C
0050

0060

oBJ

0000
)

0000
2000

2000
1800
2800
0000

FA

FC
33FF
8EDF
BECT
8€07
BC4000

£30000

5D
83EDSC

2E0F015E200

Enter Protected Mode 960-516

LINE

106
107
108
109

110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

+1

SOURCE

END_GDT

START_POINTER

xR

*
TASK_ENTRY

Define template

date PAGE
LABEL WORD
LABEL DWORD
DW 0y START_TASK 3 Pointer to initial task

for the task definition list.

STRUC s Define layout of task description
TSS_SZL oW ? 3 Selector for T¥SS
TSS_ALIAS OW ? ;s Data segment alias for TSS
LOT_ALIAS DW ? ; Data segment =2lias for LDT if any
TASK_ENTRY ENDS
TASK_LISTY TASK_ENTRY CSTART_TASK,START_TSS_ALTAS,START_LDT_ALIAS>
DW 0 : Terminate list
RESET_STARTUP:
CLI1 s No interrupts allowed!
cLo s Use autoincrement mode
XOR 01,01 3 Point ES:DI at physical address 000000H
MOV DS,DI
MOV ES,DI
MOV SS,01 s Set stack at end of reserved area
MOV SPyEND_GDT-INITIAL_GDT
$SEJECT
H Forn an adjustment factor from the real CS hase of FFO0DCH to the
H segment base address assumed by ASM286. Any .data referance mada
H into €S must add an indexing term [2P] to compensate for the differzsnce
H betuween the offset generated by ASM286 and th: offset required from
H the hase of FFOO0OH.
H
START PROC 3 The value of IP at run time is not
H the same as used by ASM285!
caLL START1 i Get truz offset of START1
START1:
POP 14
sus 8P, JFFSET START1 : Subtract ASM286 offset of START1
H leaving adjustment factor in 8P
LIDT NULL_DESCCBP] 3 S2t up null IDT to forcz shutdown
;

on any protection error or interrupt

&

Figure 10-1. Initialization Module ENTP (Cont’d.)
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100-096121

iAPX286 MACRO ASSEMBLER

Loc

0055
0068
0068
006C

006E
0071
0074
0077

0079
007E
0081
0083
0085

0088
0088

008E
0092

0095

0097
0094
0090
00A0
0043
00As
00A9
00AC

08y

807600
832000
F3
2EAS

OFOD1ED
000100
OF01F0
EBOO

2EOF015620
882000
8EDO

33C0
0F00DO

882800
0F00D8

2E884608
3D2F00

723¢C

880800
BEO080O
E8D60O
BE1000
881000
ESCD00
880800
B8EDS

LINE

147
148
149
150
151
152

153
154
155
156
157
158
159
150
161
162
163
154
165
156
167
168
169
170
171
172

173
174
175
176
177
178
179
130
181
182
183
184
185
186
187
188
189
130

+1

SoulkCs

o s o0

LEA
MV
RZP M3VS

TR TR

SMSW
oR
LMSW
NP

LGOT
Mav
MOV
XJR
LLOT

MoV
LTR

m
[
m
o
-

IR TIETERY

MOV
CMP

J3

MJV
MOV
CaLL
MOV
M3V
CALL
MOV
MOV

Enter Protectad Mode 963-516

Copy the EPROM-based temporary

ST, INITIAL_GDTL3P]

CXy»CEND_GDT-INITIAL_GDTY/2
ESSWORD PTR [DIJ,CS:LSIT

AX
AX4PE
AX
$+2

TEMP_STACKL3P]

307

s ab o0 w0 ws e v

AXy TEMP_STACK-INITIAL_GOT

SSsAX
AXyAX
AX

AXySAVE_TSS~INITIAL_GOT
ax

AX9GDT_DESCLBPL.LIMIT
AXy6%SILE DESC-1

BAD_GDT

BX,GDT_DESC-INITIAL_GOT
SI,GDT_ALIAS
COPY_EPROM_DT

ST, IDT_ALIAS

BXs IDT_DESC-INITIAL_GDT
COPY_sPROM_DT
AX,GDT_DESC-INITIAL_GOT
DSy AX

PO TR

s ws e e

0 @0 we 9o we

.
v

date PaGS

into RAM,

Setup pointer to GOT
Set length
Put into reservad RAM

. wo o

Switch to protected mode and set up a stack, 30T, and LDT.

Get current MSW

Sat PE bit

Enter protectad moda!

Clear queue of ipstructions decodad
while in Real Address Mode

"CPL is now 0, €S still points at

FFFEL10 in physical mamory

Put initial GDT into RAM area

Setup 5SS with valid protected mode
selector to the RAM GOT and stack

t the current LOT to null

y references to it causes

an exception causing shutdown

Set initial TSS into the low RAM

The task switch needs a valid TSS

Copy the SPROM based GDT into the RAM data segment alias.
First the descriptor for the RAM data segment must be copied into
the temporary GOT.

Get size of GOT

Be sure the last entry expected hy
this code is inside the 5OT

Jump if GDT isn”t big enough

Form selector to EPROM GDT
Get selector of GDT alias
Copy into EPROM

Get salector of IDT alias
Indicate ZPROM ICT

Set up addressing into EPRCM GOT

5

Figure 10-1. Initialization Module ENTP (Cont’d.)
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L00-0961Ct

1APX286 MACRO ASSEMBLER

Loc

Q0AE
0081

0084
0087
0087
008A
008D
ooco
goc2

00C4
00C?
00C9
oocc
00CF

0003
0003

0004
00D4
0005

000s
ooos
000DA
00DE
00EO
00E3
00E6
00E9

084

880800
0F0117

BDSE44

E81800
83C306
2E8807
08CO
T5F3

880800
8EDB
881000
O0F011F
2EFFG6E40

F&

F4

BE0BOO
8EDE
2E8BT702
BEC6
0F03Cs
2E8B37
0F0206
T5€9

Enter Protected Mode

LINE

191
192
133
134
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

229

230
231
232
233
234
235
236

+1

SOURCE

MV
LGOT

PYECTIRYY

LEA

960-515

EXsGDT_ALIAS
€3x3

BXy TASK_LISTLBPY

COPY_TASK_LJOP:

caLL
ADD
MOV
oR
JNZ

With

MOV
MoV
Mav
LIDT
JHP

BAD_GDT:
HLT

START ENDP
$zJSCT

;

H Copy
H If the
H 8X and
: .
L

AD_TSS:
HLT
CIPY_TASKS

Mov
MOV
MOV
MOV
LSL
MoV
LAR
JNZ

COPY_TASKS

BXySIZE TASK_ENTRY
AXsCS:CBXI.TSS_SEL
AX pAX
COPY_TASK_LDOP

POIRY IS

. wr o

TSSy GDT, and LDT set, start

8X,GDT_ALIAS
DSe8X

BX» IDT_ALIAS

£B8x3
START_POINTERCBP]

et w0 ws we @0 -

date PAGE

Get GOT alias data segment selector
Set GOT to RAM GOT
SS and TR remain in low RAM

Copy all task®s 7SS and LDT segments into RAM

Define list of tasks to set up

Copy them into RAM
Go to next entry
See if there is another entry

up the initial task!
Point DS at GDT

Get IDT alias data segment selector

Set IDT for errors and interrupts

Start the first task!

The low RAM area is overwritten with
the current CPU context

Halt here if GDT isn®t big enough

the 7SS and LDT for the task pointed at by CS:BX.
be copied down, too.

task has an LDT it will
8P are transparent.

PROC

STyGDT_ALIAS

05,51
SI,CS:CBXJ.TSS_ALIAS
ESySI :

AXoSI
SI,CS:C8X].TSS_SEL
DXySI

BAD_TSS

.

. 00 ws ws es w

Halt here if TSS is invalid

Get addressability to GDT

Get selector for TSS alias
Point ES at alias data segment
Get length of TSS alias

Get TSS selector

Get alias access rights

Jump if invalid raference

6

Figure 10-1. Initialization Module ENTP (Cont’d.)
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NOILVZITVILINI N3LSAS

100-096124

1iAPX286 MACRO ASSEMBLER Enter Protected Mode 960-516 date PAGE
LoC 08y LINE SQURCE
00EB 8ADS 237 MOV DLy DH ;s Save TSS descriptor accass byte
O0ED 80E&9F 238 AND DH4NOT DPL 3 Ignore privilege
00F0 BOFESB1 239 CMP DH, TSS_ACCESS  See if TSS
00F3 TS5DF 240 INZ BAD_TSS s Jump if not
241 :
O0F5 OFO03CE 242 LSL CXySI s Get length of EPR3M based TSS
00F8 83F928 243 CcMP CXyTSS_SIZE-1 $ Verify it is of proper size
00FB T207 244 JB BAD_TSS s Jump if it is not big enough
245 H
246 H Setup for moving the EPROM based TSS to RAM.
247 H DS points at GDT.
248 H
00FD C6440592 249 MOV CSIJ.ACCESSyDS_ACCESS $ Make TSS into data segment
0101 BEDE 250 MOV DS,SI ; Point DS at EPROM T§S
0103 £89800 251 CALL COPY_WITH_FILL 3 Copy D0S.segment to £S5 with zero fill
252 $ C€X has copy county AX-CX fill count
253 H
254 H Set the GOT 7SS limit and base address to the RAM values.
255 H
0106 880800 256 Mav AXyGDT_ALIAS i Restore GOT addressing
0109 8€£D8 257 MoV DS, aX
0108 8ECO 258 MoV €SyAX
010D 2E8B3F 259 M2V DI,CSSC3XJ.TSS_SEL ¢ Get TSS selector
0110 2E8BT702 260 MoV STyCSICBX1.TSS_ALIAS ¢ Get RAM alias selector
0114 AS 261 MOV SW : Copy limit
0115 AS 262 MJIVSH s Copy low 16 bits of address
0116 AD 263 LODSW . : Get high 3 bits of address
0117 BAE2 264 MOV AH,DL v 3 Mark as TSS descriptor
0119 AB 265 STOSW $ Fill in bhigh address and access bytes
011A AS 266 MIVSH ;s Copy reserved word
267 +1 SEJECT
268 H .
269 H See if a valid LDT is specifiesd for the startup task.
270 H If so then copy the EPRDOM varsion into the RAM alias.
2711 H
0118 2EBESFO02 272 Mov DSyCSCBXITSS_ALIAS ? Address TSS to get LOT
011F 8B362A00 213 MOV SI,DS:WORD PTR LOT_OFFSET
0123 B1lE6F8FF 274 AND SI,NOT TIRPL_MASK s Ignore TI and RPL
0127 T44l 275 Ji NO_LDT ;i Skip this if no LOY used
216
0129 56 277 PUSH SI 3 Save LDT selector
012A OF02D6 278 LAR DXy SI t Test descriptor
0120 753C 2719 JNZ BAD_LDT $ Jump if invalid selector
280
012F BAD6 231 M3V DL,0OH 3 Save LDT descriptor access byte
0131 BOE69F 282 AND CHyNOT DPL 3 Ignore privilege

Figure 10-1. Initialization Module ENTP (Cont’d.)
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100-096121

iAPX286 MACRO ASSEMBLER

Loc

0134
0137

0139
013€
0140
0143
0146

0148
014C
014€E
0151
0154

0157
0158
015C
015F
0161
0163
0164
0165
0166
0168
0169
016A
0164
0168
0168

016C

016C
016

o8y

B8OFEB2
7532

2606440592
8EDE
0F03C6
E82600
8BC8

2EBBT704
BEC6
0F03Cé
EB1800
E84A00

2E8BTT04
5F
880800
8EDS
8ECO
AS

A5

AD
8AE2
AB

A5

c3

Fé

50
2407

Enter Protected Mode 960-516

LINE

283
284
285
286
287
288
239
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

+1

SOURCE

cMp
JNE

MoV
nov
LSL
CALL
MDV

Examine

* ot e

Mav
MOV
LSt
CALL
CALL

Set the

. w0 wo

M3V
P3P
Mav
MOV
Mav
MIVSH
MOVSH
LODSW
MOV
STOSW
. MOVSH
NO_LET:
RET
BAD_LOT:
HLT

COPY_TASKS
$EJECT

DHyDT_ACCESS
8AD_LDT

ES:CSIJ.ACCESSyDS_ACCESS

DS, SI
AXyST
TEST_OT_LIMIT
CXyAX

the LOT alias segment and,

ST,CS:CBXJ.LDT_ALIAS
ESeSI

AXySI

TEST_OT_LIMIT
COPY_WITH_FILL

.s 9o ws wo 00

date PAGE

Be sure it is an LDT descriptor
Jump if invalid

Mark LDT as data segment
Point DS at EPROM LDT
Gat LOYT limit

Verify it is valid

Save for later

if good, copy to RAM.

Get LDY alias salector

Point ES at alias segment

Get length of alias segment
Verify it is valid

Copy LDT into RAM alias segment

LDOYT limit and base addrass to the RAM copy of the LODT.

SISCS:IBXJ.LDT_ALIAS
124

AXyGDT_ALIAS

DSy AX

ESyAX

AH, DL

ENDP

RIRIRIRTET

Restore LDT alias selector
Restore LOT selector
Restore GJOT addressing

Move the RAM LDT limit

Move the low 16 bits across

Get the high 8 bits

Mark as LDT descriptor

Set high address and access rights
Copy reserved word

All done

Halt here if LDT is invalid

Test the descriptor table size in AX to verify that &t is an
even number of descriptors in length.

;
TEST_DT_LIMIT

PUSH
AND

PROC

AX
ALy 7

Save length
Look at low order bits

Figure 10-1. Initialization Module ENTP (Cont’d.)
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100-096121

1APX286 MACRO ASSEMBLER

Lac

016F
0171
0172

0174
0175
0175

0176 .

0176

0178
017A
01TF
0185
o188
018A
018D
0190
0192
0195
0196
0197

0139A

0198
019C
019D
019€
019F

08J

3co7
58
7501

c3

Fé4

8Ccoo

8ECO
26C64T0592
26CT4T7060000
0F03C3
88C8
EBDFFF
8F0800
8EDF
BF1800

57

AD

ES8D2FF

AB
AS
A5
AS
07
8EDB

Enter Protected Mode 960-516

LINE

328
329
330
331

332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
37¢
3N
372
373

+1

SQURCE

cMP
PoP
JNE

RET
BAD _DT_LIMIT:
HLT

TEST_OT_LIMIT

€Y oo o oo vt o

OPY_ZPROM_DT

MoV
MOV
Mav
MJV
LSt
MOV
CALL
Mov
MOV
M3V
PUSH
LODSW
CaLL

STosW
MIVSH
MOVSH
MIVSW
paP
MoV

CaPY_SPROM_DT
$EJECT

.s es oo wo

AL,7
AX
BAD_DT_LIMIT

ENDP

cause shutdownt

PRCC

AXeSS
ESsAX

ESICBX).ACCESS,DS_ACCESS

ES:CBXJ.RES,O
AXy8X
CXygAX
TEST_DT_LIMIT

DI,GDT_DESC-INITIAL_GDT

DS,DI

DI, TEMP_DESC-INITIAL_GOT

oI

‘TEST_DT_LINMIT

ES
DSy 3X

ENCP

. oo

.

date PAGE

Must he all ones
Restore length

All OK

Die!

Copy the EPROM DT at selector BX in the temporary GDT to the alias
data segment at selector SI.

Any improper descriptors or limits

. et we vs vo

Point ES:DI at temporary descriptor

Mark descriptor as a data saegment
Clear reserved word

Get limit of ESPROM DT

Save for later

Verify it is a proper limit
Address E£PROM GOT in 0OS

Get selector for temporary descriptor
Save offset for later use as selector

Get alias segment size

Verify it is an even multiple of
descriptors in length

Put length into temporary

Copy remaining entries into temporary

ES now points at the GDT alias area
DS now points at EPROM DT as data
Copy segment to alias with zero fill
€CX.is copy count, AX-CX is fill count
Fall into COPY_WITH_FILL

Copy the segment at DS to the segment at £S5 for length CX.
Fill the end with AX-CX Zzeroese.
allow odd byte operations.

Use word operations for speed but

Figure 10-1. Initialization Module ENTP (Cont’d.)
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100-096121

iAPX286 MACRO ASSEMBLER

LoC a8y LINE
374
01A1 375
376
01A1 33Fé6 3717
0143 33FF 3718
01A5 28C1 379
01A7 83C101 380
01AA D1D9 381
01AC F3 382
01AD AS
01AE 91 383
01AF 7307 384
385
01B1 A4 386
01B2 08BCY 387
0184 7409 388
339
0186 AA 390
01B7 49 391
0188 392
0188 D1E9 393
01BA F3 394
0188 AB
018C 7301 335
: 336
01BE AR 397
018F 398
018F C3 399
400
401
402
-—— 403
*%% WARNING #160, LINE #403,
404
ASSEMBLY COMPLETE, 1 WARNING,

Enter Protected Mode 360-516

SOURCE

COPY_WITH_FILL

X3ar
XQOR
sus
ADD
RCR
REP MIVSHW

XCHG
JINC

MOVSS8
ORr
Jz

STCSB
DEC
EVEN_COPY:
SHR
REP  STOSHW

JINC

sT0s8
EXIT_COPY:

RET
COPY_WITH_FILL

ENTP_COCE

NO ERRIRS

PROC

SI,SI
DI,DI
AX,CX

CXy1
CXyl

AX,CX
EVEN_COPY

CXyCX
EXIT_COPY

X

CX,1

EXIT_COPY

ENDP

ENDS

SEGMENT CONTAINS PRIVILEGED INSTRUCTIONS

END

e oo 20w

. e * o0 .

date

Start at beginning of segments
Form fill count

Convert limit to count

Allow full 64X move

Copy DT into alias area

Get fill count and zero AX
Jump if even byte count on cdpy

Copy odd byte
Exit if no fill

Even out the segment offset
Adjust remaining fill count

Form word count on fill
Clear unused words at end

Exit if no odd byte remains

Clear last odd bhyte

PAGE

10

Figure 10-1. Initialization Module ENTP (Cont’d.)
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100-09612t

1APX286 MACRI ASSEMBLER

DIFINZ

SEGMENTS NZE2ED

system=ID jAPX286 MACRO ASSSM3LIR VX.Y ASSEMELY

JBJECT MDDULE PLACED IN
ASSEMBLER INVDKED 3Y:2

LoC o08J

5 o
0000
i
3
i

222?

ASSEMBLY COMPLETE,

-
-
Z
m

OV~ WS WA=

-

11
12
13
14

15
16
17
13

19
20
21
22

23
24
25

+1

KO WARNINGS,

SF1:SEGS.03Y
tF1:ASM285.86 :F13526GS5.A85

SIURCE
STITLEC"DEFINE
NAME
INIT_STACKO
INIT_STACKO

LOT_S:6

LOT_SEG

T3SS_SE6

TSS_SEG

I0T_S36

12T_SE6G

GDT_SEG

GDT_SZ6
END

NC ERRCRS

EQR INIT

OF MCDULE STGMENT_DEF

SEGMENTS NEEDED FCR

SEGMENT _

SEGMENT
Dw

ENDS
SEGMENT
(o]

ENCS
SEGMENT
O

ENCS
SEGMENT
Cw

ENODS
SEGMENT
OwW

ENCS

clte

D:iF
RiA

?

RW
8 CUP (2)

RW
8 Cup (2)

RW
8 DUP (?2)

R
8 DUP (2)

date PaAG S

INIT CODE7)

3 Define stack so mode switch code can
$ run in protected wmode

Define alias sagments whosa true
size must hbe set by the BLL28S

P

¢ command file

Figure 10-2.

Dummy Segments for ENTP
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100-096121

1APX286 MACRD ASSEMBLER

systen-1D

Loc

0000

0000

0018
0019
001A

0018
0018
001E
001F
001F
0021
0023

0025
0026
0028
002D
002D

*3%x WARNING #1560,

oBJY

496E697469616C
69TA61T4696F6E
20436F6DT06C65
746521

oD

0A

00

BE00OO
FC

2EAC
0ACO
7408

50
9A0000---~
EBF2

Fé4

ASSEMBLY COMPLETE,

LINE #31,

INITIAL TASK

LINE

[
QOO S WN-

- e
vt W e

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

1 WARNING,

+1

SF12INIT.OBJ
IF13ASM286.86 :F1IINIT.ABS

SOQURCE

date

iAPX286 MACRD ASSEMBLER VX.Y ASSEMBLY OF MODULE INIT_MOD
OBJECT MODULE PLACED IN
ASSEMBLER INVOKED BY:

STITLEC INITIAL TASK?)
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CHAPTER 11
BINDING AND LOADING

Binding is the process of converting symbolic references into an implementation that the processor can
utilize. The binding process spreads across many stages of software development, including source
code, translators, binding utilities, loaders, and execution itself. Intel’s program development tools include
features that perform much of the needed binding. In some static systems no additional binding may
be needed. In dynamic systems, however, you may choose to incorporate some binding functions in the
operating system and related software in order to create a style of binding appropriate for the dynamic
nature of your application.

BINDING MODEL

To ensure that the binding process works correctly, it is a good idea to start with a model of the system
structure you wish to achieve. A binding model includes these factors:

¢ Modules—dividing programming into compilation units

¢ Segmentation—distributing instructions and data of modules among physical segments

¢ Interfaces—specifying the connections among modules

. gamir;g—-choosing names for modules, segments, and interfaces, avoiding ambiguity but promoting
exibility

» Timing—determining when to bind various types of symbolic references

As an example of a binding model, assume that the example modules presented in prior chapters
constitute a complete operating system, called XOS, and apply each of these factors to XOS.

Modules
The criteria used to separate functions into modules may include

¢ Comprehensibility. Each module collects together functions that support a single operating system
concept of limited scope (for example, aliases, synchronization).

¢ Information hiding. Each module implements a data structure (for example, the alias lists in the
ALIAS module) that you can manipulate only by calling the procedures defined in the module for
that purpose. Other modules cannot access the data structure.

¢ Independent development. You can choose modules so that each can be developed by a different
programmer. Points of cooperation and communication among programmers include only the speci-
fied interfaces among modules. Minimizing the number and complexity of interfaces reduces project
administration costs.

s Structured testing. Testing of the whole system is simpler when you choose modules so that each
can be tested by itself, before testing its interactions with other modules.

« Flexibility. When you can anticipate changes to the system, you can limit the effects of the changes
on other modules by isolating the areas of expected change in a module.

Only the first of these criteria is significant to XOS, but all may be applicable to your operating system
design.
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Modules are relevant to binding in that they (indirectly) define the units that can be distributed among
physical segments. A module is a single compilation unit. Intel’s translators divide each compilation
unit into logical segments. Each logical segment is a named object that can be assigned to a physical
segment. You can use the development tool Binder to combine more that one logical segment into a
physical segment.

Segmentation
Protection requirements partially dictate how to distribute modules among physical segments:

¢ Data and procedures of different privilege levels must reside in different physical segments.

» Data and procedures of one task must reside in different segments from those of other tasks unless
sharing is explicitly intended.

» Instructions must reside in different physical segments from writable data items.

¢ Data structures for which you wish to provide individual protection (for example, the semaphores
and mailboxes discussed in Chapter 5) must each be in a separate segment.

Operating system procedures that have the same privilege level and are shared via the GDT can be
combined in just one segment (assuming that the total size does not exceed 64K bytes). In fact, doing
so has two advantages: all intermodule calls can be implemented as short CALL instructions, avoiding
the additional processing associated with changing the contents of the CS register, and more GDT slots
are available for other purposes. Of the procedures in XOS, the level-zero procedures presented in
Chapters 3 thru 5 can be combined in one segment, while the level-one I/O interface procedures can
go in another segment. Each device-driver task has its own code, data, and stack segments.

Interfaces
Possible mechanisms for implementing the interfaces among modules are

» Intrasegment (short) references. References to data or procedures in the same segment are most
efficiently implemented when you can use the current contents of a segment register.

« Intersegment (long) references. References to data or procedures in a segment not currently indicated
by one of the segment registers must cause a segment selector to be loaded into a segment register.
Intersegment references permit sharing of functions among many modules and permit access to
functions at another privilege level. '

» Sharing by value. Procedures and data can be shared by including a copy of the data or procedures
in the same unit (segment or task, as appropriate) as each procedure that uses them. While this
approach can yield more efficient execution in some cases, it has limited applicability. It is usually
best to share dynamically changing data by name, so that all the procedures that use it can obtain
the most up-to-date version. Sharing large or widely used data or procedures by name uses main
memory more efficiently.

¢ Sharing by name. The “name” referred to here is the descriptor of the shared data or procedure.
Chapter S discusses methods of sharing by name (namely GDT, common LDT, and aliases).

In XOS, all tasks share the segments of the kernel and I/O-interface segments via the GDT. Applica-
tions procedures use long calls to access the primitives in these segments. Calls within the kernel level
or within the I/O level to private procedures at the same level are short calls.
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Naming

The names by which you reference the components of a system influence the way the system can be
bound. Classes of names over which you have some degree of control are

e Modules. Builder uses the name of a module to represent all publics or all segments within the
module. Debuggers use module names to qualify identifiers of variables and procedures.

e Logical segments. The choice of logical segment names determines the possibilities for segment
combination. Binder combines logical segments that have the same name as well as compatible
combine-types.

» Physical segments. The names of physical segments give you the ability to assign segment attributes
individually using the Builder.

e Publics. Public identifiers must be unique among the modules that are bound together.

e Gates. Gate names identify the entry points to procedures. You can use gate names to give entry
points different public names than those used in the source language.

Timing

With respect to time, you can rate bindings on a scale running from early to late. An example of early
binding is a compiler’s assignment of segment-relative locations to procedures and data. The latest
binding is that accomplished by the processor as it adds a segment-relative location to the 24-bit base
address of the segment. Between these extremes are other opportunities for binding:

» Post-compile-time. Through Intel’s utilities Builder and Binder, you can combine segments, resolve
intersegment references, allocate descriptor table slots, and allocate memory.

¢ Load-time. The loader can incorporate various levels of binding.

a. If the object module contains fix-up information (as in a linkable module), the loader can bind
all references as it loads the segments of a task.

b. The call gates of the iAPX 286 architecture make it possible for the loader to efficiently resolve
references to predefined classes of procedures (to operating system primitives, for example) at
the time a program is being loaded. This chapter presents an example of this form of load-time
binding in a later section.

* Run-time. Call gates also permit binding to an executable segment at the time it is first referenced.
By resetting the present bit in a call gate to an unloaded segment, you ensure that a trap will occur
when the gate is used. The “not present” trap handler can then load the required segment, allocate
a descriptor for it, and fix up the call gate.

IMPLEMENTING ACCORDING TO THE MODEL

With a binding model in mind, consider how to implement that model during the various stages of
system development: in source code, by translators, by binding utilities, by loaders, by the operating
system, and finally by the processor itself.
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The model behind the example operating system, XOS, includes these components:

¢ Each module contains functionally related data structures and procedures.

* One segment contains level-zero (kernel) procedures, another segment contains level-zero data,
another segment level-one (I/O) procedures, and another level-one data. Operating system tasks
(such as device drivers) have their own distinct segments.

e The GDT contains descriptors of kernel and I/O segments, making them sharable by all tasks.
Gates for operating-system primitives, however, reside in the LDTs of the tasks that use them.

¢ The segment names created by PL/M-286 set the standard for segment naming in general. (Refer
to the chapter entitled “Linking to Modules Written in Other Languages” in the PL/M-286 User’s
Guide for definition of PL/M-286 segment names).

e ' Tasks will be loaded dynamically.

¢ Load-time binding to XOS primitives is an option. (This is one reason for placing gates for operating-
system primitives in LDTs.)

Source Code

Since some of the logical segments declared in assembly language may be combined after assembly by
the Builder, the assembler needs to know whether the object of an external reference will be in one of
those segments whose descriptors it ‘assumes to be loaded in segment registers. If the reference is to
another segment, the assembler must emit instructions that change the contents of a segment register.
The programmer supplies this information via additional assembly language syntax. A variety of forms
are available for this purpose, such as

SEGMENT
ASSUME
NEAR and FAR wvariantsof PROC and LABEL
segment overrides (for example ES:TABLE_ITEM)

(Refer to the ASM 286 Assembly Language Reference Manual for details on the use of these items.)

The module DISP containing the dispatcher is the only kernel module of XOS written in assembly
language (refer to Chapter 4). The logical code segment has the name NUCLEUS_CODE and combine
type ER so that it will combine with PL/M-286 segments of the same name. This module has no logical
data segment. The procedure DISPATCHER is a NEAR procedure because only other kernel proce-
dures in the same physical segment call it.

Compilers

With PL/M-286, decisions regarding segmentation are not imbedded in source code but rather are
implemented by the compiler according to compiler control statements that you supply. (Refer to the
SMALL, COMPACT, LARGE, and extended segmentation controls in the PL/M-286 User’s Guide.)
With these control statements, you have nearly as much control over system structure as with assembly
language, but changes in system structure do not require changes to source code. It is just as important,
however, that use of these controls conform to a consistent model of system structure.

Figure 11-1 shows the segmentation controls used for compiling the kernel modules of XOS. These
controls define a subsystem named NUCLEUS that contains all the PL-0 modules of XOS. The
PL/M-286 compiler prefixes the names of the code and data segments with the subsystem name. The
list of exports includes all the primitives. For each of the procedures named in the exports list, the
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$ COMPACT (NUCLEUS HAS

§  SLOT , POINT ,
$  GATE , MEMORY ,
$  DISPATCHER , ALIAS ,
$  SEMAPH , MAILBOX ,
$ INTRUPT , TASK ’
$§  DESCRIPTOR , GATE ’
$ DISQUE , MESSAGE :
$ EXPORTS

$  RESERVE_SLOTS , RELINQUISH_SLOTS ,
$  ALLOCATE , FREE_SEG ’
$  CREATE_ALIAS , CHANGE_AR ,
$  WAIT_SEMAPHORE , SIGNAL_SEMAPHORE ,
$  SEND_MESSAGE , RECEIVE_MESSAGE ,
$  CREATE_LDT , CREATE_TASK ,
$  LOAD_LDT , LOAD_LDT_GATE ,
$  GET _GATE_POINTER ,

$  ATTACH_TO_INTERRUPT , WAIT_FOR_INTERRUPT )

Figure 11-1. Subsystem for Kernel Exports

compiler generates a long RET instruction at the end of the procedure or at RETURN statements.
This enables procedures in other segments to call the the kernel procedures. The keyword COMPACT
tells the compiler to generate short RET instructions for procedures not named in the export list.

Binding Utilities

Intel’s iIAPX 286 Binder (BND286) and System Builder (BLD286) provide a variety of binding services,
including

¢ Combining logical segments that have the same name and combine type

¢ Resolving references among modules _
» Constructing templates for GDT, LDT, and TSSs
* Allocating memory for bootloadable portions of the system

» Assigning access rights to segments
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* Constructing gates
e Formatting object files for the convenience of boot loaders and dynamic loaders

* Creating export modules that contain gates for operating-system interfaces

Figure 11-2 shows the Binder specifications that combine the level-zero modules of XOS. The input
modules contain only three unique segment names (the PL/M-286 names: NUCLEUS_CODE,
NUCLEUS_DATA, and STACK); therefore, the output module contains just three segments: one for
instructions, one for static data items, and one for the level-zero stack. The name of the output module
is NUCLEUS; it is written to the file NUC.LNK. Similar specifications combine the level-one modules.

Figure 11-3 shows the specifications to build a bootloadable file for the example operating system. The
SEGMENT statement assigns privilege levels to to each of the segments; segments not mentioned in
this clause receive privilege level 3 (PL 3) by default.

The TABLE statement defines the descriptor tables. The RESERVE clause allocates space for the
working descriptors used by such modules as the memory-management module described in
Chapter 3. The ENTRY clause identifies the remaining segment descriptors that belong in each table.
Builder allocates slots for each of these descriptors.

The TASK statement provides information for contructing TSSs. The identifier assigned to each task
is the identifier of the descriptor of its TSS. The OBJECT clause identifies the module containing the
information Builder can use to fill the segment-register and initial stack fields of the TSS.

The GATE statement creates gates for each of the public procedures that are XOS primitives, assigns
a privilege level to each gate, and gives each a name different from the procedure name.

The EXPORT statement creates a linkable module KERNEL in file XOS.EXP that application modules
can use for binding to the gates for XOS primitives.

RUN :F2:BND286 &

tF1:POINT.OBJ , tF1:SLOT.OBJ, &
:F1:MEMORY.OBJ, tF1:DISP.OBJ, &
tF1:ALIAS.OBJ , tF1:SEMAPH.OBJ, &
:F1:MBOX.0OBJ , tF1:INTRPT.OBJ, &
tF1l:DESCR.OBJ , tF1:DISQUE.OBJ, &
tF1:TASK.OBJ , tF1:MESSAG.OBJ, &
PLM286.LIB &

NAME (NUCLEUS) OBJECT (:Fl:NUC.LNK) NOLOAD DEBUG

Figure 11-2. Binder Specifications for XOS Kernel
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system-ID
INPUT FILES:

OUTPUT FILE:

CONTROLS SPECIFIED:

iAPX286 SYSTEM BUILDER,

:F1:NUC.LNK, :F
:F2:LARGE.LB2,
$F1l:X0S

TITLE (Ex

Ux.y

1: URTASK.OBJ,
:F1:STACKS.OBJ

ample 0.S.)

OBJECT (:F1:X0S)

:F1:CONSOL.OBJ,

BOOTLOAD BUILDFILE (:F1l:X0S.BLD)

:F1:LOADER.LNK,

BUILD FILE: :F1l:X0S.BLD

1 EXAMPLE_OS;

2

3 SEGMENT

4 NUCLEUS_CODE (DPL=0Q) ,

5 NUCLEUS_DATA (DPL=0),

6 NUCLEUS. STACK (DPL=0, LIMIT=+20),

7 URTASK_CODE (DPL=0),

8 URTASK_DATA (DPL=0),

9 URTASK.STACK (DPL=0, LIMIT=+20H),

10 LQ_PLM286_LIB_CODE (DPL=8, CONFORMING),

11 LARGE_V1P@.STACKG (DPL=0Q) ,

12 LARGE_V1P@.STACK1 (DPL=1),

13 LARGE_V1P@.STACK2 (DPL=2) ,

14 CONSOLE_DRIVER_CODE (DPL=1),

15 CONSOLE_DRIVER_DATA (DPL=1),

16 CONSOLE_DRIVER.STACK (DPL=1, LIMIT=+20),

17 CONSOLE_STACK® (DPL=¢, LIMIT=+20),

18 LOADER_STACK® (DPL=@, LIMIT=+20);

19

20 GATE

21 XQ_ATTACH_TO_INTERRUPT (ENTRY=ATTACH_TO_INTERRUPT, DPL=1),
22 XQ_WAIT_FOR_INTERRUPT (ENTRY=WAIT FOR_INTERRUPT, DPL=1),
23 XQ_RESERVE_SLOTS (ENTRY=RESERVE_SLOTS, DPL=3),
24 XQ_RELINQUISH_SLOTS (ENTRY=RELINQUISH_SLOTS, DPL=3),
25 XQ_ALLOCATE (ENTRY=ALLOCATE, DPL=3),
26 XQ_FREE_SEG (ENTRY=FREE_SEG, DPL=3),
27 XQ_CREATE_ALIAS (ENTRY=CREATE_ALIAS, DPL=3),
28 XQ_CHANGE_AR (ENTRY=CHANGE_AR, DPL=3),
29 XQ_WAIT_SEMAPHORE (ENTRY=WAIT_SEMAPHORE, DPL=3),
30 XQ_SIGNAL_SEMAPHORE (ENTRY=SIGNAL_SEMAPHORE, DPL=3),
31 XQ_SEND_MESSAGE (ENTRY=SEND MESSAGE, DPL=3),
32 XQ RECEIVE_MESSAGE (ENTRY=RECEIVE_MESSAGE, DPL=3),
33 XQ_CREATE_LDT (ENTRY=CREATE_LDT, DPL=3),
34 XQ_CREATE_TASK (ENTRY=CREATE_TASK, DPL=3),
35 XQ_LOAD_LDT (ENTRY=LOAD_LDT, DPL=3),
36 XQ_ LOAD_LDT_GATE (ENTRY=LOAD_LDT_GATE, DPL=3),
37 XQ_GET_GATE_POINTER (ENTRY=GET_GATE_POINTER, DPL=3),
38 TIME SLICE (INTERRUPT, DPL=@, ENTRY=TIMINT);

39 .
40 TABLE

41 GDT (RESERVE=(4..9), ENTRY=(
42 NUCLEUS_CODE,

43 NUCLEUS DATA,

44 NUCLEUS. STACK,

45 LQ_PLM286_LIB CODE,

46 LARGE_V1P@.STACK,

Figure 11-3. Builder Specifications for XOS
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47 LARGE_V1P@.STACK®,

48 LARGE_V1P@.STACK1,

49 LARGE_V1P@.STACK2

50 )

51 ),

52 URTASK_LDT (ENTRY=(URTASK)),

53 CONSOLE_LDT (ENTRY=(CONSOLE_DRIVER, CONSOLE_STACK®)),
54 LOADER_TASK_LDT (ENTRY=(LOADER, LOADER_STACK®)),
55 IDT (ENTRY=(15:TIME_SLICE));

56

57 TASK

58 ADAM (INITIAL, OBJECT = URTASK,

59 LDT = URTASK_LDT) ,

60 CONSOLE_DEVICE (OBJECT = CONSOLE_DRIVER,
61 LDT = CONSOLE_LDT,

62 STACKS = (CONSOLE_STACK®)),
63 LOADER_TASK (OBJECT = LOADER,

64 LDT = LOADER_TASK_LDT,
65 STACKS = (LOADER_STACK®));
66

67 EXPORT #:F1:X0S.LB2 (KERNEL (

68 XQ_RESERVE_SLOTS,

69 XQ_RELINQUISH_SLOTS,

79 XQ_ALLOCATE,

71 XQ_FREE_SEG,

72 XQ CREATE_ALIAS,

73 XQ_CHANGE_AR,

74 XQ_WAIT_SEMAPHORE,

75 XQ_SIGNAL_SEMAPHORE,

76 XQ_SEND_MESSAGE,

77 XQ_RECEIVE_MESSAGE));

78

79 END

BUILD FILE PROCESSING COMPLETED

Figure 11-3. Builder Specifications for XOS (Cont’d.)

These specifications do not illustrate all the features of Builder; refer to the i4APX 286 System Builder
User’s Guide for a complete description of Builder syntax.

OVERVIEW OF LOADING

The loader in a dynamic system is not only responsible for copying a program into main memory, but
is also a step in the binding process. A loader installs the actual TSS and LDT for a task, thereby
making it possible for the processor to interpret the task’s memory references.

If all symbolic references are already resolved, a loader’s work is simple. The iAPX 286 object module
format (OMF) organizes segment information to facilitate rapid loading with little decision-making by
the loader program.
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Converting a Program Into a Task
Before an operating system can switch control to a new task, these structures must be initialized:

e The TSS (data the processor needs in order to run the tésk).

o The task database (TDB) (data the operating system needs in order to run the task).

Either the following structures must be present or some mechanism must be in place to make them
present when necessary:

» Stack segments for each privilege level at which the task runs. (A stack-fault handler could
automatically allocate a stack the first time it is used.)

» Executable and data segments. (A virtual memory system could make these present when referenced.)

Most programs also need an LDT to contain descriptors for segments private to the task. An LDT is
not required, however, if all descriptors used by the task reside in the GDT.

The initial values in the CS:IP fields of the TSS should point to the entry point of the first procedure
of the new task.

STYLES OF LOADERS
There are several ways to structure a loader. The following are just a few examples:

1. As a separate and permanent task. With such a structure the loader constructs data segments in
the format of the new task’s TSS and LDT. To create the new task, it passes descriptors for these
segments to privilege-level 0 (PL-0) procedures that convert them to system segments and start
the new task.

2. As procedures that run within an existing task. This approach suits the UNIX EXECUTE function,
where the FORK function creates the task in which the loader runs as a duplicate of the task that
called the FORK function. The loader deletes the descriptors it finds in the task’s LDT (thereby
deleting the associated segments unless aliases exist in other tasks) and creates new descriptors
for the segments it loads.

3. As procedures in a skeletal task created by the operating-system kernel. The loader has only to
allocate an LDT and install descriptors for the segments it loads.

For approaches 2 and 3, the procedures of the loader may have segment descriptors and gates in the
GDT so as not to encumber the LDTs.

KERNEL SUPPORT

A loader normally runs at PLs 2 or 3 because it uses of both kernel-level procedures (for example,
ALLOCATE to create a segment for the new task) and PL-1 procedures (for example, the 1/O proce-
dures to read object modules from disk). However, task creation involves some functions that only
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PL-0 procedures can execute. For these functions the operating system must provide some additional
support. These functions include

¢ Changing the access rights byte of a descriptor. The loader can create a writable data segment
(using a level-0 procedure such as the ALLOCATE procedure described in Chapter 3) into which
to read a segment from the object file of the program being loaded. But, if that segment is to have
some other type in the new task (the segment might be an executable segment, for example), the
access rights byte must be changed.

« Filling the new task’s LDT with the base addresses of its segments. When the loader allocates a
segment for the new task, the ALLOCATE procedure places the physical base address of the segment
in a descriptor table (presumably the loader’s LDT, but possibly the GDT). Only PL-0 procedures
should have access to physical addresses in descriptor tables.

+ Allocating the stack segment for PL 0. Insufficient space in this segment can cause failure of PL-0
procedures. Also, if the kernel requires the TSS to be located in the PL-0 stack segment (as suggested
in Chapter 4), then the kernel should handle the complexities of setting up such a structure.

 Initializing the task database (TDB) for the new task. Only PL-0 procedures have access to this
data structure. (Refer to Chapter 4 for a discussion of the task database.)

« Entering the new task in the scheduling queues and setting the back-link and nested task flag in the
new TSS. These operations are crucial to proper functioning of the scheduler and therefore should
be done at PL 0.

iAPX 286 Object Module Format

Intel has defined object module formats (OMFs) for the iAPX 286 to be used by translators, object-
program utilities, and loaders. There are two classes of object module:

¢ Linkable modules, which are produced by translators and consumed by Builder and Binder. Binder
can also produce a linkable module from one or more input linkable modules in a process known as
incremental binding.

» Loadable modules, which are produced by the Binder and the Builder and consumed by loaders and
debuggers.

Refer to the iAPX 286 System Builder User’s Guide for detailed definitions of the iIAPX 286 Object
Module Format.

Loaders that adhere to Intel’s OMFs for loadable modules can load object modules created by Intel’s
program development tools. There are two basic variations of the iAPX 286 OMF for loadable modules:

 That created by the Binder supports straightforward, single-task modules.

e That created by the Builder supports more complex variations, including multitask modules with
shared segments (possibly including shared LDTs), reserved LDT locations, GDT descriptors to be
installed as the task is loaded, etc.

Builder not only produces modules intended for use by dynamic loaders but also produces bootloadable
modules designed for use by bootstrap or initializing loaders. Bootloadable modules use absolute
addresses. A boot loader must be able to write to absolute physical locations.
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The OMF of each object module consists of a header followed by a sequence of sections of various
kinds. The sections relevant to this discussion are those in loadable modules, including

e DESCRP: contains all the descriptors for the module. A loader can use this section as a template
for the LDT.

¢ LODTXT: contains the data and instructions to be loaded. A loader fills allocated memory segments
from the records of LODTXT.

* DESNAM: provides symbolic names for segments. A loader can use these symbolic names to provide
a load-time interface for making changes to segment parameters (for example, decreasing segment
limit of an expand-down stack segment to provide more stack space).

Flow of Loader

A loader must take different action depending on whether the loadable modules are created by the
Binder or by the Builder. The main difference in loading the two types of OMF is the source of infor-
mation for descriptor tables. In the case of Binder OMFs, the DESCRP section is in the format of an
LDT. In the case of Builder-created OMFs, information for the GDT, IDT, and LDTs comes from
various LODTXT records. A Boolean in the header of a loadable module distinguishes between Builder-
created and Binder-created modules.

FLOW FOR BINDER-CREATED MODULE

1. Allocate space for LDT segment. The size of the segment is eight times the value of the descriptor
count field of the module header. Put LDT descriptor in GDT.

2. Read the DESCR section into the LDT segment.

3. Allocate space for all segments specified in the LDT, updating the base-address fields.

4. Allocate space for the TSS. (Step 3 does not allocate the TSS because the DESCR section does
not contain a TSS descriptor.) Put TSS descriptor in GDT.

5. Read first LODTXT section into TSS segment. (The first LODTXT record is always a TSS.)

6. Put LDT selector into TSS.

7. If the LODTXT section is exhausted, the task is completely loaded. Jump to the TSS.

8. Read next LODTXT record into proper segment. Go to step 7.

FLOW FOR BUILDER-CREATED MODULE

1. Allocate temporary space to hold all entries from the DESCRP section.
2. Read the DESCRP section into this space.

3. Allocate physical segments for all DESCRP entries (except for gates).
4. Read beginning of LODTXT record.

5

Examine descriptor name of LODTXT record. The selector name is either a special identifier for
the GDT or IDT, or it is an index into the DESCRP entries. The type field of a DESCRP entry
distinguishes LDT segments from other types.

a. If the LODTXT record defines entries of the GDT, then, for each entry in the record, obtain
the descriptor from DESCRP and install it in the GDT.

b. If the LODTXT record defines entries of the IDT, then, for each entry in the record, obtain
the descriptor from DESCRP and install it in the IDT.
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c. If the LODTXT record defines an LDT, then, for each entry in the record, obtain the descrip-
tor from DESCRP and install it in the LDT.

d. If the LODTXT record does not apply to a descriptor table, read the LODTXT record directly
into the selected segment. ' ’

If more LODTXT records remain, go to step 4.
Free the space used for DESCRP entries.
The task or tasks are loaded. Jump to the TSS identified in the module header.

LOAD-TIME BINDING

As with any system, it is possible on the iAPX 286 to delay many binding operations until load time
by incorporating binding functions into the loader. The call gates of the iAPX 286 architecture, however,
provide an especially convenient and efficient way to delay one specific binding operation: namely,
binding of calls to operating-system primitives. Load-time binding to operating-system primitives is an
advantage when

¢ The operating system is under development, and GDT locations of operating-system segment
descriptors are subject to change

» Programs may execute under different operating systems that have different GDT layouts
Data structures for implementing load-time binding are

e An export module of specially marked, dummy gates for operating system primitives. Figure 11-4
shows how you can create such a module through Builder specifications. The NOT PRESENT
specification marks the gates by resetting the present bit. Gates used for this purpose must reside
in the LDT so that Binder (which works only with LDT descriptors) can use them. You need to
update this export file only when you change the number or names of operating-system gates.

¢ A table of actual gates for the operating-system primitives. This table must contain, for each primi-
tive, the gate name, a GDT selector for the segment in which the primitive resides, and the entry
point (offset) within the segment. It is most convenient to take such information from a Builder
export file that exports the gates for operating-system primitives. The example specifications shown
in figure 11-3 create such an export file.

Figure 11-5 shows the data flow for load-time binding. By using the gate name from the DESNAM
section, the loader associates a marked gate in the LDT with its gate name. Given the gate name, it
looks up the actual binding information.

EXAMPLE LOADER

Figure 11-6 shows an example of a loader that reads the iAPX 286 OMF, resolves references to
operating-system primitives, and calls kernel procedures to create a new task. In the interest of simplic-
ity, this example recognizes only the single-task OMF produced by the Binder, and all error checking
is omitted.

This loader calls the kernel procedures CREATE_LDT, LOAD_LDT, LOAD_LDT_GATE,
CREATE_TASK, RESERVE_SLOTS, and CHANGE_AR, which are not shown. CREATE_LDT
allocates an LDT segment for a new task and installs its descriptors in two of the four GDT slots
specified by TASK_SEL. LOAD_LDT transfers a descriptor from the LDT of the loader to the LDT
of the new task. LOAD_LDT_GATE places a gate in the LDT of the new task. CREATE_TASK
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system-ID iAPX286 SYSTEM BUILDER, VX.y

INPUT FILES: ¢F1:NUC.LNK

OUTPUT FILE: (none)

CONTROLS SPECIFIED: TITLE (Gates for Load-Time Binding) NOBOOTLOAD NOOBJECT
BUILDFILE (:F1:X0OSGAT.BLD) PRINT(:F1:XOSGAT.MP2)

BUILD FILE: :F1l:XOSGAT.BLD

1 EXAMPLE_OS;
2
3 SEGMENT NUCLEUS_CODE (DPL=0), NUCLEUS DATA (DPL=0),
4 NUCLEUS. STACK (DPL=0) ; -
5
6 GATE
7 XQ RESERVE_SLOTS (ENTRY=RESERVE_SLOTS, DPL=3, NOT PRESENT),
8 XQ_RELINQUISH_SLOTS (ENTRY=RELINQUISH_SLOTS, DPL=3, NOT PRESENT),
9 XQ_ALLOCATE (ENTRY=ALLOCATE, DPL=3, NOT PRESENT),
10 XQ_FREE_SEG (ENTRY=FREE_SEG, DPL=3, NOT PRESENT),
11 XQ “CREATE ALIAS (ENTRY=CREATE_ALIAS, DPL=3, NOT PRESENT),
12 XQ CHANGE_AR (ENTRY=CHANGE_AR, DPL=3, NOT PRESENT),
13 XQ_WAIT_ SEMAPHORE  (ENTRY=WAIT_ SEMAPHORE, DPL=3, NOT PRESENT),
14 XQ_SIGNAL_SEMAPHORE (ENTRY=SIGNAL_SEMAPHORE, DPL=3, NOT PRESENT),
15 XQ_SEND MESSAGE (ENTRY=SEND_MESSAGE, DPL=3, NOT PRESENT),
16 XQ_RECEIVE_MESSAGE (ENTRY=RECEIVE_MESSAGE, DPL=3, NOT PRESENT);
17
18 TABLE
19 GDT (ENTRY=(NUCLEUS_CODE, NUCLEUS_DATA, NUCLEUS.STACK)),
20
21 DUMMY (ENTRY=(
22 XQ_RESERVE_SLOTS,
23 XQ RELINQUISH_SLOTS,
24 XQ_ALLOCATE,
25 XQ FREE_SEG,
26 XQ_CREATE_ALIAS,
27 XQ_CHANGE_AR,
28 XQ_WAIT_SEMAPHORE,
29 XQ_SIGNAL_SEMAPHORE,
30 XQ_SEND_MESSAGE,
31 XQ_RECEIVE MESSAGE)),
32
33 EXPORT #:F1:XOSGAT.LB2 (KERNEL (
34 XQ_RESERVE_SLOTS,
35 XQ_RELINQUISH_SLOTS,
36 XQ_ALLOCATE,
37 XQ_FREE_SEG,
38 XQ_CREATE_ALIAS,
39 XQ_ CHANGE_AR,
49 XQ_WAIT_SEMAPHORE,
41 XQ_SIGNAL_SEMAPHORE,
42 XQ_SEND_MESSAGE,
43 XQ_RECETVE_MESSAGE)) ;
44
45 END

BUILD FILE PROCESSING COMPLETED

Figure 11-4. Specifying Dummy Gate Exports
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Figure 11-5. Strategy for Load-Time Binding

finishes creation of the new task by creating a TSS from a template in the loader and placing the new
task in the scheduler’s queues. RESERVE_SLOTS uses techniques such as those illustrated in
Chapter 2 to allocate descriptor table slots. CHANGE_AR is used to place the correct type code into
the writable data-segment descriptor used by the loader to fill a segment.

The module BOND (shown in figure 11-7) shows the handling of the table of actual gates for operat-
ing-system primitives. The procedure GET_LOAD_FILE is not defined here. It simply fetches the file
specification for a loadable module from, for example, the console or the command line interpreter.
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system-ID PL/M-286 Vx.y COMPILATION OF MODULE LOADER
OBJECT MODULE PLACED IN :Fl:LOADER.OBJ
COMPILER INVOKED BY: PLM286.86 :Fl:LOADER.PLM DEBUG

$ PAGEWIDTH(71) TITLE('960-515"')
$ INCLUDE (:F1:NUCSUB.PLM)
= $ NOLIST
§ INCLUDE (:Fl:UDISUB.PLM)
= $ NOLIST
$ COMPACT
1 LOADER: DO;
/*****************************************k*************/
/* Language Extensions */
2 1 DECLARE BOOLEAN LITERALLY 'BYTE',
FALSE LITERALLY '@',
TRUE LITERALLY '@FFH',
TOKEN LITERALLY 'WORD',
CONNECTION LITERALLY 'TOKEN',
OFFSET LITERALLY 'WORD',
FOREVER LITERALLY 'WHILE TRUE';
/*****ﬁ****************t********************************/
/* Externals * /
3 1 RESERVE_SLOTS: PROCEDURE(TABLE,COUNT,SLOT_PTR,EXCEP_PTB)
EXTERNAL;
4 2 DECLARE TABLE WORD, COUNT WORD, (SLOT_PTR,EXCEP PTR)
POINTER;
5 2 END RESERVE_SLOTS;
6 1 CHANGE_AR: PROCEDURE (SLOT,RIGHTS,EXCEP_PTR) EXTERNAL;
7 2 DECLARE SLOT SELECTOR, RIGHTS BYTE, EXCEP_PTR POINTER;
8 2 END CHANGE_AR;
9 1 ALLOCATE: PROCEDURE (SLOT,RIGHTS,SIZE,EXCEP_PTR)
EXTERNAL;
10 2 DECLARE SLOT SELECTOR, RIGHTS BYTE, SIZE WORD,
EXCEP_PTR POINTER;
11 2 END ALLOCATE;
12 1 FREE_SEG: PROCEDURE (SLOT, EXCEP_PTR) EXTERNAL;
13 2 DECLARE SLOT SELECTOR, EXCEP_PTR POINTER;
14 2 END FREE_SEG;
15 1 CREATE_LDT: PROCEDURE(TASK_SEL,SIZE,EXCEP_PTR) EXTERNAL;
16 2 DECLARE TASK_SEL SELECTOR, SIZE WORD, EXCEP_PTR POINTER;
17 2 END CREATE_LDT;
18 1 LOAD_LDT: PROCEDURE (TASK_SEL, NEW_SLOT, OLD_SLOT,
EXCEP_PTR) EXTERNAL;
19 2 DECLARE (TASK_SEL, NEW_SLOT, 'OLD_SLOT) SELECTOR,

EXCEP_PTR POINTER;

Figure 11-6. Binding Loader
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20 2 END LOAD_LDT;
21 1 LOAD_LDT_GATE: PROCEDURE (TASK_SEL, NEW_SLOT, RIGHTS,
TARGET, COUNT, EXCEP_PTR) EXTERNAL;
22 2 DECLARE (TASK_SEL, NEW_SLOT) SELECTOR, RIGHTS BYTE,
(TARGET, EXCEP_PTR) POINTER, COUNT BYTE;
23 2 END LOAD_LDT_GATE;
24 1 CREATE_TASK: PROCEDURE (TASK_SEL, TEMPLATE, PRIORITY,
EXCEP_PTR) EXTERNAL;
25 2 DECLARE TASK_SEL SELECTOR, (TEMPLATE, EXCEP_PTR)
POINTER, PRIORITY BYTE;
26 2 END CREATE_TASK;
27 1 GET_LOAD_FILE: PROCEDURE (FILE_SPEC_PTR) EXTERNAL;
28 2 DECLARE FILE_SPEC_PTR POINTER;
29 2 END GET_LOAD_FILE;
3 1 BUILD_BOND_TABLE: PROCEDURE (FILESPEC_PTR, EXCEP_PTR)
EXTERNAL;
31 2 DECLARE (FILESPEC_PTR, EXCEP_PTR) POINTER;
32 2 END BUILD_BOND_TABLE;
33 1 FIND_BOND: PROCEDURE (SNAME_PTR, ENTRY PTR, SEL_PTR,
EXCEP_PTR) EXTERNAL;
34 2 DECLARE (SNAME_PTR, ENTRY PTR, SEL_PTR, EXCEP_PTR)
POINTER;
35 2 END FIND_BOND;
36 1 INITIALIZE_SYSTEM: PROCEDURE EXTERNAL;
37 2 END INITIALIZE SYSTEM;
38 1 REPORT: PROCEDURE (EXCEP_PTR) EXTERNAL;
39 2 DECLARE EXCEP_PTR POINTER;
46 2 END REPORT;
41 1 DQSATTACH:
PROCEDURE (PATHSP, EXCEP$P) CONNECTION EXTERNAL;
42 2 DECLARE (PATH$P, EXCEPSP) POINTER;
43 2 END DQSATTACH;
44 1 DQSDETACH: PROCEDURE (CONN, EXCEPSP) EXTERNAL;
45 2 DECLARE CONN CONNECTION, EXCEPSP POINTER;
46 2 END DQSDETACH;
47 1 DQSOPEN: .
PROCEDURE (CONN, ACCESS, NUM$BUF, EXCEPS$P) EXTERNAL;
48 2 DECLARE CONN CONNECTION, (ACCESS, NUMSBUF) BYTE,
EXCEPSP POINTER;
49 2 END DQSOPEN;
50 1 DQSSEEK: PROCEDURE
(CONN, MODE, LOCATION, EXCEP$P) EXTERNAL;
51 2 DECLARE CONN CONNECTION, MODE BYTE,
LOCATION DWORD, EXCEP$P POINTER;
52 2 END DQS$SEEK;

Figure 11-6. Binding Loader (Cont’d.)
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53 1 DQSREAD: PROCEDURE
(CONN, BUFS$P, COUNT, EXCEPSP) WORD EXTERNAL;
54 2 DECLARE CONN CONNECTION, COUNT WORD,
(BUF$P, EXCEPSP) POINTER;
55 2 END DQSREAD;
56 1 DQSCLOSE: PROCEDURE (CONN, EXCEPSP) EXTERNAL;
57 2 DECLARE CONN CONNECTION, EXCEP$P POINTER;
58 2 END DQS$CLOSE;
/******k*k***)\'****kk******t****tk****ﬁ*ﬁ****t********ﬁt*/
/* Data */
59 1 DECLARE IN_GDT LITERALLY '0°',
IN_LDT LITERALLY 'l°',
DATA_W LITERALLY '11110010B', /* Access rights:
present, DPL=3, expand-up, writable, data segment */
DATA_WD LITERALLY '11110110B', /* Access rights:
present, DPL=3, expand-down, writable, data segment */
READ LITERALLY 'l',
DEFAULT_PRIORITY LITERALLY '4',
ALLOCATED LITERALLY '80H',
OK LITERALLY '@°',
EXCEPTION LITERALLY 'EXCEP<>OK';
60 1 DECLARE PATH_NAME (47) BYTE, /* Disk file to load */
LOAD_FILE CONNECTION,
ACTUAL WORD,
EXCEP WORD,
TASK_SLOT SELECTOR, /* First of GDT slots
for new task */
DCS SEL SELECTOR, /* Data or code segment
- of new task */
BOND _FILESPEC (*) BYTE
INITIAL (11,':F1:X0S.LB2');
61 1 DECLARE FILE_HEADER BYTE;
62 1 DECLARE MODULE_HEADER STRUCTURE (
TOTAL_SPACE DWORD,
DESCR_COUNT WORD,
BUILT BYTE,
DATE (8) BYTE,
TIME (8) BYTE,
CREATOR (41) BYTE,
TSS_SEL WORD,
DESCRP_LOC DWORD, /* @ */
LODTXT_LOC DWORD, /* 1 */
IGNORE 1 DWORD, /* 2 */
DESNAM_LOC DWORD, /* 3 */
IGNORE_2 DWORD, /* 4 */
I1GNORE_3 DWORD, /* 5 */
IGNORE_4 DWORD, /* 6 */
LAST_LOC DWORD, /* 7 */
RESERVED1 DWORD,

Figure 11-6. Binding Loader (Cont’d.)
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RESERVED2 DWORD);

/* Table of segment names from DESNAM section of OMF */

DECLARE DESNAM_SEL SELECTOR,
DESNAM_WIDTH LITERALLY '41', .
DESNAM BASED DESNAM_SEL (2) STRUCTURE (
NAME (DESNAM_WIDTH) BYTE )y
DIX WORD; /* Index */

/* RAM copy of DESCRP section of OMF */
DECLARE DESCRP_SEL SELECTOR,
SEGDT BASED DESCRP_SEL (2) STRUCTURE (

LIMIT WORD,
LO_BASE WORD,
HI_BASE BYTE, /* Data/code segment descr */
RIGHTS BYTE,

RESERVED WORD )y
GATET BASED DESCRP_SEL (2) STRUCTURE (
ENTRY_POINT OFFSET,

SEL SELECTOR,
WORD_COUNT BYTE, . /* Gate descriptor */
RIGHTS BYTE, )
RESERVED WORD - ),
LIX WORD; /* Index */

/* Template for Task State Segment for new task */
DECLARE TSS STRUCTURE (

BACKL SELECTOR,

SP@ OFFSET, SS@ SELECTOR,

SP1 OFFSET, SS1 SELECTOR,

SP2 OFFSET, SS2 SELECTOR,

IP OFFSET,

FLAG WORD,

(ax, Cx, DX, BX, Sp, BP, SI, DI,

ES, CSs, Sss, DS, LDT_LINK) SELECTOR )

/******k***********************************k************/
/* Subroutines */

SECTION_SIZE: PROCEDURE (TOCIX) DWORD;

DECLARE TOCIX WORD; /* Index into Table of Contents */
DECLARE TOC(8) DWORD AT (@MODULE_HEADER.DESCRP_LOC),
IX WORD;

/* Find the size of an OMF section */

DO IX=TOCIX+l TO 7;
IF TOC(IX)<>@ /* Skip by null sections */
THEN RETURN TOC(IX)-TOC(TOCIX);

END;

END SECTION_SIZE;

SRR IR KA K AR KRR R AR R IR KA R R R KRR KRR A KKK R R AR A R A kK /
BUILD_DESNAM TABLE: PROCEDURE (DESNAM SIZE);

DECLARE DESNAM_SIZE DWORD;

Figure 11-6. Binding Loader (Cont’d.)
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76 2 DECLARE DESNAM USED DWORD,
DESNAM HEADER STRUCTURE
(DESCR IN WORD,
NAME_LENGTH BYTE);
77 2 DESNAM_USED=0;
/* Allocate a segment for the table */
78 2 CALL ALLOCATE (DESNAM_SEL, DATA_W,
DESNAM_WIDTH * (MODULE_HEADER.DESCR_COUNT + 1), QEXCE
-P);
79 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
/* Initialize the table */
81 2 DO DIX=@ TO MODULE_HEADER.DESCR COUNT;
82 3 CALL MOVB(@(' ') ,@DESNAM(DIX) .NAME(2),1);
83 3 CALL MOVB(@DESNAM(DIX) .NAME (),
@DESNAM(DIX).NAME(I),DESNAM_WIDTH-I);
84 3 END;
/* Read each descriptor name */
85 2 DO WHILE DESNAM USED < DESNAM_SIZE;
/* Read fixed portion of DESNAM record */
86 3 ACTUAL=DQSREAD (LOAD FILE, @DESNAM_HEADER, 3, QEXCEP);
87 3 IF EXCEPTION THEN CALL REPORT (@EXCEP),
89 3 DESNAM_USED DESNAM_USED+ACTUAL;
90 3 DIX=DESNAM_HEADER.DESCR_IN-1;
91 3 DESNAM(DIX) .NAME (9)=DESNAM_ HEADER.NAME LENGTH;
/* Read rest of name into table entry */
92 3 ACTUAL=DQ$READ(LOAD_FILE,@DESNAM(DIX).NAME(I),
DESNAM(DIX) .NAME (@), QEXCEP);
93 3 IF EXCEPTION THEN CALL REPORT (QEXCEP);
95 3 DESNAM_USED=DESNAM_ USED+ACTUAL;
96 3 END /* DO LOOP */:
97 2 END BUILD_DESNAM_ TABLE;
/******************************k************************/
98 1 LOAD_SEGMENTS: PROCEDURE(LODTXT_SIZE);
99 2 DECLARE LODTXT_SIZE DWORD;
100 2 DECLARE LODTXT_HEADER STRUCTURE (
LOAD_OFFSET WORD,
DESCR_IN WORD,
LENGTH WORD ),
COUNT WORD,
LODTXT_USED DWORD;
101 2 DECLARE NEW_LDT_SEL SELECTOR,
‘NEW LDT SEL_W WORD AT (@NEW LDT SEL),
SEG_| _RIGHTS BYTE;
1082 2 DECLARE TSS_IN LITERALLY 'QFFFDH';
1083 2 LODTXT_USED=@;
/* step thru all LODTXT records */
104 2 DO WHILE LODTXT_USED(LODTXT_SIZE'

Figure 11-6. Binding Loader (Cont’d.)
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/* Read in the LODTXT header */
ACTUAL= DQSREAD(LOAD FILE,@LODTXT_HEADER,6,@EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP),
LODTXT_USED= LODTXT_USED+ACTUAL;

IF LODTXT_HEADER.DESCR_IN=TSS_IN

THEN DO; /* Load the Task State Segment */
ACTUAL=DQSREAD (LOAD  FILE,@TSS,LODTXT_HEADER.LENGTH,
@EXCEP),
IF EXCEPTION THEN CALL REPORT (@EXCBP),
LODTXT USED=LODTXT _USED+ACTUAL; |
END /* load1ng Task State Segment */;

ELSE DO; /* Load a data or code segment */
LIX=LODTXT_HEADER.DESCR_IN-1;
IF (SEGDT(LIX) RIGHTS .AND @6H) = @6H
/* expand-down data segment? */

THEN SEG_RIGHTS=DATA_WD;

ELSE SEG RIGHTS DATA W,

/* Allocate a segment */

CALL ALLOCATE (DCS_SEL, SEG_RIGHTS,
SEGDT (LIX) .LIMIT+1, @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);

/* Read LODTXT record into segment */
ACTUAL=DQ$READ(LOAD_EILE,

BUILDSPTR(DCS_SEL,LODTXT_HEADER.LOAD_OFFSET),
LODTXT_HEADER.LENGTH, @EXCEP);
IF EXCEPTION THEN CALL REPORT (@QEXCEP);
LODTXT_USED=LODTXT USED+ACTUAL,

/* Put actual access rights in descriptor */
CALL CHANGE_AR (DCS_SEL, SEGDT(LIX).RIGHTS, @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP),

/* Construct selector for slot in new LDT */

/* DPL = 3; TI =1 */

NEW_LDT_SEL_W = (SHL(LIX,3) OR @7H);
/* Transfer descriptor to new LDT */ .
CALL LOAD_LDT (TASK_SLOT,NEW_LDT_SEL,DCS_SEL, @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP),
/* Mark descriptor as allocated */
SEGDT(LIX) .RIGHTS=ALLOCATED;
END /* loading a data or code segment */;
END /* stepping thru all LODTXT records */;

END LOAD_SEGMENTS;

/*********u*********t}t*****t**xt****a*****t**t***tutt**/
LOAD_DESCRP: PROCEDURE;

/* Allocate a segment for the DESCRP section */
CALL ALLOCATE (DESCRP_SEL, DATA_W,
8*MODULE _HEADER. DESCR _COUNT, QEXCEP);

IF EXCEPTION THEN CALL REPORT (@EXCEP) ;

/* Step thru all descriptors */
DO LIX = 6 TO MODULE_HEADER.DESCR_COUNT-1;

/* Read LDT entry *
ACTUAL=DQSREAD (LOAD_FILE, @SEGDT(LIX),
8, @EXCEP);

Figure 11-6. Binding Loader (Cont’d.)

11-20

121960-001



ntel

BINDING AND LOADING

PL/M-286 COMPILER 960-515 date PAGE 7

145 3 IF EXCEPTION THEN CALL REPORT (Q@EXCEP);

/* Is it marked with Present bit = g ? */

147 3 IF (SEGDT(LIX).RIGHTS AND 8@H)=0 THEN

/* Is it a call gate? */

148 3 IF (SEGDT(LIX) .RIGHTS AND QFH)=4 /* Type field */

149 3 THEN DO; /* Insert pointer from BOND table */

150 4 CALL FIND_BOND (@DESNAM(LIX).NAME,

@GATET(LIX) .ENTRY POINT, Q@GATET(LIX) .SEL,
@EXCEP) ; -

151 4 IF EXCEP=OK THEN /* Set present bit. */

152 4 GATET(LIX) .RIGHTS=GATET(LIX) .RIGHTS OR 8@H;

153 4 END /* inserting pointer */;

154 3 END /* stepping through all descriptors */;

155 2 END LOAD_DESCRP;

/*****k***************k**********************k**********/
/* Transfer remaining descriptors to new LDT */
156 1 TRANSFER_REMAINDERS: PROCEDURE;
/* Handles descriptors for which there was no
LODTXT record (e.g. stacks and gates). *x/

157 2 DECLARE NEW_LDT_SEL SELECTOR,

NEW_LDT_SEL_W WORD AT (@NEW_LDT_SEL),
SEG_RIGHTS BYTE;
/* Step thru DESCRP entries, skipping LDT alias */

158 2 DO LIX = 2 TO MODULE_HEADER.DESCR_COUNT-I;

159 3 IF (SEGDT(LIX) .RIGHTS AND @FH) = 4

160 3 THEN /* call-gate */ DO;

/* Construct selector for slot in new LDT */

161 4 NEW_LDT_SEL_W = (SHL(LIX,3) OR 07H);

/* Transfer descriptor to new LDT */

162 4 CALL LOAD_LDT_GATE (TASK_SLOT, NEW_LDT_SEL,
GATET (LIX) .RIGHTS,
BUILDSPTR (GATET (LIX) .SEL,

GATET (LIX) .ENTRY_POINT),
GATET (LIX) .WORD_COUNT, @EXCEP);

163 4 IF EXCEPTION THEN CALL REPORT (QEXCEP);

165 4 END /* call gate */;

166 3 ELSE IF (SEGDT(LIX).RIGHTS AND 1l@H) <> @

167 3 THEN /* unallocated data or code segment */ DO;

168 4 IF (SEGDT(LIX).RIGHTS AND @6H) = O@6H

/* expand-down data segment? */

169 4 THEN SEG_RIGHTS=DATA_WD;

176 4 ELSE SEG_RIGHTS=DATA_W;

/* Allocate a segment */
171 4 CALL ALLOCATE (DCS_SEL, SEG_RIGHTS,
SEGDT (LIX) .LIMIT+1, QEXCEP);

172 4 IF EXCEPTION THEN CALL REPORT (QEXCEP);

/* Put actual access rights in descriptor */

174 4 CALL CHANGE_AR (DCS_SEL, SEGDT (LIX) .RIGHTS, @EXCEP);

175 4 IF EXCEPTION THEN CALL REPORT (QEXCEP);

/* Construct selector for slot in new LDT */

Figure 11-6. Binding Loader (Cont’d.)
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/* DPL = 3; TI =1 */ '
177 4 NEW_LDT_SEL_W = (SHL(LIX,3) OR 07H);
/* Transfer descriptor to new LDT */

178 4 CALL LOAD LDT(TASK SLOT,NEW_LDT_SEL,DCS _SEL, @EXCEP) ;
179 4 IF EXCEPTION THEN CALL REPORT (@EXCEP),
181 4 END /* unallocated data or code segment */;
182 3 END /* stepping thru DESCRP entries */;
183 2 END TRANSFER_REMAINDERS;
/*******************************************************/
/* Main Line */
184 1 CALL INITIALIZE_SYSTEM;
185 1 CALL BUILD_BOND_TABLE (@BOND_fILESPEC,@EXCEP);
186 1 IF EXCEPTION THEN CALL REPORT (@EXCEP);
188 1 CALL RESERVE _SLOTS (IN _LDT, 1, @DCS _SEL, @GEXCEP);
189 1 IF EXCEPTION THEN CALL REPORT (@EXCEP),
191 1 CALL RESERVE_SLOTS (IN_LDT, 1, @DESCRP_SEL, QREXCEP) ;
192 1 IF EXCEPTION THEN CALL REPORT (@EXCEP);
194 1 CALL RESERVE_SLOTS (IN _LDT, 1, @DESNAM_SEL, @EXCEP);
195 1 IF EXCEPTION THEN CALL REPORT (@EXCEPL
197 1 DO FOREVER;
198. 2 GET_NAME:
CALL GET ' LOAD_FILE (@PATH _NAME) ; /* May wait */
199 2 LOAD_] FILE= DQSATTACH (@PATH _NAME, @EXCEP);
200 2 IF EXCEPTION THEN GOTO GET '_NAME;
202 2 CALL DQSOPEN (LOAD_FILE, READ, 1, @QEXCEP);
203 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
/* Read file header. */
205 2 ACTUAL=DQSREAD (LOAD_FILE, @FILE_ﬂEADER, 1, @EXCEP);
206 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
/* Read loadable-module header */
208 2 ACTUAL=DQSREAD (LOAD_FILE, @MODULE_HEADER,
SIZE(MODULE_HEADER), @EXCEP);
209 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
/* Process DESNAM section of OMF */
211 2 CALL DQS$SSEEK (LOAD_FILE,2,MODULE_HEADER.DESNAM_LOC,
@QEXCEP);
212 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
214 2 CALL BUILD_DESNAM_TABLE (SECTION_SIZE(3));
/* Tell 0S to allocate an LDT */
215 2 CALL RESERVE_SLOTS (IN_GDT, 4, @TASK_SLOT, @EXCEP);
216 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
218 2 CALL CREATE_LDT (TASK_SLOT, MODULE _HEADER.DESCR_COUNT,
@EXCEP),
219 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
/* Process DESCRP section */ ’
221 2 CALL DQS$SSEEK (LOAD FILE,2,MODULE _HEADER.DESCRP _LoC,

@EXCEP) ;

Figure 11-6. Binding Loader (Cont’d.)
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222 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
224 2 CALL LOAD_DESCRP;
/* Process LODTXT section */
225 2 CALL DQSSEEK (LOAD_FILE,2,MODULE_HEADER.LODTXT_LOC,
QEXCEP);
226 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
228 2 CALL LOAD_SEGMENTS(SECTION_SIZE(l));
229 2 CALL TRANSFER_REMAINDERS;
/* Tell 0S to create the new task */
230 2 CALL CREATE_TASK(TASK_SLOT, @TSS, DEFAULT_PRIORITY,
QEXCEP) ;
231 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
233 2 CALL DQSCLOSE (LOAD_FILE, Q@EXCEP) ;
234 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
236 2 CALL DQSDETACH (LOAD_FILE, QEXCEP);
237 2 IF EXCEPTION THEN CALL REPORT (@EXCEP);
239 2 CALL FREE_SEG (DESCRP_SEL, QEXCEP);
240 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
242 2 CALL FREE_SEG (DESNAM_SEL, QEXCEP);
243 2 IF EXCEPTION THEN CALL REPORT (Q@EXCEP);
245 2 END /* FOREVER */;
/********t*t********************************************/
246 1 END LOADER;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
508 LINES READ

@ PROGRAM WARNINGS
¢ PROGRAM ERRORS

@8B2H 2226D

= 0@0LH 1D
= GGFFH 255D
= go18H 24D

DICTIONARY SUMMARY:

96KB MEMORY AVAILABLE
11KB MEMORY USED (11%)
@KB DISK SPACE USED

END OF PL/M-286 COMPILATION

Figure 11-6. Binding Loader (Cont’d.)
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system-ID PL/M-286 Vx.y COMPILATION OF MODULE BOND
OBJECT MODULE PLACED IN :F1:BOND.OBJ
COMPILER INVOKED BY: PLM286.86 :F1:BOND.PLM DEBUG

PAGEWIDTH(71) TITLE('960-521")
INCLUDE (:F1:NUCSUB.PLM)
NOLIST

INCLUDE (:F1:UDISUB.PLM)
NOLIST

COMPACT

Ornnonn

1 BOND: DO;

/********ﬁ***************************t******************/
/* Language Extensions */

2 1 DECLARE BOOLEAN LITERALLY 'BYTE',
FALSE LITERALLY '9@',
TRUE LITERALLY 'QFFH',
TOKEN LITERALLY 'WORD',
- CONNECTION LITERALLY °'TOKEN',
OFFSET LITERALLY 'WORD';

/******************************'*************************/
/* Externals */

3 1 RESERVE_SLOTS: PROCEDURE(TABLE}COUNT,SLOT_PTR,EXCEP_PTRL
EXTERNAL; -

4 2 DECLARE TABLE WORD, COUNT WORD, (SLOT_PTR, EXCEP_PTR)
POINTER;

5 2 END RESERVE_SLOTS;

6 1 GET_GATE~POIN+ER: PROCEDURE (GATE_SEL, SEG_SEL_PTR,
SEG_OFFSET_PTR, EXCEP_PTR) EXTERNAL;
/* Returns selector and offset from a gate descriptor */

7 2 DECLARE GATE_SEL SELECTOR,
(SEG_SEL: PTR, SEG_OFFSET_PTR, EXCEP_PTR) POINTER;
8§ 2 END GET_GATE_POINTER;
9 1 ALLOCATE: .PROCEDURE (SLOT,RIGHTS, SIZE, EXCEP_PTR)
EXTERNAL;
19 2 DECLARE SLOT SELECTOR, RIGHTS BYTE, SIZE WORD,
EXCEP_PTR POINTER;
11 2 END ALLOCATE;
12 1 REPORT: PROCEDURE (EXCEP_PTR) EXTERNAL;
13 2 DECLARE EXCEP_PTR POINTER;
14 2 END REPORT;
15 1 DQ$ATTACH:
PROCEDURE (PATHS$P, EXCEP$P) CONNECTION EXTERNAL;
16 2 DECLARE (PATH$P, EXCEP$P) POINTER;
17 2 END DQ$ATTACH;
18 1 DQSDETACH: PROCEDURE (CONN, EXCEPS$P) EXTERNAL;

Figure 11-7. BOND Module of Binding Loader
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19 2 DECLARE CONN CONNECTION, EXCEPSP POINTER;
20 2 END DQSDETACH;
21 1 DQSOPEN:
PROCEDURE (CONN, ACCESS, NUMSBUF, EXCEPSP) EXTERNAL;
22 2 DECLARE CONN CONNECTION, (ACCESS, NUMSBUF) BYTE,
EXCEPSP POINTER;
23 2 END DQSOPEN;
24 1 DQSSEEK: PROCEDURE
(CONN, MODE, LOCATION, EXCEPS$P) EXTERNAL;:
25 2 DECLARE CONN CONNECTION, MODE BYTE,
LOCATION DWORD, EXCEPSP POINTER;
26 2 END DQSSEEK;
27 1 DQSREAD: PROCEDURE
(CONN, BUFSP, COUNT, EXCEPSP) WORD EXTERNAL;
28 2 DECLARE CONN CONNECTION, COUNT WORD,
(BUFSP, EXCEPSP) POINTER;
29 2 END DQSREAD;
38 1 DQSCLOSE: PROCEDURE (CONN, EXCEP$P) EXTERNAL;
31 2 DECLARE CONN CONNECTION, EXCEP$P POINTER;
32 2 END DQS$CLOSE;
/*t*********************************t***************ﬁiﬁt/
Vid Data *x/
33 1 DECLARE IN_LDT LITERALLY 'l',
DATA_W LITERALLY '111160108B', /* Access rights:
present, DPL=3, expand-up, writable, data segment */
READ LITERALLY '1',
EQUALS LITERALLY 'QFFFFH',
OK LITERALLY '9Q°',
EXCEPTION LITERALLY 'EXCEP<>O0OK';
34 1 DECLARE BOND_FILE CONNECTION,
ACTUAL WORD, .
SEL SELECTOR, /* for type conversion */
WSEL WORD AT (@SEL);
35 1 DECLARE FILE_HEADER BYTE;
36 1 DECLARE MODULE_HEADER STRUCTURE (
TOTAL_LENGTH DWORD,
SEGMENT_COUNT WORD,
GATE_COUNT WORD,
PUB_COUNT WORD,
EXT COOUNT WORD,
LINKED BYTE,
DATE (8) BYTE,
TIME (8) BYTE,
MODULE_NAME (41) BYTE,
CREATOR (41) BYTE,
IGNORE1l (6) DWORD,
PUBDEF_LOC DWORD,
PUBDEF_LENGTH DWORD,

Figure 11-7. BOND Module of Binding Loader (Cont’d.)
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IGNORE2 (8) DWORD) ;

/* Table of actual locations of 0.S. prlmltlves */
37 1 DECLARE BOND_SEL SELECTOR,
BOND BASED BOND_SEL (2) STRUCTURE (
GATE_NAME (41) BYTE,
ENTRY_POINT OFFSET,
GDT_SEL SELECTOR

‘ )y
BIX WORD; /* Index */
38 1 DECLARE PUBDEF STRUCTURE
(ENTRY_POINT WORD,
GDT_IN WORD,
IGNORE WORD,
WORD_COUNT BYTE,
LENGTH BYTE) ;

/*******************#*********ﬁ*************************/
/* ' . Subroutines */

/* Create table of actual GDT selectors and
entry points for 0.S. primitives. */

39 1 BUILD_BOND_TABLE: PROCEDURE (BOND_NAME_PTR, EXCEP_PTR)
PUBLIC;
49 2 DECLARE (BOND_NAME_PTR, EXCEP_PTR) POINTER;
41 2 DECLARE EXCEP BASED EXCEP_PTR WORD;
/* Initialize file */
42 2 BOND__ FILE=DQSATTACH (BOND_NAME_PTR, @EXCEP);
43 2 IF EXCEPTION THEN RETURN;
45 2 CALL DQSOPEN (BOND_FILE, READ, l, QEXCEP);
46 2 IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Read file header */
48 2 ACTUAL=DQSREAD (BOND_FILE,@FILE_HEADER,l,@EXCEP);
49 2 IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Read module header */-
51 2 ACTUAL=DQSREAD (BOND_FILE, @MODULE HEADER,
: SIZE(MODULE_HEADER) » @EXCEP);
52 2 IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Get space for table */
54 2 CALL RESERVE_SLOTS (IN_LDT,1,@BOND_SEL,@EXCEP);
55 2 IF EXCEPTION THEN CALL REPORT (@EXCEP);
57 2 CALL ALLOCATE (BOND_SEL, DATA_W,
(MODULE_HEADER. PUB COUNT+1)*SIZE(BOND(@)) @GEXCEP) ;
58 2 IF EXCEPTION THEN CALL REPORT (QEXCEP);
/* Read the PUBDEF section */
/* (Locations are relative to beginning of module,
not beginning of file. Assume module at 1l.) */
60 2 CALL DQS$SEEK (BOND FILE, 2,MODULE_HEADER.PUBDEF_] LOC+1,
@EXCEP),
61 2 IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Loop thru the PUBDEF entries */
63 2 DO BIX = ¢ TO MODULE_HEADER.PUB_COUNT- 1;
/* Read fixed part “of PUBDEF record */
64 3 ACTUAL=DQSREAD (BOND_FILE,@PUBDEF, 8, Q@QEXCEP) ;

Figure 11-7. BOND Module of Binding Loader (Cont’d.)
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65 3 IF EXCEPTION THEN CALL REPORT (Q@EXCEP);
/* Convert index into GDT selector */
67 3 WSEL=SHL (PUBDEF.GDT_IN,3);
/* Extract gate selector and offset from GDT */
68 3 CALL GET_GATE_POINTER (SEL, @BOND(BIX).GDT_SEL,
@BOND (BIX) .ENTRY_POINT, @EXCEP);
69 3 IF EXCEPTION THEN CALL REPORT (QEXCEP);
/* Read variable-length name */
71 3 BOND (BIX) .GATE_NAME (@) =PUBDEF.LENGTH;
72 3 ACTUAL=DQSREAD (BOND_FILE,@BOND (BIX) .GATE_NAME(1),
PUBDEF.LENGTH, @EXCEP) ;
73 3 IF EXCEPTION THEN CALL REPORT (@EXCEP);
75 3 END /* looping thru PUBDEF entries */;
76 2 END BUILD_BOND_TABLE;
/i********************************i***k***i**ti*****tt**/
77 1 FIND BOND: PROCEDURE (SNAME_PTR, ENTRY_PTR, SEL_PTR,
EXCEP_PTR) PUBLIC;
/* Search BOND table for given name.
Return items from found entry. */
78 2 DECLARE (SNAME_PTR, ENTRY_PTR, SEL_PTR, EXCEP_PTR)
POINTER; }
79 2 DECLARE SNAME BASED SNAME_PTR (41) BYTE,
ENTRY_POINT BASED ENTRY_PTR WORD,
GDT_SEL BASED SEL_PTR SELECTOR,
EXCEP BASED EXCEP_PTR WORD;
80 2 DO BIX = @ TO MODULE_HEADER.PUB_COUNT-1;
81 3 IF SNAME(@)=BOND(BIX).GATE_NAME(G) /* Same length? */
THEN /* Compare characters */ .
82 3 IF EQUALS=CMPB(@SNAME (1) ,@BOND (BIX) .GATE_NAME (1),
SNAME (0) )
83 3 THEN DO;
84 4 ENTRY_POINT=BOND(BIX) .ENTRY POINT;
85 4 GDT_SEL=BOND (BIX) .GDT_SEL;
86 4 EXCEP=0K;
87 4 RETURN;
88 4 END;
89 3 END;
90 2 EXCEP=NOT OK;
91 2 RETURN;
92 2 END FIND_BOND;
/***************************t*****t**********i**********/
93 1 END BOND;

MODULE INFORMATION:

Figure 11-7. BOND Module of Binding Loader (Cont’d.)
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CODE AREA SIZE @2CBH 715D

CONSTANT AREA SIZE = @G0@QOH @D
VARIABLE AREA SIZE = 0@C2H 194D
MAXIMUM STACK SIZE = @O1CH 28D

245 LINES READ
0 PROGRAM WARNINGS
@ PROGRAM ERRORS

DICTIONARY SUMMARY:

96KB MEMORY AVAILABLE
8KB MEMORY USED (8%)
OKB DISK SPACE USED

END OF PL/M-286 COMPILATION

Figure 11-7. BOND Module of Binding Loader (Cont’d.)
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CHAPTER 12
NUMERICS PROCESSOR EXTENSION

The iAPX 286/20 is a configuration of chips consisting of an 80286 CPU and an 80287 Numerics
Processor Extension (NPX). With these two cooperating processors it is possible to construct powerful
numerics processing systems, but the operating system must multiplex the 80287 among the tasks that
use it. If the system does not include an 80287, you may choose to have the operating system emulate
its functions.

iAPX 286/20 NUMERICS PROCESSING FEATURES

Several features of the iIAPX 286/20 are of special interest to operating-system designers and program-
mers. You can find more details on how to use the iAPX 286/20 in the iAPX 286 Programmer’s
Reference Manual.

ESCAPE Instructions

The 80287 NPX extends the instruction set of the iIAPX 286 by over fifty opcodes. The CPU identifies
the extended instruction set by the bit pattern 11011B in the high-order five bits of the first byte of
the instruction. Instructions thus marked are called ESCAPE or ESC instructions.

The CPU performs some functions upon encountering an ESC instruction, before sending the instruc-
tion to the NPX. Those functions that are of interest to the operating system include

¢ Testing the emulation mode (EM) flag to determine whether NPX functions are being emulated by
software.

¢ Testing the TS flag to determine whether there has been a context change since the last ESC
instruction.

« For some ESC instructions, testing the ERROR pin to determine whether an error condition exists
at the NPX as a result of a previous ESC instruction.

The ASM286 Assembly Language Reference Manual provides more information on each 80287
instruction. ‘ :

Emulation Mode Flag (EM)

The EM bit of the 80286 machine status word (MSW) indicates to the CPU whether NPX functions
are to be emulated. If the processor finds EM set when executing an ESC instruction, it causes trap 7,
giving the exception handler an opportunity to emulate the functions of an 80287. The EM flag can be
changed with the aid of LMSW (load machine status word) instruction (legal only at privilege level 0
(PL 0)) and tested with the aid of the SMSW (store machine status word). The built-in variable
MACHINESSTATUS gives PL/M-286 programs access to the MSW.

The EM bit also controls the function of the WAIT instruction. If the processor finds EM set while
executing a WAIT, the processor does not check the ERROR pin for an error indication.

Note that EM must never be set concurrently with MP.
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Math Present Flag (MP)

The MP bit of the 80286 machine status word (MSW) indicates to the CPU whether an 80287 NPX
is actually attached. The MP flag controls the function of the WAIT instruction, If, when executing a
WAIT instruction, the CPU finds MP set, then it tests TS; it does not otherwise test TS during a
WAIT instruction. If it finds TS set under these conditions, the CPU causes trap 7.

Note that MP must never be set concurrently with EM.

Task Switched Flag (TS)

The TS bit of the MSW helps to determine when the context of the 80287 NPX does not match that
of the 80286 CPU. The CPU sets TS each time it performs a task switch (whether triggered by software
or by hardware interrupt). If, when interpreting one of the ESC instructions, the CPU finds TS already
set, it causes trap 7. The MP flag also relates to TS.

The CLTS instruction (legal only at PL 0) resets TS.

WAIT Instruction

The WAIT instruction is not an ESC instruction, but WAIT causes the CPU to perform some of the
same tests that it performs upon encountering an ESC instruction:

« The CPU waits until the NPX no longer asserts the BUSY pin. You can therefore use WAIT to

synchronize the CPU with the NPX.

e The CPU tests the ERROR pin (if EM is not set). You can therefore use WAIT to cause trap 16

if an error is pending from a previous ESC instruction. (The CPU makes this test only after BUSY

- goes inactive.) Note that, if no 80287 is present, the ERROR pin should be tied inactive to prevent
WAIT from causing spurious traps.

Summary

Table 12-1 summarizes functions of the ESC and WAIT instructions that depend on setting of the MP
and EM flags.

INITIALIZATION

During its initialization phase the operating system must

¢ Set flags in the MSW to reflect the numerics processing environment

e Reset the 80287 (if present)

¢ Switch the 80287 into protected mode

You can use a configuration parameter to communicate the numerics processing environment to the

operating system. The FNINIT instruction (INITSREALSMATHSUNIT in PL/M-286) resets the
80287, and the FSETPM instruction places the 80287 into protected mode.
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Table 12-1. Interpretation of MP and EM Flags

EM Flag Set Reset
Instruction
MP Flag Reset Set
TRAP 7? N if TS=1
WAIT TEST BUSY? Y Y
TEST ERROR? Y Y
(TRAP 16)
TRAP 7? Y if TS=1
ESCAPE TEST BUSY? N Y
TEST ERROR? N Y
(TRAP 16)
TASK STATE

When a task uses the 80287 NPX, the operating system has two additional concerns in keeping track
of the task’s state:

» The task database must be expanded to include 47 words of state information for the 80287.
¢ The operating system must change 80287 state when a different task attempts to use the 80287.

The state of the 80287 consists of 47 words. Saving and restoring the 80287 state is therefore a relatively
expensive operation that should not be performed any more frequently than necessary. Typically, only
a few of the active tasks in a system use the NPX; therefore, it would be wasteful to save and update
the state information with every task switch. It is preferable for the operating system to record which
task is using the 80287 and to swap state information only when some other task attempts to use the
80287.

The 80286 supports sharing of the 80287 by providing the TS flag. The processor automatically sets
the TS every time a task switch occurs. The first use of an ESC or WAIT instruction when the TS is
set causes trap 7. This enables the operating system to keep track of the task to which the NPX is
assigned at any given time and to change 80287 state when necessary.

NUMERICS EXCEPTIONS

Three interrupt vector positions are reserved for exceptions that relate to numerics processing. Inter-
rupts for these vectors are not maskable.

Interrupt 7—Processor Extension Not Available (NM)

This exception occurs in either of two conditions:

¢ The CPU encounters an ESC instruction and EM is set. In this case, the exception handler should
emulate the instruction that caused the exception. TS may also be set.
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e The CPU encounters either the WAIT instruction or an ESC instruction when both MP and TS are
set. In this case, the exception handler should update the state of the NPX if necessary.

'EMULATION

The return link points to the first byte of the ESC instruction (or to the prefix byte, if any). As the
emulator decodes the ESC instruction, it should step the return pointer so that, at the end of the
emulation routine, the return from the exception handler causes execution to resume at the first
instruction following the ESC instruction.

UPDATING STATE

To make sure that the state of the NPX corresponds to the current task, the operating system should
implement the concept of “ownership” of the NPX. Ownership can be indicated by a Boolean in the
task database (TDB). The operating system must ensure that only one task at a time is marked as the
owner of the NPX. The exception handler should follow these steps:

Use the CLTS instruction to reset TS.
2.  Return if the current task owns the NPX.

Use the FSAVE ESC instruction (PL/M-286 SAVESREALSSTATUS) to store NPX context in
the former owner’s task database.

4. Record the current task as the owner of the NPX.

Use the FRSTOR ESC instruction (PL/M-286 RESTORESREALSSTATUS) to load the NPX
context from the new owner’s TDB.

Since task switches may occur during execution of the exception handler, steps 3, 4, and 5 are a critical
region and must be protected by a mechanism such as a semaphore.

The exception handler must run at PL 0, both because it alters the critical task database at PL 0 and
because it uses the privileged instruction CLTS.

The exception handler must be an interrupt procedure, not an interrupt task. If it were an interrupt
task, the task switch that occurs upon returning from the exception handler would set TS, thereby
causing the exception again.

The return link points to the first byte of the interrupted instruction. Return from the exception handler
causes restart of that instruction, but this time TS is reset and the instruction can proceed.

Interrupt 9—Processor Extension Segment Overrun (MP)

This exception occurs when a memory operand of an 80287 instruction has a segment-limit violation.
Since the 80287 executes in parallel with the 80286, two difficulties may arise:

¢ The occurrence of this exception may not relate directly to the instruction stream being executed
by the current task. A task switch may have occurred since the 80287 began executing the instruc-
tion. Even if the interrupted task is the correct task, its IP may have been advanced by several
instructions beyond the ESC instruction.

¢ Since the exception is not maskable, it may occur while interrupts are disabled. If minimum inter-
rupt latency is important, the exception handler must do as little as possible. It could, for example,
record the error for later handling.
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The offending ESC instruction cannot be restarted. The task containing the ESC instruction (which
may not be the current task) must eventually be cancelled.

The exception handler must execute an FINIT instruction before executing a WAIT or other ESC
instruction; otherwise, the WAIT or ESC instruction will never finish. FINIT does not affect the CS:IP
value and data address saved in the 80287.

Note that the 80286 CPU detects some addressing violations before sending the ESC instruction to
the 80287 NPX. In these cases, the CPU causes trap 13 (pushing an error code of zero), and it is
generally possible to restart the ESC instruction. Refer to Chapter 7 for more information regarding
trap 13.

Interrupt 16—Processor Extension Error (MF)

The 80287 detects six different exception conditions during instruction execution. If the detected
exception is not masked by a bit in the control word, the 80287 communicates the fact that an error
occurred to the CPU by a signal at the ERROR pin. The CPU causes interrupt 16 the next time it
checks the ERROR pin, which is only at the beginning of a subsequent WAIT or certain ESC instruc-
tions. If the exception is masked, the 80287 handles the exception according to on-board logic; it does
not assert the ERROR pin in this case.

The six exception conditions are

INVALID OPERATION
OVERFLOW

ZERO DIVISOR

UNDERFLOW

DENORMALIZED OPERAND
PRECISION (INEXACT RESULT)

A G T ol e

The steps to be taken to remove the error condition depend on the application.

Once the exception handler corrects the error condition causing the exception, the floating point
instruction that caused the exception can be restarted, if appropriate. This cannot be accomplished by
IRET, however, because the trap occurs at the ESC or WAIT instruction following the offending ESC
instruction. The handler must obtain from the 80287 the address of the offending instruction in the
task that initiated it, make a copy of it, execute the copy in the context of the offending task, and then
return via IRET to the current CPU instruction stream.

The ESC instructions that do not cause automatic checking of the ERROR pin are FNCLEX, FNINIT,

FSAVE, FSETPM, FSTCW, FSTENYV, and FSTSW. You can use the WAIT instruction to test the
ERROR pin before these instructions, if necessary.
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CHAPTER 13
EXTENDED PROTECTION

Even though the iAPX 286 architecture provides extensive, automatic protection, a fully protected
system requires additional protection features in the operating system. Operating-system software can
increase the reliability of the system by providing any of these protection features:

» Extending the “type” concept

» Validating pointer parameters

« Defining the right to use operating-system objects
* Defining the right to delete segments

» Protecting shared objects that are being constructed

EXTENDED TYPE

It is both convenient and dangerous to use a selector as the name of an operating-system object. The
danger arises from the fact that the selector by itself carries no information regarding the type of object
it identifies. A program can, for example, mistakenly pass the selector of a semaphore to an operating-
system procedure that operates on mailboxes, producing catastrophic results. The solution is to associ-
ate a type extension code for the object with the segment in which it resides or with a descriptor to
that segment. Operating-system procedures can then check the type of objects identified by selector
parameters. (The term type extension code is used here to avoid confusion with the processor-recognized
type code in a descriptor.)

There are three general methods of associating type with operating-system objects:

1. Place the type extension code in the segment in which the object resides.
2. Associate the type code with a descriptor for the segment.

3. Use indirect names and associate the type code with the name of the object.

Only segments likely to contain named operating-system objects need to have type extension codes;
namely, privilege-level 0 (PL 0), expand up, writable, data segments.

Type Extension Code with Descriptor

A logical way to store a type extension code is to associate it with the descriptor for the named object
(you can view the type extension code as a refinement of the processor-recognized type code in the
access-rights byte of the descriptor). The type extension code can be put in a table parallel to the
descriptor table (as illustrated in Chapter 5 in connection with alias-list pointers).

Type Extension Code in Segment

It is also possible to place the type extension code at some reserved location in the data segment itself.
This approach does not reference another segment and thereby avoids loading a segment register.
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Indirect Naming

The most general approach to naming avoids giving to less privileged procedures any direct links to
the named objects. Instead, names are indexes (or perhaps pointers) into a name table, which is admin-
istered by the operating system at a highly privileged level. Each entry in the name table holds the
type extension code of the object, the selector of the segment in which the object resides, and any other
information needed to ensure appropriate use of the object. This approach not only offers the greatest
potential for protection, but also makes it possible to change the naming scheme without affecting
procedures that use the names and provides a consistent way of naming both those objects that reside
in dedicated segments and those that are packed into a segment with other objects.

PARAMETER VALIDATION

There is one type of privilege violation that the iAPX 286 cannot automatically check for. Consider,
for example, procedure A at PL 3 that passes a pointer parameter via the stack to procedure B at
PL 1. Procedure A could (accidently or purposely) pass a pointer that refers to a data structure at
PL 2. Doing so would violate the intent of the protection features of the iAPX 286 because procedure
A does not have sufficient privilege to operate on the data structure. However, the processor does not
detect the violation because procedure B, which actually addresses the data structure, does have suffi-
cient privilege to do so.

The iAPX 286 provides the RPL field in the selector as well as the instructions shown in table 13-1 to
help software guard against such protection violations.

In addition to type checking as mentioned previously, an operating system can provide two levels of
parameter validation:

1. Defensive use of ARPL instruction

2. Point-of-entry scrutiny

Defensive Use of ARPL
Simply by applying the ARPL instruction to every pointer parameter it receives, an operating system
procedure guards against complicity in accessing a segment that the calling procedure has no right to

access. ARPL has two selector operands, for example:

ARPL sela, selb

Table 13-1. Access Checking Instructions

aszes PL/k 256 Buiti
ARPL ADJUST$RPL Adjust requested privilege level
VERR SEGMENT$READABLE Verify segment for reading
VERW SEGMENT$WRITABLE Verify segment for writing
LAR GET$ACCESSS$RIGHTS Load access rights
LSL GET$SEGMENTSLIMIT Load segment limit
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ARPL adjusts the RPL field of sel_a to the greater of its current value and the value of the RPL field
in sel_b.

The CPL of the calling procedure is stored in the RPL field of the return pointer on the stack, as figure
13-1 illustrates. Assuming the parameter is also on the stack, statements of the form

T

Mov RAME.RETURN_SEL
ARP _ .PA

AX, STACK_F
L STACK_FRAME RAM_SEL, AX
can be used to ensure that the RPL field of the parameter is not less that the calling procedure’s CPL.
When the called procedure uses the parameter, the processor evaluates its right to use the parameter
as if it had the privilege level of the calling procedure. If the calling procedure passes a parameter that

it has no right to use, an exception will occur when the called procedure uses the parameter.

Every operating system procedure should apply the ARPL instruction to every pointer or selector
parameter it receives, even if the calling procedure is another operating-system procedure. This provides
inexpensive protection against accidental use of invalid parameters.

Point-of-Entry Scrutiny

While use of ARPL alone is sufficient to detect such invalid parameters, it has one drawback: it does
not help to isolate the source of the invalid parameter. An exception will eventually occur when some
higher-level procedure uses the parameter, but this may not happen until several instructions after the
procedure was called, and may not happen until after the called procedure passes the parameter to yet

STACK
/_\/‘ -
1
HIGH
INTERRUPTED
PROCEDURE’S SS
DIRECTION
OF GROWTH INTERRUPTED

PROCEDURE’S SP

FLAGS

RETURN CS

RETURN IP

SP
Low

| ,/\_//

121960-32

Figure 13-1. Caller’s CPL
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another procedure. To detect parameter errors at the earliest opportunity, the operating system should
examine pointer parameters with the VERR, VERW, LAR, and LSL instructions.

The strategy for scrutinizing a pointer parameter includes

» Using ARPL as described previously to ensure that the RPL field of the pointer parameter contains
the calling procedure’s privilege level.

» Using VERR or VERW to ensure that the indicated segment is accessible at the calling procedure’s
privilege level. VERR also determines whether the indicated segment is readable; an execute-only
segment, for example, is not readable. VERW also determines whether the segment is writable;
only a writable data segment passes this test.

» Using LAR and LSL to make sure that the offset portion of the pointer parameter actually points
to a location within the boundaries of the segment. LAR makes the access-rights byte of the indicated
descriptor available, so you can determine whether the segment is an expand-down data segment.
LSL makes the segment-limit field of the descriptor available. If the segment is an expand-down
data segment, the offset portion of the pointer parameter must be greater than or equal to the
segment limit; otherwise the offset must be strictly less than the limit.

Refer to the appropriate language reference manual for details concerning the use of these instructions.

This strategy for parameter validation is somewhat more costly than using the ARPL instruction alone,
as described in the previous section. Therefore, you may wish to limit use of this strategy to those
operating system procedures that can be called by less privileged, applications procedures.

USAGE PRIVILEGE LEVEL

Generally, operating system primitives that act on operating system objects (such as the semaphores
and mailboxes discussed in Chapter 5) have call gates at PL 3. Without further protection, procedures
at any privilege level in a task can use those objects for which descriptors exist in the LDT. Such
freedom violates the principle behind privilege levels, however. Consider these two cases:

¢ A database-management system that runs at PL 2 creates a mailbox for passing recovery informa-
tion to a separate task that is responsible for writing recovery information to a magnetic tape. A
task at PL 3 accidently uses the wrong selector in a call to the operating system and sends an
unrelated message to that mailbox. Later, when using the audit tape to reconstuct the database, the
database system reads the strange record and fails.

¢ Procedures of the same database system use a shared data segment so that they can access common
database parameters regardless of what task they run in. To synchronize their access to the common
data, they define and use a semaphore. A less privileged task uses a wrong selector in a call to the
operating system and signals this semaphore prematurely, permitting the shared data to be incor-
rectly changed. The database system fails when it next tries to use the incorrect data.

These examples illustrate the need for additional protection over the use of operating-system objects,
such as semaphores and mailboxes.

By associating a usage privilege level (UPL) with objects, the operating system can provide protection
analogous to that provided by hardware for access to segments. By means of a privilege-level parameter
to the creation procedure, the task that creates an object defines the maximum (numerical) privilege
level that can use the object. The UPL can be stored either in the data structures that define the object
or (if indirect naming is used) with the name of the object. In the procedures that operate on the object,
the operating system can check whether the calling procedure’s privilege level exceeds the UPL of the
object. The calling procedure’s privilege level is readily available on the stack, as figure 13-1 illustrates.
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SEND PRIVILEGE LEVEL

Moving or deleting the descriptor for a segment or the name of an object may have even more drastic
effects on other tasks than using the code or structures in the segment or object. Consider the effect of
deleting or mailing away a descriptor for a global data segment (for example, a translation table)
shared by all tasks in the system. A task that assumes the existence of the global segment will cause
an exception when it references the deleted descriptor slot. This points out the need for control over
the right to send or delete a descriptor.

One way of implementing such control is to associate with each descriptor (including alias descriptors)
a send privilege level (SPL). Procedures that move or delete descriptors (such as SEND_MESSAGE
and DELETE_ALIAS) interpret the SPL and ensure that the calling procedure cannot delete (send)
a descriptor from the GDT or its LDT unless CPL <<= SPL. SPL for segments is an attribute of
segment descriptors and can be stored in tables parallel to descriptor tables.

The SPL and UPL for operating system objects may be different. In general, the SPL of all descriptors
in the GDT should be zero or one, limiting the deletion and movement of GDT descriptors to the most
privileged levels of the operating system. It is quite reasonable, however, to have GDT-based objects
with UPL of three, so that they are accessible from any level.

CONSTRUCTING SHARED OBJECTS

Since the procedure that builds a GDT-based object, such as a mailbox or semaphore, must have a
descriptor for the object’s data segment, there is a possibility (however slight) that some other task (for
example, an interrupt task) might mistakenly use a selector for the object under construction in a
request to the operating system to use a similar object. The results arc unpredictable, but probably
disastrous. There are several possible methods for guarding against such a circumstance:

¢ Lock out all other activity for that type of object by using a semaphore or other synchronization
primitive.

o For the purposes of construction only, use a reserved descriptor slot that other operating-system
procedures recognize as invalid.

e For the purposes of construction only, use an LDT slot of the task that is building the object.

e Use an invalid type extension code for the object until it is completely built.
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8254 Programmable Interval Timer: an Intel counter/timer device that provides three independent
16-bit counters and six counter modes. For operating-system applications the 8254 can provide timed
interrupts for use by the software scheduler.

8259A Programmable Interrupt Controller: an Intel device that handles up to eight vectored priority
interrupts for the CPU. The chip is designed to minimize software and real-time overhead in handling
multi-level priority interrupts. It has several software selectable modes, permitting optimization for a
variety of system requirements. :
80286: the CPU chip of the iAPX 286 architecture.

80287: the numerics processor extension chip of the iAPX 286/20 chip set.

access rights: the attributes of a segment, defined by a descriptor, that control how a segment can be
used by instructions in other segments.

accessed bit: a Boolean in the access rights byte of a descriptor that the processor sets when it loads
the descriptor into a segment register.

address mapper: a hardware device that selectively translates the CPU’s addressing signals into signals
of another form. .

alias: one of several descriptors for a segment. Each alias may define a different type, access rights,
or (in some cases) limit for the segment.

alias list: a data structure that enables the operating system to find all the aliases for a given segment.
asynchronous: characterized by unpredictable order in the occurrence of events; not synchronous.

back link: the selector field in a TSS that identifies the task to be invoked when the current task
executes an IRET instruction. The processor reads the back link only if the NT flag is set. The proces-
sor sets the back link to point to the TSS of the former task when a CALL instruction or interrupt
causes a task switch.

base address: the 24-bit address in physical memory at which a segment starts.

busy task: either the currently executing task or a task on a back-link chain from the currently execut-
ing task. A busy task has a type code of three in the descriptor for its TSS.

Binder: see iAPX 286 Binder.

binding: the process of translating a symbolic reference to a form that the processor can interpret
directly.

bootloader: see bootstrap loader.

bootstrap loader: a small, usually ROM-resident, program whose function is to load a larger, fully-
featured loader.
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bootloadable module: a module containing absolute object code in a simple format that expedites loading
by a bootstrap loader.

boundary tag: a field at the low or high end of a block of memory used by the memory allocatlon
algorithm to distinguish between allocated and unallocated blocks.

breakpoint: a position in a program marked in such a way that intervention can occur when execution
of the program reaches that position.

buddy system: a memory-management algorithm that partitions memory into pairs of memory blocks
of equal size. When both blocks of a pair are not used, they are combined into a larger block that also
has a partner or “buddy” of the larger size.

buffer: an area of RAM used for transferring data to or from an external device.

built-in: in PL/M-286, a predefined identifier.

Builder: see iAPX 286 System Builder.

BUSY: an input pin to the 80286 used by a processor extension such as the 80287 to indicate when
the processor extension is unable to accept a new instruction.

call gate: a gate used to transfer control to a procedure in a segment of the same task at an equal or
(numerically) lesser privilege level.

carry flag (CF) one of the six arithmetic flags typically used for unsigned integer comparisons and
extended precision arlthmetlc CF is set by a carry into, or a borrow from, the high-order bit of a result
operand.

code segment: see executable segment.

combine type: one of the characteristics that the Binder associates with segments. The Binder combines
segments only if they have compatible combine types.

compaction: relocating allocated memory segments into consecutive locations in order to bring together
all unallocated memory blocks.

compiler control statement: source statements that specify options to the compiler. Control statements
begin with a dollar sign ($) in the left margin.

conforming segment: an executable segment that executes at the CPL of .any segment that calls it. A
conforming segment is identified by a bit in the access rights byte of its descriptor.

control flow transfer: any change in the normal sequential progress of a program. JMP, CALL, RET,
IRET, and INT instructions, as well as exceptions and external interrupts, can cause a change in
control flow.

coroutine: a type of subroutine that cooperates with other coroutines in quasi-parallel execution. A set
of related coroutines transfer control from one to another. Each coroutine maintains local variables
across invocations and maintains an independent instruction counter that determines where to begin
execution upon next invocation.

critical section: a procedure or portion of a procedure that operates on shared data in such a way that
it may act incorrectly if another procedure operates on the same data within the same time interval.
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CS (code segment) register: the segment register that provides addressability for access to instructions.

current privilege level (CPL): the privilege level that the processor is using to execute the currently-
accessible executable segment. CPL may be equal to DPL of the executable segment, or CPL may be
numerically greater that DPL if the segment is conforming.

data segment: a segment that contains data (other than immediate data) for an executable segment.
A data segment is identified by a specific type code in the descriptor of the segment.

descriptor: an eight-byte item that defines the use of memory in an iAPX 286 protected-mode system.

descriptor table: one of the processor-recognized tables that contain the descriptors for the system.
These tables are the GDT, the IDT, and LDTs.

descriptor privilege level (DPL): the privilege level defined in the descriptor of a segment.

device driver: the task or procedures that use knowledge of the physical characteristics of an I/O
device to carry out higher-level I/O requests.

direct I/0: 1/0 operations in which the CPU participates.

dispatching: determining which task the processor should work on, and switching the processor to that
task; also known as “scheduling.”

double fault: a fault that occurs while the processor is attempting to handle a prior fault.
DS (data segment) register: one of three segment registers that provide addressability to data segments.
dynamic system: an application in which tasks begin and end relatively frequently.

EM (emulation mode) bit: a Boolean in the MSW that indicates to the processor whether ESC instruc-
tion processing is being emulated by software.

emulation: software mterpretatmn of instructions for a processing device (such as the 80287 Numencs
Processor Extension) that is not present in the system.

entry pomt an executable-segment offset that identifies the starting point for execution, as when the
segment is invoked via a gate. :

error code: a word automatically pushed on the stack as a result of certain exceptions. The error code
helps identify the segment involved in the exception.

ERROR: an input pin of the 80286 used by a processor extension (such as the 80287) to signal error
conditions.

ES (extra segment) register: one of three segment registers that provide addressability to data segments.

ESC or ESCAPE instruction: an mstructlon (usually for a processor extension) identified by the five-
bit prefix 11011B:

EX (external) bit: a Boolean in the error code which, when set, indicates that the exception is due to
factors outside the control of the task in which the exception occurs.
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exception: a processor-detected condition that requires software intervention. The iAPX 286 commu-
nicates exceptions to software by means of the interrupt mechanism.

executable segment: a segment that contains processor instructions. An executable segment is identi-
fied by a specific type code in its descriptor.

~ execute-only segment: a special case of an executable segment that the processor can access for the
purpose of fetching instructions but cannot access for the purposes of reading data. An execute-only
segment is identified by a Boolean in the access-rights byte of its descriptor.

expand-down segment: a data segment that contains a data structure (such as a stack) that grows
toward lower memory locations. An expand-down segment is identified by a Boolean in the access-
rights byte of its descriptor. Offset addresses in an expand-down segment extend from the value contained
in the limit field of the descriptor thru OFFFFH.

exportation: a process by which a system-software interface is made available to applications and other
system programs. Gates and segments providing .access to system services (such as operating-system
primitives) are placed, via the Builder’s export definition, into a linkable module. This module is used
when building loadable tasks that depend on the exported services.

EXPORTS list: a clause of PL/M-286’s extended segmentation control syntax that specifies the public
identifiers that may be referenced from outside a subsystem.

external reference: a reference to an identifier that is defined as PUBLIC in another module.
fault: an interrupt that results from an exception.

fetch policy: the algorithm that determines which segment to bring into RAM from secondary storage
and when to bring it in.

first fit algorithm: a dynamic storage allocation algorithm that satisfies a request for space with the
first unallocated block of storage whose size is greater than or equal to the requested size.

flag: one of several Booleans maintained by the CPU, including the arithmetic flags (CF, PF, AF, ZF,
SF, OF), the control flags (TF, IF, DF), and the nested task-flag (NT).

flag word: a 16-bit register of the 80286 that contains the arithmetic flags, the control flags, the nested
task flag, and the IOPL. The processor saves the flag word in the TSS with each task switch and loads
the flag word from the TSS of the next task, thereby enablmg each task to use the flags without
interference from other tasks.

fragmentation: a condition resulting from some dynamic storage-allocation algorithms, in which
unallocated storage is dispersed in many small areas.

gate: a gate descriptor.
gate descriptor: a descriptor that defines a protected entry point to an executable segment or task.
GDT register: a register of the 80286 that contains the base address and limit of the GDT.

global descriptor table (GDT): the descriptor table that contains descriptors that can be used by every
task in the system. There is only one GDT per processor.
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handler table: a table of selectors to call gates that identify the procedures for servicing asynchronous
events such as interrupts or software signals. A handler table is used by an operating system’s interrupt
distributor and signalling primitives.

I bit: a Boolean in the error code which, when set, indicates that index portion of the error code points
to an entry in the IDT.

iAPX 286 Binder: an iAPX 286 program development utility used to link modules, combine segments,
and create a single-task, loadable output module.

iAPX 286 System Builder: the configuration utility for iAPX 286 protected-mode systems.
IDT register: an 80286 register that stores the base address and limit of the IDT.
index: the field of a selector that identifies a slot in a descriptor table.

indirect I/O: a style of I/O interface in which I/O operations are executed by an independent proces-
sor, not by the CPU.

interrupt: 1) the electrical or logical signal that an event has oceurred; 2) the mechanism by which a
computer system responds quickly to events that occur at unpredictable times.

interrupt controller: a device (such as Intel’s 8259A Programmable Interrupt Controller) that assists
the CPU in responding to multiple external interrupt signals by performing such functions as detection,
priority resolution, and identification.

interrupt descriptor table (IDT): a descriptor table that contains gates to the handler procedures or
handler tasks for interrupts and traps. The IDT may contain only interrupt gates, trap gates, and task
gates.

interrupt distributor: an operating-system interrupt procedure that transfers control to a task-defined
procedure for servicing the interrupt.

interrupt-enable flag (IF): a control flag of the 80286 that determines whether the processor responds
to external interrupt signals presented at the processor’s INTR pin.

interrupt gate: a gate that identifies the entry point of a procedure for handling an interrupt. When an
interrupt transfers control through an interrupt gate, the processor resets the interrupt-enable flag.
Interrupt gates are valid only in the IDT.

interrupt handler: a procedure or task that is invoked by an interrupt.

interrupt latency: the time from the occurrence of an interrupt signal to the execution of the first
instruction of an interrupt handler.

interrupt procedure: an interrupt handler that is identified by an interrupt gate or trap gate. An inter-
rupt procedure runs in the interrupted task.

interrupt task: an interrupt handler that is identified by a task gate and runs as a task separate from
the interrupted task.

interrupt vectoring: the mapping from an interrupt source to the interrupt handler. In the iAPX 286
architecture, the 8259A and the IDT are components of the interrupt vectoring process.
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intersegment reference: a reference to a location in a segment other than the segment containing the
reference.

intrasegment reference: a reference to a location in the same segment as the segment containing the
reference.

interlevel reference: an intersegment reference to a segment that has a different privilege level than
that of the segment containing the reference.

intertask transfer: a transfer of control flow to a task other that the current task.

I/O-mapped I/0: a style of I/O interface in which 1/O devices respond to addresses in an address
space that is distinct from the memory address space. Specml I/O instructions (IN, INS, OUT, OUTS)
trigger 1/O operations. The 80286 uses the M/TO pin to distinguish memory addresses from I/0O
addresses.

I/0 privilege level (IOPL): a two-bit item in the flag register of the 80286 that controls the current
task’s right to execute the I/O-related instructions IN, INS, OUT, OUTS, CLI, STI, LOCK. A proce-
dure may not execute any of these instructions if CPL>IOPL.

I/0 subsystem: the portion of an operating system that deals with filing and 1/0.

IP (instruction pointer): an 80286 register that contains the offset of the instruction to be executed
within the current code segment.

kernel: that portion of an operating system that implemgnts the most primitive of its functions.

LDT register: an 80286 register that stores the selector, base address, and limit of the current LDT.
limit: the field of a descriptor t_hat defines the offset of the last byte of the segment.

linkable module: an object module created by iAPX 286 translators, by the Binder, or by the Builder
that can serve as input to either the Builder or the Binder. A linkable module requires further process-

ing before it can be executed.

linking: the process of combining segments from one or more input modules and resolving references
between modules. The Binder provides linking services for iAPX 286 program development.

loadable module: an executable object module (usually created by the Builder or the Binder) that has
a format suitable for processing by a loader running under control of an operating system.

loader: the task or procedures of an operating system that places an object module in RAM and prepares
it for execution by the operating system and the processor.

load-time: at the time a task is loaded.

local descriptor table (LDT): the descriptor table that contains descriptors that are (generally) private
to a given task. Each task may have an LDT. A task can use only descriptors that are in its LDT or in
the GDT. The LDT protects tasks from one another.

logical segment: the representation of a segment used by translators and program development utilities
prior to the time when the segment is actually placed in physical memory.
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machine status word (MSW): an 80286 register that includes the TS, EM, MP, and PE Booleans.
These items are global to the system and are not a part of the task state.

mailbox: a software mechanism for sending messages between tasks. The mechanism consists of two
queues: one a queue of undelivered messages, the other a queue of tasks waiting for messages. Messages
are delivered in FIFO order.

memory management: the set of operating system functions that deal with the allocation of RAM to
tasks. . :

memory-mapped I/0: a style of I/O interface in which 1/O devices respond to specific addresses in
the memory address space. I/O operations are triggered by standard instructions that read from, and
write to, memory locations.

message: a unit of intertask communication.

module: a compilation unit or a combination of compilation units.

MP (math present) flag: a Boolean in the MSW that indicates whether a processor extension (such as
the 80287 Numerics Processor Extension) is present.

mutual exclusion: preventing two critical sections from executing concurrently.
multiprocessing: using more than one CPU to execute a multitasking system.

multitasking: the capability to support more than one task either simultancously (by using more than
one CPU) or virtually simultaneously (by multiplexing one CPU among several tasks).

nested task (NT) flag: a Boolean in the flag word that indicates the existence of a back link field in
the TSS to a previous TSS.

non-maskable interrupt (NMI): an external interrubt presented to the NMI pin of the 80286 that the
processor does not ignore, even when IF is reset.

not-present segment: a segment whose descriptor has the present bit reset. In a virtual-memory system,
this condition normally indicates that the segment has been evicted from RAM to make space for other
segments.

nucleus: see kernel.

nullify: assign a null value to.

numerics processor extension (NPX): the 80287 processor which cooperates with the 80286 CPU to
extend its processing power in mathematical applications.

object module format (OMF): a standard for the structure of object code files.

OF (overflow) flag: an arithmetic flag that indicates when a signed operation produces a positive number
that is too large or a negative number that is too small to fit in the destination operand.

offset: the address of a location within a segment, expressed as a quantity to be added to the base
address of the segment.

Glossary-7 121960-001



Intel GLOSSARY

outward call: the attempt to call a procedure in another segment whose DPL is numerlcally greater
than CPL.

parallel table: a table whose entries have a one-to-one correspondence with the entries of a descriptor
table, used to associate additional information with each descriptor.

parallelism: concurrent execution of two or more tasks or devices.

parameter vahdatlon checkmg the attrrbutes of parameters passed between procedures at dlfferent
privilege levels to prevent protection violations or to detect exception conditions.

PE bit: a Booleatn in the MSW that indicates whether the 80286 is running in real-address mode or in
protected, virtual-address mode.

Petri net graph: a notation for visualizing Petri nets. Petri nets are a mathematical tool for modeling
systems, first proposed by Dr. Carl Adam Petri in 1962.

physical address: a 24-bit address, such as that used as a base address capable of encompassmg the
entire address space of the 80286.

physical segment: a scgment as viewed by the processor, to be distinguished from “\logical segment.”
PIC: programmable interrupt controller. See intérrupt controller.

pipes: a mechanism for intertask communication used in the UNIX operating system. Each task views
a communication channel as a file and uses READ and WRITE operations to receive and send messages.

placement policy: the algorithm for determining where in RAM to locate a segment.

pointer: an item that specifies a memory location. A full or long pointer includes a selector, which
indirectly chooses a segment base address, and an offset value, which points to a specific address within
that segment. An offset by itself is called a short pointer..

preemption: a dispatching process in which the operating system switches to another task even though
the current task has not requested any function that would cause it to wait. The operating system may
preempt one task in order to give other tasks a share of CPU attention.

prefix: one of several instruction codes that modify the function or the environment of the following
instruction. iAPX 286 prefixes include the LOCK prefix, repeat prefixes, segment-override preflxes
and the ESCAPE prefix.

present bit: a Boolean in a segment descriptor that indicates whether the segment is actuallly present
in RAM. In a v1rtual-memory system, the segment may have been evicted from RAM to create space
for another segment. :

primitive: one of the operating-system operations made accessible to applications by some explicit
mechanism. In the iAPX 286 architecture, primitives are typically procedures with call gates in the
GDT or LDTs.

privilege: the right to access certain portions of memory or to execute certain processor instructions.
privilege level (PL): a measure of prlvrlege In the iAPX 286 architecture, pr1v1lege is measured by

integers in the range 0-3, where 0 is the most privileged and 3 the least.
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privileged instruction: an instruction that can be executed only by a procedure running at privilege
level 0. Privileged instructions include CLTS, HLT, LGDT, LIDT, LLDT, LMSW, and LTR.

processor extension: an optional, special-purpose processor (such as the 80287) that runs in parallel
with the 80286 and extends its processing power.

profiler: a procedure or task that collects data about segment usage.

protected, virtual-address mode: the mode of operation of the 80286 that provides virtual-memory
addressing and memory protection.

protection: a mechanism that limits or prevents access to areas of memory or to instructions.

public: a symbol available for intermodule reference.

readable segment: an executable segment that can be read. It is necessary to read from an executable
segment if that segment contains constants. A readable segment is identified by a Boolean in the access

rights byte of its descriptor.

read-only segment: a data segment that cannot be written to. A read-only segment is identified by a
Boolean in the access rights byte of its descriptor.

real-address mode: the mode of operation of the 80286 that provides greaiest compatability with the
8086, without protection and virtual memory addressing.

real memory: the physical memory, as distinguished from virtual memory.

real-time system: a system that responds to external events in a relatively short time, as contrasted
with a batch system.

region: a mechanism for providing mutual exclusion among critical sections. A region is similar to a
semaphore that has the additional properties that 1) only the task that acquires a region can release it,
and 2) a task cannot be suspended while holding a region.

relocation: changing the physical location of a segment.

replacement policy: the algorithm that determines when to remove segments from RAM and which
segments to remove when space is (or is likely to be) needed for another segment.

resolving reference: see binding.

requested privilege level (RPL): the privilege-level field of a selector. A procedure may request a
numerically greater privilege level for use of a segment by placing the desired privilege level in the
RPL field of the selector that identifies that segment.

run-time: the time a task executes.

scheduler queue segment: a segment that contains one or more of the task queues used by a scheduler.
Keeping a queue in one segment may reduce the time for searching the queue.

scheduling: see dispatching.
scheduling mode: one of two. styles of scheduling a task: hardware- (interrupt-) scheduled mode or

software-scheduled mode.
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scheduling state: one of several conditions that affect the way a task is treated by the scheduler. A
task may be ready to execute, executing, waiting for some event, etc.

secondary storage: a slower, less expensive storage medium than RAM (for example, disk).

segment: a variable-length area of contiguous memory addresses not exceeding 64K bytes.

segment register:- one of four 80286 registers that hold addressing information for the segments that
are currently addressable by a task. The segment registers are CS (code segment), DS (data segment),
ES (extra segment), and SS (stack segment).

selector: an item that identifies a descriptor by the location of the descriptor in a descriptor table.

semaphore: a synchronization mechanism that communicates the occurrence of an event between two
(or more) tasks via a shared memory location.

send privilege level (SPL): a software-implemented measure of the right to send or delete a segment.-
shadow task: a duplicate task used to enable the operating system to perform an outward call.

signal: a mechanism for permitting one task to communicate the occurence of an event to another task
that is not waiting for the event to occur.

single step: a mode of execution that permits intervention between each instruction; used primarily as
a debugging aid.

slot: an entry in a descriptor table.

SS (stack segment) register: the segment register that provides addressability to the current stack
segment.

stack segment: a segment used by the processor to hold return addresses, dynamic data, temporary
data, and parameters. For greatest protection, each privilege level of a task may have its own stack.
Stack segments usually expand downward.

static system: an application in which the mix of tasks does not change over time.

subsystem: in PL/M-286, a collection of tightly-coupled, logically-related modules that obey the same
model of segmentation.

swap space: the secondary storage area used to contain segments that have been removed from RAM.

swapping: in a virtual-memory system, the process of moving segments between RAM and secondary
storage.

swapping manager: a procedure or task responsible for swapping.

synchronization: imposition-of an order on the occurrence of certain évents.

system segment: a segment containing a descriptor table or task state.

table indicator (TI): a Boolean in a selector that identifies the descriptor table to which the selector

refers.
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task: a single thread of execution that has an associated processor state.

task database: the collection of information about a task that the operating system needs to store.

task information block: a segment or part or a segment used by the operating system to contain all or
part of a task database.

task gate: a gate that identifies a TSS. A control transfer through a task gate causes a task switch.
task register: an 80286 register that points to the TSS of the currently active task.

task state segment (TSS): a segment used by the processor to store the contents of the task-variable
registers, the stack-segment selectors and pointers for the three most privileged levels, the selector for
the task’s local descriptor table, and a back link that may point to another task in a chain of nested

task invocations.

TF (single step flag): a Boolean in the flag word that, when set, indicates that the processor should
cause a trap after each instruction. Typically, TF is used to facilitate debugging.

thrashing: in a virtual memory system, a condition in which excessive swapping seriously degrades
performance of all tasks.

time-sharing system: a multi-user, multitasking system in which processors are multiplexed among
users.

time slice: the time interval for which the CPU is allocated to a task.

translator: an assembler or compiler.

trap: an interrupt due to an exception condition.

trap gate: a gate that identifies the procedure to handle a trap. An interrupt through a trap gate differs
from an interrupt through an interrupt gate in that, with a trap gate, interrupts are not disabled upon

entry into the procedure. Trap gates are valid only in the IDT.

Trojan horse: a type of protection violation in which a procedure passes a selector that it has no right
to use to a more privileged procedure that does have the right to use it.

trusted instruction: one of a set of 1/O-related instructions that cannot be executed unless CPL is less
than or equal to IOPL. The trusted instructions are CLI, STI, IN, INS, OUT, OUTS, and LOCK.

type code: a value in a descriptor that specifies the intended use of a segment. The processor interprets
the type code to ensure that segments are used only as intended.

type extension code: a software extension to the type code concept that includes usages recognized by
the operating system.

UDI (Universal Development Interface): an Intel standard for interfaces to operating-system services.
usage privilege level (UPL): a software-defined measure of the right to use an operating-system object.

vectoring: see interrupt vectoring.
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virtual address: an address that consists of a selector and an offset value. The selector chooses a
descriptor for a segment; the offset provides an index into the selected segment.

virtual address space: The set of all possible virtual addresses that a task can access, as defined by the
GDT and the task’s LDT. The maximum possible virtual address space for one task is one gigabyte.

virtual memory: a style of memory management that permits the virtual address spéce to exceed the
physical address space of RAM. With the help of processor features, the operating system simulates
the virtual address space by using secondary storage to hold the overflow from RAM.

word count: a field of a gate dcsbriptor that specifies the nuinbcr of words of parameters to be copied
from the calling procedure’s stack to the stack of the called procedure.

writable segment: a data segment that can be written to. A writablé segment is identified by a Boolean
in its descriptor. ' ’

XOS (Example Operating System): an imaginary operating system, portions of which are used in this
book as examples. .
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8089 I/0 processor, 8-1

8254 Programmable Interval Timer (PIT), 4-5,
49, 4-13

8259A Programmable Interrupt Controller
(PIC), 4-6, 6-1, 6-6, 7-6

80287 Numerics Processor Extension (NPX),
1-7, 7-4, 7-§, 7-8, Chapter 12

access rights (field of descriptor), 2-21, 2-22,
9-2, 11-5, 11-10, 13-1, 13-2, 13-4

accessed bit, 2-7, 5-3, 9-1, 9-4, 9-5, 9-7, 10-2

ADC, 7-8 :

addressing mechanism, 2-1

ADJUSTSRPL, 2-16, 13-2

alias, 2-17 thru 2-22, 3-2, 4-10, 4-12, Chapter 5,
6-5, 8-2, 9-3, 9-7, 10-3, 11-2, 11-9, 13-5

ARPL, 2-16, 13-2 thru 13-4

ASM286, 3-6, 4-13, 11-4, 13-2

ASSUME, 11-4

asynchronous execution, 1-6

back link (of TSS), 4-1 thru 4-4, 4-7, 4-13, 7-5,
7-6, 10-2, 11-10

base address, 2-4, 2-15, 4-1, 5-3, 9-3, 9-5, 10-3,
11-3, 11-10, 11-11

binding, 1-8, 2-8, 2-9, Chapter 11

Binder, see iAPX 286 Binder

bootloadable, see module, bootloadable

BOUND, 7-4

bound check exception, 7-4

boundary tags, 3-2, 3-5, 3-6, 9-3

breakpoint, 2-17, 7-3

buffer, 2-18, 3-1, 3-10, 5-10, 8-1, 8-3, 8-5, 8-7,
9-2,9-4

Builder, see iAPX 286 System Builder

BUSY/ pin, 12-2, 12-3

busy task, 4-3, 4-4, 7-7

CALL, 2-7, 2-9, 2-10, 4-2 thru 4-4, 4-13, 4-17,
6-1, 6-2, 6-4, 6-6, 7-5 thru 7-7, 11-3

carry flag (CF), 7-8

CLI, 4-6, 4-7, 5-6, 6-2, 8-2

CLTS, 12-2, 12-4

CMPS, 7-7

combine type, 11-4

COMPACT, 114, 11-5

compaction, 3-10

compiler control statements, 11-4

conforming segment, 2-5, 6-2, 6-7, 6-8

critical section, 5-5 thru 5-7, 12-4

CS register, 4-4, 6-9, 7-5 thru 7-7, 9-1, 9-6, 9-7,
10-1, 11-3, 11-9, 12-5

current privilege level (CPL), 2-11, 2-16, 4-6,
5-6, 6-2, 6-7, 6-8, 8-2, 10-1, 10-2, 13-3

deadlock, 5-7, 5-10
debugger, 2-17, 7-3, 11-3, 11-10
deletion
of segment, 2-20, 5-2, 5-3, 8-3, 9-5, 13-1
of descriptor, 13-5
DESCRP section, 11-11, 11-12
descriptor, 2-2, 2-12, 11-6, 11-9
data segment, 2-2, 2-3, 2-6, 2-14, 2-15, 2-18,
7-7, 9-3 thru 9-5, 9-7
dynamic creation, 3-1, 3-2
executable segment, 2-2, 2-4, 2-6, 2-7, 2-14,
2-15, 2-17, 6-1, 7-7, 9-7
gate, 2-2, 2-7 thru 2-11, 2-15, 6-2, 7-6, 9-1,
9-2, 10-2, 11-3, 11-9
system segment, 2-2, 2-5
descriptor privilege level (DPL), 2-3, 2-6, 2-9,
2-11, 2-15, 2-20, 2-21, 4-3, 5-7, 6-7, 6-8, 8-2.
8-5, 8-7 ‘
descriptor table, 2-2, 2-12, 2-15
see also global descriptor table, local
-descriptor table, interrupt descriptor table
DESNAM section, 11-11 _
device drivers, 5-17, 8-1, 8-2, 8-4, 8-7, 9-2, 9-4,
11-2,11-4 ’
DI register, 7-7
DISABLE, 6-2, 6-4, 7-1
dispatching, 4-9, 4-13, 5-7, 9-5, 11-4
divide error exception, 6-7, 7-3
double fault, 7-5, 9-2, 9-4
DPL, see descriptor privilege level
DS register, 2-17, 2-18, 2-21, 4-12, 7-5 thru 7-7,
9-1, 9-6, 9-7, 10-1
dynamic system, 1-7 thru 1-10, 2-2, 2-3, 2-12,
2-18 thru 2-20, 2-22, 3-1, 4-4, 5-7, 6-5, 11-8

effective privilege level, 2-16

EM (emulation mode) flag, 7-4, 7-8, 12-1 thru
12-3

emulation, 7-8, 12-1, 12-4

ENABLE, 6-2

ENTER, 7-6

ENTRY, 11-6

EPROM, 10-3

ERROR/ pin, 7-8, 12-1 thru 12-3, 12-5

error code, 7-1, 7-2, 7-5 thru 7-7, 7-9, 9-2, 9-3,
12-5
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ES register, 2-17, 2-18, 2-21, 2-22, 4-12, 7-5
thru 7-7, 9-1, 9-6, 9-7, 10-1

ESCAPE instructions, 7-4, 12-1 thru 12-5

EX (external) bit, 7-2

examples, 2-20 thru 2-26, 3-1 thru 3-9, 3-15 thru
3-21, 4-15, 5-8, 5-9, 5-13 thru 5-16, 10-3
thru 10-15, 11-6 thru 11-8, 11-12 thru
11-28

exception, 1-7, 2-8, 2-10, 2-17, 4-3, 4-7, 5-5, 6-2,
6-4, 6-9, Chapter 7, 9-1, 11-3, 13-3, 13-5

handler, 6-7, Chapter 7, 9-2, 9-4, 11-3, 12-4,
12-5
recovery, Chapter 7, 12-3 thru 12-5

EXECUTE, 11-9

execute-only segment, 7-7, 13-4

expand-down segment, 2-5, 11-11, 13-4

expansion direction, 2-5, 5-3

EXPORT, 11-6

export module, 11-6, 11-12, 11-13

exports list, 11-4, 11-5 )

extended segmentation controls, 11-4

EXTERNAL, 3-6

FAR, 11-4

fault, see exception

FINIT, 12-5

“first fit” algorithm, 3-1, 3-2
flag word, 4-2 thru 4-4, 6-2, 6-4, 8-1, 8-2, 10-1
FNINIT, 12-2, 12-5
FORK, 11-9

fragmentation, 3-1, 3-2, 9-6
FRSTOR, 124

FSAVE, 12-4, 12-5
FSETPM, 12-2, 12-5

gate, 2-8, 2-11, 11-6
call, 2-8, 2-10, 2-12, 2-14, 2-15, 2-21, 3-9,
4-13, 5-7, 5-12, 6-1, 6-2, 8-7, 11-3, 11-12,
11-14
interrupt, 2-8, 2-15, 6-2, 6-4, 6-7
name, 11-6
task, 2-8, 2-14, 2-15, 4-3, 4-7, 6-2, 6-4, 7-5,
10-3
trap, 2-8, 2-15, 6-2, 6-4, 6-7
see also descriptor, gate
GATE, 11-6
GDT, see global descriptor table
GDT register, 2-15, 10-2
general protection exception, 7-7, 8-2
GETSACCESSS$RIGHTS, 13-2
GETSSEGMENTSLIMIT, 3-6, 13-2

Index-2

global descriptor table (GDT), 1-3, 2-12, 2-14
thru 2-19, 2-22, 3-3, 3-4, 3-7, 3-8, 4-1, 4-3,
4-10 thru 4-12, 5-1, 5-7, 5-10, 6-7, 7-2, 8-7,
10-2,10-3,11-2, 11-4, 11- 5 11 9thru 11-12,
13-5

handler table, 6-7
hashing algorithm, 5-3

I bit (of error code), 7-2
iAPX 286 Binder, 1-10, 11-3, 11-5, 11-6, 11-10,
11-11
iAPX 286 System Builder, 1-8 thru 1-11, 2-2,
2-4, 2-12, 2-18, 3-1, 3-6, 8-2, 10-3, 11-3 thru
11-6, 11-8, 11-10, 11-11
iAPX 386, 2-3
identifier, 5-7, 5-10, 8-7
see also interrupt identifier
IDT, see interrupt descriptor table
IDT register, 2-15, 6-2
IF (interrupt-enable) flag, 4-6, 5-6, 6-2, 6-4
index field (of selector), 2-16, 2-17, 5-3, 7-2
INITSREALSMATHSUNIT, 12-2
initialization
of 80287, 12-2
see also system initialization
input/output (I/0), 1-4 thru 1-7, 2-18, 4-5, 4-7,
4-10, 5-10, Chapter 8, 9-2, 9-4, 9-8, 11-2,
11-4,11-9
indirect, 8-3
memory-mapped, 8-2
IN, 8-1
INS, 7-7, 8-1
INT, 2-7, 2-10, 2-15, 4-3, 6-1, 6-2, 7-3
INTA cycles, 2-15
INTO, 6-1, 6-2, 7-3
INTR pin, 6-1, 6-2, 6-6
interrupt, 14, 1-7, 2-10, 2-15, 2-21, 4-3, 5-4 thru
5-6, Chapter 6, 7-1, 7-6, 7-7, 8-4, 10-1, 10-2
distribution, 6-7 thru 6-9
flag, see IF
identifier, 2-15, 6-1, 6-2
handler, 2-15, 2-18, 4-6
latency, see interrupt response time
mask, 4-7, 12-4
procedure, 4-4, 4-7, 4-11, 4-13, 6-2, 6-4 thru
6-7,7-1, 12-4
response time, 4-3, 5-5, 6-5, 12-4
scheduled task, see scheduling
software, 6-1
task, 4-4, 4-7, 6-2, 6-4 thru 6-6, 7-1, 7-6, 9-4,
12-4, 13-5
interrupt descriptor table (IDT), 2-12, 2-15,
2-16, 2-18, 4-3, 4-5, 4-7, 6-2, 6-4, 6-5, 6-7,
7-2, 7-5, 10-2, 10-3, 11-11
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“invalid TSS” exception, 7-5 thru 7-7, 9-2, 9-5 MOV, 7-6
IOPL (1/0 privilege level), 4-6, 5-6, 8-1, 8-2, MOVS, 7-7

8-5

IP register, 4-4, 6-9, 7-1, 7-3, 7-5, 7-7, 10-1,
11-9, 12-4, 12-5

IRET, 2-7, 2-10, 4-3, 4-4, 4-13, 6-4, 6-6, 6-7, 6-9,
7-3, 7-5, 7-7, 8-2, 12-5

JMP, 2-5, 2-7, 2.9, 2-10, 4-3, 4-4, 4-13, 7-7,
10-1, 10-3

LABEL, 11-4

LAR, 9-7, 13-2, 13-4

LARGE, 11-4

LDT, see local descriptor table

LDT register, 2-14, 4-3, 7-6, 9-1

LDT selector (of TSS), 4-1, 4-3, 6-9, 7-5, 10-2,
11-11

LEAVE, 7-6

LGDT, 2-15

LIDT, 2-15, 6-2

limit field (of descriptor), 2-4, 2-5, 2-12, 2-15,
2-16, 4-1, 5-3, 7-5 thru 7-7, 9-5, 10-1, 10-3,
11-11, 12-4, 13-2, 13-4

linkage, 1-10, 7-6

LLDT, 2-14, 7-6

LMSW, 10-1, 12-1

loading, see program loading

local descriptor table (LDT), 2-5, 2-12, 2-14,
2-16, 2-18 thru 2-20, 3-1, 4-10, 5-1 thru 5-3,
5-10, 5-17, 6-7, 7-2, 8-7, 9-3, 9-4, 9-7, 10-2,
10-3, 11-2, 11-4, 11-5, 11-8 thru 11-12

not present, 9-1, 9-2

LOCALSTABLE, 2-14

LOCK, 8-2

LODTXT section, 11-11, 11-12

logical segment, 1-1, 11-2 thru 11-5

LSL, 9-7, 13-2, 13-4

LTR, 4-1, 9-1

MACHINESSTATUS, 12-1
mailbox, 5-10 thru 5-12, 5-16, 5-17, 8-7, 9-3,
9-5,11-2, 13-1, 13-4, 13-5

mechanisms, see policies and mechanisms
memory management

real, 1-8, 1-9, 2-22, Chapter 3, 5-4, 5-12, 5-17,

8-3, 8-5, 11-6

virtual, 1-8, 2-2, 2-3, 2-7, 7-6, Chapter 9, 11-9
message, 2-19, 3-9, 4-9, 5-4, 5-10, 5-12, 5-16
module, 11-1 thru 11-6

MP (math present) flag, 7-4, 12-1 thru 12-4

MSW (machine status word), 7-4, 7-8, 10-1,
12-1, 12-2

multiprocessor systems, 3-10

mutual exclusion, 5-5, 5-6

naming, 11-1 thru 11-6, 11-11, 11-12, 13-1, 13-2,
13-4, 13-5

NEAR, 114

NMI (non-maskable interrupt), 6-1, 6-2, 10-2

NOT PRESENT statement, 11-12

“not present” exception, 7-5 thru 7-7, 9-1, 9-3
thru 9-8, 11-3 :
see also present bit

NT (nested task) flag, 4-2 thru 4-4, 4-7, 7-6, 9-4,
11-10

Numerics Processor Extension (NPX),
see 80287

OBIJECT, 11-6

object module format (OMF), 11-8, 11-10,
11-11

OF (overflow) flag, 7-3

OUT, 8-2

OUTS, 7-7, 8-2

outward call, 6-8

overflow exception, 7-3

paged architecture, 9-6
parallel table, 5-3, 13-1
parallelism, 1-4, 8-4, 8-7
PE (protection enable) flag, 10-1
Petri net graph, 8-4, 8-5
physical address, 1-8, 1-9, 2-4, 3-2 thru 3-4,
11-10
- physical segment, 1-1, 1-2, 2-12, 2-15, 11-1 thru
- 11-3
PIC, see 8259A Programmable Interrupt
Controller
pipes, 5-17
PL/M-286, 2-14 thru 2-16, 2-21, 2-22, 3-3, 3-6,
4-1, 4-3, 4-13, 6-2, 11-4, 11-6, 12-2, 12-4,
13-2
pointer parameters, see selector parameters
policies and mechanisms
scheduling, 4-9, 4-10
virtual memory management, 9-1, 9-6
POP, 7-6

bootloadable, 11-6, 11-10 POPA, 7-7
linkable, 11-6, 11-10 POPF, 8-2
loadable, 1-10, 11-10, 11-11, 11-14 preemption, 4-5, 4-7, 4-9, 4-10, 4-13
object, 1-8, 1-9, 11-9, 11-10 prefix, 7-1
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present bit, 2-2, 2-3, 2-9, 5-3, 7-5, 7-6, 9-1 thru
9-5, 11-12

primitives, 11-3, 11-4, 11-6, 11-12, 11-14, 13-4 .

priority, 2-19, 4-6, 4-7, 4-9, 4-10, 6-6, 6-7

privilege level, 1-3, 1-4, 1-8, 2-6, 2-7 thru 2-11,
2-15, 2-18, 2-20, 2-21, 3-8, 3-9, 4-1, 4-2, 4-9,
4-12, 4-13, 5-2, 5-7, 5-10, 5-12, 6-2, 6-3, 6-5,
6-8, 8-2, 8-3, 8-7, 9-3, 9-7, 11-2, 11-6, 11-9,
11-10, 12-2, 12-4, 13-1, 13-2, 134 13-5

PROC 11-4

‘“processor extension error” exception, 7 8, 12-5
*““processor extension not available” exception,

7-4,12-3, 12-4

‘““processor extension segment overrun”
exception, 7-5, 12-4, 12-5

profiling, 9-7, 9-8

program loading, 1-8, 1-10, 2-3, 2-4, 3-1, 6-5,
Chapter 11

bootstrap, 1-9, 11-10

protected, virtual-address mode, 10-1, 10-2, 12-2

protection, 1-3 thru 1-5, 1-9, Chapter 2, 3-1, 3-7,
4-3, 4-4, 4-6, 5-1, 5-4, 5-7, 5-10, 6-2, 6-3,
6-5, 6-6, 7-3, 8-1 thru 8-4, 8-7, Chapter 13

violation, 6-4, 6-9, 7-7

PUBLIC, 3-2, 3-6, 3-8, 3-9, 10-3, 11-3, 11-6

PUSH, 7-6

PUSHA, 7-7

RCL, RCR, 7-8

readable segment, 2-7

read-only segment, 7-7 ‘

real address mode, 10-1, 10-2

real memory management, see memory
management, real

recovery, see exceptions

region, 5-10, 9-4, 9-5

REP, REPE, REPNE, 7-7

requested privilege level (RPL), 2-11, 2-16, 7-2,
13-2 thru 13-4

RESERVE, 3-6, 11-6

reserved word (of descriptor), 2-3, 2-22

RESET, 10-1, 10-3

RESTORESGLOBALSTABLE, 2-15

RESTORESINTERRUPTSTABLE, 2-15

RESTORESREALSSTATUS, 124

return pointer, 6-2, Chapter 7, 12-4, 13-3

return link, see return pointer

return address, see return pointer

relocation (of segment), 2-4, 2-20, 5-2, 5-3, 5-12,
8-3

RET, 2-7, 2-9, 2-10, 4-3, 11-5

RETURN, 11-5

ROM, 10-1 :

RPL, see requested privilege level

Index-4

SAVESGLOBALSTABLE, 2-15
SAVESINTERRUPTSTABLE, 2-15
SAVESREALSSTATUS, 12-4
SBB, 7-8
SCAS, 7-7
scheduling, 2-19, 4-11, 5-12, 9-5
hardware, see scheduling, interrupt
interrupt, 4-6, 4-7, 4-9, 6-1, 6-5, 6-6, 8-7
queues, 4-12, 4-13, 9-4, 11-10, 11-14
software, 4-7, 4-9, 6-1, 6-5, 6-6, 7-6
state, 4-5 thru 4-7, 4-10
SEGMENT, 11-4, 11-6
segment, see logical segment, phy51cal segment
segment limit, see limit field
segmented architecture, 9-6
SEGMENTSREADABLE,
SEGMENT$WRITABLE, 13-2
selector, 2-1, 2-2, 2-8, 2-9, 2-15, 2-16, 3-6, 4-1,
4-3, 5-7,7-6, 7-7, 11-12, 13-1
parameters, 2-16, 13-1 thru 13-4
null, 2-15, 2-17, 7-7
SELECTORSOF, 3-6
semaphore, 5-6, 5-7, 5-10, 5-16, 9-4, 9-5, 11-2,
12-4, 13-1, 13-4, 13-5
send privilege level (SPL), 13-5
SGDT, 2-15
shadow task, 6-8, 6-9
sharing (of segments), 2-14, 2 15, 2-19, 2-20,
2-22, 4-4, Chapter S, 8-7, 9-5, 11-2, 11-4,
13-1, 13-4, 13-5
shutdown, 7-5, 10-2
SI register, 7-7
SIDT, 2-15, 6-2
signal, 4-5, 5-7, 5-10, Chapter 6
single-step flag (TF), 6-2, 7-3
SLDT, 2-14, 9-7
slot, 2-20, 2-22, 2-26, 5-10, 11-6, 11-14, 13-5
SMALL, 11-4
SMSW, 12-1
SP register, 4-2, 4-12, 7-6
SPL, see send privilege level
SS register, 4-2, 4-12, 7-5 thru 7-7, 9-2, 9-6,
10-1
stack, 2-5, 2-8, 3-1, 4-12, 6-2, 6-4, 7-1, 7-2, 7-6,
7-7, 9-3, 9-4, 9-7, 10-2, 11-6, 11-9 thru
11-11, 13-4
initial, 4-2, 4-3, 11-6
overflow, 7-5, 7-7
exception, 7-5 thru 7-7, 9-2
static system, 1-7, 1-9, 1-10, 2-3, 2-19, 3-1, 4-4,
6-4,11-9
STI, 4-6, 4-7, 5-6, 6-2, 8-2
STOS, 7-7
STR, 4-1, 4-7, 4-11
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subsystem, 11-4

swapping, 5-12, 8-3, 9-2 thru 9-4, 9-8

synchronization, 2-22, 3-8, 3-9, Chapter 5, 8-4,
8-6, 12-2, 13-4, 13-5

system initialization, 6-5, 6-6, Chapter 10

TABLE, 11-6
table indicator (TI), 2-16, 2-17, 7-2
task, 1-1
creation, 2-2, 2-18, 3-1, 5-12, 6-9, 11-9
database (TDB), 4-11, 5-12, 9-4, 11-9, 11-10,
12-3, 12-4
management, Chapter 4
state, 4-1, 10-2, 12-3
switching, 2-14, 4-1, 4-3, 4-4, 4-9, 5-6, 6-2, 7-5
thru 7-7, 8-2, 9-4, 9-5, 10-2, 11-9, 12-2 thru
12-4
TASK, 11-6
task register (TR), 4-1, 4-2, 4-4, 9-1, 10-2
task state segment (TSS), 2-5, 2-14, 2-18, 3-1,
4-1 thru 4-4, 4-10 thru 4-13, 5-1, 6-2, 6-4,
6-9, 7-1, 7-5, 7-7, 8-2, 9-1, 9-4 thru 9-7,
10-2, 10-3, 10-5, 11-6, 11-8 thru 11-12,
11-14
TASKSREGISTER, 4-1
TDB, see task database
termination (of task), 6-9, 7-1, 7-5, 12-5
TF, see single-step flag

Index-5

thrashing, 9-8
TI, see table indicator
time slice, 4-5, 4-9 thru 4-11
timer, see 8254 Programmable Interval Timer
TS (task switched) flag, 7-4, 12-1 thru 12-4
TSS, see task state segment
type
field of descriptor, 2-5, 2-17, 2-18, 2-20, 2-21,
4-3, 4-4, 6-2, 9-3, 11-10, 11-14, 13-1
extended, 13-1, 13-2, 13-5

UDI (Universal Development Interface), 8-1
“undefined opcode” exception, 7-4 .

UNIX, 11-9

usage privilege level (UPL), 8-7, 13-4, 13-5

vectoring, 6-1, 6-3, 7-1

VERR, VERW, 13-2, 13-4

virtual memory, see memory management,
virtual

WAIT, 7-4, 7-8, 12-1 thru 12-5

WAITSFORSINTERRUPT, 4-3

word count, 2-8

writable data segment, 2-6, 9-5, 11-10, 11-14,
13-1, 13-4

XOS, 11-1, 11-2, 11-4, 11-6
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TWX: 910-339-9279
910-338-0255

Intel Corp.*

5530 Corbin Avenue
Suite 120

Tarzana 91356

Tel: (213) 708-0333
TWX: 910-495-2045
COLOHADO

Intet Cor|

4445 Nonhpnvk Drive
Suite 100

Colorado Spﬂngs 00907
Tel: (303) 594.

Intel Cory

650 S. Chmy Street
Suite 720

Denver 80222

Tel: (303) 321-8086
TWX: 910-931-2289
CONNECTICUT
intel Corp.

36 Pudanuum Road
Danbul

Tel: (203) 792 3366
TWX: 710-456-1199

EMC Corp.

393 Center Street
Wallingford 06492
Tel: (203) 265-6991
FLOHIDA

Intet C:

1500 N W 62nd Street
Suite 104

Ft. Lauderdale 33309
Tel: (305) 771-0600
TWX: 510-956-8407

Intel Corp.

500 N. Maitland
Suite 205

Maitland 32751

Tel: (305) 628-2393
TWX: 810-853-9219

U.S. SALES OFFICES

GEORGIA

Intel Corp.

3300 Holcombe Bridge Road
Suite 225

Norcross 30092

Tel: (404) 443-0541
ILLINOIS

intel Corp.*

2550 Golf Road,
Suite 815

Rolling Meadows 60008
Tel: (312) 981-7200
TWX: 910-651-5881
INDIANA

Intel Corp.

9100 Purdue Road
Suite 400
Indianapolis 46268
Tel: (317) 875-0623
IOWA

Intel Corp.

St. Andrews Building
1930 St. Andrews Drive N.E.
Cedar Rapids 52402
Tel: (319) 393-5510
KANSAS

Intel Corp.

8400 W. 110th Street
Suite 170

Overland Park 66210
Tet: (913) 642-8080

LOUISIANA

Industrial Digital Systems Corp.

2332 Severn Avenue

Suite 202

Metairie, LA 70001

Tel: (504) 831-8492

MARYLAND

Intel Corp.*

7257 Parkway Drive

Hanover 21076

Tel: (301) 796-7500

TWX: 710-862-1944

Intel Corp.

7833 Walker Drive

Greenbelt 20770

Tel: (301) 431-1200

MASSACHUSETTS

Intel Corp.*

27 Industrial Avenue

Cheimsford 01824

Tel: (617) 256-1800

TWX: 710-343-6333

EMC Corp.

385 Elliot Street

Newton 02164

Tel: (617) 244-4740
X: 92253t

MICHIGAN

Intel Corp.*

26500 Northwestern Hwy.
Suite 401

Southfield 48075
Tel: (313) 353-0920
TWX: 810-244-4915
MINNESOTA

Intel Corp.

3500 W. BOth Street
Suite 360
Bloomington 55431
Tel (612) 8356722
TWX: 910-576-2867

MISSOURI

Intel Corp.

4203 Elnh City Expressway
Suite 1

Earth Clty 63045

Tel: (314) 291-1990

NEW JERSEY

Intel Corp.*

Raritan Plaza Il
Rarntan Center
Edison 08837

Tei: (201) 225-3000
TWX: 710-480-6238

NEW MEXICO

intel Corp.

1120 Juan Tabo N.E.
Albuquerque 87112
Tel: (505) 292-8086

NEW YORK

Intel Corp.*

300 Vanderbilt Motor Parkway
Hauppauge 11788
Te: (516) 231-3300
TWX: 510-227-6236
Intel Corp.

80 Washington Street
Poughkeepsie 12601
Tel: (914) 473-2303
TWX: §10-248-0060
Intel Corp.”

211 White Spruce Boulevard
Rochester 14623
Tet: (716) 424-1050
TWX: §10-253-7391
T-Squared

6443 Ridings Road
Syracuse 13206

Tel: (315) 463-8592
TWX: 710-541-0554
T-Squared

7353 Pittstord

Victor Road

Victor 14564

Tei: (716) 924-9101
TWX: 510-254-8542
NORTH CAROLINA
Intel Corp.

2306 W. Meadowview Road
Suite 208
Greensboro 27407
Tel: (919) 294-1541

OHIO

Intel Corp.*

6500 Poe Avenue
Dayton 45414

Tel:(513) 890-5350

TWX: 810-450-2528

Intel Corp.*
Chagrin-Brainard Bldg., No. 300
28001 Chagrin Boulevard
Cleveland 44122

Tel: (216) 464-6915

TWX: 810-427-9298

OKLAHOMA

intel Corp.

4157 S. Harvard Avenue
Suite 123

Tulsa 74135

Tel: (918) 749-8688
OREGON

Intel Corp.

10700 S.W. Beaverton
Hillsdale Highway
Suite 22

Beaverton 87005

Tel: (503) 641-8086
TWX: 910-467-8741

PENNSYLVANIA

Intel Corp.*

510 Pennsylvania Avenue
Fort Washington 19034
Tel: (215) 641-1000
TWX: 510-661-2077
Intel Corp.*

201 Penn Center Boulevard
Suite 301W
Pittsburgh 15235

Tel: (412) 823-4970
QE.D. Electronics
300 N. York Road
Hatboro 19040

Tol: (215) 674-9600
TEXAS

Intel Corp.”

12300 Ford Road
Suite 380

Dallas 75234

Tol: (214) 241-8087
TWX;: 910-860-5617
Intet Corp.*

7322 S.W. Freeway
Suite 1430

Houston 77074

Tat: (713) 988-8086
TWX: 910-881-2490
Industrial Digital Systems Corp.
5925 Sovereign

Suite 101

Houston 77036

Tel: (713) 988-9421
Intel Corp.

313 E. Anderson Lane
Suite 314

Austin 78752

Tel: (512) 454-3628
UTAH

Intel Corp.

268 West 400 South
Salt Lake City 84101
Tel: (801) 533-8086
VIRGINIA

Intel Corp.

1603 Santa Rosa Road
Suite 109

Richmond 23288

Tel: (804) 282-5668
WASHINGTON

Intet Corj

110 1!0m Avenue N.E.
Suite 510

Bellevue 98004

Tel: (206) 453-8086
TWX: 910-443-3002

WISCONSIN

intel Corp.

450 N. Su’!nyslope Road
Suite

Bvookheld 53005

Tel: (414) 784-3060

“Field Application Location
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ALABAMA

tArrow Electronics, Inc
3611 Memorial Parkway So.
Huntsville 35405

Tel: (205) 882-2730
tHamilton/Avnet Electronics
4812 Commercial Drive N.W.
Huntsville 35805

Tel: (205) 837-7210

TWX: 810-726-2162
tPioneer/Huntsville

1207 Putnam Drive N.W.
Huntsville 35805

Tel: (205) 837-9300

TWX: 810-726-2197
ARIZONA

tHamilton/Avnet Electronics
505 S. Madison Drive
Tempe 85281

Tei: (602) 231-5140

TWX: 910-950-0077

tWyle Distribution Group
8155 N, 24th Street
Phoenix 85021

Tel: (602) 249-2232

TWX: 910-951-4282

CALIFORNIA
tArrow Electronics, Inc.
521 Weddell Drive
Sunnyvale 94086
Tel: (408) 745-6600
TWX: 910-339-9371
tArrow Electronics, Inc.
19748 Dearborn Street
Chatsworth 91311
Tel: (213) 701-7500
TWX: 910-493-2086
tHamilton/Avnet Electronics
350 McCormick Avenue
Costa Mesa 92626
Tel: (714) 754-6051
TWX: 910-595-1928
tHamilton/Avnet Electronics
19515 So. Vermont Avenue
Torrance 80502
Tel: (213) 615-3309
TWX: 910-349-6263
1Hamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale 94086
Tel: (408) 743-3300
TWX: 910-339-9332
tHamilton/Avnet Electronics
4545 Viewridge Avenue
San Diego 92123
Tel: (714) 641-4109
TWX: 910-595-2638
‘tHamilton/Avnet Electronics
10912 W, Washington Boulevard
Culver City 90230
Tel: (213) 558-2458
TWX: 910-340-6364
tHamilton/Avnet Electronics
21050 Erwin Street
Woodland Hilis 91367
Tel: (213) 883-0000
TWX: 910-494-2207
tHamilton Electro Sales
3170 Puliman Street
Costa Mesa 92626
Tel: (714) 641-4109
TWX: 910-595-2638
tHamiton/Avnet Electronics
4103 Northgate Boulevard
Sacramento 95834
Tel: (916) 920-3150
Kierultf Electronics, Inc.
3969 E. Bayshore Road
Palo Alto 94303
Tel: (415) 968-6292
TWX: 910-379-6430
Kierulff Electronics, inc.
14101 Franklin Avenue
Tustin 92680
Tel: (714) 731-5711
TWX: 910-5¢5-2599
Kierulff Electronics, Inc.
2585 Commerce Way
Los Angeles 90040
Tel: (213) 725-0325
TWX; 910-580-3666
tWyle Distribution Group
124 Maryland Street
El Segundo 90245
Tel: (213) 322-8100
TWX: 910-348-7140 or 7111
1Wyle Distribution Group
9525 Chesapeake Drive
San Diego 92123
Tel: (714) 565-9171
TWX: 910-335-1580
1Wyle Distribution Group
3000 Bowers Avenue
Santa Clara 95051
Tel: (408) 727-2500
TWX: 810-338-0451 or 0451/0
1Wyle Distribution Group
17872 Cowan Avenue
Irvine 92714
Tel: (714) 641-1600
TWX: 910-595-1672

U.S. DISTRIBUTORS

COLORADO

1Wyle Distribution Group
451 €. 124th Avenue
Thornton 80241

Tel: (303) 457-9953
TWX: 910-936-0770

1Hamilton/Avnet Electronics
8765 E. Orchard Road
Suite 708

Englewood 80111

Tef: (303) 740-1017

TWX: 910-935-0787

CONNECTICUT

tArrow Electonics, Inc.

12 Beaumont Road
Wallingford 06492

Tel: (203) 265-7741

TWX: 710-220-1684
‘tHamilton/Avnet Electronics
Commerce Industrial Park
Commerce Drive

Danbury 06810

Tel: (203) 797-2800

TWX: 710-456-9974
1Harvey Electronics

112 Main Street

Norwalk 06851

Tel: (203) 853-1515

TWX: 710-468-3373

FLORIDA

tArrow Electronics, inc.
1001 N.W. 62nd Street
Suite 108

Ft. Lauderdale 33309
Tel: (305) 776-7790
TWX: 510-955-9456
tArrow Electronics, Inc.
50 Woodlake Drive W.

Bldg. B

Palm Bay 32905

Tel: (305) 725-1480

TWX: §10-959-6337
tHamilton/Avnet Electronics
6801 N.W. 15th Way

Ft. Lauderdale 33309

Tel: (305) 971-2900

TWX: 510-956-3097
tHamilton/Avnet Electronics
3197 Tech. Drive North

St. Petersburg 33702

Tel: (813) 576-3930

TWX: 810-863-0374
tPioneer/Orlando

6220 S. Orange Btossom Trail
Suite 412

Orlando 32809

Tel: (305) 859-3600

TWX: 810-850-0177

tPioneer/Ft. Lauderdale
1500 62nd Street N.W.
Suite 506

Ft. Lauderdale 33309

Tel: (305) 771-7520

TWX: §10-955-9653
GEORGIA

tArrow Electronics, Inc.
2979 Pacitic Drive
Norcross 30071

Te!: (404) 449-8252

TWX: 810-766-0439
tHamitton/Avnet Electronics
5825 D. Peachtree Corners
Norcross 3

Tel: (404) 447-7500

TWX: 810-766-0432
tPioneer/Georgia

58358 Peachtree Corners E
Norcross 30092

Tel: (404) 448-1711

TWX: 810-766-4515
ILLINOIS

tArrow Electronics, Inc.
2000 E. Alonquin Street
Schaumberg 60195

Tel: (312) 397-3440

TWX: 910-291-3544
tHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 60106

Tel: (312) 860-7780

TWX: 910-227-0060
tPioneer/Chicago

1551 Carmen Drive

Elk Grove Viltage 60007
Te!: (312) 437-9680

TWX: 910-262-1182

INDIANA NEW HAMPSHIRE
tArrow Electronics, Inc. tArrow Electronics, Inc.
2718 Rand Road 1 Perimeter Road
Indianapolis 48241 Manchester 03103
(317) 243-9353 Tel: (603) 868-6968
TWX: 810-341-3119 TWX: 710-220-1684
tHamitton/Avnet Electronics

485 Gradie Drive NEW JERSEY

Carmel 46032 tArrow Electronics, Inc.
Tel: (317) 844-9333 Pleasant Valiey Avenue
TWX: 810-260-3966 :_‘?;"mm
tPionesr/indiana Tw; 7&&!97 0829
8408 Castieplace Drive .

Indianapolis 46250 Arrow Elactronics, Inc.
Tel: (317) 849-7300 285 Micland Avenue
TWX: 810-260-1794 Saddle Brook 07662

Tel: (201) 797-5800

KANSAS TWX: 710-998-2206
tHamilton/Avnet Electronics tArrow Electronics, Inc.
8219 Quivera Road 2 Industrial Road
Overland Park 88215 Fairtield 07006

Tel: (913) 888-8900 Tel: (201) 575-5300
TWX: 910-743-0005 TWX: 710-998-2206
MARYLAND ‘tHamitton/Avnet Electronics
Hamitton/Avnet Electronics 1 Keystone Avenue
6822 Oak Hall Lane Bidg. 36

Columbia 21045 Cherry Hil 08003

Tel: (609) 424-0100

T e TWX: 710-940-0262

TWX: 710-882-1861

tMaesa Technology Corporation tHarvey Electronics
16021 Industrial Drive 45 Route 46
Gaithersburg 20877 Pinebrook 07058

Tel: (201) 575-3510

Tel: (301) 948-4350 WX, 7107344382

TWX: 710-828-9702

tPioneer TMTI 5ystoms Sales
9100 Gaither Road 383 Route 46 W
Gaithersburg 20877 Fairfield 0 7

Tel: {201) 227-5552
NEW MEXICO

Tel: (301) 948-0710
TWX: 710-828-0545

MASSACHUSETTS tAliance Elacléonics Inc.
i i 11030 Cochiti S.E.

Lo Tower Otree Pare " Albugueraue 87153

Woburn 01801 Tel: (505) 292-3360

TWX: 910-989-1151

tHamilton/Avnet Electronics
2524 Baylor Drive S.E.

Tel: (617) 935-9700
TWX: 710-393-0382
tArrow Electronics, Inc.

A Albuquerque 87106

1 Arrow Drive Tel: (505) 765-1500
Woburn 01801 TWX: 910-989-0614
Tel: (817) 933-8130 :

TWX: 710-393-6770 NEW YORK
tHarvey/Boston tArrow Electronics, Inc.
44 Hartwell Avenue 900 Broad Hollow Road
Lexington 02173

Farmingdale 11735
Tel:(617) 8631200 Tel: (516) 694-6800
TWX: 710-326-6617 TWX: 510-224-6126
MICHIGAN TArrow Eloctronics.;nc.
tArrow Electronics, Inc. 3000 South Winton Road
3810 Versity Drive Rochester 14623

Ann Arbor 48104 Tet: (716) 275-0300

Tet: (313) 9718220 TWX: 510-253-4766
TWX: 810-223-6020 tArrow Electronics, Inc.

i 7705 Maltage Drive
tPioneer/Michigan
13485 Stam!ovg Liverpool 13088
Livonia 48150 Tel: (315) 652-1000

TWX: 710-545-0230
tArrow Electronics, Inc.

Tel: (313) 525-1800
TWX: 810-242-3271

il 20 Oser Avenue
tHamilton/Avnet Electronics

32487 Schoolcraft Road HIVDPHWQ 11783
Livonia 48150 Tel: (516) 231-1000

TWX: 510-227-6623
tHamilton/Avnet Electronics

Tel: (313) 522-4700
TWX: 810-242-8775

333 Metro Park
tHamilton/Avnet Electronics Rochester 14623
2215 29th Street S.E. Tel: (716) 475-9130
Space A5 TWX: §10-253-5470

?;mg‘%?‘;fg_'a‘a%?a tHamilton/Avnet Electronics
TWX: 810-273-6921 16 Corporate Circle

" E. Syracuse 13057
MINNESOTA Tel: (315) 437-2641
tArrow Electronics, Inc. TWX: 710-541-1560
gﬁ?&"g;égﬁ Street tHamilton/Avnet Electronics

i § Hub Drive
Tel: (612) 830-1800 Melville, Long Island 11747
TVIX: 910-576-3125 Yot (596) 4546000
tHamilton/Avnet Electronics TWX: 510-224- 6!65
Minngtorka S50+ faney Eictonics
.0. Box

Tel: (612) 932-0600 Binghamton 13902
TWX: (910) 576-2720 mﬂeon 748-8211
Pioneer/Twin Cities TWX: 510-252-0893
10203 Bren Road East
Minnetonka 55343
Tel: (612) 935-5444
TWX: 810-576-2738
MISSOURI
tArrow Electronics, Inc.
2380 Schustz
St. Louis 63141
Tel: (314) 567-6888
TWX: 910-764-6600
tHamilton/Avnet Electronics
13743 Shoreline Court
Earth City 63045
Tel: (314) 344-1200
TWX: 910-762-0684

tMicrocomputer System Technical Demonstrator Centers



NEW YORK (Cont.)
tHarvey Electronics

60 Crossways Park West
Woodbury. Long Istand 11797
Tel: (516) 921-8700
TWX: 510-221-2184
tHarvey/Rochester

840 Fairport Park
Farrport 14450

Tel: (716) 381-7070
TWX: 510-253-7001
tMT) Systems Sales

38 Marbor Park Drive
Port Washington 11050
Tel: (516) 621-6200
TWX: 510-223-0846

NORTH CAROLINA
tArrow Electronics, Inc.
938 Burke Street
Winston-Salem 27101

Tel: (919) 725-8711

TWX: 510-831-3169
tArrow Electronics, Inc.
3117 Poplarwood Court
Suite 123

Rateign 27265

Tel: (919) 876-3132

TWX: 510-928-1856
tHamilton/Avnet Electronics
2803 Industrial Drive
Raleigh 27609

Tel: (918) 829-8030

TWX: 510-928-1838
tPioneer/Carolina

103 Industrial Avenue
Greensboro 27406

Tel: (919) 273-4441

TWX: 510-925-1114
OHIO

tArrow Electronics, Inc.
7620 McEwen Road
Centerville 45459

Tel: (513) 435-5563

TWX: 810-459-1611
tArrow Electronics, inc.
6238 Cochran Road
Solon 44139

Tel: (216) 248-3990

TWX: 810-427-9409
1Hamilton/Avnet Electronics
954 Senate Drive

Dayton 45459

Tel: (513) 433-0610

TWX: 810-450-2531
tHamilton/Avnet Electronics
4588 Emery Industrial Parkway
Warrensville Heights 44128
Tel: (216) 831-3500

TWX: 810-427-9452
1Pioneer/Dayton

4433 Interpoint Boulevard
Dayton 45424

Tel: (513) 236-9900

TWX: 810-459-1622
tPioneer/Clevetand

4800 E. 131st Street
Cleveland 44105

Tel: (216) 587-3600

TWX: 810-422-2211
OKLAHOMA

tArrow Electronics, Inc.
4719 S. Memorial Drive
Tulsa 74145

Tel: (918) 665-7700

U.S. DISTRIBUTORS

OREGON

tAlmac Electronics Corporation
8022 S.W. Nimbus, Bidg. 7
Beaverton 87005

Tel: (503) 6419070

TWX: 910-467-8743
tHamilton/Avnet Electronics
6024 S.W. Jean Road

Bldg. C, Suite 10

Lake Oswego 97034

Tel: (503) 635-7848

TWX: 910-455-8179

PENNSYLVANIA
tArrow Electronics, Inc.
650 Seco Road
Monroeville 15146

Tel: (412) 856-7000
tPioneer/Pittsburgh
259 Kappa Drive
Pittsburgh 15238

Tel: (412) 782-2300
TWX: 710-795-3122
tPioneer/Delaware Valley
261 Gibratter Road
Horsham 19044

Tel: (215) 674-4000
TWX: 510-665-6778

TEXAS

tArrow Electronics, inc.
13715 Gama Road
Dallas 75234

Tel: (214) 386-7500
TWX: 910-860-5377
tArrow Electronics, Inc.
10700 Corporate Drive
Suite 100

Statford 77477

Tel: (713) 491-4100

TWX: 910-880-4439
tArrow Electronics, Inc.
10125 Metropolitan
Auystin 78758

Tet: (512) 835-4100

TWX: 910-874-1348
1Hamilton/Avnet Electronics
2401 Rutland

Austin 78757

Tel: (512) 837-8911

TWX: 910-874-1319
tHamilton/Avnet Electronics
2111 W. Walnut Hill Lane
Irving 75062

Tel: (214) 659-4100

TWX: 910-860-5929
‘tHamilton/Avnet Electronics
8750 West Park

Houston 77063

Tel: (713) 780-1771

TWX: 810-881-5523

tPioneer/Austin
9901 Burnet Road
Austin 78758

Tel: {(512) 835-4000
TWX: 910-874-1323
1Pioneer/Dallas
13710 Omega Road
Dallas 75234

Tel: (214) 386-7300
TWX: 910-850-5563
tPioneer/Houston
5853 Point West Drive
Houston 77036

Tel: (713) 988-5555
TWX: 910-576-2738

UTAH

tHamilton/Avnet Electronics
1585 West 2100 South

Salt Lake City 84119

Tel: (801) 972-2800

TWX: 910-925-4018

fArrow Electronics. Inc.
4980 Amelia Earhart Drive
Salt Lake City 84112

Tel: (801) 539-1135
WASHINGTON

tAlmac Electronics Corporation
14360 S.E. Eastgate Way
Bellevue 98007

Tel: (206) 643-9992

TWX: 910-444-2067

tArrow Electronics, Inc.
14320 N.E. 21st Street
Bellevue 98007

Tel: (206) 643-4800

TWX: 910-444-2017
tHamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue 98005

Tel: (206) 453-5874

TWX: 910-443-2469
WISCONSIN

tArrow Electronics, Inc.
430 W. Rausson Avenue
Qakcreek 53154

Tel: (414) 764-6600

TWX: 910-262-1193
‘tHamilton/Avnet Electronics
2975 Moorland Road

New Berlin 53151

Tel: (414) 784-4510

TWX: 910-262-1182

tMicrocomputer System Technical Demonstrator Centers
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BELGIUM

Intel Corporation S.A.
Parc Seny

Rue du Moulin a Papier 51
Boite 1

B-1160 Brussels

Tel: (02) 66107 11
TELEX: 24814

DENMARK

Intel Denmark A/S*
Lyngbyvej 32F 2nd Floor
DK-2100 Copenhagen East
Tel: (01) 18 20 00

TELEX: 19567

FINLAND

Intel Finland OY
Hameentie 103

SF - 00550 Helsinki 55
Tel: 0/716 955

TELEX: 123 332

FRANCE

Intel Corporation, SAR.L*
5 Place de ta Balance

Silic 223

94528 Rungis Cedex

Tel: (01) 687 22 21

TELEX: 270475

Inte! Corporation, S.AR.L.
Immeuble BBC

4 Quai des Etroits

69005 Lyon

Tel: (7) 842 40 89

TELEX: 305153

INTEL EUROPEAN SALES OFFICES

WEST GERMANY

Intet Semiconductor GmbH*
Seidistrasse 27

D 6000 Muenchm 2

Tel: (89)

TELEX: 05 23'77 INTLD
Intel Semiconductor GmbH*
Mainzer Strasse 75
D-6200 Wiesbaden 1

Tel: (8121) 70 08 74
TELEX: 04186183 INTW D
Intet Semiconductor GmbH
Brueckstrasse 61

7012 Fellbach

West Germany

Tel: (711) 58 00 82

TELEX: 7254826 INTS D
Intel Semiconductor GmbH*
Hohenzollern Strasse 5*
3000 Hannover 1

Tel: (511) 34 40 81

TELEX: 923625 INTH D
Intel Semiconductor GmbH
Ober-Ratherstrasse 2
D-4000 Dusseldorl 30

Tet: (211) 65

TELEX: 08- 58977 INTLD
ISRAEL

tntel Semiconductor Ltd.*
P.O. Box 1659

Haita

Tel: 4/524 261

TELEX: 46511

ITALY

Intel Corporation Itafia Spa*
Milanofiori, Palazzo E
20094 Assago (Milano}

Tel: (02) 824 00 06

TELEX: 315183 INTMIL
NETHERLANDS

Intel Semiconductor Nederiand B.V.*
Alexanderpoort Building

Marten Meesweg 93

3068 Rotterdam

Tel: (10) 21 3377

TELEX: 22283

NORWAY

Intel Norway A/S
P.0. Box 92
Hvamveien 4
N-2013

Skijetten

Tel: (2) 742 420
TELEX: 18018

SWEDEN

Intet Sweden A.B.*
Box 20092
Archimedesvagen §
$-16120 Bromma
Tet: (08) 98 53 85
TELEX: 12261

SWITZERLAND

Intel Semiconductor A.G.*
Forchstrasse 95

CH 8032 Zurich

Tel: (01) 55 45 02

TELEX: 57989 ICH CH

UNITED KINGDOM

Intel Corporation (U.K.} Ltd.*
5 Hospital Street

Nantwich, Cheshire CW5 SRE
Tel: (0270) 626 560

TELEX: 36620

Intel Corporation (U.K.) Ltd.*
Pipers Way

Swindon, Wiltshire SN3 1RJ
Tet: (0793) 488.388

TELEX: 444447 INT SWN

“Field Application Location

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA

Bacher Elektronische Geraete GmbH
Rotemuehlgasse 26

A 1120 Vienna

Tet: (222) 83 63 96

TELEX: 11532 BASAT A
BELGIUM

Ineico Belgium S.A.

Ave. des Croix de Guerre 94
81120 Brussels

Tel: (02) 216 01 60

TELEX: 25441

DENMARK
Multikomponent A/S
Fabriksparken 31
DK-2600 Gloskrup
Tel: (02) 45 66 45

TX: 33355
Scandinavian Semiconductor
Supply A/S
Nannasgade 18
DK-2200 Copenhagen
Tel: (01) 83 50 90
TELEX: 19037

FINLAND

Oy Fintronic AB
Metkonkatu 24 A
SF-00210

Helsinki 21

Tel: (0) 692 60 22
TELEX: 124 224 Ftron SF
FRANCE

Jermyn S.A.

rue Jules Ferry 35
93170 Bagnolet
Tel: {1) 859 04 04
TELEX: 213810 F
NMetrologie

La Tour d' Asnieres
1, Avenue Laurent Cely
92606-Asnieres
Tel: (1) 791 44 44
TELEX: 611 448
Tekelec Airtronic
Cite des Bruyeres
Rue Carle Vernet
F-82310 Sevres
Tel: (01) 534 75 35
TELEX: 204552

WEST GERMANY
Electronic 2000 Vertriebs A.G.
Neumarkter Strasse 75
D-8000 Munich 80

Tel: (89) 43 40 61

TELEX: 522561 EIEC D
Jermyn GmbH

Postfach 1180
Schulstrasse 48

D-6277 Bad Camberg

Tel: (06434) 23

TELEX: 484426 JERM D
Celdis Enatechnik Systems GmbH
Schillerstrasse 14

D-2085 Qunckbom-mmbuvg
Tet: (4106) 6121

TELEX: 213590 ENA D
Proslectron Vertriebs GmbH
Max Planck Strasse 1-3
6072 Dreieich bei Frankfurt
Tel: (8103) 33564

TELEX: 417983

IRELAND

Micro Marketing
Glenageary Otfice Park
Glenageary

Co. Dublin

Tel: (1) 85 62 88
TELEX: 31584
ISRAEL
Eastronics Ltd.

11 Rozanis Street
P.O. Box 39300
Tel Aviv 61390
Tel: (3) 47 51 51
TELEX: 33638

ITALY

Eledra 3S S.P. A
Viale Elvezia,

TELEX: 332332

Intesi

Milantiori Pal. E/5
0090 Assago

Milano

Tel: (02) 82470

TELEX: 311351

NETHERLANDS

Koning & Hartman
Koperwerf 30

P.O. Box 43220

2544 EN 's Gravenhage
Tel: 31 (70) 210.101
TELEX: 31528

NORWAY

Nordisk Elektronic (Norge) A/S
Postoffice Box 122
Smedsvingen 4

1364 Hvaistad

Tel: (2) 786 210

TELEX: 16963

PORTUGAL

Ditram

Componentes E Electronica LDA
Av. Miguel Bombarda, 133
P1000 Lisboa

Tel: (19) 545 313

TELEX: 14182 Brieks-P
SPAIN

Interface S.A.

Ronda San Pedro 22, 3
Barcelona 10

Tel: (a) am n 51

TWX:

T SESA

Miguel Angel 23-3
Madrid 10

Tel: (1) 419 54 00
TELEX: 27707

SWEDEN
AB Gosta Backstrom
12009

Alstroemergatan 22
$-10221 Stockholm 12
Tel: (8) 541 080
TELEX: 10135

Nordisk Electronik AB
x 27301

Sandhamnsgatan 71
$-10254 Stockholm
Tel: (8) 635 040
TELEX: 10547

SWITZERLAND
industrade AG
Gemsenstrasse 2
Postcheck 80 - 21190
CH-8021 Zurich

Tet: (01) 363 23 20
TELEX: 56768 INDEL CH

UNITED KINGDOM
Bytech Ltd.

Unit 57

London Road
Earley, Reading
Berkshire

Tel: (0734) 61031
TELEX: 848215

Comway Microsystems Ltd.
Market Street
UK-Bracknell, Berkshire
Tel: 44 (344) 55333
TELEX: 847201

DECADE 1td.

100 School Road
Tilehurst

Reading, Berkshire

Tel: (0734) 413127
TELEX: 837953

Jermyn Industries

Vestry Estate

Sevenoaks, Kent

Tel: (0732) 450144
TELEX: 95142

MEDL.

East Lane Road

North Wembley

Middlesex HA9 7PP

Tel: (01) 904 93 07
TELEX: 28817

Rapid Recall, Ltd.

Rapid House/Denmark St
High Wycombe

Berks, England HP11 2ER
Tel: {0494) 26 271

TELEX: 837931
YUGOSLAVIA

H. R. Microelectronics Enterprises
P.0. Box 5604

San Jose, Cal-lomm 95150
Tel: 408/978-

TELEX: 278- 559



intel

AUSTRALIA

Intel Semiconductor Pty. Ltd.
Spectrum Building

zoo Pacific Highway

vel §
Crows Nest, NSw, 2089

'I‘el 01| 61-2-436-2744
TELEX: 790-20097

HONG KONG

Intel Semiconductor Corp.
99-105 Des Voeux Rd., Centra!
18F, Unit B

Hong Kong

Tel: 0| 1-852-5-499-432

TELEX: 63869

INTEL INTERNATIONAL SALES OFFICES

JAPAN

Intel Japan K.K.

§-8 Tokodai, Toyosato-machi
Tsukuba-gun, Ibaraki-ken 300-26
Tel: 029747-8511

TELEX: 03656-160

Intel Japan K.K.

2-1-15 Naka-machi

Atsugi, Kanagawa 243

Tel: 0462-23-3511

Intel Japan K.K.*

2-51-2 Kojima-cho

Chotu, Tokyo 182

Tel: 0424-88-3151

Intel Japan K.X.

2-69 Hon-cho
Kumagaya, Saitama 360
Tel: 0485-24-6871

Intel Japan K.K.*

2-4-1 Terauchi
Toyonaka, Osaka 560
Tel: 06-863-1091

Intel Japan K.K

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100
Tel: 03-201-3621/3681
Intel Japan K.K.”

1-23-9 Shinmachi
Setagaya-ku, Tokyo 154
Tel: 03 426 223\/427 8845

*Field Application Location

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES

ARGENTINA

VLCSR.L.

Sarmiento 1630 Piso

(1042) Buenos Aires

Tel: 35-1202/9242

TELEX: Public Booth 9900 or 9901

Mailing Address

Soimex International Corporation
15 Park Row, Room #1730
New York, New York 10038
(212) 406-3052

Attn: Gaston Briones
AUSTRALIA

Total Electronics

9 Harker Street

Burwood

Victoria 3125

Tel: 61 3 288-4044

TELEX: AA 31261

Mailing Address

Private Bag 250

Burwood, Victoria 3125
Australia

Total Electronics

#1 Johnstone Lane

Lane Cove, N.S.W. 2066
TELEX: 26297

BRAZIL

Icotron S.A.

05110 Av. Mutinga 3650-6 Andar
Pirituba Sao Paulo

Tel: 261-0211

TELEX: 1122274/ICOTBR

CHILE

DIN

AV. VIC MCKENNA 204
Casilla 6055

Santiago

Tel: 227 564

TELEX: 352003
COLOMBIA
International Computer Machines
Carrera 7 No. 72-34
Apdo. Aereo 19403
Bogota 1

Tel: 211-7282

TELEX: 45716 ICM CO.
HONG KONG

Schmidt & Co. Ltd.

Wing on Centre, 28th Floor
111 Connaught Road Central
Tel; 5-455-644

TELEX: 74766 SCHMC HX

INDIA

Micronic Devices

104/109C, Nirmal Industrial Estate
Sion (E)

Bombay 400022

Tel: 486-17

TELEX: 011 71447 MDEV IN

JAPAN

Asahi Electronics Co. Ltd.
KMM Bldg. Room 407
2-14-1 Asano, Kokura
Kita-Ku, Kitakyushu City 802
Tel: (093) 511-6471

TELEX: AECKY 7126-16

Hamilton-Avnet Electronics Japan Lid.

YU and YOU BIdg. 1-4 Horidome-Cho
Nihonbashi Chuo-Ku, Tokyo 103
Tel: (03) 662-9911

TELEX: 2523774

Ryoyo Electric Corp.

Konwa Bldg.

1-12-22, Tsukiji

Chuo-Ku, Tokyo 104

Tel: (03) 543-7711

Tokyo Electron Ltd.

Shin Juku, Nomura Bidg.

26-2 Nishi-Shin Juku-Ichome
Shin Juku-Ku, Tokyo 160

Tel. (03) 343-4411

TELEX: 232-2220 LABTEL J

KOREA

Koram Digital

Room 909 Woonam Bidg.
7, 1-KA Bongre-Dong
Chung-Ku Seoul 100

Tel: 2-753-8123

TELEX: K25299 KODIGIT

NEW ZEALAND

McLean Information Technology Ltd.
459 Kyber Pass Road, Newmarket,
P.O. Box 9464, Newmarket

Auckland 1, New Zealand

Tel: 501-801, 501-218, 587-037
TELEX: NZ21570 THERMAL
SINGAPORE

General Engineers Corporation Pty. Ltd.
Block 3, Units 1003-1008, 10th Fioor
P.S.A. Multi-Storey Complex

TELOK BLANGAH/Pasir Panjang Road
Singapore OSI'I

Tel: 271-3167

TELEX: RS23987 GENERCO

SOUTH AFRICA
Elecuonic Buildmg Elements, Pty. Ltd.
P.O. Box 4609

Hazelwood, Pretoria 0001
Tel: 011-27-12-46-9221 or 9227
TELEX: 3-0181 SA

TAIWAN

Taiwan Automation Corp.*
3d Floor #75, Section 4
Nanking East Road

Taipei

Tel: 771-0940

TELEX: 11942 TAIAUTO
YUGOSLAVIA

H. R. Microelectronics Enterprises
P.O. Box 5604

San Jose, Cnmorma 95150
Tel: (408) 97!

TELEX: 278—559

*Field Application Location



CALIFORNIA

Intel Corp.

1350 Shorebird Way

Mt. View 94043

Tel: (415) 968-8086

TWX: 810-339-9279
910-338-0255

Intel Corp.

2000 E. 4th Street

Suite 110

Santa Ana 92705

Tel: (714) 835-2670

TWX: 910-595-2475

Intel Corp.

7670 Opportunity Road

San Diego 92111

Tel: (714) 268-3563

Intel Corp.

5530 N. Corbin Avenue

Suite 120

Tarzana 91356

Tel: (213) 708-0333

COLORADO

Intel Corp.

650 South Cherry

Suite 720

Denver 80222

Tel: (303) 321-8086

TWX: 910-931-2289

CONNECTICUT

intel Corp.

36 Padanaram Road

Danbury 06810

Tel: (203) 792-8366

FLORIDA

intel Corp.

1500 N.W. 62nd Street
Suite 104

Ft. Lauderdale 33309
Tel: (305} 771-0600
TWX: §10-956-9407

Intel Corp.

500 N. Maitland Avenue
Suite 205

Maitland 32751

Tet: (305) 628-2393
TWX: 810-853-9219
intel Corp.

5151 Adanson Street
Orlando 32804

Tel: (305) 628-2393
GEORGIA

Intet Corp.

3300 Holcomb Bridge Road
Suite 225

Norcross 30092

Tel: (404) 449-0541
ILLINOIS

Intel Corp.

2550 Golf Road

Suite 815

Rolling Meadows 60008
Tel: (312) 981-7230
TWX: 910-253-1825

KANSAS

Intet Corp.

9393 W. 110th Street
Suite 265

Overland Park 66210
Tet: {(913) 642-8080
MARYLAND

Intel Corp.

7257 Parkway Drive
Hanover 21076

Tel: (301) 796-7500
TWX: 710-862-1944

U.S. SERVICE OFFICES

MASSACHUSETTS
Inte! Corp.

27 Industrial Avenue
Chetmsford 01824
Tel: (617) 256-1800
TWX: 710-343-6333
MICHIGAN

Intel Corp.

26500 Northwestern Highway
Suite 401

Southfield 48075
Tel: (313) 353-0920
TWX: 810-244-4915

MINNESOTA

Intel Corp.

7401 Metro Boulevard
Suite 355

Edina 55435

Tel: (612) 835-6722
TWX: 910-576-2867
MISSOURI

Intel Corp.

4203 Earth City Expressway
Suite 143

Earth City 63045

Tel: (314) 291-1930

NEW JERSEY

Intel Corp.

385 Sylvan Avenue
Englewood Clitfs 07632
Tel: (201) 567-0820
TWX: 710-991.-8593

NEW YORK

Intel Corp.

2255 Lyell Avenue
Rochester 14606

Tel: (716) 254-6120
NORTH CAROLINA
Intel Corp.

5600 Executive Drive
Suite 113

Charlotte 28212

Tel: (704) 568-8966
Intel Corp.

2306 W. Meadowview Road
Suite 206

Greensboro 27407
Tel: (919) 294-1541
OHIO

Intel Corp.
Chagrin-Brainard Bldg.
Suite 300

28001 Chagrin Boulevard
Cleveland 44122

Tel: (216) 464-6915
TWX: 810-427-9298
Intel Corp.

6500 Poe Avenue
Dayton 45414

Tel: (800) 325-4415
TWX: 810-450-2528

OKLAHOMA

Intat Corp.

4157 S. Harvard
Suite 123

Tulsa 74101

Tel: (918) 749-8688

OREGON
Intet Corp.

10700 S.W. Beaverton-Hilisdale Highway

Suite 22

Beaverton 97005
Te: (503) 641-8086
TWX: 910-467-8741

PENNSYLVANIA

Intel Corp.

500 Pennsylvania Avenue
Fort Washington 19034
Tel: (215) 841-1000

TWX: 510-661-2077

Inte! Corp.

201 Penn Center Boulevard
Suite 301 W,
Pittsburgh 15235
Tel: (313) 354-1540
TEXAS

intel Corp.

313 E. Anderson Lane
Suite 314

Austin 78752

Tel: (512) 454-8477
TWX: 910-874-1347
Intel Corp.

2925 L.B.J. Freeway
Suite 175

Dallas 75234

Tel: (214) 241-2820
TWX: 910-860-5617
Intel Corp.

7322 S.W. Freeway
Suite 1480

Houston 77074

Tet: (713) 988-8088
TWX: 910-881-2490

VIRGINIA
Intel Corp.
7700 Leesburg Pike
Suite 412
Falls Church 22043
Tel: (703) 734-9707
TWX: 710-931-0625

WASHINGTON

Intel Corp.

110 110th Avenue N.E.
Suite 510

Bellevue 98004

Tel: 1-800-538-0662
TWX: 910-443-3002
WISCONSIN

Intel Corp.

150 S. Sunnysiope Road
Suite 148

Brookfield 53005

Tel: (414) 784-9060
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Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

. Intel Corporation S.A.

Parc Seny
Rue du Moulin a Papier 51
Boite 1

B-1160 Brussels
Belgium

Intel Japan K.K.

5.6 Tokodai Toyosato-machi
Tsukuba-gun, Ibaraki-ken 300-26
Japan
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